psych/0000755000176200001440000000000013154773345011414 5ustar liggesuserspsych/inst/0000755000176200001440000000000013154621324012356 5ustar liggesuserspsych/inst/CITATION0000644000176200001440000000143413144153742013520 0ustar liggesuserscitHeader("To cite the psych package in publications use:") citEntry(entry="Manual", title ="psych: Procedures for Psychological, Psychometric, and Personality Research", author = "William Revelle", Organization = " Northwestern University", address = " Evanston, Illinois", year = 2017, note = "R package version 1.7.8", url = "https://CRAN.R-project.org/package=psych", textVersion = paste("Revelle, W. (2017) ", "psych: Procedures for Personality and Psychological Research, ", "Northwestern University, Evanston, Illinois, USA, ", "https://CRAN.R-project.org/package=psych", " Version = 1.7.8",".",sep="") ) psych/inst/NEWS.Rd0000644000176200001440000036012713152640360013431 0ustar liggesusers\name{NEWS} \title{News for Package 'psych'} \section{Changes in psych version 1.7.9 (2017-09-01}{ \subsection{Introduction}{ \itemize{ \item Version 1.7.9 is the development release of the psych package. It is available at the repository at \url{http://personality-project.org/r}. The released version is 1.7.8. The second digit reflects the year (i.e., 2017), the third set the month (i.e., 1.6.12 was released in December of 2016, the last two digits of development versions reflect the day of any modifications). 1.7.8 was released in August, 2017, \item The psych package includes functions and data sets to do classic and modern psychometrics and to analyze personality and experimental psychological data sets. The psych package has been developed as a supplement to courses in research methods in psychology, personality research, and graduate level psychometric theory. The functions are a supplement to the text (in progress): An introduction to psychometric theory with applications in R. \item Additional functions are added sporadically. \item This news file reports changes that have been made as the package has been developed. \item To report bugs, send email to \url{mailto:revelle@northwestern.edu} using bug.report. } } \subsection{To do}{ \itemize{ \item Suggestions are welcome, but the current list includes the following(and has included for a long time, so lets be patient): \item Add confirmatory clustering to ICLUST \item Get cluster scores in ICLUST -- analogous to factor scores (requested by Ben Shalet) \item Add signal detetection function as an option for dichotmous data. (in progress) \item Add the ability to create multiple groups in sim.irt functions \item Find canonical loadings in set.cor \item Add omega factor extension figure option (requested by Sylia Wilson) \item Add option to do subject density and item density plot to IRT plot. \item note that the df in setCor should reflect the number of cases actually used \item add the ability to scale radar plots of raw data from min to max, and add a scale to radar and spider plots (e.g. circular histograms) \item add the ability to add labels to lavaan.diagram \item clean up lavaan diagram so that the output is more readable \item Add the ability to return the true scores for subjects when simulating structures. This will help fitting reliability models but will require not using mvrnorm \item To help those who want to simulate a bifactor model, make it explicit \item Check the bias in bootstrap resampling using cor.ci \item Consider using the log option in pnorm \item Start to use the drop=FALSE when doing subsetting (doing this more and more) \item add symmetric=TRUE to eigen calls, think about only.values=TRUE for some cases \item Add an analysis if DIF to the irt functions (requested by David Condon) \item Add some power functions \item Fix the help menu for describeBy to explain vectors are ok \item Add CIs for means and skews as an option (for describe as well as describeBy) Requested by Aaron Wichman \item Fix statsBy to handle the case of NULL groups. (particularly for the cors=TRUE option). \item Add a function for the Meng, Rosenthal, Rubin tests for multiple comparisons of correlations. \item Clean up the various sim functions so that they are better documented \item Clean up documentation of score.irt etc. (partly done) \item Add complexity to omega solution \item Add statistic to fa to report max fa. (partly done with fm = minrank) \item Parallize iterations for confidence intervals in omega \item Probably should drop much of the stats when doing iterations with fa or omega \item Find unbiased cis when doing bootstrap \item Allow the choice between regression vs. correlation in esem between X and Y sets. \item Allow for different rotation options in X and Y sets in esem, allow omega style hierarchical structure for x (and y) \item Fix bug in esem.diagram for ability- bifactor 3,3 simple=FALSE,cut=.2 \item Improve documentation for esem \item parallelize iterations when bootstrapping fa \item Add interbattery diagram to the structure. \item fix bug in lavaan.diagram for lr=FALSE \item Add option to omegaSem to generate code for lavaan for a hierarchical model \item Add the df in mediate \item Make sure that output is "tidy" \item add Meng's test of correlations \item Add Krippendorf's alpha? } } } \section{Changes in psych version 1.7.8 (2017-08-31)}{ \subsection{Additions}{ \itemize{ \item Completely rewrote partial.r for readability and also to add the ability to find the anti-image (that is to say, to partial all the variables from each other in correlation matrix.) \item Added some options to autoR. \item Added the gr option (for color gradients) to corPlot following a suggestion from Anne Zola and Lorien Elleman \item Added fa.random to start doing random effects factor analysis. \item Added cohen.d to find cohen.d statistic for two groups on a number of variables. Also reports the Mahalanobis distance. \item Added Mahalanobis distance for groups (see del Giudice, MBR, 2017) \item Added d.ci (cohen.d.ci) to find confidence intervals for effect sizes. \item Added d2t, t2d to do basic conversions of effect size. \item Rewrote bestItems and bestScales to allow raw data or correlation matrix input and to be much faster. \item Added the pc option to fa.diagram to allow the arrows to come from the observed variables if the data are a principal components solution. (suggested by Michael Wood). \item Added selectFromKeys to allow selecting items based upon a keys.list \item Added fa.sapa to allow iterated factor solutions across random subsets of subjects. Basically just a tool to examine the stability of sapa based solutions. \item Completely rewrote pairs.panels to a) add confidence regions for regressions and for loess fits. Changed the smooth function to be loess rather than lowess. Adjusted the histograms so that values line up with the labels. Changes suggested by Julian Martin. \item Added alpha factor analysis as an option to the fa function. \item Converted package to be byte-compiled. This seems to result in a 7 - 10 \% improvement for e.g., factoring a 1000 x 100 categorical data matrix (mean of 61 elapsed vs. 65 secs). \item added sem.diagram and sem.graph which call structure.diagram and structure graph with sem output. Still having problems sporadically with RGraphviz. \item Added in cross validation as an option to best.scales/bestItems. \item Modified alpha so that it can just select a small subset of items to score \item Added a comment to the r.test function about precision of p values (suggested by Julia Rohrer). \item Add an additional object to corr.test and corr.p to give Bonferonni and Holm (default) adjusted cis (requested by Lorien Elleman) \item Added the name for corPlotUpperLowerCi to be the camel case equivalent of cor.plot.UpperLowerCi \item Changed the se.bars=TRUE to se.bars=FALSE in fa.parallel to make the decision rule more transparent \item Modified fa so that it will not die if nfactors = nvar \item Changed messages to warnings in polychoric. This allows fa.parallel to run in parallel (and therefore much faster) without crashing. (Based upon a problem reported by Guido Biele). \item Added the diag option to residuals and resid. \item Added the blant data set to show factor analytic problems. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed problem in cohen.kappa to correctly find the variances of weighted kappa (reported by Lisa Avery). \item Fixed mssd to correctly divide by number of cases-lag instead of n.obs - l - lag (reported by Charlotte Vrijen) \item Fixed problem with alpha for two item scales (I was not correctly reporting the alpha if one item was dropped.) Reported by Daniel Zingaro. \item Patched cohen.kappa so that it warns instead of breaking if given identical ratings for everyone (reported by Caroline Wehner). \item Added the factor names for old.min(res) solutions. \item Fixed (finally?) a bug in mixedCor (coming from polydi) that was incorrectly reporting half of the correlations as 1.0. This was causing improper solutions in any data set that had more than 1 dichotomous variable and more than 1 polytomous variable. \item Fixed scoreIRT.2pl so that it does not choke on 1 items scales \item Modified fa so that it will report the factor score correlations for the chosen scoring method as well as the regression based scores. Although factor.scores was reporting the correct R2 values, fa was always reporting the regression based R2 values. Also deprecated the oblique.score option. (Based upon trying to answer a question from Jeannette Samuelsen.) } } } \section{Changes in psych version 1.7.5 (2017-05-01)}{ \subsection{Additions}{ \itemize{ \item Added read.xport to the read.file so we can read SAS export files. Also added the widths parameter so that read.file can read a fixed width file. \item Added select option to scoreItems and scoreOverlap to just score the items selected (to enhance speed for big sets of items and short scales). \item Added a private function (selectFromKeyslist) to handle numeric and character keys.lists when doing selection. \item Added irt.se to find standard errors based upon the test information \item Added show = FALSE to setCor to allow the option of showing the unweighted matrix correlation (Had removed this in prior release, but decided for teaching purposes, is is convenient.) \item Added the ability to define the separator when reading csv files in read.file \item Added breaks=21 to multi.hist to allow for better plotting control \item Added the ability to plot asymmetric correlation matrices in corPlot (requested by Anne Zola) \item Added the correction option to fa.parallel when doing tetrachoric or polychoric correlations. It had been set to .5 without the ability to set it to 0. (Inspired by a question from Ismail Cukadar). \item Added stars as an option to pairs.panels and corPlot. This is for those people who insist on showing 'significance' values. Also added scale as an option when showing the numbers (to show significance by number size.) \item Added quickView to complement headTail and topBottom. Added from and to parameters to all three functions. \item Added top=4 and bottom=4 to replace hlength and tlength in headTail and topBottom. Makes more obvious code. \item Added Vaccounted for fa and pca (as requested by various stackoverflow users). \item Dropped the message about matrices not being square in cortest. (Just an irritant when doing R CMD check and testing the intro.rnw file)#Adapted from the help for pairs #modified December 15, 2011 to add the rug option #further modified March 30, 2012 to add the method of correlation option (suggested by Carsten Dormann). #Fixed a bug in show.points on March 18, 2017 (reported by Matthew Labrum) #by moving all the little functions to be outside the main function, this allows method and rug to be passed to these lower order functions. #this should allow for somewhat cleaner code for the other functions #modified March 15, 2015 to add the ability to control the size of the correlation separately from the cex variable in the points #also added the ability to set the number of breaks in the histograms #Also completely reorganized the main function to be much cleaner #would like to add the smoothScatter function as an option \item Modified plot.parallel to go from ymin rather than 0. Suggested by Hao Wu. \item Added confidence intervals for the ICC1 and ICC2 to the output for statsBy (requested by Lorien Elleman) \item Added mixedCor as an improvement to mixed.cor. Somewhat cleaner interface. } } \subsection{Bugs Fixed}{ \itemize{ \item Modified the minres solution in fa following very helpful suggestions from Hao Wu. Basically, the first derivative wrong and the solution was slightly incorrect. This has now been fixed for minres. fm="old.min" keeps the old solution. The fm="uls" uses empirical first derivatives works to give the unweighted least squares solution. This is discussed in the fa help page as well. \item Fixed RMSEA error (as reported by Hao Wu). In version 1.6.12 I had changed the RMSEA formula from the Tucker formula to the one used in sem and now have reverted to the Tucker formula (as described in the help page.) \item Fixed cor.plot.upperLowerCi so that it works again and also reports replications \item patch to mixed.cor for figuring out what kind of data we have. Basically, set all minima to 1 so that polydi won't croak \item moderate.diagram was drawing incorrect X paths. \item plot.irt was not labelling factor numbers \item t2r was not taking the sqrt and thus was giving much to small rs. fixed. \item In describeBy, changed nrow to NROW to correct error thrown by the affect data set for the development versin of linux (although that seems to have been a temporary error.) \item Modified isCorrelation yet again to treat the case of symmetric correlation matrices stored as data frames. (Used in some class examples!) } } } \section{Changes in psych version 1.7.3.21 (2017-03-21)}{ \subsection{Additions}{ \itemize{ \item Added sim.multi to simulate and draw within subject data. \item Minor modifications to corPlot for labelling (and added a comment to the help file to show how to do multiple plots to answer a query from Yuji Shimohira Calvo) \item Modified cohen.kappa so that the number of levels can be specified if there are some levels that are missing completely (requested by Amy Finnegan). \item Added multilevel.reliability (mlr) to find various generalizability coefficients for three way (subjects x time x items) data following chapters by Pat Shrout and Sean Lane. \item Added a helper function (mlArrange) to convert semi-wide data into long data. Useful for multilevel analyses of three way data sets. \item Added mlPlot to plot multilevel (id x time * item) data. \item Added a plot option to fa.parallel to allow suppression of plotting (requested by David Copndon) \item Added autoR to find autocorrelations based upon mssd. This is useful for multiple time points. \item Added a trivial helper function r2c (and cor2cov) to convert a correlation matrix to a covariance matrix. \item Added VIF (Variance Inflation Factor) which is just 1/(1-smc) to setCor. \item Added a note to alpha about the dplyr problem and added a fix to the problem (as reported by Adam Liter). \item Added a discussion to the fa.rd documentation discussing the problem of estimating the minimum residual. (Inspired by correspondence with Hao Wu and Mikko Ronkko). \item Added a new vignette (intro) and modified the overview vignette. Meant to make the introduction and overvies easier to read. \item Added a new function: unidim to estimate the unidimensionality of a set of items. \item Inspired by a question from Jared Smith, added several new features to scatter.hist, as well as removed a few bugs. \item While patching pairs.panels (see bugs fixed), add smoother option to all the other options. \item Added cor2cov (and then temporarily removed because of conflict with lavaan.shiny call to lavaan::cor2cov). } } \subsection{Bugs Fixed}{ \itemize{ \item ScoreIrt: corrected cut so that it passes through to lower level functions (reported by David Condon) \item rownames for corr.p$ci were incorrectly labeled (reported by Lorien Elleman) \item Fixed a bug in finding RMSEA and the confidence intervals thereof. (Reported by Hao Wu). Possibly the error was introduced in 1.6.12 \item Fixed plotIrt so that it correctly rescales ylim for each factor rather than just the first factor. \item The lag parameter in mssd was not being used. Fixed. \item The handling of missing data by groups in statsBy is fixed for finding ICC1. This was producing seriously incorrect ICC1 and ICC2s with a great deal of missing data. That is for SAPA data, when grouping by ZCTA, many items were missing. (Reported by Lorien Elleman). \item Fixed a bug in scoreItems and scoreOverlap when keys are already a data.frame rather than a matrix. (Reported by Jeromy Anglim). \item Cleaned up various problems in mediate and print.psych.mediate so more complicate problems will work. \item Modified isCorrelation to test for symmetric matices but dropping colnames and rownames. (This led to a problem with the neo data set. Reported by Hao Wu.) \item Changed the neo data set from data.frame to matrix. \item Fixed omegaFromSem and print.psych.omega to handle case of 1 factor sem model (which would normally be thought of as inappropriate, but some people wanted.) \item Fixed a problem with printing describeBy output. (Reported by David Uttall.) \item Fixed a problem with esem for the case of having more variables in the correlation matrix than being analyzed in the esem statement. \item Fixed a bug in pairs.panels where it was ignoring the show.points option in several option cases. (Reported by Matthew Labrum). } } } \section{Changes in psych version 1.6.12 (2016-12-31)}{ \subsection{Additions}{ \itemize{ \item allow scaling of circles in error.circles (suggested by Josh Wilt) \item Added char2numeric to solve a problem of categorical data from a questionnaire. \item Added a helper function dfOrder to sort data.frames on multiple columns. \item Added interbattery for interbattery factor analysis. \item Changed the print line for MLE chi square to say model based chi square. \item Added Promax as a possible rotation in kaiser, and added the m = option to it as well. (In response to some correspondence with Stefan Dombroski). \item Clarified the KMO and cortest.bartlett help pages. \item Started to get rid of all of the deprecated functions. (or at least move to them to unique help files). \item Added a trivial but useful function isCorrelation to improve the tests in alpha, scoreItems, etc. \item Serious reworking of omegaSem and omegaFromSem to allow the use of lavaan or sem to do cfa as part of omega. Also, it is now possible to do omega directly from a sem/lavaan run. \item Added lavaan as a source of omegaSem and omegaFromSem. Also, for omegaFromSem, added some of the normal omegasubscale output (suggested by AndrĂ© Kretzschmar). \item fixed alpha, principal, fa, kmo and omega to check if the input is a symmetric correlation matrix or just a strange case of raw data (following a suggestion by Adam Liter). \item Modified cohen.kappa to truncate confidence limits to +/- 1 and added a discussion to the help page describing how to do a boot strap of cohen.kappa to examine the distribution of cohen.kappa (suggested by Andreas Spitzmueller). \item allowed scoreItems to handle variables that are factors. Added a warning when scoring total scores with impute="none" when missing data are found. \item Added a parameter to densityBy (violinBy0 to allow for scaling the widths by sample size. \item Added a helper function, dfOrder to sort (order) a data.frame by multiple columns \item Completely revised scoreIrt (and the associated functions) to get around problems with all 0 or all 1s and to make the function faster, and perhaps more accurate. \item Changed the sort option in irt.fa to be FALSE (makes scoring easier). \item Fixed VSS so that it reports not the biggest, but also the first where the sign changes. \item Allow imputation in factor scores (e.g. median or mean imputation for items) (requested by Stephan Daus). Also report the number of missing observations per subject when doing factor scores. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed the RMSEA in fa.stats. Although the confidence intervals were correct, the RMSEA value was slightly inflated. Reported chi squares were correct, just the RMSEA was slightly off. \item omega and schmid incorrectly estimated total variance in case of being given a factor loading matrix and correlation matrix as input instead of the more normal case of a raw data set or a correlation matrix. \item Bug fixed in scoreIrt where the values for the scores for people who gave all of the highest possible scores was incorrect (reported by Roland Leeuwen ). In addition, the scoreIrt.poly was not properly doing normal scoring but was in fact just doing logistic scoring. Fixed. This bug was affecting those people with max or min responses, and thus was particularly a problem for short scales. \item Fixed a bug in scoreItems for cases where some variables (not scored) are categorical (Reported by Ronald Fischer). \item Fixed bug in fa.parallel where it is not drawing both resampled and simulated lines. (reported by Alexander Weiss). This was intentionally added in about March to make a cleaner diagram, but now I am discussing this in the help file. \item Allow specification of the direction of items in the scoreIrt.2pl to match the keys.list (previously it would match the factor analysis which could be backwards for some scales with many reversed items). \item Did not need to fix bug in wtd.table in polychoric by adding in minx and maxx, etc. (reported by Jeovani Schmitt) because this can be handled by settting global=FALSE. \item Minor fix in the default labels for the fa.parallel function (suggested by Meik Michalke) } } } \section{Changes in psych version 1.6.9 (2016-09-18)}{ \subsection{Additions}{ \itemize{ \item Made it clearer that score.irt with the keys option is basically a Rasch model.That is, tau and equal loadings are specified by keys. \item Serious rewriting of scoreIrt (both for dichtonous and polytomous items) to make it able to use multiple cores (speeding up at least 8 times) and making the code more efficient when scoring multiple scales. \item Added scoreIrt.1pl and scoreIrt.2pl to more easily find Rasch like and 2 parameter solutions. \item Added scoreFast to (very) rapidly find mean or total scores with or without imputation (ala scoreItems) but not to bother finding all the complicated statistics which take a lot longer to find. In addition, it just bothers to look at the items that to be scored, rather than all the items in the items set. \item Added a trivial function (cor2) to correlate two or more sets of data (x and y), round to 2 decimals, save and print the results. Truly trivial, but a time saver when comparing solutions. \item Added more functionality to dotchart and created error.dots. \item Added r2t,t2r,chi2r,r2chi as trivial conversion functions \item Added read.file, write.file, read.file.csv, write.file.csv as helper functions for input/output \item Added the ability to do Minimum Rank Factor Analysis (following a request by Michael Paul Grosz) \item Added an option to print.psych to allow significant digits to be controlled for describe (requested by Jeremy Biesanz) \item Added an exploratory structural equation function (esem) to do exploratory modeling, and esem.diagram to show it. \item Added keys2list which converts a scoring key matrix to a list form. \item Added the ability to just pass a keys.list to scoreItems, scoreOverlap, scoreIrt.1pl. This clearly simplifies the call. \item Added another helper function: keys.lookup that takes a keys.list and a dictionary and displays the content of the items to be scored. \item Did to cor2latex what we did in df2latex (i.e., add cut and big options) \item Fixed vss to do any kind of rotation (that is, just pass the rotation to fa). \item Modified error.crosses to allow specifying text, point, and error arrows separately (suggested and with help from Arnaud Defaye) \item Minor change to tr to allow it consider na.rm=TRUE, and for cohen.kappa to handle cases of items with no variance. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed subtle problem when handling missing data for score.irt for raw scores. Prior versions (< 1.6.7) would report incorrect total scores for cases with missing items that were to be scored negative. \item Corrected the reference to Revelle, Wilt and Rosenthal in the bfi data set. \item Fixed a subtle problem in print.psych.iclust that was causing errors in the development version of R for PCs. \item Added mu backinto sim.hierarchical (thanks for Alan Robinson for noticing it was gone). \item fixed bug in cor.wt for the problem of a vector of weights rather than a matrix of weights (Reported by Emil Kirkegaard) } } } \section{Changes in psych version 1.6.6 (2016-06-20)}{ \subsection{Additions}{ \itemize{ \item Added an iterative option to cosinor so that it can do phase adjustment. \item Added error.bars.tab to do plots of tabular data with error bars \item Added a sort option to irt.fa so that items are sorted by factor loading. \item Added pca as an alias to principal \item Added the cut and big option to df2latex \item Added a few cross references to make it easier to find functions. \item Modified describe to take character vectors and matrices \item Added labels to factor.plot for more than 2 factors. Not as hard as I thought. Added a show.names options to plot the labels without overwriting a point. \item Modified corPlot to find correlations if input is a non square matrix or data.frame (but not an object from fa or omega). \item Modified describe (and therefore, describeBy) so that it can take more options (including interquartile range) and quantiles (requested by Gilbert Gregory). \item Added a weight option to fa to weight subjects by a weighting vector (requested by Mike Hammer). \item Added anova.psych to allow for tests for chisquare differences between factor solutions. \item Serious modifications to biplot.psych, fa.plot, and cluster.plot to allow names (labels) in the multi-panel (more than 2 factor) option. Also added the choose option to plot just one selected pair of factors from a larger set. This is useful if showing a 3 or 4 factor biplot and then "blowing up" one of the pairs. \item Serious analysis of the use of global and correct for examples of small data sets provided by Gabriele Cantaluppi. Some resulting improvement in documentation and options. } } \subsection{Bugs Fixed}{ \itemize{ \item Changed principal (and fa) so that when it calls GPA::rotation(Varimax) it passes options (such as eps=1e-7) to get more accuracy. (Reported by Gottfried Helms) \item Fixed error.bars.by to handle the case of a single variable \item Fixed plot.irt.poly so that it communicates correctly with irt2latex for multiple factor case \item Fixed irt2latex so that it handles results from plotting irt as well as directly from irt.fa \item Fixed polychoric so that it returns meaningful tau values in the presence of missing categories (reported by Gabriele Cantaluppi). polychoric was returning incorrect values of correlations and tau for the case of item responses differing in the number of alternatives, or with different minima. Particularly a problem with very small sample sizes. Also generally improved polychoric. } } } \section{Changes in psych version 1.6.4 (2016-04-20)}{ \subsection{Additions}{ \itemize{ \item To make the distinction between Principal Components and Rotated Components and Transformed Components, I have labeled them as PCi, RCi and TCi. I said I did that back in 2013 but I did not seem to have done it! \item Modified principal so that it will now handle the covar option correctly when finding principal scores. \item Modified bi.bars so that both the left and right panel are positive numbers (requested by Lorien Elleman). Also added the ability to label the columns/rows. \item Modified omega.diagram so that labels can be applied to the factors. \item Added the use option to splitHalf. \item Minor tweak to output of fa.extend for the case of extending to one variable. \item Modified fa.congruence to consider the case of missing loadings (requested by Emil Ole William Kirkegaard) \item Modified documentation to cortest.bartlett to reflect test residual matrices from fa. \item Modified alpha to all the specification of n.obs if using correlation matrix. This allows for finding the s.e. of alpha even from a correlation matrix. \item Modified cor.wt to handle the problem of missing data \item Modified pairs.panels to allow plotting the raw data points but the weighted correlations \item Add the ability to do two level hierarchical factor analysis (i.e, taking out n at level 1, m at level 2. Currently we do this with m=1 for omega) \item Added a warnings option to the alpha function as requested (repeatedly) by Markus Graf. \item Added two experimental measures of unidimensionality/goodness of fit to alpha. \item Modified mediate so that it handles moderation as well \item Added the diag and upper option to corPlot and cor.plot to allow for blanking out the diagonal or upper off diagonal (Suggested by David Condon). \item Added a number of options to plot.residuals to give more helpful displays \item Added (improved) error.bars for taking in data from an external source. \item Completely rewrote the mediate function to be more general and to have better graphics. Added the ability to have multiple y variables. } } \subsection{Bugs Fixed}{ \itemize{ \item Modified principal so that it will now handle the covar option correctly when finding principal scores. \item Corrected a bug in alpha (reported by Tamaki Hattori) to correctly find the s.e. of alpha. I was slightly overestimating the correct values. \item Fixed a bug in setCor that was given incorrect SE for regressions in the case of std=TRUE (the other stats were correct, but the t and p values of the betas were wrong) \item Fixed a bug in error.bars that led to not drawing catseyes when importing using the stats option. Reported by Niall Bolger \item Fixed read.clipboard.upper so that it works properly with names=TRUE \item Fixed a bug in fa.parallel that would not report just fa=fa in the case of correlation matrices (reported by Aaron Weidman) } } } \section{Changes in psych version 1.5.8 (2015-8-29)}{ \subsection{Additions}{ \itemize{ \item Added rot.mat as an output to the fa and principal objects. Cleaned up the fa and principal rotations so they all work. \item Added amplitude, mean, and intercept to cosinor } } \subsection{Bugs Fixed}{ \itemize{ \item alpha: fixed the warning about reverse keying when keys have been specified (reported by Marc Heerdink) \item Fixed the LaTeX bug in the vignettes (I was trying to float htdp instead of htpb) (as requested by CRAN) \item Fixed the LaTex bug in df2latex (same problem) } } } \section{Changes in psych version 1.5.6 (2015-6-20)}{ \subsection{Additions}{ \itemize{ \item statsBy: Added the ability to find within group and between group covariances instead of just correlations. This also allows the type of correlation to be specified. \item mediate: Can now do more general mediation of x -> M -> Y for multiple X variables and multiple M variables. \item mediate.diagram and moderate.diagram are now more functional \item fa: Added the option to reject weird solutions when doing iterations of factor solutions (suggested by Vencislav Popov) \item fa, principal: Improved documentation of principal and fa to explain the com variable. \item alpha: Changed the default for check.keys to be FALSE. This will result in a warning saying that you probably want to reverse keys, and tells you how to do so. In response to comments by Oliver John saying that we were making it too easy to find alpha. \item dia.arrow: Added the both option to allow curved arrows to have heads at both ends (useful for setCor and mediate diagrams) \item plot.irt and plot.poly: Added the option to plot different colors for each item. (requested by Yanna Weisberg). \item Explicitly declared all functions input from the stats, graphics, etc. cor R packages. \item pairs.panels can now draw multiple plot characters (see the second iris example). \item faBy added a free or fixed option to force loadings to the pooled solution (if possible) } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed fa so that the bifactor, TargetT, equamax and varimin rotations return correctly (they were returning the unrotated solution). (Reported by Matthias Bellmann.) \item describe: changed describe so that it will give (with *) stats for factors (replacing a functionality that disappeared sometime ago) The resolves the problem reported by Alan Kelly. \item Fixed a bug in fa2latex so it will boldface "big values" and cut small values instead of one or the other. (Reported by Simon Kiss) \item df2latex and fa2latex: corrected the location of font.size to be inside the table to work correctly (Reported by Simon Kiss). \item pairs.panels the cor option now works correctly (as specified in the help file) when showing the regression line (it had been reversed) } } } \section{Changes in psych version 1.5.4 (2015-4-15)}{ \subsection{Additions}{ \itemize{ \item principal: Fixed principal to be compatible with changes in fa wrt rotations \item Fixed schmid and omega to compatible with all rotations \item Modified setCor and mediate so that they just read in the relevant variables when finding the covariance matrix. \item Added a simulate data option to mediate to handle mediation models based upon covariance matrices. \item Added a density option to error.bars.by so that transparency is easier. \item Cleaned up faBy to handle missing data \item Modified setCor so that variables can be specified by name or number. \item Modified scoreOverlap to handle the case of NAs in the correlation matrix. \item Added the ability to find and print item by scale correlations (corrected for item overlap and scale reliability) in scoreOverlap. \item Added the ID number used for grouping to be the rowname for the output in cosinor (requested by Ashley Kendall) \item Added circadian.stats and circadian.F to do basic circadian stats and group comparisons. \item Added circadian.sd to work with circadian.mean to allow t-tests. \item Added circadian.reliability to find the split half reliability of phases found by cosinor or circadian.phase. \item Renamed best.items and best.scales to bestItems and bestScale. Change the call to be more consistent. \item Added two new features to pairs.panels. One allows it to handle character variables (which will be translated to numeric levels) as requested by Richard Cotton. Added the ability to specify the number of breaks in the histogram as requested by Philipp Thomas. Also added the ability to change plot character size independently of correlation print size (cex.cor). \item Did a drastic rewrite of the pairs.panels function so that is much cleaner (partly in response to a bug reported by Valdar Tammik and a request by Richard Cotten). \item treat character as factor in pairs.panels. Requested by Richard Cotten. \item Modified dia.arrow and het.diagram to allow control over the gap and label sizes. (Requested by David Condon). \item Added a MAR parameter to cor.plot so long labels will fit \item Changed the output of the principal function to not give MLE chi square based fit statistics. (Which really did not make sense.) \item Added the sim.correlation function to simulate sample correlation matrices from a population correlation matrix. \item Added invisible return from fa2latex and df2latex to allow for capture as a file to put into a latex document. (Requested by David Condon.) \item Did a major rewrite of fa.parallel to make the structure more clear and to allow for choosing mean or quantile values of the eigen value comparisons. \item Modified fa so that it allows (without warning) for smcs in case nf > n.var/2. This case will still report a df problem in terms of fit statistics. It will still throw a warning if using an oblique transformation. \item Modified splitHalf so the splits reported are keyed appropriately if some items need to be reversed. \item Added the cta.15 function to lock down cta as published by Revelle and Condon. cta is now the development version, cta.15 is the version reported in R and C. \item The smc function has been modified for the case of correlation matrices with some missing values. SMCs are found based upon the complete correlations, and alternative estimates are found for those with missing values. \item Added warning message to fa, principal, and iclust so that they stop if there are NA values in the correlation matrix. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed mat.regress bug by implementing it as part of setCor. \item Fixed faBy to handle the case of bad data more elegantly \item Fixed a bug in sim (seemingly introduced when I changed the way of finding simulated correlation matrices. Bug also affected the other sim.functions) \item In factor.stats, sometimes the RMSEA limits do not include RMSEA. Rather than reporting non-sensical values, just report NAs. \item fixed bug in bestScales that would cause an error if items were missing in the dictionary. \item Fixed a bug in fa.plot where it would not handle data without a title. \item Fixed a long standing problem in biplot to allow multiple graphs in the same window, and then, discovered and fixed a problem with the margins getting progressively smaller. \item Fixed a bug (reported by Isabelle Rivals) in cohen.kappa (just for weighted kappa) when working with raw data with more than 9 categories. \item splitHalf failed for n > 32. Fixed. (Thanks to Tom Booth for having the data set that produced this error.) \item test for weird correlation matrices failed in the presence of NA fields in scoreOverlap (reported by Lorien Elleman). Fixed. } } } \section{Changes in psych version 1.5.1 (2015-1-20)}{ \subsection{Additions}{ \itemize{ \item Added the cor option to fa so that it can find tetrachoric, polychoric, or mixed correlations. Cleaned up the fa code a bit by using switch instead of convoluted if statements. \item changed cor.smooth to detect any eigenvalue < 10^-12 This had been 10^-15 \item Added the Bonett generalization to the Yule coefficient and added confidence intervals as well. (Suggested by Barry Dwight). \item Changed tetrachoric and polychoric to use sadmvn from the mnormt package instead of mvtnorm. This seems to result in a speed up of a factor of 2! For complete data, the results match that of lavCor (from lavaan) exactly (or at least to the 3 decimals that lavCor reports) but seem to be four times faster for dichotomous data and 20\% faster for polychorics than lavCor. \item Added a message to fa if a Heywood case is detected. Suggested by Sagnik Chakravarty. \item Added a covariance option to omega and to schmid. Requested by Qingping He. \item Modified describe to add a fast option for larger data sets. Added a discussion about how to speed up descriptions for very large data sets. \item Added mediate function to estimate mediation and moderation models. (requested by Dan Molden). \item Added mediate.diagram to show the results of mediation models. \item Added regression.diagram to show regression and set.cor models. \item Modified phi.demo to compare phis with tetrachorics and Yules. \item Modified fa.parallel to allow it to use tetrachoric, polychoric, or Yule coefficents (similar to the change in fa). \item Added a number of if(requireNamespaceGPArotation) GPArotation:: blah blah to make it more compatible with the new namespace checking and error complaints \item Modified scoreOverlap to allow for finding correlations from any non-square data matrix (had been limited to case of non-square where the data were outside a 0 1 range). \item Added documentation to alpha and scoreOverlap justifying the r.cor statistic. } } \subsection{Bugs Fixed}{ \itemize{ \item Corrected cor.ci to fix a capitalized rho (which led to a failure if not using keys. And, then more importantly, fixed it again so that it will work for overlapping scales as advertised. \item Corrected r.test to use df = n-3 instead of n-2. Thanks to Bruno Ernande for reporting this. \item Corrected the documentation to fa wrt oblique.scores to correctly represent what it does (I had had it backwards) Thanks to Mark Seeto for reporting this. \item Added a message to principal if rotation is not correctly specified and defaulting to "none". Suggested by Sagnik Chakravarty. \item Fixed describeData so that it doesn't choke on string variables. \item Modified the print.psych function so that irt information is printed for every unit rather than every .1 unit. The data are still there in the plot.info object. \item Fixed cor.plot to properly add labels to the plot when plotting factor loadings. \item Fixed phi.demo to compare phis with tetrachorics and Yules. \item Fixed a print problem for fa.parallel \item Fixed a rare case in fa.stats for the case of singular matrices \item Fixed the way missing is handled in fa so that it actually works! (problem found by Elizabeth Barrett-Cheetham) \item Modified error circles to pass just the x and y values to statsBy. } } } \section{Changes in psych version 1.4.8 (2014-08-10)}{ \subsection{Additions}{ \itemize{ \item Added the ability to find polychoric correlations within groups in statsBy (requested by Aidan Wright). \item Modified cor.ci to allow for cluster overlap corrections. \item Added het.diagram to allow for diagrams of heterarchical structures. \item Modified dia.arrow to allow for adjusting where the label appears. Applied this fix to fa.diagram. \item Modified fa.sort so that it will sort the results of a principal components analysis (requested by Popov Oleg). \item Added the outlier function to find Mahalanobis distance measures for a data matrix and flag those cases that are unusual. \item Added draw.cor to show how bivariate densities estimates are used in finding tetrachoric correlations. \item Added faBy to allow for factor analysis by groups. \item Removed inactive calls to the polycor package } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed alpha so that it properly returns the average correlation if given a correlation matrix (reported by Franziska Zuber). \item A stylistic change in tetrachoric so that it is easier to read. \item Fixed two examples in tetrachoric that were impossible \item Changed a test condition that was not allowing vector input to be processed in tetrachoric. \item Fixed a bug that would lead polychoric to break if there were no cell entries (bad data condition). Missing cells are now given NA. (Reported by Elina Zaonegina.) } } } \section{Changes in psych version 1.4.6.20 (2014-06-20)}{ \subsection{Additions}{ \itemize{ \item Added read.https function \item Added the ability to specify group by name or variable location to describeBy, error.bars.by, violinBy, mssd and rmssd. \item Added the equamax rotation option in fa. (requested by Sagnik Chakravarty, with solution by Gunter Nickel) \item Added the ability to do factor.extensions for omega analyses. \item Added some error checking in polychoric for case of bad data (requested by Simon Kiss) \item Added the ability to specify the base pch in error.bars.by (requested by Tham Tran) \item Modified tetrachoric and multi.cor to use correct = .5 (that is, to make the correction for continuity a variable rather than a logical to do or not do corrections.) In addition, modified multi.cor to do polytomous by dichotomous variables using a generalization of polychoric (polydi). \item Modified plot.irt and plot.poly to work together better and to allow specifications of the xlim and ylim across plots. \item Added histBy to draw multiple histograms on a single plot \item Added scoreOverlap to adjust correlations between overlapping sets of items. \item Modified error.bars.by to draw semi-transarent catseyes and to allow for settings of pch, lty, and color for each variable. \item Modified fa2latex to boldface abs(loadings) > cut. \item Added the varimin rotation from Suitbert Ertl to principal and fa. } } \subsection{Bugs Fixed}{ \itemize{ \item fixed print.psych.vss to properly print the minimum eBIC value. (reported by Lorien Elleman) \item made x a matrix in mssd to fix a problem of finding mssd of a single variable (reported by Aidan Wright). \item fixed con2cat so that it will handle missing data (correctly) \item Modified error.bars.by so that it will not break if there is only one case in a group. } } } \section{Changes in psych version 1.4.5 (2014-05-11)}{ \subsection{Additions}{ \itemize{ \item Added con2cat to allow making discrete categories from continuous data. \item Modified the cats eyes in error.bars so that colors can be specified (requested by Lauren Tindal). \item Modified set.cor so that calls by name or location work equally well. \item Added the option to change the size of the correlation numbers in cor.plot to reflect the probability values. \item Added a default so that cor.ci automatically draws the scaled cor.plot (requested by David Condon). \item Changed the structure of the fa return when we have confidence intervals. It has been forming another fa object, but this leads to confusion when sorting. \item Modified print.psych.fa.ci so that it handles the revised fa output. \item Modified vss so that it doesn't find factor scores on each iteration. \item Added the plot.cor.upperLowerCi function to plot the confidence boundaries for correlations (requested by David Condon) \item Modified fa.sort so that it will handle confidence intervals for loadings (requested by Jason French). \item Modified fa2latex to boldface significant loadings based upon the confidence intervals (requested by Jason French). \item Modified score.irt so that it will change the sign to match the direction of the keys (if supplied) \item modified error.bars to that x axis labels can be rotated to be vertical (requested by Greg Miller). } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed cor.ci so that it handles case of missing correlations (reported by David Condon) \item Modified plot.irt so that labels are applied for multiple factor solutions (reported by Jason French). \item Modified fa2latex so that it will not blank out h2 and u2 values for cut >0 (suggested by Daniel Zingaro). } } } \section{Changes in psych version 1.4.4 (2014-04-15)}{ \subsection{Additions}{ \itemize{ \item A few tweaks to corr.p to be compatible with corr.test \item Improved statsBy so that it can properly handle two grouping variables. statsBy also labels the columns in the within object. \item Added pairwise names for factor intercorrelations in print.psych.fa.ci. } } \subsection{Bugs Fixed}{ \itemize{ \item Two bugs were introduced into corr.test in version 1.4.3. Both fixed. (reported by louis-charles vannier and Clemens Fell) \item Fixed print.psych.fa so that it properly sorts the complexities (bug reported by Kai Horstman) \item Fixed fa so that if a non-available rotation is requested, a warning is issued. \item Fixed alpha for case of 2 variables. \item Fixed the naming of correlations in cor.ci \item Fixed the empirical confidence intervals for alpha in alpha. } } } \section{Changes in psych version 1.4.3 (2014-03-24)}{ \subsection{Additions}{ \itemize{ \item Added best.scale to empirically combine the best items for a scale to predict particular criteria. \item Changed the call to best.items to match fa.lookup. \item Added a warning for cor.ci if some of the correlations are NA as would be the resulting scales. Will still find the other correlations but be careful. \item Added empirical estimates of fit to the fa and fa.stats functions. These are more robust to misfit for matrices that are not positive definite. (Requested by David Condon and Lorien Elleman). \item Added these empirical estimates of fit to vss. \item Added the nfactors function to do a call to vss and then do nice graphics \item Added fa.organize to hand sort factor output by factor number and by item order. \item Added item.lookup to organize items by factor and then by item mean. \item Added densityBy to show violin plots. Will do this by groups. \item Added cats eyes to error.bars and error.bars.by. \item Added normal theory confidence intervals to corr.test. (Suggested by Alexander Weiss) \item Added the ability to just resample and not simulate in fa.parallel. (Requested by Ashley Kendall.) \item Fixed fa.parallel and fa.parallel.poly for case of very low frequency data. We now resample until we get a matrix with no NA values. (Problem reported by Eric Green). \item Added a modification to error bars to print a dark circle at the mean. ( Suggested by Jaroslaw Arlet.) \item Add significance and confidence intervals to partial.r (Suggested by Elizabeth Schubach). } } \subsection{Bugs Fixed}{ \itemize{ \item cor.plot was incorrectly plotting the numbers by col instead of row. Just a problem for asymmetric matrices. Reported by David Condon. \item corr.p was not printing correctly. Reported by Robin Beaumount. } } } \section{Changes in psych version 1.4.2.1 (2014-02-03)}{ \subsection{Bugs Fixed}{ \itemize{ \item Fixed print.psych.fa to cover several weird cases of no x$R2 or stats.df that were causing HDMD package to fail. } } } \section{Changes in psych version 1.4.2 (2014-02-01)}{ \subsection{Additions}{ \itemize{ \item Added the epi data set and epi.dictionary of items. \item Added bfi.dictionary to show the item contents of the bfi example. \item Added BIC, SABIC, RMSEA, and complexity for each factor model in VSS (vss) (requested by David Condon) \item added the alias of fa.congruence and fa.stats as calls to factor.congruence and factor.stats in a slow move to consistency \item Added fa.lookup to allow for sorted factor loadings with item contents if using a dictionary for the items. \item Modified print.psych.fa so that warnings about how factor score correlations are improper are suppressed (as is the printing of the improper correlations). } } \subsection{Bugs Fixed}{ \itemize{ \item defined global=TRUE as default in fa.parallel.poly (reported by Koji E. Kosugi) \item changed if(max(R2 > 1) to if(any(max(R2 > 1)) in print.psych.fa (reported by David Condon) \item Fixed the se calculation in describe which had been incorrectly changed in version 1.4.1. Thanks to Terry Jorgensen and others for reporting this. \item Fixed fa.sort so the that communalities and complexities are sorted as well } } } \section{Changes in psych version 1.4.1 (2014-1-20)}{ \subsection{Additions}{ \itemize{ \item Substantial improvements in speed through the use of the parallel package and some coding improvements. \item Added parallel processing (multicores) to polychoric, tetrachoric, and mixed.cor. With 2 cores this saves 50\%, but this is not a linear function of the number of cores: with 4 cores the savings seems to be 67\% and with 8 cores 75\%. Requires the parallel package which seems to be supplied with core R. Apparently this benefit will not help those running PCs which don't implement forking. \item Added parallel processing using multicores to fa when calculating confidence intervals. Basically changed the interation loop to an lapply and then made that a mclapply. \item Added parallel processing using multicores to fa.parallel, cor.ci and alpha (for the empirical bootstrap). \item Yet another speed improvement by introducing tableF: a cut down/speeded up version of table. This works only for tabulating two integer vectors, but by reducing error checking, is at least twice as fast. This is used in particular in polychoric and tetrachoric, and therefore in mixed.cor as well. \item Changed fa so that confidence intervals are raw rather than fisherz transformed before averaging. \item Modified ICLUST to increase speed by about 50\% by doing the smcs once instead of every iteration. This does not use multicores so the savings will be for PCs as well as OS X and Unix. 50\% of time is now spent doing matrix multiplication -- can we speed this up by not rescoring all clusters each time, but rather doing incremental changes? \item Minor tweaks to increase speed when creating lists and matrices. \item Added omega2latex and modified fa2latex to allow not printing small values. \item Added ICC2latex. \item Changed score.items to scoreItems in a continuing switch to camelCase. score.items will eventually be deprecated unless the entire score. functions are integrated somehow. \item Added option to sim.congeneric (and others) to do multiple simulations with same theta values. (Actually, it was there all along. Just set.seed(some value) before each run). \item A minor tweak to r.test to better report the call in the case of a correlated correlation. \item A minor tweak to corr.test so that if all the sample sizes are the same, just report one number. \item Reduced the number of executable examples to speed up compilation. The examples are just commented out. Worth running for understanding. \item Added the Gleser data set for an example of generalizability theory. \item Added the ability to find scores automatically in omega. \item Added the ability data set (just the iqitems data set scored for correct/incorrect). This is more convenient for demonstrations. \item Added the check option in describe (turning it off increases speed drastically, but at the risk of not detecting logical or factor data). \item Added the describeData helper to do a quick pass to list the data types in a data.frame. \item Rewrote the summary function to use switch rather than a series of ifs. \item Added a parameter to factor.scores to allow the data and a correlation matrix to both be passed for scoring. \item Added Structure as an output for principal (requested by Emeka Egbuna) \item Added best.items and lookup as two helper functions. } } \subsection{Bugs Fixed}{ \itemize{ \item sim.cor.poly -- fixed so that it actually works. \item Fixed alpha so that it will properly reverse key if given correlations. (Not sure when this stopped working.) \item Corrected the sign of at.rest in the TA scoring key for the msq.Rd file \item Corrected reverse.code to not add a constant to positive items (reported by Jian Jin) \item Perhaps finally fixed pairs.panels so it will not change options for graphics window. \item Fixed polychoric so that it will not blow up if the number of response alternatives are not equal. (Reported by Jeanette Lim ) \item Fixed fa.poly so that the scores are calculated based upon the polychoric correlations rather than the Pearson correlations (based partly on trying to solve another problem reported by Jeanette Lim) } } } \section{Changes in psych version 1.3.12 (2013-12-10)}{ \subsection{Additions}{ \itemize{ \item Added a brief wrapper function (corFiml) to call FIML procedures taken from lavaan. Inspired by some code from Joshua Wiley and with the help of Ashley Brown. The lavaan functions necessary for this are not exported from lavaan and hence have been partially moved (with adaptations) to psych. \item Completely modified guttman to use the splitHalf function. This provides much more accurate estimates of the greatest lower bound. \item Added the splitHalf function to find all possible split halves of scales of up to 16 items, and to sample repeatedly random splits for more than 16 items. \item Modified plot.parallel.poly and fa.parallel.poly to allow choice in plotting between both, fa, and pc. (Matches the fa.parallel function). \item Added the weight option to fa.poly, polychoric, tetrachoric, and mixed cor. This allows for cases to be given unequal weights. Requested by Fabricio Flalho. \item Enhanced the documentation for irt.fa and plot.irt to explain when to use plot.irt vs. plot.poly (Requested by David Condon). \item Enhanced cor2latex with the help of Davide Morselli. Now can find correlations directly and can also (if desired) show probability stars. \item Added standard errors and 95\% confidence boundaries to alpha and score.items (suggested by Doug Lawson) \item Minor tweaks to irt2latex and fa2latex. } } \subsection{Bugs Fixed}{ \itemize{ \item Corrected the documentation to fa to specify that it allows targetT and targetQ rotation. \item Corrected kaiser to return as class "psych" and "fa" so that solutions can be used in fa.diagram. (Reported by Gouri Shankar Mishra) \item Corrected alpha so that it reports r.drop in the case of working from a correlation matrix. (Reported by Nicolas Hubner) } } } \section{Changes in psych version 1.3.10.12 (2013-10-12)}{ \subsection{Additions}{ \itemize{ \item A serious speedup to tetrachoric and polychoric was initiated with the help of Jason French. The increase in speed is roughly 1- (nc-1)^2/nc^2 where nc is the number of categories. Thus, for tetrachorics where nc=2, this is a 75\% reduction, whereas for polychorics of 6 item responses this is just a 30\% reduction. \item Added the ability to rotate the numbers in cor.plot by specifying srt. (Thanks to a suggestion on Stack OverFlow by shujaa). \item Added the use parameter to the fa function to allow for other than pairwise correlations. \item Added an invisible return from the print.psych.fa function to include the variances accounted for and the cumulative variance accounted for. (Requested by Eric Green). } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a bug in print.psych.fa so that it did not always work with the HDMD package. \item Modified fa.parallel.poly so that the progress bar is not called during the tetrachorics or polychoric simulations. \item print.psych.fa did not work for covariance input when adding the complexity option. } } } \section{Changes in psych version 1.3.10 (2013-10-03)}{ \subsection{Additions}{ \itemize{ \item Added Yule2phi and Yule2tetra to convert Yule Q coefficients to phis or tetrachorics. Completely rewrote Yule.inv and Yule2phi. \item Added sim.poly.mat to generate polytomous or dichotomous items given a particular item structure. \item Modified describeBy to allow specification of digits in the matrix output. \item Modified multi.hist to allow one more control over graphic output. (Requested by Lars Carlsen). \item added iclust.sort to documentation of iclust. \item Added label option to fa2latex (requested by Robert Carlisie) \item Added sanitize.latex function to all the latex functions so that they properly escape underscore and ampersand. \item Added method option to scatter.hist to allow for other correlation methods \item Modified tetrachoric and polychoric so that (0,1) and (1,2) data can be mixed together. tetrachoric and polychoric agree for dichotomous data (as they should) \item Added an option to the mixed.cor function to allow for spearman or kendall correlations. \item Added Hoffman's complexity index for the factor analyses output \item Modified make.keys to allow addressing items by name rather than location. \item Modified alpha to allow for specify items to reverse by name or location. \item Modified the msq data set Rd file to address by name rather than location \item Minor tweaks to fa.plot and cluster.plot to allow more graphic control \item modify structure diagram so that the error arrows are to the left for lr printing \item Modified fa.plot and cluster.plot to allow positioning and sizing of item labels for two dimensional plots. \item Made sure all usage and example lines are less than 90 characters. \item Added the ability to calculate factors scores in fa.poly. \item Significant improvement in biplot.psych to allow much greater control over plotting. \item Added cor.ci to find bootstrapped confidence intervals for raw and synthetic correlations. \item Added group reliability calculation for omega. \item return (invisibly) the eigen values of the factors and components from scree. \item Added unit weighted multiple correlation and unit weighted set correlation to set.cor. \item Added test.all to allow for testing whether other packages work (or at least their examples) when psych is loaded. (Can be used for any set of packages.) \item Added the ability to simulate as well as resample dichotomous data in fa.parallel.poly (requested by Balal Izanloo). \item Drop (with a warning) items that have no variance in alpha (requested by Eric Green). This feature has also been added to score.items. \item Modified upperLower so that the rownames come from the lower diagonal matrix, and the column names from the upper diagonal matrix. } } \subsection{Bugs Fixed}{ \itemize{ \item fixed statsBy so that it correctly reports the pooled values (reported by John Rauthman) \item corrected a problem with fa that was leading to errors when handling very non-positive matrices \item fixed a bug in Yule.inv that was leading to impossible values being reported \item fixed the way that biplot.psych returns the op$mfrow parameter \item applied the same fix to pairs.panels to perhaps fix the recurring problem \item Fixed fa.parallel to not break if just principal components output is requested \item Identified and fixed bug in mixed.cor for case of improper data. \item Identified and fixed? bug in mixed.cor so it will treat randomly mixed data \item Corrected corr.test and cor.p to properly pass the adjust option (reported by David Weisman and Russell Pierce) \item Corrected error.bars, error.bars.by and errorCircles to use n-1 for df in the call to qt. Modified the documentation to point out that we are using the t-distribution. (Thanks to Trevor Dodds) \item Fixed fa.parallel so that it correctly prints out the legend for the case of fa="pc" or fa="fa" (reported by Andrew Hsiao and others) \item Corrected the way confidence intervals were found in fa.poly \item Correctly name the scored variables in case of impute = 'none' (reported by David Condon \item Complains, rather than blows up when doing irt.fa and plot.poly for Heywood cases. \item Added column names to factor scores. \item Corrected the way that data are randomized in the fa.parallel.poly function so that each variable retains (roughly) the original difficulty. Also did this for fa.parallel. Reported by Balal Izanloo. \item Fixed (?) progressBar so that it does not freeze the R.Gui for Mac. } } } \section{Changes in psych version 1.3.2 (2013-2-28)}{ \subsection{Additions}{ \itemize{ \item Cleaned up help files so that lines don't over run the page in the pdf version. (Suggested by Jennie Miller). Still seems to be a problem. \item Fixed factor.stats so that it does not complain when finding scores for principal \item Fixed fa2latex so that the apa option correctly puts in the last cr \item Added ECV to omega to give an estimate of unidimensionality \item Add a parameter to set.cor and mat.regress to allow for square data matrices (suggested by Thomas Richardson). \item Changed the default in principal to find scores (scores=TRUE). This makes it compatible with fa. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed principal so that it labels the components as rotated or transformed (as documented and previously implemented. Somehow this feature went away. \item Fixed fa so that specifying SMC=FALSE will replace the diagonals with 1s instead of 0s. (Seems to have been an error introduced when the SMC= a vector option was introduced) \item Minor bug fix to sim.omega so that it will not choke on badly structured sem commands. } } } \section{Changes in psych version 1.2.12 (2013-1-20)}{ \subsection{Additions}{ \itemize{ \item Added fa2irt to convert factor analysis output to Item Response Theory type output. (Basically doing what irt.fa already does, but from a separate factor analysis. \item Added fa.extend to make factor extension easier to do. \item Added an overall goodness of fit tests for fa.extension applied to the extension variables. \item Cleaned up factor.stats to make it do fm="minchi" more readily. \item Added two trivial helper functions r2d and d2r to convert from correlations to effect sizes and back. \item added the von Neumann test of successive differences (mssd and rmssd). This is useful for studying within subject changes in mood. \item Changed the help files for test.psych, irt.fa, iqitems to dontrun the examples (cutting down time to compile and test the functions) } } \subsection{Bugs Fixed}{ \itemize{ \item fix the output in the example for fa. Fixed by noticing that: \item in fa, fm="pa" did not return labels for the factors. \item in statsBy, fixed a problem if the by returned NULL values for some group values \item Finally fixed bug in describeBy for the case of NULL categories for the by variable. (Reported by Nipa Phojanamongkolkij). \item fixed bug in smc for case of missing values of diag(smc) \item added an error message to cor.smooth for the case of NA eigen values \item Changed the random seed in overview.rnw for the example of omegaSem to 17 (from 42). The previous seed was generating a bad omega solution which in turn caused sem to fail. \item fixed the call function in ICLUST to properly report the parameters being called. } } } \section{Changes in psych version 1.2.11 (2012-11-22)}{ \subsection{Additions}{ \itemize{ \item Added the rangeCorrection function to correct for range restriction. \item Added a new factor method (minchi) to the fa function. This weights residual correlations by the pairwise sample size. The minimum weighted residual is then found. This will give OLS (minres) solutions for the case of equal sample sizes, but slightly better (weighted) fits for unequal sample sizes. Most appropriate for the Massively Missing Completely at Random structure of SAPA data. \item Added a measure of the Kaiser-Meyer-Olkin index of factoring adequacy } } \subsection{Bugs Fixed}{ \itemize{ \item None yet } } } \section{Changes in psych version 1.2.8 (2012-8-25)}{ \subsection{Additions}{ \itemize{ \item Updated the overview vignette \item Added the ability to do target rotations (TargetQ) in omega. \item Improved documentation of fa to explain how oblique SS are found. \item A better set of items is used for the iq example (iqitems). \item add CVE estimate to fa (see Reise 2010) (had already done this for omega). \item Changed ICLUST.sort so that it can sort the loadings of principal (requested by Gudmundur Arnkelsson and then print them with the number of digits requested in the print command. \item Modified score.irt so that subjects who miss all items or pass all items are given an estimate based upon the (product) of the difficulty of the items they miss (pass) and then adjusted based upon half the quantile difference from 0 (if they miss all items) and 100 (if they pass all items). \item Modified sim.omega to allow for specifying a general factor. This allows for tests of not just the bias in the case of no general factor, but also the ability to detect a general factor. Also modified it to include calls to omegaSem. \item modified iclust.diagram so that cluster names can be specified rather than all start with C1 ... Cn (requested by Michael Kubovy) \item Slightly improved the documentation for r.test so it is clear which correlation is which. \item Modified iclust so that the fit statistic is based upon the off-diagonal elements unless otherwise specified. Use diagonal =TRUE to get fits matching previous analyses. \item Modified the print.psych.iclust function to print out the Root Mean Square Residual correlation. (It was previously reported in iclust output, but not printed.) } } \subsection{Bugs Fixed}{ \itemize{ \item fixed a bug in score.items, such that if the number of subjects is equal to the number of items, no scores were returned. Reported by Jeromy Anglim. \item Modified factor.stats so that rare condition of an exact fit in omega does not lead to an error. \item Fixed plot.irt so that item labels are correct \item Modified omegaSem to pass n.obs to sem \item Fixed df2latex so that it will on text variables as well as numeric variables } } } \section{Changes in psych version 1.2.7 (2012-7-31)}{ \subsection{Additions}{ \itemize{ \item Improved statsBy to find within and between group correlations. \item Added a data set, withinBetween, to graphically show the issue of multilevel correlations. \item Added a simulation function to generate multilevel data (sim.multilevel) \item Added a function (irt.responses) to plot responses as a function of the latent score for multiple choice alternatives. \item Modified progressBar so that it only shows dots when using the console, but not when using a text file for output (i.e., with Sweave). } } \subsection{Bugs Fixed}{ \itemize{ \item fixed plot.poly and plot.irt so that multiple scales for one factor can be plotted. } } } \section{Changes in psych version 1.2.6 (2012-6-20)}{ \subsection{Additions}{ \itemize{ \item Slight modification to cor.plot to allow for better control of multiple plots on the same page. \item Added the ability to put values into the cor.plot output (numbers=TRUE) \item Added a function (lowerUpper) to combine two symmetric matrices and output one as the above diagonal entries, and the other as the below diagonal entries of a square matrix. \item Added a function (topBottom) to act like headTail but to do it without ellipses. \item In a gradual switch to camelCase, changed the name of headtail to headTail, and describe.by to describeBy. Warning messages are issued about the change. \item Added a function, statsBy, to find summary statistics (means, sample sizes, standard deviations) by a grouping variable. Similar to describeBy but somewhat easier to use. Also will report (as an option) the pooled within group correlations. \item Added a function to find sample size weighted correlations, cor.wt. Useful for SAPA types of analysis. \item Modified superMatrix to take list input so that more than two matrices can be combined at once (suggested by David Condon). \item Added errorCircles, a greatly improved version of error.crosses. \item Added the option to specify starting communalities in the fa function (requested by David Gosar). } } \subsection{Bugs Fixed}{ \itemize{ \item cor.plot was actually switching row and colnames (but since it is mainly used on symmetric matrices, this was not a problem). Fixed. \item principal failed when handling missing data in data.frame. Fixed. (reported by Neil Stewart) } } } \section{Changes in psych version 1.2.4 (2012-4-30)}{ \subsection{Additions}{ \itemize{ \item (Note that 1.2.3 was not released but was replaced with 1.2.4) \item fixed ICLUST so that it converts covar matrices to correlations. \item Modified pairs.panels so that the method of correlation can be specified (suggested by Carsten Dormann) \item added error values to the structure.diagram/lavaan diagram as an option (suggested by JosĂ© Luis Cañadas ) \item Changed the oblique.scores option in fa to be FALSE (use the structure the matrix) following a request by Niels Waller. \item Fixed the size of the boxes in dia.rect so that omega.diagram and fa.diagram provide reasonable size boxes for long names (requested by Erich Studerus) \item modified output of corr.test so that it announces whether or not it is adjusting the probability values for multiple tests. \item added the ability to export dot.plot commands without requiring Rgraphviz. (requested by Erich Studerus). Although just implemented for fa.graph, omega.diagram functions can be exported using fa.graph applied to the schmid$sl object from omega. \item Added 3 options to the skew and kurtosis functions, and thus to the describe and describe.by functions as well. (Suggested by Bruce Dudek). \item Added the ability to plot general factors (ala omega) in the fa.diagram function. \item Added the function lowerCor to find correlations (with pairwise deletion as a default) and print out the lowerMat of the results. } } \subsection{Bugs Fixed}{ \itemize{ \item A documentation error in r.test was fixed (reported by Nicholas S. Holtzman). The example of Steiger case B was incorrectly ordered and thus led to incorrect results. Specifying by name (rather than location) is now recommended. \item In fa, the rotation was not returned, fixed. (reported by Niels Waller) \item predict.psych would not work for a single case (reported by Jonathan Williams). Fixed. Also made the documentation a bit clearer to explain the way the factor scores are standardized. \item By adding a global-local parameter to mixed.cor it now seems to work on those data sets with badly distributed polytomous data. (Reported by Eric Smith and David Condon.) } } } \section{Changes in psych version 1.2.1 (2012-1-31)}{ \subsection{Additions}{ \itemize{ \item Modified scrub to be a bit easier to use (suggested by Josh Wilt) \item Added a check in mixed.cor so that if the data are incorrect, announce it first, rather than waiting until late in the process. \item Added a progress indicator to particularly slow functions (e.g. tetrachoric, polychoric, biserial). This will show up when using these functions in other functions (such as irt.fa or mixed.cor). \item Modified cluster.cor so that in the case of correlations that are NA, it will not find smcs of the raw correlation matrix. In addition, it will impute scale level correlations based upon the average between scale correlation (previously it was reporting an NA). Requested by David Condon. \item Added the helper function lowerMat to print the lower submatrix. Added this as an option to the print.psych function. \item Modified mixed.cor so that it will automatically (if desired) find the Pearson, polychoric, and tetrachoric correlation matrices and then reorganize the matrix back to the original form. \item Minor modifications to tetrachoric and polychoric to give slightly more helpful error messages in the case of missing data and corrections for continuity. \item Minor modifications to summary to give cleaner summary stats for fa and irt.fa analyses. \item Added a residual and plot.residuals function to plot either qq plots of the residuals, or a cor.plot of the residuals. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a few references that were working but doing partial matching in print.psych, test.psych, pairs.panels (e.g, in print.psych digit=digits was changed to digits=digits, test.psych nf was changed to nfactors, col was changed to col.smooth in pairs.panels). This had been flagged by linux checking as a note about "partial matching" for a long time. Finally figured out what it meant. \item corrected biplot.psych to properly take the xlim and ylim parameters (reported by Andreas M. Brandmaier) \item Correction to tetrachoric (and related functions) to return NA in the case of no cases for x or y. (Reported by David Condon) \item Fixed fa so that the score.oblique option actually works. (Reported by Jessica Jaynes). } } } \section{Changes in psych version 1.1.12 (2011-12-30)}{ \subsection{Additions}{ \itemize{ \item Modified scrub to be more general. \item Added factor structure as an object in the fa function and modified the print.psych.fa function to note that it is the pattern matrix being reported. \item Modified the ICLUST output so that the eigenvalues reflect the independent contribution of each cluster. \item Added a comment and an option to ICLUST.sort about the order in which clusters are sorted (suggested by Gudmundur Arnkelsson). \item Added the rug option to pairs.panels. This will, by default draw a rug underneath the histograms. \item Added a covar option to principal to find principal components from covariance matrices as well as correlation matrices. \item Cleaned up the objects returned from fa.parallel.poly to more closely match those from fa.parallel. \item Added the ability to find and report residual correlations in set.cor. Minor formatting corrections to set.cor and mat.regress. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a bug in fa such that the oblique.scores option did not work. \item fa.parallel.poly was ignoring the fm parameter and was not printing correctly. } } } \section{Changes in psych version 1.1.1122 (2011-11-22)}{ \subsection{Additions}{ \itemize{ \item Added various rotation options to principal to match those in fa. \item Added "components" as an option to factor score to score principal components using just the component loadings. This is most appropriate when not rotating the components. \item Added the Harman.5 (socio-demographic) data set to allow comparisons with SAS. } } \subsection{Bugs Fixed}{ \itemize{ \item The way component scores were found had changed from "regression" to "tenBerge" without being documented. Changed the documentation and added the method of scoring as an option. Problem reported by Alexander Weiss. } } } \section{Changes in psych version 1.1.1111 (2011-11-11)}{ \subsection{Additions}{ \itemize{ \item This is basically a rerelease of version 1.1.10 trying to solve a problem with 32 bit machines and one test that fails. Originally call 1.11.01 but that one still failed the tests. \item Added ... as an option in multi.hist (following a suggestion by Rui Barradas) \item Added the all=FALSE option to test.psych. This turns off one test to avoid a problem in the testing on Solaris 32 bit machines. } } \subsection{Bugs Fixed}{ \itemize{ \item factor.scores and factor.stats were failing in tests for Linux operating systems, but not Macs or PCs. Added some protection against complex eigen values. \item fixed problem in irt.scores reported by David Condon \item fixed irt.fa so it will properly plot for polytomous items } } } \section{Changes in psych version 1.1.10 (2011-10-15)}{ \subsection{Additions}{ \itemize{ \item Started to modify all calls to sd and mean to use apply to respond to their deprecation for data.frames and matrices \item Changed the release numbering system to reflect year and month of release. \item Added a parcels function to form item parcels of size 2 or size 3. \item Added a jitter option to the factor.plot function. \item Added 3 more factor scoring options to the factor.scores function and changed the default scoring option in fa to be the tenBerge \item Added the kaiser function to do kaiser normalization. \item Added the df2latex function to make LaTeX tables. \item Added plot.circular to draw radar and spider plots \item Added a short function to create dummy codes (dummy.code) \item Added a score.irt function to find IRT based scores. \item Added a table of information by attribute level to be (silently) produced in the plot(irt.fa) function. \item Added bifactor and biquartimin as rotation options to fa (based on the Jennrich and Bentler 2011 papers). \item Implemented an improvement to print.psych function to use switch. (Following a suggestion by Joshua Wiley ). This does not change the functionality, but makes the code easier to debug and to change. \item Added an option to alpha to automatically flip items if they seem to be negatively correlated with total score. (Suggested by Jeremy Miles). \item Serious modification to cor.plot to allow for colorRamp data. Makes much prettier correlation plots. (Suggested by David Condon and Joshua Wilt). \item Modified sim and sim.simplex to create State Trait Auto Regressive simplex structures (suggested by Deepika Anand). \item Added a correct option to irt.fa (passes correct to tetrachoric). \item Added the ability for omega to be rerun on the same correlation matrix found by previous omega runs. This speeds up analyses of large matrices but particularly that of tetrachoric/polychoric matrices. \item Modified headtail so that it will not choke on mixed numeric and string data \item Added a smoothing option to the tetachoric correlation function to smooth the resulting matrix if it is not positive definite. \item Added cor.smooth to do a principal components based smoothing for correlations. \item Added global=TRUE option to polychoric (and tetrachoric) correlations. If global=FALSE, each correlation is found using the pairwise taus. This seems to match John Fox's polycor function. If global=TRUE, the taus are the datawise values. This will differ from polycor in the case of a great deal of missing data. Somewhat faster and perhaps more appropriate given that we are trying to find a global solution. \item Added a correction for multiple tests to the p values in the \code{\link{corr.test}} function and added a new function to just report probabilities \code{\link{corr.p}} } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a very subtle bug in score.items for the case of impute="none" where some subjects have no non-missing data. This affected the estimate of the average number of items (num.ob.item) per scale. Reported by Ben Schalet. \item Fixed bug in factor.stats that gave much too narrow confidence intervals for RMSEA (Thanks to Rick Zinbarg and Ashley Kendall for pointing out the problem). \item revised factor extension to properly handle oblique solutions \item fa now reports the call correctly -- since introduction of iterations it had reported the wrong call \item Fixed mixed.cor so that it can handle several special cases. \item Perhaps finally fixed pairs.panels so it leaves us with the original parameter settings \item Fixed a problem in print.psych such that mat.regress output would not print. (Reported by Ben Schalet.) \item Fixed plot.poly so that it correctly plots the ICC results, particularly for negatively keyed items. \item Fixed fa so that the covar option works. (It had been killed when iterations were introduced.) \item Modified fa, fa.irt, factor.stats, factor.scores so that they handle bad data more gracefully. } } } \section{Changes in psych version 1.0.98 (2011-06-10)}{ \subsection{Additions}{ \itemize{ \item Improvements to set.cor to report the canonical correlations and their chi squares. Also added a plot function to set.cor so that it will plot the eigen values of the canonical correllations. \item Added the cushny data set to show the original drug data from student. } } \subsection{Bugs Fixed}{ \itemize{ \item Resolved why the denomiator df in set.cor does not precisely match the Cohen example. This seems to be because Systat is doing an unbiased estimator and is thus multiplying by (u+v)/v. } } } \section{Changes in psych version 1.0.97 (2011-05-15)}{ \subsection{Additions}{ \itemize{ \item Added a polychoric and tetrachoric option to fa.parallel \item Added a keys option to plot.psych (plot.poly and plot.irt) to allow for plotting information functions for selected items while retaining the factor loadings from the complete set. (Requested by Ben Schalet.) \item Added a summary of the graphic output for irt.fa that includes the average information for each item as well as where the item is most informative. (Suggested by David Condon.) \item Integrated the interactions between fa, fa.poly, irt.fa, fa.diagram, plot, etc. to make commands more consistent. \item added a factor analysis for tetrachoric or polychoric correlations (fa.poly) that will work without doing an irt analysis using irt.fa. \item Added bootstrapped confidence intervals for loadings and correlations in factor analysis (fa), for reliability estimates in omega (omega) and fa.poly.(Originally requested by Steve Miller and Renee Engeln-Maddox for polychoric correlations, extended to the omega case.) \item Modified fa.diagram to include graphic output for fa.extension. \item Added Cohen's set correlation to the mat.regress function. (Requested by Amanda Uliaszek.) \item Changed the order of the parameters in the mat.regress function to be more consistent with the y~x notation of most regression functions. \item Added an oblique.scores option to principal. This means that if oblique rotations are done (not the default) then the scores from principal will be oblique as well. } } \subsection{Bugs Fixed}{ \itemize{ \item None yet } } } \section{Changes in psych version 1.0.96 (2011-04-04)}{ \subsection{Additions}{ \itemize{ \item Factor extension (fa.extension) now can extend an omega as well as a normal factor analysis. \item Modified fa so that the factor scores are found for the oblique factors rather than the orthogonal factors. This now produces factor scores that have roughly the same correlations as do the factors. Factor score statistics remain the same. This leads to a different set of factor scores than factanal finds, for it reports the factor scores for the orthogonal factors. \item Modified response.frequencies to incorporate a very nice suggestion by Joshua Wiley to identify unique item responses that are not necessarily integers. } } \subsection{Bugs Fixed}{ \itemize{ \item Modified fa.extension to correctly find extended oblique loadings. \item check added to omega for bizarre case of 1 factor extracted through PC. (This should not be done, for it makes no sense, but nonetheless, it was leading to omega_h > omega_t.) A warning for this condition is now issued and omega_h = omega_t. Reported by Alison Lewis. } } } \section{Changes in psych version 1.0.95 (2011-03-30)}{ \subsection{Additions}{ \itemize{ \item Fixed News so that it works as a NEWS.rd file \item Added an example to msq \item Added a function to perform factor extension (fa.extension) \item Added the Dwyer and Gorsuch data sets as examples of fa.extension. \item Added lavaan.diagram to the set of diagram functions. Modified to work with lavaan 0.4-7 \item Added scatter.hist to draw a scatter plot and associated histograms and densities. \item Modified score.items so that it reports the number of missing responses for each person for each scale. It had previously reported the total number of missing responses but did not break this down by scale. Requested by Ryne Sherman. Changed the documentation to reflect that missing is calculated. \item Modified error.bars.by so that it can not draw lines (lines=FALSE) if desired. (Requested by Ryne Sherman.) \item Added to error.bars.Rd to describe how to supply means and standard errrors. \item Made various data files available as separate rather than collated. (e.g., Thurstone, Bechtoldt,Holzinger) in the bifactor data set (they remain there as well). (Requested by Michael Friendly.) \item Changed VSS.scree and scree to provide a few more options. \item Cleaned up circ.tests to be more compatible with rest of psych. \item Clean up output from schmid to more match other functions. \item Used tools::compactPDF on the vignettes to make them smaller. Also switched to using png instead of pdf for some of the graphics in the vignettes. This reduced the size drastically. } } \subsection{Bugs Fixed}{ \itemize{ \item fixed error.bars.by so that it draws the alpha level instead of 2 alpha level error bars. \item fixed fa for special case of 3 x 3 matrix with correlations of exactly .5 which would lead to a non-conforming array problem \item fixed partial.r to not round output. For rounded output, the print.psych function defaults to 2 digits (reported by David Freedman) \item Finally fixed the output of print.psych.fa so that it labels sorted factors independent of cut (Reported by Reinhold Hatzinger ) } } } \section{Changes in psych version 1.0.94 (2011-01-01)}{ \subsection{Additions}{ \itemize{ \item Eliminated references to polychor in Yule2poly, } } \subsection{Bugs Fixed }{ \itemize{ \item fixed read.clipboard.upper so that it will read labels \item fixed mat.regress so that it can work with a single predictor } } } \section{Changes in psych version 1.0.93 (2010-12-22)}{ \subsection{Additions}{ \itemize{ \item Added mixed.cor to do mixtures of Pearson, polychoric and tetrachoric correlations \item Added legends to error.bars.by bar graph \item Modified score.items so it will work on correlation matrices as well as raw data. \item Improved the plot.irt and plot.poly functions to plot irt output. Called by plot.psych or generic plot call. \item Added a trivial little function, bi.bars to do paired histograms \item Modified irt.fa to allow for multiple factors \item Modified scrub to be a general recoding function \item Modified error.bars.by to allow for ... parameters to be passed into axis \item Modified diagram so it will dispatch a number of diagram functions (fa, prinicpal, omega, iclust, lavaan). \item Added a biplot.psych function to do biplots of fa or principal results. \item Added an unbiased estimate of kurtosis in the kurtosi function. \item Added a predict function to fa and principal (predict.fa and predict.principal, both called from predict.psych) \item Added lavaan.diagram to draw the output from a cfa or sem from the lavaan package. \item Added a function to calculate Mardia's test for multivariate normality \item Added lengends and improved the examples for pairs.panels.by \item Removed the "short" option in score.items \item Added the ability to score scales with greatly missing data (for SAPA). Modified the impute option to include = "none" \item Added the term KR20 and KR21 to documentation of alpha \item Modified pairs.panels so that with the cor option it can draw regressions and give correlations. \item Modified the documentation for error.crosses to give a better example. \item Added the ability to read rownumbers (variable names?) in first column of read.clipboard.lower and read.clipboard.upper \item Tweaked the zlim default for cor.plot to be c(-1,1) rather than c(0,1) \item Minor adjustments to Yule and phi.demo to call tetrachoric instead of polycor, thus making the package work with fewer dependencies. \item Cleaned up the fa summary output } } \subsection{Bugs Fixed }{ \itemize{ \item Fixed dia.curved.arrow to draw one headed curved arrows (as documented) \item Fixed a problem with fa.print option sort -- Although giving the correct communalities and uniquenesses in the unsorted option, when sorted, it was not sorting h2 or u2. } } } \section{Changes in psych version 1.0.92 (2010-09-22)}{ \subsection{Additions}{ \itemize{ \item Added omega total from sem to the omegaSem function. } } \subsection{Bugs Fixed }{ \itemize{ \item error.bars.by was ignoring the user supplied ylim. (reported by Helena Chui) Fixed. \item Was drawing incorrect sl solution in omega.graph (reported by Mark Difford).fixed. \item omega.Rd and schmid.Rd incorrectly referred to fm=ml as fm=mle. Fixed. } } } \section{Changes in psych version 1.0.91 (2010-09-15)}{ \subsection{Additions}{ \itemize{ \item Added iclust and vss as an alternative names to ICLUST and vss to be consistent with most naming conventions. \item Added the simple utility scrub to do data cleaning. \item Added biserial and polyserial to do biserial/polyserial correlations (not to be confused with point biserial) \item Modified score.multiple.choice so that it handles missing data without using imputation \item Changed the bfi data set to include more subjects and to correctly define the Openness scale. \item Modified score.multiple.choice and score.items to report response frequencies for each item (frequencies based upon number of non-missing responses). \item Added the burt data set of 11 emotional variables (from Burt, 1915) \item Added draw.tetra to draw tetrachoric correlations for fixed tau values (teaching demo) \item Added plot.irt and plot.poly to the plot.psych function. These have options to draw the item characteristic function, the item information function, and the test information. \item Added irt.fa to do factor analysis of dichotomous or discrete items by first forming a tetrachoric or polychoric correlation matrix. Then convert the results to IRT form. \item Added tetrachoric and polychoric functions to find tetrachoric/polychoric correlations as well as item discrimination parameters. \item Added omegaSem and omegaFromSem to calculate omega from a confirmatory factor model using John Fox's sem package. \item Added (with permission) Bond's Logical Operations Test (BLOT) data set. } } \subsection{Bugs Fixed}{ \itemize{ \item sim.irt was not properly handling vectors of item discrimination or guessing parameters. Fixed. \item Minor problem in fa.stats that would lead to an error message if chisquare was NaN. \item Minor bug in reverse.code for case of 1 variable (why one would want to use 1 the function for one variable is unclear.) \item tetrachoric would not apply the correction for continuity when given a table input but would when given normal data. Fixed. } } } \section{Changes in psych version 1.0.90 (2010-07-07)}{ \subsection{Additions}{ \itemize{ \item Added a few parameters to fa.parallel to a) set the y label and b) to show or not show a legend. Useful for multipanel displays. \item Minor improvements to fa.diagram to allow for input of factor loadings and intercorrelations from other functions. \item Added sim.omega to simulate multifactorial hierarchical structures as a test (and demonstration) of omega. \item Minor changes to the parameter call list for sim.minor to be compatible with sim.omega. } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a problem in ICLUST where it would sometimes not stop at the right number of clusters for n.clus = 1 \item Fixed problem in omega.diagram where it would sometimes use the incorrect line type for hierarchical (non-Schmid-Leiman) diagrams. \item Fixed bug in schmid where it would not rotate exactly orthogonal factors and find exactly omega = 0. \item Added a warning message that oblique rotation does not work, and does a cluster based rotation instead in the case of exactly orthogonal factors. This is just a problem for artificial data sets. \item History (Both of these are probably due to a problem in GPArotation which has since been fixed.) } } } \section{Changes in psych version 1.0.89 (2010-06-21)}{ \subsection{Additions}{ \itemize{ \item Rearranged the order of parameters for fa so that it is easier to call. \item Added various sem stats to fa output (e.g. RMSEA, BIC, rms, crms). These are also provided for omega output. \item Add fit statistics to omega for g solution only. \item Added a measure of general factor adequacy in Omega. This is just the percent of common variance that is general factor variance for each item. High values and low variances suggest a more meaningful estimate than lower average values or higher variances. \item Various clean up of output of ICLUST and iclust.diagram. Added color option for positive and negative loadings. \item Changed ICC to work on complete data (i.e., using na.omit) as the default (following a question) by Ross Culloch \item Changed pairs.panels to allow for color choice of histogram (requested by Elaine Kuo) \item Changed describe to handle numeric but annotated vectors (suggested by Soeren Vogel) \item Clarified documentation of cohen.kappa and allowed for using explicitly non-numerical categories (as suggested by Peter Ehlers and Scot McNary) \item Increased the usefulness of error.bars to allow for input of x values, y values, and confidence interval. Also added the ability to use 1 standard deviation. \item Minor change to print.psych.fa to round before using formatting. \item Removed the cut <- min(cut,max(abs(load))/2) following a request by Reinhold Hatzinger to be consisent with factanal \item Added an option to omega to allow for analysis of data sets from just the factor loadings and correlation matrices. \item Add a scree function to replace VSS.scree } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed a bug in pairs.panels for the case of not smoothing but with data ellipses (reported by Hirayuki Sato) \item Fixed a serious bug in omega for the case of non-positive manifold items (e.g., personality items). The sign of the group factors was not correctly being set which would lead to incorrect estimates of the multiple R2. \item Fixed bug in ICLUST.diagram where it would draw on top of other figures in rare cases. \item Fix bug in ICLUST for the path coefficients -- in the case of negative loadings, some of these were much too small. \item Correctly color the paths in omega.diagram. \item Fixed print.psych.fa to correctly showing item numbers for sorted output. \item Corrected tetrachor so it would not inappropriately claim that some cells had no data (this did not affect the correlations, just gave an inappropriate warning). } } } \section{Changes in psych version 1.0.88 (2010-04-24)}{ \subsection{Additions}{ \itemize{ \item Added within option for error.bars and error.bars.by to allow for within subject error estimates. \item Reformatted this file (NEWS) so that the command (e.g.,) news(query=Version > "1.0.85",package="psych") provides nice information. \item Added more detail to the overview vignette to discuss how to find omega. \item Added the block.random function to block randomize for experimental designs. } } \subsection{Bugs Fixed}{ \itemize{ \item Corrected schmid (and thus, omega) so that it finds orthogonal factors before rotating them obliquely. This corrected an error introduced in version 1.0.86 when the default rotation for fa was switched to be oblimin. \item correct=FALSE option in tetrachor actually works } } } \section{Changes in psych version 1.0.87 (2010-04-04)}{ \subsection{Bugs fixed}{ \itemize{ \item error.bars (and error.bars.by) would not properly draw < 3 variables } } } \section{Changes in psych version 1.0.86 (2010-03-26)}{ \subsection{Additions}{ \itemize{ \item Added logit, logistic and logistic.grm functions to help teach about IRT. \item Added the ability to factor analyze covariance matrices (with resulting loadings of covariances rather than correlations) (suggested by Andreas Moeltner) \item Added two new functions to estimate the greatest lower bound (glb.algebraic, written by Andreas Moeltner) and glb.fa. \item Added read.clipboard.fwf to allow reading of fixed width files from clipboard. (Originally this required adding a patch to the read.fwf function but that was subsequentally fixed.) \item Minor adjustment to ICLUST.cluster so that it will produce fewer clusters (if desired) than it thinks are appropriate. That is, if n.clus is less than the appropriate solution, a warning is issued, but n.clus clusters are found. \item Changed the default rotation in fa to be oblimin. (Subsequently discovered that this introduced a bug into schmid and therefore omega.) \item Added the glb.communality function to calculate the greatest lower bound by using factor communality estimates (based upon correspondece with Andreas Moeltner, although his algorithm (glb.algebraic, which is now included) which uses the Rcsdp provides slightly different estimates). \item added names to communalities in principal (requested by Gumundur Arnkelsson). \item Minor change to headtail \item Added the sim.rasch function to simulate 1 parameter IRT Rasch models. \item Added the data sets bock and income. bock is the source of the lsat data,income is US family income from 2008. \item Seriously modified the estimation of Cohen's Kappa in the wkappa function and added a new function: cohen.kappa to calculate kappa from raw data or from similarity matrices. Also calculates the variances following Fleiss, Cohen, and Blashfield, and then find the confidence limits. \item Modified the sim.minor function to simulate correlation matrices with nfact major factors and nvar/2 minor factors with larger number of variables. } } \subsection{Bugs fixed}{ \itemize{ \item Fixed print.psych.fa to give correct communalities for sorted factors (had been not sorting the communalities, although it had the factor loadings). \item Minor change to comorbidity to clean up output (using print.psych) \item Fixed guttman to correctly estimate lambda 4 (error pointed out by Andreas Moeltner). } } } \section{Changes in psych version 1.0.85 (2009-12-20)}{ \subsection{Additions}{ \itemize{ \item Modified the output from fa.parallel to print summary statistics. Also added an option to use smcs as communality estimates. \item Added the sim.minor function to generate major and minor factor structures. \item Modified fa to use first derivatives based upon the model rather than just empirically derived. This results in an impressive speed improvement. \item Continued to improve the dia.x functions. Labeled the entire set of functions diagram (for easier search). } } } \section{Changes in psych version 1.0.84 (2009-11-30)}{ \subsection{Additions}{ \itemize{ \item Improved documentation for the dia functions to show the power of structure diagrams \item Improved structure.diagram to allow graphs to go left to right (default) or bottom to top (which means causal arrows go left to right) \item Added the affect data set which includes data from two experimental studies of affect. \item Added some features from pairs to allow group coloring in pairs.panels \item Modified factor.parallel to allow for other factoring models (including minres) \item Modified fa to give eigenvalues of the correlation matrix, and of the common factor space. \item Modified pairs.panels so it can plot even if the correlations are NA \item Added a legend and improved the output of cor.plot. \item Having learned how to use strwidth, have cleaned up the dia.rect, fa.diagram, structure.diagram, and iclust.diagram functions. \item Changed the way fa.parallel handles correlation matrices if the number of subjects is not specified. Rather than issuing a warning and proceeding as if n.obs = nvars, it now assumes n.obs =100. \item Improved documentation for fa to explain minimum correlation of factor score estimates. } } \subsection{Bugs fixed}{ \itemize{ \item Fixed a problem with printing of the principal (components) results \item Fixed bug in the print.psych.vss function that returned the wrong value (although identifying the correct number) for the Velicer MAP criterion. (Reported by Maike Luhmann). } } } \section{Changes in psych version 1.0.83 (2009-10-26)}{ \subsection{Additions}{ \itemize{ \item Added Suggests Rgraphviz to DESCRIPTION file to get around CRAN test for 2.10 (as I should have done according to documentation for packages). Removed all tests of functions which require RGraphviz for 2.9.2 because Rgraphviz does not work on SnowLeopard. } } } \section{Changes in psych version 1.0.82 (2009-10-26)}{ \subsection{Additions}{ \itemize{ \item Improved the output for mat.regress to allow print() and summary(). \item Corrected problem in describe.by to properly identify the matrix output } } \subsection{Bugs fixed}{ \itemize{ \item Corrected bug to fa for case of oblique and negatively correlated factors (reported by Erich Studerus). \item Minor improvements to the dia.x functions \item Fixed the formatting of the news file to follow the appropriate format \item Removed the old supplementary manual from the docs folder to make for a cleaner installation } } } \section{Changes in psych version 1.0.81 (2009-10-04)}{ \subsection{Additions}{ \itemize{ \item Improved the documentation for the dia.X functions and made some of the calls simpler. } } } \section{Changes in psych version 1.0.80 (2009-09-30)}{ \subsection{Additions}{ \itemize{ \item Added the ability to draw "diagrams" to replace the functions that required Rgraphviz. These are path diagrams with rectangles for observed variables and ellipses for latent variables. A set of graphic functions for drawing diagrams includes dia.ellipse, dia.rect, dia.arrow, dia.curve and dia.self. This allows the function omega and ICLUST to draw structural diagrams without using Rgraphviz. \item The documentation for these new functions is a bit less than desirable and the dia primitives will be modified slightly for the next release. } } } \section{Changes in psych version 1.0.79 (2009-08-25)}{ \subsection{Additions}{ \itemize{ \item added the Schmid data set which includes the original Schmid-Leiman correlation matrix as well as data from Chen, West, and Sousa (2006). \item modified geometric.mean and harmonic.mean to allow for missing data. \item Cleaned up describe.by so that it can handle matrix output of multiple grouping variables and then print correctly. } } } \section{Changes in psych version 1.0.78 (2009-07-28)}{ \subsection{Additions}{ \itemize{ \item Modified factor.stats to allow for statistics even if the matrix is very singular (i.e., N var >> n.obs). } } \subsection{Bugs fixed}{ \itemize{ \item Corrected bug to ICLUST introduced in version 74 that can, in some conditions, produce negative betas. } } } \section{Changes in psych version 1.0.77}{ \subsection{Bugs fixed}{ \itemize{ \item Fixed an error in printing communalities for rotated factor solutions reported by Tamaki Hattori. Also resolved a problem of extra lines appearing in error.bars. Minor revision to polar. } } } \section{Changes in psych version 1.0.76}{ \subsection{Bugs fixed}{ \itemize{ \item Finally resolved the problem of not passing the CRAN tests for Mac (even though developed on a Mac, the test package assumes no other packages). } } } \section{Changes in psych version 1.0.75 (2009-07-01)}{ \subsection{Additions}{ \itemize{ \item Reinstituted reporting communalities and uniquenesses for principal components and for factor analysis. This feature had been dropped sometime in the past and reported missing by Ista Zahn. \item Added two new data sets: Harman.Holzinger and Harman.Burt. The former is used by Peter Bentler as an example of alternative methods for estimating reliability, the latter is a nice example of what happens if the correlation matrix is singular. smc estimates are inappropriate in this case and need to be checked. } } } \section{Changes in psych version 1.0.74 (2009-06-25)}{ \subsection{Additions}{ \itemize{ \item Added a weighting option to ICLUST. Weighted beta finds the average between cluster correlation and takes the ratio of the n ^2 * average between cluster correlation to the total variance of the pooled clusters as a measure of the general factor. That is, Unweighted beta calculates beta based upon the correlation between two clusters, corrected for test length using the Spearman-Brown prophecy formala, while weighted beta finds the average interitem correlation between the items within two clusters and then finds beta from this. That is, for two clusters A and B of size N and M with between average correlation rb, weighted beta is (N+M)^2 rb/(Va +Vb + 2Cab). Raw (unweighted) beta is 2rab/(1+rab) where rab = Cab/sqrt(VaVb). Weighted beta seems a more appropriate estimate and is now the default. Unweighted beta is still available for consistency with prior versions. (Unfortunately, in doing this, a bug was introduced that could produce negative betas. Fixed in Version 78). \item Modified the fa function to include maximimum likelihood factor analysis. } } } \section{Changes in psych version 1.0.73 (2009-06-08)}{ \subsection{Additions}{ \itemize{ \item Added gls fit option to fa \item Added mat.sort to sort correlation matrices by factor loadings. \item Revised the overview vignette to make more readable. \item Fixed (I hope) the documentation error that has been preventing being loaded onto CRAN for Mac. } } } \section{Changes in psych version 1.0.72 (2009-06-02)}{ \subsection{Additions}{ \itemize{ \item Added factor stats to omega } } \subsection{Bugs fixed}{ \itemize{ \item Minor fix to print.psych.omega to correct printing error introduced in .71 } } } \section{Changes in psych version 1.0.71 (2009-06-01)}{ \subsection{Additions}{ \itemize{ \item Combined principal axis, unweighted least squares (minres) and weighted least squares into one combined function (fa). Eventually the three other functions (factor.pa,factor.wls, and factor.minres) will be phased out. Added more rotation and transformation options (basically by making calls to the GPArotation package). \item factor.stats now reports the factor weights matrix for factor scores. \item A new factor analysis function factor.wls will give weighted least squares (wls). \item Omega will now give an estimate for 1 factor and a message about how there are alternatives for 2 factors. } } \subsection{Bugs fixed}{ \itemize{ \item Fixed a bug in print.psych.omega so that it will now report the item numbers correctly when sorting. \item Fixed call in phi.demo so that it checks if the polycor package is installed. This was causing problems in the Mac version on CRAN. } } } \section{Changes in psych version 1.0.70 (2009-05-25)}{ \subsection{Additions}{ \itemize{ \item Added factor.stats function to report a variety of statistics for factors or components. In particular, added measures of factorial adequacy. factor.stats is now called by the factor.pa, factor.minres, and principal, so it is easier to adjust all three of these functions. \item Added a new rotation option to target.rot -- if keys are not specified, it will rotate to a cluster solution. \item minor tweak to sim.hierarchical to make it consistent with the Jensen and Weng paper \item added to omega to calculate omege_infinity \item corrected bug in principal for case of singular matrices (reported by Gudmundur Arnkelsson) \item corrected bug in print.psych so that it now sorts by factor loadings correctly } } } \section{Changes in psych version 1.0.69 (2009-04-25)}{ \subsection{Additions}{ \itemize{ \item added cor.plot to graphically display correlation structures \item modified cosinor to do regression as well as optimization for fits \item minor correction to ICLUST to catch non-invertible matrices } } } \section{Changes in psych version 1.0.68 (2009-04-15)}{ \subsection{Additions}{ \itemize{ \item Added method="minres" to do minimal residual (ULS) factor analysis to the factor.pa function. \item Added the target.rot function to do targeted rotation. \item Added the sim.anova function to simulate 3 way ANOVA or linear models. \item Minor cleanups of code in other functions } } } \section{Changes in psych version 1.0.67 (2009-03-15)}{ \subsection{Additions}{ \itemize{ \item Have included the vignettes in the package \item Serious modifications to mat.regress to allow for raw data and covariances to be used. \item Added corrections for item overlap to use estimated communalities of items to alpha, cluster.cor, etc. \item Added estimates of G6+ (Modified Guttman 6) reliabililty to alpha, score.items } } } \section{Changes in psych version 1.0.66 (2009-02-15)}{ \subsection{Additions}{ \itemize{ \item Introduced two package vignettes (overview and psych_for_sem) \item minor modification to ICLUST with respect to labeling \item addition to factor.congruence to allow for comparing omega solutions with factor solutions \item modified describe to allow for descriptions of categorical variables. } } } \section{Changes in psych version 1.0.64 (2009-02-01)}{ \subsection{Additions}{ \itemize{ \item Added the function alpha to find Cronbach's alpha and Guttman's Lambda 6 for total scales as well as with single item deleted. \item Minor enhancements to the structure.graph and structure.sem functions. Further refinements to the psych_for_sem.pdf tutorial. } } } \section{Changes in psych version 1.0.63 (2009-01-15)}{ \subsection{Additions}{ \itemize{ \item Added structure.graph and structure.sem to create graphical output and pre-sem commands for sem. \item Modified omega.graph to return sem commands for running the sem function from John Fox. \item Added Promax to report factor intercorrelations for promax rotations. \item bug fix in VSS and omega to allow for promax rotations. \item correction to winsor so that it does not sort the vectors of the input data.frame. \item bug fix in principal (for problem of oblique rotations) \item continued improvements in the print.psych and summary.psych functions \item cleaned up sim.congeneric to reduce the amount of output (now handled through print.psych) \item added super.matrix function (to combine two matrices -- useful for constructing keys and for doing examples in structure.graph) \item Improvements to structure graph. } } } \section{Changes in psych version 1.0.62 (2008-12-31)}{ \subsection{Additions}{ \itemize{ \item added the structure.graph function \item added circadian functions \item renamed some functions to make the index order easier to follow. } } } \section{Changes in psych version 1.0.58 (2008-09-15)}{ \subsection{Additions}{ \itemize{ \item Introduced the guttman function to estimate the 6 Guttman (1945) estimates (as well as a few others). } } } \section{Changes in psych version 1.0.54 (2008-08-15)}{ \subsection{Additions}{ \itemize{ \item Added print.psych and summary.psych generic functions to clean up the output of many of the functions. } } } \section{Changes in psych version 1.0.50 (2008-06-30)}{ \subsection{Additions}{ \itemize{ \item Introduced several new functions: \item headtail (combines head and tail functions to produce the first N and last M rows of a matrix or dataframe) \item error.bars and \item error.bars.by plot means with error bars by a grouping variable \item omega revised to allow for negatively keyed items. Detects items that should be reversed. } } } \section{Changes in psych version 1.0.42 (2008-03-24)}{ \subsection{Additions}{ \itemize{ \item A relatively stable release. \item Passed the tests for R 2.6.2 } } } \section{Changes in psych version 1.0.40 (2008-02-15)}{ \subsection{Additions}{ \itemize{ \item score.multiple.choice provides scores and item statistics for multiple choice items. \item circ.sim modified to be more general item simulations \item circ.simulation \item item.sim \item polar converts two dimensional factor loadings to polar coordinates. } } } \section{Changes in psych version 1.0.33 (2007-10-11)}{ \subsection{Additions}{ \itemize{ \item A relatively stable release. } } } \section{Changes in psych version 1.0.30 (2007-09-09)}{ \subsection{Additions}{ \itemize{ \item A relatively stable release. } } } \section{Changes in psych version 1.0.27 (2007-07-31)}{ \subsection{Additions}{ \itemize{ \item Another upgrade. \item Passed tests for R 2.5 } } } \section{Changes in psych version 1.0.17 (2007-05-06)}{ \subsection{Additions}{ \itemize{ \item The first release to CRAN. Prior versions had been tested at NU. \item Included pairs.panels, describe, read.clipboard, iclust, vss, principal. } } } \section{Changes in psych version 1.0-14 (2006-09-11)}{ \subsection{Additions}{ \itemize{ \item Another release } } } \section{Changes in psych version 1.0-9 (2006-08-26)}{ \subsection{Additions}{ \itemize{ \item Another release } } } \section{Changes in psych version 1.0-1 (2005-05-19)}{ \subsection{Additions}{ \itemize{ \item The first package version on the personality-project.org repository. \item included some of the functions previously in the "useful R" source file. \item worked with R 2.1.0 } } }psych/inst/doc/0000755000176200001440000000000013154621324013123 5ustar liggesuserspsych/inst/doc/overview.R0000644000176200001440000004014313154621320015112 0ustar liggesusers### R code from vignette source 'overview.Rnw' ################################################### ### code chunk number 1: overview.Rnw:431-432 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} ################################################### ### code chunk number 2: overview.Rnw:440-443 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3t <- fa(Thurstone,3,n.obs=213) f3t } ################################################### ### code chunk number 3: overview.Rnw:464-468 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} ################################################### ### code chunk number 4: overview.Rnw:492-494 ################################################### f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) ################################################### ### code chunk number 5: overview.Rnw:507-508 ################################################### plot(f3t) ################################################### ### code chunk number 6: overview.Rnw:520-521 ################################################### fa.diagram(f3t) ################################################### ### code chunk number 7: overview.Rnw:540-542 ################################################### p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p ################################################### ### code chunk number 8: overview.Rnw:561-563 ################################################### om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 9: overview.Rnw:574-575 ################################################### om <- omega(Thurstone,n.obs=213) ################################################### ### code chunk number 10: overview.Rnw:608-610 ################################################### data(bfi) ic <- iclust(bfi[1:25]) ################################################### ### code chunk number 11: overview.Rnw:622-623 ################################################### summary(ic) #show the results ################################################### ### code chunk number 12: overview.Rnw:636-638 ################################################### data(bfi) r.poly <- polychoric(bfi[1:25]) #the ... indicate the progress of the function ################################################### ### code chunk number 13: overview.Rnw:651-653 ################################################### ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) ################################################### ### code chunk number 14: overview.Rnw:664-666 ################################################### ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) ################################################### ### code chunk number 15: overview.Rnw:677-678 ################################################### ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") ################################################### ### code chunk number 16: overview.Rnw:690-691 ################################################### print(ic,cut=.3) ################################################### ### code chunk number 17: overview.Rnw:714-716 ################################################### fa(bfi[1:10],2,n.iter=20) ################################################### ### code chunk number 18: overview.Rnw:729-731 ################################################### f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) ################################################### ### code chunk number 19: overview.Rnw:740-741 ################################################### factor.congruence(list(f3t,f3o,om,p3p)) ################################################### ### code chunk number 20: overview.Rnw:785-786 ################################################### vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") ################################################### ### code chunk number 21: overview.Rnw:794-795 ################################################### vss ################################################### ### code chunk number 22: overview.Rnw:805-806 ################################################### fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") ################################################### ### code chunk number 23: overview.Rnw:826-831 ################################################### v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) ################################################### ### code chunk number 24: overview.Rnw:847-854 ################################################### fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) ################################################### ### code chunk number 25: overview.Rnw:860-862 ################################################### esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example ################################################### ### code chunk number 26: overview.Rnw:867-868 ################################################### esem.diagram(esem.example) ################################################### ### code chunk number 27: overview.Rnw:921-925 ################################################### set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) ################################################### ### code chunk number 28: overview.Rnw:932-935 ################################################### alpha(attitude,keys=c("complaints","critical")) ################################################### ### code chunk number 29: overview.Rnw:942-944 ################################################### alpha(attitude) ################################################### ### code chunk number 30: overview.Rnw:951-953 ################################################### items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures ################################################### ### code chunk number 31: overview.Rnw:1006-1007 ################################################### om.9 <- omega(r9,title="9 simulated variables") ################################################### ### code chunk number 32: overview.Rnw:1018-1019 ################################################### om.9 ################################################### ### code chunk number 33: overview.Rnw:1027-1028 ################################################### omegaSem(r9,n.obs=500,lavaan=FALSE) ################################################### ### code chunk number 34: overview.Rnw:1037-1038 ################################################### splitHalf(r9) ################################################### ### code chunk number 35: overview.Rnw:1052-1072 ################################################### #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list ################################################### ### code chunk number 36: overview.Rnw:1094-1096 ################################################### scores <- scoreItems(keys.list,bfi) scores ################################################### ### code chunk number 37: scores ################################################### png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() ################################################### ### code chunk number 38: overview.Rnw:1122-1125 ################################################### r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) ################################################### ### code chunk number 39: overview.Rnw:1135-1141 ################################################### data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results ################################################### ### code chunk number 40: overview.Rnw:1159-1165 ################################################### data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) ################################################### ### code chunk number 41: overview.Rnw:1177-1179 ################################################### m <- colMeans(bfi,na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) ################################################### ### code chunk number 42: overview.Rnw:1187-1189 ################################################### data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) ################################################### ### code chunk number 43: overview.Rnw:1213-1217 ################################################### set.seed(17) d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items test <- irt.fa(d9$items) test ################################################### ### code chunk number 44: overview.Rnw:1224-1229 ################################################### op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 45: overview.Rnw:1240-1243 ################################################### data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt ################################################### ### code chunk number 46: overview.Rnw:1250-1251 ################################################### e.info <- plot(e.irt,type="IIC") ################################################### ### code chunk number 47: overview.Rnw:1262-1263 ################################################### print(e.info,sort=TRUE) ################################################### ### code chunk number 48: overview.Rnw:1292-1293 ################################################### iq.irt <- irt.fa(ability) ################################################### ### code chunk number 49: overview.Rnw:1305-1306 ################################################### plot(iq.irt,type='test') ################################################### ### code chunk number 50: overview.Rnw:1317-1318 ################################################### iq.irt ################################################### ### code chunk number 51: overview.Rnw:1324-1325 ################################################### om <- omega(iq.irt$rho,4) ################################################### ### code chunk number 52: overview.Rnw:1339-1353 ################################################### v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") ################################################### ### code chunk number 53: overview.Rnw:1362-1364 ################################################### pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) ################################################### ### code chunk number 54: overview.Rnw:1376-1392 ################################################### keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function ################################################### ### code chunk number 55: overview.Rnw:1397-1401 ################################################### #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) ################################################### ### code chunk number 56: overview.Rnw:1465-1469 ################################################### C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) ################################################### ### code chunk number 57: overview.Rnw:1472-1474 ################################################### #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) ################################################### ### code chunk number 58: overview.Rnw:1557-1581 ################################################### xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demontration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim) ur <- dia.ellipse(9,9,"upper right",xlim=xlim,ylim=ylim) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) ################################################### ### code chunk number 59: overview.Rnw:1693-1694 ################################################### sessionInfo() psych/inst/doc/psych_for_sem.R0000644000176200001440000002712013154621324016110 0ustar liggesusers### R code from vignette source 'psych_for_sem.Rnw' ################################################### ### code chunk number 1: psych_for_sem.Rnw:94-96 ################################################### if(!require(sem)) stop('The package sem is required to do these analyses') if(!require('GPArotation')) stop('The package GPArotation is required to do these analyses') ################################################### ### code chunk number 2: psych_for_sem.Rnw:139-147 ################################################### library(psych) set.seed(42) tau <- sim.congeneric(loads=c(.8,.8,.8,.8)) #population values tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100) # sample correlation matrix for 100 cases round(tau.samp,2) tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100, short=FALSE) tau.samp dim(tau.samp$observed) ################################################### ### code chunk number 3: psych_for_sem.Rnw:156-158 ################################################### cong <- sim.congeneric(N=100) round(cong,2) ################################################### ### code chunk number 4: psych_for_sem.Rnw:164-166 ################################################### #plot.new() m1 <- structure.diagram(c("a","b","c","d")) ################################################### ### code chunk number 5: psych_for_sem.Rnw:181-188 ################################################### set.seed(42) gload=matrix(c(.9,.8,.7),nrow=3) fload <- matrix(c(.8,.7,.6,rep(0,9),.7,.6,.5, rep(0,9),.7,.6,.4), ncol=3) fload #echo it to see the structureSw bifact <- sim.hierarchical(gload=gload,fload=fload) round(bifact,2) ################################################### ### code chunk number 6: psych_for_sem.Rnw:195-199 ################################################### op <- par(mfrow=c(1,2)) m.bi <- omega(bifact,title="A bifactor model") m.hi <- omega(bifact,sl=FALSE,title="A hierarchical model") op <- par(mfrow = c(1,1)) ################################################### ### code chunk number 7: psych_for_sem.Rnw:217-220 ################################################### circ <- sim.circ(16) f2 <- fa(circ,2) plot(f2,title="16 simulated variables in a circumplex pattern") ################################################### ### code chunk number 8: psych_for_sem.Rnw:237-241 ################################################### set.seed(42) fx <- c(.9,.8,.7,.6) cong1 <- sim.structure(fx) cong1 ################################################### ### code chunk number 9: psych_for_sem.Rnw:247-251 ################################################### set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) three.fact <- sim.structure(fx) three.fact ################################################### ### code chunk number 10: psych_for_sem.Rnw:256-258 ################################################### #plot.new() three.fact.mod <-structure.diagram(fx) ################################################### ### code chunk number 11: psych_for_sem.Rnw:267-272 ################################################### Phi = matrix(c(1,.5,.3,.5,1,.2,.3,.2,1), ncol=3) cor.f3 <- sim.structure(fx,Phi) fx Phi cor.f3 ################################################### ### code chunk number 12: psych_for_sem.Rnw:279-283 ################################################### fxs <- structure.list(9,list(F1=c(1,2,3),F2=c(4,5,6),F3=c(7,8,9))) Phis <- phi.list(3,list(F1=c(2,3),F2=c(1,3),F3=c(1,2))) fxs #show the matrix Phis #show this one as well ################################################### ### code chunk number 13: psych_for_sem.Rnw:289-291 ################################################### #plot.new() corf3.mod <- structure.diagram(fxs,Phis) ################################################### ### code chunk number 14: psych_for_sem.Rnw:302-303 ################################################### f3.p <- Promax(fa(cor.f3$model,3)) ################################################### ### code chunk number 15: psych_for_sem.Rnw:308-310 ################################################### #plot.new() mod.f3p <- structure.diagram(f3.p,cut=.2) ################################################### ### code chunk number 16: psych_for_sem.Rnw:322-329 ################################################### set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) fy <- c(.6,.5,.4) Phi <- matrix(c(1,.48,.32,.4,.48,1,.32,.3,.32,.32,1,.2,.4,.3,.2,1), ncol=4) twelveV <- sim.structure(fx,Phi, fy)$model colnames(twelveV) <-rownames(twelveV) <- c(paste("x",1:9,sep=""),paste("y",1:3,sep="")) round(twelveV,2) ################################################### ### code chunk number 17: psych_for_sem.Rnw:335-338 ################################################### fxs <- structure.list(9,list(X1=c(1,2,3), X2 =c(4,5,6),X3 = c(7,8,9))) phi <- phi.list(4,list(F1=c(4),F2=c(4),F3=c(4),F4=c(1,2,3))) fyx <- structure.list(3,list(Y=c(1,2,3)),"Y") ################################################### ### code chunk number 18: psych_for_sem.Rnw:343-345 ################################################### #plot.new() sg3 <- structure.diagram(fxs,phi,fyx) ################################################### ### code chunk number 19: psych_for_sem.Rnw:358-365 ################################################### fxh <- structure.list(9,list(X1=c(1:3),X2=c(4:6),X3=c(7:9),g=NULL)) fy <- structure.list(3,list(Y=c(1,2,3))) Phi <- diag(1,5,5) Phi[4,c(1:3)] <- letters[1:3] Phi[5,4] <- "r" #plot.new() hi.mod <-structure.diagram(fxh,Phi, fy) ################################################### ### code chunk number 20: psych_for_sem.Rnw:381-383 ################################################### principal(cong1$model) fa(cong1$model) ################################################### ### code chunk number 21: psych_for_sem.Rnw:391-398 ################################################### pc3 <- principal(bifact,3) pa3 <- fa(bifact,3,fm="pa") ml3 <- fa(bifact,3,fm="ml") pc3 pa3 ml3 factor.congruence(list(pc3,pa3,ml3)) ################################################### ### code chunk number 22: psych_for_sem.Rnw:404-406 ################################################### ml3p <- Promax(ml3) ml3p ################################################### ### code chunk number 23: psych_for_sem.Rnw:415-416 ################################################### om.bi <- omega(bifact) ################################################### ### code chunk number 24: psych_for_sem.Rnw:428-429 ################################################### om.hi <- omega(bifact,sl=FALSE) ################################################### ### code chunk number 25: psych_for_sem.Rnw:437-438 ################################################### om.bi ################################################### ### code chunk number 26: psych_for_sem.Rnw:446-447 ################################################### ic <- ICLUST(bifact,title="Hierarchical cluster analysis of bifact data") ################################################### ### code chunk number 27: psych_for_sem.Rnw:460-467 ################################################### fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) ################################################### ### code chunk number 28: psych_for_sem.Rnw:473-475 ################################################### esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example ################################################### ### code chunk number 29: psych_for_sem.Rnw:480-481 ################################################### esem.diagram(esem.example) ################################################### ### code chunk number 30: psych_for_sem.Rnw:504-509 ################################################### library(sem) mod.tau <- structure.sem(c("a","a","a","a"),labels=paste("V",1:4,sep="")) mod.tau #show it sem.tau <- sem(mod.tau,cong,100) summary(sem.tau,digits=2) ################################################### ### code chunk number 31: psych_for_sem.Rnw:514-519 ################################################### mod.cong <- structure.sem(c("a","b","c","d"),labels=paste("V",1:4,sep="")) mod.cong #show the model sem.cong <- sem(mod.cong,cong,100) summary(sem.cong,digits=2) anova(sem.cong,sem.tau) #test the difference between the two models ################################################### ### code chunk number 32: psych_for_sem.Rnw:530-535 ################################################### mod.one <- structure.sem(letters[1:9],labels=paste("V",1:9,sep="")) mod.one #show the model sem.one <- sem(mod.one,bifact,100) summary(sem.one,digits=2) round(residuals(sem.one),2) ################################################### ### code chunk number 33: psych_for_sem.Rnw:541-545 ################################################### f1 <- fa(bifact) mod.f1 <- structure.sem(f1) sem.f1 <- sem(mod.f1,bifact,100) sem.f1 ################################################### ### code chunk number 34: psych_for_sem.Rnw:554-559 ################################################### f3 <-fa(bifact,3,rotate="varimax") mod.f3 <- structure.sem(f3) sem.f3 <- sem(mod.f3,bifact,100) summary(sem.f3,digits=2) round(residuals(sem.f3),2) ################################################### ### code chunk number 35: psych_for_sem.Rnw:568-571 ################################################### f3 <-fa(bifact,3) #extract three factors and do an oblique rotation mod.f3 <- structure.sem(f3) #create the sem model mod.f3 #show it ################################################### ### code chunk number 36: psych_for_sem.Rnw:579-581 ################################################### #plot.new() mod.f3 <- structure.diagram(f3) ################################################### ### code chunk number 37: psych_for_sem.Rnw:598-599 ################################################### om.th.bi <- omega(Thurstone,digits=3) ################################################### ### code chunk number 38: psych_for_sem.Rnw:608-611 ################################################### sem.bi <- sem(om.th.bi$model$sem,Thurstone,213) #use the model created by omega summary(sem.bi,digits=2) stdCoef(sem.bi,digits=2) ################################################### ### code chunk number 39: psych_for_sem.Rnw:624-625 ################################################### om.hi <- omega(Thurstone,digits=3,sl=FALSE) ################################################### ### code chunk number 40: psych_for_sem.Rnw:633-637 ################################################### sem.hi <- sem(om.hi$model$sem,Thurstone,213) summary(sem.hi,digits=2) stdCoef(sem.hi,digits=2) anova(sem.hi,sem.bi) ################################################### ### code chunk number 41: psych_for_sem.Rnw:646-651 ################################################### om.holz.bi <- omega(Holzinger,4) sem.holz.bi <- sem(om.holz.bi$model$sem,Holzinger,355) om.holz.hi <- omega(Holzinger,4,sl=FALSE) sem.holz.hi <- sem(om.holz.hi$model$sem,Holzinger,355) anova(sem.holz.bi,sem.holz.hi) ################################################### ### code chunk number 42: psych_for_sem.Rnw:661-662 ################################################### om.sem <- omegaSem(Thurstone,n.obs=213) ################################################### ### code chunk number 43: psych_for_sem.Rnw:670-671 ################################################### omega.diagram(om.sem,sort=FALSE) ################################################### ### code chunk number 44: psych_for_sem.Rnw:686-687 ################################################### sessionInfo() psych/inst/doc/psych_for_sem.pdf0000644000176200001440000137706313154621324016477 0ustar liggesusers%PDF-1.5 %ĐÔÅØ 128 0 obj << /Length 1107 >> stream concordance:psych_for_sem.tex:psych_for_sem.Rnw:1 92 1 1 5 40 1 1 2 1 0 4 1 9 0 2 1 19 0 1 1 6 0 1 2 6 1 1 2 1 0 1 1 10 0 1 2 3 1 1 3 6 0 1 2 12 1 1 2 1 0 1 1 1 2 1 0 1 1 14 0 2 1 15 0 1 2 4 1 1 2 1 0 3 1 4 0 1 2 15 1 1 2 1 0 2 1 4 0 1 2 14 1 1 2 1 0 3 1 16 0 1 2 3 1 1 2 1 0 3 1 21 0 1 2 2 1 1 3 1 2 6 1 1 2 1 0 2 1 14 0 1 1 8 0 1 1 21 0 1 2 4 1 1 2 1 0 2 1 14 0 1 1 9 0 1 2 3 1 1 3 6 0 1 2 8 1 1 2 4 0 1 2 2 1 1 3 6 0 1 2 9 1 1 2 1 0 6 1 18 0 1 2 3 1 1 2 1 0 2 1 3 0 1 2 2 1 1 3 6 0 1 2 10 1 1 2 1 0 4 1 1 2 5 0 1 2 13 1 1 2 24 0 1 1 33 0 1 2 5 1 1 2 1 0 3 1 31 0 1 1 46 0 1 1 46 0 1 1 15 0 1 2 3 1 1 2 1 0 1 1 28 0 1 2 6 1 1 2 5 0 1 2 9 1 1 2 5 0 1 2 5 1 1 2 56 0 1 2 5 1 2 2 10 1 1 8 19 0 1 2 3 1 1 3 40 0 1 2 2 1 2 2 20 1 1 2 1 0 2 1 16 0 2 1 26 0 1 2 2 1 1 2 1 0 1 1 16 0 2 1 28 0 1 1 10 0 1 2 8 1 1 2 1 0 1 1 26 0 2 1 38 0 1 1 15 0 1 2 3 1 1 2 1 0 3 1 15 0 1 2 6 1 1 2 1 0 3 1 38 0 1 1 15 0 1 2 6 1 1 2 1 0 2 1 32 0 1 2 5 1 1 3 1 2 14 1 2 2 6 1 1 2 1 0 1 1 79 0 1 1 37 0 1 2 10 1 2 2 5 1 1 2 1 0 1 1 67 0 1 1 30 0 1 1 12 0 1 2 6 1 1 2 1 0 4 1 12 0 1 2 7 1 1 2 103 0 1 2 5 1 2 2 12 1 1 2 31 0 1 2 86 1 endstream endobj 153 0 obj << /Length 1690 /Filter /FlateDecode >> stream xÚåYKoÛF¾ûWđHáfßKè¡ œ  ‰ƒ’Y–…èáRr÷×wfw–")êaÙMăô q¹ÏÙùæML¼:ă;?_œ=éÊD8&…ÑÉÅU"„b¥‰Ơ’I ]—ÉûôƯ*ét“,Wœ§ëkh±-̉hâøƯ(“.½n*è›~ÊŒJñm2¦µËđ„w‘.đ¯Æá5m‡m<é2¼®ñ Ơ:¼à1ëú·Æ₫Û₫ªYöÇů‰°&É¥`¥(Ùs8IØ ¶˜y*aæó—…†[²̉‰Î…eÆÁJå/lXùû¦Ïè‡m¤jDÀvoÆŸ3Y„g x~»vL*vy‹£È‰9®úÙt\‡­ è’C[ÀÏ‘€fJÛH¤cBè$ׂ iÂ₫/`úr‘): ´ü%ÏàË“z’„Æ›Wt ÷æ¬ä¥À-9đJ3mˆW"ËK ă6ت­’[ê¬Fxا̀ê´D&4r•¼Ï¥s§j'1€U‹À@°å |F—DóÉ—*}]ûCDz''¸)Ër]–Û̉¶ḱ̃3¿ơÍúŒqR ±w†-ÖKbư ÏújM°@ @¥£’‚`xEsEkÏ[‘ü·Ôß‚æúu\Öœ±\DmíˆTá₫spNán_ọ́(í^ÿˆå2èßˬ´A óơtIÖph^-=ï|{t^ 5ÃEûŒc£%ñ8đ‘«´̣]k°gß5ÆtÀ_øÖƯ¿Ta×÷Úc3B̉fQ̀1"Äæd‡·5yï©­æ†9'áÅOÓG‹<®ë"ƒ¹đÆSpƠ^ Ă³"!›Ăy/µaÍ„¬̀‚5ÍuïTLƒm¦ư¿ó3¤æ‰É1²0Ü  &O@í̃#J=G­±ơÏö¢WZÎöûo5w5 ¨0°ÙBM€Ú4C¾/¬ï€¡K0*.'3xÄA¥Ư§ÓÓF"ö¡osö ¢OUZ;°bgÓ‚YŸsăóÉÛè}Øô!q%+Uñÿ1§‚˜µ­ºă;ˆ*`ñUœăÇJÇĂf!‹É<(%ú2¤®Ùäb3kb †GH–¢,ëĐ¥å&†‹ăU%iƠȇ€“M|́¹ëF›=¶•Ê|xOC ̀[aƯ.´ä0Z›Ñ’Ç¡¥÷£5÷¡ddø—€‰ £ÀYô¸«&‚öÙ®Ïoư{¤©u˜uåóF’‚f¹¿< ¸`öCŸµ…˜IÀIˆĂ@YHăÍ. Ô#åÊƯ ¨jA ÙkŒ‚¦‘Ñw #*íĐñ<₫¸¹C;YÇfc>~¾ glïC÷c:©”>´ÛÇ0»G ˆ°8È]¢Áđº£ ¯ •ôîPéÈSïvœê:‡ÖT*Bxªu;ạVâYË ¶{$SpP:ùPÉ<(—Í u,ÏƠØ–¹"™“¾yÓ:tŒ–›¬º[±Ø.Wsœ5:œ:Iî˜âÅ@p†&ƒÜJÛô§ÀáëiSᯯÊ,¡æ"ÓU'> stream xÚÍVKoÛ0 ¾çWøh¬êéDZÚ» Xs+vp¥`×]ílÍ¿)QăK×­è–(‰”©OäGñè6âÑƠ‚S/ åÑămä…/W‹ËÅÙ¥0‘à¬ä¥ˆ– &2eE-×ÑMlX"b•¤‚K/“BŶ‡™¾ođƯß&©RÊïà³~¸¦åÖ̃CۣءT5¸0$²ˆw¨)ănăûỄ¡ª}DUlêDæn_œ®ÁÚéâîƠ@èüÂj´qö¶:áh‹%)üemAl’¯ËOψE7©FÚT(ft9BR¿’+œííÚ¶0zpu0ơö —Đ¼s8NÚ=+Ñ̃»đ»~züR#&©á®Óey¢›Eϼ=Cè]ăɲØÖÎf@„p¤đK ÖŸpSƠ„:ÿE1©́ÎûÍ·Û́ß¡ÚçM‡©øq¼Áâ«Ă@lđ6¾Ă·Ư‡rß54bBsỏ¼;‚‰uöB¬Í꜠¾x"t\fÖĂ7®B´E0̣H×Lu+ÛÅ₫̉À3`|®(¿ĐLäÜr₫tH6î̉Đ¼ £ƒ2¡$“BGë }Q4àØöĂ~pç9Ç[J;Ôiö¼ƠÎzkÈyøuO¶ ‡~ÆíB–ÁV§n*UyƸ̉3É‘c#àÚ„Îẫ¶ăj†ô…£mé.{w]÷ÄA¥×ú‘˜ ê¶rI³Ï•´ë'Ûi¨éœ¿ï̀†ưi0¥axÇXăè¯ÚÀ1ăª4=÷B¨}år¨fg´äÿ5³üi-^CæeÀxüæhGŸƯSSŸßö /!d|N5Àaí̃¾D@^!û™?’¡Ăi…Ç̃™¶ơ©yvYê1—¤"c*jiSx¨¡d–PÁ®)øÚÖÅ(PÈ=M‚\wÄɵ£m²Ÿ8'5˜%ă¥)µI!˜Îe”j£—Úû#l.–‹_ΰ˜Ù endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 815 /Length 2194 /Filter /FlateDecode >> stream xÚ½ZkoÛÈư®_q?&@Aq̃3Eº€7k· 4Ø`ím½₫@ËtL¬$*|dí₫úKe)¶E¢4sçÜs3wA)R)Y2)̣†Z|*ü¥$4 ‡#™¢ñ$½")H ?“’”2$1ߥ$-)H̉R³D­=~' J“ĂÈ(4LÀJgZ’ ‚´!§ĐXrX] D3$F`I… ăĐb¶ñh±¤$„Ô3+Ñâè¬%!!Ó´N@ Öj@æ O™@̣ºƒ< ¹̣´3yă™#=yÈ3Œ¡Â IĐAXÈÅáRK¹̣°´đ"P€<íDa"…Ä`đÁ\ÏzX+ù›À ăĐ/‚‰fŒ°”‚•ƒ¤æ1°BÀ’M! B*ËßÀ ÁRc Tǃ¬;IºÙ®̉;hrT*ø¦ OIVL±Ơ@*CQÆvT±ù-­ùÁ‘ <¬ †„bë;æíÏ’5›–-„…5³$4û„Ngàvv ¶7¬“€ơd- ¤Ñ)4…<±!ÈXf>a<»%ÜÁö vÀdĂ!lªå Ö› Ö²Sô·ZŒ1–à8.ơl:²^ó»J7K’c"<ÅIv,́´Hg>Đü’æ-¯JÿDïê|Ñå:ïé‡fï®rÚÔO‹Úd‹ß³/ùû—3ÚÛí¤aÚç*¿Ïcƒe?øc•gM±₫BÙúVå]¾äNƯTí¢i«lIU¾̀xJư₫M¸QÔE»îú5Ư—}É×yƠ‹^”Ơ WYS‹¼¦?æ2èV5Å¢]fƠvÙĂØå h]¬’E¹îV*#säóœ‡ȪÅC±È–#³Ôó¬¢ÉWKƯ²E5¶ ~:¢×̃¬A9ºïÿ=RQƒ¥oV‹ƠfYäüųâ½Ù¦ˆ́Kî́ñø,yMÅú.ßäøX7Oºu¿ÆŸ§,¢,Âô}~(è/?÷_‘ßí/4eư=O,¶Q®ru”«£<åé(OGy:ÊÓQ̣t”gzy7³=:}fóËö¶éú/Ö¿Ïæ?–Ơ]^uT¤7ó¿Í¼]‡Éƒ“_‡4ñ¨YPË% K!’€rIë1́Œ‚B¤ˆœƯQœ%>p ŵ‰¶̣u/ÏÛÇÅbl"¹XR>áY[—¡Æ±Èăa¬£DâP¬ M¹ˆÖ*ÑB´Î PÈ4Q]• A½§eH”Ñÿ/[»¤8Ø:vUœ¢QÑkä÷/K•£bA=?å*¹e½Nq4²°œ€åBb°˜410“̣ˆ!ăDZ¨`±6á„&SŸđƒr8oY5E‹Í&|aeMÂ÷1ÊÂLxÊkàqñ(›¸U’ïb|rÀc^« G"ós!ªùNM)đôD@ê€à3Ö#½8Đo`8$=£§:É€ÀĂbbß©b#8°)½V£3K̃$ùnÖxl/nÑ̃ NăÈ-‰t¦³—CÚÁ–Œ qu4Œœ8¾ơ®d6Ñ©‡r‚p‰!á«hfÇ3-Ѻ ΢¼E €D€yĹ„‡7ít*ă"D‰á(ÇÎi ß‘£̀´}W„…Ë ÑmÛ¯=ŸlÜAæøn+ ïØ’ vjT?»¦×£§]sBy‚äÆ'ø¿2́ǰ́¹Èn÷Ïư›:¾9¥‘±­Ûạ̊æÍ±¢k‘mdÊX#d¨ĂöÆ^đơ C¾à7ÆÆ¢’ßf˜¡Âä=&Ä¿Ư±íö1tR…Úöx ̃öØ`fÛl¾®óÏU¹¸̀Á/ן.h~•?6ß—lßWµÎ¿¨jư_«Z«M«G«G«Qw±u±u±uæ˜UæàeÖ#z./qFƠ8¯â|èÆ½́û—ņ¥øư¥óÀ‚Z3~‹>dÇïX±•€Í!+†q,'ÈJ;–ÔƯ^$¿sUÉ”<`O€á­¼é.#, N«‘¦'8‹;₫.s_Â77 ' ‹Ø°̉rF›°>_̣—›§â q8Å!œ_ äk7ÁN₫øXŒ÷IªU·ĂÿG©Æ±„Ë< £ó endstream endobj 197 0 obj << /Length 2841 /Filter /FlateDecode >> stream xÚµZY#·~ß_¡·´€Ư$ûL6ÆÚˆ Áz p£WêÑ(Öåni×ă_Ÿ:Ùl©5…‘í°É"Y¬*~upÓÙz–ξ}“Êß??¼ùꛪÙ̀ø¬p³‡ÇYmM•ÚYQ³‡ỚÇÄÎÖº,yxjç _æÉ±ŸÛä~˹·É“t6Úñó¼p ~­á×Îÿóđï`Mç´C:[xkrku›ƯåïÎz„¥L¶ù̀¦¦Nk+“]i¼0÷đ4lb]:oÊ=FL#Ï K…Ï=q0w%œ'/’f ‡Ị̈4ùw§8$»Í:#6>|ûfö£M> ;Ÿæ®JÚ-4·Ê]8,ưöæüE–Ơ‰Kmv9vá(·é¹ưq¢€ơa=÷¬đcØ₫p +&8a/ŸdÍ=Jc{¦qä”N$! ë[„Ú8ïQv8„ó{aaw@¹ßÙ"Ï™.¬7yV³qíôy&yЇnتE1WÉñCfCpÈưiH† Å₫‚ä#ÉbCJ¥TZÏJ†cÓv-ñg“n#Êïu}‘ Í[¸"i;ÅÓ5[9è Y{fÉÖR•%f¾(ë2ùÛ—â¡•P(éX¤>dîÓœ³È]Nz„í[:ô¬ Ö#Jí ®˜¥‰ÄöÎÁ,âYmwâSbÇá‘ÿ’Ne;:y³}–Ón&H[Ö*}¯́ĩÂWéUÁr+*]EJAÖ?6½Hae #gYô¨ ”ææ(:Ú°ơ’`<ˆ¶§u¤?……é|¾®Âu„Ëœúø6×™©*¯·™­›Ïv³M¢L´ à!¶2µXKǨ!k«5™¹ ư{ác«öq¹oQ™¼.t9ºöc‘YÏ’&{̃÷ÁĐ®,åÖp7ix£Â*o ËöY¤ơ˜̣5ü₫ ¿Àïø=LBff\]é´·“k#V;%ù§¬öĂÔj¶4îÉ‹«-2 Să[uŒTºo"±o'UlM–•/oW?(÷QV[µd×AÁwwêÓ”&·ª¿æăF #Ö¦«Ư”6±û¶6SojdlîÄîÖ·Øt`w•»/Œ`#k¹₫'ùí‚…O¬Ám‚Xr2Æ`l Üá‚g84 ĐmØ“RÇ’áơ$â?£>_®ªLêÆÆ̣"«óÛrdƒ¶—¢³\ă“ˆP5¾ 0u ÏË̉¬LUiö£y#L¿w71#̃L, |S ±ÅlxhvĂÜF Ç¿́Ïzqüu..)4h;î˜Ä•ÖE²ÑfÎH¿đUüiÇ̃¤¾«‡ḯ"+ &:a>h¥S³‘¨¡(bÊÀ6ËåÅsTg»kœP ¯enÖ¿§ S:K‘X:ûy¦­ï)¤;Dîµói#*ù̀Wc,ô07¶"ç Xù…†̀z}¸èdr®­2̃N¬\ä́ö>tđ[ï¶#ñy_ 8ÄÑcNÄt ‰úI‡üMX·nÙ·Qü„2|àƒÍ É©“&OÁ3;ÑÍị̂Á²F ôÑ[%>‰ˆ­¨J[ßOö]]:øà«pÇŸ"ĂSư~_Ñ́U©ă åÁ@/7vǛpcŸ ”@:Á9!åe¶ºƯùµl̃Éß)cØMåI†¹Ø̣¦ÄÂÖxøàmK[1R2ß'cgệ"¶ÿwY²K€P®¨ưøÆtăÄĐ&?‘<‡µ~Åàß'w›V¦°c±{ï`U†H^¸Ôx—E9®b¬÷ ?×Xæ}LÄNrI¨@¤+îGËÙđư§ïIáóH̉ư¨©ë{ÉcÀßƯ!`]ˆ[ökü±º lt?œO²¦eG³Æ4Ö>‹8Êê/ ïi=¨?Í_Jë}ÎøLñOAúïØË)â`al t”Áb§&Vع#ÀålVzÔ£á; r'ŸcẉxBÔ‹Fa‚-ă0Íp*„çZV÷ªÄ¿ßáéö|Ha=3ö+wÜ©rPÊ+ô¯-n@Äë̀EqÀ¥iñ%Ơˆh`J}9åO/O;¸$@fĨÇ\,hï3aư¤¯'Xf)ï©ññYĂ˜Úiú×6}«×ƠÉ c̣§ÍĐ;tÁÏê#·gĂh¹(+1̉]F=xÆÛ6­¼çO/v-Çɳ££^Ư¾Đ"R“û2.Î5+æuüŸ °G,\^hʉcñçº#'JÁ́R` ûWxÓAĂÍdLäÚĹϯ¨âKrYn²¹Î8~.Çu˜ ËVë4n±¡ gZQ[äæRƒ¹₫/84¸Éîhc‹“ÿi:̀cäÈƯe­›; `ÁÖz…rÍt¯Ê„¡I–¼Lzædø…°¸¬ °ưÚ°¸̣₫^†.×›«¡ªaÀÍø.ÔAÉÜo¹²QÆmS@› .^]™*«˜¥qéåưĂ›ÿr¤a endstream endobj 213 0 obj << /Length 2347 /Filter /FlateDecode >> stream xÚµÉrÛFö®¯@Í ¬ Ûè[nN*J%53ÉØ\́ "i’ư÷y[c¡JS®9H@w?¼~ûÆ(ØQđóM$ÏîñÜfy ².1ÁƯCk•E:H²$¸[B³Xjm\x»ÈmxªWÇƯB‡MƯ-–&ÉÂ\´ø‡x/ë²…GXoølƠÀ¢Å£rO‡đ·Ă½W{ªđKS:<Ơ(„£`lpƠ1Ô©Ga• ¿&±|ŒD”G̣ĂÅ$â±®đ^HpÜ‘øIH¢%•Z,uá¿’"Ă2±A‘€èb̃`-Q‰³ $«âx¤£̃˜̉˜ “†ø¯äÍ5"%a¡G̃}\ÄIXàÆ©dNq÷¸e ¢Å“—í×ÈyÛà;á<‘‰ñѩ󗜑~! ág{ºeđv/’Ù6ˆc³å/6d÷‡­—l!˜ơ©"Ó&³frQ&KĂå,§É“‘8K̃tâ _ZÏ7@0«xa‡÷Ä¢ÿ15(Χw5éô;T•%›Jà'Dø½ƒ÷fo„seûkÙèH˜¤â¯çÔ‹¢` $́nç2"DHđ EĐ‘ÚÖÀ†5á®æ':µ„œ¢ly¿+Ÿ¹“̣W€gZă^ăë.J_ëëifƾ>ăÎ@*ÅÉ•ÈàDö₫=ấ£ô›ÛÜMb”³JCÔĐMäT Ñ’½°±œÄtÊ3„Sj3£ 8§Pû́Ôđ †V¯úx]ăIL‹†Vd<¨Đ{bƒ# [•E×G‘2ÄÂ`̀ Ó¢^óK'w´SG",|#ºnɆ‚»|#ljjÏm°ŒÊÓçÔÇÊ4 «Â;×N<¼Fqk Tä5 ~GZD;[”]•¦°=#Í‘û¼ ¾´’Äcñ%Ùœø’¬¼M@¼? ù˜ ~l„ˆ³…ç’¢-ÂÖVà}Àæï=́¬À¨,; ddJaÔåá*̀[?€íú¢lis•çæyÖhj,r Åwzb'b@9 eµ§¾ô„£ªáœKÍ=’üè¥DN¥—q XP›•’†ë€²ëx1•Pÿiå‹üíù>¿ R»TÄX“῭]¨b8ô†ëĂ’íƒ÷7ÿái… Wkˆ±vơ3ưHïB́ÎU”èÀª4¨ÚºÊ7uMûà2Ê.đvöàí±óÄ¥ó9tOZJÄ×ưÖ¨8›±@bQ:Ü—//À·63F˜DüÜ ñ3Üûíă" w]Ó™Êú¾ë=áx̃ D©\[~DdHHÇ÷d»tóÊO`ûí¿C ?Zkªÿ¢”ó"àØûfD/ĂísAàT›ĩíq ssé(dêMƠ¡>pï iÊ0ñ> stream xÚåKoÛ6ø_al=È@­©Ç°èvèPĂêå̉ö ØŕÁ¶:KN›ưú}/R”­$ °Ë°ƒb>¾÷“d’Éơ$™ür‘ÈïÏó‹g¯‹r¢T\Z«'óƠ¤Tq‘¨IVd“ùṛ!̉SÅjúi₫ë³×J@Ó$ÎT„°ÀÍ¡đ§o ê=₫ï°? !d'*‰Ë¤THg&„f:Saûr ĐUKD¯ÚNg©ÑQ'ÔÚ®Ÿ¯q­9Àß[^\4È´EÄ%îáVà·Ưp¡Áa]Mg:ê¢kʨÛB;e»ê8¦‰*Aå€ê¿€öQ4¸™ZU[?Ơy$*àîêDQÇ‚̃Luˆ$¦b˜¶ÚɈíNĐÈë œ«ư‚ A^0±V±*ÓÉL¥±5% úÁ˜́,ƠX̉3]ȘV”U§Ñ¶êN•Ñ,2>Ö \oj>ÅU]‰(a|«ç!¤îgñ /Q®‰Jk¡ Á"u¼K‹/Yz¦6²&®ñtfLͧEÊbt=êP3v432V2´…QM15!&V©Ï†ÅÔê¨á =”ÖÄeQ8tyÁ~©%¸a^W 4Âgëax8x ¼$p„È÷̀[ ™ƒ̀h²ûLYĐ́ÍsđƒMx Á¾j{º +f‹y·A×¹üs®£(̀ËXi;4/eê5Öäv«€T™²#—<̃ˆ-—"̉ø¹—¶ỒÓ`̃©œ$D2ˆ†ùÚ¥ ø'I₫MË8OÓA¹ƒ*9U|g^wUl̀ñ…‰Så¿BïPäv‚aI ́\-¸e ¯$ohó©ơ±9ÁÈÁ€la+5Kœ”¦Ñ5We”K²˜–kaéCîÀë.eG'ØÑ%d́2E'1ds+Î xbÀÄÈ/Ơ_)&уÛđ¢[«†ùÑ$è ,`ÄÁU^l¸€|‚’$xh[ü­z(¶‡«3ÄW®²N6ñ …–Qˆ*œ±è)v5tƒÀ×ɉCÆZH'k!¥‰v eÁÖ%uª£7RLJu®2À˜)„apåR›öG¯aËèOÄ\¸Ê {›~¸oDVrr!•Û ̉’ ¿QªÀsÍo°Ô½Ñû`·̉2(ÂN÷)¾ÅJƒ²«º ×¾bU×[ú`®‚¬Ík²#ºofKli½Y1̀;₫qÊÂĐë(%.Ô;/À{f)Ùĸù¨÷¶æ]ÑÔy5m5Pé+¯ru(®Ö,Éé#½ µ1É 9hh†UjÚ5G6 únvMèD̃8|=UJG/̃¾%¾Mr‰­½LDi–¢;îm8ơ“?æ’B1„ö ™ïцÅeÄK'DÅơÏ)Ơv˃̃¶Âj_KBđ–(4ë]P/Ø7BùƒyºƯ¸ KΧÉ$Ë<ñe!‹¡Á°x?A¾áḰq%"Ṭ{Ë Pd²·̉€Ö.÷Eé26™m%̀;i[n^KÙÂÓz„˜ëDª#O„á¬góøîèÙo¼©Üó!R-Èư¥̣‘Åû^l×ÈïÑe_ơ$"ßÈÖV@©ưÜmẵ,½+1Æçÿ†©péPÂy"_hB/}¯›ÏSÜrøJ~¿‘wÁVPÄqkå)Ñ´Èó©‚Pnï؃:ºcdo¤ûÆ 3sX9Œ÷ªl˜Ç—`*eá¨v©iF—@ uc#72F ÂñlD*vZ¦đƒBeE0ɵLPâ,ÑúR3!¸^“{ \!n2 jCBùH`_¦PNf8ÇREBù¨D&”( å¡j²C‡ zwÍ4ÿ—̀{Ú˼«PhÈÑ ø̃Â÷¾W(̃c¶‰đ“.ơ’*âövè»?̃wdgHp—Z€Ÿ ƠFΧäZ´ĐoTåLà¸É×R>₫ơ'"ä#ÍŸ:¿×Ä*uq–CÊ=ó`î™± ¥ŒK™Aî™;sïnBæ4÷BÜóÜ—È> stream xÚmTMoÛ0 ½ûWƯÅ&UÔ—£aÙaØ:l‡Œ\¶ÜÄ ÔMk'Ûß%Ñ‹lAJ")̣É’™d_ IúcSÜ̃–¬¾–ÀæAlĐrÇûY~¨¸UºÜWPPQië=<™#(=@™{CÙ‘ô@¾Áç—´Ơw”-  H<‚êwó ëä^gfå ”àBÀ‡+Ø2÷[•† «́ 8ÆÁ E9vPq°^•; ]î0^O¶‰eqËj qVËDº.P…~Ø:_hZ„f—_̉J@RXô¡X±2GƠ6ZëÖNç@z%vôZEf2èă2 ù‚R„A DE ÿ\[êD<ÂKÁ «æÄ{ƒP/(O4Ö3Ql¢ÓßëäsÊ€ÖøR¶FƯ3Ṇ̃Bô9“=PA ´m‰VÙưœyd̃Đé 0èûÅz¿XHÇk\oS|n À+a¯h#p¶Êh¡¤cû¾x-Díµ̃D‡̀ŒGSmÜ~í}:?đ›8Ạ 3ưl>ú+(óD®;êÈñ’úÄUà₫»k|:MµÑe{I›Ư+5ôñOe]Ù†YvÏ•Ú`§£Ă™=cL{í@ă jWvûiOi߆Ùuä~z ƯS|ø]äÇơ_ƒg°H#*n¤_T±Ø5+A¨v y/}DZă[₫e÷[ñö°ú °— L­đ™iÔBỪ'ÿ™5Ï endstream endobj 227 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-004.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 236 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 237 0 R/F3 238 0 R>> /ExtGState << >>/ColorSpace << /sRGB 239 0 R >>>> /Length 760 /Filter /FlateDecode >> stream xœ¥•MoA †ïû+æwlÏ—¯­©H¥‘@BJ[URD??Û³›‡V=$Ñ›u<í× §ĂMø9éëx3Ư|w.ï§1Æ0¾ß_̃NGoYă7ß&˜ô·®±&¨-°TH9lváƠùĂƯăåĂăƯÅ6́~\]o_‡ÍÍôfcÇ…,S¨ )N•‰@¦pw>…Û'ñĐ̀C<®‘°̣DlÎó‚ùäü?™ÏO>è·5‡_Ó—¯!†« Ă©¾n&ôäï'$©[­^BH¢Å±¡Ÿ;ø“È(+ÛÉh![’kK˜^KOÎɱhù%É9[é<&gô⟜°ưhĐÄ“̃Œ¨§@Ä@1́ºÖŸ[oëŵ‚uQu†œ\ë°47 :ku©iYG¥ÖÜŸ(ö\Ó̉¬±º.ư¼ Ạ̊Ér~D׌®“l:³kÉ®5m×<ëÎKO–üîZÓ©ÿ¡k¬³v^íU?/B×\ǵơ4?j×TfÍâơœ5ö~I×>/«̀ºfï¯₫¬ëR}wÑ-ñdc̣!PÏ‹f“•Ç0e൰4Ô£irêUyè‡.ËĐ¯nÀµŸj1©C¿Uw̃yè+¹ÎËtæiñu˜·æ2øAuƒ_T·E›Ÿ”—Úà7k ~ÔzSưêe~ĐÊèw/s»î-çû²´Ü-*CA+Åöïb¿~ÊƠ’ÛGí¸ÓĐf· öqézÛ¢N¢’Í‘ơ¨zû²ˆÜl÷8&»ùwÓA„j²^Ø¿ó3‘™̀æ†ümEn~ÉéàDfdµ*±r¦=². ±z&®È”#NIÉb^‘—ƠÙ’SÊÏCNSËÖẸ́å?Èz ÈQ̀ #rl 2J¶Ü‘¢îC]‘—ˆ¥$”d~V—±V»Ù ùêĐJ®{µ76̣{e56_Ø9ùÙ©₫> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 254 0 obj << /Length 2461 /Filter /FlateDecode >> stream xÚ­ÉÛFöî¯05¦ÅUÅ¥€I‰ˆ=‡ÔÚ‚µA”lw¾~̃J·–=™C·jy[½ư1l&ñä—7±ü₫øđæ»w…Ÿ$IäÓÔLÖŸDEœL²"›<,'OSs—L#s÷áá·ï̃%¦jă(Kr D€n÷ưŒ+ø[á_‰ÿđ÷ŒG‹₫í„Z:IâÈÇ>Ab3¡63yd…÷RZƯͬ§'X"©Ơ'¡~¼Vpcüt ›ë‰_ô w÷Â%¶!›ä·¹o $·z„?$°!æ¼^ wzĂøEŦ&{Ï2#´yÅåjÉ›Ïô®oy$>¥D.Ç3oi·8^I“O/ =|´‚] §.*̣è°ª‹ XØ(u…<®¥ˆÁYu»Cƒ5Z¬H+³´È¦o6!}!Đvó|g âƒÛ¦´'J+%‹J=íTk¥ µTà;°5́ˆ/©¾`Ù¨6µ`=GÇRˆ J²;)NÊCĂ¢BvŸPs¤Œ’lÔRĂœ”¨"äçünæ\Ñæ@âái)ÅơqN¶Ö́– ¹¼(¦og_̉₫$*Sä5ß^4B„A%V<_Ơ±¯j$Ø#°ZH̀IŸ«€¬«‹ ^É»:„@‚­́W¡Óæf&…gÏ·ê"Åyu¬­Mh›Ô³3y$.K₫iL»¶I‘+êo6$“rP ĐÆ‹Đ?ÀuÅy.9% ̣¡TÇ,/<%I*TPÊúù3Nc¤IcQº™Ù4&V§:„“uÙ°˜…%$ç…¿yƒ„đ]$§œH\̣É s¶Çâ Ÿà[Ê=©¡OH8À]‘¢›Â[/b-É|)ë(^1- RØøWœm̀Ê\íï [ÓÛé©"ù0ŸÂCï‘GKdxܼ0hÛ¯à äŸÀq`×uàƠñ%bî†á®„¯ÆZĐËö §^ K mLEˆWî¢iLĂàyđñu:ôĐ'‰Páơgœ8z?”‡/O-[»ÄN—ˆs"jH§ Ü»&é!ͦHƯL†ÏlÁEv‹ơùôăV £á{)Du'oC)Ñ/¼ÇL„î3 “«-¼ïZ*‹Öw´Ù+Ư¹ƒÊUîºéAKù]w 9l@|Í̀‰Ÿ ³~‘EfqSvAôz¡@l*>#ƯÁ盛Ŝ×a’ad+K™·m—æRyĐfÖÖjÇÏ ¯ù©NÀ|º™í8bê§T”à§b ΃;̉èE‡XS„œçªjÚ–RÅÊ]Aöß+ê%ÑâUséfFë.ƒƒ¯LÙue„‚…zS•æĂĐÔÜXd)—p_i?»{Á™^üä̀{§B1Î[2³̉düRÛè8t<oêz´.Åc±đWg"[¤µĂÖÚêä¤;4#næœ]€$̀ ÉäŒĂ.₫øåÍä‰̣ëq÷W-¼vCøÎ ä‰Pñ# Ñ–'¾‡{c̣Ú5Ixñ̀ŒekŒÉLoóZ`”rt¤Î8vÈ%Wàwe¯EKM‚ mÜOÁ|@ Ô|T¸D‰m”1Ó}ù‘:…ïJ₫Ùp·ª=+Ÿµ "·#´§ƒå%dĂm×Đë;ó7®>̉bR~°M·fú́$V́fE#èME{7ªh "GÖ8ç–%<¤Ëû•jxp˜Y!ơ‡B­–-•¤7‹¯‰ăáÜEÈÁÜÚhG³¥8¬†e“(¨3ó¢M¹ @hú:*’J uùúuw©$¥ÑÆ“<̣yL¥ѳÈXAÿª ôW•ˆ|‘‘P÷+¡'3·Q§a|ä²´El#Eđ(… |/óf©çꦣ&¾h–(‚'¯æu¬óĐé¹nœ…ÙgadDt-×=éø_ÔrĐ̣Û„í ¨ëLÖgÑå©A‹åÊ·ß3Fש~›ïèưŸ,̣ÿ‡‰k%•$ÍYÇúy÷wuü‘R¿.ù˜ƒ‚–—æ´ñĂúæ¹ÙV}®:̣µ¾÷&Ü+i ˜ LYoÚÑđ„JH>u›LŸP&ÜØug”d- <‘º6‰3CZpë&"£ôuödẓ¯# ǾÛ$p=ñ 8£¤¯ÈnJ½N ½)A₫:–̣! o Ià¿€ÊÏ3îh“ôĐ€té%®¿÷u¯ÎcI|èü^„‚:=oh6¿ÖßSk¡†5À„u©ë°¡NLñL -́ô‘²¬̃¦Ám¦ë\o‹àÖ%d•Z#NÉ”PÈ̉,ظB6h83NYJü ˜ñÁƦ­q̀H„á["åç nBáåLH5 % ÁL(–M“)NBű(V!Aô™·Åê¿/T1á& %±¡$éN\(I<¤\ÚÈ }Ư‰ăÇŒá˜<”Ä…’ %Çt̀æ6{Ÿ3c¾ƠÆq¡$q(‰’$ 5íÇlnnúIß·LhÑ$%Ê ù¨N’Q›ç¡ôn€yß·œ qÖdÑÿº”D.‡m“(ơ¢²ö0̣óĂ›ÿX1²v endstream endobj 275 0 obj << /Length 2743 /Filter /FlateDecode >> stream xÚ­ZK“Û¸¾Ï¯Đ‘S5Â/>’Tª¼){kSN*åä²›Mq$%’舣Ï¿O¿@j¼ẹ̈ÁC<@w£ûënÈùj»ÊW?Üạ̈ư₫₫æ»wÚU©ê2׫û‡U­U­¢*V÷›ƠÏÙ¿ªÛµ·y–+{«³;đQĐ6Ẻܱ¶2.¬1³5ºŒ:ÎpGă<׸ÛßÿX\×ÊN8©¯îZÅq¢‹°±1™¹¯¸×*§s€P’_é\ƠyMJÆ (Äg÷; ́üs»vU™m Ù<âî·Ø̃®MÉ„EvÆ5ŸàϹƒ?₫9ƯÂ4®í6LÓ üÅÉ=NĐig™öLóg´‡¶>‰¿¸₫=4ÈnÑŸ—ÄrFª_r x'‹·b×Ư M¾:oWÜøđĂÍêgbÇĐt0/,³O$=²`¦ßÀÖ›##©Z;å]XÙíéhPÓ­G¥J¥¡©öÖ›¬9,É´¶¥QuµZk ;Ö_'©ë—¢áà?nM5Ɇ#ßC“Å3u4RRwèĐ½È%àÑưI"¬ÉîQ–÷SÑ(ÎÑ*nà™'4fàƯ6ư‰Mfö²ë'y?Ö˜B¤«kUUă=÷@yưnÉfÔhœ KP <¼ä@×á•U ÷§jï _€×ª4ª.*̃]Eî>Y`sUè2…^µGöT°;.ă­*œ «ĐDN›ÅíÇæËí[‘äÜ.‘†Ñ¿TV°ñóÖp%Ï ôªKgßÖäØCÏ÷ÈŒƒ¡UưOl€ƒH„D¼?ËM LÛœ;nÇïqåvÇ A‡’?ă¥çœĐöœåÛ²U9ø“tº;Ü $œ6¼ËÚæ SÔ?¡̀ ^Ó «hÂ0û&€v́jäüç`&m8½Á…PˆÍ]¶—Í Öb½ 7[¤ñYÛ€8ÔwÀæÓY£Nä8FêăI8¼§çÉ3ÇƯvÚ,: O_ 1îÈuà€_ñ¨nÖl])kmb|è}t ´¼Dh-’FÎb7Ä8@`^·ă…2fÄÎkkU^n0€Ơ‹€Â§ƒØăg̉ú%F²E^êRåå5„u>{ûuuÔZgưñŒK‹ZÜñ@äùrYÂ0kuE. ;ĹfªáQ<ăÂàe4•-Rî@ûBÙÚ¤wpD54ĂeŒÖ°Î ×nüØG`HCf8j€î1¨pƒ‚Î>4 E=“ö»~À ¶¤CPÓ,ewW÷¦íLó%™pöi×± Ô;6'(<|#rü’kÛ@ @²¢”ºhhô^rhaË|HEV€Äœ D·Ènr„ú6üyăŸ½—mf: cøˆI œ1ÍCÙÏå‘§Ø­EpÚ|FÓ'ÆVí?²sË_»Åur€₫ûÅS^û ’%†¬–đ̣É&àÜ·A,@Ư(¸ $2eqpAª¡mS± ´[RÔä!„c®i%ÊôLº‹ÁŒF&¸:Èx̃§å»Ü BG¤` à^}³áÙ₫´¤“ç,NNmç4iêIđ}Ttœ´¿+3˜M¢9möIN†*7„„BxA©h©4Â. pŒ $Zx}&gÛ Å.pGʽÎ$ôÆ)I!¼´(GcĂÄØ ©ßÍÖ1’.èƯü·Œ<Ơ±(S̃uÅđ_2rM2 kN¡îm âf%ÎF (̉ -ááá( §AÂ%Àrøû1Ê®h.@oÀ«¡ `ơØ1EÛ-mûó>̣‹€ÎŒ&=œàJT̉li[\zdžF₫ẃMPÍhps*3¹FÚV:_1N®(›)϶„ydc½“f÷U©JW½H1褙á,&µ̣Ṣp%ÑGÑuÂe(*÷ăå—ˆÆdH­D‡»Ư-²®½̃Í5̃§$Û_Ë»Ü₫À;£qBµ20§ạ́gÑ?Å-¸ÆÄzñZÙ4B¢ÉÑ 6A„8Z¦[ưz̉S¢I}DˆÙÙe3ñÇ;ị̂íơ¯·¾`|̃K± ̀N÷]ö5ÖËr$øÚ"Z\ñ¯\“₫‰á<̉é4hN -¡1NvœN™'rfHÏ)ØmG+¸DáˆsT˜~-ÏË &‰tG¹ÅibLïøY úơ—äÊ&YÖ¼0Í _÷» ßPÇp-9èâso—©ođ©ÅL8â*=Ă¢\cùưÀ_‰r¸¾%Ë%¶6ă Ôd†”Ëê#™Åy/NÛ £¿»ä™ ̉́¼¨&‡¢2z„²!øˆ8ŸYRÏ8ØI¯"²? ™Ö)™™ê¯‡‰«é@¯Ê¥>/X)¼/œ˜ ‰'ºß)âób)¥ ”$ƠSˆÊ-ZñU¿!lƒúʼn¼®‚…‡k#·8É\ĂàgêZÙ¼x½ôIW[@|ÍdBŸÅïgü¸„‰æă˜¤.›†.+•ƒ{|iø¹eÄjCy­£§Yà‹™‰cüØDºđ„ £Aºg₫ˆt,ÚXÖ^ jẩ¸o%~!›eèG¾đ¦ ¾]%ĐƯs~Ÿ\Ë© ôœw4a ±Ơ—Q6½¨t§jX ¢T@V_N‘€Úñ£ ¬:Y1pŸpă‡k h²?>,*Øj¨¿¨`Ă ._Q0,(ØxÊ) æ₫H…$ÈLÏs¼Ä[é¤}¿ơîËWà8³&ª_:uí SY?{ƒ{Y8_{¥ ;ÓÍÚ.sáËûDCcâ_Ǿïÿ|ÿ³‘b¬BØ ƒO7S¥ ư½|ÿ3̉B¥(°#!z- Ww‰1D‚[ d.W¬ƒOUÙoa%Ur¬¤à´ø–ˆ9Saؼá+%đ˜œ ¼&Ê₫½‚".yO!mV\eP.3đÀè‡ĐnĂh”1x×¶,fS ç )åËæŸWk]¤Ÿ…z ¯(ÊpÄ2ZÊ1TĂơCĐàÈ₫K XÈG¯Ü5XiU…Áo°ûâ‹vo”I‚±\¹3–ÊHhVKxñ>à‹ˆóá9jj0$ó-r…J¾ºÂ8%6ă»úÔ?̣ó(Ûè¢ß¶¿äOÅ«₫TT‰r¦ -±sî ̣|Eî^jÏ?ê¯&\wW6íÓÏ ¼‘̀³kU•2ºNiÙZç^f¶<<½v8¾~ë&ôƒ±ÅN³>v}̣{1NGµ $ô+vq:yĂĂá=±9G´Écß%dưÈ$+²™•È ®%Ï%ïü ₫~xû^’ñc¹>Av7₫̉•p($p›13À×»>\kaV·vÑ”D₫ͨv³_é¡̣̣ET^ü– —su£œÿÊz$=̀ɦHÏ*LAÊ®}́å5 f¨Ø#‘ö]JÜö£ø̣Œ@…Û¾åiÉPm@—Ù¶yÄöÚ;¸0pc•)%xü¤á׬x)º~îwrAró¨:~Ư₫{FºÙ‡7l₫ kn¶Ó6xBMoHÜ®¢vµ‹è¨¨¸N‘²» ÅYUj‰¾U²äíưÍÿ¢đ0k endstream endobj 283 0 obj << /Length 642 /Filter /FlateDecode >> stream xÚ­UKoÓ@¾ûW¬89̃îĂQ¤ ê¡@n”ƒq§R‡8Q%~=óÚà$E€TUÓ]ÏÎ̀~óÍ̀ƨVơ>2Yß΢«©ơFº,ŒU³…*­Ă.÷F{S¨Ù\}ߌ’̀ù¸ÙxËÛ×°Mx»…m²¹7™e ²:=‚\ƒÔ¿M,ÈKÇ*–o³€,)u§'—cL ̣äáD'·6 ­’›ØUb/·ïå ו¸#Đ ü'÷̣;BĂϹDXI„ó„²'Z>gB½\IL) ß‚|¹ù÷¤—b̉HC}ë#^̃Wâ¿HHŸ«¥Ẹ̀—'Ë^6Vt3‹,à0Ê*ë½v®T.ËujJU¯£‘.JïÇd1Ø̉QđÅƠ‡µSïºèü…£$ÄLAyÂ2e.M9œ0ç—2aS!µ=́ˆ¿Äû4v¯FIf!³[¤u±Ç3¡hƒ¶«!é'́J=B RS³îøÛ£[MĐmØ®Ư Á Ú5›‘“]Ï&MU£fÉ¡öˆ¦4i#ztÅ ëƯ‚Ư+^Ú†lŨZ±Ñ¢¢.œ̉*ÖëLæ…̉œÖ`Ô@âÅ󂯟¨Ó–ZåÀ †:pö’¼È¹Ÿ‰ưåÈAÅ‹ïpN1LĂqF(đ u-©]\K®ü; «€'è\ơ‚Ÿ¯ ŸƠ™´djz$³î„ b{fJî³Ç&p¦&Z¸¾RV 1è–½L{ĂŸ5í!Ơ¼ô¾–‰Ëăf¡‘¦9mA¼{cSi8î#'èùƠ¢'}O3|₫¦œµ:-¼.^['ÏKyb sÿ á–Ê endstream endobj 268 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-006.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 285 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 286 0 R/F3 287 0 R>> /ExtGState << >>/ColorSpace << /sRGB 288 0 R >>>> /Length 4013 /Filter /FlateDecode >> stream xœµZKÏcÅƯûWÜ%daúưX ‘)a”, 2@Í€"åï§̃U×qû›d&ưùº}ººêôé:7Ÿùøñøạ̊Çă—#]Sâÿ”<đŸV ₫óîÛă/ÇO—O^]>úơO¿ûäxưëŸâgơ¿¿¾₫ẹ́Ñg¦{ơƯ‘›MEÿáq/×9sçy¼z{|đññ×¾ûúơß~w¼ưù›oß|x¼úṇ̃ÛWf^Kâÿ””¯À¤£'ÀSnÀĐxuÔ¶¯c˜?gưyøÓ/îLüŧ€¿Î~üặåWG:¾¹äăsøß—Lsÿ₫²i‘µơkÇkÛG†eT₫Á~WZ¸XÂU—L qXûåS—1®«̣ÔơÇaâ¸!?ƠD™ËcÄŸÂÆqE`HU~¯"₫aoüy¡”‡°Æ†5Ăó¸́́ó•U°í÷ .#;0ût¼¦mË×S±­· Ȱ́ñ(C÷‹ăUF½¶êñDêÊÓă]Äwø~à8ß/çêû‰ă™}¿q¾Ù=Êh˜ñ–/È¢’?”Oeè~q¾• ¿×< „ioÏ×2u}œÏ–5zÈw€]¿ÔÀÜKÆ^/o.`˘<˜S“9bhÈF¢„€„~{ä0Aã@…ç¶0Wk¥'2a«—„O`6CĂ › E|~Æ?¨mr<º́…ë¿:b‰²tFl¸ˆY tÙĽĐ0yO₫̉đ¨uĐ̣Œ7n9V1Á3 qw÷¿½YsĐ3xGĐ˜ 7MÉTø U jà­O袰œˆŸàg¬œ)ü\nù9èøË`~Æ´îĂó9_s=J¾Ă>Œê!uT!^/ x˜_¥€ÏZàç|7S¨Gàïø¹§êr=~ÆñüŒăøÇ-đ3Î7?£"®Ÿ Ä}~.Y×'|z0·Àw˜EÊȇÀÇEùñ'̉GƧ溜o1L̀ÒǸ́ƯăxH¼åùUä<“ùö¬₫{«$Ç“!Öp¼yWØz2đï¾̃<ªœoCvàg\füŒË(Ÿ¥^,ÀR9g;æ0³F‹¬Q0âN¨•8¶ kÔÄ_§”pÖ(,„êÿD³FQ‘Ù¾`ÀA‹x4î'äß¿€.xˆ(kèêQĐ}‡'R|$QOÄ4c8h‹¬~‘oOF:ĂAµÚ=~ÆHCÆæî‘ÆTÔC…#;›ƒnp¼-ág¤ü€ƒ–'t'p<êsü —9ĐŸƠ[z†ÔÀ΢Èykms.C†·@Í[•T0ùœ©S`æ L6c¥ñÍ×+˜{íP©ÀÜ503F¤ÅJ‡ñ̀œQ™§À¹‰&ùv Lƒ̀»¡̀œádÙ)0ÜZ`æ ÷é˜ïl=0ó6!JŒ€º8đ2¬9Z†%•ÀÊHÂĂFN>ü~ ” Ü#ç@È£ËùÆ«z+ W`c̀Ǿ!‚tM‹{jç÷*7? GØ̣nóîÁwk a¸ḷ©Æ{?´Bjg3 Μ‘TSbÁ 2­ÎJ0+yÎbi†Œ† đíG̣=éwC5<¥Ø66B¿l°̣D&À­'¹éjâl8]bbÊ­ 1ơ Us •¨bÀ‹áY÷ Ä›ˆ{/¤S]/f_P—ƒ7ÜÅ%d́¢¡¼8è‰.Û6̉Ñư{Ǥ„²kG?…[iÎñP#r"°t§(‹½Ëùs½‘ƯS-?j·’ööo µfÔ‚&a؇+`¡iˆU]ÿ°d—¿xWW¿€d¿e²¶-U&½I_¸íîÊ×¶\øâÊ›ë^8Ç ²à́ z'N颗hË5oĂ•¹äå¾)^¢¼™Wơ.ưkrwclĹ.Ú1•º oÈ&t'â5™;©Ë¤"WF"qùI¸<‹Ê[ú·ôë.m +Û̀C¶´,×µ,›MÖRH\ƠRÀ\ÔR8]ÓR°Ṃ̉V˜¢å2AËÛhz–7Ùä,§€©YN³œ>¦e9¹LÊrê™’•ÄT!+i«:V’Zé)å«́ˆTê\·$Ån=OÚ9Ï;2%@jØÓJ',fذ¶é*̀sH§Û ›ê¸6j]¿½œ?¿@bÀ †½üù¨¦b°§{ºơ~!Œtcë,lÅG7Ơ ƒÅÏưƯÀzcÿ€½ˆ—Ơ¶€¥₫Ûâmxl£íÍ…4QMaç…ÎI`àÎe`ñ: GdŒ‚ `±Ú¨¶‡µvÂêD9c=Ùx—Hë «̀”È̉£‹*™Á®Äl¸Çd¾¦TO»Å,j1âp<Ú¯a°§;L¿Ïú6Åû ‚ Wi’ûç¸ÑU¯' Ö*J>åËÍS`ăƯ¥ƯD^Ù,:Đ"K—í`ữ±£?«·;₫̣|ôz(` 5äîæ,²to–³¸  ËÙ TØœ ‚¬â¬Ä‹HƯVEg4^ ̣s5`;“rêF BGäDàauAŵ>¨ë©8UN1KÀ¼ëQ5Å(á €9oÄó+#¿âÉV½bKxư!$ÅñÁ÷?¼₫ú̀_¯>W‡ù¿.ă½=æÛ™ư¿7™ ”¤ÍË]fEvÏfÖÉ_́3Ëäwf™üåN³N~ÏjÖÉ_́5ËäwÍf™üån³N~ÏnÖÉ_́7ëä÷ g™üų̀}Ïr–©_́9+́;¦³…ä…®3 ®|ví³=»éŒă^ÜtÆ1̃¼Ôt®•Âj¦3ótÓ¹AÖå¦sEãƯt®….9f:×Bç°™Îh­í́¦sÅKAuÓ™Üăä¦3~0ª›ÎøÅÜÜtƉńÎ,î^̀t&¡ÜtF7¹M78Z_j:£»Œ¿¯¦3)÷ä¦3.âe¦3̣ âWÓÇ)¹éŒê¦3[wÓYÇj:ëój:Ë|f:Ëï™é,x̀t¼f:Ëz̀t–ơé,ñ0ÓYâe¦³ÄÓLg‰·™Î²f:Ë~™é,ûi¦³́·™Î’f:K¾˜é,ùd¦³ä›™Î’f:K¾é,ùl¦³æ»ÎZj:Ÿëå1µRf#Ï7ÎËàâ·2&́[₫eNP¼›C£+ï5@d66ßđöƒï}ø°Àÿ…́GÓy  ¼yâ‚— |Ó¢Mn<úd:O=ñ ‡,AƯ=Ùtîï©h:—Ú,6g­·C¼¨¡“®ư“g@ß½̀*h¸w C  Ét^4₫Cö¾@ wD…¦s‘¶[¢, Ë©<BÏ'Óù†½áÆéè7NWo¹q:{ÏM̉]›nZÚuÓrѶ›–“öƯ´Ü´ñ¦å¨7-Wm½i9kïMË]›oJÚ}SºĐö›̉‰öß”n´§t¤8¥+mÁ)iNéN“HéPÛpJ—Úˆ:µVœĐ­5ă„­gă¡=N~^[r:Ÿ6åä÷¬-'x¬1'x­3'ë±Öœ¬×zskÎI¼¬;'ñ´öœÄÛús²Ö “ư²́§µèd¿­G'ù`M:Éë̉I>Y›ṆÍút’̃¨ă|ơNä³µê$ß­W'ơ`ͺS½™–|3 ,ùhX̣Ơ4°æ³j`ÍwƠÀZªÏợ`ùù –Ú1'™,¬ÿˆ„f|/ị̈uĐaYêRº¨‹̉2†€s£r*1»Ơ:é oØt2,o Ă£bß&q_ñ!ĐêÔ ́}̀Ê pkË7oUÖÊw1{â|wĐ+hàÛÛ…~₫Œ–HçJ'úí™Ç‘Æ÷̃ÈŸ’Hc3\Aé\’ƒEz3×f $røjưåü€îƒtÇÉǺüPö/  endstream endobj 290 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 293 0 obj << /Length 534 /Filter /FlateDecode >> stream xÚ…TKo›@¾ó+V=a)lv—çFmU’ª½UâÖö@°Á– $Øi“ßyaHm)²F»̃ùæơÍ FµÊ¨¯yçüR×÷66Êí·ªl”·º0Ve®Đ>ËT¹V?ĂÏ«(uqX¯l¸Aj~ú׈¯Ñv K´ ™ÔÀaA2₫kW¿ËïHdc&₫M¬ î,¾V³¯ÿC\‘Ñ»¾²@³·F¬¯äy''B7 Ÿ@>œ*8«ùY •˜¡Éaäy8̃ CUÏ×êăc=.Œ_梦ĐSø‘rÖ'Á]X ®lœè,Q.MunUƯOÎ}¤_\I5YÉĂơ·.V·Cđ~“*Ñ́’g,½0b.vÚú‚[s/•¶Ï#%%Ö„ñ Ôæ‹đk¨'”c‡‘O&ÑLÂHdE.g>°_C_íÅÇDƠä£Î6OÈơ†=å§!xe:Ù¨øËơ©SÔ&ê‘4h2CO#jë£tsÜĐº\Ö[l葺9 ¡¥|¨Œj1_Îç0KPï+ß4§”]EMƠÏMUK:ȾĐBTëŒL{à€Yöd–a œeáqËBÖ:N¦Äă^¿`&â°Â@í0.lÛ± #Qú}{‰Z₫Zr̉(QwöaSÎ:O`½Ó‰“Ϙ5oÀ°ÿ®î* endstream endobj 272 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-007.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 295 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 296 0 R/F2 297 0 R/F3 298 0 R>> /ExtGState << >>/ColorSpace << /sRGB 299 0 R >>>> /Length 978 /Filter /FlateDecode >> stream xœ­WMoG ½ï¯àQ>„’óyM0à±ôä 8*`Ă2ÉiûóËÙYí®”ơJăú`[ôÓĂ’Cp ÷đ³ù ?Á%4‚ µ –10pJè¶kø›·»ëOïàv×4ÆÀø÷îv¿¿™€õÿ¡ÿ ₫i¾|ß‚Kư¹o(®wËæíGRo–Ăr mÔọABDo€CB±°ÜÀâá–÷ /·Í‡åIº3h1ú4AûJ}@¿ÿ7ÇñÛQSjj?pTC{¢È9ÑEơ÷ ̃ è!|@Öxm@âĐ%¢S:%Œñ„NfR'ó¼N‡)!ă1Y`0L¥äƯG AƠJH¡MÆ"ùV-3EÅz ›Ú?ü²z ä0ˆɼ¤l>52Æ—°“Ị̈¨fª_±̣mñNµrÏé¸;¸\K”Iç)zôY]B7E׿øÿ[Œ˜¤ë¬dѸÎ|€›#¸X̃#”´ÆĆáÎáIµ³^̀gK¹÷íñÎá‰QÜ€sÀÅ ²¼/æ‡ÓG7àYüƒă#—Üh{î€̣«ØA³A;+í˜óÓgv–MrmĐm]ö§:ŸOÏíœÜˆ®X;ª–tÀ®8[ộGÀ®\´å„Ă³{Ơ˦%_M·7ˆ×ÛŒÁ„qo (‰z#=Ü™#\³.½3œ¹íl{¼3Gx <{¼˜.‘~gđNÑ¥éơf$£^±àAôv¶bgé¤.¹4[²ó|uÙÉlÍỊ̂™\3E;O÷œïƯLƠÎ̉Åè ’æÊvî|NÛdƯvª±¦¤©ôá½)Aưöjwuphî¿|Ó…sZ›t—̀]2Ûµ6½c¢s˺́́—…n%»»Íh‹]üzX=­¿ĂßÅZmïVß.tuÑñ´̃ÁƯ#¬àön[ÀÛ_›kE,₫…«§§ơöñâ+,/Ḯ4¤¨«1oưYµ«kªZ‘Xç]WqW×}Ê+/¯G¡Kä¨%LÀ}j_cFå÷‰öÖ…̉ùVIù!ëöCZÆ`¢–\3ab©! èËÊ.5ă‰ó擟 ¶\¶Ñ¨ &Q;flY›\YưeÖ˜CÖ-“kfº¾Tf¶>ÇLç“ơå`5rnJæÆƒ%oärÑ+UmË"Óg*vJ:ÁhÍ–V±  cNèuÅ4yiÉ5¦'KÈ)1SE…‰mŸy$íVزk– —s[ryz·́“â2ëk¶{bR_dŸ›ÿ"×tA endstream endobj 301 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 305 0 obj << /Length 1052 /Filter /FlateDecode >> stream xÚÍXMo#7 ½çẀ¡‡1°Vơ=̉b³‡mÑr0|Isp{w'6lHÿ}IJ̣hbM¼v’ƯI#̣鉤(Ú¼úRñê û_&?ÿ.¯æ.ªÉ¢̣‚9Yg«É]u]TơíHÔ+hĐ¾@áó'Ăp ĂÚ=4 ç;hhĐnăü1~›Cû›ƯÚS˜ÑÍä/à6öL[}„ˆ"}™ÑMa™Œ¿Î@n¹ü×Û–¸mwDé–ÈlÅSºÄ(ơøh&a—±p̀K B¬Ơª/ƒ ¢\áÇơăºÙ­±z‹D~Cç^Îpç6¬đú¦›¶·!œÁK׳ÂL.Œ—ơT̉@ƠSĐPi¬Io,6è™N÷ MÍjd6±*NĐDFÜ0•ˆ³d¢®@]£›i—%F*Ùp‚Ư>*É#€ Èè öÍ&‰+jêy3x=6û§E÷µ»8ºuqWr+…ϲÅ0ëÔ9üÜd̀œÈhu~^Ÿ¦Đ9!Ô½®gûêJ³ÆGpIjṇ̃Éx7xOC9AŃü"‰4ÙơQ̀R CïÿSikÀQ¾Ê¤Úíh¬œ¬gØ©}LÓ½¦/”Öd,´t}‹wúÖđ×óưüa¤$¤ ÂX̀è΢/6à~Ẹ$æÿ˜rB̉Ɔ3a\ÅdczIe3Ñ.ËZóØîº ¥É¦ƒ`!ÁêM1S̀²lØvéÇćÈÀCûÇ.7qœrçºSăqÉ'†‡Ztų±9 ­„À¢yö¢¥SÆFÏ\̉U?–ăÑD_3Zó¸Á"0<"ßáé1gĐ~”ÿQïÑPâúïQ\5ÙªMăo‰ơÔe«₫-Ÿ°đz`}®Ă‹̉éë¿Íø¶D^ñ„¾EôI ¢ODwV$1eηˆ9ưtZÅ•z…ÉéD”É_{>W'Z¤9ĂßGcä0®̣['‹…£{"=?‰ç‘E‹øw#"óâí‡×›úơ¦¦Lœ™8Of̉äßGº¤z Ó/¬¶P°ªÿ[Á: %( ]}¥#n/r`!àµ>qŒç¦î¸zÙ ‡€a’ø³L^Ù&I<#~»eÉf¢e9C±ŒEÉp±\*”…ƒŸRª)VÊW±jĂộÔÚV Ôªđ=—•²2“íjOät^é™46Ym§̃£ÔD̉1¿í7E¡´”†)/ûơå5$̃økÜKæu3TaQ¦øpCU™ ·Ûç&”øJ©F¸oH Ô@s}À‹hƒ ̀Ëö(û2€9Ê y g[bàN0%₫zë÷ÿ%>Ïz’kf¨ồ9đ…èéü6¹ø˜ R® endstream endobj 180 0 obj << /Type /ObjStm /N 100 /First 896 /Length 2584 /Filter /FlateDecode >> stream xÚåZ[oÛF~ׯä)~èܯ‚QÀ‰×m€Ưmd±Ưzƒ‚‘(›­,º$•&ûë÷;¥H±åHc-`y†ä™™oÎmÎ9¤ I¦BbÊX´¿ÈṬL{Ü9¥Đjæm@kXÀOEË’whñSÖ0-AlTh j›è¦̣óFçh4~†: M™6‰:‰i§Aœ$ö@’@iÖ„QÉè‘´h²̀´ë¤ÈŒ1ø‡3VcU…6ĐHÇŒS–i¥™ñ 3ËÄL0X&=Đxl%íĐ¡uO: pTbVk,®³Æ‚̀¬ ´.³NmDÇSâÏl”~ Ao­xN*Oû+%ĐX‰FÇ8æŒ,€v&ÑÍœ5Ä ĂœkaxÀεM2˜\̣2ă$ó„Iƒ¥̃x µ’#.C"`"FYË|ˆ´¨c>ilÂz$¸£]`„ !×`œhY°à©¶‰o‰F² ÚáQ̉tG±(1TƒW±UĂ¢ni5:´T°,Zbœ÷,:đÅ@¸ 1‚Gb‚̣h°3‘æih^̉‹– € DḲ†%K{‚¤¡{r 1>lLCƠ¤‰'’"KIÙR'êyêA«$]k̉piH:ØzÄM¨¤kФ¼Ø"Àö”ô »ÅOÉàé)–FĐ̀ ´RR̉¢Rd-Đ]ôH²Œvl$=5àô˜́ÆëÁññ@¼ùx3q2›•Í@¼¿kÚ뿳_âYYóê\ÂHå[ñ½x!Ÿ«öb ^壆'É!æ¼á8j=÷0g‡v€́„3ñ‰ïÊ7%§́iE9ă₫ˆ}ûí„┫0ơ+&~üÏO¬WA5,Đ²Ù|:}»¤=+gM;ë̀@yµuVâÊtWÄ /Û /«rô:`&^1ñ&ÿаƠŒ ¼̀.̣xÙóYSĂĐZ<´ÓºœW£¼nº½ơ|\dÏÊ¬å‡Æ@A±Û—Y…±X¹Ú²µÆªäË IgÑ®µ]ÛÎܺ²E»¤÷]ºûºk—ăcצE›d×văS·^êèÓb½Ï¶¾»ø¡XkâÇôœ‘×†Ăƒ‘ÇàdGđo•ÿ¨hr~]]®+Àa84ôDCÁW8\äÚq Ûæ«¥qîpx¸NÍÉùGÅ#\”s–'ß®6ÓîEœ‹³§ONfÿ•V–ïóê}‘ÿ̃ö'ô¿¹̀©iQµlô+´̣ ¿OÄëü+qz.ÅYѼƯ 5üÀ ³ ‰“æ8ˆËÁ€œVœtÛYÅK·¦ÄIk¹Àñ¯W/è÷ôÉeÓ\…¸Î«ºœeÓ¢ùøÍuU₫‚UxY]ˆJ,÷H;xrôøˆ÷|¼K¿¨ôÎÉÎa§êÈßđ>w ¤N±ÂîJzgok‰?OÊêç:¿:Ç}¡̃ôáz!Âj%m₫Öÿa9Ưê₫8½÷‰fSâ”oX¸£à=r…Øñ=71n?Đ&凡ôư¬+-³6€´ÜS¶â=æa(}ăX]â°–+Ä_ı eê‡M¡Ơ ‰²`ốH˃_ ˜Ë!ÿx` >̣M+áÓö ,á G–³Ä4{Ÿe³₫pDxÁđ ˆ§“Ë̃å ÉܠU-­O'˜ëN´As‹ {Ză4§”qKDi¦KË}Ÿ7Å(ˆ¿ÍF帘]´¥Ùµí0¥¹uÊo•Óñíó‹ÏŸÓ1î¶̣»¶ÖrÄbÖƠxñïbv2«‹OO‹É$‡H^ç8iÅU1›×,yñÛ¼ḷi>i(Bă|­ëB\TÙû\d£y“‹QQæW“i₫A4Åtœ‹«lT!ê~Wå Ál4‚€Å¸ÀuQ CçQam1‚VL§Ùêæå|v‘Uó«i6oDyQỊ̂_Å(£ùêël”o˜1»›Û:­2ÈÏHÙ B »ỡnG¦̣ăï(‰hǽ¸" ™‘»iFn73̉ ±î/ơ¢¢H5ÿ¶ƠƯmºÊ¤Ýƒêư‹Öt­íÚ®’i»ñ®«\ÚeÛÍo»y]7¯[®«úŒ¬Sˆœ,sP¨O…#ÇCĐÛàËrú?h\^ Mè=r*!öƒR˜ÄAèàg¢r}›wp‚hơhpVi»ă1ÇÜ<å¾>Üæ—|Vç³áïù́¢G̃P!×®Àh´̃=C©Ü•EÊ %²,D“öb#Ü×CKÉ&ĂÜËŒSC1< *··ïH]Døy$p¸ïÔv8ị̈Ñeƒƒ²zƠ#oŒC¦?ÁqiQ§x$8ˆ}› /à,ßá4—óªnp­ê¿–déƠUObR@ ¯Í"‹+8yh_ª? œ³Üଵ†̃hĐ[dÉ]û̉ßÂÜîđ8W£1'ÇæéM œÊ9£ 0æ±ÀØDƠ¾°B³Ră/¡©̣¢Î‡²ÿ#Ê*„„íkt¤óÄ&‰sÔ>$¥‘‡¶µ‰…úP)̣>P(âu{DÇ´ư&£›éçfjÚ{úܸ9˜ûÆÍ¾‹w}çú.¾ ]|TŸuG˜Æ¼ƒ‘âd̃SéËßU†Đ‡(á&E§-BoàJ }Åå¹…¼<‚î`ÂWCñ¹#÷`¢X¨ḳpäPßµuÜßáÈ«l’åÓbH™çt÷ú‚êă¢-AÑg*ñÀ 6åEo\€“Q…l‘KªâĂ½oî’—ùÜ_»»¿Ø íü…¶Ü§HMDnZ-̉½´=Gß’•ß]»Ë{Q ăíí¥P ‡µüªé³ZÚfuͳƯ×—Å›uù¨ọ̈e¢RZL_§”öĩơRÚ⛫¿R)-îñb–êÎ,¾´ÖïXJ»«xFßuƃ 'Ư4œô'5µ®å?eדS(»¬©û4>#¿N{m̃5ă3̣/WÇN{ß:­²ºư^€*Ÿ6ô`{§›>ÄöŒ¼€iîc{Ø+}àüE¾ü+~¦ endstream endobj 310 0 obj << /Length 301 /Filter /FlateDecode >> stream xÚ…QMoƒ0 ½ó+| ̉8Iô8m¶Û$nÓ¨PZiíïÏAí´Ă„b̀³ữĂQĐ‚çDưóF ĐX™[Đy!]áàÔ'_‰,œ1eh¸KCi‹Àđ8$oôl¥,RfwœU²;âPI§Bu‡²TÚZióª̃Å1Eq¥Ó-#Å6Ít©…=¤™E'*‚.…ÅÓljÎ0ø“B=sÖ¬ gNsè 01jD×Rî9Œa€³8°Ll€i»µ—g/›#¦è¯—L7G…=đÇ͵ Ú mÅëàW‘Úß›`!Ơ…øöéGơJ ¤ơɽuëB˜abEO†ŒY]®„_[¢‹VZª»ÀJ&‰ñÏŃV¥,,Ưb)iư«ê_ƯOỤÅP„Œ endstream endobj 302 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-010.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 313 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 314 0 R/F3 315 0 R>> /ExtGState << >>/ColorSpace << /sRGB 316 0 R >>>> /Length 1618 /Filter /FlateDecode >> stream xœ¥WM\E ¼Ï¯xG¸4m÷÷•"»Hˆ áí‘€àçS¶»_;Ă2ÙĂîÈ3ưÜƠårµ/:̃^¾Çß—÷—/̃ÿđÍ—Ç«÷—bŒ‡ÿÿ₫ƠÛË_'¬¿ÿư æöÏbj9´~¤ÑB.ÇưăñÙƯ_ï₫~ơ×ßï~}8ÿøíơĂçÇư›ËW÷²ƯQFˆùh)ä|¤̀¡ñÁc„ÂÇ»×ÇÇÛÂĂ_áјb TÄ# V<ÿ̉B`™_Ü=‘ùîÅwø¶•ăŸËÏ¿ñøíBÇKü½¹&ÿŸ€ Ô\.Sȇœúÿ8dÈCƯñB6“3X™ŸœQR-yºÑ°¾<'y®R0M¯“£˜é9´0@Ă’—ëäZy-4(¤IK½JN½†₫Z¨¦PÉ’·ëä<=‡J%ŒhÉûụ„S=‹–ØMZÆụˆS}-£‡H÷.ỊŸÎdª̣%%KñG–Gëqy”ÛŒ±?Ô¨kœĂç5·ÅoÈ2‰SH=¼ÄrBL¡Úó*éÁbùcàˆ8‰zƒ‘Q5îDáÁsHQăRѸè₫±p5Ÿ°fëáp£-Ædù)i₫*Ï€R<ØVâÚ0(Ăâ§®1ˆhz¾¸bÊGoƒ¯ª>R,_]ù›Ïg­*>Z™±̣›7“Àpë£ñ³̣¡¶½»ư:ö‹zÆÆË];ÏĂ}̣;ÏËÅ­O>$¦¸ùâNđÉ=†Q6ßWW‰MV/‰K̃ơ”¸µ]oÉON·²ơ"x¦¾TO‚?9½Éù2;=ö²ôezINÏàºÓ{¡êyW?XơĂU¿<\>ªÿJ•«8űúdƯm%Á†0/x:‚§48U–Ú& O$+X”$œl|'Û78ËăåjbœNnÊn"½´4₫4ê¶ßAue¨jQ|-ª‚X º‘~ÓÙFùsœ Á‚tVÂ7è¹ñXÖă ¡–'èö?Đæp ! iußp̃ ¹ơP›­0P"7´ç z­X‡âVM¾·Ø3uiAµg¾¶gN̉Û±mơrå*̃rf´qrg%y·`Ruí"¹vJ¦¾³ƯRFv;"VûXítÊÙíŒx4×î¸4i8;Heæ›v!¿Gg'x¾ g7ˆy8;J§]›]o'gg8O/ÎîR\öjvˆ2ªư,»äy}-;åº7»ÅŒ™ÉÙ1ê1²Ỷ¸ơ*ƒ³T)n?ÔĂƒ²öêđ¢ŒƠ]7:ow^”­x>P¶iŸÆb"Ç'ÊXÉñ-e®ˆM³^ˆ™\=I f×q÷zÙ°Ó đM}™äƠ¤8½á|q8=̀³Ó+ÍëkéYz£x½cÛếSQcgÏÖ/·™F̉+ÿ ÓEMÓ¨2é¦!nsÅ´„å$ËÁ6È·ìjÏèθ£èFĐ2¤/§«´Ü)Ó5´²f¬LĐu¸’[–Ñz̃ z1»~§yQ̃¢;/ÂrÍ´$ôLËëÀ44XÓó5{6&1uw®«²ƠÇ_„fÏ”‡X¼Úsº²g*Iºö´g*eÙ§ÊUÎƯœ©ÀnxË]^JÎéḌƠ¸¦mª4íÖÚI^pæt®í&ñ ƯT󜶭]©–9[;K<§3mw‰{Ưv ñpv!ñ´µ‰sÙv#ûÍiYíHâ·] ¾́¦M)d¡mwr¾̀ÛåüLÛ.…¯·RịÊÚ­đ×4­üf³»3NsZëiÙë̀­k¿Üÿ…'7›ö^¼wÏéÛ΃ÎÏÛy3ÊX9­iÙøÊü!Ÿˆ¹;¾3Ÿ«ˆ»¯—ÄÍƠ3ŸÓ¹Ơ;O~—°to[O}™€wÚ§é çik|=â¼S_¦×Ü×tnzÎĂêqê}:ÛÙ¼¦sß/7™†|´'® m¸F{¦ á{¦‰áFÚ¦QQ¹äQjQ~ئ1W¬™ODL7üRˆ₫¤Ó)h,M4T&C ̃Kw ³náQ©\uö¼Vœ‡Jó"½4÷}æ«÷m ÷BÉnöưB¸Găp ‘œ·=cL%Üæ₫"\+Ö{ A¥Ă.Âï/ÿ®Œ'× endstream endobj 318 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 322 0 obj << /Length 1537 /Filter /FlateDecode >> stream xÚ¥XMsă6 ½çWh̉¤™µÊo‰ní4;ÓÓN'Í%›ƒăر§Nœ±́&ûï  EÊrv“‘ñ<$QÜ¢øt&øùÛåÙOR‹¢©}#dq¹(¼¬[¹Ö—wÅuùk5±J—Ÿ+Y.á·ªn.ÿD•è(YKWL¤«•ö¤vưËPÖ²¼†ñ•Nô âÖôµq–%Êa­N•8©ONlœÔ0ÓE€a•d:9¨ z t:Q Dä#åPä\0…3X¾ßAà·ˆ é¨ÿ>……ëơÏHŸ(»Ơêw;„ÙÏvøw;‡¿_„‹Zô‘¨†)DBăÏËU&û² J2P`À»míÛư mî{M:h aó´_Ăcº[áä‘„!¼-z5_OÑ­IDù¦ÛƠ yI!B¯Ú,sW²‚‚¦®T˜̣*PÄc¥˜Nëuº(mÂKU^µ‰®?Ueh ]“µI „hTœ!ÍNÄZZ̉5ÖY“Ê”N4¥ åƠK¥I¥¢)Ư+±›^™ÊL¤^Y7đJµ"ơÊd²Tœqê•J¤Â»‘~¸̉ÛQ:ÊÖ165ÖJe2®d*“Mê•¢Lö̉ÔgÑ1®LÄÖ¢™ ÖV±=¦5MJOÈ®Í́¸©ÏÂr•WGFFæ•pe”È*2ó*c£„+\*5£uåR¯tVYu4=Ẁ‡HY‹™ÇÔî°"EƤc\5[ÓòkƠÁ"t́ă©óÊc\µ©Wy«d\‰W¢©Wî$:ñê˜ÌÈW>ơJ¦Đ̃½Z³Ö¥^™6•™aŸŒí̀äÁ«́ˆ íéí Ï„Ơî+ÙĂ³â »±³"Xël½Zr8 Nttá&q­•éFa|ÚÛ>M}J“Ệ‘uGRéèxö¦¢öÂÇăY[؃™ƒ¿aa‡Á=Âï¾èæ0Ä€*€º…w"œü¨.QåoÓ; ŸtQ1èOq~Gă§À̃'¢œmØü‹n†hóÇJ«r×ñ=¦*ëën‚½¨Z'4€SƯæaN£§pƒÀDÁÁéÊM‡¹é>Ḿú!ºæ–!ëé.ötAÀ5èöfLJ.[ŸH][.ă]z¢]Svdn>«zñß; w»ă·3ÇW$₫·²¶œâ”̀;z»Ø°ơ–sF ×eŒ¦1åíĂé–ip' N%₫EƯHg³`+Aí&%Z5˜h$0Ô3†Ü\‡Rh5\ù&ÖØ̣rYE.cC?†‹i™ÔP4€"Q¡œ–4ñ̀âç˜%MNytCQ‘ãwôúPa0î+ À°ÂĐ2V&€‹LµÖ¾Ec_Iaß°IÈ9 ‚:­HmZh·CEv!t#̃Wt…ÜñxË™©™C¢ å#•>‰À™ă˜#x#ô.úñtø¸ùN{ƃ5Ơñ"¿G[³X¶›ÇØ,úPS0œ… BYΩ“ơ c¼¼ăóÍŸ]+zÿ̉n̉hk̃›À½flư~OäăgœÅö¾ Á_ŸÎë€fƒ8~B¸ùÖư×LÊn# ƒ\×e²Œư…<Áé/0œĐđ}É•1>]N/*:™>22¿–¬¥ø©ă©BÓ  ´ ‹-?Ư±–>ÖjXỤ̈Ó÷Zéc¤Ë¾©Çø{½(^èwñô6~äéƠúơ¼‰¤–¤0Mù‡³ä£̣™–ÅyNÓĐI­­ÊøîS+ßæeLüÀ§c£ïDz¶¶­Ê=¾Nâ¼!?ÎÙ|}̃¿4 ơó®“´ Ơÿ€Ôăú¶G4LjCơ[^vdá„“öû í Ư÷Aº7@6߆Îg¬v³}fûJ~üû }„<̃ÿmƯàÿOBßèomaßèÚdå†/ÍÜÈÓ^̣̀ç] ÆzY6µ4~´—•đ6ọ̈à½Ở4°Zäû7́ç¼§Ür×$•²eÚ¦‘¶ĂYzt mƯ‹—0ÎÿV•:Óùặ́?€Ó‡ endstream endobj 332 0 obj << /Length 1141 /Filter /FlateDecode >> stream xÚVYÛ6~÷¯’XsERgQH›lĐ ¶ß̉>påcƯJ–#ÉYûßw.Ê–Wƒ5ÎùÍŒ¢`DÁÇY$Ï_—³ûÙ@Gªˆ ,7A¡Ué ÍÓ`¹ ¾„sù"16|Û–ƒơëÍ…¬ùU'™ØÊíŸå'Đ·ĐV%qqk_‹-Çb[QNi©`}rm<(1‘²&f%Ëg`\ ăØMnÆ1\ ÆøzÑw}½́[’¡C«‚µƒÅüäVEEîź=đ­¦ơG*µÆ3€ïYdÿ8Wƒ– Ê^®5{º»09DµBaÍÜdá S¿iy_zï\/…ÍFXO@¼ƒ}¡ĂGo£¼‹sƒÈ3ok†qÛI ×`¡³XÙ,ă™@©µ̣Oos““Ií †d4ơÁqRˆ´iĐîúß₫Åt—Ó'tV.#ù–e$²Du›³„ زR4øyÍWÚµd`ưm¤è'ÜÑLiE€{ªØ?̀ø8Öí̉g£×@ƠQÎQø…±ư–Œeå@P‰¡hÔ ¬¿£$⇪+‘T´tC¥Æ’j¡¯˜ígØ.xû£%°̣¾Sđ.•[_lC…'AïƯü 9Bó¶Ï>,g€ÈÚÆ*“ä*KmPÖ³¯3•ÖæÄpµ¥#M÷¿×Iđ¾™ư?´‘‹+™Üđ’‰~gl¢L¢/Í ƯÙó…MM˜ül¸Doˆ.ë–(•ÿcŒÇçCÙ´“^vByæ÷îLÜ?T_ÿ%Ÿ\/!́8ü #¿´‰*̀UGÈ̃à!£C:‡\‰Ü¶®‚’/p¬Gßg\ ưêªƯ~Å›Ă«®Ö«˜6k×IœAö$’X Ç₫U}Ư?ñM9Ù\Å…eË߸´ƒMä(dÏüR7ø$DSæ0;QnZ)’ß?œnʲu½¯­3Kz˜IèJ!éFÏUgÁü®cr׈ Œ_¿k¤º»©&oS ûÄ÷ùw•$a÷Îw{n˜Y“ÇPqÔmưåQJ=ŒÈ̀p»£˜Ô3±t{9Eœ<`ºơ “—„IË,÷@oP}e6Æ?3SÇß~+Æ0h`Óàȯđ́«J´LUÚơ¼CnG] PQ,¦.À˜Ï:W6½°îª%:I£¸MMçBÅz˜Ï̉ÿħ¯ô#¢ËæáHùoHáNâÚp# ÿs’¥̉Çz)gHœô$3ªÈ“±/6ëDisc̣£ă{?;®bmî44t2K9 kϾ»̣2c(Qk´]Å 5I¢̣ÜrZ’‘îA_e?cT×x¦¸?9ÿƠP­ôÙƒÓÅ·ư·îß „75xDÔ¶éo°E\—̃Ê_ Hë¿ó}Yd*ÓÚôQúE#“̉шœªù\&ưî§©–(ƯN*l’<Û­ŒÇÏgÁº“z(ˆ7UÈ‚ÉT^ÈKiÉØ¸`fÿđÖ×À endstream endobj 327 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-013.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 335 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 336 0 R/F3 337 0 R>> /ExtGState << >>/ColorSpace << /sRGB 338 0 R >>>> /Length 1997 /Filter /FlateDecode >> stream xœ¥XOoE ½ÿ>ÅÛË0öü¿RR%J#q@URDJŸg{f×ÙrHCSy³gûùgi{½Ñöaûẹ̈ÿ¾½º|óéç¾Ưn>]bˆ1n₫ï§›—o¾OXơÇF9̀́ÙÔrh}K£…\¶«»íÅÛ¿ï?ßüưù₫Ưív÷çûßo_nW.ß]Év[!æ­¥ó–2‡Æ o÷¿o¿l…‡'>áQ›b T¶Ä# V<ÿ̉B`_½ưÏo_ư„§­lÿ\~ưm‹Ûû m¯ñïĂ…Ôùøp‹Àe y øÀI ¿UàC?Ô /dÓ9#‹Hæ×;gT£TsÎÎÖ—ç8ÏU ¦ÎóÙ9™“¦h˜órvª•礅…4ÓROΩ×ĐŸ“ª)T2çí́„§ç¤…R #ó~vƠ³̉{ ™–qvƠ×¥eôđfị̈’8ÿ~ï@¦*yp(i»S[? %´ƯÂÖpy”Û´±?Ô¨«Ă÷Ơ·ÙêoÈ2±SH=¼Ør‚M¡ÚûJéÁb₫cà; {a##£ªƯƠ…S̀!Eµ«Ä&vÑưcàj«?É­‡Â‰¶hj“ù§@¤₫«¼O>Hñ`[±{hĂ4¢¨ AhŸºÚHDÓøâ²)j>zSùªª#Ålä«k₫æûY«ÿZ™¶æ7ñ&áÖGËỊ̈‡ÚöîöëØ/:<è)^îúÚ÷™ß/wµ̃ó!6Å#_ÜéA>¹Ç0Ê‘o±««‡ØÆ«—Ø%ơ»µ£̃âŸÄnåà‹à™üR> ₫äø&ñev|́eñËø*“Ÿ‘?êï}„ªñ®~ ‘êÛS¿Ü^Ơ¥ ÙRM–̃íưGÖXẤwíª!‚ïxSúư-j†ó-!°1dkD)ÁÉV@v²=A(w—Ó ØØ_Ên}féû” óq6‚se(gQzĂL]{Ó9G}̉¢ĂŒâă±aN’rG‡y®€=VŸơøD̀àJ1…~—¾À ^‡¼èùf<Áv̀Üz¨ÍV&ázsǼV¬˜¸UăîS´™ºôŸj3Ÿµ™“´À¡Íضz®r•̣\fô~q\gÍñÑ €IƠơœZäz)±@:z-aÿ́z¶jÇêƠ¤#ÎÑ˰Gs½“†ÓØæoj…ü–àư6œÖÀæá´(íZmZ¼œ–!^œÖ¥¸´Ơ´eTíYZÉó́ZZÊu½oZ‹3“ÓbÔcdo³¸q땇? R¥¸ưPkjÊÚ«Ă‹2VwÖè°U\¼([ñù@Ù¦vZ¾`¹|¢Œ•\¾¥¬ÑƠ¶ñaÖ 6“«'©¼ơ†Ư=„6́ø|“_Æ'¹—Ç7ćă£Đ<;¾̉<»Ÿ¥7ç;¶­N›15vÚlự4ÍÙmé:{ÍEù₫LÍ₫¨Ï¥Âđ&}hF‰È̉f$›‹Nă‡f̀ªÍhÎ8Ÿè‰˜Á«hçÉuñ˜å<™a˜Ç“‰9 ·b"r+Đ0ê£ö˜W^×ï4Ïȧ`åÈΓëzγøóyÆy):ạ̀uÊÙ1ÏĂÓ´Ụ̀ˆ9¬»3p­Xu­6S¢ïªÍé¤ÍT’´́®ÍTỂNå*•jç×䲤ùàº\Gö¹DüƠ¸æ­UZk½$‰˜s¹ö؃^¤çœm½Jµ̀¹ÜzÝ9—i¯‹Ưë¡b§bOmQ-;—Ckd¿9'«‰â¡UZ87gReăùÔ:‰/ó¡…?Ó¡•’¯-¥¢¶k­ä7®9Zó›Mëv;Íh­§¥­Ó_´z¬ưr·ü/<¹Ùœ·đâÆ=çn‹};ß·x3ÊX\>rZs²å+óĂ|Âæị̂Ẹ́¹ê»ûz‰Ư\=ó>—[½ó̀ïâöî%öä—ñ x§vßO[³ƒđñN~_s_s¹ñ9«ÇÎ÷©k{?đË}¿<^3²Ơ¸Ù¥ø¦æ9é·FÇ<'ü‘Yä˜ç„a1;ͨ(\̣3(µ(?1W¬yOÑSf}ÁŒ:t»kßô/0cer˜Á1j0Ëw§Í”u7ƒJƯªÓæµb)Í3ô)˜Y)¤˜Çé~¢}áî'„LxsÜO'h&‡¾ùĐfˆ>á÷gàZ±î/GŸèGùƠƠ'0ÿúâ₫å†VxñîúåoÛƠkéXÖeS.FÛ²Q‡n$ÙŸD; —-#j™+X§4¤2w—Ó mĶÿ.à¿<ºµF›c[¸ ªI;ÎƠÎ*ö çnÚơ9&±̃M©AºTJd~G:[±ăXæ]}„kHSéù%ÂÙÆú¤ I®:Úº6¿®¸†\iĂ•Öđ ”™aĂ[ÆXùÄ¡x²QªXTÄnḱ’oqh°ân_G†xz1¬nW:0Äe"V„ŒŒNÄC&b¥ùÓ‘FF ±eˆÑØ>ƒŒŒ˰|«5> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 345 0 obj << /Length 1137 /Filter /FlateDecode >> stream xÚ•VYoÛF~ׯ >P€µ̃‹WÑèåÀ}J =$ˆû@K”,@"]‘²ăß¹V\Ê µÇ̀7÷́èd›èäĂLËï/ËÙơÉ£U¥+“,7IeT©M’—y²\'_̉_»Ăܤơ₫ïàk·ó…óy:ÀúAÎz>ºÓÆĂn{BÚϲôï™vÂÖđö–Dư$PƯ©gÆ®„;i¸¸‚€₫÷̣™#trÜ&¼øëĂ,ùB°]+Á 1Àv…eÊ:úíé£ưư|a‹ |ß ¨–7¤y=í¦6Ôgru*€ø…q*ó;sævÈđṛ´Y‹³g©&]Ơ't(B;wVH*mPᦗ +ÖF›†×³ûÜÔǤ‹ôÎ8¿‚ƒ̃|‡geú4Ị̈´Fè“tVCÁ™Uhd‹Óqº€V+g=øÓ|‘Y—n€ÁÁ§ØR<ú– ^~m:ø0¹jø¾Â'‘̃È‘lWBy¼€ư½păƯ¢Á¼’{ 9ưÄÙpùK&UùrbÂ;R!;q!oEÔó¨aqmA•Œ xí˜> ƠILd}¹Jvâ¥m­¸#râöÊJ ̣½ÜÙØE¿/¥¤Lù¡rŸØB+_Ødu˜ư3SEå\IÑ’®›\ß̣ä·nö'ü…«…@."̀o÷ësUå†yYû”:͘/¼·é2´Ç: ¹»Đ®Vơ^‚øÂl̉¤ù¸uÚOü~vzmÁVé¡£ ]‡$S(3Ù–Rû=ăpeJO„}Tœ:•=(N:ÙµKÔY‘±¦VtÅV=4Jºĺ0 UĐi?63ײ£ˆ=Bº ¦v'ưe-ØüܪIư\ßT₫¢x£tPJy±̀KÏĐo•Ï0yˆah¤PU¡‰Ä©Ü90 ~äúÊdSÙ¥²…UƯRy¼%ƠzeªüJ}ù†T̀ÙHjpb Ơ^”{+ÊŒX ^n×¼øÈÙ&F5Öª,·AÁ\ˆ²©¯åöư¨~ Ë@qû¶æ./)M0© ï¾=+:P‚AÑnđ±ÙÓk·ë¤öo©¹°Î*«-,2,y÷3@9TRpV‘î!ôX.ÖsIÂe¨9<ÚóQÈcX>?4¤mXÛx'TơÛ©`¡`̣ê?sÁ¾• SSKe¦ø„-¡ »;²Ơü›avˆ'wôèÑazû[„ây j¦í›ô6ĂïgjàñL9WÂĐ?­<@û0™È…w•¼ó¤C}/̃‡  »ĐZj¡ ™í½Æá´ă ¬ˆ{7iÍÄñ¬wkˆ1(Ñ»$ đêe¢½k£ZĐh‹Ü¥·íT?I<{£Ï'ó%^ơF}R«¼t́›×‘À>)#UÍ ‘€‡é,DăÈñÈI)î¥Áµ{́èˆäèÅdöé5>·ˆÉ,8`ĐhîkB®S> /ExtGState << >>/ColorSpace << /sRGB 350 0 R >>>> /Length 1620 /Filter /FlateDecode >> stream xœ¥XMo\7 ¼ï¯xÇö¢ˆÔ÷5A[ @ ¤6ÚCÑC‘¤‡ÀNÑ| ¿C‘ZÑÛ¼ñÁ6fWoDG”éxyĐñ₫øçô?ÏoOÏ>ựÓóăͧS 1ÆĂÿ₫ôæĂéÙ ëoÿ:(ûB)¦–CëG-ärÜ̃ßƯ|₫øåÍç/ÿ¼;îÿ~ûîîûăöưé‡[yƯQFˆùh)ä|¤̀¡ñÁc„ÂÇÇwÇoLJGñaăĂ|&¦X•#ñ=M>¿̉b ‘_Ü|%̣Í‹Ÿñi+Ç¿§ßÿ8âñöDÇKü¼?Ñ ₫ A¬¹]¦68 ơ›Iüq̀'eÆ‹™gdÉüöàŒjä¦ÁÓeđ†ơå)Ás Ơr/ƒ£˜é)ia‚4Hƒ—ËàZyJZhP`KK½N½†₫”´P…œ--í28OOI ¥º¥¥_Ỏ“̉{ˆ––q<¦P¿--ƒC­̃å! ₫ê—s J™k„Đ9”tÜOŒđ˜º½›˜p•­ î¢93˜àFDÍ ®aÀ~" [ÁÈ—à¨NœCe`(ˆ&Ná(˜B“xu=Ạ̀<́l®Grœx䉱°ƒâMœ&}±`Ô]0‰/ÊóMâÜ®‰c¸+dL\C«“ß|FqÉ~º®ÏƠD²~Ÿ$1’'fá+¦Jib́¯McIl8‰Ñ̀°Ị›B‰S(Ơ­ïCʰăơ&f¹ß׋æÇøpÏZ/ăËÈ{?ÜÑ´÷Ëm„Qv>¸ơĐÛΗàH;ŸÜ°ŸºóÍ­êóVÁ­íz îi×S×úh½׺ơ ïËN/ÂÏô8ơÄ=†âô&û´ơÈ=i}L¯’ŸØœÅt²Ó;¥Ă³áƯ/w§G5`©ª¹±0†Ữc*g ¤÷p¯:&lN•g a§‰dÏZ¦”§¤dŒ'ë'àzºX ơËQÙ%·W‘a¢°Jzú·¸T¦¤{ÓMĐ™4L>é́H£ü(·’FǼLd“¶ÀC$#N̉㕤Q}t’nÿ#%+›´´J}@Ÿp̃¤E|µé %%rB¨3éµbmJäMí±¤ÍŸ¡Ä>̀Ÿù̉Ÿ/ŒÎŸ1ơ×+7™%¶yfu뼬Ÿ´‹˜v¿¤dưhư„cºë·T§Ïư˜̀¿V¿&“ÖêgàJ®ßµÍ7çÀm8?Ñođ¾–œù¯úø¶áü ̉/́üû‹Ăùa¢å¯ê—<Öóê§ÈçèÎoơ~ŒºSó˜—¿Úú¨çχ²Øù ïC*9>Hûˆ/̉ÈíiïƯíi·ç5đ–’]¾¢ råS&‹ạ̈ó®úzÈù\½WO9/‡«·œ¯́ô€÷G¯Kª',cvzƒôKsz”ËËpzŲ–ñq‰Nïøcz´~@üêüYûå:×@OŒú5×hi S©¹FÔ†èÛ5ºJ´8×(°‚íÏP—9“o×°ÓŸÑ œ‹E×–|,««4mט¤ÇΑ®Ă­0Jn,#·©üîüùœÙơ½&ü:̉˜¦Î'a¹̀4*^|¦EJü Ó"n—éÙ#ËŸ5“2~¹“p­X•.{üI¨₫LyHK©?§ ¦’ä,9û3•yM8ë•Í›¦g¹‡”ºơN¼̉îÙéè»_¨fëGí'ªEäxî7ªm&iơ£àáú•j·~̉~¦Y¤ï~¬ư¨~ ¸:¿œËöÁÑùÄOcû‘¼¿¤íWRË\¶Ÿ ›¯§ßÉ­Ơ퇲óWV¾Û›ä³ëưÀüV„ƠœSÉk₫6̀Ë_m}ÔógÅËæ_ë}¹É¿ùHkºyŸrZçƒî×mó_Ưo&ÍïÊGk¾Ö|¥!4v>Ó7-ßÀV­0EW/ÁƠƠ8WWo9_‡Ó̃×¼^À§±Óøöáô†ưé}Êô˜óz^ơmJ[zÎ]ëuÖ{\z´~ µº‡ưr•k̀Ơê¸Í/e"[SƯLöS´˜NØæ UG=R‹̣Åvº†úD¤tåĐ/Âè_µºI¤j›´¨n< <—îHg½gïQT*S?¯çM%;9¯!-.ºNÂ|qS™$ó¾©F­øà¦Bi₫Gm“Fp̃₫Œ¹•¨?8 ×u“!²ëÛÍéơé?X'Œ endstream endobj 352 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 359 0 obj << /Length 2090 /Filter /FlateDecode >> stream xÚ­YYoÛF~÷¯‚>P€ÅîÅ«h 4m @¢0iI–…J¢ªĂ¶úë»s,5¤–¶äÖ^³;óͱ3k5ZŒÔèƯ•âß77Wß¾ƠV´*”ƯÜ*–¾•—ùèf6ú˜ü0dÆ&û±Næ₫;ø/ơ_èĂ7óß_*S₫ÇùÏPWÿ¾ùƠŸ2©R—»Îf·~Åăx¢•+’ï}{BĂk߬ùŒÿ–¸¬Ư{zn•ÿ®¹]vÁís·=“)ª‡—TĐÎE;û¢Ưb;¤ O»t¢³B'–¬ñßʯưg#f¨)́!ô,ƒ úƯ¯¸C ôx¹tïD©#Ëf"çckơ4ö™9ÙcèLY£;ºÙcªrϪ z`ëª{nÿyíñ\  8ù́·ƒ=2Ø·¬`ü¬¼–s2—Voø†—X´)ó†ơ¿f²ư™‡aAù`!/ Đ0ÅWÚ´ï[̃6à(đzÅx½Ê₫N•½p÷×¼îU×ÏŸÙưÙƯ¾l÷§í)wdàf/뺙!î÷Nu>è<5¶¢5ĨÊ$!³¡íÂl&fóĐ.Âl)f+nŸÂΧ°ó w¡'̀‰ɬJtJq×wü†m#:¹åøUD£RClµËŒ¤Ñ… Ñ.ĐhDkˆ¦́̉\:Σ ç4Đ*É}–‹L!¶̣¼Jv2y¸• «A¼Ksi[íFyïđÀc—{dØI†U T́H­hh™Ăë̉Dn·½ĂÜÈđFOªZ“p=ơÚ́ î¨H£ÊÂÙ =ÊŒÜÈ™!»·¸dXI†K¹L‹ª$ĂE á\2lmK:Í"Z¹´û>Z‚á<Æ#v¤Ó©<†p!¡ˆù̀¥zíÇk5d÷ƯÈâ$̣P%Ne1„Ky¸´-µÇ¾Ç«2b=»ï;ªêÀ-#‹r1„«çĐØV5dĂôx£†́^IM*I£lá“₫|î„´Ç¢kBÈlÈîm/|^"|2̣đ2Ă/ă£ Qª|‹YÎe¼W1„íçÛp×ă‹—Ú£ ±1Ë‘á3Ø=%:ÙH«´R&:ăă“a~†4ÜÄi•<@Ú|¸óUaBu·ÄŒ '1×kÓñ6ŸÓ,ƠF¦€Ê úŸÆ“'<9ÅŒ½>´53ùØ,hàÀÉûœYWṾn2ÚÂy÷Ï/"xeZ”UØ*…ă&H›7ª#œ©’z3#`öw˜…zY6”µYëM ·>ƒ´iæ8ƒœ/™içiË 3Ô% ú~ `kDÉÏmƦLkZí—Miø~œåI½bQæ{mxĂ=§Ûkà@/’fÅÜO‘jEå2,>2NK @¯½̀Ó̉–ô窲”ọ́%× £"'¢­LéâI-̀eåoÙ¬ 3§ÿoyíâØ*ûJû-Ơh·QăwW£^W6Á+¿}¢MĐkBq …T·0è<ă sD*Ù—`´Ö³ ¡ ˜~Ï%ƠëøƒC(àíEÿ/ß́цǀđL’wk½÷s°_f†§£̣̣=èEƯvđ±e+*ù'àrOĂơ6—ëø–‘{~•}Ñ*÷Y ÊE½đéđëÚ›}À_"Ê5×ôdm®U¹̃ud³4ËÙµ æưí£ƯDkW&?½ßÛÖæ»z‡́X6r~…Iö]NgÙ‘¸^7ü`° µôæÔ^Ơ‡ùflao-1 B@½Û‹qq©©å7ăßđªƒÅ‰|€°•K[úÅû=^†!>/ ¥Í”Yöëđ¶°³?¡Èê®Ù†;ûă|³8ѺÛÀö¿á¦ c8üÛÊcˆô= ‡Sà'Kètø³C4ưÚÛ:ØÜ4¸–%y€M˜ó0Áf q™ưï£#‹‡|Ë´É\²À·œă–zÀ}=åă¼À)dErĂzB‚ù&\À¤ÉZ&Cè²V`¤àäxÏ6ÀÏâ8;œ)hf¤öđ¢¿$á‘TÙ¬™‰=]Á5‹ÍÎ@Ó«6ËÙĐ9peÑw|ư) ;›üÔ¬QĂÁz­moh†ιEg S´&|nĐ#dƯ ï32>b¯̃ÏÏô_ï2ígœ7wädÖ+°C“jh`Í*)ë(ĐŸ2­7ÔøÄàÓhË·5û+ủJر ƯÄ5Ø‘'YËYö@X̉ü4D…c°•=­éACœÿ®ÚT±›bø¤S»ÔºÜpq:Ơ†}^µqÉ/`lW}ê³7’?gJÓĂ’CÔfG"êé₫¬ Œü„ƒ©sNïcæ`– aÚ³§ ±÷º/đ›ya§ÈÛ.ĵZ¤o8¿®å?N¦ư0†J n4Pó9¶\9§Ơ„pĂ!­‹nCÈđtƯđ` k>1?½€üv|…nÆk˜*BÚ~ö0ø¢et¤ÏÚ‚hJÑDt•m£³‚̀G8> stream xÚ…RMOĂ0 ½÷WDâ’Jk7M³"„‚!¸!ơ‚€C·uR·}û÷¼ºûĐ$4½9‰íg÷ÙZL„₫Ç̃æA·OF ̉*Ó‰|,2R=M"¥D›‰|$^åuÙØÈ‹ä¨€X ˜%đ ¼i«[Cá{₫„2e“c¦B&€i¯W8F{OĂ»6ÀĐß7₫­ô5GÀPx¦¥?Ïö=Œ ¡́øÖ§>­ăư[³ë7¸ÏBÓDITˆØÂØX gÁg \fĹÚ¥ù‡îằ‰»:xÆoçƯ‰ï 7¤sZp¥²Ù€QÉ«€ü5¢̉Œ×¤XŸ¾~…`,–<»A³L%ˆy‹¥/ÀÅ&üßt½*yâgö©#ÁÄ=Œ‘U±ö;̣WÎÅ£=Ư~ër ÆA:Q¹–’ÜQ4â¦\ºÙ endstream endobj 354 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-018.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 366 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 367 0 R/F3 368 0 R>> /ExtGState << >>/ColorSpace << /sRGB 369 0 R >>>> /Length 2258 /Filter /FlateDecode >> stream xœ¥YËd· Ư×WÜ¥½‘Eê½µ œi /fzœÅ ÛAzl$₫ûđ!J¬; P5½èn°J——"xÔp¼9àøxüẹ̈ư|ûpùæÓ_₫øíñøéCŒñđ¿?=₫rùæûDë₫q@ó ư¥6´Z?̉h!—ăáùøêí¯/¿=₫úÛË»§ăùŸ~~úúxøxùĂ¿î(#Ä|´r>RÆĐđÀ1BÁăåçă¯Ç/7Ń3<Å#6Ä  G(ñü,ơüƯÛÿáùíw¦O[9₫}ùñ§#.p¼¡Ÿç¢¿.E…ĂEyĐæ&ư­~[däºF†Ùt”EJæ—;GªF©ê<7Z_^ăè}ÏÄ]5DÂ;=ÉưAưÍlFç[¢Á+Pv”!8é ¢¬ŸĐV/§dÓûù ́Ñ;bæ¾OYc̃g#a® Á,•^c†.=iÅœ£|̉¢‹™Ok̀‘·“¸ÜÑÅ‹™p9\̀„‹¯b¦O`+fl=Ô¦+4&ÆơæÙVذUÅî=Ü ûO¸ÏÜŒ‰[`s3½¶z¬bạ̊n,#ơ~qXGÉñî ªë>µÀơRBnÑƯk‰̃Ÿ]/’-Üa½dÄÙ½Löh®×éĄḀlơ7¹‚¿Kèù6×ĂqQZ\­\Eñvp\FûéÅq]Æ­Ê…TFáăJœg—q)V{^¹–̀ ‹©#{Ù[/0Ø₫h*Žj ÍÅCeíƠÅKe¬î¬‘a«¸ưRÙÏ•mr§æ‹l—O*c—o.ktơ [ñ0ëE6‚«'½́z“Ư=6èđBñM|)X—‡7Ú_ ó́đ ó́2f>O&gh̀cådÆœ†[1#r+¨aÄGeîƯ1[^í{˜gä=1ä@Ï“÷ơœgöçóLç%ó€Ës”)gÅ<OåfÍ#ÍaƯ¶ÂêÀ¯ºư Tn†<˜ß…›Ó‰›¡$nÙÅÍPq§`JƠókb™Ó€¸±ÎrdÍ%́¯F›K¤JPar­ö'bÎå̉klؽ5Ï9[{j™s¹ö2Ûs.“^g»×ÍlÇlOn.a;—Í5ü¾9' ±âæ*)œ›3¡¢â|rï/ăæB̃?ÂæJÎ׈›K¡H§-®åüF›£%¿Y¹nÙiÎ@¶Œ[§¿¨ơ°÷å®ù·xrÓ9Ïâ%Å=çnƯơí|^÷›©ŒÅå#'›“5_¯óI6v—ï O«ÙƯ׋íæê™×\®ơÎ3¿†zt:‹í‰/ÅÅ;¹SñFûi6;0i¿_×Üm.W<ç¡ơXxŸ¼¶úm.÷ưr;gd­qSQüØNó÷[ƒ=Ï1~xÙó#,fÇ• —ü -̣›3æ ›÷ØÜ3ës̀T‡®Zû±3­L.f´«˜ù^Çq3dyƒ›A¹nƠq³­X{Jó ½'fÌă¤O¤/œ>Á7[Ÿ \̀ä77éă₫ ´¦_€ :n= @*R\Qgưß—¦JM^ôå7`æœ %₫ßñ́ü‹oÀ¦sP)ÎÓÉù—߀ɽÁ•œøụ̂M ÷¹¯6l5‘ˆQZƯj‚mMM°4ăéÓÔÛ́ÏÔD"ÆÂ²Ơ_±àØj‚¯X·à+•X·à+”NMđ5trj‚¯˜À© ›îMMRi¬ßjbLµcj‚>ÚVr¥̉¶iX¶+€´Ơ_´´Ơ_±đ4lj‚m†© ¹bÈ[M°]`« ¶%¿SM,{ª‰µ~ª ógjẪgjÂâ15añ°ư˜°ư°|,51óµÔÄ̀çR3ßKM˜z151ëµÔĬ§© «·© Ăƒ© Ă‹© Ă“© Ă›© Ă£© Ă«© Ă³©‰…÷©&V?L5qƯ/7²5ËHNMüÈưGä,W>?o´å²gé”äĐe]‘ôÎ'%½i דt¶®H- ÿ¨nx¾œV ¼­©;î‹24ú)ztÑ_ñˆD_«×}wÄbs+̣X2Ä̃rmßc½ưöÇ¢_ ĂEŸ>˽i Ë=ÿS ¯rOÛ¬.÷Nk̀ÜN-±¢_ZĂj£Zä¶èù°"‘E.ù%úƒÿ°‚ǵ§,WT ̀Â=ÈÿÓPàđó‘aP¹ÉŸơÎ…¤†J)¾‹z)¢ÂåzÅ…gP‘{+p$xpÀùêåư‡ÿs‹%ACóhà ùß&k3á•"åëaé퉗Óơư=xá ÿ·)sñ$èG´dÇÉê2 ıˆ>Ó@¬Ú}¦i·fĐI–±Ưez®X• ›WÉ?\₫ §́8 endstream endobj 371 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 374 0 obj << /Length 575 /Filter /FlateDecode >> stream xÚ­U]oÓ0}ϯ°Æ‹#%?’&™ C „˜”IL£Y“¥•ÚúÁØ¿çÚ÷fM“níÎ́ØÇ×Çç^»’ƠL²O<̉¾Ï½óKe$SRd2S,¿g™©TleBg,/Ù-뇱6ü̃Wü/`ê‡JF  ư§ÖĐƯV€-`Bß[«0̀-ÿ§Œ%4 x~ú@̃Pd¶CƒC‚X¶²#b†l3d'ÄÎöÙ51¿®_ DqÍ8ÿæ†Êˆ8øˆƯÿçyÙ»›Ă¾dR°ïßiçøîÀn×?KI" ̣ª·cÜiû{ÄÏl¡ø-e/8₫ñ@Đœ Ü*2uMq»AÆ'×µ'‰îzF»œ½ñ̀ÿ¢¼5¤Î¦yI*v'=’V—]½ heW“:¹Æúù[Q±³{Đ®3A·Îwº½¹§@<¼3L™HŒ"¦5<3&a“…÷ÛIfLê®›j—ÑÀùçEÊ>4̃üµS!… ;1ña‹¼k*K…ÑTl—¤»̃¢ ¡1§~E†¿ĂÏơ£;¿Nùê„7íE›Đü“¯O¦:׿8 ± ËÊeÛ>̀ˆ;ÅrÙï®·^KmVÄ]b~mß…hHúëU³uµ5\j.· «CE5Đ 4Ÿ­±u[×îÿÚÖXUâx³Äv3muáU,Ú;¸ôÁ‘ ’np₫xacÍ;º•pơÓÿƯbZ¦"‰ ç‰JjT®̉=2Ư?ô…o endstream endobj 356 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-019.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 377 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 378 0 R/F3 379 0 R>> /ExtGState << >>/ColorSpace << /sRGB 380 0 R >>>> /Length 2962 /Filter /FlateDecode >> stream xœ¥ZM¯dÅ Ư÷¯¸Ëds)»¾· $R"‘)DQ0Hè=¢  $ÿ>>¶ë–_R¿™ ®v¹\ǧ́ÓĐñùAÇwÇ¿o_È?Ÿ¾½}̣ĂŸÿđéñî‡[:SJGü÷﾿}̣û,ëß₫ă rúö/³©—³#Ï~–z¼}>~óæÇ÷?½ûñ§÷_=ÏÿúæÛ§ßo¿»ưî-¶;êK9rá³óÁs•÷ß9¾(öxø.µ)ơ“ê‘y“5ÿ̉À<öæ<¿ù́Ọ·½ÿ¹ưíïG:¾¹Ññ¹üóƯÔùåO W¢æp™Î2åđ'g„₫F,2ñCĂ"ă™;gÉ¢$óĂ³ÜFmæ<ß;ï²¾~Œó̉paê¼Ü;—Ë̀“¦ỷ4çỡ¹@­~LZh̉™=-íÎ9vI µ|62çữ¹>&-”ë9“9÷γœê£̉’ÆI–yï<É©>,-sœ‰çÉ.ôË«™<åÔÎ’gµµ&ú9Æñ$¶7§yæâ¶́ŸIkv9§|_v¢ä6üQÆư–ÿÀz ©ÍgÁçR´ö}B–m‹ùO'Ë~r@̉ư%#³©ƯƠŸÖ„ƯHƠƠng®jË6°«Uló‡¬Ùú¬ñIrWÓÖÓI¤vMB~“4‘ƠgŸj'R[éªjË®ç˦¤ùèEmÉâ'¶äkh₫üû·å˜ÜF~‡íz¶×çöŒÔ°Ÿ+÷O’ưÚ—åX£îó(ÏƠ}^–e=äƒÅí́;_°3í|²„1hçvMû>`́¾`Ú÷ »å}ßđŸ`7̃xA|/Åâçºñ†óñÜxÄ›æø2¼J>z xFmÔˆ÷Œ4>íz(x½îêåéöPưƠΆäNQ_]ơ§÷Wµ¾ägá.Y„ú˜O©o°YÁû™Àơ²‚­ÂrÁB]Ú‘˜³>„Ï·»b\^–?:½2fÉ w‹™c̀¥_œa1Ï+'sa…GVä¤>́1ß1¯¼®ÏeÿñÊ<󀄯œ–gî¯<ódågüM;fîR™ƯVXyđèóZ±î»`q<³q3^̣f1ÉwǛ5²7se¯Ă*׌’¾°̀µÚ₫u®ÍkËk¡ ·ÏP+èk¨¥–]kb[í{-6w­6öZóZÛjËk]́™Àî+Ä%p‰Ø•׈rà¢FVû‹«$¾¹LÎSGà:EY6%=?÷Í•È×́›K¹–ơ}åZä—Wk~Éï{Ùis1Ö—aùY₫ăaíWôÚvƯƠËë8cw̉_—;[ơ·xnùß<·W8#„Æc©8cŸ>ŒäׯœpјëÏ©¿x.w­©Às¹¡ăØ1sÆeF“?ZxO֋礯|O0T$kÍ¿̃}¿à>M­ƒfïIƠº‘mÓ¹aGöSYDZP‹›»bWJ@ zżVh̀BºƠĂ17cVñ7đË|ÇÍîÿâføŸ¡€‹ú ”́…}`%ÛC-$¶>qƠ”¬cßjIúF¡Ö¤„½¯¶Z”¶>Èk5y»j9u¯-¯u±­Ïq.»Æ>ŃÜ—ˆmo…s¸©-pQº¸Í¸ n#—¡o¥Àu²MâÀ…É1µ¸29·9—bZÜÚo=ÖÅÅpĂírö×gËÏǻ>|?iơéé=”ÅK£[èçÑY•÷yiÔƠWk>`[kù"éb>idŸ³,ß°k¸Ø%Ü—Ú}ß'lkơ¾áŸ`·đ–#Ç—â ñg̃xĂụ̀ë€oé¥_W䣇^ù#xgđÜÓ®‡́sÖ‹zyœ3„©Hú)—P̃ơ;Ă₫“6ÏÑ`s6ÏÑ tƯ›3ZWDl£1toÎđ‹çàZgß×Ä Â²~îƯ¸ă9ÅTÙz4HÚH’I‹̉ƒ¤A¹Ù}¬ưdœẢ œ—$bñJ;T Ơ$ tZ9æƒWëùIv O!l ’*qIŸ§ iÀæ iÀn²?Iö ’âẢÀyF4p₫$ ä'ÇV#W»…wÉo ’J§Iă¢GÊ/ Ïö¼Zq”ßÿ.I#Ë< åùƒèåœÓê»₫Ç÷Î?X€vç₫P©ó|çüĂhF{!]éDç½|'e*o¢ŸÍ&mrơ†â'4ÊÜLøƒ½ ¡Œ ¡J“Ûđ'(¡¦vEgĂ@=©]05bHÈöư ¸± †Í¿¾”°§íŸ@́œ‹7 ø(«mĂ5 ‹Ơ†]öNlơ…®û\Q8­¡•ïÛđ7uê‡mbÁTºĂ₫&NHç…á9³ ‰̣J¶¬ç±*N ÈKxZ~Œ*.nWƠá‹æÓ¿ßĐÉ0W¯êa °Ü‡½Ëfoˆ×úä,́₫ä«5́w Ñ„ăâ¥U…~·†óJqטÇ=ä Â:…| YØàù&̣ª÷û 2<¬û›)Üç¢×}‹="@>đByáËđ„kÀ„đđ2)¯R?5<“ Ï̃“½W=¸¸ô²^d¥LVú²¿Z±Ÿ øy–µ ơ1mJ†Î‘Ö¨,+œjö0Ÿ»Nc(Ï·»b.?ÚȬ˜1ß ­wœ¡1cèÛ£z6mf¯đˆÂ®z&ü·b^y]Ÿ£N^›ç¤BÍK¡uåûÅ<§©<̣,‡cdžyÏ#H±·»×=$̃üBÏ7Í.Öb¢¬ÓĐÇÆ¡]ôƠåeĐ,ZưÚq °'4>‚Ô¨ëACC»ß¦ë³̉µé̉«Đ”~{'[ßÑ\P_ă?ÎÜt6zc̃‘%»Äq!\.v©TxB—=­)ÀiÖß?¯ÛƠ~Ơ ©*s·BÇ+º>´('ä Đq¶Göư.ÊlÓoG{ö¬wƒù`PUP¥% y˜´‰ÿ…Á̃+í‡Â¸+¬_®›Đt\½Ó›Û·ÿÉrk endstream endobj 382 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 385 0 obj << /Length 1676 /Filter /FlateDecode >> stream xÚÍX[œ6~ϯࡌ”qlÀ\*µRe«V%£¼4}đ0KÅ `7»ươơ¹̀†́®ª®”‡Œ9çø;·ÏüöḄơ×Ư‹Wy(% ­£`W…¹TA§Á® ₫ ă …Úl•’đÍ­½;·ưïưí¯ëíßƯfg:́°±¿ă¹µÿƠ<9‚Đơ~¼îçùcg¯2,+6í₫xu¡t ¤(d¡‹ ¶Q&bF²»bƯ<Ă…«ư&ÊB˜<Á²Ÿa…Y¢«Ùb$}“¹iYËḥÜ3àÓçBÓn¶‰̀Â=ÜtGpx£­›§ äÆoaUR‹¬H&Ë¢̃đ%`œK‘©Æ ¯½¦áĐ©@ápµ‰̣p¬PeZ‡æLO“ûîx̃l£4́††SR!H\n!DfĐÁVÙü&6¢[ öơ« $Eh<†¸uI5£sAKtÁ^ΦçEAd h8ûxƠIo  v'z̃99·ØÍF§Vd ¤u_‘-î̉„MS‘†¿×EÇYøR³ăéáiµ(â"ùT=&~46̣vP®%{Ë‹(b3Øơ¢ˆ²?¹4eŸBä"Îδ7Í s =VœƠ¯8°æ²‡®å:9*| bç$í¹pmÿL5-0„éYô4ĂnÑâ¡Bôøm®M"¶Ă‡[i%x‰…åÖ#¤[ªÎÄ6Qœ/ĂÊÅMíñ$'°̉" w>Dû+ev˜èEK:PZ<†yƒu»V§N½†¸£_ĉÊÂ/ W=0‡²tË™ëÍG(å:±¢ÛOR% 2̀'R¿I@hØ̣Üë^NzöIj‰U@ 6¢ëù(Å8`X5yC}†µu¤¸ÔF¢Cem)Å&,g‰$\ÉEIRÄYîöóZWÿ ×KƯ‘ïoW@ZüÓNñrƠ|*̣xq[›[aôViF¾ í©e±o#[³ápľ é4ñnâô!‰³‘¨§¦ư›d‰#Í,YÅ68¹ N±)Í=÷käĂzADp¤t±‚;¡;ăal¨ÍÖG3-ùœ9uƠÛq(‡”P]1YăÑr¼£Y[ÿJ¦Ñj¼wx²ÉVGû G̃Qa|uwÆ}§†fn̉‘Àx£¦Sư’uàÛºÆCmSAÄF±æäÎĐw´Q+À¼óèáóµ¡SƯC>à¡ohJdûv ¬Đ´ïßÚ™ï]sJ` —Ä4µøÁfîêe‡”p[k¯«9.LR¸h‘>Ôk&ïç#î ƒg³n®Í{äŒs´»Ó²”']¤O"ñ̀ WÑoxê¼$é3˜GÈ›Cøyëo÷q&ïX®øöṭÖÏG̃ú™È»6{₫̣ô0m#µ?JÛ%ÈúÊc¹9±F¨J: ă£Ú#ßÓ5¿bë¸nG+øªm£CƠQroU÷t—ă‡-<àßT ‚ß:ữüb,Å÷`½¶m₫ïn»’>æà¿£É#PZ¯ØÉ+đà†Åéu_Íụ̈\8&¿×w¥ÆưH×KjÅt:̣ž$È–­+3»>àké]ÔX₫¬ă”©;Jô­åD24µ±ç;`·O_“ï¿F2|wˆ‘æ1¿ó 7»ỵ̈áZ² endstream endobj 390 0 obj << /Length 1831 /Filter /FlateDecode >> stream xÚƠYKoÛF¾çW>Ñ€Åî“¢)MÑGđ¥é–(Y€D*"åØươƯy,¹”(G9ôĐC¬}Î|óÍ́́p#&«‰˜ü₫FđïûÙ›Ÿ>H­&iœ§BNfËI.ằµ’,™̀“¿¢åµŒæà₫îËæzjµˆê%üÊhY¸Ñy[Ă4s×®÷%­+°ù례їë¿gN”´q¦ÍdÇ&1¬âÎMKœæ-Íߢ‚=ÈÚí4T¤&ËaÅ̃uË₫m÷w]WnX˜f^‡6|[·®ûxjˆ›—6בˆ]/7K ñ²Û°©wlÿW˜+<(3¯ |x­W{æ-RGđr§>sư,TÏt|ÅƠzë₫¶$€X÷ ‘åC;XA¤ùĂ-n©_lÖ‡Ơ#o‡‘’ "“¹unBD¶Ă¸””͹ ăàđ͘uÖÄÖf^ļ̃↩J!èV¶¤³|w@é-‹êafmÜYöË«Y(ŸÑélâæ…Ăßäqnơd*ulMN 0nĐ‚!̀æ8­Ï¶·R<{Ư £Ø–¬®„ns3Ø>Jh&b™æ%çQ×LpÜ‘:F¨¥ˆ8¡KF%ơăpR„ëøN£6đâ–"g;·²ÁÅ3Ÿ5è¸'rµU ÉƯz¨”Á¡̉ZExœFÂI´ÂDKư>ZFyæĂĂL#E…¡üâÅ5̃`}#±?îá»E†: ÎwS£mçuhÏ‹†Î‘s—Áç ƒcïQ¡)+ÚƠ'ŒY*ÚŒ:È'Ø_ûæ̀Hô,¸ë̃±$ó̉₫tÍöÇ×ÓÔªè=´§ĐYó h@†J:¹‹‘rđ^$ùH–bNà÷ö;ăŸ®m}6´‚Ó „³j”Êe%†Ù! (]ɽơHơ©ú-0ù’¯QªvRèÈHm³XêîĐ̀y‘‹ˆ₫¢Nầ¥:ç|Q«±Ă—;1édÚ¯"«Áñϸ2Ñ́̀ùŸêÔ¸ ‡^x- ̀¹O'•Æè£>—cH¥p7|5Mô§’̣4t˜‚x€.BÁcS•´¢`da`7ưÇN ©₫›Î’ôÙVùĂÂ70@–i8jʦMe+Í₫êî\¥1gMƯ_0đ»™×//éSÑOûåă29RGQ^̃…jnx® ·îßU€öj†ÀزMÿ /üê"6È!́ɰ6C~BÿTè™\PEƯRÅÀÅG'T`ï*¼Ÿ^°kFˆ¸E·n~&9»ưn6ºÖØx.³ß̉eZª]oh[u”¿ƒƠ¯„Âg*̉X».€Ư\fB›ä/̀ªékm0²h©˜àZs‹)m¿~öd)wA½“ƒ¨$̃—L‡aa¿…M-̃ïψ×ñ«lúî?ÜñJutØQ\Ç?RCEÅÅr%A(–ƯpÏß ®üuë,íÁ•†6ˆˆ“ÜïÑ„ f$,3#lß«PC2&:2 5˜PChP#¡t¯C Y(t A„t¨! 4ŒÈ}‡GÁgR 4 ;̉lÇ’9bÉÙ`C "Ê1ƒPCj0çX̣6t«Eo1i"²‹lc6¤¡ ɘsQ]è›…Ô÷b);Ç̉ÀÓé€%j°ß‹¥Èâ$+I”’ƒÉ×øAĐƒKim¹ơ×B<ăăÉ ¾e“Îđ ?­Ú“£ö±7áñHhˆ?̉úEEëoĐGŒV-?(u>ÍÊå«|*â1Cg₫}M!tùÁ¸g ¡4₫¸xÅ₫\]àÔ†AÁM}÷Ñ|¾ë_ÂÖ Ü1løÓ \D‡]ÿ´´¤Æb +VuÅà°é Û‡̣¤ AY6V(‹³%rqaEöáäẠ]…U•¯ºº¤Yó[ï"ơbQ»b́ ª´eAï~̣…Ơ)•a74Tơ#c…×nËm0,¢«VÎgÊæÿAɦÜqOä}z×_Øö);—UlÔ“-ë¯*ßạ4Á…¥V'¿S¢iJàïTäIM–¼"RƠ P÷GiN$¥?²û¿€ăr%²85v2Ơ&Î kTb°ç·Ù›’l¥ endstream endobj 394 0 obj << /Length 1297 /Filter /FlateDecode >> stream xÚ½XƯoÛ6Ï_!ôÉj¤¾t@W4†(£{h÷ X’£A²RÉJ₫ơăiÉ^œµ{±Iüñ>~w¼3s¶s~»`ôưëúâ§Kî 'r“ˆqg]8 wc9 ăĐYgΧÅÇ`¹ <¶`.ÓƒpX–¼%_à2—ûËoÁ—­—w­×}‚ 'ÁRH˜À€Œ‚9È€ £ ä(n¢G¾„‰ È@œ’2>ÉÏS\K™‡ô‡?€ŒmÈ$r=/rV)g¡PÏœ<¸̉' %onÔ­U“Ê}Y¹“ŸÛN®Å>̣…ë“̀ÜåL̃6ƠïC+hîùÙîKøÚ)=>z»\ù•R<" á.LƯçœñ®—?Ô}%?Ó}ù ¿̣g! Ë÷́™ß•ăû đË]Ö!“â->7nñ̀‰ˆÏ‘ß¾Æ;Ëx ÓøJß2t‘ºæO@Øß)„.Û́e XÙà¸eªt5àđNưÚˆÊCɫؒ₫yô’"¡m[:謦¢›”S*Ñ$ôf¬¦¯sAfZ`A8ç[%}Ä£óf\]©ṚÚ6¯•6M}f̀%å₫I­¾!³̀Qx XƯl½ÿàPºk`ĂƯ€6j©+GßàJJ‡=uY! »ÛNÍÓ6Wƒ®×åDËw°ÉÓnmÜœt[¤F>̣AƯ£V3¹&j¤2åß!Ă+5©aS–W†t̉8Rü¬¡µËE凉•“¿sß•‚h·ÑÄŵG°K7˜]jÇ3Lø₫ªÖM̉³P>̣Ihw*qÖ*¢.ä·¢‡Ư+ Xú±óbÛ }HBX×äíääKoy„‚h®̀ÀÖiEÔú̀v}%Wn®å’R9Ëd»iđBÇL‹÷£Ö9YóŸ™-ê<p÷EûƠM1eJ;ÄI†ºUäOÏ[́#Yí¼…c†-ú{ew¸„ÎJرÅD™’·pÜçc|¾Ñ®ŸROå®GƠ;[—"E‡ë6̉¤s\•~ƒƠ'œ»!/ÊÏÆIîơ"˜Ä3è̃GKo•½;€#:ơ°híKô‘­b«Œ…… æâÄ,q#/ÇsOÁدB ï+²Îµæ rơ' ¥bœ̣GLƠöëh$ĐDÊ2Ô|ÑáË‘̀¹ÄÙ•h}}≵ä ß!ioµ&:ŒthO¾.¹uQ˜Å'f;(â™QÄáCYá‘„‡ ¡BrĐqüÈå„™oU<¡÷É¢=æ ,)çäX€4™ưÖƠ\M„[ư¬M4¯£ˆº;‘y^Ó#3®hV¼×„WËlñªÍ_!g§¼Ùă;Ÿ!2¸̣›N “ʘˆ˜î1“µäá̃–Pèà°3Œ²ØdtB¤²Đˆ¾í[Xúªª2!û˜Đ‰?Æê Ç«¶F,îô ;k•LDƯŸ åæ‘̃Gk₫Aûs¼‰c@Bô“±T©́håMÛĐ9D/÷Érư”Œ₫(ú2ê™_&ă©–Ùl>3½´cÎÓú9 óyZ?§_6ûÇpäí!â\»¬#s“q2Ó.GÚå-åŸóÚeÿ‡µËÁk—ưÿ¥]¾C»lµ—VÇ<üï%¿Àá̀MX‚Ÿ`±ù³̣c™IUÁ­3ï×ÿWq endstream endobj 398 0 obj << /Length 1765 /Filter /FlateDecode >> stream xÚÅY[oÛ6~ï¯đ£ ̀Hê:¬Úb0¤CxƯĂºÅ’b ¶åIŕ×çB‰²¨¦+†î!Iñ~çÂsQüÅưÂ_üôÂççëÍ‹oß %±—ƾXlÊEy¾R‹(‰›|ñụ̂·j%–Ưnµ•X–zœm»Z?ZÙâ¸)ôï>ëôoUơoKoërơÇæç…ˆ¼T&‹uêQ@lß]é]bµ~$i¢́‰Dºµˆˆ.Ówáé±ïÓÄ×c/–Ö$RÈÄŸ«xĐ$#fadÓÛçK‹>Rc’3¦‰–?e ª́HûP·Å&¾Våáj,AƯ­¾dµ‡0àƠv¬ë؇Ú\bYĐx÷LkZj«Á6¸’1±¢ĂJm\ØƯ´4Ï‚íL_V[€Va“ç’ncœº{tbđ:‡VsÀ|`ײœÊÆ<ïA)49À¦¼Ø[è´r4üˆµ”é÷Çœ¹èñ¹Ôwẓgđ»êaà^`k×>‚^Ú^íZ̉$qxÂ/ê¡Îa²‚(M1ø“4"ÂưʧÔFD”åíVa÷¶»;åóŸ³bS£û0BX7ÎÛêÉ_gæŒ ¢Ú*]g{v­~èß¼Ó+·7z(h±ÀSxiîLƒç£Ôk–j‚́/úC₫KϽW×åÔS₫ä(ÛíÉĐ„[coñ&ÓÎ; k Œ¿<ŸHïpƒÎ+Øq2ck?àø\ ÷ó¥1½#ˆa iÏ(z;–¥̀Đà–‹µ[¼̉,s†¾ªí«OÈ\ĐKTàŒ³ÏÅg‹’Á½eÛñ,÷룦ïIß-]ÀÁZJ,FºÚh,bCÊaª(§vøNB"ơ½Ñ;b9(pO{VÏqtÖKG˜äræÄX=NVMùxß‘q(I¥.û¤c·í̀1ƒlx‘gGØ0̀·è¹wF­ ºTªŒÂ@É„QR ß„J…1ªߪÀí#O*vû4T$÷@¢ô+ºG¯ƠxµËóú/2­my ²bˬxùÄ;•₫û†ç™5?0©"a,‚]àpMa‹qóÆrvœ({b"ïơ+Á1àú•êG’Gï®D?Rưh¶1gº ™ µ'̉)½(^d`m“¤ÊĐH= lWD1B÷» €iY¤B›slѤ6ÚĐâ9 ô¶éÅ4ZĐÈ €4ƒÆ¦‘­‘¢z}‹h,ÁT7ׯKÑ.5킳đü‹K?R¡™\Hà ™êÑ̀úÀØ‘ƒ³˜EăÛhÄ3hlƯȱwÍøA›‘sÆ×œº³º±›ƒÿÑRs­ÆØRê+Yj®qùº–̉Q8\}ÿưÔ•H^ënG…ñ `L'Xöw̃×*RP(a»°À,\Đä@&ô‚²3–°vâ¤Së¤/·EÎ ¨áZ öœ±b³˜óøaFº ¨8Ăd´½¡’Û'JWŒ`Û`=À9­éûaO+D$Ëë•L–,ﲓ9>zâ’)/uvN©‡đ•Œµr¦ƠC ñtâøDï²#=ë;“P±̣-ÊÛPĐS‰ÍáB–p‰ơåv¥•¶c¦-[̉W¶)e ¼84f ½¾YiúïÑå*ñDœ2 ÂÅ\(/̉yÛl‚âÆªü<ºøÊK̉ĐZÚ꽄¦q˜̃åZc1i´µR±ˆ”Mü{ñỦ‹¶¥^Í6C,+#œôṃ0̣”/ ù©EÛS‘´s§ Q‘˜ưp ª¾€z©à:ZÅ!J¾‡ÓïwàªåUúmid;Đ¼¿*fÛÑw Ư7e v¨NsF̉KÓö—)‹L>@à¨-êĂ`ˆü„·=¼Ä<«3%#í*hÇ4Iƒ˜Z^) †`• Æ¸ơ¤} Zóuäóªg»v=Ñ̉÷z¸¦¡ÛŸúÂxRøNóóGa|î v¿ûï(®ỵ̈ëƠ•#«Ü’Ơsl–rÿoÓøîk`WXø·CÛÇg©‘[=Mơh„˜ôÑøúVÚ´ư¤x»Ç<Q‡û‘¾=JƯcEÎo°ßN̉P­C7)—;ÉmåyèumF,ư{1´˜}ö³¦ÉëªÂ‚sj£÷}I’•å°®.¾ L}á}’“†}Đ 80ñb 'œ¢/Ä4*tq’áúZ¦E÷b>/Á”̀s>O:ƒ)çä.́“S{:]|k₫¬8†̉éööâßów©$àâoÔQ)ệ€k a'ü0ĐUơđEî}Fª$Ü·ÙÚ£V 9÷ÿ¼¸̀̉OtB^ö’X̉ÁRh~ܼøÍ“‹ª endstream endobj 416 0 obj << /Length 2233 /Filter /FlateDecode >> stream xÚYIsăÆ¾ëWđV Û½`uÊ®/3vjRqyT¹Ø9@$D̉!† G#ÿú¼­ ”2>Phôö^¿å{_Cz¶éÙû;-Ïïîï¾zgœª*´™Ư?Î*£Jhåe>»_Í~K¾?ÏM²?ïào}Ú~‚G3_dÎ$ÿª¡}œ/R›–‰Vđb ÑĐV¶Â #é»₫}ÿw¹¨T§¼ó/GènsÚâ£åơ?~†öa‡ûoÛ₫®æ £sËRRIqñ‹-c)Ù+úÅc»öb)¨~a¹e”1¹ªl9:Í?> xj;ß¶´d¯ÉÆkLV¹đÔô´“&óGư‹±{±ÀK0¸à«we53FUYfÑÿ°̃eªÈ-oàȰ°ÀØÔ;†L†̃9¡ƠĐŒÏó…+²dƒfl°ƒbc9‡óSß²̃áŒ4Ùă h‚OtIÏ*˜lf´ªteD[('ø3¸ÅfYR¯0¶"Ö; GN¼©ÍrjnØÇøºäY¶H>Ím™4cđíºîx›îa'Ưÿ…ß¹á̃Gœ±”“RÏe ªCgxƒ¯:©½;Q‘ ÑÖ^–h0±umÉ—çY’†ư–’€¶ 3ø˜ârăT–Vl°%¹äèƠ«‡Ăâ₫®Jà‘'Í zBs ]–ië†Û£³³z©êÁ„#®<¨÷€-OJ6,eÂH5́ê²´ä´:@ë”¶¬¡¹¢È#F5ªqêSq›eœñ«ú­Ç+¬đY³#"06~}7ûtù‰Vü‰SÛµX‹tl±ưO4'<’ÁV²-cºlö»ÎôMq€:•+.–áÛưíe-?’ÀÚhÜưvP-Vó¹`Ï.û+ÚeÓÚÑâ§Á½ƒg‹qÖ½ÁîbPÑËçc.!̣1öŒ‡Ư‰ØïO‚(”aƒrsèm‹]ѾŸdѦ>À7e ø“ÂiÁ|Ä»F¬ ½>±̉_ê™&ú“­x@pÇYr[àGÿCI1̀&Àså!°æ¥½xÿ8>ü-0={øm×K©ÇGNíFù_) •Ẓ¿“À¬I₫d8§Œ@ƒ?·^¯P À)yY%ïÉÉô%ëÓ<Âp©à̃-íấN½+.܈”Ä­H3ÉĐ8ø˜̀m\¹àñèµG×áÀc±”‹¥U¦0a7ˆ ç£ĨùRqî¸3 €Ü‚5Ơ |p–3ÓÇÅÅ5?ȸ¿¾b˘¯Àăê=§à#đD >CU·aô V.UzÁŒ€œ9O…œád摨ø[P¨tQÑZ:©%%ª/ÙL'Öư*»dăºTå̉́KK¥«TQÙK%Ṭœ0%)¤R/søµoèÔFüÁ'—Oà΂ȋ¹B1N©ªË2 ĐÓ"œV]ÍÑË›ZF…ê!¹ĂWB3©đ̃|ö\5ĐL¦©;Áx˜Ă¸:ÀnĂí=Ù°a¾ÈơÀV́¹»m‰tÊÎB&P×»Ư9ÆĐîˆRáF¢–ƠämŸyÔ×f³Ø3:°ă¢Ă¸ëðd:Œ¢ûg†F01!.•” Åm·ñ¯_=xö"•Ø‚­˜t¨Kxó ƒEVëâ&t,̉Ô%? •o4âz4s•_W ¶ˆÍªü¥âWUĐW0 WÁ@¹ÈÀxi¥³PG5»*Xƒ¥®•xhЇÚgjë­¿Ơa÷+N‰97®Å; . dÚÿç6/ú 6¹I¸ùăpS#̣:²‚‹&”ªk’+]„;ÈFl¾Îé9ă¤/ŒJÓà‹¡¬rBºwă©ª±iûL .Ă%£´÷N]Ư¢óßđêÍäxÙxV;e‹P–b%FÛ¡¬eK••vÂZt=pÖ[¥ơ¶—3F·‹¨âP0@z+jŒ̣•Q>̀Üó.‚X¼Cuˆ:Ecʹ¶yN¸ :aÇtÂWÆ_3œ§¡”h™Y|×E9¾6UĂƠÖ#̃ë/sUđĐơ'úÚç tϳkí~åïÚd¾ œÂ•¬ ˆ—•Â@wçÊá,:¥óddÁMM•Î}ÙƯÀª́Ơ›L™+đ₫=„²Ñ5 ΙJ ôT NbJ\Ăß¡0LèetăÁ7ùÈƠoïo³‹ñeg̉½³ô¼e}z3¾½‰v½wAG)s©n׈ư@4JçÓv bøî+ÿ­BG| -’đAŒĐnÖc}`$Ù"Ë’?âÈèyèè‹&eXëCFF‰˜>nÓ¨Ăm븣nk¦.ÂPDÄ.,È(̉<º§Å˜Ë¤b \qñ=²4¢K N®Æ( f̣,\̀²Ÿ Æ…Ÿ<₫Æ•öYàfÛ́ăgpOU|\é;~ §y<‹a²¿âc @jZï¥́†Ñ´oÛ}p©ˆaÚf‡/ ̀ꥅÂB0„¬H1°vy`wL&uª4Ï¿(©ÇåBPٸѕ ø‚S:-(µrV.{ßBTZ¤ F3ÍRM×₫sJµËDù^ÈÚN~_kĂMwÏ3¾áÇ-̉XÎ…¼·"Ç#{Í2ËJü?øđ+§¿— 9/ª*ÈØW]›ÿÉ×6ÿ%@Ëè+Ó22ȳºåE²²WDÑ£–„y–Y‡ˆŸ"‰—’Jøe#bs_ºTE‚û+U¡$e¬­ùñ₫îå:‡¬ endstream endobj 423 0 obj << /Length 302 /Filter /FlateDecode >> stream xÚ…RÉNĂ0½û+æèâzb;BAÜrIHC¥,,-‚¿g¼¤Ë¡èÉăy³>GBn™üç¼*Ùb…JJa¥E(×`Q!—tæ”/đÈ/’ÔdO ̣ 5aÜçd¦§-¡#T„'iä>ù:ºÂ6Đ˜<—÷́¦dHSÑ0€J‹\CfŒX"4{gbi•*<dzjÎÅƯ`ázbôÍ‹Î!i¬œJ ̀±¨ŒÈ ê¯26j°ów»¿`ª”âö,IµVürt÷Œ·ßĽúÉEUnAoư¾̃+ĐDÊ»?§n»ml1Åj>$4rækÜ£‹C|%&ç•벩œÊưr£8bª½sđBÿơ7æ̃Ü©„V˜L‡Å3}’EÏô ,K„ endstream endobj 406 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-023.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 425 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 426 0 R/F3 427 0 R>> /ExtGState << >>/ColorSpace << /sRGB 428 0 R >>>> /Length 2265 /Filter /FlateDecode >> stream xœ¥YM%· ¼¿_ÑÇ涨o]mdHgö!È!p‹ñü÷]EJ-îó˜—9̀›ák5U¢ÈRQ#Ç7‡ÿ̃¾ÅÏWO·/?ưưÏ_?|º…3„pøÏO?ü|ụ̂]Âø§ÿ’ÏùÀ>̀–ÏØ,ơ”v<=øÛó?ưëÇÓ‡ÛŸ8ÇÑÎ́#K;+~…Dë—ïŸ_!NñB4ăLưHyœµ+„ïdÍo¿~ÿ‚ç÷_ÿß¶rüzûÇ?püû&Ç7øùpu₫—›ŒrÇåLíˆræq`1ú{₫:d¡s½,.dË9bÑÇœÇZÏ̀yºsk<³¼Åy,|Iç{ç1œ#¾Á¹t,Ưræ»rç\Ú8s~‹óùK×{ç©£¾Åy@â s̃îœzæ₫ß æºß¹.…ẵËÎæzü.$gù¿ö2!ư0:öv梾ßÉËy·µqÈÙêñ¬vAàfÇGµ#’’ÙÈéúh§¤iGäïè 7íræ„ gÊjç³C€ÿ¦v²çé öä”açS̀FÊØd¥,+]m{¿ơSø¼’ÓhWR íRÔ.§ µ«¨Î&jgơß0Ÿ½l|8»ÍgÏë`˜‰§FµA ]ñ¿Úl₫È ] œë §CaÓÎüƒñmÚñ[øk"₫82÷ƠlÄ+‚³k÷¶ÂÜăû8Cr₫¸MƠ͇m(ƠáAØGÙx#ÂË^ÓrJØëûˆ°°ăE;ŒÏØkê7íù\÷#b›FÜû¥vßûÉñÑí7íVw>p¾Üv¾_ê;Ÿ"†Yü,߸ù~±çé”ị̂ĂZvùŒ_9¸|ï}å£Ơâ=–½ëåăí5¨ÎpHg³QWr‹%Ä85s0¡Đ;6ÎŹü&F ús=R=lDÔMOdŸ‚"¾çÂWSîg*fa‡ô{ĐÈʬ,‘̣’Uy½@סu‚íØ EíZ°,)Üù zÀó¤QĂÉ,ñAĐM7ñ̀È ôJ• ß„¸AǦ¶N6Aaº\ ×ˆµ¨È*zmzL~æYÛ&?Ç{~,,8~äcï;_ùXûÎgÁJŒŸ,ßy†ÇÏ‚t«ŸeôÉ·VOz9~àó́ø9b§Sqơ}ŸiÇÏ´»ăgÚ“OŒ/`·äø¶Í?ù†™åø™x†ăg⟹æøYÀ¿Éñ3ăÑ? ø7:~¦fü©|+#̀óÍø˜û1·uÚ=aNŸ¹¹Åñ³ Å&Ÿ„5f‡alŸ…üêøYnëAX£ăgiỵ£ÅSfÇÏ´çsƯÚÑñ³Ún?i·ßôoç§åíæø™xªăgâµùg¾ñü(.)&?3>aé æ3ÜV§Gn²ăgéZCïê啬^$§ƒ‰ÂâḉY£e-0©ä¨¿FeÚ9¡d=Rd0¥7kÄAºYT‡Ư‹IøÎf9Ï£‡ơÇ@3± ”_ăr±†‚îñÊ-Å0H~¨®cÇÏWd×sîă‘–¹©/đ3# ‡ĂEZJÓTÚ‘–R™¬t®*¶´FR̃6è9bí„äléù?#ÑÅư.ƯÓ3 'ÇÎHFqäŒÏá¸ÔƯ5#¾SÉh%€x†#桯:mƠ´Ë ,̃+s)8Đ̃µ†Ùë.q0¦)cÊGÈcéKă¼[›(¸ØóFGÆăâ&å.=yÆ:&Æze/1‡Í“à;0­"’Á©bD,:fˆ²,3Væ 1™Œ«YL.ˆIqüÛʤ'[BK“}lmJ”¹ü&S{ZpđYơœ'£¶ơTĂN²7…¦£Ưº0Û†ÂUr¤KÑQw2Àr1]pŒËÁ.fooq¼$G·Tûm1][äÊôÆ̣×ö™¢4́r³₫Ë>¾‘¶<›°ỞIÍJPÛ)J QÛÅ?G,ñ¦W*ʪrë–%àÈP^€Û=`&c«jä“È©à´ä|¾VSƒUÀ`³VöË}FÓƒàj3@¨é³.̀,ƯbÚæ+Xí!bă9ï0»˜Hœ]đ«À;N*`ZPAÎ}lÉK3lÅ “‚g ^˜˜̣̉»9±¯½än$›Kífa"_b7m[ëªqR×”êRº•‘ÛB·èíÛ¥sơç–¹Q»ÎKåƯ¹\úØ7j/}IÜX)ư.… â¸Q…Ư¥oc2sÊ[q«[k"/q SµïÔ¶¼”-m£Vù¥l—9…í¼títµdíœh©Ú c‰Ú riÚ¹„%iç—¢µå_‚Ö‚séY Ư–³Ø­f£‰É%fuS¶–-6ï’²º¡NÉ^BV“á̉±3U–Œ‰´T́L³%bg. ;StIØ™ÀKÁ®ôö³ä]%QƯô¤r³î¯;O@#'"A Y•̉ Ô$pÿXØÔW‰}wæ’u뽯˜?>)7m‹ow#nb—Q ®ÅüY§~]#~ZÓ…¡0̀”Ü<Ë…¹Ø­Vô˜÷í Aï ésc^· 0c&bÂđ̀YåƯƯé̀Ăx¨å‰`)xÇÆŒ”¦²1»Ë&ị̈ÀÔˆë…ùº\ æÖƠỊ̂ fßÛTG´ƠZ<3̀lSØÚÔ 3»}QîƯ˜wkCö@å+ÿ»Ü¸ZÍl­Ïx óg­MyùpP̀)û¾E ₫7b^Ÿ»Tàiu.æ«æÖsë|Ắ;›|çn×s+ÎÚØgml²Ă¼›Gm\’Ă¼›¹Úø„1G%³—ó¹ëÿh®|œÿ”ë;Ÿ%f»á[ˆ¶›ù*!SøǹKÍ|Ô ˆ0{™ïhƒ§NÚ´³¿TϘƠhÅàl=69ư ñ̉c“Q Á_}³7ÁƠøwzḷ2N26/£éÙÓr₫ßÅŨ̉c“tưP}ƯY('e£ ŲáÛÛo•¦ù‘ endstream endobj 307 0 obj << /Type /ObjStm /N 100 /First 875 /Length 2034 /Filter /FlateDecode >> stream xÚíZƯoܸß¿‚—‡R$gø$vs í’wW#VvÔ[¯̉ư8¤ưëû­lk½¶Õµ é%r8ß3œEYŤ˜R)aÈʹ È’"g12V1o½̣$ïA›1FHF«Rđ²Né%“TöÜíµ†"²²Ö;̀².y<°²äë "±å$^YŸA‚²Ñ/PØdd&á!ƒ3PµlKÊYf"đe&('X‰A娀 ˆè:8*8LR¹(Ô"'íÀYtá-‚H!f d! Ɖ­0— NM,ºƯ`2˜4!™(¤<„…rdZQÎY/lÀ› >*¶ ^Ù‰̃B€AÀ,±%ļÏ YqºF X'àæ”A.qm‡‡ä„åMA6sL° -̀zJ˜IFynBÉâ!Ë.X9ZÂ>™qÊ'Q 6øld–:a² " Áp¡“&aÆ9È›-œĂ NxE‚ÉVñàUđBäB€ )Ă“"ÜR!H +‡c0œ.d‘Í-đ0ødâ„S‘~Á˜(VÁœ̣àUL¢P°3A×*Y’íY%‘Ø•=‹ÿz˜Nl™@lÂđ́”$  4(:er€̀b„D6ÀĘ̀Ë©́à ̀Á\T™ÅÜNậäÙ³Iq¬N\ơZ¿₫öOlÖ yo´G˜̀׳ٻÉ÷ßßKÆëÏƯ‚}ÙÎWêÙ3U¼´âï®ß†7§Ä›·Œ°ƒ#öKF̃.¡)üå‚öoI˜@^@®øyÑVoê•:QÅÏÇ/Uñ¶₫´R—œ¼ưÏÇ åY=)ÀU=_-AƠIñº^¶ëEU/»4ÑMư½6å‹ö“:˜#Ä́̃L¹À^„lîàzôG‹º\5íü¸\Ơê»ă§ÎØh²I’!ŒytíôÖµ·Íj†•×ê‡EùñCS-ƠOëƠÇơêI'Ôt]Ơ Y%íµ€w´Z™z²-h{R¼Y¿_u¯2i'Å?ÊsYs“âE¹¬;‹?Ö³?êUS•“â¯óª6ó³.q$’nDù—ílz3̃“âƠÑ‘l™b¶Óó»­‹¬—û‹_ùóù²¹Z>nNOkXÁu‚Tœ7óơRåPü{Ư®êY}ºBÖæbÚB¯ËeSœ-Ê?ꢬ֫º¨Eµ>?ƠŸU3›ÖÅyY-Úyñ~Q[ʪ‚‹iËfYèy»Ö§Å´‹ ^1›•—“Öó³r±>Ÿ•ëUѵóú÷¢*ß̣cYƠÛA“Acº ‰Ä:á@Ú °¬¥¤‘uàrI/·EØv8üúÓûƠƠfíƠ¹£î Pqn'Tœ*´ ôIñ|­‰Éäè^®‘́Ö̃ö·f₫;œ¡]LëE‡Ú¼+~,^G'¶{f á ²¨NH 8´1lƒîÊ„œuL{̃iá*~hß¶ ₫î´9[/j퟈>zwv¼¶`7I™u†¢N‚W¶”¬‡ú9ÿëÑ®ơhoë¹´m½¯!ùQ~œäw…w˜üØ|KÉï°èöÖ航Ẻ`B­ím̉R6Zo5J¸»Â;\oºGxa-Í(\ƒ‡»AûL`sĐÑß^ búz¸o%‰AZØÍể²Äƒ̣û¼À´w^È__^đöq̣Ẫa^đîÿyal^€ïjBs’Óh—Eyºë2<"ú{û̀ăóÂÖRÖ¤o—FénØ>18¤3wGb• Æ·I»IuV ö­Ï0iø¸ỏđ›$(Ÿ$°$´†AÉÊHØ̣ơÂR@‰(Ÿ)¬6̃ƯåqèºhÜpA@5wªpA„^ÙÇÑ\ˆ+ù4̃E·`ûö\já́GÁº»úy*öÖÂơû¦,ŸỌ́Âóoyap÷̣Â¯è˜æq©+¼Ăc*Úo­w¿đâ1Ñ7„•Â1R@áÈèáóȺ«“—ƒ œ¸8ñ› œôHơ]º±¾Kî[ œxÀÂv•U’r g<öđÀIœpPà¤Ưf)l–̉Ö·U6Ư£äL»ed@™ư­ ep¾^?”ån+çhkŒÜ<ƯX}Ïù}˜w?·§´·G~N:ËÈRÅZ8»|ƒœơ7heo=́fà́öƠC¦ơpWí%]Ú•.́-]|$évl>ˆ‹=%g®K.Wr÷‘üª1’›EáE.7£ëGêGîGß±S?ndaÛă±=ëk´ ¦a£…<ÄA®à½v̉ÚX¯3ºpÆË„›[œªYƠúC;û/—zñ”긶Ù!ç´‘ á vV₫ŕxT/èÄ/Øaï´—kö?cgY}8o¦OựÂ>é€dqÉK/æsñr­=FË8áµAñi#x€™8Nû»úâüpL°Cṃ%L¤E/ʃ5hă´‹„sI‹}Ô6ËO¬ §Û²¨›eưÔ<¤TtÅỊ0‘ưœPˆå‡u”[µ„ềçÏÄâƯB=;̃¢ô’_x¾ ;N*?œqxĂ–—P₫́‘đ³Ú ÎäËë'$Ni/NpÖóE5¢$̃†íKb 6"‚e¸˜qy,b2+7ö«»·¿́^`²£Bds[}ß́+hñÙ=ÎƠîï Ågê¯vÿ¦Z…̀ endstream endobj 430 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 434 0 obj << /Length 333 /Filter /FlateDecode >> stream xÚ…’ËNĂ0E÷ùY&q=vœ¤"ZbƒÈX¤%}Hm-Eđ÷\?ª´ „¢#OæÎĹëH“¤ÛH₫³^×Ñ`̀ZKQÉ©QÅ¢”L¹Ä—T¿Ñs|•¤Fé¸K8^`éÓÓÓ̀A^¤‘X&®ăYHOÁ'8;°—` †à<‘ÁÉk}ꈱsl˜Xg"ÏH# ¦é:úˆDQi]:ư(t̉¡+$wk–tÓExnj̉0:íg{£̀±O¬”ĐYIJ+ÁU0j9ßo ©Ö:fy¤Y¦ăáÆ&TÜ~C|·gîlYcmpÑ×vD뤭sJÁo¼4+_´ë¬cûàâ² ³Ư,ÿ].ZŸ̃Ø̃M¿§¯Ää~ºɪ—́Æ¬Đ…$nT8óÿú‹ˆ‹0+aTæ½Pæ¤ W÷ -¦ endstream endobj 413 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-024.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 437 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 438 0 R/F3 439 0 R>> /ExtGState << >>/ColorSpace << /sRGB 440 0 R >>>> /Length 2032 /Filter /FlateDecode >> stream xœ¥XM%· ¼¿_ÑÇø"‹¢>¯6² $³çä8Å{ùû)R”Ä÷²ff; ®ôØ%ªX*5]ß_t}¸~»ư€ß<Ư¾₫ô×ï¾¹~út‹!Æxù¿Ÿ~úơöơ;Æü§_”ƒ ̀?3¦‘BjW¦¨]OÏ×₫̣üó/ÿüêzúpûă“¼ăj!Åù'S Èư₫óơ·ë×AH!=@Đ8•ëÅy„ÚÁ´^?û₫3‰ßûgüo+×nÿǯƯèúÿ>ÜHsÿé–½ o Ü®D! ø đ÷ ûE¸b—Å*®´pYjÔ¡·§Nµ†Î35ß§N5…L_d©óCêĂHoOM«Tù±Ü§¦6BÎ_:§ÀÆú[ơ RGèÔí>ơ¨!÷·g.Xs‰û}âRtÖ›!cÅy&ÅåM;Hc„ZơrÑÔïv¯%ê¡ăƯƒB«×³Æ2wàeăú¨±lî@?ÍøÀ₫ѱŌ] -q ¥£Ibà¬q Uù›Æysˆsœ%1ÇhÆ)PDŒ*V±ƒ¬ñü}e¼€Iܤ›$.Eă*/–¸’Æ9ôªqÖüxq¿s¾–ḤÛx µ)Kí2+^ÍGX¨¾?É₫KŒº¾Ø4®2?ágX¦ÄEđK½F³˜¤~†ŸFü <,F½ºvÇĐ‹›ßGˆ̣́aoSuïë%”êđ }G9xSOÂ…½ÔIʾכĐÓƒN=RëaÄS/‰ă8ơL­I;ízKlăº©U‘Ÿ½_÷³Ÿ2?¹ư–¸ƠĂy_n‡/‚ûáSêqÖÏø&ë±ß×9κăkÏ¡eÇç^e‡ï½/>Î~@½ÇO¿|¼½¨ÿ€ÍÁ’jJ(6s5 n`SBàñŒŸ @ 0úhpJÊ5N,[̣|e´&&à2¡Dm1Ẓùv?~˺SŒ‡.đ€¥©#àvƒ‘CD€Çép̀4{dÀÈ]âŒÍ`l•d¸Ưß` RטÊ+7%÷\ÿpÍÜ€•"Å–ÿ‰¼§†0é„ )µ"¤[€×¸-'UX†üRÀS’åTm&ÉéA’ ŒN’ ́ưP”@ÁÚ… ¢’dbE'É¢ƠI²t¾IlăcIöl1t~v’œ°Á\\‹8I–¸8I–¸;I–Ø$dJâÆNBÏ÷›Ä¡œ$Ëc8I–Çp’,æ$Ý$YêÑ$ -’“dñÄ&™*±4â<̉L‚e?Fóq›]ó!¹́$Yö¶8I&°Ë$|âd)_^H\s’L"©N’ ’™œ$ؘœ$SË&‰³ÔÀ-'ÉÛ¸î‡ÄÉI²Æn?%.n¿%ÿ<2'$nN’Ou’,xçûordÇG±N’ivßá3¨ê,A²³“d‚d'>’lự²₫65iE(üƒƠ•₫¢È²ÏbÊ»Ø3Q-bJµ·Z¤!“7œU‰Ơ©mµ°qÑă†W§,nî5h…P0ĂŸS·´ƠBѶ] C{ÔÄĐºqh[ëSMêF»‹i£Rû×Ơ–J’l¢-µE¯€ «¶T0äÔ–J•̃Øh³2FÑjơ¨\I7Z·ÊSFIøuJŒf¤YÛwü ÄX;;íÈÉ0V0œ C¤›aTƠl"„Ä 'ÁC3ïNT> ™hNǬÑjG‰zºa¯§™±¨i_f¯#LNz‡™GS ü¶:á§₫ÖQ''»ĂTÈTJ'º8ƒªÓ\¬—–Ä æx Ù ³ (*åE’“[?g7™f­,´Ä´U_Ôú’f…F§´­L!²%@çê8 lfClù̀XÎâ´h"7K‡ĐÎ@-lkT˰ĐÙ ÀVĂlT́äÙE=d@8œ¸stÚ*̉ï¤ lNYq°V±̣NW{´cØèå;UíFÑW¸0́rMÿÇ5ö25Ó<˜4Àg:M%ÜÊÈ[F’B¶ÆÍŸémÿÅl‚­*âŸwŒ(Ew†Qœ=X!α‹ũ·[¬ză[PmÔÖQ£d~Ь=æ‡Ëƒ\Öʹ;”,ïwWHq"wRéƠ}i×,’uΩy±Ÿ— ùj4^”Ñ9‰ơ\¦éiY8¹·e¡ỔJ,2¿,­ÄjÙ̀̉2rô|,­ÄXÁ¶´ ©¥3KË i‰Ç̉²¨KËØÊ”¥e^®Ë̉rÓëú¶´<d[Z†‚Ô~,-·yë^––Åkѱ´Zr,-7½¾oKË"éXZ–»C?––«zËmi¹VÙưmi¹–9ß,-W³đfi%ùXZúơci%6S0Í̉®ùË̉®|Ë̉®÷-K»đ,K»đ.K»Ö³,íZï²´Vmi­^Û̉Z=·¥µzoKkû±-­í×¶´¶ŸÛ̉Ú~oKk|Ø–Öø²-íâÓ²´‹oË̉.>.K»øº,íâó²´‹ïË̉î~0K{ß//k?ù¤#_&œ ưQ6¬%́Ó³̃̃…Đܵ ̣Å–*e …8,ÊüDó,–l”O'ƒƠƯ͸é'檟jÚK5#å(ßï¬m? Yíܲ®©èGç]Œ_nÆưU@A—Ù fo/ kü5×*M¬ơĂA·*­‡tíJË—lû> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 445 0 obj << /Length 1019 /Filter /FlateDecode >> stream xÚƯXKoÛ0 ¾÷Wøè ‹«‡mÙvYÑV Xö0́%N–!­³$ƯăßO–h‹zØm×¶„D²ÄE‘”H´Ht~Dà÷Mut|F (IJR̉¨ZF%M B£¼È£j}ŒßOh|#[-ÛJ¶Ùd1Ẉo#ÛA Ñx3™æ¬1‘ÿÙ ÙØäSơVM™HHYhy—̣Ă\¶/ w-ÛBË|0køÔʽƠŸÎ ;Èz§?m ;S‚ôê[Pv¯§¬Ôl-|j#áê%©á¡9đ4a’À”̣$KKMd3[Ơ¨l/PŸ9}ưLh$ÿïĐÿm6Åp™F»R(JƯN5¡ă¡'“C"7c¹l©?-·‡ %ö Ó¼̣Qr%“HàT¶̉–ù,F¹¿Ü¡Â€ Đ a8ơ¥DNS› ŒƯOY+3€œÙsS¥©ÂÚ<Œ³‡Œ¼+÷IÄc¾ÎÂ¥,|ä̉Ù̉L#‡¦ÛZÏ.ü¹,àÄü̃Ó0ơ(pé;qá3 Û1`yø‚£wjMmWÛ¸ù½è:>Ơ&¶av)Û+%„JRO *à…D1ć†í廫ë Á„ÙÖ:ÆÇ(÷üeS´Ë¢µ™cÖ¬M¾z Óh(¢ƒwƒ²,Ư"­æHÓƒÉeaå{`œ¿r})³ø‡ï{“}Ư•Ô¸Ö đ`æ\y ̣7eÖS°×l=CÙº6âO ¡ß@kŒm®`ƠVvi;ap^¯d¹åp‰2ªyVe#.PƯÔỠqêÁñŒEoƒ~vF.…²¡ƠÉÙ‡ó²ßrƠ]kp ˆ¨ÑmèD GÓáƯØơ¶èj@#`clÔ;UÀäK㦠¨Ó¡ÍQơ·ø«9b·Â'bë+Đ¡®ÈÀQwtëÊåÚ!ÖZè—Ǵ+̀Ø#ÍzªϽU_­z½Ô혬V©‡ùųÅ¥M"`˜g ;Î63H?O<ơ&Hó0hí Àÿu40|‹Pd¸@ºíÃnÔµ|mĂÍfª-QƯömƒîñk»B@l}Jcáq8¸ø¹³=):™¸úº!x ºÓn©®J‚øđÏ{6êÖUOèĐ‹#̀ăúÎ䙈QïÀîáç΄Ûùoÿă½îă¸ưu°-è́z;4…3̃ Üan.Åx˜ö';KÍưr̉~d£ñK-ă|<«8ùáŒúÖ&º5á÷='ÍƠȘèêàËT!A¤ /2/$<úbØ?TŸÑ ?RNMx&­ÅÛ_°Ë­5§ƠÑoÈ[jæ endstream endobj 451 0 obj << /Length 692 /Filter /FlateDecode >> stream xÚÍUKoÛ0 ¾ûWè謒̣n[· [CÑíàæUIÜÙ †₫ûQ¤”ØMÑ»lQŸÉD‰µPâ:R₫üPEW Œ%KU‚¨V¢iˆÜæ¢ZˆûøËâ-̉iTO’L›xl‹´'Ἇ{S«Gv~Ôdß=?9­̉â¤y@z ¶bGG+­Ê,VÈK$‹¤Ù4ˆ ¤t,Ê‘̀X”!•“Ơg&#³´|³₫µíüÙưs@¥Å¨hu^ô Qz.̉CçKp >ưsçsçs ÏçÀ$X?.F6Ü „C+itÊpÜM¬‰—{ [dq»[:&'€ÚÎ_~MtIâ×3«1 ÈÄRÅơ•à‘¡ëcæªî¨\mY6¯7́¬.ś¡;Ù·+>k·pp1øtw†ä›₫”AË́¼uĐ÷ áO ù†ïè©$åî›×¦f¾ñ£tyQ“fq½cˆŸ{ï¶ç—C½£ICÙî̀ø' ´‘¥ŒM1§¨x‰tƒ4CºEª^k©±Rå:˜Q2ëÖƠÖ„x[Né»ÊÜ|\ùD×it¹¨JtkÁ̀·ëHÜ“ ½‡ŸZ €^€¦,I‹2^̃̀83R@C„xá%ë'·T´aôƯ„N.Y™­#èȵT©w€œÏ&j ¹!/[¾Ónqy5ÎN|í)ßa/ÏO•‡˜Tæ©Đ¹ómô3’EiŒ%…KOÁ̀ .¦[ñ±¾â'x:‰÷ œóŸ×¨¡¥,r#´ YÁ¼́Ơ đÛø=ßÿ4ÚGhû€f£q˜y’Ăäö,vKè́»í®>ÖªæÍ%ƯEXO§Ñ/O‡°;ߺ)Íö́¶z³/¬’…ƠX™ZĂ`èbd…Ưû ÖÆÍY endstream endobj 448 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-026.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 454 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 455 0 R/F3 456 0 R/F6 457 0 R>> /ExtGState << >>/ColorSpace << /sRGB 458 0 R >>>> /Length 4339 /Filter /FlateDecode >> stream xœ[M¯e7±Ÿ_±‡ÉÆåõ„èñP$ - M“è%êD:ñïY«ª|́s‰ĐÙwĐ}»î̃ö¶«V}-»åøêăûăï·ßáÏ/ßß~ñù÷ÿ÷Ëăăç[8CÇ₫÷ç?Ü~ñ«„÷ß{H>ưưer«gG–zJ;̃¿z÷ëï¾ùñĂ_1ï>~q~üÿw?|:>Úï>ưăóOßüx|øáĂ'<-Ç»}₫îóñ·o¿|÷í‡?ưđÓ‡/₫|¼ÿêö¿ï¹Æ£¦eigÅ(ưøÍñÇ㇧¶} ñƠTNµ¹±¤3%îáƯ—ư‹ăư÷ü>'ÿUư¯£1¬ô#fH6úĂ…Á5#íƒÿçađ_wĂ‚Ă>8œí̉ÊaÁvÄ$çPÛ½û˵•ç¼¾´̣xö°g•9̃¬ùå×?cͯ¿ü-~ÛÊñÏÛŸ₫|„ă¯79¾ÂŸïo¢Óÿæ–ÆĐMe2/ûÙäq¦||Rÿˆ%ETvă—³4•ë#ä~– r>+æ«rƤ2–çØ~³ù°l¥–stÊóc>`jD•ËÙđư:΢ă{:à̉h+•ñ&g­”[# #4$&ç3u•cQYTïø1ôyÅB«ÊQ×…4›?êú±PÁûx­Ùs¨Ïk=Ç Œr¾©&ÊUơQ¡]?@̉¨Ÿ1Ÿ'Ư_igĐïC‘û#–L*2–ṕr迹¾¦œçüö~n{Í—:_[ßKeʶ©–µ̃8øëµŸ5îûß7}Ääöu}ÅHØ,}F!–¾c8“lö€d³d‘Í‘ˆ̃́ụ̀Øđ€ï™>/1óÇÂS¬TĂÂ[́Ç#\'¤ ¯)¹}Ï©ulxOĐOuYư!:>üåÓíëg܃3$¬ ’̀v!r\±âGåF¯LÚYöÁW”[lƒB÷µ•w¬<@·ùrÀÄÊa¨mđ¥•ĂücÎ|_y¢ó|!0ª¾¨ Œ$`Ê0 Yh¯Æ$m>@û%…*å»Y-æÀg€¡ŸÁ}ªÚ"²LŸƒ30^Ü'9?0Uụ́éÅ`\8-åz¨?̀çs¢óPîIL,UeĂhjª:ÈƠäLLs>‹1p†Rơ{]÷`¾¥óĂ™2Ÿ‹¯á|€CÑư¡~FtưPd¡~²?‡Ư…Ïålú}éô~ÆåFçMˆ1Uơ%\9­éËeN3¶÷ñk‹1>lƯûö½0\öơÄܼ­7ä3Çm?!Îçºß×eé#ÂơÍ₫¦¯ˆĐÑ̉̉gÅsé;"ÔXN3{P®}Ù‹²å0³'Ç[2{s~)[Œgh1xáúBÜđ‚¯×ñ†2Ïôåx …~»đ4Ô/<‹0°,¼£B5û»?@íe¸¼üåɘg`Mƒ——,e÷À,ËËñ‚̉j|›>¾Ö=2¯ơÆ<Æ7„ Bu2ßhÔBØL¥?¾9h­ˆë“«"6’†‹₫Ă˜K†dh €*,;A?P#Êêg¦–®X»WŸ5ßBÈwu”¨/‡ ¢Ae¾ H|tJ,‰úå¦.údnú¶ëA¶{¹=>¿¡S±PgÏ)C¦~(°6¾ŒÏÇo¨¡Ä ̉–Ñq|!ø kÉñ½2®­¹ŸàLájÚâÊé«kđÅ•ç±̃W.@:×… )Ó”ÙIơja†2 ;0“Uvû¡t•ÿÁ°Óé ̉UA sZÊ | ̃˜‚Xi'(½̉а¢¥œ°4ËV´´&¢5 UF/È(íPS1̀hi'(ưFRYKgAMÎ4†0­¥T-¥(“µ¦¢MNüÇk†µ¦a]K;AèI¿/ú=IjæST9Ù|ÑZA€P} º0døKƠ¡Ñ›2̉JÑ0ôûY}2Yr¤₫»…mÉï#Ôú.‹ëĂßoỬÄœ¯!Èäí{P‹Ë¶ª%ÛZ/@aóÛ~ØzøsƯ/[*Kj2û¾Øä°ôÉV-¥¥o¶&5/{PÖ̉ÚíEYÓ†Û“̣ÈË̃œOËÇ¿ïøQ¼°4|Ø Ö¸đÆVĐôåxDG¡­ÈÄ+: ³¯ăËĐR~âËĂeơø₫̣d°°IŸXA\QZ3r’¢1VUË( „1#G¦î¡>”Dăx²4¦ơ¨Æña¡m(`^¼½q‹Èê¨èƠùÙdki‹@Ví₫¡?¦-~ íẳ‚1ƠƯ[€•Ɖh}ªÀÆn%ÊŒ8,”¹[ª&ë÷aÚ{ÖÂo%ͬå>‹̉èµü9³Vº±z-…„تꢽ̉* ”­o×E [ÿ]4-"—.€Va›.Zb¼ºP&Á^đƯ ăÊàó¹k̃®EâSº`Å(Hhrgêêó©Œ Ÿ’̃ÀÔ1ËP¿kđ•ö p@HØĂ /®!MĐ\gê¸r kđÅ•ĂJÛ``ä¾ro5a_Ùɶ¤…º 0² å̃ ½‚“mÑí—œlCG 7!ÔŒŒ!ëù#Û¢’-Lí̃ø`³Hc6Jœ‰cÜ1>÷ŒÊ€zCD·FBgM3¼Ñ J†0±Xă´£¤ldJ…`ïÙÆXUÖŒIGN6¿’mÚñưjdŒA¿£KO/™Æ08_02Œ'Q?m>Ïܱ’k ưHơBÆwÊBưwË`±G~XP·9Îùí}˜A3æœj—í{1MÙÖC̣«oë…•l›û‘bnîW’‘mSP{ ›¾Ä3êÔ'*$k„]ß0‹‘mnÈFd¸½fE6íÉJ6{Ïlâß3ü8^€m#ÛOfd›ă ÍK™ÄñˆaF¶9^kls¨YÓ!5Ă¡º\ˆX̃é†ü†P™ú¾¾î˜  m0ä M"Ë¥Œ/Œü†9èZƒ/®œÉm FLY•Úoz‘₫C†2€9VÔíUŒ!¢ặ€Fº1„Zo+®’dÑGđ@@†(Vcx4Pde­•qÓFV?C¨(+‹/èơF[BÖÀ,}ILi jÎzg+ÍYC“_IÙK7†ÊƠ䢥6æ³ÀHÖ?ê÷”!Ôrª+‹®Ü k~–̃đ_[oq–¾ȳAêŘ2„<>’ ,¾?7Ö^†1‚ÄË̃×÷ñ´oë¦ú¼ÖË8  ¡ï‡ˆ?×ư2*(ăæú`1û›¾ù@B×'; Mœ®oA~ÑD́ö \û²åÖ—=9̃§Ù›óKYx`GåøQ¼p}!.<‘33ño‚VÖôexÔ),¼’uÊyáYÆ0†pâ¬Ùßư!oZüåɘ×mÑ4­,,U›1„́¦ø¶3„¤Y$¶b ¡ê¤™NæĂ´ ƾzCÓ=̣¬ A¿È̉‘'CX_µˆodI™r‚¼ơ‹̀JÓĐöLe|»©‹³¿@ÙÄ₫ ÈeơđÉ!ô RVáÏ•! º³ôl·L¼°^ Ăá aº@•uK¾ WBóå}đ•àOJ(dcư{5LÙÖëèë-“ôư »ùsÛoñĂơ©7¥M_蟌!t}΃Ʃï\Œ!œö€¬ưÀ´*ófÏyĐ8í=*'rŸø1¼ØáÄÂOrâ†7fçºáư¢ơOW̉paĂsÖL¼#+C8ư¡zÀô—'@¬Ó'îQºßÏqXĐ2å@‘¢I‰g¨MŒäÑL453)ić¹É9D|ơ²¤Åçă7Veµ¬bâù´E¼L†°<¦-Bïm !»C1ĐÿEH6V4¡2~Ñ^¯ZÈaeÁ´Ă=Kç{Ú¢O.0Ó"H̀´5Ÿ3mesQ i”N0¿ROâßDNe”₫³¡+ø«cSFµ‹›2È™¥Œ70[°”áϧª²d?¥ –@¨•ÎĂ󅌻́Ÿ¯wQïD­±Ẉ`ª,ˆ×X2W–­÷#Y~_o;-¬±—–]Ø©¯±¼luÇ^Uđ!™YÏY­FG ¶³j”’fϡ͡0[¢WöHæXÏY,Ø1ïiHñ”_fÏ“”¼ñÎæGùh=§ơTD¤÷XUĂ½BßÏZ) ¬5Øf#obô`ŸV×ÑoN1đ{ß‚{RŒs>K¼uaä™ơœQ³(ɤ<‹Ñi-8zpë)ñ"ơÑzNÑfOyx{®·&=£ơ˜ÈÜÅœPaYÏ)ÚL¿Ä3ÅâÚ°·=®ÏÉÔ­¿´oơ2E]‡ƯWj=Ư}#­ûSÛ'ÚkƯL ˆŸfuÓR‹̃hçmH×q ̃f ZđôjW)Ư€ó&¤Û·ùù‚›¥‹£EÑUYƒiàÀ³ÿ‡›_Øqè!¢[wiÈDójU‚·7ï- ׈çffƒ=̉áâƯ)%ÓŒ²ë-î} [åh0Ơ.‰Ç±lCÅ8xæßªô¥ù`§|̀áA󅽑:¤OÉă¿zăÆÛ¢lM'/{!)‰ÜËô*)ñœưm% "?₫ÜÅgv?xT¤9)ëQœđ̣µ< ÙôÔᓈø{_©¬¯ơ·Çç̀X%ÛÆÆ³}eÔÛÀ,‹½­” ưûçr”̣–®2꽤5öÊå »RºÆî'ÇÏ-m9Këë-%yEÙÆ^\6À±ÆîËfe ă•á7ṆAƠY+±“ÿꥋZ­ûu“R=4Y¯ÅE-ûe“¢­ÏîMÆ76R:6ë̀, í¦†̃¤@Úô‹‰ª"f/Ö ƯWÄ^ü–ỈËkƯ™*áz¡hdT_ÇXk l µơĐ+ú‘½}$[·­{ ÅƯ›G^áJŒÖ;6ˆŸÖ:̀à"”ߠɶDÿ½o½2Àhm‰¥ùöíå’½i´©xñ ¯‘-Êk0¯u„¶È<RÛ‚)đ¾ÁäÇC¾}”ZfAS¯…¥ºI9»b&»LbjOÉï’˜QṚ«$öÅI7»A'[íæNƠ±a`À :…J~‹Ä€”祃YÎ~‡Ä@˜Û¼"¤-Áo€1ƒ] 1x—ê÷Gvđ?¸HF*ÈWo¸øAV*Z#턆̣pM z»á§ˆœÚơêHÑ́±O¶ L²J®¼ÜŸßØäÂ.µ>ÁÏRNS¼hƉ‡·3ßÔ«G%Wq¾z u¦_^ƒ ŒÁ6É’©é—׉ַV°ˆN3ÑøSæÀ¥%«*.Üö¬÷6P÷Ÿâ»@Û̃O _ï¿(%7÷ϼ°íŸ7AÖ₫sغ?́1ëÿ½™û÷§®^|·’ăw·¿èÂÄ endstream endobj 460 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 464 0 obj << /Length 2283 /Filter /FlateDecode >> stream xÚ­YIoăÆ¾ûWèđ$`1l²¹ÈÁØÁ Il$6’h‰^̣DI¥Ï¿OmƯl’Mä ³·ª®újé®v¼xZÄ‹Îbù~{öÍUY-”R'‹ÛÇE¥¢2V‹¼̀·ëÅo—J%:¸| U°ß́à?GøíđçK¸L‹,¸ÁĂi…Ÿ­Øà₫…#Ḍ‚4[^½ƒo¬› ¾lŸxñïq_ÂÀÍå54UøÇíß\©l¡â¨+…Æ‹eª"¥R–ï6,Óå¨×È·—m`EˆAh¿îI$ºÈóWa©ƒzƠkE£ÛzCkTĐ!ˇQDè!Ï«P)\¤0— ‚T·¸÷o„乆I|Æ~FbÍ6LJØ”V} ³<¨¢@ư°q8 lơ–Ûơ {»“ĐDˆ‰J£LWŒÉ£h¡«”4Âưî®HïC#`/VÇ >¿ ÏdL‚?:X×v v¢pYƒ\lØæ8A8³A'á]ă>kÅØuưÆBc°³4‘œ”:á́Z„‚†GyÔowtu[ê" Ä‚ºHƒ5éÛp‡,ÎÍn×öăơæ`,‡†}i'\wBj¦÷›E'HPj aÙfe®Ñy5„“ª7z.̣ÿ°Û₫+-d­ë¹Ơŭ뜘¹E'»t<ƒ~üaâÄ:')îØ¯DÂÓ ½í™Z 0A±)|eƯơÅp'©F+rúQè¼YŸ’ŒkZC³æÅää§ÿ>Ц aAs>~=ƒ<ÅÛ<8‘Æơi(¶6I*'½XC ?UÛƯ‘g ̀ gÙÅ¡#éđÊ–—æU Ă²yV×qo¢ø‡NËàfÖƒ(µLCœ`̀G<¯GF²̀™B¼¡1¡Œª÷Æ•_$ i]0lŸQ @¸#±pà™W´È°î¬›·¼A‚´¼ÀB»6)¨;GWÏ”º´A‰V”­pR˜PĐÁ÷§f̣¦ „q½5áYœÇ·EAÙ̀đ÷8Í=$ĂƯ2w7Ô¢1jäqŸă`­ƒ±íe#ÉHÆP4'×îŒ9Ö‡Qß$qcwœÄ0a^GöQ0ZÓФî%ê,gצ0À9]„#¤l#ÂXczđq̀À¨3 /—öÜD—̃_Pôß û^s»O·è+Ül}2jv¼¦1)µOÅ sË’$ªÛÆ(pVf»V²̃sϬ«Û¾3Nvç8\‰I`‚²™¶₫ÿ0́’\¹–LÀ[<© ‡¹OÍ-Ií{₫Ô\Ó†3Â2ÉD:K…-Û8áßE6áÔưV²ë<“ˆmMÈs⦨‚I( tnö&<œ#hwn^d´ùó«OYnWÎÍ‹‡µÑ±Â£3:´ˆ­ñƠqÊeèñ°o¶₫Û!ÎNUÜνÚàWÄ`Ă4b@lÚ̀í»s¦­›&`c8¦Áư9û̀’2KJÇ-M»Êx7‰ƒ¯‘3¹Cb>•˜Om@`ûÉ1f,–À¹1N÷L9oNiQ© r¯aÊÙqLÚv₫“»çg¢ÏAB{SnÿÈîX¤|­>Đ¾grïÉa(3I gáàn® Xå&kº¥‰2&²wư₫1Ç,̀ đ̀mÎÁg®û®‘Y”ÄQh^ô1y 9€¼Ÿ¤eŸ.Óªc“Öú´¿æn@èØÈ†®b†Ù£áúÁäÖĂiß:¶Să Ú1/“öƦËPZΠzÎä3傱E r™+>©̉dÊüä[)PătT¡'¼Xü}.³$uĐÆ#RơƠ‚Ụ̈L9jo|B.Y₫Êœ¾ă~Øưhj¸Á¢~Ô.|äT7âd¯«ˆY*­(®JÖê?"úÎ8WH.~”Ù½(±%¬Ư8}!ÅJºsq|{yëLzuåƠq«lhè_àl‰«,ø‰Î¬*¸—*Ö|·¯oˆ8•ß%‹¾JÿIÔ¨¥ÿÑÊÉ<¯C¤Á!©EEªü[+1uL?R%–¡~‰HdÆ2øéј~u,…_éï‘Đ>Óè'y$¬̃ØV{¶ư'"kx¥g,ñ…̣ÅHfÁÏ…Ù•ïz éR–˜aŸ•|ä‰W=Ø#tÅơ8Ê×P÷ø˜«J›ÿûÀ÷áâ±̣ŒF`ß’ö+¡p•Xû‡cŸ*n¤{âÉUÅ[6ï×3ƠSÏX2ö%‰Z'/ù"ß•̃g`=“ ÊY\g%}K£Yđ9r&¨‰èÉ;}8™³½PŸ˜>ùơjtº'׋ơƒ´7Îß—Á1¹ÿ1ù₫ œ³P‘€gÏBü^0ÿñQˆc{ ®Ë¡Ưœ£ĐƯYÔ`[ÂO ­O³u1uÛÜŸÓ«ihæS§ù‘¢U₫1ĐN₫Åđ+€xÔ•}ˆÇ¶}ă„^Éơ…©¦aÖ”¤8wêø1ŸÊ\»}·G•&Q’$ m̃ÈƠ°¡û–GØ$‹ ÷¥ÀiëV¾;ÖT$ªS=âÜÿ©Ă/V<¹ß\́ĐÁNc®âĂÜøqèJ–<Éă ˆ|†̣Å‹ĂÓ‚?ÿp¶ø$QtØÿG̣B1ư)+#@gàP½¤^,˨ÈS?”́k'”œ›¶ê-S½5 ˆ Ïü¼,çPX˜ç÷”cmÇú¦0øÂ3+ób¿±•”æ$Ùµ¶đY )óïC"ÑU”çêư^•De›å‘—ç2ÍÁªFË¥\Æí‹ƒêÑéK¼yWÙCKí[÷|†¼T$ƒ÷ŸAF«-xư VÇlNκ£q₫=Æ;™Ê‰˜·ƠÁ>'LOꙢṕ¢_‡AyöäđB·:Q3e™­ơ>ɲƒ́s7`¬H¾Å̀Ür!({‚­Ô¦CÎÉtÁưdës‰> stream xÚÅXKÛ6¾ï¯Đ­2+|éUtÉb]´h¶1‚]$=hmÙ5`¯Óµ÷‘₫úg†IË̃¤h’ƒ`¿ùfHZ$ËD$? ₫}=={9‘B'Rdµ¨e2]$µ̀*!“¢T™Éaf¼K'#™ná¹s¥Ó= ÿ‚§ư9ư è̉7`̣¬Ố£êw,:ɳ”XäjĐ X‘Åi+Rf:7Nf‡IŒî{+ŸŒU•e’±ÔYnjû>ÿe^Êî]‘™‘ÊÛÑX²NˆeđÔ¤n¡ĂĐMÛß­̉ÏIư÷H½:®ûêÎư«H?‡GCô”Á\9¤| xf˜³§Ç¡-o0‰ö:?̣êĐvéÛQe&êúkĐéú‹Ñ BÉK}ŒNÄ8•UE,áóL.×ÁS AüÂb=²ƒ¼°®_E¹3Cx_tx;ă2]3/̣́VüƯævGo¼Ơ?̣¸E‘(eøzE? Û˜Óë5ưø@î0L"”f^©pAW^Y^aỈøÚĂ÷¸ơ%=FB‰…eẠ̀vYv~Dư„“".ĂÜq² 1t> =àĂÏiE§aæ ̣̉KqÛ§ÓfwAĂE$1çäoúσµ‰¯6»÷̀5MmXã«ă ăúhñ$̣Ñb0T2+¶²âÖôf¬µêYö7Gû^đü-[ 9ꬶc•‚Û¼öú™Â¹º|›\<¼}-¿>æ.ôÏ„\q•¹-H#ÔĐ”zî#Û÷{ÚvoíßĐÔQkü¨®FÇθß,£d:£[ô×ßrđ·Ï"á¥{hºå¦¸âD̃w€w|y/rÁ›Œíøox ÓÜQVˆ₫bƠ'ruÑ'7̃%\êÚ9ßc륽6úçø̣Å{Î!›i₫ăîÀ:£Üî»,‹p=|ƒîñ»ƒÔlù뮓éĂé3C\Đ̉ \_₫›¸vâưæ8©Î#ØK>÷ç̣ÿÿÀiệÓ¸̣†?Ás8æ,Áa~ P/¹Öí¡û„-óÜæ4éVǗ/¯Œô=/ÈëÏD†s¶ÓđÎæ’ï-ùÁ«ƠûpÓ;wÇ#-iÛÁ*]y á-rÍ‘4Ü.VƠ²w}zưŒ£kĐ%]ơ8‡nû~1h/rê°cc3Û¨ưÅa˰î9Wnü"䱋hßW¥Çx$ÎĂqí̃~;‡gÂ|û…¹wéë/'UH“iS({U‚ ™IÅÇÛ́Jẻ $Å{¸@ßY|́@ÖÁÇÑX—&Ư@µHç-usº„å₫ k0,5ß8×.̣­]í ªÜ‡Ó¾¶OŒ²á.p«*r«JpÛï#VmGÀ—Ç[ińU›æFªrè\Ă‚8íà¦Ù÷QDA-É)»¶¸ *û̃.(4‹Ơ†4u`gÓ[ØʧaiˆÙ¹ÁËæ]k§sV{f·Áb']“ -ôdgLºß̉—†TÿÁ}`H¯èï;cmíúúC•†s,¥ŸdU–p‹ë.́3R&)³º(SdUmƠ ©!¶T™Đ0¦“Ầ4.=]fT%ṕàøHQçÓÆ¾q,Âÿ%ºÿ̀’q¥³²4øW‘‘.¼:ºœư ‚?¨ endstream endobj 477 0 obj << /Length 240 /Filter /FlateDecode >> stream xÚ…PÁJ1½ç+昒f2ÙlăÍâV<ˆ¹IK»-…®k—ôïM6)VA$̀›É¼7/d4́@Ă=ÓÿdŒ¨É*gÁ8TF[X÷́ÈTí‰æ“જ¨ËXìz4p7°çx~[Ëâ-¯̀Í–XjåµG[@Kjî=ª•óa¯|)ïćÎcÄNH"âhn„´–øí[j̃}D²íß#¾eĂ6³m¾6It‘ c{R„Ï,{It?ÇXŸJ1v™m¥1Íí‡̣̣S2̉Ô|Ók%VáñÏ}V..ĂÅ­˜JiôùŸ¤L5}Ôµ`L endstream endobj 467 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-029.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 479 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 480 0 R/F3 481 0 R>> /ExtGState << >>/ColorSpace << /sRGB 482 0 R >>>> /Length 1920 /Filter /FlateDecode >> stream xœXM\Ç ¼Ï¯è£tp»Ùß}” '€‘µp†‚¬Øv%g%#οOÙoºg`$»{Ø8ÓĂWM‹ä÷̉‰ûà₫uz¿onN_₫₫¯ß¸wŸOÁ‡Ü₫ÿ󻧯ÿ’p₫æŸN²Ÿ_Ø?³%e‹K£ù\ÜÍûñÙwüvûé₫í—O÷ÏƯWܳÿ¸7_î÷å÷û··îƠ§Ÿßß>ÿÉƯ¼<}wC ® ²kÉḉR¾EÇđ%ºû÷îîăƒ@Æ 2^Œ²̉kñ)ä³»›`¿}ó'ß|û7|Úû÷éÇŸ\p?ŸÄ½Ä߇“¨ïW'‰ĂæRh>$Åçá¤ù˜ˆüâ₫ÿÀBq±–ØëØôkđ]ꛡ”îûPß/®}#…¥?Éwl¾ ~ƒlUơưñí»_—ûêcsR»OƠÅî‡<zđ©;ú1R={ññ<\IŒ^²ĂÜäQ̃#̉׳]D½¿ú^ï1 ŸË:|îNíˆøă¦)º[Ø'.Ơđă6íH»ù‘ƠÖBˆ=øbßW:=‘ä´‹ÀĐ‘ñ ṿv;üGÖŚ( û=Áÿ,Øg£-¾Vµ+ÓGäcig?ªÚCưGCv†l|¯ÉWû̃ê¡"_iÚ«^nO*o$Ÿ¥ 夈‡  d@Zgïœy] ‰Ÿ̃¢Â¥k®ăÈŒ,Nà®*Œ̀0…<Û :øIñƠ Ø™ÑJàF,M©t_ Ăs¨†”+!Ψ(è¬×8Ÿ0Hû‰2™‚ÄúÙă{èô”:ê4à™ÔÅ+©”¤á,u¼ho+ở!iQƒáÏcQGF£¶Q‹w¯aQO -Fu£¦ Ä™º2ª¯iQ[F÷¡/êËPX«4B˜¥7Kö”>+-ØFơYz°ÚVôWË*]>¯UÚ‚QÆJÏJ_Fñm,i‘¦´t˜Ùê’Ö~ỏ#Æ)}*Md‚Ä%]iL²¤M–Åf—Yjó<“Y6 È.­i4ÿO͇ô^JcØîƒRe»/ÇZÛŒG©Lˤă"(&keoÔÔ¾̣A;Ç•/Ú&­–OÚSú,ß,μñRµó¥(ŒÅ'Î}ă[•ÙÊ&!]©n|eí|Ƙ’ëÆ÷&³µơÿ{½¹7-Z &ª Èeà„–¼ôM5Ùv©‹Q‹l©Æ·<|Ô–¨oP¤ÏœI‹JL<èÑÖ^Óm%FöNß0JYBâÛ]Ú3 ñN—KŒ€Tèl\ß_Ø'‰ ¯Nœø¾†c@ëk˜×b¹œ¯As¹Âsïô…‘¡x@êö–Q§êtq0P*dg'Η2= è×§ÿk…[^ endstream endobj 484 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 488 0 obj << /Length 2432 /Filter /FlateDecode >> stream xÚµYYo#Ç~ß_AÈ/C@l÷5—á]À›d H°0dÁÀÚ#rxÄ$GË!WV~}êê¹4”¨Ä~¦Ïêê:¾ª.êÉj¢'ß¿Ṇ̃}óæë&­r›ÉÍr’•i3I²dr³˜|î§&*Å>åÿà_=9›EØ_ăüû)¬+¹±/at^Ö¸´À <¾æ²¿—è•<¶iIcs ¤T.„>ÏƠ8¹Cƶí^<눴NxôQÜ~Í+½¡£ËÀU- Yq¬rÚvKĐ|˜₫vó#Hlfœ}Î’YấÖ¦H"Åú(W€± oºhë€ƯÂ5¸„®·âu;>fé²[¼‰Îâ$‰nHBx8¨I»®LêU¬S`˜©…,îéÔem–"ß§}rRí™Ó|Ư1«»ỔXù,¿́`§lÚ,%S£<ŸÆIT¬JÀƯ$ÿÈGÿˆ́¬…Ó̀³₫à®Jj̉É̀æ(wF5:cñăuƠÆ£́#O³h6ˆRTG²÷.²'lbµl±µh’lh¥¤Ák†ư´cö:Ûb{: f9&r›§*¹TÙVÅq£́]A|£/[>rY ƒ»*øÛCÍ–%ë¬V&‰û’ưUǧB€ĂÉq?}ÿf̣É 4æ,b}‹-I–w2øµë³¤h“ƠÆ ·&úúØ¡1*c‹Wu±Ê“Œyq™ÎŒ±>ú…¶ >w½ÇùÔ¡¡ĂH Ø̉8nÁÔס"Í; -+ D A&&ʆ®(Ú¤·ï‘.óû4qtʪSđnSåu߀¨¶©æitOÊb8Æä¼ä¹0IX“§}†óÊç—âE»r^íÈik>&˜v‘°às'Prlù(^N5£°7₫‚6I¾@Fyî'Đ^9h4!’tQ‰#×pFé$}}Ø̀!ây—='Iw¶¹ă˜‡”øH·₫?çKTÜ:ưùæœk":4Ẹ́0mL#ĨB’ “÷r0­¨¢äÉNPÁn7ná¶nÜB²ó^Đâ=’¹ jë’ÿÉoG’ÈñT–§’3¦œÑJÎx3…èÊ™~û`‹C~8§ÜpE C¹̀fÎọ́ sÍ·¼öËsáCÍîÚÍ2Y'—Đü|£¾LKÊ¥n›€ẓAˆíHùÅ,2ºơ×½=Ô®9‚ÓŨ†ÿØ&†kYÓ0Ï'mÛœ®“>ríµ1Ê@Ô¥¤iđ>›¤*OuSoè¸Ø»é,, o»t¤Ô5IŸIÅ"°\ù$nˆíS‰₫ *”A9-ĂĂ¾…挛¯G²†ŸyÛ¼úWồz]_êŸ×"âB„ĐÜDo%̀M5„ç;§ßv¨#¹oàÏK?đ~/¤®ú'eé{yF”&ÀøJX˺̃¶émœí¨ßÆÊå¶o É-É’è#ÿ@E¯ä£”ßcÈ—o)}>87Ê$=å"1₫Æ‹ñ~¿˜Ù;¹B³H`°¸"”K¢}7răOö ûÀ;CÀ]Ê?CÀ_ÊA< pk¾ÁçƯ­!¥ó8F+S^!Ä₫ 'ÉBv@È!8J‡„œrBî²!!/„ü€£ü‰™Đ/ÁΙ·%W`=\̃{µ=úñÂë«9ù/=®ÎÙh8\kqu9HvAèeXÀƠyGf”˜Ëü^È€$Z₫ÎCn8đ$§́^Æï1B»j~yhÑÏv"(¦+¯̉Eñ‰ĂÓúoëMMñ‚ó}’₫[q¨D¡Ëä(OÔrưÖn×Ù(fZIƯè“@ǜÙνå/gcd9I€äSS₫îÜß§¢¼Ä½ŒæÉ9ÚS`@eV²0×Ï‚₫qóæ¿›´c¿ endstream endobj 493 0 obj << /Length 1649 /Filter /FlateDecode >> stream xÚÍXKoÛ8¾÷W̃‹TZ¾D‹¶@ÛÍ.º@‹l×0´=8¶̉°ăÔ&[ôÇï¼dSœæĐĂ$‘Ăá̀7Ăá#5ø₫äÓè/˜ëªˆ&̣̀w+Y/'đ^̀¿Ơđ™±˜÷Ø̃̀gđ̃MئéÚ>úA ç‹x;‡ÑëBÔjdƯ²Œ¿q2”ÑfoIø5]ŸäÆ—%“&×21®gí™̀†\wéÏÁ¤h*P2€u‚CĐà2 •åªphºđ,4WÈgJx+x7|H ߥ Qèµ̉blh8·ªæAq…Eiyó=:}óe‡€×5k¸\­Yư)Z>C®¯á½Úm˜coÙ.¬@âbÜ{‹Œ̉èI— ×G7,ZÜ ± K2ÆØöÁ²}̃r]XÑP<©Đ‚Ű!É6 +TU¢Ç‹%X†¸6,×ËÛ®opcÖkÚ˜óƠ5ạ̊ÖQ¡)¤`6œ3å@«"ªHçL̃Hóđi£“Êfµdyëlv í+$l›Æ¤Oííw|aßAzdáØ”0qR¬‘Ùp Ùß…2]ñLâœv=Å®Ïn¯(¡ TÓh ¡¢ár2E|+áX® iÂT/˜ă£̉NL؈æ×˜£—7‚´9;äYóFñÜi­¡₫ ›‰é@¾iL"ơ0¸d>D€̃Z0Û ›“'nXeÓ¥\FHT“ƯđXE¹’(û–ÓÂE¦\â‹s¦Û ö ™iUráÈuÔEc;0̣Lc&b,O¥/¶ eAnnÄÍè•po¥Í®f)i/%Ç «4‡d#ŸÊ÷¢ÓŸvú3ù̉1Áä…ˆ¹e Qük×míăD:û2 ÷́7"jØÖ¼?§Ú9äqîÔÊ…́Qr%c·<ơ2÷$±u²´é]̉”…=Nüö âPW>;£ë ’–pÜó₫¦ŒC·ÆïÜèB·úäåÒŒæŸëüzN)ñq-´Ï̃½́qÈsD€Ù ¸èĐ °Gؽ€éĂÜn/`ö0‚²#`¬ŸQ̉k ¦ßa ƠC¹ßơ#ñ]AF™ sDPƒ(tYd;‚́U]AN¹ ÷Dñ“YĐyâ#˜™;¡?„è¡€“³)½âaüoײIŸ§´½7¸Q†Ư=—Æh£öËlØ—UoæKsÔă2_'£=¼×9™ôÑè.!ÏĂÙd#©u)ÏD̉́¿[Á grD|–ï6I”&ÑÍ.É¢)É^> stream xÚX[oă6~Ÿ_a¤/2iyµ˜0½́¶E[ AP`f[±]ÄvêK3óï{n”hGÎæAuxøñă¹‘´,&j̣ß7J̃ßƯ¼ù×´5“ºjj¥'7÷“FWZ!†ÉÍ|̣±˜OKí[¨©.*ßÀ¯ ~?-½Ơ…ªàC+ƒ1b;p‡Ç5ˆÆ8”©"T5|+ƒ`ëà·T wƯ:ö¶DiÉ ̃ôóÍ/À¶l*“ú¢¡£ËX”2ÑT¥éÛÁ¯‹4)k[¦AlX†ªUD¦ùv%v[î½Ơ ù¶DfïzaÆÊ +sÆÊ„JÇVÚ«f˜Ă“¶U– Sd¥‰U¤à* 3ÆÊŒÙʱ ç¯kUŸ°rÈ^t¡ÏXEĂ²@¬Đ¬&"°aVbÉ[;ÆÊÙʳrè%ïĂ©k¤iVµ•µÔ2’OYLŸ²rc¬±r•đ/u¬Ó0µŸHm×ÂïaµƯÀkÏC¾…TPÁĐldì•åN™Đ¼ §3¶@4„ÚÂó7<øưIyEèh ]¬qđ̀D Ơđ\èâÈ0'ùFz:q`1–bnøœCsϽ<¨½“÷FæƠ;#“´Ym 8imùs-ë˜Ë b%fËK:µØ¯ÿcwƯti `ûû-±¤ö+¢̃éÍl¤ïˆë±Ü°è7bĐơsOl¬TŒ§ï•h̃îφ’ôû%Úlÿ—P ÛQ3Ñä+ vâàwߣ‘¸‹<…$ÊÄ"ˈ=ù·"ïoÓ̉WC˜•VÇP˜*&F^=’ă2–¢âCëºÁt¡̣Ó½±¢—Jtª„Ácm2Á;H8KÅ)ˆ‹üD«ªQMr‘#óƯ°×YQÙ\ÓèÊ×âó°·º²Ñ¦!³-Îc»“0ƯC –Ƈb{ÏoºÛ3ÊÏE·¡”•3îû{jê>¸÷GÎcăë"™ •º¿$‹VÄĐû¢}èƒÜ .©q,— ˜s(“t¿$1HŸ2h¶‡Œ+(vϦ&Ë–9s$xS5¾x´•w+-¥un* ÚÑô¦pËM¶27±U#¸3y¬´†½ÖÍe•*Çj±›|RÚaL¶ÉÖbÁÖ‚Å`¡$[(b̀PyÉĂh­$åuQ“Â"•N¦F#æ÷:Po»®x ±™h æ̣†ª­E7Pn­‡eD^:0ÄÁ(ÅÍ✫M YeƒêÛóƠª-ª.†́Ă*äñWPó ƒwË¯å‚ Uw3T£â0k94—¶Q§ê}à» uFkl/đ£j¥ª kÆƠ¼D‰EËÅiĹe²á$cK§]q—ª;;°„μñÀÑËÎÇÔĂ₫5IR~}aáú¸Ư  &5đ‰̀Óißo/;v6Ơgˆ™¾e­¥à³mwœ,+Ù‘ -IwŸ˜g²1 ´–!Æâva³ML·Ç}ª–y~qƠÀÈF¬uZñv÷•Ăo-©́±gñ¬•`¿£î?ÚÇGÙÜV²xʇ-GtÊ‹,¿x¾Á˜¸£ É‘[Ú¦&ªTÅ0ˆ¨Z8ª]§‰E+÷ÁEyZÂçéÂH”N³ƒ ~F°¸̉´©Î~ám¿É•\vâ$b’™̀Øälßµûd7øÂRüHzÛ͘ëḥ´îíNüFŒK§lqߦ°)HW *ê_÷)ú0Xü £¢½ă!â,Í/Ù•i[ -Eöœr}º1 Ë£8Đf(˜mĂ^£¥DâÁT> stream xÚ½˜[kGÇßó)„ŸdÈnç~ǤnIÁ!M0¤yP"ÙøB$¹¸!¾s₫gVY­JVÚƯ3—ßüÏ™33+F—#1úư™Èÿ¯Îự›ÔjäÛè…]Œ¢lCºsÁÎf£ặPăó‡Ơb|pNGÍñyú“ôRߦû—‡Q&ŒÈ~pøñ́ÔA[ă ·3]'Ăzù·°"Ư®Óưí -²(S-éZ¥#W;N5”SËótQÅ–*§ëï`>J·ÍnÉ̀w+̀v*'öt}J×"]4ˆt}¦ÁeQ‹|=0²ñ.÷v[Z¦ëß-ÈĂ£àÎfä2ÿ¯séR@ßÍ&é¥jƯN1àù{úơjnơơPsö‹ĂF —Z–Ä"]H¿&¤—6êñ¯Đ£(§@àùƠ»Îơǯ¿ëêkG×Ơ ?*ĐzŸ~ƒÖf Œ^¾I¶×u/–ziIvͮܯ*54¡©?é%Ü–+ÊĐF•5yK,¯Iƒ«Å·9G3ïé~µ ùï¦Wª'a¤«€OIÆ›ö°QRÄÆjÍMüIuÉଟ’Og‹)ÜÛh/ưø”º˜̃äDºœƠ5¹•ºoÑ}£l«£ªß@SMơµ³œh… *R¤h̉ĐÚl 2­$ƒ˜₫6‹†ÍECª»Ê ö\%(!G­´0h~…Ôï7Ç›_Ü.é„t™‘3.ç₫·w+.1™.Iàé'̣Áœ Uëbí…‰„Îfª¨ºGE:)ÙIúÅP¼Aöe [ßâˆhø!ÁßafO)³̀×ó%÷~²¢ ²@įÖó„r̀z¤µg_ÿEïf[‡-—˜=Ùú ÿP•«;NÄ0¼[ætwüư[ºû¾É™CâNs²áDA"̀̃ÆåÀÉ  âs‚!Û@1-­‰VJºJC#‚¡²ib÷Pꢄ2ä8 JTs^8x”@Bö+–4uZÛ.¦¨„ÖÔ˜ ƠºÛC©Ë¥BÇú¥<Üt©TÀDåà'¥̉"–$U+å÷PêK¥BÔÍü …Î0P ±¦”ïR´dÁ]­TØC©E ź+³SŒ#‹\® ”Àªi$÷l0û¼h€¡t†{(u/ó₫w³&ì -6kẁ3Jm×C¥£„X&û4̣äEEÍ;,î$³5Dv¼y¹+Ơ½êQYƒí‚Ơ±¤<¨%!d­l ù”ƶƒßID¨"¶ŸL•kLÔ•̉J÷¨©bØh…ÀEºI?'u*­„DEúB¾cqơ¼)vb=D¥‡´2}*ÑÉè+*ï6ù̃—TZ#çÊbX‹YH÷®¦2CTC›̣{Û£̣đ`Ú•T̉‚Ë­+¨LàE1ÇUÀúƒí%h Se扢²CZ¹UÀRZ’JqJjÛ¨\¦Èơ˜—˨E¼ƠTnˆÊ iåw´̉h4ÈJ+d*!]/®Œ×H#²˜ƒ¼¸Cr_Sù!*?¤Uèk•7₫QWZqÂBÈ”qå4²¸6Å„t§ÄU¢ CZÅUÄzT¨<¨áW¡‹ư/¨‚Ă´”¦ØlAl ªÈTYƯI¢zđ´̣†¶Éó%¶É‹Û«óåæHÙÿZÑGoS}Xæóư]>ă϶Ÿ–ùÈ¿ÊÇüY.†ƒi~ÿ„/ØZó‡ƒÇ>t§Ẹ̀ëNP2QâE'̉î…{ÓYmauƯ½ï¬¡°ÆƯ#kqZĂwÎü¢;dbíª'SYm·Ư*Ùpá§Ø†v§ ½«QjLư8˜ùŸÀ:Åtfú(5æÏT̀> stream xÚ­XYoÇ~ׯXäiàŒû>[€¬HÈPdb_’<,¹Cr‘=ä=lRđO]=ÛC.E ÎôVWWWU]ǨÉíDM₫̣JÉûÇËWß½Oy¢u—½7“Ë›IÖ]RzR˜\.&oüT7›¶Z×\N³mú=Kxln§­®9Üơ ­—Ơ{¯Oj±À§j¸‘ơ—Ơx$₫¼₫œñyD.„GÉÿËWMlg*Û9°›Ûï©W¤ơV5oïÈC=ÎÙI€¨› f¨ £Q¸ .ÑC ù3íWñ™Æ)’¶Æw6ㆩËF6œhθØ̀ R3~[Æ®̀ú2[,ăḌ[“»`Ü…JFB>j“ù\p!đ·Á§Ó¦1$&ˆ‡ˆræCàºÎGT):x_Ӳꌦ)tÜÎ Ïœ‘): W%e';¢HGÊéÈ­ 7Ëuhîu_FfÙa䆑FaÅ₫eŒ¬B Ó¾Vâ#Í0rÑăËÖÄ̉ÀpdSÓ#¡ 3›kÀ(:„")D*:º’!P­veGäs–0NzäGF÷IxÔ±¹ÏCøkk̃ú¸ ÉÙ–}2ˆTH—ûQ¹ëOœU(W-·ßµ·ëê²RT+̉Œê¬‘h|ỶµüAØïSẹ́î$5à ¬ ̀Û~_o)”í«©%]]ʯ&qû̉ÄîqIÑĂú.‡TU^*‚_8s÷×ËÉVËR̀Kq@zơœ̀‡Å)œ‰kÉJBÊ3y;vVJ’7ÿ\6ÍüÅô<% Àj>̣W.÷ü–tˆŒTe”T€©x`¸+¹ gÚͼÄÛíNä̀7‹¿¤ơa¹doü½ß®J½À¹’ o3DăË!Ăá•­Oo“ë”Ö€Ÿ!<ƒè¤̣ˆ­”äăNÁƠAGµwâ¨äNóƠƒä8ÆBøÄÅÇMÉư¢+̀¤’¥.A¦[¢Ó–#5R (_t[“Ÿàc-²°ˆ °ó†LAÊ,¤Ü¹³fE)̣Èn© Z“­)ûÑiJư:ëÊSṭ̃3m¤ˆ€Kë¢x^ª‹$˜ĐÅlÇ(}¡é”WfO¼!¥ÎD?v†S 0“p=|8—!¯NÂáa%x¤LûÎ1.üƆˆRhöR“…aäÚ¤ Ú6Ÿ¨ª½ă#‹xĂ|ÄÏăRøI÷’q\I! T*¢¥T$€µ¼c€%TC´;•ọ̈¶œu+•ÓJ®å½9 “‚+çỂ ̃©‘¨ W™+vr¸k"DªÊq‚ˆåŒÛÛ-ÖñÄ€.½]Gµ2Ïàêw"‰ óÜ̃1¥̃₫_bç-̉~gÚ’á#Ö¥Tö¾¢X4eöÏdU%Dx@,ıóVAkĐ›îÖ.¾¶Ô·uá«¿¶Î¿ •ü̃IU\\½\×àÿO„ Ów•ñ÷½̀¿\¬Ÿ«¹íÿ»g°ßT˜Ûoí́ÿØ3đeùV£S`†BZ‰vß-Æ+™ ¹îKÊÔ£Ă·'d•‚ÚŸí!™ ô¬ i¨T‘¤#7XL§̃ÍM]eá. V&Z¶6ÑIÖ$ åçúO-w¹¨{ñ1I4~‡8,ưÛbóqÏ̃9›ïĐù‚̃ïkùèØâj†Z\‚OZ\»2ë«ÙPƱ̀¦j–Ỏ&öIk\åÅnhym¨»\ơb6T ̀©ÿ;-­›4júŸƒ̣#ƯÓùJ®~Ç̃Quµ$Ï=ôOSœă¤đsèÅ‚¿ mq²Ăn'ư¾đ‹’%à²êăNâÖë?¾Àè!øƠ>)˜½GOé ‚$îÈ¡³:¶ÖÔ¯ëS<‰ư  ‘÷H>Nm«FÿƠ}«%̉Û²“j¾o[‰ù@üđ©´¢+W7Ô±RN×Ê) =É>F²47åVxéZY2h¤^•“cÎ̀W)7BÎÖƯ₫sÈ©@=·¢|@tO÷Xr!UÊeºÆ¾Đômơ efÿ+ä0&̀ê«ÈHđ÷Èưµ£áéc Ó °ôIDLé:‘%Uf³ª“#̀ÜsÊYTnø2ÿ¸5*uÑyèÄ ”ỵ̈ưǰæƯå«|ÆIJ endstream endobj 509 0 obj << /Length 1784 /Filter /FlateDecode >> stream xÚYÛnÜ6}ÏW,œ-UÅáHS¤@S´@‹ 0¶iÖ±|Ö–»k7n¿¾œáP¢$ÊNb`½Ô<<<3́fu¹jV?¿høûÇÓß½V¶ö¶«Ó‹•µ -ằêô|ơ¡zkQmơz£¥¨Đ® ₫nÂOøl¯±-q¨3»£]¡] íĂ—wÑfC̉dl»Á{ăJMơz³ ÆM4₫öGhËơÇÓ_믕Q99“‘S´TøÁ…sr ‘œUr4Ø¡U´i }¸Œ#Å•%§™omFÎ.)guàê>#'ŒA@´!^ƯàΠDÎ.‘ƒ’rDÎ-¸µÉÉiÚ€HK´{hµ•цíh£¡crî‹È”ó¹[3rc·b8iƒ+ÚŒœ0 b̃ †d­q&09¦WúRå¬]oDc ’ƒt„ÓÔ8<®§¤F¨‰£¢ơ™ª¦ăèc¡p#cZ¬ök$µya‚q®×#L)é¦?%Aád”ŒFU£FV“†I)œ ‚N€T=¥äF(Q*ª$§”Œ,R™@óÉ̉5r1à划rtD”́)1á­,Q*ÇG5SI”g‰(HŸ‡¤(ÉèvTcÇ©%URI/ªärJÊâ@©tî8i½b)ª$I%J'cÇé%]RÉL)YÍ*Ùœ’”´¸s¹ăDCà*%Xqï@̀gJ”LI%û¼ă€b‰8—S>Ñ÷™J†t?¨y R²%•Ǜq)E‰q,Ñ…œ$©ä'Ç‘J ) Xè)©ˆFCF£\cÉq”̃ÄđÎ.ơ”˜Ç”ïeÿ&¹btO‰’&vQ±ès›³W¥Åg±5e_ĐÄ-ƒQ(Ê¢ÏaZªÛo`’4ñ‹¨nô6+mÆ>φ‰¯`«^‰¦ö§ÄˆA˜ÙéU¼Ø¤²1»÷©̣zLêÔ‹WƯlơ ¦:¶Û=£éïˆîŒoƒö†ÍŸq^UWñ™× ÚT7ƯzpÏ[X¯7Êéêí>Më̀åU$˜µ©t!)F~iø5]gdÇ»O¸•«ä,!k­ø¢é.Â0 q¡–ÛWéúcĂEˆ́ºĂ1vîû¯%^e0̀WÊLå₫öÜ3ÀÉĐ.¸@ŸZæ¦^̉ƠŒSî¦K̃àX́ámơ+Gi»°ß!ÂeKSp8¿¢öZ‡Ôµ7. A/́x… PÑûnpÉŸ·—ÓjºØ»¶Ơ·ÑÜáøë¿qm4á¦;´> ±ë/„¨­¥™D¨tƠ‰÷Ov́êĐs̀€±ë6¯‡Ÿö\‘́Øú7ZÿA¡É]d°ƠÙîœ#Đ4ƠŸ́ºƯ}M¡e÷Tưñj‡at6U›­{›#÷‡µqđ>FÈØâÅyXXÑÂ3†RfßïØ3t4q;ḉ~ö:í{y³düD릂nO<Ú´)™ª¸₫,GGâªØâ ctŸ¶rü¡Th6Åó‚SZhR¥Ëân¨ÏؓɜNÛ«¼ ’ _½dê<ä0B‹$'¤ư¶¼ă!ÇØ½ë+`z<Çiè¡fÇd÷L¸j\MßóR}„¦èŸ\Z,Đ 9•Ï™`Ô¿Ÿ̃ĐV‡#/„c>Ç)ñ₫(½&èZúÉk̀{"R åª÷tâÑtÓ̃Ó©á-zg ©iú À~ø@o)ăà“5₫ÍJ`˜¾ÙbÇ ¿Eœ¼Ăû8™óäïo [ÿKh0GƒE´ÄM.¡É9|–›¡Éˆ¦¦hLOpÓKhz¦Ÿåf–Đ̀Í<ËÍÎĐ ¢Ù)L¦'¸¹%47GsÏróKh~æçhé…>'HWˆ˜MuBQúzóß|EˆyS´Œg´^`GƠ₫Œ `*g” äJΡúÿ­LKh\m•åKÈ †4£9?¾øôùS endstream endobj 514 0 obj << /Length 557 /Filter /FlateDecode >> stream xÚ”QkÛ0Çßư)DdˆUN²¬1[Æ-´˜¾tyH7$ñ¤°}ûl%²GÜ#ët̉ưô÷dÉÖL²¯‰ ư§2¹*f…³XùĈ‚¬¼ÈY¹büRà8§™AÉ'÷†ï³÷ÔéIqÈ'4ø­+z“GåÆđ›é¼üN{dNè\wP:¢LD™Ê £Le"*¨¼‡ÊÇ©Ê#ÊF”í¡́8U6¢ˆ*z¨bœª"¢\D¹ÊSåΨë;_PbQw}m´AêödÏÔŒ̃pÚâ†å)}¦dâÛLÓaÂ/2Ơ(ªÏ„ :)q™VỤ́ Ɇ)ÄÿcºjôÀªÑjGZzÜÿF’1,7Ô- ' §yÈß–́zƠéöR8éÛOQJ T!¬|¦¥U!"÷x¿ñ₫•^Koyc<úCÈ«ŸäÙ­[×±™~hŒ•w*¾]¤Ệ?í Å-ªj×Îxú!ÀZ¥»R•¡¥%ÉÔ³¼ lÆQ$pAmÆ j¿¨={øù‡øoÿ¥L€ É€jAé„£€-·ÉK"¬C,³™:…ÇƠ·- û\'·ôœè§5Y`gxûkîGIö€\ )]ûƯ₫ø,­_;¥|G'H#Ư‰s|)÷U\óä“ĐÔ±ö‘Ó6ëơă&_|̣ªÖ{¨7!•G?Uïd¾•8æ¬@ªN¦@ m/†’û#́gŒ endstream endobj 511 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-036.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 518 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 519 0 R/F3 520 0 R>> /ExtGState << >>/ColorSpace << /sRGB 521 0 R >>>> /Length 2321 /Filter /FlateDecode >> stream xœ¥YM\Ç ¼Ï¯xÇä̉nöw_m$ (€µ ûø`ÈÎAĐ:ˆd#?,’ư3;v½IàL¿~ƠdU‘=¢ăÛƒÇ/ßñŸ¯/_}yÿ¯_.1Äÿ÷—¿^¾ú{æơÿ>¨ûBÿ̉˜z }yöPêñøtüåá·Ï¿øí÷Ï?}:₫óó/Ÿ₫z<~¼üí¯;ê ±=‡R\RèéHs†Ï¿?¿¾O2<éÄ[ zä4ĂÈ‚ç{Ztçoî́üđÍ?ùÓ^ÿ]₫ơăŸ/t|Ë>^H6Çÿ2\F*à& ẹáCÊ€₫ À_†Œ÷‰S‘¥…̀6OœENæŸßF‘8/L•²Ä|¾.Æ’“ÅF#ÛjLÈo5ú˜Bmnư˜(Ẵot˜å~ߨĂ“FÑz̃4˜eŸ' $íó¦>ì;©0úÎâH;Ÿ©óyÚÎwêMŸ·z î}× ñÈ»x^ë£ơFÜÚæ̃W_€Ïø(|J#†êø†óLÚ|L#k}Œ¯ÈÓÏ0âøÎbiÓbÑï¿â­—O— °6åÜ\drœ̣Â!H;ؽ€Í| V8µ$â“fÂ$µ̀¹¥°‚§è'Œơér³‚cf?Zå@n_ÄäÂ*èí¦êßp f™‚]A'h>Éæ̣s¹t s2¹ ´­àx‚2p’_ «ÏêQĐí般lĐJ»ÍŸ¤²Aƒ|­ë :ñV'èµb ô¦₫RĐæÏ»á¾{Ÿoư9ñ £ógzÈó5ù›ÏI²ºùθLOª‡œ@¦­—œM¦'ns4œ̃r:z̀æ_K¯Ù¨µồq#§wU戻ó ût~Âqö~ĂïëÙùă1ÿU¿b¼}:?cê×äüϧóĂLË_Ơ/Ó\Ï«Ÿr>çp~›¸ ̃¹îÔ}œ–¿Úú¨ưgíÇe±₫ ïă24rx8í3:¼œöLî<œö1Üy9íö¼æƒ½¥—¯h„\ùÄd‘]¾¹ß5_ô×́ê…xºz¢_NWoô×äøÀï/•O¼,%Ç7¦~í¸¼LÇW^Ö‹ă3\£ă;ÿc|4=đ₫Íù³êåu®Á˜w­®g!O¥æQ1¶k ¥hu®QÙ ¶?3R•™|»†­f5¤Ru(z häă®ƠÑv =wV t›n…Ar+Ø2JæçÏgf×÷đ׿iế„ơ6Ó\ñê3 *¥«LƒÜ.Ó¢‘åÏIŒ_®®«PÙË;¡ú3•‰Lư9Ưø3ƠŒ^rú3U¹&œ|¥jó¦ñ÷Ú6ß©1®¼ơ€“αơB­˜UOÔ*èxêZ—$-="N¯Ô†éIơLg‘±ơXơ¨~€¸9¿@\êöÄÑù öÏsû̃_óö+Ô²ÔígÀoóµøîl½m?ÄùÍ_“âe²­ù·#ŸCïæ· Vw~Lµ¬ùÛâ´üƠÖGí?k¿b₫µ̃W:üÆiºyŸJ^ưAÏĂ×mó_=o!ÍïÊG‰k¾Ö|å ;ŸyÍ›–o­>Z)ºz!n®—æê₫:ø}Ưó…ñôäøÄxÇt|ăóé}ÊøXÊz^ùZlJ[|.Cëụ=.>H­îZ/¯r ©qüƒQ_b"[S¦ø©Ó Û<¡éH±GQê_l×hkèĐ©$¥Wư ÆÈ0"+¥9Đ`Ư¼Íy®Ă.zÏ̃£(*Óœ?¯硲uÎ×€†‹®NXnn*²́› ñ¨¯n*”åµ 7OÛŸyn%Wp­X7"»¾=<€“4M `j˜¼¢´)1,̀S`1 ,Ä xñ{a—f¯?Xu@B¢Ñ£­ñ@)dl”Iº»^ ÓÔwj´É1qÚÚb’ßßO–/—Iñà„]~»S<£5³€ĂȆdÁ'ühj2"=+ĐºÛÙªˆí °́ät2ư¯c'ÀÇÍï0–AÍ@+ƒ!¾r_e/]–AÍ0ß‘,ƒZ¾UYµB£¯ jùÊmx´Â|Oë~¤ÛWîë?7Cß¡¬E®Ir#¾ 1/⦗ÊRô5ª½§½{&uñSLw{.\̣Î$¸Å:_"8à9“áè·Ööl¶HI]ă¤bÁ€«³Äu4Ù V¸ Do6j1Œ(ó&ơºˆQ¥7r¡º—ë®ÈM…ONă$̃”̃0ÑĐồK¿Aóú¹ˆÄM%WÎk‚pWYD)r Â]ĂfwLÄ¥-1>+NñÙ§Ǿ §¸Á)&C˜êú5HOj[â•&Ψ‰U2`̉;3ä¤&t̉’ _I©”kéï–TĐIC*¼¥p‡ú¾æ'MW?Jz1!¡·<ë¸ :Ój_{zT÷©ŸÅ"¦Ü:ïPï̀"ùbêsng“›·‚›ùœúâ m"ठêÅXmúÏq̉O’®Ú¶g9©ˆ§¡¥Y¡¤b[:ê‰{-‰:Æm)‰§RÏWë¤%Lư$x¶“x:xZ]ófoÛơ·˜l‡9v)Ư‰Ë\?.ª™ëŸb3×ơº¯ÅÓ•ƠơăØæ"×½x•A¹Ègçúú+åv}-ƒê¯\nË z8 ]œëă?8Öàx}‘¿®ù]ê«ëc¡ûÔ×—ËÁÚÓ£ºÛÌơṇ̃r¯“˜ë₫KÇ,s}âÉnqCưï.ÿ¤›ă€ endstream endobj 523 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 531 0 obj << /Length 2629 /Filter /FlateDecode >> stream xÚXÛ’ÛÆ}×W°?€©%·óĂUÖ«a Ç%Óô7tæ$ëo¹û@ưëÛ+A›‰ †$đ!Ëh· Yáª=%± µ6¶L&ÈtÈ₫ºcxÛ°×v0’íÚăû¦Ÿ/¬ª–Ư 2[gjרÙBÛ:¹È»?*v–Úz]&62qÊECùˆP[æ³ùÂÙ”Æ,€ÑäÓ<«Q¸&;R÷µ ‰Úw-ai»£E¿̣0¸©:1 ööYŸ¤G°ù’¸:l:Râ )¦fÛ«7̃½z2û 2' — ̀º¾6óEh‡\ÇÛ÷₫nP+:£ßđ ¼̉‰Ơ”›Í¦TGƯLP! _y§L]‘½K¼”¬{¸e³½Éœ6•˜Í0ö’!ƒ‘Q¨Ñ+â~ĂíË~C‚Pà#2©o%®–ʺV“¼’'ƒ²¡«g»a tÂ}K;ßƯîWü¤³zˆ{5:e}”àÓz^¤&<«© àW"#^Z‘K·üA7D?‡›2¹[̣زt´™2Ù·E·¥P%ÍKôH™Ä|Sµ`ª–à~SŒGP — ¡b0̃ỮÊö"FÇ6Γ/±uShºĂäÅáÙØ-ptè)°éX‡Æcy/êÊŸNLÔn/éÆ%¤Çyf FË•FÏÍÄ[m8‘d”íGr¶%ƒÑ.ëâùîˆ×Q’ÿœk¯ƠS†b¢”üeµª¶rJØdà <öäyÄ‘KœiĐ˜Đï’Û9²Áú–ŸWç ç¹ứœÛLđ… ­±|n¿Ííw4á ô=öú‡ó‡'/KJEIArœ`i)!­§ºDTn×t¸KEgN¾x”›¹Á¹™V½A!««ïû!ï,¿Hט‡¼ÿ{;åàKé‘,ïRàøëDÔ!!Đ{¶][ P̉ç₫ŒzóQLt‡Ú¤ßî,KÜÛL÷ÔqÏ̀GÇ ¥HÇ Ôï‘w]ö¬™zø TîHÙ|¯|~½¦}~9´Œ¬ÜI».´j̣Îä0ºqÚ'[}¿â…<'£-̣ûÛ-©ñ”’ ‡È/â KÛ*L.æƠDÂXÏ~à$uÂTTiÅ>ńxă5ßX³È]Á@øØ¤üh†4ëdÄÇ÷€ i~³₫\\œ·y‡Â`MF? 9í°Üè®l#yß Æ3·ú¡…§h‹̉Zh¼Gºë–ëV¸>èP½é8sóJBîv9]ÉÓhÖ}-Wÿ|‘Of¢ü‚€“k4²LÅ»đ€¥¦¶s2@Ö¯u)₫Ob4¬P´U„Ç“hO}:EÁ|O‰¢8œ- ™úƯ@‘RPVªj¿Àç̣ÇîG}.?÷í–lÜ~ûüêÆ¸‰#ÎQơíñI%¨3.TïûK¬¥coZ7F±̀'ùŸ—ûÙđ#û̀e¾åJ¦¼ÆØ¾Ụ̂ùÚÔMj&~´£ €Ú¢±ÁH—UˆĐQW°„?ér³¸èljúp3Öîec" 磗£à\ÂT¹H¤Âđ°"³®ï˧C‚ßkävg[CóíZÆ]©z 误ÀƯ÷± c5m¾TÓn¢98ÍNf¥c(NÀ,jNä|…;÷á=₫ù¼£c8²áLư%́̃‚Ơđ±¢Ûw[†Ô ”ßkÄư^ ]¾#ê‰4/nÖ ë,3âù~ýv+ Ÿyà# ‡ƒ|ư¤à~»ú•¿®-b¬c°µ9›O˜3ßÉIÛ&«æ(¦^å«lZˆ Ù ²Ư€Ø,$Ó̉¹N:AĂï{\½(†¸ñÑi¦‚è‘̀ˆnp¢bªM„käHS£‚X<€ 4Ê’¨ÑT· u‚á V«£ÏÇÓṽ6HWGûđ¢E¯ä)6O$QăsB¯­”Pb™æ„eP…m z` %ă¢¸ĐFÍ1q´O 46:ùp@°‰£‚¤bÑÀÉ]6B"OçëÜÂq>̉ÁrÔĐY¡F+2‹w)‹VX`Qû! »)z Gç«®WÀrRDo’drî»<ưo$âr-́8â< ªh£ƯT·À̉öyŒüù9  ˜¼–`²’'ᙨI¬äÍ1º<× ́±SEΔn'!̃4«µ›†8¨QâEˆ„PöÆ(vÈÔ9¾Àư×l2-%ƒ(î1đ¬7S9`ă²™oH}ƒºĂ+ ;‡œ&±§B‰dưKá;|‘ëvƒ æ»ÇBDèQÉ‹ç%ĂUˆa0·á̉'@•NE„(|7©èṕe¸fϱl+q Pà $;Bˆ°áx°®:Tœ\Ô||S±ÎÏ2ÅåÄ&ÍN×¼¸x̣—sn endstream endobj 536 0 obj << /Length 401 /Filter /FlateDecode >> stream xÚ…RMOĂ0 ½÷Wä˜H4kô‹Û Á ©7Ä!íº®R·@?˜ø÷ØIÊÆ8 *®c??;/‰HK"̣Dÿü؈"¤â©"q¦x–(R‚€g…”¹\¸6µ”ùÀêé ¹7Á |K.ôœáé]¬6"!"âETRîH!x '‚Ç*&å–¼̉ ´ƒƠÎ؆…JJ*Ô- S¥èÚí+D́`ézkÑïg°“g1G—±(t•u÷gêrÏâœÚfăä*~r…«ødIJơà)uƠŸïà¦kƒ0œ…™J躷A‹êüD6?º¦̃º 4}+ŸA:'ªpRhÊ4§mcGÂ₫ºÇPvutŒ˜ëʉüƯ„gûb¹¢7Î̉ËĂ#ÚJŒªu[0óO‡ÜwÀ¹Íà†Æ.º® ¢È;ùY–,wăüÚVYzDŸïĂ3U ̃ŒÂ׉᮱Զÿ•dê$NœÓ‚ÀătX%cÚbG3ă­Œ‹₫> /ExtGState << >>/ColorSpace << /sRGB 541 0 R >>>> /Length 2707 /Filter /FlateDecode >> stream xœ•Y˹¼×WÔqÆÀÖ2ùæukÁ¯ơ ¼a²4$¨¥ơH‚í¿wD&YÅnpÏA£Éiv1˜ŒŒ ²d}±Êúaư×̣ ₫ưt¿üøåï?ÿ´¾₫²¸Í9·Î?¿¼₫´üø<`üưÛUâÖ?°Kó›/k”¼IYïOëÍ_Oï^Ư®÷–?̃sµl̃Ù(eËøÏFë¯ë§« øÁ_@ĐØû¸Å¶†Ø¶\ÂƯ篟^?|0l‚gwß™àîÙ_đ×’Ö//[Ưúf‘ơ₫}XDçøóâ½l!âùi eÍAgÆzWp§øÿ@¬7­Áµ-*À—7ÿ¸]«[o>¿~ơÏÛ¹¸ùöñƠăíúCÀ¯ÿ½ưm½AØ^ÚÖ2¾¶ÚÖœ¶’Ÿ8³«LÏe«qOÍö́óé÷_ß₫4ä1EÊè·(k« ¸F!¼G’¼Îôüưă—¯ÛŸ¾~}xÜ7“ ĂÜÖüZÜÚSW”¶˜V©¡¯èåÍóÛ•iûü Lø¥ÏÙƒ_û§o¾yunNŒ ‰«à‘A#É&QÙ¯0î¾½}û₫?6ÛĂ4—o[@ …­Œesá‰S(Á̉fS-đ¿ư i½y?O+ióum™”+iÿôYc^³ÛbøÎ¤??~₫öûÙd¨ ”øÍ-·O"Ôii–¡“ưÍæyxó₫ƯăĂY6Ă& &Øêׄ̀>‘¦¡Ï×B)M僜¡%ºoÂB;iŒºơ-ƯGÄqkqæ—- r)¢19°S5÷yÎoµh́™àâV¼ÆbŸg®qE¹Ä…;͸nƒ"Æ´Œ ÙFÁ4Œ‹ @¨’â©‘ Ÿ)‰«Åö}Ù¢Ó¸è|à³ï{‹Q÷ÑtJñ̀':T¼àQ+OôùØjÎúI6EL®l¼·ñBù²ø}k[Uü‰ˆË–Z?Ç6ŒÏ…ùÆc̉c½u4ù0=iiaZQÂÇ# Hë×# eZ/Zªûz}ÉcưÏr’#__sS>=ëË‘oi-ß¶ŒS<ö‹qöÇ~2÷›ÏËáàçëû­|![Ÿñ‰ø%|ó€Y?ùyuÔ௰r™ø X¶ï€á́s«L]zù¸\U€̃+ç5c~›™÷ Ä̉hE!§5„¼%0ĐËG”x€đ:p=8)X6ç„¥4A8É₫‚]=-#.§¤X³~-êj¸\¨ÓZŒ×‘}„¨Ëª̣é¨SS%€N”¢…Y\GíYD® {IÔg#tUÎj/·kQ3W¢|đm ö3jÀeơEµŒÉª¢ÖBU¾dp̃ø…Çöu¹ÎĐ¼¹DÅ<±PJđÏ›vm®…U&ÉÏyêÂG‘ó¨yæ:2ׂF…̉¹¦«Hª']Y½/‹ơ(;ú„åüó…ùàÙ4á M…¤ô¦â/›đ±SSˆXœŒ>ºLME0̀MMEÚ^ÔZÄ•©©x'c¼‰v"OMţ鸩©ĐGu‘²-D’6‰â:‹”Sí;DŒñÔTŸ‰ ¾o"ƠEó•©©O]Y4 •.ÂlyiZ69D\PR‘4e™´06 ir4|Qç8sYÇx,;MME°l?5AQ¸©É ›ÆÔT„%1­GđŸŸ°)È‘Á4qj*Boœ| J(MM…±›äz¶_Œ» Đưäx?5ÆÍ|à|uj*Ä禦"XVœ́M°óëmSS,Ăhç3`÷ñÆwK˜P簾̉ëåÊ$9pz ußk*ºơd„hSÆf.»dP¦¼JÚ“j"Oëb—ç¤UtWNËÅ•o©VÅW¡†‹%˜ dÊPÇ6£¦ÓíºY,Ü ‘¢öÚ,<µ³̉kATÀ—‹ûç L¼6×lDäß,ÏQÎr-º¦ä:&Jcª́–kÊ9₫’¸œ“ö¤TbVS§ú¬₫™3 åÈơùˆ…~₫TĐ¯âƠMÅ$º*OT¡Ă¥B³n&†”IŸ«6²ÎH‚YTc;~Æt'm†t‡IÛ¨Œ^iHH¨S%̉6LÊ,P̣8)³8åñQé.˜EJÀxV ÄaRf>¯NỀ¸+·)Ñ̃IL©ĐhÊ$dÔƯI—ydÙ‰“*³*†è‚hèy2i,ÖW'IÆ̣̉¤ÈØekp}°‡ }±OrLLjL± Hü1LK(ă¼d ¤’NJœËX¯¦'çn–-{9ơ¶dÉEh*m¹G8o B?ipNg‹'ûI1oÿ®̉ú&ưÈn”RE†W½`ÚéHs4i/Ö'éÅḄ¤¼Xˆúâ³2¸Öª%ر­Ùw)Èg₫§êZcA‚«Ư§®³é­ÚIOuÊÖ¤}\5·ó¿&tà|„jrqZ?₫z#©Èf­C¼̣%b¡Å6Ä(|íy \WQœ;{»€s]Êîµ7-ƒFå¦:ÑÛ»®W¬/̃:À½+é/2¦»8^̃(ÂZUæÅˆÅÓ*3–ëe€ùKíüÖ¡„tcy°”[PĐQ©^¬4…§_Ú)è₫dº*‘bפ‰/“NËÅÄ̃bg×^W†J³Ô‘!×C¿Ô¸°ä•Ÿ¢ÛUÓBÔEo“<<«çeÊxŸr\•°±/>G̉æ´\ŒXøp½,tFäëRTÜæsON³ê:¯RP«æZïù¼T5 ëÊæA¸¦¹îogs&ª^_±yËơÙÄ]‡¯CÜƠÉ&ó¹ç° ½ÂTAæS ¦“Ñx›3  Jă\sZ.F́ŸÛ¹èJỒ̃ŵÔqÆÔ\gSReOI<÷½êVLÚ½$©lŸÖñ^h:÷°Ụ̀/‘BrZ.F,Üú}£^Ÿ_ÇO¿%^MsGƯf^ódEíeˆ­GÍ<ªQßuˆ=×öZivi'‡}8-#”A †à¨©=æZÔ1œùÊ'Ñ̃Q́z˜1Ù-;dèßKצbri\ÔªÇ÷ø¡úá:´…j™”§mDºØíˆ7´…Ü…ơ-ˆÂ3ˆ–Äiíï·&—&™ï(½¾2:-çŸ+ehvÙÿ»å—åà®V endstream endobj 543 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 546 0 obj << /Length 1663 /Filter /FlateDecode >> stream xÚ•XKoÛF¾çWè(%»ïäĐ ZøÀ†sh{p-ÚàØ,É¿ï|³‘ÔJQZäî̀7ov¸bñ°‹OoD¾₫qưæ÷ ©ƠÂ÷Ñ ¹¸¾_DÙúç‚[\¯//ä™\_ 4>mûty₫úÆÇaKăúù鬓6ª¥è Ư ƒÑ ÖYM·tÓ‹@£WF­ MN.MïpoT¤KiºÆt‹é̉à¹:Ètgÿ^ÿEx»Øg2,Xk7/Û.— h;lh|9딳–@Ñ“Œ̀Bº̀¸z ˜$¿¶ŒK-=V(Ẳ˜.¬b Àä5\ÑI=e' i|Ưô—t¶5l ơË3 ­^F®±Â‡`_hPàucMvCs M„³X.̉ ‹çZâ‰̣.¡]vơJăưưú;p1I©fk¶3Œƒç `ê 3Ëo0ʈỸ¦€Ûk¬02âơĐñë–«óK Ư¦˜ơœc›ơ0_JÅmqücï¹ Í`…eTRH[⇉ZhÎPöP;©ÔgLX­j€‹Œ÷TÂ7ƶÎ'Á9œg'h—“[ơ<˸œw#Æ9\bÊl}g>a|~ưvÖil¡Z䉶@‘¸×Vq¨D†¢™gÂ0NʧÏ$FÅ)&ÓpÉ !H„}î–9­ÇĐ,̃:S`ù±cDÂÔ(àÖ •.©l¥Æ ¦*]L>•‚C¬´®*]¼‹9>²G̉¨”Œ!© -+ơN¥bÀèÍT¥f4J…¬2đăhư(̣Ü„#D •‚UJײ̉LUZÅu/‘¯¨ô8Tж†ÏơQ+¹‚‰§¶‘YÅJ»S‰(ÑJ1VéØJ¯c̀*«Ô\%cñHè=ç¶Ç;•¬-+ƯN%× Ñù‰cm¢¶đ±:>Œ’«‘̀©¦Y@pÊU₫Èf,ư4}LÄ/ªJÅ+ñPZ¡²J‘ÂÆ”ƠªfldJ1èLYÙ²2L­\i‚µûVRU“ƠJ¦1×Ñ £*¡˜Q9}$‰S•VrÙơfR˜ ¿̉ÔX2LÚtó\ÇƠJ.mYeµR†>ª˜tæ&€Ç;F§½¬OŸèr—w”åÛbºTnQºÁ&ywû¶ÊÇ[Ô·49¹¼A­«o°%üHb̃Bb×% Ÿ”&…Æ{M WÎ+F9kcĐC`Æqe‹È*è¬ă  …ÙûTĂùÉ|Ù´¡4©¡i5J*³¼à a3ÖÂ7_°|³:5 ¥ ñ;”̣̃ăé¨C Ü,èî±­³œư2}Ïf­Ç̣ú%#-›2Ö5÷ö¶êăV·°îöṼæÇ1½;É›“VyÇ–›3ïK̉êVJđ‹BD¬†];¥̉!Â\ÈóŸA>̉ƯψóÈ­íAầtÙ_iÙ[Êï÷,P燿NjÄ3•æxö©TŒS‡k6×Ä'jư}øe3Nj’[Ô:¦JŸ́:Û­ïçaüGX–VŸfÁ¬™=H¸yN5aïÚÓ#{ŸÄ͉Ùhjçyó|G³flÛy3KlmU Œz†±Í³Œ÷}úwljxm&/ÖL–½öà̃«FỖñâù•3í8«¦öw+Q)Ö°¨6Ííˆ3£¸ªLHIßÀ^;ÂI²M©´úđƠ@[À#\Érç;ÖÛưt7ªX[ó ÙôJ«i÷g̣u‹tªæ¿+g ¨GX³!1:ê4G×, ”&$ †¡ù‚~è@Xè÷àă—üè+@̉´GËËđÿ!_·y₫;†Â"dA4>­¢oü̃º8…tÅ@údÔG¦d~½¥`Â']]5 ¡äîG/9̉Ó¢§»œré,°=K¤~”­¼m.9©ÙSÜÆ¨RGà“Wl­·ØÁI©¡>>\¦Ẳ¨¼Ñọ́ôăÄÆ‡ uM~¸ÿ€@Ơ 7O“³>5sJf{)+ă¬Ï¦ñÛăP’é´NÉđι0¬7œ;“ẓRÍwü£Ó™ ô͆"×\s’li4~ÚBgü}ÆŸÊŸ¿Ô"»vü‰›Ơ­·å (…Óp@f]Â.é#ÛÇ|ä'un¯s?ÉtŸƯ>/ƯWlùzÙ̀gj!̣wyqûå5'…> stream xÚåZYoÉ~ç¯èGû!}W c[w $YĂ6M=Œ†#ídɇ.¼ÿ>_ %{¨R¬¨¹ª««¾:»[̃f¡…·^X„7YØÈÏF8CÂ;‡w×(HG\“ÎăE4xöZ$ :oD²4ñ„ÑdÀ@ă&3+Œ™÷^‹ñ̃a3ö7\ÄüÚh(`8OH &Çh&¢0‰2̃$a²eŒĹ}Öæc…uâ’Ă 3ôĐÇeĐ¼ñ ĂÁƯ AU—'‘¯ âŒNl"H²mtÂiĐÆŒ«‡4€ÆéŒ bs⟜Á ŸŸYHœ¬pÙ€¹ –ù%áTóĂSæ7$\2>a^m1<àgXÏ€Ÿå¹ăËÆañ)„I/¬̣‘µÀC L§œ±É`™Y>Ö=Í`Ab$È)|!“™„Y¯'¤µ  +ï!"‘aÛ{A¿k° Áƒ€` F4~Œi0ÈÄ̀µĐabđ 8è̃ƒ‚ûÁX 7́O–XØ~ÇN,’D¸±¸¯@j`!(²q‚kBL^QĂ:PDD Đ L£ăQ@.2†áb` á’wpP¼IĐÈÀ€1‡_§ Î i†`̉d (á—, ǴóÉô}dx‹bÎQ¤ÀhÀ½Śç̣¸‰Œ'& “W¯&êÓïŸ+¡₫Ü”í´nn&êM±¬î„ú{Ư¼n–ơ·Ïçơơuµ¨²Z ¸€×Íj)rPÿ^µ]5«®;5m»Yµ\ÖêfQüV©¢\u•*ëE¹_Ϫ/ª«gÓJÍ‹rÑ6êjQC²¬NMkL±¬—J6m7­®Ơs«²Ö³Yñơå/«æ¦X¬æ³bƠ©ö¦mª_UY0¿å碬.'ßßkx..<́¦Å¡~₫Ç?EÖ2iĂ‘́ŸÍj6ÛJk’“ˆÄ+ɈØ̃ ~Û6xơJ¨·6·0w?î­á„aúPªŸºúWU®)ßÍ7°̣Ư·÷‹¶üXu€R½?+Ô§êK'¾N°¶Íû⦨3Ll–Èbư<ơ¡Z¶«‚[ÿꯀ¨xÓ~/\2f{‰i ˜¬]?óû³EUtuÛœ]%^œgµ‰ˆd’NZ¿»vºơÛ§/>ˆÅç_êr)~ZuŸWƯË^©éª¬üƠI’L̃ÏỢ«—›Ú1ˆơquƠơü̉LÔß9³ḱV?V³ßª®.‹ÉWwí“ư@£=XºY₫éM;›>̀÷B½;;ă!SN}üọ̈’Ç̃3¤5‘$§ßÇ ¤poÜI‘ƒ¼w?r¼;&rX[ï÷Cf , îaeч̀XŸ|>êu§è=FbY.ÿHỤ̀Ód‡ƒù†!߿ϯÚÙưÜôsÊ-k {ï€ö—ºùÚ¶‹iµèW_ªƠ;uvaúvu$„ çôÜÁY#z~G×~= e {Ư‡ÜG¡~h?µû⺾Y-*ìK·A “̃?Å iM´2£Y°̃ˈ~LÔßKq¼€H'¥„0n‚=6%Ü úHFĂBEb±…ơ@æ]ÊR£·µÖI´â;fï-P—6hMOrQ¼Åfèø̀:Æ7M¶iÍcmíÈFQ[†¢Ùˆ Ú5Öj!îé¼W¤wƠzH†Å zC§AÇÑsíy“{ªöï°.%ÿÜz̃©­ÉQjBÏKFZ,¶ÅÔÎ`‘văI±’̉(VRØ/V²•€u9â ₫è´’ …”„L}̣ (ç¼)ep͘! œ{¬eƯUrY͇á4!Œ2øQK̃Ù{j)6«£ơ]ïÎy™3̣'A*„‹QÆ””b¹ºZb0̉™´rÔפ¸¿oĐ̃–H¥K{‘zTSv¦ÿîđ£Â{³9?XQ6—†–=­ˆd7 Œl Œ Ù¼ü¨°”æGë:.˜™Öơ€„¸A»v̉QZ4~ûá²mG`„̉Ö&cĂ‘ôxmó‘̣nöiβk›ä(íF;!¼i~¬v~o÷ؤƯÑ‹o¡ơ!È”́}ûÖl²+% oÆ7oAæ"I>485ú!¦̀hqʧ&ûÀÂ?¬.ÖÇ ̃ÅøºxZ'ÊgÔœه`ƒ–/‡̣Ùï`S:±?ĐáóéáiÙÛjÙ|P}ëđé6ÚéV>£\_ăcn₫¸`%T¨â¬²Œè‚A{›ó®ÍŸü˜­~–Üù襃‚VkøÄ:E‰b{«?/§mS̀¦ßuƯăIcu‘́7iœ–ÜÿLûrX|ñÿ) [³ uƒK-ëk©mع=çï­=ø |ïàÛ ½m B’üûĐa¹föZ{l¶{wÖ»sY’=>é§Z–ĐƯ¾ë ïx±*UÑüÿTEÿDUÑ?Xư³«̀­ñIZ₫ç¦à‘¯Íq{[Uå¤ă ̣ăXñÇÊ5₫¹ endstream endobj 553 0 obj << /Length 2178 /Filter /FlateDecode >> stream xÚ•X[oÛ8~ϯđĂ>(ƒZË«(nŔ Ưí6Aû0»J,;;#Û½a~üó‘ÔÅ–“6@h‰"Ïư|<‡b²˜ˆÉÛ3»9ûû¥ÔjârǛ'^æ%=e1¹™M₫ÈüùÔj)²«s™Ơ»MNăÛfCă₫ñ|ª k3A/¹U~¼U4êó©”E©†ß̉O³ÙÓøºÙË)=O§áeq₫¿›ßI°©ÏMa)Χƹ2»”¿Đ̉ëzMăă]½w“‰Ü”4áÊ‚ù;b­”TƯâ;æ¾ÁˆöxÚÈSOe\äùqĂû«[{U5ß:¦4a•¦Qé¨ïÑj¿¨zIÏC̃I_E„¬WC}ó7lí‡ÇŒ¹¤q³î[̃đhŒåRß å²k^»fĂÓî6ùªfZK&µ₫!™’=tTùR±L—KÖj»Ëû®í\Á>ˆˆ’2B”e·‡Æ«z·4Ûà„—SH…àà5Œ‰. 2 ˆü *íj¼|b»43f”ŒĂü¬°¢ 5œ/H „n“Æô§ 9Û°µ…X>Êu½ŸÓ8_~×¹H{­ø¥àuÆÀGû9oY~­ÎẸ‰₫¥oÓAĂz,{éáX|§.ù¤ƯĂâ]Ă„Ëq!ô¡Iy—’B¼¯Ùöˬ{Ük^”<Ê2%g»¸>™œzTq¢ eiÇ%D¢—̀œ<@ªê)4ơ¼Ũ'CÖ²UUẨs€!±à§z4=ªc­)l3Ơ1ܵv¥Ø¶ÙGλÆÛ=£đªóè«À} ¤5TmúÖºs&3- ëI  =€T' &̣›FôW­(¦Ų±KÉÉ]"=ܵ$daĐ<À§#³Ÿ¥Cè–»m¹k9eàC*ÅÊf|JÀ„—O¬V3ÛxâY,‘Æ´̉­4–­àl1}¿n±%`â¨zø3b÷–Víº¸C2.j»ÊßĂ #»ŸM‹–{ÙiÊ -`}ëc˜đ¡8&‘ç!ÜŒ¨Úcí;fp¯3p5Q*|<:®O,Ñ•‘Q—Âf’W ú ?\hÏPøØ‰'k åŸ#© 9zÜiñIưÉQ@G‘p‚¤³JQYx́N”T»Ú‰¹µ+ÑU”—*Èx«éĐĐ:cOÜs„|à©í†a’p?pi•o†û"™Íº{uœ8T{ÀÓœ·áÛ-¦ëQIöåÏ«¬ZwkF¹å”èk§¼"Ư ̉Úm#«‡1K(•—Z§¥ÄO•бZåa}é'Ræ̃ZÅëéDµ9•ô`sẾ°c?ç°”Êd\̉đ¹̣À6Z/×äí Máç~‰tæÍƯ9¹ë—á Zñ ƒ­S{Â….×±ùxM; Ưz,pàá­‰iœc̀¡P‡®„i:Y¸8ö?M1,T;ˆwØuv~a6Ơ6¼<²jlñÏ Îl¶«P̃óç9°ŸM3 ·lóo÷É­B÷5ÖrAØä+ŸÑµ H5b%­rJ¶´…9ïÑ "˜Ø₫W,q&.¦È='·3¡œ#t öA5ú~&‰ª˜4‹Ixøđöḷ¹HÏßSëH»ˆ:CRÎÍ’În‚X»I>x ar~“ª8d¨Vßàt¦áØuxæWB÷¥ÜÁ 2{ƒRÏǤ6&¥{&b\H5àƠc̀ƒ±ëđ9̀G}¢„8âÅdKÖëU\‚̀]W‰ÛgN:$Oi2FÅRÇ.£Ơ"º ë¸<’¸̀’í ¢*ûÈá!ƒˆïVèqm£Y|^Äß]\ÿk"1?¼­3dS5´í;€ừủ›{@̉Ÿû*Ä *©_Ñ“Z%Ë!}ïë¬×Ù?æacX£Đl ~nXWŒ58Ù·B¦´–Éâ²Eh¶@pñàGʽ×ÿ^ơQ®gr‰®Bù·‘=\[z°4ƯhëÊ?¯¢5₫…ÎëeẸ̀{<5˜̀´DK6ü¾ZÁܼ]Iêª̣¾" )®‚$Æ@â?¼7-đ;öîlY…†W;é²wu:Âx§F 8Ü–ñª¯y€esíƠ@ù)®1<.Hªà+¦>©0EêPø̀Ù–Ñ4Êh4́Søà< YⶬŒP“ í~QàîM×3ơ‡)ÂUf´3ü|Úˆư±ÀuÇfûáU³ÄmĪkÍ,u„¶}GPÿ3-·ÜµÄ›Ïî:ap…ÂyÁâơ­‰ˆ)œ * ‡0%%r­?c¦J‰¶³G½Èøqƒ¢÷€™.‘Whs׸j8¸ñX§‹¼±Ûˆ®oÿ¡‹‚¾H}…ËpMÑWÅi\öA»₫6F…K(Ú×÷½=Ÿ³û¾¶~W'îpSxtGˆ»¼«“Mrg_!ƒP-¢ n¿») w V\Ă`¢2-?Œâ÷Ê uÛz±ÅQÙÅà*•íĂ½À9²₫ïê²×»Yÿ Tkbn}>£„܇ó̃7ñØxơ=|ÿ+Á[}Ö 09W!„(„A3Ürqsö0^é¶ endstream endobj 557 0 obj << /Length 366 /Filter /FlateDecode >> stream xÚ…RËnƒ0¼ó>Ú/˜‡{¬Úôq«Ä­êÁ%„ &†&j₫¾»¶i¨r¨kØÏGV¬e=D꟰* R-sÍ’¼¦0¬̃EŸ‘,L–0ûtĐ´-4O;ÈØ]½à3aqĐŒg¢·U´X"”4Ê«Ö̀€,°Dk©ó‚U+öÊ—x‡o{<`mDœ&%‡́FÄŹ\øÁ\‹¤à›°£¶[bÜîñÏnÏXGÂFßî×^́ {›‹vµXƯ´‘ ~ÁŒ_N"˹ØÙw¬Û c /ưosç»G#O¤Ơúºrkó½!lèÖÍ$í³x«1> OfÚø8,±Z‡w“q’¦xxđ¢øílr¢É«àÁùñ×ypl·ØÎEÀÇé iÂë^Ĩ8[{»^Éí¼‡¹ `²ÑxƯq0Øâÿp ·¤ ®n*KT) ÷  ”x]|6:ùĂ¾¯¢Äz®ư endstream endobj 550 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-039.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 560 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 561 0 R/F3 562 0 R>> /ExtGState << >>/ColorSpace << /sRGB 563 0 R >>>> /Length 2451 /Filter /FlateDecode >> stream xœ•YËn\¹Ü÷Wp)-†Ă÷c;F<€‘×DBfà±ۆ KH6’ü}ªŸ­A÷¶.ïåáaª"mƠeƠgơÏĂ/øóÓíáǧ¿ưü“zÿt0Ú£ö¿Ÿ̃?~|í1₫ö£²A÷í¯Ûê´Ë*ؤmV·÷êê/÷ÇOï®ƠíçĂn9‡ÊÚ™öW°Y'üc<£Ç£úU=œ•‚ë)¸g)HœŒ.^ùPu*’ÁÍñáÛñáưñidѾÿêæ…ïß¼ú3~›£ú×áíoʨ«̃àÏ烕)₫tˆ™ßơ!jŸỤ2/Vă™ÿdÿÿÓ‹UG¼oª’̃Û«¿_«bÔƠ×÷ï₫q­Pˆ«ï_̃=^«<~üÏơoêö “Iăµ*U¥¨sºl̃tqÊ¥¬K˜eѯ¾̃ÿ₫åøíîëĂ(¯ºŒs:XU‹΃úD¼ïP'ó¼¾{|ú¦ÿxüöíø8· z] F]ÊFûzáj¬Îx¥ø¾·W¯¯ öơ;J‡®úŒ=øµ?}üđ4+ꓘ$c'‚² ÛË’HE¼̣’ÄÍ÷ï₫Ưæ:®™°] eôYפBÖÆ_XS›5†‹–‰NwĂŸ~°Q]Ưm“F«“S5g9jë.“¡™‚aÊŸ¿~ÿ}M…7 ßÀ{9h{áfk(OƠX‚Lơ×6ËñĂƯ§Çă¾¤JlYÏ}ĂÏ₫Bh:4-àâJÖ!6lÚH—‚®^¹jÙY÷slÅr¼ú"q̀ˆßm±µˆ‹ÎVb¯CÅÆƒ}’ļqºd‰ñaö}ĐÙIlÚóÄe æÚầ²3.\™7…Â8ñĂä ´'ăÈñ ¥(ù°£’ÄỤÁ„Üâö>~¨g™üÛû®Å… ^’|æ32|Q»˜$?+ߟæYƾÅ4ĂØµñ–|ÅØ2W+?Ûb„« ‹öÜ0W#i®Å™ơvºÆ=6¤Ï5¾H™Ö÷Jä6®ùÀÙ¯|\AW„•¯C÷çm=.KÎơºœÆú¥dW½àn¶zº́I³̃.»^ï¶ŒcXûÅ8¹µŸŒ÷ưæ÷’_xà|}¿/̀§­¯á‰ùÛ´đærÑÅ.<ºbt ¯®`₫¼á¹„¾ïè3Kï¦Ç«_¾Îé?›L̃n%û5 ˆ sQ᜺·¼kBƒ[ä–øÏơ ³’}„ƒºEü&T÷‡g#iB́,꼤c^!m·¤Ë–µa}]ơ,#r>}ƒ=ËڳƓ˜¾êˆ¯ƒËZÖE²²‘,ʬOFȪ°gl½zvÖÀ}ÍWGÖá$k/›‰fbÖ…¨bs@%'ô]—"ẹ̈…í²Ơ¦@¡3 À$YŸÀó(€…HJƒŸWë@ÛhÑ+Ư¤ ee n̉’I²6)«@~\1Đŕ7H#¬`ơ$‡s~¸]äûĂésàăẠ̊¼Œ»¤°Ü¹K{&)²Ù$… [‹ơRÏ´ @³I­³¥¥…-(Ôn’‵>¾Q–6Iq³Iewj ²u£ Äe§(àÎm’"ñ&)ŒO(ï7êi¤…RíF±ŒF)‚íÚ)’Ú)W(œ`µeQ¼…$ÛMRlơCrD",(jJ ±@½ {Œ´6I‘†Ư$Å‚"Ư&)=a6‰³”ŒMR,đi¶ơÔn“›ƯX¿ÔĂ¢cÂ&)–v8®zÚT»Ä¶z36›¤Xtؾ_Œ»ưäx·I ăê8_Ù$…ù™MR,$(l’b§v!‰í̉M®'í–ëßZ82%wŒ"ăvơn=Ä[ ´Áɱ?Ù©Ư Ï,.œàØŸ;săø.pŒmÈxíŸé ́79{åMM@nf́³Ó­7Aưô"­ ¥ ›’`Ù~’:ú¸ó‚¡o¼›XèNØtÄ‚×íÎKˆ£Ùx‹ñÎkˆư¦#ü^Ùt„qיƛS÷¯BóF»T‰MExnÛDǺ°iö×S (`±›"Àg”M@ÀWqÓ4q“ă>ØŒ| d7ñWúM;( ~%‰F÷Ụ̂8Ûµ’÷7ƯHy¬WÊCJØT˜k"Ú‹°iJ«=Â}kºM1R<ÙX|Ùmzyû» ¨ßÔIv3#¢¶™86©€’¸M)Đ…a Í̉¦4§uÉDkƒól†™aÇ>Â:îÅc!Í WœéÛ}‘í¼†.·[aÙ=0ǃå°́×yYvÆ./ËîÁÙ/ËΘ7Ă²3ƋӲϸ[ö1~Xöñ½aÙÇ|Ă²|†eïùNË̃×3-{_ï´́½Ó²÷zMË̃ë9-{¯÷´́}?¦eïû5-{ßÏiÙû~OË̃ñ0-{ÇË´́OÓ²w¼MË>đ8,ûÀë°́ÏĂ²¼Ë>úaXöÓ~9³ưxå ùHëæẉ¹C¼¯âpï•çÚƯgnù€÷$<¦у{E-IQnúlă?—ŒQlÍĂ³ˆoEänï\ăE\ÎÏ,{ZY[~zr^Kú´r&#•#N;’µ•ËaÙŸ‡ÆóK,{¯5•è:̣?µæÿ€lµæM«{­­—[đYë~)ˤ[)Áo)®JÏKÛ¶‘i₫÷—Ă¯¨¿ endstream endobj 565 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 568 0 obj << /Length 1714 /Filter /FlateDecode >> stream xÚXKoÛF¾çWèhåvß É¡A´È¡€äĐôàØ´+ – Z’ßoäÚ+Y/-rwæ›×7C̣Ơí¯>½áùúÇÅ›ß7BÉ•cÁq±º¸YÁ|üÏz»º¸^ưsv»Y‹3±—îL°øCkW/D\Íz0Jœqº/5ñ¢Œ¥Mé¡Vz’!ƯăQˆ—ô;Đ*Ç!®Ü¯ÿ½ø+BÓV/4Ë¥fi YºÔL²ă-h– ÍA‘®Ẻ,YĐLĐỷ–ÍB³jlæ$Ú:è–­ÀÏŸÙ,Ư±Ü›-ù ¡J]Çæ )8wqƯ»«x׃vÎG}Đn™¤²•¤„›LîÔ>= mLĐj­½"Îñ2Ûñp|¹'—ߟ~ĐeúHí ä$Vp ä ö*H«́pÏàïq C dR̉dá Ïẵ`îăåî°Œûm\ïwëA˜ ’4épHM±̀ n9²˜—Îá$\£K„ÂÑî́Óó áßl§¸>îÙg ÙÓ:Å@IktñêCJQưcá/Τ…ÇVÔ<§OÊ7ÁÆTÿt³XîŸâ:±Ï„y¿ñă+ùgº& _èXäȈ&h&p$,y¥8ˆi˜@«Î̃$Œ̀ ¸̃ÁµôÑùÓM\o¶?Ç‚çPA·z®™*cP#‚8†§Úø[3ª9…ÊÅÔ†ª¸‡ ÷(¦‰!—(nÛqa0Rƒ·d*h <³–e„Á€ºB¦ Ae[j¨dÏ%„åï‘"²½Æ¶°5 ZKêÂFø’Ô¶†A)›hªfM@N{ïRú“|̣i¢ÂzzXJx›#D«qˆ–i l©t„Xziæ’’5©ô;€²cFê-Æ­ư×Ư‹ïHĂî–ÉœÜ ø ‰›Q¾Ëx<Ök½,ëCzơÓ´Tƒ_)ÔÓơă±Ö\«çEÚ?µåu¤åvkăä†"ÀrÓ6!8̉`kåĐÎn₫ưM¯çGZgƒöÓ>tDö÷‘`ß”eÛ$ÿLñºL½› [yfJG§O;|ñig(̉l¼fi„@ª("J#»â²•tPLâß7á́1ߺ#ñï?̣Süû-µäë>ï·N“Ơ72¢æc“cJ¹Ñ9p°dÓG‰¼»Œ‘$— åĐ"|…=nihÈov˜µ$+zÇ6‘‡g¬×d•(«D‡ÏX˜ƒ¯åk3FU%ª#F¡ô%‚W‰êDŒ:7"4äB‹´^å’ˆZLzµ\;|ƒ‹ö é´:k÷wÛKo¨0è%!éüBịŒ9³RJ’ ̉çº4bF½R¨Â¶qư>Ÿ9mT|"…Ô½d܇4\ÜK̃µé]V£ï2½‚#ûÀ徇‘¡%à†¬g÷{¼̀8›?R™̣#ÔƯéÄçOP̣Ô“ÚFoê™cƒ,v éÊë`[_0RåøGzđ:ƒ>§V³˜’J-áe/–2_Ť́7®ếÈ(f%8 <€Q$÷̀i³T`²P¦VÍ™o₫´Ó Ư endstream endobj 574 0 obj << /Length 2230 /Filter /FlateDecode >> stream xÚíÙÛF̣}¾BB L¦ïn.Çă`á†GIâ}Đè^HâD”2ưVU"¥v¢ lÀ10»Y÷ƠƠe6X ØàƠ ¿ß®¾¹áR lU[Æ£ù æ•ƒ7ằ`4üVp6,…Ѫ¸‘¯‡¼˜í÷øÜU·ô³ÂgKº`°¨¬ƒ's¢–œÁ&5À+øÙ5x̃GP5Ë$)ç,ü¸'R"GJä¤R}RR#)-¤dT®T Iq$ÅàŸÿm«…(¯-‚¬s ]n*!kOA…,ÆT4 ùàï,kđ÷‘± Û±Æ ï%Fü=Ë|» ß•Gæâằ_¿ơ‚fTn¼ sÊuÿ₫Ă skN¡ »ÿđ=Ơº ÇPB¼élMb¡E]¡€£«j8& âûĂü•v_,Q…ö÷  ̣màÍ.Øêù ´Î Uù=`PF):!Ö’É*oÈRZn)Tè(–íÈk“ ‚€w×ÁĂRFxB!À<ƒÆJd!ª S¦ª]XR'Á&‡3^›ëLP<–n©Plñ9¯¼₫è•fJü—ï€Kđ½ëø̃[ ôˆĐ×¹đP2B\_Åë%.*S›?¥äHäÁ|Êđ-¡¡‹'I•¡âÈt%é ”—‡CḲqr4B<Ơ<úHS}*i²¦Êyœ(Qôe "d*̉̉ΪƠQ í@5 /p ‹ö?·«P¡œ k <|–3|×Åh9®8ø†c~ëËÂáé8̃SƯ¤5eê₫,œ)†ÂH; /KBàô~úmKuÛvà°Äá"P§̣C5‘ÚÎ ̉Uy2^{ØMC´P²YØZù.Ixn뀧;Z1빬´ e“ê/R–Lv”…  ¤BË%đắ=©-1ơ_×øæ˜¾“ép}˜PÉç̃¢{ê»:„ÀØ(nÏô¹°Ṽ-„å]Ëd×·BC$¨¶M8ŸfäVtQ&$Ü ëƒÈï€î́ƒ…ÀÙ$I8©G^‚X$Æl6Ø-₫åí««Áo$-§ÔJ7S O§Ñ»¡ñà]MDO]AÓÔ÷E8+½\20öl̉˜ÂG/½NĐ·MLkĐă=^ïWÁ,ă}̉ϘéuÙ¥0§NÍ2ơ‡6H±]äad¥drıYÈ8€Û n|ÇBRj¸ƯBú!³— C‰¬ư.Y냛H±ê&*4ñ¡»¼§Ñ°Đ:Ư7́†Ü#æ,xSåX rÚ)8…¬xj”Í#JLGÇuƱ¢of~7æt.Ơéî¹öpç¦ÁƯiÀn'¤LóÜñ'Èmÿ'y$\UơEîƒ**¸‹ K_t|=s¾Œ3,pƯuY Ö%cUmM$»ÉùxèÛŒ=T’\1—5§̃¢çÎ~Ä~µ”̉1J–¸6Ø(áö¦‰e÷Ñ̃à9xÿEøi26e]€Îä°{˜»TØưƯÍ·¸€Á»÷¯1ù₫XáhÙ=_ºŸÇÛ,øÓ)̣:o¯*ÂĐ )Cÿ‡$6TzÓ₫3üg øåÓǽ © º”FkˆR=œ—£«ÿæƯ^ö endstream endobj 579 0 obj << /Length 2019 /Filter /FlateDecode >> stream xÚÍYKoÛF¾çWèR€*Lf\>‚¤@bØi‹ #9´=P)3‘DE¤́¸¿¾;%—í4·dq¹™oß̀Êb¶‰Ùë'‚¿_]=yz™å3)£Ü5»ªf¹Œ2!gI–̀®V³¿3—A”ÏC)U\´vÔƠö϶€'û©wëy¨Ó8x o˵ư[Đ‹c ƯôÅå\*¼¤QƠØ©ÍÆ₫iæZ·s­‚rs&XÀ›;Zw»»ëŸ«ßŸ^J3“"ÊE.AS1 UiÖóêÚVÎĂXæAuÁK§a³ăíBûû“$ÊÓØƒûA¡-!!ƒ÷<̃N‰7"̉"wÛ—Ív®²`a[Kª,æVÉ =®éM±£o8øë̀V8€È¿î¼Yv4évÚW°üü¢@àmèơ$Zetd¤zîD•E&“nË™•“IÑÖhƠY¨ó<̉i2 ¥çlTsCjm†]0L‚€ĂçĐà_†Stå¤̣Rؽ¯ÚÇü¢„ à̃/`Å#X- 2Ư U±[Ñ~®ÿe÷¨m‚Hm ­ój ù€^ÑW «đà<VÓ̃‰ó(SÉwyG«HŽw88BrJ,â(ÍÆ>¹sẢF¸ÈæL£Ød4ươ¶iøÚºÈDäÚ<‚I›#!ÂÏÆ?Î,¦!-mZ€Å-›¬Ù•´oUt̀v!ú´£‰¦¢ïœ¦–ÍẵRï=¯l7#s´TŸ7`‘E¹9¸ÁH§‰³ ·́±¢t#øû Ö Ç\Ư¿́—À²¿Î½ơP¼ƒ ¯Gß]×lïf練 ̣~WcZôáúvçHz hö׿t˜ [NhåĐ_ĂLb×I!²<ؼȉǿCuúµ†ø<‡%Y"•ÚS”´‰/¢ÔăÇâŸ!`đn‹ ́•–tRLê¤ù7Ơ¹B_Ù&:UŒB÷¤Yqê¿G…·5‘1ˆHêmÁÖ¾́s‡›́¸ª±Oà¨ZC^•äÏç×p„‰´P(;Ë¢,Ơ# ØæN\—ÀZ?{å´\#ÁÑó‘T°§ÓCÿx6 rØ®Ă¿Kl©̉4#÷§µS42‰µ• ;ÊAPWF€pQ2Åa —PđqS¸₫KÅ{K;102fƒ11.ÀºDOø˜ÁÀâó†êkÙgZBD ©́S(Q³6±ĂeÂIÄ]zÛel B¢7(«+©&…*1†­b|¼`HÊ„£^{Uê!4éÂËK ,¶â( `đ©{ƠúR(r9¶ă¥rf'Ú[¨}©“|¥¶ªë×’(Íf~dÈB ¥‚„3åđtbGÆ…9Ơa"tă cdGc1¤±¾Hú|Ô†q6æ]‰ Æ¡‡¼E†{ ê>, vƒ¼8÷­—| Ûḱä¶6j™>/F\̀^±æ¦ÇßK5“L±ƠGđQwMë§Ö˜7x[8²ólû÷Œ°’<9á°@Ï7n üåª&̃ W;Cö ̣¤wV́»MM! }1‰ÍS íâ+ Ö=]@*o h£ŸnùBÀ…‰ObXOỚ’ ^¾ÇôYâM‹kùTª†¾a‰„ë̀­oçv¨ £ÅÂp½ yÁ»kªÏUÏ₫ô4t.âÛ”zW®H!KmĐˆ¹jÿzs¼,¹–¨¸Đ\so±.±=`ÛÈ=™×Nè?aîẂ˰çÄ+[Ù °¤·«fè"QÕ)c/œa° –C¯X³GøZäYu¡|­vÀVÛE9 jªÁ,‹'n¡9bƠoçØZ(êÊy0̣ö¹×‰Áíä˱@&ñ hc;Ê3~¼­ù· Œ9̀ÿ ó©öÉG„ư k7±q!Ü(0r½w²i½:b^1 Ô­_z¿iØûv‰ÅæPâ…¿dÿ!.̉QØ4+†¬l¿ơ‡̉qÏ©Ă12đæ¼B0v +èRdÊN₫·Ä‹—Œh¿Ø ö8ÇÁ&†¤‚V₫äAT5²[–îP*´7¾í鿍îÔz¯~ƒVd¬Lˆ}D²L°sL™½ïS4Uí…iMÁè)0)–wă\üt¤+2“ÑCDW ¿…Ưg­^£‡^ ØhOû₫>ª¨Ø?üp\£E2ê×G²?Đïáp%ƠeHưË@>2₫‘ÉG>T ÿûX|JQŸ‡oøÇÊ;Iî“â^#¦g£a^.é¢q3EH¨oî7¦*¾Áf(Ù3T ûfœ₫œÙ–Î̀ÂXG™$6£=WO₫WDÑy endstream endobj 586 0 obj << /Length 2027 /Filter /FlateDecode >> stream xÚåYKoÛF¾ûWđ(Íåị̂Q ‡Öˆ]M[$FrH{ $b#‰ IÙñ¿ïÎcÉ%E7n‘z‘—Ë}̀ă›ofèÀ+¼À»¹øï·—×B†^́§q ¼Û— ?1£(‰¼Ûµ÷~ö*Ÿ‹YÖœ̀o7ó…–Á¬ÚÀ_1ÛdfvƠVđf•WuNë²5l₫xÊ`öa₫ÇíO^ľŒ½Eê«HÑ Å|!‚(œ]›Eâ™óº̣î_¸h:à ¨á®]Ö– ÁÄ›‘dfH3÷°²Ư²* %«b̃G2³ÀO"R$đc–¾Ç!?˜±k”-¨ơ L¶Cq;6Èk–å#¼Ë¬™¬9°fU›ßÜhÆåHDTĂ¼—"Ñ,˜rÓÊL ÷!v¥dÛ½ùå̃üö´˜ eÍ 9¿;’Lù=opÛàÑZĐ¾Jí䉡éÈ)$Ê©üĐs!? SöÜÓf;óûœ6Üä0W 7íh*ƒ™5߀— ¨̉2"@Ó¼ÈzE¬ ˆóƠ–DlNKJ̃2h¥‘*ù²¨ưƠ‘$˜µ˜,c6NHµVilU¹‘˜Ö=vNKDÚ„"Td̉TZ˧¡%cD§  YXk³0²ƯXús»>iÈ'+ÜÀáˆö")XN\ø=çX [ƒ¥NǯcQÑ1ƒTƯ¼ïˆ/ĂG¼…Év» cưPX)Ñ͈ rbëêÀ£Sƒ!\°nf¼ÍÙ¢ vv'ĐÔ)ûü¹µ¡+ÚĐˆ?–yTîÚ–+£`µjỊ̈2u€.‡M {öÄ­ØWk8˜7NÛ&çc^  ~ÖÇ·UË‘Û6poÅ4ÆKV`oB$󘢬Tëƒ ©RŒŒhöª+ïÜ|¦¯²5×§MØ$~ËVO&“…Đ©œm h8>ÑÀx–жpgÉ̃€‡W'Ç Ù¥a$èD!;tNÜJYOià&=dƯkL›̃¨¸4EÍ®!öĂWí6ïH}ÓW˜ó r:l[çœÛ±ÄFƠ˜ÅṕV#­›‰Ë¾N,©*1ÆQˆ{h&]8aĐ:'r—P ùô±R¥@£Üº»„D”}âư 6Ëê{3/f—{̀ñtß f~ÈŸ€å>çŒỎƒ¬ˆ6i ""? jm4>̉\é8í‡I‡ë₫z\eTMÆ3wƒÎ«?4”fxù »£ ÓdÎG\a¾·MÇ[L'%:m•?ˆâ¼8oN‡Jª)Œ~›n¼÷́vÓ€1o)Ü¡¿À‰úäií® v7ø¢í.¤áúQ øÈí#cùÄ~w`Đ¿éwơü#ư.åà`¶ ×M–á63úÿÙđºÁú̃pˆé'4¼ü oê¦₫Aœ ‹‘'4¼pÓ×jx»67”nĂëV.RLæưʳ±vÓ’á­yŸ÷Ư„Œ!føäk±mÛFÏŒ?œăơÙcPÚ¯ê³èyâÇ:¥¨–Âë†ĂåµĐ~Lñiđöe¨,!ƒ”¦¸W¶§Kè1L Ă…±‘'L©²0OÜ€",`ºÀ¢à¸åÓÈ;î῭ûß ¹æ÷Å qr^#ZàƠ…Gƒ×7̃{Ü#"|o?ụ̂,¥”ŸÿÙ‘jêÈÄ®@Éûfhìæ9˜ƯoKÖ‡í¨Ú8̉×SιP<À­5Æ‘ñ½2-î茓ƠöàpvÏë₫%v÷{>†ºT¾ˆeÚ•¦° ?¹́iÇ\Œ €ß+8×*®áïë…IGetC‹Ä—½6qẸ̈µ|Ó `ḅ§́óKƠÙÄœ c50v÷̀ïîæ:Q³ÀÁ ³ôM \â"”~,”¹oºçEÁü§ 6 ¥ŒD&Ñ2m§¢%ñu”zÎ*ë#¸₫P¡¤rVâס¸¬u‹6lø²ƒZmû^R(1û&,óÂø ̃„ôFwñFŸ¡Æÿ:J:ÿ6Q$S?â¡á›ÊÑÊjañPÎ)±îÖ}D#â ¼¢¶¸ûBQU;é ­}/á‹Ôfà¬ZBëmx.Ăr9ƠÊ·O0 Á«½1¼ø¹¢ç•Ơªi…ÁÖd´±Å˜ÎL+ttÓ°ơăĐ  u­ÏŸÖ¨#2†m̀‚$—F ófLI¹¶ÏúËZ°DHP¹dé9'Ê1ï¥Ëáđ8øÇúfË~x́ö†lïáá”· @\ùÉ{aàºO$Ư!¡˜v±NS»b$¯?¤lÓˆD~ho!µ(†„æ—·°b’ endstream endobj 591 0 obj << /Length 248 /Filter /FlateDecode >> stream xÚ…ÁNĂ0 †ïy ÓC²¸N“†ă€!¸ DnÀa[Å!TtôÀÛcwE*“üÇăÏNtààF¹vdu€€ämđP´ÔDØơ¡lLDítaáN©Ÿ²ù`u[0ÀU¯x£Í̀6 ø:«Ơ@g“Kù¼-@Ѷ¾ü OzS¡~cëÆu_"̉.*ă=éË₫OŸz̃†Â²ưdé‡/¹Xë{Ê^Ê·§Ê£¤…4îX$XrGv̉M¨]ơ’ïxFGË!k"ëBâwMăở`H·g{œă"€?ÿưüơ&EK®åϪ‹O|A®³ú‚dÖ endstream endobj 583 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./psych_for_sem-043.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 593 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 594 0 R/F3 595 0 R>> /ExtGState << >>/ColorSpace << /sRGB 596 0 R >>>> /Length 2662 /Filter /FlateDecode >> stream xœ•YM·¼Ï¯˜ă*€Çl~ójÁ2 ÄIœ]ØÁEz$èIή„$ÿ>UƯœΓ‚¼=hµ½ä û£ºXäÈü|–ùưüÏéüûánú₫áï?ư0¿z˜Ü✛ǟ¯>Nß? ˜÷f–¸ôûa¶¤²”6GÉ‹”ùî<¿¸ùëùôöåüæ₫É́Ư|óé<ß₫øó“ßç»çÓw\t. ôG”²düç­ûÓüÛüñ*Ÿ|÷É_ø¤¶÷q‰m±-¹̉§›ÛÓÇϧ¯NOæ»÷tĂxzûnŸ₫-i₫×ôâ÷Ùͯ'™ŸăßûItŸ'ïe ïOK(sº2â ŒàVưÿ"̃4×–X-i¿>™+³ơêå?,o_>¼D¿ øơ?[ö¼´¥e<–Úæœ–’¹²«LÏe©qKỊ́ôÓù§Ïï>}\ä±Dʘè—(s«4£̃#I^Wzöî₫áọ́çÓçϧû­H˜æ–æçâ–ĐQZb¥†Ñ‹›gOf¦íÓ$0á—¾f7~ë£÷¯ö¼:·FAâ,xeGº„`“èßûàöË›7ï₫m«†µ|[z*–2–Å…G.8zéØyºÔ!À[₫ö¤ùæƯ¸¬¤Å×¹eB®¤Eücë‰svK¶èßl½ÓëwoïO‡Ă"yN‰%ûXä ¾ˆgể̉7Âûé₫Ó—?a¡Wh|¢Uñ‹…<_ Q¤0•?­à -±Ñ}6ÚYmô­o‘©ø;.­ÂÎ|Øl¸áÑ.EÔÆË±*Us·‘÷àüR‹Ú—âƠÏĹv°•ci×%ƒxĐÄX–v!ÚÈ#X†vbURj$CÑnêOÅÂƠl{^–èÔ.ºđß́yo6ú>O©¿뉮Ơ_à¨ơOôư(×Gÿ$›¦ FW6ßÛ|!}™ ÿ}kKUÿ `—%µn£ ë¸0ßĐlÄ[‡ùH“Ăû–†ơÀ%́₫x¤iƯüơHCâñE[u‹×—¼Æ¯ùđl'Ùóåñ˜̣éñZ_ö|{,kù¶zĐNq¯í́÷z̉ëÍ÷å°ăëơz+^èÅgx¢ÿ’w¼y¸YW|r¼:rđ†W·rđ ·¬~ïpĂÙ¸ơ–®Û{¿|˜®j@lèö€v/Jœ7(æÖ€ˆÜ‰6̣pCH (́-:<]+`ËGˆgơ•{sB$6ƒ̃$û z.fLŒ¦À0±&ư:§A†Iưrák§ÅP¹‹Đé¼ä¬¨gVƠiÏ!̣ÔÏY x9(Μöl¡‘…J̉éĂ ÊYçåv­Ó%EƒoƯé8: —Ø:E¨ỷÖ`«Ñéè ®×̃+¸à‰·®Ă3/.‘.3&̣|ÆơZ§Ÿ¹½—ÎÏ₫’ŸN»Ÿ|¼ ’Y~Ls?KÛúCûAÀG2đ³Gåú|ë'Ömàg₫v?S’ô~·„€Ï¥ ư »ưî”Fv> =đ3íŸàyë÷Î7X¯ üL:_­?;Ÿ‘óÀwT?²ó¡ÖRw¾́o2đ³´°̣·̣­4Ùù ̉âăhg†µÏGØiàgAØ~àgÄܰ_ùwàg!À†xÿùŸ…ü*{>ËÄŸ…23íù2 üLÛ ü,¹êE»ï§ZOÎ÷?Ón~Ç׫?Ó?7đ³ ¬8đ³lûIÇ#âm? °ư¨ăn÷ù†w4KøYH?÷~¹²y (K$c<²*O@ˆrt<ơ sßY=Ï-ú-rV‚q´›nyJuI›,hQHu‡J…d&¬‰¯rÇQú…D QßàgÉk€̀‹f¹g…N{(3xÆh‡̉;AȤºĂŒm€‰×fWM~=›]đs(¹î¡ÍăwßTĐÅȽ¤̀hÎJĂH¨Ä¬âˆ™®ªC¹LgLÔEĐy‚sm|$?ăÍb‰~.é™M3°3È  ä\uOذŒ„Ô3¨ăgL{'à q fđvx¹­mÑÛ uhCĐ^hY@ăq eqâ½Í ù; Đivh™ï«-Óî´m4´m#FSØeÊÀb$Ư”y¦8Ù‰%³'VÆΰáÉ@°ˆ¯|Œđ̉@Ǩ²ín}²[ʾ¾\Lˆ TL¦ »“øcB(ë¹Ă$4œË¯¦'ç.:-{9ơ=É’ Ó(Úrs,MN놩•ËéPX¼Ùô‹uû³ wÈNvm *²JY\Ñ‹ ˆËÄ‹¸âÀ»$´KéÔvÖµ6¸V_ê5 Ê}g‚r—•5KR]6>|́â2’“¦è¬‡#k̉=\ ·Ă¿ĐKĐÀq†rqÚ>₫zA¬G$³Öî°?8œ™Úº†G[11t‡·k¤:EƯ!s‡‡ÏȃÔKŸYX Ño¬/ư*.é4!‚~M*KÎóúEb¿o`+g´Ä̀yº˜1ñåzƯæ Å×%º(w}ó¸£ Î+ Ôª™iwbí™.ü ÀôUEÇúyc?î`êơ•·LfÀvÜqø=Á]¬<|8îäÿ±MhÛú8fH/9́3Ö¯!ĂŒ¦çº~œ9O3¶q;]é4oeÓñ¸s̀t6UxPE=îôX‹ơ¸£·lëg•ḃmVÿu¯.fL,e>V¯ƯIcàZñ ʯœVæ%µëYŒ‡@/K‡x ¨§ZR§í£̀(ÎÀJ,%¯Đ½Âă0Cá\Ηº¹\—i!ơSM‚;²Wz ªçIûJdiöTóƇưÛÎ ÎøáW¸WwăJ}ÎÎÉ0¶Ô˜¡‹“;?CÚVRèôădVsM/J™UĂ[vKÅ™k̀"²ß¤çvW^æmX3s;ư2ưSZ4™ endstream endobj 598 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 601 0 obj << /Length 838 /Filter /FlateDecode >> stream xÚuVÉr›@½û+¨œ Êà\S§*×èç0F£¥"–°$ñß§·É!‹¦÷~½`œ|~P̣ü¸xz.«@›$3ÉA¥“Ré (‹`¾…EkđëÜ4‘í?oQœíLhlHçaƯµỡçñ¿]}ßyzÖy UR©J£kÄ™N´ÎØó₫ .M¶ g G¡»#>‹Đưfè·́Dr‹±‘€ØÀ}QÚ ´ùG±é¢8Ư… ‡¾Fsdµ%~K )èp²èY$N¬‡Rg¯́÷@‘,KÈ₫tU#…ÄàÈ€Ơë,ÉMÅƠ_8‘¬->±r-8}̣̃FúÄ ÓùåX{Íà¡=Ú‰ „k|Ă Đ î½Óơ1qÔ⬵ËđœDq¡‹p•Yر×ÿCB>0¹³øáäz º]¢»q-M¸lÂqöÍéƯ•Ó f®äđö.|Ă2ßưQ¢ÀHEø¢3ó…¾bJˆ̀,ÍCkÂb ˆ̣ˆ”C­hÓX"ϵÄ›PĂNwÉ‘úÆđ!û7ÚÊ<®̃kÛnÁóJS:%»w\+´€ŒÏQ¦ˆ×Æ=ʈùyºÈ¦ÔBÓH€UeW»ñQº5±Ü+=ä¤ÙgÛ‹2£‘¢ `hHÙ·¯äÙD [ûDj·*Q3/bE>)R#hå®`‹6’cÂW'U·g'Í’¬0`@ưH‡½·ÎܨLï¼¾w₫v¤z½©ıŸó•‡@Ṿ$̣I ŸkiÂ<̣(̃ºNÀæëÄ](¾Îwïøö.Ö¦3i¿Ç̀ư 8̣²!¦qn’¢ÔŒlÎơ³´¢§¹hnߨÂăcÔn{dót¸t<êó鸣Ü̉áùåyhONRU|Gg>J̀°ăvW¡­yº´i”h¶:ª«$ơ¸àE¾~|$ow{3[„ô§Ü!7J¡~Ăñ×”ˆe1ÑÑ‚éßù3Ä©I“äz7±[cCËœ¥7Ç)˸´‰u$Ÿ à[jpÇ/ë@ÉƯúHB(đÛạ̈%£x>̉MróiÙ–ÿ‚T•ÉÎäAl €W—\)ï´>í₫¢₫c endstream endobj 605 0 obj << /Length 2207 /Filter /FlateDecode >> stream xÚXÙrÛV}÷WđmÀª„»`ÓĂLɱ£xT’&©Ç¥‚Hˆd‰›P²âŸŸ>Ư .˜äx—¾ƯçôÄƒÉ üø&ÖûÛ›7'çÆÅƒ,*²Ø nî…‰rzJótp3|₫1 ë‚fh‚~₫fô[ÑoI¿éư^Ç~‹“Xnføåæ#N°{'ÄƒĐ¤‘u…pE8üBÆ8¢–~~¬æ¸^àϲ••¿YB‘¶¼£ë¼âÓö§mlè…xÎC<{™¯3zvqáöt„REäÓDtºœÓ\Ù²Aơâûâà[̉ÿÛÔÓ5,×PkµÂqYÓíi LÑ5bÙ]dĂƯ¬í9Ï+˜·¨Ë‰h¹< ùTF%=₫}-’¯gŒU]Ê_G0ÑFi'̃äQaăŸ±µ­!ÿ›[Cđj¼a¢Q Ç,.7°¾íåíMœ]ëê“ È»«Ùúç“s¨S.à'Oà¬~hNèvƯ¿Àø/UÍ~´jÍ Èˆ̃Pa|µ©¡ZÅ2æ3p|2çó®î˜œ8ÇÑgËD®g4qyö]R!ïbvËúbÏù™=́iU?°:WPç₫`‚®'¿0è {?»ß‰ƒ o¨X«G('Psv§úc~ÎNSpD4~VĂzèbŸ•PöđđT{~èP¶@pZ…®»²©äiÍå„u>íÁmÿ€¦åXh†¡MLj¶b:q&MœZ¤?ïªGX,Ö«cïl.{“`̀’à‹MƠîmgˆÛ)¬c,)\pÇ$W}Ö­Z¶«kÊ–M!d¬̃Í¡̣€ë„ƯéÏPl°yqË^hÂb¦Elƒ/áïơJ̉o·©ÅG·PÓPị[ŒG<#?Êo9̃SøÂKyÖÛÚ/X{!¬Ú¥·’“ƒ®ƒZ_đ.ùFl÷”qíQ’¯°e½¾å˜2–a°ĂĐe& ¾npÜX2ÆKL”„đz¥uÎÙ…ñU"âĐé"c½d/JAß¶®=˜bˆr}ü$;ư~F __Cx9́đÙ0ôÖ缸ÁØ[‰Eä^Ÿe9Å7’έÁhAÊÀ]`9çT$‹ ×—“?=1@çîÂđŒV́Ö·1ƒV¨G°j8h¶üÊÓ¬…N¾{gq™:*ÿ/¸<本₫&ä%.>v4¥»7“8ƯñWĐé×JNa乑wسPE6åÎÇdf!.έDG̃ |‘Ñ ‰JÊZ…ŸŸ¥ß‘ủ”Bë‡a’夒q–%˯ú¹r¹¡ü’uP^3ôu¼–M&’™çJ_G̃æô½ÿª»º ^HE81¯Œëa4/¢Øä/(5î|¦Dc£±(¨-Ë₫„F„¹̉Á;‹?L™uˆÉ6WuoĐ y£óI!´3fû€YÙô/"Óô&Ê$RªJ»Dé½Å»6lécă^.4Íö<²7– ¯¶ư ZG9¡'(úí‘–î+0-¥yóŸø=VÇÿÇY5|ÂÉc#]±Í‚¤[Æ3rûs­_ª¦W.H¢>Ưí}…8dÇRGn̉£ô8¯ô¼ôg¥'ÎöéÑ7Y~í¸GJ"Z¾ÇRư•XØĂÄOj£$ƠôçơuâmÚ຿T”´+èûûL±°TD@́ƒŸ\J [2èùú‰»\À'ͦx‹ Îy}º+\.Û%>—'Û>‚¸ Aºç˜®₫`J^9ÍK¾;s.)$¯ÊG_8Z ̉‚z±ƒtBæÛΈ®@ ¹˜ï‰?†¯ƒ˜ôET|́œ3đRSƠ™f–+½wø"(EILèê ¾NH¦(¸zi°ÿªU¼“WÍ.r'Ú) 2öÏ₫PÉé¥ĐmK&ïkŹCêø%`¢Đ.G‘ª·îú(~UxM®Ú»Wë̀w›äGauH«öVÄÜè8?z±æêí©uip ơyØgpc²Èäɮ륱û Ú¢©¡V'²yÅŸ“;ŒÎ0›ËW¼Ùo±ñƯª±në#r‘oœƯ§·×é‚̀M÷²…¥đ¹P{̃CÚœ?‚áûƯBFÏøc­> stream xÚ•WKo7¾ûẂ‘ X,Ÿ»Ü\ ·p̉NáÚ ¢éAƠsKë+©ÿ|çAJ+EBуÈYr8œÇ73”*–…*̃]© óă«ï̃j_h%Ơèb¼(-ƒ̉Eªb<+₫“E©Åd₫c ¿ërä´·²Ù¦“ ¬Í®ÅĂè—̉Ô‰§ô›§¿-™ñ“̣ ¾ŒR7*kÅ ï?oñÜïíaØÑ'oḾ6đæ¸ĂáM9̣µ7¾~~NJoP¡³Ê3&âd6Øûsü>ù¡i+½kب ̃¡1_á¤5¢É#S‰.¢ô>] “OJÛù4-ÆïQ*xب¡‹µÖ̉  > I}K¾C‹[2äù:é Ä-,®÷Œ°Í‚ư±ÜZêÚf¹×¬’UÉƯ:ùú~ƠF¢€ođPŒŒmd¥JZăĐEm̀Á4x¤˜1à“LØ¢fÿ‡÷ÈHt`cœjÄOÉ×x`{¼s@F=@FíÄÈƠ‘¤(Ư;¿»Ïxíê°ü*Màö¤_±î tµÀШi©ƯđLø‰$ú%#gy(¡]â×=1(Àb€‹±E´vGXĂÅ¥ó₫jNÇjV¼ßí̉÷´£K"ó®ç“¸Ï‰H:‡1ă´TVg,üG&˜‘¤êUƠä8œïpqÁĂï‡̉kÁªấ×[§¤ƯYäéU=@ñNh̀n¥2́‚Í«Ơ— g+'«Ï@︦̀6Öê}M±ê€íöÈ9瘦’•n²¦Ï‘’Z³iPGœâ2\бÑ0f»-ÓC .®¾Ÿ§B ζO5Ă{̃çlöâ₫èZ\‡.ñ ]H±bæ‡Ă¥ƒhèËÑ0‘Úùl#¦– â—n›dD˜Ùº–ÁûcTɾTÖ¶ŒR,$7\£×´0.—›Û—̉§¶@(%PgÁbyLñÔç½²L•óDn—.ỞaÑ0“ọ́2:*Î3`P±ª¿#P*=ù/ ¨Úe'B,¼O*Ñd6hk7¥ñä¡Àö'î©æÀđ‰eê°¿‡ Đ=5•„~—1—r°æÿ·o» Øù3ËF¶\¨¾Bí¤9$æyKƒ ™Ë5-W2Öê¦ Đ`̀1`{V/¦r•đKà­Äc‡F÷_PÚ–ËÊ5 Mủ¸\È¡Ú7®Œ¶"4F“ư_hR̉£íäE<ÁóÇúc@=R ?*Ö(o†*æî–È4ïD@ßÍ‘yMK×\¦'>ÈÜ¡?h{ÎÖbŒ=9¨]±UT-đe³†Æ =s`1ÇyƠ–\¼·“íPq\RX€é¸-â ·½ÜsZJÛx/çáIE['ä-åÁ¹¸W´.œÄƯ˜ÓK°¯€ ! J̉5Æ+t̀.Wă¬Á·‹×AÜ¡oƒ̃Ï9bHăÁŹr%ß°|vœÎ¼K! ú;Gú^jÇÚñ₫iö¶¬k.}·M±ÁĐ¸Æ±Â¨Á,2̣FGMHz;ôœûT—pa™Ø7©cëÓ̃Ȇ!Y™̣R<@Ù; îGtAËèC×ĤrOϸô$^đüăkË.e(áWöơ¦´ös₫ĂpèB75§¤ À V |>äº_ư ư©úâ endstream endobj 732 0 obj << /Length 884 /Filter /FlateDecode >> stream xÚíYËr›0Ưû+´„™ZAذm§É¤ÓE'qW™.&ØS.Ø´__ƯkÙÁƒPÁv¼°đƯÇÑ}ă„8ä¦ḉ\ßzW×~@˜K…;àdôDF}‡‘ÁĐ¡W~3&֭ͬl?ÛßFŸ6{¯®™G˜C'`°Ñ!}ÎèĐ®ö„™Ü”Û|hư´=Ï ßáf&osH‘Ơ›»›yè Á-Á·„Kº b{¨ÔcÊäG©}ú$—0Z€!…\4‡†ø†÷sa´AX®[ëb4•>_ÑR.é\.3ù’Ç„êÊ…ú~E–đ)Ö!v“j™TëJíLÉD ®  ¡ Ä¢^r1“Ä°Æ Œ4"½ZŒÆ ªŒÓG»ÏVlleUd\‚̀T#¯ÇñE+_äS={W čרÆ\ÓtójyÉ4̀ûp¦w8ư†N<Ï’uøcHE BŸ;{Ơxûµ̀µH¿ &}•pö.[™€;`Á"E°[…̣â.VÉ‘Í}k‚IÎôaè×A¢óÙoØY‚Zº-üÍ©°ºưđùë½Ô;êúˆ†µ¨t¡j|+lyF)â§pLÁ2]ø0-ák¨Ë&G&ê«e]s¶R$f Jï6óœJºM*qèV- 2Ơಖ±®Ÿ! ½[¶(e“¬‘Ä{¸¤:w Ú·¸]¼÷™m#FØÙå° ƒ\Åx›, ụ:„ƒZƠ_@uơ¹ë Æ&®‡©™­ $•¿l@rb<ÆkăÚ¼KWÇíú»{%œ”ùÄ |påö́…Êézë¨3¢j-º[E*L‹ËlM¾¦8‘Â>"m ø`û N@—«ê@—¹¨«Uo±J4¦Uùîˆî§n‡ €°¦æđ:ôΙâpÓ|KÍ‘(`Ơ„Ö°*́T<­9G¤i[ăê…́\ÈοCvvæú ×iÈΜ́\Çß0×ùP•†;æ!₫ùÿƒ“m o9wø¹ ¾‡r†“¯w€g§|ốá›<½Ók4yn6ö]‡ î’¾đ©ë«å̃v_û8êưÁùÇ· endstream endobj 548 0 obj << /Type /ObjStm /N 100 /First 888 /Length 2495 /Filter /FlateDecode >> stream xÚåZYo#Ç~ç¯èGë!=}Vu {dí’ØØ] N„}àR#™1Enx›Ÿ¯†eê&G̉˜0@PÏQưuuƯƠĂœØ8“S2øË9·Ơ„pŸLd6̃g“‚ǽ7‰2F2¹T“É*˜G̃ïG™‚)Uó)‚‹*+È“l|ôX‹€ŸÀ ¯R2‘ñ9+ÆSˆ£̀̃x˜Î˜Uđ8ÂW™ÎÅ'¼g‚Â,˜÷€à<„vK6!F¹đØxÉ`.äF¹€†ƒl'ႱhN‘é5P¯°£è­E‰±Ñʸ×`b˜^ .(D>‘\5ä„è )NDq‘4 ’Ă{"G&9b6É{đëñâ0ÂM¾–Qp¢ l9q?AˆÁh. Ÿ¤ùÍâ°”1•. üÍùôb³l­w'"eCP×Kđwh}G›’³a Ÿ’®Ô‚˜¹¯Uï%|₫íF‚Œ§xjŸ¬M¾«Íü(m*üëe;^Oó7ăuk¾yóçÏwđZ_Äq¸ÅÙƒï>N×3¼yo¾[¿ü<¬̀›ơ—Íú¤ÛÔÙf̉.åm´Ùº]k!NnîNä{Ínä¡5_Ê»¯ÚNÍ÷í́×v=ŒGÍ_æ“ÅÙt~Ñe£k;êï…üÓ«Ǻ́~ÜÓæƯë×2å O;9º¶Öo3¶¨»ùÍ?¦ó—óƠôêơ›éùy -ˆ¾Nµ›Ëé|³B i₫³Y¬ÛY{¾FªLÍÙr]­¦ÍÅrükÛŒ'›uÛL¦ËÉæ̣|Ö~mÖÓÙYÛ\'Ëżù¼lAƒ)ăÉ nΦXb5]5̃xÖ7K¬ƯL`³Ùx÷đçÍüb¼Ü\ÎÆ›u³¸X̀Û_ÉXđV_Æ“ö¦›Đ#\ê-¶b%ă†\¬óûÔÍàöÓŸÿ-aý»ôR•¸gù ²Êm_!êç+́®[–́ø×9ƯÙ‡GíîZ\g?d\G5b£ÄTÏÖ:q²AÊ•Pm¥º7®çÛqă ‚ïNº7ß Ö×¢ú“UT愈Ÿj€\ú;ă Úm~£J¶"1= ³›ikXnIóJ̉OR¡;B*é©v\¶\K;0 =ÇûE¯€bƯzi "́µBđÎÖưæL×Íù™^å¼ ù‹äÜ¥é¶S•çV©7,Dº°³ô.̣€nTư] ©Oq£½5OØSó„?NÍSù÷©y®p¯×<µü¿Ơ<Ơơ³×iÑ Ú1dä>ÄĂ5ÏÍĐzO$‡ñ9Cî®çÔúÄ$Ç}%s“ö¹ èù!„\¾-9>é#rå ̉#‘îv¾Úö“R²9Oµö£Íh¢ơ£ ÁÊ‘FÚ€f2èEJÅrîÇB‰•, ÓåÜO ¾"WLJưïÁúå÷6Aïï`}ª úGøâuZlÊÊYN/ZÊ–˜úÑF1ñØ‹ÇÖ¤]æ~´ÑY²Wü}¾Z9†Ûjåè¥Ö«̣UÎ[…9nƯYG̉‘u,:ny—ƒÖíèu :*<©©ËëvT¼ xAñ¢âEÅ‹/*^T¼¨xQñ¢âEÅK—/)^R¼¤xzx*ÇÉÛQñ’âéñ#éÁeÅÓó<Ê—/+NPV¼¬xêíD§–A¤x›‰OËZ"ÅÓC"Å#ÅcÅÓ¶Xñ´—%VĂĂ,ä!}ª@Ê©XÄëT!ƯsE}Y#†àl†dDJ).> stream xÚíYM›0½çWøRC± \[µ+ơTm¢^¢hÂ&¨!¤¬ºươơÓºÅ6µ{a?˜yăϼg\´A.º›¸̣ûÍḅú=f»Nè†-&Øñƒùk´´²/6¶v ¿¤ü“́ùå•ưyña‚¹ åT̃ÜßMĐrJ)±(¯œđËS‡y¡4˜ÆÜÆ&RY©Y¶{¥V`ôÿÄ"ÔđjêÁæx†1{z+íÀ5ük« kYœĂWª ‡™Æ?{Ö9+}ü(ÉùµàGüƠïàWfƠÔK¬ ”8¬˜KÀÅQ]êØ´J±gZuX‰<ä°+¸ë²tsñ8CÓƯå¶Â₫°3h(Ñw•kïâX‰r‰‹'X^›̀¬­Fÿk«b¨ß̣TÄjKÄ´¼¤J±â>3*`ÅN.TX¨bƠ€PÔ³â¬$¼|¥¶Ø̀öxWûf¥Î3LBkû g+CŒ!Q~^`ÉJlbuè3ÍĐŸñ%‚Wû Ú)KdËŒSµMƯ”Um8?Z¸ƒQÀfÔ]Ăo‡t”~ë@b93Ö€8ÚˆƠM =uL Yǹ¯5ë³^‚Oä;`ÉàVHk4=…‹ÅÖ&uª˜Í1ÛkÔwo6ÚñiÎÎÍ&Û4tBŸÖªñ,h0GÙr̉¨˜QØï¦só¾ÜÙ‘¨GØ…u¹Y¬CÎÍ徬^¢×KD¥—ú‘6^C-S)ÖƒXüç$†›Ă¬ùçmfOy’ ~®> stream xÚ½[M·½ï¯à1¹pÈ"‹U₫€’ Ø:$tṕE`ÄĐ² 8ÿ>ïqjv僷„hÀ2gfÙ¯ë»ǾÑG*itKU&FO2ăLmjZ’a¬øçø'É&ækKS0O{ªE9QS­îwCGªM8]e]WƠ>̀T­ḅ(©zç‡ê4àbM©W–DzLJ¤–D˼c€[à°$f¼lgøº¥ÇJjXjj­Ç$µ̃0ÇZj‰ĂzjV8GSóÖî† ÜíàK½LÎñÔ¥a-› WÇKê}‚×ÔGƒ \R7đ¸·î“sz̉Bq¹&­ Î> ? [̉.¼Ê“*ʼn_•—ÈS½bơY“NH~L,\°Î˜ø³TÎz뜣TäÜ]¾ùå_Ö÷¿₫đî?w—/̃ÿ₫MÛ–·—?_₫rụ̀M]_î._ß÷!½©n¹ÀÄ<¼O`0Ấ³aÎçéÅ‹tù&]₫ôđú!]¾JøéÛßç^ÿ˜>û́ÿưÿ`+y¹ô@µ¬ốC}# ‘,°GMs…6Iè>|¹pñ¡Y ă_Éđ\øbvŸ¿Ï¡mÔFí–i®¢ZIu”̀à:Z†‰$Ü~ùQ€JO9ØNU´+ñ\M(C´•{F9´’+’ƒÔ5œsADÝ{¨m³=đÆo$hÈHÇ$úf‹¨̣D‚&ŒqHb«g@ơÂ;/^ mŒ̀,*U2̣À9@¢¹1=˪…Ô¹S'ÙƒWøƒs²‘Ă„&X "u]—®ÈüµúIRh!aÁZFI’–— •Ă]s—~’W¨ îÖ'ôÔÚÇ$vJ9ª f{$á’Yˆ’Ù©–•U‚SGÔ¦ovVxV³¶q é°Ă¾wª¡!}¡¬dV×ÖNJ ˆí‰C‡O Œ=ä°UÈÎ*øFbŒ¼jáCÁŒÖPưGºđ¾̉ù!…îû(4,lƒ»"6 ±D×-®!œää@] C̀l’H‚åú FŸÑÅFƒhH=ôļjă˜ÄF×hP‚.J'*{öùB†m|¡‰3œó‘Ú8è1ÙYÆ S Ÿl ( H¬(*í±sC¢ÓePNư ‚;ä‡$¶&ŒÁ Ú@¸,5>+[àÖƯ°“<Óó\ª::̣C¾7gæªàÀ09×Ó°;27÷ª9Æ‹C]́¬ç¸#Y>"±Ê—OPÆÎ'*½·lă#mèÈ|êyLbc¬́q™êF®!íÔ±óQÂÊ´‰¢HWí4ĐôơÊßOÚ C2R­Â®qœ×H'éÏ•¶;%Á*’¥í%À̉ö˜ÄÎÄÁª¡ ®FÈB̉X’p¥D¨–~N¸3 6PV·±ZÏ:ÛÚѪç¼û°ÖɃ;:¯W½¬Kqë &^^½øî›{ÜMº¼úêeº¼¾ÿơCzû[½é»Ë—À»÷áçäcaQ ??ụ̈₫»{₫dן₫vÿưß~ñđkZ‚•'ä™=_}û×̣ ùũ’ùÏX•GŒÉ…Œ¯£Åè1Æß{‰±Æ(1¶{ŒcàơÀë×OOOOOOOOO/k#đB¶6õ¼x#đFàÀggggggggggçççççççççç7õ ¼x3đfàÍÀ›7o^ñ¼”kŒc‹±Ç¨1-F1đjàƠÀ«W¯^ ¼x5đjàƠÀ“À“À“À“À“À“À“À“À“À {÷xáÎ̃¯^ ¼xá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫áá₫ááowël¹¬×S$6j|“…IüÙÍó­çß e ßëAâà±ÁS"|Q¥ ¦<éƯàNÜ>z]/̣PØX߯3µ0‹GLƯ£sØYÄđ4m‡ï̃Hđ”m“₫ ºØ( ©#OO$XïAl}?…†>Y„t['v9́|=E-ÿGÚ gđå¸C;Ư%åäkeªë°3» †Å1 ‘qÖ)|8äà[s-|£ –仆-[=ëß›7 Â[¾„wHaçû)ÜaĂW—x–mt6|'ʲîªëXF5Y'؆ ÖåỴ̈åaẽ endstream endobj 871 0 obj << /Type /ObjStm /N 100 /First 914 /Length 2369 /Filter /FlateDecode >> stream xÚ½Z»®¹Íç+Ú ‡Åz° ¬mÀ6àȻقa 9đßûœM_%¾=AẢôÜÛƯ<¬ç©b Ë̉ʰYDµ o¥‡áSÎÀg/̃'>µDt|âwÓñéeöÄgi!¸EdêmxâM╆ÿF´">qî“ѱ ̃$é¼Đ"3ñN¬ÙEđâđ̉» \Dé:°DŒ̉½åmDÀÆ,} <>€v6¬5·)Ö½(Ö(üµjĂ ‡5Å{†uÜ8F¢©qX»åă³˜4Ü“­X§@R)°Œ́Ålâ=©Å‚2năVFz±œØEFñƽç(.̀™_̣æYÜ:̃<[qç̃!<:&dœ‚-O->¡‰wEK9D]xs”P£đG ~€ÑøÔ,1°Ál­DbƒÉ ´f¸8Ñ ¼¢cƒ‰ŸĂ“¢qu\eÍÇ·ƯnÙ’P?áØ{JĂ?,˜‚·«â?Á+ JK€K¨|Êñ̉ ̃ƒ''öĽMévKIXó…³L…H²·2½ăeÍ XWâˤ †2§đƒ5çM+X®hw÷e‡á5s¹%́Q'ßÓkƒë´„L¨¥Mh1Ö‡?Æ­àª̃§X’Â> "·®XC¸e7Lê–3̀¼ñ ¬Ñ… “”.!î•®ĐCÖ覔ÖÀ!¨O ¬‹¥s!®¦óY¬¡-ÇíÇÛưÇÿ₫ü±Ü¿ÿôéó—Ûư‡ÿüíËñưOÿúôïÛư7ŸùÇÇ_~jpÛö—ûî¼ÿö'9¾Üî₫ø÷/å'@­d!^…Hf«äÑ£Bиïụ̂áC¹ÿPî¿ÿüăçrÿ]ùƠÏưçGÜüẹ̈Ưw7ü]bzí'„̃² ́î‚ÊB1«@OѤ:¼LFT‡i…hí£¿b!†”ÚcO Ó yAæJ]d¥ï>A ÔV†k½­Ô†UÆ^Ϭ^A+…ÇùœƠ%6Yeöª0‰­n{ b©:fÉO]zed¾ÑûBn•AƠ‡UCP’|R2QeØç°¬ïÑêdPG&đÑ«ÉxG+A6Œ¤~‚³"e\ƒ°•v‰EÊmT/ÉQ™ÂƯṑ›´¡•ÏU둘¡ \ÂÍ–ç;‚X© bgjµƒUÈxÄ¢Xï¨"W:gT½ơu p#ÇĂYá'’đ¿ÿÁ×A`²t«‚DmßWÆJR‘«‹M…À·œœÚ›Ơ¹cs‚~|ƒe¡HZ6¥jße£NpYcŒ€5z5°cCæ̣¡{̀1çC̃ €a‡M[·-h ^ùÄĐ…F×$‚@’́Îj –́̀u”y«‘}ˆm r8AX¯¬3.A¬¤µ½5„”£€9éƒÖ0‚ »»@ ±¾>A(“ÅxÄÊA…"ÎÀg'²%%3QÊ¡tÑÇAEWªĂAªă $ĂFÁ5[i˜ˆÓß`Pd Æ­+ KË-æH¶R`NmŸÅ;,ç&ƒl.&b́“ñ³ ÖÓß±”C,扡#Ç££ö>[)c…bÏEÜ!‚BÈê›%„ö£ïVGGÉ×û(ÊÂ|̀MƠ–¢ÈµVCåÍî$h-h5@9´©ÆđÀÆß pÿü~ai…$‘ƒ]Ñ 12²NÂz澌£ØTAyĂ1 ¢¡üÖÆ«›:2 ¡ƒA)ø$ jPØ(H ²è.{@¸fûù+ê†Mè+ k#%iÄ !I"ú rm₫Övb ÏD6½Æ`²6}gœª`öæĂ5†ÅÙÛTN È̃ª/èÂ|¥[ gM,„É’G Ê`₫€RLuO¹·àÙIG7éG?¨ƒÏơ5Ó6\X›=̉è° 6lQÿ+OœËÔ·4د&'ˆÆFÀ†±˜Íˆ½Í£àdÓR {êéGŸ´#bó„ªPĐ)0{×-VZäÀv!ù,)́P¢Ü1`€·DnêHG»˜m¡ˆGobè uLnju‡~B µŸ¨ƒ/1¬,¾èÀưOT₫(v˜5ƒ§Ăl“ÍØ”²ÆÑ}zÚ÷ÄÚœup¶ÂĂ%§xÊ6ÿ€śêÇ̀̃ß0(ê ×kkKNp˜GÂ>ÍÚH9zø1sW?,†gIOG~öˆ•±t–[µ˜Ç‘ïưđ±¹§BŸ¤qô±y~ b%—= N¹sÎkKíN18­`PĂăĐ78¨à£¾‰ßëÑ6÷(øóè€ôăˆ)&»¶}O¸ÔdËÜJ đSưÚjPB_ÙÂ.gä „”^ƒ°¥ê0”[Ø9j~N)²xp0 FÏÛÓ QmØ‹~Ô]́Ï€Y3«́)¿5a“!”Ëa—“!+1pîá‡PVÂ2¶Î…èpÄÿ·ÙE)Ü󅉌…#Œ*xb0–ÂH\×rXè&­:ơÿÁZ¸½  [¦s比 T8‘1ºî±$,N₫=24úc4ØbSĂ–ÎyL¦<1 ‡“)—VFÊdæ7<̣Dø¾±8g4đü'T<ú‚6l©o°]ú¦Ƕé/€Xéµßs>F½U}n̉a§Ü8̣®ÍqÍ­C:â!é̉ÑÁÓ_؈s8Â7å ¬̣†D¿gĂJu9Ú×ÏI!̣ˆ6æ1)ä}ÓM€“½¢¨2tÄ13ä(¿²=ÚPăxV±‰êŸ‡kàU*‚Ïl"† ]œ`I]\@XêĐ¿#U;tưZ K³F¯‚Tub@1ÚZ\cX*Aâs0AÉ׺X›3ÆÑ:1([tzaa 4%•ñ7 <‹×ºXyÁa%ơotÁàư„¥™SÁ&£X‚Ê*¤µGG>Ú 6ub­FíÉ£÷Æa `B÷¹¥{Lv= ! Ơ§M¶h¨˜…l9Q!‡LKV¾WÆJí8pG`<ÆbVHpªÎ`˜{F*:‡NÑÁt>êNq+à]‰ÅÁ=¥›w€i úŸ±g¤’EÍ!5rø ă!Tœø÷†ÿµ°Ê endstream endobj 893 0 obj << /Length1 2170 /Length2 17058 /Length3 0 /Length 18360 /Filter /FlateDecode >> stream xÚŒ÷tk× Gmg…mÛ¶m­ØFĂFM¤±Æ¶m§±ƯØ'{¿è~¿ÿăœ±ÆÈz®éyƯs̃Ï 9±¢ )ĐØLhïBÇDÏÈ ‘Ödb02²Đ322Ă’“«Z¹ØưGK®næäl´ç₫‡…ˆ“™‘ˇLÔÈåĂPhvµ0±˜Ø¹™8¸̀ŒŒ\ÿ1:qDܬLrôi ½™3,¹ĐÁÓÉÊẨå#Ï”&T&..Ú¿ƯBvfNV&Fö9#K3»Œ&F¶ ‰•™‹çÿ„ äµtqqàf`pww§7²s¦:YđSÑÜ­\,ÊfÎfNnf¦€¿ZÈÙ™ư»5zXr€ª¥•ó¿*@sw#'3À‡ÀÖÊÄ̀̃ùĂÅỠỒ đ‘ "% Pp0³ÿ—±́¿ hÿ&ÀDÏôßpÿö₫+•ưßÎF&&@;#{O+{ €¹•­@A\–̃ÅĂ…`doú—¡‘­3đĂßÈÍÈÊÖÈøĂàï̉âBJ£ÿƯŸ³‰“•ƒ‹3½³•í_=2üæƒf1{S ™½‹3́_ơ‰Z9™™|đîÉđïõ±ºÛ{ÿ™[Ù›ÿƠ†©«ƒ½•£«™”è¿m>D°df.6FFFvN€™#À̀ĂĒᯪf+™₫ôàëít˜´aækenöñëíläfpqr5óơ₫§â,ÀÔÊÄ`lfaeû'ú‡Ø̀ü_øăü¬<:ŒăÇ`üëóß'½ 3ÚÛz₫1ÿûˆD…”¤Åei₫Ự•ÂÂ@€7;€™ÀÄÄÎ àøxđưß8FVÿ®ă¾Röæ@׿Êưàé?%»ư{(ÿ½ T€ÿ%ü˜\3åŸA×edc4ùøĂôÿyÜÿvùÿ7åEùôÿ[‘¸«­íßzÊüÿè́¬l=ÿmñ1¹®.[ üØûÿkªaö¯ƠÚ₫_”‹ÑÇ.Ù[Ø₫—F+gq+3SE+ËË¿äj-­•½™"ĐÙ꯫@ÇÄÈøtÛebóq}8̀äß*³åùß”bö&@Ó¿¶Œùă„œœŒÖÑỒăï)0ĐÛ]>\Íù̀N°(;€Aè/Ñ¿€Aäâüª?ˆ À ö_ÄÁ`ÿƒ>üä₫‹8?t €Aåb0¨₫AÙƠ₫‹¸>¢ưAÙÿ ́&ÿEl: íiÿ‘°²₫%±³ûăÿ› ¦ÿ€L³?Ø?ĐßùÇ€À`₫~47·úƒÿ̉₫l,A·üKtuúG¼‹À€–êưèÜ̉ÓÁ̉̀₫²$dü Ăæđ£gÛÀB́₫ÀgøíĂƠ₫c~₫¡ÿèø'û‡3đÔƠ;üQsøx3ØÛ™ÿ!ˆ•éßR§ÿáơƒI‡E₫ƒë#ƒă?àGëÿ †é£Oç?µ₫…̀Ü₫AÛ‡¹óÇơ÷Çá#ÅŸ„—ƒ‹¥“Ù?¸ÿ¨×Åø‡₫]ÿ?¨sûüè̃ưûáưd̀á=ÿ?˜ñú₫Ï̃™¸:}0ạ́÷Íø±”ÿÁ¿ề̀<̀L`—€&´í ?ö—GH†2£i ÙOIæ ¿HWä0gÆUr|Å”‡¿Öå{ëô¿çĐ̃ÓYƒ[‡ùºØé₫âîƒóàÄRœx6V¬;üvqöZĐg9¬S_~‹<…lĐÁ¾3åÂüÆ̣­ă*„VKñ¬,ƒsH:eƒqƯÎ_ LcJéÉTó”º_qö5£ă¬T`Uéơ”ờL9J̣+œ̃l$}ªƒ¿ÁÔ8¾@zà.çy&7đˆ»Q ×5_ô›¶]ª>ĂQứÚ¾ÿk2t½í ëPÂ<æ‹,¯‘ÆĐrwY#. TEènGË-¥€Ù˜]Ön•ÓT¡zÎ?•I^§ªCI_ầλ“_?iËø+J^Æ;‰§ñ̃‹IçÖ<ÿàÁÛœ¦—÷;) PŸ­v„–•¦1˜†¶­Û†uyÓr“YÎ%j7Óu…N•½TrŒáUOZÅ=~ä2jƒ2øơ™âX\´‘K‚T½µàQĐÍ&rØ¥‰^ ßÇ«¬S;×*'S₫'¼‚ çÉ%ô4r‰¤Đ GÇ‚?IYf^–Ëé÷awêé½p[6¸N8qqaƯ'¦PBâ·~°|fêúS<ȹqC¼hNn͸–Àß¶je¸PM!R¹7:îe`¸Ûc&0Ú†E8Ó%Y¿ªáM%ÍÄ “?c6Q;ï"̀LªrÍ mæG!…®èČœ}·¨aj}1G‚̉=L‚b<‚á8#4RÔG¡üñ"‹eB:Jlç₫‹¹•´Ơ~Ôi‹̀'ê}ZơL*ñ›̃”w™f‘áûk?½D’;ZCùîªâ³đ±ÅZûµ±M—xu&\ |y‘¹5OŒ©iœ- ûiAØ~¬÷ă- ơă¯ó³dœi84Z¥]DæÂÖÜçrÏÅö8º†5zJQ!Á܇ˆÛëÍ=́¶8öŒÆ\_́ôÚ.¯hOV tµÈØquhƠÄ"I¢årN)&kèE_¶d«¶K±uo©·¼X>RL%±†\2'¯AFv’¢¡Lºùa`Xƒ-ºñÆP3–dC‰:œk“‚́P…èbx§$Üû†½=ÿSW2ĐïX Íà®d4¡î úÍ„¼ ÉxVÚmÑÉ7eËqÁ}jÓ{'›ư jå„óÄ7¹T˜ %º^‡ ƒÏ‘©r5u(Í(ß]´7!tü}Ø’äØHjƒ¨;ª: NWy«£'’Dc¢ki[e¯Í­iăOG:Ú;GAïN²†3H<{î-IÁË6\uW|·—I‚a‡M¥âŨahÖûzûưnôƯ.ÍĐ%0 6bƯZ¶¹U…¾¦aôtf̉pµƒ·"qIP₫…|D%2;˜ơ¢ÖöUR$èaxđk¢ >m9á½·6ü‡Vm=Ë§È èhƠÑ'ÆÍ®=x…_¦& hS/Ô›3¼º’^ö„Lü[$gásxMlK.&½TD$MÁÊ~-f‡Èø>æ̉ßE¤ ¶¦7¥™=dk1>̉n“ §Eµá´|û‰óóE ÿÆ&‡dVv«!h_ T›ÿç¾*'ؖ톙˜Ú,‰á…*°‚\pm¿4‘ƒdØ(5z±(‘Ö-–¬O¾ ¯ùï}EÛbhñåÄ"/:că•ö="¤ơ¤ªV-ôÈ7V‹ WV{ÔÁ2†+Ă™9}È˯xï¾G<ñ5HåßóÛ£ù$«Ê»O/JVí́¹Æ˜RŸèÂî÷²Ÿ1JtÀ@ËÏúzá\¬9à YúåÖ=·½ Cöi·´/÷Ÿ”Ñ…­ø¯w§N .NWƯÂƠÅçu…,m~S*?m"§sBA‚¥B\\PCvDÈKá*¹q±‚yµ¾G°.̃Û"́9©D37Œơ—3¡̃y/ÆƠ(-ön—Qæ*0'G5¿æc¯z³|bܽ¥ĂVU¯ön«‚y0¼ˆ‹̉Óé0C³Ü̃FH!xa–¿ ́v=…c6óóẉ™e±(}›¢ûñ™Ñsză¬;+†ôVZÀ½±Ç¡ûêrÉV¹†Ặ5‘(¦w¢ g©«©gÁGGùÇÖO~¶@©¯h!¥N·đÈ–•–Ä;6ê£*C•aRpª–CFªßnÑ×'Ă÷!1”•đ¦ÎjR|zO³©Èr>³Ÿ~Ä›J?èj•*#–Ix 5²R"oÈÇîà7y“`Ú>êFôl†*9ƠaS@/.….øø&œnê»ú₫wÔ{v·”f÷åø¿ùtFª‰ß²{…29¦§5RåJªÛë¢+P—¶Q­`b6S¢¨.Jà³ưv×™®Àơ,Æ₫€âåñ7¥­̉Ÿe/Ø3Ï Úr˜(ö¹¬´iSælᨿ!ä·‚ ‡ oøiĐï ©MÏŸÉÅl­¶D=̀0¬̉ëøE+K>g§†Ÿ̃vˆV'lĐFMVMdôØb‘ ßö\«“uèäêtG¿†¦˜«ñà°¾E}­ÉÄQ‚´n¾Nx ©„´h #²H̃₫ZC &'PĂEïj³Œ((i]£œË0ß6/fƠv₫ Î-¢lƠm¦¶+`ëL…'Lè Äh¸Œ̣…2đ4…¯'ÙWƯ°[ï©̀J£ª¼+AO‹Ñủ`‚ïN&L¡xî,D,S E^êv®XEOJ ØÄ—Cn8Yơ¦G¶‘:§E³đ^¸8àẉ›º¦¼+†‹̉PË´‰ë éœVl—c©/ZAƒ̉°3wñ—[–"s\à!dE@-f`¹í¥aŸd[úcq¬Ùôû¸ÀKå•Ơk¥‘*8̀06ÇÙןnMV£i $¹¹,ø'\…ÇbhÚáu$ÑpÖåÉ*~ø¤÷’—÷‰°æÏ{ØƯÓÓG=Çûø‹&¯mç˜Ñ›ÜÁ§x”sçƠÅæ¥M$ƒé¶¾ç‰y~ñ‰¨¾äH·¥°ak¤¬7\°„§Ê v ̣L“p̉üA¿ú8¸äÈQ…ưOàf`3ñaŸ–U˜~ü4 ́÷ˆĂ¹"8ë[‘`‡zÖ¹ÇÑ&ÖûÁˆ\$øm+$¶Ñâ½Z“Ó,•ËØ|EPbĂH‘ .µ}ûre¬JuT…”ṂơK-½ûѺÛsí–=ëñ7jÁYgUX«‡đI:ă₫m]'˜¯\ˆBe½›Ú¼n4¥#U²"»­I4Å«œ`±èßñ=£è=Df–²(‚:Ơ“|—u¥öpĂˆ2FF°¤-đà3º¶¸÷WE°qKF P”i¿qQºé¿Ÿ°}ƠT†7dX}j/ö†â2¬äÜÄ@Úî[G¥ ó1˜£.ÏNp3:̃TÙKæáP#³áß‘…6ÓD®óYóœ¼pơÛSB±,³étcU‡ÍÏÅ8B•Ñh™Èà¼*NôïaA‹}F™×zÑ_§;“_¦ôM!đ…›ÿF¯aU†a”?‚Çê\$€_†ë7–® ÎZ8?¯¿Gç÷àù…8 [änÂ-y8YFC3F.lwÔ@Ç1™©̣ƒùâơ ơU¿Xâ Đ‘§3|¾u’a%¦…ưX§^yáØÔר ÿ{ º$G<"±†Ÿ¯ ùj‰ó²!’,.3Ët/‚”‘høèâªS7«4>ö,¦6HŒƯ?ªKô+ÎÍ]́ưú¡¼jù”½¥Lcñ+Ü4%N„³Z^xr[@¼"Ø…› äs?aËm¾MñºÜ fƯf=Ú]ÿÙŸ‚Nf”ň¶âÔư‘Z/Ë_W– óá~:¨7YùŒF=ºø€è@ßcó>âqÈñ=¦Ïp`9OÙ×ăM!7L—º3³₫B^ í2e0>ơÓ¡ªz„²`-Êa9|]— apî!GJ"Xæ©hsù¶̀ ípx Œ₫Øăë.÷…Ħ`²< ‘̃¸$yÇX{'F7*!èîÍËsÁvêư•¤°zy+“ƒ6¹ܵ®fœI=‡^fÎ1Kö¥ ÈØ9đú¶ÉĂ‹̣ó₫âv5Dü‘&ØsÙŒ\’¹{(!‹ä9¢ºÂñ›Wlơbû­Ë1BĂO¤.÷ÑN çïÀl‡̃”ü ~Ÿ‘ÿ½g­3¶±‘l÷J,›ŸV+@üy-1ôG9h¢D/V ºu-È9¦Å„Jy)#̉q*^tYJŸE‡îNSÏsdêÉú4%'}:ñpQ@ü;«ï'₫±á›œ” S‘±…»B‰¾ê¼€ü~mR¡º́œ’Ú‹d3G±f~$°NeÙR˜ ·™%A2ŸeQÔ¨ÙEùZHư©$jF™ÛƯÀ£¾×µF*ßYđJé#9 ’2¶'Î+ƒ‹2gf‘zZ™Œ,¤ùLè‰Ö‰Iª́ư¤pÖ_đOˆkL¤ =À–²ïÍXRD&÷K~L€¼#h£ßA»úư¬¯Ắ³‰TÖ …+F€>#} çëWứ² .´äˆ[èƒÁ2̣ÜN^^÷íb>Ä đƠ7kÁrE|›;LÖ<ñ·Ó/ξԯ½K2…ÖE©×&z₫~©œ¼]‚;qƯ), yÖÍ{̀aAäI \̣—d^~qú=Ư‘`üv²½²̣;\÷'µƯ8_N¡AF‹T“Dj/T¢ôă \mUæ¬Êẁ¥1ÓÍÍcĐHÊ^xĐÚc®T[›̃€'´;Ä[h˕ӴEŒMÑ‘₫H*NèÙÓ>èoä É={qJz¼sÀ¾1ó©(¿ó4>ÇôöFté¾²rQbíƠyQ¼á“îûcÊ=̃\ḾÁ8lúŒC¢)É£fÌđAĐéØÛpE‡„$̉QÂXe&µ­2UƠ-PÊL*¢†1}ÓỤº.’ßo*Qô2ư¥Y>aîó¯8KiO™d›êỌ́9Ko¶v3́̀ºR_ü7“£[Ö@Æ;OóIÂX¨ú`³á@å9¥9j‰ 涘8Jöd꼨Åx°7GƱQ ä΄hĂÊä˜XƯXá¥ÉrêËƠ¾"%ăDă£‡%æ´CºK ×›¼º }§«u¹́ ÀÉó̃- ƒ·_Ù/ v—ßî~¶ÊÛSÎ.g|¿P~oËÔ£ ½ßU¼6§ú|êöÂ9YÖ-&­î?¡ĂƠiWÀ~ê‡èFüỚtü”§ÎCæ8e,ơ¨<̃C£đ˜4­v&r*qq¤vx°EX]‚̉ÓjKgWªHCˆW°ép'¯ưN  íÈ% AuD¢ä5'Q̃Y–ívdâ(^–èÚ5’.”}ÁÂÀí VvX VƠ4ë'EU'C̀¢y5á̃ "«t¿‡ê}ßâ2a–Hwg2 K]$”%”̉ư„EiÍg½fgƯ,¿Äáæ§3>§ Sʳ'µCâE_ñ Gù± × ]Çz(ѤïUĂM¦ghµÂCSs€L ÊÓu·†2¿W,m²Í=L£BØÜ I H>t0*Ú€ 9rÖ£H®ZƯÖK·¹>ëQ©“½đ<ưeđfư0¢¼ØÀ{±ø=Ö<íÄĐXÖ•fƠ½æI°óK&#®ˆÎ¦"‰@*“…„¥C¿X½c̉Ÿóé7oi32DoÍÆö€Đ̣ç#|NAOO%•×”‹ÄIM¯·L»£eÅ›+â¯ήQS ¦QµË|NØ"?5®mÛ‚“ÆÔư5L=×WÙ¤‘âj§mÖNO¦àTZZ-UÖew¿R5a| X|*ÅHª·m2̃r¾Ä«~ó=á–̣®3¤¨8¼ÍÏÁ×€æ¦ÄWjư²(çç*¹Ÿ ¯9›sç-b¸oÚ#­đ 5'…d`~XÄô@ÈÇ;~9N†`©áD¦ê‹U-‡é7éB]/NQVi”ç>±aÍ»F_S₫î»̀ĂÂû}ơx¤÷8 ¢¦6 t¸A®{7'a‚ÉƯ¿2vD?ƠĂ¿ëĐX VWˆ%”«pYY U¹´0€6Đ«Ïf ¬<¦“Ñœđª=¤‘đI€Î17Hp̉“ˆ_Ư0r\M±ˆ+²ƒ™×«—³Ï{O†v£¬­a¨»Y‘5.Cñ?Z4Ư¾XV®àY•H0’îUWEÚzóÔ?\­xo´È³óÛüaX£Í}¸5îơiÊ{WHÚ$YIù!̃Ñ̃”̣̉jºgêïÆ; è¸¡j©´H,ÄÚµd˜—²ÑÚÍà,âKÍk̃b"̣âqĈÇ@ºˆ`ë[ô79‡ ^دŒ“ůfƒ<`ÚªÇ7±4¡%Ê:¹6ư“E_ßÑ1‚§±>…v’”:"êÿ4^¸¬îØX‚¡̃yñÇy;uº?]¾̣©äænDVÿ$'¬Đ­æ…8¼&i|i$Q%*‰XuFÆNÆê"ÛV\%m ZÛ&u./…-²îXoD/“B;PÏ ’à k›Íñ9ÓÎüEp„©«„;tßêm&´eÏ• Á®{ƯL~24+L‰ ,ü|qî«M™3‡…§ˆÆ̉Êo± mXzcç₫́ ¾T^³Ù©÷ÍW–Ú¸%½x6H½Y¾ØÄaƯ]W,‘=xögr6()Ç¡ÔeÙÑ̃íЦŸ]ƒ•¸_߯ <6Ă͈®smhàD¤ Ûè²X̉‹®S<í;G ÇüÜÅƠøC3plTçéđÉ÷N5ÔŸ  ‡Œ¸ÙFÎ́†’l@Éû;%d́WưNè Ư]ä™2ä´°¥Đù·'%Á¬¾yÔ~À…2ÛÖñ¯©J‹V·±CIæöœ†VeÑ ¹q³[ßPöˆl̉&0%Y«]Ût¸Hs±- "ê€ÆvbfKR× Äbûâ¨ÑKxùƯ'™3©Og¥‘âyÇ*›aa¯³T£cgY³˜˜ư|j—­ÁQ âßCÑçâĐí´\+{}iG̀i_L[cË~΃âÔ°úMÍ€N.~=ªè¶V9­öâ6UÿÚƯZ;i4b1x’2^£­#ê„Ŕ‡y×?‘.Đs?…]´+: Ø÷g}AF'G=A‘ª]ÿƯ^PµJfKÛÖçƠ ̣̉Ëyqzňm-Lư¿†¢(æú÷*đ>[¿Rç«k“½áß< ǹ2¨Í,^ă½~EùQÏçĐ£÷nÙ̉¤ñ}L!öô±ó¦cgA^„§ø£̃<°ëBç0¥ 1±®ùù»‚®[ẮIă23W¥ß‹j!ÑúÊ*ÊG8jmA{«ÏŸÓü’½Ă»}I‰åG(ó_HïÍ´ÄÀbß4?Ơ -Ù?¨}ü¶úͬ́À¾Ư×y× \^ b“ )NayIï0²«~=:²åN%€4Ü3:³×¬₫”{ÊU4A¶ L#}æúÙlªÍK4[X•å† ¬zc)¡[J«<̉"ƠPTñ4Æ0B¬ă¿è:óGê®ôç̣ƒŸrÁØ  ñkRpq›Kui\|£Kèoudœ°Ü¥=€Ç2Ăº‚Ç!i“µ,«–€+ä¸a=.îă2n]/8H'p®J2j»NH£Xd(Œăn'@ª5ó·V̉°{!Wđ ¤F@ư†1…·ö#¢7Îé 3Ùxaò̀Et!7®ävP=Æê¨f“,—ùgh gÔ§<Ë«.!6±´| SÏ: UfGT.ÍÁ¼n™'-Đ(Ƀà^¨z’\unĐ8?5S ¦áÆ´ïX}ÿ†‘zÆ3#̀‰øö ÊshqƒÀè¶Ơ²²¿†aÊÙHzéô]çM[”EåkŒ•(Ñ‘ú¦0ȧ“VOn8G ï9èn]bå5åe˜Î¯Q½¤+•iŸå÷Oɲ±W_ˆ&rY‹—0̣ß$vAk(‚(̉|¹x¢Äv5sæ+§QÛ¿åAø’U÷ØúßœüÆ¡tÙD„ƯUôOû1)«´¤€¨Í³U3 Tyg‚ù>§ÑW© -Ư•Ă+½GB “¢dbÛ,ÛÛ;— ºV2D˜Qª­µÂ‹căû́Ëx™ƒtYúÅÊ₫ÉRăëêôSĂ8^)ÿ®î›‰ö¾ĐThGĐê`GÚÛgd=Úx1R§y+>¹Ô`TXë Ú;­z_¨èpߦ•˱ƒgZxÉ'¥ĐÙ¿VÔwÓ ¦ÔÊîqÄ%~2W0_ lN‹Ḅ8^D®¸7ă³ôh¡ç¾Ÿ­ă #Z‡)©f*4CØv¯ ±*4]c̀åá&@Ó́Á÷·ôñèŒv¥èJí¸ÂLë'ĐLåƒhlEMu<–‡MD=Jlç™@ÑêÄÜĐ÷,0 Ǽ®̣ÓpÙ—²>…Ê®TNÇ#ÇH× = km7Í&4yCv£gị̈læơî—·Û› BE²~üœ×²÷KỮPzÎ?UÚ@–HƯ±¡­„à]]\Ù‹ Ôƒâ\‰œr:ĂĐɯ0' lí¢(2ÊW?¤₫@÷m|3¦}ư0Ê Œ6Ô¨ .WÀ~ éÁ0< $êƯ©hs ĂÏ’›°ƠêÆÄ‹×ÉH®½¯ a¼Z'ỡ˜¯B‹B“™´À×0̉hSQ_L@gÚy•¡rà8+ʧO¿ŒØ̉”Ó©$*H́*ä ^3¹¢b‹.uW¤ßÅ̃ÇÈ–—¯2)°ækÑë¨U˜5-› Z)z `ª¹ë—ÅíđZ–yÒdñ¶3¨ÉY_…1-@ gOIúµÑE{c05F̃"|ƠÀ۲˨=́0~̃3ÓnºO…º’R£utÖöè%öĐ¢`CŸCjb¼Vyª’Ón¸OCÑI‡®¼/—j1yˆÛ¦èØ´›>Mæ]ypéÚ̉}Ø3/yA îú6÷˜@Q¶¶b™¨z1…‡Ô@9ˆæcN_ơ“W_ü¹À;Ù=ǘù½ceô¬Èukβ5Bœ,¾ÍHøÉđ¢X½íû‹yÙçö c°=scé)3éVÍ öÉ)mư(bHÿ†O(»>ÛÇæFjéSn7!ká »€ÏXœAŸO˜Đå©Å ù{o¨}®À‰u}cĐXGŸÓ¿VŒ&¥Ü|×f³Ê Y™‘¥ṕ}1Ç»¤W·½^ (sṽêáÀæGÖĐ·8øĐ€Đ×)ÍJ³¡¤¶ß?Â:lĐÄz½\F)̣2Û>0ư–·—±Ü,¢hNsÀ|íb|¸´I½P@́}!S—++<Ñ)^”ÀÆ*˜kZŸ¥w5-a{ IK÷¼¹G l-¸¸¶¡Ëå‰* N4:Î|́E\Üœ2ïG>5Eơ gPßí (Ét]I"DàĐĐXÖ̃1mÔv47²̀Ïúuåá¼=Ûåâ»ê<ÎSuŒÂ4åÛ\»?:̃ûn²̣â'BñVÅ~«½̣î >\[Ëøœ΂e8 —Ơ;•ơR‘”3 đ<ÀDư}}†Û¨Zƒ’¸uSÍM¯ ¡éÈ!wº•&₫ÓơƯGæcy7Aö­Hêé]¹ÏÊ—œ>«ưZ¹o—ơ‘ºKªÓ“ÔçÂwi‘±Ä¾Ù"²8=›‘ùZ¬MVçQx,j~äu-¢%²¡$ùˆ„V ™fP"Pa¶?¯Wö÷~A½ëåÄåF´Pc{ b(Ỳ“xûµ¬§ÉPTíÖiv-â5‹¶ḍX°gV<Ÿˆ*(3#ulÄ-†aË-¢ñđÚÄͰœK3V:î5̉~®…ß[ ›1¥ũç$B)Ÿ‡#ß3Æ1¾!ıƯæÑea?RÓ³À‡-†°})RÜû!d,6©ăbFg˳úbc‡¶ç›ṂNOG¸†RúmàÅ<鯇6fUª¤6̣<”$ĂhD¿×ƠÖ ¤KƯ5ù°“êN–AcbS̀XÀç1K·»9™'¢m®„•ăä³[û-\{¹¾ }f78ø©-Q{`/°‹ÑTáU’5$̃vP(,PH±ƒ»ˆéiÄ&ɲ»×Æ^¤̉Ø*Q5äü"ÿ\¦,ă>Uà{ß$›¹5‡2i mÀ³º ¤McD$Œ2›•oO/ÖÅ `£U¥uŸŸ‰D¸6̉cz%_êĂf&#-×_p̉3ʯsÿô¸'oĐÿÍ̀jW; 5çM€­U|́7çµåÓÙ-´7±']̣=Jüä„oÇî!,X<W°ú=ö\¨È(ăê/;hĂÀ/H¥Ơß;³›œè ;(„QOúÿNPpù€ü¾£Đù"j¢oŒs<Ưÿ½f{®0å6M¹¯?§0Ëg…Âsú̃0’Jäëôí}Y[KÀƒ~Æ‚Ù]ßĂnàhAN¦ k“QE4Û´c+e#Q̃BÆïïúŒ;éû â™%7•0å’7ƱŒ´WmJœí=€ă×V#̣¼yÖCƯ`é̀àVyá͸aFXW§.rƒå2©;Ëd),̉ŸO†ñÖ<å¾ycĂg¤›̣< ̀i$l⌫rMUÊÔ-z¥T(¸¨Ü¡Ÿ5«"ñ?Û^äÄlœäyï úƠ 1ZzïÊưÆ–ƒgÄRÍZƠÅbÉBV2ÉưåT -._·²Ă'ûܰ5?NnĐ̉́è–L₫Î-ÛƯ²WrÇÉ0̃m]5³k₫ÏpH9ˉ'L ØnU«Áâ w“kń~5Ct®HÀWÿ+NDµz”|‘BKÛuÈMÖ×gdÊ€Ö¢UÓô6̀V™‹Ơ£Ù‹å×™.¨öfăQ¡FÖæ¯Dôü”Û«ñµèE(4La“Î}·–à ×a‡5/‘œ ˆ¥tI,rXẉSđ‚6|^§æÅƠ½n3«™ôüÊ¢œ/{èÅ_´ ëA/&° fºñ?Éúâ ?üÊ·KZ9O”•RÍ"Ñ•ƯĂçáȯTăŸÄ”AQ¦\É}WÅ+Q¸¹C₫Ùªè±^P|ûY^ ¿Y”íĐ7Ø®s‚ ×Uíl .¤˜“‚8öORĂÀUØM|®Á ±$d°ƠPṂU:ư…Ø ®ªÇàÅ*lĐ©¼Í –\&øÂ0I‘ƒEu¶3ƯµP•¬«V5‹̀KË2{; ´Đ¯ªÛđ÷`Ă‘ñÖÉëVE½!CFåM†SÅ ÅùÈ+ª­¨®6ˆíT´Œ¶n@3$ŒÚ,²SèU¿.úg³FµñØpưư—U­mÛ8( #4F®+RŸè_¡̉覥I§ë]¬è9ˆFCs³ơê3©~›±œë‡­÷u`’ZrƯ¨&=ĂÎ×GÚ5¶¿Œ4Ó¯Fơ 5/nHF̣P˜c¬œ/²Y?¨Ktb(»~ôQî„5Åbqü#º)g°ÄuÀk±x¼CÖ™^©“̣/=Eü¶k´uÈXáQéwÛ]éå‰ùkºG"'ơêơQÛG»Ï#W;đöç`—Gj¼Ë´qÑ."I6Ç,D5ÁœÊín°œÍ¶u-Í-ñI-*ơ—áôM¤L˜ß%ß¼£áÛ7}{(8^d·é%pÏtƯ2M|K±/¹•5ôcÛ (Ô~†sa°AÁ;ôqÜ¡à>áQ³, x–Û(,d·ỤGrÙ™ca\ Ù`²g™…Û>¡Ù$;dlF́ô>»nk8<ÈlÎzu 7Ư₫£+¢9Œí^Đô)¸ƠÍiƯ6bơ}¥{A›o|! uá£í+m6đx8d×?ÛO9Ͷp4p)ÉîB䂉9qK¡£w v:jê!¢Î•á‚—˜èm²è%)¬¶æ‚i€h-ÇƠ¨ÇzÍ¡°À•-ñåÎS)Ă—jÑ­Ϥ¸+ʾ (Ûok×VaƯ*ÚÀLJv×:À¹×‡ˆŒIå>á‚đäWf$ÉéÁ½ –ÆÆ̃tÇ´1|ܲ Ụ̀ÎẾiÿD]_ù…5=wz"é×Ù£ơ«!T¸E]6Ù ™c¯^Ápyª€G†˜ûơªa›¶«?«ư{[î́…ĐàhüH48÷§î×z©KHÅ’«ºê§}¦^_|éK…¦¯p¥₫Â1ÈŒ$•_¼‚1zeQºnÂY’Ăˆ:s+?= ¸,̉‡h@gW•× ríÛ\U ?7̀yă¾ïîX¡Ç¦Ơ,ïî²½„¤¼{ª»“9Ú©4‘zĂ,AˆÉ5nY'S€̉Üư öh:¿jHu-âŸYj̣UËŒ‚ñ ¡ÄR­Øx¿!\¶7²²ùÄW³ú–T+NxîùsÅÍ×RÜ+¡¾ơ‡ôH(µT„»¶¬J¤;$ÆCk%äE¦£e:ÅÿÔúÆ̃W}ÍH¹»*ƯÖJ#ÚÓV@̣dÑÙŒñᨅÚê<Äß+Ö4Îïăß«9ưƯ ǰù‹—;(đ‹e• ăüŸèPFWc?}O%–̀‰ëj|»†™›ç̉ µÓc")o¿êCC¡}zË·í&=Đkp¾Ó ±₫³%í»v$2₫¥̉îXëS<¥ÜY₫̃Ú‚‰A«aÉƯ—T1‰×ƯeùBî<æg̉·ÚT”$¦²àóusP ø¯‰ÇEàJ̃i9íĐẉ̃884:+Ù5¿‰XTêưăNä<ÑÚlóTdêËO-¹Xí¿èÖTssm{^›g«ˆ©æµ±l´-̃ 'Ç¡Ó(̉út“^$bö^‰té½é5Ù¤°CE[Tâ}E@‚ƠxMÑäëåwz;lPÙSØ6H8Ü”§À\ñ^“Ê ê{ue†Ef›h.-ó℆́Z1>0äùáơCÅ´WưÄØà‰Ä‡r˜ ;*ù‹s%ĂPƯsoX=+́²Å=i¿Æüé‰â]íưڠΤ^́–HÊÄƯ:´®ñ 5Î0 ₫¸.®đđÅ€FåÂ]ỬĐ×´¿Jz´<¼¯xtĂFŸå’Ơsư5Úcè”æD~i‰)ítÍ ÿ›ï2•4~eÔ'(8Íü¤9÷å<,UÂJ‘+›Ù5½ûóyËaßÄơ‚ăg\M„¦™&]·ë̃–é…¹tv_c‡³Û¸÷­ éêÏô»̣qרà8L<äFêƒíz„^Ù–­×ä 0BR»=Jë_jÆîhƯÛ±½V6¹[ oŒÇ)—­ªÙ¸ÇOëyŒÖ¤¢¢2‚Ơ+–UÜ,Ѹ?XúJâxw¹AƯ±»sc²ÇtÀu jÊÜÿ…AôVè|JÓG!KsñÛä+3]Ï"ïyV¯æ#VŸû3Atï‘’G‹́UÂ.ax>+2ĂYîf–>v#UH€Fé&ûÄS›SỤ́:›áJëàV¼kûëM¾+Wúë ›-[?_ơ…’úÚYwṆÅo- ̀s3̀'ơ.(èÜ9ÎÊ=ÛỌ́ªm”«ú6ô ?ñn%ü?}GÏPèC'ˆÂd.W‘²ÅRˆ÷p§}–XƠ‹üI•åZé`@/>Éw÷[pÏf¹*×ä[›0¾©T4éĐ{‚JYæôˆà²°< ‡îîYíöû¦åÚë­x$±¸\„20ăHÅÂWđ§íÖÅ^¶G‡Ă£6¨èéb4UƒÍ\H“̀X ÷ưÇé¢ê„¢ñ ‹”€¥EÈ, yƒ hÏÁ EµöbQQÛi82cƒ¤¿₫Ú«ä²É5/Y%íawv¬4d|¤eœĂ*¹>$œg¥¢r5Ö^QĂ—úü圕\Ä=‡·[œ‘–§PˆÁƒ;»Nơ©¢´(ˆö€Í <”oÎ*oĐçP7&îÑ7J³e@è₫éÎĂ€U%l¼₫(M'[Ÿ£ĂC›ꇠB¼«+'åơ¸¡O”¢iÙ|V*á́*N8  l%VĐ1Z̀ÎJ1k.CW”!“™q"Èëi®7'’åi›-vQÍ]ÔA-~|`SƯ¨_Ë'Ơç~ëƯ,(qó{T#+)Y<æâ}µó®N6PĂUñ[Bá*Y6¾­éÔ ñ-é.•€¦#́~f³¡=̣ÊQ=½GÖz^–ă–ïChV(³=²4 X ƒ³T†›Ê’úùcK«{êÓĂ +Ăf˜-ds‘}9ø<–®Ù~«Iùÿ÷¤ỹB½ü Í,á̀Mñ+*đL2‡¡É±““ưD;k)ÛY7©X ùưwÍnuܹH_¦‰±÷Ă$S†̀ûr×Q_V4¥̣Lâ¯ăjÑcL¬üÙñ‹ –v ·î ‰¬Ư+D¤ÚÜWˆ'S$>?¥añLj½bUÜUË )7OÆXlç8¢`éï§́Jo×®¹Ÿ""ĂWk²: åŸn ¯‚@c’ÆÅ£˜ó— ©:›Êé€^OXÄG›]̀X““p! ¼K•áÔÛʯ>ôûFWbƠ…‰MsÙñ¹Û́“ "Ø̣ß$9öïĐ]ÍC ́Ült́xñ ¼`4;€1C}—€‘b±* Åäûú—]´<­^˜Ae˜WŒÂœ› oâƒÙ#ŚèưèäT¾y.Œ'sR¢åùô$˜„4qJaGóí¼’ôñ:p C5èhÉ/Ü]¨+W-ÇνĐ̀·`eµĐöeÉöCÖfmôë°C₫¹èÊLwÅR#Næo*ŸKÚ¡\?ă< ̀:Û¡‘Eg&ÉŸ§¹­âp~U¤áR;Ăñ-\f´ƒ.8̀¢^­[¿±¤ÖÔ3ïĐùʺrXó4́?[2sÆT')íé.;\§ÚËDD•̉>-YP˵¥´††_ơÉ=†‚wûdLT̃ÆåĐ9«>¡½'ơ˜Ô¤Q“9½|G«Ö6¡;m•¾‹5ïÊëq2IaW¬¢$;h3 ¹/êb :S#fTû‚¼k‹ë…ÄúsÜÈhˆ^Y:×c íë€ư³Fß[ê`peă9œ„© |SåárèqW:=Ô¦̀åôW²ËO™o^gj•‘Ùúßh÷e/DhGJ—Ël?Ù'T;RÚZ~Q8vˆÎñ5•¤–¡ù£ ̉Æ»K{nº!ßtñ¢á¦²' o^¶x/\₫™bXg~.ë>[ÙwÜmó†´•"ßừ7-p[JŸíkßË“±›[Ó6_ѱ«¨o$Öú °˜¬ÔB¿]ÜECùŒ>ù¾̉Ê›*ø^ÚŒr1»'Û¦ˆHº‡GŒ·ÄzϪÅ…´ös—`Â;›Í»Ÿ>æ U/Ô„¤Ñ.ZÔÏ› ïJ]—^¨ +L^X”Ü̃I»¤øêƒ“ÂêŸz¾éÂ]s.¤"‹Ÿ•…Ú¢œû¥pZSÑU· €'̣ß³$›đy·đ“ăZỄ=èêü„¿!]sRŇª @?„XëפÉç—íoc’OÍ­h$:œÁKÙ%0F 5ʯƠé<^'ª~à~|¥& Dp•Çhï2&CoG §ŸAj,1ê#cxI¢ÄDm½ ùä·Œv‚êâÏså¶:[??<— `‹ÅùâĂ 3đđæHùêNù¹¾‹:%hœ«/0¹Â™À{°>P!ø¨B=ÁoSji·@™ç#¶™RÑØCáÙr}A_‡Öñ"Óụ̂„Ó'NvD‚ÚúäW»§säu‰o’ÇètJĐ[÷N‹Ï(.h÷‰Ñ̃´¯i{æ°]HƠH ?«Àaá½ïô½|aO±>F(ÑưEô' †éÁ,=!É å„•-<™)‡ävν®PIˆn‰¯#Ó¾̃?„*'÷Đ®^b6ŸGäPà ¶Ơ׿Z销Ñ; #׿#q›ø‹;¢2$4ïÍiÜééÿaCûmV¤w…Ê£Ir‹K+œR·®L,Ä1É8Ôƒg™Ë¡ø²46ăÈ @Zư¸ïœ̣́/&Vê„Üóísœ¦Đ{åˆgz1¥¸ÊÿîÆ÷‹q{5úÁ/́¥Đ6œv5ƠÅhwè­ß,fXăÊâ¥8V&N^¼-8Kje Aª-µÜI)¾̀üâq2YBÂơöŒ+ß6+$ƒéÜËH¡&êgʱ#˜/‚X̃aן÷¬ „¾é»DfX­>²Q +ñ©û>ÿy ÿÄQÿ•¨Mœ)ƒqN`̣‰µ_DQăɲï1gd¦Í>²½â$V;*-́Nb•úHpÛJWK:ù9»á7+Çç=ßjy>k*ƒä·©ÏNàbЧï)/É–ªÄÄ"‰ÇáY'1 äơîT–¾ñʺJÆ£v̉‚QQ‡Ư˜B4á¾Ñ²́₫ Ö̃.‡‹LÚ—ó¦Qµ¢whZs"Á4é†/lˆ. ±’†ô¾Él‰Èđ(vW^WÄ–m6ă¶æđ™Ms&äăº́Hô^Èøª’̣ Q\W4¸±ùÇ‹+ï)!roÇ1Ct"ŸÀü ’ÚÍ7ƒd–̉é#M3ùÁë.w“Ũä-µ ,+ü"}ô5ĂtDZ“ÜPœA.·øa¥ä„%Èø˜üư…êxĐ,£ƠºË2{_›3AæÂ2Ï:è—Vë6̀y) "Ca©Ó˜h ¥±£ Ă<^$Đ4€> Ú)m©à…\üøg$†I‰W›'oKŒÂ=ĂăjCĂ&w— »IÚWYcí\>˜Î3s+̃g96RO[¯óá;mûgƯFD9|ê$ƯçDÏ̀)Œ6Âî9ˆÛă”oơĐÖưc‘… 8BáK₫è¾¶;䆹2̃{O\ÎVÅ ôe•ƒí˜åM 1´Đç…Ó”dó+"Œ¤e±X„”íO7g̀—-Û`Ó‚Tí¥¯”ªƯƬ̀‹'sÍ´‘××ñ̀±®E?(Z­óZƯÄ8Ä<<’‰›Z…Ú6 ÖF顨À#₫«‹Äç'”ÄqB»’$₫í´öVÊ›‘¨ƒ¤Ṭ8$²~]©¶V’§î<ôG™ L6ú¬¼¹Æ_+;Ơ*ëSÚÔŸ’9-ơéíÜÑŸñˆ#ét8fjoÖîÄû,ßïùŸ÷<›-ơ[{¨Ê^v›e ƒ“®h=ädèË;ñÇđÊ2_+;¿c“(ÿÁ(Ñp”Já൶wÿBH`¯=mÛơljKœ¹9BDQ¦Æ‡zñ‰×î×}tE¿V€›ÿO,Óù%£™ºNúRµÏ-RÛœNöơ7J"5L…‚+ÄÓNOj–á¾ä¿ÅHªÍNÍJÏWÁ¿¯Ó+ ”´q´¨³ÍÓ[ƒ",—o[z-ª(øå¹o‹m÷±}½—Md.}'»r̀tªª:¸Nó¾‘&.ÔœƠÙđ¥["b‹é~-ÎX˯›tZŒAªÎÚÖiƯ¿ à¹ưçb´¬b Ü!ëgÊfĐÁ9ĐÏm^b¨`Ç|ßĂ/q¤Îü3 ‹sW2‰ha1¾5́¶L ¶—;¹.V4û¦¦9aËÈÖP°‘b*œ̉û%›ÛƯ“ —æ:ª¤•'è` wH¡” ×á)̉¦µ â*¦Î`i‡~ÂçĐæzü‡ÍQÚæ₫Ù¡›é…VÜ`f–Ơ€¨ùâçy–ÉzÖ´tÏ5z9:1˜¡w8¥ơ—ẉüsϦ‘ko˜•É~sï‘N*¨€Å·r½ptU{#J?ƒºv£®Î›Q†8¡€—ËÛ.øÔ*1°|ç Û¯UzK¾åÖ `<8/µ§¨p$“ØqŒQ½ æAI<[¢p]É#çmơ™Æa¡ ¤¸ơ£̉]o˜YÚSËëm® Ư¥Hf‘7ÿUÄ8ư¬Ÿ¯“ ¡{¥¥g«’ê­é«-¥ø*—Ơdë%‡̃Ù÷ßäƠJ¾GNûT§ËºSt_e-®h½µªbŸ ·ö™`́D«>9t*`©Ø)bcZö› „Ť˜~øÙ C±&àë&rÿ¶j‰wíB‘³́Ó¾“‹«Êx´¼eDư Ṽq ~Ôÿïˆïø P•¸>ßúÅv{0++½’†[TơzİѷLóq‰À ‚QL»å*ü₫OKî¡C©º’éZ R¿»s4¼¤§²GG3@ºˆ>{^(ñÄ*Ëœœ÷°ḍÿø’̀ååUƯÍ©`Ă4ÙÎâ6_ Ÿ•1y¹~*­ˆ­”ø å^F—_gè‰ûZŸĐ©›D¼˜åÊ!Qu 6íèă$VAûH‹‰-›­N@Ư3X —½Å-v@¹̉͸gBụ̈êäC‡F‡h§-bYÚ=<ääh!EÔ»Ovü“Æ̀â­äÂ\¡~₫Ư¸N:7Ë (₫ï¡Èm¬ƠZ£Ö7H©'ÉÙåœ, dˆÁ̉t́^·u¶ƒDˆºÆơ²Øˆ âÜÚƯfÙj”jóÎ̃ÿë8¡ƒ»öé¾Ú₫ôR÷«j6ÇWù9¶"‘¥ýˆçưüϲ öḅ«ÿ¯~KŒLă-ävψë.Áb?`8D["o~D”pF2z ±y~́ª¼DR2 zÿàzøơ™ endstream endobj 895 0 obj << /Length1 2146 /Length2 14789 /Length3 0 /Length 16072 /Filter /FlateDecode >> stream xÚ÷p¤k× ÇÖÄNGÛ¶m;Û˜Xkâ™ØÎĶmĹLl''{¿˜ư~ÿ_uNuU÷s-_ë^ë~ªÉ‰Uè„Líâöv.tLôŒÜ9aM&f## =##39¹ª¥‹ đ?r8ru “³¥½÷?,Dœ€F.2Q#—C9{;€´« €‰ÀÄÎÍÄÁÍÈ`fdäú¡½7@ÔÈÍ̉ G¶·:Ă‘‹Ø;x:Y[¸|äùÏ#€̉„ ÀÄÅÅAû·;@Èèdibd3r±Ú~d41²¨Ø›X]<ÿ'%¯…‹‹7ƒ»»;½‘­3½½“9?-ÀỬÅ  t:¹MQÈÙÿM jaéü/…½™‹»‘đ!°±4Ú9¸¸Ú™Ù*R² Ư¿Œeÿe@ øwsLôLÿ ÷oï¿YÚưíldbboë`dçiig0³´Äeé]<\hFv¦Ù8Ûø¹YÚü]º@\H `ôÁđßüœMœ,\œé-m₫âÈđW˜6‹Ù™ØÛÚí\œá₫ªOỔ ḥÑwO†®µ½»÷™¥©Ù_4L]Ố,]R¢ÿ¶ùÁư‘™]lŒŒŒ́\ #èabÁđWUOàßJ¦¿Ä|¼́f4€>–fÀ8og#7 ÀÅÉèăưOÅÿ"8&&€©¥‰ Àhni÷'ú‡hö/üq₫N–Æñc0₫ơùï“̃Ç„™ÚÛÙx₫1ÿûˆÔåU5•”h₫Mù¿Jaa{€7 €™ ÀÄÄÂà`cøüoE#Ë×ÁøÇWÊÎ̀Àơ¯r?úôŸ’Ư₫=”ÿ^*ÀÿÆ’·ÿ˜\ €̣Ï ë2²1||1ư÷¿]₫ÿMù_Q₫_ưÿV$îjcó·̣_ÿ?z#[KÏ[|L®«ËÇÈÙ́‚Ưÿ5Ơ₫ku…ímLÿ¯NÊÅèc„́̀m₫ÛFKgqK ©¢¥‹‰Å¿Æå_rµ¿ÍÆ̉¨hïlù×Ơ cbdü?ºí2±₫¸>œ?f̣ođcy₫7¥˜‰½é_[Æ̀Æ0rr2̣„cü%f66€7ÓÇ:=₫b½½Ë‡ àƒœÀ̀̃ î¯eg0ư%úâ0ˆüA\±ÿ"FƒøÄ`úƒ>üä₫ ?…ÿ"Î?Å?ˆÀ ü}DQùƒX ªĐGejÿE\Œ₫ Nƒñô‘Ïä¿è¯.2˜₫2€ÿ…Mbø×₫1ø(É́ü Y₫±gù ºư#À_z{W§ø˜˜ÿ~°°ø/dư`aáé`ñq₫±øY₫~P³₫üàfóøAÎödú ÷'Û‡«ƯÇœüCÿÁÖ₫OögûÿQTïđGừáă `g4ûÓV¦K₫§O¬søXXûôöăÈàøøAưaúàéü§Ö¿Đí`û0w₫¸æ₫8|¤ø“đă²`p±p₫£÷ơº¸ÛÿĂჿë?àGëÜ₫?Ø»ÿă`?¼ÿ‘Œù#¼ç?àGg¼₫†ÿ³_&®NpùûüX¾ÿà¿_i@ ĐnyÁ̃„'ØêgpÛCµ;Ữß,ùF*÷²S»ëtUƠ÷À §;¡¤á”Ơ1Ê[Á¢Wïăæ:è°–D¥Öç//ñÊÓ{­pKS˜“ùÇBµư°øtª‚û_^¿¨Xƒ7ƒvJ“g;ºr")æ¢=¸÷IxÔö—₫ ]ØSÚ¯b—)¡‹V‹̉ (#Ï1₫1MåBGCzáï₫£ Øæ¢£êkđ’i©p:&Ư[ºÛbTæ9‚”Y%·ZçÛqÿacT±r9Đ@ûàŸUÅFFùÉṸMaæ7E÷ÜuÓ%3_áL«„M¾LK•N…H껕C®,›’3ư(cÑH̀ë §›ºî”¦Çd_¬œ#àMUÅ‘>!©çv¦Ä)—ÄÈLFØ"ÍàoԶ꾳Ȯ§IU{s¯z¿Ü{©#‹ÛíÚÖỬ§) TŸÑ=—ßßÇÏnïibù„9'$pec€âÜ]"ªØx_ ßăi¦âY¼µĐi¼ùi¼×Ë•À!fàNq{(®Z̃ƠiJ–ÏƠ¢$f>pfHtb9§¥[q.R¿È»±‰²«kn—®xÂKzü!KùïƯd;V×7Øü0t+̉ÂÖ8ư·i –R̀<7́”R\Êô@T^m̃ö¥t6™_séµ ³4^/Ÿ$ÚsA©ºüœ´Ê#¸«Đ‡MrA1…Kr8¤Ôç^!ö²5̃›3”ơë¿sơAjkgØ~1Á²«‰ ”̉µ • ơµKûö{ïá.‡QçƠL!Ă bi"©-@¡ïƯfemü4&£¢ œ4˜r„beŸ( ¥Û¬&ñ…¡ÀD#%H4uđ§˜4häIy€R¹8¸e-¢oy¦3ư…̀á-‘x„`ơ«6JÀÇ¡}åṢ}5NæØ ‚­­“6‹ e[O×A½±ÓµÉZˆN¶üM]T›®*¹»2mNcE&Ù¡¾ á,·©!ÇWƠơ¾àbAḖ #¾œø1ß×(ă3k~ĐdÔÑêLg?4-_ Íh©º8–É>K?Kơ(Î §u?¼Å‰ä)”M+ÆL܆Qú^}`ă|× â\'÷EN‘NÙx–)÷”¥ ÆBƠ«È³ó®á›S¥ĺ5wönm₫ĐÓfEÇ¸ïæ›I6ꢜ!lñf8±—¿âï*ñü’» ~È¥ưT´¤†Tè=ÖÄ6N/ ˜ 4ö)ä#ơ'^~ZIßJư²!P5₫*ßO¨ë¾T\XÉYtèÁ4“saP)̀mq¶é–û?˜@œj’JNnúùµËÎÆÖ&cÆ9·µAmă Hm¢7ÓéÅ_Ù[đâ¿=rºñYˆuhRxÆ…Ê?¤BSrá`™²-đæ®k²–B¶²¡Ç^ hd@U‹JßÅ”u4¢è.Íéiæ c·$ÖUf¼,ÛP7Íáqká×Óñă; sÜ%5ɶ<× .igøÖÚÜ>̃–G ¶¦1ås3<̀‰iÑáÚW}¢s”&h. ¹XÔ½IJÑ6 Ç•ơ Ûˆ IJXùÖë ØxƯ')c<̀¾€ëˆe³z£…ô9x)3h<!ÑÁ¶HAî×'ÚZ$–Í®(Úüt3‹`è,ˆ0ºâ«å̃œ´.ƯûE+4 ëNGBĂZK¶^À?ÓœŸÊGZ ”¡Ök ¯r0¦“nÿ6oL0‘–w­m{Qb–÷32¶ßC₫´$wƯa'Ö¼đG³„¬ÿ²BÿuÖ¬}ôÍ́qvñÜ.i i][¸ "|iœgv́‘k´˜Û.(y€¡èL·NûàĐ‚ƯƯ[Ù„—o½̉Í'c YD¤`f†:⋳Đbʉ™̀ÍMq@EtQ¢Ưc~ÿ/i´ŸÁ'êP=‚̀z]Ë bŒGéqËï#£©¶̉™Z€Y{öWOj•GP$Ÿ»pK uvw£FP¬-2ÛŸ¡n¼(^ÚJxú²óŒ̣¿•ÓïˆQs »Ê*´Mđûû½¬IĂ¾J đ²]@«"x9Ơú¸Ê&Ë-ù—vpdÊt̀ƒŸƯ´^톮qz*"½¯®ậ¿d»RöĐ‹†âă³ä,ï'É%á ç¦µhYü~¦'Ϭ9÷₫ÅjƯœU~O,èQElđ3©.c>‰"xñƠ•«û¤Â%¹t¡Ư6ÿĂÉ́F¢HÿE—-,‰tgÙ C'Dk² ăSfW¥@¿Î×®9­BWó™–ós‡â€)Ù[ÊZ¼¾ ƒjÀ’çd§_gv̀u9k“’Œ7Ơ2ß8Hˆ†h›)«=.đ÷v†Ăr®e0YP1AöƯ8öKù©$ {§L4’,‘¢æè†—1Ra–v¨É̀½Ï{À)9–́’Œ™3̣ZeÀö&€R~®N-®®ø̃îä—uå \Ö́¥jmƒÉßB±ùṢtak:îƠcç³k \—+ ºMéí.kưQ“W‰‰¬sX"惪4”7d¹ÛîKÈ~”€F¸üC¤u bµ<¤åù™¬Ùµ™øC‘|ÈØ7{”‰1£qấUÄmáß.z·^ºíXåëß”̉œXó1å“1çA2ÅƯư†Îl1zW~uÚ]ă„C 1‹‹ …NUCqFÁĂȲ‰tàxưp“&ŸJ#WïY$| TAq(̉WrbíºH‡ôùÁbg²(²é2 ü×ưWÅ:ÜåTăªD¥SG•đZ꺃¼¡aŸÚU×;o˜+Ơqâ+å7fb¯ư:È…ƒV,¢®~‘á/̉n]ógí‡á^Ûɤ¬H₫˜¬BCÎ4•1O£«sPH×P6œ· fL_U˜0)J­ÅmƯÓÛd+ÍZ ‹“[e+ÖÁ1µz3WÖhø¯ËÑØÊ47 Ñ’¬2°øæơUñ<ß%sä2ptWđÚÓ(“ûǴoÚ%ăK 7à Ú탾³ 1ơXt¡+‹sUg©. xÇQæ~N½ Û‰óă½±èĽ¿•{·ê:€.ÎBXÂ;!ĂR~_ù*±=äÖ%`¨Â½ỳ- tPkF~đÛæÊ(‰Ê]ăƠº×±Ji¨¸\‹9†AŸỨØZâüMöÔIJ„™âC·&€'¸4[7 ÎIÊ…¯D- ¬CPtÇ«ç*º$“o ^áÍ}-~ÿJb¥ Ùªé ₫*ç„»ô[¬ªîäǼ́ É!ñ µ6M1¨Pxüä­ j×G̣%;)^ç»ñuß×̉!´çWøá¤a׬HăÜ&†Ä ‰ÎÚUR€¤â½n‰®¡ñÖÎ<Ù_Ơ¸@C!î=W o†=°ÊïăeJúl¶’lá†e)@Zm— ¶:1ÚÎgOLæûEÇå©ÖI|É¡'Qtm¦¶Đ誶5IóÊô]q#đ7Á™<Ë£÷ƒỎWÓôw°ÑóPrç‘ ß ]pàcøĂ¬èù ÷̃•sK¾À4ÚêªwHö̃DÖB&ŒàOî›̣§~g£}ÎĂ剖ơ³ÖéOm9«ÇcR ¼†Íg1tg·z*d„F_î·́¬])ÎƯ3P^«R<@ħ¯;ôÖ1¢7'öùHQ¯×a ‹Ḷ{ ¤+ ƒB¶±¦ ¾po'Ơ‹d«ë35̀¨_<Ó‘„ÉØ‹3Çá¶œà¼e­›±Jè•['Pzôs¯ÂÁ¤Ơ¿­ëÑ¥—Œq“FMæ0j²^Æ,†ïiP'rư" ê32T~bư8$ 5r)ö´­¹œszk&¯»gÁy1G)È*Xüœ+ç³ô«xˆ%KÔzÈÂ0Z7ËÉƠ”ă’ç̃²YÏ ă,Î^Ü`:ÍÄúV>c.̣ÈÎ0÷Émc9=éWZÂ.é)"ûă´÷Û9̀KÙÁveƒ®¸Û­Ú‰|§¿Í¹¤yƯÊiˆ»oªüÆ*IB‚¾µÈÏsOä–Urü7"ª)r»yñï èr(i~Ăès¾×Úí§%+D–R¹!d…Y"£ªÔA¥ưzÏ¥ÉT7D–Y  .¬ÚÉê sz¶{áê³ ñ+ ω₫•·mTæ –oÍpWät`̉jÙ:fƠªs ô¸!&a˜‘0j_iï-8Î9årY'ăĂzrqïŒƠnY½Ù:¹Ưf(̃Ä"̣'dĂû{\µîÜ·Êö6ơeÁ{–…–&UßL²!O+ 2x›+‰\ú”™tÁ -̃ù.í8ƠW³¶¾fMÇƯ¶F™)æÙ7úwÊÍ̉èSЦ"±0ü̉đ¶X>fŸNÿ=fuP«â3óv*æ?í1ß°±µ`…[¼^ëë•!ëí(¤ ¢₫äK-i₫Ö ̀R ÖáEîàÆ¼cÂI¨w_y´¶ăá+;mºÄ½—Ji1î¾ïpÁ¡QĐ̣Ùăçi;: Vb†c£‹DVŸÑ"±ă¬|¹RĂ9ü©Ă‹UDqçZóĂđ.Óñ…‹k¥¾$ÁeùίdT™É”XZ{bϼºmë›đ³,O˵¾¶§ÖpÊyt~;N­’5ÇÎÉ+á+/ÚE{å¥ôzoƯzX¹¼Ä Tc€̃/f:’¥6«¡,¿Ft6¼úPEçAZ¯E­É´‡¦Óaº×́öÑ©§UsK]‡Í¸b=œ ó:(3hHfuE‚₫:Ù(‘ ĐG¦΅­̉BÅÏ·̉ çđd¾"1ÄuÛ>Ùˆ;₫r2µđBÚÜwÙ8Ưˆññö>èc•âJ9ëÜ‘*Q˜‰*Đ˜û+nͯéjy–µ œeØ+çúzú÷ß.¤ÆzÛʃ\‘C¨Ó•y»7®¶HιéÁ}'̉`>W<‡.׫Â~‘œ窕đå£1h7ÊaxZ m¥¬ƒ{‡ë™}wâ*µhÚ'ØÎ³kŸ!‡—ñå]ơHƯvơ4’'½T2Á✲{$KÖ1( ́©hys WÓé–3=8=VêH{[7« ‡ªwç^[#Eú¬w(דAƯÈû²­/×3ăù,aÚ|+‹_ÄNü“œPfƯa36}ÇΡ“PÖWC”æ‹óˆ©†{åOO&hă2thMVH‰‚Ÿ¤}gÓ,ótN˜((ñ¬$vˆBÉ̉×˨xPI[D<ô¾ ±¢2󠣫öÚ…SÈá~ -hu n—Âư†)Ü–` >ÈèûmÙF8ƯP—dÛû&­Œ³ßJơ"oNl £Ç¹M ¶=ơ¤Óa¾]iS¥̃-\ù†ưĶM$hƒkfRơñ,µaûơ.‰÷6̣– ¯1-‰b­˜ V~Ô’×̣:₫*vú~á¦D>¹îVˆÑwûz{k)*É(N_ó>>ƒ,γ‚Ñ\¨êh—è†1á5‡$®ÅGk(Ñ{߸dφø¨–e—$̀S²ă‡Á¾¤€Ù?ÂÔV^ÑYf<÷™i :gé’r'•Îä‚ûp̉çr +o3j™g¼u1ƒƠ©:‹—®…ƯLª8ؾsI¹ú2₫è4’m˜óƒ{qiĂƯAáút›rØ-»Qœ+Đ̣̉cÔï媮1n>8^¼Xê ‰A Œùp₫ x8ËÎuoŸ·oºĺ}Ó`í‡>Œâ+¦øZè}²£»O^¼çxÖcƯÅ6ƒPPa? cxq ‰̣5‹“gmĶz˃pƠăH`¾Ôơ¦‰œ}”>¿ys+Ÿ̉n„yẫ₫IF’hfÑĐQà¨>‹‚{̀™˜6-‚¬fùtÙª¼Nàûܼr*¦*ï#JÂócĐ^­§gr¡`ëÆx|?äé¯đ‹3覾æ ớÙK9ÛB:©‹veÄ#B07Có&~SÀ¡ó áçKèÙ%sr1 y!uỒ̀£„ÂƠ )*ÊM”Ü®Ơ6u#WW-Wø-JÁ„àºúº(• H`Ôßø5ø¢bw¶zj̀\ï¶Ơ„Ö±ÅO%˜) tÓT–%ÚÿÚ˜)j˜§z̉ö»À›̀¸{¤§‚âa:ƒpï̀=¤JÄkö&fÙϹi‘¤ûlG¥†g—è5¢ẁD°ƒ¾¥H’ÿ + .9˜áñKáđÓÿÊôÆYIS;¾©<§£ÇÀÂ3©—"n7mC€¾^áj2 …£íÑ GùÖk6w₫Fÿw8O“=Kî n@ÿ€&ǘîª\( ç3†RLu¦À˜‚ƠV¯¨KO‚ơ¬3Äé3Ü ¯e¸Ü÷£| uR#́èØăO†+đ…éÈ‘̃ ë¶³R ¤û’ß0†é$uƒ«“vÔzÈ]±́eʲ 93¿=Xá-´ ¯²)̃(²Ëá•»Î!æ`Ó²*UXt!Sªlä6÷0$,<¶kŒ®,ơ±ĂVLÚ5!ÿƯñ̉ÀÀto°N†·ÈUŸáT‡DU±qN«Ç+Zï?&&ưîëÑ´{«øv÷L|yU^́!Ø1®ó95 F́-)8+ă2ÎƯ8ܛܷ‡ëp`ÔWÏgơª'È´;¯uuæ^m'_ ûc?HçKa- ³‚I*´è 02Ó\j¼c̉.›è̉”3ô›̉«Ó X±íÓ°I¼Crƒwcúo¹ ́îß“¶nÖĐlMˆ~/̀¨¨®A3UF¸ưQÖvD;#J°ăË#un¢₫j»4mơÅA.£«UŸwéÓ̃Bf&Ê~'ú6¼(j̀_C¿ª|ö(̀ó8)ʆ"Oö Øaf’ø¾X^ß‘¤„ÅI³±˜·ópô«)«jñAH³́[„,èöºwéY,~w?"óÙÅ|ưfÑ‹Û?\pMÉ‘-FúÅ̉Z[DZd¬P`RÜÊÖ¿ẶP{‹€›!"¹¡…Ü$Ë*/—‰i /¼ W¿‡ErÉØ ¶Dữ Ơï~ÙÙÄự=—5Üưă¿*A·|́Ă…>5Œ¯Cá`â%•ÖÊHV”Å—<ăVW»nr¬û\ƒ²-Ùă₫“ë§^í­²!N)çÊF.»nv;1c?5ÄK¾T¾tEÈë¥È=3q[ߤUvC)x:”„ơ¼B̃́ỳDB ‹eC—_ &mjÁï¨U¯´\aôB;dgùzß9.~ל¢^Ö¢j̣r•FƯU‚H½‰™‡ |ª F^?+¯Êª¦ßc̀Â| §ê‘Ï8rK~@«J3¾Zex”©8Φ:Ÿˆ,èEÓñän`Œe~}é¶5*¤SA\Àÿ„²dx~kinlÛÔÚ_›2ËÍ>U”Å?Z’2S ÿcº²?8 ®‘æWS zÏcx+03 Í+!‹bĐU`r;çâP1®·`Oơn†đù˜Ë\&¬1’4=CépxHûí‚Ä₫Iñ,pcjlJ%º­j—Œ©—–̉cz¥yI™²Á Ơú{tlỜQQ©¹*¾º}ØOëªqj¡̉{["#Ú¡^î,Ó‚ö01ưZµ’¥àvM­S<œơHÆ| Ä/NôÑCƠú›¢¦-ïù!:U?@—¸îªÀQ Eqœ"WùœĂ1ƒPöhû4qÉs˜£j‘ÚƯaå‡W„}º©M 1'y'Úq/.CÓkÛ\EÖu–c?³g^«°¶‘Ùs`Ï#™ÙÈ3™¬ª¿¤ÊÍÊÅ”ụ́é D=—2$Ȭw|®¢uÇEÎñ1úÚtÔ´˜V¹uNÅÆSͳUGAB®ÊL˜Ị̂2•WÔØBkă·Ú<1RV¦ÿØ#x́I_{=¨ú-½®vé†`€̃=A6¢ư9O­FË-„RÅK|r•å@cBØ8§ëƒÓ»†Œ2g…œư\¼W‰„:¿”¾û:fđ¶È*GÖU+-}}”!ô~BZ§¾}̉H4ăû3]ª„FÜ6[ÿx¬s¦!ơ×¶ĂË£Lozµ«L´đÈ< Ø÷5ß„;*” &Y ‹(# ,„W ă(˜€Ë­ơÉWZ¤³ƯúÎ:á¸y `…öçy46n*D j”ÇÅß§¢¸Ët‡«a0epyb L»AE<‘D¸öFX/ùjÏÈ _¡*Îëè/}4fª;¡T/…aw@­}‰1Œ± {¹ô¶1xq°o/¹»F B˜Ïn1_yä‹ÂlHâ:$ŒÂ:ï{jáŒ9Ư FƆ›e•>u®ø›Î|q:`”³ÊAVÁ»[Ge÷XÅÉÅ} -é>*_´íÛ¿0‚É׆œÀ/¦çH­=WO4#î0/ªó[F£ëáOc”3”.Èvñʬö̀ts₫Ơx#â-L›ÿ#‰eb¥đ–ɧØÇ´oîIÖ»H;G‡·ª=¨c #\îÛuäÏN~ âBrơÅí‡È=¥Ñ6jṔĂܪ›,ó– X†û'¼ƠáhM9Ưè{B@ ‘~ 8q–9c„‘‡1Y₫W%VǨùgÙù¯?KRFcT~|̃_°‹™̣Â{ʲSñ(¤Œç¼›—@»Ă*e¬›ƯHÀ5vDLmPTaЉÙ/¬ÚÓwwGƒ̉ï Ñ%̣ª —½ơy­{-”Ñ•i‚À´+™F‘Ï í̃[‰¦On§Ïƒ¸_H6èÜØ’¿ë¸÷ ‘~ôk-ÿz É‘•´ôiI½‰’PàÎSƒ̉ +ˆ)±N.B½‚©Ê‰cu•,HKNçdĐŒÔÄN…pÉ»œ)ØƯä¾Ü "ùÂÍĂûœæ Ê+9ÇIm啸%$2¼₫wuJ0FÂ[‹¯[?/¸æKÎ1äbvpŸ#3`¦zƯ›»‡7ăú ÍX3¢+hav5‡¾é7MŸY/çư´o–½ûˆ7Ú×–@ß9óo’º%a_ƒÅ¨åÎƠ+¹1¼+\¤0¯°b ,VÑÊ2…¥Æ$?±Đ°!óÛqæÀR7G‰u€är§%ÿj ’Y`ÿ,7äcÿLá$în-É)úä¡1ÁÄĐsøNm~µ²»B¶[Î%¬ÓaSæé¤ùđ)$Î"Ă”ÅÊXKÖê -áµL%ÖCĂ5ÿ««é WđË&f©‚́”¶÷k„üT¼”α›½ÄkĂH ƯGăZÆÖQ$Ỡ’¿v˜œôI,Ie‚3±7Ú¯|Jö5Cúƒë …ÍHN<7²û Đ.qtÆ~J¦å°“júuâ{rÿÍÜ™ˆÀ™•÷§1¸ÉÅlj“Êï]°‚"K“„ùpDƠÿnD¬ùÚøÅï=̃î+s—±Ă{’ˆHç¢-Vcˆ1ØÁàˆ«$)]L„v|çÉW¦"Ôâä̀ÖÆÍ±kŒÅ†x5¼Äñ#øåT çñ<.»d;[¿Diå´ja¢_«́Y@vƠïNvgôËa¥§éÉ Ù›Œkô j˜đ“Û_æ)³ưŸ\Ú·sĂ|~đmhĂ•q:ÿ¤ñÇM¡́1ik¼Jå ¨Í}Á—†;k`Füa’EtØZÔï&V®q=kà1Ê«ôƠù•*/•±“IÜÑù©ø]ô¥^g7ßr–×5ô#˜5‡›¯ïisG₫jœî.‚.´ 7zHæÄƯz'ÙaXh3…ă]7óqlϱ÷í·4•i,Ư›G êƠRÓJh·[¥6áŒó#6‚{~…̣RÓU ïÚ©ơ”5H25ưJÀn6k®ºkF§7]e1OO'¶bp±ăAÇW©üÈFzô¤ÁD{̉$ôïX5|øtÔQ˜;†bcШpnƒ¾̃… °̃-æ̉‘’ƒ µâ‚%F³f|R¥Û1pÉÛ—́V…ßù5¶Ù™’|•V‚¹–uCktc~='ß–¯`íÜ.ûß́Ú’S†&|¥íë±/à‹ÓSËÎ|m¹ûp†È}á~;•}åơ‹×5Ưôv—I’°’üü­› çG©Ûc! ©BNv–_ß=‹;˜Ï’Î̃RºÈ₫…!íîÿ‰'̃‘|”•ßÅ¥ˆ̀· S«"í\{Đf«iGl483_Œ₫Óutœ–ßaPÇG‘H~taدcæÙ¿z´[çB v<¹`*ÔÏ&ea?½ow´p-Úù@ˆ‘z±±D®y²·Êµí°SBôóppKD9dz‰IVÅFûoÊv¸Ü±źWÄrđb£̀d\o¯̀°zókQÆ\mcu²×ªmÓ“îèËß-`çËטlØÂÓ₫89.VN›±́pÇp]8ụ́A'åæ4v۶¿b‡€¾Ü÷íö„¹F›Î.6Ä0 PF́¨ R$ơËaü»PKÿ¦QĈà(¢“Ô—F½®Âj»•ös{­%–)SOבI¢ór6\u;>ù@íq©}—…Đgú)ĂÅ@xX³Ă²ö½sxœqŸ0¶o#&‘T׫*Ẹ̈ăüIܳ˜?ù|Âé—Ú`TŸTpI@ưN8§È’ï̉‡¢Ô(ưw§G%øï¹Áf’tÀ£éà°˜Ưe8Ï<áÄ_^?ƯÉ0o5‘¤àlL¹=`"IÆ̣ƒP²E‡@îƠ„½÷w…%[az2“`Ï~º°úÚW*aľϧ‰¥íưK/₫˜úÍó̉a”ƒÎG3:1Sadëi—«iŒ]qÊ!9l NÓ* M¯Úñç^ƒ&ˆu!ë…Øºçåxư₫`‰~J´R>Ơ…¡{Sy(Î÷/óă*w÷“Ç xM[Ø„z&ë;íx}dƠă¥H›c£¿X̣ÖëEÈlŒ*Ö6×|Øä¥` %Bq.†*N³¯D±F¤ÉKß9Å;|Ê~V©rØ€SÀ›ǸM†Ă½K r²«ău²Û1Ă=!<Ç~³´½{Aû¾5NDóyŒü^A»¨]æđyŸđáùæ’¶È=d0Qk)¤ßµÅ %Ñ Q2`ÀoomªĐ°¦~â¯b>:­̣̉( ×)G&Û„<đ~== ôÛÑ€Z¥íEÊ0ˆ%RøŸªâHѸ¯D́B®ïÉ2ư‰7µƯÓ#`UÂjÊQ–âÖWZûü‰ç¡verâ{H:¡¾äÂ¥y3u ¼™‰ë\ϲj½ªAºGº'\t_»–­IẸ²ótèóñ|¢ÉTPÏØçæhÄ¢{éû*å>‘K0EXØïœI 2…‘Cµ{_Gsû*—ƯæmâPaÑö+Aa`x_êÁÔW*XßW⩾©{P²dṚñF (\Mæy«µee=+ÚÔÎkĂ”"5»̀3Ê"Høs©U”d@3i}Œ·¼wVơÑçGFR8Jó•×ËŒ—rCaU‡áWƠIâ«w9 l®™¼MrUK©+­àÆÉ EiŸtËÏ.̣S̃ä5j÷œ¬l…-Bà¢̀ơ;ôM]"¤1ÇC‹ă½ewUø ­Ơ¼×ø› ß»=›B!g‘ƶ#,>pu:VïúP Å¿øøT¼Ôă îXæsüú‹æQ¡^0ßđ¬’`…]²c 3s ï´&E6û‘Cµ‚Ùđ ËĂ(‹¢]-Üäæ­Sè!Â%²§Ư5ƯÖ¼SØÍ±!¿²Y² LYLâbGzNï•ăƠté®ê•7z’£Ç&K䲺ØüÆiÊJdê ´ñá¿z̀Káù͈PXï‰Y`÷húø©$’Üa|.‰îZ’C"f:DíjÔ Ư¾=áóú:={I¦:Ï2„OÀ`ºi€d̃í7D6yB—*±Â÷ç®øT5ÿ2ï°^kÂcÚ{ _Ø9&ÉÏÑÓѬU1¡²×™wóh$‘ §£Moc~i}wxe|®ÏÄLL7›L »{m¢L1̉©¦đt quÛ/q*’“ûÜRM£ĂĐLfë\ËR,́ RcàµĂª̉ån-̣À¦Í›~oœß̣ŸBüô!Ÿ ,5‹³I!qödzJ¸­ứÓ j‘đeñđº‘=+àEĂô¾ôÈÁ¯”ÛOܧÉ#Z¬¢y©JŒºSÉ'Ö²9–!¾ßL67`O4E½ƠÅ=ÈnƠé˜,ƠϼÜLeUbƒvq ÷¨+ö¯G\æx €|Ơ­µ¤äî}¥WB,*fÔg¨HR—F…2Ü+rG€)¹ ɯ's­•ƯẈ_ÑÉph$(·chdV'‚û`¡TtÔˆÖ⛕eg,MLSC₫ªÓ¤̉Ơ@O™.ƯÚ2VÖÜ—Ù—›¡lj5"ø´ÄC‰éæÙÇêñ›—Û1|m;¿t 8<È´hD­¥ø g_ôv~<âHK®^³­k d+ñ.îHaV„—ÿ< ô½¼4̣¾Ơ—‰J°îĂ¿‡¨ôt÷¾ÚÆăÈ}DQ)uưBG$qdrèđp9?ˆ¡h—´HÛäíé” q­#W¹F¡ø‡c–û¢ômz{  Æ £5¼b>–)¸Ẹ́̀ÄŒ«_ÈÊ'³Œ›ù^T*ñkưñbfDæâyƯ jüFR!åë/5Á©§ăâí f+¸”´¥´¦]↫í¯5 èD²»ZôOwĩµS‰a&³û3ŸÏ(Ö3ñøQƒ¨s§GÜUÜË~¾+¡*ư‚kͳÀø‡rVª}ể=ẁ3Z^̀Ư/‚]¶/öf»Mqd¨<@mi©_¬ƠC%ÚíËF$Ñ­“~ùEƠC`NR ½·í#ơ9 ÿu=Ë–§]?‘_:̣n¥T)­·ÿ]#kæ*TƯtöwרûÇo ø„øôÖJ8äukÚ C4Oơx¾ 7E¢G™î`—OU;xA¥c£“5Êϵ̉nmƒ`ID,ñÙz¯2Ä ×nµJ“…6I@%̣̃ÍÑOÀ¢-[~a0|Ë qê‘áA{á¤2̀¨ó ,#fŒââgª2×™­Puù_‰8ëmăß3Ñ}xØxù1•I\J”¿ÛVîxâß©Pô³¨}£ƒÙ–üº)”đWI[W™ˆÿđA«Ä ùÑyVU‡;èélºUđʳ?©Îùu †B4¡Ç6êæ·¤†r·.ˆ±¸6UéyËđ‘èú̀ †̃A!Q-AHv¾É ¶¸‡\ªGÂÈ<ƒÄ}Ù̉4 Ÿ0ôë‡äAë’•ºïT²0ç½bĂĂœºëă˜ƒøY†å[: ¯¥Ûÿ×2jRVAƠp[¢™ậW»¨o…uỬdø£ÜÂú”„y¡đb_Iºp¡tñç}e°tÓª+ïb¨s[‡µcx.Y¬¤ÜÍmgj¦…q†›̣’·,Éàøî"«œẹ:H«Ă?g*éSa8Í3{´ô€´ĂêL‘Ơ¿€‘|Ñ{°ÜÖØBñGú[Ÿ'×9GZÁđJ`è]k7;„j%†|…(ÀjF8‚dÂùr© —7l|{ül˜ª¦¨­r¶¾Æ¢Ñ6l,%Ù!üIÊNăû}é{¡¯IÈÎ&*8¤_ô3}âḤè øáïoîăºƯj´s̀k:¤ͦjá2tÀ´ˆÚ† aï¨ån%KRW¸¥°Ë2”ƒëtvÎ%ă£âKßzíCú%̉”¼ă 2e»qOS~Ëû2MÆÆ9"¶̣*Ú«ùR./ªH%¼¹È¾AÎm˜œ|éD>¬Qnøåbùzc-Å®7Đu/óM&µñGaóẹ̃‹›Ü 0KṼÜŸ’#ƒ₫;¸Âq$"M| üÎÛB?e‚E´)S@æ´ZF$§´r°·sYÜÅØ·wđC•(’fo¢ ’~`ÑC¹Mă «ld:Ñ]·á[²ÀÅp²TH‚I„½ËáYs\,YŸÊÔ·•Ûˆ"Å~0G&¿rh3<ëÄ8wvZ±¿´nÏ&VH¯L}Gt(Rư–ái&‘ë®7åâbZûs¨Á"èµvđ 1ØC§>±ă6^¦˜ĐU .JắK8’ĐàRQú×”ç,.Ă c©Ù6ªÆ‰¿/^ª4(Cg4.oVŒÛÓÏ £¥₫rt}3‰B ·Ÿ{Œđ̉¯…Û‡¬Ë~»¾vwU•ĐƯ@cnÖ˜µ‰¹Ó+ˆPơç¢đ(\)Ưn¸ YE¢ë¨º¬ Í1‰iŸ&×H1¨¤¼È…˜èñ‚eŸc\¬ß;ß̉'ê mđï!ØQ_Æ\0¹Üàº/IăVíxP^äsèƯÈà‚®¸Ư#̃¼ŒJ6îûå¹ơ»×—Ÿ˜a„‡ª·h AçQók’Ù-ë ¡÷Ï-₫|î]N ơÉo»&ûí̃)œ¬±q.Μ(đm4Ùœ́+;•SÍÿüa– endstream endobj 897 0 obj << /Length1 1417 /Length2 6043 /Length3 0 /Length 7014 /Filter /FlateDecode >> stream xÚwT“Û̉6‚ E¤ˆH'*pèIh̉{¯̉Uj! I¤„"½#½Wé*̉»H‘* H©R¤¨(½|A=÷̃sÿ­ï[Y+ygæ™Ù3{?Ï^o¸oÜ1R²GÙÁÔQHœX$ PÑÓÓƒ ¨0$BÉÍmÇ!`û)¹Í`,…”₫„ Á|ª¨‡B´ `QXB|[ˆ€@RQi€*ÄnĐh£0,%· í…;:áëüưà…̣ÀRR·¥”\a8‚èApN0WÂP`Œ‚Âa8¯”à•uÂáĐ̉@ ‡‡‡0Ä+ŒÂ8Êó <à8'€ øẮç#ô!®°?£ SrLœàØßc”΂ Cb )ö0 €°:ÀXK`€†!ƒu6ÿ«ÜŸ́óBpä¯drEC^p¤#À€ Ôu…q8Ai„ °(B>ÄG@́€_­CêJ†aÂ?óa¡8‡ÆÂç3Ï˶Y i¯‚ru…!qXÊó₫Tá”°ï^À?‡ë‚Dy ½ÿ¶àH{‡ó1́ ¦H¸Û˜–ê ÁEùoŸ# Ĩ•ÀÜ0O¨đ|/4́W|î&̀àëF¡„1`¾pá‡̉ q‡p˜0_ïÿ üÓ¢ƒöp(`s„#)ÿ]à†9ü¶ ç{,@ú óÏ¿¬ ³G!^ÿ†ÿ:b ‰™Î]?#ÿ+¨¬Œ̣x ‰„DÄA0HLp›đàûÏ:w đ?}üG®̉8/ṽ/a£₫îÙư xÿ(„đÏbú(uã3Ư$‚¾Àÿg¾ÿJùÿÑü¼ÊÿÊôÿîHưñ+ÎûđÿÄ!®p„׺pè¡b@₫7Ôö[»z0{ø×ÿjá 9(! ”‹ ƒÄ~ûáXu¸'̀₫uúM›ß~ÓsÁ!àHØ~~Ų@ ÿTu!\#X7‡ X‚äp¿̣܆DơÏ>ÔP”ư¹úDÄ% âEI8|‚%đdjóüÅnP‰ÂR„™}( åùA‹K€ »BÎƯ¿<" ăùíFؘsß?–ƒ>À`ưüâ ¡—¿í_ʇÁÇ·¸O÷(% à̀y²̃Ă$ÜqóùÇÅ®đ]2â8{¢Rư¼gG;ŒozP-D¢”î¥ÑGø“ â €>%ºOúôÎ5³Ñ6G‰̃ün*bùIÁ³̣Í©₫Úb®J Á#Ñú‰&~†>ïV|Ææ%z)º…øƒåa½¤%E'_¡«yQ2ö­%ÄF·(Íï4åFñU±½ÜR*@.,ơäsÖÆ¨#+Ëv–ÜN‹VÎ3»3”͵ïÊlf…sG=—ê·̀or~e&^ªÏÎ|5ÙZCƯWÇÄó'roÚ‹l5yDë¿x>¦)¿«ê»ûücv|÷½ä+-_k«ÀÎ÷˃K¯µíZ›²´ŸB|l[bJ̣́uxÜ Ú„Zđ€œ“¾Wß%ºíuàHy5͉ٸ!$Ÿ‡ô¡/=úThtƯaÂ9°¡́fEˆáÍÖ¶W‘FÛóḿ610Å~b¼OJ|²9\¸AjïQoz¦r¨ñ£9¬èpl¬K u´]BÆwü@9„j D̀F™lqư*)ưôqÏĐxS`dńÍóºj‘~4*Kơ8ëYI«§|¿Ă{Í# N+µ½ç £¾H? À1Ởă: #v!¹„¿;€®̃ÉÍ̀Ö¼a¶?`_£̃_Æ^,¿À¤ˆfR\ZpñÈáT'–zBF?|í̉Ưè z<µ àz¡áØœG·<Ä­ÇNb£uÔ4¤CË¢{ûn?^.|Ư¡©^ö»³ÎÏGc\.ˆ½Yn›W.+Út©E¡® ¼åë.Ư‡,Ó‡i&ĂwÀ̃o®²0 ó"½ËQỴ̈¶3y9Øâ@úék̃sïƯÑ đövÊ₫»ÙR‹ưÅóGûßêæä®N-Ơä}èC}3̣È[¦ ăÈ„5mR·("WÙÙ:˜½¿6^ñ Î Ă­LƯÍj¾yÛË <ïpäÛN¿2’ÄW*yÑØh́n²×uzÙ,l­ˆs²uËBP3-wûåXÓ́æyoùñ`^YÅWÔÜ2hˆ»̀÷1úăuûÏ̃NŒḅ‘ô‘—¬=T‹¿+ ẃ¯t‘¬Càö÷F¬çÛêÈÑ—á¢2lƠÊƯMJ́°ăc̃ƯË$#7Ÿë@×Vl()wä¾₫i‚‘+äg»ÚøzàÈ«Đ̣ú*Wºé¤Ø¿Ú?[ÜP侨4SvkŸ́=ođÁÔL‹¹’D‚×£wó bïï4óT#TÄ ‡,́‰mŸÉm²¿Á¤¿p÷úXádÍß¡©3Yåc¹óá^„ÇƠ:½QA₫º®Hwq_á§ERÅ×+soJ@Zjé®Àî­eøÆ‘H<ñƠ }³1«dz}éă °D¢Ưo ´å¢œ̃sø&ï‘0{w]ö“潘ʋîô/¯úú/© qẽ̀´c¸Á[‡wQ54²ĂÉÔô^Ys.ĺÊv¡Z̉g̃{>F&v˜¾3W3}æ¬ÄŸië8fø´ª‚·ø³̀@@¥!µ)g° Únơ¢̀A§ ‘lGƯ‚72ÿgÈaÜa±ÂS †(̣kZK³ÍNyÈ%ºQróÙ·Ä‹¥¹¥A3ûñ1.À„r ñƯ˯GKë̃} ¨Ó½gvÿ©Ư±»9ƒ ƒÎŒ̣jă.Ơ₫Ơ7îv·ëƵÖ<î7M­ÜË\è…!L4Ùú£§^™]0Ó³ŸØ¥‹ÓY‘¨QÎ!+N@…Uú̉ +¾)`F¿œ'™%Iă)X±.T(E,Ó;¢ua}XŸÄUÜêoú¨CL‚xï áé6ŸÇNáEYíá[¨© ¬áç>úh—́’Xñó^•Êóm½sù·TÏ‚jă—i$–^u|Èë Í9f«Úờ‡dœ}¬.< Füô CZ•?}ê{-₫ f9b=zFÑ1>î–OÊiƯ–×đ’¶Y Ư¿Í̀‘³¡ƯI©Édž1Ü‹«c7ß+xhÂd§ë ”w¡ÿ´/gè‘opz›Qügø-Véä÷‚ù¦6Œºwâëzû¯ë«”¯ëí½ƒo¾£’O¾B×3¼¾|yù‡(ÿ{ç[æÙªë’«Q\[c>[97Ô#çú#OYÖ¦telRÚ¦hkqƠ7§t̃ëăưÀÄèjä¶zu¿@Û‚)ÁÏa‚–DJ0å™Dͧë6ࣂ1?Ơ‹'lÆ‚¤ àX… rªí ¥ñî9/oà¢î…¦aÜ‹xÿÑíÅÔï>Sơ¸K…ÎÊök!fråøIÑ©v“ m¿–‹êÖºÓw¢¶'îy§h$&Èô²™ùÓ̀=áÏWï áVÓÓÖ*ŸW‹à³ßưˆ." £”5–Àë]3¶/́2V"‰r›‰´6GØmø²ï§oÛÀhƠ®㨋L¡â_̃¨,(F¢ºÅi{=uUß´)¥EÖ?<éÖ/fkDĐúåĐă¹"¢Ê›8ˆ̀«ÈúŸy:<̣$KƯ9ÙôéH3K^I±­fñDˆ¤́¤áËî•Ơ ̉üË”åXL9)Íúü(W‘̣S*]b`dÜgéFeÆ]ÀÄ́{ ÖœÑ!đ Ö6€2a'Ù'£9‘·Q,w®„wí»rơ‰KË‹¦œ—¢…ă:å®Q3³6…J­¼o¿ß<ÖNO.Èe£pWµ yÓƒöø^₫=‚́ît¢̉‰¤«~r÷sÖEûV}™›Ké~Ld# ¥­è¹–½Ôk̀*ÅWüơßæV>êó‘è\ú&AÛ®4·?̃kk»Ôê, ¤"¾Nt¿&Öÿ́Ô´˜›ÿH‚ỢĂv½̣ÊBâT¼lÿụ́h.4‰ósÿö5N\ˆ¼t^^¨ưt<§áç8à¥iQ÷Àẃê½ælçß|JËW8M•ơK›ư‡é@JƠ…eÀ‹~ o8¬kñr:I™́ă ÖÖơáŸWẪ©ĐÊ0ÄèQA8o ăÔC̣4ooØÙ&ï7¢¹”œfƒÉ`?4ă~Ô7çEu“é–·Ô‚\Í £•GX‡¤Ú‚–®₫P0ªJ`å!yØàÊÜEÿµơ0»Í(A•r·íNĐ“»W7´ 2{ÆÓ.b^Z~¬øú́Ó± eë°ĐŒ±¿Vø2<^^‘åđNeèYƠ“‰&s̉=tèø¶ Y~ĐPŸR'-洛̃ó{: Z†½é8ë€ç#ï ’«3Ăo½äØvJ­ñâjÑ̀x®ÓÀè×YĐ€‹q$:ö¥̉wb§ –*äe¸-©ö›ÄS—¨–¦A 5§qU…kA!€‚«ó嬶ÉÙ‹RQ7̉P–º‰“T+#Ơ|[Å_,üû¦2¡Bj#,Ë!‰¨&vŸfÚÄ—*Ú~¾Ij•öEÇÓM´³h₫µ ®„ưyæZÜ[Ÿó÷Üá ‚A¹µxÅæ$áMëyLM‘t./»¦|luêÎàL͸LÅ₫‡̃÷ƒ}]ͳք~Ôé-( á±¶X;߸œèÉ“Nl£"ƒM"¶Hœ³¨̃Lc öêY*â[Ô¬“¥†­Ư…=‡daFḯVŸµ©èƠ ·ŒÚñƯÍÅm̉›ÏÎÜÛ¢wOéˆb̉r¦”ØÇVÄ…K±̉­V½¬2"å!/«mµƠPú¥S¢;Eû;7`ä×…pàG€,À̃x;ÙĐäÄé—cà²÷ÙÚH*s(ïjṕ›’Å/E’Ütè¡–×= z?¤Ç’'¯¸ Æ₫¬â7&ä4ƒ’#?M)†ÜH©÷[R¥»%)sùáă­Ú³ḿEö\ëơJ9G•ïùñµ3 ‡«ïñ—dbl¬[0~„¿€‰@ÜOªÎíU •'·55¥¾f•¦9T–“âÚ½ô£wƒ‰+“¿A"~÷¨Ï C³{#ˆ‚V&³:pÅÔ¼[¸Ỗo_㤖¶0DAT8«^ª/ñ„WF=u»?ØXñ,é9íú³c¡₫/«¹ ˬi¬ˆ›ë·S…áE:ơG{2̃»»&Mb´¡í¹¯bKôó7ÇiçÉZ]6æ»́ç=;´œÔäzƒJ‹¬¬0“„v_êæoZÇ_3Ef˜ËoQ…]L?]ï¶ ¨L¥|—}pâƠdjà2OGx#©ë`}ö& -4اåîñ<³—Ư¼køÙ‘uWo÷—:ơqü¹ƒ?2 ´DªéUƒ, T628—ñY¡̀́u1vî’’zRởĂÍtæË3_«Y.(ạ̈–‡b_;TqóN£‡T?j̃á!MBGRélúUFØ-îˆ̃{ ¶m¸–”Jλ¡*+Să\ÙƠßp47©µ|(‚e`ϯŸ;Vªu ƠH|£oÜ íÿÙüC/:³xûÊ#kå¼…¨ƠJ¹L܈mÊCÂí9¯ˆƠL[º>Œ5[g5 TĂ₫E¡d NÙÿAe“¶u…áí?ă3N9™3µĂÖ̀L툌%——Åûh çZ´•hăÓ=ÓÇenA¤uüĶyÀ“}%ªç‰¦’=½Ư¨8~4ö2Û!µZÑÂ¥ÄNi(°=(c̀Iˆñ­` ¬÷åx±ª³öAÇ̀$èÖ3I–…èœd´t«GvΣ”*1·³¬SNkw-¢D»×öû뤻|F›³ kq$]â#ÂSN¥·È›U5™×s'A}ÄĐ:¿&Fí¢Ë‹¡›Ẻn{úœ¼tfjOƠedïå¾ ùé×é³ơ¬abœîê ÓvR̀Y±©Ôe·̃̉[P{¼„(ăFàw@?́çDƠ;*úb:–ơ3[+ j·~!G÷“o®/¸ÜÉƯIP4Î;̣Ѧâ;ÛÑ´¼ÈJÆà+˜4ênª *Ëç?²iU˜yRø-ùÅ÷„²O³ko{é:I‰2L¸Vµôö¼¢ˆ2$Å€ź>• m·rål%XzH‰IăqÔW‡$]ú9àù«d²v‡ÉY¹M(s™Â8dä¨3/j||ø/I{Ûƒæ ­æpÙ]z£¸H^WœÑó•ráV5̀ç8mÇ®âG:Ơeœn˜äH(µ?Ügxl½Ơ€ƒoÎíí2­z2"Å —¸@γº¨¹›4júC±ÍJ·ÜY"í‰@jŨÔr¨’ï ÓcKª/kA9O›èg¦¤/bÛçK‡9+O-J*„(^V%}CÏfñhÇK5i²í’«y±Í­»(ÈY–í<ÍóN8âéÁ¾ÖÎ6AßíSRäYñR|ù•ñÓX Œ,„¸=܋ŰPyR%oï 2̣ß®ßÔ¶90”Ưa»c ü›‚L.Ô|ty'j{”¢ù¨*È̃Å}{ÙÍËhT¶—cÁ“JnG(Ë=üâOaßÊ{MßđĐôña!>8ñW³‰9̃2ƯŒ”EsǨ'N1CrÀ*6°º‰¯ƠÑÇs%ÆÜl-¬Óµ—#Ö¹”I­x,úỊ̂›±¾´äăÆ¿/®Ï‘›*̣̀-ÙqO¡¢üÓVå#%¨»zưø̉( (Ÿ=é½ë!₫xs`ÁÇ%½”Æ̀dƠ~ÖªAƠ8ŸÈѻۑẲÛEƯrB˜¬qwm-_2Êă•/â:¢-ử'"îÔ²ºÙ́£%,₫ ĂÖđNÁ₫D Ÿí'©††½ơk¼?/í‹%3%×X—Í2èÍU ÂÙÉÅ5øm̃©ë•RÏwúŸ¾t\|´nw˜#F’œµ÷€íË ›â¿êtmĐ[èRz5ºQÔ*·×su*₫Å̃/±vĂ|cr(îHíZ}VÓ¦Äà±–IWX̀éWædØ·Ä )hxÓÊ™Ô)Ç Áóqî±zçŒtÓ+ZƒÂ5®[}‘ä7T¥K‰¢èˆB¸ùˆ/1@˜3ơ<OúzoÚè¦)°½²§ç?’›mXƯöäử,†¦*¿#ÙÂÏ&|Ñ]œ=;`'»û¨ÆJ×0´ÉP¯ó5ù½@ƒ¢ciƯÙ‹Oxfat¤iYoY£h¯?nÑ ¤ºưáÙe­²ïȪÍ;½ñ×Úăc_á̀Wö“)F#$&ßÛœm̉u’’Ö6³Èo‡'ä}₫ +vđăKôơ­7>^Fj]í}_Á-u2yŒc¶˜ĐàVÑP•âˆËŸÇ9Ÿî!¾™{çͱ4Ú¾ç1®H]đÙfº×G¢.ú B¨tX‚#mø…g ĂFÔµ×O3™GúÜƯÿ² X endstream endobj 899 0 obj << /Length1 2628 /Length2 23332 /Length3 0 /Length 24819 /Filter /FlateDecode >> stream xÚŒ·T” ¸. Hw#0tw§twwÏt‡HJ„tJHw#ƯHJwwƒtƯqï}¶îóÿkƯ»X æy;÷ûjrU f1K{s ´½ 3; ›@BI ÀÆÆÉÂÆÆDM­iă₫#F¢Ö:9ÛØÛ üa á4sÈ$Í\ vJövyW0€ÀÎ#ÀÎ+ÀÆà`căÿC{'€¤™›%@‰ ootF¢–°wđt²±²v¤ùŸ: z;??/Ó_î±·@' 3;€’™‹5đ-$£… aoatñüO:!kVVwww³·Î,öNV"ôLwk€:Đèä´üj löøwg,HÔMkç¿åö w3' "ÛXíœ!®v–@'$9@CN â´ûÛXño&À?³°³°ÿîï_ĺ₫r6³°°ë`fçicgÙ€iE&€™å/C3°³=Äß̀Í̀lf1ø«r3€´˜À ̉à?í9[8Ù8¸8³8Û€µÈú+ dÊRv–öoßí\œ‘~Ơ'iă´€ŒƯ“ơï;±³w·ó₫€ĺ,A¿°tu`Ơ²³qtÊI₫c!ư–Y]Ülll¼üœ #èaaÍú+¼¦§đ/%û/1¤_o{̉ĐׄüẠv6s\œ\¾̃*₫‹ØÙ–6.s •̉ïè1ô7†,ßÉÆ`Àá;€í×Ï¿ŸŒ ô²´·{₫6ÿk¿¬: ÊÊRºŒwü¯N\Ü̃àÍ̀Å`æàf°ÿ"/äƒïèÙüSƾrv {ÿßƠBÆô?»ưCºƒđßXÊöÖt¿InÈÆÍfùÅ₫ÿLơ¿\₫ÿ₫+Êÿäÿ» iW0ø/5Ư_úÿÚ́­ Øói]]  d9»ÿmªüûh•€–6®oÿ·VÎÅ rbvVàÇhă,mă´Tµq±°₫›-˵~]ØÆ¨jïlóë±`†¬æé §eṇ̃èp†P̣/r9ÿM)egaoùëÄ8¸yfNNfH%C7À›r‹–@¿H `e±³w¸ íù@öNH¿6ÊĂ `û%úñXÅ#^«ÄoÄ`•üø¬Rÿ"^6«ôoÄ`•ù8¬²¿'€Uî7â°ÊÿFZ~#H-¿¤¥ßR‹̣o©Eå_Ä©Eơ7‚dWÿ Ù5~#HvÍß’]ë7‚d×₫ Ùu~#HvƯß’]ï_ÄÉ®ÿAǜ~#ˆŸùoñ³øqCtö` ₫GÂÅơḲöíoÿ_ü`µürBJ´´ƒÍœ₫°€Œø;(Äâo¾₫kÀ™„DfÎÖ¿WùËÇÑrz¿Ă@¦ú ! ? ×/hóGL₫ ¹9A·ßU°ÿüÎưËÜ̃ơÏ¢!V@HüßƠqAÖbíé` ´ûĂ"û#?¤MÛ? dèo₫€É₫Ùd́oÿh 2̉ß‘¹!®v»ûCéƯ₫w1gûÿ¨!Í8üVC‚9@^§v` è÷̀¹Øÿ‘:ưg\ª @{Ë?ÂA&áø{1¿+Đù¯§Ă¿´áø%´wZƒÿ“†“ë·â¿™8ùÿÑüẀ₫k‘¬2Uçߣ€89ßÚü—”Ü¿l€n,ƒẠ̈ªú·-ÈẠ́‹̉éï´w«‹µđBÆæânÿ‡$†ë²A·? ¤2÷?ØñöøBÂ{₫!ặú]$’ĐéïTÿyZ¸:A6ạ̈×›rÿƒÿú̃z-æ¦í-ƒl«‚¾ƯTˆ»3oOPoé$Ñ3{Ï9µ¸̃¡½üL_°ât%öy cqCîRt́Ñû ±æå‡¦8µæ{Ÿ“ơñ­f¤Ù1¼̃ÑܱêÄẀ¢Û>>Ú₫o^4B·ÉSg9º̣¡©~Á¾qï–ñ¨î)Z ™̃RÛ.çQ@~(úÁ¥ièÿu’:Û<}€̃…™ëÔ}̣̣j+sô™L>†É÷03Ï[•ăăí”×R‰&‡s;!¡>É‹K¬¡qoñƯyüÅ̃YF¡<²LT¦ÄEf –]Ôrơ»ú®J·¡¹Vöͬπ Zâ^́͸ÊÂz' Ụ̈f“l—JÎ7@’ƯVø̉·+ímâ«y₫ƠÏ€IT=ëƒ÷ ̃÷5Kƒ½̀×!‰M7ơƒ¾:__÷¼~eåÎÎ em¾¸ J’Wä2 Ó®”ĂÁ`wû̀÷g,äp&~GÄ¾ËÆ¦Ï×=ôê˜;Ëḉ£oií©rëê$æ ØË(đ9GùÙ¼-ñô4—ĐSÊ4-„.;Uª#,{9VM° X;XÄzºZÇ"YèI¦»Î={ÖG•Ç%'Óµ5S6nài{ËŸĂr¬]ªƠü‰;G|ó0‚yx·Ö¿_<0¸›ÿÊrwưª¸XÜwÏ^ûö´Ô=T|àă&oPvX«úû̀vg•d±˜üë©.DsÊ#Mq7̣·ơÑè:ÂwĂíùîLEr’Ô´ysJ= {B|æŒf%óº+̃‹â…]Ö¿ç¨jQ¹¡ƒBIĂXúH¶½đ‚̉¤e ^û́‰HœXCóæ ¥×*T×̀á ̣ïăT̃àRĂ¯\Ư AîÈäạ̀™÷)+Ât‘áO đ†e-w±ùW•©“½À•Ă₫!XqÊ—-œl8"#‡²€ÜBÚ´eʼn¡É£—³ÀÍuWIÈ@É»AÑtyóÂâ©D¢ô×ëk?˜–"»ˆ`-D“±r§æv?Ó¥̣)ö·WÙIDF7}W'”NÊÎVèƒü,Ô¼÷ö¤¦₫v6myÀút9+h¥tï=BmmEEêëBÓ×¼ xÈ&CYpŸ[/øjO'jñø3ÛHÁÊëî…x< z‚ï£×k†§V™.¥4¯ 7>vÿ¼·ƒ×k‹ÙÑ­‰O·i¢s c.öä§àc¯„l‚==‘¨ƒ¹̣ô*¦ƠsSi÷™ç}qV¥q˵™K‚¨ ûA6k:”ôY|§')ẹ†º’̉̀˜L₫ă’Á‹·%ÏM^£‘̉~đˆXà¢ÛbNy‘2 ́¬¶x´ø+ßmúO°‹ư 6„LÙ'₫Ë_OÔ±đđ̣Z¥£ú^µ¨¦³́¶(¿÷¸Í'01ÑƠÅÄï»ø©–Uª©ú|é˜u‹dux' ṭ³»kˆsÅ;ûiÊö&B¸ª]O2áópÉ®¨¹{j ăTdăô곓2möEa•G+1ö™;¼ô^*Bô/UăÄÛƠÖœÍ₫6:†U¦Â¢’±jĂô¯x4đ°+$Ø*SØPxU”BzơNAúF3Ûü>)¦UÛÿ#˜lUÖ‘>o₫£4j‰¼a·h*aê»áÚă­—;~ÅĐ;@1ÿº£v^Ăס<@¬³ñ›£/ΖSíĐ¼b:^–ǽä L¿R̀đ"4úˆyZä„÷¥(ĐMY²5BI†—ŸJNÑæ‰&NlÖxÍ̀ă ưA1ZZ¥ö\Hqë@u8W壘Á [Hœß̣đÚ½­™Ú¹(ù±­@ö/l₫ €'BÜVD›¹®ˆæDH|}Ư^b²yS™œĐH,çYëK.́b®¥Eé(b£,\9³æîñŒ—ÂÜce ơ+É¡ª%ädr̉w›Å‚Œ¼†¹î„Xzë2HÆKÜReĂ‹»q¸X¯2Mdj¯×N÷̃Ó‘¡€ë±ÇÙMù\Y.\7æ(î.DO™ü¼jÆ©‘́›ËW²<^ô³%9`N÷bé°K{ŒOî&®¬̃ÆDƠzh{^ÖÎc§SQz½#HüêàṽN“|5ÛSÀâ$ÎF…k× 'Q*Á~×íRd)Jy]À5öFùĂd„BtÖ„`Nû₫dØ_úy6Rù"<Zpu-Ị̈©¤ó₫:¶ăa…á[¸Po~öḉ ́¢ÎíùüBµ2ѨR¦ÁÚ{_¬W[º©qƠâF¤ó́U[º×Ç1ư¨>µPŒsr~»VåŸá?ÔræÿMkºQJzè4¯s+ ŸwØïôë]ö`é9}¿UξBÉ‹¸Ơû z÷iDZKêËáÅSäé„B`ûºl$mU­´¾èºÜܪ uÎæsBZ»A=o7MëC–ơˆ]:J%áíä‚Ygf×­®“ßäJ2«‰Ưç̣ÙxÈt ¢HU;YßÇRJk•I¼¤kWNߤ/wÚí¿Ă;2U,Ï1BX0ËƠʆńñ~År[?Q\YlÚ₫Â÷“=‰ÊÛé­Øó±ógœÎ̃‹s;ư• ÉÍ…׃Η§ö©8æ¢̃1ÓÈäd̃ø,:~úu‡'¤ÛløvÈ«æÁVΪI–T̀ă†Wå#“©4Bm°X è`lŸÆw©5|»w,Ư uŒ ‘>/Ï·@²5“*q¯²Á™!?9^»M~C€‡Ù¿øv9ó¡KÚ,‡œp*÷-RÂÂ+÷9̣—H7¼[̉ˆz¢Fï΂3a’KoÁöâÓ{%qˆd énäl·»ơá̉ñ(K+wÇ…R+f¡ U®÷²ÁY¸>û/ujdH§q0ô°)8ÅrÏ]UX|nHΈø½<û5€̣b¢ ÓmÈ@-DѺHy+à†Ó“§7@IUO¦pjL”6ê•lá8¾^D°(÷ûØ¥•q:"¤›´äô®ÀúIYÛ_06œqp<¶Y:EæÇ¦Ë˳Gß$–̓»iÊ)…væS*ΟèAă›̉^©¦ơ}ơ¯¿lÈY@‰jÈ̉$=Ă}‹=†ºÙAñaû§K¼2ÜĐ®,ấ¹0+#÷ôü¶!p6Áˆ“aAăq —`>ªô4¶Æ ̣å\IH=øß·A!S˜€YºC Rr9I¦«£ơèûpU[ß ×]eŒü~r†Úv¸\¶ơ$BEöa`ø#™Ém]„à‘s¿˜uù·l´*£EJ$ª¹—Eè ´Ö¯ư¹“…‚4I¾Wtœ‰Æ•¤#¦˜•Ô¼gÆIó³ÙÛë@×(ÑGĂ;AƠ¥\0³Óó¶]0åôø‘”™6ÑʳưV+É·j²/'T;½ă¿ÀK•'8˜í#ûÏZ¨¼ya^œºáps‡RÊçê¹Håt°tñÙ äkáØÅÈƯáùüqÉh*ưø¦ưM‹©ºƠ%‹~ÛF@ö<«U%¸{®̀¨â¿G"­Ưúä8'R⺻ÚÍ,#ºvÖ혜*«oH­uä6ÛE:æµaL°ú]<Ê“ú½²æzC§0A™îÁêëooqäcođ˜'8ƒ®Il6fdE?ùƒFß4¨³¤^>ºÑ¾ï{Ë‚E;¬±Ñ)Ù<4ö| #àĂû‚¢w9-Q]Úóv¯Ö¸®\Æ•ÛD&ơåMí{₫=º kä$̣ÓjÔĐú)̉*WX%{©]¨É½¤ˆ¯<ă6¨Èßä® ÚHôDéÖtÖøG£ŒÂ• w1|®{ßA3́¦œ“ă‰X'H,`EÓÆµä}ç̉f×yËøÉá,='Œ=ÉË+è¨yK̉—êy/–qb.˜(̀EŸ˜pè×›̀r¬×Gù &¿º>#h́đ+Äavk*éRmº[ ÄƠ©¬ĂxD;öæxÂÊÑ%<³ÅàVüZ$×nQëëcMÚNă%¹­5ÚùɽY/±å±D_`äd§{4·'½í¼́7l'îƒ6u½…!̣-9$Ă^ Ư­Ié5ç!>fÍđ¿75;ÍÆÊïG 7( Ç0ưÑ:$•‘ÓéNÔwhFJŒ’íµms®h„åk;X±3 zŸ¾åÛăç¾}¢S÷2yËîƒóÇ$6;4o´rđkưB¯‹ˆÏƒX" ;|Gd̀ă4ư9÷/NLE¦5Ô¦ _—Úœ‹^7¹}oî56|cˆÅ~T\+P63.|k]ʰ§@Œûª…øÍküÂjßjØlóă'×é¬ñd¡.lƯ;Ï¥†¢’1˜;†o0ưVWÏ\¯u9Œ:?qȦ I9O1îsTÚW¥%i]¼C¹Î‹ă9¤ïͽH–µû”ÓTP*ÆK±ç-¢.ÄÊạ́¨ÔÓ÷óÖy+ÿưư~9ƯŸ± œÂ´ñëÏ£÷ŒØsùºR‡_0úYö×ÈÛǺ(ä4xÑÚçơHË^íÂØ. ’Đü˜Û•Ga,̃mklFÀǾLPÎ̃¢âq«̉ ̉ÔĂ £\ (SL|æùz¼ó:j”öêđºëÖOßR[Fq‰qÏ·Dæ)wƠ˜µ¡Đ±¦ và Ú:²½äöVŸ´Ä+H²ĐE…󈕒¹«4+*bK/¤cmº©ô-TäyæËÀó»5àê‘¶¤ü”ObS“.ºïøW §đ~ü^Í~±₫]dÁ#LRNl¼ª¯ \8ÅÄ7…« Ê‘ͬz4éë;Ă¢Çkăɸ$D/“Û}öƠ’†Ư¨²®“<Ïj=cI´éjœưæ‚” É8/È4†lÍ1¨\äc^² f«<§‘8i/ûwzU4¡_?É́¨5zN¿}Ámßa°“=&-ˆÁ¤LS@‹mSnX©¬Ö!w.;9üsŒ¬ưµ¦À‘è¬ô ₫̣3̣K Ư%¶J¡úfëUixÿ.P£´d½uôËlµ& ½±Ü83i°»ï#r¨¾rƒî˜ôỊ̈kd=ä(u8`­WçäƠ)ç·†Hu³.GOOzkÜ¦Ñø̉ïLR=:¢_heøDĐêÆÖö}’Eׯà‘C6$KÚY¼yĐ6¹‡™ÊçgcóÅ›¨5¤đÅE8áÔ÷ê=pƯ”N½Ë ¾T])¤—úʇđ •—vçN_vj…₫×qR`Ở–2¯±|7Ôú¥cr^Ú7g{TæFÑX$…2¼Ñ¥>jc`¶‹î¶úç^Î>Á¾9ƯS5ØáyïAESo¿}íă<‰>Ơ@æè&Œ™6¨¶¬Ÿ{O3\¬Æ#-}ugq8Ođ₫áƯ₫»K«-ûxoªØÓS8nYûxÙá¼['“™4âyMđègíåOŸ̉’RƠ‚j —…´:t^Á̀/¼¶`¼¢^­D F¿a¨¥¥6Ÿ#±â»¬wGBÈ;¾Oœ®ßüô“jN§–Æ“. ̃_42æÛ|ư¥g«¨Â;n¦¶ô,E¯I€ÂPS&êơƠmTáđæ’¸¸Ă©s”ÈA£1?%JêgÍÑô¶¡„Z\CפéLœq³5nb -A˜zhß>÷ „ñ¯¨)1F Ñû^\…×W}\Tg ̉•đÅîB³¦ë«¼ôh%Å&]s(lY8rc'³úÍ`PcRùwëɪáî‘Ëñ;maÔÁo4‹ÄÑ9O8ëUœÚ©Ï¸Óz0nRÛü{¼+÷o¶';±+(5"¾ƯơÀ–È–î̉éE»Ó»Z` —wÓÎÑmp‘̃øDæ>́Áớ׈›†él+‰6íg[>v³)ôN™̉ƒ‚5L-@ îỪº-ñ»j̃×¼‹ *Í€,€ăå06)9)ÆÇ*U—´£ôÉBœöWvL¢SâÜP#´̃Ø®Æ+a.>±¶ Júå'Ü:û‹¢†ÔYß|ë-3³`9+q‘d<â;́rÂÏHü„N2ŸĂI.Gê±ï½áçÇWºÑEq<’8œ)¸XNº‹cI/Û•ºxC¾4œÊ]<ç2jb̉‘çí¡ÜxcIv ¡WKÖ¦\%}3i ³̃[Ë §ª’Î¥ïøƠn~ÜÀ¼~Đ~ë4JF>ư ù&àfÛE8øXƯ™…ÍĐ.@ ï'žă ÿˆ4„VsEĂ8–jđ(‘ñ†ÊQ÷ªLÊÚ̉àZGçằRǵ̀s-–å>ÏfƠ u8₫:¤+Sf́ÅåÎX›Ê­ê•ữ 1˜~$P*ùơAÎ%âĂúB¬+•Xk@­}ɱ cë;“.T»a†’ÔU‹Ä®#†%éi@3_kH:!(å‹}ÍÙ+ư2q–₫äI§iѯ$‘_ùçÏé뀩¢mÂsàØÔÓ=ùªäKư#‚aƒk?ù”9røP¸#<Y¶ñˆÂ®â26¥˜=‚GîæîK¶Ăgk^JÉÔđ6_Œ?c)x‡f¬P©ñë´­'7"·¯W"Ôă2G¾~rRU†‰táiîâsÓMcû r » ÂôXîÄ&bué®cÓÎ:’@tÁÜ Zºz”°y–•G<äBt3„û†;§Yªƒa‰&ôä!Ưo=ưă.ÙYê*0x÷JĐ)â|;På›7êöÛC’øOç¤zÎ-̀áF!M‰¯fù‘íq\´ôXà¸WÉ©>µÜa¥ơ`₫è''`ƒÚ!úøZÉó^₫̣Û‹ïåIE4ÅKZư v„j•„h@Å-Ä©|’QÏJµ0 C ·6ü»†O¤ä¡µ)û^<¤¸Tm’¡ă·ö ¦å:Ánñ"fưàDVßDÿü̃çж³ư`báWÅ1ơU‡ˆËjh(;fæøÑÑ΃́[½=?d¦ïG©°µwS‘X=Ó¨ÏØ?«ÚN;'£œslrsN̉x2ÙKƸ×êœBÉ #†Q q*´ÆY›ü\ộ&>• ØîIsâ¤5µa¬}KF^ë„#'øWtW7̀bïéÆƠ]V]ÍWió…{A?„4'.ï`êº7dN°H8÷¥^}k²‘}—JwΔ(ú]̃»‹Xßr̀©äû~_ăxuă?̣~x’TÛêÈđñ  J̀ˆ_ƉË8¡’ ÆÜȽR  m¢Ïj¥6̃Ÿ¨È¿j§í‹ø<~A}„×́7xNl\Ź7–̀upúaü4wá„QØó m§2¬aŸ>Ëx©jÏ™Á íÔܬ\$ [bb]"wº7î€ë̉9›©eVOî,»¹®·W[†- „ª «kô”6Qj‰DƯæÂàâ7¯7N¥zâxQ“½¼KĂÀpö4¹9´ç½ ù¹…fL̉8(CD’“¢C*Q€A7!Tï:&Q×ÛÊJFI†ÔKJ̀R¨¡€&&!ôgm8H<‡ d®bïS*.^¶“)ê? ÀVî&̀Ô÷HßP“ï×́8»ü€Eˆ&f—«›/Èô.üV́́³ûƠ&ÔÍvƠ]d°§EĂâg&"˜’ à {zS´ăÔéơ]—ïư±œ¹)¹aƠĨNă¨gÑ#XÅG· ™z_U°+°%dT–"ɯ€]—à©0ø—OƒjÑzÁ¡¶nﺿ¹f$Ly(ñî]ï,Áq0£ê3+k¦Ö=!Ø“́̉j¥gCi’æB¼ ö¥O¯ÇÍ\¶Ơÿ€±`SVK̃Ú¯*§XÚj‡ß¼)é=ѳæ“)ƒE]í”;đƠƒ@üØưY•‰’ô÷ºÉY¡âq-;Ï¡½Kơ0bpÖ%6.¼U~$ĆRä"ûM†.By"ÑQ§È!íËÚÔf­7mk•<%¢¸n~á0Ï~ ÜÅ7× g{¼$ª½üvKÁæÄ 梜Z³RVdI”s~ ½›?åÅB$;˜ø$ƯúW-åe—"G8Óª̣qÓ¥Íûæ"r ñL«¨ĂÍë<$¸}†°̣.¸°.K^愺Ç*ƠØræç¼”¦‰ëbƯªBËx̣‰%aŒ¦¯v‹€é9đôe·đnV2Å¥‚JŒÅź^ăôkÚ¦ÁC1¹-²ưl¼¶k2L¹P{-Í Gị>â₫9S-ÂËwÊ9©H́M_?&s|ßuÜÇpù†b$ U=gI†;yâñLóÚ›¶ṃƠœ÷_– ,WlíCGÓB¿¼́HR› ¥,éoBáÅ×!³7¸X1Ù¦˜M1kŒÈ0ḥ±§Æ)mGZ"Um«¿‹©L‚)ô€Íị́R₫ ´NeŒ!̃igƠÙ¾)7àÅK*=̀N¦ZBÔ—æÓª•…Lh/¥F–´“AóC‡~„ÔaËL1›:uV –Œ•Í‹}-ڧ‰4¢A_ùîép0Ïà£@×¥)¡²úhç\öERWÍ8®‡bÛçQËÆ³¼4hæ *]˜Övkd húæ{$ö¦­{Ñh ZƯ’lÔ✹¸:è™5&\„§:‹eœ¢¶/¸ù´́ØfÇÀ­É0R²”aápÇÚ³wVÎófHé_\Ù*ÍS§Ío•Ûn—Ô¦›çI¯F¥.¶mO(0íÖƯ{Tw+eF_t‹¥•’·¡4R]¤æ¹è1}œ*ü.·ú´<Œ¬+íáÍ¿5áñ™˜Ú%¯Ek…́óqĐ\—|b8ï¡Ç )H,h(̀Kc@÷uU³ÄŒÈV̉‘Åơ6ƯÍÇü)ªñEç«È û‚j­e“$ÅJÀƠ‡÷Ö…Jm„vf{ç!«̣­Âåử TÇñK̀ÏaC[W®m>°Ú‚{Ă”#Ïv¼5‰ÜóË\ÛD 2*ÊăWm¬lŒ×ÏjùI‡Ă(RPpéloP^V``·ÄđEÀ²`b_£6 Ö‡¡À́¢w+Ïä5¹î’=VÊo½àgÑ¡¶“]4@*Ô-M£Od7#9î› }¦v#ê‚1û„Xª1ÁGÀô}³«x†-ö½ ăÅ€QOXIĐĐ yÀ¦} ̀GIñÆKÅ:T̃r]L2û2t¡c 駘@úQT”dâ‡1 =́ô~`«̣» *»÷™ªøá»̉d̉v728½ĐÚ_g̀:^ÍC»¯Ơh}¯›ô®ƒƒ £€kù¹0,ÀpIïêzô OÀ±b6ñÊÁ£øÅÎêv$ÁµßbBóü…¢¸ñ́^™P̀ ÔwD¸])Ùp̉ê ºĐM>dYø½Å½Æ ‚»ú¢SàÓej´¯íî/a°“>7¾I¨l6̉µê¶(ÜëÍvÍt»&´O<úIs¹Ê®{RWêx«Ê¬æ=§3’.áµ"¬½ûâT&ØíC»S‰©ÏƯ,óeQ'‰™¦.zö ¬tk¾¡H™ï₫<ÂU¤ñ\†Đ<̀̀rËjʵ‡ºƠ(Å>›́ˆg¡£`ê½Ö6â,_`XSwÇP{¨&ư¨Mcîˆ&w|ºZÓ,© ¼̉"đˆè¾IÓúZ®úä́æk‘¼èụ̂h*ªî«p™›ÀGÏjè+¹júÈ8-CëÅv1½’̉ ptÏÀÆFæp=5́¶úÉÓz¡U‰‹~pđ{Bñ¨Aï8íµ£¦\­Â: ¯DÉBlĂ³»t4^n–́ÎIb¼>gôÅEëüÄ(·̃r“»ñA×'B‰XŒ\X­`û†Û)yиpđB5̃5è÷jx¶dMä9‡[P„Q̣ÈO[-ƒvÿј¨7å;(¿åƠ4Ù®½Él’u‹®Ă¬t>̃‡³ƠE®ª|×ïiÇÜhñªă³¥o•Ùg·,g|&|̀„ q*ÓWB*¾è̃'ÛG̣lîf¬YoáÎ3Ä…¼Èíñ&“°f¾3Đ½§ùđ̃3;,Œ¶ák#n‘í{.Ưä4!ôƯcJ—!4ùn˜àẀ´K¯-‡Ik‹b„–çœG-º^w_ăÖ{\ÚUºwµrhîd;?t6ˆ_ W5U:¥hú’êËôÚo…~½¶êḾ̉)₫aô&Jaß±.æs£̀8–q¿O9ˆưº?¦ïM‹ø̉ól’Î`f~L‘œ}øk¨̉K€q”…́f#x'̣ɦ¾¦)7…d/ú…n’´TiÍÔ§ntxùÚÚç)¢.‘qrl™*ˆ|—À2H¡ÆSËÜm yjÙ, Xå6¸ôèÇ’âx̀£*Äœ(ÑïSç`ëAŒ§Ö{%W¬[°*±¥¥d¾vp ûÏ3ŒWÔ˜cÔ$ßRû¶(4ºæU QûÂçóøod›̀c½†øƯÖ³<·ˆ¼ó{Ơ>MÓ(Ù§ëØ7÷­ÙÔ¢2‡Ưä”đfÉ+¼̃Où»ôç f»ËßËÛƯ«O—Ʊ£‡…ư9Ơ%E˜ØQïâúF©Ú,ÇaöæïÚ^Ơ·1±*cǾÏ¿g¹…©Ó§¹'icåCèxë Ç…Øöq)8²å}f‰¾e ®[ºw-˜ö®×bÜaèE›A®Ù¼LíiÓă#º&¥_Dµv‰́†¿ùñ₫cû­á‚xVAçL©ÆÑÁ¤k|` ¨ï’BÛ,Ä¥#±]klàu4³¦ù|‰ÁÉeIÑ›äH ä‹S¢:›˜xÅÀEB)s((Âậ*”Q­½(5ëf̃úé^³—C©NÉHœïWÚä->±KŸî£ ¬Tăäw‡ŸeO—`%įO'àJP9“``¸¥²³&6ùß…uÈñ't'u¬½^n‡Q=ƒ¦$8ä*Ù~=fWçmɦˆ±€”¤ª² ( đ_{}§q₫ôؽya³jA,£”í<ÍÖ\ƒ¾)¨SÓ¸YU{I7àC2uQJ5S„ămÉj8Ù"Ó¨ ÊœĐ3*¯AHÖ~àXó å˻ۅÅô@Çñ́'¥O ]Ë4QFb"Ÿ'Ø9`̣ÆÜ~F‡°Mh9°Rb,=|I¬®́Mm}ïÛ*K†ríCZ9¡K{Âù­ŒH`>Vf¾¹%yÖUÿg‰ P½ñ%ÊÙưMÜ}=&X¢‹h‹¥Ÿ_-“”SykW'/×sÙï© H<碌Å6́[ù”E¦&I)lVQ(Fv[$H”œXÉđz_X" îTca_ñϬ„wˆá=.kœƒ·PS̀u'@à0øL!έb‹:Ö*>+<"ÓZèÁ= FÛ`LïÍ¢)߈ ¸Üjmj_‚ÛI©Oo¿D¬lqÖáX OĂçíÛ”‚§4„êyiÆ^Åf&ø&eæ«o#•æÜSজ$íZó8༤¸ÀÜl‰é*ßè÷vÔ×ipƠàæè{™;ơNJ£Ç¿}fz~N–ü:TĐ8”L*¹÷êc!ë8‘û3&sÀèÚ— Œí DÇÈPŸO(U,áÓå¨C!Nc1-ûôJ]_‘*ùJ,úBpóN—{‹±/é7xÀØ=¶nWä£)ô5ÅÓô U«u?®â¾í„Ç QÈô‘=tM̃Öü0¦4€Ư!– RL(̣9Ñû~3cn„m1ð­TIÆøÎŸ:/†Í@G6ƯưĐѼ;w}ÇÅB`TäXO×Ȉ}‚™›¨¸4C¦˜Á±‰ÑJb©¦DUAMÿ)eđ‹p8†µ½̣ÙîÖÿĺûCD…øŒ1̀_ĂÔËÊÂå†Eư­ ©t©|<]₫Ùö6=rîg+₫ăL‰ )&¡jéë§ƯĐï”W¼y|µ6C0˜ß*Ní‹‹”° Ü©:3É:…¤¤f§îËï¯Yx" .7sPƯØÔä^bÍ•½ë6®̣½†á§É|ƒ;¤S©¹é%Öz-÷ôÅ®#{¹YS>ù5¬ü¹qÆg›€Ă MÿXx„ïơê½c,³̣t*|EÈ{öâëí‰ÛºµÄâüL̉ă’ĂyÛ¤³aio}ÈÑá̀î®Ư1“đZ°tÏ̃U›È3{ÓNÅ]_».ÙkAZ¤7¸œU£Ä/lȾ™yG¡}?‰ĐÜ0í9‹Bqí̀WêÖO! ø&ĂS©‹/êƠ5°Ä–ăºtÔï r€Îœå04.Í‹ôØ´-Pzzoàçu8xJ§¹BRCå ¶ÄĂD8›7RñxÈÓ5¿‘a—Ï^ƠÛ³sª­¶PÚ¤è C·›´Íຟ~ª®7çgûϘ‚ªC]×ơâaTƒ“¯ >·=H¨k€]±3gTÂư³ƒ¥B$“>÷}üÄYZ†!Xko»’]̣Jè#ô9̃‹["®jFË}¿Îruk ®cö0n×é© HbnwcÄ^ÅÓæ˜ê§ƒ5Ó~Â2¼”÷„Ë3M ¯RyÀDNëA×ü³­ur¾₫I7àm¨©•‚@bñ—Ă›gIs2¢"­î R"Ưè*:Ráß½Ü!:ç~¿ƠÆ}mBDO¿ •Î\}rD„º›±•0¶uëúú$4, C½vG®‹ơ½…̀QYÿ¶“aªÙ{<ÈÿèçO^ẳoôT¯ïĐ¡«̃ <£Óbø!GwŒ̣$8°/ŒÓx¾{$HQ—afø2™ÅRqäBhƠ€˜”Z8^¦g$̃b¿Î®²mÉm ¯âv†¾$€?%-i9ø¹ƒFÈcäuF₫qËéÚ€¸é*>æs$º~¼Üv†ÍÑ(x=H1a«Ô#¹ÿñ‡SßlJÚœƠTO&÷b,ÿ£ÆSh¸đàÏè9\7úóIN¦ö âb‚Jfgne‘S4)ÔÛ¤ûă¹.dôóhVŸØÓ½*¼eDxn33EÓª̉1ç1v“¥èJÂæ%gß¿Ñ̉Tj–ªû¼C$‰óZÆS>ïæ̉k_`»ŸÓe•.èá;o”Ϊï6Vÿ ¡zôIf±¯Vx®˜â§zŸoü”ÇQ²ÓN¿Vơ6Lá\`ôƯ;á¹aĂËÛMÖ9ͱ14|üWư¯cË{¡ ÉnjD»¡á¢Å6àv’Ÿ́ÍöGˆhè>­ig„E}Ơ£{u/pƠ(¸Z¤‚ú§§2¨†%çJÙ¬æig¾¡¨ú M!đlÚX²Ộ»xƯ€ÖEœUª ߦ@W_~¶,5àhéä“\+"‡É"q‡ºØ€́‹>=ó~°K­kƒ÷RIT^ ¿&«g%‘Î f¢Ză@£Ú¢BB§}¦on³̣¸HÍăíQ©Đxư@â™̀HØL—Ư•¯æ®jAH5MÛ\T’:Ƨmíê'çü.¨irC﫲™MáƯû:'Dß#zKƒï²â;Ÿôă|=…ÓháV±’¢ñwD1jqŒz71ÜXœÛ•đ¹k Ñ=3 „ ÏwJ„¡­£x~3Ă/đ Ø£V¿ §c8ä_Đz{&Ơ6üÆƯ`P†j^ơÇùP¢Ë{à뻹aÈFlL|'Lè´(æ ß~r±ªṇ̃zU;ô¶]dơ#ú¦¡qŸrÚëÈ¢Jö¾\d­+|•\'9F^ujÇl'µ)†€³«Cv™Ïp6Áî‘>}W*—çVØ ‘´sA5™ỦâÆZ‘•䱟[†l[ÔSZè‘gÉóÆÙ{™¥P\œR­Ñ9jïèÙ”—Kb9[k«WQ§Å«ĐƯÛÑöl¯¡G=0µ̀•V½ ÚjD|f²Ôˆº.Η(ø ă‰A[®™´̀QÏÇA…Ùè}×OJÀ@áÛ ¦j€zŒi¦ă­5o^©UNă A° ºĐ——Â`{úV±FrÉU¦•Â1…[vª¯› Ü ‹ÍmØ^‚ăê¶SZơqЇS€Ô·Ôù˜BGƸdÏĐw/é œÅL×(ÓFÑwô7…q×-iÔ¾E/7“ä*ôC v ;L”fù¯^KG à_Ơ«°S†A 2Ήc…gXÎ8WûPù™\̃(§ÂÀ„t‰Ñ ½*”ÎëXÊPRçiöe†X·‹¿Â“bÙtådÅ₫¾.W`K»€ïïç7´äöÄ-p(µ₫µ¾¦U ßWµ\U¼Tœ×D·a!\C˜YÉàó÷NüüÜrÄO¡ ûC#8À’½hd4{ó¼́¯À^–ÔÍE­“e5 Z £ø̀›ßiü•ạ̊ô©«ƳG/h`₫Đá‹Rî7ó5RäâQ{hXtnfVj˜BcBvç}A誗ñvñmf̉¤ÓóÍpËv´Ësúqß•pæ¾­|¼à:¬„9À»VUº‘ü9èÀoS,x‹Ê |Æ3·b—d…! " ̣j™ë̉p*²śÄÔHÎyV‘*›/́̀‡;₫̃o:à¼OÂÙ¸¨²M`è₫È™Y.1Cqzo;Æ€|Ú]fÚ́Ñ[÷Qïv„%2Ç¥d€&Á ùú9ơ ³0ÙqwJ̣ûúLïĂÉöĂÊ-SÁ-¹ÓEXºUÿBXó€¯đ¾§T¡Å8 ̃cØÈÙF ›5̃•æ ơZ5Ụ̈º_>ûd,Ư‡—f¥WÍ«³»̣”Ú¼3ú·ëCNdË .#s¤Èû q́¼ëc¼Đƒ6 Ù̀ؤ°»ñ$eÔmørª-Fwtăl§){ºï0Ÿ9G§J+̃àgùÍ.v§V́…Ü |¸ÄƠ1Éuˆ ™N}¾ÛË÷Ä:˨`ÖVV±h"Èú”3) àC}ơÅ ÿê©È?*bâ¬iêÅ»­@r÷.̀«H/RǾ/D¾ƒœù9áÁÛ xVíN]QŒYÔ"Pîït<3®ºbSĐ t„ă×#U>²Ÿ®‹6W´Æ‡–|)Đ,x0tKyŸt,ÁơVPđĂøäb¿ôĂ0 ´œhÎî{hmĐ÷xW¾Mư9ö̀Œ]S̀Å ï₫îĐæç4m̀đwn0t6×8JC´N´3Åhâ> ̃ S§z_«yÅá+¶gmZ‡3dQ$¡D/Ë8-º­§†ª‚X:ÁGƠa±5SĐ|sú P§¨Ùô8W²0H!%ùƳX?öv\«̉'½°= _jä]Ùc7aóˆˆP|ÙqÔaK˜Û'+ä14|5UĐÚï0…ƠWu´Ûqh –¬€̉ZYøˆĐ®ü;slLŸ]²½́B¥"NÊ( œ ¢̣>g¦‚{Z°£øI[|F?ÍËñ¬IûcR;E¯mg†Âˆ5u¿¤Û‹đW'*Ư”| ·V­¥æpfyø »ü¦htÊúJ L>ÈB%ñ‚†O4¥y„¸^`†½”¾üĂ~‚Û”Œù\́́r+’´AÏ]ÑàFÜÈI» ÈéĐZ{‹§9·Ç¶mâó|ÆĂnÅ×#(éq//U°áúÊ"s¡XÆ"óR¦[̃x´r¼¨¤«Đ—’$·ˆuTt"Ọ́*!$ÛrˆX=¬¬pÁÛ˺è̃)1›§öóêÄ蹬ºTsG ø*oØZ Ñ~b¿D,–P“Y<Ù¹ƒsÉ8MPy `̀}oO'ø èE"·)`ú 9Î3pÖ°¯‚û[ ‰Jo[ªoµK-Rjo’߆DF.E‘)ëƠÓŸx¨K&MÙ—ysøYu£ú²ïu‘UÍó\O¼ËâOôŸ îI•úñpÉ«©‘JZÈƯ;₫O!̃àù¥D̀GESĂ›Ù~±üçÎù†̀m†z°©~è%YÅôn£âKf2Êç›×h¶rtV/î”÷W.„b+} ÷o=fK¨¼¹̀ùÇ¢½œ'e‘§K£ ´´kÁQ a›L¦íWc©ßñâp‹&5 Iƒ:́ưz?vWÎae$s’ă{îY¸!QÖd`….æl.}°KIøØ³†£G¤ăÛ»hX8ûÑvë1 ¸øâL¡KS̉éÄÜÚ~Øú0₫7oä…u‡+ ư §Ü¤„(5Ư‡ ÛM†ơjÉ!àœÿ”Å›¬·ÎI”¬å'SŒăÈ)đIÄU:¨ØE”ë±ç¾!m£ùüh •”4¤]Û̀à o‚è3–1[?}{„SMæ$÷Vîơz%ÀQ—×{₫Oäæc.#> Îđ>ÂÍ–ÿđy½Éírn˜Óơ1§&©5ä Eº‰̣Mṭ,ƒôdm©¡)'T*¶¶¶̣‡uŒµä­+Đ_kfŸ*­‡ë²‚DX̉;h²2U₫¯zcüFmÿ¢Ù´"B|èÖwƠi¦(ÔzFWøÜ¦ñQÁ8º«Ï¶®Û©F·k89Yx†Ơd̃F+D¡{7́´•œ‡S£oßE¼ÿœ˜Àx«ÔÔYätxËc_:Xí;}ƒă3Í£¡'<̀Øị‹´¾5^{ßơáÓêéÍ«̃¯ÑP/ûfư¬ËXôf ó₫׌é=¿àC̉¾²ư'®kW°`Çï99‘LJiûÂÁađ»¥c5³pYëkpbÈS½ÇÁmK O[YÖçÖ¼úʹ1“Ïî₫ˆ¨Cp÷(ØÈ̉¹+yXJ{Æô1kH1NF®á¤<€È—¼₫¾tkGŸ‰ªÛö—€;HüÓ¯Mv–ÛZr¨IؽԦŒÇˆƯ½‹́®@®nk³ îĂHÎ+¸»̉ˆäsQQQê.ªùăVÆ™ĐíÎ₫PnÈ$˜œP–Â8nªU­zo©¥ÚåûămªƠÈÅOÄ R tÉ–ê¼£5ÂƠüâ„úf¹ü[“†£ˆÜU»b™~ÿ!ÙæểØ­ÑM=µ€•Xêë¡Nzü!ÂßY\Ü®Aq «P'́d î#ÇÏyb¨k&ó«¸OûjưH^2 :Pù3;©‚nøc}ˆĐw*h¬å=̉½4 ̉(n>nƠ₫ë·4ÜđûÍFVÀBOơJ†%à¹%“}«›Ăư¿¬W/%éă¢9W0ñáutNNAâæ´3êç¶Ö s‘²;JÉ4O÷Ç…ŒÙXg ¦Ê+;đaXbÀr´¿w…v‘;0’h^;k2Ề¡O:„)Ÿ|óÛØæsÀ,Đ¡E ü}«¶®WÔ-’g’‘né`₫¼¹‡Ûƒ.ivWba rÑ»jdlđ·° Ëáb7{ŒV[ÚóF2hè«—¼§m †ăSaÎZ°ưëËÊváăD>v­ÀXè!ûëÙï¹³M½Ó£‘Œÿ°ÙÙI–úJTÙ·ÛyÜB³Ạ̊£‚‹ó –¤c  | ×È;¾ö.”Y¾BUªj,!@%†—ÎæIđéÓ>ßÑŒ?dîSt<;ö*`ÏƯtcF} m ¢tgPüT¼æAQµ°q¶ö…ù̃½£uËh¶Ú¥‹LôÏqŸ+.2ư ̀BêÓëT4/„×*À ízrÈ?éd¹Ù‘TÜúTÙd÷5ûÿtØ03n #n½ơåKáËùßêúZ¯'̀‚×-ÿă/ØR̀ÀV…å©J@ˆø/…¼=ö‹&`Jˆ£†ăƯôø—;¦¾²Á,˜YímÁ‰•NáÖ‘û§/ø‹y*Hñin­­×ó: ³ñ bÅUoO}ÊØ"÷¤Yë¾2 ˜́(ëáBaxÍ-öJÜ#€5»BÏÆo„îØ&“e₫hå“na°:"î®gØ›Ä)fg¶é Y?`Ă»Áß #SƠz‚̣λ1€ƠÛ́èÅøº›W{dåë<6BÔóL.Ul¡˜½VßkHa½~Ÿ*,×NZă?Ï''Ùíf6“Ls̉ơ¿"ưümưX®‘èJ™NE)~<¾Ûüa²̃ÅÍÙ[qL3$= æµJƠκX¯‚×ô]Ö¯6¯̀ˆ·˜ê¤¥¬0:÷gÜ Áùgû“d?¾WÂÖ Đ"G²|ÙÏ7A{\náIqIñ]¿5ÜfŸ{~_R+27NỨZĐE®¢y¹z̃‘<BÛ$ɻɓ„TxÄĂ?®‹8‰Wd×€;º3EÜç¥ ïê”jOs$?‹ñæ α?2§ûSÇ'ˆgèÀ̃77„™æÊæ7­ÄƯƠ‡»–¸hBÍ´'àxåtLĂpZjV₫‡óÀY £¦Ñ˜_¤¹¾ÎÚèÓ‘ó<ä&ê®x0‡́Ftjóù>ßsîÍ­UIèSÜZßjA‡$b)H"Ïq«/džױµ×/^@td́|¾dv‘ ÁÅ%Ë–‡Ï`O%Ê—²»Œ±ZVοÆ] ø³¼“pƠơL6(~-1Úˆ !£ß´S®÷”ücXTfÖEjÖæÎê?µô-e'4‚J·—nMèíä]ä›5×u1QŸ+ddÏ&n-xØO Uö 4ó6e¶)HMö3Ă:*aẼ;ƠÉf·„̀₫Ø*â!́fämå,À#,́b÷%ï~fDI-X~Zå©‘@5eô+ع:ë @]…ÿÇéLM±æVMƯ_Ô)Ö“˜å'sê·h S—Œï>oÙHëbŒœøTÏTˆơÊ×&úÀa€¬0Çñ©ºĐ÷$—-M\”ˆë ‚}¦¹Ë–B(ù×tD’lÉO‹_°üÈưR¨í…Sđwß+œ@ ¯OEÉû²ªz¯"ëaº‡bpÜ…ÿ­% ơ}‚ÜÓHöè§Ÿúằá[àb#LªL¡¢˜6/¡̃‡4­Đ¾x—›h * ¹`}…¡„́ ty›ƒÛ•đ+Ë"•„kưÔ3/¬Vg!JE&Œj1ä:èÅé¹Ưă+ÔÓ©*̣ùr*¸ZØB&ö´ “J¬ÉÈûâ[¼ú°l”Ö<£ƒ₫Î\Hkæ~–ŒWƒPh½U:@R$åÛ“ Â¥`́K«e é€åàKạ}‘ͱÙC“¬2á©ÓjZuXö{^ ü-›ç >TF8ØG8ÿ ămª¸Ÿ˜°N†-WÜY]JEmuăf[§ƯX×,j=k=Ư ü½±¬‘áÛ‘t §Œ¸,‰ø)U£̉"ưlˆío`ôơx kFZ ¢çĹa)¯u–yimÿ6MÙư/ÁüŒOøtU ¹Öé-gé÷R?Ü”¯̣j½»èø!₫­lˆq’ 6nïºOœnEµà.ħƯ$ Âô€®5Ú˜ôQ=a)Ha1ó` kơc¸ÁơŒüÍ ¹¹‘ÿ>’JeD»¿tåÏż8hÎÆË)1}½¿(°Îăi) yY¥COö²£¥ùaˆ÷8ºà÷¼é‚ÚQ#©V$G‹é³,°©ªmi”»<_VäOëă½»ǽZ}³'£}biĂ3rª°¾Yx«Ṛ³.X´åYÛ!î₫'¦>†Ek¹~²Ç©»M^›ê§ÛỒ0Ö•½!–‚§m=¼®C£zư"M¶Se8%’1ÇÏ|î¡T°˜‰•‰‰gÂ)— lV‰´© 3жỤ́ÎMa’^Pn»€l*•E0s´QÁ5Ü9ë"¼«§Ë›\^ô(§ÊJ’`˜] @cX<”̀Êùi=¦è¨­T6̣{Ơ j[\÷=.¿‡ng,c–#¬1¤¤ƒT`ñ"XƠÇÁÑ¿‹ø&E;5?é+‚ h…||5aü‚âEƯÖ/e`ü3²3«ߦ¬yqÛ”º`¾b` ±±-Gc¹œzxxÎûÓĂÉköP`ˆjeă‰́¯á œNFÖG*p.Z÷Ö2#%ºxƒ¬ivYƠy:l»̀±ÅMđ‚7»zộ¥aµ³×S­EÔÁº©̀b»¬9ûMÅÚ^1Ûtȸ]¯ËN6yÅH–6Fêê[jP°bùè±?́—.Æx™AÍ*¸^™Û ‡ïá@}ưü ¡°E Ñ/qøị̂¾̣Z@â -û2"p¢yq±Œå8;lMâÙÓj*ç̣fl_¬+ª_mÔ?©±!6ṣÚs${p½Vs;Ƴ® i ëç¾>΄ĂQƠê°¸µ.íˆ9·ÊƒdrjÉæŒÁ<°uÁ)H6íp¼w†À.>¿ˆr¸°n,ijKÎgâøÛ— ^€`‹ñ /t¯\‰€¾³ ú¶̉AÇüÍpæï*À¤Çâ}ë|$x¨cˆ=ÇŸ‘ˆRÎäûÓªU¤R@™Ÿµw%súƒC!`>œSè5. §ÛRÎèúøˆHy*wÿˆ¢ÛơJ®ư-&898O@Eù_̉Dü ⇶«ÄÔXlp NÈ«AÅ]̉¥j$ĂÛa² ¡’8>Ư¨0Ñ…hRªƠỲiIqÜÅ  ß»7w}÷VgëÆ~ơÉ|‚ ăk;cĂ. j ©-ˆiUÉ€ëAĐ¡Üóƒ̣å ’ÓSîÉ{åXÁ\­(Æ×$¿ä¶Ạ́V"ØH'Nơ—R'ÔødR…¼s₫{Úgp,¶Œ„VÁȾŒ̣ѬôPbU‚¸n" ü«_cÄ4_˜̣½G̉Ë₫H˰³B¸­9Â:-qJdºh+7̀:Áô9*'`¸¡̉.P̀#jUoûHiúĂŸÑ†£¬E·3:!PÚI˜¤Ô=®/w`uMΣ”­¸¾É¢Ëm|¶—Á§ +‰V wÚŸg YäƯ^Éer[iơƯ«÷²Ûèæå`óxö.™!@;€ ñWÜÅ| Óp}Ä#üUO¬¾m½₫¤ºS+üIt"ä.ùó3–ÀëÑAØQ»́Oë ¬₫ÜxZ£u¤¬;ç§á,Rƒ­vgM¾±„b½ ă½đTØ›í â`Ó"`W ̃=RÔqĂ6 °[`c­v´Pä×»ºŸ,́5ÄSíäÜ z°ơÖÂ_îs¢í“ü–4cÓ[fÏƠ?₫· Kyrˆ.§NRè”<³ ~lM.’E~5míoô{R5JơȤiuhç´¯)-ÓV&=³"¿=úĐ[ô*5Œ26YÚ ­^ÖSx¤©¬Ï,MçÎF×(êkL´Û/±ÖgYHÛÔÓ‡gs¯ Ô ª̣j0³Œèa–¨ƒˆ…h Èü±ë^Âóÿ/–aë^À€ Ư¶åpâ1Á·`P•ªU³4$NEüÉ₫ôTXv²ˆl.R=ˆöëœ8Ù’¥ăöÅ"mƠ©Œq“y '€ØIj¢–ûÿ{" X>„ª—â6är¾ÑŸXÈ;|Í~3 çÁ́ädiDt@ŸDRứ„gñ Éßd¼·¥jr1S¾p¦Ïƒ^ú{Pà*¥Ơü÷ j–£Ø¡ÿn5¶S×¹O^V¹jgTÁ,í$VÀ{gæ1«T½+?س;Ø\Il48w˜‚®\—̃ ¦d^ŸâïáaKẪ³Wz«Đ̃]c’ä±ë„z›]ùÆX»](ÛÆ£˜bE á§G„J4J*E ô ư©T`g©xpŒ3đ5Ơz̉A@ÖƒÁÍØÙ"ø†« ;íÓO£Z,nƒµA!a]_‰êRnô¼Û7ɦn=đô©ËÈ)À8îôđ{¸Ü ¶¶¤‹=‹~²TZÀ"µ|¶×‹¦­¨Å(| =/müop¼œúij¨b‰ëz¯ƒM"®=|£Ơ—Ÿh†y¹G˜·_¤ ™’2Ó)+Év¹ơ¨ f#* dĂù¶¼§ ±êÁ±vđ f~í›¶NP^wˆ4sÿăRa…3_ L ́$cG Ù.zí̉²bT";)ª ÂêIÙ/kĐ2Jt}íQ̀å  Uµ(® ×‘Đœđ³•̣œxÂđÉÖkåỤ̂ŸcTµ,Á85,Z-˜^¼_vê₫eÚTö‹’±ueHO[09'¯UCÛCÍ2è4D  bd‰hb€ÿÿd;ñ<}ăa¥Ê¡RÚs±[aå]# 7Â58e‹ä±ËøÛÊ!÷M¹M>l6[MŸ̀`^$ÙÚXæ«ƠăæU€}Đàæd²µĐNߨq, Ïäđ̀_v¨ătÿÖû#ÿÆÈE¦æ{Œ—;zá₫[›z‚‰]&¨1O5k‰".e_¤'é"‹ë;£U=`s7F;ÜÔaH[ [t0 €ƠÚ. uµ£¬~sç0¿³sƯ…#Ó—$OaÆƠ*]« xf3–™,ÁÊ—¯Ï{ÍÜS)ĐæÜơ6k8±Lr0‰×‡ál“̃b‚ï˜k Ư!é°¼Ë ¢—=%¤wPM~û4èÙDƒ̣»±=̉µ4X0O¾¬;(÷ÍỐ°"'ÙH0Ÿ~÷—Úȶô;Œ€?È%o"Á<>;K}ÄÓª&_̣{ï¯1àc— »D–-…UN5ă„Y/œue®ûåúI$8ÏwYT£’/^ú'ó„Îßxhe$;²U*r ²ñÈz¥ùu™ÿta|ÛwÓHjæ’[©Ÿ¿¤°y!€Ï/–²°Áù›Ï^—±}²/ÀF,`_ƒÓ©•'-]L;ĂgØäGßÛ§Â (®ÿÄk vÔƠü –‰€B¥&g˜»ƒ÷_#ïí*“;-È8ª0g®äs^MŒ‹Lœ¢́¯Í–$sùÙùéYẩû8MR1Ø2iăÀ´R]̣[±*<ÈÍÑ\˜Ù˜ ^z~úWLhJHÀêÆé%lû½!ư0¬œÅªNehnYc7p Ú©^áùçîL£:ÖË*›¹ë2£Cµơf2ËôèFñtØæÁÀRHOç‚åơnEoÏßE“[¾| 6z ½ô!;́—°àÖL†ÜX´ṔSŸăAVá'éi^RbYgØ}Ư,ÆƯî#XN«-́¤‚ÄJ }¢2xFĐ9¹‰÷ǻ3½Y”ßÇ,.Ó:Ÿh—µº endstream endobj 901 0 obj << /Length1 1641 /Length2 9108 /Length3 0 /Length 10175 /Filter /FlateDecode >> stream xÚ´Tê6 HHw ƯƯƯ)Ư- 0ÄĂĐƯ!ỬƯH‡"!"­ "|xι×{ïÿ¯ơ}kÖ™g÷̃ï³7=µ¦»´µ³%HÁcçæàȪisó¸¸x9¸¸xĐèéuÁ0GĐ?b4z}Ô ́ ùY({’ÉaOvj΀»#€›À- Â-(ÂÅàáâ₫—¡3T ô[Ô8*ν¬³‹7lk{Jó¯¿&+f·°° Û_îi'l„Ô€0;ÓSF+ #@ÇÙ ‚yÿW&1;̀E„“ÓÓÓ“èäÆá µ•`fx‚avmê²ün tưƯ=@×́ö·\ÇÙæ „‚OG°âöäá±AOÉ:ʪ äocƠ¿ Øÿ̀ÀÍÁưïpÿxÿ†üå ´²rvrB¼Á[€ ØĐPPå€yÁØ@ˆơoC £›ó“?ĐvZ>üU9  ­>5øO{nVP° ̀Ă ́ø»EÎßa¦,±–uvrA`nh¿ë“CAVOc÷æüûe Î߀ bmó» kwN=ØƠ¤,÷É“í̀đsqq ó@®—•çïđº̃. ¿”Ü¿ÅOøûº8»lùƒm@O?h¾n@uùû₫§â¿77ÀlX‚lÁ´?ÑŸÄ ›¿ñÓăCÁ^®'îq¸~₫ưḮ‰^ÖÎGï?æ½/§†¾–¼2ëßÿ['#ắđeçå°óđs„…„‚ü\ÿÿ¢ ÿS×Weˆ3@øïbŸ¦ô¯‚=₫y¦vƒđß±ÔŸH 0ưá¸)?—ƠÓ÷ÿ3Óÿrùÿ#øï(ÿ7ÿoA î©™₫̉ÿÔ@'°£÷?Oœu‡=ñ_Íùi ÿkjú{gƠ@Ö`w§ÿƠ*Ă€O{ ±uü÷Án `/µ&fe÷7Y₫–ëư^2G0¤é́₫}ÚÜ\\ÿ£{Ú,+‡§ËáöÄÈ¿T §Åùï”̣+gë߯Ă/B¡@o4®'"ñđó|¹ŸVÑäơ‡œgØ“ à©=€3í÷‹ ñ8µ‹₫F¼N?HÀiđo$ü„€€Ọ́߈Àù´́NôÜO\åư>ƠÆù÷ä₫đ8ÁÿŸ:₫p:ư‰ÿ„.èơ¿9]₫>å‡₫IöÙ äñt¶₫<åÿ“ûi˜œ0OçÿP?%÷ø“í ù€ ëÿkÚVîPèÓ½ùkâ_ø¯ăy¬Đ–æ­DẮĂºoê¥É=Ùw>Ï̉ïd2³û.A{Üï°P̉˜ërC6 W̉iïpV·ä™.¥–©~ù~ïhF‰́LÑêúéwÿ*I{z§ mñÑÈÔ›ï̉Mè/Øu¥vư~¹úé;<ë€ïU¡/tuẨ,Æ¿ñRôj®\™ˆ˜ßÑÚ­x‰~_9çk\>G_d™÷™„ÆNñœïÄ {ị̂j¯`ê‘J%‰Íÿ0·Ô×ø OüígŸµj]·>R:Rcg—xÓ ¾2ûé*Ä ¾¥ЉŒÏD=“›N©ÜûL>;êÚ7Đƒ3sú)&RÎgʯc7:•’Ê©“‘ụ̀NVU6¼”Ï;,ƯØ4’Á‚MüÚèÂ;ưwM>û(L„†,‘Úv„iMTA₫H ø‚&¬¨’ÛÑû8âuÓQ«µñ5‚–va, y ¯¶¹ÁkºÔïW½Æ”çNU|f¢<¶X N.¬rœGzw'Ư¬HÍáÓè[ZBÄ÷ë;Ó äĐYÉ_5åQ¸_ w#‘ÅѦåfvđ¶h¢¾2kÜùΜS·ß5́‰v5üm‹ R¯̣Qº®¦P(÷ ªJBümB俤;‘â§M¹u¼ÈM•¨ø¦ˆâsƒóÉwçÇf%́\b•¶:2Øê©øÆù‰ªÇ³EñüäæÂ̓"å/;Yü~( …„=úF–#ƒ*çåÙ6Hóºv#KôØs™gx}OoÔ~`4<8 <î“b¼%ơ6~¯y kGÜ*F ’xlX\uÙ£äÖѯ‡÷O)ë[¯[sÙ -ø9!æñ<(H¿‹ ·å x’>v ‡vú‚\X1Ä.(6`êè|YŒWg3ܺ· AenX•̉•åơe/=yø–˜'#w¡[đ¹¹ºœGIkl>N.‡âP³¤ÛËøøÇ›d"ŸÙœŸy:¯SÔ.¨˜#VÄ̃·Å₫đø¥9kD+Æ­L«ñjÇmíM×Đ˜Âµ­{ưàÖ‘åûVrÄÍcJrÑÉÒ'Í*f/Æ»­_ ›y;́hâë©{”80â/ÛS µª)Ó.u”ês¬SÊIứb¯™CĐ+rpÙøKŒ₫,́ƒ ÁƠI­L¢>„!ă¡9指7¬dÑNZCŒøÂ›‹Ê‚ÈÅ@¡F¹\„i*C®’Óñö́[ÖoSÖkf2é3˜’£É¶å@ïÖc鲯ióí¶J ä„Ka¢l~pkh́;$¯: ‘₫’ƯƠ©c#í½)ÛÑ်O°G½;BêJ3ÆH¨äOIª¿ÄÏWÓLẠ̊ư#½RH]¸‡œŸ}ĐÑr̀p‰Æ•Äàú–J~l“ts₫Ç̀ªH“!Tä®j‚l ½èAñ_H̃Çq$ü—„.©'íÚz×ígø £\Ưø‰!Œé́_r̃6 á§MĂ”¥½X&Jè6©Wm©´Ÿ‘(éÀ½¨Ơîׇ;̉ût(IíX§¶T=Íc‹¯±¿ÂA®;$˜Br×ê9•È,Ùñ¬TöùFaº¾% ùW‡œü·—*¢ƠV˜hê}©,ç˜Kq/úỄ|ỴËI¤Œ̉{óh5Y»Q¼ơ¾Âq.p3E`Æ.[É•gi£åSA"%•ñ½‹́¯Ư~ồú£íXN' Uyxxâ Ư@´½j¢ •øA·̀°W%ÉYH̃ñKd~¾Ú!ÅqCÍùă2 ‚öÊ×d(ÁÄ‘Ac™<d¿€Ñ÷åô™R‚|èRp„ßø˜’_tsˆĂÿLRYäÏØ1ºTÏl±z¥yLúG4J¾ÀUœçÅ•£É1oMh)-Hdaèà;uY„~ơ»ßä=£,L0·ĂÎq:Ơy5¿C%ëhn<á¿ÜÊî*,Ơ9½z\G•jèz(C)ló‹ñT‹¦Xoh2mç‹9u¡Ô‰¦U *q¦”´ñeh/+‘tñ¿«™ BßÑk!\`Sxá7ɲö ¿:HµăEª®ƒñÉ„¡ ?ñÅÎ0] ßçk'z Ư)‡úÍçP÷đz#)5HL›ûG zI2l-! OE^[ ÑntëRäöUÇqgÔI²_)z›ç—î}_3eç_Ó“ é^2j_Ä’ÙÏÀ8ÏsS¨UBüUXáNRD4Z8',®¥B÷f făwáßóµÇ7W© a…É`¼£«2~®W"D•N ´å"RÖJ%=[EÎøéá'v$€2§¸´-‹s5Œˆ•Ø|Ÿà¢L\C_ÏDixá‘6¾+èÏƯ, ïX%]÷r¹6J ÷yzºYJ?köƯ—Ǥ‹W„çŒé¤ß?ñ®Z8°èb´2Ơ¾5ËÄà×^d7ég’¯9”V¡æuA±H[-™À@2~¨“wkVŸuj¶úTyÊÁ±r+95{–+¡ƠÉĐA>êU»ó}¢Ă’‰Ơá [QoăjÀ¾”ö+TÀ5Ú…%Ó…•ăÊÖ̃ѸJi#Oø(É+ÂS [:]̣f WÈ¢ö»r¥:Æ:ªïRàP›Ạ̊%y»)-͹³L®•ôÂ7RÿȪ’1²U‡?,ÀPHw˜ó3Q Ưï­ öơTư3Yè…}=‡îv:Üe$É>Cn¤ĐÎ\OĂp¢s”pßÄ9qÍm6Î|¯H?cjóáẉÀ›†™ïÛÀN¹q||䜖µê‡ŒdYWÏ^® đîôà4WiØM©Hfe7uK˜—ă {̀&z³£0*;ÁÚgkE¬Ơi3BJRUgÉwÚ^…ƒÔá÷ÖÔ=Úèđ©9QÙ-,§…ÈÁ½Û»…Ä:µĂrÖø‹ƒdÉ–tơwú§£•æ°t>;~P̉º’ztH©F¹”M£ E€ñK)éæ®cqUDZØc„ºÆ7’eZ/ 긆n₫sưö.¦6j•–6ăw̃†¨=Ôfu> «R ­Aoo 1ø¢á¦ØRäT›ù_A—”vj\mCÊë8)¡{å!8û¶“uô)¯½ƠÖßzÓû¼ ç¤Y}Îïœ**¾7²^c cÉ¿q³¶ˆ*.–V»Ó´ ‹`‡¼I<¨ƒ!&›Ñ¶”F8Ú2¼ŸUdÔ`ï§[̣[ăO³hÈ£̣'b6èéÚƯ‘®9zô w‘¿b†¿# s‘ÍÉùNĂ:ÁÔ®ú¹{Yó§₫ëd —¢ñQ˜•¬Eçç¯\9ñCAµBüƠF̉LĂŒÉQÜ*Ùè̀duø©³âăIy—øøM +nqŒiƯí7Fæ¯ø–(̃ù¿4*ªcm±—0·Z×-0‚Ç%o<cûE€OÊ\ ¾z hP5ỜđCpËÈÁB2ü,»#a^_ =RTự?ä4%: AtÊ—+‡æí¥> ºQ¥áMQ±í—ZOÉ~—ÁÍæÇÉ”Á_›°–<"•>êWÜ€îÙ!kh£oé½5F̣[ʌԙëbkROŒ́ ¶OÇ%×ñ€KûP¯¶÷åí 6†ÏÁËäTơ¦d#5‰«ÛŸ¹UeꫦđhU¶á[NúÎOÛ)\ˆ‰¹'p ĂUđp“^ «ÊÑK̉.lv•¹+^HÎÙĂß ‰p2Å*ç+,£ Ă·ÄŒ"’Ffb…²5¾…^nr½̣íƒ?ˆG5Öu ÷îø *¿£F,i…â‚Ơ{ Ơ]¤£ÓùơǛ,Em“à)ăØUEöb¯9 «—k'\đ‹éϱE¶>q{Ư¦m[$!ë÷¥2ÈË#K¶Zá`Íß`È®dŒf 6²[Œ.Ñ!ÖƠ¨yl |£øFä×Îà6û£VÀzÈ–b=i’≻ a ³^Ïps¦º.~˜ềƒµ%¶ÖU‰Ơđb³2̉K-Q¹×­ç¢Æ„ÎZN÷›ñ<Î-Æ̀ ưPÛ—°ŸǼ°§¥B§Û° Oâæ|öX3uK6í ›ù{ œ/+“–(VĐLª³•$2n¬@i ˆañÄ)w |_8$)ø%E¿†,;‘ºôÛMqab[~ñ#s¯É &$¯àæ¡Çå|ù@Êú₫e˜1¿zÁżr¼ÜxXjrftoUv)U/up"É{„u¤ 3øV‚̃ᾤ%y]|1'm°jÙ”HÄ5ú}˜̉æḳè>RWŒN.ƒ¡¯>ù<\-̣Ê«G̀J¬/Cå-œYVhÁ˜;Ü)‹ü̃IBMäœóÈú[uåKåƒgÁ!y8,æ ₫dT´’ä»ñíÁÈ÷ÇédNƒö'©¹ÉÏ<^訢_,rà ˜2_Ä_‡ÄàÇQDGÍûíâ 3 äö c­Û@±7[ƒ´º ḿU₫h-¼#N“„$&)!AÚî râ{‰Å¡)ôR¸»:{Íulö{Á©DÚ˵î‚Í®˜‡]7öNh1Ù¼Ô«'¤ÂĐä°ïdq`Ô ÷!!êF~:²&+Ä[=½¬{qÑÿ• ́vÜk‰°˜1²çăXé·˜T¶ïPàơî=JŰâ6ÑhÑûˆÑUèÁÁ»‹µªh+f\7¯NDz8­o7Ó_̃v4͘U‹kÊú‡Ư¯¾âYsøuI€Ïđ}ư@Ô (¸ŒTªœ~ÛĂ¥eÓÏÙ™t…ó“tă8'D­óƠ'>Eá“hÜ|"„0ˆWäRÑ>1̣9À!-{bIQúuù¶„́‹Î 5sÿ;³kU÷v&Ï̀±aÀgÉă¹w:q\~û²^#ν¥`ơØ —RêR™±ß 2¯mꆶ×nCyÖëß €ç¡E‚ÓHô/ñ½b¦'ùJ_ }h; jˆ+æwø,̣Đ“'çéBS%jZ/xWƒúÑBGÛ´Ơ«cÆSư ñ/Ù†$‡oüª€uw%Ú&!¬)uÁ&€ö§21%º­è~ — ™ïḅO^ Ô”¸PO%ˆ‹¿\×ÊƯ÷ ïËm Í›Đ \i^Iù«xmœ,ø ¤à $«)=?³ Ö= ºfè´øRdtb-9$ñWó¿ÅDZ Û—Mιs¨(¿$™đøâ ¶„V®ú‚¢1%´ză:7É6#ÂEÜ7bööXל̉¤Ó‡fwƒÙR¿Ư‰æ-}eµ­:–’0B” «½Úes±Œ\m₫IvÏZ–5́Å„¨Ûótîưâ2 p¤ävqˆŒMx!ĩw í2°ï¶m3Ÿ:S8|!¹íp@7Đ;öùø…oá=“R7L₫‡9$÷Ñ»Dº¹Èºèj¹a5 !Ç.sQE>±¾Œ9¹Q^ÑÇ„¬ÙÉhˆÅ~ˆÁ’…Ơ³—ú'6••( ×Ụ̈ÅƯ@Øơ_'‰¯ßp«|¬|Ë·PßûVƠ$«m(ÎÅÊöRj1ÀÉÁÆ£BVhm|?,SX×ÅX*Á7tbäYyX!XĐ¥­§5-DKµªI°ñKf‘µÔ³¶Yÿ£ä²‰S¸‹$í¡WI¢ç®¤³OÓYNÛêså¯îê2JØŒ‡đM'ñÄĂú•„±Ô†s lĂ®sÎ@·ïɼ́#¦aî裮¾m·¥̀¨!äkw¤èƯ â½z·ÑELï(Ó7IJg*p…̀Á }NjÑôäˆ[…½(Ù¦ˆ̉½ưŸ&Î]d« KTËñJUd:¸.¯p/s´nKœDCăkP=4¿2ă+ÖƯoíh’Đc7Ú˜Ñ'hÀ‚:v¶Hmº¥P¾áI¼Ÿ/ßl¡̣o•z5ƠÖ¸ơˆôöÜ€€a¯‚‰ööăBP}v́üOÖ"bº÷‰<»àWYoẹ|<-^˜ÉŒY±îOÇv†5#±„ß¶ÔsutG\-˜N= ;P­œÇŸ;uꣽe+Ơ5é>G.Y†3Că—ß-µ}g-ä8€½j™ac *Đd^>ÿTe™ÅƯä3wY +D¡çKÁÛZ1"M~(ˆ s].̀*FZhLø¹nE[g"­o~ä= {6;ØI·ùóÜoFMû®Ư"–üKÆ[Q]µ;¿á‚AÛ€³ k#€{¥Iƒă“s÷̉#̣\°-Y–£<ö¡gJ[{ÿ|kPl Ë…ơr“¡#A‚œ¡;Aq¾"z¥%¨s'´°p³Ö^1ôễχèख़j!zgÈÏnbç <Ë%·Ÿº×æ&9ÖL)‡Öµ.]˜éú M»seù|1P‹ÑÙ¯OLyv!‡_# qȹÍy{‹cÛú|C%]2¯·èĐ̀iiz¹µß衼v½û¡ ưY‘̃:̃y¼\ĂÜ·óŸ7néÅv­ÙáIÀ¸·ơLöôµícï%°ÑZ ÓTƒ§%²̣"·[NnË®×’̃2ôÇØ¹_Â1ôPJĂGĐáĆÄÍÑßÅ [™jbĐ(2Ѭc ­¼ưuÙ±yˆô¾¯Ÿ mÎ'ñElA+MÊvy;Ár{h¥₫W¥˜¬äËẻ–8nÅå‚k%¯˜¯FØƯº“3UïáƯÙ]tb‘«úe› ]EĐB {¬Í´g}}dEvJzktềś²~Ñ¥µ¸· Y£8$å:đHçH́0¼5o\Û'Ơö™·Á>Hg¾±µ—^Kaô´”Ñ´«Û*5Ÿ‰g›¥Æ,̣ø¼ă´ˆ®BÔÀ"VÛÀ©Óˆ06€ ®6!́oHa²¢Í»y'ÍĂªjư櫜‚ªüe²É1vÑÇYcuơ9r­=*;ÂØ?*¼“—{ü3¯9ø™^ñÎJ°¢D„²̣uy–ª \GÊ‹ÿ$óù‡‰U{wê%j5»Å=nlZtj̉édui9»ßÛKm}5¨ª5®}Üu•g-ˆ¬ ³&îˆ‰Ă‚ăê Ö—‚fAr:•¿Ơœá̃±`C|¦W@Úy_‚h!·NÛëơK$î,ê£7Xp^V1yYú%sưÂƠJ®Bơ<ïßLạ́<;[üœsQʬ“̀:F,Å€Ư“d:4mÖ—gi°QD]¬¾^ê²DüÁ•l“Đ혰éE“—‹ĂhvAÙ—…œÖŸSàî̀já —lĂ%í|È3h!F$äK™ä$«·Ø&Ú¦{ ßÊ3©1̃¨ÄõÉnö3z¦ÅG5¶++Fh ZüÁ¼½s'DIÇ“\‘M ܬĐÛ=VqÙø.–z¡é *Æáë-ßá!¶R±NFßJÎKl¨Ä_íĂG9N!LôDmAè‡=”œUqzbeí4´Ÿđ-b¼mô|ÓĐ*Uëµ±—)ÏÓ(8ÄŸmÎ".Äç³ß'Ÿ öjóâˆJkıÇDÀÍ-gilÎ]–‘ë-~ä@ `¡ÑåÎ9°¦ù˜çt‚~ÏÖñü¹<î[ŸxúcĂ<%Ê۲ʗÆ~QÉ¢Z¿0uY3™2]p&ø̃ξu™b¤,$¥x=BÚ´Ñrù®d G~×@oPblGơ@uj¸§N+Gh% p¯Fi®)ÛZå“?P–tAÍIÄƠ‚®î†æ2|1 Ñú‰Ơ…Ù-“Cö)v úƒRo|÷îÑZDÜp‰ÓnĂoîƯ–RÏœo0›wóGÓöO4₫SåéL₫}~\nWñŒu3ºḤÂĂø?®ˆhz©ơÓh ++:ù§‘Y¹ÇÜ[OñB«<«)盆‘¸̣Ă—WhÓßFDơºKö>÷ƒw»2 Ă# Êôëưyvl¶¹h߯«ơrùf°çvN–;Yª?­T”×â&đ®›àß8Û? Sᙽă%=^û˜^¦ŸßsÖ"W:ûô₫™ë—<ÔË×§ă.‚h·å¯ów^3›úưhGKäkOvéôüéæèÔi¯!!>3t@/íêŒl•(°óf¼9½ƒø°BùO–‡ Kúî:ü<$±§è«Q"qfé°V>ª2­±jîà=z/Ä‹|À[ưÂQ'>_ƯAëJ’¦  ₫}ÖxYK^̀•M,€œnêøĂ¨₫}jëø4ßÉúÙ­ă8–_×ô+U~ç¼a½=-©WX>mu7{½øa ˆ'>¢$kØm¶r¾SĂƯI *Êoq˜F]¤±QzƠ”=#V%4™pÄ:€̉ôp¥éakûóC噯^T½"a¹ÏÁè¬~ỖŃgy—Â¥‡)̃­œÔëùụ̀X¹{-›Ù©R̉3|”ü ¼1æ*È[Ï/"?;^lª;lD%ù^`ưAÈla1öe.taè¤ÎûVi’$ŒGåsK|”ÈjÛ½j/}N.©úñË\Ç­P6æ̀àÚ3•¶Y÷ƠÅñ#ñyö>ÈüÈơ=G§ñú ±°X² ăEl6.æa™*¢ƒåÍqy¢Ä²E© mÁo? <4ve9̀™GÇÑ—£fW††YTªè+*GxÉj¥đ³™/ÉÙ|v×éîbƒ‹CÔ»=j\ÊM*FÜCï•î¼d¹<Ưô$ƒñ ™ä®'©ºÇ÷¹Øp»×-o^óâ¼÷2³![0x½gBË×áû)xƯ{±‹FEŰ ´·ÏA₫2‹utÂÿm2“¥h¶Â’Y=ư!Ă­Vxà@͇j,räkkï©«k‰Ư܉ËûY•Yă;øƯBÓ¹vd×<]ºVwüïÍ^2nøºí#i$}ÏÓB\jn5ê©ö±à6!:0½‚B8â¶ĐBº̉¦œ›ûg¼‘s̀!̀>ÍQ ó -cI/ó[²å/,½ñ8Ŷ x¬Ây˜Œlừ‹u>I§¤₫Øg¿„nd}Íù¬’ŒY‚o˜ ƒ1¸ậ¾̃8'”Ù ïåÉOmOæ÷¨ƒúzk–_7$"½@K~EŸ½r¯½÷ ytà öäI¯²½ơ„¢…v´…ï̉öBô Â:T•Bª¨ Ê·*ôV:ă;3_D¢»§\¼‰óu¬O („—Sña@ rŒTû¡¬4]7›UơÎƯ³Th^0HJÔ:µÍÉp+ß=…rƯPp/ơÚHUïÈDÅMïûâÿüd«̀¶Ø§Ï®?"tø \b¹ÎNéGơLë/›dZ¶Ùùq%W'§ï;µ)˜CRå¹ư«È¹z1KµĐÊ ¬Ê×báœ_€Zno¯kCï"­¬·I§r<©Äư¤´hê?F°“¬~PTk!×Ó> £¨TđÎj§¶ü*ÉÙR0A¼Î{á­”32ŸÏåÂ1 ÿÅÚQ ¶º|…“Ç©!Í_Ê^·dbÇ‚! ¬Üé«?t¦XZGû¼÷¡P/5ƯÑ#ñ5~^‚GrĐZư n±“…ª9B ñV´yÚéeǧuMR»¶jùzv¨đ"¼ÈUħ{ (·’ăf –€ÓZh¤® $ô@±]™ưÍ¥pîPä}ơ₫]û’(ÑëY“ÄÔ®¹‰>n)γûÏUÖ!2'D‹‚Ôºr²GÁ‰L$’w49L ¶üæ»r÷Çå£ûz®Æ|hàœCQÁZµIJ·SDu*₫F© {aè'oË̃#́£{eUX¾±åâè&Umˆm‘uœ[PjüX¿:dh%;œ ’”ÉZv@öSĐ($ 4xc— :$¾^IăYÖÇU}'jO2ûI;·×kc¡lúǘA^—–”ùTDrÅ´æ×>mẽøÆ!În¦C­3̣‘̣&&÷s¥ç½¥‰Ø…SO<Ù1%’â…ó…¿oj‹xÀoMÅ{ˆPÎQ–§₫í-ƒø0ôµ5Ë2ú–̣‹`‚±ẉ²È¨ u¿$́V8yFJÇ̃´đÜó́â{₫µ”jïܨ¿:®!".H…ÙÄÏ],gºv!3e¨>s÷íƠu“Wfùä–_:qËZNxIv?§}đ÷ |ê£1~ñ· e³£d₫ ̣̃F€á|É^)6<üÔ ç¬±9TÏåA¤Œ]ô¬62¥÷ÑÈi‰³¨µ]QäÙGíđ#̀€8s%ç_‡NAîeÂ>{̃¦kÊ:dN›x;Ù«éw̉fÍ…äwÙm¹sîă_ ¶B-_»8Mưü`v»Ú£³’i$đ"FŸ#ư纔ÁPx>çÀ¥l¤å¶Ư²äë@O&¦Eæ¦pøL„]T²dŒF¾z-¹m\•øEÓ#I§|4Sơ:ÄG ØưvéÓèóŒ ²oKđâ(=Ä`jăád̀ÏXéö;pr»ÊúºKɼ£êi\^¸:H‘€₫´6@ùñUˆ¶j+­Êj!æëÉØÑ<)‹7̀t·íKôLZ8— Ơ₫Xß̉\(jYD|½üGùa(8ª‰€…Pàûï{bo¶¯û¥v­,£;ß)Đ֪ʤá…¯À ‹¯_ÎÜY¦€ØêĐ"¾YĐѱSQµ‹—ơCĐÏ 6êK™¼₫Ü_ÍƯ}¯·.‘5#ă‰@Çh¦x₫+¸·HGYáà’뫘¯÷½3¼/Ư—•“ÓxÊ*«đEÉàr{]“ đj[̀+æ[»₫ăÖ+S`ˆ́s«5̣ÄéxäÈ™Á_%N đßx¾AÑ¢#×®^‡×µ{=°ñ†gí^a&Ÿ$øL‹ǘ?8ñ7(el ĂYbP‹Ôâm:¦4nˆ/”wư=V>€ûÏOñ‘]Ó`9·aădÉ®{:_¹Z7¼Ø‡´¦À¨è™¬8¾³™”} ¶í"Ê|TÔ‘£²RmáîꉽD܆Å‘>·Vê½Ϫ±€™¡y¥d̀ÈÍổ%¬zÍM²Z é1‹{”2½ $é%H\V; elÎÓ­§j«½Ø4ß­¡+Jò|ûà ôG#è÷.ÿ₫=¨a|@@ôÏv3L¹‹ONœj›XZu}úFV§‚TF¤?”L₫êÙú+Ù̃¹{QiÅëî¯ç„4e°û¯₫’đ{eÜ(Ơ§^Ù?"lÖ£je¬¶ÀÏSiĐªÈ8 Ù6̃ŒxÊb%½½c…?¢}°²{u•Đ]Où ˜JêUC5Èd±̀;;­½ĂÎh³0娟^ù‹èU‰Y‘2áî¥6x̉°³\Y ÊÓúgξ}^>uˆƯúº·!* qÁŸŸ™öѬXÁÉŒÂư{ê‡S”enêÖAé³{Ư¹# ·ÍeîT2H"‰¾ưF ạ̈ï̀– ̣ŸƒÙƠ GQ¦Ä$W×)¼¸K»¾k/ó"r˜L|Ëyđ_9Điß uúö½AˆlWö¼ªưÂÍ™üó‹•!¼´}zl“&Îí“x„±rÁ×ƠôĐ{{8zq³e\– ăº†{sỗ5wFä$₫̣1-#q2­FÆÂh/®H &q–r»yYȲ₫+‡cn.Jßy ¼Ñ°ÈVîwøf̉ø…dÎXV@}¿;%j •„m¨`ĐjŸH,‘Q7ÓFö̃‡ǰ‰Î̀maë (›Ê ÏøQĂö¹©íŸĂhÁd«ivƒ!Ë8‚£q¢Ä€BÁœ¯ ¡HEo¶ä¶ÆßËè˜Cq©êé+ôqˆ©„Øqr'"ÿ_Z#©¤Vó²/NU…›OÑ.xƒ]W9uûđpß´%”›ÇX¼sè1EơtË—4c:°Ä{Ơ¹ÂºúcY@üLEo2ơưŒ)}0™î{bÎê₫içé÷Ê¢'ëÇÑÆïhé@̉ÜI;¼—,»„8DØê/s 3½‹»™/úÿ£æŒ’ endstream endobj 903 0 obj << /Length1 1630 /Length2 9336 /Length3 0 /Length 10389 /Filter /FlateDecode >> stream xÚ¶T”k6 ‚€tH×Đ CIIwww 0Ä Ư ̉!Ư"H·t#!-HƒHJ÷‡ó¾Çó₫ÿZß·µæy®Ư{ß×¾×ĐP¨¨³ˆZ@Í@RPˆ ;+ ®¨ÆÎ9Y@d °‹èo12ÈÉ …đÿa î2uy’I˜º<Ù)B!9W;;'€ư?;?àù₫cuâH˜º-¬9(äŒL#uđt[Y»<¥ùÏ'€̃œÀÎÇÇĂüÛ jr››B¦.Ö û§Œæ¦vu¨9äâù¯ô¯­]\øÙØÜƯƯYMíY¡NVB ̀w°‹5@ ä rrY~5 P2µưƠ+2 @Ắü—\jéânê< ́Àæ ˆó“‡+ÄäxJP—U(;€ +üeÀ ø{6vVöÿ†ûÛûW 0ä·³©¹9ỖÁâ †X,Áv €²”«‹‡ 3ÀbñËĐÔÎúäoêf ¶35{2ø]¹)@JT`úÔàßí9›;\œYÁv¿ZdûæiÊ’ q¨½=ââŒü«> °Èüíl¬-êñ₫X‚!–¿°pu`Ó„€]A²›<‰ÿ‘Y\Ü@ ‡r€<̀­Ù~…×đtưV²ÿ?uàëíuX>5̣[‚^È̃Φn €‹“+È×ûOÅ¿2;;Àlî0Y!ÈÿDƒ,ÿÂO‡ïö蟸Ç₫z₫ûeøD/ (ÄÎóóßçË&!« © ÏôWÇÿƠ‰‰A=̃,œœn €‹ÀĂÅđưwSđßUÿq•…XB|û4¥ÿ́ö÷ùÓÿ½ €ÇR‚>‘ ÿ‡ă@n ùÓûÿ3Ó»üÿüW”ÿÇÿ· )W;»ßjúßúÿÚÔlçù·Ág]]ø¯}ÚÈÿjƒ₫ÚYEØƠ₫µ².¦O{ ±²ûïÁÎR`… ØÅÜú/²ü%×üµdv`Hê ₫u«XØÀÿÑ=m–¹íÓÍáüÄÈß*ĐÓâü;¥$ÄjñkĂ8¸_LœL=‘ODâàæx³?­¢Èă7‡l¬¨Ë“ à©=_€%Ô ù׉̣rØ4‰~#>›é?ˆÀf₫_ô«:6‹? ;€ ôä°Yư¹lÖÀ§4à?àSÛ? /€Íîø”×₫È₫”̣|Ê ưrØ₫€Oy₫€Oyÿ€¯l.À§2\ÿO‘=ĂØÜƠÉéé’ù½Oóÿ₫}£@ sä…9¨¹@ˆMmÈÇ«jQbw–­qÁi-í4ï§v×tÄd†ª¬ oN¢ÉĂ=˜K’ôç"‹ä÷̃?ZêĂZUÛn}îŒăƠ&·Ú¿|Ƙ(ú!Z×Oú‚„ECdÛç̃ÑG+Đ®¶S&ÏÑ•]¥çʽOÚ£®¿üëhèÜ–êvƠ+y”»̣)–ÍhƒÀ̉|³́YJR$F́cŒ™ó‹í܉Gr¹x&dßưÎbo½UØëY¯å ç.BjB=R¸śÑIZo±Ư9üyï²’(̀fÖO÷rÙ†ûÈ_ä(è¶z½mÆå»%ö/V#i=@¡íŸ¶/|½¤>×#Emk¿Ñ•öèlµW%& c±?ĂÔ»èô¹u=›,ÍÀ› ;VZ"cqR_"Óóké唿ơevơPÿRÔƯqlU ÙáÔËÛ ¦‹¥‹¾÷MeZ8Yz± óùW•tŒå̀îíT!“(c¤ŸÛ±cĐíƒ^_EÏIi(®ßNh—)Ê<[£ÚœŸôÔ“nO2?‰¦Đ¨ÖYK½ôµ²uäË–ÁÆßGĂ‹?÷®¼gơ¿º U{spư2¥‡vC{vïœ+p÷‚ÑcƯzêă7®°RY÷´‘„×9¼sǺœZø»nƒ“îeÉXï̃ÜA?/‡kÖ*Jơ62ß}ÛlƠîˆ>aÖ¨›%7D2YaѰD ~uƒEoqC"«Æ#̣¡|î®đ9„¤K=:ñ2 )×Êt|Qí2ñơ±½t@6ƒ?ÉôZQE±( "N¿G•$˜Ô€ỦjÿçTưáNæH„óœ½UMƠǬĂEIơ¸ô¤³.ßj«·"–-J/è™ë¦%€fƯ,hu ÍG£îqjÙuß¡<Íl/ }¼Ú¶Ú!kWÙ§…:OD5û₫ŒôzgH^ ·.2oM‘|v1|iÛ­)’“ĂcÉé` (qˆ„>!I®ÿh„Q^Ă¢7nÿC\†]„XJYåTƒÎ°¦ép ˜̣iq±OmuƯx¾;*~VZ´ưâ#¾°x¸-¹̀½T[W£ge x#àĐ…â§Ï̀¸ơ"#óäư> kOî÷₫æœ4ÅXÖÄ+<6̀ÊÓaMçKi®áÍ‹̣½ªªÉ¾t§:²Å0q~øeh sÉƯïî¦Z¡mKÄ{nI·̣¥Ù}í°0‹xơÏYf¢+ñ×1\=C3+ü?%0“½‰.“­&=¬ê‘²@½T#å[”©Ø5đy{…¿F¼Ü£́ Øb,ÖÎÊ’ƠHR·"ưùÓé’ÆlđQê¦íÏ|ï K~ÉCÜCƒ²e¦C œæ¤¸¥$/k¬6Đ{e}Pz¦äđM̉Ëȱ7b8j„TÖmËXè{ẹ̈ÆßÂÎ;Ï.|4%"W̉ßÏF10ö/wO©xØwäT;‘íá®EñN°éŒhậ´«…ˆ±¹¾Du¿̉á¼ôÓѪ´]ZK€÷~Öww‚²È5Êôw Ù;Èf7De;ä‹qTÙOªoáW‚̀Ú´Îá>Í€ƠÖü ?nÂEó=RÑ#”6½ËA_Dqß«ˆ—ăæ~_`åÇó6ĐJZ¦2|Bœ>0vaúv±₫ +K¾̀ëUB¤1BŒ̃6 ¹•=³/u₫̉3øÊ´m‡pAo†ûu6W±îæE÷Đ<›I@_µŒ¤́—" CÈon®¢K3lGY/n·$JèeË\":‚“œæ?Û—yk?Ơo!ÙRö\YIÍåµ™¿Äq÷jgi~L6 ƒ+dŒ_…Ñ"€Që\ç¼Í;×£ûî £º‰Ơ¿ú(O X—el6̃̃ÍWÛ́ᬡ{g-[¸êOfÿÆĐb¹çơT®—Ø8•ŸÏËÏă¢ [.r\[tÆƠ §3&¥ˆ;+Ù´®g‰M¨qØ„¼Íxrîélvd ˜#¨Á[Đ]®ÛÉÖÅéQ"íÊB:%Í÷ohF"Õ0%ÊTRô ­íêçÔ—aN¯Ư?fé&à%Ø©jÏx2̃ƒ™0à[öL8?“¹[ƒv¨Ÿ¸¼ơÁ²_zkÖÔÛU{|‡©Y•3¥· Ơ¢đXLû́¢…è÷¨~¢nÁ0lư©Í€tC#60<¥6yá±Íi)24IsñËḳYóÍư¢†k̉vv¶×Wí[:â¹Í‡a: ”]Bï̉–óáØ¤À£CˆîÜÆº“AEIíä׿Pü•Î76f­j“m&y©ï)Ç} ̃’c%„Dzu©Ó-pxæ½<§êƒ,rl¹|´yđSµT}îà ₫„füH®F|¦wù§¬¯BW\„º~Gåµ|Æ·ƯÄ2.z…>̉ä½Ê¨Tœ\Ö̉ J|`®]ªÖDxëT-Hö–Ùc¤[‰Ç¿÷«VÇwŒå椷o懜–•0jl ¶đ¢á­ éäSáá‰××j@_ưèé|ÿª5ƒ–zwPi_̣©;ç¤F̃æ‡4ü´ÿ§!ÙreÇsƯàä…Ê%“7(Wè“vDYé<ůŒ9µñiåư©}>ÏÓ±´-” Ád©Ơ@]x±^ƒ)l3m6u²Â·¾®Éé RưüØs®&Ø+û™»\¿EÓ~Ÿc³́̉-í:^_'52ô{º¬›jb:6KQĂkĂÇDA+•¬¢¤¦O†ưLüŒ¨áÂúV4Ÿ¿FQFü,ú¡FÚ­ôRÀIç¿u.5o?’DØJ́÷DöÑ{T&dZư0ºÉ(*È0¦ÊrơMƒç[â³^{ǧ†ót‡G‚¯1"̉àap@ÔèùfRđǹ‡KÓín£ñ•ˆº:c\u(Ê.ưsÿé3¯]#`+̀7ÁQôx=€ R{½ùÈ76ưÀí«f˜vĐÁ~êơ'ëV÷3̀K"­ÂY"„æUöRd¸À ‚5²\íx‡plo ²Å,µHe,?c¿rđ»h±,±)¨§[)[•Øvơư^¨N.R€]ë…®§pöjÙ§…Ạ̊»—„n,‹FU² â)bD¸À¦Taáz-Ô»÷̉ú”ÙcâÔ]₫ùeå.Ï÷éT§±‘¦¸CW4̃ŸvYN\7Ÿe˜J„ñɶÁ‹!M\곉Ç_Ú`+ SSdBqªºà½™–ś Q»…·̣RP·uXrLEmá.ê™y Pac’O¶PùC~R~c­Y û4¡‚À§Ø7½qXlñb®ï•Ѿ̃hW§º̀“ï* vr×>¸¶BRd\['^èÍe©¢‡ñ§[Z‰Å‚f델RÍñ8ß¹È÷2Á ¥^0H0đ?'»MÉYˆÄô¨I¦Iîw·#Ư©ÅÀ}÷ ;©4,É₫Ce#Â’h½Pßl*²nAp†ß_{\¨¸z›bWMëù_È"úîóçr2/S_M¾&’VÖä²±¨üXgÁ;,A²e ²înzϹΟª̉˜:¤”Ï“zùŒĂê}y¥Z-wc Q+yßyôQˆđ́̀ǜÚ3oèÔÙúË’}í‹/io>»î}@£p0Îé6wÓ `~1æg^É#/|]>‡ĂŒOúÉđDÓ'ưLH¬2ó@]2Øư[à×çÔ6+‡t@χ€M‰ç½ùv16&ù†¤xè:È£m—vwƯđ°zBà ¼z%Aú1X÷,o˜höé3ÓƯ’`Wp…÷^²Â[jŸîkÎÛơOÁogCíqù³wnz‰’Êp­ĂVk°²ß1,£¿ŸêLr¬`säk´­_­ƯÓ[¸×0 «‡¾—h0¥;]ïFUG Ç)e•M"ˆ 7´¬*ù¡̉K’F5XH½~= ¿¶{îó…GĂuÄ̉L»,̉Â|£ô±?0²ôàkä>J3k̉È̀eƠ²´x^]aj ³PQ+́9Bå>&ư|Ă}ÚÍKçCe6XÔơ®`U…ÓÑçó-€á •çK _Ÿ½ÔD ~̃À ­U„AM…É₫A8ñÑ¥l€ñCö”™êl6RAm•­¤4 Ù&u¹á(äfÅ¡73ÎăÛºÇ{ơ{wŒq›ƒ² ZæYLë†hRŸgS½¡̃N‹y³ñ*Ƙm°¨bÏ‹/ưđwª¶XoPưùR‡ï¶Ecs›D>]ȹ3î$ºê¦¨g=ZbƠ½Ø6©ƯûS%cÊ#_ꮡÛIĂ ü¸*HOơ[·¡ŒÚI¨íÔú ¬?«©)p^®̣ưÅFKa$¡ÛÎêHW"y‡¥«<="ÄÚ;„yc&[`r”/N9$P°q•+”‚M¼1¦~qZÎMW†7~œè©'ÏÎĐÊà\‚¤MÛV Y™œÙ8¿?·̃$¦QPVuy‹D¨¦‹r‘ö̉PO’]´êJb… Âe –¤HUHă·Nơ½? éÙåăƒ B±w½zD­±Fƒg]ú(&ßÀdb‹ñĐ£ È`2 ²²„oqÔC’¨S·̀9 f¦Ótç„ѵ¼OöQ/£Z›‡¿óQ!Û¯’/YÇ?7»Kï´UÿÁ¹é% óÈ&˜̉fdêäƠXd‚Bvÿ*ïư«x’ˆøQß·.<ă¤&’:ÁKµ†{D{ü¹«˜µ§ ́‘ó Ê ³ÁÓ¾¹I6©Đ8Yçûm¡×¬œä“öœ8̃²’Û·́";OX1~%Ø8[»THé–¼oøÏü/§L!—U—äV/ßœ¸eưÍúŸR#s³-Ú =\¯…âw—ûeÆưC 4ß1›37Ă™rû%p"¾ægøá®V¥ÿ|̣̃0©wTu·,sHi—*ÿÚ|]NE/#Bçû¹GđPŒŒÂäî„á °Ặ1P™ j_âqaQ_ áÿ úS}íÏ›;©0r¦-[₫»1Œæ¤î<ỨÁglb&µá™MW&öken‚Ħ雃¥’(uà%ÑÛÖ<1jƒ¨·~{Ï©ÍpÔCD/£¤xY¯–£iÙÍ…C©2ñ)"—ÄjÎÖ ñïçĂøGKóBnê%“Ö Ü)â”ϨîË™ag|0̉Èœn@íµ±üù´¢K}^ÚNÇ~¨@0„)hÊ´K-¯e¹˜ËÉÙ! ̣ȿŗé b~^ÙCÉPÔH¿—«¯ª([Ö)j_ÏVgzË1#‘à`̣f<êrËûÊ`¢ârÂÍ«y¼"vZ£ËÎ׋‘;{ăæáăcÿ~¥öúfÂÚâLd¥ü‚ị̈B4ƒ¢!E—ú?:´”/$₫G£wúF”èGu{íºíÔCnʨ{'I·…­pªz’Eë“ü¬>.; L9ÆV¾ôvR¹¿Ô.±đÇ¡wLi¶…–„C‹ŒA~9Uª¸G.¼A*m]®'(çrËc{U Cæôư© Öw‡w`Ọ́̃iÑÈÁ3hLÙA³ù^Uؼ*Ï»ÇnN0¨6Ÿ£X·¸&R‚/4gx2‚ 0ígV d̃R·Ø 8JTo$¡ äˆ#¾e®}|eôj¬0F‚àZ‚¼ÉA¾?ơ#(¢^³ªZưLª qTñàè³>ϳk+Øơ´»ăZu4ï@ö¤µ1l¾¡FÑ3râ÷T¬ă!ûH¦{­Y楰đùÇẠ̀yT̃x¼́42‡Ó»Eʃ{8u9G‚ŸöIÚƠiY"T“_âỗx©¼-G‚ÍƯ0l¬đơ5ƒƠ…Ñáö(½k²hç1Q5Kb \ÚëÏ“Å!Ï…OÑÜ…¾V3,µ¤9p–›èï»è$ï€ç*₫úè-9ăz.;Iöen—\>ôù(ô`<á=Jh̃§"07Z™¨Ë×)6e¼ÏơºØ0Ûe\HË^½LÇ~v₫ß+“)à«ñ̀·-@EúÈ’N;RÖ âƯ¾ê Ú=)‰/‘(«)&5Jäë0¬qâ]iÏ–.ôB_%É¿8[íSÏ‘OÇ~B¬X¼ ~W²®4OÚ£Ø'¤¥jï†ù±tZû†*8¨@2–‰ưÉFÍ₫h†Ävx[QÊf4Yu†¾_#³îFå¸k0Åùè1²™2“a>Äaßwub3½ÙÚơÍssăV²ï^†X*ơ¥1÷…):k‘‘LëCMFG==ÅAs ×*/Â%ö»ù~<̉Ô/Rđ‹Èă ß ¼ª935|}ö‡E‰‹’aƠç‰/¤#ÑÆ5Rt!!?„¸ë:cÙtM,ĂÏ>”¾aȾ5p…½ ú¶}åiët5ø“6W¾|æ$ĐI=«/Vi¢ù|hYШF…s̀±*PøÓb¶’àƠµ-©O»A?¹%ÿ>Û·ú/i†Lç“s̃‰£¢›/“1˜?áj'MwQRÁ(Bº 'ÎÖĆâöKGNKYñlÚ64…; 7ĂVœ0Ë  +-„]«Iè w{2c:_“vEáú±"2ü\–Î#ذ$̉Ñ&Û7»N׌/d”<ưû¿Øc²~íü!ƒ8¨×Ó?Ö’".åäÈ45èø’œ^apxh“}U üÊ+"¨èy—óp¯î’–ÜÁ:à¤đ–(2‚L̀["éEYOt(Ôó Í·¨1^|E¶•>ȳáÆ/¼Ôèeó1tpnkùpY>²¨29J¿i³âw¤¨è,º$ÆG÷^u¼h}æƠzGèk¡‰j¾qfLU™ªỊ̂ ; W½Á¾Äô·4đFÑÍTâ8úŸ¹Z¼˜WR‰”€]×€Ó)wkŸ!_rZqÍîc-ÂÙÁôC6ïy*ă‰V$ÙïhW\ ÀRƠDÉụ̈¿¹×ó´´Øv`ÁáL’^›zAnI8F!,ߘÿe2lẸ̀‡“Z¬pUÆíóºîľɸÄjK)=5Ă,DH(L ,ׇaÚµn_Ûî±ùçvĂ0u^Ăñdy.(“ w`t´#’ôt±O¨,%¬ht(}Z\ˆ˜ùjU!;+ÀK©FÇ=øZm*…x£=ă0#U•™Ø[Óƒë#†>¼.—ÆûN½đu’”,U)ú'Æúá²ñ‡#Ú¸¡Iæ™̉ƯŸg_M¸ó³1E4Bíb‰R‰)hs>Ÿa·?¢•Xh̃ü¤ˆûf½ơ³—â¥`ºØÙi…C}~K6¾"ràĂ-A|QêÛ¤x”kç{×A¦è$©]†M;µ:ü¾ÚŒ+@_—iưÈc«¶«K`ùFˆ¦Mwưˆ²ÏiTIrl63²`‚p}R¢tÚ ËUá¬íË/F¸bú#â¼aÁ† âÚ~Â; ¸&Qụ́7ÅR¯ñÏŸù`&Öraï˜+f¦í…<6øRmQ;Ö 4"ÉÔ¾zÄ¿¯#$Ùá·³µëülèxæˆơÎæ²íü«Ư.¥ûElpFK@”Jj;v}eHøÇ•*¥€/áâæmd9ßÍ5½N˜5¼®BñNÍ#́w—4)i—€úX(åIY”ÈF6DăsqṿÈØ¢‘¡wËn-̉,Ûñ  ×€†âo|Ï…tª'^`M `Ï*}đNïiÄ懇ĂsR:MÍz÷mƠ5WaŸ₫”\yM몴SSlHÑÈîß¼‰̃¤Jú™²́vBú́ùb鸀Vzƒo¥­‰ }v–q—«åµÍQ«~'*nú9[“h¯SƠx‘ÓÊ·mØp6‘Ü(Y€"•¥·¾ˆtßï^́JVÔªç›Ư×]`G‰dĂK§̃rs‹i :ˆôm8'ĐïaơÊY$r¯}¨WAơ¿sVÂ6¯´‚ÔâRƒ&z »%á%MYƯđ,w(ÂLKf¢¨¦ÑOsñå¨åÈ1ÓXH‰2Å »j“»Q`Ä‘œa1„ưJ¥•ë%+Ñtëg F )Đ˜CåºÉÏ‘©"×ô^ñë2¥I mxïvi¸œ·ƠoSÎ ä₫< –˜>̉Úg]ˆ*4#˽Ưq‰FĽ/»'zïŸßQ"àø¸öéƠÏ>b0Ú-`+^7«nu½6Y2 ³°Ï-Ôy€},¾8Á¡%-v†Aéoa©dXQ-q™ ~₫Öb› ½)ñ˹×-©´§ÈƯâ`Æ!̀/̣–†>l³Ë<ùƯvJẪ×ûæ}ư…Ư²–b(«BØôcT !M çØ–˜¶‹%r.k1¢BDbZö¹œ#è4ffÀÍÈÏRpŸª²(¸ˆ1Ơ¨̃Âim)±W°×wA¦bƯŒ>à,E¿¦Ç `¯}|F?Yg;C"‰;qƒ´ÏåÆWƠư“ «7.c‚0×ïuèhP\îåhâ7ÆÊ`£Úz ÉTo ·u'&ÀÆGnWNăÊŸ¢™(Uh8¢—*|ƒC`9È9Ư¬0.»}ˆz{&@cÏKüæNQ1œ($e†ÈØ”µ¢çNj ÜOÇ ;Ú̀Çb¾¿ù¸ÂkÜŸ+Z¬Œ;:f¾Ô¿£Küµ=úpkøÜu‹T!&a‚ –BơUÀ&”l¦Ê®îñg$å¹<êg~nĂ‚‡U¥œĐƒ‹–aë~é×7câ~|h›ËƠđpM6g?ä\S vơêRQ‘Ơ7đ?('<‡ X™&ï₫÷₫4§d‚°XoŃcí^¯n% Úuđülq ‹<7́nP´ûú„üd7đ«®¶G¹^å©AIL,.«̣ µÚxñûLüùTLl/¶“¢ÄiÊ™q $ßïk‚WßăµÉ1Ö1hI÷H•6³ă^çYÅ¥¨ËÍ%§afZåZgEO"o&z_·e3¹áŸ{2×+ÔÁkº!!:Ư¡ăĐ;ê*–ăY}wÑH!•êRm+/ôwSGÊycà—Àë:y§‰‘̉™‡ æpqƒT‚¢<ʯÉQ†Wy6郲SÎËư‚™§‹¢Ú„Sk›2×J£…êĐCäE”ÔB6˜̃A¾jEuđĂỄù̃,V₫WÈ…Â* Úô#‹÷瀵UB¢y4iü»;Ñ}6ï¡‹6,Z!‰Üü÷F[Hà•èä¾·N®ÄµßS̉ˆ»Í ÍDk¥ÍÓ”Á&k…/¾–öÊ×H2Èx® ¨Ï!Oïu¿Å0 ˆÉŸ{¯^\[áhXḿËx0`,©•(ß‚/ÚÇÊlñ»:®Ô´6«ÚđîÇO VJ@;úXÙ„FÉŸäÔ§x1fw¥äEJj͈‡ô…ƒ5¦áïb€2đ ~°¯[¥)†̉ûˆU‘rÄu«øá|Ø¢3e¸¨EK=ăƯÂ×åh“›Pñ%. ÿÚƯ\<Ÿ«®IÀ̀’£…¹†X:IÜ#ù§™µVf ƯU*ׇr¾ù …Éûñ̃°ï,·]¬‘µrï¦ƠêI´‡z.9.Kè ÅvsơRüû½‚búSY_*Ø¢˜¡}́Ö¼ ̉èEk”ˆÓ;-í—E?3Åuè>+xÿ=̣ò…Üèƒ̀/-¯Àg¨ØBj[ÂZàʱ©©±FBж|ËơÄâÇu6EIƠ.[¹§%ñÇ“̃Ö₫’W‘Ú&|$Øm¹ç8Ë£Î)…Ö?g̃ *›Ö ¾­§BTÊ"£́ˆ­VaỀqƒ§…ú¡YÑ^ĂÜ#á‚&ôÚ Ă©*/ÄÔɆ́đÆ '}^êj¾/³‰‹ôÉ"ăñMaƯ… Ñ£ïÏN½¾ÑeĐFrI2·.T_ĂΩ?øƯ·ăê—–Ï2mbơ¡£%-B+ÏđÛÖKƯê…9*Å$t5·¸=V‚{ Oàèq«Ă·änÏsë8t3Ú¡™÷Ÿ7ơ­¥Ö£‘Ä?2MÎỤ́q€ZSv÷f¢«â. œ ˆG{J—ó¬ÊÎ*¿So¿~Öư7AGôz#U;ràTϹOzåöJ3Km-¸]Gaÿ¬@‘ J™‚ƒ´—ËGpoHÍN¦’€ hà:w’-÷X$c†o²g_ÑqóÊÀF„ÉĂ½Û!!£₫j.ôè%h‰œøËîœ+À> ‹9lËăYơ'çRŸ‡1ÚÈ/ÖŒâ˵IÖ’¯\|}&&jûÚ“âĂSäÛ¡ ̣µˆG;Ç Á{•€½”¦¨d«=.ơ \  ¾Hà¾ÁJm›¸€Ÿÿ Y~Öȯ©å„'±tˆf!Ä‚º÷ÿȽă endstream endobj 905 0 obj << /Length1 2415 /Length2 15314 /Length3 0 /Length 16731 /Filter /FlateDecode >> stream xÚ·ctœ‹ú4fccÛNcÛ6&jl6Vc;il7v㤱m'ÙàN÷>gwŸÿ½îÊZ“ù=öûùEz!S;c ¸­3=3@DNEVU•™ ÀÄÄÊÀÄÄON®jél üĂ'W::YÚỤ̀üKFÄhä ¢‰9ƒDǻl̉.ÖfV33'€…‰‰û¿‚v<Q#WKS€@ÚÎèO.bgïáhiná ̣ô߯*j377'Ư_ê! £¥‰‘-@ÎÈÙḥhbd P±3±:{ü ªÎÎö<ŒŒnnn F6N væüÔt7Kg €2Đ èè 4üN odü'9xr€ª…¥Óß,;3g7#G D°¶4Ú:”\lM€”,@Áhû·°́ßt€ÿ”À̀Àü¹ÿhÿ6diû—²‘‰‰½‘­‡¥­9À̀̉P—epvw¦Ù₫4²v²é¹YZƒ₫ ̃ .¤0åøŸ L-íœ,­gÉøÛ ¨Đb¶¦"v66@[g'øßñ‰Z:M@•÷`ü§ÅŸlíÜl½₫`3K[S³ß©˜ºØ3ªÙZ:¸¥Dÿ#"Áÿ¡™́LLL\ Æ@w ÆßNT=́1™“AyøxÙÛÙ̀@©},Í€ đ^NF®@€³£ ĐÇëߌÿEđ̀̀SKg€1ĐÜ̉₫uhö7M£¥;@‡ 4„̀¦ßÿ|ÓÍ™©­µÇñ¿ͨ-))¥*DûỎÿ°……íÜ^ô,LzVV3'€ƒ›àó¿†,ÿÈ¿T¥lÍ́ÜÇ *ÔcvưÏ PưgO¨ÿkK̃4À@ƠŸy×ebg2}0ÿÿú¿T₫¿†ư·•ÿó₫cw±¶₫K‚ê¿"ÿ/ #KkÿÈ€FØÅ´rv ¥°ư¿¢À¿·Xhjébó¹RÎF µ²56=7ÇßdK'qKw ©¢¥³‰Å_c̣7Yí÷ÚY[Úíœ,Ÿ=3ÓÿávÍäèœ8¦ó/´JÿëÙÖÄÎô÷α°sŒ<à™@CÅÂÎđb-§)Đư¯y02ØÚ9ƒT  }fvđ¿[ËÁ`úMúqE₫ n£Ø?ˆ“ À(₫±%ÿ V£ÔÄ`”ưƒ¸Œ̣ÿ .Å?¤§̣±Uÿ PdjȦú²©ùâÔúqƒr0úƒ@’Æ39™|‚fÎè¬ÿĐÿÜ Ó&ÿ v1;kP¯₫KacûM±±ùăđwMÿ¬ ¸Mí¬­ÿ%øÇ(Hø?N9~ó\@KñGTn³?* pÍ,]ÿeă7ÛÎåß>@"æ,‚øæ¿ŸTÀ‹€b·ø“ ¨Üö@ÛI€h–ÿ‚ ôÿÄÄÊÓú÷h₫áƒeó‚ăć ¶Ø‚FúOe@Æm]lŒó9JF»?alÚưK‹™”ư6ȇ=è‰fû?ídc₫ơ› ÚHF{Đí±ûÓ6P™́­]₫•èÏèđ'HP\́œ¦Æÿê3ˆú¯B2ƒ2ùcư7º₫«́ q'Đaÿ£ äOX ëÈèláüW;AY9»ÙưKT<—AP#\ÿA5rûAŸñ_ÎX@æ=₫Aơóü“?È’'ĐñoWÿsXL\At₫ëº:ÿÅ=Ù@w  ü̉¼ oU]PûC¾ữ8k/‡ÚƯ› 1|”5øĂ»ị̈8ŸJñÙro¹’²DG-ø«t ä ÀCbñÅ¢8Ư>q w0À ¡£½“ Ç;e¨ÿ(σxK5yÉÔ‹‰“’s$â1 y₫¡üN‹œ_d M%ÄÓ—đAûàĐAŸ¨<¿Nápë)à§‚¤ơg%èÙáNQ&«€Đ鮯©GJim„ÆÓ{ôÊ4Ă¹ù>a$vßÙ xçº c|­RNα.–'‹ÁNđnºÂ/_)®é ‡ï—d!â?“’ñ9r*aµ}¸|O,Ÿ?ci½•RĐ³wăŸ˜¥ â™GLµ‚3só?)´üí™ÍYz2́Ç1#Iuƒ6Ưe9ưĂt2G>â#VH®Y¨È¢Æ— ó#É`¡–¦SÜ»7ë¸=q8}ƒo¸pZÏs‰ƒÎ›ÈđC~ª̉êå¨g@:(GÑC#|‚3oÚIªôÑC™­yŒÏbâª:\í̀-Fî‰;”Kùs<&}Ó®zÚ=ûU!ơrS̀´q¥§Sß|‰\'Xơ„*q_ÛÈøâQ„ô&Ápgóˆ.g¤©•]Q0-ö{U™OÎÎûg$Á}Z´{À̃Ê„~Py´C̣W!˜¤TÀÓ ́?NC®PR˜,ê`èâ™®½„¡h¦pO0iâ—.3Í¡̃E¥-¹9lœ0bySÆ­€WCœçN`UÀ"!70à@Á́O£#y«z¨©p×MøFÜHOSø¡’`%̀ûÛ 7J2̣°"<̃d_¸Ûz4’ưFXZ„Đ ~ÔDcºLÄ#Îvr×X@À}Cu í|g_*·nyFØÍ‡;Bw~{ô †‚Mư`Sçê$”úM¦"̣c•”̃±_I·Ú-£̃̀́.9 ƒé¬µÓ ,Yjgg:2Óë9ç¢̣Qê°Û¢z´½MOstVöóvs6<{̃xµx|Ç^?“»ºkß½”*èb/v¸ª¦Óg0F‰₫$mmJƠ'%=9ä¯^Đ™)… ™œö–¹±eN£°T­ÈĐŸ…đˆ¨åơzꕵôg(¬6Ü«Đîơ’ÍÊ‹Ücºî´÷ é;÷,ô6Pwô]àậÖ̃háS0SUOü’8z,®IS Bsq’%¦µàQá8®u„¸!@ƒS zù]n~aÆ7ˇCiỴ̈^:~C»WqÓ>Í3t"hÏçj óJ”ˆpgPØtd½̉`g"ƒeL1Bÿù~£ƠYqéÛµ|GK;A¦@ăkY;lQX¤iª#c.¸®Y‡Í‹dG±ÓµÛç÷?ÂĐ¯ëê¿©2EqÓÑœăK+ÙŸûñ¥,çÁâ¼s"פƒ6;Jđ;¹S ºº/³k èb¸<ø´¥Œ— ăÓĂ’v̀üùLxLëf·îË7y¥÷‰ŒP+£¯M¥˜ßGF»iC,) )µè!¥ñ«³u¥U&>ˆsFoI‘ ¨‰xđ…¾ïi„¼̉NDæ6‘eÖ¸!ÑÏ+Æ…†¹c&=Ö}/€‚ $¢ê´_ï<½ZÖ́Çå~Ưxø¶•ª°Ú–V́›–IFŸ¿̀F ;:¥uÂà)Dƒ7‡ñ.÷óÀÓ¢«‰æà£"ºZô‘«ªN÷₫yYÔ¦”b̃åU~”¢9±Ạ̀KÉö…´8ÛiƯ7uHÄ“¥[Ô,yá&Œ…_îDSD¯¿ö<Ù _î¹å„óôÑø?Coz$¿lÑêƯ±±g¹séPU/_¿óưYËä„xưư§·µ}'AX<‡|ÀJ̣çtOÔ¤WQä×Q+qbÆÑºÇƠ4XñgJ]ÿCưÆX*f4ră¢—1ÑäÚcWA%´Ût!ƒ¢»ƠTÊ©Lv†<û0— 0ʨJ"’{nI$ŒØ¹eª:G&`í(¦qª&‘fÑ~¡D9 åÙyR‚RúSum%Î xlµ,NÄíÏÛ²¯"ï+¸OØÎ+ơqOå(ǹ~‰[ëè1…RDólÇÊÉojG¶˜áøH8̣Ùh›ÉàÊ ·ÿñù]¿7–½Ër<]Û4¥qÊ ¶Xö6EJLœ°¢'¼LÙđ±}̀#†•êÏ^<`•KZÅWaXCÁDđ]—+}øœƒçdL„‹¯₫UÏg̣"áT363?ÀÀ¾§×2y^ùŸLÙ$™êѶ¬}†W-`¨knăÁ4(8ŒrËx”́$>“ËäŒl¾Î&ÿv>7 l½Ï̉3GÛÄÖ 9F~ñÖáÚỂ=÷¾`…ÔxôYĂèb₫“BXóÄQ’́°<¶XwâqÁïÔt±çUÅQ}–y´ÉSƒư”<‘v{r̀ă‚ £Wœ2ÊzW÷åGV¤j: (.5”¦][ÁZ&ß°¹g[1Ä!WuSö›î=Ŕ$ôEÆzË=|G4öz«ÆÑ‹2˨r ƺ6èlȆaµ«²ŒLÎF"-*³#tdÓƠ¡éUôI?r¢Uµø'|ûï7íXƒuÀ¼̉qÑÏ_·đ¾>m™̃RƠô¥Á¾PVåMâÈÔñ¨…_ơ˜úó«7_g§”"Ϋ’Ù­†+\±4ÀƒxlD¥đ¦pô»è©üßY/]œwËí_ÎT0·ÜĐçx©¤·¯Ùà9å™™ ¾¨0‰“JÜO“=Ö™™}ÍO’¸!)ÊWÅ̉uh̀­F·(æÿa«[¡ZùRŸ€{ơ0½©}z¨È÷êƒS«ÄWo¦gÚdÆ'¾Úđ¥c±­Æ÷¹(¨%~£Dy fkáơï2¿‘.f Djpd°Îè—DåÉơéK!mǃ£péôpTHpăËPº 'øX¿Q¾»Æ_‡̃z.èƯrj¸1ÂÛhˆ×$̀?“fzŨs3q®Z„àó¢sú̉ z§oƯzvD0”† Qz«vƠHi ÷XØ ûÁ)PŸV±Í;·ÊèÜRÿ©fíÔ~đweWOřδs1vƠuG$6ƒdÈUÚÜ|äfĂbÓ'[cG:ûˆ°€We‚ơ±·Q— ¦ÉÏ4>Ôg¦BWx3hö"æÀ ÅĐ–kw‚ÜÔưÊŸÅ›‚Hâ´‡z»Kr™ß½ô@ ¡›¡Á[›LÇĐ’û…XÀajÚ =Kr®+Iùá|”:êôó$}Ö-¼¯M`ëî12m¼¤ÛXyÄ`Å"₫¨»˜Ö[„…¾®¥qyAWr‹xâÍ~́îđ[,ª4ŒÄ¤eÇ̉ƯrÅ4ăRe–Û̃“¬̣æ,Z86ấ¥Ü/sk:῭!Œ8V÷å¶ïi󷟦•4MäœR¾BÄ™ă³p²rÂk°Æ½Ke2ß9(>Ez¸ 7á3(Of Oœçđ×î0‚9âkY€%-Ñ^ËMî•~í—@mÄƠxp2^``_— hÓ9â V£ß€¸Ÿ́dLn̉îB•§ÉW8•¶VE¿åƒê~EÓ£`đ7~5¾+v&lù‚€ØWh,³NËS†%~|ºJ¾Ëmå/¨ùQ7Â8’£a£(d*13I½Ï Ûă¸#‘ k’6Êwà훋?tóx$I³˜éz5 ¬‰át̃HôĂwµG|V«ÓṚ|f%EÛÊ%‰BNđ"0’vè‚xK|œ7V=QF9Iº’ÀÉ"ÚçRÙk¹±,y­Ó́›¶s^n²ÖÓÂà4̃˜‹¾£́†~'u?ÀÈß ‚œ 0.ZK»wz;?D áö'L]%ä%vmÚ@¸’Ï~_k©[w¤Tøù¥DÜaDø*?‘ùëèĐks¦«ơ?f-_ÉXŒN ’!„ƠÛ>“mG@µâ)¤~t˜íä 8rÂkMđ¶ÊQæ;@mÈ"7é³ûKÂØê9‚̣‡ T¢ ’rfÆ$¹N@€[4gƒbZK~:®l«çô7ÄDWç¸çgƒ´÷©=„D®„!¿"¿8́ë@·4HÎv—ƯÚc‘`ÿ¯R;«»R_½NÉghWL.ಠ¸â_ÅÅÙ£Âă^†̃}A°Ë̀…̉¶+cö¢)é{`̃fgrÍ“Lh ¸@:6ŒAÅ–Ú>™ßá |à9Ơ,¾öèw]%ÈZv©n₫vÉ×Z¤ ɧ=Đà‚‚pË:Tª‘­6wª}ûËZơ„4[₫3 ªNAó¥ưúd߃¶p±)¡˜% sđ´UEfU ίƠ\z„ƒe1qI ƒÈ₫«àí”À_úåÅ©‰…¾ƒ5•a²™$̣}âdÅËÄ üÔ±í+đÀEAÏ|kdÓγѼ”ËR–!ơMŸŸ ‹Q*<¾{&¥›Å’oסôè³øaÑିĐx¬vRŒ^ µ¬âÎọ̈ †D_Ơ]üÅÍæ«’ĂQLÇ|Gj·èîz̀CXXEüYDú»ÛqR1ç}ˆƠW$çj‚ï×va'xQ–pm—hck×Mùñ×Mv­.–ˇƠMœ¬ås_´~6‚ïų²  ú:BˆÊă 6-t Ç0ázY8Ö×Çeç/ßi™AVøBî‘®\ ö¶¼UÓà̀-¦̉‹.Nm̀(HüàKS#…\‡ ;C3ån®ùØk(謽•ô¥©K+̣·nÿ•3ù1l(£‰µă,x‘XøK&d=6ân3¯_ĐdïgE{'ö́É„½Î&ä#Aư ÊŵÁ_̣–Nàͽkt“ë=æ‹]«Ö¶¨aTC70-—OH½èBU »>p/-ÂBAWdñ»y‰`6-á§C•ê:Œ™ºü̃úµ4óḾÆëÔ¤X<\ƠBᤇ/·§÷Τ˜Ằ̀3½ăº7øiØ̀O£@x){~æ> º‹‹Yy—!æçt5¡^i2yùb¿ï¼åUû…åoĐFeơs6·œLx̣¸$ï á· ÛDÄdl̉%̉Ă;Åû´cî!¿°ƒæ]¹NxkƯ?¡¤yEÅoZLR×´ ¿£¯1敤)ĂƠ₫VtÀÑ”91ÀµÊP²Íọ̈ù•+un†°§ï;íºtSƒ]èj0Ï›^Ö§%zSy¬úq/ !)¾êÑ<^9É rnz~ëKiB×ɆœB¡ F\°}HÅA9&ïl#´—Æd.Ê/—M…ÜYq!¹Ÿ—´”LåùÙ{˜Ó׹ߌĂ–¬`Ăœ?'3ίGøç8Q¼Ùb³>oÓUµt²7É·äJCN/~h.;IØ8Ƴ­™¾Û›Ç<ªê8Á§Æ\6''¬¯:ÅĂ®ÂVKu\ÉkÍmƒl¿Ù±æ‡<Ăgc]¿ƠâoƯºLđV¾áÿb#‘ñÛà.G]‘^ñưhùĐ3LP³ó ̀Äy2ËÖK`±´W±)ldî˘$¤@Ͻ ;)ñÚq}‰x¶%øù!ơơưđ÷jÖªI"Üfć°p$ëöjz<×û¹²™“Ă“ß¥…ÊV¾öBê~ˆátt1*1Ô|¹srⲓ<Ụ̂ŸMa;fó‡¿Ø÷ˆ—-œúÚ‘FÔ¥Gù×Éxv©·u]íäKÅX l&ˆéßư ă«“°™¯=·±:ºLî°“öƠ´ƒ1́Æ9xƯT+«é~S̃ü|ª‡qy¸îfóH bb¬ÖN#À ₫Ă@ê®xÄgƒ|VϾ¯÷™‹ØïÜFcU *‹PT BÔûŪ„¼qênåÑƠĐX5{uă5ư;{“ö—+C¹½¸Ä¿ú<ơ¯Æ¬q’#2°ë‡»øoË:¨ưȽ]–*íñe¸](ûmTÑt¡ă„Ăt:r6|vç¢~¡8%eç@Å6Å"h!1('$qĂÜ¢ƒè0¬–ª½YVß%`"ú4A#ṇ ¬$'Œ`×ùb¶'@W”ôđ(Î+«'á[ɬ¨Güt5ÿÉʆüê\3 r‰ÎÔH–£•@.ñȧu©²VŒ¶­¡ci®8̀µŸ2w@ÎÁB¬‰­Ư6ÆỀº0•zÓéQ£c/́|¨ĐŒít¸ÁÄ.÷i§ó`̃>L<¸£ăv₫u ÇzN¹Â‘đMÇ„é¬ÔVIúeqH›RwÎcŒvk›*’oÚ‚ƒ’Ü[©»£í­đ³íËH,* $`°'[ù-€ë„3¬² ¡€/pœ1¨ç"{ÊÂê‡ÄôæQ<ϰNaÎN⯈âB••Đy£.7ïî ?́-óÚºmj2½¬¹%‰Ë¾£¢7Uºc¡Ë™ƯÉ3eâÁù$*Yf½‡»‡x¬ÈŸ¥ß˜b5êi¶ê9ṇ̃œ°ưúDeFíDoùÈé«è«kÅpª›¤̉#yp.NĂ·×>8Cuê##Ë_ {\‘•$@‰`®ÉÜñªqÓk—@ 0¸¢fØâ+óûđse[€ÁÎ?(ä9\Ø ÷ün éZe+>üƯ9-k½R<Û®¹q­×»˜r•ùK:!x§É'u8Ä_¥"÷ËW“̣+¢û–0ñUF¬ÿ [ÏưKN±…Ø /‰\ûKc”ƒTWµË”ø°í´#&đÓ‡É,Uô›óc»§%#æaîHd­— ×…’Áa€:÷bX‚™æ³¥¢—¶8ĂÀR*\/¢`Tö¢ûÉÛC>bư“; ßéüđäFÉ *?Œáâ,÷^ê×~IGG´u&ï=¦Cü₫pÔ0ÿ/ÚƠ~¯z>Iơ÷º'·F5Ö†}áï±jî?½@Á_,ß³NÉnùÀ¤ï=ívq¬Ù;ßCô˜ú(¼Ăµ=qÁs‚ÏAˆ’cĂ$¡æ]+ID®v§á[úœu‘9₫¤ơ–„f¹Û\zfBK}â3øCZ~µèmđ VI&Bgp•ÎÖ5DzNU7Xb)Öô›»BƠ€MƯK_›'¬¥•™±/4‘zÊ7bådCÓ³¿jzßú¿ÅÔ¿1Ơá2¾qSùÀÊödØ ̃A SÈ#ê³T¶Q8_á2n4I¤‘̀Œ|£G u{º¹[Æ:Ñ®€\Đ-–¡„5\m‹ë,®ăæ<‚V¹äĐFăbaứùă ûùV™³ËM1"<Äjö[̣₫¼c›2Sßɇ|ư(¶ñ ù/î™,̃/Æ0Ĭ,Ưø§M£˜SŒÈª³MŒ·½÷ÖúĐ¾óSוER.‚cU‡g^̃nƒÅ˜¸dï4ŸT }TTªuüK’̀OƯ­º!-…44mü Mp<s.EWzZB8~eeuV¦D¶bzQºsåú{¹§vß̃ć g¼½¥‚Û·=ï'NW³-Ñ8 Ơ°ú̉¿X̣â¹z‰fØÆ£Í ÜqÇb·ü—f́ơj4F˜W€çM`‰-àè^²”4[ïÚ‘É¥p°uªÔçơïå†àﮬY3—2ơ‡$µÏĐíJ ]=äBº_² mĂcV/cJ̀˜'ø5RmÇ(JA`¯æB|₫•ơ•å+Ƶ¡Ă%¦Äë#-ê₫µ¸Y´âÄp\«ÀÁˆ*ö‚åĐkÂÈQ¿̣‡—5nÓ.‡eĐ:fu&ĂJ¢/Ơz3»­vD.QIø/u§ë&bœ|ÜOê¾xy–ùßCÎEV́eIH̀‡ÙÖB2¦gÎó¸Éù&°®ß” ³đwc(„æ[¤8}‰˜̉7g›o¥̀ÖH`¾ÓhBư6Áoî-‚i¾äm2{Œ(UÀ1KÈh±₫“ ÈP’oËÁ»„Ñ'^ư«X1×J 81ˆA›~q÷ºÄβå:eđ&y¥ŸjÀ,©ßûåä0€ªU³S ÙÜ|¬U‰»˜¦Î½Xù<¦M…ó9l¤ÿñ>Q…vXaTƯÂ…ÙºÄç;—_êƠØÚ„:Zí|cjtÂ}ÅG¬6Û%;ăA“4̃<ˆ}nr&³jeóÛ1åüä@&OmuÔåÂ₫ä´¥ªy]Àœa¾ĐR™§5ç₫ M°1̀G€ơût~_ă«e/Ú i¨©ûŸ›ëP!wo£ÑÙí†₫¯/ỒÛ|E$Ї_Ÿ94‰'ÚÈPFØóđ•x(ËîÑ m̀‰ŸËDsPt?"K³ŸˆưªkZ”́OøºNjˆ”5•›¶…½®Ønå>̉„Ïܼ~F7Ó¼JW¿ôaÓ6ß6†•ajPENTˆ¨èd¤WŸ,ưU®†Mæôb/"P3å©’¹ Ç^È;”Sy熷 ÉBkËX ₫|Yª“WK’đ½<ƠV¦m{ÇDzƯAux‹Ë1°¿Z+Ö åïË •"<₫qóÏY§Uç̀”W‚.Ö›@5v‹MÁ)Œ`ĸÏ9³¿Ô‹ ùœ+“nS}0ûZ.e¾kcPîË¿!óĂÉË́{ÄdÙR‰+Aq–£,E·Âz”YƯ­‹ä'i¥ÑĂ>z¹R¦ô˜3hF}Z¶Ç«Ö½ă , æµcK;£¶•ä,& Ñ›>¨rÁÔUŪ÷@̃²¹×Æ?ü&Å\¹üY–¬@!°—` É\œOiŸZ¦\5”¯œ‘ùª̀™DüZḱ€y5uÈơƠá5èzzؾjŸP‚$_À¤YBCê4>Xw¶¡Ú$å±~ü¥ƒúñ»áJMÁ>NôJï«:¸ưH°Öx ³{˜'†¶JÙ÷¹5m Jjè¶½ÉL‹̣WzíQü₫±JäÇô°.S̀,™F<8´_êưoQvK/½_€ $ü”…eulƒ¤đÚ1`ÛÂÈ»U4kÙÑĂ-KƯ²Á¡™¹é†C§p‘ µĂ6q$Åj¢VÛ ’êă=Íî!›†è]p]›BCØ<í„Ă4|Û؇ưØXé,jÂeº¥|øL¤WïY>ØËU²ư¼SNà5,ë©rDHü d %hÎ Ë"ØaóAeí`—JHEËOÏ"“³×‚^çÈSe@ʨĐvÈ­l¯´-)’@•=ººüó;µöœWµ‚Ơ÷D§†Îyˆå~àơ‚›½WD :³¸¨Úθ‡¸ºŒÿ ơ™TúöÍ́µ¾ Í̉đĐ·SË)C¸Ë‡̀₫½YɹN¥ÔtÜơïC–®œ`dzG‘ M“'ç­Y ϸ)ëVÙ¼]“êăS×Zú"Ê:k9GîÉ¥¼·é™ûQk5Ä­F W^ óALØ\GrÛÏw ëËë™Ü~::ûçPR†á;?…Y¤œó+húiI†Øfú¶mJk6­Îz”K½P˜ª„Ÿa”Î×Í罄̉|DUî–‘xK’ç ¹¶äW3Fôzj¨¼ø̉ <ư®º‰[3uL‡^¥0ß79WiÎMóáqs-pT¶P\̃C̉Đ´ê+o»Ư₫˜©|ªDI´ß=7oè³̃°́´‚¿¹¬w+ùư5éB~Ø’Æ~„E~Å›bHJË{Jǘî´1[ ¥–v#úçZdh&)¥x‘2½ÅÚL†ÑvÍB uü§®øPƒˆ‚”–r̃‹¯Ä˜ÑwÚˆÁí®(8–ơç€óñR)Y^‹+Ü*H×D§ÎÜñưzN}ê;s‘ƒ ÿƒ …ô‡3TÓOµd‘|íû:e}ưbVÍ‘y‘ù¡FŸÓ0#:ߢĐỊ̂ØùœK«Å• ô/F”¹8OR¢Ơêú€Lwf´”éE>?ÈÚGaYÊl‹„ Ké`ÅÑ éZ:"u~1OÎq́4‹‘—âá<’V‚?Qb`Ôa}.¥ê”b}ù×±ˆæ¢ª]=S:‘RàP!ƯKQGÎ+s÷§>¨0=Ù] ÖïÉÆO;‰Ê U–+ŒOqGøª Öª•¥×¨1Éîn08ÜĐXD(3!•¢óITQ!Ç}¸«X‘»Ó™qÊ PLF£ªL˜Y{4ÿ:É`w¹L•í’Æ³r†—c¼´^qü”#o§I,)đ£iï§ f/~ Δ'X‚ÆơX½Ù1¼Ăf¶8 kú¢LµÔ›}+‡w¶p–fEG©K%›mßñ=¶®¸ÂpdfAs‚zbÈ_›(T\¿ø…ˆ¤w©?üt¸¯·-®~¸\̀¾pĂ#=\cÎ>N í]­d|ÊO?ÇR+V¶+ ÆU³åÁ1ï… §8œñ¨=T½´̀ÔåÚ–çücN'ÜŸ=|øÇäfÿ8Ö¹0½²)ØàÛ²¦é*rxg·¬1GG°t_₫zƯo%…±cL·»%ñîÓBR[{¥R¡¾é_¤BÎ öà‹s;f˜'},â¥CØ'Æ ªn®ª‹~5™¢Î÷Æ_lD7ÿÂ)—B~aÛJÓvÍ"¦T±ëú }ç¥)v̀è9°›¤ä#OŸd1ñ.]Æ'£µÚ[r%ZNâ«=ÚÛ5M¾ë³¶5t*©ZÁ™·%LJOḱrµCÙ3 µ©VË>öŸ X(¢¸ CrÇŒ2‹&ü…£ô1•ö•̉Ÿ¯¤Ê ¾Ô oë|RĂ®.v¤âÅë®4[Ö2ÈG:IU½‘T†aM!uơÇOɬ!e÷¢.éÂ\ö“ŸùÆ5,l°[k³3EÔDpΩZVA4Ï)G¢á…·c«ï"ÑŒ÷VµoÂÇz;2îEŸ¿âC¨A5¦¨0ó±ÆVª̀X³,-…új*ú•ïåmL £í7äÁÜ¿jTØ/ªÚ¿´­tđÛ~¨˜5"hø©S¦8%_0'<Ñ"jG»'¶Đå¼gQûÜ…K̀ơ mªnxäáƯYÚ÷ÙE‡æÖ»o{u ]„•9ĂÈIFO&:†¹‡ơî2¢oïù2d…©1đäw!_´0S:±jGÂÀ₫4^Lb„¯ºṇ"k %Gƒpåë ¶WÑÊ©nâÎưé>¶Î~°¸w̃4¨8iơí *ĐMeX»v‰k9ßññ¹å%¤$“cö méhͶ½Ñ®wµVQÀ@½5víÊæ±@ï“øXÖ[c¶?J±4x*–øÇwĐq4âđ‰Ó×d°{:#œb›°˜ơ¯3åZIo3jj% a"QÂS- ̀›̃í7DïèÈ̃3s“SÎÁ M̃ÓRHpÆ:¬ûưFTzơ2•XÊ¢t½¬ơd 3^™‘²xçĐVÂÖGŒ¼“5z˜@H4½÷KàRŒ)êŸ Ûß:Ä2¸)âQG8‡®5Æ{ÓÙ.|„£bQÚ«ờ{˜tœî²ƯH²±Ü(³ÂW(w‡à)]_ —¼Ø¨Mèß́íU‘'ƒ>Wñʺ~_ç…'ºBc¯Ơ]·!Ơ KE±6jÇ€lÖóÀ1óÓ.4˜‹+*̉ÜèP‘ÙƯ¬m&²RN|ñđ¤8…1ª’w¸₫oRs›h¸:AÅ<ă˜×?’¿fç^ƒƠÀeÄ¢å½htƒÉÅ€YyNo§óS1lî'<ŸE—CUPG̣÷Ÿ±: *î™·>ñ8k™pM…,Q¤SƯOq ĐÉÁlüưh’û5wÉ‚…3UâF́/ [Vđ¥IÁ¹8X÷«: „ơµ¥·Å<ª kY“ ü Ăä à©q0¿*Ø·;€/VÎ:X:£Sz'EŸ8Ï0jæ̀YN|ßבàjô8‰;¤ïWí •.`n¤ÎG+“‡£0¥åFF 0¤./`8gY§U¬ä¡S`túHmk‚dä«”‡ï*![î„fusuiíáF™Ư?BÜđơ+xDË{_]ÔD‡Ÿ#Ö}Qæ ÇwWOs€´ÎLÊr€ÛÚ‹Ă•;Ø’³G?f*ͧ]êÛjôˆÏU:øĂyY*üË&gîí×j›ưÛi—[{ªq¯w¯4}y­2е̃@*ơqÖvBÇfuÄbyºI÷Å;„|Ö¦,î¬,©;G,æ\@H¹çñpzŒ§[8í¯e3öÑ›ơ5}‚ Aû4Û₫@O<4v¾:q!Æ4û} £6fZ¡í×~̃> 1Û²Ù @=c*8Ă.&Ó¶MË·´jÏ2±G-HcM@ó ăm².U+‹V¨›|́¶äˆÊ“à íÀ̃Zó‹}cSK0–áRó©v"8¨BĐ%{öˆèT•X–V©Î3¥®×W!ávç¹PüÎ`‰…í[9,Ñm­CÎ6sUµƒá0Ïk¼$Åæ€‘̃h Ëå…m°̃dS¶OTp @Ø+rΧÊÔFàq¼(z×ỘñP"óÙ%ëîư–˜7ôÓµ́ åÎöî>ùöS@T]AÄ<+ù¹y+̀́gΗ–lî̀yåçÓ¶îÑ(…đ eG0º“>̃ñ(Öª´6­O₫5½ÊêÅÚ—·ïÔq^)Á‚’ư:¸bfÎ̃­ø)«µ®¢‘«èWAỹ÷J:º)æŒưŸzï㬠Óö øqÆẒ_ÂBWØh½5¤³ë5ŒƠ$°An Ö“œ²đ̣läÕ…a\à™ç£ V;́8Àu¼Iè•ü₫2Ăâ!µS¶ñÓc3«>ús09:ø€n.a6)³V«s¸ó÷¸M~ßOhI.R<±„»ªK0ßN)Đ­˜¿¹¢åJĐ"(7Z4\92Ö[ ³Ó½=^́àOtf"ĂyUPNL2ÛD”,®́w7œư[Tñ¢Ö¸•²ßƠV^ =̃”Ÿ`ăx8ÚƯ5ߪ=vÆ)X›„fÈ—ƒăƠ”æL‚-qu.ƒă$ĂRÈ/ẪËÎE÷(J7;QƠk¡ÓÔơ¥áZ”ÄüàhJ ùlb\±tñ±nNÊîku`5¢ÔZăơ¨P äÍÉ>)¸ƒ=+ÝTÄ`¸ü÷åtøcÜ•’_/¯ä+a“G 9T÷z™YM­·C/•8“V®a6ơ{­zæ†îÍxuû̀×95Đ|Çe‰G¡vLw@®ÔkơÖ̉hnéR¡±¨̣Tù$9-Ừ„¥Ó­yfº ß´‹.H<-|U—çîcfb®O‚¨_;{HÿI/FߢNóÉÉû%OäMæ;UÆTd½–Y^­xi~³“%)+úÖƒÀ–„½°&dú9´₫Ù§đyË¡OGă6ˆ bg9W†đ‘.n`븰ϵK”.,_øôµÛZ•áăÄ/Ǿâ¸â7QḾĐ~–•ĂæwÖOo &ß§h/9%LDe}zjêj»“Kå,‹yn.Â1"ÄH~Æ‘\8ÍIÏBµ³’)S^K{)~W?—5©Æ]ÛĂ… ¹sB·”>íÇq0ŒßáŸ×Đœ¦œXÆC4T-îÈÂܰsm\ÚƯMÏ»̉貄 ©Eæøz~m‹ÉzÛ< IÖÔ4¿éÍ!E»½auqư+‹-ÚeûQN"q~€x,kbƠ:f£4ájÍÉ7nß:îtƒ«—HgdXL,¥÷¦µ5‰08{̉‘v&~dî<<Éj¦]ú“„‚¯†Ä¤‹º5ób7+nü‘ 7ÓAŸ5üKæH«ÁeúYˆ»dE2Öö^ưÛ>r®<½|tzßvæm‹˜Ÿ ¢9](™8í²í1Úú Tä1‚üjW¼ơ3²h}ÜMgÊ·ï1è‚ø–t÷¼!Æ¡OCÍȺUæ#æuλù5XéeÛ‹},¢M0æ8Q»̀¶MxBR³ƒbâÑñNœVœI±T{l{Ÿ0¼›Ê¢’—±¾ A#•;Ä ‡§”ù'₫²B“ 9M„D§4AÂa‹¼g C§Øù^¹…œQ‹̃U²¼Kl“"yo–W˜‰́mIo¾{/ĐjăÚ£ËNq<4äüd|uí¾÷5vùr1ùd-9xApt̃ÏY&Ái÷ê›£Ô ºc»;5«ˆü3‡Ü‚ÁÓ0ˆ3Ó»ƯçI<L\n²¦’/¾™ĐiVëK}Êî îa tÁ¼èî”’g£u‘Ǻ¤6>Ó¡>à„!œ¢ ë€4°9îiYZʲjăíGf<7=ïHKçQ0̣n«U,E€ï™ (Ư¡˜ç|mËDQÈl:ăçåÜû"K¡¿ü‰a3Ă[́ăÚœ³NOœ £§©7]àø}Ä*A#;–Ḷ Ÿu›ü¡?Ô­9©¢IyÉ8ú3ÁJo ¹k®jTđ}̣´¡—ïm2~E›^‰Rç ÖD å4Ñe= É *o`&'¼Ê2ÁÅSÔv<û3Aêt* d×D.Ê ƒzĂ“„OÇ2]üÄE«ÀơZMD̀lëAN=Jé’D‚%f§t.ÇK‘̣VÑHd¶l!;M9„¾–h¢ ÑÓ$O“d›ÑĂˆÿ₫ái™7bóô'w,ª÷1Køâç깆+p’+6è²¹Ø+àéèu:Q4o{`i}&Hdæ^¼C–¨Øv)jÏƯa đ˜= JXedü:Ö­/6—sƯ{Úv°móú¦¹0kÉ0Ejù çl"Æaé¶éÿfwÔѱH!̣c1_‹øử†₫ kwó°M!öj«23̉ Ê›ÄÄvn–o=aÍ:Ló3Ư~E-ă6ó^Ơqệ*…‹|J†+Ăm®…@F;RÆBư6¤v“†~Hè~™†Gk¼L{ møGăuñ¸ÆÈÍÖ₫$kܯƒ¥8bïs2Ñ«)0M…]§?¤ç€K;´~ʉRHyßW·½y…^@ˆKk±]Ä¥Y:4óȽ¾?-VÉè(!ÊJÎ¥́<ưu!°Éÿ(9àw+PA„`*̀ˆLM©]Ù²×₫ué ZuÚ̀s@)₫VƠ ̉ÙƠôAÎM_ЉÖ8}&",Ù‚K61GÀ¯Ï!‹^Ï)u²ƒÛÑ̃Π(Syê)z)ËXË̃]±ü̉lW’O—›EÀLBRØz«Y—Ó¯qœT̀ÚÛIê¤tû•Bߪd§º¯É/`§im‰‡],D£ z‹ªỤ̂̃¤¿¶jÊÀ–ß°Qú{AƯpG"9C¤úẹ́˜ÏߌBƠTnMm¥ÔÀññ4"µ¬³Ÿ̃8˜ù|’^OăÑÄ|Dü £ª.á–’jªF•ŸǽƠ$¾ËÜ9YK±²MÀ™&’Æ~»ÿ•˜å¼Ơºt¿~•)¿–^ÚÅ6fuû̃L`¢á±¶•T¦µä‘¦HúYi\VFØ#Z;ƒ#R¢₫KUn¯Œ<6ªutbccº§[Œ4Rmă ‰ jÿÖ¤#7P6æ8ÚƯ¡¾`“\/©EŒà6L‹†+åÓÆ«çÏ"»ÖÖ́›ơư°ˆ6ÓÙ!½ØX>p:(ûEă&¢_ưé^?Xwô$„$lÜ–Ă5=4ôÛ­"OؽØöêZºóư"¥ ¢)^Ú¹»„›̉»,û_(“ÛƠœ0{Sü©” ¨/$éÑ8«¡ƒÆŒºäỄ|m½–i±Wn5ߌ‰}·R#Ôe¥ú̉d́[I'´ÿ M̀NRXJ%íæ₫¾¸°v?á›í±¿wo›á“,Ñßl³tLÔCƠ,º½ ëÎ_ûµß‘.¾¯±UÏ\´íK{”-?\üÏ,¶Á‚ÅRoÙ½Øp;"ƒŸùza~ç¶àD;´/ó·qe}&¬ïôâ¿DïaÈæ/ÏßÿDæ4œÉ×ă‰¿q£Ö“,q ~—óɭߥ^µ̀}³váhÙíü¦¨'ʈvé6AR[Üö1Å;KWºƯéQ`XPßW$yT́ÓHÚú%K̀Ø}áé÷'¬È& ùÚ‹¡ˆÖw"qØ@²D}µ¥5Ưt̃™¾ªx~KM=¦D )YŸ·±4¿ơp‹iK WbM2Đ‘~U½ oxFC‡*¶$¨¡’Ø̣fàËäƠH/ܤKoÅö«5O¼Û`Ÿ—ê¸oá] ÖM]EH_%œ©K6đ•ˆZ? ¢ñ÷%E jç^¶²ÜεÄ*;^ߥóƠ!>j"¦Ưß{Ψ €ÇÁ2¸Î8Ô†2-e‹ØuR– à₫NŸ·7ƒ'®ˆ“Ül¼ÇBÜXfè¸ Ë5gơ€}Çx‡$Yø‹}Ề ]­8æZ̃Æ¡¹́ù0Đ/Tg¹#ÖŒ£}c> stream xÚxT”ƯÚ6R̉Ư Hç̉̉-Ư%1LÀÀ0ƒ̀Đ ̉Ử €„€„’̉‚„‚”” % ‚~£¯ï9ç=ÿ¿Ö÷­YkæÙ÷}Ưµ÷uí™5<œÆf"ª”3T …Ĉˆ‹åêf6â@() Jđđ˜Ă1èßvK¨BÊÿBƯ Â`m h€Bîx#â’qiyqy  Êư DyÉ4@>pÀ@p…„¢IxÔQ₫^pW ¶Îß~°@\NNFøw8@ƠêƒÆê­!f(0ñÿG ₫Û®Œ§¼˜˜¯¯¯(È-̣rQøÂ1®S(êå…~ 0y@ÿŒ&JÂ0w…£ÿr˜¡`_€5 à`( ñFB ^lu€™®>ÀÈü ¬ÿ@đgsâ¢âÿJ÷'úW"8̣w0 Fyx‚₫p¤ G@FZú¢?Œ0„„ü‚h6ä‚#@ÎXÀïÖA-U;áŸùĐ`/¸'-†#~Í(ö+ v›5‘u”‡‰A“üêOîc÷Ư_́Ïáº#Q¾ÈÀ¿W08û5ÄÛS̀ ¿ç ƠƠøƒÁH₫msbR@9ii)qôêvûUÀÜßúÛùÛŒ!8Đå €aÇ€ĂaṔI ä`¼¼¡ÁÿéøçD\ƒ1g¨ ỊḯX3ö×{₫^p?€K?qđ×ë_OöX†APH„ÿ¿á¿X̀VOÏØJWèÏÈÿrª©¡ü"r9i @\\\ ##₫gcüOÿ«‹„¡rµ‹Ư§¿[öùĂ₫?ü3—! Ë\(€ÿßD¿ ”‚±oâÿgºÿùÿ±üW–ÿ•èÿƯ‘–7ñÛÏÿàÿñƒ<àÿ?,s½1X °Z@₫7Ô ú—t  ¸·Ç{u1 ¬T‘.XF‹ˆß̃úËGkÁư c8́úk₫²[ü̉„£Đđ_7 6 ü/Vd`ẃ-‚ÆRó· ƠĐ?ëj"Á(È/±IHI@^^ ́YcWR€@q¬*!P¿ßdˆ‰"Ql;c0†̣"ùu°R·bH¨Ëï;¡]¹I₫Q́íå…ƠÛo.`ëÿ½₫-n(Ô &Y˜C"ƯFv^4¨²øl¬¬vÇ¥Ø ÄJaxß> tƠ'̀Ó¾§æỳ8m<_=5Ä"xp1îw÷eAØr–N1Gs`]íP¤døëÉK(;Ǻ2!“·Nơ9Ơ„ÂÉß/Ưjî2J¦WrëÉDz«nô–­ÜÀPqFəłIT-ễĂ}`Ăɽ±¹K™Díe—ăm®k1q…ût®Ö™ÀôƠƯ.)wäưûWƒÙ’Ç¥z}ở£i˜hîp¦ 1Ñ¥Üy†ÆáU“:S¯ÎLáb*÷ˆæ]Æs’Y₫>S:ø|zvAS÷̉OƒTeƠ¹>îbkáưI‡“ŒN‰y©âö™Ù¡Ô¤́£0«ÅËÛ™fc]Ö÷4¬bw†ÀçxåáZ²ß}Œ%ß}³6’~å¯êi<¸¿·eouE#Ü  ÖæÖJåItU©Ṃ́ëRkcÍCư+‰uG‰öÛ«Q:™$â ~ÓL´Ă»|=̃LAÏQdg߬ 9ØLó43+ösÛ“gpO¿óf¬ç 8´~̉ß Ñ§Â5u®Uä|Tñx"X(A¦~a¨(_êå'dơÍ¢"„`Œ{ûMÁçeV°àr,×Ác‡Óºö5Ñ”oà•‘z5FĂÓIœº7Î<ư¾ÅøÅ”ê‡#fÆJ!·çơQη ÿÍŒàëJ™ ƒÖ¿|1 InjU!đ2»OdưđëX˦1i:VªU½×8-—'©wŒĐFX¢²—|:>¥)÷6ep(d4*¾S\¯¬í¾ËUûµ53aÊtÿº©zæ|9~‰†+ ùŒ£pÑưhE—;5}¢3 ±¥ª{á€[Ó”ë»GSÑÖ pçŸKFø}Oaûd6ba¬Û Ô¯C3G‘ŒÙÔw–́‹}̣y™©³ÂƒÜÍ\®•ʧM{Ê«é‚s‘2>äo—ŒÅÑÁëÚé*e†iR‡’™qæ›M²°h³¿IELD»‘@d3YPfæă4yq¤6iÙ·4Ó€G4''°À˜I* ×w§·7Jss×Ô2Gwç‚¿½\(BKÀøÔOü—ׇ̀{6>¿=sơ<Üá-÷3̃„Í“c{*YDf̣Æ3t;odäK±”µ5yD>ÇI§ØAyD f^}ª¾Åd²ÙA÷8²Ä¿&(=yчƒú³Đư”²bö₫ Íp̉›§ xiƒ{oÅŸ±Ñïaæ£đ.u yÑ ÆêÍ;>†[\Ú̉Á¤ŸÈ‹‹́[ÄKTR^$dm5đo´[έÄkWƠ!dÂơ`,V´Ë^Åûßµ¹ùjnF[*ø{û2£?3ˆ½kj]˜Öï³ jÓ¸Æ>xK„âë*Psß³5ÙÖ́[Û‰êĐjLQlÓ«U¦ù6ƠŒö—]Dwă¸ÎU‰y˜zÜ ”-Ê8N°ù!Z\«èÆñu_Œad¿Đ!ªJ†s%Nö}ç²Íÿk®í³T†÷PSÇœlÉơ”+A~ºù›ç%†ơµXz }̀^eºWùÚE}„)ơ$ơóü‹¼krןoǪ/‡ˆơcîw¤äD_¯D± îgË% zM̀ê>(A¹Ơ[́ëÑø¹•tˆ Œ]9‹7̀=="íÓÍGhè6±Å“ ;o5A¢N;»ønOÚt­@E>‰‹]'Ë„%jJỪ†Ä•¡’²íƠk”¸ài¸pNÆ >Buà̀\w‹#bø=l¬|́1êX6y@Ï×Äå}¢g ¸ y¸è\|láxï^#©¾eÜưÓW?//<Èh q2{ÚO¢\N)Ï«Ÿ˜<ƒ³†0ox¾8Hb!$D§áJù‹ZG$ă±N=8úÈZj^²Sq×+.u¯­}ïö>¤¶”ˆ `¨Ñ~¶Êq/îỴ¨ÚÊd‡' r†ñÎÓöyë2æ̉^IŒ®?°¿û‘(₫̀͸»ô›el75ß„§yzÖk ÖV}i\Îñù́e4GÊ o”QMăÁä"ëY>YËé̃Rề“[Ögƒá%̉ơÉ¥ñ‚̉Ü„Øécˆ&UÓ\úôwìơzq—,[ùlO^«²- #Î&n4ÍwfPơå¦,é¯ßÙû|¼ă ¯º²«8”Gß.|×&ÑËyD»ló-('ë&ÁW)ËÈ=Ø”Eüî=ă°àóËé ÅŸ yØß3½RFAÆ}Ûè<¹£Jö¤àÍtA6!OƠPáá—AnµRTêĂá2ù_fIÓ>gƠ·dϳR†ˆîˆiU±° ·K³0¦«ñ¸¢\¬¾PRWf¦răЇĐ9Ïăƒ;1¨f•†Æµ¬°Ÿ‡»ªÓ!’•k&t;=j́–§÷¹å4K;èSÜIØ+j· }¯×;RHI—k¸̀ô4Ư*TËỮÈÿ¤ZUK½ÚuïéÄá(ÇÊ‹å©[-„ñ́1e)“âOŒaŒoˆëN„ç̀¥O×;¯³>ô*«´K}ÿ̉ÇéigKă÷D†Ó¿smîŸÅ,‘廢Á%íă7^g<«bx7Ñ­5–›nh̀K Wd|üÆÉpCp´«F”@lË— ?ÎT¶ƒ_eaáA^¸­K¥ÏW×#»èư#%kÎW™Đ£•q=¹ƠO®iKuí‹BÙ7î ³©×oû_z“2wË«ºD+?ăb ›ËûcO)ÛÜUuíc .(BZÍJ?₫´ÉZ@¶0‡'ä&Ị̈V :$± ¥̣]‚Up(Ö/yŸ Ư^(Ë>ïfŸb̃o ₫¹»P#”&Úz»ä¾?ŸÇ'ôí\‹09ONÇnÜJ“ÎÅ/|†ùÚÍŸW¯ç(‘ăT½p³o¦FHZ+Ư) P^ĐØU4¼ˆºÖåŒ$cK ¼ÇàlĂ¯Äµ +¸ư {x̀½Ê_̣µóz§³̃K–¬á»Ö~a_JÚÅ’B·y¨™F7R̃÷À7li5—J”›ÎruË•SpàÎíîÎmk¯ÿ k+ùVOù\ß*Kåxôä»dáY¶'¤₫aºÉÇÜ8|çƠ*:1Ï“k-'YÍÓïukMÉâ;₫˜U¥JëAîј¼!üYê¡—È p{¶§ˆ ̀ăxƯ.óz‚¾y¯àÑŸ ưƠ=ëPókÈc̀m–Ù÷c1"åj &¢Ñ Øi{ư~æêZé…ÿM₫ơz'ÅÀÊJÎNö1 /zůư¶¥V+T7ëơà³æÊg;̀Ô¢‹‘k¢É#îoÜOi™?„¿-P̃…¨H‚(í%k˜³ÈwgYgqx ‚uXû˜swÊ‹Ô!Vs®{yv15ˆÓº]kQ1SöÄ‚£Đl˜̀}m¾ó5ơ»YøÎ~8räQ• 4Ị̂·Ë/o¹a`ĐẢ̉IvoЇ·µ~ä\}eS̉§UßƯäkń˜Jî́˜h¸0.z $Rø¸ºÄâAv£Ö‹ c®çzăÑÑBµÓ6ƯPe`-æÂÂ’§ß¬àâN(÷’ßFW$%áôäË‚Ó,ƯÖGƠI"ùæ'WmtØœÅÓ[Öë ¶ùF ™:ØLå1‘ “<äÖªz“¥£±plɬ́yLè?•ƯNk¼̀£¥ø<¼whP-†àlá¬D[õصé¾a³]¾îˆănl¨:Ñ¡9}Ạ̀4Œx‹øöLVFÂeØ5§[ØoeMñ¹;|W«ï¹‚M‰ ( CîV…R­J¸ĂJA'(ï;2’…!”»ÍÇ>«»=§!zKV3Ë’Êo“« í¿Ê[1)ĐRùp¤DQæ\·^S¸©Æ‘FWiM“,j¼ª« \̀i^ ½ñ Mÿ ï̀Â~ăIDâ”uüWiRÍ/âC½B 0J₫ơÑ‚ëaÎêxƯ÷Ⱥ0,ª^%¾Ö‹̀Ë“kwOÏ狇YơĂp÷"JŒÓye0 Ü3oí=—[‹'S‰́ ϼ¸v¾½3Ë̀êơé=¼ü¢~¿I¹çNÄs±4-.i Ñ ̉î©Đ;=“™H ×ÈLí”â^Øzgy?ÂuÇ~ơm çkßKi£÷¢ÁB1{£!RT‡¥–k£ƠMBuTåÏ꿸d“‰o²@‡ç=™«ôßÚéO'4/NP—ºÔörY³ è§”zÍ“ÀÔÜ̉Ot?ó½vÍÆ¼lQö.YI=Ïæ ¿¦2b}@v4Q<ÚÏ··0Á}mÅe4ŸÊëA.đ(éñ!±©]7ĂdÊđ¶ÛÍD?øÂ·ú;ÅÓ̀“¿Pæ 8ŒºkRă—Ÿ‡&7*ŸEE¯ÓØæ̃b׋u‰Á¯Ø.ë­̃¢ QI(0¯Ẹ̈̀θxơ‚œLô‚?”¾Z?öÖˆ.H#>á ½ê—•½«|¾å̀́£ Ñ́R&–ªˆåEÈZ·+M"]N‰uµ¶ä•{1ó)fFăàAr7 u»̣µF2JaîVßÜËK«»pG­ëù"°UĐPĐỡ¶¨|úÖpIVq[B¿%—¤ŒQ"ͽÉÂ|”5…á³Î„ĐÉ iÊ4nåBd́<Ú Åb˜n Q=›DWaöaz`ƒM`“uöƒĂåIsº“Ë™«Ùo\(£¥Œbœèw3¦[;~̀•ÿ̉%]-¾0a|`Áø éTAÍÁ$Ù¨:]̣k Ú ɦoäs<îg+ºƒä»?‹ ?œ̃päp¿Xq ‘£3ë/ß4h‚†)Ï¿̃nh¹ÆNùÉuÏ>¾Âù°‡øjçùn­ă®Äí©‹±¬A!|ÊOÖ̃»‰‚ÆX¦;%?ªTÊx RuĂ—wÈ0-ó>ѳw™ÛŜקú ,µèF€R?Ç…Üu7%¬ä”`YÁƠÏ”“ư­§’˜˜ÖÚŸ%n5Ñ}A\•ÍORæH‡†íèfôă]‹q“l¨éæQR2ît+?̉ọ„ê¤ƯÅ®ó:E×£ưöËunkéQ­oÄ̀_Ûw­¼Ñn+=É…ă!¼<åj&beKL7~‡‘ïYĂùˆbƠÆ;_ĂÍÂ&¢F>ûÂHjÅx#̉·Ïq2NÏ©·,79Êå°9ơƠå̃9`#Ls_Á“KñÇ üV4ß]½?«>º¶Olôơhωz„¨̉3-'°m¥JWA=KïJÒ·¡Đƒ–°öƯˆÙî'&ßÙ§ÔơOKORÛèưr|‰?tW°Eiµ-ç_ç%»Ï¹¡™®4Ôªà„O1@êóç‚c±̃Ün5‡p¥×< PhòÑơŸ½«ùöúËÑƯ8O¯*w̉g**½P̃%3s}#q³óưf"ÚÆöÊ/9¶œcM2Ÿ6˜!¨‹ƯÎ)L̀„>L8”Ë¡k÷yDiôî̉–ÄGn]®ŸÓkî ¯C-%¦© P4´"awÀC–Êä§™-$¦Ú”†Åcß¾Jç¢è1±êxatơe*ơ– QÀ÷QpÛ‰8£Ö†÷råƯüüṂ§]Å=ê ÆÜ泋W‡»ÂªRÈƯ­øL±åË×ñ¹«dö ´h³¡àÖSó&À”\ÊϱVeEsöiæ\Û+ö:—k½j} ï ư0ưü®ÂË…ù´½U½Û>$c₫G¬4«9NB; VÊ(|ˆBhíÖṼ"œWµª…º}NîT§H_¿|¦ƒˆN©₫Ä‘7S¼ÿÂ9ßH/̀¨¯3Ù~ƯI[B }a„~l >.<›‘T¬Ùt—NZëu³ÆÓ¸Úû:Hû̉¸¤đË®„ iQ8Q¤íåÄ ơœÛ¦ ½1WGW~H½&/ß©—¸¤—WÇ>Ô¢vd>@OẴQ÷²ªC„‚Dîz]58Õ‚lnI™>LL!î&ư¨÷&$tüZXª¦‰“]Æ…0‘Ä›¯w$5 ˆđÆƯ¯m~ÍÊsQ(¶“‰¸¸–{㑵ÜÂèËF©đ®EY˜̃ƒ­Ă0ŒƒT0SÅÊhÈÁYêY }x /»Ä^ô?"óX‰ endstream endobj 909 0 obj << /Length1 1977 /Length2 15488 /Length3 0 /Length 16698 /Filter /FlateDecode >> stream xÚöP\ÛÖ† #ÁƯ‚»»w×àиӸ—@pw·ààÜƯƯ%¸ûeË9{Ÿïÿ«î­®¢×3l¾sÎ1VCAª¤Ê bjo ”°·1°02óDåƠ¤Y˜̀̀lŒ̀̀¬đj– à́đ@'gK{;̃Eˆ:@ï61#Đ{ ¼½@ÆÅÀÂ`áäeáâef°23óü'Đ̃‰ fäji gÈØÛá)Dí<œ,Í-@ïëüç@mB`ááá¢ÿ3 b t²41²È,€¶ï+ÙTíM, ÿ)AÍo9đ21¹¹¹1Ù:3Ú;™ ̉ĐÜ,A 3ĐÉh øcË#[àß[c„§¨YX:ÿåPµ7¹9ïK ó{‹)Đ đ¾:@UZ è´û+Xî¯zÀ߇`adùo¹¿³ÿ(di÷g²‘‰‰½­ƒ‘‡¥9À̀̉P”c¹ƒèFv¦Ù8Û¿ç¹YÚ¿ü)Ư !¢ 0zßáßûs6q²t93:[Úü±G¦?ʼ³¸©¨½­-Đä ÿ‡>1K' Éû¹{0ư}¹Övönv^ÿ!3K;S³?¶aêâÀ¤ngéè”û;æƯÿÍp033s³r€ »‰Ó ¨y8ÿt²üa~߃—ƒ½À́}@K3àû¼—³‘+rrúxưÛñ¿ÏÂ0µ4Œæ–vđÿT7Í₫â÷ûw²t|f~o?óŸÿ>é½w˜©½Ç?á^1“’œª¦(Ưß[₫¯óÓ'{w€€•ƒÀÂÂÊàzđùß:JF–ëøW®´™=€ç/¹ïçôÉ®÷ơßBøßZ öï PÿÓèº̀̀&ïX₫?·ûŸ)ÿÿºü*ÿ¯₫I¸ØØüé§₫+àÿÇodkiăñwÄ{纀̃§@̃₫}́₫o¨&đ¯Ñ•ZºØ₫_¯4Èè}D́̀ß;…‘™ư/»¥³„¥;ĐTÉdbñW×üeWÿc̃l,í€JöΖ¼ã³˜™ÿï}ÈL¬ßß"Îï­ù§ ø>Cÿ»®¸‰½éĂÆÊÁ 0rr2̣€¿ëwâx±¼O¥)ĐưÏf01ÚÙƒ̃Sï{ô˜Ù;Áÿq±œ&‘?L€Iü¿ÄÅ `’ø‡ØL̉ÿ;€Iæâ0ÉưC\&ùÿ÷{¥ˆÀ¤ü±˜T₫¡÷Tÿ¡÷Ô₫K<ï5₫!n“ñ?ô®Úä¿Äñî3±·y?ĐÿX₫8W&Óá»à¿đ]„Ù?øY₫Ëû.Êü_ø®Êâ¿È₫~zÀ/önûw₫»pëá»:›á»tÛđ}|™₫Uêư…Ádÿ/|—æđ/|Wæø_d{¯äèbÿ̃¾vé?Qï‚₫…ïêœÿ…ï÷ïàw±.ÿÂw±®ÿÂ÷%Ü₫uPïbƯÿ…ïb=₫…ïb=ÿÄÿéW'§÷—÷Ÿ/–÷f₫ÿùKºMàḉMø‚¬jƒZï«EÜvÇXÙ‘ú.#®a5wÄñ\÷•Dù®Ø̣#D:gö"6ĐYK̃­µ°™­ơ×½S#y±ë[¡̀Œ·é½'Đå\X÷d;:t Ù́LͱÏ~ª ¸] OÓàĐ;^́ÎfJ̣S₫¬¼ûnqCƠđ›b,*—›› "¨M$£­̣SÈôL»4¹ó¥đØI<‘ÄáCjï0+ÇVßR=¸åf*ÁÑ’ƒ́uÆ‘`ÊA7'¾¬á`b§[÷)†:àº5è µ±óˆªĐG¾Lé‰K©Ë(ióŸRư½É¢1dçp"ÙîÆT[ú|´b%Í‹‰j…lTeƯåå’p= p“¿ƒj³Ñd½åj'ăôƠœ3§S é‡Ó1”T¯¼æY&Mà†#¢-é?µmû©‚eEÁXÍÛ¬ŒƒjÔ Z¡H!P¢D\< Đ( ôæ?‘ä±̀ÅJybj¥bj@c:«9Åëÿeú˜c?ÇrƠ×£9i Ö3ßUc„è*Gæ`©ú˜ÄPRŒ›g¾ßêºlÙö£L,Đ¾É4 —†ô^ÎsF›´4›~iÚ&Ơ{ ªă‡Ăơ|®ùmù–d“y®™üL¤^3bPî3ë¥oB,\‘èV7̀Ùí{¶.!£ÚQ[ÖSçzCPwmYGF~Q«ø>/$[cQ9Vèlơ–́²¼‚³̀¥¼dx̀Đ½ÖÅ7¿¶l‹øûv~ÏMÇ̣%0fŒÆè—ÓåÛø~-H’Äӈǥ¿w¾äÎÉ’ä /=f—¥Œ¤SuêhÛΕs–Oh!1ùz$Ùñ¡Q1Ññ˜u¨ÉÇgµ\ñi5¿:G+}x]´«„³ĐzUçĂ/d́5"á̉êŸâ€đ̣…‘OơÜ—êCèPÛDI¼±*J̣Çéy"ÚLƒÖ‡Ÿ•³ø^Yô$ ÂöA%NÂlcR¶ïÓ‹(5Ü£¨ÜœÿVđàøóÈonÓˆ¡F(»“™đ_Z÷U°øAÁ|f¸*ö}wƒ.4ÚñôbÉ‘/–éâVëGNI†‘ Bü ' Nl9Ó¬¢̣–·́#oâcØ}™[đ̣%U²´J—Éb̉ÎIoνç#x¦%•ÓD/ùCöNRÇ­i鄯¦^eCi¾v‰à9mñ×8ö±tˆa C^seó´‚}#ÂF̉YÓÇBp1Ú ̣₫²Ö ô-Ư\@ "X8ª—YL¦²ˆÛ5ÓÅd‘e>ư\rsZ>X''o´ª?ªÓGÖÆ0đ`8´hº+½“ö̃!ẂÚ¯ëÇ =]¯zˆêÈ8ܾ#c;›Q˜€åË{öP2(}>¢+́&>«…m™ÀWºû…&ûL̉Èư²b8F}~ ØÉ£́·}s ̃‹£ )„•GềG’I+rƘ‡X ÑeœAÁ©{S§´Ní\Ïn¶„Q1|}2ê§Ơ2¸R¡²ªåGçr°g± \P%;1!Œ,áưừ³£Ia^±FaJă±ÏẒ̉°4Ơ«¸ÅJs?ä1a‹?¸©Ăi¾eKÇWG)ª‚8ÁÖÇ䤨Ú%Åq›ø Ör@UÁÇøGhÄÏ-ĂiÎ$öyˆp`ÍOb Ë§C£Y"ÿ1¿d^ŸEÔ6&ùE=³“h­E³Ë|†G‰1ïÀ/m‚Ë%nˆr_"J5ë+7@ë0m·¥ôˆI?yÚTă"́g£A´ϺŸR ̀ß\2w°ük&T—í¿2iÂP™Óp`•̣êVX dk'8I¶‘&6yxjf~Y€›dÔư0÷,«\·ÇO!ÓăFÈ«ÈVÙo¿Vº®¿Đ´¨ï[móÔ“@Å’^Èíđ\®;Ø“ó&¯vóù´—ÑÛVxXÉ\ÉFépå̀®̀ë̉/›âÖvMg':ăëÚq;²˪ àM6ª£G̣ Ñ…ÁÓÆå>m“8ïÖvWaûâ˜wb¶Æv; Ø A‹Q_ ÆîvúNÚ†ûƒ/zæ*p<‡Á¡ă "O]Ñ“³2‘€¡`^™ùgsæ’PШP ¯r/Z•ærÂÄ‘Øa¥ÿp„Wf%AuN’mœyụ̂ự‡nE€€ Î Ö£© ©ọ̈Xô1O‹|˜r-ôX"“ƬiƯf%8́j7Ưë§ư¬ªM<Ê@鋳€Bé‡L‘›b Ú¦RÀ/zM¨ê_h—·(ƠhêÖ%¬s’”»Q ë": ~̣R5ób¹ă…——×&)"¯—e6«µ'Ôà®GiÙtŸºwn§.øxö%o…bèç ơd§P,^`ê(#&’‹ÜÆz·†K£à5©ï寇wE£ Íđq`*ÍViàƠâkÅ%CüBq€é̉.â˜öBæÓ©]ÎGụ̈-‘D‹rv%¶̣K·.WB0'Üf:Ç­€C¹º1ĐS#ÎièJô<"‰GT;£'×(äA³=]ÖYÿqưí •è̓c«}½±4;¬́8Ry²˜:%im2v»yêU ç]¬̉üñ"p€Ó§‡é**bq@̃‡BÍ‘ëÁ#È},ÂÍm„Â2|_€\]6«:¤8€(â*$™œ³̃2 ±Ư«aí,`ăj¼6Á=è];đK·Í€Âë|ª¤N’̉“P+ă¦YóQ£MơÑR]$êL#Ÿnl:|@̀'±ơF̣æù (`&ç̉ ;¡Ù°G̀Ô7¼m,k<\‘vCß!8å:ó7C“m­£snÉó̀au¾è…*ym8b§ë:ôkoßå±ósxTc[üI©ơ=3X¸»¬M/¬̀çVđzW:ƒ—}Z]æ9Đ:]¼=~ä œ½ƒ…\µ3đ́?¿1Úy2œ5$ÇIºeïA{DÜ@—Z”ÔÏ`¢Áj¾i¾L=ï¹rĐ÷BÂạ̀<+l BFƠSÎTù,5~̀¤…]Ÿăz Øẹ~ü!Z¨Åá?3¬‰ƯIê&’ü›Àz`JM_Xu2 (ª²ÍZ‰Û ¯¼IP¨üàê{đ`W ŒƠ_–éÇæ~‡l‡.’à:Qỵ̀â`ÄüÂIœªG·„ÀMxéÇynp ÷àÂhüŒyM"´Båœ2ÄOŒ›^üÜ’̀b¨Œøe]u‘çh(S~aœ¡úƠÊsøM >ùœµ1OĐ+„¼íỶ˾×6™°ù…½c7KÛ®ƒ_rĂŹ·›&Ẹ“9Ö‚qR̉ßÅ΄U5OGÚç`L˜+RçRă°fáñz~èˆdÁ›às1t<âSè¬j=0#?öDëÏ£›>‡ÔÍbTNß#]N™?„̣Ÿ oԱʱ÷éw@¶ÏÛAèGqo`²w—§lƯñ{4º›î>«5†æR»¿8;¬~nFßS­@Ï{‡Î¢heÍ·¦»æ’Ú„$¶7HÓ¸àU^ Áô}7_aN[Ÿ€ÊÊr\Çg‹-—ŸË`¹z…(±qsí÷R¿~?ù‰P₫₫ÉúÊn‚Ö%¤%°Yíjÿ;ơ— ítÎX_Ô±ưA81÷CTƠ³4ªåk}÷̉Åzmđt8§¯„QœÚ>i´H—£̀à‡ª¥z»;‚èÖüܼ2ïư¾-¬Í_̉ØZ¨Ó\ăê¾mßo º TΨ /!VÄ+\¤ụ́¤ÎäúÆMß –jmqöÀ_öͧ—NW~͆t‡ö:öƯ¸Đ`’>lä¿Æ—b#k̉ÄƠ×<ßpSơG„ ´ẰÉWœ`PDï?{ª6‚[­${ÜB©+ÂéôäH eÚBNVÈơŸ¾íÏ_@Û(ÙV}Ak€>[.s¶£÷đë&dŸĂu.âíuWHÿ‘‰s(«eÄúñ6̉äFƯđ¼Hå íŨ­ß)<˜ßBlé[ Á¸§—X³»̣Đ3“2xÑçS@öRƒbZưHFC<ûú }ÆX:́_ÚI:néî•€Gäåw„è!z½(j́9Ñûµ±%•¯f;‘ Ăº+>¡`'óMöX•å²-eGƈç‡çªf§s₫p¸©X5¬–Ô#z†®érfœU» ›û …Ư • ¬ËOV±ø±ÊVSwUĂÁKÑ—CpÂ\X{™c'‘²›çeëç|c<ó`}ƯknaäçđªAÄàÛjzdÇ$‘Áîø±ăđ¦Cv…Oe.°—Û ” O=‡¦â²Âè$F¡î‘¸Éª¦›•Ï6«”û˜øèá*¾ß4Ư>‘æ_ÇƯ=ÙéơqÓIs¸iëI¹b¬Ô¶ñ©“ơ§\n|UÀĂíZBo:g¿L_¥]…î¹đ̉Éü­ÎùÍNbtUà¥úEÙRç:ˆæâSîè\ĐYB¯¼U-Q%¤̉.ik”Ơq¿b¹¿›%äèñ|lè>a¦#óMMù®@%D}…³¸|¸ØÔL']×—:'Ơ4Ăsë;m´Qiơ—Û¼̃n‚|Ñ™Ơ”[V¼(*¸ó©P§!́T‡d#ç×êoµ …S$®₫0‡œqJ̣V‡-b÷z2„·3öà¬À:ÑĂnÏΑø8*¬̃âçY¾UÓá¡û×iAc¡€Zé8Å`v{ĵë-E™’ó»‚Ûº×ư(§ä™i1Èp̃~nbë¦WV¡P\µÔ§ôÊEÚûp̉MO‡AuŸÄ¡dÚ)ZuŒá°‡ªUûøf|%xL>̃•›˜$ă5Ï¥¶›Êơ3÷% w E¦­YôềŸ×ªbÊ÷ig$Ë$¾-âm{ñ‰Rm¤M´lhô ¡œys©”[yâ¶ÉWvx¢U$·ßFEB€µeA`ư½‡¬©D̃đ²|É50¥“€J$AH÷˜ú'̉¬¼è~D$ùQ‘›Ô¾ª»…₫dă·m6¤ö<&ÖåoaÎ44ú%+n-oK“Ö"3X°TznÔă¸½I}•ư„ßb˜³“LÖ²Û0uơj©@̉MxK›yåZŒ!ç†èq~¶£O÷æÖ#®Í¡Çiư4 ®1HF«P¨3ÓØ?˜lPµFkX/ô¼“Y¨! Ô’uyE#7+.¶„Ú½2u†¯ª:fR4‡+ÓMƒQ`Z|º~̣w˜́½éí$‰¼m• ‰Ơ)™Iàߦ Ă­0$Q‹’.¬ƒ‹wƯÀ¤C‹—ºă/ZQœüœÔ>éí>“Ơ|‰c¹LZKÚÏẻ¶ ·ç0̣øq\>¸ñÿR€!0˜¨Búy¿¦ø°"‚U¹¨|1)éùơï# ŒT×_ïÑ™¨­T*^Ă6±–<‚nÛø7äqê'¨1¯¥¼/¸ú“`;Y~h‚ÈRÓGí&=K bX¢çks–$‡Îñ“çÛA ‰¸µaăU:èÜ"œ ²:̣I¶âw’ZY39·Û9|-ø;.D8L Ê„ÖÚJƯí€äœLÁŒ·vÜôøW³27c=AoĂ·g´‘A ç}É»±¥™L¯ώV~‡o³¼ç~8“ö&úø_ÛHV"o·~`Y) ̃o9½}è³¼`ÓÜëTÁùđ$xư*ƒll†<¨KăeØ̣CÍ ¼wƠïö µÍ‡,˜à¬ñpPà'¬S¡º£₫OSü¹…0ÏÖ-11åS‹‰—ùBΩc[ Ö¯|z?¥Yô& |7±Q̣ñ ê+G…tÇbÈwsÙ£úV¸nk¬ßÇrr/¦^¥\$„å¼±ªZSÇR Œ—»3ŸJ¹“CrÎ~J9Ó{eÉA‡LA;êtĐlB‹z;k©°÷Œ°Vûxçơ€´ât‚¿Ưmœ-¿ç?Å—Êàç"æ1Ê™ŒGă-’v’#NsHYŸ¦¾6+vÛ Amé…rY°6/|0¦Ê EƯ‰‘ß¡¬êûÈp’¤ÓơúîḍV$S8^±›µ”0ƯBA’C½IO¦¬Á æÏí T«ưÆÛU­3. ‘H'ư-ßûסÀ<Ÿ¥I9ø]…̀ƠÛIƠSNØëkkqSI˜,ªÈ Ueår 0ßßxŒröñ§ÿ¾cÇŒH*€?²Êùh‹1í'3jF´+Ê'Ma¶₫o,if–¯ê±µÎè;Ô~Y›sÅâ)‹‡±àyÏ̉æ…¬@·zs@Ó M©lÔ5¹íZ9z‡-†ca­cúÀ~SW”g¨}GôÍëï₫rÛË^*jAw»ˆäzsȈ–¾‘ f®ăUÅ·(ËN ơÜkÍÓƯ3ª"µÔª¯¯3“~U«XÇA•₫@L95€dür̃ªƒÇư%ç·…ªŒÅ¯bËỹ4{ _M¬4Ë×lvÓƠVÖư?4Í8NjË bƠ›Û[¶µÁ¸¢Ûa¯Ê¼é(œÁSV¾@D¤ LÚŒçcçµ›G̃jđj c’ @kR‰_GWZk1.¦}ËÑ««^•mU‰ú®ùUxKXøifd½ »kÇ; †h@]̉-5ZF¬²ÎÀi‡P²MJ”Í<ù4·̉áÇ/&¬1«QƠ8‘¬T_Rë0øÔÖWB©D]!â¸M2Ós1!9[³ÁḾ¦^;`â ±'"¯ÇÓq§M¿nFÊb„ü(Ç4r Ç^̃@½•‚ K¸îß¡‘ưƘé3Ơ;F‡4PéÄ(Jñeµáä]Ơ‹Eå'-ݬHÈ¿)ưv Çr×` ÎæÎ)¸¿Ë1w9ê;ö»Ö'Ă]Så wqWq×ûIȈ˜–p©->ơkĽ/²ÚñV%JåIWÖ¨o/²xi©é&Üâ–—²ÇaàÁ̉³ ^¤™đ¤“‘%ËP¾1;ç>뻨GïùPH$Hï˜̀ö̃4°#Ät;-SñŒñ+ÈàkPö§/öz\Ç‚\Ïcßâ‚vXoØèŒzgDCev•q„«LR#Bx̉蟈Ăxư‡K¯Ük¢ăØXă‘ ^ƹƯÎ)H|;́ÅdÑ·9%nCÙ«»p@#=^Ơ-:Œ¦µ4»ÍZ̀Mâ0_†Oy&)3n¢:A;êɴΙ7lđ>èŸå=̀ÏTÖgÛ J(Kµ¬24’YÍ¢…øäIÙ%ÙÎGeº++ùÛlƒófvlr¸® Ä…µ „Øe„y”§1p¾æ!7Ă} 9Ä]úÀº³Wcµe•­è÷fY@ƒ’o/î™T|Y„̣e%iQ^F<½˜Çæä¼„ó"¢Åm!®Fï¿_¶1[£áÎEmu`1‡Å{G§‰$ V̀oøöbÛ¿À́SVxÈÁÏôÉç XËHxø¶Ê˜̀=̃c3‚̣Èè]Úv¼k3ñçr:n·™&Èq‚¡©ûƯ®ô‚géÍ#KXÛ®´¨1¨ Ô!³i}(,­Y+₫£Ü„¬u0nƯ?¬æƯ“+Đó́Ăr.1}‹ 4O‚c̣DÔ*8Cd÷Í©@BèưËå÷i|»Çe8“ pö₫ơùbraΛj}™́§0v#ÎOóươâ2°áÂx†¯Ö¬-Âpû"̣$á»I¾ĂRhøÀI0ú«/€™Ö³Á×f%Sà\‚Üy±ă§â¬)¯¸}£—~Êk.đ'†́¶ă¢"›Mø~Ô(^M¾TÙ9“®¼ 4Øj5z·{?Xf¾ÿ‚¼ŸøàílÇg‘l9R'3c+§8(¬IúH ÷"ªň×"7¤ˆ¸ÿGmèÂ8\_Ÿ™âØŒï WBnb’àw˜è:ÄI—>]'Ơ•V´™`–¿uˆnî{Ö?³o­çÙÎç ]¾üĐ_®x@v¯s€6Âuù+ú¢đ„M+K"l«ëÆ"¸.iulÆ©¾7æĐă³SU1˜¦½3¯¦q‚¤°Äö å›Ü[}?ŒJ9ÇLÖºƯ,̉Ú'¹GBü&Ÿ›³lĂˆ«V‰$H™±! ÿ[24'ÂP~J¨œèüødÙ¶=•JK·¢.„¥ØDỎuøD̉µ<6̀ö ÷ÿ½›¿G+—&Dà` ízQÏN:–•̣Ê­CS~ú$|3p"¬&a__ơ‹[儸|#ñp(¨ÿ³[ ©éơ€¸ö*ÉéÛr8©ØûÜđ’LŒ„ÀĂÏ vú́"¨§,™vû;œ²ơ·Iw¯AeQĐP®È¸‰Ñ¸©'D NL¼*V<„Ÿî<¬¸Ôyë̀˜&>ŸOw"B©ëwơ÷ïŸÙ¦s5~áñy àÈo‹ăUó°Â¢ç ƠmY-³C ߤå{x°• dâOœü€ÓnEúÆ> ÷Sơơ\cå NÁ½ßƯ•‰SbÓhÜ((#¶±#(X àđia7 œAÚóUĐŒÑø·9.6å ñå©ơ{q¢ômMñá Á»Œ¾»4”¦ë3ơ~/²k,«÷Qị́–ÙÉί6¯ñ¿é¸ŸMØû0¾$G” qèóHÁ‘ Z‡d7ôæ–‡ ’);¹ (ă”¹¤3̣ơˆÚ,sº\ơGS~cèbmv^oRđP˜Óá<"MÀ Ù\'R8o$dç&?¦̉í¡̃S½bÜbx…•³ybb+H²ûï~¶"a|Ăjæ´hgb-ÉÜ@çmèHéỤzêí74›`Ü}[:Aq©œO›ÆhœXÜ"c±è‘b¼h›—5¡¦LÏóœ 0ô<í1¡‘£́®µç³8'#^„n蛘¯áC'›OÙ­!œa.-p‰ËđÛ 3QY(~ñÂ2®₫Ú·°`‘ü£Tp÷êØ»©œbÏ^p1⹦lƯù•̣;s!P›œäk¤–~dĐ"ƯĂ ÇG¤»Ñ’î̉ÏƯ*Ü£ƒ,í̀°2¤›‚ËŸ+Đ“fÁµH5Æü< Öæ™é%Äï$ŒN¢dúuíh8¡¾~qNјB°Û$wñP ?t›#éµtO¦3ÚÇ<Ÿ¾eSc7ª¦. q4g‰ÎµÄmYÁÉ |<½EøâFåµ̣ñF‡ƠÙ̃̉ÊÏ»›AÅ›g¥₫KYƠëV‘÷I6~PM"­¹÷-ư¯n¢[¢pÜ:‰;VB<:„!¾~A=…¡Ơ·€_–•¢û¹iÀ`‹ôdÖEë‡Ǘ¤§X ѾPÂkQƠVø³/‡đt1^*̉r¹Œ)+L°eÅ ÇO¾ú£¯)6ÜOn™½†µH®ŸÏ$LöÄ€øûI h̉Vª¬đ~1ÏäĐ>nơèËáÇyăÿå¦rô*ñ/¬aÏvÑè³4"ßZ•¢”BơF́×RïDáÜö™F$ÙW> X$MBgˆ-Vï"ƠÙY³}ccTe}a7Q#€ư%ÿúH¬kfaJ,7O 3nÁHé èB[Ï€₫Â'û|GZ(>Uk-͵y¸o´—â–µ8?./ư?¨Ÿp ĂÆ áCØ̃ÙM!ÛÙˆ-ئcB́[xèÁ—ÖñB3^øæ¹¦dÄ‚ØØ;ß[’₫2ƒ&îÏOZÑ1°Öl@2©Œe⻘<W1"/ƬcÈ71ôÿÛ¨¬íÉ`+^£́Hí=&ûUj7+\¢¦óíåE©Á]15™NÅœµt_ƒ‡¿gI|<̀„:óơËË̀ơùÊÚ2XÛa]aº‘c™¸èHN—bÏX¸ñ"W;‡"SĂYÿxVG’tc¥¥äí¶zÙ ²–[‡•íäü:VÎÉ]¬É4ñ±åLJ8Â"Æ#!Wɕ֘Ày:^[»di:ĐÍ cú:Ûà±±‹md vK„˜ĂYHwyM«@ÚKù;\ă$FÍQk±Ôæ¯Z¯¼ÅL’̀ÑË€‘´zö$æ!r¬Œ÷Ưư5¶â˜k‚ḍ̣*ÖĐz"ïŒÄ¯Ơ¨’G"W?‘ƒkBưj`¹!Uk>•”ºc5ɤR¢Q2¤ŒrSÔRØ©b=ª¢×A¼7¥@ƒĂbO‡Âøê°éFUPÁºÈx°¦©,n×ç¬T^ÛÂk¯ƒF½¡äbrVê$só*…íybÚ°1)¹́JM€8X0¡*äÀ¤µ/Ù7 3`Q`u©#§°úhº--ª*^̉O±´Èes{5„©5ĂOŒTäBÓ°R5j«süaToñMw‹”ÑûfPd»™ÚÔO)Óé'I9 ÎO–%?Í̀ù’è[-=É́ÅmgZ…¡ƒµb}™ÉvدΧzDÔA¿¥¼u0ÅèŒÍhÄC^ÅÁ³¢#N}b´ N»Å.0bc#ÎJP{4©;FB\£ñ¾6WTéG0ÍJl¹~Fï¦#)·a‚íè²F>®¥†ŒçηÄMgfÜFÙ¬‚m+br̉j·B=ăGls·ơEØjđæ̃ûwGèîÉ‘̣½.ª |,_$¬P§A/̃®:!ÜøDïrê¹hQdnäu¹Yÿ»ƒ§Hfxv§µ=!Úgu´{X̀‚Ñă»EÔÁO±÷ặ†SZMơ?V!Yz<8M¯äP+—=óó Å¥£µ1Jb°ªWØ ¿³ïµJÁ™ØàV°ôgƒ¯ĂƯ`»g™†Ûä—cà lº‹nÏÚd´Ïv^؈U•Aqf_yå7¸µṢ¶Nl'qÙí,ó.äq(áo—̣63±¬Äx¥IP_{*ÅÔ¡ F§XĨ…‹ÍB"¬ng†́UËKÜơpÓQ?˯S£²wøEu`ɘỰ­˜̉®̃zkG5Ÿf[ÜxÎçÏ/×N~ó°›́Kçª"¿²kp¢^+·Üñˆdơéb"%ñ†ùtĨÆI±É˜½.Wàèùo½B›(óƠ^ËTdÚ¨}ËlŸkÔc¡Đˆ¦T‰Û{u @păS7œ›‚9×§¼Ê…¸»¹ø½̣ûœA-Æ£À—˜ŸṣDôÑ÷è¨"Y6öSȨ—zEú¥z,‡[±ßÑ]:gíÛ™ª̀ ”'ơ‚Ǹ®₫G$)„3_u’ ¡_nÚ)i®—)UZḶèSăy"±G½Eæ¼1]–cö¨Ÿåó£Éœ—©đÅikU>¤sog£&ơ¼ë%W.+‚‹Ø$ÖƯ ÏuØä¶BÎIA¿-̣†,̉4¾ŒŸµúF{kN\û*Ѹ©â5Ăr¦Ø‡dö ơZzÔ2X:ë’ÖŸ±Ï³@ëw©…dô‡¦ÙƯ„-£±ë¶Lc¿ä{”:©4Ñëfg_ĐÈ[ûĂ „g ÊY'% :†P¿èú }7³„íŒ̀z;ứ×t%Ẳ3çô’2,6Ë_wO¦i38áÁƯ04K3¬àvÇaø™a.qÔ::V¹¼­,%ơ:³ôĂ.#³W»÷f®C¯T¼/d?!™[{÷»B„ÛL9ïùÁôJˆÚª¢"‹.¢8hpâĂ£^ß w3üơTÓ¡dV₫Ü-<‘†²(ilư1‹Ù¦ÍWđ̉ô:JÇtæ…Îu‚MÄ´½ÿä£ EÓ²L\€/&ÇÂŒ1f§5ÉÂù½ïU‚Z‰Qà´a-wEhSá—Á!Oˆ÷­Áé×,.̀Óøy7­Æ—£àîȸ}¡q¿Tơ{ônTmÂP”¨:̀÷û^OHFê‹‚ơWỊ́MC ejs0æáx'âøªk™agÖ˜Îú|Ú“€P>Ö¸¥åL̀¤+Ö×]l£ÍD8B}̃ô!Egy¨£W½®“Ø"ë NqĂJå§¼1‡ØĐg̃pçºøêåaP9ù•ôiˆ!÷†Vk%ÚDûE¸&±É#ƠsGŒÛ{½)vjñ_V­, æÀ …*”¥j l²± N>ǽÉs‚;&¢{b¥?¬MZL=ô¥m¨^v·mºÛ²ùẴmyá2:o²§ÔJ‹#đP\ Yøq8Æïë'g…5=¤ÔJªi1?_F₫RÑñ¤¼²÷EäÎl94L|‘¢̀ ùăI=(³¬YtÄüY‚„”|ß_(ei®˜$kLj,9ni{B.”¯đ-8>°y‚¢G65£¼±p7 ¹€ƒ‘]6öîÜÅ£«Süª³G+¿·ª M ¡NÆT$m¶Ê$́f–u}ûø“Ê„çmSB[<ÑWñD́!³O2¤á^ùlM¢+ÆmZ¡£<¥áz ]Àäw?«Dl/á¸aÓbë½ ̃°*$Øep³̣¼­”l‚Éw×Àø}6 »H)LóºvûB*oOê ó›r'Ĺ«*­ú·\ÈO´kû‚œyï?R—7ü!p)kª°³s‹h2Øk¼![ü©÷#‚Å<ûư”ÅS Ăé§y4¿œB»]=•×ׂA˲7Y_]ˆ“‡]¨«Çq„4îâ&Ú±…~;‹ÛçBûëK”ç·O˜º–nN¡́k…ê.ü₫M|¢ kÂjfd4å å>œTöSª(¿±£étƒ¬5ªüU°sJ{QÉ|çtCáRÙ¿ehy>`Ư}Wª̣¾/“ñÀđÔ³OÏÚ4`Ø:Øû­ÊU®pm£0ˆ×Ç {CÀv )rơ•|{ú¾·=32üơ³¸ .Ơ)"Çư q" H-Xµ%÷ˆ›)è́MèûJo_NËÁ6øå!–0;Ö#™é²¾ëÆ­îGs¶£x̃lÏVë ¯PÎ*$ÛŒq]¸oÍu Gù'*ô¯J¶mj}pÊ~M=³÷xŸ‘¹ âX‹WK÷̣̣#j$Ơœeܱ{ü[.M%ø"ôạ́—j³(h«B¹s¨]©Ä·´i³üˆE) 8ˆTä²³™nö®¨ !©)qqÉ‘éYZá¥1ÅñÚ|u&̀¿ÓàÑư*OK${ £jj^é#ÀS˜öÿ†r‰¤*a}{º‰»Ơ·.¦cô%CʬççÈó 2­G‰c¿€>¿́2< S/k̉Û³¾wÆM‚pÈ Î5$Œơ@¸o.rK½ÁñL–e r₫r%ÜSÓ>.*PPZº Ô¡<'¡’B‚@'n½6¤%Ï‹@IHsĐ¡|¤=&‰Øn´¾™eî\1ʽykÔN”̉/́„¡ÉIëw½j7ƠWâíhé±îl¾ »“Lш‚;4êgtÓ¾©¸{’`—X‘†´%½2Wñđ?å笌ăzx×|(‘¹^" g3´C(Û  Øº$Â.é™üóç``Á¡ØTĐYCס†ưX$D`K¤c &căƒ˜??caÖ]|_$ă™w°^=¬+ ̣̀C¾èS>û²søÑÖBƯjOKÔnKøºQ¨iô±×?¡‘Ú„ ×|Œ›8_ß±Ÿ‹mñÄ ~÷4Ä!øø+Ê`ïâIgcˆ\o…Z !"ï^Å1ö:ÿ…¦TuÚO˜/ß¡M/¹Ô¥àh~¯ÁI„Lî4_^º›È$µ…x?[rÚ[hj©5ÖƠ—¶&ñ¾­Ö/Ø™̣h¶Xḉ–ø¢t{¾ñµd‡E ‚0̀1½”CøßĐ>µNơîB¡‘•ç›°́Ó7dIb6.a†!…T›¸Q™̣Ê<Ưï5w|»X•uÔơ’µ€:Îr«$ïRF«<°ụˆ nÂÓ jÿưXû¸¥*´êiœŒÔ.yt Đ¡:‚Z©/ôÚa¯få7ºô+ÛZN«ßHLƠ¨†]upó¥ñhDô®™Ÿ+8Uwû”‡³¶—)Z?N.ƒ°OÂz¤¥qƯ C©Ácö ø´a¢9'"Ñ₫Ü3yÛ_Ö 6÷ Û̉ˆ~[ümµª©P¢—rÖpŒẫÀˆ—±ˆT¥¿áØs£ 0Ú̃yMü8 ;·K#¸¤¦-ư‡đ’˜„$ë:å»G¼æawe³ÊÈåq¦ñéSDHà‰ƯBëÛæyĂÑÂ)³ C·“?¿̉·¨Oª@e=Ám>Tûî×xóI2mŒÑ£mE£^•̉RÿRªß×P%Ó´ƯQ·~ă°ÁI¾ˆdN²»>9vÑ­!¹¼×É—™±W̃0¬ŸR»?H\ŒF<¤„ÿfyKØÉë­ïXñ«e3·+,.›D39¡ô[†6çù\6Î2ÜÂđ»J ‘µ°|\E₫ÍÈñ©$±®„Ηÿ*?» pj%UV'Đ•²².-çj?â<7„n¾l`%ÿ\g ®á ÖŒ¡fQ-àm®HfícÅhog…æÁ—Ơ³Ó§2Î9§ïO‡ÙN×5̃ơ7E=„Æ$]ö1}@ ®0«¯½çùYÁ8•M6ñĐ_§|²ßj’3¶Ñơ„¹Mú®†À›g8ëđo†+¾z+"nô16g°ôáÂS „ïܶ—é®âßH#øfVø…Ëfe»†ĂWÙ¯†ÜÏÀÆ´dZ$UơEiCÛ¾dÙM³"p5©ï{BíåjÀYI#Nt{]áç›'?gÏ»U'3 ­F–àUاp ÎëU®7'!›'¡°»ÆƯßư¼:’¿øM3r”H±´Â|b%R₫®ŒÏUơ;xçF ÿ &#ƽ:ă ªí°íkU#sÑŸ«z»N=ÇỒFÅơ¯nƒhYŸœoµ{‚Åp'ưlnSÜRôfQ¢¤tW¡ÇØ>E4¢ „¸¼¯<(Yà›7́ĐæGÏf@đth[›̣¼…ƒÏ¥Y[ơ f₫«Ê¥ao8è+%đâ[E†ldHư§ºöjÀ¼1YLd¡µÅÍo”Pâ!œt‰ë…•B<3H÷fOZ÷̀Ú̃•k­q³Æ% @Ư•º‘½²·0§« m¤8•ÏÙĐF<#`fü‚r̃æZ¦&‰txœÊmeÔIrÏ[ÄótœăX”Æ¿ưwÔÛA¶’Ù(ª…_]®Ă¤‡Û7ú2¾ôâ#fœº.«̀ k2~…”}÷¥zù«eƠW^ó0pª ̀©ôaHêÛƯ _“²¹0ê/ïB?F*₫L“’D'`ˆ2Ÿ=.¢—P4¸đ Éû¢2²Æ¡ËgE]3qĐKôÛœ¹ú¸<×~WpJ¸â¤È\½ùIdÂÛ ö2©́¼œ¯¯Ñ#Œ€Y;xzøƒ¢¨è .”ù¸do¶@DoîzEX¥I{ÛjÁ¼ëh¶3Pb/Ê)c2í‹v*WM‘„´©ù¦Z}›Â³”rÉ©Ñ-zXñ…$ ö` 0ư£ŸU: C…Ñêá”›’n®¹$Dˆ´¯»S“FYÄ&­Ư&°uNœÆ2~ơ6ưDˆ·rk{¾Ơ®XQC•ˆJŲ«Ó6Ơn&¯“̃uïô]“®¸ *ôöG8₫¶Á5•\=‡>æÏ#/èVÄ©9@ÿ̃…}>–‘AgNüƯėΖRjfĂZˆ/ˆø÷åS»Áˆ딡¤S5ú~Ă÷åÑôăọ̈Ă âÔ£̣„Ú¦Ôö!ä S]PN—kâTëQSRNKè6ûSê:5lÚ7¬©÷\Yê—X®] eŸF Ê×÷9¢TfMó·kLØ—®ï“ÅωüŸnrT#=4̃A"̃}]0NÏd:}\Lê„IΦ;­úFRÂA༅笟dz„CàSZ¹Ơ4 ¨J§YoxiVÎa|Û«E’#½i3±?懜³´!èÿNh`Üq…¯=°xñBwlñ-¤ü/ËW¦mPĐ‰Å·Gµ)üùêx‰+’tXØ`úûÍB§“µ¸µ4ºGÛµTëÀú£Ó¢L>³N*Ä¢ +ûÙë– |OưƠ^̉– „бnÏæé†&k,î^›wθI0uÚÆêësˆ’±Kh¶ôà¥÷y2;øêˆ̣¥FzÏMÿøæÍ˜́d÷˜,"¦ÇO,-yÆa†tÄ/XwȲ¾˜‚YD³=^¯¹ô¨ªaØÏƠÜZ±Úß¾²-¯RÇCŒƯvtX½ C¹”œöMÑé°Ä®© SÎï»<8Œk9Ƶ–˜M#ŒQ=9W€ö6‘ÜA)™‘E ô ă€à|Ûơä#ƠÔб™²\‘”Ê»–è·xƒ³µz’*=¶x]bƯûGEd1f¾sØm×b»f)y‡¸²˜#¡xI®^rbÑ•-KÓ-Û7Œü3è(ySÍíươX¾{¹¸1w(ëåÑÏ»Ó/•³¶pÈ+„Ơ „£`ßÑËÀ“—ú q†A˜ét÷•“`µ\y‚}-Äh—dBqfI³X-¢â˜ ́1¶a>¦ăH«\%ôTÅĂø”0çÜ*é˜Ë&2̀ër³5¡f̉%qåA A½I„[i2 ǿNJkÓ’5l̃§?¹i™a°m•¥*¥D- ₫N5çLäË–sƠê&”Kú•w@~"Mágô£Uyú< o3]J‰ówæ9âR#wF cB¿ÿæÆ£”́Jºœư>4‰:ÇʶLª§ˆôeñ&Y˺^°9”˜¿q;¡U\|5ŒBÈ;Íz$\ùL c)Oo Nï´Taï(P&v§£#â¾³7!-ă¹ëUAŸA×RCƒeÚ j́‚Yä¤ÜíÔÊ q ¯Lƒ…‚4̃» ËVQPÑ´…ñ{è.v·fÔ‰ºh´÷H®óKưXrBEp&ê¯á^«ÑjÈe;]Á…¬+hº:ê–LØûÜÜÏ“™åa»s© _YÑéG€—“§çÀh%r ¦œÉByéDymT{b/Ùp¹~‘©-üƒ¦âG? Ot¬;X¤¯§Nâ›Ñ}áú€R'HÿëA7ưL%râ¯v•ÑĐôåißñ…#†Fă¬w,E¥ÇWư°Úµlăơ~6›|À"Ö€3F_™QÏ6́Y€~Ér­Úà‰öˆü-4eËv¼5OA™Æ*Gÿs-’êês8mÁ©zîl0rѲ•£lHÅo&ç¦í(¸Ö÷àvCªrÚÊma“W´±ª¼z‹²jn/ºÎtE'íMđá_“U:|ŸUgö:–§q‡¦OD‰ Ơ…÷}_œ|5m Û!{d) œÜxĐ”‹°î=¤<+Œ‡-î©́×qÉ!?WÎ2ÆjÄè–ÍSæ.¼'ƒse$B Ă¼đ|7s;‡™?ơF"›HäwË^⣻Å÷°à½^­Îæ̉‹O¯ûús|†ÊGô0Moɧ¼4fóăR -Äæø ‰ï÷̉3>=yL<[ç^©q ¿Fæ@í~Äœ=5cGº/'hKïé-<<$¥”ÚJ ÷GÂï"œéÍÜăá½|ö·W`ntNnäNξLéyéÝ "íଵ®‹¿„;ùa+À^ïóôú[gWP4øô[O:Îyî{ªu UIürCC‚/NÍ|‡UœƠÂM9xӀšXÇÛa ¨ßG«7¿*©ñƒÉérÿ•ă¬p\7ƒGîÉÛĂƒ°ÙË6eªT†Ó³•ÄÚ,ñL§ -3!™;¿xq´R®ï\Xö‡y­đL‡ä)ä„BøÁ]ŸQeá“9¹%ư—Ç“­‡‚'Q0óº¹á&₫m­éZ„Q7ØQ̉œ:̀«»º_†‹ Ă“!q $&Jô¾ORÄÊ ă8\¸»Eù —ö£Ek„¢^M%®èóèØUä7!KƠL¹FƒÈ‰µ9å ¶̃·wñƠ%o*wôÆ û“W êÉ?eŒëÎơé.{yÔÅ| oÔ¢×Kœ;‚ȦÂl̃ûºÀOÆKت́÷à׸ÙÓ?cr³hÍdô2[°ú]¤yƯ~?Öđø~È#~tN¡uÎÓ®mw_§6{\đt •Éy«:ÁчE¼×—K¸ê ÿ(—ßà˜¹®ÛÊwjé¾LUfc´^nÚ.ÇöÖpJk-/z}؇¸µèâÅNràĂúyQnSzÁêBæ({‚¤Ü'ܰna\un‘5…'%e´(&₫¸ơ„é1zP˜vC¿ß—¤û<́}ëAí‰%·*’ÎÏœĂ?De:K· £Ô¸ÏÜ*]±,f̉™ó nz§¨:]ưiYy{¹lz®Ó³£ci«Ÿcr„¬®3£ÚLs¶_éVˆ (̀‡JŒ£(Ê¡(¡Ù‘|èdA—´q¾3çC'1xpUXâÍÅ®÷èóæéßÊ >VgçpNüîô§'h)₫eÍƯGy~KÇƯÁÁ Å‡œ‰ø®Î 1íñAcmẒ¨á.¡5ÅUb*h¶u½Hu¦(¿ÿóICU¡4ÆÜÔÜ«o¥N¸!đ†9¤O1Pt¬–wl½…̀¥ùḿ=ÂU;úơÜ̃?L¼gX h#[™¶2/~FKxéP©¼;æŒ4óÿhoƯͶӵ·h†}˜àÁû|?~È`/cƠçƠö…/nü'ªÅbaÅÚqṭ̃ñeéS¹…å)ecá“è’D‰˜†Ú§"~áËw4ªWµ}5`65øÛå÷‚F¶©É̃}?â;ÉÑ…r‡¹Ø¯‰gX†0Á}é¿tKóáOṼ¨SjÂĐ •|f$3"ûM¶³µFŸî§ø9×s•íDæGè 4—Ƽ×Ç>'e›á’„¿7f7TGCÊWvG¢úP_¿Ûw\hp§ª])V"cXÇùÂK~-r¶M/4,zBq°6L{,œô…¯ŒF‹zŸ:âUtPªŸÑ9i\½0,uWó.D”Á&ºü€ Ư²J‚,Ûí²cEgë±Âø\cÆĐ˜¢‰&µfÎ.ó‘YúÜÎ*µ`>FÄ–²"ŸÂ¡O”»›*0—~₫–ăÅ‚!®v,uÀĂI\&'«Œ~Ø;‚ü«'Û “ÊrñÅZ lj2ăë,̃¸ŸFز–³¦¤;é(ă.cê³)5â½Đ¦A£|ZN¤₫ ¡Bdă·Ăâ øê½oÆ[V†pßPÔƠăeª́¥#¶?[0º&’®âîú Œ1×ow3n—ÖÔåÄ›h4aªtXÛ÷o«" 4zfªË™O•aƠ‘(©N }Bh̃Ë ̣1‰‚&äx‹z<¥±Üw$ç9<8‰#öâ V¾>Ge 0\ç•™ïØrR›~7]wbH“¾e(%×̣ n#**ÚßéH]ÁÂ;¹M·7,*¤@u_÷Y>Í›3CC1Á;œ}¢èJĂÜ₫Úưn¬ˆíxÿ½‰ơ×?‡wr§4iç>"¦]v‰Œ…(yÍßưđÑ}1¯r0!0Ë gWËhVY{Üó µŸ—E¬H5a~Ûp~<¢ÊÖ)<¯xüûî‹W₫>7̀]¬.Zè½+ Ó°{d,¼# ¯DÚ[ơê=T8ÜÿY‚‰–ç³H«1}ú¤ĂñÊq Bm j@°7¶ñ>©ï« ]í„ùr <-“« ¡•Sẩk1 tÓ¯€¯ u‚!8Ăˆƒ́C$#ñ[Üïx•\[ôØ}c/8Y ·;-¿>-óÀo¦je:‰ËvuÆù¬ÁN1÷H!đ] A•’}ófnÍ9”¦îÖ¥‰\È\V˜,æ‰-̃‹̉Eˆƒ,Fà̃ô©“wÜÀè¿Ó¤¥ÄÂÜ>´[c9ÍTw(~³÷ălƠ}s©÷épÆëÓĐ}㕨̀_œ—ªƯvKäà]Ü2vÀwê`*̃₫t„湓¯ê›cÁK²T-Ô«}Éä6"êi!e*ñ̀ä¡ÅÿéÀĐ‹ˆW"*oc#×́Ïk`iù̀i{ä[EƠI0ûMaÄ„îó<Åm$Q;ùZ‹à)·Æ©Ù‘ÿD |u+v¸}›â»é̀IÖ˜¬ƒR­¡ªWø̣•7Í5” E78z̃·ƠwÜÑ^Rïhf¾½nn¢–¢~ë"«ñÛAsPúf”â[m¦ûJè-Z¼,ܪ B²̃ư°%ḷè™¶G`*”p H6‰“ ù6 ¯Óz₫+g/̣H½ÔR´Ék%–WăẸX¶Nˆ SÏÑạ̀*́˜ă¤Ùr_ÁdoRùe˜OÀÔB²wáÁF·|˜PcÀ#T2̃3±\4íÍc¡Öå¸vJÈ År8é(¯ăn“¤¡y–è$ñ¢¬* $—£:ƯiŃŒ—„1µBó 4r BƯÙ˜V•²ùEb€:™a Œđ.ưU»Œ*Iµ{@bøÙ œM>à8l‚ åRÈ–‡j‡YÔƯ"ø6-™ï+KDó…+z«‚À`4´6 ¤wë&N«ßS –À&«ơh‡›ëà…¢›£YßÔ8¨ßcpŸ,TwS9thç[¿úxéGÔ,Ñô½œfWḿû SrO]ë-²ùnt0ùï1¸ ₫e<̀®ÑæËv\UÈ×ÔçĂÔ¯2Đ )d#Bٹɷ»¦¢ùS“#ÏK<¾k?¤¦̣6ÖÏơù¿J£ ÙmĂ™±ElÖy’hOÂa°’ ñmálc´§í¡ăº’÷oá Q¶ÏÜ¥Z†D©ơơ¼³̣¡~€±M+ÚôGñShkÆÇP„S¥.÷o·âaÓ`ÄèADg“ÙĐº±óL*ç̃BT4™Óc8̀xüøƠv#A „@TVµc5sØkˆ÷{:¿Bi‹¿ƠǛ ¼_âƒÂưƠ“a€|¯i0-)S«năy‘mmi'lÀDÇԷs^•CÈ3 •NÝèÔSy-ˆë_-hxäíɰêc˜4afàœ½ĂåPÛÖÜ~S8²Qí*¬¾&ö2µHUâŸvÚ 4ày ÀöjkpwF đùhÑÛRMA ¼ô£» ¦| ‹FĂ|¬|t5w)Â̓Tô6kéÈ*{ â”ú4á¿ü­-8f‹&7¯"Ä„ŒÚ50uñ¦îáÛ›2Ñiª̀äxOôUÊé¶ùQ–Xưê±&Y:’§\g»×¾ kzÊç¹1đ]çư#BëÛ¬Ỵ̈óiëNQ™¬gc*Ï̉Èœ*ám&<}Ÿ1c·ơ7=œ’æ²kÊ£vö¾ˆøçPîoú ÎöAa²$ÍǯÑSW™/’56Ơ_a¯º•¬{̉»>Ôn®îÓ7Ák?,L»T(,h¦GÓṼg¤ưîÛ‚¯”½ÔѼüÍÓtÚËÚ÷gN.+Ï+„¥Đ4"„E6˜mZ6®̉‡Fx̃ƯnaÖ:=—ïÜÔU‡,`iû)ö<=‘S§Nnêc Ú̃¥Á‰9’pDq€<ç‚´ËVĐÓÍÎĐ1óƠÎ×èqMÂu·}ËŸ₫)/…Ñ‹¿Đư¨9lS§Sö„êzŒ”d6Û¹ñ³§˜} a¼½Í'̃{¢Zv“Ém®Ôÿy,ÄI+:̀$ñ ¿n­/Ï̃˜LA`8ĂëhiÇWQF6cˆ3Öjaư£~rÔĂOybÓyœ>†:K%{jœÑç‘ÊZR¼óaÔüD¯¡¬¸€đƯ°œ1jüß&ºCÛẬ¹ê[î²ÂIÓơYá42‚ÇIëlœä+mÖ»F~ê›̣iØ&ĂR§wS4ç¿ưû8¥z‘C€<èF &“†È$Fˆæéô¶Uêd>Ä ®z#wgM¥¸Ea piùA•VÁ›–̀™…ơ3gCslBW–b¿°U«°É‘ütdàåô‚#ºçîD2ÎU•ÇIà•m@wZê{ÉÅ ¨['Æ®“JIÊCY¶ăñ·ê>tú,êÈÄ”#¢«{(_„`YR̉ñßÎ^å/R´›PW7ÄSLáöM1;9–’„ñ̀»+ÓûRÜë8±¡¿æpqÄ-Té[Í>*ƒ ̃\ª~h'̣½fÍOÛÙEdưà—¨©“?0È‘ö­QK₫Vß̃ ¿éï)»¸ÿNÔT¶wPßÛ1ô®̉öíæ ÁCæ.`ä®ü*D ÷!jÿXü«¯‡”2ATGƯ=n®ÁW½PƯ$c2"("¿j Ê'{̃2¿´c₫ơB»Ôˆ̃5…µVdÍg³ü₫|×,x©¾ ±ªÜ[™Nå{EºÚ’ê9É­ẫr¼)–ơhx6”G—›Ñ`ô{B–Í÷́%F=vư¡™7ưU.¯Ư,®w.©ea:v„F±œ¬+/3i‘ÆâN²æ¾Đçµ`ÏM;ítTpQIO§ˆñ.Ú9Ăúös;Áü-ơ@É~%ëüÚ"°ASe)eøm ©ñS§̣œa€ÜÎÆ<>^ߖΣN¨ø÷d²û¶ l!‹VnâôƠ¬M?Œö$íï?#ØŸs¨wèƠC¾Ü7Ỵ̈=ïy%»“áÆ’©ØnHăç) ]+$^EW |¢¤P̃ 7Ù¾ËÄOÙ$3]ß–>lX ±½bPÔđ"y–́âéËV÷ÿv_‘DoÉm[-øe5Bé± Ùí²¼#ÚOoØ”9e¦z=JBư—ƒü8ùªá›íĂ5œŸ…Ẹ̀´ö|øje¸~ÅB¥hCQë›GÊ=\»ø±Åàû¨ˆĐz|=v…×̃ñ»Å¨b²C©g;q&ú:yL8b{êåÆ7ñ ̀ÏüP"¯=¯ÄuđÄŒN èG25ÙƠÔÓ”XNüç’Ç2F’âF!ơm\ÁØËOê¸4oLˆÖ,i văwZÖ÷¶2)èXWœ-ä(Ó ”Ă ñnó‚[„;’\kˆĐ‹®@%Qç•‚aƒÔöây ª€v„¹ PƠđÓđVk=")Z÷–€T»{¬—% ¯`Y1ëQé™~ p²Z¦EÍcTTF½5fãư sxØ\H‚¨ÚaănKá[º;eqr¼èBRñ„˜qvØ•~T‰h̀t÷¾<È ¾F¬\rÄ—+Lï2¾ UiR×™x^à£|£ÛÀE.„́ø­°'&v]Y›rĂ2KæœEà’=©&V»ơñÛ¬×Ê“̃üÓ¼¡)c)+E=§|ʆ† £à+îB̀/ÖpṣLỸ_T™2ñĐ¡ä €©A˸Í3ºQ Hụ́œ5I-{ó0¿)U·LSeèÖ ÷¬3!#KN]‡‡úŸ„åùÁ³aĐŸđ6Ϥ¾ Î?/7ŸLD0ä£TǵZÚŒ@Iđ`µ Agä/›D(2;•½;˜Ü9bcA—?º~G¤aÖ̃ơå+Ư„00qæÚ]Đ¾A Ñjc€ê‹‚€P½T9Ô1.?0–5­Û"¶*›wº<ÂâA!åeº&è¡è‘W¸«>?È6íI)UĂO7ñ1uË–Ù·ŸÑqh#đX°$ºbOê[ˆơMTív"¸¨¢~¬x·©ö¸è ³¨©?ÿĂ´¨n9«g´©ÛltjFXûù5…³¸®œZ‘ÇăB%<½Ÿ{ RÔYtÛ\åy…ÿv²I©'.ÿ”Jœq£Ê]Ăä0öêü¼‚̀Ôe ä$È0đA×~Œ¨¿<›}ÿ[ pzœ¦¤ÁrhÙá©§đ‘âTơ¡ơ-¿ùu­ú¶.ŸzG–Ï̀º’½4È‚ I1©™]L,_ }̀LÀw¤QDˆ÷cÏ|¸ỈÜû́ÇG…ïQ-·T~̣ûön¹¥₫ïK8~äkêoÑ3…—S¸̃V%°3µø.Ïơ™Í<×ùü¬Èv?½[kÛÄ÷^¼xD€¸L™₫¼Á;î ·ñ¾9,Ç4ȵ%s,ƒÂëhºr±Pó` •ö₫Ûấ¼àçơ]è<ŒåbѤV-:"]±Ñ¡́(¥¼cµÀÄ–Æ£€“x¼¯A“‹½_áöÔB8'Sïư¸#ƒæ‡pWû²éđÚdÄjă}XGÚĂD¢26uÂ×â;+%̉H! °ÏÀäÚ%ÁîŒ/âírnbˆ¿(̃}!!¦öÿ† ¹Ç€ùÅ,ơB˽ÑKảÔÂ=»½øa!L¾6,}¦¥SJ/È"ôl‡*¹B¹×³­‰Jó}VæÛIq<è#Í»ïé‡̃|Az~€,ăGÁE˜ƒ¦Â[÷Z/åë•gó˜9=bè WŒ¯̃3?ùg¬ ̀JxÓê´QÔxN1}rÑruªe9lp\Ú/¨)œé³]³^Â÷¹iCh7í¨¢åµÆUæQw幓ik-oZĂ–~'N$¶1Eôv¾Y"Đ%²_èṽƠă)ŒƯñqÖƯX°Ë΀F©$m¦.…éÁfo÷Ä ĐsüúYó+²ÿÄ>aƯ0Óåë(_¾aº‚O?¯Ḍ`+ö !Ô8Ï̀ºè®«ÀªùI£–ËDö$¿oèûŸ ¦E^f>lj«Hâ·´ç™'kvÖ+‘‚ÿQ2˜ó¸FO¥+!aL±Ÿ́}‰gƠ6«èÀ‚Ă|ª“zT”W¤Ó ¦±@ùM)Ep(‹T‚<ƯG¯qJÚ¾B-‘ Ó›µ¤K½0§¹±ÚƯ¥àWd²6«ư~ưsrº¿¹̀gédt,&̉U7ó¦¡Y—M6–4yÈÀSơ­z=‹ÅéâTÀ…25r«Ñá»ü)B9ù0c…ƒWû)Ï3l\¨₫R-já(#0Ö̃è .zm₫>N¸#:¨©±~¦ŒD5(ü :]¥$”œ[L‘'—-R”êM’P₫2$#ưî–ka™₫6S-ßÜÜ‘Ê= ́G/sÍm†} ü,6²J2s(\̣ú/†Â·¨Á+^hh­rä$ƠÁÎÍêÔWqø"—ñĂ«Dç•ÛÖ>ê!‚:zsÚDT˜ë¬_‹dá_. r¹G=±s¦KRz„ÚÜ ^'*Z%"ÈÏͦ‘±CéÄép¢Q́Ÿ ™»4©5Öoov¿.đ]N÷¥¬|±7v†.Ộ !º.iîjXđQâO²˜"#»âWb‰8Ø/h •‰úIçë˜ÿ%&a{Qƒ̉!º´FzơÁNÿ›:•#VÖ¤V |̃ ̉Ô²zyÊ…Ø«pWÎ80ü¡LÅeBô º*#l½'&P[teµlĂßÙtÓ˜ƯGC’y CÅ£iÑ·F ƒ³R×'†ù]^¤í*¢(›½JhỄïô₫ÈUÜMˆ´·ï¨ÿj~¶³IưƯ’Á$J÷Ú‡sœí¯-¿Nm J¹3đN<Â^₫,; 5·Ñ?ƒ#7¶“¼n:üu j ­âưD°âº Yü!ù5C³ĐÆu¶Y»Üqú㬬BÑîî£ n猌?¿/œuªN~u=Àö§ïÄOæ+~>^íÀ1•½z.;˜;tzŸ‚Ñ1Å9}¥t¾,Ùwư<ç jXx]n”geËûø‡Zjѽ9®%çĐ9qĂ?C̃µ´—̀wä¸j>}:!‘ öpz¸ z$ú‰(1j©º Êạ̀ª·₫2¸UHkđè6^]k9R"ơơkVÿ/eƒ§₫VÛ—úØ(—‚:°'38’¥ºXYß¾ IÛ•KĂmªíQ_!ä~’N§#dÜ$àh.1ĐÔ‡hÜä q  F1¯ƒ0«»ù 8Åkâx9CÙ"ùU)H!l;Ù”Èoÿaê¾#öóÚcyó!’¼q܉è/lëáëƒAB¼úúoåq¤Iî@‘!d¢( ¡²÷Û± ^SĐ,À¤ç;ê{ä>í‘&ñ5&¡ÎùnZ=&•,çÊF¤äüS1](°̃X´j!v°4}ÅçAƒ₫q>l¨e[ï#̣¬ÅÏè#x„ªñ§̀"¼u²qRv÷Â?Ûë¤|snpçûÍœo‰¿Ía“(̀h£ƒrCÂ*C¤0§¾Ư،ˉè·ï…ô®­%ßÍæäÖ¦^<9…›‡WƠCÚù¹ˆ£°Wqa¥Ÿ5"»|ƨ̣=Ù<ªŸ²’̀‚¬D­÷µÿ³ù¡™ܵgÅ-ʪµ™æK5äÖJ²ÉÁǛƠ ‹·©ª‘#Óv#Ɉ¶m¯…ÄÏeÓó¼¸C´Ho5Ck>-F¯̣ïÛïeE~`ăcØhacß’C8¥v¸Ñg)‡ñ> VĐñí~pèDÇÔj”)ï¼”.á‰E‡†RØ]~¤3‹̃t*ÏÙƒ^Ơ/x &®àVÁ‰ 2Yd!µ6ÄøÄHM”ÜŸ{Ö Ë)—<œÆRó~nûH0ψl~™:¸–ÂÇô­T×Lh&À²›?Tá1Đ„È»n©Œ›zM|ëÆPÂM—Öú‚›m=§m8‹Ju€—€V­›@Ï"gv½ÄçqhÂÔ¨Đ1¢¼gÜàY;1 ÷f̀°Ëa‚„̣€­J›‰2Ó|½‰1̣A'üu Ơœ»ÄÔx¢°7‹Ÿm̃>Ëx{¦ĐGë·à¦0øáCz±p°J¶ƒÍHP0ưûä•ßÀ—é$+b̃Ö¸º1–ÙŒâ\9±óZ̀j »PrÂíµ»M'v}=ñÑ¢EUZMÑm#9ÚÓÄqvi ¯ṛÍ ù{2­|¨—ïäTô…g!:²ư%ñ˜Â…ăFóNd¤‘ÇDp$®±¢Ù\_¨KNN}ÜƠÔÏí´Øđ]Á ö’¦ 5bj‘0;̀]-á¨ü42ËÑ›‚’²È„iÔ ½ÔSNâL®,˜·fúq!ÏaJ×<ùg¬i¯­₫s;n¯À}A~Pœ¶ÜƠ°¿‰ºë QÍ1ø %™;÷ïåáwP‡̣ÙĐR•ŸÂáŸUóYaѪĐ-KÏđ œ8sNÏ“V¡»[[D¥1—rºk#¦gÇp¦̀Iœ–+KSç“?‘^VÏ&4B W¯b„ÑËütụ̀9/âÁ lµ¸¨”,û̉¤p¾âûZ”Đ!#C"§ÀºŸ®½ôæVWv̉ vÁD"¯äøƠRóóïÇÀÔΘK`R#TÔqƒ~®G\qTƯ¾˜ưÖÅh:ŸR›/_5ÜèÂLh¡ÛĐßqÊ_nT47Xq nIg1æÿ4c¤¶đB, ,»FÙơ0SnføÅ}²Ù˜r ¥ ™`O½̉MmbåÍVV6ù2© r>£^e¸ÄqN£²ú" Đ6[Ÿƒ[ø’’‡7óăá(´Ä{®—¼ ៼ wuÍpu"ZØÎ&S\R™5ä;îr`₫t­¸½₫w6½11„ \k;§ÄM̉ô LKĂókKs•>ă$Ăô° :§†nuOr₫« 6K4zTkó`̃—Ođü§AÓø9AâNIW¿Ñ —t½XS»·ÑsܱüŸ 9BtW#è·h/…Ôn¡ X F±+s¤KĐó¦Œ6*´£•]B3¨)˜K0L$ĂÓu×{]G Ï¿uÈ9è—¤ÑR•h×ø4¹ŸÓa-ơ¸®̣Vh'ø̃ùO~_¥­$¹§ß ©åxMÈøÙMùÎwĐîdyN(m€́Lü®Ǵ¨`Ù€. c¯JË×̀%‰úµ›•·nĐ„ïÓ Á½ª):a^{ÁđŒ=ÿ©̉ á˜]ă ·_‚ coëÏyÊ•µ¦Ööaă-¹ëXBT(ƒ;­~âIéị̈¯­XR•†t˜Ù”¦ˆic ª[¸%_ˆ©1>EF}еÜáÛ*äz̀.v‰§Kđ»nä­ëóÈLưJ%û$ÙS[0‹²†¶Ê!₫‰An,R:0/Ùñç̀•uÖ†—̃â₫ bbĨqi.§€Yvî¬D(ư{Ó©+ø‡À%̀áÎÓJYCy»aƒÚÅ’6Îû2èÑä²r}/¡oXØ+M?M4ª:{]%óíZ¤":ùÏ_‚I¥:ưü¦×-Ñ“ămeạ́eˆ£·xjp\}Ú= g£ Œ7ó(.Ü;>b…]Æ{T=F5£„'Qöol©ª^›₫ćy{]ù£¾—‘Ưej-û XøĐŸŸ—$vÄ>¤¨5O¨æZơĐ8®¦_fƒ©uí.#«Äüç…%®ÇÇT"RÏ(ùhˆ•B ¾ÿ̉`Ô®¬¶ˆ¨Æ@Êq1%ÎS$ó~%V™Z:'_Ÿl›±ùü®Û́2ư%©¤V$Ị]m €ÿ>ê1n23í:KÀ¯ü[ưºơpÑ?nƯnú‘¤Ă>³­Âf†ê•5„}âƯ˜rl„ª ¯>’U5HơîlÏnDka¶¿æÛ„B€EO¢¡ímƒ®/e9€HKˆơi!¯gIjwÀqûaèÜ">Ơoá̀$ă…£!æg#}m#,ӸIJ̉ ‘+,₫ ªâ-pPÿé̀³˜eĐ]ª¸á}%Uùë. Í9+uuMʈ±Ää²ínÓle"XLf}ơ+âÍIđ‚k´´‡K³]¾;|Az̃"5î€üaf¡%Ø>S«p…˜)j\2¡`c¶ø=̃¸\‰©Ç}/qñ–Ư·EµñTîI™ÀÈ?9ÑF¨²næqÎrUK=ôE5›¿=@§€ÿÎîåôZ]u½?,¶Åđx@.;7ÁJ½ú>îÖĂTŸïÇBç¸à½5qoÿŸ4ô…´M؇âé†P_VĂTñˆƠ±Oe¹÷ÉkƯx" ¼Ù}_0ô ÖJ—.ºé+ËÆF—€ ‹›ü‡ [ô¹G®’ 7ëĂŒÉ1gÈà„4Í—£\D́ ‚à̃&e“đDđ9đ̉Q)­îs¯„Đ¹8åEQgÖ°ŒÜ*ƠêĂa28_‰¾B"Ưz-hˆLÀ»,å:—ÇœlúOÛr*ßKa%rDÅ©-¬Fœ6ȲÄÉ×0SeOS¡Áü>r̀´*í)B™ë¿/Ú&¾™ú–×LX_¢z†/²+îË>ñ͵‰ƒ¸*=yBDz!ɦ7¢T|©V¹X¡†×%Hëúù¥Ă ]=¨ÇnM³›—b¯vj*C6²T'­"“€ LLHׇ¤¢‚@̣ê ˆLˆ`äÉ^Ov„„Í«\z±7GIÅ©Ÿ]¬Ä¹́cŸÄXB§Ñơ²Û h-¤ÛƒVb­¨–~Ç?>#°Ä±p–™©ÔJ_˜ï–J^ysLMêí²đj¶_á@w.5­ »–µ̀7£k¶¢ïÔÖ ûk`u‘ËkơQ> oL÷ ±Đ#* ”'Wx 20±ÙaiÊüHVÅNơÑÏƠ¸4î1{AƯIt_̣oƯ ̃5’Ú÷Zœ±j¢̀4ˆLG-×ùưÆAp¸¡Z2…_è”#êÇ9ü'sÔ ¾^_”Xó› }§ÉTµ„4z7ĐâAÂPÛ±ÚÔµæÛ…üjcØ.öIƠNíµvéÄŸ»Ù—B¥⺿÷Zˆ1Eè‘¿đäZM€\ÿ1vô¾¨đF—¯+|ÈA‘j É“û”Rf`|̀@œÎtÀfÄ@4¢G©Fc@Ÿ–RA©¯£è´o|g‚r64vŒ‘O®_sáv´TSUĂƒ¥m/I%{|.‘unU¸„|x÷–;Èw{Öoê¶ƠÔ-oeú=Là#Fp§¡è‰&¸ơy³ˆ jü1;³+›âÎz%̉@í!a×ëÓ°ú~M¹¨Gú"!èRFƒî»‚4Ó›äu¡!}YRoY;ĂƠvèZψá²Ê—V6{ƒM%¿¨PüĐÑ:Æ¥]f ƒơú2™*#p/;å—êwÙ£kÚÜÿu™¯=I³ËW*qr >ç†mK#Û$ñŸCgŸu ăw¹u×”²µööÂï3£ ÇƯt#KÓ¼D+Ä?™ƒ<ƠŸ»đD ]‚Ç/Hă™ˆ^ñ_¶„uÄE†íZ=z₫đQôJf´wˆ^yqè–EP~hqæ 7Œ}Ă™Îñ ̃»‰Ưü*O)×ñ±tC̣ÆZ­p˜ûm¿9?S©À½ÙrBwWç›7ÜnŒ>—»|ÿ­y°!J́~‰¢ÿ}ëD@Úw,M×™…9Ă3膹 )—ܶ§iè©`Ϭ´·­íڙƄ®f¥˜´3…ƠöK®5¼̃›–ÚR/ uƯs(5bm}øzEYi,¨1₫u*‹àËÜ×µØO¬ndùyŚ(ñ¡Äî„Ë|ñă‘8©Dµ 4ƯĂ‹b’T1YÏúIơ ¿à)d}µ#Úô“.ÜM‰cWî—rØzưÚÑ®r Ø©ûJXŸNÿZiX ¹÷¼ëÓå÷bgjä;ăø éF4ÑÙP²2ïuA&½aê$œ<5)è#NÔÜ7{í«§¤æÇđC–'ˆÚÈwS¯•OùQ°$,DÓØ×̉êm„V¢/zÙ ÅÏJY!É#êá½ZÄn v–I&jx&b„Ø"₫ábfæ0í ŸQRU¡Oú„̃đM¯àÎR¾“QÈ;)î_ ó\ÍáÊw"dn`yÇ%wđ°gq ófm#|X?ÈúÀs6Mæ•@Ëla¤UŸ4Û s'{˜ơlj{΢KRƒǻM« Us°œákø³ÍZ…)]Ï¿~x„m~@|tóIØöçl2œDƠB•ôwxW4Sv˺̣̀<º÷q1%-̣?Üdp̣ê­5Î?6Ów#Z¾yXË”¦€J¶ß̉0„£æV#‡=²IL°«d.ˆăÇ–‹×zÎîCYö*Ç`FÂ=^)à“­ˆh:‹ÈîèaÔ@+…G'öåd:Â,|æ!"%؉s Ư|ÏQѧ*w:´¿u q,¯ô_́ć`€ÿ~N«$ˆ:v±æÈÏâv6uḍ»đ¼¡_f.§4̉Q»Făç|çÓQvÓX9ívJâÆ×“»cØä”Fu²^¬Ơºœ èe¸ÎDS^÷Ñ̃ ¯̉¡Ǽí ²˜¥%„Ï'›d¯G³›ö”øÙ™¬zÀ|oǯ¯q₫~ÉcM mA«]ö¸[1ß¶ä[t8P@&‡yÍjd¬º…—¾;đfjÁuºéƒ)^{¿_M,»Y›"ôæˆE«yÑ1“2>âHpT•~Àζ°L?Ù&*Ú«ăÚ©n1â³’¡úônơjóCpZé.¿„úv ü|ùÈl¡Üé,[›ÎŸ†ŸÂ°Â|EyÏR„vÑÏ„ƒe»mT½=uC±û µŒ¾MÍ„¯v£…s­u´P®ÂûP>AFđ`[wÅ"̃Ô6àÁv9æÄóÛ!*“+Y±†0“uû«:jn =,«́RaZb?L|Èfh+ø!”ζˆ¸3•.Ú÷Fd_œcI‹“ÑnC̣ÉííÑđiH¨ŒU'ÔWUC[ÖÜ£FôL7fâ­¤bïR1'äú–ûÚ»³Å‰F7ñưÔ±×’µ¥KÁLÓÛeá± 3k–ÊK9fÓơß/‚̀±ơxhˆ“äø̣éÇ0 đ|5Ư ¯\¯­”U,Ñdă£·W$µ¾q‚0´–:Ơ@%#Rª|^êÔ/91M£nEơÑ〰FÇ nXŸ?êß%.³ A)óåể;BÊYç¢%0·Ơ^g[™y0sß[^r£äF øÓ°`Ò'¯ˆ«Œ›éï^‰j™¡å‚ùuѾçjµßùtÖ•@âZ9ÊiÓÚJ«đVdEơ8g»\‹A¬Çp¡úe2cñÖÊ’ưfLÛGÏrÏ¿̉%Æüjưˆ^jÚ¶­÷Oçfb@¡ ­ÿœq×k­¨œéØyoËíFo¬”ÓÜóEàă~ëg©ú”Z³V¾W1™“×^á–Î́ .ÂÍ!CÚj§ŒÀTVŸŸ€6ÿSwNAÄe\{ßVº‚ñHØ}Hˆ’Ç{™Èâ’üÁ’YHYˆ£Ï«̃́µIxS´u©œ+gÈ"02ê|Ô}î‚w½o,7w˜#Hƒ®lÑG¦ŒTWäyËZâ)Èöæ²Ü/“¬6 ×ưSË_Y¹HjM¨¤;ù7£ñ$œÊzµD"́×PöùŒî0j!5=üüÏZ¢!Oµ&Y»Åî¿|R2›{®øA†÷%’àúͬ sû•ƒ1{SfZ‡ư¬dó5"*S (1ÑbCéöèû»ă·ÄƯCÚ«ó©Ê°¤+G°SøĐ×¡^ôCG—YodØ*ƯeƠp›e½˜Q₫pëß¾}I1@€!`_ 8-ù¬á cŸ¤,˹*ÉËî Ff6 ½wÑmÄVæu¤$Q¡cú¾ÅØĂ=I-­¹KÓ]‘î#j‘:>-r¡G íÎèÄϱö¡2URhÊ À]áƠăùdc¤)Q4~̃{ưƯCĐ‹̣17‘q1)¸^ƯW¯›üØrgt&u)Ó iCk±ÓiÚÇƠàTز̣e[ B*t¸•m]Ï)4"ă)çCäÜq\ëutqf̃ ³’§«ÆÙïácñ‚WƒfO:Ksﵟmc³bôpFÓ…¦ ‰ÄÓûT)‚$/ S\#O~Y5¡v:iaXC‡T¶́á€ø®=¾DƯ×Ûۜɠ\@n- JDÿk˜úœ®ïW|̉—¯ú÷uLÏ´̣ç'›øú5÷*fùRă¿#íwÜ™7H̃wVüÉ™*…œF‰2=§£Ó>áÉœrh]ÚluĂ‘ ¡ä¥_íØF ză4í¤G0—8?o]q­GûÚCê©ØÖ³(³¼¤ºJ°Çů×QŒ¹\îCy,vBÖ/ă6́t~¨v”J¤Û†ŸPRƠéܦ­™AêĂíÁU)v¼ÎÚT_“¥D¢ ‰«ö©¹ÈÑ1%³eÜ|”́‡ïvœ­RBĐî²yÍ»$ï57¤›5/8/¦´¯ùø=Ñ̀nö5~©AUsËêûX³‘ø7å1×™ïÉ̀/ÓŒ]³­ˆ–B~q5|fÅÚl¹} n“– ÿÔ®ÁĐD<Vhî#×áÜ%+y‘₫Í}Ôä¥B3‹Ë;âG*~+ÖûUéÆ7ï­‚—öL»+«¸ n"çÖÏUSƠî?2÷¦ä”.ơ§/8çzYÆÜó=˜É­K•V lËöÔ|—f´¦Púä­-÷Mf̀Dz3ßj¬§±·¸ ¢&ë=ÿdC!Ú±ƒÛ*H:±äâ÷(GÈ=¶ñ(Oô-ß3-”> ²„`§ÿ"%?Ḯü£Ø8>?z¸F­|cü*-’V}aæÈÉiK»@óÔ&çÓ½Ï0RæXÀ/Dj´tĂ|Q™ÖX\™ ErÈ»̣~µÎ¦Ï!Făw´å¤_ͤÍ%3ƒ„92o{œ“¨ó÷ü6!râ?äÚï®h¹“^U#r¶½!4J ¯›}¶«Ï4ßé4yY¤̣Vˆ\ưÙ%Äk* ŒăÑ*µp=„—|˵#ÇƯ.<:¢{T͆Í«åmî¦̃úû©˜à¢́ÊzJ‹· ÛIĂ(¦̣¢JRư—6,íïÀ¬ q¯1ød}$­̣ ¾–tüŸÎz®ÈíûSÅ)o ¶N-W¿%s™`‘ßê„j2ÍŒ<±¾äº4áÁ °¨r5ZÆđ¥OÅC„=ëC²í¥”gl^¶æ[àv~¶¥-èYíÖ”)Ă&2huI$ Ï êư"bV0ÀiÂi¹gzºÍ”_€Ơ¯óî@ưF¼‰ig.“$«(_¸² 0§< µË‘ØƠwY`zL±\`ñP;Ák œU sr²oÛ§8V :¦Ûn~’̃61,è‚(²U·³£̃".D„â¥+‰Æï¥÷A§y«lÄÛÉEº_¢Ư78RvÔ^Yc¹’đfœ„εA•ÀK;®=Ó°qB~/̀ªê`ÿẽDùĐ:«èld j™gí ¬&Ø̃€(ß  ¢­Âæo“í w.VC¥¥¶ñ4SÀíH(-NDÔ Èu€€V¸Œà .t¥7FC´ĂÈÁơ–>đœ̃ẩ¢tÚc9·hm'°™Á¡.$/sfå½~{'™ö4´ü»[”O2M' ‹x³ôùG–UqL,~bîJ̣¯ƒñ¨¾§Ëd9æ¥ 7X™Fâ1Û€œÚ¾nj̣ …¶EPXÁ|hª%¥G³TؾӜŒcGß=ø‡B7™É2N¸_̃§äưAj€¦¸>dzÅñ$\‚-¾ÊWºQÆ>ú}be†Hïoî¦Á{9¯‚:•ñ‹„éÚËVbz²!¦Qyq¹\úÙ_ED?.å0÷)l½Ơ:/[**~b¹êAùH»üöø ÔECw“,I¥Î…‚®›‡sx´Ê¥3örªƒÎ&¤‹.xáëú#ØD,V¤."˜iQ61 KÄæ¥ä’‚Ư0N¢ñ¥¶«Cs•ø¤Ư= @­Üu~Ê£±"ù–¾Ư†>0Đ›Æ¯­…yÔâW–hAq½ăÉs}µºD±ÚQKÎRê|[óø²v«EëD~µb£)]'Áp>[4׈âºưä*jI•Ïê[Z;ù¬) ‹lMY*R#vEj¹‘16,G₫z³rJ4JëG ơưP>1AöBNÈÚçv9²Ô, VoÅ©½mH›‚‹Me§¡já›Ă3W²z›n¨u¨Ÿ₫!‹eˆ™[0= -KHo½˜ñÔÏ_âË—U\$ÚÚÍ=WV™©[Ư@ͨ߯½́Û%ÊÑ8“®Ë`‡ÏÆm´“ˆ®|rÆ%±güe‡/îiŸok>¡mO Ăñœ$Æñ©¿¸$D°ÑÏÊ×™ñ­~cذµ₫LÀ-^9~:£KNÈP“ÉùsươÔ‚ƠƯJˆaÓ¾­Œ₫qIëˆSSƯRtù]́<% ŒMÆ'̣ăÆĐßÑÖß³¸zQ8 Óúóïä=™hdæ­üfẪ-zNÖëj<Ị̂?úlBûTN¡0´²E³©7Ä[¬JƠ+E(<–¦Ü—ñk‹ä'Ä5Q™Ó;Uʘ„Äɹ£ưÔa×™NxăL‚*Û…"¦w[ÆÀ`RÓ9èÛ¥ë6„aÊí¯§/ÁàFFBpt€9;lô‡s: 5ư€=%„Öäí$¸­Åơ9G¹k*.‰L¸T• /›³ Xçr±@¸:G>Üb”î9Û?n­ăJrƒºt»Mëß[VÈ®KἌo(Ëla}ôƒƹ‹㙬» ¿µŹY‡ÛÓ†ÀíaD̉ß5¬EÀ*ÇMĂ­%9Ê0tkƲî 3í4Âùu¶o-Y₫Úùµá/RêÊIq±n¡n\÷H’¯å QÜ¥µu§*›F[寇ÄưcÔ;:êÏß°̀®„1Â9dx̃Ló¶³­¿đëW_lµç}4¿Ül>`‚Ô‰ ûôj÷(D9``ØœÛ(,2å#_‰ MHưíh¶vv ¼:î÷¤Gæu˜ ó‚L5îUêZqË¿ij6E|§óư ¡¤¡(4,D¤2e@’µ'ÚWœIùOuçïWc÷«EỊx[ω­Ó¨2ëjëQG÷¥̉\m•[[¦Éhơ`+ñøà-°…áV¸\”ß:»âQü²ücà4º vÀ3çrg;ư›ó1r,62W.Ú`a45 ×x ^£0¿ ë%)å€Ç&hë«c4B¬Ăª°›ÂÿƠ *öe¼+-Ăx²ƒ–YxÂGÍ^¼/:]hº[H«~Ñ>d¨ty.4 •ƠÉVá95)€Ø…ÀOñ¶”‰}ŒdDƒ,́ˆµ{{t]g'/l c7Y“ËDwYP„¦HÛÛRî¼XiL÷o}‰ö>‘ăl¢Àe‹OA¥´ª”½#s,$—‚TñÀ„%†½~9¹üÿñ¹_70¦0t·5ZL £S"·k4l® I|JÍJĂö\Cá›oæj2¤ƒ'‹3óéĂ!¹,9v£ơ?äå&`pét¨0¦Ỷ¿o±dµæ¡y ¶’fĐưÇG"¼Ï[CÏ„^ûn!ä­Ç!ªcCY+ɨl̀Øíz€Ư˜no}ß¡́=\•¹4b@_1 ²[<¨*íLIO'ä¨FÑêvÓrªC0l(QË̃Á@²J¢¶Îe°òWŸ©olY×›9B°²’ÂepP¼\Ñκ4rk`̀H,Ê©ư®¸Đ‡ỳkÿ­{øỷ‰SëcÄѽ°’r‰Ư‚²ÖWiÛv59sñ?×0fú !.ÎûɸDµ¥¥¸€t&1»‹Bááz4M¨*0‘ÚF?;248T?ÀXª¨6CMâpiY0¡mÿOp¿Wu•bRĂ₫ügR¢L£̣‹R®¤§ÀÆV¢‘.¸s|KÙh–=ykÚŸ·å^J>'¹d1¾úQr®‘©¨ÿoí²ëeđJAmPI MäÊL´ŸCég l§T · "9Ó»̣$N_må đ?øz"tâµ@ ª³ZtWG±ˆḉÊ[’jOKd¶Â ÿ6Êaz’Í™Ú8© ¯t÷v†DHk©ÚÌ w°v > t¹ ‚ Ăó¢̀ưĂ/<ẾDtx¿»ưÓE!“^VÜÏ¥ ‹wÀGÔlz…ËÀé´Đøj=Ï™ùă\Ă\†+÷Ó)tRº~¡ÊQ¤c8¡Û¾ÁSÎ1kơ‰/@ă»L‘ø÷‚êß¼¡Đt&ŸW5NƯ.ˆ‘g [Y!B'Lµ¤̉̃àÏƠE•|I僡C¼1x7­·„̀Ê~Èà”%ö«û¡{?mTe£Û™ưd@èÜ’„‰J:P»î;W9WÔ²X>äÂ,̉ôµ¢ÚbIG—"@Ü÷ Ëc̉5}¬\̉ùÙ:>¼áƠ0ÂäÇ1”₫X¢2̉í¨œh• ¤WÀ¬@I_ñ ÿDÙ_j˜2Àó(経 #̃BIˆ`Ưî½ré†ö½Ú™ Í>fy’œđ†˜IÓƠÜèÛ1ÈêÑ©FƯîlƠ'dâ5‘̣¥ScG̉ÖFPg½ÚPl8â¶!9¾FPæóFRäÈ»½p_^œ:<Z’Jó+GNo¢–”˜§Êñ́ọøO’©m‚ÚM\Óz‚Œ?éè‹Úº¾@ôÆGü húl*眃”8$q{Ggđ…Ç_yP‚̀]¢yJ~·"΄ˆe$gyñ‘¢“Úg×̀pWA€ùDØåWc̣6ưôü€ăJûüX½> stream xÚv 8”}Ô¾%ÊH%”%y af,Y"&ûN–lŘyÆ<3̀̉ØCÙµX¢´‘=QH%yÓ+R" ‘"Ke‰¾‡6½ÿÿu}ß5×5óÜçÜçœß9Ï}~× wØ9(c ToĐ„Ja(cTĐ:€¡µ£#F@£ƠTĐhUé1Èà/;é ̉è•¢³aHq Øf„cÀDk*°`’Œ€Ù­ƒÑÔA£U4Zû‘JÓŒpG `­XP) 4¤úÑ ®óëPÀï0ÚÚJ+áÖ¤Ax°Æ1H \#T<2‚₫J¡ Kb0üuP(‹¥‚ó£«Pi>{w*,ˆAöƒtv$Ë-68?đgk*$àH‚è?T"ƒ…£l CxB‡C˜Hàꀃ¹`ëR~­~”€ŸĂ0*˜ßé~F/'‚(+Á8<êç£A€‘AÀÖÄJ…ÈPpÂ2G¦SáxÜDÆyĂ„•£ă¬=€ƒ;üÙOƒüt:D^³1…`Hơó) :bù|F ÄĂsBư|¹¾*‹̣ ! ¸Üér¢@LĐÜè'6!₫Ø|@ F£µÔÔ0ñ$ÔrÇ pʼnY6Ă=„…øSư"ÜAøBÇ †…¬vü @€đ Àô(ˆ?Ùa3Hüá÷Oƒw4,? €^₫ü~:+Œ@¥ƒ₫ĐW^1ÊÑ̉ØÈ̃|×Ï–;÷í£!Ê@YUMĐPUvkkag±ĂA?O₫iN!R퇅§ôëÀG~*@áçź₫ÎeC…u  dîÖ@ăá/̀ÿÝ+!ÿ?/gù_e₫ß™0Éä¿ÂÂÿăÇùAä Ÿ X·L¼ÖTx(ÿ¥,®5H€˜~ÿơ3pđ.`)>ä߃„è&P H°ƒx̉6~˜–÷Œ Q@;*Z¾Ye ư¼\x_øö Ă’\qđîü]ј‚§–—LUc7€£ÑpA4¬$U o# \1€R¡Ppw©4Ạ̈+ƠÖP¸eÓ¤  đ¿ \Ơ”Ï*¨ H« €‚VA-E^á̀~   (« \ˆúªïP₫°6¨„U ¸m„‹ÑWA8‚± ÂM1Wà_³Â3i4øÂX‘3<È_xåvÁ@èê â÷D.‹®™-ÁJ°”ß·¨ª 4Nd¯;0h,väƒ}”¡îÜ´Ú¥øNlư‹¡ø¹¾ÍŸT¯}¿íë²í{¨743^gKWE Ñ{@)´u³̃ü'ºSuẸ̀̃=7/5 ÁgËDƠ₫&Û }çV¥€É÷/Ï›êÊU}½IX+_9ª²«%1~­¨––Úz®èŹùÚ¢}¥Øöuæ²ô)ƒ–±S’&Ăs™U5̃5¾¾¡Ä ơgJŒŒø[²ḮÍøø`·¸¥W+Đ|`,º¢Å®‰Tđ¦?µKÉW':NƯ₫”Ï´•¤U• =+(Tx®ÏvÜ?ª­èăú^eăk«}ëî¼£©V®K±S¨ÑuU6m ßçSôï—|}WºÁEó—{“̣Û[:^9µ*́T ĂD iøí‰—….¥M²ÇóJxbú§æ;Cçsư ²-LË+lœ†vjfJ¦₫IÿÅ…· Ïßñx»f ‰RÉ._ọ́zrQn%£W\*<Úçë 5iÙ6*G8“Ư`D“V̀°eé%xê,̃/Œià7û̀zĐ·ïL†½lƠôÅêt»€é ¡¸ú¬l–zj÷ä˰6­ÙóMÙ¡ÂvdƠMêà3lîrFư“ø|”¤/öáJzơœw°ï©¬-^Zm1ẪT;Á½ĂJ°r>û]É9—b‰ÏD»ùNœ%¸ÎºàQnÈ,â²mËH& 7zô RѨ¦9ö¢€¢G‰´·A†üĐxzÇRÛ̃¬¬%Æ“q…6}<˜Àñ ›çđVûăF·/̣窯¶ohĂ÷ ó}¨³ºµÈ¾êL›éyÏ\×!nuAÛ=’&Q¨À'—D»a•É®8²g±ÿrUnW$…éè€àÈk߉Êé6û&÷ʸÂDléİ Á[è‚RF^wñÀ€Æô™y‹K‚6Ạ́½{z—²é t¥®HÑ\¬m:j®ÑÿÑ»‹‘Rßc9:‘.Ö\—}—(׫c¥q¹ôÑĐX­1w‰Ï­ yÄfSÁ'áb^–’˜Nf ÜO¯Jx$7‹©\Œ“ËyCRc?¬vîX¦iÿ»c¾IC&÷rôÚ!|¶Xbè˜"@‚°Ăá|1Ư[1““²CKDĸNCZ©÷™Mö‡.”å«E°„â©×f>«#6,ÖvU‹̣o÷cȸѦÜ6 ö¸7f"ÉM´rÏiÓŧn]í3Ô ©Öu‚JÇR.äJîp'j¦øó¼̃èÿ–†ăƠó¡dNªVyQ£é7ê5³™ fSw×-TN†'S̉D¸Ä>?BØíVXê/ÖûÇE,É<¦!m»́âñ# æËd®̀ơj\̃(Ûû­kêéódsùKß ’‘›^ï ®½ÄôüpJưe Í@&î<>´ÉOÄù01ơ_9ƒơŒ[cÏ£†ÍUÆÓv‘¶,eóỲ¾RªºCá^Œ ¶ ëå— ” ƠtơË̃Q4únS™ëx_ܾo¶¯·Ưí8çu÷M’Ÿ­«ÿA ‹÷[èöµEĂt&Ÿ*µ†ßbè̃̀9]LW$L–éÔ¥qö3’§e¼úhvÜC¿×³×ni¦ˆ×ơo;FBïˆËN É#²â; GS¶5]³Jªqµö,ø˜Íí÷1_4'̣ĂŒJ'É]è뾫m"ăéxóÎ0ưŸùö†µPo~4ÙS_ùúEà¢äÜƠF¥3£7u.·”cüKE< ?.Y¼§ï²óœ¿"r6ĐËơ4żăyéÉÍ\Ê¢®gê´.^ºÆƯ+EŒâ=ët$đ.ĂOáÇP6y79Èöô¬g'‹DÏ… Bœ¬üïjƯÆËk:L“:^tî{¬iúd¡ámûÅƯ ¬»jà“Ô-Úu¦­|{r;¬ß\8œ̉ơj¢ÀϾéa!Tïimü¹¿₫e…­ RAR˜¡Eé½h‘ ö¦eráöö¶Ă}•… T‰€à—“ªÁ¼Sù®́Ú½̉Öq‡ĂVƒCÜƠp˜˜*ơŒ•×ßê|'êew²´Dơ/Îăù™{Ưkzyækú§–‘ØËK£Í*öíéÏæ₫I=Å̀ ăµNâöûG]RÁúçưÂ)¨‹½4 Úÿ[=%]*Á—û‰Ư“¢íq5gBÏœQú„{ïœî¿I£AY|Sâœñ¡F×̀¸íS̀™#ºçE.ư† ΧÁâÁ)Ê‰ÙÆ'uS̃*é‰'.̃,ü¤!eô9e™£÷‚£¼»œøüÑèlñ^®(P­ÔV“s ĐêỠ­ªÎß% E qfÑc8N Oû.8Z5m£c4Ùâ¢ÁæmóóŸß¥_Gélé͵¼FÏă}S‘sëxÂC·ÉƯ–'¯ă–Íßså²öă€ÆMùFGẽ2«ú^*µ;4®s¼¾Móê5övưư W7 Ѫ ¯¥ÈGơ,lIq-°¤ÛDï}-Vqå}TŒ«º́®ƒñ́Tцê=Û¶S>_À¤î,CSƒ=¸I*}©«ï¶È½ù¤‰Ô4z‰¾̀•ze;θ\N²ô}đM—”ừîî«a¼6œ£ƒÿƠkâ"° F âÚ̉GŸ}(ÅVÇ×s9Qç0J’`%¹ŕc¡Åa‹ÙU.Ø:BIÏœ¬ö¥¢o“Üeú§ií*ề}‰̣â…Du®áÏ-£z³{X.̣7ư9¦q‘(á×HN*åˆ×s`‚Ák”&/Ÿ†jl{g{e_wªÏ×ꥧ¦™)̉2ŸstÈÍăF˜“%²ôøS­rÏîäo[9KđOÉôÚ°éhyNç× ½kÈ›bw|BlQ?ƠŒqp EaĐ̃<²ÊBWߋ¹ëS·4,s_º¿đj,ṛvȵ÷"³ùf™Íÿ́“¿Tø©åÛ‚J‡ø»^lµÇ—¯̉Ç÷˜Ö>!‰Úiéơˆ±‘c–…‹„Í…¯*ŸÇ®áÜd¤"́³Uç₫É,o¦vtàNÛ& ªürđÀÛçe1́ÉPsĂ&üƯ6 B¶½ñCŸ3w!S{ÄJ1ñ'bt‘FơùáûÄ7v¢¤t‹îœœ^0¥xÅñ•.¤— ÇZÆø–»êG7rñFíïƯµI~pË&Ê!È”æ•uåÓ!Q«"¹Îˆ²4c7B²tØư¼̣\_ÛfKlÀhQùñ7ù=o¢ åL®I¬s¸îX‰Ư ½2KSh·yŸh~”º‘ĂÜ6«¥q¼™–\êrå™ó½à0‡r^đ-9m>½¥/ŒbÛ] VÔvE× ?7ØôY~¦44–$m6ñÓCÙŒº„®£…=(ÍzÛùRóÜuŸê×eÔơ…¤´ơQ[1Ѧ¡÷YôZΕlxµÈ“×HiƠµÆí₫̣íẰµ€­‚4²˜ưUt[ØR„µ0&Gưảg ·NéTíÖø鯢®ˆÛü³9 ߥ™Ô FD^=ÿ.bÆaH^L&å–Å ×:SÁl•+Q%”~µk¾3“¾a]OĐ£çúFkă9Åy“c5̀¦;{Ư²Œrw$MN @„(₫ët,ø¥UĐ‹ ›WÔº’z2·&<¡w¦6홳ˆ»}ñ‹]–:̣=X~h"qÆíÄ îüp0=ǜå âT´ÇÆ÷T‘ËÑq¬p“ùÚmtîw#Ë#¬\¾1²ä-éúÚWëL-Sä&=§–2º³Ë4J[áKËr/_¿5Ó„x!¼cG«—Ằ£Í w|ÏÖàÄ´vÜmP*Ô>ß¿mœ?Ậê3ư*¾́fd¥Ă;¿ “´³…Æ+ÚÇ?Û­ßußb„v:•vI5ă~rS†IØ"ªœ•]/%¼{-_d‡EƒèávSÁøJ%‘6½¦ó0Iïó́ɶGd­(\üuưµ]Í&.‘ƒĂߺu¿ñsÜñAH.¬ê₫DÈÿWWF\^Ÿd9¬ĐhÈ¥½w—¿̉‚‡Û0Gú¬E?ÓÈfëĶ’äÅK¯·\X?¾×·OiÏ:̃‚â/åÎQMéËk¿:Ñ* EGf_²@Éí!­K(¹¯I÷’, íË¡C×)­|Æ£H‰Ô4×~?µœAL²v̉ÖZWK?ØbήäqlrBdM7i-`J¼-Ëï^óE•ñá´.£€ß´ĂIí^¼­tômÅ ~™ûP±æÑ‰$÷®‡>v,->ÈØ“`jb`c6&| v@4gCÛS?‚¤[r±fe®Pw%±ê.ßé*|ó“gm°Î̀¸‚ǬEoiá1N&ïK™ă.BÖĂ»¾øµ¿¿mœ'—ơ?>Ưp; endstream endobj 915 0 obj << /Length1 2587 /Length2 12004 /Length3 0 /Length 13480 /Filter /FlateDecode >> stream xÚ·TZÔ6,%̉ HˆÀˆ̉5twKHJÇ0 0Ä ƯƯ!-%̉H7’’̉- ‚4|ă½÷½xßÿ_ëûkÁ<;Ÿ½Ï̃ç 4ÏUÔYÄMá&8̀‘…(T̉Đàœ¬@ & ÔṆ̃“æ Ä̃ ‡ üa i9"dR G„xåd `ç°ó°ó  ÿ áö)3Ô Ä x‡A0i$á¶nöPs GDÿù 3Øùùy™ÿrˆÛ@́¡`  r´€Ø 2‚AÖu8 qtûOz! GG[66V+Ü̃\„àu´¨A öÎSÀï‚Ê Èß•±b̉4, ËƠáf. {!°†‚!0„‡̀b@$¨Ë+^ÛB`+₫mÀ ø§7vVöĂưăư;ö—3 †ÛØ‚`nP˜9À j ¼–Qdutud€`¦¿ AÖp„?ȵ™ ₫bȈ«@ˆÿ)Ïlµut`u€Zÿ.‘íwD—¥a¦’p̀Ñó7?)¨=Œh»Ûß'kƒ»À<₫fP˜©Ùï"LlÙ4aP;'ˆ¼Ô?&æ½̀âà|œ@Äq[°ư¯áf ùKÉ₫[Œ¨ÀËĂn 0Cñ‚A0=@΀£½ÄËăOÅ&;;À v˜@̀¡0̀ûè1Ä́oŒ8|{¨+@ˆ˜=vđ÷Ï¿Ÿ ăe ‡Y»Ư›ÿu¾l* rÊ LWü¯NBî đ`á°ppr¸¹¸<üü¯ÿQAÿ!¼÷”‡™ÁüsE4éø:ÿsüôÿ¬࿱”ሙ…èïG\È #~±ÿ?ú_.ÿóư;ÊÿmÄÿ7!'kë¿Ôôéÿ?j ÔÚíÄÈ:9"Æ_ XØÿ6Ơ‚ü½²JS¨“ÍÿÖÊ;‚k 3·₫·P¨+ÄTê¶øk0₫k₫^1k( ¢w€₫¾S,́@àÿ̉!ö l…¸7óø— ‚X›ÿf”†á¦¿÷‹ƒ›²·¹acÄÁÍ đ`G,¢)Äơ¯ °±Âà¢:/€Üó÷̣pØÄ‹₫F<6‰{Ä `“¼G|6©{Ä`“₫ñl2÷ˆÀ&{8lr÷ˆÀ&Ùî"»â=BdWºGˆ́Ê÷‘ươ¿ˆ‘]å!²«̃#Dvµ{„È®~¸l÷ÁEó!¸¼¹G.Z÷ÁEû_ÄĐ₫E\ˆ| Äø@¬îM&ÿ"vD^ư½ÁØÄ¶‚ 3Ç{9ç¿̣¿—è_¢|đ¿ˆ ·FLĐ¿$¸~Kllîiư-6Ó!'¢:S¸µơ$ØW ä>(ẬŸ¤<¿ơvNˆ½wAkvï‚ ku₫#Æo5ÜéÏóûˆ½ùï‡̣§ ‚»Å}%ˆC±p³µ€À₫°@È @SË? â8¬₫€ˆæÜ3æAtÁú÷:Ưë­´¹‡́ƒûT܈X0Ä₫¡G4~Ïá ÿQ‘í½̀ñ´Â₫sª\́ÿHÿ{¦œˆ\¶{Äú‡)Ï_2(ÜôˆÚƯ{!ºeçw„˜üq.́é-eG4́¾dîßâüGG¹æˆ§æß´*Ö ‹?B ˜ÜóBÜâlö?Qª£ üD §ûEäüë;…nÿg¿§ăüDôÓå=Auư"²ºư½v¿çŒˆä±ÿ›ÁnH°“=¢Ù=aˆëóđ__G Wsæ,hYØ|^!Nî²>̀Á…Ós~̣Hë»4™ó¦ª¿¤ĐÅOÎ܈iñö‰ˆ‹åÇ;…wuVÚÄ@+Ă%Ï”â™f43“5fϑǗ;N mmºÆœ0Ssâƒzµ>—±qf»£ơÉ´-Y!Úú²³R‹tºÚ]VläáÈtR>>NläÀñ´–2‰Jññ‰Vù—ÇbĂ{ñ2[)Ư_8¸W{f‹™‘ +)äÛÛ8¶ 'iÛ"É?:y*Æi¾wJ“^ÅĐûŸ4úÑ›8 ªÄ!_ÜÖă·̀àô™í„6́©\¯uí“K±à²XNẶL”¼>èïq}Ûs¬ú ư‹ƠxÏ#(M8§l÷Eñă ̃ ̉ç]2ÿhÇ5­ÇơÏå̀;iS½GX ‚«&};M§§´ơû^ÊiߪHeÇ /—ªôj„˜ôcx́Ê>M¸´«À@­¤‘ö‹Œ°úVCyx̃ÿđ̉đmà™TG¡ÇN/*d  â|kb76á=Ô»–̉³̀îỜă(BÆ€·̃تU¯u…›œI@ùÂôQ×ëĐ 6Së[‹úÎx]‚F°Ứ”à6ùRa/ÁvĂø jÚöØï‘î:ÀµdTíœmrZbÓ\ ¾"ù¯úË5íqyĂ>y¡a£¨eIDÓÀûtDM¹ˆ̀ˆö®˜7ŸÔAöë̃½(hG‘âø´íb· µÏ*!˜e¡›Ê¸Â;ÉL*îªêƒ1~„*i²ŸÓ†0|Eåé'ÿFă‰ºæN[ÿ]-2C¬…t–Âç7Wä–úâ¡Z¿?Sü ¢)¾¾iHêÓ¤>QߨÅÓöKïÇƠÁv¹Đæ̀KÜXʘ؆a…Ü ‹Ê’©nƠ]dxäßñÚË·lộ¦;V%_©\?àŸÆ–çQá!úZ‰f²DåûîAî‹ü1b¾× ¹2 zŒ²=Ù°óZ>÷/wËf&–u£Ê⟤̀ĂSe„Ü̃{Ë2mœï­èée±4„kơ}´¦|”/ŔH |iXôíîñ™SsÍ•'¼̃°£Ô¶æûÏTe^æ̉ æöåÑâºÚ}H6f[¢ç• .ï̉ậq.Û’YQà->®CÍ['§üe4ªéj#W v•Ç.F]ÏMTAÅ[ö ‘r₫ûE a%½cOíü©í¯+‹w­]v,¨ç±AYŒsv$æ¶ ¢Ïc^Oˆ»̀¿đ=ÉNFv™¿¦u3߉l‹ëà{7áË^’Œ{åë>đ%ªÛƠMÀsỲÇës”Yé×Mª¡ïX³nHOÜ+>뽡m¸ơ¯4ư¸‹̉âÊÿE™Hé„“6,έÎ$ØđØ•²éÜ\˜ks™2½)1&WdI'đäG̉̃;ô¦t”ÙÄ“­¶y½ºZ|‚Z̃§ûÊÂ…QÑA¢ÈQü¯ElzâϾ âm¼+‘£̃ ¦6¶’"Đ€%®è©ß¸¤}¡–<-ªæ“–>îuésWưNeê·•£6eù»B3¯dÆÏ ÈN[°¯ŒŸS8qG†³¡o.ëóº{Ê@ôîÜL°¥P1^$]¬úGó±^ª]ÄÔ…+ ¶đeÔÛV/ăÇXö‡k‰÷H?ïưÖÊφ7>CÜ{v¢•æƯ₫Yº•Çl.åøÎ™Ü6yiûün>[̃æµđ¤Ê—…Ç]˜JíÓĨ‡F̀·½F"'»ÚÜÎĐ'pó,TÆízs`áS¢§£¨æüÖƒÜ0\€Ë"MĐ/=¦,Œîí ơWO(.F"¥y_1 $ç™’Ơº …û]÷ ’¯ è$­*_r#V_KÈiá˜Ú Ù^û}Éz¹¢çµ¥₫½]h̃†/h3XF’-ˆgÔk›ï˜̀1”0*èÎ3"̣bÁIŒB̀Ç^%q±OQ+ ,̀‰§ Y¿P]¶‰)ηáéĂĐv3$̃µDN«ó“ơ÷ í̃†JëÓôÈeÍw˜Ê¼—Ù–-fm½UY₫‘¯á“a§Ô•̣«Y±Ó¯_•ÄëvZ£n .öÆZéûøÓzPÖù5ú!ÀÚ†úûPíÍOđ(èæå#Éb&ñÔö?Ù̃¼+Sa¸RlF{V¹ ½!Ưy——-^̃×Ư0¹ÍÜ 4j3k¦Cm‰ ¡OSQ×4ÀL‚”8 T¿P©Ú1€–G^Ôª¿o5;ùB}tÇp º¿UÙœ}ÊWo:ÏĂcè\CSÄÿà{ú»,z;AƯ–~³È$™lBœæ ü“–÷2ËüLÙû3+­–1GLCïü¢ç¯—ó¸å\ß @÷ư¥°{Ï¿¿~º=-©'5áƒö¢ˆWV<Ss0ø™èö\BcÆë½(÷P~Ăë± ‹Í4)£Ơ ȇ"'Ư¾û»îÎí_Ăé<µVγ,ƯS½ú¡gëObDèô˜Ÿ8_ơđ̣ldÁưyjh/–LËÄDĐqåZ#}Ú86è™lÆÛ‡®C)ïè—Ö¹¿IjôÙ,?¹öâ,qz–.ü“<6bZ¸Â?˱Åă&îÈ⥇= k²̀‰Å×ÊËmë0ÍÈ4épæßå/ÛñUÚxŸZ|åxl3â‡7 çoï–t#{ÁJB@C5ÊS¿fÓ%¦É˜ Y»]º9?ÊÜs­(m{炲¥hO/ỆøÛb‡’Â…˜†ø \†Âäô|ÑCø–çë?t‚º|ăßdưzŸ•¨} @ÁûíØ­yñ6£S¢̃ÿ§ßth,ó3×îê·‡-KŒ»¹`¨‘U6´½˜è›̉½Ô[í3Ơä%µ_Wy‡@̀Đñ…¬×áuï¶ÜK+ß¼Ö…™/Ø®\»®±13K²ªgpøˆVÛË4E÷87èé?ÍDư¢e™m´ÈÖZz•¬mQ´€­Ú+ _…¦Ùg”†Â{uªUd Ç}„–?âV£6™`í'íÍÍk«ki~’?‘j–½trµc&í[6Ó̉èªèđ¡{+¤2dËđ*ü&8UY,«3Ÿ+ÇT)€ÉÂ=Áu­ÚUáe>~’́7%̀Ơä!+#=¯ĂZ_Çn₫úˆ‰ú=Ṛ̌Uº Æœ›*̉¥̀Œáa†”z¦,D'gÛ-½ơ¸t ó:ñsÑÆ=ÜơtªÍ€pzQ¢L [̀gO²³ÄƠë&¼¼&ÊáĂQ! ê$V'>“KÀÕ¢ë¥:†+Iû) z¾’÷x PÔPO¼]đûÚ‘đéq§~Pœ¦ÄƠº^tù3~‘Ͷ"EÖ¡¯[8ç2m,fê^¹ÏåàñÛc‡xÑPÚƠî »!r)á‚)½\9Ñm„ql›Bºe·$æA}ذ¼"ÖJĐ³Í1H{’ê,^äb¾3Åd÷.!£~ÆlưĂă¹ˆ(úM-f̉§ç^̉S5sá¢₫h¼ª}Ø9ùîLZ»O¬üpU&kù"E…mb9¼?ÍĆ1ùVRŸôGä•4N.€₫`gàiøÂƠôÄNÿsăw˜¿d1YŒ‹KhP¾·dq;’đ+Ú/¸̃û₫rµ÷–!Öw}óu.7ÖÇSgê\ ®-ƒ^­/”©ËIjæu‘}÷£|X™ ƠÎjo„Ȭ$æƒè´JOåæ^PÇ••2ˆăÉÑ׈ºQ~Víg Q^¼ Á 9`j&—û7ú~±Ư[Sê!/U¬ơƠ*Uÿz Û/èWo‚ƠïÙ©ÿ™ií {ËRß—₫V\Œ¢<ßÓ¿¢Ú^ôç]Ή|Åy„uaÔº(Qơ{˜`ÉÖÜúk]Ïméăøïøf1̀ΕQ¤WÈ!c~qZ̃IJ)<ôtî¦Um4ưkƯk5Ư}³¬?IÙc?j`M‘t¸w\ZXMÎü|µ́ª^©̀T|lyp Ă(å+)n ¶×cÙpV&½5‹ü6xA-fổçPÀ,­ÖÚùès…TxæjXÇ‹ª­(H"ört¡́»4̃ŨÄơ$p0ö+÷…EŒjư@UÆ T̀½Ơja>4FNüè{½₫*üñ/$¦$%hS) F¡`uöˆ&E¸=Ê(!÷yµdµGO„—@ {0Û€¾Óæ*%m¯J²è.Ü}7®E—'> ‘·Ö%)ÙÊoÁ Ô™nˆ'ÖÙhPăÉĂÓßj3˜̣Â$rÍ ó¶ø)œ̃$×YôKŸf¿FƒK®%ê‚́˜dà.$€æèÿf¢æs÷¾±W°¦ª’iÏÏj^3.xWđ8°©a„¤ˆĂåµñ)¥øtwvb0¿oß‹sXüĂâ(hRüGé·UÅs•KêèV;>tR'\ѹê]àMç7Ÿm,‘1œ/¯Æc1‘âF,˜H'%côƯßÛ>Oÿ¶_µè́7b:ȆôÔó1Öƒ¢×DÊéẓ8=íßxDFZÅ·¸%r·̃W¸‰Gµ„W<´ḯ%¡¼î'¶dgdTLGÜ$¢€e`#v˜‹®èaɆ!d\)3ou¿<†°¼~!­EeÁ0*´Ê ¡§©g¦æä¬ñÖyjÈô$TOƯ»©ḱá’á{-ỵ̈¨ï…/O¿w½̃ètG¾•H¼ÔØø1£D>…¹WƯnˆ^ÿ6h²ë Cx¹¨₫ä—6Rïü© ->£>Mp΃¡’äñ0Îf6Êt5°‹Îm°i¶̀J Å´æˆQ₫¾+E-¥CQ ==–`;7-]X[¾o|̀s(Ëȱ²ÊñDƠµ§ăÈV`Ü啪ù8œ‹3u+(lByîưføđø‹·ö€ zJ,Ư₫5bbÿ#%墹râ¢tư ˆö3‰ôM¯ñ†”ÈIíÚ¥è:Í%½Zëø5SE•}µŒøMçF<\¯Ûñ –hªyë̃ LeÄ8¥\;q:ị́¤®YZ̀ÉZ¯ ₫'&?’¥{˜Ú£‘̉0\œAüƯÿQ¬ƒúV»Joø;iº₫”ưPØ̀₫úñ¸L{m[&ư&!Έ¾wC,iLJĂÈùô8ÿ6¼;뤪̀»bMṇ̃TÅp­caѺn©Eé`—‘¬ư=ï¦BA¼2ª±8Ó²W†MtU%\oRôŒ‡!êÖ_\‰¦¶c°a¢¬cÍnK[T¤›g¾¬DÙûYC)Ï‹Çưr¿$ÍeLöÅgÚ“ºè«Ÿ›Ó®Ư·¬´¶³ˆ,®’$L½h$èßê5đhܘÛ&`9Ckø._*rƵ”åÑ‘Áœ’VĐ—çgº„µÚ:1+º¦>ẹ̀¢ÂJoß\x壡n£npfRsè`HÛÈ-’3ñÛ”r;_đLMB6l :†o3»Y{vŸ}îfH‚¶… É>¢9QK1Ë2<,ưêÇ™_Æ$…ó!¯ ø”q-Ḅưtô:‡ÑsuUàMæå•ZälḶPm÷ÆïÈøV:ß—’^%j]óç²ûñƒ‚‰å*:¥¸NÊB¯pˆ:…oLo0ï]nhï醤.V=H’^5ĐÑ(Zû\wÓ¦ü ¬ù÷MÑ6@áD¢¨*WÓ·ñ”ª®=óWʾ§…̀„x^)®=‡%f^Đ®©)í~G|úa¦Xh¯Ơ¬¼KdƯ¬ººÈËå},¯̃LǘçƯ×[Oï4©9Jé̉L”W˜£ṇ̃U­CIåRµ îS$)¶9¿™©çäèç$U—¢[ă×bü.ûwîW$MÙ‘Íän#H̃eçÔë¡Î}-†xè̃q1r±̀~kêăs§ÆByüẲơ₫+YÖ®yưaµßFƯÚAê7©Q»¸ €dùÁ̃­B·_ úë– ï)ĐUˆj²bŒŸdb©GT¾½ƒÑoƒ¿÷ •ü°ç U2\đ*“3–T'ưzk >îÂ.}^ùƒưŒn·/èP­l·mĐT&ö¯³ư¼ưÆÚt́´à~́üQíuq=³s\Ơ"́-z³ç˜"!ø^qnn‰#àEẈ@m¥"Æ`KF°? ¶áÖl©é9ÛađëÍĐ»~B'åÛ­K̉ “Ç₫Ê~ƯÖd!·yÛ¼])½Óëơ{ạö${Öµ*¶&Uf\¶<ÏËñîâùkḮOŸ"W¥gmêĐXíŒßÖD!®đ¬„P3Ôv¤h8Gh=—U×ó $́†£”ăù ‹„›ƠÖÔ)& ù ÍÊN ®œ}KŸL˜,Uư ¯CJ's‡dê¾̉÷ >Ï’æ¢é̉\?ïÎt£ÀUmªÄ9<#j%VÔÖ~eñ˜Ö“!qưKÎK¦¾®F…@=_…ŒZü×ór*°̃Ê+gŒ»øq}¿…Ûªcç‡É=n°·,Èÿ ơ6• n9b3°f­àđé)ụæüO‚n5{9´ëég!!UÄ-6‘T“©ö}ĂL̉<-|Ø\J˜u«íu^ˆ—xgL<²]úë%‡9VÅ€ƯË}©1]³OơkÂöQ[‚Ă;™n{‰ш .ÎæƠlu¼k̃o—̣àY5}ụ̈…t†ộ–cúsï™ .؇¯G‚Q7JÁ[¸'Ư_>˜JÿÄ”~³w›¥B׬xü,¥0ùv¾Dè—G +á‹û»hæƯ¹Ơ-Ö÷‹×]=¬–ôs²‹hMXIŸ’/Äë¦FUAÚ̉ft̀²‰>]˜‘́£?K? }ơâÆ$Æ|±/ÑÚ¥›ă@óƒN?ùgă‰=öĂ¡Åcí‡ëÑhÊÄ<m8'Ø̀}?tĐb„a“V,₫ Yă^v'»'>"u8GÂzLŸSÛ<‹'C=f™Sƒ¯/Œ¿¢Û̀d₫¡÷Đœă;’Q î«·ơ‚³`éçÈ7‰79¥@Bár*:¾ƒëç†Ö¡:[镨¨6́D”ă’6¢dyµ1’Ö(•„[ä½¶Z9/‘Ñ'/̉ - ªˆ¢ -Ü43qưGØg&µæL̃Ÿq*ư¬É ÿÁ*)/ö¡€W%§ÈúY ¤àA²?ĂƯ·k¬ Ï:."¢ëÑAÿqc]ƒy`>ó´ËªBˆH¹0roù‘‰·̉qߌ G©ÄJ¨ưăƠÓŸ¿<¹[…²™»û½hU’‰±{¤p–¾]ª‡̀[Ä›÷ %'½§xÙv¡½¨’§¸àC¹5ßîeÅÙË3º08”^]½™¸ñ®ïnE¿Rˆ'óÍÛäyw¥Î HÎRXFù 7’G%9 óM™iû$L$,u2­¯?È Ä©Ë21­T2[ƒ#?Mv0·}N¤đF-äưDe-̉'“+!¯ojÏ…èz·¸¬0"Í2(¢Ú"FL¦+¿L¢¸$Úȹ|••É®­Px—$S^UGXi‘*sx©á́—†(î£/ăÎD¼|WS[ ,³̉ăÍÊ7ßË¡BJÓ³ŒÔÛWœơA©›gD"¢¹ª×X]‚LÅ¡„[Î ƒéî~¤)2›bv§ä`_ŸJ~‰3æRgn¡Ô³‡¾sa ºđ…ª&hᩳ9©Ø̃;¹I˜6§téÅí ÓX‚ŸCé³ơ₫êV‰Èeå‰*Œ¨™ºĂ¡|]”…GàjûT}&µ‚}èçÊà-‘ĐÎúĐÖ-§¹æ”ÓÄêóƯ¥Æ­ÅPUơ¦Ñ,´µÉt³éZ‹yÓÏr„éMLMØŒÈ3̃/a#¸ ‡8Æ×È¥_Çqr¦Ây(Ơ4™R½}ƯΈ6,w.ô1 ï J°´cÖ́MxæH7¸cZ̀r„$WÎø̀ºwl;©àHpÿúÁ\d;ơ±y†¹7½ÇáR··y/̀º)αDÚ;K§1ßÁ2ácÍ¿:Đé9ÍH§²Ú˜x^fïÚŒ¬0ör¸9:›Hxt¹³Û2+›ƠíøÚɬăL×›¾Œ?cÔÙï5U·́<–́–AàL†½å\œäăïÜ›.Ÿ({’“/¿À.ë1F>gáƒưưĐ´æ3ï+)A»Ù –¸ùüÊ˜©^¥ è‹lb:¤{÷ä¶ô{«z ¼ ¿‚`úÙ\7jf±Ư­NÖ ›í<8. ½6c“~YÎשÑÛí JI’ψcr̉]‡Ç¼w¬Ù –ÜF¼:®ẹ̈)›4ûÙDúŒ¡Éº½Œ#a¤Ŕg¾'Uh‚¶1ßđ~3n£«zKWà*©‹:<±Èỵ –”çI„ï¡̀˜”oZ₫ë4èË^)đƒ‚ÇC¦Đ€‘³EJ$á$‡—™ï»ù$¼>Đ́t†‡ûƯ½¦œa °̃Ñs í&`¶1P~j6Ö+qµÔέ_Û#w×`]™íH¨²º´ ÿjL'îđ£2Ë%à†ÅUMG6°ü‘X^º½>\{%!ñqøÖ#Hå·§½/LG·,ÍÜ©U´Dæ6̃^¹µsÖH€#A“«8d©8¹‹h¿*±Fư=I›¨´­•tDûÏ¢h˰uÈ^y©&ØÈ ›ÅÂÅ”~åÀƠÙc·å)³å̃÷ªÑ|>,K>ƯÓLóÁä¤̀.Æ»î̀g¢.¯.Xe;*U@å!§Œß ®›¸S4Sk˧Iùx¬gOdJU½ñ—~ª¥gdê9¨SGơjjd½[ÔƯ˜Å©¸VÛE21Æ×"q6{E¶|¹öÑÇ<ØRá§ 8} çÅÖJQ‹‰¾èTĐ7 iªGnư ,Nïá|ÿk߯bÄô¡'·$G£Ủñ y,”g1CåĐïÅ̀ ‡?·ûâø;v¡á§SzÇC‹íƠX0ñ̀Éjq^’ñ²₫sóÅ(uṆ`S±ÉA₫®åϯâ$y =Ê0…_ùŒäw¶Ó.?– ¼˜Ö8~Sá 5ï]t»UáAag˪ăp.oĂX0Iئ@¯ÀƠZO86®8Ư ®Ñd zè©à¤ơª §s:ö j"ù39–fÑá‘óväêFÓ äÁü D\>ëâÀ^|ƒ‘¾^4‘ƠŒ ¸Ü,GG:s`4£2¹–L.æPaJ€.üû¸̉.k’´º)?ómisZ<¾ĐÇCúÖ{´ƒ"nô,|~çtÈ®Á!í ψÈL9@±¯\4iÿ¹P“ îyUÚÄŒâj“ăgNKo¸.M×XUÚ›$‹1M„]xWû2~ëo}¼Ê$ÓĐTU§y­oÊ`:ê´Dô¸µ3)Ñät²LădyXc$ù£’¹LC}PàGôt;JJ4s'ŸßȦëo¶µ X,¡{0ï·¦=%£Ơcf¸–[Ú0\|³†˜Ê’/§®Dđ\YTOÚ<îËÇwϨ¿3ÈểIŒåfb¸_r¤oYơJ%i}½a¤g ™7§è“JófAùí¨h<™Ë©Îh<叿$KাÇ~•ßœ²Plî •~»ÙĂ>³xR1g¾µÆ<‚¯Ä‡ÿ#ÎKÍLœI¼j« "ø+đ-üe¬è‹‹eđ‹m¾₫ùâ)½¹†lư±\YÑ5 €ÅôÈ]uÓöF‹æƠâ¶f»?­ƒ†Ó¼Ac,V´™ÿifå8̀Â;ÆnñéVơ²ƠiîăîÁd{ă¨ûÙé“&ñL:â­‰y¹>Z¶½Íc9+ĐlÀ†™jüJ̃T3@ëF$:ú´Iă°;PsưO‚T2Z—q:QMʤÿñ °ƒB2 P§}ödF ùÉËè"¥`êÔf™¢sªr{µù(3{×ÈU½å64+º@’^Ó1̀Ơ‹x›j‡9÷w¢sOœLVØÆ£r0gE^_Iú™w8pæMZPƒ§½eÇ,¨M®–~ĂỊ̈¼ë)¼:ÆÓ&x̣̣Bḱc/Q“±ÆÜÓưµ¨´ÁÙ²•væ?‹^ ¶+1>{MŒ+ª=º£á 4@”;PÔGD5kÙôu9£‹e1¯apß~Ö*)ÚÍ‚0Å•˜eÖ*ßÚÚă h ›=! 7­é̀ù@¬|úæ+ĂƠ endstream endobj 917 0 obj << /Length1 725 /Length2 975 /Length3 0 /Length 1535 /Filter /FlateDecode >> stream xÚmR{4Tk_¤Hnä¦îˆ|Bà˜1IiBÓBƒÑ(¯fæ|8̀œ£ăŒG¯{+ZÊ-¢•̣HỮI¥‡W·$Ơ-%©«©Ü܃hƯµîú₫Ùû·{íß₫}ÛÂÔÇHAR,d3ØL–đXóY,Àbr´-,¸‘(-‘Đ !`,`Û;‹­m¸xlFF‘ÀRb5 ‚åR‚ÊP,Ç¥x<*‰ âăăÆÇÉ™„Ü•I5@È("P)Üeü<_/`éå¼  ‘đåb)*̃¨bqĐ Dà$@‚c:¤)9,‹‡I ‹ pđñ¸{.ó®­€ D¼—PíçD±¡„$‡¶³äX$Eâ±h¬J$DLm6 ¨„b‰bÚ¶C¾ñ°̀ýh‰Gé–”‡V[.•údXrqY¬œ„đÁH``Èû¥QªH†J“₫—üÁ#E”îX$ekBă<ÑDˆđQ’̣›$äp‘¿ñ*—´CÊêW“&}ŸH­2<ÏvÙJß%|}́†Ë˜GP,”Ÿ"†Ë|:rA£ZF/ °ä>"’@A0‹9t"¬¡7…₫`-Z„'®eر9€Á±wl£=˜oÏ^ÿ¹9A@Œ6Úe4>&¡D»µ —8'GçVn)̃àQÔP2̃pwU ½‰­Ö|çbOđôj₫̣½¡R`X c|o£Ø¥½ëOY1K” u₫º]ŸnÚd¨:lV¹¡́鿃ŸO¥†uk,§É$¾=i}ä̃Ç­›øÖơsó¼-[ºú¨Ë/vúªc5Œ×kËjyøó² £¿oå7ØAWè5D¥v‹ƯTÏ[Ơ·ln×é± …GoŒ}¹Ơßµ%{Đ˜wÄ­|–Đ½ûö¡ư9;f´èú¯ízj«ÜU¶å±Oº‘nÆ{»̉Kª½… ̀Cºgǹöµ¨áNnÑœ¼5œu1FI9“mơVœ]Đđ™/öæqrKoôù8óú‘Aµéµ½M~>ÎE~ïÊ;T¯ăệÑ9ă4Íî1Ø3ļ°̣LGc]ypˆx«Ÿ;aƯĂKWhV[·È{"îª<Ù}U%íù‹ÖD]êŸ[¥‰=MƠ4„ƒĐæ£Ñ¸́¿ĂE;;œû)rv́>O\ËyæñÙbûÄ×ù7̀ÜṭåÁÿ¸­¯Ăj tÚv]TZ TUg̃N™̣q@T3›FKLïUHúxëê‚ ¾z–ǹî"ơ¶¿uñ₫Qúe¢fJ¯‹ªưÏ7‡ËÍ“·ƯúđLáƯ×óơ¹$²Íá|çîç´*c˜Ë…¡÷¼œ̀÷ßdÇ4ïSÅE&±’nç^ơ]åªÜ‰6“¸{$OƯåtEÙuáÆiG¾{ÙĂv³”K—5ơ'̉Ơ=‹Û]H9wäzVkoY7̉4—ù­¾y/‹ès̀ÛRŒ+’¿z@óyÅO;]±GVUúN=¬¹l²™Imí̀söZơä·U+&¬S éÑŸ6eÄÍưuë­´êùç ”W'<íưÙ|sF´+CƒT,‹ÁL‹vj¡®AY]ơ¯ ƒö§ÆÜÚy€ Ư“[×x÷'ƒN£Í÷‰Ơap ưEÇ1­ưlqjưû~1xp€ö>Ù^¬º¼x­öq_à̉hsZÈ@åÙàªÁo2ŒcJƠlë·h%>ªî°Ơm•†ñÑÖ}‘Åœdb£;í÷Ư–'K"ơ¾¸í+ªXp¿YÙª’WfoƠYÈø YXo2˜Pd‘RëpÔcµ0ü±zGͺ Œe•“¯Lr2\”s!óöí`¿œ¤Á¤€Ă¾ê·^N½]QÛo2^XB+|hZ̃bư&ÍurºIt̀¢Ÿ¹"C»¬gEÍü|ns´Ñé\Á}ụ̈ËO7ÀÚ6æÔ®fç·ÓăF̃¶ŒËư9®Ö₫çơẈvæÿ ¬£Í endstream endobj 919 0 obj << /Length1 725 /Length2 16161 /Length3 0 /Length 16663 /Filter /FlateDecode >> stream xÚl»c.]¶-\¶ízÊÚeÛ¶mÛ¶mÛ®ÚeÛ¶¹Ë¶½¿·»ï97úÆùg2ÖXcÍȘ3V&‘˜½‹§ƒ)#-#@YLE…‘“À@Ç CF&́djèbio'bèbÊP75(›:™L Œ0da{O'Ks ¥1Ơ¿5CK[K'€½½›¥±€ÇÍÍMÀÍÙ•ÎÉ•îŸ$eSS€‹…)À̀̉Æ ,¯ ))' —Sˆ›Ú™:Ú\l,2–ƦvΦT3{'€Í€±½‰å¿09Óư€›©“Ë?À̀œ́m²¢*‚ḅr*Qaza€¡ @FâŸt;g®¢M]\₫µ»_—ÿ•l ÿW2ú_é½Nÿ‘è`&–Æ.#SsK;úñ&igf`ûÙÄƠá\ÿr₫€̣©&¦fÿD»ÚØÈÚ(…ím\]L²ö&¦Nv€qïîdùåB m-m<ÿƒÿO„¤‹á?dÚ™ÿCĂL–Îb–¦& –.ÿđíâäjú³ºéÎFÖÔÄ̉Ơö?é¦ÿp̣Ï©ØÛÙx₫ŸÿÙʿף——Q‘¤ùß"ø·[ÔÎØ̃Ä̉Π̣́Ÿ†N&ÿkø·[ÁĐ̣?ô?X₫§¢ŒÿW—5tq²ôh3Đư«D₫ơü¤û£„„́=¼i™X´̀lŒFfVF3ƒïÁ5vur2µsù7éÿ́åô“©©‡©1̀ƪ½1wˆUzkX¥Ÿhñ|8Íü¬*Í*#đÚLï­6²å°…‰₫Ñ5΃ N;₫\ ï̃ƠɇbĂxS¸“©é¢ƯUœ·R’*s¿ß;…ï z7`jضÆr`·‘÷.™›A ÔÓ,Ùy¿¥Ëy‘Åc *:À‘vÖ—́Ä©t)P²´~àLhj‘æ-B‹nŒøßö7@ ‚÷ànɰơ-*µ ®­„µ5»%0óµ±±EvÂÈwƯª¾ă†·ƒ®™÷!2¶ƯWt èG!¢Àoyä·wøeñåï¸ s–¿¤«yT£âwyYªº|#öæÜ^ưfƠƠu(£\f)tw¥E‰a‚Ø`¼Çl÷¹̣6¥W\d·¼'9·&ÖƠQ¨ñ+-Oæơ·1ˆ«£Û£’oœÎ‹>œ±ym₫ )e@¸l™È]²Úm™äÚÂÉŸ…AŸµ·K%ÁU2=̉›é1ÀÚÅ[đ'",ƯκÄpvµ8³¤Rˆ [2g5Ç y ²̣ &¯±\¨˜5‚‘Ñ_ú̉®#K\ÊĂÓT¦EzœWÖ<¥đƯ2Ở·J5<±ÉË ª†“¹×Uị̈›xÔKÊ zS†Ô!§ÎàOơ,>8c;Oîz^§¡ùÁúWç/M¬¬rBFï•N”*‘«A¸æÁ81Îu±í_oƯ­ê2™̀½ê¸́·¸óÚª—ĂÛDP´—0Ø ˜!e 3ßáÀ-GK^úeGÉqôsèGxë^ä€^ñR¦°³ƒ\°ÎÅù“Dç¬ KÀ»$}Úuºó¾ƒ¬?ÙFDsêñuœ¢–ûVßw(B¾¼åÍó÷V́Åb£–•×qôz×ó6+—?1“wâ’ØÅ~*øƒåÏçe„M^…ªn@wתJ§̣.Í̉é̃–ûDª:₫cqt©z³‘¥gøŸÜçz· -U¬‘©<8Ÿë³ü#)-ƒ{̣Ă­¾Ai©ê\±y-!°w¿ŒY}„̀É–ôXê7ÅÁđnkçKÀ ̀Fvúg(KI ÛN’9§4»¤âÄ¡B₫Fùhvv…yøRC8ËEWW2?c}µ±ưûaŸaưø’Úg¸Q­x‚b]ÛcÓ~E9Ö9¤0RFD4>›:+=(s öqÑÀœ¤ÜwtÚĂm[»¨å<¾8³"\—ĂcÎXï`ÜơáF›yµºCÜørí̉PܪsmgS®ŸiÿTBŸ'‹vñök?qÎ'˜¬;-ú4^Ü‘üÜÀ‘&ÿl drª1C‰wDwP…Ú‹ú.hÜùưu„tJÜ×9RÔËo,eE¨â „E‚€m÷\Ö9ñ½Í•ÖZ%ÅWè£ O–Io±™ ±æŒ=2Ă=Qg9ˆÆÓ'>cn ̀ ØG® ¬`1L7~Â&ü…9Á6zv3̀C¶°CH…÷¢’åâl ăÈF×g‰ç-Nê"…}û’¥Đ ¿ÿé¸ƯQ¸D×UÇ*eÔ¢đBÇ~Jđ¢ÇmđÜp!ÖÏê%đ+NI¢ØiA¨ăŸ‡nÔW¯íOùá%iwIäÍ0Ä[›Œä9ï^<91N/¸ÊËÀ,¤[̀Áă<º,gScĐÜÄjEßƠj=Z9µĂô§]½=‚đ• øÍ²ºc¦süg呇Vz 9Û‹¡¬đ–oضU´K†ïà(j„œ0p̀0%$Üă9µóç’uyúí³âV¬œ… |Ä—ˆÖ™Üî2P̣)³M:bsw¯¯í¼mc=NÛ̀©@^Ưü†úƒt»í{#Âö2æFFØ,8¼$¿Y¼;åƒ(>¡¬ú.A>I˜íç<–ui«3CT9SÉ&V×Ü1±¶ê ¤ỹ´•DtK¯/¥½ˆº¿xj—¸2¦ƯPv m]‡ä[ÍA4?¬ˆÂĂR¼‡#ƒÅ«N³9_LÉ}T(q¶¯GáƯMh́ˆÙѧ¦YuéÛ·k^æÙ…­ |ưØ:u,‹̉R₫NÏo·₫±XXgQ¬…ËÚdt8É|÷đcA½t§${´ ˜A]̀êc Đ-ơ«ç̉ç€Ù(Ù§¢À*n&@‚rwÀ®îa–P[OøùâÚ+o2₫Ư\7Éù:µ^uaBƒß˜±R2Í­tå†Ă ›öܪ™ư ê©Ô æ¶̉5ß¾»”đÈđ#S?j7L¹$‡î¢IK3¢; ¼àSÀÃêsØaɃ̣!¢fE«S%p3øiù³id6a·KuÉÛ0U¢Ë™Yg¿”Ö*µ.£́Mï•Rª?g&O'ơ¸2Ôå‚sÊ»!A]icṇ̃ç”Ô¸É!Ʊ±₫à£è‚${r:\i_ó°î@tÛo»r“Ú&cf"́‘«~à5”üÀ'¢Ï]>ỏF(G #¾C+_oÔ&×°-9́n°̀ç «Ó•]¿ŒÎíL¿Í«Jô^]:Ă$Ư4â{œ+₫]^$ ´+ug!œˆguÄCK6ÖI3(hÖ©¦AÓ́zƯk~jÂp{€¬G*́Tåv£»J̣@·oºlR'ÎתŸyˆN¶&xƯ4¾á¡1q@ÿ¦óL–8 4\Ú É}üC$¨÷́`aÎgY$… p¢{ßÁØØÀßĺñƒr>ÛÖ«-¼̉©b«P·L›‘ÍÔ;”ñúđĂă&Í,^Up$Ücu† §K0“”JM‘́±È“i–g4éĂoî¥Rá W?ÁhY/[âœ́Ь&UOx́O™á÷kh!=P˜7GeĂ»••QƠt.Ï>ĂÔ•g̣—åd¬!P\‘ ấÑ₫-ˆ₫ææ@?ó₫'¡ OPç_v@µŸHH”:‹eÑY,P¥+”{¹P?¬÷aM|}ßP²ƒª+™̀jo †²e®[Ä B½W3çf×!¢83¸’¿‚¨©E₫₫ơ‹cị̂s^Ê•,¥RMÄr?é%§Ë i„QÄw§'X¥­́7zwMS¾”†tB¹ÀuưfN¥đºHó›6ÚGŸ™[©.(fVAnêg³*‡~a•üêfɦÍươ !ƨ;E uª¦Kôo²ưÄôUÄHŒ½± ®’Œ₫ƒB²´CĐp¸,e£Z’£oy „˜DOÙÖÍDáeAc­¾âªÚCCæf<­ư‹“ăw|¶I¿Bk½Y\ư,-W­¸÷  ]½©í̉æ"dÅíÖ%Ú!I½~l %ö̉„I·SM|̃¡Œ4ó^%åÚ ±i;ó̀₫ô¶‚è†BQ´̣;¡de¼)d,P–£ÀƯ©Í?VKlƠ\ %,eö(,èéj´÷S+(§]9Nÿ€Äẁj\Ñ.»Àg|¿QëÛDh/äÀØm(ØQ½"®‘V’}Ûæ„Ưl´:.ù‡=Ơ *ÎE (;Í|ôs1Øˈ@2"ơ‚&LÎ>ŒỤ̈&Tä¬= @îèL>`¿âµñ‰—ă'³Ă;Í©̀^é7ÊíÜ₫nà»4™Ụ́5ß¹&.ÔgØï²t‰…<°½q̣º¿Ä̉ùt£=û+ë(J¿ê=ÅH6\…×Nÿ¸æŸĂ"åc:$1ëâ¼.8E#óÏÇåG±èé½tÖ&¢0'‘Z¥å[©HÔ9¬¿IÛP̉Lºn˜;«™n¾MåỘí@[Oœ­“ Ù‚ç®&à(¯Dùñ’S·D IP*:‹°üø´L…B}e„öJÖÜ•®dÖÆ¯´*̉H‚e²âªhqœÊđƠ[œèpÜê•Peµ(Â=heÇj̀P¥œáđ¡'¥ / ´[©¯–ä¬XRº@0Ó'¹d}ñ”>́ú,¦-BΉ{pØ3_tc.ßúLîÿ[=ƒÚ£æx!q Àö„:U¶ êñç>­Ùmx…±&ŸÜ‚óEˆ¾²á¤ƠÿC“¥)¤tÑḱ§ñ2ÍU[›-Óz·aZĐ(Ók2nT ˜4^w%Ü3KĐó3̀‰{4Đ!₫ÄákjJ"nÛ¦pµ™­˜2£qo`†k/?zÀH÷.TùÛ"*=2c4̣qñ&ÄÉÂÁx2ơ¼åSOưËÆCb̀^BqƒÂư$t&¸ʃAZß̀»₫NÁúö_,V/Ơtyœ4~ù>2L₫+¿™ơœ¹/º{sRJ&¿½ƒ¶/MK%/‘ŸÛ³üˆóåG’B¤f÷Kqî)í©*•‹ÂùXϪƯk—¤GKèï8Î]‹¶[ ·ăºLËY/́W«~M>Tù^†Đư1·g‡̃Ÿ†!¨¯Ă¸ s$ĂđÓ2î2g±"vñß|·Ë”Hù 瘡Ü‚éÉY‰B$ư\·ZXË̉ƯÀAë¦s₫»·Ă— Úp°ec(D g"Rmg ›ÛµJ3Ê  ùÍ8²…+ó¦{KŸ̃ô Ô’~¸ OÁî^F¾Ç“ª:Ç:’%åÇä*¶¦ß{¯bJ‚œwÜ‚ư!.Ă)O2Ù~­kÎê{Öå14fÜ‹qyĐ\'¦Zjâ’*–N:jnôÀNeŒ®l€äZ&ƒïÙÁVdCº¢±‚)ƒµî÷¡t₫R̃h»´{fNLºjôÄƯÜ·¯›/BỌ̈&½ôã̀6Û8=…Â{UXêYí q›@FÑ\ys×í\qa]²s̃‰WihưvP“Ùµ?9r@8載K#ÑÍ=sè?«¬”U3a‚3‹u¦ûAÿÀëÍ„́4ÛÈèî̃<ê+€ˆd…à•Ú‰B—ú»Ïä>'Á¬»ˆc8XTOŒPƠÅ€14"ćº±„o³ Œk̉Gœ@,ÙÉK/tôñÉ[*²,ÆÍ W† ¸bÍKkv®»L-%ÓD̀ùœ‚HŒÙqRe¼[]Á&sQ³Ö»r>ê ÍthO&»–)Ũ¸F­nƒ–së˜ñî¨m·4œ’#G¡T.®ƠÍâ¯LjkÓÚ<‘B#ú¡¦aÛ†fÛû"M˜ß_!¶@²´Å1ȰpnĂèh/d›!Ù›ËOX¤à2ÆĂN̉ÍmÈ}ØÏ'G̉¨qÂ.m~Ử‡Óªqb(iù¯coT{ÄÇQN©Œ,:îvt®]„AÍôă•úÙÈưßu0=˜wfM®#BÓ[´ïjÂêC„98Q&ñƠÚü£~]*…M `Û0 ÁICË6Üø1l×<´Ptow!8½‘ÉÑömÇ:̀ÓÁ°ï_ZzS®nܳâ(_°£Ï8„ rVâ"¶´¿!`ũ.§-†ép¬•Á卑œ‹:ÇͶ°5ßä×µRDt9s?Ÿ†­6z­7 êLÇ9Í.÷>Ü‘«/åê¦Éw%&‹ù"]#ä:F́¨₫~»¶¦·$À ƒo¼¥¶Ô1¿§ êUïÙ“̀_'¤¶`¥¿³- –ÖAJl}~ĐV|x.8́´vÇÀ̃éhÚƯó/…@¼L½q˜µ{ÇÚÅåEÛ\V|ºéHA«[¼tµ€sM‹f%0ààeù65V’íÔxWÁÍ P ^]g3!3ÓÊÆíź„t“ éí˜r;NÇ‹Ÿ”¹¾ú¨N—FV[Å`’¥Qấ đé ’Z¥̀,˜©o‘1nø0b²¥>ûa?¢P®Î̃tRƠ±É%Hằå«¡}æÁè€È] ĂÏ«H…À˜.Ç(°9&oŒ@˜K ÍơÖSùÈjƠ<—_©óó$q_’g!óÀsăÆI8nâ…£—RcŒf2+ºDTÓó ¬Ö@*O"Ñ¿Fo!p6́STè^”J:Ϙ•—¿Î4Mø88 ú™~M9ÙÏ|…<1ƒAî F̉'hđ&¬ r‹\Sđ#K #̃¸jÍúzáúêƠÇ^¬cY9ÎÙỬ,†|§=OÇB^0°TÍ!e­q_"Sˆ4]ăίª²¯åSN€¥dk¡Ü8 !³Eº×Bthœă¯½ Ûªú?ß÷‡0ú­†˜G¤×“-1tä`,›x្®–·d;<$?­†65l¤…í\kë<ŸơÛ‚.äđc,ÆL¿_·?ü˱‡eÓ¼Sḳë¹́¹°¢è/·Rzs@ă§̉¤*HÈ{²u¼^‚2Đ•=m̃Åù\NÛoµ‚--Ø$†ˆßÿøR}Ç’·Y‰xú»̃NHßdR½Êr€×lö…₫µ»Đƒ¬]ó¯Ÿua¬³Đµ°!×8‡&¦¼‡MQú,‚ç„ăë[ÛÁăßœ3/¸ƒ¡}3)M65ºH"ưR…v®×E$ñôî7µê1ÂI¾ùΟ6ø;7ú][™åH¹}ơ z!Mß§½₫ú‹´Öƒ̀;H]_WüQ@¡»øọ̈¦»+OƠÚr•äj…•PÇưU „÷1ÆReÓ\É̀Ăˆe³]ăqTĐ´ÏŸ*8¤WékãÜäœo°ŒŸ­œ́ÑM|·D½ç‚Ås±‚ºDE8³ô,{đSPq=ØÏéÆ+£:Ă…´măĹ~©ö–'Æt‡âtëMh¢‰Ç,Ïư@_¸ä~ud[p *G¸́®ûû¼a3âÎơÀw€¹ǽP88Ç7;ṢÈ̃¿F¦’R`ë>ª ØLFí—£œæ­£e!á=.e_ yVRdxÁƯo•q”ÚøV}7 P4PÊ^ĂvÜ÷ÈømĂt×È!Æ¥ẵsŸMñQ‘L.6r‚Yb[¿9‰¦´À^‚=xäºÇª´meôAóqJ¸P@©₫C–©c¾£X‘Iơ`V½¿qŒM·äv1Î;KZ5ơ2̀a„$U«[9G׆qÑ`ßFÊî–®’ï°ª‘₫^ä¥ëTÇ£h?ü:;n<ƒ9Ä»º a&¤ j$!d2”åÁj¨óÔ‡aZ,G)ÑEèóL Üc kpI¶øb(Đ&¤{ơ2‚":$ <‰Å…œ/° ä÷½Đû`ûrç&ùË_QÛ-l|ätuᯋ{h„fÛª=.ööŒ|pû©Ô¶ưŒ£Îü*|¦ĐđU.“#±Đ Ÿæ0uâ臜́ºÅbI>œç¥çÏüª9G@'2;³ªxË¢d2z|±°»́äƯÛÙæÉÆâø*åQ¿¿a“b„SUg®ª…°‰³M^æ”Ă’ă¿{§½ÿTü™pĐ]1¸@Ä₫A¸©‰Œîíë̃ª™§iuîXÎpÙŸ»̣'?ùM-û₫lwªK!+gB1?Lư“¼cÍ÷°J,hÆ™+B#^^ö.‘Iv]̣LO³ÀÖŸ„|ÇWîaưî]}„_çH ̀ú¨7ă–²µ5äñÜX†₫Vă¿Á‡^Pª´^ C{‘á¤xt›öû'èܳY³b]çÏ mÜÂđ-Zîrùn´7Íc]{ƒ̣ŒÉøæàDj`O/­X/½ơ¼ơî~[¹-ưm'.s¶ £Gúœ¦l´]z(S”êŒÄæÄrÜÁiĐ®äA³‹̀½Å¹¹2ë1\,fẸ̈Çg~ⶤ̀xb¦ư~ÓèéôÇ6N*ăŒßP¬Y0'èuU%º|O Qˆ»ÛăúpϘ`=×ó3ềh'Gªœƒ×É¥jè9ëù̃ƒ#à6¡Ç&H^ÛRƯ˜]­t§> æˆb`6ë À¹ù¥ŸÁó ë'±n¾YL„^†»5±ë5“£ÓˆÎQ:Ưă]̉›Ö¢ç‚L=̣¹r˜2,ÈémƠÁf\̉·¦ÆOôÚ“,Ncyb̉"CHnüpÑÔ›Å×Ưp€§qưïnéaÀ•oUrÂs²K+,-R Û©–Z-èægüŸªœoh‡Gæéă=Bv!«-ß”œ/FZ>áÛýo:Ơirºdđ,mO]QÂ&̣‘ri?¤œü1I ËábÔRI¥»\IâÅ‚è¤x5Æ·)n.̣6̉j}%̃&²4„s6ŒBf¯'~Uo’ÅCyLétR9l¥Ơ ¨°èQ 12^˸¬³,ê߈đơ»g ́¯í µƯî®̣çØS·¥™™b¼Jc–Üv/ø)wŒ—ù ÊÔ7pØmë‚ĐîñÎAˆ™Ă·œ̣f&A.YĂeå’#ó¶ö.<³§QŸ Å\£K"mï˜eî±fà$¢—̉@ q̣k& ›¹~üjćƯ}üÈpW7ϲTtz‘ß2U§«*G4̃aV\Nw Ê+:<,›^ V_»Mœ‚ äs£ÿçÎgq¤úÈ£ä1mÿ́à9w_Ik|VÀ<Ö(eUÙÔœÀơU cô¾»ÑQØ.¿®&Tf»ßÇDsµÜN,ăp»̉÷Y›Â]¾=*Ÿ"6¤¾́˜°íRCŒ~.ƯáĐx—Ûí­O^Ẳ8 ̣~}+m‘÷LFèmy!¦ÉFî¿ĵ›~„´×_6ưg Æ%œÛv)ë¨đåc0©p5tŒ Wg. Ÿ•øRƨ ±±Àú̉(iQ˽ô·Ëň{f¹!Á̉?}Âbaë/i à*Rơ’鼯¬Ỡ+~oƒˆóßóËÅ̃Ú‰g/?o¯¿̀úb“1¢ÆÔ~µ—á…}9L&tˆÄy\ñi\ë³—D9¢íè”Ë(Ư\tLDuéb1s:Q̣.Ó¸¦WuÑ–ÅrH(á¬âƯH狨‹wñù½đØ¡¸:̀*w1œÂ¾y^ûQ{FùÂÚ1„ wu&Z!ǵ8Tb_²k.®‚åσ0=ñÄñÈ«Sg¤““–3«#¨HC7]×qhNaV3ÅÍ«PZ#ê4U ’°7´ơ.V¼3}y‡‚)ï϶ñ$jxͯ'†ŸÉ]AÇóc÷÷¿̉¬'AsÛƯQ”ç}]%¿¨g¢ 2¥¿HŒñ©foe±L]ˆ ÷ >Œ'0&M₫Bëа˜»Ø₫‘ñˆ,Æ‘kÎIne_BË y%½W^›qäç²7›éă |LÂûÄ%*Œ{m¡euƯƯƯÈ ‹ưRERx÷«µIæfLs¼¹ôßĂ»—å—¬eĂĂù[Vxễ—¸œTOÉt₫…kƯ ¶Ü₫Rt´uY ÷²AØTñÉÑáơBj1©8O^”Sº"Ăñ9ºL__äˆ[Ô)jYbM}áVĂ÷”Ñä˹`WÊ}X-Ñfú{…aϺ\<Øu˜ơAÚ’SWå÷!üNN¬Ø ¦¨ø‡o­Î䟱D€ozÔ­…–üc$ói5ƒÖ º7>j„Ͷ–bÙ’₫nj‚àϬŸ¶TÓ|6o|cïO%¼§‡x´!¼¦©¾´ôóÜ“Ç|ǹR$[tH*_Ç~¾™ă£̀@₫«§¬‹ÏeÆ¿Ø*"`äƠ;I ¯KT»±>¬B` 5Iw¥éÀl¥Rz•Ô7¶¡dÉñ»RŸD‘åM8·Ú–ơ„̃É17]fAêÔ!AÄ„ö#ÖN¿ëEH‹ CÔ#F/¨†Äf`˜¶tœ Ÿ^>?É“\ÖNØè”"”àṿ‰• xưŸÁ.ä"r]U6ăvGÑó;Ô˜m•b±¬Á›ï¬çaÖM„Y0±(ÿ’ÁN·k‰s9iEé;^I(±¤yêĐ)¨ÇƠ[ï ²ü‘Ÿ %‹¡ q́¤¦¾ e„®\ܬyÙđ–Tƒ´]{²·x̉áz„]Ù†›=¥ưµ–³Û_Äy¤åB~ÁÜ„¢̀e%ĂÚWîj–©#$î;"ß‹Çs³̉µ®‘¶ĂÔ-jÓ½‚@l̃̀äL¨bl挵8hÑ e?¦{¸₫_I¹í |s^xªé/Éÿ°4§ùü¾™³ráf;ưvE¼Oóë_|ª_ßPÅç]¯³MH'¹”™†đ3£ZƠÛúT@™0„ ÆüKï¢ü±³Å–3»'Ó;KyBN”î…¸Wtw¦¶CÿËÁơơú¶åŸ<;HXih/A)yÊc:ëÏ gBT_&±/§#œjxJMàEw¨/•F(¿Ïh ÏRĂÀfÑ#—yáYIr¤éZvˆVù§…^́*+“Piæơö¹vL«Ç£â–Ix•Ư ûÏÀy=» ,ër½œ[ăCêo3ÚM#í&F-ù‹}°Tï*¶ßÚKM^45QjâRËĐŒÉE·—<;ê³ùO'÷rƒ[¾ÜFpO{Ø„q‹ô±f̉IôHÍù¸øP̀D‚—¡¯V&¢·±„Ä«EÑürwÄQ<̃s#3ÑcBñ¦Ø÷uz9=Ñäs-¦±â‰ô7D~Q!V—‚å%¦°m%ésµ˜=¥ư”N—Ñ]“4h52z„²x“ÓOÄ”)®²S j‚ÓĐK_Â8r¸FüéqZÂ_£t[-‹ß%F̉Ư‰ÍÆd‹Ïy¸Ơéœ˱>ư1éî •Đ»UºÆ·­açê†̀vå‰û$Ơzjoưăĺn™$ê¼"óÁí×1çhÂ}Đ9¤5 í#ñ§„Öù´́R]¿æç<ë32"%c¿À#Ç×µ́ÂPœ~>Ïđ€¬âê4Î+k›¥ë̉^ˆ-—WY(gí÷ùjNBƠ%‡^‡₫±oZƠ+?'ëÓẸ́Â鳯¯đÛáđAB@¶°ñôê­ŸÔt`cz.ë4¢;́,©>’®TT=±x|;nlĂ ̉ÛgŸ…$ñ—lYë‡ú/µñ1e{=‰©« xrÏ_İ%9¡<}&”%{ñlre1<î7i4óÊ›U©đÇÔÔôÄĂs]YÍ.ø6\zD”8Ồ„ y‚nƯ:'!½Í–E–‘G€Ñ»ºX»5Â:El±.'ÉÚÖßKJ½Ï1j"̃ùÓ̀KcẠ́.a[§’ÖûuèMíkù³ç,G Ybœ̉^ơbƒ7ÏG„m8‰ØUb fà 9½Ô|è;ƒ w‡Éü<~½ÊÑÙùÈÜ$µ¤ăüư¾ ÿ[ŒVƯúÅ%È‘É~ÜÈhíânQ.äA $¡yƯ±j₫e…ÂÑM·°kÊMÖÙèĐ?æ/ÍÂxÛ»HÀ~8Đº´‰ƠHă,V8¥™08È~”>:ê›̉A]R)ç7’œ¥£8ÏW“NWBÖh4¯ÄÆă›rÙ7ŒX ¢}AM?:Ug-3œ”̉vb¬Ÿ@zêvŒơ5ĂơXÉ÷¦DÙPT€¤'âÏ|–̉K{¹©kZIlGÖr‹®’á&v1âKâ…Ø%!pṼq3¥®ç(xÇT[µ ³gu~‘¡G‰°!́ <̀¨áy¬s‚6ÄĂËuF2¬–°‹$Ăö È—Êk!3fpjUÍE_vÇTPÁỐ—Ú̀>æ~đAW¦¤> ˜Ä§;뉒÷÷c†ư[ǹr¶©>1®Đíô%lˆ§c:§k ñdÅN±@B8NpT@eºĐq'âxÁÇ%ús†f©w-´GĂ#ŒPù'º€ q›¾çä’–©!¨ZÅfÛÅÀ‚A‰› ‡²– Û:§d9w¥‹)¨ØK_ªs¹¶€§±®—!-¸++¤,©2í…÷—Áûö{îs”3 Ô†8l–m=ö+}ßÉB¤×>{ZÅă¯oV¾Ó`œD́KÖ<‹Ñ!ü ;Ï¥kÇÔƯó[¡PªN„Ư¿‡¿ĐP•ÏêŒÉ”ú,"ˆ̃¬QV”°î3(æ¥ú{A(UÙK|̃½C)×C WeKÑbEï_bjR¼“I/”½pM™”?° pÿ5ïƠ›ó|z±Ẻ‘7qåní;ÛØóCơ}uù. x½kQ|x¯Kˆq­2S­N‡£3₫d#]$hö́ º̀Di•RưUµî'‘k¿~¹ -»†́µ$ Ù]‘Gç·‰‡:Ͱ3¤”Üg¾Ná½CBû”Ư5ª¾O‡¼0Â'Vï̀œ;ܼŒÅ°è(&ßJB9ePOèS1AÏëJ¸Ë&5Å£Z{dÙzĐ µ^¼”æ>ø©A¹¼ á#êÅL9&¸%[Vă/á¬5ÚmuC£¶@Ëüœ‰-&]Ö%ÙÎÉ%×bgúc‚1ỗù”ÛYfcÍ?̀×Ù̀+,‰)·è3́¡Í(ËeÑ7œ}Œ.ʳqQN{ê¢ùkrö—}¬Øj.6¼G‚Ơ¬îưŸ̉̃×ÂGƯŸuü¥’Ç„ær!ë'ÖS Ù¯qx,ôq²¶Œ½Í‚̃=)ïi¥Ëo€³yA·<ŒØ§xë‰ø­Û‚¶C]øaU+ÄË–ĐÅ}HJ釿&ƯĂ˜\á‚4ĐuçöëƠ_£ÀÚwÄßß¿\¡›v¤ÅÚé0uiw¸ƯZ0z½m85u\¦l2mÙiÊÄ‘58È©9úR{Áy‹ă”ùÑËƯÔS—T¿ém+Ză^êđç·9ÛOẉ´¥‰2f+̉»b“]ob’×ÓͦĂ>%] ±¥2ú’R’â5»´ÚĂX‡öÛ3%zó™®´ú¨0̃Ê´ ÔÉ)^¸ˆ\MªÇ]@S3µ=,è₫´¥C‹roÅ3tĂ¡Ù˜ß—àA„3t<ÈhËÅ"ˆ)gxB÷½0ù±~ºOˆrôưÍ:»û,¡®R*bD{srF‡ü͵°ïỤ̀áâÚ&[¬I¹ăé÷Œ ’,ôPÙ\H©W‚Ơ¥ĂÖæûƒ‹ÙÉ]¿¨æÛx/ôG}® ˜Zºm|‰­j³Ö r°Æ"å'Ÿ›rQbⲄœ¶­T¸ÑAỜœhˆƯq1Oe³Y©rÄû£³^¥5VØ·ß#G¯d¶.tĐÎÅäḱ׸Øtñw">,Z,ƒơ9đưï'#d äô,˜·ñ cñdÖæ‚ïd¢GVOÅîYJË…EyÙ£p’đtĐK 5mÁ3‹}CÍƠ-¦₫ï#‹’…M½àá¥i¹˜)EK³{ ỔÏĐÀL,PÓ¶ÑI =Dç-è ä``Xéx‹6ÄüÁ—>!û‡L‹F]YÆQ23<`lè¿ï ga:ƒe`}3Ê+ûo÷´®¤"}¨¸/FtR6¯ÔôvÏÀZđú 8«ÏäWG‡Ỳ:S”6-07,́%³Ke•2ñÀûau?à–,VºØÜ:ø‡iÍ\K¢{ƠNp&Áa²ÑåwªªNë¸}©ÿƯsG½Æơ­ưÖ÷å$Ÿ´]øå[‚8*ôî—¾8¥#yi÷f\±ji>çWN/_êgè¤?¢´ñư‹̉É3¦¥üä<ÿ§aio?Xơ€–¦MİŸD¼rc…)@Ÿ¡ÁÊ ¨z÷l}̣́ObØ [Ø‚SцưåŸÍ·ơNè‘)₫=ă„%Úh$¡]m‘=ÓaƯ,M]øœîDK̉̃*Ø₫E:!Ÿ‡ [yMKÔ¸F×’œd¼$F\ç Á1 0aÈYu6‰ß‚”‹"‘W+¿zs &£Ûƒ›Uá´̃&5z’ƯÙ¯íKcÁ̉uq©₫đ’+¾AuÍ©¾à̃ÍdD÷J¥½¶#A×<˜:6ö'ZẈ ₫87©Ö05®g…¥₫÷×ÏøÄĐnH‚N±>4ƒx[ yN-_d¤ä ¾ÁGk&­Q.|½[¨K$l¼$…{ù¿"*5Ê!qđSÄNKôOơeKk×­îç1>“Éücßll±!·2 d398á´̃Â)å-«¼e-ù9ƒàxô[Y¢z‹5(@_ÉœL} ·7ơÑQ`sy»l-wJw 6»"/hƯG³«°̀Aï/@Ă’¬ά»‰®o=4âWt cô‰?ª~;ä³›¶}تÁë¤=î™3E¿ô«Aól¤qÜú%~ óË¡Ơ2éhǨAƯ:’S=Đ$Ụ̀9¡dÍ\¹`>Ơ\¤ºŸI¥»³Uíf}X¿öÊ(ŵ³A´®1é’3ÈeA0%K­µë¨écÜú5̉]ÈQÍƠ}…̣ª̃\{Ø«6¥Áˆ‚È™₫´1• ˜WåkºXKújmÀ_îï¤æî_̃¡$fk†D?÷m 7eÚ.” >ä`đ.—}U®¸8Fç’a‰i!ưá‡apw‹ƒwç8hÂ’̃§àK sRđŸyX¯lçu%®fér~̃!â.U-¹qI˜¼r´éü¶µ]́̃ß äroñ»®‚ #”ÙMX,¥Ë1^ ¿ÊØ Êºg4µÆ5®WcàFQ-JXƒí°ܺ7ƒz  Fá¢́ÈÄ ‚Æè¬ÔzlÀV›ëÙ=ˆxŒ̉„½ư‘©X/[¥øÑ!SÑûùkØr·w~N‚]8ªU·DC‹úc—äèg–\kr"ºø¥¨z)[®Èđˆ°Ml̃{üƒ«M]%Ưê­̀ÄiáTïxFó́L­@ªrê´›j5 W™ÚÖ«{¢y ¹¬c[ñ•=ˆg#ùèm „%;Û¥¤̣îĂàWøsFÙ-T¬“(†t\Aáe–À/A’¼ <̉¿Ês”$QO ĨßçGQQø̉À'áH+Ri 8°aüMÚô—ßáƒđ³]±ˆ>)¢™:“wüvó»íVE#G…âKëáöÙÚ&½¨ËàŸ&Îdü¬H@̀Væ{•Ư"ƒqµĂ¹ÀÆ̉áÑ@C̣Œw ¬ñ;N₫"å€1¿Đ=ốÇĐ DmŒßÖú­³Ö®Ÿ®{ú¦kaă—v‘zYÜăđâđÍ ¾~ËJØDlCiæßô£ơKˆ¡* ?Ù€¯"ÖóĐç «đ À¢‡º}%Á´Yto=ñÇ$¿ă ^èơo]7U9|2o“­±ZíÆ’¡ ú>øË_X))Ë  h0$±Pơ}:/§³…Ó7…Ÿ½æá®¯w¤âÿ-!’Úi/‰IœƯØbTVÏö!ưÓù¼)·Ö₫½?@DL†lr”–…ÊÙ†b̉@G<C×SU üđvú(FbQă ¾‚•tmÍPøâGE^'?/øºăå¼f†̃ƒy+?ô’^+Q*é›zwÜô§]4ø´¢hỌ́-~t+è9“Ư®ëÑÙÛ[ zĐÛpnÊ3jÆ"äă5̉éY(S¨,k®vƯmu‘9è#X™ư½° ä9Áö’ÎĂ€®  “³\#Æ™€Ạ̊H ¼‚YÍûád5HÏD¼b̉Ô¿Ô£hL`‰y"ư*–iH3â±4e)¯<ÄÁΔỠû² ŸZøÎn(}³‡?ºE‡Ê;ơß7«_ÏÍU{ắé£w]>[–Ô-Μ~cå~) ¿ÉóLz>áÔÂ3> î6?/×ÂP“}pMŸ½v\ h­uÏëé¬,îù²'Æäöº%Be_$n©á̀JŒ‚'› 'µ¡ímæeÎrü ·‰5„:´FHµ@f”OI¼ñ˜¾¨hYĂéHyư)¯Ól¼¯Më\-$LCi0:Ơ=s`¹+4ỒÓˆCzÅ%¢v΀oJLMnë:áárp„k½‘PŸ,}~àô͸œƒØeeW¦ˆ¿ÔPæ‘v´5øc{öºD—&öÑ[7硼‰ífs̀Ü刀¡ù‘~qø~c}}*¬yà-‡´7-j´àvô8⢜LäyOüöÓv½€íU¹̀âÈKF+hü>ưƠw€‚êyS¤hQïPePœŒ}m¿‘?̉Ÿ\AIAv[ĂøŒºÆB$€‰=̣½#‰Cü“®Úf—ù³¢´çç×…ÄñÈÏ\—gH®•ßù{ư=:Ơ&ÇFúÓ„„˜¾øß?½áX³íŸ€¤Ä[_¹¬L8RU¬–.ä™À…¯"`£¯kÎæ×F±¼‘³Ă#—ö'î£D†aˆ&[|ô“±îUç” đÑ4·­ơ£›×¥kdṂƒÿú}ª¢ẢđÚà£M 4®ô+"ßüÈ%[¨Ñj;›cîÎ;¨‰5 ¬jèQư¨ÚÈX₫lÖ́™ăS(ŸnfwZ₫Ö±Égw ³®ú¾…ªaY”ëLÚ6÷°ZơUƒº×À̀¢èUÛpܱÅÅ/²Ä˜‚‘®c–Ä}©b&DÛàqy’̣È̀í{©ˆ¯Ä ç²–?´æm«®ˆ7?ºà¶¹e•›ư^̃̉¿ÛÁ9D‘ª(.øjâ竼T9o6½-•,}H2Sù̉Û̉L((ôƠeMU+ÿÖờÚqQƒ6ÅÆTGp4½̉çC…PÀEáÚpơ—µ MA!Y®AEWÛ#ÉñˆˆÜ:˜‚¤PMg í–] :£OC§î«‚n¢ÿV:W=óL ~§î9 ¥DénSö₫·t„€4ơhVU/& œ¯ ÉpEÛß?Ëië®éƠ4#•[KÅ j=4Ư> stream xÚ­Ty\L{/å¾I¥DÖ®Ÿ­S3I5ekQJ«)E”ÓœSsjæœqÎ5í¡k‰‹T…$ÑE ¡¨Pöyqu[”®2’¥…²Ü3ăZ®÷ưĂûyư3g~Ï÷ù}Ÿåû <ÿĂ |ñ÷z"Ó[ˆDˆøñ-́NAtíXƯÛÂÚÉ₫ ¤+ƒÀ¾(ÅåpˆO7GnÀ`„à£B‹(ï`XY±¿Áüy(7 “uÛÚF!üm´.̣,–8û™}ư 28|z–BY6¶}iƠ)±̀¿«̣ÂáÏ•“â,;&{:½\l&ưĂb&ü—¸r&Ö—³Dh f̉;Ç¢Ye_¦,øgXö Í<Œ‹Ă²A±a ‚€Äªt<ú4ıè)‡‘Ù¦đ€¥†Sô Q ² S•í;› ,¹[ư$ó IºṂû3-;Ûà]+S²}_L}̃\ư<ª@…§Ø¾b„CêÉ9"Ê/cœ©iÛ¬ge0rn½ö¾­ư£®{‡,₫µl2lKW/ =g½amkâ¹¢G¸₫!"Ûñ¡ÆÁ3%AS-«uÑ}Nï¯Ûªz Ŕ‡m·{Ó$J̃(5 ®t4ÏQê²Đ>È\àÙƯØ̉ÛzÈJϺp©yi©DÊA‚Ϩ±»3₫¸XZ¹*DrÆ?y*k@uñÖ)yaj^+ƒî{äƠHêŒp·‘ÚáÁM­ûÆŕN¥J×ÏÊhƯ”Đñ¾BưüÊkÈưågtâ{‡k•teǼŒº´÷'±"szîÑ–s”Çÿ9âéQI®u}Í,‡5BNḳft>tÛ_–̃§]°„:¶A=rzÁêú¡ư'O§µeÏWÉØsâ]Ăè—øÏjmĂÔ÷H.đo¸<ëÓD³†ÑZËɆ雪÷ø:.2©ŒËÛæ3/wΕœëË”"Ctј₫sÇy¾± i^ïäÎó:’;¯]Åôu˜Û ®Ös35bYÉÆ{̉øª́ ÚđPw‚ UÖŸß½oCP´°Q°Û )`]Ô0öeÍS̉í̉Œc>9¼Y e Ûk2kËS›P}ÍñÅ;µ&U.‹Ăæbư±̃ÈÓAû ‚±©Ú¡Ë­®ơxÆá°ïmÓ4_†úŸV^ú[R”§Đ À”´KÑ# *ÖP˜½TR~÷ÎI}˜5ä¾+ƯEcø¤Û³T^oÛjü¯KŒºqYZµcÆ—ÇÛo9¬̉ëă10±u{¶ŸĂ ·UĂ?k8:í‘Aäth“aí²î­7‹ë6óŒÎj¸ªƯ+Hä- wŃ̉h ÏúPălí]Îﲫhîxíî6íÊ₫×ISiê¿?v5ßTåzH‡.wùåâQZu°RÇhé¼¢]¬ ®I^ ÊÛưr̉½ÎF*̃Ë‘¼¯¿ăLQ'±‹-¼Dºß—œ_ưÔ+®iĐ©ëÓ±µ±êÁ˜'¸aâ”LË“éF/ûm¶Æ¿qOYĐäĂ2|o†®ư ?Î=Z endstream endobj 923 0 obj << /Length1 1626 /Length2 6002 /Length3 0 /Length 6824 /Filter /FlateDecode >> stream xÚ­TeX”í¶¦ER‘”p’–îFéfbf˜iDº¤»Aº[JiI %$¥Ïèwö̃çúÎ9ÎÙ?̃ëzŸ÷º×º×ó°1ëèóȃáÖ8 Í#ÀË/Đ‚:Y» ôàNZpq M ÀØ…‰ØØ‘  ‡)Ñ €1 P‚€‚‚qqq"6€"á„ÚÚ¡†zÆœÜÜÿeù°öø‡“‰‚ÚÂ0?®G8 Cc ₫ωúmØ@!Em“§ZªU-C€*A:.ÖP@ ‚ÀPN€  püëÁa`èïÖP¼,y@! (& â‚ ~»¤…Âü (€-Ccf€† 0£ ø7ŒƯ₫‡ ÇD8a|08 !¡4SUGIå/h; úwmăÀm0‘`8ÈåwK|Œ „ÂP4Äư»–5†¢@Lm  ưCĂ…Ù₫‹Ácb D‚!(ƒư{:ÿêđ_º"²á¢₫ÉFAmx‰15AhLm[(Œˆï÷®<…ÙÀüÙÁ.ˆø\!È?âø½3œ@0æèClˆø´àhLIÇÿMẽŸÈÿ‰ÿ-ÿ[äưÿ‰ûw₫Ë%₫ÿ̃ç¿C«¸8:j0 đ×À<2@óÎ4¿§ÿ–t‚:züoI6†üÅVî₫»ï)ˆ‰<̀# ?/ÿ_F(Jêë@Ñ ;€ Đ3¯?vC‚t„ ]ÿŒÀ#ÀÏÿ7Ÿäû-€đ_. üwú©₫ç3TRSW2à₫×?:˜%@x 0Ü₫³M8øŸ‡ß0 pw€€ˆ€Gè‰æîa‰‹đ¿üJ₫ø×YˆFBƯf˜¾ù₫tÿŸß¿NæƒQ†ààßk£ÂÀ˜Mû§á·ä‚Db₫sù1]ÿăügç!wˆh~’ ²ONKAWÑdơ(™uw àö#j ̣sư*à¾É¯WÅK­.+ƒyëF%®›=>î ®ÖŸqm tR;²w$Bös^²pvå̃]zÔ*ʽÀgQD²káơ}ZcÏT„ßhăóˆ®Eá%ăh«’đûON?×\?JÖS™(©&ªíNEŨÎî£ø­Ÿ§́ïûûz;ñ»Öé¹3£o³Ii|v˜ß =¬Çµ küsWQ–á  ÂôÙ¼"o,¸¾%UÓ¦|‰Ë7¯‡»ü9ïç•§?œ4Œ̀#œN •t]*·&«Uñß¿ÿȈU“Ê\‚nÓù3²2¸yJ4.Ê/̀W…ÿL¨¬ª‰#Ô¶ó^è6ϼbu÷'1ƒ̉‚ cù₫ƠÖ>ÂZ—2Ö©áöă®ml …Wâ{x&©s₫äÖ ÏßJ>ˆT®ku¡ưÀî’œ)¡‘-¾àÉq°<`ƯŸŒ›MA w,Ç9ø<ª|ƠZ‚f àôãår–OÅøÖ‚ưm"Qè eÊÆrâócÛ2¥iú›Ù@:̃á3l†é‚ î½×*äRÁË₫ eiÆ·pR]Ä0—¸í¢0ÀLŒ"̃ÂY½‘`\¼¾‹¦g‰:û3ôQ^Rrö^Ṛ6Ó4o•j úBó‰6t†"!ûë¢A€‡¿‹tZ;C¯v¾Èy|r¹NIȘömÓ·MR®É[ÄWí¸®̀ÎÏå^»?aGz¨Á/Ăó‰QeêXn¹I=9/¨Å̃m‹¥˜dÇñ› s5Æ÷U’1öS§*`¥û’‘¼¥FO-­^L:&œœŸv.̣å̃BÇd vZmHnwĂ:Fdæ§a[+§Xæ×¦QDZỡé1•+6¢ªÄ~Ă«¥|Jù½²5iÛ‡áv\Á–×6|ˆ¤²!§ÔÂăÚƯúĂ¥}Aưû?‡ZÁ/€Ê½é§‚˜¬¬kï¸q»‰gwÓŒSµ¸“ÇfÎơc8­÷…Üấé¥e¹ª?î³Ê5u(è/đm£2E¾ï˜OÅ=,…N±ô ưVo'aĂaKé&joƒÍ„®̀Îkpgâ¯nÖºi;,¨ẈÁ/cy¬~ŒJ™%ñẵ$Ù¡ŸmÀ‰Kd:oÍù¸ă¿ ߦ8 )¶gĐY¯®o­tWÅjĐ”`±µmà¦zÜeWÛƒ‡ơ°O–‰̣û"ؽ$¥©Ø ó‚hçư&Ânh}ï: Ôơj™Ä­ßu¹›yvéC^¢n©¨̉"lƠyOÈd–SDù;²nêôƠ°Çi3û”'âéæt³¥9ë(ư¦C;OésâŒ~r¼…æE"-^mÍg¨7ÍH|9̃œ‘¨®¬H²– ÔÎĐQm$¼†Hă÷¬IÜƯ#D×›̣‰wĐïHØ·ûº>‰OăC¢½çÇ,A¶Ă~ư„¼±ÙŒ-.Gb_–™^B'Eơ’5ÔÿbơCHZºự/ú›O-|»…Th_vÂ₫¨¤)$ é×Ï^UQܰ“pôđ >Ưä§û#Àº›bûB°Ê[ÚÙB,́́l¡}§Œ±Eé<@Üđ¢ÜºØùue×׬>Wد±_F)ºÍ”Ø’‘SI.₫ØÑÅ[T6̃’ÄĂ,L/̀ ô)å2¨¦L3Ûû|àû lñ#Q… F»¡÷` ùĆóYĂÅû¾g„boÜ_5đü˜ƠĐạ̀¡¯Ư¥Öấ®2¦¥Åé́ FbM2¯6Úñ7̃öé]̣çé¯×i”ˆĂRù& ›9"ÑđÙ Nơn‹¯ÊOSƒÈIóáTI}–á÷®À”yi"‹Ö´MË¢¹ÙS:–Ó3§+¦`¯gX¥m6^}£¸C÷fûnÊí©¸àr7r‹ª_àrç‰ó)bª>ÊEÓ[©¼Sgá2óf̃Ao—̃J—X·±Ú®Näv̀fE˼φ °œºf‡°< c?’A>ÇÏêU¥RL¯…èÜJ `ñ¨~N߆ØQ¢+̀‰fëÅ?ÚᤠÓ·̃^°Ë½¿́ă©́•Đßf%57_Øn£ÇNâ¼ư½(ÈT•HÇKZ¢MÏL8t»÷.¥ªEæzoë'™ªø\iC~¡åhÿ.…¯·ØïéĐÔ¦̃¿(°~›đJ}]ºă‚ĉrßư2¨ºØûHơÅ“£³M-̃ƯƠ-®ø®™!‹½üs~*Fú„­–ab¼<¡yÚ·̉ ­ù\«,ïS—$›ÍA§,'pÀƒ£æ¸̀ËÂÀb©Ô)Ñc$”`Wúytüä…Ö¯” £ê“ñ6%æh’¡»+bäIO8mÆ7,ƠếÇâ|UiŸÔUú>m₫ÆÎæ"iÓƒhøÎ_mQܦù`RƠÍte@́xÏæ´Ü₫ê~¢׫ Zu™yœ›b̃k6%‘S±dgPÛệưüé¢bj†<¸>‰ñT¯¡›•âT‹2Ó‘¯ză£Ø±}¾ăïÆ+ËÔ Bb¥©O¯¶Đ±AÇ₫æ.Á›¾=”¸̃>÷~L¨„H5©ư¬vLw3ó~Đơiâñ§qv̉ö`lm²TX [w‘•„¸Rªơ£od­y?09„ÁøE(ó½5•̣–hưà®™BxØn/Nßôưt+́=êªmn›ñê$ư¯vÂN“?%T˜ÝFb(Tù„óiG”¿œî'"Ơ#v´Ÿ¥˜¬*ơÔÄ:“ ’g}OUăfŒÜbڱsäđOXó퓌ç…Ï̃f)t ‘ó”¬pƠ•ôù*‹Œkä:îéÖ3Ố™q”“ơؽRÈÊ@,–äÖbmmX+®1A‹ƯïˆL;UDÖÍ˵̃Ó»›×ß:° TyäÄeL[2&R'Ơ·ÆsZ&—ƯZiîSk0ÆƠè¢y…—´{_¼H}ætÁ[±¸2>LjH}JuƯçVø‘»q¦ª¯½W#®­¬BѨ²Ïm´41k¡$Ơ·Ö9=±h: Q<íĂïhêËîÇ-VMÁ;`s4%¦x÷CYh°ï›½·r„Ï‚Ê ©̣Ä×ó ª;]Múu«¡ĂáDZwcÔß$fk#[±%èm²–zîLËéªơÁ{û¦`ôcu¬cî*.ó\ÆZógHÅ ơ×+¡|º­Ø­̃r~Ù_©̃­ß×Û2Ua"Ûhº#4tI²0gî‘•ÉUù¨ii˦‹V́°©ªÀ'$)û3ïú21bzAMøG[¶î%œ₫›†̣$g†Ÿ̉NÖ§b\ÇwfánŸÛŸwé=ÅBE¼ŒÔéby-K•±x]·́\uǗ₫ƠÎç {̃ëđy!Zveµé–hë@‹hTöË;£JƠËd1#,7 ¢¡ÍIË·D"Óüºé\@‰· J+OO{§97à¡›I—ûƒXB” ·>éÁY«_u¸DŸ7¸¯Pqù¨f®ĂDÂÅ#JDS«9ÙVV₫ö—®mô¦ øç@äO³₫W¦„=SoJ⣔(GWP]°’èl‚.™Ù¹ª…Ÿn?ÿ£êÆ9°'-.‡¶¤ÎÎ#tẮmÎsÛ×4ûÆöFµ÷{«Cµôƒ’Rl¯ ºüƒH́›e>¸’ ²0ªÖ"³|³Â¶oÎÓñ­”³E²~ÆÂNWêF¹Öă,̃D" 7$j覆­ë̃Y'Ë́¦:®¨đ­äăy½wF€ĐÍễ̀œËµU¹µk’­2QÑĂ_aƠ'n–5¯kø P2W1ZévĐ;—ø0LâW èÑ=Û„á ms»µ₫aÆg‘9ă_‡æô)*̃|}™Qm”ø!µˆ»yÀ”8 ­Mœÿ†\¦8ó8â9 ŸÈ¦\5êdgÑ1/ë#„Ñâ&<¢2퟿"W·½|©fÑ\¿yg¶ ¶÷•–½~Îe¯Ùî)KÅ̉ƠTq²Ư}Hcr|H!‡ | 1NGÙÉØ:ƠÂ¥!,T.ôï·) ¬›—ÖîxZ®`16X÷˜y—1-ÉĂ(cË÷‹́Ưư=‹Çă× ₫ÖƠ%á1Đ¥×¸ZÁ‰¼¡”eªüØ…»ừµåO|Ó{»s½…’²ï.l,úoÙ®záh†<₫Æf¦¢~~EYúF‹XüiK5J)kÜ’Ç•̃Ö”Ă~’“ ^l§B§|_ú6ǯ‡AÖV­–Æ ^q+“´Ït ”™uË©GJ=§£âJÜï­pÓë§›~‹o£ˆ~bnÄ{øơ£D•QóÎ&Ôi}-=Û4:6U½wÛà‹ÜeÀZîÄÜÚ̉aêè#‹aIŚ“uccUÅÈS}"©4j̉‡–9®iBBå’âÜøÄ ríEëṭy—U¼ÖÄnl¸¨91é3k¶ë«ÁóéP½U¥3Iy ñ×Ḅ- kP] ›– 4ù¢H‹–Ê.‡XnטÍÉBÑól¬ yD€×cw/*9 đ5A6›Ø9đa¬Ç̣1+°́5…ÑÖŸJ(x̃4<‡äȱsBh%·0,’OÎ(7ÀÒMhOưíÙ`•C€ÎèGóé$9£×ơoªÂ‰°›r‰ă¯Â!wmôl«\zç,‹&:d̉JUSe3"n%d÷¼±´îÒR®¶̀³‰íÊQD”uXpsúËÙ^6ÙPÛØiÜ·ü’×0GÜåú-ôv#!6̣"ñ¢÷ >́Ù§´gF})áâXAgÜđ¶^y]“̃ÜO\ÁT¬6£ßâ…TTÔ)ËƯ²‚2lïÀ©ÜJd(zíăgTÊZ‹Ú§,A/\u æ­êâ9VgEå­Œ¦è€”g…¯||E¹đ₫´¿À|ÂĂdˆ€¿́æĂ¦Ä;×÷‹öÜ„ö?¿X0Nz*`FÙ}íc dˆÿüƒêTŸƯ çˈ€p0*´® sfí£âg˜‹àăJê†ØHÆ]àTÄø"Hø̣™ûf`~“ơdR¿m®æ-q́Lài‰-ó̀Öœ—’çfÿÆ…ßr^Ÿng2Y@9ăÜ퉸Ëíṛ‹=½ƯĂ}ăÙy|“¶‡&ß2~è¼̃6aÁ²²ëàh„W”*–ÿí鈴üÊU/©?ÎÔÚ§?đ;qsi`8̀rQf§Zk’óZëùf9ŒûÚCâEú4/Lfˆ®é˜öï,Àªưxö r,¤sZO±µ q”`ô:• ‘/¥[Q(®*•ưä̀\̉¯nÑ™héCDùî—¨‰2®\`èëoŸ²$¿†[·̃â`âF$nÇU30îÊ:₫8ëRWU©Å\÷œ}n‘ÿN|¸?,ü9¥fQË¥•pv+7·†DÓ«ÇÎDƯ+fƠ»Ÿ§Ï¶bfúă^ûº];¸ưĐÿ{è®Ë×—đ| &¦ÙK­'F"dÀ w‰nS̃Ú́=Qå“Óëôµ&á½wă*pf¹º“܃P(ÁXÙ¢n#E=µ™ZxzWĂwñ́"Lœ•QBÁ7í₫$́ƒ¾…J—(á³À‹­‡QDkj>ËD”Ñ<Φ!t±b6Ú‚:¦x̃髃ưu7sJ¶¹ ^t¶(—½“„,H¬Âư˜E«Ôi••’>»_L.z²l´ăV±:kÅ«îºVWvl-Öî¦% ¾Ú/¡P“«1£ÂĐ ÷³kÓ[%ªÎ ª–ˆeªÛ«¬àärmª‡̉đik·ÿ()-³]Ù÷wç²Ơ2×a\úÜn“1 7ü³Á¸ë<åơOC¥’ø#5ĂÖj@„¶)oJÑđ(0E¶ÿơ9ÅÔĐÁ=íLº•hÓöWĂäËû}¤Ưz#"́}™G3$7(#iK?6™w1„[#âW’¶<¨n–€¡~†RÁaȆ·ŒË!̃₫3oö„&oµưĂçlÑUôuS\é³J'‚¨e?¶1Ư©Ñ¦ —×eO¤–Ï÷t ;Ư /?XúÂÛvdBó>N߸íÜ‰đ•©Œ¸>ù&·oEæI²æÁ¡4{»'Å?:ª=;V¸̃N6îLËÓ¶¦=& ÚăYg2k|]"ÅæW9­<<„6=*’']hE¸º¿Q}æÓ 'E´P-Êá|~C…wí$QøXÛ”&]„ÉØOt5ÅzƯql·4ˆ‰Ó-Ék<]Œ<öË2™YUx%m§g˜+¡^\g Á‡¨\ &'ưRȹûÓ$1’ÙS¨̃ ù́́é {>Gp4è—¬ÅkY›Øơá—£Öüƒ|r±Ï·rw¾u½@-©ä¾ÇÛS+²í¼.ÊáFƯ0̀ç.χyT§È®ơŸ§–‘É´g¹½°SÀïÎÏ2kàµÈéÓ Zx˜÷óª3§ªà Jn¢«¡ ª½ĂœëêÊ[•£1ˆ'8°ă½H̀ßLtó“dרsß₫uă™"Í8úKï>¿àL9z+ù”û:æPUpl#¦„ŸoÀªîAS3ĂF–ʪó÷cë¬dóa…ưû₫…c\£(‘]¾<)u'­[Đ›d‘v1 Ơí†éû:óYđ—5)ÁE- Îz²ÇÈù” ¹ùRÿËû@UÄêI[º9RNhøG¯Çä|îy+DF/Oûó9%¼I°IPes$ù*¬Á:ß*j–,ü™Sw®ü§Y¾<çB¿'Êv+:AK¿»Đ®51bcµ ¸Ư À#{¸Æ†îÑ¢ßKÎeYñöĂΧx$/¼+³Û¸8̣Ja¡¢Ö#e4²¢>zb́́K{vÛO¾#Á÷@+ăÁLµ·ÇHßÖ‹`Ï÷W‚@_ÖÂXᥨ¾ok;Àp±æ¨Di¾₫˜Ç¿ÂLIKœ¬¤ÜtÓfÍ pỘàj‡«·ÍkƯñƠ‚ÄYp 1T»¸clơ«?C~¥ßzÑÀ_›)e0Ë;Ó„³§²Ü$~¯—`*L ¤£X蕆Å]ÎhCk“~­ßßfap1‹ŸùéÄàʇ oyd¤Ü'A˜LM?Th2z¦&2dôH~ËùáÔ a| ÊƠ¬@Ù́nđ\{+V¾ sû·ÉT±Ê Ù7“ÚÓJÑ< ©¹:E¾¯¬Lđ<M(̀fc΅éú}±99sä N§KÜ›‹e½Àç¥ï†Û‡ ̣£?y´n¾,m¾×Rƒïư o_-ä‚ω^ëXAgÉ-2®—WÚ“gbLƠ•¶éúN>¿ª4]W̉KŒåçƯ2â ¸| ÁƠ¡¦Óê@<§±…4:ÔH(Wö" „3¨æWï÷•ă형aC¥#»/ÂĐ¥¿h&:T=MV{IÛ,̣BÎ Ú™ê{¿'ê]jö³'_̃…¶|̉ …5ëdÉf†Æ×Ëd{['ÙY=?Æ<h8-"%°L'%*å5̃> stream xÚ­TyÁH ânD@F €rà¸äîå ´]½ü€+‚!ˆ ˜Ñá\”( ÁD°qàN €…c0*j0 °́ ‚°P* ‰c!|‘Iđ%ê à Œ¤f@âÅXÜhXT¥găâ‚øœ̣àQ6 Œ‰$Á |PY™N.Su’)ÊM ”àlÊÆYÑ¢–Ä6 †²’€DâHQ®pÀ(ÁçBB*7Æ â2¢ ă|®@$€¹AP0¶h:Ÿûêâó¹Bq4.öúTJ—m O7¤r²H*7Åä×vÅcă€N›̉ĂÑü¶D ¶hgt¨" ǸB#lùµ^8I¥ÚÿŒeƒ/G̣ ø‹üEèưwäNçèOøß¾çéĐ.Ñ\®Ä£`êÆêÈ@ î `Ñ¡áB‚ÿ‹x(WøwQÓ½©rÿ̀„¨±ØcmJ‰.h3Q’Ø—™Xï‡Áˆ€‹bÅ­x¬@ŸN£M³ùF ¬(LD‚É” ÁàéPt‰ë_ëâ`ï¤ûV́Ȥộ©Ú₫èf=D0xئO75ú†ætêưQYÇÿEJ1ư³¼"hØDơM£‹»ÿăû,măŒ±pX´:Iƒ©mû¤™YÑE²øP]”Å{ qK₫Q+βÚ™•“M–.>]wßiÓ­ZúŒº=üó¾ùyIñĬ}]E[&.í1¨|`ùá°¥Ÿ?ùÔcͳk•¹«k2‘¡³Ëâ5tnæ)uh]3Ó}¶smèù¹Ù·½jfü,lJóÖ}ßÛ'ôÜ„¬ÚƒkF‚Y¯Æt’4ḅ’®å+$°—§-º®X)1¿ôë₫­Œ_ÆFWß®ÿ¡îNͰ̀ͧªº§̉ä4­ Å ÇúƠ’Â-‚·¬2ă1fDqKî個J~±[Uß·F¯X5’Úµ€=h´œó»½d/Í®5<Í3vhọ́TĂü#6z+î:6úz„–]ouh3}ü²ÜÆ2+*§Í"ư¼2¥Ơ5K#ߤ󃒿¶Ûíæœàäð›?Í\1Û;È?e]£™qÙR[Mg…»̉¤ú G»í …^#ă—ÏZW-Qâ›ơ}Ùɦ~Ư:t†₫!úóØo¿²¦ÙÙE&¯88:sܧĐ8Ơ¶Çz©TfG¥²Ă…†ÈâÿÔ=’™i›U•zCéR¬çP¯¦Ñø’½Jn¼Ê–ƯOk¾Ù₫æXèåM7ª³œMvÎm²ỬøâV¥ç¹îYº ·êA‰o<ålR½Î$ ˜Th¿t§²RoSÊ/!]Eª¹W2sj˜öµRË£¯Œ•{´blưÎf̃›w J¡)ơNé|zÉ‘°µ·Ïăb \9°ºœ¢²‰]₫î́gTZx[w"c¢¡}¦ă{)ÿD©£E±íg®đS´4ù½rÛcbrZ̉Ïœ.Y¤Ñ{cyËäîèÚªmÇ$ưTÂ¯Èæ·7ÆÈæ>ÉLÈú‘uQ- SZroƒÍ ï*Ơ¸Ó1q¾Q£Œ\ï{8ÂĐ 8hå¹]·¦ÄÖ( ¼“èV^À8éTbÂSäíH₫&lO\á¯8·‹¿>’Ç4²—`‚o-̃*:Í{c?˜đ®då™F¨$́£¶ûT·¬|Æëq‚ôw—GlĐ?Ṣ›ÓÓ!c̀ˆĂâPeăîƒöÂ×iO867#uål^zçC´ß»›ouÆlJdT%ë½6Ÿêć y£úƯ3§ç{_÷nKnöº¢ă¨Đt¢6+Ô#ÄÜ@ù‚>ö½•̃ÓWµ&vÊ5µqú^uºßÚƠá4iTê™ßß0¸£âEÓXíIÿ`x~1m"uGơ>ơÂ*̀€© Ôí+¡ó Ĉ¹AàEe ǂΉó® çtÓ»´æ])Ü*đ-=¼FeëâÈŸósăq“†¢ŒC?º™©Ũ¯íW'íÆÓÆc]rªÔ$uTk £Eô'íưñåŒ3¤ê÷G.Ó{¸di[ÑĂR]nFVÂ#È 4êö–Áuù_›Î~»,›;!)+Ûïc×;—~[̉9Đ>ç®e‡ô₫—Ê3"Gƒô¬ßU?ù­·́’s–@̀C´ñÀƼ·MÎÚ’éŒmă苲Uï’Û÷IÊç.í.±:nœ°9¦C«ºM¤ăỚ \ü1Б׶O=̃³sÂW}-äu°™EÚulăûC}JÛ½7ø%Éô¹ùÙÅ$«¯₫oæIvÚñÚ°}_oÎX\¼\6ÖXèvË₫ú=K©ÛRêK.Í„¶5ÜK…ƠNnlÆw¾ºJX>Y‘’™T]KTù»?ç̀TđđØo«ë[ k¨÷W.lR>÷Ơ­¼Ê¥• ü:ç̃Ê-ç†÷¯É•:9¼Üo±–¯’¶=1?½o™‹9zT¥êJk—gT^²·S5êw¶œy·¢f̀ÚæÆû̉Ë́gxU•J¢´t殲á„á‚6Gvÿ$÷ƒ‡[ªç@âèBwÏΖ¬ĂùKoº2TơwdÏÚ•aí·œ@\fEøÇz zIt½¯Hï,̉ÿ„Ñ endstream endobj 927 0 obj << /Length1 1647 /Length2 5204 /Length3 0 /Length 6018 /Filter /FlateDecode >> stream xÚ­WgTj̉¦IGzG "M ¥ª”€4!ô*!„R"Mỗ‘"J'€ô¢T)̉‘€̉¤(‚4ư¢wwïûí₫ÙƯÉÉ;Ï̀33ï3ïœ~^}C1{”L…ÄI%zpW;ŒrƠCÉëˆa8-, `̉Ôüüªh G!Ơ X˜ÀfPƒARRIyyyj~€*ÊÍ wt„ŒÁ¦Â""¢Z~¹́¼₫"1pG$@€đÆ@¹¹ÂXÅhƒ°N0€¨̃×7×̉Óiè4`HĐ„>·tàP8 ĐÄ…´‡ÿj $p©`Æ …Â`P˜Û/HàC»Â1ÂopDCXÂ`Q8ÀÙÿ*€`w@ư.È "x¸0™> ƒÅ@Ñp7,€U_Mư:±Ń¯Ü8 ö((îWK¿1 ÅBàH óÄ₫ÊeØĂ1nˆ!7̀ ÿ]G:₫Y( s„ í0 †@Cà₫u;ö ø§î!nn¯ßѨß^ÿ¨ÅÀ@jI)BN(–Û¤ÿ5/ZH@Râ»=Îíï˜ ưû‚„~ÍŒ0¡ˆ= ‰đØĂ¨ÅơPXBJ€Đ¦2đ'̣ÿ@âÿ‰Àÿyÿ;qÿªÑ?=âÿö=ÿ•Z‡@èA\ đÇ  ́€àײA@Đ€_ ư¡W8ÂëßÿƠÛöGƠăü+üG ¤#A!1Ii ôf8Fî ³×‡c¡N‚py¿íÆH{GÂ"ÿ¾_B„Ä_0#'8ÔùK é? ̉₫¯=tûƯ¸¡™†¦È¿Ù¶¿ơ S5̣rƒ₫–ÉTeÿĂ/*å đ“”‘ˆIÉJ#á9ÊKƯôûiI₫yÖ…`ÑpO€¥PBB@ø₫ûçÏ“ơ_hî"¡(û_sdˆ… í £÷Ă/C£ ÿ̃„Îÿ~₫ư`0O”úư$ z+Ø95# [ÉÓ= fÙÙ.IÚâV\cTXj H _’i{VÄ)ühđØt;_Ơ¾¾ÖÛΆlK†íäñøñ wä3Î 4ɬ‰ÛÓ¥m™Fù́ë,’YÈH˜¬-€mÎÈ/ 5Ư@Sî ̣yä²\;t»èM©amfÀ1U>ÛÜHX?:|Ó×ÓƯƠ¶¡c•[$;†ÿ„Ư?i“7ëe‹>¨₫¸pâ!‹£yHçĂœvă{„¼R­̣=– j*₫úxÈ ”‚©yï„—đ̃í>pR½Ăă 9K—ơ}¤^É÷úeaµóÖ7z ¤măô³Ào5ÓÉt¾êâB7̉·µ<¿@rM!f7êo©Ïg/eĐ‚puë\,ñyYSØî¼wmÑW*ªïuÔ"ï Æ­ŸÆ“ç÷-²=\×,̣Ơí1¤¼Áˆæg̣Ë9Ù¸z¸Ë Ä7«fó%^:¿úâ}Ví$«é?fieÎcơ³y£UJ́Û³/~T/YW¯f÷µí“êB GIöŒ̀»2’„́ÛוO“ Ö6ÈLŸFï•-S1L¬â|îV¾;Đy‘¦XtdßT}¥h÷²†½fxêñ¨Q(¥Î ûëº)œ±NO èüm{i4ÆI®9sô²D°YÖs°̃\¤6÷¼t3©v®¨@•Ï]ÉÑơ·»¨¥·|ÛÔrÎØe9‹î)MDvùóđ«;)Ó?[ÄÁb _µ“/sdĐ²Ư–±iR! ß°°%ú(2Q»®̃rĐ!HaT9äÚ£ö¦£¼̉ïÀm ¨Î赿^Èä¥ûN‹d\è¬ÿÅư7C»ĂLµ†Ógæf‘ñü°—ù^ƠYCC…üºSJr‘ Ú₫ûˆ‹¹‚Ñ›yWDÖ\Ëđ•ªmWjY¹t¯ÅµåËS£r­ƒåJÄ/QU\†ïðÅê„©&ăkđÖ²{,^eܸ5p…›˜,‰ßL*ÔæÊ₫ucæ¬ÊFgü±«ry?­’}—₫çh·!Œ¦Zê¢ñ gÂSYÜ—Đ\ ÆáƒƠ¯†ÍUÊnd’ƒkơD™1JÛàHñ×Ú ,NºđHe\¢-n¿‰“²̃‚W„6ư»Yr¿ƒØÄê'…Ö´ ê£óK0_I{g-ĐW—®3+j΂¹~ˬVùjÇXkđÔ½q7U×H•]ùâFÆ™Ă¤͕̀ˑå^9‡Ogin|œ\ Ú “¦ˆ£´-±^e »Q®k)û¹wáËæ`¦|Hczwö <£₫¼5&-¸[ăï”F%„»<ßẢ́6àâ­[>´»ÇOÿûc¥?e•ư3v^¡'ú9­ÁwJlYi$/Pñu'T-N33Øœè+L‰#)i]}ûÜi \ÖAm¢ç û®£öYççú“ ̣ØWÛg¬²»’övƯ¯(¼e¿®z§đo»/ëÓû!µ<sú̀Æ’îá1LëϹK~°P«h˜@¢ˆRP™ñ̉ÅFßå^vƯ4úàƠzmlá…ăôgoâsøË]÷‰¬æª¶³®Ç&3ǃ»H¶X˜E(̀È@îY6ÙNƒ¿3å˜m„±´sc̀ơQ hÁm@XBĂWư2…—Vi6­ IZèq©PT M)j©²äÖϨ´ƒT&M"ŸÈzR<_1â(},¸2/¼1ׂï ù˜®B!>Í₫‰B,°K‡·Î̃æZ\v“¸\¸¼ûb‡=jü₫ù¥äp¤vëP£‘ ;ür­P^ºX^‰Súù{Ú¨][“mØöÍ8kđGß,ܶ”Ư¨%ænó)»YH(Åë9hf0gÀ?®”m ũ{QÉ4œez“c¡kIu;¥̃*µPCÁ Ñ{ëăï’rꑳhŒS—´jxY´tçˆI™AƯ:Ô­«Ô qÇqƒ’„ª.,]ÇèdÅü r¹½Äq§,âV©†8çEÎf¼zø2—MØÜɪáÇCơ+ £Zđá5Ó OEÇÍï̃+‘‹$hf Ûgq;á-ü9íŒg·ñ'̉a¹r£ÎŔÜñW² 9ºINo§<³æỞ°OƠKɃ@c~ù́–;nîJ5 e3) «*Å€™EIL€ ËÅB?qđk NÓíÈï#Gô/.¦Ñ{N&€¹Á©—»Ọ̈B¹Wg¥ºLïä0J)TïXgµ $ײZáR'§YF ËRo8ϱBß̃‹ÓIF4AÎZ××++ii߉ƒtV7“r3}́̀L^|§¡“½`¡N|Q|×$‡Ư:æø’vŸ>­ŸÈ́Ö0ä>?£\–yq̀eƠÈø¥u¡GDÉ,êcn~ƒâT«Á·Û?byÑ^evøZÏñ¤ƯĐÜñή‰ÂvZ‡jhËüPsSÍëăîĂubéMÍÆ«ààà¥Á=C3Sù²%ÍÍóZûº"¹Ëÿbk8Ô‘đî¶öQîú}°́ÊeYUd gl~¦P˜\8ââ$ưÀ)?Úeœiă/!‡£ÄÉ̃(Ñ[•-­ÚcĐÔ ]ª̣’¤•ĂG˜–6Ơ´®öØ®ˆ&˜ ¬ºÔÖ‡»+½"Ê₫(ʾDÜç Y,³L‚Ś0«{đ(on&ˆÂŸZï†ln®]ÖơñsÀkrđƠÑ?ñ¤˜›z-Ê₫äÛxt7Ç·₫ĐNÂh¤]·8¶êú-qm$!l/€ŒÎ¡io~̀§5±#RÅ?äºïŸ›{6R<Ó ÔU£¼üD#ª¥H!ZçºưvÙíE,0HX-|Ú́M”hN̉øÇÓF®²­Oo¥/öË«&ǃĸ¾ê£&3=lơî™0žª>É‘˜âoV¡€>SJ”[X<Ï̀0w>(_h:ú$5ÿÏỆAE9m—sÏ]†G†è¨åÚđ^i²nëFzr \/§S‚âç»&ị́È­=ư÷|Åæ ¨é7‹c,÷FZ½\̀a?ƒ×Yôë#ÊVâ* ™lR_`]›1Ó‹riî̀Û¦·d­,(ÚN÷Û/WÑfaG₫Œéñƒµi¬>åx v¸̃1ƠÉ£½Øÿ–*ëØö 0ÿó£@µáÛè‘»!ï``9[­‰ôam›qzĂR©úúB¯D2-MÓ₫t=<ÜpÉâ5î9¾=\ƠeÍ“Z^Ú‹WÛö²-ư¢åœd́›₫Wlä•Wî}̃?X{o[F,·ÿ dyAĂñË"Ïs̃nó¤†Ư–̀ü™gó¶8FzÑèÜĂ÷qn)¤~¢E>GŒGÛ×µ+g†™·Ø…3ßlÍ4üÜ¿?%ê~`¾5Zü‰ˆ'®›jàÖ±±OcÊ0mn)Ù~†Ô…CĨ9îî2³~„j,ƒ®®©ĂÀ¦%[)³Á„åü‚…Ïß*Ê›d5q˜å`‰u#±`:[Ps¸÷­Åå$"p₫„É,–„©đ,@·Z¹NHs "£ÎŸBơ™4å₫Ä{¼*Ä‹•¿1éÆ c+8¼Ûzâ—`qÊƠ;s/pE—ó1ê¥ï£èă'Ú¥Ă¨+OwíGeLØ;ƒœ œTÎô e+Oßg¯+ S&â5¹Ë˜$Pưz4ñDàç%y¾f»Hʉ‰8^°iæ1èÆ‡áH)́ưsRän–[h¹ÛôpA®Yo½M3“§ÜPk¡I»cBô ưäÆ:°¥]‘!Y₫ĐĐ]éC‰(5¬™?èíЦô×®fC s0T5˜ÖÊŒ¯oûnÆ4Ưv¨Ú!EhĂưΉ(bnÁ³§q46a›Ÿ¼0ó\Lå¥3ó‹1Ê¡̀À躟½¤‰́ófŒ¼¸Ó³’W}úË"DNdaƒ„¢¿R|P+ ô#·‰ ÆƠU}G=´Í~u彬[ơ}OÊb'qh„*¤Bñ‰̉́]Ï>A+¡ä¢ÓḌV;[i¯̃ ʯ÷Ú?*ÙÆ]»lø`ÇaíX|ñ7µƠy­ô5Ú"뺙h0©]Gt”Tp-:Ê(Xª`ư₫Â°ÜØ]heM.‚Í(5±b«½íkĂEøë }"ú°Zy l7ă³đP™₫kRd¦Xœî®nÚ¾Ăk……›VÎ œ¼ Wá…^&+̉¼¸ƯIpIjïǼ@"¸+ I‰ªnù;P³%ơ‰=†Û,Ho#Ö®iA@Û™>-?{̣™ùhéNÛ‹2X̃Qåb»z^t½yp"8iK÷,Ư¿±̀³¯ߘ;kÖÈ/éÜפ^ÙàÉMîƠ“ˆ‰ûîèP₫€-´ƒƯªï.·]\‡e3íyZJ7"Œ½+O³¡x˜Î´^†BĂç̣ÉW²xW€FÉxäˆöÖ@ÔŃyྫྷ|,›â)“îGºZ]±v̀I¸PàljÚ²cdú¦ÁËØạ́KeÎñÑ A5a ºôÇ&î‡7v ‰€̣àx¦:¬Ôb «~Ï¢RÔ›œ’ƒNđö Ö¥°¼pÿ…”ÑÂ$ÿ-IÊǾlÛû?¡QYµÇ+¯û÷ÎR{¼æ=Âz.oúF‡¿µ–€#Zv¥Ÿ/úV‹N¹²"uÈè~Úí‹’dÿÜ€ ¿ơđoŒ†¥ë K̀Ư99#ªĐ&¢ò„V¦ó½)ô q+ÁbiA,\^ÖÙs¾à>'öeóDU£`ûs9Û́*;QÇ"É™̣9ƒ­D~Ĥơ?¹̃˜£ PÏ9ëÜ÷ạ́]f™|ÚD?ö^ÈvêñC^˜è$Â%Üơp®r|–¾*p+‚çz+”â¾1öo¾P¸Q3³§Í'4üúkĂIº°ôo-¾O,P>fDÀG€J :,²&ơăë́ØY¥‘/ËoZ´¨¦¼ %&7^4óÜ%ẩ )éU9Ô‰2I`_ÎĐ¾©=ÖˆrWK¢Æít̃¾ç}Ö2R+*á:,§§/t««̣œ÷ĂưØđaot…5}t,ălbäºSaEÅN:ØcmÇ,JâDjP“₫¹å1Ă9BQƠ¹±otæ¿[àèS1-|MûKs^Ñ:vö\Jùlô剙֠èÇ›Åí'¨0{dе8¨tq½øü#}̀‡ËVyß‹ây¹F”×®–g«ë%X¾¥¬Û{e¾füfäËD¦₫`TrÆÅJ®5ê’©ă0ézC6è¡èwđ{„́5mtUh#;{ßû̀#¢\Úí“|†úxJ¹yæèơưŒeß̣†ÙJ Đo₫‰ElÁ¶Füë¥+á:ÍñÄ'Á0©YṾqß —‡¾p¶ÂA‰¶A.<‚îóL7!©S{ñ!¬Ñ7$üúé´lKœh"ßÉc£\̃0(-aLø¤e@W=d±-i™ôL¯)!t|Eƒd¾hXÅ sºB²-¸á̀\w0,̣óÀ È|rdú³©âj ,—²î)…pøÈ1ơáɵüpÁÔ{­¯VâuÊT̀ÎGâÏ̉—èQ­¿l-{så₫PêB=}³é₫² ~Üg©p~Læ2pºhơ ĐƠ}S#géNÏ‘G•% ñ猯S˜X [̀Q́"ª=¹+"—£!NP§³Oºđ„­© 0~ăEÍ]̃—ÆẂ2~¯>ï‘f*éabt%CÁψÚíï¶ï{‚øm“đ{ÎÑ3‹Í =y¬åÄJ ¬¾§œ¥D´#è8ÅV~r‡†ç*ɲâúÂj‡§/\Rt{d=̉kÂZ¸& .oö̉{_1·[^§Ù?L¢ÇáKj‹U¯i€J"Dü:½mƠÔ*?nVeˆ7̉ơ3ûB~µºQæà&K.¥s'6)đæM¶x†ö=Ó:”ă½\(ͽ+¢D]²Å9ÁéÂá»z†¬M.»vb$«ÍŸ½=xLá°—u·¢‚ª¼¼÷I¨º0ibijÔQéE­O帴G×̣$èVF½1ÁíÀ~ond1Ư¼vâéñÅY>Ëø)¡Í€Ă¸W1Ù–¥ØêHN¯śY!9Ä¡¨²̉Ọ̈ ‹~=Ë×kÅLûYăÁÛFº̀å ¦’ÿ¢Qv endstream endobj 872 0 obj << /Type /ObjStm /N 100 /First 941 /Length 4404 /Filter /FlateDecode >> stream xÚíkOỊ;¿b>̃i•é÷KZDBØX–’°AÑÉ øÖØÄ6¹Íưú«ªî÷Œ=6§“Å===Ơ]ïG÷Øxí ^x ¡Tá /¤5p… ®²0JÀUÖj¸êÂWSóŒ-·8ÑB½å‡•$‚À’oy!LĐ…p€­,.áa¦€am ó¡c ) ÛB*0H2Ânyë ‹yÀVà#¶¸ `‹t:‡ôă#_(ÉñQ(”̀̃óBY ¸¼,4÷8¢°ă¶¼×…vÈ>àƒÂØBëq† ñ ‡#¡0 dÂa DCGÎJ 0€˜¼i[x‰¤’0đÀ‘˜¸,‚<èÑpÇáÆ½ƒ ¹‚‚Ùq Z dÆÈ? ¢–’ỏă˜'ñƒV½Œ0&a†T â a†¢¡3¤—‡z♤1¾ShШ3¥•بFe@«d+”Î*Ry-ª]˜@KĐh ±iáqSH[@c€0¦Đ,œ8 OÛà·PvB#URâÓÖ'À"„áí´ a±*+ (\c¨ áÂX¤L"Í&@OáÊ–[±¥@‘@7Œis­ÄhèøTcÏáŒE-X ½ ‘§£Í ë5(J!è ) În äÜq…̉æØ €uäH:¨A0˜‡+;”8èz @èá mAG8ÁhD +PCØñzë矷ØÉ×›ª`Ûăñd¾Åo?Îé₫`8₫c‹=L/ªéæØ ¶Ç ºÙb¯«óyq¦‚(%JsQÀ¡¹.Q¨>·]üüsÁ öËädR°âo7ƒË €₫^üă[đÿ1ˆP¥ûP̃—*H", ®¼äNôáÍMéÀ#„/-Xé4ˆđˆ‚0ªä̀Ôé̉ƒ+*kJt[åmi¤́'B=¢$”ă¥ØáÁ .ƯI„©QàŒ¥wĐB—N9Y÷́R‹PBŒ]¡dÉy¸›%Ó9À!ó(íJуs(J-ơ÷!BsWb¾hˆ`#÷ Á=¦YºĂ·R¡ ¢\$ÔJ›ÿ‹P© đ ŒT‰” w̉ Ó*e©!û54HS*Èïwñ¨Véy¨¤*!MÁ±RJ”Î'Àú @Q %(:¥…Ô åE Iơ;ÅJˆPøb¤ñhœ¡ôPII°'B?æi€$¡Á¥Ă@ºpÁ€ªæ;ÉøçP²64H\'î$B?ªA€sBö”æpNÈ̉¸2ûR¸²a«‚)£¶†(›ùË­ÑFNÂNqæ-îĂ^́ô÷÷°(=l,œ oG£5́îd<§%wE¬Äq°ÆçÍ}ê# Í…ç¶Ö[̣]üöÿ£Eq­•¥,ŒÇxí1Åâ S Cá'Í}RẀŸ*ƒđơjë(½O›Ö̀Úˆ+‡‰#N+àÛqT%),–L…5’² ÂQ‚Sä!Qȇ•$ëC¶­ç' 6EEÔPÂ!© ×ÉG¬ L™\s©ä<ÅÔé­¹ḲnÆ̣9855”,'“ ­'E£±d=ªm-̉¤-JL“<¬-Q)°"(ô¬ú `QúXwY!+Vø¼¾'8‡1ü(¬§«„ǵi|G}E¸zûø©Ç]›-…f^M/^ᓸ¨)$*đ>ơ}ê×Ïñƒ3iỚY†ùGVü^YÑ£ï²ïØ‚¶`$¶±ªUœvl‚4fÈJ]ë=¶©Çh ¸ PAĂ2k$¢Yôr(r‰¸ªvHzlă²æ8¥È¹¯…M»­Ăœ×¬ §Ó-  >-¾6=Oc47­ÁA$§ơM§à²AKfÁh·—‰€KÚÈú™öh´¥S¹X#©Â´¡#qC<Œ2*${ˆưØ66fÅ}jƒAÆV Œ̣Ê„„}^÷ă-ege …Œy!×H–™̣wZ$GÖq!t́åP°›D¥SKóÈ/bu}Ÿ4»¡"Q yJ¤6Dî¼đTI_P…̀¥%äJ‰4p]Jz½¥£¹Đ̀ÀQb–4"8]è Ù§óû•I‚÷Aö AZLTPëH^‘r›ơ»\Sk3ê&ơAï"ÓfÍul!›Ö#Qif!4UÚPKºÉŸFYÅ~l‰ ´3p9r;åʺUE @ị̂¶ém½ØG»wª1uơsˆb/ÖăơÚưÀ‹„1BÇ₫JӽΠ²̃z ïÓ¦3ʈ¨Tejñ>̣êB@¯|Âlt g´̣50zƠ‹Z8ôÀ Œ9Sâk6‹ Ü=PgRß+,iQ`41MpdheêÆÖú…®O.œ#£Ië2ꉮ±̣Ëô‹£-­lăHÔ Ík`ăsm 3|̉̉âY”Ṕ§–âtö¶Äª ¢ˆ'I}C‹«Ô Æ­¤ºÛ8âz¾j´ä4%¨ÑK¢ Aá{0¬¦ͤµMqŸÇơầ´6DøÆ(­Pøâ•sÛܘà[ ·{‹;\F+ƒ$4= —?§4†‡hî½Hs¨øL‘éáû3™úÍ3tư@ÛjƒÑ¨¾lÄX »R“¨!đØư|ÄNÛ.KégÑ—`ø¾“æÆq®qÄA!ê¹ùƒ‡¬"¾ùIưü)”ƠdاöCv¤'•;Ớ|:¼™O¦ñạ̈pp Ov¶_½Ü=øéÙ¯OO‡£Áå¬ĐâéÓÉŸÅÙ¨²ŸH¬0đ‹P[àIế¼ÏANùlpó¢^^Íñdc‹!|ö¿‚ÂöæƒÑđ|{|9ª X₫x^]¿Å`¸ÅNÓ$Hù°ÆƠ`¦cÛ́ÛaÏÙ.û•±cvẪ°ûÈÎÙùd4C{}=`¬b4}bŸ> ưÿR±O“Û)»dẂêëÍU5fCö±k6făá¸b6ö†Ư ¦ƠxT}Ç̃”Vº©¦ĂÉû̀¦lÆfƠ˜>₫Éæl~5­*6ÿ÷„Ư²/́ß́Oö•ưçïQD»C`̀…G¿íŚ~‘¿=<9}ơ*\öˆ\¡ÈH ó1DÎĂZ‘£À÷@ä¿Đ_·Ä̃ơÿX̀f1Ÿ́¿Ư?}b₫u¯Ï²•L–͵¿C̀j˜Ÿ AGA;™ÉY‰\ÎÑt/§Ơ`^MÛŒ¹M{·xøü{ƯÇ—æ5_<| _ùØĐËƠ6{Ú¸́/ô^æ%Ûg`K‡-kzË̃±Sö;{¿̉/&£Ñ`Ú˜Z5¾̀®Xơùv0"o{ùh…₫ë!6øù¶Í‡@ÇçÛɼºø8"Èú&Ó]́F“½FÚÆ;!µ=&̀₫SM'mu‡MÔưÛÛW/Ÿï‘º{¢äWÁûÇѶéƠ6jó]Ô i®VØdE>M’™“$¾,ñ‘MøßÙ;xs°Oü»₫U4wü̉Óá̃ü›₫Êùç9ÿcLDă[ĽIäx¾e_Û̀n”̃¿x±w² ̀œœô¹·D÷¦S~3º‘£G—¾_ÖYa²¥÷ûûGïĐeïƠaùăW;ñ[‰.~w$* <øa©Gó^-«ËÆ9 TmÆ6J=ïßaN=éÏ©¦®¥~¤œjưóŒ•ËKÊ8ǴUÊ7yAo¥ÚeeÅ‚û¹äç}5HàÅîí7GOß¡¼zYG_6ê›|ù₫™z‘§R½÷j)GØ`†â˜ưñÈ₫ƯÊ×]ϾoÊ^éÉ«Rđíø"ÅùdZ­sm!6«*Ÿï¼Ú‹íIÇ5 [@‰{nóííÏÆ˜‹êLÔXsT²â6§¥¢£ư‡ûûÄ©ïÙ¥ £¸SÇ}søfFƯ È̀K̀®·ÍḶ/NQ±ôǛ˜Q¥Qo”¯~{øâèä§ăƯ“îy_Æóè¿Aô³”…Â[ ‹/”Íû ,̃[`‘$fC„o3´QÚÿåàxg‚¯é+£ ö*ú…¡ĂôïËĐF‰äÍûg¯NO:`g4½8₫z}đäx4Ïÿ)lOU,<–‰ô{üq†wR±Ë=T¹¾B1c³ÅäùƠM®¡È`7Đ›ÚqGnaß́¼Øß9ùépxưñvözr}8 O~­.†=lZZÔøS|uh[G»’ <çODVŸ•´ )Û DŸ(Ö̃ ÛµYÜ(´î¾}·ự÷‹¯«ËÛ5,J_³¿öXt¾Å¢i…Za{XôyN1-UB”is¶Q$9>Ü9ưåÅ ÎŒ>î –.h‡;Ûæo³Qu+FÓ¤’¼bÔ- îAz¸‚(=…đ¹¤ÅAæùø|rî ˜‡Ÿ>UĂÏ«Yqf8JªpíÁ±¾eŸđ$ -ª_ÎÆX³<îdS|sƾ௑ë‡{áP!–u}IϧƒYE_K]:Øm©Œ~‡¬²Ưát6GéXÎ ¸{7¼˜_Íègv+M`úî!g½½?úÀ7Gß=üë¢÷]ô&dèm†ƯÙͱwNèÚÈñ¥k—wÑâ]e¢÷›cïu±Ë.v< ^`>“¼Ø{縦‹}É́0e¼‹ »Üụ̂ùI—€%ĂSºÏđÜ„ßƯúwÑ/^oƠë`ḯÏ;ØßÀéƠæè»ÛƯ.zyÙ{÷§oïͺè—lOÛ–å» ưbNgĂÔÅ~—áeªw`₫® ±C\̉E-a„ŒœÄÿuU\—”åTÄe_PđIŒuʤßLoLƯº¬KƯ’̃°^Zx,Ïh“AÛ]%T—¾¥ˆâT¯đ̀c¸¼[́úI*·-•›–îRäw–·{]!ñûSdîCÑÑà²AY9¹Å2u î§X”âÏÓiö₫đ 8 ÊB¸teO!c$„kˆWE(><‡4*®EYHŸÖé³P1åÂ5<‡;8üa¼ê´¦‰¿”¿l@W÷p>”OkÆjט®Qv:iĐW”CG9Ó—ˆéjx¼&úµéjĂ'z“üủ¹‰en½ÓƠo€Cñ‡‰'y…QiMeƒ'qt52]íĂqØÈ‡q W¬† ăX–6̣µ‡îĂa“,l,L rEù§_à­[Så„‹–Ó%ÂñOOÅl¡jÅ(›s'ᢉµtj)ÜI±‘ơäd1µ4:“~»†cœGѪHƒV ñ®V^=s8‡ư«H{u¶µT́6ä×÷ÓêKÑ©n̉dÑL®xœÀă\!́Ééx&ë5“ëú÷)ä*:̉)5-Å[KƠ³Ûđé Â×ÅưjÔ:GƯ*Çè‚dR®ï¢”Ÿˆ.Æ…˜¹\‡‘çWß=¬‘y½[N éå…B#ÿ°FüiGU¯³Bú¡~àưëø\‹a…=øF'~J|®‘Ånï¿1ñ5Û endstream endobj 961 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20170908180803-05'00') /ModDate (D:20170908180803-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015) kpathsea version 6.2.1) >> endobj 933 0 obj << /Type /ObjStm /N 48 /First 392 /Length 1627 /Filter /FlateDecode >> stream xÚ•XË®Û6Ư߯à2.\‘çtÓ6)’vUd¡ØŒ¯ ?.lß<úơ¡(y(S*º’|83g†¤m¯E#|#ŒÎ iƒpJ(-…ơB… ¬`œ°ĐF c…‘h¬„•Ah/¬swZ ‡¯ă VøĐP" ¨¼Œ(¤”Z¨Ÿ̃`"!âR F 4Ó †Â‡EOÀc ¾ ©ĂäĂÊ€́8¡¤¦%Œ’Œ†w€ù¡¬rø"…rXTĐXKy048a= £ àÉØb…Œ’ođ–°ÆFz –éñE (K@ ´mà.@!Z˜Ăäm$ª¥#£€’˜–¾|ÁÚŒ‘áîåË»û?¶—]¨N#>ÜƯ¿È7½ữâáB]JßÅïøÁ§¯^qOÙ{:_xè#âWêó5v¡ûôóötưùÓ¯í™ÖrÆ7Ç'Œ̣<”éœ̉é™t†§Ë5”q`ˆÓq¬fal¥`œ‡́imƠ3åtªâ9ˆlK‘{¶]Άk“tÚä ½4j~è„ñƠđ‰XfYxAT3'ªäqú†f £Ù Q§iåM©|‘KW”׃̣ÚÎx̣6˜JôĐ­fÂđÁ¯²ä?¸fº¢= Úƒ®†é<+# ƒP )ù8)ÏûÔÓI}2å8™2¼ÔVv&Å_Ï̃WÏ?^ÚÓeA#Ùg«í%¾h×í₫¼ôÍÛb₫9®.ÇƯú²´rA×"[ûrü¾l,¢ ôpÜư³=lâi <¶öw<œăaù-6´”jü„Ô·ûíeDïÖáÓ¸˜d±k¿¶íHx–h¿Zín½¼\(‘fK竲çà©ửÆƯv‰ÍŒ»]́Êr[ÄíñT/÷¼zØo×Kƒ º›c^PAq́P/è÷ÄÎñq¿l¡¼5—‡'lÿñ—:µºµ/ÛÍÓ)¾ HÙÂîjƠ”Úéîü¾á˜0Ă¾ư’Âv” øíe„iÄ`DÓ fB‰¡øÆûSÔy«áMd¤|Y=© ùÀH7¤ƯƠ0@Øm°%äênĐ CX0»)‚F(KñØnR¥Ñ ư m ‹QT”äPM0A ³f7̀º’©ï[‡JºÈJ"ơ{½C’F†#I¢ÁäàoD²VubX©t\0…ú@àµ+̉'đœô …đ#v®̣R‹«Ñ-TGC‘ƠÑ…^Î £8âi^4ëDeđuZf1Ơimçy8ÚüK´•‹'^´Nh7ơ6RÖÁj‚íwÉg‡n#¹àé́(’Bx×4]^œ»ÆÜF»:/»¸ZƠyѱjư§!\ Mçœåj’§˜rṂx^ŸN'\e¬&ˆ‘<‹¡Q[ôDBøÈºø̃0(•ÜÉ`nPçåW«:/ƒ̣xÇ ¥k´Ø tx:Ø9Mºç|ưW—íñđSwÖŸ’rĂjĂm|5Lg#ŒAMÚ¹hH›̉’xA‰Đ™dÆD9f9E•Hơ"ơRr#ˆ…B½¥ê=}hQW‰­œ`›.­‘ơ-ăëºJ] 7YTº¼¡‚Ó́*xº–op ø&TpŒoo†v̀ĺ2W!KÙ¼H^Á±” +8–̉ß>½ ¡‚S›¹Z̀¸̣™¯ÅQ̀iOƯ¯± ´ÀèÍICo¦Óí:µHwÉ|qnQ÷«VXÑí¦2Ó,k‹ĐM‡uS‹X«z"Ù4ñ• TăVơÊúe»FÏÏ—ơ Ưûôoe÷ôùæ~:Ư|ËÑ»¿̉ÿƯSå'ägήÍ|#ă7S;3Í-:3í₫áI}vO9}»LMuN‘¿.óG¨®u¾ÙC>iƒÉ7§ílä·ñŒÁ”ÿüxŒâ₫M{iwÇ ư¢ßàÈ?đß?]vÛCBúŸøiƒ ư?›øÛqïÿ<Ç̃ø₫ă·Ø~o‡Ơñ´n«ˆÇ~₫àưc<¼Ń³=‘æLÿ̀ endstream endobj 962 0 obj << /Type /XRef /Index [0 963] /Size 963 /W [1 3 1] /Root 960 0 R /Info 961 0 R /ID [<1F7048C00A0EC33A574F7CF2D92AD38C> <1F7048C00A0EC33A574F7CF2D92AD38C>] /Length 2318 /Filter /FlateDecode >> stream xÚ%˜[l]G†gíă'±ÛqDZ8ñ=¾&ÇíǗ8‰;N|‰ÄvbÇ ̉lªAUˆ"*•¶PѾ¡H Quihá…V àQ$  ‘ ´³çÿgö¬íœsÿKœKœ¹]¿.ưq¡>q¹ârrûÉƠæ@¹r» ó`¹Cäj ËÁvrmäjw€ä&ÉUV€Jr—Éí"¬´Â9…ề]ÂrüG¢*À œn¥Aî!gäøµd/ØG®œ†Qö“ë!ÇH“p€\/9=B#h"§1ó”I38Hnœÿh!w‹3”GÈƯ&§©k¥)±́ 9f7iäÓ´w‚.rÇÉ¡L̉ ’+”ré=ÂĐKî$¹»„} ŸÜ9r[„`Ï‘̃!<“›"·IXCänÛ 'ÈƯ$w›pŒ&¥gÉ“»E8N’Ăé:á)póœ®gÁ¸9W­g›çÀ$8.‚)0 .0 .ƒ9p\ó`,‚%p ,ƒph¸kæÊèÇo=Û'\¥uœîZÂ%0 4æE¦™Ôkî% j-0i¾n®âi…fîùFµ´¬pSĐbÂAKg-–AĐ2Àüå°|`ÁŒ€œ¹ú·uÓ}Œé ø>hù±¢Â.D9ƒ³/Ëü¯÷ Ódf/]Q7e=fßư“B½M±@†×²³—ŸÖ…ĂŒ2½„Û̀¾ó ]Đ{ºèÍ̃ ô>/ùïû?P½ơ®í3ûѤrǸje#`Ǿ§uº ÷/öÉFÍ~!¹3|•a³¬d©·ÿ ÖËđU6nöđÏÊM€iP²Ô;-Ê]4{ï/já’́’Ù_?ªûdó ă-\—Í̀•éQK¶ø@.É4RơĂRÙ%Ơ º° -I~«›eØ"ĂÙ%UÓü’­ƒ[à6ÀzÙ¦%c×á«́%ío),éåzµr–Œ×¨µ ”ΫCŸUXªA¹%g•«zçm;ÀNP*-™ù—úí5–,Aa-±LkØê,YJW÷rơ2­ ̃’<§ ûAh¶äSSÊ–<úc…A'è-–|̣?ºĐƒ# ´vKLÔ¥t[̣́³ Æú,y¾U¹~0ÀøVhc–¼T§«:¥ÀE0¦Á% wü,ĐÎ+@/Èy°Á¸4WúI½én€›`hY·Àm°6Á°î‚̉æ‘D† $ Đ7æÂÇr€ªU#ªFT•á#ÂGk@-@éX6îèë Æ€´± hlˆ4¶Ô¨Q+¢Vlh9"ŕ¨{2Æ>€Zq ‘cYäX9–E$‘#Iä ‘;´Œ§ḉÈ‘.ă€£KDư8 Đ<¢yDóˆæÍ#G4hÑ<¢yDóˆæÍ#G4hÑ7JîIK,I-|—-y­M!êGÔ¨Q?¢~Dưˆúơ#êGÔ¨Kêç<…§’ó È2@Ơá·r°́¼N|¨U`àHâkkÚïu``%{ÎÊú×Sđzª4‚&Đ 8{j]ßxxJ7ÏÉ×Sđz*Mß:AèGµ§Èô} °Vư àà)û ¨N^µü{kúêÂ\™«¢>éK‘> 1WEæªÈ4™¦¢¾yè#ÓTdúæÁ4ơ¥HŸhX8EN‘…SdáY8E}¬Ñ×N‘…S°ü»J ₫½Ưư\‹` endstream endobj startxref 390181 %%EOF psych/inst/doc/intro.R0000644000176200001440000002457713154621301014413 0ustar liggesusers### R code from vignette source 'intro.Rnw' ################################################### ### code chunk number 1: intro.Rnw:447-450 ################################################### library(psych) data(sat.act) describe(sat.act) #basic descriptive statistics ################################################### ### code chunk number 2: intro.Rnw:457-459 ################################################### #basic descriptive statistics by a grouping variable. describeBy(sat.act,sat.act$gender,skew=FALSE,ranges=FALSE) ################################################### ### code chunk number 3: intro.Rnw:467-470 ################################################### sa.mat <- describeBy(sat.act,list(sat.act$gender,sat.act$education), skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) ################################################### ### code chunk number 4: outlier ################################################### png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() ################################################### ### code chunk number 5: intro.Rnw:501-505 ################################################### x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x ################################################### ### code chunk number 6: pairspanels ################################################### png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() ################################################### ### code chunk number 7: affect ################################################### png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() ################################################### ### code chunk number 8: affect ################################################### keys <- make.keys(msq[1:75],list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) ) scores <- scoreItems(keys,msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() ################################################### ### code chunk number 9: violin ################################################### png('violin.png') data(sat.act) violinBy(sat.act[5:6],sat.act$gender,grp.name=c("M", "F"),main="Density Plot by gender for SAT V and Q") dev.off() ################################################### ### code chunk number 10: intro.Rnw:631-633 ################################################### data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) ################################################### ### code chunk number 11: intro.Rnw:646-648 ################################################### error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") ################################################### ### code chunk number 12: intro.Rnw:662-666 ################################################### T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") ################################################### ### code chunk number 13: intro.Rnw:685-695 ################################################### op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 14: bibars ################################################### png( 'bibars.png' ) with(bfi,{bi.bars(age,gender,ylab="Age",main="Age by males and females")}) dev.off() ################################################### ### code chunk number 15: intro.Rnw:731-732 ################################################### lowerCor(sat.act) ################################################### ### code chunk number 16: intro.Rnw:739-745 ################################################### female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) ################################################### ### code chunk number 17: intro.Rnw:751-753 ################################################### diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) ################################################### ### code chunk number 18: corplot.png ################################################### png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,main="9 cognitive variables from Thurstone") dev.off() ################################################### ### code chunk number 19: circplot.png ################################################### png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() ################################################### ### code chunk number 20: spider.png ################################################### png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() ################################################### ### code chunk number 21: intro.Rnw:820-821 ################################################### corr.test(sat.act) ################################################### ### code chunk number 22: intro.Rnw:832-833 ################################################### r.test(50,.3) ################################################### ### code chunk number 23: intro.Rnw:839-840 ################################################### r.test(30,.4,.6) ################################################### ### code chunk number 24: intro.Rnw:847-848 ################################################### r.test(103,.4,.5,.1) ################################################### ### code chunk number 25: intro.Rnw:854-855 ################################################### r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B ################################################### ### code chunk number 26: intro.Rnw:863-864 ################################################### cortest(sat.act) ################################################### ### code chunk number 27: intro.Rnw:878-879 ################################################### draw.tetra() ################################################### ### code chunk number 28: intro.Rnw:950-951 ################################################### setCor(y = 5:9,x=1:4,data=Thurstone) ################################################### ### code chunk number 29: intro.Rnw:958-960 ################################################### sc <- setCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) ################################################### ### code chunk number 30: intro.Rnw:972-986 ################################################### #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) ################################################### ### code chunk number 31: intro.Rnw:988-989 ################################################### preacher <- mediate(y="SATIS",x="THERAPY",m="ATTRIB",data=sobel) #The example in Preacher and Hayes ################################################### ### code chunk number 32: intro.Rnw:996-997 ################################################### mediate.diagram(preacher) ################################################### ### code chunk number 33: intro.Rnw:1008-1010 ################################################### preacher <- setCor(1,c(2,3),sobel,std=FALSE) setCor.diagram(preacher) ################################################### ### code chunk number 34: intro.Rnw:1051-1052 ################################################### mediate(y = c( "SATQ" ), x = c("ACT" ), m="education", mod="gender", data =sat.act,std=TRUE,n.iter=50) ################################################### ### code chunk number 35: intro.Rnw:1076-1080 ################################################### C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) ################################################### ### code chunk number 36: intro.Rnw:1083-1085 ################################################### #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) ################################################### ### code chunk number 37: intro.Rnw:1195-1196 ################################################### sessionInfo() psych/inst/doc/overview.pdf0000644000176200001440000340327713154621320015500 0ustar liggesusers%PDF-1.5 %ĐÔÅØ 2 0 obj << /Type /ObjStm /N 100 /First 816 /Length 1550 /Filter /FlateDecode >> stream xÚ¥WMsÛ6½ëẂ194&~v2™ql'M'™fb÷ă $Á¦ü AÚV}ß‚ l7¨¤‡ ûv÷½Ư,(¢„TB)9$”"‘(đO‘”Xb’© ‘‘,°ä¤¢‚¤ ¥…”¤đMßdJ±?Fq‚Q’`‰))bR¥Øªœ̉4ĂiÊ¢lKÊ”€e–”r!).(JQ^`QT(,18’dˆQ`ͱÆ8¼(Ë©ÄZÀEBBàxbÍSJ‘—”́ kĂ’‹e1V`fÀSˆ.^Œ sàÅI¾ÈăÇx è”H€›/AüLR à¥"ÅG„ 23£"KR›B,DÄ<æđ™3~„ÏœÇ&ĂôË(̣)`ĂKÀ? fW$¼É±áđ‘2‹È&bH Ê)I%ù ôR k d•%^d ̃9æ!ŒŒ ̃9‘M’-ä‘ § dÊ€H²~9ËŒsBL2“L³‚V™å¼rÎuµd$L6y²ĐKp ˜,àG@1!9ÉT0ÍTä U¤XTN[ vÙ”(‰”/U§d-˜UÊÿ‚̉T̀´S…Ϲ£Ø—¸9fȧ< \ I”³Ø(È GAaºxù’N.éämsƠĐÉ9=sẲ™Uo›úEôB<§W¯Ï~ª–\¯»̃Öê·†Z·[m©Ơ«¿ơÆ|–Q¢i3ص¡ë¦ólƠễº~؃=|d¼¦2}gWt=Ô₫³#ƯrCUéÎ₫cÖdk`[G7vS›¾7O`àøo7¦»±æ–ëÑR×kêL©{ ­›ƠP!B÷m˜Ư[8ằ=fưíój<ÿZ;¤±Ö½†C]îœ=à#m̃ơ¦̣ṕ.Í!»{úâ)Ïs‹D~BrëÁD¾]3l¶t­W=D™½U9¸̃t3^9\}°µ­†>g׃.é͈úP“è­W¶Æéû À÷iÙnơØîÿ4v³å’xo´ëẹ́Ë€Âû¡€’ÿfvÖTmSs•Ư+đùÙdzÓÏÏÁKG¼_¬ét·ÚZÔ†pi ºº¦|³—=¨µ³PSz?“ơe1SqA» ×Û m丵®íœUꬩ¯1%êD ç7ºt48î­eÓô®ïtÛúcVÛÚ~̀\Ä0æMÇ–#-'«‰÷“©ÖgˆÚ# Ï Œ*{˜xơP-‚l×S³9ê2wzƠ¿˜§?™ZèÓíè}~Ùwèס3ÇØO}£;]–¦œ©̀½a(¢PÎx Æ*ÔÊÅ][6†ån,đ=âÇ̀‡fmJ&éó³‹Ë‹O–uÀ ̀•Ú9_ÉWƯvµ5ŒÍUư HziKÛï·g̣+£‰K ¬ú:ÈüƯW®f9¯-â`½»ÿ­ơăoC•û誑Îïœ/ÀƯßkˆJ>́Áîhî⯹ówBÓù›Ñ6«¡́m;éèÖâ­q­{ƒÆBóïo¨KÀûö́:}ëoÇćƒLonÆÍŒ‡Ñc&0ÑÙ»™Ü“ÇÑ|˜r<Û6C‰£›HƯ×ÇJ—NDŒư4MË(nLû˜à1€Ó$®ZÛùv_+èçŸnñđ0 \嘕ÎÜ·âceŸĐ›'̃OÁΠ…l.[cÖ̀ÎĐH3Gè¶wŸ®h©á”'xĂô¾Ÿá¡èGoÚNW<û‰¿ @”ô…T å* ăQgû—›ñ7•₫Áˆ{±¹ï5Üô¦¿5¦¦üQ“#̉̃½̃͸ۿdk¼$üHbđµum©wüßê>ƒo·æN=­ưrG¼:[7cÅÚáñ óP#¦Ç ½ï|ÎdßÉŸ̀o7ÿöC‚»́¨1|Á¹ÁbÿçÈ?7¢@/̃/ă#í|döØ¿‰P|^’fèÛ¡çkèôă)„Ư!Ÿ^/yàZ¿×Wæ¯rz£»•)K]›5}LüAÏs®@gøO¢‘Ù ‹ endstream endobj 217 0 obj << /Length 1369 >> stream concordance:overview.tex:overview.Rnw:1 82 1 1 2 345 1 1 4 5 1 1 4 56 0 1 2 18 1 1 5 32 0 1 2 21 1 1 2 1 0 1 1 53 0 1 2 10 1 1 2 5 0 1 2 9 1 1 2 5 0 1 2 16 1 1 2 1 0 1 1 39 0 1 2 16 1 1 2 1 0 1 1 4 0 1 2 8 1 1 2 5 0 1 2 30 1 1 2 1 0 1 1 4 0 1 2 9 1 1 2 33 0 1 2 10 1 1 2 1 0 1 1 3 0 1 2 10 1 1 2 1 0 1 1 4 0 1 2 8 1 1 2 1 0 1 1 4 0 1 2 8 1 1 2 5 0 1 2 9 1 1 2 68 0 1 2 20 1 1 2 75 0 1 3 10 1 1 2 1 0 1 1 10 0 1 2 6 1 1 2 21 0 1 2 41 1 1 2 5 0 1 2 5 1 1 2 34 0 1 2 7 1 1 2 8 0 1 2 17 1 1 2 1 0 4 1 4 0 1 2 13 1 1 8 19 0 1 2 3 1 1 3 40 0 1 2 2 1 2 2 50 1 1 2 1 0 2 1 14 0 1 1 37 0 1 2 4 1 1 3 37 0 1 3 4 1 1 3 34 0 1 2 4 1 1 2 1 0 1 1 34 0 1 2 50 1 1 2 5 0 1 2 8 1 1 2 61 0 1 2 5 1 1 2 102 0 1 2 6 1 1 2 14 0 1 2 11 1 1 8 7 0 1 6 3 0 1 5 3 0 1 2 19 0 1 2 19 1 1 2 1 0 1 1 39 0 1 2 5 1 1 2 1 0 2 1 7 0 1 2 12 1 1 2 1 0 2 1 16 0 1 2 7 1 1 2 1 0 2 1 47 0 1 2 1 0 1 1 39 0 1 2 15 1 1 2 1 0 2 1 1 2 1 0 1 1 4 0 1 2 9 1 1 2 1 0 1 1 61 0 1 2 5 1 1 2 1 0 1 1 39 0 1 2 21 1 1 2 1 0 2 1 5 0 1 1 39 0 1 2 4 1 1 2 1 0 4 1 4 0 1 2 8 1 1 2 1 0 2 1 35 0 1 2 4 1 1 2 5 0 1 2 8 1 1 2 19 0 1 2 26 1 1 2 8 0 1 2 9 1 1 2 5 0 1 2 8 1 1 2 47 0 1 2 3 1 1 2 5 0 1 2 11 1 1 2 1 0 2 1 5 0 3 1 1 2 1 0 6 1 3 0 1 2 6 1 1 2 1 0 1 1 4 0 1 2 9 1 1 6 5 0 1 6 4 0 1 2 2 1 4 0 1 3 2 1 1 3 12 0 1 1 10 0 1 1 11 0 1 2 61 1 1 3 1 0 2 1 24 0 1 2 1 3 83 0 1 2 80 1 1 2 1 0 23 1 4 0 1 2 109 1 1 2 30 0 1 2 329 1 endstream endobj 241 0 obj << /Length 1553 /Filter /FlateDecode >> stream xÚƠYÉrÛF½ë+p«hV,¹Ẹ́¹²¨l%>89À D±B ÚṾóée™4Ê‘¢E`f8Ưưæơ6Á$Á«qÏ÷³«“Ó—iÈ4V̉àê:&¥ĐAbT¬ïĂ³Å(̉B„Ó‘ #•†Í²Eʆă5Œ”đi¦5ÍѲ¦vß70Vá³ oáquG«Ũđ,üØŸ#«émRÁŸïG‘6¼Ä\6¼Ïɽưqơ:Đ"Ö" "%ă\f¬ê[Ü0ëd—¬(Đ,÷*ŒëăN§|îJ4-¨ç¨P³DëËJ>}™™@‚Tk‚–e±Èlé¾VäƯÔ)Ÿ©3t2@ư7ƠÇ‘ÊÂjÖê‰æD AçA$uœ›”·yÓ'÷€‘₫¾áƯĐk|LÂK¯yÆăæ8=¹# 6†En‡×ϵß÷ơ ®*³t”_ÎVgVøÚà+o/a­‹ÜvçAúÓ~s\ü0Áhß Æ¿ăG%àYÂ'u 3M¬MB G2jJDFÆR9˜ÏÑÂÅH;üD‡t"ă"XN~xó È.m Eœ‹\Ù“XÇ#R´DĤD$…̉ákx^#à· ¡ÖD ”SbSG« Oˆ«grÀŒ\YP‚DÜ̉)9"̃đ6Cf'írHlo˜Tÿ,q²vZŒ‘éZ…×ơ’ø@Ù`!®™Ó>¤wƠú1åĂAđ>Â\/§/ ₫Đ½}é‹Wnm&SeB³1º{&p®ÆÆ ƯxiM̃;åᲬóI´dé́/Ù̀k<.<‘̉OMnϳŲdåvN£Ó¿qj̀ØMéư‘º­Ü.ƯëdQ924̃ƒû¶g&;³#ĐƯ…Ơ†ö¬À(!ú”zd7Ö‘x¼ !·ÓÉ­?¢yƠ'07SmpÉ4‡s¼ˆí˜—´³¢©Üû˜Ô°\w1 ‰¹Ú5G¤‚]~=ĦÆ5~EÇßL½ûḤMvLĐbKˆÊTkqäÓ,äY{NK6wLîSôl/f–+Fe[f$2̀4̀°̀‹¦³=}xWeáóY'üÎeªé®dk“́^É÷EÁ¾û™~|îÎ}^-¼±ơ‚}e‰NÀU@Ï庄¼¨qzrÓ¹hAk}¨*lvîXấºMIäớÏƯ¬Zfn!‘*uœ«m“RAè’âṔR6F÷@çñ“& ̣‰‚@ͳmo*¯9aÆĐđËrébKí́=;‚s:C÷·‰S÷d‚R‚R0vDå@¼ô±~Qº‡[×ÙçÍ đ™-’r™̀>(F¢¾‚è ơ‘0î’Q;Ïf·.©-Z;dCÀ0ͦæ!¸Ù^jÇÔ8Lß!„•/ n¸²âX5fÄçbƠ0¸XÿEOys“¶¼̃Ế!̃‹b2E{ØĂÏkW„²T̉ù¨+îö%ù]X́+.±S8ƒ¹ƒ̃Ă³ơƒ˜8˜V®..–ÜN]£ÁXöÊ6ÀơNF»9yUû¤KYƯUÑ[*™>z¬üÆ(¦Å ×­`HœÙ¾dŸk⽅ᆫ_¸́d›́2Ê@<•<ØÂơë ~÷ Ü ß8SDMhåê¼úÚ»©4´hK…DÚÿKF₫ïÅî…ß ¡³vÈŸ“ï"¸c›À˪ßçú\EƯ/̀ºØ¹ö¼î]s|à(̀WP5q°²¸Ưs+Rq$̣%0¥¾j'ä2{@Xµ«iaåëJY=k7B© OK\‡×][Y딃ƒw‹êkân>z¢íơ“UKºy¿;ZL6/^Üu á¶noÓ. wd¼·Km©Ü¸ x¬>;€—íiÅ»dÔïêZn8m¿áüêÑ%%&.8Û ÀYê[BÛ¾¯&;·Y6OŸPưÂf@j7úPŒ˜ä÷E{}?;²gJ²ä)7Ûä«ê„ ú&.4́iƯ[oƯđëí‚*·O=÷ÙÆp;-sKü±•Êß÷ö×¾¸:ù6ï endstream endobj 285 0 obj << /Length 1831 /Filter /FlateDecode >> stream xÚƯZKsÛ6¾ûWđHÄ ^<:¶ăI§™flu¦3iŒÄÈÑ«m'ÿ¾Ø]€ª,ÅNœD‚Hß.¾}@i4̉èú,uwf¯i´™FT¸¹>{3:ûå-“K“<ÍY4úl‹&aJFʨh4‰>Æ"°X†,åY|ơÅ>¬íon«MQáÍ^¾†YÆă[¨€ç{ûW®°)æÔ|e₫J|q//¡%‹ßCy0ä:ØR9wÍË)5ÿ•ÊÔ>Âû·p‡î¶ ₫ưZ¯/ú8̀s'ƒ¡ÈóîM¦é̃¶Ă=[1ÎEœ™Fu_ n†è™J2%¢!‰†–ƒaÎe|°[{ƯẨÇÉâÑ Wq ơ•¯`ñ ´r`ø†ÇÅ̉–'Ôç¦F±øW,Vƒ :·—¢sĂba;plê]FSGÜ"X–H‘»E€0§&7µƒÑqÜxUY}&ÑtÛÖ‡Îå®p€Ö¬³̀|»POîù,ëS)!¨”½"î2€;Øÿ@Å-˜ÂW@ût(7)£¥ư¾ Ú³@h¡¿•{§!êŒ'œƠ¯T´KiG2P™å„¤ -w%•7¥#§{₫©+}^K¿øÜ}d;†)Í;r7B¿¬üz¥¢IehL’æ=["ó̀I˜àXÔü·¬%eBØ-湇ưÑơa<̉I®Ś¢a2;`¢3AƯîúhÙœ©(èuï Æsë̉°“ç¦ƯjăDơv`D\€8*KơXu¾Dáơø}»m§Sù²»¨OP-‹Đ'(Íi·E¤<ƒ1¡âß+O²nÉ ÓÛ¦ü,'7˜lZ®^âkë²̉?œ„z»ôB›„–Ë´® ­8Â.RÆèXÔ .C ÷¼}?ö׺¶!@$΀€bÿÇ™ë ̣-ư°t·Ïökp)±è÷B ‘§§óÉa,÷Cjéí'·c}\ßgÀlµØ)e1°~Ơ#=O<”E{fRÉï£jÏ©á½èbC…7¤€«¥¼ŒüÚE [g–êƯoÑvJêwm¿öz¥u•(½/í…pi¾'̉½0ÊÓ7¼t̃)(í³Dđ̃÷î׋»º¿;/đ]åöï¢cd¸f?œ,ŸÇpé'êlfå`&„ÉÈ2{;ßµ̀dv^ŸCü‚ëÅ 2'û°X¡-¡¬}#ưØ W%-hLœn$th$.aD /k<8Xm[‡A¨‹Ï4;Û3Hc6sØaGˆ¿‰‘B1Iñ赫tùtË(]à\ yz#¿ZĂ$\_¦6&±ư|Đç w‡ç7ƒv.ßßÛPJèœûoéĂaHY¸́ß›•kBw_b`YBô&>Aˆ2¦"¾v½äÔ“’)c,>È^(._e`wî´ḉhOè‹å)æ#î×}ÁŸ±súÉCº^˜Ơ)0û¼d'!1ḱêVr·>ÔØŸÜMÿŸQöIè8u21donÉ4ă9æ…G>­O7Î> stream xÚU= 1Dûü)“"q71_­ ‡–î°Ó;l<đ₫?¸â!^1o†åF:EËe!á5â[ÎÚ5µ90˜\¥Êh*»BŒTÚ ½fĂ:"ë‹Ôû,˜‚Ị”?&sm§Ÿ ½ Lt‘-¯&ÆŸgvÛ́ac.øÅV?û¦̃Ÿ*â endstream endobj 298 0 obj << /Length 2586 /Filter /FlateDecode >> stream xÚ¥ZYÛF~÷¯’ `uØÍǽÂpà â¬á ,â}àHÔakD”<́Ÿßºú ÄñhÖ#u7›ƠƠu|uh’Éj’L̃>Käû—ëg?½)«‰ÖªÊ23¹^N*­ÊDỌ2Ÿ\/&O“+=Uúj¦µ±Óß·û«YZdÓ–5|t8ØÀÇnÅO0^7Wÿ¹₫í§7Ú1mmµÊó&̉{$ró5or’–*יߌ‡Í¯R=ư|•§Sœ­ÿÂgÇÚéêˆL,fb ă¶ă'‡uĂƒÍ-¬b¸Ù!µƒpMt¢ª¤̉xôL—‰2¥™̀L¡R‘Ä¿¯ÊtÚ‘ÜN6Åô ~4¼Hb€¿ePoáÿQ•ñ•Q6OÏẺc)MTQj·ÿc’¡bú_ÁÓđèv‡/>ĂMɤ[Mxđáí³ÉßÄ¡ÇN÷LE3ç5²½àñư•)ư=ïđzđ>¸’~[é‘Yđw?È;<†‹´Ç°†̉Ô á•­EOo‘̣‘.ƒµ,¶´-Yu˜Tkaª̀V,ƒ¿đ„©§†́‘ÛÊM̉4º ́X´/†÷Z©E'*5–iju"£™­ªéK/â/WY>­ÄAפ鈋Œ(’Ó°mˆ¤̣™]5?Ë;i2)TU$lª`H™i8,Ñl…ƯqPç¨xº˜’2¤ÙâûŸûEªªTefFeö+ZỖéäW! u¢’cÍrt¢<1h`"Ib.tj•IŒÔ‹c² )mù‹&sY›N¯Ic]ĐbƯÅ£!³oyáÈ×ï{æÜ¹<\´C;@¶ûŸO„XØ¡u©ª*Jñ£ÑÉ7eĂ²(Ư…̃8?"SÏÀEeàÜŒ& DäÛtEY₫˜hKÈÔóüدƒ£óBe¦rg;笉"JUànàé#ÓÊ} "2ĂØwîư-Îói ¡ÆäÓ|C^%È«»9*eÍKwHd'̀´¨¨;† ƒ‚.̣!løĐPe'6 îLrCŒUUîƯ…¤ÚỤ̈wNëÀ˜®Læơ.«̀›Em8MÊ“µ˜cxJr©å²~]>º“W(Hơ¼¹&‘$CYôG̣z}¤Ạ̀¿+̉(]̣« ĂzùuZÖ@ú/Ă}ẫÑJ/s°­sÓœ¦3'ôơÙG{?œ.M×§;â¢1àt?" zùU¼—}-¦¾;E{-–xĂ»‡l}g’À„,«`bMQ>đSœ }‹|Gn!„\¢ÆF2 ·bԯġåÀ̀¤ÓÀpÆĂÇ]̃N*đ¥ùËí“›âRtSœÖö¢̉6o"¾!ÁmX:J́pç¬xù^ˆ‰‡ẳN–ö­Đ̣̃#wlEÍĂ9Q+¤ômÄǵ₫À¹uÇ!k»:d$5Í–x*-ºR¶l±eá`Æ–¥Ç$’>[:ñ6¤&áßÂ[}=à<Ç v8q‡ûm!‰î6"Èă6†QˆæôÎT¼" ßù¢RƒF¶RŒ¦²Ó×;óF4ÏvfỀûçàg/K3©Eh³ Y™9 —>ío(´;1fĂQbC[‹đDèØ6è‰#¶k"˜;22"Î=IiơMôàđ$gf–L¡—Dç=¥.}”¯nBBÆf íX̣ª¡₫JMö´́5óIy¤ç™̣Ia H•¿•`̀åÆÎ¶nÄ]jëödíf4)LrHd|=oÑ^oÙ~ƳëÔ@V1dÚïȧßáaTƯ{ÜÚëă)œJùº´Î|1^ª¹ë¼Kcđ¡§>†ñÎvTáƯ¸´^Ä4÷´ûPiuÉú̀DL’¨\ßg$#÷-¡̀}5áÓĂ$‹KVÁÿ4ÉÅohĂkÉ…”8ézUQ±ïfLô†|¼Y°ă…´³\Û†ÔU²„.¸ƒ»•«pën˜‚p6OP‰ËXÑü¤6ƒ̣:*àDĂéh÷Où,Ư Sr‰}́ä™` ¦ÔœóÄ„ô'Ÿđ5‡&(øÚ¦‹xĂƠ; \ªÉ¼r›w¾¦6.; —.l?P>¦ÚB`ÍŸ\>̉!Ö˜iT+Đí÷r™­D“ŸÙ&R Eze6á:.F9Ëè|jAKRØ1U„r,QÁwü7.­tÈO5BTuÓä¼i‹¾ăŒÍ~\(R·Ç}d­ßOsÔµ‘`!Ú‹ƒvQs׉ KÆBéĐ"Săø ›*c†9­k2ƯümŸE$P!ưÓ¿œ.Y.9í¤ l|TăÚÔüÜĂộA"1S/\ø¯”ÍíeR¼è:±… œGe4TƠ£‡='° ¹ü1ê7ư₫~ˆ̃}hßé¬Đ¤œ¥OƯ½ÔÆ$²̉ö/AÈ}Ä {ÜGăyĐÔ §Â8gï\=ë“ht-ăMÈV/Vóµ–SïFMÆƠ@Z8cꬭv́ÂW×4£6Z[OnÚÑØ̣»‡Ç™…|¡Đ&ƒ†N÷.ceOÏ/Hy‡³ü;%YE(ˆû= âä qQ:^ñyº$ùu{<đsmx}4-—PlẺƒhàÄçö ÊaKê?aø₫÷Áç;~.fôçüD4ôđ=%”̃¹ƯF’éöĂ3Ê¿¢̣Ç¡ ç†ä> stream xÚíYKăÆ¾ï¯’ XqØMR$ƒ,ŒÍcŒMÀ@¹xsàRl½@J̃Q~}êÙ́¦(íxá‹ $ö£X]]¯«‹Él5Kfß¾IFÏ¿<¾¹0ù̀$q•TföøÍ<6Y:[”‹Ùărö}TÄwÿ}ü‡{eöư<«ªèáÎDëü-ïæiVFGh>Ă¯ån³ï ƒ¿v5N¯á·ßơHPDû'&¬qzĂm+¢ó‚1 ‰¥²¨I9)|™­±qµ0 IŒ,÷đûḶ°•±N{Ϊ8OơíÏk’ÈIơéΖ I¶DvOơI(Lñ11ôvK&"Uˆ(ôZd Î}‹̀æ6+ă|1››4γ—¾¥5½–©:̉Œª>MƠo‡₫›–¨¿¶f[Ry/ÜjÑR(z”zS£ÎLå[YÁ0ưÿZ1ĹA)¿²DNơjüë OouSN¾À/ô­û‡" |1µ £̀›³>Z“Œ^;p\¥Zóo(5j¯édwƠêOhXR´̣́c’'ĐûơÛ'w₫Ó]¾`Ÿ=á¶{xÅ/÷8Ü †SMË"βBeüæ›)§4&.Zˆ©̉dú(¢›ªm•AcÛT ̀apÅ?ƒ siß £Ø’> )®&ç'ï4·iôGè=jÁ¡ÆăÓ ÿÇ`-ó;&ßzSj–öpœî„zđsæ¸äiñolZ~(sqáO~ÓĂæâ-s›Ä©Í¾ÊžÅ]ÔÑȺa‡‡ƠÁ­l™:ÏĐ $…\ñŒªŒ‹ŸïHó bñ=êk/Da‰P˜j<ăE963Ơ&6QÂg‰k"«yœ qKc[Ø)5­ñ©p‡í[F¨g`¹ÉBØ#\ä@ă˜ó<‹˜:Ÿ:Jd­äI< ç·b×È 'r¥¢Í8‚±½ïÉß ƒ½ˆ'†́\4˜¼0­8p-ηÏmơ¢EƯsÇĐƒC¸Äá"Xh?8ưä¤ ø­C —f‚Qüº0¤]˜̣«Âà.óÔª©vèG*…œ̣c¤=N#+AöÛIüƯ]9ºFd‡KçèƠ~.ZÛ̉Æiÿ"h HÛĆh=FÏX́× j_‰Î·l5OAÔ qQ…ËÉÔîưáZ Ô˜Gµ5¥gé«NơÛ‘É^À"Ya1­‡Ç:‹âaî¿‘ŸÈf \äÖ»‘‘xy˜­»–[\¡—ƒ‘Ä%A…¥ÓA[¤²7I6â8…¸®l¨¿È¾J¶ÉÚy[7HI‡Ö–—ñ½±à©Z`Uât–û{JJ ˆ4ÙrÎå¿‹‚+Ï>V²ï|R̃»?౿ˆZMÈẹ̀·âùqÅPw₫ÚĪ/·V½uN+hN#!…’ơb³÷fcióñ(WÅ™̃,†7rdêa®0üêÙ[¿̃ûƒ¼»{ë͵Wæ^®ŒÙÑØy‚î́Ñé1¡;ÏnE“\r”w£-QïrƠ`8XØÍ¾L3|Ư^CVËK󿲬W•_y'¸^¾5×ídư!SN!˜-̣ÁpÀG0́/¾°ƒqOé^Eu[d#́ÂB&lxÀ…lp Cv©‚]Øc—́đKàe«Ô¤Jçµ#Hpæ‡ÀˆêúÓf¸à4% P-j$E_ñ|ˆ_²p‚,–U_X̉kI ÈøkU»ÂÄ)¯zăªÎ ´™%/Krv"çAî̃ƒ×v ÷ÀE^FLæ̀²ú-—7H;¦åö°bpĐáTK±cR¹ẲØI“>Ô¤'ø':+8ûÛư} Ööêxto~-̃OÔ¯§PüwĂÓ`ÿ›B4³˜´² €ưĐ ă0§,T¢nˆJ0ä¡RYxµ‰̉‡$^D÷±êê­;¿iE~låö‰¾̣̉Uoo‚Uf*W[÷î¶”™p± )̉ô­| yŸ™nz»Èâ´J±b's}iÉ—)<ó013æ—8œp€®O'Â?C¦ŸxaĐ—™Æ^¿¢bđ3IäÊ`̣ÎQï©Ç~xÖ árÖ%ñ&[*s»rË{O£8&7«̉˜̃ë»ßp,̉$û‹_OŸ¹¼ươ°yÿPVX¿©̣Ür‘&ƒËVW )“à†c ë›Eß¡åÎÍ]JµRñÑcÇ•_¸£åR³à‚•ßz¯]qœºÈç´ƠZ ỵÿ0$pn½ă'9èZ 9x=đ\!ϧ“Ø ~c‹8•Ïwÿr•¼èY¸.Ơƒ'§r ̀=´pzùéÉJV×éT£à@á¾ö”kQ ¬v䩲:lc¼ÖD̉đ€»1c{IŸf°Î!% 7…Ë÷gz ¶óL̉₫|*H̀ÈR6i¹M˜̉ă>O½–—<µƯ{tO'wrQtáÇ85}ó`ÿ?öT˜O¢÷H± ­“©éC"¿Ơqé‹¥m?óà₫É[B¥Ño£ˆ¬Å0ÚßPZoXœ̉:UđM¾ÑÊëR3Ïúˆv‘Ùèá®” ̀†f„ ’’R̉iK÷‘ç̀D\ûê›_昌2E‡Ç½s>®'|wZ÷åÚb ½Öµô`¢¨Âùµdœ?>Áyk ›ơƒëq̃„E§döăL[ÿ¼̀¡y ‰ˆfBÏ4è߽͂ü̃w¹̃«Üë‡,Ø3W2GưVöƒ÷ L‹z_É Ưíj~™Æ™uu4> stream xÚ­kÛÆñ»…€|¡‹̃—¢F‘¦u¸@ û Hú–x’bIHé®×_ßyír)QçsĐ—û˜™÷ Ơl=S³ï_)y₫ùîƠ›wÚÍ´J+UéÙƯưLë*UE6ËË|v·ư’œæ:9ĂïÔvđ¿…_½ƒ¿~¾È”Jîaößw?¾yW•1”\§¥Éx'+ú_ĂQ]%-Œ÷ÍÜ™d@̀˜˜B¥…)<˜×S˜ÔaÇßÚG„]±đ4 ¨ÔÉQ™đßđj˜­w\fëĂ ûUé̀å˜NđÎÛú“Ü„̃3OSdë²H•ͺTđaÿêY¶eyZ™ÊŸû©÷|[ăæÙÂYª*;[h›º¬â]ÇÈÀéd3_XWxw2Fæ.E€0“!5^ቮúÉ;Ă”ĐRŸp(†5û<ó£÷¨Aªµ©5₫à1Ëï¿?Àïüđ½!J™¤ú@º –sHéçèD';“ÓKÙ•Ê<®¯C'T³º_Ëɦ™ÑÔôb3XA´yaU–:›÷ËÔÏüj´z‡JË¢ô(îæ¥%¢ûÓ|a+ N$=¼¼"LAf·ÇÁ'˜̀“F¶¶÷r6ˆ•t‘¶đêÓÜ”I{–3«úDŒ¥]·ß ³×\ŰÙ,ËÀ{Iô ™ˆ₫0KѳéCă ‰|8Yj(”ní… ¿|µÿg₫!₫Êüñ#©ƯÙßùÓCÍ Qù3{oîÇŒƯ¾r?̃å=ă~t^¥Ú†¶Èdo¼i¦ÍuÏÈjñ†~”œÔ§rLñÙ ]øû4J5X‘!‹&]±¬+^ï­T^¤¸ạ̊N—*u™#g¯+IFÈI‰²<ä_8Fë̀¨–ơÆI‰2‘'gJ‹¤äÅÏÛ•vyêœxÈ÷;ú,o§Ö¤6¿WöC¤¼ÔÙ‘n2£Âg\₫ç<ạ̈@\}F¢"¨³Gyö^¦•Ήá¦\;B(ªqîR%—0ÎDmQ†MK_₫½IªŒ8_é¼ï„cử§éMÏ3µ`>{¤Cˆt½ñ~µá^ퟃú„D¨«×Í@=)kÁ¿ÁCyAÙz¨û8§ *8ÊéLa¾ <„Œ«gƠ†¶$â•ñV“U®ÀŒƯóú„ļPŸp«»kÓºïRú;’óR¢aña­D íY:C0Ư\y°D}+xnăI2“êRå̉äŒ2Ê }Ñ'PùÊÛh8@‚'LỗÀ6bßE.b«¨ó¶•LNmC`j:/¼D· å!ñ¿çú2SYà¿@A Đv^Éc‚¹ăTN¥y™ ÷ÍĐDê‘Éà+¡tû-dáưKâæµëzYœ\héø7Âó±/œ±Q ˆ^qơ‡íøº½Röp^†qgétÎ7†œ'§ÚOéD†êo÷^öpǘ ÎđÜSFp{ơ9€ÆOă¾ñ‘ú–úˆ:Q¤C¼È…ïeº K„ø-?–ĂF-pđ³2vÑ\!ăR:éZpKRj™C¬ü~!Á•›”ÈJ–+áÓœá¼o5|¹¤Ù )=C ¿-â4û@đÉÑŸ‚Í3…CRñåÑç½;üZUUœ:ªqĂ ^ÿAÜđ™çƒ`mqU%?o%bô(• ÂQC…Bó”]́â9λ«Ưk¦Ÿ¦k@>[Ö+ßn€ÅóahqIµÅBŒ>ÍáỉUØÿ¸a¹ÑË’*5Äå“đÇ]–MP#0LÍHi+(^C­øáF­h†Oºă₫f±S´Ë¸Èü²™<-L>|]¸ªL>4ûæúKh@́™2BăÏÖüÎ͇ư`&Î[Ο‚q8Đ!ï̀đ;)4£-å}Ÿ¢p>”¢°whÅvO’ÈÂeLvñµ₫K=€ÔÉ·ÆÎo=Äu«µ—‰aó$:+¡ŒÂƧïw65;̉¡c*L«ä¤ÖÍøÛ÷ ¿f…™a ˜æñăvă_ï^ư°è, endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 893 /Length 2606 /Filter /FlateDecode >> stream xÚ½ZMo¹½Ï¯àÑ>„MV±äBXÀ»† °° ‰¡ƒWØJ¼c4Z¬ÿư¾¢(YcIÓm¹Û‰́vơëú®") ‚:²Ëbp÷)F)aL.`µbT,µß‹K9c¬Nc^—×]© Cdt𠱋Q & DânLöJRĐÎ HÙÅLv§¸XÔ«B +â`ïÆ{€®$R²;́HM€3XÆEQ›à›B°IÆÇ%¼‹ăööDñö%Æ$ă‰„Å‚ï 0QP-ɱ{¼ºđ„\t„I(€à’T›(XÂÀ >¤b”ñÙÀA’ê¤1Aƒ6₫it’’Mȉ›°“ N>@J¶;â4àQ“­H³Sj‹‹ÓD6ÿ·)§9€I"°c‰ÓZl­}`N.¸̀Æ p? É Ë¬j‹‹Ë¹|®.Wc?H”`B)m¬Ơx́ × cbl­"àF»“xÀ+‚6”\¥àSÔK1­¡QŒïfÀ¯±1(U‚Ø8& ÎĐ̉ÊM¬“V«É¤^ñSCL,ỠÍt3Ô¢wµTSpĐ©&_¼­VˆÙCÑfàÔ³XeÅ͸گ¶N ,Ưr3[W÷ÈÖƠj3P‰Ñđ™âGc7ÍOd÷’Ù@¶{Đư˜£®Üđ̉ Ư¼Ú¸á©{t¾>ÙnÎ|LƯ?®=]ÿ¾₫°ùøÛúlç~_oÏñ›{söÖ½qç¸tï.Nß®ßOF.Éür₫éäưæ·ơn{zâ^½_o¶Ÿ<¤—½\ŸÛûŸưwskñkóÁ½pĂ³ÓƯ±-?:Z ¯>}\»á—7ïÖ«áçÍÙ¨ÏaOÑV®†ëóÍÅöd}̃L¬ƯúÇúí雟6¸×vC!¹\éx[ûb’₫蓳³ H½nÇ^k§úûH}ä>¦>Jµ¹uzÜéq§ÇwzÜéq§Çwz|IïxµÇ’†5¼¼øu×®ÿ~zöÿƠđÓfûv½mŸ‡¿ χŸ_Çvà:Ù¹×P5ˆ>VÄ+L)EÅutI³çœ°î‰»%Æ‹_¯$|l¢œK"¨§8®Ơ—j^}¡ Xh>,5øŸ" ÀI0Ÿa䉪‡åƯ åJ»gGÁ•} Y5ys)$đsÅü¼@¤̣-³·ßèSĐƒ x~)ùY|…[gèmMå 4¿2ŸQSb0ÊĐXh혆¦Y­…É[ŒEèđ Áb#PƠRù^,{pÀcJĐ×Fˆm" Aw-ñHQư}®Sñđx²zA~ ₫[̣X§$¥)Ô׌K¢¯–SQ¦ª,@¤˜N+\Z‹ˆ'̉™»iD‡HL){©e" <¿BÚá“Ơ$¸N–Ă3BC*ăˆÀàq`ç…:4†ZÇ¡đüP,Bªù I‰^²G̣8–bD,<²FÎ́3j¿ˆ(BDz€A‚65ËN¸̀Hk„&©¯,#¢@NÈ )Uú*ªzT«ñ, ÂqÜ ×HˆÖ‰ /IÇEµçjn-ÿú÷\KY" `dkĐƒ³‹ï]ÛZ­ê+ø3e-*~í­}†¢¨A~–­Ñz e=†$WöKîSé¨D!‘«_¬ "—Ơ ¨¿l7'/×` °§ÏÜđjưÇîË2äËʬȭʬđC+3î”ôIzÅ$½b’^1I¯˜¤WL̉+0éÏk¯À´W`Úéi§§vzÚéi§§vz¹ÓË^îôr§—;½ÜéåN/wz¹ÓË^éôJ\¢̉S¸i{5Ă=¡¶Ô,-˸ªçÙsy…“FAeư/ȃ4+oæ̣2¿í+JRZÁP-ËÎÆø!K¾Ê°hB–¬¯bDz€GT”Ù¢:’Ơ@À‚Ê7é, $̀z×ú$–}%6l–M €³„ ¬pd)Y·ø¦Äă¼Y w— H­1-¾XC¹XL“X³H9*Ễåà sÀƒvªLij€‹À©ÀÏÁ»bàCVe\V xA9“e‚(Ơ¡Ç’•é_³@E#D¾Ú®0dD:A–›Ÿ$(]DqBơ\Jk0IÎPËD@ ´₫Jƒ,ûêRm%ûÁФ tB3b’µø¹xÛ«HaT_t‘¦¬d_Ú̃ L̉êe<6é6±Ûî*M±2k*cY 6%ẹ̈e‡Ø28k^S˜âđt̃Øt¥¶ˆ‘–iR„]£´Jˆăơ>9u$ ô'¸r;ØMFjW[Ç:…Q¯›—Đ\†çĐX†‡ëá§Æ3¼¼„æ²ÂYÙ̃+’Lk¸!xsÈăPh• ×Eâo;Ö¦8Úv–2%ÍßÔ§́­™^ ,(?™«5oªl™D@¦bü@ܱü%¢ä©ù ˆ:;€ƠrkD䪭u ṽo óĂ$o(·ÍTª€Ú–r؉Äù}¡ªÆ „¿l]ØáTø0Œù3ÖDLv.áÆB`T„›ĂÛoq₫­¯ˆL¤dÛî‡L,‰´ªù°•Äùm5Âs%Û€#ơ©uĂÈ\”/Ûd%Mk“}ngíơ©n¶¦́ µ\7´ô¨\¯4¨åº¥ÙLê›ZZ•oµ´j|hK«Đœ-«¾J±·äb̃[ZøhD_ou2+}µˆö¥̣Y`fu¹Íj}(««̀ÉjBÊ Å*¨bn[hæTóưåå][óƠyzÓxoíHÓø®µHO+̉ĂIk‘Jæ‰tSD¥’x̉Zf$¾àƯ”µŸ&b $™Ë¿G=÷Û̃HẤ”ßhœí¸Ưéw² Kw8¡ê;Ç[®ÅN=LßílÚưú~—‚]üœ&¢Ôdµ­ê³Kk§? œJ´Ư¬ăk›i&3<9:jo4^ÿ|ñÜ₫½ßí>₫0 ×ÛóÍÙ›§»Où¸Ưü/ñ›í»aûxḮlÇT[Ø_{ØîZ+ÖøÅư)k!uÄô:1:ƯŒG_hÉ‹ÜS®úùPâpK¨^*÷ƒqÜÆq?Çư`÷ƒqÜÆq?Çư`ÜC“P·˜„T­¡g§dáq­A]¢±,¢˜ßXq!©OÖÆF«vÄ8*Œ‚ØtVøûïz²9Ơ¯q±Ăñ+͘ï[sV©:©‚rÇr4i V¿ï¹*0#Zç¯̉åéil2=û₫çª("〬SËü•€¾©0 ¼¨To±ªµ¯Û±c±í'P«zOyrº[û­5₫°₫áôäĂÅùn>@vÏθ_BRf»ÄßĐ¾È́ب" \²†ezĐ¢Ç†RˆMwlÂr"m¢ íÁª?ljUE endstream endobj 366 0 obj << /Length 3826 /Filter /FlateDecode >> stream xÚ¥[I—ă¶¾Ï¯Đ-̉{L\“Óxœ±Ơo¦“ĆØ[¢Gj*¢4=í_ŸÚ°"¥îÉ¡ŸH¢€ µ|U@G³Í,}ÿ&’ßoï̃|ó¾(g:Q&ÉâÙƯĂ¬Ôªˆô,+²ÙƯzöó\/–ZÇÉüŸ&×Ç…†¿¦~Z,M̀Û₫=ÁÇmÓñK/k|NçÇ^vøIjùºnáWÏWç=~|\nîÿ¹ûó7ïu:Ó‘*£Ră”¢*­ Ïèn‹]˜°,BÂØ( 'ºCtÏđ·Â© Œ£F™£²jµˆóù§EÍ«M½X&‘ÿ¥ö©E3=;¢èđáĂ÷of?ëù‡úó".æơ—igæ$Œ¿Ÿ́MăÇ‘N}§fî¸ØªăçûÅ2Îæ5 ô‘¿¬kÚË¿=E>Çk&¨NøÍÿ̃i‡ô ×XwvG~¸>âỌ̈xđtD†è Ç3Ô5Db¥•Ζi¢â´œ-µQiR²,ă(JaƒÓb~jù—z­DFç5 ζå$ÜÚÇ›ö-O’^¬ĂYQ‡tF̣#?X:¸œ®Å VȪ9ájEû°4YBûܱ^ÀªP¾íÇ=…ÿJ«G–#~щ¾iV̀‰¨p„zIb‰ú¡™WÇp̣,JPgD’Ϩ|*_ÊʇÉ¢à·Ú¡(P– È¥†©é‰ÛN¶¥œ#Ñç;ä¹gm‰sK]ñ´ơ_D¼đăYx«ñ̉Ab'ߟ ±=RúxÓTX[YCw<Å[Ë@¢¸Ḅ-‡QăÑ´Ư‘ÁơÆe>_˪‡~ÈÈqáïÓÖ-ŒḶEÔ±ÂÏŸÉ#42ëê HÁ˜¿¦¹~Ù§¿€oƠQ:ç*ÏJëq¶¢ô'Ù°?Àß7̣w ơpM{»(Îâ²'@x¥¨q̃ă^ÜÛB4ˆ4á÷¡²YF{́¤éÈ}Wø'ÔÇ1kù›¿Xä‚ LC‘¥H•©dü²¦¥×Ly﨤¦qeQÿZ†ĂíóXÄ₫h=ôẠQô‘đ‹ƒgΔ©ơk2têè!đü#˜ÔʼxfâW*_8.ór¼̣e¢<ˆTCÍc•d©U³Ïb¾ă²×È 2 ÍüovÚäƯp1ÖĂÁÜ̃2¤M¦bLT‚G€O„‚I¡ÉơÀDWT9Z‰U6“eÇcÀóÀƒ«»ÀÛîà&G…Wˆ6MP´Ù„h¡uR´€9’ÈIô–<áË$Kc³7çrDu¬|YTvÀ…Z&祣L鼆ié1(x†c€!VEq9ïƠ1¨ªĐ¾7yªh~Ç5 Êxü ÖüL;PYdëLù(Ơ½¸?Â’³¤Ă¼d[øÜö"¸N ¨Ñïơp¡M®Œ‡“R©‚"Q{5¹Tæ±Í„kyÈë ÅṆ̃Ü´á/¯“¦û£M%öLG®§³N¸ó‹w̉oÅ .5 Ë2³)öÏĐ“œ<³ n_µ€_Éåu×¥Ö)<çc̣²óA\ŸÎ´ÊŒ=÷2>-[U6%Ặ)¼Ó´đ¸ki²RÖ›GÁáeÍơP~áå‰K§­od,µç—wV“Âb-6¼}Tjùó ï7 |^}¿Ç¿’åÜ/MQª"ËĂå®\;!'ÓÏKh«’PÖ/¼—{MéÏÔË‚ö²Qsk˜±C¿Á&Ÿ-zabËûXY°ĂÙ¡Ïe•MuœbÚ[ D³rè¡₫%̉™­ü„…tpÏk™ Ư đxu&¼ÉiÜmɽ€&ÄƯÖ„êñTÔ;&Đá‘{Ñw¥°Mڼт3D7ưBÅùÿ\L9îb₫x½Ë‡₫Í)ë­-DŇ[S·‡9¸–áá#iúqó€'%̃đ‰Ø:©×)ị́ë<âv!>o…¬ó¬¾³À´Ú¡ÇûƯ¤ß(2•øY< AiË<²ê[`z3µW]ÆN¦HœUx.1à ê—ñ ®1sÍLfaø˜ư©ÈªÚy)Wh'W—å×lv ¾·tÙÁ×rtơ'æZ¢³ù÷¾¾Å6Uû¬Pq’¾́Ê£Kqä«/ä%& ‘ö)¸ˆØ]=1ÊäÉ­Ăn–ÄSă£ÊqÓ„·ƒàĂ}ƠW΢âÚ8È’b]\»‡\AamUŸƒ½Pă)Gï.ÀÇWJ"8ơ5`Û[8¼ËÅ(›[PÏ hçæÈSµÈlèd§Œ@ât lé8ê˜yK€¦’_ân©k›ÊRÎ/™!ô§bÍÉÿOgƯT Vh`e+oÁ)q²ÆöcpUq,Ù³‰̃çà" ’D¨ÄX‹»ă°P¾»°³g̀aÁ`îá~o?K·Ÿk¯ÁX¥c1¤Ú·›BÓưHrÖư)É͈ü¨Û7W¸_ɀ–ÿyóIĐÖr€àĂÙ^ˆÉ0A… M"U”ú5Î?Ư½ù8Ê^_ endstream endobj 392 0 obj << /Length 3036 /Filter /FlateDecode >> stream xÚƠÉnÛHö¯r¢€ˆa-Üú–&z¦1AڷΠAË”¬¶¥¸ư÷ưÖbQ¢œ8Hæ »Ö÷ª^½ư1›,'ÙäæU&ÿÿqûêí{“OL–ÖYm&·‹Im̉*3“¢*&·÷“ß’ăÔ$+ømÚé̀ỷl¡sÏmÇùvºtúßÛŸ\VÆđ*“ È®[Ăïƒüß̃68…«R[…m+Y¿f¼Ë´›=üy;í¦¶L¾Lm•´Y Fjû¤mæ8ÿÀ½îSwÓY' ˜¹À{3z%SUiá..ơ~ù5đCB-ÚØó<ơ=ˆùn‹ƠÓ2r¹]₫^áL`̀¥¾(&3ẳÜ× ç›#!9ç’̃ŒÁÀÈ‘ÈMM¢üvɯḯ yR 7wx[äg“Q¤åIè ³F|¥µ,ƒÀBº̀ZVm—Ä7@‰™ÍRg=_è )O ñA„âëä·u{ÁÖ ê'9m1LøÍq̣Ät£‰_qnJœBE ÿZtóưɃŸ²<ûU8÷ßÿù₫ˆá¹}ĐñÀ© —e ç|ZZ_/ ³´¸;…ß>b¤Vptc̀TTi^— î ^ËO!¬3Ï\ềÓô}2`Ă™)ªä“qé̃Ầ̀ÖđrôƯk™bŒK ©"¶?|‹Èû,Í`D¶2uơI0?²́º]f4½0ëØ ™T…Û;}̀“ ơé ̀„ÓÄL +”M‡c¹[ »¨µ>u „rÚ…¼T*¢º’₫2R›Q5P¦¦pưËáy›§®<{Oó”b›NgeU3c|SRµ¾,…'é+%rhÂó•M3xÇ ¦GªTùU*¾“[¶Ù£>ñ ₫÷„ î¦a§Î·mç‘+²Ûv<­"ătôyZ₫t´±éº¤##$GîøÀ–\ 4:{u•:¾´̃đèPUq”¤¯ˆˆyOC¢P,Iüh“elï¹\_hßw;„y®Â¿W¢‘*CX•A«nÚ­ZFÔ$¸ưÀ8Äô䦫.\בóµîO7g]yaœ10^^zf<ÙĐ₫th6¢=·ê$ß³SÇ·oĂÜxR'2'vP—M>O´ơ¯W—:ǰ¿>~ß!K˜äw22½»v’ö:RJx¼…`åđë"öÊ!ê ̣¸R.î=YñqÛˆs¢aä¼[‰§ÙÓQrb™ÅA~ $ÑîЇ6+̉¢°C2Ru·äá‘-+f¤ÍđU›¡ü•¢¿HçAG¹Û‹ í=÷TLu‡,zP‡uÏ}Rµ[= UUÆ̃)„cëN4LYs”đ…ÄQcÉænƯ£ ;¸ºN+3đAÔ uRƒÂ«4| óoe]yû;aeµôOÄó3ŸÓƒ¬üCvÏ#«§nöR0"L³Úµ^9pØIrk—Éơ5’/´Ü¶©ZP¹+ù€|:Ç}]p`‰ ’â,}É#Íôxú_£Æ"¢àﲦ*½@|Á™/«È¡´µ(ORģȫ»ixê‹EÄæIIPbæ(k<Ût<Óp—Bö\iE–pQơ“ç\Z <üöÛlm áåsÆQ¡.B́?#ö‡­ÈDîRPbö~V`¤ 4¸|•Ñû–n|¼y5ùÍàz7Xߪ6́ëtđ@¸₫ÍUX´ÅfÆí‰X97¹ª“`‹̣Qnù+MD” Y»n'gôü:k»Û)Z_×IæoÓ=âœ0₫´]ÓIw Ÿ¿¢§^*™cô—VS@à›Wú‹î£“ƒp€Y5S™“‹ ÿÈÖµd<\ŒrQÔ&̣‡,Æ ư\,]Yº<È?¶É!Ôy5Yùˆâ”Á ß³́³¶çxđ)E´Sn‡ÎXdz|̉ÿë£èlq1} `›³vÔÛSÖ/đmÖ̀g ³x̉<¦QŒJÊ,AỤ̂ºp|h/O}rô✅‹s8Î d¦ÊÓºAçÇÑ´„…X1Ó¹áܤÿ!vÍ9cÚ¨„´QrkpĐ«˱ܰÛb“P]Œ “ỄcoyÔy€´Oˆïï‚*¾ç%j"Đ”Ç₫ €fØéÁ¼“TÛÿÄd¬½¿¿6¤ ®1J­Ơ®J> RGMiŸÖjBïÜæ°}Tƒ…¹ü̉ơŒít¢gTHl™%:I(\ura{¹ ̃₫2ªü> stream xÚYKÛȾûW{¢€ ƯÍn¾¹ØA8¹,‚¹es ©ÇÈE”<;̣߷ͦ†cÏîaFd?ªª«ëñUѬö+³úÇ#¿ïïß¼ư`ó•5imj»ºß­j›VÆ®ªXƯoVÿĨo×6i›+ü·ë»¬tI¿Ăß,¹À؃Œmàù¿[´¸ø—uV%OóM‡R­ÍQ–á¾Ó—Mø²ç¦E_Öy‘4ûíú¿÷ÿ|û¡®b3—¥$6,ï¿×¹Mö@aXçỶœ¾ ‡o¼y~Z_¦Yö₫˜V»@…m.Bá+"‚í‡æ,¢Z<ă{³ÎJ\[êÚOđS$[$xB!V0Z§®ÎVwÖ¥¹¯™;ªpˈÎo4€Ÿ4÷é ¬ë»I»+]ĂLî‘oÅ“ZPẾVBíû]MÚ|QK€fC¦́O( -ØÓdÅV‹ä 6AíØ,yw’½Gß"Û׈¾¨]zRg´Ö'¿‚Ä(Aâ±₫/hŸW¢O›X”*iûƠÑœ6J¸¦Ë́‘é¤^ ‹·¿ÍyQSf®¢=ÎÁơ‰>[ ê\ùnÎ ÁẠo8$½È9H çfίr,Zz$ûß_Y¹)HUƒ!§ÎHåmj3 \u‘ùä}C D6 VæÉ†ÔÜà Ú oøIWKôĐ·ÓWY• i Åêđ̣ÅƠœ+PåKNP¥u^¨!Ÿ‘ቆ‡_à ñ͸úKƒ³M{ˆëEjË+"ă+%1ÛDQÑéw£Û^fCè=îƠÀO×Ăk>5‘ºq€"µƒLœob*ùŸÿ«kÇÆ•óqÇKÇK ,¡¦0É=§!v F«áÑ5?gWÄç̃đr–»>l­’ÍVƠÇú¼]¬éŸQ¾;“_ÉиF´ưI‰ÑUü ’çÂÀD4º„dDÙ¯Hù"$|ï«}5¥c_Y±*̣¿%ÙZd’©M@̉gÉ/¸®.¼÷#oxDr¬kØôÀs5µŒc×(¼o³…á£YFvIëd 2ŒtÎf²]D6¹Céà¡ä3Rm9®áöQ­œ£`Lfơe¥OÿBcÊ_µø]Ιôb“·̣wV, Á¡×H}ăd$'̃+ídågÙƯ†ÀăĂSß[yVNóhÀăÁˆ„ó̀”dÏÛÈ /ÿTè¢-íD?Œư…Œ3>Ä%t.S'¿…ICèϱd˜2Á6]LˆëœH…ÔLÇ ®€ÎSäJvp̉„„Ïz¬9g×Dqæơ÷ ¦ôˆï…ºN t‚ ¿LÁŸxçUD1#D°ÍpäˆK)[E¡Nyp4åÀ=·2—çiÀXƒ*Rn#¥a†ÇˆÄô—+ Á€K¬ ơ™´‚¥3/ñl#»=S^˜d´ƒ§@ 纵¦À^cPĐ îˆ¤r¤u h€ -Ø´ Q¬Èr5 4%x/BA‰sÇ`ưÙ‘Êàá‘>„à@ƒOG.P9yñK¨äèØÎ#Œ¦ƠR€—+­̃qú ePƠ,O[¥Î„đ;ë•DÈ6;¿ÈÉzµƯgÁܤ`̃ü( ÅÛTJđ-ƠYZÖ75:•^SÓ 6œ§&ˆ« ¾Fº²Ó1À‡ẓ|î&àMWÉÑ…&s~¸ˆÇ€K>›ï±y{§w+ƒgâ Ơ¹§-/Û)LÆ™­‚Ë–ˆg˜ă6 jxL)IMËûÙ·Xư’yègxBy‡<îÓ‚åzŒB§Ê3ÓÅÈô^(>bOIgÍf*| ˆ)/̉̀W¼¾­ùûư›ßI¼y endstream endobj 415 0 obj << /Length 3752 /Filter /FlateDecode >> stream xÚÉrăÆơ®¯à-P• £»±æ6ÇSIUÊËL%Ûˆ„HÚAỒÈ_Ÿ·6 ¨‘sØËëíí ’Ơn•¬̃Ư%̣û͇»¯¿+«•1q•evơáqU™¸L̀*/óƠ‡íêç(½7QlîׯØ4úöĐB·9 đÿĐÁ¿ÓưÚfIÔ7Đ̃>m.øídđí}PO»==B§†¿Í‡{Ä₫;Âß3m C0¹åöà̉àÚ´ Ö>ÓX;Üÿúá__g²•Iâ*© ¾*Y­m;yÓ÷¶Œê^jáÆ¶ˆï×iUFƯ#₫VÑß4lđtÆcéÙ'†Û×>ÀỤ¨i8R߯³$‰v]}äƯOÜ…ØjÆQ<áa2V_øŸÜÔôf ¬ ¡³í]tiÜ·¹à`‹¨À·giÅßt­¼™°¶¶pq¹=øỌÖïø̀›ÿ=¡\·H‰„ˆßÓ¿ăEƯxtwaøiñtT́"¦‰x–‘ »é¤₫6 ̣ {ƺ“\h6DÂÁ/%"Jî %Yơ»7~zb`AE\ 1Œ«]•‹+aC+Uræ –Æ…3«ơAŒ>́‰¦H‡uØ8©Ê)9˜I\ÂỐznŸk$Æ@ÜÉ"Å s"Øæ%?.Í3¾ùyƒÙ¹›¾Y ́ Ș¬ª/Jw\r¾àh5ö}Ă2‹ BL\=“‘û%ÉaÈ®=ÓLwĐ/ Pf‰S©Ëơ0lâÚÏga¿Z^Œr̉c½‘Ûv½ß²è²á`DDC;(;u¤̉ö*èĂÉ[.ˆÇO÷Âgœˆ8ª½â€ºÜ£ÁÍ?â ”üxŸåQ­È¯H¤ÇC‚G\t}+s¤7`ë:DOÆØi»_äœó̉ØÑuÎ2‡\¸»!đ‹ä`È~Ü–pi ă—ÅzA›ÄÎ:¾¡đ₫ÚV$|e„:ú¬ Ùg¶zFÍư–:ÄKŸq$ar!YÈ̀ ó Ó¢e-"‡{¤jq Ÿˆ››: Î…yªUÉ=3I©Z0fŒîx]ó—Äd¤zdƠx̃éèøÄN(Ï'•QízyDÿD”îû:]f@ïe Ế_We©‹̃ô¿ˆrö#5Èœ7«gÉW=e—s{Z=²³ƒêµ”hˆ`$‹Ô²I{ÖU¼X³a¥àIñ§ƒă›Ïâf³âB pâM#ØvD]iuY€‹ Q'-Æ[ñ¾‰̃¾ùêVôÔÊăÂûÚ.hntÚ†=Qê„Î+®Ÿ2•æ HtS“jdMKg'36m9g5,´¿O­8ÉQĐ%É8ÓơØñ[ qßG oê=íY£/à†LƠ©a£©Ñ¥]é¾ƠˆA öDÔy_̀Œ̃Ú ’Zâ0Ḷ^Y·Q†î°™ú&ˆQÑ L4èâˆKƯ¶çïå´uè6ÀÔƒJ6´EÚâ%Ô¼Uk=¹Àˆ;U¬b!é Ï;'9{ô¹9€Kk _¼SKKé”'ƯX"Pê#Û”$«îç J[ å MÛsgiô[ĂQ#SƠ‚-{Åñ_{Åè$‰L('h/À4œ„XHÜ(w0K/:îŒtFæ)Çd4wd"Î/̀<¬«Bc y¹éH̉¼÷˜öZËJª—´ Ä#¬-$ zĐƠNSƯÎâ¾ýHƒ̃±Ơ°«—pˆđnG©ÅF“‚piHút]Ô_ çúë€ ũ§ü8Så]x%Í2Åç₫tî½é­s½âP̣:/Đ-¶µ-tF>Î@nơh@`ˆ²^…äT®<(S‚ åÇ÷¤ơvÂÇZÈPåÑî ‘Ø'Ơáyô-5Á¡½JơVdß w°ÇéÓ“̣Îç)…øƯ–z)̣̉t”dhwÊ仃è –\̀}CTXÑ5¬h8¥Á[j’ ×j~)%ûªéíôˆa \BMk$NÑ«v<úKbRÉéă ’úh–ñe«ÎI´lLQÙ‡9tộé NˆÁ†23>ă^vä“,¶iê±Ư/Æ.Îs»(Ưp¦]WỦĐåS[Ư …©3µ¥e ñ$À^ ú,ÉóSÂs\¦ ¨ø½Oz îAg$ ±'Œk2tÜ͵Z#å4U(tŸû̃Cx#€ñź Ù¯s|…”R /ơ÷0Kó¤s-û§(Pr½äwpĐ£'&id?Ư·R)ÁCǃ$Ïæ…(Vªg† PÖh5ÍH ¨ơ~4•™Ÿ È I’Üă3ÍÖPµlLñNqÀ9qº€æ©°ññ >¦>X̃V!Üm©Zâ₫ ¢÷2ÿ‚LÙ8ͪ£W[²§É‡÷ø¿¹%pÀËY C¡—¢„g«§Ơ•ú"d×"‚çY–[ ׇ"ÎG«1Ë›?¼öÎy§¹Wô±ˆ ÄáÆinư=̉ô£Dh¬đĂÿL$EE“*™$˜p–]ûE”qêŒO¥Œ ?Ü}IÉÁ GÖÈM[Ÿ¯¶`уwLâ+̀è.ºâ „í¤˜đ‚Á”T5ơ_¸ưR&ÜäqYú”7/Ä ¢_¼g܈©¤pm¶²hâ“×̉¢}É̀ÎÛoRäsư}‘"pZå1́=ÆeP‹JY5cAÑÔƯËI¬XÍx»¶˜^ˆ̉L³k×v7;RKùt§@©W”€ṂY₫59FŒ9RæÆ= ;²"nỹc½*à&Z%'́ÀÈ«³|‰Ỳ^đ§F3dû y‡[>ó¨̃âX̃/èt ë9U«|NU¼7ñƠ+î]Ú¸Êó×ß{§E?æ̃L\ÆĂŸzé­0­â"ŸjÙ뇕6₫T*f¦5[†­_óI‡?N÷¾™µ6΋‰ÈxÎlù+ ºÆ~—gSgßqJ8#‹› 4¯«Âö½¾.aO*ÇĐw90%{I–ƯÆ™„xy#û¸Ơ¯!ªIY»£Î÷™¨ú8‹^>̃Ö“¥M~¨1zçXçœí*ÅÉÉúúÂưOă×"Ô÷±vÄ|yÇdVrµdöµFútO3¾¤ïmÛÂ-é{\ËaLæ¾p‹dsÇR¹0ù½T6à5lƒn‘¢­ meä$¯ƒx&|RÖÑy°Ê¡’èØ¯œd½³J¾FÅå×iØ'Äy9'±ÄªÉ/0?aU'A½\Đ}å*M:åÍ/!y×âÂÇôÜ^”¸: <4)B:¶®ô\©ÑyKºa.^:uªW5Ë>¾VÉé7¿Y¸Ú-ụ̈·@üôׄ[‚ÙrĂrâ>ûOäŒPœH̉0Ẩ‡3¾Ä‰Íè#,Já’Áđ™"¦SG[|mŒÅdˆ¿yfŸ\ºLK© ¾U8̣̉|V©Ÿˆ̀?>Üư!ß1ưÂ…8IËƠ¦½ûù×dµ…9ˆµbºưA¶¤V•+«÷w?̣׌Š4fáJ¶Ö؆½Àƒ.̣"ø 91‹61å"V Öqíb›ù́ÀgcEȈcúÈă´Zµg¤ˆk’ÖÀQæ‚úlR…Ä™OâúA§ˆ¾̃¬¢ß÷̉[ÊG“®`zúF ¦Yå¿*°|û ÀóôÔÖ̃#¾ß ~zw‡_ïoïTœ&„[ư,5ØÅ-è¢Xç«àË«ÅAe³,ơåAö¡s‡ÖtF&Râṇ̃7-.Y~hÿ`Çè+¶Z±MG¤jĂ$à¥ƯĐ1Ç*]R¶@½2µx¸Ÿ÷ȰT°8hL)Q›–„˜´X­‹¸(ªéÇ8sü½À¢âg½UB±Çvש©^¦±ñÔ)nS‡¶©Å]ƒæäë‰qî& È¿Ơoz«èÓ¤aË{Đ,²×1₫?baa"Å̉ïÆ´-]ö^h¸?êq́*‹`â>5%oA…‘dÚS ûĪƒF„A°ÙÖ\u#Y¤Ißßdơ NaĂH<7)µ>ˆrn¦ƠæcÍŒĂ„«Z‹]j£ŸÀ‘úfªÜ1,L¤f¬å0“âƠ/Ôs-ûƯàßÑo†bH‘ÆñyvÖæÎß-¿ËB,[¤àØ¢xV₫ÉÜđüµ3o endstream endobj 431 0 obj << /Length 3080 /Filter /FlateDecode >> stream xÚ­Z[ÛÆ~÷¯Đ[¹€—áĂÛ£ÔA ´́EúWKiUKâ”b¯}Ïu.µNR?́rîsæÜæ;g”­¶«lơĂ«L¾½{ơƯ[S®L–¶YkVw›•1mƠvU5Ơêîaơs2<Ư˜ä»áxs›[K•‹erŸ:é¹};öĐÓaw?ú¡̀3¯á[åɤ¦OX̃Ó­×aỵëÿ’{„êWרsÄFjƒ}°sƯs/®u¼É›D(0Éo7ekN¼Ùf©Â1ŸñMë •;\́OXwºÙæ¬b‘µî‰Ú~ĂpC/*…¶I³qôF¼GàjÊÓ‘ÙGœ̀r_gáƒÜ”ßĐ‹<<öe™VyùÍƯÆz^ºvJđ̉ẹæ³wX [ºc§.u Å?t;tjba“飻&«­2ALjX¿ƠàäÔ‡dEZ´e¬6¾ÂÖÆÙºt&Ír:Tç^‚­§©3`Ÿ7¼@ˆăpV¤l8`£¼Îu7ơœú¨q÷€<¸m¿`,Îf_°bĂ«£̀#Ë₫EnØñˆfEJZÖ©-Bxí́D7::ô´°eZ&PLƒûe«p\d8qùR:Œ˜É¶h9q/Ä­je' ́88Ă]¬1°Ú3ïÚO*₫Cwr×0Íw¨ ʽjÅ©”©ÚñÈLqØK0QûÀ]=1 ¢̃ë~{âWEc*›6U¥̀äÖY/B¼:5®0¼øÆ]ïqÔˆ}÷æ®; pÉ|Ơ±em7Íï÷lŸD–1QẻÂæßÊ»¹…(f!Yo]ÀD2«ç¦¾đIÜ:ÇHơ’ËĂæ H©yqºy_ó¸];Fç̃ÚÔ˜6îæ ÉfÍd³Ú9¾¬ µ«$¨µóă0V9=ÜïU#À=Z”m${·̃ÔÔđéeuXü/²Á~^Tb(¯é’™d˜»uÙ5%%Ưt\@!×öĐ=¸XL†>èͨ×7vˆqÏ©I;uGû̀ú?ú»zu -.­5˜m€1 Lë(Ă€¿}ûFÏ~ຠEM”½ˆô]?[,[©C÷WiÅÛó̉ ë²Û¡×LTægbXœG,x)h?ËGwĂM( ÛäK¹Ul¦ ăƒ“§o¤@­1‹Y‹Ó¤îá3·mÚ”ƠµxæOùƒ%7ÄLQTØä‰$îÅWºóø3¯—LèÙÍ̃°d̃Ú˜£Wư£’Ào oƠỔèóa) p.VÂFǺ*ÀÅ₫ă°ă7¹æ§=j5³ÊÉŸnÂ%÷-Đö~§¹8ñ\˜=x¯:æFuƯY¬FÜ ï~xµú™–z'‰ }¼˜^iX~ÇjF@́ẴA¦~Z̀ºmq;“˜¶ngÓ4‘‡ØÏó¤ëS áÏ6öa‚Ă2efIÖÆ¸xRô ¹ÖrT*›Vópö!ÈŸé bèBÙ¿‡Q0½çÖ£d+̣Æ]ß„mhƆ¿‘> ø+\5·4ç³cIà=£`£ÈÁ@Èå…Z@@! …óѾ́Ôñ‡³Ñdh·Kî/l±ƠÑeÿ†QR /̉™×LÚîÈƯ‘S;öa—¬ỵ¹‡Êø gLs5ÇQ$SơI¡Ë&dí]bé%Z÷O/S¸̣ }n{¹œ±iư».6kkyË£—[ñ5w`ƒW-(SâëÄăTđ¶I¾¨â <,ʉaĂ?zƯØ:✕¨Ư%t÷ÜH ;­ÏBÍ\ºä•µË5]ü}G í@đ :WüÄĐ\ äÖ‹„26ê£r]ĂØ3Đ0N{¡¹å|KꨗSu₫}Ú­?AEßbÚCiób¸!bú±̃»5¦%E!˜ÇÏ{ƠæF R`ÊáIc×Ïq²®‘(ñ5>hëA±×ˆ‹s¥¼Ÿ!&-ç3fM*po*-ëÇZsL'!!´̉6 8e‹ t´À—pĂp/J¸•Y”ë9pS†RkËNëP) Óà̉عèUùm}H€C¯¼™•3‡5›ErTWu‚]¿Ë ƒ'ÎuÓD—«SwGâ-˜Ô-¤4»²–ÓôqοÔ,"¾̀¤e½„¾¹Á@y¹@©—­^ÎKˆÌ23W’Ä`E¯ñ5³o†ÂôîâJªe¨€s}Àû‡¡øeØËIUùªNÛ:ăôjÚ´,̉V~ë’/±¦I©ˆºQ*¢tú×€ \)P™å…5²_Âá/£Ẳ¤¦q¯^àß x8ÔB­J~zÿưVHü?¢h¤AYHev«×P ¡`°¢l{ w«S̃\`æ^đxæÆg*ñ¦ÎD&ͱ·¼ÿ¢(|ÍàlĂä±åèÓZGu ){÷öăLT¼…U,̉³ÁÓ4Ÿ¬ ^Je{ ¦'Á<¸€k]ynÁ„Tó8ôê5Öû)&ʹËj’ËÆ–£ÏR/}ÿ¾Ê¦Abtt RÅe_K–VMZv*Jưi»)½”åü´Ø´ôœwÖµJÅ9ûñBỸ¼L†ûÉÿ2 %úÀíA’j’| Ÿ K>%=Ûb•3̣(aMU³7‰+IkïéŸüĂ[”D&Én\NzGNL€ùr è­ØÅ^™Æ¤¶C±–¼Qfâ—¢¿Ư½ú¡„; endstream endobj 453 0 obj << /Length 3312 /Filter /FlateDecode >> stream xÚ¥M—Û¶ñî_¡ç÷Ơb‚ÉCN§éK_›ơö”ô½r%®V5%*¢”µ}èoï|‚ Eíú¹­ Á̀÷ 6YlÉâÇWÉäû»»Wß¼3I±0I\%•YÜ=,*—‰Y¸̉-îÖ‹_£‡Ơđ‰ás€O Ÿ>§›ƯưƠïÛäá.Yg®‚)Úăi+ Û›e–gÑ69ñŒ¼^#ú>›Á9ÑṕvŒS ¬^°àø@%l{„_´§¶Hm-'®`5̉¿L‹¨Ă­›ưMẒ̉Vç° "gœÀÙæë=oh¢O8‹ơÈ„Å̉”±©|Û8Ï*¾óoIÆp³(]ZW!ơ¶H¢mƠ"Œ©èNîN g¶ R$ư–·jhÊ2ÏmôÓo.¬9íHW ñ®Ópa" {] ÜxºAî0‰8LËđop¨}döùëÀ×û́ç¿ĂŸ¿G’1/:¤Ï¦^Ô8nAÎ*.”3˜¥0´Ñ¦!)áÙ5ÉaM×èÜXuA¸qZXøNb›f—ú«âï –Ç»guÙ¥±3¥ê21Q ¡^5¤¤dIœ%©® iÏ=xưØ|Ê8Oü‘¤xkĐ]ĐN¯)È}ÍÔx¶Æ¯œö­YÄ&ƒª7„½cĐƠ„ ¦éGæÀa$5Y!Ø̃BöqcY-Å̉,Æ̣?  :›eYô“ØÈzÍú×hØ‹‹ÀñQ ñ÷³¨ s·|­Ă#^à™ÿ̀sÊ83;ç|©ḷ/÷¸Ï=Û7a”ä‡FΤ_ëÿW gUàªúå&6e>R¿ß…Ÿ[‘߬8­¼ ƯÎk†ÍhaN<±S-´. =“k¡u–Bmµ³]1È̃Ÿ‡…'UXÜ·Û32y —z_ƠđîcED„^Áq¬ˆ ˜­ư2E|`=míµ£´mEsªm­!bư&đpxQ²0̣áï{QsúqƠ›5#ÔB9æFwúơC2V²ÁYüù ÜÆ•5*|1–¬²̉¦Z’jüÂɵ|oE$ÍQ&AơÈP‰¨Ÿ„ à³FXtE¨yÅăÖG…#] ó(KẂç¯F6À»µ›NÁ$²(‹]^u¦Ç¬ÁEÍJđ!g¾ÉU Ç­‘₫ˆ!§¤¹‹ÔLIº'Qmº"-a]èÎ́h:®'Íh5f¡{Ú¶h`¿œvâW7vÉ•Èwï?¨Đ¦ÖOü¨ÑBY±•̣,-Ñ»ïèƯŒåê'G)Î }ưx#®ë›wƠXƯ‹4NËtñ_‘›IE\ kø‡Ê+Exû/ŒœqVÚ…‰-4ùÙ"Ă4y@ÛÏiKg© 7»çh„z‘D”`ÉËơwZ2TnSæqÖ댒'a<….ïR_ úÜ;Q+¼…Ê8SH#À̀€ÉÏq73—~ wßÍm—ÇyAÜ-¬¸óÜ- XaÅ A¤ V^„qRĐơÍPA´\êsæ6T6ÛzÓíƠ{ÀÔH' ¢å1J`§Râ@É1D}àáÆ̀0Ø›À=4¡l¬n£›VqâÛ1ßÎïCÅxw³,3ÏYçΜ̀ ƒUx–̀V°q óËíO³§Vq–9=öŸz`(Ê¢‘ ÏKçÎ3…úúQZ0†â Å“̀€ú%–Ørâ‚Çz-́âLÑ̀ë¥Gúë±c=+"LW×E{¼ NœoôÈđqÈyä+ÜzºÎ#AŒ |q¿æ_bÚsơ_Zq’»i B#L- qM;'@ĐW†ùÿ~Ly#?Ê8€¯eéû”÷Ö§Ù0˜æq•{̀·›€‰¤„Ë’p&éx½i tæ¿ÊLÎm9Ÿ9î}đăd¶$l‹á`đ˜Zÿ®%¥̀Œ“»Î\ÓÁ²đ<9ôëW×Ú8©‹‹´P|́3ZǤ¶|Z>äw;†kÎ;c$¥_‹cÇU"De¢ `Pq1κ0gD “bÔµ:ï9*x}ä´¬¬ Ă4y¼ëLó gϨ,cçHe-@î‘óŸxÜû¶,^µ¥bØl¸¡ï¦ÓNB¨  fƠ`ˆûo¨çK«dô·7³Vc³EÉPÿ&̣+¨¤¦³‘1tÏĂ#£̀¤6ơßđyjGgAL‹Đù gmZäÍk<¦̣̀ͤ’ßn4ÔYÖ¢ŸP7rë»x8^o¥Ö^QÖ«—Á9RÆÜ y‹8m)3€. ÅsXaíz¹AP¿R']ûåṃC¼sÿèSĽ͠Ѣ®̉zzæ ơđ ô:qîY½&|©ïƠ0¨è‡&¢'2H¿ IKˆæ©U¢kD5ăÙ‹,«=#M;ï³;ÉbÉï½̃J‰?ëg ØØyủ˜̉5½)ÏpHµ½AP¤ö`3 =ʸƒ*Ụ́PúËC0nkm¥ë~&pQ=SvÀ˲€¾́€1=Ht‹…*<¶r˪‘ܠܣ₫À†̃02lçâ•ÏÚÎ8ÆÙÉRÖürˆ®àç Üí2_ÆfH•p̣AƯBØEă< {Ïû–›]˜w|̉Bi²pÍÏ[s(lÓ‘Æ®üúT!‡ÚaÎZđóÄ̃‹d̉ôgSÑQ̣K‡’c¾Œ8wüĐvT—Ds5iwQÛäoÚ]_́.f׺£p’ø̣=ÿVŸR}»ÏÚ[æ«ׯ:q®ß5Ă{„t¤»v}ñ̀‚÷±/táá:îÚulô(ÜE>× S/ pЬ₫¬œ'&¬/Éư‚ænu­çOÑ ŒÉ±o†*¹9ñuØg»¨â¯U·Ù/3[y 9ÔÔ:¡çÖ‡=!ô¤•ØT:ø|”H ƠˆŸDÀ½µY’ÏÛjçc 3ÅUéÚÏ₫]óæÄ <à¼̉ô¡yĐ·Æ ¶ă¢Ùn‹ëO-.+|k7ó^pq̉?BƯÄö»Ë™ >Lr2[q«ß,1àÛe|ϯ¶’dD̃~;^SËF wëŸĐ#'gă³Ï}đ¿ z¾̃æ©À¨Ï²ñI:L÷Ñïcw ’yºđàÖkŒy^̃>Û&aâ‚›ûÔD®$lá"Û./À¹ÉP£̀>ơùWÊ5ơ³Sªgé?¨ñé«ă´,i*°nÔapÿ́¨Îƒ±æ¶º÷=¯„­̣å½(_3É\”v²øÎ×Ow„cU’Úù±UÁ^¾Ÿüë5‡9ß¥Í |ë=úrÊ-ưï¶ ‘!ÿƒf€1l–°Áđ¯²¶–„ÚTÊîÆ³'/Ty„cGpwđ¸ó›]c?êƠ/6ü¿Ü­åm>¶.›ü±¼óín˜¤.±Èi«¡;o8Å>*¦¹$@A«̀#mơÓå;¤¹)̉³'è5ßWÓ́R‚_9zùÇŸA²dzK—-$FfBÖh’ ²¿*.Kik›t„ôĂƯ«ÿrÛi endstream endobj 334 0 obj << /Type /ObjStm /N 100 /First 911 /Length 2827 /Filter /FlateDecode >> stream xÚÍ[mo7₫®_AôSóá¸ÎđM ¤ r-pI¸» (lY‰}•µ´₫ú{f—’£8vTyc°Á}ᒇÙ‡ĂûhœaŸ q1̀d|Bé3₫Ùp F"̃s0Ù%”ÑÁsF}§9̣Z_Ç8aq†곡˜đ‘xC™Đ"¾¤ôBŒwE/‚Á×Z'”Éø@hY²ñ1z\ăÑù„ƒ3¾< dØÁ…W˜è+(‚  ¡'­Çˆ7© å€ÿÂúy2â’V̀F<s(Fô1c¬" _Jd•€7’¢¾b#Ee€›à“eAQL Eô¯3.$– goB$}…:©à"³ E;Ïb"y|ƒ‰^Qæh"g ='ƒJÄ„øcÁø9g“Đ×Dë%v:$<m°°IQ…PfíÓ™”<†æđ$Lj <)‡á›LSVLöÄ=Ê&âÄdv¨A¸‚8p“CÿM69aÅy“3‹cSœÓ:ÅÂ\êž@8P¼"oJH~"ƠIÀU+InKFZ­è¼ æœT •ä<ä/ª™Ú†N’ hA0‰ä"æS0:è¡s ú,{Á[ÁÔ ¢N)®²è-‘j¤¨æ’`^DU—¢Wh…t’E•— À‹ ̉;蕨úzèíDT½ê¾@É €`Ôä£W½A>©â¨rø¢Cƒ;¼(&1é’AìKF0\i·AŸ1ùÉăÇ“æƠÇ÷sÓ½Xv«v<<ưêÆtL©ñ,RGÉ–Iî ç¶₫éz^b†’-ÉÙzuĐ[uHưˆ'÷=4OzÛƠ¼l₫ơâưÿ₫¼ë̃O›æư|µn—'‹‹îăß̃¯Úÿ¡Û®̃5«æ´mk%7JÙ&ơß‘¬$ơ¶ÁöÎ&‰ơiyü°^¨Ư©Ø±AĂ­ £ë}w²Eù…/–Ô3Gg“¿C¥åb6_MS ¸Üñ5–°ÊèHX0AIf(6Ă:cf,œ 'oc¸Ëzv~yq6 iL}ɶÀl À [åÁÇ€°D·Ѳ̉₫¤ê2H ̣́v,çíâ‹å;LÛ$oá€[uG‚ƒ-̀ 4y«„t+Z)³ßĂ>ÏWënD@*P•- ä,éîh€ ¾ù’-vK[‡ª¤8æ;lßlƠ.OOfçÓ@£»SŸƒeÜ©nK¥ôÀ`@b­’̣ ^™”› Í7›+ụ9]‚uæ£bøÍOvXö˜¯ƠSWÆW›„Md®, îÊ«1Ệ`0°9Gÿ|Ö&yp¬ä[ø Vr•èë8.ggJ₫ΦƯˆJ¢Éù¼E#p–™Ë‘Đø‚ ˆ¦úÍ!¢çA˜Ưq|‡ƒzwƠu—'Ë©„E^åtb6``ŒsöÇSy§ØÜœ F ,à|’ăĂ-¢̃•-ïÁ­…Ç>*hä…aÑ4â jÔ¤ö»|‡e[Ÿ¯Ú«nÆ\Î)Ù·Á"»”àÄ¢ñ©ö‹OƯ¨K}Ưˆ5¤ô÷–XV?y›€Ơ¾­Ï¢WÊHr¹WôªøÑ«â^ååÉ5ÊSjÔ(×(R̃Ü×èQ®Ñ£:>åæy&Ơ1ª¿=j´G6[jÔ =~°‘½ `Ư.…ư£}´æWX–«“…}ööÑÁ ÑÀô)0[=úØPƒ́˜G LŒ‡¹̉ˆ@ÊjôŒK‚CWỊ̈—†́¢íĂ₫¹Ø’/>ÿÙ‰Û®~]Ï/ï‚t)„ĂHU¿ÙêÁY›æ»,:€ŒèU"ºẺ¾¯OG0ô₫Dnèv» ¶Ưî9?ßퟻ1ß=:>ö¡ß{QˆO%„SÏƠ}ơ₫̣¯+ô± Mæà(Å{=Ö±±?Í+î^°»óy»úXA¯@iÚUgÏ»ËÅ #ɉ·­G‘̣ÈB¾¿HöI“%°í|Å.“)~;˜Êú íÏwê ¼<$îuÚ¹Ëw)â'‡˜z§i›»,ó““Đù¢¸§â=íÔ †ûđ¹[÷£èI4D÷D÷…£3‘æĂÅ»å¼ëæë¦?ú̀<íă¨{ëĂnƯºcđ±?íß§®O±?ÊúÓ'å»±»»A?(ÜĐâƒơcX3¬2”¾–\ËaP¨2”µ>ùû.ïf>èi!%o"ôª$åh˜RMæ Á}™ưü¶m;t73Cƒ A£ÏÛü€Iu0ÅMÈΆ¾ÄÑôK©ỗÈN‰µ€/̃‘éà˜–§W«å” å1ăógµTôŒ)‘³}ÖQpÖc;Lâôˆ¢â¼ăcv³XLߤ1ÑÈh‰×hb° Ë₫Hp<‰…=Ú ²1î!œË“Ù́d±¸ºœº1ϱª,Æ[µ0ĂQ‹M²¿'Ø©{ÏØ©¤´O$É7»M”̉¼m{hv¯¨øí /àË¡^À̃O|¬eªe3‡hÈĂ`¥ gEbúN%‹̃j22ó½ÖYàë,Đ¡ëŒ;$5Qj¢ÔD©9ˆRs¥æ JÍA”ƒ(5Qj¢ÔD©9ˆR-—ȨëWóP3æ%$ÍHëA–"ö«Ç8ö…bjâPV¯H³)T‚rê&·>zâ> stream xÚ­ÉrăÆơ>_Á#X%Áèn¬—K©™rʉUådç‘àRC4@ÎŒ₫>oë ¨‘\Ä^_¿}ƒ’Åv‘,>¾Kä÷oOï~ø ²…Jâ*©Ôâi³¨T\&j‘—ùâi½ø-Z/UÔlàO}9Àßọ́>5Y´đ7‡©:®í°ˆj^éaé°‡?-₫9̣ƠsÀđg@°]ßâá¡î/ï‹̀DO;|˜µM=À́̉Ó\ø₫ƯÔ+ ñJMXÿwøê…—íưß•áïJ¨9ó[ÿyú;på^™8K+¦¾]ê‚`ä…ưI&€ÉM´êhßÈ*ÓÑI<€H<¥Ë;/ÄYN~ƯËÊç4”ăÏË{GÍpÆ©F̉³ÅY»åcˆÂoêWˆä­cÜÀ<æ=Z± ZB½aíp˜á ©ÄÊ2Ư ̀ 1Đ̀¼ ú–,Ô¢G¥ĂÁ¿>¾[ü¦¢È9|{eÙ︻y“^ÓI¢¦Wà= b‹¯Nb£SÆ÷ŸƯ™¹¯Q;–Mƒ ›oÂỖQgÙ‹Û­“̀ T™æ$tJ÷– °‰ă÷ÈN<Ô è2zá]o3V{å9|™HL…@—ë£eàá‘4œ¥^ăí—91]E»•ư "Óđ×Y¸ùǪ EVÄ*1à ,—E=,5"›iÀÖY]û™< ÙëÄAxV£ó58ƒ4ƠÑ""´!bÁp…øîˆVDÿ3¡¿Æ½2ÚjjæĐqJMk´ç1÷dƠ±>û}TóË‘}…e;> MIu¯4¸O].îMg¹đ8EdÅT‘^̃+•–ÑcomuE>ˆ¾7¥PѽâäĂ²ÊQ;RĨ?̉áâœa.ê~qáèyáÉÚ:±¦'~X]‘+0¹ûT•Ü[=ˆ·‡‹ƒUG̉#ôÜ–LÂy®–·ÈđÅvVâ/ä“×|€",,BÔuVÆ¥²zA^fB•“i˱Đu"ø@È8Ư`ˆù‘¸̀ Ư)&¯ôB”%Œ¸˜Åʤc›!ŸIlM²p–_ÖKöÙ¾ KíœáÅ C±)̉1É́Ù:Ù¡̣œn±#Sq„øAt•Öº ë—ɭ³Zø̃eEô—Æ)ª¯T‘–ŸÑ_x¼5Îy.V¸ù$:¶î,[æ»ÊĐó=cªĐѬ<»mdöe™å¬—†WÖä º–èAÊ;Â.”8£—U>̀ÂøV4§MVƯ¿ñâ(h#4ë[r&ÛîhÍÖö‰€“o^ó²å™CèVB2"—3¡‘--'iPpÁ±%Ç“—(Ÿ;Ù₫…xwño΋–ˆ¯]IáöüWỵ̈‰ÇCw3q‚Ë{üÈÑ–ëaCcC†EdïB—0±ă!ñ„œ{wâ4 ]iVNº²‰ \©u˜ª ^$Ûhñ½KËûóÙé6Îvl{üw-·ñ!̉»L¦j(3¤V:̉Ùµ1ă:æÓÁ½0a<÷Ù‹É qÀºô"dI“k{sÜ"§ĐlXÈYE?Ÿ:.5Mkß‚y’^áĐg´yôéá”oukÍB¶9tĂàqY¦TH̉¾Æ?AÊ&nÏvÇY›¹¥©”\˜è“¥{”M3J`ÊRk$ó%·Ù M¸n•.+₫™ÏàOw`̀Ü1#Sq•Ål~kë%SÖ–Ă% ©;â#˜=¥:-Ÿ›äwÓ¸¤̉X'ù÷C1ÄăÁ;NS|ápáóøMÁ®µâ5§óS26>eÀ<û²sé_ ´×)Ç̉q`äWgôf³Ưx… yXk éx¢£ å"2ÁAÈă*SוÙ\ÊÚ^D«2œJÊ‚3¤bR]p––KRTøˆüí†üHëÎ@¾Ä×ß“,‹üË…ÎÂKÏÎ÷â5øÄiWßeN6 ₫NÎl<”é‚ơÊ ·J››Ơ‹ª Ë̀ÿzơ’Áơ*^-å†çmƒd€ơ₫Ú»́èLÓ€ʹjnà-§Öđ×7̀³̉`ư®‚ú"b•¨•ù·9ôÓ$NTêMv~W…3*×J‘Îoyeœ”̃~å5ÂBáO“ǜ µÎGiä³@7ÿ¹—ª8uŒÀ˜"ÆlæÙù?ḷ‰ ±iwË%d̃ ›âíBESLÄÑçÿ ‡̣¸Pæ-B¾ùÊ[„ ‘MOû8½Íc“ú*…8Kl…́– Ä2V§€6sup=¿YJ¡~J²Qư4²Z¤,pȃ«‹¦°yåÎqB‹´^ó¸¬&áAÀ!üĂUö¬ËTz“)ä˜ÛjjÊ6t2#Oé‘[Yo‚—7®É™ú··©4q™qûÀ¬é¤ âđĂ^̃ƠĂ,›ßeđ"~$"6üK‰Âçqk4÷Dm¨­̉ïđ¦̀{:`“^6€€b;Ä3L|¥ªRë,uÅߥ€̀ƒuGHö’5ÈZoư7ƒDû>«s£T‘ÀzöăËXå¡́ƠœÊëPå{Ééđ$ÎzÇróĂJªc¨ÑÜg ƯÔŒRüÍymăJ®ÜG'> ¦l]X 8XF:Qđ hcÏŸ`Ù¿Û`¶•ªM¢÷–Jin•©«ºZp£È¢Úæí÷ièAư¨,±JH¾…X®B<"\›'l,'û„Èm„®cnèˆëy…æÔ¤Èøă*ÂilđÅf5œmC…ÁÔ#È”ï]gÚơTØé£³g·ß µe¢¨}‰÷¸@đ•ûL. _œg±ĂI–d@-' ü/®µzÇ«¢·(»B-aüă—÷₫ÜÆ}wºx/r£÷=KÛGŸö‡ºmlĐöÁ\'e\¤Đ ¾Ê%ßzÿôî¿Ùr.î endstream endobj 473 0 obj << /Length 2109 /Filter /FlateDecode >> stream xÚ­YKoÛÆ̃çW¨‹¢®År8|MÆH‚ ÄB»è½ Z¤,¶©¢·è¿s¾s†Jtœ](æ¼Îk¾óø³»™?{ừ?ûûbớÛW*)ßËüLÍV›Y¦¼ÔW³8½$ f«böÛ|µHơ<¿]¨ùÎüÊÅR‡Á\}·X†q0_mÍܱÖÍ‘fh‚¶ç'ú*hMÍ7ùÚŒh¦9¶¼}#››=iq+¤ í w´£µçjYËøÏư"ç9¨Î%<Đ¹¦ŸÜ{FàDÍ_˜Áï(hÈ»Đ¿¢•¥©ÿ­~6¶Z*íEaÆöhÚƯɉ RÚ¡o£W¨3,ó&6Đ×ü³';Đ"KE»ÿJ°Ơ¯v­­ï˜l¯Mî±b”Ibm,Ṭ™̣£ˆC|̣ơH0³¼/­FÍb$s‘£aÿëG¾Y»]˜%± 1§ăf—²KdÅ#]¦-M¹.'<"qEƒCíÏ/K|àĐ°È¼0˜Ă‹ehĐß° $îWg+gÛ 3C;NÚQj(§†h#[F́C/Đ¡ƯñÚĐzg~?Z¨©s0Á³0̣2=ÉLÛ0²ØJÿ L úÍïđ ÍtâEịù̀>_3ˆ²#³8˜ºe³·S;ÂæÚ\GÁÛX|Ăç§¹Ñ uUj¾uôÅÆư‡y–"\;èđ7đmB@́¥qÀ ù́xáOúo>—ĂJ> s%׉mƯ;¬Å$WB́Jæ·kHÜ‚5’"ñ!?!¯k̃ºG;V×5›oé|kÉu‡FvK”ühă4,‹™#M}„°ièÅ¡ñí{ b©¢Ló pZ[ æ]À´×œep—¬5]Z}¿ë’Í›Í}‚dæ3…%©îù—­̀C^ĂÆTXaŸJY[åùPø….jœƯíÀ)ñ$IƇÓLÅ,c&µ ç’†¼ä{*ä7VÎ_7{ ¢;äÄL(ă/¾—²:̀×rr¤đ-«¤gJ̃³8 '&T}…¤Ô7ï ˜JK­̉XXù.«4ÙØwlœhg$ẬM¨ưª3Ñ^Ă1Kƒ_ÁBP½\XN«~¹#å;fµµùṾ„n(„l6€5 •†¸1‚ŒË"Ö# ¥–GtfƒÈwÔ&Ô~ƒ0=\ư±*/L®ÏµW®0iè蛸˜c«?†́wHvƠ\|́H:é7\r8ÀˆT»0“86yĂ#U_#v¨Y‰]hªçs¸¸Î L/lœ%Ö‰)₫R/ ²³hD úhÔ4Ç{̉ÅÄÍ#Q6 9éyqdÍœö'CeVxÅÈd§ÊÖ,Fü_rN0a¦â3™{•ªÀñDÎ"́î;‰Ơ÷R+2"f»*×±J&¼¶-÷¶|üE0©N}%³@Ù©˜¸B<‰ÁÑJáó´0±} Ê OµƠpA˜Éå°¶ơÛºoåiœK₫h;ºÿMEGUÖ'Ûơ«¸r8$Ư?$  `><[4h/_²\ùë;.¦P –;G:>mă!9X-¬}wcªJ~/Qiº³éPơeÍ} »´B0âXÙ/T́₫üz[ñÇÍŸ]Î&î5đÅ2R\_6ˆ₫}k훂Ÿ0råRŸá£¸§̀›jFÆßŒËøµ}âW’›7mA™Q½ÅEï$ÍæxÇ̃í h¸“»‡2å ëmaà¿6^ØwOƯưúñÂn¸ËUé½íHÚ3ă Ơà>YñÉàûª]ø~¾:v€₫úøÆDdá6"}8r;Œ£ß[GyÂ9vN¹ø}ư™J³S‹̉rkqjùëCÅoh8û†´ü£Ä̃¶q:áë-^.đ}#7>ˆöܱ¥—¥_®̣èÆ Ùë?ÊÁ¹Q ~°}ûOo%zÉqˆ°M4 Œ;{Đ'¿­đBl.^iZộ6’ä¸căTk\Tä¥:œ~7x¢’rNp×£ÚÍ í7Qd†î8µ́PC”m¹´ÚÜɪ(m10øé!vª¦,°5iöH£ù–«+ÔÏb÷6ü"œ‡_“¹M¤7ö…¬SædẪ­í̉È}‘˜*¾̃âa¬Â ễy9¯ˆG²¡k‘n­6ƒï5ˆ£1â¾p*`Û]?̣ô>ú/ ÀO½$ŒfË04틯ÂÑÑ—«gÿœd endstream endobj 479 0 obj << /Length 1331 /Filter /FlateDecode >> stream xÚ•WYoÛF~ϯPûR Ù=ÉƯ )à‰Â( DMÚ>Đ% ĐU‰Û ÿ½śRK‰²ăjÎ̀÷ͱ³”̀bpóJœŒ?^ưđ^Ú…^FÓ—…r`­/„sƒÑdđG6:Ơ÷C™-ài†¹ö:So†¹-M6z8îyLöihˬ̃Â₫ú>ÑÚÀt»nM-yw»đ¬—l`󇡪²Cx±ÛăÛƠÑÎ|ÇcÍĂ­Ơ;”DÈ1ï6¸»„ŸMBa==‚Öc2©®füê3ù´%¿F¿@¬r© k<ÇcOôZ‰\yOê;œ:ä„ĂnÍ‚íΤ!Ÿhă„Âk@6›…1ÂÔû`wŒ®­1&+ Î₫9e4'µ†çc²K4l‰…P̉û{ª í‡ÊeŸÑlÓÀ™­²»b˜­8W½a¢đï>kFl]ÊlÙ„×kb1ámâPïxAåB™A×q‚;ơ‚ßÖu™«EäB/[à L‰ó²>%ÑAĂb*iRơΜ6“SƒÊ_RPƒÁ •̃iÍ• Ơçr“œ%ØÄÄ.Á—}( ÁƯ­Qê°F_è́(Ă9ÖbP¾tˆ/Li™ÇO¥ÉÿSXĂ7±6àùqLÜ#1Û¥Kl[–@íï‚H̃J›(q¶îà¹Ç<$¾ă<́­úÀŒ-¼öÏ‚é(¤%s—́ô—×€²yÂ3]ÖU_öơ•e2Ó¡­{®‚˜UB¶E²阰X¨)œNÓ§ÑÑh»̉Á\Û÷?Æl¹Ưч/t rmÊ•kаî÷,ơ§yú#Lóăn}¬̀Qh}mÿỌ· áxM†xäsÁïï¹-¢Ơ·<(Ø‘‰4‚a*̃Âóḿ)aN†“œ ù6è‰1îÔ7Ă}`•æ&8 ™ pó@ñ”_SÅ,̃p3üơ·[X̃öXÿ@dWês¬’±É¡̉b6&s è £¨[Ê›zOíp»bQn¦Ûùăñ´đ=êĂf¤ĂM®¡Ø‚Qƒ{(uùG"ëLQÙñ́îR˜K ·3-TºĐañÀ»*;(®ĂÔTt®7j²«qC. Ÿ ̀“ó̀(Gw V4~Qàºâw,œ%9é{êå#¦lLßL‡]&ÿÀuYUu l+^‰ªƒ$R$‘ )Ñ—Lö…¯×|±Đµ5§;^B‰Â…"J ÓÁל#QT"Î49ẃ=]ô=VÜĐ¾Ù†‘̉Ú;Ơz„ضWÙ¢µ¸܃†a> stream xÚZÉ’ÛF½ë+>j……mÍȳ8Wø4çvâiïq}³½ŒĐ{æ®ûg¿Â7.ï¦ơïÿî Ÿ¹du—–q&¬!í®Ç/ø"„›hdâ8âfóÚú„•æ üœÇf»N+X@ưăÉÙEøK?µçàị́̉́‰ÎÚĐđ©È~LcG¢8â9ßÂpE{ØXøaà¡Zå“–H*-Êè“Ẹ́g<.’ûe„B1Y\ä5Kåy ³qóîđ„ç¹DïRØÈ“6'½æw¨}fwzoGGâI~噢ƠñbN:ïÆÛˆMJ2^ßåY=<ñ 3·ó:F̃ïEÎÏ$·óÇđ”ØÖ¦˜ÆO{^’̉ˆRúŒ+Û³ñkó:̉Ë›f·…̀›"úû€Ó*{íøÜ~ÁYưI·dB¨B8Ê7‚Ô„WQ œs”Íé“'ÏZDG̉M\’¾Æœø–vrM0>±âÀ¾ÏÂî#6¾̣óUO7xº£ÎF—”3«óEw R3¸,Yjfâ,«`)-Ùă™pîö" Gd«H£çṆÄm+UxF«¸âÙ ˜¯œZ9yáT¦È¢„®iĂ:ÖÈxg%Y¹«†~|›æ0q·Ø/ÑC={bỈyi§¤H ơ°×<Uro 8Y+~ø÷ÏoV¿Ñ‚Œ†Ơï‚D€;UÔÍ;‘Ö]ÄY³̀&¼¥Gd¼U÷ÀÇÿ‹F´R­Sbé2<íizoUZdœAH²Q„ª‚ä₫5¸h̀¯´C™Z^?±†«uƒă´w*nHÅËHù®yA¿Ô‹,‹Ô1âe÷Üe )êÖ‚è¡{%ÜcGp_WÅ=·ï·X¾"§ûø\4̀ؤ÷pU½ I;d a»•“(k"ăĂơ;XK_ơ¡Iè=ïađ̃Û‘‚r£ñj"]†‚w…‰&12íS }ÍIĂÁÄRÑ ¹êĂ¡äÊ&† ̀ lø̀*uö),ºKé½~<;†¦9ø]P% ‹y‘àEá9ß/¼¼Ñ®#̉ưAh©ụ´øg¾Tyê&û“)Ÿ“‹h…’̉j8*̃ÿâ)û™G]6B_¥‡Ït¡|œQæ>½ư^È‘°Û‚x̃(S ,́¤€ ¶?~€çô¡vxçÔ¥ºỒÚ-7O¬t"´ Ư=¯¤8á©×K:̀ ±QEÿúE–ù…É D\Ơù/éˆeÚ„›As¦ªĐsCU jfvéÅ4>›Ê:C–î…º8₫́–t„ˆØ—vÿC똵7íʰ6H±P ©qϤë¡Vj¦;K» 3£‹`qÎLCđmŸg%ăNâÀ;́K«ĐZnfF8ª`öÍ8’<‹ˆ;GNèÑ Z+pÙæ¿¡YIôÿu¼(^)Cị́Ú2L₫ô¢—f!)Q¢WmM<³|ăY4ÈPÓăD̉ϾU‚}«PË̉œs’¦)åƠÿDF:Ư÷̀ó~%§Ëé$eÿM`b?¬MẒV›è§¯KÚ‚o)\_U0© —́”¤¹39–(sa{Çó:ÉB áôƠy ß<8°h©o˜Ÿ¡u<_±ÆÄyfAl¬¤‚Úäº±É  Ö".6ơB«ׇ³"Ămwâ f̃„ÆèôSGEăĂ:s¡¿Ê86lv’kË"Ÿï }Ođå›E®{Œ€ đ£‹°ŸU®aà[úÂÇaÎ{SQ®¤(HAxÆÇ«üôHáó x·Ø3è°Ír™…|˜µ%ỮûƯpŸX"uäYIoªPÈ? {îtB¤½߬(fUœW¥R~˱”¾Àˆ)ăÄX%;Ù*2z‚¥TH¶Ø`|±Æ̣…h đŒzRVî´,¸È(k\Ơ¥ÓjpöYtÿ2’d‰‡0áù0jÑ[v—ÂJ6¶FĂJy+?Lr'Po àïjSè<ÀöI¶LĘ'öTZmÉAµtQmăüVͲˆ³<¼a ïîÑÁ¶ø ÿ́Èóo5W>yöóẒ1đL½«/¶GqV{¦àÇ$hÑùN=T„8ºpf“F79̉üà¦Iâ_pFï꽄Ä)í̀¢ĐÄçO¢̉%Çñ ö|QEÅdø’̉ M}àî†zº̃A ô³èơ ôj•g™(̉r̃Ï©·Œ́Üz‚'×Éï¸U¥I«:N²̉/iø%È­<Ÿ¤zs\̉º"§7¯—9€“Å¢ó$Zˆ%¬Ôµäy16K“¸ºd́Âæ™†Ỏï’;X|ehL ŒÍ®yt%f»K3xĐ]÷›Ÿb«&Sk¿$è,3sF¼$h—Jbuœ¦v¹ê—'vÉsd&6µơ0¤ÉÍeÑ#‚«/â²Ê_–¤9-ÿc]l¢æĐ‚á”eªZ+´›† áz üu9*îKêÍó¬¦Iy ×üóy]®6ÁlÊ ¾>ËxϽ!^nwÜ”ó=N¾£–ÿA‹r§h<_ă$ ózs8@Ă6HËMäª]Üv˜w³X~‡î½2ƠË’'G.t6Ø3w™ÜkKøđü̉ƒ¡«uÀ—S¦à»©@Hü!,æÎ¿ªĐX°k‡hǦӟF+à\7OS«»Í¦dE²P¬Œ¼G—HouđyàI©Éz®= t¸kcSđ₫äjW¹óïx,‚ZÛñê8~`ööåeá½-¢v.›Ä±™ö“Ädˆ_¾†¤H~g-Ë›ÀmĂxß\<ù‘¼¿®Â(3m”ÆF³µG«œA§œÿ®¥P|ñxºéȪ*®rk'ö̀)«’L té³_¦DaÀÊvÑĂ&qî|%©‰‘7ªz}—\'-1½s8E:VËVÖơ£œd6¢° ü§´9å4Ó·êđ.ë8KkyŸà²¶­¼_Å£ºFötØ@Rƒ:A¼Îº< ¶ư\ÿ!¨bZ1x2iZ]¹2 µÔa7Yu[y˜cQÊCQk~£Ê‘Ô±®æ\œƯeză~äîË0üHn°9Œƒ¦›µTcé€ViƯë©|z;ZÀ> stream xÚ­YÛnăÈ}Ÿ¯@#¦/d“ Öf™E° ;Ih‰’˜¥D­(Yv¾>]§ºÉ¦$¯gƒ<È$ûR—S—®j‹Éj"&?½gÏgï₫üY¦)âBr2[N çBNŒÉăÜÎ̀“D³›\GåăŒû«n¦ºĐ‘₫ËÍ45I4[c=’èé&5Q¹·ăµư•Á®}Ư·=© .iÔ₫Ú ˜Ù÷ơÊ¢£›è4»èÔ?K~̀‰ZÙÑJb9çÑê™F7öÏ.¡]LË9{Q·+:A§=öüköw‹ƠTê8up ]¿`ª»;zÍI$z¬ihåÖalTÂÀ™,s‘F+÷ôlʃ£;'ÍZ‚dKØ–K&wl«ø}º³aJ¬§Eóö‘E$ÑáFåщÈV\Đ:¶‹o¦‰VlªJIÁ0o` ˜G€±{>81y= -xöèMJ¦¡2$CêXˆKZ-X̉¦‚38غß́‘)÷Ơ FIx¬Ú} ƯèSéc÷Ä:zmËEï~{ yƯº%yN=¬öăå&#u´Öƒ/ñ'™øHc·ö'x¬Ư9k2›¶Öl¡ñ~ËÍÆ²ÈÂ`–IëÔ æ;2og1`‘Vb ÖÖ(/§R{RdÛ#ј.EÔx§“,.2S%mN1z2-âÄ$Là¯6y(Am'₫üÁ¾N‡™̉₫₫)Ra3§gŸœü­Ó¥Bü0±n,vólv¢zËeGd°˜mêï!ç§Î}[!¤7')‘”¸†«{ĐÍ ƒ‰yÜ;ØÊ=ù­Ûï°Ø"Àv,Ïçi9äZFI²y!Z”2iŒ}p nØ ¬[:±0IaTtbÍùîˆSÓĐ E´,ºû~;=p2÷0çî»FçÄEÔ&Ïë€" ÄÈh> `QÆÉ%c!® đ™Œ¿G]ßC€CåI“¦Ñ”Ù̉_Ơ³%xÓtl`14¥8S„`ˆ+`|n¢´× Á¾N߸VéΡ—&”%Kt/ ñ&@ÄE œÎd(Nr”ÊMË%â~™'̃°¹Ía”aE§ -̣̃É=‹PÔrr†PpƯKî‘û₫±¯]­ enX|¡ơˆ¥́wÉC;È"´C._µƒSüg”<ơ ùb‘Úï¬@‰gÀ"1́=÷Tô!‘ƒ[""‹ô-ưB!~ÜA÷ÔkkT¯-P,FÖĐ́¥,AJal$'«^Ŷ/²Xë̀Hy\¨â<ëơ!ëk›ơ4ç4¿3t‡W²yHœ÷6 f̃È`& Œ’äÈ\—Đü 4v8R5WØöKÉç]¢’ÜE|‘„F¥i`‡+)yüæèˆ'®ߤŸrn ‚ègD₫OÏh‹ˆK½u÷ÙỈ'-Q,™-Éÿˆ"c ‚C}c`D^’ªq¤øxMb¥Ơ™§ NZ»b€{‡ ̣Á¸GÉß”>¿shgmHd•´–áơ}₫§lY]¨ëÇơ¹øAT¡ÉR}î#T¸´L 9ë‹pß›0%}É4I눋1Ú_ĐS9Ëùjă«wˆ’CƠ‡—¾œ‚ïW´œUÜÖ³9P*ăơ°\gưB”[êêÁ|ߣdôE¨ë5]AIí^º#yDz¦z³®¶ß§œ«8 8£K_Á{ªÁe˜.¸Äbï ü.”{t$j>Ô×UH¯̉₫H¥PܺÜ7̃`L•̉¿+”Ëa`-q0ïk;ñ5L‘y¡&;…!sG,j~@́›Z¯-Ä“‚R£Œ‰Œ¹øÿØ6í‚o,đ…°tÍj˜FX¹3=yË1ö-ê)Œï!ß÷'÷¥«üHxÜ…¡ªßàM® Ÿù¶èwï!Ú¥CuQ—¸ơÜ!ÀR«áp½ơ¹öR@®:\¹.¥Oˋ˧nóØÁRÂÎ6Âæ0—_©íß“ÿ¥ wú tTñ…™>ˆ,ʳđ£§´ƒkȹ^»‘ÿ{]Ÿ‹¾51}iNÁ Â’«¯T@_Æ‚î̉WŸ‘ư…ơâÿاkîäèÂ}h!!P̃˜¤C;ÆW ̣Z/₫×™ơÙùwjê‘„¨×:^§!–ÏV&M¨}N‡…Ûga<œ†›I+̃Å?¯Îo¨•Èă,I'¶e•ÉY 9̃ûiöî¿_v>ú endstream endobj 507 0 obj << /Length 463 /Filter /FlateDecode >> stream xÚ…SKœ0 ¾ó+rLdó’ôPi«vWí©•¸µ=P˜QØYÔ¿_; ÓVªóđăĂ₫+60Å3ơŸư]Ư=h«˜“Á)Íê-=œ*]I ûÊß¼4–? ÍÏ 3È È7U*Øz»©´ø^Ê>Ô™†?(¦™¶V˜qJVªdí˜=g̉k}ôØ£iK»£fïḉ |«)_1ó(ƠR2­dPa_‹)œTÁR1æ dX.°v"·P~#̣Âz~O×M Ö{D×–´ä¯ùS<\q™„ñ±đ—Ó<¡§ásO;*-̀?Î)g%û¦M ΗkRÁå2ƠGa_Đ rAÓVÊaͦ¡û‚‰ĐaÀÎEÊí9RȦ,‹@ôÜ6™n85Fúª„°è.‘7¤ú‚7-€Y‰Ü„À!=]â/)ëf¬úè;"§‡Í>Ó±™p÷@fôJ؆…óyI¼ˆ†hAƯTơ+̣±[!׌äµ=†Mí?đú”5vc‡äÀ$:n8|ûgá-¿QÛûH˜Ö̉0AÓ¡“?EYñfèdœ?'”å¥+ øƒr̉4’ÚßxøưI…æâ endstream endobj 484 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-005.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 509 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 510 0 R/F2 511 0 R/F3 512 0 R>> /ExtGState << >>/ColorSpace << /sRGB 513 0 R >>>> /Length 1591 /Filter /FlateDecode >> stream xœÅZKo7 ¾Ï¯ĐÑ>T©÷± \ ö=9n Ôˆ]Ä.Pôß—=g<™Ơz×‡Øæ’\Q~ü(ØvϾ ¿²oL:.¡An pñr‰́éö{ VĂ»ç›Ÿß³·ƒàBÖ₫¼ưđ }j5ûwøô™ öû́₫Ư Øơ [KCX®€=  {̣̀×,K+8"ÉÑ|&ëÛ1êɇ <M¿»ơû] úîy!èç»ÇáƯG¤uØưÉÀđ¤ˆ?¢́W†I\X¶{`×7pÉv÷ĂO»10À®Æ0iĂ=íOCyÖN»ºfI.Ḱçr³Æ`!L;Y<¾¡n {iQdŽ‹^r¥‹, V«’åjAÇ|c‘åj1‰¬‰´XpÜô ¸x4×@yÜÈñ .„đƯ«ÎÎrç§Î¸ƠiÑLƠfg‰Ákâl6;kÍÅlÎîÀĂ¿oÍ9đcüăG¶{b´Ù,Eü#l™¢¹Å­Ăÿ‚'ơî©LÅƯ.)]ŒäFơ¸ÓÊ &µ Çư¥{;U(ëṇ̃Ó° /†’ư8Ôø̉DQ2´”7nK¤3w-¹4ä®Â9;Ü]ú°KHyí–Ö 7₫å§‹ï¨å:DJkê;¶„¶2ä0Œqîîé` ÷\/§HơB¸½å l•”§-ÓPéüxJ2¼'¹À²ŸËM9Èß`-E ›¿j›åà… Âß$·̃po‹(7’ê¯uƠ"É­…4!ĂªE”[‹Yµ¨‘P* ₫PQR BE3ƒPSWêÁª·'ükaÍ[„Z©«̃’RP­•„UoM¥À,Ơ„ đ†5½æÆu× …»kBØoăÏS¬„ê® RHGÔ7î÷9j‚t2BN_M ¸ơƯ5Ajvtµ&Ä.™̣ß/ ±Ê+J¯Sv`)̉%¹t`¨-÷¢¶\S±Xßæ(• àt2W´¦gú4Á(6zGäEW}«àÈ¢Ob£G0´è£Øèc@E_ă;¶€mJfƒW€älÇăshˆÎ(D˜à¡øŸœrjÿÉ™–Öăúï?ëoÙ(¼ă¾‡ÿ) (×%t¸OF7v%v _ü)‘Ăeƒ¦]Z*3{¼•n€ÑîMô‘¦‡è–Ç~Eä×K?ö ¢£”S)@Kè›êăÔ›Ñpj¹¾5Íñ>ÜO7C'₫i(åf¨`y¾)ÊPŸûú™Ü`ÿÆ }ư¾"Ôétÿ† tsß*§†ë¤«< ¥4\eƠrë“W53å™<[å |{>Ư ©‰O÷BjâÓç€Ồ§;15óéNPÍ|ú ¨øt/¬&>Ư‹«‰O¯kä‰i¬ÓéÄ)OȦăÏB¦£X¸t`¬…> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 518 0 obj << /Length 415 /Filter /FlateDecode >> stream xÚSMoÛ0 ½ûWè(¬J¢K=è°¦Xo|[{p>́¨­6Ñ¿_R”Ñ´+°! D‘Ô ß£¬E/´¸Ïô?öMvµ6 E­|­h:árè­´W¥ó¢Ù‰?̣&/* ²ËlÑÚí˜Î=Ú)ùÚ£®4nThg™ü©yÈî̀à_ka„PÖzaW ¼±²×LƠÀÅ 7¦–{)pơk°âgÈ~ăoI fqÊ$+a´̣Ú_’´¥Vem™ä:1êgâ²Ï @Êö:/Jp̣–}¤ù‚ËJ·åz#_¢3Ñ2æÖEâ--Ç0R¥•¡ă‚‡=ûÀ aóœxE›S²k·IÁpRˆÔĂß@Í!·µœÓ0¦xiü ²[ºiù’/¶#‡¾£S è|N©Y´±g”°ÁC–Œöëg#LeTåè½™RÙ̉19ă?UăS@j̀ endstream endobj 485 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-006.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 521 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 522 0 R/F3 523 0 R>> /ExtGState << >>/ColorSpace << /sRGB 524 0 R >>>> /Length 2468 /Filter /FlateDecode >> stream xœ•™Ko%Ç …÷÷WôRZ¸]¬w-ăAÆÀ bK°/&M ®äH$₫÷9‡Ơ–$ W =¨®Ûd‘‡_±[2}˜dú:ưûđ3¾~¸<|ÿøË?LW7;ç&ûưñêîđưû€ơ—_&‰ór¡ë¶ä8‹Ÿ¢´¹”ẹ́8}<{>y7}ºzº˜₫r÷éö|’4ưùxóx₫ûtùáđ×KúÊŒeú-J™3¸9ºéázúmº;)4¿„柅¦v¨³‹SÈøScdg×wO×wW×çÓåWFÑïÿîâ•û_¼û;₫Z̉ôŸĂÇß'7}>Èô__¢.~:„8×6…”æR§Ô/vÿ…FÿÂËsÅwæP{â~=Ÿđ—³û«Oÿ́)üvûéá|ú.à×?·Ô…0'™|Ñ/¼ç·ùơiñ5Í̃oi™ßƯÿ¸½~º¹¿[“ƒ›L¾4úiuNoôƒü?ù˜gÑư½¿yx|ÿvưôtư°• à£ĐKqshoóƯqO®.^T~LØư7¤.á—Åăbü¶\}ø¼‹QÂ\ƒ¸4y[1q±”UiÏ.¾}ùróßîëz÷ư\á"«fb™]xcNưœ üX ›»àoß±ÙnŒS_ç ?^SÛơmN¡m™Úª—g>|¸ÿöÇî«ÍØrUÍáƠ mÎuJẻ]ư£{¹₫|ó¯‡k³'4O‘)©j|¾¹eP̣… ?ư"«$}Â_=.̉èÛÏ‹Ûót«6!ˆ̀ˆ¶̀ $€ŒbYlÏ…¢Ú¡±cE×Gh–Ÿ¯ÜíÂN ̃Í(í¬ë½Đ?í8g^÷s j÷x@¯÷GóH·«®G=îï•̀´u#jWµÓœ¢®GØ´C÷°¨ôdËê¯ê~âoOST o÷eîùÑÏûÜ÷Wæ¦ñÂq«°ó/A<8@¢ÆÇø% 4QăăV`»ƯFôxßÿjç9³̃E†±ßÏùƠî₫œ#i·x|gÚ¯orÙ÷ă¡øöưú¦̃–ß¶üh¾|[óÓóIÛ§=ß¾!_²×ƒvö{½Ô®{=ùùî¯×›v·ë₫û₫»^| «^J÷ei×÷çÚ®Gß°lƠ¯ç~7}w=;™C0zG³·ØÚ›¾m¿ÜNÂ6j@ "t—´ƯܶDsÔ†@à]"ö÷ ¡Ă%€–C̉'l…g1fFÀ1´¨ùñ0.ÀeƠFHK 2¢¨*ëôJȃ_Á3ÑÄAi{È¢]Ñ_„Œ¢C´Đ ¹±-Û! p9ö®”̃µ'… ¥á¼ñµíY®CÈYËè Cfz‹ÊÉÖˆb Â(4d +@´ »Ö-fî¯êƘŸ­ÀuÏĂF=U ›y¤olöÏǾÉ ĂfO–6{°Æ²Ùƒµ–Í́²lf.,›©@ËfÆdÙ́ת¬½dX6–Í´-›}/̣ÎÚ†Í\oÙLÛ²™₫,›e3ăµl&̣,›™†Íu4löd¹a³‡è-›=êlÙ́yökËÀf¾°lö® lö.lk6ƒE›ÉrĂfim`³´2°YZØLÛ²YÀzËfÚ–Íj6óó–Í´-›éß²YZØ̀x6c›Á§Í.lö<û ›Ù,–Í^ÜÀæ¥_N]Ïq@y…ÍRÖ#è*•å£SA+è”+̀R†Ø€Âm¤Ó“—±’ï‡g+`gm*ƠùÔ @”5=èbQ‡v^©ÇQͬ(궯E¦]A,UƯ¸sºaÅvƯƠÓQ'¢m-xÆÚ2‡Lwf¥/MHU…ơ"U#5GƯO.Û)Ơº~ûˆ#ç0^?p̃ô‹ï̉z›íîeasxÆf‘qnf¢,›yfX6‹çf&̉²™r´l?ÎÍ: 6ó µl¦-›%Œs3mËf ăܬ¶a3×[6Ó¶l^ô¿³(Œs3ăµlf]-›¹_ËfñăǛª[6óŒµl?ÎÍ™e³È87‹Œs³È87‹Œsó̉½{¼nœ›ơÚ²Ùs3g¯Ínœ›ilvăÜL{`³çf~~`³çfư,›Ư873^ËfîϲYÜ87‹çf‘qnf³X6‹Œsó̉/§²¹iË{3„]ІKA'ºM€²cwé/tLÅ̃[̉iuŪ)RơC6+Ü­6•ÖîÔ +…×̀_Äœ8íƠq‹XJ[̀¾—­¤%fè»íC(B’Üu—÷º#\ ß0ê+Q‹Û“œ†‡¯UÎ=àHU”Ä-v*Wêµèƒ9?sªÎæđs|—ơÏÇĂpYC_ùF£Ïø/ç]}áÇy·v U¾üà|æUÓY›…ó[gd„™Î·º>÷S_Ú3¹Pœl]§=•uơ“ƒÆY@øüDÛ̃›ºÛD¹8+íäÁÓn<Úig}ˆzà̉îó.ZÑi¼¥2p¶b?¾>ÖÎd§$ë³Ŕ¸­@`"ËÊÚe‹$˜°L‰°:«ûpˆºhvˆG–XMjá=Cm@— ̣!© ÷÷e{0æ¼Wˆo#ªhù¶"ujh…CÜ»}åéz¬ùqz6ăM]5:ïD¾V?¾˜éĂ÷i§.:¢Úî¹zƠ{ê4:í/⢠óqRN}>e®?Uăs2¼'* Ăăn‘:v.̉®Ü­²m•&¹Á1¶-Âà°ÅWÍØªS§@z]U¹̀Ù°K±ê$'i=.ù~‡/o×ă©E*PĐÉ}\@…cÖ·À}߃Xêó=‰¥¾ynk₫ºô•úTI~]úJ}Ú#ơ—¨^?I”ú|Ÿc©oN¥>ß7¼•ú’ÚNưMú?₫ @G endstream endobj 526 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 529 0 obj << /Length 1633 /Filter /FlateDecode >> stream xÚ•XÉnÛH½û+„œ(Àâtsg 1’ƒ0l!9$s %J" ‰ E:v¾~ª^uSM‹Îr ÜKu-¯–®¶¬'j̣₫B=ùûÏüâ¯w:håç*דùj’k?Sz’¨À“p2_N¾xóizÅƯT{[úÊé,Œ/z9EIàÍ7faN{›iz ú-ưÔ{³}0«ơ0Ñ̃N6Å^ok™ÜMgAbe{́=̉÷ƒO.e¹;̉¸¢o¿–…ëÆ.Đ·àÁ̉–ö®êƯ,k̃+÷Ó óÚ£{ĂK0›₫7ÿ— ™éĐ£\̀g±Gfvô§³DÇ̃›±cƒ†5̀•×Âx~<-±1¹f#P ' d¨I³ÈàæưÅä ض₫!áFä|c'fSK–Ư¼¢9‘lX5Î4´’å̃ª6hjÈ®i|ơFÆđEÁî;–çÄ;±‡¼, #P‹Su¯`$‰·âƠFÆ–';ă«êưt¢?¯æÜw§r q´÷íæD¼¨Yµ9Óûiœ B±gJŸ~æÎ™¯JG­°¬WçzƠ´Êpi­kBFåîHlé¥ H,xl€Ù †Ü3qɪ]¦aЇK¼&u<ØÈ>Ơơ­@KdŒ ¢(Uêæ±s_'éEØ…!Œ‡t¾JbK†â¬êØÂVb̃Hû—Ø„j’úyªÀf¦ÓÈ‚t2Ëư(‰„ÛßÓY„ÈüsQ¦¯gº/}¾1̣ÊÔ¯*V́9“]}e1ÊƠæh DEÊ¥YóÍ₫@̀’_ËŸ€V´CƯÊÖn Ç×ô½ ïÚ¡Ù³G jëw¶<~ÆrA>ÉÈÔ+)]Ö E+->mJ–ɧ8Ô¶b=¢G¸‚Û—ÂçĐäEl·ƠFx½–?À¸“º \ËKÙ`Q«‚k%ÇD €X´¥5/ )^œ¨÷pĐËÊŸG@5ƯÂAû%êî²Âe°”sÛí]öơY+E ‡6{!Ư@Ù,̣“H¼ps…P›Q2†2 ÜIh&Y¥ -̃(¢;p¹l-û¿‹æªÜS hά]˘)mgœJ‹MÊÏhˆ(ĐéH&d#áô‰]»@ ĐmQ[éöOÓ\8çÊ•£•È™‰±Ä[YbU‘ÊÓCyC ùü•Ü´Û’ƯV¡ÈkJ-ª`Û“µÆ ..ÊW‘kmèZ›₫ÂÚẃÔí‹ÿrÛ̉D~¨³d Û, ‚i:ẩ̀™Ás²åïé®aZ-‘Ë“ÏÄåq`"ưÆ.Ùk'Lc G § ÈF¸åJ»Z!¸`Y§± WD}Äñ½Œ”ơs̀•cv0bövx‹n|x¿©Ê3Èçևë3×^w"¨Ÿ›1ö-eµF¢Ó)ö%½“ă'NN\¬ĂĐT3_ÿÊÔ÷¸Xº̀ŒMÊè|Ny/ơĩ¦±ZñÆyJºĐ¬3?̣'5‰ô5©Ÿ„RúI7&nŸ©µY¤q§úÙÉîÜCåspßƠö¦­ä"‡úŸ ¹¢ ÊLđhו‘ÇÁØƠDZ»ëLž—ï78lj½ÙŸèü–/“öÀn(§¸Œ\)Cc²?Ñ(̃¹Àk %u—X ơga0Œ…Ï̀…Ziç̉9ÈƯ¿G$ëØ ç/L–$áÖ™9ë„Xf¨~/ÊM95zcöƠI)×E…#.²¢ú¬°G¤àº̀¢h|{/ŸÎ‡Ă#f¶áw ưX¢I:ÀKïÓJ˜‹Œƒ¥jû. °ÀرÊ8/å) †́• í ˆÇ›Gæ\Ë̉±:5iX)ZÛª¹zÔ{¹c+ñ’åÁ±ă·ÂªÂóYǸĐ¹#_Ư£̉"À ê·‰W₫ÔÄ×±ZvèPRÜÂƯ|¤•ÛÛª)îwƯ¦&qƒÛñäw7¶íÛÇø×Ă¡B¿½‡†Ä¹¼ßEm¼Gí‹̉âÄ̃©˜~‡7¶¿–—ξ²Eñfi3•J¼¤ zöçMh½ZÉ`Y1ź6ÿ¯À¡{Œ»̣¬3—Î,{îù6x*óÓ(&Ơhk£[ ‡ßÎ/₫BË(¾ endstream endobj 570 0 obj << /Length 3407 /Filter /FlateDecode >> stream xÚZI“ÛÆ¾ëWđ°ÊD€Æœ$E–́²S©hªR);ˆ—ˆ$hÔḥëóÖîỒè0ƒf£—×oữkD‹Ư"Z¼ÉóÍƯ«?ÿg‹8 «¨wÛE‡e/̣2_Üm¿—etíre`Í+ü­›å*Ṃ æÇºđ·Û78–;ÛÚ 37ÁŸá¯ÁÎúÈC·Ø^đŸ&…ËU‘%Áë3¾ÍpT :ç\²Û—¥)!ä÷(‹–ÿ¹ûÎ-âE‡‡ĂÆ?ß¿ZüZ\ăÙ|×t²ôyĂ÷¸(¶U26² 3 ñĂÍh¸J锿̃-VqfiÅ<₫wÆí{fĐ˜º-Ë4 »ÓT¥Ó)À«×MƒCÏëç¹¹n‰ƒ“±o¸Í2¤—,À4ØÖk”QÛñÏú÷(NµˆØºc95$é%¨̉;¨lOª$0àLÜ÷7FÀ1¦lSÂă2Ø×¸ªƠ èÙ¡[T× wLÔ¬ç̃z½¦qgœ:¸‘t˜¸ÔnY§5½èßæª* o¾,30‡N^Ơg\³EΫ*xí¯HÆQ·®™ˆ̃aD­†[Ê^UÙÛs/äĐ‘gxqËLÓ’̀4­‚ưN‚rC"D ¼₫c‰7瓼 +đfF™Ú Ç`ÔVxË…—WeßyÇ#HÂ4¾(*|g”VE ‡¥C¶0đ$§Ø!Ûd̉È%I˜¥NA ˆ€µG';™*î”=ñt•dyT1k3§e Í û³Œ₫mÙh^ÏS+ÇÔ\³æ2ëß~‚Xƒ;öÔ—‹ 94̀-́7ElM»/<´˜NC>̣0 ²ê@{ªno­µh̀Ù°c¥Øq僺){ë5û9µ«{¶lç!rZgèT iṭ¶Ự“¼íUâC;"E=ÉØ¹uY‹\ÇШkÈí΄ pKOʼnA÷̀ª˜]PN™Z³fÅ{ÀÈƯî³»6ܾè"­4ö(¼`Í&"a°‘Ç%Û¨DÛ©>ë‘MÏ*¨˜ ÁJ¸A «|Ä—*Ÿ‰Ø+ZXËO”Ä^† ×üQÑеS·ö*¦È  q°™Dgê\S™PxÂ}›£>DMFÇ+nĐßlØÑå GwjÊr «TW…Wưä${×)?Éaîö¢\ijFH:’i@ƒ!'˜#w WŸÍ-\8™Å2́̀ AŒ0¬>óŒ‚Î GÛs S¬bĂX"Q3¤YöP˜‚M÷Œ„™?3üq+))o’"gä‡ ₫ĐX¦VéÇ-YJˆ†¯'æƒÈïƠϽSw-Ok+G%J^øÉ6¤Ëö́ U±*#$ª:,¥p¥><_’fÙ × /Ä5Ó¯ô‘_†Wơ‚ >³|4ª̉ &*B“ä>âû“B½üûe™±×ÁS­˜t>ÊG*[«E²¦ƒÎ–q42ƒúáo˜AÇAzÛ Jxưo 5xÓ˜2‹8 Q­Ơ/De|Ô™2"ơƧ¢ˆ’eÖ7ÜM‘£cüëAPûđuó‡Êxđ«¾( 7đö"5eL%¢>>ÈÎJ̣Öê$«PrÅÁă2ĂÀlg,Uˆ åil˜ ¿̀zÈ"’(aqSE• hØÖµ°_«M²0Xä¡ï‘CÅ!½p¡C, eQ¦̃ ›]9·"Ă•e—9Ô“TuÛ$€7Ă4&·œ±´ #kJrư/ùØ~{aû¸Ü’~8daÅc¹44:';µæ$#SX#́VQϦ Q˜VÆfÈä4Å̀uÎSoÜÚïaÉ,Á=¾^ ÎA<́Ig¶Êă0NR”pS+2TèiÑ4ßN8ª¬“y´̀úªÈ’p™=̀|©ßÛÄY‘æéø–#4̃úèÖ½j̉&dn­6;5SÛ°Ơw‘ô¦ÍCæUó Ùl÷_PỲ¨Aûß…’́CÔæ@ëMS³éèV]·§éeƯ”[YnĐÚ­đû ]=“áçƒËŸ}̣ëÁ«mUr+oé‘Y‹2·ïkiAú¤ç G×¹¨[œ=–₫—{Bj=÷7$Ï<úLalƠN´đ‡½TR¢’Đ½"xYëÛ< o«F^DÁ[…’â7¼¨Í ư ̣Cº Bf¸K`ä‹Öîñ„6ăÔƯïÍƯ ”YÁJRøS³0F¯œU׫0³åBâøªƒŸ{¥-d—Nà.ÙhÍ o*ƯMÊEq;;<~¿m¥®YđUëúè^ʇnăk+ÿ¸(ư‹ˆØ¤à†«13-6-†;˜–`'WÉ×XxgPÓºŸ€’ÑƯ5Øâ„Á®vJï´\Ùûß0M™'eX…ÿ9£44́<ºĐ2ù2‹Œ~Ộ¶Ï6¸̉åôÜûW2 Í/.vd^ÉGjq•ÊÇ7瘹̉cư*q±á+®ls¨w–ǧ÷1ef ăú­‡¢d“eÁg!„o¢ÏÜÙsܾW™, ́'=ø₫*eV¹³̀¸¾EϹ£ÅU&eé®ÏđJ ïÛN†Q°½l¶/_¿¿r÷±™ûÊn¬"1hâó fú¨ÔÂÇ{î_øäE%`¦ K œV1ă ww¯₫­,ƒ¬ endstream endobj 592 0 obj << /Length 383 /Filter /FlateDecode >> stream xÚ…RMOĂ0 ½÷WäØJ4‹tm ؈ ¢7àĐ}‰®£lđ÷q—nBUOqçøY‰µPâ&RÿœWe4‚V"—6W Ê•° ²Æ*—h(â)¾H̉ uÜ&7I¨ƒëŒ̀ôøvIX*³Ê¥€xOè„Á…l8ä„mÉ₫óÎ H‚fó¿ñƯ”pI¸'<&¡,$/å½1µ̉Œ³_ÏØ₫jË-wCÛî5+v¹ /.9(ÀA_u(Mʨ%@€ÖÑ ̀Pj4b̃Dï‘̀­Ö…g˜₫ªcÇè¶Ñâºèë¥ë)iŸ;=HtÍ(i•ơº¢4b! À07¼W§×¾ó2¤ZëXŸ&©1¦êëS/ư,¼³uü…‹ñŒWƠ¼•)N¤Ö©´ßq†v¸»–Ïz(VóaG|®Í2Pm`}&Ù8®:—¬ñp§_×₫8/Á_{/ /$(CÓƒ±½âQ ø @×´Ÿ endstream endobj 534 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-008.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 594 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 595 0 R/F3 596 0 R>> /ExtGState << >>/ColorSpace << /sRGB 597 0 R >>>> /Length 2429 /Filter /FlateDecode >> stream xœ•YËnɼÏWô‘|;>¼?>Í,úó_Ư¼đü›WÆ·%mÿ:¼ưm³Û‡ƒÛ̃àçóÁÉ:¤Â熘L([2/V˜ÿdÿÿÓKÍ$Üo›‰’̃Û«¿_oƠnW_ß¿ûÇơ†B\}ỵ̈îñzû!àă®Ûnß0é” ¾¨Um[N¦äËæÑT¿ù\L«,æƠ×ûß¿¿Ư}}˜Å Í4‹q̃D·µj̉…ó > ÷{ÔÇË<¯ïŸ¾™?¿};>®-HÁ´QÖ4¿kB»p5ÎÜRĂXÍÛ«×× öơ;J‡®ÆŒ#øu\}üđ´*²I˜¤`'âæ,v—%‘«±¸% ä%‰›ï?̃ư»ÏuÜgÂve”1Ọ́‹±á ؜µ\´Lt²¸~úÁ¥íêNMœÉ~k™8+É8ñœ˜ ÍĂ S₫üøơûïûT¸£̣ÜW¢qn&±†̣4ƒ%ÈTí³?Ü}z<ê%5bËî>‡ ¡éÑ´€‹¯ÅÄÔ±é& }¦…Í7Çκ—˜c–¶/§‚8ó̃;‡¸â$&6l<Ø'Ḱy!Xoj‘fßGS¼Ä¶_Ï\b®Í#.,;ăÊ•[Ù(Œ3L̃@{2NÜ™ZJ’;*KÜ$́I,=î÷ăC“¸È|àÇÔï÷=®\¨đ’ä1Ÿ•ù£ä‹Ú¥,ù9y>ø$2ßIJ0=¤ƾwä+ÆùûÖøØƒ |]ôë–ùû–Hs=.¬·7-騒>÷ñUÊ´?¯&nă>¢„=_ÑqÏ×£û‹Z/̉£k½¾ä¹~©‡g'¹½^p·ª¾’Áª·/~Ô»ïă÷ưbœư¾ŸŒơ~óy9́xà|c¿/̀§¯¯ă‰ù»¼ăÍ—jªÛñè«59íxơó…çÇ₫ ¼£Ẃ¼.½|ØïựåpNÿ¹"` ®r+Ù¨Ñj@l˜Oï·{p{Àû 4¸Cn™ß^À¨¥˜•#<Ô-á›HPƯ@¥ ±w²¨ó’n³Ñmøß¤-Ëë[`™tăvơe&̣x˜I{&àá ²t•¤\"‰2铲(l;¯4¶-t4ø6’®'IÙÊ$)¡äïIc=+¾ÁĂ0"T2´/ˆ}öA_~Y’>ëIà ‰”ö>¯̉àè):eXˆÏ4ˆ!J?fI+ô,6oˆvØ|\À'B5Ià€/"7‹Dq8½.Øv|¦R—đĐº2ôÄ?Ó¢Ø*=q௨ú‹~¹(=qà?«ô„{ă”8đ§Szâ´1¾÷?p–•xèUzâmüÔùúăâÄUó“•2ïüÅXé ă₫ĂưŸ?b¾¢ô„ù ¾íü ½è|2ø×º¡ŸƒŸ¡§ƒo…¿ÚĐƠßôØ)=!r«̉~Zú‚DØ >êi)=!ˆ’̉~ôJOøÓ*}#f›̉|Zµ¾öJO\ñsưR‡†‰JO½pÚëérúÚëÍØ*=qh0½_Œ‡₫Ë~r¼Wz¸ùœ¯*=a~V鉃₫D¥'néßÀ#ÖÛ”â»~<ƒBÆøwôJPzBz,JOF¿œI¬Z–̀ù‚ô‚U 5{’À 0)ÆsèIdnA‰æˆ »ăñÇ&¡æ“ˆO®_{{n̉(¤ï¤Bơ¤‹Nt0YCà!(íUaJ8Àñ°´F—ádD”\x&ó<±®“.Ï®4N…œUSs>©tê­%¥Æ’»Ô­¤$.Ññ Û©,…Ç¡̉Ø '"çphAWœOF n=Ư₫é0nö#çUû&AG#¼Á&iT¹bÏAÏ b#“7̣́–jƒ8‹Øo"C_p7ç¾x¡˜€_\‡ÅëđLKPß ¤̀U”’€Ø¬́~÷ѽ/)èio[¨LT*̉Ä-¬¦o³‡'€ƒCUœNJC½̉Nw“'«8‹±æ4ÄAiŸW•†0Ó9si^çTHbQ”K…P ›œç¢̉́o˜ÇĐ=°â”ÀcT%ત´Ü¥x ¶óä#&%àÉ tƒ²ö$ÁºA-¡̀C]_ 9_i`¬WÊ“ópô½zÀ\Đ^\„]Ozíê­Aè•Zät²±x²WZyǽ (MPJ$‡‘HQ×́8‹”L@E¼R taT"Ç•F@BĽŸ´Á¹>Ø÷Nm°ga÷—đ×M¾ûÉÂfnƯ– ”₫È ăB‡sᑲs€벫lA¹ £æYôÅa$Ô‘0~EDl&Œ+ưÄøeAÆPÎ,êEÊâ»wÉÑH ;pç¦(¤“ă\d´2́:ˆ–̃| ºiṆî́%³ô—•vë³iSp6Œç.BçCĂ×_3]}Ú_yÊÙbyuÆ@ẹ̈ê À¡|yuÆäÅéƠصÙƯ«3æë¶éƠntm÷ê;çüîƠ¸›gééƠ¢–W<ë”Ư«‡ÚßcM¯j·%Ó«@¤ÖƯ«‡*͸¼º”"î^=«âîƠC‘-¯Đ®­́^=”₫.`zơÈñ9½zàKŒ²{uƾ́^=Aị̂êŒù~szuƸqyơ¯>ÇO¯>Ÿ7½úœozơ™Ïôê#ßåƠÇz–Wë]^}ÔcyơQ¯åƠG=—Wơ^^}́Ç̣êc¿–Wû¹¼úØïåƠ–WxY^}àiyơ·åƠ'§WŸx^}âyzơ‰÷éƠg?L¯~Ú/g¶Ÿ•m>$rØ3*æñ<B˺oÙ)>T)0è ¸̀̃ «ḌuªÇ×{®6êđ@ŒZ;+.édầw!̣Bï\‚“·iöÔ««¤Ÿ¼œ8_•å'ι½róÏÎ8’´#E,¯₫ü4¯_âƠG¥©>ÈưÙcVÿôP•æ¿&JÑ•v!²|«̉ă=,sî…¹ñúáôúÜ ÈvçûËá¿–D¦B endstream endobj 467 0 obj << /Type /ObjStm /N 100 /First 890 /Length 2502 /Filter /FlateDecode >> stream xÚåZ[s·~ç¯ÀcôP,n'3¶U'i›Œí™¦ñèaE®¤©]—\ºv}¿.)R²$J̃ˆéä…ÀârđáàÜpçP¹$´Ơ‘&àÛ£®J/ÈaIPôÂ&á-÷Záƒ.°”(á#XBN Ÿ(d¹ ZéÁà°¸ƒe,ød¸â!AAÈXÔEXxŸd3I6pE‹ˆ“aŒG3a6 <QL†+Ydñ%/p’ÄÛÉ:î"­Ḍ|,¸@û”ø̀̉¨¶@v́"‚heóxBÍùȬCÍCnˆ›<÷,ơRF‰;³<±”«ÈÆ=ï¾|¬Dñsy^—mÓUM·ÀiṬͨxS-Úå|R-²Æå¦¿WÓº|Ñ~ïp:`–9ÄsCÊă7M Rï³f£%kv.±C.OFß¿!o—§]₫₫[Ư|/Úù´ç¥ÔIñcñºx‰8ap“N¼×dŒÂ@R³ºG’NY– bÜsñ́™(̃â‡ö]+cñƯ¤î*y>¯'ƠXé#Ă@IJâ6PŒ¶2BŸÎk(–¼d!´NK‚¼[ï¤K(cø*”®w×¥ïº{C‚~líconƠ–E¢•´×ß cl•Yyö…´ùb7å¿1é&c£À˜¸Í˜ \>,´ô6ü!“ǹôh“éW89Y•ëoÛ—₫ÛLè®±ÀÖ¥Gⵓ&{l'ǘÙ]ÆÂg±´JR{;/#|±Ö^"À'é}ÄY}¾œWr@»iœ’c,²̉d¥æ€¨ṬO„Âé$-Ç6= g¼ Ùÿߋ x"f®CǺƠt€£…²Y€ ·ÈJ*Üu’àB̉W\H‚3C¤´ÏXf•G8¼ÏXÄï0ñVó±ëUvŒÉ–‹ÙñE´¤nø¾<ά’Úßß́Œ]›UDÀ°ŸYƯáÄu#ûÍf•T¸Éz c^Ϋ²«Ûæ¸́*ñƯñ·¸ pWÔ[¦#k§·ö½«»z̃ˆæåÇ‹z²?-»Ëî(ojºœTsîµ’¤:ê×j¹éhwẁÄ-MäF=*₫Q^rj/ÊE•]üZ~<;®›óÓ²[<€†Ù¦ñc5ûTuơ¤m&íạ̈q‹+{´_%ù—ílúuºï‹×/_̣”)ZóYl­µ±¢º™_ü³n7‹úªû¸>;«p’|æp‰T\ÖÍrëRñïeÛU³ê¬ĂuƯÓg³XÔÅù¼üTådÙUŤO–—g³êsÑƠ³iU\–“yÛ§ó c0¥œL $Å´Æ‹zQHØÈiuV̀±v1dÍfå¦ñbÙœ—óåå¬\vE{̃6Ơ‡bR2½ÅÇrRí*”€̣ùmåƒÍw9goU¾] »MYƯ~ùéô76ä<ïơ%g3Ü7©¢7TQû½T‘ŒúÿRÅûƠÈĐï£FWt·ƠÈø?›é°¿mƯ¨.ºê;ÓcƠÈ@è›ÔÈܸAqº́!j´uQˆqÈ‹€±ZzÎTF’‰$0SqR*IQ? kÀY½ÏÏÄëw̃€Í{̃æƒuăÄÖW¶GœXŸ K}6,ơW¼´B̀IĐU¹₫¶}éû2ôéË=Î~®Ê~¾ëç»~¾s}I}ÙÓs=½›Öózº}̀ÏUÙ÷SO—zºÔÓ¥.ơt©§K==ßÓë³€Ô_uÉ÷ôú´­RCe ­̉át8´ÍÙù%A,|‚›t{jî¢ư¶¬m.SˆÛ"l»ß*5G̃‡“”ó”QØ"¢4œˆZÂ!Ưæ·ªYTÍø?Us>`5Z™ Ík4FpÅz*4×LbÄm7pN=H{¥)4&g%’zª›8DŽѧœ`E2`ÉÅùKá.fhÀäÿq¼̀ÏA‡̣¿=đ†̉](Ü€ªUI!ÿ1(5ÿ«%uâ¿ơ $ñNÙhæơäb¬̀÷³²Â;̉’ÿ]°+ê¼[ ¬‡ÔÑ †Øh£8áï„…Ó¥;”¦›i›±MĂ!1zâxt‹8åH”’ˆœ9e”͹¼Éa`JéÛ‘œÎÊÅÅY]ͦ㨄ƒ4̣­ñÀ̀úd‡'BPÓœæ,£y8 f₫ĐçÁ86ÄWêi¡hg²øn°°ó†øKPR›+,A•å×;÷bi?”³±·Cz“éêˆV¥?ëá­Ă‰#Ëư8&mûaQ}+?  yÈ nŸ(P)íƒE₫n•Lâs± –Ÿjy¨–»Ă¶TÍH4,†¬‰WPˆƒïx(w~?¶†â`h,?{»Ê%[ܦjº±úî̉k8k×x 8k« ·äwi”‡³•1w…¿—Ëf¬â&×ÊHö ˆçw8ÑœƠ1¸6̣ÛLù^rr1(ï…`HÉ„è)n 8•$?w<§ .Ñé ¬œÇåä^(³¶ú´Ê‘R‰àí i[§…Æ‚²«,ʯn!ĂüàÖH¯Âû#8~˜²C¸&%¶7Ă oŸöOïŒíß8ؘß><7~뫹ǦÆWYëÔxRÖÿÓæÁÁÿC Çđ endstream endobj 600 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 603 0 obj << /Length 323 /Filter /FlateDecode >> stream xÚ…RËNĂ0¼û+öèHÄƯµă$F€‚"¸!å’̉—Ô6R¾Ÿơ#j{@(íd<ë¬ÇAX£Àê]#&S2•r4 p¤jf%jeKV>àŨd¹ƠFöÉm¤WLóS•䜱d´Œ7´È¥a¬ÆÀØ3¾¾e—Z.WIï’ï¡Ä0qKỄ›gñĐâáÈ¥µm+…¶„ÙV| U9cêà8¡aíKÂäi[À}/^ø-ù¸w~²yŒË¡rèB\ÁF<W[1¯)Ï»öq†pÊÜ#‹Ë,/ #oăk—<‹v6¦2Ä•…qvT´Ü÷›”¢W×ư.Ê1ÊĐăéjåf•éZ†OïƒewÂẠ̊“ÙR¶C¡í6£CËO¯öIñ7ë3ÿëÿ*+etÉqiTu¯ÍY_Ø/å¥ endstream endobj 535 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-009.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 605 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 606 0 R/F3 607 0 R>> /ExtGState << >>/ColorSpace << /sRGB 608 0 R >>>> /Length 2693 /Filter /FlateDecode >> stream xœ•Y]o¹|Ÿ_1R€›có›¯gÄùºH¸{0îÁ±×† ¯t‘l$ù÷©êæ̀p÷dơ`Y­á‹Íêê"Wæ7³̀ŸçN?áß·Ó÷Oÿñ‡ùưÓäçÜ<₫|z?}ÿ:`üíÇYẩØ‹¥ùÅ—9J^¤̀·Çùê¯Ççw×óíçé·œc.‹wö#JY2₫sÑăa₫e¾¿‚ïü½KlsˆmÉU!Üî¿îßV6Á«›g&¸yơüµ¤ù_ÓÛ_g7˜d~ƒŸ'Ñ9₫~xÚóêÜ"œgÁ+ƒ¼F’M¢²_aÜ|ûøñîß6Ûa˜Ë·% „BáVƲ¸đ©@G”`i³©NxĂß¾“4_ƯÓJZ|[&åJZÄ¿|Ö˜ḉ–™ôÇLJo¿L† J‰Ÿ,Ñrû"̣@=–¶`:ÙßlÇ»O‡“l†E@M°ƠÏ ™}!MC $¯…,RÊVr†–Xè¾ í¨1êÖ·Ht_Ç¥UÄ™¶0<Ê¥ˆÆx9æÀNƠÜcä=8¿Ô¢±gj‚‹Kñ‹=Ï\ârˆ wq]2„EŒi²:‚i'A€P%ÅS#qS<W‹íó²D§qÑùÀÿfŸ÷£î£é”â-˜Ot₫¨xÁ£VŸèû±Ơœơ“l<2˜\Ùxoă…̣e1đûÖ–ªø —%µ>Ç6¬Ï…ùÆk̉c½u4ù0¼iia˜ZQÂÇ# Hë†×# eX/ZªÛz}Éëú5å${¾<>æ†|z¼Ö—=ßÓZ¾m?§¸ïắ÷ưd<î7ß—ĂÎÎ×÷[ùB<¶>ăñK̃ùæ³®üäóê¨Á_=`å2đ°lÿ:ßĂÙs«L]÷zù2]T€hĐ• ¨ó ³ VîD y8Î!$%z ‚ Aç hùXâQ±²7'¬ÄFM²¿`SÓÙˆ‰«)À%Ö¤_:S™ˆË…߃cud!è¼ä¬¬gV´ç#êÜÏQ x9DÎ@{–P€§ÂNôÉ]”³ÊËíRĐ€’²Á·: ‰¥StÄ'- –AGgdp}/€^É$̃F¸Nϼ¸D¹<1QGđÀgüW/δr[’_ ´i]ø&̣ơ~Ô‚.’´́6zü%pG¥6áUÀ™h,0Prô Óéó‰éàÙôà …~¤ô†âÏđµCCX Œº E0̀ EÚVĐZÀ•¡¡xP­7 ц†âÑpÜĐP衺@Ù¢IqÊ©îíÆxh(ŒOŸ7ê‰ùÊĐPˆ§ ® ,† J`6Œ<4í́.¨C©»À ² EZX6i²7|PÇ8sYûx,; E°l?4AM¸¡Á ÆĐP„1¬GđŸ°!ÈÁ4qh(B_œö| *( …±äz²_Œ»Đưäx?4ÆÍï|à|uh(Ä熆"XVl °óëmCC,Ăhç3`÷ñÆwKP톆̉ëåÂäÉ…~5Q!ŸÑf́< !*b¢ÂàÑ}|—9ˆ=$(‘£*¢cÜ´G«6'-² ›rœÎF¨vSJ}°"¾4ËÄ…D QÏh3=nW hbÑ,÷¬4«ÄaEíd„ôJ*µùdÄö„‰—f³ÚO2-º¢ä:$R;-}Í´cî%e®æ¨} •˜ƠÍ©8«qæH82}:b¢‘ƒ1ÄăÅ ÅôoKôëp.Ï,A!eçªMlă2j̃Ô¨Ÿ1í•€7ÄA˜¡ÛaĐå¶–E/3$$Ô¡ !{ieŒÇA–Å)‹÷27æï2Àx” Äae¾¯²̀¸Ë¶ÉĐÖFL¦ĐeÊ bƯA”y4Ù‰ƒ$³&VÅÏĐđdX¬¯zŒå¥A±ËÖƯú`·&ôUÄ>h1)2H1•6́ ñÇ0,¡¬%[ etá\Öơjzrî.Ù²—SïI–\„&Ñ–{„ăÖä´6LƯ¹œN6oöƒüb̃₫Y¥Ä; â Ư(¥¬̃[ Wôfi£#Ñ ¼XWt Ƀ́̉ëµ]u­ .µiz¯„mÍ₫Y?\¹ÇÎLZă'€À¯-R“¦è¨§9%k̉®‚Ûé_ˆ2p:B¹8-¹ƒWÅG2k}No Xè­ ¸̣ˆÆÄ²êdîƯ¶ ‡2ÙÖ†}C°?ŒÏ'̃ഛńâ&86̣ÂÀ†,·²°¾̀c²)¾Vưz̉QÏ`=sÿÊs¸Qü†KÁvmª¹ßƯ\}Z¡ROÔ-u÷ËXÊî~¹Ííî—1¯öV÷Ëk‚°›ßf×`«÷¥Én}1ÊÅƯùâ<άƗåwßËÚi»íµóëæzÏ·Ưô~u»ç¯ƒß-/—_vÇkưt3¼”²°ûƯª!›Ư­Îæín—×y7»4Qn÷ºi½V«[ôusºvÈÛŒnÑÍç®a·¹}đêrû«V“Û'Z=n‡±Z\¹9\[Âfpm›¿µåoöÖ’³¹[KƯfn-±›·µ´oÖÖ6es¶¶e›±µ Ư|­m÷fk ›«5ªl¦Öˆ´yÚN³Ởv®våèêhW¯våøêhOkà²âµ´̃úW̉Ä꿬E´¹h uO“]ñ“W–—óz•ơ†¤{1ÜÀẹ̈¶ª².ÏFLe,—«€&ÈŸ^6́˜›é‘÷s¢ïáµ[6Å'Q!uôw¢ªƠ¿÷.H¤ØƠh̉+”élbo±³«®‹0³Ă3̣ ơ37–GCÔ›ăÉAúƯa4>4)‚zMjKóúÊ~AÂRÎ(ÿÉ™ăt6bâËơ~Đ‹/KtQízö¸£Ϋ Ôª™iÑÖd™.ü̃‚é«Êơû˜ư¸ƒyª×/Ơ¼eúdbÇÆÆ/@ÜǺȪĂ'Çü?Ú„–­ăa†̣’Ă>bưúfÑô\×3ÇélÄöÜC‚f§<»:Ít6 UzĐE=îô›JƯܨǽ\¿;l³üK¤„§³·€6Óẹ̈Ë葨µâ•”¿­ÊKi×K?ª<_–NèXïƠOç₫-̉hΠJÜJ̃ù{¥ÇÉ¥x!8_js¹4Ô|t“iĐíÅ.ô´KE>R̃7=oÔÖĂL æ x‹úó¸ÂƯŸ#´cB?\F aŸJ:K0¿²ëo`K?9”•¦BÛF/X”úeÖ`ÎD9ăơû¡ătú\ùBỌ́̀ßL?Mÿ×PS- endstream endobj 610 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 639 0 obj << /Length 2980 /Filter /FlateDecode >> stream xÚµZKÛF¾ûWè° qÉfóuL ;È"YÆ{pöĐ#Q®%QKJq~}êÙdSœ±Å4$›Åîêz|ơè‰ûE¼øéM,×ïßüư}’-’8ªâ*YÜïU•q²ÈË|q¿]|\Vɲî/đ·>íWë´L–4ÖÁïº?øpŧ:Z­³²X₫pÑGøµ×ư#~û‘hy&7º?­;­L±ü qSËR®Û¬L¹|DV6îÀ¸<.víqE%mF¬:|½oiX8öü5Đưû₫ …4‹!­̉(OIტJ’(©<Éïqó₫a-üs'ßÄÅø£µ-HØ,ÖIe¶â1Ẹ̈Åôsë™2ÊJ£ëÍOŸKJÛô¡IQ#3§62U9L¼6UŒZH–ÛÙEL;È•¾ùkË€¼’­æíA+íIî‹jylÁÔèÎaô,K5¸¦{8 „8GËßÓt2Œtíƒ|V£âq¸Ưñµ§yBŒ퉶ĐÉ~6jü-™ *.’†lFZ ¥…·™ù~iQ•†ÖTàºñ"Ytè¿xóá§7‹Ẹ́CưMçÀaZvs¤¸{ñëu¦Ë¤*ªÉ7ª¡(_§́:Y¬M¥Æ2{É„èăÚVỢ½úá|-5^+xîH[àèÏ"̃cC¢€m ëOêQÈxÔÚÚ”ơÓu2|p#Ư$̀0Í~tNÍójؼp‡̀›Yæ̃â"'äç‚+́à÷åvlx‡lÂÏ@÷‰ÖƠ3´)4;oÑ_c.eîm{DÑ=(,×#ÆØi1äf†¿Aé˜?y˜«%qâ–'Ü‘øñ?;¾·>ñưçU–3¤7c)4l f¥‘²4́wÛYïM‹wÙ°åË£p,¢›‹*~r‘†;d’QX› ; oïø~çưW-4›Ưö‡ú  •/k‡ø˜¥K/Ï3ïĂdviø"hNd)])̃€©d–ö(˜ D(†®ëI¼H›¯äcs­ Ù©3Øç•ÊŸ±\c9‹ûđeUZ¥c·£ÚÓưB§Æ„( ØŒđ`4±ytȈ¦Û‘ÎNóA5!¬₫E—Íà7I®®†"æÑ]}c{dïB׋‹ÑÀÁ;ŸjvjơŒ“}ú{œä›FæñöàCY₫,†ê–Ü Y‘5>ܵỨD •tˆ‰sóQ„¿¹Pdc /ªĐỴYgùíªơ0ä}«̉&@Çá‡Q@¤M¨²?)üîE'Óë©l”ă8·l9³05B#|ÙÊ";æÓM”´5¡„¾Ư‚Ë(‡ùD ₫º·*›b ˜̃XFU ¸‘ŒÑ^l0àø¢\s¦O<Â}®wà¹7·±#˜m”́k rVæ€ÎQY0AfÛ²«<áê-§|"ˆMl ⟼½<ç9̣LàÓ’äD;€WZ³o¼è)Ñ€ư~á÷;É3óFÓÓ´]“ư(¾1?T˜æ‡¯¦‡0ư«éá:³fy¯– Ôd˜WÊ(I¡ Ơñ;ÏlDYÇ);-c«SáCF¢;{#,³8Û–É}Ø¢›;­öcvK–!_‘­›\ á ¢S;¶àœ÷„đÁÙÖ¼¾ø6/>OU}“E÷L¡ñˆE²9ÂÄ—ÇáÄđy%»íܾK+caơ¾8bd1)¸1¿ă‡™đ0ĐQôƒl(ˆ+›¼ư€1ù7V,o;Î#$‹uâëßQ¶à~’ lp̃.ï$ñÁ%ÍÑ›½ưÓ§ü"JE¸g—ïØ*aÄDÇâ\I?a^¢M –hú‚DMa¢²L_‚Ü™ÿWDq™‡¾÷×ßq¹ü¤‡¨Ü3Ó,ÚZ¹ỠîÜẸ7K“Ô÷{BC"H¤JưGz…Đw\̉;4º đ¨ñ›}ủÓB‚Q/@15áêb¯é 5!ÙùF fÈ^+¢§Øöv€+l>­Ûú°Öó°Od 9œ₫S0Ùvb‡LÑ’œä¶±¡é%¾UÍđ{æA”%^wNû|­0êN1Qc×ß6!|Ë”—#Äg§YÂvNOצ䪴k‚p­j*}y®å‚6¯ +^_L÷^Í'1ø”FXºRTEg¬|¹ú¸¢Ởø¹}À¨¹üRl.2m—n/#nn£KïiœÔi¶6fñ!óŸn=¿¡:Đ¾H(jȸ*’è{ÙÚ^LâEqâ<óvNsˆ:Yo«½áŒ̣6Ơ%xë„ûß¾œÖÄèÍ8<2yJoåà¨?0®dHî2gc›ƒfđ'©è d{C'{êøVÑ SÅÑ€“¦ Wºđf0̃* ÷h(¤=ζR™¡\:“Ûj®ÁYú£Œùld.Nä` …gê×Ó¤wéYiùV’¥Ó–¹æTªV–Ü»íxQúf£YYדcŒcY5‰Maª“™RÉÔ¾©øM₫Jâ›å?[‰&HK’ÆvH%CuG Óf5´+-…£d¦iVn™ùº¨hÔ©œÈB2?iØ´Çú†‰Ô“́­ïzá# ŸB!>K-©è¡:"Tư^áºî™ôÉ'”éØeñy¨×ôDeˆ“%_Ù,½¿Ocè"IäóA¤ëH#MWfù/Ö§ti¦¾”•Ö˜±̉đQ®ö0 í4˜ă3³væÏW¨ [ưï₫DEá³é'M̀L5Y±8L€h$¹́ùûè{=Óù¬l´×!µư4*˜ñ Ằ¶LGÙäÀê,låàʧṾû­€Æç6y¯îƒÙÇ‚ˆ°¬–© ó-åŒÊH“Ádƒ¢{1ZÛµWiÙ{[k̉èmÇửpÍvƯïkưD†¹ü”f/8¾xip·ûÈ pÏ—n„]‹³ß»ÁBNwóRÄ [,cW´’§pëUûQÿ½ª40»É‡́&ÅÜ€E먥‘o‡Î·FdrlœË¥b B,³ÉRV€Ñ´f·†µs)“1ơxq÷đ²éĂơ‚ơë9ɼµÓLÚ Y"w~Û‚1:rÖ&<Mx “b̀ñÄ­.Âé¦t§qÔçøP#.»£ề7nY{¡™sp}ă²ÁâƯ,J ™[è:£#˜°é{J^E^[VØÍ­2p~đÚ˜₫ª¼”£4/³Z' ï;*,¸¸S#÷…xiÁéÆl“óØ4í;ŒÚÆ ¼rº€tmeȸæ‰ÏØ}<>‘3àî¤?găá¿ đ¾o)Ø^ôd¬àÔ£Ñî̉’đ!…ÉÆ‘Æd:*•âQNK;—8úÄ/™HÔ<ô…ôf=‹X[;´v|ÄY|¯×!«Îf,ØP”Ú¸S¡=×n6“˜L¯ƯYkˆLrû<ü_ |!ÔEÖßàF'Êe"Ï­¢Ä‚¦…SIảÅ*́Æ¢l§G* mđ₫hÍm2cÓå¯ÎAKzóKCñR;Gî”ÿÑß-Ï[?‹|;oŸ ÆÆv­Uô ÁÊ¡£Mo#—Ÿ¶×?ñî3‹ƒ/Ù”¥·xSJ¯­Ç)>]‡̀ëÄ#a©RNSûCÓÜ,¨*bù÷“²Ê) „­ÏŸ́À7ëèéÑó,M$`DË.¸eôô$H‡W70V'n÷W¸ư%â÷?ïø¯ÛËô›=ĐwÁ₫Ù§q wGo‹ë$3tô\_•?¶́7l‘Ôö~†5÷ù¹ïŒ¨‚fR¤CŸ̉9đÿ&…ö–¯’§½Oçâ”Ï h`p×ă@Ø|̣íA|³ä UwÔƠ=5ùÁ€ŸÉÁµ‰1?ÎY‚„±½»ó'akK endstream endobj 652 0 obj << /Length 638 /Filter /FlateDecode >> stream xÚ…TKÚ0¾çWø˜H×8UƠCƠnỠ*Qíaw†ˆD%Àvûë;ă±!´Hü˜×7ßL,Ø ö%ÿY?Î’»©«xS ÉfKÖH^Ă®T¥f³–=¥²Ü(¶™L-È!¬ÏÂXæ K®dö2ûÑó†eq-´}Û|z+Ó Èd )n„‘ ÷ Ä€¼L̉&Ÿg‰„Ü‚I&µæJ5LU° Å}̣3áU£uí-&[¯~áâîkoا!ù¿¨Êc̀|”84L ̃ˆfÊ¡*^6ÄÀC¨`uÜĂ¿Ër]©ÔÜ#2ư1ívE ,íí (ˆ.ª«đ WZ"ù6}äw…J×\Ửă}!ù°ÅäÄư@8…,Ц½hÖö‹s>¼u{ºơ‡}ĐøÈ¸ÙŸaI«2~—‘P$XŒ€Ư,‡LƠéYwa\?úÑ‚.TÜÔ5n¸)ÁaZ"DU—´'º=媮ü »~XáµƯ¡AJT2S¦v0Øù&ø¤~Í"ÚÀưÊ&D´˜BÓe aèéÚäi©Ô·Đ¯nŒC,SåÿH…ÀLP‹}8;ưÓ‚ª5[÷¿=dÆ1“¢́<̀‰Ă|ị̈̃̉Ô’`zÂÂùF;ăø‚¶·”Ó急$Míkr¼·În5 +*=¨÷/Óny°¾ÿÛ(4h¶ ÀtÙQ§b~î[Ö’ vJT¡/¡E Z£-mΈ¶tv؉¿¡µ¦oÁ·tgi¡9oưCæ/NaÄÜ+ιÛû¶ăûơ÷Í”¨yUđ–€Pø~¦Æđèư>\\æ endstream endobj 619 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-010.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 655 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 656 0 R/F3 657 0 R/F6 658 0 R>> /ExtGState << >>/ColorSpace << /sRGB 659 0 R >>>> /Length 9970 /Filter /FlateDecode >> stream xœ­}M“6KnƠ¾E/aáv~,XØ7ưẰ,`̀bÂí́s¤ª́~ï̀ÔóâÅ}ûê©ÊªL¥R)IYùư¯ßóûïßÿÏÛßÙù»·?ÿ—ÿüïỵ̈ưïÿå-}¤”̃ÏÿåïÿéíÏÿªÚư¿ûßï¹}øư#:ïô1Ë{Ëă#Ï÷ß}¾ÿ›ÿđËü/¿ưƯ¿}ÿƯïß~ó;¼ä}~”¤ZĂ₫¤ êŸÿáư¿¾ÿÓ£>ơa}íÉZÓǶ¤ü‘+{đKIñz<û¯Æi\êÇZïÛÚn¶ư[ÚkçỤ̀ß}iùG;ׯ“S‡ø€n}=0¯ ËÇÆó­Ù$?Ê"½;èº?z7z}>Ϧu%Ñlo\Kº®₫ÖöQÛ[·@ tÖó2nÄûë]öḈ_%7ÊR{¶/Öpp¼›ï/¶×AÓưÖ°€]~¹} “×èäh¼ï1‹Lí}ọAVü{ßl Ø÷£–Ư/ZóK?– c̃Ư\-®rË&¥Üƒ4ÑŃC‹–Ípº9h¤3” ;øI₫Ï蕦ÇÈQïÙ3̉'›“ko5÷ö̃4oÑ0r[r¬Ïé,Qé·Ü­î/’X7r»…v-喇t ‘–À°è¿.‡|ûíŸ^™¦vm&r_}H÷åưX!$ ˜ gÔ•Ÿ½·iú\™”Âer7¿^éó¶EƒÉ-/ê?ë³-Ô£éK}6ù<lѺVj€l3m ÷“t]ñçV Ư×tºØÓú€€J{ă$J jÇâÈÓ#±·×æ‘}5ÖÊö£àÍ]?ª̃— Ty4W„EĐè}E&cÔ¸KGCĐzŸí‰¶„@K±– Zư-\€ 3ߟ¹cÏï|1²ơgq­å₫Ñû»ø<³²Æ3ỖÖ"®'×ÙÖ]!?vq:ƒ3®Ûê±₫÷èv“F₫&¾Ïdd¡}ñ´5[ÇưXÆơx­̣”÷µîØûÓª+Gﯩ¿®ñ˜†Iă¯I‹øíü0± t~ALÚÁO ç¯ømt^Ç|ÔèŸÏèỳ§Ñµó ±+‡<Øûz>äÅú§ùwyjdĂ-o6mĂ.6~½ÏåU:ó–gSê¯Ë»ñséyZ¦'µY/Ôœq[_&G¿[ èïÔFjïû|Çø°QÛ¢¿̃Klë¡=Æ60»Ă8ÖÄ1¨ãQô eæóíÛä9ç,5Oú\°/ÛơÉ?RÍ­¼¼»–P¶{I5ă½ëKÓÇj®ØBIíl ÓêyŸ¥_;-ê—T3ú î̃M_è³ {>›h\[`1K¥]ª́“t…ª20@ĂF[6\ÁR³§Í¤¥[L†̀Ä$rÚ –¦ d6™¥È&íbÊöCÆ@±¥AO-¥‚}ÓDu.)ÅTÇÆó·TyÉ&è‰ố¤3mR³Sô>We Ù̃Fok÷«¿2Aw¾ßŒEpÇ̃G›µ˜1lÆ&hn5%q£YÏKjoöÚgÛ‹ă¢t~UVd̃Ô9yf©bÈÀLä_ZNc)¥¥[ñ'Ÿtƒ uÜ_ïöxmTưñ>Ûư}êOlÑ_ÛZg9Æc[EËÇx;íÙ›½Ê² ~ÙÖÑÓÁOSUÎ_ñÛhç¯o-̃¿˜/}ơ˜O£g:æÛ/~»<½æ!/ÖŸÉL‡S̃:-ß[»«©×î[Mȳm­½̣î>̉µª,Ư¯ëå‘>âÍÑ×ߥ™ÍmZB¦Uíæ)Ëfq'6½[ ¿Ø̃`wjºĂ´9´‹Ư8비u‡]O²¶¬?Ưå\éÜ@苺üËƠclúpê´À>Eg̉‹)£ ›k@[ 4ön80Ȧ½È|îí ë"½tz*›óĐÓµ̃›´œÂƠåN™ô­½mù^‹M{5¼-¶¯Ô ©°ht ÑÍi,£ơ|lpIíéAŸ`…°½Ÿí;ü Ñh£‹×¸@­ÿZFóùM¶o6Ûb¿-§±€W‘“  ؂Ǖ₫–éô”ôö¢áÖ­ă~ShkÏ›îtÇûl®ë:ú3G´W/…çă™ƯçÇÇ;Ư} ~ƯöÁ¯yWü4©ùª—œé˜é₫òè~̀'î?çÛèK> ö>Í—ËËl₫|—'ë¿Ë‡äÍh)p—Go퇼4~—g£g?ä}ºíëÖºß̉ƒƠg ™vQ ÀĐTÚ¼ÖŸ)ü¹a˜¼~²ă°]'§ú€{¯8j=₫¤™nº k†¿Ö¨éR­áă78°¯g“}bËa;€PWÙE¿¹œ¿,[Ö̃E“™†9=₫₫‡÷?ưà©íĸgº́»ÁuȾ±üˆ UQ¥maOÇ"Ô0ǹª¥O¾&÷6µVCØ›ö¼₫VÉb´./q{»÷ß”o\B¤~… ',˜ŸáºÙ¦• hăÏNæüøÀm|§MÔqÇCmt±rhƠĂă+¹% ,û‹•°Ư“X)fÙơoVúơ`´Y‘óÂm~ÉvÛV:´2~“m¸\u·Êñ••IÈ™˜vWSk1 ó'ga p€Y€‡V ­‘́‹,Øú%ƯóĐÉ}Ÿ‡!ûÅVâ5~Wá˜Kúÿ™‡Lđ.3nƯ ’åÍß¾ês×-30p4}îÁµß<äơJŸ›±Ơ₫¬ô¢ë–8¾Đg"×GÓU{"ñâ°)GXÖ¤!>°bi®i€ß?±Ûm…fsî ɵ‰n²%¶1xùn[Ê\71«4—a=y©Bj .T”£¸-j[ Œ¹öàƒs Ôzr›¨CÈW)»¯Ñû2υܤäæ|ÑơƠÜü'4„ÔÀ]k÷h¹‡¹Chä„ûÑ5¹ƒæÀZ1{ˆæºÂøKwÆ&¿¬¸¸w—è_–Ʋa”å4‘—êîQĐ:ü¸? ÉçAsíă}©vôdž‘öÑ_ûă×5ÜÖñǽüv~äk<â—¹%­ü4¯Îù+~ƯÆ1)úçóetíÇ|­ù÷ù¶ç‹ß.FÏ}ÈKN²>C¬¿ó”7ŒóG(ó_*åÅtËs̃_—wÓ¹9Íơà̃Ë×ợ̀½ÂÁ́ʯ9…uø,2›ÅI₫Ă{“¡K æ°‡;Wd÷;]%Èà\¾†;́z—2nBX˜©Ă™¤Ô{@ø6× ÚK`©Ÿ¤“zL¬¢‰¬Đd°+mNĂ53X/¦‚Xp̉ fÇ~›c›˜:ØßÍĐ¥ ;¦ưl¢ ÷Ùè)º0ˆ ¦$§¤”Y:Ó>6Z₫I–¿ïK´Ax?Ÿ—äoM‡Ÿ¢\ø¾­û%Áp#ø¾4(4Hƾ,˜ïK]Ïw¬4V8°c/5aƯ8è!~úûmqḶvÚ±́–N:¢¸¿»ÿÏë²Ư¯÷…?äư©5Æ£₫†Æ‹ñ`!Îc¼€ÄûÁ£}<â@ˆ~đÁÿ}đÛhùs>À‰û1_ ç1Ÿ¸ÿœïB>$€°Ë!/ĐĐA/ip—5øy¤Ë«ÑÈsÓtÉ{€t­‡!ùu½-…± Z?Điqc×<ö¼Â¿Ë³Ø¸/cد¿E—“<ûÇ\(ä?¹¿qÛáúy.p×ûƒ\ÚCœ µDè\3n.À6¯á4Iü^7üzđȵÊïäl£yÜfßlXô¸e|’ºƒ¸ w £aÀ¦¶3_plí`4í́́»‰Ñ°/r¼ï0hi[sKiT×–Kh́®̃Åe ¥D¥½°œÎ²¤ Sf̉BëƠ ij‡%d$‡vX ˜Ylo₫sƠưBÿæRûêèèœÔ9v'ÀnCö µ‹ñ–Ïw{0Ô$?¤ Ă%̣Kh×$Mû­;ƯƯ~›Ncw€ưµNz:÷O×–₫< úơxŸÍußG"´₫¦k¼O ´ÎÇ›<̉üH%Æ#~¥¯óÓè4~§,!æ#e òWƯÉç÷¯c¾íy.’‡äá‹—Tâù’'ë¯Ë‡ä-yÂIÈ£W»—Ë+6Ơ¸yFÊT?å}ønëÁĂk_×Ë£Ơ·© !!3²Cö¹yp90HbÆ$æ!ÓÆ̣‚1 Î/₫R¹y,J¨J[äÍw0œđí»̃Ä̉¥ ù1,†5ë¨Mÿ¦6£U/«ÍM̀…ÎDûQmNê'ô“›e¾q)-AZ˜•®_¸‘ºb̀,Hqr±.8g—âôëDZ [Ópyʇ½bưÍ·=t I₫Y.0ëraRù_\HW\H\±á@” E:›¨_w™P>Ü=jb™Ûc;rô…Ù´åêx>OÇ’‚¹[>ÏlJttî–f¬=ÎR(ÆÓÓÈ́/æbA£Ö£åógF‚î–&u—; û$¿Ă’8X!ùđ‰´¦ºµ·€4“’lˆñ´)b§èˆRt̀¿h#26ÛºÓR‘Ơl¤£È÷±í m9íH2— 'Ï̃’Åß=‘„ÉF¤^d«ƯV "¼Ùäyđª:©\Ơä́‹/R””_‹4£D¢yºjÙŒÅÚèè[¨ÈÛîaS99^Å•÷Àn^ _ØÍ”́°éÁ´ªNyQ=Äd—7×hËGÁi÷‹|t£DøZ,‘­¡!”È3̉K—ëÇ Œ›9Å!g])ÁI2“n¶ï•OJñmƠ§¬D’ª&´¸KéÓ]“ra(-æ—¢RÜÂpA*ĂS³$f6^z..„p†̉-¢•nÉ-Àå`ˆ·§f|₫§¹£¶Gơ=qÆsÄ«„©†>ŒNáÖ, : zăŸ|V¦$VÇé3s¸;ĂĐŸo_¯sœFvOX|°·,º‰f®̀éju>ÖR‹b"Sî5<~1|·|m›ạt·|%‘ 6ók̀0ƒñ°ÏöṆ̃¥Û*º[0\û@~‰¤¢‰ÉD̃0³£•nªµ³";`jEvôNí½"©=1ÓF—n&À¹¶§´+7K]­0çwöèN¢%³=Ơ¢&.¥]µSCW˜,n~¨X6H!ă›("2« Ônâc»:.½¹ ́Œ>óvLb`ƯH̃‹ ¬5¡Ú)J°!b]ô•¬ ͦ¢ÄdƒëæÂt÷Wéø­è̀ÿ„dx¡ƠàđBzë79—§’éfD$ëư(³‡”Ø£Íú¥³8î®NÎW9$Á{€c9c5üCs†'8ë04nÆ"µxƯlÑ+M ÈyỌÛ=¡c„>çt»…aLO"•¨X'•³,A‘̃/1›9”?…pz̉‰‹èt/Ù¾àt̉8<₫"ütƠ&$‰ dà_ưÎÒ'±œ ö,c̉·Ü…ư¸̃;‡…ë ̣·x6âÈŒ ¾}½.†f´̃éY_i³¯+ẉ/¾å5,å^½j³3 ›)¹‘.©kñ`!Æ Ø`p/fˆ ÿă.‡n{¿‡¹e0½a­ûU\›\>ûa*ÊbƒI'[»ÊăÂ1ºêëØ=ï*xk?[>V̉đMÍl8ẃ̉s?öÜùÚ®B/¾-_ê°É̀Ự J388¨ ‰aܼc¹+ô•¶¯ï™´ådKy¶‰/3T2¬¹FmY°¦Qfs•œ¸m}KŸ™"Y\ß̣ÊP2q”Ê K#…ˆmB{Ó7(柲¨HÙP2uA*û”FîÜËØ4'çvpoÓȵ' i_4rçt(i±̀l@̃XDüJ@]Ăr™ÍQùE8ß“¢ j;]¥Ñ+L<ơ·cHǼ ©Ù₫𛋇+üQ)đL¾¨ï/Ưèרɡ ¡·À8ÀÈlơá÷Èsg»oÖơœ$ctN’í=z¥IéBÑ”ÙÍWJ³Mh÷bŸîîµ. Èÿm·¨ô&‹Û©ûåbÖÇ lF2käf[[ăƠª]¡©g„º!̃Ơ7óSøiêJ¨ḿÛïëÔ©ØÏ§’æ9yâY¶ˆ¡r¹T&Ùfn?&Åsl†MĐØ±¯ëLR¶­p´× qKưÅ·<1Ïù}yWIL€Lÿ!qp3…‡Â¸­;Ơ‡geb¶céº6©(¬ca)gwz—_%BDMô°̣á÷%Ç[»ê/7 Xi4w:̉Ÿ$ ¥^ Ơ ²) ¡Âæà¿bˆ½º˜#ïy@T¨V!e¤>̀4Bh–!ƒ‹o¸+ôº§Ydơá¨na2pŸ.ÑTƧ¹‚³äA0N:ÀŸL„º{iBq+FÑơÂD‡>´@b¥Y¥HS€íăs™ú­? Ÿ@*YÜkÄY™ÂÜ·́¤±´GV±‘ú£ôƒtĂÚon^nçj‘Q¬µ¥"ïF›Ñ–l×9„*Pl^ḮĂ7²Œ›9-(Ö9ÚÍX#êÛ[ó¸¾&WË=e¨È:&´µ˜}N·½×'…ÂègÜ¢̉ºr\l !H̀ÚŒ|j a›₫–ˆ¶Ùæ`ă¤ªC\¼#Wâ₫g¡äû́´¤÷’d$Ư3Y"b₫‰‚0 ˜Ù{&‰:}Ɉ¬P§tâO¾¯ë̀ÓNÉzZîEéd „:ï[ {p÷ƠáÄ-•›Èwx–b̀‹áa™½…J›ôy:-°PxÆT¯ÜàA?¢] ϯ2Ù•zg?K¸ÑØ[º¼ˆoÈeeøO2]ÿàØ“‚Â{“NºÆ̃Xàco z2/¯Î{́~Ơù̉̉k{]ã0Ç₫-f^<¿ç_'w0í¦^©óvÂ4?>đ%ăÂ58 đŸ,á2Ó«²ZQyöä-ê+ÖÅCÓ ơ ›Lœ •<ô«î£™†Z—öc6çŸÎÂU‘rèjÔ¶?®G¥₫”Ë}ú¡ÖâKÓç(&hgÓWö@ŸMJY_¬m/z¦Ïû<™¯s4=ëñœ·_ÉÂƯ„³‚œHdk²”ËÁ¶.® m°Hˆ½Gå&₫€äIG1˜œ†Â¯èÜ]&̃—ç×₫äîĐª÷eïă¢$ưo¢GçGñ8¿PØ~¦ü¿‚ŸÇ|¤èŸÏèq̀gx”Ï7p¼rÈBüù—+KØå)ûy!oÈbÙ‡ƒ`û'íÉcqś.×f´×ûZÿÚ¸Xåèo‹ÚlOóŒ˜oKÎoçG½IįÅÎOxóàw³|>jôÏç ô:æ³Î˜Í·5«ơ‡êxcÈKC̣Ô’«)—7!ƒÇVư}.¯-I\Ûđ₫º¼›ó'5ë!9Îúe½)H}Æ¢%ŒQZâlVt¥Whg¿c“rÖ}¾}»ă‹yKyµ§ö?öÂδrtùo¾9~x$3ö_E» S™(̃—ÿs+#êăjto‡ú¡ºeú·¬%)‚S.¾Ó¿ È«py¶Û ë½&[—gŒ@M™eæürá“^¾́¢ư)ZKC ̉¬ZÛAi˜³ƒ´0kœ7¡¥&Xẓ(!¬Ï ŨDË^u=YpÑ<2³–jäANB?˜vU Œ-UQ½ê`0í ´̣0Ë(&|ß`æi:Ï‚´×9w­zƠµt&Åư-Úg½¯ri·âèÿ¨RUQ…a¼åó]ơ°>rh)s|#K•%¯ă©–Ó5“ßÊÓYó¼Û;ËyäÉÆóº‡ü}Ơ¥ˆ₫ÔíƠßzWă‘3y·: ü¨9ú#~Ơk¼â'̀ tđ»fÏ»ơù¨Q•âóU³çeû|Öˆø|ĂĂ(‡< ©̣‹<è)Ḍạ́VƯ‚ yDƯ:äƠø!ˆ-ä9ª̣C̃s‹ơà±î¯ëåỸ,³+!!Wä¡: ¼¡ñÓđÄYÊK‹$z„E°éL§Ï8À€³à5ܺ¯áăæ2»×ơ0ÉUgË‘$ó7í;vBT₫ơ”QbmÔ.?ÆIYçiQ.Û2£”ơ¶N61¦ôf½lI*»iÑ1¾™ry7üæ)ƯèJ^²́/2’Nƒw#ùyỸÉÔ’ >Àä–_g_̀I1@±zlߌMEu|Îö(ÄđII^èS–<ƯƠ'R•ïéN~ügḤ‘B: -$ß̉„ÊÅ~H[đ‹Kcê^2ểâH—fc¨—lº´/“}Y Ị̈\² F¹¿C|„‡á!nYçº̃đX@$̉›ÁƠÄ}œ€—ä ›áqW3Vè}Ë$딼´9dZHÔ߂Ȍ ÿDIk‡"¾®}g ¿M['® î׬B(>ùáŒ]:1³ª&*̣†´C'úuèÄ*µ4—– ˜u3…Lø^‘·»Ê‹’ G&ÑLXÊưu&¨°ö`Bê_öÇ”£LJi××}FG\wqL=,̣Tăă4₫ R‚ ¼̣j óŒ©£és ˜K9›5°úÅzälº́?¿ºtƠƯô¥>›æ¹‹ƒö:ª2»Aó°^đ˯…AÅC `Eåq®4– ­v̉^ zƯ'—Äó’cøzr{sQ•ûxØ_dûuP»À,̉"~‹€æ=¦%MîQ9?‹v¢‹ßçïPáGôOóEzÜóébvÍ7'~Kđ₫1xP‘ ệ„₫§C̃0>ÅD$øû(¯¬8䡃yÅ$ ïùNÎæz¨S:×Ë#5×Å‘!QăĐƒ̃ ‡£ºd¿ñ+ähú\eèXË£éY›÷¤Ï¶A Öf½ñ7†ú¦/ơÙ,‘£)€ùb U7ŒjẢ ´H1ÍN:J3â₫(ÆđçåíjÏ߇¬³?ùúï1\==ÔÇ›£$Ăù‘³Çœ_9j4œŸq@đ;9ó‘¢>_2ïù”uzÏwNÎo—‡œü5ñè#¡ó{‚S¡³ÿ:Æ/ô…â}aü/<Ŧđ£OáSÙâ¥M9=øåÎÑárK B°¶8Ôü¼NGĂzx æ A§ùD:Ưœú$™%¶“IŒˆ3°Er‘yÚëd̀2Ë5 ³¥±Ù-%Ô8̣b̉¤†@Ó92˲ƒo:·â{³Ÿ₫<ˆhU?.àm00’&é N¬J…&™¦H)É#>eÀ^ M~•Oẉăæ\â4 •䇺 ¥& ÛÅ,uí¼.„:êQ¸ëàøt‹ẉ´×/ÂÿBb+Dà*»¿ưo.üÆMNX¼²4ùÍ•vç¶êW:y4wÅ9W̉¶T•ªđơú›lW n>.ó%9üHœo` r₫Rß¶£ă,à;áBA&Ê:´âúưÚÚ́áFÅ̉ÓcàBâ|‹»V,®¿Ơ ë>³ơ "µwDzùê¹écü,̉ñƠ…˜˜|1!ơPñÎ`s1A#™ a&tüº³cZ϶©T2ư]·8Fè ÉJå¢EAÿl¤;èJßâÁÁH„—%->’úsQêáºQ.e“-ÙMS8r´p<7lỷ‚̃’Zn1·ƒ¯U$ǖéë¼yiÙt=™«ßhX$™®3·Ú:Â9Y„^qs™ü ƯÍ*²́Û›4Uèœ&‘„—G§çë[üE]mV¬qf£?º¿ÉưfäGçûQ¨!n÷‹¦—äƯ˜éœ~t¼avן`”îĂŸƯ‡ æL/fpÖEÅ­36ÊÙœí8C½Ư“2}sñ)ĂÍÇ„ÎvÍ~Ö“¥Ú$ Óëª\T¦§0¹ M/ƒq1›Cƺ ¡ª¨.~|ˆ pTó¹xÏ-₫‹đÿJÎóăï&Ø„hL·|Êđăÿh†wW̃¢çt–:hKÓ­’fÅ|¢j}TIR¡ûê3{¿^GŒ Ns·?& ?9öu±æk½Ô“ôcW¾¢Ÿ(2h;ÔT‹pÀ} Æd|Ơu`ê#†–©ØÓy~8́orsÆDPˆ̃á…„ûuØß„àühÏÇ;ĐL)₫å{À|ĐÏưY&̀ăט /.\L˜:Ríf‚L˜t<Ư Á0'clüz°h¦§á€ª/T}ïC[Đó¯gV†à“}ưy~ÆRëú³_?³¨.8â´ÔWú ¸ñHÑ×Yj´×¦/ôY¶ơƯÔ„ị̈Më`2?_ÈÏàw$ko₫-Ë¡S~z×ÎR++k÷\Æ:˜œ†ÌA~,jT]ø£l4•ÑÖÇ3 ær£™é̀BÁktH—c=ºŸ…Ôi, [’ºÎïkpÇ—FAûg1ƒ1¼¿Møêđ#FñHpgø!GÀ5ÑÆ#j₫UîF–*¶”;aù'ÎñÉ7Ưßü»Rñ¼¶â“‚z__ûÓ®o¥ª¿q¬pŒ§%XÅx›ĂóÁăq~Ơíh9?ă˜åàwƒ|>jôÏç«.í<1ŸuÅük¾)÷C4¬[^"W7ä©Å‡F]̃p s9ä±5ŸËkóˆg½zË{^ë!ùGA¿¬—G.bÓ ël_îZç¾Cz'S±n¹đ[H®å‡F÷-éŒcJ‘ä™IûQ–đ́tiÉ™ưØ̀΃V…¬*àëôă²²R´A+ŸÆggÿªWgíjƠÓóPZ8I+®ó@+=Olâu=±cÆ«˜ÛÍsókÄxŸ#Å|‰ß#y:¦Ï‡Ñ*ùöù^@ói´y í¼Ưåa¤˜/×–q(ºËÓÈ!’7d§CGdÜ„¼V¯£yvdç’wÿ éµâ˜̉/ëåi0¸v?đª—§[ù>”Ră9¤½jµs„Réß­óÑØß?öùuÑäÇy¾ƯñæŸ`O*kæ8áo¿ƒ4ƒÁë—­ĂƠ% dʯ³> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 664 0 obj << /Length 1180 /Filter /FlateDecode >> stream xÚµVKÛ6¾ï¯‹TÀ,z.ÚÍ¢ Rh¸§M²,;Fdi!i³Ø₫úÎK2e{›hzœùøÍpf8:Ø:xs£Ï¾¯×7ßÿj’ÀhUèÂë]P•k¤¾&ÖÛà>\G¹ ËMdÂ:ZÅ. “Ûh•ÆY¸₫táÿx„WÙ?ăT#đu€g€gÄŸ¤´ƒß¾;²xỤ̀$ÉànˆÓ"`á́ó0̣ÆH¢‹l> ,‹;~ê‘ZÍM‰£½Œ›è L‚¢M¶ÑÇơo࢕q*IØ ĂqÚ½©‘r´rΑ!—X ơ/Ü ¾v:ÈT‘ị5à*NcÆÿ)Z%Ö‘‹Ẹ̀”´˜ Ïh1¼â¡‰VFĂ)¼ç²LøÄ`£LƠ<$ˆä£i t]Z\²ëß̃Ü»?ßĂ{ `ɼE€úÈ(ѰÀ 0¥ĂŸ[¤ßđq È÷œˆß²Ö¡:©!d¯Đpˆø‘…6$‡{ƒj6÷G²]Ésâ‚æt†¹*lÁë Ùưàê­lĐGå-)ÄÊ:»0ưΪFG§6¼C©?H¦eB+AXi´)×l äï­U榿ŒÏÁ'₫‰#EDË@ïĐ·Çͧ̉ï|güÇÄíuâö’ø™·Ç€;́1^[È]%₫ÿếÔyœ³tfM¸Mvóg³¤2Pô₫Uß₫ƒ‹)₫…íüŸÈ¿5çÆ Uƒ†&…%³’Ây_߸¯đP•R˜)¡ZÉ@(¾ûº)©îbah‡ßcah(¹94RàZA¨]Ë{mIbßI)¾̀À wé­¤ZßµëNt*"(äwx™8¨×>z|eoŸî‹˜ˆ!(÷„M†Æẻ«ÇcOÑ„£‰và•M”+–Ç´ˆÉE.¯pAÙ‚Ô½ơx±îàí®0+T *å^Éb1/?ă|¦~·djÏ™f~)̀Í‚Œ›Éè -^,êyq® ×nĂEçyh¡¬˜â…®ĂåI˜â­A]G-w–Î|ï¯ °âAnĂFîÏÊ»!ûù"eœ—Ô(¶ Œ´Dàt£^Û>6J³̃(×í(Û•ÿB¦tn&(̀÷G¤QM­eàÀ¤*¼\Î]Où9²ù䯒? )́O& ±>;₫ư MLI‡×51åœp™J ôÛ¡Ù)‰æ¾ẩ, »nń¨Z¶êYîZ½=‰B¦7ظ=³ZÉSC=9§¡nÇÛn> stream xÚ…SMoÛ0 ½ûWĂ 0«ú°́¨Øvh·zè‡{êz0œ4 ĐÔ™ă¬Ø¿IItŒQERïÑ’­˜d™üÏzVg'3e$«„«¤bơ#sJLÁ*U!LU°zÁîù×Inµáë‰â-@¶€đ øă?ƒ™¿ÄÓ=`?¥•°ôï&Qüc8{ ₫OáÚ:¬·||̀ç€KÀàPûbU¼úXy÷qÅ6©Ö‡đÖ‡¶‰»…ñZ“4Ơ…́»Đ¼OMê@nîDQÚwù;f©X„Œ ơê+¢½9°öoú…³ïu¦ ºd)c„Öi ­È‚µ›́W&*g̀”"“â½à8™oJö­Ë®á‹Gỳ™'IưY¦¤p̉¥C¤S§= ³đ„Ỡ³™ë²äåé$/”äóóË» º»G¿";O!ô ́ÙÜÛÈV3E°¯ˆÉ倶å{’=hÁ[X*̃$‡iN‚·>ˆÔîG›Qa’W@—f­C9¶ṂêpMb̉‹wÏûtF^âD(#lá< ˜cÆG£ù6vđ›®ú)¡(jdéí0ÇŒ¢₫^©~t¼¹ÈØ=e¶t|è€F†̉½Æ7j(₫ífç7‹´:5•üWè»Âh́»éw₫Íän#Íưø÷ )«iKckZNEUÀ—t¢,aºz s₫Ô…A endstream endobj 622 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-013.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 672 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 673 0 R/F3 674 0 R/F6 675 0 R>> /ExtGState << >>/ColorSpace << /sRGB 676 0 R >>>> /Length 11022 /Filter /FlateDecode >> stream xœ­}É’-ÉqƯ¾¾¢–À؇೦L0 0²[¦ ‚$Àº©[2™₫^~ÎqÏ̀[x ̣Vkñ¿™‘éááásxæ×_½æ×?¼₫Ï—°?÷ƯËßüøÿîï^ûăKzK)½^ÿ₫ñ·|ù›¿¯vÿwÿơ5·7¿ ¿ïô¶ËkËă-Ï×ï̃_ÿégÿ₫ËøOß~÷ú¿üưÿÛëÿøÓ÷?Íươgÿ÷·öozưÙÿÓ¿ÿíëoÿôĂ¿û₫_₫×ïÿôÇ₫ϯßưêå›ï€Ïë|+Iµ<߆ư“* ~÷úŸ_ÿx Ư"t×#¶ë¬o}ù-W`û³/¥₫üơ»?àơxößcđo½½n»9ö_n´×¶ëÈ¿}ùo"¼ßƺŒLoë)„×|]å-iđ¿>ƒpΗ‘O!\ûedzë+ké¾|û•¥ûö˯í×Ù_ÿÏË?ưókzư//ùơWöç/™ÿ/uwà´ëÛ®¯ï“ưḿ×ï l$Ô|kƠAăº½ßr!h `X'{…ạ̀ÖƒSy+‚ó[\Ár€†çԌ܀×n9ơ·ÍëËXÔ¶Eos64đ|{ư$lX6»¶eƒ†NomæøiÏ×uá;'w˜ŸpUg>ÏÖÇ^Œ÷×A¸¼ƠBü*©1mWnâ_8~́·U8ßÍ÷ơ¶÷AăưĂ] —_oƠø5°3>²=¾ư§ƒÓ6¾Ñ&_Àú–ÚåæüVöù¨µ Îù®x,›Æ<Ñ\ͯjFËQÎI)EcÑ`ÅD"#́L' t‚’ÀÆœ¢§è?+-öZ=WÏ@_l.® mµöö̃4OÖ0p“ś éÂX6£̉O¾ĂëÉ–öÀÜN¦ÅK§`i1|yËĂÁc;|ỵ̈í_ß™}c%d‘d_¹-:i_F₫Ï ?{oyz_˜Œeº 5ñ—ŸÁyô×̉î9ù×/÷uèS8›n¹ M¶b4¶Mbóđ̀±c–Œ:¹%Ë̀`Á¦ ±ˆ©:_Û-³½ơêlŸ› Ê¾+8>XL7 ˾‰Œ©=6i‘_K°[ƒ»ÉŸñ•Xï&\¦ÁT½€;$4æ'Áfdî‹ô˜ºß₫ƒç•¸^!Ê üŒ'L>€̃k:Ül¼MKr"` “Ëư¡üy6µ.ïÉ»ăcÓë‚oŸq]óéƯEœÏ׆‰̃N{́Jzu.ÓIO Y/ô6Øé«ơ蟯—Á»]Ö³—X­7¶Ê¾đƒ½¯® ¿~e^øÉđ¯W~³iơqáG›ï₫¿Ú´Ú•ŸmZÂ7øƯ¦‘û¡…"½î—[bΖÖÄM6ÄlµÿƱưÀ×®‡mûÑÎ^„"°é¿~+­b =q‡pu°úơ¥ PêưåĂ\,QëÚ7P¶[ÁT¦ævÉ|_ÊƠcǬñ¤d¶÷¦‡¡÷¥œÍ|vµu\ÏàÜ*wá́OJæÖ ).CŸÀ9A(^†Fïk‹áÁ’dï„;àâ&VHºrî`¥bºÜ%eƒeƒE¬! “±É¢&ÑÎÛ˜:×N²-€ñf t=ϰ\|'™dÀN€‰ I¤!$¡ ,ë’h^!é̀,´óÅ€…o[”47JăgPgsGî4vhV!R€Ÿvn3D;ç#+©eˆŒb–$eK æ/“µnˆđb¶®Ø@ĐSø'0¾º¤4¸`|ÆÏ'¬|̃o(ĂËŸ7]RÄû ÀöŸvªăk»Ù¯k>3¹áêó5)z;=Œ{d9½`ßÎ =G¸NoƒE__d±^×tYÏV¶¯·=_ôv~á8¿>²%Ÿ ßqå·IÿüäGÑé¯óĐ4âgđ-̀zßá² |?˜€_¡ùÏưrÏÍŒ†‘éF߇œƒf…ëgû‚7ñ€/ø‚×”H–íc ƒ;lÅ2ŸƯÂ;º¬‰‚¥zùpi6Ä3œă_Ç97q¸^8™q6||Ç†ï‚ c3̀'V 0løMƠaî¨) ]knu{†Ñí0æk^YƠơI6x ÂäÀjNmmÛÖ<“£jr]›ad4”@Ù8pOÂu;l¸é}x]ÏËX!ÀYăw¾¯Ùü á̀ç-w!₫äÀu¦í›̀Ÿ0%Ô„/¸ˆ;;œ6aîĐŒ¹IÿÚ¯p“D=îçÆ»<¯ïïZë̉¯øä˜ăóù$¸FÇ|!×…€5Ñ °̃'z–đ÷œ̃€û<׃p:׋p9×đ¸¬75Nđ‡ñ̃çë%‰_|^ù)8¿%I胳‚$¿æXoçç" tđ»ÛÇ~h’˜ûåÎî+Ftljae aRAØëßi³Â”]&ÜJÆ/Ë,µW"à*OÖ^v!k±…Ï;́z§¹ ü&ʉRÖxºÈ.úÍaadÀ®¶Ê¹Á€Î ^üđ»×¿₫`£ƠÇ\ܬ="WÖ¯6ÓÍ v8Ǿå¾ăN58”œäÉøÑ€à|¸nV8E¿&#Ư¦t»üöß”T@€°~ ‹Jï/R¡Év*ĐŹR!‹J%f >Ï  *Äu§&ƠŸâøẫß´T0en:ôkT¸ÆFóÛ­àv^’“¾̃÷ {óAø?â5æúJ¡g’±+úÊƯ%Ǿ€c2vu‘9P´wŒLcSaï}Rs2¤åÔ¤AÁ˜åAM¿«n^Ñ|û³IßèWJă 3¡¸ï”n;…¦D†©ôlHß̃;†̃÷C*ixúTP¿4†’;QÎwªc—¡Oà<°Ø—¡¶ñÆ×Xë/…óY±—K¢¾FHÛ¶@»ø+ÙÂ#%Üy&d™ö4ÑŒ…ị̂OLÍ£nÜ®Hk£Ͱ_åLnĂ_ߌ È>n”y.7ÚËÈ?3ÿÀ8đ<ü—ÎÀ€̃g«ˆ:`ù'j÷ ßÚ Z?Ă ̃ç₫N†ÓX₫D1Ă}¿̀ç•¥ñĂư¯2q#æ«HI¡Ù“m?)H_:SæÏ(ÅQ=ư„øÆÆ·®›R…ù 7ơr=ÇăyæfÈßñ÷ơï>ư˜đEÀ«\æÓĂ¿đùöæ‘E§‡q˜ü/§W/î;=fÉźôƠzôÀÏ× lT/ë '$]ÖÛ/z;?¬È ó Ü´~á'Ăw]ù­đ‡Å=2PίF}åç‘"’YB ”ˆŸÛwÀ7B¯ß́ưåĂ$tÅÆºêÙÏhCÊqK2B¾ä}[TfPKPáÏiÓíóaè})k{ >ï9Ô4Ăí÷¦ÍœÜ£ñ¤bÈô.CŸ@™é¸ËЧC•-”˜ |'ŒwNÓÆ.9Ăî7†̃ÛÜă8r*Óu%OÔ™à€[fË¢r­¿]˜à±_̀Z“™W’åvBpÁÍ*En0̀:ƒ)4º‹ÙzŸưn`ϸ÷ ßœ$` ^!XŬ’=PdkøIP¹ˆñ†ÖøB75OäëÂ-Í‘6n óë ¹çÀ vŒÏ$IL–´=…đô@’ßoL*AïÏKÍ•₫>sđIÇ|ˆõ;®s>Ù¼ õÓé-z€Ă|>K×]q‹nå>é Ø×°đÓz–bÑzÖúk½ñ|WLäÀ‡â^âx­¿ø øî ¿a~rœI~5ú(¥ăüŒÚƒ€ÁïđÅ"Pư`ôWạ̀a¿Ü ¼ :s9÷(đŸ’¿6M“Ø•îäóđ°Ze 1Ă–¥¿ ºA¨Ñ!Cz3G₫₫̣áÑÆÓMnøN™ËbZyº]Ÿog«!;°E*cƯOIo¼7= ½- ±ă+<‡¢ÚäœÄNèèmñ­Óúά¹ E„4F—ÊPd1́°ÙwÀ[6gñŒ™V]¸ÓèŒÑÆKl«àc©±%X1hÓøy®¿ä#–*ÛÅL«¦ëÈÿ›ù‘dă•âÙÅŒ ˜ˆ¦…iMe?i³Ù¸„5¾ÀØ,|KRö6+» Ál§GTÁuèDÔ$=²²¿6Ÿ¥ñ I™)IŸ…:ls₫I÷gúÄ­Æun4ĐSøeÊŒbE-`D,‘úHWØ}œ¸ßȺÖåyFV¯÷ÙÀ§¸ø–×5#+³Å1ß2œ̃Nr̀Gô‚ë°/ô´áô½!êe= *çe½°‘Êe= Öúûz,z;?À5~±ÇĐt ~*îă¿Ùcéă?–íïs~­^&ü¬Çü^[đ»ïø?î—[bn°P„j%dÆ!™3#ûX%Ä£Ù™"‡Ç`X÷0E0Hf `Jóî²ÇÁk£•ÚD[ørÇ x×ËR௣<é×a„Y}ȸ¥É¨øàưEQ:ÖàUK »î Í¥Soâ-”„e‚t— '£|¯²,a(8`º &Q÷\Ûê S{yÎW˜Úk*ÁØD£ª*hIæ,ú{)¢=Á!+K@,rR5ÄRNLU2x2·;h̉Đœ”béÀ#U^T)Q̣É^bn₫j)Y „M¥j‚Y¤#ߢc«(d\ªaä"@OœÆÍIqDX9_d`^'mùX!̣̀§€¼I;'ØÜĂ÷é¨)́(ƒĐ‚tjQDXÍ“́Q3á‹̉ºLR_²Öåø‚¶~¬>–[₫úÁ êÉb„†çÉHÍw¨³™Í—)$gB©/œEÛ–: N2̀‚½³„ßóßË-̉c´?\§yd »!Ë*ăEï <À0Aưƒi„*¨- ï¯Ê¢`ÁjKÁy¼₫¢(‘nd gw2ĂÙơC8UCùù ~Û!'æaB́Ût[o¨₫Hî,¨êăŒB#U5"³Q: f=£Đ~QhÔ&‰Æ=[Ú‰Đècù´`Ÿ%B£êúKDHà”ƒÈG®+Ụ́ ‹& ÆHÇ4±Ë/¡x¿$jå.' (‰ª¸ÂZ ê€}R¥…ÔéH%Ñæ—¢Í|\g=‘^YÔÙJ¹L;xxÖqMÙCu-Œ5êđÎ,°íwêô¥z\Àtß—gm— † ̃z‹{©ó»ĂY6@Óø‚%`e©•_¬,'*̉ª®7‡زIéGé~e½QÚXø~U¨`… ·8Œº”âî;hËç»Í˜6–WØ1 œH/ey§R”¥«‚p— ¦,8â Oôq… ¤Æå₫,yF¢b_ƠĐ·-¾‘·ó°LZÏy#đEUYđn=¨$Ḯ©pº²àưåĂ/ µÈlŸ÷T]‘_RfdB¿ù˜/,ÓzZjî-‡¥A«ŒlƠƯ}@>Ç'–DÉôfraBC̣œU5œ`^³–ÇE{øu\åÖ2SnÓ!×P¡ß|T¡đèÚ§éG¨¥¯̉¡`KœtÈ*Ơ»Đ!S¨tÈÜ N‡¡˜£ÙeüzP)E ïĐ¡DLpøY„|»â•‘8üC¯ư¹è‚’—¡÷#%i3?vE¼ø>ΰ›°̣={?º“a?‡>³C çƒă°kFQî@•¡À¦¼}́ª®À¦¢)UA=?&C²Øœ¡’€¯¢%…0†³¢›ƠxÉë³ Rsf ¹éú \K^‡èDY]©0¼1©¦èHf¹F̣ú©ꥳøỎuá«ÓR€)Ù ’û‰•pí6EO’ âĐ"¸Uó‘&ßt0ŒÛ?«>†]‰IF°1̀¯Seá6âGB/̉—`¢»[‡æû³[ ñ¼$ÇÇß…rÅ l­_(¸ÖÎù@!æzÎÜ"z‹€¨vzA+Z"zBA;}IoÀN_:[Ÿ¯àÜÎớëÏơ,z‹đ¾¾O~Éq̀ù ¾_ø ó™óäG̀_ï¿B›1±ü¼Ü<ø=¿û~p±ö¸_>Ÿ‘eD “¼–â× ë“ÙÄSj̀° n¨h1åĐq¬0®ü¥óË6÷;jRÆFg^>Üñ‚x!eX•ÉóÙŒ¬´ù_.Î7_MCÿ¥D¡4$¶R ÏjÈlÊj)Sª›CCnàˆh”K–Qi.4dQ¿ôSC&£a)4 ‡}Ñ~úS¢t̃« ËUå“f15ä©Ïå$zéÉ»àLX½um̀,Á–u¾„G…ª ˆ–rs¸.Â2YUú$ẢXûx«pW¥$Óa04"/‚Uj±†‚J¹%fÄÖđBăÊZÖ|Ÿ́·´»à̉óëäéÜå¥̣ñnƯO‡5×®ñ]5+Ø ¸èytt)Ă|¾ ¾Œ0qáüÛr˜‚´È¾ A A¨ç1^đÜîŸ~$7ư´o¼Óºà3GŒ¾ó˜¯æ3]Ç|§ÇNƒ3ªX^ó˜¯è‰Búy¡7‚Éé²Ó̃ÆzÍ…ØZÏyR{©T=ùü`ïÓz9¿L7?Íü!~ƒçY/üO³_øuz¨*øÙ`)bç÷¹<$àû¥\;àc¿|^p£6 éÈ£₫ÅiŸǛggjs–/ÓÏÔN^?Izê“ÎJ¶«Ư#€ô¹Ñ² ‚ËŒƠ´¥ŸRJă‚{GZ¿iŸÜ‹ èiÁ=«bG ø/Ó̀G=¥N*£CM¥ W½eV™ÁEê7G´Đ@S&¬÷%ă9ê1+ÜF]¾r3—]{>¸Î\T?çíƯ(à«Ú„½5>+[Ó0FÔ:ÀvLª'ƠưtëPoê×y”ơµÊ]ĂN.J%‡Gb}«¼€Ưh‰ûQÖZ/ÏkÓ½?Ÿtí‰tw¾àÛJ\×|×fÄ|kÔG;=jÔÇ:½ª§â‚È¥÷ ½kÔGûzTÇ/Ö đ¼¬g=ÊÈ´̃uzư®óCu£!øÅđóơ?5{¿µ́ơăÎ6½ÏùUeÄ'?·%Pâ÷6·ưĐâ¼́Ă~ù ơ¾æU¯M>đƒBđ.÷'½KTR¨ÈƠ<|0Uä½åa,«^&ƒ ĐÀgÙuS̀d|é…‡;XNÆvë÷')¨Đé—_~Æ»́ >í]B̀¨Z½„¼g.Wµ¬=¯´ơT¢ØG—­Çô8™§ríT©®\±ª&Öy¼Î£6‰£ïä•Ú·†{™o3Ẹ̈­|4º€]ôy.Cï3wÓ†?†>€Îđ&{²:Úû2\†>…3¹C¯l†K„½†Ÿ„Ơœ×’‹¨Ä³×±y;œ]'‘ÙE´`–7Ay%oÓø"˜c.¢]$ID%‰¼îzy2¹S¨¬÷Ís;EO‚êºÊûàë,>ÏUÍdÀ #r9ø~(—º`µ%\äà•.–đfuâL"X÷ú½­Æu¹h$‰"4‡áwÖ)?ư€‡üôă₫æ*ןW‹ư} —ø µÜ/ø–×5Ÿâ©̀˜ïQ¾æô(®R‚^‘w z"u¸/ô.‡I¡ơ(Ÿ¯W‰̣L_ÏâßXoäËBeƒJóJqç—̉Ưär~ÂÉŸ+¿•é&—ócỸ²Áùµ&o>ăü\½<óPéƠ+¥c?D³Ÿ‡ự°ê±>hư§`aç@%"D‚ÏƯÚq$Çh3ÙpP‰&¶ÿgwBS•ÖIªÔùp‡J»ü”Ă’®"Áÿú¿üŒ_—œ¨gUdWú¢^ZÆ\’Q+‡9Çö°›iN²‚TgµƠĂÏ~ùT‘Fç¼®*²ÑNYÊØ«M6ÓÚ}JEâ½ưaèmuƒÔløsèS9J%zrN`ƧT$‹úuèS8ă\Ü9ô-2O½¸{'ŒœTñ®5̀1¹œSÙA+rRà‚*%ñ¤?DrN/c¥:œĐ4íBï´‚¾Zøùz\ûe=Óơ×z§-z?H3ü’“ç Ÿrµø g æ…³Wk¿*Yụ³9§2œßóªï‡tVüŸûå–'PYŸÄ¼ØÜW±ÜẹĐ/aYmç~Úå,0×£oCŒd4 Ée”‰ ‚Ux Ê÷đyó¼Đ~Åóæ·£¬¶é·$ó/?FYáL&I˜?._m8If—ưUXO”ÙÉxÏf¦HøËYJR,a§x¹bÆuf e_í{¥`[jêqzàËYO”xuÎ~'LÎß.9;V¡VÁ¹ÅaÄGrtÿQFœ›Ă 4~t=ÑøÍnŒ†± €Ó7—d —¸é™›œ~ÛvÈe¯ĂƯdF€Œem&₫‚©·2%¹ù“ù3@äÍ€@[E¹jƒ́¢ưæ5›)=nGÖDg=Ù¥Íf́ $`Èg'éô¤4DM’èéÙâ×ëH·˜’ŸÎT«Äá¦7N^:̣I“UÏĂk:Đç̉ôühÊn )•±èˆƒ¢cÁ¬ß̣Ejé>¼̃Ưx7¯ ÉÁV"#]Öç Ẃh…lÂđ6.8+g{°RÈ®ó́ºslg‰cßnív¾Â†È¹ë̀ƠơW™AéUgÅ|³¡mzÚq̀m77o{í¹Üt¾¨µ4Ú1"Ùr\å÷qñ FÚȧ_ă³ˆcîJ$Eº:ƒ’$¬Ês²×ÀJ‹R=!êKO±œ Z#ªå®Z3¨ÉÖÁ*5Î-‹‘lFylÖ¼ó¬3ak~ÈW,÷œƠ™ïû`ïæưĂ˜ÿ''±K<@×>›Ăk­>¼ÂZ¯³„{ VǬ²aẹ̈.[~^b±ï¾-dcqäĂuÆlj½ư´²û"V-̉1í¶«ôËbŸÙươÏ‘÷% Ú(#¯§Ơî lÄĂiÁù¤Èn<ëy| asDñ™à'[ÄWÊDDÙ—×@?VÊ­kLâ‘n€y¾ÎäçôëN¦;¸Øö&ÁgUZ§(°9Y\8vxƠü`_h ¥n]¾9¥*¦.ăqb~×¢´k•Ÿ¹È.ͤÛ÷9Úđªl¬Đ™Û϶7̀¥_ölàáo¥Øô0N‘clwÍÔ~´ư LfÍâuÙË2³_­ŒúÀJ…´jª.Đ,Öá‡{lç|Ü\I׳SR„íÑCdï•¥{_;_²²X Ú£ DËƯ£¨B̀Đ«¯¯X¥G{ 1†véTŸz‘˜°‰,*uu2ptÂpöö³ú̀Ïm,ưkÅÖ¬_xư…¢ ̀ÛăE2$;O·¾óÛ¶Ç “‡_¤öPÛåÇëÔ¸™,‘nÆùC€:̉JÑ{vé̀ü,Äܪ‹h6ÎJ~r/óK7¦ñh4eơ[Ñ7ÿ5?üăÔU½$VMưd0%só¯æÄ™µ0…~Ϩ’!°¢¯±*[–+dFd6@gfwÖđn¦µx”J'†éÖá6³̉7zØÓ=.U—xJ~yEQăàåª`!¨Èkbơn|¬‡úÂôuª4q_-/ÎrOhyï>€&eṾ râöû+0Ïóæ¹"rÀGÍ©F₫¢9<^.4戱DräºiMpznÁ§?k AâEÑ"ZvV/iÙơ­cQfÜkÉfU:ÏtFù¹–;>iầ0[<™¬2[¬¾TK÷Ó̉b3´€h'Îá…ÑbÑéưœçô²m±÷\Î Wæ¿w*œÅ§Ñv­;**jŒû¿ë,ÂxƠ Ý*>ùó;̃&#æ¯n è:ø™%¶y¼₫’ƠÆh¶K¯Ä¿$wƯL¿| /xy6H0˜__kæB.nü ¢ “ñ¬U#0³6ª¤#@`›vö#D’đ­yvgö«/JÇ=o¶á×ÔÇQØùåC,Ñ'úhêóè2ùçSŸKG’5ơ9¢‰¦®ËÄÔ'yhüM'(¦îW,6•³ṕÆÔûQŒóåCh¨³=ÑóYƒJ7®¯³7îÙ÷«(ñ<i}g€œvo®ÆĂúá\y„n„Á ®\gyº_e2!Cû{§]âJö¸̣“Úº²eÊû‹`ơc˜“ ZáXNAroƠ¦"¬¬N«„Œ¼Í«y&;v4÷' ă[HúèFóV)jñkt(™ kÎσḈ›÷LS6ÖV4OuJ/܉§ ®ˆFdƒaYƒôGÔƒMJăk“² ơ¡§–=,î W0†c³¥ç7ø‰)° !Æë’½3j̉ë_‚̀˜«̃Àâ€̉>ḯ²àü)₫1/ƒë{ơqĬƌˆuơ…fT=q£ÙV?T)JÔ˜©T“(/ Vÿ\ƒ¨[“xM”4UQX±êÎV-´̣±̉Ơ#™â‚ê:Å!µH){ª·¥pỊ̂4sHÀ9²y#qkWœëÊÉ?á¤z8‘•÷Ñ3w}̣ #QŒ,Ö~F·;“Å7q­*k™”` +;ùÍ´Ạ̈‰Í̀ú›¯KƠ-ú›wUå²ñ-¾_¥ÓÛ›V.ú›{Uh‡x²U¤ômz¦`'÷†Iø^LÉüzZ*Uˆæ%'‹–ú›+£öĺo~TáN}ATU¾’Z€}¦cW»7Bç×™Ÿ§&“'øÅ9¯™øÆûƠÀƠÈÑ$Ÿ4Ä¿j<7pFgøäƠ‡g×fo¤_g'&öM_WŒO’Ñ ¾ä€g$Otí‘Đó`w­Ëûjyħó¾¶iuƯçcÛV{Bmú‡Â‚¥«v"èUüû¼AÏ̉‚¾¢wñf‚±%đóơ*Ơùz–8Häë]ütqđCñÓ¼Á/G“Pç§2½Í„ó[YQ%.~,;‰_«÷‹~®Åñu~+éØC±…Çưr¯µ§øôă„éíïq°YṬт辘Ó/CJå2-jŸÁ™[²Eè}1WẽCŸÂÙvÈeèC€fRæ7Ë'Ăz8‰“ù9Ï3xLZté¬'à×8›Ă°-gtQ›F|°T¹¶Æ²ă«ßæø#L“ÖuöâçØfp$UV°1ÓÈ–*$œ°uù×Ö¾WX•‚•A˜º¢̣´²;`{³&¬FÔ‹Mzá½ns%~̃‡ư¿ùëè} ÿ`F/ÚÂ-â® —.{ªÄum£øOđX‰­Âz*dÏF½Ẫwî¸?ºûøóJ—÷ôˆOw‡)đí3®k>Ư›iÅ|B>éq»^Ư+QƒÊûôîå̀+`=zàçë¥Ïlœë‰¹¬7bíù½F‚@üg®‚Ÿº‡̃‚ߺw÷ ~́î"¿öè½́üü±(R,®QÄĂo"e‰¢åp‘h9ÆY°{_ï›ñ¼ä-%ư}Í?åøÀ"ß|Û1_ͧE?Ÿoó=Шy_èƠù-²$Nï9$_håëƠ¼N9Ö³ /-öơnѯÇù¡yöà—‡ œŸÚt₫p~³ù©ßó#(Œ ¿}èQǘÑ©ƒß“·́Œư_ö˽–›,‡ư׸J‹Ù)ªÂÆ!̣Ë₫»8&@e´Ơ;Ă[ï€c†—‹ê»cUéYíáËlƒJÑy=~Gtö#¯ùë <{}"h³%¯ưê?¥̣…÷îJ̀…cïøQç­Øa×çÓCpöë+Ó°#.!ï¸NÁ™ø¸›Ao'C;*k~ư!èGº}"€ădh—o5}• ©_ÈĐVœp2´u ă0̉r”„b¢%·üz©å»ŸRʼń¡̣•0_Ö_è2Ï]ÙœúC1¥O-qL¦‡—öЇ2Õ߫€Ç§Dª>ơOG ó6üH ÷{aGGz¼äơ2åán?¤£/ôĐC$>…‚đÖx¶0®¹ÎêRPeA~ÏÜ!#h!>t\<’́!<̣£Ås‘)XüS€€éñzÖUßM°>̀œ–<mOưáåéØ* Bßh”=ªgf´‡/wđúêœcyJpv_¥àü#gÄçí₫gR¼ç̣5ªuæ3‹q5C.ª:­z7td‹—d‡́ê›UiFoè5m»Ä₫ă:{TIrƯï\ *ä#iúëér|¤e~"_îTÈ—ÜÇW¨PƠU%¨â{ÍAfç*äM¾c .TđëA£\Ă₫ù‡—ÿ€#D endstream endobj 678 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 681 0 obj << /Length 684 /Filter /FlateDecode >> stream xÚ•UKoÔ0¾çWXˆCV"®'q‚€C ­z¶§Â!Í>¥6Y6]Jÿ=ór6[¶Bh5̣Øóô7_¼F-•Q‘ùÇz:Nέ3ÊëÊ«¦ UY]‚V¤^Ö«éLƯÄ&Iºx=±q¢A6 ÈÈ›ßz¢ủƒ<€|7¹e{4‰_‹m%ço@rY1|-+úÏü¹9¹¹ù2åNBu mA–|ü¼r3ªº÷†]›ÑñV cX=jª“́=‡,†Ú¶/ 1—Œ½\%—ëJṿcúF”T:+²£Sx I?5Ư”³£~¿Ç₫å!î GŸ¦‘…êFYeÓiZ©Ô§ºÈJƠÜG?#í+çJ̣©d qrpryïƠÇ.ú¿`JBÎd””©˜+kteª1Ó¬̉Ö ¹\a¹ăY$Yábÿv’x“Ç—gW×2{@-îl~áÎùøÔsb m³ú€¢}?'@)r7PgÉÆÍ$I‹¸ÛÓ&ờ›­0£nàÊ]HN,i{vx D^”»ô],…um`‚u:Ï*FaèÑTäÖ±Ăb ³ƒ¨1°¬§‰'…wñY‡lØÔ?I±Z3q̃ƯƯnLđö°T£ – åûüwûl]+.ÂÀç#DÂ15¶K!Î׋HƯPLAæđ^ÁƠ‰£dz ]Ëä0-ăZ*Ϻ6Tæ àhØ,@é²’îöZƒ>‹§ĂÇĂeƠ0. i±ö>1Pn‰ó-Û¸6çJóàO,u;cEp²3®¸¥üæqS̉V*ÿ/˜¬<&¦û M>½–f øx‹¨Ă߀sø^‚¾ª ¯đéàùø^°¨äĂă@ êzü6 óºă¾‡₫SSjŸeđJ溴̣L¦‡—„§́ûm™\ endstream endobj 625 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-014.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 684 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 685 0 R/F3 686 0 R/F6 687 0 R>> /ExtGState << >>/ColorSpace << /sRGB 688 0 R >>>> /Length 9610 /Filter /FlateDecode >> stream xœ¥}Ë’,Çq徿¢–ä‚­x?\Pר1Ñf@“Ù,dZh JCĐ’éïåç÷̀¬¾—dUs‡wfDFxœđđWxåÛonùö‡Ûÿ{ù;û篿yù«Ÿ₫₫üơíÛŸ^̉kJévư÷Oß~ỵ̈WSíưo₫ơ–Û«?Đ¿D×ơº×­åñçí›·Û?₫́o?ưÏøú›Û₫ôûïÿíöï?|÷ó[î·Ÿư×·ößtûÙÿưáÇß{ûö‡üƯwÿü¿ÿáûŸnÿúó[±'?üxû₫[ưïwÿùÓüîG5üé—ưçÿtûæ7/¿₫#¾ÍW{ƒÿjy¾ûOª ~üƯíß¾hBEZ÷ó!YkzƯ6·”_sÅ|~ö©¤Ÿß¾ù>¾ÿfü‰Æ¥¾®uÛÖv³í??Ü̉>;¯-y×̣Ox¾¦ri™^W}|ÀíµäÛ*¯IÿÏ3nự̉‰×±/-ÓëÑXK÷éë/,Ưן¾²¿Î~ûÿ/ÿøO·tû——|ûưó‡—̀Îÿ×KícÚơu×ÛÉjdÇç¾# FÍ×VIæ×¶o{¿æB̉ú¶ù&ûé¶_W3º¼Ñëu‚®€è‰æ95c7éùäÔĐíµO£ÖtyƯèßM̉ùµ,̉»ƒ®ûµw£×ka¶¬+‰f{ăZ̉s·¶×ÚØ̃†º` ³úËx߯tÙÆf¯’e©½€í‹5œïæ÷‹mèÆ}Đô¾5,`—?n¯Ăđ£Æm̀Ydj·m¼É²âßçËÆ€}vµl₫ëüĐwăX6ysµxÊY,[”rN̉ %‹+¦ -[átrĐHg(Œaω?c•íÓKÓ'†Lx^^`­R=CˆA‹æE.´ôÚ³Ó6ól̀ÛaÜmß¶×@ẃÜlWê;h.5èªö¶ß²ï™Úu}/S°¾ă  —½û†LÆ(fª±}+i}ÏDÛA¤Ơ>C`‚Öx ÷ú[܆pÇhÉAc4Îcû~#äsÇÿ`|ư™‚ö6₫ÊñgÛóK¢mÛbº§s"üyBG¹Åøp˜X{Ûïƒß3ŒØÀ°k_éáb#̃o. ¼?È~ù±5¥ËxLRµ~oYñ\ó1±')åó5¶ßÎ̉\Ô:¿ŒÍ:gœŸF;ÅoøëëQb|¾^FÏ|YO£÷º¬·5¿öưăœYB³„»ă bû7ë¶Ö Ñm¾àƠº-W<£ÛrÁ»uÛƠŸï‡îçÖƯ~yHÊÙTp̣ăgưÂ₫«:ç'øưvĂüÀ[ËßƯ¾&°‚™RỮ°©ØV‡ệ7¨f[¾±‡ïß;{¨Iæ’yäYđiIæ̣¨¬*Ỷî)Ɍ僚¦‹¹b³µS₫̉Ơ3c¶ư‘;9ù”h.™úå¥éc¦ösijĐ8“bPCÇ£CE|#ƯAOé Ư±%ºả–g’h ³É±̉† ƒÉl̉m• Úv|"]Ơ~H(&SÅ9¥Đ¢éWy.é(ÅdJAÿĂ=¹ơ ̉t̉6p¯©)úÔ2̉j_ ‘á}×D Dt ~ßđ îØ÷¨²&ó@Sß(&ªvæø2û³=ĂöCGCÉĂ|§è})Ï*%²˜h4g–  `£ÍŸÑ&̣XƠ ¡BăO¾̉Úªçûơl₫F–¨ïơßÓxú1·x®ùt[Ÿ|™o§:{̣ĂĐCÅ6øejEWđÓ>ç¯øm´øëëÑc|¾^Đùêe=é²̃Ö¿øíx0zÍ ^l’¹Gb¶›ÉƯbHS MxgEç‚OIæbjä¨ ±gß—7́yåscIß yÊl²ÿ„Ê|ȸ¥Éh{½‘¬$>edĂÓ ‹…dÁ^4Ư¼ZTÇ̣ª̉û’\₫4ái“NdÆTE´Ù€ư‡Vư&₫J²ÔÖ† éÔỈtYÄH(éK$?D“ ¤zN.Û3z™ÛƯH¶íR4MJØ̀@̣Ü6†AZMØÿ6É̀¶ƒÆ· ®-‘Đ©l4ÓɼHRå0y -ƒ›"—¤œÚ„å¶Î—m4T缫éVµÈFS×9Œéº²2ä™Oav­‚OpºiêÓ7’‡ƒ3gúuX- ü¦“íÓÍZ_”Y¥²ù’ ́Ç‚«å¶qQ Ø+é„Y«/ I‰́0³ Ö~‚ĐæÉù:D¤8qÏ%CÄáĂg;¹Î³åÏo$X(&ísXr³g/6åY›±ù!Ä ˜ØYêjÄOËĂå 6̣hOÓ »c‹5uûv<Ÿ¿l®8QTÉơdă~•zóÛĂë–¥’Ú¢̉̉’₫ˆîüƯíÏwÜvÈ ³ \9„ àÛØu‚„3Ñ̀AP§Ç$qVM₫aNê¦<ál!qBA5Ưp3äµƯEv÷ü½Eë1]Ú™€Ẓú·ù†äă™Œ?Æ[º4“LRAáÓ>¹°ˆ:™¿o¤óÔ™ ƒ;­@Đ“r¢»$M=¸é\M¡Ë¼rÑ zêy3Â4̀5°¤“nÆHñYt%/qæ§³t<H™ổ÷2Í·>uñ8«¤½!Âhê¤X¤ª÷iC\°ư€E€[´ûă‹B„߃®§ÎEÙ4É ? ă$q ₫º”‚Ïu§›Üs\é$wÇñ~’€Œ₫à~È—ïAC—ñ´óÑxÛ1_ͧ Iؘ¯ÑåÊ~>ñ«Å|ŸĐ[ú…ß­É<ơ/ëƠüơ´öéº̃F;>„ßuÁKëÑ¿đÔFàĂƯKnnơ‚WăOçÀ³ñ/Ơ ̃Ûé,wOŸNŸûå¡Ư·'Ï΃N¢b_ ßô;ă‚i„pßgª´S² ¤ÂƒÊ₫‚c²pÉzÄà`Ùt•à•¹…ï̃°çM[(‹eIM³Ø³#₫u'5¡Â§ç¥æ̃2X¨¿÷lể—Ä&\Đnlë˜UÄ™&&T$Áiï-'ÀkÜ´†‡àôçxÊ­Ư¤¦<̀¸̃$7ư₫µ.é́û}R‚¶³N>„W¾ăCclåàƒí©¼‚ÜtKưưóà’Ù)ë1tŸàêîƯɺ;̣fÄ)gZíÏyw’`v6}ÜS’6÷ưÙÔ´µùø˜å=·Ưißλ“ä=?›>1fú/Mm̀â`}·Ă1úF’–µ̃è´ƒcS̃”*§̃TÖ<$]q…²Àñ:èØÜ¢`„Q.oÂf{86åM1I˜éHzN}Ny²¬u8å]¨ĐđAĂ›1Ië{§ă')fŸô\̃EAS²—ÔÈêv"D%Lc£å=I™Ö¼/«¿¤öẼ ŒHê¢ăvˆ–dÇ.ät•£ÛŸKk*>>bbÑ‘Loh:¢«¼#'w¼Ÿü$̣₫ 9öå{đ¶Ëxr‡Ûö¯±q´Ë|àj—ùfT?²Ï'øel¦fü46;Åï´‚¿Z´Â;¤ơ2ºöËz¦ë¯ơ¶fâ·ă!ùÉxÉIZàɺW¼å"Í&đaÚ/x5~¬+³k‚wë67§¹Üq¿_\̀]ăơùơ¡„‹̉eƒ:~quº~̃ă5àV «Ă¿¥ŒFô’¢ç½™Œ®(ló~ Å;èô³7.ÛÜß0Ä"bS”¼rƒÑø œÏ&₫`¦‰Ÿ~&O¶kùK“₫£É:!±Jëù̉—»+dáÁsn5=$1Ơ­¡×\©øË8OH`ơĐ…L´—ûç•ͨ…¼UÏ%kIn-O|J TŸ-¯ëóÈ€mc†°y*€Ăl«UÜ4CÊoB:&S¬œœËÓ&ô²Áp׳«Ù=ˆ­ÙasÆ,22}3ÅSN ăœàXÎXMøœ9ĂƒkÎ:ÇÇÉX#“dûđQù¢ ÷Úú’éëË—ôå¶à`3Ö—PîÀv Èd̀¦ÇR„³Dr!:[ä1UßĐ€ ̃ÓCwàÿ¸Q¡Çnl‹”ópĐY×sp’ŒE¨¥œlï1*-JüH-Yϱ¾\P…«åƇq‚¹v턹^€Ôă€̀tLûr}H5^éB†8€ïêùÚWđÿ^ÏMhK=ú_êô„bÇØ #Úobâ­̣`(yá‰È@Ùâ©—hSOÚ^zλ¶c‘.ñrÿ\«Â-Ú¾xŒ?uªÚ:Y~ơ›‰ư§Zg¤`0~đYØgeW´rEàÔ˜TáîFZäƯ¥©a¶=3f[F$JỢ¤çK₫ûKÓÇÇ<7́äKÓ;Ơf3d©Œ­̀8ÚdѾx8JqƯ´a½•Ẹ̀ÚÄ ®îI¥Û¬œ"e]mʈ"@ɽ‚ö5´ºEN©Ưă"‹—AyuO¾:>@Ë~Đí \ƯSA“´¾·˜ÈZ1]ª(5ôÄÉÑŸ²È&Ó¬A3P–ÆñP¢—ÉØO9²gV{w”ÉĂóÓKÅNjƯ±̀øü9£ ¼ú˜®à_—FPt¿Ä¯N^h×&÷Ăø̣₫̣̉—ø^÷ăÉ]Ñ’oöS'æ“‹;å|¾9îd:?r̀Çù•¶ge:?Ó₫ßÉË-Äz¤Ÿ¯èqYOÄÿëe½á¤*<àºT¾àåÈbt<å¢äÀ[vs,đˆëîá^³×_ <¿4^Ç{̃wßYvƠư~ỳ² C¦tMs×3b® §é‹9ûn¹kú¸ÈÀnZצ¶ú‹¹ÂÄ®̉R\¢z\̀UºN/MŸ³Ö—¦×°ZÁ}$ë¸SE# ÷H–EiƒY÷p%^4yÆ\Îát1›Í"¯x§/· °F7^].#{̣sc¤2«,m¡ŒêÛ¬±̀Kqu¼Ñ+WF÷äÛFÿhù¬¥› ÙSßĂ•¯AÚ¯æÓvô¼Q,ŒWë™́ ZÉ·ĐX¿¯mU¡r|J6ùÎöóy5 çëɲ̣ öäpªà—?×6ê1¾B7déÍÅV¡‡lŸăJ{N^¼ß"Üáưµíơ=căƯxZódto‹«ă>Ÿ–=œàómÉùíü¨1çWơäîàgÁïz”.ĐzÔŸ¯Wơkc±5b¾̃Чê5B4—¥ Oͯũ`d¦ ¥±Ÿxm‘́îxnĂÇëxǵ¦é4÷ƒK÷ûå!1¯CăA9£ÔÄ:KMÈQ^TÀê@ê36-}$€̉‡èd錾bF;û6˜³îíåƯ/Ǜ[«=6f…I¿̣Wï t‰,¾§])…WpJ¿”d™'3”i§•—êĐ8z\íͪdÀ¿œ—x„ŒĂŸR¸=Û™×ÏéQ™l]cJù-Â7ŸÎäi]Ävh¿‰ÖÖđU[Ă]o 1˜ÎT”ĂĐVÓ¸IÏ0v„̉m'S2@/=§#Đ–ërfmƠH/LƒÁ²óB8Ê“PTTUÍ@9 œøÈ:­Nç-˜đ{ƒé±¤ésV¹ ̉ê¯síZơ’™„Ç7Z´— `°ÀƧtæQ%ªâF¬ñ–ư»è ®%7ôU«t º‹Ÿm9]3ù-ÄÈ̉˜çÙ̃é\®ïGúqô×åVïU¯ă©-Úk¼ơ˜¯æSƯó­¸ ~Ôă¿ê1_ñ³æX/ñ»ºO*Ö£f¿ñêëz]Ö³zP9ÖF¹àÁh¿‘*¼Ôâư;jq|8̃ªkpÇꧯÆƯ <÷¸Aëxï~Ă9öƒ§'Ưï—Çn|24 „́è­q•³ó(äơ>¸Ô‰—I°đ¹ă0R•¾·¨Â@ÄlOea Ư÷đå ̃Âu«ëA÷’‹Î–#÷ñ«ö̃qA—ïóW鼦tù¼jÂëKWñâ0’|3¸)©?ä3œ™ÇUyV]o>§?§àLÜs>ĂXsR”¿zï¿)J*ÿ(.UP¿È†¼.l¨*Ts²¡2úr°¡²àL\øLÄx¹°ÁŸ“pƒé160ÍV^‡£çÇ9X£Å‡p /˜–¼,,(G‹—ß+Snóâ*G QÏé(†Å,ù^xƒ´BJ²#Íñí¼¿Î‹´îñ•"‹<®¿©‚¹yđ PĐa¼ºq_Xè¥×[̣Vÿn¡ƒ†<Ï®úñB[!®Ë¼°G‹}8m‡zQmHÑ]tIWzùxâưẹ́̉ûK~Ï2¾—¼ ^Œ'ơh¯ñ¦c¾O ?·Ï7¹éüPÑă“_)æëüLA ~§ẫf_ăú‹¯—‘çz¦âZ_ïTÂC̣ú¥—×áOdx³ù´~Á£Í߯Û¯©{ØñœF\'̃qk£8Íư°/wûå™ó#׸—pM\ ißüº¤Ÿ›ÔÎóCˆç- @>Ï Ér·á ½ù¾¼Áç«sơ)Á™©DQp¾ b2‚û«̣(N'Ô¯ÿ:xA¬»· Ù1J+~S̀zŸK²CzuÈÍÜĂ;^·duƯCnús^’äÚGrq³j¯(œđƠûr3›pIĐüÖR¢:Î…ÄóÁ…ÄÊqDÏÇ… ₫Üy„Iơ¹€¼ ƯkÈ‘(Ôv)q~¾̣l  ³†Ö¥éẵ¦Á½riúTl'́‘µ˜ŸL˜k¿6}j̀&A/MÓ¼ËëL”ỪZ´Ï̉(Ç/¹¶-÷:íÔäש'Å"²•V9—BPƠ³“ÉÈkTñÇ9Ô¾»cv²HxP‚2å8”_¼sl®̉̉̃£ă»³²¾71`̣£ăœXMqư{PZ¢½5fSB.M!ºÓ†jˆ…7̉̀çpoao¼TœÎ¶íăr:=ô‹˜C¬ ×!»¶\”^‹*ÖrdĂ»bí‹{w°&è́°́”W¸y#Ǿr.A¯#&/¼Æ³oëJz„£¶-ÑzŸ¦`-±m=Ê ³ˬéÊ›>́¯1đˆñHl7f„b¼Új1.YL¬ÆùIl5Ö9?äho\‰{˜|^£˜@Q!V ïN#EÚ^ºĐ).'øû)®#x©¹ơï¥z?ặñ¦ˆj>»)óZÀ ¼;º5wđ ´ ÅO†ÓÉo† ˹ ă\/<—c_ë ZUS´̃~ôÀ¾§cVx)*₫rà‰Çđo˜Ï±Û5}Ïñ±-<'¯ÛxO=âÇÚ*₫Ư»ự˜6GÇYQͪw•8P[ü\ÎÓYÑVJï30˜÷ị̂đ7†NfƠ»zy÷O¦,ÈäpI ¯å(¤ôéôfeúU¹Ápçt¼j's.SaÁM<¹³ơ›¸Y's.m¨(˜—é7DÉt™—ª‡’ê2?sSÁf ´wß>-¡‡ ,“h^ä]½é42Û¡ö4Ơj¤Á¡̀¢˜’µ 0"©]8Ȳ …´ª‹$ú5A«àüƒăơÿ^HŒñ¤h¯ñæc¾O‚>_ØPW~-wµó+ó?£ Qđ;GVª¯Gî̃öơÊÓ«øzæéîv_ï)9ª‘8^²Q§¼ÂäØö‚’Ḉ ^S¸ÏQM&đ^Âưăû!Âwûå±r£MGđµ6ê¹×…à€`í:¦̀8^ßÉŒ<¢4¤7V|J:=û.£Ñ‰©½bŸoĐå„dù¼tè?j¸Ä{½«’í)‹…îiĂ} Œ)³ï †êíæ?7ô†{9Y;Ë«!̣Ñù‡»;{ơ#q¿WEçØíñüEµ küPÇĂLÈg&ö;ïí1gB¾fn~Æ„ª_«&Hœ]˜`îLÈlÈyÁi&•Å»,Ê^¨ûaGÖ̃C₫ô>°i˜<C®n°~ñ÷&.cñªëG·æôô²Âù—³jpUrÄt_J'ÇsÆ2ơŒùX yÈ>”{÷h˜̉P#₫¢É[4 XIœp¦a7Eº©²ă ê//†¤ßV€•Çà¦g«-7Âf‘ÍëÊÙtƠƯsúƯ²<Ơ/ NO‰ ™,¿S9ä_^+|LY£SÖå ĐăËèj°ØH*Qƒ¡VÔ¡FS[/th$R7V—†:X§‚vjÉƯ ¼¯E«6‰¤‘í±ïÁˆ!ṃ.ºậâÿƒ7MiÈî;²¤óåé…€½«¹¤Gú‡¦Ÿ*>ŒéY—>Èéeô} ³Kçơ FyŸ¾‘‚˜3›H¬‹ ÎØ¸_́lG•ùv.ÊôP‚/^¾,ètSÍ—{ú¶9¦_tu¨LOr ÍáƠü³9¤t8çÔ|¢sÉơăëƠï¹å¿¿ÿ_Pª+'o5`q½Ÿóỵ†mç%“â¿,ÈŸ á–œSF”nƠ5Uyị§-Ï@Y¼ÁáÄ>Ÿ¿xÖçœOøuˆé±I»p]TÙîĂŸ÷öÇnỤ̀êø®4Lt@§Đ!Û=‰byP¥'9»Z°ỡµ/G1¹yÜ!€· —ÍÏ£8¿Ô©}]ư (gÔL‡₫ô>r)¸HàL˜—Ÿ£ûŒ (ñ]O&̀'Œ3a¥tù$'-V2a†̀ÉgÙáx,ùQ3NÅûñÛ…ULøí;&àGÛ˜€ÂȰÆQĂäÓ©t^u°ôÇ›hûÔpY^?üÈOqúˈj·wASL¡ú4lÑé?÷Á_ï]ßî́´.kª@qçH)— ï< «ÿ°Ä +Í£}u{¯WB •̃̉ù? et̃₫æsơÇ0úS¸º3%´.*©̉©Ë@Óƒbü!>Ñ ¶¥₫“äo¼E Zá|¤|̣§]ÄO¯¨›\*Œ z00â‚ö2EÇû‘ư5O…‰ï¹9ƃ̀Ø~ïˆùú|FqûÚç;âJ˜ócdókÄ|Ÿ#Åz‰ß#¹½çëa´́9_¯á­XO£•.àë=’Wt<Œë%¼Œư Oª~â é‚ÇáñÀkơê“g/+}à½K;öCTs¼Û/Ol뙣ÜÁoß_K¿ đä¶^ºú¤BRnwÊûGn» ö̀³e /üĂ)ܰM¼0o¥‡±NưÀËËưs†P'Q½.=.tZgäÂ{‹³Wư’¹p­‘ô9†RU C¹'FU^¯Ï²«F–‡'Ÿ÷‹‘áσGƯ÷æ×/÷̣ßµ•F¸ endstream endobj 690 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 694 0 obj << /Length 495 /Filter /FlateDecode >> stream xÚ•TKOÛ@¾ûW¬Pk /ụ̂cQÛ”  .€9Ñ‚1I¤§MƠ₫úÎÎÎ"!*}ÚÉ|3³óZK¶d’'̣?çIÍ”‘¬®”Ờ)QTH' vÇ¿¦Y® _§7Ø:ÀOÀŸ@1Û·ốØÀw™K8ú7ƒ(₫‰¸é÷€–ÜäçĂù+₫÷`È~ n ¸‘?̀§€KÀ-àP‡Œ?rÍA¨D¥?ê‹ä¬NôR2Å”1BkÇta…2k6ɯD”Θ -&"RÑGóMžuÉü"•ŘÙ$h˜ZΔNºéÔ´•¢Đ6LmFé/Ç Èt•óê8ͬ–|~zyKåëªàƯc ê~Ô' ÎæzX„̃àŸ];xẠ́›ôä¯ .[8 ´IuÅW]O‰4Á·AEß̉€0́º{†£Áï8¿U¹—T£Êt†EÙ4ưdèmOñ`:ĐCè È­ -Ù…gÆh´í¼h¸Đkq7ºßʤ÷bµZ‡Ü¼©/‹ă¢ÁM¯ă ”­—·´Óís´w“ĐHÑ]ô:pnË1úá–…}è—´-×ç »Ăđ9̉ñ=C‰‡ïÙk^|Đ¾|m‹ïßÇTÿÂkY‰̉Z躲ÂJú~h·g OæƠ:ƒ endstream endobj 630 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-015.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 696 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 697 0 R/F3 698 0 R/F6 699 0 R>> /ExtGState << >>/ColorSpace << /sRGB 700 0 R >>>> /Length 10993 /Filter /FlateDecode >> stream xœ­}Ë-ËqƯ¼¿bÉ[ùάÔÁ•a¦ óH2 ˜¸-À¢₫zÇZ+¢*wóP¬Ư׃óˆ]•U‘‘‘ñΨüøÍ#?₫đø_oo₫æÇ·¿úăùóø—?¾¥÷”̉cÿûỵ̈¯oơ·Ơîÿñ~•Óă¿ÿëúË|üø›·~Ä›ó½$ưỢ|öOª€₫í÷ÿöø×[ˆ!¶ñ"Xg}ïă‘“aWÖ/¾•úËÇÀëñ́¿ÿÎà1̃{{6öàØº=̉^Ûö‘ư4̣ßEøxk™̃×K¯ùXå=iđ?¿‚pÎÛÈ—®}™̃ûÁZºo¿ûÎ̉ưîÛoí×Ùÿçí₫ñ‘ÿư-?~c₫đ–ùđÿüVœú~ÔÇÁd`Çă' 5ß[u0÷Çq¼çBĐÀ°Nö Áå½—¦̣^ç÷¸‚å' Ï©¹¯Ürêï¯/cQÛi¼ÏEØĐÀóíơ“°aÙ°½(¼0 pzoC0ÇO{¾® ß9¹‹lül„;¨ 8óy¶>öb¼¿Âå½âWI™̃ƒøÇû*œïÁ÷ơ¾÷AăưĂ] —_ïƠø5°3>:Êă0öŸÎô0 ¯¼ơ=µíæü^ëQë06¸^däÛñX6y¡¹_Ơ,Œ–£\“4RÆ¢Á)ˆDFØ™. è%9EOÑVʵz­¾Ø\\"Újíí½i^¬aà1.α'¤±lF¥_|‡Ö‹-í¹]L‹–NÁ̉bøÁúÓóvøéíwygö+Q$‹$ûÊmĐIû2*đMøÙ{ËÓĐûÂdt,Ó6ÔÄ_~çÑ¥7,Üḳ¯_ûĐ—p6Ư² M¶b4¶Mbóƒđ̀±'c–Œ:¹%Ë̀`Á¦ ±ˆ©:_Û-³½÷êlŸ› Ê¾+8>XL7 ˾‰Œ©=6i‘_K°['â+±̃M¸Lƒ©zwHh̀O‚ÍÈÜé1u¿ưÏ+q½B”øO˜|½×t¸Ùx›–äDÀ&Ûư¡üy6µ¶÷ä‚Ưñ±iŒµáÛg\×|zwçóµa¢·ÓĂ»̉F¯Îeºè 4ëFoƒ¾Zøùz|´m={‰ơ×zc«?ØûêÚøÅđ+să'Ă¿îüfÓêcăG›ïü ~µiµŸmZÂ7øƯ¦‘û¡…"Ư÷Ë-1gKkâ&b¶‚ÚăÜ~àk×öưhç@/BØô¿“V1Í †¸Ă¸ºXưú̉(ơñöé. –¨um(Û­`*ÓópÉ|_ÊƠsǬñ¢d¶÷¦§¡÷¥œÍ|v µu\¯àÜ*wá́/JæÖ )¶¡/àœ ·¡¦ÑûÉÆbx°$ÙḸ‰’®Ü€;X©˜.wIÙ`Ù`kHÂdl²¨I´sÁ6¦Îµ“l `¼]Ï3lßI&°`"Hi§ÁFIhË:‚$„WH:3AËí|1`áÛ%Á’ÀøÔ9¸#w GhV!R€Ÿvn3D;ç#+©eˆŒb–$eK æ/“µáÅl=]7° §đO`|uIipÁøŒŸ/X;øºß8P†—?oº¤ˆ÷A€>3́TÇ×v³_×|frĂƠçkSôvz÷È₫rzÁ¾=G¸NoƒE__d±^×´­ç+Û×Û/z;?Œp œ_ Ù’ÎO†ïØù 6tÙøFtÚøuFül¾…Yï;\–ïđ+4ÿµ_î ™‚Ñ02Ưèûï”sĐŒ£pưlÿ@đ&0đ@đɲ}lap‡­Xæó [xG—5Q°ToŸî ͆x†süË8ç&®× ço30Άï8ĂđC°al†ùĆ-¿©:̀5Åa€¡kÍÍ¢nÏ0áq8ŒùWVu}’£ ^ƒ09°S[›Ă¶uOÁä¨\×f0%P6<&áz8l¸é}x]ÏËX!ÀYăw¾¯Ùü á̀ç-BüÉ1€ëA˜¶on40J\À”Pf¼à"zÙátæÍØ‘é_û7IÔó~n¼íyơz×Z—¾ă“c>ò7æ“àó…\=k>¢`½Oô,áï9½÷y­át­ár­'à±­75Nđ‡ñ̃çë%‰_|îü”‚?œß’$ôÉYA’“_s¬·ós‘:ùƯmÇs?4Ìçưrg÷•F#:6µ°2N…0© ́ơ´YaÊ. Hn%ă—e–Úƒ¸Ê“µ—]ÈÅZláë»̃i.Ă¿‰r¢”5.²‹₫î´02ƒ?`W[åÜ`@g/₫í÷¿ü`£ƠÇ\ܬ=#;ëW›éÁ v8Ç~È}Ç42j*p.(9É“ñ£ÁùtƯ¬p~MFºMèvùíW>QÂúe*,*½?K…&Û=¨@g§B•4K2̀|TˆëN#Lª¿Ä đ=Ž×>QÁ”¹éĐïQaæ÷[Áí¼$?&}5¼ïWöæ“đúÄ=æú Đ3ÉØ}åî’c_À1»ºÈ(Ú;F¦qPaÇEÍÉ–S“c–'5ư:®ºyEóíO&}7¢_)3̀„â¾SºíL¦̉«!}{ï|zß©¤á6ô¥ ~i %w¢₫ïT)ƶ¡/à<°ØÛPÛxă{¬ơçÂùŒ¬ØË%Q?#¤m[ m₫J6†đH ÷CÉ#Y¦=M4c¡»üS³æ¨·+̉Ú¨F3́WùSă‡ÛÇđׯd7J‰<—Ç€íe„䟙`œx₫Kg`@ï³UD°ü“5û…omĐ -ÈŸaˆïs'Ăé,¢˜á>ˆ_æóỂøá₫W™¸óU¤¤Đ́ɶŸ¤/)óg”â(Œƒ~Â|că‡[W€M©B¼Ă dƯî¯×x<ÏÜ ù;₫¾~Äû„O?ç#|đ*Û|zø>ß̃<²èô0“ÿåôêÅưc§'Â,y£·ÁN_­Gü|½ÀFu[O8!i[o{¾èíü`°"ƒÎ/pÓúÆO†ïÚù­đ‡Å=2PίFcçç‘"’YB ”ˆ_ÛwÀ7B¯ß́ăíÓ$tÅÆÚớW4ƒ!å¸%!ß̣q[TfPKPá¯iÓíóiè})k{ >ï5Ô4Ăí÷¦ƒ9?¸GăEÅé)lC_@™é¸mèË¡ÊJL~FÈ;'„ic— ƒa÷C‡ ¸1Æq äT¦ëJ¨3Á·̀–E!åZ5₫pA`‚Çv|1kMf^Mt:J–Û Á7«¹Ál0ë V ¤Đè.fKè}ö¸A€5>ăFÜ/| s’€%x…`)[ ²Jö@‘M¬5â'Aiæ"Æ₫Yă ƯÔ<=c¬ ·4GnØ`¸u6̀¯+ä?$Ø1>{$1 [̉á)Œ€§’ü~cR z^j¨ô÷™óđ„O:çC|óqÄuÎ'›w!C@óÍÇtz‹à0ŸÏÇuWÜ¢g†[y\ốëXøi½K±h=kưµ̃x¾+&̣àSq/q¼Ö_ü|ß0?9O΋¤_>Jé8?£ö `đ;|±”b?ư¸|Ú/·oF¨ÎÅ\Îç= ü§ä¯MÓ$v¥{ù<<¬VC̀đ£eé/ˆnPª“wÈ>˜#ÿxût‡h ăi‰&7|§̀Œe1­<Ư®Ï·³ƠØ"•±î—¤7̃›†̃…Øñˆ^CQṃ Î b§Gtô¶øÆV‡'v }gV„lC!Ñ¥2YŒ#;lvÀđ!›³xÆL+.܈ˆitÆèă%¶ˆUđ€1‰Ôج´iü|®¿ä#–*ÛÅL«¦ëÈÿ›ù‘dă•âÙÅŒ ˜ˆ¦…iMe?i³Ù¸„5¾ÀØ,|KRö6+» Ál§GTÁuèDÔ$=²²¿6Ÿ¥ñ I™)IŸ…:́àü“îÏô‰[ëÜh §đË”Å,&ZÀˆX"ơ‘vØ}œ¸ßȺÖö<#«×ûl‡?áSÜ |Ëë‘•Ùâ˜oNo§G9ç#zÁu86zÚÆpú̃Gu[¨Ê¹­6RÙÖÓ`­¿¯·Á¢·ó\“±ñ‹=†¦cđSq'øÍK'ø±₫>ç×êebÁÏźÅﵿû~đˆÿó~¹%æ @¨VBfœ’93²UB<‘)rx †uSƒd¦Ô1ï.{¼9Z©M´…·;̃À{¸^–’åI¿{ ̀êSÆ-MFÅỏ±¶¯ZJØuOh.˜zo¡$,¤»d 8å~•e CÁÓM0‰ºçÚV—X˜̉ØË+p¦¸ÂÔ^S ÆA4ªª‚–d΢¿"j1ÑC²²Ạ̈''UC,åÄT%ƒ's»£ˆF ÍI)}5…#Ê ´ "ZEÇEö¨™đEi]&©/Yẹ̈|A[?WË-ưdơd± BĂób¤æ;ÔÙ̀æË’3¡Ô΢í: N2̀‚½³„ßóßË-̉c´?]§yf »!Ë*ăE <À0Aưƒi„*¨- å€@Ñ °`µ¥à¿=_S”H7M2…³;ˆá́ú)œª¡üzP¿!'æiB́Ût[o¨₫Hî*¨êăB#U5"³Q: f½¢Đ~QhÔ&‰Æ=[Ú‰Đècù´`_%B£êúsDHà”“ÈG®myĐE“c¤ÅcØå[(̃¯‰Z¹Ë J¢*®°V‚:ศÀ̉Bêt¤’hóKEÑf >.ͳH¯,êl¥Ü ¦<<븦l„¡ºÆuxgØö;uúR=.`ºï˳¶KCz‹{©ó»ĂY6@Óø‚%`e©•_¬,'*̉ª®7‡8d“̉̉ưÊz£´±đưª PÁ nqu)ÅƯwĐ–Ïw› 0m,¯°c@8‘^ỆN¥(KW#à.LYpÄèc‡ ¤Æv–€<Ÿ—ajmïKªØ |̣ă…o>ç«ùäÈRû|³W¸=̣ |D¯óuzÂëo½=Äx®Gb̃X¯́Z(ÖÓàƠ·ơÎS;>ø!{ƯNđKñ|ñvsßøÍà•7~´ù2Î{̣kRøçäç$ṛ{–*?÷ƒ×•=ï—[»ï˜Ô…çc$*]m}ÛậvV€Ië9o ¨*«>­•ä™=NW|¼}ºă¡™íóª+̣KÊŒL蟳â…eZ/KÍăẲ Ơ?G6Èêî> ŒăK¢dz3¹0¡!y Ϊ N0¯YËcÓ~W¹µ‡̀”ÛtÈ5TèŸU(<ºöe:äjé»t(زJơ6:d µ“™[Áé0s4»́¤ƒ_*墈á:”ˆ ?‹oW¼2‡赿ƯQPrz?R’æÇ®¡ˆßÇYvV¾gïGw’"́×ĐpÖ±¢k¨á|rvMóÀ(ʨ2Ø”·]ƠØT4¥*¨çÇd¨B–»‚3TđU´¤0†ÀpVôà`5^̣ú,ˆÔœHnº>(×’×Ç!úQ–fDW* oLª):’Y®‘¼~ªD zé,₫“t]øê´`Jv †…ä~"D%\c»MÑ“¤‡8ô…nƠ|¤É:MÆíŸUĂÀ®Ä$#Øæ×©²pñ#¡éK0ÑƯ-ƒ€CsÇưÙ-…x^’ăăïƒBÙñ[ë ®µk>Pˆ¹^ó·ˆ̃¢`ª^PÀ–ˆPĐN_̉°ÓW‡Î–ăçë8·k=ûús½‹̃⼯¿ä8æüß7~Ă|æ¼øó×ûįĐfĹ?/·O~OÁï¾\¬=ï—¯gdÈ䯥øƠt}1#›xJÙVÁ -¦:Æ•¿t̃±ms¿£&eltæáíÓoˆR†U™<_ÍÈJû‘ÿåâüđƯ4ôŸKJCb{ Ơđª†̀¦¬–̉8嬺95ä¡b±rÉR1*Í…†,Êà—~iÈDc4,…Fápl̉¯SJ”Î{t¹ªc̉,¦†¼ô¹œD/=ùœ k£·®™%زΗpă¨PµAÑRn×EX&«Jß±‘$Hk¿*ÜUiÉt È‹`•Z¬¡ Rn‰±5¼Đ¸²¦†–5ß'ûÁ-mÁ.¸ôü:y:wy©|F¼[÷Óa͵k|×FÍ v.z] †â0Ÿï‚/#L\8ÿ¶¦ -²oCCêy OQN‡§›<ÀG÷O? Ï›~Ú7̃Ïimø̀ă…ï<ç«ùLä1ßé±Ó ÇŒ*V§×<ç+z¢~nôF09më1ưàm¬×¬Qˆ­ơœg!µ—JƠ‹?Àö>­—óËôxCđÓ́Áâ7xuăGx}ă×顪àgƒ¥ˆßç̣€ï”rŸûå낵QTHgơW(Nûàf>;S›³|™~x¦ṿúỈS¿˜t₫`¼°U²]í¤ò–]lw0BXTÓ–~N) îuiư¡}Ap/* —÷<­#jÀç% ¯­‡b¢‡°“=HºÅ¨:t± ’–3<ˆ*,²±×YÜ8ºÜ.ù¥Pt'ùáSá3êQ÷ÿ§ä;F5€sCÎïVßÜ`ÈMju‘rHèô¤L*Hl—ÈÂÛ3ÈØuưÈ)ưzzÚă_®ê‚7¤²º>Üs¼]"…úx”–´³|ü~UWbùÏ6ô~‰Tb‰é6t_¤;8cY*—¼VÖ¥“mèK8wlCQơRY—b2¬ÇÔ‘I3jQÙ”ÊrPO9f=§øí …e¬/=ëIƠ¢£2jPö¥‡“Ä*¢c=%Ÿ—iæ£R'•ѦR†«̃2«LÇࢌ ơ›#Zh Œ)Öûñœơ˜n£® _¹‰€™Ë®‰=\g.ªŸóv‰nđUmÂqh|V¶§-`Œ¨u€í˜TOªûéÖ¡̃Ô¯ó( êk•»†\”6JÄúVy;»Ñ÷£¬µnÏkÓ½?Ÿtí…tw̃đm%®k>Ík3b¾5ê£5êc^ƠSqAOä̉ûFïơѾƠñ‹ơ<·ơ¬g™Ö»N¯ßu~¨n4¿~¾₫â§æqïà·–½~ÜùÑæ¯÷9¿ªŒøâç6¢Jü̃¦âö±Zœ—}Ú/?£̃×¼êuü ¼Ëă‹̃%*)Täê>˜*̣>äa,«^&ƒ ĐÀgÙuS̀d|é…§;XNÆvë÷g)¨Đé—_Å»́ ¾́]B̀¨Z½„¼W.Wµ¬=¯´ơT¢ØG—­Çô8™—ríT©®\±ª&Ö{¾Î£6‰£ïä•Ú·†{™o3Ẹ̈­|4º€]ôy¶¡÷ƒ™GÓ†?‡¾€Îđ&{±:Úû2lC_ÂÇÜ®¡;[@„áÁa„á'a5ç&âZr•xö"6gÁÉEdv-˜åMA^ÉÛ4~†f@‡çX§‹hIQI"¯û^L.dă*‚¢&ë}`óÜ.Æ“ º®̣>ø:‹Ïs•G3°Ȉ\¾_Ê¥.XmI9øÀ_å„‹%¼Y8Ó§Öư…~o«q]G.Zà‡I¢ÈÍaøuÊO?á!?ư¼¿¹ÊơçƠâEŸÂe>H-÷ ß²âºæS<•ó=ËלÅUJĐ+̣nAO¤̃å4)´%đóơ*QéëY<àë|Y¨lđCi^)îüRº›\ÎO8ù³ó[™nr9?–å-œ_ḳæ3ÎÏƠË3O•^½R:öC4ûyÚ/?#«àƒÖnvT"b đ@A$øÜ­GbpŒ6“ •hbû/°qv'4Ui¤JOwh¡´±ËÏ9,é*ü/¡ÿë¯øñuɉzUEv¥/êÖ2fKF­æÛ?Àn¦9É RƠV?ûeäKEóÚUd£xªH¿*²¥»]yGÁÛ½«»¼}²”±W›l¦µû’Ä{ûÓĐÛê© Øđ×Đ—r”JôäœÀŒ/©H1ô}èK8ă\Ü5ô‰-2O½¸û ŒœTñ®5̀1¹œS9(‚Vä¤À%TJâIˆ åx”ø†¯Êi1=@¤çÉ®̃eÉ=¤Fj—ˆBÎ9'¨åàXɈ+C£;V5‹{]*4\™•¨C•H6Ad×áƠ6ë6đ>…jƯ%ÀÊ.›2B¬ê¬%ª­C¹Ơ3±¦_"˜9€Bí׋TVàùEïËôªà̀ÔÎ^ ÷'ïiâσè8¶÷åá=+ŸÜ=‡éøă×5Ÿ́‡¯b¾ÙM Gù8½Œ ”êpzBÓ´̃i}µ)đóơ2¸öm=Óơ×z§Cô~fºø%'Ï:?å9jñÎ@ͳWk¿*Yuñ³9§2œßó9Tßéªø¿öË-O ²>‰+y±ýb¹Ëä¡_²ÚÎưt”«À\;Œ¾ 1’Ñ0$—Q&‚Vá(ßĂ×̀óBûϛ߲ڦ?$™ư9Ê gú+I¤øqùnĂI2»́¯Âz¢̀N&À£x–03EÂ_®jTªzf ;ÅËVˆ×™%”}uÜ+;d ¦§¾]ơD‰WḉÂäüĂ%GbgCÀª#ôÀ*8·8ŒøHî?Ê(ƒsSq”FÑ®'¿ÙQÀ0VApúÁăe Ă%nzæ&§ß¶2dÙëp2#@Ʋ&₫‚©eJró'óg€ɇPgo}{¨È Wm£h¿yÍÆÁ”·#k¢³́̉æ`́ $`ÈçH̉éIi.ˆ$ÑӲůבḅä t×"nö3ª₫¨4d8û‹’Ÿhu4’wvs$£·¯O!yrÎ'˜<̀êÓÕßщ“b‚"âÄó"ḷ?Nö”ž(ûµd)ËyđMî›úr'?½Ü<Ü’¢WsṢv¶ÁmÉ7BœÖ[“Ê<¹yÈƠ8¹Ư»K<ï†{ ø%͵U¥e‡ôœ²wê¹ƯeÓĂX'‡³RưƒS‡đHÇYf™–,Ÿ*ÛæÓoø‚oÉû‡Ư–‹¹œ!°Oe–ÔS_ÈÁ¡¾¼IëưiîHR±<ôñ̀êbÓ,Ís(»‹cÀWåè̉f¤à @2Uî)ư:db—¿K„c>ΧËCÉ⯒`?¬ñ'$˜j<ä$H§ è$HMÜâSLŒX»Z¨âæºE÷üºèđ̃á7(Đy´º³TEK¿́ê,zh Ó½Úë,w¸F̃’½̀¸F¾ØëlU_¨¾×ë”Q×È—6É|4„ó“'ÛrÑcA°Ô@o’††J&ázØ{ê*&"4ç&³[}z@j²´±îÜL₫>’ŸÎT«Äá¦7N^:óI“UÏĂk:Đç̉ôühÊn )•±èˆƒ¢cÁ¬ß̣Ejé>¼̃Ưx^’ƒ­DFº¬Ï®ØÑ Ù „ám\pVÎö„a¥]çÙ±‘=°ÑYâØ·v;_aCäÜuæêúˆ«̀ ôÀª³b¾ÇÙĐζ= m8æ6¯››·½öGá\nº^ÔÚ휑l9®r Íû¸ø#mäÓ¯q‚YÄ1wO%’"]AIVå9'Ùk`¥E©ơ%ƒ§X®­ Ơr×-Ôdëd•ç–ÅH6£¼.6k̃yÖ™°5?ä+ƒ{ÎÀề÷S°wó₫áÒÿ³“Xƒ¥ k_Ía‰µV^Oa­Ç,á0ƒƠñ«lغ¼ƒË–Ÿ—X́»o ÙXùt1[£Zo?¯¬ç¾ˆU‹tL»-Ç*}ÆÁ²Ø×Dvcưkä} ¨6J×Èư´Ú„x8-8_Ùg=¯‘/!lc®‘ˆ"¾üd‹øJ™ˆè"ụ̂èÇJ¹uI<̉ 0ÏÇL~N°îdºƒ‹mo|V¥u›ó”Å…c‡WÍö¥‰¶`PZàÖå›Sªbúá2'æw-J ¹Vù™‹́2ÑLÚyø>G[^’:óđ³í…s©æ—=xø[©„F6=̀…SäÛ]35F…¦íFÿ“Y³x]vă²̀́W+£₫#°R!­ª 4‹uøá̃Ûu 7Oø£’\Z(¶¡ÑÏ)ɧ4…̃¼ø\Œî_>ưî¡Nô";.̉ớ”a{tÅÙ{`¥Eé̃×Η¬‡,Ö‚ö¨Ñr÷(ª3ôêë+VéÑ^CŒ„£°¡]:Ơ§^$&́§f"‹J]] 0œ½ư¬₫óß3A$Kÿ^±5ëß^E¡¨Âóöx‘ ÉÎÓ­ü6€í1èäáש=Ôvùù:5n&K¤›q₫Ä ´Rô^]:3? 1ƠÅ4g%?¹—ù¥Óx4²ú­è›‡‰₫Œqêª^«&Gˆ~2˜’¹ùWóầZÅBbTÉXÑ×X•-Ë2#2@gfwÖđn¦µx–J'†éÖé6³̉7zØÓ=.U—xJ~yEQăàåª`!¨Èkbơn|¬‡úÂôuª4q_-/ÎrOhyï>€&eṾ râöÇ5V`×ÍsEä€S"üEsx¼\h̀c‰ä<'È)œuÓàôÜ‚OÖ@ƒÄ9‹¢E:µ("́¬^̉,²ë3Zç¢̀(¸×’ͪt/èŒ̣s-w|̉Ä™a¶x2Ye¶X}©–î§¥ÅfhÑ.&œĂ £Å¢Óû78ÏéeÛb﹜væ¿w*œÅ—Ѷ×5 Æư?ta<ôE'C»O₫üÁ€·Éˆ¹â«º~f‰­E¯¿eµ1më•ø—‚àγ›é·Oä¥/¯ àë{Í\ÈŤBd2µjDföÏF•tlÓÎ~†H>¢5¯î̀~ơMéX£çÍ6üú8 ;¿}j`€%úBÿM}]&ÿtêséH²¦>G4±ÑÔơa™˜údc"€¿éÅÔưª“ŦrƯ˜z?‹q¾} u¶'z=kPéÆơuơƽú~%#­¬ÓîÍƠxXB?\+ĐÍ™0Ô•ë*O÷«L&dhÿqïôñ K\)ÀW~R[W¶Lùx“¬~ s²A+Ë)Hî­ÂT„•Ơi•‘·y5ÏdÇæàda\s IƯh̃*E-~Å!tÍùyđ˜}ó^‚ƒiÊæÑúÁJ‚æ©ÎAé…;ñ”ÁÓшl0,kƒ₫ˆz¢I‰‚`|mRV¡>ôÔ²¢çƒÅáêÆpl¶ôü?1$ĸ`]²—`FMzưKsƠXœP:®;»,8̀ËßàzÀß^}1«1#b]=B¡UOÜh¶ƠU5fD*Ơ$Ê‹‚Ơ?× êÖ$^åsUÔA V¬º³£ƠD ­|®tơH¦¸ úNqH-Râêm)œ³ÎfcÛ̃†>•` +;ùÍ´Ạ̈‰ƒ™1ô7_[Ơ-ú›wUå²ñ-¾_¥ÓÛ­\ô7÷ªĐ"ñd3ªH!èÛôLÁ‘4̃&á{1%óëi)ªT!{”œ,Z~èo® ŒÚ³±¿ùY…;ơQUùJjVô™]í̃_g|4Ndàç¼fâïWW#g“P|̉pÿªñÜÀ5á“T]g˜½‘>~˜Ø7}9\1>yHF'øjH‘<ÑưµGF@σƯµ¶÷ỢŒO=ç#|mÓêºÏǶ­ö„Úô…=JWíDĐ«ø÷yƒ¥}EïâÍc=JàçëUª̣ơ,qÈ×»øéâà‡â§yƒ_Î&¡ÎOez› ç·²¢J\üX8x$~­̃/:ø¹Ç×ù=¬¤s? Å÷˽(ÖâÓG$LoƒÍ ’ÏD÷Åœ¦¸ ½/2* ”m(ZÔ¾‚3·d‹:Ñûb®Ê¼»†¾„³ímèS€fRæ7Ë'Ăz8‰“ù9Ï+xLZté¬'à×8›Ă°-gtQ›F|°T¹¶Æ²ă«ßæø3L“ÖuöâçØfp$UV°1ÓÈ–*$œ°uù×Ö¾WX•‚•A˜º¢̣´²;`{³&¬FÔ‹Mzá½ns%~̃‡ư¿ùëè} ÿ`F/ÚÂ-â® —.{ªÄum£øOđX‰­Âz*dÏFƯaï;w̃Ư}üyH ¥í}#=ăÓƯa |ûŒëO÷fZ1_…/zœÁn§W÷JÔ §̣¾½{¹̣ Xøùzé3×z"Ä_¶ơF¬=oüĐk$Ä/qæ*ø©{è-ø­{wŸàÇî.bđk̃ËÎÏ#GvFü>jđ»ï‡æƯyö˽˜¼üɶèÖ•WDˆŸ=‰°|—ZfĂøˆï…?¸Æ3kü0eDî'¼>üÂĂOw0íNÓÁ«­ïßdR ¿ưTÑù¿Ré©Đdï³́ü"†Zưà*¿Œzlâ‘Îx¥ZIó—«̉“*äªô,Üơ:×Ö™o~ˆr0‰TÛ·»º×¨ñFƠ÷?kk(d¬o|Ö‘́ÉRdƯâpÑVkjÉlEo)Éơª*̀’°¶’Zne½)r~ÛïÓG§Éú¼>:'[$‡ó¡®ó}cÊ‚\̃ÂQß(âưz÷XƠ÷ gƯ¯RƠáh¶GƠÖö£Ä€³`%EFÑó]ô†E×»GàĂ‹"ơÁ¢èE<ü&R–(Z‰–s|‘{ûưÑb3—¼¥¤¿¯ù§\Xädžo;ç«ù´è‡âóm₫Ññ 5½Ú9_ѳE–ÄéƯ"‡äë­œc½×)Çz¶á¥Å¾̃-úơ8?4oĂü̉âóS›ÎÎo6?ơÛq~D…±ñ«Ñ‡ÅÉÏ:ù=yËÎØÙùåi¿Ük¹É¢ApÈÙ_q]Z̀NQÍ6_è¿‹cTF‡zgxëp̀đrQ}w¬*=«=¼ƯÁ6¨ûñđ;¢³ŸyÍß~ \àÙë A›ƒQ̣Ú÷Pÿ%•7̃g¸+1½ăGÅ»>Ÿ‚³ѱ¾2M;b yÇu ÎÄÇƯ z;ÚYYóÛOA8̉í 'CÛ¾Ơô]2¤¾‘¡­8 àdhkă0̉r–„b¢%·'üz©å»ŸRʼń¡̣0_Ö_è2Ï]ÙœúC1¥O-qL¦‡—öЇ2Õ߫€Ç§Dª>ơOG ó6üH ÷{aGGz¼äơ2åá~HG_衇H|  àCăÙ¸Fä:«KA•ùs‡Œ …|(úĐqñH>²‡đÈÏÏE¦`ñO¦ÇëYT}7Áú0sfX̣ôĐCoEÁÓ:…ôQËá̀ÓHôØ«Ă®—æG12{WÓă;\Ÿ¸¿DÂØŸçÅçû’ëûÀ'Åxá›Ïùj>Ù#1ß³…³Ó-œ×F¯óuzÆ!¥ w]ûzœ-}½rä¡}=óô _ï<ƒ?ÄyÆz‰_ÎCeÎOøđÚØø-̃HÓùÓn;¿&×GÁÏqÔ%ø½ø¡ºØ[z̃/¯ẹ̀ƯgFF0æ©?}Ú4_úĂ?:ÊÓ±U„¾Ñ({TÏ(̀.howđúêœcyIpv_¥àü”#gÄç í₫gR¼gûƠºrřŌ¸!UV½:²ÅK²CvuÈͪ4£7ôŒ¶m±ÿ¸ÎU’\÷;Wƒ ùL₫öSºi™_È—;̣–ûøªºªR|¯9¨À́ÜI…<¢Éẁ“Á…“ ~=h”kØ?ÿöÿa~;» endstream endobj 702 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 705 0 obj << /Length 1326 /Filter /FlateDecode >> stream xÚµXKoÛF¾ûWđH».\ÀÜÀEj±‚̉h½B€]R2ê₫úÎ̀©¥´V’9ĐÚ]Îă›Ùow†Á&Á» qô{=¿øå7i)¢\ä2˜¯ƒ\F™A’æQ¬’`¾ >…óQ¦Ăâq$Ă Ơh¬̉$L'£q,M8ÿrX«÷;˜<ĂX1áºIư4ú<ÿ<‰Ôu%UÅ€“́bO Ïơui»jÛ^o‰XZ ¡8Øđ}],I KƠkû»*#•ÍJrºO,µơI-z¬$ OART̀IiiBÆ2‘QªbèÈ ½h,:ṃpơ7›BÏ/#c¢b›Û‘J ˆe„©¶ëbÁ ëÆ®†í,v`‚„ÍLœ¥Fk"Â9ơÜtIm1/K̀u¬{¢,íÿƯ!† ³¦EÑÚá’ƒä%<""'ˆääŒư´̉(OÑÂÑHb ôWL¢&Ê7]¾Øđ_Â^ZP2́¯ë7‚G[QÉTỌS_̀—Û)ˆ¾ÿøçàV[·hy (Qíéè¬\áƠ¶ÀÅW\,ÛÎÓQS’©&V¥´ÄnwBÑî¬K+ô¸ÆÈ>É üUæ³kXfQ®x'%îI¹Z2¤ê÷¬˜B)­NîÉh,E¢Â©„IâNL7QÖăØ±Àñ̀l&,` !ʤơ-¢Tw£^xA¿Ă7?Yí¹V•˜ Ç²¢‹áơG×Ö5êDBôpÓn„œÉ|ÀgD ÑÎ&‰_¯v₫cN´“́49ÅŒnRæ)“ ncWÿ]M\¦Á%¶3Ú~lx̀XOƒ•¨É…eríüºÁ¹đn»:€–±¾²†M×¾]z  xO÷̣o0\Âüị̈Ÿ~”Œd2HâŒÜ3À©ê NẻLÿ–wĂ1Ä!^1ÑÉ@78=ñWÊ#†[·¡É=™¿̉g4ăóŸÑˆµÏ‡ù^Ó.\iœAC1€8 ᱟDo+áÙW>Oúÿx}JĐ"¤|Œ¥¥ÈØ¢Äç×øLà`lMt‡—Lh>c*kË·—7>’t6 Ù<r£Î(Ù»ÔâKÇ>Ϻq’ æđѹĂ9J Ó×¹%‡+±»E‰7BsƯ9Ë~g§|"2ˆ,cjíñ5S´£–ÈœwÄäLûÑê!‰¼!Îb¿ÛZí»œfæZC½œ§¾ưI=ĂK­Ơgjë_¸yn­±z=ñ₫ï(wC´:¢{Œ$TtĐ”Ư <6ßÚ³µ ₫ !ÅrË-&ô´uC_¹²ÆĐÚặËÑxz©re›s´_YèkI›zKß Ø襱ÖÚ©·œÆá> stream xÚ½ËÛF̣>_Áe%À¢ûÅ&¬°$ÀÁfƯl8G’="Qí¿ßzu³©áØÁöÀQ?ª«ë]Ơ5*Ûe*ûùNÉï›ơƯËŸt‘i•תÖÙú!«u^)ùÊgëmön±_êE¿4åâ3₫iÿ\jÑañÅrål½.0>À÷HßÊézq…á_û®¸‘/W¥̉‹ĂpÄĐÄ#°ñµ„‚°ơ ²ë—+ ÿna¿# wª^¼WÚẠ́…Wa·ê®[¹¢Û-?¬ÿœ«*eƯZCŒoÆ›¬̀k A|^ƠEfóZ¤ch*Â\&[PM—n™¾ß~ñïđưøIlÎ-"xWæ®(³•¶yáj>́¯r̃ZËôăĐ,PNû6°R¦$x4NG3G¨.rå#˜P9‡Îè\3Ø£–DG»çp[“=!¸Ø5÷8r>ZƠ™Öy]€Øà(@å…ñ ’dX1 Ôjn—+­[¼E:Ôơ¶í6-È£,D4””ÿ\z ´îÜw‹+Úä”O³{øAÓæ¿pw/d—đN°mï¾;üŒ´ĂÇ*Ằ­èü-1H¢¨ˆ÷–ơvèĐÈÊÏä…g_XÅưY¼')ó"F̉ă]K&Ư7£MËé#q.̣•çÀ§ñK%!Esºf±í²‰œ[¨€Ṇß µ³M‹S"¹0 đD ¸Ñ›Bñ¤†}¬ F«.Œ3äÎø+6ÎkzØ"Ad´Üt$¼¯tǧíb½?°X.-ẺOËó{dô+ƒ ­PF4‰4ˆHÏttN¡ó§†8"I×Iu3˜@îÇÏùYq‘É\I!÷Q°ç4ô•Ï”måëj±Æ›!¶–‹ 8= ¢• BOË;br4n6rGNl%%â×¥GbzÁ¿!åá×>̃PGÇa‘đâ-­Ø ṣø®y+°†Àà·&³«$‹Ø ¸öl6ˆơeÈ,tQs»*É?2pù½*FîV\®Z/+·hîih¼ĂÜ¡²ó.ăÁo?ßeïèpEÛ!ëù€M‹™‚¼.¶'÷ÜíùÊ`û8n¿£:= * ‡ë¸Èá#œÄưUƒ²•&]âï· J èWÓ\x V{FA‰`kHư¹åƠ c€ ¹ +‚Ù;º67](¾A'ŸH‰x¤k)´Ë Z)Å£û¤`àuÙ'¦`¹¬÷Bˆ„ÓÏIm’nó‰­8¾’µÀ`Ï‹›»É4̃bTnåk̃?5#E"E#u[K,Ẵ1)óBùGöq̃Éé.Ä 8âÀI+Ë ü£D¯€]Ej´Ëwªp%åw™”ß.-¿§&$ÊP*?4¡Ä'+¹a¸Xcw-×ç´GikˆfÇrÊ+»‚ÿ•:;d¿“wiâµƠ@6«'5L¾ä×­-Íè{v1mªaÊS°E!ú(ÎßMrÚđ„ !I0¾ˆ¯` ¯ºB¸×đb€ÓÑP¯A¾×PMÍDÎiÙ„§tíCó<Uqµäœól¹aÅ/hV±CÏG!(âxm¼ "NñÄ×ñÍ1Ned_Í}Côö̃\F›î¹·̉Upú&ÙÑ\ÇÚ‡6ƒ5=Ê™¨ÂÜ': ư;₫¾ :A ¿Ó>Yo=i2oÛª» ˆ¡ÛÉÑ«àïhẸ́^`–oAöñR›Ú%Ä…Ë́ÓÆÎÅkDñ±@z?á=ÜÚa4¶v,i>ņMd BD e§b̃ô±tA"…ÂÄ$Lc¬ÜǬ8MIƠơ‘b÷q¦/aĐR?„ÊB‚fc&FÏƯ=gÆ÷"½,`©Mû(#62×c¨³Rse9k3tiríkˆÊµ1Ó̃‘ö”8¨Jlj’‘¶,=Hî4&ç\×E0ßl6·…ϨYd¥ơÙÇ9k‚À¸¹²ÂÀ«Đür^M®jM0Aö̃ºb¸2/Ë °jS†×†¸%n¹âS$$eÊ—.Ǿ«ùœ®M€Đ³+ˆ™º~*æ‰ü‰¹´ÀŸfÑU¹2 ¬n˧È>‚Á̀ăƯë»?äm¨3S{PpYWƒ=øls¼{÷Ae[Øå–>è1sÀIâx̀~¿û4k§1u•;ˆµeîÍœRRơ)€ª6¯”›²â§¬xƒ=β°Ó&ç„a`¤ ú4A¡Q~S0P†/‹ÿ+uèŒnB^¢ˆÉ7 Û } 8̣rơs^çmnà‘¯kH¶“F…‰m¨@\9Æ"‡]–đXúPߌ<ê’ˆA*~˜Çv÷t¦¾+”̀nZ~ĂôÍA Uÿ$;Ô°v’¬Ơ߯æ̉.Åßc̣>³*Q{Pÿs¹* ׿‡ÿ€áj\m8`»§WÓó>l¥üŸ¯€ïpjÖ‹t¼‚ïọ₫kdL9Iˆ¯sç‹'ä4’m/̣j<ËKk#óNÚà“üºG#Ñ A¡¹.G#¯Ù˜<ßLô¹SP€µ]¼E–}:)ÂÄ@(I4È—ö¯¯i{¥•7 …lÔXµ(j@>M{8t¢ ÜSTư«AB“‚QÔn(ØÀ›¬ ÷"˜6)¶”<›’g‹”<ă"î ªô^[>GK:E¨G~Qpe°VÏ=?PNBñk+đ":ögiè—Ô‘± |»Ă…-ơGá†~©ˆ[üŸ^¾YúvÿxMZóÜ:àè$ñ»ç#•Mçñ¿kˆŸç´{94ÎĐ́§&;‚} ¯i]¾$^ ÓpfŒ·Áư1öº¸/},ÚM"UúZ0fl£›IƯ†Ó55)†ÈGMlD 8°Rhă0b̃¦®Ăø¿Â›ËæzM ó›ÛfÓÿ6æ̉O¸ä‰Œg₫³F »Öˆ³M˜ßmZC\?Û´¬U奃\ëÁ+””\VO€ ú/Ê]¿ endstream endobj 721 0 obj << /Length 2222 /Filter /FlateDecode >> stream xÚ­YKÛ8¾çWø2€ Ä’ơ6 tÉb 0è3‡́d[nkÆ–:’Ưî̃_¿¬%R–ăîÅd‰YUŪ²˜ÜOÄä_oÄà₫añæçORO¤2‘ÉÉb3Éd 9‰cÄ:,Ö“oÓÅ, §ùr&§;s³¹̉ñ4}7›G"̃T0ÖÓâÉ|Ë÷0« Wơ†îKs‹§µùM¦ơ¡53æjr˜û€ß5Í\Ơ•y÷o!#s[æ§Zơ,KÏTË‹Æü<Î̀¢¤j™%K#E¿gïyÂ8×{À—- û¦̃Ó*M¯Jdö?È5Ÿư¹øƠ7—a 5a$jå@ &2›.¶,t̀Íx?3ê/P¬¡ÏˆQ,^‘™Ù2ÈÀ¢%"'à‘ó -p1>£tô¨ ÷%.ˆîèØ¸ ×N´¤ ±6”Ag’¶Àsà‰2ÂçZ×Gب†!ÂaÄ4ÏẾ” —E¼›ü¦A X \VùŸê „€ă™U“ÅDY’Ä`̉F¢Ø ؘÿ9›k¢ähkZ˜÷†i3—4×;¾Ă÷?ÍơÖ\ïr—½}áÊé{#ˆ´¶¸A÷4eÛ6̃¼§h4´Œ_/•oˆ‡D$̃̉!_‘ư·̃ơ–†U€đ>EåbcÁ_OI&GJ¡É”’"V¨nY5Z­ĂÁ¿~»Ư;p“³542× ̃ZoÙÿ€Kơ@Í+Ø̃¼ß̣?ÅVïjxMÊ3?úĂđ©hêÇMùd‘29ú“;>Ôh̀øi…J4x[nĂ@g49z¼¡̣J¤‰'ó—;ô–¹ÔYHŃ-=¨éQ1 ¼G:ósB7·Î¸PZ¥´fÏA$IlHmŸRóAÓ$  ç€̃(¦dă0?fÄ v:"̉,¡̉×9R¡¥ +“ØJ§»'8Ñ"GN1b₫7Q'§¤é½œQ䈦´3H´•SÉ©=ƯCOwá g‡?̉ư¶ß#mf'î‰Nă°Û­Ø|È.éniö{÷P1ÍR$\âÍĐ“ÓĂS„®î̉Ơ=û¡î‘»ï±v÷]t̉Eª³€̃ˆ/Ë©]p>ĂMëñ́a!̃Lr‰ÑZ›ÇĂơĐ(.Gö̃‚½¨1slüïL5T®© 'Q̀¢”×xèq"ƒ'Ù̃¦;\U´̃q­¯a¸EpŸ+ă]†~Ü/©]0D7µ¥>‚í"0$æ(àYº‹}±Ç:¸¡•½pµ-9F|?b&o2̀>áñ©+́Đ–Dô,$Å<¾pÚº`Ưt°ü«W)̃Ç?ÇÍSAIÊqrO¢Ï°êoÙ¢ñŒ€đêiDœ ®¤2Y@êæËU<`ƒÇ«,ÑyRJUÏ·…œîă ›ÖrÅ“‚Àäđ‡±'ă,á'çį6è2ƒâŸËLØƠ]¿ŸÖ_J”s‚‹t¨Ù­¯5K̀²±¸ư‰ú!ă•&#ơ†_—0ă¾ë5Á"ê\Xÿ̃5óJÚ#Ykyp|>ë'´+Û₫“ ‚ltơLÉ’Q/Mô ³¥‘É·c)ÙĐ©Ñb´¼§Øv^Ø—ê-%wV'ÏG\ÅZ.´­EÚÂx,̀đ¼zØ1w6`waÊ…$£Đ_Œơ¢- ̀0NuJ’Œ ‚M©rÚé Œ×Ë‚aµ´̉÷îKÁ¶MÅ:âÂ;sÄÑÑ¥\w®Ø`»gUbsí`¾íxYcmî¬= Q₫ Ws뺰îï·å.ää; |r[(lGbÓpeWŸøéËê;bû^ÖWñkáÔKW¤[F}ÅoÂP±&ú-NoDyù†#Gä•üá°-ă4TÔơŒ_5‡¶Â%œơjxfz¡<´e> stream xÚíZKoÛH¾ëWô1>l³Ơ]ƯA0@bof́îI€]Ă¢îÈbV¢™¿_Ñ’­ÇØ¡,'Y$sj««ëñ±ª!GeTȬR”52zå=©À¤<Ë£ÈySÁŒAE‹Ÿ‰ÉaÄă.Œ"ÍVè²Ê^FRÖ† FAYgdÆâ‚’Ky *ĨlÀLˆ¬l̀àfA“<ăÂ)›“EđtÖÉ )ç"÷«;2r• Abå"vmR.yH I]XÔYå ¶É(ï¼ÅfCbHï½Í˜‘- 1aÏ=g…8â"CYùàEvÆE¸ëJˆ´ {‹´Ù¥Q ¬ÈX™I¸ÈX“˜‰Đ¦MrË+º^ ÄưR·H6IHÔcPÄĐ{„ˆ)"¶Oœ…S”¼ƒs¯o†}Œh—½ J°`pAf jD*‘Æ…Ă…M 4la)øA$˜,yYvI Œ©w‰yeÜ“0ơ"jÂÏgL÷,‚̀ˆb™GQ–a±¿ĂLo[Q_ư?ÅFœ†3.DTx[hT¬ÉNØc=&¡ƒr¯(”C¢£X,¸ˆ" )NâG>¨dø@GÉ<.98s„ú’x¸øÄ‘•I%báâÀ®‘T?¹“á‰Á‡ÅßTÂâđÓ Ç̀–d-Œ²mVÙyÙˆÅ4ÈđÆL1=ï~ÿP«âe;íFÅÛÅy×ÿ•I;*₫Q^É=?*^”óZhTñS=ù­îªüË‹v2Ví¸™^ökÔ›Ñ?ŒN‹WÇÇ̣È22{¶¶Öê‰k®7Ïÿl¦Ï§óæööIsqQÏêiUÏƠ©¢P\5ÓÅ\åXüwÑvơ¤¾è”%*Æm7©ç󦸜•¿ƠEY-ºº¨Yµ¸º˜Ô‹®™Œë⪬fí´8ŸƠ Á#eUƠÓ®7Xb̃̀ =m»q}Q̀°vQƠăf2)o&ß/¦—ålq5)]Ñ^¶Óú×¢*…ßüCYƠg²kÙá‰: 0(v¬_₫ơoXDK,²'úÓÅdr'­e£-ÜÇ‘Ó>n÷Êö Ö°À(́Ÿ{ÙƒO¯xÊâ—ŸÏÿSW×”¯®¼ÄÙͽ׳¶z[wPeñúä%Œ\́ÔÍ×¶y]^Ö£â‹A7sXÏ÷6-̃Ôóv1ClöS‡ÊíGu*€ä́ΰL “u=8/ƯAØÏê²kÚéIÙƠêÉÉSg°Ưl’M†)];¾ó̃»VÕ¨gå‡÷M5W?/º‹î¨ßÔxQƠ3¹ëuĐæh¹V+SG›»»×ËƯzùƒË«dmG8k|×Ç~oWN= p6há':₫±6@́Ăo! ö!ăóNààU³OàÏ§Đ¡P̣‘Ẻ%+¹ƯrôË‘–cXq9®»̃o¼^¡OFdÜÚJ¿îOÿ­™₫ —kgăzÖ‹lΟWÅ1₫€Á™l;µäµ¼ëBĐ™å¬3KnÀ#È÷Ú}«Ûw­‚ŸTMWkñ«É¤~ÚT“ż;•?<‰t”Td)3Ir«¯&²;-™ ¥ læ!Ă+(' ›~Øi–¤p%P: ÏújÙœµGèPHûâ°Ơ!Üc0Á§ó²zÿ4ØÇ“Å£éV&íw_GJN[T=+i‚Mpiú´4ŸËP=<©´•ªÉ"Ô 2m#} ylÿg%O0QK]´(X`*«ûºh.³Z‡Ç“Âf÷ RRi°vÆhFuAêá¥èÊóI­ùñ„@-ªp×g  ào9íüdd¿”*"r1¬TKùj5¥4ơÂ÷I×¥w½OĂó‚ Z«—…p,ƒh=0 äkÁóChCZƒh9À—‡‘’ƠUâZ‡× OéÎ́è6’TIZ7©jL—øæŸ45V”¨/‘v­nIÀûƒ§àv§`%N1Đ·VqDóy*½ùÆu¾o¿:o'ÛơJ´ß[½†ú´ÍŒÀ‰^;Ÿ÷®W6#r·z‘h>(#íat BÙzôĂƠ´N lƠäû₫Fªü)bdÆ÷£A2 å6,­Kwhø!Zd³«Å´—ok@éŒnÔj÷Â[º̃̉ÿ¼1xÛ›ïxăô=ÁÛ)¨CxCœ•:@çRP¤ (€Ẹ́à´̣¼zä-ôƒÊH8£›åá @Hv8?VÍœüíCúLÖ½ù†l₫†¡À@.é$A Hr®ˆ·¶  ̉H W…J!åxÑdHZJ‘ÉZwŸ iœ’Në´̉*å°‰NËéåáàÄ‚Ă:Öy7çËî¡à´> stream xÚƠÉrÛÈơî¯`å(11½aË!UÅ©¤¦J¥(“ƒLBkH€&Hœ¯ÏÛh€€$WN>¨ĐËë·/ưR‹ÍB-~z£Fßï̃üđA' ­âBzqw¿(tœ+½H³"v&]Ü­£»«ÜFåç+í௺ZÚ,¿\-ë¢ë¦†ÅÍñŒ[8\ À ÆÍỞdQơIéw¶ c̣裖áî›#²¨ùŒèæ ü+^½/Ñ €tô–̣"ú,`²…tŒ«DÖB¿ÙĂä@2í¶x éO‚`₫s÷wP̉RÛ8IXù °6º{@|gd¬=y²w€!n°LüícÄê¶j‘ÅE¦HƯ@:&đWP©±Ñ=€—¨// ‹e ç¤tY? ‰ZöqüI%J ¶%¹•,#+Koƒy#süîe|½×₫Ẳ¤E ѱNY"QÙ/·®¯–Z¥†'&œX˜$…ñ1Œ†‘éF°k4èc#G> í?ù‰ 'V&ˆ́Ác¸½ÖƯÈЦ‘%Ë.^Ư×ÄÂu­OPc±JĂI!ˆuŒsG‡B8mƒIfp¢^:ƒ¸LÅ™=‹à|Âygk̃LÑtd Z.̉("dgU“Ty6qÎÉ=X’…\ÀYQ„̉hJÚÆ†̉DÑitxHÏ© 1!sÅHƠ£3$Ÿ˜Pí̉67ïơ´Đi”÷4Â%¡m²YÇăf̉ü%×\^éÎr—æ!^élz`7«…y²×9['Pâ^çl ¶ó„Î6cSΖ„*P³ÎÖ1§Ç^M;Ûà€yôœ³‰m6’9LbJ‚ÄLxÓlRûÉœÅp’™ÉôŒ\££+ Ă8éóPBÜ]Æ—€ïÊ đ?“K DÑ?ĐçˆéÔM‹M÷4“–¶×<ñôÀºKă\ôI[‡‘)y¤8K£̃ùBÚ{…¯)*Lu&™` ü"wK̉ @ĐóÂêä½­åƠĂ蹂‘³k\»|¡§—r÷UPÑΘî[•àH¹Cs9— „ÆmŒ{­₫Ù«mÍs‘‡ụ̂74dxà¡wÁqơH0b ļ'!ëm÷fBpŸùaªs€Ê/Kô-|_̣Ï&`êL»èG6EÇÙ¬›Œư¤6…&¿4¹åHç‡#¦‹âæ&7^j\ư¤4æÎzÍé«ÈĂôi<êü>ơPM%9C­N<Ä̃À§ˆ=C¯hH<1̃IíIVùœ÷éYî¼æM§Ÿ£— â)îH+DßPXóÊÁ½=uª…îÅÄÆê¡†)²7¢aŒ<(usâAỤ̀—˜¨xÜ›œ¢÷R¾ÔB/XĂppûÓ›ÅÇ¥Q9Ô‚£¸¾µư³"Œß{G",4ûA%G/ms$ †Y1:æ_×bïQFÅÖ¸à ¶ Sq¼”rULdM+ZàĐ=ÅÇNTđq±"«®C‡Ékâ0 ¼́œ‚àBœá»¬âܽúnÙüdà1•“ô–70*¾ §] ±’ÔG6¥Xm9™û¥ –J)ÔxqÛz'á Fœ­€lH™k«²cvh ˺0¬ çTô₫I鳌әW/t‹AÇigå²̃È’¤b$Ûíny«ơaăơEÄÅ7/9¡•º§Û̀ĂèèÏÜ88g|†̣;l—e eup¨ÑIÏjÔ²FM‘Íj”½ËSåË9ß{<Ñ+âó̃‚ăx«j=^% ,ÿ~̣̃*¥è"íS. ‚sMîỤW9)Ù·m@¹¬Çlä£{^{ ƯÔë̃y.Ơ*¬û”„7»$roáÏ1B¼áçȪ‡è@?@€uܦâs Oª ºàúQî}øIQÿo?—_̃ëÊ¿:́øtY—œ%BÛàW•…  ¡̀}…̣?Ľ÷Iö=‰b—¦1”ÁôBö9~”†ßÎYÚ"‹u+‘.̉ä[2¹“ôaÓ襠J9̣sg{—AÀ}É!u{¯e­†ß¶E€Ơ|‹Œöè¯M°Ù‡Î'’‚„}µ£ñAŒ@»g8lW¾·©úͪ•ûˆ¿”S×%byÍr±‡kEócÑaUÑƯCa½¢Ê^J«rÅXÛ4gYô×f=¼6k&\4Z ȶ„ƒUv)~P—È!ơUƯïBJ¹…÷¿ÄQ« r²2¡›“ă,ơk̀HPK¹4ƒlXn§n2}èÚÁ²¯(Aữý~Đ%èß §cy!à®KïëU˯ ¾D ‚-ư–`K₫Ï{K)÷ªoSÔ¯w*’ëUy”›É6´ơ^ÙôøÁ¿¦Wsl§=ÛÿjG\†÷Ÿ_éVx́oÀÿô½(çî e¢kz<è8êJØ̣–»HÎ:Ïâ<³>¥>JÓ̉NvÙW‘ϸŭtm¨’]ÏmY‹£̃¼.¥ovîÜ`ƒ$VÆ o'Ù3Æø7ö´%2ö5øơÿWYßñûƒtÁïé¿tO_¾S?KÓ ›ï:uË(ăa¨ĐzÇåË®·œI\\™7’Ķn¾År+‰>y!z§y1Ü{5lư&Gúׯ°Ù³߯/S;¶s͜ܛ¬½¿{ó?¶¼±´ endstream endobj 747 0 obj << /Length 3045 /Filter /FlateDecode >> stream xÚ­YKÛȾûW>QÀfóÍEÀ^Ø› `ÀXÏúbïCQmIœ̉̀8¿>ớnJ”³‡$6ûYϯª‹Ñb»ˆ¿¾ˆäùæîÅ«w&[˜(¬¢Ê,î6‹Ê„edy™/îÖ‹ÏAù%Ềr•$qđvi‚çü đ«luđ;Âo‹3’àaĐ¾Fơ7ư_—«¸z\̉—qà&#/>Ó^؇ eïp6ÏiqhÛ̉Lêx\fyg˜àÜ.ÿ¼û׫wƠ„¸HÂ<Ê[âæo¬¹½Ù5¶́’B—àP¸\¥Eü1’6¶¼°•…'¢tàC/(æp" ÿF̉k¢-V& ³´b‰œ˜)ظ­@ >̃¶å¾ùÙ [ébĂ¡&Ÿ€¤ó!Ôy".N¼1ûĐ8íÙŸÅGœJ£q0²aA'ñ)ü>âùºq/OÇ6¾’üpÇ6î¡3' áñzäˆă0”eÁWZi‚F´‡ĂơqÍóÑ[̉ÍxKb=Zo9µî’<‰|ct< ù°)ÑàÚg­?̣íTŸø6ÜdWăíŸP ÎRF·RÈù™ơ²æ‘âw~ÛX§ïƠ¬é-£è;̣qä_á̀óÑvèo’•n|u¢E;N²àMöA¾NF¡˜ˆ=ƒz¿ê8â5#€¡Áï$F•/ëK{ÁMT<°ÉXôpéÁÙÿ‘1il:mÀˆEFí½ùV¶G’eÛÖ‘Ë:'¥)V1º&¨đ½Kđ7€‚ö$WjäyO¹{~Sû$†N6!ï=*ăÉjd­Û$ˆ«<ƒ;5jèC̉zëm)ˆï[¯H Ê-ê:ZU_ÇaÇQƺÇ=`ë4­‚ا†º$½ ¤Ydq̀>ie´1â #®è,"Ó²3 a”ĐSp˜ÜyB…EĹ xSôÎDˆ)#ÉÀ§Ha£Øq­çDâªâ¡°‚ƉÛä”ÄηYJÑzË5V(ï·€Çñª-]°ÎI'́™römêF¨ï‡ÎÇmo“,đ¡q#Öx@ÂÁÛGQÙÓyojc$Ó2:o·Ö"F̃¾“Œ¾Àèẻßđ-§˜wt¬tîV?%R{Oc@ª*ÚÙ¯YáØ$­ä‰̉שg4ÉdäØóÓ™f[ơuÂ{L™9‹­ô0=G~›äÈ5y`ø1́‡hf)èw¯çQ¢µƯM‰Đ*ZrkZÁc₫ªàÀäƒBÑM)ỵ– í ÎKN×’\LébpEÀRpø-ѱo "‰B#^{g³đ\shg½­ư›‹©œ^̀ ̀nV‰LơºSß«qŒJ¦$N°$á.tâ0- Åç₫̃‚ów¹¸‰k M$̃Ăˆ ƯxăüHjI • ÿ^órqèzí-êzÉ­hŒueĂÆ{;Y¹ÖÀB'T¼zưˆ«jrW|×›M¹KI¹KE t 6+¬ơ骟°åHX»VZ¾?ápÍ‹hÎiçưÄ`ơOºW}:\]bKñ¬2nN=^ªùæ(#FÎ¥»™P -§48aĐô‰̀ø¬×ƒ2e¶‡să)\̉ø¡Öô¡#ÄåĂ76?đ› ×áSsÊ‘àyo¡˜‰%© 8³½ÎdÚ5OëF~6Đ úQçơUđJ7Ÿf¹tÄ@ÆÊz]l¡…ăiÀ’xôå$aŒ¦± ­æÄĐàÊ<:NÔê°yR¥Ñ‹à ¶¯äÆ©¿pCt”ј­g ^h¹½r¢-éø…&b®E(MSMèeGm~'Só¨¦ÔQÛḿçäÁ~|PGëÏ£{"¥́ôS™£Ø|x'G¸×Xî !»’UÊŸ—ÛëA/ÇÉvơ&„a¤‹"#¦Í‹R#RëS8/³c£^Ͻ¦ç\u$øjë³Rá²RÎÉôNƒ³Áed[Îàpê³̉ƯEFw{á¢<“ ‰K0ÜaÁ™Îfórè¥ËS’ị̂D»Ư —¡yåÓ· ˜¢bÂ]¤ùµ…ä•+|å.Q†¥$yªÂ4¢ë\·?OÊ#² a Lá[; LµU˜²e+>zWÛ\́$¼Q*%'G—µ1¤Y³6l“\¦üg$3MÓä·VNđ¿æ>{¦Ü]¼¼²̀¦W•<2`/‹P×a{;·ëƒÖ(H2~̃©®µ¶F§đŒC6èP²Tf¶"2Cלơå¡ü\yHîåÅ]€j›ÆL’ôg©Î¨=Ơª\ ÖH™\¡_½3Q1© i˜æ‰–†G{%AWtæ£ù³=F£ß\µ¹(ÂÂèÖº¤]b,ÄÄÔ±­CX3ç·¾¶RÉÎâĐɵ3î<//Ăâ6߯öĐi3|fY•ºĂFë€Íäêá‘¿rU$a™½If¹Đ‹¦fBÜ[ŒKʧe•y~ó¥qR¥ƒœ ;OVG§3ï ɘa"_>în‹'Ă4+”¹G1…qnOȲËÄüPRÛ%û­­…jQWÓ₫‚€̣ư\̣ư‚n@\|¡—ö‚ÄùV€eª­²˜3̉ïB¾ú¤éÿΣBH@©öứS2“r‚CV—¦aÅS£Ă;²ªHêo)ÁÈK ^$ßN¹²o=H'‡G ÚKÚKb“2/…¥i*—Ơ&µG,Ÿ‹‘öÎ'0vb¬”* Ä́Mq5› ÍH70@‰Q=Zô!é°²t’1p̣v‹¡§à\X úùªơ"Û2‹?èaă÷__,>ÓN¿·.§•HËg(êĐ,ưJm,:îÙ±yg₫J(ûQ]æÖ‰à“UQ], \…¢ˆ«à72|-U¯[G„=óÊÓ’( 3ÿ5W3aÛ©6Á.½d¼¤ƯëÜn4-·‰²x$pça’¤̀Å©÷j1®BE º„¿¦¶WFO-ßÇƯ7 ï;„|Ô˜ö~EÙîă+GÅymăø§% ]«.Ơ´Ă¥ q̉ÿVa~S…3Uƒ?¼đ¹“Iu_™&d ‹~p«²5=¡qâGqg…FBiB£Ê¹Ôm«Éû YpOY5'L˜Iœ¶ÛvtI•¿Ơ`YÊƯ×±{mo§ª×(v&…Ûy§uk‡/ )ôÁ UküÀ¥̉4 ₫é¾ÅL¼}¤º®©ưO+Dº¦ăpÏ Ç߬–ºSÆƯƯ(F:‹ïI´(ªˆ4Ê<Œ‘Ê?àN'W qÿæ’OjSYbüßJ›…;‘1ơ#Ä(7°^R-ơxÁbÎ9]”N\‰sk~¼Á#·ÜÎxFw|¤rˆṂ+Hà©éÛÏ<ÿ‘̉^´ˆg̃çïü@èØtŸ1Çù9†ÿ́ÏŸxÁ‰@JY”Ù/—ẀwíÓ*ŒÛüDÁf&bfÙé»è ™ƒÈ́<¦>}¤J=­jzwö3Q+D= æĐM¤}”R©'SÊ!IƯAÀT•†¤E”ü•¤Aù^yÚÉ[*zƯ¨ƒ3̣ÿK¤ÆÿR èLgIÍn’ )wW“Ô“v%cßÓ ́zÿ^>M }w"ïoG&@é$t¾Ab$iôIdgÿæ7ûå Ö²$/I ưWdIỦñÔIÖId¨ª}à'hxjĂ­%…€¤aU2I:ỴöîÅ ê% endstream endobj 752 0 obj << /Length 691 /Filter /FlateDecode >> stream xÚ…UÛjÛ@}×W,}’!V´»Z]B[hhSR(´Dô%̓*Ë­Ô–]ûï3·Uä`(fØÙÙÙ™3gFëX-T¬¾ñÖÛ2¸¾Ó6V:¸Đªœ«BGy¬UjL¤ £Ê™z ?N¦ÎØđ0Ñá„¶ïA¾=ÑáïØÅ°ü™ƒ¬@A4È ˆq O W ½øàÚ‚4 @̃ü’ưäÄ™Ä} ̣<\zñ̃ƒÔ²ß‹MÜ:FjÅË­Ä\đÖñ‚– ÈA@l$\7bP¯<•ß‚/e V`Si›Di¢L–F±MT½₫QVX›“ĂH¥#M ×÷ëB}đóGS 9Åäö¹ Ư3ÎDÎH÷î|y{aÁd6,n&ÓDÛ°Ó’lèÎmØÙhx ¦G4ăÍ3G¡k9\ơ¾}¦ÛpLœ‰nËè°|½¸™˜œºµ˜ hjR„C׺¹\¯(e·å9DSƯÄ ˆm×µ̉ù^’£;t È*#—LÎÇ8è´K9̀ªÛK|0SíĆŴdMœúÙmÖ¼Gx ¨E÷#—O|¯Ú̀X‘lo”I8g`8䤉g°ă7A3ă:'RMÂä6|o4áB:¶̃S.®ŒTxÂ(W—Èơ+÷Q©h<_2W›@ =+äÆ&Ă‹tÈ₫̉!:º³°ăldr!Êr%u@v>0­h́ȆCu¤á­$@Ïëܳ-ˆ̀À\.– Ô\…9¹©»BlXµƒŒÖy2@µá3ÍVƠzÂZö rªö$ïçjÇæCƠ.Ù¸Ć‹E³ëÚRNƒå3băQÿú§́PûO‘ÆuûJ¼¤“\9ç²f¹0ÓLj^»·ÿ%ÊÄy”%đBE$/ug®đ@¾†^ endstream endobj 744 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-020.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 754 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 755 0 R/F3 756 0 R>> /ExtGState << >>/ColorSpace << /sRGB 757 0 R >>>> /Length 1004 /Filter /FlateDecode >> stream xœµWIo[9 ¾¿_Á£}¨*Qû5Åd€S µÑ‚ÚÔ-ä¥Ó,3è¿/©åI #JfqL‘ŸHq·‚3Pp?§wđl̉€×ÂĐ…GÀ…E¸ƯÁG¸™^ß½ÿó̃l&)¤”Đñ¼¥SoáßéüHø:)8£¿«I±ü5ù ¬DaEçH´ÖBF¸†Í¤Đ$•Ú ”,a­@CtNe GÖh@£„$R '‰¶Âå;PácèŸc ă„rt‡Æe Gz}̉kKDÅê˜Æ$´´I‹F>™A“A¬ƒ>KX)"I -ƠA‰àMd‰“mqÖÅƯgƯ]/O‘\¿ư EaäL» éTVøÛVj Û«émºú8V)-˜ê…5£øê\‘œf‘30“œeû́L9ÇE“ªEù&ΗÈï_½đ3Ùø(}}!;¾Ơưư…́ø1ô÷²ñµÑ{¯ËdÇ¼¾ñÿ£3;ÜóJ¬aq¸ÂVXĂáújX;\^ 놫«aưpq5l¨Ø<¬‚áV=—Ñ¥]êĂœØt^©ÆU&iª́Bv|z´ñŸÉÆÇ<*¿¯¥ă‡W~!;~6wá7ë{Çt̃xƠ9‰f wà]mñtxÈ­GÑ&„s~0ƒĂÍ?]àñ(œ§„­Æ̀§ăpê'²†áÚ•-“¢¹®_æÉÈ́äÜp+©=HËDâ>Y…7©û¿¸G)Z-$ĨÆÈØóƠÛ‡ùËî~|ƒÓ5X «Ï÷?nïÖŸ`{öD¨d±²k+]úa ®ÚƯ®á•¦/¿`s9ÿ}½ƒÍ=) «‡‹ûÚO/ï÷Uéb¾yd~¢#…Æ‚^»h²U“z¤©¨ §}†“Ëï`ạ́f T3«v7ôÈ Y øÿ·Ö25‘´ƒæ:4Ñ{-…¹LE¤á”é<‘Óyêa e’“¤L9ÆÓbw]‡̉X !¥ÍËS¦¬´>Ûđ̀á„^—Ü×ơ/7íQpYÿ‚ă"—ơ~dP2 ‚ëúGo¶~\Ö?Ê ÷È́+{*áyɪ×å ÿ̃pºå–Èmµå esÔ]®D'¢Zrå‰ñ¤|}î¶‘c†Á9fé³#àOîñĂf×x̉aXsgD.ø=đ¿À¾œ[übúù¹ÄO)a°ÅéhZü4_¿%Fxù̀̀øap[‹ĂK̉S‡Ơ-)íÜ>øI ÿƯôaOcÔ endstream endobj 759 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 767 0 obj << /Length 2406 /Filter /FlateDecode >> stream xÚ•XKoÛH¾çWèHa"n?Éæ1&/0À"ömv´DËÊH”W”́x~ư֫ɦÜ`6ûYơƠ»Zj±]¨ÅoŸ”|oî?ưă›®E]6µ̉‹ûÇE£Ë£*T‹ûÍââ®]êâđ¼‡ÿƯrå­.îv0₫K&í&?.ü?w\SÅÍíW´ë'Xßu/|¹ÀŸnôHép9đéăăr¥Ue¬Â „mdíÏŸŸh¦‹ «n}>ÂÿÓ°üÏư?Aª•ecA†­öŒ|†ón=Áxxc¦ư‘ áPºÊ-V }ˆö =h¾đ‚ăÁ.ߘâĐ>ó2j'̉DîO;¼ôßåÊT̃Ï'Ü~àmÚ8‘¦v›(IÍûßaüûƯ¯đÿ‹́̃ÜÂä«å ŒGů‡g˜ï»Ÿ„}•€÷ ^`+8Uº†o©§JvhbÏ ŒkÏcæ ZG€(4•ê~‘ëFW¤›,¤`,o50®‚H+7¨HéhÚDû&¡́]¤,¨&t˜đZđÖxª2âL|Đ3t wiÉàØ&Ü4ÑåoQ1JèV„‰Đñ°I¡‹îSb¾ĐëkƯëz‚n¢Ç£nTS}Ư]C¯SK«°¤àÁ‹tC%tqT)t›ÑºK¡‡º›A÷tY ªœùXëdjŸB¯Sèơ´«qj¡ > „u Ưe´î³ó!t¤¼° ‰ÿu%J̉»ÄO›2%„Çgz÷lÖƒcÿLa‹Æ°E&g÷µWb×3́Ơ„½J±+kø$w® k“Ø’»Û{jfå¦Ư•³vœ¸:Å2zOèơÇ̃̃LØ]%èTH) &ÈUÍjwE]I%ø4‹Ya‹µÄ![ö1›zI“ÑtÈ¢­̉ ¢¼h&´›ˆ–bÓ&9¦Ô„Å´î´fB뵕YQ¦©²™2áût̃}M‹ ¸£‚ñ Ó₫÷ßï„r'¥ăăâÀ‘E4Wa©uƠÉ“b•@uxg̣éz4¢¡øMN…4:U3ms² *ŸF''ѳV¥xz ‰í n6ù¼F´0²+U¥´\M•©W7~ÙDC´È“µIi™&¥ekiV¾Î=URJ3©Ê•yW¦ë¤uª*C¢FÑ<Ó¶~çÜ6¡V—®̣x"\S›U`£Rj–R4J-´*ƠP× Ô­‡bØDs`øá?$÷µ Å¿–Ø>bËÔî÷Ư~¹²Á_zĂ¿7ꜨĂc₫©K+M-ÜZçù"vy’í["‰—¥ ØîWAç ăvijà@—¨+ä=lïºñ₫¯öÜ(ă.n¶kA„}'-±H̀ùÈ_iïH9^¾(Ù%ÊśßA'=öÔŸÆÎÙBul¨q^RĂî|lÀ‰ ̀3́x<´qGûecQA7à 6Èu‹k$˜‚6æ|At̉o¹\ƠM]Ü>̣b"-N£̃Ÿ/Ä‘èˆÚˆ'6)Ù±9 ºŸđ÷6Â(WF# uäÑÆKjƠ6øÁW)|É-?Jk!°gJ¦̀Đm|NB\}<%Gá" ̉²«ªH™xä ÉíéÖâ^O¾„^×îåÄïl¢H2 ơp‰±Iu IäJ¨J£R­¯f>‚›©$°Í²w¼×#æL4àF~ÜÇç‘+~tổ•Á ÁËHFiö¬̣¯Mñmj ‡è†ßn£$(9ªÖVJ̀<ª ̉MÆ#ZN>”y?©<Đø²ƯvQ·²L¼A]0©1áÚ¦™½3§“”H¶O¨9ú©Ù#ùîq8ó¤ÅL€§ăs´#ÙDÿ[ỳÂßD?Û ' æ“yÔâ´]đàûoŸĐMåvü•$*UZ9UÜ ïƯ™C³gŸFñctns*”ŒdCMïă˜ØºX%ê4‰ûí†t•t'5âYÆ'ùv£o¦T5´u$ơº[ƤP̉lƒá\Y~¹{ͺϱ³¦¬›&E~¢zÏ« 3V¾¬`edå)ëC:nóltiƒ![£Q₫¤Ùvh?å{jÅxas®”2ZÄØbó WÖ±¾b9mÊàB̃œµ-fö?Œ. ;lèCLcß%Å‚Ă·²Å]¤ïÛ¤ª1: I)£6 )<âñ×Ç w‰Ơ•£`àí™ơã2IN‘Ùú".ƠøÔ‡ öMÆ×øÛ—/~p´Ăù:ÿ¦ @ŒKÉ™¥øpK/c̀wdª~--́PK§OcS#)rÿ³I#ưJ„"‰âûX‚å(ƒ¿¨–) äqSư4P?‡§Qû,LôïV¤¹Ä>­ßf*̀€Ém†±b˜ư'ä@=Øq®fm±GÙÛ O’ơØîÔqª~/½¹–£ŒŒ*­±Œ sû™ô4»ˆd "Îæñw=ÉA‡—ÉGá+‹\ø". ˃ü®* M¶TiAVË©'óí´ưu[LË»‰₫á—éÚ£x'¹”3F¥ÆRAÙ%ơÉslSèÏøD¡ßv`w¬ắüEaô¸nǿ(’™|…êĐóNWIW}Àÿ±HbDĐ…¡~™đơl:8|xoK…ª™—BÏ“–¹rçƒ0óí²4ÜIÂàÛMư»+DZcwÅè#üă9/Îơê2 đs¸¿Q€“g…}ÿ¬p ·¸K{N.\óŸ‰M+1̣<ü‚ư©äʼn4•¢œËÀ«1¹o;đ*KL’ ƒ4+7P&üNíÂå-ơi ë#7ljo{Jû;â– á™)Î6À ×̀«3¹ÁÛZÔx¤ _çJơ*̃¾zcœbBß_ 5&0ªf;Î?d•ß?Ạ̊ZŒr¸BƯzßñäƯä-ÛƠh¨ç¤¼ÿ»»ÎÇFFàF—®{}#yxCi¨5ö<åïØ­ĂôưztvܦôjåÁô,”v«Ø­èRw¥í÷­„®Y‡đ‡6ˆfă)…Âî¾åÑ+V[Ø}â„CjŦ”6̉MÅ…ă6‹;~3ï\Ÿ“0Ù́âˉXÓÙƒÔL"£ÜZ|fŒ1f×F¿èíø\O=ǗaT€ÎÙCå YÈÏxỚĐ¯÷Ÿ₫âZza endstream endobj 772 0 obj << /Length 650 /Filter /FlateDecode >> stream xÚ…TYoÓ@~÷¯XñÂFª·{ø¬T¤VP¤¼•>¸‰“Tªíb; ₫{æÚ"F;ó›+Ví”UïûŸ÷z•œß¸`Uiể:µÚªÚ™ ¸Â[SeA­6êV¿Y¤¹z»pº2@OẬ> µ̣~³¹…çƯ€nĐÊî€Î€: ƒv=Đ%Đ+ å?Óª+q‰êg IBMl2 b~®Å`ÇŸ9?1ûÉ€ü 4‚gAŹÅƯê#ô®¨OzgUZ›¬È¹kK̃äÁ«›¾Ÿ§ˆ.Às@ ;L8ÍÛÍûf\ËLÀ&Ư·#[ö¦¡¬g‚(/©³…Ó½’‚rĂºyOµßcâî¾¥êHƒ®±èg<ôÔˆˆëRBX~̣n•8(Ú*§\ÈL‘)_ä¦*ƒZwÉ÷Ä”uœ°¤n"8ÿĐ9«̃ÉWøE]*1Ó“ ¼°¹rÖÔ¶>]XŸy Ç­¿‰ă=Œ\®¯¬vöb‘f®„¥̣¥nh¥x8¼LhC­j;4±x=`ïŸÈ§™4{48oçû@ë”a;8ßi<ø(¡Ă´_øvmb̀> ºĂ,µhy)́₫w‘cËi`<¸.˜<«¹)Ồt)i¹n&~bê–/ ÙQ1ÊL ­ƯƯ†M8Vc ¡Y¥¯åPöị́đŒ¦‰ù¸ä“Ôˆ²ŒÓ¼h$(ÏXûø«%›ä"£ÊI!¸³¤Áñmư¥G—p]PAÁMoQæu7Èæ VÛv4rc'e.䷃ƟPIè°^Ç<^oPJ…̉ạ?ÿ’•·•)3X{g½É+ÊÖpy¿l^ endstream endobj 761 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-022.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 775 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 776 0 R/F3 777 0 R>> /ExtGState << >>/ColorSpace << /sRGB 778 0 R >>>> /Length 2738 /Filter /FlateDecode >> stream xœíZMo]·Ưß_Á¥´È ¿É»´Ưº@€I, ‹ ‹WYd¼';–Ư"ÿ¾ç̀đ^̣¾ÈTƯ4‹Ḥ /9sf8CÙ™oŒ3oͯÓ÷æW“–ÙFS£ ÑÏÅ¿,ṣæĂùÑÜM_ßÿđ·çæÅ«ÉÎÖZ£?ü|ơâ[Œ–d₫5ưô³±æơä̀7øïíä3ŸŸ“3!Ź8s25ήóœª9WS-s*ÆùîÉ,IDçg—d̃Y?/‹ñëUœ…êbÜ’g[áđ¿̃¸f·áåÓ®Ú9zEø:ûl\®s–5Bœ=©Î)*‚çÆÅ2ÛD6è ~…9dA„ê¹œĂ¹ s2"/*;AdØ1ठ5O¦Ä9B̀‘æu`›W¸XÂs“>ä¹Zª̀"6æÂ8¯Û¼Â9ÓE˜ÖÊIh(;WÊuvq jë:Z®Î–Îr̃‚¼€n‡Đ‘P µµ›Ø ~‡‰é2ÊØ®Ư#dd@ˆ† Bâ]\æÄbt—-8"t¤#TC=ZçÄç)̀¥°ÔBG:B5‘p-F9“‹.T`‡‘!‚€Ÿ«Ă!ºû$´ôN(XĂ¡#¡‚ yƒJïqYÛ>ßÄ>pyÅ>ßÄa^·»Í÷Ư–̀ñƠ`¥è ̣1-ó U¿¨ËzsQe÷tåE2®øäÉÊ%~Q9Ç›£yvw8^¢X4¿Ưß̃›wòÁ<¿ưÅ$s{wi"ÿ¼¹ûøîĂ%Lá·ËŸÍƠ7̀IÊh^l^¿ự̉$~û ~ưâƯéư»;,n¾ưtúÇ͇W₫Œ œ&P)1eå›Û_n°_Ïưâs8~º‘ó¼—½cäöîúöưáh®×ß›ĂƯk󦄛ÂÀáHCl›ùŸ´”ˆå€û̃'m)q ¶1nÙZÊ =IpÚRf•X»tÙR² bOZKÉ‚ ‘Ñrïcê ²Đ¢ơ ›?´kÁ–̉V-́rk)C•¢•ÓâX$Öæ)Û_°¤Ư:JÔ`¨¤́§ˆ’$§µ_,—dà]cL%ñ–NNuœĐË:ÛŘѫ,Ỵ&ËÛ Æ®ÙKm2U'¥Ê&`jc—hÓzU–¾Ạ́üdñ3-Qû±UÑTg ­´Ólñ 'MúNJ4¬W4 ®̣/+h A³.…+´¿r¡ I)“7yÄË ¡ÈÍÖT&~Œe£•½Cƒn”G¼¬€»eSAåä èxXà±YcG°hø̉À>v†ù[ẳÀ6Ïè̉ `ÑFwœ¯M/߆Ă‘¬üåc­Zq‹¶XX½Ê·á/p§jSÅ ¹³‰#˜ÚYthñ±; '[ü‰/1àN°h£†E°7öwèæ,©S´™Ål ¹»8€E#˜€”LІ“˜Iª”ĂX,˱#X´c =ùÈ”¨ 4°NM_È™MÁ¢­e'́— ôn–¾,Y*ƒ‰%ø̉Å,ÚÅ’úLm¸lÜѪÅ(N¼‰#X´¹Œ́äñb&[˜¯‹À²eG°h£"øp@íáLØÄ‚gñUqS;ØEªó…­´ÙH Laơ₫Ô»oe‰;mÉÙLüß’7MW†TŒ†XSsK¬ÉµlÑ̉d²²-ï9íS¶LÆË”¯knâc›0 efOÉ]-P|˼-sí1.²±G­ƒocîqèb”w½5²(ûÜc…/¹eé́§lkç3ok¹Cy[”̉9GỴ|c_ Å•ÄMƒ§Y:È5̉|G³%Nsî>´¬îàă›ßÜ›x¼Á‹9ug°†ÈƯ¸sôÜ® I‡ë’å {»$̉ÎKÔHlnàEá»– ]×êˆné>gcê.à³Ć€({nX„›ư!:ÛÍÏ^Êuëă6Q¾Ûl_ơg5}Í;ËW©§6Ă×–3_ơđđÜèÎĂƒÏÀCxÄ}xÈƯ:„‡Đk<ÔØ=<Äé_:8‡²; TÏÂ#îĂC|=†‡; ·8¤M†‡â‡đpûđHa²¡1<$Ü;pÁùø¥ø2²Ç‡T6=>ÜXså–è¶ø«¢ßLJ$Í’{|Ø!Gư>>êY|ø]|È{|Ø}|Äá₫d|Ô}|ä}|”]|Œ¦¯i—˜`ß½áÿŒƒ?ăàÿ:†¤eüɤǼŸ{Đ ƠK{ªr©°ÖøJ₫àjụ̀ü3ïlXĐ²ôL|UđYM,¯ OªüÖơ”å}½ÆzóùKqƠô‹₫ébƠTY5ÿøåf]íWQù?? ¹Œë©üˆó°¯-ÛäGŸ'É?5È‘UWq ïå/§ë_2́6̉ª¡ỹcc”¤Å;a yÎ̉L•È–Añ$èó«m³ ơè?bđ‰ÁË¿Åđú|l̀w/ŒyvưñÓáh₫røxxÂ&ÚblØÚC©®öêötiø̣ùéxøxóZ—}ü躮OíöBVưáæ₫pz\×{̣6‘í¶Í——è~ÍųưÑŸ¼G¦¨üÀ¢ÿ øê››°z_ǜë²g¥³¿µ´ơá-ßOÿŒ!5? endstream endobj 780 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 784 0 obj << /Length 2593 /Filter /FlateDecode >> stream xÚ¥ËnăÈñ>_¡C`qÙlR$ÈÁ™Øƒ `́ll6vs %ÊRVR±óơ©g³IQrIư¨ª®WWU—¢ÉË$|ùÉïŸ>ưp›cÂ"MăÉĂjR˜0̀dÏ'ËɯA25A8ŸÎŒ‰“àvZØ „•Å¡†ïf:³YTo0>À§Ú·đ½Á­ưôïùáÖ¤…ET¤MfqZ¡|`ơ®BÄ |v|µÓYœ˜àû4΂Çe#ƒ ‘s>ªÁ¯V^ú 4Äå5ná4>ÛRÏ«÷x̃Zf¯ŒU¯6;ơ2a³u7¤÷–¨XmY¡óZ~\ ̉2û߈>Ó>ÍÇ‹mà âÍ pézâʶsåÏ=?Æ í¡ƒlƯ뉆¯‚3B„ºIHr§́ù Ẉ¾‘v¯½€ûäÜÇ~?Ó¡ZÄFRéPCâMîPJÉ…s?˜Q61.Ê­\‹w†Xº°D%O–ûúÀª÷Z¨‹́0Í’₫a§›ºh±»8ÛÖ.€í_ZönÆưù‹h7ƯSôŒ±§¥fÜ9ÿv#ù¸U@¿üÁÇrÏ1¬ÔåeëÜ|çE:zί»’ßv½Ëí+í )K¹̣6Áă¥*U¨–ĂÚñLNù=£Óà‹:đ#øÇ‹ËtÚVKÿ+驇ẼÛjϤȾ:FNæëÖ…˜j@…§î›Fu× F¸?¨]¡đ'´²oÊ(ëº0w₫n•ÿ½g;kœ¬‹4̉|dÉæ4>_éHr*¸æ=Ub—z ¯‡X¸v×N«´“{îu7DjË]Gy7¸4^q¤(Ǥ(÷>ṽoI¥c)—µ-C±Œô?ÊsÚ€\Ⱥ­Ûê"₫c(E Œ’5×6K© o5?Èûö\‚L5$'Ư”ô6äÍ9U®˜$ä¬l¼YFÉ"ï€ø{×EÑ8s}+®Sï—~ºơ ơ=~.•¸¸‹¹¹\tï"3( +a°E=iÄÔæ,¬‰Nc̣#"a¯ÆXsá¯ÚÇO'E.ô" ̀».­'/­;ÂRúV¸XyÄé‘V Ú+O°zX̉ná Oór´´sḯí–µVRAQôâL/‹Xyx¯=ñ̉7ꯂ·–.E_¤Ó“ùg¨ d•́"ÿ¬ûàç ywSx¸#ªyâÎͰ5Ú)á̉®đ’ăàzŒaL(jüèÚ®{Tô } G´¢[%׸̃hày3í ¸ƒÖA¶¸œ0Oz{€°«»1¢ÛTù¥t_-.ôÙ¨"‘V= pcAi´’ ÷øq´#2Ô<鋹ÁÏP½ÅÖÓ6¦BÓư· 1Jk:ư‡AĐ%æ­èáJ”₫È?+yÊ^ñô«¾Ơz@Ưª\qTPr)ê, 33§vETä,Ơ„ơZó,¢ ‡_e÷U„ØÎncá:E¦ûcđ<øÎÛRzóùM¢02ƒọ̈ß DEü‚u>ă§3%åáRô 7Τ™=ÎÏo2Ñ?Èd₫ƠñÉ41ï\Kû t5øgAO6béˆ>$I$K|baH×Rø$ƒ5Aưp +|dmxFLçŒ\‹_„çƒÈ³¹pn2rîĂs2Â_>²ñ|=àYèëÙçï?Qg¢ËcfCGÅa{à€>»#̣‘ÖGœ̀—¹ÿ¿wƯù“¿£<̀¸xIÆ"Í{(7Ÿ₫ ơß¶@ endstream endobj 790 0 obj << /Length 705 /Filter /FlateDecode >> stream xÚ•UMoÛ0 ½ûWèè³*J²e ÛĂÖa» È­íÁḾ¤@bwN̉lÿ~¢D%¶“¢C”øơøH)‚­˜`ßñÆúyÜÜ‚̀pk°yĂ,đ̉I…n ĂæKv—~e¹TéË Rp_¶œ˜qçÄ'÷mƯÇĨ»¯¦³{‘‹“³ßẤa₫ĂaÈ,×E>J³»¿‡xç>EkN«¡Ở [ØùL!è„ÆYÈ xZ¡¼ *º£đHÄẸ́ÍJOÑki8ø{@fK9àögAGưu„Iº#€Ùpó èKn"¼%AÁưrWăÇ 1Vñq ÇdÉ×y.£`À@).¥e2/y!4[l“_ 7V©̉[ D¯~tpó} À¾tÉO÷‹º,ÍQĂüç ·Âç_ªœ +Cå·TæêЇ)-S€÷³LÊiKV lQ×Ư¨m¾g¾amĐVÏÏn·¡ ơ.œ6Ơ‚<º>!¥Ư6lº6æ÷­̃£xF¯5zîꓱ_£‚ü6Dz³̀Ÿ¬:ÂÖv'*†’Ñ@€â¹¶—®q†ĂcLƒe'ÁÇív„Æ{ÎƯ+ê ÷çơL–iÄÈ1µk“0Ă>A!yQJÉCù¿Kún\8cb¸§3źUƠïÉ{tØø#êáŸ`v@ÏíÁ+|5ÇuÈË=•~Ä«v&GI©Bè çOå6đM¯̃¶ú^€Æ˜.†|Ø` E !¢‹FÇø¯Ă>"A8J´ï'ê§ưÄ‚ês¸ª]N’·¤@®‰ ¸? %ª¯ƒ£áC,âêhđ5ñƠ½ïíµA˜̀ä¿=OW îY)¦ Ô¹³Ë°·E…{¸î°‹Ç³.̃7̉ăQ1|å‚Qûb.₫h÷ẂjÉJà†₫~•Ùº‡̣/ºdÂ( endstream endobj 781 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-023.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 792 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 793 0 R/F3 794 0 R>> /ExtGState << >>/ColorSpace << /sRGB 795 0 R >>>> /Length 1906 /Filter /FlateDecode >> stream xœ­YË]µŸ¯đ0`\.?§ Ë•"iÁ1ˆB®D”nti$àïYUeo»;AtïîAŸ“:̃»\ÏU˹WÜ{÷ÿË·øûâệùíwÿư½½½BpûçíÛ›Ëç_1¿úŸ£äÇ‚}˜LT!uû#‹á¯Ớ± ¯DÇľd³‹hƒÉqè“‹́k|¤nơ9VlÁC÷¡ZÍ¥z§̀6Ơ¦ESƯï©Æ=œWM­úĐMu¾«Zô¥6¥ä[ÉwƒM U—OÛt‡¸Éwu÷&êNç±ÏdëƯ€äâGh>ä½B¾₫n•gO‹ÙWv×*‡¹úƯÈI:#Öîcr„DµÈ́̉$Ùb•£Ïđ¿%OEé*Ïgi‘ƒ'Y/¾éû±ù*ëƠ7ƠQ¬¢?7•³éë>™̀¾‘ÊƯä¨Îu?«ŒT•GÈÔ|*SR¹¨?x¿ª=«Êf/zÉ₫l2ù̃Ơ>à ÈÁ—¤öGµ}›’úÛtÁVY¾DF «Æ«i|BñÍØ`Or’ø·ù|Qûkñœ2ô§ưy·—>$—÷ưJ3—=5P6{Kñ¹o₫”,Û, ̣¶xöD[¼Jœñµx’4®xCf̣̃Ùâ;̣9Æ-ŸEëzạ̊ȯƠö+m«Ø“ÛVO°·́ơ:mơ 4{G½"ÏQÏ5ÈÏ[½GO¦ôû†¼úåĂå! ˆÜöê{Ñ₫ðY 9µ>zv×uđ1#‹H/ú[‰±àïµKQ́fÀ„˜‡ơŒ¢₫€z¾¾Ü]¿$T̃ÎɺC­¥3“ơȰ+°|‰ŸmN|¬q©.ÊæÄlĂUJµ-‚ƒËQ2ÊøU2$.knY*·‹Ë,qc`¾†Ë ? ²ˆpùÎú%uÌÚ@ÓåSdẨ&Ux¤­LB"´uÓ­’ÚÆG嘟uAïHí¶O´ôº´̉LíQys5J}<)µY;‚û,ÏÏ6GO¦è ©ë@=ؘ²‚¸Œ\ø̉W5KOfK}jê7™Ï‡Ëc]\–·¥Åó“R;F¢p„ZÆHŒÊ­ÁIê›d¥yÀå(Ư}À ¡  †H˜jY0E¹4£ÜÆX4˜£2ǘÁ -U˜$À$Å£"· f °i0h0LŒL‹lcĂ`\dƒEƒy‘C_c@ô›½6&Ä̉×{kXc†r³1$₫EZc@rjZcLâccĂÆeûÙ$0̣:Ç ØŸúˆç”›„e=<ä¾éC”¼í'…¹qJ4Ÿ7{¥Ixó…ZÂæ/p;ñ.̣Úʤl4Dä°Ç›çù€<Æ¢å rÎ[>!·=ßĐÇ{=`ÿ·z<Æ¢Ớ4Îê ₫Å´Ơc ẴQ¯ˆÍ1)ơ ́57êiMJ ªsŒ®~ỳØ$cBMưUú f+¶¢nP‰¬lEăÆjÎĐđHX¬a«¼ĐY¨ơ¹>`ˆ@̣ø9Ʀ”Ù³`«] rdl¶C.§¼Öm,nëÀ&IAÖsƠ›GFÆjÊÖđJ9G;'(÷3…uMy"êkÊë-sñ–đ2Ë„ÆÂ<̀ëƒPH²úô)ßÎyåỏmñ7œâNßđ ˜e(\ƠªÔè¸g^E8V±ƒ¤ñ|0Îåîơ…é ÷*™wŸ8Ÿ*pBá6rû„ g#DŒ°ÔfR2¬&ó1³n„_L§ftt Æxbzï ÈA‰l 6hÎN €íRçQB²…#ؼøyü¹¥µÚÎÉ÷ö“É”<%Ê©teÙ¹¯Xf¥Ù‘4–fÏâÙlè8¨ôơå̃uÚ+¬Ñµưº*­Uưçï«FD>MÙïƯtXDÂη%"e#́Óí  çIºˆœüXïFóѵrËĂèÚx¯kç=Û3wíóp₫YiQnH¤k›X©¤¿q8¬:µh¿t¥ÜZ )«kâ/q•£”œ Ê“ºvD{¿x¤G₫0m^O>sF6¶óäŒ(9â•aG%ízÔâÊÈÆFÄ•m8z0¤‘1%POĂÑ™‘uû̉™Œüó¥î“2̣,ÜíîqQ3’ûNÎ$#½mOL§Öú4ÚÊÈ$psƯøƯ3L¶ư–»˜lă&ü4ŒoẠ̈ăÁ¦¼2®Á&Ä2̉>Ø„Yæ¾`|£–cp){l Ær9ßàlàs®•{síô₫ˆÇÎQ×h°'ÿ”p€R.*Ñ@'¶, *±ÀÊxæIB¹'á³ÆP%ß^₫Öï} endstream endobj 797 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 801 0 obj << /Length 1334 /Filter /FlateDecode >> stream xÚÅXKo7¾ûẂ!@% bùXî#hn`(j q…VF̉ĂZO–äJVÜüûrÈáîpÉUÓC“!.Éypæ›ųuƳw^|-x™ Îj^‹lºÊjÁ*.²¢*²é"û0º‹ÑÎŒ¿ÇÁórÄÍœ™Áí˜h©RKü„åÜ /k3 d*ÎsfÔéå<½̀ÇN6wœÅt^»«¬ÍÆ“Mï*ÊŒ*¼r¬ƒcÚ)‘æƒ §î‘÷×Ü­êÿj6f,Ld¨¾t7 ¡"YƠ aU=w¥AëߘKsX—¡ «.ÓVäÈ!ç§,R3uT]–Œ×¨ú«Ọ̈bôhƃ‘Ưăܯ=›ñÙéô‘kpÛăï O6x̣÷vâËà.¬¢¢dÂ80ôïă‰äµ½ÇßKLJ<çflđæưàîG…øÍùOR’½q+3DèÖ¢ ¿TƸMœÊ»Ø§p(bÔô€$́)£«Iqf8p.gJæNé?ÆU”emmÓ́Üü#¹5¹ùªFÏtÁÑí̃e¾†½ÓöÀk· nÚ,Qv˜^…’LJi”°Â—–£sü6¥¬ỒLđô Præ-~PÙV¨ª“n{ pb3–åè…¨ç¼ Ÿ ;ơ¹"ˆ­‚xø¬Í{Ç Đg‡uæ&·ï.²V!í¾/7渑ѠtÅŒuBDuª&Y±²Pi[:,H0­̀Í­KpM}̃ØJIk–ṔÁ†“Â6”ÇLp̉¶Í#đg·c1f×–Îg°Øœ0º÷ÛÆ‹›‡”0WyÊ2¯YQˆ/‡•dUQøă,És¢ ă Q‡áreÓ…K˜Á$«ùòƒ¿ạ́à¿O„́ÑÎáÖ@¼ÁÏE/Wb́9­içlÎ6'²„¤°¼E®tN’Ưú™o •OØÇTµ{K4€ñÆñéc#́ĐJŸ5aθOÈïö­đÚ‘~Âc”3  «ˆëdî‚ ªn¾8ËøÀ]$úµ5”…­µĂ›î±æ#ZN ¢|®m™£_̀^Ñ’9ñ Đ Ư"×2è§JÑÀÈ5+Ukß%ƒG³B•₫È,ÉÆpÅy.B0¥sæHđùïR±ÜDfÔhƯº Üí[[#-IΙ©lqËPˆº­uWÀisÅ}Ií£ư}¾¦×”^û7FH®m‘»ï2%»××ôeDCèÔKđ¢ưíSyºO.) §êkÀéQE—*đM‡¦ x̃Ua3w₫CÏês/†đ“0÷[RwhW‘6µÜ“Ë¿à|Ù̉"Á'&»y`QÀ Gíx´jÚ4W1]ÉÀ”3”3|æÀü˜—Py3̀º`Ăo÷É…Em°³¸ó&äg„CAx—îø«yBHâÍ5 =àk­ËÎ{[t́tƠ;±@ço»ídh¶ÅëÔ–í¶+«m‹ú§gôp̉“ákÿ"óàû½°#ƠC‡2ÚQÙ+\ß‘«×9½ ÙI ̣̀*ú×"áƯoă‹7<|–_ßæ^ơÿhr‰aæ+r/xÁr¥B{¿ç₫¦kvm‡d—~H₫#çÜXâ› ™ÓdÙs¦gJº(ß7Ư]ÎX‚¸û9f½$­ö‚0x́đ‚=0™lØn}Ăf<#̉ËÊD+‘€êªóm¿HxÏ-;à|{{ ]7ÓÑ‹›Çpn*³‚"¾Îy@s5½ø,«û endstream endobj 814 0 obj << /Length 633 /Filter /FlateDecode >> stream xÚTßo›0~ç¯đ#‘ µÁ`˜–‡¶K§NÛĂT6M{H É"•̉vÿưÎö˜(«¦ |ØwŸïÇçălĂ8ûèq¬×…wy+¸b‚‡9Ï+Ö,Wa"K³”+öĂ™ K̉‘üIC~e+Rk’=,XK’%É£5+áµµ¿-©O$GX, àRùé‚$$ÉHb́Ÿ‰e׆äÁn½‡5‡hT5ûY|bA*‘²@Äa"s›g1Mªf7Mb‡ˆks0¹́‘¶^ª>m á?¨CÚfglŒË [/œÀùßÓ_;[n[Ù£›i½ïÏ×[ÍOÊ®H§xé–_—³ R!Ï3[åÅ¿qåÔ;’›i€º˜"¸Äp×èf&ă-:ß+’7 $`4dîÂôœ¸6¾C&…>"ÛQ‡ VÀÑΧ÷NÆÏĂ¯mQ5Rcnq.  ªØáóÖ!Hm·É̉¤b#Ü!Âv¤W3Rüó›]–đC9¾OĂéF´hưăé/¬ÀÅY¼“Kû´+Ú¼€µÙr„Å̃Ñ/¦4î#êÆGé̃§E8 \ôÙœä|û î- ¹¨eĂ´=]…'HáL0Ë0•,’4|³Œ•µ÷ä…*ằ8ª9êƯ°qyW‹ˆ}h¼¯ôơè½ḾÀ·s?qǾq˜å9‹"r¥¦üß1-â˜x½›RÆ₫ƠNoD~ơªë\ïÁ^˜5k{º´¿‹WT̃°î°4óU£₫¶f÷ê©;SvP•=] “ËŒÏ7±́”¿ªưvÉ™HR*†ưB„’Ç6O)&^Ô˜?» endstream endobj 805 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-026.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 816 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 817 0 R/F3 818 0 R>> /ExtGState << >>/ColorSpace << /sRGB 819 0 R >>>> /Length 1920 /Filter /FlateDecode >> stream xœXM\Ç ¼Ï¯è£tp»Ùß}” '€‘µp†‚¬Øv%g%#οOÙoºg`$»{Ø8ÓĂWM‹ä÷̉‰ûà₫uz¿onN_₫₫¯ß¸wŸOÁ‡Ü₫ÿ󻧯ÿ’p₫æŸN²Ÿ_Ø?³%e‹K£ù\ÜÍûñÙwüvûé₫í—O÷ÏƯWܳÿ¸7_î÷å÷û··îƠ§Ÿßß>ÿÉƯ¼<}wC ® ²kÉḉR¾EÇđ%ºû÷îîăƒ@Æ 2^Œ²̉kñ)ä³»›`¿}ó'ß|û7|Úû÷éÇŸ\p?ŸÄ½Ä߇“¨ïW'‰ĂæRh>$Åçá¤ù˜ˆüâ₫ÿÀBq±–ØëØôkđ]ꛡ”îûPß/®}#…¥?Éwl¾ ~ƒlUơưñí»_—ûêcsR»OƠÅî‡<zđ©;ú1R={ññ<\IŒ^²ĂÜäQ̃#̉׳]D½¿ú^ï1 ŸË:|îNíˆøă¦)º[Ø'.Ơđă6íH»ù‘ƠÖBˆ=øbßW:=‘ä´‹ÀĐ‘ñ ṿv;üGÖŚ( û=Áÿ,Øg£-¾Vµ+ÓGäcig?ªÚCưGCv†l|¯ÉWû̃ê¡"_iÚ«^nO*o$Ÿ¥ 夈‡  d@Zgïœy] ‰Ÿ̃¢Â¥k®ăÈŒ,Nà®*Œ̀0…<Û :øIñƠ Ø™ÑJàF,M©t_ Ăs¨†”+!Ψ(è¬×8Ÿ0Hû‰2™‚ÄúÙă{èô”:ê4à™ÔÅ+©”¤á,u¼ho+ở!iQƒáÏcQGF£¶Q‹w¯aQO -Fu£¦ Ä™º2ª¯iQ[F÷¡/êËPX«4B˜¥7Kö”>+-ØFơYz°ÚVôWË*]>¯UÚ‚QÆJÏJ_Fñm,i‘¦´t˜Ùê’Ö~ỏ#Æ)}*Md‚Ä%]iL²¤M–Åf—Yjó<“Y6 È.­i4ÿO͇ô^JcØîƒRe»/ÇZÛŒG©Lˤă"(&keoÔÔ¾̣A;Ç•/Ú&­–OÚSú,ß,μñRµó¥(ŒÅ'Î}ă[•ÙÊ&!]©n|eí|Ƙ’ëÆ÷&³µơÿ{½¹7-Z &ª Èeà„–¼ôM5Ùv©‹Q‹l©Æ·<|Ô–¨oP¤ÏœI‹JL<èÑÖ^Óm%FöNß0JYBâÛ]Ú3 ñN—KŒ€Tèl\ß_Ø'‰ ¯Nœø¾†c@ëk˜×b¹œ¯As¹Âsïô…‘¡x@êö–Q§êtq0P*dg'Η2= è×§ÿk…[^ endstream endobj 821 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 830 0 obj << /Length 3466 /Filter /FlateDecode >> stream xÚ½ZK“ă¶¾Ï¯PåNÊâ/>RåT9®́Våäx§œªØ>PÎŒQ̉o6‡üöô HAYo’ĂŒ@°Ñh4ºƯX,ÅâƯM!¿¼»yó¶nÊæÆ–zq÷°hT^jQÖåâî~ñcæn—Ji›}»½UY;À?üÛÀߺỮ.Me³»ÛÆd¼9aŸËî°c„Ÿ¸§…æîÛßăË-2Á̃ƠyoN·FñÏw~óV¹…*̣¦hÊT,–FåJé=P?#çü‘Ë€ÿvđ÷¸¥ k›}3i—Á lXèÔ5 Ù́1Yû@⪬;⤠”b¡GÔ 6¾w³øuö₫p»ÔeÖµ8gßî„UH4&û©pÅE.*SMagĂpˆº¥ Xz]‘48É&¬²ûgÔ2Ê|ÏăkĐ+µ×H¶ĂÿƯAÔ½û₫E&£W²côtBE|L†Ođo‰r¢Ê•ÉmXåk”î ©QÁûGR:@ÏÖYu‰3/­)²6j1É@Ô×#Ógé£÷yđ ¯6HĐ ụ̈í‹9ÑÆÏ̃Èđω¼óÛeeẾ?-æùñ‰üâ­ă±ºÉ´{œŸ$¤µ|•RÍ·$߬PÊ:{ú-ùrQÇ–́ÊÜ* ,hh›2v¥b’́*L^e¸É^KSKÁ/¸AëKL['¼}Fm̃w²]ØÉ¾=‰•¡CïàG¢̃ q»̣›/6X‘ {2Yƒ‘€™tlZÜ·ă‡{Ăûtä·Ưàíf”†Ô¾X–U^k;Ư¨‰xè±Êâ|Đ‚)ÚµpÜ™_c7­Ÿ 4.<®î…¹_PîÎ[¾è¦Ưɪ₫&¾Æs$«íĂƠ­Ó™.&¹uhñ) ëƠEñ ê¼röÿf‚?.› ¾Ư Q”é¸=´½´Zzë²w¸O'ÙÁlç²'jĐBXâVHàŒHª¬̀“˜¤¢€‡j^©¨3ñ>[EÖ]R‘ ®‚”}+₫…+d¢ª‡ư3Ăä%ÚáRfn²âó!¥3U¸\»,ȹ̣LwŨTǹ¼´b©̣̉”WôWB f©¾*5Ùœ®*q?jÇt¬¼?ƯƯ|¸Q¢(­uÚ€«sgêź¿ùñçbq/!fç¦øH¤=¶•ĐÜ.̃ßü…³ ù”›Óà,U4+.µœ-¢M (’¶ÔäMlI IUOù”0¡jr×Ô›Ns+sâ.ÁO•²S¯’mºVl›H½Ë:;¦¶¬Îuyfñõ6"£H‰đßɉ!9Ö4̉ưwbœR̀F‹³¹6zbqÿLØHUd¯±˜UW×m¤ªÁ̀ơÔF~H Wæ*!Û™@nèMÁZl0•ÖIcª©\ñêß1HUWÿ%ß Ü₫—¾£æ¡µWÏíèu»0•ÉQ°‰È.:N“WcôÁgê×øŒùŸyƯZ'sÚ¼˜­TNá©uX—›Æ¾Æ:l¦[_·̉@ û§™,ACF >Ø ñÄ æGW̃\M»¡Â„UBœÁR³Đâ+ßI¾ iG{L·j™E0¨CÇư_s©ë‚’È=7;ª ?1ÉíÇZZQM÷¼ơ‰¦đäT1âˆ}œ ă±ïÓj*̣¶‘;nö{J¦«:[ïû̃WhkÊÉ·LBEÖ₫‘2Ü~¸T焇§[ÎÔUMI₫~äâƯ—T8›‚â•V¢ ‹Óox¹€̣Á«P•%Ă'YƠ'&>r™‹U8A '_#£¨ö̃TRçMàE‹̃ù5+TÆÎă¾è°gÏ—dMLUuTÑÔ <äX@Z.4½ºtåüöéjLc±Ưw¹Q ¥ÆßVJdlËt5VÇÈå>ˆÅ!í/Oeü₫*ÀD1 OÊ¥qk_ÛƯ3ÅVD^v)¼èyë5÷H« µ)á-*dŒµç¼ö0É ‰X(tûÑ×£@1‘’z®… D›d-yC¦xƒ—;µKØDƠp¶<1Gív'0>ô ǽ_ä‘°£X¶ie«7¹́o‚jˆ@"’x›*+̣qe¡ĐUÆn…Yà©Uö›[Ez®tỢJ|Üt1¶u¡«¡¬°á€\]¨´°̣x]¥ơ}đœ-[Àg”Z¸ƠT骔"*:ÏWTM››2¤,~w¼y‹4Ä6Í<Ó] +嘤Lă1|I… 6V®S‡k§&~yeÄ#ŸRÁx‰^^:̀ر̀½G{K{¤X˜:ÂkHơdÙ¾=~HQ|®“xbw8„hq‰;NĂTÑéĐTh?R£S‚OˆjîëĐùzŒ]BZ &¤µyaÀø'INÚ0Àø]œ¨mÆå´b#X ¸r~Dp}nRÀZ ÆéQ7ˆăyđj3"|ä Œà\b©îä5jm[“ûˆ£QŸ…à8 uI@8)‡ Y™ÎÏmM0„§3GqJ±Gđ{†Üươ#¢¸ e9®Úm¿–ăI7%åk%Û4Ù+c÷üÊçk%'•C£á¯¶ üảF©Z,ûÍf®đñ¸ó1c±,›ÜVSsyÆ®"ïaÛߟp'™Å#CÂCŒ‹*Átî<9S:N!Ûxb\™:|f̉ơwÈ6Ä¢ >OäàpϽç7  ¶ă\Qf³=rƠ¸ê¡G¥I“Lƒ÷âCư₫8ºÍáVôAyơĐ…́U.¢Äø#ôù’1\đALG2$èç¥>œÂèR!Ɉ'“ơèTXR¹j ”@u®¤Bûû…°~£™V_ÍĐíÍEç]Ö0L¨¶l^ÙúË}8@‰êë$–ן™•vvI£ê ‘©J.%2ŒÎíJă‘×…}Ͷ”Ÿ¿+sˆ ’ˆBC™ Â٫źªs8Ö^€¸`zЇqU^›/¯Öá*´JTëç»T¨÷)"¯oT™{öi–éTUMûäæ8ÍL8Dͯ²!uÖ:¦­Â6ö%«Xbf¬Đ,J_\aK+¿n–-wïÑ,ͽƄâ©Íu¼Çº¼@ƒüƠ&4ÅÉ@¸<}4¡ß'á]Cz !p—»B‚ƯD`[”ÙđA’¹ö(u.ö^=I€’€cú$Á÷’™a³åº1G¶é&¯¬ '’¿¡.ª±±®¹„Ñü}sç‹₫!ƒÖ³lE”ËE&e*Ï=Ư@Të8=‰¦³tĐ‘%Ơv7HÅ ï"ll߇ÛaĂ÷»æ,%gKeí³ÄÖUP›¤…aσG%†î«X °|CbªËz¦́$£!*Ì*:Àư£¿ªFÊpÿ&³?í½IçÓa"ïäD’öT°î„—_ÿÄ×(lNb;/*œ„[Ö0ö<û»nºÚî±q* 6@+&Ü×ÛpAï3è,$ƒ>F_yàó˜“Ư£¥ÚSØyQ-å°Föñ@=)™"PDLK¦<=ñ!‰(x»M)(ö'S2~µoïĂW#øA‹©t$ÆX¶63HẾ*`¸r­ ‡®đ_q©2˜lóÀ²Ä9bJ4îṇ₫Ù§ä~¹ÔKJ1=œ}ùˆÜđÇÀ¥[gĂK…Ê4jªTöÈ”*(2́u©¼±AEÊŒ»ojïíT×' ¼A ̃¸J:ĂoSP- [yĂVƠ ®ä|h#Ê8†Ët™Q½Pf̀ ‡¯ØG{ÄóP›©ê’ábtPEˆMECB#¾I@w.+—}ä½|P†â¬¹\R£!³wh¢ø i₫ẉE)™¿ơ¿"Äù—A¶ín;hđ|ư3!ùa†Çú+ å;ĐĐè%½đP:¶gc"1ؤo'#wqˆñ‹h¬ëå³F)î/@£ß»>A 32+sïđ@yYŸüiâ=wQ€–id^³k¨P^˜é–'Âe<›ñFg7FÀLʵÓ₫ ê:+wg›¼đ-ÖXó'“ô£‹́ö˜Öæ$!$“†è>†oç ^•øĂ/4Øêå*æHw-Æ8ø«.É&êLnq0V̉wrë 08Lov"¥àcH½psäÙ<ưÜF}Ÿ\µé™V(?’|Ñe¿0„at“xá³O>‘Ö•£/„µkñGĐB\9Y¸+Ïט§¨''> 1ÿê¡#²öi0›Eß^ÁëBOz|³ë‰$|r`W̉ ÚÊ—S‰‹€tj# Ầ’PÚ «xKL¸ÛÅæ½7ŸÇ³[ÆĐp=A“‹Ù³¡“P4æÁÁlEN<lÁga_Êt>³gY#wă¸'á±ñ÷±=“EËỡ Ó'ƒÓ{‘ Ớeø—?p‰ÓAîØŒœ®è6½“èơ,—¥»dê¶`!±Ÿú(ƠNPI O`arkù"•–/¿ÜñöHu^Y»€ƒ~Y½Ơ"(Áÿ F endstream endobj 848 0 obj << /Length 3233 /Filter /FlateDecode >> stream xÚ­ZK“·¾ëW°r17%"ƒÁ<\,Ç–•ª\́­J•¬fÉÙ]Ú|l\­”_Ÿ~rHJI»œ@£Ñươ“ÍfÙ́í«L~ßܾúÓ¶œÙ̀´Ykg·÷³Ö&³³ª©f·«Ù¯ó¿ßØù~èo®*çËư^Ÿ6đ¯?à?n†n;ÇÆ5üuwëäíp“×óÏLÖí°{>ĂŸï=7ïïñ·wüêqØîa§÷Ë.y[Â4ôpw³€¹¥uµß)I5Æé‘l{à6d÷±¿ùçíß`ÇYnÙ••© ¡ïrK“á`àXÄärSÖ…¹²g\ly};0j¶pMk\YÎÖ™²h™üåQ¨–(G`Đåó™-p•W&›tÁ²6yătÁ¡±ù¬6mIm  XXS»’ɧXoŒµƠ,¡¢sYM®[cÛêʪyƒû3••9L­Z™¦©#ƠÖ÷+̃=Ùè~Ç-¨ÎÍ×rC7°ÄnC¥ B~G‚ß2tµl-º`ø<`&/íl‘gÆå³̣Ư†4ÖÁ%vâG\ tª¨1ö.…vMç'5 ^M^5*7OŒ[̉¬A¶óN—mó“BˉÉlêœF 湩ó K1@µ]g 9¤¼L­Ù˜,,ù¢¶¼A)€d7Æ’HüR±»¶¨Ë¸âFÅ÷$cû„œ-ÙsKÜœG• Ơ¢‚up¸¶o÷ƒXºmx‡¸µûgfuËƯa`Ë{ƒ$n₫Áºấ€xX ÛÿÆùV¸YØÖ1¿O4ùÚóoØ̣̀Y¶Ùh w£º €–ôBØ™&€Ci…sY(Z²6đ´OÚë‚D”eĂK¸ñªúbPéÉ¡éîfë5ßËÄ*¼´Sàí…ß“ưå"5oâúPêaú½,…«~‰¶$–ă3ô >ï´é+₫ÈÈqD¤đaFơn¤tÜ0Bú{”»d¾±¢b 9’¥Ô Ç|‹̉ 2K­èHLƯæIt ;7v+¥ÉJ5¾w;ÄŸ—đ(`„%”»WXB¹49;¯»Ư £í5פÛè,¤ $ÎîEO&ưDU¶m®º§âKÜSUºÔ=²O® æĐ”Á;MúikM[¶Jreªúª£+®;:₫¥J@NÙÚù-#Àd’›Â¶q| #9^eájˆ@ 7Æ„É8dQ¸rŒ¤‚ˆ»èĐ_Đ®×]E†êu‚m§(忽YTE3ÿ~àyaÔ]Ç₫ø›8û̀jª¥LÓ‹.O+Om¶¸|°[×yBZđ-îù [ÚRÏ7©c-U7‰}m„¤JOô¸ié”q’USü¤̀ œr]fJø½àKÛ+>e‹ ]dà„z~X«×̣̃û,{E³B<9ù‰>x¡ˆÁ¯§U½KlëkfSfg¼wÂ`Œ]ˆ‘µ`>tí·Ê=Ñ ăy=êœ&¶·í l¼®!1m[“eÅX~¤™#·MM üQQ-‚¹ Ô ©&¯Ư®é‡-/v ³K€˜¨? ¬í‹<Or!º̀óü¬Éq/"7Ît2z9‚q|8†q$;r]¬:8©:\$"_̣‰ŸWêW(°ñϺîØù²0@³%‚?¿}5û•hǸ1H¹0Uud²2;;©Û¶(dzĐËzUdà™öÏÑ4mtÈ‹?{ WÜ{<\¯¿¾Ñ#b‡×”Áç÷3=hí¹•8Gë†8‚Æ&lççê2Íá¶SđSE'S3™̀Ơu€§œ%T€ÍÖfü#ÁÉ©áç°Lquy7Z̃]D?¥»ïD4äPú$EIm[c›À×Ư9<ªp‹ØcJy6D °R¬R½8ú´AlÆàz­^¬%êƒ6r±›{̉¦³„?÷b±°Ÿụ́D)¯LP£´çÙIB ‰¼R {Çlâ4ý`׆\.Ǻ"sí¹c7ó¬h)Çm«3&²7}ˆA7l™H°ˆ¡ÿùû₫Ë_”¾ U°›&K éËtxV[µ___T₫(®–?lmÊÊư?¢B,´iT("¸‚}X}[₫•|¹‘ƠWé\è‰Îưụ̀÷kíÈ»>ÄÜí G´ÑjJ:ç6̣,;‡áWưsÖ˜ºnÆjtưĂƠ|ªÈÀ¹‡ áûă„M­´.4áÁ*„‘Ô½§å¡Ă·â‚·&Ú{₫}èwêQ0s+­@ø@‰È!ô¸£"¶xå’¸$Ó×J–ƒØÈ}•'=E0H#Z Ëàá}¨Lèá P6»¶œô4ÈÑ R@î´„ó̀ó±m)×+8‰èÓª‰çé^4|äq4-¥Éé¶:MxÖXcŃ^‹ä±wE¢í¦€MD x~},ɱ'êT€[†̉ÛYµ­rSƠ¹ªíÛ0Ö!`q5—0j~«0|Ă·%¿…ˆÏKäI­₫‰v*;MqôVUmˆGq]¤c•Êú×ü’éƒTœ*èâ†Ô;kƯ¥ÿN÷YbKÑh³¨wHöŽ4®mÇó‰¡hÇàt”uăMåb¡ƒ´~zëí(ÉF́º´ú6]hc¡¸“qT#‘ô·<'vnâ¡à₫KpB«(@'Eê©’Üoưer¦µƠEª¸(V9Ñ‚ 0î£Âü®T…ºm/4÷üû»₫Ú|öÜÊUN‰#üIJ§Đˆú,,SƠÎ3ùµI¤P©u+Ï'‡¬ ¸©k$û$O˜Üôq©¬I²\‰j}е^Z–àyË?1»ơ§‰„$¬!ư>ÔÈ)•qA+ă€PÅåѨ·ñy9b…Ùh¸~ûq²h̀̃œ åZÀçê»Á^ 4ơ† (SLM¥%h¦“˜àåXẠ̈H–ÍßƯsnªåpđ Ïdh›°ÔÉ\ÿ@£ ¶Ÿ8§ƒEâQvS"ĐĐ¿t¡hÙr¶‹M4MG¤ù<(¥®\ ĐÜ”%»̣6T í…8êTï†p±Bơ.›¨2åbÊb\¢/±Ä½b‚Á½Bï#Dzë'LVóJÀTBĐ³ª ïªj ³­V!c̉k/̉Ööô~¦u±<(Q„(D§hÊX—™–IÍP=´æ4!«ú£P›À¹x‚4)7¶‘Í$Q<öđéơ@̃”z7“”Ư/<­#r\ Ä <§….|— <»äZ{.*.JJ'Av ª øBÆHó‘%«b,ZÆ.1̣³¶!u¹ªVEFÙ¤#OÜ´E„=¿]¿\`çEñ¢†ˆT3̣n)3lµ₫$p+[“5üé@=ÿª:ê<ïeÛ¯‚-Êî&e µHöØZùÔ#ñ4hYÓ ̃@Î;ºj´ú-_ñF)íøb,ç°%JÙëƠUx‰QRÇ̣?‡ †·Î&w¶äŒz¾!vlŸ{º9í/ÆÖ6¦±Åw“¥Hưƒ¢üƒ—/>§èèD;ÖrCƯm6r§¤ñv9‰ZŸ6q<_D́up?¥ `7;ùDd•i‰ªGd–4«µÆ6ơjđɰÏ̃|›ø‘Œ æĐ̃[VƠ$Ï-₫4ɱ«₫cçïÊ×g!VÀ‰9 é¸íØ9R£@ê¾®’đ‡ sË醿ÇkÄhY®VÍf”ÑæyÉ«ä#|ÁöÊ>oÙOP0$†£ :–ÎƠË}ÏđDÑ€Ê|©‚ïB–ˆö™Ơó7tÊA£"̣;=Ä0À"¹ä6¿¨¦v7!œ!V¸F'`åáêc‚b1¾ï ©¢ú(Ơ^5«Ê£eé¾ßÇûưă{@Á²ÿMHƠ‰åŸ¤zñ®$7E¼WLCé›än¾ÉĂåơQb­Ü9îôWúyδÙđƒ ây“S`dÖéW8~ª̉[Øx*9s9Y•áû1[k5\’&øµÅØy–e¼³p·¾¢ï.€À+d¬µ¼Á›æocỂ€ưœF…™»»,d²gÑM/ù₫>Z ·ä=³Kñ.÷ß…\ NÚëfî´ª3¹<+œ24<ªƯû¸ 4£pĐ¡Ö₫6ʦWa®V³ó¶‘<ÿ"Y _/̃ĐG;MÑNùô ²û~©\,Ù±gê"¸ïù÷ÿ¸×툉!|`otÍ¿#±`C‹ ß[† ¨ơS¹£;Ï™m¬)ê|¶¨J“;¹°.܈è‡ÛWÿæX endstream endobj 723 0 obj << /Type /ObjStm /N 100 /First 885 /Length 2406 /Filter /FlateDecode >> stream xÚåZ[o¹~ׯàăæ¡̣̣4‚riv´ƯE Ûy˜ŒÆº²”ê’fûëûñX–,[‘mÅ.<üxî¼$"ăḶÉ„€¢˜\Lb6>‘I®øö΄’L¢`„#Jü£Sđ_¢d¼‹a(ïKFK1₫bg|ÈZñÆ yT"ˆ ¨{tÎNPAơB¥€vC'.†¼ÄA)bí¼¡đW CQÁ6¤Ó$´R¬"*N»h%b&g—0:Ăó¥ SɃÅ0gmI†ƒ€^̀¨(áȆ“W8`CR>Dg8;̀ UF 8ă<(K6Áë" ÊÄM àO˜.pĐ Z‚rHBT \—¨-­+J:¼cØJÆ"):Ö‡J’AÊl¢ï₫""K‚PD%˜•ƒ9¨BĐ¾J+'3„œ2Æd] Vˆ˜»Ê 6â•Kb&íJ£ "ZñF":&a%˜QỚœ )ṔT…Ô¢€–CḈYUÍ£"ª=b:L ‚YÅ¥£¢ŒÆB29**ƒ =ëXŸ£¶.  2)J¨¦êh|pP<˜/€Y¡T´#¡ǜÓ)È D314YW/L”£)Z ä̉‘O¦¨*e¨rQ=3Jˆ3Ô¾°:5¨¹B@MÅUßÁ_L‚°<}:¨^ă„:óÆT¿ưăŸÀa³j›a&“åxü~đă×öờVéJ–ov~5,̀Ó§¦z¾Œ¢öÊĂDØÑÅ—tÖ}a\ơëlÚ¼mæØT¿¾|eªwí—…Y‘|÷ǧÔ§í ẓíd1W¤:|P½içÓå¬içwMm‡£úùô‹9VÔ¢â*ôÓÔ3Œ…Èy¿g“ɤ;W£XÔƠt%…¾Œ})}™ú2÷e?ûq–W wó ª·Ë‹îû/£Éïƒêùt6lgD÷¾ú¹z]½À¼×E5à9²j]œƒỦT ¤ßQ’”ÑïYÇê·¦úiúnj ©Ñ¢µ§³ÉQ*O”¹AÂ.Z›¸@ïeƠK=<’PÈÄBI,ĂÀYŸ|o±ăWH<’ÎdD ¤¬‘'XQ‡UÄ,®Ñ:8̣Ñ2¼B‚U¿OÖߌ¤©‹v<>7³¶= ˆœØ€ ¾ÂĂÎ"j>_[Hă>”>¸`K̉đåơ;$5k?N{ôy>?$wE|Y3E¦đHX`<‚çc°Œà"tÙC£|ç2o@,£¦%9 ˜˜À‰50Ù[B¼#ZP½#Üz_ÏFfgƒ »»sñáP$Xî «WđªRÿd†B¹è‡ä‚rºWÔ<§¼5C¼kÔä>ú…>úß—Ô—|ÈhèU›gG ÆàÛizpËAön‘}­À0‘Ơñ±Đ$›‘ “Fh³ïô–‘‡µcDe›u7tF¼EÖ₫P`|÷±RMTgܬÇ>B-;‹XTù] ædtºœµ¶\ơ&Aö÷&}Ïö²ÖÓ~é2¢yˆñ»×/lF£ûfyu¤-q>Û̃¢'ÿbÖÖ‹Ñṭ²^´æ‡—GØS#ÏvØj9l–Ÿ€ÜtxăïF‹1₫yc~ƠŸ>¹ùe¹ø´\<é5\BOô_¶Ñº'ư\Smz²¹:åïÚh£T«Ïô?‚Ơó¶“Aơs;₫Ü.FM=¨₫h2Äzfơ\̉e$´Å:ÖÏb‹“.’®¸H½¶ÜK„kRÙ< Ø^:¾ăưVøÖëÎïÓåó[σ;°5ºkLe₫}90½ß×môơ%Y»9!K‘[›Ê5.K¯́ă½,‡·B¦|G—¥ ‹¾'8/s_»ñÜ_Të[‚®$êKîËĐ—±/{zưö¡hJƯå« KôÈÍơR6±>ͰEvÜØ̀?µớ¬Í>N™D“ ˆh4‹f0́‘àx¡î°E(X'ˆ¶̃Y†œ¤;‚̃u cùP7¢? s¼^z†K4ÈóơÎc¡)V09X½è«(K0?!¶́ĂÛ“ÿ¹C>k ßƯ›¬p}æ•ƠÇMNĐ6»{ú2 ÛB,/̃RK4Q{ÂÇA£2)Vh;> ù:Óåb¡FùÔBß»”KÖ(Ppé±À@k@$§k#V_Ç…̀6¹ôơ;ÈQ3^μÁgT.éM¾Ü~Ú—³ÙwÇ)Â>gÛS^} é[‹/„pÊ«ƒƒn­+")# =ṇôµ¨¿_̣̉V̉d¯¤#_Üê]&Ü' Ü' Ü' Ü'!Ü'!ư½îïưsïŸû{ÿ|Ø{ÿ€}•°ñ8KØäëQ•îñ)"ZzX›óDV±8Ư&äÔ(¡ˆú ­¤̣ÀX Ù^Ÿ²1k6LÈ{2ÀEËYnkoÿÉè¬ä endstream endobj 855 0 obj << /Length 1979 /Filter /FlateDecode >> stream xÚµYKo#7¾Ï¯èC‚mVß`³@6A$‡‰w.É"åöX€,-yÿûÔƒ́&í–£vV7É"¿ª¯Ud[4Ѽ{#̉óß—õ₫b#e­UÍåMe„l\pÍåuó[k²íäb)¥2íû~»ö ₫®6[øƯZµO‹¥ö¦ƯßđsÅî>¢X=¶=Àë'oûÅ/zûƒ´]Q"´h–Êw:sll×ûƯB…ö₫ôôzD\øÛïV[” íï Té~ܵ#å₫ºxÂƯ uaÉ2ư!̃¡QǤ(€’%đĮ۩› Ê*ô¶² kÂĂ7yƠuX?ñ8 ÷Û¤Èê sëˆ+>•À(LøIKà ’º³&2C8ù°XđÀz¿îÚ₫w!¢nŸTe¦E(©vº‹ÁÀ‚´ĐjÎRuVÄ,Bƒ„hd3`üàËûwoßdûí@ö/@‡+4po·iÇ]œ\‚¬\SÏawA.–̃¨ö›m&—ÙÏ®åđ`.˜0r8¹µŸhZ Iæô=ÓZ$¶û‰Í‘¥¼ë¢ÏLl“ŒS‡nA"èŒàÎássœÎƯR ơ°¯F¶)2úÓúXÓI)³>Ws@°t ̉›¥Q¶Ó̃Ơ!ô3Ëẃ; a{ ¿§è„£æ1ÉÈ’$ÂkËb·sú…NhXz’Z!₫ơ<ừ ƒªƠiÏbÇ9TƯ)ëB ¢Êˆ^²̣Ơ5ÇÖR+K›P9ÊZ!À9Û1O\³ÈuîȲ}© l{̃ö˜ƒè…Fi“ä¸EÜ<5̣c“üîÀ¹ç¶̉ê–¶8®¼Âµ—́d)€ kj'§ÍȈkÊX†ÍÂ蘾YOXí®ù¥̀‚Đ¼ÙçƯăœæyl½̣"#Wœ«yüzp|ó'ïj—ö˜’z Ê37Ƥñ•[µí„̉S6cíîÓ¤Ù́¦•§Ü`: t](̀N´â%zKí`·ËœÛ×2ª́Œ±£¯F¼’ñÿ‘pB'iŸRSÍ£‚˜ ̀(äÚ£ÍY¥ Ä)kb¤öT G1 $tñD1‹̃́~YqđTäÇ̣¸ /¸su`ùG„èÇI& Ø**Ó"7É]ƯÖ¦Ù›Cʆ®óÀIµOp3tb¸g[Hw…Q OM;#{¸l—X×¢pÖi×)Öư×bi•¦ —ÓCG9–Û}J;éƒƠÎçsJªú±3ÎT‹¡“"¿₫“¶ÿ‘Uë?cH·!m÷1!¤₫í¤̣÷5üáÙO¤¿‹b‰Ç4ûö=üư₫¾Ï*Ëö J ’N‡ưÓhla–}aN}HZ¼¬ÓĐ0u1 #.ª¨ æpÏÄÂ-XH\íx²µQµ½èö, ó»É£¶uùƯçÑPŒF¯„UXˆPV‹VvL)4à^²¡lÄÔ@4Gt¦ÓåFsô8G‘ _†ÚÊèà.q!Q­ÊUm£™‚QL©²a9*æ9r$¦öú]jgÀkµHUjbKp]6J•(5ñsœ˜’iY2]Bèd,I…8é WjâKï¨9ŃY«jQœ˜S±¥O{G—ˆ9N\É´8és]z§£NÅV͉+½3ˉ/9s&½ô¹+í33à3±₫vï„̉>9N q̉çzrU˜­dNb-1-$KM¤/5QµÏ ±Ê£el)[ÇÖÙơîå9l>qÏdêg ̉ơh»IŸ¨¤?±†«t—íÓa“ï-Ï\ö-)²ưÍXmïIÔäOîú×Jàä„ ,eè¢Jj Tû₫ åîoW<ùpÄƠ‘cç;— =Ü­ù{AâóúG¬ƒ ÜùëÛ_RYÁơđÊw‡Cî> stream xÚÅYKă6¾Ï¯0X@"…‘”d$» ’CIc/É"PÛn·wü‚åîNÿû­)̉ödú$‡i‹¯ªâW‹¬5[ÏỐ»wJ~¿¾{÷ù·Ú÷³ĐôAéÙƯì×M_¾ó³»ǻ—ê?Ư¼vVUN©y­•וjÜ\WµŒ´BjA£í¡åz[)h4­Më°íŒgºQa₫ß»ÀºoZß¾₫Z_[hh íа>×gM¡Oû–*Ø"êƒ »™†–êiĂ ̃(X%ú†5‡Ưj^› ª‹a W#ôø¾zæ&TÏsÓU2g£gœ±ƒ?#÷aû₫ gnïq|–Óø?ïQn”uÂy,?Çl‰̀{À•4­èF#öë̀h³D@æukLơÓ@F¡ÄÓ…‘û+å8 ňXñ’¶k{†).3ZƯUB₫íFéÀ•üy1ơD¾pcÉ ÁŸÏ Ăö‚f!̉vqËØX ûÉ {1>L Âøù?ø|'¹øyÄ-“Á \úđC`Ú¹Y œÇɈܻط_1¶—îEh—c´>â×:ÆẸ¨x+YïeS#ÏÚhh%üD=4²$4¤Á¨3ÉUÈY®á\»Đƒ]dĐ·„ƒpàÖɰ¶1°Yræ¿ÑG¦ƯB¬üYh‚Èë»\^€(Ó†(ïƒ0æ•vyC½qt*e:£·w`¤çđÀ¿Zpö²µ PtGmM×håJÿª†ˆlëáđ ”wDÎXÇzà÷Yñ:ÍMçe‘̀‚i™°‰ºĐxÎx"Đd"ƯjÏ ¡;RWk‚̃§%g1ơ(Á´lÈ:XØö<¢Ó‰9G²m8¦é ÏG«V·¹„—-‘-Æ[€MMƒ©¾ÂM¶†B₫¢ß<*Ç­¸—ä÷‚éˆj—ƒpÁÄ₫MÜnk‹ˆ“÷RœˆûÇß'Fs¦s:NbƠ…¸INm¸­Î‰Gđ|5âøÓ.âÎËà‡c₫]£µù[U;fôäÁîh°ƠÅơACEt…#ÊöKn{n Ÿ‡äa“{^V§e‹S†æ&Ưú_yv|Æ;ë"E8«­5dT¤3_K4J'y+çŸ5âlº)×C4ˆOëZvÄ «² ZàcÅ‚Âuó—đdÇW\J”ƠÑIW_ÎÙ©"â½4è”́81ØQæ~–­¹]Öme!?¼Ưâ&Û•çÊOhävƒëï7[ûï¹'¾›c/[ß̃íüB¶Ö€{ü»¾YŸ—¥œj́ÿ@ܹ¥÷„Ïa YJĂ'¹Yï/6>ëÈĐZwMoĹ'œụ̀Í?Â[ŒŒÏts̉^Sçw^\5îL/Úâ3Ÿaîưí$/ÅŸ?ÿQ¾ˆÎ4q·Â˜F}ă’¬Đ{Ó1|r­ÓëSĂ[ÔêÎóëÓ@°2ø§mÇp¦r¼u~´ià*Í/fS9˽øÆmøy âíK¶È»xK~ă¥OØ8â˜ñ®­z÷ÅøaC,ß/dŸ÷d₫~97V‰'u 'Êd©ÙÔ.>§5¿ĂyG˜8Z) ss?NRz<Çö,xs¦H'ă#w.O¸ăă‘̃H_°Ï+SøăOgy’Ø!8s$!ÓFµSMèÚ)²ăœn´zOôœ¼”ÉLßç“O «‡…%¹ö‡ê¨úeåfxï“âÀ¼e=8h ¡£.J¹tƒ­̃å–¨@\¸0G vÏèæíj½’ Ơ ›́ F'K$Ïœ,QÊf–0&ƘàÖ̀ L¶¨|8Q²€¯T´#(_uÖu4è$§s©­–óÉ ”mÙ äw5™M6Úh/6£ÀñB‡l§B?Q!濘ăÊ(±AN[MÉu–éo’ƒ\r–ë¾$$‘ns´Aœ“$Ÿ£¢P’½]]_C„ío 1à™|ä Ïơ¶“mh‰9ú’‘xL´uë u<:-\"èøô½dx|®éeFøŒŒGÄüœ ”{Ù:":ĐÓø$=tN,Ç:”±çJLă¸oøưGÛ’+§v6ïÿ ¶Đåb§J‰§C’G<3µ±VB é¤Å‘„,!¯6æÍa× ăU<ÇZ:†yë“I±‚Ă ¬ŸlqJ D–8ùÖ¨B̉. 9}ÜÇ…¢rëVçư1—…Ϊ-°ï\Hæ`\r67#?̃¾Êc}L7á“1ä̉ÿ(H÷¹ áb4ä₫wê†ÿù́¿%rơÓ–ÓYu¹ÊúÜñ¦/o‚ˆiô÷„ͧcÅ)!^F÷®+\̉ÚbBQ,l}TưMVÙ7åŸ.&₫x8Ke!‡Xû‚¶Ôăèû$é=†{É ø©ë.¡å2D\:Iü3¥‰Ü–¢@ºn\ơóGnS̃r7·’34@ô~¬~\^ KmÑ6Ơ_o¥\C¢2(dŒXÈđî%;ă½ÔÆ÷aüL>v₫¡lÖKoíÉZ¢±‡cQï[̣P*†î³6#jßæhÓ8}R²snN•Q9â¾îéZáª+V+7±n“帵ó]^”º®'’¨ơz5¦4®PWÖ L{]¼„9†‡¸»_’sWÜq+e?';iéu¡9è®ú×!/^™’¬Æq‰nˆ™ÿ˜œ`Ó®₫,ˆjr÷Ü RÉ kÄÛ‡1O´‘Ó8©°—bYJO ©ûăWàbeØZKiÿá´âáÊ ŒÔI*±f+ă¤f|üÈeM-ăUÛÿ­e„¿4ƠÇNÎô1à<ÓOÿ;vUVp_uzV[ßèV³™­+ÖüûîƯÿ­V9 endstream endobj 863 0 obj << /Length 1729 /Filter /FlateDecode >> stream xÚÍX[5~﯈T‰¸¾{¦¢H€ZT„úІ}TÍ&ÙƯ‘²IÈdwÛÏÅ3v2K+I|9öwî>'rr=‘“ŸH₫ưañäÙ+åëIuj²¸(„ªÍÄW~²XM~›J1SÓÊÎæFU~*ăDÀL+mâ^›i(­™ÍQSMcÜ6Δ«ơÔKZ†³BÏ₫Xü<‰× å'sU‰Z×¼ÙÅư‡ơˆå´Ù́ăô¦¡£w0ÙĂöÎNk÷5Q-wÛ¸qƠ®â÷z»\Óêåî.η«&~ÚuüîƠ môd^ ëm&mđ̀w.‘¢6x嬾…;7-ÜÙnÚøsüHWÀø†Í–.j@}Ëû-® í~¿Ο‰9G0xxß›=©BN»#ÍΧşüï̉ûƯí2ëđÍ5hç=+öƯ³7½†oâk¸[³¼p®Ô²qlAÓ×H,ÙITá$ªpS8‰"ËNé,{‰#‡…àKPÎíDlÚí ˜]WÉXÀ:§45 ¬0L¤ĂçØ,í₫7Ú{0äf}½>Ă6¶.°C!´e¡0Ø£è\î À5Đt»º¶Ú¾Z*`Đa¬V’y­ô΋¦m;–23m¡áP=nZS±†aâKÓú1Ó¢z ̃eôá\D_ˆXÜUƠ9?É¿½0…ˆfL§ „Ë}:…ü`C¨‡@wºAª Ï*åüàĐxg–|4M¼Ï]säwD ̃‘ø””FnK'@SͰsà+(ôöÀHI @ʉ…Vn×`ß-æa3íVâNF‹ÚóLÓ‡x̀±nj¢ JzÈæ’~œiù~^ïUâCJû˜P”Bxßh˜£3 Ø`›£A¡Y @D#¾,sL$l#̀ˆ[Œ†ù v ¸°}•cĂ»ÆØuØÎ|JîÓ0ÇKŒü)ÏmúFí«„K< ´¢œs.vđ§†e»êÔĐUaèPZ±4sô#cµĐ l]Ϥn• ¬ÏBÆm ;ơ§ĂC×vơgV.Xq¾·²Í¬Luœ*Ê‚€K+7‰óZÖXZEFtä_›>̀óX"t4„2mq£ ->Ü`1C“eï¶;àØ ßóc#Ơ¸€œhú‹¯v4ôóÓ’áé8;̣¥ ăvl Á ØúĐỤ̈‰mFp“è3F¨Ü¥Ÿè3JX0¹¼cÂ…ÉjÊÄLHºZܤƒñc̣á ¤ÑÄ ë^†\ùÁ “œ¤ûP6‡Ø_́rxjC#®öé†yx˜éjº̃°Í"MÆç8?^E~T…×Ú gMTï¿;ßE×ÔæÄ”àậ·q8§ạ+ؙȻ’¯Đo²Đp±ù&~^̀è]”üùfFOƯM¦í#Ó½Ÿïăç—øy?/™~Ă´L7Ç2ö’#\óøE¶·DÍ B^g˜m¶¿ás‹øy?¿26WÊQO )p)¹IÇfJzéúu$ă ¡¥Ÿ̃癃tqùˆeÎs&ñÜSzơŸß¢¦_1§—§ÀÀ=W½ØJÆÂëéÙ5Ÿ!{Ï×6ÓïG̃nỚ¸ĂÏs,$½åå†/¼ËT˜B´è`eéü÷fÈ2&¸]{ªuN2œ₫ÿtâmâˆ+Aô?ê'ó@wÿb?‰ñ-fæÓ†’ƒ;× {¤“es¡æB]¤-ºH]¤”<`ëQKësÀP´¡èm@ư&t ̉9`5fu3¨ @ºÚêѤY52öĐ9»xÖSU`‘¥ëjhÚ„́#4w·7ôbÓ? ègøln¯Ù=0ÑăL|…‹̃áû¾äy?ûúỊ̈¦̀”€ù > stream xÚ½ZY“ă¶~ß_¡Ê‹5U+.q$]•Çñ:vâJƠzœ‡ØyàHÔ‘Ơ1&¥üúô…ƒgfÛy˜èF£ûë̀g›Y>ûúU.¿º}ơæ­rơ¬̀ê2W³Ûơ¬VYO®r³ÛỚÇù?̀Í¢0ù<Ị̈5/°¡ Ï:m˜Rđœi—Î7Zi ¯₫uû-]Ô™uVV·éH—®®\½~rơ7o«z¦TV…ÆÍ1Sdµ«˜ZAÓo 'üĐCkwÜđ<ûM&º*«tóĩ FZø·i¦¨ W~đÆn¦,æ?åÊWüŒƯÛ–Ÿ;\k¿ƒ üƯíöÈÉùÆèù#@‚k|´0‚zˆYø;npp;—¸Ä¾•]3•gu^ÓQ.Tn³Ü˜ÙB—™‘ó¼}¸Ñ%1¨`q\ 9k;\»9 •7º""0¦E*ǵ= Ăgä½çW§5ÿâäv/s›;üï[g\鑇‘€4 5÷È‹Đ¡Ưáh/@Ù›å~UÎÏÉB"hnwô¬æ]ƒœ,qê[Â₫ˆX3đƯe)¾tq>lC4S™¬°u^)à4Ÿu›?¼ûúỚG¬ ½÷X̀ÁISẩZgª¬Ÿ—°Cư¢³Ưu•.È‚–'%ânà r Í{‘©ù¤4.¾ÍˆŒ˜jU–O%qW­©‚ƒ5»₫¹€*†̃!S}‹úŒœÜƒ†–¨ Ô°Ûô;=iÙ!¼ïO¸»K¢LÔ½Æ!§Ăô©äàsUñ‹”XWYQ)?%‹"«k yf´¸ØïP·Hö°K ¸¥=ă³¥í²mŒ[¨¯åcuKµq̀‰ØçH«‰^#]++7Ư••è*Φñ“0UÖYmÜ‹èh_FGK ŒäY†¬Ù'ạ̀ÇÇÜÊ6×<"ñ ØÜ8r?Ơ¹j-yWôEÀë|Ưx„¶c+păDäâEE´Qop4ѬȾđ‡¸!î21₫p¡Û̀øÁ¡Îóù?ƒ;½#ß´áùí™—¥#ÈFøA#üiL. aY“°Ă}ŒQïg₫鯯®µ½Éƒ¶"Œ³˜Ơçđ÷F₫î½_'˜PdGÁ©`0–,`cEÔdøû·̀öâFÂôé„hr˜Ûyn)âß½üµ cx^w #Ka,X¾0ÛËœÿx¯&ó„föÍLhzX8K‡äñưâÆôx®œ_„ä[’é̃ûđE×å^ಟÑ>&#˜Üdy ~_²QûŒ–Y©9‚±i$M‡fÛ•Ơ—sIJÎø̣4£…K#­IL…, ñ!‰©çïP<û…cy”s@~t.“{̃B&ëÔü–Œ8’J\ér/ª¶j¹ÛÑÓ‡a!y«?5œ´Ï†“'$£¼«i¤‘1ptDæ)¥]æ!èiăüfßûƒÆ3¤ÉxæAÖA“ë¡6Muˆsè¥ç ªï5Èơ ç¦c+\;ÖÓ́â˜w¢-¨,’°%SéÙ#t)œ\ñj>×úWr1t„„ÿ' «̣̣é ?ƒÓư=ù%Ä} ±Q‘«_„¾h †Î):&y9ˆ̃₫ôQ{r5§̀ƯçQØ!™2>R©áÉ„¯‚<ͺß&ͬ†i¦à‚ÍuÊÎJ~~3yđÅuN„ƯîÈζ²m®wGå,íæÜp£'¯ø²ơí́C)Yå¼Ï);= ¿®³¢åz§;_¦ùY´«e!€z-a=RYú£8RÚKb¿óú£;|ÉØØ‰af!뮤‚˜Á?ßse£¤Å;Q·ÅßZÆXY0¥Ë¡ß×Ñë49Z §!¿L–m¦cÆ' ¦l“¢Ơ#.µ>Åt/f=*ơàÆ8ÈX†F¥ÅS•ÄkÓ}) 7f¬8àŕfJ½I›&Á¾jeKgOZ½Ùú:«5½mh”AµÓ®ạ̀ Οé.@SÅ [:cP̀n'Ñ6x§óF\úlvE°¸°ZÍߢ¹8;bÂ÷QÍ<³]ë¹F>ÜñPUµñ₫ }Íj¨ B²Ơ“•>]Ti!D\dæ{aw;öåÔóÔEMr‚IdDG̣ z —´Ù̃Û́¥‘U†à§Ê#¯1¼b¤9üñFi7ÿI{ßüá6a+%Ê‘áïy‰+JÛïŰhĐGqt2iÀËD5T8{÷¹KkXSxc‹̀ƒ"[“x~ïơ½çœ Ç Çm9̣•hê¶Kă@G Ñ:çúa+ †̉-’=z9‡î« ` Ô:ɰô¨†¹«X%é“‚˜ăSđ®+=ö:.[̉TT22_RIµ¹O`f̀Ó§¡̣"Ó:Àø}âtr,5RûO= ]dW®ô¡‹á!l¸Ûeņ¸óÈnÊ/>¤P‡ªnªZ¢H~)›++™sïc»fq‹_Ǥ˦xñK6hÄ~m¢} ¸6/K¶‚&rRVs>ôS¿K¢Ê₫̃_;'ê&w Cé̉›—úØóÅ7±®®̀ü/‚´¢k̀['ÚêØÓô#©ñ%uÚù~it· E r}´È.ö®}óóe “₫`´°pø’+ª̣"ˆ= 'éOá8 [_–6̃ `O—DÄƯ{’:f8ª˜ù®È«˜‘á:T¢•E|ß7:e¿áÊà‰TཾđWh[̣QàS…́‚0b¹̣9̃¼ 7|°µd–k¢7!™‡mHs(*¤ôÚ« cˆg=q0<ûÈ•̉@a£´¡ÑsDë¥M¯%%w8Á{¼̀¡ơùç½—ç#·ùtb°‡¡|Í3×¾r €SÔ`<¿}‡ ưđƠ”„¤Ör k®}»J‹-UF8Ă@Wˆ²°rñ°÷B±V̉cz úóN=r{2Ø“*ïØhq¹ ÁiT1¶Ăê´µ#h™̉5ĐXp{·¡ÀSàY±å<’Ÿ‰Ñ>“¦ Ë×§û£₫Ä s"–h‘¬¸ä&1ll ¯¡ƒ¯\ÏÆsr4Îxt‘W Ï)Éû¿ñ́JÔO¹=—g•2Ï̃7h*¬ü™´ÑÑÿM’2u»8•c€é’‹0x]^ƒ´*Y¢»Ø”pM¨*94Ø×Mßn„%cś’T9¥)¦ººÆ¼^®̀Ă}(¯L¡™ßå6Éz "„Óûæ‘_ûÀ¥Ă‡ NDác´ëéô+æ]OÖhĂ ÛkÑ|QÓ?œ@Ưr·U’[U¼×dœ;a‡lêªMđªê £HÜ­/4́ăzGÚ‡p_hñÍÈơ7=»·¯ÿÛg.`¡/9k;½÷¾ûñÉÔWç{úé̀ûQ±aë½Xđ.d„K·O»7m2­Ô/ûđÅd¹ªue ›»˜@c#~ï@¸?ø̃ß‹Ø3Q*ÀîP.Ÿºb—AñSŸÑ׋¦ümصN+eăoü— ̣™ŸƒX¹Ü…lT –uơPch[’+vRo |‰£!ÚÿÑ-g—„L/i°h¬7|!“(°?ÄxA1GEW7¶ ă¢ ƯeïµØ¥8íØQSÁ₫½NèlV{Vñ?Á !4éĐmÈ‹H¸Hº¨"8z_-êđÉ> stream xÚ½[Ksă6¾Ï¯På©2â’`ªr˜©<*©Ía7®=l&Z¢mmI–#J™Éö·o¿4d93N‘ ô»¿npÊÙí¬œ}÷ª”ß·W¯₫ö­ªfª,Ú²U³«›Y« WªYíêÙƠzöóüf¡æƯêÿî‹¥iù¯»5ü»¿ûÛ‡ëùĂAFüà÷AØƯ+or(q¡ÛÎ₫ Ë‹¢·—ºïäos-ïnCTÊç—üv;¶-…aƠ;'nOdôQzAâ ñn7ƒ́Đ³W’KfóÏDPŸ’¢̉mœ2™†@a-FR`{E6ˆ¢ÍÁ}qV;Í^ŸØÉĂđ±D5¼Œ¢̃´#JÖ;e7êLH8Hnz ÅÉ8|ƠCq° øûl±TàïʪDÖT”35; ²À‹~÷jö³ÿ›)•]“ăỤ̈Nư‘—$ö yŸA ¾ơú́ô¶.Ëẓ¿© °ëTƒÀ1z®LÄ*¿!êY—…Ñ–g½Ù »wäG·wYă°MÑTú%° ,¤›Ø6$zêTt/ªùFÁñ!ù+x¯EÉzƯĂø₫>Lªç7êà‚©—…ßÇጼ{àßƯ>zÆÉQL·Ù́²PÍC>øđÇ–Èz̃gæA:µ.Úz¢Ÿ1r .úàưøhÍÀƒCÈçU˜0pÄ;Å2xvDăăøÈ17ÑÖ(¼SÆEeæo}̃B(x':úM̉ C›”~Z±çûk$I– A¢W´^ï°y"B ‚îÈĂ™ˆuÎä ©Q̃xÜÄj Üè ^©ÆÊÆ$H‡nYÄοÀ–“ä]<ë^ß'¨(lĂÓ̃=å˜&åÆˆ¢Øy—ÂKâÂW æm–äÂLÑ‹ÆTƒ̃íøâ₫!±„ßđ,¬è15Üse@©%yơËŲQ~}:ɇ֌2,“bJíGÉ$—௉½~4ÿ&AÖé:qÇËă}xÍĂĐüjFĂ‚ƒe)!₫U¾SÆö^¹”@´Aè"‚ Å,ü̃ăíˆñk˜§ÎQ׉‘k° ;«!Ø4>₫c®øæêƠ¯¯”ä«]á´›Uª)J«f«Ư«Ÿ)gkx‚,¬®fïiên¦tÑ(ŒøÛÙO¯₫!53 ÄIÁ¯V¶…«•‡ă™Ü` mÓÜĐ]ç<65³C¹ĂÂ1Û0×5̃·_xóMªÜ üÀ ´ ̃̃cÎØ†ô%qÂ&+y\§PÈççMÖÚ$æÀíÔô(µĂĂQ~ˆ‘ÀơĐ́$]|ñ₫?¢´'S(Må£̀ØÜób$₫‡îÄ 0ôYâ¨Ä¡Ü|H+’¤̉!ûWO¡8_ó„÷¾ápÇ÷}¸ÅÁP¶À5̣, Ó½ß)a”FîïO|7‘,–2ª™¿aÚv”q‰î¶ç¡@¹0AÁßS–|qßçÉú> Œx»ÄËÆCC̃*ƒ{y‘k—7ă e§̃G”FeP¦{0đ«8ĂÄ‘AÜoñïÓ¬•¯ñÁb4™èpCPʃ`Óèy/ø¡Q#̣…’¶D„Û9)]-œñYveè(aÖÜHߌºí^óm·^Éâ?ÎIsƯW ¥«³NS:ö¯ü{5{̉ÄJ—€‰hëUPÓ3!9«Äø!z4U—‘-”Œ"»û)oÑʱÁ̉PG Ơ øgÚô,Ï!DÑÖÆ+² §ä̉•ÁÉK±ç©¯Èh6‚±·̣,´MƠÜ[§‡sç<†‚ÓxÚ¡`¹ ‡¿£°Û jà©÷25º6 Æ8.̣Pëđx—„]˜Ă”×B‘ÿ„Ă"zÀeJX’{‹¾®H'ó\ÍAă{5èđ‡±„¦G;UÔ¦a+Œ:¾§Ăaâ₫UâỤ»f0/Nfr²‡P¤‡¦8Gr¦A8E¢ºPăó!ëßc=ß¶ä»̉ñq‡ƒP•ª5€’—)UµÑ©²«¹¶s)Ù‘ѯ‰Ôn+ÀñóŸ­ö̉´%+¯Wq÷“Å]z_Ê8CXæĩ4óV›Ú›I®&*tøqœ…-rrư/µœ²$í‚r#æƒ7•b·Ç±;‰­½¢.Í™ö-·Ư' 1®ɸ1>q%5ÔĐWÊĐhÔ_û ƠmIg…[ƒ0”úSd‹ưbN ¦l]“€ñ—j1ªa·œ,iÔ4ÔÍü;Ÿ‹åo×ƯŸçD!+@°²ơơB̀JU´®%VZîơ9°³h–°"‘qèó•zÊo§ÄSÛ#@nDz(ÇS0³(Œ“‡K$. áqÿÈ.ĂL°M.U]”Ó#'j‰'-'BEĂ­6*X¡©›]óƯI¤„è ¡ÎÂÀBo|»ånŒç\¨ ÆÓ¼©B—¬̉üDàu[´:Hüîàûɘq“¿Ê›*Ê:­ÎwóªêËTÁZ‰©úÂïhª ) àù®ĐơÎØ*ÏA îŒSọ\ 0ºÀ˜T21v₫,3p©êDÆ’ÜÁ*¢~0\{·ØÄ§7Uh“%Ÿ>9/à“t~§³₫ÓÔ´…AÄÙ2̉¾BÏÙ¤m€fbø£ ¿©/Q…`Í=Ç̀ n©̣ŸÔđ¦ÉL=Ö®*{úÉÇ™¡iP–ç̀Mö’{¿”ܱ n&*¶ÿrăw¾O—qƠÏK…uQíÀß«—.Óø áØ"å6| üÇ5›.ù M²³Ü”½“·6̣ñ£Q`ă7Yc)¨yÑÚÁ̉Ÿc„Ù=₫èN¾-]Z eiÓ¼ưÈ ‹2 ́wZ„¯2î}E ›yÂçlb4“S¾èA”Îfñ¡˜À36xFÆÅ³ó_Al₫²·\5ͪº5EăÜ_Ö}ªèË…L¼«§Ñ -ƠÓq?§h/Æ@ í_Và¹Î$´\H_j«(ø/-ë.ô¶«Ë½íª€lMÊW t âˆ̃NŒÔ¦­s‰Ú)¿-đÛ”—j‚ÊĐjaâj5êtd´P…ª„¸2·iY4XÜÔuu‰‡*ÇĂ#5ª’²aXæn7]Í‘\’™)LƠ$2{ó&'3ÀƠ€·Ÿ%4ûIBKvæ‰̣ñMZk@@D̉Îôƒ&°ÿASm¥:ÿA“¶xvö]Ci­ơ³¸ơµµ©@«-XœOâçÑÅ0Ôd¢ĐCüËḲnáñé7¸#4n?z¡íq„T(x=2£@3 ‚g”¼Ê>m<´mpè…ŒGcÛÂ<Ëx>6‹eí§.*§.ÔsCrd?Ï? ›h µTp?C öÔîi ´mQjób¨qÏbCjNÿÀ[ê®úÎkN:ÏKíŸií©zG¼̀]Ÿ­ĂÛé·’fÛËxYèJ!au%0́Vg>©tp¥I€³gï°Rơ‘GïSY¤ø$ŤÚDñ¢'ä“ÿÖµ\]+´%ÀD’í¬Kæ€Kü™±Ÿ‹ endstream endobj 896 0 obj << /Length 2292 /Filter /FlateDecode >> stream xÚ½YoăÆùƯ¿‚P€j#î\’A·€³ơ&[4(Ú5œ‡$”DI$Ñ+Rö楿½ßEjhÑk7=dÎñÍw_3VÑ&RÑwWJ¾ß̃^½y¯ÓH«¤P…n×Q¡“\éÈç>º]E?źÙܺ4®[ùîg:¾ŸÍM7Gvđ+3˜ .48ôñª†q‹ 88Àos¢%ømd[ÁñT<_æ›<~DÄUE§i‘m«~ÜC4³_nÿ’¨<Ÿ"Ñ™II’G‰«M¢}̃ƒ,›üÏJû%rÎÄI>äœ(7k–ơ„ø3 |(wđYÁïkÜ*b]d92Ôîñhn¼N¬ÓÑ\Û$uS½ưO'Ôc¯ª¥Uý£JIø>GR[ Y_OjBg:Q̃?Ơ„6Q–™"˜,1¹ÆoÅôƯ”Â|⋨³x—€¡Ơ/Pu¹Eª™Ml;EƠR ’ÙÜÙ4₫Ư5¶ .ă5*êˆ.[y¥+ª| T̃VÄ>íĐ¯ư ưº́i?˜‚©³$Ïؘ̀í'„D̀äƠ+Ä艽¦\ aĐârF”p›,¹ă1Qei%(—TG 0·ÉƠH÷t´€!E‹uËß‘¨¸ˆ:D-r¿ç1zrñ„ Éqî@Â>ÖABÔ‘+‡4kÍY³0̃T6F5Đ̉ºD'ïHàdÚ¡ó<ÉÀEæèbyñ:s_p0£<  ̃2T1Î JT€Ơ-CưSpy3K ă7 1œÂ4‹È$ÄhˆLë©%làrÙ“ơ¤EâœMtjLMUIæAo*ñ>}I†ôR†«›Û«OWÓ*̉‘UY¢”¼oa¢å₫ê§_T´‚M°}â€ïGƯGÆB~Á ´‹>^ư]*ÏXRÈaØ´Ọ\d½›2ªO´áT%¼}²éÜ[^ŒTJnzîÖˆR Xc⪕à¡úVv’N`çX]< kk4EcÂđÀi³Ç3̀ÜÆJậÀß>@•q8¬‡Đ¥mÊf”(:)•BDؤùcHöK₫P½EFOKÙ?ϘÛ^ÄzÇ9j"Jû ní(P›EÛêV^R‚ ù¤́l|»•,Đ2’a‘Ư`r9ÈÉ¢ùu:À} EpÁïư8Àưd€ûB\¦>¬'K=Dw–EàdŒ#AHÿNç¯ róÚ 7¯ rûß ̣üÙ 7kó̀Ei pö‹Aî¡Nƒ`£ s9 )ÀÑRg`Íü† 4¥`ư?I£¯Ô°ÿMB\”Ÿ¬ï“₫0E/§₫-@óé ÚyYg6±i6̉Ùơơ”Î {XûĐÙˆh¸4 ú´¤Đ*hy¸ ôb| Ï·Jă¥´I´Ç·‹‡RÑo´55HPN̉y–CQ€í‚q=̀RÏM`].úµí»uơ”t‰I¹90%vcSÍ7-/…¡á£­…ôƯ™đß8÷[éÔq̉Åâg•ªÉ,mÓÄXóbƒï^×àÛ°Á©÷å†Ôv†µÖv¤ăMƠk/\+̃ U Sªä»Á ưµ¡î¸  éụ̈h[¡M´öÑÈÚÅ/ûö‚Ù–Û€Ç-;­mˆv—ă˜˜–n.Kà"Ç&IÏyÀµ ¯Ơû²;·á¸û…ª ™Ü¥½¹Êg¤3Ă•­9Ng̀ Ă½z7U•SjË©*3”ÿ’Ơ{ ¾Ù·*@5×Đ;zŒ`è Đ?Íæ)4W …"^4ØD)‚Ój| ́–Z-m…oÙ‰îpư¡¤p¿‹©¹"q^:Èw¸½Û}ƒG6{´ É—̃2²cÁ>‰ă<P†_óotgÆü¾æ|q\̉}›̉$ÊoÀ4@Ë÷ÊB́ –«DƯÿº¿§CjY2&'ÜØÙ¹mº’/̀p0Oéꇘû#1¼¯Ï₫kÅAs`T&Má ‹ ơaĂqŒ'6Ô>1KÖD¬ˆB+¯A†h›4±p 5°´°ñ{8 LL8±ưƒÜÈøÄßynĐ‹Zî4³ • ?†ïÎ':Hä# èmÇfÁ¼ưqdÿ©–$́ØđăM¨æ÷.Ü^°"̃E Q©ê½Áï$ ÔíÈaÍ ú]‰‰—ôâw¬–ac†K ó¨ ̀ÊsTöÏâƠØ,¡ƯÉAè¹"avba› EâROÿø6>̃\‹DrÍÏSñhËÈ¿g.Ô¤¥º₫§Ḳ”u½¢´°<ĂƠx¾ăW¿A$"³+ÙÜ6ơzưöĂ jÄæ+k.uœúH>½ —w—̉å=ïߨ\1:ss{ơ/¼âŒ¨ endstream endobj 901 0 obj << /Length 352 /Filter /FlateDecode >> stream xÚ…RMOĂ0 ½çWXœR‰fq̉l $ Á ©7àĐu_HƯ'qi9 TYv÷^ëçhXƒ†¡ÿÉ·¥ÍĐj@­¼öå <ª©FkÊă)” x‘×YM†rG¡(|j]R™ÿ>]R¬)*Wí4¥6PS(̃9o~EqÖ‹îÔ «˜à‹;q»ex¨çƠ=«̉O`öV>‰ûR ÍMăÚB 0Ω B½ŸBM¼µÓx>(ăQÇâÆèq‡îñLOçe‡ÉY:ﵓÍnè2êP#kz¶yƃ¬m!·ÖJ´Y^Ṽ¤÷9ƒVU,iÚĐ6qØf{Ü|$Â*ÔŒ̣©µOîIooôv‘P§̀9YưØ:ï ́¯n}›¯R{ÚËÀÔ:ÈoX£®¶ü›^Xøp}à¢]Æ[vô×Uôl%_½r¦H–Ñơ²hĂß¡ÿ¥÷ endstream endobj 893 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-031.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 903 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 904 0 R/F3 905 0 R>> /ExtGState << >>/ColorSpace << /sRGB 906 0 R >>>> /Length 2301 /Filter /FlateDecode >> stream xœ¥YMo]Ç Ư¿_q—v7CÎ÷6AÀ@¤ÚE…›¸E )@£´ùûå!çƒ~‘½j¡'ñƯ¹œ3̣̀ሷ_¾—Ÿ/ï._<₫ơ›/Ÿ/á !₫óñ§_/_¼‰2₫s<°³)å3§#Q9©wǯúñøËĂëƒĂñê?÷ïÿđóñ_³̃ÿöËû¼>H₫¼ÿđøúÇăîíåë;à8ê)ô#Q=‹ü Öo¿¿> &˜|SmêưŒíˆ©Ÿ¥æ«¿Ñëăî#æ7Ï_½{Â󻯾“ok>₫¸üđăŸ/t¼•ŸRçß^¨ç³WqœÏX¦3ơCVÀĐß)đç! íŒdÈâD6K,Zs.å¬Ă9_9çÂg¢—8猗ÔyºvÎá́üçÔdéƠœç+çTû™̉Kœ'Æ/u^®Çzọ̈çA§›ózå¼—3µøÎ²p6×íÊuÎ÷ز́d®ûŸBræÿk/£¤ŸŒæVÏ”Ơ÷úËtåÛ’îtÖr<¨%đ]fëǽÚ,É/¢Ùål²ë½‡Í’¿½!ܰó™¢ÔL8cR;Y0ñ_Ơö<ÁóÉÍt’Ù’²Yl d-Y–›Úö~m'á¹Lkv¥ÀÎYí|RW»Úµ;©ÿ*óÙûÁƇ³Ù|ö¼t„x «ƯNn×ü•jó3rvp¬/(’1»Â†đâƠë°â7ñ—üÜöƠl‰wÆ×ÎV˜{|ëgˆÎ¶©¸ùdrqx$́=o¼,aOy¯‡r0¬ơ²„½ÓKØ{Øñ‚ú'×Zñ†=ë~°lSç½_j·½ŸÏn¿aײóó¥ºóøbÛùÄ2̀âgù†ơŒ÷³='5—¯2¬&—Ị̈+—ï­Í|´zx÷iïz¹¿<§Ơ™œ#ÔĂ(Àp.6Ơ ̀–ưxĐ̀€Q ½ÉH…£¾‰€ #¤úS9b»ÛÖM`Ÿ,E|5B^I¹|hvˆtÚ #dÅ4@ÇhU^è̉µNd;6hR{‚&Yéü=FÈó¨Q““™øFĐU7ñs 2r©²Aă›À4Wµ t´ 2̉e#æ¢UôÜôüŒ³¶~æk~&YXpüL’­í|%ÉÇ̉v>“¬ÄøẸ́gHpüL’nÅñ3ơ6øÖêI#ÇÏ,|?³́t̀®^eŸƒăgØÙñ3́æøöàă ±kt|"¶Í?ø™åøxºăgàíŸ±êø™„£ăgÄ£9~&á_vüL¿ƒ?•o©‡q¾c?zơ¶N»ÇK˜£ăglnvüL’bƒÏ „•“Ă+a¬Ÿ üêø™ªnëIXÙñ3Ơ4øÑâI³ăgØă¹îlvü¬¶ÛOØÙí7üÛùiù»:~âøxm₫‘o8?²ËGˆIÇψO˜úù,n‹Ó#$n’ăgjZC÷WợLÖ^§ …úkÔ¤Fœ ê¯B™6NÈIêHéÍÜA7“êd÷8̃Ù¬1FÈsÖ"°vh$–e=h9.'k(èÆ+*4e7 ùBu5³8~^‘ϱ7F2cSŸH‹Ăî"M¹j*íHS.HÖ :[ Z#I™@oô1w‚R²ô¼Ÿ%ÑÉư&^Ó³@%É‘³|vÇÍBƯƠQ³Äw(­!«çUGB[%î2¯•»‚YE*hïZ ‹ÙÊ.qaLS8ÆûÔ—Æ̣nqtl¢`±̀ËŒûâ&å.=qÆ:&–ở$^`›'…7ÛÄl´*‘ NKÄØ‘0B”Ü`±2W“Á¸:‘ÅdÁ˜dÇ¿5z²%Ô8ØÇX‡D˯4´§G>‹£^1Çɨ-}>Ơ°ĂíMéh·L̀¶¡â*:̉…è(;Ä́reºà‚#\™½:¾•ă%:º…Úwl+ÓƠI®HoY¾ăÚ6Rô&»\ø3úLđơ¸åÙ(€­Î$ÈÑ,µ¢¤Pµ]ücÄoz5p£¢,*·>˜Ê¸^F̣8¶*ÖIn1)9œ–ÏçjJ° ¸l̉Ê6°|ƠgT=V›!„?é2„™©ùCLÛ|«=Wœóî³k€Ñđ肟¶ÛqRèû¯ Uȹơ-ya†­xÅ„à™‚WL™réƯÑ×.¹›d³Ôn"$̣»)àhÛZW5ˆ“º¦T§̉-ˆÜºYoß–ÎĐŸ[æ²vKåƯ¹Xzß—µ—^— ¤ßR¸œÁKಠ»¥o99ä-?̃êÖÈ%nÅTí;´-niK[Ö*_ÊvCØÁS×WSÖ‰¦ª0¦¨ §¦K˜’v,p*Z[₫´œ¥g-t[Îj`·e“S̀ê¦l-›m̃)euC’5!<…¬&Ẳ±#U¦Œ‰4ÚH³)bGN ;RtJØ‘ÀSÁÎôö“ä^%AƯ´¨²Ôê~Ưy 4p¢$H«Bz µG Ø?6ôUDß°¤‡c̃zïëäHŸ˜ª¶Å—«²Ë¨(®oÅüI§¾.%~ZÓ¡0̀Ü8óœíV‹=æ}»BĐ{À úܘç팘™0¼sRy÷g̀Ưx¨¦YÀBđöY6!Micv— (LÜå SK\æu¹̀µ©èF̀¾·)h‹µ6̣̀0£MAkSftû¤Ü»1ïÖ́!•¯üïrcµ6ÉZŸ~æOZ›̣ôá ˜c̣} eù“܈q}îF@ÇÙ¹,̀«ææsë|nẮ;›tçf×s3ÎÚØdgml’Ă¼›Gm\¢Ă<›±Úø„1³’ÙƠ½äÈç¦ÿ£YùLr₫C®ï|&NvĂ7m=6̣•B‚đƯ˜§ùNRƒ*"nÀü¤€´S'nÚ³?Ï2«ÑÁÙzlpúâ©Ç£ˆöÍ̃›Uă_u»ƒ—åÉ}ó²4#-yZ.„ÿ»¸Ê›zl®D?_wÊAÙR…dÙđưåÍe! endstream endobj 908 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 911 0 obj << /Length 2111 /Filter /FlateDecode >> stream xÚ­YKoÛF¾çWèR@ ,†»Ë§ÑH‚8i£Al¸‡¶Z¢$&¥TRÿûÎkÉ¥HÇ@ÑCä}̀Î~óÜÆŸmg₫́Ư3_₫¾¾}öâJEé,ö̉ØW³ÛÍ,U^£(¼ĐD³ÛớÏù›ĂBÍ÷Ç ~ë|± ·0̃ O¾Ă¤hw8ñçí.çA¶Îaưë ­˜̣°á½Ï§fLh1ă?[XÉ+Á¸ô­Ăr‹Çªñ°pÇC)ê₫€KåG°Èr9êÛ-PË@£ç>œóŒqÅ ÆbUnŸ÷pY*T—ß7´ñ UÙ¸R9F̀́U!̃åËä{± 1‰́ Ç7}­[¼qT¤=XÖ©eázȱ&$|âg¡Đ(\/ñ”zÂrt₫ úßăzVñ¤!B̉ÍØRdà¦XŸÈTÍ”¦ưä M¯Å[V‡.$+çâŸä“1á>'׌_a|Êj±³µET̃ÎTû„)ÅFLă!ÄÔT‰—ê”~º†›·¯D$đ+àơk‘Oᯒ• ăi=ÖŸŸxº"ÙÄ´ZơtoÉó¿ë£%ÄÙóä$âuF à7œ0öë_èìè¡N‰|“ïÈ ÍP­J?­½Í‚ñ̃í¬yLÅ ½ùư<û²Đ ¾ÿâ°ØîD@,•KyÈÖŸe¶Œµ§SHVÊx¡„q!Î”ï ˆUC•·Âw<ÛĐ‹Ư™1Ô`=_s{`B47­¬¸®₫°ïuñÀ·<ÂUÓ́†wÄéÈ–´ ÅÙÄq́h 8ỏùAó#›kab,é‘rüBÇó/ P^¶Í=ˆW_‰Ó5Öó0DCÏ×k1÷§¶D§RäBđ&¢‡“¼ÆÇ…Tª.â9UĂ+4¡ çM)2ƒAëm)>[Öˆ LC%¸’đñØl@©¡•t„[đ2÷éÁ•úOPÅ8?ô}í JèÅ&䇳°23s¨.A ÂŒF@÷$~Né“z;ÑÁtÓz<Lî‹z}J?ÇO'„m’è¡%ö¢]$+Å₫è¦ÆPĂeŒ‰Iˬ_pÓ)˜Jsiûc¤T8E#Æw‡µr剀ù|H›'̣–ZÀ^ ¬`Xfo!m¤¤Ê—ô.ó£ç ])́¾ÉßLÎ"-–¯àß¹î-_¥øàKÄđ7”£ËK©ñö„<»!ÀˆvÏ/¥ƒJûº«"Ô÷Í€ ôư¢$¼™Ó¤ áư@H-̀Çñ?xŒuÁÓÊíUmQv"37}A¸À¥Ùư‚¸\¾ärƠ¦¤‚t¸,¤”ŸêaI¾¿-Ú¾A‘³îÆEßÏmÙ·ˆ/GëBÙ”u4å™aîórt!9™l\Lè₫X:ŸDücI•ß¼¢[́Èj®¿Ú|è^²êHñÑù0"~Ü¢ïĂqĐ¡—ñÿ Ó¹×rBï¯Pă•̃”úM¨h›úBñ*ÓK¬Sư$•’úÉjù}Á‰¥^‘\đ^Ri¤₫NŸ¬bßKê{Ø“È*W—g₫Spn»º\}~̀m³nđ¾èkö9wu¢ë«.rh 5’6ƒws¶fí|Ả•jî­BϤú¿}à æs-ă ûky=ö¢–;Ơ5CçtvRß°vâ¾ÆOÜ#S=ÿ]G‹¹;>oË{¦}G™Z¤æQ¦v™†~Gè»ư]0…4p™‚`aª°xW±0íô Æ©>ñ.t™†.S3`tLĂÔiÔào=Sh­¦ºÓil\¤S1z»LM˜@Ä´›½AW6=4qyÆái:ºhà.“¶OƯvW»<µËSuJJ‚IÓ»‘ư‡ûí‹b+ ₫¾xê?ô]âéîÿ4FEµŸxq¥£†̉,̃œk»3ooŸư ©Í" endstream endobj 915 0 obj << /Length 1602 /Filter /FlateDecode >> stream xÚÍXMÛ6½çWèRÀÔZ~H”T4‡&H̉XÈÛCуV–½JmËÑÇ&ûïË’̉Èâ›´Hz±)‘>μyÛ€oŸ1ûÿrợ́ WY„YÂx°ÚœEa”%JU°Z.¶KΔX¼¹à ₫œ<ú Ÿ_üµz,¹U¦‚eF*2D¨û£́bK¾`ºÆ<° åĐt‡BL[IĂLdvưR÷ÊFÿæ»Ë=ü}¶ GhL[æq&{ư/.÷Œ7«½À.¹àv 5àbc}Ös;ü¨ÛeSÀï¡3¯¶øƒ|g°¾°«3Ø—̉\D‹Oú¡êî̀v=®Ca}–Îü°6ẫŒªuï†å’"µn| »;îrXçPZ¯jpȾ>˜Ç›ÜTéưđEQN¬C³»+͸myÀ­‚±éÛ@»è`ts÷ûb³º3føœ´mà·lí̉³ÜƼ]ƒñ½éB v&¸wÑ@uçíƯ cMBÛRXLzbJQzXó¶·UoF¿Ü¶Øq{ï*xs°Đ!œ¹[*†ø1ûđ @˜@óÅ+Z™öµńÁTSRê ª˜ø,çúÖ8êç R è̃\[×JGäveÂbößV볫5(ªvB[qÆÅkå¢npÁ¢Ă`Û¢ÁÈt²åcn¶u»ÏKIzäH ̃Zăfv68 I}Ụ̀₫Jw\¿₫ÅîHK›ú́ËJA"ƒ‰³»‰3cçóX S6=㸠æw¨U÷Z.¬†í¥CleÉ+k_₫v¼ ]êWq:Ê}yø 3ëH~¬›qT Ç”5<)¦)û¡Ynåjá&Çhרưbư®¨íDdA<™Ó#Ö)ʆH×àsÛÍ99LF}9ÙÑ&‘Lµ‰¸oSu¾|‘̣LÚ₫O$ e‘9”!GT–[3ĂiäI˜•@EÁÏDî)Ó9üîÊ”ù’ơÉ̉Äá—;iBÈ©"…‡c+₫‘ ½uÂVYmQh§nmÉxªRđö­ –„2™„}k+½¡Ju‚>¸*•ˆ‰„6Ⱥ]̃AdëĂŒ ²Á}“Ô³R‚–t¿’ x5+’´xÄ’\1¡¯Àk;DtÜYŸ¼wDǺ8%*䘡|9×ÿ©àé~ÉÓXƒI×L(4‘›ĐsB\aƠ]A®÷V¯œG+S‡ĐϤwú²Åi{ÔBÇ}U¦µDœ Đ0èg®̉¾0À Ú(Rœ¯§sáG3ăí¼,¦iwƯúl¥ «ïr›ÛqAÂî:ĐßcÊβW†\¦3ú>ư’å¡ïï‰>£êp$·:·i åbHÉ¡₫ơ·È#ô À[º4•.IæZ …b¬mâÄCå)Èáâj ă»Sôs6Ó˜´&&N(O¯*£"¢lQ2\A‘øsFŸ€Å#Í”0ÿ½GádĐˆØµ8#|¡%29ÙnWcƶ2ú¡=‘„̉%Úº>ØV‡™8yèQœ½·Gä÷ß`W×TÉŸºï×ÊÔ\x¹¾«“ú«©÷éôƒ9ûÜă=©k<Ú́d¬ó†}¶å̃sEOÄY*®êÎæÿĐKƯi[¥>vsùΟQ‘_Ă÷÷Ë7<8 3–áÇwÁR‹q°”2L-àXL¦¼^=û¿wyI endstream endobj 923 0 obj << /Length 2208 /Filter /FlateDecode >> stream xÚµXYÛF~÷¯Đ#eX »›g€]À1œÉ.`°,ă’( J“Tlÿû­“ljè±×À>̀¨ïúªº¯­N«hu÷,’ߟ¶Ï~øÙ¤Å* ‹,2«íqU˜0‡V¥aẩƠö°ú-xS­MPöWøßUưz“¸(høk‚c £û¡Å9é÷Đn»×•ÜüáZâèçơÛ¯l”….[m0N–pZoLR¸àgXd{ëwÜsÚ¿ñˆù€W CYM9ÔˆàÂppâxƒ <̣W÷¢ j)ªÀ|ê2Da‚(Åf3ơ,ô “$ÚƒN˜/iö­Ö¢‡FḷNà|À¹R-¥íÑ mÿ+E íú%ióÎä €ÉÍÍ ¹hTÂÅ>J1ßÄw©Ïđÿzf9l+µ("`‹zWï!Yºúª§mgôAư¬qkĂ8 oƯ¬ [˜¸!´qh]mL¶`È[¼§¡làÿ ̃qW]ĐhÊkx¨Ä‘·ß£µw=*4ˆk ¾Ơ©œÔQEÈá÷÷ ´¿îĐcªA¼×…ÆåÜm=º¯v¬ßyÂ}ßzH¢`hÑp¥èpôbkP¥ؾơC²¼&ºîÈÈ>¸À³/äNo"+´•²ûàfv́lÁ•ç OjmsdÛƯ¢́Í₫ô|'{Ú q9ùpf縃:Ĺ"Gq }¶CK]₫?5FÑX«-¹ßawăÄb̀AŒw/ÁÓl§²ó¬…’đ<Ö“SœAÖC|CǼ%$0ú¿û7és¦È́>OyRR&¤ OÎPM(ÚƯŸ8½§p€̣E+…ETPư]&©(˜Pă? ¸\çÁÛµÊ8.·˜)P̀¹Ä\î4qă|W¡Ñëă°¦æ°vRNArÀB|Ié"Qđw_ñ•» óÙ‰l‰vS™§6Lû䯘Fp‹Ỡ°¶9H¦å%¯£ö±E_F‡Á̃Î[%̣ÅZ™ÖÚ4̀s  -{ ́Åqç/k¾Æ†̀± p’„1´ä‰®Ea&L£\ĐDÆ ¶ XÇa”º=éz¡º/@[́ơ!8H’[2v_q¶sqF±¿wa"™Dí»°¾‘}'‡í ¶²@<—Ố±Ëƒs{»•|¿æ”+jƠXxæªCªƒwwÏV¿Ñ¾wxößxCäWÍt¢æ&lÿÊ'Áªá=É¡Lä¨ß#(g_QEÅÍ6Übª/í«°s€½€9ç$…Wt ‡ö2—±éc‰È¯"6ñ"b a[ 'tïÈ1rL:Í•Ôሀ M#ØNñ'¦KíƠiÎD+0•â tª*2uîĐĂfyy3¹„Y'{đ^tÏv Iƒ̉Ó§©‹¦{ÅuЦ_NÄP( XÍÑÁ('8«aLíñ"Á?đ^I»Ïư¸÷E”Α?§¦´#G˜‹<̃BS`9"ôŸJÖ}CB0|¡œ² î0#ö7̃Ó±µ”û²™ḥ<Û’ØsäcNđ4?JÑzàäü Gdt́?ätÄ© oëáÜøiÆCû§€̉îÙ P)f"¹)ñ¤ƯAX@̀¡'`„ç°b‰ßQrØùxSƒ’λ]€[Œ9OxK¾`¨—ÜôT}§fô"™IÊïEîf†*Är_²$ɾ®Ñ›áÖˆ$†§r†@äjº$|̃Xöê¼XD;Ñ"Í<º#Í€íï*.ß,RXƒÅ´eă‚k¤›DBPÙïK%í¥ç•BDpá¸6”5$ă83CÔPẸ̀³ íZ_x„ë+59ß;¬C̣̃ ¿>¿Ø¼„dœl„³D½âëè¤ă s«îyÇ©û ÂwîĐ2›ái˜²*´JOU¥œ2\5HªKmĂå‰ €óǻ`H¼€¶È³ÑèY˜eqí×]%½i¥PS«ĐAèÙ¹W¸¬S·YJà¬LÛéi*æ@Í£À¦¥*SÉGeuvÎĂT}qÁ©Ï ۮʈ ¥<üÊvL+«OhÊó¨V§\êt$EéPr§g³Äçœá!”(+ÛI=¨—œ¸ŸF7•l„|Đ* m†­|?0¹$L‹xÆäz{=Ư󵂓fjWlưG<ô;r e`ÖöB¼t ¤Ùˆ?¥ăè_TY>Óÿé×/l—üó@ÏzUu¯~Pʪ^.^^¾?lÔR’r±^y˜´æå–̀„CÓszị̂ 4ø½KŸ‡óç¶̣0ƒ8ßäE˜GúÍͽ̃>û/«÷ endstream endobj 928 0 obj << /Length 3665 /Filter /FlateDecode >> stream xÚƠÛrÛÆơ=_Áqû@6&²»X€€§éŒëQ2î´v'ƠK'ÉD‚k `P²₫¾{n» ²c»—Ƀ́ơÜÏsR‹ë…Z|ÿ•âçŸ/¿úæ;­ÔB«¤T¥^\î¥N ¥y‘/.w‹—ÙJ/ ?îO¯ÖZÛbù÷¾mƯOwp?û»^­ÓÂ,÷{‡;h§KhV«T/¨½ƒöP­~¾ü‹ƒœÅ€Ơbm6IÊ`/Wnv»ZÛT-{„[ƠÔ1¸×hö¡ï'¥Ëû•)¤ ×U·4qmMÉèƯMv¡1“Q÷aÀ>G¬î:3»<¹×'âºIP›˜“›$Ư8R„ÏüèxÓ×îÏ€MçX‘;d©l³wÓNÀă-,†· aR5;~!Ôoy¼¨»ƯĂî‹ujlbLºXë4ÉlIÛGç:M 6Zz½Z9Yc ±G=?uB­«íÊÍ»¡Vϼ¦9?©L¡đ±ơn…ûéå# ª„¸öŒƒ›¬QÅÖÖ¦Ë×#´îp·ü1à–”4P Á₫;™äÔ€Ü]n‡ms0ÂrëÚn)OĂsj́…j̀»+É@[ J7×¼kQO˜ç̀¬°muÇx3Ü#.‚Ưª+æÉ#M‚ª=nê™#ˆ‰Ê‘¿Á´w¬ó©"~»u=2g’X1LY{ˆŸJV¹÷₫H̀ƯÂä=‹ë ö­tl3Đ :„°–!Ín?TDéØ7*_Å,¶ơQl®iil†t+(‹zºF“®I²lư“[*É KÜ®À/+ʃpCíØ¿f)Àè5Đÿ‚í4U‹MRn”¸,'&eaüÉyGe7Ëß­FŒÊL¼øÙQ÷ê6 ¤ÉøzdŸ¾ăgE*O©YV5·¥o',(›[A1êË<Ú°Ư;^æ•FŒT̀‹©û£{_Ó’ñ°6ú¿oỤ̀”g¸‰^¾ÄC…ÚÏù }f¦/é³3}¿{3M-{vÑ"¡¦æư-=&x¿}‚óogp;ƒûÛ'ôèí9₫ø˜óˆẂÁ"§´e¥j¨Y±‡èÉ3C×Upy»HÓjöWÁ{Ự°́9L”sÿoợẵjÍryÎrxÁüôº@¦ú…$ç ̃ –Ñ;€Rµ¤úâË<@Óè†Ûuï¿Oxñæó­WG|0 7Óûös,ÎL(4…†)”w;™—}%]úX€0b8hƒ5%&d®Ù°zÎ#£»cö¾÷1€,öÁ,ëHf£…lĐü cƒ­{‘₫Dé0vŸ›â7‹Î ­¿$ø ÑŸw:ÿ×}…Î6úWØ%!.û{2 ù=ÚXGÖuÎߟ}.a†v¦ŸAK-Ÿ½4ÏÀ̃s7đ’$ -ăZ@”oÁ́Y”Œ–F@£15hFL£‡ÚMÿ1DĐ|b¯̀¨•z̀Ö¯\\~EZ5‡Ă€†p_£₫HóÏEpÆ— Ï—ơé<¡¾ÇÈ]XÜÅÓ¨ –P“‡*p÷®èœĐncl@¯%=I½çà¡–£ ºï?@0̉a4ZĂ´˜T†P£ÚÚd¬€e¶ÈœnrQÀ4ÙHmä5LéÆŒª®y¬Âym°-9íT$£e-=ïW.!G×ƠÇeg(,#‡Ÿ* …‚z'KGväĂÉ Ù~Oá†ê=Ø€bËưïáµfÀbÁ†+“ͱKT¨gtöâ¬Säo±¨qΛ;º¶‘ÂŒ́Ó™âŸ7₫ÀûÔê$Í )̃‡ßƠ :’Ç~NZ¦H²Ü—(’ûå8Ö ü+á"á¨ëA„,•ó2)Ól±Î””6F}ßJ«Yz¶rƒ@‹tù×öZ¼9…nƯ`W):Ê•o ·EM/Àđº«C=$ªËâ”nƠ›ăÀƠKÛ¶ẁrG‹HhˆÀ´ûPUu½r(ªâsRû̉D–¢=œö Ê!ĂpDC±ª Ë0äf^(|B•‘":˜« ÈÜñÁ&'†C‰NCIú&ˆ‹½Á)„¦© øDO«Ú)¯BYßæ¤Óă©¼2ªñq 4Wpm€»̀aÛU4>#’Y!?à{,T́–ØrÇåßs¤¦è£ƒ9Ÿ6`áÇIQÙ;*è:jÖLc-ñĂu50Ü!̀²¿FHXdÇÍçĂ›+ ت-»'A­ÜjÆ}%c!Äp.R¬—5eSÚVvŒu¤•åMÜniD™ï` c¸ ï)ÆA·²Y₫P'z¾W|uäz«†0=°QQƒ½P™#9±nܯrKơ ăXJ–-ñÜÅÀ»̉†!Æâ*bÀ₫¦hf"ºû÷drđ‰Ë­ú:L@@“9çBT^Ô^ª¼àtQz’N‡Øáe+…ÆÁ»#à¿u®è&,™à„‡́yä.̀öûÉœ-È&\!º¼#zöÁOơ.VG܃9÷ßz®\´¹N!l$ ơÈd¢ºiË™.MwÜ~¤Ù₫@pữÁu£«ˆ[ ¾q”$™4ăÓÆ½ °'Ú2^HæK¹«p°SZ!ÓÑMU0â›ÚHJi6̣¡ƒL«€®¡v¡Í ;\?®aê˜ÿ(ü\¥xGÛb\|Gk̀ˆG<`Ư(àÖâ¹~ǵŒJ¡l>ÉÁ<$ø̀­ÉÀ„Ê–©ªĂñÜ Ox6”«UnÚÄ·Ï€ƒw”ß|g”B¢NŒµU÷¤&YAå ܦ̃ÄÍpbËJÙuhå*ÑÆ_â>Hx¡fÓˆÂ:YµÅ] s5—Yú“Ø t{M²Êk’ƠSåùta’"Ë„>\ذ‘=|¾₫ZöØ"Q. qh®Ëà°.X¨ÚW'æcØÅéP@ ѧ¡ËíHCÀ?ÎDËíaö¢&zùz¨ăËø¢©MtVÊ">¬²—jbˆŒ¬›tF±G)Mu]‡­8„ñJÂbơ`nä áù́R>ÜaöáĐøP·“Bb=ˆo>àW*•à ÷~»wŒÑïB_ùÆcË€û)?ẃÊ1\Â₫+>„™C;ˆFó>[2,®Í5öí)̣Åm³Ädíƒ,ä (’1Ë¿b˜ÈpÍlµD÷U·î!Q]| —(áú¦Ö£̃¶R¨rråỸÖŒ3QkFƠĐUo·Đw î°¡ăxVI]5²M”)Xé]{½£́”‚0øô"–«5Q é]«ÿÇ #KÏ!•Ÿ;ë"„ặ{I¢Ÿ‚….Lň¾ ^’ĂœØßbéQ€Í=̣·Á>¢¸o„äxï┣eû€hdϳ|f½£ûĂÑÄ:u₫ï>”*ä37B4ƒ•@'ÎܲÆAÿ·­/¸è#߆Z5%–üUR{=—̣Û̀תÙĂ*±ÆOh‚ßCålTù³rΛ1~…Pưñ×6¥ÎAÅñt®Î¿"ÉJ’Y|É[ Ѻq€úü=„Æ6₫.È-ÇÀ™́ƒ}À‹‰q© lU™ÆÆß‹8ÙÚ¤ØgªbÅ‘ º¡ƒ|̉sˆ̉]v<ä 1 Ûx‡J† ‘²ÛË{Ú›°ÿˆ¹Ñ9ÈîÔË!`­¹®ƒ#ŸÏTXÜfïYíá‚&ƒRđ®LÓ“(GúàQk" ôFØ:pÈÑk¹¸¨„K‡`Đ&· Ÿû"Ÿ6!&Eí'@ f˜=excÄ^é^cç± ̃:ø̃A—Û^\TäJâ”ư,ÊÊT’úå裼›9›Ơe²)|D6[1¥V\ a»Gï@c³’·î&,™̣€¢ <ñè¬̉¬µRª{’tl¶Ṇyºü¦rCÂv¶Q‰rdœéw)\«È6Ë-*U5`‘$emê“YªË¾§Î™c/µv*”iÔ¨•åÓ+₫>>5ª$7ú#ÂE3ä³.ăR”jR¬àº–™©/[ âÀÈ«¢Ï1`T`đÈQ*—bk^C—$ö4̀²[ùñiUôè£ ëLb¦º–b– ' „\j'i[ä›ÍÈH·.ÄÇdgœ(Ă>Ô½Êy­ØÑ(¹(•úí‡Ùü#owyFôư©ÛüåYXƒ3.â”&ØÉmT…æ‘iáÛ¶9̀¾ùU=öuF„/>2D’‚Á†íØÇ·ƒ÷}Ràë J‡Œ…»¡†̉Ä<Ƥ`…Á¥]-X Æi*¸L E˜Â+ÎlÙ"±ƒbX”y–&:-çúT.W£z™/ÿ ×N8cËŸ>X₫L–‰‘[áư# ÅLuÍ8EÁm¸R4ç…Í&)ƒúĐ)è²YLi}.5w·’'…Í#¥R$ZI"ˆ“†¹r&˜ÓÑóiụ̈,Ñ…Ó„¼m₫È̉J¢ÛŒRĂa8–i±'”|Lü2„¢ç0‚*‚ßvâNæÉBfËK”!ˆ®PTS|V|?Wó “IçY_ûQ1ORÈ Ñé;Ơ“=r~*ñÿÜrƯPN¿óÔÜu`>H¨w;©82˜¨̣y®ă£b-ƠºßWñu \ùâç(6ẳèͨ"àæTW}l€§Ê‰N¦3ܨ̀{ˆ?gæè&2}ºÑsḅÿV2ưw£ w–;ùY Ÿé™­¹¸üêßä¯ endstream endobj 938 0 obj << /Length 2427 /Filter /FlateDecode >> stream xÚÍYKsăÆ¾ëWđ¦–đ<đt%©Z§¼[›rùUNv J°H€@iµ¿̃ưÁ€‚»’Tr8ïé₫ºû›™†ZƯ­Ôêă’ßïno¾ù Ët•Æeg«ÛĂªÔq¡ô*+ ¶_ưưØkƠëMZäïá¯çuén×ÖF¨Ÿ°°]o,tơØ—EƯÇ4Đ=Ö4FG÷÷ ĐtæY;(âĐĂó4­•Ѹi½₫Çí_Aö¬ d×Yg¹ƠHôS#ê˜₫?2c¦­5±ÊS7áp¡]t´eûNölœ°/tÆj7VG÷›ÀBơ‚ŹVz\[Ơ®6v=Ÿ×eÅëViỮ‹ÄĂ•ÀY´g=pQ@`µÑeçI±ÚdCÂWª;‘yqúá;i§MR&NH,:!±LK?qù å¬đŸ̀A¥ñ÷Đơ'‘Çßqë©ơL²êèÈ«@MG,ß•I©u¸^%uÁû¡¼¨1¢~-QY¸=#â ¯™ 8¹¾a’IFđäk¯ưYé—F)À´(Ä8hlî–ÑK Ư<¢æ·À „p̃ê÷Hp¦1³+Â!²¢¶$4;<ÀGM–¦<̀XÖhÄ̀ÑûH7êñÄ×>û‹ÚÓYØĐÔkŒÏŒµq‘fÿkŸ³E¬b†ÛˆØiK±ÑøŸe”ê®% ₫æÇ +*o«!Sº?±ZpÁxŒ‰ä©‡LSđèlnó߃ bôï;^(Ẹ¦†$¸)¾¸K!¸©x`Küj¸–j¬¤‹̉¥đ(j6-\=c= w¬è‘M/SáG¾)ôtÉkáPx9 ¼#­Ñ^‚èƯ=À˜"êÉ-Ê[ưĂ!g[Rc'Ư3Ë{ˆ;ÚƒŒwÜ>„u»0“.s~fp1äv^I§ù‚Ơ¶{”Œnu?•¯¶ù\₫¶Ï!æoG-™ë_E-Ư øh[r»26Iù:}¸@U3¦Ë\Øb fVuĂü–¤Dw Œ5ä†//^„o;PPÔ-û¿M]eæöÄ]r3±+ù3;÷†:­â¦‰e¡å¥Yk|äxœ¸¶c&aêIM3SÙ)T³H¼|¼T“¾Đơ€îz'9„7ˆiŒi!›°&ÆÊÉ!»w %eÂ9œÈxmố΄ä Ă@+d²[*¨ËPAÚkRP™W0S¯YŸ„W»̃%t\°u\œG÷ớËƯÛgwy&“¨9"dÅN{çb¬udCqùÏ ½…vÏÁÍ‚.lăË‹Ü, ‰™ªkéƯܼËS³æ‚÷D ă´₫y ƒOń̃ÿÀ×­…7ƯF ¤‡<øo×…¥·‚Î-|wå…g,,Wû½á™çè§áđ™}y‘“Ç4ÿ¾H))ÉO<®ÓŒÁ¾­”j³f6,hWv£Đúwÿ†±o4ˆ¨VưƯ ûx³ú‰V?Á~÷‘ñR³@-¡Œ¯(›Æi&§S"X[j —Ơë2ơ™ƒS³…AZsù"¬r¢—ÙÏBÔWü³sÓưå‚/N4Grz¸đ—×̉Dyl³0Kä’9˜Që¥0PÙU•\|Ä{…î§{ï¡s7zî¤Đ½§éƠƠn-]A¤G³qªj{C¿6–?(àx†„½çäÄưLw½´~Y Œ7ÂOÍöj|ÆI`h†e¦< :£-éô«5»jtl$‡<%Ï©3‰Ú t5ñ›đ8ÇPÆÓ\»Ÿ{ƒŒÍK"1&Ụ́盼œ˜…ÿX…Å™h˜^óíI´‚EkƯG=ó"8d8›Ú©;2Ï3«‚X9ĂÇ!9ö[çMá}`ÛB‡YøA2ăE!_ä>4…NBË×¹zÆ+£€R“ÂÆ¶È…!̉Ù ïoo~p(   endstream endobj 944 0 obj << /Length 937 /Filter /FlateDecode >> stream xÚVÛnÓ@}ÏWX©D–½xí5HT´ˆ¾Q¥O”ă¸IP—ØmƠ¿gn›Ø%@U²̃™9{æ²ƠÉ2ÑÉç‰₫Ïïé|̣öÜ8ª,´Iæ7IiT€Uî3•.™/’oé‡é̀[—̃MMºY‚\k¯§ßçp<ƒăÖ+í8§ƒ'b2)ë\´èÀW ̉‚́@ÜS ‡xGeF¹{y lĐ(™^ÙP$³ReyöÇ+µ€© ¼‘`₫z‡×ÿĐ½·¨[¼?vGă Lụ̀Kª£L)Sä/÷È~ K‘[A₫dr rrÆ$±Æk Ô0³~Ä́B<£HLj°ư ürN2u· S/Đî0˜ÅưÉÙ|bà”N ˜)°±…U¡LêÍä×D&Ó–ôƒ%©² é#₫ÂæÛ/“%ŸÚÉWø‹^gâvvđËä£U©Ëa#Ù¬T® đ<̣zϵ0³ýƯt–é2ưÈßKÔUw+±­y·Ââ«0Oh:Ö´7øëÓK©áơ)gô1èĂԩ軼5/˜‰ö‹|Á&?Đü‰×¸ß­÷íH†áÈ]»Cw_p¿ÙŒßă¹º í–ªs¨‘Lå³’ù™¯˜—kn:êD,˜Çµ4Î@{ÛöđáK¦å–Ê 0?vlrÏpÙ“–ä£ás=†«ÄI×nßơûÀ/mm§6¤}Ç'V†{À-qH T5nÓMG¨ÂuƯ¬,ñ¹äx˜Ă½%Á8Â$M*ÇJÎv¼̃Ÿ́zÏ?h”Øøê–_‘^2l¶j"à®+œ'̉È'x6¤íÄüîănåxµŸ©ûº¥QÚ±ÁúZƒ j³i¸ ™J´{¤;nÑKâ$̃%˜t#Ùă’. UÙÂûCÜX|6hWUOcŸăơ¡ÓØ)8é.8z¤¶’~6̃§×0âí{|;¾ƒI_¡QƯ"”®ù èư^R¢hú^b¸«3†P/FF±¨PK‚¹=ÂA¯„ *V£& Å  ésÑ‹/Lú¨ă›Qídơ4 çÚĂ ë–-»qáGƯĐ# Å¥íÚkm2 ÈièùxA(Ö¼™c]‡(NF²‹6†äA©ăĂWí8‰3çÜs „Ó9ûü.`IñASñ'7½`4₫₫ø,±:¨"ƒ§%ªộjø|d ïÛoûC endstream endobj 934 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 946 0 R /Length 39589 /Filter /FlateDecode >> stream xÚ́XÇûÇPTEQDĐ¢ØÅ v•DDA[D1"±¬k5¿h,¨XP“hlAÅÄ(üm(±‹ˆ€"h‚\ù¿̃ÄÍzw;·w\ăx¿Ï=÷́ÎÍîí́Î~öwg̃‘HP( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P(ª¢+++Ki±XüôéS>{{üø±P(ä“ó¯¿₫¢g(--Í–êƠ«WJ÷ÙđRréÍ›7/_¾T-''çíÛ·J³ååååççóù_ÈöÏ?ÿĐó¼xñ‚\e¥{{₫ü9Ϫ…B‡̉̉̉œœœèyüæ›o>û́3zÎáÇ/Y²ä“O>QzÁÿº»»ÓókÊốÙ³©S§öéÓ‡íöíÛäưôÓO)FoQQÑ¥K—`ÁÏÏ/77—²Ă±cǽFÿ_@îÙ³gÿüóOz6¸s¯^½ ÿxăÆ ¼¦̣úꫯf̀˜¡”Ï$œđ P²AhL9r×ô.[¶ èt>CÛmâĉ°OJ¶̀̀Lx(@u}̣ä Ÿ† e4Û˜O¶¤¤¤€€¥Ùà>êß¿II %Ï̀™3Ăs­_¿~ûöíƒKL_ 5 ÚiÓ¦Ñ=p‰çλsçNJ6/4|={Ö·o_JƠúçŸơPÁÆG|h(T‘RË ŒçEïEÏ––¶páB¸é4̣¿€zï̃½{•¾m<}ú4üï£Gđj*Ô ©( ˜K|ôèQJN°œá¢lÙ²EiÇ PJJ €çÈ‘#K–,DÓ³A†o¾ù†̃àB¡P( …B¡P( …B¡P( …B¡P(ªœª   --OΓ'Oj0Ûÿưßÿñ‰áđđáĂ(ÍöêƠ«ÔÔT¼\‚“ĂgX4œj8áJ³Á…ƒË§û:ª+^MTÅÑ7&MÄ'g=4˜íË/¿¼~ưº̉l;v́ˆU-##câĉx5¹DÆP+ͧN¸̉lpáè=̉µTg ¢â~̣ùŒ|F>£PÈgä3̣ùŒB!Ÿ‘ÏÈgTyÔéӧæ—"""(C7nÜ8eÊ”!C†Ô®]»YXXh0ü©‹‹‹̉l ¤R våèèE†[˜ëRIIITTÔ4£+Z œ 8!Nf϶¾ê TשS§BƠåªƠPáGed—x̣äɨ̀g œÿ3.mƯºuƯºu\Eöññ¹té̉¹sçâââ~á¡-[¶h0üé?₫¨4[¼TJ³ư$yذa¿ưö›Ậ₫ơ×_ÿgtêÚµ+Wˆ́ßÿ}ö́Ù‡œMm¸púª3P]¡̉v́Ø‘«VÿïÿƒV€‘]bb=̣§™ñEqœ>}:Ï.CåHpKBuåúơă?₫û↓È_ư5…ÏŸ~ú©ñ™Ÿ}ö…Ï_}ơ•‘•÷Ÿ₫ªËơë÷ßO‰m[Nh¢G åææ3îè   ~ưú…††Ó\`Ègä3̣ùl˜‚¥¥e–ä{Œõ¼¶}ûö'Nó`L#ÏÈgä3̣Ù0ơË/¿´hÑ‚'33sêÔ© 3f̀ÈÈÈ £ÄÓF>#Ÿ‘ÏÈgä³Îø :sæ̀_|8aÂ#N‹|F>#Ÿ‘ÏåÏF,ä3̣ùŒ|F>#Ÿ‘ÏÈgä3̣ù¬{>ïÙ³g̣äÉ .|üø1I9pàÀüùó333 *7nܘ˜˜¸`Á‚‚‚‚uëÖmÙ²¥¨¨ˆd–OA>#Ÿ‘ÏÈgäsÙù¼jƠªÀÀÀääd²§§'¤i{ơêuâĉ!C†ØØØ@J›6m›¯_¿vuu…ºÄnß¾=ü´”IA>#Ÿ‘ÏÈgä³Føœ#UZZÚÚµk ÅËËëüùó°pÿ₫ưZµj>“W«`i¨¥êÙ³'l%Ÿ‚|F>#Ÿ‘ÏÈgđyÛ¶mîîîááá›6m²··‡”¶mÛ̃½{—ØÆ¶¶¶„ÏÄơ6vÿ₫ư£ß  -Ÿ‚|F>#Ÿ‘ÏÈgđ¹cÇ)))°`gg .üæ›o`aûöíŒưLø æ±··7)—OA>#Ÿ‘ÏÈgä³FøÛ¾}û€€€ĐĐĐ ư²³³{÷î ‰³fÍ‚6ŸAsæ̀éÖ­[Ï=™ḥ)Ègä3̣ù¬Ÿß¾}‹|æ:3P˜Ơ_ư•Dø̀ÈÈPä¶´´T&8¤| ̣ùŒ|F>Óó́ß¿?99ùÙ³g đơơŒŒD>+Ơ™3g<<<Æëîî~üøq ùŒ|F>¶lÙbaa¡4>RbbâªU«H¿‚µk×̣™X¹‚ó™ØĂ`#Ÿ‘Ïh?Ë øW@!Ÿ‘ÏÈgä3̣ùŒ|F>#Ÿ‘ÏÈgä3̣ùŒ|F>#Ÿ‘ÏÈgä3̣ù\Aøj”ƯÉ“!ăÇJ¿xñùŒ|F>#Ÿ‘ÏzăsNÓß *W®̉µkc‰Ä₫̉¥‘3gÂOQQQ€è?₫øùŒ|F>#Ÿ‘Ïúâ³eHˆƠ¸qg6ŸAñññ"‘ùŒ|F>#Ÿ‘Ϻç³ÍæÍæ:8Ëđ4v́ØƠ«W#Ÿ‘ÏÈgä3[Æw σUjÔ¨AFŸsrrÚ¶m›——§/>åççó̀üöíÛ̀̀Lʼ¹¹¹”²ŸU*2QvvvAAö¬3>«Zv)WˆçÏŸ«B|†KF°—½¤Q\\\:u&³$+¸Ùûôé3P*øæÙ‹ù¬l5ªÉÀYÏ o¿ưvụ̀åºçsZZZPP¥¥¥‰‰IË–-/^¼HÉüøñ €J•* SSÓ®]»^»vaûöí 6$½SZ·n]– ¡=>«TdFIIIfffsæ̀‘I×`‘uÀg5Ê^ZZÚ»woÈ,“~ôèÑ>úˆ0²wï^Ăá30NWóæÍáØ¬­­ĂĂĂ…B¡Ú%íׯ_­Ơ¹sgơ Jä́́|%ù%ể¥K"‘ªÚÏZƠ±cÇ,kƠjǿÏ`˜yyy½~ưZ—|†ÄÉÉ ¨̣«TƠ«WOOOç2ºÜƯƯkÔ¨ä\¸pa½zơ ®-I†˜˜¸‚ƒƒO<¹bÅ {{ûV­Z©d½è€Ï*™\Â">k¶ÈÚæ³e/)) …2ÊP 8iH„ÇÓ¾}û:uêÀ?qâ„đn°¢¢¢à© ç –GIß„«¤p5­¬¬ơ¡,Aå×¶cÆŒñơơE>kO„i-¼½srè|EGGõ¼Y—|2e TƯ'OUx”[XXŒ=Zaæ;wBíl2)ñññ2₫|RR[[ÛîƯ»3†Ê¡C‡àןU*2#È#>k¼ÈÚæ³ªe¿tép À[­Z5jM˜0JÊÜh™™™°g???Cà3œCxîE™”ÈÈH8<ă‚R̉{÷îAI¿ûî;A%ÿ3œŸưû÷#Ÿµ'¸#fΜIúo(å3ÔhIé’Ï€hбSÀ¬Zµê›7oä3ƒ¥Ô«W/¸Ù6?TéaÆI¤Ç¡_¿~ùZgĐ|SÛ+«%>«Tdæä›™™>|X†Ï/²¶ù¬RÙÁn¦A‹;v”¡Öˆ#À~fºî—––ÚØØÀ£Êø Âu9wî“rëÖ-HY´h—3„RR¸ú°mrr²îùl”2>C®5XY<ù,‘N&{ö́YƯđ(OfzD "$Êx•¹´cÇÈL¸O"2mîưû÷\7n¼sçNYÎ6ø¬F‘Ÿ>}Z»vmh#<₫\†Ï/²Vù¬FÙ׬YC̃ËS È Î=»¤¤J`^Âê+ ÏÄMṇ̃åKv"|ñâÅYYYÈg#às·nƯHlm₫|>v́˜ÂùdµÁg0ü GGGËỤ̂sîÈ«°°°uëÖ5jÔ “ä5mÚ,j̣±råÊôNƒºç³ªE˪oß¾oß¾•ç³Æ‹¬U>—årËSK"íP­Z50›6lg`é̉¥ô>ü:ăóàÁƒ¨2o íàåå¥t[ù’úúúJ×ÚF™× (äs9âó?üÀ¼’àÏgh'öïß_~Ä·6ø &T¶µkײ‰“ùÈ‘#ôm¡E<`Àȹ}ûv’âééY¥J•ºuëBÁá`àÁÔ¡C¸m/\¸`8|VµÈ111€ 2ºSÏ/²Vù\–Ë-O-8p´°-<¼ºté Ÿ|̣Ivv¶!đ™t·Itvv†CUƒÏ]»vupp¸råDúqï̃½pÑœœØ“G#ŸËŸọ̣́ZµjÅtlàÏgĐÊ•+wíÚ¥>“Đ^c'®_¿O:EÙ€&´ ™Ä^½zɸøNŸ> )jw̉ŸU*̣7àNd€&ÏgYƒ|^°`Á4–„B¡Ú—[!µúôéM¦{̃Í›7­­­›5kf|†º ™DxŒ̣q+l)ÈÛçp̉‘Ïå”Ïpϲ;3«ÄçôôṭÆMÛ|.,,„j7/;î_ºÿùÉ“'nnnæææ{ö́a§16d;`¡µ 7˜”†Ăg• (æ˜1c>—jøđá »°L2k¼Èä³Íû‰D`ø©w¹R+??à ˜b版ˆ€]Ư¾}[ï|9s&‰LWUºÿY%>“nKđhC>—G>?}ú´}ûö́áu*ñ4hĐ ™CZê¿Q§N™–€€Rqq1—ư -»Úµk³_Í›7*-™©jƠªC† 1>«Tä¡C‡:³Ô¨Q#2Ø––Ú(²ù\PPÏ’z—›‹ZĐØ—7ÅcccUí[¨%>“—•©©©L ÜM”₫”’B£)** î>vmÛ¶Á̃:„|.|†ÛV¦·¤<Ÿëư₫{c/¯€I“Ø¿1cΜ9sụ̀åÙ³gĂN.K5D¢Í₫ÏĐ̀ÍÍeđbeeÄe|£À0Sm 'SSÓÉ“'3)``C5‰‰1(>«Td¶äư/²ú?«WvjÏ«T©âééÉ”×£G(»Jƒ£µÄḉ́l8<öu‰û™Ư’I-,,lmm¡̣3‰={ö„óFnLäsùâ3Ø-ĐŒ’y‘-Ïg›­[ëŒƠàÆ ö§Vß¾µ{öl2mZ£1cª7i ……µêÙS{|~ôèܰ`§¤¤tï̃́Cv÷¡6õœ,Ï;nÀnƯºMÿP̀˜‘#GB†ÈÈHh/>|ØÑѶ•鿤w>Ó‹|üøqwww >k¼ÈÚæ³Úe—oơ/[¶ ÅÉ“'CBB`5,,L¥ăÑ̃øÁñăÇĂ£sụ̀å`,A©ÁæQX«•–”D†ă„ó69)©Ú½tx̣933jÂ;wV®\©Ơx ÏëÖ­[µj•L¢B>Û†…±SàcƯ¿ưsçȲÅàÁ™™Ní ’h3₫Æùóç*På̀̀̀À08v́û×fÍÁOdÚơEbÆÔ”––Î5 ́ H„Vs¯^½¸h£G>Ó‹¼oß>H‡[’'Ÿ5[dÄßP¯̣́Ô díÚµ5kÖ$u jƠª ,Pê'ÑŸáHÆG:=Ö¯_?<<œ=‡]«ù”ô›o¾±´´$%µ³³Û±c‡Úç?>>̃ÁÁa'Ḱ_Dđđóóƒï£G‚½G‰E†|毷oßB—ïe¤Ÿk¯Yc§>=ỵ„iö–QĐæ½uë–z½tĂgƒ-²Îâ×iª́b±øáÇ`æñ‰>¤K>“ẨÚ+[¡àA Åd†Æ—…Ïööö[X’M·~ưúëׯĂÅÅÅI¤încPU|>tè̀ûqµùlåƠĉ:ă³ ă?kÏ"Œÿ¬POŸ>ă™üÉÉÉjGÜB>³Â~k\>7 «}üqĂ¿₫B>#Ÿ‘ÏÏÄ©Â8jŒ́ è‹Ï7õ$«àVúíCµ8PU>çæ¼yuB>#Ÿ‘ÏÏF,}ñyáÂ…{ö́9tèU»v¿₫ư©Ú´©|®{đ uṬùŒ|F>#ŸƠKûönƒÁÇÅ×·ZíÚ®\ÅÚÚfófđVo×N >7üë/‹Áƒ‘ÏÈgä3̣ù¬†øû3¼­µxñ;o³i“Føü®—Ÿ_ ä3̣ùŒ|F>«ÇçFbqỠ½<Đ8Ÿ­£¢œ;uB>#Ÿ‘ÏÈgä³z|¶;|ØjܸQ¬Q>×ưùçúM›"Ÿ‘ÏÈgä3̣Y=>W0À>-M|v¸sÇÚ̃ùŒ|F>#Ÿ‘ÏjđL\ËáĂÿC±Fù́TP|ÎÊÊB>#Ÿ‘ÏÈgä³Jrơó3oß¾Azºöø\¿iÓcÇ!Ÿ‘ÏÈçĂç .lÛ¶ííÛ·°œ””ốÙ3䳪Ӵ©Ơ¤I XÓ|vîÔiÙ²eÈgä3̣Ù7²««ë-–^½z%“çâÅ‹ááá6l8p`QQÜ₫C ¥¦¦V¶°p̀Ï×*Ÿ[ôí ,B>#Ÿ‘ÏF í۷תUkḲ!6mÚD¦;<₫|HHÈâÅ‹‘ÏjT­Æ7đô”E±¦ùÜnĐ xŒBcùŒ|F>WÿƳgÏüüü?~ ˉ‰‰ÈgUƠµk×3f0ăS´Ê稨¨… "Ÿ‘ÏÈçÀg‰4p+²577טînđyèĐ¡[¶l‘°Æj•Ï€;ùŒ|F>W>±´Íg@°nƯ:÷O7|†–N·nƯÏÈgä3̣ùLј1c•¥¥¥dU7|†?jß¾½̀œ³Ègä3̣ùŒ|&ºsçp²¤¤„IÔŸ‡ ¶víZä3̣ùŒ|F>¿xñ"ë½nß¾,¼}}—¬YĂ₫8öï¯>/Z´(&&ùŒ|F>#Ÿ+8Ÿ>|hÛ¤‰Û°a.572Wwp¨Ö¨‘Ͷmuøïóă–;ë†Ï»ví¢Lé|F>#Ÿ‘τϗ.]r™1£ÆÔ©@fËà`‡¿₫zOŸúçϳá队_½KƯđù§Ÿ~BûùŒ|F>#Ÿ—/_d®̉µkĂÇÿƒ§¾ù¼nƯ:ä3̣ùŒ|®°|Îܹ̀̀́3À¹~@€,<ơÍǵ_‡|F>#Ÿ+&Ÿ/]ºUÈ#Ÿ‘ÏZâsVV|çåå=zôˆY­_¿¾·mÛWÏ=uêÔ1•ªº•Ơ˜û úûú~4}:°)¸{W`b̉X:,…đùßôzỡ½7́̉…¬₫—.³J€Ï2éÀgùüÀg™lÀgX@>#Ÿ‘ÏÆ¡¸¸¸5jô`éäÉ“2y8`gg7¥û÷ïŸÀ¤bĂ…&«çÏŸ·¬SÇÄÔÔ¢V-BÂ*Ơ«¿ă×_ÛîƯ ä[`kkö/'£¢`~Àg©ÏÈgä3̣™¿MÓ¦MăSù̉~5j”——WçΫYXT·¶6¯RÅỒLđ^•›5Tªd9r¤ vm³¦MÿẠ̊îƯuüÈ7đ¹FPĐ¿«ƒ3é6›7 đ̃¼9Y•IgVÉBegg™ôsçÊç¯Çöa6ÛøxX€Z u•2~°wï̃ĐøÑ¸4uêT ŸÁ¨øÑèäççGáó”)SŒ¬¼Pi¡êrƠj0H¢I±±±J!VZZúüùs£äsffæêƠ«×®] ö,,^¼˜ î€G̉Z©†¾nƯº#FLœ8Ú´i³N*øvrr7nd#q6@dAfµºÔđV˜M>ÿ5k¦Ëä'{“ϵ~*,,ä*̣Å‹¿7:A{‡ á%#±X|äÈă+2 ¦°Èp*à„_‘¡êrƠj¨đPí¬¼`ew+ …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡ \›6mêĐ¡ĂÇÆ¥̃½{Sẓ;ÖÇÇÇÈܦM›'O(,ïßÿíííư±Ñ Å5NÿÏ?ÿ„bdåơơơ…ªËU«¡Â»¹¹Y‘á>Ư¸q£1ñ6-- ¾“““—.]®4ÿ´iÓ.]ºôqiï̃½”øPÏ Œ¬ÈsçÎ¥Œï6lØ?F§¡C‡RÆwGEEYy_½zƠ¯_?®Zưư÷ßïÙ³ÇÈ h2eÑÀª%đ=jÔ¨S§Nùûû3aèn°tîÜ9Uÿˆ ¬f/e…9Ù?ɬríY>?û¹ö̀ă#Éđă#0>Ryp)55uÛ¶mäV½uë–¼=‰¥:uêÄÅÅQ˜IaiY¤t·́ 2”–y4È, Ÿ‘ÏÈgä³J(ƒñܨQ#0ŒĂĂĂ•n̉²eË_~ù¥́8U{J-jË[Ẹ̈B>#Ÿ‘ÏÈgĂTNNÎ7²³³ùdæÉg5́^X~Cy2S\%2VÈmä3̣ùŒ|6&©Êg•°¬Ôe!Ÿ_̃e¡Đƒ¡Đ/Í,#Ÿ‘ÏÈgä3̣™bWów‰(´‡ßt4ÚÏÈgä3̣ù̀“Ị̈àårV(t/K½Th3£ùŒ|F>#Ÿ5è¡“YB}-(áxWHRôË礤¤đÉ)‹9wîÜ9cÆ •6A>#Ÿ‘ÏÈ粸5TZP‰½t,«çßÈÈÈX¸pá5kH—W¯^mÛ¶mÉ’%OŸ>…Ơ’’’ØØØ_ưuÊ”){÷î%FïæÍ›'MwÄÛ·o!åùóç«V­‚ܼy“ Û‚‚‚uëÖmÙ²¥¨¨Vï̃½›˜˜¸~ưú©S§^¼xñÍ›7₫₫₫^^^çÏŸg6ỵäẸ́åËááf„Ơ[·n9r„'üi~~>́ó›o¾™|ØÊÊ ø ‰666@ÚÈÈÈaÆdÈ&€÷ÆĂÁÀ½ÿ.‰öïßJµ]»v>5j<;’’’`ŸgÏE>#Ÿ‘ÏÈç2RZ©“™ÏÀ OC?ŸcbbÀ&Ëééé ;w&«`ú.X°ølnnß2}út€-Ü­[·J{́̃-Z0´‡=ØîÙ³' Qª={¦¥¥Ÿ™{xxܹsgëÖ­Ä¿A6™#ÉÛdäù OAƒÁ®ˆ|F>#ŸË£HÓ[|¦ÄÙ 'rơâPÛ­!áèbÇŸÏ`ûí·̀OGƒ–,’@f'''’2wîÜ 6À ẃرvvvK—.#ö“O>aïŸÀv₫üùưû÷~¯ÔÔTØ!X¿$§§'ç2|₫oÚ´‰d€j à3² ®đ.ëöíÛѶ¶¶@!ä3̣ù\^·srṛ³gÏ àëë Íg ̣™çÀ…. ¥†4|çææ*²P(Ô¬ư Ö/P̃¼y§"//ÏÙÙ–!eܸq‹/–çó®]»À6&•§mÛ¶¥¥¥̀&€M°“ laÁÛÛ[,CzXXØƯ»wåù¼sçN‹lráÂ???Øöéîî«'Nœđññ‘H]Ü–––ÀgÈyûömHÇÊÔ©S‘ÏÈgäsyÑæÍ›Á´[µj‰2ºvíZ̉}‹­“'Oö` îú-[¶hĉ!ágGH·ŸƠ°®Uz?8kÖ¬={víÚ́R‰4¨”——WÇ•EEẸ|ÎÊÊ‚̀@ơæÍ›ÿüóÏi7ŒnƯºơéÓçË/¿d` sæ̀tØ9I—çóơë×ëÖ­ ׋ld†Ú›4mÚtÁ‚  C‡p<}ûö%₫ ¸¾plđü…Ơ?₫øùŒ|F>—#>À$;tè h̀˜1999÷oĐ=”œ”AÙ|¼=ëJUà£jÿºââb°̀eîzÁ_½z%‰˜U@+é¤!#°„KJJ(û)•Jæ`d|S/_¾”ÙJ>ùŒ|F>¸2»wï>~ü8´Üá[₫ Ñ›ùĐæ3ZP©MÈ Ÿ‚J8~ùŒ|F>4؃˃AGî Aƒ .(ƒ. *3pÆøHÈgä3̣ù¬’ßC¡.‹áûèÑ£ !ÏÇÆ˜±ÉŒñëÏÈgä3̣™b6sјgh}₫ ̣}ùgS2#Ÿ‘ÏÈgä3̣Yđû2́ơ÷÷Ẁä“/0Çø¢Ègä3̣¹âđYíy¬Æ̃§Ø̉ èèh…€m"09'¨|G`#0ÿT`*ƒeo†BïG¹ă3ÔĂcÇ=üPÈgä3̣ù¬†ưL(Qô~PŸ₫¹BÆÖùÅÿ̀éd–(rP—#>§¤¤Ô¯_ÙÄ̀ ¾ëuíê6f |j8;ÿƈ|F>#Ÿ‘ÏjÀY₫WJH ’’““ Đ¡si+&3Xf“îA®çByáó½{÷àh·oßî6xpc‰¤̃Ù³°Z÷§Ÿ`ÙfÇÍ̉A.Ègä3̣ù¬OCi¨|ùœt‡³<™÷ *)´´W®\ÉeK— >NáPÉHCÂgø4üë/H¬ƒ|F>#Ÿ˜Ï2â´Ág‰²i^%zÊÉ, ƒ¹ïy,“OÀÜï½ Z†ç~~~ ]Đ’̣à†gbbÂÜP Ÿáăđè‘YƒÖÑÑÈgä3̣Ù˜øüøñăSïåíí ß$0¦öø¬ºÅđ̀Ô]*0;*¨\(ç[î"0̀&đ““kic·iïáL‰P*o¥8Ÿoܸajjʾ›Ø|†ƯÑ£fNN?¼e‡|F>#Ÿ@ÉÉÉ}ôÑüùócbb<<<à[>₫†¦â#)íđ ßVÁ~A¥R»†2₫J`vLPyƒtt‰BE  ©ÀÄÚÑ.55UÂÏù|ëÖ­Ê•+ˌʑá3|ªöî=48Øpø\TT”ŸŸÏ3ó‹/È́3\ÊÍÍÍËË+/|Ö`Ùá§ÂÂBƒåsvv6‰¸Èÿä#°y‹‹‘Ị̈5?,,́øñăP{uàß'³hëöÁ̉a#2Ÿï•$ÜĂ½%ÊBØIxĸ“ÿ9--íw–Ö¬Y‡'Ry>×₫ßÿ6lWSï|†"ÁsÜÄÄjËÅ‹)™áYß ArjÖ¬¹xñb™XOÛ·o‡r‘ ­[·†Đù¬Á²ÇÅÅÙÙÙÁOđtîܹszzºáđ˜ §«yóæpxÖÖÖááá|¼£¥¥¥½{÷†Ó"“¾oß>Øœ7qù,£70@|–÷*ˆN₫&6‚bá¸/àû‚Jd·„#2¿„_|Qy†<˜̃EÄ@ø|íÚµZîî}ơùÔ9̣]¥ut¼råR>Û́Øö33¾ø Lprr₫*4ʪW¯ÎÅ`ï;÷Tçα±±?ÿü3œgX5k“t ¸+VØÛÛ·jƠJ%ƒM—|Ö`Ù¡Ñdff4;pàÀÖ­[[´h„Dá3Ü,¦¦¦QQQIIIp̃`yäÈ‘ôMJJJBCC¡Œ2|̃»w/$¹‚"\___x*=ỵù¬Tå³X(?!úî{áÈÏ…“¦°±ù¬’ư,₫ë/Ño¿‹ÖưOøEDic7aèáüE¢Í±âÛwÄTÇ”ÂÏ\öđäÉ“ƠĂOñNŸọ́*99Ùưú+¯J|›³K—.|¼ĐÚàó_̉ÎØḍöA"p•WÓÅÅ€Fܰ`ÖªUK"EX½qăFÂmĂô?k¶́øE¢eË–©ÑpĐŸ‰›Bfưüưưư¹6Y³f ™B†ÏW¯^…]ÉX`Cbbb"̣¹,|¿z%Ú±K1U8p°0øSQôbѾŸÄé7ÄÎî!Qe’ùMØ\…¶́Z)|(Ÿ«mÍ€W%>ŸíêƠ«ơÂg°uI˜ys l'¥›ï̃½›\e²Ô´iS¸.Đ.†ÛŸ¼)ăS4½đY³eg4v́X0Ëá ¬_¿^ ¸6øßº-Ú¸Y|欘G{Sé°úê¿sQ•–öïß–IƒQéX̣9ןíCBªxz6‰ÔæóóçÏ»wï®p̣,móÎçÚµkÙ‰;wî„Ä#GĐ·=qâD•*U7oθd===!¥nƯº?üđœÿăÇwèĐngù³a|ÖlÙ‰„BáÀ;wî ;ñöö¾{÷®!đ¹_¿~¤]Ă–³³³‡‡‡ª|…„„@éfΜ µ.;;{Á‚äY §ù¬)ÿ†¢ÏĐÍÓ6†¦ŸÂt¨çüç+4>'%%Uµ·¯ñ"¼ª̣™´wíÚ¥{>“đ ‹/f'‚ቧN¢l¶±»»û³gϘÄ^½zÉx5OŸ> )<;‚j•Ï€‘i,H5[v¥§§[ZZº¸¸Ÿ¡nÀË$Âc¬5ø L†Ç.œ%À²¹¹¹½½ưºuë`ơđáĂÈg}ñ™2k’₫èÑ#²Ü·o_öO‰‰‰„̀ ñ.á.Ü@ø<{ö́mÚÈ€W >ÿñÇĐ.Ö=ŸÉÉ—¹AYṭ́åË!C=dÆt÷DlŸ3<p;ëÏ666́jVRR¢Ù²Ë‹ÄodÏÀ®/>ƒ­ G"3Đ˜î¦đ™´‹₫ù稨(¸ á<ÄÆÆ¾›„î̉%ä³ù,³,M…yÔ“„c̉+ƒ²Ÿá/5kÖ(<\¼“&øâ‹…+W2Ÿ+V4́ߟÂg·äädóT§N___*‚]Ä54lîܹÄ$–Ÿµ|̃¼yđ{´œ¢ªU«2Dï|.((ÈgI³e₫üù”)SdZ@€/È|âÄ ½óù»ï¾cFăƯ¿Ÿg÷?y>¿xñBf̀2˜p•鳨#ŸuæßPa>«|̃*ơKư¼zơêñăÇ3ưŸ™uß¾¶»wÛ=Ê|ê÷ëWÿÂ…,ê—/«{z̉ù ¾OŸ>̣ÑT´ÍçG£<<<Î;—’’̉½{wkk묬,̣+ĐƯƯÈ@îDø îtÀÚôơøñc’¤teddäµk×> Œj̃¼¹LÏ.Ăá³ËNü~~~'O„¶Ï=a.™!øŸAÀOxtÂAfdd€9 ¥={6óëÀá2ñä3y§đÅ_ZáÆnnnpäÈg4R À÷Ñ£GưưưåßûC‘¿d qqqqe±“º åGsÓ{,ÓG¦H¸–*ô¢èÏK—.…ÚÎ?XF>K¤N)…̉^üóçÏHáÄ™™X;Æü´oß>H‡¦ºä}ß…‚óÀx&gÍeaa‰æææ½zơâ9:R/|Ö`ÙÁ¨^±bX’$`—¬hásqqñ¸qăHG‹úơ뇇‡³Çà4kÖŒë®Wè¶áảܸqă†ÚçßÈø ,h•f}||tÏg"¨Tüƒ5Ñm[·n©mSé’Ï-ûÛ·oÿøăhƠªrDÛñë€Ép]T}jp*`Y=Ÿ³óùéÓ§`<“g_rrr`` ̉ Ôÿ̀åXæ2••‚îÍPº‰²ùgơÎg°œW®\)ù0₫FÙù ‚f#„1₫³öøl ÂøÏF æñÇ3øª¶û?Ë›»|âís™ÊJGyëÏ`6wíÚ•ôĐ8ŸÀĐöD>#Ÿ‘ÏDï_§Rf£ƒâ¾PúzäóÚµkI'mđZCưúơS8đùŒ|F>W@>+e/Be ̀³§W7<…f6ºơÅçÂÂÂîƯ»3¾Ê2̣9ꫯn|¨§OŸ®^½ô@>#Ÿ‘ÏÈg> æêPÁ58…>»·BP«dœë‹Ï7n\¸p!³Z>ט=Ûâ£Ü&Mbê»»‘̃¤Ègä3̣ừjÜ1ÂƠIOéôÂç’’OOOöTeásơñăm¶l‘It“?~<;Z/̣ùŒ|F>Sü J3óéË!á'¨ƠôÿƠ ŸwîÜ)S—´Äç„„ùÀ•Ègä3̣¹Ậ™ÏY c›ƒ̃ûÎĐ̃D¢®]»—––z{{¿xñùŒ|F>#ŸËâ£à™™b-«áZÑ=Ÿá֨רÑGC‡º…†2ŸÚmÚØÉÅG* Ÿûúî•jøđá&L Ëd~(ä3̣ùŒ|Ö «)›Ó»ÛQ¼%zá³X,îÓ§O˾}ssÙ8­³y³íĉäs''Û¯¿®·aƒMTT•V­`Á:4tè„ Ègä3̣¹\èÂ… Û¶m#³%%%Q‚„kƒÏÄ8Ử¦KÇ|̃³gÏ_|ÑiÈmó¹z»v̀_T5Ê₫̣eûK—FÏ…|F>#Ÿ _/^ ß°aĂÀ‹–-[&ăáÇ;Xrppˆ×™©LŸñçûA¥ K>ẃØñöíÛ:æsƯŸ¶^°ùŒ|F>—mÚ´éÊ•+iÜ­Å‹ËóùÁƒ±,5hĐ@=>óD±J¦2åU ÏpL:ăó½{÷îJ5gΜѣGĂB»AƒtÉg§₫©Ú«W½Ó§‘ÏÈgäs¹Đ³gÏüüüHÈÙÄÄD°åùl₫ ơ r₫=®µÍçS§NƠpqq7î£aĂ*[[;ËƠ5Ó%Ÿßí*:ºÖ’%Ègä3̣¹¼H,3“äææ*‘ª|æ?Ü›§g£́æ·îùg³u+²ÍæÍ„––mÛê˜ÏöW®Të×ùŒ|F>«t`?k¤J™uĂg°]«±æ Ô=ŸáSµ{wéÔ±Ègä3̣¹ḅYí^se®̃é€ÏVfơê9æäè—ÏÖ‹µë̃ùŒ|F>£ưl8@Ö¯càÀPRû´46*ơÂçz¿ưVÏÑñÍ›7Ègä3̣ù\.¤U>Ăεcbdà©>Û_ºÔ²sg¸1‘ÏÈgäs…峪o÷ôkkÏkÖ¬[°`y?h|ö=zÈ!Ègä3̣íçl?å̀ÍÍoß¾Íôß0>5 øL™ùŒ|F>W(>ˆŸY¢«øÏO#Ÿơ^½ØÏ̃̉·­ºt9s&ù´íÖÍ&6Öpø éáá|F>#Ÿ‘φoTkÏ·nƯrvv637·2ËÏ>34>₫ùçÈgä3̣Ù•’’̣í‡ÊÎΖÉóêƠ« –\]]få×~Ö¬ăTṛàñă‡O›₫Q‹°ó–]ºÔóö–åä¸q†Æg|?ˆ|F>¸²²²:uêtđàÁ³ï%¢ÔÔÔ‰,9::–‘Ï”@Íụ́uđäó¨Q£à{Á‚duƠªUcç̀©¹|y%w÷w‘>*Uª÷ûïơSR`HhÖµ«Àή±ô`ŸI:‰ B<ÙéÀçWML˜tÂgv6à3Y•IgVÿưßvíd̉Ïää Ÿ‘ÏÈgĂWzzzBBÿüÓ§OWC©ÜI)Ÿ>|xñâÅjƠª 6̀ÊÊʳ[·:U­Z•PÔÔÖÖáÑ#@Ǽ¼yX­Fuø̀ʆ|F>#Ÿ+&ŸUUDDDppđWÆ%//¯mÛ¶q µk×®_¿₫;âµliRµªeÛ¶µz÷®T»¶¹ƒC>}ª888GEÁ¯đưÑ‚dA`föï‚@P70°fï̃̀*³à4c³!I·jß^>[ƯaĂd²Uuu%«2é̀*Y¨Ö¤‰Lz£9s`ܲeËääd…åÍÎÎvuuưÊè…â~"%%Nˆ‘•722²M›6\µ*¼§§§‘9$$d̉¤I™Ï¿£˜ ~̣£‹ä9pà|:tˆ¬=z”,üúë¯đ½uëV² ơ¾÷íÛ& , 2„¤‡††Â÷\©`¡yóæ$½R¥JđmkkKVŸ́™U®tÂaùtww÷ÀBçÎIº|‘(W9##Ăø.1₫.Æø̀Ơ^A…7Ê%A¡P( …B¡P( …B¡P( …B¡P( …B¡P( …b©¤¤äOc”X,æ*̣ßÿm|åå©A”——g|E†BQ 'ÄøL‰ë̃(odTEæsTT”——×gÆ%??¿Ă‡s¹oß¾AAAFVä&MܼySay_¾|Ù²eËÏŒNP(.D“À_FṼáÇ{{{sƠê#G@0²"2U‘ùldñ7H0 mϫ˲đ̀†ñ7ØÂøÆ!ñ7̉̉̉à;99yé̉¥éééÈgơđBÎ,ŸBÙ 2«̣Ë 󙫤tÀ²^&³àC),²L~ä3̣Ùøø|́ر;neéÁƒ̣׈5jÔ©S§üưư³²²Ïeg%0©B\Ëo(ƒAæ'Ị́YæÑ 4åàåŸÂvyq=ªÏÈg£äs|||ƒ âXzøđ¡L¸ÙSSS·mÛFêlĺ­[·Ï*Ùel¼SVeX§û™̃XPø“ f)m¥ ä3̣ÙXùüË/¿´hÑ‚G(ƒñܨQ£   đđpôohƒḷ¼Rèạ̀ièƯ¿Áó9%Ïaỹ*ôcĐ iä3̣¹ḅ™(''çÆ̣ÓE!Ÿ5ååPèP&ykSÇ|¦º”²p•˧AqŒ Ÿ‘ÏÈgc•.ߪäÇ ;`¹—”ÆưϪúyúœ:Ï)…•({3ˆ|F>#Ÿ‘Ï¥±Â=…E|(­=ÿ†̉n ïơè=4(Ùdrj‰Ï=*--Ơ^ơ[¾|ù‹/ÏÈgä³ńg.ñ·B)¸–p¸geبA>Óg¿UơƯ(½ó‰¼Ÿ‡âÙÖÿÙÙÙ° ½ê·eË–üü|ä3̣ù¬>+íÆ@éiF÷l𱫵ư~̉%ƒâåàoóñçp5=ÔăsAAÁºuë’EEE°zôèÑÄÄDXxúôé5kNœ8Q³fÍE‹oƯºơ©à×={öL#Ÿ5Âg.cNl ŸUe|æăÁàYdJ÷f.o¹z –Ù‰|†“àêê 7ơÆÛ·o)>ttt„ü½{÷ꪙÎ̉̉˜ 'vƠªUÉÉÉóçÏ÷ôô,,,lذá›7o`óáÇáOŸ> éX̣¸qă }Ê”)­[·₫î»ïΟ?ß²eË .¬]»¶W¯^đü/₫æÍ›7È4kÖL$M›6 öï߈îÑ£̣ùŒ|VÏq¡^fº!Í“̀\µ6́gú€¶4¥ḥ,úBÙûo¥êÙ³'$»}ûv‡±cÇ’<€kÀá3IÉ‘ 2c!'¤„††Â ưúµ³³³P( ¨Â>Ál†”·oߟW¬XAŒä ¬\¹̣Î;a†Ïs¤"û‡C"#ÂH \©úơë#Ÿ‘ÏÈg]̃…L!ÁÈ×Zz?H!ȧ\̣Ú¶m{uâĉªv\‘”a| Àưû÷~¯ÔÔTH¼zơj•*U–-[&Ăg°oI ³»»{xxø¦M›́íí!%))iĐ A3¬víÚu„ ̀næÀ縸8²9˜Ê^°Û}}}>C%„½‘ @æuëÖÁ7́Vï`Ă#Ÿ‘ÏÈgƯ`™ËÈTÛ¡!Ÿ_«ưŸéqE”ö #)@°‘#G₫đĂLz^^|oƯºU=_´|ØÛÛ›¸ˆÁè½{÷î›7oZ¶l psssPK¤ï ¤bøÜ±cÇ””XHHH`ÈÙºukẠ̀üË`ĂÁH¤AM‡ VRRÂđùÆ‘‘‘é˜/kkkØ-áó… üüüàHJKK₫°|F>óäsff&ØPy BBѦ̣™:ƒÏ¶| f5ø\*¨Ÿ2̣YéĐl.›Y¢¬‹à³gÏTzIøu—¨û~LÙnƯºớÙóË/¿„Ơˆˆbßà¾\Æ...YYY Ÿcccª¡¡¡ 4 ǵíN:1#Fù»téB°̀đn¢¡C‡öéÓ§C‡3gÎd́gH Ă‘4mÚtÁ‚ÄF>#Ÿ¡DPửY’ïí³yóæÄÄÄcÇM4é̀™3P÷ Î ư¬¶OC¢¬?³¿¿¿”&d†hƠØÏôÚô<̣ÜVééĂd.**RÚMºª@(0U»˜¬ôèäƯ[Pÿ•vº+,,ä" U\\,Ÿ‰*ƯYÈg£ç3<Ök×®ÁyK"Ăg€sLL m-ĐË—/#ŸƠ0­%ÊúuđÇÍÎ)‰8k0~JñQé₫j̣maaqûöm¥Ă)0—Ù¹øz:)µpÆl?ˆ|®˜₫ÔÔT2sÁ¢E‹`¬;̣êù¬’ñIÚ ¶Ù¼]PI«₫gÊĐ¥₫™C‡ñ4˜yϦLÁ' ̀$8¾ù\áßB{Ma» ù̀Ó–oơ³™3hĐ •ÈÜP #ÅÔ)Aeï¦x¡–188X%üRa –á#¾|…ùwä3̣ûoŸt‰lÿôéÓª¾:å ̀ L}¦:¿Au"Qkœ Ï̀l2WĂøuÈgä3̣YEó˜#¢Œc”(¨Lơ´*W—à²đYU·3½ÈÑ=9Cf Glä3̣ùŒ|V)…‹èóU:tHÂodû= %đ¦¶íg™eJOÏ?ÿ\Â=hñߥO¢é³$é=ụ́ùŒ|F>+5))a6éqDy¶î¿˜Ñ{kÉ¿AŸˆTg>: ¨Ä”w”"ü©.|~ûöíÍ›7ươ×­[·BÅ›:ujLLLÂ{%%%!Ÿ‘ÏÈg ŸU ằßïÁ©ôÅßfA%á¼…U?ô»j)>’F\:*p®-D ̀ ŒcXøe—>{X=R$Üó^>Ÿsss/^lkk ÇliiÙªU«N:U¶²ªếlZ­ÀĤv` Ọ́åÖ-Z¨d* Ÿ‘Ïh?k\ g˜è2VèYAå—RkËïÊe–KÅÁÓưü°eón³3T2• ¥¥{-0¿ù̃£Îv2K”P’ydŸŸ}¨-[¶ÀqΘ1ăÂ… Lääd—9sK$đ©'};l³u«Ëܹ*™ĐÈgä3̣™Ë€TiRT…àbw¨cvâ'0Íca>OæªÎЧŸƠ.J ”*‰`áÅ‹ uÀ͇́eT©u Đ‰d |Wwpp !Ÿ†}úÀ±Ơsu•ÉÆæ3|¥±GlúöE>#Ÿ‘Ï·Ÿ•vă? ckäÅ¿ŸÊĂÖéÅ~¦„ưă?øt“c>ă9™•F5Àù»·oßn³mÛ¿†ñÙ³plö©©nt>çaVV¥5˜0wÈgä³| …Èç2⋬Î=û̀™32—”È€ëùr¹‚D́±̉Z}?Èç©ÄÅO “™´ú½ç³DÙ…\½8 ÏN……•›7¯÷ûï°̀‡ÏïxØ¡Cä3̣Y%>?~üøÔ{y{{Ă÷ëׯ‘ÏôƾDơ¨û ¯Î *½~"¨\™_{Ÿư§eç3§W¡Â&̣(®)ư ¾_ ̀ÿ––ñ¹Àü  ’Dơª2mh|®9o^Í÷æÉg—¹sûôéĂ2:ăsQQÿI_¼xÁ5!—̉_ơÎḉ́l®¨Vº,)£-[¶XXXô`éäÉ“̣ué£>?~LLŒ‡‡|“©ÓÏt‚ÑÇ N:•Y>ÊêNFR¦+fSfVü¼"2̀Ô}ÿ øn@vr%¥X*0ûơư[?ñ™³¹~ĐR˜"0ƒ2~èÙ`ï0++kđàÁ́àrŸ¿AñÙááĂ*;ƒ ­*ŸwíÚƠµkW­Tđ9---((È̉̉̉ÄĤeË–/^¤Ă¤Aƒä:Ö¬YsñâǺp|ô_ơËg`2œ®æÍ›Ă±Y[[‡‡‡Ó/¶Kªª#777,,́øñăP%Đ¿ÁåX¦̉2₫‡uëÖ Ôê;§Ô1«ÿ3ó_â I ]4úI>\¿„û…¬Añ¹FD„í®] xùó9)) à°wï^Cà3đĐÉÉ©uëÖ¿J¶YơêƠÓÓÓ¹ ¥sçα±±?ÿü3Ô1X%Á´•₫ªw>ĂÍbjjçÎ,9’r‰µ]RơüÏ7n0`̣Y©…,á1êyµÀ́¿8?̉̃eίq>+Œw$Jû¿w‡Ư´%È¢ÿ­goơƯwßi$́'¥™À>HĂá³ơ’%U½½‰Dêñ9##ƒç]¦m>O™2HơäɲŸŸmíÑ£G+̀́́́leeUXXÈX¤nnn•*U"ѳé¿ê—Ïpá¹ʤDFFBÁI8e½”T=>¥4ØC¡…)Ÿ.œ1;Z`–(¨œ'0ï.0á3ß+Y`«§;4n?‹ÿùG´+₫ëÔÿ7ạ̈¬ÈÏX/ơäŸA«W¯¦ô3‘P§ô‚ZÁJJo¡Ÿζûö±Á«Ÿ%̉ɶäƯŒºç³­­mï̃½Ù)ÁÁÁU«V•G àÈÏÏo₫üù́ÄiÓ¦ÁºsçưW½ó6„#9wî“rëÖ-HY´h‘|fƯ”ù¬AÿƯ5ÊÆ‹˜X‚*‹fuUœ’›Ù¬Rÿg¥}¶Åõ“Ăï¹Ió̉f­JÛu_¹Êd™C5j”Æ3“MB¥¯ ư¼bÅÊM›²g5ø ¬ ´¯uĂg8ipbÉ´_́‡ $^»vG×ÅÅ`®ĐơJÿUÇ|Ë ợåKv"X¼₫₫₫<}×/)̣YU>ó™U“_8e:ă ¨#¬_¿^iĐ~.ôq™ y?øÎN>uZ´q³đ‹ˆ̉Æn¥v EËV¾ú†ë¥6W€>‘H4dÈ ÅV»·†ÂđyÀ€ƠÇ•¯ª|}̣É'`Åé‘Ïׯ_‡s-oj̣±íwï̃ 9§L™¢Æ¯:æóàÁƒÍ̀̀dj8´¼¼¼øl®’"ŸƠ³ŸyÎưʦGoV73±tv¥âä3ØØØ¼{™XZJà¬6ŸÁNŸ;/Zÿƒ0`¨pÀ@áÈÏE»÷ˆofP˜,¡†!eŒI.oWIăăă)è(—Ăøœ••åêêZgÓ¦²óy×®]2lÔ1ŸSRRàô®]»–¸sçNHÓZI4ÿY¢l^-ƒâóâÅ‹GÍŒ, Ÿá†}Z ̣*Ø4–„Bá½{÷àCƯ€C’I¬[·n÷îƯéj¯¤ÈgMùŸ¶»Åï,Ư÷6óơt…¶7ÿ©÷bccù“ª̣Y³n¡ÀLœ~CLíêI·Z¹b’|Æù÷ßœ]–W¯^‘Ơ§OŸ̉ă߸q#$$D7|.((Èg‰$Ö©SÇ××WæÍÍ͹&!;w{?ûŒ=¤ˆç¯zä3é ʤܿŸ«ÿ†nJ|V•Ï|l9a`0±™›±¼\tc4Êh̉¤I£É“'Ë„P"ư¸ϵ¬Úúåsvvv—.]à¬*ä³e“&…„¸…†2ŸÚ­[ÛMDç³DÚŸk<ˆD'ưŸ¡…í² ¥³²² R˜™¸> ê*|mAÿU¿|†kW¥J¨¢LJtt4ØÏׯ_×WIƠæ³F₫´\ÛÏ ¹$ú6æß^Á#>§Àâg=z4ÜŒ&LLá 2…½¸Lܲô¯SP”Ï0‰¢×…`¨P“é¼W¬X‘@^¨ô 0@ÿ3Ô¢7J>Œ_÷ŸÛ¶u|ñ‚RgăFÛđp¥|̃³gOTT”¾øüèÑ#ೇ‡Ç¹sçRRRºwïnmm••E~=~ü¸»»;P–srrà'  }ú‡züø1ưW½ó4~üxSSÓåË—gdd@-…RÏ=›ùuàÀÍ›7'˺)©J|.**‚ăŸ:u*ü½zơ"#*Ÿ)/ÈD?í/µ¬ờ}úsù–y:œ¹°¦FĂ_7ó*’$á=½åT(úèÏ×®]ëÔ©éàªY>Ăẹööæzû¯ƒøçÏŸwtt„snffÖ³gÏcÇ1?íÛ·̉ÉăƒôëP(;ưWCàsqqñ¸qăÀf†Cª_¿~xx8{ N³f͘Z§›’2âiÓ¦M‰‰‰{÷î%ƠÁÀSÚ3³"øŸÅ73„‘óß‘9r>¾¸ĐÄsL„Çl³j÷ß(£Ë Ñ\66=’³„ú’”n´ëÏ>>>G%Ëå3háÂ…ĐŸ‰%H²R(I¨Ư†)Ƥ.ă?+ơ~PŒ®øNzsƒ¾ø ç988˜YƠ8Ÿ/_¾̀” ă?k–Ï(>|‹Å`<“æ[ZZØ̉Öÿ,.*N›)ôùXøé(ñû×Ü\¡÷Ç ´îy΋M9Nû7”úœ¹ü9‡Ÿ3@!³!ØÏ·oßvqqÉÎÎÖŸA₫₫₫ £7 Ÿ‘ÏF/|C³gĂÆ̉m…Ÿçåñ·-¹†xđ‹A1˜).hù7襦;7(“‚)c|.--mß¾ư₫ưûÙ‰eá³ó́Ùûöí»ÿ¡^¿~½cÇ+V Ÿ‘ÏÈg…d*P:¡¡²ơ IŇNt;™² _Ú~?ÈƠ4 ;($Ôp"tåœë«]XXظqădËÂçÚØtêä6v,óqị̂ñÇùùù}úô‘ïL‹|F>Wp>‹“’…£Æ ư`A¢l>L“pø¥ú”r˜+E{|VúNÂKDÂû"Ÿh¢z·Ÿ÷́ÙÓªU+ù deá³µOư¤$vc^^ûÁƒ%̉1n‡F>#Ÿ‘Ïÿ’ùÆMá¤)`3‹/¥ªÁ.ÜSuÿ«%ÿư }+J HÛ|¾uÿ~ä’% W®„Ïä¹skX[Oœ93ñ́YƯđ999™@ùŒ|®°|?~,œ·Pü©èäoed&Ÿ)b%ÊâÑ©4̀Y=>ó¦̉BqY¼”¸R”|ÆăèŒÏ£gδ·;z´î‘#•›7¯1ujƯ_~ióáđgíñY"}KøèÑ#ä3̣¹ẬYœ—'úf™pP hßObăi«„P>½2(S¥(uzhÄ~æm₫SzI¨SĐ— ¡ÿÆØÈÈúÉÉÀ̀ZË–U #đ́ m>×kß~èäÉđñèÓ§u×®°àBB¢!Ÿ‘χÏ⇅~¢uÿk¢o°Bk̉5n9«ê<áÉg₫á¬ùûsøÄ_¥—‹¾[®¨>Û_½ZÙÍÍ© €À³ƒƒkß¾́yơêå³e‡ö×®ÁÇîÔ)óNê_¾\çûïc·nE>#Ÿ+Ÿoßó$ÅsP—gC¡‘©ÔBæh=Oá*R›_iÜTư¾>×»p¡J—.v <­¼¼d[=4T³|®îéɬ֘6­̃o¿ÙÄÅ!Ÿ‘ÏĐ¿QF@ñ$‰J&1¦Éo¢>ó?*'D¥f‚LNđÙj«ñăÙđÔ1Ÿë>m5q"̣ù,£ .lÛ¶ô&JJJ*ËŒåÏ̃] •¶Đ) úX<¥¡ŸƠđr¨}f”¶Ô›çQ|?̃̀ÉÉ1?_|n$Wơö®½v-̣¹‚đ9..®víÚ,¥¥¥Éä¹xñbxxø† XTT´lÙ²2N8b˜|V£wœ„_l7 µ7/ŸùPT•íg₫£é]¾ù U)`L~mó¹££ơâÅ2đÔ1ŸßmøƯw–£F!Ÿ+Ÿ¡D...é,ÉOȲiÓ¦+W®H¤ÁCBB/^l”|扩2‚TéË/‰&º ë¬ÿ†®Vƒsè̀¿6IăfÍHÿ ự¹áŸ·iƒ|Fÿ£gÏùùù‘ø̉‰‰‰Ï<­h¥ư™¹ H/y2S«ó§pưÊÓÏs¼¶ªÏ)íñ955µaÆŸNl|†O•=fÏ™ƒ|F>3‹ÅÂ÷³ˆæææ₫­…hå”ÏJàet›¨ç­ƠñûA =µ›'ZâsAA££#˜%Lÿg½ó¹Æ´i>>>ÈgäsEÿ†J¯®ø´ÖË̃ÏYÛö3B)ĂƠƠ¢̉«O]̣ùÍ›7pw,X°@Ÿ¢w>×Ùºµ™»û‹/ÏÈç̀gơp¡Æ@5:ÚiƒÏey4¨ƯRàÏv÷~ưú5™3‘¬Ÿmâ↺aĂä3̣¹¢ñY½.ÍwŒđϦ½ù­4[dUÇ ê׿qåÊ vH"ƒâó·«Vùøø@¡ÏÈgôo”!éô«_ÿ†̉#ç U¢âX₫f¹¦ø 7nüéVi ĂäśÖ­¾¾¾Ègä3̣¹Œ˜’(Ó]Fׇ.ù¬jXfM ~ÑŸïß¿¿G*̣€àx:wî|ôèÑäfP|¾téR»víÏÈç̀g₫xQơŸÚ/ùä×¶ừÇY¡RtP=̣¹QÛ¶µgάکU•Ö­m¾₫ºº¿ƠÆ]"#ÙŸjM›ŸáÈÛ·o|F>£ư¬̉Û@–¶5tc?ó±‡ù°W¦­z|>xđ • ́Äj̉$Çœœÿà9i’,<ûö54>4ùŒ|F>ë†0”6́gúȽŸ"•ø\\\¼dÉ333{{{°Ÿ>. Ị̈Àǵ¿|F>«aKë×zŸ¢‘ïü7áĂç‹/ZÔ­kƯ¸1lX­N†^^Müü,ÜƯƒÈgä³*>>¾Aƒq,=|øP&OJJÊ·*;;ígmø5µ¹îû?—ey$)åó½{÷́́́à¿,à›°,Û´˜˜˜uíJV <É|›ÄÄà3ñJ1Ù̀*³@ø,ŸNø̀N>Ëg#|f§ŸÙGÛ˜åC>=Ÿ;Ö±cÇ­,=xđ@&OVVV§N#Ÿơ%@Ó´iÓ”fKOOOHH0JÿFTT”§§ç§Æ%WW×Çs¹oß¾C† 1²"7ỉäæÍ› Ëụ̂åKà3ä±··¯fg×dÄà|“…:đmZ½:“̃ØßŸ,À·yÓ¦d¡n—.Œÿm₫Ùg̀*³`çéY¿gOùt—fC’n×µ«|6Ç?–ÉfÓ¡ûh™t(NË–-ọ̣́9##ꀑ]â   ooo®Z}äÈă+²——ª"ûŸKJJ₫2F‰Åb®"ƒñl|å¥ûÜÑÆWd(¥ÈpBŒ¯È”vTx£¼‘P …B¡P( …B¡P( …B¡P( …B¡P( …B¡P(– ~3F1óùÊëÉ“'ÆW̃äädÊU¾yó¦ñ™k<œă+2T]®̣B…7Êe”ॠĐ`+"""$$äkẳÔ©S·mÛÆUä¶mÛÎ;×ÈܲeK.Dggg7ỉäk£êÙ³g ‹œ’’'ÄÈÊƯ¦M®Z ̃ËËËÈë‘Ït.Q̃ø³_)LWØ…˜ó™ç ®6;Wë^)êù·ưµ×¿̉͆^:m%¥\÷̃¼yó•+WfΜùí·ß“Ä””” \¿~¬₫đĂ¯_¿†…»wïĂ$̃¹s₫tö́ÙđïdÏ'Nœøî»ïæ̀™“™™yôèQø)-- ùŒ|V•Ï|z\đ7•:2Ÿ¢û™̃±A)«¹Vî‡rÔà³̀Áó¿Rä*½Ü|ºmP®đ'µùÜ®]»O>ùذhÑ"H̀£F‚­ }÷îƯä¾€ó ‡9rdAA¥¥åäÉ“¡j„»téŕØ1X…+ ###‡ Ó¾}ûÜ¿¿iÓ¦ñññ`N÷èѸڰaCØU“&M`oÇ···‡DX®]»ö;¢££!@täÈ®È Èg䳯 iµ}ËYi ]ÛưŸ•Xés‡̉4PïtÙÿY%˜'½•ZẸ̈éeá3@R"ó¸ îîî?ÿüsbbbll,a B>“Í;wîL6ăÙÉÉ ê˜ÖÄ¿AøĂDHOO;œđ¹E‹Ó§OOJJ*--%{0`€D£̀‚ %ƒc{øđ!̣ù¬q>ó¤!Ă4z™_áεÁg> QØØçÏa>N{m÷Vzå.\CÚyº)(OaºÊÂç̀̀LX YYYE¿×+È}A‚Åíß¿Ÿđ¹qăÆds;wî0»Ëđṿí·ß²¹Jøœ›› é`HgeẹC:@ƒ Hæ;‚ù|6J>C­ËÉÉöQBBܰL-̉ŸÚFá*OGŸ;W÷ưëèO Ê”™<"¿¡tDÙPơ\aüímMñ™T‰óçÏĂ·¤¯E—.]H<ÀY³fÉđyñâÅ«V­‚øw0ªß¾}»sçÎ)S¦0|¾zơjÿ₫ưaLb¸¿ËÀçââb°Ơ!3¤̣É'‡>5 V ‘ÏÏ›7o†*ẃØ1h^9sfĈ¤>°ơ'–%¨ñññÚḳ̃Œ¤Đ+KqwĐ©®Y>ólq+t)S<·\ÙT5×5h?óC¤đRR «Ôs¥Ô„V˜¨A>_ºtÉ×××ÇÇÇËË è )»ví¨öêƠ N ŸŸ>}̉»wogggÀ,¤\¿~½nƯºmÂgBơ={víÚuûöíŒư¼lÙ2À~Ÿ>} @üÏÈçÆg€sLL ©$Đ́º|ù²L‡î`ÉÁÁđYăCÆè~c>ma…ß|^6i||·Jư+vÏàÓ#…nlÓím Æåùhp÷âPXLºc„§3„½•Æû×Ù«`ññ̀\*•̀æ̣Ñ}E"Ñ«W¯Ô»§Ïå]©©©Ă‡÷öö^´h,ûûûC}Đ‹ÿ™̃! ”º+)/ătÓÿY%Đ©ísÖ‹ư¬ªWgéøƠªÿ¹œ ùl4‹ÅLÇNñ™jq¥Đ¬¢›—“RăăSøDâü£°gÅĂ£Đ @ihhœÏJ|^ÎJơc§´(á£é8ä3̣Ùè¥>«Ci ÇC©´¿O—0.qyqË8°N=>«:¼‘n?s­̣ôIT^|F>#ŸƠ¾©•̃Ú 3$¼&ë¦ÿo—Ï™bNÓíd­ö¯Sú:Ou…Ï ÇXQ>×—ëT Ÿ‘ÏÈgºK2Œ̃̉çbú€;…‡§jÿgU{sÙÏ”bJ¸û-PÆ*E"ó­¥ñ)J_ặi&Đ_R:´(ä<ÚÏÈgäsI₫CzéV%½£—§Z=û¹,}º›âæÓµ˜÷CăU BÂgÈ ¥ï%Ÿ+‚|F>#ŸU²¯$Ô1êđ:>F5Ưc–úß ôúSÚNé{Rz·p&Qm>Ó;-+½”'ªMÊ;P½ØÏ§.\ˆ^µj̀ĉ=úömѶ­WÏŸOœxOÚqùŒ|Ö Ÿ5Ø ̉đ—¿%KJJæÍ›7jÔ¨   5¸Í––úoĐóP<« µpáBúSFa³‚ëJ©ÁgJ·J)ö³Â‚s]MÏ,=̣¹Qûö&5kÔ¨a1dHơÏ?¯6p ‰¥eµêƠ9‚|F>—/ÿ†J¶B;***ếÙ³°››ûäÉ“S§N-Z´V7lØÀeuK8zA—…ϪNMNw¿À‚P(Œ'«IIIđŸŸ`…˜˜˜Aƒ)…Ÿ(yÚ˜?…gˆ*v?₫ø–œđ}ơêỤÓÓ§O“““aáرë—Ïôq"”Q'”₫T\ûQÉfæb¾D›ư7¸üáJc‡ÂC‡^¢Ă‡S|ïJ‡kpü ÿÏVû!ƯƯ¡%>ß½{·fÍ!!!í r̀Ë“áó¸¹s!ÏêƠ«MLLZµjÆ<}ÏÈgUÅóbiđư ̉Îọ ê-[¶ÀÂË—/¹HË̃„Ø`|Ú?Hñߪ4ƒI)((˜;w.TÅââbAïẹhc₫n¥îb™6 |“ÁËJ‡uó}Cqơk‰Ï·o߆ë`¹ưàÁ\|–H‡€íܹÓÇÇ̣›zxx̀˜1ăĉ¿K¥ h#ŸË»àéÓ§Ï@©à[>Ö 4®¯³äâ⢩ËÊT’óÚµk|,../ÆỵYôû)á˜q¢£ bi˜_¥̃WÊăFÂăíÏ×Ư»wWZ@…-|V{N@Ê0"¢ÀÀ@•΀P(\¹r¥̉W«ÏÆùǘÙ3Ø33ÏŒÆÎU»ÿ:\ÅÁ6¯ăëÛpúôƯ»#Ÿ‘Ï2‚:¿té̉o¿ưV$Aíå*̣—,Ơ©S'..®́îeŸ–Ë!0f̀˜‹/̣¤(##ƒgÛŸŸÅ……¢¸¢%Ë…ĂF”vđE/(0?zÄß`æj§3«~~~o €K8F#ªêV:Œî€’p¿ú”ñ¢óœÎßÖ`|~…Ề̀¬Q£{+|₫|ΜúÉÉ$Cƒ7̀6¬µ|yÇÀÀrÍḉ́l®i\äUTT$?ë"£œœ±&*ˆ èóơơƠªƒ¿%¦QgΜá3>…¿ }Tªú7ÄOŸN$V¬~6º´IsQÔ×¢ÅW®̣i&p9"¶oßN"Gq†DEEIxŒygÿ¤̉üV*]S¥#ÜÁàÜ´iƯØæzÖđ\í—t«²Œó*}ÊPÆ›Ë_’’̣öSÂ;̣•ª`. _ƒ|7õ¸qădƠæ³ă‹V66ëׯ/w|†»ÆÔỒƒ¤¤$8°Lfxá:''§Ö­[ÿ*•‡‡GơêƠÓÓÓɯ{÷î…ˉG…Ëæ¢™’ù̀_ª̣™ơE¼ Rß ơBshêư `Y0´´ZÍw¬†OOÑÉߪñ MVV–JᙓÂR¥| …¢ï¾íûIôÓ~ñ­ÛæjYÑJß̀ªtƠø3Y«ñ‘._¾Ü®]»ÂÂB ̣¹C@€··7±@Ê Ÿád`CCC™”ÈÈH@4 &/¯)S¦À¯ róóó-,,FMVëׯ_¹rå¼¼<²Z\\\£F ///ä³VùL¿ùDu#ß“'OV)^=[ ×Fÿ ³pøHaŸ₫ÿ²ÚÅ]øÙh®Sqâĉ%K–¨ôºP>ç²eË$ܯäTơ?CÓU´}‡(zqiÓ– ̀KkØ‚¼s骈¾úF|!It"Q, Îg₫&…XJjÈ ù>,üưưésË [S|öññë%Ÿ^>w ¼uëV³fÍ?^^ø {€{îÜ9&)dsyÙÚÚöîƯ›\µjƠ7õ´aĂO>ù„ưëˆ#Hgxä³.ù¬Đµ¨đVVêù45¾›kP €®Ôºî¿”~ÿ—¶ëÄ䉋‹Sµ/‡z/ Ơöo¼k<{&:uZ´ÿ—̉ û}"úA‰&M)˜TúZ`&¾|EÂñsö́Ùj”ˆÿ©psÔŸwï̃͘|å3ü´jƠª°°°̣Âg°œIgWvb¥J•๩°RAæ/¿üRÆH ư²ÈФyóæ±kUjS Ÿé|‹óóÅ/^ˆÓoˆ>l.0'§ˆÏ>ú®™œrQ´+^ômŒ(n§pØáø‰•„½ûÁ]ö(ô (­ë \MnyÑÚÿ•V±*;¯èí}Ừ?øîüüó<«á 0¥£P#“°W׬YCŸ­O¢…øu^Q̀:Qü^ùr½ûÔw" `oCæ‘#G’±ªÆ'”/2,.₫1µÔæ3œt©àö‡úŸÀxM5Ëgx”÷êƠ+%%¥\đyđàÁfff2¯5ÁHV蔸~ư:\…èèhy üäÉ“p¨&&&®®®́_ƯÜÜà×}ûö!ŸƠà³ø¯¿Àd {×÷̣ΠêƯO8``iëöïz A:áo=:—vđ,utɘ 'L*µ°–¿……R|k¿ÿ|#0;*῭¬ªdJñ¹ÙUâ³J1á)Ííw¦ơƒ¤DKf‡•˜̉I”Å‚V˜¡  €g_µ²ÄGâăv~W=J;u}W¢æmØ—2D`úX` Oæß *©=®PÂ/\¶Fø\ßƯ½ID|l»w¯åá 56•·ëÊÎgr$2Í|ƒås¿~ưjƠª%“è́́́ááñÿí]XTWö`ÀnPQ°Ä•¬“ơo¬$v][l!ÖX`£±Ä¬µa‰7vc#cÔØƯ†U¬ÑØ;–Á¢n‘ãÿÀÓ·ằ¼óÎ{ófàü¾ùøî¼¹̀¼û{î¹§ØV†EÇ̉V\ÂêƠ«á¢Ÿ¤{÷îP=z4 ¿Û·o₫ùç èĂü¬‡Ÿ?6Ÿ>B²ùöíL™Y»É"%Œ›\í_m̃_₫‚Á¬ˆÚG ù~oTMđ ’+8CÿLI ߯¬Y³¶­XaÛ:¹ÚÛ‚Çvá•c‚—©ÓŸ ‘cô!§!öu8cÛoFôªÖ‚DzøÙúå[V¾a(ů¼v ^₫h<(Ơa†œté,Zñ¿ÿÍß A…Û·¡\jåJ[/CøăÆîÆÏ@˜±€Éd‚ûộ̣²ªVºté {¾6—/_†î˜2eåÅ… ÂÅŸ~ú̲ ®W¯¼Zööö.[¶́W_}%Å1`~v½₫™ÂỤ̂›9sæÖ­[åÚ V³ûÉ‹)]đ®ñ‚¢EBHO}ǘHÔ>%5Ë5k¤+ó…|V­Ëرë†̀i¯J¯Ó ĂS"æö2$¾(]!/ß̉!C^̣ œ3ß₫¦É#óï3huå€r¨ÁtV(:Ó~Câç’ÿ»Ïß₫&1ªSùùÔ©SÁÁÁ¸!±ëùÙ××ײẳ̉̉@օ£G(úçÇCe+̣º–ôÏ̉Ûôôô 6L4 æcJJÊ+àÓÇ3?»˜Ÿ‰ÁäåÁ …¤³¥îÁĂvj¯±Ø5›FÉÏ”OJÇXsçεªö´.QÛ& ̃½-ôƠtU€Qúg¼%ûä;ÎÏÿø£@PP…»w]ÀÏ€#F¬]»Ö­øùÁƒ)€+ ,€g{äȹΕ+Wû’%KZ9ÁA€¨,y &%%Ư¹sÇ̣Óđđđ ÀBÀü,M¸†ŸU½ƒm¯õ¼YÉ’j¨à™f³_h3£¡¦¾Rtaü:D5½`z`ˆU‡fñ³’Ư‚e6.%#aU~¦)ÅfzĐfẸ̈L›íƒôª¬%í‚mù¹äÂ…²đ́~¾|ùróæÍAtgưóíÛ·óçÏ?räHùÊäÉ“A~>ỵ¤Ưú^^^’kFiÑ¢E»ví*½ ©Zµª¼k®.R¤ÈÀ5ƯR.ăç'OÀˆŒŒ„%¯Y³fPp?9Y‰¥a$ ÛùXOđ¸eWŸ™ơj’¥ë!YTÚNgĂùÑ‚ÚU°Haè”0\đ| ĐF»Í¹té¢ƠÑ$?ëĐäày¸?ûflÛq×¢±Ol®ÉûÛưFµó7løZb¢Ëø0zôhMGc®çg°‡§§gTTÔÙ³gAœú3fŒüéÎ;kÔ¨!÷\¿~*¼ûî»qqq ̣ññùư÷ߥO÷îƯ+©¿€c·lÙR³fÍ€€hB^æç¥K—î̃½;66V²Kœ?₫ùóç­ếÙ³§© .¼|ùr£Äf<ŒƠ§’k°í4!x₫WđN¼o ̃ë_(7l'urrr§N Ñ?Ó[Jóƒ¼Y9½IȬ6&̃ ÿxù¨ô¾à-jI k”~ R‡(¬̃ÿ})B¬æ ù’–‹ú^¼–¾Ø xùĐ!cç.;¡!₫)~uêøL˜`ɨ%fͪX§N‹₫ư-_¾ơêÈÏ 0Ư={æÎü rÅ€$C‹2eÊ|üñÇ©©©̣§ß~û­F¿ÿưï *ÀÅ|ụ̀ïØ±ẶÛ€ÛÀáSI®>}ú´ÖûÉeü ÏgÚ´iđH¯]»n¥̉-?Sr {wËWá€"?_¿~½Q£Fºƒmrüç<̣3¢‰ăÓ­Ä~ƒ,öÈÎàg\ơd¼•±~ưzMa‘l¿¡‹àoáËciG­CÿLÙơ¨&ó%æ®"úª[]?/xơµ×­¶?­ƒŸAt ¬Ü¦>~.¹xqéáĂ­ªù´hAägiËŒLægægçÉÏΠ2̀ «}±Ö9>cÆŒL›Û₫ăđË‹/CJûnkví̉…ŒOéʵk×2ơù‹½¤°]¶B_ü Ơ¸۪풷/%Ơ—Ư¶lr\\\¦8œüRc¿^dû£:ølêÔ©’ưs¶đsbbbƯºu‘hö̀Ï̀ÏNåg$6»á‘6lØ`©ñ_NÍ‹Ÿ£Ñª>%ƶRØ2J~FtÈKK|ßYƠj!Kï^±¼­ül2™BCC¯^½ê~~³E‹=/CîxPJÅ̀Ï̀Ị̈³€¦óÆO”l?•&µ¨–pNẓ3%W)®{$%%IqµÉíß¿±N÷¯ ‡*̉$?#Ơ¬%JBµ”‚P²•ƠdĐbơU²©6â¸Ô ëPU+?¯_¿^́.àg/?¿ÊS¦X¾Ö­+yyÍÖ«W/!!ù™ùÙA~Ö ‰¾5–`×.K¤¹Ñ 0@É…Á@ù™̣I‰ưºiûÜ,o#3ºà:äg}¶ĐÄÀÎ83k}̣ Œ}áíbNL¤đsrṛÚ,¬Y³¦V­Zsæ̀r•öíÍÏE›4±ªæ#ỮºuëzôèÁǜül”ü¬ƒ¨•S q}u¨8́’€!ñ7ˆM¦Ÿ‡>{öLk:9Ă,® ²¯Ă­Ö=%̃}÷]UO­nơÓæ{÷̀f3…Ÿ»üjx¸ß’%¯X08 ¾S§jØĐơǘ3y²w±bUƒƒ¥W¡%ükԨѨó3ó³kôÏtÚ´;Âg«ä¤ Yt¹ư3%!Ô„ đ ¾]|óÍ7J‹ƠÏéÈ?èÈÎqD:xđ`HHȹsçT•íVÿ½6lذŒ \đ*DưFÿ±cË<ôX0,¬ÜÙ³™äy÷nÑÀ@×ós‘đpߘùmù‹½jÖ|]™o™Ÿ™ŸE'øwë0¦iqñX÷†çOQe-º¥”uER¶KQELí>p£äg‘8—Ÿ O.©¤Ø¡ó³ß¶mE zNîÁÏ™N‹sçö÷g~f~vü¬ÊZ-´ªºUëv¶₫™.XZ‘˜ẽ+cÇ•Øqe¯áü,ªEA4Ô.Đo¨j ØĐ̉́;sæŒƠŒ~ôèŹCtN|$º$)lđ 4tèP(¤¦¦Ú]’́}âK†“ø™̉|¥t ̣GŸ}öY||<¾?̣QUSëÓo©îƠëäéNü\ơ½÷*T¨ ÍVæç\ÏÏÑÑч6™L0twîÜ9cÆ h U­ñ‘4ẼP²=SRZÚ¥`½pĐÇĐ©üL‰_GÜ)èĐ(I­Úo¨FêSơC±üÈ*”ŸNÄñGAçç‚íÚùÿóŸîÉÏ:ưúë¯Å³›‘ù9—ñ3 K˜§0#={Ö£GvíÚỤ̀³ªü¬;ÿ¢ñĐ=‰èÑ Ús£pªư³/)í&Z“äçíÛ·ËyRT·J̣¹±ñ‘ˆ«­ª̣̃æ¥p…0D·lÙBÏÆ(:–¿»ÓÀù7~‰<ƯŒŸá&7mÚb̉ơë×™Ÿs7?›Ífè#˜bVª±cÇ^¼xÑ@ưưĐ÷’FB¯‹Ê)ªUs†u>èHÊ'ÛO%*=|¨Ư2*¾¨Vå6_“u´¨×Èϵ6ô™<ÙÍùỲÊÜW²dÉ{÷î1?çb~ÖĂă× ‘L‚:¬ ]–²ă?Süñ²èœøÏ"꤯êoH °¯£»•– U~ºó{í5ÿŸv~³’•øûûß¿Ÿù™ùÙIü,̣\‹„t$Z} ]ÀÏD=<ÎÛˆÅ,p†è7è:ªÚ*‘`BQh ê¢₫ỹ¼yơCC%ûg÷çgÀâÅ‹+Uª”””Äǜü¬›Ÿ‰₫ I›ÂÀ"Ù:ÚIñŸ5Q®FÔD¾r’}eUƠ¤V:M JÚªÑ UùyâĉAAAƯ‡ÏAü ˜3gÏíÛ·™Ÿ™ŸE'Ø?kˈFǗÛÊŸ®´ßPUă fr”½~8(Ă@ư³¦XÄơglƠTVvoçç={?^ötO~®Ü²å*Œ3ÆÛÛûÂ… ̀Ï̀ϺùYGtdÊ«&+´ËÛJ’˜‹ưS4)”äd\ƯªZßđóAº¨ê*¬Ôj‘pî‰çç·ß~ûÊ•+nÎÏ̃eË–˜=»ÔÊ•̣«è€Ư† Y¾|94ߪC™Ÿ™Ÿ!jJ0a¥9«#VRÇ•ñ7”²©R¢÷ăêhÜsĐê¢küSTÍÚEBđ(}Q’l78?‡„„ˆñ7Ü“Ÿ ¿ư¶uĂøø?|úôé•+WBK?ưôS(ĂBĂǜülà~_‡ôåàæ×Ùú ÄE_¼D™‡¨œ₫Àđü°V"»r/ń”&ûºˆˆˆœÈϾëÖ¬X1`Ø0xUéÓÇÓÛ»t` ïŸ₫tîÜ9ægægë7´J§ª!àDgú³A©Ö'¯É)iD'Û?ă«,KUØF–cQÙŒ\SüºœÂÏ%—,)5l˜ü¶âăÇùÿïÿJ¿÷̃O?ưÄǜül8¯ªR.tm9¬fz¶Ø×é`9\zÄO ]à?èx×ăñˆ~âJ* ¼ÀÏÏÿ·fÍâÅ‹_¹r…ù™ùÙLEñ×äFgu1ă?k=O¤gËRRăn¿á²Ír4LÑå~®:nÜàÁƒ¡ùÍ›7g~ιظq£ŸŸ_[ H' –8zôè0 ”,YrƠªUêNukkqÏM/‹(\̀Ïsâ+ª“»¨–Á\?S,–)ºtfCDÍ6D‚Qb[˜wô2?ÇÇÇÇÆÆÖ¨Qƒù9GæéîƯ»‘ <8m®]»ÆÅÅ9¢Ô-A©ÚVá ¯‘²±ǘ`ö+MZY%•¬ˆ†Äă?ˆÜ­*“kJLqxuůƒ?C¡̣‹o~–̃Z]—ßJàg«ëÀ϶ơŸ­ªUÈJ lUMâgÛë?[^~–̃æûäù:đóüѲeKæçôôt<Ê ù‡₫oîH?‡……Á"•Ë9v́˜á_«;ŸˆRr Ë‹®ŒäŒ°ÏJ_®Á\TNXàÔø¢J÷`·]xrÊ£¶ e·÷‰ñ‘°{x`mb’DMñ£NŸß.î̃½Û¿˜Ñ]»vmƠªƠG}¤´‘̀¹ülx2$'ˆ&H¢¤¥ỞƠÑùYkdá@(áU„ºñ€u¢Ọ́w;¸ÔºrăÊñW•Ɔ*?«&CGƒ'D@’K„¤?v Q-½cäçU«V+V¬©ö́ÙcUgÙ²eÀ`111»ví’Ă‘#GX~ÆSQø‡Bï8Y)µ!̣³̉Ưâ䌧GxÛîdGRơ‰Î̀o…s2rç¶|+ª¥•3äâ’-‘Ÿ‰K 2Dñđ¶:¶‡øA©œùù‡~¨U«^çÚµk‘‘‘Û·o5jÔÙ³g ”Êü¬‰ÀñM½ˆÆ®§ve₫nƠ™…(yX•ñ µù»U; y”NWM¯€çv'æï–ơ”q…?m¼ƒpU•H —+”̣¬~ƒÂÏ€}ûö 2¤sç΃ÎM³±üŒ'ŒĂ³9;’[Äṿ:ÂÏDU"\)é7-®É¡,OºùI>K?;ÀÓykZ[‰Yrtë7p½„j/ ’?¾•ÀÇ e¹d~΃ĐÁÏt™̉E<3Âo¸L"—]?Eiăg Ä¤!Jœ )¿•ăÅỢtư¼¦-¿U"?ÓïWY¨êØUwDƠ=ægæg­tD9à¦èñĂ ,¿V+?ëÈ–¨°o”>Á̀´ÊÏå0²[WZAtô½½:äg¥ơ‚̉DU qƒcw à§6̀Ï̀Ïägz–:|̉©j5MygëŸ)ç8¸Ü«‰”è)bt>¨z8¨cUUz&¢^Q—}®;¢èđv‰ÊgÈsĂåĂơéééÛ·oÿ́³Ï~ươWéʲeËöïßT°fÍÉ„êlذaÚ´i‰‰‰đ6--mÅÛ¶m‹ˆˆˆ…+—.]Ú½{÷Â… ###e¯™|ơƠWË—/̣ä‰ôvêÔ©#GÜ´i“TaÏ=LJ®¹sçó³ü¬i#†+7pơ]nA´»N:¤ˆÙH^Wº½²ñW’ jÿLÔ]ă‹33rÊ ô»Dù_b”vˆ±·ª´OTPåĂåg }ûövmÙ²%03\©S§”₫ùç:DEE‰Y>\³gÏ̃²eKíÚµ¯]»öèÑ£B… :6 `ï̃½đQÑ¢EŸáG}}}¥tƠªUƒ·K–,©[·.| ü 0üà-|ù•+W̃|óMXæÏŸß¬Y3ægÇù™"JQ4l`X¬uk6ẹ̀³Q&ßú¿222àï?₫èˆN@·üŒ[»!Ú`U“úàÛo¿…¿ bÑơV7 [~¦Ë·ú5ô¥· ±ºgCø$Û ßBùÔ©S?KƒçäÉ“5kÖ¼uëVơêƠwgaĈ³fÍ‚ú̃̃̃̉c?7hĐ@úÎwß}÷âÅ‹ëׯïÔ©“ô_ÁÁÁG>oß¾=Ô„;‡j7õ,W®|T†ñÏǘ<ù™xÊOt³ªö"Q¦Œ™3gj#äg­DM_zOÛ¶m AD±ûé… pgë7èÆ¸̃C©ù°wÖ§ Ö¤i&|J< ̣ƯƒƯº\îÖ­[—.]T‚¨wD‚ŦhœưsJJJ… duˆ¾?Ka.’’’Ê”) „äÉ/_ ̀\±bEé¿Æ¿hÑ"`]ÙóºQ£FçÏŸŸ0aBëÖ­åÿ:räȳgÏbbb€¢K•*=5Ïœ93v́X³‘Dä̀ϺơÏÄ­*]+Ø>}ú rÑ>Öqư†ÆVƯ¼ëS2St¹ôD› \ƒ!¢æ¾BÂÙ³géJÔbÿ¬Z°½À6̣O߸q9—®l̃¼Y®ªªÿ»ˆÚ±(u„QúæÍ›ỵ̈Ë/PX»v-”%~–«W¯îĐ¡đj¥J•¤9_ ‹)…ŸA`†o“Ô׃ ºté̉¨Q£@̉€· ‡DFF>}zܸqbVô*X˜ŸÇϪ§EˆNRItd›iùëúøYu@ Ca—¥e‚Q­ÏÚ·‹vD~¦8°ă‡vûñĂ?ÔÔ­qqq¼DuëŸé·4¢u(ZnôT÷ÄGj8?ïß¿¿eË–M›6­]»öåË—%~nĐ A“&M̃zë-é‘®Y³&((ªH “…ÂÏPÙ800088xĈđv÷îƯơë×oÓ¦ |ÿ¹s瀺ÿüç?‡††Ö«WoôèÑ,?ËÏt#4QÍÊÎj@úûû;¢}µ­æTÿA¼É¶SLæ0˜5™cÉ€QˆåmÏt!¿©ÿGôôsO¥•H¾²gÏÊ ©Vë¹đº @{áe6™èöϪ1l5Ư"Ôê 0HPxüø1QµBfÆÚ×YNàÏk×®=|øĐª¤7Ö„ôôô´´4Ë+÷ïß·R€?}ú”ømZù$ÿ<.?ÓÑÈ₫×jHÛѽç,+ܼ¥Ékˆü¬ªÀ NÁ08qâDM¡ŸT›́ù‚¦“ƠåˆëŸU#¿Q$R£T:^/·7=(TÇù ½½ ¶ûơ뇯5"!ÄŸ3äg[Hǘ†́´qăÆ5j<¶€mlºï¿ÿ>>>>11ơ°°0I…Âú ll52?nÈf_xỵú‘ÏA/)í5PW8pà€Ơ¿¿DSÀ̀YúgÜY[•O”Z$/µ÷©„…Â+rcŸ̃æ"­ü¬ĂNCÔëq#€0)~."ê;i%Í:‰Ÿï̃½ë19W¬XQ¤H‘0 ́Ư»×ªÎ²eËvï̃=gΜ£GÂÛùóç_½z•ùQDă*\© › îƯ»#ÎDAË.Y9;>~8(cơêƠ¸Ñ%4D»ví2›ùJ¡—ZzúŒ¨Ư~ĂA“B¥½¹t½gÏD`Êùoç,½üÊØ¶ĂVÎTågSä¨çËbÂÚƠ¿ÁÖbg{¨±·èp8hö´ àç¾}ûFDDl̃¼æuÿ₫ư‰Î/¹ƒŸ)蔥t̉dÁÆ Eá Á£ *¥¼"„|0ûñ蟉¡¥Çîä½}û6.nùgµ±(Z§±à1LÈwTđzNSóu>ˆœ!œ¬¯ B€àá«¶́Ṇ]¼{X³#₫ƒ-«í¼Rô9u>WSÿöt\!#Îv)ç³ÆÚ?ç>~Éÿ́Ù³k×®Ư¹sç‰'àoîÓo˜“’LCG˜&LÈXµ:cËVóxó…‹æ»wͨ%¹V :Ë·—.]²;€ß< ^—¯»‚÷!ŸƠ§~/dæDÁ»K¦"ÖœçßHJ¢–ˆ#Ï‹Àº•ª§̃ơ«ÿúĐ‚ & ù₫™©U1Y¡ó³ê±”@HXC´LĐFđ8)x]¼’ḯu™%& ̃ï[ÔAôáôÍX¨J,_÷ïÏ…ÙutMåœïw²:Nơ :9[$ö…ÀñŸó$ó³Éd>sÖ÷ïŒÍ?fD¯Ê˜=×4n‚iÈpSp Só6¦]̉«¼aê÷QFÔlSø Œµëa¿™Iàj,‡›¨Ù•Í^{y¶>içûÛ;5ocù‘ähw´;Ï¿[P Ơkåb—Ÿ3~Øœ^Â_n,4•¬Î¿^–÷îƯ+ ¡ÿŒ’Ÿu˜&''Ë-µ»³¨ơ² ë‘y¦RƯô—ÑvÛ›””DÑ‹ă×Y} l^̉ßï(ÿnÿ̀å̉Ûêf Ú¬Å=œ‹ûÉ~ƒ¶üö²”₫¶oßv܇ÍÁüœgùW,›ïß7ÿz̉¼ïg`oÓ‡M‘£€·¥cô—†´S>é ; ƒÏ÷^HA¢–A}ÏÇ63Å.k!"œQ₫ƒ‚Ź_¥à?ñññˆ ¶AASjà¹sçT£Rb¿Aqè¶ë¦(@₫¥ƒB^§ÑƯâBägfÈ! 'ª <»¯“/´O¦öíV¨(‹…|+…Wl— _X¬A"ơecÁ£\V&ùöíꂇụ̀å̀ ,HMÉɰg4_½Êǜü¬U’ÚüËñ¾̉~¼nĂ3/Æ*₫/äÛÚ̉îL-đ3…iB?dw̃ù rùY gµÛÅé[d‰~¢vû }¿µHxemT+½– ¯DÆ€ü2ơèm÷:ó3ó³î#~¥4§¤˜O~>Æj½#¾̣í¢ùßïÆ6êYCâ#™SSÍGO‚Û3Ÿ;Ÿù:!ó/-gÏe 0đé¿÷glƯ1- Ę!‚gÆ̃}OÓSMŸOÊX¼4c朌o¿»ao5™)äû’©/ÿ—ùî]Ü aNưa……Í~æsøơdÆO{3ví67_x%cĂFS·^¦ÎỬ5…;\'7§zMË;ï#x^̉(v¾aÑ¡"Á”Zi€éđïV̉ưÆÆÆâ1¤‹°%¼ưrc‹8É’%H¼)¼–ÈYü|éÊ•êuë)^Ü»@rU«6ïƯû½[ơꕜœ̀ǘlùY$§Ôr…À ÿ[Öøê 3ŒÁă7Áû¢àu^đú@á?'ñóƯ»™ºˆOLáƒLĂ"2_†dªÜ‡0ơ`úxdú›ủ_{ư¹H3phfáƠRD ê.xn‡èúJ´Ó;k¦Că¯7Ô Üt–®ß0ơûÈÔ¡‹©EØ} £¾U÷¥·!RaơËëNÁcÏÔ¼M åV4}ú́Ù³O`H°₫ÙI‘7dë&ƠÉ"*Ç,5đ|Ñ?SØL*¤¤¤Œ3FN&bËRô~`đwé̉¥¸ưrFñ3¢8Q» ưû÷‡¿R¤w%:‚®¿đX•E£/?,r\((Ä7nœVÇrĂÍùù£>Z»v­üçg˜U«V=räˆQúC‡ÁØ#¦5̀;úgƠA%³‹?₫Ø̣í°aĂtL Á9ñŸU¯„à™#G” GFFj²ËBH[·ư†ªVWRYƯ6Œ%U¹Qr®iII£gG̣:¸»Y¶l™\₫́³Ïˆ†7øZ€Øx¸??ïܹ³uëÖ–Wp~Àpmذ!È[“₫Ï÷ßỊ̈3.4â’§&£;­> è7]Y¼Yœtlêq!Sw|$M' 8gj5¤˜7«’•¨Ư¾WJ¨.ú¶€Ư7üƯ¿?r’hw‚„,*¶SÉù9((èàÁƒøY¹çÍ›gàù`îƒ&~6Üû[•±qaOé;ŸŸ(xă–½¢UÎÏN̉oˆŹ ”F•¤DQí`WÓÓ‘PDSa"ºnQ9{¦ª­8̣VÔbå¶ü¼aÆ>}úX]¤đó­[·̃~ûmÄă›ùÙ¨üƒ¸OÇi¸ acùY $& Ñí-™‘³~ܵA‡}}ƒ ´¬èØÏy)7©CÿŒ¯/"-± ÑVPDM2p•»Ư²Ụ̂shhèÉ“'uđ³˜ẹ1cÆ ægçé7p·A¼ œˆbÆ $í8Ơ~CI Đåtê&j_ ‘ŸZîÊfÙ₫ànœÁDÇÎñ¶Ưñơ‹hq‡Ó/~¸àỊ̂ó–-[ú÷ïo{ÈÏ)))M4¿̀Ï:øYĐ˜1M ÇRÖ¤ñÓºëwª~ƒÈ*øÆ_D3܉„˜ V¿îH|~â[ITƠâ>D·ơJ̣*åø[÷NƠ/†2Ü“Ÿßÿ}»fD~LŸ>nùÙ(ùY dLSáˆFN$œ́ă³̀I₫)ªr#]¥#¢‚ZGơÏ?íB¶øR+ª́á#JŸư†¦aI1¤¡ø¤ă¾EøÂáÎüשS'»Ñù911±iÓ¦vˆ3?;Ă₫{ ª¤ W ’́ ?;n¼S+róªû\œêh2~¸F¡wMgúô¢.7+}[ d=Ó÷„Ư<₫Ƈ~¸cÇù0räÈmÛ¶1?ÎÏ-e³O ƠH!+gŸ"Q96E蘒$?«6Ÿâ7‡h9ơ1Ñ¡P´ÿnx€8ï‹jgµß"r;đsJJJ›̃½Û|ô¼»tñ-_ Ú¶=¦÷|PẤ*±™ŸÿL™æ"í0ˆbáŒoçùRdZU{ ‘` ¥ª¥´zëH|QDhGD«Ua’¾́ Úów#”(̉\)·D1AqĐyĐMøùđáĂUF,ù2¼Tböl(”ǘí3a‚̀ºt~öiÓ¦ä̉¥¥¿ûỊ̂U¹gO)j(H¿VAG)ú[·nđœ åøøøÎ;Û&Öd~Öd)DÙúé³Prv~+ ‰é0muüNœCß-áÚ†ŸÂÏđ=åĐDë"ènöuÀÏUG.R₫êU=üæÿ¯Y],Tê7ªW ,X¼8ü…̣Ÿ4 ëŸå xOŸ>s\ÆÏÊNT”.–Ÿµ̣³ª̃CÇ¾Ă©ùSt?ʓѽ8C~¦X;k]:¶‚Ûäï~öo×®èĐ¡–ë ?¿Ú¤I¹³gŸ—ÇóÛ¶ ;l¿á’óAÇÇ¿&5hhü “ËAñXŸ!̣3‘O±̉1đ¹¹L¿á2 FĐo¬P¡ÜÉ“Nâgÿ}û Îü¬›Ÿu[(i>)¾²E~ÖÇ6<t…¸ p̃rïVüU´fMk‚5Ÿ+¥§hÖ¬â£G̀ÏÙ"?«Çpg~Öªitγvđ9¯ÉêŸEQ£EŸJÇø¹~ưú¯ơéă<~άóùç~[¶0?;ÂÏÄĐˆÙùÙI{sĂ·ÏÙ¢Î̃7V¿aˆI¶SH¶óó¦M›ÂÂÂ$ûgçñ3T(Éüœị́31vºIáÊóAÇ›`ˆ6À‘ø¢.ØÔ8ƒ¸Œ¿‘Síü²jƠ*gós¥´´¡¡ƠÚµc~vCư†!Ü=íŸ ·̉oäDù9Û­ê?f/?oܸ1<<\öt?g^5êµ&M˜Ÿ³‘ŸáY–SøÙ{¶è7ÜJuC~vê¨ÎF~ÎÈÈ :}ú´køÙoëVß?ư‰ùÙägç¼ăñŸu7!µĐ®—Ÿơ© ́nÇùÙyËă!ÄƯŸcbb  ZÄßp*?W¸¿°¿?ós̉oäDùÙ•̉&ë7ÜP¿a,²‹ŸSSSëÖ­{åÊ—ñsfÍÊ•A\§đsJJJ×®]7nüă?Y€¿ụ̈ ó³;3›ê7œ}úïxüg÷‘3ƯŸŸU,+g?Ï›7ò˜1RÙeǘ_§Î’%KV¬XQ¸pá¦سgƠíEGGĂ]™L&;wîœ1cÇGrp(:),’ûđ³ëơ´®‘Ÿó ₫Ù}œ-ü|ï̃½Úµkß¾}ÛÅü\©ys´@MùË_đ;„¾†ÁÿôéÓgÏơèÑ£]»v̀Ϭßp7°~ƒơÎà爈ˆÙ³gËo]ÆÏ;BcwíÚ¥ÊÏf³ƒ\RÅŒ;öâÅ‹̀Ï̀Ï̀Ï̀Ϲ˜Ÿïß¿_¦zơü¯¾Zơ½÷ª·k'½JT«æÿrp$çñsTTỒ™3Uù9wƒù™ù™ù™ùÙ7nÜ(Xº´ß–-–´é»re©Áƒ]ĂÏñññĐÅ̀Ï̀Ï̀Ï̀Ï̀ÏV7n\‘ ¬hÓ•üœ––Ö¤I“ÈÈHægægægægægwï̃mÑ¢Eµ=²‘Ÿá68tèPægægægægæg IIIeË–]¶lY€M¨:óó̉¥KĂĂĂ™ŸsÊƯ˜Ÿ™Ÿs?S¶SùùĐáĂK—/‡×¼¯¾‚›i2=*êớ–Ÿ>Ü·o_æg–Ÿ]¿ˆäe~6ä±ül ?WlÜØ÷›oÏ ]StØ0(ûLŸ₫jëÖÙËÏ@Md~f~fù™åç¼̀ÏƠZµ*µv-ó«£GK Y&>̃§M›lçç‘#G2?ç,Y‘ù™ù9‡̣³ ̣[=ỵDº"¬pụ̀e©púôiøûđáĂyóæ½R Ü[™¸8àÆüY ü,xzBA3F¨X±rÖÍKü ‰E¥‚È]~+$~¶­ ñ³eMàg»ß ñ3Û×åYù9×Dnw?»ùóaùÙ.?GGGKW䂪W¯~øđá"E´nƯzÙĂĂ£tP(¾u«L’™ülĂ®œŸå‚?Ụ̂°?Ëæg1Ësï̃½đV¬XñË—/§T[µjŒƠjë² Z ø6&&†ø»Đ–•+W.X°@©É-Z´€Áy,wáر?wîÜếرƒ̣´¡ăà18 3ĐhN—.]~3fL.ëb´0t•F5ÈÀAAAmÛ¶­]»vë,@¡iÓ¦ÍBB7lÔè:u*W©âăă#q ‡§'ü-́ççíăă‘/_₫€x[hîܲÇA₫–̃°A*Hơå‚O¯^̉[¹¦U©P08¸ä’%Hù ¼ù¦Ư Đd ¦<®ß€'0xđ`¢ .ü&Äj%K–¬Zµªjµ̣åË—+WNµZµjƠJ”(AùƯbÅA[úơëwưúu¥&/]º422̣“Ü…áÇ?xđÀn{Ó̉̉&Muêׯœ̣´¡û  ô1?M3Đh4 f·Éđ(àä².†A CWiT'$$„„„t́رyóæ³…–­ZµíÚµ]·ní»wïØ³g—̃½»ơïŸ/₫êo¿ ¯b%JÀ_ÿ*U đz­Z@‰¥+U‚+P€¿¯gѦôÖ² Ơ”¾Án©PµV­ªµk#äo¨’ơ…¶ É@M@P"Ca©5°¬z¿₫ú«jµƠ«Wƒp¥ZíüùóĐS̃^̃l+@FU­vêÔ) 7×øQøiƠjĐh÷¦³gú“'OÚ´iC©¹}ûö¨¨(JÍO?ưv<‘™Ÿ̀Ï ægægægægægægægægîVægægæç<ÛÄ1T;v́XJJjµk×®IyÍp<|øđÈ‘#̃^̃ÄƠ«WT«AÇ=zÔơc~”2f  ĐîMgÏt“ÉD<›»uëÖÙ³g)5Oœ8‘””Ä™Á`0 ƒÁ`0 ƒÁ`0 ƒÁ`0$''?}úTµÚ­[·̀f³jµßÿ=55•̣»‰‰‰xÛY œüB5îJ¼_Të}:R---màÀP§{÷îÜ¡¶€é3~üxƠh`«W¯6lØÇ¼fͤډ'ºuë6bÄ$•Œ¡C‡Î5 ¯óùçŸ÷ë×z9..©¶oß¾ˆˆ¸=¸OîS­€‰“wêÔ©0‘ñú—2‹é]̀Ùî êÑ£ÎÏ<ضm¾ụ̈ËM›6!5%³ÉI“&íܹÿƯ!C†´nƯïÙüqÑ¢E—.]¿jÆ ÑÑѰâ_¸páÙ³gܧVˆ‰‰‰RåçØØX`r¡a"#ƠN:B,Hb;wÆ¿Æ̀‡~¨ÊÏÀ ªöÏđs0ïß¿æ̀îS­€©qüøq(ôêƠë·ß~3¤‰³˜̃Å<‘íbÔ¨Qª̣3àæÍ›¡¡¡ª}ŒZ«V-XX‘:Ë—/ß¾};,åø·-^¼xđàÁ'NÄ3ùù´jƠ Z¡*äYÀ÷É'ŸPj‚ưƯwßáu`´¼óÎ;¸˜}÷î]˜¼ /©̣3Lđ¹sçvèĐáçŸFªƠ¯_?<<¼oß¾°p‡êĂ:uê¤Z̉¿ôYLïbȺùùÊ•+đ耢ñj’æfå˜1c­V5&O\»víyóæás¹‘ơt₫üùË–-ƒlÊT…mægäi£*…v—ñôéSé¢qăÆÈyp)P=ÈÏ-[¶Ä•]&“IºCÜ‘¿nƯºđÓééé¸xÏP¿₫ơ/‰?~lHÿ̉g1½‹y"ëăgØWÖ«WÖ>ØZ"›èͰ°°ÄÄÄÙ³g¯]»é¬ËYhß¾=î ư¾råJ¨©ºă€MPåx‹ùÙ. ÂÔ©S¡‹qê ÄÄÄ@Yyâ”»Tè¸uëÖÁJœĂ˜u*Ïœ9sFà₫ưû Àª'O > stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 953 0 obj << /Length 2541 /Filter /FlateDecode >> stream xÚ­YKoăȾûWs’·Ù|Iï Yl;Îif´DKK”–”Æăươ©úªlJ´ÇArÉnV×ûƠe3[Ï̀́§+£Ïï®~øG˜̀B¦gw³" rÎ̉<Ư­fŸæ§ëp̃Ơô§Y_/¢8Ÿé}C¿êú÷»̉i“ùÇă,HMNÈqxIp[ú ư8Î[úôăï{¬׈“4 ̉,s¨MĂg 3´o„¡}ËḮ;ŒeI`óÄaëFÄ…©Ÿ=w`x)zMĂW™bÑq^̀ï„0 TÂè₫AöJy<^Û|^=ƒ"6˜xÉ[ÆøMƠ£ÙÂ&&H¢p¶£ ‰ ae~EѼ+wĂ¢́ä 3̣«đJ̃YåµÍæO¶ñR¬¥²«6DÜ‘…æH ïX152D́p u^:V¦¬RÄAÅN÷÷ENh̃’c¦©]9•L$‚A+^¿§u’Ơ ŸM³B»‹­̀|+ÓpֹƶÙ·‘t^68I(!n#‹S÷¢¸6MÈ}²·xáBlå6HéÄÈÖ¯zh˜!*‰@A"3Ë‚"3Y(̀"L)̉¿]/ơ¡9ØÛKxơ9₫l3f ñÎŒ₫•~ïèw€±†>黃{'èBçhE§Éˆ5§®R³J%!sÆ̃ÛB»gưQ·Ÿu;Päµ—²̃{)ËơœƯø‚Ư“Ü)Û­RRâÓ ˆÉpiáÎŒMöç¶7D/2ón ‘«Ÿ!éÎÉøéXO ’n‚-¤<¾—ƯúưŒAÛ×¾¬aVyø₫·•¢h@¼VZ/v$pơrß‚S>z¬Vrôó8¿”GàhN,Ư±̃#H™rL’Û‘c´%I‘ É-2ƒÄj'ï±¹W@æüÎi¤.× Qn%}đ>+Ö/‘Ê€²<+hPPÿa#Yˆ7¸$1ÁăFơ±"äàD,|é+¢–½*œ~&D)ï÷_%µ&}̃QQÎåä’$0a6̉Xj«Êƒe–5óе“R«¾¡ • Ùv®ê29>T˜Ï=Î,ë~.z8YÖª•åœă ?b¤˜› £µèÖĐQB95Ëè‡_SM ód¾ÀGÛë¥Ô˜`-­“‰Ôư6{Z]5≒¡I­P±‰£ÉT²4súÑ:Í”ḥG›Óß deÑL˜µúÆÎ÷üZ¡êp,¤`’±àÄ´™/f–Ạ̊̀^̀è1¡éS»GÄ,Ơ;‹(-†t0¤¿¹QIHy±¥ÎB©Đ2ÊÂLXÈCZØĐÆ N¥ºư¡ gè:`H•Z:ĐøÚ±M÷¦áTM;ë;î®óˆ̣;±öeœ+±5C ·Z$’4¿º``îÅpÎ5,VR»äĐîÉmndÍË%7MA ˆÂQóc9®4=ö˜4ơ{p¶HçŸĂ(îZ!NK8µ}q$΅¢3ÔJ! ´}z~¡-4ÖẽØ:\}~aô¦fH’ü^÷¥S–¢D+=7rÀÖ•MÖíZÀÑÏ‘íuÁç…ˆ„U)úK …Y ÏReØîïäë®t¬Œ4ƒ„¯ÿ6ö;U`̣¶̀V;R{àZ[ÊơKíu¼ÉĐÆ¾r í:?§‹ ëë=G‹*’wbÖ 8¼¬d¡j¬˜Íu ª°E<̣<[‡ˆ_­ôAÎü>6XĐç»EµíËƯBy¥»œ]Z¼ÀĂÅäq=Ë»Gq¸˜h‡~æỀºg}:,ˆ{́[·—ưƒ(µC‘»ïû±Mûr­ ¾¢S¿r$r5´îÿë•3¡f=Ïú¼˜…aP$‰ECQuÍùJ%A’ dÂD9<ä₫Q̀\ăŸÅó¶PØÁ‰™%ól}­.Ä;àO#ÿ…´œ‘N >²p;>I5à<‡̣^×tßå₫óP÷6Ư¢/&¨„|ƒMB†_ªAaYnø«äႲj×­+^|Óȧ}; ÊVÅ¥÷½‹Â»¤´ë\ |…#Üï\hós¡yƯe-ú[4B_sàD6æpo÷́Ưt?Ô¡×n÷^F¯¦±̃ pƠW ¶Êí"Qh¥éîĐ /zÇpÄó#–£HëÁ"Nß6²k5Ü€è3e½R3h¯JB×:3ơ‰v,غĐmzVtv̉ ïÈYnÓ \Œ»¡nû%˧SX0¿IçwO¬Œ½kgđçÎYp–o è¶©eóAˆ&T®f®üÙPêƠÜ›)GB‰¹Jí\’#Û&Ù(½Ó²7ăA%Ùß̉ùᬖjÎW${yƠøœÂO£ẳ`‰³vBD£~«‰…Ç¡H ú]+₫®ä£ûÆ¡^ê+´}ĂT¢|¶Ưè¢ê×§e¹*·£bM»^›ÂÙóüÅ×½N¾yMỔU#FÖ“Í…«IMíüGW·qæA}ètJ~/ÖrƸoe€]Ù×F£ A%\®¤®‡îKYéơ~(̀èF”¿VÅ­^'5óe¸Ó̃­u]M°,UNªlßo’B;Bjö±Q1rUZ†©<‘.8®̣Ù(w¸ît)ƒÙF@úÔÍ‹²0îÛ^I`‹0¦«Jqæ|Ó•J)U®¡ˆ Z¹h̀?oÿ ^Z-h{¹ápH»qºz%ó/½ë!…\™Ï­Í́qæ̃~¹º´vq̉÷§5çQÍyC¿ôwôVG5ñÁk;5uă ¸\X=˼.Np¢UÈ/zzéat¶VäĂac‚$z¤ƯPe₫̃çZăĐ£<Œ=ëJq»hQ̃B­ˆá¸pZ49ÏÊzéđØ{4€n¥À\G Œ¶|!÷RRFV$ˆ[q)å»j EdS„L‘'ËYPØÈiàăí¯×t+º¤çüê µ7²MOzQ^0TB¯sê\u[‰µ›Ë]8T»ÉËo?]Í>áôoÚ¶`J9Ưw©Yµ£B_½<Ù‘E¶—|’Od@ᣮåeö#1çGỗ0967“ó•º÷QŸZïX=x6z~eńNÓé©I¼’‹uL=~*Ơ-÷Œ¦ACCíG¢{ö́éĂDgß̃́Íüÿ_ñ¸Pw01̉ÿFsü·Óvˆ€yÿ2,å1ç—çÑT½₫ŒÊ^gÎ+xQy†¥ yiÏ4₫1'|°¢¡ûgµêï?Œö–9²8¡ ^_~qÓÍFg₫~wơÑ„8é endstream endobj 960 0 obj << /Length 1495 /Filter /FlateDecode >> stream xÚ½YKoÜ6¾ûWèe T ‡/‰@ âEoơ-íak¯Óm²̃TZ»É¿/£ƠpEZTaô /%¾¾oœá˜U*VưtÅđ÷ÇÛ«77 MƠ6¦ePƯ>Tζt§«Ûûêưfº†Íîp]+›Á¶O[÷e?œööçn¸₫ưöçJ̣Fđª6Ô2Lû¸³½_¯k\n₫‚ÿï%~Wø®ñ·Åï]Øưàv́́±ó;Ư†ÛG§&xTÀÓûîáhÿ>6ă~2Le ³ŸƠøbÛl|±íÀ½0Û®‹ Ó’Îdăăv1‡±I(a„2¡Û~¯ïè°H²°¢eø&B")M‘tdPX-£sà%ôÓ°9•‰¸6§H́„MJ/ЦØP]!³”ÊD– úƒul e#²l’º1ÈFguĂ)2‘cĂ4µÆ3<í ­c£sl4Oèæ“cs:¹¿}3ú¢Îú ĐíƠ%T@¥¡Ù Ÿé¨ÏPsÑ)½DL„@½ÈøR/ªÍểPô¯¥»ß‚^„\<"dmN:¯?₫J>c·XĐÓëœM¤I‘:Œ¾H*ˆÎÀ•'@GÙĐ³HÊ„n[Ǧw‘êK#²QYƯD'­N¹†é¨MDg \Dz–&º‰ÙŒ±†çا[E¤“f7Oj‹5J-ê¦]b3ù€¾´B6zµÊo"6J-Q¬ér–&Z:§ÍÍY`#/ÙP$"u¦ơÇsj¹kÆAcM>×’%=8Ơ-¨¤náâ|5S ạ̈3á˜È)ă-`Â!ç ĐeơzfÏ/ç̀™è²°ˆ‰NÅ™ö<ÿU9k‹r;ÁrçÈ•c"Ø’N:d̉₫D¯³7‘³H3WÉf2h]5m'#Å ÷áC»2÷`Â.7‰ÉyuIªË…§á¦ Ù›’tn:CYI¾”A’KH^^}ñ3Ăs!uÍêíöYP˜†w§î(t¶tË‚¥uơ4V/­ÛÇ OïÍ Fªv*è† æ¾µ­'cç₫eŸ§k,Q„Ïw¶éÍÏ>Ïny§Ñ©Ûíø§ÿ́_÷¾'Œ:ø…ΣS³Çmp̉Ṇ̃Ígîöù„ v ¹¼¶úÛ¸åCøümÖ¡éá÷ªA`O¸‰/ĂØç3¾cî×ûï°ï7¦~7ÿˆ]_ó·¤.ĐŸ‚ö½}ńóƒ}~±Ï¯öy¶LĂ=ÎẂq×?̣€ƒ´pak*²ơÊñPÛ3¶K~&¨ŸqñăÙtüÀ¢²Đ £rV¨Q>ûƯÇ2ƠcđÁĂnë-ÑeiÂà¡h嶺߇ʕÿâmlï¾v÷8uKFï§ööKh÷~₫‡À׺ß ^±ÿ„n×~êOå° dZÉ鶨L‘‹ơZÂúÄ!’e˜2|¿¸Ú``­ĂÅºĂ¹µ‹|>ăÖ%!‹fWÉ’S¥L=ÁôCÔ¼æYµƯ[Öàs¢8IsÙd!éĘ δ,E'QË5eal»’̣“[EQ‹¼¨û‹4I‹äk,RBd‘߯ ¡Yr² Eü„$•Y#In"I^’Ñü7yƯ|emÇÙe]´̣Ÿ,¾$äÈ(F)–1úÓ2\_D¤nă¯-Ù‡i^¨ª,ª[¬%°XƯ¦¸j3–ûƯ•Dq™«Ô¨¤˜*”¸Ñ…"×/¼pUQ»ư£‹ë1c=%์43œ: å8e¸ÑœmW\i”§¸¸%bpmSàœÁ6½‰đØDi²Q'¾%ưx¡ÿxPN.yđ½’D€˜ :<:† Q®(qññ?Ë——3[œÉøÁäjÍIÔÅ©ÏdMt..È¡KÖHÓEÓIáZ̀(ÎÁ_„Îÿr¶ ´ª€5†Ÿ@ƒ²É´®jaÎ1ƒV]4åƯíƠ¿©o<á endstream endobj 966 0 obj << /Length 2460 /Filter /FlateDecode >> stream xÚ¥YKsă¸¾ûWèHU­°Ađq̀¤ö•Ënm\¹lr %Ú̉®D*¤4cÿûô5”]S¹Xx4~~ §«—Uºúé!•ßOßÿh‹zUºLíêñyU[SÁ¨¨ƠănơG2´k›4c;“¯76-l’Ô®ÿóø`²©M^ä ´¶Xo¼K‘æ3r¿D^̃%_ä^Äưˆä— ₫Lù¾à3Z羉µË?|FŸ$đ÷Ơä₫#îṣâÛ¸—ßÄƯûMÖ¹4øÛ÷·Ä´÷zntJØøwêS \;¼t¸³Ó`Âgă₫™wl̀´LR`b́;˜f9ßÅzăm¼W³kU«ÖÍY3Ap%ç²pÌïçœ#Mu¨“KÏ 'œ\¢@Ü>ùj̀¦@™22›¼đHK_ttâ tÄVMËØ¬™Ï tr¸ # ‰¶ñœ_ԖȆÎ]p"5e](›g4ʳƠ;ô83üeU¯¬5µ÷~¹q ¼̀Ă¯7uQ2Ôè¾tO€'m\™'f₫9¾‰Ñă=-“äü©E-°©̉ÉAéR´Ôt¤Z²±¨U\ÖɈ”Í ŸÈâb±ÇI•́È ÛAyí¬£èÀOws OÈY—MăLî*ƠéN¤U…³h}A¹7¥Ó¯Á]Âa6G¹vï Øa¤^I50@.’và=Œº2²ØPl²º†2VqäµdD”¶ƒ`¼eYrƠ•î…›­h–bVî+3ạ̀]MYïM‘ºØû%€×å.S2 p9Ọ Œ·GI2dôvˆ(n…Z%Mø ÊAŒ˜̉MDsơ³³j¬̉œ' °îÄnyæfiöÿµ®öƆqÖ›´.ç†ù'29E‰%·–/`)lq0È.9\ˆ™a jÚ½o—›Â•z­Ï¢Å€µ¥±y=3g_'aS̉ ŒoƯœGà¬ñÙ&G̃ùÚ•å̀¡,z;w ̀WÂZ­KNg,eẦTe¸‡Yo _¤’L_Pö₫¨q V*rcm1+#\((#es‰ăÈåW Ï7Ïề%jy‚7ê¯âæaaà±Ô©‰a…+•Đ÷]øµÊt§~Ôvª^%»ë.󦪼ªG5záĂÖeÆU!lUjºP‚ĐÍ1äHÖ«¯LVÜx?É9/²M×’~F‘Öï\¢„`ͪÿ»fzđøÂƯx<:Œ«)·“Mêf‹5¶f-ô”1¿«Ơˆ®ù&ߣªHÇƯKœứ¢©Æ1>%ȹ'r=¶¼"đ WL+ạkܺÂàífG?ú³˜9¤/Å­z÷“αÁpÏëäT8b"€8Ú¢t{ÊÆ/¡†ø4“êx̉üRÜqF&UĐb#›b óqb̃³ÀA÷tG ¹Ézeí“Ç}È5URI"đI:ëÚ.ZG s /;Kû8íHG1­üFV$Ơ½p¾ŸQø1´¬¾Ê‰ƒ%d'¬qfî5×gë]A‚Í’Z–)4‡“©°‘M^”ă#«<á’¬*bƯàtœ’ªqT“ç₫*7Úñ‡··Ä5‚Csl₫*,̃S0~Íúà¬8(…áIÀ…D=,4OÔÖPx;Ÿ\']ÁIh¸c`WpƼ¨·¡‡(æ˜ DÄEX:[>Î~­(äï! .eñ’àưGDVüܳVЉ¹a 8Ç­F©@üNÈ< z9̣e¢Đf´[ăË́㸄îẹ́kœz®fĐL‚OŒH{Üåú"i”̀b ưIîÏáfÀ ¸û{;’‡ÑéTb¥¥{$ÿî)Ux¨fסo8G’uºµị̂œđ7ơß=¹üË₫¶ƒ_²zQ™ ƠQ+r›w¡ç‚đUĂÿ†¾é¶ºw± ­L95/$'ÊwæÉKô§ei±^*ĐF óUŒ3‹çˆf+ZéCé¸ÓmA£j̣ª¿<0‘[̣É#?5°S1D)sSÏ=±}EO<©g`¢¨3y' aÀà'̀hµåÄ"”X`íŒưyßA.ơ”}/₫ˆ]5@úëÈËÍ1Fû]È'ŸƯô†£ùW îÈCGÆ#¾©Úp'aƒ >kwk(¶—I…Â!êêœ>}eÅ!4Ñ[Hío\æ£ jj‘xÏ…Bàă·ÔQó́đ˜£‡)úåĂŸµ|lgi7æ "P\„ ª9Ădy2x˯CêDD‹ÄQ/¢¿B…‰l?¥ ̉ÙEá¾*¡ÜŒ÷1çSŒ&ÁSè3\ÁO§¥Ơ‰ê¦z.gMZåqÄ(4Q¤̃K2‹‰£„"“ûR#PưQ ̣r4z°×KWĂË¿ÿô°úƒnd=íëĂ ̀åi| ¸tm̉¬¦ç+_Ô³ç+¾ˆÅg,hX~x̣K¯˜*n•Í `?xÁ½C Ü•_ƒ^ˆ¨§¨\J7¨‡†qMHCo¹vd%4¿Ó‹o{ñËÈCơX9…Ebœ„,¼sSư Ö«·u5·€úǹ6hÓ6R²îÈẸ̀ J­:ÛèÅA›ÏZj¡ä? âGF¾ËÈŒ¨ª˜=Çvâ;µ|•$tô{’?ÊéHÉMbMB4̉FÏ R–6Îñÿ%øhXIÁ©gD?<>üûZKå endstream endobj 851 0 obj << /Type /ObjStm /N 100 /First 898 /Length 2580 /Filter /FlateDecode >> stream xÚÍZÛnÉ}çWô£ơ°}¿• ,`K±×@²kX²‰áj8’Sf8ôÚûơ95R¤hQEË H˜ ûrªêt]º'»$´È. ă®$lN"{-¼%\ÉájE2ü÷ÁâJ‚ÚvQí ^zaL¤^ö¸±ÄM†tÜmB ‚đ" n"ÿ‚Y³Á´Q C8B ÆÊÑ «#ßxaMÀÀÑk5z%`tc6X ˆQ؈9&À×7YX h“p&rcÎáuÎ^¸`x-\ ©—“.ktOV8‚*2DöåÎzHüÆ ï3…C"Ÿ*g#<¡;®PHF{OI‹` Êœ¢–%NI¯14Bà7!  ×Œ‡Àj̀äq“³ 5Æ!ˆ =̉^D ‰ITM:²ºI'ܾ±"F(+ĂP1Ỳ„1A¬êÈZ#ƒ6!`D‘´æ‘ 7l^ăE²˜™LÄ Đ”–Bl`)”HÁ'ÜdöM Éj‘æ$ IŒ6=`™If ”f2ƒ˘و®m̀œÁ ³ÂÚÈä &CæTr¬,Đ`RèÈà :hÖx pÜ  ̃îéqĂí`"§ñ†˜ÏÎ’@xÜàg0¦‡×P`‚J EÛdƠÆa¢íàbÜÁ̀X™̉Sà‘‘´ N 1ăubEEîœôÔ»¯“R¨çăqƠôÔù́¢iŸÿ>ê©U=(ë÷ËTP¿¨×ê=ơ¶,ñ̃º(ØåÉJkAKPI¤Ëí‹“¡Î…zU½«„:ÏaSʺü\Fåñ°ͦ͑øùç₫Èé,5tèI +¹@̉:^Ff—ît] ªq48n‰&:I`ÇMN2ø? ŒäØ›th|Èt¾ÍŸĂñE¿¾:\ëp8<Ú ~´ă@́…ÇXèÆ̣AöëVËLàvH’¢ßÂå?5†µIÚ|#©É́ăL¼Ïć[¡~ÿ÷àŸd“ó2Ăÿg£Ñ‡EÛ—Ơ¸i‡} ÷g±€Ú^/ÙsrT^w㦮}îÆOti¦}Xz‘Œt.sQ`9Caă¤ç²›̣·cÑåđjV—̉¸:³$—` B p6=̉©hŸêæªøƠѺt¬û•EÅ/MOưÚ¿æß,ÖWZ¶öQ¿”£Ïeƒ¨ÚSƠ`8¾j›V$ÚaH÷Í!zQß÷½z}zÊ]xÛêïĂÊ\‹óQ—ưƠ¿†ăçăéđæç³áåe +°½̃ƒêz8ÁQưoV5娼l8Wƒ zN‡êªî.U¿˜5¥*†u1»¾•_T3 JuƯç=:uÁ©wé ¬CL1N•„«”—ªÆÜª+F£₫̣åÇÙøª_Ï®GưY£ª«j\~REŸÇ›NúE¹Äǿo×€·ÖÖ¤Î|f !ŒƯµ̃ÖWÇÍêăÅñûoœXµ-__ó™)¹G­³±rø¼q?燘;kf­í<à¬-ÂÛí‘ lóÜO·Hfc;h÷Ơ¦?Ø~à¾̣ØưM>!~ˆ<7¹ M3>™_ççséæ: …4mQcQÔ磤Ä)²îŸ®>å»BJ2›§‡àQôè05Đư0ăº ûC®åX!́¹$|$i¡ƒœ/ó‘4àémG/wăáUbíî>g­íÜç8cºíŒïh뼓ÑïºúÖ₫vÛ›_sk{/Ú¼¹hă¾NȦ¨7=ôpkO%Ử4 ăƒ´È8óÍÀ`5·|œ‹w›Úu»i—üírºù@Ç\æñGWÖYTWđ?.ÉÀ_kµGæv뱄¿½®Ü ï6 ÏǼüÉĐ]†_³Ù¶s¬uĂß:w¿aϾæô~Ăœ̃>̀œ¯êj6i¿kZ®ùNÙüu®̃Ơư1̣HNu¿ uz®ÎÊÏĂ¢|ûê²8ÑÔ³rE™̃í®øƠ¶̃‰$m´’}Ànéeäo‚Â}vøFêé!±ß®z4ƒ¶Oï3AØL2‚ÙwEu¾“:àÔ¤Ô¥y¶%÷ï˜Ú”%œ©ÍƯLB’dÛrû]×ĂöL›rÚÈ;6N·±ü=Œ™øôè&°¼ÙoÛ+/₫8¾.›Ơ`zđƯP¢ô”$Dø(Î (<1₫´‰÷Ú–h-Fø—„†7gAÔ%̃œ;€ù£>ö'ưÛ.<< 5 ›é7 y¤}>ˆÚ­×ê¶Ço¿RÔ›̃#?È{¬jYrm«Ư÷’ncïϵ÷ôƯ&í”ÿÆN˜J endstream endobj 972 0 obj << /Length 848 /Filter /FlateDecode >> stream xÚ•VÉnÛ0½û+¤ˆ.Zƒ¶@&E‚^Úª§4ïvY%7ÈßwÈ”í8(Œ1)̣;H•@ß~]{Ø¥‡m {tôèáOÄ Ö$ ­2Ç-)Àâ3GóN_É ™©iÇÏNÆ„ø×øø›BÜ8‘S#²§på̉V;̃†nª^Zºvá́פmM×$së5Ô’¸¶‡.“Ú[ }‰cºmú.¯<]¯kmüØ/Î Éߺ¢̉ÏéH3=S¢½îôÛÉäl¨3Ï̃öƠP·.M—Óxæ ßQü6Ư₫X}œî¨#©ÓÆœœ[¶ĐÙ^œ7¤xí¹Ú¸ø¼–w'î̃ê×{ èK_Ä3öäŒh4”2Adûqp]xË¥˜”E ă”qLªÁÓ€e…R¹Ax[seùèàâ¶Iđ¹|ƒŸ½‹¬ĐÈ“¯Ÿ$œ¼đ_?R*+zưÜß‹z©8Er9Œ8 Ë¥9ɰ`Û¶ë#Ó8ZÏ`¸¨t™†µÉe ¢¢ÓÛj(³~µx¥¢“¡̀ĂeíÆ®9ÉÎGL`^Pq—´ªÁƒÉh›ç&è{vf˜¾o PWFƠ¢P,‰ K_ª²ódưƠºµUJ†ä.üga½EàtƠM>ÔhB»z‹ƒ"cauM©åTVø ʉ3¨¹×3{cQ<Ü™Y©c½@1^÷ÁA¨ùÅ xÎb.ÁñÎáÿk;Ú+° >u”°"ơ˜Øi‰ ¦0pXF*O™Rªö+m¹ Ró?Eo0®-™†qŘKJ…*f¸ïå»3¨ÅȆI}4ïqƯΨ*G-Í+°Æ­+H½RAæ1zwđ-Hˆvå¥):›̣†Ä?¿K¢ endstream endobj 963 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-040.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 974 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 975 0 R/F3 976 0 R>> /ExtGState << >>/ColorSpace << /sRGB 977 0 R >>>> /Length 2967 /Filter /FlateDecode >> stream xœµ[K·¾Ï¯èc|C²øh^m8 $H"9Ä9CĐʱ×@₫~ªUd±§gvº§uĐJµ|~$»_•ÜôƯä¦Ó/—¿M¿L¡k'Ÿ“)irÁ™b'g“±aúơĂôéóå¯ÿÓ×Ó7ï.{ÚIÿ|÷Í_đ·9Nÿ»üó_“₫}qÓwøçăÅQ‡éÏ—ŒO¸`ÀM/—”MÀƠ5%NŸ.³51L~M$±€IÅh  HÛ˜Ê@s ́ ós0Á‘ `lAÙ›$‡d<,r\úÇb /ă%9cÍgÍ<“Œ ¥Øåwt gÀåÓ|™d…*̃­;ˆˆç1/í|"̉.bk—3i+ˆÜ{đ©´"÷|.­‡È½Ç°o…£ơøú=Ô¯ơú#>›?z|fïÿ3Ơ³é?ª2½£ azÿ2ưûƠô₫ăåÛ÷Ëä÷Gg0±Œ£ưă£K1sG‡ÇG;ŸŒ ăđ´cxô&øqø¼cxM¶z¸ëÇs}Đ/ümCÆ¿̣rkëv|Đ̃k‹¯Î·vU»·Æ¥̃^EƠÅä̉Û«¨Úñ½èíUTíuĂ­½ï_:“ß«£‚`}Q` Ü{Ww‡ƒC•ăî=ûĂéçơƯöåâH 6ù“È€ÚÊ’¶â³ÅÖ{ÑUuMï̉ơ_¬»ùLŸ›_=·E.Ñø<‹*´,€~ưđĂëÏŸw}/v63>3p¤Ëhß~úđÛ;Nÿ™ñT­'ƯKüơ{ÜÇë₫üúáû¯d¢'¬™»Rï“7>N€̉]E?găb·k¨&‹ïv­xă@Ù5´[ƒ]Ăs±÷́Z µ¬́Ø-±k"¿i×Ü]SÆOT¬l³ñ¸gß°>Ä$بRĂ©ÚXƆïÆ… wÎ~ŸAcZä6_]„kl‚ đäïa“]£Ä P¢iê‹ñ¥ß`ÁÍ(w%7˜L2/­£LôJGJüÎ zz¹e@0Û7P¯oĐg”×…¯³ôtø*º×>ç;6€DºaƒˆƯBÇÉók®Øß±A&+l3¿îäâ[(„ªÿ\Ư ₫£}Ë¿”x¨Nù–s1©£\®ÄƯñ-C½ïvƒ‹Á·tEß 3Ùï¹AơNë ¸̃&>«kwR92^Ñ\×D¨&’B„̃ï¬á½dˆ HCäøn!zX«l;Èï•®ßÑÓ}™đU«"Ùđ[–Çá.léăª8Œ[i+üDaîë9·8–[ ̃T<…,-Sl¬½úÎ\°¤Âûâq&m²½øW,s´ƠyëƠ¹?^°÷}M U­Zóißœ>´|Ñ¡Ú[íA]ÛÍÇgD§ÏoqZƠŒ×ÖéÉ ÷³̃¤ßØd7 ;¦́»„aʵ~dJÜ^*z—a˜r­øvLÙw‡)×Zæ)=Z=T¡j—I;U>ÅC^Ơ£A3…• IPÈz¾\ØXœ+̉4dvÅ«Å!#½h¾T3x_5Ÿ£_£ ±j>ÖTJƠ|"£é̉L•Ö|@|„̣9‚ugó ¹زD' Ö=ÜBp9–ÖCäÖCFz4¹÷à£i=Dî=øpZ‘[qï ËydOđ [@>Át¸ø _Á?Ă@Ÿá  „Û||ÙB°¬"î«d–Î@ÆiÀ=k =„67BHÎH¡¤Gçƽ÷»ØíSô?̀ÈøMaÔĂ/øá¥A`¹Qr"+yÅ!l̉'³`3…{×4‚Ûó!`„̣à}z”H8jóö3 ¢Ø u«¬_™kà"j¿ăÅ6ëÇlB³~̀&4ë—Úú÷¿eư8’iÖ­ƯµơÛÇ&ˆuÇirÖøJ…>µ>ŒÄWø¬Óøfږ—(~Pø˜QØï(£ĐnHa7¤9QHëM1̉âk̀)H)N‡ñ&Ë€ta€ï ¤|ñcö± ‚o_–‡_…ºI‚±0Œ0Đ\˜Æ·Èê¥F~ÚO#XK₫†ñAfª‰ñAÆ*?­1 ŒO4₫̀BCZ­^÷H™ßk©«F{³‹·7˱øĂ©È·<̉;oömv¡¡bz¡¡â÷£PÁđ%â—; ’]EµûK5ÍbÅ@<×cƒŒ”X[F¾Í2¨iØM3Ȳº̀ñ6Ï1 <}{y™£­ÎsÜâ æ‚Kgó ä#L4È”'2 俟̀4È”'2 äå̀4È”'2 ÁÇ{LCMß$û%kĐỊ̈©‘«h[·½.D@u•Wœ̣P†€bVÙ£í´jJC BMœÂÀ©xZB=Á–·¯b/?æ*áÏ¡ø@Z«Ô[ǻPy Úù ́Pw Úù(́Pu ÚơfÛ̃{ûI%S¯8ĐƒwèÁûë ôèưåzô₫jƒ>úªØ ¾]©5p ÆZƒÖ¼¤̣ù¡·VôTU¡A•z«³A×°¨Ú=è:U;₫^Ơ°¨Úëf[{ßûĂ™~JZ/3 Ut¼ÊÀAºYeÀ‘°‘(dÛ‹ V¢tV%5z₫2˜G\ïÈ äƯè^=U`@ÙÙ‡ê ö¨£åyI>6S•k0Á¦ÊƠT3›*_S»¢£S€ÄTÅ!©‰bÍBo›*±Mlª̉xï¦êHM°*)À8Må£ÉÚúˆHO#—Hg@É€Êi¶-3 ·Ư²½GĂ~¾«¨síè[«Gr™´2¤ Ë<ºÖw¥³µkhºGªđÈUZ}ö•ª€1hươ97“mHÖ¼br!TÆ‚A9ô(†‚Q‘U₫ªă+.’k-A&úéÚ4ê “Á—æ*öé ÚÊNÉ¥•J®Ư¸´4 ~ fèŸnX•°à'§êt¨§‚]êëª0ˆXQE:k—¶TÚE`d2Boë‰m/¶fûéâU•‹oW )WU,¾]%ĐÖăÿÖ‚7¿sB––)6Ö̃®è‹× ÿöâ÷«úê<ÇơêC•@[“«Ô'U ¸èN®pèm\% 6yV•€ÚåYUj—gU ¨]U% v¹U%đ¥‚w&/Ë\ÿ#“–jˆÎÔ¥8È\’BWĺxÈ[̉fÚR¼"f-E1iÙÄÊYÈ”å‰<ă”(X°«ºig±GÉ|­½½]ÎÂ%ªOĂªÏĂå½}ØpÛÿ‰Q<× ă¹à`Ï•y.8ÈsÀÁ@Ë6yùrĂP Âáu‡YïÁ<·K4Ïí=œ—%ç* —ÑK̉K‰é¥GêÇ}÷»ÂzNÀëyøÑÀ‡oGöƒ‚mÙ‰ÖYl±|;Qƒ{å¿`xÏ™ÿø¾́Îüï9ñÿ@€ĐNûK”%öŒéhÑâ™3eƠIPÜíÙ9=ă(_48!bÏâîO\ ₫–=;”ëŸC­©gP0(ÔÀE*óúF(KÁ r⪇ -ú¬Œt¶l³Ô\ÿ“€*#¨Ô‹éŸJđc˜äçÛ>ˆe·‚}¹3ù qÈ›̃¼³CYươCtCí%E†*%,t“Ü™JOp¬®<¡™½5s+ƒ*£c•†Z ê©T>Î^<)–‘' CE†DÉ/p₫›áù¡đ$•í^gŒçmxçïS̉÷y®T C)¨r‡âp¡Ùw,ÎÇZ¬Á`ˆªÉê.¥*.¡ôSŸ˜C 5«ò¡g—"—\ÿow’÷=0­)øB)!°Œ|;øçÄ{[“ﻢ™CV—9̃ÿ9ñ̃W¯‰÷]á¿̀ÑVç9n…ÿœ¼okṛ₫̀đŸ3ígÆÿ2å‰gÚÏ$dÊ δŸIÈ”'œ¼ß$.ÿ<ÄÊY endstream endobj 979 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 982 0 obj << /Length 2367 /Filter /FlateDecode >> stream xÚÅYIă¸¾÷¯đ!@d ­ˆ‹¶ P©t=™I9t•-ÛBÉV—̣T~}̃BR¤,3‡`ª’)̣-ß[I&³í,™ưưCb₫ÿuùáŸE:I\&¥˜-7³RÄE"fY‘Í–ëÙ×è´‹¨jáO=_¨´ˆx=àkkx?³?ñ·nĂpÎ3ŒÓkøÓOHhsYÀ$¬0´­ăù"E´ÜÁ¯¦_ï½V¼à„CûWøÓÖ 8ˆYÀ!-‡~ç>‡\Èßü$ïé€fчÜê bÁ{e"ÆtPè₫¥r!˜“ˆØÉİ#Ú™ƠV“jđM © >’ñ¡¯ư”<ɧ/ú…£¯y¦G_ b9B?uôƠP~ÈŸ¦wèçü-Fè?ôô³ùƠư”M?”¿£ßăŸ³×Má£KG?Ç̀Gt`ß2 _úôUâèç7ôUFîtë¡2À'ŸÆG÷ô‹ú‚Á½•ÿQàHrd71†LŒ¥́}dr ¡Ç4äRÍçPºS7z”z̀Ƚ‘åĐÈ©öA½Yâ½øb”¶œ¦$€v~ Q„U’)*`Ö¤@¿08¥f¦¦às?~èRY1â@ÂÉ/¨ÜMb#“ Àl€Ñx‚¶ˆă™]c'Îy|c“¿—$Tb£µËÑC&eÀDꀉ .b¢bJ>“ñ4ưÏAÈ›B:©*ƒBP†É(/Ç+ÁÀØ:0¶́y3ÉØIåI&ªÁ€G*2àQÜq(¢4é´̣ÿë´Oa@gÓUS« êY—r¼â 0ÊBŒÔ´üiv‹ÑDƠđÈÅ„´Ä#±ơhå‘7zäzh/$ˆG̣ Â-§0yäÓvP*¨>2LlcضÄB¥Óp.sd‚k3öœh#F;¦Í¦¦.ÿpæF÷Üñ ÚƠü­y]ăæ¡9lû>·•¸¤;ïhcuǺCd­$₫Æ<µæ2ñ[ó²€\ÂBZñû±îRDîfœ{«ö……¨x¬E&çØ@‘ˆ8͇‰p¡D‘FŸ›o £üºAU7 m![Ål@‘GµÚ9íyOOt®¹†-è?¸èÊdṽ;ă ›¢}ñh¯jv$¯uÇ»ÿxªk•àÑw¸'zñŒulj̉Îö¨´gißă©₫4ÓY-}J¸ûÚÑ–|;*¶eæÀÿ…7̣¸ê¹u¯m?²Áp†¶t,¾ŸÆIn….Ó_€[‡û¯Mẃév́»t 3æ’Ünª²ˆ¾E‚o¾º ʽ>|ñxÂ@¶eôå€ai½Ơ3íσ¨óx̣Lpđ{.ŸÅJ»WÚG¶XJŸk>FqNÇ¥(n̉Låc®f̣øíÉËÖ$Œ.…ºÏâZ½³{Ú×(EÄS})Aùo2¦uÜư{Ï·ÙûͬLä‘äjE‡k{täÛ̃N¾Vâ‰Æ“Âư‘öög"1öºđ6¿5;ü72×»'†AêdƒQØÔ«ó®MK˜';Ơ‹=ZØÑ±Å üî²sỉ36T+'®ăB{¥“Æ—)YLW)”̀!ợqÅozû‹Ï\z_4„MMjPưK;¨Iˆá«;ÿC½ï~_ I8‹Đ»ÏµArSóá ynÑêøNÓ ̃‰Ù_û±ï^™X‘ t€ôæçrmë)‹Ù¶Sd…¤£Åj̉ 1{UÑyjû~Ïå¯÷Å'Û‚Ró”Ç]#Œcªßü~Ư±­Kj6pä™.ØjwaC{Îù—#ˉa¶ÈD=çY×VSæçÇ»Ö]ÀWC|“úg4 E®»ØÓ\† Ưî¯ïj›r?.‹<–©ëú»‘–Iœ÷íÇÚz6â¥Ø¬5w[ ­s*c;#̀Mà(ü6 Œ­đ̃̉G±àLŸ¶¼e²—½™Í¥\ä%æ:̣`–V[Â]8ƒ†Iœ^`̉XØô˜‰`̉§å‡ÿr¶è̃ endstream endobj 989 0 obj << /Length 2174 /Filter /FlateDecode >> stream xÚÍYKÛF¾Ï¯BÓ²I.^¯í8›Ư5Ưœ àH”D„Ç¢”₫ư֫ɦ†3Ă{؃$v³ºêëzv—Ôl;S³w7J~ÿ¾¼ùö­NgZÅ…*ôl¹™:Ε¹ÜÍ–ëÙÇh_ÎM]æ «lt7_U8H¢Í\Gíùßk~{îà¹Æ‰-SœàqŸj₫Ụ̂G¤²P’ÖIœ™€ ;"Ô2Á…¿ÀgŸ>Mÿ;'¹ç‚ Ó yÔGñ|‘Ø$Zîd²c€%2îZ à]‹»}(h U°?Ù|»á¹’‡kä»ä5‰,đ%z;¡Ụ̈„èg ¥±Q<Ø8M ÆM(ÓÚ@m4¬…mµçñ78O¢–~‹~¬eq‘)̉I.6V$}?_¤ÆâR8ăï¯*UđƒV؈’`JdàPĉKG ^f¯IÆßéQÆ~~Œ,¾Y~K^å·« ¾_r+,oeß4½'ÈÚ¾ ø̃ú=ϲü;R®ü»µ°\M°/ÖEÖ…;?cíG‘…2ÿ Ÿß³€]ñ´—âB©́?T´o»?­Zv¬rOÖ-x ³́xp 8­ÈFDz¬Kær©qØÈ̉#cC°ƹM|”~=…?́ÖSt̀¬%ƯIØdq–d́ S­đưñHâË“D;-¤ ï·M [3̣ä-yÓưh‘æ‰ZȈ´LgQº¿È¬È½VäXéÀ7ÉxNdƯTØ”́f‹ ‘›äZŒÎăÂLØï‚é$ÆDɸ+tÀ@ơqʨ5¹–¨³¤ư%I[¤!ø^hå0gU;₫(äȺ3mbW¸çt ̃“—́B¡w€faئ%——¦Ñ;t§­u²b瀷øw ø̉Â€Ú ÄÂh“DŸ~Ç¥"°E} -B*&UT%•¤æÂ%öh¢_(ăƯƠ 9̣eÂR¯L/c/‰Ó-Vϲ"zÀ?ëă`ª̣Ê¢X˦9v“A¡l¬m₫lPäK(ÈÑ›)” mLPmô¥îÈMØâ¬L£ú”ió•k/Øi˜â ~Ö‘ă­¼ÚwXă÷fCö­È^â{-ïô´`ª«ÈùêĂ– )ẸæJ#±(ùuKDï„9́ÈÉÈF1̃¬piôOÄƠ>°À]đ́A®Ú=î‚Dđ·\áq¦»Rf'µüqD¼JF́’uŒR'¹Ë£ŸĐVC̀íÈóÖ”´-Q”đæÊh64Z¦Ù'µ5Yư£·ÿµĂẹ́‹r/ÏẪÆ1ͬÒç”ryđrMGƠlEùé"₫G.^Œ£ylO3R*໘/̣¤pÑe » ỹ§³OX\ÉÚ¡fuƒÏơÁX Ø1n¨LÅû®t«Fa8°n9$T´97t̀¹vMÙ¯́¼R¨*Ññˆ†WÉÆ»R:̉†i#ѬBÁï_¨?D÷¨†¿¯^5C¢ăUøÜUÂmÈW…ç+:œWAùx*é?ª…¨†¿Êûäđ/Êû˜©À‰7Ḷ¿̀T`Ä—¤)®øj:Q4G§I.¡FÇÚM¸6’2>·6L!̃é\îøåÿI"Œ°¦!VgÀ¦/ÁÁ® °{çî|Ù ÊÅCÉw-œ̃Ó à@ưºæ?›(©c˜ª3ÖIFϾ8£‡?ˆ³WÏQï&£¾é‹¢>¬/c4ă#VæræSDËmî¹Û*f«}hHđ³Ï<#J;>[å_x¶zI©û̉³•Êb8¾Ôˆµ-pñ~oăÚ†ù§ÏDPØ0“†ñ¸GQ­¯ms¼“q<\Ơ6:à5w¬́7æ >æ åóëÛú0ÔÑZô»®1¶6dÉs#“œ%:ºâư1–«Ư“9³w¼ï>yx¾@ª‘Ö®Î÷(đÀ×çÀÑ)/ÏWưoßæÅL'±Mœ‘ûrùÔÈ?¥¾çë^Í’èg à{Ƚ«øÅrWÑƯóÂCÊ9Ôù¸HÛ£́UL 2µßñ¬uÔj î6åîü¾ú>° Å=µà¨ĂÔÉÊ%÷¨!ÁuC7Éù]÷öÂ¿îø·+kißÁàD}ˆp ‚v\'¢_µMPzơÀ¯Ñº ÄäÑNØƠÉwsPlw;-S.5~Ͼ|Ú8ơ‡ \yÏĐû]ÎXá÷̀†€ƒ4èMØS!A¡-“ùö9éî´£%º̣x Ú0t£DÖø¦]Ñï»%=ƒ<îùå̉MÁ3®û~™v«³09¡6.²đÈ„ k°ÉáJHSöÔ"ÜX &ß*\³wù^ â âX>êx&fđ Úµ ×6 ÑÖđ̀Ú({³ñUˆ‰KI¾HWơ†ñ:‚M{îr> stream xÚƯZIs#·¾ëW°ÈÊÆ̃h'“ªÄö¸&U>Ø£‹ăER]\Æ"åñä×çmè­eU9Pl4̣̃ám¥'7=ùîBË÷ß//¾|“Ú‰1ª ÁN.¯'­QI›ILqr¹ü433Uf67Æúé›Yë¦ x³<àïƯlî@/öøg ŸOGø³9âŒç™S½…ç|Ö;ÿ¸†€±™öø¼æ¹Ë[œ<Ü!¿ÙÏ—ÿø̣ £U«[ƒJêÉÜ6ʉo¯gsï#q¿e&8\̉ú»µ(¶8mç¤ÁAÖ-¶DR½#^ÂhÓk.k›éÉ1ÓjÖˆ¬ß÷ Üăó Çwd…oo˜ ë…û™MSáñÛ,€R¸ÉWHµ~s€hgăi¯‘byb´)„Æ8|ËØ,PÚbûI°¦ ̀t¡‚ ‡;R&K₫ưœvçË™mh)¡¼Y2­`”m û‘™ ·‡{ÁcÅ/e€ ™~ä—×̀{LÍMÆ•QÛđ>x܆BâC– D ßĐ_TđØ1ˆ 1)N ª±ËÂë-®©Sé› H ₫cîÛ¨‚N(€‘aI¤j́}Ÿ{ß; ‘¨uÊxÀó–}ˆ| ´<ñÛQ7Âh̓Ç#s…Å8"“˜ blf-—Hq3GÆt̃¥ÛØ_`ú₫H6@‡j#aXy/¼ñ́‹U'GĐÖ»fú¶K@´’¨Ăư–؃#|%?}5º)¦ƠÊû”1_ ‘±°m£‰&ª<¨¯¢k²ö#›•ƒqO´Ø‹#ƒ=›2ÇÁx%àQÑ;|²Ùסñ€ÊV+­›¡#U*'¥›öóŨ-ĐM>1˜WàÙ±ÜĂ}aѵ„óaÇ{́\£’I¼ËÙƠ»hSÊY§+68ƒ̃ƒßÙÇó3:æ)'–)"ûí’iÎ’9Nçdos¢]Âi}P¦s€í ˆÄGÑÔqRÖư‚‰íxÂAS™x‘8ºX¹¿xö<'8Ä́vǬilHÊ[_ÇÚ ˜œ…mXb¬̣`ƒ`qĂ"¨6…ç`üι*Öa¸ÏµbAêA—rn¹"Àm4ç\ZC."sWëbgSG=ê}o¨øY®aä^̀àPԽ娥`* ¤{¬)L–E½ÁÔ:÷ÜjÈ>§ƒ—.8X¨ûÿ ÿ¬sØÈá*÷‡¢í\óºÔÍ.v¹¬sÚÿW}v0Ôêr$Ön̉®ˆ}P,¯ HF‹ˆ‹*nåî@nŧ%n¯Zpko«öªo0SdƠhÛ¿Ưó#Yº n»€ó™Ú$jè-6L{¶¨§„ẹD½>,9³\ÇwÜà1Ơ ̣âà7µetäđ®^’˜ ]Åó„Ơgzd%P@¡ÇÈ©m´Áèƒ7;öÔ$7¯xæ¼W:;x0áƒÇ<[đÿ ¥…€te¢•#!up¹'rơáÛ§Û|Ô.Û§®ưzXsxvÖÛ¿Aî})Ô¹ëá.v£MiÀ®hê¦ç¿ ëQzV=)ëÑçÁaă“TÔaâ!§ÛæÑzä1»Ú'Ÿ̀Í©Ô>̉øøzMt^óx=‚VʹÇŸ̀-˜^ªoæ‹rô§§kÑb¼áƯÆSµ›”çô<.¥Ïîy<ϼ 5ʃæ…=ØÍ?£çq*ÿB>Ös{ÜÇøVˆî…|¬ăöÿàc_é Ỳ)üđ!¦ü/ 6ư5ïÜ…vÚâ™æË¹Í8ñ ^®™¨¾Øƒ|äÍ÷ÊÇ|#\4HÀ3_/ă‚ëÅRxP ƒÙ+LÉrÙù̀­óíSîb_vNª;Hè¦Pê9”MQoR{¶q̃e ½¸lÅ2ßíÊ•cét¹1°|Ư‰Ÿüu6ÖMÅé\ÉuơZ>+’H-¨OĂC“å·ÊÇP1Ă-?₫罈| §ä9w¾¥Åèâó¸@,Kƒ¼wr—€ ¼†Ïơ|¿°“{‡­̀qmEå₫(«6ƒ[‰“|gÎ÷\âqIçC2},ñ ™LîbÀ”@ 5×¢¥€²`¾ơj™ơ^8KÇ‚‡eK<·ç!wW½Á™éÔß|àÛè5¾ÓÓ¿ñMƯ/MHG¨äî_¼áèÀĐY“7©Ö~MÛ¯˜~sGX\/‚ß™ëk₫"@¾ (øG¡¡7₫MñM¶6ç²Ùíôîó!×r—/P‰å•PH[,¿íá›Ü€̉z±æ<ễT¿ PFGËE` „@×^B3w@Z;[zp^ hỘÍca6·1„©ăc7ŸL¥Â{ £äơ0̣¬†¦ØŒ2ÀµMÖĐÿuO,¹[qÖVđ±|°³ïm'ÎJ®É«cSˆó8cKq®g—­s8CY§°NâNœmKqñ™â²u¾§)¹ơ«m f³Đ=™úxH}ʺP‰«¶¢Ó³£t'ÎÄJÜXT¾•8]®v…8ÓM~j¨üpøJœ³®yXœ)Äißí-Å•`ÆP3͘uéaq¥«h{î™~°ÙMn¬à¾oŸi]ï₫©³s Î7•¸8bƯåZ~aÁEø/ûëƒä> stream xÚåÉnÛVđî¯à¥€D́[¸I$°ƒÍÅö-Í’H™©D&¤lGùúÎF̣Qbê (Ü =˜zË́Û›±̣6̣̃œ)ù}usöó¥R/öÓXiï¦đRí'°âÈmäƯ¬½÷³Ël®g«} ßf¾­e¬³í¡…Ÿ²å³\ïoq£f¯³-l·ç|U ôï*T‚₫‚g¼EbE¶‚ï¾nàÛ:Pưí~êvX>,[¦ơb|øL8Ôˆ–íóPƒ́3¼ÊŸÍ?ÜüêéÈOMâ-R?ˆBVºØp`«g ‚&øE‡ øMă&GÙ÷ , ^‚M€¯oŸP@>jËAY:ÉY3ë^k>u Û;$_àɪD¶Ỡ'ÁëˆDç5‚mœ‹Œ…đáÓ5ʼug»̣ïê5n¶'™x¾Đ*ÂĐX3Ơư­X½^~DœƠÁïó!$î*̣y‰¼* ¢ŒI)3Ó¾q• O•ªĐ»e>[ƒư—-]Üg'V³‚R²‡ñmÉ‹ëÏÈ)k†@bTÂq́#Ó@5™€¡·›zÉXÏÂúª°0đµa§â(”)Zk‰ ŒÂ<ca2|¾Cíü/£üÛ–k̉a+ƒùxơN®_R\ÓaÙ5̣UúXPI­(o›œâ5_ W”›W³] ^n?£÷{kv>CäÛ|@æY“†[ñœóơ¤åPÇƠNDü†ë‡®J½E)(¾%S€ÊjăH±E)²%~·%ÊxèëÓ`ª(M'b•í{ñRŒ[Q̣|™@7øM優ëúÔ¨Dç'̃®(¢‹’ˆR* \‰øû…¿§:,º“Á{ă¿„ÏY²â/àcÉ™đËøUBO,ç\UK÷¡»R ¡}lˆ?‡å‚—Ă Cßfơ~®)đï\~Cøû0!Fđˆl‚Q?rd‚·́EÆ+ªô V­Ô’—U‹QgB@I!i}ÙçúÎDUyMÜÎ@7d—"s|ơ+dœ’̀¢É á‡o{ä©ô À„f¬Ó5½;z>Ná(¨î¨=*ëI.N'wÚ J±*E›S—Ÿ¶C)Aè0ô•F¦YX€S3[ZXNjŒ6Ô,₫å½Å×—ö–û³0ơMŒD¸à'.…âgP$µ#0ŒœBVYù±íV!WçÁ¦ăÊyêØ Ós °Ep“¸ẹ̈YG̀zoJ•ØoT§Ă ó^Øoë¦äHw<†U8—†³Ó-v¹Ù)Ư‚[t„œ†n*í5 z¾Gâ¸1&t Gºr8ÈAÏ-ˆ»•=²¤q-©§^»QOʹ‡Æ×¢†u% °5đÜO£L›Î»O5!Ø U¯/àæ<)qœ²À‘+pö>S®÷”ën×±vCj²AÉ©«Á́\–Ôè́.Ç>â#>qẹ̀q7,²’Àw³F™©Úúÿ.ƒÿÀt>ùtv1uï§ÓM{s ¤̣~ X &Ơjô”=dĂ¡ÂGœdÀ„ªó·L›PÂưD‘¶d†Ưl‰9çÛ|ÁÅî-ƒÇ"êß-½R?Đx™Ú©Fú»ÇK%ÏÏ“—È5q_g­é_$ß7^’´̉˜L—̃vs”¯6 œAoØ;M-UA™Çà̃J º!“H)ŒW-8Ë=0-!,¢x[Iæà¿F|₫Æ_n…‘g+@Í %sœ2&ù/65 »ü]3%2.E¾Í»œi0…̣Ç‹«7g̃{¢£cºï₫Ï F¢<Ä M<`­ŸÄÖ5`+̣ÙX₫kEB¬8ëxèhdDG˜nDÇơ’†oÃĐ‹‘wĂ0…÷WÉ]k#ÎtW7ÓnÀf¢ù¸Ô‘·ùÁp}àÛ–'ÿ|%ö)²À$#~]xÀºBwRIÇ…ˆƯ¿bl3£?oXß`à¡©¢`tqsö'ô*f¬ endstream endobj 1007 0 obj << /Length 862 /Filter /FlateDecode >> stream xÚµV[o›0~ϯ@•&Q©P0—i›Ô]:eo“̣¶îÁ’ ÈBÓjÿ~çF€–¶/"Ëöññ9Ÿ¿óÙD9G9ßê•₫ójqy­Cå$~–(í¬ÖN¦ưFq¬}•:«Âùå~:÷Lºí¹v÷<üC‡{Zhh7Ê(èjhk1á¦h¡åƒKífÓ©û½úÀ¼̀b3IivïnˆƒĂZ'ă éÿV^ĂÔgĐ–Đ¾H;›Iư„˾ù û¾~Ê·¬©~¾¦‹o«…ÊÑC?2'H?ѱ“׋? ?ÉÂ0%Ñ–ú}b¸\Ö°ék»ø ¿~Íëƒz£¨,năhåg*‹;0‘(¡ÿpVĐ6ÇÑç…©quü¨ˆ÷ ç‘»9X$e‹¾9›lcwRä»êØÜ®¹Ï8PQIAB{[¬J[·GÚDB^'(jt=b`ÛW³ )hƠËÑù1ËÜƠvÀMñ÷́LUlJ’:‚€ º^:ôq'ÄPÈ‚J}‹An+Ñ&çR85ùĐa#=ࢩlz‹A:2ƒ6̃áªrmÇ^”S̃Ÿ›Ø%N>Ă#pACTv„–ñœ !”œªk‘癋âÔ]0 œBÎx£tXÆE“Äá¼Pg¤̉‚-• *ts‚‡K­øK¥G9âü(Ä ©rcÈƯ–TÔơ§¨j Ñ<—£ëß’=a)‡‰'G=­d»’3î)}¹ăÆÛöÊ!Ë©p0&(ø8´o³z ÓÀXú̉æxđ-΂±ºi•DvËƯúØ—r.`‘˜YUÀêUˆgyNåY1J¹WÍw¼±n; Ñ kMÎÈQyăĂ–Á̀2´1tYùÂÙ[ ´›Ü6#O ôXΦ ¾gn—‰¼‘kÔ;:\:”¬;®%!=°iúZ˜G¯YN5—1½fv7èÛ3Â0GOÛß3Œ0ÀNP& «Éơk¬æ‰åîî”4I¡•I%»PßmïQ5̣!Ă8¨–IÉÀ»ÿ̃µ¨Såø™£ïËKn)ijâ2.'æÄ°E!×PŒ´¿ÙÈ ªụ̀†s‚Eж)qù䟨ÔO¢Èñbå¡„ÍľÊÿ;Zà endstream endobj 997 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-044.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1009 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1010 0 R/F3 1011 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1012 0 R >>>> /Length 7017 /Filter /FlateDecode >> stream xœ½œIÇu…÷üo)-ổ5Wom$$H,ÂYØ^ĐĐ %[$øßççV~¢­G YHäeu¿ªê«s‡êtûơ-Ư₫|ûë‹ÿºươVæư·Rú½Ê£ÜykữúíÛ×·ÿ¾}ưâŸ̃ÿæ_qûå—/ûq7₫ÿ—¿üù×Ñnÿûâw¸·ÿy‘n¿–ÿ₫ü"é·Ṇ̃}̀[ié>ëíƯ‹6ï­Yî5Ữ¾èơ^1Ûư8ÅrR³ßçP³Ưgs̃Gs¦{“;́ǽ75ǽ1ó½këYô7übÏjN½`éƯÍtȿ˕úÔ?Ä–û+r)¹b+f÷{’k|¯Ö“̃CơN³‡^¦è-MµK¹¹ÜúÖÔ>ïI®7äeVµk½Ÿr½yèƯä®åzú Ö.ÏX³ØYÿYlyŒ$×›å̃í÷ú¸Ÿr½Yơ™Å–~ér½ÙîÅ®?Î{mbËmÛïKC>̀¶w•Îă~êơÆ=Ûñ§4d³‡₫^>²u÷œzỤ́—b¶]/§r?O³çiö©Ư\æ©·)vn÷v˜m™Kºçn¶ơF.ă~d³§µWbŸỨ©/¾ÈmÚưçVïù4;keé壙]Üö± ¶_o$¡fO³‡¨vÓÁ‘§cµ­¿³>ˆ_ÏO>åÅúơº>_9äB~½‘ÍöñpÚè;ÉxđëiöĐ¥öÔß/¹hǘmçgjk—RơEm¿WíF̀fw}0³í÷›‡mËxÀớ~»Œ¿̃i×ï̉•l¨É¯wêû̉x6¶e<øơN»ßÓÇö§vIJ¿TTü$$pμ»ÅÜ~{ụ̂ñ€0“ơˆ´Çœ–½À¬YG„½ˆqG,{‘³{}·$́}ÄåÙèY׿x‰—ù§÷y™ïÿ$Ôư—,~ùƠm̃ñï₫?3«ÿLJy/ßƯ>û¢|~{ùçÿü̉~ù¦C–ÏÍOŸ+£®ŒË¹éÙs³̀A{<}ê´YC§>}Ơ"«[-|êÓ[™ÇåE­wK¦Ạ́]¬ :Wª÷ÿC»°-…Iíơ¼u·»Iíí¼·´ÛƯ¤v™óÂèƠî&µËk«}·»Ií~Ă«}ß?¿ưB¾ØoIVC¥¯,‚G̣¾¼´7ÿÑÉ¢„H~rưÔ“‡-¯~̣|́Ÿu/jÊúBƒ0ËV¥PŒ₫®fmÄĂ5§Oº’mÈ̉.@=3‘‹?O:®£̀íTl.WY€ỤD¿û́W^¿»ưåƠ·¯̃½₫đúÛÏo©Ư>{ûJ₫&kơgß¼»}ơêO¾ùööêëWo½ơoïß¼ÿü·—¿~j‹vẸ̀ûwŸưÛ«¯¿₫p{)¿¦—Đkʯ̃|¸ư₫³¯¿ó‹,Wy÷ê­<Ñ«·¯ÿùG/öÑ›º —œújưç·ßüñƠß¼}óáo·o¾ºưæơû¿|óơû×чO)̉IO92†fƠàoO\áüÇ䯏ÖƠ¦æR½bê Ơ[‡JŒ¥z…é¥mƠ+4u«̃fúj©^¹€­ăP½¢Æ±U¯¼,W¹P½íAơª„¤zE|J Ơ+7xR½²Œ¦BªWH“«̃ä*-T¯tÙEơª™¤zG‡J†êPKơÚ!Ơ›\ơ-Ơ Í¿ToqƠ¶TouU·Toƒ* ƠÛUl’êí"R½™̀ªw*çHơÚ¢Bªwº $Ơ›T¯©öP½ª’©̃¥’¡zU%Ï«êMùªzíư“ê-ª·Ö«êméªzÛ¼ª^{Ÿ¤zû|P½ùªz]oƠ몘Tïñ zóƒê­ª·?¨̃ñ zçUơBÿ}Ơ{|êMO©̃ïe©̀ z\X²ÆwaqËÚo‰C§úÆD̉—¸1‘|°&ä1&²¿z`¢¹À„̀Ç̉7&@¥nLèÛ¯„ ’O`BÉI˜hprûöë Í™0!³¶ y¾R2Úá ;&†€ ưîÜBwÎ é}¿`BfÇ,„ ùgëæÀ„¾²A˜ÙÓÙ9–ÓÊ– Yua¢èm&*œÑÀD{pñ>&º>abx0bab* ‚“11ưy“0¡Îù Lˆ=„bæÁ96́&,8@˜(ÎqÍWL´ă Ă:aÂ1³1á˜Ù˜˜ư‰q>`"=`¢<`¢]1á˜Ù˜p̀lL8V6&Ü&L˜HÏaBGx5L´â˜(ßÁDµAó™;2—Ä´¥ p(P €ƒ˜'EÎä=fœUG‡¿€CRßnĂ!ùĂ/8d| ÅGÀAUq&8èg8HàP#28Ș÷ÈàĐ 8ˆ²» 8ˆû0­ùpĐ1Á‘3™3™5„œÖXCôçägr%8ôóª!d Ö ›Lp.8#"o€ĂˆÉpH:PÙ»cÁ¡èœ$8TD²Í×ô‡®¯™à0æ €ß‚Ă<Ó#§ùĂÄkÀA5 ĂÁÖ  ›“à014 ©\á`—à`ÏOp¨ư ‡ö !zºÂ¡÷+FºÂa<ÀÁ5 ÁáAC8\ơ ‡Ë†ĂÏÁa˜Üc Q?¢!ä/øÛSŸjcbúÓ&æÓŸ˜Ó¦0¡æÜ˜PoŒ4Dñ(E`Bgo#LˆÅfÛÆD9¯B́ÉvéƯÄö!0q`Z‚©: *XCˆmk@`B°5*aB~fLÂDí> ‚)[ẳ,L´#4…cB³L˜,%Ö2}2[S#L¨:½ù˜èÓßO`b`M LÈcäA˜.î`W U„zÀaº»à€â€‡éëÁ‚Bs z à0# :7à pêưYM*œ8!¯z‡ơ‚‰ƯY¼àp`²"áp8°>ÄM ‡·pPư“  8h€¨äµÔFp8y p9}àpĂNÈWÀ7à qêLphÅ×ÿ€C”zܬ€ƒ&¹=ÁGd€fMj뙓®7‡=pp£ªú,à 1¡ÂpˆPaÀ!£=àPp~À¡úû[ph>ƒ[pÄ  ×Z°Ñ‚C‘UêÅ­?4ùS¡]•Ă÷À!]áÀƠ: ‡‹rXl8Ç8 :†àà“sĂar̀¡ à¶à0“Øp€ó°àpŒ+lå'8 :gÁ¡²r(đ©í 8¨²á¼…:O\­Sk@²"¿àĐ 8$Lö€C†Ø8 @»à€hó‚CơɰàĐ|å 8¨̉9ê\1jäQÇƠ™h Kgå p©shøư€C‹àĐ€CG 'à pñàĐĂY 8DLpđ‡Ñq>à ÊÇàpÈ -8¤HMçǪ?ÿpȱoå0?9oá³÷â`\cÖ9ä`”«† ĐdÈÂÇàœ&æƒÓ›koLŒK̀az(01019æÂÄɡɥ#ØÂc¤!8æ xÀ„ù‘†8®˜p,nLø¿1qr̀A±Đ¯˜(˜è ˆ110qÑküÆ„ckcâ༅Æ`ÆDE¨30Ñ"Ư L4— `&'L`&§|‰cd­ùä#°à˜ÉGd<3YF{£8F>26™|`Ë1£ô°àä#ÁUr̀ä#°à˜QÛVG`&Q ́˜I'¢̀ÀḶÑ·0“Îq‰c¨]Hèeưzµ½jÂ1£¶« njڌ™t¢V˜Q»ShSm›8fÔ®ÇP;fÔöĐ«cÆlÊ€¨}I'2`ÀŒÙÇP{f̀&̀¨=(=j6Ơ›MjÄl mªƯ 3f÷³)b6©³ 3f糩‚lëh³ÛOX; άzZØ»vxS§Kíđ: l:ÂgÍ>ö>bÛ|©æ#bäİ÷«ïâI`Ó—gÛϺøIj‡“ṭ­æs?µv˜ÏưÔÚa:÷Sk‡éÔO­¦S?µv˜N}¨ÖÉAµĂ8 £¬ÚÜƯnµ¹0w{–5)íÚ^˜Ô,M¸ÚƯ¤veήư…Ií%ëè_ínR»ßđjß÷ÿdoç¯ÖGơĂj‡³ü!ñ£µĂ1ë¢V8v®' ?˜ëhªFµđÏU;<ùYë5¹vøÍ×_¡VøÛw¯>¼ùæëŸ¼xX5ÈÿWñp:MOíÇû•>^±Ç[?®O¹~÷)iú“›À?g±ơ>H₫¢È*äoöø!ä¯hÈJ̣7AB₫&xè!Æ™̃Ư^vÎƠ¥ó’¿íR”s‡ü ù‹´NÈ_±3eöƠ>(R¯ç{5 ä¯ü~¦­s$TºüÍ×̀₫–Û¿ ,!ư¶¶ü•WăH¿:£©H_¬̣Á%»Ë§%#­ạ̊Wåô ̀¾æ^°Ë_•ÓŒSùÜ.̣7ªóB₫N—óK₫N/̃\̣w ọ́wÄV9ÈßJ„¿[ûB₫F¦>äoGdË_Æ™|ÎWùëÁ¯-ËE₫6ïŸ%›¿ß%عåïI@[.où;ä¯Ëe’¿ă*=r¾å/™<¥̀¾Ù©ß̣˜ä/Eê·<&ùKEÄK?]D¬C^Ä+"ÖáT 2Ú2=½ï˜8P¬L¨&Ä‘¤½êgZ8˜H؉L$Ä€ Á’À„LËBEÄ:mQđLwç&bü‰áƯ¶0 6`¢`g`BfS¥¶jw ÆÙlc/¹ v>0‘c/0‘±K#0‘co0AƒÀD^^±c"E6˜HíŒS yL˜H±c50;r¡AEÄÚw¯×:A½B@:0%ồ‹§:AÅc&05cab 001P ˜Ø+˜è±·˜èQ7Lt``cb^¼d0-L4$̀ ¿˜€—¾0Ñ L4TlLxpmcƒ“böÛ+ߘ˜^2eû7fÏ%ôPD¬3`ŸTDlkÁNèYŸíR ë̉¹à`=¾á`b°÷$à€é8è oG¬á€ƒ VqGl,Øq!´˜¬BCiÊ ¡udă#„6q½ĐÉ«¹–†@)Î̉Ẹ̀¼†ĐJÀ p(Èöä62eûƠæH½Ú‰Chr¾O6À!àpȨf8x–fĂA5[’ªơù…Đ6“4„₫l¡í÷R¤„̃†ïx8\5„i¹á ưÛi#’Á&m8lÚ†ƒÁ†²ư:¶2UêĐó̉Ÿ€Ă@B.à0)8`Å‚CGd>àĐ½Ô‹àpR¶_íAEÄl ‡†ê€CóÁ¿àĐ­84ט‡“J¶¦ÙppM³á0i‡Áä¹H=ˆu ´óÛí'Â[`¢ùË LàScEWÛÆÄ¸cÂ(¿1¡fƯ‘v5¹bĐº™̣₫6 (̉n„¢¢ F̣₫:̀¼.˜ax̉~E¶•z†%Ú¯¨Xr±#í“1¡‘yJèÙ4cL¤ó²_ÑÂWô•ÓTd³—]̉®"ª¹yëÀD-H+ïLÔkq®Xƒ×§H{®1M‰̉/®†bí8ù Y ûÀ„tÓA{ Tù₫I`B]3* R,%̉úØ•z%w-,~ S»¤!l‘J:>‹†@‘×ÂļT êøk”Đ3Sí lô"Lxqcâêj„+˜M˜€f\˜̀lLœÏaEÄ:bz¢ˆÚH  ƠN x $`l$[9ØCí"b£Ëv+V2f!xYHhÈá§-#)ú°d&`2”Ü ëBRÖÅT ¤C Q̣Mm̃›¨CÆK•"ùv\¶0ëë”ă×!yR_‡¬'#ùÖ¡Lvô!±[‘PºÜ 8täVd>ˆ8 ù@©P(‡P@B~p+̣Ú²́HĐO—P̣MÀû ²̀œ“¶0+Â%ß̀n„i… ¿W)Çoëëư$*2eÄHçá-̀ú¼ƒ¢œI[˜ơ}T dq´±‘ ïû :AK®R_ûë ä›ö'× ®d*`₫8åøÍ]¿D°½l!a>¸ÓĐ…„½–„û $àĂWOkˆú”"b„8vÍ ‡ÎzΆƒ­Ñ$+ÖË 8 Ô³à€PĐ‚ * v™÷€|ćø^A¹ú˜  › 9‡†¢¾Ö‡D—M₫P Íñ¾á éúÀá`¡>r+,Hp°ơ‹ô‚Ú“ápÄFæ<Ø­8Â-ˆ˜8N1}F̀a^ €t²LÚtdn»j‡„Á½ôb4K/Ô(*v8äqu+Ô¦̀¼ºUeæu({hpP8Ѧ#…Q¥˜ƒÚ™áPb2̣ûüU/uÛĂ!ăÓ‡ŒñpÈùÔ×Îß7P8TDl• sP=4i‡êQ‡‡ĂÁô*}ßÀây¤¬̉£l8Xhú98 ˆØÛüIEÄHÿ_àÀÎDåêÀÍ ‡·Ø¬Xpè́L ÂBp ˜ĂbÁ᪓Êv ‰áÀ ‡ă¢à2$ &TDlʆœ ƒ )‡UƲàĐ‘g 8L=>†8 €¹à0b#3Êvf́(Xe;ưR¶J`ç-<†pH±ăpȈ́€d¹$0[1‡å1‡g&bØ>pÉ0.ÎDAơ_8p5—31ñ±—P(^ÊÛ·–r¨P€Cî—¼…¨²3‘glGB€Ơ§̃a vbå 8ävÉ[èư\à ehT¨Ưt’rP˜°rPø6*"^1 €ƒÆØN†ÀOëócæ_0Á¡Ì|ÂÄ̃¥¸f₫ÆÄà˜"±¤!vḥ£‚ªû–kĂ˜¸Ä–¦Ø˜xĐ¯` c‚̣«ÚŒ1A‘  ccb\0Pa"QuŸ9HôñŒTƯ·Bk H -L |ésW÷ä`X(>~b…v).jaâ¸l\¶jCÚˆ¤˜—¼¾µ0QnĐd ¡ÉH_Fh²c/E„&˜ˆ9œ—ê>Ơ8…c ¡åå`À![FÁF¤'ĂÁhH'©cZb{¨˜HØ(µ4ÄÀñ[Cdv0R¿́RT»R̃Uµ„‰ĐHº<—Ă9á'1áEÄÑG‹ˆe@Tûæ–ƠZ[³-¦?I ±EÈeŒÈÈX¼¿ă;;Ư¢ñ₫~IJb ¤eVÉ[ˆç«Áˆ½ôÓ­“Ó¾h ³Î$¢G5H§G/,e3¡¿̉aJf¬èÉ ¹cK|JVA1±.yfñLđE²E¤7F|cInFk Êä"9¦‘A³Êóg|ï¨Y0åŒƯUƯö•©[•L ™F¶z‚#¾¼0L@¤ߥJÓöû¦#GÓë’¶€¥cåB́Ơö äaQgµ‘û°-øjûf¥äµtÚîNJ̉MkÂgÛÏ«6¾®”u¤Ûơcç£Véư9`l׌̃¿G<ªƠi§•m¶%̉ºÎÚ›-°j§rÊK>±±3ûŒÎ‰­^ytơ-Î fZÅù9ÓiâAYê¥ö¿S?ËY"å”üÊ0es"8ZûĐ î•d ̉‰¸NÉö½”¹¶?ZægFT@ ,—˜ºè§§ŒR|G7lâæ™Ó¡KŸt3¾®Tô~dđ»,jÆKóUƱi#gul1WØ5;̉HöE-›‡oSúñ…Á6½ïnø}7­,ø̉ Ë1-ùơéÍaîvŸ«æjÇÈŒö0w»Ơsµ£“ÖƯĂÜíü8ûéVû-¶¿Ø0>µØwmíSŸ/ּħ>_œ¬ÂjŸú|p·Ê>óùà\®/éùàa»f÷™\¬ëƯ©KÑ;¬~ ñA/°åæ¢êÉ­ƯÚ&ªw­Ơ­ƯÚ;¾ l­níÖaÂ1ZƯÚ­ÓöWG«[»ơŒª`k=¹(x?D4Ó3}i®­Tú¥Œ̣é5Áv®z^ˆ)WưÄs=y`´¯Ë²äƯ ưL°h S â{x3¦r`ûßÏS ¬_}­Äe_~~‰đÙë÷>RüÅ·7?ów†»mWNû†~ÆJá¡jÈ?¡Ïn×Ї¦^øÇ-C1:b̉Æèp c»:°rÑ´öönfµ»Ií".¼ªßÛƯ¤vưtư¾›Ô;ZĐ~ÂḅѨ¾=MÄḄâ¤/4cơôDÄé*Iâ»̃müƯ³“M /ü??[Ư\³L³ÿ›×oßà;ÓËÙxñY÷ endstream endobj 1014 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1017 0 obj << /Length 602 /Filter /FlateDecode >> stream xÚ…TÉnÛ@ ½ë+=€h2‹Ö¢-Đ-EzjƯ’TE¶T–+ËẠ÷å&[I =äĂå‘¢UkeƠ·È¾r~ª£Ë+¬rÖT¶rª^©Ê™̉:•{o\åU}§nô‡8É|Đ]́´ºÚ­€†8q6-ô;à6Ûû‡TNO@·6³p,_¢ºó h'6ï̃] }ܸøWư=úZG̉‡¬• ©ÉSå‹Üت¶₫F¦¨B(É`Á’j~&—×½+Ô—!ú ¿Y—ˆÏdá”qÊÎÀä3o2/0]IuëĂHµ$¡Èµ+̃,Áê(zº‹Ư mËV âÙ jO{ñ²gͰâ3ăçˆĐ#¢Fnb_è‡Ø—ºé¼¶h˜éûIđ́ÅvkzP¹9%ùûÖº”ú“dEªkÔªêá8⌠Ä"F ±ïh" ™ ;8&K+Æe,÷ºéq8[ô7á•ă"s™,+ Đ7“`AEÍzf§£G¾¦r{–›½Dbqum_ú›ăNsÁ9.î–î[ÊJl$E¶̀íN<à jª9K½áHIpwüù’ºÖ´çæ¤<Ö73Û7²§H4B¬¢\p&Úq6™¿Üf¹5Úæ’FJˆ8—cºQILv»†?a D(¹́3ˆg€„Ûviî&8Å₫ ơÏpʦ8ebÊ^‚×ƯqÉ !Oai"»Óơæ$¾øhµÜ·Ú¹Ùƒ+j8ÆÆ̃”ÔyvüÔ(ÿÿÖ¬̣¶4E ;¥ªŒ́<f ;íJ₫O– endstream endobj 999 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-046.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1019 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1020 0 R/F3 1021 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1022 0 R >>>> /Length 2495 /Filter /FlateDecode >> stream xœ­YMo]·Ư¿_Á¥´đ-9ü̃&p‹mÔºH²°aɈ- è¿ï™^×Ú,́§y|¼Î ϛ‹»đÛåÇđ[¨óˆ%ô|”r¡£S 9JáăëđÏpùÓ§üå»đưËK‡»KïG$˜ưè=¼¿ :r ©ÓA‘Í~´³ÍIǘ!tPcsiÀ¬Ç¨0SÄ3{H3¥‰=̃`×#Êx*¼±„½4{9åH™m*<@˜Ve>Íc¦@ «²o)Wö\–ñ‚…f JGbף؅§Á®è°ñ¼"v;r ”Ó1eư–V`/ÿZ;&üÉư˜¼[‰üáed>bUáR̉ÄkÀŸR̀ß1J;’¬?ó‘áOéM±O¤2tœ¯ÙÄ®ÚyP[âCˆWÍbgù=â5H§ăTùA¼¬O²?øºˆ]Æ₫À ö—72ÙKO$ø“Ç18₫„xUOÓxâ58>YăM8Q„´tµûQà5lÄ«Ă"Í?ơÁ%G ûăx̉È̃V–ç#^₫ 25ˆM±r…²="üåødJáúi¼ ÛSJy’ÖONUjE[Ŧ(ÅŒ4Mµ«VóĐxdÄ‹Ë'Mê7că\Ïmra#P\Ï •ùˆ×s‹ºÿ\Iêaj̣ûÚ¹¾–|dÄ ‰JœOµ;fB½ ®‡Œ…QÏiå#Ă1ÔsBưuG¼PÏ)vƒíÉơœP¿RO/-₫0P¨¹ ¶€ïĂË/†ƠÂ!!µóº†Ítăz^Îq5÷¸Ơë7Ók½œăjîqË×é½nÜoçÜƯÿîÆ‚÷êÓW‚÷é€öÏH_¸yƒ½6 ÿ©Ư$‘8€æ›»pơ,_‡›w—ç7̣èoÏM@1$×M¦'Lî‘‘ÄMNŸL$ø¹'Ç'̀í€äêæ>aƯœ‰ádÏ}†óLØsÏHk³‚”wÖ:3N\’ă/†{ ÖMÜ è6Ó×ü¸{œRăÂ^ăfºqđWs ®ÍsÜL7®Û9Ç÷î|à\´¹ \Vhàij²¯¦û›³€'K§5kßsrN/OÎ| u›̃>pŒ.¢ÓÇÓ§£Û¤ªµ₫?„.£ç¢ëtú¼h ˜.%jv—™Qf“Û‚Áçæú±ö€Ç Y¶óU¾8_b§Ø¹¦̣ćlö§«^ß…·÷o®‘€pơáăƯíĂÛ÷áÍGûâ.¼¹}ơđác¸½¿}®®₫ưéí§ë_ÂÍ‹G¢øWä₫̀ WÖüëíĂëû‡psÍ%®°TÂÇíÛ‡đóƠư˜Ï@®înßcO·ï_ÿ|ưƠƠ₫KB’0ÁÆp[ü·˜e‹çóy§ç£EÉÿï^ÂäÉ[̀ÓŸŸàúȯÏ[‹ß¤₫ ]è<'ơGÎă<©?³/a+Jư™¬:©?¸$ÔŸé9nê/ÔrnêÏ»!ÚÔŸ8ƠQ¾vDGư§ÈQ@µP£Eư™êEGư9úç*66ơÏɨ¯QÿŒe[ƯÔŸa›ú #¬›úg,Ûơ·Ó|Rÿ *'ÔШFƒÊsSÿŒư'Gư™1 µ4꟫œ¾“ú³-‡Ü¨®•úIưy\¨£Qÿ\3}Rc¤'ơÏeÚƠB©?3X¥̃Jư¹”+mêŸqˆiSiÙsSÿ êÆ¦₫̀°…ZơϩظRÎḈú#_¹9ê?“ÆkQüḶ»¨/zu3êO âJ½•ú‹›´©?_t\©?_m$ßFưùêRë¦₫DÚ•¤„0̀Mư)’] ŒúO\]£₫ĂêuQl›’£₫̀Ó<ơÇ­[×3êÿ媳¨?êE¯&FưQ_%{ê?ôjụ́1\ 5Æ5×j3D9;Đï!#ß²6xlÚ:ZœN ÇpëE·é|h¦Ó ’Í̉ †%wéxÈt`‘Pät~I,¸dñ1*T-°À2’Œ@6¹ç.Ë’ ¾‡~¦ Œâ₫̉ R1Àtđ¼ØNº‰éÉî}K'`đIN'àÍN'€=’Ó X×hN'X:Ç̉ ø÷Ăéd:Å̉ đÑX°?zXM'€¿£9€yët:Δܫ—N0-Ăé8,²¿¥À­æu‚(aØ:â/ùX:—hNK'@₫Èéœ_Ó ,8ÿ=n°àú,8¬#9`x/iø/L@êeéJ’N°tÓ 5S'h f§N5? ,Đ́ÔŸ­¨.°t¤½:°XÍâÔ º=oéÖlX`Y9m§N0˜©:°¨Ú«,ªpF/zQx‡…óñ%Bp™Å­$̣íR ÑèŸÅ²ékQyÓ T’§U¹é"܇£Àm¿F'€(ÉÓ‰Ñí÷F'P(̉~BL«PC.i†\(%::±éƒÑ ÓA 8éDZ¶̉ ZJ¡Ñ ÊFŒN°íé~_=Àó¤.:ơ(;:Útt₫¶äè¿âèÚqtJbÆMCèÓBVÖºCˆ)ÛÚvGÙ!Äbv‡ÈúcÑ–’iÑư1„À×êŸ!Ó•æôdN‡8x̉~@ZƠ?£ˆßtÁˆ&ơq*‰S;È¢‘¾PMù<•Äiôc)‰ÙÚưBˆ¶”CSå¨8„(‹>(Bp}wÙÚ¿!+ÁÙ!N‹*‹†Ù|!D^ôȂӖBP3ºcAv‡\±:̉£‚73„2W½̀?/_aøĂˆ„ươ›@>cI•zcX¡¸·8D̉ŸŒM~ư[<±¹«‡¨¸+87ÚMô¡±_lµ«¶± øƯ[Îơpl‚»Iqo˜úͶ±‚¬@™a…ÔÑXÁoEôª¢XÁƯ«8¬{n¬`Û_=ô-‰b…@BÙXaqbˆjnXÁÏ›ucÛű é¦ucÛÊ>+ØUé+xÑ]=̉Â^Ă uÅ f{z6+8¾zµQ¬`vXóÆ îÎml¬à0è[ÅÔ«abç¿:6Áơao”M |”Í›hvuXl¢™Ê¾Ø–U,06̉,_X#*ؽ°W3Uí +p¤ơª`Xl›Ñaº»ªú†(£èÙÄzË´°¢D} ´°‚ßRM‡|UơWllíÄ »/¬ ëµ'V˜ pbEƠó³°½*=+†¿ùë†uaÅ—ÿăÑµÇ endstream endobj 1024 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1028 0 obj << /Length 2780 /Filter /FlateDecode >> stream xÚKoÛFú_!t/P±óàđqèÙERd‹ØÅÚh‰–•X¢V”âúßï÷e:m÷àhf8ßs¾çL̀b»0‹Ÿ̃ùưÇí›̃Û°°&oLc·÷‹Ææµ±‹².·›Å/Ùửfíú ÿö'øgX® Sg;–¿Ư₫ ÀM•ÂM^@NÀ¸ ¡<‡?B&`ª¾È]S+X¾\•eƯÂî‡ VÙñ98+U¶n<¸[®\•É6Ü…D÷;¡Úmø À¼ăđ¡đă( íE@đI~#óa}JIP „Ươ‡‘·í©Óơî„â.Vu‘Û¢^¬¬ÏCѰ˜ÄnDI¼Ë†~ßñèë2”Y‹Â\d¥¿çß5®±:WUa³·»;,] pÂ%₫s Z Eöù‚Ă„5Ø8đ7¨C”9­îÚđÇ'd°"GÄH‡pB(ô?ú(R$.̀.Ñ»GÜư~Öj̀T3̃nª¼*­ÚMT(Pô¶bQc¤I<Ânà/ ³8m—`B_Qƒ’m·]‚àlO§₫~>ƒ2ëÚ5¢xàÙ.ZSB™*a [´…Hg]‘ùå¹Ïœ̀=[Ghà › ï‰̉d&/QÅl<áZ&OÜ–,²ÍCÀ7%A'àB*°pÿ®ˆÔJf;7!¡fH£Đ” €¯jÀ̃Kơ¾³‘¿e\E‰*¯£€,¥ÔT6;'›M€K%²)5ûlÎÏÉ&Ô¸(à"j²¨tä¯ÎÍ¥çfëÙnÑë‡3oû@¡¯;t½±O9)±1p=oJƯfÚRbA–æD½Á°ñ2EU5̀p™2BÔ¢IơỉHơYEµ7ÍŒ¬ŸPÖǺæƯî‘2ưsJ.HuE¤ )‘tÂüñ±Ô¬Œ›Ë]Àƒc̉ ü‘̉ Ä=W‡¬û]k’ƒ¦sNOø¹̀>|ZÖ‚.í=b/Ë(sQ‚»4x¯ÇôÇǼGlAá•°e›×…ל°çưÿâLYê>‰…3AÈr, ;Ê.d³8] Œ6ÅI<Èp‘d.‹Xû•*å…nĂJá¤- \‡aH¿ŒÚù0&i ›®´¹¹'Y•̀r’¬$T;·¤?Jϸâ€Y*Øơ¼†1×Í‚„àäÜ}G©˜DĨ~†!üæˆé>ëº ×0«Bv9̣/Z+ç7$4p=óeU¹— ₫½æñ±Ô@7ă ?ªy¤€‘:·æ=¨Ă¢Ẩ«́^%œß¼ÖªÓr‰kcس‡_—T¸3ưç‘'ª®;Aɰ—´à̃Bí[—ûÄA§ú=8œT÷=ĂʹuZæu™y¡ uå›iAÓă‰Ṇ̃5©‹³¦¤2¿“e¶ñvÂ@av M¯åƠ–x²f%á¾Çe%€q¢°¿3ĐNX’buĂKTQ"׈́t²z%Y¯u⑉Z$4R«akq®ág[=“Süơ^¯Î벘‹Wød‡ẓTöØík¨]‡Ú&mdeLvƒÑï‚üó_nªĐ’*D­&¾+´° Ñ#m?§éøăF »ÓăÆ‹í`¿ĂnÄå/d b’¬ḳP5S£½6n6¹ƒbwU– ™×'wh:ÏɇÜÄZpú2¨Ṇ̃›q£ÑN’€ÍØ=nÙë-:J0ÔŸRo_Nể󌘫iººöák{¦XL¶?íIqª O§}r^ ̃¹̉JSộO“QÓ¶Ù%}0ÊeSXsîv5±0ÑÛéj` F–ÙKͤä²̀Ë]á8Ä(<ºæÔÅ`X×i[Ü~‘̣ùç áÕÆ₫IvLWămÍq0́,ƒĂˆAoØœg³Sá¡8K 5÷|!¶ÊăaĂNë̉ø“ÛP]9„¦€G=l–8Ævœ…W$ü[´N_°Ñw ¨(cÅ€;>SO´ Áñχ$(©©özP_ïF|‡’pxÑ‚–̃2¡™óBÂ0’GQ‹.ªëèAxo„ K3̃o@øRa›_7IŒỤ́‚:0ûăĸ^¥xm3)/é ƯƯªÁ÷;rù­¶¸4h{©Êu‡{̣Î~LnTD’]ÂÉ=íƯóÄü÷sJpèăöZÁ°,Ư=¿—HŒ›Éa˹PăKBo"Æ0ï=J¥Jl1®S>æ²ÂZ< Ïi:‚– «Â[½»BßÙ¾;q….Eu>%׋éè•UÉÓĐ絈¬ ÖOièh0ñ´tfxÇèCñ£4n&„´®–ă1jK@ă¡†ÄaŒ×Ơ’éïY.îˆW¸{Q ́C7Í 1@;ë‘›·ÿ^VUöv6¬º¼öU¹À^WĐv}Ö/’<=tzAA ¢·qv¢÷!¦~nX¤ai “Cww̉Bå̉}û8h×p Ù±nç*'ëm^W±$Wè­̃îíå̉÷1qö£ŹY‹ơôшcV¸jÏqJó‰‹{bw-—Ü8₫ƠØâ$ÂƠu¶éy½…ˆöZMI»Ûhéư,-–\̣­^£ƠW—¢d’Eë4O4(̣Ë'ơIÛKÔ }ƒµ¤Yœ¶ |úéÍâÂâ }ׇ EW„SWK"sE¥©lĐ[I?ß́ ¹`[6ă°™ñE€úk5X¼/§ưøDơQ̀^o¦+¨XƯô¸uG{xB÷¨ß®¸µ»[i8]ø…b|è†RaÇå!¡æP¿ °9+@Ưư4'A ¶IȨféỵM®ÏÔQ?øºAƯ¿oÍÓëä±®¿JOb~û.mÑTZœ"ËÇ‚¿ÊÓ‡Üÿ F¸,̣v̉6(‘;.¦Ö„:NÑ=©®x₫ù¢ ̃ÊËøÊ†¹ÉØkùôûp~­˜¡¤×Œ‰n_êÖè*oL¼{̀íu¶ïơ ¼•OV0µ‡m7Ư1kg–Q‰¥Ơ*h¶‹Å5–»Ü+'mÂg^¶Æ§`—ƒºFŒ ÀXz0$̉Œ̉sª‰ º¶FŒÂ¹­ü$?½Œ6Ô$mx@*Đ÷-è«Ôy¹{ƠÙn­çååÍh́ÉZiÔ"«r‰Æ5- â«®×J p'öIö¤fG]_Ú@"©Ú·_ÇôUj#ªRk\ËøŸW)tßË8ø[Ñ÷oIÂ|⇶½ú—Ú1ºéô«́RCkơ 7­Ư’ó^²uP($l}'1~$ók ¾ûØ¥¯£w‚Ṣ. Q‘4•l5n¦áEøˆ·t1©¾¸ƯÁ¾³e|îơÿ'”ƠæƯí›ÿĐî©ë endstream endobj 1037 0 obj << /Length 2126 /Filter /FlateDecode >> stream xÚ½ÛnăÆơ}¿BhP€V çÂ[-à,v›- ° ä!é%Q6Iô’’wư÷=7’gd*FP ´†Ăs¿Ï8YÜ/’Å?ß$̣ûĂƯ›o?—,̣¸̀³¸Û.J°Êlq·YüµW&z„çO¾àéáù=Iøù<{xÖđẠ̈‹`<µ€"̀;x<£™«ej]ô|­‰m ™–§ñ+½z₫yIưßwÿm–&‹­+Yê0, üY¤jçˆđ uV*­ÏĐ?¡ơˆ8ƯàºG´‡eqIt}¨à}÷Œâ5=Ă‘¸ Úæ7>V(ë±ífq©‹¸´Âö=́¾cø¦C)âm%f₫ÊTßñ‚®̉:>Fé³ôÿ«‰ăÙP›[$³ß#h÷̀tˆæ¶E7́+¨öÀ$W±…Íj}d³¢ˆ³|ÑFéé™ÙGdàL’Ùˆ­’–±ơe`¥ˆ´´Ñ̉̉ÂEKÀ†È´Æú(‘_~wÀØ,M#Gä–™‹}a:ŒÆª§‰=™8IYĂ$¶ÿ$\‚™ẹ‚nNưfđӆߜhBHÉœ—Ö&‘»P­S]9ptøi3gR¢ǜ‘Bös›ü"{çûÜ ́=ë8±O4{°O^Ơ¾ Øg”)´ö™Ö>×́KÍ>ØÛíwT½ø·‹ó¿›33øTÉás‰ö{öªßÖΧZsÍÑy­ù(˜åàŸ4/₫æHöûR+<†]ª¶ç~ÿ“°›Ó>-öV“̉́]¢ÙRºóX ĂÎÍhO•íØa_ù£O/io{k´»SvřȽŸÑ>dŸ]f¯s̃z;¸ơå_Ô>¿œt¹6~ú?'Ưœöih|Å#{ătJ́‘MÀ>›«xXlÔÂêØM9?׋ jÏ™v–gœ)çÍœækuȺ͸Ñ…6º¤¢b¼¦u6±6µ¶¾Ñ¬}¡3¯Ô‰ïƒJ—½¦uqơŤ·k£“>½lpÑú¦̀##}Â&³mÇxˤXR) y—I ˜Ë©ÙÙ—dÅŒî·àËÏ„“DæEÏFå|ª[ª¹Ôr2f dü9oPç]#C&fÙQ4œ‘ØŒÚÚ©î́ÅEmº¼§¹&ç©ÍLÄ/Ç:«p^ưBSđóz_áP̀C´̀“8@wjzN¢î-¿̉<:·x˜Đ3¶|¥#I‡ ,Ô ]ơLë]¸ùV8´ˆVëH‡ñ[R¥-o÷Îv¯Çû倠Í„(²Ø̣lÂÇ'X?<ÓàÏ[}3)K;• K>ZËÜ=A÷8Ơo·¸³níáÏ%â¼A°{̉j¡̉n…ïnZ:B²ºÊÙZ₫}»Á—Ư ‰L¢*ˆ>-h́vëÿÔ¤Uó$NÙ^t®=L±TơĂÙ}ZÎUa­ß:«z’»ƯN®Xơôá‰VCCj?ÇRj(aD?4¼¸ưŒœª®Ö'À*©é}Œ PÎ>0 :¾ ‘ïÇæ6“oZ-ƠVâc°®ÄF˜ ŸOt°«ÿ4æÈ»}³!±w’/˜7?ĂÎíµÜàa·znñZHIü¬)k;ök-~Ç­–O¢}]Ñ —'1`2º ‘ê ™ÓcCîÄY"à0›—³ÖC=ר@ø ×_†:E̓²áëY¨Ôî•$T{«UCåå|O·|”²s!Ê6₫p->Pú|A7N2/%‘¢₫w~]S o"zXOptÄ?Ö(üÓèr²¸X£Ô–áT†ó¥Ă@{½¦SwÔf2¾É)Ê…1q™¦Vnr\—YÁ4¨û¢nx–Gz7WpĐ¿»Zº»á°æíÍ@£‚ëÊTPØ!Àẓ%i«jô5¼èbM¥wh¤P¼hóÈEë—@ QqHá…gL±¢ O“2:=²i‘Lr“Û fˆ°„5…W”hÍ̀ñÂéPq¢Ö;„uc>Ëu!™c  '&€+‰úBVazỗLË1 `Íu CCiWO¤ñF“%Éu¶@JÅ̃8° Y£Ÿ¹₫tv+d›OăÜ™}Œƒ¼5±ñ>´÷-êøåJâûiXt<»Y_D_(D@= ® ȶûCL(™d!²¹s"ä†C _rÖˆ+_±‹[ñÅC+wÖ¸ăg{’„À ±í<̃bÖ0«Æ£kâă§îÄ»§nÂ₫éK߆€i^&©ô†ë¾çÄø½ ¥¥ÏäZŸÜQÚxçiGwÜ^Ú/Wy]Ïùθ |ÄíT† ÙS˜Èhc÷ø̉KƠ"H‰]Ÿ].£hÜ¡åÿ}âÚIÛc’áË”ø¦=à>ÓÙ°6ù¤4hœÏḱ6¡r*O¯IÛĆñJÅđ₫!’ß)QŸÈ¡¼iñªÚƒëÇ…´ÿVÅz@|ÔKzJ¥Côí`̣=Sé¥ZpeDíøn<—ÙäŒ+ÖÆªtna¥b>°zf<èfœÑ¨¼/e 1₫ëia“"Î} í¹”–ÏçßèĂƯ›ÿÔbư” endstream endobj 1041 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚ…V[oÓ0~ï¯đ£+‘̀·ÜB‚!x¢oŒ7M›!’lmº±ÏÅi:¦¡Êơñ¹ùœïÛQb'”ø¼Pÿ™?¬WÚ*‘¥UQäbµ•NK¥Eî²Ô9'VñC¾_&™±̣v©å}i@ïĂIô.ÉI‹$¤¹ Çq£2ÅäüæTŸHE/®¾.>­:¨„Úº4wÂT.-l&ênq¿H‹ÊÚf$¢3.¾tº‡Å·đ‹²„}&3§„D&´J+Ué¦Đ©1–¸âˆwGH±Y&N•R—oCê••—´̃̀ßµ¬[×÷À…”Ÿ,9dØÂ\H³æúStPÁjÂèØœùî,€½!î–«0t´«¶p/®ªr¦µ&µÆd0Ăï—×Ë¢© ê9"Ö¦6°ă~‰g̣„TO5Ọ¼’«iC‘Øn&{Xg\•VK P­̉•¼†Dl‚÷Ù³Ë øà{2ÇŒ›æÄn™öèü5lëw̃k½̣Slf•q³ö›¢÷ăTÀY/“gSû#—ÄjK¡raa=‘{9Lwh6Àî˜Æ₫d‰'o¤5ßÚùbŸ»Ûé́öÄÁÓ Ư¼^°|Du¼ßQƠ‡F"–j6`BN„́ i5§”,§5)%«ôĂø bµS²Æ`3<ß³¾·.ïà¯Ônxª¬3§H‚ƒóH¼!ĂHôY³°óx2ulÏ8}lpl¥ézö3׉RKb rC2¼•₫5ñøü>{^^À £ëbâîa¸tà‰~₫)!Œ*Ó"|1$E‘Œ¿̣êL9¼ëQ9¦ endstream endobj 1032 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-048.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1044 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1045 0 R/F3 1046 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1047 0 R >>>> /Length 5789 /Filter /FlateDecode >> stream xœ­œËÉq…÷ưµ$SÎûe+Á64° ÈC@ I b̀fÀ D6`ûí‘qNVT³E7a/fÈäßUV^¾ûXíqövÄΤױèsÅÜÏZV{9±Ôs$m§r6éK­g˜«=Ï)iờ«ë™¤7½m]¿„³HwÆĐ^i»êSˆh×x†~¤Xµ[ÚngnGJë¶̉nQÇ •|ưÚíœùHúc«?=I†¾ ½¶¥ăñH}âçe°F8’̉ºtD:fÖËJ[₫’¥?³éi{œ­¯ö¬̉N2^Sú3‹vSÛóL̉¹̀º’ñª̉Ÿt´=u R“¥ ưI©QúS¥[ëz2ĐEúS₫¡íz6éüs[×—ñ̉Ÿˆ₫¤̉Î$ư‘nDÏ$ăUe¾f8ăºŸ Äù’Ç^ó“Z:£̀— ÓZ©ơ³è|5ViËxu™/¹¬Ư¯]q13­₫¬Ñơ0ÖưäA«¬™ö¬ëGnôµ́û²Feaérëzÿî]¥¬öÔ•¬‹µë÷³L4Ọ̈Ÿœ‚.f¹Êº]–á’Å<»>¤4µó˜Uû Í¦£ ]Xß-Q,ø²~XIî1£N4k̉GXØYf@VÔÀºÊ2N²ơéÖ¥d˜dË*™ëR²¯eKs bîku¦S#ͱ64[XÍ©kCkĂư¤xøÿØưÆ–®oÍ÷ÇOO>¶–̀w²O±Cù1îsÛ!ûsk^Ÿc…̣s4Ưç¶BöçÖ¼>Ç$í̃[Ó}îg?Ươùï̃`đ~₫̣̀à}ùYÈúO²€7¿È³øÀ₫gíVty”®,~óáxơC~}¼ùíá߬Kû»1vZ÷åô_îk»/Ç—9¥®ü¾¾¾ă»B;¡ƠơƯï¸oÎIr}÷;8ªkïúîi;Çbăœ•9 êëă'Gíµ®O£ ¿µư1×çỈç₫M÷¹œ3]Ÿ[óúƯáç®w₫ÁƯÓ₫àAÈ#¨‘C.N›¬óÙéúæ·ơ῭˜ëóÙQÿö×åH*_/ßươT³BƠ¾̃¾ûë9®sľ>îÓ­ưP‚’‹Í,'Đ‚,¦á̃äE_‚ŒZ¬ĐƠA>,ƠŸ_ưáñƯ‡ă׿¼–%s¼úôùĂÛÇ_?}<~ùŒøpụ̈öçÇOŸ·ß¾-'çñê¿¿üúåơ_7?¾²Ô‚œ±CÄuÏyûøîăăñF.§÷[‰8yơö×Çă/¯>~’æInóáí{y¦·ïßưåơ³wû;ׯ¾Đëÿ ˜×#îëë“îK¿HÅ₫Ÿi¬M[–Éo¶W>¿{ûåÓÇkÉ¾đ¨´‹fùß·MrÜlͬ—fơ‘Ú¥™ụ¥™S̉'ß9ဧfÎQïä4³Đ/8Í\ áœfÁkæxæâ4³h²™œfVIœfM›ú¥™£LÓ¨—fÖOé̉̀Qº4³JƯ/Íå)g¿4s›Ç¥™£Lü̉°Ồ!@óC3‡h£Eͬíè4³üü̉xĐ̀úÏëù ™ơ~©^Yû3⥙ơ6ëzĐ̀ú<¦¹M‚DQas^YÇ£ÅK3ëx™7ͬ㙫Ó̀1 5³ătY†Ù4-4³NCuYn»bŒ­™4:4³¬—’¼fN6ßN3/»5óz̀K3Çh1ÇÖ̀ˆè¶fnÖhæ(_ N4G™Y.ƠbÊf Y‚“Í ²¹Úb l.g¬—l–'ơ’Í» ²Y%w¼d³HnÓ₫Í7‚l¸2dó°IüéE`Íú„º¾$8u,‰ûûG̉UwqƒœXrëâD´±º8Ñ\l-¾f†œè¶pÀ‰\,#'„£h'dÅâ8Ñ¡²¼ç„*![Ëáeû̀8‘b´èœĐír‹­åŸ³ăDªEÏÀ+¶–IëƯÅÖÂăbk™˜æck¹ÿZ§àD̃0Ndýä8¡Ÿ[,~ÅÖˆµÊ%[Ë2ÅÅÖ̉ pÁbë MÀØ:Oă"ck6ûyÄÖr"T[+wÚtœˆưÉ Y59N4¬ß͉ÀXœˆ6äDÎ6äÏ rBVOÍ<„È éï:GÈ ÙçƯsB—Ơ-¶æ%€º Ă… yÚ]d]#²N6wŒ¬#bg "†YË”"t«Î :ÛÅEÖƯf‘µ́‘́"ëf‘u‹vdm¤"ê’̣ƠöĂ‹Q«:9Tˆ₫".“¯Á´/—éVTă_¦æö2Ư’7Ư’>ÜeºÁ¡#ä°`bdåJp`ÈÜHCƨ :KÁ ˆ¤S@T@u¶) §Ñ ˆ&ë©8Ñ+À1¢-- µ<Ô”ZR`ˆr¦D†µÿĂ]@˜`¡€ÈÖ?‚Á₫¸ÀÖ₫¸À S5¼é¦‚¥:!—  +bº!Ø6*À0Œ`óA0ô "8Zs`h́M7̀'Á —I^@è´†BĐ g2Á &aq`ЬåF0$˦D() ä ±MI1¬?[@4}¬M]ƽ_xPÁ±úC 1ÁHÈ1JˆfT¦„¨¸6$D6­H ‘́HSĂ9o3‹jñơ—̣A»¢Kgù‘ó !zÀß<)äqe/PàT (²‰1‚¢™? PÈ­•LP€đn:Am86(Np‚"á&(†-Œ bw'(d!öêAŒ2'ѹó Ơb`¶ µ`«Sº]¤‘ä1 pç#Ö#”¡ˆi¤aN+A!',…"ó„(äyW Ư(öÏSAàz[Aà~TÚŸzb÷—î|È·;O·œî|²ƒ“ Đṇ̃ Bdz9PÈé *€¢FDVE±¶A1 Ä2́ù><(°6(ºqƒ‚ƒ‘–ëE»©ˆ½Ø7(°jLK–r·è8Qm1’Đ'2öú5fpœ6°äD0a~…¹91l¼ˆ:²miMº*ïß=>¾ûüú•đếÛF¹[ùWânÜĐPû Ko_hX§Ñ€(‘hˆO4DødêVP¼Ñ±Ơ™1CÑ€ÄÑ ÁK÷‰»L 4ÈR›Ơkˆ4 ª·¦×¦ĐĐC¡†y³Ä!4„L\íNCè̀y ¡óàwºµ́y ËÄhÔÄ  !"¶5D2 å4„mUjˆx3!tk/»5dîÖūԪ)ª×ÁĐ ¢F‡†´5ÄD0B4d˜ DĂ€)B4$@L%¢Avà æ67Ñ sÜ4DG‚ hÆîÑÀ½L Q A¶O½iˆ‰,Ñ€₫m Q Œ ;É 8h°“=vÂÎèĐ́€7é_̉q*U IwîEt˜ pÉ‚ƒ¯éóWx¸„Ä Ẹ̈̉ X]º@1|°Ñnn¥Ÿw 1|†_3₫ÅkºÅ8óMC¸…̀ÏZø[C ă½5DĂ™M·²PSl·²{P ñÅv#áB ³5„Œ´Đ g 5D¦Ë ‘;® !àÊÑiˆ2MpRCTh&‚B]†ê@!ŸwçV&Ÿmt€¢ H%(ô¤(NCdljˆ„@rgø«¹{[CPPCTÔƒ¢ÙFu"ö;( 4Ex ä]¶†h¶^4á̉PC`}l·r⧆(Èî%5DÇ̃¤†(·ÿr/(4 áb‰ú‰Ë­́w·2yH$0ˆ[‰€&¬ˆiAđåVï !püPB`‘½LBd=j’œrÅg Q¾†Ä“ <$f2¹`ŒÉWBc¦Fu‚̣„ºˆóâƒV\D‡Ù~ÑÉôtoRÊô™é<ÈỗtD¤Nâ) ̣µàLJư ~ j®ûd†L»ÇCÔíë“&!uD«æFQGt¤lí¼uDDHâ¼_$t5 <NÍd“ 12̀}gR‡‡B¼°–ñ íát„âeºd†~?¹d††8ÓáAĐ₫%bhÿ³+̉ÇXă<¨Î±çô„+c‡†‡ÎûÛx¨ĐeÄC¡y<ÈüZMđ Ă|ˆ‘˜&ÎBêf;ù¡#"B\ê™?cubˆXø#~|Jc¢»PMSñ”DA¸%‰ûHẹ̀‘áKe ÿu|ϧ6Ô†¹ûÑe6dŸ7ïK gÈàebĐ2hÓû2—3;hè34È3Đˆ¬$4WBcŸé€F*đƒĐÈă‰U„Œ*3BC6‰e2 ]+.³¡ÁMôĐеS4 ‚ B£2CđÁ̀ƒE½30WÆÑg@eíuW5¨gtqĐжñ00¥=Ău¦;_B¯· d0ƒéOö¢æ»¦n^SÈó̃|‰̉ŸT |N>̉®dfÇi ŸÙPHy_B5\wĐH¨:ƯÁGÁQ h¨ÁÙ4" >„FD&mC#ш4{ƒYO@uĐ(7hÀÀ4–~÷Ô mj`öH FZ ̀ô—ÅË[ƠLUC‰É‡·Zç¡å*¿₫—́¢¯±ñw̉áî–¯$y«k̉¢Ûô’Ó¨D{̃M‹‚ôiœĐ¦%i‘¿ß´ D -¸»A eN¤EE 1i1PóL‰‘Đ_JŒ<+iÁbĐBÓ)®ÆXwWơCw³s1W˃j(_\¢’¥DG ½­s15½°"̉BÚĂ¹˜jXz´hđ·H‹±JZÈơm·²^¢bw²^"#"¹̣ wZ :–´ĐđàhQá*nZ@;»tG¼E ׿\L‹H HPgUd/1¬G‹á%Æv9I‹³đ¢EùVf¼$nu´e•ƒE±¥đ2X-±ĐêÔ₫<,Úsă›¹}–î‹lƠ•%];‹Ø–—£q‹ÆEùʸȾ̀*%(û+ùoỶ`‡̉v8ë=2)đIv–´²¬ ÉÀWàpú;K!‚èpv«XÙỶŒÈ'*Zv–”‘Î̀1K€IF&Đ`ÛáÜ®2«öÄá́>2 ‘˜€Ă€`CÖẦ’ †]d²n볤ƒÉfI Ë)P>1ñư+KjYÎ+KÚo'j‰\–4ߌ „ëxƠĂa#øWd·†[–4̣U…ü°meIGr؈({ÛÆ°¾±AG’ÆÅD²äÊ’Z₫‚gÁF&6’amc#Ü_P0@wtºôƠ‡â˜Qîo…¼ÓN“ZÇwtáøẽEZ¥BZieÆÿ’YE(Û²hfXxU–Ű,‹{^4ä$#̣6-2<ËË´°­LÓ¢ÑĂ44h5°¯À ¬¤i<Ñ ỹ´ĐÂ{ZÉ“"”hˆLn ²¢Lq ‰hH8ˆ†T y<¢AN@_@¡Ơ½¢ĐUWYµ̣‚Í) ÑăV! 4dÄoDC†̃#2RuDƒ¬x3€M.D‡†̀øhĐÏ}e•~ßW`Êe‡GƒN‹W̉¿r{k)ăzŒ?ào4 ÀÄ{>ù‘ÆƯ´Đœ›¢¨ö<[QđÍ# APâ‹«V¥×-₫À[o[Q ƯñG½¹º¾̀…¢Đz"¯(b€ÉAEøtLj/]ÿ¾̀J÷‡Áű2‘θXÉ—ñBD$=—ăRm¹<‡ˆúL ̣ld¬êÂBZị́+Ôơƒæ‚ÅÀê1XŒ{µ¶¾¬ạ̊¤ƒF iÚF5Pè‘́’¤câeIĂ„:ÄÎ¥P;Ö•iÓ#f¶N“éU#„Á¸ƒÙ,̣!°€ |Đ‚_`ÈđA+›ăC,÷ähœ,¸¸Ÿ/>d—óXséLM=zM*ĐŸ(æ{툣°̉Úr[:TøLvđ€9ÉĂLMÚ®ÀJMÍîü 5E-GS³Væ8̀Ôl…Ûfjv$̃Á‡Ô+1´̣Ơ’©Æ‡Ơv•—ëçëŽ^s9ÄçVœ©©ưµŒ£ñAŸg¸œ‡>¯åŒË”ởA={Ÿåú':æƒ|Đ₫tLJZoéÑ5ŸN>è|ûWÁap|ĐivµÚk=½4GºÙc=êâĂçOoßÙ;5ç3)̉g³"7g̣t×;ĐëtÀi :T“• C¥at Q:ÀŒ'Z#v!èĐït¸Wg¦UL'‘†#耈tH·Ú‰ÉŒ¬ÑAØQ\\1Q5½ÙÀ.°!Ô[U¶ùÆHÉ;Q 6¤'nDF‚e³Å”dî·Ù€|Ù0"̃ˆfáD’¥ö2*•Ɇ ïlèùW°/!€ ºE‹ +ÖtlÈÂlÈùr°A·ØtÚ!× ·Ăذ~~^lX×›ô~¶— úÏ76èÜ;7BŸ,06Ty°!³$̉Ø ăU|ÂCÆ3¹êlï6<:Ú’×Új³oø“ ‰Ưḍá› Åç;Øå<éă6|+3ú|̉C÷h¸(Jt£4(¢`PÁ:(1i=XơÁ ÄŒ·l‡F[í¢ÄD‚”˜̀‡%ø5ÄÀNG  Ôh„ŒÍŒ@# ;¸ ¼¢°B]aB""Æß?,̣‹Üñà€…,{ơëJtÄ›u™nÙQ½ÿơzÙê*µơ2ͽꥅ3ÓOHà„ª*`vxüơ¤vvtà ,*'aṆ̃=;ÚèÖ#„DG"‹BBÖgt¯p¤VQy!Q'…… ½­+ÀL%¡?¯˜PH$V5AH$~hL₫æ†ÎÀFĂ¯Ï` !}¢£0±Xäy·.sºƠ`*ü}±ö~°ù λ\–Ëtè†ñ/t,kÔ ‰Ø½¥Ú­¡ưϸ—Ϧ:d å(̃ˆÀ/È"pÄƯ* sDt”6CHđ¸‡@ŒB‚oR¬""ŒH "¡ Dä›1Y!A!Áâ'‰y¯ÏVߤ8<¨Or‹3º-_âqæ3 j¿gÀ«̃>Φ­%:‹%gà—Ñl-AK‘Zrlk‰çŸZy:ŸÙNKˆNO,J«‚1ñf-ñøÆđ¹!"̃8",`âAó̉.³¡Û;»7¼R.°8‡Œ³–xÈơ¦%4.đZBûÍtE˜: Ù½ ªĂÔRD-µD¨÷Ú*»Ük^ñz±Ëđ ZáfQvf.€‡ÆÚ.àAÿˆ^K¼ F-Z¿­%â”+Έ.ªq†eV€‡‹÷ExhÓ̃XÉȯñpPüñáEÓ}Ú endstream endobj 1049 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1052 0 obj << /Length 550 /Filter /FlateDecode >> stream xÚTMoÛ0 ½ûWèV˜UQ²$kÀtØ:l§ómíÁMâ$C§qº!ÿ~¤Dçc°Â D‘O¤ø(Z‰¥Pâs¦₫³~h²ë[0JX¼w¢éDY+œ´5ˆf.~äï‹̉j“o ÈŸP”=ʽ² —5Ê3d}Çî7¼Pèèå]ñĐ|Å”®>Kiƒ´ ñB1ÙC.ne$x;!ölŒ ₫´´:¼> Ê>5 Q `*é*¡=àåj1ë³çLú`LgjtMÇØpư¥‡ >Ù~“¯ä˜åYĐÔ+@É œu@WµTÊ¥̃2·Ë—],¾¬TCx‹ &¿Iû%ùÚí±³dm7d¥¾FöŒÉ3t´ú#×ÜáudVר»èYs+‰ơOS°¶o‚̀ódíø }ÚÓ©Ơ"u Ôçe£¥ÑǶ¿ùVx¥¤fÙK¨4nRÆƯ€…Ûü']iÆw“Eé\È›cBQg¥«5/mN¯gØ'NJ>–̃RÜS±ÄY7P!}»gB†Ṃ·Œ‹œr R¿ˆ1ââiLV"˜Ö9G¸Wàf/̀ñÄ/ú¶Đ~Ú<¥vÔcÚŒ«8pèư½™Ü§să6agœ ;°²Yj[-&=¤aÄÈăùƠqœH‰Ă‚T_P6l™ăuäÀhæU“R¤GIÛăObŸƠ»™”x”qØ₫₫ ­jé+œ@E›*%÷ê#úaqs endstream endobj 1033 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-049.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1055 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1056 0 R/F3 1057 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1058 0 R >>>> /Length 1142 /Filter /FlateDecode >> stream xœ­WAo›7 ½¿‚GûM$%}̉µÅ6¬Ø´1ĐCÛƒ—9€ÛYmCÿưHJ₫¬Mo;4ÎË¥'̣‘r̃Â|̃ĂWˆ£KFr̃crY><¹àa¿‚°~8|øù ¼½¼,ñĐÿ¼}û»üuŒđ÷đé xøs@x'ÿÔđÛcDv‰a;ŒÁ ”3l†±8D@"G^`„4:6˜].€̀γÀÂǹ‹ Aavi ÉÅ,=»˜cpÑκ;̉å*A•ÈEsÅÙ¤d®‡!±i)Á%2œU ù¤÷̀¤j‹KhxT9¤ếü@ª‡Âè¼ṇ̃‹è¡„¤zhŒ“áQơP. 'R=úX ª‡1:o|«%lÿ1©椥œQơp.†“êá(6¾ êá(a¦§$ƠĂÉ» ÷#ª‡E†åO/®z4†Mđ#N¦Gîgù%̣¦'fW*¦'FWT±¯z$ l8« ̃ôvÙöÑôpv£̃—¢7=R†bzecƠC©Ú’¯.ÎÛy)˜1bƠ+NT=zMăÅZ/I‹Ơ‹Ä‹Z/ù¨ëÅŒZ/)C²ư³9™Ä_EëCŬLOؼLb›¢û±73“Ô¯dĂæf›Úư«åü†«Ÿ³w¨ç3U?§æ7¦êçX\1«Ÿ¥¾è W?K₫j|¨~–4—d8׿²k ægµ½ù£ùYÛ"Ÿ̀ψ’ƯïV‡Åÿ1 ª·Đ¨p·tEZÄʶ~=Ñ v|í—‰¯đ̀7¿ø;¾úeâ+<ó­^“ú ;¾¿Ît»3ÿfÑ’wwøṆw2g’̣Áâ^jâQT,†2îdÜ,¶0»á9,†¶ơ˱(Í+]ÖÓÁ̉Y4öÁøú`’ơç`E¬̀–»Ø+ÎƠ¾—v9Ç^qaæ½ś”éúVf‰ÛörêềVă Úëd®è̀j2Ntƒ/Dèø Ï<‘$…&¾Á×Ơñy3.O|ƒ_¯3ñçÛơ‰ë²uÓ%Qf8K!ÏûÅX${/­öËÁÚ}/”ûÅ`’‰‚ơ~}°4: W«W¹ÇëƒåA—[ƒÓS›¶Q4°¼tá7'Ø>6§²?…§Åuê¿fvqë¨pÑQơ]·^¾²¡ƠöÓl19f¶:a½»ŸË»³Çưvy\?îàæÖÇƠ₫Zî—ÛƠqµŸË;³ÜïÛÊ-Ü/ï{Xî–›Ê~;¬ó/°x÷Ê©&í-«|¥\%ưº<®vGe¨gè¡̣±\áól÷(đ†ä˜ír#7^nVŸçß=í™b¡µ©¾îÉO°s4¿h ØR0£™˜NøÏoo«ïi6L¦ét¹@¾N¦~z5ăÓ w+ˆ®h¸_Q.V”ËM×´¢ÓyÅ;úlßÔa¬$6¦_×µm`t¤ñ_l» Æ|ưúå~Ú _uéKù‹E₫“¶Á‡Ơf½üc½Y¿öy?üä–Û³ endstream endobj 1060 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1063 0 obj << /Length 668 /Filter /FlateDecode >> stream xÚ…TÉÓ@½û+úÀ¡#{zó„Á ¸Â7àà$΂b{ÆÉlOmÎ(ª¸ºözUƯV­”UïûŸï›*¹¼vÁ*gÍÔNª–jêLiÊ}¢RU ơM¿¤™ºŸ8Ư2û ØôTêt´ª¾Û̀Âgt d„€ö@/„_¡ûPd77ùQ}L̃U‰ƒ ¡0åB4yT¾t¦ÈÔ¼MnSLC(IÂ’jôÁå‡Ö[ơ¶O¾ÀoÔ¥2=Æd ²gpđYi|®¥ƠƯ@ §¡̀´·/ˆX諟B£fAƯƠ[8>íĐ}Çâ~‰ß¨].f3Tn%Ç~âKp!ÍFpkÚ£÷®ÆĂÍV_°t‰Èö-ö±úثϓ2è+ÜÈz¨?Ó?1̀|OăJsku…î Î`ĐL§ŒĂ±(&ZOQ ‡Avø×M|F¤®ñôå`ö€ )—ơ\ÂơÛƠơC ÏVLGvÙß |ØR`Éæ'̉æ1¤¦ÚI£YĐ•€D¹;.í|\¨9°^/zêâ9hîF¯n Çó!Äœa“"( \÷ƒ̀|Î.s¦XH½ußíØ€ûïd́‘¤{&̀x` $•‡uĂºÛâtß}^˜Xèç0âñºâơ]̉Ífdz{Jcóbtø;̀)(Ç̉ët̉À€‡¨[j0x$HÓ`3“eÿØ9Kj²Æ‘ßóóơíxh†CßâD;ÚÏäñ}ºUé‡ơa oÍö-exâĂ ™pMÇ‡Ă˜pưP@ÁFmóˆêv3n?K÷ë#OÍ5ü¼ú8åÙcm7”ÿ—}C$iæÇ-AGCïèï¾̣¶4E„··Ë³V¸3cx|•gs) endstream endobj 1034 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-051.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1065 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1066 0 R/F3 1067 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1068 0 R >>>> /Length 3455 /Filter /FlateDecode >> stream xœ¥ZM·½Ï¯è£ m¿yµ0ä`ø 8Ck#’€äç§̃+²É3ëĂ®T3\̣±øêU±ºeûn“í—í?—ïơçë·—¯>ưưÏ_o?}º¸Ư9·­¿?ưôëå«oƒû¯Mẫ¿°_fKó»/[”¼KÙ̃>m¯₫öô₫çw¯··¿\₫ôkle÷Î~E){Ö\€ơñưöí×» øÁ_A í]ÚsÜB®» €đĂ«¿}~÷ùưëM̉öj¯Ü̃~4¶Î7on¬ó替ê§%mÿ½üđăæ¶^dûN~¹—úËÅ+êĐt™°'¿Å´;Ùt?>`#o¸ûpƸçrg[Jϯ¦ß±”o_đ~¾^Ê·—;0â/}Q-ơáưçÏï?¾̃’ĂA¯ô»(ªb,{zx­‡ø$»O7Ö*ËR‰#£yPçh/Û–/{‹·¶mË› _²-[Ë}Á…©>[˽܅²‹G.|z÷YWú#ˆñïÿíq:Q”>¡êütbJà̉C‹Ik»W€©‚VĐ¡ïß}úíWU¥¡Ẻ2€H¢ó’ø üt‚0x¬çmoYGĐgÊZ_¶ {l£]oĂ™«ßF_£€=–ÈWKÔ—;'Ÿ'É®>]|6‡=~î}©(ÈB·–Ê×K…—Rlđy†éy©ôlWb||©PƯ¡ÊÊ ;£oåăt"S(٠牶ój+°°}P[È‚´½¸nÇd…¶N®~PqIí |¨º˜Wi(´+H|Ú[¥]́{îvÆÄÁë…vÂÄÁ“V°µ2ˆ´›Ù<ÑÑ ́̀ùkÛs¢]"íZ¶á©º§-v˜?™xÙo·…ëû¼gOÛ™@lµK£¿ÔƠw›øµ²!R÷„ư*Ümà—:ÆúKưïÂj§î¯1>(ñ—ùôpy>c=aÁăêă‚W¾•e?–xç~UÓcYü¡é6ÖÅ_J“îoó'hS»§Ÿ‡Ú),ç»-ç©vÍËyë|!-|Đơ]^ø¢vK Ÿ¿‹ ßtvs[øê”_~á³ú‹ë|÷Æ—#¢VƯṇ̃árWḅ ¬‹¤’s 0ë‰ÿ€Èpÿ .äÂROOæI‹ƒ î‡â AGxUJ©Ÿ.W#ô{är̃c{43wĐy-ÉX[:è¨ÔƯíù‰Î­ÿTw€Ö# É!²'è>B¿¶í€| ´$Ï@p_¶0@wÏ·tjüĐÜ‚à ¼¢¬ û~ ̣˜í̉¤G:.ä_‹ hÇDzxÚ1Â[Y@»…1ÂÚôˆˆ¯¡"wƒ¶¤âơ|•RL*₫:©xdG7“H ó!Ï ô±‹HR¯G_d±×2ß/A*ÙDËDÀÇbTé"}ö¤Cñ±! ‘ñJ½T§¡>wel!1Ø–tLäXÏÇ)‚˜¯¦)’°}"ơM´Mdyy0đ›h™Hc¿-O÷ªq$àWYR´$àQ¸,I‡ÖEÛ’ˆe$‰nëünwñË|z¸¡,ë‹”&M‘¯&ÉDl?$-©÷ưj”H\ü¡E‚¬₫̉¤Ùưm₫Ô¤ỶâoµC^ÎIu)h§å<ƠîIÇÎE_ø vñ _%ơÎ'ÅÛùg|ÓưØyt>6N¾úfü|B ?ø‚ñ切„Púp/÷ ×Û’Ñk]́ƯsƠ¨`ŒB¦ º`.j‚\µÎ1Ơ0—–EŸ3?ѳU’B5N#¨*–^“NºW50X=ŒÀ-7AcL W: <¥­ƒv ăÔô9A‘I}ö¥77ơ4@ŸF\đ§9syÔÓ(Ièx̉çÈ£Ó1ƯÓ™G *O{;ü´x:œ̉wéáO‡CŸ3q &‚¶ºĐ@‡SúvŒ÷èhƯ?Aă“™ Ư)}kEæq-I hwĐ#Ăå̃=RsXRÁ¥Ú.`¯¾ ×IERÁ¼GR\)—ÊM²XåÛƒP²7¯ơ  ˜PgKNăfÁ ‘~)ö}핺‰„dîó)JÏ8EFœD¶ƯDL¤D‹2'SÄh—)ro¢l";ù)’X¯ù)¢°M´Md¬é"Œư˜h™H‹y¹`ÿ2’ đ£%Yf€?×$!¸]§™DĐ$éI¢Ûy₫=Æ«L”º̀§‡k•z_/IơGydă;̃8n†}?ª–Ôû~5«,₫Đ$Ùmó—ÚƯßæO-*¢,₫VÛnJư<4©ö›ˆ’¬_Î3†‘t́¼Ơ¶¤ØùYN¾Äq3́|Rüa¹K,#éuÿ¿ÆWÈ_Zø¬ '#Éë@µ‘D eó‡«x¹·¸&b/ÔÏ‘*Î'̃ñ£c‚à(Eµ́•̀O*÷’ÈRglé‹₫ó~C©üƯ ©ù<èpKêĐÖuªƠÏ ‚U©×Ï káÅ6©+¨#úÉ?]®F\mÀlÍîQO?¯W~ Hz´Uº§Câåîi´öÛ*ÓÓ23¡Æ©»à:™OËÈ„™7\‘‡®Wsº[ «ŸÎwĐèơi•­ŒÖ/\™ Û’2~cv: ·ƒ¬a™ï¦†%­:Fç+^ç¨ỔøRZû^UNm¯N]/U˜µéUó©çUË©å¥̣²v¼;5¼œú]j®í.ư½v»?5»?ơº?µº?uºœ] císé„k›K'\»\µœ\:áÚăªñÔẩ ×—ΰ6¸J;ơ·J9Ư\J:u·ôüÖæ2æ’Á4®­­\O­\N­œO}­œNm-4™—®–kS+‡SO ‰riiÁ\:Zj® ­Oư¬œNí,Ô K7K1¯Í¬\O½, K+ ơÆ̉É*₫ÔÈ*ñÔÇ*ùÔÆ2̣ß[Q²e–ËTÙzƠZ)e\7:đÅ®Ç,'YÚêÎ$–q”…m(Ê€Ư3đ×ïùmåYåÁj.M7S‚f)åXplÚ’• lÙ̉¨× L\î”JÔ×l$öQS£p×s,̃†ÉîÇ®™F%ö¼8Ó¨Äk9Lj 8Ï›5 M–D“¡y›ă=„ÄË8J˜FK](Đ´&̣^,vă»h酓뢪f:®ëú‰=„£ñ[mp²C̀. ÂVđÆ4qđ,Ëg8Ǵ)ô4sר>8b&†»c!i2ªJŒå˜iAJ-¦Q¶©½e”Ú©dÛƠUj”9GT¸̀±tLë™Ñ±R; s;Lj” ÍvLj…(¦¢FÙqc]j”‘&5ʨ̀Ô(#’ŒÔ`4$vP4ËP£Œ¢p×5Kë7Aïdu"ÿ}‘„ËG°§OZh\Ơ¯¨â2ù"!^t́É3•êWA< *”©₫:ẲhWÂàéä»"öÏ#ø¬3áû†ñ1̀JỤ̈seä9ʶa…Ưßœ&æÊXV̀KŸƯ±">1>;0«T­Ư½-‘̉yø9-˜‹) ;"À̀75ønaÎl4¶3'æ¥Í®†§6RÑ€›˜G›±ØÏù̃̃ÓÀŒûøs?7€ƒZø60 _i₫À̀w@²Ư#¢¥ËîØíơJ_{4pa˜íIW–»1³bÿæêÄŸ½5Ëh—Ø•ÖÛă=–ƒ|´¬ú[¨4O—«ˆ\K̀¦L"÷afAǴ¹Ÿ5¦Ñ—% s¢à[Ÿ̉0ă#Iû´b–Ÿ₫±ḮH5æßóî RŸ²Ưƒñ³´~ÎÖ‡hÍN~öîh&w?‡jíä´øyvøpö5³AnmÉóˆ sfCî>fw‹ÏĐNg,ùèö:6æhé̉Z©ă…™ûtöØñr5‚˜³%úvo¥ƒËà%Ïuc`Î|ˆÉ..½J̉à†]ôơnŒ#êÁ f–ÆÄ†̣åjÄYº§ăt¿>3•C?—•µ@ Ÿ5øJµàđ³c—]B!f{áf¶DûDn,Ä|Á=9ëă1Ñ߇™ô’ṇó7‹y. ~'^ˆ 3/:8¬ÂăE¤…̃: Åtăj¹â$F« ñsø‚>³4Îgơs³Kq‡ŸQáà‘JYü<"đ³³OK/W#¸'4H¼X1öf¹ÅçÄ{–-ƒ ^uæ‚O ʍ¡g̃úµèüưu“²L)ïçă¯-T^Óv.¾‡€đC'Îî#üT¼[3•/[-¤¨8úÑaÆ^^(Ñn]é̃vSG[¾Pd`D-ŒDu%Ç VĐ„°bÏÀÄ“RhE®EO¨l\ê -IuưxéI°yao\*Ïhe>ŸĐ‹en hŸ°ÂAZÀú%}°iƒwªÏúƒœoL½¹|ù?4œD endstream endobj 1070 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1075 0 obj << /Length 2295 /Filter /FlateDecode >> stream xÚƠYKsÛF¾ëW°́=€µŒ7ˆ­ơV%*9å=HU o¶ ŒI@ VôïÓ¯f€EÆv*{ 0̀ôăëî–7y˜x“_.8ù4H/Ó`æơÔẉ‡bzűS­ñ9˜Ü2̃À ®*dâ£{KxßáΦÙÂ_óÓÀ½üƒAËw*$̣ »}₫°ÆM¸{×t++&²¬J$_Wñoi£8ùa(çV1̃7¼xăíõ”å+¤÷ÑóC\YO?Íÿ €]ù¡Gƒ ÊéU˜FNăVø'cg…4Q2Ô¸Æq)Y&₫V•¼¶ª™FS àöă€xÏÓYä¸Ó«8Éœù†ÔÙÀˆ^ª[1đ7 C™dmøJÙ~ïe|†D™; |µá?¢àKSđÈÉż8[4¬Î‚̀ÍÖ¦eïï§³Đ™óW±nṆU$nG&ÖȤ®ÂªØ»Ê ç†AÄ‹®5G`«Ôñ=Ïăù/®YU{¤óŒÓ‰óP”¼\ S¬x¾9ÂË ßpz)Fn˜ÚSkt~';WuÑ­`R'ăÇA?â’7ë|G+ÑôÙpJœP„^H̉‘w<Èj̣‹[̉.ôDÿ(ˆđ+׉bßùyít­¶|Æqâ‚"Ïê_âöøà˜U½bƒănUp{A LÈqÈ·{ü7!/Ø‘/€pOøGÅä>₫%ïdCIGü(Øÿ„âÈñeqQÖ ́d ¢Ö/ ~eqaÍà€ê}Dé"ç·B !„A‰wMD¶Ưœg–ä +Å'tßÙ½:RÂ#-~}RáŒ$¡ˆ¸S±’|V¦Å(k˜á[)Xñ$²®(Êú«ƒ3F`Ћàóozk£]#V{¡$ÿ’øz“ÔÍRâ ̣s1₫û@ú/°<ăá¿axÅĂFpÜ“”<®EEÁ:ƒß%üPOû]ß dëeo¼—˜ˆ@¼…ß+:U]œÄï¹`öÙù,ÔkÙ¥®´́:ÈSQ>²ƠqKëq̣¹Qˆgn”DĂ¥}P¾ˆÖÿF ÇáöÆåsÛ#ª#‹­E}AyÈGvaàFélÀOÁÂ@öyÖ²âiÊQéh?…ï?e¿Ơ€]÷…éƠ›¡¬C6ñ™f²‰₫As°•8â§q]^k>ùÄSJø<™C{X”ÿÊëΛîËJ4eiJä.5, sõ¹NG.Ó˜B›Ê0Fá.:Ă,ºĂå ØTŸ¢ï„ÚÁe># û&º…áOçEf¦DB<Ñ~—̣ çÓÓ˜¦¡b q[¼S(D†±-Ql¬y<4TlXºóỊ̈Qü_í|’Ư[ºÜئ[/ªM¬·#ó¨ÆçÖ뻵ücGÖ—å™̣̉¥ˆbÇŸ£ñª;Ç‚æîâv-ï{¡¢Ù¤–0[ˆàú]¢iE²°>‰VcÂ^ ưÓ­ö’(.;¡ª+¦]/£§_áˆË^ós¤A¨S¸¼]_IÉIËmw₫}­A§Ï+«6ZÚñ-t́ưú¯WZq"¨•omz—ÊT2~ˆÿu·¨áN—´aØV·-¾#?8ê±₫ËMoR?LxpÿËÅäí HĶị¸ªèơzB‡± •1 ̉ Åü`sßfø g¸<QÔM—¡álÀGªọ=ÊH(^1hÜO³˜ªXXD¨TiÏ™ö©J3å}Éiúû.¦Đû}Ñ@a$—°R0êÜ ÁÚ +ŸÀRh¡çByAd„@̃‚ûB¥üa[|Cöo,-₫'PPYJ%`p‚4Uơç´mZ…wùñÀû4.½*v¼‘ùYwl¶̉ȹ¯´°`¦G6jđÀûœ,Úđ çă` nµ¹}¬ê}ÅĂ/Ój̀ZXlK~¶U϶æ‰@{K¾ÑnÛïܤ^H†+2 xÜ`Á}m5Î`ƒ‹Ôµơ|"¨§Ńø¨3Á—ƠÎæ¸iàz³L‘“jÛ̃jr½xvßàk|“™g‰"Ç6 Á 9UhÉ„áF]е®æ¡‹ảS®d!L£¼Ơ(¬=­+/ r™Bö6Ë|×¥?øưØèa¼á,jÙJÛÄ4”é„A‡G<›/4…®‡O-3Ç׉(œJ$’VŸê„]?p~®¤…kø Ks…fÖơ»ÚC̀éˆá÷Ϫô¬º2+¡Ù°\Oí₫F¹*ÂÊF~Øc`^ÏôÁÏB½%@ĐÖÚƒ…‡ñ¨únæGÊíƯgq9đà(n›+ƠÄ. Ä{r‹3ä߆_eU÷ ,Wú°ăd‘&x›«µK¡—CÅy¯¶̉oáÉåc^óÅ!\0ñX{«Çѧ`Ô¶©æz›J.iê]0¹ÎÑùoŒ>?+oáPg0½ä%í%c£Ú#U"ñPiLr—‰̣†²“‘b̀¾ê₫I.â™Í §~>o€ÆiïE©3ŸÛü1—W?•d÷R̀+ªĂ8ë ÚOûs¡e.²̀Åzb‡Ÿ†9ơ?¹$IÛ0]jù¤ê™–ê2ÚXVM®-Z\[´¸¶hq%óÑÈü×´‰MmPêßµ'—ÂFuM›rÜ&7mÔ|_£‹F7mnγK)R«́¸̉l±Ôœno×âÖ¢Á­Eú[‹ô·éoϳC%÷¬̣¢R«Ă¤“đÖZtƯ g‘ưÎ"ûƯˆƯ å/6/‹E¿%ôêÇo‹uˆÿvqÀ®Ï;5ßáüÛÎ₫<÷ñÿơ¹~à¹ÿ–3Ây7{n ­/b–Eç6ÍƯ­–/',½.>”s¼6Úrm[½́^Åßû=¿CëÿÆÿvâdăHŒ6ßúøß„O0Äçåx{.>ªăXư|¾î?ª†?œ„Ï;­£wø>Ăÿ3¢ÇÚ mA«^ÔƠº]ä"zgnPXy37búÏ`2“Œ; Œ=7ó‹?æ' endstream endobj 1080 0 obj << /Length 577 /Filter /FlateDecode >> stream xÚ•TM›0½ó+|«‘Çc†Jí¡©̉[#nm !Ù­H6]H¥ư÷{Bi.Qd2<Ï<¿ù0Z„_"=ûÿPE‹%d´*u ¢Ú‹T¡Aä:U¶̀Eµßå2ù„ëpyÁg'V—̉ÀÛ8I-ÈƠ:.¬¬Ư¢Ă¦kđ¹# «Ñ~öqO'OAèæ¶ Ùû]ÿØ´´Ó‡@v=9p|€Ècla ´Ö|ˆWwŒ“4ZOx h_¶q’¥̣—‡=eïAå3ÈP;&à%^«ˆGï”Å?«¯X®¬Ể’J̣'Îr¯9Ä4kåf¨%¾æ'&§ôGAÖpúh„ƒ<Á‰‚ƃéơZÚyеft5Øó(̉g÷JeD¶£·”Ïă¿À₫[=€Y¢ïătêä9T‚y ụ̂ÁˆŸ¸o-ïưĐ™f3tĂIè××ÓÔœü;/t±4`¦ºÀBQd½!Ÿ™öLåÖ .ê&M¦¸;XÂĐRç ¤¦ü FE¡̉n—­ç’ơ\f(ÍMm˜az¸\Ùă¤ă$ĐmË MUo¬zd=4ä̃­ ¯+4׸ªĐ¥­ù˜nlX€‡Øq̃ơpÙµcU5c-¯W ßN\ùăááùô\óºU>ëœ2®¼³¹í„·áÛIƒ£ÏU€,lª̣Tp*Cºúư”+­-‚ĂÄ [C‹ƠÑ€øô}Ăßü¾ Ÿ‘L¹ñ™¶Ză°!Få.¥tœưç£đ¿öTG endstream endobj 1072 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./overview-053.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1084 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 1085 0 R/F2 1086 0 R/F3 1087 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1088 0 R >>>> /Length 105326 /Filter /FlateDecode >> stream xœ́½O¯e»m':¯Oq†öÀ'KÿHiê i @7¾È È ávĐϨ2;ươßÔ>›Ü‹Ú§R7é~Άásë·©%QEI”D¥·¿{Koxû—/ÿö/o¥¿ù­ỘÊ[;̃{Ó¿úưÛ?¼ưq¦ụ̀W₫ïÿå·oưÓ—ăư8·û¿?ươ;åöö¿¿üă?½oÿóKzû»óÿø’f‚·ÿúÅđíKïïüºà(P;¸ÿô)Áíï₫¬Ü¦»¿₫Ư°2ă=ƯÊ.ïµ_&%ÿöKÍïíü4ÿ¼§†̉†à;Z›µZËï½ZªïY?lô^,3¹½gRâxgËM9…ª́PyÏôÎU‰ôN–Ÿ\ßI¿ä³N¡“Û¦Ạ̈̃,Cü^’̉è}X~ΪĐúñ^'¹²hå½×€vÖ¨¥Ơ:!•m9!W;8ú¬ïÇ00'K1°6À ¸^!uûaàHw°½ÅÀÔ ̀l`é¶Ă@Ré7@.öfàà;H·ê+\úA€KÑ.…Uؤ93 Wợ­/+Ls̀d`Ñœ`R2P«ÖD ªÑ‚ª€}iơÙêÓ0°$«æœµú ÈsÇïG20³æ\µú Ön r6°‡æ<›» \ƠWXk6°UWơ²Í¹ßçœnƠW¨Æ5`®2pU_aÓœ“«úphÎSUNĂ} 9—P«_`EÎ%6ä\* A°¥ª. ¨Ö¼HAe 5jơk̀ȹ`AÎU¿­lË€ 97M̀ȹi✩jơI¸:Mræ ˜3+5C°]©jª»RƠâ¨CÇ€Rư:å+P†₫:ë)p @I|¾$ Úf‚mó¿Ö X‘s;¥úu₫G !gTđ4}È™à(»ä|>äŒ*Đ4c¥]˜»@đL¨~Cï>¡ @M•05mPNØväL r†ØOÓ‡œ»B©₫É«B€hK2Æ£6˜ÊDó2‘êÏ,'l;ªOSq&ä̀ 3rîX†ÀÁ€2ñ4eb˜ëÊøËÚ­:ªÏS‚ebÎÀĪ¢ă/Ï,ä 6tÆÄ˜%PÆß>%(PªßUPŸæC  @ưèœ9Êø+¬ ”¨OŘ‘ó8eü³Ă”ê "'”h ïŸP  b:¡èä eP–dÜ$À9₫¶]ă„³ú³xœĐ,çÔ4Ù çø; P8«₫')œĐ̀Q`–ñwfÁ€³úó›8 ™èœĐüµÎñw₫‡gơçà€Îÿ M<ÇߦCùü™V¡€ÎÿPœP;%p¿­ªœ ª_§8 ²&Pkè)'œăï ‹~; Ö`(ÎætB±f'œăï9¯N ¥ú¤¬2•: ¦Êßd<¡ØöÉNÈ p@­Ăªœp¿Mur2Ë!º&Đ9ƒGbá}B´~“ñ· ØY•3g:”&Đ «~;Çß²æ<«O Sµ†UÉ [œĐ Gœă/eôß¹Úh¡À$Đ¹’84«9₫°6ÀYưv…s¢éÇ çD2Zœeü¥6-‘À9°*œĐ »Â9₫iVŒêÓ-«9ß²Đ WVsü%¾e5 RCq@´Lü\h¨̣wTL p@'D§ë2«£¤ßÎñ÷„UÏè„(·ËÄIû‚˜“ e(?á¬₫ ÅÖp@œo‰çÄYÍ×ñ÷„ưœĐ¹K çt¢ßÎñ—¥‡œƠg»O™WtÂ9°*u¿¬CêÔ¯&°À9± áçø{¢Pª¯ăà çÄ Ú~ªÛ€Xû t³œËEQ₫Îè„à*ÉÄ„wjn(í{B©>Á0’¬i'$…9³Â9₫°KAY ¹L=3r+z‚œebsB©>ĂÈV₫jVsºƒsü½K,Ơ_Y€nÉ L¸RªV_f$-)U(€sb yBBÎMkơ‹fƠ‘sÖ‚† Vê‹ơ/7U±µzŸ° É Ø*ăïl_…Rư†!†DG¦n¬¬ætBÖ‚æø;ơJ¾;=¡¬­N8 ©“Jă/ưë_Ọ̈´P`è†L¬f_ƠOHx@',ó€XZưëôỳñwvº (ƠO˜#p@œ°8aEÿË@Xỵ̈¡"ê&}_3,*(ú5íëߢ/° @4´‚,Đ “Rçø{¨ơ퀨«pX ê*X–ñw7ؼiú†f5 bí ] b „ơï,ïœĐäµÎ謉ØöÎñwV;Îêa7¹c2¤°Ă˜ËÈNXÿΦJ€25˜ÍÊÔTc‡Œ¿Sc4±T¿b8>¡ @U«00U ^„ơïÔr-W ‚aq:µH |;­x(ÍÍXÿÎeʘoœP Œæ>!a”L³ @ Óø9t¢“Đ  e2Æi¿2¤NuĂÈ.“1N€tL9aÅÈ‚’ @Ó¦€Œ9)́˜3…³úM‡¶Ù 0a… ³YŰŒÿ££ÀyNW8 9 gÀ9₫6Æúˆ±₫ă}œPÓÁzöÔ!Ơ/2₫ÎI ÎhÎ`:à€ZĂÀDz,Pºcư;çUp@MG«vL E'1ầöNˆơoÓ%í15•eÚ´L] ˜Äú·é{†IoWê€0Ș?͹c₫¼ÊĐ9ÙS?Í'fæ2Z1Ö¿s®_ç4 °bÎ?ôÛ†9¿ô ­·ÂZ±@dMY°Ôù:³²*:Âp¨z€–ƒÉmĂº₫˜O2aر<œĂ”.¦`Çb Â!,;&sxÄ2M–ÿ'̀X¦‰Ía]ÿ²ö#^ @Nذ´wëú—o93––èÎŒ cªÆ @]̣̉mư+³îX́ó VÖ­6]Y'@Y¼L'däœ4qG·æ,Ơo­xÀÙTVئ ¬ë_OXƠÏĐü E!!ç¬Pª¯£3x zY?à€­¨~×ơovJ x +¦—ư€²bé1Ưöêfi€7KÓ¬8¸húl…>w]ÿVtଘ10_Đ ‹º†À Ô¨'x +ºdOđ@ªÓ©'8`+¬wOˉúæåƠórÀíy9`e*̃ọ́@vM¬È®‰Ơ˳z ¥ơ¼<]^XÑ«^–V»—å„`Ẹ̈@Ê4ï„ꀕ~ÔẸ̈@6ÍJ=M³R¬hN/«ú̉{]Høz]H™¨÷º°hÁºª/¸×å”ñè„ꀕq°×U}™œP=¢±½.$”¡-¬tØ̃VơÅ×wBơ@J/ëm9`Ř÷¶ª¿ z ẻ{Âå€í€Ë+L̃våLêÚ%@uÀJ·ê´° V͹ªV|n'T́‚Z}Y¶t‚rA^X(?/¬ Ö'̀Ư@uÀÊĦórÀ.¨ƠÔHÉœP÷^ê3—úvx ?`¾óóŸ°hÎP«¿`ÓœuW—†]½ñpä;80éöJpÀ~@­>ú₫Àô×à\;€ ×`\;€ ×à„ăXƠ—™ê8n;€ נµH€kPáÚT¸và¸Û§é¶¨pí*\;€ ïwOx¿xµ¨pU_áÚT¸væÛ Â|X²µx¿:̣m°®@…kP`1[ü£Üv®@…«ú·óÏ7ôÏOvúă¶ơüímÁ*“°·Ÿdw€>è z·ôîèj5½4Cg›?ûüyÙÂEOƯÑk2ô½CoÅÑÉ~O₫ûíw¡ë(₫A–>èÍ̉mưûƯ¾ûIWxOOl艿“Cχ£—dè%9º©÷ơïF4ôbéÅÓmư‡­ÿXfô±¶Á>è< ư÷Ïè½z/N–Nnóï&ÿv˜₫±à=='CÏÉÑ›¥·z³ôæédéäèĆŃèlóg›º?Ưô¶ ¡K/>,}8z²ß'ÿư½}Xđ^l₫Åç_«¡×êè ½±£3:“£÷fèƯËï¾ÿ,hè¶₫¶ÿ´Ût…÷ôû₫¿à=½dC/ÙÓ‹¥ụ̂Ÿ̉»¥wO–>½6C¯ÍÑÉ̉énË'_>[₫ÙóÏö{ößwKï>l₫í·§Û¿ï_·•ÓÎ̃-½;z²ß'ÿ}²ß'ÿ}¶ßgÿ½i¿âÛ¯Ü1-úpôf¿o₫ûgôûñ}AC/–îåÏV₫́åÏỞ«£wû}÷ß?¥[ùw/ÿaë7|ư†ÍØü«µƠÛOĐ›¥7O'K'GOÙĐ“ç/Ùü“ÏßègơúY×"vÑsñt¶tvôrz9<Ưæ_|₫Åæ_|₫­z«N¶|̣å³¥³§wKït+ÿîåß­ü»—·ơë¾~Ư¶O÷í3lùú9lùĂ—ÿ”nËåoéÍÎ_Ÿ¿´ÛªYééđôléÙÓÉ̉ÉѳÍ?ûü³å/{₫rµôêè÷óÿ Ự_<ÿÅæ_|₫Ị́ß<ÿÍ–ß|ùOé¶₫Í׿Y₫ç,äù#[>ụ̀™ ÙÓ‡¥Gï¶üîËïV₫ƯËÿ)ƯêW÷úƠ-ÿƯó?,}XúưÁ₫“®ĐĐ“¥'Oï–̃=}XúpôdóO>ÿ§ôléÙÓÉ̉ÉÓ-ÿÉóŸmùÙ—ÿ”nùË?ÓÿÉ÷ZîĂƯógú/ù₫kư7ÍûoƯ]]zơíoÖOä×Odûù₫Ev~O~~ÿ º­?ùú³m_öíË–öü³ÍỴ̈·úË^»•_÷̣ë¶ư»oÿnëß}ưŸÑ‡ƠŸáơgXư^?†•ßđ̣ûaº•Ÿơͳs÷̣co¬±yÿbc;~³¿q"å^<}XºçÏŒ¿́Ç_^›;7úĂ÷Oèf}Í~}Ͷ²ïŸÖÚ¼ÿ´ñƯ•&¡·́éV>ÍËÇ¬ÏØ¯ÏØÚööo.}¥“/ŸlùäË'Û₫äÛŸ¬|ÉË—-ÿ́ùÿw§[₫Øó×mûvß¾Ưʧ{ùt[~÷åw+¿îå×­₫u¯Ăæ?|₫Ăæïú·ư»û₫Ưíü¢ûùE_›k7zư¦“¥?Ô¯[z÷ôaéĂÑ“•Ọ̣yJ·ü'ϲü%ÏŸ™t?ÿèëÁ̃<ƯÊ'{ù˜ơy÷ëónç7ƯÏoÓ‹-¿ø̣‹-¿ø̣‹Í¿<äÿŒnÛ·øö­¶ưªo¿jơ¿zư¯Ù̉ó÷̉mûVß¾Ợ_=ÿỊ́×<Oé–¿æù{J·úƯ¼~7«ŸÍëg³í×|û‘ṃíC–?̣ü‘å<dơ“¼~’ƠỌúI¶}È·Ûöeß¾Oé–öü³å=Oé–öüwË_÷üu+¿îå÷”nùë¿nùë¿aơkxưV¿œÿiXÿÿđ₫ÿOĐ‹¥—ï¥WK¯Î–ÎnÖßĂ¯¿‡]_¿¾₫½[º—ŸñŸ ï?vü~üv₫>üü}ØñiøñiXÿÙđ₫3»¿Ưü₫ögèÍ̉Û÷̉­|‹—ïSº•ṇ̃¯V¾ƠË÷)ƯÊ·zùñgøñgXÿăđ₫ÇaÇŸáÇŸaÇáÇaÇáÇaÇáÇaÇáÇa×7Ă¯o†µÿĂÛÿaưĂû?>A·̣%/ßgt¶ơc_?¶̣g/¶ư‡}ÿa«Ÿ́ơó)ƯʽüØÊ‡½|ØÖŸ}ư»å¿{₫Ÿ̉mûwß₫Ưêg÷úÙ­~v¯ŸOéV>Ư˧[ùt/Ÿaë7|ư†­ßđơ–¿áù¶}íú‘³>\ĐĐ³¥gOgKgOï–̃ư~ưµàwÑ‹¥—ï¥WK¯N–îå—lư’¯_¶ôü@–>½Øö)¾}å¯x₫̉mûß~Ạ̊_<ÿƠ¶OơíS-ÿƠóÿ”nơ¯zư»??± ¡ÛúU_¿jëWê÷ŒnÛ¯úökV>Í˧Ùú7_ÿ§t+ŸæåÓ¬₫7¯ÿÍêGóúÑlư¯Ùú‘¯Ụ̀É—O¶ÿ‘ïdÛ|û=¥[₫ÉóÏV¾́åû”nëǾ~OéVÙë/[ưc¯lëǾ~ĂêÇđú1,Ăó7,Ăó7¬₫<Œ/öÏđí3lứú’ño.hèÉ̉“§gKÏ^,½x:[:ÿÂôdë—|ừø“üø“̀ù´ }XúøNz¶̣Í^¾OéV₫ÙË?[ùg/ÿlë—}ừøüǿøüø̀ù¥¿‹nÛ§øö)–ÿâù/–¿̣Àßzµ̣¯^₫Ơʧzù<£7[ÿæëÿĂtÛ₫Í·ÿưúqÁï¡“-Ÿ|ùOéV¾äåKV¿Éë7Yư ¯dÛ—|û₫{ÓÙÖŸ}ưŸ̉­|ØËç)ƯʽüØê{ư`+_ọ̈}Fï–¿îù{J·ú×½₫uÛÿ»ïÿĂÊwxù+ŸáåóĂôjéƠÓ­ü†—ß°ơơ³öÅïÙïÙ'KOßKÏ–¿—^,½xz³ôæédéäèÉÖ?ùú'Ë_̣üeKÏtËöügË_öüË_ñü+ÿâåÿ”nù+?³>ơ÷'(ÛơiöëÓl×—Ù¯/?A·üUÏßưư™ Ự_øÿQú°ôáèÍʧyù4[¿æë÷”nËo¾|²íO¾ưÉæO>²̣%/_²ư|ÿ#«ßäơ›¬|ÉË—lưè¡~OèlåÏ^₫OéV~́åÇV>́åö₫́ëïÿ]ĐĐmưø¡~OèƯ¶O÷íÓ-Ưó×-Ưó÷ĂtË÷ük†·ĂÖoøú=¥Ûú_ÿaơóa|ưaº­¿=_ˆø~ôâǯOĐÙ̉ù—¦wKï~¿ÿº ¡K/^-½:úư₫ê‚ßE·åg_~¶åç‡̣›¥·ï¥Ûö˾ư²•ọ̈ÏV₫ÙË߬ϋ_Ÿ;?(~~P̀₫ñ‚¿(ƯÊ·xùVË_ơüU›ơùW+ÿêå_­ü«—µ̣¯^₫ÍêWóúơ”në×|ưƠÏæơ³Ùöm¾}É~O₫{²̣!/²ơ'_ÿgt¶ơg_¶ü±ç­~°×¶íǾử-ÿüÀ¿í_́û×3z·íÛ}û₫0Ưê÷úß­|»—o·̣í^¾OéV~ƯËï‡éV¾ƯËwXù /Ÿaó>ÿ=Ữ?%ÿô3ôbéÅÓ›¥7Oï–̃=}XúpôdùK¿§tẸ̈üÿ»Ó­|’—ñßWï¿·÷sÉßÏư=[ùd/Ÿ§ôléù{éỞ«§Ûúg_ÿ§t¶t¯ÿÙêWöúeü₫~̣Ưʧxù<¥[ư*^¿̉­ü—_µí[}ûV«ÿƠëµåW_~µí[}ûVË_}àï ½Yù7/ÿfơ¿yưJ·̣i^>ÍöÏæûg³úÙ¼~>£“•?yù“•?yù?£³­?ûú³m?öíǶ₫́ë϶~́ë÷£ônÛ¿ûöï¶ưºo¿nùïÿnËï¾üa˾üa˾ü§tÛ~Ă·ß°ưăa~đ”në?|ư‡­ÿx¨ÿ–năđ:Y:y:[:;º™?4?øỰ—<f|n~|₫èẲ½|Íøëă 8¶¡7O·̣Í^¾Oé–ÿ́ù7ăcóă£¯@>¾Ùø äă'P³ûïÍï¿7ëÿõÿß́ø×üø÷ ºƠêơ£ZùT/Ÿfëß|ư›-¿ụ̀›Í¿=äÿ„N¶|̣å“•?yù“Ơ/̣úE¶}È·ÏSºíßäû7Ûöeß¾lógŸ?[ù°—ÏSºíŸ́ûç3z·ơë¾~Ư–ß}ùÏèĂÊgxù Û₫Ă·ÿ°ú7¼₫=¥[ưqûË6₫ùøDæ~ ‘»_3h–̃<½[zwôdËO¾üdóO>s₫üù+²ö›¼ư~N7₫ạ₫aƒ|| ²ñ/ÈÇ¿ø ƯÖ/ûú=¥Ûúe_¿bË/¾ügôjéơN–Nnù«¿féÍÓÍụ̀çÈÎßÉÏßm|̣ñ9ÈÆç ŸƒÈî/’ß_$;¿'?¿'ëß$ïß${>•üùT„||²ñAÈÇ!²₫?̣₫?²óẈóWß‚||‹ÏĐ³¥gO/–^<½Zzư^:[º¯Ÿ±Óí“¿A>₫ÆgèỬ»£g+Ÿ́å“m₫Ùçÿ”n哽|̉É̉é{éV₫ÙË?[ùäù K^¬₫¯Åʧxù[ÿâë_,ÿÅó_,ÿÅó_,ÿÅó_-ÿƠóß,½=Đ­₫6¯¿OéVÿ׿fÛ·ùö}J·̣i^>ÏèÆ~³·ßŸ [₫ÈóG¶}É·ïSºm_̣íËV₫́åÏV₫́åÏVÙë/[ưe¯¿låË^¾lùgÏ·ú×½₫u+ßîåÛmùƯ—?l₫n₫ÜíøĐưø`ă›o¢/kƯÓÙÑ}öñE¨Ûùc÷óÇníw÷öÛÆ'!Ÿ„l|̣ñIæÛ_6ÿâóJ·å_~±̣)^>Åʧxù˜ưyÿƒl|̣ñ=ÈÆ÷ ߃º_v?¿́vưßưúÿ9ƯØ×îík·ö­{ûfăo¿AƯ®ÿ»_ÿw;í~₫jăsÏ1°úC^Ø̣Ç?¶íĂ¾}Øê{ư`Û?Ø÷nëß}ư»­÷ơ–¿áùöûñđ½mÿáÛÿ)ƯÖÏù_mü ̣ñ/ÈÆ· ß‚†]_¿¾₫}Xºç/Y₫’ç/Y₫’ç/Ụ̀“/ߨOÿb¾!hËϾü¦WK¯nùÏ3~₫ø z²ôäé–ÿâù7₫Uß‚†µÏĂÛçOĐmûß>ÅêOñúSmư«¯µơ«¾~ƠÊ¿zùWË_ơü5[~óå7+ÿæåOV>äåĂö{öß³í́ûÛöcß~lËç‡̣­üÙË¿[ùt/Ÿ¥+ßáå;lûß¾Oé¶ư‡oÿaå7¼ü†•ßđ̣Û̉ù0öwACo–̃<,<-Ư—ï_Xđ~ï\ĐĐ³¥gO¯–^=ƯÖ/ûúË_ñüU+¿êåWmùƠ—_­|ª—Ï3z³ơo¾₫Í–ß|ùOéV>Í˧Ùöo¾ư›å¿=đ?,}8:Yù’—/Y₫Èó÷ŒÎ¶}Ù·/[ù²—ïSº•/{ù²åø³̣e/ßgônåÛ½|‡åx₫‡m?g?́ưrö÷Ëç›ÁÉĐ]ÿ₫½Yzót²trôlóÏ>c?üưđùƒ-?ụ̂³-??”?,}8úưü‰ưưnNÖ₫$o’Y¿.hè¶}oŸj¿¯₫ûjëW}ưŒưH̃~ØûË́ï/Ï,äù#+?̣̣ûQ:[₫ØówïâäüCŸ w+¿îå÷”nåÓ½|†ƠŸáơgXư^¿‡-ø̣÷t{?–ưưØù[:;z²ß'ÿ½éßÙ÷o{¿”ưưR¶÷7Ùßßœ?4Ko~ï¿YĐĐ-ƠóWmư«¯³ơo¾₫ÍÖ¯ùúƯû‡¼§“åŸ<ÿdëO¾₫dó'Ÿ?[₫Øó×mùƯ—ßí÷Ư?¬|ôoO·÷¿ØßÿºgC·ë¶÷ŸØßb{ÿ‰ưư'¶÷—Øß_b{‰ưư%¶÷“ØßOâbơ»xư.V¿‹×o{‡ưư¶ï±ÿëôfåÛ¼|Éʇ¼|Ø~Ï₫{¶̣g/¶ơc_¿aåc×_\Í₫é‚ßC7úåßÏb{>ưùx¶çÏÙŸ?Ÿ?tKï^lùÅ—_́÷Åoæ₫ü5W»¾©~}cÏg³?Ÿ}₫`ÖƠ¯́ùdöç“ÏîưË ~ƯæO>ÿaéÖ¿Éöü(ûó£ó‡féÍÓÉ̉ÉÓ»¥wG7ó»æçwͶoóíkÏ'²?Ÿ8°üUÏÙú“¯¿‘oọ́m¶ÿ6ßíù5öçר¾ŸÄ₫ư¤ó‡aåïú7Ùö#ß~öư!öï?˜ùùù=ßĂ₫|Ï'èf|'?¾Ûó/́Ï¿œ?˜úÓcư‡Íøü÷t»ÿÏ~ÿŸíû%́ß/™?tK÷ù›ù‰ß¿?ØïÉÏ–?gÿ»ÙŸXđnæ§₫}¶ï°Ÿ€müzöñëy˜ó‡ ̃ÓÍüÂûïÏŒÿ`xÿßÊ>~k?̀úsÁz6ögÁ{zµtÛ~Ữïé₫~O·ïuÿ~Đß¿ưË[¹o£v̀ øû§ß¿ưĂÛ¿üög}cưw¾xcưÏ¿ûă—¿úÛü–̃~₫ç7<«₫ñ¸âUâfá?{ûÇ_ưüë·”·_ưé×o¿IííWÿïïß₫ơư₫_ÿǯÿéíç¿ụ̂7? _ư>öü_ŸLóüø³IĂâMß¾¤rùë 2;îוÜÁ•ú§ù‚ư\ €₫í-o)¾C)ºƠ ]6ëÑæ~Ï©¿úM₫ơÛϘM?s̃}’\²½ûöøô§Yî_Ü}>ưi¡9ơºûôÆđgôđ{úPq}¨ '%1͸!+µ~ïå«AùL¢ë0¶„³ÇŒ{ơ×^]Ä÷ ßĂ~úß?.àßÀ½€ëalj ø‰~PÀ¦„o_r½÷1~½á›@½À]ƒœ½}àØưêí¹àä‡Ụ)nøf̣ьŸá —‡n)₫H‘q½î–bᆳ;N)»4…S…8ñgmD>DIÍÇưÓgyå̃6½çïR¿îù€ûâ¾ í«kAøL¢ë¶„³ Œ|·LÿzĂKå}—đ]æ§Ïñưăïk;Ó¬€MM""Ñ Ø”đí‹₫ă&°…oơw röÜЫ疭ăSÜđ­o—S?Û¹áóG…?Rd¸˜o)₫HQ’»¥Xø#…áư®.¿”Ê]ÎñC̣éIN9ØÍT¾Ă„•,7|®Mاtï‡;I9उb«A'ùL¢ë$¶„³“@>:‰âƠ)|§ñê§d™ưm%-§: ¬×Sè‹c‚ïS4qơ}¤¾O1ƒA×»À&…ç½K!ø>˃́)€ïS`Iû‘ؤÚƯ¥¸Ơö;téC…ó¡×5¥ÛñÄŒeF¹ê ÛĨÜ×ÛoỸ“yX-<ƠÍïDçlvîôt¢ßïi&dÙ¯ư9êDÏÓü`º/à›®—>,Ÿ£â«ưVº₫ —¼¾Ưü²'* çè²Y¤đƒ^y$sÑ̃Ñ“}uíX´‹º·i®¿«rĐỷ¸\|W(¢Ú=¨CëЦ¿"àE.ư†ú™R\÷̣"áƒ̣hú/ĂºÇåơ8ÏS.=j[<´Q+₫0ÏJ= ëPŸåƠM8ææL§&Ëë9¢©ư úGú²́`жªK—̣äcÓ¶aƯåáÉ€&—&ă>Ú‰4'Ÿ8¨q³‰Û”WC}áe_ë~Ê3–Ë1ƒ†Ämµ‹ Êë[ÛÛ, đR6öSṾêƠØÈrèñü.ñ…ÎÇ} Á.ºưlíu‰ùaưº́u]ó™1»l[\LºÎ3É¥•ëú! Ăơw&s-ϺÚï‚Olr_ç)}3lÛ¹ù{-O º./MÇs8\2g7|,/׸jØp û¨Ú½”XçÁ”˺W<:ơ•|Dm[%ØKô]ƯØ‚êîÚ¯Gß͇C#¹Tˆ¾k›¾̉Âúx^®Ä^—‡đ/Γ ÖjJ»Ôkè‰äÉa; T¤ƒG¨ƒr9§76¹æ ¼s¬ Û¯á@rd{zXw\”ˆúJ ù¤ơƯeÛÖĐÖñô°cñØØ3<ˆqm#q˜(j±—rɰ»Wu×†Ă¾Â/";8]ë'.$Gí—ĂvèƯmr‰â’Ïù€S(3<^Ѷ‘gh³°ËÉs„ßñ‹/×j-\ØÏ«ykCđĂh¼¹ÿùȧô‡+Z“S%Ç5­ÉAàíä9B‚wDåÅăJ—½úë6ÂÏ$^ÚÇ<{(BºüN±‰d=w¦{¼_é|(ë¾Æ₫K2çn×¼àÂÛux́(ªû<¨wMC¡P'Â6:6ư‹“¼¯ühCJ(—!‚¯ë^6ö8®¿;DÏ®ëø‘̀ÚNfá¤=›ó‚ˆÏ¹>Æ€Úä²êw­×á: ­uÿż®ll$‚–E¶îÇÆÛÚAéŒxi[Î?çĂ—aŸ>6ë$ô…£ö›~†P'đF¨ƒ¡ÿ¥Ị́b?Øfl íKĂ…ÉHÇf^Ïi9^ß.;ÑÂuÜÀ<ù²ov́]­‹ Ûøa‹ốÔ‰¾i£ÉŒpưÚöÆđh̃úftÛ<è#²•å2Úµ~v ”p9>àKܧĂu±Î¯/íK]ơ»œRhËë§/ûCÉÑœaH µÈîæM»Çk’±dv±†E`¨Ëv'Ù§ ç=l[«́Kl[ûf̃s@Aưr46sï©Jñr¤è;{»ü®b^­sâ₫â:̀µL8¿ÆĂe‘̀z¨„15˜£Œp̀©›u-]ºä%ñ8ănÎi7ó¬9>$yWà‘™‡\̉đĐkô]¸^i¸`vÙî»ïôa¦ˆ—¶±YGhËëÖNÄsó?Ds·ÉSûÊ®¼pmqÄcN yÁćQbÿÄ®?0ê~Ù ëÛH'ºŸ¢Ç}J|wˆkơÂRđƯ²ÉA#¤áƠk軦˜'Gu  «]~—ÅǸ³aWû@)ª»>D}-–K¸¡\B^ø¥®i„¹đeyØkÚHt7à%…²Nâ3ê7ßåMÛÆr9d_4’ E²‡´¿Æ÷Ö}ö͈—¹ïD¾¨\®ûÖUQûqX÷"cxÔ5l#ËÓGØ£̣BÚÜÓu·Ê>WÔ~5´Yö¤"YÇúYÖqĐkûÉlö‡Ù‰&û2Ÿa›ëÛ]ûß9Q@£M;¹aƯu½Ơ/́›eĂg–9Ø®¯D¼ä<ă₫b̉|8â%¤QǸp<çº#´É}c_xĂK‹û»îƠEr‰û‚B†62̉ÏÍ̉‡V"[C>X?çø°±»´éG9”aŸ$²¡îåÛ́k_Wdíé`lÏ̉¦~m[Úô¿x^·é›Sf›¹TٌӡT_^h#7úÙwsÚ°or¬ê§ yÙè|ƯÔ=l£“ϸ?́äÙe¬º·öxN4ẻ6ưO÷«¢úµHw§ƯÚhö±Í<$ÖƯMߤc[÷Ưœ(Swú̉â₫°¿TøX>ă1|Äs’++±½ë¾›£¤¸mơ±Åp³Ñk̃ô¿æÉÛù‡ë?ùç¼vḉ{;¯aåGøƯv¬ å™7ó †¿5Đ¥]K;[̣26k‹Í–ớ]0¿®!/xXăú»'k™ă$ö%´ÍZt7ï966‹°ođÛø?wk§k½V?_Đ~ñü%oÇéØwÁr64’g8iÀö‹ˆç!;ç ô3–Ùû{Aí²4ñ£\bŸN•ơôµ/!mæ6Cäưñ8]ă9f;_6uߌưsη)/¶/¼Ă{l¯5xzاSÔWê¶ƠÍø>6ơ‹×̀2ÎC6₫ÖcÓh³® í.»´›óÑF'tÏ-ZçlÖxa;̀Àó›úÅ₫̃èĦ?èCă‘ư ÛˆÓFÖwm'̣¦H|Ô!mç?ÛØ¬Ø½Ñë] dƯv~›ÍZ;ô9êÙ¦¨¼x®¸›cvœgˆ́`ØßûFçi3g§í!̣ÆlüY炾»ưösŸ¯đfߢoÖÓ%^÷sóœ̀oü±^óf̃ {ùü[¨Ÿ¼™›¶Í̃̉Fççúac¯ăú!°uhëv¾ÑÍ: t t-³û³ø¶w>ÇÍ¥ọ́hµó ‡kµ9‡k ¼™Ọ́¦úƶæ¬Çf®H›₫^7c#öÎÂ}® ûĂ|\l³7¨¶‡¯öíă}„±YßîúØNÖ´Y–í¸û¥ÊÆFnÖ¢Ûu#¢¢^Û¬÷鶯ûœK]·{ß́§âaÙhÿ=´å´óO`Oăz¾”6ûxû¹pl[y³₫Ë›º3́D½:ËѶ:¿Û+ÏVĐf¨oú4ḿnÙŒưm; ÷¼ç\cÓ79´/´‘ÙˆÛãØíḾ|A>ă}µ½OơÇ¿¼?“±[ămÆ÷xP7º›·ûqGÔFúZ4G™ú’%¬À£~Îyä5 g†2]­ÑŒïi/|N»{Mƒ-¿¦Ưü6gápÖïú;?X–)ăÅ0¢:°ØÈkö ³\׿h[–0ơj®!û@²D|¬ûô•\æ9b©/ˆQPäHÜ£̀ä»K>q‡ÿ:Ï₫œ‡=úgº¯¿Ă™üËv`Ơ‰«<ñø,QûMßv(3ܱỊ́>Äc³.Û0·¹Ö¥.篿ĂCpQ;Ptâ&—GăîUTwƠ³‹¾ßưuƯË¢]Ë3ê 1¢6cÎuƯ ơ»¤ Ù£½¦!†êuư°gåmÇ<3G|›N\éue]â,»̣—×PUæR×y²̀?£úơP'º¬‹£ñĐNH́¾§öụ́D¨óˆ/µĂù̉¹ƯlÏ£̀p'ûº¼ºtⲿçÑÚè²ư~°€ëYOhsÜî;û¹æ W¶œ6cc û4oôåø­×åá V8læ êR¿éË•]ÑüL}éç¸Ù.Û6*ïÎF^Í{8p¯5j¿º)/́ïz êG#”ÙX2»˜cömŸ)î+¢KW₫,î˜cÊ—G^¦?ä²ÖøpI+°gMæ/Wå1|¿×ß1l]»ˆÍtæ9÷ă"}Ư½¤!VR‘mñ‹>M/ö,K å‚3×4¼Ơ]üú—|èÙ%­ÁÎåµ°Ư+lƯƠw=ar™'öe.y™ç¡#]ë₫#Êgc®ëÿKÔF2׿ԗ†ñ!(¯‡:AÛ6¢°è| Ÿ±út¤Ka_iñw$oë„uQûqF¿́·¸7µC óÄ}„è»ö1ÿîµîv̀_¢E?j(Ú¨QH‡RơA‡Ñ‹>‘¬Ô‚g)ư¶ Âç¡Ỷ4qF}›–›ÉBľmUFVtX¨\­`¸óz·Aë»ák¨Ah;`ƠøÍZn…œ»T5¹g µÜ v-·"ç¡°!+(ĂT6²ưNÁ&Ul &™ ̃̃ë(¡w’Ṇ±»›’N/;‚¬©¸ÆGK7E"<’5g‰̉n#—ổM7TápµY²PËeä\5«¬ª&îથkˆ¬2Ù‘US5-á`3s*©%|„`ºñ»BTWV`Í=pk>éœpàâåZ‰|@ÍJºFÖù³F¨Í:–Á¹²Nîfµ ²/cí¼"g#á!¢”uvư [¨\I?ÊjŸ!xÆ( ïHZË¥G&«$}!«1ˆ̉œµA5đJVË0 íYM®L¨l4°A˜ib¬LØXMFø¶*4.¡fÅ(¨k¹ »¶£º²ÁƯÈ®oÁƠXß‚¡mÄ(wiDU(ÚÙ? f%§Ü4G®:@Dy(:|„,0©4d<*:âàÄrZëP8£SQC÷}RQË00ZŒ)úÚI*˜Aéc”.*Ê­E!Ê­XÆ”͹ƒ]!ؾ5«„ê·•¸j++$ƒÈz欠ﯨ{(P† ‘•,y>àЬ [ˆœ‡rUQ…¡Ơ¯Èy…Êd…¬†$±*{…Ă¯hA½˜tƯ}×·Ă@étí«¯v]@-H  #£O:L¨·¤… ñ‘>"áúmBĐü´ £A5äDĂộJg_Í›6÷#ijb V¤Ö¦¦ a´j5ûrj3 *úmÏ¥Y¨LjÜÿº#窂-Ȫ›V¡‚ç¦åV}"ÁAÍy="@̣5D}YÅ.£UĂ\ôj΄o{¾†ÉB¶¯oQư¥*„ jaÛB­—PkÄi 'W„¹¨>¸w .¡ÜÂ&52°j ÊđD75“ÈXtÓ«6`dn°×°®¬ÀỞº‚VP:,Á·¢ĐT Kˆ*À@}À¢0_ª¢ƒùÊxÆÔ^e¬ËHơ9£;f¹"«¦‰3 kA9³&ÎÈJ¦=3²êJ-àê"«±¾…p 9C›º³>¢wÙBåªâư¡åÖj!"¤da¾†ĂÀ†ˆI«AHR·P™ÔđY©Q h¹8£hV«­(“z忨p4Úå ‚É¥„‚–n8¨–n,¨åjœ­¥f¡i+h ¶¾Ep¥/¥ñ%\‘¿4ñ ,£̉øˆÙ÷ˆœYk¤±ºXuCĂ-ơt Qn_ßBtK'Ÿ@”‹¶¬8´#€àæëv ‡ÂYPWkV°¦Să 0ÑuöU0Û́:ûÂƠ¹¤>Æ ˆoaÍpÖ)u¬Ú¨À̉u ư€M!jdHíªÀê³c™6áX´ U(³¬Ơ™C-¨€É¢9WdUµÜÄM ªà¹iA<7ͪ‚ç¦ß6G8wP…ÓP©pDG*Ɇ ²æL vÍÀFW6åv¶PÙ`”;´\FVKU¸Z8k4t~ơpeƠ‹…Ê• |CgæOa˜´ YñƯÁ X®!¸ZJø‚ɤå°±Tt q¹‚ØkKCÍ8‚gF́Ä%uü꽯¤̃ÊrèD½¢Ơ«Gˆœ¡f?Ái¹ %Ä–_:'ü€Ês4 dÍ*çK¨5Êh#VÑe”Ë| ÙB§kV2”µ¢°l¡Ö¨€> Êsi—p• ®†æ,·ÉU₫Kơ‡*¿ÆD9tXqµơP+ª7‡ơˆÂLZ®Ü‹;td—Ơ›Àv ÁF̉œ%~Æ¡f³",Í¡fóx^úLๅ3£Üº jÔ” F¹K͵nḄơ]:ÙQ#R®:rf•sÇ·¬Âø–•çoy\CÔh)Ă€Ø;Y¨U(·kÊ]£ª‚íà¬î 8e•Ôl6³º²5DqVWö È(­Äˆ‡”Æfåj.iï ÜƠO:h6„-PßµF¾0[X"g x†>«g›°I“>́Jç¤ó:œ»PW|Û4窗è̃â8‚ RjC¹¬lø–µ ‰{º„„o»fEày5(A8c%FF±P+HhĐ¡Â‘8ƯY'T =%ßTzz¶/à,jArS:ë©¡k¨£ûªœØ(ÊÆÚr¾5·t|k_+ äŒ}ö¬ç‚&ƒᾪº² »đY]Ù„}öœuÚƒÀÅY}×D¸÷u˜@XÜœµw?ÀŒa‰‡m÷œu˜À>{V¿÷́ÊdFA½Z¸²BAè́ˆÜ{ÂQ/¡èdÑ‹§ ³e"œỀêC—•Ñ­ñxÊM°„¬&­+:gÀ–}.7±²ªZ_1ÈåÖ Œ¬V+0²jú-ƒÉƠ(^¤h·Â- \n2@…4°±ơXÔD`ëđˆI^®]†ª]z<ÂYPUKÈP•åÚÅ}^̃ÚGØ ™©ºĐØË=û+ _CˆóÁ3ú.çªí‹³¹ểOÈäªf“¡HËÓ˰“ËÓ˸_µ¹q® /_.#B™û̉  ¹jë3æ U§jx:8빯 Y‘æÜPA®×l0]BÑØåø}„Èj)¡‚}8´ „ .½bđ<´F —1$¹ÔŒ!É¡9‹Qm:û†;Ø[îĐÄk¹…qD!/?0Ă6]t¨wÓƒ’BdÀ„¬H¿M`³k\Ù›°+DΘ]ă¨@ÖƒmÔ—°é´öâÛ®9°Áb÷?/'*ö÷ór“jDˆåêĆ₫„Ê•Æd9”J¦Y¨Ơ×€‡~«q’RW˜9Í4J…̣¼)(¤q¶4+̉*FVEsÖ `eQb5†´ªJí(·)<¦i4̃)Îeµ‘Fpáv ơ=ùv¬pY˜o`c=ë™í Q#4Ùl ‘ƠĐo5ZÄPª)A_+¶ û́yy ñúxfm”§ᜒ–›u')ÏAÅĐ5a²9çơ-‚eNA ¹Ü¯!ªP”‚ÀE³ª(·h+ ** «²Q‘UU97|[5qÏUË%°>ˆưî̀j lßÚWCJ­öe|Û•+Ï«A;Øü8DöĐ*ˆNvíƒP xîĐ =?VV 8!ăUƬ'5ÀFîRWœF=1¨×e'L€ Qb¥AùÀܬc&£w€s‡Ô+_¹Ăñ»"¦éAƾ3Î ¬à4«oI¹ª`C ăÔoÊeMÜđmOê· lôơ-ê+]r…YÓ#‚Œ ßÜ1x1vxO841!«A—PI=czI?XÑ Xµú2‘·&­ ¡¬Ç­Qr.Ú‚̉ú=…±yơVÅ %5´>`U6ÚJLf$&Í9£\±¢â[™ä³Æ¼½ƒà™ơ[±*êüa ª8°+Í #MÔĐ Y&ÎÛ‘ ­BEAC© ẉÍY®›«#eBD Éú-átnŸŒ¬²2ÉèQøv½êƯ,T&5hIƠÄC㨬†^­×FÑ[ă­_@lÛ•ó ‘3:6×ÊÁ‹ñQÑs}ú–AQÿçâéPjÁíñC¿Ơ`1I©zGf$¯;Y³̉Y¹̉ 23ç¼b~¥jHˆ[Q%aẦù@¿ƠØM ̉P4²đä¼¢J~«—Îy\@́§ơ°œØå"¸®Ù×îŒQ’±sQô¬Fu-Ym,¶*JVáàÍê¢'Ù¸@°º¢ǵ ½­Ă¸ŸR²Vÿê·"ɬz…—4KÖúj¬V~₫¢gÆÖ•Ơ¬}ыǗôfb=CơE8E+·p)j‚àË-z,ñFpÑcQŒp÷'”ÁñDÑ.çZtIË1‚ô¤ĂÅZ fn+ú@ÑQ®ÎRÔÈàI):Lë|’;"éf1ăwÑ+Œ£Ô…±đd ƠÔƠáEÅ¢sŒrYÓ£10½d½¾>¸Ë‰̣yKUfnUơ"v́ïWu²ul(TutÜn¨:¿ºÍúçßưñËo₫̣W›̃̉ÛÏÿü–ß~₫Ó›̀{çÿäë¤8;₫öö«¯¿~ûù'ơç?}ù›Ÿ¿—7d58H–SÅßn3êq›º¯iƒ®= ăuƠơÔ¡‰Ơ{ s¹®N9®³ÄåWdơ₫á&T¦Û₫ËZêF-Á!Đu#á[‡zUÏÆ$¸dÓ:4˜>¶Ö1W®3Ïë ’io·‹$ÇƠ^Ù¨8÷x(5á4u× ,]å+dÜ•`½)£Wr†̃î!Ü:Y—›z½»Äë6Óí^Éư-*Fâu :|đíxü@Vë3ᯃ¸7´N ¸£±NÍ­+ën ƯƠSÍÇÚPĂÑÍå‘N8Ë·|ûCÏz©_Q–,ƯĐ­v¸Gxí¿ê¦Đ×Ö²N]Đ´Vyp~]"1|‡®¶to–9*œ¸nC×&ó‡̣Ï~÷÷oỵ̈Öe/=94̃¹¦Ăß?ư₫í̃₫øÙ4WÓ¯;̃₫jº)àÛ—Täüµâ¯ —ªh$wđ–úsơ¿¿û³̣›î₫NăócƠ‘ă(«́©̉¶gÉ¿ư2 nĂĐdÅ ˜–{Z’}j!¦£̃×H¨2O5Éyà{j R*ÍÁäzÜ8JY.H˜ŒÅ©T±¶©ÓÔZääú=Uö„„Èwùe_æÛ2ä.¿nÓtYGßĂB€° Å}˜ `Qfb=-L¸ML€U3`ƒ,ÄŒwÙ8;Ä(£|Ë,0aÔKH\uLÔÖ¬:&MÜô@úf—“i; CƒdÂßåa×Ä ‰»Î‰Å¬ơ˜ ºñÔ+Â/è%ú̃nB¯Eô†À:0u9nà‹öOxÈd]%HIï=ễäÄIªơœ3́IJ7/UW,Û•¦bb‚‡„V₫].<ôÜ%ê cN˜]O¬æd–0qу{CqÅÉ=ô/ 9¶̉ë™2Zùw¸àT^Ô•ớÄ §Ú¢ëá(Ø‹TÖÑ•GÁ¬̃›œ˜p`¦-Ü‘ö ×‰åØ øÁ)úu”%AñÄ ´pÑ)Uñz€dÑ×ĂE]±$Áø“êzüFùmëHô3áÁÜuĐf₳CĐGÜâ”#>ëû¦Ç…V/––ßđ̃ŒM¸x;Æ%₫ xD +Öslªï„ceÉ‹pÚ¡,ưÔă†Ë~%ZgQi¥×C¡á ½ M‰×qcåŸqäC#x$Üä’s̃¤XŸ«üq¦+ ̀¦.7É •߀›ăGêë.Æ·ÔסcáÇ~ơœê¯₫Đc4w½_¸̉«½€}IcƯ.Æx”4dE[ư_M´%O qÓç±.…«~⑨pÇ­iñ}¤|¬‹Ñ°ßY¯öëyÈ”o·÷ÁO¾]£ïëûûÏ “^₫_é;̉·•Ÿ4h §•ö4ë-g=apúÛĐ+´¢˜4=)f¤§•¾»ñ$ç#AùÍ+vô+ç`+"@_s^ẈU>zŸ°jÿÉxÈq]ÊO9¯Këߌ·z¤râ\îÆ£Œ‘RÅê&å²¢ ô…ơZ_ß3̉…Ơư û“±qºî£O¬̉1>âL©à¡¸ª~­ô W¶Ñßr]·”kUÜqñư#ă Ăº2®ÜÆËŒiÙ׌ƯÉ{º·*OzÚqboëú~ =́Î̃îÁO¼®Ø7ÅéÓJ_‘^Û“VŒ…±°F7è+}G{2̣ăg€²âTîÛ'y“ÎU§­èË¢kćc}O˜oơ•ÇüŒºâ₫¦ù÷äö G¥nÁF&ÖùùXXÆĐú^ççÚ~}ÍÏar_ós̀3öDæ4àPœăm°z‡#aîc½“5ÊŒ̃‡™˜î"NMÜu½Ơk¸.|_đPÀ¡—«&ÎXϵE/ØIBùÁ9¡ư¡à Ơ¡§³&Ö˜tX¯œf:ô–g*UO¾M¬Aú0¾´Xïºj¸ñÇÚĬ1W~º~¯+¿ôÿ ̀B`âŒ8–_K^a.1ÿ*ơ(ñÄT?<K”½úñưô zÁB¾®̣oÁLÑ î¹b¬áLÑßKÁb^bL̀đ©¨ü –ók=W ê©O<ª{çöáXCÜb¾SpíиS‹ƒ+-yẫסg}&Ö@¶øÇQcécÁư¥Co‚M\àƒ½)8/qK>³R·Û'f8çúÂâÖ+?ơkëæưÄâØK_Ô³=t~s ÓQˆùyQßv_ơUçv_ú§̃m½‡<ñ¨>ËTÔ¿½ÖEܼøU·^[Ÿ¸"=́CјÑz.vbFú[₫é±₫,êæÖCÆ'„‘ÆøVÔÑM«ÿ©§[kL,®î5?*êëÖ¸¦÷üáƒX½ƯZ̃ÍƯù^ùđwÅêđVư¿y¼Ơ~Ü\̃X¿” ®¶́‘:½×xQƠë½Æ‹ªno½»0qAzÈ·ªă»jư«z¾5ÖÎÄŒ ˆ²pGú¼đ@zÈ¿ª÷{­‡«º¿Wÿ­êÿ^ó›ªpơyN,đƠ¿«ºÀ‹Îÿ«úÀ‹Ê¯ª\EMœ^ùW7xÑùOU?¸̃MXáË^Tơ„•wUWxÑùKU_øßjÁÎ×̣gTơ†/H-kï ö¯„@_₫ ZÖî—¶—xÄźÿ{UE°²µF3̉Ă×-0ơNO\‘óÏZ± –u~\Å1.8)Ö½d•¯¸Æo[ˆë~1æÏUœă‚³âªéÅínûrbBzØÇÚ`/̣j¯¶¶†aŸVôyƯ:X7‡áOYáè—?°́E^íMØÓmÛ‰Y·Yq×ídÔa/–ư¯löˆ'ξ*®Åâv·=1ƯmWO܋Ńîq_[ÅX¿Ơ{q‡u³ø†uwó¯Ú×v±àŸ>wă”MxfaKbóÆÛ‚¢§_ß~zÑ_ô¿l:- ºÂưEÑ_ôưÇéÔ ¼ư}Ñ÷ô ½çưEÿ4]nˆ|Đ~.GHîÜđ+Å+Åÿe)F²)Fz¥x¥x¥x¥x¥x¥x¥øÏ"¯ûJ"¯MœW0E6…n£½Rü@QlQ~ùe]¶Ôÿ§(ͦ(í•â/#EÅæÿ-E]‡~Ñàó.…âWWWWWWWWÿß§ aSĐøKNÑ<úƒ<^)^)^)^)^)§è¸†pK¡ø?:EJ–Ó…ïRäALS(₫ MQW81MQ×u‹WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW “¢“MÑƯ™VelŒø íË)ÏX.ÇûØ´QØ~§^רîÓ&olkl³è=…´²±Ÿçxö±#¶ƒg¶_•saD³‹>̣9ûí5­]Ó̀‰®iüĂ<“غ軑#ZÛô1¾›69,/¬_Ÿn¡€–eÚë—$¶5âeö±¨̉¦âöë2₫]ÓĐ7£¶­a; ßFơ›₫@]Ê¡¬ûÖNẠ̈lï´ÑϲщÉ́´g-,Oœ!ṿÜØ‚̣ylt¾Èüå’vÚºÉå´­%jkñ¸ZX¿ÏËÏ<è;J2öG¼đƶṕ§m«›₫Àa;̀_BÛ̉zăY‡püK¢ƒ×s”ûæ%l#–uGô]́û=çóuès¤&~©kÉÜôû÷ZG¼4íu(ëûŒgØ|îmËåˆ÷EO¹P8—B¬ëˆ—̣²©û́››yrßô÷ø\ÖUQûqX÷ÏëỊ̂Â}’óǰ<ÊỤ̂BÚÜÓu·Æû\gû…₫¬ÉËno"̀³Äû+Ó¾„sÚ!úym'Úf_&Ç}l®owưa³ŸÓ7{‘´És'—Ư¹„~—ă=0*>óvÎîyïö–fƯ7}:´!s¾öéÓf? ë̃¥ư®ơ%mü´}c_xĂKÛ¬ă6{u;^èˆ÷h§ }r›5Ç£Pf5öå;²YĂÆ¶glüÂG¼.ccX¿±Ù‹́›u1olÁn_Ñ́#ŒíYÚÔ¯mëûtx3¯ÛíûMÛæÍÙÛHơå…6r£Ÿá99ÙœKuBư´!/÷²Î<Ă6:ùŒûĂN]ƪhmΉ¦̀BÚ¦ÿé~UT¿ø̀̃Ǿ±÷})[dØ7éØÖ}7'ÇÔ¾´Í¾Ån₫R7>\̃Œá#ÛÜs‰íuX÷Ư%mö7[́Ÿëœ^ón/̀“·ó3×̣϶³ñw8¢ï¶cƠælL<Ÿ`ñ·Fº´ëcñy¢Ư:|lÖ›5,ắ]4¿®!/=̃{y¶–ù7®Ib_BÛ¬Ewócc³Höí#>cûB›=E¬®e6â=7J›ùK̃Ó±ï‚7gC[<ú²›í́D<ÙÑr|–˜6{úÓ÷-öŸr‰}:5̃¤Í™î³mĂ³1sl ù¬›3‰ccç˦Îù6åÅö…7cøæL0±/6÷–¦ưÜô±øĂ3-^3×ÍÚ>Ç>Çé»ßôÚ¬«B»ËÇÆ.íæ|´Ñ ́¹…ëœÍ/l‡“Ïx>±óoÎ<ïúĂœ×m|¸aqÚÈ:oöḄ¦H|Ô!mç?ÛØ¬Ø½Ñë]˜v~3ïöˆbŸoÎnÎ6Íư¿¶›cöøÜư´ƒ›s÷±ÎÓfÎNÛ5B<ÿä₫Øø³j|dÛ~û¹bÜWx³oÑ7ëéÍ99Nqgâ}‹c£×¼™·îÎäÍ™ñ̀MÛfoi£ósư°±×qưJ|Ú6ÏƯ: t íÑÆçXö¾íÏ1<3Ę—‡çÁ6u×js,×@y3§åMơmÍYÍ\‘6ư½nÆÆŸ rÙØ°?œv"oëæ~ăÆǸ1n㛉ûØNÖ´Y–í¸û¥ÊÆFnÖ¢Ûu#Çwˆiws_÷#\ËôÍ~jH´ÿÚrÚù'°§C çóû¹pl[y³₫Ë›ºóƧ³¹/:÷Ivưa3Ÿˆ÷ú¦OÓÆî–ÍØß¶óÈpÏ{Î56}3>kD™¸æƯˆỮÄδá3̃WÛûTÍ™Ä홌Ưo3¾Çk„ºÑƯ¼Ư ÏKÍ1uw‡q̃A•ú9ç‘×4=3”æñ1O¹Ï|ùΰ^Ó`˯iđÛ\—§ñm.¿cøÁ‚ïZ˜'Ăg|IÓ}Ă O9æç¾ô.éåw_Éáùú».₫ÏẸ̈æø~§wøÚ́QƯcyâLw$Êc=×|E›s†ˆ6ínÔ~Ó·Ö]ïØyÊ^Ư¥â₫Đ4&BP‡ö1ë7÷48ÖÁ~§{¦AyC‹u‚06}3̀S÷ô¯u‚bˆăÉ3ÖAœ±Ú=®;Î G6+¶„³‘ư uâØè |Æ‘=›íñëDÆQ KqßÔ¹iP¿¶‘5óu¨g|Äz6ÇÔ—‚uÇe{×AûqØFŒuñ%M÷Ñ^â±çùÂ~»±=¼³=!ŸckÏbƯ­qygûÅăŸúiƒ̣b}ÑxA<ûF—â9Ø»s×ưHcị́ ódơKơ‹íuĂ:ªCØeÓe“gÙÈ¥nøDÜ»¨±}i[‡;áØ̉ÔwÍ Â:0Öß­gucëâyóc›yÈ´uay$w£ú¥pLƠ˜$ưŒçKzn;(/îïº÷ÙùÍÜ-E|sá±±Ÿuc“c;ß±WđÛr̃·ßFc‚{Káœ!¤mú·Ía·ë›ïñ¢ơÑFf1­oúXƯÔ½oÚwÿ¿₫‚(×ư(ĂÇùƯk¼¼«h;₫ÅóÖÎÍ62ëÛ>=6¶.Ô%Æ›‘¬§?ä’¦ăĂ5­ˆ=‹hs₫rMƒï÷Æbë¢<ë¦Sw¯iˆ•t'æ6×´,ö,’K å‚3×´*ó—¨î-,oˆEå•°Uæg×r©bë.i=!îÈeËl‡d=×ưap6&¢åœ3ä̉ÂvÇ₫XT¿]QX‡#Öù¹~ß”7¢ơĂÔ¥°¯´ø;ÂÛ:QƯÇFçwưC¹àÎy¤ƒ#ä%˹„H.5jwÂ@a¡<‹øF#>Ă÷k\/!úHưØ9̀cÈ‚ !j¥N~,ư\ya5x4c‘³ºñ‘lûùêîœyĂVå·<v†ènØ«̉¯³€ộâ¾Êñ®ÊQ&kĂz€*±™ºP ±ĐÚ1ô€¬•zP™z„mÊtzŸB·„-RƠÈt ö‰gºL£U¦QÅênÊx ] ²²”Ơ”Lư-¸v0Ó,Pœ˜Ñ@[Ç0!²rv ‘³c% ²r¬UA­\CfEæfEæT0dz  æx-¨ÂÎÊŸBT#ûSƠ€ùªCƠ¢Î°WO!jß›7Ôfzn® ô„(7°’åVĂ£ °u˜x ,c—•¬cX̉í¢’‘M .tÍ‚u‘ ¤´G6̉~†¨F$Û)í‘ÍO¬[Dy¬s*KˆJ&3„Ù¡=BôBbó3X—Üæ#D5¹AƠè°0ç0†₫Ă‚u)a>Âr€•‘ÏƠ!³"Ûkz€ưµ“ §¨?FyYn%,hÍê8Èw²0!j¥Ñå¡'¬èí2«0†ùËrL9C»„îă ,(a=@*ƯÚ%tGè0á± ª¤ºư†#̀KXJ7ƒ,(a<ÂrüöXP=6¿›Oá?Ă#7j>ÂËN±päzÚ®)gèĐa~´Ç‚º.xÂ|„u]BÖÙú#̀GX°^¨¤EädÓ…vÛ³̉uXW°kY‡—6ç ¤¦À^= ưƤjÀN>…öƯ¦ ,°a| ́cÙÚ%tGè0= @Oa±CÛÆ‡aáĂKXÍĂ›́yxz GÈZQ¨°gX. ë «NÂÚ%tKè~N!Lh/üê#! ª0¦ỗWr}¤›Afåé2Y@mgÈj˜1ôGđ½|Ö¤J!ưç2†ü–¬£̉…Dè0!f̣™*y†åYPB*Ư Ú#d5Ø)T«3̀GÈ‚ÜRË»Œs«3dVæE° •γúDlQ®g§ôiÚË`½€¾kNÄ0¿–́sºHè0 'q̃¡?B~ëă¦#̀GÈ:[Âz€Tç3t/†0 ÇP]?Â:ƒBö=Ơ3LGx1gÇ²Ă Ú#dp€Bưud{ºô . ËơCH¥;CfEÆRéÎ-²c˜°¬ >g^Ưú# KÈxN},XQ Ëä(ió†>đÍ #E‰0!Ë„ơ©ƒ3èßY@˜°¬ }`ª  [Âp„,×a>Âz€̃¼²v ăæ¤)Đ5₫ă¦#DV̀| iÎĐ.¡;Bt™FMÖ¤9ø‚ù"xÛ¶3̉Ë=’—°¾s„î9—ă·ô Å›Ăñ Æ#̀KX°ÎáÊ>ƒéóR»gđ˜•-¯ÇJRuƠ‹˜–° Ơê í ̣Çæs„n ÍÇÆ#¯âñÛXV0¿¥Ó{†ñB̀bwzg0`6Gx$î’ǰ® /¨d<«ÆvƠèĐ¡[ÂpaURÚÎ0\X³tÚ:,Ø/Kđ̉Ô§.±è̀Ú#ôC̀S˜‡0Öô—ƒæØM}&¤m/„ơ»çFn0¾áØüîÈuHG-âÜʱΜLuHƒ́Xçîȱ’ ưa:Bzn °ûWlQ½t¶sŸ₫Ă Ửç„a YṔSLȬÊrâiéoÖùr9iĂrzÆ0áåü7wAêvSéÜ)°— Uh·ÂJȰÈà^‡‡(D>¯.± ¾º4—”Ü#Û±áehè ¤Ä¦0† :‘)/áep/ŸCp¬dÁ‘W=×!ƒ]¬stSz ›₫Ffw3Y.­hf¹´¢ºU@Îp¡Ü’ñ­®ï ̀H­$¦5Ó%{ÙKKö©t­üVGç‚Ux¹cÁÆ1ôG˜™• ̉Ô)m¡æ‚~¡å‚~¡,0n…¦WÈr»́S¨BXhú ©Đq¾Đ挿å:~«Ăqá¼GP/`FV•̀h¬ —Ư —Ư o³- ₫p¾P÷yR¡–ñúB-ăÂzaÈñ)DAĐ2®³3¹°~Ñ"èÑ´„È zTùäNăÄ‹ U£bH-Ô®³® àơq\$ö¶cá¦v!̀,׃íÅ!«›ñRí"ªcÖ §v-y ÑèQ…é{€åV²\Yn@+›@­dE´2+5ŒÜ¤¸t^)í\ï®”ç ›S9”s›[¸¸+‡c®hW7+Gºç ÚœÊq«̉•Qħ0* l~E­kUQ«ẦW+F^°‘*ẫưƨ8Ë^@ æ¨Ü£Î#_xÁæóùÆ´ ƒœ¹î\ac3ï§«è_áQê-(·²\ÙV‘ úw# %L€¬•^)Âô ¾`B½¨ÄÀË彸ƯêÉ{Aê‡ô¹'QI׿EVíÍi *éÙ 9æ\Ñ"uN2OÑ́Ïư*©l`‘ƠHüÖ¦t Î$v(ưkµ»ÑÀt„¨³î¾ËXņ€ÈYŒ@°]­J¿zÁÀnÈéH¤BxXÙ`ü•3f<“ÏryÜÜ2«„SƯ–ƠH8í́K oVp,—‡ă½‚ăξ``{yqG‡çŸsæ±ôÀñät4ˆe»l1< Dκ¶˜]?˜ÊËĐ2Sy†âúO•9{œ¯$æe1•ÄÊvGÅq¸bÇ‘íX·Ễˆ@§P½‘Œw52Ï>d,TeG>c)J ³J v̀*#+ơ 2®nÏ–0ó5GNb-&;x¹!ÖS²£<{q™‡BqƠä¦ê4û63V.²£ÂÊ…À@X™•2ÖÓy0Ö“uXAÈ₫UÆùơ«¡œä¹‰Œ—4%Gg¤B÷çXQPä·Ơ€0\fá1²?…9£ù gIȈåâNÀ¢f×Ưç€7ă5ˆ̀ó 1U|™• ộ ËUëØ¿u怩VÆ“Ø̃§Ä‘9W@t¢y™grÄ5T< Ü`Œ€j "{Oíäç3#–¹Ÿ_~"«ÈTb¸¯>ó¹¹ÈQ2¢¹>#R”#e§*’X;4±Z”(H8ûĐ~è—œå´ ƠÛ̀häDsưªÂ&Z`Ä2ăHrd;*Dñ¦#Î÷C̀sf‹°s>ǵçÏ/½p2•1Ó̀œzäÜßÔƒ¡ÈgNäV§PƯéŒ-ܹ`˜±•:Wv¯jª3¼¨˜+×\ûAsK˜qoF+_·†ögË…˜<V<Üé‚ơưÂ7 …›̉ N7Tº£Ó¬¿ưüËƯŸ?Ưưé¯ödOŸ₫yr§O¿4. ÿé/}§ÊƯ§/§?|₫ăéÓ¿Zê§_ï₫̣éÎ OÈw ÑjâñEgyøóô=n/‚'"ŒYEÀÈ@b†´`^1$%Χp̉:§ó¢'•¥rƠ>¢ÜĐ÷Ơ@ư ÷Öø`:pÀQÍ÷jr” Ü Í«Ü"÷Z«2Ü^ËpAå>̃ܧ*ư`EYñ„NUáx¬Æ1U'ªª$gxZg*NÉơC<«˜Y.ïù4<:QqF2p»˜ẃ:ưÜ/³ơ¼ù¶àˆ¨çR;nîr8‹ê¹YÂö](H3×@óÅ™Đ„›1½5‘$œ‚ =ºË£‹ B!¬=²„æÎÄ-˜ΗÎơIäôy#Z}¦Æ>2}×®»ß¼nÉ̉“7¯ 'n…c.aÂ`w·Bγø³đ‹̃ưíôïSÁöû ₫e4Rüûë?N?ựR‡£écÅ[M?đåÎź¿₫|ÆƠa¸$ù#Ø©_Ö.Ô÷çßơăS1 êi=:…¿ÓvÚWKĂ¢Ñđµ¡´ï7íÚ¶'¼dóê´[´aƠ··áÙ·mß-äsƯßV&>?¿u]®­§î$ø¦2ñơûïúï¾~ÿƯ@ǬY<{oíG·¿nâ3ẹ„đ8qúêsÍŒ·iæ´²«n~6×i+oÈÙë{sÉÚ9ƒé°à¯©Ïsl¿‹/ß"]×uơy7̉ÛoŸ¸̣›̃ë•–ô=̀Èí¤àzM¸Ö:ƯȽÁ\oJ¯gеSÛeDí&®Ç3Vh1‡¾‘oû™Iü[¾¼Ö‹úpó£7´^hqĐđ‰7$̃h½.óFÁ«́ º^o4èÜH†B¿́w<:”©Ÿ°ụ̈Ă%^߇+ö'Œÿhí܉1q)Cß‘–ư(‰»Ëvâ–¡¸w⛸=ă¸_–¸í .!Ư®À‡ê•í½Ưñ[â?àÜÁy\đúưzW`;[‘vâ÷˜x½5Ù‰;q'¾ï¸²̣0ö˜ư6Ăǿ[–¹ûówן-ÑO÷ }8}¸Ä[M ®–„÷˜Ñ}¼†Å5åFL~_¢ù£˜ñï¨oh ®t‹úá«î'•W+ĂÓ/Ë*Û«[™)_Uf³`z{ûđËeSÖ‰¸´t’Xpµ¦• 7Ùæ+³]V(÷kqGe^Ÿ-÷ªí/oÔ+oÌó -ûsÙ”ç¾\ñv!&Ï$.Û9W¤5nÄø%®O|¦éz1¹đXÇÔ`,›r}¯,˜p½y{F³—́»¶Kö=cŒoÂÛëííơz2o¦+ë!r.`oaÂM†åŒ›‰æ¢¶E_/ưêƇW̃dR—ƒë7W‡÷05××û7²}Ï ¿'µ¿Qâơ]ö‰kzđ́{nüh³«µ–­œß‰É{¸<ÎÍZûÔsÛ—û =¯v¸ŸÉ¶Î=Œë³½~z° ª¼¥o`ß¼)7ªíxûœ$\—­×‰ä“0Xx¾Q;߃ñ×—¹”¾e¶·ÓÏëÅä›—ùœÄ¯Äd;÷°[(ïÍl 7bß8ôºr-û®³ŸI\¼ß^̃d5ßCúV4:ÚÈko4̣̃f¼‘€]ÛÙÏ|9½y×_z0~Ù+oH¼¾L§—‡Ư¢Bơ[3áFµ½¾)7’„ñö-í¼V†̃ÄÛo₫å;I߇“ß•y»‰a\̣?ohÚ‰?NâùƠFùÓk_m¬x¿=ê;̀_đó†_&Ư– ̃3ßpĂẉüoƒú̉́ÇzµÊvÖ ³>h,χ§P¯–Û2=¨7~=–פvaă7₫cÜS›tƯÿc`½AßËkËk x¨₫ýq×{Óïƒ}T́Ëw‰ƒ¾û’¢„^‚³®t§Üù³ñÆo<Ç©*Nñá‚̣sÚxăoq,4•{ă®ÁÖ"¿Ø„¼ƒ ›uë}1ß}†Jôiă7̃xă7̃xă7̃xă7̃xă¿.IqÔơV›q9̃‡8Ä¥c̉¿;®§fy¹úk`Ưø¡ñ½8ĂŒÿƠï;«û_^‚Áë7b́̀Æo¼ñ7Æ¥(N₫E8È–`́` û_́GÁ 8n<ÀQ/p̀F–ù¿GÜM6NåJœpÂëÁß=.÷ANn»ûà:À₫½pîơ‹¨_´1øăÆoüăª9³N+Ø;=•ơàÖËp}₫V¸*F|åĂc/%—ơâà́6̃XVË~¿¢ÇÄ6~ŒG‡Êûù—»?ºûÓ_íÉ>ưóäNŸ~=åûĐ̉ÛúËye”cŸ¾œ₫đù§OÿjÉŸ~½û˧;3<©.“æ¹ŧür'“Y5>ñ¾ÂX:\ˆÓŸ³2kLgÊÈ,@pRl«D¥5›9 ®ÿIt–mêß#¸g#œÙ(—k~Öà·‰­S-.ó̀¡¯í½÷j¼¹ySg1b́±yÔ=ÚÙ°¹ÜŒƯœw«ô&Á™7 ÖV°o+'C 7ÖH0»‹Èfë$g >ëa=¬%F,‚° 8â°Té‡i¢L&[ư:Ö`¿cû '›gÖg)ßôçQ:W°³¬¿\{!‡S+Û'Á䆣aûå₫†=̣oư‘»J~eôÎ_ƒĂ®́?/%ơ•Å”ûÏV­¯Aÿá°lẮ¿" —ö¡>M>¬W~`0ḳă­̣Ë÷ÅyøJ¤ö|‰Êo–`q$â‚`;';QFé?kXøÛú7öô₫§3píV›,ƠnT|§OFåÍöɿԿáspàA_DYÿvú÷ÉúªwĂ+S²h„ÿ₫úÓßO¿¼˜èáb‰±º®/–8–Đ”¹©>ăêº'úǸӿ°q¨óÏ¿±Îöâ_±[okR+U.kAáFŒ’ÍlEÿùÎFíåËD#bÇD'¸L̀̉gLÔÍæ‡l­¤6é£q‘ÚÆ°Ú3n²&*y‘ZedC¢ºô8c{NƠ˜Ûej¹Db)̣®̉e¢1$zȽ$FéÚ†kíXº.jPï;¶>‹Ó{‰{=3q$C qf#+qqG\QYè¹OjG[b‹úFÓP_Øq¯̃¢âD™_&Ǹ¯gÔ7ơü ê‹ kD ꛺“aQ_©vh¶ÄùÁÎ6_ÎÄơÅ8ÓpF}K§/¨oéùWÔă¦/zƒŸàL,v3´.µÄb'b±» Û.N´à.ăVĂ®§‹Üó;Ö0́~SZƒü|Wm±c Ă7́¢bö_­8Ô79â„ú¦³©@~¹çWÆ¥†+ê »Œ^É×p5Äơ­=]‚îÁK7‹_ ¸§«ª{Û~GĂG–IHđ<„Ơ°ZnAü –bG¬v¥jnØeàD́‘ø AW\ˆ“;⸤ă÷µ\æïÄ!¹(ßA_=û©í©ÄơŸ$…úbY:ơ5…¸ ư§Ëä硯N.C¶́¯îĐ_ÅôW.Ạ̈…q?À’j$âŒü°©!xØ/Gưo¸B¾`O%Bj6́P_ø {Ô×;â€üÈÏ}íúàGơ§ár©_ ×p¡!Ê/±…=€ÔAQˆ́ å9vû¿¯aÚ¯̉é3́].°/Đ—Ä0<ØŸ ¯}’а‹öªán¿£¾°§ Ô₫OĂêo”Î}-ôÿ¶ÈÏẃQ_×q@}mÿ>¢¾Đ¿†Ơß8ó›Ô„߸¢¿`ßc„ưÊ”ïˆy“ôŸ'vè/×é=ú‹̣áo$Úƒ†ƠßH´Ÿ «¾&ÚÆ ä+ợ*ä‹ư“ào$êwĂÎ\Êc‚¿‘8₫4(¯†82?G¬ö+Ñ?m8£¾©ç_Q_öo†¿‘º¾dø‰ăoĂí·=]ơờ¯ ûƠ76œ b†¿QèO6\ _đ?"ńù ôµ0nѰگÚơ¡À~ơ8B,đ7*íyĂâoˆÙ)ÄâoˆY Äâoˆ™èß‹¾FK{5À"˜üªj¿b÷‡%@Q#.1É5́ß‹¿»ÿ#‹ ˜ưSU_£ïåWµ_1t~Tµ_"Öú}2êoˆØzbñ7b¤₫7,₫†ˆ]%Ö8J"¿û%b̉óû»ü6¬WŒeê_ĂâoH·[ơ7b·G ‹¿!l5Ä¢¯Â¶Nç±ÄqŒ̣¸LDœ¦ăŒGpLϯ n{‘”ñ§¿ˆ€”`èSÂơªréO$ö¸t§ôtñ7ÚLú“ÔÑÓKSz₫úZΙˆ#¦Dû 1l%½WûƠ0ü£äg*½=q£Ê₫oXü 9ÄƯéÅßȦçï7´œ/à6‡M É#îÓưÇ„M:¹Ï_ä6.u,₫Fö´¸MFăDGÄB§ûƠđ9?±_9R̃“”4ÎYˆÅßḥÚ'₫Fð ;Ä0^¥ˆ8h¿Ó9j:½Ø/‰[Yâ„úB_$€É8W"ă¡} qƠ>ŸiX́WîúذØ/áŸ!öˆ³¥5Nfº>$ơ7>ç§—ÄUƉf\̣•Ô~7  .‹ùlûE7‰&úO ·µJ³2±ø)̉_”ƯÔWßÓ5Îêéß@đ4Nk‰+ô󉤻—U±nú5´ï q×sœ6•³¾Vbµ_…ö_v‹Å¡ç§ö+÷öơ7b$@ ûR:#ö8iĂôO¦ư ^íẂö@+¦¯×Wbñ7bẹ̀¨†_́iéôw«¢¾@ÏáŸgûåè¿4́a¿aÿD1Ư…½Ï:pèxPˆÅß·±Ó‹¾ÆgÎ:°ÈøOăMèX́W4œß5́8~u¬₫F¥ưË₫F¥₫g £÷O¶˜/ơM{«+˜V×Ëñ6;ø…₫ Cư§î9~bơ72ǬV«ÿäˆüÄÉa˜Ôêé₫ô7{øƯf#S₫³?û=ƯĂŸĂøÓ0ư ×Óéoø3ê ÿ2{ø™̣“=ü~)H3,ơ…₫7́è÷tó 1œñŸCñ´̀l¥~Á°=ø+ ë|éÜß₫†éíđ7úøC«̣TˆƠß°]~"ôƠr¾Øp‚¼Â₫É‚U„<÷ïƠßè₫KƺCÔ°̀g «¿Ñ×dA ú…ø¬öS¿:}€~a~€5ơo<±ú¡×—Wú[9Áß]?2ünÿeu¾\迬Î̉? Äö₫@Îđ7.°^(h?³:¦_O/Èñå\ ¯}¾ ́WèưY`¿×áöđçJÇígyê()¿ q¦ØéE_eÚ–ˆ+ú ₫{®°_}üoXüØă; ‹¿{¼¹ápéÏ6¬—Ä.ŸöË<äŸ!_®¯ó¥Êñ¢Ä7*ư›†5¾Á+i;α/ú"Ôs~ÛóKö¾¬ó…̀u­bßÈŒW4\1Ÿ!½…¾&¯ ;{1¿oXíW¤ü û)¯Åb¾Ù̃bßÔÿbß婾êcq=¾}(¸¤?„^_×ă³¥cÆg!Å!¾ạ́KŒ÷VầøiÏŸñYŒ‡ÅÁ~9úÅc¾äè¯J úѰG<*öô€xË÷ˆot{ĐpBüñˆ â®Ó3>K₫…Ÿ…}.ñ ×ëßèñ̀ßp\ç.¡Çgáÿ–Đă³°W%ôǿ9½”Ëï±₫D|£¯[7̀ø,́yĂŒÏÂm¸ÇgqÏvúŒúúa¼7WäGyO=>‹ñ§a‹úÆîQ_ØŸ’úz üĂ’úzJÊÄ\OÁ|½a®§À_o¸0̃‡̣2â}ư¢ä¾R±ƒ|Á¿iØC^MO\Ÿèé ñ>Ûóψ÷‘Ø"̣ë‰+×8zïĂw~–¾‚ñ»`Órđ¿₫F_÷.8x‰¹rÆ\Oá÷µ¯§Àÿ,µ¯§P¾+́W6́YßLÜ×Sú÷}=¥Ós=…̣U»¾Ú?×S`ŸªưêñØj`¿zÿ4́Ù_–8Ä‹₫íKå½ÿ¦¾æ¾t^̀…üT,Đ F~ö«Ûƒjûz ́{Ă\O×0×SÀßj»¾‚_ƠÂ~9ο+.Ơ>ëWµ}=ö a®§@Ÿ«ëë)OeñùÚÓ=×+{:׃!ß s=ăgu}=ö·º¾ ÿ©:¬§ôơꡯ}_Hơ}=₫Pơ}=₫DĂ\†}m˜ë)©Ïờ/æz æ s=ú_C_F|ªa®Ăÿ¯¡¯Ăj˜ë)ˆ¯4̀ơØ—†ÓåzxĂ}SD!æz0üúz0q́ë)j́ë)ǵ/×ïḱë)›Â^´;¤©Ør+Eo‚?}91–`O?mM±)($öà.(:₫]Rpº¦đ}¹tSlM±)6ŦØ›bSlMñ=P$n¡îoM±)6ŦØ›bSlM±)6ŦØ›bSlMñPÄ‹‹C„‚xSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ÅHÁKÊÏÄ›bSlM±)6ŦØ›bSlM±)6Åï‰B•¼|g¤ăM±)6ŦØ›bSlM±)6ŦØ›bSlMñ»¤¨̣Vûñ¦Ø›bSlM±)^JQÊ}ªoM±)® øÛéß'ëë}>{±ÑÜ—ÈưÇéï§_î₫üéîO¿ưỵ̈çÓÏ¿Ư™{c̀ẹ́ßß~₫åîOu'{úôÏ“•¿₫¶1̃gsrÅÜ»zúôåô‡ÿóÿưŸÿçóOŸ₫u÷—O¨D5÷1/*ñR"Vơ?Tơ§ÿüïí¯9₫ïƯÿü_'súßwöô_ÛÿÿºC=ÿÛƯ±„/wü…?>Ÿqu÷®4ÜéăNÿÓËêưûGV́Œ¿÷ñä’»V9lî­¹dđ±%¿„èm >–Đ Î=0˜¸3ô1ĂwÈO/«÷ÛĂ½3G×t`đ¡%3¿€è >”đåÎo/Öñ™¡₫¨C~zY½ß̀`oâ½I— ¶íÏ— >¶dÂà—½Áǃ«¿¯ ë¸3ô1ĂwÈO94¶ÍLŸs0÷Á¨™~JQîsèø’"ºû́/(€/)ƒm¸ ¾¤Èö>¦ àKfÈÛ àK Ôưâ¡-¯åx‘₫£œÅ%Ø&móYº x–ÉüE_Çt ¿¯₫:Çûàøuy•Œ¾]OZZ{©'ÿÑRí¡­Â®:3=yæjrYÀ—»æy”ÜágÂQâGđLüÓùé̃¨è‚܇ûHé”îï]êđ!Ư5“̉9đ"ƯFQÑs:àEº ÷Ơ<¤^¤£Bçô‡ú½Uæ]ºOV^/´øØợÉ́K?vE˜b¯½¼§å¹0ï‡0Ơ£ ~ëuJ0ëwñÙg2(Ga†moö,Nû‘·qßèæä»°°a*»v~̉eö]³unÆ—f[ư¬Úwq¡+qÚ¾:÷Ë[fö]²đQ&uÉS?™vi"ƒ¢cc¹Nê{Ïø™§ưԙɠ™Ê`Ñqs:N/l²èæ°¼6VMûOlÖÔ¶føŸ›¥Q„‰®„i=¢“¾ S[×üäéX\öLW‹&62ƒ×“~ĐĐÁ/vwÔvñ…gú°2¬‹ø~ncœÉg½·‹±ĂMû¡,d7êÜiXÏätY{:>Lå>ÑŒŸS›û}ÈÏ:ư.Ă&Oæjq:đđF~kDŒe6̃føƒùÉwâGÆIØ—0Kk2_giQựå7ɳNÓú˜³̣æăJÁÜwØGQmrăuù`eÊ— ?dô]“Áæ¼vđù̉ÈïÉS^—¯ÚÎ;u±}>=ÈÓÁ¾LÚîÍ,-#†4“‰i™…¾G̀™‹˜§§6ÄOùR—¶Ư/́uéó±Áwr6l{€,MxW<›ú!°g3y™ÎW̉‚ŸMcól:·´©>4YÊÓ¾-ª+3ÛŚŒ/i!K ¶|R—8Ơ‡‚ï†ü´ˆ¿ yæû\{đĂªĂhŒKXÄçU®ÇúÎ>È’™ïµÏW†å•…¿ËÙ׫˜\ÚÖºœÇY·æË¬íaj ,b]“¾•yñ̀Ov‹ñÁ.́™‰óz&7́Ô&Ó.Íäz:ˆÚ¾±_ç62Co'¶ÎLLJÔcâĂñ¶Lí`̉P³ºÄ…-ŸúŸŸ~ªÓf1_I&̣’gư'q†©LŒ3œÆ_"Ê›ÅÁcăÔ¾4’¦:]ûºÅ°oç>mÏoiç§iÓy\U?y¬›E×džóâäzœ}¬c39k2Q}f<“´4³= cø̀oÆf¸>Ñ¿:³!#n:”Ïr_ód|6Lu k³zºYRĐöÍüÏ4µåAÇé™>èaè34yYøYnÑïó9IUç°uơ{:¯Sư‚2íÛ„˜Ơľ̀mkYø=\Ÿ´ÏÍÆÆæ{Ûé˜û˜3¬‹±³ï dbô]€_7›ç̀ơÁÎÛ s™©íuÏËŒge* ±ô‰R§cNX̀sÖ¤&u™ç5ïùæ„i]Öˆ&m˜Ç'Vú{¬rжÏaÇ2Ñ₫Xíhß™ áL“ï`“§yÖinÜœ¤Ùc8I3â'ÏÛ&m€M¾sj'L”0öS^ÛYÛ“Æf&|i₫üô;+₫Ä$ ç8-‰o:)O×Z§}ÔdwZ;嵕˜ñ´ínñ[ôíœ/FÖE§|I3^·¾µÓ4«ÎĐ«Û.º9«KÄ•vCy_&z¤óªiÿåiÛ½ŒáÓ~Ó>Jọ́DvåMÓdMc*»AÖ¹¦ư¦¶ÀÉÔ”×sùôØ:³/3‰>Ø™Đëø§ơœê˜̀oWú0Ơ?ƒmÁ“´´ÈsÅ3m»ÎWæí›ê¦_ÔÓ‰¶̉•i]Ü‚Ÿs}·s"₫îT§ëW6KÆ£)Ï‚Ạ̈æº2µgaa{tŸê4O7åY’XĐÜLe·ÈjơœëĂŸE÷ŒưÖ2÷‰„gÓ´…₫a½jÚ¾8“]±»³>[ø!sÙ]èf2˶¯|¢ù˜º’—8ׇ¥ÿptdRÏù^ç¾MÂI©©½¶}壨yß_¾°ƒ+¿5/ô¯Ló̀Kÿ,Oçú«3Y]¼ÎǸç°z†cúƯr¬̣Ó-ü‰,ñÖ©,­t̀®lƯ´.u1·°ọ́2ö̃Íüë0­Kѵ—ñwÏ̀e®œ“̀c q1]ù=fa³’¬ÛOë9·/ÿ\Í&r­q¾iÿÍư·§ç±‹,{C§üœcM^V>ÑÊǸưUöóÍäsÎ33÷ˆ”y­eư`ÖïûḈ·©º7f6öÏÇé0÷1emw1Ÿ·}1ö‹Ï·(on_̣b /s{Í<–pni¬+a©ca1¾×Eûæsæ°˜Û»ỳQb÷ }H‹yƠÔîf³°K+Ÿ/-dB×ÜæóœÅoÚ­sb3Î ™XèƒøuS½µó>ÊvÁk§k!c;áư$F=O[ÅÏ6k¿^ÈơJÄÎ/Æâ¸đçç1<9boÓ´¼¹¯¸̣1‹Ø‰¹œê{YÈ|Zǿi9G˜ûŸyƒ7‹x–W»¢ÿÖ¾â\ẈbƯ¢,æÓ~>ïÏvgkĂ|ƯÂ,ä:/üV́!˜ÅüăT>óÂ7‹µ¥…̀'³èw·hŸ×=S[·.æÓñs  Ïü<ơLl{s 3_*«_>ơ³Vqáé\MÆâéÈ-|ڼ裲°­nÁëºđÓBßĂblÔµ³ù:׆Lơ¡Ù‰ùx‹³ÿ̃j•^n'dŒ›úD+[ñ:-æ†~9®̀ăR~a#sÑå¼1ë¾§±Íªsë¶Ë?ă~/‹ơÔ¢wZ̀Öß§¶<­âº¦1ñ—́boí Ïmk^̀ÿÜ¢íYëâÊh/G\Êüj­|¾·"-ÖÊB§ÓÂîúÅØ—~ätÍ[|…næ©}I Ơy?ÈÙˆƠÚÄ*´¨ç|]mS5ÓñÏ­÷dLÓÖk̃ó9BXÈ®[®Ç™Yɘºđ³,Ï >=ĂQÄœ¤ÝiÓpÊÓ<öáú§:†=¬ă´Ô÷Ö̉·qº} nö]Ö=ÁKaOÇ€:kCƽ?Ă4ÛoƠ*#Iù™UơĂù,©}Z—„³¹£<³ïûüuáz|₫)Ïä»q=Ïwo ̣ ªNMå ßË́;́é‡=ùĂ~È¡ïĂ}§ø ³4±»³₫“Øö”g8cë°ÍàIzgǨÿ’ú6Y*Ø8üΪÍú!•™Lœ÷{?M˶ß}3l»3]Á~ÜvßÏTŒù9Ó‡XûùÛaɘ3n{Bû†iç–†i¸›iÜ>]3u>öUÖ~–mPÏ ™˜èf™̣ÚÏóľsvd?q6~؆|¾ÇeÈÏ2µKØc=n;öÁOm›Û,µC™O¸ăeȳ¬ñ³q™¹œ%Ü#1æYÄ“zÎeB/ÚrqC~¦©|æ¾yØ9{<Ó¿8³»çlÆå™~ÆaXÏ<¥ÿ¦¼Nư.¨áøçܬo#ÎÿMê»"ßa?ßX–²ÆmÆăŸÑơâ©í™Ö×…Ị̈t‹ñ/OÛPă_́÷y ûv./µß5äg™áw%MÚ.gç¼Ñ­‚Oûh–§Ä“§c€ïge‡í ÓöEƯ—7Ó½³câKå…Ÿ5ÏÓ/|Ó€qe¨›©ß%4”ù2Ơ¿[7±ƒ~ê3„~.r§Ă}]Ăz†…,eœ;›Œ©~ê غal¿ắ©_—m¿×oî‡LôoÎϤggă»/úY¼“d2'IfæKù~öjÈϹ¾ç>wc³<óù‰AZIÚÔN„©\G\ü;ô½K?—5¬ËÜ–çù|%øYzœ}À³…™§}”û™Ÿ¹üÖs„Ơ<®ô»,ÇÚ §cƠX&ΣëRûÙÀWÊ|…Ÿ5©Kœù×)-ú!÷3…C_ÑNÇ[Ûχûo:hu ‹xAÆØ‘Gz[§ßñ~·ÉVb® î<’8Ñ́;ñ¯§óbđs(Kwú¿ăĂØE†]|7ç™ÅƯ)C9Ü 4ùÎÏæj­ z¦~TÏœpfr/Xơít.cq'́d̃˜§q†ˆño˜'l¹×+¶|*/º.wd ăåaÊÏ€ûQ†yføŸ“ö•©L̀‹'yÚ_²]¤̀W&åÅ™́Êe"gÔ÷qµß‰đTÿ–̣â1›´}*KrFe*/¸ĂÆăXÉù´SY2‹xA@,h’&gÎÇ:¦û‚¦ú§ăôgŒ©¿CÛÇzË»%gº9KK¼ot(»<'<Ñ?·°×yóÈĐ¿iÿMe¢ ̃:±­qj¯9nNx6W8̣…óÛYL|j'xwßÂ^¿s¸ÇsbÏŒ™÷ƒ™Å̉3î'óŒg¹‡å1₫9Ñwçfi}4́¿„X×$m.gñ™tó~_ÙO½;sbËÓbl SÎ y1¸‡|X^À¼c6,|†4•%}adj—ề?ë±tưAßÎÊ£œù=y:ØÏIÿ…EyS}ï÷ŸMô¨NyVÁ³¡Y–:]í\Wx¿÷ÓxVÆ›nx¯{í÷>íă4ß©ÿ2*/ó̃ÉáwYmÇ6´'ỵ롼Øç2x¾ q,KS]‰óïßÖ™´½Îú/ăƯ±̃ú~ë°Â4Ï€ØÚä;?Ơ±„øîPvñĐ4Ï)?=b£] ³¶sMxÙö!Ïl¿÷gØv*»lûˆŸ…±û:î#7M Ưf ¿ă› ĂưŸ5Ỏz\jø]ÅúÑ,ÏY]Jê};¬g)³ïl¿ÛnX—àgmàưÂĂïRsiq‘S´!Nyw†iç'üäO¯~¯â2O=£üEîK3X7ṛH_@ˆÆé>…«íÛÏú` Ö^…zǺ-W(!§¥^¹É€ ©=«Âû*- ¯¯̀Ñô¦lŸåxƒGP’Ô;åœ4a¢®‘ÄfUOÉ€•.+Si«!ÄD»h{q´Ó+„f¤Ú1äÀb!́¢)„ 6Â+yI8©d)ÔÅ_=›§0FC~«^©A§D½dD '̀ v•Å̉‡fô€–đ¬p -u…ÄưjYfåAœ„9‘˜öu¶X–®ú´©̃¦ q„,Ë­(W̃0•kù<x…[Ëla58p¨/ è‡Đ…©V@f¥z\ fr½$`0„øÖóÛŒœ½#DªcVĐ²ÎÄÖ ăU…âñ´M†ˆ ,ÈÉYI„å9¥Í„³ X19UMáû 2¿(GÈ‚"Ü€ œÀŒù#:Ô÷p±cVŒ¶83†¨³jJƒYfÅ™) {2™ó{ªÔ9‘9´¶‰pt‚:GîWK”œÖéI…:ûÑ 1`Œ€z÷n‚EâDbâDb5́‰ŒåÛk‰œä“‰’0sL2`>?ª–È«MỈë€(Ȳ ‚&X6¡â[Ëo+¾5y ñ­ Èw tÚ÷ụ̀ 5GÈ… !!„ç= …ÄưùfåηÄ*䦢l ÏkX€ÜTyn$1/f Qn`AÜÚ!7ómˆ¹=E‡ÅÈ×"íÚ‹TļÜ–#dAÜ…f™UAΖYq=O‡Eyr‡OafB¾ yyr!ä;4$¶¼:Œ!/Wv„¸o13+^Ë »‘ú«G0›O!²B—%ôïDV‰ạ̊‘ÈJ̣ư´È‚øôgdó#nuR9fÅ»ªmC”k™sF YÇ7m ›À«å ¹‘ÁÉ̃ Ú¿ÂŸĐ¡V%A%u'Ä2+µíÀp„IaÎ/‚P â´ÙÓqµ̃Óædh¨§©ç{¾J2ÅÓgÀªRƒ¾"Ơ»#´€:hẓ§s,Ư¼¯ÏzZ$Ä.,Ư¼'Đ:ÊsÆă(ÏÜèÈÉŒ8‹ƒ»%ß–fVCŸz¾åÎÜxDV‘9kï»3' ªÉœ‚oC'F­B'.€̀¹‚س’Ä^[„x©Ơ'>Ÿ¯qu2[ú|~=ÆÑæ¼B‹ÄËjûî´u´H’ăè<…ÈÙđ[5–ªÁ§q4 Â"Ơ,Ç̃/MwZ ²*~=¾Íl‘Ç·‰åz§4†©ÄZZ¤‰µôT¹cÄ̉ë{€,7 ‘åä#² éYntCÈjèxdépƠr*ˆ»YJNÁhe©’\Ưµt· .-·´“ØKmíY6XgYç„&XöQF­CälømFV&!»LơÈœeCG_ừÓKĂ ÈZdUø­ê‘¡%äÆRCa¨đŸ ;ô)D5Đ¡OaP{V¨Fô€:†ú ƒ¦¡Ù|€…µẦ«Â 2́2×ûD¬Â*;·Ûê/n…oĐ̣[bSÇ̀1åaZBÔÙ°½"í¦²Ë¬°° ¢ ¦Ra+n[®t0ôâ…l‘H»¼WÏrEÚM¥ơÆ©S©́x¼»ÁDæ$T#‘ Ơˆü6áÛ̃evâ:„,(£ @NfÔ¹w·̃ƯT©¿WqƠsï?†¨•g3ªÑ…!£\Ï:ä́Í:ö`ñGÖ9æ\À:ÆƠploA5,+YQ%¯* ²́²¬º U4PE…¯Ơ½Ïư1JS0²'¬5uNh\@SL: 4¨=nPVسJ€‘©óÉgÎŒ¬³â,•¤º¨ÄY…p„-RûœT˲’Mđl~°CÈJđʳ ™• ́Y¡ Ç:‡2„=+´È1«ˆj8V2¢\gÇƠ°ädôGˆæÛ 2LM(Ȱ ßæœÂf½”¨¦1¬€äsÆ FƠ!™#ă‘ɰ9ˆ›Âº ©̉e8Û|÷Ôä³ ©đ«[ ˆ¬Û[‘Ub¹*üŒœD"Ë­(b¦±Y…MP‹”s3™R‡˜›É0A‘³™g¡EAYYT̉³\ bÏr-ïí²\‡JêTkQg­pS«B¶×¡ HÖåL¦˜Y(£=rju¶u ÑË:{äl™•GV¦aàƯW¬d@5ŒBƠ”Dóơóz@2VG«D‰}€l~·%¡=Bœư/́P½Â#Qbm¿q-×#,/Ù !ËÍv Q«̀₫Í₫QÉ́Í/È*Ơ1¯Û«ĂS‚+ΗÓ2«z¾a#s–™µ@¶·¢V‘-ª(¨khÅU:Æ­# ưÚ!t„n Á:(»N›ªƒ!0 E¹:}H:åR '±CÎêṃa@Đ#+ÏzÔÙ‡1dVl s<똕!D5\CdåX«9»´„¬s¨H•B0'²ÎÊCû"H§(Œa\BºLlQ¿¥̀á@ÙSè–!ub40±ù´ º°~Ù^Z†̀:Ó2d7†tMYnD—2‡v£Ø#ä·4#…µ¢)e9:W¶(cbb˜3§–†¼âỘ1ŒCXÎ÷´bneXnAζ§â[ËÔoÛË9¬sGHæpëÈvNZ]=À®ÎœĂvu®œº#ÔœcŸ´BËBđ*tbNZ ¯(ơ!̃8z,G¨d¦“†ÉŒ!*©Á„•e“9ơˆp3‚¸ùV¡=BGˆœ3ë̀Y*æGX¤6™s+¬J›ŒÈg} 1‹đŸ3§‡z”)W°£ù•1Úc˜Êez‡Mˆ ™!L ₫0+†h™“ƒbV ÁŸ̃Ư’)`F,(° ̀¸sÎ ÁÙ#$7̣eDî ,((‘ߦ2„Ơè=XÑ̃̀&Tđ*Ç1¼ *¦Û,"Óÿ„¡­°Ë° o* Xg7•Ê01¦b2ÜÚ„kq–!tG;ǽ³cVaá8†Œ?›#´„Œ?“ØăÛ`‡aL¥ñ¤áή”zØ?15^¬¤„ø×xÜƠTFó°do*)©Çê+›Ï༮¥„ă\\›è7qå"%¬áª—û/ ÖSz/p)ªs²"c7Ö ø a r_N‚ˆæ¾~û·\?JG˜ Q TîËI`®Ñ đSˆ¥™Âj8÷°@Æ»+,w `ÁÚ³¯Đ Oa~X¶ë‡‹ …Ÿ{ »,c[—üRƶ(®¦Œ…*Ë9]îk¸– 䢭íÄ\—$c¹hkùm4ë¡)÷•ÖÇßr¥Ơ³’1=,¼`yXĂ} –e{‡>†éa±X`~XJ¾€l/^ËÍ\†fVÙ=,p÷sª–£Uîë°]62×ÊYnFÎ…ÄÅ<¬¤'nQàWÊ´öÜ¡Ơ<,èË.́v€ :o$€‘)gGƒ›9Y°ÉÄ‘u8²g¹7q«ÀÄֈȜ=ˆS:Bäñ-‡›9Wÿ`À>Â&î*ñ„ÜUÂ:4°0瀬ª=B±5¢̣Ûˆ8†9'nŒa¹‰cøm†ËJ&́À±l`˜‘Ug{ƦÇJªqóœLqÙƯs8.8¡îéŒq̃Ÿ;¥"«Èîæn¥Äo+¶út>?†Ü¤Ä\g÷t™¸°îÙ ;3=GØX ‘U!±å+æ̀ÍKgx±á*qƯÓƠ¾Íø# cˆƯhDx2!Đ¯°fÜB6€Ø†>â}àØ]ûÆyîd‹GسÂö3׿Åö3GæpSœgóùDµgÎuöü6 +̀aëù­d–QçÀ:'T£÷`æ¾>gnäcÎÜAW˜3wĐVƒ[æ [TPZç»Sí—́ô.ă8&!sæMZ†Yñ̉Û³âvJÿfÓw±ª5ëlDôÑĂ=ÚG<.k#ú(›~óNˆ²é›Z¿å{ñÊØ~ä+Â…x¸1Mm]6ç‹óX ̃O—YP¸Øûp;X±CQ®Ú«lú¦ÖjÇƠ¨lBD{+™Ă«±*«Á^+›°ĂÙ°½‰›‡Óª 1¸ÇCú–ѼÄîhË‚2²ê}”Ó ê¾ F{²é[T±;½€ÅSËE¿JA‰ XQ܉Ó:똒±_"ĂèûÙr(ƯùÈjå·§¢ÔË—Y*Îhqf ÍưpVè0?ÎÊ:¤+´€ßF䑘pü ưt pœf„Xåsæ9/´¡NÇ’gLœ¡ z A\Y kƒx#ç,üqE€e{Üsœje^.Ç©VÖ7đ&¦z¤&æp¼-ưpp&q¿ ‹å&^kĂoycL"EÎqÄÁ© Ç=̀ruyEṇ Ñ¢Ô/#S—)'Tä\## á¸“ü)…uœ>äÔï;Å(™P.ưö~Ó‘çhơb₫Û Æ ̣ù¼dbjqb*/¥AwgÜ}M‡9« ˆA¤àX=ƠŒ-ÜưPgÆVjh½±ÓØñ€FÖåÔ²z_¹ö  ¸GĂñxNæñơˆ¡­Ë—̃ s4æ…÷r̉ä,(¸©GÁéo¡)£Ó¬¿ưüËƯŸ?Ưưé¯ödOŸ₫yr§O¿4. ÿé/;íZfŸ¾œ₫đù§Oÿj©Ÿ~½û˧;3 0s=‘WóV.·̃RÜ7xàtmßÁ¢̣è»̣ÚM̃}Zp¬5qc§…v$n°$û¥ ̀å1̃,•ýÂñˆY?Wâf1ÁṬ n?Vcaßbê»m3ÏÂ0`k™3×S?*"Ñ¿È ¥b̃¶­Kfî¼^³²”Y¸ÈđöY9/>êócb}ư¬ṛÅhg:âUó₫̉e\Çé$‡èÚM`À§öeú>»L\`jß©KçÜ 6Xè$ó@G¼œæÆÊj?€–9ëégLnCæ¤>ó/ëü ü¢w;ưûT Ø«S‚hÄÈàß_ÿqúûé——̉<M+̃úhú¡€/wÖW¼‡Æ`*± ”L?‚gê—µ ơưù·A}ÅøTÓăơÉ <;m§}µ4,¹?¿u]®­§în‘ÛnŸ̃@w#™øúưwưw_¿ÿn cÖ8Üœ£K€Oq~Âⵯ—øL™|gœ˜q¹yṛsÍ”œ×øÆWmæ´²«n~6×i+oÈÙë{sÉÚ9ƒé0‰|y=}ûú<ÇöëY°ø̣-̉u]W¯™w#½ưö‰+¿é ¹^iIßĂŒÜN ®×„k­Ó ЬÁơ¦ôz]˃e…–æ̣©½¾;oľ ß•"t­{¸pŸaOê‹ôyđå—ry³2¯í/‡4)ó-_Jœ»iQz-‡̃£)×gû–¦è ^6ÿzM¹}7J\VèF½̣^/ K#u#¹½oŸiçb|¼̃&<ÓÎÅ@v“v¾iBzíàđŒ’]k/®÷ĂodQ¯M|΃¿ ߯7ÿ7ÊözoèF}}?ê ³µç€Ư$\´—߬Ă’k-ÔơC̣[ü’ëÇ”å¬ôÚ)ë3µ]FÔnâz û¿¼Q¯¼%1£Bu¸́ÏeSûrƠ+ 1y&qÙι"­™p#Æ/™p}â3í”·m|íh}VL®fü"±ô‹{ÇövÙ”ë{eÁ„ëÍÛ3½dßµí\²ïc|̃^oo¯¯Đ{”y3]Y‘s{ n2,ßÈ`ÜL4µƠ éåЇN¯çĐW̃dR—ƒë7W‡÷05××û7²}Ï ¿'µ¿Qâơ]ö‰—ç#¼̉₫vL¸‰gü&‰_‚mvµÖ²•ó{#1y—çĂ¹YkŸznûđ¦Ó·^÷å3ÙVÄoWq½!Ûë§Ë Ê[ÚùöÍ›r£Ú̃ˆ·ÏI‚×É©{%‡¼×÷¼­ܪïÁøëË\Jß2ÛÛéçơbRt³˜#ñ+1Y³ï=́Ê{3›°fÂØw#½ƒ®\˾ëḈg—¦æF#ï·—„7YÍ÷¾•"͇6äZ\?á_»̣>£à́ÚÎ~æËýÍ»₫̉Û`wÙ+oH¼¾L§—‡y}?óëVϪ…§³«[1áFµ½¾)7’„ñö-í¼V†̃ÄÛo₫å;IßƠ}+1ù]™·›Æ%oÏ?Ê܉?LâùƠFùÓk_m¬x¿Ưé£_đó†_& ËëÇqĂ ß &¼ ®¯¬¨¯.[ÿRdÚuX.³ỡÄ9&ûñ~,8(¶æ½pîơ‹¨Ÿs1øåÊÆoüă×*¬œ́`ïp6*̃‡øBœƒâøÍpUŒøÉ‡Ç₫>JưÓ}4Ä øœ¾ñŒ±Đ[9v°ñc<:T₫ÛÏ¿ÜưùÓƯŸ₫jOöôéŸ'wúôë)߇–̃₫Ó_ÎÛ(‹\úéËéŸÿxúô¯–üé×»¿|º3Ă“ê2ym¿1ls̃/wrSjev÷“s_ä&"Ïànó‚®ó©ÀE.js¦€à26CË Á^G\Æ8Y°Çcƒ\(¸Í²âˆÍŸ‡/™cœ£•̣Ó4/Üjưây3jÖúGNJ²«TŒ¿×ïMÄá¥Êü rA ư³öç¹M†,¾÷Ú₫VÍX‰‚»µ§Ëm§VùEŒÍ°©g¯½`󗫈L7† §Ö̃V ăX'Áx/—•¢₫rÇt₫ss¹±ưpP¯_0¸a®­µóßè 5µÈøÙø!8è÷ÖˬV0œa«ŒWlØ_rƯAƠnEz|Ÿ{·ÁPÊọ́PÖüm¡åX¹ƯJ°Ó`·,Vô`3Ú^&“Æ+J¹#rV~a1¤*^ø™…­ÀÊß^¾Üÿ!ưcä‡à„Íø‡¯$ƯkºHœpx¬by8×'yÜ–̀/œ\ơú?è‹(ëßNÿ>Y_¥ú¶af4"Ûø÷ל₫~úåÅDKŒƠu}±Ä±„¦̀ø…?>ẃ‚^ṇ¹Ó?Ægú6u₫ù·AÅnÙ–½ˆlë‚úô6®¸o8^Öc¢^"ôư%¾ UC^•ø•›̣’ξo¿e;o,·«¦¼‹˜|8̃¾C…®¯m›c n³¼±Äߨ?¯₫̣FưùµU0Ä“²¸è“D«ó§¯¸,S)˜'&ñÓ¯i§o®ùÓ/ß̃”am—ư¢l‡í¼-o¯gÂ’·k-»¬Ê$êUz ă¯gẬËë́Î~ ûn¤¼ß4qéf]Ÿíơ&ơ=¬Ém%á êp½‘ºº̃&\oR¯çĐ¿ªĐ̉j®-ơƠưy#öƯHú̃ CW{ŒcÏxÉ¡œ$Ø,eæ§_̃(q)·-ó^éÙÖÑă?/ªĐƠ_6EJ¯äĐ{6åúl¯nÓ%‚¯×”·³ï+'¾¨B7’øë•÷ơ’đ"#ơ•åöF¼}É—ă!̣í6aƠÎñXv£v¾Ưº~tX‰ÉăzoüÆ&ơơ‰/Ơ܆ñoĐo3®\áƯ¸³¿²'uư¤íĂù`7 -gè7êUâơFê ẶƠ¾ÉơăÊ: ûú™ë‹j»,óFîÇr\N¥oäß¾ădækKü›¿¼Â“úps¤7¸^ŸX́ÖÍOŸ*º>ñFó́e™7p¼^À̃̀¡7¨àüÛ¯,Cè2[í"ö&ûgf|̣å‡K¼¾)d¼‰ºẹ́4e'₫î—2ôiÙ’¸»l'nÚ‰;q'₫¸‰Û3̃‰;ñe‰ËѾ'f9Pøjû£$^ïƒmïí«0~KüG;ô=Öoä l'b+̉Nü¯·&;q'îÄ1® =Œ=fĂø-Ù·,s÷çï®?‘(Jåø!˜đûJ¼ñêơ’đ3ºĂ}5Ó}ŒH†>œh₫(fü;jç †Á%uz÷Ưëë} ˜êôËzàQ¦Üé¯û²Êex¯kÊ åÂă«Ü'Æ…Áv~éäöºWe»¬Ë”»óî¾>Û₫e–+ú¾ú—7ê•7ôg•«¯êÏaS^ôåªWÖb²J\·s¬H+&ܘñK&\Ÿ¸j§O£­/ªíƠŒ_+¯]ØÛeS®gü’ o0o+Í^ ơëÛ¹dß‹j{̃¾Á̃^]¡÷(óFº²“¥€]Ï„¯<,ßÈ`ÜØ̃kKẸF~|u}¸qå e.×wP‡÷05o®÷5¿²í{ÉĐñûRû[iÙƠ]v=û|”·Ô¾q;oă¿Aâ—ZöáfW+-[:¿7“÷py>œ›µô©Ç¶¯wY•W]®ùrm^Çơæl_?=XŨ^¡«Ù·lÊj{#̃.ÛäÔ½’C¹èẵ×nÚÎwaüƠe.¥o™íôó bbå%$ñëÄû̃CÀn¤¼·Êv)·aß̣‰×³ïú1{¸¬Đ$₫$áz«ù̉·V¤áĐÁ‘W–á^¹̣ưy#»¾³W_cod¼^X¶́•7'^_¦ẉçׯ¾Sơm™p£Ú^ß”IÂx{}¶×ËĐxû_¾‹ô]-C·“ß•y»‘aó¶ßĐTGeîÄ'ñü4¤üéƠOC«ïâÈ/đço£•_åY¼ûƠ±×wxåùƯ¸ñÆo¼ñÇÁÉÈܲ‡w«7̃xă7̃xă¿;ïmÔ»gbÜxă7̃xă7̃xă7̃xă7̃xă7̃xă7̃øà*ïđ:ëï½Ùxă7̃xăçt_q¯¬Io¼ñÆo¼ñÆ7Áỡát°1o¼ñmq)rñ¡`7~w<:µ₫ÛÏ¿ÜưùÓƯŸ₫jOöôéŸ'wúôë)߇–̃₫Ó_ljó5{r¦ÈƯ¬Ÿ¾œ₫đù§OÿjÉŸ~½û˧;ó$S9 o³“SÑz¡B•ĂîÙª1vî>êá†MÖû|Vl48êB?¬WïmVƒâro® Î÷¦*®Ǿô06®(äü¾~¯åµVT¤C8““ ˜´|¤·úE­_đÄ÷4ùªØÜ;I7r•́g½Ü3úÆÜr_4=ÍOîJÄAŸG¹ØHz`çÄ|Ÿe³¾»ÏX«·bË6Uöô“̃iđ¸xâ*Ï%¹ƒùË Fæ|ؽèdÛø₫}•{œq÷ΰ=rͱÂFà*X»í/åd«^¥~µ‚m-r5øI ù]²bæ¯ Wl{Đ;ögă¯`´§ơ·Ayà“‘Vçˆ+êk å§D´Gë#̣æ´½®g/ ÂÈGĂÊÄúæ©Î"&À)(¿c&.AûơoXû×I6LÚŸ¡ôï%¸‘º³Ṇ̃*±°üj.¥×ô&O¿ƒ¾ˆ²₫íôïÆ#Ơáh¤Hüûë?N?ựb¢‡›+Æêú͇̀¾Ü¹€kR€?ẁŸ;ưc|¦aăPçŸcíÅ¿b·̃ؤֱç&¨̉È-ÑUÊ₫sKmƯ©†—€üùNdRî>½H´ç/婨”%6ABb+=äGÙ¦sbÔë¤/½Ê R› 4E=ääY&¦¡¼L-¢'L¬÷ù˜èEÈèƠ@«Ô,›ö»G‰ÙÊpŸÀ£fq¿(Ψ?,tĂƠ¨b ñFª ́P2,dĂl­>T}^ËXb¹ØYp$ÎY±íùiy–¬X”gi‘₫¢8û Ø;b–‹ß0Ë åaD*¸Â¯á„ï]//[b–W:fyµcy¦:¸€µKÄ9)¦ûàQïí (ÏËÀ¬åy8½Ô?ÈÀ ¬åµ–XËÓWÓ€µ¼Đå2û÷:9‚5¬åÅû́‰µ¼Ôù¡\‰ÇßNV1Ë‹(/ÉÀ ¬åå̃ÿÔùÜù—ôÆï6B™î1â‘ÿ åéÍQÀZ^ị́—ôíφcÇ¥*&¿²”'ÖÄ'b[çB́x”_u-S̃²”'# éßgŒˆ¡—ª#`s×W)(Ïwù,(/ty+(/ˆIwR<’Ö XË‹÷1ky±ËWEy©÷?<º†)µÀ,¯¢¼Üû«¢¼"l©áĐ¿×‡‹\NŒAFËëüoXËküïéZ^eù Á8–ÀêÊ[Ăê¡zhbÈbÈOåơ?–¤˜ß[-¯áÔ±–gé¡!©Ïùe¯†µÄZëù;”çè1ˆ¡HÀ™ØÅ¡§kyƯ£CQ{~,̣,†"£¾«£½„¡Đúụ̀L§đ˜J!E1́¡¯8zb-Ïöö”×=`1$èŒ' {ô<41,è×饼ֿµcơ˜« ÈÀêVÚ‡fH ç5…X·gêWĂêAʧ"<ky™ú&† ºé˜'ôG •¹đضĐx”5¡¼(Ư¬åEk`qªD-q†¾Ú?=~Ø£Q^·ç Ë J́A vE1û#£Â?¨•8]ø‚µ<ÿG±(. ÷(ÏC;ø#%K8Bp fyg̣̀ÎXg¨ß×|¢ÙÎåUb–Çú…^^ Ä‘ơ/ÄZ^€üèÔưcz₫•üBzĂ®¸»xÉïˆ̣́¡¬́ŸNŸèO%â‚₫‰‘˜å%ä—zy¹c–W:ö¨MẠ̈GyN(/b¬7äÙ÷ïëA³†Ê{ Ọ̈"ÆgÁ₫ù—E±Ô &âDÿ-ky ö„Sơ³~a¶ĐWÊ[Ñ«¦E¿=±–—1CaÈ‚̣Jׯ¢³*ñï q…½IÀå•.åƠ^n­Œ ¨ăûVqbD£ˬ³á”ˆ%e,ü9Ø "¡cëø*ØĂ~C^,ém8wú„ñÀơt-ÏăºBud"ÆĐ[”Gÿ\Œ?¶cŸOœàky‰̣,Æ»l‰‹yđïÔÑ ?•Ÿâ8`|E‹£á1÷tÿMí½àhu¼×ñP°F\ ûGB3ˆ ÙN_á ¿­Á>ûO‚ü)̣Scù"qDÄÎtú„ˆú·á\5Âư¶₫üÜ̉ÊKÿå¥^ŸĐo+'Ê˽ÿđÚº-đ¿kyåáûê5¢Äü£F̀líưµ<€ơtĂñ áæ †|ZU\xb)ÏÙ‡ü¤<çÁ̉PWV́=±³1₫4¬å9êKĂZị̈–PGDNS§N¯åù./¹GŒa¯lFy₫²`2ôѪc&ă[Ă d_‰µ¼Đû;÷1å­ ̀ŸvÊ£>–^^pĽ¼<êÓ¿gy¶ă‘FùåơñG:üÊ=Ưƒ_”¿̣<ÇéxđËöôŒ₫ÁøƠpEÿdå§3(ϱưÚ6ư¡+`y¨> B™:Ọ̈º¼8ƒ̣8?̉_¬bÈÓÀfë‰ûE»•X#¦•㇄B ä»§K„WØÖ¿ÏI1ø'´›P§åYF̀µaơ!BOÁU±*Äúû÷ úêû÷Z^¤?#ŒE„Ÿå{”ákGÔÓùúYí(ˆq –ˆ¼í₫_Í!ÎÜ.ç‰+æ[§—ACl9_ Äó-ø7́óüKpÂ|Ëöô|1ßbLQ‡äQ¡|5l1ß"}Dü ̉¾40ßb₫ñBÿ«áŒùÆ÷†ËÅ|Kr3˜oƠmyˆö˜où?Àø)Áa¾Á%”—诸„̣º}våÅ._ñƒ>̃5¬ñƒHûáéößqÅ&ĐuXá‘ñÔk¼"ĐrŒÇÚ熵¼î¿6́1^Ç.óyă¾O˜ßÁwå¹^~AyƯ»ªññ ±̀çÅÍÄó»Úéü‘Ôéă¥?"aeø”'Ọ̈,ÇoPăY‚µ<Îơ± ̀ÑxŒL«qd¼̀g¯XçÓ‚ æ‹°Ï^ă1êeb››=ü7đÇk Fư»#â}°‡̃¢¼>₫Ê+Xô8:ß́ØÆ‡ø¡`o.üφCx˜ö‹èeZn‰3ü]đß;”×ưïQ^¢½iØb~ yôºâ¥óSG8?Ä₫|éô₫|îô₫<û'`Å.r¾èÊ‹ÔφüyÈ_ĂÁ_̀'|À|¾Û?P^èü (+¼̣’¤áüÔ[̀ØŸ\ ˆ× fy˜ùˆ̣<Ç+y™ñkÊ_Ä|̃÷̣Êó½½ åuÿÏ'”×ơM^rÇ|Ñụ̀lÇ,Ïôï âóµç_Ÿ‡ưóå¹^¿Œ̣úǿñŒÄó-±Æ\çWÆ|̃Q}îåQr/₫/ˆ¸̃óù>̃û̉˳åQ̃K/ú]0Ÿ·ô/<ă1}¼ñŒÇX¿¾¢<ÛÛ[?è₫¹¯˜ÏۮߌÇ0~*˜åÁúøeÿƒù¼Åzˆ`–ưk˜åaüm˜åÃN\ÿÉÄ,ăo0½<ø;Áọ̈\_u\o ÄëM–˜åßÁọ̈à‹øÅúàÊơ-|ïzyđW‚ëå¡fyˆÇ‡ù<×Ï'¬ Âß \Ñçz›àÅIŒ·Á#~Àø`Çơ9G°¬} åöđˆpưOpáz`"fyïBèåA^BèåÁ~„€ù¼á| „^^®Ä,̣B/ăˆίB́åÁ¿±—y ±——=q¿`/CDüÀp¾â¹”Íye½÷̣:îåuÜ˶Øs{y÷̣:>–gE8×#>–ç•§ Ó/êÿÓËö•´._lÂб«ï+9±S—âôӦ؛bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)6ŦØ›bSlM±)…b~¸ÉétÆ›â; H8s¦ ̃ßÅy37)ˆ¿:ELG˜¾:…\.§QƠ]PoM±)6ŦØ›â¥îHܦØ›bL‘ṕ™"ơ o7ŦØ›bSlM±)6Å7¢pùHạ́¦Ø›bSlM±)6Å÷@́‘"Ø+(̉#´)6ŦØ›â£Rä₫€!)ˆ7ŦØ›bSlM±)®¤¨¯H Eí×÷{̣ˆ¢lM±)6ÅW¡pç‡̃AÑñ¦Ø_‘ÂÇ#…›bSlM±)®¡8DG;̃›â«QXyió‚‚xSÜ”ÂW«;̃›â+R¤r¤HeSl¯IáÏÏÑ‚xSlF‘Ă‘"‡Mñ£PDy}ù‚‚xSl¯Fñh'“{²“é;£ˆñHă¦XQd<Ä~¦Èư!øMñPd{¤ÈöcRùơ‚‚xS¼‰âè}–'̃ç¦x=EzÄơô„ëßEÍGdúhe¤>Y©÷¹)rÙ oîƯåỊß"<¢7¡(éHQ̉k)́½=P¿EˆGd wïÄ o₫hq½¿7—ú̉ñW§8Xº_E¶°ă tïơ ~%E®G\SÔGyÔ'y¶dÂà—½Áǃ«¿04Ÿ;>3ô1ĂwÈO/«÷Ûă}µG—ƒû¢7̀7–Ư”¿ÏÓ¼‘½—|¹+å¾ä?wxæu¹¸#ÿóñÛ3gŸ©ñ3\]öd[ïÉ<[Ù)ÿ´ÿyµơ³´¬Â0­•§ßE½VfyÚû2ͳq-,êâfiPúq¿/f̃ö”çm(3¾Ïfơ^×ùweÖG1ܧ)?«Nf|1³ïZÛ§}Ôä,̀ø̣̉L‹>’ICëF[|Wu>N³Z̃8Íë²À8Íé9ûÎNÓĂWu™~×Ô0Î̉̀"­ÉüŒ/­ÿ$ 8ûN‚8ă´¤ư>kC™¶¡ QaV—|o¶ÀNëÙlÑ¢ß}•—ÄOë9/¯̀ól|)³¾Mf!V'³<Ă´ü¢aQÏ°Đ‡&KÓ<Ư}̣:´Ñpγ2ë÷ö]ñ…vpÖ·SYj̀ÓöE°©˜êfÖ̀”×Ó¶·_§mđ÷y*Ÿu¡cAÇÆY=§ö¥ñsÎs_}4í¿&×aÖv±É Û:·Yé̃NÓüÂ~¶ñvªcfn[iÚ×íÉ̃»0¨§èí8-¨œÓ¼úDă´¬áqU[7ûNĂÓâBÇ’Êǘ;±ÉỌ́¦í+÷6̀̉œú`S{=­‹UÛ:«‹èج́¢æư‡EŒqtsÖ·aÚĐÛYûêB̉B–Ü”×ei'æüŒ÷i!Ÿ~!eƳfÏâ´¼pï¦í ª›S~.lA˜ÖÓ,d̃«ÿ2LK8"7n_ăˬÚwq¡+qÚ¾:÷Ë“ÑiÙ¸<«cÿ¬.yaăt́OK }ÈÓ~Hê¿LmÏ4­̀ÇM§ú>ƠÍ6VMûOlÖ´̣Â&·?NmH^Ø‚4ÿ®ư1Lû¡ùÉÓ±¸.́™SÛ3Ë3OË+ ;áævW|á™>$„zg}4×i¯[tfzdcÇ|¼- Ù:w·Áé…‡ÓñaÊ3øDS~®́ơT^ŒF×fmŸÅqa üÂOK;/₫g¶:„<©§èĂ0ḾK˜¥e½B{œ†m}«1n–g¦ơ1gåÍÇ•¢ó•qEµÉ³<Ë”/Yư1?›N§9¯%.5k_̣º,Æ~§¾Û¸<«v~œ§Sû2í¿™¼D<9•‰i™…¾G7ÇßUfiiV^̣ {]–ú0—³ ²4ăY\ñlê‡ÀÍê2¯¤?› Æ?ç~rëCû OùRTWf¶§Le0-d —×Îê§úP–ßMưù&/åÿgïmz+É‘®±}ư -gïä7¹cÆ€?< ă]íƒê¦{á¿ïdœĂ«›¥ŒP)U)]UVé(øŒƒ©mŸWT;/›ª êrm‘åƒ5ñ´úªáïVƠöØ1¹¢ÚÖf®ăºOôr¾$ÑÛ}“X—6¶úºơj; {¶¨s@’ơ‘&/NµÉAï_vÆÜŸô₫u~ó´ª·1Guî7æ[UWúYS‹2Đ́’ê®üTå…}ĐÆ]Ÿ\ßWSÛâU™ˆúÜØeP]Ë$©Oơ댹Qµ/  µ>è²›M¿\]ßv±fÍN¨~r÷m´uqöºÿ̉iê\µˆÔÆ(₫R4æ#k~oÆ|´¨vk„]Z,7ƠæÛ¦ê3|v́i¨ó¦‰Fÿ¼́hº¢ÏÓÖa•ĂÏ̉}ïÅX“4g}3敨ʒ7æ£,1+Ơ3|)ƯÁ₫»j³T{¶̣E£"sÖ}~¨"û²kùu–>8½Á¸ư2ƒœ®Pm*YæTmnj™ÑXçdC–cn z>să ?ñ‚ ³ö¤-ƯÙ§yÙÓĐ̣©ë•>çk}ƒø Ö–dجEµåÑ´ºïưŸIă§¥+V}}m¡ÊuÖç£5ßbÙkn4ü³̃÷ưqp2ÿ©2Ñư ¸¨»ùúVCÚ³ƒYÉG›¬•ÙTZOSïÓÖơ{Óh bZ²̉êØ~>;É^;­ï±™}¾¬₫¼Ï!æ¸KK—Ú§eñM÷ëă^«2F²¤´Å©¼vˆ+}÷F>oŒ­Î—û¢ _²ÆëulJs×xqß»njméûNY‘̣e_°®̉Ư¨}đë”qˆêe½¾.»F}*­ïi¨²±Ï¥Œ_TmÇ”Âk]>öW4û¢ñ¬ëƒÓ́D¾Œ̉NUÇúúÖ̉Uÿñ‰4Z6Ê´ø²¨}ÇzEퟪ›Áh§‡ÏnèÖođS×w§Ûîïª:ƯtZ×#µïUÆo_^œ.×=f¥¶¥mIº¾½:…/ºá®j#5ù´lVŸTEẠ̈4]QíY4lΩjez•gYbAª-Pe·b]¬đE·Ü×̃Ídí¤É nϜѿdö!ú§ûu†nv¾T0æiƠF2–§ÚHC>«åÓªºYt™`œVm‹!óÑè»:Fk;u}°øYe®Ú÷[«îu©4Cÿ¸_¥ơ/i²Ûí®6F]Ç ?D—]C7óböỰ‰ô9Ơ’—¤ëƒé¿DÄp•vêsxÓ}›Œ+9ª½Vûnù(NÛî—vĐ̣[‹¡U-³˜₫YQ×ÀͲúw8´|æ\¥̣Ó₫D‘x«&K–9ËÖ©miÆÚÂXĂœ½Óü먶¥bïe7ß3k™ƒk=–Œµ¨å÷,†ÍÂ5c­º}AüÓZ;íó q>mütÿÅ›ó´»(8ªđSÇVy±|"ËNè~ˆEĂy>M>u-z¼§ÛÁ¦ÅÓ‰ØÜÍç ߦálŒ2÷ëótÔ}̀¾·k¬§ơ¾s÷ùŒútûRŒ9¼êöº,z,!ó̃̉î¸GSÇ¢1¿7£ú9k{¯Ç{́̃Їl¬«T»[Ă.Y>_6d{nê:ÇXă©ă°¶S÷'¬˜q1dÂЇî×1\uŒ3xí±¢ÄơqÈ£ViVǜ°YzüÚkKº7æâdÅmŒµ¶sg›”út_Ṇ̃1+ÎƯkvPƠ÷jÈ|6|öl®tÿ³1øÅˆgá¾ÚËÇÏöu])ƾE5ÖÓA_÷§—¹₫Qß·X ¹.†ßÊ3̃&U>‹á›&coÉù¼ăî₫ÜcĐl5Öê|Ä5Đ>Ï‚Ïz&¶mÅ£f[ ürÍϲâÂêZ­ÏÅêÈ>m1ƨ¶Ơ¼n†¯˜ }ÆÜˆ½3uŸË°!ª>¬vBŸo£n{,;Ñç8/¦Y¼ÎÆÚ0˜ó— †4֢溱à±²₫Su:Ù}_ÔµL5öS«ÄC´ưwƠ–g+>= Moơ}<ÛÖmk1Ö̃è{1b:É”yk¯\?[‘} jèt6́n0æ₫dú‘êw÷5 Ư,ª}ÉÏ>©ó­—3¬j[ŒvêûjvLuQç?oŸÉPiö·¾Fˆ†́zs?nÑÆ¨Ï©†ŸƠå%y¹óD>»¹Oă™¡E¦ä'eÊ}æƯ|8ĂºOƒ-ß§!n³_ß·ÙÍWṢ%µ̀‚˜ñ.û†J™r6tÙ¹ë\x—t7_F¬dVbª»ùđFÁn}}~Wóñ¿BëXë»ÎOœéÖø’µú Ï5ïѺϠѺƯƠƯǶƠ¾ó­R¦́Ơị́“¾2rp7ŸĂzL©/«ü4øRx÷Jé».gˆƯk|QieÑơ!ñM¥^Ơ±¬÷¯ïi]«{¦J™̃ é2‘17*º©–É=ư}™Èº )xÇEă§.ƒ8c­»̃wœÖl–n 2ÎhöS•‰ÅAÄŒ5{ÖÇ]k§.{D,éºIßTé_2x] {­ÊYYt9ësªÚ–€uÇn™{×ÊøuŒ ÖÅ»4î£+mÑçFœçSơÖ°=Ų=j;›iÏtÙz}ëøéóă´J}º¼đ½ …ŸƠ%Ưkrwn_øÖÂOµ̀¸”̉?Ư^'øĐZÔqÆ8£̀`đ%íÄ»wZtû’ [‡;êܨ̉»×üµëÆËY4lĂ{ƠỳđCº­SëËr×YëŸSçT¾I¢ØOƯ_â¹m¥>]ß¹÷©ÙyĂwsZ;W_¸ö36Y·ó{uJ[t[^́ñ3dP·!¸·¤ú *Íб’Œ5‚µ«F¾Œ÷´ơ‘Á3V ‹Fß«1î¸ûÿrÿo ́ë‘GŒóÅk­àm%ŸÎ3§·³à.–/¨¼^$ΰOË8' Å ¬±Uyæđ.Â뢵¥Ç?Ơñ+z\£ÛrU^°^àº?­OågÄû(ÚØưSyÖí§º6äûY ?uÚ‚·)4]Qy†Ïˆ¨ă¾²kÔ§ËKÀ=o¥ïª,ơ ¯*/U£Â·"éñ‚(± æ4¾œ ̉êsÆ\¥ËµÑ÷‚·%UƯ4́’.×¼'¬èŸ7́uQùIưÓÆO•‰*ñV­Ɉ£$cÎÑç•b´ëUÎT~âí¾Ûë¾vReïKis•jÏ’n{ îdï×u™ẹ̀bđL£n# .gAâ=ª4úgÙOƠgÈx“Yë{TûP yYäưV×Íêƒá3èqÚjÊK3Ö¢¢Ó»óf3t̀°‘Ưß5æpƯ~:}Î)Qo Ïh4½ïÍàY5uº¶N•¥‚oJh¼–÷÷hc~Ø¥Ø3…&₫Ë.ïNî̉ lRf4ú ²»KĂ[Iûẻ·Ù¥yØ3…/Nå ß Ú¥Eø/Jß“Z_ƒœ)ơµ₫Ù._"lƯ­:ø(»efgư<´Æë¾îWûÀ³1 Í«mÁ9c/Iẃiư³Æ(«}Xt™ïëw£¾¦­º,©º’ô|ßÖÑú̃ ™·ô½¨|ÁsM›Ú7ˆ¾DmÜ3¾¤–©̣3 6ª´S-“{Â/ï»Ăú]¡é6Äè{ɾâJ₫S»«̉¢üQË×÷Böixa—ƸÔ~¾&ûGj™Z[*̃˜×ÚÙ×ûùpîBkK÷¥öû€Aûù²̀9û´dĐ¢ÄTµ>$•×ø®Â.íú±¸₫§,—Q‚œ…ùµ¿—&ß́’«À_VÀØo"DY4‘6ơĵÇÚö9:ʶ”ÀR‰r“^ |±M.D ̀ Êwçú÷Ç¢À¶Ê§h$˜%q‡-É-PÎa-ƯơƯÀ(/[,øv`äÁ,ù̀—ñ]7|~I`çF’—  Kî™ÛŒ÷ ûÙ© (ŸUđ}Ơ¹+h&îă™ä¸% ×Níí§ÀB ”C r7A`”Qè06Â,°.€̣%ñ9̣.å̉{Ô?M„ë1ÀBئè@Ͱ²¨€Ä°¸ú›¡̀Ûí]Æ!Ê5fy©Z`<ö‡lI•Qó€°Jç·X Œo&¯0qà= À° a,„M`dbùvJ&7¼„RÆ̣ÅS\XPreâj €̣Y°̉*Pz$ŧñªT 8aPQTÈ€Tp2`P¡5G@é‘b›@4g»đ,â’Ú­ K–{Í*™đ¼^XAË: ÈV5T”ØŒ†ÄI*ÂfÎm`!D›åó• ÖÚ t(ª’ê¸2¯C3Äơ£¾è ä9‚“ÜÀ]f\ KH́Hí†=5vŸß^kû_Æ'đ²¢À XØ*áU£:GhJ£đcÙ€[˜€%7äḿ~C̃Ñ£Gb́¾-~ ¥UüÔÂÑÇ'Ô:¬„ØƯñH¾̣¼A`QÜf̀Ëb®ûc¬Ø̀‹¢äÄz'ŵ’ QoaÉ<áYY27¹+[•‘·21?âaŒ€|ܱ́¢÷d]ÙB–<¾Ä.T>˼|̀É2ƠㆠŒ„x<9 *Zæ\?­“̣>D«+rhUyQrfb~ơ(·}ˆ¢d¦Ky<ß{…(ª°"~d§²d¾ÛθVê(±Üùôd,̀Ë}%À˜÷ad#å@Œ§̣^¯§ âq.峌¯¿̣YÆ×ĂuéĐ²Íơ¦e Y²đœ43̃å¾hU[˜ö!Z… Ëæ!cz*ĐP:ü¶™¿ŒO¦àuU­j,Yê₫#d^9 (ü¸“eè  œ1 œáâÔ9`dQ2ÜS[ÁYÎÀ1*Øz£‚W(…›Ïvƒ÷¡g—B•XT]¶ÍÈdNẼ̀fT´*³ ¼CÖxŒQCb˜zÄK{èĐ‚“˜­øơ˜À|„é› *‚̉á±ÚhëàNwØyđ)DÉÍp(ª±(ÑưÈI¤â¤`¤Xqhë@¶J E„“ÿäùÊ"±+û°m Hl¤A®XYz~ÙBJ [ˆ’=KN(Ê·}ˆ¢Â²# KN`] 'zØßŒ.Ö›Y{”QTdɬ‹,*ƒu² ê]ˆĐ‚ƺă¢¨äö!JN¬¨¢¨Äá®hUjûEev¡¢῭’˜“ÙưæÀ6œçtŸB4«§§„ÇØđÉ»H…m˜C#]ˆ†I3RC!‹rht/ÔFê`l°À‘:؆j4Đ…Æ¢·¼ÁœVö!Ùê>D››qkj û÷åÖËgˆV$¾Ù Ä嬅ñ­#ø“m\gẃ/o×:V榅÷ëå3mæÍǯ gE|“äkÈzyCî ÑfÏñå}ü+ÄUWŸö!ZåÙH̃Ù»BÖKæđUßöaØB°.° |å!¸}ˆf¶™W¨äË mæWÈ¢Øf>ñ#6'/ă©™¼Œ‡̃®ơ‘É˸F> oÿ‰Í¹‰Í ÄD÷#›ÁËÏb‘°"ØùDRbE¼-œX{H,™oæºË²dVÄ÷P2» Á+±fyodOˆ2yÅ[̀D2;H¥»BgB6ƒÜàµî+D÷3ù̀Gu3»O•̀́>U²°ƒ|ưæ Ñ£â÷!J.́•Nƒ¬(îCp²° TºÂñ¥̉ Há/́…¿²Í₫+7*‡ŒÏ_a½Đ̃BtA¦‰́†¦\aØB–¾RqÄ'||°G¦,@7°íÂÈKÚô[¶Uº…mù œ̀t;đú~À—ëglo`³ µ¬‘íăú¿ß…Ô”o„¼=L¶ÇWöáx1îC·…¼wó²ƒù·½èLè·0l!Yvḅ­@̣Â0#/c è_yK‚4¤°la½¯(Đ=…ô& [˜¶0o ¨ó dQĐĂ²(–-t& [X70²¨@èM¶0na} l˜¶ÍHÁ„̀³Û°…q Óæ-¬[Ø,Xn[U¶Í(¬7–-l¬i ·EỢ¸-¹ù-dEyæ-¬/톫¦(°¼Ö tn ĂÆ ô‹ ·yưWy“ ·=̣Û6ûm›ư–9aÛ…à_·ŒÛ¢â6qܶ9nÛ·m [ö¡Û°…mó–:4tÀbÁ²­·l‹J7`6áW%W V÷è·pÛÈMX^·lÛf4&®;0^'>†-L[X·°m s& ¯€Ûf¸¼…Ơ‚̃™Đ›0na6á–Ï~Ëœ1•‚фɄÛVÅmÇDßÓæ-,–a@gB¿…u ›ó¶Í9Y³³D¨ÆÅöX·°½Öe ư²dGØ6°-[èM˜¶°˜p[/ç_ÙÑ₫¦¡́̀[X6Ú-Á½¶°¾¶ ¤JØ0§1á^a6aƯ@ªƠº-dE‰0o ưg Wæ4ôHƒa ÙŒH]¸B¿…L\w!}à+d›aÚÂl²œa%¦ø@GXMØ,ÈÉËs@© ¤jx §¶+ô&Œ70©M¢µÆ-¯$x ‹x )Ïrz'ç1]!{Ô›é^J¤7ç1]aØ…°́BOØ6 @9¡ñR&»OÛØ_.Ó;H“Ùª >G6ƒø ÁœÈfpmY/S‘ƒBƒ|…,*²(6’Bx…eé_E¶™–P6ªx=gŸBô1ä2LbÈeˆYQ¤¨ †\†éC”ø)s%.ĂßÈlG?§}M^å¼Ñæ̀6Ó0^!Æaá2́䢅] ¼B”\Ø#† G!´ ¤>CaE4Œ¥íC¿…è`ơûͨaRbkÙ‡,­¢Ô :XÙ*w#s ÚŒ`f̉~…àdc›iT”Vt@úÊh@c½bE ƒNV´0¬T!̃…Î Nạ̊\8ạ́0@á¼ÀoĂÎ ¸²Á [˜#``⺙—4#°¨P7P–´<Ă<^„àùI^¦»…è``EEÅe&đ*’W ya‘¸G_¸U1ỵ̈dæxĐ¢`¯°‘yZ¸đÆ ]àuÙèÀ‘ö~© m–Ư4̃Ƴ_Æ•¯̀³Ä…/¦UHlY†äÈHáûtªxÁv±HO/,́o‚CT/+³¢„;ùn7®›{62£¨À¢2.AËÙg!_V,—ăcÚ…­J~ Y/îPî.A7®¥'v7§sØØ¶ë°¢d9 Pü¸ñơă14Ù:ç· ºÄ,€̣Ä“ƒTđUäâÈvÇbœ¢qÏÇ¿‹Ç;Kø‚}«â8 —yµ ßƠÀUV%Ö›Qo`ɉ¡)wy8¼àéöÂÓà…_óàiđ‚½˜>ub?¥đv‘‹G ôà́ïp;Ê$v.Àư/ăU×âÉ:lUY²à›ƠøD`è˜7"¯¬è î§t˜¶0 '=Y‡/iÙ.|D€§² âüÅ“¼²ê)fx±đ́t¿¤‡Äu:”,̃uAX¸spÀ"öß.rÁs÷% Sđ50T ¨3K—ˆ7‚xí« ÄZxvz¼>ÀóÏ¡ÎY²ÜGæqèˆÄ™5@ñ  ¢y…gzK‘ă‹à^áß‚ÇåJ¤jàx…S >µSx0µ Vx0µ$(O“–„;â®iáçæx³$Œ`Äœ‚HQáéÊ‚[½'l† (O*ö—¦‚@G(#˜Èö uæÉ®‚€FáÁ§§P6QSg(<„P2êeüj¼t”¯ (mÆú·d\”(89_2íUÁM_.< V¥°Ge|SO6nÖE åªâÅ£BÆâwáz¡à(uá-°Â§èm|Q±đ‚U‡¼B̀V|G£Á¯+×ëëbTë"sY]ĐưU{U±¿_=ê­ØP¨<ÖXó¸ù+"ºw›ơ_~ûô×ÏŸ₫̣÷µ}Ÿÿơà>ÿ₫ k±₫Ÿü2NÚ…̃‚Ï¿>üéËŸ>ÿ{¥~₫ưÓß>ZvoÈ̉í/rßá×±b*Á¢**<´ß—;€cq=´ƒ­n¨ ×¼G^¾¬@đ÷‡Éʼï®çµ'q.>Nß™ßÄåíÚt]›¤qäK¤4í3fÅûüÆA×=x›waxIaÜ*â=ÄË/™÷†náÂÑy¼B»ÜÜgIôYQ¢GÍf¤z=ïp)r\4ȸØ8ÎxË5^4?{? ÄdƯ(Œ‘í8­~”ÑȱÑĂ.p@GG¤Ô]£a îѤú(*ƒu|ăj0öñ33i¬[Óă t¶=Yæ¡_hFÇp?¾¾Â#µ¸ë ±ÆABÉW1»₫®wÿxøÏCÅñû 'Ó̉m,~₫₫χÿ~øí[Ó<^MßW<ûjú¦‚_?ñ₫óå}E&ÿ ÔßÖ/´÷—?vÚÛOĂ:.º—t&m̉¾ ›F¼aÿ h?.íhß3¬ú‹igôÁÛsxö¶ư;C>íñ{[™¸'~¾u[¶đ[ÊÄ÷¿ăù¾ÿø cnñă‰ÿäs_náư‰ïM|¦NŸ bÉ ñ¹n¦sº©6ÖægKU{y"g¦ÉZAÏ X GÚóÛ³ÀÈùé:6Ô6óN̉Û·'Z~Ó+J=hIßĂŒœ'Ç5á¨u:ɽÂ7¥Çt”fƒLsùŒÔΓØw’đ¡£î¡á₫>ĂŒmŹô¾Ñ”ËÓê<:^87x¤Î×ä̀å„~ԕ㞦+®Đ•ắ;‰h6è$‰?®¼Ç%Á4R'ÉíI¼}¦ŸÆüxÜ&<ÓOc";¥Ÿ¯ZQ²£öâ¸~’E=J|΃?…ïÇÍÿIÅ÷†NëSü¨W¬ÖîÎ;%\d­ËO°g„䨅:>%¿Æ/9>§˜«̉£KÖgZkFÔNq=±BÆú$ßö=2'Iükrơ¢în}twSëa¢ĂûAGÈ¿ñ¤5¶]çIÁĂö WÁ“&“d('ăÚ²g©åÍû(Ăú’œwG<̃'ö .«̃AW&ñĂMú´́g!Î!›Ä)C“8‰“øó§g<‰“ømDs¶_øY¾é ÜÓ¨LïíDÆO‰¿Ăµƒx4àåúqW`:S‘&ñG$·&“8‰“ø¾óåà9ûu†ñØgÖ9ÇóĂçJ|ü\Û=0ácÏZ@–„÷XÑƯ_ Ăá™̣»“%?‹ÿúù®ùE’ç=_DôxŸ´:µ=ÍY­b×:s9TçjÁäơöƯœfWlbïåí+Ö\önĂ{<₫z¤X³Ae<‹»WçñbƯxđûæ*›·g4ÛdßÑ~́{ÆŸÂÛăööxƒ̃£ÎÓtÅ"u{ N™–O2§‰¦ÑÚ×h¿·‡qwóÊ«Lª9¹¾¹:¼‡©9>÷5O²}ÏLIíO"²×H|º¯åÁ{°ï¹Yđ̃VW¶–YÎïIḅ.ÏƯ¹Y¶O­Û¾2¾Đób‡û™b›îa/öø̣À ª¼¦Ÿ¯`Ÿ̃•“Z{oŸ“„cņ€/*È·Ñ̃ªŸïÁøăủg{~“7¯ó9‰·ÄÄfß{ØÊ{M°™pûNâĐ;èÊQöŸ³Ÿ!¦æ¤™÷í%áUVó=¤ÏR$}êü Ö 3ï9³àIvt°ŸÉ©Ç̃‚Ç—̃voÊ+ˆÇëộxØ joÍ„“Z{¼+'IÂI¼}M?ÊĐ«xûæ9ßIúîNL>”y;Å0¼ÅĂOU>?‰?/ñúƠÆ₫§—~µ±áûí±öïg₫º…_&ü~0˱¼ÄÏN8á»ÀŒSẬ}ïû¼*ßÎưÙa‘ï{§tñá)”g„;n}M8ñÜœ`ùÆûÄOü‘1̃©]qÊw‚û ú+®éNqßcÍK¿=ñ-8à­÷åÜ;á§ôCâ(ß}É®?oÿ-¸ÈNw—ê&x≟Á¹ÛS®µ̃÷=«'7ñÄoq-tÅu9‚CyåEÇaƯr)Ë›à(Ÿ¡Êù’&xâ‰'xâ‰'xâ‰'xâ‰'ø-pÍ‚£́W9|6Ç~oaWàtỴ́±ŸºÖ×¾̣V^.ÜoÛø₫ ¸Ÿ^qvßÁŸ́'̃ŸN<ñÄ¿1®}~®c¾|ÇËâ; ;'Øû{Á8M¼ƒplƯÍùñê¸à²1ư‘—ăŒ¾¹ü¸öƒa®¸¡?+ïŒ+p"Nl_›xƒ_ÁO<ñÄ?8nr‘sŵîáàånT‰—è¿—Ü̃ 7Á)|úµ*WưƯg`ܘø'Ç8?XÚeI?Á{—Êÿøå·Oưüé/_×mŸÿơà>ÿ₫P.q¥¯ÿÉ/×c”]üüëĂŸ¾üùáó¿Ẉçß?ưíó§e÷¦z_ ôËEÖ¼¿Êâ'&Átvå—›§=O®Ê¾;y³Óa\ßĐ³b×ạ̈Åuµ÷²c'ÆÍå~ Ó?c&Y|¯—]À…®÷±c/_`éθcç,l—‚Ë3 —iê¸|SñjçÊc©¯^ëëÁj)oÉ̉̃œ=I{úáT®–(»îX>}äû¨…1ư²ú¿âŒË#nĐS_l/œŒ:.r9(/ÄuÍŸêÈ/8fb¹L9‚ kûb¿üTFs¿µÓ1Ë+̣~EÁöµÿưĂRÈ©¿ŒñYDj̉N¬ü•o¼T–·̣¿;Ïư2'6#V~x\nZ8~a‘₫¥ëæD–₫‡±ÙĐ_\ùÅÅÉ̉oƠv~bü½ lç·› ›nÈ_ô2^̣åÙu<™íÉu¤O²8ZåÁyâêD^à,/9¬¸æ!_\̀& æ¬̣ç+±,v=åi£/]YÿñđŸH₫IKO‹Ÿ¿ÿóá¿~ûæDḰ««ư°Ä¶†U™Û"₫rÅøçË5ư×x¤ÿÆÎ¡Í¿ü±Óæn·\ṭ˜ÿùê•IœÄS‰É‹B'× È$~xấIœÄIü¸ÄƠ×íñ¤ƠEî́‡&̃]?ï®AwG<‰C? ă–~nÖÍûX¼ưX­ÄH|¬d‰9ö ÄđVÄ÷hĐñQy},̃₫@]¹;öoĐI‡>Ö`ßû'ùCw§‚w×Ú“Fåîº̣±Ôá=ºrwƒư±ۻÍ÷đMîÎúXC6‰“x§D~|¦:9ôơƯˆïÑÚ»Ó́÷àĐƯơó›†,ÉǯˆĂOˆư`ß‹r̃ñxWă‹J½ƒ®Lâ‡#2ôiÙÏBœC6‰S†&q'ñç%NÏx'ñÛˆæl?]{•é½Ư#ă'ñ<öŸĐß#ç$NEÄû%NÍÄIü Ds^™ưá £YçÏ7“xnóqIx͵Ă=çI•Ÿ¨Ÿ¯0Ë%­9WiYvx›Ä†çî–Kk߳ؓê4sC̀­¿l×Û{èÇ©óg!çí•IüáÄäîZk6èîZ;‰“ø‰S‘&ñç"N‰ŸÄIœZö3ûÔ“8‰ïG,µơ¢)¥@ù4‰“8‰“8‰“øCç̀{ŒŸÄIœÄIœÄ—8^hÂ?“øÓ¯Ÿ†́zñ§!£“ïÆåRCÿ4䙸lœ\ÿ©‹íRê)8à;¯ßÑxâ‰'ø>p^đ]jÇïhO<ñÄO<ñÄÿp8ơ_\Ο'xâ‰'xâ‰'xâ‰'xâ‰'xâ‰'xâ‰'~Ü.5?ô›xâ‰'x⟗|iød:ÎçO<ñÄO<ñÄwÜ.¾ßñ—%M<ñÄçâZ/¹ß¤N&~w¼wkư_~ûô×ÏŸ₫̣w÷à>ÿëÁ?|₫ư¡\âJ_ÿ“_\—à俦ùơáO_₫üđùß+ùóïŸ₫öùÓ²{¾KÁju] —&—ƯWœ=„‹¿xñt †®¿0}iÄưû:ë?Ø_R¼ÈeënƠׯơ?#ÿ"m®nx­¨c?Ÿư²öúç\äUÎơÏ) Îx¬³öf~‘`m]ë[“eĐ×₫8 ̃f®̣`Ä,K}ÙÇ‘mŸ®‘ö­Ér!v8¬_¤ư©]âÚÿLÚ—*̣/̀‡•̃“I{R錓d¯«jI–ˆûå÷¬ ́˜Œé“àTY₫€3qỵ̈MÏVˆ{û{yííă±₫™Á́åÁ%°ÿÎK{ƒ#úxô7Q+q+̉¿ÉÏ•Đ³¡=+c{{Öd±r|–&üŒăç²đ;‚ßU^îX³¯Æ(Èx_ëÀ ½ ŒöåÊô]pÈCÈ”·yñ‘̣Ø/“®É–!¯-¦¼F¼ åGù±3®cô·ëC†<{âæ ï#ư£¾teưÇĂ\[„Ë¡ơƤåR₫₫χÿ~øí›=¾\±¯®Ï¼\±©á×O>:Và/WŒd_®é¿Æ#ư7vm₫å6w»å]ÿn­üé£]“8‰ç= ́J¬Os&Xçø &4̀Wˆ'ơÓ”„“ê|‡~%·VW̃ELî·ï!Ô‡[VG¥¼µÄŸ4‡s4'©àZ¬́¯¹î²î˜7Y¿|g¢Y§÷1÷0V§Ơϰ®‘ôœÇ»bµÖl³X³Ÿçđö8L̃ÚuCÖäÛ¡GZkÎ+‡™`æ<.`Çû9ßä å}'¢ép·CMê»X“s$áêpÜHc‡Û„ă&ơ8‡^Áx«A¦Ơ´-ơq;tûβlj‡=FÓ3¶9”đȰ“PîÛŸ›³OiĐk4»¦cuι*RÎ'ôó¤®/öpW|•Éú»wå8ûN">c0N‘øăÊ{Xl#u’ÜÄÛg4ÛpíÛ«ŸÏ-kÏèç+ü¡ă³ƒÉ„ĂẵøI&ơ5ÆØˆƠœĂøWLçû è¤Á>Í“:º|¿;́¤àÑ3±ÔS„ÚÏĂFêỌ́aâñyÅÂ_¾›­5ë<Éư0çk)}–û‹™³$₫5úAOê₫ÖH÷6¹¾jvˆ«®îó÷$¶ÎÖë<+ÀñUäA½BOsaO!ל8Kyơ™–'9—xYzx-ÊùÏä¼;âñ®ø%]R?}(§1ï +“øáˆ¦ ư@Zö³çM┡IœÄIüy‰Ó3ÄIüV]1f{¿”~“mºw5*Ó{;“ñSâïoíà—,û‚/ŸĐ»Ó‰˜4‰?"ñ¸5™ÄIœÄwV^s½2ḉWñöíÙ÷̀ÔÏ6ÁÉ›AwĂ„E»µçđööö8̃¡Î“tÅSÀ3á¤iùƒq–½µZ<‹û=Œ»›W^Q§9¹¾ƒ:¼‡©yÅpÜ×<ÉöYSÇÇRû³´́đg_H—̣Ö¼=É3~…Ä›Zvw«+Ó0̃Û9ḅ.ÏƯ¹Y6ñ'¿´C·]l•績{±Ç—VPå :̀>{¡xNkOâ­I\§₫‡BÀ%Ø&–ơmúù.Œ?\§)}vñư|…˜đË1w#ñ6Ñbß{ØIÊ{V±¦hĂ¾“º̣Äắ;>gÛD³A'Iü;HÂq«ù̉g+’é¸4|Vé;ϼgçIv|°­œv́-É>¯ÂxsT×|ÿ,Ø÷o¾[ơ¦L8©µÇ»r’$œÄÛăÅ—¡Wđör¾‹ô–¡³ÄäC™·“ ăs¼íuÖzq;œIüiˆ×OCö?½üÓ^^øÊùJÿÎë™xâ‰'xâ‰'xâ‰'xâ‰'xâïûMÖTVúåÆçË̉O-˾٭̀îRÛ7â~‹uÅù›pÿ₫p?ù¸₫̃§Kè§uS2kâ‰'₫è¸ÇXñj†&~{œe kÅ¡M<ñÄ¿1öEptO<ñÄÏàÿ1f gà:ñÄwË¥Áoqâ‰'₫Á1¾›óe Gqxbb¿àơ ûO¼‡CỤ́kâ‰ßs?uâ]́úÆ̀îC`?Ö›µL¼‹sÎïà —ˆ;öÂ% .í§Àé°~ˆeầxJ̣́̃§́ï—‹ ‚sùAqq‚cø.¸â¼Ś¯óƯ'7w¯8£½K{#Üp^ú÷Öß5Xq Ạ̈¢aèÓúà°È#mư<£;ˆ#pŒßˆkÂ.v́â~»ø.ØË'[²ïßë‹à ~‡ËRçôXäiu“—]!_RÍ<º×óË£jû¸¿₫ÓÏ_Vâz»¸]R¼ÄoÀ{·Öÿøå·Oưüé/_íèĂç=ø‡Ï¿?”̃₫₫Ÿüâ—Um=†qMóëĂŸ¾üùáó¿Ẉçß?ưíó§e÷*¼_®Ïf.îá×9œ”V“Æ-Q:›ê¥ŒĂº> öăpk]• 'Ă¥ÉbdÅ`[;“'™Lœ¿”åÇ.µ—q8ª±w)Ă™•m=ËÇKZ œ•XT˜‹ÑÔ½| ù»0•GÜ?,›+ûÛé̃¾Ö«AûRpØ{m¯¿¸ááÏ¡ ®Éáâ"ÙÀù2U‡ùrïxÇÜÜƯÊt\*ù߃—e×u|äư§ØÇăÇ̣,_Ç·!}Iy€#p2_å£%Ô/í[å§î.›Á«|ơÆkû1^‹“ñZ1ÆgYºƠéưyr­u+×ù#ÊéZ+ÊëXƳt›̀`c¬/Wç´ăĐà|Œü4̃¤·Îø>₫ɳ=âü¸®Lhïyÿ6ú̉•ơÿyđÏ’¬¼JUZú~~₫₫χÿ~øí›=¾\±¯®öËÛVen^,đ—+n …‘é¿Æ#ư7vm₫å¶ÙƯǘvë•]̣"_¨mÁ"üˆ"îÀí-#}B{1^=!ÊG”-.ƒ¸5̉éíuœhú/¸ ?Ä~Èü,üp½YÀÂÇ₫­¿d”‡-+(?üÂI,ü^ÜjhúÄÙ³Eḅ!o+~8ÊÏ#ÚÛ=¡½mĐ3ÊoXøá¹+Ö ›Fú~xÊG à‡ïĂ,üđƒ_p$néœƯ¶¼Ậ#±đĂñƒ ùăàä}Åäû¿âGü€¾®˜ü(˜ü@T! u<Ê£|À±‰iȉS>B%¦|GLùđ#?åĂü”eä§|,#?ơ…ưMC_`"«bê û—¯ú2̉S_(oyèKJÄÔ—4Ê£¾ÄA§ư€c˰́öz,Ă~P?ʰXƠÄrµ#ö[LûqÅäÇ“,¯~°¾:ø1ùAư¬ƒpcüˆƒ>ø1̣“y¤'?h®ö”ăqµ§mĐ)°¿± ùp‰˜̣áq†V́’`,Tíi¥₫'ÚÓ:ÚO{ºzR#½đ£R~íé ±đă†.ü¸æ§=­ư³´Àås¼hO å7Ñ^Û?Ø¿8øù-ÅÁè[ƒ°‡) ~p|ø‘ißíiåÓraƠqÂøù‘>cü0¿¤4ä£̣)đíi¢₫'ÚÓµZÓ)Xøéß%ÚÓH{hOăcyÂù̃/°đ#ñ̀C_8₫´§úÜ₫$˜í¥= C_hO%>,üC¿iOĂàí鈪%ÚS Ï·r‹iO¯úN{hŸíịO{:ú©û…ë3Ú[F₫Á…XøGûÚ°đW,üˆô§íịN{†>·a?Ú S>`OíiæühOËhúÿ$/C_ÅË´§óO¦=₫w†=íf³w~¬f ógBÿ:®é%°åi¿3́iö4æH{eâpP ` „e_†=…X'ºà#¢à0,À=pƠˆå”á˜o3́ivÔ× {zBfØÓkà"Ăöđß K %pư“aOG ¤cî³½°§=°5êk·§¸2́iÎ#?́éëÀë—ơ3ĐUèßdØÓ¾NÄø›ö4WúkötÅđï2£¶•úí ¬yb UÎ×ö´ăLH*ƒ˜ăxGđ£̉dØÓĂ₫dØÓ\ißÀ¸ágØÓ\‡<Âæ6Æ/ÀŸXøÑh/2́ì {Ú…ƒ.üëë {y™?‰‡w~”áoeØÓrƠØÓS₫aO{Âw~7ÆötÅeä—̣Çú"ĂÏù>Ăö@e!îüX1åö´Gú„À£ôÎĂŸ́‚o›ö´„Ç̣;?ʰ¹@è{B¸Í°§âẸ̀Gzáǰçö´·wä~xΟ¹~À_ÍíÊDL~,{đ»ŒôüÆü±J#qæø zÁø‘ßmÈå¡ ù€>ØÓ^m"¦¾`>DA¢O˜ú{T`O¯ú A}vÄ¢/…ë—{Ú‡åĂv1Yˆ‡ưØăTæ÷Â@₫˜? ˆ³=°§+v˜§6à?ÚÓáÚÓDư/´§Ẵ­Øăø_ü8åÀöÓ&G¹ÚÓ:pÆ+l?íí›·À »àđG íéđ? íéØåƒàu¼ zà®ÖÀ öów¡=uǻ*ùQçØB{ºPß ́)¦màÎÔ¨Ÿö4ƠÁØÓTh? ́iŸÿ]æÛL}b³»‰#½̀·c½Q̉˜oáߨÓîv7âÎîÖ;â€ù<Œü2ߺÇô2ߺÇ̣ üØĂBÿtÄ ưÓaK₫bçöË\`úë”ÿ<üuêưÓ̀ơQ=½úC…₫iăKÿ4ñ¡:NÙú§‰₫Æ=ü]Ê{ë9êưÓHÿ©Đ?ë¿{zơŸ ưÓ«¼̉?´/…₫iä|\`Ocd¼±Ôá¯3₫z釿̃ˆ3Ú‹ơd‘(º´w`ú§́ÏƠ?E<±´Ạ́¯W₫\ưSÊÇƠ?M£<®oó  ?̉c}\¿À_-m»¾­ËXߢ¾ {Ú×»8Üú¿uëÛ40å#ô”اº€™ṇ̃Êơ~¦?R¹̃Ï”ßê®ë¹D́Ës=y¬n¬ç°>¨nøëe”WĐ^Ø›Êơ~æxƠëzóq}\ïḅë™z]ï#̃]¹̃ü­\ï'úöa;àñƒ=©~è ËC_–Çúe`êK˜úù¯aè ́} C_`o*́i›̀ơæ×Æz§ j¼®çöX.ÄcY^ñ Ê×ûói…=ö¼FđĂ3¾P¯ñSøŸơ?Åú­r½?âƯö´Ç[1ăc”×kü”̣œF|̣̀ ăơƒÎøØ2Êc¼í¹ÆOߨ´§ËÏ ~Œx^½ÆO)ÿ×ø)́q¥=]†¾dđcø·ơ?¥ü^ă§Ẃ̉ûr›ÿ?Å|R¯ñSØûzŸR_hO¯í½ÆOÙŸkü”úwŸÂ¬uđƒü©ƒđÏkñuÊOñuÊ;íéØO©´§ñÈZ‡| VÛg̣xamC>°̃®×ø)âơ? £¼?uÄ”êW“SJ×x~½ÆO1¿µé7`~h´§cưÑpâ“WL~\ó“°Omü¸ÖG~@¿Úu? ö¥¹Áø;Í]ù‘‰7ûQíºưlîª/‘xèË(üpƒN~`üÚu? ëóæ¯̣Q‰‡|Œ½}ê ÖăÍ}ü5Ơ—H<ôeÔ7ôơ…¡/X_µ0ô₫C C_0- }Áø·0ô% :ơ% :ơẠ̊+ÚëGùÔÈk‹C_ȯ8øù¤ÅÁø-~,#=ù{̃`Oû¶è(¿b?úÖâØÏ†¿Ñ̉ØÏÆz¿Á†ÆSi öôºŸÜd!ñ¸ßÜ̉ØÏ®£¼́oö«́éu?»Éu…Çưî–Æ~6æë{zƯ/o°§×ưô–¯g2qŒ[̀ưlø›-~\1ùAyyÜßÇ)µo:®²„q¶#ÈÙ Wy¸«̀Ú„‡ÿ)f™â1Eߢj7)ˆg™b¦˜)f™b¦˜)fûIåvÅc à™×pSÏ3Å7¦èGFnơ…x¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)~Œ1mSÄ4S̀3ÅL1S̀3ÅL1S̀3ÅL1S̀÷•¢^Üíétâ™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)f™b¦˜)¾{â·oÊÏ3ÅL1S̀3ÅL1S̀3ÅL1S̀3ÅÇJ!_ï½Iü_úưÏ+íáOÿ÷¿ü¿₫ŸŸÿ·OûŒÆ4ñƠh̀·&b“ÿ—ÿÚịư/ÿÇú×’₫¿Oÿ×ÿ|X₫ŸOîá[ÿÿ÷'´÷ÿ´­á×O!†‹»̣è˯ MeÅ#ư×x¤ÿ¯ok÷K8¾â´à°¤Ë²Z‘¼voéœ₫ÓriùÏŸÿ=¼í‰ÂàoIô:okXÜÂ¥Ư0làÁĐ¯₫ơ€ü×5G¬—Đ…}àƠ®®¬èÂ₫4E½”8đmT.®Ü¤¾M‘óeq7)€oS”x©ù&đm ´́1ÅcK_ ÂÏÚüz†èÜeéŸrYºfw1øë†ổ¿){n—0¤(½Hˆ^/ÈÉËÅ€GA₫ËÅÅM#Öû‡Z/µ¨rül’WJñMù¿~¿øù…èQ %éWp¤ư/â&Ơưú0—K™-9\|&z¤ºe¡Ô ™đ–̃.©ƯĐ̃Đ]뽺̉oè¾^¢¤̃ĐÑÜ+ư±ơ¯gŸ/Ù=ÔÔ?OiüvYF^·Ä˘9¾4³÷]u‘¹¾@Ÿétr—äú0®“±Ñï?Ö¼ÿúWÍ ©ôw®wIkåIË•.)뤪è.U+°öÑU›á’L€û¤p©‹Úå\ÔÆW…QJ ;{›«*ƒ̉½‡íâ•Wn,J®µËÚ ¬v"*ÜX ̀ú ÄƠn/^ôñ«lí’æÄ/ܧ…>;*4/£–Ï©´x Ơh‹oƠ·¤Ñƒ–º©Û§­CWœ/d–û«}¨jV-jm)ƯJiréÔf®FÇöP´ệ¥]×ë«z™+[ª6´ëd®‹„»uø̣%ªĂŒvF£ÑP‡¥;sªÈ7•׫‹§ªØK5_ÑøÛ§­*J+?‹Ú¿ulUZ“¥Ú>­\J‹†™XUûdËDSM]Å¢|îAk§j^V~ê|YKÆ©ă·ÊuÔú̃M²aZu“•/N¥Ă|®3¬ªc‹n×2³:~+¯×úVϼ´vv½Ư§E‘³}ZèÎB+b÷iNl–¯y– Ë"óZ¾Ơ$ëơ©ư«ërE£ùîqéöZm‹Ûªµ¥ë˜6FÎ#}üªLû4è¦6¶Qè­Ö¿fèC6dÉ«¼®¦Đù™Äơ×x ™¨ÏV{–ÔúâÅ«ư‹¢›*? [Ơv.†̀q_vi«­ó_VÛ´qXó%CW’Ú¿¦úăk‘‹–-;™úµ¦Ă &uêϦEC: YÜƠô¨´ªO›}6Ô]UͳL–:DÅ0ɱ%Ÿn ²oÛ¨Ăê&«Sq3̀™Ó£•YÔúªa&¼nv»+¬©C–§:FºJ¯²«ö¡]œ1uèÓm5d7ÉÊi¿«¢̣,ȾF[Ô¶x£IvÏ4~6£ïúTœ [ 79™f¾»Ÿ>É?igׇ]Z·/Q£ùn÷>-‰[nMqZ™M¥Uq1µúôi¥ÊreŒ’üQ+³ª|)â†́ósƠé¬óºïÄhư+*¯«1ơ{qƯöësbç÷Ëôb_ÔñÓä¥Ë®Ö¿.ê-†¾'™7÷ó5™4ZÖêë_æ3́§¥ºœE‘%gÉâ™ê†ÀimQ—+Ùàç*ƒÉà§î&7]VY**_ªèf{ª*ƒÙ¥,¶\kKRơ¡ùTw~•—ªmŸWT;/;Gª êrm‘åƒ5ñ´úªáîVƠöØ!¹¢ÚÖf.ăºOôr¾$ÑÛ}“P—6¶ú²8‹ƯUÛiسE’,4yqªMzÿ²3æ₫¤÷¯óÓ˜§U½Í9ªs¿1ߪº̉—̀ꜺÚAĂ–«₫çÊOU^ØmÜơùÁơ=Qµ-^•‰¨Ï]ƠµL’úT¿Î˜Uû²Ú¬êt3d7›~¹º¾5íÍË–†–O]¯ô9ÇXËèëĵ¶$Ăf-ª-¦Đ}ol?hüL?-]±êëk U®³>­ùˆXs£áŸ…¬ƒ“ùO• ÍŸ`>mÛIŸ>?t?K¥yûH›Ç-fÜû ÎNdpßG ź©û(êYwhùôØïêÏ1j5易ĥöiY|Ó—oµ6}û¨Ûk•×Nw}0̣©Û@ëØê|YômÑ•/Yơ¥‚̀›Z[ªÚ£ï]7 ?¹ú®KÀºJ¿¢ö=è~ƯZŸºO²Ê‹Z_—]£>•Ö÷4TÙú>×:~j<«·ÅÚ›PË ú₫J·/ªOÛD>÷íD2öe¼®c}}k郪‹øD-eZ|±%$5Ÿ×÷Àr0ÚéMŸ]Ự¶ö–zß VmH÷wUn:­ë‘Ú÷*ă·//ΈÓVĂ¾£-ÉXÇ{uV[̣¢ïÑv©É§e³ú|¤̣,ê±¼®+ÆV·=͈ /úº¸Ïjÿ±Yuq1lµ¯dí¤É nϜѿdöAéĂ¯³ö}›1¶̃8[tÉXj# ùTétÿÅ8— Êă´j[ ™W÷²Ö2Ơ1ZÛ©ëƒÅÏ*s•¶¶P}¢Î3•fè÷«´₫éGö±Ç^ û̀x¤ª›y1ûnùDúœjÉK2ö-,ÿ%1Üb̀áM÷m2îI©öZí»å£8c3é1ñ¾Î1äºú§Æ¯×q°ü³¢®ÿ€5e'ô5¬Ü̃Pó™s•q6F÷'Ä[5Y²tL?Od­Ă›±¶0Ö°gï4ÿ:ªm©ú̃Ësk™ƒk=–Œµ¨å÷,†ÍỆG­º}ÉÆ"ÖNûm1ƨ¶Ơ¼n†¯˜ }ÆÜèô3Á/† Qơaµú|ë†èsœêY:fñ:kĂ`Î+z\*6̉X‹ëÆ¢_!ÎÖ5L»ï‹º–©Æ~j•xˆ¶ÿ®Ụ́lÅ'°§¡CRưyÛÖmk1Ö̃è{1b:ÆuѾObéƒáOèû@ƠĐélØƯ`̀ưÉô#Ơ=ïîkº©Ÿ5ÊÏ>ưn„µ7¡êQ2â Ö̃µS]ÔùÏÛg2T½ç­¯¢!»̃ÜSÏKơ9ƠºĂXZ“]Ü'⹺‘û$œZ '%®k?›`Ư'‰ß'!d³_™óÛÏV$¦eKj‘Öq—æÆ«[»eæU9 ơƠàé~¾,Q’]ZÍ>jùø8Á^}}fWóñÑ …Ö±ÖwŸ8Í­ñ%kơœh̃¥uoA£u‹«_j«}ÇíZ­Lñvù ¯F¹9½›ÏÉJL«/«ü4øRpëJë».gŒÚ+|QieÑơ!á1­^Ơ±¬÷¯ïf]«»¥Z™̃ é2‘eVÔtS-śæïÊDÖmHá. ?uÄéjmÜơ¾ó%Åfé¶ Ë©Ơ~ª2±2Èh±bÏdÇBi§.^l¤&KºnÂ+Ơú— ^Ă^«rV]Ị̂‚·Ô4½Uí Fî_QǨÈxŸ†t­-úÜÈ“|̃¶§X¶Gmg3í™.»Q¯o?}₫C„V«O—<¤ñ³²¤û_ ·ævớhüTË,ˆHiưÓíu‰<­ê8c‚Qf0øṿÁ;¥º}I†­ĂéunTiˆÚ«~Ú‡‚GĂ^,gѰu›)~HTç1Ăé¶N­/ăå¥NSñ‰f?u '¶µút}Ç®§jç ßÍií\}áfØÏhØdƯÎWÙ¥ÓÚ¢Ụ̂bŸ!ƒº Á%ƠgPi†•d¬¬u\5̣e<Ä©­ é´jèX4ú^qÇ­ÿ—û/|ưdW<Ø{ñÏsU6ç?Ưoµd¾~n¸im±ü:=̀à »dØÈ¾64|èhÄ fëV½mj>XSÖ°I[§ö‘–¯û×êºüÔÊ\Ô||`—Vp"Hɧó̀éí,¼E£ä *¯D"wi»JZ¼À[•g¯+)¼.Z[zäS¿¢Ç5º-Wå;è&ưi}*?#v¸´±5ú§̣¬ÛOumˆ—³4~ê´»<®¨<Ë8Y§ûbÈ®QŸ./§•¾«²Ôo§¨̣Rơ1*x%Bă™/ˆØMThNăKበ¥>g̀Uº\}/|URÓMĂ.érÂ₫yĂ^•Ÿ<Á¢Ÿ*Ñ~¥Ɉ£$cÎÑç•b´…ájr¦̣3á¤âKíu_;©2—¥Ô¹JµgI·=·±÷닺Lty1x¦Q·‘M—³€Ư6Íư³́§ê3d>Ƭô=ª}(†¼,x¹Uáu³ú`ø zœ¶̣̉Œµ¨¼„´;o6CÇ Ùư]c×í§Óçœơ¶ŒS Mï{3xVMn†­Se©à[¯ååÁ=ç‡}ZÀ 2…Öư—}_œÜ¥¼`¦”>ÈK3»4¼’´_&|›}Ç ' _œÊ¾´K‹x1Fé{RëkxYJ©/¨}ˆâŸíó%­Û¥U'>Ê~™YçY? ­ñº¯ûƠ>đTŒBój[pÂXăKRÇûcZÿ¬1Êj]æûúƯ¨¯ië‡.Kª®$=_nx=Jé{3d̃̉÷¢̣·Í5lj[<^RøµqÏøöZ¦ÊÏ€W•vªerOøå}wxG¡é6Äè{ ú+I·±÷iQêỌ́ơ½}^Cاé´Ơfơư#µL­-¯Ëkí¬ÚKHç.´¶ÈW?wû€—…÷óe™söiÉ E‰©j}H*¯ñA…]Úơă}ưO/₫xŸ\Ci²Eúk(­¦K&₫/‚ä ’/@!ÉI¡ØƒĂKŸ öùy‘ 6e;A¢ơ%¢ïXRÁ×è\ ”ا|«G`¬¬Hv¹œ|8²?ữµ~/Ê>‚,e7‰ù…_Qæ•zCï‰@ ơ‡¾ă +aè%1^^a €²{dx# lØÈ©_À,02qEâØ™Ó?»TÊ'’‹ØJ̣"«¸€I TÔaL€̣Ơ¤ÔơF`AâÜ¥È l™0ẪªÜưCïÏƯŬ€̀8FÀÜZabE¿Î½5ek2wk%°G—‚Mx6w)œ„›Ơ Ơ#Ô/Q0‰c”¯/•¾~ &¬‹#l€,9¢U•T9‚U!*|çtY(AÿJnà–î"KT0Ú8º-”ĈU-̣X`˜ºTÂ0(•]àñ ÅIázj­"Xg+¼Û…;,y¹ HåYÑn-ÄÈÓ IØóÉ̀ÛPQf›¹ɹnô”º…m»‘âØ½B÷ăØ€h‰K–PErvX̀€E ó€rƒyápGl-02üÜ“Cå:·ÜRú2>¸¶ÂÄFÀLj=’ÀĐB!ŒˆÏ/×UTTÉ.TæmÈÛXQC̃V÷aÏ+á)äÇŸ%ßMsƯOÂX'N ` Åù…Iơ(J́d‚Û!˵+Ă8^du¤„ÇJí$̃·w¬cÀËQTBÔ+SLÂéÎ`FQ…̀n%¤éÈ+|£Á‰%(C毼’!ăôtÙ¹Ûái7FĐÓÖ%́KyÚ,Ó|‡‰ĐÂ*¬ĂMçiùùAySe+!Z%óoÊ2OëÍ÷‹wc§}„̀ëQTZ #DQ‰Í”µà—ëK~E\ưÍ,9•ơfÔÛ˜7#o+ûgă¶W©ÅÛ  +âAz77@vÇú…7Û̀Ë•®́B^ơ#È׸¯­̣ơ› Z“‹%³“ĂÛ€HŒá.ăX}$•§å1¾e\:Ă•q¿ ùzƠ2µ]È‹™ñ₫o&u|̉†%óözͨ́ï.Ö@ˆA©l$?öUY2/¹\!úÛØA^1òË[!PØ—Â^T¤:Œ₫ €ä• w¤WÀEÎÜîˆ3ø±+tldCbq\c¥̃&ou‘F•ߌ‰œ_ Q¬ ¨u.~‚;Ưat‹ Yr!DQaô`N`Éư ́ Ï[X¶Eå]7²Gy#{8†}Ø60¢G‘=àsd3dwN‡è`d«"JŃ~BQÉíC¿ Ù…·¬KlsB›‘Ñ…ÄfdÅAÉ,‚”ÁºDAÊ`]f›3ºÙª‚æ°ă²¨´Y2[EÅÉl5¥,ûE¶ª¢¨BæP +j`N‘öz#]ħÍÀ̀₫Æ-D3`¯æPñÉÑfØ«§­ª ĐcÈ๵¡)•mö¨·²‘TÊft¡±‰›ß‡iÂlB´¹± ”ö–ö!ÙØê€ ưḿuá Ùfv̉~…½‰s7ŸBLt·đ̣¸K4ȸ·äÄCư2>Û»Ù#‘v–e  û+û̀70æ}ÈV‘¥naÛÀÊ’ë> [É+™€tX¶°n`CE|na Q”#Û[~„ă' NÑøå D½²´̀hÜ@>Ë<¸ƒ ă²U‰°n ',„mƒÛBU÷aÙºqÙBgB¿…äs#,[XMØ60-[èLè·0lãBT$+\¾…a ănK¦̉y·ƒ ÓÖ-lضƯoÛî·í ´-7ÚvŒÚí  8{ Ưú- 7Âà®óMĐ-[˜oä™{ö7°YĐ;ú- [È2aƯ¶aÙ…‰0oa¹QvÄu8´lÀ[›óMù6nŒŸW!Uṿ)t[è·0?ZàÛq8æ²¶ ư†-̀óÑSXƯăÔ¶Óă,ÙaÙÀ¶láÍ„û<Œ[ÈVQ¨°WxăŒ·FtÈ.„}èM¶0m!é©ÎWÈ¢ §ØẲ‘«€̃W!t& [H'0r¹$^ßx³S‡,¬‹q Yrø&Ø6pø“²"¿™—¬Ë́ïB¶0n!|ÑJÆrơt…u ›˲ 9FÅmaÜBÖËAáÚê YQ̃… JT ×VWX^Y2G°ù-dEaæ-$ëü7ÁvĂˆ`ÈBl²ÍË7Áº\ÓÉo<+qăr'kÉXĂÆ-ä¢5ïĂ¼…e ë¶ ¤:ËrÏ9¼²‘ÁÙNÊah÷²Í”˜·°l ¶¸}趬ă P3ÙN…Íd;5ô Ë.$Û©tWȢȺĐ0›°l!%§]XƯK øœ9 #T2`4![¾ Ö ln ™ØïÀ8’)Úa 9F aƯBÆÍ uPƒá0m!Ca•°ZĐ³ezÆ-̀&,[HædÀ°¼²i&– ¤)]ËÇD…i ó ̉2H¨3ÇkÔT~ ë’u~̉Œ\a²`¹ ̃O9Ư@ÖKy.í Wè·p[rƯæmۼ͛0m!cæmÖ-l:LCÙ5˜·°l µ[ƒÛ¢\} Ü6’:x…i ³ Yr¤Z jض9l+ Û¢â6ïØPPà¶ûqÛÁ´­7mó¦[Éyé_aÜ´…Ù„e˲…·’®¢ÀfAN^PÉtU}8Tc@·…·vă)Œ70© *M+L[x³5“óụ0ma¹±ÏyH¬ư²…·P̃¦ËÍ\ö¶ ·“æogöä²%̉ߨlóív̉Œ&äbªîĂ›­¨q±ør¡½°Ă€\h³ƒ·Urÿ(̃́=uØ6p…(#@·°"F¶5xH)#²½„}xz38u²(2ǵL)đ6^WFα‘åv?¥ŒÜr„m.·×2ƯVF 9Üô¬·̃ÉËÁÉÙ€~ ơÊ™>zÚá – äæK\ьȼŒ!G&f ù ÁIÙ”ïï+0qۇțX£Ä‰Eqkf@†…aëØ|ä†₫ D+bĐ8»]H!„%¬C`Íêü6’ß¼Ü1)̀Ë“Â6S®dđ¶°‘” X•:¶+‹âèWr’ØÊVq3±²(Qs¤‘W “¶¶{E™ZÆ}ö̀è%7Ö3Ơªả̀Ô£G˜YTt( º€G o!̣:V$R—¹e€o»̀=‘gaèÙŸ6P¬YÆyïè¶%ËÁ˜̀ơLÅiQ¢ ¼ àF ¯â²…¨(°¢ˆ6ËA¾QT$ṣF–œĐæH^e4#1o53oÛ3ë-èQ&ë ̣æ‘m.d]E3JûØĐÈÊz:XĂ² ư­d{C«*¹ÑĐªÚ² ™ikdºùF£Ëƒ«²ơ~‹¾3§@¼ËߌgÔÇư߃̀ë^GÖùZ+0È…ûÎDZ ̃¦săÛ!̣ʱ(¾ æ Îm>… ơFÖ›7¦}ˆfD6ĆUÁaZ>±æx¾pĂ·À/Üá-°¢ă5Ü×ô),è`f ™ă>D#óÈ‹¢2[U²+YYQCÉ•lèFß»Ïb¯øŒ”«°H70â²đ¼|7k@^åwL̀Ûß_‡á®Øá-n¼‘q…¸j,3láhÅùº‚]ÅÑâÆ;CbUŸ]3ŸÅ[à†ëEe™pûư2ÜǬw\5gQEe֛Ѫœ¾̣U…̀zy1¾¤]XѪ¶ợѸQY2¯¤7öˆ·¦[Üܶ«˜:́%7́<n®5 ?;Ô8dÜ\㭧±F•ä·Î"öK}N`d∢"KeêMLœPôˆ_ÓàƯ‡ÂªF>s+ªÁÆî=5xư~+*́`Ẽ: ¨à$öbü‚éøJ±ŸâÚ+9éÜ! ö5VH•{§ v.ü‚ùˆ/ºú…2‰­ ¿P&ñ¥jÏ«&@&È›™8"¯,-o ›‘ĐÈ̀z3Q™¸€ ƯGœß/XzŒëª -?^fô¼ÎĐ/èE₫+X…9€°°ç•„‚X®wn|Ø;Ä ¹÷ađ‚o@x̃_(ˆ©zŸ°ÈU,*¢‘P+¼<àÇ¡Nï¨)¸câûûöÄ€àçƠ€‚h÷ï„çx  ¸ç=û‹‡å<ï|ùÎ{>°ă= 2BãSD.Çzx›ư^/ÏƠ~d.PF‡á "E>P&q«b…£Í2 £Ñ£@AÂƯ°çƠïqöŒXˆ4<Ï]?BOª\~đÜ â Q¦~]; Äá•#Ïơ₫#”Ç‚ơ¯ÓNÎûDÛ^Æ÷] 8Xiz®5J_̉ƒäÈ3ưE‡̃AºÓG¸}ưà(µÏX=œ4ö™Ühx¿°ƒm\2‡Äâ ?f+^]¯†ºÈ\æ+Ĭâó_Áuûû7n*6¥×ÿ₫ q₫Ÿü2NÚ‰ñûüëĂŸ¾üùáó¿Wêçß?ưíó§e÷vl– ¤Ëaî`û*Âs]>WÈ̉Mđd…•1«>Éz̃`Óóv@NxÖ p=…[Ö>\wHE,I?´E«ă\ Zåo¤uKBØưO¿đbE³LăÁl>ăÖx\‚6…Çk.È<Ç[Æ™«q±‚1«Ê[6ă[ ·×jS§OQưÂésƯLçtSm¬5̀Ï–ªọ̈DÎM“µ:ƒ°´ç9¶g‘ó5̉ul¨m椷oO4ܦWzĐ¾‡9O+ÂQăt’ưy…18nI3è(̀™Ọ̈©=>œ'±ï$á;(BG½CĂû}†=Œï}Vö4¢)—§Ơyt¼p2đH¯É™Ë ư<©+Ç‹}MWd»â{wå8ûN" :Iâ+ïqI0ÔIr{oŸé§1?· ÏôÓ˜ÈNéç«Ö£G'‡g”́¨½8dQŸóàOáûqóR±Ç½¡“Æú?ꫵ»sÀN‰Yẹ̈Ó́!9j¡OɯñKÏ)æªôè’ơ™ÖµS\g¬±†>É·}…̀IÿœG½¨»[ƯƯÔz˜èđBĐîç#^AÉ`œ&Fk+¾Lú½=Œ»›W^eRÍÉơÍƠá=LÍñ ฯy’í{fêøHjñø½FâÓ}-̃ƒ}ÏÍ‚÷¶º²µ̀r~O“÷pyîÎͲ}jƯö•ñ±¥;ÜÏÛtăx±Ç—fPå5ư|ûô®œÔÚ“xûœ$+6|ϧȷ¥̃¨ŸïÁøăủg{~“7¯ó9‰·ÄÄfß{ØÊ{M°™pûNâĐ;èÊQöŸ³Ÿ!¦æ¤™÷í%áUVó=¤ÏR$}ệi·Sf̃sfÁ“́è`?“S½?¾â¶ĂxsT^A<^§—gĂÎhP{k&œÔÚă]9INâíkúyT†^ÅÛ7ÏùN̉wwḅ¡̀Û)†Ñä-eÚ›iâơ›ŒưO/ư&cĂ·ÙùÆ̣¯[øeÂï³È[r»N8á;Á₫ißÊ·mïÊDîY',øXñºR­O¡< ŒÏË7µ'~9î_^qnO<ñÇx¡vÅ-ß –·óƯÅû;ŲÇêđúçqs+Î₫pÿ´ư뉣|ñÅÉ0} .²Óíb?́3ñÄOlăÜíi đ-°́Y¥‹wOüæXn…vóÜ'æ^^Al¢O¼̣Á̉üo£|€ªëSxâ‰'xâ‰'xâ‰'xâ‰'xâ7ÀµÇ§b¿s×1>ÿêü¥¶]\fúbÏưT©ö{à ¯ä­ưÁ~æFü/…{œ¿ƒ?riâ§8ç8ñÄOüƸöù9÷;™ß‚£¼¼bœƯÁÎ öé^pnïà$8öưÉúCâ"Ï»ÖƯ´c¸? ¶b¿ü¸^bLwŸ¼®‚Ûh_BûZx“_mâ‰'₫Áq“œ~éf|/w£V7®øoÄ% ®î­p·Kêí—¼gà2ñÄưFu?ï·ª¡k?Á{—Êÿøå·Oưüé/_×mŸÿơà>ÿ₫°úï+}ưO~¹£”Ç&?ÿúđ§/~øüï•üù÷OûüiÙ½©̃G%­…ö'*ëĂ¯ŸÄÊÁø„Ü­ñÆøy×­RÇt¦V+Zep¼n—˜¸æư"Á澘º‡uUÅüîơ¨0Êw KẠ†§Só\«…1ï ‚±xí—êàqxt©rµsmFÚÆ®Ư&uœá̀k—t)}1“¹Zq¿éß›u½,̉óÇ~‡ä‹\&‘Ë:+â ®ûqy§ó³7s\>I¸¬qö/­ÏQ(¿ó§7;¯Z"gdÛÓ·w#±ưưÙ‹ûÀ₫ơ`̣úçÙÿ₫~Å‹đw­(àH~• ¸₫.¸́º€ÿ¡w¼c´·GơQ­?פ}ăÇ˲mŒ_í«’¯̣á‚ô“Ù:pü)‰̣Ơ?yƠÏäó²°é‹È§«Âÿ‰+‚í\́¤̃Đ̃,\[±l¦Ô>ŒÀ ăOg ăÙ­Ö‡‘ôEä‡íK}ÖêÍ̀#o¿÷ÁG}éÊú‡ÿ<¸ĐºzTé{Zú¡đó÷>ü÷ĂoßæñY‰}eµŸ•ØT°jr[º~‰¾ŒÔ_ă‘üÛú…ö₫̣ÇN{»ÅrÑ]Ụ̈°Ö¼êê×ÏkLÚ¤}/ZmT>Â6‰8Çz'q?,1G í ̣cﮟw× »#Ä¡Ÿ…ñ?K?-/ë$î},Ö~¬ÖNMâG$¾‡ VäDåC̃'ߣAÇGå=8ô±xûuåîØw¼A'IüIúXƒ}ẃ»»ÖäƯ ̃]kO•»ëÊÇR‡÷èÊƯ öÇr¸ïNnïN4ßĂ7¹;èc Ù$Nâ«ôR>Asœø­½;Í~Ư]?ÙÜ=É)¼»~Nâ=ß#d0‰÷hM&q§ Mâ$NâG'NÏx'ñÛˆ?Đ¡¸ˆxœñsȦóûñïî¶ïñwGœ4‰wJœ=‰“øA‰ÇƯ]WîxwG„æx~¸ñœÄ{t›ßăĐêñ͵Ă=çI•Ÿ¨Ÿ¯0Ë%ù‡Öäq¼—ĐZ'®?϶|ÇBO©Đ̀x1·₫ê¡<¸üÈu₫,Äă¼£2‰?œ˜Ü]kÍƯ]k'q?"q*̉$₫\Ä)ñ“8‰SË~FâqŸz'ñưˆ¥Ê‡8|¹´À÷½µv'q'q'ñ£ç̀{ŒŸÄIœÄIœÄ—x̉ă_“øÑˆ×?ö?½øĂQ>VÙ$Ơ¯[øeÂï““C™Ërqåä[¨‹ï§â&xâ‰'¾œùVù̉.©M<ñÄO<ñÄÿ8]\¿/~â‰'xâ‰'xâ‰'xâ‰'xâ‰'xâ‰'xâ·ÀíRûå’ÖÏN<ñÄO<ñO‚K–K5>_–2ñÄO<ñÄO| n_&xâ7Áµ^r›ø^đ̃íô?~ùíÓ_?úËßƯƒ{øü¯ÿđù÷‡r‰+}ưO~q9\ÂJv₫RẈ¯ụ́ç‡Ïÿ^ÉŸÿô·ÏŸ–'…ö+ï®ÄK[sùxYr¿Ơ¾âW.M‚ŸŸGṇ̃yààGSé¬x ÄB÷—˜{äw—ŤCz7̉Ë/Î/W¯¿8Y|zÉ¿.FƯJwµËlÇơâÖκrñrY<—Ë̉ƒµ¹ßúÿ"ÁÛ¶–ïRÏÖq”ÉÅE2;£½.ô;á¯́*Â5b‡ô®ó¸·ÏËăy¹x/‡÷ƒĐS“'‡–Ú»ÙqŇ…*û·b¹ÜX. ¸tÆv́"qYË_rÏœÁ¼ ÿ~[̃×ơ}Ư¯Úûuô÷k~|ͯ¯ùù5¿¿¯Çëëñüj¼¿–‡'̣̣µ<}-o_Ëă×̣úµn†ZÔw1&çÂ+´á¸:Ç 7 Ç-êq½‚ñVƒL£iêăfèöe4;Œ¦cls(á¹à½/‚ŸE|nÊ>¥A¯Ñ́Ơy8çªH9ŸĐÏ“ºr¼ØĂ]ñˆ–÷®gßIÄg Æ)\yK‚m¤N’Û“xûŒf®Ưq›`ơó¹Uíư|…?t|v0™pØ`¼Â?ɤ¾Æ¡sÿ àœb_á4اyRGWïwçƒ;z&”zP›ăyØH½bZ>L<>¯ØAØăËw³µf'¹æ¼b-¥Ị̈oßa1s–Ä¿fB?èIƯßé̃&×Wͱ*Ÿ«y ñ´u¶^çY׬"rè*x {‚ ¹æÄYÚ²EÎđíû fλ#ï_Rÿ*Å>ăﮟ“xDS†~ -ûYˆsÈ&qÊĐ$Nâ$₫¼ÄéOâ$~«®³½_J¿K6]»•é½Éø)ñ÷·vđK–}Á—OèÇ]éDLEÄ‘xÜLâ$Nâ;+¯¹^™sö«xûö́{fjçGÏàúS0÷Ă„Eḅ.ÏĂ¹Ycâ N>“&îq¶….âºy¶óÓƒQPåfßx¢¸Omwâí“S7Ç!ïùøk¦÷#îÓÎaüt™Cé‡÷ÑÏwˆ =Ïñ@?&Ø÷¶“̣î•íP4÷aßNMùâ<ûæḈ1qX¡$₫$ãj~„ôiè¸Tz2êÖ#ï^ư¹“€Íwö(å8öÆW•)ŒöÊ4q¾Lïq ñ»TweÂNµoÊN’°oç³—¡wđöR~ˆôMËĐ^ḅ©̀ÛN†ñ%̃b™ÊÅM‹øÓ·‡ñOoø‘·Ä77Á3úưümá…^xá…^xá…^xá…^xá…oñ +g´æhë—ĉçÂÑ~Iœé¼\ª¼ÇDع×`”ZH^¿ GKă/ËZxá…?;¦íñhĂ€„ˆ“Yxá…¾3v™qXxá…~ö³Ñpb́^øá1o&Äaqá…₫ê˜_†lÂ,. /,غ½±]¸‹½èYxáÀäï-¬`{¬₫@₫p₫Ø]Î7¾Â©Nyáö|ˆ8â9³…gpŒƯOăÑËzƯÂ=œÚ~¥î„c$êCàŒKÚ¯e¿(Î8¾x†o íw›øăƒb²w^âƯˆ×7̃ ×L8˜Á•ưytI0̃hØÚGÀ̃đ%mNä{Æ%¿—D˜åơ Û£eœ̉$‘pǘ±÷‚½àüö¸Q±©¯Ä$OĂx=X¾lă_¢kC³¼u0Ư₫ceÿàÊtkº¸¢"á~×è_{§Öÿüí§¿=?ự+ØÑĂóîđüưQ?đưâ ¨­c1̣|ûëáù¿@~₫₫ô÷ç's•)…§  1đ¤úư‰&ÏPÎ)ˆy¶̉Ñzđ‰ 1Çf¾Á7z¢'Sê‘dr‰ƠIŒy³™¥à|_yóo¥ÍÀèsµÍ¯•ó ô½IØ8*Ỵ̈3&ƒX?b¾ñ4Cưyrh)—³í{KׂB³¸³ŒÁ]³E›gm­t¡„-Gç Üåj¡™Î<‚l+ ,kß³°ÖFàW_6^êc#u¾ÔÏ̉-¤À~ln¦ÎåöBĂsp øQ,m̃6Ó·Y‚Ưđ ¶₫̀Æ2¦ôI„+RÎ1X̃¼\ªô'*æÇôx¬Ë "èœa}˜^0!Ơ—'[¦]íZ°ÁWj¯8ùß”'–•—= [“GKüc̀W^£3Úè,H²yéû³¶ô|ß•oéMdy¨­üḶ›«¡~XÊS’úŸô•ơ‡ÿ\ kIJA&Gƒv…~ÿ÷á_‡?^ûÍé̃¾²ï­¸(4¹:”†ß´`l25Œ¿₫·Ï_×.®ïovê‹Ë‡ÂY ÙóîïX´E»-:6:Ư÷UñÓW_/â".â§%&pÿµ·W?ñáÚùpz8âNúYÿ³´säeíĽÏÅÚÏUÛÅ¡EüŒÄpÁ²Çđkÿ¥đ½ˆQ¡ù^ù}.̃~¡¦<ûæ+´“ÄïÄ¡ÏƠÙǾ‡«íN₫ĐĂ©àĂƠv§^y¸¦|.uøˆ¦<\g.‡ûáäöáDó#|“‡ó‡>W—-â">(±xÚ|Ùăføµ}8Í₫=\;Ç]–ɪ~?á¥xR£”GœoJ®tù2–=Z;ñ‰CúBZö³W—-â’¡E\ÄEüy‰Ë3^ÄE|q8Ú/Wà{eyoÈøEÜ}óúG¤\Ä¥H‹ø¸Ä¥Ù‹¸ˆŸ”8W–f:Ă8,sơç§ëÏE|D·y^>¢BkîđˆÄµSå'jç; †Ç;kÅ[Ö̃BKî˜*]Çfn—é.îD̀–.Ó³åÍW.óg!ÎóvơÊ"~91y¸Ú+ôpµ]ÄEüŒÄ¥H‹øs—Ä/â".-û‰ó>ơ".âÇ‹9V :~¬ù*´ˆ‹¸ˆ‹¸ˆ‹ø¥‰kä}DÆ/â".â".â&Öc5êÅM‹øÓ·‡ñOoø‘̃̀¬Ÿ‰₫ư~[đv0zz»Ô´·f^xá…? |ä÷§² Nü¶s8–…'´À|Â<,¼đ /¼đ Q"á^xá…^øËâr´¸XÁ.¼đ /¼đ /¼đ /¼đ /¼đGắp{¢uö^xá…^øçÁ₫ñQtwŒqá…^xá…¾®xĐÄ:˜v–…Ÿ\±8ñ¶₫l^xá±?¦t°̃s¹®æđ„vÁsƠ ÿˆ{§Óÿüí§¿=?ự+ôÛáù?wx₫~Ș ÿÑ/.O¬uÇäßùö×ĂóüüưéïÏO¦{äƯåxL„ÁkÁSí€âp4´Y°uŒ©²9Đ¥˜đ=”ÂØrúÓdÑ6lÜƯ1'́¢-eè±´¥V t%O/•ΡÜ2D›ă[­<ÙÏ&!Ú™^!„ `Ë †³ 8ĐW™Û ¥«U!ÚœÀ>B´9gåÁP¬--˜b´Z-g(Í”•¯äi1„Th¦¸’‘lNä) B´9±µ—2A3Ơ È)/ aJж¬@¢f`sN29‡PùSÚ„JĐô”•‰#µWd2¡ÍÁ:Wø‚fl½O³-lo£Vjoär3̀‰e%:H$dlˆ“&ŒÔ)µ}œ¨SrËŒ-CícèC“B}hêLS&€®Aè[„8ЇÆB}hƠ(4ĐûÆBư&f…”Îó¸€l»+ ô¾ ™S̀Ù ôTISª¤m0Ö³:“=ÁAÙ ,TÉØ¨5œØ’‡ƒ¬kĐR§°è¹S’À@Bă>ÂÈBh&’ß`&ÉI-«B’ĂíµÀ­ÄÆ,†¨t¹Ơ.¹Ăq§¥E›SÄlZ²68v´q ¯­Î–zq̉ÆÍPÂÜÆẦ aTÂÜ–—ơme;d+]såSäÀ‰HÆ™0Å–g̉¦Ù-œâc~‡KS||K –L‘‡Đ˜êifn|¦HHAÂr䈭ăäoùå@‘ÖXÀ%-=E^’H© ôn‹É"=€åȇŒ‘ T„ ©̉øĐa$$¶ïGB„?­b¶€iêg›ÔNSdÄ ##l&0$Å‘'×èxí˜ơ2Z–"UÛ÷I"YQpæH´'¢'€‘éÿˆjiyV‹8ñ¶ÆỤ̈Oh—èÎl/Øs¤Í6Œ‘ +.b8(2gC87\G̣àê óxCÇ!~PÈ #/®aÇ‘÷̀aj×4)·e³Ü¾O‘q,‘F©OF+EéS|•̣Ï‚)̉è 6Œê—{L²8n_+·ß Ζùcc¤ÍÏ‹¸FÂlc-Ím‘ÿÁ¶Ü_̉>̣Ú›†ĂYdq Ôÿ"4•Dy)NpæH§it¼Ơzˆ0dæX“`Ë‘¼̉èm³5́3É»oßcä̀´ö9Ó"‰µÑ3ë××Ö×|ú́WkŸ³l¿’è+`Çö $Áíäg9̣Ú́? Ûö}Gnû‚!ÀJ˜}́hËöŒ¿wX²wA°e{(ơs©µâÆ–k]û́—iơul¿Œ8Đ,˜ˆmûˆæ#c²±gîxr"$ˆ̉>öh»p¾’¢Qx’‡ˆ,† :™gW WíăJN[= ôÓĐÇJĐ’;&}ȉH¢â ª<Œgƒª#?¥FqOætr!–|r0Vv?¹‘œˆĐxʼn`¿ ;) d'‚ßy§¬b£f̣tbËJœˆFe'‚—ĉHE -'ÿË‘îñDŸ!;" ‰&.mü˜È³óíă|æ#D'‚æî39Ííu´ªHè¨SDsh±£¶ÎQl¿6;ˆÜ˜É‰hV :EŒ.^˜M₫ˆ0§ĐÄ¥ÈD —ä+ ![4€8q©2`©Øü€ä??“ÿ`dBå ëŸi¼¥h%ù'ü}eÿÁ6)æ•CñSÆä?Ø&Dz’bÅyr•ơÏ6±¯¬Íăz§?×çÊöÈ5û&+7WN¼7́?4ÈöœØSoØhs@/+AV|woص)£7l¬ô"àÂơ¥ âÊơeç×[̣L›®zb Ù— Ø1y|Å@3ó—í£§ư›ˆÙóöd¸j›¢ărlDè[i¨~EˆêØSOL¨Eä [#Ó¨8¥i†ƯÓ^sk‡Ă Ö$Ư Ơ1‰ÄyZ®ä°ĂêOjá=Y£(.@Ë6£Q)º0ØS!ˆÿài›M §yJĂ£#À|6¯ÈSÇTrZ«kuGpéCˆq×XH]+(5ÚÄ€¦+ƠÔä8[n€G°bŒb¡ ¹>’:¶ø@KFvp|”Øelś24*Ç.y´ȱKײÊåsXÍøó>aỊ̈Mê ­ß¢Ï]Ü"}}̃"}CƯ"}eÅf`¦¬¤Î ;z *¬@ç&däCiö /l 6È [Z^0`cc—Rn–Ø%9vÉ#;®ÄS%yxÈ ¢ E x,È <2û"±Kà"±Ë̉¨»¬-mI[¤a-[¤̃{Zíh‘z„ÂdƯè9L憸EêƼEꦺEêÊ} _eÁ€•`ĐđT#¬ ;®mZ  ˜WÁÈ‚ó*Y0È-+^0Èíc^0`ÉX¨’́À¬,̃\•Ön€¼`°A^0Ø /lic9ËÙ’ÍÙÊ¥E¿M‚m Ô¿ÁÉ‚+,@^0àY@V:–œà$vÉœÄ.cËc—¡Q%vÙ¨¼`ÀÑØàeÁ€{×k·₫è©÷ñÊ|ª$UyÁÀ´¬̉™:̀n‹ă#d¥Û†kÜâø>Đ|aï@£Re’ ĐŸiJ²`Àj‚,ÄFe¥ IC£²Íáèd -p x0È l'̣‚0'̉ñ̀,D±9¶}̀6ǶyÁ@XÛ"%W#µEÊ$ xÎ’,Đæ„²HiF^I­SÙG³-"¬n[Xơ!Ó‚,»"´q[”Eẹ̀¶d‹Đ×mAa´0ùm1a°äm!a-üçë¶!ïëö4em¼¬úíđÏE_ô/M§œmÎAàg¢G4:'zç`Ñ}Ñ}Ñ}Ñ}Ñ}ѯé–ö½ntÛ¶Á.ú¢/ú¢/ú¢/ú¢/ú¢/ú¢/ú¢/ú¢/ú'¡gÜ(t¢g9Œ¼è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è‹₫è®̀Ưè®Ư »è‹¾è‹¾è‹¾è‹¾è‹¾è‹¾è_ŒNïœèU.YôE_ôE_ôE_ôE_ôE_ôE_ôE_ôEÿ,t|Iû́}†‹¾è‹¾è‹¾èŸœ±Çá¢/ú¢#ư‡ÿ\uG×|Ähđ½y₫ùư߇₫xúÛ³¼±₫ÛŸ7Öÿüí§_~u{x₫ÏŸU?ư`́M9ºt°.ăÓöÏ¿₫̣ÿ₫ïÿûÿ¾ươđüß§¿?S|đøà½Z‡W~ọ́cđ9êÁ_đû“¯¾½6Ÿññy†Ö×cæwíéëqûüŸ¯ªó[xëà-aƯÑZ`tÅ\‘·ÿ¨ö‚·åhœüÔXûâ'ïä́Y₫¿?17}´q™₫z‰Ú—ÿ| îSËçPü±„F=üHäQôˆ SŸp¢2Ú¨1ưVĂƒ à7³QmÔ ­,UЉơT+Aơ¼ [‹6êÄ£\JAO?9VË¢á›\`Æ£”É ¬ŸR×&̀á˜ĂYB÷I|¡©Ñ£=ÀOP7K€? í°o½WHùbŸ…G-UDáQIEɼ~ª‚=«VĂ)$²̀}ˆQ›œ²Zù¢p¥ÔÙ[ƠTEé”Iăa=:%Cà†QRA“µN#n@†Iï”PQaqtú!U=&CâyM²TV—äÑnôIî¼Êj¤pôE¯†– 4,*$ƒ¤~“A°k?ôW†^G:©|RH‰zY©|Ñ*&(ƠÈG£«9 ƒZ“‹V ́¬”•Đ„iMVË*j†À¢t%X[€~§Ø£×º2C̉%J«|ÀöË º̀£S¡d赪e§Ø*2ŸÙ˦t%ˆÆĂlô®Ô @S=pd5RĐ-üªq̃3"£¾©TÊ ld²½&UnÀ°ô®Tú ¤7(½ŒV7•ª!JG•jxƯÂX©)‘Q-d˜´₫ +OƯ¹ë‚V‚‰èz Q}’G¦OÊ8/ë—eÑ|%‹÷uªê)Ñ<äJ°U%J(ØÙ¢ƯîØ^¯Ö°jí*ØSư:r–º]Y±+ûZ4•ưveT¢~*›>öW¿†ùĐÏTOëJù>I+ûeÙcƠ9Ø̃’:ÊrAå|Đ4%»ƠˆÇ¤Ë!8̉°Aµ»Mµ® 8Wêwe@ƠÓR]̓&¢[믢¤óån€©ô ç!UÔƠ!jíªª· %t‡WdRe̓%k£ D]é% Ôx˜5Î'ô74a3°ơÔV7° zƯ²`¸Ñú ‘f*3XÍc5uZ ¦̉º2hæ l—æ&Í,a5™G§½;Đƒlè‘Ó{Y TdṬX±Ư^Nm…®;­+‚4»¡Ê¢{)¼¾¬´Ë)C₫Q³ Ưj€©́§*(ƯT¼/mơʼU+Ó Íïơ´FaTÑ ဨ9U8‚>ă ­Z5Ô¡­-́ª3ÍáÔ=¢D+ûîỤ́º$‡-•6wÀĂö{y*QœM«FÔ ‘Ñ̀rYƠ%.²¾Üu±¢ÂCV‡QY«oÔ#hƠp´*­T^ d>S“»œ·4~iP¼¢› ”=ôFshW7X-Ăª‘@S¬B‚ùrUH=Xµ̣©_yV¢~*‡R™^lÙ*MNúès|l-•E O´Ư«K¢¹_-/j‚{Ï”jX½­Z“Êé]©rĂàŒRăFRØ ]i5’ÅèÁ[›Œª§TWaR_6˜}M¡ÙÖ_Yk²ÇÁWă|Đ:%©e¡ˆêei$ øk"Đ¹̉ú+hjîpFc¯*‡ƒºªƯP…2o Ñ~j5Ԕ留×ôËжU…”ô Ü0Z“iî ¶KS=¯×Đ¡³4P­N硪ËV5è‹j [UjÖä‚ưƠ— «J/‚´jd½QƠe^®̉¸¡*íüT"‡C„cƨ€a1U4t“B;$µ ƨ„aUÍ5-8“̉¸¡ª9­̃öSyœÂh¦Ú(«·+*ŸtưR½/]ơQºÛăơV3zS.‡eàpjª—Uà§Z ]°ƒ̃d­S †ª̀xXp¸é{•Eu`QI×/^»ÑÚE+ªt *‘î9¨"ª«^2£&u@ÈFTe~äo:p ÔP|«ê$>ФÙ^­É§Âª]‰̃²nÙ^eÖơ«hæ‘•µùư sØüF  Nió¿–j4Üh x)F7D ăWZ U»AñĂÁ¦/½1ÓúKơ7Üh„UC·&j<ÔF"\dLÍtU=‡‰ö˜ir¨2ʨ±´l¼û:•ơ€I d£c¦—¥Ú¬¾Eµ½Ù¨ÓöÔNµtÔ!Œ”(èărƠÛ¥NTƒ>•vjàCܺ̀'}v£YÑltk3p̀’.´đ¤Î8ôI–Æy¨¡ê ­Y]æÑû̉ƒŸZ§d«³×É2AÇ8ó´`ª’ñ(Ư©ñ^]z2Ÿ(Ô¯±7¢"úôV ÜñV­,Ơ8-€jÙ4].º`'Ư‘N#§]ơ³¬6zŒˆÎ.½¹¿†îœªYê}ëƠYv¶j†Py5ªotéͺWI6J ŒGM³î:F}©ElôçuÛ«¶Ë£—¢¯AhQ÷̀µ1…'#}Fy5F4wAq{²‘Íä]hMƠ¦K8Œj“§;œY›J§³·êî\̉u9èC-!©+>ºqĐd,€:V̉‘m´oƯC¯º£Î+J4`ỏ§f~4:¨Ñ¯=}8µeücßUUaă°É¦*½\ô5Ä‚ßkëËYNƒ8üû¾ƠW²†nªj*³>ÿrz“3V#ÑÊë®ö`9XƯ*ô•‘¢+l̉­¨×‡́8̣ô´…]ttƠËƯH:£ªÊyÜZ?ƯÂ,z ƠƠ¥a@̉hă—n0L²ôqYuÚƒ.¢n´&e”NÁQ÷ˆ@6BF'áZÁÓë“h£Kđư <¼ƠôjÈÿ:¤$(:$ Cr5p¤¶ư¬“*cd‰ctc^•Êg2z]­áÙ–̃¦5ä¡C₫ÿÈy:6{$Œ:º~†Ùc@²_ :TÎG)¯…û̀»5¤Ă×ư ₫ºR ¶Ÿ6 ÷SÑï.ç3 @7CèZQ¥¿0¬1Q¢ ÷ä—«ºB®H_l ‡í¦²¨)çqCc7«CWløH̉d<ˆÚU q÷›́)ú­ñP‘ùÈØ•NÁ-|Ư&'jW—Tig—DWßôÛE …xEØơ¸L‹ăưVMơÆ^¯fÈ Ö±[CR„nå3Ư¤¡ñ°hÖ†6ñö›̀;«55wª!B5ï vÂ%ơ>£h7{¿SŒ*Q‰­}FEºp@©¡*f–qRx˜49̀«Ô*î¦_Q±¢™OdtË2t3ƒRì mØ_{CSÆ/ç”®¤•b­.)©hY_l2è_†ÖF5“¢ƠnŒÔ2túø•µÊ}ü¢§Ö•ªlđƯ, ‹6øÚ®4PѵTNQ2Ĭf̀)Ú£µ+hí´[LQ<_©¸=Y÷ˆÔ ½î:̉–•¾êñ-a`M¿"…ÓËæµ>Đ=Ư )ÄƯ¯aĐÅ&ÓYie@ô›È|)₫ß±pí}e:ä5đ4ưRy˜đøª6.Û¤xD|A„2AÀëÔºCí Öx¨ê2-ù©#‘’a¦“₫}RÀÅVÍMz#ʾK\è’(¥ªYÎêÜ!ÓÛܵY7tªEøh$R¢®W™£î´fRSơ•ÈÇÖæ)¦dTP‰Ô µ&½—éÈöÀßĐ<ïÈÑƯ,ú$«o7}Ht¦¸[|³`WºdC©FTü^£i²‘´^¶tX^7zZi₫É“©THèoôÊÊ2í§Êt_eAß̣:C\“RdE´K¢ëhđ™ÅéWĂ‘Û£pĂjÜàÅñ.)¿¡4ï¹íÖ°’DuIô^€VVÔz9ùê¥*–œn†|k¯¸çVœe%CÚÚÑoÇ7”NÁèwW6"Åm”²&iÔ)Iă¼¡{¤9T…®‰SÅFS‡¨¦J´:¯5¹*ư•ù•®V̉®{óAËö´k©¼¦D‰ư»"J‰¨j<ôZTÔ!(M–3>z“ûŒ²¹U8o5¥&wyX8ÄM7v¬¨F dˆ”T5($:À̃%I´§›ª̉z–¡R ¾oJ«!NT»©xR \ëV₫ØO•hàè’¢N T*5ö̉íî]̉ọ̈₫éÍ/Ѿ¦ü÷'̃´Ă—|#TeFø̉IF ûz¡/ ¼g1¡tYÄ÷T,#v•³ĐÑReTÈ›‡VªŒŒ ú²ˆS,#KŸzÈѼƯFÊs™ß›9ªtV•<+]T º¨P|¡mÄs „ä₫Ơt"£Â— yA|+‘D_:lQ¤wÈ"m‰#Ä—›ÁßEÚÇQäËHë%TDé%Z„Ị̈e¦/3–Đ:fŒ‚hñ'A´m‚x È-A…|ééK/_Z t‰Q¤̉­¤“u8I‡×/Ó₫BÈkÏé|l$óô퉣¬|ÿ!G_rÈÖă]Aï öe!dUD$É‘v‘óuæ„¡ _&Jç £Lyz)!3Í2*„œ”ÇmpæQ¨‡ßb”™*¨œ#Ë4'¨œ#GÓ*’ÖHnj¤#Œ(èR¤<̃b’cñD0[AMHR:Ç1’Ô“ăëIJà0éæ5¢€J”/+•¥.¼ÊLziqƒ…8GN‡€Œ ÓzIÇñw̉ª$Xä%K¥s¯ZÔt¬áˆˆg.0̣4YtR/~8)ÏÓ—V̉E^[HŒ¶¥ÁoíÆu+²äa·"é ƯÂV$?ßVÚ—tQ\‘Zº ­H]ø¦¸,­­ǘ[î"~c.^£ØܲŒ,Ơ,eATB’/-ƯYÆ}Kë́Ñ®Dâ e;Ék_ ú2Ç.ª„#”Á"v¢ ~G9̣„"c΢eáY <“ä)—d»ˆrI¦‹¢(œÄ¥(-Ô†(%$ªu”<儃‰r Â¥D\ ̉ÚD\ -ªuÖfj‘Ï]DyzÉ3S.̃_ – åé¥E…rq’®P]œë"ÊÅI‹ åb¥E•8Ѥµ'Ø«$y •=GA•ÎcÜ¢±´’|ºpåS’‹¥ù(Í–6TÚ—4Ñf‰$å™#iÓÜMx‹äâ¨<–V² ˆäKO_¦ÚE4ÙN¥‹¨f)wƠ3 —$P»ˆ#íK?—¢¹@Ä¥(-â }̣"Ơ,_"•„ó‰r ̉ÚD¥{iC¢̉}û’̉ywZºÚAR—l.ƠÓI ™xí¤™¸ä|Q]œ”Ë¢̣œ”P(O›/´½ø D\²ÂƯB\²¾‹¨t+mçX•̣8Øe$ÏJ%4 ¨”K“̣J-")ß1¨I±&¿.yͤ<ÑŒ=$–̣íµ-²É׈n·%™?!/(\ :ƯHú€ˆß ø¥ ’d>uHJđTë$ơäÈ’é"jC”<=å%O>â¥íü˜VŒ]D|‰̉"~\-J­ùá %đyèP.Ô_¯kH®=–̉ù»ˆÏÄ Ïøu™ Qk½”©/%đ9p/¹$Jç¥ßS¸@ÔWºˆ̣tRO>sèâ¾đûfÎ_ )Ÿ̀sÂ3~ÂÅJ ™J°RëÚù3â›’¥<¾ëÇH •˜K •jm¤~®ŒÍ[BâÙK¢9Mˆ́©&…È^ ß¼w(&M^́ ÈRÀ¾Jy7§ùJ²²¶!ÄßCjF³äkDơ,R/,i‘£²Ô{rD%d)Ư› ‚¨ÖỴô”'2‰â`!6nHÊ TÏ$å*=ÙmYăeÄKORBäEÊt¤ ‰ÓÙ.²ˆ×%¤}‰Z¤„D- ñ­(Sy!t‘ ªK~Ï₫qÍLÊÅç."¾x©/ĂyÉ“”¼ÈR¥̉½½@¦‹hÍI¯Tª‹)¨T‚“̉+ơ4Û 'Ë”l'®í  È ¿@ÔZ¶/»:C¬ä+"¢\ØÚ8Ñ#S“=²’×®i¶‹g)#¹đ2™)]D¹ĐŒ(Q,‘´WÔ:PéÆwç"u áqFC=UÙYtB¨UgÈÊ]Ä館9gˆ¿”zâØxæ–(|̉â ?—`z(›²ˆJ/ÂùLåiúggˆJ(©‡ ƠºHû ç"í+¹ƒ\Ơs„Ä&ó½t²6q̉".ạ̊ Då±÷$óÁüÊ»¨œ#K¼æbøç(œ#G}D³äkÄ霠p˜¶‹̉ʨ\ æ„aäír¯FT3ăø´L1ÑF$¼ñQ=“p7äsħ {ˆKI8Ïú—„»¬qIøÉ:¶¡¬#Öœ$¼Îœ‹đŒ5gCi€̣*:*Ü"ó ä.¿@T³X»(¿•sT©ô(½Y³†øü¨\ z¬ ?‰.J·é9;@n€ÂJtÁOwÁ o&Q 8@ua-f™4¡x’ÁĐtº¡¬#Ñi+È»@夛¡é{k¸Đ₫ F<6² M‹“ rêkQ1è̀ѱ$Üåñ/ ?«¹@g–ö Yư ÚøNÈø×PƠPMåè ¥ÓÈ/Æ¿ØF¼ÔEœKt6¿€ê9b=b¿ ʈ·!öƒmu Êцâi¡Êªô4í¶₫đ §u ̃j}B̃œV86$µæµ¥ ¹ Ä«-̉"^[̣¶‹Êª§Ơ–*ëN¢¼´–×–¼´–×¼´( Dơổ"^³ ’'¯ËÉ“Wb‚ä)/¦H.,Kª§5)^al+[cTy%MøÂrmñÚ™Ô“Wp6Äku₫ e#rF£…»—•;¹:í åsdí¶â—¼ÇFó1>ZϹäÊ¢’”~¶̃˜ù*©ÄQ¸@Tz¶=ÄëxỴŒœ.tQ¼@éqR^ñË̉Z¶/d½ù¾ÉØz_!–"µfûRl… D¹áËRªY‘º°)½V–³më̀÷YïkD¥“短¬“ơÎíöZ²̃ÙJß’½FÄ+àRKˆÖíi¥0ó˜¬g+wonÈoëèr;³edzWL“º.AêÂû ¬”—́¶¦Ÿ­́n°̉>̃³`Óˈw0X)w"ØÚC|v¹.Êç¨m¯C¶²£ÀIûx×€‹×ˆWwdÿ"γ2²§}ÙÉN²||iwÈlë²î̉®́d‹—\‚Ưö‡È¹)9‹(Ÿ#̃$Ïè.PÙv d'ư¤Ö‰w§Hy¼¯$J­yH”̉ ïq‘É>GoD²C±0ÊT^’¸¼$ỵ¾T®Q>ßÇ™sÛ)´Àû? £Ä»Hƒ ¦EFù´‹4ÙH³‰̀»V‹Œ2¼‹´,ÙYL~y®mwmbÄ»œÙ~VÙ̀ưĐN­¯ íØ•mOq²Ÿ–FĂâä #É| rA;Y¾̉öf“®ôN¹ưùÛO{~úåW{°‡çÿÜáùûæÁø~Ù63A5Ÿ?üåÛ_Ïÿâó÷§¿??™îÁ9Ù₫HË–¿Óæ6ºÇÊÆ?ËæX6¦˜mÙỌ́m”nù®²àÅï§e dó]ùIÂcüÂWjA/ú²H0 ÅÖÈÔLv02éæÍÈV¦<Á²2I¬rƒAn6Ưñ–ÄÍg ́–ÆÍ14́ VAl›«k·mË©Ê[aF\k_¶£<‰NjM[qÛñ)>?ßq`$Bƒ‰æµĐnჀ̃ÄĂTâ‚đ"L” —!Ă!Ot)æmC0ȧ­KQÛvǹ´í‘:¶Íä•&Ù*́é.Ó6¨Ó¡='Ûêù \ÛǼl?NíÎA‰¸ä°§hG²Ư*’»ØŒ,Ö)l^lÁv¤ †-ȋܱٶàn’Œ*ôĂÿ…̀€'#ÀÇJøç÷₫uøă•ŸœÎöUh|öô<ÿߟ¬§M¨^6 ,b­øÿKÔ>}Uƒ¸¦¿ưÙ©)ÚJ³H{’~8_»H‹4C¢¸ß̣#)ÊA¨̣ÅHsM¦0PŒyF¤›W~Đ•;0ê~íº¹ûë~đ <¼g5æjH‡ ŕÜJ»‡Ü¸¿fSƯ¸¿n­DÖĐcÄ|cđÍÊlåÚÍÓÆåéăÍÓ^NK/{¾­y±øú¿6O«æ W_ÊRkƯ^Üœí½;U¶Œ{(ø_¥ó†ª¼ÀéÙ–ëéæi¦g‡ÛC-ïK89ÓYN™Æ{ˆú|VÜçŒÎ†eZÓgmă,[æ>ªËÈ¥s¶ûöàÙb6%.sNœîœ™B'Q#½$rÚH÷)o®ƒ²ÜTvưÁ¸¼ùt)2í¾YûöhĂlóm°µÍ₫|fy¶mT—=äzV7gû}d{öÏ=ø9nŸ>ÀÍêû¸}ú`tûö½c>8gæÇj4g f=ä=LäíÏúö¬µä{ä9ë½́ѵ·÷z¦'Mä,Ư>3˜ ïÓCc‰˜3<³ăé¼/1;6Œ&…sÆq=GaªÛû cë¢O^÷đ=ï=¯ØC®çÓÍù<4Wy¤‘q’fén’H÷₫ܶÇÜvX̃q„IYæË¬í1v́!/A6âÓ³»%Ê)“·¤{$Úl\”KæÚ·y¤ö-ÚcĐF̣̣ôè«ÓV-Ú’—E[´Eû̀´å·.Ú¢h£qÚxyy%|=¿:mÖ_Z~Ö¯—\?„?ïè½HoU½)Ư侯₫¥+‹öùh³vbÑmÑv~Áo'lƯy6*oơßă÷Đ<ï—º̃ÜúH|y$Ú.s™É~¿÷¼ê¡â÷rđÍƠ^—O"ƒ_Ư&…öM·î¯ ô¶ñ[ho]ôƯ}]ÓE³ưù4(/å¿Èơ¦ttÙ^tv½‡nÔ†!.Q‹ôÍßi¦Ơ:yfº„«Gå9ª ]So¿÷tm?t/ÏÙt{ôĂ<-C]èîÆ7ơߨ /¤ôƒ.cÚ¨}ª® Û¾¯GmŸ¥Û—Üo¯¼ß_’‰I^ë4ºá4ªơ´a¶ô¶ÏÚ¬±̃x6×¾ÏÆ¶ơöüœµŸ³u¹wyûèĂpŒSei¾í·S÷°ûÈ ^Oº—ß’¼!_g|x‡w•ù{ÛY[>ëîaÏÆcÀçĐé=h³}4/×|¾}¹·Ï~o½0=ĐÑĐßUí½eÂï}¾)Ư8Ïđüä|³‚́̃Ù›ëÛq:5å>=+~ñ–~˜¦Í–çđ–ˆDOăܲ.•^µêún·oûơœmĂư¾?çÛ7'/ïàç]Ó}€œMêí.2ñIlÖímƯˆŸüî<½ø¾h? m{Ç ÿôÖwÜ*‘ñ<{øư}[hÑ«́àó̉“ƒ -tC„OM:~.óĂ?‰Iị̈₫dˆ߯¼Dt*=¢Kïz.ø¬ôZ*½ăºà‚ ~4¤›5&ÿÁ0Öí¹ñ‚ü$º«¯€ö®́̃z~ï=đ9ˆPñ50ÓÛç¹¥]pÁ¿.L•̃°»ĂÊđ´à‚7tø•Æ7Ck)«€aA„÷cƒ}aÀ·cp2/¸à‚ .¸à‚ .¸à‚ .¸à‚ .ø.XAºĐs†­íÁ"0‡7CÇKoƒKï…îÑ ¸o±3Áúu ³£y$nD» ]yÈ0,¸à‚ ¾–‚0¿Ü•h`íBKö¹¸†4†¿ ^Å™‹đ_fÜ‚—‹Ú˜ÁđEa9Đ›iyÔÛ»ĂBĐ Œ\«° AfNZpÁV:*–pº†̃áAñ:¦×ÀL®rÜV‚é¡G/4&†aÁỴ̈̃­*¾ÊÏ {‡Mÿüí§¿=?ự«=ØĂóîđüưñâ|üG¿´]k ƒAÏ¿₫̣í¯‡çÿơùûÓߟŸL÷+íÆ¤hϨâF8ÔJw´…㓬ÁÊ.}(H,!èy×\ÀL|ÅË›F¬@ &œLüqÁ&B.¨âă Ç3 ™Js´<´¿5²µï­³X+ÛB…`Q–6÷ Ô„ÄYñ’1Äs[¬,â)<*Î₫XÂ[UĐÛÍÉbĂÇÈœ"Íu†^«YÊ…¬¢• 3@gđđƯæÚù=Îȸ Áâ¤ÖIaX«4/?â²đª¼ %0'3I1cƯ˜±Đთ^€ê¶{ÜÓ°é2S zé_( Ï—MÅ€j̀mĂA§ óDÅy¬F">º›%̉ˉPgöóM ; :ÿ -5?̣Ç;˜³AøXÛ9 ø%̀ạ'eXéTÆñ=!Ơ(~Đ¡µƠ*ÓNÎê¤Î(±^.ü¨wÿ8üï`QbA 4đƯ˜(?¿ÿûđ¯Ă¯ưætr¼¯xă“ă€ZVƒ]Âđ[ƒ¥ˆ¶đÇ?Àö1XPdZf ‚̉ ưpMè±{‰2íNt'z2(™]à½âzˉÎđDÏơẹ̀‰.đD?¯đ©₫í"1û·?;̀FËù˯Íf9ÊßùAëiÆ :W-ÙM ¡åD£I&w”6̉%KçiĂ«Óf[àÏÓ––ö5BöB›±­A¥Êׯê,Ú¢ƯVT ›̃M]LC±ưÊ´é¶Ç̃Ku¯ Ư´ /÷í.ü¼[ûv”ÏAî.ÄÏ;×e¶9önCßQ®÷è¿Ét{ôßmu,œ¦Œ»tú4˜§ulÖûh£̣’E÷K¡¥£½¾­øåöeÛ»ùúmèÖsÔ·¯È³Û¾ưø9Ûö?‡|ôQI=;1ªË˼mû(Ư¬,½½o_æÙºy?ÚÈ'ÍsÖF̃ÛŃ×ïÓ2?k{v°/³ú>k#gù2ÍëA]Fvphw'ûoí!gỌ́2;·èú­#¾dz[ʳ×2±m$ƒû•÷ö~3mù­‹¶h'Úhœ̃âúùăëùƠi³₫̣̉³fy½äú£ål‹×•·ÅƯfÇđ5ö/]Y´ÏG›µ‹¶h‹vñ¡ï¬ñvÖÖƯg£̣Vÿ=~ÿ1 ÷Kiû[ƒ/DÛo.óö~¿÷¼êñâ‰̃µ|Œº<¾ ~u›üÚ7m ̀1:¼đ«vöXhơXéî¯̃¾{JÍöç[Ш¼äđ2¬‰t¡{7Ũ /̉b8ξػ²ñ5”ëưg’nDëæ9ª —S÷ôd³A³éöè‡YZ*x̃Ûû¯ß†Wôû †21  Û×וAÛ÷ăơ°í“´QûÀỌ̈r='y=ÔÍQ? h³¼µ}Öfôvij··oijWÔs~NÛÏɺܻ¼=ôa(#YlûmÇÔ=lÁö³[OÖ•äñ—Ụ̂呯‡é± +÷–ù{Ûi[>é̃Ö½<|̃ŧ́£Yå}¹ŸÏ₫1<éÑCÍsz4̣M÷‰{û(äüƯ¾=“1œ.Å~{ºaïƠ¿mo÷ÙG±‹w¶o’g£6́QÏ=ø9¢åܽÏc.|Ó r¿öƯדåäl”çú7­+ƯxÁÇÈơˆ6âÙ½eiƯÜ%ÏAÛ÷àÙm¸7m–g³ăíP®GuÙC®ïÜï³vđ̃r6´KƯ1€ÇÍ@ï#=†́̃Ư›́Û¡®tç̀kđ²Ëuúá}´Ụ̀`®Û÷ÎzV|ë~mߥ“mØ¥ß÷àçdỌ́2Û†{§»³œMËËíû,6k[×å'ß‹2>a·h? m{ßÿôæ÷ưø½Hơ₫~ ¿-x;Èo´æÖ‚£ZM .¸à‚ ¾̣[±øÂ²_pÁ\pÁ¼ŒxÏqđx{ô‚ .¸à‚ .¸à‚ .¸à‚ .¸à‚ .¸à‚ .ø¥`ÅW—C:Æ¼à‚ .¸à‚ñÆ3¾{6,¸à‚ .¸à‚_Ö£Ëá .¸à+a)ÇTñÄ-ü\đ^°wơÏß₫xúÛóÓ/¿Úƒ=<ÿçàÏßoæÇô‹M₫è-NoP?üåÛ_Ïÿêó÷§¿??™î YÜ©k^¬áé ,@¼sÎâÙl¨X²ø0G€?̣A!G'°Í1đ¶^̀¡!3‹78|/₫ø¢¥ LưK˜3B‹<„ °¤ÁỒPAÖ’¼è`ô¹V†'nP+ƒwgwŒ›éLhöx)IfdØ„€¼A®âásï&zÿÀWøqnY…c…jüF¨ »‰µbZRoÄ+Q,^‹ÅåÂ/Ñ ë2¹̣ œtxÇ)7ZŸÅØ ²Gëđvï¤ùÎ ¬Fx=éN6æ$R³ÈRÊtX°Ư„µíÄ6”VB²P¢&/ư[3BWB/@¹¹ ƒ%hä$Ô9ŸcÅóÙĐ¢ÄG̀ ]zèñ6C|ç…ä‡!VĂ"fü 8™‚Àd‘ϱQ“Á^¦}l±¸’Ø4ÔÛ"9CÏBÿZ'{_`EÑÙØ° ?êƯ?ÿ;Øj0>ๆԹüóû¿ÿ:üñÚoNGÓû÷ÂÑôó~r ëPo†ß«Qˆ›üñ°}üºVqmû³S[4=Ị̂¨¨Ă~8ƒ¿h‹v3#]Gƒwu׃³‘Œ¤A#üiÓm¯hÁ_¿«6¦íѾQ¿ïQ̃Û·‹|Úpw™x$~̃[v'ëé=º@9vîî̃G®÷è¿Ét{ôß:yÂ_Á76Ww.¢Í*4oêUS´QyÎÍ¢ûuEKøê¾‘yu·î°}̃àkk0o¸¾§y¾ ƒzûv”ç¨};đs¶í#~ËơQʼnrI];1ªçh|˜lû(Ư¬,Íöí ₫ÄÍuóh#_xÖ¾LÙȻۉú}ZægmÏöeVßgmä,_¦y=¨ËÈíî¬}Ùg»ØÁYÚ¤_7̣[‡|‰t·§Á8ă=h/Œ··¯Ë¼̃bX-ṽk—7™t%¥C½YûöhĂl“mpo‡́¾=2߆YíAÛ‚ÛËơ¬nNöûĐö́!Ÿ{đs¬·º6«ïƒö½0§¼yû¦ư—Y;?jû¤-˜ö“÷°‘ó¶U‡́Àëi[¾CÓ₫Ë}»ß37g~$iØ̀8y{Ùơߤí™S'i³ăĂ09;gƠsT̃>Ăh|̀awñ?ï<·ØE®çÇâ)¿ç¡æ+46¾Ă·‚qL×k̀Ñö™ßªåíK˜ŸÇMñeZÇöñ1o-/¶̉f8°°Á\¥3÷ÂØ®ÆQºG¢Í¶Á™ˆâ ¹~#åÚ·hAÉËWĐ£¯N[}´hK^mÑí3Ӗߺh‹v®ú8íLF-ùt₫đz~uÚü<|ùYoçơ’ëGđçIô2«ÁS‘oJ77†¯±éÊ¢}>Ú¬X´E[´½us4XăíÛùy_×eVÿ=|ÿy‹wwà~©«ư­Ä—G¢í3—™“Üw^ơHñÜRHvÓOç×­}_·}Ó¶÷QÓeRµ¿Çz@ĂÛ¼²_ÊÓơJ¦S̃$Í‘Æ&‡Ï*¿)]Åk²RPî¦ĐÛ0 9ºµ,Ü5|•.£vº8́*Ă;ºbŸ6ÊsTtï$ë́÷Î3EÙ?[=•n~˜î¿z¬ơÊÑwdpÔ£6Œ̉ úa(Ú°}]¶}^Ú>K´Ï'ÜW‰÷ßv÷”êơœäơ0O‹ö3öûadÏ&˵}Úf d~(»“íñlXÏø9m?gÛ~ç̣öЇ¡LŒdi¶í{Œ©;Ø‚]́ç ̃àé°äñÆ̉[ñ呯‡ẹ́Fcăe₫̃6dÚ–Ïúƒ{سÁđYtz=́£Yùˆ·\ç®}¹»Ï~g ơè‘æ9#[7̣³v‰{û(ä icß;W”¥̣¶tĂ< ̃y”,Fo–ç¬Ï>ˆ]L×e’gĂ¹Úơ܃Ÿ#̀ ]=äܽÏc”/UÎSîĐ¾»óz²¼‘œ cr;èß´LĐ3©+¹³\iƯ[–öĐÍ]̣Éà<Û£ ÷¦Ị́lv¼̉FuÙC®ïÜï³vđ̃r6Ô•‘¯QÑÛ ßúhÙ½»6Û·ƒtĂxßUñµ»7ơĂ$m¶·Q/ä­½ÔGvăơ Ûx%ư»q{Ÿùl¸S/ ääS¡\•SÔ91Y(“öÔû"±M6¶(9Q`e¹² ’ºtöq“ÉsáG½ûÇáè_p,>Låç÷₫uøăµßœ¦÷o|4ư¢PËêPz~k°±Ëüñ°}üÏ'‡O\l™\‰8ăúá.Đ“r>Ñè0ÆẽèOôĹßèOôó ê·ÑÑî3û³ĂL´Œ¿üêØ,–£üt Ïàù€ÈH ]ü?`^Ñ4¢U$›:Jœé²SbsŒ-ík$á…cƯ Ù®|ư&Ư¢-Ú­h ®èQuîëbZ¤Áüë̉¦Û;ïƠ½†vÓ6¼Ü·»đóníÛQ>m¸»L<?ï\—ÙzÂl¬s'úr½GÿM¦Û£ÿn«c‰–ÚÀă3×wY2 f›ơ>Ú¨¼dÑưRh =Á··œÀÎư×ïlC·£¾}EƯöíÇÏÙ¶ø9äË JêÙ‰Q]^æơlÛGéfeéí}û2ÏöĐÍûÑF>Ñl³6̣̃vb¿~Ÿ–ùYÛ³ƒ}™Ơ÷Y9Ë—i^ê2²ƒC»;Ù{đl9›–—Ù¹E×oñ%{Œ»aPôZ&ö dp¿̣̃̃’ǵ½ƒóºL¦Ë—wnƠ¾Û0›çdúoº̀¶á<»)íuÙC®guóÍư₫ ÛsSù܃Ÿ/§ëqïÔ÷AûúăÑí{§ÿ2kç2ñv[0ë'ïh#ßL{EåYØ—ûù́Ă³‘=ÔÑÈßíÛ3Ă>ÏøötĂ<-̃ï~Û<ßî³bïlß$ÏFmØ£{đsD˹{çÊ ]¡ Ơ•ó”»µïî¼,o$g£<÷Đ¿i]éÆ >F®G´Ïî-K{èæ.yÚ¾ÏöhĂ½i³<›o‡r=ªËr}ç~Ÿµƒ÷–³¡]êØdßu¥;·`^ǯ!½¥̃G›-æ°áº}ï¬gÅ—xî×ö]ê9Ù†]ú}~Næ9-/³m¸wº;ËÙ´¼́Đ¾Ïb³v±u}~V|.d|ylÑ~Úö₫éíđù£§‡AØ~¿„ß¼ħ+^ZÅo´.¸à‚ ¾zpØâºđa:†tz®ögƒ8=®¸ Ø—\pÁ\pÁ›Á@7×Û\pÁ¼',¸`›\pÁ\pÁ\pÁ\pÁÜ f‡»Âđ^0³à‚ .¸à‚ư1úC(² pÁ\pÁ¿¬ÇœÖđ3ÂbñÈ`¨x@|Á|-ôÇ”ú¸/¬/™æèÜ‚½Ó¬₫öÇÓߟ~ùỚáù?wx₫~Ș ÿÑ/.…c¤=OËó|ûëáù¿@}₫₫ô÷ç'Ó=!‹—̀™käg`âY[{¬ídR{t ¾­è…=„ñ˜2BGf_ÇÈø^O¯đù€P>.\•8 ₫Óz‚–9Óö-˜¸.7Éèf ÖÊ7XƯ ÂaÆ@[¿^¯ÂFà±#Ͷ‹àx½XØÀt,ơ ¼uD>®(´Ö·¬"ơZlÑi5ß`ä`¬T†Gb@HCûØáÅ1‘槈°FaNxÙJ2Â:hK̀G넱ŠŒNØÎÛ ’ Âê¤ËZéPù8Kw—Œ0pZG-ÊÂX€6c5"5?Y¼Ü*É|N†²̣eè6™ƒ7P󽵿x#Đ{dóOkĐ³Qji¡z0‹çr#qºLåŹĐTâ[­ ×Ùg†Ô¸ ?êƯ?ÿ;¸êPêh_<Ú£}ïô_fíü@&̃n fưämä›i¯ˆ‡́Àëé±x‡ñáí₫Ë}{S¿gvîôH₫̉±™Ñ¼xGÙÙëIÛ3=¦Nú³ăĂ0ùæyă+ê9*oŸaĐö₫vÿócæ·•ëw¦{³ßóHó•Ggi·!Ñ.[Ñö˜ßÊÛ1–đfYz_¦ulÿó¦̣Â}ä+îùû‘Æă;ŒAó úé‰6Ûæ5¤3Ï÷í[´Ç äå+èÑW§­>Z´%/‹¶h‹ö™iËo]´E;ÑFăô×Ï_ϯN›ơ—–Ÿ5Ëë%×-g[¼®¼-î6;†¯±éÊ¢}>Ú¬X´E[´{Œ}¿`·³¶î~<•·úïñûi¸_JÛßú|y$Ú~s™·÷û½çU/À›~>¿ní»øºí›¶wŒâ•Đ=ÖuÇhđ"©̃¾{JÍöçи¼äđÊ­‰t¡{ÆoІ—i1àå¢Wư`ñf1¼‹ízÿ™¤ѺyêÂåÅÔÛï=›§đlçlº=úa–– ^¾öö₫ë·áư>臡L hĂöuueÔöưx=lû$mÔ¾œđ²Á‰zṆz¨›£~Đfy=jû¬Íéíˆgoo߈g¯¨çüœ¶Ÿ“u¹wy{èĂP&F²4ÙöÛ©{Ø‚íg·¬+Éăm¤·åË#Ócÿ@Wî-ó÷¶!Ó¶|̉¼­={y ø,:½‹O;ÙG³<Ëûr?Ÿưcx6̉£‡ç ôhä›î!÷öQÉ'ù»}{&cxÀ‹¾ßn˜§Å+Ío›çÛ}öQ́âí›äÙ¨ {Ôs~h9wï\¤óo¦WÎSîÖ¾»óz²¼‘œ̣ÜCÿ¦u¥/ø¹ÑF<»·,í¡›»ä9hû<Û£ ÷¦Ị́lv¼Êơ¨.{Èơû}Ö̃[Άv©;đ¸èÁœÇƯ»û`“};Ô•îÜ‚y/́\÷Ѩ̃G›-æ°áº}ï¬gÅW–î×ö]ê9Ù†]ú}~Næ9-/³m¸wº;ËÙ´¼́Đ¾Ïb³v±u]~̣½8!ăơx´h_–¶=‡zûcqáh:i9àçđÛ‚7ƒ¸Ñ*„ÖÜFz̉áöµ\pÁß ­ÇǾ\pÁ\pÁoá‹;YJ\pÁ\pÁ\pÁ\pÁ\pÁ\pÁ¿twn†tŒyÁ\pÁ?Öcà»gĂ‚ .¸à‚ .øƠ ·x½<Àê\pÁ×Â`.â‰ÛT¼́fưó·?₫öüô˯ö`Ïÿ9¸Ăó÷CÆ›ùñưâm<–ŒÓÔßùö×ĂóúüưéïÏOæ*Orå5]Á;N¥ùá!mlùc*x»wœV#¼Gº“9‰Ô,²|Îai½ÂÚvbGJ+Ú„Æ´^ú«‘±nÜû‘ÊÍœ³Ç¾h:̀ê²@ë°E‰EÅ̉¥‡O`#4ôÎ 4$ Äj@Cœ@èàd mF>ÇFµ{!.cI% ~=h,û×:©÷₫kEÙØ° ?êƯ?ÿ;x¤‚Ü–£q̉¹üóû¿ÿ:üñÚoNGÓû7>~Q¨eơÈ>†ß,ơư[ûøØ>₫'ü¡â¯’èœÅ[ù„~¸¦ ôx·ÑcÅÙèOôlđ×.đD/Ô']à‰~^¡Sư6:Ú=bæov˜‰–ñ—_›År”¿ó‚È &Ơ’]1CˈF‘Lê(m (!§´`‚^¶D|åă­ayÈưŸ@ær<€<|ä×FEFW¹~`&Ç9È–*3·`´m89@¥å‘ØÓđ¶ùRXy‡Đ5^:^-m&o)·œ+¥­L9̣ö)Ẓ–bƒ0p”Ṿi\kBE©B_ªQa8¸åœiøôZy}—ªÁ•‡±Öe8ôN:˜]ƒÁ!d¶£«É ¹²́µ,tœ,6‡ÀFñ ùÅD—® ¯²o±}̀D—$]œæï/ Üö‘KSÖ€»,Đùyôx¼@đ*ĐrÁ{Ặ¬À@~˜i´ ư°A#ôrƒàFꆠÂÉ bñøơÈ2 ₫lă³§”œ8O<ø%ߨN÷§Ü̉fº05Xh˜à₫Åñ&áE¯†аâxI >‰—[Îû`iÿñâơF, ‚ç—jăs@–̀ ̣ÆÉ²0DT7¼KØttµ0»ÎèÊÇC¶­"ºƯÙ»X­è Ê›GÈ:ê“­̀XVJ+•L8Étƒ CPF„N §´¥ • ®<æfJ›\5€ËÍh"OuÎè­dŸ=Ưˆíeï ôN6­ 4WɦI¹̣y“öŒ,Æ–ö1h=@ÖnPÆTÅ“F…¢»·jƒĐ³¥»Éö¦fKlĐ4zŸz€`S—u³"4̀+è@„ík›RăFE’Ú4Ù LJó+ÔfJ¦—)¶ZÑä3E±Ï¡¶›6‰ ZµEi·Á0¦ ̉øĐfnäù@0Œs£&R«d‚Èc  ̉ñÇ c"¿ƒ!‘èˆ,COWΗö1ter¢ ‘́6ÀÔ ̀ S³Ï _W_V̉}¼àƒ̉²â­I”–Å,̉/]£Jë¼@0Œ@0…9 Â( #BRX4˜™ hëôÔ@o€!^PăeÚl.`ñƠxV@†ñ :N›²aÜ`H0– ˜íEVå¼ ăÖ„H†±]JĐQ9ZĐSZÙyœ¬X`œó“ơ®†±Y€h­ØºH M=œ°D€aÁ±Æ#d·Ă”64j ´lr&º4Uú7¡aÄ;T[Z°ÉˆéĂĐCEÈÖ †-0ŒÉ4!̀h²²G m£À@iMƒ‰†6÷Bèé' ± ‘Üz€l7bˆ¡HX~Ă?¥9–&̃ä bíăD‘iB‘ IH …ED¼+FfCèw€±AGaö¯°¶4k åX‰èü0Ậð“ \¢7AüPȳ@°'9J Gm²#ƯéĂÖ Hªm˜)₫Â%îÙØ„ûƯ#d#Đ’SÄÎ IEÈÁ”(r¨ØFy }Ë ƒDF†c”Ơz-&˜hô UL}"…ö¿ ´nc©CKe(úæ¢ÇØ< ´äơ™–6Ñ££,hNÙclTô³ h{ÓÇY†d¥KÄRÁ‹@đÜB‚ 3Đ ÆD÷rkk˹R´‘9 .`B”QÇr‰C£zJ+}PsÑÛiGJ+Œ¥ÀzJ ‚a A¼zô¡—Å-¢T!È| xnE8ªDƠ'q ƯÓÉîĂLiy¤XÈçgƯÇa|~½¢ëȱ×( c¢Ư‰¼ư-2‹§5“¹€™̉²,ñÖr3vÇ)-jÏ¡Ogåf́Ùs˜¨̉ ™"/[3Ú„sX¹̀I2PçĐ…³ædË9 ơ&ws¼Èªä3X)Ô±U£Rü ºxÖ„JAü­ù4!=ñª¢~m³6vÂ&…*ÉóPp, §u-5ơ—Ă ¡yPÙ´ØkK©âÏíå9ĂL äˆƯ]„\ŸĐ¦-èÇCh¾@ÇÁ²ö1N¥½¨3:ÿ₫´ 9“•Û&­́ü‡æ×±·8™iÔ^æG™Ü„Q £é0›ú̀Û˼l/)mlYá”Ö‹ÈSi`¬Ô@Ö£́É0z|‰̉²ˆôÔ@î£Ln'ÂF”VzÖ:¼:bµRZá3ñ›ïg6P®1–t$4O` XAiÔHis£&JË6'ÓRGh~,ÀJiÙæH†ÑIŒ"“Ñ Í­Ídƒ› £#ƒªBĐ ä˜¾kYZ²-«J•d2'2ŒÍUË4[Ghz ¤°o0P ¥´Ñ0Ú&H‰ cóÍ2¯3µ™&¾® rÎ4 ¶ÉF&Ăhe È4N+CjæU(+ê 0™Sx`¦J̣úG¦¥„V`¥h{A¹àß·H@G x<·Ê4¶#sX€£LI`¢´¢ ’62Ë4µç0C4Œ¦ơ`%ĂØf©¥ñ®dX¤L+…½ÀDiÙ3˜)Æ.ÀRNq³B~&¦@Kk,À…ăUü:€`Z‘̃;g`¢´́ç⃯2hJ´ƒQ,Å)zÆc}¡Q9ÖƠWyXa¤8!s£?°Q%ƘVs 9‡†ø²@KiY¼:j ÛX€̉(0RZỈMߦÿ3QYøV„r­<2Ü·%'€–̉²÷Đqµ}(°ÛÇ‘̉æöq¢H/ €…"½́}²êÿDH¯Bú¶" Đr¤· ô”–-p!/a9JÜ̉&JZÚB -må3—Ñ0ú"& ¥r€®p,¿E§j ¨̉"é¾e•xe¤eU¨¬Ư¼häKëư„¦ cÅU ×Ùù,ID6ÖÖ± #5Çn€™ÓzÅ_ÀJ ¹ÊhZÎ^@O d×´Đ4êFj ›ÜBA¡sX¬ù ÔësèÜôñ†Ë´é2mö°\¦åU©sEĂx¿€>5Ÿôú&{Æ:ÚpK¾€µØ^ ÆsÈ‹ Üeydƒ¼Âư[ÉöĂ/ /‚°lTËk’'hưäEvúrydƒ¼Ú´Á|™–׆:YÔÚ  Đå ̀Œ—iS¼€ù2m=o 'Ăxm¼€®œñÊ£"ŸĂèÏØîÅ0n0Ÿ÷ Ă(0ˆaäî®ä ŸCw&9Ù0²˜Œá¦3ñȆ‘z€lF1Œ<dĂȃ&@6ŒdĂÈÑ-€‘È:@6ŒdĂÈc ÀÊúË-Jb7Ȇ‘ƯJ[XÎ!F»køA6Œ–xæ“Ñ>—E_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôE_ôÏJϲaTè }Ñ}Ñ}ÑưSÓ«œñz•³p‹¾è‹¾è‹¾è‹¾è_•m;ŒGt‹¾è‹¾èị́Äÿ¿½ûéQ¢¾çSÜe›lû₫v«ÑDwN¸0.j Jqá··å]̉̃j´˜Ê8›ÂÉWí£”¾[¿ Ïø?ứÇkŸÀ/Æ•®4‡Ăáđ'vÅ+bíFº9ÍM+‡ŸĐm*ܦgvg…‡+jÂáp8‡ÿ³[¾ 3{ˆ“ºÖµÚt‡ĂáđIÜËí¯n/Û<¾ç†Ç÷àđëö₫ùñfx~<₫G÷ÜeÀ">̉s.́`çöØàœ#>̉Sq~nøúÀáÿÓ½ø~Ï~Aî”p§Nq—;6Î̃s#Ưœ×Ó®@´ơá}·̉íÀûó+7œ_=¹gÜ~Í¢p£…=p—w üW\)Íâ„®¹T=Ä Ưpå9{ˆđÑn¹Œ=Äër%] > stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 968 0 obj << /Type /ObjStm /N 100 /First 954 /Length 1862 /Filter /FlateDecode >> stream xÚåZÛnÉ}çWôăê!}¿TƶïH²†m`/‚ÆäH;Y£Ă…ó÷9Ơ#Ë3"Å%))V€ö¥ºª»ªNUur´B‹“0.cñ›2ÚFXë0î…Å\NF¸Ä¿^ødñDÈ¿QDâ~)éIN$R¿ä„Ñ&‚˜éÈ#Z£ƒÈd Æ€9–c{Á.€˜@ă5ˆ‰„ –‰£0у1˜éÆ!¶JØ}ÎàĂ„9a5³÷NXĂËsD[ÈÙâ<˵ÆÉ¼…ŒL—&r|HË“ZØ„½¡…•„.Z­̀cF §-31P‡ÑÄ-‹V?넳†Ç0á¼÷2O™E៓•â¢+êÉĐ©cØ£ÀL,Vdo¸e…×ư¬C+đ¸{›Êö`gyË&  2`;ïcä Ä̉l†½ ÈxL¦È{·Qx̉l‡Vv̀Ä‘EÄx%6Œeù^‹`½ƒœ)¸²;Yù°>3ˆûY°‹±ŒYˆ ƒÇ”sĂ‚!³“ñ¡¢Î¼"MÑü :ç€B¢/&„•YÄ`ʘ1¹BçÑ¢ÂE³7²~ <æÀ̉b©×TÛ²¦àÑÉ–ưáÉơ³­âĐR ™÷ @g… ·Êàƒ‰4Ó)[^ oÜà“@@ÆóöpR²… yA½ú`êƠ¿¥P†;óÑ /JÅBH½‹à|”CáèÀ‹'/^LÔ‡ÿ\×B½\,Ún¢̃¯?u¥ÿ÷fñÛD½j—³zy®oưQ}¯̃¨ÓsS:ơ®vâÜ;’‡·QK“áQÁHx) `%º—âÅ ¡̃ ơ]û¡êL|sÑ\®—µ4áD|ûí¼3q¡g-̃ ơÓÏ¿`’€³ä¼$(h±Ï?̃Kk ­ÏV&(}Zëƒ̀Đíˆöu»èÊn_3àáëư²×À‡…?̃tt˜ÓMÚµ>ƯNûA—Xª·Ëvú¾†–„z{öZ¨ơçNÜJëÿ¶º¬'ê’ëE·BŒăXúƠ»j×Ëi½*a¯ ư£5Ơ«ö³(‰©hømµÄZ‘}OwĂ₫tYW]Ó.Ϊ®ßœưƠj‡€ÀiNÀ®Ư;÷¡éæ˜y'¾[V׿6Ó•øaƯ]¯»“r¨ÙzZ/yÖÉ ơɬ–‡NƧc¼ÍDư³ºâ9 «VuѺú¾ÿ^wÍ´¨¿-¦í¬Y\ NƒíÁ̉meù—Wí|¶ï¹zszÊKf‚ă F?d}YÑs½]¯~l/«æëôYsqQĂ l¯s€@]5‹5LƠ¿×mWÏë‹ñÓ«Y ½®Vº\V¿×ª®»ZM›åt}u1¯?«®™ÏjuUM—íB}ZÖ Á’j:…Ơ¬ˆU³RXƠj Ùj ¯˜Ï«ÛÁ_׋Ëj¹¾WëNµ—í¢₫MM+æ·º®¦ơÉ́¸!­z<a]”œŒïC‘+ÙîPÄPùé‡Oÿâ€Âë̃\4G÷ Ñ&hOQzŸĐÓˆö&ظ, ¢ù}j)f¬³Q²è`3Úl*ô(åM¥ƒtÖçÆWS¼—;"Í3¨wdä4Ÿ¼äêÑ¥(Wm”¤M;ÓL¼›fˆ°&mZ3gNmûYs”,ö·í ­k̀́7Œ™í±Èn•h{•ÅŒ8ºk'­5A²BBZÑtŸ~Çw¬lD$ºíáX¶÷èMC ûjÔÉÎƯöP̉†/”™Ëàđ¥₫>ÿ¡1´đ¼³ÊuâHfzLm¤.§( nAÁ8Yn™d6» ½tåµ—?íW‘ ,q¼îÓƯ‡cđ̣'(¼ÊMô)*¯!ăAé…aÿ̀j¯̣<°oLăN(#¢©I&Ü\­¾¶Ô[ụ̈‘ ³@æñdwÈ₫È>€́vÙç s€̀9\lŒ’Ÿ`@ Ê¥MÙ¸€ ?¼ÓyÁ{Äüo2 p¨ÀZij)ú›ß}pä®ôoơFú·éˈo^zóƒ±ÁEˆÿë#¤è…·Ní|µfă"”ü–÷½ËIæO@{_„₫åÚè/ß×F†£= GnïHèvDB÷¿„fµ~©®/ÎëOU·zÜhJOMi{4ÍÏ/¦|ó0z]¢ư Vù/™F¨ endstream endobj 1094 0 obj << /Length 1979 /Filter /FlateDecode >> stream xÚƯYIÛ6¾çWèEĪHj¡.̉ -Z (P CÛƒF¦mµ¶4́Y₫}ßF‰‘Ư4È)Ûâööï‰ï9YíVÉêç7‰ü₫pûæûŸT¶RI\&¥ZƯnW¥m¢V¹ÍW·›Ơѧ›FîffITW­½›6=̃è"ªđëw⤺-/n`ªkà«ƯÍH̉3pVQu€¯ç¾éøé|v<çy»›¿n “"TÑè2V‰ †5̣EAá£åÀ̀$ºˆ «üö-l;#¯ú$‚tb•ǽLÔ¨áI­Ö&ËckÓƠæÖË®†Uª’}LZ‚́Ú²¡:Ühk̃ÈÓT<Ø̉ê‘́ƒ4¥‰̃#僧9÷Î<0Ùx!„ư}OæđKçz:ñ€B!…g uÅ@h˜HĐóJÏúÀqœ=MÔ·í°ÑitØ•m“mªAXª’bÉóÇn8áĐúøĂIwvo¼‰*´)£_d¿„ îy¤ meÀÑó¬ ă‡`ÙTEÜúϙ葨̉„ÑîÅ"Út¢:ñrVKñ~M bU²&5`»1ÑŸI–|„!~>¼ÿ† ôèV¢‹ă½ØơÂ{@|¼ `Ó°'ƒ¼ÓĂŒq÷=x?Rh(Pr"¨ÿ̀»È+₫äIJ‘˜i†z)¢’´xAJ‘+áç>[!ĂG‰’(₫Û…uỊ̈Ä$”X2/Kf%˜±ds‰¤jG G½ fm2EƯN$ÿyà5÷„´ûêÍĐ>­e†uvgJ t¦ṇ -v÷D¬uŒJy^´G¶ HAn…±! ŒĐ:@¶(` uNSˆ¡BåÑ É,ăEU.X¼&W h©ÆµäŸƯ ȵ0ÉGâf¢5 XÎRx¬=uªÓÂ3Ñ4´oq‚FUܼ˜” *v•®¥‘˜9éP7U†ºá(Đ-)BƯẾJđûn ‰᣿Yø¤Wàc/W:w€ÊgđÉưƠácfđ± ñüUá“Îà£4üøè|(È>,A9‡Ï’WàS̀tS¡n˜ Cï©|́g½FÿÏÛç¿à¾¾ øXvơEø̀ƒKỊ́—̉_ Ÿ\Xé7€¹Ÿü+ÀÇ̀àS^ƒỌ%đÑ)Wàƒ/ñËđÉ?>È)¹üöÑö|¤Â³åJ¥±Is-đIá₫­EWđ·R:>éâLå{¸;­Ă‚ªÈèVåT­î 5ëBåt ĐURö}X(û8Öån~Gu—ó×m.O|½ëThl¸á£T£U‡ézÿ¸ÑàB>‘;—Ưtmïx÷¦!L+ă|uØ"OºÁĂ3Ix&hxj×S\ß · £TƒÛđ¤¯! 1Î8É$»øíXï˜8K%Q8Gơzª8°O`SHJ`é`́è è¤Tºö”´h½î|ê`ĂZCh¡„×ÿ;é™–)AB1¶¦ố3¬j¶'s\íÓlà"µ₫A1¸–j…¡ÿ4Zë \Ă² }Á…Ï\kq½ƯytÁBơÅÈÈ·àơF®7{.mh̉U5j¶ç‘÷ªARˆI« \j¢Ô¥z_T^ @M̀ñ3ÚÂUR~!‘Ù&ß";Jñ[-–·³3úE«'êkKa󨱂ÍÍCRđzp9 >[èa#~xrΦ®åb‰NZç ú'O¾ẹôfª¾Èö-=\âÖFÅj[ÂÊÚƒ3̀Œ ƒ9MÊ+F=Ü=øƯ*)YËmÅ ?ßq¾ç"¨ÁäxÁ#'è‹í°,ç€Â…êî àătZ2Ññ](x¸“L¦À{0C˜«XïË0ËoÙñß •Nl\¤ÜÁ‹¸ĐJ.ĂélÓ·o₫{×(; endstream endobj 1102 0 obj << /Length 2696 /Filter /FlateDecode >> stream xÚÅ˲â¸uß_Á̉T%Y²½È¦“LWe•JnƯÍ̀, ø5`nahúÎ×ç¼$ËÆĐw¦§’X#é¼t^Êf›Y6ûü!“ï§§?üXV3¥̉ÊZ={z™U*-35s¥›=­g?%Å\%©/”̉ỵ÷fu„₫áu¾0*Áf·ƒ¿v3_ä™MÖ5tÎ5whb`ç#\a`w†¿í®åoרvÉ’¶lÎs£›0Ù´<¹Çöœjö¼”đ8p|O§âæ8Öv pép0ûåéŸ?ü¨€œˆH“¥N³…2i•—LhǸö>ÁïMÖÚ™Ể*«.]øµºHđèi‹x2ó…6YRÇí3‰†Náó\—@*üq@%_°MÛ¼1°Y;˜ƠÂÄ’Ó ü]à·÷0*©W8ûëܺ¤̃4OüœÙŒ ¨Ê˜­4/@ü„z‹hÛ bµK•Ë=lƯÜzrÏ,ͰçÁcx̃,Ë/̣ƯO”»T+¿0…ÓºJ®[Üa…|Ù 7q»½°„FÇ·WØ>¼ú#¿âQ(±*­`{·Í«ˆ˜zÿ†:Œ\3%ˆâ¿UB¿I–Ä`”2áH0±Ù“L°@ˆ¾¢8±Çá57Ï ]8 ³VgiœpI— —²bÀgkS]Fw¢ø₫Ç–ù¬«ø;à3~c’Ínº#kuˆópĂÉB4Ü^̉}Ù­¸·&ΠŒO¸Ó«¿ö¼k‘È¢Xâg:ßXu<ư‚ÊÂñư+<~#©ñàñ¨u#’eá' ÷Fç‘¶j«Y/cm 3D¡è¢N4¢¹|áɨ²EkFsđ[û₫²ó&‡^óøêˆClc.đ>ZŒ2,±t^ÿJ”2½GÖ ·â‹&ºí­’«Çz˧beØạ̀ăåU”/3₫ áøu#÷†ÅÔP;bvÙâ›­§¤PFq|œ'»Ự€Ơ­ ´$!4½zxO„“BªŸ€_ƒY`Aƒ»ÂµW‹®ê:Fw‚9K<®.øçl¦f't̉Øø÷糟Hÿ%ÂfôëßÈ`Èvéè­ÿäV*QUUŒ–‰ÙÅ›¸ò;°̉ɧ½ĐØt̃“üN|t–U÷ña}¢}bÉÑíô¦72û&\‹=ođZ“]ó̉W¥c NZVü…I˰PN=h‘VEƦ4ƠyÂK)́+œ3mv¡™i3‹`ÿêM{9‚«²à·SǺÔåèØf¬pܤ֠NC`W9Y¥9ø–F{Ç›™Iäl₫;Q{»‡Zù½¨ ¥£ö-a¹ a đ+R•)ÆÏđ³ÑûË$Û ́¨̃-R÷‘B¼Íro% V8î₫§IÔ½G¢ßÙÿB ·è o)ÅU>Ä“!+DáM®rœXˆ%g¸Fÿ-F§Î™oRcîS3ÄRƠ,‚?“›2¶ŒØmÉ(Èå‘GÎç¯̃u{G–›"9ÔØyăxF§phEœD âÚtG^Ë!£ #§*À!Ó¶ẈÚ±«¼ç¢«|¸ÜºiG€Àæß#¶?dU@¼º°±Y‰3®’̣tgÿptÑ= ˜•÷QÜ̃Ù®„EÙàÎ5À‹û¯ú` D’ë£`æ)؃åg/ÀØÚb̉SÙH%…1¸¥oS˜(æ¸QaŒ0BdK½/h́/>$úÈĂœyÜ1C…•œ£!Æú7-$Ê }qÆ}±Ûëd‹¯û«*oR+ÉN7‰îưz‰¦Œ YQÑWz¦’ÔlP¹T<Í;É?IrăWi7>o«IQ¦¶2ăܵ¢H•¾ÍW$¹ÏUyt(mCƒrA[‰vDé&´qưî« %¹øøVôU-CûảcäÅ0-Xơ„F̉<ëoơ”ÉaÏ$dO‚zń”]µ‘Rb/º/ăüMœˆăt#{UüͶ\̃Â¥ở+ˆ¬÷…/íX¼ÔÀÅNÄ% nFî²$£¯ ¼Ä5 5•%…tk²)úlúØÉÀ’¼Ε3!'GùŒx”Ma¸ºÔy¢#U‘Ă½©ƒÈ›Ṛøë9_X‚ÙK‚qNéP¯¡>iW¡´[‡`c̀˜QÖÑÁ¨$p‰ÓRÇbØbA;Ï„?́ùœä›4Ù¹ä¹à/噸E(ÜÀàup£[̃/2Î>tº´Q €Ễq}´GỊ̈@ƯN¦ÍÏ%êî±ÇêﳑÁgÇäºơ3 ‚2 ŸgˆÀN øs½5X4Ư§̀>¬µ 4ˆpY¼éV°Đ?K !ôLÙË&#sŸ…âo_XïÑÅñ¡½qÙcé7,­˜‹$ 'GH#-’ >ÆIÉ Û“ưEë)¸5—͸tdG•#pÙCÖ#öà3ẶÅ>éôYăa€t cp~I¨xáÁË182!ÏùÊÓÈÏ™ÊO\w¤₫ȹ« o´²érĐ=W¢˜Đ{(W˜ô™úÁçA›|âêè©…‘:nă§dM»Ùhs„}w"™ơSr[Üÿ§ñ+n6Øú«†̀Üß3xRøŸ A”K]ˆ*ÿœóĂËFEí5?Hàá³¥PȦP ÓkE¦Kû‹*O¶Ăr'èˆ{ªY‰«]ïy_) $¢¡qơë¤<¶iZŸÇ¾<ÏGƒ₫]‚Z‘k1:zÈÀˆ¸7@\?¼Wœëq}̃G%{z Yùè‹´™ í Á₫¶Ü̃L¿’¨´è_“î?’0O—s~É<̉ü”èè\>éùmüüAXOáªvу† û÷[Ăă¡̃í͉Mƒ×É oÅùĂ©±äµ¦Zdg×Ó{~Y(² z„ưÉPao’ÜkÂ!pϤÚåĂ»Ơ¿¡»̃Ø\®gyz¹œùJ[moähjñ(´Í¯!r†O|Ûô@Œơ­—¨ªăçÎSÿ$CÎpk28 9à¨JQËbr 0x¼|ƒˆ kÓÓ~‘°ßê–á®K?ĉء0́@¥˜“(‚*†_£°¬wĂ—ú ͉: z½:t(Ê›߯ç?“3ñ÷7·w$$~÷̀•Ô× »ª»¾C¡‡‘±{ÉÛv'u.€¹“n)ÓE₫³ëØwĂÉ~º.́íèƯ†f®ŒDZ#4ă9WîA‚ÑLjós¥wx¥I&­{)‚€/©=ƯØa„R†gÀ g1;*̀Ô^ưj̉ª)ÿFTJm¥”ç¸F¶­Á́ÿ¼zæ±è ̃ô1)¶[2¥oÑ ¥ ¿ư¬9|/»¶)W˜ ¼¤èS·₫aû2×jbFÏ#dK̀#Úµñ·ª>^¥Ă6•i!ÍÂaU()́èO₫ Ê…ï endstream endobj 1118 0 obj << /Length 2775 /Filter /FlateDecode >> stream xÚƠZKsÛ8¾çW¨v/TUÈAS›ĂL*™}ÍÅqjÉh‰–µ#‰*Q²ăươÛ/€ DÙ©½í24€F?¿ÏV³|öë›\₫₫rûæƯ§ª)•ƠÖêÙíư¬VY•«YY•³Ûǻkâæ*É̀§®ÜHä*w±k‡âÅHvÏ/tØ ¡k›UU“Ÿv₫œx°bbÛ ›ÏüŒ_NÈW»ä‘6ѲaÊ—Ks¾äÓZüÀï/J«:+JíÙôÑÈß₫¥&Ë~ñ„?X?`C™1f¬ OBxàmS£*vÅ·÷aM"hGÏ<ŸÓ¨:ñỌ̈̉ëÂ[è q3Nïöç=d±ÂY5/t{ƒ̣₫̣ñ-4ÈÑr zh=Ë5ÅÓnRÔÆA¤5ÅH¬öæYt B­«L»…j™N‚p¬^‚ˆ?!{Çνod²µÉg`ß.÷!Y•™6ơ``™V›ä/ĐL¹yƯV0~Ûœ&):'²đuÎñP†øœ:æ²Â…PµA¦Ö„€X¥'_Ÿ\3Ït©â5G¹&¤XPli¾½ßEïÇká@)—åºx%ÜBºƠ`V÷ƯFÖ”¤N½>ùb»Y c8u!œM"æ35; NÄÆÍ¯of_a¼L>?x?<çÔÓ́–Üøg³ke2ăKâØM®- .Ÿ+}6mpÀT¹*+ó³¬q/ØÏä%G:Âb[B"̃0Üå@5„‚lĐÜr+‰Ô묈çUá1-L‘ǜë¡̀ZyA½KfdÉÈD‰FЦ öÉË$3=wí9¨£À̉₫äñµĐ­Ö¤-d]å“^Ơ’Ü´­'@f»Ñ–Ơˆy¿<+G_W¦›T&M~̣g'đùÀ^€z=&%é•´2îYR´ë3ßúÇ› ßTuéÁ‹Äṣy'Ï^œ̉jŸ6 Ǥ́WXá̉¿eö"¤Ô!́¯d‡ĂD(đáá»đ/bR₫ (AÄœ ‰ ́RR"H=QZ¨Li‰Ơ•¤‚ÏàNiÚư@#1m|Q±–¤S€aP¡¹äöooÑûú ºoP˜«€ú³đ¨‡B½‡BP#¤fœÈ΢‹LçĂ6ƠX1SX́l½k*‹&Âvê3pzex±Ÿq~ÁN¼Ưæ'ntEllƠR‘H5©ÿ <́˜„B ,4”:̃(¨ÔiyÔßâ]ßÈK\À́h•Ⱥ¼„‘@Ä4VR´{óT½êlåZ\fx¨]"P·ZúÜ₫ѤsẹÈ1²ïp²:$Êeơa ‹›â6hđ‹¯ëqh>à4ùçAª«W‚¢ª+}%(R¹,â‡ör-V+9¤†~ˆÍđ˜¦/î±É.ù₫`›I¾1@¤Ö)đƯaIËè„—`à ¬›‘*´;aĂœ è‡l™pEªđñz̉5Ê‚]c´́Ä-ÓQØ]FêvÛG^ÁSxK„Cqታ¶W±eFÜDG¢»¡Åù5”q=.Gt|àüƠA¾¤mă ï­LT́aG„ưẸkÏ:- æyrÏ0Ï]u²#Ựô½Tü>NÙÖc5l·xmÔ N[”Ụ̀Ă×Ëzư ŒéB´ˆ ¯ËÈh• ½S÷^@8úªxYđ®’$(Ïûă­=¼2¾Ó,̃ék™±”M¼"IÖP¤È£ôënC¬Ư2Ó‹}T6–c\½̀1u‘©Ë«8‚]+xRv±'/s̉¢(‚‘#¢:ø svÉbtœ áÀCYCµXPU…à‚!́0\G”YYÚY‘Ù\¼CO£„V(c {?,ï M/$å)ʳ•œ§ø–çùÀ₫À 8PñÚZx÷ɨ,fÊf.¯Iº@çXºµ“«„o€|§ÖÄ‚̉Í̉*s¾¤]‡ƒT:Ó*d̉÷Ọ́Rµ>?âøê.Ó–˜WÊó$ÙàB\@j̀ÿ$¯|@Ùutc=q|›Ơ^fZtçÇÓ{æ€éˆj¨µnaM¼¨üW ª;ÚC|70Æ& ÂA ¯qV¾À^Ø•³û·Ưèàk|siøæ»V­¸ ÄiË1ơ4L¢$bôp‰7'çÓJ™&ăKªL:2ûu\8È,^÷‚GÎq>W}Ÿvbm³°Â\›Wc'¶cưçU}n¶êÂ3ó`#7ƒ­½ "{»đ ³)5e’Ôeñ¿Ă±¯3ÏJ@ ÎjÇÜ©ó@U,˜Ö|\ÓAä¨c;₫ÿ8đwår§_çNŸs'¢«íË̀ư4]zY›Uú̀8¿Đ--—[>Ë1˜ăïVUAß¼ 6 îà/d c7Q»—²¤Ùpv^4½Ç…@ñt>=|`Đ£̀yYLáäu¸' ÷èˆ;.¯úû‡4GÁ&Ñö Ë̀%î<†û(IÖ1Y=êW%]— c§ólBô!ທ*kÇ}kºI ̣>˶ür̉œ{‚][&Œ#“uôy8₫nä}+p^d̃‡ƠÖ-Œ%NđÊ–ás­Âf]ÿ̉ÚB>8ákϱVj†Đsäï…5É`1ñ T-€Œ©gK;Ó­ êCË]'̉A¼₫ÛÙö₫«7t‰ưÉvÍ&¤¼³å-ªèæ£öø”ú¯qBXĐgíº ÈíHµMxæÑÁzđCJÉ‹ ¨—Cá%=˜ˆđï$œT#¸d~ïÛ·^¸µÎ œ°롉ëvGn7̉7˜ ¼69 ¼¶gŸ‹¿1>ưÓ_¯Í.vöG®R€ Løô¾±ƠĐÁˆO’Đwüz yÛù‹ÔV²₫‚ªÙnG‹RÀÂΗ¢qd¢D©fMô™(ºĂµÿeh°Ôæ;%c¯;»‘Đ9€̃ÂZÖ™ñŸŒÊÍÇÛ7ÿm l endstream endobj 1128 0 obj << /Length 2279 /Filter /FlateDecode >> stream xÚ­Y[oÛÈ~ϯvJeĂéÜx3¶ dƯ¸Øº‰°/Ư>Đ"¥°•(W”́¤Xô·÷܆‹v`hÍpΜË7ç6´^lzñ—WZ~\½úăÑÙÂhUèÂ,V›EaT®Í"ÍÓŪZü=ê–&ªá9Ás Ïặ«¿ÂÎd¼Ñå*3đ¥mŸ€¬́–±× mưTó¸¬`‚OƒodØ"é—7(­Ä¥3Ê¡MÀ[4¤ Q?àxG-­Kœ¬Ị̈–øˆÜửfÄsä̃ UP¬­˜É]ys›‘bkÔôˆ+uϺ׾C<± §_0hĐñ°_ÆÎÙ¯G¶p¤kÜhÖ„Ơ¾_&iDZ5%[ ‹=m:&Ÿñ¥£)½Ç¨#Áe{©)Ñlq8|]‡R‘]z[­œơlÑ5›ÜÈ9’ˆ$¸ÂøÂ¶R@PD‡Í妔—ÀØDŒÅ­·;ñ?ÙÉ̉°7R¼qêÇÖ[•‚#ëÁK9W%ă5Íg\Ù;U¸~k-Anª9"˜OœXƯ ®¨pwbK* “AG1°%Tö€1y‹ÍS•8;u—ÁMƒƯÖÈ·ô· ÇphßÀb¢#̣ {tZ“ïÙ¹…Wˆ$›r$>ñ¤× %ƒF/œƒt”¹=g¼2:ÁË2‰W¶ÈĂ6@9¥VÍad\/¼^$}®¼vSl‘ö@˜"µ×¹¯q_¯r¡´MĂ6V¡û—‰±¿‚.1+GL̉\™̀&ëe"ñyÄSI3*$©²ưæĂqNœ‡÷ÅTÀ=:vníeÍñO€₫= é]>€Ù¾À”RÎÆZ¦̉Ô†-S‰ÈµsIÏ!{…(h‘v#'Γ'Óƒ\uû(6F¡1d¬qn§xx¤Ô6hR|B¤P]‰ĂéKpu”<(6 éJ8ư§®˜Ó=₫K4́A`TƦ½‚ü¾pÊËvưjN<9†Ø*Wxc ½ẴUäùÄkkª0'ç¢/‰>¢q„S[‰Ù_–¹‹‹Q&iB1„(lÆ'‘°„¬íè0n‡Äæ -ÑKĂjv¨Ï}ṔHơ)/0MæCF¢jXÁ*ă–₫v]–/’́i7@GSÈMÄ2i'5>úiĂÛúDă6́&6·d•Á\*₫̃v\”ïPßC· §>Úˆ7£Í S½Æw¿jă‘Qš؂½èØëiØǵB5B_‚ñÄØŒeÄ­́ ?‡_j؉~(|"™9@̃…Á$©îNƒ˜ƒèGl[¡G›Ö’m8Qíc=‡Ky· 0̀v%7xfˆL¢Ó¡M&ªíE‘Jv ªæBƯ…c¯ê[)Ø+x₫Ë[Ùßxyé;₫©eå,v•£ürà¾sD]RßĂ|̃đ«j´©í±á~bx'ª́å)Â/ƒ™óØ Œ±O₫5²Üí®fÀß07Ôó́)ÙBœ84‹~ăc§£mMè’Ăô;^¤¨=¯‡+Îh­Ü†€t!á”L R:Ú¦JÂl ˜É¡¾ˆ!(×7$§Ü!pl“5ʤl߇ Df²Èü¼ŒMRØè=©Ø”¼FœÉÓè=jôYö™€[X†¶₫B¼t éè…qN˜k•Á|³ó*·đá£"}º̣O'–Ùv³³Ê´e3¦ à·̉*¤Ó»55“„vZ¬ mc=j2{íî2/?qơæzẓ|>B*ïÜơ(ŒP¸)ÅơĐ!·̉ä@']rFƠ’Ÿ¯m^9bé‹́ơá(ª|™´ªAGOú£€7¼íó,™¹ <Ó˜^ ‹V‘1Ưˆ“2­ŸêUgC:|̉íÆ-̣æÈ'OŒ¹¡;̉¥ÖV."ä¢6#ơÜÅĐ€¿ öùq½“¬,’ hH«₫_v?áY«̀ă·>8Ô0¿,›́y·zơ?§vlŒ endstream endobj 1132 0 obj << /Length 912 /Filter /FlateDecode >> stream xÚµWKSÛ0¾ó+|LQơ¶4SÀéLÛ¤ô@9˜ÄOCR3₫ûîj,§PJ/W̉®>}ûRx¶Èxöî€ÇßăéÁ›±°>˙ϹȦי̀Á—u6›Î³‹ÁíưP –Măe9ÅŸåđrú>’Yo³‘gÚjÚ}tû¦Ă‘0^ &G(œo%¦Ÿ‚æ(U5¤Êlà2‡Qâ1"ÎpoéTÎ8ÈÊø`‚ƒǼô¤ư¡æÙêz rf×+2:Æ™Yƒ35Í|ă ŸŸáKê!-‰7CZ#ø˜|8!QĐêá>%́[ÍqŒg”sÄ7+đÜ ¡¨\ØAÑ„ ª)"\ÎQÂÙi$kd‰´Àërñeë?K¼ơâ¦AsBÑëË-›=^D'!ơ¡fRÉÇ.&zAs³ơAë±̉ß¡•¯ —Ë.µÜ”ƯÉ)íY_“â1(–MA“pÈ7͆Ô%Ûù$Ö l±ZfLl7¦¤:̉íH_£ }đ2J÷pUÎaé~VÀØT”x]Ùf VUĐ‘x ¼g9'$R¦:1‘ v“ í_Ă₫-—x=âR ¾âƠâ§" -»‡[™œVŒÎr§Ÿbt¢jP€9OE'&<-ógñ PÛ‘ôo$[̣Ôj©]7§ZDr‹(Ú́)‰k,rWéªZb5¿1}đö)~_-^sŸwï“äóùóăƠ´N!C.5ô¼xu;:Ñ´÷{3C±¾Çzơ½ŒíäsđÅNµf¨ṕ4C£;ÍPä}Ÿ`›)VH]QÏIá´®×m?¢âơ_;¹Àç*/T/øñnŸøÇ*oñlM†ü ǬzqâŒÓÄ‘Ê\/Ziiá’”âM4#^đ:Lœ×[¤Üaø’ÔO©iŸÙ³!5å¦ëûkă¥n»Ku‰ÙRƒ†l0ív¹·¼À—Ée ‹Ø2°âyÛÇë92ZWx̃}Ä‚6MuiAè¹*›đ:(cæoʆ>fë: Lx›´ŸÜáiEnJ¶OBr¬1«PX–q>äG eÙkrç̉m`›öÙ€«:AßWŒN°’T›»îKb¶ǾÀTè®zÅDl> stream xÚ­K“Û¶ùî_¡é¥Ú™&$=8º“̉{ÓK“-qWª%q#J»ö¿Ï÷R¤6ú°+ßû…lñ¸Èÿx“Éï÷õ~Đ¾Zª*2½¸XT^eÖ.|é÷›Å–ïïô²9Ơđÿ±¹[9«—Ưïđq©O¸°á©5Œëc ÿ;ïe§N§₫ïë3üßµG\É–»[é̀›e¦`6³w¿ƯÿPZU*÷9ßüÏn›#.½ư`²K£•ö°Ÿ6₫•w éÈ•2dGÇØ|BŒÏ<~ăv³†w0†€œÊ`¹" WÆ)[YÆÓ1đO[¤ñr„ÿ_ñit ^¼GwÄ$^ä›R^àMå/>đ„p–o`üÀĂöá¼o· AŸàX¡U•»ïÁ2¦%²ŒxT(ß÷Uü£q¦Äÿªồ½2S¹0ïdÛK³CơÚûÍkó¹9¿ ×çm#ƒ—–]ƒºTŒÀ\D$ÓB¸[èLUYE„¯M¦¬fÿÜâqçŇ(`À¾=7%+R0…Qp¢g ÂĐt€8‡ôLƯn+¥‹(™úHæóª;¾ &ZƉDđt·2äWtÜøÀ¡½.¤¦PMđ·#zNÂlø|çà‚Ú‘!¯{ú?Ó5ÀPS._CÖ™±Xi­•7V¹¼bjhº#Ø3`¼²YB"æÀØ1ц7ü¹X‘rœ‚" „_3‡BƯàrƒq;nAÀAÁ&Í:VeĐ@̃æËû­@îd=Ah¨: Ÿ·̣Ơnp Eu8àƯuzK}NéåÁÄS^ơ„³’h“j‰.Uá£u~ ökûơÊ{¿°ª×m¦´­T<çªßH±vÀzøDLëƒ|́H™ns6̉2ü='6ÂbèzÀ̀xâêúIîkÖ̃ƯÉ‘è+«…ΕÍ@–ºÅ*ÏTY‰EƒGvæËO»Ă\xWp(xRiGF¨’€«¬tuïî‚̉áâKÏ9Zÿ"ªẠ̀8ö‡H!.ÑÈÈN H“‹w¨,nIóBŒ0E4-< Ë9»Dø}¸È¥ :^EÇaˆû8N ¾ Ôe²¦‰/¤,²™HÜ#3´2UÄ´—¿́ûUØ:5]yǼ¦ëaÜåÈDˆ®µ¨øe3¯X…Ê₫sz•)_øT¯( 1 ₫<Ôk‘cX x½úʤ¹ÊfR®Ü5Bè^ôàû)¾^~BØ{–uáMp•„k„›à:…beTé†ë$H¯§°Ê+e\y«u8¾ 6Z¨¬™()}äÀWö7̀h–WƯ¢¤›ù|”ߘŸM&Gà«ôµ¢‚5ûÿö”:+Íä̀$–%Q×-Yư&dÓ„êÊ)cfIƯD˜́„[B`‚4Èr4Ôwî:çl1ª‚N)ö©€Ơ g4”CĐ¡…ôEE¹Üpèf¨pP\ö®}LEÈă€ê¨†ưÚZæ÷SÔ“\ &¡#BOII’„…í.:»Sï-å*°w$P8v`Đ(7 ĂÓä® ØJ ă4+ÂK3綆ͣ‡‹y:Û½e@í‰]6đ̃{ê¥Âûƒ„Ëij/wÊç~Nhù>̃*nGé‘`d&Ô I[₫7p¨A¿KƒC¼ôÄ›(º‰Ï1E¦²<ŸPó§µS”\éǛÚʸwRO ̀˜P#¹:́ÎøíFµ6™NS,H²b™ÆD€~ ÇzNRFY9GÀSbRuLµ$’Ä «èfB yÖĂ“ô³¤j#: Ị̈JÈ¿I4Đâ‡J†è«ªI®À4å»5₫ă†Ṃ™’-0¶X-̉|=ËÈÁIκbÊåCÊƠC­D›^ƠPl;K§»èĦU¦Đv̀åj́´pF̉‘ébïÙpª»̃ §Á¬rºÏ̉f(ª”Ósô„À>Ẓ\UE>¢#w\™´ôsX¢ˆˆñµ1._j^Lç¼đDJQYÓüOïJ»¼ç˜áÇgVK/®éc’ø¢„lrVœÇ˜´Í‘ó¾1!9ÂB© U–ư±úTÇîQsâ²Qnw!- YƒMèÆö4“‚×­^¥æ8IŨ'Äà5Ñm“Tp&Á»Nñ>’Í8Ù€́ŒÓÊ=0$¿•0§¥vˆÄ—#›Nâ|̉Oe„9<†¼´‚ÈªÍ :'‘ÓO[ß±̣̉±*n¤­̉8ÉĂ¾ ”ÍtÆW*]Îf|urŸg£‘ƒhd®Y@èƯÏÿBûø÷†töÏIhơ¤v‡´‰²¯¯Ư^'d̃ø¬‡*?¦çYd=ÙpËÁ‘é¨"P^:S-?q0„û½4}ßâˆe'¬=ˆ@( “²“NPĂu[ÄÏœƒ ¾ñÚ&æ{\¸4}O½¯Ø1 Ná~q:]p\²aÛô–€$ Ç£ÏïbKm%´_…Kj®†ÆpÿÄ3•6æyί9r¬©9gK<ÇYs ¨rÀ;'ä©Û¶—XD¸¤­MêÄ·Æ+ơ5F|zjXÊ峨÷1¶Kcú¡Ùä™gû¶Upz² ƯÇ]=ƠÁéDPÊb©×Ê'g³iU‹oTµ¼ZIÏw}ï' ´ ‘3n$\×]̉ ï9x́j¨'ơ>ô®¨%ø¸½¡½®̀µ·â5cC[¸¡Ú’ÅR3$’¯HNANiçd~«IrK ñơ:&¾ï‡Ơö±à‚Ü÷/Mº01Nưb;K€]« …lx×hĂkÖºäa:¾MØ_ [Œđm1NfoYnæ£â}Œ®+PcÏ?‡đ|L9­k»ï(»[ñú¶‹J>–O÷˜6`ú¤­”œ²KÁ‰™¤6”ïẠ́ÉuïI}4lߌº~9jhẶ¸¶çÙ]êñ§ĐÂơ>÷Ồé:>¯| ¬]@ÜRy5ræ¿Pà‘ ¡¯Ơ邨ư> stream xÚµZK“ă¶¾Ï¯`å¤){âÁ—S9lRIʱăZ{§*‡]8’F£ %Ê¢äYç×»_ ‰×•Ă Ù@¿¾î7Ï6Yưă&Ÿư₫å₫æ×y•é\5y£³ûǬѪÎuVÖev¿Ễ/†[½ØÂ¿üṢ|‚kûñ₫Ÿ°*¦œ ­t]Àñ¹¿­í¢¿½³Ö.–đî´̀‰&ăƯ€†O@Aƒµßú I<‰Ïí­©?ßÚóiùgđ‡>tăƒ́q<ĂŸ%>áĂq$è…³0Yney‰t»üéđ$Ÿ˜j8Ẹ́y)ŒÏÄKÍơ«øN4sgreKëy%cäŒrö´ĂKú.*uíơưW:ɨ`³X1;PñĂ•~×£`ĂỤ̈½-ªxö«O‘†Xͤ˜K-¦Ô‡T¿S}"(«Ï¦Ơw¤“kg¾èª%<¯ºwÈk‡.uîfN*RkàĐ̉6;t‰Óv¥ù®ßleo|w»äéy‘Ăđ‡vX"ó' £Øm¾îH‚WˆÏû¢yƯ¿́4®P®l^“¼r$9üü)hJ/¼Gƒ#Sà‹"ÿ)ø0­ˆüæí·"y%®âùºX£>̉́»₫ˆrµ“]ê TR-₫ûuäeôVÛ 9 €́N×J7%üZU¸†å]Ñ2™Ô÷+6‰ăñÛoư<Å$-½ưçvü6ÏK›½f9S)SÙ—-·\ê¼ÿ„è̉€tüÛ½hƠ¬ZÛW¬êlM hO-¦!î·rmÙđgLNB«'A'|sÏó¤́Ïy½áóèª\€¿|Ô¶f¯U‹eô9‚|Ç6,jetlB¯ ~Oΰ‚RE‡#È#¯A1Ÿ”̃¢·ĂÉúGü-^¾ơ°æ‰Ç3I*Œyă—ZŸG¼gK Á­H¾bBQ̉‘ …7½D»Fâứ$üâ²§ÜFêåSđüÏ2̃́=3²öWâ.|"Ï₫“ù§on²÷wÎåĐĂ/c‚`aét¤²<Öúp™₫aVỷ©^ïư© Ç"×ö̀Î ³Î\€öº3錧yÛ‹øÑy£̣º̣=œß½ơ}^ Y™FÁR0TåṾ!œö$è›ỡAÅ‚A~ÿ<¶~¿₫ø%NƠ ¸V"âQÛ>t±NB¢…ñ°µLÂQ ¼¶t±!̉ƠΧW"VºiCD®Å7çÔă`Hf[²tc(ÍM\PiÁCd—8*™b¬÷tµæÙi$“j±#/s&m;‘h¦M`j‚ ̉ ³£ ulƒ(¿đz$ ÍPtoŒŒa;5ÄzăK̉d”\ZÅäó²gZ- Èè8àÅ‘ĂCd\Ê4́²\¢³ĂÄÔ91Qœ¿óƠ²æû¤BÑBé—ơK¡ÄŸ$°O©,KeëP…<û„×±ă;­•+*ÖmááV9ø"¹í:±¥ñiy¹ä’¦H5çjnÈ»If“Ă˜ G̉™{ïU¼Áîbva_}:‰‡ŒvL5)†«gø‘4ç˘ö¡¹I%¸ ¶O"ôƠdk!½¶ÉCBN·¶D˜*.aJ„dbëi¡ra™‚ư#Q¥*çBS¹ÆeV5̉WîS~H\BZ©½GÛj¡íƒ÷(9ÙÏßT ¿ư›Î7Ôél˜₫#ªră~ï®ZŒ5̉¨ê ‚30—N5fVZJ±‹/Œu₫Œ°[®ÓX€Áx°½Ă.œ_ûRZă§k=íQ|çæ«b́g-3‹'¼€wú7 ₫¿n '„q₫¬ÚŸ&±«És‘v Ṛöpx¹ưË4zŒÄ¬c‚ø%*ù 3̃D-oî Á×?N–å0,+ëÚ”ÅBr ‘ FVgŸ†T†‘7̀;Oß!JåuèñƒĐÛ‰u18QµÇ̃+f—£sÛbñf/]èÁöS•³Ñgô¤ƒöµ£Wßa`F»~rh¾@è¦gôͬz-‰&F–Ư¶×Ô™¬v£Qüsh6x®>ăOA6]?óÔÜuh3Q•Û Ç©/½™yy­¯È•e‚@Æeß…Ăoás瀛¯€‘$Ü¿\”, ]ù‚CËeM耰¶•ë"Á+>J*BT0>Ï´…S—uB²î®JUW“}P”\TSà^8U»$.*j‘k8O›­¯ƯÙ­½‚öC‹¡ơ ŸƠª̀ăZââ(+F©%û<7#:ăÀûĩÏưœ̉U=?¼¯đkî^¸_¡aê«Ơx¾‹\8½ôéÎtÂø=¿¥e¾s>„ª=(û>Ç_ËåeƯ ‚’+•CÈN ô¤Kµ³ï Ö^³Nâ›_€l‡ô½–…:?ÔëêNÍû¼M^`ª²,"¤ø9elđPZ–1I]•ch¤ªc ú høSª6.À±NT¥-}ƠKdMth£*À­ ƠŸ’ûá©Cp¬Rû•ªàZ> stream xÚµYă¶ù}…¾ÈÀ¥Hê*º›6Y I  6yeùHl˰́N~}¿‹å¡gvƒæÁÅăăw_̉³ÍLÏ>¼Ṇ̃üêáÍ_¿I³YªU¥«tö°U©*u:ËË|ö°}L·ó4iÏø7ÿåá_°]—á~kT3wodÏ$ Mêü–€êç çLrá¶Åq́»¹)’ǹ)ñ6Z®{X‚ßá—îBHĐRwæS›+Îơ¸á7¼|ªáúĐâ9ÿÛ(₫Ʀ*3™Çî÷(°¥,_!àHæ  ¯ĐpÀ%Ü̉đ³Î4âŒÓˆß¯-L™+m³Ù"µ*sßy¨÷°cOüXXW&)œNïår•W…G¸–=©™ª*4m)•.*¸DåV$ưkŒô\i5 v ơÖU4dz@D<µBA ÉÍYDrØ ơGƯ‘ñ¯qjE>5•J‹Üc¿aŸƒ@ÜŸƒưÏ:Í‘€«0ü‚zù4/]¢@n•N¾™—–é `™"„”g¿Ç3¢ƒµ( -|×m€‹ƒFd®-æ¦2ưø¡î´-I|a2ªSG¶jË·¸R&›úp¨ßÁ»–‰ß½ ÔïR™"UBeỬÎTfY ŸXăùk+‘%²&äKIÚ(z̃2^»c ·°sM¤å—ˆ™";ô”¦ÖZ›ôh_ỷ6‚ĐZä"§ŒVÖ¸ ÷> )Ö'Aj×¢«[ăs°a˜oyâP³Äée)M/}Û’2ÓËî89OcÇhî/äPïÙîØó®5)ÏÍQä(G/¬`å D×0¼"Èf„ô!BùĂ Ùè\ĐÀŒ́XqpL«Ä‹I,È•­Lè÷΂£>Ñ3byΪü‹mHçù×½gIÛóí`|BøƯ·,w¢8»P×€$Ô¿̃;•Mï4³ÊæĂí'ïe…€C aˆcÖå!­G/‹¶^1z¤2€ÂÄè3/:/ôÀ®­ÉT ‘t¢ÏQy.\'W¼±]ñË.`피̉©ÜÙ×IJE+=†â·èĐªdy¥ătk@ËÙÓ´äv̀nE><ۜǣnÏGêó¸¯LîüèăE@”q_ÓílƯ‹ÔƠY1eåƒ~ " [T£:àÓàQêä]4̀Z̀Ûy÷+“‡jTŸ©Á§Ă-ïøâ™_hĂo;q#ÑxƯ³ªÜ„Zzæ×cçÉÑEurjbÑ́ß`ÚsÇdWu3^—rØ?1sK£´dÙ¨U+öv{Tk<¨˜W%DV‡FcWà„\ •ó˜›èù¢v–| ÛQ-·»¦ö„¹äŸ$ùy„9¸À§>& )†üoÜ}y)ă$3lbˆ|ăƯ)ûd^Ù ‡ÆÜ¶&"®P€ç Ÿ6t(æC Ò́D_Äô·y–'ơ¦ ®Gû+…Ü!!ÜLç¹W!®¦¸>®xåó_292øv$qK1́eÓb?E Ê\L„¼ähÚ3LåH·’†‡L•yfáz ˆ¸rÇÓ~̣n üm„<Á¡·¸Ùϧ”:Ù4y¿]í<{AÇ >æ̣Œ-!‰²ô5©LÜb5£‹Á‚ f̉Đ{6i®̃$£²uÊTåëư §—›{ẹ̀Xóù@o}ư]>Üb»°ÚHT"ä”L(͉%€Éå¹2ú&r â¼îo X[`Ü^d.ùµåĐs9úvZ[ù¬¥å÷åb >?È]¥´›̣½rÏ‚“íEẰµ*LjÀˆV-è’{ơ©ơ~ºÖOʼF̣bçó5 §ê ÇBZ_%07a2˜Jæ Ù[¥JH´&̀n‘º’Ü̃ơ¢Ö8údpcº>5>X”M˜Yƒ\m‰X±Éß©¥áZ¼µÜ÷ qƯóYQ'$µ„!¢#CJZ)—gq¹ äơS.4r–²¯@j±&Q¯CgtÆMÿ‹è¾ƒùzb‘jW$!•Á•Ê L¸´ ×1ëN×<'ùŸÉĐûè.oP•~.Ư‡ûœMMTư₫bùcêØ„§Ñ|äĐ˜',àgXĂ}¸œot0«.Sû[nïîÔPÇđcêóÀ½ă#ơø÷7yfđûå‹ơư9Zw)è¢X?¡¢uv¯cx‹Ëg̉-äH†«ßM¡¡ đû° 6yå»"¸©ß̉˜œ?Mœ|½å÷G J=O Hu/DÙqNƯºl͵ö-đ• B* ‚^¯¬x0´?®>§d»¸©Ypz'Ï•¯±†µ z_+3dôt¦ïHJÔ¶®/¼|èÄjx(ªßjî00€#?ĂöÖ bßQzí‹ m‚>÷Ư=X̣”ʽÑ3̀3ớ·™}ûföqa°Ó$pÎP·|;5†pĐ·̃e­z “h]$_!2½g:à@M_(P̃ö/5̉3₫\‹ÊàD¨2P̉M“˜÷ ¥+ßÖx7MÅâ*\$8/$w^ªÊº±Ï;’ ¼is/#‡Ü0K‡ê|è_"¢x¦ÅFøbÜq?![¸2gï"=AÎĐ²\¹›üÀk9PyXŒ̉°Â.ß6üx2aA(Ư´ªyÍ­D8‘*ÍƯkeD [¼·ôå×`£ß¿‹TC–¦7‰Jêù*¹û”Våyúb–Đ£Ư ÔUåç=ŒTzÿàóPĂ~ÂVµ¶.CơSdä䯗ÖèØÛ¸tü|ÿưÊÜ÷¼‡)³\¬́}{j/$i¹÷MQ8FÀĂvÉw‹zRăe%yvf”-RÆø}Œ¶B鬷=RCíiJ \¥¥üµŸ/fÁ́O1^/liÈ"¨7cåz_nÉmĐ—dI‚Z̃0>t½”/wH席ߑơXîäZXà9œeWrÓ¨)K•ëA»ÿóH¬ÍLR LoZ —jTƠî… ¶>~Dû1¡ üCUEúBë§)>]>²=iÛà2yŚ·̉ÛmóG¾ö( §´¹ù\$¿¬HĂ¯]û.%~ˆ¹D¸ Ñ‘#ëñSÁÆV“%ƒB—¬Đ†¢<ù9j>Ñ Ö¥WoïR¬føHTqñÈciBñËjhÀËTLơ‚8đ=™„…M±ËˆFTư‘ c=; > stream xÚÍXßo›0~篰²=©PH Ó:iSÛiÓ4iZ̃Ö=@ 4YH¶ö¿Ÿ1çpq€’•üPtÂ9Ûçû¾;ŸÁ”L %5ú̀óĂH»¼c6%®é¹”‘QD®Ê¯§qùÓƯŒëq¹áBÿúr—–0~s>á}̃ŒæzưâoÄ›k02̃™̀ô ½ă°xƯ_¸|çr«‘Ï ó=…„ª₫æ°®ÅLÑ|Ë›† ‹é&"L/Ë{đÄ.„đ?Cîä‹-@BaV¬–À߬÷Íù˜tÁ‚Ư’™øOÏÂ`‡…å³,HH̉îà…%#ÂHê%X™r™,₫뮑{yMÖŸ ùv̀ÓV™ß¹ŒơBÂđ H‘âg²çÓ®bîî‡ü<âtw†~‰>@Gû Úé¹Ä=h÷Zïí‡ö> /ExtGState << >>/ColorSpace << /sRGB 1160 0 R >>>> /Length 4479 /Filter /FlateDecode >> stream xœ•ZÉ×¼ÏWÔ‘<¸üöå*yØ€<|tD̉¦ÀæÈ$ư¾3"̣uUIhtĐ’SƠoÉŒÜ"+nßlqûyûßƯ·öÏW/î₫üá_ÿjûéĂ]ØCÛùß~zw÷ç¿e{ÿÅë-–Ưè_’cû([}/u{qÙưåƠåáƯÇ÷?||óđn{x½½|óĂöú×w?A₫đ|{ñóƯ__`ï­Î=”­ç½ØïKÚ{Ú̉œ{MÛûWÛ¿·wO:\̣Ă¥G‡£Ü•sÜCäÙ~ưå—Wï··¯^\Ñ_ßfƒû¯ÿiíuûíî»ï·°½¼‹Û7öÏÏw‘{üă®×½ơ-§CWû÷ÜbßSÆîyüß9ßÜ[Üb34œï»goo±nÏ~³ÿ„íÙ:́÷Û‹opÚ̃öÙ́…¹GÛ0ăZhĂœ&Ô[Á½¾°ăûçÛŸđ—7ÿùï±sî…×k}ïy»P¶CÇ6ñç·”C·ÓĽDÊv)Cư'Êi¯Åä²NÙ^´“Ø̀Dí˜P_ß×kc¯¶¾©(JnøaaÏ\¿Ơ=Øú#âú3÷7Ù49êyÚ ÷«cŸ’;÷«¶^ <¸^-{›”[¡œh““ä 9î-A.cïçé<_i\ßÎÛ¹_©{Æưx ÈĂưt|Ăư!ÈQrS@z?ù}MÎĐoØkp9;?;ɼÖñ¾Yz¶Óz¦¦ØNû™J>Ç å÷ÑyMmiœîcj›ñt_C}'}@ư¤/é8ëÓdÙËơmùdü>n¯Ê¸pØ '{›\Ïx°e‹O÷u<Ù6ºă­ö½ñˆ ”NxmvpÂs3<œñnú ƠeúCƯÇpùđ—·wOóNñ*ºw*`}Á#+ ‘sÙ£<²ÂƠrn{h~ƒbÎ}ŸƯeóđœ§#^® ¸â Ÿ¢kÈ KY˜Đ0 ø¾]-Ùú¥/Ûy,Ú̉²Îg̣¬nAî7÷2–…'å>]Ï1¦AɈ„Đ9UGXN\¿EG`.R@v:ôé3.Ä»¾ăpÄ»=LV„p{A'{,û¹½m½k„lÿ¼$:̣';¿đâxKæÑơ„G»¿{˜đÛĂñlNSnđn×Ôs÷‡ëúgyGÆ̀ô–€!fèg—7/_¾}uSBÄQ ÁdúpÄ8:B.ÙbT’~!'„¦dúÍ™r„b“é—¡ 9ÅbH²PÄÔœbÿ“,¨È)¦‘„PÄơ-‡‚ôÏơzđ¼HÈ!æ! 2Q¼T«rHƠs¦äâ2÷ÇB’÷ÇÆ²Ö·ƒ¥ÎưôÜ.’'ÏĂT˜k9ç%P“ä( "†›áq?­`êC穬)’…j–©ÅîgË”ær´ơ° Ÿ#‚@Ñ÷[r÷Í?â<­WíW®÷ÑyJ×yWà\÷?ÇÓ}³;Ö̉G^öu}åu×§n­çú6ÙŸË́ñd¯è—=MÎådo“uǃíçx^́÷´Ï§>ó4Âvd»Rgûú‡8¢˜ç‹§ö;o´}|¸å¤Đ—ÔL&ÇlvaBùƒØc¦µ=ܵ1;đ.tC;Î7¢FC=₫bXDœ¸yă.ª¨G#óîAöÏïsăüŸU\´Fa¶k?½¥Èà¸úÜé¦o°Ă»yƒÍ^bRYwܾq<¿²ÑÚ¿Ù^-ZJÈâƠ¦W–¨é‚d–䉈0K©5‘G*–À3 ÑZ@M§b̀6BˆBM§æÀy3ï’P ‚ǰ­\‹7ÛߦÖ3—OàÑœ÷‰æƠV ÇѼ²¬²ăè 'É\%ƒW9£"æđ̀lZE„¿L¸ñåEbôzƒ}E=­æ¦œv@"ʧàjé8!s{8n&äë Ód´¾j¹9÷CCÙâ -à̀S–†Râß-€–p ±Á‡0_ËÂàc¦èÖæđ—3Fä/îsiùËÍDQëdgz²¿Y¶!$₫¾ßG‡¿˜ÜkÀ?e!5"jƒ/)’/ KAợ-̃öY%QÈ7 é-ëưkÛI¢‡|ÓBîßÔ$3@æUS̉àækæ a!ïÛ¶jC&‹½Œ`!—ïg¯¹‹̉"Bnd<£x ׃¿´…\0,ë Gî±L>O;ôª÷× r`ˆÖ \$€u 7çă†@.æK@.«¾Üň¹>ù₫â, ¹düÜ@.<·¨•6 f•·W ?n÷VøR„$ –a¬ÏEÈ*gÈ›Ÿ\óè1µ§Dz¤óÎŒe[_Xnp6ÄÔM9ô(*J§ $‹7#©Œ±Ít+r(VͬQ°Dç”J‡ZơU§ç¼í³U,S"$²¸*¨jSô¦c°˜G"_i]·• tø49‹³Cœ Bæ %³?ẹ́ÿNÖ’œP²+ûóæ1ƠƯ£*,_ÛàÉ*ÜwÆ´*çÜ]O=¼ơô;ͨÎ×olJc r}Lí̉»¡~Ơ%UÓÔ4z6i²C>!‘•²Ơ6b!dDĐ‹ 2r^Ơöư­Y/Û- €M”¦•#ºó£(§Ä ÎûÛ]W\["Nœl;–¼ ;Rtا€½‘5öÎXùđëÏ T›¡₫¨Êct^́ ‡Ơ!ö!FjdĐBˆm°³VÉVÓÓ+:öîđ ;w'Ư@[£#é<ëMÈÍÙܬ·wgÛ3S•Øx+‰@‚!ë6-ö»²®e B@:æÂH“ nqÍÛĂ&ç¹'Ÿ]„5Câ…2N¤3ølV&hÍ5!« “LÿÓeÔaq:•£li!u—©Ââ£16¢Åñhô„V]|~U6ˆQ dD_3kÑû¡¼ĐÉ̉¢}¬jl€%kQúÄÈ9.¾ñûotT’äÛ›4rcs‹Î7at䀉Ö¯·o—(“adÄ'é\‹ùzn>…ÿ2ũÄ3eïü\đtD]œ́ŸÀÓqæÁĂḶRלNª;8ơimàO§Z/0ààü íI‘÷+’‹xµ¦ ’SéÁĂ‚q“a5Á×pf…ØN§{?™ĐOÖ,y ¤2Đz ‘Åduc¬†Đ”èú{ó ¦MÜøºFñt‚2tăuÂuău Lûé†@ơPv[±@=Oo½O₫ƒ+Ô‡¾ăîÑw¹y4U?^×$ÍÁjq'k¥˜¨ù9Í §ê(×”„Yñ˜ÙÆ’“1Ú¨¤̀úQ;_W5e×W v§rñÿk†M˜£=R/†ô(kÆŒ²¨ñ#&ÍD;ë'´6újdpø j@Y¹ßîƒ6̃³ †!6Vëk í+”5ơơ0Üm§˜́ß è„–̃T³û ̀í¥A¿aYYÁ5Z Ÿ4T¼Ä\,$² —át ”éYÏ-T}˜µ,ˆDYH®qMé…4s‰›8F„³Á¥Z?á̀ßàsèĐäöd–̀ôÚ Œ{œe>a¡̣̀O0t²‰ô©XdM̉@ö‰4DíÑxfj(—dlZD¬³~ „¡V¹Æ`N–Y2Ù- Ô² ,(P©ơ0ƯЧuIµÄoSđ]ˆn6Ê>ưˆ“± (Ué;IŸ¥Î2rRù—ˆé³»ë̀óXƒ|M´v '“°¨Ç âÊéˆà× Qæá»³¥̀_F94”Đ›·Cƒ˜§„“†Q¤ĂY@‚¯‘–…Đ#”rXEùq·0 đvĂ»̃®pÙ½”Ú‰ˆụ̀Éèf₫¤=v ±;%Hüø˜XÀ0¢>µB->­{7=E fa) !œø'ưØ5{m_˜a¢‹HHÓ©¸)6~&E{w` 5QàŒ̀K@đr÷îq̉Çí¯ĂEË‚¨EFRn¨}¨90‹N ̀à„ä’ :ùQ]kç¿\8¥@ûưÔ GŸ†pF`ïÇơDä—)ºK̉¢bÔßFRä^Q^G¨(ƒäÁ¢å¿F ü Ü»ˆßD.üˆbóE4X–j5ÚJü® „‚Fk™ƠS2èuÉt0 ³d~¬–,°³wº/©Ïƒ\EA8±ƒ FÔ ¾üóúWA³kd;—FÏ8û\Ă7ª>ªLơ ;‘ëŸ0Ư?*i.L5†Î´̉ÉæªñJ&:[Ÿeê{IÔ¨¢Äè ÂË3zh¬¡¯IMavºŒôl ­ë£9óôNzÉH=[ÿ¨C<đK₫Q´hPúƯŸˆăºÎkÇ₫¨P5’Ä}1(kđŒ/ Q«Ïv+]}ϸjđøË…Ÿ‰¡1₫uÚ^Ö¾î¤(*3´µj{£pZ]ă…ª®¥q̀†p­ÏøXû×̉8ÆMÀá" 0w^LÄÁ`ñop×g™‘&¥ơ©G&Ùœk”ùÍpîô={â\ćüÚ^“Æmcâ4¹Æc×§Y¸Gÿ̃ƒFưJỦđ•4 à÷ƯỤ̂̀}¾0ç4ÖíÏæÙƠÈú"ê₫îÛ»ÿw{ endstream endobj 1162 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1166 0 obj << /Length 1361 /Filter /FlateDecode >> stream xÚµXKo7¾ëWđ¸"–Ă×’½µEb p6Únêj- ‘,W²jçßg8$w—ö* ÷°1Ăy|óT[1ÁÎ&"ưưy>ùá‚{áͯ˜î0ë,›/ÙeỚ¶S¨¶»›éLI_Ưáfñ7₫³Á¯=đé§ù{d!ê!Ús¥$J Wá ~2½ ëÀ¦Åï!½/TĐø\êüü~̃m¢ .QYWÿN¥«Ú=±Ă+‡œgJ‰(° "vûøfq“/øÇC¼ÉÄu{;I‹Üƒj$â®§L<ˆ~ë̀à˜̀¹Åï˜!ÙÁ46é¸5í£M¨¨ô¾:OÖăqÍ}-ÈznàŒÔ?‚ÄkäÙÍIœåÂà¹äJ›x₫¶;7lpü±wd0öͨ•ăA·ä‚¿ưK|iPOc¾ ŸÉñ Ó́öIPKRƯ:úî·t²O§émpĐ2®פ,zđ¾—tMB\µI1zèú/aD—@q¼%‡Î¬%AD´Ḷ«Yö-pétéÛ]Œä§ÜdLÖÉ’»Âj¡K‘&äƒ+̣ÂVzÑî|µÎ<·ñîp7÷Mzz•4Ûm VcA­¸µ~̀&_,#v¨kk†•âàkJ‡‹”P´ÜRl´qSX~“µtv}$½åR»̉G£‰'¹ó1ïà{̣ç‹ygçfƒă}½È‹7¡j©.|±rb8‚îJV,[Nˆ%Ë.Ă– í[ûl$‘‚ñÏ#¥KÔxIa”H(pÛè¦pÜ–ă5Ï ®Ưÿ>1¡Đhz!¨ÑDy7Ñö!ر½Í-.j½»·=>¹2 DkêP­zc¯ÛH¿;v­!µ© Ò«1‡J«tÙ>GÀĂEŸ;ÏC̀åk´;̃V2‹²r.ö‡DĈԛ‡XîgˆÀhh†`û‹‹gvIÄ è>,(‚ƯÅ̀aXtªÂFé¬})*±üq:Óư°]wẹ́ă ç^V#« ĂΣƒ‰í]Ü<7Rl<ÖgXfÇÏí!1iBÄ]§ĂE‚đóỐEí€?oç“®@ ¦0äMí8ÍvrùI°%̃½gxă»'Ê-“>ö4Á6́ḅû؈Öâ|g˜±×6y₫‚ẒĐ@]£¦¿âúL9oăF7 7\uMu+®iˆ˜(',²!_Ë$l¬R—¸è{I›R¼iÑ‘Ú@]‰Đ×|0 ”«f´·º†ªßưiçäp.í€(²IÄ&e€î(“B4@²!„¿ ŸëZ$ƾjKT¡C¡ØÓ:è§¢_┼I C]:´h”ŸµQO èwb(¾.T“u§Œc¼KÍ}ÈsÅyṾwŸ'u;”ÖÉvö?h)G”Ñáê¼-„‡£?§Nc XF]ÀY™ưCñu ôÊØ¨‰Á¥*ƠЧ¼sÄYÁ>$‡ P£Å0Æ:)Äznh³£;-Gœ/24ƒ‘/L.:ÉÓ Æ *kÙÙ/Ưi7¤ ù¦ÊWû¤ å§Yˆ¥hÓ‰Öu'́[ö{ơöŸå:~¤Ÿ‘=ÔEèÉÂv[d¤)Q Ơ騵ä`á•j ǽt}ˆ]Ͳ~· ¸iÚ Æßv•ä6Ç3t©æóÎ|CmൺVDî\[rÇÁ_̃²‹ î¦(f4»r£"å«1̣$UđĐ^•O‚…#V˜>^€•x₫?{”ÀØÇyX§¡É©bBm¾Q( endstream endobj 1171 0 obj << /Length 2660 /Filter /FlateDecode >> stream xÚZ[oă6~Ÿ_á·ÚÀX%’Ûlg±‹vf± ´û ØJlĶ ËLúë{®$åḰä!–DQä¹|çʤ£§Q:úû§T®?ßúñKUŒMrë²Ñưă¨6I•‘«Üè~>ú}l&fœM¦ÆdÅøëúY ¿«ü4đ·i;ø=ô“i^ăG¼ß̀öpYâø¦Ÿüÿ₫Ÿ?~1ÅȤIÖ÷HGÓÜ$Æä¼ÅOđ­…¹“¬Öøû0™få÷Ùá»tÜ=̣Z×Áï²AxÖ¢™Àgßp…–GÂBí†GæøÀS…nëg̀yÂc'{öøzỰƲ(ỗ†og(™?Rcñ¿Øơ°ÄîÓ®•L¦{âÛ I8kóqD²Đe‡Â2yRØ……mM\¥ƒùE6nhà•:]¾ƯñÀ¬Á¤̣©ê+;N&Ó"ÍÆ÷‹–g T;̉h‡ ½đ0_ç´eϷ͆¿Đ³n|‡¼ ½Æçe/*¢Ựñ¯I«{÷|ơÔ2Pê* l™¸Â‚ ˆ÷தÀïç`…˜ÊŒN&¦vçV5.©j§ó¶Hç+é )9³îÔ¦&q¥*BÖŸæ9ˆ…/Ä6 yË3F-\›É(Ë#¾é‘ ©ØË" ́ ̣ö ”¥å‘%ei’g–iz]tÂÎ3‰ŸqØˆÊæ̣~}¼̣€ç̉&iáey‡ ´GW×p ›¢~gˆ Ô±«x[Ú³[#Kâ÷s~×ï…®ƒ̣a'‷l„p³á á )oÑæZ3s̉’רó¬o“¢7;`C„µ,ÅiQ˜ñPƠ-‰zE¶5µ.)Ëê²b•ă†ØB}-Ơ0àíÎA˻Ƌ9o"µ̉ ænÚïâIZ,OZ+[±CÓö=¾|Ú\“de>„̣̉H¾œinDễ.B¡³ª …‚:[¢Óâ„§¾“Só,ܨĬpôÀ_TÍîB̀ö N°'X¤´A¤±àñFvoxÅY· ‘?ʦ­Ú’8å #2ƒ'.Ñ8Ù₫‡Í]¤Î»¡¹ˆmÊÊ«<©K7Q/¨?wä´*04¿´Àˆ±À€#ÏNă¦¥u÷|«ÁnI.ÅøWÙ *¼”=Ÿ1Ij ̃ĂH¦Á÷ Q6qu …i÷Ä«ZÁZ2È ÿÅ£hø¬†ă˜ -ËñW‚D+˜ñÀÀçÔ~OÂæă—EKØ¡7¿Áí ~Ö…xi hHdÆđ“EYÆIh( ¿[¶q`ưˆ…Íıî>fen3ÅÁ6”§¶æ¤Ä–á—¥‹`¿ƠÍ4!¢—'ÀÇA6Gºưéß“*ÇÜ Àƒ^5”ă`Onxä,¨2©É‹@U^€Ty#¤ïAUµ©Ç¿µj ¶}wÖ!í4Iql«¢¨‹J;á¤Nr—Ù́¹ư2p!ÓX>öïÙ ¼¯µ¥.q — f}˜}ä¨ỏ‰uµnü/JơAÂàZ0…ÁkRéD*~&èd‡½¼BÇ‹7‰–§³Z 8±^Â3Yg7)Ø«Tz¸œK9™höKa’nfôpF¢à®‹Ê‰NË raŒâJ@ë8 s€îT}x û²àD„ ¸…¤̣̀£h°¢‘ï×8&‚K\KbL;̀y¬år"o5#¤úÊq~®"§‘8„ç±…×D‹ƒD-8Ơç&|¼ÔLlC™Ôt[r$ ̉ƯFRú̉z³£%VT/]ˆŸqgå©:YKMKeæ@zJ–f° e¯’˜ÑØU»ù|–.H₫ÎQunçYl='i3Ds[ßæ̣÷î¼́WyßƯB•1Uœ¿ø×fTjjªr‹<Đ4&kK8ë?+ä‹ÄYËJo=ó ŶIóŒwÄ­Pï|–Ió ÿÁN˜^5Éçh¥u´m#9öËr¢e7=¯”ÛVg̀5~6ï ưy¨:Ÿ… <·{Ø»ÓtE!R¸ëq¦ZW¶"‡v‰mû øê‹́ mºÀç̣»Đ̃ Gƒèó$̣è"«3“Ù%‹¾(· v©Bø}#̃ƒ•¥¹—đ"²™µP´¹Fʼn…—‰É|&(M§YQÆÎ›-5ºmÄ®Ñđ¾̣¦D“Ơ*ñR]R̃sd—øÉ > ’q¦ú j#œ8á…Ä2?î]øÊl~jBó˜ ư™;ú{K}Y–¸ôǽi5ºÈ¾Ô+>‹¶¶̣לÓ„•Âx­5»Đxñ‰ïVaĐP'́•¥Á%IpF‘¥EºWTĂóå(÷!–‘ó̃kpγ¨Ó€aû,ÍÀC 俈À;×LE+‰wÔø³»°>Ø D¤±hχR®ˆ--rF™Klh/]Á@¨' ½½î¥¦rS{U­úmŸÉkM¬àQ´½ÓöˆĂ)¸'Ÿ¬/| ÖfŒ‘yáG¼œX™¥yâ²£6T߆ í¨Đ(AÎ>Z¨îÅ’p‘Ÿå^S¼ëÁa¡…yƒṂ¬âÖLVU,¶Æ#p¹â”Ñûwg …Ÿî£đ¦€ú̉TïÁVº[°•&epD·`+Z÷2¶P‚-¼$Û«t¨RH‘=µ#tï Ê Pp¦iLŒ³ÈKÚ 8ăHÎmúRp=x<¡¾$ÿz`|ùÔˆḲ0²é47™«g̀ØßE[íTöº˜“³å>¹đ wEñ%¿…ؼNÊÂ#vF CHk÷BẈÑ̉’ªÚÂEdÙ®âí‘ñü•ê?ú&|àû˜_9–Ô«ùA°â8ih©B„©†WïŸ) |áêhđ₫Yë3‚˜ßøÂQs4sU8µ"RB!9»É‹}‚[Ç#œ̀˜:M’ơTaƯ~@‡Ûè\¢%ø½©? Yœ;M¹<æÎR8ézĐFôRÑ÷:<†ñ¨-Í.wêéđK’åÏ!è” ELË.½}MTäÓ@ïÏI®Ù†HåD®MÔẻ råå}»g§µv~••4DÊ‚Pư¿̣“:¢Î\cSđ½º^æ&£Xñú/÷øƠœoâ2U¨ˆ”¾Ê!«̃,µ1R‘ ¬†È{d—z d6W³ö-Tù•ˆI+ØÀ›>*„î̃*ƯAËY]…f•8‰+Éa™BÄ´ClÄg€Z“ƯE-kµ„Aăîj-V›Ä#æEóÜƠIù©đjùăÓoÍñù›×*y¦eL§<>r{ºj7Dñ zWοE•»*(î­̀5E¹ñÔ4–‡5y´₫sC/ø5XßS”œ‡‘ ÿa ÅÎĐ®ÿsÓUvü7'­‘×Ư.̃"ê0œyHƠƒŸ-7úy¯ÿ‡pr4~Ưeï8DÏA8y] ºD—’(ÍB!îZă©§n%ñX´½l†ưàP~¡`óg¬¾ö:Ù›E₫à ¾>h.5Kºư Q§‘ă_t|OíéÑưÈTB.â…M¬•3Ê&ưrÿé/ú¿J endstream endobj 1185 0 obj << /Length 3065 /Filter /FlateDecode >> stream xÚµZI—ÛÆ¾ëWđåú‰0z8b[Ṽs¢H“\¬@\".c‚£Ñè×§¶n40 ™ø9Đ º«ªkùªz²Éz’M̃¾ÊÏ7÷¯¾ÿIen¢²´Ê*5¹_M*•–™e1¹_N~MÚ©Já÷¿~'øư¿~gioá÷uú¯û¿„•aÙ<^µ(Sc, Ñ÷Ó̉$ơç©.“¦Ît™ÁRĐxÂ?ǴPÉñÄû)½ăæÜ®iWÜr½íkè¯2¢-…ß:•;_ sÉïopÈUĐ'¸Âq?Ơ.™ \'Ф’ ¶÷Ü̃>́ëéLåỵIûÅôƯẺœP“™UiV¨ÉL™4·s.Ô™©äOÓ™q X‡.Úp:³•Eêm•'Ç?y„„à›Ç~ßa÷JǸM¼‰¿¶É9útGäÇOø‡O”ăFÀ·- ̉@œüD,xÚtqO‹¡°°—ň‡YïhÍ1nqĂÓqî·Ư3—0ñûŸÊj¢ljl¡ÑV@ESí )̉b† fP7¥óäo{5êeÉœ[^«ow@ƒU”æUPœe•¤I±IơEkí¸Âg™,kÙ;ưÔ`‘̣û’XẠ́s¦ƒ<{i‹€À‘ùöÙÔ†̀®ñ„ÖĂv³À£Ød̉±JœRŸ~ñ[,PDÉ’ißø)zOr©Ê\đlr9¤ưY<ÊfL Dcrï¿›ZT¤^7 ®N©äT¯Eµ#Z6~xW‘œq 9 £Ø@bÄṬÄ̉„mHŒ[ï“ë‹Í;ÆzÇsWDëÙŸ™¬K…@#ørÚ>eyÍO™²đøBVÁ₫LdĐSêÅqíÏÉŸúö+3›éØ.Pï¶.–ï ́¸Ôé(@°#yæZYÿ(mÆÎ(W©µÎ/1¾K nÿơ.R ưFv„¨–WÅÍư„ŸemT‡o=ñ¡ơàꬶîÎÑ®Ki#Wj”#–åÿa3}i3Wơv§§óÔ¸¢¯f>«1¨‘!áûJNb8µÉüêl¼áÎßCApư<ÊŸÊ pÅA„Ă­(ȨêiP„RûOÀ„‡0ë²äoŒ*€EÎI ²•²º1jÊ,ƠƯñÿvAÄÑ̀Ñâ«È¸ny ÈÚdÇ5úù(¾C(̉Œ¶wT¬ÔÊ´Œx`“¥ÁŸ¶"ăư¨l5FÆË®—÷ª[~2ªÙ1JĐ¥Ă¦ÙDMNˆNñåĂÛW“_éƒ_Pu V³ÖÆ8V&ùă]L©ªªÁg±€ ÅÀ@+̀"AƠBeˆÄK€»U¬áWÙ¸ßø˜NzAJqđË”„xé̀r°9;°.ü¶LƒBƒ*År0nÊÁªQ9ĐÇ„ºñ…Ø#“&‰£i~óÊGx¨y¾̀..ñ¦é́Ùcr:½óï"»PẂà=…AĐ1Đ½=3¡´…€’. K…jnÛjÅÜäíBÁŕb1Ví\2qpJ/đsN½˜hW&:çö6-.z"åའ6‹@vE”جr©²UßåĐî'~*ĂT\`ƒdÙqÂyC‘.;É(ª́‚3ÄÛ,h@Ö!x5’Ön%H]eÉf)ĂÀÅ¿X—ͲÔêª.á́f¦¬Mé‹?đ‚đ„.s^\¯çÛ‚̣¼!ùØêº0ë4‡S§Èsî¼î7Ưœ5ñC5ͪx‰&%ЦüL‰_Hl×R[Ä!Ïư­¶́–i|X¥NqœøZóC)>¿Ă‡ Íá×#Ê+%±P×åÈA}u„Eơ‰#nx<ÆÈ1¸Æ1á®ÅÜ!k8ø‚5́ô1–pXqë;~HkïW;Eß’>t»È´% („¾ª,+ïîh9±• ŒøÈ¹—|MÉđVJ\ØÑø•/Ẹ»gV>sbF¸i“1 ôjă/ù‡µ<'{®Ê"$C¨¸ ÖDéÿˆ"t,zÖy`Q;̀,¸æ­z¥4!fÙăO'°²7˜;'k–º8ơ(dz¾ö›×$óúZ´`¤[,đYÏG*عHÎרö¶« •çØáÎ}5đsUUj\@ǘ\X[ÜÊR¬ÍYz =è““8¡–܉Ơ gÆ'GtŸ%+ •¯áJñ• 4ß…̀è9Ć*ƠRXá}w)̉ÑË'½é¾`¯ j‚ç̉²ªF0“€~üS:̣mxĂ(ä3¥Bê‘*m»J2*£wÔxø­Ï ñ’–æ¢.–6?J¾}ˆƠ»9‡[Zđ…Ob8GƠ&Yc<\ ­Ñz,Ú¶‘¥§·>…éWˆu‰ÀÇ»÷SØûîBơ ^.£º®9·çuëÓ£n)§X·ÂfKùă ¢ưäß|eák ÆgI45”vŒ,¡­Ë,ăi-ƒÄ+¶̃M±~ˆ.ñ¢ï*‡Åù²ï»€:NÉíâÛ4«₫=æ —æÊK.ͱØ%…AÔøËA¬i€ÚÜÍ%z?,½g¡̃L ¼°I³ô¶_ŸƒÁÿ»đ€ï;¢’£¶°́6€6bø=«˜P'îÖúü¯Nùÿs—æS_¤È"…eHw¹½ß6qR#ô¯uûî2ä–낯.$à¤́“oA=’êAȾ”`óÿêà ’̉ú…¬º 4V?l¢ !”l9À̉5ă×±Ti¢JåNOf¹I«Büm™÷&ưxÿê?hÔA endstream endobj 1210 0 obj << /Length 3020 /Filter /FlateDecode >> stream xÚÍZYÛÈ~÷¯ü °h6›g‚$đzm böḷ`Eq$Å:fIiÆ“_Ÿ:›M#'û́Ă ›}TWW×ñUQÑl=‹fïE£ç7Ï^¾5Q43QXF¥™ƯÜÎJ‘™eE6»YÍ>ÛŸçÿ¸ù³[óSºIĂ4Iaˆ&›d¾ˆ‹(ØÏă<8ÏM°ƒ¿Ó₫ƯÉKĂjœ°÷#Ö̉[-áe+3·§y\0’—ÔyÂåû;@ÓöqÆiáÚó V<µêx²Pµ'î<̃r'ƯôT>Aó‘(y7v¶jôêïCgÈ4tGdg̉›æq1[ ̉*YVƠN¨ê9m¯ºiÑÿ}Ó3Bƒ_¢4Br/ß–…EZ[ê|zË>̀s Æ“‡ØÔÉ@̉0ñb|É/xU‡Ä7ï¸|¨IÖ«k¬£́qưq¾HÓà_8\£èBx7Ip#W€SWTürK‹ö$Ä…1Y'#1‚úFóEbÊ C…[̣H®–ëéx¸jn 5₫VÈΉ¹OZ¥«áGéƠy:tB¾­T=@6̀ë ´‹àöØr£Cv­n¾fz{ày'¤ÈPvưæ5nÔDPÑđđ[ó=Ư¯¸ÇV6pkmPø”ÖÆÁêèñƒËªëu;zƒăw=-¶ó®»ṕ!†́-Œs Ï(´qœ¯IˆQâä±ehËXUö†L)‰ 2c|’©6ÜnÈÎwưñ‘Wù†C{'ån‚ˆH^kaÛˆ?â“Óă +3:¡/‘ÉP´Û/B¶cÅ4¨ăí¼HÈ ªC-́ eđN­$rø °̉Ç¡1åđÚWÊheœDA‡›œĐÍÙ’´Ÿ*l“B÷‡pú»a×Ls–|µjfUÆ÷[ÖlßU­X́RơB~XoƠ‘ËM#[¯7âËFw8s¯$h»> X̣ß=¤,öđßEÁº]'»î¯Çĵ¡•ă냪ư†ß]˜ÚÊAkBñ¯Q>ˆˆeÆN[IÏ5úÚ~¡äy˜æÎ/‹jØÈøZ‰»÷î12ÎÓàÀ-=µU’Ø~×[¨éM°ÚOeƒéæåHûîˆ>V7b²0Öè(àv[Öxç€V`n¤ăùï<óà‰èº»¦wj,^j:/Ø:3]h8FD¦đ*–>a$:îlØhđç©Ù­ạ…^u Ă Đèœx,ù¡ ‚*aƠºØ+\L­–ƒ‰X½H`/M;Ÿ´X¬Ûäv‰=çæ¡?4ÿ10ü„H8–9oD"øof-¾`ăăe´HL¦¡ÚGä”ù„fŸ6·SM}6)m>Z¦˜)·~Á„<=CPQ üÄI¨âyˆîFçѨXíªC?RçpbE†Œ¼LH8ĐNz[è́„I&Œ­ơP_¤ÆÓLZ~‡q™ ö&/aú]b±Ú^snyf¹ËT¿A±ÈT,pg̉‘­€¡%HnŃQCƠÊA馀O–Ă>]ßÛ‚¤—¦ZÁak¥ÖHĂƒ¸§Î½ârبpÖjë! ă Xlătèá¥ÅÁîç˜É’)çÙ)P §P¡cÏOøl’ªáM#[YµqÎ4V ä’²_b¨œ»àÑ\Js”m» råÊË0-œ…Ö¾?¥ +Ó$…•¤ 1$˜t’Lèf¿q;̀+±Ï!ƒ@¼‚o…‘4It aÍ’Ø%ÂAcxưOŸø½@(T‡•2†ëYÙ1¿NăáË^<û܉óÀ êØ¾{hNQ˜k9…P¡€̉ø.ƒmÇ‘tí¼ĂzÄEf…³è{¹·µ >ŒûAUʹ†f{‘W#ä±ÿä)Û‹!>Ơh²#:éñÖ$¹De"°,ס¼²ÄØ;q¯b—®‘Á₫ŒjDG|8 “„6ÉâAPÀhb1+¥„—àĐd¡-Ó_‹ñđ³“vMﬕÂç@ÀµÇ…de_^-S'Ÿ¤.gvÑ98¨(•mZî¢äïxÖ -´̀°öe96¦‰‚¿RZ‹¡7Mø®ÔEĂà~FêJ.¹°iZ9áÑđÜŸª¯­û>#6‰ƒgƯ¢nêŒ$ÊÄêc“£LAöÀ#”WƠËÏ!đf)G,Ws‹ñ9=Oι0®(ॵ–₫­Aưṇ̃E/a¤‡i~‰ß́Lđú/¸°2ø·È‹R+»~”k—«\”vgö£4} m–L¸C"NßbđÂâlºă†\£$¡ØSÓJÁÏ{Ï⾪íMvKc;Å„)\EÙ́O>̣Á(…px}ưñƠû»<ö4öpè$i ñ†?1Nù¸ Úq-”¡ÿD%”}öÀºT•{‹é-öơÅʯ}i¤¢ªƠ°ÂéR?¼îK/=ƠƯ¸‚Éư®h±WØñK(¯v®&xærüƒïP¶è¿WRÍé^.…ÊÙt(X°QƠ¹ăw²5é¢OéfªÜF¹s_we­%í‹r 4³~₫„9â†ôƠ•˜Ô¯:K‡8.ÜrÉúÄ/ü•v¶vø£ƒÛ'&¡”¤:kb[₫\hS¹Mª¹vâÜ'’n˜rexè^¨ÇF)½C˜/̉Ø[%ê!ăo#½́?­Đ*YüzŒèJ*ψP‚}ÖŸJôí«´µ>û{™7¥—ÏƠ7]S»8*Â<¡'–SÙ`Í››gÿÁ̉£ endstream endobj 1091 0 obj << /Type /ObjStm /N 100 /First 985 /Length 2686 /Filter /FlateDecode >> stream xÚÍZ[sÛÆ~ç¯Øñ“ơÅ̃/53¾Ô‰gÚ&c»Ó´®'‘Ć"ô¥¿¾ßYa‘IÁa4:Ä̃¾={î»RøÀ“"j&¥!Â2%“62e=}PL |B2C-":fm Â3/̉èÀ‚IM‘Å èLó)|rD8Oă1}~)@̉`ºJ|3ÖĐ7P.èDú™ŒÆ̉”‚) V ”Jc%S:P ¬sôM1å]$J3E¢ vbe™–ÈÈ´VX̉Kè<ÚŒôéÑdí\:¦-á’è©]¤)Z}LßĐv/58$µÔ¼D PVe™QÀÊ3ƒơ2 Û¹6̀˜4Ô`k̉ĐÈŒó´ƒÖ@Ü”#¢§éÀ+$ơ3TÍYEL•˜ÀjÁ'¬éˆ•ÇnȈ/é¥ ̀ºÄ«™ơ‰ÿ8t,͆.6zÚ,„Á‰åI ædju”×´‚eN'¦XÇœ1i*‡V¨8Ÿö pK–˜ Øè sQÓ^@¬̉Îp(Ré ºEæU`˜×2 Đ̀ÛÄpË;G­8F¿̀%¼cA$(̃³ tÑƠ ; –äBÇ‚K«ÉBH …˜ Ç¢ÄG»T´ü„â‰o*P7p9ZM»€Eç-–€–Å GĂb´$ÑØô IK ¥iFú-t •#©Úr{Äd‘”#)’d©–*˜´JȤqp~>È^•³†Ÿ³́º)C₫†~@$I£—¿V-~ÿư ûå§‹ÿ£åÀ×7Đ(hämëÏU9z[4́=Ë~~ùeïÏ û0@­øî˼@C~U ²X½˜55a34~½)êrQziV̉·¿ăI₫¼ǜ̃ F²…êÊ+Œ&h:u\­đ’½OÆ*ÿåŸÿÂQđ€]{mxØÙb:ư°»³Lup\C:wq z¯ BÛxGÂh TË_˜Pÿ(NI¡îpŒäAœÊÍf%f{¿4Ơ„'™êZ"&â+Dí {»¸h̉ï¿Lf¿ ²çe5.ª´®øư˜½Î^à‡Ä‚ aŸ-dtœằƒàN“Q‰\‡~Ïsß²́‡̣]Ép6OG“¦àób|ÿwQ £?#¾ơƒÆ“x‹&(®aQNƒF)Ă-ĐYIÇE&̣à{MmœåBïTô …2Ă®‡°VíMQ&n7h„Û6âèÚt 1ö‘A†»Aº£-¡OúOPWD\J¬¹&dÛÔRµ„n Ó¶Oƒb„çnÚJÉlBà KX(“ ~· Ö×U¹h†Råưi‰SHÓ‚±Æ7|"0Xâhbà"9V nôn(Ơ§á<ŸŒ‡²GË–Ôam€Ch»æ APá^Ă ‘)7æZ,øGØ–]‹Ë[« FÚ«ÅÛ#¹]|µ´›́ÙùyZ {6j&å,{›ưưÍkú{zƯ4óz˜eó¢ªËY>4_¾›W%Åc¼¬®²ªøXL§E6_Àr]gƠ'N;à̉óË ñùǿ̣è­´Gê%׆,„TÁÁO Qú?ÚÊá‚­ˆ”ÀáT(S”Ø’DÙ!ón•×ÅlXMnXFîË­±Í)ư= gM‰W‹EG„rao¾Ư£iˆÓÔ-£§\ú(()(₫€à¤Óù¡àdKgë$÷Êî×ÙX°ùëλb“}£‘nz̉M,³Ö[búe(¿̃ųöqAŒÚÄ(wtHe˜½Nu#§ẹ̈i7?»\êÆs÷$)ñ¦m#÷,ùé-¹ Ç3M˃™ÖÙâÓߓ۲'³ß¤w÷dPïNç•Æ"1¤ƒÚ‹_ñ=U‚{¯*Ù"FÆÅÍœ@·€1÷„đÇÆ[À ‹@L]G¦È‚Ư?tx2¯¿Œ®½,«_ëâ†b€'g¬QÜk*²Q°L#’}J̣eI„7;S@ ưD tUaĂöMC;æ¼+GK£[¤1/Æ=J5T:–y„5ĐXcÊAö·ü†Ú„5¯‹tBÙÅôcÑ ÏdÊñdvµ¼BÙØ̉sê­s~÷¼œwLü>{ưâÓçÄ뫵c–ó®gÈ₫1™=›Ơ“Ûæ—“ËË'A‡ö$»™̀5‹.û}Q6Å´¸Ä“K°¶®'ÙU•,²|´hl4©F‹›Ëiñ9k&Óq‘Ưä£ ÊvAI ÉG#r6`‰zRgº>..³ kg#HÆt¯?^/fWyµ¸™æ‹&+¯ÊYñ[6Êi¾z®"Ù® :©˜¡ ]§®́R»®–tC¤¯®R̉ Ư#]¿Û@9s¼±uúqE;™~¬íRƠÀ)ª“yØ^ª*Gæ4t)n¯.7ùÅ´àRÜIƯÜ!±ƯfgMU:X9'÷i¸æé#~÷rËQÅăc]/àG§ó=©́cÎ>́]Fµ•ëîÊ´oKÓ¾-M{»"B[ư^ơé&xE´ơpßFĂ¡-ƒ‡¶ú½ºè©Ä­4âcH‰•–Ó…°¢[ªTUö<¦]î¨vÜŒÆTR›>KRÁ§ṛ )‘u'ÂBvĂÑ“„˜u&ñæzQƠ \ÂĐÈ̃ËÜVÀ®Đ+ƒÿ®& 7÷•Ü¿ ø,+oáxɽ̣8 ågƒ;g¦ö`ÎE1ºn¸4C×# IĐû5 ́©à4“.¹¤›¯ézb7œ«ÅdÔc<´¦G9¦ÛPŸ2¢t+І®R÷ßư~0ÈS9~&jî¤|Íl1ƒÁ™~º>ïè…àVÇ5JÉéÁÖ‘`’nKE{9́Nç•ĂV#i9¢pOV×C§äƯŒ_‰p¼Ă­íírl]xl]xl]xû¤E¶OZdû¤E®´¤ÇQKBˆ–-±n̉mç–¦×1È×é  5ˆBa¦ó€ ̀ÚÈm¸Ç?})ª¡îónr´F ¼¨< ,bF8]8(myÀaÓu£•ú6AÊ@+É:·hpDJb'A£á¢èxZ4Ú:˜¤SĂ2t̃‚ đêP´¡oP₫Ñ!é̉ƒh¾‰¯@Áé™C ÆQO Œ·K·¹Bsá‹æ¢¨fuSLfĂЧ{Gp!<¹w„đnYÛ¦§ÆÆ"„wæt¸¢ât¥Óâ¢weäE{ÆơpZj, ¦a…¼?E®ôçæ\Ü¿NưoaÄuU\₫é =¹¸ïÅE[¿₫÷â endstream endobj 1219 0 obj << /Length 1878 /Filter /FlateDecode >> stream xÚÅXÉrÛF½û+p«ƒÁêCª”E®$vÅE)¹8)H@$ ZÖß§ûucÊIN9̀̉Ëëî7 ÎÚ œ7¯ưûÍư«ùm–;&̣m”„Îư£“? Œ“d‰s_:\33n<óŒ c÷=»gz¬fÖ¸›†Fûª§g[c̉³í̃o*ziZz<Ï~¿ÿq~kbÇ~ä†goŒù÷ÚXÉÆ<›n C?O3Ú}ÇY ©¾&Ø̉Đq?m+V³0u·³8q‹uEæe±»):DîræÑ"ÛZd©äñÇY˜¹Ơ]8̉Ä­JÙß7*€wñúQ̃gPH¯68½fL:F§;‹‡Œ„t“qƯ­1Z{XíT”?ó’ pß6ëY67́¾ăÅ–}w¹ư¬æ§ß3ÁSÏrưu:¦̉ÅßNt19©]~}<©̉ƠY['Kû‚£ü,º"“C¼ Ë©å×ä˹se²,€E‡oĂH¸ư‘ă Á}3đ1ăú©×²9tjæÇ™ØĂÛËZKqº4^c¿Á¬ OƯYºđÜg×åOçÿí^Ç|SèÇ…Î2Ú£ø$ÂdM)E÷Z„”;]œ‰èof~ó–nît÷ü-Ë[¶È̉çù-›S0^ƠhaËá™/üÇϘ!~…kv¤sËÄóÂU×œĐ WOíjñ|} Ä»àM~àsY=˃ß̃ĐÂû›oéù“¢Ẹ̀̃ÖKppËD7¿ÅöJÙvóKüla₫+ø»«G̉[Æ=ƪc÷Ní …2£.Ïö/v…c±Ú²đ̣Y¦á̉Cί t<¯§néWÓNèßÅŸo¯ @‡̉¸™?8\˂۱°-Ö°ùơܦ đSôÜ{$1Ưa-¼ØÔ+á6$ľŒÎwÔ¬‘Çâ½&1®×Ưp¶„]dG?9+*>'K‹s«_HƠ5×éZq¥è!q…¯ÎRSu²åç¹ôO¾áöù¦m€Y/±} §HäóÓxÊ.Çî°>đ¬Ÿrô³k%‡åÄ®5®ZŒơÏ¡ÀUĐI^— Wh‡}lS?%3ϱ­oÈ¿—Ü\đ‘ă‘= èÂcóé)‘ÙIÆ ¨Ơ³¦̣“ă!LÈsưi…†Ÿ†<+༻¹»ăYÀb=&¾ôøñÙ*¤N]²UÔÅ@ÿ'Á¤rûíçÜăujIÂ(s; &Gx™€çÁ—xLXÖ₫ åé׬ÈÏV¬~…b“C&™aèk}k÷O–)¶„¾\'²ZŸQ QYdļæˆo/9ø‘~j\U+̃M0V]́·!É¡ #ù¼DˆFë…›̉ák¼> ₫„PƠ.œ̃‚#öÑŒ°½PéPü|d¯H³-¹ÆíU³ë.0f;bưJªj¦—ƒäRæ%rƠ»>”£‘_c9vΨ!̉¡QƯá¿­$4¤²{ǤÙ^¦´îă…̃ ¸±‡ÿn}±û 2êTèÛ¤[-Ë̉‹Cßß¿ú Â] endstream endobj 1224 0 obj << /Length 2536 /Filter /FlateDecode >> stream xÚ­YYoÛH~ϯĐÓ‚"¦/^~s¼96»É‰Á́̀>Đm ѵ¤”LÖ~ëä!SN ̀ƒÍV³º»ºÎ¯fr71“7ÏŒ<_^?{ñ:/&6Ä>¤nr};)lœ;Iótr½˜ü}ªn§6ªjü·Wđh¦ÿ¹~×n¡Ï¯m2±&.Laq3™9ØƠç¼ÍK\9Ÿº,ZN]à×n½€ÿ8z>ù$Docx†"úĂ$fm‘ZZ‹PøèrËƠf“+ø«W´­Ê5îa€9̣̃ˆ{g̣Ư-¿Ăù%̃ƒâ½Ê9qR3a¹…mp\rE7¥éiÊw»tf“wf“Á‹kö2"ÚTêÚ;pÁ,Z4Ê‚{²+ô`d¤ÚÈ{2,8¼>¢à¢¢üpLÑt­rMæ†Zl„¥<₫á)„<ú@:l*9®̃•tơçlÍïđf!c‘53 ƒ+ÜøÀöÂ+×"¬£~wsH¶X‰;́đÍó1{uE1=W3y˹AÛ¡}í¾À~©gq¤.Úǻ-¯ˆ¹Ă“n8 ró'EÁDeâÑpµ=´AÔ¡áCÚ«î$f'­̃N‘S,đ₫d c₫8îÄöå]%Ám?d÷!ó1¿ûˆ7%₫0Hà½7LöQ.P5$( ₫P}ă·¿al!‰é½ưí¬Se6Î;âT+:B¬ĂÛÎ…Ø„̀Ù$ú;›Uƽ”hǼÄAv#ÿ鉭ˆ–oÄ/Ôs‘p{Çïh̀ĂzxÚÓq4]̣ăFOuÛß@’zƯ„lÍ•­q`'ơ6Ä÷ñÖ’2™WƠÄZ,{¥:â[­Ïºæ:.ÿ2…pj'mi$ÂqÀÏ­œ³©ÔVæx¬O"6›³:ú*½b÷U)«ûZOî닌R€ ;”“v*M}ÚF6$jĐCêJ† ÚÂB„è–€‹̀.;¢1Ăà†`I%¤†à9@?ç` è#N}¦ơ£$́¹$çĐ÷Ú˜gî$v|̉˜A®@ä´èlæ 6E~øÔp5ï¹Ü»,=§BH€Ă~F…¸û' /åÙê/ë2Ó(XHăÄ·H¯U.h#pÅÅ*éuÎÇFÑj* 6½!1)íüj \¶eƒ² „¿µ†ç±đÇí‡áïœx]–ÄDă¡|wK…¸käB‘fI/Ù»Î%ÀˆŸ ñ2Ñœ®5G’¾V^ 6̣ÄàI:ˆPål,¼|¥`¡Q­<ˆ̀aùB—3Iû(gIsÙđ|Œ{RQÄ6Œ;’‚₫<·CÏèœLđăHRB>d˧ƒI(l8-l&Jñ}#‹‡ÁÇ&yLÙ €rVvûóà6 ÍP₫ó} Âê•B3™T|˜Ñ›–V‘L^r]ä"éÖÿ’%ŸåÙåTÿ˜{P‡7­\.÷û6q Í `¦6ă›=û¼!©;&½Sh¤SÅû ß´‰óÅœZ=m÷‚cʃfƠ` ”á¾¹•̣6Ȳ„—ap£ÛŒiZƠF& óÖÆLÇ…<¶̃ö‚K EÊÛƒœ_!ă(ÄßåqĂ³— Yä2tT©Ø»Áœi<9IIÅơ7̀Éạ̊¹ O9m ®h=ëÂ0åkÍûÀ{÷” ^ä÷Ä Ï ï¾°caÔûÄóRỊIWùàMuw<¨ å‰y= kL$€ƒä¨ RBÚêBp­”¼N{ëÁrêRé)̣Ơ„i–ĂVIiåPmø7—׃*h%‰ ¡b’ƒ½êư~¢:jĂ$ç ĐïR‹Î+ňÊé=¡´îN=—ơJ¬zÙăÆår[¤_hFnWj;FA.̉ö₫T#Øq7’A$À÷û;|«â₫ËṆJb†² Œ &×P^Ư´ö-H´ÙH0{ id™W¿úEăâjơ¿~́TÛÿ>̉àO)ä=¥Ô¥–^‹æ\ƒ!+“œP\Àª,¿/Îvṿ“‚çªfyƯ0̀R.x….„ $½ ÜÚw ”àÀ-pé~É^[±ßV8^µ ùˆ éµÁT·̀Q‹A&@Åâ³ X‡ó:Icặ}¾±^̃ÙF@7z`—¢ qHOZ„6EƠ€˜î½O‰kXj~ûNơ•¶dBWŒ—t=™LóY¯'e\ÛÊ"ª5[ùnÔw;¸\L̉jÇö,RQ \´îß0¡..ñXoƠ–ˆ\ÑêÆT.á>·TŸnzG»çbêcËÍH)‘ÁkOÆà #Ü!¡z×®» ôVc³<Î;(ö×X ÷OĐÜ…Íü=wΑ“"6ÀÜÀX^± ³®Ësè5̣!óS‰dz=ß,<†° §i‹¯Úfœ¶ÂDĐZçtgäÖPsøÎßĐ`‘®®(Ñd*{½’ï̀ëßøAùz«EuÑƠĂ¬È›ô*‚–#¹·ui0åíẹéƯîê¶wJl1Fä~h|¯(y­5Đ/ầ¯ÑmÉpÿ́ÀĐA-·̉¦üøwïc¬s¿‹v· ÊpV«µ®vƺG ༈ÁŒT%H­ø;¿ çɘT×èj_üƠEèÅ$÷¾Í]„ˆÏ$°´o[ç¤è”ªî¤ëư¦ÿ}©’/ïº/¿¿l‚³ư/`:;úNuT$$Ø[·̣Á!ÅVVŸddåá-×ú a†pĂ®~7x›ÇYœ ƒ~ëj̃@åï5¶,Y²gÛ äjíÏä¤_œṕÍ}H̀SŒµqT§åªfÑYmk–¾ë ö{4Ix¼GSÄEê~*̃Jk¦Ô ª8i»àâ9™W©éeö–î¶îw[0'.½f³ëơ4ߨC†’̀2`¢xjcg3æ%Ï4¯®Ÿư"9éƠ endstream endobj 1229 0 obj << /Length 2629 /Filter /FlateDecode >> stream xÚ­Y[sÚH~ϯàiGTE}•4/[¶;É:©T́ÙTjgd˜ ‚\†?¿çÖ’Qv²• i¾Ëw¾ÓJF‹Q2ºz’ üß>yv©ÜH%qäjt;å*Î5̣™ƯÎFÿ®Æ*Úïà ?ëbßOÇÙè:†ßTG¿'.^•[MMx`¬Îøù]QCß>5v˜hÍjËiÂbơ ¾ÿ©Í‚ÅpÁGac²•;émñÏ w2z…¿»±Î¢ocØd<₫÷íëg—yÖ=£IL¬Đßá₫pSøÜWë°.¹ü„“ó$Ç̣yllæ¨D´aE¿ÂG;wÀFăÚs3(;LCu¦i—¬b´Üh¢“ØhËâ/‹­Xc¹æ0>‹^‹â½ÎèWµ–I[ËœP‡R.ÎÓF¨Å=™KÔMÀ¥À2&3`XíHÑ ¶$iT·®O)J%6¶N…éaoNç´ƯêÍÍ{₫б_ù÷ÿ7₫¹©píZÎù ÿLăpđNR׳«̀ÇĐơî&ĂHàă<³§lü'‡øY¹PJlôX穨Û7_”–ó€3b¢K’÷­“˜´“O3h~]̣D”îæE°6¥Tx´.¥ăí7 ;“$q¢ÜOHƒYW×pzƯ!̀ˆêfĐ¯Ái¼éë—\cH5ùÍ&Æá;çmFaÏ·ÅN°¡bz(ÁØD‘‘‘FƯ—ÜOÁ†>IÁsêô ¤ WÍÛ±Åt¬YsoÀÓ¾€́£!=Dê! Ù$µøGH£[—ÇÑ)ëa>2 Ó±V½X1I?XTTæ†́çU>d>ë`> ÙïZ~›À€ö‹DÄö|Ö4̉DïI\ŸOLú„ .*₫"lfFM ¹Jîèÿ‹©°Ib”®;Ô ª¸y×0ÏÀ;K6Ùg˜Ô»  «Cù´»)ä<äªØ¨ÄQ)ÜqWs:WÑç±sѱ¯×¬’jĂÂÁ™±½  ç̀4霻hRsgÄ›îb=%.N²ÆQßà‰)Ï,i›xvJ̀(‰D‹½î97px`ÖX‰sË”Gjz ½”¸)Iœ‘ÓỴ̈n«b›gưoÅ—Lpo°ÚápÀ½!F Ưû5gcvÛí²Krh™ŒטTl ór,fh¼gÛfˆ’ ©Sªơuu“¯˜¸Vp ¶Ö7Ê É1êđ6ú̀o(/hkm~v^€#>‹2$m°pfcïơ±…‘jáY-˜)A~¬’$}V+eŒŸ€:0çåZeû#¬½1V] &¡P¿ïå7̉ÈîiÈB¤¯q7“Pf™ åTíÉ®?S/v,µ¬erwÁI9¤fîûû)3è,‰•i ùn|Ç7NIeïBŒ±!ÂUÄw'^e"À¨ƒvÙ`‚66VNkơOQ†>fA&älù›FW«€r­ôv$$T|ôê¼ ~Ú†ˆí…ˆÊ醈#đ)¾Ê–ÖË#ÆÓ„bªä™f!O·ƯQ›†n6CS Œl=øú‚_˜á`躋í¿CÁÑ­ëiµ »̉ ¬™€C{ưÓƒ´ă͆ỊƒQé`ÀAgứOV˜^4Eʾ)‡śŠ5”ÊЇé`Ëz%zü´5¦Hh Ÿ„`¥‰eûàZäÛÂ¸Ă£Sđ­Kô¢#3 #ëÆđdƯ’hb̉]„߇† •É|ªÆ!{ù÷¤R¼Ơ€ºËF{:q0ê“˦¬4hÎ í7”®;J^aQ”–’-{ëlÙÖ t«2ÎÛû1.·‰¾́) Ư a#7t&¿¶‰Üơ½—MW…˜›J̣‡´D³Rxá]…j\—‰»e+ 1Gí¸t$ä)–Ü!<¡©‰…&ˆ­`£¹í†ƒ·m΂"4”3•:Ä —E×ÜDn¦¾ øBh́ 3rÁ´‹œá±ëJ(|Xó˜Â/C^+x¼Cû̃…κe…r5‘û¦¸Ç‚…€©hˆˆ̃¾(̣Ó%ïv×ơö̃ç̀<]S¡RߦÍÔqlºo¥»q³Èɸt©Âê ŸOƯ[aï Ăn"®đK,•.>ªơSÛ°ư£›*c)ÅX¡̉­äụ̂»áÜ+ ÈKºF˜F_Âr÷üŸ“Yi~t/C£)Ö,Ù¨ĐæQ(€¥”áù×e@u¹̃6§S¤rH MÊ׸ -K`AS#eLC©W|_²9]ùP@³ç̉ù{¢LÙFZË<bJeÚ¾)̣z«ll}¯pµF<#íÜ(Ÿúƒ̣™ÿQ÷>oËqB-©GCLÛ-Ë¿MÆP‡£Ü"*†RKI¦»e ṛ*8*½ñ|‘°%Z’ɰ#¤"kÑî¤VœÖå+uqâĂóô •zÖÜ{V×í•^ 0u«›đÁå|́Mïæü-¦âÿWọ̈ÎÂ%\Í`Juô1n»)X±„Å/()côÊÓ³äy{êñ aÀ‘ —«èü'† ½‘j«ô>«ÇÛºj›-ne‹v@ôËp§7ë¼'±)đúm¸Ó|¨1e¾÷„Ưg2#.3–˜BU77ûD z¼Ïƒ̃^–Ư÷8Ơ‚²Ú ™A¨D‡«Zd ÇiÍƠ¼yư¶ܵ­9Q¬WLṾ‰“îTX+”@?ó%6UI8ư´’ $·oÊưæÍ¥¿Oƒj ĐÚÏ4?w‡@7;¾i~üú ÂX~w ÁrÓ£ÎÖöïÍl¦6¼7XˆSÛ+«̃P4Œt^4á ̣ó¢_†úôûđecíÿR½0eÈå¡Ùr§©í̉?Âß+âM^†—{«@JÂk;°©¼¶c¶Û‡PN¬!h 8ÅËNZ(ËD^Ü>ù/úè¢ endstream endobj 1234 0 obj << /Length 2722 /Filter /FlateDecode >> stream xÚ­YKsÛF¾ûW°ö°V™0ƒÁĂ7Ë/Y‰R*I‰+»ÙD̉$×Á" +´₫üösP "×ú@rˆéyö×Ư_7¢Ñb>¼ˆü\¿øé}́FqQ®?8̀£x”æéèz6úwđëƯ86ø*×đµ̃ó$x9˜,ÎàAÍÔoä·DÉ·OæĐ̃áđ¾ü·Â2ú£ 9•ß?#Aw\ä 4cû?×g?½/̣îM”†¹É`ÿ´¿ œ{Ÿ)|–Ơ-|ăB ®»ẦE4Ø5;T;’¦iΆ,$³Â–¬5Á9NúOQMÜO ygXă]È9~ßó₫ç–Wø‚+Œb…¹ÍF“4LŒă‰ÿA=“$6aî́h’…±I¸Ëîøê¬µt„.ÔÈ¥UºŒGMø £ ,fuª‹±Éƒù ]~ƒï»n7 ̃áu»ÎuÙS×GQ˜úÛ>ÇÉđ́ nj»¦Û˜Ü¶á¤uhà!jùđP4 Vr£BẸ̈+T<¦s¶³ĐÜ%ơ“ª_'‰áî¿h/½²é®TnfÜØÊTđE×:Ơ#€äà"Ă,J[4ˆ̉’0»˜Ä6tIÁ}§%̃í´B3Ù5 ›B̀”/Ơù¦"ÛÁ‹9Ë\à€|º’.É\jUijU ƒp$¬]â¢íÄÁÏl¢ lâ¬m̉½`ă”p½Ç/ºg•¯I. ̃·C.&ZëœdI\á®®tbÆ0¾‚æë+noÅTˆÁ`Jđ¾“góe>cÿç™× üÛR[8ơ‚EWذ‘Étu‚À_íÄLQ))œïÏ(¶̣/æ2/5 ¥·TăCr'4]ÙtP¬]|œÙ\”[qX.„KU0Ⱦôrh›Á¥‡;c]ÍàÎ"çễ–ö̀jÖ´-²à£w´x̣;u„›Fôj‹4ø'YwÔ»´7¸:ÿ]#cŒÆáâĐæ±ç%ĂÙ¦EÇ«,Î2ĂrjBsåK\ó«b‘,f.çL~BŸ́lë·²¢¢‹p̀oÊƯà’, ›Êœwµ¸U2“ {ơ^ưTÍ̉ dë$|&à/cæ÷“Ht¤^”@nÆăœªÏ¼BĂĐgéaä$êâG®—qúta r=%’OûJW@ å¸ ë¥Ă¸sºñÑ?v¶FĐ7€ƒØa!NTA 8Hº4…0Çsq`ăàkÜÚ¨ơI±{*„AhOăB÷¹í†Ẃđ.ÔÖ*>²wDêS/…í \M~̉ª¡é¡ß‘ofÜ>à)ḳ.¦h¹ª½¯Yø̣©À7¤ S˜0N\‡¾$˜IµŚ*h² x‡ëƒæ̃»ÿ¢I™¿mOÈ&èœLIà¯̉@”z÷úR¶¡ÚHØH,œ„D¶%Yä—1̃†Àƒy+Y4]óï‚Çă¢L“d†#>ÿn5xnŸ¤@qÂÆôr_£ €¡P jZä̀Øä‰ÍˆHSáoz€»ÇD5 mz,•†Ư‹±6K₫_n)>1‰A`©eCr¸ zˆÙDY%És˜ ÆïíNƒï‚°₫¥ íª›‚Ù6̃rfô-bo[±ó!Ăï‘Äf¼&1ª̣Fv¾îcV?nx&Œ»{O/dƠ –ô»8á@_©5ÉăëˆĐ>E—¿ ‘÷Ká£1J‘Ÿ̀Ô{úyà!Ó8,œGâ'=â\ …ù úù5‘Ï/đ¹˜cqü 7y 7Nä›JßµIÁ·/¶Đ́ úxqüÔ­Ư×̉ơ¡jV³"ößöj&wëä'!ÏÖå¡‹}^5 p>0Bæ%"ß»'ª̀̀ÔjV>>`öö0.kTèÆ’Ô`Í7>s¤üL2Đm ₫€̉“¦ñåî”Â1[µû=O'ƠÀ_B́ß• Ơ+P¥û6<³rH‹üy0ö4çï`<äß#¦‘= 9Z•}o}‘øÉÂ8¸x›gl[(ä-6₫åcè Ŷ…È^’ £W'(×ÖÂ;¬¤°1&̣,5§¨Iœoîƒr-Ë­·êưe₫%îHŸV·ødj/:,².gÀ ëríÇư4ẫFđnµàBÔé¿Z‰¼eD ¾ *Â,Ÿơæ ư~9¤ñ´mR(<{T4Œ÷»ă;/Â"=0æ«n†B¦4{É¥ƒ³¶pæ‹’¯Cû—9s³NƯá́qƯº¬_w¸Æhhµsf”"m»7O”5À/U§ÉVø ’n¼-ZƒP¨Ñ“R¯»N•é‚Âÿ¡³ü@gÆê,·EtLcy—=VØ’h5‡Êu)_¬Öë̃µ¥;oĐ~¯åƒU-o7°ÎwÖ ÿB¿TˆúÉCî d"ÂÁvœaŤ ÍøUyWÊ’×eBƠ¯Đ¡›à·̉́̀»+Ú$¹)¢üµ²||¾+Û|혙’›S—\̃¬:i‘–¯́p¼¼MÍ»ª4¯ÛWwâ€Á×Y†¼u¥@ÈơƠQ $&z€PƠ‡ÂˆbJ†‘?Œ­dEÔ“ywưâv5‰y endstream endobj 1239 0 obj << /Length 2491 /Filter /FlateDecode >> stream xÚ­YYo9~ϯöeZ€ƠĂ³¼,ǹ,Û3ƒƯ}hẸ́H-AƯNâøÏo]dwK-gØ‘MYdƠWKjr;Q“·/Ô‘öƠƠ‹_ßh?Ñ*-U©'W7“R§…̉“¬È&Wד'—SÜíàgó?íÉtf•O>O —¤0 ß«zÙ}]¦Ó™)‹*£´ S ?.¦¦Hî6kè/[øA>÷ øi„́} /§3g²ä]U_Ă×f̣dĂ¿_˜lsĂ-®_6x’jÇ{ăx™DwxZzƯđ’›Í; Îă‘ÉălúŸ«"—ÉLÛÔ»’rÓơ-\ÈZ"­p`…kx »8tƒ£#n˜fù]˜âÁ*Ü4îŒ#mĂkc÷m¶a „5rMÁ*$úMM"…Ûÿú¦,úæl³<ƠyP"9|†¼ĂƠ öÏ=̣AÁÍñ@tŸƒbT|·ˆwŸĂy@:×Ü¿ÜL=ÈB(p{ J¶.æ·"¢[²:ñĐéL§eO|Âv¢• ½´*{²&;j6¹I‹ÜÚ yª~‚¦Ÿ?53E‘¼“öTZ;vp)øï,½² Æ´)Êv]æ6‚}D3º,Rc]¸ç?P+kAøAoX†:#íWßIä.Å/öÛ»%Ólw¬AÛ•lØ0[.“âæH×"!ñZ2 t‘ƒÀüEë\‚°y3¬¦“î¹BP4L£1 Ù€uLíÆ¦®(‚8Đ?•œâqËä2r‹—)ùHĐÎÙ‚B@ˆó$ !!#AalnEÙ8\”f½ăĐœ&ëEVëªFMê¯ê=%]lѺԖù!‡h²YFh²¾ä@UK¤€₫!tqE€.R¼“Ơ§̣˜= D£²T•eüç©¥mMxGAaFđzÄÔr={ăHçrßeØ{Ùđ`ôT>K}醡aÇP‘y.›u@°‰è« KÚ78ƯB€&¹$ 0 ¦÷â"Ÿ‘@¾¥sÖ²&T!í“3¤é©\/|ª"¹’P„Ddưrùđ>Ùl…| KÑwa¤e^Ü›†w‰n¼•CÓóxXeß(F/ƒ©™̃è& ZY àơ›Q:è+}₫.odË2Ơ*jútj|2î…jD‡Gé1"M9TƯ1J̃¥Ê%4bRn´̉G¹´ô#! e´Ä;ÜÆ´̀;I»À©– J׋-…ê!¡´ 2@+™i+¶êÙzpåb³̃Âz ̉Pæ¶ ¶\£âz;l(‘¥nÅÍ‚ö$­‚3ø>ë*&̣ß'%Yª½çmH¤ÔR,ß§Æ™!^Iêjö’„†È6llæ]èmù~†aœ2₫¨:]‘fεII™é<¢ïäÀÇ|’6ªS=u:Û,™b yœ†Ä“ÆÅàÏ:3]Të_Di–VơƒÎ1îđÁíæ&×ÿ„bfO1"*ẳB{¢2ùK · ëí1ñ˜|´ọ́ÿđ̣É–2W|1xˆÁøpq[BüöqaNJ̃”Ö^É·"ÄBw̉udŸă²p`ØÖ†û½™æ¹¤E›]/u¥ăó̉ñ¾ËªpBŒ»„¸v)PTü4»̣ºË²ư $«…ïE¢ȃ{g܃4Ơ₫³æ7zđc%2®–QÓC‹IÎ¬n7 tổi“"{v%®]…èùˆ‡Û`D3́Pºl9²xÄEY߀)<&ÆæƯskĂ{Ñ"zíC‹ÇoØoÀuïºÈN%TR-(ÿàˈ‘¨‹Ÿ0\ Q^¼äëèØD´DÓJ|…cưmª%q2ÆBe·zö!ÊoBºQƒÏj̃m<0fiá́_u”ë.ḷđÄη1äaxuzϾÅ­¼tÆ?9‚Ç ùXQÚŸb7¿çw¶ïmù́{I™RƠp̉3¼éCp#œPl¯ø‰úl¡»uîS?|l€Ó=¿&!NªÔÄ£¾¢Ü*ª4'·9­%<ƯuÅ©]çơ?±n°E¾ ªŸ³¤¦µ}1₫N¡=<»á'XˆQÅQuϬ3¦đñ:Äp*Ơ1)ĂåŒo ;¸Uœ-ÅŸy¨ÑU%аP&k©_ÔûÙRÜÈQÁ8 ̣„̃¾>Ù’ôÛÎû³¥Éy,i(³©ÊÜ{ eK§úBµ–́de ‰Î¾Åh‘¾å £Ÿ¬ÉªÚYP±ªú_¬Ëœ„p{ÂÏ©.`Rx qøL\²T̃|xÖÊ«R%ÿDmº²R åûY|-—÷ƯøóXÇS=wíUœí8XĐĂüKÏƠ0 ´tuQQƒ5I]ú8 ª)‡ơóqÖê=X%‘·‡IË|¯‚½x̉juứ-}™fELµ‚Ö—¹’#¸_²if¥æ₫nv‡MzDgX(1’*ܳ4¥JBrƠÏĐÉ2qöÛ}—Râ÷²êÊåjàéh @ûƒM®: è­†•P¦Yṣ]ÛPgçJâh¹r>’|nÓ®{X‚SÛ…bó}5ïƠ«Cm•ê!c¦ï̉<Ïÿ¦¿Ÿ çjÿ¨}̉Ö7}9§û¹é;o)Z:S&çMăđ¾M¯º©÷=²`,(£U÷/N‘YSßp]¹́ƒƠ>8ư©céăÅÁôĂUÉyüẁîcœQđÆ •,¼çñ?Zb¥ùëyƠ%·\C—↻6ü÷ ±ŒÅ œü:Å̀ fôó•”đaóĂ5¾_÷w\a毹æƠcÑH}M†hzÍ)`—â…fÊ`FÛ±ÛÆ³4±”¶ÔP˦ ײ«”¶đ¤1Ÿ(ơJÿÔçXô9¹ơLv7†wG®©G5jYyZøSO·Ûî/)€–ü3đ?¤®̣oÁ§°2«$ &Z·ă¥Ä"5~Ï2­ÚÑkÊÚí¥±“xéÜ̉ÿĐñ†7)ơ€êüêŶº endstream endobj 1378 0 obj << /Length 1274 /Filter /FlateDecode >> stream xÚÅZƯs›8Ï_Á#̀ÔI€á±™i2½§›^̃r÷ÀaÅñÔÆ®±Û´÷ÏŸv%9₫d¥€Û0qĐ~ïO»+'Á4H‚û›äèóöáæư]Q,Eóàá)(Y\$,ÈÇIœ§ê›Iđ~XØLäKôÏĂ»µïïX°$.“’ÁÂ$qÓ±^SMµJ¶ïpSÿN‚ơ4ĐŸïo‚Ç‘<äéQ ÂDœe†È\ÑX=«[EĐÉÉ<†Äûc¯÷E˜ăÿ]\¦¾̉dåY+¤å‰"”æ ëº/×R¨|釺ÚÜÔE¨Ä’¦\1eÆé·R‘¨#>Ÿ#^„Èl>QwxƠÅ¥¬S)’>ïGÿßhÄs€@î/`…¦TLæœ ̀¿–R>¾Aù.đ âœùf ÷\@ú„…3đ-ÍPÔ·F…j­á»5(Wm ×Ö>ÔíÛxf{,--Ù:x;ïVan"”¨j€ñt´ăP¡› ›IeµkÄù¶]àïè ¤̃;€è¹¸ ß.« &”º¦í/Ëé*Ù˜m₫K”åaµZ9yTÂ!¾-–.‰¾EY¦Ábf°–TæV°ËFkµ .n5&É7$Ă t ȾrM₫Ă€E&(TUH^Ûl×’|‘SÖTá5îÆ McnñMµ 4 ùF ĂŸ6Ö)«ÜK‚yk·+” T~s ÓMek®ÙÆ¥98[Èí—D×Úlp3Sk\{•=»¨¾Qt^É[Üô A¢ÿU;R*Aö§ß“„Ù«³*6Ö“µ©Lˆí¸`¤Z³ ±Zxèø3ଌY¤eg9Óä¥-7»{§ re(a·íâ›rnỊ̈³CơwrmÜÀ÷́ÂvTO$å4q!æÚƠâÓuå sÚ=Ǹ‹ăá‡a«SAU Od9#¼3̃w›:Ơ©cfåƯè2ß!÷5±`Wß|9‚öz¼¿.8UøFïP†ùEôµă!ri«@ûb ‹́—Íà²8$f¬=ưL;³₫¦7Bkz ¨å·ó½f¾@k¢+‹öØ·Ï¥©©™á•Ë曂¨Dî™`¦ñ™ƒ1ă‰K=)RârGÇé>Æa@ȯ°ùjå=ê!ÚR‚Ï+;Åxq¨#î(Q„[Zy•9=ØÓ™ÚĐéá‚WƯ'GC'x̉³° 5ç¶:DDáɧ5SÅ₫ó£3 =̀nô¼ÇêQK‡á%&Ѳób-́Ău˜Zô •°©Ó@ñWÊKŸ1½üÛBë=zô ªn1zf‚éŒ[ ½ŸưΧ¦•­ÈÊ’(§˜…r·ÇC"ü”Ø¢™đ4¹̉G9^ơdﺋ;çü;ḉ„»~íÄà=Ï đ4½äẦJCq¹±s2À.}ˆV5½ÇŸ÷8Ç-Døam+ Ư©íáß|Ø;l6æ|—> stream xÚÍZ]o\·}ß_ÁÇ䡼$g†ÀIà6@ ¶ ´ „B–·¶eWX­øß÷ wG–́]‹+m12—wîá¹3<Ăá]Å’ .¦@.æ#’#Ê:ÂNbÔ‘èr‹NÊæNu¥ö;Ơ5üĂˆ¸ R̉q3ŒÁ•C¿[\éàËM1&­EQáÑ0"Zî°Ă¡{ƹăKÀU ¾©æKs‰(:)FÉ00ÂÊ âéÄ9ƒ0îék°B‰€'è¹”CP  ™ÅIƠ¡Z¢¤B4+U K .U¸$=c½ÅªQă‚ôÅÎZá g¤Tºl$¸R¢úI„’X¦-­*²«QC–À«êD°/Ṿ́äd6½₫p5wÓ³Åb¹M?,Woç«_4N§?M?O?ⓜΦ—óóµû%Rö©!ï̉|9JÑ#sÈϹÁíƠÍ›5 §?_,~œô ¦gçë‹åbz5ươåÏúï›÷ëơƠwÓt5_]/g—ë¸Z-ÿ9ürơnZ}ûư÷3ü÷†‡|(y]ÅÈ”MÅÀ^J<Áézu>/ëƠÅ›éñl[đ̣ ØĂiD“ăuo'¬2ѦqiÄGLăÊ¿»¹x;÷ï׿]~Z›b= 6Ưs̃Ô&ô´¨¦m̀YrÄ–Qö²û%i°í/]¸BĂÊ%?­¡«û¬¥tX!»´ƒă¿ç¼ b „ơA8gî›s.âơ3æŒúGh?ǜѻp–1gÉÁäŒFƠÇ2æË-ơò_+ƒ,íÍ`Üìe0nÄä cνVdœk¤Œs„Ç67èŒ}â œmư₫^eHâ—ê#•'Hơâx×Ù4̉nƒÎY°̣ 3i1 1gicĐÿR±–Ag¬å#Ç9ỹ]v8'œDv—¢Îm/CÎ8©ằ0˜@HÄS ]B¶[äœpBŒa3Îá8îî=,[s´c{¤'ltÈöHt€æv9ïƠÜ.ç½Ûá,ÈƠA΢­_¨ƒÎèS3ɘ3×äKNƒÎ$~§wøʼ~sf Ú`˜SAÓ ÄH  †/es,xÁ _OG;ö.Ü»Óç::dï¢Cö.:dïÚåQ…Çœ¿ £zˆê!:ª‡èè͋ټv8SCmoƒ4öo^»œ÷KtÇ~„£sø´‘~XztĂUµ[ Y¿§?E7úƠÿSƯĐæÈ7®›»ß™˜·“Ø>8±}gbûδ}¹h/íó[ÿ®½5’d†!‹!‹!‹!‹!‹!gCΆœ 9r6älÈÙ³!gCΆ\ ¹r1äbÈÅ‹!C.†\ ¹r5äjÈƠ«!WC®†\ ¹r5äjÈÍ›!7Cn†Ü ¹r3äfÈÍÛ™B0#‘̀ 3Ø 1#›Q̀¨fr4ähÈÑ£!GC† 9r4ähÈÉí›(%CN†œ 9r2ädÈÉ“!“!“!“!“!“!“!“!“!“!“!³!³!³!³!›É4H¦A2 ’iLƒd$Ó ™É4H¦A2 ’iLƒd$Ó ™É4H¦A2 ’iLƒd$Ó ™É4H¦A2 ’iLƒ´Ơàéc?{Æ~qû³H"́7ŒR.¾è¯µ”½₫^œ%£¡Ë;?{^¡èâĐô”o¯Ÿ“`H/ă`£ÍWÔßhăŒe‹´ŸD>"t»9Ô0wÀ²xC9".¾@à·rđhæÀtDzä¿ư…ñ0‡c&£FŸơ—e#FGx ̉H¢aE`÷ĐU0N­öŒƠIù $b8" ÑSfq2Å@³S°—ä}í?[î!Qå@BÓ’è–„ ñĂ¾ø•HèÙ®é'©Ú»Í(H‹₫©‹/̣¥‘H!à”ơ`ÁưL:{ưKˆ́Sà/¬ÊcÊ3ơw!ă€N=èßz> stream xÚ½[M«\¹Ư¿_¡e²Q«TU*˜II «̀́†,̣aBØĂà,̣ïsüºÛ›ÜÛ qÁø©ưnKçÖç©*Yº̉t"ª\̀̉‡s‘Esb1Zq.¤ŒÁgF/‘Æ…–́Á>µÁø]I}Ăj`Ë>øoxÄ|í…¿<×fY$:7 |ṃüøEÎ䪗.Ï…–̃§†•®s­¼t—3b­­oDé1×7đ)kg¼B3î<[Q "À#ªB¤³5ă~ØT=ø̉ÓF[ßđ‚Ăg̀AVQLw³XW¾ạ̀ez¶b̃ˆ/hCù́Å‚Âé©Åf̣œ·¾¾á¯!8¿p>‚U·N,¾»¯odñh¢ º˜"\Iñ$zm½ŒFôÚ´ŒNôxë2T“+/Ă¢¿a5 ¾¶v‰2‚èµÍ2æXÏe‰†­„ Qb)O_Ö ¢%–9(Dƒï¦â%"gÈ€eđƯ í2ÛXûÍ2%×~Y¦̉^´·2ö¢P̣ôäs½—|síZ椽( d&íEñ‹”noˤ̣«½b«TÚ‹öỶûÚ%Kç.ÚJÆ\v-›đ}©”Öl-!»&KnJë¥|°ÄçfÊw¡€¯×× y'ORÀj“û,ù¶\0¼ Ö|Ö€Vº̣Ư O‰̉e”£₫asXÎ×3:KĐ”˜dæÚŒö×úz–& á’Ó—¤œæ»ŒDöæKṼ—[QXË_&½K}ÍH—TÚœo>¼Ư~üïÏËíûOŸ>y»ưđŸ¿}YŸÿô¯Oÿ~»ưæó/ÿøøËO ‘¡ưåö‡Ûo¿ưIÖ‡·ÛŸ?₫ưKùÌê ùºUç9ƠiÄcỖ Ï}_>|(·Êí÷Ÿü\n¿+¿úù¯ÿüX=~]¾ûî 6€½2^=@„WyĂ"ë„á=0d¯û=}#ˆŒªó©.­2X‚˜¾DÏ:à}n­ær«¨ ñÙ½W8ä$6bP«đ8Ä̉¨F2©0}׬đßk dNƒ¸CpœMƒ8Ă ºÓ3´ â"F4ˆ3}§k¸V£ˆÖ‰ô,°FEöîyí*IȲFo­®Ô0Ơkkqà¶S³6*H£Næ¡€‹ đY-ư" 3jØ"&•Ô¬C YÉ ´qˆ1k"Ûe 0™R'̣¬AKàXˆYƒâ×t̀™‚\jgsæE º €D"8ÊJïøŒŸ-åĂØ)ˆ€ ´¬d³×]´̃`)yàŸm¯Y’c½c Uژ綪WỎD`‰ e|¤¨ư") iëd´’•4ªĐT ;0Û*‘<¡ˆ@yÂw‚Àá(ù~²}!öúŤ= Z‹‰l ƒĐÙ ơ~• p8J§;ˆ̃")ÎÁ”„{(ûPE k¢¨Bp½*o5’z”UU¿ÖʲƠƒø{½F âP@ j„-«$µE1ˆˆyQ¤¤°m€ºÓẠ¹˜œQûÿcĐ‘RÀ'Aå”ä!V”˜Ç¼3vê‹`™CÈè@3[>0ÍCB§{ «û†ÚA¦ÎÁ„ö*–¥3_±·rϼOGY|b§2l•à đÄu!wÊáZJGol«Ă5”¥x“‹”z‚ƯĂLnđ0\(<»F ƒ]̉ÎÈ ˆN“LŸ½¹¨  €@çcö¢.ب꠻-çE8ª­O Hb¢ăCB_¼c€à́s ¾\|ƒ!´‡œcØêP†³Í n½ÍPF&é xÿÁ·ưü₫,FœcØÊ)ÁWØ ¾c­é/@Ƚ¾éùµÎcÿÚØ} YØUISÉäîǃD®ùÀáñ[Ó%çëCûÁ̉‘.IMØQf'̉´(Ë :Ç[ƒ Œ‰m\_³›÷1̉;A^|0gÅ5e",säü1P{Îùˆ/‹JC|ºÏr:Ǽt–£Ô¨O`±‰̉óÂÜ©‹¬CŸ#-z«›œcØjL”íA›öƯ韨ïPK<@äX}Ús­̉\á)C¬xA}£6ŒÙ"¿¡\k~bgÆxjƒăñ´±³º0Đ9Ї˜iô´±“OJ|^ z€˜Vû|A;y­‹y[5PoS2gĂÖ‘*²̣bÉC‚YÙ “oÙx A!Û|€àLg¶|ÄN³DT€Y$«;EpzÁt'Ÿk°§!Đ€́Ÿ!ØÉ¡Á€·ÍlP¶‘x-Äăp¶S j /×aPÜđv4[×ÈầYưhn°5:«̀w ˆ{̣†±·̣đ%‘¼û38²- ưªjÁi7ï Píù’̀ ˆơÇư²’µĂA´á¶€kH@âz­†® kwÈQĂú lo"'’Dʺ¸¦̃*#X̀áT/Æ^m,ÀxË—ÚP6,A­Ú°k2É$ïÍ?@1Ø|ÄÎ(Á©r£gÚº6È*‡ÿûCcT—‹ÚR¼k-̣À`¼k-zAÚ̃"g̣BÊĺ˜2^±Ó.!}£6\VÇr‘¦«K–ă(‡Ï½dn:…£†²È™5œíB=¯êÙ"m§Ă&º­^­¡°ø Ă¾y§C\t±'d ăÍ©3[3G̀Ụ+¼‚ÓEpxulOe^Ó AHJ̃œ{ÇÀ`Í9ׄ½¤‡̃1t*ÆđS ú?S̀¢Ø endstream endobj 1520 0 obj << /Length 1381 /Filter /FlateDecode >> stream xÚµZƯs£6÷_Á#©)’ø|̀eÚëµÓ™›Ôo™>(„Ø̀qqr—´ÿ|µ+dc'AZă<„€A?­vW¿ư€Đ[y¡÷yöÿ?-g?ÿÊb…Aæ̀[>x9 ²yI–xË{ïÖ_Ï™_Ôêđ´S‡Gơ÷Óüïåï3¦B¯[yúäæó̀»]Á}á}3…:,˜â(?à•̣̃†#ǜd’Um—̀±R‡ƠzÎS„Ư9€Æo‚ÆL@ Ôß=€ËUÇÆkµ*Ơ±ºbÎ3 è…¬ç8¾P«éGñ†ÜHøưV#v6s²QI~kí_@Ú€êÊî,•qɸ†ür}m÷ôâv¢í«½—ƒJ,^Î#Úü<|ÆIÄ+½[g8ƯwöbâE¨‹Râ€8'”1¢LܸvÇè ́ª{Ø¿ÏgSf|XÛÆ0¬¥/ÔPèSÑóhƠnÔ\_À}Îư-¨ø¢€Á@=mS T˜~~B¾k;$ÄùQơÈkư´ˆé‰<ÈâăƠÂÍZC*U€‡q}zj¬ ZB £V‚4ÏƠ‚æ¦æ(°¥A(Ró͈ fDÄW¾̣ˆr‚…Ưy±bª{Ÿ{ Xđh$(ü„3¡̉lÊ&º¿}€p×!¸ÎÖ%1`¶}s ¹9̣M1ᤄ8½Å ©=¾tˆÍ$öC{†nRñÚ́?d¢I.Œqî&è³ÍTí7 ª­]ù§z9I0¾AºT¾8(8ß°€Cioè1 5û}'¾” œ 4]KƯ“ùN)‘Á3aÍ­˜íª2¡‰Ưæ¡bl+j_PJú̀5¯[‡Œ3¶ ̣5D6<±`#µcẢ°?{q(!âˆÈăñøz₫TS^}u°•Ư•¬Å8Y7èg€Tre4̣¹w°<ă OPWƯµÈƠºg”}DÓ”Ó́î8͉̉ƒ49˜rh*Ap/Ö fáØîiÊ}.‹ô:iÓœ€ÁI»™Ä)"1&ºÄ¿Ó¢ê=Àƒe]kôªw¾'YOö3•FÖ®‡)\aLª‹o4éKßZ¨ÈÁbRüª3€Íªt¨Oÿ{œå˼8bKÙ`¯&?Nê] VGV¸•-ñm¿3 ÛWA_¯T%¿ƒ¼Â¯ûôé;ƪ₫mñ%& º₫W¬¥ä]¿ÈZ§*‰ThÎ[nLäfOỵΜ¹ Œ†[ØJC̉Ü]¾iÄÆ“x n˜4oxµwÆ8V9Tl<®¶HΫK—ÔŒ““ÓꀈZĐF‚¸æ(ưè’ÙR)[₫U:d¨dicËä°ÅÍÎÅ.²M‚QOßÉi;-åÛbÛ¿ëCi€—°urv41o/)g—Íèß]ëÎ!sÉLj¡:L€ê½̣́L¤vy;éÀd"q2 &8x¡Åu “¹¾"&^V2ÛR<ñ 9%́jŒRRvµ›¡nr¤SØClæ8qĐû@ç̣RøX­Ơ¶v́yĐ O{ç“Z‘·Á†G3-ª˜%÷¢eª$í;4T*äT®å qă ªÓ%ÜjÂÎtEƠ›QÖ6ÔS)₫{÷yr*Eî¼0jO–%3#G%ểxß0ÙM*º\'ùøzÜM¢_ơ›oS_È9ƯñVÀ„™Ïú0€¹=>åYÙåĂ9 2^0äwE¢6y¼¹]í_í>aös̃÷6ñ!ƠéZ¨+åóGSÆËq}ø¹ñå?…pYH'~°Q?Ø´¶?̀(¦¿w°J•E”0–¾ÙK„æA$oñ€±LûC~́_¿,gÿR> stream xÚ½[M‹e·Ư÷¯Đ2ÙèI¥ª’ƒÁLH`°½H2̀±›`b¦Íx οÏ9ê®×ăẼí…¸0ôèuß{tn©>oƠ«Í<•T›uü¨\Œ$̃¸˜©MÅÂK2q.jr[ I}đ\8…·;.,ÆÛÜR­Cï°â¥u]kU'W#UÂ>öJü€¡„ë 0ñº$©•|zK"Jä®IZ'^ŸI¬Ĺ‹Ål¡8V VñW÷…gx„Á{ñCëâ24©,.Ă’¶ÅexR«ëºÔ•xc$í½s™to’(÷ά’n›’¬¢̀–L›q¥É̀×–¬—u'ȳ'›‹ßÉk)ØÄ]h)É—è·¹̣‰đî<--y§°µḥ1×–zăÊS‡x¹ê© èb5RWiwXÍÔç§µ¤îƒ×AÄ}‘+ÎtR’ AŒÂăU₫HỞh&\y:Öu= ¯ëº‘F×=pñw@-f©¼đ³*ù‰@]:÷(7ÇJ¶åsà ̣ƒ¶A ˆ,=ÍÙÖøQJ¯ØD€_¤CĂ#–ÖxåS”j¥ Û§Ø•2-¿P ¿ êö:¥2çº ?j%º6́XÅ)5nÉÅn<ïjK¾?U_V€×¾$¬¯S¸ŸCÊ’"•Hê#Ÿ]Ú’£b7Q[·áObƒ$ˆc¸{´¼y]%³sc£Ơ%B2ÑeoËht™€­'6[†ÉÇ\ÆÚ}!P߯zâG‘q÷êƠƯåÛÿ₫|Ÿ.Ÿ¿ÿđñị̂ͯÿú¸>ÿơÇ÷ÿ¹»|ñđá‡ûo Dywùóå/—/ßÖơáị̂ơư÷Ó[x‹ŒƒO ™¡^ĐÛ\¡̣­à×>qÙçéƠ«tù&]₫ôđíCº|•₫đówÿ¾Ïăé³Ïîđo…^̣ÀÓ…ÑrÇR¨u#‡Ñ3Îÿ‰L8W|<¦ĐöQ€?ÈfjÏ>^pÚ7Á%Ó´g…„‹ÏcP,霤 ơÊçB“;b°Utdƒ»<ưD˜@Ồt•2jö^o(;I86g”ôLÿ„`áAjP5oœ…î%ѤIF "AlỚ7ä0|£U´–“Ärƒ«…>¢Ơ\n‘Øháy ‚#.ä@dUrGđ˜¨Ơ³bÖ\f¦da2wQk¤Đ]ÚI ÑG. Dø¿#@!ËÆ0>K–âçx́U™^=q@FMèÇö:ë;³˜ !%¯ü́tT† …=Ư2̉oø)˜å:Zí8Å4!V^†0RĐ 1|E©+˜+é! k;I@m¥̉­„ ˜ƒZËH»_j_¥·È÷: ¿N—¿ÿăŸÈÀázâ7Ị́̀ßÿúÓOï₫ÿÅu]ŒÂ ²Îß]üúáưÇÅà5ª!ѧ»^3ÎÁ«đ.¼¼ùđđư7÷xtyóƠëtùö₫·éƯïEô´ï._ï₫ưÇ_đ„B¹|MIụ̈đë‡ïïù»:÷·û~üß̉¯…̉xóƯÜÍTº=^¸ÿ 6^Eù¬ïi¡±¸₫ÉcÑc1b1Ÿ³Ä¢ÆBbÈ3g Ï@<y>!³Ä{ZÔXH,Z,4 EňE ×@®\¹r äÈ5k ×@®,,,,,,,,,,ܹr äÈ-[ ·@nܹ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²räÈ={ ÷@#̉È={ ÷@<yrØ † jØ † jØ † jØ † jØ † jØ † jØ † jØ † jØ … ZØ … ZØ … ZØ … ZØ … ZØ … ZØ … ZØ … Ú“ ¾ÛFªXÎC‚˜Æ÷Oc¥»>Qy¿‘Wḷ̀*ríµ)ƒ;c̉ÿut@åV@Ư™jÖ†ÔÇïfˆæ|ó22µÀáÍ7[I é†StE4_ï„rGtơy+¦ÛF ¦y½*”‘}2ÛC7¾X,¹ơS2nÁÖ4v¯H°à€9㮋3)9'ÙÅÆJ…V ×3J-K?ë(PïU¾FÄ·~¢KC ©ŸY;%ß®‚¡æÊR©~La«QH…BŒzĂXó€â³!Ư–zNE^[CqƯ)¨ç#9äPe§FNXd&á’Ù¿8$±Ơ,›ÍO£Ï\ç $±5`¬hơ‰$&}öx‰Ö‰²iK*™Ä!‰¶ñ-T("2®+ ¸ÎÙ_ Ư¨˜|]çȯ$β¿@;_% ¬CüI8=U?&as# 7d2ŸH‚¯kèºHŒ­&ª¹£81+ỵ=E‡$–Éâ˜üœ×ê|2LŸ9 `tópØ)̀BÙµƠN5©ơ¤È%Å3û˜Èđ‘Ø\D[Ù„‰ ±ƠsN)eG>rơ$³3«(îpœ”ÉHÁæ’PƯeaÿnJ„]rͳúI1A 핼TŸí˜ƒïŒá°ÖùWÎ×u₫;%áƒuƠ3‰#•ÆNÛä›üñÉiLæü/8‚½ ÚgXÑT_p£í´ dùˆ(2³¯îÉ…¯øQư¶[%øVWÙØä€^<Ö`“’AơëgÅ-́Ư öDa¬À)̉ÁIo·̃vFđÚiÄ|&1p:/ààeçaôÜ.…Î26{|ơ"{'©%*^™ă™œ†¼€ÂÎ4ß&Xæ” J7 ¦Ÿ¤(ÁGa§®¼v̉‹¯& ßj{=„ Ÿf7t2á*'Ơ{ô§%SPJcS¾ñÑM¹Ùà±yă8ÚÎd1»aó+ ƒR"’’è¾S#³ÔøZjÍ́±MOÉÀgê ˜{ư5çƯNe¬91˜ ‡™̉yĂ>}§‹ÀfS ư ŸIèy P̣²̃à°ơY[-ÈV`—́M cˆ€’d=)›‚N:'D:¬´̀¥“æß|¥~C ;]%̣H&ÔWƯWRqLb«ŸB¡Éá)§sœëE!Ă–n #'eùĐE³gÊw¨ư˜CƯÉÔe•W¬Èå˜Ck{=DŸcÏyÍ‚Êä¤6ÊÁ³â7̉høEdÖ0èbÁÖ½³ÿŸEÏyqËÇ¢I¾™“es çB|«¥RË^œ<缦‰áœ8s(±’s%Ë~©L8gÑ›<:ˆ̉i£'-É…ƒÉC̣ÿ§É‘ä '~«·´ơ-:k=Îf#ŸƠÖhXë´s´–°80Çfè@­üẨ˜©~’V*[:k¤)}lqq̀Dó¤Ù:pH¢ưÜP6‘ăöóN®A¯Ưç†Ä–³‡ƯçcmÈ!ª´gÈ! ûÀ‡|ï06G—¢¾¦±Û :à›§h€#DD‡ đ¾ÑSjÅù£Ô‹8ă'Œơ¨¾s¸Œ\×W}à@QÖ~à[Ơ5–ñ‹GECâÁx GáÛÊYÊ€‚¿Ï+…tr3Ø:›Ç‘̉Fÿ»!lô“ đîç($÷lÆ~"íQƒ'ĂV́­zsç̣ú~@Ódˆ¬¯À…ăñÆ4Âôu°‰úº])àñálư²6“+ƒ¡™_a<¤°u]gÿ摃"•àWê9´ºÓ?Aóh˜OềuSØÙsV$ôC¯G¡¨1ºê 8́ÊÇ̃² ´‰̣‚£xn{ÿà”B: endstream endobj 1677 0 obj << /Length 1320 /Filter /FlateDecode >> stream xÚÅZK“ÚF¾ó+tUAÑ̀hô8f·'©J•Ëá¶ÎA!¨•KP^;>Ó­̀b­f±›côuO¿ûÓ†^é…̃»I¨ßïæ“Ÿc̉ca…óæ+/cA2/Nco¾ôüÏSæóF]êµQ¯:Rן¦ÿ̀ÿœ0zMéu>¼›x3!¸Ï₫¿¤.3&e/¢Âek}À\3̃˜â¯V€h ƒ¿ÛÂ}Ë‚ŒËçÊä%ü²h-GâÑà‘̣J́×ê’[€âç86[&¤ß ?—7üûâ ~DƠFfƒf¸+ÀêSøë)Oѽ»j©¨³à§²_:ÂóëàúŸ¦3«X¸¿Aº„ÚÂ#æ`æ Yd³® ºCRo †S̀¨ñʉ7X}¢R| °h´´ŒéĂƒ ‘cuØ5ôrf=gCQŒ` 4':` „¯·£‹+ W;È dJê?Bj€°—»Ú^eÓáZ·mL¥®¯ù6À̀{ÚÜ}%x¥ÿµ-Đj¯.¯F9ÛëĐå¸éAEk÷m+[é¨Á  vvp âˆ\[ÄÈÚâ¦<|»Ë—f(Û·Vk]»Øệ8•±Ÿï÷ÜYè[GJ†¨Ăåh5‡á+¥Èéï«64¢ồ"¼5yïä¶£uÙ€1]̣q¸7-1­º‚lôøpÓî‘G´kư/‡Îx§>¦ÂZu^uÚµEè¾ú³›Jhó Ưl˜ ‚¦Uê₫0̉^#á„#êè¤(}XLØ`䨦£›gá0»Dá°r'œàÔîË&¯́8 ¼²4ŒH†¤à¢ŒTJá÷,¤̃À©7P²̀b¢N=ƒ`ÄHơƯà.¡`¸¬(³¾aøœ‡$\ë›¶ZAs7®ÔV"ȽgpSꬣâ“.v8§µ¥ss]b{†g j®mÆăpfûp(äñọ́qùîqW,ei Ôû™”Ácu¶ŒŒZ¡;Đ½)́H’T…m|Â+ŒÊWjĂ7æ̀­©¾‡ykWuóVd3¯ˆeu³¼ÛÀ©EÆM©8­±¡́e…W¹ÙCŸ²…¨ÂËÙ{"“…üN^Ư:?\ÊØw&-Xtl»Z䛣©×‹ÂÙ'ç-#éU›5²q¥b¨qϼû ́×Ư‰Œ]' êZÑ£„äœ/º µ¯|È 5ôºÓ"|—ÔenZ¬u8±̀ebzLƯK¸Ób [9 0Ôä‹©‹IL•°‘6~ ’ÍC6„J¸wiŒˆ¹½Sö@Æë=>‚ÆU uù ̣c‹8t;èÿ»̃óÿ†¥/êÓĂÎÎ0:û÷ăØóXüSc—Ç2v̀L _à‚Ư÷̃åéÛàßîÔù#°Pàƒàôé«Ă "#b¢ËáÊô—ùË{#½9ơt¡hî́ Bܺx•_sâb³^ể›‰01Wï,RăgÏỊ̈ë|̣sÔ¨€ endstream endobj 1522 0 obj << /Type /ObjStm /N 100 /First 1023 /Length 2880 /Filter /FlateDecode >> stream xÚ½[M¯dµƯ¿_áe²q»\å²-øĐ$‘i,’ŒfAà)BAóĐ0Häßç÷«×° »ÎEèánÜÇçÚuêĂök3•$æø£• IƠt:ZlXrtG£¥>WgO³®FORÚj¡§Œ̣€ºª¼óñÿvỈzc {!l×$Ă„-Œ;ùÇĐ¥JélyªU9jï©j_ưFª­TŒÑ'Ø*ñFIµspx‚Y8äÀ#å/†&<Z–´Îơ‹–ÔêjỷÖø¬£'ơÁqÇH:¤cŒ11FäY’•Aä)ɪó`jä<5I¢e ó¸úµ„§â“c*¾úơÔÊz¶9Ră\͉9æDàÿ¤f¥±%©5lƠÔ|M]ÁZ |DËR›jlµä+–'@¡Ơ“«®_ŒäX´&—ư@Í;—´á|8ûIM>'ñDS—ÚÙ²Ôk[ư°â:Ù¯Jê­®~-.²cºëÀƒÎi“ÓhD©¦¢àg³ƠÂVKÓi/­â}đÉ1äœB~¤VñA*₫́©ø!V³a>YÁdóÛJËë́«@) Î&–a$Bë(³¯¾Ç?$ ø,Ơ8.§X´s`ÚÙ2Á é\œFÛ”¾V‡K)³°/[ q—¿ ­¼qÈ £c½09im¾ú¼úZ$>`|€ÖđÛÁh £i™äÀ ̉º–±QƠW_Œ¦´,4ñ_®¾ ±úb“¸xVÖ‚,åÊZMƯꔇW¯N_ÿ÷ÇÇtúôưû§§¯~₫×Çơù¯ß¿ÿÏĂé³§ß=~x[à"ʻӟO9}₫VÖ‡‡Ó—ß~Lo­yÀ¿8tÏ´ƒà0f†$os²ƒºç)KÅ«­}æ©À¸̣4ư}¶qtX¦§ ³g|u›CÛ9Ö3…/’'&@›eº¹Ú²¹2;)ØàLp×Ùàô´iî p¨¹]›‡±“D¯™ñ‡¶Éđ{˜đe+ùIÚ^khŒSÏ fÍ®îƒö8=÷ßeÄë›ă~¡Œ<`Á J†kºE µÿƒ¸fE¬}1ƒÙ+r˜94Ïù”Ù̀IĂ "CÉfrŒ‹V£;@‚¤+"4I ¤ˆá.ă÷I¨ïœ‰†ÀÀ̀­fG2È™P%)‰£¼ èaâ¿¶¼SA²dµä6ü÷IHÙ9Ë;/$:—;H́\Ơ\—gj¹9“ñ’;—£xF‚tŒ‹R„+̃QX f,NÜáE´½f‰*ăÂf‰œ₫&…­Ke”³"XË©A¨0tÀXí({@¾6Ư/$¼á!Ç$ÆNyÂC›óÈ’JaáĂü®Í~HÜRäÔé»"ŸUN&¢={ ÇPÀ¨™ä@V«Œà9U‘Z_“æØJ¢ÂQ±\i&J­´ƠẲzÆmø&¦³èu› û1ªc˜:fµ\ë êÎÍ "(XéÈ ü&…¾Á0”#{}¡PÏ’¸Î`g̣`Zrư•%2)7×Áë^¿Àü¥¥ËÙAr/l"Ïm×2¹‚˜È•.Z÷q…¾i0qé[“Ûd§c˜ÁZ_H˜â…ƯABwªA‰¤A¢Â=ßc²U,́.ോƯ±{w>˜·öT»Bqé`¼"©†<¦⨠é 72+âTéHc¡NàĐQv6=&±7‹°ªÁ2X_©°´I®£–£H4˜a…Y*:VZa–fÙ¯•̃[IÀ3Íyá0fÈănsØê,á©ÖQ'e¿®cŒ2ă¨2 m‡F –8Ha)–̃󨙘¹'™4„¾*G,­År)W’jÙH mA.Û;˶vl UmeR¨* ©àj«ª˜¤„(Z  äZá·ù =Oo><}ûƠ#8¦Ó›/^§Ó׿|Lï~ûØo@åáô9ßü‰'ơ¿çÓưôôó‡o×wíüƯß¿û₫›Ï~IkB\*/yà ß|ó¿^gÙçk2ÂÀ뼟|Öqÿ¹Q5è\_:h̀熖hH4j4YYYYYYÙÙÙÙÙÙÙÙÙÙ¹r äÈ-[ ·@nܹr ddddddddddäÈ={ ÷@îܹräÈ=G @<ỵäÈ#G @<ỵ äÈ3g Ï@<Ÿ‘½”hH4j44 FƈF K K K K K K ‡¬‚×L!Ëy>ër^è!́¨đi'ß7EơƠùVaƒ>yûxmØÙA)vkyR¼Øơrà$wU ÁáÎ|5 endstream endobj 1679 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2374 /Filter /FlateDecode >> stream xÚ½[M‹$ǽϯȣ}ÉÎø̀LX² ¶Á'K·Å[Z„0́ ±>èß뽜é«IĐTÏfW¾xñ"*G"¥´"‘ZÄ„V4^lv^D ¼È’¹÷̉§̣b”©Á ü{‹«2åW¸©ñwX둼âÇÁot́Ñe}Gpï%s¬oô¢"kƯ(ª¾ÖÍ¢6¸n´¢!=đh‰rhÑ>ˆ7Đ)k#y5KÏÁuøZØC̀ ·¸Ñh´xĐPYë¼ s̃¤̃׺,ƒĐpƠËè¾Ö2 ’àƯl´iZ+pjbĐtj̣»¦ezăwa°Æoà3—Ơ`âÙçZ—eN[ë`DÜ&¢̀µ’́µeVú”Ó…œ¼)Qµ®ô ÓÆ2¼ăŸǹK<”ˆ̣fä›hđÉIL1FJ̉&0*ŸÆ“ ̃,,}y‡ S ’¶×ë7WYF́¦‹¹I×é¢n̉Ǻ‚iƯQ{ăŒD|Â$ŒÅ»†§{ùđáạ̊ưo¿|*—o?₫̣ơạ̊Ưÿ₫óu}₫ÇÏŸÿûrùÓ—_üôëdž̀Đ₫uùÛåï—?”ơáạ̊ÏO?|-ÁÚÚ€Å̀«€ø̉£âÁáÜ:z`Ù·åÇrù®\₫úåû/ạ̊—̣‡_₫ưÓ§:ÿX¾ùæÿm€0Z…mî¦Ơ®bˆ f¯Éạ̈B¥Ơ•b@ ßÎpxØ´ƠE?8c"NÍ´>á{½ÖƯ đñr¡ïô…Âw Ú@Ëc ;ùQ©ÏZ¯mel¸†¤”Q{Ï|° :"¤¼‚à«Ư!ˆ„Cx¢(#,ƒ‰0ó5<[TƠ₫„lapr¾öY'K+,áÔ5û8'2<«£) ྤE5Đj ;S¼•¢PxÁTNøå<'8½UG…RĂÓ/±gø møưx”£ÚÎ$¥U‘(U‘©fT8Uë!'PlAIT•¥¥c@wB¸Ơiz7(#o|À0qŒáL^úó†!{¥ä?Ä msªŒw ˜*¡´AèÎÂ%ù;m^¡¢Ÿ±±hP¹t»Ó’›SLƒÈ tVv‹7È×̃Ÿ¡9n³º¼‘RMa+—"ÖæWT»$êˆêVjö|bÊ~ç8Ml­ásèx(çzNq”2V’6¡úI’ î ~@z6blwØÎÄ6vN¾êÄ äîœrŒaoªB¿ó–' bơ; ̀ˆ´HHÉ;…’âpâ„í®¢÷»;_'ܱ56P¾^i•£!A¼®±Å°ªĂÏ1«—5»`ởæÄÈb"W ,¾sM¶ 39•ĂÏnqRp@Uuºz QB×01+\óÿAäFi‡§®´Đºœ́̉Æ´QrTöSä¥Áơ4@̉ ØÛ&0Gè;äAÛµ‘mÏQæƒ7(½Ôc íàhÀ»ú'Çdcp4;îÿÂ-QGAØÆú‰†ứCDíñ„3l##<ÑjÊ;o R eäÄNIå ¹`bSZ^p™XO Ïy%Œ­–!GÀ+ 'SD3„'̣Ơ<©ç±á5gÜ @WÄ2Ë„­V@­0äC̣%Ï5S"?̉•;ûOƒzÈ;èëhzˆ`g£aƯñDØ¢J\a…^[C”(tŒÊ9̣Ú8ăëÅ7̃V±zÄÆA4>óC“ÊW}ÖÙp€¢!Ó fr¯;¼ »-w4DLµsJƯÁWFWtÇ€:±1C03%h‘ơ–•‚›–Aí~RñädĐïérŒak„"+@Ă–@ưe•¡¥P~Jóéèó qÅ l<âĂ^%ÓÑYô;¤Ial‚Ø™ª:r5cÁ˜¨XF*À:₫đ…ßNB Ï ̃ PÚæđc [m+wжÍû vÊJơÊă7W&8á[»…:+a†!!·ÈRç«À<‰NơxĂ@çø†­U#Ú 4tvÔOBiV“~R…¨Cû‰51XFø"vœ3pAGáÓ öçÊ–³Ă2¨£ÙÏ’3"YÈàa¦ÊCR¾’‡Ÿ4˜÷~…àMWÊ8„àcoĂÅp¼b€ª`Æ8Ä;ÓTƒ¶9l€’VéơÑ;è½a•F­h4°5§#ZR·êëMaCrnÔײT%EU=+*X1B£z¼êk¯cå; 2$ib6öß¶Úq¦‰vÎ‰ă¹ Ơ¥ Đ8£KpDW|ª´!pF®Ü4rÊ1¢”?>°Ơ'×Ï„´mdú =gPÈQ„ñÀí £™Çöæ…¬N…]cl²,AfµGăë­Ó먓†¸b@:hˆ# [gSTSĐWKMqŒ}Bwêk7ŸW<³i{ Âw¶¿‚ÍôÂQ/Æ”ĐØ9;†Œ;'<íñ'¬í#Bơ'¡ú'|çH½fŸï8ÁyL{‚;Ûà¾~畵@Ü‚Ø9F7r‚g;É{mN¬¸ỷÉöƯüĂă ”-ÖsàgÚcœ4˜a¼CPæKy‚́•3<™ảk‹¹ô ,ñPRm­âóơu'|B—$S6ÿè#ĐTº æØö¾! ¦!¤îí·˜_°ƯB®> stream xÚÅZK“£6¾ûWpÄU1AÏc¦*Ùªœ¶v}sr1ö¸–‡ƒíd6ùó¡…´~ÓjẮ 1|jơăëøÎÆñ_Ÿ_擟c¡Ă|/ơSæ̀×c̀‹yäDIä̀WÎÂ-‹)siÚ|dµÉÛÓOÓ?ç¿OX â;ÍÆé¾|ú0q3!„›¨ŸÍ*íaÆ„éâÇöçúĐ‹Åm°L"îÆ—( lqÔ¿́”ÇîQoáĐ~¶^{x…/íg ¤ñĂGđđÿ7ü’ë_¼Fÿ·€UåR/¯₫:Lyâ~&Ás‚<̃è]I>å…^\.Í7{ úu]µXk™éơëfûÍÚÜe¬W‚zi´ZẪ*ܺLô– ¸́AáA@Ún½3̉ +q…€Wuª’¢˜(RÂúBƠ˜̣3œJÄ-ªc†ˆcuT(ç L‚^¼Ư9©́0bƱäÀ `=ơ'Db=M̀ŸôÎI‘„†Ïíu_à\‘ö¹—‚j¤åˆ±9–VéĂÂ_P#ÏxäfrPé@r‰9ER­Œ«¤¨-r5‹¨ù$ÁlÚ­ëis4:Œ•U—°Rk°s›ƒ…;¨Êº†nưük{È xÅơ—0½ª ₫Dº=kÙ÷U¡‚†³‘ „SGDʉ8æC l ˜!Ûj«È‘âFˆÿ^OäÈÛ"jA-’#ÇámqpÇñNJ¬Ë #¶îg̉d<ï<úZÇäµĐ@½Q)R×₫E¥ ¢ó_~T P*Ë·÷vÛ¨ 1®₫síÂu±̉ù² #f}*>_{Ô²«MTGÿV’¦ÿŪ•üm䆖̣Ÿ˜v©R‹¤êN•çcN­ÛBTuj̃²Tdea‹Ç[VÖMèư=₫.Â_íáh¶taÜÀ‹ºuäØỜ¥»<ƠV¬SÓÚ€ë³ĂYê±Ä Öả-›™Ê6“+ÓvTVP̣°Æă!¸™>U¹̉仯§ÚY€nz³|?8oe…v%Å[j. aăÚ™qÄ@ƹôÖ²«Y±\™jm³ÿNR}Si ©<¯tVé²ÿng‘̃1Û+£`Y*¶%I¥¶7 ¢jÈj#ÏÎơƒÆ$Y½7qoăăØN:¹lz¤3,a­TTgA¶º¦¹#MÖmCÍ“/–ó‡÷ø¥΅ë=áI‚­ô´ọ̈̀r Ô_Uä;ªX‚js°+çæA  3o¤ L¥¼¼Ä7ø–8̃·,½i¤EóX[gÑ|˜Đ<²½>!^Ï|ê œzƒ ̃@êĂØåÔ=8Á 4V3دp§É¿fÙk”óœû#Ë‘P0jŨô/Èù¢Ÿœ:µ@}÷¦ÉNW{PR].Ld!Lg Mt¬ÆQºđ¬ûüæ™ä]éJèƯÅY§0ˆs;Đ!p5×(̀ó|lđÎÙÀ©tb'iW´6bhñB.ñÍ¢\¹ăQ"¼ŒđËƠđÉS‹JÑÑÑcfñ̃=nI®̉4YƠœBŒđ ©gT¼ds-¼U¯₫=å}öñUxÿ!Ø4«T.è÷ƯV́ƠxùwXPm¤Iqh€$ơM®F›ùÁô¤EỪÎæ… LNóîÍ¡´™RS` ĂJ̉À÷œ™`µđée—÷ë|̣?"Ä÷… endstream endobj 1680 0 obj << /Type /ObjStm /N 100 /First 1023 /Length 2866 /Filter /FlateDecode >> stream xÚ½[M]· ƯÏ¯Đ²ƯèI$%J€ H[ Œ$‹¶†i2(‚Àq€ôß÷Íăg‘¹³P`Œ5ot©s)’¢øjï5•T{—TU8Đ$½q`Içà ¥¦kNOk^ï|®9#MYsfª¥áGẁ¬³̃aT)Rù²Ö9¯mđ ǯkIeë0<;?ĂâÚ¸è¨I ?0’¤½rư¡IƯ k ̀îü¬%+ez²ªkäÉÄ—”‘̀Êzv&kJđ³$ă;aT“ùäS’=¾ÑÔÔJ/XcZjụ=&5!ëÙµ5ÏSk“ø ¬æbÍÔß×KImbIŒjxáHR—fiꀇ‘¥EøYƒ’[åêv¼*F€qÉ s©º2ÔÇyµ$×Êyµ&¨e$ys>?8&cjɇAmØ¿¥v•ZóêiˆÎÇMêk̃L£Ê“’F§Ö\j̃‰/3&^#M³¨b ¼>€®y ¦Aºô4M׉ôû‚,‚yï:’å¸y. ‚ “Û@À©ƒn¡7…X1DzV5xJéó&É'̉yÀ“ÚÈt(çúF]3Îé©e«đ“ÜJoWvđÿWƒT¨^XxbúĂXÅÿ°¤`ê·A€ăàD̀ê8UV¤"±5 êLØn´°…ĂêY/ëK]2£S¯Åo³•–+80 ́\Ư)†ç¡ Ó«© ¸)’ü¤ß¹Đ3t'3q H 8)Ná·Æm¶NÁü€Đq@Ÿ/€°ÓG"R°\àŒâ‚́4,Ö>ÖĂÙÆ ô u§\ÇAà&ʨçLvzIR„hÍ̉Èa/À0ê^oÍ«°ÆZ2‹̣đÖpÉVư6»A‚ rßZeƒh;5±́ 5ÏÊ«fTˆ[Ø¡\ü™º®íÄB"v6Ö³y‡‚ ÑˆÁ,ÏQoSBĂñüq7¤¬pA“`§Á[L÷Û(¡È( ‰ RÊS ;­ṛf£¤Øć:Ă0vF aOŒhíĂÎûa,́ó0 áÄsTs'3,ó:̃&;Ö÷‘Ú4Flê3)nM¯{®ˆ—Æöº&‡g ¦ w̃ˆj¹håƠ~®ëÈi„àXoĂ |Ưd,hóº·±ÀMDûxĂh{O:cêÄRÖ™ÎÁ´å¥´¯s/X“(FÍ€ ă¹£Nß{Ôa1ùĂè¼%>±3Í_‹áÍ¥Á?­&˜U0uü/·9j`Í¡Ø ßÈ{'(‚&ÊrÄ;0K_EYW 3ñ^ß(§C&ĂV„«B/Ūï¡Z:o•V’Ôy=»:Vr›¶î§öÛø)èkà¦a#çd§»†ÖÙØuÅÀ*ïgÎ1ôÇ>ͺzÊ® ä‘§ º́dç\±S¸}ơ±ÁM @±€;±Ó"ÀB¾x`@Ôl*çvz(½’ RpÜ8۵<ÆB©p!UĐ̀€ØY¨8h‘ B‘ă¾Ä"vFOá}úG&Áv&̃{‚Øz₫í‚7Oj¶oSØJ©Èqº̃(‹°’y§¬Ø„^xŸ¢¼^Q–©n„ôäKa«ÙvÀo1ˆœæs‘«ú̃ĂKæZ±ØÔ7Ơa”•'p¹QĐÀ±Ÿ7‘2f́,ê0J¶»dûz«úµKV8́‹48jœƒè{}y¥xÏÆ̃hœÀ&ïwXÙŸơFi~cüô£ÿ²ö’y×zÚÙ÷&–6û́¯›N1l¥†Ă7´' ³äVú9†åcv´Í>́6ä̃œbè{o™7ÄH‰s;{ay•¦¦hÈ­¼|Ÿ~̃»ơ ® ¹ˆ³†Ü­ œ÷;ưèÈ­ƒ÷;ă¼#wk~‹ă÷úȵ–í~H*^Đ «{/ü ¿f Ø’‰ë¦-¹Ơm]ÿ  ’=ô§ ¶o‘fÛÓvHAmăD¯{«·ui“$½¾`7|çŸ8ÂöÓn=æÄ̃jƯD2åG{2sù,Eât£r~G*QêÑŒĂh¬—µ'oMª–́ ¿ÚA—ubï}8Öíè‘®“ ëư¼Gz«&fE’&Ñ%ÍË•Åκ¤ÇÖo08Zưhc3Œ"ă}l;A(˜2N6³¹ê¹çl;ATØ#¿®wm#3YC=m#ÛÛ»_Öâ×62¶Ñ³“mƠ·å6©>‹¤ü:gô‘RïyÖH¶3Ă56Ji{  ¥7³íL$¸ÿ́Ä=06áïÔS9úéLÁQyA?Ư^50uéO ZY'Ás‡&₫Év‡Å endstream endobj 2007 0 obj << /Length 1367 /Filter /FlateDecode >> stream xÚÅY[sâ6~ϯđ#̀×’-_w3»ÛíLg2)oi8À¬ÁÔ†tÓ₫ùúIbé¬̣‡ëÓ¹Ÿ£O·ôïËM œ̃üü™ ~d̀›>zŒ3?N3/NcoºđF«1ÉjÓ<ËíºyÎưæærÛ<ÿ9ươ†5pW-=ơá₫Ë÷0 Ăp”Fø½Ù°yLXè‹({Ïå¢yîa›uaCäNˆ çr5æ ÂÖ Â P ûĐå²‚çÆ†{V(Ô_JP÷€K.óª· _ooí>IN!zZƒ49€­÷–ưYDÛ¿yŸqâΨ "êA\ÄUéˆjV‘9/Èü,O½ÙxráבÑ3́¡Êº6₫«ùYƒ(9”±º_º è±½A! -ơÂQ̀‰ˆ©É°&¶/Ưmupç̉s;,&|È¡¯́Æ“¦Ë”_CDÙtÚ¡-¢Q(F“&®¿]2D À½7`¥TvùÉ¿³Û₫Ü,gø ±üØ'oK‡nÙ½ùm̀S4˜ß~zv˜DDLcÑ-ÈoÍ–îÆi8´|đ£æjvEÛF‚ÍaZ[Ë~³ÉÛF€qÓϧ`kU-ˆƯñ¶€ûPéä’Ûeî0éÚïLŕûŒåüÔ^“ÄƯ@ê´hgÈơ•6¸uî{-¿ĐỚ “^ăWú¿:|¦÷/T j’øyœFÿ‹$÷y¡7—3óÉ]‚ncC?y”s½YƠĂOơ¬»Ư•˜UË®<œ‘v< tđ>i”‡!m£ Ú°CRPDâ¦ná>˜ç₫C°%P"jd KdtXc΂•M‚N¼ƯqUØơëK;d!*Møø'ä"¦zMóaèn3u‹ªµĂüÙ­X™^, }đ«úúfÂăÑ\öªí $—ÔƒŸƯ9±Ơ$EéĐ$Yjs‚ñµu+L¤éäü·ÇYæ³ÔkEzi/e8d¬&ƠÔÑ º‰Ágà  ½®zŸÔŒ¨2­đ¬€lÄÀ)É©9Ïă ÀKV†Aœ¯µ5ea;UKñï›ï“9̣¡ƒQO£ŒjÄ(q5b-ÙÄb[’ÂùÇ!̃Ä£M?qËeËAÔ±̃Cơ ôA×—ßßÛ_ô¡å7̃Ñ™M±|œ;Ÿ ßèCâ]]Yø†̃Ä´›©ª#«…]÷2«}¬øæNfÖk8;Ưë€E…Ăyÿºö¹Çû£ÚAN =¬2T·£–"ô \ô!?.̃¹ĂAï ®́8<ŸÍªÚ^1r ­º]ZKÓ¸ƠƠæ›îbVÏ oƒDP¥¡WĂ µª·â‹«Nää£TÓ¸R»ñ°ÄåêVÖ¦Öí4W_·åµÄQ¨+ xD#à}A[ѸpØ!Nº"ÿÈ_§â˜êÀ„»ú£ÁgÆ ï€Í‡ÇV<¾å¸Ë³pDÂxF»ö|Ï‚ bê‚„¨‚ Dº)ÀIŸKÙ󌼦‡ĐƠ‰ÙĐsJh髨‹ö.w7XˆÅ!#VŸ0¥Ö7j¹Jb¢H µä&T‘l­}íÀ&™†oè$¼¶{‹Ø~7î;7ÔÇܧ€–êаÍÍîÇ7çø Ă@´MxO·$£ºæ̃.¼Ök[Ï i7”my*NƠ8t×øåúRà$º5ƯÖvK­¿CÅ‹x-v3FÚû03Uªs†Ëü!̃+·fÊÖ¥? Áöj m“/åƠØ™"" sUJôÇËÈ~È#o2?z§́´“~̃ü˜½k endstream endobj 1843 0 obj << /Type /ObjStm /N 100 /First 1013 /Length 2846 /Filter /FlateDecode >> stream xÚ½[M‹e·Ư÷¯Đ2Ùè©J¥‚Áàœb/’ ³ṕ&˜˜i3ƒóïszê={‘¾".xÜê׺GçIuêC̉•Ñ-•$£·$µ²Ñ“â#Uw6fjUØđÔ;ûŒ’†76$¹64Iéè ®h ƠøúZ[ư€Ü|ơă¯ªlÍ$³-\ ç“À³$™lIRm|bj̉:ùĬI›pŒi`kéhL|/ëY|…bëÙ™ªŒơ¬§Z ûFµÊ~.©¶Á¯èê(Äóê¬c¸a"QđM Q¼'ÓºPF²ÚÊLfkÆđ?ëưf)ÉÖÜÎ"ɦó« Nè,55éö€–¥¦€B«¥fµ°ƠSk}¡ŒÔ:h …µ˜ÚỤ̀Ô¼OJêʼn'’ºjeKS¯ư¤¦1†–OœŸµÔG#²ôÔ'g|ÊH£È›iH[x†N«Xq⩤ь(X<ØûaH¬¿–óµúµ̃«_OxjơibÊÙiÚXư<ÍÎƠø̉ƒ°%iN®ÖÄ$zájM§K£Œ® àVV¿¼Ñ~±dÉûqĂ³\(|æÉ'µ`N}>†!ÅUÚ´ÅƠđ  ÖäŸ?SÚôXM<¦0u6ñf{Y/ÖK+-hrâ`¯¤ÂÖ^ûGóVJ MŒûä 7®ÔѸVUúê;¨›e*\_LØÂÅhXQ.uVû²–?UÎ&­:?˜©•e0|À 6©ÂÚæĂ«W—¯ÿóăcº|úîƯÓ‡‡ËW?ÿóĂúưÏß¿û÷Ăå³§÷ß=¾SàÊÛË/º|₫FÖ/—¿>~û!½±bÙñmz‘Ü “‘'DĐ¥f~Ÿ¦W¯̉å«tùĂÓ×Oẹ́EúƯßüë1Oû}úä“ü÷ÿ“¨½ç†ơisæ«ªĂ³a©{†/ùß$ÆNÓ3í£ Ë†‡9Ÿ*í a/̀DƯGÂÊÈ0ï+-¹ÂsØ:’®£ơ’«R±*Ôa»¾Db#¯¹ê¸r°R2ĂĐ!ßÈVE4jDäĐLŸÙÚ¤BNZ‹Ñrë„G̀ôcúp›PKnÚ_ ÑvHP°F†6έ¹Döå¹Ó FxÙà@¿Ơu8øNqzFră éè9´$´g†‰+‰êy ô’Øj–X,¤•¾|¤XV“™M_Іí]|åÊ‘ ©Ï!…±s-$3±¹RP²C;½Ô´å S®ri™c¶4+Œ2H˜´,ơ[Ă8p"à¶ñ£z[â4Dƒ́u× U!¡‘8ÁŒF~qvújøæỗæ† –SEZ·¬UÎñƠ+°SAJÏui¬™˜ÔB–•)‚< Tˆ”ƯÔHÁ8*œDƠsHÔk˜T\3êÂÚ+‚ùª7ñy=i-0Đ"ƒ,“r̀ag27‘ŢƸr€—`ÙwÈAv.†Ï̀Ú5Hđ§ µ>&¡;Ͳç̉́FBgöv‡EÈNgÍ\̉o&̉9¯C}#‰&™[WđOƯê1 Ưé%à¨Úl7pU6Ç1‰º1f`@& W »̃1;“ʆü Ơ₫Ô›wx‰ÁÓP€Ó=bl |v„²ÊTß±*~N&³ê å!R—̉VÑX̣tph§¸ËUfT½Q`™Qí˜ĂVO¥t ưFѼû!;kCÔn~#ч“¨;IthBµ?ơ娩 &ØsrgL²2` Áæ–9“+)©Ú:(9¹Ïz%@RQö’˜}ïfKÏ […9sCÂˤ³Î~:8âF…}J{îÂ3á›ơ…¼ï̀́fEjk<ÉÜv¯^à»!C4çI»2àĐ׉ ̣_®Û‘fWä5£¾à²wf…5׸qdÙÔ燻Ï~ă€5i<©:â ;}DEo7† đCƯ™[¢́äAƠ•D‡ŸºÇ êN‹È ~m“gw¬ÆÖ}:¤úÂØUBÉÚ*4†yÎ4` 2tzæi8œ!½Rm9ÉS:̣z¸È Á¶¦åˆÄæ™pT8:²Qó…«T7¹œU€ÂOơz%aeÂw¶c;‹ &1…ƒ"·æ9#“ÿ)’fzÖn!ÖO0Áàơ¶w_dEG¥Ă<`"'˜†¿´7³ÓQ)+Ø%<7¯o˜ñÈœP58XÑL@-wØZC ¬.¥r›ÎÓ@bmUœTv!»åM+Œ=WrØĂ×!Æ•C+¹ >æ°³æy/êpå¢ô¾|DáEFÛY50ähíÊI]·~̀aëbđD‰$Ơ1jrغY‡ø9ôƲlă۱÷P¡̣6ÏTXk¹ĂY‚ÓÚ#8É ,/b}¤Àµ©µs­Ç;U8oëBùX/¤ 7´í¬³WÀÜ“Ẁ ²})©Û{̃Çôṿ~¯i0Ñä"ART₫zÖ2‚²ºå/)ØÜ[gŒdt‡Úo|ÔéLă(M—¿ưưÉ %jëÎË»Ÿøámt₫̣éƯ‡ú%"”Ú\Oáo—×ưêœ̉åơ_¦Ë׿|Hoû5_cđ‡Ëç€x|÷á'̃ă|ßæ§§Ÿßû¸>kÏŸưåñ»ï¿ù́é—´& #iÎüđơ7ïñtµúÜqM̃OxƯ$Ÿuđc£E£GcDăÚÙ?6Z‰†DC£Q£È-[ ·@nܹräÈ={ ÷@îܹräÈ#G @<ỵäÈ#g Ï@<ỵ äÈ3g Ï@ö@ö@ö@ö@ö@ö@ö@ö@ö@öȼù±!ÑĐhÔhX4Z4z4F4f4YYYYYYYYYYYYYYYYYYYY¹r äÈ5k ×@®\9då5----CƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A zhĐCƒôĐ ‡=4è¡A úG —hH4‘ßî zÀËÆƠ'E¡#̣̉´:“€~R"ÆlÇ0á'ëíƒÉ¦fg‘à`ză_Y@*¶̃LÍιt„ø™¶Óyô`tlÜg'pÑSÊ<¹Ÿ©+7Ö-ûLÆà“&•Y©¼9 Åô99¦yhçƠ) ©4Tđ¬W˜–bó˜ĂV“l¼£-×W ¤C¬÷¼R°s":·ơÆa@ˆs‡vî}³Ld‚r%ïtÇ4èÆUüùÊrP £„ߺƒÄFƒP”(É•¾‡vLb£<¹…Æ v%a¨åËIÔgÚ$#·ºrà¥Ld ‡l£UjŸyè¯H̀çƯøcơ©³£x¿éS}rÛư˜ÄÎ#:áÉ9ß)@µË£:±[»ăµ£¹U¡–;RñxåG \ö=om\Œu}]oÄ3_Å<æ {XĂơái_°dd—³bxƒEŒë+?̉f¾S€°ZF;)riæë³W£e¾›yÈ¡o\Ü]¾½ûô¼Áiw¸ÎÄÜï‹Ü endstream endobj 2009 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2365 /Filter /FlateDecode >> stream xÚ½[Ëd¹Ư×WhioTR< hÆ6د<̃ ^øÑc˜†ñÂïsTY™³™Tå M–²ễ«săy"Ư祕>G”®ÊÅ,‚ßa‘E3±ˆV\…‹^Æ0.¤ḌĐ’2¹À¯Ûè\yé=í+\¡².ĂĂÍ+\́sƯG‡đÉư{O|ÍÉ;¦Ác¸̉"âÜ~ZÜzï{àbÆçÍ(±îÀd_OÆ+4ă“³í„6³Ơ\IQ3nZÔc­¬h4̃›^tª`¼©æzïŒb-×½³˜wƒˆLđekÅ ·aƠ‹ Ê%› Ê%›ăă±²âM‚+/̃=_°Å¿‹â&ëºYÜ}=/‹É;:t1)¾ 'å’]ÊhVZ†t̃Ñ­ µu‡¨a> ¾¾®‹2ÂÖu³Œ¥¨ÄC£5b–V¢±@=!Á=·Æ;DK¸®ë¬Äˆu—˜­c¨;R×ï¢̀¶äA2÷…À R¾›¶2—Eđâ¹,"ac°¬Æ•–¹,"ƠÊ\‘êï<±‡s’Ë"đYÁU–\‘Pm+ñ2I1a…ÖŒ·Đ.Z_ïÎïM×ËS*ø;åeøSóơ‚”d‹FD|4¤½=´¤³¤c›¾L#‰¬/ÛXêéºÔÏ·é¶ôïøèCÖmt–Xàø¾lK}zyưÓ¾ÿ\^¿₫î»/?¾¼~óï¿₫¸¾ÿáŸßưëåơW_~øûç¾mˆ íϯ¿{ưư믿íëËËë?ÿíÇ̣mϨËh-*œÎÚê¤ézÖë¾.Ÿ>•×oÊëo¿üéKyưMùÅ÷ùÇçư—嫯^đïÁTC˜ºƒYúÚ‚˜'A¨Öƒ½ƒ0¯4Û==R<Øf̉nGVz¯ŒË¸F}´Ú`̣.­ ]!¤̉đ\{¸ĂƠk¼+ deLö>«ÈÏcđpƒ€\¡°„~̉#@äÛOL!FMÙ+âdņ,‹ÿÁ¾$'‹2Xüv"†^#º'h[q&Å:-ä ¨oä ‡êGă´¬&é@­ïI à3 öе¶á×Äi©æ³Afo“ï¹ÿEA ȃ¡Â1Nbl1œ´ˆPÄ$€@­Ï™#¤úPøù́lï$›4ÔWºrÖú<ƯDư=»ë­¸¦À øÇ|̀)ç·Ó9Gé+*`Pd øé~Vê ëlóá[ư£Ryƒ¢¸{ )‚$G*·CJGCrÆŒûŒ’&¼•¡½æ³!¥“–z;kZ‡éĂÑx "ÇñÓw ˆ×Á°µĂ'£‹₫Ǭucc?«u²î&«î÷%rjÎBl”NQưâ®ÿd3¥ endstream endobj 2160 0 obj << /Length 1123 /Filter /FlateDecode >> stream xÚíYKsÚ0¾ó+|43ŵ,K¶¯é´i;ÓKÊ-íA10c ±É£ươƠÊH,/˜2yÛ»«ƯOûô±ă;ç=_Ÿ {¿æßKü„8Ăk‡Äăqâđ˜;Ă‘séVÓ>qg̣ă•rUÚbẉ¡ÿ{ø½G$ß)ÇN}qq̃s.”n”¨û†$cy!ö7_đ¡ “m!*¹¨‹\®™ü EAP~°Q§G̃èR~Ê[¹¤pÊù~[fíYd4Dn©'Ú^OwrT∥„4ÓXH¹†¨ó«È¯íe´‘êOML,a›gúqhƠv£ưkbZmûĐ³/bXxđfÅ>!²'¯®úƒ rçơºlá X7làÏ ÎÊ P#ÊV:lÁ»ÔGp}3Ímcuüg6ƒuITƒ ¹yîfÀÿ‡0¢NÛøHIŸ5ÁQé¨3£Ú²-Ió© ™TÈ ¹y5Wr§- ‚TbÀ‘g„H¼yĂĂ æÛR£w9/Zøñ˜íALDéa”Á2sp—gÊÖê§×aîúŒ×@¡œCè6Ÿ3ă¯T^PáovÜ"ˆÔeOF8Öë"ŸßÖ(ž€Í+XsT¿7‘xb qV›SZö|B? ¤ë$^Âé&§đØ ~K“G‡½!È% Ka‡‚ÚÊ) ÚŸ”KT&5\æÅ~Gñ1ùLŒ´;OMJ´¸RQd.Ê‘]3á‘Áœ¾oåp{iäơË'ãÂuŸV?ÙT…́ è_—º¨³+€v¥’kSÜè\(ƒ{é´•¦6Ç (×¾\±úu–7j³±f«^ÔÉÚB…Đ;Ÿ¿6w4§b¤HR˜¥ÍäQ3µÔ¤»*Y*5鉲́"mUuŸ`¦7>êØ7Ä–0al×̣œ*A,æÆ…RPƯ^§Ÿp+mBVÀC”2Î\†{!Ü9VOuà+Ó{̣Ê ÖuJ‘™®S— FZêu„^â©w×̀hqT2¦ ¿•`jÛ"ïS­Ï“nØÔçÙ́”R¬FV'ˆïQsF4Sí¹üQ _×59¾̃d…IÿÓ ='@q²IåÖl,N&ÀÂø‘›‰æ₫îc—ü«³77 ÆđxcÆÁ́ELƒ›†ïăà÷qđs¨>̉4øñ`PLÛ…*KåôÔdYeøGœ,·đoz²̀^Đ`y=~Ư˜,‹‡CÇʯfP½nkQߣ<ßÄ£L‹•l"ưó°÷y>²S endstream endobj 2010 0 obj << /Type /ObjStm /N 100 /First 1022 /Length 2841 /Filter /FlateDecode >> stream xÚ½[M‹e·Ư÷¯Đ2Ùè©J%©ƒÁ8 $`l/’ ³ṕ&˜˜i3C̣ïs̃«×Î"}{!. Óê×·Î-Ơ·ªeöJ’ÙG’Z¹đ¤ø ‹™êœXŒ’ZU.$ơÎg†¦15M\X’̉ÖÓø\¦<`”ªÆÏđˆµơœ'i“<<”°o½Î…ÿ9ÿÓ¤€áª&Ơ¶~`I«Ï[ÂG{xÛF<I‡×+€Ná+8^¡Q°eçnSR­ÂƯ¦¦jÆƯfMµ­Í§¥:„{àư°÷˜‚ É9G2î1=™ÚB™É*^PK)ÉZ™\I²nÊ•& VøYÖs «Æ„ÀZ)ăŸƠÔ­j©·Êç„â†đ±̉Ô`…çfí\Y¥s7¼̀À»rƠÓÀËq5̉®<6¹Ä9F%–4¼O'9‰‡£pQ¢hM®È8<¯“ï¡-yS¾‡öä½­çF̣1'ŸªØCg¥q_l4…ÇS@hV!´hBD\Aq¹TK“Ǫ%œñZơ4©RXAi,±Uœ́Rq¤ø_À ¯™áK¯¤Ùă—–́ ÇUfáVÀá†XRK¥× )RËz»‰-R/¤uĂnT é“ÏRÓÄ— ©’0>‹³-KN »©*·€Dk£¨ÜjÔË‚ïE»¬%vSœ—ØM}t́F#ªÔ-»U1n}`KK$»U["¡1Öf¤ƒ³–ÚÇz»Ơ«ºĐ묔 ÜJ_¸ØÍ õ<\¾ưÏÏẹ́éû÷O.ßüúëû?ÿø₫_—Ï>üđøám‡(ï.¼üẹ́ù[Yß<\¾~ü₫czk£ä›ÑdÅ»™×́4×<ÔñܧéÍ›tù&]₫đôíSº|‘~÷ówÿ|̀­₫>}̣É₫m á鼂D+’©MÇ$l è`V8Æ; )Ø1‰±Dµ™ÖS¾ÂkÇæ°¡Ú=»É $æFC3ÍÎ5 4»™aCµ5pÿŸĂÆĂ€çÆÖúLa ^ñ¶¡çXkÉö\aŒ‰Ơ é,vÊaä̃Ăa¶ _v̀a§&tOî@ó@h;¤P}£‡–^ï$Ôs-¯9‹‚@`ÉLî$ œ³¼B£o$a—ú$ºÀ8Û+HltSÖ¡†‡wĂ3§c;OĂ¡‡Èï¦åïôSđÏ I•‘ùëhWÿ ưDÎ}$ d¥£*5#«A’€h JĐN?‹‚SI}f¦TtSd±"[­')|Dgª¿mȸm̉,øPw;ë,Z®Ü ÅpdzVgCR†lEÏ’6_•Ơ„6˜“đ²‘„àR }„äÁ´¸3ăà·ùËz}pIïl¼úÍä³ÚÍ×…H,4ñŒÜŸi±è±±đX̀ÛBK,YYYYYYYY¹r äÈ5k ×@®\¹r d d d d d d d d d d äÈ-[ ·@nܹr äÈ-{ ÷@îܹräÈ={ ÷@<ỵäÈ#G @<ÙÙÙÙÙÙÙÙÙÙỵ äÈ3g Ï@<ỵ¼!K)±Xh,j,,-=#‹@–@”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A ”°A¹Ùà»=ÁE†d¤©;Ëfä[H?jÓ§1:'̀ûj 8âU»’Øfå2­¢wỐ¼¯C€\̀LÅÏ’$€î]‹¹ṛÛû`r Öl0Ơ ưΆzHbëq é68²jd]Iö¼.—óÔ³e"MG¡Ø'ï&Q!àt¤ảë9¥2ÂNF}öLƠ)/ÉIlƠÔç3¸“¨#;âĐ!‰­úĐ%3tA•Ê+̣a™IYGJ̃å¤'\vnÈzá•H4φTy+Jæ•ÈNIŒå-¼æđ²¼%¨ç\[KG™œ¦áŒÅ âHGđD™È¶Ê DZ“ƒf¼cS•3pÜĂhË8‡»Êˆ₫w{É?æĐvºJ]‘+H ¿^‘ë˜Dßé.ÙĐ…ôm ¡` kơÑRk3#¿>Ǵ¥V¤L _Ă)Æ&8Álơ¤v²§‡̃કƒ72á5!̃ —’™½éê¶̉CRØé¦à ¥V[-æ5—9MÆÙ}éf§eÀ–`H&„ó€à4 ‡l Ÿ—îæd§«,$Ƽv{fĂÂ&2oç¸)ä²gq£ ¼,혂ö©Œ/T–8äĐu§]@'ï *’3‡ ¶*C_qÓ:¾&æ˜́ ‡@¦}’M@Xvû‡M–2°ñeˆèZå,Ăœ™V!€Â;B5²¡ôvÎr×lw…V‡q6µđ¶¶£Êhgy¨¤]G‹&\ka Ba¢^ÏR‰z¸q`±µ®­ÍL $Ç'*çOmf6VØø7É<7r@}ɦø¶¿9lÍj‘Aÿ†ÂàSØZb8ñâNbB!¨•G$jƯ08 ;î$؆˜ơ‡±µG¶̉Ÿ) j凱sôN&j ÊÁ ÊÙØ|…œù$Nʬñ>2&„éÀ)‘Ă aÙ\tVäóµ!\–‘زSå„0\Ř'‘€³K½ç̉Ỵºqë¤À…4¶Ùóø£ç¼ ªû)CÊTÊÎ!å…Us¾†ĂØé &Nây:WêÀAá#[{¥vƽ A*'„i'0^ç9gÑ u¿Å $Û"•„²“t¾}½3`Wäpÿ±7äMq́«s&÷€ÁÖΠf₫ÑÔmTG!_1ê›;³ûèªv¨“lΓÅyö‘ùKö…x­<i{£¯÷c₫’IÔ”Ẁ_îT l ˆÑG&“Ϋ ëÙ§Ÿ3­.Ỡú3ÄëÔ!Cf¿N>úlç'k:{9”6ÖŸY­» k§µÛ Ö7ƒ—{혃﵌¾₫jïÆ–ÑøGGĺíëú#Á+ Æm̃~“ØÙC ~{d/ˆÉÄñØcpø/]#h̉ endstream endobj 2318 0 obj << /Length 1403 /Filter /FlateDecode >> stream xÚíZIsâF¾ó+tUAQk×qœÅY«R •‹“ƒ,dP‘Àă™üùô{Ư-V«û°sÈÁ²@ô×oßZ®5³\ë~àÊÿw“Á×ß³Đb®“º)³&Oc̀‰½È’ÈL­ûyÈ́¦á—¯†N~0¾Đµê™%nÆ÷ëaäû¾ác…̀v₫̃³câï#.đ}ê‚€¸ L¸ÖˆùN¤BrŸJ.µ ÿ›ó¿rÉ/w~ă%ö§¡Û|\êän2b©“zááVă!ê`Íñ² ÿ†‘Í Xk[‘aÏ:µzvr–ÅP€ăJÅRºç¿ ß₫Pó»•Á„·Z̉¨ÓƠ&<ÖIüÏ @¥æ±Øn¬pº{FƯe:̃}*óq¤Ưب.Ó§4‰ 8ØrWÂMÆ&/Ÿh‚ɱÑ‘ ¾´Ó+ˆÎs„ƒ₫Rg IT“P› .ơ®áGZ æ3¿ KÏ»ñ‚ȵ),ˆØì₫çƠßÛ̀%»6óˆ ̣‘†9‹)25‹¼Î 6¶‡±̀yĂ„§ó ”#<ËKµ@Y ô+<´n·ü̉15á¬[«}y}Ḍ´\ †°*/¦C\5Å®e*\*ÇÏÅSŒ¡đ`›Kû̃Öâ8Sg{œæí‚ăÑ%èz2ª¥ÖEṔ^™q´9-éÎ ¦'Gôy\¾:·í®T›\%₫Ưl¤ÑWkĂ1¶1{§È/ïeFôîz«†é[%ÿ̃´ùúEßoFÜ.ˆ?KFë¤̣Qå‚T¸áªßaĈégÆâ­oák”j-øM¹Œµ/)0 oArâÛ/Gv¤&®²Å“>1w¼ÿµă°M»ùƯça\6<ÏÍ%€Ô·®îÙÎ >đ(†̣»ÑüuoAoƒA£ª0éÉ0́4Üö´à $áy*Ú3q̉÷\Aó6̣)ÜËô_3E*ĐôbpȾÅqï₫! ª±4{ÁFÓ‹nTQ1+”âkKc¾¶Pr̀vƯX­:Ÿ̉£"j‹ºàù€¡©ăäçÂCϰ 4äû×Í­m}§ÚcüXÑf{¯¸NàGÖÈœ4¤§‡>úƯdđ/Ns• endstream endobj 2163 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2835 /Filter /FlateDecode >> stream xÚ½[M$· ½Ï¯Đ1¹¨ER¢$`aÀp ŒØ‡$‹=8ö 0b́ë5àüû¼§iöØ—®9,v4=U¯(>T±µøL%ié%‰’Ô+lv,5Ôä.´ÔçºØÓÔÆAORÚ$2ÚFâøl¼ÖÁ‘$i`C“t!Ú°$£nÔ$³eà?)ëh%Å2Ö×øC+‚g @¹ñ¯ÿuWpɘœÂÄ’Ø̀QM¦(³%«ºîơd­‘&l>Ö#Ù‰g̀ C4%¡’*Ib$©ªt4Uk…#K˜¤qTSuÎ6IµsæR<ƠécÔÈÛó ó€Ñ„;ï’ZůIj­̣¹¢©9í"¸­ ÚE¤¦6i‘–|-›à‘®eƯÑ“×k‘¼ºă2“·IdLÚ»ñ•„ẹ́:Ơäs’Zê¢ëºº̉¦‚Eî0GzS2Đº;à×̃§â¸­/,Ê(´8| áB‰i¦|.¨ÚhI«i4Z\¬¥Ñ—MÍÓ˦ÖÓ˜ƒ l¤‰©â6át˦˜₫´eÓ*i”i˜0G–f§¯ÁÄiN!JmđÓRI×`û¡÷, ¸o©Ơđœ:éÓË́à‚e+äÖàÁpYÂ:‡sY¾Ñë —Ü0 Ÿ?…k£+ ¼ [–Á´a±e(&›OkNµ(—‚©ç%ÂVËxk­)gá¼Öé°â¼¶/û98ØN¢†q9PØU–Ó‚Œ¾yópùæ?=¦Ë§ïß?}|¸|ưË¿?®ßÿúĂûÿ>\>{úđưㇷ‘¡¼»üụ̀—ËçoeựpùûăwÓ[Ơ–i™-ËöȵS_ût\÷izó&]¾N—?=}ó”._¤?üôíqÓÓ'Ÿ<àßUs}¡ĐZ6:ÿ!…¹‘B›¶x!Ñ5S‡$|£à\¹A—2$7:„{® !Ór©w8ŒºdFă‡a;äĐu3î?>rüè3û'sh5WÊđÊK‚€r=#xùĐ<°ÓÙ¬y":~Ú=—ÜÇ –¼1¨¥çáÇ 6j¢el(7êY›2¨¶‘‚IîØ̃njÍ­íĂÎ…h%¯?88äø 3́\ ¨±!7ºQ@„À̃tÈ¡í\áëÙ7sæhuÈ¡îăĐJËØnŒ,L©8l\ «3º ¢TẸa®pQs@¯ƯÎÙ3ùP ›‹`>33J÷ÎyÇ+7rè5¯|øJ>é´Ă…­fèi¤#‰AMBƒ °—#û¾³;0#íF"9&°ÓS2+Ä+ZjVy;·ªñ¥¯Tƒôá:l´w' ÁÁf.¨9ô;EEÙoRH«C [w‚\iÜ8tˌчv®DGS^<’Z^¡Ê±365Í“¶×¼U[2Å^îv! y«¢ÎtAaSyE…épU—z TS“-(*x˜3` $Ơä®x;É%°o;ÏÀªj Å4„ÂÓl[âg-[Ox.2{„ê92fB6rˆ³ Ơ€(‚D…k Ô¾‡$Fٙ׈ $+jC¼†2ñ³ÁU\Ị̈KlƯGq•[¸Ă/‘> H´ÿç¹Ï]o$fGØÇ$v.‡ơµŸ©bu%‰’yªYá®2O2èXm:]äˆÄVC ^®†–¬…­1Bº”ßpÀ³'½#[CâÏàêXqJQ€²àªzOm¯!†·†JËû1‰½ê”,+1T;,sjæû†D{ôÓẩ˜Us?“ —6äu‡$öZởÛʳ@Ô½£#Ă+¿Ơ³â4 AÅ«SØ¥<ë:–53_̀TñÖí¬,²É•BÈ%è!…­V É G¢ƯHKQ $ơ§ÉY²(H¤Ûs±W˜`£₫xhĂçă4—äÔ¸‘¨ÂSüc»}̉đhm¹Âè”J]2 ;Íù&œóŸåù$‚/ö˜]¶q2è†ABáVÍ̃<»øª0¬='ù.ÜD‘ØÙYù5|€mܯ_¡Ó"£­¤Jïm[³)„&¯ư…„¢̃«ó˜ÄVŸ0‰½p@®Ïn€C{÷Î’Í0qd|+½x\Oѳ’ˆ†Ÿ…oë™ïáY98ÅN½²Eö;V™LŒ(v¬5Ưó&ĂºeD§d†͇cávDŸ‡ê§¼[£#8rZfQt È•‹¡sƠs8À ;º(¹&‡Ú̃‚ [Wp`Áŭ똃ÙIc…ùCâ&b)ÏíæIf€ïñ¿™§3¯ÂVîX‹B?‘“H¨¬îÚaa>1̣dGíæ;ß%ÏĐÇ ‡ÊSôù ;£ÔlyơÀ¹¢Ơu2§‚TE¿sh:Ú̃3le¿X…;­3la7!í¦tª°aÊ$WŸ!°s)–eÜkÛÛŒÑÙÁ†lN…9LC€Ođ´j¶s‚%̣©A—¸r€oæƠÀyÄAw¾`B”\-A;#Ơ! × m«5èF Ơ”W¬†Û̃“[îáZFv¿æÚ…}®°H=K¡đ „ƒ[ç}BÍ;×¶’@`¬́»v­ yÔ566·t6ƒ^»Æ(Xf7l»×±µ5HđíÜ0ºÆè!lEÔœw³ÛÍ^YØYZ¢ơùuùxH2ç9₫ÀêÓuŸÍä~§¾Ho¡möµÿ=]₫ñÏ%äé£Hê(¦ª©÷¿üøă»¸øË§÷è—Âíj¬»đ·ËW¾ûú¤̉å«/¾L—oư˜̃ư~_áá—Ïñø₫ăÏl₫]÷s:??ựá»Çơ™?ö·Çïøö³§_Ó²€#?è“IâWß~ÀỨÚƠç —ơ~ƃW1ù¬₫áë Æ ÅÀcĐ¯k<®ñ¸Æo׌̀ë —H âé=̃¹räÈ={ @<ỵäÈ#G @<ỵ äÈ3g Ï@<y^‘µ”H 4ƒƒAÁˆA K K K K K K K K K K k k k k k k k k k k [ [ [ [ [ [ [ [ [ [ ×@®\¹r äÈ5k ×@®Ü¹r¨ICMj̉P“†4Ô¤-[ { { { { ‡54¨¡A jhPCƒÔĐ †54¨¡A jhPCƒÔĐ †54¨¡A jhPCƒÔĐ †54¨¡A jhPCƒÔĐ †54¨¡A ZhĐBƒ´Đ …-4h¡A ZhĐBƒ´Đ …-4hW ¾ÛÔ¾ºoƯŸb33d²û³Ü{ư³1—$×^º`¥IæRrØú]¦4ư…Ă:À›Çväa?ËMä…Äx®×IØÆ| [V^_©»’À¶’g÷Wؘü®ä7.×+–cgû£đû ëË…,Ih ÔA´ªdä眉¡₫)·~\êÓÛsçŸƯmnÚIóÇ^L{¹Ó6₫mư2Q‡ ùkăµÁ=ơ°ño§!°OêóỂÔç‡ơ¥±¼2H@Ë+HèÎHÅ>ó¥R®pÜÿ86Sp¶x]ûI)Û»Úk´ÿoú endstream endobj 2320 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2373 /Filter /FlateDecode >> stream xÚ½›M«\¹†÷÷Wh™ltUª*U ̀À$$Ufv&‹|˜aØĂà,̣ïó¾º>Ữ¸O/”Æ÷´­–£*Ơ§n—襕.¡ETù`¥Á/:'Fqí|ˆ2†ñ!K̀àĂ,³sL¶"mŸ¤ˆ̀₫‚§);Ç'&7ç¤iE<×7¼`mN›£à“ó)̀äÄ™ø«Œƒ»sæ‰ü·‰.‚5&&ÆY&à#øKÎÆu'^¡)g£¨ N nƠ¶æË¢¶̃¯©Î—î­ø°öœóBU±U·Cv̉ßt£¤%ÂƠ N„ ¬ÖçàÂƠ´Í|y÷îåơÇÿ₫̣¡¼~ÿñă§Ï/¯?üçŸ×ç¿üüñß/¯¿ûôë¿>üú¾Á2´¿½₫éơϯ¿/ëĂËë_?üósy/Ă+ᙵA 0 U Ÿ³FWŒû¾¼{W^(¯üôă§̣ú‡̣›_₫₫Ó‡ă·å»ï^đg„*É«†c)6ê€̣y ;ömˆ!†Öăă£Ơi4j£â`ªæDøFkUqÄÜ?¡®µÊgmáAø¨8n©$Î ª>›Wïă"i˜Ơƒà½ap6<ªă4¸J5•oCèN½Ä¼·QƒÇ{8­.Y­ç·!l§0²NjÄÁ06 Ïvî4`̃ ²×„û9%¶öé+IÀ«ĂÉ }Âu.¨&ƯÜ)C— ‹Ç]p±•Å)„oÔIøæ(âöÄN —Zé$ou´' r§8NĂ¿‚˜pă †B½N¯àHL«#xñfUơ Ï­̃sÔ†PÖúHç©ƠóØ”ª}~›aîܯ±ŸEÖ.0‡V \}° ;ƯE,Gùqâ†sƯ‰Àpṿ ƒ¹ŒsÛ© tˆÉ¿ @)±ø)‚ï<•­U»i21œ‹'‘;c(¥Ë4 ÎLÄß\¦1ÆL¿Æ]1dZgđ€Ä–8›ç;C§À›c?v@`µ™¬CDBûVùD0ÑG8Ç Á4k ¦Q‘_ÄŒ¦¡“"•Ù¡$™ íŒq‘«4‘YtfU&ÀA# iµ©]Đ­dÜ̉™ä3lµQ³¦;Ă„iH=gØé®î9Yœ2ظL¸Ế” üGÇÓöº̀F}©«ôa&ĂÁÄDg\Ă¯)Ô‡ƒÁ­:ôá”a§>À"°”uc€ăЇS†úб÷,tÂlGCÆ Ù°R§H¾$æEnk h/ô[X m¾2^uljî{çN@"å]DôLyÙ#ŒQhgÏ«¢jøŒ†¼[%*ËŸ¬Ä8̣níÉÜç•@^ƠïPNa ûŒ`k΋$7GkĂë#–b¥ʉ<£Ê¼&夼H6;2‹9¡ ˆ$:«Đ°—*A¾µ¥uº̃!X"c«ă bo…r¬¼7›§Ñöºo6u†ÙêªÍŸ1́µRä̀n½ÁÛ̉È‘mga.Ød §ÁÏ·:„ç£ÊùVÇƠ*»•ÉU$ ¶&]è¼ÆuÂH;[A8–Ê,AơŒƠ׃'¹~a°‰r `SZäfÅV̉A@E=AØwG¯Já ˆ«ÙÀJ÷bo©XØV>àFÛ[³ơ1ĂN§…<»yg€ü­}{Â0w–¹¸̃!H?!Œ­QËàXG]ƯEgûÉ<ê©Ü[6˜hf̃§Ñ7C°Â”›i/!Vú‹hæQ¥øÿ[1˜÷‰h&í"ê’-FØíđf}ơ:ưª®½µ~Å0 •|‚akH™5ă+†Ä'qÎ`º³‚p.î ,ÊÄû`c§Áîë<]¬Îñ̀F́4Ø’•WB•ê¼YrÆà…ÑaƒÛÂÇu<±³ÁÁ 6"ü™ØÚ`̀•eÜ p6ÔÙ‰ÍU!̃Lâ}GÎpÛz_ ¨ä¸®JÈ |º«œ3lÜUCö–e°»”¹jAlv ĂƯû%Q>„YÄÁ'Œçû¹Æ̀'¤;¥±z̃_I#`,í‰ó¹³§¢ÈĂ­#‹îu…£8·m„E‡³Ñk³¿c]€†D|èE®+Ưl£à§îüi0¢v̉®  4¤³¯f8/ÜY—®r?$ÁÇưs $OÜ?Ÿ{Ă₫ÊÄ á̀> stream xÚ¥SËnƒ0¼ó{4RC½k̀5R©Ç[ÔƒÛ‚Ô¤*ô‘₫}½†P(êÁ/ØYïŒ%T aÉ~]Ñí=@™ä2G(¶cb%BjS(6°1ƲŒJ)±ñûÚWñW·¿‰Ÿ‡=œ„¦‚nó¸`íĂI†ÿ'B?-H%©CÿM*#Ơ{†;NÀ¡:ƒC§ó‹pơÁOÿE$+ʪô@Ü ÷üʽh§q­â®Ç”°éD!(ÚI^%̉Y´$²™ñˆ3”› g&˜|Ôcß1e‚¬««É:–›8¤5]Ô íăí»ŸÁE:•í9ɉèœ<„mƯKï¾·¦‹śkÇé?́ ~íH•¤•@y±LÓWY÷ »Ó«Yv÷w7àăaªæ²Ø‘‡ohÚÊvhµk+´I¦5,´2‰Ôự¡+îè=V¤ endstream endobj 2374 0 obj << /Length1 2270 /Length2 18540 /Length3 0 /Length 19873 /Filter /FlateDecode >> stream xÚŒơpƯkû ‡m¯°±mÛ¶WlÛ65lŒÆj̉8ìƶmŸ́ư¢ûưß̀9Ó™t]·¯ÏœXQ…NÈỖ(noçBÇDÏÈ ‘Ödb02²Đ322Ă’“«ZºØÿ#‡%W:9[ÚÛqÿĂBÄ hạ̈!5rù0”³·H»Ú˜XĹÜLÜŒŒfFF®ÿÚ;qDÜ,Mrôi{; 3,¹ˆ½ƒ§“¥¹…ËGÿüPP˜¸¸8hÿvÙ,MŒ́rF.@ÛŒ&F6{K ‹çÿ„ äµpqqàf`pww§7²u¦·w2ç§¢¸[ºX”Î@'7 )à/Êy#[à¿©ÑĂ’T-,ÿ¥P±7sq7r>6–&@;çW;S à#;@EJ à´û—±́¿ hÿn€‰é¿á₫íưW K»¿LĹmŒ́<-í̀f–6@€‚¸,½‹‡ -ÀÈÎô/C#gû#7#K#ăƒ¿K7ˆ )Œ>₫›Ÿ³‰“¥ƒ‹3½³¥Í_₫ óÑf1;S{[[ ‹3́_ơ‰Z:M>úîÉđïáZÛÙ»Ûyÿ™YÚ™ưEĂÔƠAÍÎ̉Ñ(%úo›́™9ĐÀÆÈÈÈÁÎ :€& %Pơt₫­dúKüÁÁ×ÛÁ̃`öAèkiüøÖÛÙÈ pqrúzÿSñ¿–‰ `jiâ0[ÚÁ₫‰₫!ư ̀ßÉ̉ Ăø±~LÆ¿₫ư÷—̃dž™ÚÛÙx₫1ÿ{Ä ̣Z2ÚỆ4ÿ¦ü_¥°°½À›@Ç̀Æ`bbgp|üđưß8F–ÿ®ă¾Rvfö®•ûѧÿ”́öï ü÷P₫7–¼ưÇæ”]—‘ÑäăÓÿçuÿÛåÿß–ÿåÿuÑÿoEâ®66ë)ÿeđÿ£7²µ´ñü·ÅÇæºº|\œưÇ-Øư_S à¿NWØ̃Æôÿê¤\Œ>nAÈÎÜæ¿m´t·ô*Zº˜Xük]₫%WûëĐl,í€öΖ=-:&FÆÿ£û¸.ëçĂùc'ÿV?çSٙ؛₫uè6rr2̣„ựbx3}œ£)Đăï-0ĐÛÙ»|¸>Èù̀́`ÿ(;€Aè/Ñ¿;€Aøâ0ˆüAœÑ?ˆ À ö_ÄÁ`ÿƒ˜ 3€Ạb0HưAùdÿ |rĐG…ÿ"Î ĐGLå?è#¦ÊÄ `Pưƒ>2¨ÿA4₫ FÿE\:£?èCgü}Ôḅ_Äö¡3±·ùÙ$MÁôđ£À?ö5üki₫|0ûÿB–́Y₫‚nÿđ—̃̃Ơé₫&æÿ€œ-₫ Y?fjáé`üg2ËÀ 6ÿ€ülÿÀçƒá/ÛGć>–ñúzö̉}8Ûÿú£\‡?ê`Ÿ; ÙŸ°2ư[êô?aưh•ĂÇ«`ÿf~|eÿ,̃_Èèü÷Éü±ùhÀ?ÚĂôÁÖù¿Đíí`û0w₫x`ÿ8|äưSÅÇ3ÅàbáüÇ>H¸¸ÛÿĂá£)®ÿ€ưtûüh‰û?Æûáưd̀á=ÿP₫pơ:ư+öÿܶ‰«ÓGƒ\₫~}?ÿ?øïÏ)è4]œ³7á ±ª i¨Âs§Ûç›!ßƠH§¢ó^túéú„•JUư5hƯéN(u¨ye[Œ̣Vp‰èƠû¸µ*üG²R۳ϋA¢̣ÔńÂ$æÀDá±P}? >ªàÏ«£z 5x+h§4y£+'¢bÚƒ{Ÿ„G}ụ̀hØÜ®̉^5» ÜKù4]¬ZŒn`Éọ|ắYl’O.tĐÔ¨H¿oïfPs'̃‰¤i`}ObY¼µ7˜ăg½V+U™»pÈp´± ÀoQG§(¼…¾HcÍ{—ǬóÍçpDÆ.…ô%Íʨăø)b;…”ÑñeÈv¢‘u庛d9Ù¨›LÈ(>ƠC{‡’—J˜%'*5ÈÆ·ô|%%PỈ5¥ùÙMØur¦ÖIí“ÍÍ»?nKxLJ¶Ơ‘íÇ₫̣ø‰¡ÂhJB2Ơ dtI^szL%ßWLyÈ9¶¡Đ[§ÿ=Ÿ¾øÎ Ü*ܧØÅVw»΃KqüÙX±á ùüôµ¨3ÁbH§±ư#xÙ ƒ+b{̉…ù%¹‰ă2„VKñ´"›sP:}qƯÖ_ LcRéÉTó„ª_qæ5»ă´\`Yé ơ„ơ¨- §7EŸáào09†/đ5p‡ó,‡Û₫»Y ×µP4Y[Ç6CŸaШqfeÏ5 ºÑæ†u0is×E–ׂH#3´̉]ÖˆËUºÛÑbS) s<³ËÊíûUè¹s­£2Éëdơ¯P̉—àYAsêă+¤¶Œ¿¢äE¢“xxtAƯs&̃ƽ¼ßqY€úL#´¬4Á´ƠLì˛–›̀bÑO ®+t†́…’c¯z’”Đ\(îÑ#—Q;”ÁÚg#qÑf. Rơ¶¢GA7ë¨!—z1|¯NíË,ùZx"Î'’ è)ä2I¡%9~’œoÙX.'_†Üy¨§v#lØà:áÄÅ„5v˜BU‰ßúÁ ™©Ođ>ư3Ä‹áäÖLøxe£V Ơ"Up# ă^†»5jC¡½oX‚3U–Û±Vïl* /NûŒÙBí¼w€0=¨jÊơ[Øh£09(tI'nÔ(‘́‹ySÛ‹”îA*ă! Ç)¡‘̣„> eæ‹,– é±­ûsi›ƯˆÓ&™Oôû”*ê©,TJ²̃¤w…f‰áûk?½Dª;ZSåβâ³đ‘ùJƒûµ±u—xM\ |e‰™Oœ©i‚ ûIA9Ø^¼÷ă- ơăÚÙiέ̉"sq[Ás%ÅçR»*]Ă:=¥è`îÄ­ƠÖv;Fc®0[½ö‹KÚc†¥̉"]-2v\@5±(̉–¹|…J„‰:zÑ—MÙê­rlƯ[êMÁ/–Ï%Å“©́Å!̀i+Ÿ¢:É!i(So2­ ë°E×ßêÁR­)Q‡’ââ­Ó‘ª] ïô…{ŸÂ±·fku%ư´Đ îÊF’̃0 ŸÑLÈ»ü(щ—`¥Ưæ‘|Óq9ιïMnxo籇¡~wOF‘ É€y P¢ëuÚÿI•!GQÇÑ€̣̉ÅE{ưB׉À߇-U®¤…¤>ˆº£©“àd鈷&fÑDè¥""Ùl ^+[Ê‘ưeÔ¥¿‹HlEoR3oĐÆü7øđOë$=-ª9§Å[HÎÏç?ø×78$sóÚ Aûâ Úư?÷5Q¡8Á₫Øj«Ï•«+*×öËÙOƒV£‡@‹iÛdÉ…ôûøÜé+ÙCK¬$~ yÑñóøn×#âHÚHªjùƒùÆ̣Acá̉r—:X@Æpi('¿yñïƯ÷Đœg¼3±©2Y°đg ÿœdu@e÷ñóăyÙ²­×(SÆ]øưñ3F™rhåi?B/ü¾‹4K¿Üªç–WqÈí¦€öE³à̃“2º¢°%ÿơÎäqÑùɲ[„ºø¬®…u­}zÓwÈ ä¯œDŸÀ2 ÎÏ©?uDÊKá*¹•p±‚yµ½G²ÎßÛ"́8©D³Öơ~-æ@½ó©Qï̃.<®Q*0§E·¾b/{³@2nĂÜ̉a«ª×x·WĂ<H'Dë‡ëtÑl„mm!¤Å¼°ÆÈ_†vº"0[ùù;ù€¹%,JÉ“t™Ÿ=§ÖO˰săHo¥¡5ŒĐë«xºÏ¡¨.lßWpXbSøˆâzÇÛq~@`•"ờùè(gnỌ̈³JÅ¢…”g;5ßÂ{ [|·đ$̃¶VQüÎ.÷ j1h¤|‹¾j<xGù^ĂÔYMêï\ïi&YÎg23ÑTúAW«\±BÂ3©™Ơ”y]>~¿Å›ÓæQ7  g=øS6ăôüBèœoâÁé ¾£ïG½këqK ¼¯Ä¿âÓ®!~|ËënÊ1æ ˜l̉D˜Ë+«ùÙS…ºP²…j ë·‘MơËé¼ >Ïog•é:®g>>—Çß”¶Z†½h×,›V±Ëa¼Ôçâ»u»2çÆB~K¸ˆOMµ@€~gHư×lùé|Á¶ ÔƒlĂjañđ5ZỴß¶jø_ÛĐ„íÔd5Dvö›,2äÛku²î˜×Đt35Ö·èØº¥OV­×IO!ơ‰QŸ̀Û‰̀ÓÖí×VˆÉ ÔpÑ»Ú-"‹ÊÚV(g˜oZçsë;kƒ Jh› ?°u&#’Æ tâ4\FxCxZcáIö”ñ«lW{¾çfQ}¿+CÏ‹ÓuÔ`‚ï™J²O)DñÜ‹\¤ºĐí\2<Œ™°ˆ9:.¦„Üp²êÏM o!uN‰æ6á½pqÀo¶tMzW •d¡Vh7̉9-Ù,ÆSŸ·9‚eaḉà/₫XˆÊw‡5Ÿ†å¶3–†‰x’ưÑç›̣ËißM¿ ¼\^Y½^i¿ˆ±q•`WG~²9Qƒ¦5ê:è2çÿ…p"‹u %z›×‘DĂEX—'_¨ôRïåÛ7Hº[<3́!wOOIô|ï£05?L^›ÎQ£7¹KÈtx”3çåùÖ… $ƒ©ö¾çñY~ññè¾´(·$¥đ!+¤Ü7\°¤§ïÙ́ä9&अ¿üà̉¢Fö À`Ó‘‰áŸU˜2¯&€á€½q8Wg}ḰĂ£PÏ÷Ú”Æ`?‘‹¢$¿-å$ĂvZ¼W+’`ÅÁJëX%6¬È¯ĂRÁåV#/ba—ƪTgHƠHy$±aơünÏơ›>dXô¬GÉÔ‚3Î˰– Æư[ºN0±\ˆB½Ú¼n4åĂŸªeEvÚRÇiJ –9ÁâÑ¿à?zFÓ{ˆL/äRuª•¦ú.êJíâF8e? cI›ăÁgwmrï-‹ `ă– ’ (³®pQºé¿œ°Åj*Ă2,?ư,ơ†â2üι½Ơ·$*J!4êc0ûF?T™—äft´¡²›ÆĂ¡F>j;- /,lxæb]è #Ö³‹Ô !©Œ00F"qtª‰\î³â9qîê·«„bQaƯéÆª5S˜qˆ*£ñc<›ó²4Å¿‡-ôeVëE!‘îT~‘̉7Àn6™₫:QĂ²èp:Ô=¸D¿×oô«68k%à́¬ñ\yŒßƒg q¶Ä/â« CäÁD aÜ(¹°íaÇ$ßzërŒÔđi(x´Ơ¹æÛnÓ›’?Áï1̣¿ó¬£uÆ77“í\êƒåñÓj}¥'^I)Í̀%M‘èÅúnƠAKr†©F1®RYΈt”S‘®R5f̃¡»Ửó•q¼:AcÁIN#}{Ï×Xư¼i .´ơ´È[èư_ä¼¼î[¥|Ö)ăàËoV‚•>øÖw˜₫¬ßÄßNœ}©5_{d­J2®Môüư28y»·ºÓY¾Yµî2g‡‘§‚rqÈ_yù%è÷tGñÛÊöÊÊosƯ{F×wă„@ƒŒæ©>M©½P‰̉ ŒÍ̀qµgW›±*ß1—ŸÇMi¶¶"@»“"({áAkºR9nnxĐîo¡Y,¶UNÖ³ö16PD‡û“<>QqBÏœôA'“Ï¥ớ&(éñ₫¶ï5›Œö›3Ëâsüú³]º¯¢R”X{¹cVFohÚ¤û₫ˆr—·@ûW6}öѤäa+‹$fÄ/Đ2éøÛpE‡¤T̉ÂxeµÍ UƠMPÊ*¢¦1}Óẹ†.’«7•hz™₫̣\ Çp÷Y‰Wœ…¬§² ơÈ)ùü…7ÛivGf]©0ÿ´˜+ c'…$‚F,T}°yp ̣̉ơD¿7™8Êvçd¼¨Åx°×‡Ç°Q íÉ Ñ†”(È1±<»±"Ê55̉äÔk|EÊÆ‰ÆF²Í;Ề(huæÎ¯7xuúN–4 0ªØ“́'Îz7% ̃Ọ̈^æl/’ îjÛNämˆ)g³¿œ+?ÿmÏÑ£ ½ßQ¼6£ú|âöÂ5QÑ-&­î?®ĂƠi[Äq─èF <;áiđĐŸ> ^‘NÍ8¬L´âĐ(>"ͪŸNú4•2?\?ô뇰º¥ÿ†å–ÎT‰†¯`ËÁv_ û@5Ú¡9J ‚ê°DÙ1j~ £¼³,Ûí"Èøa¢,ѵk](ûœ¹Û¬́}‘XuË@ŸUƒ 1‹æå¸ûOT8Y¥û]Tïûît—q` =̃É€.t‰P®Pz÷g9¤!4ŸƠºíU`a™ĂM­3>§ Sú³'µ9CÊy_éGå‘ ×]Çj0ŤïUĂM¦gp¹ÊCSs€LÊ>”#.®ënev®TÚd‹{ˆF…°3¸í% íÀÁ¨d‚ädĐY"­zyKï«ơơiJƒ́¹çÉÁ›ƠĂHº̣|ïù6àj´uÚ‰¡¹¢+˪{Å“`{Mæ-FB=:›$©L.–ü|%ö̃I?|äo–i+2DoƯúÖ€ĐâçC|NAOO%•c×a”ó” M¯·ÛĂEù›HKâØ*g×èÉ$ÓèúE>'l‘ZMk›öàÔQu SÏƠe6i¤„ú©ë•cÆă©8•m*«2­;±T-„óO帑©6-Æ›Îx5õ ÇÜR̃ †‡·Ùßđu é‰ßµÖ̀KÀù¹Êî'ÇÈ+NcfÄÁÜßæ1Ü7́‰–xZS‡‚BO20™æq=̣‰aGi¬ uœÈT}ñªEc0ư& ]¨«¥éÊ*­2ĂcÜÇ֬߮ÑWT ¿ø.̣°đ~Y>nä=J¨¨éƒGÇÛ;Ü 7¼›‘° EẮ];¢êáßuh̀Q«+ÄÊU¹,ÍѪ\˜@è5æ1†F}?¢“Öœ}đª? ‘đI‚Î73Hr̉“H\^7r\₫gPb 3«×(g÷í= Ú²F´¡áfIÖ¸Åÿ0z̃të|Q¹gY"K@ÀHºW]ióÍSÿ`¹ê½Ùü›­ßF¦a6s̀Áæd„O4ä¤÷´I’̣C!¼£)ạ̊̉WÏŒ«æ;{Ñ1CƠri‘xˆ•kÉp/e£•›_3/u¯ßæSç"‡=¾¶½Å$Ë9ŒóêÄÇ2N”¾ñ€i«ƯÄÓ„–)ëX?˜÷O”ľ£cOa¥A†v’”;"ê×Ï]Ôt¬/ÂPo¿øă¼8ƯŸ,^ú|çænFV‡”OVèVóBZ‘4¾0’¨•D¬>%c'cu‘moD®–6m„m—:“—™ûêØhD/“B;PÏ ’ä k“ Íñ9ÇÖ,¢Á~˜©³Œ;tỊ̈m:´ eו Á¶{(?›&ÈÄ~>Á8óƠ¦̀ÿ…§ˆÆ̉Êo¹mX~cë₫́ ¾PY·Ñ©—́+Ëíh¿)=ú q³x¾Ăº³ª.",X&»ÿ́1ÆälPV‰C©Ë<¼­½Ó¡M?³+!p¿º…xÄÍipmjⵌˆc’uHJđ6éºÀ¾uk •̀åé³¾2aÍ/ )"e-‹·¶•i™£¹ăÈóŒmFÁñúYƠUyƠ_7X1…ËgFm̉~­œ8ƒ®>?ØÎkp̃Ét¨œ_åMy³Iăª'7Ơ*ä~SrN"f‹u*K¢î~Bv¡ï1cßÇ=™ËïUC]€ÿ•K½›ï±í?‘«`9Ÿ`ǾÄ kb?©Â=J !xÏ'(s'´Ëœ‹Ú\¼“s_…h.K i«°˜^QgŒÈ­˜× ỢLdßó+u 6uh)dRƯry@ª´3GYM¥Ô“ùh›Æ.–89™üûÍÚU´Á¯ø,MM^Ç"ßø×W—!EᆃèŒÎ„_†³Ew Eưt™`‘f̣Åôδ23…Ä—Ü®œ{öt _†FWç#gbLy°¶‘ײ±/.‘Åp¥Î§IÜUŸđz0;é!Êá;øÛđR;#H7᜶|í0Ă¥6qDTđÅ[ơëmBƠ£i6’Q´à¤u3%ù‘ûÆ‘Ùße›²&‰©ºË‹æÇ₫Yet™;_© ae»ÿ«2›oZ¾ s9‰,\E´±¸›­xđÈ=“Vcí’f́KênêUÓy™k$#º—´Ă Êc 4kJWFú3V-_¸óˆ£›vÿjµ—Ơ§N¡}ä’ µTj_ă¯ ô#k|túpU2‡&Á1ălÁf̉çư9KùÏJ$^Ú5=ç9°́ë›üÍÛƠ®ÑN46Eơ‰P`áüăovĐ. #_ö†éá-–~ŒÖV$`D `'¡ºBCƒJT5t·X P >·3yÄjËË`ä¬"Ẹ ¤ư¶+%̉MÈ%x½zeîrjgø"»\₫‹:ăZì™ùÈ?(|& ñ…ÇB:׳̀W,ï”îVΟï¿P,—4È…sÓ÷´ÔfáíÑ.™w>‹ªz:“†̃ÉƠÜGxtÉßú.™>9«?̣̀ D§ª™ßƠ½EIẵcæ?›bf¿ă~–„‘P®íËƠ¥~í*‰M5Pi=,/ƯăüÑ"ư¥g±]µq¡1«̃Ó@oä«{ÔƠ×§¢„°V0Xpä,ñ6¸Z¥oeƯÊ£V2ôB˜=û^êépî”Ú· y*śQ‹#ZˆƒUGJ½û¾€IN…*VÉ›¶—9]KEY®“ÆS¾ ¶g=ÙP­)kÅ*u¨»*£3 h™m³P¨€ƒ¦å¦Ôơ­|¾ÛüưK̀°ÇỸO₫Œâ:‚ơ×WÈŒƒ»8NBö³¬tơ绋1_l;dé‡"¢Ơ…fÄFvß̀¯̉eSçü—ơ…xâMđé^HømJ+!̣*ưå(×­ §r̃æç´±ĂP®,§éyØ¤æ Æ£¡,_¢å¼†’{ÖÔw´b$˜½¤Ê[̀S“UÆ…KY/ĂfT“[BäLÂL¸n)….‡f±C4o;+5¾ bç¥Ä±¢]£€qADHb1sׄZKƒt¸Aë}J¯¹×·J2nr¦34áÑêY_eºd*¯>̉M0èªDjOàå¸ïXlà7–…›–ù†:c[Kq}M§œ”_«ơæUê4l™̣>æiÚ°Δ¼…ÑÔŒàK÷º̉a³ơæ|Œ̃p±˜ûâ‚1o+™“:"đ’’₫R9è`̃ Ơ=Ÿ|ù;„-¹MIœˆy’†éB/VhÇ6~ôüñíA`§ ŒưGgdÖ‘QzǻÜ̉a)2"/?4Ü©b0„he·¦́œ¤_Müq«‹Yëü·1åm4W$lÈk Ñ ¹ưmw¢ˆ3Yøs)Û¬«#̉Pöå˜̉^ζôXrùÆ [¥ÂÁ/ø^²ẠÏ’Ú Edp&¼úÔ{¨îÉ+roàZ: ̃Ö×F)©GdÔmU$}‘6¦ V´{; đóy/η ¤ éR”¼ B#)¾Ï‚¢vøôñÛ̉í·̉ïe^ Bđ¦Á=ŒvĐÅ̉¸Œọ́D?º£2=Ó¶6m!(Jè²È!Z₫9€âfmµîœª<­0%Ư¤›̉{qsª̣o¯¹pwñû‹›ơ‰ă‹\\˜ø®à+ï(CåE„̉¡åêGåĂàåDß®CdŸI9yƠđiưàfAÆ•–N‡+¥êë…;ÈïfÛp€~MQơ}Î×ëÅÓRE•‰Bƒ|̣·R²ơ†êyë¡Ös.•§ưLÖ䱺°S S:(ï₫M3Â…ĐOáåÛX/ú%üÎ~kĂ²¯,ˆ‘Ï9>Đ™øYMS%cô µĂX•ôhDœ÷ŸÖ:‹̀)‘ăµ2o Ï<& >èw2̣¹µC)ÎÖ¼‰µd‚ >Úí*¸=v@ç–ä]Êè£G+±±àơ¸ß®£S,ëÅQ± ăĂI£v2ÙØæáY&O`¤x@Q½~j̣jçeW¥S·ÆÔî´¸U:ƒK… éuư”Â'¾$~I­†ă kœŒP!2£¢ŒÁ,wTÖiçÂú¡Œ;6²€~ơ™ÊÁ“J»µ@öYAaa=ˆ̉¨K%^ H]=¸$¥(Lø›×^Å0æ¬ÙóQ4ŒaYĐôs~|¾qcû©C©Ï$٨Ȼ}–vƳ}•ÓØDú+ÚJ娑QØYOÍO*T”‚Ê„x:đ÷_ă4‚uùZwpÜpÆ[º5rr¢ù÷JVŸ̃0µªŒ¸í>–°Öû³ÍĨ!?ÉÊâF¦ñg?ŒưŒ6Dz(êN€[FAƠƯê1éà §'&cánƠ[»&Ka‰ ù÷’#Ë£‚₫娥tÏ^¯88”ưúíËy±ó·÷úßç̀uaSÎq†].#¯́së¤$Ï·é®®>́}JZˆø\ƯtÁ₫ză ØlIľ!,²7b‹2ü eưÆŸŸ“ ø=¹v‘¼wPâFiû,q]B¶­çïµZĂ²?ÙƠ†€ åơnÙá̃–8“hÛ¦ùl)%s9á8CZn„ ¾ŸÇ±˜ªÍ{+•Ûú<¦,>Çv¯1‚g¨›ƒRl³ÛLAî}5lj1&B³̣#–[ÜÂ÷ÂÏS¯Uê6ˆÔ±Ë^çV̀uñ=¸́măØ¹:km©ƒ̣IQ|»t #:ñ°₫ô„êÆy(úÅóa39´¿í«"°Qç³¢ïƒÊ#´”Ụđˆ.1ü…PñYqkÖ/dw?¬£‹O„Ç ¦ f]°WŒ1ul₫¯öZ]®KßK¢âßm®Ù=}„¼q¨Uá:“u@{›Kûi» ]ígĂ NK¹? ñ3h\öÁ¤ijĂƠa›)3„IJïÚcVªˆv\(úÑY¨¢~BCP{Ö‰C£1êf‹Êă÷lG‰t›4<³qĂ-Ø,"‹?"Kx¾Ç¤¿“ˆSLĐs0¤]Å¡G²‹·é¤Â)¹‚;̃ƒâçrbú¼VÓ_øƠÚé2P€ÛƒGw$q N<9^‡£51¡V-ÅMS3Ó‚•uơ ƒ U4H†Mù›ư‘h̉.QƠ¾q+÷K”̣¬‘œÂṼ&’¹Üjc9ÏÛoÀƠB˦@Ë́b-[&«₫h›Íù_Ï̀Ơ¡Đ¸Å|1¥¢èäE‡  b_);Â!äEsơeRœDvêĐVöÊC ̀¹V̀d\„pŒ:à?½‰[vÔñj‹ÓE䌔ƯŸi ø,Ë0"â/ß–¥SçÆj8fp}ÓƯZ¹sMW̃Úç)’TÓ1¾ c~ûßRÓ#®}ªÑ.½₫‰yƒåº‡z™¯[‘¥Y¥Ï¾‹¡ß‘=q¨3:ëë*§R¼waú¼ÿ¸» /Pp~¸"̉æjh~u“™3¬³ßO©×Ú´”>y÷aToí¼îËHf?;v²dañđÛÁ?Í[Ä·4>M<¨ß1R,f]îÆçÊJ¬î‡î,¡*áI$2ó•ñ+öºzw@RôF×aÂŒ¢]ĐÀ:́“Ru ăÂRÆ2¼̀±¯¤›&́èÀÛftîë%œAv…­ÍÊÉíë™ñ¹Sëñ”†̣ƒËî)œyÍ‚¼ çÊ!ñQ®d@lTˆL·›„NŸ/vJø.[x{Û6”ơ 3Bñg©~Ư§ÎÜÏăͳºƠb[ Íû…$Ó̉dâ(l]°LwÁö6›g ¬ _%ˆáÈvÄUÅơ™˜̉¾‘ .»Kâ­$©­¼#…¸ÑÁâªƠ›á°c]Ù’^XÖ¤ [b–øôŒmjœDèçƠ$Q•™̉b×ÛsÍé×qü èùé87•ÄËj;•*(YçYûÔT gùæn•e†"³ÿêùÈϧZz2àN¡æ ckyê·™N*˜«YT¿Œ@G‡Ô虆P±œs¥ºÄ3đT¤®`³¶ª)Œ¾?j/T‰s´SG:Ô„ß%«åëø¦œĐƠ_™’ÿ=½Ø{)]éwÍùd¿µ¢ ÷–¢yå©ïXv@úûPŒó«Ñwt[ 4|iÖÜ[ ăí±†¿iæ± ‘ÄÆ»¾ËÑÜgíî̀~ARưk(­̣ßéϳhl‡áQ˜™bṂù[åuñĐ™lâ­ĐàFôåæHÛ[K‘.T„;˜ÊIFc ]axyvzS&o¢áœæ«r)ZĐ₫ạDŒC-́♿qÛ‘¡_¹°Ö4}3TY!]G¿ê— iu/kÉôú~ñ<]÷OO@y¼/—øŒ̀]*=3P8ôZÎÇkíU» ̃¸V×ÿŒ=₫¬í¼/́ê4½b£w'°µâ[©̃êâ]ÎĐ}›9WQ¹lƯ#% ~ë—µ Û*hÍ[ÙçX‘ßÔOÅÇ;[¢d7Áµùú’gV¦£*Ó¥0NÄÄ<ëX‹X¸‚È €Ô "'P>}VÔˆhÂó¢´Í‚ƠOA½ĐѺ©̉çÂp ½ßï‘h#X1È=lFèÏöwºRè0îœGÛU ™¨,Í©¶6k°.̀ÙĂ™$ÂÖ!MÄ‘XpáK̃¿ëơú0gmœ;4ÈA²,â®¶l«÷;T7—kọ́’²¿±Ê.¬(Üë™W­‡\’2.#^i;̉¹;FĂúÎëΓŸ,²fDû§}™æ?Ïó(SQ4—Ñ;e-TÔ·éC¸Ÿ°ÖDƒ?™œß¹Ï&h†H*·­ÁÆÖ%,„ƒ¯ÛɨÅÅ©ÇkÖ×¢L{- DùÚŸZQ? ]PHÓ¢5QQDo€p€7µ¨³c€w«ÚùWRªU{¹»đæÛ‘€äđF̣Ϻk¾¢ë»e¿a]N ÔPZ|×i™FƯ‡‘ơ±nê…DÓ„†§%‹¢n@ZtÎM(jmNN!è9! 7Ga:VÜƯøI°N¯ô×–?‡?SȽ ₫~©“­T·E7# ÆÂßîĂup%ƒÙ3Ê <o¸$«Ø$Ê~ŸTjPµZ¾÷ÖIn}y’L#–*;}CH¼)‚Aªơ!ÂWä.³ƒ¶o¥Ï\đaˆà=Pí̃3Ï[ơu¿ûćMá½Ë”î"”ÉR˜}{‡†‰·æÔÀÍe×çT‰đ‚ă¯s‘̣’+Çæb‰9Çư%­WưgLi"e”GZ Ï<¡‡?ë́Đs?0đ,júFºÛKa´(”f̉ZÛ+N»)X퉩Ö-æƠ₫ưÉó»R¼Đ°¡E\í69ªúÅÙ¸¸ÇÓ|·tÅÁ‹3Œd™aqf«k2áL Íz(\_z…•Rº:ÿó̃|w·dË®Ä̉Y»lßA Ö‚]™ù₫8^à ‡SËÄaÿM½¶yA³.Ư™f^ÁæE¸•úUÁLA`‚Mdë › ¾»TÙ·ÆÉ¥ Ríö$V6·œYG {⪡wªF=tùÔac¢3‡:t˜ö庨º®Ô"ÛªÙè=µ¸Ô/ù₫rméq•ªN@ Ïn§B¢t-;ô°6Úoíđº­;́9$Úă]ù§E>ÜnX O)JÄ3;IK(²Né‘́̉[~¥K/ƒ̉!œj0œ‹p­y¥ü6…D[&º•­Zöá́@½#́°T¬ï2Œ=çh¬AÑí¯ij<_×u:÷¢gY‰ºu&ö¤ —éu(ô H[‚k N—ÛD!ơ\K9}ˆYăÉnt³v/³F.å…^Œ¾vmU*e¨É R/g\åkü@Æ?ˆ™¯ÿ‰;éäÖó!/c`+È­;+„;n8Ê\ưéB/Û¡– ÄrrQYEL’;ØÂöpz±̀…k»å•Ôë- !Á¾©›)î܇ψê;"y ÛYÆ]2 Ê3ä{ˆb¨fAn"‹·ÊD«ü,-v>†äïè‰ÅDŒÍNÛëÂó¶ µ¸Û È2;ÏIô{Œ "[Ñ‹jVŸL&ˆ̣,ơK{YIjöäí+XQ%¼h0óhˆ¾„Ê{î‚ â5÷_} ÇÅ´RU(çéçwP¼8†^Èv˜Nû́±ë¾ºO´æŒ́WÀ^Ʀª5ˆr,’₫yˆÛ°0¥ø^‘Zcä4VÜu?½†(½FƯaåOŸàpܾ¹·*É ̃r `êD#kU*{UA-~îÇoA)FAƠ˜ƒz2ư9àÀÚBÏ¥_‚²Ư\¢b•ă\¾́‰0Sæ"q$¬!9ăÜ?¸úà¼xppy…`ăTÖ$èë=­XFX´kÅÈÊ_•ØÆÇ8ÁåÎ˱íü®|37±2FÀ¦lÁ£ư… Ur₫Ü…]̃ÙB¤Ê—z}̉Râ»oÛ&€¡=¾pÄäcêk#?ëϺ+— Í/DÍ‘,½-r”ZûçùœăYÔ{†EU_ù$T¸BX¶ă»­·¬̣̃Ơ›EÙÚÀc0SÓºÎÔ'kA÷-l•µ’¤ĂkZKªö°æ)†µRiæ|ѤôÆäoƠy•NúbqT²ox„Qzï₫ËXÊToºÑgq@"j(Đ ©»a-Í¿(èÆ÷đÔ¿ÔÇ}rƒv–|?®ÍGL#AôwdÏèmá«̃Ë+¨ƒSke[¤.”₫ơmT3Ă₫ËíƠdv*¸‰K¢́OÉÄ)…¦Ï“´MƠ庴k­Wcđa·]Dmâ +j úD`Ø–·i}Ûê»ÊeK¸º$5 J9u5®Ú&¯$» ¼áM-ª»ŸvưÓ÷¿€[¿ƠüO–¶|̃k‹Å †¢·mZûf!Ù0F,i ਕS†g`èB\.â(>ƒU\ ¤`ü'K³˜l+• ÍnÈrO5]Dy đçñ´â”Îk×Ö5Óz17\>™',S<@ æƠd́Ÿ}H]kIĂ¿7ÜrYöEïz"gT›#:́鯣CXTÎăÄ KïU³\h».Ѧú,̣ưnĘ¡…4‡s‘ôäBí€wO»K 9V6œơa©Üê$¢íKC¶K…ÿ6SÿÛ‹ÁÔÂÉG=!I$đùt’ܦ`ïm>̉™øîZ#`ü½3À–ÄĂXkñÜ–óÈ>`´Â‰G[WXÊ‹Ó:ŸWñ‰„¿é—+àw"gß Áñ¸™ÿ I©«4YQënhú¯Y°Ûó:§´é½ûXhԘτTÅI îcÖ°?oË¡éXÓB ó^Ng.‘Ú@̀ƒgpÇÎXï0ŸîÛÆÉ/§b7h·ÄêKqoúïç5 ±2>ƬºçŹ•jTbÜ–âă8eC$Ïóê¡×iƯ©O¤VÍ)z\ÄÍ~7b™¸@"ÈËŸ<©̣Êm u™Œ¤“Ni g;˜˜øÎœưÎuơÅƠC̀z‡MáXĐO¡Û­đ°Ë\«ú\`n*u畲á-¼’ơl‚‡áLơEÛØñÓ…x)ơñƠÉnăˆ̃¦|Ÿ°wñ3)¾¨í:V½TÇ„øø›O%S$!{¬Há}MS>YÔ{Hz(ưVTqmK…ö¤Œª^fq2Æ@ÎlÜÓưü£NÀ[øË ~(.‰Ơ|ä¬%₫y’%ÚìOß}û ºåȳÔV±̣ûÅ¡¨6Û ‘“¢ŸzDq{ĐL9P[´@‰“× æëÔ¶4T¬™µ$M‰¶&‹¨ǿ;ç–ûđƯÁ!ú±!»ˆ7~q¨B*4ÁÀúé9Ä0ú¯CÅN€c˸ơYF¨~'Ç­¢T@oîƯĂ‚§hÁĂéNḳÅœ™¿ùw¼̀OÍ)qR. øtZ'·^ô·÷9ă•ưßAö›r}(£«‚À±Ô;¢­cưN!p‰Tă°”ÎoÛ -ØĂÛ0)ç»$´̣×ǗGÄmlÀËw‰ô¡H‚I9{[aV’¥a…™ưñp~˜n1qº¸—P¹2£îC®6ûW¥Ư™o)<œ2 ‹×àt ?SĐù0ÁÚ-s9g •°e•û×J–x¡³!ixùƠá‡'É9`8n(ʹ{cđØ^…yüæ~>•gñ-­I± z]!ËQ̉ ऩè VØé¬*5Ç6gߘ::êl?ŸÛ5:g9±EêºlŒ Ṣ¢/Â@ŸWÁ“ö7?w#WwMoT^D%êI1 ¤”%4Ra#‘mwJü¦?y¦]ö¸:Å =§u‡NGW}HMt¹¥bˆ‘I=fêÛß±"†"MXX`\xk)S…÷nẼvÈT´ó̀¥ 3÷Yƒæ̣ÉtyCoÍ{Ú+^Œ`3ZÊ÷ÿT¨1:*Äj@5ê¨í5aóx„r¤ªỵ̈3¿y-^ 'ø³Â'̃pºqÏÉĂ„ßMÈp#•Û{™W*ưH$n^îWa2’!3¶G;¾3ËŸ@¡nä÷+Ơ›Ÿñ2£ÈA«p—t•ZM„ô—  WÇ"Ë—»ÁÁ̉kTI¹¥÷Ûê;•I5$?Wr¡ÚŸèzzTü¨Ó́Cëøkư ø<–“‡:ñ›"4pÜzö1¨»è,*º.*”’˜ĺç5‡-Ư‡¸Ÿô´æ$ ;]ÎâÏ_]†(Ÿ’ÜU–—¨¢¿>,¦Ül¹1’Ç »,Æ}« #GHηfú]…b#“D\§ûë%‘̀@ØñMF¯á39ˆLIØ ̀\»9Ç‹áV;—₫vFx¸¶đ1›­‚Da.µ_¦!â+éL‡•ơB ơ½—éà[ScN.t±₫} \›Íµ¢Gí wL‰ƠĂ{({¡æí§¿×¦EQ¾sn/ϹVđñAưyëٌ͓}B~đ»HAs¹²¾µ€ụ̈n"·€ôÏ-̉åUü'ûå „ˆ’£¹gËçk’<Œ# 3Z'¡ºc3‘5Ãèʃ¡Ú›ÎSw ÷Ơz¤Ê³;#Cd®Đ=²ó›¢Ê:Lx/œ.]?ô$¢±¡¹,Âa­×C/8D½) ÊdơÄvûÉl‘u •sËPzÀéñôy…ɽ¹Ÿ/RđػڡôÁ´đ‰0c #¼ƠÅ»ëøœO›~b€]סfG Üjµ +@°u€ î sÿ…L¨pÛ/¿AF°1ê—C‡@…6óÅ¢Ơ¡èUå`¤ (⻂z 7Å«+ăäǸ¹̃Œ9 8n“hUŸ1Ù“ƯæÍtư²©»¥@pB­?~hƒđ½ppÏûy§É”%Ö7'ü7NÉ”!<7 ©ˆOª®î’àqăp{Ra_‘n×î¾Ñï½Ư­44- Ü8…̀¢]ưvÁ Qˆóq‘Có1y{ ' u-™ïvtm _sˆ=ŸđJÚ/»’@§¸T‚·‚Äv®\sß`C±ưĐơ¬ ¡S‰Éf½¦æ˜k¤”¢^â èư5è[[p¿œ”¸ç%F’P{ØW[§$®Ç••ă=>̉k„Ă÷²E¬îÅÿ‚àSSÿD6Lèe \TAk÷®¢/.('̉̉BFí*Aꮲ “zT"ăđê|yM,º?ÂƯ÷Üx9˜˜í'àc¨±̣x89V¼”€-OAƒ? 17eĂÜhELh'§YKºú‹ØÁ„VIuU»ă½Vå̃Xns[³«-Ø”=3ÇáCÏé]º†FÊh¤‡2@¡¬eGư¤ÁôĂí˜ z!pÇ»ÉF*VÂ{ê¢Dăè‰^øº‰Am!IØQ환t•ùñ¬¥»â £5ù~¥çˆ\ơ–êev5y(¶=ÍÍåŒ,ÚÖÎèÛăL±ó»Ÿ›Üü‘8œƯ†‚ư‡*°-rk}üË́…˜§‹ú™ÍơénÎ:Ê i:Í&Óp‚S~ á"ØÓ̀ZUÙ¨–À-ï ˆPÉ´cÚ¬ïÿm3]Đ ¨ßơ/'̀S—0ª…âq¯ƒ?Û@Ư- ) úªĂÊbíL—đYû'ˆó4xî—¥„£₫êsƠT²®Æ9ha»ưư¢F̀¼}×¥¢ûà#u¯öä9É̉Çrñ& ̀§n=§p/ø¼Àø…%g7¹«²'ó‡₫ ®’báp_zf|•>/NÄÈÅ[ÖÀ?*QU2¢-‹KÔ]QCXˆ¹ÎGªÛjùúy|HÁö ¬)aŒ*$ùOl«xß WŸŸ#2­àpÜÄïH»°QD€Ó+0äƠBî+Ê1éBgØi‘­µ|ÓB`kÙ!v­“ưäw¦;)Ư±”Mó^*ơ9Ö‘̀%Úï¯1oˆK|ov)Tcªh=÷pª›Ư“p°lÍͪÓ"Í‚‚D% 7a₫R {uQÜLÖÊ)™,àßèåñæ¤uO“&™a¦!+Æ‚Y»;U&ơÿbÅ$á–ųZKûùj̀n8¼^iúj©ƒ£¾ưÿ ëó¿jîˆ0¦ÍteÖ£3·̣b·ọ̈¿ÎLµÑ̉ïRØ»1ú\ (Ä¥‰îă!đÅñ£O[¶̃†<¢WƠåo‰QŒ¥Í̀´dƯÖ…Hûi'*  L3’ÊZï÷›&x4®úO[u}î¦ø̣E¦¼½[Á£%¸!miË9½'CLǵV¸â<Ù¬‘ ¬¹Í~_Œw,á¯2ô?Ÿ,ùºƠM­Éđá°&ơpÏ<Ư,^Óµ¦ơѦ₫>¿C§£ ‹‘"¦ƯW YAø3çe“é§"EgÖ„g¿n´¾ăª5I³øf̀%Û`x²ï“ÂX?|N³çyvo‡ØËöH N.\J¼IÑ̃,á©=˜Rÿ-VÉ·<ʈ¡oÁüqÖ‰’â®̣)ÈcäƯ®em̉[c¸ƯÖjÄ͵ -̀:«Àç¨-á}ï̉a2o’̃»º6 AÛxVߦ¨ªfCˆ}•-[˜é£<.tá=1ä<œÏû6?ºÔPê¬ïªöŸWh£›ZËVQ€\”₫«©·l„äóTC×ÊûoÖZK'²9y0hâ°)±ƒ“,ªúÁ1”hTÆ8œg—^‰>ö"×ßƯ˜•³Cë‘Øï8.ÆZ›ÏđÉ&@̉lÔ®́u€JíêeoÅσe´c•Q ëX¾§û ëĐJ$83¥6db@m#ßưE5ÊÁÿfxî/åÍø¹‹w!´xNÚHYḍ“¬9rSC€£%K¹=qø¹¾K¥ÀÁ ½oz(#«•!5müªQÔéÂÛÙÊ÷ hXYÈêɶ(¿c'+„/J÷R}¥ ù¥¤ØQ²Km   7®Đ™@DN C¶– ‡1ÊQ?™EĐgĂ`fYN:p´‹q°Ç$ă3ÔGέ̃2×¶Oºµ¼KI:A—^‹êµè4ÙÄ>Åâw]`ÖBa€Ṽº§p­̀ñETHióï©vñ†ËŒÖ¢L$§`²ï×ÎêH¼k¸ï£ñ®vû´đjáêư:Z‡ưĂK‡”úÈt¹èR¤ê ƒ„?œ 7V&UṆ̃HéÉi:(OÖZå;{γ+¦¦đËPé¼ ¹e\H¯¸ˆ_k>ÜIéI:É4 ½T]½ fl÷4åÜnÉ«V¯ˆ±‚"CÇÈ·rW¡ü“˜;wÅb°¸U*“,jª°ÛEô"Åß~ùÎFL—#ªâ©ụ̈{~QSAHHÓ—j¨8R;—ôñëfŸ>¸‡:™&jÄjÓ倖U|₫’är£Ö}¯ÚÅÏ}đ †c÷è~Ú;¦fnê₫BÑÛ}r Ưˆi]Ỗ™à¨À…CñQ»†…8*µ¾„̉i ÷àɹJN½Dœ2ÊëùăßwnPbµ.¸$à¦?À¸[ËØ¹¡'Í—-'í ÅÓævzvâ¯ùÉœÀ„-*j‘TŒ ÖO;đ,bàߺ@ÁuׄP“l¦£›M-ĐHŒäĂ«k,öl¨Í€Eùà™C„üâäYªj}gG»ë7F¯Îܲ†ˆx2”¹¸ÙEجqh³ “᪅ÏÀO-‚ŒŸx½äñ(R,ÉH\ªÓ\°Duü§QtÚ{å‰=±`§ûă9Bµj™€Ó*û_—î+­45NP|Ă:í. ÏŸí™= ô&—ạ̀¾ICSn³¦-ó£̉ƒrˆuwh»Ÿ¯”"¡‘¾^±¹s¼H¢Ÿ‘́ö)’Ù7'5áü6ơé’Ư×åKß]wOàăE₫@¸zˆÀ°Ë·ưnÄñb2j̀îÉvfî‰]₫äÜ"ĂE~‹`-å$ơÂV…V'Œ¤}:%«³.Ü×Hv\sÉ=؇̃$ư%yz³³Hk©úé:ñw„Å̉Ë-QÖ­†Í(Î@H‚31đS·â¼º&ß©½¹úØ"•ƒ˜h~*í,ÑEEÓ:¯«åĐX$ÈÆmËL­Îçºhxû´èná33T’¦‰à¥PÍya·>&çb¤ñ1D…¬’ 0é^{ÚY°$ÀçÀ—ù’ÚÓ«'ÿÏüª‡Wg¶ŒtĂÅlÏȺ4ñ÷U¨¤&dBiM\É Đ6ëj4T…®r†å‚G·jàÿ YñöÔ₫ä­רDƒwy ?Çfñu–>2 ₫Gµ“pF"i\ó—̣đ^n#dQ}EFæXD%%·ü÷2m½@XAظ¾Ê{p7ä9_=Z> J¼§È¨¯8Ó–Q‹ˆª%,fó4 Ö †ÛÑÖ@X̃…Oÿü¿A¨o àR–‡*XŸp–É]LúÎ¥z­í-Êb<ơyù+œ]YñÅ7”èí4K,‰ÆÏtÜj™bÖUMƒ±CR…¼stJ<{ ×Hüưɦ9V:•ê¨Iˆ@YWöwk[k¬×°€ -j¤±º ²­€Oñ₫#7*¹Î̉\b˜“ëêJă]§¼3²Zs F«nèg₫Ùú¡~ü₫ˆ …>Xçw¥&;8=ꯠIÈaà±B¿Œx¥1p¿SºL¨×ê<ø.ŸjaÚ7G©̣}ÿî#ÁöqlxƯS^Ơ•kư-Ũ~G‘À ₫Ơ‚.ªfä¦ßø₫à1ó.è©íBöóQ /øúJY |‡†‚é´B́ ₫J‘¹¢&$››0³8èµî/Uă¥QñM1˜HĐecb©K»wwy¥dbß¾1̉âë72h"üju¶±6ĂqPbæ"—s¢9­ï‰ÏkèScP-ăo·…¸ï<ß̃Q–¬{íÙÉS›_v%ÔX;`̣ư¶h˜Ă+§BP̀/·Bê`Çjp[]t.“Ê Ơoó ¡Í-jJ |ö^Ü£@Ku×–gÙ>³ÏˆmNưÙë„íy½ëHMâ®”XơGédñÁœÆ1ÉN„&î°a)÷gº”*¤t–oH9^$m«übEà£î]CéíZ<@‚?Ÿ£wî—›™@>ÔæƯ怢ĂÇ-n¶ü›dHØw»v¼qƒxVK÷Ẉ:µ¸¦¾2¥Ó9Ó—BÀo %R:Ú#ŒĂuä9éR¾®‘d0v‰#AºK´GÛ Ë«l%NỖ‹_÷2uơ7đ«aïé!×GPn6ɸî“ĹEé[b­¯ß”±C¥Ë¨u#™"‡/Œl¤Ñ¡7̃ r̉ +ÏÔîl3"Gê7%ĐoEƠجµ'§„c—wùœXÓ@›Kí¡x$zå7« ÅBĂ¡«ĂIsèiđo ¤ÅKÈí¥èp§‹ÈûlR$oiî₫QÖMù@ Zâä+p̉£–J̉ ̃PZfå>l7QÜY–LpOàijÓïÅ]U®_ ®Í¹‘…ªj8EˆW–-[nŸH:·´{°ˆíç!&Zaó’ó{ư›P¬̉I(Æơ:4E»WGƠ¥ăk(voG”0#9H˜Ó #9·ç¦„¯ă_ôñ¿ídơ§IKƯ Ÿ́aźá¥ß_Đ$ƒ³A€;cµuú[d(”*n¬Íç:¯ë’6¥`7¯ˆSPzăDô €ëO@BöF?ôö|G×úQf»Ÿ7‹lOßÚTöÏ—Ó³ endstream endobj 2376 0 obj << /Length1 2285 /Length2 16134 /Length3 0 /Length 17486 /Filter /FlateDecode >> stream xÚŒöPœ[Ö ăîî4îî×àî.Ó¸[p·î® <@p îîîn—3gfræûÿª{««ºßgù³öZûm*2e5&QsS ”È•‰™• ® ¦ÍÆ`eå`feeG ¢R·vµ₫G@¥ tv±vñÿĂBÜhâú.“0q}7TpdỨl6n~6~VV;++ß œù&îÖæf€¬è‚@%îàèålmiåúç?Z3:ă¿Ü¢ö@gk3@ÁÄƠ hÿÑ̀Ä æ`f tơúŸ´V®®ü,,̀&ö.̀ΖBtŒkW+€*Đè́4üE hbü75f*€º•µËß 5 Wg à]`gm¹¼»¸̀΀÷́5y€’#ô·±üߌ€7ÀÆ̀ößpÿö₫+5è_Î&ffö& /k%ÀÂÚP’’gvơte˜€̀ÿ24±sqx÷7q7±¶31}7øWé&)Q€É;Ăós1s¶vtuav±¶û‹#Ë_ãÛ, 2w°·‚\]₫ªOÂÚhö̃w/–®-ÈÁäóda 2·ø‹†¹›#‹ÈÚÉ (#ño›w™%ĐÀÅÊÊÊĂÍ:€fV,%P÷r₫KÉö—øƒŸ£ƒ#ÀâĐÏÚø₫ƒàăbâ¸:»ư|₫©ø_„ÀÆ0·6s˜-­A¢¿‹ă÷ów¶öè±¾€ơ¯ÏŸ ̃'̀ÜdçơÇü_G̀¢¨£-'%ËđoÊÿU‰9x|˜¸8Ĺ\l66>+Àïă(›Xÿ»Ö?¾2 ßßå¾÷é?%»ÿ{hÿ½ t€ÿ¥èđ>¹@íŸA×gåb5{ÿbûÿ<îÿrùÿ7åEùôÿ[‘”›Ư¿ô´üÿèḾ­í¼₫mñ>¹n®ï[ àđ¾  ÿkªü{uǺ̀ÿ¯NÆƠä}DA–vÿm£µ‹”µ'Đ\ÙÚỜêïqù[®ñ×¢ÙYƒ€Ê.Ö]-&6VÖÿ£{ß.3Û÷ëĂå}&ÿ¥¾/Ïÿ¦”™9˜ÿµé\Ügg/Ö÷Qbçâø°½¯£9Đó_S `a9¸¾»̃Éù,œ₫:Qn.‹è_¢¿7€Éâ°ˆÿA¼‰?ˆÀ"ù_ÄĂ `‘úƒØ,̉€Eæâ°È₫Aïùäÿ ÷| Đ{¥ÿ"̃÷ Ê;€EơzÏ ö½gPÿƒ̃ùiüAï´ÿ‹ø̃ó™üAï:Ó?è=»ÙÑ_'Ăb₫øÎø_ø̃x–¿‡â¿́ï%½Ÿ•‰‹Ơ?œ̃‹¶ø‡É;²₫ƒă/è₫ éÜœÿáÿnbùøÎóOtÎwV^Vï÷ơ‹w™ơ?à;]ÛÀw¾vÿ€ï„íÿ@¶wÂBq½»‚̃çñú÷8üÉ₫î́đ?ê÷êÿ¨ßƒ9¾¿i@v@‹?Mâdû·ÔùzÇù̃MÇ÷‹Ááư~Ѳ8ư¾SÿGcØ̃yºü©ơ/tÿG#¸̃Í]̃¯Óÿfxgăb÷?gĂöôO ï׋«•3đ§ñÎÀƠĂáï1Ü₫ß›é₫ø̃ơ»·ç?à{x¯À÷^yÿ)î=’7ĐùïTÿ³êfnÎïÍrư×eü>[ÿÁÿz»@3„…Y³!6µ!m÷ßD =˜vƧ¨v´Ré˜|œÛƯQ`“éj2ƒÖœoE“»Ñ–·$ioDI_|~ÔÆ·$©´>ù>%ªŃ´"̀ÿÆé/<­ûE OĤ.²ëûâä«h ù¼S–*×ÉE9ó̃£WÚ³îWù̉HǾÊn ·âsù$S¬FŒ~`É4UiÖ 9Œ+1=ƹ'êôÍíFÎø©l"‚ßq,G‘î:{ÜĂŒ÷J¥:»K>%¾.1ä ÆÈµØ~,îœOiq¼lXt±±ál“P;ª‰çw²Ị̂áña¼£@ñrÔ­‰°x3•M*±Á;µœ<ŒÜ:’É6£•½ïèªéLç`á>[×eöđ´Ïv$!7´Â0ûáû)sÜóøù}¿øü'iê?¿ˆ$γ›æ¹êưô1ñD>é€à¹¿đ—Áeë]«ëœ©ÿ#¤0b³"Ëùc|’­5ĐWñf+NX;!g3̣}M¶Óå­G1ûÈ,XxÑP`÷A b}ÎI}Ç-d̃¼\8—nĂ/û5,÷EÁ®–ÿMïËѯ,1S á‘Jđ ‡ZR“”È|‚æpËë’;eb₫±ú‰²ÉÄó1óϾ2å¿OC?zD( VWŒ)$$ÎØ²*8´’ º"™G~_uÊ2ăpÏUO ¤ªă+ “7…8ăÑâW*ơcg§ mSd5éÚü¼µÊl`HƠxơ¨y»ØBx®§LØîù½©¿¡¥È,^D«9©¦¸»K”Û̃Ừ=-*|ig„æ̣³L!L¹é®±#ÎËBÍ«tc¶Ót}´Ç˜ÏØ1®ïVys ᛢ›ó,¼ ›UYÜLĐä€ÄØB^ËOåéhĂ?¼¦fRè®®i„m¦̉1o úÑ%Ê=ÿÛ­E¸Á̃;*ü3ƒ°­¤(³£̀_&°Í<[Êq Üñ¾–Цaè DqϧsÉ-M§×O1x?£K·ç±‚Óu8ëT&EñÏƠ` åƒăˆ!—åñÈhξ@Ïîäj½ưÈP5@nÈäë…ÖƠÍ ¶÷5Ău ÿ8$£o¦æJûr¸s‚t›‹Ïªÿb!”á 5? •ܨÔûæ·¸2z—QƠ… ù<„vˆfq—4đëO‹ïÁÈÏ,EfZ_ƒ%Rû_đKyÁƒ‡UûhơQKCZÆ0ó¡z&;ÓŸ)Ï1“È~“/_ñƠŨyt/ưÊ2— ¼¡x°ziCđ0ö Lôk[]ëœÅX” _4%t™jR~V§Mk-Ê¥86Ô æ77æù«»ƯÏ*Ơ±a'V’=ù›dPópïAÇ,Ov₫‚ela.×”Â5ÛåøÅñm¿Ÿ×ö¢Ơ±ô Œ]+ö(.aÍ$}§!¨éV±«yº“ÿ<¯D/r4Çœÿ·µölÍ‹ø“û¶ñ—sµ|ü̃v]áÀăzUǨÿú«Y.Æœ‚1|éz$&™Ÿ‘̣aœTaÙm•ôün*frc*́gR1¯7BAïúßI@ˆñ£µaŸ†P?:ƪ?nt–QĂøt8̀Wöû¶ûtëƯ‡±,60çïÉeÇ׿„t+NGV…ÇăFy7•uÁí÷`(́Ê×é¥Ü-„‰_øƯ­$»Œ´iû¼ÂïSaiùJöp͹f̣Wµ9Ë¡[¹0ÉâÏ‘´Å3`¾I’È̃ÆUt4¡éÏOhçaᵤÔWg,ɱúÚ—ưbóPTÆÎaù84}É*±v³G̉Ơ ›È<`dH!À½œ6v+.'eë“D aàwƯïlXœÏ,fë+£Ñq~³˜ePrÔ6pơp¥èÅ«êR Xå¯z¤¶“^VÁ>|Z€‘# 6=erÅ¥'K·u}Jơ-2©¨[¹ñÓˆÙwØ öăÄ`ªÀg/ }…zt5¾óç*±m3YÎ×̉%†Ïú\\áÉ[ îØz¡:ăơtØ{8rÛjE†Dơ₫ iU ÚOŒ¼Ô<&È}支_W’ ]Y´0ç½Æ;:{ñJà®*9›Uä|èGÁBµ$Ú̀…Z€‡‹º ÉÖ!L@TåỊ̈o¦ñ¾•·ĐäÜr±(̣¤ÊÚĂk̃¦(Å9ºaf“w~o'tT¸̣órJ́¨+Ơ›ëZÅéz„¦zà[»s@Ǹ¥’jůu[;¡ơÚ'SH«|AL_è:ŸÜ¾#t¹1`ÙƠ›ßls64{—™É»„'áÜ«ËÂèñCWº<‡îÆkE*̃G+`Ó· S„¶>;•·¸²f)F,ùâ€66bd2J–»Œ¼)vèjpă¤ß›]¹úE•%Í™³đhÿGá±4g,cNÊ#`à ÈEgpP¯Û¥uê9åZhBÿđµU'ÁƯÛM¼Â›M×lỉ<á1U‚®fÈÛb„ôæ€{SŒ°±ÿú¿,ĐQµo¤qơ>`“/£,&wxE@çN4đµ±êº"îkj½cc6˜÷̣±“‚÷[cÆ–‘øÂbƠ"$/%>&g±£,¨IÙƒP²¯äfœR±5dQ ÿ¥ô-‚ÜFºUỤ̂EÁ™`₫P²¦₫8kF₫™|Ÿ́˜̃!ƒ \C42q|‰Q˜£kË“'å‚›‚°óÍ„́*J0b‹bóéq0yĐ­7Ú4¿™%iMº³n™đQùN¿Lߨtck†̣ÖY°ƒnT8¥˜à/N ĂSLíđh§9—«l O¬qKUVWÄgB§I†¹EḾ‰Îf¹[rTé”j›,˜vĂĐek ‹­i[ù¨wV¾-eÙ¢æ.2Y`}Đè±7éEñb₫Ñ=|†Få2´æŸ¡ |ˆ¼Ÿ2 ;[Dàß¹4ao)À\^ö ÍƯْΙ͆©åï˳«|üåb²Ë»¿Đ!Ư2©eÑz-‹̃–·ÜqT4".`üă4IøôÆàÓƠŒ´Ÿ%‰‰/̉Ư†̉\£­Í™GÚKÍW¯@0©ĂÔUÇzv¬I½~2ô«ơ¸bâăB^ÂéJFƒàĐmœ_1ù7“¿›Jîåj„°5Nj?˜2“‡Ë9H±›&˜´ă¿ä¬ZpJTÚ~¦ơÙëå_F€Kkx]5`Ê6Í›$›ÎcÏy±¼saÀˈź3jpÉÈîS«ÅÍÚ'f4q-ơ²ÿ~11âüúƒª₫RÿÙ­(§h5:_Áo~©t€#GÂvÀÊ8V?ÇÙÍ\híâĂơQB£ÓHl)£‰43ÛÅŒéè{Rq₫£ûö {ẓRÚçmJdî‡ Ÿ×3¸ç½ÍêF})÷c-bÄÎOv§TĐz–ơÓh'¡6Ü₫EâˆÓØËäŸ?ÚÚ‰×y¡¶,S½’̉ư¦5jÍHe*±€a) ¥yU bMïù_é:µŸ”-’ZËä‡R爫gĐ{—ÿ2x*ßK¡»&µÎwåÔÍHÑ›6°ß‰ ÔœK\TzJ üT}ÓFg fưúá’ BV£/WÏ⛺6Ï4 3A¨Y8Nt œTăϯB>çø!¼÷>ÿÖHƯ†Í«½³ûM†̣u²Đç\8ÓO—­[Fw­ÅẶ=ͽ9ˆ^aåIÁ߮ǹP'TEX|,TÄ/ü*̀‡ºàænưç·œëÈj 9[_r&nZc,” N>u*L1̉0¦¢œr±,iùXÍ ²DN¤ǾƠ©ùM¾È†{#N¸„EÍ4nGm̀Úà—®Öù{gÈû8‰êƒ©NZQ̉Eó{+ªÉʯxÙf÷~éÿLÜĐGDB7©₫Ûÿ·œ.¤(ö£2+t|Œ¬2?­?ß&uOѪûÏMĂ7r¸`èºöpm®=BA+HÅÉ E´ùÚ2ªX6èÍYw¶eKwá½OœÜu<oqÈ^¯¯_~Úäo*q—¶c-t˜®¼í₫ˆwÍ“ºôºÜ­Û¹¹ >ó¹̣PÑcĐ’ưœïÔŒÀđcCñlËĸf£’´A²G,U•&®Ñ€ªª×A©áíN¿W Å--xË’C‹â'4è-#+ÿ…«(üI;êlfN”ùÖ¶ËG@y û«đ%‹i₫•™j}`ب >xë2= ‹7tYƠÍH=ë0­‰”ú”X¨hH]â&ă{óÂđ6ËZÖ@È`«{^UÑÍ]­áq£D.9÷@üûụ̈HP*¾G 4uB<Ô“ }ë1íF×Ç'(¶çz•”9é„w¸Ÿ¦Q¾₫稑 •¥9²k@‚éÖ¾œÖtÅ‘F®wØ%øm~ôbVX₫-£ à7đÔ~ÂN¨ñy¯jĂl« ¬ ÅN,w ̉;ôi7±C:S SˬƠ9₫7æAh$nŒp@·&£ù'p}ÊÅ•®Dêª]TX ¼?%Ëç¸èøDJÔSp"̃Kø˜”éÛ|h¢¡™åĐŒÊI"¥Đ8&í ™L‘Ü.‰£ă‚³Í£ <=›HJ¢,s’w èVúAó|â¡oIÛûdËÂ.ÓhISUâi*0"–ŒqëÛÿAg3±ºÓ®KÊg¾œû6s·ˆ“†Q(Øîˆ¨@×ÉIä›1N$–xô·SFnüEßK üưZ=ö₫2Ÿûæ‘]Ÿk£:¢¨÷á¶ËjÓ뢽I]–¬Ü MȤ®—#cfu= «,J@³8¿™™¾âI†‰³›¥+x́h d"ú"w̃ç5Ÿ¯zà±S´ñûÿnă^Í›ăüøđ­hÚÖùÂ_&L2®È₫zú"Ư½*²Æ”±[/Ư³<(pcM'T¤)uƯ™H·©‹æ‘”c˜ß¸H”G<̃_›Áh7µC•Bz[T³×Ơ JbƠ¹£ ~–ơÓ&} Ûô’÷µé6î· Ôo„GÎ:'ŵQßr©®&đ-áÀ.4´©­F#¸æ•:ö®×§µÆØ¿.âƯ'€£xKל<¬s'Ç*^^¼,ÚỖÈ„˜-o ĸ¥÷^Ē̵O°nâ~hKú}Ï< Ưja´íçØÙ©”ar¿ÀX;”†~–¨K à˜N{Ö…|]ÙT¤ÂYU1ôĂ[ îñÉ –¬áÏ· F^¤‰•~o’ñ-JFÈñŸỲ¨±+³¶ơ,ÄŸzÿ´oh Nq<.ÔùÛŸØ"¨04m9·~ü~ä’²¹ø¬[²SYÎ eđúÓ7_€¬ÛnĐă›a¡÷»Ün9Œc)pHo-Ü»å ¦ä,X祤5…qß|"\ÿª“Û!6ơ¤fz¾kÿd7/˜ôŒÚ$&E}‰—È'm½\$´hpØs -îVYÑ̉'éY–3DJqâ8²úM¿\ä­OP ruˆ¢Mºü·¹ø?‘ü°Fª¥ṬVù£Ơbp’”­Ô`qÆvƯ¼¤kX×óVà-Ơs̃}9—éi«L vC ¥OWø¹v¹ÙH~ÆÏ yä?–vG]ơ¶Đ ÿLP‘¯NÚ_Ád¬Ư$åq.¬•¶á ¡rhêÍ™¯Üªy|`—x³Ô>I…(ç/°<́™ºéæe¢Hq¡b†Ëûô@™¢gTÔ]Ợê©¡÷SÁ|ïäH¥#íuƠ¢>öwƒÿÊ Å0 µÁ¾Bˇ ú&îÄ›çMC…îI¯'ió7̣D%ÜdµT$r«ë‰Œé[ ÇŸ8$̣₫Z ¾.CæZ̉ÜƠµ^l°¦X°ÚœĐr̉Eµ½§<{3LÎ8hh‰œä ä1ÑÙ« B˜ä Ŕ̀₫àñr3àĂËAºÅ¿?x˜z^µá“=‡tk±Ø'wuö~•\ocs=ĂÁÇu7@àˆV˜9g0ä¾›¿³Ê₫ƠAV¯ ³.¯̃\ŒôÈîÄd‡ [>]Ă\a`Zíîü¡}ƒ+̣úûf‹w|aË̉vfĂ{´¶ßG9N´ JÄ́ˆ¥×1!is×tGXO‘.È)Ñ\©Pà¨ṭ¦vé †zvØÍŸF?‡ö˜lăt@‘Âôú±́.iăÂz<Øm±‹EVûA#̉~iTswƯM¾üe¨)j_¾o²CU}fPóƒ‰É@1tkö¬1Y‹ÏѲÇÀ^>—ú¥²₫¬hâÓ¡qaM–x¤c¸t ÿƯƒUÛáđÆÔ9µª/ 9䇟o»¾¤%n¤½NX!°ºU”¢%“̃øÎØ GT× oºËÑEAy¤”Ú¹T) Ñaú,éxŸ«èëTăB‰Ü,Zqdđ¬¢BtNÎâưÔ³É Ùéäæ”™‘…°́&R=¡Úđ.6¿ß=ü ñ¡:?v3ÂCs¬̉#FChhĂæ*đ7æ8br\;19ª²y2wPë?L£7Xï„“Ơxư¶¢·ÿI¤¿“B×z ̃/£Q )<ÄcÈÇTb×Ô.–g™áy&´-V›Àî¸A¢G‹s…g3g̉W“Z»8t± ~åd…Á¬B½®2›sÈ.À˜H”7œF¦¡‡!*ÿ^0©é·ÜƒƯ‚U¹’qѳ»¾‰đ’ ơ~_ớ]P®T̉ÅÙR”ÔÁu{°Ä‚}†‰Ywưj@4³‡ E¬ĂÏÂéñơê5@:,j+Ä>GØ “O1=$¢S*ƒ’k|†™K´̣”Ö¾BwÿöóÜzSo±àă=”Oü³‚̉%Û7çq£‹,SzEƯß& ˜7qlWëÈaïÈo :G+{«?cv˜®Ź́ÉZ¦wôL2xp8Æ ïÍÑz“†TÉU û6%3cÅжX®Üœ 4°ºñM¾!^'™ÑŸ–ç5́Ô€‡ÎR®`,|p&})Á?Læ­—zÖqâ/ụ̀¡gÅÄ*8Û̀Ơ5éo%·_₫Pf.gXø7]p½_ND3ÍmƯXÏè<>q,t.‡DáÓcNª₫6®`nØtđ!†Œ‘wÂöIiAѼà¸pÙIqâ[Q¯»à=%: /~>™8¶ơ> x#ˆ¢ZpÜite%¤¢â@K³R?Ö˜™¹±ö…2p¬HPEÖ̉ƒV–q†ºáº4z“î…©M ŸªßÏoz²{ÅÏñƒó*3¢($fÆ·'îÑó¾xÏĐ ĐóƠ]̃³8'G2ÈS&9µ¾‡Ÿë̃ÜnÓÓ~́{£"]&%åˆ3=8Á`^‰-5™µO ”•¥|Q9•L“iü\[|&ÏÓÅ!7g×UêäQÍ,{Y*uûk^XÏù†/£Ù¼9D²̉{7Yõ“Θ'‚ùKd‘±á0ókíîŒI¥ ׿̃ĐMé4=¶/n¶%ä)7pI¬ZÏ êœq|ÓÁæ¡ÉË=îÎ;EÄKA–MÛbQM}îNŒ9àkĨܽxÅÎË*$¤Å‡ $T±|.ËL̉́§²_ï”"y&'ùËRmŸ—ơûîăa(ß^ÖË_sN¢‡ÛƯ.¶Ô—¡?îL̉dçÍơ»Ưc˜²6ư0!AZèĂn²á„{5"¿óO-ơ·r₫ĂX;yá!ªÎÆ“UeĐ÷e^ư(86U*%w—âÎÔÁm’…ö£̀ăa .®»&Ă} ¹y/5ÿI4‹¨|wè½Đđˇ:Ï|&"ö#ñ!TàÅ%/qư‚!1‚àbCø₫sŒl>ê êÛG¹y•寏öÖaz’Ơ­ùđ/TÂñ$:v×rHÆ U\L'w­HIV_5̉†ăèÚ-X6tmñ_Ø̣u¶ï&ô öQ́ɽDÎơœ=kz)*dß“a(-̀]¼˜™o™QƒS]Dê1ߨv;¥ œè é^he¿Èuf¼ô*¬D¹ø{(urâñ¥î0±œḰ™sF$ {$÷!* 'V%]¡|.ˆ:¸3yKsb¿*4> Đ{’KÏIφôB¦ÇL’Ø ,%/yˆ—̃ƒg̃ÀI1/!.ư¾é¨N’î. ľœqˆ6|îœçÑ‹øáGAËÍOüÁ‰ŸI%¾&ĐÙĐơSÚç‰́*¾-SÁÜFî-xâlÖ&R…¬ŒæQ́˜C‘L´q¹_à’]Å?¬·‰·”¯×ÎD…{éèÓ¯EQÑÊ<í3¤¸« Vä̉=¯Ưúrn-vQ÷P‡¯́p§ó]búz}¾/è-:̉g>ÙŒ¶€QœaLƒàüư·@¤^vV«æaq5*yC¨v%>áó‹[‚Ô÷î7¶·f½>QRƒ&t²[AZ´Éú;ÄœÏvĂ¼ñeó`ƨ“©O\†0BƯ!'ÈJXÏcT–~)(AéWZ%ẼĐPâ•úŒ]ø,vkp>Ùº•hC×ÀÉ®dÓ5 ªEZ“|γNÆ#ªÔΦ¸ƒUÿ‘8!%̉zßÔ÷™C£f?fÅFt̃D¬à”1 Ihà—Vöû£p‚ÄôkÂơ¸y¡†¡èM ?[b›¸H¤2M¹‘¶0´JYÀ»]ơ]i‚ưûf¡Dö)ÍÈd@’´Ư .̀‡¨¾'{<a¢5•6¶¶…Ư/­ Ϭªuœ0ÆŒØMÄKy¼€jÆö‰_fñ˜Ï2Ư)x£]Lu.8[éyeŒ†xÖư˜‘­ßṇ"/Nrß(á(»}¨ë)‹NŸ³ăÂÏÈ'v•”êÊ(XT-z æ aÎưu~*ơc̀$‘Cˆ ößt³–E ›ïÓ†ù Đ!)À²o™èØV±fÉü÷¼¶:RUÜù¸@°ưkÎ^m̀&rÓ‹±óLPŸÍF µÀRÆá¸6²ÊzÍíK ˆ¤¿„¿6­§,}(à88>2†G§®5ë뜋1Øc?½ÿ¡Iqf¿O÷W>bQ¬î‚•–ÉÏ>\çI bê=ˆƠ‰oúÏÑ‚X8§ü ­"¿M.öe_lïÛ¢Dîae««,Xƒ ¾¡)öHrßÇ36[qtqˆÖê²D|BuÓëb€ o¾jA I®K#‰É&LÑÔ”àĂR¤1q§Læ?†¨đè¼ÿí.̀Ëg c1va–(u—K6l$:KÙë«GaYú6û¹ceèû 6viœ)j -¥­6c¬0a?¾?wZׯzÖ®Jô±©1Œå7Ư*kíͨMÇ¢üù§\)|÷ßĂFœ%¿üäB~¼ Ôø˜¶L~ÄĂ×AÎó<ù;M<æ˜ÍN\QÓ}Ñ߃¤DMÏ«vÔn·oéù‡.́­c—Â)z$«G$ơg×Iíw?̣|e#™]úä±ơ¶ÎBáÓÊƠ3$X+‡¸Û+ÏT×ùbœiđrÂ*ĐØ₫û¦¨$L£u¬kÛ 6­£)¨LûIÖ×ä+N,3?:#>ˆ€hB€añ¤ƯGúkÛ©UOÑkÇqj÷V ¼ư lAUEØ“q-eăµ™´Ó¤ôJnØ|ÛnïNBPđø]ûjªĂ€í ¼`è£îœèIÄA…Đ³Ô´̉ˆ₫ +RĂœa<’¸j±¤²¦²5 &$NxîơMÊ‹½.R;ö Iï%G7µ~7/Eå ä,“…̉è2ÎŒüÎ×Lp‚¾ëñ+ê´ZĐg=Ù̀OªAGJ ÈçZç­1º3pÙb˜|Y}xi/SEó/ư}ŒVs…jÉ*À©Á₫¿~®¿‚ÂD ¥íçA5¹Pwùß“_ŸØôK¥»\CF5Nđ¦h/́½ïÚfÔẸ̀䛥®̀¤OƯ­XD¯¹]»‚S slÛnàeç{?•å鿤[¹Ñö¡´"5` %–Û̉Ns³Ø_e&x´°MiOViÿŒ†–Ăº=IÂ=…ĐL}-ÄêÁ́—/[Ó*.(ÚÓl_f₫1î₫ÈLđa2ø#Đ˜1‚ê0-ØÙu‚ü7Ÿ Æ~Óó­˜̣˜—Kóv D®ê‹AøødÖ÷Äog®:îmDôßù•å½ÇX¿Y₫<¥Ø½¿ñ8‚úÖ±ñƯ3|‡ÅîÙ3`75,¼Í­gMX́íTÏèwÙLĐP SŒbùêq‡^ÚËsàüE‹˜>›Ê&D -liX¸X62µ¦P´ ÊÂÁÇa¬Ăaÿùá¼"H®½üÜ₫đÁN{CÂIôÉœP8¶H;-óAbeP0œj ?vf„́j u½ë5q5lë¸î,½.Ñl<U£kEü«plyœv` ÑÖ™2/N‡¯á< 6aeVá#Mß®ú¿´m¤rR ThÍ‚‹̉ÂĐ#¯}ܱ)0ƒÖ(0ü›áTe₫k˜/÷’‹Zúö·®’9÷ “»1̃Ïd®c.¯^2x¤ê}Z̃Á%lÊö<5Öq¿X hæÀÛ`Jíơb1©y@9D²́¢€îñz}½0ÍgÅü©ÖpÿƠØbœE-=§ÖD uÉpzPq­y ‰O°ökä¯t¼ôÚB´ÄVíKü¥J] ÇF—‡é‘ ɳX¯©l !÷^Äbblrø~aäéWÀ·Í†Ơ¯Úë‰"Ú‚Sú2?;ñ:…oË̀åÔ÷Bï ^pƒ£@xG‚²«y{eïæWŸ°¹oÓª®°{Æ“ơuéö§ÍYPÍ\b]0¦y“U‹øáÉü‘ä¨Ûê¹₫Ö­äÊê¶ư„`K‡sU Η¨ïά€‘Àư/û #˜8Cq©‹Èmûß™-OñÙI‰Đ¤xXÓ×Ú…±ñØÅö¨¥Fmø0â'PÇ£÷’́ffJn=rMJtë àèE®\«¤nÁZ>(.Ơ뙘ü®µ›\Đ·3;5ÚUÎe|á°ơvÂú“°ÓxĐK§ÆvJù0I¡+`çyF ¿yB•ḉ¦¯ª›á6.|&%ŒÍ.²ÖÊ‘¿ÓÓâ6+NPˢ秧ÿ\13€ë¯jèđ½"{vØÿ¼Ư-m93Uÿ…^ O}~’¸yÙÈdtåÖ×¢/g̣×y²o©¤¿ÅAt¬Q¿ˆ/Đæ ÔW00Ư-R¹h|§×ÄïÆ:—»†x́¡eµó\ºË~:'ÀÀHT95ƯP¥Ê;™·ûsy²¡tzlî1sç Ä7Æß矹ƒ´á@~¦]â½zP ôÚá•=FÙD+] ¯ê¨q Pn¬ûj-ú\ÿ1‚ ư¸(3„³?ï¤%ßA¾FÍ]}™oùÄ“¹Ư §|…ê ×[joÙÍ÷àu{&™ºm¤Æv(¯đvÇëe2ש.¸n[ơ~Œ/*Ü´rѵí~…Ơ‘n TøuôP-y8º—×÷—æÛ˜ßLjSSnôZt +I–#$«†™8g‰b4ëó`Çȇ·Q•øUf¬ÛWTPUđôÍbëe ;|¶Çư2ïú‘å”Tÿ!PÏ{bçä¢Üø5:yeî›a<[-W%tz›Rg<¯FLo·תŒ•º£7|ï<”´ ¼°½hWíÓdÍ…Â5pˆ;̃jçi†LăĂßU*‡‘A a5:´s^.Ư5käj9"ÇJ]> EÅy›««yf¿lơU9ȹ„Îr„xÔ6ÙkƠf`SϪ7oÚ\ˆP®KT&KQRN3•Ú‘íƠ1ki†+Ơ¶½x+mk³è̃TzI»ôq<ă\K¼‡‡©®RïơÈø’n]`=UhJn}YÓ5 ^+‰®ÿ@¨eí…u¦ËGÉø™}³z7€À= ñ÷Ó˜Ă6 FÀ"ÇFßµăÉ& ÿGe4&ØÖ‡Ï5jíCË#ESc¸Ÿ?¤Vº0͉¬Æ̉GŒrØ¥Œ“ó̀1˜Dz»U1F]¼gâí B®6;ËmS†hÇÏl£Ăg`ÇFº0Ă¢P"„÷­8Y¿®|¨(À?q³öücºûËÎ Èc0W©ÆßÚä`&>¹©°Cm†[Ư 'Æ̉ß§Jöl1§®0ø<ô;Î7=Ă¿æi`j9ª>üK»¡‡îÍëRùTV­äyaʾ¶39U™qK•³p°óÍvWÁV_Ê·A/n¡*¨¨àö&Óg¹°P11Ñ“V+â³ tXĂ*d•­1i,æyÑT²ä±)lŸT¢VóN'/½yªGí L{ưÔ[ÖàKÏ™CH20ƒá†|â†É+ÙYq V×øđṇ̃P%²NÊdzêwxwÈS‘±xØÙ1à#üWE|«åw›ßhï¬ûQăGÉ&ƒS–4^²¼æqûÀJÈŸ{2¿Q2]be­Ä_Lë;9ñ[́.u²rƯNM,ê;|4TyëTx6ÉæJÛù´ÉĂ74™áA–Ư»¸ûÍ»đ·†*'ôư2™eĂ÷4ïÉW¸W—mc‹Áïê—+ù§¹ÔÊȃZ1(å[â¢ÜVW…Ç?ú?©?¬Êüà×ù¥;¶¨–É«55Î>ṭa#£$̀2¬Oø‚å×L,å̉'S₫¨}¥I‚r©]3ưµ%èL¢DP8æ®â—={Úơäö­‘‘{~hÏ1́P̣„ÄϤ2}ƠŸ¼_±`Ă.+oÛ̉5È«†đ>· h='Ăü´ƒå~²ü̉3ÿâÛ³Ù®¹à~u® pœç08¹ếжH°i'}Ư²Ưƒ¬ªKgww¶—p8×Ë ñzùå|”´™T.Âk˜º•?IJOegú>ûÛđjG .¤…:¿Ôr)ƠñKÂoÂaư`±3?MÄ”è’ñ›d+ÎV~̣w‘Éă{³`ºÚÚo§­vG±-*̃|k›¶u“»¹+[MÖÇà~ᵯId(²›µ–°₫¥=¡úÇGFô8#=-5—Tv6_¥y¦p¡Ơ0±×r hUê^ç‘(Ú„[¦÷z–̉¸²³!ZlçôĐ/ŸŒ MK÷H:»ÙUájEUMñµ$̀KP¾Úñ.ϬrÇ%ùSQ^f®ÖúDw¬O¹ÚŒƒ$ÑĂjvów-ûפF‹ ÛÓá¦Ă:QPAÊw­_Qú_aäT¿gHw₫”aƒ[ëÙMư˜Êé₫Ú‹ßçÍt&Álibàæœ/v\0vd‘¸ºƒƠï1 `±(#ᢀ^ï«#¦©Œ«4å3ÛIתÅêYÀ;YđgEK«ánT-²·lB ¼{x‡ë¦º]¦[Â.ÓÆCDؼ)7̣ .Ø©.>ƒ]NQ›l ^~à"o¾FQù̉9²•R \[» ÿ€}UßRËRÑ\UAó†w\±̉Ó=„5ôzv–_×`^@ÅTÖœ+,<3Jâ€Èø$́Øî%ŸfÍÈS53Z—³ ç$‰ĂfµÓb6ƒLzÿ;=–_m0#e9®…8§MŒ&œ̉5ó̉äN‰2‹n?¬̉Ư8́­X\Éo|‡² –àfó(Œ¥q‹Sô“ø}ÂŒ̉'÷ǹå(wADoç>§{@’ئX8ă~^ó̀EoˆíƠ8Ûi§£Ơ;D}Ăv;̣56BoMç‡áăîP´r­‚†đÈlw …Ö#ÍÜ«7Ç6H[M£đ]–«Ë,´?vS9øƠœ«ÇÙùH|!¹üR·Q§Z½ñĐ.̉X0׉í7đ¾bQ‘3º3g)>ø}"x0K˜Í«:äàI3»¥ểz€´Yp( ĂT“ .àéøèH¢uü-4ºhíºđ®œŒ|±H<¿¹Óf½z÷‰ª ²₫F·kP¦ËÓÂóáÆḄ̉®Y7+ÛÖÍ ˆGK#YX7ÁÇéɇåâPX¬µŸ lÆơ~S¯¼hîY•oâ3;m· ß½dûªŸ ¥ ÖE4Ø$DtCFA#Rđü.Ê:¿ID›ê$«)LvhÛ}í¹«{Ü?Ñ,Ơܬ¨«VZæÜMÏđ‡¼©¹b}ºqôB¾u:‡èvá•|ÔÆàC÷Ú]_”&yθ­ÙiƯ7ÅgÜuDV0óVZđ³†²hJ´:pæq5¹§9÷¦˜˜¾½|á–EˆUG>â57d‡ƯÏÁäc`iå|mªŸ0dIJ› i«HH6=&â»qÅøz_=cN§-H4ç‘ÎHïĐím´ çÀÙpÖƒ­ÖÆ?DmáQ }˜˶{¬ÿ$)Ù2îĐ_>Ä[Êüɸ¶…Crw^ê»KwÀ\³ÆÊÊPùRÜĂgH|hnXuÉ'QÆoIÚ`•Ổ:•påö7«Qßt¬VÎñs:¤;·?–ȧ_¶đp¿04Đ× '5T˜ ‘đ|´LŸ>‚u’EÁ‘'=زœï @c̣¼âÑhĂ~¾RW-;ƒ£`XPq›ÛßdR7 ĨÏđÏó“jªm,ù^eđĐăÆÔ±¬( ºƯJÁ̉I°Y¾êQ·ơÖø#I™K%”£à4§ơv=±3&Ne ̉6’G±Zị́VÄ(Ÿ µ\Î¥§ÎÎđÂØlØx‰%€~Ö’̀Qbäüh¿jiª&¨3L“¯ˆ—ˆè 2ÍM.È>TÈ́ZA>¬Å3> "‹u[j$ë *bøqêcA‚!\X·ZyAmb¦ªÂ@à́A² †öm\*5Ẁ×nå×1$”¨»­9V8Vû›­È`u¨ ÿ0­æơ4ưnÄügê¶L’cr% çm²»Å'RØơƒ‰'E‘ û_çUz/P*®±jZ_*:4Já—¡¡úÛyd°)©iˆ•½rÄGÍ mọ̈âH¬Ü±L]ƒ̉OAgô£óÚ„Ăˆ1Ôû8ø‚k O6¨CûÙÔ¢9åµÑ‘¼#-Kø‚ö ÅÔ »®IU4Ш7ú†<éaBÓ8ñƯ0z…ûü 3iƒ:·UÓ5óñÔŒ\ÓèÇÎđ9$¿¼1”΂âÑm)H&j E¢Âö}EúœK—pW[:ቻíÊäoWFœöx÷³îĐr¤GÂ%©\ל AKQßiˆúͯ7ƒ9W¾VI û |jYM< N¢́àSâ1₫"-ăàØ7=ÂMÛnÓa•£Àû´­N,©–=z\ ¿¼ˆÙj±Áß!èĘ‚$k¨ܦ(o®YFwĐ$é:C¥¸”ü’XK§÷Zê¸úî˜~ÑNJ̣ŸW…`²…ÛoâCQH†`Œ ñ›YƠî›7qq44­[I™ 3w›"W?ë¥P­Đµ7FÜlºjƠ¶‚¡+¤ëÊ­›è6sÙ§_ê< ̉ËWä䬖̀¾å›‹ƒ#÷4‡ÿ¼˜Å} nưTX©z*a±ƠÂïÈ Qöæ57'„œé„»#<đ¸|»̣ܤ@Nëä%U°ŒF˜OÅe¢µ‘̃s ₫+-¸ú̃́[7èZ¢)¾â»J_8º¶–{ûÊAKÀÓ²+ơFßæ"pgàÀŨ͈@Á úA@©]üđˆŒåk̀‹o?L2WP@•×÷†«á2+‹ÎQ¯‹;¿èIo´vmx;›k…¦œ¨‘ÆZqàD̃eÅÏ g¶;±ädx¦-F&å *‡>îc0È` C{ûÄ2®ăî́ô€§ơA>f7Œ¤©-k«Ï‡±®ÛĂ“Ñ×öû5 ´G;€340­ƒd·Û§noîɼ^ ”úQv¿/¬i À¨)?øØP}ùđuÿĂ8v÷ưÜ•%‹µjê L5!ÁàÀdb„Eê‘L˸ă2a¨2J¿÷qưÉ>Ñ/]]D-yH`́ ØÏf»Ô7»ñ®If31£r «;6L@ØR:ƒëV Å=:FÑêd ää,«wÆú' ‰íƯ’K:i]¿‡0á}ŸqđïâU¬æ(¤©o·2/bà‹-­i«×8cT‡–KuƠßáwp&úÂbpÍxÅd®H‹€½â(R"¢MM¤Ÿó¼ÂoM/ƯóơĐb1´ươ_}®Aö9‚‰Ă"ÆàP0—u]×|ËsăÆ£w·½_Ú¢MáG=Gæ>/8qD¶MÖn™;™Ÿùia£¢§µ×Vûđ͆:`ZÊôm\®ÚŸhæ¶h¥̉ö¨ªjôÀ5¼¿YW_á†åäÓ³`áàŒĐ0ÀÖu;đ@BB€JŸ×€Uáë˜%ZÆ/ `uŒŸ•¥vZÅÊ/ûUØÙïÓÇà[ úó4E‘wºĐAu Ëơ¨ÚŸµUJ]æG=ƠI¡…ï&ïPA?¸b‹•đ/¼©µVÍSx9z\ié~ ÉO–yb¦]ñô&#B„Z|×P(x_Eï}ïư”†*$L¡zkuœXœ­JuC›ôƒ©¹åb’ÀÓ"l»‚4Đ|¹_HÔFƠTÎêËlº i¤«ỊH§ùHà&ÎåÍ Ê{Ư6»ÜưïbW(ÑÛ÷ºça›¾‘LO\?,+üâ$z$:̉H éD(Ïñ1~Ư.h¦[‚YÀyëJÈGư©•Ê#…?Mƒ&£²_ %z!BÍ—׉Câ ƒ(,ÜEŒÅE/©ƒ)vixVMèàêµÜ”ñN¨˜`4 3øƒ^]°¸:ä{; Êæc₫®Á×Y¼ơê{¢:ảÇĂl`kù·÷Á²IœXŒ´!¶·_T%ÂWÊù„Ÿ6F4ù7[¤+9 Ó4Ƭ¤ưv4¢G"¥c² |Vm}únªÄÏ.̀dÓNÔ¢SP 9¤™v‡ aEd3· ÇZ+À ñÆÓñ²ks0›1%†ơNßøƠi6Àƒe­Đó¼9܉\®o‘S‹‚nỶb4,Ió€É6q™çü_©íZåzêjdĂujŸüåM0QÎɹ›ºt¼HI©É‹ αơ.=eÛr9÷Y–…ù(WÜxoñ&ØU}°ˆØÆ‡ƒ›ÁáË*; §úÇdçî¨4äÁ"äJ,LưøSÎ5;¯TOæhŸT¬0gÚ¤ĐÛ-*PIî$q5sdY˾ڱ¹́Ë‚¯}%xH^®·~Ñ÷̃8 ˜˜±Æë“OPßXử1Ư."8Cé³vc´k¼¨Dªd‰¼->°ÆUw>wù½z(Ѹ1ÿĐ5KÓ̉Äg»«!Ï"₫ó¶s£˜0c;}"8_7cÿ|G2RûhĂ+ ŸV Sçfß«ÚỒj„gzSưöö|x×NGC}±†ék\½:–vw3;´̀T/œùùägó '‘Ô­¦„½çd-â#±ß°ôĐ2b[àWí !öèŒÓ½XÂKdA;hÁ¤’)­¨_£Â0‰>;÷qĐ•–"|Û¢gƠxƒ>7̀Ï=ñ×5ï$¿îq©#ùÍ¡K¼ê¢q5ÓŸÔ›¦ñ3#ă'Kñ@̀}Ñëȵ›VµW;íƠ ²†œB•J‹„+lˆÄ°÷ô6₫IJ…Í͇à„Đή‘="ă-WªfËÀ­³£o(x”©•Î2Ư8G:₫‹o 3‹>]‡Ó\MÏ=ÆÆ!igUº3r ö^<Ô[¾¹8w!?eCV_t8ÆÍøc8ÇîüÛjơ³ +é/—8®Ë;ª ‹–÷¹̀÷LÔùÉ\+é<ưüÖá¶ôµë4‡|eˆZ)^Ë÷d8{f¶áï· ¶ú„c¦› 4xÓé «_ µeü—4!́©̉Œ}´Í±b* ‡ ÷d ¡qùº¸[wB&m¦>шÉÅf©Ñçàw¨xÉ[ß‹ï¹åé+£ev¯yá3% cÈ6̃!æШ\>²n¶¿0¥̉sñV-û³LưCó¨Ưyă)çbn)ÜrIÉ4oíMîK3ºEeÔ3§đƯpçă €±Å9‡Ío/ĂæI6ÈæÚʘb³Æ. ÍOAăYÈøcyHÅn™Qƒ9Tï iQʸ…}‚Q¸4«^z}f¨QÑû}›pĐaÍŒÁ)®%¢¦z½8đ•Ă •y,¿Ẳö¿à2¯ªE½óHKm£g@Îq%+§ˆ C ÙÙ6Tvåù¯5sˆ²G)Ëi5{*²{Ÿ†·¡T› ĂÊÆ½ª-p2c'«ëÅ €‰IcXZâĂ«®œĐØ®erIœỪêS ˆ}fBhj1ÔÆÓ]Î10QÚhÇ—37>eZw0Ä9̃—lGg}¾Ü\¶ñȲÑ—!̀Î̃2¯d°“låˆ>߯li;•Ö˜¢úhØ ü©1.â 5ƯpÜ&µ:đ!ÏZzÑ2?ׂl®û©rNÛ²up5èndx^ñŒuÜù$8?}ûffüR ÛÚ¬q¯?Wzz3g=Náoi ă$ü«5¨Ï@nI).\Ÿ–£å†Đu’DH+Âs—b!X¾ƒ)GçY Mó>½ĂͶgÍ0̃“›ç6m2&Ơ¥Ë."¢ßËVÙi¨]/̀!:5Ö8ï[-;¸ÊÚ§Ú2ÖXƠfbf+îˆ"‰ơ‚Ăa<́*íj33&zƠWia)Ù#¼îR[éHaw1h9ĂÔâ¤f]IĐ̃†¸OœäÇ/CÎa~eđ!§̉Zæ?ç–4DƒªlRY­K–á–¢.@ÙÄÑÅʾ¬!æ4W¯Q}o³Ë›[h{dáñ nFi€W!¤ư3‘½¨ƠµÇ,œÑ™k‹WêM;€œ¥ß p̣Z»§->¯\Đ̉Ùga₫›}̀̃ëOÈ!-gh†9_¶ª…. endstream endobj 2378 0 obj << /Length1 1361 /Length2 6023 /Length3 0 /Length 6963 /Filter /FlateDecode >> stream xÚw4œßö¶ Ä(A¢·Ñ;ƒhÑ£EïD7̀`”fF'È轋=j%j"J¢÷-Z”$BƯRî½ÿßư¾µ¾o½kÍ{Î̃Ï̃gﳟç]k8Yơ• {¨Ư*ëÜ{ Ä„@ Q'§1 íưkpB‘(~÷”‘P0kS£±8¨éåHÜ‘¼ EA éÈ»@°7 Ôj"àP€Sáᇄ99£±Çük äqàHKK ü*¹C‘00¨F;CƯ±':€Ư€Fí÷<²Îh´Ç]aa!°;Jt’çúÀĐÎ@C( ô†B€¿ê‚Ư¡:pa¨?v#„#ÚŒ„±7˜ÂFxÁ!P${8ĐHC¨ç…ÿkÿÿ̃ PDHäßé₫FÿJƒÿ;8 Ü=Àp?Ü èsƒơÔ´…Đ¾h ù»¡Øx°7æ¶Ç~Wª)ÁØÿ¶‡r@Â<Đ(!̀íW‹Â¿̉`oYQF¸»CáhàW}*0$Ô{í~Â&ë GøÀ₫napˆă¯& ^Â&p˜§TCå/küÇæEÅA ¤„ê „ú:8 ÿJóçưíùeÆvàđ:b›€Á¡Ø ö†ÑH/hPÀÿvüsB`h =Ô ü';Ö uü³Ç óZ‚°Ü‚~=ÿ^YcéAÀƯü₫ÿ=_amscc5₫?ÿÛwï (. EDÅÄ’ØEĐ?ÓèƒaËư'VîˆJÿ©{MÿªØû/x₫ƒøÏ\º,k¡@ÿÜ $rÀ₫ˆüSưwÈÿῲü¿H₫ß©y¹¹ưvóüöÿn°;̀Íï/KZ/4V:¬ àÿ 5ƒ₫í=„ä¿}h0VJp'·_" ¥ó…Bôahç?\ùc7ù¥17ª@Á~}T€‚" Đù°ÂrpÅ~8PXB₫vA±ºù瑪pä—ÀDÅ%€`$́À»ˆ`•ú₫¦0PX@cC€Øæ‚€$à×<%ÄÂJ¿L€¤uđB"±ºú=v́™ÿÚÿ1ê ùN!dÂ\jĂZ_*1ø®És®›=æ ˜E¶y’¦óVç:ÅΩî/¯¦Môê ,pä`á×qÏί'V_滪TÓíRĐđÙñÜa/κ6ú5Ạ̊z]Æç~^Ă|À÷%™okL¾Lªz:ï!J¢¬ÆÜ™û6Iơ—µµO8DzçxÛ¶\²°¦:¡…ɹº±éQB™¨„oøW|/¥cú ÜÅ̃Ùàe¤wüg[n7z:ÈPÇË(†×Ê~µhÙ{\¬R9ËS >q’„a´>ƒM'|ïa²ÇB…MøŒvà•Æc‘ˉ±¸NW ïÛ́¼/¦µBn»ÛkxŒ•\ÛïR”­ü̃rTîñD’CÑmñÈ'O`/{¿ƒVT¦P¦ u2¡]¼Â»—£P“Ñ騔L’ûÈƯă>¡1»MÏà£É/™ô¢ôƠan_l|™»p«,̣¶CVCĐU%øúVŸ5RiU@°vd»¾t́JU>qƒ¤åz÷€@A§Ê6’¤9& £¼==—›-ü‚₫mƯb…·”gíư«y¦= -Û5:¨X jïNƯºiOö(§µêÎÉ‹óŒ>2¨¶gÍ1s”:  1N5Qs^?_/Ø> # ›È°{ŸsÀW>öDPïÆ*x,“ÓX¡R‚4rrÂI—<‡Í [«­ïg>·ß®©̃ăegj…fÇî̉oi=”!GiÁ2vHW̃cư ÑínXÊöö,̉­W_nTưÄ¿KUÂ7Iô^oj¼r°ÿ~̀î Ç®„€Ï““ ̣D|?Cb?Rú$½ov ¸g§Úhµz¤v=³ºĂV(ÜPAœ {ioÆÏHo7æ $+àá[mO‡ù̀̉g •:]¶" ̣d>̣äSAë¾Î¬yû|ư÷?Î) sˆ{| Ô!ẤÔXw¥u< ³ˆ”£ÍµÊ•gÓèƠ;\úÈÅ3¼'¾G9 h^™©§¡¤#ơ¥­>~kñI~HI9Ô4F¥p–dhÖ-7™8åúË„ƠÄíéƠ¾q›nihư\Aªăཛb=·Jm¼ ²ÅùîƯ)f°ܱ́FéÇOT¶p*F—ƒ`–íøŸºb¶vr׌5¶B­Á¡œ ›ª&»ĐX¼n‰¯hy®¸º*^ô¥jL&mʆ{(>f‘Ơ"‚§93bÇEq¸z~+¥e2àËc™ @æ•áwđ@´ÿ²’8{è¤LN!&¥z• ]“¡¿‘2ä¼.Îå3¤™ê +÷̀@'ÄÚ¼´¤£¶z9y÷(i,9Âc‹HÇ™Ơ¯uÉ6‹ùF|đ&tïÉë8©’#†$. ƒ·>§ËÅOá&¬L̀˜ñ¯æ³ $măGZZ@sûîd̉}£_>?ûmB›Çư‘"û!*-„ĐÇ8§«*]b‰œvA,́»(«¼e\ÿéNºÙơẃ§̃#T"VV^Îđü`n¢ZtKëTr^º³Ađ!oÆCeÇ̃vbơAÚƠǿ‡@qOÛ̃§ÑwVFĤgüϧ«%¼JlWËzÍ0¤MfOÏ[N¢f8́̀ÑÆê¾đÉđÛžT˜ăœ‹©›:Ă–­Đnee&áH`+WJơÁ—¯¹‹`ƶZÚ ]/­̉·R¬gº…²;ăUHˆpÁ[BæäÊ, H„¿$1}ơ~x0j%SÆ̃—{og‹¢6¾#Ă—ƯøñàÄ+á(%«IỌ́=QƠ5 lŒofl²P©RHü”ăhúR·€W/ẃ€æ₫¤_ƒ˜‹ƯơÍÙ}*ÉÀ‚ ÂªJx`ĂÜF6A“ç­•˜cU¿ÇmóËE^$q¯âig}Æez¿fđ,·q üˆ4ÂoŸ­ V¶nëÜm§³ĂCøöÅ’5 Ñ̉ L…f_û·%®9@ß̣ ÇÅák¼IW›*æè.^ÎH£'Ǽô)R]̣”cÊ–@Q¦á¾Sqdf]Pq†ªÔ·áqă¹ĐÑÖ© Æ ¯7IôÓ§r«p³8«]ÆzÉ#m£ÚØ …¸æ[”OóNçÍD_HZó÷¼¥Ïúqn#M¯67²X>3¡o ñY&êUq«Ư¸¾A₫AV4} KLœ?Ôºp‚]|YØ/ăt'̣Ÿ~ÓWηÏ~P ₫È8(œ>¤;@?ö@gw„Eayä`XÂÖ#¨J‘a_¿s­Ú¢Á;&Bu#̉4¡?LÇfQ;Ó`Ù@æû-óơƠ´Iñ£¯­J̀EVÏMYö_éÎÓ¶V£ØPÄhz²;l˜ç¥±—¡ªWĐ·½Ç2ñM³Â›o`EÇbÉHÔ¶¬HO ‚ ÿ'Û—éó¦Ăg´Ñ-uj?½dOâcµ£”¼Ơp¹íôØKôŸ÷|;U jʳHÙñœwŸŸ»X˜í2)̣c„«IÖ͉6܃Scÿ°ú“EƠî̃ÈEñ4Ø%…̃I|G §´Qìèœ_,º<üVéͰÇ÷¼Ơé/È6Oư6”åÓóæ~oùÖ‡´•Ôí%U 5]pÀ ̃^—nR;}nsZ0il¤ù`~²ˆc¨jïñ“§y_v ´âÅË̃㩵?Xe$z óo^eî‡U¼[~Éæîyíoi*½­½H/†¢"×’Ö?6•.d46µlhææ:D¯MfIZ'5“ S»?z¾ÙÂÊÿÆéÄân"®ß} Ú¡¯©.1ÉÉ M‹ơỠî“DïùJi 僜±H¥‡^ÄEn—œßº̀#ñèY‹è¶·¥••#¹¼j¿Ụ́JW–Ơí//¨†"ơ€ƒ!́”©ŒN%Å~__tóT*­ƠDƠ¤Zâç>wƠyû½P0£0ÍNăzZêÚø†~íYñMwJS¹TÅêd” Ojêàáø;”&í¨½ûC¤ùKK•Ç̃5âÊ/\¨(ÉÖ^ ¯đ÷ÁêIÚ N}4`¸—^NZu°](}̉ç­IúöXª{¢OJ·†’)ư?çDตƠ>úªöĂ>Z§réü¬Ç¹ÑƠÊ!Œơ#óºưẸ̈°V)—ă¯̉˜ÍÍÄB½ø]TA|âÜH{ë@Wç›HÜ=­NOÅéYèB̉ί5µY<ÛMº¿·÷6Q`hƠ‰®±*èh ^{c=wjüñMư˜ÁG"}³$6ñ÷èÈ*ƯṔĂiTviv~ô”©—g*Ê£đnTw¶ƯÍiÙL?KÇ-X#©g8âĂß™°ëôൂw-®&äMs=~)>ˆ'滸a!n¾Kn™å2i"JB“äÀ¾ÆÄúMFFÆÉ7™G0VhVự¸¥s¦n¢üd¬s=Ï÷¬¨ñ%Nó ´­ec‚³̃O™?µk²NX ] ! ŒơZ.¯*­5̉éƠ¬PmuÜc6éµhe¥ÓUdP|).ơµÁÍ̉Z¹B²gv:-Ø̃滑H¥ËrV4ÛuÁ¤0]:µ=WsĂÔ­–Ë øcÛÄë¡̃JäJuR}¦I`¡¢áƒ{ …eŸ–Fí[đZ¿́HÈÜ&Oï_ǵ#h¬&$Œ̣Çúđ!®0Ăpi­ÎÚQ™i—é[óS”²([ƒ˜;— q†&‘)J™T¤“G5C$ØÙD9?±`’‘:Ư WAXÍVëg½äçÇé~«KĂ™™A¿í›gûă¦;cX ¥¢SÊx)¦†t~A/3YƲôÙ₫׃߲}aC&Ó?5tÇÔ–¨ ḯ2ôʦ–Óz,Œñ&:±7-1rkß#7ƒ×92Ïí^† €m]¢Yéµá ÿO*u…LœŒËù›–…Ÿ½ø}Çj¥ùo¤u790̃fˆÁavê6PÔ¸¡»Ô—~8ªï~˜ß§= ¡&¹­ö¥¯Ç¢áêd„ApŒŒă&|²¨ÜƯD´£Ü›Ós$§dƒn>&S<µ[¸º`‘Ñ'Xë)3ơè Ä1Ùơă wHÊ–y₫,Kë3H¬(ă¦œ9KFüÊOæ:¿ó̀ƒ Ỹyú"Ơà\xfê7Ü®çÆÍ?%®êĉ– ̣q‰æv .­µ½³>êMñ¾ë̀“̀œÉ &‰ÅY·|@eñÎÜâuÔ |AWÿV`¾̉ûsuz×Âb¥ÅÓá·TÇ&x”·©œoÔwéï…¹e ‘#%…'Ó¦ỳlçbm^1E³YÓi8¶BsH?IºÓ"Kª ëÂI{ÅqpkƒT›'=€åUZ)ÂnÙèoá:‘Љ!=HºLª•¤E%N/ê5j™¯;¿à!í©]¼‰¢Úđ¹è¹v4°éÁÏÿ|úB"N 1­Å¸À :Å«åĐb­b̃œ£<¿LQ­Á²^ NÉ[₫ÄÀê,±vdß¾,Al2:(̀®KCöZw“\…gc|}đâpm‚U>•¿H£TéĐ2̉wq†¨*q!ïézÑO0ƠkhÇaơÍ}q`/Ụ́…só¹;8ñ-ĂÇ”åFP…¸˜èú9™YºÔkR³RÇểR¾¸ö ¡+o:35?qLÍó/i`aÊ“¢ XK&ù‘Ÿ­Qvđ˵Çbá'Ûeb¥ËÙµ.3,©V -µi¥l‘ëóÅa…¹j…ªö§ ¶áœ=â]Y¥¹ư6bµó&µă~¢ÜRÍÖS½(2Á…f™0°"à~“·¸ï‹Ä©æöøør+ßK™~¸*s2|sv÷([øÆÏ"J<›ŒÇŸM-})¢û™Ç½÷§“«v(́1j¤që&$Y”«L;Ui Àb6åkÛ̃P|¶Å˜èùs¬¥*É[ùäë uđˆ“Å#6ó́™ƠÜ"»izƒÛÏc †ưzLÄJ†âŒ0Ó gù[p₫`,C"GƒfT ˆÔæÇ´’é´+†„ÿNnđóQ»Cœø §*ë;ÏJú‡æỉ±“k2uY~BÏẠ̊"æưĂ3ª !»·i—œ@«ÑN¿·¯/îËHî S°f§>ÑUL8³#Üg¾<¨;4¨¯`yrY9^'åă ́l«>~̀+ßá2oD!9«wÀ\ƯUL#đ­¾ âsNÜ[Ê6œÿ!ÆbàÇ»¡™|–˜1±hă… ¨Û́› મÚ9qOɆǗª›₫üÎäÚ1”q®ßạ̀ ÕÆLù# ùfzƒ¦r̉ tBĂæñƯ}Kæ:ƠQ©“æµ-*oJ* #j—Àñ^ ù†fm說‘ă¾"¹̃{Mx„ &-5ÍƯ’ôRG„NÉÀ÷vUœ‘<Œwe |ºøÁđŸÙĂîLÉÊÜŸ1ÅöÚHmÀ›¤™ªt}»Æ‹àö.îTưß«ŒzG.hj‡èœi¸ÛΟ›đHµÉË~fl¾Ñîèj±¾ëtƒzá¬Ô´ÔCđ'ói„|eh‚ơTñTu;ÆŸöf§ÿ#đ«3‡ƒ¯ŒQ´îÍNÿ–zöœÉ­ø}¸Ê½rÛ̉Ÿá:6£6B:jÁâ¡vŸ…ürL×F$)JTØ cóRơI”¬5ó G~ḶN)»"Ï[í̉§›kr‹4ñ£ z¢x‰ïï®}z#ÁËæ«¦.¡u^yöt _à«,Äx©›DÄzȘÊ+ư*Ø Œ1%-åR¯»^̃?ƠơlvqˆœaĂ² ß÷ƠŒÙÈ“á³dpEÎbùY=²›í‚Ơ’™¸Œ@V±"Ó ơ_ë%Æ1P6Œ½’V§ÙĂs`Ǵ°®ûăy2Û¨9‹Đä÷ö ±¤å¬æÓN­Ö›Dë2j{ó5N‡bbSă)%.h¿íUWç<-®¤Åï.ùˆ"ZÖQbè|§>w+́±4QT¿v’IHù̉"÷t¶×=¾¼¨2Mëg8 ,2‡đ…ÀÜkY×½₫Ñ6r°çè@·̃IƠE›°(ÀÅ6ÛR Ü»Ơ6¹nÚ$L¯\#m|Câ%û9OZÎ:£ĐPr5ß×ó‚óƒü(ÈƠë¬8‰/+×R¿nƠa^Ççâ’/03̣w>ht¢>h˜vº-Ïơ³¬û£m• endstream endobj 2321 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 4723 /Filter /FlateDecode >> stream xÚí\[s·±~ç¯ÀcR§<3¸U®Tér”8±•¥$rTz`¤µÄ M*$åØçןïëÆ̀bEq—)OöIUZlÓƯ¾ VÎeg&ă\öÆzO —"h|M’‰®È&%G ˜\§ê2€2;E"k¬-ơĂ”Î²“‡cc‘ÑǾ¸tIƖȵñÀÖÂ5K1Ó⤑³T ûÂY*₫Œ6cêH-g©˜ RWR-É~ œñ¶^6̃[Á+Ƈ P5>ră~ŒÏS"d/ûđ“#À&@̃; ^0ÁùL(€!„’ (€² ÉGBÅ„œ ¡jBˆg'4âYk¢M k€ H2yƒ·„‚‰1 ^51Q̃B9đ)Yû¢I“ô9g’•}8o’—}¸`R}8àÅ,xɤ,û€đRñ‚W –à ël…R?™́„R”}"w&¡2!Lˆ5°é\„*_M™œà%@™ ³¦Xtˆ½ØÀơ»¨7‚(VÖP&÷€Rláú!‚ɱBHl”±ÙTTL­BI¨„ÈïHœ&N ír&Á̀e qÖ:ËQºh“°+BmäW„6º¡¤{k¡”œ,a h%'K– •Îă„t¤:É¡Ẹ̀ÅÇÎ! ‚€Ơ|Êä¶n}Î2/V Vx¢mÈ t̀FOƠ÷"È•y¡—Đ ÑaH•Df®à¸!́Ơfp– &+nJ'_~y2>ÿåưÆŒ...oNÆg₫q#}vñÏ“ñáåƠ›ÍƠË –az5₫aüj|ổÊ'ăw›×7æ¥/nđb¦ATÍBôv¨9ïụ̀K3>3ăï/Ÿ_ñ±ùÍûÓ·›!ÇßßưîÿV ¢Ö‡}¦, ôá eZ‘†h mˆS2ô‚xªË\ÙÆº" © Z·Ṕ o‰X—a€é€óÂèó@‡§0¤lĉl:¦…ˆ‚Å¡‰X•) <ù!×G§npF¨PçĈâ‡ă?ÓPÓP`à̉°* GŸ~X…¥_̀yÈG;ħ́†9DØÏ¨ªGSÉ28¸…₫æ ««$Ï…¯ĂÄp†:I‹Á r,̀n Ó.ñ%¼9¢'X£Œ:dªa#"LnH ͱª8à<3ÑÂQ!”¡óLˆdQ±øc‰£Bá-j`¼ñíÖ©ÂT́q>¬éÀᱜ[hàâÉùĂD¬Éˆ`qKÜá  ÈD±®ûœ†`½˜É‚”d``O¹cÙË{É N,w¤÷đ“>êkơén"́œđà"`„ßrRæ¤AN {́¥µkJ#‹ÑF”®g$Ob´‘( ÅïQ‰è×dDƠE=ŒôD†à€F2ANØc%¬[“8¡H?"Oè=hHk̉à2HàóÀƯ:ƒ¤¬`ø>DZn˜/–j‚‰† DÓQË‘(€E(Èóf 2ƒøú0 k&\È,¼U”† Ë)••C4¬© ظ”£àÉkb`Y‡ |AÖ³Ï@¬Éˆà3Ä íDø‡ÈŒ¾”aªÇ";L÷̣^Ê0•¡²>ú÷Å2k:OĂmipë$iXÓ\烓Œ uđâD!–’`(rÙă·J\׃Ç,•'è{N«åà¿Ü>ç¹*'<Ë2ÆYÿE3ͪ +œH÷F·kuP…©J%̉€*Ô Æ0Úç<íÎ3eH7³° ' i@EX´µ̀„½?ÅδPiKCåɇipkËÅ\ÎD;‰¹}üÄŒÏ7?ߘW»}ÅOÆG˜bsqsÍ 2û¹¾üpơzs­/¤ï›Í›³Ó‡—?aA‚oΕ†ïééFĂ2&§ˆÂ¾k,,/PH¼?i€Ÿ0 N<ejü4væ™ư<³Ÿgö:ó«u¤+ª•ªIÈÙJ)|#©Z“«Å´ÇúºƯ…„ Lˆ’™OÚP đ”¨ÇXÏƠ›ˆ4D0T“W`Z둈ÀâÜ2i ‡QR đÇ1ç¼["‘og"³̣]àA"VtCÖZXaàÀX[¾ƠM®’#{<À40 ¢F̀4xd3é0 yM¥LĂ$oi 8•²9DĂƠ YfL["¢äĂDø5O¼° uKD p‰÷Pˆ5ë‰B¶[q8æöâˆ+VƯ’i¾(ăT¾¦E€–yÓbBlTÓQỔ1₫àÅysˆüÎ#ÁVÆ ̉B>NáÏ"d7ÊÀ«¶ R…FDÄL¹–ăäÔùkáÎñB€ơäLâE D‰÷Îâ$8̣ÿ½àè%5E&rvóê֟Ѧ!óÎâ;°–ßP5'{ ­í{ú~íéû=’¸h*BEØd‡Ú0wf 8ëó^@ÔÿÅö43=Ù́Ë́ùÉ"Fhk¡}±úV¤6Në=ƯÙâÄ­iÁ,™ÔTD$®ơØ)#94ÖMyỷVvƦ́ñÎIl­¢́<%÷wæú5mO™¶ºVDú’[«=º÷đÍ»¶”Auăµ̣¸²pÛ0Cp”ă……ê8OÊ{hëŒÔ¦–)Œ„ ̀EB=/Ó–Ö:÷qWÓGü¸ ïpK¦n2́àùKÿ^ œ™5Ee'(=º¢̀Â›ÅØ?Óư(,­&˜ó¹]©%Ga À̉¶£/mt<—­-»Ưæ8í|́$V¥}åJơÖ¶•|¡Œoµe¢!»ƯZ×L„|5$ÍœDù¤ÄC¾¿E₫Å5îÑ6ü6÷²FoØ<÷a­ü²#Å ·.ơkß_“ ¨Â)Bg½«µAy«\Ø]nÏWưÄ(È6Ưí¥¥mª×®íùªcÑt®®8ưjơ‚A₫¤(†3•Ñ-₫˜¿C…'ă5Ç:éÑ05éÍçös{¶‹°²(»ª¼Âˆ‚nA÷iE¹cûÜØ=&•æÓ½ózÛyûwo>‰ÊKăy‡dè­ ¶’²UÇăßÚH] ]2¢p„Äx dhÆ![‰…jà:YJ›tSyó‡AŸ„GR0E¥×IÚ¾m%d )£(D8^E"AqFđtÈ ôLköîV;óß “´u‹̣Ä…ơ„O¢…fä@ñ¢ç~Ơ[JhIqa^· ZŒ²̉P¹yMŒ" ß©y=¯AÀC2:Ê|ᇱ¬¯̣Y‚g% (’B°Ùü¯º„Âöè!>Ÿ¦ưj»Ơ( £#Æ$ó-«̀(² ‰2 …”†̀@˜ô{;ïU)̉i(VΠ’Ç%ˆÂy‘F¢2¢Ÿ—h‘ê—³“‘˜ÙJ%fÄN=W†ó Œ<•1ª/êN̉¾/JËei^̉mè‚pË`˜‚ó#0#“ÀrïüK]•ó3ăq,a>ŸŸA ̀~ÎCøRUí#Tûo/÷x?¢½Á9—[û›itƯ3¡¯Áœ3đÇ„ñƒ$áfZV"Æạ^”½H6X«d–l#~œ9e{*YÂúô×´:OßêZ̀n}kµ'gf9Yh@)‘gRøÆÁQ»%ÙP¶¢ÚVFó:9&nGÇé̀ÚFQ4Œk³+´üuĂàvº’L̃³á6¼Ă$LÔ¼ ÄØ\~²á]8,¸g}F](¢˜®•‰Ze„G½°í8º̃aÍÎhvf8v;¸‹säfÇg­â5§ÉḮˆøêZïèz‡5;º¹¿w`Ûp­î8º™^qpAN·’–̣졤!W¿%eÊï'Êoª¶cfX²V¯Ï%½EÆêü>Ÿ«ỵ̈Ùé‹F52ô×Ö[úfV¡E9̃ú”$Ơn ̃¥àUx“Ö”Ú;IIÖZÁÔ₫yV„ư“$²±ê±ï—µVV́gà[áOQw×§^¨hÔJ¢ ­öèîX¶ó¾•tC"%'®p  Œ¿| Zä“‘u²ßX­7ó‹(%I8'¥j…Kb¤=Wë€!Q¹.l­f–J…´Yø¥”§₫xW1Î̉TÙ4˜Wÿ;ijo/c¾•›{Tmä‚­¼:ÏŸK+²éŸ*¯–V́¡”+“ØTI4ÉË<Ës’w jqU›îh[ —hÙSK`RkFÑd–I1œZ}Y%ZJTóæ*eO…e}Á‘{¦­Ơû§¼;_–ÙöQzŸ¶ÍÙµºV£=9Hyx̉=GVDFÑIzLi(|”ä|ç$rq¹½AYf̉ä]Æ·œhH¨­ ˜̉ÖZ$̣ßö¨D{¾ö\é÷¤=”™Èmù«ñ{éëǰW%§jÓñEæsv‘XÓ?NI r̀‚đCđèK´t̃Ơiú²°¼I>‘̃²Ø°-kô₫]åTÚI·®z±­wè2[¨Çêk±«;ɳ¼ûæâÛÊíJJ_—n%)ÖQ&­üh€ă¥´$ÇY•L«Àkµ„nŸ êV¥ª!óhŸŒm³«†·ù—·nY>ÎÅ íF?†:Èd}á=´÷¸‹ô¤wG¦n;GEÜÅV /fÛ«}RtOu} Ñ Z;^@";|æÖ[)ª/Ùˆ¼1¾£eQ**=9ˆ’̃—̉Ç÷nE₫æÿ-!#,}æE½Ô•̃>Sr–– BS×f[EÄz(T¯ÙCv̉©ËkÿÄ &.1IÍËIØÇôP®¦wYªÄ¶Í$*4¤̣¼Í*£\$‰µ“¼›Í­ö3ÏW¥2̃÷ÄÄ X©±,;èá¾Gg“T¡:Øe|zœ6VûÅ·4̃đ×ÔóØ~NÁáÿÆ ¿R îŸê–öUws·‘o®__½¿¹¼̉ÛIß₫ˆ'ß~ÿ§¿÷íÿ<úæá ;áÁùéÛkă¡\¹₫ùö| «Á%ïU=¸~͋שóÑéû?lÎ̃¾»ãz2r>ûẬáW7§çg¯\¼=ßLÿ́fóă_iÂOÆmæxwzÅKQ¿ŒÇGăăñÇ'ăïå6××ă7ăŸÇ§ăwă³ñùø×ñoă‹ñtüÇøz|}y~y1¾7£L5₫0₫p†?mÆ.?\oÇwă»_̃¿Û\Œgăùøăx1^œ]lÆËñíûñ=oŸo~¸QèJæx¿¹:»|3₫küׇÍơÍæ¿¯ÇëÍO˜åú́çñf¼ywµÙŒ7ÿ¾?Œ?ÿÿosuù[eÚ“3lƠù,7Áwï¯í“‹?=ù£JÁƯ!O)đ}¼¯ëHaª÷”ÂWă?’Â_l¹¿¹xszưn¯₫ùŸ‹a—û×ç\â|J é?‘Â7_ÿüù‘B¹CµÇÿi !8w·>ÚK™÷̣ÿ‰Æœ° endstream endobj 2380 0 obj << /Length1 1450 /Length2 6781 /Length3 0 /Length 7759 /Filter /FlateDecode >> stream xÚWuT”Ư·¦éF éîÉ‘nd€F†˜¤CAZR–în¥»»‘”.úƠïûƯûÇ]ïZó¾{ïgï³÷9ÏsÖÖÚźV 1îßé90b‚4@(;°ĂíV (@n£ÜÿU‚]Ú…r”äăsuuå9 yá[n€+eĐ#Á°5àרMøïáxñYúvä!=¸ Ê„nPˆ†¼Mr†Yƒ€Ûơz*ê-G0́°únÀŸÛàø»ÜŸÙ¿ A`¿“AVVpG̀³Ø@ `€På†â€`Ö¿€ (~›rA  Ë[ÀïæA œt;ăŸ"­G’ ₫’ïW™ÛV‚Y+ÀÀ0ÿWØêvçƯù₫>b{ÜæùmYÛüÅÚÙ‘Ïqr«(₫‰ºuáÿă³£"üüübb°́feÇ÷k}wGđïào÷í̃pG€Íí(`oˆ øö…€(„3ØÛó?ÿ¶đÖ+Àl áÿSưÖ ¶ùĂ¾eâ0å¿%¡€ÿ×ó÷—Ù-Ϭá0¨û?đßͧ§¥j ¡Èơ÷ЇååánOA  ?@@PL &" đ₫w%mäÏN₫#WfHüÑđíNưƠ´ËŸL`ÿS(€×̉„ß2 `ÿ‡đÏøEø­n₫ß´ỵ̈±ưW•ÿáÿ»' 3úÁ₫ä!@¨ûŸ˜[;£nơ ¿Ú¿¡OÁÈXµ₫ï˜ t« 9˜í-³y„yù…ÿđC@ˆØZ‚²²ûƒ9ø ~é µáHȯ»æ6‹Ÿÿ¿b·b³²¿½O·ôüßjéßë*Á¬àÖ¿D'(" ! wüÛÓ¾µD·ê´»ư&4€GƯ¦n'ôØÀø¿VBÀgơËơÛ¸íÏîS@Àçø¦€ù)(àsÿm₫«%+gâV§¿ÙsÛï_öïK v[áOÁ­¤_”ÖËѹ̣¬~&́8|}ŒûtE‰Æe]Ç_AúüHècØ„\ÓÈZØùé¶`ÎM¥½%¿½ù¼×»0IÊɲ:lËen¯̉GÛHugÁ5µÆF !˜µ-å÷*Ư.×cÙa*n§ƒƠÑ”Í'̉« O ́¾ßa«Øá%Àøv‡Z\\ˆ#°^.¥¾P¾Dnx¤A…y(ûm7æ>póü]{¯ ÈRÇT7:dñƯÖ¡£ÚqÊ–LâF‹(­Å`˜u¥E‰ú2Ưÿ¸.ĐƯÙ§W ¶‘4qÙéNy8ñNµïIy†÷ó`”„–%™€æºB¥N $¤^̉¥L"¨u2 "¼*¡G–– l^Ĥă°^ úh 1E­(ÓŢĮư,[¯E >p’'6`=rÚZà Ÿ8Ơë₫ÙS²¬Ơâ±qú5oỉ>«Ư+;:—% È®̃ÈĂÿỞvoǘ‰Đ̃’+Ï÷ơdVt,͈̀ R¬ø‚tGm̃Ö z³µ’¨i®2.,YÊ8ó>® )Ù([µ!|FJWôAÍ·j}“WÀ±ĂaMÉ誧¡[ß Ûy'|Üç~æ“m˜„ø₫à±âŒ©‹q%́¢²˜œ'…§ë'&u£Ă Iܧéa½fE×@̀&æäVùAw±{Eœ»üëY|ƪGƠÆÖRjïbf“̉ÁR5„50Về]JĂl°ÚóÙø»®r|Qă(U‹đS·ºdfñèº]my¹ªơÍrâ#ÆkliÖƯ G$\¦öDÍẫ®ƯL¢Ù*1u¤ ÙÏhîïÊÙ:¨jŒÿ¢_ùÉÙut|́ƈȿтHæ¾2ëÎÇG@›•zñ9Ä,`³¶QvxUgÑ3 2.Ơª¦œG¨†_DMƠeg̉ñÚÑZH¨1Îv?¨”Œ]²,‹,I"…èºƯˆ¶A`r\Ô,Vñ·Ñ*xÇ&-¢Đ]1ë\p’À˜W»ûúd…³—|6Ak†?‹- £÷ a…³‹uÆ6&©nVZ›@CÍHºM,Âe¨dHY 'ê€ …ÜJ•‘Cƒ¬Ưäp‹`› Ƕ±üäÄ‹ `ÏËù¥Ü —Ú½~ÙâŸ{wädÍÀ#¡ḶúoVt8µt8±ïƠJ"vd“çÅø—WÓØrûđÍÁ±´‡ÜªW Ohº×…#k]nö8½ñR‚=sYܲ{Í» 8¿yoƒ6ˆ€/£-R©äY>îyªS«L)–É"ÏΤ…Å*ơ:ëIáRàͳ¾ÏÂ,Ắç{E»/(•p§XÛ¿¦¡ÈhØôèdP¯)Đ85/LxẪ¥£VÈUÚ”ÑZ°Â…RÖƯ‚đé„”™ÚŒÔ¼¾yIÏV̀•c$ƠÚ­à#¬edJXP…×bÛ½_ôv[úA£¦¶EñԔğJXpE¡EdŒ¼­!Ÿ7–ï¢Ê8à‚Â+5VîÁusŒ]³§Aßl|ÿ‘'ÏĂÊŸVt¤FÖkZKS#¦$îF²…²u:dS<}d—ÑÖs;9!l¦Ơ† ¯̃çôR¥ơR8̀ÅḶw&ÈFècSuµofDÆ=L6z¼o´ÓßWN““Ń ÙrºPcf9«¥u¤óûö;oj¦ƒ¿ëx³ûú–H%¾¶“¡Æé¶"r¼a~ÉÏÄÖpxăI^àCöCªzÈ lAÄNÈ́@…Ç;—Đk§ºíáb×ËÈ—NM­!?đÚ µ¶É!ßÖce“"ă}CY4˜ß;‡”K>¾£!­\”.+₫sƯœˆs*A=Z§Tƒ]Økơyoøi8:#O4ơeeŸêr-üœ% d98¥ç¥ böËƠ“U—$e²W–¤²éܼ/ôÑYß*”¦'Rm¼•®V½÷h§'§Û˜­€C—Ü‹|Í>àô!×·ê¼m¥C—ø6Ám1’æ|Ư©IÁ>å~ës`o'z †È  “(̉ûåñ‡©Ùöêï¦_¾ä 5‘ób«ñª®Ưẹ|µ0Ơî¶Ảʲ.¿¯¤îêJzḍjX{³a₫-hD0Ëfs!©®PmĐT0 ½æ\²c>Y+ƠŸE×OEë󱋣˜¨yë J«±k*ÍB›ơ¯.j¤Ï}ÊZ Uå®2¿^’7ÑØạdnI72z©“Î4ûÛî.øzŒ§B́ '¦̀–̣pI¸HZÍ’Œ¾ưPÿ† ¹Àî2oIhĂđ˜A<¥*¥¨¥$¶5ÀÓ¿W³zo)>­µ"»2 C+₫€ø@!¹6–5¢Ñưé+î$wNcOU!†Èư(#hXÁ1‡¤—{Ă£µX Y£A|ƒª̣ÿ“l&Œ³ ¾ |&eaØO+ëûwVä‹c-™c(b-hF-íÍ—§a™Ư Ñd]NRtï=„*_Íf°S4‹f öĂd7ró6o”öKÇ®æØÀ›.j™¥%®øT,¸µ½²?cVîË^.¸áo®7s“‹"¶´Ùc©ơ²ê…™³ù?̣|·º&)§óVØô“»#9>\C¿;‰M¢PX•fö)Gˆb+/Ÿ~1ÔÑé­kùk%[ëê ¡̀ĂºDx{0¿-oÍGOOt9€$nFg97 ́@.SÍ–²ĂÍ“³j̀ØMJÉ×îº Ï'ƒ eŸ̀¿çSr&́N…ûwOp̃‘'ܶŸ²cHÉ!b¨.T̀Täά̉"&¦™caüù)Øl'ĐF†F¬:™U#öÎ8Ûé,f5P=¤éój̃âF tjÜñ8-›æ”älEä·hÔg¹…éÖtcd‡i–‘ÂüAƠ AD1U=NC–?ᇺñ¶L$rk;‹Gn4.¾¦µ£$#àkI&ë’<Ÿ÷3è+NGñgX¦à—A庮̣νL²„ó“Ÿg5fa]'×?ÈË}.ÎzNȼîc₫½ñÂËPẹóËÏ-[M‚’ü\—f̉NƯ¤zq‘Ùåăë̉ztÆo—÷˜́û}+s¡_œ ¥ ĩ¥ÑP¤£ïƯÄÊ‘ớ² Ơ:-Ræk¹Ü˜\ø2₫Đƒ^·ojLĐo<°g>ó5ú²MÑçï₫à”ld:|#8çñ •ÂWo²*‡̀Wơå¨á†uícb ¬YöGÜMÏ×đ†ä°.DÆ{^æÖtỹă=Èo¦î’¿8mĂ?6û¸ơđ„±­v+%©0‰êĐOđẵRíN‚N®è¨Î/g̀ϹfaE&̃u±¢s›Ở ˜vó®"ÆƠN¦u M2]‹Đ 6´x„€ñ‹W©m.Ă(Å@× PD<‘Wª­hwhƯ¥zœ ̣TJ¶2ñ›Í´‹èÁ́§ăfëù†¦@mosÙ:ăºˆEău@/™êqÜwzEª-åÇ …P̣´(HQ;75×̀°=dû9@ùg¨\×a«××IƯ˜˜ªôµ§Œ-zÎâ,n¼³¦ÙxÔª Mƒ ‰!?HgÂÔƯY¨dÂ3P₫đµë¯ë”—•›éû‘ÖZœ´å…7øÑ!«,G ‘à{Ï1'=en@áƒbÉUî@¦Æ×R/ŸÈq/”?~£† ¸“uÿù6K7¿ăÊ,Ü– [ÁÇ¨åæ¥=\)NâÓƯ–.’ É/ÚËc:V²Ü z«N±–ø₫Pdv~óµ†}qD›˜Iø@½Ơ5û':.Ú6ˆô*‘CO#‹gIÔë1Œ`"§ï§ïáÔ³Œä¯©¦ds?AÎ̀”î¿–IøÀ–Ø%>S7%ö@̃¾›:Ĩ_¸?˼RŸ̀¿¼c~H…+í1>êP¾Í¢°Ä':G¯ ÀF2¸Ñ ¥FÇễâv­úq&•Ê-û:“+9•ÎƯ” - ªb›xù₫X‹àyºK/h¿@ê"¢…CÅú5ơ’®–ú4N¿16!1@'e@ị̂Ü©“†<Ưø[jxÔ›Ú¼₫‡÷¶»‰\x3ÈÊ9W[™H{Œ»{'i #y“DdÓND²µ/ûæư…Ïø ¾6;Qû$W<₫¸ô¢YYº„[8˜Ls庂%ŸyEVźKØÓ Ñ]á­tíy ±¢A|QD|{Lw¯]ŸIụù]Ơ2¡‰Ô ffö¢@W¸öOø`˜=CÍWƯ%F^ˆ×¾#¥*ùĐ¾ÓO!3Am×û+)ߨEÊlK•öwx¢ă¼Ùw„nùFàwä³XâTg¬÷½=Çå(‚³½Đ¶[bîP7VÎ̃[3̣aöå¸i³Y›A₫ÁT<øPÉ[\¸(±ưĂ&p"Ó§¿ŸƯƠcÜÜöù$ѵá#Ù×»´f½Vĵ> S¯<3´8D§̃}®(ôy;ØäƠz~&'äËüƒ̣̣>~gÓ›ü.ÊÑƠB® ̉-h~”hú)­ŒÉU¯I©(ë›Ư&Ü\l‡*@ykÍ×'TÅco-… )Ê=.êtªË5±86a£û)Û<îîVÄïˆc`ÉĂßâ±U,’É",ôưñ(‘¬YL(ô¼5oEà‡}ÚƠ3Ÿị̈8&4' ư«»‘̣­¥ÁoBt2û~oxÖ´\Ey”ï̀Êí+$sÇ(£VÓVCÚÄå€=±¸Ư˜ø¸bc:V@;úcî OÎæù̉¹‹± ‰«éw‚ó ́Œ§oă][‘7Lô|«!¡YÑÍ¡ô©`ù/©Ü|:³̀óoBg>§ßi÷ØkØ\uä=I Ó µocÎwỊ́øhÇ•ÛÔ3ú“iÓÂÆ$4rÓÊ~—Â(ŒØG¹X³ÔŸJMÔLÄök³öơMSŒÂ$æoö¬Ú̉«1Ơè™ÜîÂ_½äÚûđ=L?₫,Çiẓ̀©vx˜ֶœ[lÓÜ’Vuđ3ưA!…Ơå##¼w"ư§₫AZÊÕœè¤]™1«m5?zûzßÿ¼úÙ‡åqRÆ •gäG„tă5¸8 ¿»6‹UVŒøYư=÷¶è*ÿä£  endstream endobj 2383 0 obj << /Length1 1433 /Length2 6227 /Length3 0 /Length 7201 /Filter /FlateDecode >> stream xÚt4œ]×¶.jô’(ƒˆ>Œ̃{̃kc0Ê cÔÑ{ˆ–è-D— Ñ£!‚¨Q¢“¢’'Ïû¾Ïûÿk}ߺ׺ïû́ëÚû́}öµ;‹!Ÿ‚=ª€£ø@@I€’¶H $dg7‚¡\¡Û ÙM HO.ù %$Œº±)ƒQ7Dm éå @¢’ 1I€ €€ÄßDR  ö†Ù´MêIÈ®„p÷CÂP7ûüư à„p@b¼¿Ư nP$ †´Á('¨ÛͰ+ÀAQ~ÿÁ)í„B¹ḲóûøøÁn@̉Q–‹àC9  P¤7Ôđ«d€Ø ú§4 !;ÀÈ æù`ˆp@ù€‘PÀÁÂ=o\¼àöP$àfw€¡†@× ÿ‹¬ơđçp è_á₫xÿ ƒÿvC 7w0Üw8À\¡]U- ÊÅ ĂíÁ®ˆ°7æ ¶»!üN PUĐ€o*üSŸ' sGy=a®¿jäÿææ˜UàöJ77(åIø+?e ¹9w?₫?Íu#|àè¿W0¸½Ă¯2́½Üùá0/¨†̣Ήđß6G( " !(&* €z ¾'₫_ù¹Cƒ _æ›Ñîw€ĂMĐ@˜ôæCˆö{C(¤4ưŸÀ?W„ ÀÁ 08ΰߘ¡­oú„ù,näüz₫ơg}£0{ÜƠïßôß-æWS7ÑĐ4æùṢ¿@EE„/Í'( à”€„E„bb‚€À̉Ă₫$̣Îp@â¯|oêÿˆ€óÏ„p₫Kq#](€óßJ·€Ü¼@ÿg½ÿvùÿÉüW”ÿUéÿ‘ª—«ëoœó/ÂÿƒƒƯ`®~7̉ơBƯŒ6âfàÿM5…₫5»ÚP{˜—Û£(đÍ8(À]ÿu0OU˜/Ô^†‚8ư¥˜¿́Æ¿f͇ê!̃‚âĆ ›Æ^5¦•ÄœÏÀyw¤^5¶û£Ă+ÜfÛ­6XƠçªà.=¦¿CIá÷…ÖÁÇ–rƒO¯3‚?é|æêåCq?¬PÑà|8—¢my{0̃öfÛÈ¡̀²}»ăîÿü&:I¦4%XƯa~ù¢Ô[Ü[̉[ÉT…uê°vI{ê=¯2Ús4RtœyèĐ¡KUlZIIÖ.ô`̃ñë+˜×ÁÆô΅ƯăS¦ÈäOi?)*Ÿ3Ÿx”¦ CS…—i35q2¿}ßà ]Å"üy®uƒc[)Ê8P÷È.1ߥØ&œnöÅØÊ­ÍÚ+<Ú·/î /os¼•¡ơQ/ 5 I´̀'‡ØŸÛ̀ô¨ç:°í0ă†,ÊÑ«Å$öSkmx‚ÇéƠ«²ç1ƒ·bGT%,ăd~z”|kl¶ÓˆLê]íÆN¥p²â!7CZÇ-á )±üWẾHS9,Ă“–ûŸ„̉ÊÆ¾Yj­íV<ä@'\èq™¼¯*PäÍ XX3'N* RA¥dä?-ÀÏjD èó&™æxUÈCóÎÂx[ØkmHIFÅ8¹ˆ¢Î#}©ˆ>M½đèêÖ¿< t—¤­&x>`ë±;á·Ë;´Ñ-jÇÛ¤ú¢ư€¥C¤–Ós‹ÎAzPEàV‹ºÏ‚Ŷ¬c}iϰ:^ >ˆY'^‚eMJœH~vñ©dȇÊû[|8•Ă^”8¸(1âSY†æU§Ïù̉'̀sÈøFu«A "ô$-£ ¾¬ô‰>ML,z¥[Üb²U ËĐŒ̉Z¢ûxÆ’Fô›ÏÄRÅ ¿`•$¬YÎ]uïçܶ$OyFBs—­ù”×€éß3³!¨û6éJ½÷rWr4¬•§3û*Ê9 E<Ù?VV‹6ÄëÑ¿7ây·|2¢_TúúëÏÚ üVåÍÇÉ\Ơ b‡ŸGü°:tYvÎ<§- ëY6Oơ‡Ñ­ÚªăñÈöØöNIÚ 3ríι̉‚0N̉ ^oBÏÆHO¹­:äñª7k6Ï(6˺ăJ6£+»ËÆH [XÂ3ïV‚°7́Ÿµ_tá(¤ˆNEé ƒ#ß±7§Y'̉)Ÿ¿´•Z—ƠØn}µ^Ô·æØÈ’] dÛ˜îÎD8Œö;̉ƹ̉yI"„̣ửæ ?Xópi:¥pw8,Å:TÈ/g=ơ₫RweqYăL¤£ø̉:¼„êè÷vd*Ô}N ‚IxwƒRêîæ'ó ë$Û|èúâeED-üvÀ!Fe„‰!¯wè\ï`?Øí^À ;ƠŒ́Øø—].£`¥¯é.¬E…˜©V/å¹ Œ?ñ&M‰Æ¬Jßeî¾e›à«ÜwĐƒ‰T™B}fBkGˆ²IFgDU?³öùº{”¥¤P›Æál] s~₫@8÷ăB·LqƯˆä¶î¸oœÇÄlÀrå¹ï<£x†»).eXT"Ă"®Öz°¸¥5&< Æ–iđƒM<Êû›êF¡ÏôR«o”‘9–i•o[×»N»—¼S̃/øE|˜Àº™môóÓØ»ÓCLß (4Æ> ÁP‘ÿ€´Æ" ˆ²ëWth¾s ß¸”;ØUXË>^i`E¬{À­Ă~´ÍHZ¶¿o7“뀔fXEb…Ư» v0H~̉ßsör–0¯ ·C@HÄÆœô¦érÔƠt;„¦µÙT€÷R*¤ö<÷•œz¢íkôRÿî:¶ÓƯ¼>Œ96WXư₫†ß«'´3·î]#)¥ëQôYq03Lpw₫î*<Á<éËWé)Đ₫ÏÏÂB†ci¬F‘¼XúD°fÇ8KWÛÉ‹­zx"Y«^02åjN¢®n¼G cx÷øNÜ[zÉ45*ó•—ÍßƠ^aúïbÄ¢M-0 A–«=f¬eäF³ƒÔ g’öoêX MÚ¹aŸvkk¼µpŒˆÓS¤uX‘¯†$ÓûñclÎn™xL!Lư- _‚DY6Ñ47½̉i ¸¥’R4Idâ₫4y{Äíđß*Ạ́P~ZtâƯUZ•èú‰„*‰äI:}•$&@^₫BÖÔ:Ó¹QW»Vââ< zñœAqz“9j#m+)c›Î5­Œà̃"gkÄL¤#caoïĂ8wqÀÏVg‚g©Ä¡Ry0N?‡%Ê=' e bŒûЦôfÖƯơb¯¢{̃Çz³e\{̣ÑaXjºü̉CV×ß6>W•;;Óoߌ„¨a±Ư=ư4ñ±®³«‘b«ê™Œµ¹wv̉2\ÿ Àbª?÷1Ù{T~́ˆ¹d¯-Áôö#üw‹̃K@};CVöRœƯ¢PDŦb³/Îm(ñ±<ÈÀI×÷g$Í­ÈS«“̀aE?ˆi¦?Miß 3€ ÚĐđñ£ú'¹ä̃Mz‚4ă´[ATî›ïUÂno¬>§Vº÷k<©^‚;JOm¶Đ®~VÜj>µØ¶êÀR¤fªˆq ËA6FƯ¦W)Ê ¶HÙëS̃‡5kxí(”Â?$¦c•ëƯ"´¶µ©£ya Ă×c´Úùá“™ÍÊ.Á.‘ON{˜ea(4đfDÖoÊáÖÓêüœ2×›ñ5<÷}˜£§°92y½T¹₫3÷A3®*Åđú±­Eø’-“Q£Đz§đrÎ'1èỤ̂¹P—× ôË däÎËMbsˆ¥u=<ØdrMÇQ<áñàƯÍ¥"ô)kÂW,[ßđç5÷g§›ßq±,2«!,ư(½ë5r [y’û%ȨGŒëµ́yb8x¥¶•ô¹éÔ90u{ª}Ó±åÚ20\î‘­ö´•Áy>Bßb|;íNtw{úâ{†x”<·4·\Ăê:ËÑ£dà_µS­ÎÔhṇ̌½GH÷₫:̉œ̉qïe­vR½Aÿ₫xR­NÂ6fÓ#«-íÛH/…Ew/(%ÏĐ[s|Y(€éw3µVQûư˜“v ²’o4¤P’́5Êèë[a©Gßβ~́îÛDGv9?Œç[ă°„Ăư¨u-$uW¯&䌓R˃K“Û…ü¥T‘àår2œ̉Àd~’,¾¥Qå<ÄKƯU}øÁ:­‘cùLâÓ@cßÑïA·¡Î2Æ2#%Êëu/¦ÜÏơ’Ø<ÇöÈQ––\4ÔÄ“/kÙµ…Z¿]G@V¯pÙg}­+>ÅJáTWuö`ж­w3 ü¢̣H>[̀JN&v»>Nj?~z ÿäOFÊ2ļ0Nx5ù|O˜«×I÷u6¾¶}Ï0YÓzJđƠñ6Hø¨ß́<öµ'¸–N€uG¡b»²¡ÿ|ºÜ˜â„­¨s;.™'36_k₫5é'ïß+·qÉMg9‹`†R™ă|MˆÔM kû|)¦8 ô¸Ư.‚›—‘nƠx–ÎÙ́7ÉBóẹ̀ùĂ/3ÛØœZ¥D ¡gïhÿNqă “››¯S«ăÖ3îMQZ)™ăa®%¾ iz¯Û¹T.ÉẸ̈:å̉˜*Ré÷¬“¥Zh;¦pâ†nÔv6b¿'颬£²|ä’lfŹæ¹Ô…ÉʱöU¼– x•ƠƠѪ…F[ùÅ¡1Cf°Ñº6Ébz„Dtz/¢êàºƠ‰Ư[âˆEƒ?ò¤HUR_¢ß›v?üLơÚ½w¢äó¯¸iüÚvFăñ¶jÓƠ¼Đ̀'oùô‹UL[G•U^ú‰xæ²đ”Adóq•u’ç÷æy‘ܛU¦©Á¹YǸ! ƠÆvÙVÖ*ẽøƯrZ.ˆ—ÅIºƠÅW°~ƠÄØ8ß´aNñXĐ̣)µ}x÷™¸>0çÎ]kv-ûƒ[a"‘ƯJ'ÖŒ_W±h… ÜQνqƯ•R3ßE§†ÆöTƯ™Pc†nÄ®ñ³˜pBÙ¾S,ʳ€©µ™£́¾«Ô |«ềÂÇ7–«±,Û™lÛ>Ñ/v̀8RôÛú̉癦 {"èa!‰ă¼R÷|eªM×Vû \ªO¼¦ï¹B6±çÎ} +„GYs’‰3®>€V-ä‚q~txDÇAƠ-“ ÂÆƯMhjbBÜ–¯±¤§/¾Ṃcå[vb)F<)LgçFĐE^́;^{6Ø>Ô³}i*0<Æ!x%°>5‡1â}îă ´†Æ»> ̃eSĂË|·º2˜ö¢³§_À%–DÍɽ®Ư1n˜tv^ÀojæJ£»ùˆ´Úº]æœLø¶Î!#-Æ&Ö= umKÆB7«ŸsŸ§ü̉v[€°Y„$èYöS´˜½Ó­wXSÖ&ŸAơ“;Ù‚…ä£Êœ#¦–ƯüT(5BS@*gÉ~̃ƒŸ85S‰äåB,ñŒ²?’´JăM?IUK¥ªĂ| V!¯6̉kSçÂv†ç´È!¡-*`©•Zbiä´áC̉§8/ç¦À¼¶¯’±b{È3£$­v»Ê)׳îL`å7ÅËxđ}çØTV%s´“q¥w®Ë°Nà3è/ơHúÁîs³‡„£A¤_î?2W?åïg`ª`¹»êóRư°S¾̉…yxûe°%óp/‘FâÅG|X ÷í’Đo›¸s ¦ÑƯ]hơœ?Á ²Öɽ̉ªsÀ©S÷äöÆk̀ăüOzº2a6| ¥oJ;Ưª*ñ̃ư# }ààÇ {¯EL(F¶ h6êÅMQkW¥‰bn?gŒ•ă†>‚yVüØkÈ[¯Ø½–t¹wƯâ—Üʃ¶ £ë€á́R¹J“ëêVZJ̃_56’\¢ö¾í;qkº{¤:đ<¥)·-¯Z\ñkØm_~@Èsçîˆè·̀àbĐ̉58£ËưTø·ÙäÇ‚æóÈQçh°  wAKù‡tMO£ëăóbPÚà×!" 3È5ß\'„̃…‚tYOôik°¸-óơa¨>{î»7§«¶Ó£-ư½&r@CưòÑ”e멵ªg̉Q[“_ªLè?[;̀./¢=ơ„N¶¥—·E‹„ạ­•·‘ü|Å,Đ6=½ &ܪu¥½Ÿ±Dâ–åUVk Q'3¿ßçùæ1Ï;îo?3 Rº†V¥în­zrV%²é)δœº(ö8ÍG-ƯƯt^cǤ @É‹o?̉c>‡‡“\߇®¬y2yÖ¨÷­ ß§q?½̉ÛỆNå.q±¾%rŒ¡|.º(Wé».´„₫̀₫z´Få°¬frư6ÿÚ¹ïcYMSiª^Q8“¯å³c¢ưÑđÁäzŸfAŒl¦ø£̃%Y â ¢ö₫Õähí~C©íÙ‰è]äøđsÚ±9¶àUD&\ªJμƯĂ>¾”ô¢T49‘3讥 –ø?ƒ³tÙº·8ù€#ÔæÄ®RçeH́6ư·<'F‹ÛÓÍå+±âĐ{¢÷3&J¥Yâ’vW–úeR¥–Âé ƒ 9#º «óf‹Uçjºo¿ gà”6Ëc¸xËÆËV ̉À…ehØÊœ.ƒN̉„¿àÙÈÔŒ¯½'`FÎ]§›N„Û;(Ơ{́¼üL†Rcжé5\{Ư(Á÷““wvm\$_c̀}1œöFZ5Oó - zmXĐyü1¾m'¤ƯW¨§âÓ’́qiNÿs!á́ f÷F6{†ƠYßq1P / ® \ªR;l¾ă…ŒN#—å褙*ñ}—íö°ÛʼnjK\Ñ#ă˜Kͤñ#±ÁÆÎ•‘³KóÇö́đÊ}W₫ˆea;~Î1C~G–̣HƯçoDéºë¡¡'³T=*Cû˜˜_¹tîF+Pt>¦́™„·Í d†Ơ=´ä!ºàØ}U—o–2ø”³,…@œ1¿ăë1Ö÷ɤØvMÿ=ă–Đ;¡Éy<Ÿqe„e£i5NŒÄôˈ²̃ Ö̉Í­=zj;<ǘÀ³÷ŚÀ®æIäPÛE:÷>¿ƯdÙ́/Úéăǧ%;™iíÄÀw"[úŸ–¶ËL 8—ËrœÜS–a-ă+´MĂø‰VsÖ3#)æêÈlBïËÇë"Æ{¨p¾¸ƠÚ…¬dgÖS:!íb̉ä¯|{ïÔ& FÄéJ[.7póW.D58߯ƒ‘R$öơ¬ ¨-&ơÉæ&Ï!½ 3_Çw©KyZz¼#ÊöÊÛÙY¨Œ±7¦¹lgØáở”?À ³0:ᙼ؆+ÎÙûíñïû(9KU£¶EƯ¯[®[/·ï̉ƒta,8\ûăÔ?ÿKêë endstream endobj 2385 0 obj << /Length1 1473 /Length2 6335 /Length3 0 /Length 7336 /Filter /FlateDecode >> stream xÚwT“Û¶5̉«‘= ½÷^¥‹ÔBIBZ(‚4iJïM ̉;ˆ€R©*)R”^^PϽ÷Üÿă½‘1’oÏUöZ{͹ÇnÎÛ&BÊN¨ ƒdªúúÚ`Dȹ¹Maèß89·9…†!à2ÿá¡‚B08L ‚Á9ê#àoX–KÊ€@HúoGJ ñ9ô…:8Mέ@ú£`.®Ü>?xù`iiIÁ_áeO( æô!W¨'nGGˆÀáƒbüÿ‘‚W΃Aʾ¾¾ÂO´0å¢À'đ…a\ÆP4åu\¶ 0€xBÿ´&LÎ 0u…¡LÎ_ À0G( ñ†;AQÜîm=€! ÿí¬÷ÛAđçp`ađ¿̉ư‰¾Lƒÿ †8:"<‘¸? îp†y@†zÂ?Œ wºt„x ¸xˆæqÀ9ü*ĐP6@p₫é툂!1ha4̀ă²GàeÜ1«ĂTP8M~YŸ uÄ»?đÏpƯá_xÀß+gÜÉù² 'o$Đ ọ́†j«ưñÁAäÿÆ\ €8HJRTJơ@ư]—˜ú#¡¿ŒàK×CP8ăÚ€Áœ¡¸̣4Ä À ¼¡Aÿiøç 8Á1¨ N₫ḯ8êü{›? æ°áè€.?ÿz²Á1̀ ÷đÿ·û¯Ơµ,,Ơ,₫´ü/£  $*À 1)€$î!èŸynC`êøXm¸3p™́²^ÜAư]³Ïđ₫QàŸÉ 8êB¼ÿfº5HäˆûÿŸù₫+äÿGóË,ÿ+Óÿ»" o_ṽßÿâ óđÿă£®7'}N đÿvµ€₫Ö®>Ô æíùßVm 'e¸ ̉B`1aØo†Ö€ùAnĂ0®¿ió7»œ ½@Ă.¯\ô_6œÊƯq×ÇÍß&'9̀¯A^®¡8Qư³u¸#ÂéR}"â ñ'Ç ·€q2u‚úưb7( G`p!\ÏAgürĐẩ NÂKø"!º\̃n¸ƒù=.Ëú—‘¸¡"œ₫E$8Â\ªóö2½Q(\¿ø…ëáïơ¯ ơƒ:’œB8ʆ»Ơ†·W+³ú ­Ëídß.¶%Åô¨Ù-%™äæLë>ÓøØ Ö°uë0Pñ:Λ¿°RÇQï/v(Ä¡±îÂá0uqxe"9àˆíæu3̃c‹4•2¥¨¼Û́±4dN.=&ÜÔƠv}Höå¡/ÓÔ‰h3hï¬.ËÑc`“6ỵ̈ÉÓâĐoº*¾ÏôW₫'ÏGaËqÖÑéY7uåÚOÈ“|«hûúgi»Ù_ņêøÜ_ưƉ¡U—ígS#©2Ÿ-¼ú#¿Ôg+‹.ÀAó̉–SÏó¾´ăZƒ]וƯ-Ñ”NIWûç8đ́ ;-r–^%UP´ă4“ÅAĐÔ§|„6ïÊ„i½¯øÄë?=Ñ5ºøĂ[7]Ûj¤7œWP?I₫¼|åKP÷ËxçHüÖ¿ªÓhWÔrø6ƒœĂ {¹ODIP¶ÍSüëâ{Ú‡qG̃Ó͘đx&áÖè›3ËƯn”ă'8á•ïŒNÓ_¡₫bÑP+2€Dä¨å<&h÷Sp~¯UwjÅacª~øÊ-˸?&(pF±²Â° ÈÊ ™óZÁ̃™MBÖîçgçjq͆:5r6†È:‰™–P—\>ơ¡¿å¨ûˆvJV;räN\–ÊÀXl4¾àÛ£ñêuXÇkŸ¶ ë̉đD(BßM%Ê?Øtni”ûæ¦ûăá8—{³Çá<·Ư¾'— M¦ô²PwXÁ*£;DođË́I†éÈmpÀ»Đk,ôđ‚臓yÓ¦/‡Úœ‰#?}-¨ˆÖÛâyĐÙI>p'WzyàÉâéÑvĂ‚‚bèµé•zÓ‚ưˆmc߬ñ%̣¨ÙĐ–rà.Ytë:;Û+&ÿ³¯ÍWƒÂ ¢0kÓw ĂZoJ†́zaÂOƒ:éÖFSøª#¥MŒÇï¤ú3̉Éå ëEÜR mÛ–ÂZi¸;)™å¶F,(LÄ Ê«ªz"VAĂÜåA‘3ŒNŸ\ÄbèbHl}Ơ|S‚í;]í&Ø„Àœ,Gm•:I‘”0QY¶ÚP•evèÙÙ¾ưJ‚Ñ›ºkvääû ?̃ü0EŒÊó³]k~3xê_̣ṇ̃1W¦Ù0äIHmH®¸‘È]Q¦Ü&Ö~9KÍÑđñ…£¹6s5¯Jÿæq4&Â)$$lî™ÁV¤ˆ# ²t(¶w!¿Ă₫•ùÂǦÊƠ–ÿ•–îÇ@ëư–Ѿ×Xô·Dùºc|ă„Ÿ•H?a¬Î¿)i«§½ µÜÈ J x*¤Ú¶3¯f~G23,•è Œíº«$=è=÷ØVđM¿³)÷IË2¾º—Đχîåµ  !®́›Ùôœ¼ Xw5#cŒl]ßƠ ·âæî\wæC±qb±“̀ư…ºÙ 7e₫l{—±(£g5µd¼O>ˆVQ™q„«"Öß*Éw©âIC7x4¬xcÉ Dœ$œqHuO®úaYăđ{×èV¹îWTḳ2ƒÀÚ¿ΨØg¾~_§‘ùÆ ±G?«;$¢À;;äœQB—₫̃Y›ÎÊ™Y_ŸAtœ»íûÓJd¯g•†¼DÖBw9ă˜oämét‘kñ±¡ŒØÄ‹î™29è†ÅƯé¾0ÉùK2ˆÿxp‹U&ơ½`¡™ƒ̃mÅþFƠÊ5ưĂIØÎ$Ơ´BêUÚ̃‘£«”«ßEùß»Ư²èÊUÛ”ZåÚÜÍăl̉ˆYi>gÙ˜ÖK–µ»Gîd”¦£ÍƠØÖeÙÏû‰ÁÓØkưÚQ‘SR°ó ´`Ús‰ºOŒvàÓ¢ñ`_Å‹­§l&‚DàGa¤{SÊ= ₫¼÷—ơ®´Œ`^ṕ˜%ĐmY'ëd~î©4ÆÏp–`J/0£̃‚_baè"46ơ*ºZk¹Æt¢E|ă&©5¶øçkàØøpu7s¢€\pôx(̀´&Ơ\ï瘸¿…n 6dlo9ư[àt#†¤ØMÅi#Â\¾ûQtºÓtJ'¸mͪ¶½á|RÔ₫§OÁ9 3£Ô7·x–}(üù¥f=3c£º¢V›;ù=1¼/\ÎDnđè³áµƒ—ß§½Å0ÊnÇ—{7soÂJ£~ƠCUbæ(₫å­ê’Ŕ}D8MŸŸÚÛ匘Æ{?{ °¿3&èÅ~Íqîơ[QăM»?/¨Ê™ÍÆ?}‡¦êúØöéT5OZMpcOƯê©AùϦ/W×ĂÊB±/ÓV¡*‰¨7ǸJTQèác>Ë4«0¦æßó„h²æ ƒ½%@6hûP̣¤ưÔÀ¬Öd̃±ü…R̃o*µ?…hƯÛ^´äơ¦¹—,íŸ½Đ½Qé;§4oW¬ü×Úûλ­ăt¤‚\ÆP2Ï 5+‚øÎxdđà·ÊoÑÄwf“•Jy*c?|Î!tj7½¹’̀D{û•v7 >#̃ƯºG!çfO¸ùO%X­?́5ª¬-%O'Ê l®̃ăB¸U„tönøva"`eó°ÊbgyM?&/ÍJz¿¡×-[sƯ"‚ É­_c´T7IvNndÉƠ–V/È`ĐîeÊL‚r¹ÇU¬í›#?_ ¤;VGyƒ=à-e˜¾§J!°ư–­™íăƯæs$€ç; ¤”ºKưY’†V¼'ßă|±(Q9fÁx–íÁâösçü©)"½ñÙnXèE{°̃¨̉ç¯å¯©5å»mŸ»~Øäs¯Ên‘I9Œ'+¡mư4/„#I©·˜ "³îÆn»U-kЛζ½£ä‚́„±ÏTŸ¢Sê‹?X{†8ºƒ5k÷H£†ÖC^©oF9́Ä ªVzíuñD₫¼smK»(»w"ƒởz¦ñơư7ŸÎŒ¡{Ÿ¤¥V”#RñËÈDeUó¤êđuâ§S-D‡Èȉ=wâ°á~å̃6ú+̀ïi©ÉhèglC+F' Sk<æF̃ù˳í—ÙbÅƠăB™±\ç÷¿ÎƒƯMb^*Ăw-E¡)"^>°'̉y›|îÛÖ2¤©î:Á³®x=,Ptm±’Ơ>5wYI:–3a­¤— 1M·1ÆP|¡ÆvTưÅÂÿêÈL6RH}”e5"ñÂÔáÓ\‡øJUSÇ—")í Ï¿èúy‰v•,¾±Ă”²Wdo$¼ µxÏưT4$¿¦¨TƠ"¼#b»ˆª+‘Éçe×R(‡®Oß«›­:úĐ÷₫qx§EΆĐ÷ư%åa,Úí”÷ñgºY‰̃.ƯÄOÏ[ÖxĐNm˜¤₫úyºÇv́¼«µ¦½Ă•CÈ ©â¬&.̃ùƯ~[3ÑkU^Yơ;Ë{ªD7Ÿ_øtÄ6¸ÓâÅ+fäŸÎ*³7­‰ —¡eÚmúXeµD*#^Ö*ztÔ×:̉Ó­œăƯ.9Úç„’Íl aÀ?Y€}‰r‘©É³?ƯÏ€« Ä£)ˆ́á‚ká̃ö,)‘̉ä¦F·½Ùêm̉ÿ.3z ÿùËÑ$d‹UœóYR^+(5æÓ´RgZcđÙø-)YÊ{wë/öĐ„́ù¶›Ợ.ªß ëCçOÖ·̃cIdăíl’ÛPÁ¸¿ZÉUÑ@̀®½u Ơ§’.[2ѰÊPŸ¨ÈKs|ïÛbâÊæo’H<8íwEQp†‘q@Ëeׯ†ŒYô—9iƒÔ3–†Éđç•À+%ñ~°êóg^”‰CÍUÏS*h¦Ÿ] ®øúÛ,LYç̀¢E¼<·Ïó„?”è6ʘ¶ˆƯ§‰́̀ư¨Ô pg‚f‘¸Ư}k±ÛiÑï•¶«º|_X郛$À4©3ˆªu[û₫Ù×l‘9æÊ[T%Q„™ç›=VdƠéä“Ĩ?ư[̀ŒCƯ po$ ѬÏ߆vD†¶Ư¹=Q`₫²‡w;?ºéàọ́a—†?è{–# ZfÍK…,Æ}b^(;wSŒ»´´‘H£́d'“™̣xîk-ËeĂ|̃ÊHôçñÙ3ä°ÚŒÖM¢ !d …îNpu´Ặ¾(§¼·úÑFJ:)ï–œl[u÷@ÓéÂGíƠ4={aă™r½K¤f̣[“¾Ç^‘‰­ïQt‘sË’“ªmUU –b׫éåçP £öi»ô9^¼"6s™PÖ\ƯơPûÅ̉1$8íè;…m|ÆîUúë´ö·ƒM.8äuç.ƠOÖtY³³yêö¢‹PÖ\"d\Vïă€~SHÑv¼­O–f˽ˆøñí P€§GÊÉfR½}=ˆ~$’í„J½äĐĂ½ÔA n$°7$kœÏKñ‰¬bÿØtăźîÆ]sÓ°[Ï¥X–ậR‘ê2í¾¹y£ êtÉù]å]̣ÚÑ¥:}öß̃¤Üá3öÛ™OÚH èö#v-»EÚª¦Å¼™ÿÔïØüª…A§„r9²y'´DÆ‹¡·ßƠ_w®₫\CVỊ̂"ÿ]Äà®ÀƯçM d´×öM¨ŸO8ªv”»6ÛúêÏV<ʹ=°û ,H0ús²ÚmU1]ëÆ¹Ư5Eơ[ßácG©77—ÜoÍåï')™œêPđ]́kY²Ó ¦Œù˜)ªÉñ… ¦íØgÿ,̃N}ñ-©üÓü†æ»>ÚWÉDxMY¦\ëÚú‡K₫±xYR b@}öÀê¦[ụ̀ö,½DøD‰ªkĂRî7`…ëÄr'©9ù-WÈ—ó™Ü•§Ê&Ôœ¹w+E#i‚ḄDÖrE»¬¼UZ&mx’ Ñyđ:‘₫Ö@-4đ,cß¡êÓL JŒ^”Ôh (}àAàÈøf»á ¾¯w«4©²4Ă|ü"y¿Ú’Ö¢ØiªÓÖzä/’i~ ¤WJ¯F* 1=¶¦X̣·¥”÷³‹{ơÜŒèţ΅Ç†¤Qn*ÓËRáŸWƠˆ^Äă%²Y=Ü÷WKùØAâiñÄîV’C,ä"-Đ—VÛ~‘º¢ BzÑ/…„urM‘7Eû••xÖü•^~eø4~HLß™†>ÂŒ²PøQ¤î 1đK6îhØÉí3}І!-a¦WêfÜ'ÅÓî OÓ´Ö„9¹[ %W½üÇäún,ùQÈï åø< ü¡9BTmÙ²ùœØ¯âƒá÷4ŸZà-×ËJ[¶p‰}zå5,¬¡îàk˜©Û|o}¼PjÂÍÆ£ß́_d©ZœBæp²Üü$^€LÙ÷ºnùÑK[EbY‘ºÄ »‡*JX́üXÀÅÆôAfđ_>ÚgF₫än‹ị̈—RȪvÔ£! ߯7%¤Í߯÷Ó̉âç\°ê²DJN”Th Üí̀W‰«YˆéØ”o&åç 5•|.|/*áVÆØbo‡Gêk)ëµ=/›]uμ*`+äu‹¿pXågÄı :%ƒèz@M;ƠơoÑræ­¾xå}à±”£Çü4˜ĂvӅʺfêNhïaâaư%³ÏëœÊ hÔï%Ÿ đtÑßÿ@Ü[Z||O¯EXT?'4¹Ó~x|§™¹ |ĐEJW“̃nTÇ:…ØÇ>±û64“é#¶hØ%L×­këø1eJèûù)Ú+Ê´¼Ươ¾jzsW/™GÆÂ2¦»-3°̣́¬¸AÏI!.: _—$›JéLt̉zÛÄ@FêqĂ_.„OHÍçùV&Œ¸GϦqM!ë 1TËƯ}Á|d†IäÏŸöƯñ ¼9¸èYÆ eæ2Íëœà¯]¼LíT^Ü’øU·{‹ÎJًܿ¬^¥³‘«Ké/æœ[‹äĂ §ê×{µ[v$Ï´M_qEÅŸûgŒÚN¾¢•†„µ¬]˜;ºæÙ0yđ̀,<Öè“iyMcX¼Áu«?†”SM¦ /–/‚›Ÿ„´œ­ï—ü³¿ï¦^ú©"Ûk':₫S™¨)Đˆ¤ï—V1$Eåm©6~6aBqö<ô ƒÜÁĂ:=£HĐÿq£î×Ô÷MJ Pa¡iijñGëçª̀•̀Ô„i{C<hvzG­ƒ™®sùt!̉ÔJ2§]"HÏưCO6 Ö!(?«ÀQëü;C‡•Ø‚J×ă°ÇV¡¬0A¦gT¯vR>¹wơ¬;ë’uµÙưv­‡H ïæ5Åë~-¹–’Tæ¤ÂÇ…~µú¢DN²g·Qk±d–T"n…ÖŒ"Ơnß,¼·Ñ?yø.*xCƠT«zäuå,¹œæº© ç­Dø=ưr) BpÏ|Î_>Ç9Ù¥‚̃ó¢[êUù®“¹&ú%Ym´Í lưkçÁÍ4«;öJF…$o'ĂÙF܈¶]¤×+;%%WŸ^—Áۜڵ'C%dkL ebfvS—9#0L~< ÷h§ßLD&Q©'Kj}Ư!æ)#m—çÇS °Ô|Ndzµ"ªT«¾Ê_m_I× j­Hà³q€~̀ÍmJ;˜9ă¬lLZª$ÙÓăÓÇf ´vut^}wbäëJå°ÛDH׌½Î[qMfïêºÇ[¤S¦uÛ qª́> stream xÚŒ·P\iÔ-Jp'¸CăînÁƯƯÆ»[ ¸×A‚Kpw‚»»»$Àí̀̀?ÉüïUƯ[TA¯mßÚ{¯ïœ†LEIÔÂÁ (årebcfåˆ+ª±±XY9˜YYÙ©¨4l\í€ÿ˜©´€Î.6 ₫?Ħ®`›„©+8NÑs³°qظùÙxøYݬ¬|ÿèà̀0u·±(2ä@@D*qG/g+kWđ1ÿó@kN`ăăăaü+ jt¶17M]­öàÍMíêæ6@W¯ÿ” ´vuuägañđđ`6µwavp¶zCÇđ°qµ¨]€Îî@ À¯†J¦öÀ¿;cF¤hXÛ¸ümWw°tơ0uÀ;s Èœá²:À‡ÔeÊ@ĐßÁ 0₫™ €™íßrÿdÿ*dú+ÙÔÜÜÁ̃Ñäe²XÚØÊR ̀®®ŒSů@S;p¾©»©©8à/æ¦)QU€)¸ÁÚs1w¶qtuav±±ûƠ"˯2à)K‚,Ä́í WÄ_ü$lœæà±{±ü½Ù· Ï?À̉daù« 7GM“PV⟰ ñ·Í è àbeeåáă@Osk–_å5¼9Ù~™Áøù8:8,ÁMưl,à?ˆ>.¦î@€«³ĐÏçOÇ"ÀÂÆÜ`´²!₫®6-ÿÆàå;ÛxôYÁÚc°₫úù÷“!X^ ;¯ßáí—E]^MSK“áïÿơ‰‰9x|˜8YĹ\¬¶_"ăđûoS›hü‘+ ²tđưÍ<¦ÿá₫hÿ¹t€ÿÖRr« ư-rV.Vsđ/¶ÿg©ÿ•̣ÿ§đ_U₫o"ÿß„¤Ǘ́₫rÓ₫åÿÿ¸Míḿ¼₫ ‹ÖÍ|À×ô¿Cµ_ZE …›ưÿöʺ‚/‚(ÈÊîß1Ú¸HÙx-Tl\Í­ÿVËßvÍ_·̀ÎTqp±ùơX0Wó¿|à«e₫üèpḲ/|s₫{¤$ÈÜÁâ×cçâ˜:;›z!‚— F\6đ]´z₫%b 3ÈÁœ·ç°tpFüµQn.‹è/Ó߈À"öñXÄ#^‹ÄoÄ`‘üñ°X¤~#6‹ôoÄ`‘ù8,²¿'€Eî7s‘ÿÀ\~#0Åß̀Eé7sQ₫ñ‚¹¨üF`.ª¿˜‹Úoæ¢₫¹hüF`.¿˜‹Öoæ¢ư¹èüF`.ºÿ">0½ßœgú/âç™Ú;‚¯̉¯ÇáÿX9Á M]Àú³qyû;jö0ÿq}æv`ưü[‚ó—Å̃₫÷Q¿„Ạ̊û p7vv¦ÎD€çü]ñ·Đÿ ` ¬>Sëßø•ăä¾³¿Ë€é[₫†àË? ç/hóGM0₫ ¹8~A÷ß,Ø~~çúîàö'ip€Ơ\ÿ7;Nđ­½­ ?"À¶?Îg·iûïçí<Ù?[Ư₫ÖÀ#ư]™ œ _Ø?üà̃~“';üÇ nÆñ·\̀üÙ-Ïœ“í«óVÁ> ,đûöPî¿l6( <G;7—?Î[œ~oïrºüớùW[́¿Œ®@ 3»ÿpáàüíø/>î<ÿçûÇúß`¶_øcƒlà…üfÈNrÚÛüWÏ\¿b€î́‘ \Äüzü·UđD\́₫”&˜ƠïcÁïWkgà OÜƠĂáp ·? xùî@03?„ Îöü‚Ë{ưÁCô₫M\Éèü÷Qÿyv›»9ƒ—ëú×Û|µ₫ÿơ] ô#.̀:˜ „ÚÖ†¶ƯW‹z0íŒ MQíh§Ñ1ù,8·»=¢Â} «Ê ^s¾ư0ÜózyK’öFd‘ôÉ稹.¼%Iµơ‡ïOăµÉVÄù œo…G¢uưÄDL"»¾ON¾ZAo¡_uÊQå9¹ñ¢ª|ļ÷è“ö¬ë/[}7»£º[Å-ô³́;SŒf´APñ4U¾Yö 9¬+1<=ƹ'ÚôÍíFî·R¹D¿ă"½uö؇ï•r v—.|J|=>gçạ­ôbÖ™z~^ˆoÍ!i’ơ6?S²û}₫jª@-°a:¤Œå|½‡Y¢Ô‹T!q“k₫b²ˆSVºwg®r8̉ ØËö¯€ùT«B³5«@•lû8il¿!hH,$¬ïÖbóöóg1#́­‡ó ±áØ Đü÷j¹].Êé̉¢QŸî¶fz̀(N4ÄÜÉ́ăĐ´5„·Æº>ưô`,“• ¢)ZṔ—? ÷]0œ—(êůÁyÓÈ^Û®|O œơz%–*kw ¸}¸Qëâ™@ŒP]ă₫#…÷:DïÜ÷±-²¯“[”>vÅœ}M®èt(»j²¹­ÀŒ«5!ÚèÈgËȦUMÑúE¢̀éàÚñĐ(´\;+Ö›ñc@a)MÖªBÖËlRí¦w¶È#i\“P¥‹Aí*Ö`Øg!ƒ.ƯW”k‡»?¹?ä~÷”ÎW ~&̀ˆÄß¶©¢MÎ!››DT`‡À­ÑÏÉ@¿̃*  #‹¶ Ó †7ßG‚‡Øœ¡ÁªK¹PĂTá̀' eâ¯A§A_E•C«b†Yè«—‡s-ƒ îơáç®A¤̉èè:™•™!Lºb)A•³̣ —âJó¸P ô­z rPßOEB4ñÿ"˜MÂÆZê Ÿ₫"Øz`Vßø0Ÿµ:l}¾ºVqßĐP])<Œo"|Å“r„ƒd<£ÿ¡ă×SE“m†øJÈơÛ½ Ä"wzs“Ÿ³¼ÛÇ Mq› œz×ÚÉ)¿[/<’Ùgs*ƒ5§³@ƒ––]NeNw2ưLă;Ù–ƠguU?±vÍ£X׈?_*Ê=(æê²–ƹûp¯á%ÏÜ÷ s†3È9đ…î ’³5¾ëÊ3/ËăÓu3âJÈû˜Fˆë‰Iç´#’{-Ñ¢FÊÓ¼ëeWf̉J­ä–U¡¤´ûqđX̃Ä”„»®ß…w4 º$€Ç—£f§²J6«̣¿“ÅOgtsđW,gïĂó^uKLÏ Ÿæ¦Ïh¥ÿ„̉߃̣ỵ…¯s¼dM¸¯@>Çœïë·» ƒs«\× já̉­Øo}×?@°GíI»m”yJâM™…ă‹Ê·³ßD´Ù=I÷yÈ,¾Wn:ùo³i±D‰ ‰Ô\?±&vëæ;x?PÈû:("cÎN¥j£¯=%´£xm+î¿p~Ϋ1j¿3uÍ!…Qf;ÊgɆº M₫ÂáEB‘¾e¦¨87!Ư¯÷´¢e_₫̉âư-Z*Ă®́á3yÜ›J ô¼–Xœ¶‘ß]<ô²úĐ’ >c₫YĐjñ™NNQ{«T̀ TY»J6ó~»ôd ç=ô'Áé8qI“0­ƒÖëíĂ}TتIăRE*í}›“è!”eñíä“mw*|s|Çz1.|á¯hL¶*HPµø•’‹‡\¦n“IE`-C³ŒˆµW¨Ù9=0Jí¼‘v)§ÙµÏ0k=V•ù̀^ vÈ•?åbŒi÷̉Ka®°|2ñ*‹V­AˆN6PưĐC(E_¶l£s³o¤¸µ0.P4 )|§N¥Q§Ô"ÏWÏ –>{¬ï\”ùsH÷¦óD× è×V3O„\u7¯®̣x8.ơJṢăñƠsôù”|H× L4MmĂ›Wzª"ăh² ë®TÛ/)Y]ú%t<}Ô?ó¬ÇAÙÈ5øº4ÓK¦=_4z/htœ¦×̉Y@Æ Pr ù8Hđ´)"ˆµ{y_'2+”ˆ}ä¥Ö–Î̃f­ö€ưqNLª á—L 5ó_5÷ûüŒÀpßI­ èØ Ñ„f‡‰́Û́ŸYÏ»ÿÈ<Ü—̣…Ár|ĐÛ«Ä=„tøV̀»r$<÷Ư5»°ût<,äáUÛÍ\x¯Î+Ó2^ü™B{Ä”¥p<+28Dø{)]/uCÿ‹°\Èô;±Ùƒ̣$̉”lw2Ö‡ưÆH©ä`䕵ÇÓRÉ5Sưˆ`Ë{OÎ@™° ˜¢ëz÷%û¡¡è’%FNŸÙ¨ù†ÛZ®ÆVäËós]ˆ$-«ôˆÀx ö’ªdlé`̣[ æóœ×9‚ñN„ ùm· W;q¶$>×A*¢SÂ\ŸÓ÷¢ áí¨ o6qu†.¢¶^à0¤:ûÇg¹ÅÅ‘Đv´S ”đ$-ÀaƠ{G%.yWÚOÀH_º̃¥ùUÓH™”u½æ©*N·M¿Î₫¾½̃ëX,MÀ$Ù×ƯLJdÓ¯dá§uwJ¦rñå©öÍ‹$«I~d ‰-ŒÊªĂ²Ư(®¦ZĐ­QGơUß)X—é2íû«;?{™rUt¥Kg&Hø cˆ ¡K'qu!p¢ÂD¸WÖ&i ï³̃ e÷†4KÈØ†|½å‚íŒ́¹œ‚¸ËÜófqb¶ª*ÿÛÛÔÊE»>ê”* Á½ÅŒêK`<åä¶”w¦Iă`£đÇ-YsuêÁ˜¶ÄSh ;‚3([*˜È`K«¦Œ£ÿÊ´B”̀Ë«m‹ÿb+Çœ¬Àó&%Ǿ›âó́û K?µ”̀£¯Ÿ·È¥KSĐ+öh,]&á¦Iu´5Ÿü~̃646éö5Ä!NÏQÙ ’ÉtœE)˼ÀÅ’?|‰Ø¯¿ HØ”krÏG­ 2\¦@¤\€+C[¢·âJ UÇ{"n=ùZƯ}!’T—aZ^È„•.`ùîÀÎAûU½"íe¬3Dc1Å’ÉÜH×ÇvÉ„Ă×̉¸̉¤…FÖ.ï)`½†l§₫g₫Í”JÏȱỌGXɪ´3¡qGÓ}#¤ yë#å·P&Ù§™[÷ȼn^˔Η)+WÜ-ừz¸º½üÉV g² ï»Q5+^u¸æÑíÚđË\æu(‡ơ-ÑV•ƒˆ¥´:&`q̃”»í¯÷1IóGl\ôy‡ä„eÊèPÅi¸ÏwA Lxoá­‹ñ¢ T̉ØlúÂ!„W©s´.Üf%—xĂ4ÅzGl³5'#²dù-äém“óQæÍ“;Mà =3͘úVDëè‚×OR<$œÈº7³âuưö F_ª¤Ư¸Œ¥3áîØ>ư@se‰Fz^ƯfÎ]fuO8)j³̉4O®ü‘ï'x̃Ó ^¥Ë€âs [J*DyÈ|$̃© ²°»>)ö^?¸́| üñ–OVç:Ѳ 4kjóåÛÓ̀…O:’ÇÅ)¯‡˜7Ⱥ&zÉéå–ÔyP»uIªà‰öaÎl—Pˆ©¿/ˆîË!3|̃èln…ÇXĺIQÊß¡äv¯U'ĐĐEO±„W©úÂ9^|º'œ ñæöø®÷!@ ×BKZa–‘aÇ»\ú¹pƯˆ¥©Ô©¾zøö•ut?ZùĂƒI¹w¨D©«2Ç##3w_q^ä- ¶µÉ¶b[Ä›—¹Ă/₫Àơ- ¹ßÔ–4¿ÉbqçÈ!Ü!Ñ¡}$K¼'È´‚Äd?˜Ḥ©6ùÛ)ñ¼FT©»Gƒ=‚§;£é$(b($t„.ßC5€„A_0ŒÛ4÷‹jÿÓDM¶*Ç™€'ES,)Ç©ú(™­úÉU“«\Ë›‘|å—Ó,bg­Ơ |OĂêfض7t›g¹Ư †vÙP\¯ơ÷̣'¤^3*Q—Đ`Ú”FÔ(©vË^ÊL]Ov kđŸˆ̀Káî)½ Á©ët¯°Ö–ÓµZ¯kϵsZ6KI4ZÇ-1Ï×i@̉©ĂL2‘„<ü‘"ô”$±'Ä_]WƯ!é"ŨÁ¼{¦oÏ9Ú¾ ~™w=y~ÖƯà2‰Ă•̣7Îố ̉̀ñ¢ÑIl •AÓœ}Í-‹d@º·|ûæ'ÿ°–ñÈá73ŸøèeYưp¦ È}æ±áÏ84½.†Ư¶¥²,¡F ĂnTÖJFè$ă#xÑ‚je=zĐU[aF~Åvæ_·°¥(j®Zư†sD*Êjsq@ajID”‡’æ‰Û"¯đU‡Ü-{Üè]z»ø†ûô)̀Ô«cFñZ–ÍØ·÷ˆrœÅÍ«#±÷ á'̀ê×Y4Î'ư”Ë2X®Ă!© ºÄ1?^Ä üù€æ ûƠµĂ–mr StÏù9»²k²̣Tν‡QÔ÷Âe}Ø·Z«ññYˆi?3UCëơ—W5»uø‰ ƒ—„Ín©ÖkN”Z—ÅÔ¹ø̃Ư‡t×½)Ë!ïí˪³Ú×8h[Ù62+Ơ]¢­¥§D{À–ßïÓaGF'm…a)‘9Wôêz ½£ÆuNµ'4a‰̣Cd²¼âö6øjw‰6ú™%ÏI@?$Ï„?·¢]¤¾£5V)Z&M̉‡Ó·üˆ[7ñ}ṬŒ}~BF…§·äDw[{˜©VjCR1aÎ0cH́ưf.%„á;• jóî¦ÿ.”µÑÉÖÁèqu@Á Åâ Å'GÉPb›G›CRx>ç¤1M÷W?nuĂ+!ă­œ ÷ €6U GƠ"%5ưâÈ;e‡Â'meî2f‹ ²½¹Ô}Q#‚JÜ=y¤ÊeñF*×åÑÙ°V˜]u†&ínư&̀|ỆÛq1 ³)VDRé$IØ2’¡th¥ÔïRmØ]×Û÷Öưó^¯Äe8TA›;ˆ£ÛŒ£¨Öú8âÔ(_ús!lr}ŸŸ¯€ơ®k!ï)8™¢(*#6Hª"6ËfÅbŒO³äZ“‚Ä÷‰S¢)‰dlÏ>Ÿ6̀ŒÑ¢M-ö¦Fil‰Ø62™Ø©F«đjwĂºG7¦AêƠѶ·7|bO­>ŬØ×̣AOfëµ>_S.h7P{ Ó7‰D'´-A Ê5̃xuˆÈq1vfçQ/{OäG[rQînbJǶWÄÄÏ]b̃5ñQ ¿Gù ñ-»s4¥ÛÀ-mvk̉tƒ½P]S²ñ•ß GhÊdñk”ŒCú¸CovÎRó»ÛANÊ ö%©ØÏG‚ó&›%ë4,Ïá4vrN泾ωÄ7.]Jü½Ü †›Îe¯^ 4 Đé&Èï}°ø†gºăvz\¡WëÖ’ËƯ5¼øƠ´³Ø×\qt¾úP}'ø¾A´›cđºJXxKñaSnh§^á]|l/.åPÇ!@•æ¤KÈI­ù“'—Î55^QŒµ¯A*s¨íáèd3ëGñœËƒº]̣;Ă1́!QÊ¢=•ơ³0Ö‰O‰^Gơ¸ËÅ~æ¡̉Â;;8[áÑ —<’$æ%47s¶}rRÏĐå ́Éz¹°[ªv¸a¥ǹñT_[æÙ™y ¾$Nñ>´´ª-SƠ‡e‹ÓTơ±ŒƒµQ€ ₫́Aqc”:Íè7!5̣ÙW=á•ôP‚" ª¿BĂ-‡Ù gPaÿtmboŸqR=¶S¿Ç®[ßסcD÷Ÿª‹Äämơz.ßêÊo;û½ÈñI뜵m©Çù™ƯiçqéY ‚ξ’XÉf´2 ¢0}§k\ ¸®—½f‹ê ôÛ Ⱥ#ŒD½(­â®iDï4#a¡~œ1 êÁ™4[̃߉«ä2ÿ±hĂaL…‘ƯµWăö& QO•²Ú—7*ƒXÂ@±×¶¹̣5Y $óëS ¤AG|Å‹ÏEäDåB£3óro¹>k³6~íqu΢¿í­÷éîƯ1ë︧¥×âJ®L4çôíăyÎ&Œ™¬Đ" º{9„@đrbybÇ‹đc§é|‡p̀(/#“fBÓ™D-̀L@y:"ÔC™“P§Œ°SW*k6•ÔxỜǨ_Eñ­cđç£Æ!¦j¶Ï~ôĂÜ·É:ˆä°×̣UÔ>ÃK;órÙ.µ–'á~Öwå4CƠ¾Ó3øI<̃*[~‘ƒèªñ_ợ „ ̀?Dú"$ÂNVàP…%Ợ%[Ñ~DuƯ®Ă"³ü4UÀ—¤³ƒ©Q9°#®6´Đ»ùØ›9Ô™ñNªÛ ‚¥ƒ àH'Ô–° .'Å(ơh˵$‚zj‹Œ$ưùÍ·ÿ₫.v B\(ÚaîEcđ%I"$®F÷Ê“/ zé&>¤Z \K†¥-”ñ6¶5À>n¸²äÊø{¤FĂù!Ü©ÄQ\ÉÔrèp‚ÇùEí[â¥X̃ä]íQÉabĂdYevÇè«A}ä{|ć¾ÜNÎ `Ơîµå´Ä9́·v5:D­óÿ$,‰hѪ/-oó3I7´~Đ‘é&¯>©Á3$^Ë0@C9_nĐùiÓdé|¥;âÎô´ç ₫–j}BÊIÚb¸+ÈüÅëº*hèJkT2o¾Sâzug×^ÔêîíkË@c=«Ùô'ÚÈ™â>XªœÄÈÜ]"SZ¯9cÄn‚-˜,fŹۆª̀d‡n?T˜R„“4:?›è„Øhm…ÂÈQƠU‡&ḶưV¿²…&ÍfÑ$È‹ñ,øPă2V)X.ëçÙ¤(Ø”´!̀q ÏĂzn”ù8ê6Ùîq— äçÛ̃Ó³ ”âÈŸ')º:4°º”Ă ÊăGâæĐd¸ươ²&¯$ÆÔêđ§½´÷´T\†HLiđœÄg!°̣4ü÷nM—ièç›ÖÓ57.­ï¦gía³d>ˆ.¡Ôq™Ô_ầơñåDâEPØŒîØæ9dET=BÊ[N/¢\óơÛ;ÙhD/–p¹¦½ùl¿Ư₫¹`™ư`ü?´ú'«Û•²y½Y¸=çR*Ưôöâ!æ̉ÈKÇ₫‚.,I»µ 0¢èg¯^DB/„ ¿Á×Úrw±`É4çƯr&€÷[>‡•óHÚȇ— t¥ứJîưûi½ô>5¶ä…0iKœÉj_˜jOöê.ß|]|Ç«=ư•dÉ„éÂưiÄÎØN€G̉“ЧÉ$K߀é3À… O:áëcưJM:‘31+×Üöcî0ÖSumÜ\·wœ/ûuXñ7åa}T¡<}”ˆ‡¼÷"°Z!”̉v#™K¨„Ÿ¼]b̃₫$,JFauD‡AÅ3 !¾{Ià=)Ó¢´m.–ï) ‰RóË%ĂIûĐT÷" áh&b…miUÉu/jd‡5 1Á¯y([üùÚ“Ă‹”$6=M,Y¨¨&LVt7éOsBæBƯ;q+`K~̉G¦LßØÎ¡ "¿̣ä=7²âC¸<UÊÆTenÓgá^™=á ÈUíø…)ºOk!´²gëh·ƒvW-E­̣IJ9äpÙï,>¹r3ÎrÊzÉBjLDù“ơ28̣ma>ÓEö».tÂTˆ\°— tĐNz7ˆíåCdßAÔ”xo‘y >- ××<^›RÂ0˜ăuï&’6uÚơܺzá9Αè­á/ÉRLư„b1ơlqÙ0øơ6Z9œ¶’nÚd©Æ¡î–^̀r“sR0VÑ¬ÜøvAÖOXVKdHPщIƠl 8Ăú-öhTG>Ù´Éç{˜4¥̀ÎlÓƒg* §.æñƯÈ–q OÄĂ·dƯËlEúñÓđ¾ç@zÁÊ·Á=) ê¾?î¼ÑẴºsj´ÛX q™đ…ÎBi!5&K%­7OFba‹`Ú£µË«è9`e»“y!ƒ’́^ؾÁ†«^0 tœ4¦Ó̃ !}ƒlg̉¸\4¿Z„_ªr8¿Ó©’]µ¯r¸`¿ó5ôlTÔ¾đ¤Ci† i5øØfG´ûè\0*GS¿ø-³R¦%zĐ˜M 7UÂ>”“y;ö£ơ©ñôƒÿ}G"la36Næî†ié{$‹Äº·üç·$Œ÷îŒeq˜µÈ›J ÿ=z₫™r <]‡FÏsà¨NÛe #qU‡¼ŸN ₫¶`'Í«<4sÜ„P._Ÿ8"­b#nåEóƠu‰±Ç\”W‚sÄ;4.-€È„kíéÑ@˜ø8MfzÖi:~rnÏ¢Gw›¤̣ÈUj+5âKö D!BfóíŒÎŒ.¤öơ弨Z‹è­VWÖNåµ\–0̣6dLª+Îc̃½̣ƯY†·µáÎPââñ]_J0c₫™®ÛKb””dyyqÉ=lVf;¬v ¯~ơËN}ÇÏøq?=T¤Lß³˜È™¿az:M·=+¸²‚\øÆæÀHÁ÷,ÙÔĂ|‘(!ÄùØ5¹üº<+¥»Ă—'…Æh~±èăỊ̈Ễ5f]Ö8Ă–Le柳±`ùƯ­çEÊàÆäÉI—4bóˆODß§ûwt‘'§}ÏKK^=÷lªA_ở‰ùôÄ– ;q")øÎ¦˜3̃D{̉\ˆXÆăŸ\,yöîë,đùñ}“6Ê—§9bGË­ÎŚ*Lăf,)¦ơ@éÎCB=°Jô q÷Z{˜…5À-£Úc¢óé¢̀í[‡•å5øYV‡ùc+dH.ÆĂ¼ö£ té‡p«ç'µ²¸OR¦!86OϨ0\z~ ‰a,˜nw\¯^Ÿ=T¤ƯOĂbh&v("Û›LI¸Ç^æa['b ×5’2}>øôỊ́v*&@B¶` ¨Àoª÷ qÙ/{ŸJˆÉë-´{A! Ô‰m[mX|ê²ê¦U#鸾‹öÆơ`Ù¾µCb₫”`G-ƒY–¾€L3âc ăÁ—Ñó9FƯˆD²O7«“¬KxâG'\è£íyæzªj¢í̀‚ăátÔY§ŒMĐ€i`[đ¬ä°Q;óÓôê·' x €¬æơü¡¿½ÚúaoáÚúZeSĐ“¡B«}‹e®èÆæ'Đº¹ƯÀ¥́ĂÜÏ„z~óæưAh(ç̃ÊZ"R­̉®A5^ùUvµWA3ËL(_ L`ë‡åơù&,9"OÁ‘ŸqÉ˰ íÀt•Œ…x¥Ö£Á±ơÂaå8t.~@ÓđD¡Y®ă‡]›M Ÿ`b<*¤áH¸2Cÿnü½×đ§&cÔ#ÀTˆÓ‰˜o x¯¢ƒ‰uM9 ưn¢U%m¿aA5øs÷3(¨‘¤ßá;GX×_Ơ™Ÿ+̃!é;^n4ŸLQe^Vj‰àPSÁ—4dG,ơu÷Æ̀–½gï.ûpå;48ºé[ô½cº¨çO¦Ú«b`Sº÷ɽ¸âđ…åÏ̉·ˆA¤&¨4B7æyXÄéƯ™•‹ä»HF’(å"yÙØUÎs^FƠ™¼F¾¿ĂE_ézÍ”—T,~ôx¤Jß›Œ+ræÙ̃¸L©·?Ÿ™¦Íœº7§tûläC8Ó¦‚8u¨%¡çnW\ä„ĺ’µd"jwꜱ© H~ªLÇå´œÂL$é™NiH}¬âÔ]«Á¦¬0û’LE|`I‚„3Í›¨_k°^ÿêTV=JrÍf!\Ùzó+i|HÛ¥ưß~V `ŸùÂ{ÆyL‹^GØơ¥‰kg̀xäUc˜'>̃á¡O Moé\¡›Ô {Q¸ÜĂ¿„%̉–i–'@Ơ‹£T+,_Lù±s›ß,E»É*¥¨+ ĂÆNµró‘ˆ́*‡~µezîc¡__‹&}ư Ïv³‹âH›º‹,Áéù¤ôª&¤mˆÈÄܗɯŸHÆLå+†0ĂÆGº…VVgĂDüNªƠ—jñ n–Qđ(#Û¢#æ@å=ptQti,ÑØ8*é wdG“>DxÚ •dÅ»³ơ*àÖ®`¹ÁW QBW4΢~9‡¯Ù2ü`V¹ÄÎ >•Hn¥aĐiĤ—ÚıÁ M<ÚÖvذF đÔcÊLqă I`VÚMTM¹K%¯È+´đ(>±(\Êˈ܆3ÿ°s’÷¨ËRØçy“ù ĂÁÈeù£*/ú'Ơ¢.I÷©6T&‚"ƒ‘ÏË£¶X_¤9É54̃°+F/öR¤åå!ï¡Ç¡ß™Màœ%±M˜¤&Ï7>À3̃t»q„›˜a†‰Ö}M]41È@ç$û‘öRï(ÊĤÍY#- ä̉–fö½ds^¼¾œådÂl)Ẹ'ŸGvǶ |³NÊ3•?₫‚2̀¥¼ƒÁ[‰ S.³>zÁwË”C°&Z'p2Ù÷¢đ C?ö15óù«He¤á‚_|áù,:g¤–#¦ÛµkÏ:¬Ø¡³À¥tÛÉu÷ớ;•×6p¯kܻ˓{¿ĂÿôKLOQ#èdûÀáf¬.CøfV́vúxT4H‹‚PƯ9Ñôư§bx¶΂ֶÆ1æ¤"KÈFÇO¨ƯµŒÍ¶G1ÑÓÛ—óă™¾3ø¢FÂDĐ_-|…åvø—'> 7C‡èO˜ÖëûI¯‰5̃ ë…~®î%ˆÏ>«V\™œ»*¬¶™YØQ́Ø4=Ú`Y4p‡ËÜjñ0f’&é;E´®åñ.œL–ᅥœNó~Üp[b™Ü®Çp ŒUñư¢ ÿa#¸µd|"+å̉¦!½áưÛé¯ '<Œ{”|&–]²)áK—qηñ¨ơb°\Ë\Y4¯T‹T†©¤FrÅ}5q±ûĂ _ëúz“®Œy4R¤“ö¦½JÂóơßA ¶Á1U›XR»‘\˜̃!q? _0ă¯7¸¤[ £¿BhÀöøñ~®gŸE>[tS$ —úĐ[qĂu 1™Éwö Ϭh}É“6¯qzitơ5‰!“~K PQÇÅRß…dT®/rØzË1µ²v ×3Å'½ôè(T_T¸aæS–‚ ­^!¼¬óˆkê%k=¤+çW€¿Đ¹–ryơăj̀¯=?+àpDe¥q¡ô¼*¤Ëqç°BĐ̣¬Œƒ™ơ'ϱô]˜Ñ¦x™èW^ ñÁ"‡Ât"¢;OX3 ׃?OÜ€‚Ib₫Ls·Â-‘‰Ă ¤„pRM/‘W“™ŸN—\9 rt+±̃*µ"ÚîäQ² 8çÚ¨ ụ́¤1Ăqº™ñhnüÔc¼÷OµßÜwhÜ Ưèáwǘ¼Ô¨”PĐ¢àeË’7.=ï  ccr&—àê¶0]âílzUÑÓŒleT?8¬±ÎÖ‡Zçù[â₫@æßµ”¨ƒtíÅÔöơ.…`† ®#BI>:6ÇÂ<9­÷²ưJñQ}1›Ô85J^Êm'ÍFØp]\Ûî ̉?ÜéÜ6 NYË:̃Qp²¶Æn,%¿sœ̉™—¼J’cÉ<{Ñ·‡l§4{؈\Ô+TA 7ÓêvcbDT?`ØqX´ZÓ° Óøè£°lÖÄR¾€eÍwÓO~Ừ§3²¡²¬ÛgŸ:ço¼ÑѶX̉*ƒBkỘ•v)ç “ji‹+GxÏxáë½Â®åFưƒ®œ×Û )FeBjb¨u¿Ñû–-ë[U˜oMrù›Ü‚oj²*?R«ĂWnÍ`ÂŒèÜ[¾#ÂXnI,l VBȬ8w̃Ô ö¯*“₫üëÏ6)K¾=÷á°ç4đ8"ªOLWÊ&Øj’}Ÿ!§₫Al©úΙ«5¼¬K¢³e*UêZÀ ̉´‰¿†·´Ư…y W±yroq wÅmÇÿĂm~AêakÛ—¹9'ƒÂd“.~‰ŒÏăÇøèY.e}`V>¨&ؽ{PÑCàâöÎÁSẁºØ’đöÍB¸Ơ¹Ñ°Ÿë£æwü9ÈØü%\\±®r@ÙÈ)ƒĂk¾¬üäƒ1GŒçôµ°¨~%G™˜|£¥èƒ+H¼$‹¢‡ñx˜/6Ơ\ùë§çÂv—Tni¾Ç<ÖÚ­íK´!₫çÙÂÚ wx¶®ˆÙ¦¢71†6CÛƒÁTúZ~‡¤œÎĐ;­C¡²Ñ₫Q…0È̃—›­›€üº"Ú!GU³˜t̃j-­áÎØG¡0£ »ĂƠqdrƠÎå21³°áxJ„'!ûil¤ÅĐÁ©Zg½×ë’fßmô¸>Ó̉Br§PK¢+ƒØ.²WƯ‰;D×êÔ-Ú³[öT÷5%Ÿs›‹ĐÏÄŸ̉ŸŒu¤’#Orlr“-×$°?9´×!¹®ÖʆËWW³IûŸrCw:~(©a¸­,Àôøîœ ‘½Àª;uo{Gé²e÷ám“›æ<Átv 7ƒ£³ét‚¤AD— ±Ë9á̃¤·\˜ÄH¬mˆ›KyÚ ¨|?€ñqM¦pÖ‚?&’ă% ¾hœSST·•Tt"øÍ%$¡W?ĂkV›h̃!›× Cư:Ă×)µLOÀ}ñ+Kf¥Í—±Âu-håWâQï4ópØ›_!Û‹YÖj9à@PơK¹¯ư™ª¼f3ÎàtB<µ·R«“¢‚i<„é‘Êíï]cÉs»¿fY6ơ›B¢Æ£Úµ&fÚ¼‰µ!/ç1́E;³· ЇU? 4œ—ñíçbïv̉p0¤ÓÜĂæsä]lVơï8iQ› V¾­đ‘ |Æ•ORôÉßÜVŒ̀y`¶í ÊÁmS^Uÿ† üÊ¢*1Vß_aâh']Bp Oq¯`ÂÔ$íËJ’èêÄC~§ß5eqŒµèæ²§»És @XÎs$º¯æ0(—{¾åÈpL…{pYWñ4mé ¦"Qjf}­/µÙêµH¼¥qKz¨‘z׈æXç’†FW1IOWD|ă·sÁ̀°Y<€AÍ¿M½¬ÅyÜ^Ö1fèê,v€€H3<¡lQQÁ^̉ä’´åègJùm™o–©„;²^«œæúX4A¬lZ=(;RÅC¹M•O*ÛÏg Ù}£¢·Ă3è2N”8Y]£€ơ{yơáѳªJ53Ø Äg₫JêĐ¡n2"øC±Ô½»½Ê³ˆf¾Sw»{b '6 _™+6f›V=sAÛª3ă£î¡Á|Ùë[nT#’ŒPó˜âö(P]HÆE¤*ü¬åêdD©;L‰÷ø‡Yˆqï‹-‹#<íÏOw@X±,uyk•oÅNo?w¥ÔÀStf`6ßim\ؾN±Alx¼¬ ª¤"4s<¼ÛO¸imÇWÛ¥»đÆèĐ#vÀŒB¯fÖ]l₫đo~ÇÜĂh4¡0µ[u5v¶Ú„½Z%«Åw*ñèeªơøíĂĐ̣Fzs-ñăׄOúƒ¥aSI:ôƯ2(¥T¤ªö÷wR̀d}ü1œI¼V.j·ÅI´nJ[:̃1ˆ|r+°å}ÄUülª›p_ó §lu8É íÂŒ@éz=b$ k[â-₫äĂtåñ#ÙKø@Q×o¥.­̣¡5[ºc^’̣°EÙ°0ËƠ³ƒ†§>Óƒ‘ß|û$z±> ¬s°†­:|Œ`çBXÜjƒ:Lw×Á4猾,âo…ÓđñµMØw &4FDt®.Gë#:yÜÙÅf÷Çm/€"wñ] e±5µ–.«½“–*er?çÀ!A‘‰Co·÷×FÉÎ<Χ6B1 få{p€à1ƠHxûª'íÛtmM '¼¨ aG̣–Â’®–ÆÔ›á=Qµß,Ơ!MwËæ ₫¾°ÿnÚ§CØF>} Å¡đI?­u¡*eƒíå÷"Ơ>ÖôÙ‰F=ÿ+̀¹¬ÚÙYfHÉV…Î ’%ÖtS×N#‰„•i}]ņï æw5T…ß̣•×Dn·)9¿eë,&cÆ̃@ï’öÿŸè#ÜjG‘/¼´W†„ù³èH#LS/²)I;5ö:¿₫ÏkÏOçeÜ¥›ˆy?G; øtÙ[¥!Ø̉ˆÎw’ BÚ3Èù©B„ÇÈ}”6»c j¼óg¤©Ơ´ơ^O£®âVˆcƯ¥!ËcO­üaN;ặ1û n5Ÿx]̀̀RŸ¥ÚÏô‚ˆÈ–¸=¶Ơ%:§kăÀ¹ÁJ‹À?  …Äè©{\`Ư“tláóîZa‚ lûÜÅdZ‚ö,”₫uÍë̉Û1çg«°xsåg’@S³"o‹x W₫®Ăib¶çÍf-¬ïîm„́QöĂâ,øW…bkØ ¢ÏĐ–â ^ܱº$˜NÜcª¨mK[gI¦W¡env8³˜×K+‚̀6xJϺv´ø:]2œ4F87ùÏ›:ó-Ñ íîean5ØÂ”XÂSÚÆZˆ#—ïq€ûª+Ư©.ỒU‚‘9ÏŸ/Ơ2Û9́ÀơăimʇŸàw€u$ ›=lµŒÄ0Ûçr¤Fê¡_{\i0̣Ăˆï0ÎÁú=HFƒáÓE<ûvïxB´WÙ%º!÷øM$‘‚‡–ëU jV@éÑ®b˜°Aíùe‡Ø‰£¡P?f s+é_‡₫đÉ÷^…üËbœư'ÀưSb̉ĐY2_$KIІÅ"p*6ĂüƯD´8®$ÿ»5óLM¾ư5JŒ™‹÷ ›/Ăë}›ÈéoGQÇ0Sk³«û†vĐ w'sfđ™ÛÚ©€Ûî̉ûåL0tH‰“ûO₫µäü¨Æâܺ›A*Du‘e :c3¬t–¯ZH/Xt…È-8µ5Ë’ ¸YÏD)pу́*èi³­]Û§œPOQ¯™g}h_pæü0_ÆVTRa@<ơRk´ˆùe¢—#ÚAyŹæ-¢Ôu0×̣çx" ×'•EœºH>Á¬ÊÔá=ƒ×}]¨Ë¼Ñ¾ñ(‹̀|°â†ÛQlÅX€FÓËÅNX¿%9.^p-ưh`¿±Àœ°†+¶đ̣² lTR}́I{e]|ê(NÂ#ư"KI Ø~CvL̉ÙñhÂæ„ÂÁµ#ØO‚\« üŨˆÖ„¥d@]₫¼=~0z0•{¼Pjª̀d½G2¼}ö<©< Œ"3[̣,è|!a²ËªixÓU+ÖG(Ën½¦r}¡májÅ₫«Ạ̀•AïÏœOç„©_€1܃₫j‰{÷o½WäàZÆwµµ>ÛnƒHXÆút\¥3=ʪá÷~2»¹|M,Üv°·h^º‰¿hĂ{̀ă¸¿ûy ?)̀=ôÓS¨ƒŸ²:d>R˜ơǦGö$n1̣¼°aIy]äûpsöWî6̉eŒ̣C6Ơá˱ûΣ½bp·+¿¨è4½ÖƠâ¹Q9vÚăD#Öc(º:hµ–b’"'£̃&˱qQh‡ï¯GŸ—3x„Û´”WˆÄ#®~;½‡·ƯRëË“hF\c*JêŒƯE±=åV® #JÑ9Vyºî^¼ï熅g2ç9¸r#μéµßÖé’)ºÔ‡ªÑØÈ2áɤ6GÜË€Û=œoèGƒQ)Âø›En²æ){ĂúËT{‘¦‹ iu»œ?# s >mRV( nPA3_d•Q®XJQz(ØÁXœ‰­îƯʤ.á*…Rê¶F³×iù;cèßI(Ä,CLk½‹̣G½®Œô…¥«µX óàœ>j?˜É¦©J *đp‘”]dÚÖŒaÇ@ÅU¿¿ÇÏ¥+Ír©ăÙˆ¨ØLËœĐ…La¿œpi3Åṭ’4‹RÅyǿ½üê­Ø2êÉ;óÄ«Äl˜ ›¦S~#È1_Ö¦¢a¨)ú@Ă7°€D ½s4 ˜g\~aÀu ÁÏ^–×;I=z€€`×£Ḿ³gmLF ˜¾¦çú'u¯UÅ« <¬›KÎÚâ©]2kW–ï(¾³Ó¹¦gÄS²d  ¿Ñ0¯•ñ´`̃” ,U ß7@ˆO"`Ơ)üaÆåj:¤%„}f¤2R™ÙW]¡|G† Đׯœ…—/3uzḄ$"zF:-¼¯ñUéÅZØó£5> 2z̃ “/ >̀>wØ;W>pÅ„s&îI*ge»ü× ØBƒ/4^`™†ÂŒ¯M€örGn, R—ŒéP<èx¬É+hËÇ7(j£"‡B4k5Ơ\§¬4¡ˆ1ZB†pyù)"ÙÊÜ3וN‡ˆÇ¸BÉœPƯ˜H¦•0®Rû'“PÂPwäl5”+·>A†æié1É£¥{^xÆ®ZÑçs­ ª¶lXrl‰“[Ë~z‡3ÄØ¤Ø¿{Æ«p³5á]¯7[¶¸ëûT³eKʉH¿®)µƒQa^%́±ëö ³C‡:&rö#Ê»/ñùr ¹'‘ª…”XHéƯĐФ÷¦bNă«ûØ0⨡ÆĂA₫Œœ ƒ‰­‹³®•í¸!Ï„©•û:sûÆ« ·ÀôÉB˜‘–ñÿ̉pFÏœĂMq·îqª? ³ nqÛ2῭2n"¿ƠR+$†̃™–lذ2₫cK̀k'ƒkFîYR„°‚]n ®æBש̃ôơ¦±˜ˆ6ë9 ¿­$lˆ]ÚoË )0đzD SwüGw¸ë0J̣rQ öÓ‘+̣+…˜x&øÉy^Ayù¶î ÷9xшf©G>¯˜äªË(CzÈsƯÊêloơHÇaƒ>FsvÖÂW•zz@0âªG̣ɃùHÅb*Èóé3 †ă:AÂ÷P̃̃̉Ä úº‘Ô8,́·ÈÑFÑe2Í›ÅÓkÇà¡`¨Í(êLđâ²N)6¬”OÓă 䄯œz\”ê«wùÊå§üƯƯ'hƒø#\\Èà}[Å­‡~;Ø9ëø½œăNæ½K·aƠXû_GÍiK¹å›¾§ÁDƯX£—U'•ơ0‡€ÇŒB~FΫÈE”§¦²ËN¢“„b™ö9רÂÈ€Mđدîåf» ·œv»I–~́w&ĂĐÅà2Ơï’ Wú)(́í£J$Qp‘èA–¤{Éœóo=°KBßtưÙÄêăßY¡ sÎ1Øxt1¾ }±iÛhå 4đO´|Ôóµc¸_Ö1ÀdíŸk£= Ŕ?0úơ0aßÇ'è%bí“í1F‹ó0™KÖ?̣€­Ơߢ+´ËĐéØQö–Öè₫2=ˆ/Фñ ¤²V$€º¬ª4̃½ƯʲSé£ûüx>s”z‚!ej1üöÔ¢"rÚªđ*IßQ*QNÑ|S›C“W·o5t<ô‰a .©8Û*/Y»XE’)̃É™ç{²éŒw}ê­QÏø÷Ùí¹3ê7Ø©,…Mh¹uđù¬=Y ₫Z|L̀ºJqâwª7_)½ơ/QÅWâĂ›QƯ”¤­ï4-$ơ&Ø©ÈÂÉ´,!뛤z®`ú(W'¡ZZ ‹S¼₫HZd ü¨ẶW=¹Rd_?ñ(=•jT¹'u1dmBYM”cc©*¼ÅØO/*Û;Ù©t º¢ØJœMœxñơcĐü¥¢‹•m¹Ô–×lÙG;œùcií¿› ô¹ưÉú Q_hÓ¿tß·ÿ+}‚½`ŸÜâËqMă’[w¦ùs·¢¶BÙ{”AưU·{ÚÎF”t毶mÚœáư­¦Îh ÏƯ.®çÚz¶¿Ô4,Œ+¡RÚ–…1S’̃éÓ´,4y¶à$A©̃- Đ0`@# Ÿ8 ïZS:´XaôîàÛ[[—GÉc2{]@"JpÀu•:"ƠR»amªÑ¡pªÄ/Öoy*ä‰f®Od°j¤^đFÇ‹ó¸å 5Ưà·ü]ucy}ÄuKâTÇYµ3X6ü«Ùzºi_äh̃KđïƠYÈ/í̀IZÔŒYØ̀WN #₫Çü·^LÓûĂcÿ6_×4Àq ™%«÷•ú”?‚~p¨QˆHƠ@@ấ N ˆ;Bäµ 2ëmF)m>û­p-æî€mª¼mÆ­#ú#Àx³J¸dçƠ·$ƯPÙ•\Y¨Î¦{ëY(9„ ´PheĂ>¬NËôVœ‹¥d*̀Ö~Đöư)5VøícÍ+ü\Ô\? Ï__ŸÊ®ñđÀ™VđÍ¥û•“ÑX9ꢥ«»..¹\:ø®âưîđĐóp_ĐçßäơôáHlŒq%m ǧüXM¤sM]˜›ibŒ™q:P_S™!{t¥è~Êú,Æ4‚@¬³°%yè[Ơk_ˆBX,—Ïÿçc«I`‘œ[”3₫ ­9=DÉCñF?́Eđï4±C÷J¾è'½àBºlêđÅ×måS5åÖ©f.¸¶F…ü!¯”đó`̣đ6F[Ïñ¸ú”Œ́~w¨´àµ,·FDà»ĐL¹üp H´C¡gqk¢ ×'WƯ.æ¡ Ù1S ²LÙÖF/å$_}œ×  ?AÂYw©¾¦J|sRÿ­ù»"̃U ©#ç†ư¹̀_ºSu¢íÈú–ˆßÛ£E:ˆ×’ ש¦Âƒ@sñđîF'ú̃)\H“+°C…"¦±Ê¥:’$³°VXù́Đ¹GGṾc1G˜gê֘ϱï»ôjü5j̀ ưNÇ@E ƒïZg´n' |=q¶6: ‡¸̀YI¸Ê~N…ơ%IièƯ]÷Ê脬í 7‹̀4²áB.ÎĂô4q=÷¤yŰÑ! _m|  ̉†ÿ™®¤ü”†Ưʪ(FètÍ?Ñ}cÜ8xöñΙÀv÷v|µÄøúôß`Özùr¶U¬~ư"-ÁªF4lŒ¡đ"Bzÿ]ù„}uf ̣§«¹]CYæ>æy°`îøf'@ܤ‹Ú$l ˜g¢ĂR³ơT̀vCcP7 dVÿ,üÆ»DΑÿ´ƒµ&băZXK ṿ.ÏÁöµ̣]™ºó¿rj]„} ÍÑÓÔ|æ¡OÇ: öD¯2ÂZµ­¶.„̀Ù̀0R‚Ïu½Ï{¬œ ¼¸^o öo³~oÔn§BôŸ{-û8@s2Dw¯ùøq«†“¸k¸}ÍøâAW§(ØoŸ¯)å~Çø¿8ÛY^éi¹¡ ‡½Zkă ₫½Ć^n;øÚ$ơ‡ñ1“xơnƯÑ×¢6½¾‡xĐÉ©mˆ+ÚŒ&i0’t›Fä«Ó÷¦ŒP’üm6Í Á³br»l!qdƯï̉Rpx_ƯÛƠÎ5¬ơ7QÇ/ßɸ&“•'…Jˆ£•Å[ĐôÈ+ÄçNî‰₫¹?¦¿^P¾z™”eÍ¡îb;₫JÖÊư.—d‡2êË™¨ù¼vܽ÷S<©ñét} ?ÍC®+åÁ¡-rc6/A]x­5µçr6eB"<Ï] }€^úÇ”°äI@‹ûàådJ&³´̉—9¦Ú¢rÔ+æÜñD0˜úKsbQ6Œ I˜÷@"ª­;ˆ„WL·ûq‚eßÉÂä¿ekă/ƒ%¿‘`êN Ô˱")™ÖŸ }Ål<)'€£ÖùDÎXûcáᜈÑB… À„’<®đ†… `[ü-¿QÔW`d–¶±Î+ªƠ öÎ;-³_8_UP̀Àħ€ö÷|ËX)Jỵ̈N›àM.5¾ÉÅOÏÄƠ¤qhÀ%_ÜÎ  »?5Ăó% "ô‡`!0Wú›VX©1qºÓ™x˜&^FV8 ¤qf„æ ï[-Ă›n –(ÓÅHØámD'́¤±àÀ²3=‘\ÀR<»…ƯÁ>×ýBH.ùääú=¤ŒÛđL¿ø&tä ×Y˜¬ûsm)!§sĐÉhî€Ô¾Ô\86Ññü_ăLRŒœUÊW‹`ñy IëèÄ]áhömæ$kwƦq–Mx căØå–̀A¸tº¸…]m½{]åe₫N’.1}9Z2„1æ…ÛT9ßBµ#¨&,û…B2œcOJû gÏỚo*)l_ĐưV]¦aºÿZSâ•ö.Î3DµâΈĐMWÚ&ÆÜŒt@¥â}ÂEÖ–Ô«µKÈi¶ôH9¦úù±viN:™ñ3ÔrŸ;øÀg®̀Ômë5³,˜:‘i?hj5Ûa¯̀³<ó́.pÈ“}{ nG)Eq°ïÈVûÅOÓÍœ8¯²[{¬AZ·f ÍÉŸC {DAJP³wƯ7üÈ̉'U~ÙyRÿ6]đ`¤‰fUÔIă3 2̉0 3˜Â—ä*uå´ó8ºcUcă5ü₫«”e?&«7s)̃çÜt‡a*€~Ư"(A6ÊI,©¡Üí*®'I«©W8=åÏ¥®í—ÙEkœ2>jnu\æÑ œ;Ơ]Dđ±l/V ©“Ëà5üœ̃¬,ªE¸Æï_ Ù‡©K`úX#Ơ®pæÑđä;áu±j¹´åƯ4Œ…A÷px :;Îת¹÷S¯`R”½ ª=›Ưj̀É„ÖdAßdä¤é@Ÿ©­µ\›É¹/.2 ¼K$¢yơ‰Íß2´J„ÏX\ù±dnºÿí¯!ơ¦‰Ÿô×Cmnè´ H¾˜ŒÆK°)YđÀˆ]°̀9WV †&vé+Ë\5Ñщ JFtö* ª`ÛO=ÅZ0-øÁNr戗 "pÙc­nưđææ̣ƒ–äÆˆÓª+Aˆ^È?w ’  bvx*)N 8#¸êÖd੯âO»# đƒµ'÷<”cXÓ  Éô˜ïܼHN™%Z·iˆ̣ÆI†%F¹Í.Á+ZƒzỌ́Å™,Ơ–ºÛăÓ÷Ó‘$(/´®²>[ µSAƠ‚Đ g»"̃𵮨At¤ÛR…¯3óCVQ¼-giCµWe zi, <ø35$÷đ'Ç_ÚÛc÷vSäàó -L‘H¢ë$nŸ«ñ(₫%s&¢s#[¼úO€ÿXÈƯ Q'$**\Ç/́ǜ+ε›~v¨¥T<ÊƯEˆđMÛkÛαt¶3jßhjƒ”Å6`ơ×'êµ=îrÊCơ4Æü列ªë-¸@FÖöB®{›f»…°uyă<)†{hE3tó̃E8p¾$öä «ÈñơÍç[$…©+AŒ¤ÆÏöXâ›ä äĐlƒ¬¦/ëT]j ˆQF+O¯«‰!…IÖÚoå ø–²P˜w$½ô z,TÓi@,lpc¹đ6›fºlCC˜ÉTBÛÆ‚ ₫æGƠ@d ë/ÊóA‰ÆƒM B”LJ—«Ä¾(ÏÚy6Î̉w&j9³OK?èq %·åFÂEv˜œ¤;°•iD'e\ŸÍ˜WùÏ‹ ªÀ̀E8đ’âT XÛwœ´ç-¨µ¶· L f5đ²q¦6ëU©ËùÓ´ËƠŸk7cṼs,±ÎYđa™N@Æ¼È ›BugeâK½%á€cm÷n;]†—?X ùê;¡:‡m¬ÇÛ«7|©Úja®₫^)ôI|̀R?¯9Ï"8ú>· o *|ÓEk$cP7½ü”Ư( ăƠZ»m´r÷ 1 NBÙùít7·ôâlI€$9ºG®́đ‚‰W' ;zsèçYÅu…(/³!P'”<[§,Å9msnde¯dôeFä–Vj{ ĂÇË)‡x»0¥̃aRM áƒË+[´§~ôïûlBOà¤÷#=ù Ú!­à†ĂGʵ©*Ë«ñ]̀rL3åNd÷[[^϶^®´CT¡®÷ÄÖaƯbâ!ßv¦ị̂b]¯)6S:Fø8ÚÅX°T ÿCO÷¿̣¤}Ũ8ï_6ÄÔpÇc€ç„ÜÙ^«‰mæÀuW}é*‡à†]ÜÚ-Ø)Î6Â?úÇ&éœiûX[ ̉ŨM\h&b¤·”Sƒ©sÆ̃ç₫’HekÀxQïü{ÈJ5YKûº\…lƯ'÷y~iă¾I´¡‰áÖ|î_¤ÛWÛ‰¬,z¬>Zî#¬×eĂ©’@̀4 Ø Ư.7̣VÂ…{”/·Ù‚€‰úN4ă ÉÔ ‘ṣ̀°€L‘Ư¼¡©SOÓ°£Á/:Aø®(‹·Öœ/¿UéÁ–F~újÅd>“̃‘ÚŒ9Ăö:/QŸå¡dE—ÛùƒrÏBJô~ñ|‚jwJâÑówbÄá—…ñ₫ ”‰Ă‚4ø~­¥™z{¤(Ê4ÚøË8ª¬Çà)mg\Inǯ‰UüQ Û̀.±¼d øvØWö?N;¢M²>úVê¬g Ô¦–¼µ³Ú‡2‚\®5ˇcƒKsßi¯O´&¼È¼¬\$Êqa)ùr×CƒA©‚SÁđ‹mó§Ro¨Đà®’3I_7ø¤ÀpÎ¥̃¦Fu0@ÈÖ;ơÆSq@AÁÛU+¯µøĂ¨¢î\aSNk§J>î­2ˆï¨Ú±è^4§e/htPÈ;×Cù™@?8h¡¿sà÷`À_3ĐƠ¦}»E³JW û†|¢¿QûÚ}P…:ÎưôMT¢Ê¹nƒÿˆöJÚØ•TH{=œÂ½/@›ä|¿¿èsË Ó4a‘µ̀T£úJà:z¿“öªĐŒY×J_œ°7YÑ́Î́|¢ñ1?ô±î_T>•ŒZSá£S®VÇhCßֱ¯÷n]”À[41{À{öÊ´™ÎÍÜ9¥k<Sƒê’J!ÛÍ“5sĂ`₫XWDr™™’ăQr:€Êrâ™±ö5<±Û„úßßàg‹?thbáúî²—‰=]\}ô•i×eî0l@Ï|ÑK&•£mZ¿Æ’˜x¼Î,x‹½´ …?-ôø’E— ƒˆPº²pUÿêĐáEq ă¿ư]÷€Ơè~Cœ“˘£lÛZ‹XÏ*¢̉ot˜„̉Ü4€¦5F|Îs¬ƒh ú¨ vó…85ô™‡Q©hÿw[hđfÓcÁS~dë~a‚vUĐiz—aY¦ö9*÷EizaUÖ Ă¯P2<ăÑb^{û_¾ Ú‘Å"íÀkĐñËM€Û˜ %2>*ó7Eíi}Tú¢qèxú"C`/—*Ơ¹Á^l7́mâCF¼¢E;ÍÊ8ḍ¡̣üúÓ•¸̣üd…e-làc7›,»E]W–TơÆ̉Ӆźh5û8'c®ûmc½u&R xÓAƯX·é÷×^ƧăQ/F•é—hWr²7‡6D„áQäôycöÅĂt<üïF§/Ú±Öơ¶§ÛỒ.zrdR#ÑC¨Ô×MsiE|œy ¤gÆ3 Z¤ÅÖÊî爉L[V·¾KÁ“’­'Ă¤×¯Ưp V»Úˆù6ØF”Ơ.Dn̉ •œ„æ‚)‚ªÛI@M ¸–¯€¥P¼q»¬"ƯqC̀å7:•ß39gíÓÏ$3`́!Ư@œ ơt“©C“@_zŒnjâÿ ¥0Ú}@|Í%ü1”ÊO3¥ßGVwâI€,ÏßuxÚª{ñb Sø9ZëV M̉ùù4~9đ¡à̃"øChPJ^Ôs–r¶eưù—‰pt¤ÜÉk¢Í» ¦ư–&;Ä@&'J¤*xFHơ"éêK'k:Åä4ä±4Ï¡¥Öœ‹ñÎ%¥ —"¯B–}$ Đ_é@æ= 2Ăæ“%ü±°uXdzlÁ¶ÎHM¿½%„yb´B>:áØq½m®#±§ă'ƠZ ¡ö|(BTƯ\°R;4-đÈë ”h-º¹¹ăÀ–^X‰WnXƒ¤TL/Sî[­ »¥`̣p*±ư;Ĩ¦§äC@Æ{Ø—Öa´ºA)×;³₫˜Zá=G¤Áœ¾FTÎÙ̀µ„$ö§ oe[Ü?n§}”¼¨Vï™S“±˜*:ø̀Y ß÷û“²ªÂ+=Ÿª—ỗx9R‹ª&Îï,]Ă~äï$Pöæ;€Ùø´è-ÂC„¤(‡±e!̣s±´Keî÷¬Đé # Z,>Ư÷|̃øó( C1eôyæÏGbärr̃»u§á³etÆ₫ï¸Q¼́™‚<¯j lRµèd‘SfO‰¾#=EêºgîÙ‘˜âh‡[P×G ÊÊègÙâBÛ\è5Ưv+–|ÀSi¨î™ßo„sŒV°Gù =‰”%r!́Â.­A=Ùơ"ü\Ă÷p—ĂTÖó¶D¯#yA/ ª³̉¼iSƠ=‰\ Üë_²‘wµçW ŒŒx6hmñs Ñ[ú¢̉6>Á ttÔ½ăº+Œq©• p0H ̃^Đ) û,G¶®-O¦1‰•f̀:ºÁ·} ¶öÛî¼̀w]˜ÎûøU{ íV öQh-ÄyzêÄÇÁÿF&ri$‡‹ÿzp„%ÜRi¿x¡"́PM,P4¤^C6ZƯupNTKKÍîưÑNBÙAÊ£H\ó¿øf‰Ơ¬}» ö?3×H°Àäñ »ê+‡4Émœ®¡˜†up3J¸̃ëí G¨-«Vc€Ïoa™W§è4€QÍØ6SÇ'4ƒWYÙ¹™p³óÄw†eÙƠÑ₫ÿ{51£_Z I®—́̃så‰X†]5ôÇÿ@ôŒêô ùpAgJÏÖȂӕÚÎ+èXÍj«ç±¼¼”]WwÓtñH¿÷3P‰øQöym¸̣A¦D́·d3Gøw—T+-́'1r:\çJ½ƒ%ßéFâŸL8ü)‘ûuÇÖ17P…¼µq[Vj¤"Kö·î¯ËNI î¼qÊ\±Ê!\ |¿LUZLå\œđ®uÅVPnæÅƒBa°́öí‰@î8™bE¿QëHvUù*Ê=Ư×eB„ò©£Ø"wk›W¿)Q¼ëç¼/÷Ê( í#bûeơü„ų¼ô>\è Ú,zÛEaeƯèóKEơÔáÚ„ä>a9ÁHiÎî~…Ç1 ȾæÈ!GñT́ŸÀlµq‰½£`KñÔÄE¡ endstream endobj 2389 0 obj << /Length1 1831 /Length2 11722 /Length3 0 /Length 12868 /Filter /FlateDecode >> stream xÚ·PÚ¶-Ü¡q и»»»KÓXăîn!¸…` î‚‚»;‚OGö̃÷dŸûƠ{ƠUt©c®5檂–RM“EÜÊÙ$ắäÎÂÎ H*k°s€@NV …–V ́îúÇŒB«‚¸₫ ™»?Û¤̀ƯŸă” vN;;¯àùÿ'Đ"2÷[”Y ÎN 7ZIgoØÆÖư¹Íÿü0X2Øùùy_ÿ•wAÀ–æNesw[ăsGKs€¦³%äîư_%„lƯƯ]ØØ¼¼¼XÍƯX!6"Œ¯^`w[€È ñY~ P1wư=+ -@Ë́ö·]ÓÙÚƯË<À– '·ç '+đÜ )¯Pu9ư¬ôwÀkÀ?g`geÿO¹²;ư•lnié́èbîä v²Xƒ@U%Vw¨ûk€¹“Ơï@s7çç|sOs°ƒ¹ÅsÀ_̀Í2âêóçÿÏÍvqwcu;ü‘íw™çS–v²’tvt9¹»¡üæ'†€,ŸƯ›íwröṛưXƒ¬¬aåá¦ívơÉKựlBùc³¹¸@ /?ä A-mÙ~—×̣vưådÿm~Àß×ÅÙ`ư<Èl z₫Bñu3÷Ü! ß;₫¡°³¬À–î Ø åOơg3Èúoü|ù0`|Ö;øûóŸ_ÆỊ̈²rvrđ₫₫×ư²)Jk*(ë0ÿ=ñ|ÎP€/ '€…ƒ›ÀÏÇàåüÿ»9øÀ?©̣NÖÎ₫¿É>Ÿ̉ÿöüç₫₫Ù FÀ×Rq~-ÀđGăF@n åóöÿg¥ÿ•̣ÿ'đßU₫oÿß„d<₫r3üåÿÿ¸ÍÁ̃ÿûH xuzL‘¶xéơN½Ü‘d°ùơtQÅ»6ƒ÷ñkFƒ–«Ă«¸-üf̉d­A[69u^Á«Z”C+Đ/̣3ç >SQÛL¸g—–ÙÎƯßFƯ¬‰L`ÓiC„÷kÚ̉ó¥P™IbñësÉ<®ù[Iˆă©Ós² Z9ƠPMëvQ³«÷Ûû½Pn£ú¿oăVhW<‰W,àËÁz‡,‡”˜p× ¹9ê/;±) µ†¹©•đÈQt¡ûñóÅh×Å©q1 PˆµÂFSMÅ! Ç O5Iétº0›Ä„¿¡÷Q T± ÁïD%$́É·7°T1'ưz(ï—kH§Đ$zø¦N½ÿ‘^¯÷à8đ <ºL„6$Häm0¤vạ̊̃b»_ä©vaÅeœ=XS§Ö?qPàư§µ ó + mß¼o` #â,‡×ñH₫›Ÿxá6Üđ!o¾œÂ Ü…’’đˆØÅŒ_̀0 qjN¢‡[uWÂ)ôẦ(‘»2Å^uÓ’„o yѳ¸_˜¨Hy7Åå½Êa•íkĐtꀜ¼KÁ÷™Î₫Å«›ª|IÁ±,4Ôwâù 6mD-Ä.O­jºë¶ú®½ï‹̀GMïö1¾Å†Ư2³;bÄíSjJáÙ/ô|GµJF(ưÏíD:_3ë9[̀h‚›ñûWHñà6çdÊ•ăFí*H.0ÎÉkEu²Ê¦ SÙz KđûaE´L̀ƒ ̃•Ï¢êoéđ³¹àú úf3ß1G;ª÷Ñăđól.Èó"™óí̉KåÀMRQè‹Ï‡[²î˜¿[­K¼ÁBL±)5÷n:_7i²Ó\a†˜xÅŸÅÍzNgëR@€V£ ô[?Ơ÷ר·Üå¨8p?pĐ₫‰çCYaL ư%ÊdM±~ë—4{=ÉP$})Û3Đ-†Đ†ådŸà³:^é/V½é]ÛVÈ‹«Ïg̀{[i؇ŒØ₫7‹L;ºWøÁû4û Ï%í¬E#_û¦åƯ °£­ ')„₫ ËFvyNú¤»ü“8”i¤˜f“rņBP.H†´RP£GæX{#èH”̉á}¼̣â‡IƠưeVÜp­>̃TŸM^ă©Œ¢­đ%’/× ̃èXạ̀lÙgç•_)~°DGQù”Æt¾/Kúéư»E¿́”™^̣(íwO–£UëEûCe3›©N!Îíj7âÍ¿–!ơeZ ƒÇùcN±ëAª¢‰6aHI÷'‰t·Ÿ&ĐoöÆ‘ND«sܾfóåÄ#¼F_LÙ)¦ÙcL׌V”Ś̉K–Ó†,èQ°Ơª±eÅaØy”¸•ă-U{óâÊăÏÖ[ɹXZâ~}­+z˸Ab»)˜|ç9v2å '¥ÇDf˜³TƠÇF¶³±Đ½éüé„]<¼!®–„†JŒ0 ´Ø‘/4•úæ³5rxÈâÉ6@|yơ4¢ ¡5AÄŒ_~BÇÍ)NS&ùf®-è¥ ¿·¢́Ô@…MËŒÊjd:/@ î̃áÿV@ YƠ/e…c¿ĐKœbASóSç|0¢ÂÄư —¿-7(yMN% ̉'÷Q¾äµj3ưF Ñæ8–CQ=ED6JØS„êwÂ%j¨9 ̣°ªṼK]–v†fJ…Æfƒ.o½uäÎ2JăjŸù±yÖ¦ ̣;<4îăh˜q–ÄT)¥nSÈ¢ÜîÁGW›̉j6rÈ^iÈ«}›Ñj5ÚÔX(àƒƠ÷î7Ÿ 3â–‡ưo‡ÛÆ ‹îơ­V˜̣nă­̀¢Ä•ªY„ÅE°8½K<¨v‘bLƯX=à`C74 *Ëøˆ¹ÿÆ‚Û g’IU™; ½V[Ëö'Ѫƒg7;‰)#́Ư Ñ‹dvÖÀ!Ù+æ†åäÙ%µ_:±)ª.…Ăƒî–’fm³[À́„¾º *>îúâ ưô)Q́ Y¨ŒhÄƠ8iÓÂĂN¢̉. ›æ®XE1FƠwßé¿r-’uù+êV37Z͉˜X®éẠ̈ `¥ Ü_yÀÅ!bü¾†T)ê?Nçs;a½'óIp?2}Ë€n8uQôHÿ‚“R{i+ÑàÊ_-™´8-~2GƠ¯Á»-,²§̃¨̣íqéƯlxMí}ØtòÅ'[₫DiÊè˜î³‚Ôù–Ü[¡¥l¿Nûà¼Đ”Ü#¹ŒéÓzå„åûâ¨q¤]Ơ­xGún6x逄¢Æˆxàc̉ÊÎD»’DMå86µÂNlăÙ§‹Ç̃ó2 ̃(fL/\+Y‘×@Iʼ8ửú›<{©èŒ{/ưŸCœ|la₫"̀p#Òà ¢È·èB¡̀…uåkÀm4oÁ.ø«pTC`u;÷®O¯|å‹÷M,¬J·‹xô.Dm7c A›dX̣x%½¸6¼KU#.8æ o^b lO°CïÓ~|Ù1KFÔù”~N'- —,ÚdùcîMr9c0“—·Ålp‘æEơGeÏu¤ïdßñưêĂéÜúâÆĐªxô(ûl¨¬Æ# S½°v‚¬2œgœ)nJMẲœ90¶…VÛ+á¢jIÑ{0áÈ#¡ÊỊƯ&(— i¬¤´¾̀½ºC›êµëk̃Iû©²îIó{Yhµ¹ơK ù$mÎe}i l̀â°9ƒ{7wËSöjcyÔẸ́–¢ơÇr².1;F 8Ơº“^ÑÈ9{#l;W¸Sr°"Yª$ ¾xù¦0? ·đ±® tt„ÜĐ÷´”'H^Ó³äÎGđÊ_%ÿrN>Aj8,-åmtweV E7epáÜB•±?l“ nwÿ§äEi-/`!ä÷Ÿ!œæøÀÁĂ~Jrë­”Á}„öÍ:]<_’9˜*ÄeÓ'ô Œ¾̉F¶ŒL]K”`ô]öÔî|ïd¾z6´¶9D¶íểËÅ̉Ö̃Á!¹¯˜Ldü‰)¨EÑÔH¾%´± ̃Ÿ¼!v́ °;KËIy)ăIª3 ˆV<[`}…dD¯_t=pi“O5ç÷ ›Ÿ)§³cÍ‹¹Ù¤̃àỒPâVÇ̃=f3Œë$%4L RƠđ•Ü‹́Êö£–øÀü¬¶SûZưÚNw/8 _c©Êƒ·Áư¨ưÖÎÑ%"&‹3Ÿr匈’vHF>xeæÑÇGYÇMC\où¢́N[;ó^uX0À¹ ³ëÖJ$,æ ñËaŒ‘7wè6m]H°Ú÷Î%1ù̀XơTê´>Â}4eÚ0°BÍx <²×Ă +#‘k;ơ´Ww½íùơS¸Æ„Ơ$ưĂîWL9Vǵ®pqèàPAµ²¼ó)%̣onă:êÖ=lmÉ×È1¿(ˆÖO³ó@”[~ ©2‚ñsINxAœW²vI‘7ŒöéY#‹Êôâ±¥Ë"’¤mëÊ&₫?#¬”$TÓKÎÉÅ_ªxŒôóđ̉ûjÇÜú]hPY8§¨ôu«Æ«| Øu„Ưà Ëqm?Ơè­Úd4 IáÅÈè¤*§¤‡†=n³‘ôâ×›l3g&AnQb₫á…3Lơ•yY0Rè‡ơ›œd›Œa߈iS̀/™À¹Q†¯ ºÓ%>~ÙZ# Û:̣ÊÛƠÖLëÅa<ŸñF,÷ª–L„2r4¸G=Y¼ª˜v•1£î.̃°‡è½GGî…(HX‡å’i¼‡CûîÈQ7pÙ¢2„ĂØôt đu±̀%̀ïÅ»eđ?Ê&¼₫†¯•ƒ¨…ªœ‘¦ö±6Ä́Ôe&ªĐ̀'Î÷‘>;' }Çœ•‚̣•@èDÈ}>…_%k±gdƯA^¬`Ơ-·WøÔ „Y3²5̣‚à:đ»ÂXE9Sü|Mw¹’afs_¼“¥Í•ØB€£½µg™$ßêđ NX::¿–‹X¢ VèÈ|iX˜×¥¹’£)=D]©²·îË'ôf|+±=F ă'[Ñ%CÇpQê#hqđơ ¯o¢Î>ơ?²›W^Êoy¨HÈảÁÖŸ%ôëèVàÅQêñ̀€²ôÚ/ØưƯn½Gs³–ưùÙ£;ŸvÜßFơ!̃x D»$Ø«q,–E÷2zG ùC¦€1˜nư“£r4-ɋ킑n¤,£âƯ=#?x]$?+•b—(H´¯®±®²5îŸxC>"{ªm1âÈVßoïª̉bÖYÓ&ªº&¶în:XwˆÛ#mb‹ Íå‡o6Rø7‰E™7×m?!”_èẩí•1"PßÍƠdÅÍưb.$ Jâø6Í,—Èơñ|qjFj,y0hlɼ<×Ö€À:|×Xµ«Ll툸)œ7ựˆè<@±|‘páØ¦ƒR₫ºD˰ă±xqÎ<́”¾’°ÔµØ<&̀\ÀzànÚ8ơ>èưg5Æ¥‹‰̉<Ó4Ö&—n¸ËºÊ1{Â5I©đN$°«Ä¡SöÙwÙ}ñ/A3ñ¯÷ăûfo)Ä‹çdŕØ,Œ®¶÷ë<åWo¾ Á5£Âªc¯a_äÂJƠÎ|¿øeëö¦ÈV¤)Ë,<9ß<¾\­†!ÀV­*¢åË&J£¬®CºRđ¤(\fnäNăÙƯûë«Éåt=1¶W0täâ°4¯âBâgh&đ[©¡QÉ2P­¡ơoUÜ=\5Fl! }êÁMŸză₫‚4.?ƒ™*u'ˆ¤w©%´BgK.&3åj‰¨1]v)ÿF³¥Ùq U7:U9ë–Ä̉뢇XÙ#Y_Wà*€ÏÏY"kLûúHÖÂG¶‰z«¶iα~c̃Đ¢6»7£Z#Ø'çØsˆg‹́̉‘†Ô­îiøL [cE¼a¼µ±_M¥‡FZH¨Y Uo—˜L%¼¦Ä́-ôœƯu\@U L®eªªeÓ¬ƒụ̂NXy„ß_̀pYƒsó§8³J¨Ơ!Ơ–'Œ ²ôUá)+fáØ´Jˆ Ùöç= [B¼¸b? ́3Å=î©XVnÅÍŸxÓ"̀H¡̀\í̃³bexk¹ ³'†ú-iWÈÈX̀î±ẩ£Ó’ÏG“)KJYüʯ4t”!<ÈV4Xvñ7•^U âü¶ñÇ ´¬f¬×?ĐƯ?¥¢˜ ŒÊÛ¿nHtbßµ`:ùL.ƒ4r7‚¨îwp×Tkà#½>{©z0© ̃bØĂ@-cr3Ÿtgzø?È}vå«áz7Åy^4öăÇ|àlöeQ(k°f"ó1:̀Θd£¾IăO¹ºë…”E*k%.‹xæ½'ÀëćÄU§öii©x´¤}IˆÀyÍÖî̀‘ú«ÂÅ;0Éû¸[#¹º$đø|¾äÉ’Ú Í‚Íêî$Û¹†U1ëØXvY ~úđê\_¾I á€ÆNœwvJ‘Ó0g§”eá#6Ètẁ¡”]ƠuÅQÎ×2l £Ånûö?̣½.j£×ơ­ài»Â$‹Jzhé?Îv 9` ÅoB-;ê $g«Œ×zßBE=cÆsă h¦åZŸ„T*Y­~QL}™NÆ* ¿9p>ŸÇrŸrÁÛ}t®ÁùJP\5†%&r„EJF‚bw¡K»+ÀHÿ@SÖPE?&¬‰5̣,A,{́;‚#>¿^ ‘íhénYö…KÄsĐ» Áîk°Á‘‚SQ¥̀Ù«¿Ú¢`¯7å{%çºpeû°è¶bñ™¤iô%¾Ă|xÀæx.°ÈèV[Ăxl¬Ó>ån>‘Jè́ú2zÙà8ÍnXÙ|ÿÊgư1oÅËP­Mê%y)̉Ë®£ÎË%*̃m”ïẻs£EYÑè\ Oñ":रơ¥™ÎZÿiŒ9–Q₫/søå{ÎÎ3·Á_"4\OFdiêu_́¨ó] ̃/±±9í⩵ù}v1KË Ÿœ•  bø(Í}ŸH¿nøÅ#ºr Y¡weËá0ÀưÍøk¢‹Œ¼3®:²<ÊÍaŸ¶€ÎyûcA —‘¨5µ´dö!ÿˆ%¶ÿ ¨Ê.#¤ùæûÈØ,ë†æ1ö¶Æ Trzª0‘Â31\Äs/N¸á¼ƒAú8`̀&–œ· k@¦‡Ù,ư O`´*S$)XÎ/ßSY|ù‹g¥»Ñ×Y  wÑ΄[nµ¶^®¡hK5è“øe]áÚ ÂĂ¼ƒ·¬QèæÔ*çî­Ñî¶,« Á+¼ŒƒüuáϘÏÆđ6Æ…7>»TG  ơPl&©Öº:äåmƠ(Œ²A¸H‡Ü«„,¯ẉI¼¼Y7ÑæWưêS‘®̃¿3¬`ˆCd0ŒO²WME‡âßÛ8««"¤mtAÖ,R ó NmI©~¶á$1÷vđ©ÈÇ<< ÿPu ™LÅIôvf&¬ŒưÊ^gcÉ₫HÎpïªáSḈn90tËôVë%˜×£Z3†ÖĐoI~6Ù‰âûŒukjÔ.t(]wÎÖŸ·¼èÂͳ|fèÉáåg5<~z¸)Bîq÷ɉm›¿²s˜¦S½ØăJ@à=¹f $K{—óâGơWd+Ñë^i…ÁNËÉœI?q­Ñ]“1c~.jMÇ#«€©`6ëllt:'ÆåÇô ­ÛXcæ¸RÎ(#=ĂŸû(úqY.‘å̀£ˆ2µ—Âój us|-a8­ od8x™²bSi¡¡¹h.¹ˆ}Ö%t‚•ˆ£PzÆ€ºÍ‡_I)ÖæĐ>[ø$¥åơ,Çœ´âÔUMy0Ó¢n¸“²^„i4‚¶üÏáiÓ>C¾ u>øăĐußc₫t@.²̣̀hÈ1ÉV€SÑ÷AïÈă«́à9Ë$¥×PPơf—àñ4¥âL:+9=¶x×ô0ÄuD³·U¾NHY —̉!bhÛƯ\NX›5 Đư ˆ¸˜ºkêÉZ{{Åơ.́„äÂWÈ1Öâ±Æ>µc¶êÉ̀êz…(·B¤Q6n}ȰNÑae#ä¼X\±₫ <^‹̣¡€±ˆ Jyºˆn9y‰­k²a»RN(E¤Û<íp$§ •H(Ö 2%ûN:ÿ‚÷ ç4ñ“Å|›¤8T²œ3m;j—[₫à6ïDx=T1ó«á öÚ*>ËÊ‹ư¦“>Ưs7^…’–hNÓ2æNùjäñM±rÙ„¿‘\ÔhƯB29’¨QwIômµ7˜£ â踵Ưæß^̣‰Ñ©\êà–ƒÜơe(©Z¾ˆåwj6GtLR_k¯n©³wM>|Ñ5́Çh|s÷”ZI6ƯÔX¥]ôwê@YÈ–ºî+Ë•ÏƯBûµËÉ_¥ă7,$H÷«̃ïh°É!_‘iºăª«ªH’\-^ÜØƒ±Ø­ÜÁ ó“6Óµ›üGvă‹¹†đfÊd™•£o2s?Ó—ÎôD':‡ư`̃̉™¬Æă*~ơT#É^†ßD€ßï”ă°—§1"bZ2†úœ”8̉E5C™n´›Àè}’Üñ)ư*ÓM}’B ”wBvؼ?œIJŒåf[ú*BLKâằä‚t½ 5Œ~z ]º´—Úz?1̀Z8Z€ ö:ÚĐH!HƠÁc®O-k¿´1®†¯̣!©Ôƒ9 ”M{’Z¯ăyË×åØÊ4 ̣k”¢–¼Æqp­Ë°ó°”> pÅŒ}·ÿëh&Û>UíÛ9>kưĂq#x%1Đ;‰Jö^eƯr1¨ä`:¿‰$L˜4¥MÙûGc¦C'́đ´o­ #+ÛZÉL#y“= —)¢rQŸB¦K1^¾×SßtÆøáM¡â q”߈d,Û±ô*².Ï9Åëqaê9«Z̀–aÆûk·:æ÷³½D:ô¶-é‚kTákHFe”ç˜ƠH{^~Pt˜VRÀ;v7L6L$î´;AºÁZĂæª.:¬rÊP½©µBº¹̀w+™Tɨí+Rœc©¼ÀËfa´+âṇ̃ʆ^—ç¶/äúa˜Û́ÙmÓ²„ÅÇ€DQY,U œcxÚ›µ˜1Oöj E0?ñJ¨yƠ¢Ú[9f¿ˆ¦÷M6I|v»Ÿ÷z3&ZƯåBĐ—16+¥÷¼³nëü¶9kl)•[ÅuZüa_wÛ³̀§DF+ä‹k«ûp…A¡&A¿ök± ¯Uô6´:( ü›±[—q¸·äiMª˜¡Ÿ‘•uƠ¹ëë\Œ¥Ü˜aß:_‘£j ­ÉÿäZÎ8ỷ ½kéơ.‰¬˜Æ±YX<5.´ÖÁø3ÄF ]ƠÊ 5}0JH²₫ (âwéÙ+¤:‚h«§¹-̉˜-ºĂE÷¾'³.·'Ư₫;)HDÔWOrˆÅïët¦j_N2BŸ-[4Á8ÂÀhV;2#Tˆ‰`1B÷ù(KÈ(^ă˜ïˆêgè·ø¥¦đ1'úF!¥µ£ZûCJ2é;ư_Éá»<À45 Û₫b'å]”ø #,¼Îƒ₫-ÿvnD#éån†t™xÊDqŒj#q ÙÔLÜ»0׃Î÷Ê…j¢KÀTñ½HÍÄÍ0¶S{ÊAåHĐDËA V.̀1E ÂẽơŒe&z¼nWàg[Gz_CŒzÁ±N™¶8d ‰ư4Ü₫ă àĂWóÄ¢—EOZZ&Kú[J•³Há³Ê\5³%ŸÍº®7×ÏIÔ¢wĐ+>'nnt́-ÎaƯWô*‰~´¬Ø£â±ZXMÇGyzt…‚››¬ril!¤n>±ßú̀»›Ëg?,6Vö]Ü(,`殧꤇ƯÉƠ13|µ½==Íơ¨ Yt°¡jă½Û‡tlv2¤›Q.̃j ăgV± ̉ă ›:Rú[™Ÿ‡́•WÂYs´æ–¥¸—gĂƒÊ*V·³‚Ö•·Ï#¸ȧmZ’™‡œă=j°Ï£'rZP·£í£Ä¯VkI‹t‘_%8`wOƠ\¹ÂpZđ)ؘѥÊT\¿4ö«¢W„ 8£¨/Œ;V‡B́k¢¶„ó|R}5yẂƦvÅ<ß~/?i\I(˜w2Yx”â™êåŸl¼íǵņŒ}…¿Zđ–$¦ùĂ sÀV;Rí‹XêóGózo,KÇDn`û7*l/TNuç Χ³W.SµÅYœ~Î"èÏÏvfJ2œ ø]O÷‰Ư0úµUDYÚX.₫Fe'O¥zù" .pä¢7ß̣p浑A/Uï<‰¶yHop{"“‰÷ÅÆ‡Æ Ceÿs–3Wqtc•¾•:ÄÛTxªíæ„Bû±p¥Vb¶8UÁ£íú¤²Z`{jÑ·`=› ©u¨1kä˜qMÁ¡¥ ö†xc̃đ;µ ùªwdqß̀uÉnTÍ÷\?6¿ ßÿ ê’<ĂRê{DÏ=iæáLkUÏ™Srp([1]¿W†§YǺ‹V÷? ú ½©åĐD Ë^ Û¯…¸a[·ø…†§lJ>sD›ÁY‘8uX³ÍjÊK¶Û£ư>?‡ê„£¤ ø ;­bÇ2xq‰̣ñ{¼‰dªàMÄ6î4¥– ÷g:‹¯¾*ºk±gg˜¨̃&ûí;›oN>|^m{…“øÜ™V‹ïꣻzf=ÀÉ~Ư…AÏ8VµAÙ´,ƒ~ÑƠézctơ‹Ê‘üôKoG—¥ƠLư١ٯÑx˜¯éˆ³tx+nÄv5ƒè91ü †b¼é»ëXDư¢çÁûx½””€)ÍIÆxÁø¢3nv:æCM,ûđ»̃i¸Éæ¶ĐÉ®·7‘û[¾‹Á•n]'ÂÑéK˜å‚¼=,±¾vA?˜~Xc†K!]œß¥À t½zCh`×û y©QqÉe6µÈ :è6ÖÏ`¹gÄƯÆÄ\¶‹ÆU&œ9ùu¨&¦f\3Œ  K}•¢d³Ñ |’¡×6~‰Í¶éáàReżó²Pï¬0¦5z¢{¿bf7‘4¨ÁĂo gÜû°‡\œh´Z8Qdóù̀÷ÛXÁ\¶÷ %›\[²Ù®6¤-aŸ‘vj´à—CÑ^??©¹‰̣MÏϼËyu×ßÎ3j 9.{&s}¼ø¥sí.â´ÁôÈA¤ˆ·9”9k²¬êĐœ±w@×"́¥ #* ơl#8Ú©¶¢ÅHÄÎÈ¥@Ă)ư± t—̣8Û=njN?"fæ‘%§aÁŸ×¿3Hf?‰Ă !Ñ́¼o߉°êV(Đù¢Ü>{â‰@Eêbmë\lpàµ)Y}^>××…´eư~è•Ü —¾hU€gÙt¨°ßÇK–A ‚I4°g&ê—•ÆTÎÈâ«FL‹†ă±¶n*É©¨ôÅ‚—ÔW¡ØaC̃.ÂB¤(oÓ›ÆùIÑ Ù¥¥®·¯f+å=£—rf¤ ƒLûv]€032w4útû¿pˆlÆÍ ¥S̀¨}²Tl^Ơh R-¯Ư¤ĐÑYÅƠmJˆ=}r* ́«¿³»Ç9Z¡½ÉösĐ,™üI¯[xĂyѰ†öf.^!­nŒrÁ «§¤[·»?-—à^ É•%1ơH­ơ_đùîÆ9đaÁ}ÀZđD“U{-lú¤;ÔcÛĂTæÑ¶ Çéç`¨TOlùÆ›ù₫ô °ZÿÉéIQ§æ ¹95Ù×_Ø…̃^­ÈÓvcæW‘’ăcuøK8¡˜}̉̀}±]âÆS£Ö´ØÇ•çư¹í'7 0Æw]ùë%>:uđI(¶%_#*‡ºb  áĐÍÂÂLÉTåj½WogFV»„g"ø»`ĂtÆÙußÇÁ(A¦]‹ˆŸûá5|"ïi{FdyS3<ÓÆ›¾Ïˆ¹«…AX+tưQ–!NÜ—*«Úôăđ’6ü]ƒdD:Í^QîP™â“0N¥=ËwÿîEưùKP«¬W‘ïç̣̀e–ÁùU©ÊÛă*k$/g储%8'Nˆ¾æ`ºDn#ç  €ˆóc̀8ö—9‰¯®Ă~h‘42RX+g®I O©«áÔ™¾¯ûw˜ÑA¢Œ¸ˆ˜́L8}FßA­˜8»]Ë£Ä{&ÇrF7<¾Ó²:˜yQÛw`±Cæ^¦}È wtd鶉ƃL₫*yó®q¡nTxÇ\_Ö'$Ñ&N…ô•hMX–€đgVß–̣w8p‘±Ó\” ª®Î€rª–#¿¡Ti¦ªTKtˆ$SuÑ~NQö\íÇxH»ƒW©¯‹[Ô"R×ùô®à¥áâ»îú–pÜ›¹´v?ÆĂF‚ ‰Ïc­Œ(*E"Úziă]–®ưxĐ»gÍ7ôB7v»‚~Ư EºÛà%|SĐç4º'L/+XñƯ₫º/'zn¬ßbåÚ¬s0Ù‚3÷ æǺrtk- ¬°‡=—#D¿_Y—H‚Ê\€È»QÊBî8ô*@¯₫–çmeT¦B?©üÙ,ó Ç—ÔáÅ`*}`-¤B+Í„˜ÜJ&̃»"ụ̈“̉Ç-¾Ü@¯A±^}3vͯÍđc-í)¸Gfá0G«3“_ußDˆƠ,¿MWég½̀Á’¡ûeÏé—Aí½EjèÖ' FK²@y$¿ä—ÑÉ;×Ö²?"äröd@RE4xMj!àhg2”‹N¤§O-Í‹y$€Ñ´lqĐ_‘œ ›z@ăæ1³ÑlƯÅÆ&dû&ç„b\qă‘ΕÅÅ,iëđrGåñ©¡ü›m,O‡-¾³Ăt4́ÔcĂ ?–ƠTn_ÛŸ·%à̀e3ÚHêQ³/Ÿ ëum¤âTÈ’î}ßëU“L‹₫êy €û!~tv)z‚¯́Sï×ÈB ¸ñç10±£Êx@àœb§B“<2qơæĐ6Ö‹5…­„a$kdz/«qèbpøßcÁ*äđ>~†ËJïLî…u¬‚~̣p3{¡ËƯß#ÿRp̀ÿDHaR–}5QÏÀ—zúRQ̉t¢è¶_Ä>…÷jÆù4&E8DVoVŸü5nQ₫÷¯¨AFÓÔ¡ zsæÜˆÇ_¬$[†·ô;Æ[Ñè^Éa£µnÊBzZ€6\'ü,T„0e$Ơ—'“Ö=I~ZœB@x/%*=¿3ÄÎgººYƒÿ1YoxÔèÀkƯP‚à%R̉®³¤²½otđ$›Jl¤*¯CŒékl¾3 ZÂrí^OßaÊ«óØ•fS5 's‡7íVhi„o´U˜*ë©SÓs|¤ 9^ªë°§ÜáÆ¿ôµlÇ@Tˆø9®3+O ÷9ơ„mwÍ*³ÅNTĂGÅfSƒđ1=&–Sú®W<†P̣9Ƽœ`¿ÿ~çÛé:Ö?¤’eÏ9Z—¸ØH́u[NPưa–éc‹:?]|½l³ø₫ơåPŒïp éK†‘‘‰Ă_*x0«÷rÅûL±1„h ©ÑS¤Ó)…*’)iê9'pÛ¬­˜à‹é(J‡Ư(¡uc|¢®́Åc245p¸̃Đ¯Cbạ̀¸)J¾Óà<Né$Ǥf₫iÏH,ø‚å[Ï•›G2&qurBåUÔ «„WĐ÷øœCéU«höÇnI¯]“–Wbè67L»ăL¤1v/J¾`Ë\é‚M†Tnño0ê^ZĐRMA£Ñm“´¡Ó]ç"VäØ^Å[îé×A f˜Ộ¸}‹}`a©ṿ2Èw3SPÏßoX(¦Ưæ)uô‰¤Í­1̃LâE+̀W¥U9¢DZ“¹ÊÂ^ẹ́÷-kÄ|¤̃'û Ƴt> mă5öôäT {Ầ•í sseW‰₫Wy“b²Ek ơÛ¦~vjgŒ°ÅeZgĂ&¡¿T-g…^¿ƒT´Ù$uR N«|/‡R€ucj¸¹˜°sÏË̀4î–[ª¾««o¯LB½Á#CxïR¢·¹)‡`Ư¡äŒn×§´Úq¥:ÿ xb:Po½×ÓµAîƯƒvl)Ü„çl9£|Ø€<̉Z ZjjÇËhlÊàxÍ6 ÆŸƠqQáf3›9Đđ9̀¼Œ-‰.åôƠr•(ḉ/́ÙµƠQ|Ÿ•dY{]»WæØŸ}Kî*² v9j¿b¡Ï̉b;'—É*ñ i‡ƒËgÀ¯sÈy[m.ÉC#Tạ̈̀^œü‰TmØ5¨É1…|Óûût™ÁÂ]vÓ—iå=ưt8 —ư;¿öu†*¶çØ;‰¯=:"àĂa° Mđ3M\TôíñåÇ´…WZ ´Ÿ³¬8*Û“W²îa-<Ă / ·°Ư>zëÄa*f\›E¦›-`ß~FƠƯM¢J̃û?ÂúÊ endstream endobj 2391 0 obj << /Length1 1690 /Length2 10041 /Length3 0 /Length 11126 /Filter /FlateDecode >> stream xÚ·T›é.Œ»)P4hqwwww$¸Kq•âî+RÜƯƯ½¸µPÜử™93sÎÿ¯uïÊZÉ÷lßï~ö›„’TYAÄÜ̃(iva`adæˆ)¨²p˜™Ù™™Y‘()ƠA.¶À¿ÄH”@'g=˜÷_bN@—W™¸‰Ë«‚= ëj `a°p̣²pñ23X™™y₫chïÄ 7q™²ö` 3¥˜½ƒ§È̉Êå5ÍÔf4.ú?Ü"v@'™  `âb´{Íhfb P³7]<ÿ+5¿•‹‹/“»»;£‰3£½“¥ =ÀäbP:Ü€æ€ß Ḿ€vƈD P·9ÿ)W³·pq7q^¶ 3 ØùƠĂlt¼&¨ÉÈ”€à?åÿ4 üu6F–¿Ăưåư;ü‡³‰™™½ƒ ضX€l%IyFz€ Øü·¡‰­³ư«¿‰› ÈÖÄôƠàÊM’"*“×ÿjÏÙ̀ äàầè ²ưƯ"Óï0¯§,6³·³‚]œ‘~×'r½»'ÓŸ“µÛ»ƒ½ÿ °¹Åï&̀]˜4À GW Œø_&¯"¤d–@333èz˜Y1ư¯îéüCẸ́[üÚ¯·ƒ½Àâµ  /Èøúäílâ¸8¹}½ÿ­øo„ÄÂ0™¹L– 0̉?Ñ_Å@‹?ñëđ@=æW¿₫~2x¥—¹=ØÖóó?æË¤¢¬«®"E÷gÇëDEí=̃ llVf;€‹àûßQ”M@UÁü« ØÂÀóg±¯§ôŸ‚Ư₫?ơ_»AøïXö¯¤¨ÿá¸>3³ÙëËÿ3Óÿpùÿ#øï(ÿ7ÿoA’®¶¶¨©ÿĐÿÔ&v [Ï¿ ^9ëệÊû×-ÿ¯©đÏUƒ\í₫W+ăḅº"`KÛ¿ä, ̣+ƒ\̀¬₫$ËŸrßKf •íA¿o 3óÿè^7Ë̀æơæp~eä*àëâüwJ °™½ùï cåà˜89™x"1¿‰•ƒàỊ́ºæ@?8 `bÛ»¼º^ÛóXØ;!ư('€Iä·èÄÅ`’ùq3˜”ÿA¯:µ¿€ÉäÄ`2ûqp¿"{Û×–₫#ùƯ“ù¿ € ø/øỤ́_Àdơ/øZ"è_đ5³Í¿àk2ÛÁ×J́₫,¯yÿUÆëâ1Ùÿ ²˜₫_ó:ư ¾æu₫ä0¹ü ¾–áúd}́ùü¯ñ˜¹:9½^P,Đë́₫ƒÿ¸ @ ̉̉¼½_°uupëí7w†ƯqÊ]­ï%§6×{4øDÊŒÀu§k‘Ä¡î7ß·%¨¯„—I¼›jáĂăUZ|bU§v['qú' Ejúˆ Ô…÷|}4l › ;d)s]¹Ñ”ó°nƯ{¥½uJÆF¢æƠÔÍ*ứKïê¡¶XĐƠ~j™'ÑîÔĂ]'ªƒ¡ƒv°®<#”(µœ—óvE9•«}5½k/YĐ8̉á¼µåf4] ÿmÔ¼¤ºÂÖĂ„æ—bi¨Ṃ…)O]©¶³³(RơoÚ›É7¾–6<™̉˜¸¿Pqb¯¼ËŸ˜D¼?̃ ̃†ª†Ưa'uSmkÍ\±ü¸¦ơزn]g«#’qOr@ăÏç?ƠaÓÄưá–60Uñ$C̀ø̣h?¹úQ£Ú@A²§₫qư` Y«=*èŒ^½fÄtÁxqXƯ€óƒÚüPF•B˜Ÿ¦t₫1ÿ™>˜°S-*₫Æ¿–.Û̉d|Yơ˜,ÿÔNÊ?“æá̀f :~Y·‘´eUekFÿñ²‡„ZLjÂe§o…åga‹&Eđ"Zú–I! ‰^§;ƒƠ₫[e«a×8…̀–oƠ`FvTëíå>q›̣/*{ç‰ÈF¿€ó¯’rèƠ9Û‹Xư~ä§/ñ±̃Rƒ7ĂwènK ‚C¨<ؘ˜~Âđ‘foR Æ dñ×ñF>µƠ ²#åœ-ºƒNˆ¥Q‹®̉Xq»ÂL®$̀-NÂ"#̣œñ2çÄ×°̃L0x{&ª4c'lÛ¢“ø»–B“ø°ÂÛö#ÉŸ·ÓđûÛ+I/#÷œáE ᇽ ÿå”üÉ1Z•’m¡2ß&.ûî81¦"ÇƯI'¤ñ0•hy†§É ªrƯD±¢®*ú6i,’À¾æS1á¢Ë5ø ç6p6[Â<–´5_B”‹+¡ˆb°ïÛ%yx†-˜̃ÜÉ&”eFrߌ–ØDL`óÅù2 ¶ £{?â Úä}̉¨ñ¸,ȵ7Xuợ:!…_l{‡¶•Å›ư¡-pô×gcB" ÖB>åGñ¶ô3aéXüiÂIl›. á¬,. 6}ñc´ ½›@ổ*Ưq»C1iaI%Adä ơ÷U ÇÓ̀I#ËËu<ªóX([F ]‘±sR"m×Çhè±ù_†Z‹Ư‹´tÔ»×úƒ¶ư]HÏ}fÇ­éàié§yе­<9¾~0c£ü‚a•vD°ÆeM¯ä1Öpơ=EƯơcăr»\J¢ïû m/1~¸Å¨₫qó‰]%OưÓÍö-×ß'ÜÀ¥ßûç~i……™·:âÔÂ2̀F•-ăn¡»z¤—}‰ö§'‰*–ùFt\Ù-iÇr£JÄ1¿,]öCßçó‘=̀üÍYÏ€ÿ.m^V³Üˆx¨zêWäå`©É‘‹ïêsA'É;6·p\ =³ ¹…ÏĐÏuJé¢4UĐSbÜŒ5¨2Z̀̃k[R³…Ç! ?ë°D«n"ÆBD±Tß9[µ¬Âa tlÉ­‡]u(\^/ùhˆG¬¥~‹¤;¢í[:íVö°kÏúæD|đv3’{‚I{XưƯ[®6Ơ`Q&Wl÷[mÖ€?­aÍÈ*@sá•8è༶«˜A¢ÎW¬÷#Ÿ¥xn[D¦]î – ËÙ·˜µ@ÓÍ+è‘YêæI]ÿ³_₫ÈètÏ ù{8ư¢†’,´ed‡ñƒ²XY¯ßà,½ ¹>XJI—œ£ø´4ó°\ÂÈ+Í¿ñáz8w‹¸́Ú’®ébÍ©Y\%ª–cèÀ¡>₫m Œ₫Ç‘TOøFBড¤Ư÷püă`’€ûû[¸¨¢4›QÆë“‡]ñBjæb¼Uvamÿ)6³ó–—Uîê‘Ú]²î[KÉùœ3l,w¯6†Æ—Dư÷Đù´±xª[l9WºïºÂD«́`ô„¾Èá)Ôd˜#™¦¶uñTA6ºÆ‡;«ë`ĐiU½ÊÚ̃Fäc}s]*É4@hh‚ÿN•ÙWo•+}&—đCå¦~S­;°¨7ñÂmJ=gSc“U fæĂÈ ̀>‰’ă•NPâRùwăä[>´©4[üŒT®/œF¬ Z¸Tr(|&̃3´Œ-• Bd¨VÙ»pc ‚H­`év:aù«²ÚñU‘™»/?ª ôÈLr”ê5iØưbƯ)¾q‹bº‹ƠÓNư™*ă¦ŸÉgX·ÏØIÓ/ o©œQP–ĐpæIó«î .b=-ÊG!½vËÊÉø•H²đsÀ²J„íøJ¹—ñ̉ö)Å0ÿ”.Ç7vw)fªØl|=ƠÎFđ·m¾ÖñÊÜ(YjW(}Ä~çÆ°½lX)ü2Í@Đ,$T«‰mûUJ,sLŒ¢óCn1\© ́/ê:•é/˜HqÓơ¡kê_/:-&î/Ó̀FÅĂxdZ`Df̣nô˜Äbo¬1•„(HÓí±ê*;a½éŸW³ló‘=«pÄ'Ư>6s“R´tæY°NGî¾]Ö5ơä#e†đ”Đú®Ú̃?Ëñ&̣&Èèzn¾}‹5Qpô)èt“³&3}çª Ă{49äª%Ó€ªæ]R‚f°_Ùøt§ù÷w̉ ₫ˆn¨)n‚Ô娔¹˜t„ ]»Ưz}#Ü‘âŸvÁ,RơỤ̀Ègƒ%’ߟ…†̃› A×ë͹¡̃™¹«óyYi¬ỶJá½møl†ûjn=M±)רÖm À%¼ifm;úTéĐ̉ĐàP÷½,uÖ8=–x©üPfJn{³Qó"® Ç£Đ;³—vüÅq¾—Óđ—)Î.đ‡ö·bO;̣ È©vápƠer@£ê¢±2@O6C%5ć÷¢ß×>aØgêF'¹’Ïs9?ºÈơäÓA&ßơÓHÑđÂ?$e /E¼ñøœH™2Ôçn3F´_₫¶d3¡(,Á ¦¢¼îA¤V°w.Iơm^Pß O[L¨˜Z‹BgUóƠ>Ođ2ÚXXYíd́Á)~|)% vkọ́Ösî!qÂ]}åMPWĂW¶-̃dåúäAÅ\®ä(V˯¥}åªƠU¶IøÍ$½WQ'ÁBs³ ³›P̃öÓ›Ä[ϼMßí¨SB&]*PIŒ„²º̀Ü´ưéÇü¬ĂAk9$_ø ?ÎcÑăœiø¤^ –½9R“r_X¥°~YÓ8~Ḯù́¿#Û“k gmœk@„ƒ¦í¡^4ÚrcûØù¢+ºÆ¦V ƒtÏđ†ˆb™¹4)Ô) rU•ùq$ʦđéºc{ØJ̣X¿l‹É{tÓ—P‚†k²Ü„”Áû‰nơóB{u«‚É‘§̃¦v£ú€ÚܽVHÅ,ô«x£¿Éû‹­.5Ô¸̀—ÅSpbBuM~(ÔD‘uæ’üüư ±›?®|Z‘¹Ô]‡-Lµ#̀Ͷ‹^ú"V"~¡*72& Ï̃T®J‰åôâØæ'p©4ÑÛ2+h†="…+ăb¼¡^¨{J¹Çv>&]e‚DÙê R‘¿…5_od •é+Ă~óXÂÖ@‚­c³¯ư¤’ ‘yH 8óÑ!«ƒA<”¼ '¿œ‹WƯ`*, C²e\­; ¾ŸGvèIñXß̣øªmç>n}T¼Mơ~îU]}B¯ gC­î-Zƒ~ăM} ú˜MˆB7bƠb@̀£ FÊùä¡Ç=‘OÙ Â#ײnWô€GñÎi £9¦Oj^Lư;î}ÉÑ¥Ø:›h¶Rư‡·y©É~[VÑd‘ûqƠrAzs|W¥Êœ,ˆÛMùïÜö7†ØàIÚÈ\å¨áÁṼÀ7WiX¦2yÆ'¹bdƒ‚₫yÛ·Ù‚™I˜Ûcj×¥ï‹qÆOÓƯµ$™iilßÁ)36߯Î,/­¿[íPÊ+©¸|Fx§ªƒ|²®«…!̀,Øp%´„Sf×WMP ϧôÛ"ÿÙ‰u¨tz˜/Z̉£‹ßü)Ípà²SÙxD,º{m²ÍD¬N\Ü·Cá8(̉? ÷@ŸEcÊg2ó₫ê^T5w;xÄ.;²¹vèåçö9’ƯÚ;â«ïV±°¦©6j‡Œé;^2/LI-†&N^ơÆhIÄOœ9_9c gÁb'½ë8FƯ ưt„57ªuOđv¸­Ùoª/âX"€åe¦A3¾Ù àÉĐç§=Á#ײ*¤<´%xDk^Y gUÑm=³ÀÖÅR”O2FØÆ6\4¨!çûñ¿Ï³• #¡ëÖ´á}càJkLèÊáÓÉ€b½6æ«₫˜̃pkl·Ý&@`âºs=P$\ªâSânÎ¥Đ>ǘwK¤`¥,r|)‰ÇÍx»EÅb&JKñ]T®ệ¹kÉ÷i!ŒwV|_+u÷¨U:«̣KÖôÍxZ…¡zúLJµÅù$pM‡âª¨í=˱<9À"¯!Ư6A¤´áz&|,+szxŸ(Đ#÷WºŸ¶¼/‚¦ ú [OE+@¦¸CÄ®–©ÆäuV<ÎÁø(D{̉é–³Bc¬́rÆÁ­qº&zZ¥ĂÂÓƒ=wïöƯÇÇîëZơƯư„•ù¥đZé5Ï͵. pY] ƒêcNr oThOṕa½wêv¤H+œVÍ^²¿Yä““„Û̉îG̣{jÂe«³ÜŒ^ơN[ơ7²ÚơÍ<©mD²á~É÷́¢ÏKèR {ñ®>W¥µ×R“5æ!³opĂƯ`–,ôá%/KÂ,#¿Đ8¬çy}dÍVñ ÷ÚÄ/K„}k] ¸–@× H¾>ôä¨éøÄ¤cẦ0UQB“ù ï y8¶wëióáävàœ*[®tö,ÀI -½÷“ÂDăƠ઀a•2Û˜ce€$ÁÈr ¦¢Àí ‘O›~‰ï/¦ơÚź«²©yïøQ‘D…DtúÜwZ 3däJ#×Ô$ Đ¢6B,a‘x¸[ô“³)¨ë²ó-`̉s/+5ơž’ †ùK=ˆ|A¨°¡Ê/ÑgÉ{©µHüÅ„$u¹¶FD‡›„E¾Âfkñk‰B……D>Êà î”Ư‡Zç*7î¨ <Ó{ˆæ6:¸k;̀—Vá¦J¾2™ăWÁ;|SS—¤ÏIfI[bQÔÔY—ÂN‚< ¿<Ïgéí% ‹}GĐ— f²ơÚø‡X±-CNÅrëR_«19έ'lRàU„æĐ¡7ưÜ}+àÙbù²÷ ˜ưÖûqŸ—P̣݃ á!wÚßnGÍ);¹>FÁ’FPÜ₫¤8Ơ­¾.(©:çñMµ%üŒ|ÈF§©ÎlÓ½è‰ĂÜoKÖ,c”tùkZpư #pÿSa 9—);âJ™¢É™¤K2÷¡3ÂVZ\‡s’½²oâ§Oî/ÆR­²‚ âµ£X2¹Ú¼}°TÏWÁïÛ÷¯ÿ®¹»T9¹LËócÊ" Tg3¢Cåưû¡ÊVƒÙBÓ &¼Œ§“"f鮑®§‚đ½ĂX³¿J‰ 䉺Ê)v kGQÜ0XywĐ6ºF·²AdUÎéAiÍú•Ûé͵ºIjƠ›Ö´ÆÖŸyæNaà6±±jµáäJ‚¬ÏƠ|Y½Ï<¸ëßö}oQ8ŒQ±sƠMœ5’¹öë8Ÿ²z|†( "‘ LåØl¯°­’³ágCÈxvaÚñLvƯ+k¥2ZƒÁεå³}¾µ+Xr”H É7=Ù¬ăàcr˼2ªai˜[ŒjÊ[óˬÄN®ïÂoB’̣d=E9O0 J€-9¸+‡©đ̃€9b-üLâ ø©kr «„¡ê1Ø%±I°8Ú¬³W°2ßÛQ¿§e׉˜è`1«»Đ9êLßdz`¯¹ÀV"Vmq7)à)ȽBuÓ¬´+ăN·5éf˜a)¶ñ«é³¹÷ÍLüB¿A¡N’ƒ°ïà>¾cy†ÉIakSSsÅû/Ÿ ¹Ù'z°¤̀†=Ùˈlü4í©Ưà¾Ă5Ó´ïAæ|*>½ǺŒZ!$pk°HĂv%ó5pnßû¹ÙUø0qg ÷º=ˆ7a9÷)Fµ1RÇÔ5ú`%l—óĂ¼áqê?¨­pU±Á¾Éh­i¢ZÁgøœG~½JhƠº¢då%¡˜·Ø¦óƯzv`o@t̉,)Ϧ!>0ô¤<µzôJñ^~̉jâ”G—'¯å {›¨VKM:²Aï6 ó€µä7lŸæàNß(È[éHïœ;ád¡Ç` ‹tÏ䄈ÓnY¾ḶƯrĂ"L´ïF–¬P@ça]yø¡ ¡*‰%ËͧĐjö,JÎĐ œ“j°wèæßM¼~ŸîUí–2Ín öè÷8¾ÍF5iØ´K5íÏßĐW$f̣¿É™ ¹Z¹FÖDƒWe@“_!2àËï³=³\²^§T+ öè¹:₫Î×g–N}'̃Åi¬W½ö=O­m”€ƒrƯuµJ³ÂóN+k5ºå™í~¾SÛ`QC‚‰̣›Ÿ1”g]CuçÇg¥́:Î8»êå$QRh[½w‚JΉƯb“ăèªÈÛ†¶˜‹F̀—$2¾,““}ç3xư›>#%³̣ĺ<–Í:MŽJcT7ƒÏ0§XdÎ;lw>–ªC¥¶ŸâD³^Æïü“÷Æ;7b–êæ™\J ¥ăF‰kx®æKæ >f9¶Q°™ÄoƠg|[…̣œ| ÚkI amuëûĐÓUw¹Ë₫öT S’ỪJlÏu‹’áÍS2Mj5·¬C•WN–Ü€(¬X¿+Ç£T1ẨKăêôlAÁ¶˜Ú4±¨Ù˜D˯·Éw8){ 2đ>S¨\-6Ơ‚^÷˜a ¦ÄNf‘áL¾.»›Éq”rg×ÍRÜÉÅx úúím0Äná‰äh¾AS½o:\ï];Ĩùa…̉ñåá§}9w<¶é·@(êsx­ÎC&‘o' .Å%T®Dæ¦Öt8;„¹½›á6/̉T‰9"Öù s|]¹Æf˜SØ•<4²:‡h> ạ́nH̉q" µæC#ôfÙ>ËPØúZÜô?<=U®MQi%ï{2›`5XǾÅhÉíârzGØ©Vº­rü3ówP¦Lc9ï)Ox-<‡;+ȪL9§N›Zö)¶´?̀:Ázµû…Ú”ôkêqÛƠ—đ7hxü0²pCRÄ,îïyVOÍoÍ1Ư·X²̃ßÔ2áÛ…Na©Đ›-̃¬çw\qy* —éă‹«…ăà<]Ë' ()7ë-¡óAÏY:ø)O¿áÜÆ₫ld†V%àØÏT̀fè÷ -̀ăD¾o2xjî£7Ï NiÀB7sÓøL®¯ß$›÷^ïE+Î2´¿€!ÊÑA|€†åH&6«_Ê¢*W3îẈ¯ư³‘%ˆÉ4®ŒÊx_ïM1uû” …Ứ^̣£Ă mưw>W·Å®Ñp˜â³À朋g}o80 ½˜V[̉Á±’u¨#‡>…ƒºö‚KmQù;½:ś^„#̣~¢Êd5ñ@I]C'-NU»f +åÓÚf§éÍî&7 dwKè—pøÂÿdŒ…¥4ơªßÁC¾-ự-ÙGđxôF‚ú&YB¸vL¶̃ăqcÓ&T) ùí̉ƠçJ"œf¬¼Ê=káP¼â˜A ̃S²ôiq*KØđˆ^èê-åæh߇fYûÀˆäÄê=NÖ4‘D3§m-©L¨SŸộ§#2vP]Ë ½w’ZíâÂÖ5¨…îƠÏ,3Èc‘ ©:;,†g,”nbD/Æñ˜çWIWœW>as³o==錸ÚM WOvîQå©£«‘&:¾Ç©$RKđYç‘m7=ѯµè¢çƠAü8àuI„œïwªª§±Gb™,MºûûM†%ºob¤ư€:ª }‹t#dp=‚ú3ŸoW̉#’r:Fư¼®£}æ®ÁƠ£ vâ­´WÄ5…̀‰OÚ¥#÷~Â!sñEW]S!Ú—4ÍAøeV–£„^nA^«S>ÿç^¾îqƠ¢(„¶ˆ…n6Ûƒ„‹±°°2¥Ä^–éu8B>å­Â «¡IE~úµœËĐkùŸ|øÆ²®Ê5ñoÇÎø½¾ ç¥Ăüâ385‹ ×œå(Ø<Ơ{t€ïÛXÉ đ¢æŒ×?Ø;̃üŒw¡aÔa†|bơuRJ…«°×ÆJ $§SặXf€˜]đæ«è¹j/æwä0íÊ/íæ»½Å/æl(Ü;̀™L³VØ–Ă1*!ê±oE;º«Đïclrj}U›@Hi5y/iy>ec^Ưä¹¶Ư-ăîíJêVÈ2=:÷́’tó đøƯ)ǯFO£cĐ½§ˆn¹½L»Á§ëûªbtPÉ)?²±Èâ»Ü(…y*«é/2–!q;KD*₫ââV–J-1’¹L*!\Y{®d_đ¤¥ÄYÎeº»†́¨+D*L'%ơ+ÍëmË€{ÚúXHIDưsƒ{ÙN?Ü@5˜¦Í;.J»2jĵ„¶1~BñØ"±ta QÜ‘Iå·vRâÍír¼x#Ñl4dëD́¤Ó{.Ư·É KC¢D®TJ†hRL™Ăđ“¸MøµâFèåbûªÈNeâÿYø”ÍA^ˆ›â'x…之©¼Vµó 9 dmÄMz“sùºÄ—Ü~R5Æ!rơOGÔ~1 ·÷b–C}/‹ṼouḍC©èƠ/CƠ»j:KăÉ:ÑV¯–®yÖb¥G†‚¬êŒ }…£]yRÂó ­ú› đ›ØJËc>{Æ1Ûj6U‡óÚÜ>æ:Ï%E-ÿ@jÎ`àĐ…k†èÿüäÖ¹2 X‹¤í“†ç–~h((è½ÜÉ?O&'/Ä́×o·̀F ¡Lm«UF¥&èÿ„œØÁµY\tk´QÜC¼ư¢\H̉꣪7Ê韭6{Ñk¦U+ŸºÔ₫¤ÛǿbNê)20“:9ÜtAS]alø̃nåç'hA8Ø–ë£\ü³ˆ“1R&¿EĐ €‘V“p#d˵v…Ї,†Ëwi¸Ă?‡đ v2³‡CLµ±ơYEé¡×ïEå1ªtû"^HÁ2Ù’]h¾ ‡Z©¶µ¬ e‡>ņ(›D¡CY`Ø·QV3LÖi.zG\&GöK~‰P²¬èU7†nÅË«¸O<÷ÓùV‰ød½ä́¨%?¤¨Óđ£á`ơU–ê{µ„a`*~æWrqz¡(x¹Ỏ´´%×O6]î ̀R›¤}‰f·Lü0»Áí9¢¿Ÿl˜TˆèŒ>» ¤>Đ@½ë‚)̣t Ö›4„TỚ¡'˜;dˆ¸Ëáaf¯|ÁîàpçÓ«ªh"̉úlM&æèđă6ï²æj´pó±N"åhpú9ù ₫íà[ä°Ö¹« §Üïª?í³óT£^rX)=ó4“B#N6[«¼#ÄxKÂ[P{¡ă±F Ë‚q̉Ư¢ ĐBœOƘe)aí˜#Ă—(‡â¾dÍê*Kên¸Y#d'V 0ß— Ổ¨ơ7’iC Û½5Í…eD¨@u4ĂÙG¬–wÉ’êẫM¾ p±bø^"rM}Ê7-†t”QĂi¸w©b{\h·Äó™è€¼kÓ;çØÖDz"û1g¤fưSó¸ĐĂqˆ,I-# ËJ*ZÉ–†´´¢Zñ‰x¬l•¤“=ù£‹üăÇ ~ßÜË™t§¶±̣â7ẩ‡O*ặp½kúbè9øå 0ưµ6åî(߆Uº—cẉî÷!0xæ¼ÁRSíØ[ÓCú"©.Mmº§=S‡C”§GÚǪGwÛáÚ¡jP ó>'br•DÅZ¹ïs"ù¯ ₫ªĐ—ø‰MÊQ\Đ®ÔKS×#>­¯S¢ï_÷5÷%Ó×y¹dé×ÈP¨/J\ ë™*&0¹ÆÛPù¬ëC—ÍÀÊ^:ZŒºÊ’E+DmÈ×cÈ·G£^ÈxĂ«¡¸4̉_¨Œ¯¶°]¼åªˆ§ö-fK‘b/ÿÄÚ:S¬“û ̃¥^Êg±(èÁ˯{©z̃]4ŸCa¥©2Eôk¡&/ÙètNÜNiÜ©¶î~èØ›HÑêç‘ú(án2e‡i¢ÛÜôç7èf´Ơ,z©àÛïwº1íáåbĂ_úúKÎרÚ.gÙ 'ÔKrR–tÁéj¸Ë<—ï‚°?Xm¨6>R#—(¿£»*E^9äsb́he¬Đyd3~0ÿ?8‹ÊC endstream endobj 2393 0 obj << /Length1 2201 /Length2 16226 /Length3 0 /Length 17547 /Filter /FlateDecode >> stream xÚŒ·Pœ[º.Œk€à»»»»»4и»;w‡à®Aƒkp‚Cpw rÙ{æLöœÿ¯º·º₫Wơêj> e53¤ƒ½+ #3/@LA•À̀̀ÆÈ̀̀@A¡nåj ú—Bä́bå`Ïû½˜3èú.º¾›)8ØdƯl,lN^.^ff+33Ïÿ:8óÄîVfF€¬ƒ=ÈB̀ÁÑËÙÊẨơư”ÿyP›̉Xxx¸èÿvˆØœ­Lö «%ÈîưDS -@ÍÁÔ äêơ_Ôü–®®¼LLŒ@;Fg Az€‡•«%@ärv™₫J ´ư#@ỬÊå_b5sW 3đ.°µ2Ù»¼;¸Ù›œïgÔdäJ ûËÿË€đï̉XY₫C÷o￈¬́ÿv:Ø9í½¬́-æV¶ €’¤<£«§+=hoö—!ĐÖÅáƯè´²¼ü8 )¢¾ç÷ḯ\L­]]]¬lÿÊé/÷"KØ›‰9ØÙ́]]₫OÜÊdú^u/¦¿Ûjcïàaïó¯gs+{3ó¿R0ssd̉°·rrɈÿÛâ]„đGfrp033sqó@N§©%Ó_äê^ ¿•,‰ßă÷óqtp˜¿§̣³2½!ø¸ƯAWg7ŸÏ?ÿXXfV¦®…•=Âöw1Èü_ø½óÎV=æ÷Ác0ÿơùÏ“Áûl™9ØÛzư1ÿ»¹Lb**JJt'ü•¨¨ƒ'À‡•ÀÀÊÁ `aáap½?øư7‹2ĐêßQ0ÿñ•±7wđü+Ø÷*ưOÀîÿî>ơ¿ƒđß\ï Pÿp}ffÓ÷?,ÿÏc₫·ËÿßtÿẠ̊đÿ¤›­íßZê¿Ôÿ-ĐÎÊÖëßú÷yus}Ÿ}‡÷ °ÿߦZ ­«È̀ÊÍîke\ï; boaûŸ"Z¹HZy‚̀”­\M-ÿ5*ÿ’küµ`¶Vö e«¿. 3óÿ̉½o•©Íû¥ạ́>«@ïKóßGJØ›:˜ưµ]¬œ ³3Đ á½ÅïˆàẶ¾†f Ï¿'ÀÄhïàúîxOÏ`îàŒđW?99L"‰₫…8L¢ÿA\̀&É?ˆÀ$ơ±˜d₫ w?ù?ˆÀ¤øÄư΢ü±˜Tÿ wµ?ˆÀ¤₫ñ˜t₫ƒx¸LÀÿ öw Ë{—¬\l₫˜¼ḳ½»›₫qx§~¿‰́₫PüUl&³À÷ô@ÿïµdúW§ÿ¼Ÿi₫¾››ÿ²ÿ­₫࿌ÿ@¶¿ ;èlï‹ÀwË?Ѿ7Å̉ËṆ̃ửưcñ.û?ó{€Öÿ€ïå±ù|/…í?à{-́₫ú{æ˜9̃]íßgíú÷Ü₫óî́đ_ê÷Üÿ¨ßÉß=́mAæªÅỊ̂o©ó‘ư=jÇ÷®9ü)<û{!mƯ\₫Áÿ.qú|/ó?à{₫s¼+]̃oÉ?ê÷₫œ÷~Û0¹Z:ƒ₫ÑØ÷p]=₫áđ¾Û?à{åÜÿß“÷øGWß½ÿqë;½×ŸL̃]½AÎÿâ₫¯%5us~/…ëß—èûÿ₫û÷̣™",-8˜̣…Zׇv<Ôà{0́N ̀ŔjeĐ0ø,9wº=!æ̉Ôdo8߉¤|ÿ¸º-A}+¼LüâsÜÖû©=YåÛoßg£DƠéƯo?§°‹4 Â0¨ ïù¾8ùjÙ@¶wËRä9¹q#+ ?xôKy6 ”¯Œ‡/́ª́ƠpÊ!>—Ï0ÄjÄè•ÎQä›ä̀ă¸2ÂÑ¢]x¢̀ỮÍ¢å₫x#–M¤Cđ;‰e+öÑƯd{œ÷^«TguéÁ%ÇƠÅ!„¼EŸ¦ô=H“Å^ôùZ¼á<>Ơ9±e—Âb{@í½«¨úà|xeHIñƒ—‡ C&:f£]:É®”$ †=çbUvĂSæ«ÍÄ…^)ÉêMÉ–«ªr¶„dσà Ëđxcoºq’áHB™­Ô•O 6†—Ïö’·₫¡XI-ơcÁ–­’POG̃¥­Íô›Z´Ü‡âi†×OĐ¿Ë`<^8Ü`̣.:® ­)ˆN̉µ̀E‚cŸ‡vè6V¢ÚRPœjĂ1à+íPuÅ ¸FÛÛ”l¤ŒÖô©¡×zIeßʹyIÉ OPÄă~²ø|ªăÇ{ØWôqÏ÷IŒé-//·qï÷ÜH¢í‡éä₫X±‹5VăÀ8y7¶‰5”ÍoXâ“Đp´(óbCeDÓ™».sỌ́!¸68v̉$VÔÍGuÉn.ªf|3W÷ZYÇ=m—«•>¹-zv%YH0ù‚ĂđP*Ú\ËH΅{=﯇°¿]Ï –9zQí±e„¼Y[­1®<Ïâ •hCñøGmON˜0#ºíå˜đI–sS+Kê@ø.bˆ«Q$y ¼†[Ø“¨é¦}ÊøR[®dơ5"ün¯êk‚4}ø>Ëø6-vÏH—ÿƯ"çR·ûåxb­±<³‘›0Ÿ́”ÁäcM¥'Á²?âaA?,W˜rƒ́`· ¨ÀƯÈWë\ˆÓÆ€$l&Jø¤‰jƒ‰añ“)´̣æHUx†xÉ×ö̉L,ˆ©ă‡wp­\>‘Ty5„=ƠË•ËL.Ăd¶v‰¶‡Ụ̀ó“€hBrÈƯ+ôy3/[W¢8çy¨¹8YY£‚1èră3À,úgÔ®(ÛXŒD̃ñZÔdÁ ă‰ÍœË₫´‹| ƯoSbƒ¸5@C–{/̉µn*Ë6/s„:ÔËŒÜA?j9ª{L­P¥È9Æ,˜ÏåÔm_!Ÿ…— pß̀-AhÍ́‡®p©ÄKi§lVÚ}ôË0€>ÔM0A-8K§ƯƒđçB< ư‚’¿cº÷ó̃ƒ¹5¢4êEĂG'ÇqÔÈS¦[9¯ªT§DÅϸ)± jPA‘d &ë¶wKÛă÷b¯A•/ܵ*ë'Nv2EbíºîÆHØ+̉‹ƒ‹GỵFMv wtơ00ê—ˆ!pÈ]Đs0¶L:¸ĂÈ~tÉ,(3Ú÷œøm5 ZÍ5kT*'«̣ĂŒ\Wk—yN•Ø—ŸV̀R˜v,nBÁ!Øó́‘”iÇûË5fo’«vGè°­h5(–­y³ơ¹½¸äÅú5²f°Üt=jy¥=Ú‘oö-c‰³+B35 ¹R£ź!1}â?hVNgâaưBøc›hN(ßÄ)œœm¦®Bµ©)a»†M¡¢0ø çÚ•Bø$e ‹̣[TÅ2÷å ̀o­;nÏ̉W½'a¿µäOO­²O-·c\è6i“q5²kˆ7Pôû_¨ zÄờh„Ÿ×) \oÓhȾ.%E*,¥‹%À³“FcÁøÓ Â¸aºØ רÈ́̉n̉â;ù‚7#Ç\ơóùBqé^tB•²ĐÀ„×7¯·ö°vt~軵ơ‹±$'1)rÀvZ«°ÙRot‹ÿơˆ‹ w°ƒïF¤ ‹±wU5 1!m¥äYWÿcăóyÙ‡<ÿ!—îL̉&“#lU¯̀̀LJçaqæ–̣Yjó4G•̃œ {¿̉Ñ_I©Ú””̉^ßëïĂJ—J₫qöƯ–qó[̉Ơ¨–ñ]ưă\üK½ƠEB6ưÂeYßUˆÍ`ü̉±˜¹DvÇ“¤AÔT´W½¥/Á¸6,̀u·?åë~rm±(O“Ø›g` Âăú|<ÎÖ==O.,8ê%8¹“ÙSyœŒU(w iú Á™¸°›zÎÆR:ñÁÖkgKy~X:Î=Ùï²M<û»+Ư g˜¬÷Öü$L¶¬…éßwº9đSëz,̃4Á“†à±wiá1Ö³¹e¾Èư0Ơ¿É>Q"~Î) ŸMđóSO;ºÇ\ûΓC >C}8f 1ËsŸáZÄ Ëñ8UưÄ͵FR?Yëè’Ô†cậÁ_´@±H™ø¡÷BZÛbx–L´b“(‘û1¼(ƠêWnJ[ÊÉͳEñ ’TJJ"g ×ëG–t~Ủ…X*sû*ÖluMËĐ^¡ˆÖ oÿ½ư—ÔæGq“êÈ€¬àog«‹uºƠYˆ„x•¯2ĂaCù6ObϧçܵÁ‚*~D&a’ùzPGè×ẽ×Ty”j`´äD ?Óˆ Áâ‚ÆªÓ2ó_̀NƯSŒˆê­hå”Ư‹n¶ßÖ¡wr4—Øëe^nP^i½4k[U]üJTüVcê6Ùí|á&“n )óu£:\_í́ŒT&®fÏ9 ×&ÉIÇ1懲Á‡ï¤¯³̉r$x ¸©é¡(3æu¬œ¦ïb̃q8ûư:³ĐÚñWɱË·ÈàÁ·œô}ä퉣¦·|v†“ÙcùÆƯư 5ưVˆçkg’u>ƒøĐFª²i§ä•ú4N®†R享¤FG]|Êíd ¿Spà®Ơ$ư8/1qGçǵ̃¬î ®‡fĐ‚úrÊ»B/€)ªsTùj—_¾™q"uæpE®B©.9}(­‡"8¤ßôX̣”1Ü‚\"[P·Æ—<ÓT]Á ‹U@‘Đ–|o=¼l)s”™Ppjă|ÚÇK¦í™z v« % éï·₫Øs}ôÜÍ6 †ºü'ă îµ-a¾>3Ưü€K¼a"üu|ÏÜk-*œÍ đÄMrH÷§) ôd,á D€²†‘GéÔaiW OTe›c/göÆôÉ+²Ø?¢æ[œª̉đz´:^éí̀»VCÙ@è|e®²¯…®HGw"›RơåñEuU:.°³g8âúU’Ⱥeó‡FI€…Ôú&XrO4«ºo³ EíöëKzÁ‰"¥ë ¯ „̉¨¬́¹,ô[Q’n\rùᛨ4 ˜¿WÇ ®ăüxÔL%øv^hÄæBÙ)ª7ÓQÑÓ[Ѧ5fbm5¡,¸̣çrª¢*‘ơ‡æü±rỎæ“ vvmäùö½¤®{ ju₫ιÜÑÏrG…aĂ¹ÊO‚!x!Ȫn¦”ÔgåXw³̀«åî9¨ơ—y¹|>‡l/P~ߌ(» LrAZyg¨å¬ 5Ïqđ`n¢Â |‡“̀ƒ-Ÿ•o=‡-Ù~p0ƯöôZÊyỠŸ!̉b²ùèT#\Ă4'´/·&ơgÜJÚESaN¯5¨ÅÜ!=„¤á­]ßüÁÄs‹p<]OŸfCÚŸ¢$”“ô†=QÀ*f™bëCóY[‚iª§é6r‘§GëF<ĂÆÙZîË8e¤-j$¨>ü´¯7ÙĂï×·­—O²4…8~6aB.—ó³9̉̀z]‡wËCæ$£[9Äáq€…®<û>aƠ€…FmáÅa«}ù©ơ·O×,¢nç$±J$RL sN“Ù­c´–ƒ|‚Iq®ăưo\/ưoj ƠRN¸MĐùĐdO¥\lÓ«v‰ëZé̃VVC›XíK Ñu¼4â¯^Ç8gªÇe(Iµă:$Α±Ụ‡æ¡Évt\Ä6K¾%ø)đ|Ø É´¢`^"ñ‡aÎ*‰GÉV/>æå×@ ¡ơ•™;å)A<̉1²¡ÔÁ§Z$Œ8uYZ¼‡€]́G5láR…=.2nÊ…†’̉Ç<¯ û§~Ïë7É3-µR¡uêëós#¡°7h÷é§tZ`ujzxJGvl˜‰Êvf‘‡ô¨t)jS8½/¥—ê'ùá6^·UùÉ1'vÖá·X߀p”3w­X¹A?Åæ̣îÎk·'‘x°¸ÉÊëù*Dß̃f¯ª×ơ5zc^-ªNO´å¨`Ô{W”- ¡»D—«_Ǜ* +‡f"ÇI1 ­Tyºw½«v¯wiØP²Î:î`‹¥«¾ÀzâÓ¤‚M*f¤u©}âÛóƯ0‚QRÏÿ«}<ĂcL$úá™\Yk©¤sr¹2-`.A1W¤„‡çh&^¼fwă= ]¶Đo°Ơ†^ß´P íƯóI.…ÊSSÓÁ¶÷æF¡6Ïnz‘}́¹\G³‹,ÿñW{kV›ÂsÁ…AÉíPÁb!Ï6j”ë#™³Ự/*‰E²ùdVAiêÚ 7·=“€½ơtΗiê*ØÅ₫1jz¬¬¥ VÄC~Î|I{Ó<’]‘6o|Í)Uü'̀~™̀oG?ëéÔmz°yª3VxQ6F´ô#Ü?Bxp`¦́ ~·¸37²æ¤yôü\îµB¢ÏQmA?ËËq&ÛJ±ï6/a|V} 6+zààqG½V3EÙˆl˜u=œŒ­Xr«ùă nåKÑ‘aQ$:JˆïÂ#T?¦3Â]¾‡„·‡ñµĂfV¶`D9ƯR•½´æđv0.ñ̉œcéMĂă A™¼º0*^”Àøö̀)/Ù ú}ïap«Ù$ă!Ơ¨è£iU×_Ôơ<–Frvđs`]ÑÎî2=º_v‰³Ùh¤̃èờ,̉áÑWÔ/ôáàĐAÂ)!²Sl|"‡F—¦z¨ƒAeBk|mN„úó\Đ;ïK_à.ĐvîwM,Qí詃¬LÛºw™́¼̃Ă KáăÀn²׮¤v)ÚLb& Çy\e EaÑcº«w•½Û\fơ&¨ÁÚÛf¨hp†Ü«§8/œG«ÛtG¸ÇGfi¹*ǵOÆÊW#¶Ö\ü»ÉC -¾&.‘t–xP¯ÑK¼Bv˜lÂ$à{¤nh„&-Àu#Cn‡ïKtÜTט{`*§ )<9Ibÿ<Ó×Ç&î®[‡$jå/Ơ£̃FÔ µBcd~âG ܨ©’©^P]pȵXpƒ›Híw'(Ü)ÛuS7½4ćTëx‰,˜Ëù\\Ö1v±ëÆ€ÊZLV:3g•³ö¬ &¾̃ļ„åÄG?±¿_B…|ß(MCºÏcY~Ë C(ùµƒslQ"“đ;+%×^ÚM/}̃G ÄÆ\TD!+Jˆk`GNt§§SX¿d9ÚïqtŒ4Ú®‰;©b¾°R|HM= ü”ĐjQÜ¥ËÏæ¿gEdµ-`ăT ¬©¼`́aAÙÉ₫¹NÅËG³°nÀN|À‰íæiº/¿$R Y2$)»‘G«L"ÍsĂúBüùÂH¶¿@ñ±)¶P½.# ÷ øªµ̀ă“º̉O$•7Lâ/)^«ÔŘ´=¿»+©6>m„pD Y"„j¦¯Óܺ;³©Æ©Ïúl¼u²a*u­¼œç5ÇÆñO†ÎŸĐÁ—¾¯[b®ăEÖ³¡£óoíZ1]xHăñÖÎN’wÀ±Sµ¼”TTÙÉ9TæØç £•vỌ́E*NM$È´$)a0đÊîÉf~7 â@²Ç"ûx;ë `]“™^̃æ¡]₫øL< Ø…îî%Å8̃ûGÛeƯx'6ÈQ×ăH€n(ÂÍ—Ôv=̀Ư}Óe»r‚>”>%£?+9ˆ}<¦gVqM°#ñ[&ơ%µèWú,SÀT÷‰?³^B¹œ–xqƒrÏÛr¯¥%K¼C6b “1án4ÄO|H÷̣BhÛ›®ƠÇÉ£ºûäˬßyzüDꃠz_@èr¬:Í$i´ÈQçÏ--Z©M_WDÍS}"ƒÜÂÔđ®b¡o9 ›Àˆ·0Dn»ăJnaƠ<‘¸Ëy;‡‡ÏW¯ÜÓG̣₫T±Ö+w+g¯ƒPŸ‹Ơ^>j’%÷ºñ vÿ@&5Íq°O!ñṔJGüáÅ$ÆQøĂÙDh,ë÷¤p¡]˜&Gô<ÑcüŸƠUù¢1aœí£w§:}—Nư†U)º€gúUÑ$lĂ_¼²P=Åò×\"?¢6JçKư$ØóF¼EªÖ‘µâÇw(Œ¤—uÛïF|rú{|öɨÊoÜPâÔë6¯úR ô‚-®e|ú€\¢Ă¨ßSÎÄhu,n.cÅ%•hTƯiV½QC½HĐ‘£>B•%“6(!U¬!wlO6¤/oˆ1~ÔA›}Ú a’ê@ƯJĂd‰>p6†J¹CbOXŸ2=ê)ñ̀¬|&àvˆ¦$®˜|u1ọ̈|æ̣¤ÎÖ»9u”¦! bV"ÎÏ1öƠ(¥è‘Ws¥QÀO…RÈ[[ªtă;́Ú%.êêPNĐd;êœMھΪ“¢"|–{?{UxŒ v˜Ă'%¦Ú̉g!½Í¨;Oà”1¢¿µ±Îïå ¥Âä­¦Æ(ƒbgyEƒ¶ẳèdKÁNͬù¾QDÛ¬¡~£̉µrđR¨¡Ăé2½%aƒªêtc Aă–MŸ˜ Ùs~á9)Ó¢j8”ck™%÷”,|$§,)Øm›FqZzf”_™>¢Ôï@b`ÁñˆùF‘¹6ºÀK™z€¿¿4Ư³ûăV´u}8¶Çæ&%q³æùưCe¹¹o+SXÓ½Ỵ„‰ñM¡îpQÅú¶N7¡‰3ùYz`b7•\2ư\Œpä̉‡êă"ÛÓ%ĐuZ̀zf™o`îÛ„XVçÅ'ç!…Ê5‡‹ÜIøy\è₫µ ka†à>/êeBí~T¢Ä¼µ?˜º=DXđyR RÔ(‚¥Ưö«¦:›Ë/î»A3R[)Ù™ăA<­aL­Ÿ@;EœG\:2RÙ1Ùk)Ä+×T':_÷!º̣]L’}h9á †µÙûÚđ+.G£³×™̣4ôÑ#ö,ï’i©‘/"wm’—²̣ka†],ÙỴ̈/K –øe麩ï´9Åe1¸ÑOÑÔdJ‹J̉ªŸs¿ăWae8ÚrçñMUĂ_¬|ßp–˜̀ä` ódde/eebÀÙÂÅƯØüê%_¥å$­¼ARÇ ÿPË~eoIù¨ÎÍFÑ:₫U€v댲÷¬fÍ)vsät¥ßI‘ a%·\Ư”ö¼0ü8„™ Úf₫ÇêæCñ>ø·̉@ÿú¹%™èeJVÀ}:ª–V …Ûî1cwø˜ÓØOúÓêXµ_l̉ôÉöÄOÚÈèÅ2)QƯ0°™ŸƒñD̀½”¿´¾¢AŒQÖjꘓ8»˜êŒ“€•ü¼ˆâoÔwäß×ñ.°ÿôd¢³ÛÁf!ă›Zḍ)ól\»̀Hf×’O¦EçØ§‡öÅ\ –¸¥ûñx®̉Ơ½i~đÉ̀Pæ9çiL‚¯¡Ÿ«›>÷ÅâAwîQà œ‹å¯=yè«=$à¢eøóÉ’·âm¿‰˜=¶x™Od–£/'Knt;^P|íe_LYÖAÑ g&v+Öeƒd%‘mxû«»ÜN‚wäÈ"đ}ØĂîü¼°ȳ+–[ ‹¨âƯÈåˆÜm½́¢*?¦8^0»ă =äl·s₫&öUệyø@æ«iN°jéª92S„àüY›càÙP_/÷rû+—v0Ú°Ä%±¨ pI­ˆï»J±¤,àî²³$-2»ƯÍư™é¢¶¢¡PuÀlj‘Ï›₫'É%ÅÚg±4ÁÀ›̃sC₫‘ë¡S+»E’”Íè0O:Ù'µ+ÖM¤®¡ŸAƒw¹GÖ‚©RüUĂ ´ -É{«çÅŒJè2Ü™´ḷ© 704èú¢ bBåƒ:(„â®(5¤ú¾™¸¨¾Ñ×~̀¾Ÿ á4—Ú[ÛmK”±+¿’ù÷Ơ*tyü’Q·>Ú`ËÜ›ø!7nó]ÀX¼À-ÅÄFnÙ…/PxÁ́™€Ê·ń‘oE¬~c)59ơ½8£\f.ôµçÆ!…¯û´åñTâƒz¢ë­|$&l²û×ϯåg‰cH±VŸf Yí°Ù’Í1““ [,¶ÊK¥[J”ế„ëLêak;ms(¦ª,ƠJƒųô†ĐÄ«q/°›µ4̉:Ñ”ûÏđª#NFô¿‘ö³Í/]tMOö–ï[yi8}£‘o×” ”øNríjü¯÷®mÓ¼„¾̀Ø?8̣'B†°“*Ê`á²Ă‘Nnœh{/ô©M ³–¯tv¦{ë¹è…Ùùs,˜ÑöA‹"‚£yäø á¡7MT¨à%̣áqG{Íg† `ÖÈ-dÍw,=Â/ÈÊáiPQ{ËQpóZûeÜdE¿ä£s+³ơâ e¯́’ăLÄ©ñ½ë ¿XËï¼_Üthutb‡¹đVñ(*¶uç.•?@¢̉*6£2 \nö0ñ>ºDS½áûÓŸ (î±*øZƯ4œ¼G 9ư:60\i|,ü6€z'j—¶₫Åươjdä×7y)»Ó¦'‘̀æ8¨Ù‚›vøÍ!‚üAvF@è÷eÿă¬ÂÛTyÙœ5æOg@ïẬ96ùî¡$† W„ÓżÁ̀ñŒ–=©ĐÇ!đ·C©G̣‘ N0uoä#æÛ;­ï%Œ#MƯ³d}>;Ó†o……¾œƠˆÂ}Z£zƯTĐM$hA|ưXeoçgÜRâSr 'Æw¯ơ†zŸÊ3 =µAR`f_·ƒËa±6£<Ơ¤‰k{³Ÿ5m)øÈøh¸/IkŒÓªÉv„ϵĐwM„43X±hË+Đ +Éđ|OÛ4(₫®.=i’µVzĂ.d ËI+<Đ8úy‡’Ṽ‰çÙOJ›·«vLƒ»áéwÑo-÷ăYbV“ÀB)à́¤Ó”é!BS–›£ă«Å¤̀bæÈEÊIy#ca;fA*Đ2_Î$8ëĐ‹Næ`̃i ú<ÑI[ªG¤ø dw4Öó*îmƯFj%¨‡+K؈&¦ˆå ÑGi†:lq%è‚ z6W9ó¹±AôT]f¡à!B¤°+₫Z{65—_ 0Ÿ+„¼¹2–zà±Av†q ü†>,`®X¤)ÁĐ<ÿ]-Ïá¼–9ƒ¾¤A¥¶p2Pæ©}>i{Ÿt± Ø‘PÏ7oÂnÎå8¤q î$êgË£¦áû›2<†PâÁŸÁ‹¢¢GLö’¢ê`<Î"x®[ĂØq–œ_º)êÖô³ ¼`óUgŒ‘DëwΉ ¢ô½tO%ÑØưغ‘Á¦ë4Y‹̀nĐæ7ÓƯHÿDvÂG ³A1´3¯¶›yj´ü]L•Ç₫Oiê¸ü‡ø‚ˆÔŒöªḈ¬4ƯÅ >Y™†Ñ:S™ß…á„́mŒ;ÛºÈ6¯³=:†ÀÇ62d |“„Ÿ́[ dô,ƠÍ(à’–¯'Ø#Mೃ®3hmÂ÷Ï0É,úÊ0ªç6¹«G©¯t’ñ¿nôle |¼oÛ½S«úØ67 &„·aׇG₫ưÑ-Í Nå‹Ôï’m£-Ó嫯—³Ẹ̀óRx¾[6Ê Ú 2-̣;°^ËP¹h¡_™ Ơ0¼ëƯqƒûeµ¬ Ú0̃x4¢’̣/{§>'ơ£ đJ¯µ*Ùø¥£Ÿ6/¦a¨̣MN*¹1È ˆÏÙJh[èC-§̀ù›sce•i¼è̀pF 7¡,l´` ³EGG}̃ÑGÀ/¿˜wÉđzsƠ[ø¦ƠÛ̀±6D*ƠtÈaß§Ă=Û½̉4§l₫Ó[8ZƯÄ#_öÚå÷×Âyz¥¹‘W´##uEÄS ë†^i£x̣–h†]EgfBË­ÛÚyËV£=LwÀ†Ù`rûMï²ÂfÈ™¤NŸB’Wơ\tnéû9i¨¤_)H43ÄÁé*œm~诲»‚)ÑZăqü°¾ÛÅ¢^Ă ÑRñvÖ¼¿.…Ó0y)µË Mß²„ĂQk·ü²ó?kêù€ÊÁYÏ®!9U/çÓ²)ƠWfW_ ­Ââwd_?ÎÜ™[iÑCº°È“Y‰L™^œz2^“Z´¹DRǦ.ù́R˜ yN‘ă—ë¢CŸZáB'_m1t ?¾î¨›ĐÖ‘u®+Tn¥ĂÜ”*1úÂ?Fi.|y;₫̃ÑX;³eR‰ÿuœºKïY½5d;¹ÄbV]ÍG̀ºơ°3~ª$ß·)᳤¯#®>*è†[Ÿ\€†¿m×öcrƠv«ËÅ^“³6U˜CO6ƒä‰Éú [Ï~5<+o먥ó„åü Ïkw—ọ́÷K=*bˆÈ¡˜|l³ăx¡î̀º%ÜƠzPéêüHeB43dU¹›÷3 R nîBMn;eh´2’d„Ñf\¸° Đ˜µƯƯ»#e#‡ßĐhójå܈ÿú Ôúô›)úQS»₫«æ׫?ª(‹Ư¥¯|)Mî]Mº¿H~­÷¬²¡Ă8 ÊH®Ă5j¬/‘àơdè3Ö2],̣£$åß',`‘¯~Óọ́y°U¸v¬ú:KÜójj3¾5ëĂ×øÆ÷inùcjŒgïwđ́ĂRgÙP‘'ϦÓYMlÙ)M‹\ ñWÖgÓÀ:<Ϧ§ßb}ëneº] ÙtëH#Ó™ †yJ`ĂïËD+c]÷ ÙçXL7ó¤₫^>ó\ÿÛ§ª¾¾̣…H4+ ¤lD-é´Ó„Ø̀j¬‰rÜf’̀ë,•ªzˆˆY²§‘Ïûđs´Í)B5U4àÔă‹ÑŸKfn»gø²’|!–‘¡.g  =ûáy“ƒ;O¸]ËK¾’ḱÖŸÂ¥ 1åA)ÜÚ̀yucZt<–;IÎâø90ëăÔÊÄV¹uRóû8EøùÛß‘«I\‡† Wḳ>Ù´/`«Aª»ªƠWơ¬̣‹Üœ«+Å®ø₫ø®PRµ­Âî FûrYLh'Nú×QÑđĐqƯú]ô]ànaƠ5çîä‘läù–hß(̀g*"±ôb,Âb|ê÷ăï7ăO½ÖOù´V§öuF|¢ ÚD̃¯Ó_Tˆ§*Óí3»À%Á­‘B0ÇLĐ‚X8³jEYœôaPëW™×áæPs~Ÿ”U9içB}d¯Ú̃IcÈDB E ù¦}®÷i‰c"ǹ?¬9…qƒ³åj :*@óđp₫tÚALÇ[D»OÊ?̣,–`«dcµ‹¯¡N`‹Đ‡k¾Ê–̃7«®<fÍÂÅo\Óñ¸9üx®/ä—çq6+¡ººäf-'“FÖff#Ø#[Ă…ú±º©†̣Dđîq™ư[™Æ}̣keV‡ á_bpk/̀ßci6à]«ç¾ø3̉ªGt­}I¡œ_´jé4·æzƒˆ=$ÅéÏ¡6M€j˜¦‚º´|Œ–€¤˜‘©ÎONèW?XL=vtÿt6x=ñógawÍø}µ)XYåÉ'¼ó%ÎzÁá‹gĂœœíT(ܱKưy–íÂ!3MÔqHîÄg¬ld¾i.…eÑÖV—K›p£ß®ăƯ “•7x]Á¯ª 7ærÔ–̉3xBî…XXÛqi› ¤±œY4<15…¡ŒrM͆h­]ºñȲ´₫Ô ßÈÙ–H~âØms Œ'}‚„ơEkFl | ưE&cwX·#€wxŸ×øÈΰø‰Óül°¬8zæ™2̉Ÿ¶/²–ZÎö÷±c:6Ă'́O‡ÁÂÆ¸U¬¶YØàÆÈ̀hƠêˆÁ ?¦ơƯû̃ë~ÙT¼ă€»¸öÉ{[¿{©FJ‰HY©½Ï룭öû>¾”t¬aØPĐ/˜r/9Ï9«(ÖŸó·Jô¿ÿFƯy%ÅÎ…@UÈ̉•ÛêNzËÙÄ̃Æơâ…x<Ù«NÁ)*ùñ2fj—ắ¿•~₫N¥Ơ ‡‰9vüàdKYtàR‰Œ~±–hÄEev#0\åvR’[$đH)@´0g§wX9¾©*§8Â<„©w‚ƒ×f@ÙÚÀzé#°XLL̉tĂÀ¨$ ˜U "ª'̣P§5Dâ;©H4ÓnNà D jï„ ¾È_§ïÿ¼–JÉC}g÷¤ü[ü£XPÙ3en; ›đúkđ₫â«ü̃c®x³ iOtÍ< ¡]_̀ÿH.†E«‘Å· ·œ{†15́‡?ÂẂ:H́’¿ f)á£̉ôKÑ—¸Ưóèjµ2ACœnå 2R¬Vy&w ´\Y91æ¬Èç‚[/₫í˜Û·®xq́̃£!ÍÆåfyÄ:Ṇ%Ûø°8}ö£^Úë”Kê ÛơL Ơ^Íü"ÀÑ™±l×Ǹx—/ĐP]=y°Öô¸C¡®’Ă Üg–¤¹¯RIàưÄp¨G­k›7É KL„½²†º‘²£mU€êE3ë„tO%³hUyµ ¼©&̃ ¨Äˆ¶%üû%C L. S(6×=iêQVÊ^¶kØIỤ̂¶±–t¶Ơñ°—®XïÔî3»íïAª·÷ ÎØÏ¨{:Ơ–t¬ëN˜²?ôg·sÇ̃,=>CV"çgê …Ê[ÙUÆ&È¥æ)2u%Îj₫ ©d\Ú@c¯ ¡ơ5¦öáAuđ­xó ‡b ³áIReÂÓGi"•óM%ÍÏĐ ư ëYôă»¾J₫un€Í´Lù×ß¡Ơ«Œ]M'Ræi ©Ư>ĂÀ>Q¿ú1j±"‡7‚Y¨rzµ:Ç9ñoÙlö·ë0 °k –ßW߃ĂJº°ú’Á/}aH+Ûr44Jṭ Hè'5¨®”ʧǺpÓt•µN—ç ùP7!öØññ¾à–ºáÙ`†Ă”ê÷̉ŕÊ‘ø˜ƒRPW+¾¿jÍđŸrƠĂ.c#0̣L°¯cƒư‰ÚÂÎá™ê¾G>ª3}tO lÔN‚Ú¾ßƯE$½Jv¤¹0›~ ½ªÜ2Á¿Íµ’pîI±´·Øyî<º1fưÜ’µ¯ÜŒH"¹Ë~™́Ä̉¬ÂT±4ñóKBodÂÈ¥®´.§é@à9ŸxmÂËq+¹Û Áâ­9ÅMÆ…ÉÑÔ"øêW1i<öç—úôÎúƯa÷ŸxvàœIùj¥Lœđjû¨É›ă¸©đG,”Z‘Ä¡¼ơu~ü’NMÈQ—l¾ ¸ü9̣d±(èĂqÍ{;n¬ơ¥‹·̀9Î̉Y»oR ­{½ƒ&2Î4˜€à5QPÔ~”¨s?[.B&È ¡Û̃§§ q°ụ̈UhD#¯8ëâç3ÇFDăXœÅi…₫D[b5ƒ™D́™hŒ¡±œñç]ƒñGeühÈ- äÔb}óHăçv̀}<©:nuIøT́Û7Ç8×"W†=gÆåMtcb‰ ¿J^´'ê¦ưöOª/Í[éWC‹Î“ÆS\Đ¼t6®®dW§|§›~*H:Ư¤g¬K“=‘FeO#x2ø7,¨ %̀Z¯éؤÚăúë+>ç¿m_“;›~¨nÏ;g‰mÛ‘¦”u^ÚÔîú‰Ë§q8gqÆơ| º æEÍH­J`€̣6â‹“Ñ¢˜ṚÚEẩ¬®G‹j¤$ B¬ŒÔkûA»îf"ªbqÉ(„ ܤ¢Ç··Ü2&XƒÙ ̃¢VëµmƯ^¯â'x´5´ªOtuƒ¿´Vˆóˆíjäåy‡ânöMUiv#ñ)çkw¾X’‘Ôt…åˆÜlºÛnl:¨ưà`™ÖjmÖOj´-s=í‹zª­̣A¥Ë±± OÜq•´b‹aJr{à¢n±̣KÁˆ‹1ÖQÚ¨¶Èt̉Ü(!ø@dGÅ”Béùáă¤œ>¯}†(d¼.¯{ º5Vlqÿ̉û5ƠX¢™ö²X›´ó7DE^üµ3fj…ê;Ÿ‡³¸Ü|é€ùe°(R 3¼K=ù÷˜Eº́“msÚ8Öơ·Iµ ªyÜF/˜v]ñ ÙW{¿øç#µª6(°×ç‚Ïç®ôYñ»/ÍîsEåàç¼Sè* ĐƯ#>?·̣ÍđœOf6d^‰‚|¸Deµ#Ÿú»ÏÏúΜ·l©ú^S¬‚†-·ø« "¾y3ø€E†G¯åJáï²băUµè„ Û§Ü Pʰ-ầP¦—,ç ́"U^*M‘»0X56Ü *V÷âSñ³jh‰÷“ÉêMÀ8á|œ”|<ơ˜bàa@¥úèƯ+̣|îs¤B™4á†̀×rI!Ÿ7ÊÅ$®ùzQ́ñ†ơo1ºZ® ^5­ !‰Ö†Íơô× £Vđ+đ¨$a[=Û‚êÂQ́‰HÛoóµW´>Ek?>̣5-`¨”“¶ÎaÇÀ7"qÚƠvèBc¢/PˆBqö|ôÄîó?’B0CăLJïûGA¡cí•s/¼ZNg²QÙ¥jiqw’¦–”z)Q©l8ŸvGóÙƒ÷ÀzH ‹Ë6Í¢;‰º9¿¸S$ô¶ơ²‹l>ơË̉(™Đ]‡›`ç_ÇP¦̃åh6€…Ï-Œá½~G߇UϪAHjØÿF—Ơ₫MO.¸É ¶¾Ué¶Đ¯}XhZeút!=eÖe_?=•€á:&è_hzađ³¯u°ï’ÎT®Î»#ç‘FAѱ9w:l#“ïB@̃́ÀÅ›Ơ<Îh8Li‚H§EŸÂú\bï…À™v€ñ«ö¨zÄƯomqô@$)ûÓ-q³Ơü)ÉU à8'p?׿ÈÅ”²ûáÛ OWŒåœđCØœÈËéÏ3Mê|ă¶ü‘ZTc’ØÉ’“'±8Œ50ç ÊKÚB’åd»™Î@;ÅdQ/ϼæo;/¡ù–=û×0MF Đ- oAöÜζñ‰ƒ6â0Hàz ôÛïUU3²6ÜÙâLéÄy(ñạ̈pWlÉxª¡k¼{‘#³j“­Kh9©wîëùX팳Zʾx×£;+y- ³z£„„BNf­J.l¼Ä†Ä}`ÓùpDĂÛ»a²àÛ~$xåh¿YNTqûÍ‹ f3ç˜f[’ïYÍÎ*s/ăj¼jÿ–-û¥e<•°üTŒG}~xÏÉâj0<¼VûlăFmÑï$ ]nMº£Æ‚Mè5ë$m©¥¦%¼¬Xr¼©)Z[đ\*ÖoñÍđ’ 5êR¿›3ÓD2Ø,6ư5@ñª&f´Ù–E˜d8¬z^ñÔ­PÛ‹ÊYé+û9é‡ Ê®˜¤0–;£¬đÖ{Î/V/æ@ô9&ck¢9boÉåÁ§S0 M(„œÂÍ;—ѼL§¿:¤”çwXCRă Ó‡¸>̣¤;ƠÖë¶ê2%M|ĐƠcÔWÆÄ×ÓPºJF¹gV^ă-ỉ2́|rƠˆgæ¯ÂừƒÛ¸EQƒÁçr[R£fxÆ›ˆåȢͻ#" R ƒ¬4PM PS²b( å¢NƠG\Ê>ÿ ö6€{¼#Ë X¶$(^:ó/oWwy:†HĐGR“ôdµ¹qï­¡á([ SØ¡á+,˜1SàzÇUƯ9ơÏx–{J|ë#Ä»ùr0YÖ0ä¡jUD(§U½wÙÖ™wâ1]3ˆ=>fÈ¡ ₫Vµàßzœµ?K /_½œÖH&à‘¶UIỔÂ?Wơ¢/)#=»ÎTí:uf§Ú–\¶…ƒÏ·W.+_ÆñÑÙ¤j¯X5´Ê=nJ.̣̀^î+Æè’4†x“XWFN]̃9G• !Gà8ăg̣“È)ÜH¤‡œ(+º eñzE–¤°›Ú¢¨|$KŸ KQóböĂAáÀíâ„t‰;₫PÎiZ¸~EX¹»sxă%˶Ăž‡V¯"ÉÙ{/ÆX…T™y„&Ú!YÔÔµSØpÎ8wL=ke~:ɬ™Y2ÈÍvª₫’+SŒ!©L‚¢!fbe¤́ÆéÀnÑ>À¾oÊÜ´«pßÄ~º_s{Ñ;Á´½® ªÎ [ƹ«Nz"6™™â8¹GKóôÂR[í‹ƠrƯc؃#®”:™FyÀ­”70ó,MQăNæªÄVµyZÊ[@ÔḍN ØâqÓ龿&÷'WÈLºè¤¹8¥ <ĐNº¥ëd»ª ­¿¹º"t“-+̃đ¿½ W|íV%Ÿc-¼kŒ«g¥Å`˜RyzÓ¾Ó§Ơ`rù`D'ë)F̀ó»°åwq !ahö‡jUa©) Ưû4LbyåÜà_î—C̃×µcƒ̀®ư,Kă«ĐÅÀùBäU5:¹›¿6¹)¶[a•oTúÛ¡Œ̉œ_¿ICÂé‚åˆ5pÂmæÙ$p½(m}Ûh1t¾´Cl’½Ùaḷ̉ͦ> lÊ%₫Ÿ÷ư„È¿Ø0Z1k4ơF™Z›Ä̀íqgÎøå¶*bÄvưʘ7=Ö}·„Ù˜Så"±ơ昩×Âxíæx̣1ôY2}+=kE]ríMÀó7¿›³·èeǰÁ覌×2̀h=G kª;l§Ÿñ?<û•âJ͵¶¡™¶ÿÈơ]ACêrKÊ×-D¸¡[Á¼ˆç%Èă‚ƠuÆü«lŒæEBª\0` ²_×áÙ…ñ:¢@º»:ăXwÓ§½µs-±"†1¬g¢1/%jBZ,Î ™›¨o•/”V¿—L¢ˆjĂ…4Úfr:Û=½ [ùÓo\„fX€̃‡&Ÿoø.B´ÿ–Ö‰ Ù>OÀ`°v ˆ_ª°ÉxƒPÆ/í) iÂexvÚƠ™cĐUɃ9 ¾á{J±ßU @®´h\g-`ßèHˆWư`ëÿ9ÜăÈd2jÄŸU|%EwSl¦P™OyUD$..çxùËÉŒÑ*{êI¯¯9”,¤Ÿå^IïáE½r—~›ÀĂ¢¨O<ˆç–…`³™ù±Êøç¡ybâ´.³>w¼üêPØÎÂđ?†ÉR-7~¦g¤â‚·58¦¢º_ÔƠYùtè¹™£€¤Êpª¶óÚΈÂÛ¨é% %ƒåÙJ» 2đ¬K·Lg0Q́’@ÊבL̃Ük°:q]ơü˜qm|“¹̉œûóSB]µ̀' ï-Œ©ShW}C¾Z¤₫ô-Ȥʱs?©EI₫^\›k²PÖ´6ñ,_@­è9‡уK­Z ÆG¦}tqäz&rUCeà¦BLÖÈ~×Co]L‘ÇÁ_áZ¬R&`[ĐÂqÂùÉ÷=æ8%ÀÿÔCÿ0°à LI«?– ïI'LĂ‘b *4VÇ(ưå†n{‘/sĂÚ/,âFæiHÇĐ—’%¸—dGàAa¸ƒå̃Ư±·©ŒÜ— endstream endobj 2395 0 obj << /Length1 1373 /Length2 6090 /Length3 0 /Length 7029 /Filter /FlateDecode >> stream xÚvTlû7%1:¤‘I(½énI ©1 Øcäh”$$¥Q¤¥A@¤$$”.%E@R₫Óçyß÷ÿ¼ßwÎ÷³ƯW_×}ư~÷ÿuc3QUg´\ ÂBÄẠ̀@uCS ,!‹øùÍXOø_Zÿ8ÆFÉÿ/»:ÅâuP,̃Íêùz!@ˆ´©ÍĐ.X(Ä+<08Êà‹r†c€øÚ@3]àm/8ê/gƒ¿D€_ "ùwº¿£'B ₫Ca04̉ D \.O8đ¶–6+„¢œ;B=}Đøx¨á uÂ;üi ÔR5Bñóư= ƒđÂúˆù <OúÉ(gu4 Ga}¿ûÓ@`à0ü­‚₫¬Ơ…öGá₫:» PÎ.¿GpöơY ̃¾p]¿=đ*Àt®p,P ËÈpo <æúÜ<Đ ₫Çù­Æ÷‚óB{]đ#ÀC.püçơƒ±_xî₫)  3†:Á](À²ăƠp—¿düæ1ˆà]0x ø÷çß';<¶œÑ(ÏÀÿ¸ÿY.HËZ[ÓØBøÏÀÿ6©©¡€8Qq ¨¸ˆ‹eđ‡f1†"₫îüŸX]” (÷W³ø[úWĂ~o_àobÿ™ËG,(đ€Û‚¥À0üäÿæB₫oè₫åÿđÿîGË×ÓóUà·ùÿ°B‘ÏÀ¿íx¼úbñØ7Dă€úoWKø_t5„;#|‘ÿmƠÅBñPE¹z₫û>Zˆ¸³1 sû *é-~̀‚£}¿ ( ₫/U0ü£áƒÇăO–ÔDÁĐοÙ%.% „b0Đ@~ÅxI ˆƒàiè øƒ` H …ÆâC€øñB€.h à÷>%å€ ü³ô[ùGÆ×aưÑä‚ùb0xư¾‹É8 ‡Àa€éI4́Ö=÷×÷̃W«rø‹®)ñ¯Zf â¦1-¾§4dé‚/s"ç1GªéưtŸ—5Uf¸/p›oÈbRMÏ‚ÏRLGW›S#̀mªÖôpQp«¬_x߉đ n$lÓăÏ÷ö•¥1.d<öï֨驘ư=¹j²öRZỴ̈¼â£h¢E‚mDé8ÓÓ VR¬(¹Ă^íøáÑC̃đ%·^0 d+Q¢g³ t2ôå¹¹¸O;› +ñ!ÇÑ8µ =–O¸²â¹¢q[ß’8‰ÏívÚ¡“K2 ˆÙWÊ}Ä××\nµQ6  D´c«f2­]ˆT†UyI­­ŸƒóúÂèvp“\ u¯yÚΟɨ¿y|uI:.\÷:»¢âáÍ4î=̀ƒ?n¥ní¶ŒªëÑ jnj-Ă7¡=. ä5¡Ä\ëˆ̣<€~¸£UOÑ9…sªˆ}eí}6‘½a»HûB@Đ: ûG!ưZáX·̣1"÷Û₫-Ÿ½·ˆ(öƯq;ÑæE}Zèà¡5e†Đ rz-i,˜l%mƠ²ÇƯ²“r1Á₫¾êµSBÖ îsÜZmB‹8½×ß$)¨UrÂè×đ₫èI¸1ƠƠ2æ©äv/„GJƒ£ûîÄ̃c{vm‡f¥… |ç[­å¥»‘˃Ùö†(ă~ó„)̉¦’P¾Ư¯t/¨û}5œ™¢§$’LÈ2ƠØl̀\}%©6rË:JçGN~å%@¦8>.X-z¤Ë°Œéf7*ñsœo„Œ…¦nή?¾,½Ê§Ë?té½đÈX—·FÔ!uxăN€ÇMg@Ï–ÊÜÛñÙF›y=i·đƯK3nª3ƠóCHåéÚx“ÑN“~MsL`x«í÷mÁ6agA8µăÊ!̀ø¥Z®‡½Đ…@q₫¸Îÿí‹ö“›¸.ȧvç!Đ@+LkºFƠm›ä2Í~±áäÏ›©üöe- ñ;í ,‚ ­́O¿}́é]˜ßÛFî6±¹4±‘]aà4M³:ÎÅƠ› @„G+&ŒĨsFRéOr!_q¿*ÎÙ;Ÿ¢¶ÿÚ0é§Zó€Öø¥À]áǹµmU¯ JÔÿẶM̃3²¾Ó ¥€ơζM©Q’¨´ƒƯë₫cö_S©N˜¦º‹§ü̉ˆF%ED‹"áßß5‘+ƒLă–·2•“4j¼á̃ôO+9ÉkD ̣ËÈ4·w€|‡Ÿ³™“ …$Đo«²"­Ç…Á8a#±Ó‹Úđ¥áØØ›ùơ½ºzgœ]»1ê<>^¨Èê|ñHNâTQó|ƽj“ḤpÜÆè½8€àå¡~¨D“̣/Âæg;¼ọ£Iä*Øõ¨^|bHC)̣Ù¾éË¡µ“3Ơ+~_ö¼: )ƯIªpÇ^ß“˜{(èÎĂÀŸUÏx4‹eiµé ÖzVºë»[ƠbƯ[hÖ߯w™e9&ÛÚÓ²_>9.¶ËåƒöXƯ4VwO›Ñ&S… ä¬ùØœÎ*ê> ¤gí̉Đæ}ÚäÔYsưärNÛ%¬XA¸{]øc—*ñơåc‹ôYJÅ»4Ú_́ú¤ä^?© Ax•BÈỊ̂Cỹ·g{(è́rGáé¸Bót‡ØY—!Nv‡¡½”éíV¢́»˜å¸WCéÇJ+•´Ü’7ȵ{”1ŶÁ̉Ùe4û á₫%¬)Ÿ»²Ô„1ăjɰơÙÜ|‰û~€́̀…ëo˃q¾l€k]…#ª×ÈfƯCp̃–öjå7Ÿ~¸`dµ.&èsC'-»M7-*ø2œ̀tS]meÚôpW×¥Ç>D¤ ̃,O¼Wœni˜ÉïÍÜLÅƠú¼TÜ@ÚFFD¦·ù̉{Úk»ơqO‘ªœm.pf&ûP4ŸJ_Mæ|Eâtjq“AèyƯMâ’éUå•ƠMT›j~#.'·ú1·HócH,.[ó(vKl̉4i$ÉÖä1¿&ÀDàϘƯè)6<¡« nË›][´Ơ$ˆg«Á.7ˆ̃̀“?>ôºØÄn~¡`ŸGoÓ*q¥¿ ™/ëÍÚ;*w5Wé`Gué³X5ÇZv(ắ"]zN×ï|«H­œs—¹u€ö·ÿ8äÅñnm³¬•rˆFœ^ɯs:ƯΜ½û]~GçÅ[²qU+¢ÍÍæ´îË̉Ÿ®y µ̃¥l]5j•k“ï…ÜŸ5Ñ»ÑLê&ܤâ»̉ª2#‹yg̣WxyƠÂAÔ¶._W}ơ`×2[hôóV÷¸¥%úØ!‰̉¤¨¶×…x0;Çơm ·lew¥|CwVïÊs k«‡Ë¼Öæ1¢ŒŒ±‡mÆØd!Ù2U±*fĂÁ[GĂyÈYaÅê;ƯŒ:¤–ùÆ# ûÁgDù^ÈÇ`æâV g™ơºO­l}wïXå•`[^j½o ÁLÔ6Z‡æ½au™©m™à¿ÚuÄ}x_ÛpÁ$t\1Éx`WcØ“`åÀ€̃Ü«×ú—̣̃[¬lÎä©üÎ<{ê×å²yù‰SàPen~ƯÆ€­”¼œ•Å(Đ=È4{̃•×n—È̉»6gצ¡,e¹9üIÇjl,_øéÆn Onùækw^á̃¥̃>ÛÇ“¸ÔÁ´°Àôơt»‘ÚÛÇ%́³₫đG^äwÎ~œ_ŸëÚÙ8?_Ï×Ö¢[לïèñ©Tï>¸ÖÍ’@)ô­Œ½5;Đù‚J?vøú~á ¸jcSâ˜ØÛ$SL«ÊËJ5£@+ä蔥Z =]H‚¥̉ø˜xĐítï5’̉̉0ïꨢ\àư_Ư₫Đ₫ÏÜ|¥J>kdsÛ‡E¤WÀƠÖ*e'M}eR§åtơ8Ư–¤)"%ÆWÖ#_£GÔß|ÙâVWlW;Q̃)zÛÁcK_ èpuè ­;ûé-¦ D¡? gKßB([Å;}Œúr‚ư ÏmÿÈJ4>sYo0 Ư¼‘jàl3r mù#›^lS²4)Jl§ÙP¨x„«†y@c:x×F¹fû̀½$KÈá *!j ăeÈ€»ƯIÜe^+ăqz₫̉o”¸¾3i°ç);\îbGĐƒ?ôăÓ“ âoÂ*âë¹ç(>sÎÇä?@²2™‘*1uˆ>M˜â NI¢º6´t×B¼:Sø ƯñP«¢‚®B»qî½ï¹3ùEKxÀ_‚ñK^æ ©-/WCÉI¡\±Oäw«8×¼NK´₫ĸ\A´V¸Ñ ‚Eẉ›Ùị̈MâÇS°Gœ'âŸ̀gP¡;bÛ•QÀ{méÁ=×÷Xç“~y ¼ĐºDP˲B¹çœÖ'XÜéê®́VKîƒƯZ&Ó=ß½'ö[vodÄy£_´Ǻ=È0­Ö›i27KU¥ßÎÙµx/¯Œ~áMUCgiKûëưƠï«ÜỹñD%,,Æóï± ‡WƯ—k;{MEü^Ê< Ơt"ˆ́Yk²‘bRd?TêÊ>É${¼×3™Ăt\Ä{µÙÍŒÁTµfKI¼{4üö„²'-÷œí¨Æ·ÛÑ1‡¾‡Ä’!ܳ½¹¼åTÅFm±§`£J²HºfơƠçÓj K•®›ú·i  ShËơíë1ă©z/>±É‰Åô ”BÈÜÉJ¾{¢2 j~:ºœ 3‡WD²¾˜ ¬đm×{åî¯1̀ ‘ÛëÓ··”1¸$¨ưØæ¡³!‹é cÙR%0÷’:߯ü:º|‘ªå^4ĵËƠXÿÑéû•:ß º³¥;ÎhóF‡JM¾è̉hà(ƒúf„Ó7º¡‡É¬‚¥¼¾¿àE_È6„ é¤=!¤—×Bâ(„Ù¼©‡Đé¥ ‚¹nERƠ 9̣ñ›“êN6 2¹’_q¨|=•Æ9ŸÑÄơÔèÅÁ©kô^LuЉë¶ÛíÜ#n­„ƒ™f&â/WÑÔ¾6³†­$~ê¯ ̀£Ñ#̀¢–¸{—‹åu=“₫Gb# >=¦‹¢\±ö‘ê¹/. ‚’~¥ÎeÜÉsmZ¤ Ó™[{w·÷Z§ ~íÇ ·¢p[¬¡<7ă?§as›ƒ¬:®‹YßgA‹Ôh'ß {!‡¤“Đ·YÛ/̀»|,È6nFd·ÈjêxߨjK«)×q÷ô‚.áö×™n”ŸÇ9”o g̉L«¶vè”t́˜‡Ñî麵j÷#›̉«¼€3^Œ4×åê±"ĐrØli ÙÔ£Œ‰ç…3î₫Ë€ókbôgÓƒRk”°‹…ÈÁ™-Ïu_‹2–)¾KÔ3 &åCÉ)!’1ôJ6µ6Î~Û…ef‹¾R%à|Ä*\-¼Ơ¼JƠ— é#^8ÚUVWƯsª½J`uÿ ½T>&gb°^pÅj¬å¨‘dK’{uÉægÊkÁçe½"KîÆĐøm¨äi¾{£̉·P¾_ˆø)æ‰ïè E¼bVY-F] åă:Áqto/gĐúxơº¼B3hFÁéơP%”̣G`Đt̀‡0ĂküœË á§ă³ -ÉÔähÅFéçèWeÏYöOMĐTq¹Œ:¤&[ov€­tÊù%«… guˆ±₫Û¬À‘„ä!'á?ºg̃BCƠ.́`)(œp.ËiøG:¸«́I4ú¡.#dŽdÙ–™Ø­‘ÂbÔ¢X‡p »üa®A¤Éäyb›àF˜ÑĐPÙ,ór…¾%¸[â°L-äx»”\^ê-eœáVî“å”àăU£f‹̃ŸI›×yç©M>¶ĐªWgäê¶C×Đ?)Á¹$ñK|úFTop€\NŚö„ܳE²}Ô8¹Öé ‹> È…9JÊ*~¨|î"çU†”M•¢³êcu%úF—%¶®í\¸Aó œ›]Uoư*¿$…ẤHh™çØ$£ƒøÀve­{E³³áí®6î‚øU³Y$¼œ£“§«erX±IX!—ûá̉ï|?Fyj5½`ÍeBª̉Ed—}ø†ÍXÜ­ôÉr3RĐê»ßl[ª5 ÿœxZ¸=ơJ?g^®Á ¢ƒ1¡Jˆ©̉±I4B.ü¸c?3{—µÊ½gäìÎ₫K¬mÂÏw#ûÚízQ.l[«­›ª÷]\” Rêt|å̉K®É­éuB’» !Æ,Îe>ĂÊ’_È%g>²Ô2>p |m̉S ư|^K-À±ă/kûơ±­Uî²j_[v˜d¶ă»—ÛÁ©~ÑËQ3â6Á‡”¹÷óœ[¤IÄd´<Ô×@ )=)ḉ5Vxv׫¸Sö(ïȪŒÆpîE¿Hsùöù\£̃á`Û~âwdÑpu‡-¥.F>«CY˜Ú~ĂMUq*ÏäÚk£w Ó‡¨¼’Ó–dÈ™ZơÚ×Ç,#9 Ÿ¬w®‹̉‘kz¸¯ o~F¢_vzđđP³ê¾ÜX̃­ ¤ơlùzh°‘†×‹LsNsi₫ïg#:0ºó¬{Å~D^ÎŒíU P] ÜÄY,gÊu7û]¡D×höUrz²b;…@îü¥}M墄Ó.¿» _…¡sƯŸ¬À¦Oêă÷–°ëË=yñôQ£û̃ô$ƒŸ%³“ù ew¬ưj:ßéÔ‘6²˜#Ù´1”ÂÊ+Ë¥ûW”–|p{7ê«ÊU¨­‚è©VÎ^ó®0èèkđ'øÙ„Z̃NT¾C.Ñ#AlD©u,"Gn„,p—‡§¹ƒ|ωÍǛÀMÿ’0àf—y¸îó´·&óí¦)‰£‰¾́+nÛă½™ôp°Ûa₫+`¸BƠ¥,SÁ}êÀ¨©w¹ØÛ·Æó'[Ñö/z!s÷lïóĐU«·j9í₫đ44! JănX*ØÓ}IP-ÛàâGU):=´@Ä?“[|;bLÍüÎ#̣Ykáv/½3À|ÿk¤W«›DtY¿ơư h¡Ơ—¼N’Z!3kƒ&5c‡»‘:–$j Ư&®.k@ǽVÎPú²¤­»f‰‚Hˆ½–)~ùÊ¥́ ¶€÷ S½«¾#^öƯ­*y}ưG$—èD® …B*¼^t̃7JÁ5»äk†Çª¸å/¸̉ˆq9:óôÔF1°–=ÇP.­̉O±û`$¥Ø̀D»,˜úéX-\:~Đ⥙_mKÆ BôCL1+4:JJù9Êùl7ù"P~g)¢8{ånÈ2¶É½˜ñ Nâ‘ơ4'ÚÈÂøB‚¼‰6R¯M¿ƠîT±.XJ¼Vs09L,ų̣ƒhnđWư'×qûG.Y›‚í,‘DÍæ¹ƯŸªoà·;¸óBËôÂõ=ûôÄ!á &Ăm¨ØeE4†íE³¬¼†„1RTmĐw$u»[3x÷Ÿºtˆ®GBˆ<vMSăŸ́ß¹R´.ѱ¿́$CDE%~zßKg·đ?Ç1P endstream endobj 2397 0 obj << /Length1 1614 /Length2 9092 /Length3 0 /Length 10147 /Filter /FlateDecode >> stream xÚ´TœË-Œ[‚»…ÁƯƯƯ]ƒ“dÜ!¸»»Ü=84xH°́‘œsï=÷₫ÿZï­Yë›̃µ«ª»ªw5=µ–.»´5Ô¤…¸±ssp‰dƠu„\\¼\\<ôôz`7GĐ_V z+ …ˆüƒ—uƯlr@·'7u( âîàæp ˆp pqx¸¸„ÿåuÈ=ÀÖu€ ‚aĐËB½]Á¶vnO»ük `²bp ²ư H;\ÁV@@èfrzÚÑ èĐ…ZAñÿ•‚ÌÎÍÍY„“ÓÓÓ“èă€ºÚJ0³<Ánv äê²ü. tư)Œƒ g†ưeÖ…Ú¸y]A€'ƒ#Ø =¸C¬A®€§½ºÊjMgä/gµ¿Ø·ÀÍÁưïtGÿN†ü ZYAœo0Ä`v4Ô8ܼܨ@ˆơoG # úô‚–O(Hk€Oơư]̀Ế́ă€WÈù;ÍS“å!Ö²P''Ä †ñû|r`WƠS×½9ÿ\«ê ñưkm†XÛü.ÁÚƯ™Svq)ËưíñdÂøÍäàçââæ€\ /+;ÎßÉơ¼AÈ?æ§óûû:C6O%€üÁ6 §? _Đpsuùû₫“øo„ÁÍ °[¹,A¶`Ʋ?™A6á§›w{L¸„Ç àúưû÷ẾI[ÖPˆ£÷Üÿ\.§²¢¡‚ôKÖ?ÿ›’‘z|Ùý<ü\n.A.€àÓÂÿ¿³hÁŸ‚ë?±Ê(@ø¯Ă>ué_öøûö™₫ fÀç̉€>)`úÀM¹ø¹¬>ÜÿÏ2ỵ̈ÿ§îßY₫/ÿßó(¸;:₫a™~Óÿèvô₫›̉«»Û“öƠ¡Où_×— ¿ÆUd vwú_VÙ ø4̉[Ç7 S{¬µÀnVvIå/»₫ïsC@ZPø÷ƒ`çæâúîiª¬ Ø“ÿP §¡ùï-å!VPëßÓÅĂ/ºº½1®ø ñ|¹ŸÆĐäơGÁNÔí)đT?Àêñû>øœ̉¿M!A§́¿‘đ₫q?iôÈà´ùäpÚư>åÿ 8₫ŸäÏ ư7ä{"ŸÆĐO©ÿC <¡'@­ÿáñ´›ë?àÓn°À§·çÖqºyBÿA?Ơå₫ø´½çø_µrwu}zW₫(ÿ©íÿÂ1È d…±´µ}kßđ¶ăg4¹'ûî¤øưîËtfvß%×N÷_X¨)̀µÙo6\¯¤SFûpV·å™.¥–©î}Z›PĂÚ’´Ûoưî,tfvÛ1>O MI7R¢S°ëIíùƯ»ø9 ¶Âw«Đ绸 aiâÿôPôj¬\]ØỠ«P}vW9Ë£mTö‰¾À2g„Åï̀ ûÓåƠ^̃Ô#•J+†ÿq o‰¯ñØ›yŸµ*=X)©1 %â%̃ø ƒ¯̀~ª ñ¢oyɆëxÚ“Ï®†ÎO׃æ ôS"L¤$œˆÊQÑmJ‰NeÔ‰(|9g«*^Ê?[-al‰àGMGÁ,‹sÛ™ÆôN˜€è^JŸVZ`NZSKµ¿W[²‡J$ï€\îñÇwf(?0nÅWO*?Pe~ÍQÚruUBg̣JĐâÔ½M~TË ÿ1<£ûS™f¹Ñ^´đ:ÅO«Ñ9…HĂJ“°¥¦Zz¢̣́²^¦Î`h»Ÿ†YÏ.¡tÊ\Û !•„IgÛ;…­Æ̀ª´%ºí×ÇB,ùUB)»“&lœ^#¦]TˆṆ̃|M?Ƹ?¥'ÉrØú ¦9ø˜®ºå¬í"LÄ]%Ặ›Ö7ƒ˜Eü_<Ọ̈îb$ cRª{üD,§WÔ8ëZ$f›-íä x5qM“uŒ¨‚Œ¯ÉĂ+´FD³›)+¾±Úé´ÜùX:₫ƒgq‚,a¹È_€ơđu³¢_êÁ‹€’h£OÈă-á’¯-°‰ŸbC-px̃“1I\³ơBÄÊö§ÖVư¡G‚p½ÂX–Ï/Bzœ7•?qß‚üîĂ5Ó8ç,OƒkIĂº>ß ¿ RÅÜJ4omúÖ.Ƭ^Ưº-††à´S.:₫55"»Ú_ÓÛ̀Xw’àë '­`› ¾ºOm̀”é₫êYZ¥£û¶<Ó Ü¶1ă[ —“™XßÖ 1Ó àưDû~(3Á%¤à«hUJL̀ó#âFâwQ̉_­só'~„ÿĐJ‚ºoœ ‡@Q±œ2uR]̀®"×;ă$‰À;Ùt\ñ–íø†4¼«¨u«ßgUg‰üµâ½s®·1…̉”‡—¯s •Rá5·gÇ~_×Ú,Ùaz‹Âº†-“.|ä Ḷ3̉q›¤h‡”:₫xщŒÆF•b—áeœû‰y©U³¤Ûѧk¸"‡lâptg;lrê–ƯÛ_¯oN*™pöqtƆ'²%ẃ»àơUm ×‰>Ü~§S[lçå+û«Q‡&:w‘J‚¥H°üWư6œöù‚Iœ<±ă­óæF ơé+¡ñĐura˜D1æÍX{WBÛ.F­}—©̣ÜÊl=´}îî]l¦&Dˆü‡-mª¨\Gêyî4O“ kđعß̉L/bvRÙ₫üIöÁá内`‚sw!î}9çˆ0+»%¯g«đËøŸ‚₫9‹‡+,Ü“#ŸùÍ¢V–’‡‰¹ 2}ï{=ç_=n‹·-±ß-îRxøÊ¿faå‰a_‰¨Q>ifhÇÁ‹Ñtë¦_¤Ï]éâ=ù“ËM±ÇœĂóĂ ÜîÅÎÖ&§c'½ÈÔ:Ç;?£ø¢-¼Bđ:ö-^Đ‘¡˜|»EIR2¾Ï½V­½u5ơ¼,èH|íNjÑ©€i₫¬ Q¼h.aŸ åSÎH¨l¨Mg:=ûâJsw£DÇV¤6"Â$¶›ÔÅØđ€Xk˜¬kÓÉ—SŸ¢½$¹™t&ü+í¡ üœ¤|`H×¥-ÑsqÜó̃å}JË+.é:=Mx35ÓÀ. éñ¬Ÿ3U(³êI—ê±)!ĐwTy^jm]Q³î£/̀‚Û-ff–¿bÂOsŒVJÍ5¿È$æ„₫„ÊU¦#7)\5bS Ä+éT^–àÉ\zÎ|”×VQCÜ]̉4àå-Đ]úÚ))„ƠđJÁ 2ùJV^ÓK%ô†½‚Sé[;fRĂÑNÄùé°(¡ÁĂ”QË©¾Ûî¨ư˜Q!VE,»¢åc ÉeËƯa8Gƒª¿ëI\©âvÜB û#i›-á÷]w–èxBz·+Ö ö$|Ômé; †K×HcOÆl ƒ̉ÙP$I. c„µ“—ƒÅ(7+Mø§CKáu&ü®ja₫.hzgNö² »ï,ƠđDls7OzûîР4À“{_“–+±_TÓúÍx;]³óM°³}Ï~f¢påợVLç»Î÷1ΰCêö¸·êØŒ§ø÷ƒqË4ÜĂClçm0¯Ñ÷ʺEiHYÙ?ñ ìÓwy³å?z dd0!ꙟª^±:HFư–9—ȱ)jíË<¿éŒ&cGŒÆÊWµç®₫Œ¥áƯ>¦È/§¤Q1JzØ›zjvŒ’­Q!ì Vg¾+û ẨWæÜơ%zÎ1r!æiñ¨TÑ™+˜^téïOXm/v¼H ö{kÅ·H¹u$ÈÏ\ ©“‡ùø¾lp™=b¦Mf„È–®­Ráö¢ó¾Fj³€=̣»ËU™ÿb”Ü̃@¿·¹ưÜGíưuY†ü¼®ƒ Ÿ­óf.iI[̃Ư†̃«oŸÉ‰ ^æ“¥«‹‘ ©;¼Ùä;%JÛá¥8’bgÁü¤Âj‘z%miBkø“Đùy£”ïAß´˜ü§û,®_ëqŒ] “ nFè¡Ë4ú<±ÔUÇe”vüÚ’qç•̀{‘)¶ *t§Te¸ŸÆØ¾ ¯Øë2|ä>Vp™g9dY5̀d‰W:†ưеÑHÆOóu1¦@¯eD”₫bôâHÙâ{O£: wQÿ8˜‰¾Àç¶¢g‡M,œùhèÏg̉~îØk!(•ŒkL¡?PÑÅY"mƠÆ2W!ƯkÊG)ª1çÛ„BÅ÷xRp‡ÄYµÓ£VÛ»$NmÀÏñ¬+Çß^uó–’¨ÄåÍn" £Î/ñ\¬@‘®Q7x ÿ Mv’S̉À%œûL…ñï[±”¢,Æyí1o×{ó#q¡Ñ k ùØE96iºcÀÔyú§›Ắ§«é$ƯÂîëÏÄ FS^¡Ê¯U˜h&ă¤ÅæDô®œ{Œ³§ûe Æ —¦.áx>±¶_ôËxk>åØÂM%ç¡ËpF/ªÊEnA²ƒûˆŒw-ke]·̉±đẸ̀£Z, y7"#ó{đåîĐ³—–Tuf̀Ú1¸‹ö6Ô¸1g» œ]·ê ÑIÓøƠè+!‘C6ßđ†ñ{Dlù`“—5rm¾rƒ‚«í”½WäŒ*ë¹×Ó»·´ÜSÜöi"3ÖKdÅB¶ÅÁ)¶Â]ü×°̃µ7 ÊzJ_â”(B^%Â]ezdw¥ÚÓÏq÷¼áUCă"ª½Ơen Ôºî̃4üơ+r> e«äŒ|d£×“poµư0ÊÛFzæÛtH¬xæ:–ṬóŸó9Mb›|î1I±ó›4£̀ÆçßÙÇVù0Óúbär~aƒ«k~;ÏöÇi¯…'d³Û÷ C[º‚XVѪh›¤¬”m†*yS‡u}=hóؼØÁ'†6fº­WlD… ëǹoù’Ú¯Ñ*ùC=oäù æcƯG‹́™z HN²¦Λ”?+ù?ÔfX,*câ>r¸KkŒ÷ÅñỜ¸IƯí—¸gî½2ÚøD4̉₫Qúq3đR4à²YƠW£8₫­Xp­Ê©a[¾́°E@X"eî®\P)”L:m¤4sQí»=]“#i07¦QÄæ¬u¥—´î8™÷̀Æ6WTù¡s£7E²&cEfnaNÎ{ºá¹Ú±º†üÛ ŸUéB¯ß™V8̣®ø¯¯u&¼-UOyîN:"oÍwOÍ_^#éKÖxi€iOåUÆm8ùáuxÊÛg­c5}‚H!(`ÊTf ´ökKa}zĐ,ÍCGÛ4Ê™rt˸—™{Ÿ ÄI#ßcV¶eª\f8‘q‰×y%ă†2ºQ‘đñ‹Éañu9qº¯ư ²Yo±~yL¡ í„­9l®V|§é&Éûxâï4₫áŒ7œƯtkf•ZzD½`P#éÏ@€ciXœ̃â²–â%FÄ÷JpºŸŒ»¹5˜/•¿,l”ƯeQMøt‘T¿y³ `¤a[ɦ8Ù¶G…˜7±Tü₫xej}gp%˜Û{«‘x}åAøxg§¬#̣É^eU}î¸ ·B¯¶M>7̉—Áö¨aÓ”o‡R}Y_©–w™Ă)>˜GgRÈS"M7̃Ó·Ô3=·Qñ‰ß6ñ,«‰1¥± á¬SĐÄ3 |ÛA4\xj„‡µjÜRpqoL<7cbƯ®/<ǹíWp1g0Ơ©gG´Æ@Fg‘UE"Îqëƒ?©¸¨¸é5¼ÿœ!‚¦áCi­Âơ%¹¼QŒ%!¦–øóöí¢Ñwè¢È!̃^v$h¤v°Äư„äRµóUeƯ˜{_,̣̣ ‘ó*Ûư—'P̃-&·@ëHèÿæ<₫Ư³ÍûÜVøè»ûÏa¡ÙáDeŒ, »]v́vå¢1v(ê%Đ¡ÏUVµqØSWƒ^¿˜¨ÎÀ=$‘ÏZo4Æ[Ü·R>c^½Đ;½D‹/‡o0d¤?Ó5 DŸ™P$ÚÄïL,§₫’2-8À½¾æsPi?“â¬ÑƠ¬œ‚©˜̉8íúør4"“Ç$¿@Î̃eADW¹S=]JôCbê*„tyÊâ/´FøF́-º:«p×9jb«ï,MÎZUö„ÊRHÎYh¨á''sªđ~Æ0Đ}÷U¼9-“|娉“×_É-ÊàçªẺ†ú³§?×ô*KWM¾K zæ°Ïq>0£‘KĂ ơ gV73ZøT4vÙ”ú½.tdf*(íCUvÖë5pgî³aÈó‹Hø.ø®ÎSJ–ˇrD& ¦ÜÉ₫ÛJÄŒW§™L¸(핳ö©²‘iÜ,²£™åÊx9ñh–n·®aöVi/]º®Ư%M”ÁTb.Ö›sEF§W8™MM«„ÜCÁ¬R•;Á¯üKg!¬­èÇsªY˜Ó¬w°6+Ó-¼|uÊ7k¨z̉I@ư.#ô]Ü8‡ïN"&Ë,½\5)Ûdc—₫á̃’ÖPoy©=J²‚ÈxăZ¼ º‰Ă7ßWÁ/ÇîÛv1É€ SQÄD6n4 DZBßüY}4‚ºVXÅe^G¨á^{Ú\ ^Kđßn>„E Pn¼{-½œ©¬ÅçË.íØ@g'ú͉¶Z»å?•µ5™;/k%Ơ‚¬UPå¥ñÖLÔ'?în™3Ñ=́›ù˜zá/êÚfü»¢Ö‚:Ï}Y.âó>P£j̣`–öl }PKˆÎpḅ’:G˜[ù›5éæëˆ@Ö ˆ“]²LMg-ï½nÏ*d₫ùn‚ëîÿ%'/ºæ,úỖ±ƒ 9Yî½ø¨b.ÄRë* w$¯ä–pŨ+ÿ́Ym’˜®÷{SKưQÄc°V×q–€Ol³n₫¬̉× }pÔFg1×…W_¼̃ƠéíäÈJô’öGZI €»Jé¶́̉§³W?øƯf@q¿đMăÈ©?t×]w<\t k?’j:V…‡ïX+kÔâO¯1vÙ;pI ’9~Ăôå\xûl"% ’½ª%¶ĐßëXX}E£»eΣêæñéFZTy}vIüĂÛ~2b¹ÿâÀ zđ̉1pV-uO2!xŒƯí¹úÎ}6Juz! ×ÑÆód+cS†.Ù 9i¿»Ú¤±ºs_œ_bÇôcI}è¼Lá#EÄß(Í7ÚâuỚjµGy™§ UÏg…kVl£uvlyb´6í^ô¬/6Ôøụ̀S¼oºuàĐbhcÓÎua-±!¬Ó¨ö•ôC#› ·‹ûư®.»y*u9AƯñ oê°{ƒv°>^“î¢^+§Ơ½ZEÁƠơK¹dR \-3rÈx¨ óùLÔ2Ê';î\•n¬ƯÈ?°í‹„èb3øŸŒ+¨eñ»rûîç´KN) ×nPji²ÈóÑ[̀M i{Gàs‚X¹;áƒÏ>ú¯]NLê¦;ªÊKU}¤'F,Ö¦ù„º³~~Bo w^QÛ–E:»×ê}B.ÊETfÿ£‚ª9åéF¸auëκ,™K4..•Ó~ ê\‚Öºek–£)у"îĂÎüîñƯkÊŸ¥¶/ư hjó èß·âä•f³Lɱfß&´n~ÿ6¹ï~»- _*¼{}ªX#ÓiëSUȹӤ¼Î]Ü­!çÎ%ơHÚAuø½ßJ®exä´?H16²ö8y§óïH½qÎ%<;@si×å=Áó­à!€”Aj¢IĂM48:ÿá§8âdƯ³³¸åKèQo·k¥êĐJVP\¤Bÿ [ˆÏg³Càë3¶\Ç~ã>†¦gæ±ÏßÄVxÂ/¤†ÍgÔƯ[ }ö<è½hŸ‚7/ưcø=LBêÄơ³C,d÷Ód9¤z©ûƠ-AÔT‡µªœ†MH>UíÎk®¡@>Úv¤ËF>áñ¹‡Ë‰/xÛ†5úºµÁ¹Œ™ Ñ´gúS›Rѽ®H7 æu·²̀†•ă8¹Ưp¾”–›1—{FÊœ¹¡/ÉăÍ+T~¤›²Œ–÷æS*çøÎt•Í÷["áxHx…L¬¾àÙŒñ9(†baŹyôjiø¢êYxTily Bxö‡X¥ ¶ó²Ü 󢱨%É» o÷ÑÉÁÂ1*̣Đm,̉Hy”́ñAiÆe"ZuÿV“ŒĂLXξ$Jú™‡–H«­́™˜•ª9Ơó“ëÓ’`ßµ ¥Z8ß·ÉoôXÀÛˆ5x}\é ̉ùÁªÇκÂư y:ùp₫Le÷ẾDo ᑹQùWç ³äG`5’8 ˆNˆH…„áị̂>¹o©ÁÊ;¸Î;jÜ'ŒÆ­Œc.å$RG̣Fn¾ÆÅahÙđyˆ«Ïù§éÀ¶.Ơ3Y«sGæ1‡-S™àߨ²âËWÍ–Ü:üp“á&»_%0¿_ ₫ª™I9:n€SéĂĐLåk¡Ug=r74©Ơ¬2—Ṕ¹ÿåoÚÉ&˜´:g¨h—G xÍß,7· ătÅuL^ë\°Ä®d¿²•âûĂl¢i¥>‡wÊ&0ÔTWµơKMXÆ}á8¤a !#º“vơp@¿/̉»Ù­Â7ñR›\&çÚp"ö²h‡zL1~[G‚œc»WÊâÅù\ï¹®ªÔZÆÈƠv!Q¢›¥V”dDÈXàeá› ºµ$,/r51F)@¬ }†|ÔÑÀW N1Ú‡<Ûn­‰´º“;å›Aa×¾²¯ươ:W _7dÊ= ûDŽⶬ¶"üÈöÆ1Úå™PeØ~ªG¹5ú]0 æ³:~ñ]•]Ù-±„n#íVƠ‚’&±‹égu…ù泄©kV­àæ¨ü£nEU ¨ÔÀ)úgi°¹ïơ—«‹å*}®¦o±5TÈ?_¯x,Él‡©l½ÈJ³~€<ÿ¤üœ‡hñ!MYàFø`‘ä`ë?¼-˽ ^Ù&Ÿ› ô‹}@= XµÛƯ7§Ç"ŸKà¹[´‘qím¾Q2*}-́­rbAƒƠ¼K¿óö³)1Æ—Äí—6ZïÆ4-¿ñ Ï}¤§{(NÀ Æđföp˜¡"¾¸ư¸}¦g̉ª̣¦¦ª( A––C`Ư³ÄÊì4º ̣Ë‘áU,!s÷zuLVNÙ°÷²L”ÇZù¶Å¢ă!Ê|n|˜Î.ˆ¨™è­:˜½̣R̉ íÏ1|Ï')é\Ơ;ˆc$'ạ ̀,”iE©­„|ØwƯR"„t‡ ¥Mˆó„öI“™Oßưk`·êç\WD1×åP9³F ÷5]<äç=!"́óÉ¥ĐÜncK„ṽÖn1cEæ‡ØCéEdnyE·iÍÔƠ ä {C.ˆđ)d£½G[RBé4+èÿض–JEÇ͇éÁ®·¦·.ÅÀ«ÊÊÅ™¢€Ơ†Óẵ$́ơ1zÅđù\O)m©¢23Û¸9;ÿ¶¨·æçsă j`rOµJäp°ˆ°¬DU^¿ÔU°éùtdØåi¼ÿW²rWÆåøY0B/ ëTœ§$ EúIæpNátCâ¾”\¹pz.–øÀa‚l« ¹Ư‚Ạíœ̉ă²¢ă{̀ ‡7ÀˆR–•ÙöÄW\£×¶ 4z×èÈ5àă}¢fÍTlNÅA8Œ,£é d™Çc'½*óÅ8W™Ç¼÷ŸÀw¢Đ̉Ï$å[•ÚyNe[đ«½é”ôå*ÜBO½pob…˜ÁÏ^Öó ămö[ e<ä© Zq}F́k7±<¨³g©œ%ư¾Ó–Ѹ`&×a@ïê™J†¶Û‚ûb•ûC^FI©>©L6Ñ»&¼MÔgέ̃¿̃ötø-ç̉'+ÑmX}{øyöP|Ăd†,@yˤ©çùH–E»=ùN”sÇ€±â!¸Æ ơ`“̃“ïÅ6VQT›œ„x)ßEx™Z×Ó…p°Ê÷ZÈă};3ëÛ™µ:Æ|̃æع̉4ÑƯbưáù/ƠD›,™Å3½Ç®“.¶ …¿·ùÑc~Ăº½9ĂºÔ…)M¥@Çạ̀³x\ñïbá̃<ÿq?–zp=_¬K Ëkf<‡_v„ÉwN1¨hµ\"sêĂsBvŸp±†³¿/^¡O¯¾Ÿí´.zNK45Ô.È1{ÿ#ÙQ&*‰`·è‹ID‚Ï0Wqô4w¬¢åí\æ½~E‘L₫¹dŒy•¾‹TO uHÙ£^à­)9=ñƒá₫¾µPa¥Æ‹Tôôú’uÛ®†́sAÎz×múéy j'ô‹ç‡̣¼—ç?—F:Î_¨ë¥í'=Í—Á=ißÎ 7àŒ3B.8ô(—¢…‡”"™…_€½Ñb/ñáÀZíZ[}©;¤ÅÆ•³¸¯€Hx‰ªZŸ’Éu>SEŒÍÊ:S6בn_€¤-jÊ&"4ă|̃ß0a3a₫øy+Hb Û¦µ£/}³Đæob’“p¸˜)NÇßçå?ÿÜY‘±:`\$O₫E2ünjØü3¾Ïôƒ³—2́h4Ë$”}*wä¤:ĐEM;§†"eÂ[L©ư¦_ůà˱đ<ƒ‘ñG¡ÉcG~êiúü‹“˜R™öbËSîxÁ]:É¢+ơøsÚN›ÛW“ă†÷<ïïzOs:­%º«^Ñ¥¼z‰§mEXˆU₫cücmc_±éK?$Ơ6c÷úÊ6`~bÛ~®ÏÔ(™7¬> stream xÚµPÚ¶-{pׯƯƯ‚w§qwÁ‚&¸»»k ¸»CîîđØrÏ̃ç₫_ơ^uU÷ÓÇ\s®¦$ư¤Ê(jfo”²¹0²2±đÄTx,,́L,,l””jV.¶À¿¤”@'g+{ß¿ôâN@c—w™„±Ë»™‚= ëj `e°rñ±ró±°ØXXxÿÇĐ̃‰ áfeP`ÈÚƒ€Î”âöNV–.ïY₫ç 1¥°̣̣r3üéµ:Y™ƒ Æ.–@»÷Œ¦Æ¶U{S+ ‹ç… °tqqàcfvwwg2¶sf²w²¢e¸[¹XT€Î@'7 àºEc;àŸÄ˜(j–VΉUíÍ]Ü€€w­•)äüîà 2:̃sTeäJ@Đ_Æ̣0₫n €•‰ơ?á₫ö₫#èOgcSS{;c§È`ne (IÉ3¹x¸0ŒAfÛ:Û¿û»[Ù›¼üY¸1@JT`üÎïovΦNV.ÎLÎV¶0d₫#̀{“%Afâövv@‹3ÂơIX9Mß»îÉüçµÚ€́ƯÃÍ­@fæP0su`VY9ºe$₫¶x!ü#³º8YXX¸yÙ@GĐĂÔ’ùàjÀ?•¬ˆßëÿ́í`ï0§üle|ÿAđv6v\œ\Ÿ½ÿ­øo„ÀÊ 0³2u˜-¬@ÿDÍÿÂï7ïdåĐey±@Í?®ÇÂÉbú₫Åúÿ<æºüÿM÷Q₫/₫¿ë‘rµµưSKó‡úÿ£5¶³²ơü[ÿ>¯®.ﳯ`ÿ¾ ÿmª ük]€fV®vÿ[+ăbü¾¢ Ûÿ4ÑÊYÊÊhöÉÊÅỘ¯QùK®₫Ç‚ÙZ€Ÿ́­₫xPŒ¬,,ÿK÷¾U¦6ï†óû<₫©¾/ͧ”™Ú›ư±]lœ\c''cO„÷+~GœoÖ÷54zü9Áf&½Ë» à̃g€¹½Â÷ÉÅ `ưCôâ0‹ÿq¿#…/€Yé?ˆ‡À¬öÄûniüâ0›üƒ̃ưLÿƒ8̃ữŸ»¬ÿ`Ílö/È `₫¾“b₫«åÿ°˜ÍÿÙ̀ÿ‚ï ,ÿI÷NÏ̉ÓẠ́ưùúÇâ]fơ/øÁú_đÍ¿à;ÛÁw2vÿ@Ö÷̉ÿ‰̀ùî z¿µéß¹ØÿS̀»³ư©ß™8ü£~æđ₫ƒlæÿĐå`ư[êô_]àx¯Úá}ýÿéÜû~3;ºÚ¿Ïî÷‹ơ½#Nÿ‚ïôÿ©ùtûwXßCÿă₫>x̀.îöÿR¿³tư|oÛ¿à{îÿ@¶÷ê=ÿß {ưĂáƯƠ èôẂÿjSW§wÆ.¾:ï#ÿ?øÏ? Đh°4ooÊd]Ô~_-Jàθ3.8C¹£ù–Ñ{É©Ăơ6‰¶*=`ĂéV4i¨uu[’æFd™äÅû¨¥6´5A¹íÉçÙ0Nej§ aqûçD₫‘h]?iº₫̉•ÑùåƯ*.9Äç̉iÆhơ(=ÿ¢YÊ“Œ9\2F"8:ôs”Ù›Ûô¬‰7Ù8z„ÏÇÑ́̃:›l1s^kåjlÎƯxx:¸D7è£ST̃bûɲ8 ̃Å«?=Z H²>0|[eDeÚgK«²R‰5ư¨q]êdư¢&ø‰ñ;¡¦¤ ÓЉL «ªÍ0Ă¥†ƯH´ßi.¶Ö~«Ñcnưp™wºî 0ÇMPó!3Ü}lM‹¯‰='+_Öưl,ÿ$¶ơÖ“9æ3΋ ₫1“›øÈ¨¦ágMt‘ŦÎÍ7Í[¥gßU}R92Á‹áSN®Ç²³QÂRcË\G²8á`BùbySæÈÔlq&q¿ă U+`¼°3 „˜[l6v;~ u~ª ³¾èơ_ÅuÙü¬‹¾LơM×a7nÇÅöä"Cä@öd ó–t¨åÉymœÄƠwu9ŒGH"ÎFï7ï‹BAẂSđ´bC›ÑT-ñx<0„Ä.>‘¡ÜA#á>̣p~ÀüơG̉TD|y7¤k¢*ÛÛµ[ÛÚ¸ÿ1’oØ®§Ë툜Ùđ9©NÆD°0ÓaăÀ@Áéè]C®Ø‹íîÇëốIuƯ ©€Ú#åkOZ£ơ)œƠ{ 3 ”̀·'uÆŸ²¾o‘7'!rZ§b½{–üÊëîR“>írP¼Öï\|WQx*ÍÖK¡!Ç ‡úU“ çE™5‡/§(ûœ`ÔW–?ưy^“«9·/W.ú*—âATY·Q[ûj‚ëœ"Bê©–È%ƠLĂ«‡̀J:3Yr7b‚ +?…mÀàèå‡~@LÎü“y}îç…å/mO÷XÔ?kj UT ² °g>4¤‡JƯTẲtúfÔâÖß"“#·t—­a–¯t•.ÑLÉRÁô¢eínư&ùθơÏ{ÇSŒ¢Ùï* œzøsáL†µ̃á[_«Đ¶óË0yĐ¢Ë ”aµa9Ñơ¼‰œ·Ñơs|0®AÆzÂa¦Ñ™‚(ÆlhpAQ™yr†·\€0 yÚè¬çƒ¡QPÿ2‡ëWcS\(§ ̉®58y1$ñîö¯®dÈ¡h¸r‡1ŸPí“§ÚM¼lÔl»¢…ñ̉·ôIŸÖRV„ZÖ·_ˆ£ƒ,‚óf‚­…YküéxIt¨rÔsаTµÓ•Ǵh;ƒµđ ]ûH,̉…B€—4a¾c¦‹Ư<À¢ÙÏưd¬®{ơxΪ²RÁÓ|¾i¨9Æ‚µY/b.”¸ \(‹Ut*åíjƯÍ$#áF¹ö¾v¤¿?ơƒH^G#s{] Ûư}ó«¯g»¥f´ØŸKqßUG§Q8E^ÅAùä²=Ị̈¾̉Ÿ`ØçÈôZH³Ú0Œ·S ÿj²†lÜG/1Zªđ²dÀOµ rµĐØ,^Ë»‡t΢«Êç̉«ơË=¬Ê$„¹2ÚHInÏî±ÚÄQÑs—uƒŸPq¸­¾Ø¡ñ 9Øđ!æ„E«£ªkñ­mÅç|3qØ”\¢?ÁdA«55ÓzÏ(K“Ç07”»–k<9]|‰‘e·₫|ÚëI¶lWÙMjH¾\äa2}çÀ©¨ûJ§âéü-‘âˆÏ„ù¤N ":,÷…ám^¼´áû»r†ä₫nK(¶§„f| S¹>¼Û€‹¨EZl¢‘V×<ư§mx·E³àd̃XÔK]Ÿ_yA+€9†dvđQLckl²=¥•ƠkR‡!\¯%•7×"™ Ù'W!u[¤éBPÚç³̀ƒ¬_Û¥y‡° ®‡pûÖĐ9«™( 2Ó¾ !‹æ­ùƠ¹.÷niX_­9»ê¸;Ö»J£Yrh• ̃ŒÏ‘ík¸̃™QFVÎ|8d°=µ] ³½ï•y´³Û©Đk‘gÛp·ÂcØ-]lm=á!.¥Ṽ—§IÖÎêF˜Aơ-AGä³O¢fQQnëK64¯9œ…Å3̀Ưú6¬óü‘Q,âgƯ›R&q‹5Ѭ‡•r’ÑÈk^· b )3K̃ âH{¹)É/Â]Z@̀Y¿Xlâ>ɳn¡đÄF;+åÜ¡Lù·âô4âç„đ¡«b(ÈolB›¤tÑ₫₫Ôø”û9₫H8ÈóÜ„³¹Bh.50ºXa;†À½å—øè«…~¼\ÑC₫KN¾iæS¹…¥=²¼(ZsY^ô…(°fERάddÿœ’”G²ª†€©êʨ EwnäÍĐàG£Ñ8Ù¶—M²QȰ́Vßơ#ˆ„”~v^G¿đæ„L jƠKY˜X¤=p¥((áÙÂn$ă Á¿Đ2̣¼Üv±WeºÈÇ0¤đÿ5wJEÓ‹8J£ÍÄŒs£Ó¥áIÏ-:đ™£¶ñ ÂÓÆA ̉fµg{ ÆÊ4ûíâ6ç"™’ºCªÏ]]lí{ùG¦Ê‰â+f¼đú X/«_a×qÖyæ>OŸ¾A•Ưåw8æ7»*GdMG-91[ËO\´G1V¯W‹§:ßTßktôÓ߀‘—ñxnjà p|¤U'ú!óÏÓhS?Û7¦̣tăĂ=îCÿ1mÔ¯@—@7@juÇ&6Êí“Íi˜̣ «Ö?åa‘I! ´ä'Ï—>O>˜<1ªªđÙón»PñA¡ôffÔ¸¼ăiAnï „ÿÔFᕲÈdă›đºÛ'½₫ëí lßœS–›,ßZêƯéµnéæns°\+̃²r-Kû²Tü O3µ^³:¬“KZ§Ûăç€`–/µCîƠ?£…ËØ™ FfMz>VôÓC0(î"³ú ÷F;×Ö¬°0© ­lq[a}긾Œ K¶ÙszÍK·ÙM›ùö³ÀY¶d$n€>f5hvcÓư‘QÉ3Ê€=/K1ÀÀ^²©å©DƠ`Ùƒû†= CXŸ-Ht²=Öd8ß±’)óÅ6ạ̈G—Û‰FXhÄïØ—úâ­X {cgœ–˜33PÙÚ¨ËG'ª›₫̉ gƠ'_| Œ‚Jæ@rÙ¦Ơ(…~tú~ª-ÂR3µ/L9q–?cḷ½đ‘ÖÜûZè³Æ“yaƯñ9SÚ~ ù(ª¶Pi”¼½´‹ƒ3ç§–·§úû7jÄ>­VÚ¹OI²`ơpa«h§#|¤âµ‚ÍzXbµ"̉¬úöCFøç· ₫ºÁB6‚̃¤sm~Ï™ {́‡¥¢Ö§6ëpL«½fư‚ Í'åÊ^OĂ..<¹lÖŸ†"X½<ü÷Pc=®ª -j-ôúe\ÂOỈjb"Ă8íú(³€„w>,'Ư„P̀~́jV^îÇP¿O ?'(̃́>½nÖ½‚gʈ¥ï>RÇh‰C@O!óGÙGé Ï=û•FwÜ¿¥ĐØÑ éöƯKóî×WŸö˜2™pKB/C|®è¬ÀT½¤‘̀Ÿ“ơ”đCV1 ö€72ù5ЇU'ƠÁ7I£}³£­Í CæÆ"W <œ-Ư0²G†å}¨ /²ỗ“¶áCCg­¼;ªđ´§QÆ•£`IY¨Ög¯ ?„`P’-äññƯ:%‹:›8m™ø¡TkoAÓ׿±ÿK|Ăâ$± †ăó'b " •½m;.Küđu÷‡&J?m¡Çq6EûcÿÅÈ kÛŸkÈpÖ™‚ügQ¯}×iĂ½́(;´0K¤̉W.µm‹æ²úxÁ4p7Ăl̃«´VN¬Ñ<̀ÉféÚưƒÚ¬¢ê ‰£–ꯟ¯·! lè#Æ×ÀL¶ë|mWâÜ9™»jxQƠ:àbEæióË~£g“v¢QóÂÏƠrăĐóă~#ä“ ?ă %­¨yplùèê\¹àGÍÎß;p̣5.~$SeWÑ…ôU…¬i_ å­Ơ]ô[¤=‡ÉĐ™ä‡ëéÔ4%Ù˜µæëZ—!X餠KcSF««#p÷zŨ‰FưTạ¦è#̣±̣ó{0 ‰9Ḳt|đäæ­̣¡…c-Á•K\‘(Ó„(’ÊàqÄaG¡ß‘¤Ç;ÜiÔâ*Hµ|!Äz4WN̉52PĂ –́cEU(¬I†K¸9÷¡s]3A׃ÊáÎ&nm.aS?Úû(„c  ]À^g¿ C"´×ѲM‰Í9¡›p˜¬¤ˆ–¡…*ÙºÚZ—dçl˜ùñsưwíoˆ„ªØ§F¼é¨ß–ẹ̈!`#?8¼Ư› ô/ KLùÏ^ëW=ܦîÀïta§¾‰ H c×̣Ơ“ù»LóJ̃«ẩ¢O÷‹ưöà³7̃: 6߇«” úfH đJóûæ-M1Yº•rÆơ©K r«’‹̉ÓA*¢ù²Ohơ\oƒZÜ̉W^±vºÿLc:v=ñ¦îŒX‰é©:'ơ:|O —Ô_râ7Øçú:vàyă¥HÆ—Co¬}&CF¯^¢̃éÎ!Ư»L3¾µ•Y·X…{Ăa& ÙeUï`Âù ´t|BöÀalqG*­Z5¾>¿‚qZyĂ(].&1N»¤ CÆTÁ¤7ÛïfpOÊø¥Qd—]ëÛ~%:ơ:K{rï#óÛ3½À¯)•@!÷ë›(et* ÈÚ(Ă.A RL)H$w>[ªó™V̀j‡ÜóÎJ–êÈfËu₫ĐÙïƠbQz _R—D…Ç–6çQMJ{Ă<°‡Å•G> VíÛúH̀q̀ÑR[.È û¯*²TáÓE;ă¡^4w<@Í›¯I’ÍJ€d˜““¼'‡ùè2`ă×ÑlC ±™da²ØwuèíV£±½̣ ¼G¬4ˆÖßDànÎf§µÖ,TéO>j%ß™ô©"JĐ  ®,u •ẉ5”É3eùûÊñJ‡ÀÙQ¹å´ü•ÍK†GáŸGP‹j¿? |j6›́³ÜE• !́ˆXí àÈ.‹hÛË„#đv–`²¦̀,zN¸jX‘O\̣¼qPUIđ5™)QwK (³:„Úô×ư ưIµ)¾§`„ñZÆȲ³S‹gÁotm×€ưê³-$FÏ«€Lq¡Íi"a«»®ÙŒÚ–n} $»ăzA«²Z¼9ù­?ô‡ÂÓi: ºTơäÉFCÉb—©KÍU÷qwŒ²ƯÁgZ;Kø6ŒúŒÖ«FV§Í5pP< mºræ™_8Úb}WwƯxç‘;s¢÷aÛU~Üóf V˜ ;ÿGŒÅÖµ3CÍäîN8nFOJÏʉ™²3̉n»MÑq°¡*} g$x|uađ…÷"Á9‰D¦;d?#¡µxđד0†8RÂäæỤ́¢S¾/{ó8,'+Læ©1l S{†ÈJ‹5Î*§!̣æ[Ÿƒ »*ÎuØ‘i{Ùk‡¾QâơMö®̃ˆ'Dèù¯ŸX?cÏĂ[áR©}°éÉ%=·Ñ¶ƒ¬"X¾\ñÛ9ú!/Ú¦¶F¢°mÖŸ¿Æöi§¡§b´9Ă~₫V--/Q%=¡JG+¢ÈÎI+₫s…! ×ưæ¾a:•C°c–‹LÁË%&SET–V_>!ÆÉ/N”\•%n°§L*Ó^„ƒ­¬Ÿ^}±¥SûŒnÁ¶<÷U5$N,ê[²”É…Ô\URϵH+«á› Q<”¨<À ê&®7 -Èé YïQơtëg *V[ÆơØW˹B‘x”5“¨»ëj2–/_º̉¬jϼøZ‘BÖ¢ú$ïüÛ[̀Q{Xß/©ÁüU[lÙé(&â$èæ̉ªwä³ÖA5 ¦¬G¼®6Û‘!’—×h £¯2ăí%^Ú*́©Ôª:Ï´K¿©Fnô,KW@W\©ä4¶À‡ÈÊXÛ.mŒJ&¥ẻËö½_I^°Mô)Ös@VŒÆ8@ăM¬ ¦M'~*g4úI$,l­S‰/£ö·SÀ.ŸB!¯s)̉kpÖ”£HDü£öwCT¿0!ñ  îiL‹Èd‘>eQáàr9îH’ŒÙĂÇưAë¸t6Ñ4¡*Â@ƒÚµ}<¯)As´đƒdÚ{ kѵjP±OfUÛÓ1 3¤(?rÜæv́eIăjè*k˜Uk!{!Fy?k鮨°o=²Ñ+‘ưr“â‚—¼‰×=cBÉŸÑQT ÚîƯ#±ÄÅÊó!A?—Ûâœd⤑ÛzÄ¢‡ ¤çhóœ)ÆZ‡Îˆ™›;ƠƠ&inO¼/'b4zF‹J OŒ»‹#-(bô)¹QÑPpâ‚7£@³¾+s¯âgµVDŸĐP21Ư^~péN@0½ô ËÜ¿­±îXP@^S+@•ŒÍ/䠻ߘëJƠ¯K!¸î½îJ®t÷È6`¦)oy³=¼å{yªÙ†̣'ĐØ/rÇ//üæ̉®s™üUSaèqD¨P:"âôú¦ô»3L47rHs× –°Œœ²Ä›Ç¶ÛÆ®Úf$%¢‘ê`÷Åø.ª¯ˆĐvf•Q¡ó~ƒÅíc₫ÍĐl €Äæñ&³W_lâoRvy%ØÎĐ­ŒĐÙ(EG³₫™Zï£ ©̀A2¸+.€¥œX<űÿ½ó(á/}u¥!U‚Ơƒ¬ÂzW˜+³FßomU Đùk!)†ÿ3Ά ؼËé;½ ‡̉£ăF¾gí¦ÄĂïGHd_' ¨hơydÛ̃K©¸WÁ‰[Ù¾r˜§ «±ˆ“AĂuNûç@̉Èâ`v÷'€ùdcü«Ÿm5v7̣Ùí8p>¥ñ€z_Fqó¶R~ÔFA’˜†wܲ@¥Tú*XZó₫²Æ-äæ˜À«̉qËƯƒz\ ²sĐB®Ip:z,j 癦*²'ÊZ3ï•Wư([:k|å oï‚næ̃ƒ¤¿]Û^û{9\’dÈ }́€¥Û¼²iáy½†fåHéÚ[IOÅq4´è<¾NÑÿ¡/W¾ É)ơ¡gÿøÍ©Pđúb–üqæÚ9’ ‹r¥Í*!T8˜–$̃~T™¼â {Ä7–6Đ|MH†SÓ;’m½hùơ;NÄw½»Úâ²¢–ª²Ư¬ë–Z×f-¹5t¤±dHI9́Ỉfêu¿@rq×n¸B¤Ûèö ô d/„f>‘ƠónQis9ͮ˒ùøÜÈM0 ¼'̉ûPaÖTIëÈkàáÜ߯iSôơ¬EtƒƒæM~dƠâ_ƒ#ßXTÁvK;9« RđP›V_"lô|cׂuw¨Ñ©#Ëm-Á|¦ëSmOÅ»¦²Yơ®̣Äl{Hk¼}sL%뺙!L·E¹±O¼Hææ2»_Ík¸u™Ư± ØÉÆ[”%sr˜†,ÇÏpK·JK_MÈL̉éF²CZOôy‚đÔÑtȵfUƠ¿—RQM¨¿à)·OF*ƉH‹ë'±ÀT”Ÿˆ+¬Dz‚÷̀È  !?wMG8¿ ̃faq{éDû²ÜvZă‚ÎM!¯]mƯO»LÆí¤ÄAVó½H ¨9¾?Çß?ª¿̃£_–Ù´Pwº́MZ¶[ Öôæ5‡XF€9"Å¡–•§é¤îe_7¯…ÜúÅåU¨u!È/ˆ¿©ú+âØØ«e²́”¹|>vD̀HV\¡bYQlT°$qqƯ®wƠ™R„sÑÜ8°¶àê<"vP~§5ü:O'ưÚ¿=«XĂƒ‰ø=D`ĂXú+\øơ@i?f>½øàÄKʰĂv¨ëß₫q×—CË\=v‹R-¹V¡Ú<.=˜Úö?v®Æ"ô¤ âi÷%,¨ù=¨ù́…à°L¤‚( èú…0hHn7 VBïê”?~đç–µ₫ Çø—ÏŸËL!ăâC¡ZT(~‹ƒÊ½‡×@̉́”çÂ?£5Ÿ@|(‚Œ›ª½̃2? ÍZßæ¸À5ë™’cM«ẸIE—¥çcC¶ u5v±`ñà+˜s9tl‡-¬X¯Ê0))Zœ‰ö]}SA#Ó*å<Ÿa¹R¢`êá•ç†đüÆú!_  K†YîÔëÁ‡/eÔ4}Ê)̉Ü‚‰w=؇GI.3Ñ@›wÆl·áŒú)[Óni!)úIĐ%{F¨¶æ«7Xc̀WÂp$ïhÅơnSΉ}úÇJ5ï»d²~‚«"Œp?)* ³< ø“ ç.ĐíV¼×®½°Fû̃d-Ư¢XXQÚ9ư†hPB3½Ü†ZDÏU¾ s₫®}ÁÎxÉỸ›ôqŒ,E¾đÏ ëPÖÊQ§] ²D¥ªÍ‚Ư? $v£ §àkÆ‹.|¸4‹Ëä .›½ €ÛY‹I;gĐ{ñ¤#`‹ø`Ën øÁKRIÎv¨’|ËÈùçVj·B× qcmèr7^ºÍq÷µ (¶ˆXµ¨ÎvZBăØc`Ï;˜$ÚGÖWxHÁ•°tŸ¾…Ư•3DHI”ØØC°w?ºÆi•^ôXÍ&]ùTjTV¹\ D z¡?̃&àºcØđI₫¢Lœhk,M¥êtwÿơUn, Äå̀<ơåugO¨–¸»u6a«å–(.Ó 2èæ§ço¯ơ—ë—+GĂ¿Đ^Ñ’ö‡÷:Ä®ṂF—Văé3SºG¥dÏhâ>o=qZÍ$êư †¥—kÍaß wNXm{̣<4ï:.·̃ûƯœ<§kø­«¬™ºBOŸ¨W[¢g/̃ñ†Páh߈×ÅÔºYS=ÈË¿…n5ôûz{îóbËSóa92̣5̉b¾HÅuQçĂp>E§Ÿ(°R «Ê“ÿơ±!‰Wá,̣“°"¡Ç“rRÓ1%„â×̀œTÛ÷°iơl’¢éæG¶ùư8„/̀Öo÷NÁ¢¹qĐ&ˆC£¿¬@3V(xXµ&%†OR`²©å¹I„,§ó̉’=F‘¡Á™.¿©~T T€U™Kù`¨ V~)ÈEIiS»aQpoÛWF ̣¡…­h’öGÆ!*L ØÎù¾Ăùå|!óCFCVȺ?KŸyÅ‹P ”yñéâ}L™å1ʤÛ[Ëă•dEE”ÊC­åÓíÑ=ÛL>oáIî³~ÍÔ’6ơm °ÏJơñ́®|Á4ZMRUˆ“~´”OúCÛHkÚ‚>„IElƠº₫k„ˆ[Nf1xo>á?FÚèI’«EĂ£rÓđ8ûƯ@¡‘¡£ Ü»1°I%‡fÇú ‚r´¥ZêºM¶c³äBsîÚ¨aÀ·r¹ Ǜ›J×cËF„qÎÆò+/ˆN›r)²ÊöPx”¹±®‹K6{,́•î,i´qV5 ¤ŸAc¿gOQIiú¾m¨=Ù·qÚŸRÀ̃¼Z¬">‚îÛ*qÓç®ø¬Q¨ÆBŒE7oÛ-E"….(`̉ÓÅÂ&Ö_²%‘÷^tvÁŒœ¨\Fä̀œù9ú‚çÑq§RÁd¹ u1»)´—Ơ* «¥˜ơápBQ%ÑL‰?ü¾!pö‘UG×e&n“U¤I§n)Ễ×ÚùE6¨PÄR̉_¶–‚uíôH ́54§PÊËÇ£̉Oñ[µUj©Ûç}8?pˉ eÇv7/ÆÑ̉”[¼đ$Ư£¢]föEŒZÙ!Œ•å„ÓoöJúĂ ®O¥ă¬Ç`È́½Qeơ0¨đÜ?;nø@5×p]É.« gj%.¬ΰ'éÆB=*V‡đ<ó_HÚLØ2:h~ơ#ûÍ6•$12X“‡«}OV¡P¦ˆơ0 Ñi%A¶ÆỆo½~ípzx²¡MÆŒ›—²mØô‘½¾₫íưãÁg°dªăD‰2–±œ÷V¶Æ̉Ö^cÏ/Á…RN%^µä)ic§GGP˜®º¶Â¾­¾€ˆ¼~™,²Í.Ø(É–3”BƦñ›÷SC÷c.¡ü¦{@œ̃é‡;§/YSØúÏo\QèrX(MIUiŸZ0«LU™ºó́7ñÄ/oRvëj»0SKy £4bZFmù§»ÅÔĂO­p Íñ¿ hØY…îAc„yó;CÊA‹°n¬ û\„hnï!èàÛéj{»L/}T₫:~Í©f½nnˆNÀzhÔd =ü"ỹIL)D‚bœ´ư)Ч]<€*³Øéª…s%¹}'‘˜Ë·YƠ4’7n§`>Ư±%b®aIwÍÑK¡Vé§V5QoDNX̉‡fÙh6ú–&1’̃Îä<ö¹HL5. D²œøƠè{Öu&óaƠĐLÖ‰´Fâ55ödü Hk9Ư^j̃đ¦3÷‡?®=oÙÍCƯƯØ6₫5Ũ=e›ÆúÎ ne$‚ÜN÷“Δ̣¯́ L"ƯaÄ$ôÉW̃ºnJ}cçö1ª_sqT]žx©Ơ6|'©—ưǻ§·Ư†—¡Cæ~•¯z»¼j3]¹®a¶WÔúÖ®a+8Zö•“¾¿̣@P󦯣„ó’ Ù"fëÖ S=‰¿7ÁóN5³Îg»û÷Å`E†2»û̀‰ăoâ’óưø¯1û¿M¸k’ƒ¥nă‚ ¡C*-GA«×vV&$TÍá=á>Ø›ecŒƒ|`%=.;'b)Ó‘̣,BqµO¯­óœX/s·!́·…đ%¾?ÚấF~ï*÷Æœª^4ăZ²ă“ØȆD“®©l£*ë›¶ư„Â5Ïî:g½!ô•Ÿ•̀=̣nf̀;Éă×»1Ϧͣ$M8$d2©©Ü²É?k‚²ÚÿR$c[³iäêËeD¤2(@.áƠuE“_·jƯ;÷Ø&=êó—–\̉EÑÅë×É×h¯¡Áït˜đ(j‚8WÛ*›ŸgØ,«/ ¿p€́ËĐt¼Ê²•8ÿ́Lïña=œăïÛˈm‚áôxăÆ¦#LlJ 8d"=‘ya<ß ÀÓe-ˆrp»AÀô´]́»Y¬­KñÀ b÷Ư/OµŒ̀î‘z(,Đ$#ñ£Å¹~®ßGú́7Tà• H˜MÛ̀<[†×ÚRÖ­!ˆwÉPxÖ[¸Ăz@— úy₫g '°ơÖjWj-¶º¢_=“S¬k›\KĂD†Ù~Іç Ê1{ê3„p&$¬|IT‹»©}ƠÆÿyG‘̀fŸă’¶ÔT¾3Ë+ñ5+ƒ́{#ÊrœírÉx„f¿ÉºÁDđ-Yï×…údqĐY|6!ÛCàÑZ„†³ç¤¢wï Áªwëµ×·)7 ·$¼xJÿ»1‹VĂGxgÙ'·œGK#ˆ1₫‰ÈzËB^¾Ù·º87Bâ·*`ç#ú®©-Ëo(XÁ&C7ă&EßL1(]l´§ë<, ;¿c[EŒÛ»ün£6¤Û)²Ü¯PQăÑ „n2l»·»ïµeBní‹«} &ª)»ûèF*ÅwL qF#5¸9+‹cÛ ˜ÔHbC¹Ù_K- +U‹r¦uw,èX%<á-¢Œ̃æ Öd¼øSC;sGÙ#0à ư¤D́ø̣¿”âÿĐfçi÷] Á|^đŸ¼&áâg>â\¿Rj!¹“ˆbk3UÉg_Gau]U£̉ b'fØ ÚM1ĐºC¢(¶:¯‘°#Lt½Ù_ăÔ!6=æCŒđI¨×½æơ@ÔfE ÂÆÜ°ÑFƒ·M~à̃/¡`¥rñ Yë°gü$¯£1aí8ä}i4Â×u”“›Ë}Á—¤)²mÓ‘ÜʇÁ=> ² ©nư0/ß̉ü)̣5kQY¾âj)₫€6JG§Ó‹^4ÖˆDt]°¸å€U½ 绲ip¿— ׃×\·_aWx†/2"4t*~̣#×`ÍK°¾¸ íê$;¦¡*Ê l+â«‹¶ÎS×!X£S >`‚÷çÍ `́¢™SĈ5'+%]e$r₫†¸«éñ¤YÔ4&VÊ-ơÀT/ÜÙ ¹:k)c17;S2ôæÇK¯¾@§gnq"ˆÅ•YïñhĂp̣¡Í-‚_sÓ½(/Ê(]Êc¦,æô0ø­îîÆ¿)³‘µO”`5,JéÖ¾OcŒ̃™$CÔˆ>@+đcgƠH¡MöÿâÿÊD¼²'”ÅHŒÓÚ›Jq/x^XÁ†À%и4w>Jn¦§ÅO~ăÿº‰áîÏúJˆåq÷ ƯÔákåÛëÇ*“Îe~qC"Ÿ¯̣XÑÍnĂû)9±ø„?l}z >C ¿ö»mby±÷Dëo5×|ß S£Ññ¼½CùâËî¿™‚ü5HNØg„Æ]kĂ¾$-l¥3@4 u,ǜÔËY₫̃”>Sóií¬KVÛ™Ưµ¥‘ñ˜i—çÙ~“?ÿ£9d›†q[—4}cn•‘WÖbN'̣́ùw¨CmÆdnæ­+đÔÙ:ÂH"/•đ¼Rơ±P²2“×p'Á³\²̉IÔu0L¤sDê¸ú§³;‹Î&ñe¬ä₫ª¥fTĐäöËáLƠ&¢u˜ØWÏ̃¦ˆ:œ ørÀ‡²‘ø`'^X‡ÊX¤ÄuáUƠe=¹¥ØF cDøMÛï…)hÚ'̉#¨X¦û ¹‡*ör}²v«†ü*xT3ơt¦ăXÆ›ÜỮ¨‚î·µ€"Ú8cYÇñùoyyÍ[à!l$1£d̀chïô=G-vG 8ă:fDÔ'T€JZ`¬˜v̉GQ—̀ŸÓåY¨S=ÇS°m©¶Ç¨Cưô<ú·D’S¿:7£ưrS"Vº* l¥okrß̃XBS«/×E¬·hôWSL0ĐÏ~C¯j~¾ÖA _RµñÖS…jjàg\~Ês†&¨a²ŒæÙ$ÅÄ5¸µ'YUÛn 0Xwíâ“síF>ÉƯÂ{f@ç5ƒMêU& éLÁp£L=½̀̉F º₫j‡¨":Øuz2́IÍâ<ê(·¬˜XGáuÇ s«©Áôp`Ä8̣d }ÛÇzáq@äÛëGËÔÙ\‹¥4( Ñ™f’̀Û@ …W²“|QƯöΘ̀Ư¥Ú8Ư" SÍ4Ăâv{œĐÑ8LÄê?Ëb?®rB»ü­qd áiƠ¶>)S¡pöS#7×Nƒ¦ƒoÁ́Å⢶ ,“¥Ä°…Ă³µF èWñÇS3¾ưˆÈ¯ëÚ•Í’çk:r9DÊËeC¥S]f[9U31 Ó†ÔÚ¾AỀ×y?“YZH¤ơ#×àp©L႘•^’’Qÿ´Ä&›R ‰6 Ó́è610˜0æ' wEU­¥ÿXB đöÀqơ0(ĂˆôY'%tM×buˆ'ÿÓơ{c/.+¥Ÿ¤»6Ẽ̉uß©"Ồ¶I₫́«±ṿVî¯ZW†³ %¤ƯkbcyF[‘́ÍT®ÅÓ}̀ߌøow¥£Ǿû“S‡{ —>z ©eSü‰*Đă¶‘­đà g–lÊ3!F„t6slÂj«tàỮ<âLÜúŸæ ₫{µTxñï0àTav€„¿º=ö[ß°â OLù ̉ ÖbZ¢‰ûÊÊ™‘ª´û«èb?ŸF”l—Ól+yámÅ«`7©AÈöƠjîÔ†ùAÆ{‚åçE ˘0öêÏ}\·­nẦÿ<$^ÎB_Xê œ’ơ÷?±ÛÇ–DÛlÆ;Àé`”-8Z×+N—Ëx]Ɔºià"ª—¤—çôÖ…,œaF̃U³jóÖp˜„M¼)oû ŸóM¬>Ëæ°U½hÑ™ H6"ÛWG Ưcx«̃Zö 1¶øI(|¥Å«ù£§åđ9snUÔI¿§Z¬»4¬ÿèÈrÈ Á8µ ¨>u˜C³t[₫vy Æ©1C™-î5¶¨`-Æî¤îT¯†ă·Iø¤kwè@ppøkpcYÚ«ÓøœÁQeoe"¢FÇăë”Oµà Ë7|k î8UiŸêHM`¤ l4z›Äú®Z²5}hi.i²‡•¬ñONĐü¡P{;Üé5ơ,Ånf­Yt­ăÅâHo»ëÍ!<¨›_aàY~G‰Ü,ùơ}HFA¶V-9ß—₫LRpàm^-Í<¹Eb¸–xåƒI~{@ö#ߨ—¬‚2JêW¨Âơ˜đ̀7¶è́!Œ%eÂÁØơî ̣Åh»`¸6yăIU|“´È#a‡éŸÑZúå3T5"ÈM!Ó;¸_93ºúáµ-gE¢'‹đéeApÍ‚HY¬whq(YaZñĂëçßúH%ΖJ4̀k…Eó£ä?‘ço¢k"ăi²DÆ;”oøẃˆë‚»Ÿ£̉†>@w{Đ̉”Ÿf§á›y-7C$E¶]Ợª ×·ÀO©_h·¯|©æÀjsà¬iù-ª5^R_iD§9¦p Ê_8„,Ç/œ<ªÊZ×c±×´ ¦í14̀C°d4è Ùk§V́Eø̉Ơmá&ö%C]}çi 5mè·÷Ê´Q¿Ôp¥:3¸™’íœ6³©XĂ/¡¶±¡¤TÏǦø³‚|%k µ’ç[X]”[lÄ&•ÅÑ3¡K›-|9.”á̉OôƯd~7-d1Ó‡ŒÅ`M‚KG··»ñWB!èe­•„a;̉×MSÁ¯VzĐĂq̃|®¾•,e—“̀}•î¯*7ç }™ó«2Iè…ÉêcB94§ëOTânße•Py!^ Öñé¤Âd `¤÷‰t=â*s3-Fè6.n§Ń’¹Çvư>ÍØÅ Y?ØÆÀ½ª¢"ªVSsßt4ƯJ¡Œ ,΃°øw:*uiç阮äá)˜‡ ơîđ…Kµ¿̣«á%…å~ø@„íâ,œÆY»EY.V+ï<ƒÀÄ…ïá¶›€ª‹đK7̣˜ByꌱĐc·•\¨¬›°Ç¤Y¡U’7Đl¥R’„|#¶Üo—«c&8,¯µÙ4œ̉ñ@¦t…d™÷’#=4 -ÔRs¡j¬ {ơ;ï*}}Ó„¸Ä;åU|€aM Üz!ƒư!i‚ô€(Øe=£PèÈH¨çV¬Ï]•Éœ¦ú®Œ°‘‡yuÖ×× h}‰oÑ÷;9R῭ùET­'Đ’‰Ñ²₫ª÷Ÿ¹?J»³`C.c­÷HÆx‡¶l©́ù·¸@cÈØë¸‘Ô/-}l¶cè—₫ÛĐÔvÜ]MÁA^2¢¤)›äPô¤«¦ù¡¿*ML yÑ ½Ó‰ç8D»¿ÖUµ„²ewùˆaêBGĐ!B ̣đú£ëÓÏ]“%+—5êüx'(!7₫†Ó÷as¿Á¶óRRái§¹b$¾ÁÛ½é}©¦¸0E>4*bÛd×<•ºF—ĂéwÇt•ƒ=Ơ²_>Tø^ư9Æ—ÇÏÆ5=…y©W‡ç†É-C{aI8‰-[:Ó‰íE-ÛˆÜ8¥ÊÖ™gC((TºäßSq ¿æm&Ó¼XŸK™tư²åĐØÿàéq¶ endstream endobj 2401 0 obj << /Length1 2640 /Length2 17605 /Length3 0 /Length 19120 /Filter /FlateDecode >> stream xÚŒ¶eT\Ửˆ»×‚[ăÁƯƯµqw'¸CĐà.ÁƯƯ„`AÁƯ l:W̃ä~3?fơZƯư”=Uµ«ö9TäÊjL"æ¦ IG7&Vf @LAM^]Ù™@6$**uk7;Đ •&ÈÅƠÚÑï/1‰X&nâ6UptȺÛXÙ¬\|¬Ü|@ € äư¯¡£ @ÜÄĂÚ À ut¹"Q‰9:y»X[Z¹™₫û@kF`åååfü—;@ÄäbmfâP0q³ÙƒÍĹjfÖ 7ïÿ A+`åææÄÇÂâééÉlbïẾèb)DÇđ´v³¨‚\A. sÀï²&ö cF¢¨[Y»₫[¥æháæiâ€vÖf W°“»ƒ9Èæ¨ÉÈ”œ@ÿ6–ÿ·#à?í°2³₫î?̃¿Y;üËÙÄ̀̀Ñ̃ÉÄÁÛÚÁ`am(IÊ3»y¹1L̀ع:‚ưMh₫bưÿ=ơÿrùÿößQ₫̀ûÿÍỈƯÎî_´ÿ5ùY˜Ø[ÛyÿÇ<ÂînàuPp/…Ăÿ5Ơư{‹@æÖîöÿW+ăf^ Kđh3ñ2spư[lí*ií2W¶v3³úטü[¬ñ{í́¬@ʮֿ¯+øtà]3³_'®àéü— ^¥ÿe•p0s4ÿ½slœ\o$ x¨Ø89¾¬àå4yưk,̀n`¸B€…£ ̉ï£åâ°ˆüưqXDÿ n‹ØÄ`ÿƒx,ÿ n €Ẹb°HưAlé?ˆ<²˜]î³ËÿA`v…?̀®øÙ•₫A<`vå?̀§úùÔ₫ ‹úf×øƒÀ́˜]ëÄ F&ÿ V6°©‰«™5øǗ̀A¬À9₫e¦6u11Ù,Ü₫s₫GüïùÇ™ơßb[ÛÿØó²ÿ#ÿ?à˜ưƒ8ÁÜfvà1ú¯„ƒă·Ä̃₫¯¼ÁóÅb₫dWaîhggậ—8‹?'ô?¤\¿ơÎîà}ư' 8?đ|Ù™Øÿ|¢€-,¬=₫ û[íè₫7-ØẠ̈ Xoùû¹ úÛ\ƠŸâÀM´̣v²9üe–YÿÁÉÛüÁGhû÷ëO\àÆØư^³?zpwÿª|±²ü¡âÇr¯çŸ&€©ÜíM_–¥¾ôYÿ$ éø—++¸P§?j0‡øé́đ?çÏÁúéÿ>øvaqăŸóä7ÑÉÎư¯"Àï+,ÎüÜA®ÿºl₫Éœă·ĐÑ dnj÷—#XúWïYÁåư Ëù<₫j='ØÜüäúăÎîO®àëŸÅÍÊô×€KuótüËÜQ÷¿ øt<₫‚àÆy₫µA`ï¿ÈØÀá½ÿ‚à¦úüi 8’ÈåßTÿss¹»€»êö¯‡øZư/₫׫ ä2CZ^p4ăµiíº¯!̣dÚưÊ>È¥qûêNÆg¹Í 5 ˆo[NÄQpĂ“#®¸oc=â@›àˆÈ²½-34²ºÈ-'woª»±Œç†DQ9¿…K!¹5\˜é”sóơLö²ư²ê–{×ÙÇXO³ÿ“±d́nY:)€̣­  · ng4À} ¥T\rát’­ăF&NÉÀÉShê}(ßJº ¢…gĐq‰•ôY¼O.wùñØ{®9iÚó<¬Ù^ëÙ/Æ”»0y1¸á2o#Ä–´¢§,¥ĂDÚ[On_íw%¹ uæSFƯ6Đ>¿W—Ơ¬ÜÇ<1"Ăº@+‰÷ÏË™èŸú1LÓfNÈm.`HHªëñt±¶›x¥lÓ,Íó™ Ízè^ôWíƠx‡7N)̀°2$–kûœ̀4’zL±‹T¼t¾LÂ1˜^‚Ü'øVHúërN–TƯK†c}Ù¼5¨Îz|z2<' éß®ÛñZ!̣…Ö» F¨Ù́cƒđ̃Ă,Œùwj³%=l}Bóµç¨C í<Æ_§€ÚDå+ÀỳÛ¸ŒeOçơcfJ\?ÄÓï%’µĐçS¸U¨hÍ̀ø°đ{³oP½ÔưÈ몼ô?4‘u‡0Ñ—7ÓôkÚÅàÅèGCSæC"œ̣œÀMÄra¿¹•#ñD0Ó­óNt˜^ 0V"~Ϲ®¾Œu¾½'Sа2'êéÏ£?´5­dß8ÚÚ³: «y­ŒöP#cpä(˜aÖ§qĂb0÷í33¾³ù7;×Qù·é==™hÀ—snr̉Ê ºÈ›̉p&¬Ư Ë7î́œç]–„NüIID.ƒïÍn~î~¬+ó…æÄG¬i=y‚`‘NåÓƠ¥Qÿ¥b ¦À†–ï —ư±F)+›ÛɺàC…ëmœm›!)3Á}£ªáµÍºW ÖAÚă7E±;í®A=Qײ¡àÅÁVæ¶¡;bbáÚ+’ÛGœtơă÷©\ƒÁÖÔư.f‘ùDéOæơqQZøƯ $á 1£3%fåmAQIV“ơ}ø¬å £±ă‹¤ùöéR8Ÿ§Zë÷RX1ÑĐÈÙØF•Ñfë„2ä µ ó½›Ó²̣ןƯí]ÄÙÂ-/ưœ¥‘±®”é.‚,úƯö_¬bĐ\ô&ç̀×Đ¿D¾ùÙĐØ¤Œ åe¤? ##’U6q:/øq¥Ê•J›Îâ0ùưñ­JèỜ-d)¡ckp/óå¾í¦*a.¼OB?[ÆkÀ©è¤ÎơNCt“¢ z 9fƠSüÏsVôøƒXKO]h£ee•vd‘ !Mv‹îĂŒêÑdÊ{Iu™·Âb̃‚èư-0Wº)h¼fṚ¬Z׆…ep𷬔GúèÂx± RÚ§='W+ÚĂ¼/ë÷#M›éJ«e^Ùo™V8è&ftî™}Dè 籡  ?ŒüẒ0Ó>HxPÆ̉ÔˆŸb&ơP×ëÛ;¯ˆÛQ.¼\§-S¶$^y₫´µf%+Éq̉Ф ắrüQå3GQ´•/kñÑ‹t†ôå±yׇîùWA´ĐÙKH` ncrÂG,íy“Áà–ƒ3Ç‹Gæ´v ̣Çmà#L=ĐåçÀ™ŸSqd¾·bđ÷´€₫L̀Ônq´— 3I2z–‰†‡Ơ É'=½`ư gĂ–´¬XT¦¥Ï“FâiơGbïT°n2½?•̃®¦ÓŒËùöà/©›áU1U¼Åª¤w=S×)Xđ *ÔơÍ º0̀ƠÍb-‚ăßGæù0Wæʼ“1œiè1êüäÖLÈQ/ƠÍæJÖơ´"ÿ"†^Å›|t̀Á|ZV}v`V,̉ÿ–w&O5Ñ#:qM¢»ßá³2VPHn^QkƠ—Éx€ÉĐỷÆ(Œ Yèá jØ×I„-Pß!C%\’f_‹ăg§² ₫5Dé/Âlù¨É=œCæïµ¾|ƠË:eW‘¸ŸĂH‘z/¿q¿’,½Ơ<*EÑÎÙÏ=|€Ȭú\ÏØ§EÏôë‰Z×?!©37´ụá•Äyf=H÷J(dsǶừ¥j:ŸµÛc₫Ø?ÏĐÊÑ3IưæâµÛ£ƒ­o^©™ø;¥éÄ“–ÉÅ‚­RdÛÔa+ªü˜"¿ÄG¿”£â/~é™Oíêʆl ôÓ'F{s…b]NT8u¦ÅS&/ø#oi=¼UØQk±ayŒ40Zw̃Ơ#çŸÜ$PÈĂ¯¼gœ6¼úe8)˜JM V¼ûé‹ VMă—ä W0}”Lơíßp GÖ‡¬Ê³ƯLÄÚƠ¾3¾­Í²È¬aJ…>s΋W× ¾[?rdÓƒđÍ$xs₫²I˜ÿkÓü†ö´n(ᙦ¦p_®O#êªß¢$HHư¨-́gîÇr”Í’·«QJW¥lÍ–ä-˜Ô~ 1^A?'¦ú«£‘úpeË oxƒª¢€Åó+ÍC.—*{ÚÍ>3>ÙKJÓøédĂô¹“=Ù9ñ?…(RÖ¥ÅkØzLy5—$‚È7û”*áT/ ‰yW’̃´vÍÓ}. ¼"wíÊ÷Ó®?1¤±„» ÖG-Il¶ `hc~z?AZ˜l±Ơ•}H¹”+«Å•Å>gø)®àTaÄRăđ5,Ñ_‚à ©£nJˆ™½‰ê'ѸMôów~íç˜Æëăü-Æ„­¢BsæW,z×Sçê¥È₫Ïú 'Ï=àwÉÍ'dcYh •×*Y­­Q̃K#‘_¸…3ª¶øçWYÜÚPëÖN™F¾ï¨¹1÷,}XơØûEñÙCÖ̉rüzƯjĂ?Wk[6÷¤˜_mưa°EŸ¾ơ½yR„ÿ\•¾èNè·‹„}_ c)*s¯« 6?FhR©“~º­\é!¯̣} ä>æf?]ηzÆÖ¼ÏdÂv̀8Èë°³¾xor¤ç{SUÑÏ'èâN¦™rńíC:vĐ’¤8&+»¡G­–đ‰&¼$Lp_cô¬ ôiL+‹{ÓÚ%S®×ˆ>́ŒMq|À”…—"G]q)ß©TÎ0-We» æ?ΏoËa@ä Ë].ˆ_ÓĂd gÁ·¹«Tv@g(Úú5»¤¢m¦à†ü1Z8Ñ’ˆ›I‹=*h¹;¾_v‚ze>'(aT™!Ê•2÷•+HwÀáB¤c‘º̀đSaz·<X Y¼…@ë̃Ơt‘™ó‡Yp§ÎÜ!Ó:ôƯtKZ«n/¦"}‘̉‰¬ú›Aؾ—7‘ỒAfc/¦·en$íÑÈ(C !&ar?>đUàJ¬'AîđÚ½SĐ1ͤƒáj^/ ŸIÉNỚ'4Êơ†‚t!•cOƠÅƯ¼ºËÁµ}¥h“0ÿAlG`f<[g0ÿªùP|µ6ăc¡ÿ7éQñÎJỉˆäcẤÔmÆP₫O₫n£,ë«>˜gq®̉ˆ̣(N´N:œ!f˾&?è÷̀»¸/7بˆZ¯¬¥;â”^ûØE›¡0ÓÁ¦Ÿ>¯IdÜ9ƒüÜîăD†“…g®’ Sz7́áÆ=¨¾ ,C´7üp¡Q:{ÁU!ë6!yQœÊ~<<đƯ˜ëíx"J‡Ÿ¥#Æ*R1•`”Aag÷sÊfäØV¯ú̃81ÆqüJ4»í»¦ArSă"7ĐølUàơœ¹BE#;fÀê‹ZOV°ú̉JºgƯâzJ'w†_ '`âÉl-ló‡…Üó胗^ú {¯’å­îµµ[as}|¿€v‹ÊªƠ`²¾|<Ơ´|½B́¨EƠ‡ÔéBvÇ@¾aÿ\¡•«1¢{óè§~L™«@é¯WJÜvéôczè^Ä O´Ô\ Ê–OØÿµYóÖ¦RH§­ó×jê’Ẹ±øƠ–V8:«qe)Yfjqh-Hḿí\*ƠỴeJQúä³îdÈ̉;Ÿ";4óv‹‰Â—ålŸ5»7üÏ”¼—âÔø]vÍÊ7Ê„¥_bG0½ùCÉ₫ˆÅg³ưÑäFÇ&ñt·¨ jL¯é$¹d±P“Æ…a>8^¿ÉxÛoÎÆ.Ä>"6Ü×…Ÿ³àO¦ù]z¾.́®emyLgØér‰5¹ö³µ(é'u«cǽ»ơÊÔAm+67{ÖzwåejĐ‹ ʾUT,{ß}́÷L¸¯ºê´¸̉gRÑ8oĂ $T$ €‚CÚ*é2“³Ï”ÊŒê‘̉Lz…?â….xđó×{ÙbdøÆ&mXMÓƠwˆB1Ơ™̣KÓWè6•îsµfOÅ|EæYe₫´Åñđ“>?G̉?4ÀđC¶µÙ1b5ŒïƠ Çv™É\7©û«¯•ˆŒ`íD!¿‚ô•/“Ư¥,‰Çœts^]‰°È: ÄŒ̣¨Ö¼̃/×ë¹¥‡Í&ú²µ„7'Q+¼ `YGÅ\Qˆ³Ÿ5óï«ị² B¤[@ IdáGLPké$ơ«ûÓcM{gË©b{,̀́y[Åq̣ú¡CỪ́…ÄîÂ=$ÎaƒH÷1‘$5H<á²--ùǪkÂ*B­´I÷•¢Î\è&(Ôm´É‘½@2,ü )— ÷çk=Ñæûơ+Ñ#…ÜûũJ(ºª̀ªĂ•ŸH1@Ư¶-„3…Ûtƒ¯đRy-$Jk"Äøcô¤# ŒpY:“D2ƒ(¹̀-!gÅ—w}$#‡_‹AGM¼G›¢wxŒŒüù| /“Pµw*vm?»((È̉§½ÙT›ö÷ßϵÆ0}Óô-=¹+3†|v§¤e‚$ë¿̉O%1#s,#-|Öü±…®a§*Fîù-Á_ºa·î°ßçÇ0O.kZTÔG̉ùê—A}̣nw“OÆÚÏ·nñ3®<̉§[qAß>'8‚¿^́y'ÉWN)ăô™0·`XN/ 6Öº̉²TƒÚˆ†wÎà}?èe"o©ÆÏ¯¯N¬0½ñC̃ÎÈ7ïf‰¼vC ûa₫7§ơnCṆ̃|¦Ÿ ee¬ñ~ăP¸jj²̃Q+ƒØ Êy$}G2&À¨ÈƯgHàå.{ ;OÊsâƒZ1ru)†Z @„n»L}d„?ZÓ¹2¾œ]{P?I›%¨§?*uo¥:‚×—G2ßÿ×đjÂ7 k0§áX”ÇHĐ–¼±³Æ—\đÛeeˆỄ¤`±ç… äûơ¦ữ7øQđ=nÆÜÍ^›hŒ̃I®+®Ô<9ÙsƠ¤dMjü:78‹úÜVÛ›ơăØ;e…Ï~ÿm|€;d×NJ±ătĂ×ăV\₫Oªï¬»¤X4Üë¹N,B§µdTÂ¥­_̀Œ+¨}Üư«;ơ_Bd†¼åRM̃gLÛlm­my½M­Ñ5ß^ü Ç̃ ˯…°º̣ÑüÆ¡?9øªÍfAeœ̣{TF YÅ–™̀G4­–ÈœøÛàåUM#ù )q́Ÿ¨ev¨ɺ±Ó?6(ªŒäµ2O°2²:ê ¼ñT3$á×*F±Y×ç“8 øâ]MtÙ pß-?¥Öơ^~#/¡¢æÙ‘ß,È¥Ă9h£7Ô?PѸܶRq‰Ô—ơƒÀBñyMˆ;í@€oü©&«Vă²ä%™CÔ£6C3ü¶ˆœ–—?GRđah‚h tSè~éb4'tå–÷“y¼øâ‡ßa0 ½ùv±ˆg/Ö(¾K\^W"đ”^©w®Đ;á̃µ…Äií=̉£˜̣lZÁƒ‘^ôÚ2V:ă •¿ Ÿ@ÏØ–§ˆú¯3ä%åY&Nk‘­}‹4Dcô–sä7¶R‡O+“¼Z&ÔÄD“ù1å×H +»ëÉ–‘Ù&H‘ÖI:‡ ¤YîèY₫<퀣oC’ÁúfW$ÿđC;¦€ÂèÂÏë úó||/ÿÜÖS㙀₫ç̣8)Å…2÷đ<nÿÖ:˜h̃¯îGAMmÉûÔ€ÖÅḳƯLPæ ù ¿bñ…8¹F‚HJ#ÄƠ-d*“¡¿)B í‹+†×˜³É·½Vh"®ëĐâ^ü8ˆ@}¥ªg.µªÓÖ×á~.±³ü`rtA¦¹D·ÊUÍJ®'̣Üø)ø™EÊN™jˆ{VEW™û=]h'[ù™OĂ^…¶m·WYå‹#…M”HíôˆFHĐ\¼í¯g6?sXxíÖºM?Ù£®×Lüô†àK;YÄ«2q+»X¶¦oăgö¥4̃ÔdƒODbl’5ç-2 kÂh<]}«L£m)^äFçă°Ñ-‚eYiÓç²ơC÷j,Ú@¯j›P´DÖ®ó(JEÂ] 3¸iêđ±f8V†$/ùñ^·̉L•W©» è‚rô®z¦ïVZeÖßɯ"må0! †ïÄ“âvớ'MFAºuÔ’»lAÄÓ¥MƠsÑ)îdrÉ́ù[ơ+°_ß\M=66/'%PD¿`béÜÄ ÿèÛÑȳb́ç;yñ†J¸k±ÆpR÷˜Ÿq̃\ m©1ª'ƯW/å y€u•_xđ: Êqÿfà8£TŒœ—Áö‹Î@Œc¡*8*FuĂDúÖ [CĂØsJiw[vͽCO½3cŸ'NJÉ2fR-×&={úqµ•YăßrÔ·5̃(Aæ^€ßÇkÅTn¶ˆ{8¥ñ³́²-ỘƠXå¹]êÑ’8±ŒcđM•ÂîaÁ,:“K*7ă¥xc0>(6pªU„²_­«p´$>ºÍeÈáK·¢– ¥Ö?Íöí`ªE‰Q67÷Ö…0^<ù–öd&n%́†„C+£[ÆI ne)íM9ơ<Œ‹Í#GTg$K€ kưTV₫\˜&Ăr=„jiwEöó@KÅ—VÔÚØo& ̀ă’íùuTû¥bôÊ™g3'ä>‰‰ÎŒºêWm±pc´^#È,hpM´Â>ôï<2„–iQæ)+“Oâ>\ ̣XÅâbhçp^áÏ[Zđ.Á”¾) ;kD’ÛÉÑWû5 ă½P¶^^0̃½ø’í–xăà‘Ö±5 ©6 ¾³…ªÊ]HU9º¦0ư‘´dјQ%ñMo/>Đ-wd„1*ͪ´[1„•Đ¾(Ê/@<ê0h“3ߺưbv„bG=à+w1!¹d1Đ]Áp€΀i¯©nẈ2̣;@ê«„¶Døà̉*¾¿+¨_Lù£öÖ“;¾áṢlæ̉rơ2Ë´Uoơ†̉NÉsok…´`ñD̉àTƯ`+…́ïTûƒ$u/>rD­ËG/‹( ™@·‘'Q>qá²2¼ÍiM3́i >c3ĐïyHá)<úP2úÙ(B´ế”öfCïÁ‰yÉͤi±³b+¦¡J̣…²Yú¡À¿ÆÊ_Çz‹ªÈ‹ÜzN¿]Iö:?G­Q»æcO”A)]ŒœẠ̈±lo›‘뉨ÄöèƠt"mˆ€´Ơ\§æl΢q]ƯU5™×ÉGyç‹\¼#[kr)§å›yd_̣£:B²³b‹ÜƯË)(kÓ>:»Ñn}ă&DÁ2°ù+²«’ £"‘S2 çǘù·o‘!^uP»eSh祗Chßóúkt'b 0Z×´©‹ ˆ,®K T;’e¹[´Luï¦=I¿F܇t2F8YËfe÷¾ŸfcßË'ZM•U˜ä7̃~Dxâ÷Ê¨Ăª W–̣å̀Äf2̉ ˯åœu–¡̣ù…‰ €̀Ñg¦£1éQ’Ô‰jĐZ ±kôU9a×zƾ™ßö6óU?z!R_`³çä\ª^†qûCb•ÿL₫>ˆ"©Í»1üBpÙoàôk^#ĂX'é·2½CJ¸·á®²Ü[ĂĂÈz³ ĐíÏR†̉Sö0äÿün!|„ÜöI¿™ï“ôéT {»^¯ç1ư,~ÂS<‘à×ưBidëmV₫8“¬Đµ%l¯lƒêÂúqÊIî?̃Ï?´F|̀-]/ÊZm¡èƒ#8;Ô@F²¢%Êfæùñü F†€;Ư⾈FXz•±¹À]Z”íæỀ·e¥Uư‚|{“½6é}¬gtB01pó<áOæÍ Èó†=ªŸ™•Öâ6²Î”öÊdg|–^Á$‚IPôĂKíF1üèÀ´“Ç̀9Ü,b́‚T7¬´yû̉X:§[-û½JÍ÷åªV‚`Ygk…_ßû,æ2ụ̈p£ÄơÑ_E¶ä­3¾=r]M#Ú'FhWÆíáp½­¿s­fØô`¬V#Ç›sD₫3x¤‰¾±0À[½9văŒº<)‚Z`H*öNpg˜°öEø­<î ³ä0s̉cIĐZ.\l}á'”¶¬‹lĂjo»Ç}ó=7TĂæé[v$â \?m"î1sCøXK“çNyÙQ±uÑ«‹̃¢u4dđX—‡pÓ̃ăm!ÓÉËƯAà¯e…ÁÔr8[<5ekÀ*Ư¶Nf^ÿ$á–özÏ̀1₫đ’ä”ơú6ØÙ8̣´;!¤ø³,ĂrW0ëđđ)ëă¼H“ßW³®´.¼Ơ_g8RÔ¬÷­WErT4T4y§_Ÿ@ùĐ™—o蛳;<¤» ¶íÆ·øVè̀÷!t3ăkñ Ycƒë3˜`] Ga >€̣˜§+5`6ƠoM—¯Œ;´y÷0~Å®S̀0‘‡Ñâ ̣`ĂƠ²¾´“YỮ0©IQêkª…±Ÿ~Ú¡%X±˜àÊQŸÚL(¡üB>Á6éw–»D́]îÜ¥<²üø!hd³DGXăóu2|Ïp·0äƠq½Ă,3}ÍËNÀ%E}y(]³5¾B¸4Ûûƒḷ7óŸat&q Ă8.̣ßs¨t5>eº¿~|o^tµƯ¬Ù×äPØ=m-¼ö0 ´ƠiŸđ9ëưjTỞ=iâθeÙwƒwëijDºÍY眷ËÙ:ú Íï˜Öơc"ˆ‡S¯2©2&ûl1ơ¹ `¤&]$µ/KßmKæ#éÄ›öîÆ›úhzº5vgë’o©oâóµ,À:¤ÄVU•îM±1UEY‚yS”ú8‹»³ïñÓËÓFư©rÍ,?6̃œ—₫qäî¹èg\„ăZÚ8½­ư¦ß¤b/HX(đíjúÎÍáP&íµŸx0´I;2đ2lØ)ºñXϰåb®,¡+ßQƒ§².%<¶=¨Å­êqíPÎbD8«ZzÄ^KJºẹ!H ¿ø&¢1À! ½×_LÎ6kăÈøcåzHÈé×ür*Œ-̣²(ơ>¦‰“w*cƒ§ºp×Ư YARÖ¡/&gǽº;%újɺÊGLbơøæ( ›xqïàœI[{ºë́ɱ±¼•FiG¸é €›JmZñíUH®Ü~gl1ËÓ'g¨ôÔÜv³²·¬!pëJS&E³£e¹of±.FÏ̉Ă×B̉èđ¥ô2/YyơxWk±äqlÇÏ61\G'h=f+˜Ẹ̀zÛwc]¶³t$ơµ§&Åù¬„đ7]ă_BåYÑ•6Œo·Û¤e\vÑbëäa®Rr"¹o 6†|JzàiºX́ €Â É»̀ÂXv~ÁÊm<›Hj&̀Đ\Ă8G–‹•-œæÉjg„Ë\Ù2|ăMŸ9il²JåUgïJ–ƒ£pĂ6âä £Ô©¾½̃vǤ÷ØU*45¤É‚ÎÆ®=plr Kx¨Æ̃ø, û1ë¶Ô?Kt̃–é" RúǦ|7Ë7éµ ú"u* 것f‘uï‹5­â ¢Êu*SI7̀¯VơL#7ö„ư,ïG²÷Ô<È_‹ú²¾Ñd}.;dé6^³Ÿ#‡ëóưRÊW+ûȶj"ˆ̣%Ÿ¿Á¶>8uº$ûƯ–é(­.‡ë‘2•‹^2¬»MâP̃¨h₫h|̀ Û̀÷C>‰zÊơÈ}°_Ôíß’~æ®}ÇrQlPÛ÷âgIëfôơ.ăH•̉2ù"ºGº Ăq=?ÑhWỄẠ>³6ÿ›°Jy¾x(›y*Zº33¾‚üQV)̃5F©÷çÔäœÖǺdq̉cT‚̉c³âĐHM~}cÛ÷À†¬·5"MŸB[ï%Œç¾>œ}a1Ơ Æê¯áGºb`—¾zƯÔJ6¤bÑơùR¼²ˆèÁàµ'ÂuÚ >r3˜¶%ù_ÎÏ®?ê°s¾ƒŸ5I‰&pÍx¹5k̉03ÖWm‹SfLKPD÷¤£ü•‰“¯Ç çÜÁ4o èizjÁÜ)Í„ś˜LÿcÀª³—¬¯›₫âkFè Íó$‰€uÏ%öœdTO«F–ô ƒFot˯'²éQDz…R[…½tïÔÄwû’:BÛáo[Å»Vß×%üH@¢r{×›üưú‘î¾^>ĂÓ}vCxÖï‡/¯œ̃‡™ –OÅÓö¶†XDF9ITCsîŒ0Tn€¤­ÖôŸË:*æÓ®De€æ9!ÁÊe 4ÎLí_ŸáÑ,W<¨|Æï~à‰B˜̃ALæºhˆÙ Å¡l–@“+̉D…°5̉’œ)đ”q—9»·̃ÖeX-ïV>9-•#jơ«®4ˆ?½îßÏbĐ`"#¹$+£Ô ¿0Oµ̀ÇûLa,¥ ̀n›.î-¬¬{ṣÔÜ—›[Í>1œ>1ê5XàÏ5Tn¿›¼PLÖB¨s,pdJC™Ơ4íÜ‹)èÎ[¨E5·#\8ỵÛ_t´¼ P1ÿ!ó‘]’ù·dê®(µbơÛXĐîéêr ~;¬S.ea8Æ(ªÀÊ)9#óê1E‘+'ëúVÄmÿBRyÁÆ/±ôNîzäêâx›q' Y´rVæ<˜^Ư}Hn5%?½,öqä³’$sƯ¯´ÓƯăc²}”®^æơPyLP ke9Q³<0í₫íl¤›eæË樨‰EÓ#]ń' ø¿*ù—¡$§ee‹Ô7´C\é¯ñ䤱Å]₫·¾ÖbkÆgXåÏ«³-íGW9ÜêÓaØ®ÁŸóÓÇïR‰©kY<ÎS ßơ™OËI¥î0«F}åçû0R'A¤€œ9.pz"đ>ÖÁú U–Rî}»î\ÈxÉ,GƠ¦`sö,#0â™ µ|½nå-í p¥64Ë-̃±Ù«Ơù†Ư­̃Ræ+*ơ; £‡Ø÷Ø—;SÅfˆ†¡‚—3 üGß [“nxî§5•^7m®~m“º×3'oWß·‚4ä[’£aêR¾UĐ\÷#_œ¬ª`Ư‹A”`¿i¶–O$ù¹~­;zm̃Ée c¢‹u'×<—øÎíñ]5gøq%ï‚6Ĥ+qŸÛy–OœS¯énkNă3q¼ûÊÿ·5^ų<{8ñ ’À £5¯ª@¾¶ÙÊ. 2ă1–KÜ-<¼;|*,.™ôjƠ~øỊ̈đaÅxƯL.0TÀ<ư6»Ë-~rº {LÙI8ô°˜t’_­b†§‹¹üß碮“à’*‚;Ç̀C²̃»/)Đ>/"–®;à•+ eÖª̣n§6MŸă\ñµ{7b¸\°˜³̣÷õđ.sÉNH$VvÀGªuŒuQ[ỖºTk/-§•÷k>$ïđ,Ø!2—øIöåC '·°¿~½B5Ùc·m`¢å¿]ư>èFă,`¹fk̃áÈyn2đv‰|û-#‘81ư›„j5² =™ÖB¯Çm¼0;|ebV9ơlje•Úe×÷¢yu"÷Y+{P8ä7§£‰ <^ÉơÏu<x¯”Iî²01GÛ0ÅY”…¾Kk¶QOQ30ụ̀4È·§‰¤ÖB&̃u{»éÅøuè•‚]îX¡î#Å–yp‹Çi»…¬XŒ7!U¾ëG/ûß ú½û&½Å‹±×8YIØ£ù̃|Ç¡BÆN¶ä&ÑZlûñ¨±÷hGPùZE.x ô#ª^…\}•üÿ8̃®Î{ê³¶%x0“r Ăºä«»Œ̣¯wP¬ w¡Ñ̃ ëØ–iXÆ2¡»PêÓ²ê–̣Nß—E±O‰’•É'@ Ô±w˜8ÈYă·Tåá’wß;t×zQư¯ăjƠz,XR ™¿M¿J̉Û÷¯¸ù`îCñ¸”› Üøc®hNđc=Qđư8đ7ùåV«u¦=lö<–~[€Ë†̉Ä´»ñ€:æ é<ºõÔt›̉°wF¹ăïahK>«m½ø ®íK“aNƒ;$I1œ%ÏtNŸÓPS¾YzâxưÈ©áÛ¤úØ*;˜´^ZM˜ˆÇÁ¾S₫wÛÑúÍw2?<¤ẈËrÑhRƠ;,1¯YQüÊñÙ¢…•}R‹öǦW­<“„8jÔ££8Ă5¿uçÄFV®«̃?Ó6@!+²ĐÔɶ†6¯fÅh=ÿ0ï;vúªA¸‚}ÏlaYT́=¥XÄơ·ß®>˜B.¥̣]V +“K˜̉‡ˆ V5c ̣v«ëI¦3[hÇÇûŸ¤=¾ĂƯèÊ‚|=f¼FÎÀÈÎ:³Øƒ±‰<ôªưy…ƒu†|ÊÓó_ù |™ÉêA­RnBG³rÓJ̣‚V†A{„Ê$(‘µ";W–Ø:k*SºÖØU¶K»gü¦Œ Ó=ª­9çI3º—‘ß+&GÜOç®,ît«½æÅfî­‰®ØoBÉ º#¢Û‰ 6ZfSă‘ˆÓÉ „¶z¹å´jI3ÇpÍẢE¢nÔWÓrjƯh±-LP[À̃œ•ÎỚæ(L̀gOlñ€›đFWô q´SÍ¢ón£ èÛ”UQzo’̀•dó“.±Ú²ưr¶ è%—̣±†î~ÁḮœÛd\qŒBoY¿L<—¢3-ËI‘éØâ¡îơ+Úamà[©nÇCv»Yµ†u)K*cA¹Üá‚}₫NÆ9Đ`Zêơ{ZẬ̉|«Ttæ-;$|˜ ₫Ú§Eµ̃¾–XÅc)z¦ï¾z»l™̉|đm1(ƠẠæIơ6_Ể̀èƯ Q[^µÑ(WľÀè¸gă~—µQ4”4¿cHßÁAó¦UÜ*=[µ—(ñ Ææ‚s•ơ‡Üÿơơ¾ú”âQ¬M ß&mĶGÎ íª`ªåªGöT/uâ‡gs¾¦î¢=IèÑA'ª´ăDñ. ÍéÀ~ƯÓt̃è:UĂ-åuM÷b¢ta,¥‹±Id̀ïØÄÖVKX’nû²’(û§ËỤ̈µ¶Å·§¾%#á+´9Œ” "oÛ‰‰M¨4fWüỤÍ̃z­½ÂŒBT5:• JíÓßóU₫ˆ=~ä#Ó2vAÈGÎÈ T®üœôbU°©ƠO°̀µ(6­ẩ™̀*K铟+zMïDư*ú´O>ÍÍÏXßQccqÇ}1–Ö wWbw*Ï›S‘qû¹Ô€æºàưѹ(OCçàÊÿb̃ùÓ†!»Kắ^e°„^}Mªñ“̣S„J÷¯ O)H:÷ÔÚ†R.‡úJ7ilrŒ‡RScJPÀÑLo !ÏEIfJ«NèO¾–Âçv&˜Úp§´wv®ư—… w#{réN>{ºÙ"₫ ’äÚœf}Wg­ß¦µ8CP'¤5ó•܃åóN HÏ©{-÷ïͶKR.¬–äVq꽮ά6­V´c_x,UjÓöèJƠgŒƯđE¡Ñ®bÖ—Á₫V[-7«¦îƯ±̉ó‚˲ÇÎQh ±đr ­Ø’é¹i,ó,PÜ;Å{̉–Û„"v¸.‚B¨·CÄxnXµl³P½“&RåTU„ƒFéF ŸN}$íÏw uJx2?C˜J3KUËF±§CyW–ÏlP‘ ¶_e„ÓBßá¹Üz´U5₫̉UÎsyÅO_¶8Xït«¶öt’ÚzL5”µi6”'³11É*ÁHöĐZ “”E¥à$ÆËµ›«ÊÛŸ2×=5'‡j…ù¼“x`ÑßÅb0û~đ…ÉÛ¶tœ(Y9<ëUC ῭É.-üCó’s€̃•ç§_\ß™́›w.8Ư/î^´fÀiCÖkænïA&Dk“¥‚¯Ï0rn…ª^›ueĂOÙ¸¹h#ơƒ¹Y;ÉÀ.;wÖre2¯ăç¯5czôgyRû óf Ç]di«ÄË̀ø8Ô ăJ§Ÿ€ªQN ă€øqF` vÆ‚÷ÎM–]ï_zĂÔ₫K¡9Â<öáÑ…÷üÁ0ÖˆØh#s`ăỀŒqxxƠBQ ư¥ƒOù€æ{ µÑĐèpÑÍÁÜ`=ƠO{$ơçUT„Çn¬Ơ0¸2nô ô‹âq2¨_8°¡\̣âjúơܵ¢Sߥ›øărU“æ•"_&!xvt̉‰oävđ&rÑÜk‡Ơ2c:X̃»„¶y’¬ØíïîBˆw ßæD]ÈKW†Ê¥¡a₫P;ª~ÖÚÔçWÑÛÍ'{»̀©{täe·”‚y°¾ơüK™–cø‚kXy–´·—¨×JÖ´Gl×ÊÑDLt%¬]'M4¢ ø-?ˆ‚ªđ—¬ư-¹Ï¬gô÷fD®¦maơÔá·ù§¸€Ä̉·µsĐÁơ üɘ •ĂÁ9ƠÄĐ…«XKu€˜øÍøoøÖÎù*qrÇø©)\¡?}AwïQUnVe»"-Cö̀¤¥ ơH I¹d U{$̣Å?t́®5áUFˆ¡=÷~ÜÎ%ÈO¶¦›ƒ°(µ¯f Đ`›ƒeŒ`…ÿ©ü& ¸ĐuZè' ®ưỐỂƒª²ÊœYEÏ‚AÁzëËĆ€¡¸¨«!đ½êUÑêmư…@èë/e} Âˆă‰è†IJ÷¦¦ôĂGotßFMÈZTqºŒDó@Á ™JjuL–ñ]£R]¸Jo÷b`& Ï7¡›½¼úƒhÔGíº'­^Jë"»³‡₫‰gÓÇ*ñ/iº•²j: ́ØÄÆöLqÁªï™QPÓ`Ë₫(Íw‰{B9´¸•ŕ.DrjÜŵ;ư+YƒŒº—w¬² )zµ"ƠbWäö+µ^TÓtƒ÷4Á‡¢{›Œ}ÎR$ ³¡¹¶¨~ªÇÏÜ+%ù›’Å₫aK¡QĂk³lQE¯co±°­©¤m\I„zbùʰÉTG”đÿÚ%÷ÜÑ}Ëwo,†̉æÁGƯ}uÜ—àBT€ Wl竹’ÂƯ˜ÏjZo2øî¦ˆÈAû•®ÇZÀªƯ oQäf¤€d?Gă¥»§ra¿‰í¯eîo₫.óú&V€zq(ÙÆ”P« ưng¦|8uIă,ue r¼ÛfT̃/è¯"Êt¼Ûæ‰æÔƒ~~ôK0¯&Ü;yÈSđ ‰ ñv¥ưe*â±£0ƒÙ-™ĂK±,ON­-…p!µËGl*ñl(ÁH,²ízÉr l¦Pvë÷»Œ>ÛY»?;j”§€eM¥Mƨ¡²b_øV8¤±sØV‚°HÉ%(À½G >¨èÜF½Ú ßNë7ª¡âÑ•ưÊF¸e}ÍưÛ ï;ÿgáˆ0RƠ‡AfªVhß åƒ~!â_J}mÿ,r=Iẫ¾³lªí7”«£¹ôF‹Û°§`Ư!éhAR¤²é+d¸ŒÏi«ÊÉ7/âJè÷a’¹́±Ë" b²ưă©|¼9X‘ÆpÊ]0 *tàûÚtª"J§Î/đ¥)PØ€Qçsó ̉\·}ëÈ b,ƒƯº&¥Ä–€:X½XP"ZLZ®Ü¾wY‚RKXíµ­}f1÷3»k„ÎcÙ-¢-9sîóe_ôXúƠBRmđsµ¾ÇCL]Ë­`úo₫G²O\D 3ëĐP˜vÜÈB&4$ˆ4£`¿»ÇÔÚí䔡J  ~Îw– LøJê?ÓÖæbº{hs£?ĂV„BJ…€€#ƠmÑônÏ"¯o6ö–VÂr!åË¡HÑ™DĐ/Ñị́¸!gXƯ}Áàê…‘óơüˆ¾=ªV S¬½b8§,¨Qù‚Û¶)úf@Ăa¨¥sM|kœî9‘iœ‘S|KŒáOđŸ;é“i Mzï'kIá0ƠÎ~ă†¹̣íçÁ¨î?o~¨Ø¬(½\ ”è₫à^₫ø1ÖÜpÀ mpÈ„„ơjÂ&Q(EíKB•¥fU§´`à;éV”§D–Æ„?«/w=3ë5Û{á^3Ùdâ«đÎ耾»ÂZLøC¹I2Á¿%hɼíÈùCÏO¡ÄÈlÍÔ#>ÇƠV+˜Ÿeo%:E…Ûñ°ß…gữör«ŒTEÓËÛ ̀ÖÉ^¥ÏdZnÜ254?¶˜è[Ö}QTpèZ"Ü\„^=m ÿ—ØÖ#èyex}hNXgóÛ,|¤e}-»P:vI{ ˆưf\Z QaŒ¬©2ÂÔMÂư¢Ê÷Œ$ëá_Ë3ÑR% ½eÿ°«^£2+ºü´àÊvƯêkaâ ‡ê‡÷r¤c[Ldd;ü$í~ÿéZJ€Q%Y“Õ…Btº•ßXR„à5”~ö$z¥9ßÛÄậ"€Å€¶[ ®.|¸¦7₫ÁβpßÑH3Ñ dçÆÓ+†~‚7t61‘&œvU0 Ø…̀GDÂç»́©Q%5FtÛÛđ3=å½ h¯µpO¸‘ƒăè§F/¿̃Z ú,"nI&°O…Ö0̣¡§/ï”1WÖ[O¥&.IĐ%¯¢l_ 2edØ©ÖÉèØD…¿}M²‘̣1&x̀ˆÔdă¢ÖêÙ¯”oNö<‹¦PTO@¿qû} ßÉ‘×öùyI7ºm•åÀb|÷ôVr8ʰh¹¿6Ú0Óè3¼Z5Ï̉êI¤:ĂÅƠ#>60;¥3CÄJ½í>ƯU *2æ >¡)Q‚s½Z(ơ”i”›é8¿yPv,|¡÷=k‚DĂvf=j-^dL)%É·°¿Î †ÇE)VD²ưj́Îû®RI$xß`@¦˜Z˜<:´p¤.°0̣RÚO Fkr¥„Vâ’ag´9bu“Ÿèï”₫É̃ߙˤtƒăIÛy£÷/˜Qr:”?̀NX ’ơ}­Ó-â àA±@ƒˆY¦*mR–ØÚQU*÷₫,8€®ÚL¶u¨̃€idĂÂ仜e¥Ö~„Ïp?lH☰ԗ„ư¢½ 9²Ë’L M¨\ÔĺZ?9øàuMîoCu|©[k¥̉8&§¨4ưía‡,NÔ['YѦ½È¦uiªs[ë04S*¹iB endstream endobj 2403 0 obj << /Length1 1370 /Length2 5960 /Length3 0 /Length 6892 /Filter /FlateDecode >> stream xÚwT”ëÚ6R H‡ÀK7 ‚¤tw0À3À ]̉ !̉-©”´€4‚()%!̉ƯºƯçœ}₫­ï[³Ö̀ûÜ÷uçs]ïZĂD§©Ă%m·‚(ÀaH.^n «¦£Ă @ ~nˆ‡‰It‚ümÇả‡¸! p˜Ø dƯ `ä­MŒ¼ªÁa€²»ÀËđ ‰ñ ‹@$ú7î&È= 6€7  ‡A8L²po7¨=̣¶Îß«5À+**̀ù;v†¸A­Á0@ Œ´‡8ßV´;:pk(éư¬öH¤‹§§'7ØÁ w³“dă<¡H{@‚€¸y@l€_#ê`gȟѸq˜]{(â/‡Üé vƒ·'¨5†¸ q‡Ù@Ü€Ûꀒ* áưVư À üYÀËÍû¯t¢%‚Â~ƒ­­áÎ.`˜7fØB €†‚*7̉ É €a6¿€`'ü6́†:­n¿[ ̉ZøvÂ?ó!¬Ư .H7êôkF_in×,³‘…;;C`Hί₫ä nëÛ½{óü¹\GÜæû÷É ³±ư5†»  êêQ’ûƒ¹5áüÛfA‚ HÄ@\ˆ—µ=ϯº̃.ßÑ_æÛü}]à.€íí¨-äöÇö€H7wˆ¿ï:₫yÂáål ÖHÀ b…áü;û­bû×ùö₫Ư ^€ è–~¼è×ç_Of· ³Ăœ¼ÿ ÿ}Å<̣̉†̉úF₫—SFîør ñ\|‚ @TTüÿ™F ưÓÆ„*Álá€è_Ữ®éï=₫P€ơ>Ø€æR‡ß°₫›ç¦ Aơíïÿ™í¿C₫$ÿ•ååùw¤àîäôÛÏúàÿñƒ¡Ñ·ÄuG̃@ ~+ØC )W buw₫o¯|+i˜Ó¿ E(@½ 6P¤µư_|ùË®÷KiNPD€₫z·\¼ Đùnåeíxû₫@Ü’̣· r«–”‡YĂm~ÉŒOP»¹½q@·\â|yoơhñúMc€‡G̃†·ăù¶p7œ_w*Âđhÿ2áü#­µ»›Û­º~_ưmͿϿ¥ xA¬q¦&àÖâ¡Ơ¡-gỦT\ËŸ0ç[£âz"‘̀_s}íUï¦?q•±´)'HÑœ, đ£bß9̣2íÈ KV̀A¢È÷,É́qåơŸvØAhlà”vŸ…S¢–́&hQă[ ›°$L\… ẉ¯V¬\·"VE7g è„€.™ +Ưº‰mDǸˆühdJGèf’ꮫ¤÷ù5w*ÓCqî½d—öñÛ·¾̀̃₫ƒ|•®J¡̣p" beº́(H2•(̀2‚'²¥‰ü»c](¹1G¶îù[iuie¥x E¡Ư}gmˆF¹©_Ÿ´C«ÚƒE)"W`ó|dÅ}ƒêhF/éj«N~0(.Đ5IẲªSPbEè÷,f́´—oCÁơ!Èvv5!}Y¾ôßw·_₫,a!o.ÅoqÙ‡ÀWØèG[ưÇåU,JLÙ‚dÙOÎí¯h‹BƒS+B¦>ÈÚ¬ª1¯‰| ‘Öëă3î^iƯAàÖK£‚ ¶ c°À©íƯ‡½'áEüB©ÔƠ/ï=$“{¸Ö&²³Qç%:(Ÿw„DóƯÄq÷»ë"FÍÛ4g]æóLđ˜2Ñ<óB±ÿi _”•iU]ÿæ«ÇKS}°íÂHç‚§̀æ1@̀œ÷†­î̀¶hẀ̉§ ïÁ-=§&ômílë%UƠL'‹s¤H3‘vÄŒ€˧W¯‹ñ&S)¿¡Ô GTÖ±íPƯˆ2~Ïøa·‘Ơ”o=Ê9z¼Ø×¶æj±sÀ©ÈŸ÷ê°&\×:‰áï²#ÄÆdÉÔçơÄ7Äj\uÚ´Mzßl=«J×/ªº­‡¾bAU‚e½ iu±OÙ£6•UưĐç 1ơ³›m哽÷]·`¬×¼o\ïä¡x+Uï̃¦ ¬O8|V“Nå8wÔŸdß­é°|¯&é'g½eDº±éqÿê³%.VÏïSÓkî5$=6&t₫ AZ0µưóÄÄ­xwÑq”¢:”æ× ‘Ê%µkÛ¯Ù m‚Ätê#Ù₫ØEíØT°àĂØŸÁTg˜×ơgD¨̉đ{}<¥[^m€üw;g˜dɳ躉¡A7Léâ).|Z̉*¡®Â'Bĵ9¶ÓRr™wÙ«„|wBêœÓwB%±Ä+ÂS—© T”6ÒlË; X—$‹iQ¥1oH©ë„RÅ‘¡>«1Í~b¤ŸÊyô*WÂHưÔ 4‹£:t8|ưÊ-³0BÄÎĐÄ ùˆj™ú±¢ßăaµ)ỡÉåË-9'VuÙjú:óû‡0ó ̣@{<½=Ù- ®¨¹²mE ©Ư–J¤6¦‹ÜÍürÊÜJÂÅeC̃–7éîÂF×c´sC;Û«MAUµ-gi×ƠÂơ@1ç ELCÓ³Đ’éeÇ # ™ÙÛúë°é'é%•ÏưEúÓÑIP?I{ñæpC2bÿØÆèo7j½9Çø»>Bᆠ]“ƒMÊÁ₫bëe„FtÄs»Wc ?ËÂmO9uJ˜êĐÛoDû^Â):¾©è4$FƠ¹Ư£ á9ÑĐx)&UTǾiª‰—¦ßÍă1à טµëmJrHÆ‘H´)z!ºÖë¦%_B 2ú~Ÿ®Xrz]Z^ûêÍ|Œ.Ăæ̃̀£8*÷oX“Œ́¾Ô!YÊI:4DúºF:É¢˜8ƒ›Î5éµ£Ÿæv»]áÀE+ %¤©r$ÛsÛ±Èơ«ƒ¬‘Ôsóº(e÷3Cé$vŒoˆl6 Gkч ÅÓAI9â¹*®4‰©G¢v;?+°$¥ºG“ƒ‡ævÇo…ù¼̉ÜîK-Áø$YÖ-^a›yr+×ç!°“Ó@ÚYÎg)ëÇ¡¶ï%,„gA‡̉Đt\ẒM«~™ԴÂzÅg³™vQIÍ0̣Ôl›¶Ê7µ2Êé_9¯ LQ¥ù‰Ï`ÛÄgÇYÏSû˜7̃´˜Fwt~nˆñ0€Çö#7W&DX%̃/KR€́T¢«•ÉüøH#œP7‚1¶® v’´¹ßñÄ,3‚V\hæj$ˆ‹\Ûºd½ï`8Ơ §Xúd×ô¨Ḿ˜†:$ów*ø®›@Ư^EW§´k'²é³ü#äĂ]ªĐ, j¢LØ|1Ü‹®3£Œ³’iwcƯ¹7™^Ưˆ’n/”Hn>Ë}0X’°ßy'A’ `?-ÄÑ>̣îëP«‡*ˆæ¨ôàæđt.WtÆPÖDơ:•̉xXˆ-¨›dL.Z¢œ{ú|ĐưJ› DưrŒ^x¦‘’đ@Ư»̣ă@¹‰Pg Ñ]h9úÖ̃ÆsÄ“S¢ŸIa/ IÜúădô?A9[ºI‹Péë >=ñ~øfÈM‹k0Ûüồ#(Ïí3uüV£Hܹ‰w¼ BGó±₫fo`¾’‰3»öÎÂZHÚ¼)ÍïÛR†±»«±‘ñ*c9£×÷kG¥«Ö{ª?́LFOÜoŸk±w-q…¿aK´P_ûĐ· Áâ ßf‹¯¹™Vdÿ=ÑŸ°¢°o¬¸K·#¡Â3dỂfö˜Â½Ú¥̀­̉ eÔœ—Cơ Û‚.¬ÇpØjRỤpYË»›àœ£̉LÙX¾¤kPä³~+Üh;œ²+ӱð<wû‚E¶&±\èÈÇ«æ8ôĐÅ{Xá›ÍpNX¬]¿ư€ó́èꛃW¡ û.»ï°s ©ô¸ØÅKªÅe6äÈ@æFq˜½OÜ ă›5­YHÈ× ñaQCs;åæN)v xè8ôa†N¶¤Ë•̉SdC̣‚Đ­Ă₫u÷o›·p,̣aï÷2âj¶ª™̃L @üƠú…¨G“øR+=¨Ÿ‰_v7eœ2t=3h1¬‹8P .ÍQå̀›dƯ²:å#cAíN«µ([ơߦ¬VVÀÉ=>EN’]ÏZy¸Z‹L.Ód©k*Æ­Ù—µ¼¨ †d:†„ep®—›ó9éxBr¹û»“;Ö‹p»÷3ûÆVŒ´? ÊÀOÄ&̃-â½& |ga´îê0$_î/cYÙ##ĹçŸĂo£z#Ç< aÀ~ôåÉ ¿?IU¹úçD¡ư|G‡ôÖ±™ærw½E ˜¸"ô„ºY„[ËÙÚ7@fø̣‹ÖË|¥é,ËL‡z2̉ÍœŸ‡¥ßªP‰ d×Î^­íhBçOhggs$t8’@6\AuºbTÀƯWj<,Ue¦ç_îÛ̃´Í»#ŸÎpÖ_É‚ó³jă÷½₫Ặ»Í¥Ö¾¯3Nï°*éCéḮÓÅ&²F:̀9„Ơß̃‹:¦‹D‘ßë-ưä§X‚WÙ`/û₫qî.R.+DWêzJÎRẦ¾i³}ù.z­v:~÷ØöP/Œă†¸–¶ÙÛF !-r®́™M»Nçí ̉*,²P~¸æ ˆÖßÎ «jú™V­‚̣®§_ü Yçb‡4Ñ%®7Ëû¢håÉ|§£}üZ^OÜ/=+Ê“Û×Ù«¹O9XœÓ•negM^Đ­2̉îKđỴªTàÓåruĂ›`àÂÎT§Û;¾˜àå e ³áŒ¨›̉U•ứƠ"o“6²o)„c¢S”h4&ïl&̣”Ø"7Í%"a ‚wØĂ£:mƒ½½‹¿¹½L*êñ‘ylư¼o—ñIkàeƯÔw…ͬ₫“XU@fĂ¹)Î)‡o,Ë].Ê`º gmŒcô°;u«úM’¥)­ _åă0ṿ¢!¾¼…—× îëK̉œ¦%´G ¹áÇZ\ŒƯ¯7G¨JL|¤ÇpuÙó+©!¦y]ó>ÓäK½˜´”RÜ,IyäC’UªrUMÓ₫º‘m²3[膌úå Ë²ü®cV-«ỵ̈CRŸüJ V¿>Ôè D‚yÿ>mtÿU² í>ŸCH:\†’™˜ÍwX}s-”̣#5¥{ûª(^c̉Ó́+Àü¢)àç¨RíE¹¸;}tw´¿­o$P$‡$äZÚ¶Đ膔E‹‹”¾0Zöq£“ƠïĐ?Œ™ Œ2Á›â¦“L8uÊRI–1mg2¸äœ1™ăîo–ÜL)Ë´ËRâ|£ĐÀĂ®Ä÷rC+î`Œ2?¾,ûƒÉKâDIl’ØăK-9©.hïq,Ü©}fû’¥́®Ñjs˨{sưû½ăS™<*{çÛŸ¯:#±ĐAZÑØDrZ+¹÷ónt$­%à œ0¡̉PÂÙe+4ÍMéÆ+?q½ơbdĐíJѦÍhi#àIXÔ¹> èưư¦&´›ØCPö8vI“!­Cù3\CÆVƯ·.¢ØÏĐ£&%ÍƠB]°Ï“'–>®Â‚^ëƠÉ &s²áæ¬à„—ËFt¾'ˆö¤:çz\͵Êàsè·rKOï̀ºo(÷JÜ|îm=I!ƠñJ¡t¤¾ ´Đ.e6÷ ŸŸŸnă"‹ÿVÎ'äǴqô*OR{8ñÂO`¼₫̀đ̣́A¨çYÀº¢®rVD0úE÷‰ÆW1¾¥l“L·₫À×'K¤½£V”T,IJệ®Dö¢Ự́éơlε¬Q§Nººx3•Óetr 8z ;I9k§yW++“—÷mÍËC\+iy63b¹6 =§‚ ] ́¡¯{÷›xl´ ˜¥PĐǽ“ l‘+Kôz¶|—,GêđÁ^c₫ ÔŸ–2.j8½$Åôóh­F©$¿™¾®\8úË!ö —Ûøå̀Âüd)/¸dæe“¤œ[ o ¡³r„Ă! èmp ëŰ\×ï2PÍÖfÎÉêøƯŸ4ă,ªÊâ*8F¤é|Yô_…ŒW‚m†ÚdđL|ù¡;+Ç™fñVlˆlđ]’³«¹W»cƯb$Æ*‘áäF/Íjd‹‡Z”%̀„«j,¢‹̀ÎƠ*ơeÉăHçñ́F¥oTâláÖ™öÆ.‡6ƃŸÉé­<@ß;zÊÙB~t…Ú̃Pü“V†¿ A>ˆ/zÑơüMÀ½̣Y…@i.®ä[ö•ª>ç¾wÓñWÍ/üŒ×́û̉³‡»¯+©QâȾÑ:́ ºú›˜Ê3đ¨Ÿ¿$r bj`̃Dz0T¹Œ› q_~0Ơ=T$rÿ ¡êỡ³7á êæ}?@̣Lißå‡ ø«¡eb % ơ:¥±{ó—&ô22ÎJG{Æè‹µŸj:ơ&_QơÆÉ:Ú>/`±àÄàüñ¨ ¯‚5ưu±P]̀°qé>`Ê}ìÁ·®Ö*ÁŸH¯mƒ½#PăjíV;¹?M2/&~N6Ị̂”fX‡HJcƯtF»CêMÖÊ»,n(Z²R…D×̀^H¤™ä3¤´¿¸_…hÛI²ê(N₫©Yá½3đˆs€a^=Ùñ½™n©qµ¬ƒî0î̃FÔpûhOLÿZIâüL&5‚«íûRïî§păĐv]3S+7Ùå³ÅÅa/~¦MÉgØ%™ôṢ‡?ŸQ]÷);•¢"J^…(đ¾S—JȺT¼ü0°́V‘Úé †¾H³H}̀ø<Ï—Ø̃4ăMg@̃ÏñüZûÓ/ÊưÛ:Ë.{,nî5ëܘU ?4î›\»0PbÆ{2# Œ¬G::6 >[d´b A¶¨N;zá¯v#•àÁ&]Ñ́†÷ƠzU>Ëæ÷ Øµ> '^˜ ™HD¦J~F`7 ̉ª!³ǵĐü¤C?êÊ׺B́7óÇ­F¬¶÷èL‹…Z —ÛÇGo÷æë`2*N£Zá[*ê&Oö±Ø4J­‹_´»¼ç3£̉‘ÔÖ¢­pØ–…’pûà‹]c¤̣F+‹½ ajƼc¯ă₫uXÂĂaßmeÄ‘ƒMùAlÿ˜]Ÿ5vÿú]–»2I?‰T6ïäWåTßa!+kY7®́l•H¶Û "|û~1-f˜vÇÖ«‰̀€.­b9(ºñ&́Ù#<ªưX“ ±°%b6híf«#̀îÀ¡OäÉ!n¹¶ƒx₫VJªhCŒÏèÚ"ÇJo‡}<ÏxÑ„¡Îåz̀T³Ïj .öœ…¹ ‹‰SIĐâ¢ơç™Ñ»ô¢Ù¬ơ9F =?k˜ˆ*Óưy.$ù®Ăq6ÆÖ¶d)­Ăÿ°xùơ~9ö‚ƒI ÔËæ))VÎơiv¥Å;Orîàp‹Q˺ÿ¯UV endstream endobj 2405 0 obj << /Length1 1363 /Length2 5962 /Length3 0 /Length 6895 /Filter /FlateDecode >> stream xÚwTTïö6­tHsèî’¥»A``f`ˆ˜º¤%¥‘F$E )) i i”R¤üqïưÿî÷­ơ}kÖ:s̃½Ÿ½ß½ßưF8Zî …Ă1ÎØ̣Çú¥278jŒDĂ=V qñỵ̈a¥åè}t ±”üí‚b•óÏ-5HÈ/‰IÊÈ` ́G‚2v%H`µú₫&1 &@b°!¶½ †D‘üè I@̀ô—‰äi½P(¬²~»ç¿Ö¿e …úBI>L!#\j#ZNjT˜}DÖ†ˆ—Û&ZơDË`x§Ÿ8ë_É̉óTµ‡T1 ¦Ï”=x?È,¸{2́kÓ‘ú1M;ƒ£Ñ³¢º/RĐú­Ă ÊA29È¥?\¡̃{lÂJioM`Í—l9u)×)µQ½₫ô¢ ½qW₫3à<;¢âHcÆÄ©äµ}Æ‹±âà^Æ XÙPÅÓ ¬3¼̀u@#x1đøcƠ–XÆS¿ëø̀……¾œ·=éR_ ơºËV=¸ÆHë¯Ë‘7˜ÔËH÷8G· Ă«*s¤V–]₫f:† ruÏô® ˜Pj³»sy{ônq„Wk [{8§wÉzÊ£ùà́7Ê"T½[§}oîp¾NüyK¥SU&kĂQaçb́¨BkÚ÷fi3‡µyi Îfl´Xçq#N™im$•™‡A®†L·̣Lù œj,œ¼£-Ø5]‘ĐM•̣ăHàù;a¡–K·r|¯Ïq?¾²9Úư#´ư¥R;-[{#9‡W€?HnçÍ·»ăg"©‘hØÂ%Ú!!3₫ëN·ñ~+î$Í#–Ù>Ë|]₫Û ƠWÛ¤ #ôRœ!Iók„i‹Y¯ï=^‚™̉¥ ̣}/>çưnuz—3Ÿö¬DVe…áë§ç_X´Í9̣d¾&ï>C¡́XNv́‡oo~²4‘‹¾ÚhU¡Æ²Y}C§îÛ"dÙsN,Đ­’ï÷¸Ó’PÜ-$/gG†€©RÚàoÿÔ«£̉(²E’¾M­́>Û 7CtfrŸ®Úv¶ăÔƳy¥ăÛ'çúÜ£iG®ĂVFm™̣mÖÄaMÆ7Eâ’¶b f«€áˆåcÚ…¦HBu£§6Lc•–œ>/¸:ˆĐD Ô%8‘ ‘< ›E›\!êŸZ¿âzD å5âôYóKׇ \Ư)̉NË—f?ÈHëưq¤Ê—¨à!ùó¸j[ơË{èú(÷^0ͬÿ|»ç¾LjÖ×£r—C¤¶wdZÍä=¸SíaNS©‹ÙÆp*ÿÉ)‡_¹@«Í ÁUúœĂWYÖˆÖÎH–ó5LKI†‡‚S¶n¾º5y^$ïEyä~áøÑAs‹–Uù#Fo½3ÿÙTóJú½:úQÛ%x{eçULcÑ$¹‹e¯“Ö˜«K?JeÎPh–dAx¶7dÏĐto]k*+ˆ; á́ ñÉVÇ&V<:›NwÔNa4áƒveâĐå ôµ,’mHnÑÖ‘ªƠr¶8bæ»mè—ó"m~:†ÜxÛU 1Ưs,&ï? 655Q¾5«$đ¯9&f½D"\äʵn¯Û¾§øH"6Eÿ±Óüæ¤ùăƒ±̣¹ØÛW›|ûS’GÑP+鳈ƒ68‰‘‹½Ë‡:ïm2đѩӷW̃‚ĂtNaÔăZbu¨LÊ÷›¢÷óVá%ăs°¦¹y(]9뤭$’DáÁh#q·´Æúau562|Çj Ơ‡~¥6´nQ÷«!}/¿±ÊQùOâós₫¨)¼uóÎÅUùq9;çtGQûfụ́j̃›Ù Z¤¡ ÏĐ-/4¿Ü 1½Ïù.—OÜ |&~[ö¤¬Ư; zUKR Y§/K„íOѬ/Ơ™· 2×¶O­î4Ь?R„.è Q{(Hi*j?å°•¦Xm@N´m]É|µY謴ƯèiIߘlrù:¸z1'¬Ùo®Së(u6%Ü̉ ºưH”ú́0ge2{÷ÎA ̀P¢\h²ÁÑø~Ê!Y”ơ¾Rª¤ºm! \Ó–ô9ÙíhO‘Ä;D–b̀’‰ép…'¬1FV4>\æ5œ7N÷£v>;Gp25ª'MÔI}<3›ÛĂD‡)˜­6̃²T&аÑl<)Ơ%R>«\“5œaBY{GI5Öº:ËíƯ–á´'3Í–Æ(P^Ù¼h>A7²ztåß¼pô…)?|HgêE÷ÚN7nđü™u «u8W&’vl´’@k<'Ó”r}’ÖΖ¼£2‰©@É9đ]Đqøuû‡Í­e.Ƭ&†̣?2ú{Ư 6€™d[ÚÀ}̀Ü–µQ[zé‡W‰ß¥a–Z½ă4æ=(,æ||ÉùJkÚ@‰W8ç½Y·ưÂê׳™V•bA{{Åđ™§?<*¿ÙK¹ù-®·¦V±dù4uLƒ¹*¾—±¨Æ°c¢ÈcSĂ¿3#´‹bQ½R÷*BỆÎÎbơx²̀nÙJ©0åIoøÖ$+“Ö‰E ©¼M?‚k›mA@“^ÆNóñŸ†¯‹†È_ö Î…È©RŸ¸CñMi]O»8µHiÚú„â=¼=Åô'|UŸ îÉqtĐ{UÍcÖBđVê2=̀…‰$¶|Ô|ḯ ªö2âåăN6¨P^~uÓ!̃è@6¹ . îưGµ:’7×^Ÿ€ÂåÖ¢ü}&øæ§zn´øÇo~*¼¡̃9{¸&¨P|µ>êÚÛŒg#`Êö6¹I§̃ɬ1ÄỂ\µQ’(ỸØ»`¸¾'÷Ơ(è+)c{¬6´áÑóDú ¡‹z‹û1eÅ-̣‚±ơHü؇6"ö`₫Ă™î©Ø ơŒĂû`»W®6j8rÁj·™̣$¥^z!&’È.ĂÀư”ÆJU²{ưœ{%‘üƯù₫ë̉5èCƯ·iHÎ’ÛL¾#—oÈ:ú/»¾̃job¢¥ơÔfz̃P·v9qă|F­=owË>°=Í…†«›Ơßk%F‹39X»öñÜÂF7e‚í´´gƯBĂ™~ưư¹³̣gO­u×iûù[à÷Ërt/)£fxKkчÊyJ“,•g/id팴Í[è̀Âđ3/“x󼸄øy$éẤÂNØwúÜî¦RéL1€ôz(ÚÇ1“_c,ƯÛ~TëZP1ï9”»ScŒcŸ·MÚ™„P,$øbh¿ûs¿n½̃ DÂBà»X̀q<\5ñ³5xo*ự‹qµ÷ü,Ósß/àlh× ̀îiăÖ#p¯¸.åèô÷À¦:‡P*Ù}×Ïcóqd¼}@ j›]qÅêäæƯ¨Pn97dú ¸:¯,g,/AÓ¬à9^ö÷G¼éêJ<¢É$<üú=³ø$méäÊ£¡¹ÓưÎÛav=Y`Rƒ̉’¢ÓG8³n!nxuû} ª¬ÙöÑe³u1:›N|µÄLc¯œơ‹"ƯIFñ~ú>ƒíBăDº¥êj£Ç·EpÏfC,”†bù‡GÊ’«q¯è”̃úÈ i¬Es>’Å…?vÅ@ˆ~VÚđomVÑô°°¿ª#=íơÚJ¬w/°›u°C•à$¹–ª~‘ÔCgW\ÂTá<¯3øË[qƯMwGoçQ]½«mY¶§"/È? /ÀlÎ÷XÚÂZ Øî¡úyve¿èÑÉÍÇĐÎ] *¥¦Øô‡LØNt.+3N‹púfMw¨=]ôD×¥@ñ±ŒÚ§T@̀Ă÷Fáb-lẹw›µ )L¶Jă£íöq‚¥{Ï…/>íUèƒäeLjƒté™?’®q‹*,5“¶¾cxÁ´o ¶óa®zÔ‹g+¦Ưöh³µ·êÿ̀©lÏ)đ®;̣n²Áw#<Æç“<¤ă£êÓ«Ú°“Ó/ë¸̃Ⱦä ư>đT¯ˆ)Œ›!»Ó¬º(f–]¾û}ơn–Ăi”WÚ’m-–ºDAè±2;‹}®fđb¹ßàr…dp>[ÀµçMŒvc¥i‰u®̣'¦]©Ë†!ø_”–đ—Lí¼•'¹µ~îSáä…L¹S =¾~nßÔá°p6®eÉ.qÙ™d=àÊ,LÔ& NŒMsØ ‡hÉ[Đ뻺U)Ư{GÇÙ̀QëMW Ađ KæJSl¶wˆhÅƠ6ÏÆïsx&o¥…qÎD´®å er3â¦\₫Ẫ=IÚF ·²Ôq´ïmEÁ¼?>ũt%⪠^gûû¤a6ƺauƯŸ¾ŸЉ¤ƒë÷h—ˆ+²̉TđŒÖàôv\¥.ƯËE>ñN2u§«\₫Ú D‚`[L§Íëƒ­È WÓ´ơK[£c7¼©uèn«uÂf‹ôâvæ«î>á{ËÑ–b –˰„"#Y†]Î"ó"ư6Î̀uÚ₫¥vÀ¸éQÇFÀm)AÖú¡_ u T å£èÎ+ˆºü}øÀÁƒÜđƒÔlFî²d9êhKß¹£Äᣫië• ơs‰0Íçg„)"=`ûS~€JÁÆ®£¶gØ”*̣ ÆWá¾ u¢çîYđÚA=zƒs[©"ézr̉;ü½k“ŒQ?¨ñ“¼P†¨QN5óPíåÛµˆĐô¼ C´j›­®¯è°Ëñ>‚Ÿ˜n2«Œ¼Ç|̃‚IZ}€—m+XGr˜¸ºéLöQäøÀÖ¬:JáÇ9'–j̣Ü}iÍ"‹´¾NA¢U2‘̣éfsqÖs¾5ø¹¤énññ®JNLî¦MóvF̣v×±Ă=u#Α̣Ùr Év„Đ½»Á»k7×Â6ÈcJ•è8øqÆÓæ,­Mñ{mMÔJOX¿xëÍ6«ÔN^₫¥5æçiyÁVvL+~–"Ư]ªdư l'ûMJÂ9£4*ɯwYåœƠ0́qÁæëOÊ©„H;•ú†U5c˜Tj¤Z˜¼Z‚‰§›gLßE¾=-ï7ư„r4œ|æ´3̣É×Å•"颩×ú9ưƠæJ^´¾Ê‰l{M3:̀&d»?HÚTo3×bÿÄöƯ@₫ë‰ågMS̀wæó\d;Ư½_é¥ËÓNô₫P¾W?RBị́Àˆrf,F$ȈÂm£+NªT÷¾McđqwÁ̃;NK/úk=ç¡_4]‡́Ó‚óŸÎɶ¶ø0!9ỉ»=’û»ÅÊưÈJµ ^¤’ª4®5(§Ç÷öe¾­è`ÓÆUá•p?Ú®¦2Å2Z€¨ilϤxf]´º—Ç€Ç7qpçû²åDÈ®´^=’Ë?kˆ|Ûdû3i¸2÷ñÇû¾VÁ - ¦–›kơƯ›¹VÉD)²}L=?l'T—ó¾Í̀¿^‚©Ü:VûsÙ´d¿áïRB<¼Y}8÷†rÚc=§´äÓ“bµ^|+ï¡­wîа…XvsWª~È£Ó}DáJđíçû3!jÏËÆwÎmB3+¦„¿z 2÷“6öƯªVÖfÂưĐ—|ùs¼§©b3}5ÂM¶xu™ûâ+½TN>Fàf'!†zmkË ̉s̃ơ@|gg%n)?¢í§5«y×KÀ4˃QD–4IZ_¤´mù¯¬SÅÆ/ˆÙ‡P”ˆJ©iÉg̉öE´'enLÙ\[{Vơ.`¢‹k¬«à½ƠX¡®“ú ưöÿѾÍ£ûê}/ăo´Dùl'ăÏP n—¢£bœ21SàÓá₫ľ)×}ư;·Iö‡‰DFeW|¥zUG!…§Ï. d* Çö¢h¯‰J³;Tj•pS˜3»åùm0kV́¸^D9ä+“,gö|¶ĐAW{t¹Đ 5\ô!B°Lb«…@K-7mÆ"îaµAèavqëxâƠR•©…R̀ö=bÀ•°Ûz'0! ØT-‘l†vy[uI‹ùß³5ÚpT:Y©0d¹Yœ̃E› Œ9Ưø´25†”a₫Á¨ëÀ\¬ă²üeÖFCH=ưNḳ'đ ÉÆSHØ#}Ë > stream xÚwX“íÛ>!Cé ̉0J¤;G+1Æ€ŒQ̉ˆ„€”¤¤ˆ ̉’̉Ư]̉ùMßú½¿ÿÿ8¾ïØq<{îë:¯ºïó|¶‡È'o‹´© h>A~$PQ VA a~HÀÎnG;Ă₫vØa(w8!ùE ‚ÆØ” h R‰jx8…‚÷%Å$A  $ñ‰’*A<á¶@m~ s°+"]}Pp{4¦Đ_·@N(PPBBŒ÷w8P̃†‚C! 6ísÁT„Bœ`$Cûü+§´í*) àååÅqqçG¢́e¹x^p´ĐæCyÂl¿†ê@\`ÍÆ`:ÀƯÿđ€‘vh/ ÄœáPÂă°…¡€˜̣@°ºP׆ø¬ơ€øçîùÿN÷gô¯DpÄï`tq… |à{ ÜÔUÑâG{£y„í/ ÄÙ‰‰‡xBàÎ àwï ¼>‚ñÏƯ¡(¸+ÚßîükH_i0û¬Œ°UDº¸ÀhwÀ¯₫”à(³ñ>¯é…đư{iGØÚưÄÖĂUÀwó€©+ư ˜ÿǾah (ÇDÁÜ€0o¨ƒÀ¯†>®°ßNÁ_f̀₫¾®HW f˜?܆ùøºCe ecmEC¿f₫Û« €ôụ́Iˆù„DA@A˜PLTèÿïDzøŸüG¬: ”ø£_̀FưƠ³çŸ4àüS$\Àç̉AbØ r₫CöG Qsü?S₫wÈÿ鿲üïdÿï–T<œ8ÿDü?ˆ ÜÙçO†¾hŒ´‘A ₫jûCÀÚ0[¸‡Ë{ƠÑŒ$äöZó ưa„»«À½a¶zp4ÔáÖüa7ú¥8g8¦‡t‡ÿzÈ`B@ ỵ̈aduÂ1—ûˆñ1«¬Ù3ÛÄ\a%ú3°Tcå$+0I Ú°ô£H›ålíÛÀ́$~e-c‰^÷( UÄ4Öé44•fhQ3Ho- kl: —Eîpd/¸Ä>YŒ~™¢“Ϊ)Ưp Hđ*!ûÚƠ1EÖÊØ¬á²¼{7 M¦,ƠÁ $r³ÄxêñEvçf:¹¯*ŃMÛ¶wcªÏ/ ê_®¾sÄ…Î’Ạ̊|®ñ©5S5Kmûu₫Ô~̣ÆŒ=Æt„`À M͉äÊ4Dï¶ zT³s8a.GĂ„O¦ĐëơÅ!tëă³å¶<™±—zzưáè®Æ0í̉Ă:¨Æ(WVµõ¯>ÉHïxÓd˜)B3gÔNOç•kỂJijHư·µ³'&‹Íâl©ÆF ¼†ơăå«¡–œ /̉™×-X­±-?@@á 0$ é~LïJ»Ë€_XêăN)·Á\J₫Bí›—,°Ư¥y%ƠZ÷Æ›b`6ñ _èK T@%׳÷YËFF½Áôf^9àơa?EsâÔơ·4Rârëơ¬J]î|Ï0ä‹,~Ñgy›DpLµ ÅXÀmgüvéÛW5j¨Q:í&^•Q̣PÈÄ—O鄲w̃mÈN~£³¨Ô§̣)ö,‘úxϤˬ>J«¥­éÛ¨GĂZ­M¬ÅÁTx½ôØ·WEÅ¢7kæÙh¦"Ljp_=̃x˜x¼ÁI Ȫø]&e.¨‰~@—ieÿµ«I^§´·²8MÆ”¦&Lëàˆ¸K>a+SµIiÀ¿hÊe¹GÏOéüè›àjAívMOM1Q¯£Ó7Ûâaÿͬr×8#œoêË 5¾8)®¢´b²°¯Ưî83¹[] b$ôʶ­ îy9ÎËu¦Î}iµÜ·y]₫3´đPa)$·JÏßeÅX–Ø·œqw±dP̣‘¦‹èÏơǻ£'[M2/ßàª+KüB«)L©ø»^§̀̉PÑ"Ă,euP·¸ZOÁº^ôç…©¶OÁwÇayîzê§Iäv…ôb`ïoq_½à¶uâߨOZ¹$(Ü$–¡eJíyjÿ8ä¡%3pQ́Xc6ôæÑë~ư½vÏ ©Ù¼ù·Eh6¥ ă½&ú¹³ZẸ́sE)5µÜ_ÉL•¨̃G}“*³ä4>/Z§ ˜îä7¡ZdÉpĐuze1MÙw“'‰oœ¢˜àåU˜‘nç>ö).ÓZ™ÂEĐ²“,%ăümïá=I@HÏÏ÷̣¾7 ±Í…Yˆd«(¤§ÜO(ªw ¶QOM€–O[Acú]é7Ñ=|Âü™àƯÁ}<(–dD<ó¨ÅVZÖDºöçC¼0 ơêÁª©ƯNE[³¸è~É@‡vCíÙ0b ÿZ¯Ơi™àÊ ư[ßÙâ½s̃¿ÍÁå’o±ê£¿ÎØz÷‰ù˜úSˆÁRá•c ëÉq$yÖmeéˆ|y3£̉Ïå»Oǰ=…Î̀ưV"¾xת…mÆO0̉‰¨ˆ*}xècqô*{›#œ`¼'ë£ÿ“9ü^Öuq”xnÎÚkø̉ eăéXïñ‹ø9̣è±̀LåƯàg¤¢Ar௕çéÏo£S€”{ÄSk™fï³¾lÆ4¸‘4¶ọ̈dKç+z×1êO—D¨E|憢¾äăMÁ¾4Æ÷æÏj!¨‡ÖTM”´9v´̀»ïX^U)Ë¿ç|Ưư‚=ªªqO=Éœ¦Øç‡\m8ïfX|_÷ºJª&$–ÓTÍN‡o¥?W]~·mOâçưéÇÄ›ú#â X<;"…O`éĂ“Ùû&¯ßâ_qļzçc"û3 fëü»|d†àø½±U%²1"se.O êºóºÛVô¹̃h}äđ̉YZ.[EĂk"À@Å’bnlü'~DaØ-,å^åWiè„Ñ®Ín5½:ëüÑïÄ„·?Åñx°Ưr-,Ç—vóÑ=ßYbSơ–P7WU™JÉ1@hÓ7]$z¼T÷À̉#wìT/M›ÙØçpj¾Ü̃¶¹oúyó#wT™D¸iT$åÂ?¡úº–¶Lœ «ó¢‚̉ÎyÜ]¿a=¿¬˜2;ѧJíÅâ”Ô®¯ÍU¼9§Ơ•é+˜—L…[@b„øy gĂÍÙ¿Ó1àV€€¦Ù@#Ƀï™Öû±2S%J±o, áYơ‘—gÚ­R½ï§rßóƠjvLE¿µ÷ƠưÁ(•¢©ĐÓaû†§KL…Å]7=[íßF÷§l.ö‘œ’ñDÀ4”œqÉ!ñP–2–Qv¼³MîçV´¤gº ~2ÖưyÓ̀Ëñˆl=WÜÂá=CH¸¤ÚúKkßT‡ú­¹‹Ô`Z*Íak¿ŒguüºĂÏDibÀ‹F-£Ï_83̣œXÚÓùå¶ÆXNüHÉo˜„6ß­Y|¯W®îưĐdưi¶œ°.‰â‘’RDc³ăÉQ*üPk÷×ID»U¹•6ăâ z5·íS¤Ä³ñ.z£jji¼_ñ¡¢s~{qgÓ~Åó*ÿqÇaAœè\½>mÓÀsyăµ  ¿èæÔ0ᄈ‰Ä·eclè8ʃW(UÓ2,Ø8”́¢> XïKˆ'1~Ü8ùsȸC©RE꣠àµWc ·¼ÓÈ@O"1À¼”Ssư1ˆj₫c5½“<Êk}@Ö;0¹˜czé£å|ƠóT½ûn>a Rû ‹ŸÓO³¥+æ–£ËI +ß.àm21)J}ủ{]̣4¹¯¸´+ñÜí‚fKn‹p}6(ÈaÛæ”N¾…ÛEéí,w2FSàÁàNvׂûà/¶ˆs̉×ö¯rŸX9UƠf­_h’nƯ0]ü|™ï;íqQơ=]9}à{Ÿ·ÿ]iÇâj¯ÊAºÇÓÜÇă5Åys-Ík0¼¼qö®§Å93àÅÈç©‚ñĐíÙ,ĂëA¹/–8<³VdÄ´ˆæª2Á`Ơ5ßÙ~-̃§JË?X>¤«dP$D ûq+M--L¼”hY2°¯)H°¬Ê- ¤ù:±ó“¢°Wîơµ̃[ë9b Ó’ ¡”đÚ¹{\l~:°sd~+£Â£‚O^‘A’“uH˜ƯAF‡#yóá=“$±¹· f¯zØ”s2lơWơQo64“.=ŒUn‚èä…&3‘«øGoU¶Üh¡Í, V.ñ’Û·]dÛxŸmÔedü€4iO<Ü©«Aí®„Mưz+^^ ˜|€Ñª„™4ƒW7e·uÓ1ñç;­¶<2ô<&ƯŒà9|÷ÊÖÅŸpÎî 3U{æV•â·Œ'R¶ïxIåkư³xfZ<Ă56Á=ÚI!*kà }84¼'¦—=U’cX"ÚL<̣"ô¥-n› ŸY[ơË#3˜ö±ˆñ¡É—¸zÆÂ3' ƠçhA–ɳ¨ÊänĐØ÷$•/k4ÊeΪÂ6.IgEŒơƒé@ÔºTKÂ~~8¯ç °0¿E-2¯‹X?ÀNyw[‹heøaøơ%3©nçtp¸Ơ¸§ÎƠm\¾P»E)kŸwlÖxºïÄWMEóî¤ÑP‘½íE•9ƒSBƠq+±'°êăóàF à'T}ȳdH.ñ·²kqÓ^å§Y¦s Å÷vçBư›y«ĂŒï6”%®qdùƯ>ìm·ÜµB»Ø½Î¯VR¾GÅ ’,4Ÿwó(ĐKd1$Đ²T¸v|́#cpR7Êúµ',dŸ₫,¸r àó'ƯÆgªï†—LỌ4€Û\ßx³–ÂLy†ZÊ©Iñe  ¢½nGb·å&¨jˆ!.z}­Æ›U„(,¸h_-ïâÙ-¼$ùçè0²…fŒĐDf§̃oc»fµaưY°ô)ö±kÔËÁ™¸º£MQ>J̉»”àÖO¹‚AÉŒ:/&iTĐGd·®æ®Sˆè‡U»‡n§Ó (ß6ØËH•‹àVi>©EkD {$U›pYơéúø¥LgÓ„ú¨ǘMæÈ¥^;̉cÓc:ü₫ôÛÙpËtđA”ØæK°èîwŸ/dùÊƯ²4ĂC*èYÍ“à Î󪓱T’̀Fz3û V26m*‹¯·ê¯ôî§c—0½Oâ’@¹£Rïøá‘'OôóH1} ÆẼøëâî–ïVv_©§€>ƒÈnĂẰ!È,­–bî¸U«¶ñÜm¥ơµÍ ™0ä!̉¾öSÉËksKSi<áæoO.P*ŸÓ,¼Q° pX€¿Î´&Ÿtă+¾:© 8*úôYßÙ;Ñ:•mQ0óD<¡îA¦}|₫‚¤„æ)$á°9–KÎØP*£À <¯wË%ûè^8o¡ÉF[̃ƯMØMØíb¯ưºab·Û™4“¦ørë‘)7¤…¨4äyµđ´y@Îó{49¶I¿uà( ‹̃;k8JÁb×»Ùç(„OöiK—Jc̣qăO k3fg²cÈÅÎJẂv»¹@txH[w`₫}¤½’̉‰¤ œ„ ñtp=ƒ³NL7ëTZºïµ¢Í´9ûÎÏ'RÜÍÏ8‡ÊƠߨçóŒéTF¿6GŒ&œt߸3 v­¸¬C°§K“Ăí$ØDW>GđÛ”ĐRÂÛ€́¶/f d¦Đ¾đ5EFh@m¹7Ñó¬¾Î¿;₫íŰñƯ¼¼B„_œ¹fÇIÑOŸ‡À™²Ị̈¥̀ÓëAZç÷Œ# |·÷̀ˆ¯ÍfˆÔY|à$‘J€<äß™‡a‡`ïƠÛÄɸ÷­6™­HV$elÁƠs|2³|„êg›)m£¼üv–‰äMVƯË‹ Ùáë2(AîRIÇŸ£ ÅÏ^*ep€₫m.·Å;§dB?_Xö¼^?ăª ÍêÇQĐ¦Ï¹̉fJ¨m ư` áF±ôĐ”M÷º½ô#ë«On>ëÛ¢s‰ûµ?ˆ«Ü8¥̉RnÄñíg/Đ'W‹ªôI‹…/×I cvÂ7;?7™° /ü̃°8F$Yơñ˜‚n=¡ÛͲ)=éÍ"14\xt¸}ON~)?Sm&úu§e‡yñÍîR ‡Ùí©œ̀R› Ç!\ñ¯Wß̀É4jÖZ97ă¾_•‘¿‘IíƒEN[²ö ä’J~‰ -‡i¿|ÔöÂonïQLƒYgCÙ×I½¥æÍ|âѳÉôBcŸ7îµX©)9…ă;V¶ÊthÓÑávÊUfnU«oÏhM¥‡G°û…Ue5#/WmßOró2 óăŸ…ơûhú $Ëéi ̃'x¦;!ZK.lê(ΰÖ­L\wNŒ²WÅÊïi6̣ξ£[!G´ÊæàS<ûôÑd›®Œ†G‘¿|åE¬²,[%¬îQ:ˆ;GÎxjK]t±·Ñ…¾Ï'¾Ăw}Ä6RY?/Rxê‚úÓ~8™øÇ¢9âJ¥•œA´¿dfƯÎú’Ưv,Ù½Ÿkü@*¢«'µ­¸k40ؘ  * ôï«å&Àă»o6¿½EÙŒjôîÉLû¶Ù¶Ạ̀#”1ÜhóÛéZµÍaÜ£‚éăbj—»cÓ/‰ö°Äª̃ 7±T‹Œ»3ö¥Ëv5«}L̀…BRèéÀÄ x2`0RPv%ë÷$öÉ,c×k[BRºàÚN Eưh|Y•‚B@[xñ¾B̃ƠHưÎH{] yl¡.w2á*mz\¢̣ùKĂ¾£—&·Ï­­EĐàÇÆ̀Äß? =ÎeBU“êPz9ÈuÀ;D'Óđßm¡ú:/Óơ‘o¶-gbZÓë-ă»ị́8®»ñƠrÛ¨ñbïb₫?M<Ô¾_Æ–J?ªZ¸‘ÚgđÀ«Æ >:ÿ†DøñÛå°¢höS‘ÔÁ`—½‹„»GbD—‘M°Ab·&*ơ–è’æK‰Ë“4T Ktª̀ÄÄ*]]¾¢Ñ’±–ƯdXÑ„À5n¶ß§ú›"ô¯ËÆR̀ñø:ZZX¨œÍDÍưûªCZÜ”©‰kß}fkWJƒÍÚ¼‡́á1_Êi”=S¯$̀æÍAúÍJK±ơ7‹ /íO¾ÏoÜP˜ÁÎÈ'›näưpƯâ—›ăîz!_̉u¸kÈ÷zöĂ7¿_¶Øăơ©ô!ï‡ Ơ,Y´,Í„Á!o½(fyèÁ³t®wt O_¤•2Q } ç.ú -J–Y 5µKfQº“‰&¹Lwa!qƠe$¿.hlêb7ŒvÙ¦';öỊçjƠüø°YĂ w)Ë?·$ÆeầÛă3)v³N“KÓơV¡w{è›ÏR³‰Ó—®fSË[œO…¼B—-ÖF&§'_Æ2ä‡ú?o¤¦4¹72̉Íp8*rîĐăđªèˆ Kº¡:†·ŸåØ–0Gè`2%¸¼itq÷`««ưæ „‡FÓÏ:q‘ßE¯÷}§N³Ä₫!~£çÑíoŸZƠ,ßumœ—úĐ¾ºæë‚µÈ ¨{Sï×¾ª $H@drÉ™ª"¿¨—fÚK¯Ñ2H…NÎWS± »SHEUÅK¿J̉é¿€Đfë}uÖrDvçæ´»«:V”9‡¸ §rÜn±ÏÑyíœ.[¯g₫äD]| endstream endobj 2409 0 obj << /Length1 1484 /Length2 6685 /Length3 0 /Length 7703 /Filter /FlateDecode >> stream xÚxP“[×.‚TéH5 ½†. ½Kd LBï½HG:‚ ½Hï̉¥H• AđÏù₫óƯ;sïd&y÷³Ê^Ï^ÏÚÉ„EÏ_ÁaQEÀÑüB@)€’¶¡¹ÂD́́FP4 ̣7NÄnA¢ ¸Ôỵ̈PBB@h ¦ BcµpÀC@H $.%$!„@É¿H)€2ÈêĐ'ë3‘ÙỸ´äL5»ŒèÙ}±StƠ…Úµ<¸JÎÈỶĐñ y]ØÍYØÖÑ#æVä ”HËL# ă‰+́ÇĐ„sÅ8ºo>›– Y#ï̃½ÎÈ9.Ố«¯¤¢»íû%o4eˆ:9÷a3 ‹CQ́L©<-‰•®Ø-’cÇNbơÇLá`{̣ˆG£“RÈ-ƯÀ±&z„ØœL^ïê1£íVÑ7A’;-)1Î|µĺ5Xg#™ŸkD`ù}7i˜xơ]Ë?µg¥eçæZØKMqøa"6;“w.́ⳓ…„­Ód`÷‡̃?W׃1»:.]>HPѳSéiàè°¸¬{Œ̃ăøú|Ziv7~º×̣ºc¤7êÁö‰‰z:$ɬ3û ?¹YĆ́-… 8ºNsÑm˘—8dŸwS¯½KMÚB^ra’5ÑD„¬Àˆb̃Hk+S‡Đ\*B!x†œ”ÊơS9Ó‹¥*ñ±g2¡-2i÷ƒË“G7”ơ?&’×m̃̉ïư†k“d<&°Ñ̀ï²p¶+Ơá|ˆM‚6$]î)O‡Ì­æ+^ÙR•Zå;ÆÿHøº{Úø9ßL¡>Úó¤{:hÓöùS§Å`cæ«É}œi»̃êßÏnQÙ¨I ±†Ă*›ÅÚ”̃ RÇ[‚´:N[½cM§ßˆ…,Ï¥E·BÜmöu>»ÿ¨x¤¨  $ă\ˆÙ¬Öæô»Im¤Ḷơ>% h²1Tx.€ǻØD´“Ó\¢)<°d{ÜKQÿ]Íưè¬ñU[£àĂ!_đ9Nq¨êưz"+ïÍtÅ_û( ºë>́Z›>bPƠnÅ‹6]+=‰l¡(4Oœ+4ÓS9̉º̃´n½UƯZPOó#¢ơ¦»=¼ÏÙƯáAçß ¹8ûnªs—É [åÉqÉaVkâ öé'›™°»ª?i¬‚´(° œ…^0«æÙ)©à‚‘(]XJ—{¹Â=ga¼wrµïÖœĂäÁ<«Ñ¬Ÿªm‚ ªv¬+Ü"·ÈßBKĂ5+t‡§X4nŽœyùc÷ÎWk[ôŒ©tV÷Ø—̀!y®{h±Rª™[ÆÏrưü7¿~Ơ‰l«–Áp̉ºNî{߬bÀ/F§¨›*”ơVoH׳,™¬N^“(µÜ3AÔg,{¶å}L‘ë­rWúIǹè,_øàfie—kå·¦´lÚ)ƒC\O¥´…⛹úÊÎDt¤3̣¶|yC4£¹d®”4ñö°] =́ú,¯Ålªau_W.đ¹H˜÷$æØá†#Æzơ~ăåoPôÄŸ̃˜×t ~ốIœ°,hư±ÀܢŮ[ ¥™Jù`U3ááóÑå ÏäY¾A¶VgăRm¹Óú¹ơTw¹p ỎyZ™e=!TÀ¦Yª|‘N˜Í‘HZŒÑvư}ǶH½~ITX«.wxIPbfg4‚0\¸è{ïsª“Ç~Q“6ÊÎ+§¶ ư²²6ÓF÷羿\̀C ;r*ø¬nÔÚ½˜y!o f¾ŸZ§—xÄF·sC3úRÔUW†öđºR~ÎR¶ă{§‡Py¼J»ăư6‹‡T‚àå ̃ÇóïÍă {3VˆöP›y¶f¸í“ckû°´Ä­fT+Gxx`̉Ɔ w6‹Ñv0ˆä{½êÓâdư:MH§!ktâ^Ú¥‡ –a ‘‚Øq–¸¢ År¡'|9Ëh“ :+±n¢ƒ5b꼜ÊZï P€_ôÔà°|₫L:ïcÆl(é«r0hÜ>¼¼Ù0ó~Ö¯‚D§<ë³3;ê[Ň£<VëüºNMèÖv•É̉ÖøPX7¨<ÛútOn–ûđØ]KÍt&O₫©íÙk[gđa¬^2É`ƒ£wÈ¢ï~NØ“Äp̃?ïè‘.®·HßëỤ̈\`–t%ö¡H iTOñq—¦WߤºĐ åNJ„[W½Ë±÷US’ceơ‡¼+öbÙ«K#?Zl ·Ç¶ÓÜ*ơ³ó-÷pg‚ʽ…½bΪ¾ín₫Ö&â×ÂX‚ ö/ Q‹Ư q +´Än£5—ôư…Z¤÷'^.ƃGO'·±«bs´Ô‹ß¶i®œ4åqg~Å”Ç;¿ 6÷IxÓ^œŸsƒˆÊV{,îÊ_¾Hi‚wÅÀy;Q7yV6,."s{WgF}“+̀<,¢ÿÜUÇ´ÑüƠ¡êƒ=Å€úô®ơË}øk‡\K³6 ́ä@l…Ë«náíXqăd`₫naˆ™×ËEéô·Û¨«Ă |Rù§&.ỹ¥ǜ˜T”ÏÜÿD¥œđöå"NöàÁ¼`ơÍz!çR’¹¨§ÔđÁSçÓ.«xqÉG’OøùyÖB ´I¯âđúïÖrmµ̀~Y‹U+«‚I„j:2˜̃ö]EæÛÊüPcơă¬4Ó”pußéK«‹üLç+¸Rß´è;­Ơgîߣ|ƒyP”Ÿ́Û:PåĐ½)–̃Âđ{ˉÂĐzTAtưëuº……­'­=hXWƯ¸úU%–Qˆ7j\»)B/†§áRXâX̉…ååºu‡ùB]ˆ[‚ ,Ê?Ù÷9” È´p̉PÙg"í¦¤Œñ=Ù½?8àß],ëđÓÅÇ(;>¤¯ÑÄmh'cîQ阓̉]̣Ịç…WmÙ7$}qÛ·¢•VƒûÑmÉ™‘¸¥&à ɸAäĬÆă„Kñ¡æ•·KA›!̃› ^{¡Ú¹—_ˆû4r`ÊZŸơ-pDBΛôøáˆÓăNΓækx₫B‚¤qù!q<*b÷2¢¾!̉ư¬•*dÙ®qT }X&£y#Ú°fp]bß̣ëü9|Sü¦q|?q@ÓKßé]¼{. i¨À\lôÓñ̃ƒ:b-“˜ÀÓ×?//ÜHnĂ@ă$Ö́·? °–Ø%µ—Û¾Đo†2Ño¹¿:H`ÁÇG¥`‹ù˜…%â0N¿yÁưe‡±Đ¨à«ä̀AH3¿Đµ²r,Öå]Pe!èK[¡ö‚iưæÄP¹©₫vßđ™;_¶.˜Ñö 5|€ư]ÏnÎÜ‹°L½WĦ|Oåmh»{*OeÙ׺ƠLÏÏHƯ‡q¸üVÅ4£dO ĂG3©¯]»²CÙR<ø|üÁFZveYr$…zđt¥E¸—åËíUă¨ï₫9Xé÷đ¾‰™„8NÇî?̉ 8¿œö—ù—ù=Ó+¦ë¯×‡·‡Ê–üRÊœ°µÊCÄÄëä®̀WË×#ăïR),F¡4*‘óu–8åszMcÆ#yÀAƠ2†áÖQ`a:Ú w½-[€•Ñ B́LO×Mªü ²5çæ~üéa¢A¾¶n#=ä§íѾÂtHé†>ơ‡nEf“Ó@¶#I•Â6$¢ÇÖr€Ê½§~^¸5¶db"çŪŸœfºëEŸ*fímå|T(«¤\ï|ôrâh”́îÚ«Ơ)ÑFüX樢¤ÉOB/ôï¼%¬:á›3È?ỨÀe|†,*µL~×ăi÷¸£±îG<íiw÷¹ÛÏ|†đâư €‚Öñ[cOËhW&ºTßd=×Öe'‡ÊÜ©îqd¡½q—g´³BOp× ¯?Æà~—üââăl_pK§|Ÿ‡†[F̃»ç²f,¯Ử _FäÇa4¤¦?Y§M”Ô÷.̃ëJ;›ŒûÀç"Wǃô¿¸¬s@ dđ36Z§¡¸?&ü’¼ÅUAĂ:›Vû‚,¨É°pç§yú"¼‘>4/+q–£ŒÇ&i(™ó,E¶qç’£yØÿÁÚø@QÆyóưa-åÏưÅ ̃'`̉êà¦>œnQ²Œ?„Hº³Øva—êw,}Ưâ,ÑÉQkø¼›)K=Pöæ•‹u%üDÄLöa¯Ü¢̣a°ŒÎEÄN{8 S¼ß#Z{s.YÖÅû<{»†ß¸–ùˆ\ 6b/°VÁ'1꛽$‰Ê^­ÖEÁÄ IÔÏüTR¨Gû{…,̉­gQ°Q›¬ï:Ó£sÏ|]Ù\]Ù¬Ej¨o[ ¾×·+Ư4M—?=ù!̣ô,Ăư.L¿æYª₫NV̀Mûơ2jA÷“'ÏRu©NƯ¿i{=«@‘̉ ? ̉‹ÿ³ĐM3ÁĂWúÁlw^ˆÛñ¦%Tbl‚¦á ÷ùN«GfÁF7àÇè ³q®Ç‚råÂntÜy£§­5‡ië…>÷¸6ḱØ—ü*ÈKY:ô™s¨5ïÖSÇ]ÅJ̃ªYäăÏ*kŸ-ÑSKNºŒñúÏÙ¾³½”¹Mÿ>t>WnßA^̀Mn-RAŸNº?Ë8‹ÅΣ ÎØGŸơ¡8OZÉáùz&î0̉½“®Vè¶ËU¾*=yw48Å„N;Tă<ßP²Josç¾YÍ}†wk{7›¢»n–«ơ{Nqă-mí6¢Æúp’GƒM5#çJkÛ":XMZ¨z/#=¿dTGÛDí…^̃c^₫§ƠåÆ3êT¿_è±¶kGF̣VvL›wA$¨ä€•\igP†l­i'W|ÉJ.s ₫¤8˜Ư‹¯Ÿ¤íf©ww& Ô¥^<[7Wg²JmÜhẈkñ 2°1ŸÊ¦#å#zƦZö6]]yñØ„^Îưßg*£ơ¶̃*»ªL{hïĐ b̃ÙâYæ‚s} NƒeËMÛưè`%‚##ßƠiGÂ]Â3éOâ.Cn؉b¾•U„ærv\­¿c³ 0 Ä# Å_ ²* ¦ØĐvu, <Jˆ< "ßo8ö\ßï> ̉\6ơËƠY‘›OŒ/×>¶₫&eJ'}›ÂónRy&®Ù†4n¸âƯ˜R3ªD½u i¹|£¢h€À­fÍGœ3cë­a)2Sf±×·®RÄ^Å#ƒµÑ²>25‘<›!öJ8]6$èd]Œ³éb $ị́ä†ƠéùB₫0£VöAX^*‡M†}æ¡æ+­é$ºt2Ï,ỨÁÍú¡^úûaZz¯gçèÑåW¥Àz¹î‡aí‚)ª¬âƵ@Ù]<́S̃Mư™p ëÈLå”̀AÈÔ‡ƠĂ0oÄCëơù –1¯KqƯwó‚Ñ£AbG…&£åơ¼UÅÍUƠ¯.™$bëQ¡Ù/æÊ}v·GúSṇ̃ă”Ä.ƠNÆxưäbcl‰Qq₫µ‰Ư±iïÔ*¶îçé“Ôài{n¯q¹Đ¢KĂ6×$_& á_s¬Ç­ô±ÇLïDè.$ÓG»‘ Ä=O¨>"4°́¢̀Dèsk}*Ewkđ y^û|u±½'ƯcśH<óô³ë»^wªÓY,Y*ưzO%Tåw&ú]ôÈ$7«YszœRcŸÆ,ê}J8•V´ÑOÔ-OùÖÍ£xK¤>̀̃ĂÖ¼¦1Hºÿ3ßVrm÷–èn&Û«5»Đ~Ij}Á₫âmízHpÜBÏĐđ₫tmă f̣Î[8Ö±%öGƯ„WÚ÷+m÷…L]¼Iä½I₫ÍØ[Qk9‘[M÷°àº\W¾ˆ];Y#tơ º¤qÁ/,rÖ¾UĐ~sªïXÛD•z(ösœ×Uc[ØTRÖ1= ¼@>yÑßt*‚jªüÙVàRỶçÏZÚ°sú)i(hØ’zF+Ö9;Áœ’º{!&áJ½vz=_=Å ‹¯Ê{ÜÿUƒ̣>,VÏ{ ªI±¹µ€ûæĐ¹ôV«…øä,7¾Ơ)gC~S ÊDRœñ‡w8›kÏGdʶV¼t¶ŸÖƒ`R1lºbkz[á^}¶“1*ÀXÍU‘˜ÉQV›í©oN®%u*ƒ\̉î¬2×#àyW5Ôá¬̉èAÈf,¡î·/v”#¥î)™~-keâ´JéWJ8‚^µOƯnăW®Œ¾e{¡ÿƒyJIë´đ$¹…Æ;Ó‹đ}W S„jËj.I kø–Jª́›Hÿ&i»›dÄ?Ø/î.ƠY‚çđ¬?‡B°cYƠ2Œé]â×*ñÂ}bĐ̃³RúÉ4>¶·_9°¦V<·çƯíÑ´^€Ơx¿ç÷:̃7{©D̃­¬É¬‹O×å˜Ăå$ïeíXb’5Úk¹x'¤úí³ ™‚ˆgáІnçt c“đ Ob"ßïÛF-«ßG‹ïnÛß;˹a™ăë3‘2Ëv"Tµ́:+–á` đÑk B̃/I×ÇT¶û(zKö{rÍ®üÎÀÏVăơï¿ÿRèS—û¥=đQ´—(‡±px'¶áÊ—G½ưœFÀïPps¹Óckß «÷ ökfĐ9§Ç§jÙe‘À†xÚ¾ç6³/ÜáÍâ÷kÖMl­Ơû.LnPÖÛ@æưzï€àn´₫Á©—¢ÓḍFÇ•áU{^ë|,Ç₫è̀Wºµ.SĂgÖJe·gt?ÆYæªMÜ,'ß áxơL$-Ö7ƒ6<ßégg 9ä̃t7ºX]|UÁzG¸Ñƒ(S’"vÁÛ¿X‹*µ8æ¤'¸]×Zú5óư®}´₫KúÓ£ZCe¾ËÀ ‰̃ß“‹|5x#]€JÓ×JçvAløîåæ9Ê>>ß&ÄDxBF›AÅ}›?ä!xÈä}‘Ô4½ñ¢đT‹́°PôüëTV²n}Ó¶gaºW_§’Eyt}´ €[N\ÀO*Í9.×V&¨?îËHP>1¿“ƠpvñúhŸOA >¢±¦›&˜+w9›µNb B 4è^+Ͷc“¢iW®Ô#ÔÄ€̃&{I‚ C:o¹UB€ÛÈ®÷•K™Ơƒ“qCN±uª­ºålD9?åîÙ—·OÜ}Å)¥9mçå0¢JOdYY¶ưI|¦ÉP{Ûÿ.62ùäÉ/}€f)àZ½ÛÍx̣>iu_b¤²k-9_?o¨¹kÑ*»’k¡[TÊü,<6Ơ¡ÍAu¶ &bc­̀¼åDå̀üPß“@‘“̃ê)Nư›Û́câ½[/Eöjră+„:Ѿä5ê=©xơ©ô«#r$ _#ÛÔú˜ª›Ơ£“ôD¾QÅwWÉVîÀåßṽÓȃ罂†ªváăÏFç´qTÎ]WÆù͈!,k¹™”ÎIdĐ‘ á! ÇT Á7?‹lgÔÛW̉¹zûåmXÔ¬û$‹Î_ '¥$TnÄËœ̉Q]Éï7Æ(÷H†̀ô\o_!ª£§cÂrsÜcƯû7Ô¹d«¸kỰÑ—­{{+±¡Ù>'â]™Å}s;­¢ºƠ´‹:$o8a9†bB/¬¨Cv^E™ê³ÙäÜX°¬Á½,V%³ơ7±pËœăÈd´Ëwæ+úi!¯Cq>&°ŸL¹¸NømX ™Û;¤EăÂcä¼$(£‘ûÑ8Û²œ–PÀXÂhƠNá’£cªƯụ̀ˆú¼D‡Y¶aÓt\³÷5¹>jS:ÆC‹œÜí‹‘³«…rxqơep îñ>Ú!•H¯@%º¢ÎkĐƠÂßùùíÛf°ø,±ô³¡₫†å•=hÀiPqF€áªăÛT*§Cœºw„SˆŒ:^ü#¢deª’–ê=‘m§f̃·à-ʧŸp5ƒmD~‘[¤J'[å¯B—²I=Q²å"¹Gµ·Ù§4±Æ_c÷¥â2gú5öåJG6ë‘]×}ЦñĂ⇣IƒgPîIO ‹ ’Qrå¥ttï<2̀êC%ئR·|«EÂÂŒxœƒrîg èP¦TÍÍ#íoÜR½ĂvÛ÷Ö×Ĩ˜K.ªăU:¢ON°~4½ờ @£₫^ươè¤Nné-Jê[†×ü”ñüă¤¼‰|k³ïh9¿~‘ƒvÔ´²–a#)®¦è‰R¾y ÄÄ)„ôTDó+’~¾Ă<âÿh¹w¸¦…‡‘ÔÈ*ö™é̀ơ+7AƒsÛcˆĐ¤́·ôÖÖy¯>ø#ÓăṬ˜§h\ñg®9ÆÊ[×ÁáưN÷®±„oÜàî$êiñÉåt2›Éoz¿™¹ÜسO¢÷ÎÂñm[ªkƒ́ÈQ¨X ”W°9C¼v² _R`“ünVൠendstream endobj 2411 0 obj << /Length1 2296 /Length2 20127 /Length3 0 /Length 21478 /Filter /FlateDecode >> stream xÚŒ÷P\Ử€ ăîî Á5¸»»ƒ î.‚»'¸»{pwM°àî¼rNr¾ÿ¯º·¨öÓ²º{­îµkÓP¨j0‹™;˜ZH;€\™ÙYØøJŕl66N66$M «ÅäH4ÚÎ.@ÿÎ&®`™¤‰+ØPÉw³°sØyøÙß̣³±8ØØø₫cèà̀4q”X̣ $ G/g •µ+8Îôf v>¾·L»Ä́-œf& €’‰«µ…=8¢™‰@ĂÁ háêơ?KĐ Z»º:̣³²zxx°˜Ø»°88[ 30<€®Öu  gw sÀ_%”Ḿ-₫-‰ i tùG¡á`éêaâl ́€f °‹ÈÜÂĐS¨8Z€₫1VüÇ€ đïæØYØÿ»Ü¿̃-ưílbfæ`ïḥ‚¬–@; €´"‹«§+Àd₫—¡‰‹ØßÄƯhgb 6ø;u€´˜À\á¿ơ¹˜9]]X\€vƠÈú×2àm–™K8ØÛ[€\]₫ÊOèlãw/Ö×äạ̀ùYAæ–•aîæÈª:¹YÈI₫k!ư–YY¸¸ÙØØx9xN O3kÖ¿hz9Zü­dÿK ®ÁÏÇÑÁ` .ĂÂhi₫‡äăbânpuv³đóùSñ¿„ÄÎ0¹L-¬€ ¤ß«ƒÅ–ÿ0øü€wlàöc°ươ÷ß'Cp‡™;€́¼~›ÿ}Ị̆ J*J2Œÿ–ü_¥¸¸ƒ'À‡™“À̀ÁÍ`gçà¼?øưï:ª&ÀóøĂWdéàû']đ>ư'e÷{€₫ßaüïZÊàεĐÿnt6n63đûÿçvÿÛåÿ_—ÿµÊÿk£ÿߌ¤Ứ́₫ÖÓÿcđÿ£7±Úyưkî\7Wđ(9€gôMu,₫]% s ›ưÿƠʹ€§A dîhfv.6®ä@i §…¹*ĐỜúŸ®ùG®ơ×¼ÙAª.À¿n°Ûÿч̀̀|‹¸€[óo•x†₫7®È̀Áü¯aăàæ˜8;›x!ÏLÜvđT[x₫ỪVƒ+Ø®Ñ`éàŒô×Ạ́pXÅ₫ưC<VñßôÀ*ñ›x¬’¿‰À*ơ_zË`•₫ḾV™ßÄ`•ưMœV¹ßÄî̃ßÎEá7sQüMà\”~8åßÎEå¿Ä ÎEơ7£«ÿ&ptß®ù›Àѵ~8ºöoG×ù/ñÉä¿Ä ÎÅÄ̃<]pÿµKM8C³ÿ7Xgæ`>̣ÿH¸¸₫’ØÛÿ^ơ¯^`5ÿÁ{jñ‚˲ü`¥åÈơó_Æ x¬₫@°¹ơïTÀÛ`íåhmúĂ,ûÓ\¿í.Çî×jÿGjà:₫Xê¯T~Û‚ß’¨Á©:₫Vƒ}Á/*…¥ëo)û¿̉n˜ÿÁ'> Ă»~O³:ưàJÿ@pY.¿ưÁU¹Ø™¸Xÿa^̣wđ²ºz8ü¡{¸ưà}pÿÁµyüq`oÏ?\„×®Ûûw*à•¼-œÿ ơ?ănææ .Üơï{|ü‡ÿ~ÑZXxZ˜!-/8˜ ÛÔ·ßU‹{0ŸààB¼Œ¼FĐÙ“"tßW ”¼¿âüµ$Ö=÷#ê~ 똣äµÉVÍÖhÓ7-o¹¾Ö̉t—Éw KèáØEÑă‡BW—¾1'ÈÜ ï¬Y}ØăZt–ŸÉéâû|桌 msåm…ơ<]ăO¨‰è(x^^N¨à±̀Jñ±Ù¹N9j—Kщ“RéĂû´1îÁ•2&HàvñѪ£Âuæ‘pêA/‘‚ñ`–f¯Wàñ3}àu{đGzS—o"TYr{S—²—{ÑrêVͲC[Đ)Đ[Ÿ)Ï·År¹D«Â¼,ƒ*­u_´ˆ YLÈßêÍpCù|€WJó̃—Dî̉ÜFOº±)J Àï$ƯN‡3BW´®¨,z”sÅóĂ µ˜†ßÅ¡íÜgSm¼CW¿9ÿ©́%àSÚ̃Ú?°ÄˆTó¤4ü”°²ùAÙº"’†í̀x%L²âûcXŒÓéÅ E ơâ—nCnI¦D+‡¾y5ó¬W;*í%#5=÷ÚÆ¡·N4o„¯isĐ¼ă¿ÈsJ‹Ñ‹~¶Í™!ߺ1g €*7̀¶ºêÿÈ1ök¨HĐà1‚f34©C„Ăí&‡·I;³a₫E±ÀR§ºƯµÜ0å̃¶óˆ“ƒüÊộ°4V ªaZăC€ÊMieêm¢ñó¡ơ–®‹ŒeƯ.Í>zÜàx å´ơi›àkCŒöÛ·X•ÖT¹ITÄiđ““‘y®(0dVYs­êêÏœù«~Jf~ƽ—ÉqÏÓdJ« X­§AΆ u|TY@|¿¸©êûœ½~dÔ¡®_æ¥SÚÛ†•¥_ôJ„ÏßçÈ€³6æ·"V³J/Ø7wŨJæ£l¡*„”|sA=TÖ‰µăåe(áS(Âđñ¢üœ¥&æqÍz1]̀%bZHiMÿÑÈĂĂÍ#¢€áLÅÑt‚ˆĂxex̉90ê÷5´öÓæñRÏ‹¶!>ï‡o{ÛÑ8€ƠË;®0JØî}̉+¼®›¥]ù Æ»¥‡,¨ư²b¯x#Al„飜×9#+e;m₫‹£`Yäµúœ̣ij–Ï÷qØ«ø#Â3wæÎ{˜Ưzỹ½œ‰ă’DF”äôëe^ñ¥"eU«.å¡.’Á®•\dÜ$đ $wwsONf…ùÅÚ…©MÇ~Cưª«crt/êRÖk­CĐd$m ÇÓ/~À¶®OvN²tñ‘P7hÉ]µ+b*“v Á倪ª„8”wmÄcé.Ưäù(ˆ­’®—‡&{ ¤₫)ü~Ë|¬Jˆ–'mpºËv–—_˜¤'|—}zd1öK‚PµÁ$ôjV^€îaú÷¶̉#V£”Ysmq„w&#˜̣̃uͲ‰l±nY{¸5SM«ŸXơŒá鬸qFËù ª­Ñsôe:(’Z¼|5óÎ}ÖfYơ& Ṽe•›„“©Ô¢á†¼Èù_sÔ÷¥®U¯ë/t¬ëû!–Æ;¼ ¥1på–̣º¼Wë~(NøRJHU{ø‰ÿÈè(<¬d«ä¤u¼ráRăwRHơè¸fÌ}pïúµàê‘]ÈŸbRÇ„êHnO¨GÀ{Ú¡pù^Ûs>9Y…÷ß|¬;¨=®×±H4*'I·'$Üí8m¹́§̀ưˆET€‚6sÅ4FÍÁJyseé_œĂ“GNĂ N3jºÎ»lSÄOn†›Ñà„0&¥Æ,A:î’¬Đ4÷*ù±â²Áàk :'₫0…̃êD̀1_›R¸Z-ÜD«ö¼yƯv%$Âz/ă‹ø₫nƠ½!mÜÅYà‰Üc–ØM1¶ơ›–R@“luß&ñå¯÷èƠ˜Z¶%: 2´ß£]m‹­µ©KßkZ+/5º=Ă\›yó‰œƠÏz=ƠĐ |Íă¨Y;9º₫Ƽt÷ám₫€!ÆÍÇñ#çbZµ¤E¶wÓbJ†Ù–óº?D= É¢€-wi?ÎAZÂgó×hF›Ÿé§»5Eâƒ̉ÆYpPMØaXê=¿MBC6d+Ê_o©$¢™­„ˆđá+-×4j¥dBưĂđ-2äܤp‚D¤‰­g¹Óz\øÊâbëÑ(®§dôœû©̣~Îr®÷ºîp:x¬ùmHˆ™’ßÍHÂxmIXîNíNªzÑ}í|11ăPJëXËïÖ̉è̉è9T ·A·³5swHvưOK[ü_’¶?ẻù2Ϻz…à.pCŹI'’[`>JEL×r®¤ å“$Ươ³ås'È[KÜ+„cßP˜Pá Ÿ9 ¾}Ø:›́rahIŸß’çh8ñ2da¿GØ… ³ÈÿDǶ¿aPr„¥ÔáÊOûѪ{spđ@Ñ>đÈ9‘s¯¶ô ««®±›:´"y.́ÆqàXIá€øäw˜˜oªöYưÖv{/]ï*LùF›7î•ƠKƒÛh؈¶Î†XvÛc~̣ökæ§IøD2©âºđ!ĂĐP"uf°c÷/µb^*haÊ­z·”ä,ïỸo׺́ăAtÑ•¦I=dh9FM %ucÑo¦d'n» Ưçf/‘…uS¸B/ ˆæh·)] Ư;µ8/Gœ̣Zz?[ØnéÇ›’qÜûŸ·ØËÚD°û9=·•¿WåÀó]7áưY8̣!|́›m­êö/.‡û¢÷Çûa?Iv„„¾câF#^¥ºg̀Å…]Ec\•l®ó̃iq¿ky?‹v„Ü3Ípxm'd?ºư0ÈÿúǛ>aÚ…*YÄ÷Œï7&m½ĐUÁvk¶ß´ÊW_ ê–ûîXïÔùæÍíd‘P§aîtùjq Œ|EUË’×æ‰Ù.Hvp}â¦å¸¸8ÎÇkỏ×™¤~éRRăWlÿÖmpÚ=áQô«ơÊ]Ô¦Yhâuë½b’hhám™GỴ̈L3\°Ÿô¹®BKÜhä©GÔĐ³ V¥³¾\ÿcÖüS’ SS2FÜŒ §rKKLµÀ˜`ŒcXJ$Đ"ú¢kd(Gô>2ÂW£7:Øù‰&µ%…™á‘Û¤hI‰èv§„ ơ´Ø¸AŒKơ!·V/_2‘Ÿ_ƒ:)j­êQè,ûDœê<Ú"\3̣ơç]ooha§¡r™© vôR™¼Sï¼£¦º¢aáUѰS$@ å6V×…êP:ºM>í¯MÔÙK6wŸª±E%Â葲P]·_ƠØB£Æ\±Î|æ»Đ­Äë)ç7‹oÏ$-ï(¶6…|£âKƠ‘ wùŸ.è»ßEö}(‘ÁŒvq'³ñOM°-WE¶"Ùe='¨‚[@¿úơù½¡YncO’÷yæµvé4¦Íøéª₫fĂú+é«?6÷NçfS±kđü˜Ó·Ê“å´[³‰_Û§>Yˆ¾Åê­÷PÏÈøƒ†8îbÖÔƒèôÜy^|¼Çb¼¼Gè́cwhƠeĂy£*Ă(bî""Q)‰¹›móP»-qÚ¶.Bv_ ¡xG|k‡û :̃ÓøœÏ”Ô Ó̉z“ÈÁăf̃T£él=¼ÀŸ¶?Z¨©)¾=>Ă^n»8®BäN¢ÇÅ/t̃Éöư|ô£9üÙ̀åú‰Ë ³GDW*p»ÚƯágZŸƯ›Ù܉Áècu‡ƒ2̃ûèª'9 à=G}ïÊÅfmÈlÏi“xÍ}|8±'ù˜ª•=&Đ-qLû—¼Â2ßư½ÁÜ>9<]ŒÙ·“Z:*ñ÷ÀªŸÑ _B­I}u“̀—=Sœ4…]hvÄ;Xô9´^:_ù·3:è;ôÀAÈøqzS÷M®ÄEƠ¤Ki>l({¿¤‹Àê…[Q ¯9Ăc߉‡xk4AÖRB¼n‚`µTơûseD²́¡§¿*¾î/^ÀÙ©ÚW}Äl„;[-s1yù÷’p-à»C̣x*g4dá)èpP= !Ä@»¹zĐ7>-̉̃† `×Öï~+p OY‰ê­rï%1M÷̣=ï4/6%°Ô×ÁØ̣¢=ET „üªfBsJéMXƒ’V„ú‡Xq/×ñ· ĂA^F9n=CYẃµÚ-Ê¡Ṭë ­OÊ„=k°X-ç\—¡“ëoÖáúo„|ô³~jñÄ:0*̉Œ¯ =Wß²iÛêÜG‚0ƯüÊ\ª»K˜Ôvª¥«DÔ;éM2a»îÖ€[Dß³E¼P¼Mƒ<§,µđ?Çê`ªƯˆ¢‡j­1óTZ¬.·´2ÊáƠ &¹SèXz 6Ù‹)kPܾ̃m~֟כV\U¹(*¸ơ’ÿª–À@̉­ ÍA-¨;ÔnM'¨BV 3Eˆ–yJ₫Z‡'z7ÊßûpV`›d… úr";N /G²ç9«3²i9\!ñü4+l*X+÷5^%„ËeăzGE¾äü¶àWƯË~´sÊܬ$tè/™mË ‡Hf̀)ÓƒZ‘̃>¢\Ëăap¸Ô!¬|'­s»¾)"̃hµÆ ÀÜ'i>³aª»¢r3³ÂÖ…´NsÅ¡S¶Áä±.̀¨ô ëưÅóZơ ùâ!€đ›9™2déØeÂ] : ;93]{&SæRO₫BíN¾”}ʈ&E]f÷u\,Ô¢¶,bh à#M‡ÔIA ¥¾tP‰* íù¹₫‘â7?fYi\́&mN êvi(̉Íôu—µ3Ÿ•c56Ü…Á»d æđWịFT&;®úÀ̉ €~’` y°rˆ$6®ù€Ü‹|º–˵g@WqÊWÎ̉4Ø'ÏzE*/<Đ;èˆ)×׬J"— ¿]|R{„̣r`¡₫\ÓĐHUbƠÆăz‘§ƠÏđY…ª¡‘ÈÁmÙ—W óR’+½k3gDD®*¦ˆeéđB¬Ë×.ĂÓ7ƯäQ¿]ËE$êT-¥ñ‹¥!®±˜œ$ÓKP,mBJöÜ |Ë€“*ơ$Z¶¡9iÖ;è=SĐyg¿̀ˆ̃H̃ÏcƠ³uí̀eáóç¾¼÷́S@ 3›i@ûû¾¤úq @T¹i½ưfV̉ßWAHEĂ/Ûs%đ•ÿèLÂ^6°±S²ík>q¯}Â+Ú$ư#́œ¤OÿJ áG£iˆ½lLa4ÙÙ#éN³₫eI\‰ó( ù¡KÂôùnpcAm8Ôd•>¯Ob¢‚¾’5q²½Ô­Œ£nö\î¯ƯÜ÷mD{n¤ø¬®ïi»Ûk+ vSr³„3_; 2^,Ë<ˆM …}_ŸH̉¿H»́ËÜ6J®̀eù́yOåâµ :ÆÎóŸûsăO;˜9~ê _‹úµÓ€k£ŒrclºăHú 3htÁ©ó£[æQøúE*Í4ÄmÄ€ÁǸ­AÓr`Ưÿ×Gz;˜lǿÉ× qÜS‘º£!ñ®Á¼Bø'Û¶‡‡ÏT8JiÅd«‚.—´‰WO†ÍIŕ†Óï‡?lă¡!d†ª¯1˜øLư=+z¨ù«ûÈ®6ñæ]ïRPÚ……³›´¨¢/.qU{ÚDªpéjoÖc oJhîYĂ¡ÜÇăxĂö\,èT̀£nG̀è'¡‰³¶¯̃‘ö³ZT·>÷¨K¡Î'D»½¦ùpJ?f̉˜ưƯ$½ÆyRÜñÄ̉Or¥I ëÓƠ!·0ç% @Qä}Đ/ ÖÓE&4øaé»±¿tEªi|x`A¾r•a4đi@†„t6{-–/œüú={%q¶†<Ÿ~›‰Rߢ'D0¯‹D³6–;®§ZRH:‰Q.¶€Æ,ăL†hÑ™¯̃ăÛ‹üàĂèM(æ̀3ƒ‹¬0;ÓJ]®e¹\Á°̃Oo¢k–Ă›N™ ½çưbή™wu ,*ñ¸ùJu₫”[6îD&L°„¤·:ư+Lr‘[ô“Ư¤Øªr ’9P5øƠŸøä•}ƠMe60”ëeu SÜm2đøÜ+27áäz8áG₫ZWTÊ“I¸Ị̈”“äØ[<#¯Î——̀ %E–™>¯»›́ óµ=[Ǿ˜Ï…ôĂ–ƠÛ¯Í3»5l%&»öÉXŸCúc]´zT†äVà̀3E®_f…f[¾[»øqÄ„=,¶~€Lè`‰ßzxÅ?°µ —0oÏÄÛÜår`˜w–ƯÂ%“Cx¦6êk)Ç„>«T³̀Bt‰XRZ¯™\±Ơ±& ñÅDîä·đ̃†N.q̣ ̣Œî;O‡œÙ`b¡V•à©TJFîV¼ùI䯼Wl”³‚cH¥hƠw©ÉM‡;—ÊP\‹QW{<“~³­7RÚe>Đ ´u·ëô*“•îr1üŸËoM}­–¨̉•DWQàEÍË4äßÜ`ơ\¶¿;Í¡ÀÅ%—…ªcUŸÿ”á’JØ•……µ `ù>0̉Ô+¼Å:Ùoo ₫*m®T$”öKÛ*Ï;¾ṾtÂ*P€EBơĐ)h÷ ¿qlÜƠ• åà6ùeŒÜÁª '„H~ÇÔmŸÊoù´oÈd.´°ÇK²X@× ¤[MCXS9Æm_±óm;`28V|¤̀t Ô#äóºÓfư&ëŒÍLJSáµøKa?wÎ̃åÛÙÿ²ªú©GÚ´ç¶‚ä€Y7q´râ9jco¡ öĂ+¬‹`Éö÷.¨¤ña$̉*»¨WcB®•¾ă-ŸAT.7³¥ä{×Ñ×Ê„n±çj¦ï„T Qa'NÙ%EH~å.ûư¤ií¦2s¬Ư‚—öư<°O¿́¨JAbQHàU¡¡₫!€N0÷Æé”§ đ+™ÏH'nÛ-£J¿ Ùö9-‘œU•«V[15bĐ-Mº#ó¡B̃ÑöZËÎʾ₫N›hÖ™;ïơD9Pd0{yT÷àÓǧÚ.örÀ8a¸½-£8¹/¬_ :ŒÔÚô’·EVºTˆ ơÊ^?¯’²2‘ÀÛ́’%Œ¦TtGl^¿¶sƠJ¹÷—ö®Ø„² Zu~\²qñq/DÿˆƠÛäÂ3đ\°-Æs  ;:pHô9W¢7Úơ°fTÿ˜ Gj½»âđăÇh{¬Ô[®TÇ¥ØDf+æTÈJƯm9úxÀÆùî‚vÆ©vkkí⃧\á@z=7êa>¡Ú<#âB5§é ú)́Ö×lóưwtW Ÿ[·RG]£Â‡̃*-l̉*yëüÚlk¼öy¨¹è|­Đ"̃‘SÆíü¢₫ñ>µkExb .E¹(:Âä×…Öbé²âèƯˆHºÍ¾2PDơäøIú‰¦<]>îbn*—ßk3œdaó™ e?Ă x{ºdéTƒ«<„˜%¬ªŸ &tlµh?‹ôøNƒÅ9>̃ úưˆAvhr 'ö›¶V­¡_$.Éâ.$ )vÙ0¯Nî*Ö¬¡R0µKà̀$T¢bà‘–.Mª2éZ|§KXµiáưü‡1¸cÛ YèV预eqľµ @¯Æ;Ŷ>Q™>~|”tÚÊbí ËtÊ;(ND,å3uoĂÅ•¦";¿’pÖ[b¡çÖÄøă¥>—&̣’–5_GöÓ&Ùái´Y'KhchŒ¼s[øµvÏE¬_`bEƠÉøQ ˆL₫qSêê¬æPo¤îíçEȘ!âN€C?ÔΫ`"Aëbëë(MfSGóØă%£"§ÔéFZ3¿(Ȩî!¼«óbuå¸Sư`ØèAîj¼ùƯƯ©Eë¤|s¢£°yê0æ Zûs½*ïƠØbëy¸˜Db´™cGB’vb}PÓơ@¨˜2Ñç÷‚$~tq{S9ñTđæ€#Ó”0úªw²³(:I—¯{)m̉ơ7Wm{9bØÆ¬«WÖ1~ œĐßj]“ó­jOc•ơ~! ô‚¦ EßDy7±úÔá0ơFÊ•²’@®kÁ7á3Ÿ²{ˆ?Q•r·.½WûÅZA‰đÅ“Ç̉wzñQca=(®Çg%đ*èĐ Œ´BÔă¾“˜3!źÔe^=¢äÚ&Îụ̈/\7$×ÔƠ˜k³,eb–ŒßÇ­öœ—,‹7×~\Û×$^zÓ©Ø̃@€wTx‘ñơÇ Aưy"™hZ8ÓôîæIxßôû'öcÔÉÎ=³àĐO-­4Œ û¸TŸÜú7́ÍÅ‘™§ÊÎ}Ï>&ß?¨¥¬jṚaÔø·ö{*ñ ñ!Ș^ó²‘W4ÍѪ̉§©w}D¬s *2'q̃93¸jÅP—6¨Û[/Öê7§©$±ƒh M.W¨%̉©Ô51Pøđ9̃ÜQă’½JƯvFœÎz‡OÖ‡¤Éå¹ tЧªZƒl½§Ûù‰Ỹvft$¨™«Ucº¦"ëÓæ<Ô'„(müd÷´úQñĐz(1ô¶ ô}°“zÊ™R|*¶Á®5.ŒÁ€q=×ÀøÈÓ‰"Yfâ/ăǸ„TT)§ÀÄO‘̣„|b  n ßÀ¨4ªè;O==¹=KœgC°åKƠí2]ÆĐöÄâ²Ç^ß₫Âê|»sˆÛp¾tœq.ÀzƒQ0ªé~Hje1ç]v§Úä‡:•ŸÊ†ÔÓsqT¾~₫‰ÍëA&Ä4§b3iÊ£ùNG~1öĂˆs8åÁWiÓD­Âœ`ƒÀh†W•xúè̉ĂrG?ÿu>̃(nè\³nÛT[¡)ø™V$y#ä„7s(5ˆUÿ¦c½Ï’BI!RöÛ•apó½ŸV̉feôi†+ßœvÉáh½¶Ô•¸gWl ¥”¢MfÛ%lR 4ä<öGjäåw°ÛG©1[O· ”í,úá?îÇc®́ÓËà#£IóÄä¿©ÔrŸ7eǻưÁRd¾8´•ˆ?:ÉÑÊt’ßT¾†¢¡bG_÷‰né ÀÊƠX¿́G̀W~̃=Ç`Qß….Bs’!…P àơ$VáKo·“Órœ;lÿØÈE3z9ø‰]›¨£â hYM]́‚s¤aa<Á¼@«aiû͹¢±çE”ØgmW^Ó†ÊØÍ}ÊWF×X×ơ§#Çæ•»h+Y×î4NR æÁ!éH§ÁHçîZö•Ï÷7É.ès̀}=Ër ¸œăÄze¬¦G=Ưqvá•-˜É‹:Ù#×?j‡­·d)wJ ”Ê$™ƒœđ22P,áäó‹Ií~x aStÖMt́œº$ß›Yz Kă0ÙîÔ­̀®’t‡Ê&ákWA°2¤a6Æî¦î¬…H¤¶¦VUT,œăàÎaĐú’Ȩ|qWḈ́ä_Œ25&$̃cD?«OØ•:i$Df«K-ÓK)”¡<ÔæHÿ\.A”™;pÚƒnºr‘qÑöb³úB>ÙǸQêF…±Tè­‡¡Ê±kvFú²E.9¢¬IijÂé¼ÔƯYSt³3ù$Ưƒv[l¿ûÁ0µ~Ă7hqO9´ZY$f+ÿˆ̉Œr~¬Ô¹ ÔÑoJæ¥5ë(j«Û %^₫…ù€…ú̉’Xw‡tơÚéÄ59“ú¼k>^÷¾5U7hJXùñ› ¡«¦X¼Đ—¸11¦öwªÈE!µA=â~´æëï=Å\æ´9¬7G˜qBŲ+¶ïñQlÍUëCYZ3®ûœ"Ê=8å›ÑU¾Tœ,X»Z_*p`$­itKJzјƯ—Èu,%—Zf½PvËç[¹éĂåÑÀ˜µÙø4f~ÏPT¿Ơ›£·À̉CÜf%* X›̉åªjÓAá[êdKw¤eđz# ÎÛ¬"øƒ±dưÍ{«~˜‹Z«¤ƯÇ` ÁRå’¢¹§²î½]ĵ&_á¿nC­FØ“­d™́åH}¢ê|Ï?t¢)¤BÔÜ/Æ! Tj1WYG!:7I6!‘Yœ‰r[}Ơ2͵(+ºW˜­¹#Ço, —Aa ÂvŒVO­L$Ê&8âhC>eøp>VVn×U-…ÀÊçΘ9ˆµ`²ÎJÊʋˡ>+ºNÎç‹G×2º˜ẹ̀øÔÊ]ß$Æmdà†¢ø+Ơë½Á82ÈW/ Ÿ^Lnpç¶•$½OÖEEx¢)+>ΰ×TÔ¼§¯MŸjŸçuÍëeZ×Φ­ÉNÅNŒĐï®Q79’£®\P?áæƒ« ơ)%±:«¦]Vé₫l₫]Dc÷ŔØYáËE’*V§•'¯—ºwïª §´€›äâ²[ÃÑûÊ4—Ü5ç5÷Lµwé•1\26ÅzæÖÓG©•çÅ(¿˜̃́~5Å…µ̀úb¥¢ER%•UưÆØ©=ÁHJ“¿C•C¹ëZ]kÖó½×·lHU¥{§±Ç¬'7¯iûæ“sU!¾₫œ«½¼ÂHØÜưôáùÈ Êp­ÖŸCIÑ„oF3N'J̉̀3VûÜ÷=f7¯¯â%ù†#hˆßuK&”Ñ~î;GZ™¾‰,*D¨2¹…yE!…Àưè±±%z2PEJƯ#µLL׸“ơ©•ÏZË₫]àâëëŒß²Ve²kÁ:nÖ ¡_„&¿ạ̈ñ0ËdbP‚î}´ ”ieƯ»Î¨4ºÅqE,‚ªßwß5Üs,\+ÀÑ«‹=̉+hY•H†ơ#‘ù¥Û¤~ƺg3¢£å£»è"¿&Y8tµ»̀$Y6MGëÀ½©uzwxG€h˜«̀Ópøc¶½ñä¾é®8ä»G÷ Çó¦ Ï7úD¦~Ô‹ơ ”¯Ăˆ[¦ôéf a¦L.y¼Í¢₫8)Éñ}4äI¸m—ËàWÉ@JÔ{Ë2ÑP^8ñâ^̀û,í¼Ç78”ÎâØ=}nAX 4盘óeWÈÔx¿ÖMvĂ¿_ ŸÖWªhJ£C¥Ÿ?óÔ+'~ẽ¸sôû~f=f 7U =PƯepK$’ER)Á)öơk*ÚÏùuoYSĂaböû"”éDi(?4‰r5bµ̉µ:­ïÔÙ·Åh2{’êûë?ä”@¡²[\{Rç{!avEyfU5·ÑDRVˆ÷0”ÆÀôÔÛ³x~åfÒ]å>e"û„1OU{[dÍC'œ!{—&±ÇØÙ€A¡¯b• p¼¦'–D½Àä˜7>=cóa< ,kç·µø?‰·Vht£8kßNo$nĂ$dÙaí̀tié[”¹ ˆ¢k­¦±Ø1ºËÎo_¶…Â<ˆqØËÁeU—®$¨đd]pŸÅÁÉù¯Üj<‰‰ZEX%s¼/6÷­ƒX<´îû¥%ÑH©ô,΢¦û–å×’%•D2öb;IZ…2AaówA‰•ÉO*È6ucâ8ÀXiËÄt‡_ÏLS±(ûæ‹̣éGiCꨘ‚Ă9E‡́Ü{'sÙˆNßvf?MƯÔ~ñäăTƒ<¬7¤Đ4iŸV+™”’S °¼É›FO¡>Ô‘!; è¾4²C+ÅStÀâIÊ-ïko´é8x`!5Ö¤¦ˆ«”·œÁv³…§f Ö  D·NÁ̉¹¦.›dcVHÔ₫Obé~£P¶¥l·#×ê6ŸH°µÚŸƒí1 O “V%Ê€%K1‚¢‹Á¹$É“·pOÂ|KW±Ç.ø¦n;Çè¹7Yˆà—Ơ}¯óˆåêÛ/ư¼ßÓåÇÆ̉TaÜhœ$̃„đ§ḅ̀/đ¯Ñ̃[Ôû™&fwïJqóͯmY);†ăåø¹pjeçû¹&j /?Ç¢¿œ2ª:T4èŸÂ:¬́Hvtéç.ă–‘³¼ßTÉû>–°ơ+OÉeoFgƈÔMFc¦á¢QQ̣†L̉TÆđ{Ê·³)¹vOC²ñƯǰÂƯFlz±£ *ÙÏÎ$MÎ2¬LÔ+7í"́éíYá¹$\ŸIÚ\0ph#̣â+TÅöÏÉ(’z´Ë,­iÔÆư‹c-+·â½Ô8ñ¸é¯ÜqoĂ×ằËU4½|>bñÇ¹Ă¨ôOc}ă%AÔË̉+‘@Ơưh6`†küy¥ø ø1²ơû—cÅNµØ¥åù&™ÈôU÷JÇçñ’–ÜÈWG=ü¨—³‘cQkLúK.S[ª­±ŸY ¨È;£º„|8i¹M?à{Ơ’‚̃á“~cÎ;gaISOàœ²’Oµ‘bKdûđ~yÂôT7„÷æǿÙ­Â蛦÷D3d~³hÁ~C¸£"‹ÍÄ{¨ä:Ó¨a< 7J;ïÉRWuJ elt¾́Đ{đkùyqÚĂKé}ÿ)K,L¸mA $üŸưH]N Q0öåëôzfªï;̃F—K¸%+B½‹Ñr„F̃&–A~\ëđîƯ¹³ăd!„‹‘-î/¨÷ ÀŸs™æ¬U-X₫í·*@8Ư#b.¸EƯ¶U®û~œöÂ^¡TééĐR^äŸD\Ä­!ÔyÖB¸éCÙ$\æï„ơ+ñSÈ?ªRPzøË­Sæe–2è!­ xRåN–Q¡¡†ˆ· ü²Ø!hG,ưÔc(ÎèÂå‘[+q-±Kæ‹)×g:e#₫h²̀¯É³¤yTYC·²©eË7VZÑ)zßƠLɤ·ßÊ..f̀™ß?Ôä¥1Ä%àÉ%b©¼s°}–t”Ỉ'–ÙĐ/\Ù^=”£SÑZ1o詵«¿”(&,:œ†öQo¤,gĂ®ÓwWưáĐë½$GXø›èüS*°Çu€Ư9j $ ‰ÆrîǽÚÉm ĂQ°íÛ ÑC0Ä‚úvRŸ~M{á(Y„}-§G:ï2K”ñ¾áđ"Å= ¶É›a-Î-dŸÙé‹MvøE^Z¬ÊZÚ_iX¤¡UÀ̃—æ7SüçVd ỏ¬1ÑdđU$SL±}ˆV>®ê‡B^6̀A¯ÓÚP_u„d¹9«zX$@¢ ¾{3R;Ă“¡A'±ñ„ó"Ѫ¾%ø‘ñ>1y#í½·9רU5”unsi€Ñù[úư˜jư•đ§u,³™&…8…̉5›AŒq̣}ßÎk̃YÂ>bö`üŒZúDÉÊRÂ’Ôœ4®:ñ›îf¤Û₫ûºœEçûÑ{H÷ØH £;vèç₫w¼0{)̉Tö+„°˜̣º”WaƯ¼0D.†£[½o¹é†‘‡ù8\„ø…¼,×µ`.ñåÚvÓnT°Y4kEx¶Ôp ¢§º"¤ŒK—BH…`©©'á¦Ú}¬%f´®Ø”Y¤¾´£Z$d+›OtzºíÊ:Â$v%>N˜<,ÊĂà®4ơ±&È^đ ³gefm_ ¸WBÚ¨g+UẹZ+4 ·¢SL××]ơQMßÉ‚jÓ¥®È«Ûú¤R;̃8W¼{̀çˆZ•aM›«/¾! «| ÑÈ$Œ{|Ââ+áx̀™§ÙNøWIÙ!êÍØ½P"á-«?ÿ|¬“’Rm]́Û°Ïx3̀%sĂ[ù/A»Áă¬Üç[ ßÈ) ä­¾qçÜqÑ“)4a*2¤e‡Ÿ¨Sœ„ä́ß)ªŒu'&ñ4eä‹Úĩ Î;±í¤{¯“ÈçÜC×ܳ̃¥pKT4›Bv °Ø¾́'Î’R·Ö\Ø~ô>{+2Ó&`Y\4Ëẻô[Ô ¸s©yºñ‰íå+¦Y3ÙJ: ® ¢™%®5ªÿöỬiÆđæ­É7²=¢LÈÇjlé‚É£½ûº~pcx ïǼB%^đ©ẽÚKÍ>™xˆNje&–:#LigÖ aóÑ!w §ÚÓºHpÊ×ƠËC½I!Jn! †Å„¤ßÁ,ưÉ)MúàMvºFüJ ÙÙåCœ­úW5 :OQ@¸:…=Z;ñ?O‹*·aMm´+‚ Œ‚©c!h?àëiÎ6K)fb‚ªLÜê\±è$¥BênÖ,U¢̃,Ơ½aA ç¸̃¶3[̣àg»”A Ö^‡?½pc%9Ñ;ù8Y#_VU±S1²u绺¯¦22đ‘” I’Ă²Y¡†u¢«O?³Q’¸;›(^xà¡9Ÿ2đŒ>duU¡·ă0V=¿Ç~zyYQœÇOˬ~ưÀ“q¦hđ“Óég\ư-$ä·‚âĐçØ{øOrÑ@TV•ÆÜkæv½Xäë,‡M¸+ó嬉æ¢å ïÏp~_đúPÛU,q‘ 0ëÄĐøj¾ßŸ¾–VÏáĐđ½5YĪ6xÁpÂ5%eŚç'!w¡™œÄ~áë™úªO¬ˆŸVb/?$!±å›m>!7iûdüslÊü‰¾¤4­3›çP pé6ư•å¼)ñ0̃x$¢d½ €¸¸ W|ÚÖ[ÉZ¯­·ÿc|.Hʾ•Œ”º¾çàƯ¾gzÄB×ÑÙ†Ơ“MFEwÿç'ƯuT"½¿23…Ü.F}’zæ«ù¢²¼—†₫qä+ש·C+XÆ¥»ªƒ81ƒ¼Ư¯Ù7Lœ¬$|Äđǜ¥È™ÊŒñ¹Ưño:M ÅráñÖÔÓÔÏ>‹Ô³¥˜ ôS’éi¹é"pep#à‚Œ^ƒƒGh{¢ Ơ¤Çû¶îmàY ¶7‰?ê$†ăô¯RËX@×¶°Rÿ ²ïO?îJ¶dÄ£n» Á´ÅMpÆAÙ æéÓ‰½S6|ơ5ÙhOÊÇ-YÂ0©„vạ̊`‚ª3¿`\ÿhîÉÊ|₫ƯíKcXe[´÷Ư*(ûdéŪÖͦF!xd›øă­.CÁ*̣B”ô3AáZ“úô <GQ'æ®Đâ ×›̉SÑU´ÚT´mQg–$ 3+Vx_h)Yi&‰)‡œN¸̃7(´ÓƯlœœi‡'- àg“4¨;G„Ÿ$ÜÄs1Æ–y‹ĐFílüe¹è¬ˆđüiœY '1Ä­LA*gû3¶8­±Kăbç¿Çäơ½½@v ³˜ĐÈ2TIƯT ]=µzË͇ “Sñ¸EŒßƠ¢réÖÙ¢ Ư*}L^ü­ ?»‹̀ƒN-ä °O§sˆ2o\±Ôέ†FÙNh&/²…ȤµƠK{”€5¦7qL¨ó‹\sëºJ íË)Ïiêí;=„5vk‚×Yåê*E¼gL~ Ự©9ô@¢$bÖơàËĂËIWä<@qé̉î] ¥,‡óM÷ưj!Tbj•;©€·†ÀÎ÷MuIv‰d’/®>ßËT¬_–“Ióͺr¦I ß µ¶Q‘(€?¼mûç&.@³÷?ƒRË3Ÿ·PˆưHca, ¾âp`æsQ{tÖtÆ“²Ó¨xm•vœ Û}¤u¢YhË.~ѧhçÉèëJöZÆ P˜¹ç1H3§³0|£´D2Äóßîx5ÍƠÄÛ•HÅ'qăˆ;͉ÏRÑnˆ›ZMKĂä̃ºU7ÍÊ5b†/“Ä̃å6 ŸÎǘaÂ;T׈ä'î\p†7-#é:Óbï„̉d ¶˜ñäX7ǘ“̀cûÎŒa¡Â»îW¢glO<·²ä°ÈfÇ…ëXR¸"#>CIAúí‡Ï„”=/?Ÿ÷â¬ư<“+æ¾,úîÖđ§£W’§)T©ơæ²÷RÖ™$ê–ȲD¼ư¸ªlIÓ^ö›÷@ƠÂÏЦ>‡ö±+4U!ÚLDfx²̀×gæª3H*‹_XáÓ “;èÓí¶¡†q‹–írÔ䬯A'UæJK]p¬üâ#“/¹E´ülÅgœ!r‘û1H]'lơo½¼>I­VjF—đíñæë2%/œL@₫́É÷ÜÖ‹›ÓƠ ÂmVpù ±gy=®Ï½D¾S5é;wCO;xÚ^́ÿ¢–˜Ç¥Œ¾Ư±y;×ơ1„c˜':ư(¾Đ¯3J‚ë­Ll¼GÅäà•M]×­>‡Ơ{÷̉¥«̣ï"ƪ³ »èüN­—™ µH}=̉ï-V|ÔÄb˜d(viUíKAR₫LĂ/=mÆ_P¨3yîàÈ1."QĐü‚mŸD älÑÈÔp7îqÎ$1G‰œ>̉‡T¬:»^¿’”²(-µ$=Ùp­rl XÛĂØgæ%TbÑF»:$úÓR<×+ăe#¬‚‚÷y7d|»Ï?äóê¿ä@vSÜAçl©›Ÿ¿uù̉ùßdë%Đ^äÅÏ>©-ƠÑêT=\™;Ÿd*•ÏÂ=ˆt3«¨nŸªœë*‘V2Ü$~ờdgùß5$¾vgôÇ#…@ÎàÄÅ®BíöSï k#yk‹H¡‰WÁ₫PÑCV˜†c.øÛ´§‚/ ̀·9¶xÙÇcK‘çƯe?WL÷TŸHXFë¯ÑÚzPƠêÏ$–-üß™=–´f wà-\o$¢û×å̀·øéƯßsȲ{w³ }”ŒÇ9—₫hXơî>,Mΰÿ̃TÊÅđzăæ›Ê]‹ÀÏ΂—HÓg›Çeư²%CÁ䱸¸¡j/OâĂ» Đ €èTÑb=ELư¡đñ-?Z´RVÑ·‘büËH¥p¦ÊÛ™'ÎèµCA‹5ZËf¾§ÄRñÍt cơ–ü±Í7O3!d"ơ^5V£]´TÍÏ™Újê†N£̀d8Ú%ÜwO"D%eIö4_9_ú²Áu5tV¬.ï `G#„ ˆ+Œ}>fœ‚•´¸NNw̃4ơ†À¡Û};+jcdƯ½©¨6¶Ë©®Å.3»̉(Ơ¢¬¾ă(ƒ̣̉Rè¶gÂegZ}ÛNÚÍóÚ9-Å™Ï é¦B0 •Ú[â꼂[Ù,n‚Â(¼^’Ø̣¿z§ Gà^æ5i­Ä¢±²‡ơ`VƯ&±;µăù±H¹‹'AÁ땪lDüq̉ –Úec¶+@diF/£¬2éø–9qŒ+ßF“N|+;l@?p׈>ö´Kvî–§̉¯`Œ©Ơù])ñđ¼¼ZgΣrs¬ûçç®VKG÷¡‰XVI¡1ÎÎOî}ª!v÷ –oU†›Å9>^¸µydpï°ªz¥øŸ.(\7¼ÔQj]Ữ^O±zßë|®éδKXưT¾I±ju‰¼Ií̉|PĂËùî ¦ÁTKp%¸0×fĂLP‘‹vË®„¤ QAθ Ñư˧¾Y_ˆ7,Ư%dØ'̉mÙBÎw)ts]{ Kiƒ½s’Ù²ơGƯ«ÇJlj̀́.5» Ơ}ÂPªÿJơvĐ\ø‡Y,†*ưĂ©b3•é6Yŕ’l´÷Œ,?ÇļÈüæé"&ÏdÏÔøRÑ{óK̉§Ê$iQá¬fn Đi¢óà¦'Ô"ëṿ‚±Ư• @@+B””ß<Ÿ^°™û2+ĐçcKÖó |¿ÍáÀÿEºí¢”s´¶C¿WÏ”Ÿ}|2M#ơZÆ<4¸e•öí;÷a.ˆ|AGŸmÚ7½+^Nä\iTbïw¤ˆ•ö! ëÑ{}ªs§ˆ•Ë̉_2ø$°/`Ûx×¹|Û₫ir&ĂR/N/ü!ÈƯaålß[›w¬® ”±Îq/ˆé­Í£D)R ùW© cpô»î -8/̉¹ÛØ©\´'…}j7B™v—µ;ŸîÖ«]#µnü"‘WT—!Ç›ûíÁŸ£ZBră…5^¸zm’¹ …¥åwÙ]|«TøuWŒù(|ÖûD¿½…†Ü̃đñÆ@úƠ8Ô¿Ÿm¥£¤(È1)**eÎ3€Q J}‰$‰çR ƯuÿKÖzC:¡“K+übí…ÎØ Œ‰½b§ÔFƯwâAÿL„ Æê¶ g3pó TÉzÜ.Ésq¼ï/¸[¾{碠8©ïØ̣Lœ’OđÛt˜OÑP…E¤íé‰ÔdKk†Åvƒ'ă[”ÔXѰû=ü|i<©&KL<StëÛAd́.àĂ"~£øM[•è Z…3Úëøđ´œ(:¶ü›\J®ÀÄkỌ̈—ÜÓw›Hi,I‹a—û†¿W7yœÖŒQIÙ ¾ü®1ÙÚ/ÙṇRÄ8 ·Áå[=ºC̀0 Y”¡#³Ô`±V¦¦P°{<›í8KÓn ,füÙf*X‡Ă‹̣8kTtƒûđkÜÿ‰ï±A¤¤;[ɧ²H)ÜioCô|/b‰̉œH÷¯™ăFö;­U£:L=EHÀªiƠpÙ¼Àî_Z9ndLFoúöAKéËm¡[SªÿR+¡4Ú•ÿÏ>¶äwÓCÈø"‰Yk´>?²ÆK®KcđÜØy}Uû ܦ¦ÛT¨?ƒÅ÷';ơ¯L©:AÊvfd\-UfÙ™é‡Ü¤ ©•ÀZRë¶Ơj³&‰aƯtÓ›Ø!®®¶bo!$Œ†/„½Ú3“ >è&" ¨”Wë¹̉+®@v ¦Ï¢\‰G,@Pă₫TC‡­&´H0 8*À½Q1`wïxXB₫ç×ÅÍÅƯ¸d¦%./ñwà•0†öFÛä™Să$fYäq.wî–¡̃9×­iVa5}M·G4úÑPăr«₫†"₫«²h¾ÛÛ áølˆ‚/ÍÈm#ÑÉÛ ·Đv`đjPë–kËû«XÆƯdSî\/ëớbF~˜́ækïFêü߯€v°¢½l*úŒ×è&Oo>E¸(– #K¸ñIåđN­³pât¶—)1 ™ư/>cÄ:‘‰Ö̀à.Ö1 [¾Ă8à£(Yï8o1AD̉mèRñîz1 Í,,Çdô¼V س›Ùa‘ơh½—ùµ‰°<ˆeê´âÉ› :­é)wôĂ/o‘ꌑ(Ë@`đ›Ojk̃ç‘Öđ‰k_¨ŸD€u-3èÁư†¯ÂTF»' k^ö™ƒdlKơx|–E²`k&đxÊ×èØ̃ôÊîÆó(ÓHưeăi‰xÂÚ“e^&lUó ΄X̣ß³Đ|DoaÅç µ¿bí5 tÓ 0ȦíÂÅQˆº¨I» ´A§È J ɬ=Ü”ù]èMŸ™ÀPEH£*r}´ḶéƠQ&Ï +¸Ó(íz3:Î9XŸ2ä₫NWñË}ù#*Đ¢åF‚ĂüƯ7M2)_§!BŸ‘€{‹“ n¹%T¼FKz-ç÷3Yô¾™vö·¬Àiiµ…*@J?6Ù/&&DXºSi­.ÉÛøu,”no¦Q|ñtjwÊ”’®¶Ñ<Ô®MɤlöS¨î׃{v®²†Ä ”4&HGª59y¹#D«™ºÂÂdPwrlenœgñK†Î P57,Úàœqß" €èL¤DüŒå{.gƯÿ d€S«h2å­# v8T³¾Y^Ä• °'È[&‡ĐY˜N…¥0›w"³yL̉‘í¸ÊƯÈ:ơ\Ít󴫨²• 'Ú6Çï×¹’M ¬‚‡(<"ñ2X'yܘGY8_x²aê4Đ9äê0Ó°̃0µ¹̀÷= C̀ñä–)á—iŸ“¥&ĐoK Æù3æ,çÆÂå?2î;„زƯf)—ÉT024‚}¨ÜFk9ÅWG±o…̉ׄ 1»=}Më"³èœ t₫đ¢Aeñ 3Ïs7‡ùÜ¿@¿ưÎóøE:¢üOÀ§Ø1zzjôÄæ{@{³0ÆÀêîa°lư0[²Vünh[Ù ËƠÉ d(̀ ¬1Gå8¡ú²zVËỴ̈z‡m¾G&¿gLïéH%ár¦’&­M°)/&VbñQÙdÈ$Î×IƠØ;óX|ǹ3›cK+r³ëù›MÊöˆ ™R>ÖiE ‡à¶ûÚ?*¡Àtb%ôkVU/Hp15$Jaù­w_„Ä–ö$½-Ç.‹OŸÁ3đ=~…ê, ǘ¡Éñ’Úww kíZD῭Æ>ĂEI~F8˜,J"%sßÈK|ñơ·•‹ßiđz'Âë+04»OÔŸîJT¿¼x¨D=ºÀÚ'%Yê2Ñ5úáˆgZáD:Y­éƯ=€Ï鈜ŸôàD•gNÓ9„¼a¹¬î)¿³±LøĐ ×âAÇe¢©ư¸Q÷ÇÓ¹h‰{ÁWî[0x¼ÄömrUè ‹å.ơn-WD‰N·ª ä `*N|₫ûuÉó{QµÏÿ” $0v?Y|bèÛ œp=9ˆ¯’(ŒÏ¥Bđ́ßY®+Íÿ¥ªauˆ-¼oRƯ‡ÎG-ö¾ă]8:IO“Ûù×ÙÀh7zvÚU­´F~ÔqïuQz梫3FBg¤È¼ƒW’UÆ[…Øơ²E±Äà0È U°Àwæs¿ñb®¤¼»¼öW9Đ÷^₫ÀÁK~¹Ó`¸Ú[\|î7‰J[[roOuÔbÎéưTÖ°¸%loC0qs7èʇ2ë¡(’øa®‚AÈPª ç]ÿÚ'o-—OÇ¥W=K·jW•-É€¼´½•ŒTÅ6ƠDH+2&— ›ct› Q®-ëĂú=âËï—ÜL¡¿öa:·¨ñwO- mq'ÄV`â™×»º‡î±sDcà`¥‚LƯVÀ,Á„À¨AZ©…½Ql‘̣‡“i†|d½£^Ps }™TÉ÷ü¦fK¬x;F‰Áư=#´¨MÆEƒ Kdâê§È§Î7‘â[“;…?wB–d÷«jêù¹_t¯f™ZÇNÉs̉Ô›ûơ=X?ÑN0\ZÔ$«HéísÉw†"|M®¿Yc§D.†¬yd¼®±Ạ̀ñÀÊz ›_²îp)¶â¥X¿Ü,s<âs逭ơ’}¨Ă"ûÆEÏ`à:K4„âéFÖ–‹”5úi¶;߉„Â3ˆP4½¬̉½¹]QØç»é–MÁX°íŸi¨IœD ,‚"²Æ¨đj(˜d< ·ÁĐDTt²”|Èơèħ$èÍ·éà|6bûÁ”/!́ưÍå;L«éöNÇmC“¡í䕬9»ar*‹Ë½¡KĐpa ©(ưrƠAƠ™®,spđ©N#b–rO|é4K^m‰ƒ¶ ¼q·ÁE»~MÙ¿u;²` ĐvÛºMP…‹ƒÂmǼ&³®­¸ù»áùç1¶\âä±̣ T\/'"Œzy;DØ¢9PÖ~Ă³|w‰q}%«ôI¤/ ®SÁÙ £Z÷^úB₫lđ …í£cơÔK¿ñzE6̉`µøC—ùA³‹₫Iíy$;¹1džöÚ5Mº íẹ́¯Ye¤ç á^ Ô‡íb{^$½¼’啉ÎßáD¿â9B‚Ø̣Å´ë‹"jÉåơz®Ïˆ`bŒ—T*wD1 ?P|÷ Û£o zÛ‘®5æ¼8‡#“à(¨Ñƒ&wÙ â!“"¯5/æro„ÜZ¤Øv¶A¬€CPa j·* ;† 8OK =ªå†! 34È×WU¿øù^ꟘÓăÖ ₫&NBŒâœzG¸Đ‘Ă•¡ZbØc¸¾SÚ• É™d‘̀îªD8[v=˜td«Ó¨ÉO ´Lêô4¢®AAàS¶{©ñ=Éó¯úÓ•C\́D½Û†é¨­| AÍ:Í6à°w¢7Óôàwo)?w 0ªn{_œ;_Æhc{^˜$Gód$̃¡Éy2‡é¡¬̃ÏVƠ¤CÏg^qÁÿ÷t>kÈ1?d#¿]ɪUôú‰ñ{—ëÛ¦̉'ËV³$̃ẠÓG;Öç`í a¼Nô£.FLG§ 0”®âŒgp8¼«̉ ÇTÔîèA3úêÂÿSN£QIºÑYƯkê˜P̃k”uÆ4¦ñFº̃ÑGÿn‡̣µ;}%̣ip̀#™{á0Vppµö̃eùmUÚn‡Y­l¨~IªOî­"6Ơ†nWæÑ¹HK~ï|xIÑËzª¯®&¨̉UÏ>ưM´6́™9ñt̀¥đ¶6È£ 2€Åâwá!t̀vÊ@AÂäœ̉ÅPÿJqỊ́ËÅ̀¿«÷*l»Ù_N2Ü¢Ăi®'ơk…"’ù’áY¶̃Ơw˜=—këŸlcóúM:‹ƒ¶ c`̀7g/MU!k¹§ËBŸí̉›oøÂaï$Hp£ñycw)½TÎ]§‘¥“ Ÿ̃Rd¿¨©’´p9¯·î¢°AtæƠêûr_îJG+§Hst4ŵÚÊVGtË‘Ü*Y>¿øoÿü£‰è¹ÈéjÔ;̣Ơ9ñiù‹æ/?£pxHjÛG-çÅê^›ôiúµGï¼pA#w³ ! ¼Ç§ípô¶ÆêuÔÜøD„Đ'xÿPđtƯëÁ‚È¥èçó*]ḄCJ8i?¼ƯH{cP6ç²âÛo7|Um§(u2´>]4m‚dáVß5Æ3^, ÊÏb…! —s‚$Ï)k_ùÜÖk—È“’ƒ˜°p“Mu¾™¹Aó)aU„$c{--‹Ư´8ûLE ‘½?”frRc̀ƯÍîT°ô«€ª04Û£º·̃\\¦¶ÙÂéÏîgV^³ú[]TEđ¤6…qñĐñ™È|wïn 8¨m¬\&ʱÍ́3‡U·apƯy~~̃˜é‘ˆó:̣D endstream endobj 2413 0 obj << /Length1 1592 /Length2 9053 /Length3 0 /Length 10097 /Filter /FlateDecode >> stream xÚ·T”k6 ̉­RÂĐÍĐƯƯ’Ă0ÀÀ0CK ˆ4"Ư!Ưt©” !!Jwׇçœ÷=ç¼ÿ¿Ö÷­Ykæ¹vï}_û^Ï0ĐhérH[#¬ ¸7'—@V]OYÀÅÅËÉÅŃÍÀ uƒA₫c3@\\¡¸È? d] ·™ÈíÁN¨¸ĂܼnnA..—đ ."9Ô Î PAÀ!®Ø ²'/¨­ÛCÿ<˜Á,naaAö?Ü̉(¨ƒǗ Á @†Bܼ₫‚ỲÎÍÍI|ụ̀%'ÈÑ•áb+ÁÂx u³è@\!.kÀï† GÈŸqb3ố ®Êu6n/A.ÀƒCà®îpkˆ à!9@WY  éÿi¬ö§;à¯Ù¸9¹ÿî/ïß đ?œA`0ÂÑ ÷‚Âm6P © ÆéæéÆÁ­‚`®ˆ Y=üQ9  ­ =4øW{®`¨“›+§+ö»Eàï0S–‡[Ë"!p7ẂßơÉA] à‡±{ÿÿTüass¬¡`7€Ä Ç₫;úƒbó'~8|¨'À„ë{ܮߟÿ>™=Сyưm₫Çùt4uôTÙ₫́ø¿:„'À‡ƒGÀÁĂÏàæ><øư;ŒúW\û*Ămá?«}Ó*öø‹̀- àß±4¬…˜ÿ&¹)?øá‹ûÿ™ê¸üÿ1üw”ÿÉÿ· ẃ5óúÿä…yưeđ@Zw·‡PG<¬üM !.­:Äêîø¿Ze7ĐĂ"HĂmÈ̀ÁÍÇÉÅ÷§êªơ„XkAƯÀvRæO¹₫ïUƒAá-„+ô÷ỰàÅÅơ?º‡ư;<Ü®¼üCyXŸ畇ƒÖ¿÷Œ‡_rqya?œôâøp?,¤5Äó&€œp„Ûƒ à¡G?€ Âû÷± € ß¢?‘0₫/â~`̣È Ú₫̣€vÿ€ü ôP„ư>Dvürs€đÀ‡Dˆ@Đéđ!‘Ë?àC"×@Đíđ!¯Çßç!²×đ_c»»¸<\°ûa¦ÿÁÜUˆ'Œ=3…‹Û×·^TIS¼äXááĂë?8Á4\“'óø©$+vỳ›9-Ư9±y¹ôt›§è¾ÑÁˆ„ËÁ|Ñ7%R„d¦®ÍÆj•Ưwô©øƠ¶«;φjGÇ K^¸µ-É~“Îç—'Ră,¤́·ë“é›bŒMçåvûL ;œ¸F¢#1 ñâ> n“No«©–ŸhW¦w=’Ù}÷\aó2¥o‡¥¶„ºœB±µ…ç¤z’¾%‘ü«[€\Ơr0ΰÖ-ÿ́:–9è¤58ÙÊuHW\qϹz¦ÂÍœ·HXṆ—ơÊ«”g&j‰%D88ÅM~ß\Zb“GÛ‚G›): C’;qqÎçơª̃lØ÷ v×¼c0JúlqÍvd0{àctÔN†>w ƒđÑ\U₫VS%?ÏvÛçG—¶ô7o¼BÍu+5×¥¥‡ÆóơIC4ÆÄ@²C3M~äŒgăHQ˜,ḥ̃£;ßÜhÆ®44ΙËPƯQ¥C>X8yoqơ½ÆZé}kƒèy^£­,8V=ầNí±ÍǺ´~†aí<ƒÏpHÏẹ́átÓ:­Ø+x¼ IÇ…Æ>c½æ¶µƠÎo|C€°¢\IÉtSÀ§„œ –mZEëWù2Ӳƨ Wḱk^Hé³pø/’¼„‡h`Ưu¿ ¤WNjø¹ ̃X₫Ô¨‘g`*˜Qă\•ÛN0ªåPăm¼|dˆ;x2`ădáâèbW¡ƯÉ[7#ÎưNqÿªœVö“xëº;?Fi$|_é6ú…³éëP/₫†};“±êøØøC¬Sog–‹’rĂt&ÙöMbFÈÓ2C|Ñ…º¶Ê¹±4’bµí*9½â=esæñ• ¨ ĂïŸ1LSzä7ơT;ïa6Cmr̃̃sÛv¥Çx}[}«%)zó)ʪ,(! Æ>Ú=ɬü]ËŸ‚ ê•…Ç6ú7÷X}êªÙ2ƒ°°̀º>‘ƠlïW°|;‚ˆơï Z»›<÷)ÍRo3EæyW5́/燲`¤ ‹ƒ»<ŒÁ^ÑMgPâIÑƠ§+×jg¹ ƒÛ #ƒ-ߤç9uh·Eëi‘Ơ•ÍBèüp_׿˜AamäÙùơ¥‘¡m₫Ơ{d†yÿü JLª56=)Ñœµ¸¿æ=¿g°FÍô½4wỦ®í‹$ÎWR§J¹Ñ2₫¦Ê³¸F~ {W₫s wé“HcµªcüÀPnʤÅô@}…̃ÏÆV§7NCD‘mg¤e᮵7ÇFxW đ_Îfè´4¸úI+›leÆçCÎu´vú…ê|?Êrmb+l”gĂ1~¨^¼qqÊg½4Ѩ|ASË•_ơxy¡îs”£WH»8s³¯¢̃9íĐBb¼­ÆÎËVÑḰ1½å¯6¬˜§̉'äµ®÷mª“pL®Ttå̉ξ³Ö+ç!½8ˆ;ˆoͪ{q«œ³~#¢Ú¡̀hèhrÀóÉ×"Œ6˜ sW~:F408L0À0r0/Ñ<ÓzÍwḍµbä\~Àˆƒ|:v’Y¼×ÁÆïcµÑ6\¨=‰e™g³]HY€OØ›réü×É̃…,&éù:’̣î04*Cz~¤Ơ`æsNµ×Pă53V»Qđ)Dz-Ë?áƠVx́¿iQ!§•–\€%<̀ÇXÿº¥ÛUF\µpœ‰˜âF(›²=®̣àª6ÊŸcí÷}ơêU¹ïŒÜĐgJ?=>/JüQïƯlºƠèª#FjÍ•rL ‡NN7)ú·µ«z_¦c¨N•N[ñ¡¼‘ê›×ÀE|9郵'‡êü1,IüÁ~™¼D8´‰¡êl‚öz^•Ñ  ³0:ÅnrÑ ÙYxµt€®DEîĂ6¾%[Ö9ܲăÿ,hä<$o—çÙ!릯R‘“rwJˆóŹ„kG¢•¸ór5pđÉ °%½jcúm˜FÔXÈ‚ÔÏ̉÷ïđ>ưÜ\ ÈÓ C̉»9n»Đ‘LÙ¥ọ̈Åœ€Ç€„OQúÙ#ÖS4’æW›ø}ƒUº“àB¼Q©@1o½âN —µØJio]d_ÉRT–ƠN¤‰J̃g’'̉xÓ˜ ó:uÅ0R¶E7ú2Á¾Xë1‡“́˾¶ÖAĂ×Ï¢•ÙƒQFZ¿Ñ;zÁùÊưô@ ?OFÔºèKÑ—K+ă¢bÉ×›ˆ§ç+N‰p H‚FXq°ûù;^TjdRj̣‰ø{iªfRỳÔÅđ*„Hu½'5^U!eøđ¾[X˜Gó’ưkÆËªº`œ%°÷̉„…Áéåf£ 'Àœç“>;[.|UÛks÷¼æ{Å·†3\?m\¬z µÏw´ÖÅ[$ïŸó̀FAîª"ăX-F×ayŸ¶Éï1=†’'‡6 ª£$Á±9ï¦L£É‘Ÿ°m6™KÜÜƯt¶r*Ç6†J‹J.6„[5ôớ C̀‡sD‘Įφ(&]Sÿ&çÀå·é!­s±‘ûføÚfG¨*à•G?‘̀öƯ°ƠÍœ7KÄ*5ư^1ÍiˆÊ€#͹!}™Î`PÆ— Û"̃!*±bƠ¹P]=²â¼Ø递éºă¥̣EÅÄqícX£!>LPÖw»Œ¦’Gˆµô<†ÉḰ`̀S昌×ÔÛÔ€ $;‡í `¹ÙË®x¤ññçBŸ{poâüà 'qï³4f)l•‹n”ØŸ¾+’u&¨­ĂbÀ˜ºmiï稙a4/îC—ÚWÜÅXœ‘›?Ó—¼÷ígx%™`\›Üˆµm)[eó’ƠÛ&ßù®›í[x”û`¦ª"E¦0lq6³åÍ0ơ"¨¡¾¬<Ùá8`5àtŒÅö‡"!jÛ)ü`¬—M¤»!Ñi(Uy˜TÜ“^1bˆ¼@hN¦\¹ÓÜ÷“(NV÷«L}IàUæ.ÀXËP^pº°_;È,{™K”b;díÔ‚₫~=<ªÑŒ«¤ ˆ%à·>«,,QeRWŒ^â^s†ñsÄi>ÙÙdÔ] Ị́Ü¿º|#¿}vÿY«}Oœ•ră%v“'a*¾¾£b́Pq×$€ơ¡j.Bc ’ANÓ©Ẵîp?ÛËL¾ÅÑß²,{ û*m ™(X¡ *怠¹ùç–¯„;ï¸ûvø-È™¶V}=Y[S:ăGBÇÖæïrœË¼^%{+]ÉsÂ~KûÖv¥øC}ÛIØs:‹eͧÖI‘“ä\52‰±ƒ?a7h.uY´âyqßz­hKk…—JPÈ{ ?màÔ^/"ñf+”,êëœ G| ÿ’¬'~¹ … &ÖÏyỹUI¹BŒẸ‹8|Ẻ₫Љh¤Úd»Îgn¹b’£ âWm5Z­­wÈÿ]G[/Æèë… J+ÙD%êZxơ¢°ĂG’ ₫ 3e1½¯qRAªñv!RÑ„`Ic{ƒ{B;$e˜O+•Œ‡_˜”º₫Ƴ±;'Q¸ªb>èD­`}sö˜#A½c£µÄËiÁĂ&ôH?ê]„‚çÖ8ü_÷2LjĐ£rŸJ¼!Ÿ÷¢I J#ŸUŒµZa»ê]¹Jaí;$Îú&Iû"ÔmƒX̉fÛ‚p2q̉:₫Ù @wÛ₫×*Ë»B¦ÑPÓgdÎế́“)v¡é8ß2*²â“6>FI9 …sºsỀëó†ËƯ·(íˆ9‰¾É}1Deô³u½`"0±̀ƒËHL¿íbPPÆD3‘nÅü^k—t–gÙà&œ̉ XÊ”Z;äΟ³ ¡ ßö{Ÿ>œB́l¼JÊ$´>7·7¶¿÷’¶uă@̉a<6­¢5(²CSC—ºÄɪÎY„̣‰o$"×*è© MëƯ˜lQÙÔ}¦Ø¥Ë ̣öÇ C’‹ÄÏ`»ƒAêÅÎ…T˜‡¡×—Ó M5l Ä)úÑ6`IÓö.9£…†dˆ¤…}—,£Ù«„Ÿª¼{Wx$fçøi€h#ÿDëÄZnÙ®µ)^ç˜qËÙ¬‘ñL™q ]Îă‚¯¯Â($É®¨vôđ’-gÅỤ̀yÆ;¾¤|qº»<´|,Álưº¨'8:A½÷IưRüƠ/±Ư ΗỴ̈ă>E¸’„èÀ ₫‘´ë÷0Tq ÄÂ~Ÿ_rU*–å¼=}U”éQ´kˬӱ¡ËWës)ú–}áMÀMÖ¹₫_;2âcù!w­tåqNSñqQ•”§ƒ6ǵÆẦĐä]*H&4ϳSF¶5̃}z9ÛËËvÉË/*€’U¯¿‘FR¤[[êƒëgZç{¶lzÑ:‘IưDû "¿;Ăƒ§Áp₫c’1ÍP)k› ăÆ>7†p̃Ô•§|±J” ¼Ÿ÷m4̀Kê™̉û5G—*‚–₫Ûư ÎÔÇ%Ü.LHÓæT?RV¦>HR§ r¨3PÚ“Ă´eW<½_ˆaf6̃ú¦r\t§IèJPéÈÓf‰­~‘;µqA'·^¬˜]×°˜4=ŒÆMFn^'ÀÆ«Ó̃ă´ØH½T[₫uêÛ#¨ç>`ceXa ^-¼ï Œ(Ü‹ØÁÓjâL˜8¯œW”Íî%å%j7³Ă¸Ô Bo°Ăµ©HŸæk´z^DƯ[u$Ü$¤ŒmfÀ¡¯4m=*Ö¶2̣1;ƯÉd„ÎđCa(¶}ç|ư~đƠSOZŒçâg©n´ăK‚ûƯ¢UÆẂ“íêë ½^uf/. (jOØ—7ă ;¼–VïÆª́C½Ñvx̣÷•°Z̉—› é·YRƒg*§́€¹ÎÚoô“Íou½ưkô/û’ä£K"ˆŒ—ñaHưÛ¹)I₫+vÑ´‘?ăk: *T_›Lêë‹–h pc­6çE<ü“]häKÀ nw¢uWeÆ€ÛùBŸ¦Z)çZîçÈ̉~–È]½È’ÈH|J±:¬{v\ÂÏTD2r 讣ÎH5HåưOw¨>Ä´µ<±w-Ư±[£`PÓÔv‹Å$Ó1Æ9Kƒ×סRfä/¹SÚ¢kñ™ê$¨Óå1ø¯ĐmöEb>ÚÖ<Ø Ê“)îyẠ̃6ƠüÓI§ å"”Jf6î ±¿*ñJª¨?~1†̃ù³̀Í YFä™rŒ”, ^øÙô‰ª_ØQÎô1[°çyå9»ÅÛÔ/s5&WÓd­îHa`j²Ù¥›¯AL2 †́×|Ÿ̉È«u²xưbv0 ×Z[VŸqøâ YNª?ñReÊ‘X tøËº§œe³öK›"§Ä6…’¹¦Ë:f•h)&¿Ñnñ=*Ë›C–Ư¼v›û@M ÂñƒGø1}x] \d²™Y0î8»W̃đÈ‚7x<™°CçÏÅlÉ^y6dŸgYƒvư3+i´‰÷Ưœ…‚´>vº✪̀{ oUư§́| â,̃»‚zJÆ¥#ÂÅ·'đØ2‚&sàBÚÈB^Zh]ĂW‡ôNkh8v-ưîyïèö gú‚©ñ¯sĂÔ'BÍf”bé›aưÎrU« 8ư™²D´åVsá¼h¹g—rÔNªù¤I¬đ:ư„vƠ#…"Œ!MŒƯưQÁGWv¶È+É75ºx>f–‡ŸZ n>¡V“¢(¥ă ̃Ámµä¦ƒi ‘;Ps¸J¾3$y Å‘d$S9ßÄ«Óî̃¢èª:?;rL0¬JN—¢›»{ñÆ[‹Hº5$k½ß¬¡ Ü-ÑƠu–tÅGÙ¢½÷©Ù̃ă0̀f£k’'@?w4ùNm=9öá&DLǬІFIj×UåkǰlïYu;*_ÁÜƯ;÷œKù ÷Så1ªé©YbjƠ;́ưƯ‘øRœ$ƒÁƯùP~¼øµ!·¹o@M’Ñ:ă§H÷©<^Eú|˜ó¡iÎ}Ü",NzƯïiP«H¬7¬!ù&Ø̣.?́ ¿z«Ê”·ä¦#p–-«5¨W8cîe;“ư8{‚%ñ̃\ëd©W7S5å©£löüuñ‡ïÏ»Ơ{% #µ=·^ѽÊU„§=´×qÜŸ ´cü²¡®`4ô^{‚¹O— ­v…Aç óS¢ë₫}D“ |"ü™3ܱåâĐ~ügTDKç¢×ÖăƠkù6V’[% …$" ₫3>g­¹¹R·û]uj{3ÍnS.ß’úùÓâï}$Ï“¦åPg±GîYœs½«™Ơ½{ùïfåC«Z¿Sœ)Fà賘‚ƒ·$øk;̃A\_U¾aɸ6uG¾  Ư¸đrxµñéˆ1Kµdâ0ĐE?¯÷­.æ×¦ÓÏóâæƠZ¼ĂΕ ƒ³1O5Ä/.û¶™öQÛˆ́ë¦“ÍØNËÆ¦|̃ I¯a©¿'`$%3L拉C̉Ä,×:Å‹4nj“"C{̀M€cưĂ#– €Ư1TôAùÍưª7–|¦LÂ,̉ùOΪjο̃Ïñ2 @o“•Ă;462zn27Q—°~.5dỒT`¢<„ŒZ7ṿumđŸNIù¡¨2[SØn~­ă@2—8~J`åÛ‚Xu~s₫UQ/Íi5&ơtFÙí̉lËÎ÷–ƒ¶ª~’·Rqø±̉Æ%IG9Ä0™%ĐÍ­̃Đ!<3êËʽ₫"JçÅÜvÔ[ư!5½!n`Å o#Ø̃PÁuŒ•ƒ` n{>U ư'Ëẹ́^°ÿVbÊ=«±œ,ƒúµDl6„ȨA,tƲñơœêúĐÜ`¦q–l>(»CBgøÀ{ưy_rœ)ĂM~¸Éư¤Qök_€¯>‰ö}<£đ:†/a¦äñkuê.„wăÓγPápW.zưư]å>mÄỢpƠ k ƒî.₫6ɹܺưô·æuˆ@™ª¦TzlvGƯçưÔ»o¡Ươ²•ÁHqS©b”21ï —B£'ªh¥KE‰¥Ăăœ[Ÿ~.·}Ùu(ÑÔ¾5+“³MKY&>49­‚đxÈÄÇ̃úœgÀ0#œé1«$IçÈYd~ºQ¼HƠ±Ñ}ơ´ë˜§Î9ͦTk‘ƒÈ|w>N’úÛ8+ Ø®¡CvO,̣cƒk“‰¿ëTù’ZgrbÿØRiA;ub4~½Êuw£@jSÜMl"° ñ¥{NŸM/PíæơñAçÑl¯O6SëÍơ*­Û-ªU1₫¬_MGfÁư2éàyOd₫§ĐÖà·YC«·[NÂ2Ä(d‰uá]_ÏñhƠRà81–ob̉g†À®ÙŒ(R® •:jóæÄK¸ŸÅYÀít+ &d³R¯ƯƠËHœN˜ô=û€ÍJË Ù¤¼Ă±$ơªAˆø0}”JP_aB?¨²²ªfiª:˜kĐ—’J¼ÆáéÁµµ*-§µÇwÉ'“ÿ#£¡Kơ׫ ‡d¦UBÑb?,Ë«§§Íu¹Ëâ-ZÍߨADIdH`ص|LÉĂ¼j¼BưÔû½ưcL338Ëïƒ6ïØÛ[-Åbç¹§Æ·Ăªâê2/ÄØŸ›yÈ÷Î×ơqÙXˆƒí÷ªŒUj¸r>L"—«“`xH¡¯pÛÚ́Ö½g‹Ưăt™¯\ä6f£w_¤ï̀é>…> Ö½#翤bÈBw'V.HºÀdđŸ¼ ˜µ[nɦÆrT ư(đá<.®˜°i£ˆ^Ø€µR1Øú$rZT|I ©IB#F; |ÿœ²à[ˆ̣íÇ[ׂ.öJ̀̉ơÎ55K°ÍÈTüîJEÀU·ÿûÁ¬ÿI ơzî©ÂCơ“¿ô÷̃Lñô]¬̣m„Ư%º31æ³̃;̉̀ÙçĐö!$m¦k÷¯ºÜ6‡vsöäÏDGb™$nô@e•)ùƒ¼&$7Ï%£°ç¥!=âGqæi„儬jHŒ{€ ™·½G[·1ó™Ö˜̉ç.p9Wá)ÓyA#Ü<>£Ú&lăă…hô&6>§áÑØ±¼ù ¯æ÷ÏŸ«̉ œQr.Œ¿ªQÚJè\ùÏDû/’Ro ÷®ơGîÅÎ0ỠŲC™ås+ÚvT7ô3&ÔÈ®LW‰IR‘ö‰ÛW! gÑIơrVä₫ª= CÆî‚ùĐïëéå=ư=TGó¥§ơx—Íy7 à{¿D—<7¿¯mÅ;¸ÿ®đđzÄÏH!’fMX,IöçÍÿ±y”‡IªDââ°\…ôO–{ÍYĂR{ÛupG0^ FO6apNQ¸×2³Åré4^¦Ú·XP5ùMßuađăc=¼›÷*h}^ï“MÑê_µFxP‹Í¨NÔ\5N8ÙQBC;6đ~. ¿I” °6ö’OÅ».è(oæ´12a8Mô>gz]‡Å»9Œ\îyç·2SÙÅ—&u?X¤p¿œ ^/}ª9T_åD=Ol¿F¶»NÈÛĂ²t ̃¤{EBÄT¥6¸Äèæ¯lnƠIèकZÑơjạh¶?&N¶Úư6y³Qç·vŒÁ̃ÖW˃4¡œ^9o$),ƯÆ Éül>½ ÓíÄT“Aæiƒåx‰˜ÔxÚsú©Ó¸ójO©•>ơùôƯl€ ă’¬-¹~[ẰĐó×Å³Ë VWơ]!Ư˜-&†IG¦6j©~~,’Wª sæÜ´å…ä#êƒVeßä́?­tÖ=ÆOÅ̉áĐÈ' !d¸úhÁ×oû3G’©¹Ú²z{ÛÉuùÔÊ1–8b s°³Ü;äNŰ8XƠSrœA%đ£+Ñ2ƒđ&ifm±lÈ7₫Ia\tî̃]µÜxQ̃Hl”´Ö~oC²«Pwø#ÓÀ_±|5ê%¸|Œ¬\‰:68Éị̈2(ôø©đỤ̂4*;Û;×g!q±l‹µÝØÖ₫s¼­IẰEÆeªÛ₫wäNÇÍÄj¿ÑhûRùœ}³~6Z¤1E,¿®Ả<©¥Hɾƒ:0¨S~z—µrܪ%¬Ë'H̉hξ˜vœEŒïñ:ÅèM î´qbz‹<ù“¢Ä·Î.è×oµ@“D GJ•7^Ê*Fo·½ñÜ»="ÿzk„¢̀_®tï®4c đáœÚvV2z.ŒÂ1C¡D|?Œó\[,uT‹xHr•šӟ·¨,Ë< ïD Ûi»W…/ÑU&L`ئ̀4H]]—²éÙùC÷Ñp¡mx#ÛœDÁ£Cq“~ivvd¯…–>Nz…2¦qdß¾hêZ-}îẸ̈¡ÊoB́³ÆG S Ñ 3L€-UØm‘6ÉM«/߆Âm I“ø5B—: ]FåV,„ #Œ9\ù‚?Íu2ñĐ,®–=¯»«à7ù¦=Â3ư‘¯etÁ̀âˆ|Uu wy†Ñ@P˜Ôüáí`ª¿Ÿq°¹i®8̣nd¦}ÂÚ¦÷ḱ¯=ƒg“+99 7Ï?s°wïcZuÚ`§m³KäAz³R]¢¯ăëÁ…äŒLT„:½|7̣‰m`¢jaFö¾]ñ';ô; ™xÊó•×è¾¼GD·çK ›gÔ–v̀rIUñ?al\̀Y7óy9Ÿ ƒ‹º¶Û3ƯaØô§̉ĂÚkÉŸÂÄÛj·âÂ…hôK¯M-Èd¤±Íó¯™ê³FÍ̃AóªÈ‘•=Ô…¥d˜-㤒Œ Èß™(%WƯ4½?ܬ«ks–gD.DúÙ“Ká={iÅ[¿úɘ–ˆrRzgÛn©ÈÛĐ\̃q7\’|´ÈÙ Ṕr8ß–0v<Ê~üæ «ù½ifê…ÜXṭÿ˺˜t endstream endobj 2415 0 obj << /Length1 2363 /Length2 16921 /Length3 0 /Length 18307 /Filter /FlateDecode >> stream xÚŒøT&z÷ gÛîζmN6&Û¶íÉ“í́l»&Ûn2ßÎy0çùßZï»Z«º6®ß̃û^EF¤ L'dlgh"ngëLÇDÏÈ ‘UQab02²Đ322Ă‘©X8[›üGC¦fâèdagËư GçO™¨ó§¡¬-@ÚÅÀÄ`bçfâàfd032rưÇĐΑ jàja ¥HÛÙ8Á‰ØÙ{8Z˜™;ÆùϯJ#*íßî!G #[€¬³¹‰ÍgD#k€²‘…‰³ÇÿPP̣;;Ûs30¸¹¹ÑØ8ÑÛ9ñSÑÜ,œÍJ&N&®&Æ€¿JÈؘü»4z2€¹…Ó¿Êv¦În&€Oµ…‘‰­Ó§‹‹­±‰#à3:@YJ oobû/c™Đ₫Ư=Óé₫íư‘…íßÎFFv6ö¶¶fS k€¼¸ ½³»3-ÀÀÖø/Ck'»OW kĂOƒ¿S7ˆ ) >+üw}NFöÎNôNÖƠÈđÍg›ÅlÉllLl`₫ÊOÔÂÑÄè³ï ÿ~\+[;7[¯ÿ S [cÓ¿Ê0v±gPµµpp1‘ư·Í§æ̀̀ÄÀÆÈÈÈÉ 0q˜¸™3ü@ÅẴäo%Ó_âÏ|¼́í́¦Ÿe˜øX˜|₫€ñr2p58;º˜øxưSñ¿†‰ `laä 041³°…ùĂ₫)61ư₫|G w€6ăçø1ÿúúïo:ŸflgkíñÇüï'fỦĐ’§ùwÉÿU Û¹¼èXt̀,,6;;ÀçY ,₫Å?<¥lMí\ÿJö³KÿIØơß@ùïơ ü/—œƯçÜ(ÿŒùWF6F£ÏoLÿŸ‡ưo—ÿ3₫Ëÿë˜ÿߌÄ]¬­ÿÖS₫ËàÿGo`caíño‹Ï¹uq₫ÜY»ÏM°ư¿¦ê&ÿZ\Yc ›ÿ«•r6øÜ![3ëÿ6̉ÂIÜÂƯÄXÁÂÙÈüïÙø—Xơ¯=³¶°5Q°s²øë²è˜ÿîs¹Œ¬>¯‡ÓçH₫­2ùÜÿ(fkdgü×’1³±  <`?'‰™ àÅô¹Æ&î1€̃ÖÎùÓđYÀÔÎæ¯'eg0ư%úb0ÿA‘?ˆ À ö_ÄÁ`ÿƒ˜ ’ €Aêúä”ùƒ>9eÿ‹8?Y₫ &ƒâôÉ©ô}r*ÿA¬•?è3‚ÚÄ `Đøƒ>³Öü/âúŒnđ}Z₫AŸ–FÿElŸ:#;ëÏgù„•ơ/‰Íÿ¿̃‹Áø¿å3 c;kkÇX|–ḍ‡ôÓâ_ăóߦ₫¥wpùœû?.Ÿu›₫qù¬ÛÔÂơ©í\₫ăÓÄ́đ3Oó?Y¾¯¹‡½¹‰í?,>eÿ€ŸYY₫~öÈêđ³²cÿ¬Øú¯yü£ÿl›Íøyx₫„bûä²ưœăè? ¶û“Ư§³Ưÿ¨?«³ÿ£₫$³ÿü€²µ61ưÓ3V¦Kÿ§•¬ŸeØ^;ăĐ}¶Æáđ³5ÿhÓg₫TÂö2qưG£Ø>Í>¯đ#|Vădmàd₫Ï Rø¼o Îæ&ÿx­Ï œỨ₫áđÉạ́gæ>c₫ưëddçøÏ6|6Ươđ³Mn ó'©û?àgTÀÏz₫Éù“ÉÓÄñ_üÏå0rqǘ¡óßÇưó¬üÿưYmbânb³¼hgÄlYüó±F×n’ol_=•ÎkÙ±Ăå2™ª:3pÓñ^(y¤imWŒ̣Np…đÍë´µ2¬-Q±ưÅûU/^if¿æ×4ÆàTá©Pư>4à÷›ƒ·Z€h+p—4Y®ƒ '‚B>ê£[¿„{ư@ùêxèâ¾âA5ûØ×̣YºƠè¯%ódy†Y XÄÎtøPÔ(Wîˆów÷s(9S„̉ñ40>g1,E^Z[̀ß<ר0;uc“bkaáƒ̃¡ŒÏ{ }—Æ\̣*-̃ä[Êf¤¢Ú ôë":çÖ–‘BÁd´v\æ’'ơi¯gĐ胃ÎÜWÖ·§®³?EX¢1us—È—o)î×=ƒ~w¤1–u…”óđ:Ø^»Ó<½ûrz^7¥í9ªmº ³ƒ¾Ö,¼.úæàƒ& w{ÀÙí]h™QFZëƠg9uf?ç~à®Ü1X!vá‚Y˜œ†ˆ„Z˜̃ÄA6W‹Êúº«Ưúk•öö¸ê*½ĂơÁ;ëỹ¸V*ç—O77¼F뤩b)6C”fBK£øs-ô i‘´‰9…‹#å_j¹I¥W«gÚÅÏ€'dĂzôÊó^Œ‘ÌhêOùøO#Á浲 üZSÔñ"åîĐ"%Ù4Vvyµê óÂ1pÅ&´Ç&Ésc¤`{Yîá£÷ ¾#b™Û[™6‡ËiWf’a¿Œ̃T‹÷ ˜)¥})«×‰˜ˆăUSlé₫@ŒưQÄwW¾£=×—¸¬SCâ›:®5×£ơËcÔ}¸:º.¬v(@\T;~î(ƒ¥q¿m‡˜ ¯=DÁçɧ3~³«oÆànÑ’^ïm2&weL’°qƯö F÷äqĐ-vdN¶yÚƯ¦eă@³*mœÿl ̃qơGœ½©£h·7»`ÅaÎqÎ Cu§¹÷Ô4ưc‰’ØÆHÍ—yP›Lë{Ư5rơ5̀¨ơ!/‚æü«7ñ~œơË ü¬†”.Ü•…´–8ñ/¾R¡E‚*Bk²/̣ ‘ô<ßÖă¢%Gi,B5j³y|ê³Ñ,45îÄ–\*° µÛ¯Æ Kư,̃΋T`¼–årØ+vİ2K¦Í/°^¹hŸÁ»ivô}OÏ̃Ïb₫©í<=;2ú}¥ º!SÀü6-²Å0sûz„ÔÆx°H?’ ’Á€D˜{]Fơ­̀[uær°́4Úâ©U´±Đùĩ8¥·$—ïGF&ÛÄïŸ~4¸M…–=d§‚);¨ĂÈTØÀ3ác* @Óá8ªkÓâǵq­LIÎbS³Íëù‚đ3ù₫˜LØ}uâºJßé²’³nz‹0‚!u3‰^¢A¨™̀Ü™»óXssZXº+v¾Öpx®x̀0áSE4Óo¥]ưˆsÔ¤h.8a 7̣ă³µ́d̃éX€X4B;sc‚‹y}?bñ7̀‘̉ ËŒ́ñh©ă₫6¾oº˜W¶v•¸r]üRjjvFÖeŸ÷ÂkqM(O@IáU»P7†àVñ®| l’AÁ)úq=6ƒ»SÏ<5Ù}àCđ ^é/¼Pj7Óª Ô“r¡Uœ{ºüA‘W,ï5#Ñg°¡>đ̣8ÅöY¨`#4?L“«¶4ê¹>Za„A†¥Ï¢«‚“£à CSS³Ûṣ#^çAI)£\¤HL·í‹äVè|›F`Hø”ôpmˆêD0¡»„Râ€4 è]x@¢›Î1a\%/4yCÓ 1X˜Ö* ´ôÉo²BŒ8Ăåº}Ysë¹Lÿ’yFWŸ¨2¹rÂ&íö â—9x ₫äL±-9ZnÙ#¯He f%Aö¯9[tW º1₫«Gw~âôæ©}à¸97/Öå¥năËrUªö%ú••·;é²\µ{zh̉f³†nD;)pă?úFUf“€*E»A G¸Ơˆtü,óÜÚơ? ËÀ £)ö{ơ·̀u!záTTb¥*l%#L¬÷̣‘;&n¾=ôå꣬ß/î¤úß/­(J ́Ă7(ùÀ*4™Zî+"rU»f~”2œÉ?ƒ«À铟áySb}à¦9³˜øÂ•ßå.9@‡êº#ö:Ïê®ÇF¾›»Üö™̃O{›]b¼cÍFa8f¸î@û]̣ ŸXsÄ9° -'gû Ơ/qéà2AЇk¼Ú1{Tµ>¸ÄÊsç%ª¶]âY¹Vø·ôí°:' ·}Üw¾Ç*‡xgr.ưèÖ¸¦wv7•0{¥wSçy I³£í†Æ,–±²ú̉èÉe eföJ l}́]A₫× AvØ€º`ô>¿Ë•d­‰ÿŒCờèØo¢¯ ²ˆ¢-̀¶Eq:m’):ư°X}c°â²tùCm ®,U΂†ëc‘•9ÊC‘r¦÷}s¾4¾·;’¸̉stÁN¾W/Éû‡‘Ö;§páA`³–¿ázçÓ– A‰û÷}\C¸C~âIôdàHÍîË‹̀Ȉc•b3ák0Ôå.Ơ7ñéjbm{^ØđQûIóè_=¹“Ư ¥×¡ª œ₫S ‰y‡2¡ơ₫Ï ‰˜¯Ü_¢xªîóÔ?ÈÆ5’‚ïÀH…qcpÙï6ˆë§ O,J+Q³kÓ©PŸ³eÆ̀xhéSÈ6¾Q‚ÂVBUŸÊ¢V(‘ Æû«›âEƒ ˜<¤¼k”'(uö‹ Âê”2ËøŸ„ö±ƒÁ] ˜Sq’£3 ™ƯO$Âlc o¼rFj–åˆƠ`ö́`Ú$e'Eoöy PçƯd²Ü·Øá`?|#íd­5®i¨–É́ÓºN橸(Ùµr¯ßđ]ûà75Œ•Rî*M0̉'vUcÚ ‚5~Áˆ "ù=*1ÁÓƒ‰̉1̉xƯ¡Üơüz”Ü&J›D<,‘•p¿k(œ359üºÄé½¶*1•½±~ù•§MÆvpˆ9|³ÚPc-—‰H€{ }¹ơû>†3 A߆Yë̀C²Yp¤r—‰¶gzÉPˆ`tÓœ*åYô Ô’î9*¸ÿL>˜ƯơÎÓ¥0NĐ0:jÚ½Áhp]ßq…ܱûAế%;v¥U*IùDÙük_“ô"DŸª°·̣n¦k‰<ă¢+YöQ EgZ\ªJÅÊư*Ẳ̀0[2Ñ’¦gç²">z$…¬Đ̃¡«ü–Ăï¿î±§;í—n„‘cÆ»]Ushcë]̃đÆgÉD•5‘·©%@²<Ï´ĂN€ç)GK³p¸Œ#¼¿ŸiwÓR €øă€ơ]ÙuÊsù³³±S>F†°œ§QS{zÉK ›„ï„߯̃–lÀ s₫¼q p䮡“'E×0÷₫”ºPCy?+ ̀H1›Ë&Ÿ4ÊÍse¢d8:0g©æv3†m êô”×k-]âÏÇg¨lçY…׳$ç~ôüi÷údÎ¥á9%¼Ơmz̀¯^£ú.ëÚèḄ%·dÇ­,=ᱯ!½_mCå¤ Õ£¦n̉̃rÅ+­~ÔÁÖƒßtÊ[v¥tàTm®Đ4@ª›à,L;•É.¨¥DQ•?¦~ÿƯ³Y.}­©v=–ÁÙpÖÍÔóaL"-Ă„!€*Û0,€J̣ÇØbô*†ZÈ ­¾éÈz,‘jù ع ¸¬JÇıø…uÓ'WÛđev¡̉)ßÔ{È»Đ[½Ơµ(Ÿ‚O¦%e GÂ&9Œåû FƒÔ£B âo°«×*1³¹0É ] ¨‰eyÇ!R=—v,¹ä¤¾‚§²Å˜/¬#̉}MŒ|Ú“!0œGï¡­6“·¥àDy.¯¬"ÂÄ›¥àÁa„í†fúQ`ÿ6ĐXâ•Îư¸çx"Λ4ôW™üN¬ˆ›äf?i™¸`®ÁôPÏCqW: ̃ [́€È;EyùÛ﹇M¢6Ø„I/Î`R—PÚ8…ƺB…Ø‹À‚½FÏƠQM~#? 8ÎâûaN`¹yЦC{{^Ǜùàœ*³À™Èb@‰=Œ¦äíÀ§pÚι¡ÔK%…qBH+ ̃uàưÄÂ8ø­SưpçIùđ…ÁtëñØ{/ꯌ*°dĂÂ+û¹r¹puàŒI)öØçï2W I µđ+O¢Irûü(?Y—±ŸŒ;ËSz’]«ÙĐêANÚ2ÙLĐûEM•hø,@>œ*V5â9ñßÓç§ml¢üÓWyÄ*«eNúu2%½+•{kjĂ$wĂ]]%Wcø %û‡5Ư탈åÖ‡wu¸Oi»€á‡̉›`evŒ§Èƒ+“‹."`(aM3¤T0ˆˆZ •<ƒÔÉđÀđœ)SôŒy³œâöù÷+b=ç$¦¦̣ư@#Ë,1ÔîB–è»àAÏQr Ûl«d+ ÎVß÷öçY¨’b¿ˆỈ¡øjyôåéÖɇ9ÛKQˆÊ GúÄRc뺋K´ ˆJ†[¼¡7ïésï1óK7¶¡OH@NN‘ŒÆ¼<ûá ˆ>7áÔüuHCWC|)A0ú5§Y´0éṃǸ¬¾‡ÄIq&樕QÂøÆïïéÛ_`‰8…G;¾YĐ¯ÁØƯLa4.¸„»Â|iV˜`Ôâ-Çÿy#«›m'²½x™Ï«nl`̣^×wh«ÙŸ¡s‹×F¢Ơ5ÆĂŒ‘‹¿¤˜€é¸øük¥Éä©&8e'äa)•æè…y×”e“£Æ;AS2h÷ îzóˆoé8²ï.hÜÁ«·Đ‚ü‰’ǸP<‹ĐÔ/=Ô—Ö®̃"0/™w¸>Få„#â¡¿™Âí¢îï’‘}ø1ty˜aØ•T,û;ÅÀËĐîK†ÔíŒj°] ®Û‚₫ KBÏBŒw¼R§¾̣UÅsâ°̣ó¢Ô¢Ú×~ÈU‹E³á¨m½M­F½3ËP¼ª‚÷$¶ÂêR 9N7DÙp2H1n×h˜ÈQâ`Đ–¹̣Ë2¿íDƒbw )M¸oúơ6pµ“ƒ&17——eĆN[ü´ư8Z¶£ø}¥,½Ñ&Óă”Eµfƒ¿́^ÑøHÏ”?rß×~<ƒWçP€îHsY–³2ĂÈ%4r³ˆˆÄñÈ#ºóúa × pñu͇$̀a {¡=?˵G6Ư“ûÈغdûa±®æ¨ioÑĐçë…”’:ßWÄ1Đ7ùŒ,ÍơͼV{íUđ̣f¸=¬µlbŒ{.̃†ñ>ĂN].Xâw„ØÀj Î4 tnJM%ơ8._̀S;è¨Çê]œç/XßeÍF¾ó#T(NhV§Æ×̀ˆ”Ï>Qđ‡>e¬?ö_0ˆÅl œ\́nƒØW®e›L~ óሄÄX¦ëÉ Æl‘©ơbn LƯԨ߃¬Âv”§”€‚űMEaß%Dû›Ïe±Ë¶iˆ,ú&÷PGH@á&Ó ¼O‹RgIœ| ¤îZï!;ihêÑZø„GN»* Y„4ÓôSB;Đ4ä¼<±L¡Û½¥\ +=íă´0Ö‚q,%÷È“;PÛNẓ̀¿6£Ów(eíZå¡p»üj=§MèŒÜæ9ă¶Ç3cdTÄơ½úXN™ó Å++a!Kó‡4«ºSë©#M†sú[ØU0Ơ¦ y”Œú¸â<ü® G"Ue½Ù½s@è̉ïø‰ø&búđ€p$±Œ7êÄLÙÑû@n¼ê;K›ŒTP¸r¢Fb°.4–Vw´~\^mGÀÅ^ØED.ö©mܺnSÛwn¬W—Xâ@3Ú È8ç̀ºđ®3ï:Éi½ºÓ*4K‚O/RÀ¯Î”œĐÛŒïå·áñön«™™q‡p²9F/“ 'çäÆ}_QEq́æÜÖlăDµŸ5̣DŸ(éLŒº=!%S̉%ÙNv¿Å̉Jk•µ£B ¼ TK<ËÉÈQkQÂư&“À=’†)‚î¡Q=#j]¦‹“êN_̉¢X˜SÛXé́µ‡È78¸ơ§ZµúñÛxj« ÖC¹]Ưï̀¯™e‰fs9´àá"¥”"kÙ­ü¡±v[|Îû̉À±Üyô´…ÈơRâvqζÉăK{ÜËïîF ¬ÇÊ:Ô<¥»µcÎÆ lÊ®l”ÄDơpb‘»œ¢uCù̀´¿8W^ƯỎŒ)ĂçëM§jf<đB- 3Zªí¢¡¶+æÉN‹ơ›ˆ*Í”đçXÅ>Í6µ ÈûuÓ‘¦s:‚/êTÇéÍÄ2˜’º¦‰;…æ¼l“̣¥/&²s³xT-5®˜ºP$:e›…>“‹XøOí’o [R¹å•K#₫9‡S»§]0ºWoAï–¤([ 1+%<¶gU>ËïÊĂIÍ?¨böâgƪ6ù¾#iC¤¤÷Ö±ö(§â‰²®4|<ˆÔûm@N>¬“ß¿#•8Ñêñ/€L#†ƠĂ$¿ûîÏ7eĐ/¥‰LXt6M­çrÚwcă„''¥@á‚Ï“"—e½æíDJ‰¾iÏ9L‘ÆxS>\ ht³íaLä_ b¤­É*̃ÚHÜA[@";éÇä¸ÍÙ»p0¼/-‹óϽO`×%ÈcÛuk=?½,j3”/0w‹ç̀}Ö}†&K¸đÖ©ƒ™f´ßT ̣ ÙÙD®d÷›î‘•à -́Ú~Ù[ùûŒ¡Ü!˜p)D… 8ö¦ÆU₫€œÜ¯{ËvP~Ëu–«„Ñ"Fe ¤?“ ^÷ ËÆY˜ó¢åët×i½yk$qç‚$ÂB9sÀƒÑjÇÇtå¸JUà˜:Ky5ïÍœGŸ—éiر ä5ÿw#ve·­]ÀḰ†à@À.æCh¶¼5ضAỴÏ%åé“g´j¨Å̃µK"âçnP˜½Ơ' –mpL?J·À[í¯›w2;ç8 h¹­‹h QCí!îỞ–÷6jpshh̉»ø×ư˜ƒ•‡êËK(ßœ_bs‰¶Üy»Œgó¾à/Ÿu·1wÂj'±9.—’'1îv"’ơ‘>\S¬¸\•S/á¡L*ê4&Ï&<’ñ’÷ùB7<Ú«ÿ85W0!ê@—96éÂe|÷d³ÜÚ²*gä6[×QÂЉ;O¦ ̣̀V%ÛPØW ]‰•ạ́µ ¿¸Æ˜mˆÑA³8à̃4™95(Ê/µºÓ›ưe6ÆZèºÔX­{®̉Ÿ9º9¾—@  Î|̀đưăæ]Gg¦/Ú4¾x̃$°NBöø†‘¦|xÅ_Đ@}¬¼ &ăÔđKÖs†}̃aƒº˱²)«¾ƯV²AµV§đ”²nœB>U´"̉ÈÛû´ÿ5¿Ø>m!ÅÇ7>?x°¥‚84O![ü^Ư 7ôÍ4Á~FßÑVĂ”dÜL窦•̃N Jœ-?×—_ÇlÓhyîbSă±*•ë+Bs­‡¸PV_ß²xÛÙE@é¾àÍW¥̀ÈRÔ™°iË" ¼ÔÔ€+ƯG’Äïf€h]¶öă4dlăàLŸ4¹)gèA£Ñư;Ê®›k¾tÄ ´Ư¹S‚¹?Áض»µ{q±„âS¥ºàÚÏsÔË ‡cđh˜f¢“$÷Ä^^s^1·EarØR~î¡Ó)¿ W†ơ¯ê¤Kô[‡›±ằ¶×XRµfÉ̀ÅĐÚ œ:}-á×z%ɳü²pÓ‚kX•̉¶J¦Ô£6÷?̣Ȇ́<“ÅènS\xSz­ơêÀ©HÍ¡…Ü"}"x*8Ơ3÷³Ÿ“;¤Ô9…oÔ\ÊópνªÔmMíkŒE…qứ ÙøṔvkw•J°ÓÅÍ…È?i|} ¦Ơ¥»Ä¸?ù>'ĂjqˆaÙm B.ü–Ơë\: ­ø-|Ÿ=L`;5ª–>̃ùdËv!‡¿HBóµpzQú̉‹ÓÈ»71UŸƯM.Ê«’{Uç¬px˜á¢êqĐ ü~xe;¸¨Ê€1̃arÙ˺¬7§¨÷ü:cp³¤£pëÇ©#MZȲ+ú¨₫AŒơ+38—ÇE>”Y^W|!ÿdK¬§/úhÎΩÅ‘ÏÆ0Ö*•„°0–½½a A—̀|)Ú6He‚Œ%×µ‚1ä” ;=| £L)P4D­ú¬eÛ”úÅ›§_ÊïY·¯t$ïB™MrÙ]hA¢@íhÔ ¬U´¦Ơ•9o¤8E áÈù´x»¥Đ„?—{ẽ9nû|ĂâÏ•ª@#»‹".1⥪låN^ï2½Éhổ– ä€_ëĂĐ¿ÔáÏT$DssÿnH᣶0Û!ªº…â.S´­>qö¼ŸoöR!(Œs¨=™ÅßÉqíă7đKCÓRäT\3Ă",-+ 0˜1èûơ­}×Ô0 X̣c₫«ø¹Cø¶KÂ8ÆŒF=½œƠû²µ)§]ô‘‡•‚ö0•7-{›ªôĐPC¼nO.aæ.GÄñ%«(5Ơ1:ñ`¾Ùï2<~R‚È…‘Ê,P€¼= „"È<¸c[h$±¬J:&P ÜN…‡Ot®N\Ơç¨×Ü­áR¦í¹¤ÆöÍÓXƒ÷FAÔî®K7<"At©†_ơ@ÉÁR¯÷.ưpC÷}-,Ù·́m"óx€;SĂaR”rqöơ{¤ͪaFàª̉{>ä- ¥Xaبh†éüiévÍ&=Æ €̉T)’³úV_́‹x¨TƠ–Ôđ“c È&Ëm:†iI¨]Ơ,{3µ£ß0#PÄ–&hÖ@ l kO:>X\£Ù¢.vÏöâth!ÛÀFjn]@ÓªråÔ¹l§‚²}ÔFwïCÈ‚©”E™Ỵ̀‹O z›îÙסdÿ 9)•LÊ L¸sMaĆ_/D E{Ü£ưDTJÜĂN!P“"S™5óêL{êq—²0Æ¡¢Ùm܆† %%€]2¡«£Ø1ó¸%ăº1ờ ت`eI‘'ˆSGÑäÔ[;¡^g¯Y'ج_¢øæƯm̃°mL‘€`ëታë¹KFlÉ£ïˆú9DḈA“€o75s#déü†„ä“ư.Ó(È΢„«æṔ¢4{K®÷vÛQ‰îÜ·y ¶¦‰#@yʃH=̀,ÙwTX|úˆ[êä=ñ÷“`;ơxl 4ă~«M !DœÑÏ¥)Ômí ¯Ä±‚—ƒÅëK³y°!!Ä—+[Ç̉rÜ'“1i¼Ù©­ƯiŒAøûÔ¼·û8â$=¨̣%Ö”§/’ û̀ty75FÓÑhCÎ\ssEụJœ««¤$E¹–ÛÓéG, Ê[oâÀzá›T<Âé¸R†ˆp[Äû…¦X° §“ßµ>J<­(®lp*/€Ṽ–<å+/û`TĂÖEư÷T—i邡⃀æ âxÜcœ©eÅ9i`$m²^*ƒk?€‡ÑdĐ6ä¥nºñ‡̀w{†[†t“NÍ›‘ĂcÍuM£(~—%½‹ å3°×`¨U0ĐÀD·¦D£¾çñ”R›ŸƯ?0ä±>¯¿Bf{›º[(Ô ăX/ëïaùªÁ¿5XºÓÉÊùơ¼ %ƒÏM‡‹.®ƒ´Å ŒÀ­æ™a#l“&_!&À—Óû$°@.Óµ—ŸÎÚ³ñ® ŸÅ×x¦?í{ OÜ·É·§|ù±ï\Z?Đ~Æ₫z¼N®$—„2T¸ó¦¾â…ơcƠåđ£-L›p₫kiWj{u“¤€[̣Æ¥o±P‚Æ!°ư Å‚§ƯO© ‘H̀‘H©~×2|º¬A‹³Ï$÷ÔA„¨]Ñbg63’sVÔ‡zưTyµ…ñY‰;„óđ/„-ΗGIs?ÓĂ|óÁ•Ơ5!ªĐÜ=ăƒ¿ZøƠR@M±:<èœCáĂP°̉À»¡8ùgÑû,e:gÿD‹¾÷>$ ƒq\g‘₫Xc?-¡¬È,¿)đ̃>l̃é+vK“₫rúœĐ¤ƯË»b)Ëtí²\~ŸGE—·¼?F‡’Y³+í@£ÚvÇä ₫¡‡ØµQ¾¡‹ í̀Ù“ø0U¿Ḷƒ„Ư‡€¾Ú6;¡Lhú àä]¸×4èG/LđME»zI™úµ¦z>«”áB°¹FËÅúkîB₫/ƠđU´Çîd$à÷M§ÍË–›{ëhA׌t½ĐØ+Œ'ó…ÀyP6(ê_*B‡L·¼Bíߘ“à¿ÿ*k©µù ½ñè¡•î ^¬Á§2³…#i}ó䶳˃FéàR¯Ü—ßÀÀU˜¨‹tƯÇ„L‚›UæÁ—̣g ₫”¯¨?wbëÙ÷̃ïèȇ'y)Då‘a—QÖydÉđsgÓ 1Œâ:£é¯̉¿,påxóæ^̃IgŸÉÅ«<Đ.ôNéÇ„dPÉ+¥QÅ:"DfçsÍùÛè&«µGü+&Ÿ^Ÿ¯…â6VíjRsôª±¿‘Q˜*ûuñÛtu Y¼AO¯r¾gÆ©Ơ˜ rº5&³äpjÿסi¦$É…0|Mªó–b§0ó>P>Ć&©Ÿ ¡êSl~k½ë±z¡©́É#ăQ¸ïÖ’fPZđÂAƯFN@M<­Ư)Í$0¬=iÊZ0§¼YÊ\ẹ́8ƯUÛn ‡§ăJá׃ÓVSÔ qĂ7(*ùlV¨ñ¥ÊwM96-s”ØÚö¡̣©×ŒÄ®̉ä¹»đCï= :ÚF0±´÷'ngƯ‘~ßú AÊ/9ơU ­-v¯@2$ûæôV̀+̉·Zăgicp¿F$&ˆ”~=źÿ₫‹[x·±9¼ Ơ€ó7³7{.T¡§¹̀€}¬%¶´*ë™dëÑ́û"m9zI¢ÇKoŸḉư𬕰¢F #Y¢§÷̃vIHWEđºk 0½e~̀Øï¶#¿Đ‡4ó^Ïù²̃AÅÅm33Ä05H—Z8 ®JSIËÆºg̀á½̃đ˜:ÅŸh9èaézrp{™¡̀ˆúË®³FÓZ1ÛÁôH$¿×‘©˜đ4ѶṾ̉Œ¤%§L; $˜?7·(ÜñËĐ ¬‡„äÇe€ß¼êÏù l'ø×zĐ“S g_µTÀΗ´̀ yvl ơUMœŸs&]Pâ3Íăn Ë0Üz±ú΋°iK‘é¨F‘ºo@jXö›(í~.Đh¸î‹Qb!€¨¯„ôo0œ½;ôÜ‚d–©Ơ ±<¸ÏGI¥€̃*,T46= âc´¾rc ¼gŒ«øU[™Ñ9öSÅÿĐzôÄ̉k¹XßNTåÈè™èª3›j»Yhp#ØKÈè‡qóÓQÍ·í]£••Ăm§¬C rÓÓ®*†ÊK±ÁM=Â2ùP ê-¨+†âè¹ÈˆTƒƠÍë²à\VVœYÖÍZĂƯ/hÅí ăR<+¨œ9ɨ¢ˆ½}NÎ8̉O_1Ư0éƠ_»̣?ªĐ®cënZׄóax\àkŒ‡]ŒSÍu±:~-„éó¡ÂÏÔ”£=ˆ¿œL>6èzÇ{7K#ơÎs¤©Î¹{77jE{SûoÉX²]oz „*«¬—›äwGO^K¤êp« ÿ‹ï•ÊÆ ’-TkØ2™Û™­ AŸ”íÀæđ¾7–ÄïJ¾Mđàä>Êđj‘ơ¥(E;ú¸¤XPx*©Dî Ê*…Ú\̃X#¨©ÜÇ·Ê»{ă 4/ªt²4 ‡F1¸{Ù@k•V@Ÿj1?u.Á »øzqÊíxcr qU+KBŸ̃.%$ơv»n[·Wù™̃í­ê—°_m–7™_ÏàsÀÊƠ(&—@‘ë ÏvEZS©Âdªb3ùö©ǽÅAh­7gw£ưB"«‡`›à j‘ṇ̃œ˜‘Ïéj q̣¨z\+ß$ª½°lrƠÊ₫î " É®}é,h·r•`pIưA4[§ í·…ù+ç/yçëwËø¯ÇBl…Ûo2©I ;–•Äáge[Æ7Èư´µu½›È8×ùá;ñ÷_†Vp̉뻳æ:ô—I)3_© ë´¨:–óÀ1Ñe_¥úkö5H©0’gûé̀ÀªùMô^Q~1 ̉öú­Ñ«4Jă~Đ›ĂqUç«O êüÏÆí‘.íî~ÈĐùoÆ*ñ]f,Ä´ˆç˜É¡ơ Ưˆ̉o؇o¹…¶\‡ă•̣₫x³¬*̉j‘É{×.$©µeUP 4Í™,¿¬dñ1Œ]Ä ´M̃‘,åGđ’w€CÙ`$•ˆ đe WZ[ @g„¡ÀB›́XØs…̣€Jp*Óq¦ƒtIµ‘™[/ºˆư8Bëưúk€±¡öl8L…ólô+>DAâ °D;ơÏ:Ç[õ¼tJ~åv?ë†>»é2'ºR]ÅdV>¯z‘X´n¿¤çë«$Iªˆ«§×ß+¯‘/·º´·Ø{¨ëVă¼W$H̀XIÉṛÑ aÉq¿j9»%6*—̣°½‚£Ë\YzTÖr¼›ËÀºñ±“ưd/ÅŒïའÄê‘ÅÑè«Ê‹*’Á´&?fô›ß& 11~ù„ù]håL´Ÿ€1!åÁGÔxMË º‹ES`ˆÅ™ˆ^E%¦¤₫p2Äèd„ q3ă:`•FgñSú)"9ËbÙ r~©,̀ø*k+{[µä^à¡åÔºásÁoĐº×ùˆĐåcĂZjè`¾ü$I_Ư^ ₫ˆÓ/“I{³ˆ!„ æơ­_Å O“ư+ÂqÓ.Lx FñªŸ®Ă”r!é+£.ơ ‡²́YÆLèô†Ñ]nA‰ÄUaàUŒƯ–ǿµ¬³”b7Ê› ƒÔÄë£V¬.Ô°J>›¬s™DÑ÷kªqméÁl{Ü„ó‘¶T§HU}Ú%#ĂT„ß….…40ß̃9ø9Øid!6áÓ˜î;©•Jđ×^ÚDÅcÈñ§—&}¸êûàư˜$½¡+‘¾©Ûñ`OXƒ¤–“öNq:z’÷BĐî­s/¯# ÊƠÖỊ́£»·È[xxT2vJăZ<úÑ̃K°£zöäæ99±¨½•b¾‡’aî́̀Ñ¡EÂdÈÂxgbCçĪè=XÔr¥~+h€¢^0±¦.8l×¢½.$đ˜†ôJƯYÙ̉”|ñ̃†1Om¿´W?;Q̀bx—WÄON[zơ,¢zf4’yK_ôæÇđ¸™æ’^:åë^ôâƠ4aH3°VÄ#DiC &ïö¿S/[×SDƯCßIåÜUˆ'}9Öˆ¬ÛDú×vcïÓ†Àµ©Œm#ă—̃oD¦"#iJןJ=ÇÅ)8îèå[êíÆ¡W'Àc9ÏrœäæÑn)TR´ ñ”ƠwØwÄé¨a¨Pѽ´ƠJf[$‘FÚọ¡,P©hpÈBKI&©É;|4¨ö”„3åhq²$Ñ61́ügEæ&t˜„(ăbШ”áp¼w0âê@Î8äóÁæ2«U¹sÉÇFIˆ•eÙsưÎ9̃0*¥•d4œ*ê!N™ºÍ„!xN:,<®¼Æ¥›Á²P} ?<Đ{.~/ £6é*£Èû ú/LRŒwăû&3¶éÙ3RùBË̃ƒbÊđ™<`Óe=>Oî^]Rû0ÖB¤vdé$ÖÄJ,`w¿ ªHr£‰ ĐU2Jù€w £ÂÛ~…?J£ Ø(V4`$„J1~…-<ư6{nNm½–y-Ok¾ŒŸó²{£;3P™¿Ộf›É'̉j3¥BvïÔDxƠ³U— °s ”È¡v ±79nÚ“ÿH—µŒ;kṿ Rm_‰V‡â_L?[&H6vÖSζ¼aàÙeö שŸÉÔêß)û½ZDÂó«Nl½¯mÏZ~G‰„FÀר¢ö¼qpü₫÷ÿkx„›S:đü ñ§×}÷w¢;Åö¡ëˆÄưûm9ÛơGí5:®öa«%.”—ß*úƠø·^ W`jơZåNHáR#TƠ0ßt±eCü¾4Đ9̉Œ̉§9Q³Î´;ûaUå cr£–¬IR‰RºƯ‚å&ïØ±—6 đ»ư›Dµ÷GC«€¾4’/Ä0ï|&-ËPçtm©¸2®‡ï—ѱS”(#@b0:o’]Ä*ªÙ+(̣ơÊ.+̃úµœítŒHàæn}r^7>ª7Yí²‘4ßơŸ  ófÄ“u˜ûø÷‡¡ơ´™9BáfÇ+*éçÔ7VRư;VÍ‘¯&J+9¿¬ƒäË\GÁ ŒHJk¶‡98C?2hËcØơîK:ĉô‘ÙÅö€²%Ws·Ă½„ÙÑ+d*)Ư,Á“¤Ÿ̉xq̉¦ß̃"½Ú<½ö4ÅÖÍuµXp=0â8¼Å^¯çÇ©ŒEelk1|;ÊPÙBê|I5`¥—ÂX$œX®ˆF¸Á̃›¯·ƠÚ£f`?[“…½Ê‚6mÙ!‡k‹~º´®£¥~¥>[–ÏÉKôÖijf¸`~{đ̃[”lèå Ó‡.Ùt́0¬Í„ N§‚wV·)à–/Q0üz‚%Èer¢à/»~í‰Éé4‡oÅDØ„O₫Áyǯƒb(ÆxÓvCKZÑŒÁRÖCx±ZDi”™¼I\*¡ÚjzÎU&rŒ§ºj/ ñ¨ K¥ălü´±øăB\̣º@Åq’• GÍ(†‚X«Masxd»uW£½2Ô¶Óø̣#ó ß¶ư€ñLÔ%âwDº!‚ñ5kqRYZ₫³˜~Ås©BÔ.æ0|/Èûoœ@ èÑ¡ÜݲïÇ̣ñ@N]ÀS€ÖP!᪢KKD}Ñ—9çxµ§5¬**ÈáUˆV„æ­fVF¾-ïæ˜‚CÉä{ị̂mÖ®Đ%×ÛA|Q!£†ßÇoø.íc´Ü2ß¶9Ç ª³)¼c– ¹µÔl'‚lüÊdÄ +cÄ,¹eáưƠ±BáJC×àM‹Û]æH Oœ\BO@¸÷†°đAÉPrífsßíº°í†sÔ[ItŸE»Đ„á$ ‡bøa«–úMoÔÎåC‘ßl½Ư°{ơµ(ˆ@¤q‚W ªÇ*;#Ñ‹q£¥o¡Æ%•÷ÿÛ$úywKi»#öF™iTđ5FVˆu²ÉagÁ=²DàđHÁF0z–$º-½Ë¯st€Á›³{¦`ô˜̀Yå¿ÁqÚ—ÇÅúÄ*~¼Üíë.¦_ØM±₫•!zưÆN-œàñµªZ%Ơ˜¿¯d xƠ°’{—Vr»½”Rư_/ècøê±´ËuUÉBF9÷ñÿĐy{~ø™O"í¯û‚ÓS)’R´ẰÈu||½ïsík·BM(ꃗ؉ø5å Ô¹L™¸îbwrc{âQsÙÀ N>à¥äÔœáoâ¼~]´êÅl•%Ôd! Ø~iƠºø( >¾m ₫NF3.­gû2 ’»@Å ä³Ió½º:ø´Á»DzN_êđT`X©^^ôëág¬Mc›rƒp—•F»|ù„7¢²ßsÂT¢|Óÿ±å ©zHƪ Â1ăá¯00¢¹„qC̃£·#S–˜åÆ@•ă‰ô`¬êí-¾è‰ú«3ƠŸÄñ¿Á…î°G1?ùßpử+Xư•ö Ézfñi\ä%Æ#[Íl+udzä$k₫S)èư-”fÛ©|øˆ] OÔTÙÓJîNd̀²¬ÊèØï*Ë<Ư‚Œ*`v×7«zá¡ÁŒŒùéY uøØ¤ơ?ÂẠ̈×%·:$vĐØ×8ḲPdµ W>úÔkT‚{ïYC³È= §†,„eÄÆº.70q{sÅÑSKy„“e½WÜ Ç­²1Ó|Q0^—µf=Kúè©÷@=À}&l™/|óôô¶· Qfs5»F̣̀8ó<ôÉý¿ë{2xrƯ7tP´¯É^gîúl¥d.…AÜ3xé# ]›Ù9̉MÁƒỹdÙ$sØå7|Ⱦ̣tדּ逼:³(3{GÖ«’”±ätTäÁ†x¸1kæ;ÉX×Rà N%Ü’|z²: àDßgèô0ă=!…̀²Ê¾€5₫_¶€_:4‚|è*T=ö₫jyr2û›̉Iû̉Ăeú%F².÷‘ÕŸ§to]UrÖ̉T?6ö‹̉>3ʦ•̀/TCX¡U½+̣Ä ú0tÜ’qÎĂ.Ö ̀gnÑIJiNd?sΔA±Í’À`« ¶"/åYa'e^Đ™%(æ„TZBø›X®×ÍÜ$m*5p°ÑBëNÛ·¤GÚL™f¶F •cÀ™Ø¬Ê9çÙܽ¾Æ/Üü̃ă¹́8₫oŸ´WO°ï¯zkxÇ!xAÓ‡¯o;kP₫Æ7_ŒA;ä°% ä1:™º,ó÷¥¿›cz Ç̣±‡¿” ¾¦ad!¼ôoƒEZ]9ză¹„öƒ‡”(âf½Âï’KG±•Q0¶ tIÅv`®60_÷Ä‹8•Ùxă1PĐ÷‹¤wq¾61%Ø÷ö.§}/idåYvK?̃‹@_c´¹ÓNÑ/®áW§^îT2Ó¥œƯÅçJú&zÏô2¸ÿ›IÂúè@jNG×±)à:[̃…đM¾½suïT…ö₫»ƒªëØFRË”̃ßæ'–-VŒèK^¾ä×*6Ä¿7aTb­¹̃¦™”tjưĂ…¹₫WV\̉8vœ¢ÇǸ[9 …ơ°u•R¼âèWjc̃p«›0¿0 Xq-Ñß•¢yVPRñC7XIt†‡“EªơZ£«‰fν˜TFH_Q5YذNdâfçèOSPßibØå]Z”€¿¢j¸€‘L‚%èJM‰áïØD³X‖ÜÚ–Æ̣!ă;î‹r)#9ÔZØgËQ-³pi (Æ­ç`a:Ơ‹ï6 3l×fô|Ư4b¯&m 1 _lPÛ·Ơ9„ÁÔOøxŒ¦­IY|2“n₫ØÉ]X$£‹ưÀĂŒG¬T<|ØÊ@ă× endstream endobj 2417 0 obj << /Length1 1487 /Length2 2486 /Length3 0 /Length 3430 /Filter /FlateDecode >> stream xÚT 8Tư¯$Œ¥$̉Æ)ÑĘƠ.edǵ Ÿ̉˜9ĂÁ̀0‹±¤(ƯTv-„²'Y ©/*‰¢$$K¶$5(K¸‡´}÷>ϽÏ<Ï™ó{ßß»ưÿ¿÷(n¶±W%R™î 1“ÁQÅ¡±:Àn’ƒ`±4‹G(*:@đ‡¡¸d±!&Cç7ÆnHæÀ6C2&’˜ ÀœëàNC§©ƒÅx,Vû‘É̉ É₫ ¡s&d#w3}Y‡'®óă@R¶8mmMÔB8@¤ƒ,ˆBf$2ǤĂ)dÀI@Nà);<9_ †Çă¡Ét6Ẹ́عđ '`²A–?HæG¬Ètpq44Bpđ„ØßöL‡Gflđ( ƒ ‡pTÀƠ{3KÀÚd|'[~' €ÅĂphÜÏt‹Ñó‰ ÆB0™Bả}ÉŒ@ˆáĐ °6¶Ds8(€̀ ÎÉ>l&Oö'C>dw˜°Đ:0&ÚdxÂÅùØäËa£ÙÏüŒ˜ù4đ11¨»™t:Èà°óưB,Ÿ{ fñr½L#ø¢A *m~ *×ăÈ€ü¸ ™á"6!~Ù<@ ÅbµôÀ'f¾€C /¸àÄÍ›áB‚}™¾  h ü‡f“ưA€Ăâ‚!Á¿;₫D Bàz@ į́°¤}Çđư³ à/,,?€ÿư|Û+ŒÊdø₫¢/\1Æ…èâbf«²8̣O§3VŪx‚ W4´Ơ?³Ø¡Å.°¿"Í4& ư½Yø”~4́¿¨äâzl₫̀eÅ„u È_2wŪc)đ÷‹}!ä¿i|>Ëÿ”ù?;2æúø,ø‘ß ÿá'Ó!ŸÀE¬[.̃̃Æ?©{Áï‹K©—₫O¯‡ ï‘ááóó !¶1Rm ÅsAßÍó{æ1@&ÿ²ª8,ö>x¹(̃đ׃ KrÁ»ógE#…I_2¼º@f±È,¬$¼º:Œƒ·‘ ,ˆÀ LÀÓ…4& 1¥Æ`̃´€´5 ù'ÂÁ‚Ă€¿A€ñø jú/«Ăü ªöo®Ăùñ09p₫1 …ËbÁ+½ 8xÔxáû‚ ñº™IÑ ÷* /Ÿ( nà©öÖăƠÄkøcÂ{ß­óï·=²{Çä(!-²…Xơ¢/r²sơ₫Ú\‰·“ Ö{ÿÛƒ ‘:2¯‹Êiî=¨ƒÏVëM ±-¹ø>‹»w]T™‘R»G¼1ư¦íkQ~Ÿ{_&́P*Íûë9"´­øZlYưéH!Y--‚زđ brEÁ bÓ‹J³­l¾~ưđ¹Mƃ“ ƠOđêƯ5­Y¨¥PW†÷ïÅ}-Æ’ß¯±̃âÀ3 IñƯ}#Ùé(䑱̣đ0¤;»Î&*]m=Í_2”ε̃Æ*.|gÚƒïiÜ5æ`÷A3\Ùă¯è^ôÊVKá¼ÛƯ,|±p” ²|‡³ªÑ‰g‡ <̣~Iߥà̀Ö¿ĺt÷ó6¹úæWÏÛ !¸0)uïa»—ùPZ̀籩‚'Nuñ§ZN]ñƠO17¹YÜS»r^)₫8_¡ª¶ẹ̈t²1 [ĐƯ9K‘?ëô55µư ÆE¹àC†S‘kÓä±’²Æơ?(Q/¤4ñ3dmQ·æérÛ‘o·÷@Ôôï~§Á…xÛ­¥£o”§™£Mâ&YR'«SxjÑmŸ_†d±¸½)ư×₫œ&Å̉\ñ² ö c79Uµ‘"Œ3_l¡ôªª÷l»‹k]£̀üưتÊ#›-%‹§Rº ’œ̣7omñ;ëäçâ•.uÉơænñ2ëç©=g=×Ô¸vJ2±˜G“cº4qeׂ-îúñÛú>Æ5Ï>ßY @Üj³YÊÉ` §%†û‰†¾¢œHµïĐX©ặe[RYf“ÄsÊÛ5"ư•$~ß­™±̀=¬ñö^®pózËKÚ…qC6ä E”ΰJB-φùëÎt]- !«„1xaöˆ%©Ï?nÇ\l3ư¦ôʨÈxỨñAcª»Ô%T|j[¾n€_MÜø”y¤@đ¼?Ü9¯¢j̣nKñé¼ÉÖq˜ÉßêîËa®̣{‰ƠÄ­yR™r‡¦ôVÇRưêê¾áR«%Í=}GM¬)o¼×–ºg¤“MÏ;uÂTYÛ?öÏƯĐiơ·N×#Ø×đ’Ü—l¶[uVÉcn°)ZʨƯtĂe8r/z‰Œ½e§èúéÀOùàW%TíÂÚ˜(9”&I¹?2§¯EÓuÅYtœWđ®¼Kếr»™ưƯü‚“1ŒÅ9ùË₫]ÏÄ}…ơWö?ÔØ&uưD₫Ó)•Á-JÇÄBüË5Æ1@«rƠç;–‡<¹¹D¯p¢Uúp¢«%*Y²Ck8;ªˆn P³v_àú—·Ú£>kjsúˆq{›ü¯ZZ^{ÀjúÔ¾¼£ôsrĐ÷ø)üĐ ß•ù÷ Í#ÅBv©Xº•Zœ¢é®CºÑS#íÊ}zgçÄÖ—Û%ùGKơ[ Tmüxe©ñ„ư„Đ˜̉*‡Qjñp‹f›.J ï‰,₫ÚÈḶT‹0/Đwr«2.Œ¾’ôQ/ăụ́çfơw´NÊY88í'ëO×o^^óT́̉“Ë oΗ :}µ,‰"K›G8£XªÜ[lB®\ˆ=±ÎpĐœÏ”Ú¬xŰ>¸k¬OrưP°*Ư£L¶¶'²4÷Ôlv¦¨²À u×í²•̃=@̣ytvYÙ—Üv†óuÁ‹ôÉ®Y¶I^¬“­¿Ju\s¤¸ƒ«Ö ø í+ßrŒïxƯó}‹Ä,ƠcuHt̉$öhhbßè{•‡…—ŸxK¹I­Øư&¡i,æ±~ƒm₫̀·Ä[Ct^áôIç¸dñI· µqƒPc'»». ÇÏǹa¯ơ¶ˆuʘ9ü2Qçü;Ö4‡X­bT3‘“f¢’rË9¡±.æNpA² ̉÷ܦ³úC_ƒ$nß|^¹môăçBư¥¯©¯Ê\?GÈNÚ‰ $øËvͬ=g¾©Î8~k¯çë×ùCbí6mö[#>93v¢NV¨æ£ăùûk÷ơ¾©‹4ë/t¥¿,Œî2µwüK.Ug.—9ä§ÏŒ­\3täà±±¼b9[âÂ3»h÷¤¤‘đTá²×œ(b$¡<¶Ds_ưáU5Rx̉»Æ !§GŸäÊHi"²#æḈ…9{‚Œr'Ë!mC?ëøfÓÜ`„ªÜÁ·;}/Ÿ–ÈHÏ}QM(koul`gơß̃Xû±—…q?ơ~àk«Y5Ñê1«ú¦gYƯ*¯‹Ë¬‡íÖ-/̣* YÖ}G°²;[§¼:ÍMaFLØÂDëđ·#Kú¤kÓŒí–̃‡ÊéÊ4ˆGÙ¥₫Â#n׿¬8''2±…* cÅÆ+¾lư¼!›{{y4ï•••é:´MD«×èUĐÛ¨ô›Ư´¡HT˜H}Çô½&­‡î;i» T°R>S”èẒ©|ç)WS~\÷*›́ÎÖ’-²ºƒ½Ú½ÚLÓµû­)åa’ C4ÖZ»ñe¢|Ë»tÈÿ¾à`öó°¦ó¥’O_Ơ¶ ¹º,gˆû¸US³ü.³đ¢ +9›:°é€£ÑÉ̀M.³e ,¨)̣j×Ë̉]‹Îvô‚zªơUÈ˯ ?6̉"]ܹ Sn̉™^&{5#lckÈ»Çê÷ —‘V\ 4éjö‘—U׿¾'³¤ĐßæøÆ$µ&¯/ÙS1„ÛàÈ’Đ­—uĐÉ&½Fm¹¡ÿt[¹Ó endstream endobj 2419 0 obj << /Length1 2614 /Length2 12089 /Length3 0 /Length 13582 /Filter /FlateDecode >> stream xÚ·T” ¸. ’¢ ’CJwwww2À# CwIƒt (ƯƯƯ)Ử%wÜ{ŸûüÿZ÷.Ö‚ỹ|̃ú¾LEQÔÔÖ$ekadebáˆ+jhđXXØ™XXØP¨¨4À+Đ?b*-ƒ#ØÖ†ïq•I!P;E[€œ“€•ÀÊÅÇÊÍÇÂ`caáưC[>€Đl PdÈÙÚ€Q¨ÄmíÜÀæhÿù 1¡°̣̣r3üåµ9€M€6E Äd Íh´¨Û€A·ÿ„ °€@́ø˜™]\\˜€ÖL¶æB´ 0Ä r98ƒL¿ (­AWÆ„Bа;₫-W·5ƒ¸@¨À l²q„z8Ù˜‚ĐäuY€²Èæoc…¿ ÿôÀÊÄúo¸¼Ûüå 41±µ¶Ú¸m̀f`+@YJ â amL­m¡₫@g Ø h 5ø‹9 %ª B ü§7¡ûø— =›ÿf”´1±5ư}_lœ\ ƒĐ …ºFlœœVè!‚\ÿÚ`3“-ê€Vç0³u@ù=P.N³èoÑ߈ À,ö„¸̀âOˆÀ,ñ„x̀’ÿ"n³Ôb0K?!6³̀b0Ë>!hvù'Í®đ„ ÙŸ4»̉‚fW₫ñ@³«!(­'å¢ư/â…"࿈• j t4C§he úWÎÁö[ ]$°£å“+´ ă?\¡ ŒOj(wc ‰%ú"2ƒ<ÉÙÿ•ÿ}Nÿ* 0ùqB£›ØZAwé_¿%ÖÖĐ….³é¿J̃ÔÖÊê¬Đ‡ óSеbư')×o½½ôTŸ\ Å=¹@éÿˆñ[mëôg¨‰ùSD¨̃ü÷+ô§ ”»ÅS%ĐñX¸ÙY€l₫°€ÊÀ@(Ó÷@è˜,ÿ€Đæ<1æ‚vÁê÷a=é¡­´~‚¬Pƒ§TœĐX6ĐƒüCm‚í;¨³íÔĐ́ÔĐ`vĐ—¬Í¦ÊÁúô¿3e‡æ²9@_¦˜rư%Û>MÚA;+§?*€~a¶ mŸ½“-djüÇ X¡̉?z̀ íàSÎßäüG‹9¡æĐ·Đ¿I¡Ü­€„€R{" }À3C,@̀Z;ÄÅöh §§ †æüë놣‰­ĂŸ „Ëùm°Ë‡ êú„fuûB›ï₫ÄÉäđ7ƒÿ<YÿÿơMr™ ,̀Úđ¾¯ l¹®%taÜeă@íûv¬½-ùÚyWƠ_\àæŒ=;|^´cú[øÍ:æ[Ác½¥.‹¥ágJ8îBM ‚™ñƒç8¦àí£‚Û7ùöv=#vSsÜăµ—s‘)Z<ûÓ™ô}iꆲ«R‹c¤7u‡L/ŸF†#áóđ°¿|Ø*̃Z&V):5Ư&KéøSdô(Xjÿ&¥w˜s³o±ˆ¼‘Bøư;ªüyúw¡ä½..y£qÀƠv—$₫ƯGÿó–@?cÇ•Øg7D đ¡₫AƠ›Úạ́-è¤ä,̣ư対•O&†¥å„#YÊj&.˜1Ók+1Œ;ÄV.r\´"ÛŸ̀hă‹t4V—D*gEơnäI{-Üö8Ùèá#FØđ̉Ú́êU Œç²½ä¡HƠ'÷°Ï*13Å·BËÖYæb߯¦­¬oKdž¾-§z>¦÷–>ÿˆ’>\³sÔ¹̣¨Q1yv' [w—ÎÚíÿVØGÂ&úy¹sócb ø•µ©³YºØ^bSLÀĐËù†0©'È*p½"ưbc˜¶™| TáÜ}Ú‹‘ŸïL²0bƒy"bsøn|ós{½ƠX5ñ¤·çñ «M‘Íñ êx s‚1_P±”à ÎÂkƒ»^₫ưƒ)ñ ï¸ :íIdpomƠDÜÀpfEpÙü U´1Duo4CY™qjị́WYß'.;Đ< y·œIjt·…scôÇœ‹ :Öp¾ü_ è­ ¨f!G*÷[Ư?%ј1̃ÏÛä+zå¿=a? =‚Tå G¿¼$e2:̣JbYR²V(yµÛsHUæ Ù̉†́ô”3¤ÏơŸ¾§åß48h¾¸ Vhøá¥”>[…ÿSzL¹Vŧ_#@ïøö#—=â…4A­}ÅËiøJ*Io‘ÈpËÙ’“ëAÄYØÑ_Wú`]ù>{ư¨à9€óu¶±Ă«Éiï¯ư[)}ë¬îQ-\₫'B¯i_í4¶½½+·­sµ5¾#ûbÙ¼…#kĐ?¦áo!gih+â¸âv éf¯hk+Jỉd?.¯¦ăđ2ö±Ó¤î5i;L¢ơ—Ö€˜tWƒ1Xß¼ŸÇ6ư¥>Œ5q¼ó¶©ơBx §–%M3d; Û,lÊáˆm†}tÿa§ô£>"¯IN‚­v+6Ú5Ø~́UŒ1̀B2•rµízm\ñXƠđáù^0v¢&ë5u0ítMIơÙ*cNh¶†"Ơ¯>’|g˜+-³}L|.X?ø®ü3¥M§PHư‡›L™…]ÜJü₫0bôM²nïư´^v‰Û"Ñ}0V’€™Ưÿˆvi³zÀ¯¦ÍÜ.Ê4qô#;§×g"ù²%ϼ˼?M"Œh©OË$D´ăØoH~6”Ơ~PâµW!¦…µƯ7IÙk‡đx”—nXbYíщóâWú‘²æ^x­Änơs°€ÚÛ?ó™!ê*U_n×GI’¯ùÇsYđÎ>ÿ`Ëoà7̃  ø?‡̀ütEÇ<¹ÈæwpƠ™÷|3Üœ +¸Fÿ]+°„VÖg"¶QëÍ6¹‘“·YE›ä ej,.[é£!HÔX±G""}?êy}¢E.~d ÓùfHz¬àU©60TÖ¥pK¡Ë£ïơVI-ίF 1‡Ç‘³£Ë½r‰Îù̀‹øäïù¨m“pª¯+`ˆ̉¦‹1\«ÆÊßr·¯Vˆ¸9XåÛ"q^ÊxE&¥P]»DQ06Â’ö4¥1n|¯̃T¦NÛ\²ͤŹI°àw ª&[]™)©zA÷ºŸy:™úMR1(’I.2FÁg̉\ëÅđúX£ “Đ{É#!‚ OÍÙ€RsÜ^÷†'­f,A¿ÁCüăÊ{ ơU¯…!Èùs,Ạ̀A¿ÈÍ̀jâ2-N÷-§¬Œdd›f੨(%<O´èöÅ>¸y¸6£ơó[F™¼ưëiV3˜ÍÇ~p¯±Ă®Å ü,2¹]đ MÉÄø2Q£̣óaÙèœRÑéä¿û~i6Å?¨ «FuæµRU₫úÍY/PH9¤Wéæƒ¸Hˆ ́̃Ê9…”d?ăS³ơñ€̀÷oóÉ—Îô´% jâ/X̉©9Ù­ü|ÍØq5çÊ7ß±_S̉Ôơ´›³ºhÁ.ù™ƯË+[u¢ĂÄ5úËßø$PˆNTؾÛÉZ=¼aÁ‹aoçÂȼ¹ ~f¢U¨̃Ç‘r¬7o1p›OÖ¯|ÿ9ƠIE†±#đơË;]ÍñÆRÖ=Ắ”œÄ¸´²[^5įxáW¦ă—È~]`®´{~ jn4*óÊøRbM´ĐKä4VÜ(ø₫R_R0âmŸ®Ö½&̃~mç/gN& I-%gâ¸îJŸ§¿Í¶Ñö₫k9S§‹À[kô3]¢ú’ũ0±•X7¬Èáµñ‹èÊZÓÊ-ê¼{,÷Ÿû­ÅàHëR±‚A#È}Tç~îÚÇ+–ÅÍôåÎ!̉3¾Ê œ30©$/ºáäñ¼Ÿï  ¼ZN)́½í•0çVÂ}˜ÿ%Ă €¼`ʲh÷́QÜsMp¾“-Ï Ptf-Û‚ ñ[#¿…¿X3Úvdă¸*¤ê4—L[Đx—¹&ºGÉơ¼Đ»ÎÅ{{ñ¤«¥K¾©9ÓÙ;CKsNy]²q™ö5ú”•”́«L^TI RăüÓZ̃SÓGmÏ_Ú¸r̉®ƯÅ÷̣r( ̀Ÿ„¸êÙ’ưÑÜi´ ,ÚC[¹­gvß! fl¤¿¼F½ÜÍ$+̣Ï[.ôø-Aà´[°+ñ1î¡1Å:¾ç1Ô®à0¶)ü=d,U‰ùkíjkL6L.Z(`Ü*p‰ëèmà±€Es‹,™q•#Đá4Ơ'`®Ñ•ÄFÓÜ‘¤§ëVéñ‰ÁỷKgT.úSíP'‰Ÿ6<{R“qpđuÑ~wFL° Éù6[D±£TÙB5"¤mú¹’å¥$[s¦¥TdDŸ*û£#’“Y7ºpV¾?Ña%.ĂöêèUieTÙ®Ư9¹ º!ìœz Z…Đ2°±¤áÖ³m=‹‚.2¨;΅ç¡ƠîƠȯª´M…?.‚—ù½éÓËj Aä`¾3B…†ÀÁ$;¸kXRÛơLÊÁ„¶…Ù×ă_U6²À¨-~“¦K.8•"tˆVëü³ØÚ‚T¾ê₫ƒÀ}m æ/c\‚†åe^ˆï’is“wdQH‘Ơ­Û/\Ưèr–Å ¥n=$(¸ß¹úḅí™*ƯÖîyúɬjơ|’ ¢¾¦́ÀlI• ₫ñ̀²(lJ¼Ơ=8û³ ̃Ø¥ßÄf$I ¢î̉X›%OÆ J±^…øÛÓBÉÆ¸—ÓKœåIƠULK­ï¿ăW#B̀w¼ä†Â´Đª(Óµ…]>WP¬n¼nOp:J$WæÂäöüñÖ“ö²RÈL$£}¤p«üÆL¿6ß缬Fu>IGD:µ5–©z¡pÉb£±'iÁéódJgfᱜ<û ·×ë.©‰¦·Q7J7^€ {Ø̀̃}ÍaÉ4ßƠ¯Ñ©Àv?Y¨äH<·PÄœ…"‹ăVDpd Vñ: ‡(:Ơ-Â]EÂꌸxʇNµ¹/—`­w đƯß>—˜«üÑûâxưûx»–!‘Iư­(úUÆgíª@î{gó¹B‰Ùí-å×4ºí\)*d đ”ŸŒ`ÀøÇÊá_p´EIf£"ăFGË̃PˆG¶!SoèuÖă…ä†aX¢ *Đ<Ï$Ă—ƯØS»úX‘ơŒ©"°~ëä 0‹S‰ûi©ÆƠûÁ9›–ß/{ϯ/²ù…ØYX±¸ÚØ™–&Z裱³:y³êIc„Ă$Rí$3ăĂ·öôÔ6§³êEm*lú̃Eơ ­DYœé Ïa‰fU¿qüÎƠp‹E™c}Ú‚î€iö3æ…Ĥ0H_f¥ç ±ûçw½¨Z¥€Ô0Í_€‡&¥-´ƠYgzŸÏ=ȇí¢óFó¦C¹¦=3I¶ij‚rÀÀºÙvXeÏêø,3W‡±K >WÂsOeÿ5kƒ\%à–¡Îµ5ñ°ÊƠ9`¦48[È·ÓW–åŒ_€Ö‰¦ Ú‘̣G›Đæ“Ñ%ÎXié^w­Óæo…c Ù¶ Ug·û!̣lÍ̃ĂÙM•Đ̣\Ißø*OùÍÜwC¤;=XEdÖc£ăŚ„Ă5¯.pạ̊̉®Jaá+£åë©ÄHÏ+׳œ‹™¶ơßưøPôåÖF¢£9#ó9€E]¿uŸ\P"4ÎÇG 8‘7¦WF‚«4˜=N„Ô7qg ßƯuơcs]–`˜›PN1oiâ£Ăú5× ÷̀-7Ưè°ăáOB̀T@S¶rÙ+’=êe’̣̃â°óàôïÙjÖ„öMögMÄúŒiơ§ ŒsGJB·%ƒ~©²ù˜=n“ v›#£E|QnlÊX́V.«!µ\p[›ƠÖ}P‘ú„YÇgé^w“‹uøM̃[H–á$ưtT÷EÜI~%ê6¢5ˆ$x–äŒ+‡oyÆ·̣~ˆ[ƒê=s™ˆØÑÊĐUwŸZXN œsÜo‘Ϭ6IîH[«ª₫ŘRxÂñiïÊÉ£ª?ư’;&Iărè@³+¤ÆÙî\µNî̃D2¿NTÄBÙI3¨₫ 7(Ú¢¼~·2= QƯÚM±ë°ÍV«¿uÓ₫]̉g2ÆÏD ®)`hưf’wÖñ‚¸pÛRÖåÊ9º„̀Eß &ÿLî»ĂMC¨•®¢¡LµËºjêĂ½ù~UœÔúU0öÙ©©Ï· á‚Ù ÿđ»\ÊJøXt>¦<)vƒÜEiéŒï/ϦN̉¶›W>Ñ)^P8I.:ç"”*%Û8mxU4o &g}̃`©>ÓÕ¢¯7øá~¶lêó>¾¡…Ï!¥W›"¾N@íá:Ö‹·é ¹*3₫Ñü3°Zv§SÙª:‚<ïp;µÉ*óB5b·ëMy½CÉ_shÉø/=fP0 ¦lüWƦI<ÜÏ T §E=+ñ„¯ûâ˵DYÁ̃)'ëM»EK¹ù+eV́1˜;Ú-ù_t̀Ö·L@¼—ƒI#ßâ ÏÄn·bÙ7ơwñ´\k+¤'ø8°Fï#OKÈ™$yào!ßx3Ê3ö­Îô—|œ¢uô ƒÖësLöb+?úVưd-Ú¤b́o$€¼˜Ú¬RÚ­;3‹‹—Cr&_™̉+i’å¡ú@Ë¿C)pơÀåD,70Ͻ,z̀̃®½ûà&̣ç>ÄE…‹à₫)ïÖâúª±Kúƒc₫}w+eÁ–·‡hb®RÅ¥¸Q™^ƒâ±^÷}×pw‡RZLF2 H'ư³C„êR!‡›'W‚™ÄÅ^Ú?b\eñaŒỠQôY¥2Ø8îu>„%îÛ«ï`®@I>J¶™"—Ë5ÂÓ®C–bq›ED ÔGœv;ÑOĂ"Ùq.6Wư²øQÑÜuñI¾— Ø}ú|¬öÏË_!Üs‹5Œls£åVê¡l‹y4S†±x«»< …UæÈjăêÁ‡"·OÉ/̀[_u`G g+&Í—Íu^}ú~&¿`F™i¹|ÆcWRÅ›¡Q"y›cdîjnç4Ư³¹/úlêÎ —ïÖŸùđÎZ©×ä¢hÁ½JäÂ4pvđm}R¿©¡]Ă,´À °`)ƒ@€‘ˆ*cçÛœm-Ù,¹uR›üø gÙtÈ! “bf²ÜMxê:%Ieɼ¯R[¼£‚ñ₫-Suït ª>è7)$:â|ñ÷.ĂQƠ·çHá¸ñ³{9ùƯ]$ltß4øăç¼J äư\*cyHñf^́Œr|€0ªY„½ÛÇç¬Nå|U„Ó>å>Rfߨb?G+3}WóZ”MÀn˜–g3Hf@¶Ö”xYu>Ï\&TÅ%F©!ËqUÂRä¯aré$Núé* ƒ,ëZ'n¤°o"˜œđJ³ËKÙºA–}!ƯÚ̀yCư×½tưVê>SÍɬî5D³B;Ụ½k9|‚×(–svËf u—{K̃ÏơNyx­Ï&ƯƯèHv hUú9§;($ ²¼Â›æÄHØ̉ÆÄ‰móGcÆœ>ơ©C‡sû&”ûæÑT1û6Ơ>’¼ª̣3̀ °~3xºtQ€È¦zÔ Ú^sCg)—ACΨӬVV_ñÎb$R»-Jđđ—Ú¯‹ 7ÛÁIß)(üï¦+`Å—WŸ-c+Aê,Köè˜Á¡”h?»â¶,—÷’iÅSĂç'l„È€ḱ=Zà!ĂÔÆÓ†’î`up¨‡Ogxă‹¾«V• %ô‘â¾3³•ǜ¯E*)ðøàÇ;͇«µ—l¹wËœ—/‰qj•Z£V_0ẉ̉4 vej ‘}²]7Øï̀4˜ÏMÜ_½Q̃Tˆÿ¶pd!Ñ”…ç&ó£z ̀ˆÅœ³½!*wsÙÎæªª(6:i[¯@²¬,đư¾L™̀°9è:öD$ßÛo& ª€Ă|-‡ü]¿èXc*đ°r’à —‚»CÙ̀,ƒ‹Fåñè?ï,v,gv|l·¸]đE/₫l^qPúzu>+í‰yëËĐê6Êñ÷¨;XêUƯ{ÜWéá(^“ó[Ú _°—ª Ø-]ú)—˜tHËP”>8t¬|§ S%É₫́*ë¥ưĂOḄ³Ê:\†ŸnŤ/ˆ¦¦åÇO[–̉ñ$+ÄÆÍC,C V‡·t¢W˜æ"(ăÓd¼Ôü‰°öộç|C3f¦<¼PƯÊÖûñ>j94S~“‚3y9 ~ căxb\äml”7 I,£â5¦¬²Óz »c ¹‘ü``q \£EïoDraq9ó$–.d.vœÖ¼\ ÑÀ”Çđ`æDăÊWƠºx¸×̉Ê ¡Z–½S¹‚±KÆôiÄp̉8p}#€›PÚ÷í±$°ÓM„Üç•×̃8ÊAí«mF8³ÅËeF½h™¼‘¼jÜ.§éfEúóưđÊie÷W‰²²H_NøưJRF„%²tÖ^A}ä4 ‹!ó ơº£¤®ñơL2èdèÑËK)~^ü8₫#đ¨|Z —ồç´5B4ôƠçÜ«VºÓåÑÚ!VÏié̀èäË&Øq4¤~¦$€yµÖ776GGoyÅÿf¸5‡(±e$1X$±£§1n}5ŒrW\6eX6Nơ»>¬.Ơ>PΖbyIpV÷n©É,Öí>&~3ĐlÇÈx¶ ë;É¢­ó^́‘>ÖÎW¯ÇªPGä́ơ†&g5l>Ó$ÂØñyŸ$=vëBb¥ —X’ƯzÊÖV·!b2¥o%Ê›?™¬KăôsÛY$‹¥ S÷8=°p 'ùÅ^JŒd²ƠÏi,Ă¿ØsQxĐ’{¸H?â*ZÍôGídĐH‰ª;• Pi¬¤tÍ´Ö]=.$¬DœƯ›<0U“X¿(‡¡°›Ÿơ‘yVV%¬Éækís´,¼BÆZ=W¢rJúmVbåª̃@7R3€î–¯gÿˆHå Ù†œüƒcäºePØ•{¸ïµ¯Ù×|^ ̀d·m+’đ7r*̃¢X“Â1KÓé%%°ÎR£Êª^DUJf>£}>ü,W₫k¾cOSBÇNŒ—'3SÉOß̉䃣.9Ô¾ä»\•³:é™|ZŸÎs™È•b5ñ¹Ä“˜ÍØ ̃úê½Q¾ÑeËDc¨ ­Øè´Â?Ư»ø^đØi´–Z “ă;±a]Y¾>Ü\NYAcêѵ•—|â‘ÓÉUh59o(­\ÅK½zĐ¼´üă9ºs‰œëw³@̣ ̀dUÑË€îU]îi ]î_âofzówVùÑ‘Đ_:®~§@Á4U÷:»¥lXÅœ‹$|̃q¿R·WïÆˆCï*î₫¾‰9àŒÙ©ø½¬L$ úÅdÅFåŒ̀×¢Wv^¹ot–^­Sv® •^ôUÆÖHáôbóÄV¼̉í Ố̃ƯhờĐsQÓzµï•̣yâ¾îhYÅ+8mZܽŒơ~O¶y˜¥:ØÏÖ)»^p\g9¯MÁQ» Ệ$èÀÁu‚âç[ײ©"ü;Ă®E»æ#Øpqmx QSí§Ø£w₫;rX bbÍ*Í£%ÙGMp‰®nD/¡¹Ơeá§BA¬âô_©-¿ˆ¦jIßb,ÇØ¢dGD—PIø¾Ôđ\€u9r¡Ê¸”ÎđOÑÜ îơ0¬ÎBTX|9¯ˆ|º6đḰ R‡ƒ@î«bR–E÷Zÿ][ˆk¢ï+rùà·8̉— 1ät× ŸKü̃QĐm§Æ•Ù®̃½Ó£Ï%̃̉Ơw’á%fY]¯Q¯›ôBÖ§yø`đääáb̃W>£<­‚Ó!̃¿̃<>̀'©9Ÿ*´¡:øäh¼fE}6¾@»O`up~&¿• ơú'|g¥j–e•$fÊ™#wÈD“3° ÏĂåA—;3odÊ^.׌Eñu%î¯ÂL‘́»üç,PTE€}@Ü;ä…AëF„=Åv O¤°¤ÚĐgη:YèÁ³ÊqØ2§Ér‹Û đ–¯G)9xƠù‚÷$ ÄhFfLD¾í~…2a4̃´ï¶{„óx{s–®&­/üªR„c¼̀a[Mq¯S˜ Á#TyÑƠÁSáÇÚơíAϤ%ƒ7Ml…±°VđÓc•”›:'¥áçL”_ÍrÚˆ1N,I>,µW4 ï̉uDƠ8XÑ~îáe$.ç sN!đÿµºÁ¦:…9 •G\h‰l„•T¤$*r^-f`bsª&â±,LÁ!ưéMÔ0„†Ó–3!¡9₫ơz6Û¤÷m<Ù›Ÿ}§ÄöÑMƒNfÆ¥D²¦w)ƠÍ9\ÜÓ4KS~z¯)©É̃éÉ´ÿ`¥Í*­9‡u©§{@~L"Y•Aǜ™/úLJßç#₫‚VÏßṂ×ÎƠ–%ÇÈ.̣›9Î_åc|ḉ+!Éç#IŸ»¤‡[̀sÏy˯j`²ïö$Âè³Åï¿Ds¶_¥H¼¥ơíj?6œX´¿̣;f£åTF Ø§øxFSB8Å ÿù½^PæøËé4̣̀ÔrÀ,ïˆ#¸̉Ö”"ÎèƯ{©é®âîEzO}jX"i£»9ÍËœLnØíS4₫¯Mnx±́Á}–¤©đ4îT}µ=>\MÇMưœơ‚s4!ºĐô"Ư(ÜStéKÚ7îư”Tiø'nz?ß6˜JÑŸ ¾VusV‘xST­Z̉¬vwá´Ü.Œ°Í1Fë8¥Îø“Åj|½4»«#‘-æ%öøÓÎE4¨\›Ë̀>ơF²åio0…!Hf˘¸«p¸̉³¸*•¾Ï¨Ÿ¦í»¥h{ˆÓZV%â¸Dđ J뿟rPÙ\]ë^¯BmkÏA ¶̣sÇF·_å, “MƠEw9ÇÎZ|ÙÀ)‡ù« 5{yÑ2’IˆÖ†̀ÀIs›s¦ï̉ÀP™Ù»Ù §‚ăVhv¯AF[₫«™LSO^"`Z Ÿ9ªt6Ùâg…Áđ~yf€×>¹äªt‰k2ĶÓ¬¨ç₫<á¹ ¡PQÚú€Á‹>rX"óÖ”G ÖVrÎWqH¿­•)!$17Œ¢ƠʘÏF©é¦q"qóĂƯE²ëÄó,Ÿ¹r'gơ¤@¢Í3lXe ñîOl¾H–Éâ²ÓÇ—¤wơeư:ÙâxHÔö¹^Ă =*¦4ºG[M˜É‚ 5̀&60>äolXs~mæQc M¯è0üxß×䫌¨Œ‚Øv†ª’̣F–_ÏàM̉b-%O)kƶÇÙ ûǯùDeÉ`n—ZfT®ư¬́HNY”jƯ¢“¥:KY'ÁB5>wÙư U¶àâV$–t-;?ư7ƯóÓ(gU9‡Œ\ô•øăCỤ̂#a» Û̀ĂÊ)Û²‘›ç¦?`ư.ŸupÅ,±³r`x&!±0˜9̣Íàáô}MâË$Æ^®Ràâ₫¹Q¤ÂđË6AG–© O’pÜàQn •ÎE]`ض̉tbuKh×~hº –6ºöd§^Jü¼¶̃Oº=,/¬~ơà¢hIaw˜ º::$È™}=£ Ëx]Ơ‰£Cß#|3çNZ‡AÀ†́¤]æ‡T¸„¥)|è‚Vg¿̉úBù ‘¹¥l6+f…u_DĂÇ)+0å%§.×l$â2I$À̉æûÉ€$”/æÂà”̃È€T¼ ^†ºÂ@Ó·nÔoưn»ä÷EÏ£¤{˜ªz9¨²H̃Ÿ„ÇË„Ć0[a•÷ä3Q\IÔ ©%¼„đTP¸ù]́`ÇÙáÁ]Í8X¨¸Ă0Mmṕ̣Ï&Ld!ÆR]ƯIưkư‹e“±f2ăúëHèÙÉàØ©FíL€úŒđỐ{ö¼˜̃_¾_e\"Ø7L`­‰­#ûô¤C$Îr"mB¶ÜæBx1Ó¥2.¨„ú±GÛOœNÆ„?!o#Î7FWQÊfW"ç1iö²½©eỪïuOÜp8Àơ.ŒÁÉ=ç»ÙäDă‚  êÏú|tŒ¾³OÖ¤Ç&׹ܺåD,—k¯ưËÛ£J«J̃ÎJØ©Ë\ƒ­ÔªdëỹJö®K¹5úÏCC0â,S*h My79=‡ŒtÚØ̀Edºü±C#@%9"^µÙ9G‚2jÎüJ:׋ọÓóœY”À$î¡…-nœ/8dQbש¯¾eÎêÓ¹•¶Pdz‘ rZ}đV—=VïÊMñ¦«dɨHÓS¡ ªx&ß•°OÖBZ:oààA}øEΫ9~bà5ÚÑh‘Ơ…́:+M‹7ç3x·̣̣+1¿̣1ï.k~ ?×3ŸOG9·Ük]C:[y|36®/´¡̃‡°DèeZˆr­–$₫…3>̉q-ï@ £áèà:ºÅä&t…¿?¶8#Û iï“ ×̉83}ÖS"˜kc~ơ C_g/t£ÁäY¡Üá»:GSˆv̀ùMV„&8¬“ó¨£-}ÛƯ~‰[X,§úRËÄÙÊάCÍèêâæ-;61¥qPèkï˜äˆ÷^́ü±+:SqIỒ3–vmX<*ÛÎÇ#ÏƠHÈmÙ+£K±.è]ó”×mÀ]‚áNmç;§@•́î‡Ơ°~V7̀ç7Ôpă@ϳƒ·„ÿ>#áUUEù¯¶Ç` S=RÍĐíI?ûĂ\ƒkËÂ~]Ñ¥`µäI–ûÛ} ~Ó²´1¡Æ/fáJÇ7ƒ°Gúṕ]±ko¤H–E?©ZÓ½8ÅÆ çûXÄ^L1JN4†`5¶ÅQ¾»œM>7.lÑf–Kqpôî(iT³Á`ÑâñCa·Râ£$©̃Ï|MwîĐÄs\-‹øiñ( ˯đc¹Ü|CyøJ)ˆ¬XÉÀĂ&̀Â^hØA)Â&‘ù–(|›ÏơDÇDL–éƯ€ôç-ÜϘ…đ¯PëX(¦)\3̃#wFă/’…Ôó?E+bÛî–¢r ©a—d;-àÅ­Dhæqm£N3:‰qñ¥p gf±l.hrT ­l J†í¼œ́Çé̃đª̣ñl½ơî·Íèx×䈌“Ă/îLÁ¢ Đ¬„o±<èÈP3ë`î ÛưŒ₫¦éß'qx—"y¥&s½µ‚Ư‰±.÷ÖkïG7 ‚8Ú´µtÖ¡ư4nÆÈ5ơ°|F?UC£UyđkJ'^]P1sÉW‹å(ÙÑ>'&*ƒ¯­y„8ÜáÔ›ä4c–6ΤboK…‹¬åô~îç'f¿̉>Xp3& ØWG̣ꬲkÔÂx$²W€¨<å¯ù.j?>×·zÛ̃JÇä=̣r)ºA¢Í™¶Xâ„>#ÇfwỜëíÜ£·9̣F@ôư/́ƒbUbèµăî"{ÛoăQ”Îü4ơ>­TvÛUÍö¿0 7±Văêé‘M¼`ÔeœÖ™X‹”Ơäçđœ)đ ?k ßÂ}Ñyû́5a4„‰ôS‚g'D«ïB7Ø£Ưaó‹'̉v‰^o|]fEíføăf+\̃‹Xoär4î¥Ä.ës¿z³¹ùiIR©̉—²™kÊú C@b‡*Ûl₫%an?¬=¢Ö¿ª"›¡®k•ï-·xÇGNăÈÓ羋pó'Yí·ŸƯi À }à¦`èR´0:輕›¸“n5ê±­+~ˆ€óQ̀…¼ZB¬Ï8Û‘0ï8ÉiÇ Î,yëGx2N~æđmYn5EƯK*üÈʨ‚ |æjüĂ£ ²)P—ó®çªèA+6àF.Áµx¢Rß,E±„ktaÎÂAW^xYª•QK7Rú¢¿…ôx‘ÅĐâæ–œƯl¼@¯5̉ÛÜ :ª1Ù̉û†L;Xw‚É$ZZđn×đ68\® ~çÀ¹Ft.Ï̉0èÎωh§)/Âđơáy„ ¸ù„"cú â+›Å¬7b³¤xÅ,µ̀ßO~́¥¥ ÑcíW.ЬOŸ@´‚F#tg ¥¦Â‹(Ê)´‚÷](ĂAá)•°¦WœíD3'|Ö$ăyY‹ÿ•uÄе`h»"ÔœÜÉoŒ9ùØ““ ÑÜyä·¢ù˜“zvCsC Çxúzÿ¢‚ Kêè‘ûÏ……÷DÑú^Ñ­øTGO@DgÄq´ŸP‡®,́*퀠tªÇC_»ư.wè’”Ñ'³·“@*UzºÁØt;ơ‚i…† l oä³+H2–ùn:†+yŒƯW«$#ˆ¡´d²,_~±Đ³ÉaÍÂE0öt¯+y›kD}¡wĐ‹'ÎG×#RyÍ÷›2CÈ|RD'eÁ`Ú<|ÈœiÇ̣‡̉…弟ùŸ„àÂơØûg1dœ¨™L)•œïná?•i~ —|î˜̀HW&j:fêúy‹¿„âƯ„”ß gưñ§h÷_̃JpDÏđb?Öă\Ú#øR»ë·—ˆM)¼÷!Gđ?Á¤KÁ´¥U Ö¸I¦ª”§èuÚ½ Oèj¡­ ưñpt‘³‹ÿÂ1¥”{™Ææ¢â#¼HN»Û8!%ƯÉ®¿ Fz™èU‹…ĂĐÉP¯Ù¬¤ÖRÿªGTj¹hÄoó¨¹ô€ăWÑ»5—¸Éă‰!ÇbÑTßéâ}®̉odpƯ¯™©ñê™O;x€ƒÖƠê½™„8SØew¢V­”tÔ< •Su8́¬s‰ó0ug–ö=î> stream xÚmwuTÔkÔ5R̉å̉ƯỬ5tÇ 3ÀÀ0Ă ”2tJ¤ ]‚„tƒ4 HJỊyï}ï}×»Ö·~ÿœ³Ï>ëÙg?g=kư8X5´©¿'TD@DPX`¢a¬/",##âàPCAAhñ„†Ê, € Ô " !â¨!=ưQ0W4€Û‰ço`A`0À G>…9¹äŸ>}ªüÔÛGå£(ø§É  ]¡g P3Zih¸5 ̀P‚€>`8̀  s‚"¼¡<g$ ÿ'8!Ø_¼ÿ€x E¡ÿsF!=úê¦*†¦u5!S5èiưiG ½eÿ°¡N(¿¦ă ÿ‹à ÿ"đÑU”ß?‘ ‘ˆsBÀP‚Hè/ß´ÎH€ä?0ÄÇóß̉Ãô¸ÿxÈ€@ÿ°}àpÀ­†ôđôACQ}$BŒ‘ Ä¿, îÿÿåưC úăƒ ÂåsÂÿ@0o ˜„¡ÿXí ‚ÿ±èoÜúϽèC!0ú¡üøs£$îÿ?G₫ăï…ôfº|ÿ-Àßeu„C¸LĐ¼¡ ÿ— Ø?Û󯘷 ̣¿¹>‚ùl„ÿZ῾#»ÿe©ª"ưD¤¥b¢Âqq €Œ¸hđÿ‘ëäƒBAè¿ ÿ3Ë¿ùß‹…úAˆf‘Nr‘n˜Æå!êEăø|ă£f|³"Øs#G6°^WˆĂ׆S†|_æ±0°ÂÚ₫ªöI(J²ơy85Ún–Ი½Â%¤jùÚ¨àª6Ú₫Ïœ̃ĂÉï(汸äÏÊƯ­̉ñ*U Đ‰s,kéÆ'_y5?u†Đä±ă¢̀´₫MƯà{G>îú¼đ¬t¹¾€•±FrÄAïàZXæù5ÊêT‚»IfuºYà‡Öă”ç”ø²₫x*ƯÔh̀6ÜĐh'gg~ʧ”d(M¾KåđæĂ~ ¬‘¾2à@4ù®KÎÛZ*,è‚ôbfûIvj¦ñÎA™:µ»7"Í®¿ĐÓeWô¤Ó3}Ư”0`o¾~Ï”¢Ùi‰Rm.£¢™*2u¸·a¦Ë-É—ñ!÷F•›­Y¯¢åü¢¼icáD¢ô‰´à•©îóœûñ'j¸z½>£+dËDƒ„”ơBÁÏKxŸ|'V6_x_w'«íçȽi·B̃&Jw'©œéĂMặÜƯ* {bË#"™ß¼p…æ7)øï¢T)åM¹h­÷k“ô®§ÍXw6û÷Ï=Y±Ü,* Ÿ¤ æÊ×·̃]ĂÛÙŒq ào¥r>›+'~Æ\"&3»»P">¯¤<‡Øÿ­ÄË_{Ư3zÙ̉ —`<Æ,G­·Ê/ăæïoM >+f4Êh,ơÛ̃hƠ3µÆ®‹Îë êV¶=6d°EMòö“»1dnheß>/„Èrùf½́¨â Sè̃N`ªfƒ̀]ȃû)–%±I‡̀FÚª±Ú•EÁ¬i,n¬]tµ!T—¾ë>sffV“Ïx]ƒ¹Í­ôªơ‚Ë]€(€pxu¬8^Ô\E³ó¢f̃́‰‡a ›‹ƒ} ˜´0i²»OO¾ nM•l×ă:í ³ü9]%iL đ—#‹ơÇ¥d­OñxÔ“4Vê˜âu|éưK*ôÅ e³µOt„n>®Ê¿1¡äÚ‰6f·¢Wç³Àq×iڄ︯OBÙ›ôn˜0«?éÎtŹåÖÔUc„7¼èæ‘̉$G™ßd­XœĐPé*ă=kDˆÉ ¤½yBđ»eŸ/rµ-r½ÚÏï8Ïwl¹t—9ê*ê¾÷[¨ £Ä/{#NI·5ïµ3é~²·ÊrƯ¡×0&x™“Í®“È ă>ØŒ¿Œ}ˆ·¡ÍÜÀ—*6qDg%̉¿”ÑáÊÀùåG@j₫¾êØ3¢“ÆßK„CÆ 'êÁ‰îeÔ© 6ö́§¹3§ ‡'ă0̣öw“ÏƯïÏ„-}È0±|²KºH)̀'³QëAøɸ¿Đă nÊGC¦•K=·vÔçrà¯È̃·Ù?6j `Ă#…äüiç’9ûăÌƯ“ˆù0u ^iVÉ)́Ügå₫=qÔAp-`j*Ç”¤ÛAÏoS5Ñ­Û†à®̃>F́:!›­êơj½kÀñT×OTñwỜq 7O¾S„7Kô¡‹D]Ơa‘„£Œ Â=H£Ëh"³âñxƒS‹#%o’ơ~+°#+R:и÷aƒî ëT‹ụ̈<.™l3¶_|V{Ÿ{4•é–.9jºV Q^°ÿ…CêƠí)ïđ}½·R₫¦WĐóG¾ÉÍ– ³P$a6]éÓô½m™ÔM­Ç_42ÔTüø¿Ujîj͆m̃~KƠĂàNâT]ñˆœ́â1°6¹®RRœ ªq->hÅḷs«F¿csá~ Ô~OAɳ<±²©©ăzª*•î}oLÓø€sGÛÑç•K…a‚†[óơâ@h¼;U1o˜9Ux÷qe®b~gf/^ê™ú$@ç:WºÎ=ü¥C—™Z¢ ÚJ";ÈK¦÷ »ơÍÆ8ù E•AgÇózßÑEđˆ.¼M¡/Ç1 ưÆé!Ư‘mĐ=¯¢½<„“2+²›gđƠ¥™Ưr¿P®¤É›ÖQh÷4c–¦̉í|÷†& ½ÂĐÆÄϾ'|a¯Ø…ׇ‚̃ẽ¤’¸/ºZE“ÔŒYæ¯k>!w»n?̣øZÊ¡9l e³/³œ2®âÙ@º¥ígÀ;ç?¨züđ2$â©ÿ铵¦øĐ¦¹„£ÜO…4~C¶.i¿J»Ø”rÅI<üF? sŸNQ­àîl >•êkưRDPá4*PWwƠ+TO°8 ₫¶!CƠ“$™S&ù‚ÊO,o]U¼LùÚñUçh…₫Üç2vÍ•N9¶ƠƠŒ¦s&Đ²Ä­½£ÀǼMhcºÓ&º†Ww¼ÚŒ½Rlêu¯'~¦p–µµ‘˜Ÿ¿üèöæ™» 1gº2pË’>(+ŸÏ4ÆvÁ$û åpºiưÚ̉eØ`"´!\3¿oÏkWÉ¥UT|NŸS?§jƯË KëÚĐ&?ÛèÁ¶ôRf ß IeS¸°[b[Å̃ñï}º{î\w•_¥SºG'–!ˆQ31~XWΪ­ÖƠwóªúøq¯j¿…VúÄ ̀ÊcØOtë˜g[ă¨}ùi*ü`‚Aw¨9¸èn—–û¦d!.ë•b :p¶r3î¹²oƠÉXÈ!S1Qy™ez1ƒƯêH1ö;Û—3¢₫>ÏNƒ™áN+á­†Ôld 6Ufi YBÈ3¥øÁVđMZâ·€ göà¬aä%ÚµĐwù©µL^O88¯·Í xöóP̀·èwÂ-7;ăkÛKj},cv&ub:q ŸÁD¯ùøç{¹qÓ¦¾95®" ¶ÑÅÈ ̣®ôí \¶˜Y‹…½–H$¦ưÁªƠ{#₫ˆ)ä·đ€ôÓsÅ`AXKn6¥KƯñ;ØÇû´ßü£c8Ÿ04èr¸dYA7Ø4éºMAÑ¡ïËQ]ü$AJ'Ư¸°ÏûŒ!ăộô„•M[KáæXeI͉…’âtÙE"öơˆTÎr}é¯~is Í:§¿u<¬–öÍ1éx¤=µCđm›÷Vynä”ó2¶©¤5æÍÊ:A7é|®Ö%55@½x=Î́ÄÄçdÇÑHæÈÚ>`ϱvÁ̀BÔÖôA®ÔïË}̣csoTur>KÍÑmêY0îs0­GÍ\ §…K-o9evVb́ˆ*–„Ê÷×>Áºä¢»pö—K¦ÖürZ®ĐAÖf,±̃LƒF÷ î̃Ư„¿ĂỈÏô•Ơ–ư4·…;£§Sà)àñ!QƯî…ỡ¼ä÷ñ£®ó̀@ÑX=ah>c`Ü"ÆÎ]ç(uçÓmđỰ̉X^¨A"̉1Y´Ÿ›2ç%ûL@ ÀˆzÊ߯wMøK…ê'ËÔ†P&+b ¹Q¬LKü /‚¨pb1ç•Kæk^ư…1aaO1…å¯Ư45ßùœgZÇÅÈđSç«›æQ:L‚¯̉c7ˆ«sÖĂ₫l÷T‡½6̣ Ï<ä‚s†ªèeDBßRR…‚&ü4U»âëSË„Üx̣{ƒÂ÷ó#ă¢ƠJH»©̉€ç,1±k3Ă;KÎY¾à6ÁP£₫›¢vÅ·JY,L‹¢]ªº· D^\…ï}Œ₫²‘‡ƠK*̀§ơḅWQû´´¼p™Å₫ [ÀGCYÈỊ̈›gm9Ủ2sdË% FO;P/w wo"6Ó{^́Bg¡Ê¨$e‘%XPÑ<‰ŒÖÖ¦ùmx§4;5 ÷ɱŒ‚JñƠ¼ơ³¨ĂHÚđg˜´?؆:S0kƠ.OŒ÷=¾Å’7&IƯ} ½+³1˜â{éô]o}Óíy…Hw«·wK:<§ˆUñ Tb|é\Œµ"|æÇKñÖá9à₫Óv™Ăv—ï}̣èlePwµÅöéÄWc̉fl»°r©$ƒ¥[‘KdÀ=QZ`ẀĂGGƒ“ælWA/"G¤Ø³Ÿï¯¸#iå¬R#ó£¥C êÈÏ'Ôi­ư;Œ—ÚkÜËZË3+×¹KR\´?÷'dpJy%&ú­0Ô„ăJ²EG#‹~=êµú†.&çCª·e'éƒĆQn¬ôB§Å̀Ụ̈¾°LßBù'vŸ÷Y·I4–kVô¨à9ß}!DƸ·f§é—EÖĂÄqMÖ„”tB bđZÏR­1«TÛ‹_YOÁàCvµECrÆƠGÅÔf¦IÂ%t‚ç8}Ÿ$óZæ¼R'nñäMe O­b=ÎÂGúóÅ·›Ưîër©̀­k7éʳ ©=ĐIGËƯ Ücí‘ú¦¯ë},En¶IÓ+­K‚§½âñ^s=æ[ö}˜r¾ºÊ2Í¡„ «ÜGœ'HQú\t,µT03‡áÈß]ï íç21Oé&̃¤JÆ4§iÚ£„‹#ÍzÅ”Œlö)ô¸»ÎLT«g#₫&/îüHÀN£eè'Á=Ïó fÄÑøM­}ăúˆ iÏộø·£ó”M–b+—y2µƠ~Gưôg2„.o .¡̣¼-N"…=:ïG¶‡—ê¨ưBª́pä­´e¶#Àrùk•Ʃɳιͤ̀Nªơ›c•u7¨O}ˆcíMïcqpˆº¥8ˆ˜ÅHº}øÇ\3~ –t6 ª3‰ö”%ơ^~{W`öÄáqV®1ÉáÅbđ<#DæëÛˆüÛA²c ’ÜX:±Lfÿ”A₫œÏă¯|Tp‘ ¹8²1–,~[¯r¤`˱ÑƯ‹Ñ¯—’j₫¾55Kœn™Ö±đ"âÇ%6co8nCù)ª>‹ Áwly÷•z´œñ÷M̃tǵØ­jưx6‚¸[Ư†)¬ÉQí󥯾¤5ê-JĂzVa°nñsf8™™GfÏ¥àosØ/Q=ßéeú©›«Ë}åÖ‚cÍÄ1öT1˨ đß1Ô`hW÷Æg@®FLûu·yn¼Ïî¹è± ư‹̣¦Ăú«%›T£Çû]|,æ®J9?½ -fZÀ»Y«0Ú₫$´aûtÓ«àƒ’MµGå7†æÀ<‡ßMN‚Xê2 +Áâtẵ0°jÔç“ĐUUé®@5Ú%)rÆ`%Ư÷6»Đ.¼›ưtâéYÙ29=E/储w³lûa¥EÖ Ó¤Y&«(ç¦Zuj>Y®ú₫̉÷"̣ăl_̣Ñ 1b}TÏ“)‡ïÎKs˜î¡,ÛĐ˜ö„— ÍnÄÊU•ỡòDnJTl~‰ƒH 7‚z’ßÿ2UaËÓ¬m'øæa^k‰ĐŒnô~Y…z?¢³•#4±¬ñnŸÈ.µ–æE/zM±G‚œRê¤^°•Od,JæJÿZûÎ؉ÄC-çØ§êèÙ Hù­5ïwÖkí?\‚Ïó́su­ ă­tVrlâ“ƠmûêÓø ;ëgפjá ¹8ß…}@ùŸ9Ê (ÇÆ]jG»2U¢cÙ‹¤¶q|*1YĂÉ×ÄƯ¾¥™f»ḍåEáª5…lÇäŒóƠk×FơZ{1ˆĂmü†ÊưºD‚ÅèƒÉèWjsß3U¿ßd4€»f5¨rƯv_JJ£ïÁªi ¯·Ä/<7îewtóù$|àx’† >în{œôÅ æ₫‚œ#Ù¥ È2ÄÅ?́çZ_iy¢¥»Ơ\qÙ^Ê(P'6Đ¥{¸¹+³æa¨̣˜å8¹ÛsY­¼|¾¼ªÈ:0LƯ’x¸̣©@ ¨Ép§Ê}l^©4)dÖhŸ>¾Œ̣`íí̀6A<3èà]Ẹ̀oVŒ¸æÅ}»Ú̀%+ÓŸŸ=½ÙyÅ[0 .¼¤" ¬¼3ÂM-IY»)Ươ^ß«§÷¬G™§¬«{™›¿|†§’¤+Ơq"Ib³™¨YLp½̣äp¨— @Z-Å^ú:ù %́ü¾Î4d L߉Âmcדm­Á*}ÍrĂ<£Kñw–Z*_{fç=uF\e&G¾'ĂWfE ;R(n‘k÷€KÇ=$Ưđ₫ÇÛJ0¯}™±]ÈBÊêă¡ø³uÚU†~û ̉á¼…ÚÓuüÖµưiüUí×;’r¯Å .C›O¢Üv¨ùïIÉM=öÿ¬ó̃*GE+ åx̀O¨©‚W-¥¿§ —¸®n"Ÿ±ƒ~_{zï ?È7ê• ̃:O©Ôç>‰ÿ~ZMMÅÙø9H~È+‚¡®ûy纖Ïo* ƒ£0n;)o.—BÚ́¶¬u^ç# 8íP˶8'¾Ơ:̃đw‚DO*3„²~·©°¾6U'©—©½gsÅ)>ÎhNª.ạ̀£ÊȵĂ{4|~Nc0¥ñ¶FĶVh–ÿÑ÷¾Ơh&NB ø„MÙ»ë‹Èá̀l.»êcƒ™²Åà̀gë+éU®1C,ƒ‡44Ï#À'`L”ù¤‰Ơk)u€*T/ÑM­¹F‘e²ĐÍÉI u:i8ÖHQ¨–¾­ÑV$ưĂ 'œÛ̃OI@ËeôBEóØwK2„́éG±ô÷É̉äß?Z}N!ÖV ©˜5ø¼W{°ÙŸ÷ràfû(ơđ‰CmĂ%ɧ» ú³„Q v o%â5aôkeŸïOË(¶đkRú¼è¿̀!Ù[Ä{Mí¨Óa`s§4s~Lé²²í>Y˜ÿQÛmyq»öÂá£3í̃FÜ6¬ËË’ñö>v·?ºe¾‡o¯ñúJ•ÎÍ…¹]kÁfdóóê¼U5  Œơ­ª`7ô&bæ]ÛṛBöYËOÚÖï‘m_…‹K§v_îY}Á…~7—fÅ–'ºÂ‘ï«Ë̀̀YÇ S69v̉2~huû²"^ÏnRSm]7Ù”|½„̃µ ¶*Ơ•÷̣?óÚ±ygø&mb|u_&Âá—> Ó£fD‰‹t6¶³ríW\{ít‡9IâÁÜt̀ºñØu_Uo¾©Å ªÍ₫¡ªn¡ƠbûVºÿ‚ñ‹™̃sn°‹ÉÑG‘ Ơ©ä‰Æå¯9 ¾C̀0]_ö©ưüÆ !öø¢<=Û¼ƒ âaÖ:qé£1aa7 ÍäT­ïóµ{̉®(kF3µ ç2 J,B*Kn> 3÷£¼ä‘†Zˆ-‡Z‚SĐGFJöÿơSƯ endstream endobj 2423 0 obj << /Length1 737 /Length2 976 /Length3 0 /Length 1545 /Filter /FlateDecode >> stream xÚmR{8TiH‰È¥ÔN©ư4˜‰ˆÂj2w3aƯ™ó1‡™stœqé^"Ê¥–OQ*—Œ6›Km¥íºƯ¤›hK̉=w©ÊÖ¦ốó́óưó¾¿÷̣ữßû™pqŒä'ÇA¶ ›ÉrÜ@>k‹XL;m33…$cË„$tA0°€,[Û pđ¸d–ÀBl9‚•R!‚ÊP¬Ä¥x*–€% ?%ÄË™„Ü•IBH Q¨¯_ÏÇXxú€'Ä !”?¹H*†X<´Q8¤*ˆq AG9Å3Ç` )bQ.̃|w®¯xplù Ä൜*ÇÈxg*ăÉÑé¬9nI…ă–hÜI*‹©Íf“@£QLÛvT7…ŒÈă¾…(Bñ?`Aih EeË¥R¡  .‹““̃8 ŒjŸH £H TˆQ“|+ÊPịÿ}Íà‘BJw,’ÑÆ‰iï ‚Ñx.?”¤´' 9TÁAPµ'oˆ r™ª¤ô¡6Œà˜4ùë¯ÔXcÚụ̂úïÿp,=¢Oc%M&öÑèÏ$ ´oñ›Ư¾xß›«Ë] <Ù™«*N₫1Q¿cgÛàÓ2œaXôógØe¥Đo‘¤è¹)Ÿ´«o+MéÔé7£EJTn{¶-Àµ-÷Ë̃a·ÚyAî}×îùÏƯ¦°¶ç‘íP^MÚïLc½́̃Ơg•…˜‡tÏ:»ÅM§/JNtv«‹±+^c·.Ö89ª­~È ó̉–Vađ̀@±]AơŸû½æ>ȹtø‹Ú̀¦VïÅe₫Ưµ]JÍ—ñWKPÆ{ô›6l³Ù¢'^DmÓ=yhXÀûÈvwb~?/S1YĐ8¿M̃Ơ¬ä²ª:K–®‘œ}o[fˆ¸&jA_ ơ°ñ„Üw‘BcÖ]ós陸¿"?kwĐđpÉÅsß >˜íĐzYr™îöđµŸ<ô·ơW±¦R¼3C|eĂñ7Ă#ÂÆXs-•?s@!uä­»lô‰[½9·‡ÔßñÆÅëmvơG-ÍÔeç_¯ñW ¶n¿̣ö±Âk°ÿÓ]ryt‡ă©×»ŸĐxN.³¼̣sÚÜ7É*lh^Ç*Ë~ŒSTơ-P¯Ë«UhYOá.Ù:=ÏùüPÏéËûf”#~î5w:é©gÏi µ¬Ô¹•O§₫~ø̉Îö`z̉jÏü|ư:̉+²G íL;̉GŒ %&&y~›æưÜ/ă·º=²†ênơˆû5Sé?65Í]rQhÙ_̉Ѩ˜´–Q­b₫̃’kl¿qÛ•ŒÆE§Œ†.Lz40Í4%;ÆƠFƒ\)‹ÅLÊvjá®Á;{Î^ ̃›{e×>2|OÁƠ{ͺF¯Sn«#`ƠÓ®É{ÙFÔêö ₫`t{­wëB‘2Èåiẁäˆá"ÁSZØHư‰Đ†£N¡¯²çÄVWœÜ₫ZÔ69énc—­^»4¬`;±¬-5©ˆ‘Ưœ«+X~°´¸Ñ×Ëx¼4ó<£qƯQÛ^øÅá`=¯œ~¥ ïæ̀å©ÍfÊù §ƯÎIÅ-'Ö‰«s+D‡ễå*tϾ'bLw Ïy9]ïß°q¿§V`zOÖŒ¢‡x]·?áü Í””MÎôw ¬ÑÊ´Ư—º$Sơưºƒ^Đ:¸Ă¤qư¹¶tCq²́<÷¹ÿ-FĂ‹wkở½jÚ§hnlíÙåOḍÿ¸¨ÑÎ endstream endobj 2425 0 obj << /Length1 737 /Length2 13137 /Length3 0 /Length 13718 /Filter /FlateDecode >> stream xÚmysgƯÎnÛî6~íiÛ¶mLÛ¶mÛ¶mOÛ¶m[Ó¸s̃sÏùê»ukÿ“åu’ÿĹûBe˜²Ú†Íẹ̀Köñ4D<êbùöwÎλí>Úeó–&°rƒ<Ñ&đ'&]Íc¸3<.Ï{0]¤0¨ºg¢́€BÙ¯YRNJd‚?ím£"í¨ÄNṇ̃Hÿö?E8•,›·'öfM?J¿%3iya7À[½ô°ÜÖ ÷èJ5Å& “%m¯, ¡kjPBC)‚̣é„dö-]Ơ¹?w¹³_àï-»aw1aZ-—qˆG fÏÍàœ“"qŒøØ¸éR’Sc6u₫Ñf)ÙÀA”Æư ¹$Ya²{›ºö«ƒp´ëmÓsa3Úđ•±²­¸(^|öÊmÎ\ƯC™~-rµƯ›&Ëå…eđÖ ¬D¹¾.Om@Á̉¼OËæ[>2á—ÀWÑúGHQëpÈ®æ%/=÷Fû$P_†—°ØÉYc‘ ĂGI¡€Öf}xl¹}£öQêŒ;ä‰̀=ŸË\ư[!àºæz?ß’UràưÛC­wZ̉ë—»₫St14<̣~;*S,> ăĂ\'Hô:;NDøæ1O”L1½öĐÿ¹R’¸vJOon6ư°ö“9I¶»P°´>û¬†h›!›—³M0@Å›d ´ñ#ªSP„bë|1æÚ)b¥³™”#0qP?‘ƯŒÅJZñz{̣&2Ê"-rj™g#&ô—t÷QAăé¼ÅfÁ!êK‚h@ÈjbOpªgNhœ;?´Â°y~âZ{vJ1nIÈ¡̣zórKte]­î³'䬳…¶@_¿A³¾Ëḿí”~0{§ÍÆ„¦Á̀ªù¶È++;ï ×à³§Ù’Fh ”„ßÏgß»¾ữg\ue4Çq0ư-¿l2ÑH^Q›jSơÚ@₫‚Öd0éZ4@cÏeâ$öNh'ÄÉÆT̃ #Ovçqä₫G›º*hûFD%µOU)Íf? ²ôu%¥À̀ÇëŸU,₫¾@=â"êÔl_=U±t€U¯àPË-ütëÖUàî)[ë•´=ƒ’.»ª3wB¦ Ô@·:¡µØƠt:‹ufgöpBpC.5 öŸàY”D!§¸÷Ư“€ V‰Çƒăy7åi„aÔ¥Zdé~SÜô}rBȼ̉D×h†¨@|˜JŸ)vnó$ÍZ™øË™»hù!Ñ[¤àóŒ,øNæÈÆvơQ~–ËÄ&!dQqWơNrÎ1n­Bf?ÁˆeûD‹‘A•qB ø©¬EÓFjđ|^mÙ¶ÅŸv—Ô¥½ù¼y^ј¯AºƠñ\ŸR"ùCp˜rg¨áçDfg&Zƒ–«ưøƠuqÑYqn 5Ér&n2ŸrËöăCơ¬Í«ĐÄVyL)U£:{}|¯KÿĂ´¡8?ÀÍû^ó¡ħ ·D¿̉ùQ*(6“1d zÚéüŸoï!¢qÖêï¹_=¿tXרR'|b‰L¦ Üñ–-;dQhçdđˆ¸0SʪÇâ…iZÆOÔ6ß.F]>̣s Çc&w¥âÁ‹ë¡âÇBCcÎiZIœ†<¡iÿLÇu Eÿ|‰ÄIÙë ù¡́IÓF›ßyÀî₫ QÁĐiÜîdCKy2ˆ”¥5´™?¤ñë̃ª‚¦¥»Éצ¹®§Ă:åûºâ7|ô½…ÓKÙR 5Mx{˜~ÔHơFɶs༧ăSá9…ªÑzz^ơy‰Û⣽ü›Ôº²̉½đøú8el¾a6¼Êƒ‘”Z½n½Jlèô'/¤À ñ¾1¬ªÈ'@IKüä„çÇ©ˆß@–̣…LL-IợWx6!¶¸äu’–O±p"ñÇFÚà”ä¯A3̃ôÊ“t%†9†ÊY3©Âư ¿¾N.Ѳ+·¢?²;àF·¶¾‹<%1Ü};XAG‘̃ĐâZaŒ2' ¯O‹̣"…Ès1vđ~«‹ŸÏoNä9Mѯû+S¿²ˆôè ̀&Ë̉.ïöŸ^|AkB±n§ ‚"‹¥K'%1dÀ¸Ôư{ªaØß3(sÍ‘c–qhb¥à̀,'Xl@£â2Œ³k?Xz ™%̉ΰÇú\ÑcÁ|4‡Å›óƯ'ºâà/”4‘Z̃DL4äï0*DF„’ÆÈơyiú´«́foĂ’ÆŒĐ9÷~%µ<`´‰1½Å)|¡mË€aà₫Ö’¾ˆº„N¡~Jù”h£Ñ½HY#B¯½ Ă-ÀxÇ”X”eT@û†ƒ«\3ê^ {ˆóKÆ/ Xæ{b›¦Áî(ÙƯyK8̣IÚÛ—5k₫@"Á6œUÖđµ gˆJVS÷]ßfAµé÷%(R˜$¯cœ†û¨RÔ$!ëÑï€UL¸¸â³B#¦iÛ|”-6ƒÊ [Üx‹ơ˜L}“™¸ê®y¡¯;ñùuz–KÜ8ÜRlơ¾tđ{ÖT_›5eŸ¬́¨tùhv5“²ˆ³5ÔÑ7K.R•ɳÖÿ@₫P6¨#'ˆ¶ưQpJ¥xÔÿhœ©ÖJ ©“G_œ‚ñö§ØLöÇjEZÿQÑ囯v ;gsÎÅGF'U˜ß¸*ÙƯƯêûéTƬªP·¿á™úc¹†Hyá1>öz‘€NH(¼×¬„©oÚµzn)”u&QG@Ë ĂÇT>×\`[a¦s{|Æ̣ÅBøJqá/œbíB̉ñ¡¼ÜK'ÏÆ¥*`÷_j‡¤/bl·vY2%}35¢K[² j¼oĂÄR%¡÷¨̉Ééîú¹ ú¤²l óÎCmNƠe₫Đ2ë&^ôPkEQc˜!#5ä%ûÅ(ÍăóS?§# ’´#@$EVäŸ;«gEù…¾`óĐä\Él̃ÓYÔ¥CºmhR~™`KÍǽ!¬Ä„ˆôE „èbö){Y ›4(₫²k^C­\½Ñ¡ÿ bŒ½&tß±mÎ"“ÍÚi˜ )Zz ç¦^èˆk•́˜—W+„€œăª¥ê„iHE±7ư&ˆ¨ ¦o~‰GÓg?›)D)û %̉ÈŒgFÆ ɘ Äz³‹©¿lTÇцÍ&÷8F¼ơœj1ñ•qfVz’ÿhoí‹Ưi¸Pg»ÑûdQ3T—I z™1ĐHé3ÙkÈ‚æs*¢–o)ú,P­¸̃xBbÓw©v¹_8̉÷³`@!1ƒØmæđR4¯¤g¯è‰)ÔUĂ6w VËñ­fIvnÿ̃ÆƠ“OxFÄe€aûơbÇ^zĐ̃v"ñ‘éÍÜ.¯ñ±&‰ü}#_Q“đ|›0µ<±¿2¤̣*1!z-ñk#ÓnGç¨Ú`Éb6CA¾qzÑÏù9Ôqfá¹iÂJăµb5>R¢`·‚Ï“›_Ë$ Đcáô™lS#%€€F”­%u.SÅ̀ÆÖ~v¼°_G­S₫,=4GÂA=µa8À/Y»”¼¦‡ÉµÎ#e9a.OÜXN¢Ư‚pJ|Y¤¬9æíhÁ›n³€V=¡&‚œ‚Ù2=ej£ƯcE?ô¼*‘…KEËôâ₫9l‰7í‹ÈŸ¤ˆ ©qJë:#”ĦƠD¨ŕm óÛF6%wÍƯ¬åwíDökYî5&¼ó¸oÄZ¡¸b ¿ ‘]¿æˆà©3ù€Ø“÷«PöY»mXđztQT o·ZüPn [éæcĂøE0;øÊp¢ë¢Y¨–É`®À0[dµ®— €¶?a“XÊÛ®"j÷¬tIÓ'ƒT¦¸äL ©ú@åI™ñ năF˜P(˹^Y°ÿ=^Ó£¶́̀÷‰C˜·åªÓ¶ivGE đ>Îàur˜®5û;M#)êʽí¢=SZ¾3¿[÷<ÔôœRhycÇtÛoX˜«lÊĐ X-!’-ᥢ£zé½ÁÊÑ–c’ưÀIB; 8cóNnáñüNk” “>́±rëT +¼Sf»­̃áX@¡À{6Í­ÙTtC,OæhP=$™À´=ß·€_O×I÷Å÷†̀©¥¸½A\«*ñƠÑ=Yu©ărèH÷«…Ó¼ºFáÛV`84ˆ¬ø {¯–lÎöIÉơŸ·¢´{¾óé)^×ó:É`Ú–,¯:ʳ>x=\vÇÚ ¶ÆÑë ÖbMăÎÙpÀÏPŸØGJtáj¢LÄK`I='₫[v·³¯éU>ˆ¾2èW:5LîiÚpô^1d†/„U—JºN µAb ßÚ_·ÙøéH…\“hCmƯäưư…«> i^)̀K!O£Ç5‡ ºơTkF­‡Kjr'ú«œâ´ÉiÉ?}&}}Ú2á-̀*¡âztßQ²Ÿ™ÖNâÜq ÇV$<6ë+³{Ÿg±ínüAÈ>¹‘꼫óXYƒ₫2è—œq²ÜÈÍa*’ Ḷ[™bôj@b$ŒO_̀dÆiÿEZlà‡¿Ôî¤7ÿl©đê”é–?¶|“º“;“ÅÔe ¡¥ °ơ½µØ ̣À ̃_]g´g•J*_Æpíoñ’¯˜1^eísVØ”̀h¹È:FQzƯzR8z₫í)Ÿ› *̣waCôm/¼Ê—ÿ¤‡p‘¾ŒêBÚ«å¯)'qßt2>y-HJ%ăuEđHX©|픫OmÙ%è5™»Ü—¥|ÿ ïĐÁ5sd¥û‰•©ÁkÄơMÚzù ­wà…Ä¥r‚±`æ2l—Ñ̉ˆ,jK‘ Ă@¡.Ăüu4Og'Y»¾ăÀ–ÈĂ*½Ùj˜änïmvàÉ«‰Ó¶ÄJp  ÎĐ@ϼƠ«U0¢ŒUvø¥o÷f]†₫„‘ơç d¨lF’rœ³£Emăø&_†¨1YÙ”ă`Wçykàă₫¤s±\î(ñ³:T±‡<åwIéµôÔáÀS>ŸëIªttˆ¥|ÇO7“}¶téÏu@ \®Ûp=µ+w2¥·¸Ư¯ æx¼p]pDAxÿs?x7]™¦t™‘r>"ÛFfFÜ“«Ơ\$ À'M4jéÑ•z”&GÁ4K›̣Z…ï…ư³ưï Ç̉–²qY–<çS×W„@Đ9ºóÖ¹Ó ËÉñ0>é´Ó;E°bú1WÙª{³²Ị̂ŒªƯf’qKVä—n…•ƒ7`¨¼O?úK₫ă黿­ØáÓ¢Uẉ‡j‡÷Ö₫Fàft¯ Ô_̀eÊüË[ˆÜf†Ø?­Déo·¢œ·xèxvŒ1bđ•‚.0Œ{oÏIC²Ëmê•̃p¹°¾ítÚ@»Dæ¡à®§³BÀê½èc×ñƠ –Uú ~8FĐT€-³ Ï¢ D’J{w†0—đµú²̉g]¼É~¯é¤åJƠjéRÿ,Oê €©ÂûJ”H០ĖÍ]&:ư½ưđ6'̃y”’•=¶Ï‡,̀àAc H¯jA_bŸ1¼hFiÏF™ăÇèäLO6• ÚÅ/p´²^̉E1ZéLÁr¯ÚwĂRÔ&obµîtØÂ„´Ù¯Ê®²Ơ«¿×_)H₫àé âaÛ¸â¨h¾T=î5ªïÛX6ăÙ©{®Ÿh9¡0DH ¥vgrËIæøª“()^ÿđùAOXäÆÇ”SWRÔUt´:vØH² ˆK^u ß»×ơëDÛôÉëG»ÍiLæÆ\‚ï6GÆy˜3‚ỀÁx'K7³í‚æN™4ưîäÜÖ p¼f2Îl*üĂ Ï`¨¨üx₫0k» ^J‡8â)¨§E ù>²UÀẦ#:‘ơCç+6N»êX¨“ÆoZ¡…ÁGëTD‘{qH²éŸ̀ LPnjȄµw9Ÿ¾5ˆª7é$|ŒâhĂ ¸± «|ä%SÙØÎ/cƒ}óÎÁªWƒ[Á%̉OĂÇX6#ổ.-wóû{¼FRdHI‰SÛ† ~××­Qx&̉R¦ÓÈD½́±+ṕ[SÑẫd3Ë_Ë£Ù½ßÙøœă\¿(~úZ¢‘5Uƒ”q"\ü– Ô™u¨MÅ̃_­u?rä[$IH뤮®àZăĂÙ §K¸…1+M™â¹Ö|;ñ!Ơ` ~Yœâ˜ï\ÚKó¹·Ù}ŸSÿXâq»ăµ«†ưƯ·Ê²tçF}­È‹Äm³Íù˜øOëŸs’nO7 ÔT§[¸inGq,æ₫´øykÔ}}¤ ª%¿Ơj G2̣bî>.yºƯoA}£…üX nơE7‰Û¨P0UN%™f%3§›+¾OÅ8|N§ô• ̣§RgûM?̣D°̉ ªú˜"<’"F7©˜³ l›ÈH~ª`PÀ"is7”…åü¯®Ê­:ôI¾Z®›3Ơ{>ˆØC ”eăȇª{CÑhƒƒ/fs]Å]®ÏQDtßX_ªD¸Ó)ƒ`Z‘?Rb`j†}ËEÀ™×YNV­ñḍVíf[f4U×y‡ëă¼“§\Ơn¾‰ Vñ¸Dx¿»5™zb\F HETYèĐ7%ÍB¨-é=‡¾6›¦ê3³Ç™[aº»y<Ú¿E&í¿¢¤̃båƒ1̃`Uñ10᥺+J@*•ƠCeª§ÂU¦á¢́çËñ”ÎPK:‰"|äà§ù\)tđjĐ'äÓ‘ º ~èrá̉µ5o~Đˆá ¤©xŒé¾w2¬̃{çZ_ƒqä aj¬%Ï…)±ä‰u›ưA÷f+îr²ÈØDµNœđˆjx…7Ó«’QD—9—bîWéB=\4iñÔ}PnOf];ßô¶-^P/•?[Éy€¤Î5¡ª ‘’Bç,5Œ3fqé¯3!‘×d|6±̀4ÂD̃˲-å`«‹í–ÆĐö×Q¼O€ iJ¥2̉â|ïWsI'N)mqàΙ¾:|#œ2f–™>̃×&Êùg6ʦÛv(µ‹¡²ß¢\Œ[h! 2_i£ÔäôÔΉ5¨°Ư[yy Næe뫽y/µˆb8đP ñ#mÔ,+”›¦ ËØÛg!Ÿuâ‰Çhw&’¯Öazz~re¨ ‡ ơj_mÄë¹ODK̃Á.ËV¤£ OxçL_„ßqñÄBˆozª¥ç’ÆCqpÛOT̃' ”±E ¼r›&̀kă±ÚBÎ<$#œ₫ Æ£Q́+;#QLï‹€ÑV_c¼x•6A–‚q^ ơ@½ßRÊR ¥ñß±ålUWD/ûuctƯsănPÁªt#Ík°ëk…îzÄËTg²X¦) r̉yæÏåZ£È Ië{OU@üèÍ́,Cææ £¹§·kë]ÙcœÉă‡+ô»UJD>ÄBƒ9§ª÷½eödEG$ ¶‘‰pö¯äuüT¾ÍæºmB;vÄ‘º‹Đ8O¤GÚZ/vúåG‰Â¡Ê{̣¼KÍäÔ–âë ¶GRAÈ-6ûi-x̉ƠˆY{¶Íoqö¡ré3¬H5z«ƯbĐOđT·Ç~¤ ơ]ªƒ ³–¼’!èGêf=Ÿ–Â€Đ˜BGú*e¯Öï´Ö…ÓæèªôÙ´‡+ OÂGlî³É{ly­ó‡É2BP½/œ…ơ‡œ¨)¸àWÀ »Ä0iûEb5‚©Ù-ª¤ƒæÅê:ÚÖyÏẻ2ËOË25/5Ă4ÿ¤ƯùÈ<ÄbࢋÄÚ“*F(¾̃¤‡f°tØ?ÙU6]aVñá¼Ø0ÓØ´ÍEÜ#H`,IqY•S ¦SB(iµṕÆĂ$Hç,Ư¥i^ZipŸ9Ä.BƠù'ËiÀb=q³Pvp"2nêœt?À Ï ;™sk¾¸ Le{,aÑo›¸CK©ÜG}qBS~­pF@@NË<¬zÙïiægƠ×ÉS@¿)‘¥û|;Ư¼„ ÊBèg3Àtë@6Đ̀ë\G¥ˆ 5ϧDE33ß) ûçQûs Â…"₫52ưƒÍPÎ =`e#h)›6}„̉Y¨L¦³_-fLÊlNèĐ̉ư±r+6™³ô™®Æ}ùA”Ô鱿b¹ơO¾·W”`ñwœÆÂ¹7r´Ôpb[ÿ\Mh8í¢£¢,Ê`­ÊNmù)(<ÿƒ2Đ­3¤ÑbÆåm_{ûª³Î,ưG,ƒẪ´ñ:˜#’ë¤ñ\Q¾đ= °;[¢:zn†T"îÍ!«P•oƠ ƒ´=_kßœ̀Ñ«]§Ä1B¼éyDA3éSÿÈÎ6d WøgªU‡^ăt˜₫>¨KúW¿·̣Ÿ†p9M˜&£Ôơ!7 j§P~®p —ow6Ü~›T³ ̃AđÖèu6yñ#1· ƒ7Ưx:SëU°¾^–P ¸HüOOôưăî/ªư‚E ƯO‚Ç4®¨”Å/i[Ó_„Ư2̣flµHă¸B¦_¦äbư  ¾¢$á÷˜“2P†£è¼Ưø“ƒ̣{S²^(Ư…½p¡¹[3ĐFGø8₫nküz·‚~<Ϋóß^Ç̣¿pnbîr€ú­ï“u1ˆH¯¯E;`ÙèÓ60‹¡Ôç̣̉é¹&zÍO 3­–­#™`ỊÔ8̣ 3]ƒ€Í«Ñ»µXàÇ1äç½]²²́–=¡OFeÎrFàĂÛ.ăzb{dNiÙ¾erùÅÊWĐzƒX2Ôí$ ơ™T¨₫j¢ĐwgâäÏ„3é"M €ÍÎwƯÖ̀ƒKS̃ !=SÿT™Ù[M¹ÆỄ‹®Yˆë–+üÓ¸ Ơ¯¸ß[ «MQ̉s!˜Ê>ѯÜ,kÉÄ .fWh×2ï8éa³ĂvÍ¥-Ô .[µQOªƒ¤Èé*î‹è ;ñ„oäCÀÙWéœĐá7µ—´«i»üÀ½F¿ eOy–± Ë.G›15jÔGô•1¥Ưfb¿¯Ú¸ø5å"›óK”¦åÆW‰‡^Áñ¢{{NđÂ-´øÍ)† zj!œ° !̀o₫}ÿ¹7Æ¥¤¤»öáÆ½˜˜;î$̃>ê`đ7Û…5ˆ¡/Gy².Ê¡₫btw÷XÛ(^dAĂŒp¢1,:ÍÆd/¡»́2MÄQk(äụ́bäXOøCt—°È¥·ósă˜2XÀ°´¶ªLƠDÂƠT.®üá€V¯1s½M~¿á(9'`»màÔb u3á̀U²ß¹$aäósÙZF_l€×qXùtTµkxï·0Ó±rr±&•».hăkÂh¾1°Ø“@-¤à₫èÏ+r-#¡%y_UNÅ| \˜Àm­ZNùr–·ôr6ëÿçÙn¾¢ûA-·¼èÖ§Pß́a_ɧƠ„ư;g›kñÏú‚’V„ Y<¸*œzZ~¢‰—ªôMÔóÀókÅü á±ÇGÑ6 #N¯zÀă²…Ê'2g̉U¼~—Rf?Ä`Wô3–4ôæĐ̉Aø¨k²,$Üà™fú0v8=¤¤köŸ—ù ˜đ•–pv *rH?Ö‘(ÍËXaêV’>ăÛ(Î2ƠÁ5̃æ4fQuöăZ÷n=WÅƠuƯ]"*Đ1_]•‡ï‹÷møÇͱ:dR¦: G—’_MĐ…»÷/ÅúXÊ{è ¼¹_ÙuÜ-¼²ún¹i”C"ѰÍû}ç[ở¤ä>Ñî¡î€iy ̀裆Keù¢óåë: ZaNƯÚỵ̈:̣Q*˜Q€ëÍy_+Oü²̣ußÙfØNrIŒ,[@<•Œ¼¨vú;ø×™NuÉúdÁ́³C «‚ñă#Öÿ¶z‘Ăo#P‰ñÈq|D6æ³[g÷i“•…×̃–]'ó¯Á:ä&ëđc9 ¢2o0B01a˜¦ÍĐèt3â°&Ọ3(‹ü½tÇü˜*Y—–¨âœ÷~Å @Ù̀z9:RÄ'ú}ù8Ơ3Ư©Yjœ\™§fé] 3Æá¡S%Ár’Í èµè RÅ»O!F9Ú Fßׯ‹F+hƠOÍHîùl„r"!JSO$>ù”pÍ~(‹?)ȽbXIy^ DdµS§[AœIêôä;î0×Y{æê “yơYöé0†Ô6פƠ>Cdô€…´ÈlJ…ÉlăơàuE(úm–—¹&¾qO,¥ ơ·Á)”é̉·}`bƠ‚_ĐK[—£çb…!ª“4œm?cµ½£×™†ƒb}–yS2hB·EñȧĐl™êv1eœĂE0‚ß+7xI?œø-V[ơÏ8Ÿ^å¼1¡Â³:»ƒà(® ₫R¹ăüjjÀWå9¯­ûrj‘»ódáBMæơAUƯîw¾¿â¼ÿÛ!]›Ùyl«¢̉BÏzQ_IlYtP~.Œ%»6Ă/UQ?ÜÓyw!ưîBlCË€E¼qQầRØIDCQ́îÅ+DBF’Å₫ÁÖu*éÓntß›f “ˆKÙµ#‰Í2©óÔt¼ CÙưç©m7ơqJÛËáĐCds‘eÆ2úíCĂ₫ZE^Lơụ̈,í rtm,k'©²Ù&&ä„pÈÄ“"ø4¼° ƒ}"1ÖÓª¡¢?¬öu"ƠGƒ®æ ưêÏ̉>  Ê“âÔ.†´ẉ3Är¡£QằH.sÉÛ½¨x$ƠæM øÇ6íMŸ€Ă'ù!UÂY¾“C湃 I`dËơ‚³ªm.fà¸÷åC Đ›÷ÀS¹œdÎ8#Ï¥ÙNd;PDé_ Ösç ˆE₫ă"B¾̀£–\‘ơP+‘â§g›xăïq'ÇØV.½ª&¦B\VÖÇ^¹G‡LÄû{Dº’Í„$H;÷„ªfJ J”Z̃o.vg”́Fubªe₫ˆñ©“–¨¬Y–—”́ơ5cF7ûs¿——ÏBp ̃ô´Söx4¥]2I÷"If9 PÉ»îÄö ”ÍüppX:Kº ]¶?Y¦º§/O¯‰ë„̣ø¥fEû ë¿P8éCµ¤’/ÿ÷Gê–:™Û Ô©;*±ÅÚ!z¿áËKF5óEễÏZLÉôÄŸ¢ÔlErl.ß(µ5é q"% {ÏƯÏ:̉…R@u‚q¡„´N“ï3T“[fÛµ$Ó¨—!ö„¸Û…¡{ÀľSʃï9®DQq̃s'~WÆ€₫H&j}.³Ie”9JöÛU+Âàœ¼<E/XhÄơ¹]y-âçĐÖÁb˜1•·-Đ:‡,²½‹¡He©®G¶ ¥¹A7½(ú"ÊÑ},³ơ¼›†DÄĂôơw®$3‚ÜƯs(•ÔL~º¿̀ ù¼?ĐkPƒ€Đ~U¹f)ˆ‰óéˆ6đÑ~MÎPiH æ#âÊê…mLà®ú<,±Öîs×RQ₫́Sđ`m®sTúT“ĐưU†ư¬AMœ…=â¥B¡î–ôhb¾øâŒ°EëBNơ=ÁEQª¯X¬tœßù•H’6Œ‰m”*˜¥L÷Z`çû£úHɯ;›p­& iß/ơ`¥àÅUF,ÎƠ,½öúit‡i–V* y*Ơ´—M›Cdxóy`ơ•"iwzưe„[Ù ŵR ñr$~^°diÅËÑ|,̣ Ü¥á`æ~Èæ¢k2]‘f)O48#Ö¿×*·ÆÈOưhÂgíËæ±ÇShMè“AiQPÔư% üÁåKnœ9¾À€̃ôdÏê\ ùVÉ:Z³v²ØJƠŒTÍGí;亅IV ñă{̀.¨µ Á{îJ)œgP_&’söFT1ä®%–ç%™xa¥¢+–bM¨ƯÉǰ 7#¶ VëBÅdUWËîµßyO3 %öhO[Mu\ (dM™Ë–éy¥œ×éé¦9“ưÂâAåÙ¯6–³¨ ÄJ’n7ÖĐZªvV.¥,1(>Q¨è~Ôwê1ŸÛ-]h!Ok:ˆæcñÊùêQwI•v̉§’äà4@ÿ&aø3¦‘ ç•YS®-&¢9o]Xgrf̃;{Îø"Y×nv‡ïAxQ¯¬œ¦˜w˹ËÔƠȨœ¿=xXG|L.½r¯̀\<×?³DƠa^VeéăÉŸf“A¬¯Ë{ÀQèøÛ)ßË»ki<ªvz<2|V’:œđ'+̃̉+U¿Ç¢yŸÙjƒ˜3ƯÉ*º¡ÿئ‰3]Àf¤9¹«‡´q·tK>›˜w U.›@̀&G–¸ª9ö¾·±á&øƒÅ'C~ÆÈg´¤©̀)\3D›GœB²j½¦/e¿ÈÇ9Ï]a1Xåí~Pxw…¨ˆĐPÉk¸••J)[ÿ¹̉”[h.æo®"$[“l^»ÆÎ~VBvÁö’gÏßỲ0kX•);¥ ÂGÆa z´éN€19‚Z8¹JÔQjöT₫Æw^ZµT–„ŒïÚ¥`#ƒóYÅ̀Ͱư5<À¦8¢H0´›]¾–°1,”œµ sg}8 G®åºq|ØË4™¹™rz•bß߇c A¦×£3ă₫øl¤-gä̀Ơ8ƯƯÇ1ºt•-€•‰ §ưè‹SI•q]†^·.ΈXßÏ£ŸCGK÷”K·h̉­G­®Í¹5²‹\•v¢”o«˜<½RJ»ÅƠ;=Ô •X,5!p=óưy&˜Ê³Y”x6¢aR’¦ˆs2u-óưfëxmƠ{Ùo1’A©Kn ´”Ym˜ü–j¹”fc±Ï€ÅK]™\ƒ^¶F &lª ÆKdµ’/Q‘¢,Ỳí—Z¥T–³yGTʉÑà¡cùFJ¡l ¿öÜùk‹â]Ô@¾_ăÂódó¦'_Í ’₫ª^×–˜.ơKºx´ÁaRẒ²Ăbưîä‰C¡û ŒÏ– „)=–üO‹~¿U’ p?úưæ+aéƒ1̀BæjÑJäU$ˆ„Å—Oq/úÊ@¤Ä–̣ê’Rv <‘„D%±n½ßc µ 9“÷˜åVض¾JvÉ’ơ­üưxl# Qa´•ɃÉ-‘[GÑỎu¥‚ÇÂ…3Íe_0Im5¡Ø-P“ơ°è¸­ ‹Đ¾?cz+PG„HL ‚ê„ë¿QRđ²÷®eæªƯÙêÙß—,> ÊÆC`çvt ùs-æ+5^$3Đ ²ÁLÉâË‘Q‡q:*³1k˜¤£ÛÚlyÉZf5!L÷˜¬w´ƯÍbgèUÚ€Ø:‚¯$V-tÛyTÖ"І¥f„¦¨%­¯ßw)9{<ƒÀ¶C,oZ›mü^I¢8×à4ỪAÛ€{ø À×s ! ư_Dơ7/Ê{́ÈŒÆxüPîÓiKö?nhíyZ(ªËÏê*@µï×NÅ>LxÙDÜAÁbưÆ£ÆjÊ··Ö“7Ă„z=L“I/exáóó7Gđf¾ dúÎe€à•ưô¬œüŒ’ọ́½–@®YP)*ˆöñO (̉ÈÆéôêĐ _î˜Z–}«,i¹ë3+Ø®€D¢l—M­`Î̉†(úÑBÂƯª;¥Đ.œÀ÷AcáŒu&„ryd×_³‚ÆEÇuíßPJ{ £'&¸SÛ©đx¶G•Ç(ï€sĐ¹Ë.º>•wÊm$±ß£á„må—øñWô¢̉×Ă?â ñ(v€¸¦ÎØ>IPà5·I-K£Á€léb%è×d”€)ræ)Rhư´ÊÄJÛE7HÊ‘}X›?Æ„œ<~›ª Ö́,kû8ÏTT×gpÜO¡kĂáæÇ/„˜ÆV‚¶nt=³ÚHMÄs…•Ó-ê09|7äĐ×} s^ÄËë–ÑÄ$÷Ä<ë́dă9ï€Ï¥"˜àS Ă¡±‚Ơ’Ô~è“Yg”.oû́Ù¸.â±F䙳K0ZÜđîj³ZkÀ«µ´0Áî†Ëר|´¹)&py…¡¬¡}ä0ó6pÛ¨½.ܶđÚ˜'¼>ÙnÔ5đ8’T$QL.?v_‚„₫ §d̀ÑƠÄ2MÓ뢆ñ¶Îª¡±ï ¼ÿ ¬DІT₫M9̀J₫ư'Ø;"́ö¬üẵ¯¿¶MW¨#Äà¦Ốhu/È÷p‡üU₫ÛÜß·6µQŸ¡UÜ%RŒ6ØÇ^8h]:ØÑ¸¬pªi§˜ưDQ:¿V€NÑÛr_µXH»(V?ÓĐ",‘0½Ñ}›Ư†̉áó¨pK$ưwQ6>˜¿:Œà¾i­ÅW¾`'TöÄuŸ·¦¦ª̉N©øîÔlï+‚Åá¾ÂƯ»hÎÿ¾ÏÙ(¦(bÅÈ·¢'íÓ¼´â— ˆ³aĂ\º́E\0OÆ(HX±™Üˆ E.Gî÷ Ú¢Æ†ö,ÂÂù>÷̀:Ë) CMñÔ¤crJ¿É…Ö€+†½X¨SO—ycơóở5¸è/ÑDø8¾ îd{ë§ư¾¡2kûµvHɤ–•waaolÙdÆƯ¹j7Hv+À·üÎLÓ‹oöÔshS‰çæ%Æôưádº<Ïơdø¶•îbU¼£d₫”5Ư·ÙÔ#­\ G#F½´—0ü‘°zÆơC\z®è^¼u,ßjYúÛÈø¶eº(qQ¼Âÿçó²Jqѽ@mƠE­ôüM(ßvËRè̀ËẸ̀”1Ÿÿ7ÈlÊÓ̉ˆ“øÔ²;K; ßĂ ôpu]gR ·Ú²,?º‡Ơ‚mŸcƠ!Ñ#9\QnIYÚ ¶rÄ’~‰,£Ö zˆKø¬4Ÿ'gÏ̀,ºßp·Æä»+Îk ¯ÖdÛ^Ûw4A ljpÑŒw°<µÙiĐ̀ÿá[¤¿ endstream endobj 2427 0 obj << /Length1 725 /Length2 975 /Length3 0 /Length 1535 /Filter /FlateDecode >> stream xÚmR{4Tk_¤Hnä¦îˆ|Bà˜1IiBÓBƒÑ(¯fæ|8̀œ£ăŒG¯{+ZÊ-¢•̣HỮI¥‡W·$Ơ-%©«©Ü܃hƯµîú₫Ùû·{íß₫}ÛÂÔÇHAR,d3ØL–đXóY,Àbr´-,¸‘(-‘Đ !`,`Û;‹­m¸xlFF‘ÀRb5 ‚åR‚ÊP,Ç¥x<*‰ âăăÆÇÉ™„Ü•I5@È("P)Üeü<_/`éå¼  ‘đåb)*̃¨bqĐ Dà$@‚c:¤)9,‹‡I ‹ pđñ¸{.ó®­€ D¼—PíçD±¡„$‡¶³äX$Eâ±h¬J$DLm6 ¨„b‰bÚ¶C¾ñ°̀ýh‰Gé–”‡V[.•údXrqY¬œ„đÁH``Èû¥QªH†J“₫—üÁ#E”îX$ekBă<ÑDˆđQ’̣›$äp‘¿ñ*—´CÊêW“&}ŸH­2<ÏvÙJß%|}́†Ë˜GP,”Ÿ"†Ë|:rA£ZF/ °ä>"’@A0‹9t"¬¡7…₫`-Z„'®eر9€Á±wl£=˜oÏ^ÿ¹9A@Œ6Úe4>&¡D»µ —8'GçVn)̃àQÔP2̃pwU ½‰­Ö|çbOđôj₫̣½¡R`X c|o£Ø¥½ëOY1K” u₫º]ŸnÚd¨:lV¹¡́鿃ŸO¥†uk,§É$¾=i}ä̃Ç­›øÖơsó¼-[ºú¨Ë/vúªc5Œ×kËjyøó² £¿oå7ØAWè5D¥v‹ƯTÏ[Ơ·ln×é± …GoŒ}¹Ơßµ%{Đ˜wÄ­|–Đ½ûö¡ư9;f´èú¯ízj«ÜU¶å±Oº‘nÆ{»̉Kª½… ̀Cºgǹöµ¨áNnÑœ¼5œu1FI9“mơVœ]Đđ™/öæqrKoôù8óú‘Aµéµ½M~>ÎE~ïÊ;T¯ăệÑ9ă4Íî1Ø3ļ°̣LGc]ypˆx«Ÿ;aƯĂKWhV[·È{"îª<Ù}U%íù‹ÖD]êŸ[¥‰=MƠ4„ƒĐæ£Ñ¸́¿ĂE;;œû)rv́>O\ËyæñÙbûÄ×ù7̀ÜṭåÁÿ¸­¯Ăj tÚv]TZ TUg̃N™̣q@T3›FKLïUHúxëê‚ ¾z–ǹî"ơ¶¿uñ₫Qúe¢fJ¯‹ªưÏ7‡ËÍ“·ƯúđLáƯ×óơ¹$²Íá|çîç´*c˜Ë…¡÷¼œ̀÷ßdÇ4ïSÅE&±’nç^ơ]åªÜ‰6“¸{$OƯåtEÙuáÆiG¾{ÙĂv³”K—5ơ'̉Ơ=‹Û]H9wäzVkoY7̉4—ù­¾y/‹ès̀ÛRŒ+’¿z@óyÅO;]±GVUúN=¬¹l²™Imí̀söZơä·U+&¬S éÑŸ6eÄÍưuë­´êùç ”W'<íưÙ|sF´+CƒT,‹ÁL‹vj¡®AY]ơ¯ ƒö§ÆÜÚy€ Ư“[×x÷'ƒN£Í÷‰Ơap ưEÇ1­ưlqjưû~1xp€ö>Ù^¬º¼x­öq_à̉hsZÈ@åÙàªÁo2ŒcJƠlë·h%>ªî°Ơm•†ñÑÖ}‘Åœdb£;í÷Ư–'K"ơ¾¸í+ªXp¿YÙª’WfoƠYÈø YXo2˜Pd‘RëpÔcµ0ü±zGͺ Œe•“¯Lr2\”s!óöí`¿œ¤Á¤€Ă¾ê·^N½]QÛo2^XB+|hZ̃bư&ÍurºIt̀¢Ÿ¹"C»¬gEÍü|ns´Ñé\Á}ụ̈ËO7ÀÚ6æÔ®fç·ÓăF̃¶ŒËư9®Ö₫çơẈvæÿ ¬£Í endstream endobj 2429 0 obj << /Length1 725 /Length2 16161 /Length3 0 /Length 16663 /Filter /FlateDecode >> stream xÚl»c.]¶-\¶ízÊÚeÛ¶mÛ¶mÛ®ÚeÛ¶¹Ë¶½¿·»ï97úÆùg2ÖXcÍȘ3V&‘˜½‹§ƒ)#-#@YLE…‘“À@Ç CF&́djèbio'bèbÊP75(›:™L Œ0da{O'Ks ¥1Ơ¿5CK[K'€½½›¥±€ÇÍÍMÀÍÙ•ÎÉ•îŸ$eSS€‹…)À̀̉Æ ,¯ ))' —Sˆ›Ú™:Ú\l,2–ƦvΦT3{'€Í€±½‰å¿09Óư€›©“Ë?À̀œ́m²¢*‚ḅr*Qaza€¡ @FâŸt;g®¢M]\₫µ»_—ÿ•l ÿW2ú_é½Nÿ‘è`&–Æ.#SsK;úñ&igf`ûÙÄƠá\ÿr₫€̣©&¦fÿD»ÚØÈÚ(…ím\]L²ö&¦Nv€qïîdùåB m-m<ÿƒÿO„¤‹á?dÚ™ÿCĂL–Îb–¦& –.ÿđíâäjú³ºéÎFÖÔÄ̉Ơö?é¦ÿp̣Ï©ØÛÙx₫ŸÿÙʿף——Q‘¤ùß"ø·[ÔÎØ̃Ä̉Π̣́Ÿ†N&ÿkø·[ÁĐ̣?ô?X₫§¢ŒÿW—5tq²ôh3Đư«D₫ơü¤û£„„́=¼i™X´̀lŒFfVF3ƒïÁ5vur2µsù7éÿ́åô“©©‡©1̀ƪ½1wˆUzkX¥Ÿhñ|8Íü¬*Í*#đÚLï­6²å°…‰₫Ñ5΃ N;₫\ ï̃ƠɇbĂxS¸“©é¢ƯUœ·R’*s¿ß;…ï z7`jضÆr`·‘÷.™›A ÔÓ,Ùy¿¥Ëy‘Åc *:À‘vÖ—́Ä©t)P²´~àLhj‘æ-B‹nŒøßö7@ ‚÷ànɰơ-*µ ®­„µ5»%0óµ±±EvÂÈwƯª¾ă†·ƒ®™÷!2¶ƯWt èG!¢Àoyä·wøeñåï¸ s–¿¤«yT£âwyYªº|#öæÜ^ưfƠƠu(£\f)tw¥E‰a‚Ø`¼Çl÷¹̣6¥W\d·¼'9·&ÖƠQ¨ñ+-Oæơ·1ˆ«£Û£’oœÎ‹>œ±ym₫ )e@¸l™È]²Úm™äÚÂÉŸ…AŸµ·K%ÁU2=̉›é1ÀÚÅ[đ'",ƯκÄpvµ8³¤Rˆ [2g5Ç y ²̣ &¯±\¨˜5‚‘Ñ_ú̉®#K\ÊĂÓT¦EzœWÖ<¥đƯ2Ở·J5<±ÉË ª†“¹×Uị̈›xÔKÊ zS†Ô!§ÎàOơ,>8c;Oîz^§¡ùÁúWç/M¬¬rBFï•N”*‘«A¸æÁ81Îu±í_oƯ­ê2™̀½ê¸́·¸óÚª—ĂÛDP´—0Ø ˜!e 3ßáÀ-GK^úeGÉqôsèGxë^ä€^ñR¦°³ƒ\°ÎÅù“Dç¬ KÀ»$}Úuºó¾ƒ¬?ÙFDsêñuœ¢–ûVßw(B¾¼åÍó÷V́Åb£–•×qôz×ó6+—?1“wâ’ØÅ~*øƒåÏçe„M^…ªn@wתJ§̣.Í̉é̃–ûDª:₫cqt©z³‘¥gøŸÜçz· -U¬‘©<8Ÿë³ü#)-ƒ{̣Ă­¾Ai©ê\±y-!°w¿ŒY}„̀É–ôXê7ÅÁđnkçKÀ ̀Fvúg(KI ÛN’9§4»¤âÄ¡B₫Fùhvv…yøRC8ËEWW2?c}µ±ưûaŸaưø’Úg¸Q­x‚b]ÛcÓ~E9Ö9¤0RFD4>›:+=(s öqÑÀœ¤ÜwtÚĂm[»¨å<¾8³"\—ĂcÎXï`ÜơáF›yµºCÜørí̉PܪsmgS®ŸiÿTBŸ'‹vñök?qÎ'˜¬;-ú4^Ü‘üÜÀ‘&ÿl drª1C‰wDwP…Ú‹ú.hÜùưu„tJÜ×9RÔËo,eE¨â „E‚€m÷\Ö9ñ½Í•ÖZ%ÅWè£ O–Io±™ ±æŒ=2Ă=Qg9ˆÆÓ'>cn ̀ ØG® ¬`1L7~Â&ü…9Á6zv3̀C¶°CH…÷¢’åâl ăÈF×g‰ç-Nê"…}û’¥Đ ¿ÿé¸ƯQ¸D×UÇ*eÔ¢đBÇ~Jđ¢ÇmđÜp!ÖÏê%đ+NI¢ØiA¨ăŸ‡nÔW¯íOùá%iwIäÍ0Ä[›Œä9ï^<91N/¸ÊËÀ,¤[̀Áă<º,gScĐÜÄjEßƠj=Z9µĂô§]½=‚đ• øÍ²ºc¦süg呇Vz 9Û‹¡¬đ–oضU´K†ïà(j„œ0p̀0%$Üă9µóç’uyúí³âV¬œ… |Ä—ˆÖ™Üî2P̣)³M:bsw¯¯í¼mc=NÛ̀©@^Ưü†úƒt»í{#Âö2æFFØ,8¼$¿Y¼;åƒ(>¡¬ú.A>I˜íç<–ui«3CT9SÉ&V×Ü1±¶ê ¤ỹ´•DtK¯/¥½ˆº¿xj—¸2¦ƯPv m]‡ä[ÍA4?¬ˆÂĂR¼‡#ƒÅ«N³9_LÉ}T(q¶¯GáƯMh́ˆÙѧ¦YuéÛ·k^æÙ…­ |ưØ:u,‹̉R₫NÏo·₫±XXgQ¬…ËÚdt8É|÷đcA½t§${´ ˜A]̀êc Đ-ơ«ç̉ç€Ù(Ù§¢À*n&@‚rwÀ®îa–P[OøùâÚ+o2₫Ư\7Éù:µ^uaBƒß˜±R2Í­tå†Ă ›öܪ™ư ê©Ô æ¶̉5ß¾»”đÈđ#S?j7L¹$‡î¢IK3¢; ¼àSÀÃêsØaɃ̣!¢fE«S%p3øiù³id6a·KuÉÛ0U¢Ë™Yg¿”Ö*µ.£́Mï•Rª?g&O'ơ¸2Ôå‚sÊ»!A]icṇ̃ç”Ô¸É!Ʊ±₫à£è‚${r:\i_ó°î@tÛo»r“Ú&cf"́‘«~à5”üÀ'¢Ï]>ỏF(G #¾C+_oÔ&×°-9́n°̀ç «Ó•]¿ŒÎíL¿Í«Jô^]:Ă$Ư4â{œ+₫]^$ ´+ug!œˆguÄCK6ÖI3(hÖ©¦AÓ́zƯk~jÂp{€¬G*́Tåv£»J̣@·oºlR'ÎתŸyˆN¶&xƯ4¾á¡1q@ÿ¦óL–8 4\Ú É}üC$¨÷́`aÎgY$… p¢{ßÁØØÀßĺñƒr>ÛÖ«-¼̉©b«P·L›‘ÍÔ;”ñúđĂă&Í,^Up$Ücu† §K0“”JM‘́±È“i–g4éĂoî¥Rá W?ÁhY/[âœ́Ь&UOx́O™á÷kh!=P˜7GeĂ»••QƠt.Ï>ĂÔ•g̣—åd¬!P\‘ ấÑ₫-ˆ₫ææ@?ó₫'¡ OPç_v@µŸHH”:‹eÑY,P¥+”{¹P?¬÷aM|}ßP²ƒª+™̀jo †²e®[Ä B½W3çf×!¢83¸’¿‚¨©E₫₫ơ‹cị̂s^Ê•,¥RMÄr?é%§Ë i„QÄw§'X¥­́7zwMS¾”†tB¹ÀuưfN¥đºHó›6ÚGŸ™[©.(fVAnêg³*‡~a•üêfɦÍươ !ƨ;E uª¦Kôo²ưÄôUÄHŒ½± ®’Œ₫ƒB²´CĐp¸,e£Z’£oy „˜DOÙÖÍDáeAc­¾âªÚCCæf<­ư‹“ăw|¶I¿Bk½Y\ư,-W­¸÷  ]½©í̉æ"dÅíÖ%Ú!I½~l %ö̉„I·SM|̃¡Œ4ó^%åÚ ±i;ó̀₫ô¶‚è†BQ´̣;¡de¼)d,P–£ÀƯ©Í?VKlƠ\ %,eö(,èéj´÷S+(§]9Nÿ€Äẁj\Ñ.»Àg|¿QëÛDh/äÀØm(ØQ½"®‘V’}Ûæ„Ưl´:.ù‡=Ơ *ÎE (;Í|ôs1Øˈ@2"ơ‚&LÎ>ŒỤ̈&Tä¬= @îèL>`¿âµñ‰—ă'³Ă;Í©̀^é7ÊíÜ₫nà»4™Ụ́5ß¹&.ÔgØï²t‰…<°½q̣º¿Ä̉ùt£=û+ë(J¿ê=ÅH6\…×Nÿ¸æŸĂ"åc:$1ëâ¼.8E#óÏÇåG±èé½tÖ&¢0'‘Z¥å[©HÔ9¬¿IÛP̉Lºn˜;«™n¾MåỘí@[Oœ­“ Ù‚ç®&à(¯Dùñ’S·D IP*:‹°üø´L…B}e„öJÖÜ•®dÖÆ¯´*̉H‚e²âªhqœÊđƠ[œèpÜê•Peµ(Â=heÇj̀P¥œáđ¡'¥ / ´[©¯–ä¬XRº@0Ó'¹d}ñ”>́ú,¦-BΉ{pØ3_tc.ßúLîÿ[=ƒÚ£æx!q Àö„:U¶ êñç>­Ùmx…±&ŸÜ‚óEˆ¾²á¤ƠÿC“¥)¤tÑḱ§ñ2ÍU[›-Óz·aZĐ(Ók2nT ˜4^w%Ü3KĐó3̀‰{4Đ!₫ÄákjJ"nÛ¦pµ™­˜2£qo`†k/?zÀH÷.TùÛ"*=2c4̣qñ&ÄÉÂÁx2ơ¼åSOưËÆCb̀^BqƒÂư$t&¸ʃAZß̀»₫NÁúö_,V/Ơtyœ4~ù>2L₫+¿™ơœ¹/º{sRJ&¿½ƒ¶/MK%/‘ŸÛ³üˆóåG’B¤f÷Kqî)í©*•‹ÂùXϪƯk—¤GKèï8Î]‹¶[ ·ăºLËY/́W«~M>Tù^†Đư1·g‡̃Ÿ†!¨¯Ă¸ s$ĂđÓ2î2g±"vñß|·Ë”Hù 瘡Ü‚éÉY‰B$ư\·ZXË̉ƯÀAë¦s₫»·Ă— Úp°ec(D g"Rmg ›ÛµJ3Ê  ùÍ8²…+ó¦{KŸ̃ô Ô’~¸ OÁî^F¾Ç“ª:Ç:’%åÇä*¶¦ß{¯bJ‚œwÜ‚ư!.Ă)O2Ù~­kÎê{Öå14fÜ‹qyĐ\'¦Zjâ’*–N:jnôÀNeŒ®l€äZ&ƒïÙÁVdCº¢±‚)ƒµî÷¡t₫R̃h»´{fNLºjôÄƯÜ·¯›/BỌ̈&½ôã̀6Û8=…Â{UXêYí q›@FÑ\ys×í\qa]²s̃‰WihưvP“Ùµ?9r@8載K#ÑÍ=sè?«¬”U3a‚3‹u¦ûAÿÀëÍ„́4ÛÈèî̃<ê+€ˆd…à•Ú‰B—ú»Ïä>'Á¬»ˆc8XTOŒPƠÅ€14"ćº±„o³ Œk̉Gœ@,ÙÉK/tôñÉ[*²,ÆÍ W† ¸bÍKkv®»L-%ÓD̀ùœ‚HŒÙqRe¼[]Á&sQ³Ö»r>ê ÍthO&»–)Ũ¸F­nƒ–së˜ñî¨m·4œ’#G¡T.®ƠÍâ¯LjkÓÚ<‘B#ú¡¦aÛ†fÛû"M˜ß_!¶@²´Å1ȰpnĂèh/d›!Ù›ËOX¤à2ÆĂN̉ÍmÈ}ØÏ'G̉¨qÂ.m~Ử‡Óªqb(iù¯coT{ÄÇQN©Œ,:îvt®]„AÍôă•úÙÈưßu0=˜wfM®#BÓ[´ïjÂêC„98Q&ñƠÚü£~]*…M `Û0 ÁICË6Üø1l×<´Ptow!8½‘ÉÑömÇ:̀ÓÁ°ï_ZzS®nܳâ(_°£Ï8„ rVâ"¶´¿!`ũ.§-†ép¬•Á卑œ‹:ÇͶ°5ßä×µRDt9s?Ÿ†­6z­7 êLÇ9Í.÷>Ü‘«/åê¦Éw%&‹ù"]#ä:F́¨₫~»¶¦·$À ƒo¼¥¶Ô1¿§ êUïÙ“̀_'¤¶`¥¿³- –ÖAJl}~ĐV|x.8́´vÇÀ̃éhÚƯó/…@¼L½q˜µ{ÇÚÅåEÛ\V|ºéHA«[¼tµ€sM‹f%0ààeù65V’íÔxWÁÍ P ^]g3!3ÓÊÆíź„t“ éí˜r;NÇ‹Ÿ”¹¾ú¨N—FV[Å`’¥Qấ đé ’Z¥̀,˜©o‘1nø0b²¥>ûa?¢P®Î̃tRƠ±É%Hằå«¡}æÁè€È] ĂÏ«H…À˜.Ç(°9&oŒ@˜K ÍơÖSùÈjƠ<—_©óó$q_’g!óÀsăÆI8nâ…£—RcŒf2+ºDTÓó ¬Ö@*O"Ñ¿Fo!p6́STè^”J:Ϙ•—¿Î4Mø88 ú™~M9ÙÏ|…<1ƒAî F̉'hđ&¬ r‹\Sđ#K #̃¸jÍúzáúêƠÇ^¬cY9ÎÙỬ,†|§=OÇB^0°TÍ!e­q_"Sˆ4]ăίª²¯åSN€¥dk¡Ü8 !³Eº×Bthœă¯½ Ûªú?ß÷‡0ú­†˜G¤×“-1tä`,›x្®–·d;<$?­†65l¤…í\kë<ŸơÛ‚.äđc,ÆL¿_·?ü˱‡eÓ¼Sḳë¹́¹°¢è/·Rzs@ă§̉¤*HÈ{²u¼^‚2Đ•=m̃Åù\NÛoµ‚--Ø$†ˆßÿøR}Ç’·Y‰xú»̃NHßdR½Êr€×lö…₫µ»Đƒ¬]ó¯Ÿua¬³Đµ°!×8‡&¦¼‡MQú,‚ç„ăë[ÛÁăßœ3/¸ƒ¡}3)M65ºH"ưR…v®×E$ñôî7µê1ÂI¾ùΟ6ø;7ú][™åH¹}ơ z!Mß§½₫ú‹´Öƒ̀;H]_WüQ@¡»øọ̈¦»+OƠÚr•äj…•PÇưU „÷1ÆReÓ\É̀Ăˆe³]ăqTĐ´ÏŸ*8¤WékãÜäœo°ŒŸ­œ́ÑM|·D½ç‚Ås±‚ºDE8³ô,{đSPq=ØÏéÆ+£:Ă…´măĹ~©ö–'Æt‡âtëMh¢‰Ç,Ïư@_¸ä~ud[p *G¸́®ûû¼a3âÎơÀw€¹ǽP88Ç7;ṢÈ̃¿F¦’R`ë>ª ØLFí—£œæ­£e!á=.e_ yVRdxÁƯo•q”ÚøV}7 P4PÊ^ĂvÜ÷ÈømĂt×È!Æ¥ẵsŸMñQ‘L.6r‚Yb[¿9‰¦´À^‚=xäºÇª´meôAóqJ¸P@©₫C–©c¾£X‘Iơ`V½¿qŒM·äv1Î;KZ5ơ2̀a„$U«[9G׆qÑ`ßFÊî–®’ï°ª‘₫^ä¥ëTÇ£h?ü:;n<ƒ9Ä»º a&¤ j$!d2”åÁj¨óÔ‡aZ,G)ÑEèóL Üc kpI¶øb(Đ&¤{ơ2‚":$ <‰Å…œ/° ä÷½Đû`ûrç&ùË_QÛ-l|ätuᯋ{h„fÛª=.ööŒ|pû©Ô¶ưŒ£Îü*|¦ĐđU.“#±Đ Ÿæ0uâ臜́ºÅbI>œç¥çÏüª9G@'2;³ªxË¢d2z|±°»́äƯÛÙæÉÆâø*åQ¿¿a“b„SUg®ª…°‰³M^æ”Ă’ă¿{§½ÿTü™pĐ]1¸@Ä₫A¸©‰Œîíë̃ª™§iuîXÎpÙŸ»̣'?ùM-û₫lwªK!+gB1?Lư“¼cÍ÷°J,hÆ™+B#^^ö.‘Iv]̣LO³ÀÖŸ„|ÇWîaưî]}„_çH ̀ú¨7ă–²µ5äñÜX†₫Vă¿Á‡^Pª´^ C{‘á¤xt›öû'èܳY³b]çÏ mÜÂđ-Zîrùn´7Íc]{ƒ̣ŒÉøæàDj`O/­X/½ơ¼ơî~[¹-ưm'.s¶ £Gúœ¦l´]z(S”êŒÄæÄrÜÁiĐ®äA³‹̀½Å¹¹2ë1\,fẸ̈Çg~ⶤ̀xb¦ư~ÓèéôÇ6N*ăŒßP¬Y0'èuU%º|O Qˆ»ÛăúpϘ`=×ó3ềh'Gªœƒ×É¥jè9ëù̃ƒ#à6¡Ç&H^ÛRƯ˜]­t§> æˆb`6ë À¹ù¥ŸÁó ë'±n¾YL„^†»5±ë5“£ÓˆÎQ:Ưă]̉›Ö¢ç‚L=̣¹r˜2,ÈémƠÁf\̉·¦ÆOôÚ“,Ncyb̉"CHnüpÑÔ›Å×Ưp€§qưïnéaÀ•oUrÂs²K+,-R Û©–Z-èægüŸªœoh‡Gæéă=Bv!«-ß”œ/FZ>áÛýo:Ơirºdđ,mO]QÂ&̣‘ri?¤œü1I ËábÔRI¥»\IâÅ‚è¤x5Æ·)n.̣6̉j}%̃&²4„s6ŒBf¯'~Uo’ÅCyLétR9l¥Ơ ¨°èQ 12^˸¬³,ê߈đơ»g ́¯í µƯî®̣çØS·¥™™b¼Jc–Üv/ø)wŒ—ù ÊÔ7pØmë‚ĐîñÎAˆ™Ă·œ̣f&A.YĂeå’#ó¶ö.<³§QŸ Å\£K"mï˜eî±fà$¢—̉@ q̣k& ›¹~üjćƯ}üÈpW7ϲTtz‘ß2U§«*G4̃aV\Nw Ê+:<,›^ V_»Mœ‚ äs£ÿçÎgq¤úÈ£ä1mÿ́à9w_Ik|VÀ<Ö(eUÙÔœÀơU cô¾»ÑQØ.¿®&Tf»ßÇDsµÜN,ăp»̉÷Y›Â]¾=*Ÿ"6¤¾́˜°íRCŒ~.ƯáĐx—Ûí­O^Ẳ8 ̣~}+m‘÷LFèmy!¦ÉFî¿ĵ›~„´×_6ưg Æ%œÛv)ë¨đåc0©p5tŒ Wg. Ÿ•øRƨ ±±Àú̉(iQ˽ô·Ëň{f¹!Á̉?}Âbaë/i à*Rơ’鼯¬Ỡ+~oƒˆóßóËÅ̃Ú‰g/?o¯¿̀úb“1¢ÆÔ~µ—á…}9L&tˆÄy\ñi\ë³—D9¢íè”Ë(Ư\tLDuéb1s:Q̣.Ó¸¦WuÑ–ÅrH(á¬âƯH狨‹wñù½đØ¡¸:̀*w1œÂ¾y^ûQ{FùÂÚ1„ wu&Z!ǵ8Tb_²k.®‚åσ0=ñÄñÈ«Sg¤““–3«#¨HC7]×qhNaV3ÅÍ«PZ#ê4U ’°7´ơ.V¼3}y‡‚)ï϶ñ$jxͯ'†ŸÉ]AÇóc÷÷¿̉¬'AsÛƯQ”ç}]%¿¨g¢ 2¥¿HŒñ©foe±L]ˆ ÷ >Œ'0&M₫Bëа˜»Ø₫‘ñˆ,Æ‘kÎIne_BË y%½W^›qäç²7›éă |LÂûÄ%*Œ{m¡euƯƯƯÈ ‹ưRERx÷«µIæfLs¼¹ôßĂ»—å—¬eĂĂù[Vxễ—¸œTOÉt₫…kƯ ¶Ü₫Rt´uY ÷²AØTñÉÑáơBj1©8O^”Sº"Ăñ9ºL__äˆ[Ô)jYbM}áVĂ÷”Ñä˹`WÊ}X-Ñfú{…aϺ\<Øu˜ơAÚ’SWå÷!üNN¬Ø ¦¨ø‡o­Î䟱D€ozÔ­…–üc$ói5ƒÖ º7>j„Ͷ–bÙ’₫nj‚àϬŸ¶TÓ|6o|cïO%¼§‡x´!¼¦©¾´ôóÜ“Ç|ǹR$[tH*_Ç~¾™ă£̀@₫«§¬‹ÏeÆ¿Ø*"`äƠ;I ¯KT»±>¬B` 5Iw¥éÀl¥Rz•Ô7¶¡dÉñ»RŸD‘åM8·Ú–ơ„̃É17]fAêÔ!AÄ„ö#ÖN¿ëEH‹ CÔ#F/¨†Äf`˜¶tœ Ÿ^>?É“\ÖNØè”"”àṿ‰• xưŸÁ.ä"r]U6ăvGÑó;Ô˜m•b±¬Á›ï¬çaÖM„Y0±(ÿ’ÁN·k‰s9iEé;^I(±¤yêĐ)¨ÇƠ[ï ²ü‘Ÿ %‹¡ q́¤¦¾ e„®\ܬyÙđ–Tƒ´]{²·x̉áz„]Ù†›=¥ưµ–³Û_Äy¤åB~ÁÜ„¢̀e%ĂÚWîj–©#$î;"ß‹Çs³̉µ®‘¶ĂÔ-jÓ½‚@l̃̀äL¨bl挵8hÑ e?¦{¸₫_I¹í |s^xªé/Éÿ°4§ùü¾™³ráf;ưvE¼Oóë_|ª_ßPÅç]¯³MH'¹”™†đ3£ZƠÛúT@™0„ ÆüKï¢ü±³Å–3»'Ó;KyBN”î…¸Wtw¦¶CÿËÁơơú¶åŸ<;HXih/A)yÊc:ëÏ gBT_&±/§#œjxJMàEw¨/•F(¿Ïh ÏRĂÀfÑ#—yáYIr¤éZvˆVù§…^́*+“Piæơö¹vL«Ç£â–Ix•Ư ûÏÀy=» ,ër½œ[ăCêo3ÚM#í&F-ù‹}°Tï*¶ßÚKM^45QjâRËĐŒÉE·—<;ê³ùO'÷rƒ[¾ÜFpO{Ø„q‹ô±f̉IôHÍù¸øP̀D‚—¡¯V&¢·±„Ä«EÑürwÄQ<̃s#3ÑcBñ¦Ø÷uz9=Ñäs-¦±â‰ô7D~Q!V—‚å%¦°m%ésµ˜=¥ư”N—Ñ]“4h52z„²x“ÓOÄ”)®²S j‚ÓĐK_Â8r¸FüéqZÂ_£t[-‹ß%F̉Ư‰ÍÆd‹Ïy¸Ơéœ˱>ư1éî •Đ»UºÆ·­açê†̀vå‰û$Ơzjoưăĺn™$ê¼"óÁí×1çhÂ}Đ9¤5 í#ñ§„Öù´́R]¿æç<ë32"%c¿À#Ç×µ́ÂPœ~>Ïđ€¬âê4Î+k›¥ë̉^ˆ-—WY(gí÷ùjNBƠ%‡^‡₫±oZƠ+?'ëÓẸ́Â鳯¯đÛáđAB@¶°ñôê­ŸÔt`cz.ë4¢;́,©>’®TT=±x|;nlĂ ̉ÛgŸ…$ñ—lYë‡ú/µñ1e{=‰©« xrÏ_İ%9¡<}&”%{ñlre1<î7i4óÊ›U©đÇÔÔôÄĂs]YÍ.ø6\zD”8Ồ„ y‚nƯ:'!½Í–E–‘G€Ñ»ºX»5Â:El±.'ÉÚÖßKJ½Ï1j"̃ùÓ̀KcẠ́.a[§’ÖûuèMíkù³ç,G Ybœ̉^ơbƒ7ÏG„m8‰ØUb fà 9½Ô|è;ƒ w‡Éü<~½ÊÑÙùÈÜ$µ¤ăüư¾ ÿ[ŒVƯúÅ%È‘É~ÜÈhíânQ.äA $¡yƯ±j₫e…ÂÑM·°kÊMÖÙèĐ?æ/ÍÂxÛ»HÀ~8Đº´‰ƠHă,V8¥™08È~”>:ê›̉A]R)ç7’œ¥£8ÏW“NWBÖh4¯ÄÆă›rÙ7ŒX ¢}AM?:Ug-3œ”̉vb¬Ÿ@zêvŒơ5ĂơXÉ÷¦DÙPT€¤'âÏ|–̉K{¹©kZIlGÖr‹®’á&v1âKâ…Ø%!pṼq3¥®ç(xÇT[µ ³gu~‘¡G‰°!́ <̀¨áy¬s‚6ÄĂËuF2¬–°‹$Ăö È—Êk!3fpjUÍE_vÇTPÁỐ—Ú̀>æ~đAW¦¤> ˜Ä§;뉒÷÷c†ư[ǹr¶©>1®Đíô%lˆ§c:§k ñdÅN±@B8NpT@eºĐq'âxÁÇ%ús†f©w-´GĂ#ŒPù'º€ q›¾çä’–©!¨ZÅfÛÅÀ‚A‰› ‡²– Û:§d9w¥‹)¨ØK_ªs¹¶€§±®—!-¸++¤,©2í…÷—Áûö{îs”3 Ô†8l–m=ö+}ßÉB¤×>{ZÅă¯oV¾Ó`œD́KÖ<‹Ñ!ü ;Ï¥kÇÔƯó[¡PªN„Ư¿‡¿ĐP•ÏêŒÉ”ú,"ˆ̃¬QV”°î3(æ¥ú{A(UÙK|̃½C)×C WeKÑbEï_bjR¼“I/”½pM™”?° pÿ5ïƠ›ó|z±Ẻ‘7qåní;ÛØóCơ}uù. x½kQ|x¯Kˆq­2S­N‡£3₫d#]$hö́ º̀Di•RưUµî'‘k¿~¹ -»†́µ$ Ù]‘Gç·‰‡:Ͱ3¤”Üg¾Ná½CBû”Ư5ª¾O‡¼0Â'Vï̀œ;ܼŒÅ°è(&ßJB9ePOèS1AÏëJ¸Ë&5Å£Z{dÙzĐ µ^¼”æ>ø©A¹¼ á#êÅL9&¸%[Vă/á¬5ÚmuC£¶@Ëüœ‰-&]Ö%ÙÎÉ%×bgúc‚1ỗù”ÛYfcÍ?̀×Ù̀+,‰)·è3́¡Í(ËeÑ7œ}Œ.ʳqQN{ê¢ùkrö—}¬Øj.6¼G‚Ơ¬îưŸ̉̃×ÂGƯŸuü¥’Ç„ær!ë'ÖS Ù¯qx,ôq²¶Œ½Í‚̃=)ïi¥Ëo€³yA·<ŒØ§xë‰ø­Û‚¶C]øaU+ÄË–ĐÅ}HJ釿&ƯĂ˜\á‚4ĐuçöëƠ_£ÀÚwÄßß¿\¡›v¤ÅÚé0uiw¸ƯZ0z½m85u\¦l2mÙiÊÄ‘58È©9úR{Áy‹ă”ùÑËƯÔS—T¿ém+Ză^êđç·9ÛOẉ´¥‰2f+̉»b“]ob’×ÓͦĂ>%] ±¥2ú’R’â5»´ÚĂX‡öÛ3%zó™®´ú¨0̃Ê´ ÔÉ)^¸ˆ\MªÇ]@S3µ=,è₫´¥C‹roÅ3tĂ¡Ù˜ß—àA„3t<ÈhËÅ"ˆ)gxB÷½0ù±~ºOˆrôưÍ:»û,¡®R*bD{srF‡ü͵°ïỤ̀áâÚ&[¬I¹ăé÷Œ ’,ôPÙ\H©W‚Ơ¥ĂÖæûƒ‹ÙÉ]¿¨æÛx/ôG}® ˜Zºm|‰­j³Ö r°Æ"å'Ÿ›rQbⲄœ¶­T¸ÑAỜœhˆƯq1Oe³Y©rÄû£³^¥5VØ·ß#G¯d¶.tĐÎÅäḱ׸Øtñw">,Z,ƒơ9đưï'#d äô,˜·ñ cñdÖæ‚ïd¢GVOÅîYJË…EyÙ£p’đtĐK 5mÁ3‹}CÍƠ-¦₫ï#‹’…M½àá¥i¹˜)EK³{ ỔÏĐÀL,PÓ¶ÑI =Dç-è ä``Xéx‹6ÄüÁ—>!û‡L‹F]YÆQ23<`lè¿ï ga:ƒe`}3Ê+ûo÷´®¤"}¨¸/FtR6¯ÔôvÏÀZđú 8«ÏäWG‡Ỳ:S”6-07,́%³Ke•2ñÀûau?à–,VºØÜ:ø‡iÍ\K¢{ƠNp&Áa²ÑåwªªNë¸}©ÿƯsG½Æơ­ưÖ÷å$Ÿ´]øå[‚8*ôî—¾8¥#yi÷f\±ji>çWN/_êgè¤?¢´ñư‹̉É3¦¥üä<ÿ§aio?Xơ€–¦MİŸD¼rc…)@Ÿ¡ÁÊ ¨z÷l}̣́ObØ [Ø‚SцưåŸÍ·ơNè‘)₫=ă„%Úh$¡]m‘=ÓaƯ,M]øœîDK̉̃*Ø₫E:!Ÿ‡ [yMKÔ¸F×’œd¼$F\ç Á1 0aÈYu6‰ß‚”‹"‘W+¿zs &£Ûƒ›Uá´̃&5z’ƯÙ¯íKcÁ̉uq©₫đ’+¾AuÍ©¾à̃ÍdD÷J¥½¶#A×<˜:6ö'ZẈ ₫87©Ö05®g…¥₫÷×ÏøÄĐnH‚N±>4ƒx[ yN-_d¤ä ¾ÁGk&­Q.|½[¨K$l¼$…{ù¿"*5Ê!qđSÄNKôOơeKk×­îç1>“Éücßll±!·2 d398á´̃Â)å-«¼e-ù9ƒàxô[Y¢z‹5(@_ÉœL} ·7ơÑQ`sy»l-wJw 6»"/hƯG³«°̀Aï/@Ă’¬ά»‰®o=4âWt cô‰?ª~;ä³›¶}تÁë¤=î™3E¿ô«Aól¤qÜú%~ óË¡Ơ2éhǨAƯ:’S=Đ$Ụ̀9¡dÍ\¹`>Ơ\¤ºŸI¥»³Uíf}X¿öÊ(ŵ³A´®1é’3ÈeA0%K­µë¨écÜú5̉]ÈQÍƠ}…̣ª̃\{Ø«6¥Áˆ‚È™₫´1• ˜WåkºXKújmÀ_îï¤æî_̃¡$fk†D?÷m 7eÚ.” >ä`đ.—}U®¸8Fç’a‰i!ưá‡apw‹ƒwç8hÂ’̃§àK sRđŸyX¯lçu%®fér~̃!â.U-¹qI˜¼r´éü¶µ]́̃ß äroñ»®‚ #”ÙMX,¥Ë1^ ¿ÊØ Êºg4µÆ5®WcàFQ-JXƒí°ܺ7ƒz  Fá¢́ÈÄ ‚Æè¬ÔzlÀV›ëÙ=ˆxŒ̉„½ư‘©X/[¥øÑ!SÑûùkØr·w~N‚]8ªU·DC‹úc—äèg–\kr"ºø¥¨z)[®Èđˆ°Ml̃{üƒ«M]%Ưê­̀ÄiáTïxFó́L­@ªrê´›j5 W™ÚÖ«{¢y ¹¬c[ñ•=ˆg#ùèm „%;Û¥¤̣îĂàWøsFÙ-T¬“(†t\Aáe–À/A’¼ <̉¿Ês”$QO ĨßçGQQø̉À'áH+Ri 8°aüMÚô—ßáƒđ³]±ˆ>)¢™:“wüvó»íVE#G…âKëáöÙÚ&½¨ËàŸ&Îdü¬H@̀Væ{•Ư"ƒqµĂ¹ÀÆ̉áÑ@C̣Œw ¬ñ;N₫"å€1¿Đ=ốÇĐ DmŒßÖú­³Ö®Ÿ®{ú¦kaă—v‘zYÜăđâđÍ ¾~ËJØDlCiæßô£ơKˆ¡* ?Ù€¯"ÖóĐç «đ À¢‡º}%Á´Yto=ñÇ$¿ă ^èơo]7U9|2o“­±ZíÆ’¡ ú>øË_X))Ë  h0$±Pơ}:/§³…Ó7…Ÿ½æá®¯w¤âÿ-!’Úi/‰IœƯØbTVÏö!ưÓù¼)·Ö₫½?@DL†lr”–…ÊÙ†b̉@G<C×SU üđvú(FbQă ¾‚•tmÍPøâGE^'?/øºăå¼f†̃ƒy+?ô’^+Q*é›zwÜô§]4ø´¢hỌ́-~t+è9“Ư®ëÑÙÛ[ zĐÛpnÊ3jÆ"äă5̉éY(S¨,k®vƯmu‘9è#X™ư½° ä9Áö’ÎĂ€®  “³\#Æ™€Ạ̊H ¼‚YÍûád5HÏD¼b̉Ô¿Ô£hL`‰y"ư*–iH3â±4e)¯<ÄÁΔỠû² ŸZøÎn(}³‡?ºE‡Ê;ơß7«_ÏÍU{ắé£w]>[–Ô-Μ~cå~) ¿ÉóLz>áÔÂ3> î6?/×ÂP“}pMŸ½v\ h­uÏëé¬,îù²'Æäöº%Be_$n©á̀JŒ‚'› 'µ¡ímæeÎrü ·‰5„:´FHµ@f”OI¼ñ˜¾¨hYĂéHyư)¯Ól¼¯Më\-$LCi0:Ơ=s`¹+4ỒÓˆCzÅ%¢v΀oJLMnë:áárp„k½‘PŸ,}~àô͸œƒØeeW¦ˆ¿ÔPæ‘v´5øc{öºD—&öÑ[7硼‰ífs̀Ü刀¡ù‘~qø~c}}*¬yà-‡´7-j´àvô8⢜LäyOüöÓv½€íU¹̀âÈKF+hü>ưƠw€‚êyS¤hQïPePœŒ}m¿‘?̉Ÿ\AIAv[ĂøŒºÆB$€‰=̣½#‰Cü“®Úf—ù³¢´çç×…ÄñÈÏ\—gH®•ßù{ư=:Ơ&ÇFúÓ„„˜¾øß?½áX³íŸ€¤Ä[_¹¬L8RU¬–.ä™À…¯"`£¯kÎæ×F±¼‘³Ă#—ö'î£D†aˆ&[|ô“±îUç” đÑ4·­ơ£›×¥kdṂƒÿú}ª¢ẢđÚà£M 4®ô+"ßüÈ%[¨Ñj;›cîÎ;¨‰5 ¬jèQư¨ÚÈX₫lÖ́™ăS(ŸnfwZ₫Ö±Égw ³®ú¾…ªaY”ëLÚ6÷°ZơUƒº×À̀¢èUÛpܱÅÅ/²Ä˜‚‘®c–Ä}©b&DÛàqy’̣È̀í{©ˆ¯Ä ç²–?´æm«®ˆ7?ºà¶¹e•›ư^̃̉¿ÛÁ9D‘ª(.øjâ竼T9o6½-•,}H2Sù̉Û̉L((ôƠeMU+ÿÖờÚqQƒ6ÅÆTGp4½̉çC…PÀEáÚpơ—µ MA!Y®AEWÛ#ÉñˆˆÜ:˜‚¤PMg í–] :£OC§î«‚n¢ÿV:W=óL ~§î9 ¥DénSö₫·t„€4ơhVU/& œ¯ ÉpEÛß?Ëië®éƠ4#•[KÅ j=4Ư> stream xÚ­TiXSWfU â(:ÔQÑ#;BB‚‚%"‚€AAq»Ü{B.$÷Æ{o0ÙÅ…ÖÑ Z÷\ÆmT´QÑN+bĐZ£Xe±E¥= ZZf~8Ïø#÷É·œ÷{¿ï=ßq)åt< ¢)/ư€”Ă(c©V„Bäúđœ§1ăH Ä8è¢åjsÀ[Db±˜ç ¦Ñ*-C&È90gv ̉2nÆ@Ï?øQâx¯5ÄQ₫ÇeI!œ©€`ZDä¼YÁÀ-xÖ )È` ©W8#qH±ĐÈh(º €ÓAH³„À °*ˆ“èÔàPeyd”$Ë¢ÿ€dAƒQ$G’ÂjÂ@ùeh@DÅĐ(C‰b,’f9gHPƠÈÀ nœă µY…-C™«•âŒ1ƒ¢FR,à †3Ô‡€ Y•Ó¢ÚLÅFj–¤zx& qe Â6L§§Ođ‡î1•J¡5¦Y¿s 9*dÈƠD"ÆĂ’ây®@%£HØí'Ôª±dÈäö₫B¸#AS -  Œç5‹æPUàöª >¨Ÿ@̉O"è'‘óÿ³· =£wûŸ6³7NZ¡˜…)‘´̃€†xZÁ‚°ÿÈÅ”¤Bû±Ù1°›̃l˜ V`Lïp‡¡̃¨4¡@Øí$Ù R‰H’Ăå@†)Đ`Œ₫9IA$ qv€ïí-î‹–“xe˜ô8_cRDï&F₫^ѱQ’yz )‘Hg.Z«B¬̃÷N¿‰„Ö€¾h‚±Eë$¢H˜ú_ª‘D=v8Æ1¤Ä¡–…"căï=ÖÂ^0Ó)œ& WĂÛÇ` ƒiy¨²|@Ưkj »!^æĐ Rs©†â6Ü[4x¡- ÔhåQ¤Û‰¦çŪ•Jă›otÿ©(®ftûŒÏăÛ¸-j λ¯£ñ‰+ó¿ÚÆülwyE`\Y©È¼±âL»À6Û” •ohºbjƯ¶âçÂà)Î₫q- 7iT§œ´ClÛd±eÀ´ö́”Ú’¶ïí́'¶ÖG˜fhÚ^¿\pÿÙD»¹ËÉèÍâK»¶ŸY±ÓÜM?lx×å£~Ë̉¶ ̃8×oÍÖqÛưB wƯÔƠ ¢FÛ,Nˆ>E>¤¬¶ºµ…Ç>+Æ:›ÓMµ.Aß½ñóÀ ¹¾«¦ứ̉•¯Ÿœ ²Đœx­ñí¤FẹƯ›uÙ&ăê'œ*)«íư.²ÓÅükO¾$±…gº Ê΢Ú«‰ƒª®4³®:z±ºÅæçª6Óqé|Içù«®e•f%·K;̃u¼Ûçp®c‡÷h›8ovŒG̃êéS™<ÚÚÇgW¡\Wătg‰|o¾å•3¸ØX²₫éaQTYuUî°ùS[đG̉Ơ»̣“Wå‡ đ+8r¼h€O%Í:ûb•eñ"ܹ³@Páïù•‹ÉUûpßœ ,~“¤³₫ËÛwórö_wiïÚ¢Ç߇ÚL¯R‰:¼\ưo³Áʵ>xcŸ¯³Æ¤—/}‘8úKWÄnï̀aîÁÍ`G9́SÖœơ唆Q3¢Ê€ù’­ÛX*û~Ơùu–:}Ùív³Åñ²!ñ­ÉÙúo×ß^¼:™¬¸Wă´®r¸uÁmM—YIß”ÔfûiyÇ^Ơy4Ü·É5í7 ëPæf¤~P̉ûbó‹¿GƯü ưAqU endstream endobj 2433 0 obj << /Length1 1831 /Length2 4259 /Length3 0 /Length 5222 /Filter /FlateDecode >> stream xÚ­Ty<Ô{÷§J«5̉We_GŒ­’ cÉ:¶²d̀|1Œ™1 F²o­$k¡Å6”(JºvYÊ’%ÙMȾÄ3ºÏ½·ç₫~<¿×ï₫3ß9ïs>ïs>ç}ÎGTÄ!«…Æ;ºxY"§  ÈHID#¨¦ ̀)*z"É(°ă’ ÑC"1₫àBDâÈ  ă …¥ w `àÎŒ1HD<#ƒác™âIdˆ!FVSmƯßë$»"É;¹I†À;3"ÑxÅÄ‘ú4 /‰Á‘2èC̃Éåh ‰€ER¹d"ægç̣W2taˆƒI$ ƒ{§;ƯøåöHKưyÿ3êÏ0dˆu–ă„(2r2Dt]08NùĐÇ9ăˆÂï8BøĂç6Hâß!ɨ‰Æă°T :sÊăÉŒ¬€Ä¡ªÜ?'ê? é?"è?"çÿÒ¿ ̣Wë%₫O›ùw] kŒô`HûÇ»0'<–\ü±H –úßF[ƒ¿—gºP°HâßƯúd$ăîZ8FÿeƠä”TÔ~w`Hºm!£\g$–ÑœŸ¸% ±ÈñgÿYEEµ¿ù,\1(wÜN·• ?] ư÷[0tùyy3˜µÜPú×Qè̉Tå÷`S†êd *₫}+#<úOc‡ ĂûWe!ª ŒzÔN3–KMñQ¸ö¿äưÉùË6B’‰ÀV±sëÎWa'ùŸ`ÿ7 ̃Ee(€$‘TNF>†¥ \…0¦ ú́l+ /‡Ă“G…|mgĂ8wö1̣H,Á¹ÿ¨̣N ù@ G¹b₫´! €<Ä₫QPäÁÿṆ.H_!1éá„₫cp{P₫²! ïÁØ‘_ e@„qù• äÉÈ_1²1¶ä×yß?ÿhB$26éç“LJ?́Ÿ›‚> ³§̉uK|D.à{X×¢mûö dw]!«Ø"ưI`¾* 1rHí©ăf~˜\I«úÖ j×áÇW©Ñ†7¼XñªxđÛc¡k'%«Ÿú,V¡"=,ïÅ•4m}ëêlçÅA–ËP«Ñá3s‡̀M¶c­§‰́³+’'½rŸZ&́÷G%EñT,a:\65-vobeY¼¦±¾®¶jµú« tj‡¨’Ï?nJ$–Lu$.¾fÓN)–ñ—9”d°Ëfí&;§k̃>aqïîÂùbF̣€ ƒ°lmt Ém‚6QeàăYcÖÀÔ{n¡6ä S`a4æx(Ñ̃Ưg¾¾ïâ‘IênÜ Í™‘7Ơ¬“³7Ù“mc>¸ŸâGÈ–$¯)r=>¼W–ư+J)à]ÇäûĂWîăô}R[œˆ‹é{×yư-‹ümÊr¹·Ư­k¾ªA®¯:×Sº¿|đç‘ V6Ür¾j,}iv÷¯ÜX?ßÊÚ!)û¤ŒæË¢%”¼7–xNGgZA ‰v÷ÿü¡lB<@˜ëLƠ„JôÙ>ñ:NưÁ̉'̣˜K(ü9KÛ}Óg»oŒËIÙ\5́_¢=̀÷+yN²;ÂŒ3p₫yï¢ßj\STơYm0i”rµ| ?<Í¿¿Ă)äê`Ơbï1…æ@ŸÅ•y»]¼V¾‹8µ×©÷KüRvKLܪ~ªîí$ÆJ=2}A)IûÜ ´d÷ù,z´àºâbQˆùŒcOX4²™üN£»¹§Åt›7Ô¥QYkơ©—J=ơ£´ùz»“̀uơV\姆ŃâíïºÂi^.Œé²·à•¹ó^îÎgúø„Đ@uߣç%c'úoèƯk#»m«ï¿zzÆoÑó¶yîQÖHÁÍvƯÁùÑ(û–æ‡ñC¼ơ¶Ü»!k㱨j•ƒ+²¸@® KÛÔ;‹tư'ö™¹DÔ§Ï>J:=+Fϵ¥ô³±ÉTDùmMjZ´¯„X+† ë×AăGr¯æ¡åEôưÓ¼[× Í$Ơ_ŸÑwh˜³u`«/M…‹,}×j̉ ›1“x~…ÀtHeEHUØH́» ×\'Œå‹¹!Ÿàëf©¥È 3øÏđÄ&Q zêZ›"öiÛwyhl8èiXÈ‘Ë đ‹¯­ «Ÿtå ·|¨r"”fpÊSó#ÑÛÉ1Úçܳ„́a*9Gt ys1W™ÖfXOƯy°ïOsÉđƯɨ2¯é©o^¾Û[Ú'‰7 ¼e7=ÍY¬ĐHxưdẉùö̃0h¾Ù+æ²½mxÏ«±® üó”z+o‰ú„̀-N­aG¬¯×¡êæôüxA₫2Baÿ¤³ tûĂ5‘Ơ˜y1zloH–û`0Ål©¡ßúúà2•¦~W*;x̣ù7c!½ă +CÍ6gÂY7}Ûµq2üͺ²;íäT“u"|ïĂ/#]́2=‰SOx¦û­̀K-;á)÷™¯„é,d=y\̣">µJÑg»ŸêŒƯS!,đÛÇß²†_X̣~Se“5κüÖ¥Kûơ-R©•ƾ/:­+²M5̀™²èµÿB+6EZT¤î>Z|…̃Ü»½Ê¹¼jÊÎfB/WđD5'64 /q̃ú®ưˆ;±ô~.ÛPª}9îM¤Ï‰́º|^ès+¾ä]ĂË8“¥ơ®kÊ£à‹q¡i±9Ó˜ă’— ¢Œ̣›8i} («9óG¸g¾¡& -Tÿp[¥³ÛÂ5îÀÙÁˆ¹-ơ÷i­ëgëƠÄ¢åÀ%«©¬w¢ÑĐ̀â6h`q#¸o—{̃¥}}å̉Œ*4tçcÊS,nØ;üæ3Ÿ£tJo‚Lpt/‹IƠŒÜƯhÊCº¾ñY»vË&kaªx£b©gˆù×V…z(iNúŒ)§M9ÔäÖxZ¸Ö!|î°[Ñe»'¶zuB凤.nå ×Ö}Ö¶¦ï ˜å+[äÇŒ/‹¾e÷ïØ˜‘7h-ƒ;ÜeŸ“‹àa9¯Ûê ú° F™=Ÿyươ¤V»·Fëư8dÛ£C¢¡‡_x—Ú†®S,JàÜB¿{O‰4×&l™Áh>ơ÷»Ñ^äXι£gmáB¹ºûm ::nöÔR|/Lûå_F4×µ°µë-&YœœĐ%ƒ\Ùă:rÇß]́(¼5Ă›â[Ö­²¦rfxÂs¿öÿ|¦©̉‹đ²FAx× ©I®J’₫¹3Ô¥̉̃¾ư4â7*¹i׆¾ÿ†UßÊ w(íÑ9^ă¢Úơ~ä¥{¹´½åÙ —=z4-ÂÂ: Û׈zÍÏÎâ."3 ÷œđlH½ÿÍ©G₫¸ˆÍEÊùưÈj«f•üÉ0₫ÆØ´}ÁE?‰3+52ÂwnêG‘|#“ )'¤9̀v±[oö ¹Ư–,6Yẩ?q_ë@d•ă¥}EÛO}Ÿ̃ĂaSñCo `3–éÁf—¡]ZÓĂÔ\‡¡IÓwÍ5~×!°d#¡Ï2Û6íî́.“”oÆ•^›93½ ƠkƠz] ‚EQĂuÿt5…Ï>è 3oIY4vO +߲륽^{́y‡¸}=™t^(Íăö×W¥3¡ă¼ fÁu1Đ÷¡“=g›”–Û¤ŸÚ‚'Œ¬ûá‡Zx;¡‡©CçK*àPSóüƠP=Ö„^µÚHÇ̉BÿFz qjtS†'Ó&,¤¼^é«éá…¦¥MP=k…N[NøpÆKÖ| #ÿÎëĐØ8´×ƠsSqØóKwéz]ßl†\UưCfâppTâ;qZJŸÚµƯ÷t¿‡îñza¦ë!ιƽ–₫R)†ûÇ5HVơ—QZI"}ëÊ­ÓôHÍ€3qé'×ôL””sƠ§$ @YES¦U¸¨NK¿ gW(b²Đ°ŒÚơ±¿- p(eªÆByƲp–¹ <¼Ç{¦Ï©´ñ ,pVclo5?¥ÙÓđ”âÍ×Ûdöô”jëÑDëX›­#üÓ—³ß÷j¸h‡WåJnFW£–‡ËYÏ|²Û“°ZUƒPœ-L#́§ñƒeé}uç×Ç•$|ŸëÔñu¢º̃ ;Ôm­h6´§ZʤÛDY:jÀü#*‰¶FDh5ù¶…7=ĐßWÀ̀åBàQ3]ƠƠ»t¥zûªú{:­û•RÚ‘bƒ³ÜNX±9sÅÎ$üöhäVFúÑ‘ö|®h§¦´DÇOå6Åo>ë6f¦Ü‚•ÇOñ]·‡U®H 5¨¤”K¾ä̃¿xíưB³Ô(U#¼øQ ‰­ï­Enö.ùƠ-©̃¬ú[₫W÷®Ư”h]¯|m¿|`nöà­îÀÆ×â¼T;£Í̉†Wlinœ©ÔƯJ§~)× öp[æï ŒQ‘́ÚP ˜î~¾æÅé=,8mp?ûf6½̣uííK₫gçn¸̉ó‰R¥.Óc»”8yh¬º̣vXú)‡•¤+ØÎ«r'¿¤ûiÓ½‚:”®¦«hjfH{h!äỢcLÎV¬9"“ÿYÍ Ñ½c×tF*N̉ïF½wáv²u›N+ô“ă"¢pĐĐ µà4—ƒ9ư~_¶M·¹‰’Ud™ ’'{cTª«•+祻>_üü%ÉÛ¨ë¥ok¹(ï|6têKq`ư8ñ6’I‹{ƒƠo D–̃Áùcvc‚.™ÓƠZ 7a¼ “ô@7F?Aûd˜5í·q₫‚‘,¹û_hñ ª Ù¿'`¸îÚ{–Œ¸Ơèœmâw.2JC}¿uLäÁ}̉ÁÏ=,8:ƯK¾eZ°Åú™XÓ–tlv¡é[̀X‹øÜÅsăÇT·֔Œ=•·¦̃`âă­̉½ö4ÖÓ Úr‡Ädé«×”]˜œưœ?‡½Ü§<ÙoWsØV‰ûÆÁO³8Öửaç\7zUăXäƯ×R§jms‹#ödD¤T”Ê‹f́y¸«¡r·…ƒ2­ǹ!'b¬#̉KmfvV²_0[2·2OÁ́ÄK“ˆÂot3Qá›0C)5ÁxŸ9ï’ƯĹoH2íSÇï+­ºÛ9ôªÖm4₫@ÖÖ„i£à‰€¼Ă˜gñ́«S'ÀªƯè÷óƯ+ÙvăîưÓÙfÏƠ.{&ÏßxˆTù,ô˜Ëe÷\wíƯ‹v†ÏæË~$_Ô¦̀5£OL[µêÊÈXÊq]§¶pª¾ûzÖ2†¾Æ¾,lmåâ'ÉƯ3Z^ql¨Œvu÷¼qn3ÄÅ?„Uˆ½ÿqĐ)£}û¹I²†&o{8¬^üÙo-P‘́íèêæ#/2J́E¬“—z¼ĐXe¯`"Ÿ/¹é»8̣]äóx¹́lƠërSV-)=8»ëm&µ«÷Ny·NQχ̉{H$nïæÅp₫̣ñ†ªơùûbđ›cΧR–•­¡ŸjÛOO[TµCp7öêSÔ’Sgpÿáï«kD¾•ê€jLËkç«Ữ…3éhç—r6ßă´₫=a­ C]Æ1©ªÉκ‹Û_¢̣çM¿?’{n±K úF§gÉɃăâæM"{¶¼"₫Rø{HàŒÈdó%¤Ô͉ÅÓÊô¡‚Êh—Ú̉]Ǧ[Q ¹ơÏD™Lá~~Ô&đ^ư“’˱Œ8»Æ¡R·á»/«¿’%èˆưDŒ1ïÈ ¶”³­Ơ«¹´2w¥ŸêfOø—(à» endstream endobj 2435 0 obj << /Length1 1630 /Length2 6963 /Length3 0 /Length 7788 /Filter /FlateDecode >> stream xÚ­TuX”ư¤QRºî.‘éif€!f†™¡DBºAînAB¥»éI‰E¿=ḉơíî?»ç÷º̃§î'îç÷°2éđʃ`¶`Å+È' І¸Úº#ơa®Ú0IM^}°ƒ;àN/ÏʪˆQT ˆKLÀ €Ø $”””Äg(Âà̃ˆƒ# Àa¤oÂÉÍÍó/Ío€­÷?,w‘HˆÀv÷ăvÁ]ÁPÔÄÿ9Đ  Á{ˆ  ¨£kª¦­ àPƠ6¨‚¡`Đ ënë±hB́ÀP$˜`C\₫v0(̣»5$ß–< á`;È]ØË ÿmâÀÁWy÷€  u7 Ú¹¸ƒ~p§·‡ư)€Ưy¸̃ÙîÀtaH̉£wYu•T₫ªåDư΄ܙ0û;ÒÎưwKlw0wVEP`/Ôï\¶`‚„»½ïrßÁ?e¸#!P‡UÀ@€€ ‰¼ƒ¹Ă₫=ơ ø/Ưápï?Ѱ?^ÿ¬‚B‚]́ùđ…îrÚ¡îr;@ øü¿wE j ü¥¹Ăÿaó#₫ ˆă÷Îp̃Á .̃ØŸ_†ºK àø¿±̀÷ï#ùß@ñ¿…à ½ÿ?rÿÎÑyÄÿß÷üwhwm ëƯüucwGÜƯ€&à÷¡q"₫[ Đââư¿EưƯÛüW¹ÿ ˜ x7y¨Ă5|)!Hˆ¤ AÙ9́.w3û£7‚‚À|Çퟱx₫f3t„Ø9C“ ú— ư½ƒ;º₫Ôϯj¨c¦¯Áư?Ø?ºw‹€2ô†ßƠöŸƯhÁ@ÿ~Ă((À¼>¼‚b^! Á»÷wW¤ˆïỵ̈à¿d- ñ˜ßơ- ø§ûÿü₫%Y₫ Fjư^ ºÛ¶*~›í܈;’ÿ€»®ÿ!ÿÙ{0Ø l‡?; ³“vJÍHCƠPæô}T2ïê¼×/©3,̀xk÷O _’¬°¹ªá«•ºiôÚ_¯©s­tP¸°·'ƒ̣è|Y8;óIØÅ¹×ù­J¤íDûNj~Ă40^_₫¨§oU|…M?Ú,ŒÀ=üÁÀâ‘đđÑ9œĐÏ.¥6¼…¸´¦`g—-qëÇ9{Ï`_oûVç-wv«4̉/i‡é5ÊÛqZgwƒué!¬œÊ|ọ†$ÑÈó9í¯iwÆGg±Kd‚iû ·̣è«rÓ¶qa¡±B… Ox‡Ç Ơ­̃¶L«íΈÍíƠ>‘JuΘ‘Œ…lÔGM«¦².̃sÈ=í™̀0 }zj, Aœ¦gj%3&.̣–F–Uù a”\MÀ`ùëe¹¢«f”/®LZ•aj÷Û¬]]̃>È=̃Á ÏÈS·Çrr¦N¡\»Ñç8—úe"±²+i0’ê)ÊGœ*'úf±pdSb[Iª=5VY…/©ĂH.¸Ö3JE«å°¼8I²zßñÚ–ª,øà³¬ÍØfW½Fñ2®w]ŸéÓ¶}´R ¼'±Ú¹~"If»×„“¶Ơ½ơơ<æQ[K´™M Éí‘b+¯¥é3ç‡"+l²FyÉCB½" ?ÇöÖª¢ŸYó;¸l«¿y†W n6‹¢2·¯ư™©́g;³́¯y52£ø ĂØău…ç|n#<¾÷ÂĂ#c*>7§œeµ•aê:ؽ£Á' ̉t¼È^—ŸóÀÎüïXhë<`÷†̃$̀päI«^ƒ:m™W‡—¡óâ¹f¦̃0 ¬Éj-­ñ‚»½JÄRñ¬×ÿim‘f–R•¨+±ëËĐR믷Hcâs¯ øCÁ³|]ay4]À;ÉÓgÄJD'̣û…&?«˜É°"…!è }*ëà́=9l P®öœæ‡êưó̃ܪ ¥µ¨0̉ê¡Y–÷>ûêđ¤Ó‰ïÉ^!Xàvy²3Oú¤ ‹}PÛ2{[3Äâ„öĂº̉FØñJYÎL¨Ù¤v#§"áçôT+u >r^h·´$l$øh₫™ÿ"̃ç‡íĂEµ® ¥ká‘ư—u›Ÿtd›H+®b_¶…3•Ư£̉5ÉÀ½Zľ`–ø!Ï$ø½¡@S,Z¼*Q%,æ_b#*?+{0¬yÅEơ|”³̉é[a¦/Lt¤"±JÈHP\L:ÿû|ÓµÜeÜ¥§ênFư:'mR˜\đëüo­fú=ŒÁ':OÔ43QŸjD¹E]Sưfâ€1îƠ· ¾Â1‚Sº̉ô·ÁAúÅ$qû¥Đù̃[âˆđ¶°U<Ć—³ûúl|åĐófQ›$¡tånb¸Yœ å¨ô,ăÍùF|7íN /áç×mÚb€¹ñËØa}[eoè =^IÏP^^]DÈЉBºd<öœqsëÄUt¿–ÁK#dXçÛ¾é˹•¯?0f²K³M»dƯ4H*Ï_PÍP.¥d0“w¼â½—~lçưj:9D~[n%Ùrg̣‡ɨsªñBnÏ¡ª¶Å¯¥j¹ÀH`½mÔˆ ˜̣y0¦´÷óêZœ†Ăí¤ÆÀ°=·°‚ÉzjëÍ¥Hyå5B˦TA¤²3yR!‹Îà…Àj±’룘÷̉[‘Íʯ{ÏÔ~Ep¡ßeÏ`^|Fy₫1ơSat7v>MpTe^̃²÷Q5aE1K¨¶‘Ëê—̉Ïn[‘sƠ_&x9ÖKoX7%́.Фä“£5Đ9đ.¼z9Véj¤r)±Ủøêbl:$´îÅ£özî÷ ÓüPUáöGEê…¨Áï±ß́ß±7& ?év 0 ™¦ë•m…Ê"́ñ›Œ2­)ƯZ-?µä(Ó»•§NÄt´¤­_ú[‹[íº‡8ÊàÍ÷G¿`y¢D8?×c0₫z+»<ûºî Éô3%ËÀ̉›³̀|`ËvP§}Jf¢É¥ ă/fiƠ"œlóLu‚$yáE—…èö³TFdË…†ÚTXÅ|I7YƯ8Ë%άnvá]ê’½Ëu}N¿÷S%´¦Đ V‰˜i£ơRăº½¯^lăŒ̣ Zc5̉à_ÛÖˆpY¯C©–4î투¨i©`¤́º3k,üôM̀+Ù+º ¸‘ÀÅGqû+¨{Ö“Ö†ŸEMh;ubE}´Âz8XA€"?ƒ¿øà“gÖˆälpö~̣p¹N.Ä)©Ù~×&2!häĂ_₫B^—B:\(‹H=‘`ÿƯé(&t©¬Yg¶àœ‹$ÅpnW3¼ï|bÓÙöfS•ÛNĂ qø¾£RÁÛ{ßăÉăhäm54²™•œ¨´åŒˆ­¬ IMt2ơ*fB+u‘ê°Ëæàï§Úè`Da¯s¸‹i¹ ­Đ‘H³ĐÜØª‰Ab6]S„‡x‰dNåW–,Ivf¶ÁÁ¦èn‚å`.é=F±©s¼Wa ¢}m̉l´&éÙ¸đ_66å§„ r#&íà6L†µÖ ª/8rÍuT.„ơBÚùL]Z¦ÂEé° e|£•eñ₫Ă3èxRÆô}óËŸj¬ÉVË8Úd;" å,r76â @đđ ̃áZÎ₫ á}‰—l“ê®#ö¯ë­°È[m: :z^„O_X3vˆ%«tøm'á»5·c^MrbÅSÛßyƒ Ö̃dWâsrO4¡ÔdŒ.uEó4 ä 4ZNd6ïCÓû´+ÄûÄhGṃ–Y›Y|“¬”̣„]`k<#Äè+·º'ε¥ Â[†₫¾H¶ÖV¦Đö|ñ÷ÚUi ço~åF·™ù)T\’cḰ-9¤₫̃¶ü»R/©ªd1ˆ)ß>·O9·Wï{×yÆ0̣´Ăà‚Jaâ~s³;Ŷ¯ög;±‹1+‘T§̣ơđ[ 1×Çÿ–ë[ÙÖc̃~ŸơT-•̀« R”–M ø@OµœL³~ûP”hÿéB—›éÑaHi%5L„1ă"I&¶ HzÅ}¹'‚:œ‰ùÍ æmÆÚæÏ½̃́™zHÊÉ×è‘E冼ƒ̀§¨ ÆjeÛLË‘R<~=1Xzñ(vÁ0¯-32/¢d­Ơ[èÇ{̀Y„ ÷BơËSc¶r·₫Ô“JÉ–ù*ă´œt²éI¢²‚,Ø”êM“ªó>×¥‰é¥l˜'ü)G…X Z₫Í,-ÈɵÆ.o&,ïúÑZê·ª0¾ă4*¯eF‰[±ñ£i?|r¾ñ©s6J3‰1È;Ra×ïHÏḍ4ñKsµr-ü₫G±t Ä&j«÷É—?blÁ±…†– â‡wˆó+ù«Üøtk¶TaŸ?‘“iÛIUÆ–U);¤Æ ËIE•ĐzŸcËQzøøˆI {UÛnÊNWơE¶ẁJ!ŸÉDÛ»ÛË_¦~!´º®¥ù¿ÿ0‹â,˜~EÑ(|bÿ#‘h im>Àg(,fƠUWÏ»'Đ7ôXÁ¶ÅF/ïûúáNiÿÄ̀âf5zV÷t­ÏÛh]@é%ĂNŒûl™”¸Ö—̀Rá·=½F~â ¤¼êß₫Ϥ×ç_6ʶ́›– Ïô8»`á•tàIy4›@-²Éúo©Œ>2éº]s×#{«D+ùeI.±5.tTú8G(ѧk7gb1 }ßœô3™X/ß‹§3>å8·a/¶÷›bÀ4}´‡Ăí3(‚éÊ¡Â!¿ÏxDC1..Cr_À6.ÍÚ¢x5ÜÉơ¥aË×+q穳ñ=ÑhùÍé@8deJ¦–É­X̃Z^£$Aí<øµơ`~&³Ñw‘‚ {'Ăd P‡I¹k˜âuytœ(^í &¶¶Ñ÷Ç_Ÿ&ê –BZñƒ±ñ¸̃äFÅué‘w5dP¸½¡Xª³âÀáÁøö,æBÂJüG›¤o"“»#OBô]øû,ce¿aoÔ‘§%D×´d×ûPÖ¼‰áÓñz…té²]¡Ơb^’·>ªb‹:;XMœăê4^lLïé#¨‡Ṭđ̀3È›¨`™’™‚ÖP3Û=› Sç 6́=@?6ñ%\́eÎÀ³é—êˆI b>é×Nv5ˆgd7¨;^ï+“̣>•Úh»O)“^̀wÊ"÷†‚¹ÍEdàÑ£e[?,Q¡z¢.½OW†E÷ˆ*4Dh÷;wæ7«–¹ *¡ë¥,‡(»đ (.NïÓØù§Ê{`S²säI#1OXµ%÷s ¨̉”XY v«ÛU˾l)99óyøçz±"t ZùălNº °¶̣ØĐ/À‰…gĂ,|Ñ’Í@P.;S¶™7hØJ«vƒíXâ1]Eœe¼÷G¯²g­âHŹ8)ƒ¯añj2±JƯoŸ9ë̉ƾVnÅ(†œe×Dçñnqʸ(]ŸỤ̀’ï ¾êi: ´&âĂÍB‘-íæ¦̃ÎiÑôèG7¬âüqó|Ô^l…G•ºyØÂân¤ÅÉuxèƒjG Z±¨Hç”C:Ë%™´tDÖ?¤eµ…¨Ôzfđ'T°Ê–£'gXa Ï¥&|' 8mQDW·:qÙ{=…ŸPöơvô‹É™5J Û©R©¹7†́ÙS¦»ëmK‚‹6‹¯ôd´Îu@₫Ốµr‹–¥ÍÎ,9×è¾›ï¾ÄßâoĐĐbä˜Nm°¾®¼ÔÙtđ36/"ñ­/?Û6̃³ơé, ưL¨]µ[i©~“̣‡.©¸Ă(—kP¯Ctïɦ”_Ú3t!\Êuêm.›ăqâ"Ú>¤ó̉A£À^'êÓ}Ü|Usq"Ga­äÂó{)D„ÆÀp°—T2/§tN0‘÷0ƠVQ±¡Ùm»9=ØuăñAz¡vô|Ém;ö@±ÎÔÁÅíºh%ë´ÿuáåKn²*¡Ú¨NöܼEP­=ΗgK¾̃eÊØ wÚ¦ÓTjÛ´ƒ®—GäcD9n œ¯™ÀÅ[ë¹´ùC{Ñ-…ÍÊ=)³µá’3!=‰?®€³¾1o™¾ÁÇ„cL(%Ñâ.º¬AÉ]eVi9æ aÓ‰Ư÷mŒc$Óàc哯°ö×¥_…7Úv•–$YöKW~U~øÜ=‚Ó>´ÈM¡·ö­›ÚA(ºXLẸ̈ĂüäSfD—º´›½Ùö­<•Ö¡([lªéƯÑ«¯5ÁƯáVtµNơtN.ê¨ETíVÙЧvX[¹€D”`)LÍÑ÷@ < “oÄë´Tø¼[qÔËÑOøÜ‡ÄûŒTs,"ø$xX5ƒêŒ÷l̉€óéx^u»‚Ù ơˆŸ°]V,¬ư0NÚÑäÏQ–¯¯¼É,¶ïqyÎsüđ{6ç­Ñ˜Z¦ÁÙŒJgé̀:†/Ă}æR©¼ Ö†@ç"b¶ ´1\éˆ×—Ớ­Ăs-&º½7’KUN 1ÄHv%Nªqˆå÷ ̀OXLqU½¸«Æ¢ƒ×}K:yvÉ?~Næ̣̣ñë́À8Ơ9FÇ|Ù!"í— yöÇê6À‰Yä ‚¹ÏŸ2bë̃¸ˆ;§›¦0đJs¼©Ÿˆà­•ON®ÛÙÉD:7]­̃½>¹39A·åµdñ¸ÙœïyY=©›{N‡K¶Gß[z +¸]bưº̃§®l5¿Kl®Îyͱ ±Bôi<æ;–^î*úÖÆN9qƠơŒAÓO¸ôu=̀²4Ô”lßëS†ư(qó³Ư»Íµ ,ZéMød×bÜ}µE‹SÆ5¥4=›¦MÛ@89=Lk ¨C|̉唸}ñÚÖđaÏÊ»F‡¶̀l– ¨á`.Ϋs÷–¯ÄóÏ|é)<¯±· øÜ™Ä[vúÈ5Àü„íÍå¶ Æ.¶á+'`aÈPÍÏÁ'®[?³³•sœoËÓ $ºÓ¢Iăϳ9múp;¶ó’}’[›HÓ9¿•*ơƠâZ:)Y2†yˆV‘?ú2Y*m>7EÉ:*¡]Lc̣c6¯¿W8¥Pdä8¿rh˳»Á¥!?çUö7_ŒR:—s ôœ¢Ï0PI4{AƯ5q‰“Óá:w^\ỵ‰!éÆƠéE%$điÄó'¶1ùØ^¯”V½ˆ̀oWÛđ^‡Œˆ+̉_W‹µÜ#›U©ÉJÜRƒù•Új̃ÓICV’²C@á ‹—43öñ́9g5ää'WÜ Œ¢“̀øe#¹ÉÏëÆO®tLioó>ó¸Ñgëu3sùÉ8·lms6?¼Ư^ắÉøj°÷‰Å%ù$jƒ5Ç0¤ï^Y–œp«‰”8₫L ,˜Ç2 đ7iù\G^>œR¯^]§ÿSî§²4ơÚ¹«‰Ö}cÓôØ}+ºû­‡¼œ×æiß̃YDs¬[ÉRL‚ê¯̣ŸU µ¦5̣AíÇK¦B¶6µ¬YhÅ»™µ éf¡iû‡_]ßå*¢R5"ƠÉOîûKƯD9v‰˜È”“F|x₫Ø ›YSGô¼§mÇ9ÈBñU>ÄD¸f´é×ÖÇ+iN‚ø½ä̀¦_¾U5ÿ"Mê§4å,°¹aj̀à"øâÊ¿Éß̣S\;H¨1bp;ÓÙ0Ÿ]¶l₫BÓ½£ƒ¨å>[Oû3¸b«gp¸MP¡ª3oÜ\_œ®WæÅ³Dóơ2b AP=‚¥4q₫Y¾øx†>́ưK4 ²`“+‹L<é#„:f7“Æ}¹/À¯«6aÎ?à´ àP6Đà U5@Aè„°Uá´û:º F‘6{S|ËĐëëIG|¥êÇ̃P‰¡”¾@ëK!í‹æ£ØÉ©ªzR5youđ|:Ó:3@‡–=F÷‚ {©¤9Ơ"ô0YÛ̉KT|¢áÅáTÓh¿ñÙøe₫B öâ/t¥4±¸é6äØSnVÛa§{«yÚ·¾¡¬´¦}Nî&0U­Ä œ9=áÆikÍv&4%’ ø̣¥êC±™¾5ơ^tt“o~ ÄW4ê8•mƠ$Ă>7=Üó̃…4J|©£°~n’Œơ£l̃O·,WJ•]§¡¯™8`ăf‰·N˜}Ÿ\:b¼´¦rĐŸûx0ËëăœgZífT{÷“ (úcí?´ăˆ¶ ™{NơùÆ'nÈÖ5„Mœ’ºØø̃ø¿~̣æ´¸ÿóá«Qßơ6á ÊbVŒrÈ,²‡_öy_Ư„ư‡ÓÈë*₫Ïâ¯Ø9cùµ̣$ÇqGdâù~ZƒLååƒCm/‘+©Iǽ.‡*dĂûA‚}ëcD“Ê».¡R{/¤‡Ề±xVđÂù¾ .‚~ǿZ«½·̃«é0Ö½d`̀øâZ@r•n—zæ_Ă“<wæÇÓ'JÇü¼)Ïß} Zèñ1UÔ'lăË:¨HûñUt[G” èuí1ÏđØOƠη·£ÅU£/ÛêH)±b“ÖWɬ@f3:NÙr\Â|v1`6Cnö$/÷?₫2ÿ-ŸÇlaHHœ†Ç¾Ji2{a¡5G˜Ó˜çÈuñ̉û#Z?o(ËÈ‘ZI¡/,áØù‰ÿØ ½6Χîî¬?@.Ùk`ơ]́í+âøºÅ—̃À‚_æ•ä€P2Ê>8ú´â™C˜c!œ†îµŸ¤¹'®ï×,ƠÆ ™1¶$ûxQnÂGª&Ik>÷„3ßÉa0U³dÏØ*á÷–P–`W§«Är f₫Ọ8Ó÷¼́1®†̣ÚåˆăÖ‘Ï<8Bfä™C¾ÓD¥m”“¼s6'1½·¶V„9† Ë–j…E¿èü²¸} ĐˆÑ£¸ơÙ*ƠÎØu†³ßưNrK¯îö×ê 4^4₫˜€xÇhoÚ­ÖÁÔ¦Brjï—r‚B êuªÁÚƒá1X S5ăÏFxúΘU- O ;u?̃r}wn{ĂC¿*ÅX,×d¶˜¬×2o ”87,G)fF爗íb•)cl Â»ÅÆAg₫p̣ưËq¿C†±ÍuVÚ­Í`Â×áÅ$/h™¶i¢ctÆ)ªẽ³Z-#=¿˜sŸô¾J娥ă₫¾2É­T‘Æjäê7èĂÆus•ŒT́ŸsR•7̉;ăĂ9SŒ»çäx€‡…IyµF¥Ÿ5í>£Eu4Făeœ8Ń5b‚œw(œ̀µ%@±qöâ·×›Öt‰?$F_t°f¸Qˆ¨V•›ư´. ·ß¤˜úÔˆBüd¤Ål ”%ˆÉjxÿ‹ÀØå̃n†CÔ[Å©40.í¦°G×9–|D@^T́ÜG¯’»c3ĂpÅÄ3\cÛƠ¯mwóMûjơÍÚÎO½f ©2Ûùï£{₫`±K¡ˆ½‘àùVÓ™hƠï¨f"ồR¸Ób—ïóÁ^­óă *̀O_P4Eç²>½ÚXæ ñʘ±"b~ xs?=¡+VFnưÉ_Ñ­¯´ **˜,̉o„8vđ I<Œ9ñG¥>xê•2V{Ûơ¼«^,h’¬²MIö¸§{¢Ơ¯CÁFÀ‘#Q*ơèÄœ¤ endstream endobj 2437 0 obj << /Length1 1647 /Length2 9279 /Length3 0 /Length 10125 /Filter /FlateDecode >> stream xÚ­veX[í–vq/SÜƯƯ]B€`¼P(^´¸hâ»SÜ¥hq(…¡ï;gÎ\çûæÏ̀ù±÷µŸ%÷’{=+yE£©Ă.e±ÉC\`́Ü\Âu°³µTâ¬Re×Ùy(Á¬œÏ:>ôW¯dÜAV00ÄEÖ €l² €‡À-$$„₫ qơqÛÙĂLzÚ̀¬¬lÿ”ü1XûüCó́ Û¹?[Ú@€JúK÷ ó¬…Y] Èö'–5`†º:Yù<Ç~suÿ•†́b÷Ï Øî ;+w'ú óŒư§;ÿ¬đߪ·ruụùẸ̈—Ơå†AAN¶èÜ<Ï1°çØv`tÎ?ó¢äb psư-·ñpư‡Îä₫Wƒ˜₫̀ ósV6'€ ÈS{ `úß±̀ñï#ùß@ñ¿…à ½ÿ7rÿ•£ÿv‰ÿ¯÷ù_¡å=œœÔ­œŸàï=x^4V.€ç]PüY6NVî€?  ü\­œÁN>ÿ“ó¿Z€₫Îú?1ÿUưw)»g†Ø¹ù8ø₫ƒ¡̣`o&´ØZ9=7ï/¹‹ ÈƯ ́z&ù¯₫>;qqư‹N× ttùĂßß*‹Í¿Öđ̀Û_pêÈ*)ëi³₫Ûö/cÍç©€éú¸‚ÿÉ@ bó_‡?P̉̉o€;7¿€G€ëù2>_G!×₫ÿŸ°qÿó¬fs{L¸8¸¸¸Ïï<ÿ<™ư Œœ bógt`V.6Ï£÷_‚?j ‡»û3ămƒçÊÿq₫ë€@̃ úÂ,(â–™«"₫Ø7"k̉ƠÁĐêZT«û9?°̉₫6-b]¨Ộ¡2”£nLø±Égfßơ÷–2Ëö@‘c{ è8Ÿ¹3w…¡E€uû§yVúA´ßÉ´ê¢1?—₫öƈ–¶yá2åX ¯;êÉ5s g~ ư•ëË`jMá7œºxUŸö÷®¯{ûûzÛÏ:·ÈYsâĐ^‰X$ïÓ$Á|,Ư/jHw^X~øé¿=è‚\hÓ 2Ơ¾“·pïË|·.­%&®Ÿ Ô CU-¡°aQK%·Ô °hÆPl†§r€#û<@Uđ–Ȥ‘„đơº‘ß(åmܬ́oqa´|̣*’v`€ơK%ơƒQ“e78k‚l,1Œ÷9_"hS盟Z9µÙ…»~)1¦P‘db‰̣›·H½ˆøil2ùb‡u¦~O¾ơ¢“î½nQÔ˜s¿lOgEªÿ…ë‡öuO“}: Œ—zw¤‰±ªça¹Æ8¸ă[ư¿t¾5ú«§àÖÇĐ›DµJ¶̉´J–N7Ée)—Ç•TJ#µ' ‰@6 .k )"s)J­ïC\§ṭ·º±'S1d©ØƠËBØ9aA–\"øªm³L¬’ƒ¸L3̣Ï/ü1qÉ2j°¡IjÖOa=éÑÚÖH& r-;ó́ùF%gÇf0^UF» ¢.?¦Yœ:%¾ ØÑ°HȺâ‚ưå₫‹µö èŒĂnlZËü¦ß–Ù"û̉«uq̀¹!¶KzÜE â%~́ŸGä1¯¼ÄD‡µTN³3C¦åº›å_—»¯u\7ï&ú!.Ř²¢cƠK¸°ª!́ˆáàƯ³©iv¥qu^FY8Ê› ‹:.)MR@¨#£ºÍåkÓ!ññ‡Ă˜àoG–¶ç½đL@U2rKk¥oÛj¬“7âJ*mûxcmẉ2ûÇ3˜!Âë,|W%ºd ơ'´x}ri"|sOg1‚±(Ÿk›€Ưë÷4ÎzóK!÷¤…9¯Ï~‰ơ÷Ă&<Ùx1^}„ yà#KúØhG-6L@­“\U6ĐĐá±Æ¢yỳÍø°êw«0₫Kßµư>¤¿Ç ¦®¡\g’Í.!¨w—R5aµ¤‹½zÓW̉Nư,ƒG>©¼ö™kơ¥k®×ê·äLÖ•]©¡Y/~ŸÄ³º]ço)ó_,G󄤂æVî­£o·e=ëFâVß”fâ’3ó›P=_k#0=h>p¦Ü.=đ íV£MăH«ỡ¥/€L"ÄĐơW8€Ñ ¯„[_.Oɸ~Ÿf$ăLư•Bü¡ÄÂ6–‡Ư“ˆÈæ‡À]§VÉ„|ăTØ\¤Çq—4}¤jLÂ"!u‚:W3çđ2ZÎåï|ÄÈhñ—Ûö«25ø=<æ¨í´Áûˆo:6.úÔùm^Á\ƒéFƠƯhô}‰iA¥¦"|%¥=æ5m 1ÙÙ$¿y^±:óè¹eÜ₫¡‹ûg ÚR¨Ø©Ûl«ơˆ”éú¬–î¥±Đ •—iÈåìq07ÜzsÔ-Ä$EÓ§½¥»Å©(|84îIEïûăêtÜơĐĐ/Á R˜ ôTÚ–ôÑB²Îqw’&«g÷ˈ¯TºÜlœy¹…–nÖµMu¼¸ ü‡4;’æÉHÛ9bœ¬áŃ«?L[¢•7l¿Ä!pà's1¬+‰xwkß"}0ÇȾä…óưbÙäô™‚(T±Góë^d<ñ¬íĐ$Q'2!¶AĂR{æV{Y]¸våË2_ư~RÄ׿ZáĂŶ7˜JXæï,à°{ónŸ,ĂĐ:?ihŸ³)öÊßO‘: íî¸)_wÎÓ"! ¹L$ö»Tn‰¾̀tï*Œ¿fR½Z²B¸A£¶ÁÑíÏ#³’Ó+²;/¸­¹¦ù¡;U…À56»x)xö»µ ˆfŒơ+{äî'- ‰€•“RÙ`é#ÜeE‘û»²ó d^"{¹A÷öoÓP j»½ê’5{àÈK5đŒ,¿̀vâHîè hÎĂ|Á³·+¨ÈߺWèøtˆ«–a¬²neŒèçÅ”ơ==FÎ'—3‹xm§:ơ#fAƯuÅ»€H™Ơ¤«‚—»{³³̃¡–IÆ4ƯfØj ;¨¶WÔD.¶̀µüA7gĂ Ø”FO½‘_­µ0}_@¥”%3®¥2çË,~c$”̉+À×Y%„8Ál¨q%„‘ơô„ ’¨Ô{)¸¼×æxE#Àˆđê…+±Çßc}{²²½h̉ÛÍ*>ô´åV¼z$èµÎçê×]<³ :4Ó+[VNÍŸfô¿';­CffưđYv"’ư¨`¦ủN†|+wgÎÄ/vبÉIwùƒ¼Ë7N,䌔–P§ü¥ÓQ9̣ˆÉàơ’Jú’đárU6YT7TđMô÷°²³a~Ÿ©‰³§´½iq-ñ6±™ ÏÑûlx·0UëDL9æP°¨”úÿnËYI óÆàZú'RY°Ûx—Ø=tîH9Fÿ&¸ø\…Ù+±1Ư?¾(¦ôµ̀ø6̃̉-?̉Øóiă7]ÖáOäh<¬{~@ÂÇßgÆä}Ç>\2ÊĂƯdE¬ î–“Ø•LơCQÑ7¬)!¤“óªÛï^£Ø­h¶2ưX!ßñ¸/X‚0Z§Â!nndpÜ[ó LÉá°é>̉¢â3ûœ„Ḳ̃̉®»¿ă¯É)F[Oœêµ́&É||,DÓ°|Ơ¬áRZ‡9ÿ‹–~+·œPßȈfQ>_IÀ”udÓ3i&‡*_1çx1_¿†ß?±p‰'H̉8N 7'„Ë(3)}¥Ñ¬[ƒHq—,¿PBă$‹E6á/₫»ûrcës)Êd°«Óœ4­¨Íńµ)¾jr¯<™äp„́Ô-Á ̉UµËÄh`–Ϊs±ḳÉÆÈơ7 ¡8ê;âÁªŒïđU_.7x„؃×'±"ƠtjƠ½ĂHUQÏkNoúăÊ`ÇhÚPÅM*n] ́æơ !ÙîzCưªO†i?P™ï²ü‹˜dÑy t6ŒË€7Fƒ„ ¾rë »5ÂaÖ4?ªV…ù-̉óé>~µ!Vø`Å€tÄsǼOqœ,Îî»QFÛkIR«ÊÔۙĿH«`sEĐ §L¾đẠ}ϼ¬­–Tˆ}Ç?»FG{™æáñ†_ G˨ư%… ŭ‰Ăe"Q«ÚºŸ‰₫¨ư…Xư GG—˜V _¢ù)ywØ}c躨YmpÍ·çrû­j'éXÙ!%¥J)«đ«{—™ŸXÄ¿½e}=&đv’§m¨U·¹1Uµ$vm`®¹{ˆLÁ–;x¿a7Iåư£éë‰ơKfRûqæÔÍñœÓ̀¹Ô¹^iCVˆ₫Mü¡ù̃J6Nđ÷€H¨?Eêà«mƒÁM(Æ Jx‡ó´ˆ=>HN®¯Ú0»°ÉÈü=páWW¦u¥‚Z ˜I’QֻϘTÅK0oÚH*t́q4 E«¾hxR‚à-u,}€(Wư8XÆCCúêƠÚ&¯ftyA™ï„Ù9ëŒÊW¬o¤OhéƯrÆ‹wq0×G™hÇ“‹„[̀Dö k;®t]Ríï™TØn·epS~Ưẫ-ûmŒ!’ÊW«¦_°ă3©‡›Ư ‰ßƯÚđZØ=đ%ŒmwÅçá­¤»mo ›EöŸ‘ù|Đ³́W8Ơ₫ù¨ÙO‹Ĥ!6|Ë:ƒdSÙ+*%~Y;Œ!¥ơJŸ³¾ó#79%ÍçZŸz Ê2'6Ö}/ˆªƠ« ó™ü|ùz…/gÔ-às?³́‰¼¹µºAe\Kưjü ƠÆ.O„î¥;ÆơÙ¸ÿÇó‹ û§qï0sPµ‘ÙOz{¤ăµ̣/Ơ¿Ñsï›/1đ$«ëÈ i?’}±–°Ë¡1¿:)Ó*7+:ëAßP´¹C†CÆ\–Wơ€i¯Ê¼-Y&¼µæ3‡Rá;­>åÊ‹ÿZÛ+‘ÿ‰ß”M§Kd:€…‚ïÚư¢®„EBđQ7ÛƯÏñRâ¦ØW„V‰/ˈ ƠNt/[Ü–M"åb™Z3•PÊœơ₫Üçb¤“É]Ô‘nvùŸy%:öŒúđ₫s“X¸ƒû|;†×›èuđMµ¹¼R©¥¨×Deƒñ­t.ÿhK\Á/˜[¶ÍQ5³E€ä‡^´i?å*åæNÖk+9l²¯ =¥Û——h4Co­_[¼˜’!„ _«å+j…µKǽ@E¾q̀cwˆ¹tÇơ„ùGÏÁ"àtG>}Ư舙8@¬~d)+#+! +¡P1m)Áx®rhôÊe¶³¶¹…ÎdßwP2Wóm-Œ÷êu?Ơ₫ö²~#îpÊl/?`=bÂgÿe”68‹f–™)s¡=öEM®}÷i1mCs zà<,¦f¡9øỵ±ªa´DV) åà¹ùß+úă¹*,[? ™|O4äç¿Ïµ,›^Œyñ=Ÿ\ÉW[h¼e@¿/k¯ ¢i%\g«¹Øn€¿ÔÆ qñ0y“d̀Ÿ´‰Â%w«‚P¬å\Đ¥éɑơo·´1{¯T̀—‡¨¡”,G¥…*¢Ü˜G₫p¤æÖ€ªÄ²gꦬüơª{Œk¦æg°mÍè§`ümLSú̉r₫~±-…Éé‡jåïƠùŒáơ†BƠhqv¢¥y[S˽˜«lÿ–¾p.VÄøÊ>#K ˆ—ú‡ça sUéÁMŒƠ¸qDwqáÊK%È ’]AZÛXóäÁL0—owúĐ¾?A\ø&ăÊæ7ñCAäΦ?I|9ră|>-µ««ÜU…¬Ơ4‘|T' NØÁV₫ M"é.ÔjaL´*J¥’w¡Çµ):j¨0¤D¾<̣F×MƯÊÙ”éÉŸ3Àr:ÿ«ưÚD„‹ó’eÿ IÙéuÙpJ₫['=êFúc³ĐÇ­ªƯ‡%µ?”˰%é!¦Â8óÎz7¥‚ajî,:)/¼Ư['Q¨…„ƯQ|QL·ÅuăO–hvhÑ: ÛL“Ưié̉­l”<>™Í}µ¢YñË7B\B 7Ử‘,´éf̣kÂÖ‹ HƒË.á ¿Zf$pCú(Ácr̀Q¾ó-ç¤È`UưCƨ‘C¶&+çđí2aṢd#yɦtñ¯AËc‘Ñ#~Sº×S ®‚+¤>D}ăS;CÆ•óK륩Iµ)D ³}iN" |ǿDùưṼƒđk®Àϯk J¤^’«#TùRvuº=dIKƯÄÍëz¼ŸE°…(c>ƯT®₫@NŸ£“ƯBBH[~ûûLÙ(*1æa¹á•¬?Q‹}Pt H»f;à¯b?T|n2ç% ¿ fØéÍÈ ̃¸€•ƯÉw¸%xÓêñ”;g%à¿¥Ltơ&½³JNpá¶^ z‰¨f˜Tm´?’퓼4²¿Eéó8© Møq¹₫4ékÊO­;ü¾]bÉäp:táÜœZú),C¨É̉´Ÿ0z1,ƒ̃ˆ%#u8‚¥?+®¹iôÀl<˜yïƯÙ,V¯P6g‡Ï:¾¨ ílgÎáV»‚c%î“¿wœH.œ™ƯƠ!,‘K¿^¨ß̀æ$ßÔ¯ MB\VúĂÂ" ´hB«p%](`$Ú²^í¢ñE:ăï ôU/»Ä£gĐó.r‚â½îă½Đ.H@ú‰‡ÇÅ£Ư[¿1đ/jÚO»¦ÊXæǶđñsíSƯä ºpnåỀ9-œ %#öô—  {’@vAGBºuÍ:>ö¬ aæăNb7́‰c­ ´B'×ZC•°$sew”£|T‹Ơ0i_-ƒaçúN¥ÆÂpƒÓûʘ[ù ®úRPÖAö ¾Å†W÷[‚x3¶ o™Ké;Â×orÊœ•ͳx qÑQ â9èÇc},,ß~XRđS:­ëBVÅnûó$dºô#½!´Ê “7ªØrJ“_æ'¾r6áçqäø˜ó*j1Ĉ#jÜhRå"‰HQwk3Û<§˜yÛkIL…ÜŸª‹ó®v4µ3ôăl‹ G`½ˆ¹Êhà V¼ªwa RâטwRñ ăt’¢ñü₫ă%p‹Œ̉;f^Å¡i×\QéÈ8Îñ« §NưĐ›qçƒv7a²Ê|Ể¢ëÎÈưB£w‡³ĂS!)¤j!§ø½uíÑCÄÓCƠAë:/̣“eÈ–‚¥Đ%Ïc `JXaz¬œóŒ¡i1đ›O½­™i*H´T[{î¿.’„¢"¨'Êüp¾qØUµ/a^xÑnEa«¹Êùató<¡UñÎ䱕S~“âÛ8é~Ϭ‹5mD̉ÅƠ«™×§m\üÖÎ`âVœ‡³K‹R´Ó̀âüáôZÂåkº¡'gË…¹ë« “qơ·*vOEíi½@V(₫ˆÆ«w‚MÎ Ë»^‹ÚÈǺ¯ªŸ®øgWúLÈ›É*¥LƶxˆtXb3‹0V ¡ï7kè¿JèƒîF6J~‰åŸ¥=#Êáe¥R<|.eîZv)Q¾%A¢®—Âv¾0±¾N:&\²1ÿÙ)fĐ ¬¯OŸè<"O^sÜŒ™°HƯd#¿‘ùµqÈư6.P‰%Ư ´Ưµ| ÷ ­HF¥q¾dnx€¯Ú:Ö\äX°¨™µu%%¯ÊÓïĐ̃ 'èÜ¿8æ™Me "Á0¸ó¾¾oŸ#ä øR(´N™Ë‹ØH₫ v¬d̃<¸ơUå.LO.¿GIdvĂ «ÅͰÂă_Ùr6¦iÄĂùühœd¡H¦oâ¼”X/‘û2P±•d¬Àhë,×G¦0Ñ"ëöáˆ}ú¦âSºv8_º›S)ÏơïØø­WfLư¸Ôaq”„ƒJEßaûU:jY;7pß0̉‹ïÅCx"ị̈ºbL.ºrs›ßŵ‰o¡́Vy\{­-(o^èM̀u4àߪ‘†Đ?ưæĐ[ä`Ü-́D§fhx}…t†^«"©´¿å;m¸Úζ±Q†9ñs…X<– y6\)ÄMÛ†ˆ̃l½¯MW’z‡eæ* Ót…MỴ̈ˆÄ?ị̈S‰q’Đñçüè X"ŒjÉúX™`4ƠJN³I¿t?ĂÁF‰îD¨Ç za ×®úTÉÏà²RôˆVFäv̀ưTƠïà~̀Ÿ & ¸iDŒfËB®M~÷5ÅhOJØ“<»Ílß.¯¼ÓeઇåGw[sjä,ûH±áŒŒ‡>°oÛ"E$îC涮ǗGø )'¯N»)vºnúä]]ÍÓ{ÏÄó§"̃”Y—ËÇĐŒ±zx›aïêZ˜ó2LǼ-ÍKxR6Ũ>ÇN[¶¼Œ¥°LQÎyº́Áă<ÈZûj©ˆ)€®"²ièÓ¦~*’q ""ʰ“–˜º)'|»voưÅ碌±·‰ö˶vwY°A´7ÊrÖ*TˆZ´@(ëêtÍœ`|…öK„ç$j²°P¿6)2®æ!}ú‘Ë…4K;•}3â L"*vªAƒµ"ƒÙô´Ô$*Ÿót}|ß´Ôßf)O¯¨½GŸ Å–öá¥öÖU;0®ß¹Ư?X9!"tLu‚²Ó'óĂΡ$6ä;üú<'¾Â®¼íÊê‘÷¥̣́Ơª£ÛdŸFâdKîjk «Î+ưBă·Ă3+R?ƯÓ¨ë½́2f„àæË[³d¸XP?¥í=ơƒ÷e›^£m½MFGL]˜ÇeN ÔW_¿ EWđ¨8èsÜöx[¼–$T ĂDGÛ+¶w mđ́tÎ~Chẹ̈Û••ú7oäVl„$NàÆÜb™Ä-e®…Å0Ưrï’n” NÂƯê1Ú›˜£!Â9£f?̣"Xªß„¹A˜ÓƒL¾©DF\Hµ¼Ç¼è “ -Ăd8e_'P’-æ ܤ\˜›.¹#+y9ôd…e‘Ú¤ÇÄö’—$|wbééja»blÉÅè;ïzùØLNN8θf$c FQ>ˆp¨“¸́f‘Ͳ¹Ø"ơ!©S퓯9”̀Đo¶EơW̃{R ûŸ (™ bƯ%n+ArKT´ùhÓXiZÁ¶ô-\Û!/à‚ÏöùNñ½Ô+L[ÄX{+ô_…‚îQơxô‡×p­ÈNÛƒ Úé×ÄçÊ:EÉQÑÆăØV™Z*P»x̣è¿»uU1ơ-OG昋‡¨™đ© s đüYïÓ²ˆ>˜ă+/±_'qẠ̈ ç2$:µ‘ >ÍM1("WçÑơ)û—Ư¸¬£¡ư.˜Ÿ€î 5ev/ˆQˆ²×јÁø,VÖX,úë ÂÉ̉¹-—̃°°ëAÛZÑ÷´2¨J§ä–ßGEr%}ÜœuxÅÆ̀Ù§bH¥²/‘Ÿ˜…OsTœ́q/¿-ÖÀù?0ä«©í©ä‰cŒZåbçˆît½HèƠă9(“n±g>}ơAt ¤V¡¥²U(È!0­MŒÜ¹ Ư {&,J N*)ĂæĐ®(…[¼ÆGwï >û–É—wơîQ»ˆf¿„<,&Z™6ÿN)qS=LsƠ )q§Ótñ{~#ƒÄ¦–% ̉¾é̉ß8âcơy<¼¶ŸYn­ÀlW/Y÷IyCúév*ŸÊ₫GƠ6Óö|eQ]€jP³SĦ¾#®lW‘q_º:†»smÓ°—¤₫;[a>’é”™6†¤[ :†>zØ«7ÛLÍj›u9A ¨Ư „«–Z†å'`aƒÊađ[.¸¨ Wü6Ơ5¢²§mÆḯ~3Ơ2|ó́m­1fbYẮ†T­Bte2&s§uQEgºỠñÙÇư˜„#:ßQ ;â–Ùæ7º‘‹æë¡ëƒ¦9rEƵG«èny’ËT̀ t&̣ï! ‚Èz¸>¢|&‹́0·³`ÛPÀ́›đÆ̃́đ+Åq̃ y—œ±Égn${ñ8ÁœéQ8½ÆOÍ­CŒOîæe—Rø:₫“_®ˆx®APf9QDL’ÅVBGpj³®°”G%§#ăV ˜`eơ2q*‰QwïöäL·’2ÛIÏĐ…/nÿú\ÈĂttE;€Rd%í@R¥ö§Wú\ WñíÆ‡@̉§9l9¨¾₫~aÑ̀•ŸÎËî¯t?¾Æ*–HÿµV31„³¦Gj̉Jú23á½?i¸r›Ó#-ÿä#ƯúÀ¬c̣i;ư÷”3ö¤XÚ‹Å‹ó¬ôYï¢5)¬c>VêÉƠÅ †*¿Ë´øxÛƒñBAæ>ă•Ă{9íSö*̉ª i„£Ç/‘™oyZo†sZ²}­ƒU¼±¿*Ñå¸bqwñ~ÀVÉ!¶+"µ]×¾À9>8Ä7₫ŚTÅ̉[J߯}&b ¤†wp¬×v5T¿Ơ®Ü£Đ<r˜JTÑ+0vúņ»±‰Ù\b¾«ÏóÚU#c;¯äÁ6Ài¯–˜ùºjn7'³é[ÚYÊÀịÿ9— endstream endobj 2382 0 obj << /Type /ObjStm /N 100 /First 993 /Length 3778 /Filter /FlateDecode >> stream xÚ½[éoă¸ÿ̃¿BßĂ¢uX°X ¶ÓûH3¶‹ÅƒÛ¸m̃äèä˜Ù¿₫‘’œøˆ“Ú-0˜ÊẸGRIÙ\F"Â…‘„3EdăÀe9 lDnÄ ‹₫h%aZ¹‘‚‰RàÈÀ1#\F@1¶j F0Í …÷$°Œ*682øá ¸÷'Rp#I¤p.™¬tÏ‹ØÂˆG$µđ°ŒÀ{’(n WDIëÈs)"äFœh&ÜH-b#E´BR¢#‰aZlq!#b„„{1 $CQ411Üæ £”%P ê0@̃X®m#C,3î†\$±R²- bئ#4«`º3X $³ÄZ‰”AïQ¤AoG<‚'ÜHˆ˜«a$Lˆq[”ÎÂH3 ôŒ nđW TŒ¹ ư*qÔ˜•1TPŒIP€FN)è1 ,Ϭtfp¸»ô ç ‡ŸÁđaÆcôđ Æ5˜SNÆ °’`kÆ-<ƒEÀZº™‚ ˆ%8à×ï m™Ÿ“œ´ 1hÈJ¼§¸¾ ŒĐà ¼iÀî ½‚ +4¸'Dä¼ elLr4èàÇ ¬-ü$¥sä c‰¦dR¡&%’‘Z¢ß8 =‚¹‘—ˆp¾íqĐ1‹#t?đ¡ Àư”Übn=q¤‹"Å 3T`,,̀38Cj+ F1 ŒW±n +¤§p†VÀ]á Ă‘'΀%³ơûï[´ûë5%ô`<í¥ÓÇIÿu6l¹ëód¿\_9ÛûíÓÙîm÷ˆEđÓ yéŸÙƯÿ$nsK¶ÑûÁ’à-±ük‹îLÓÑ <ù)y=LûÏ/piÔEFøÛ6ĂfÉ ÿ¸3z¤pn\Ï̉á zè½ Ó@ß@å%™\§3̣/úH_è+̉_ÿöRôa.¥¢Ugë?̃́óáÍÑñ¶[ K,«¼•ÁƯø—Œ̣°¢(EEPQIæ –GôL̉Ñ }íöŸưÅĂ«Ỉë?&–Đ&h÷¿̃íƯÚ³Z#BĐđFŒÀu­1¢x£5¯Eü8ú¡Ï°z^~½¾¤#Ú§ÿ¥ßè€éˆú£”é₫]úcÎÑ>¨†̀N¯ƒù”~§ßçétÖ¡¾Ïdz´÷0pÓ² ?Ó]-ïû›XÁÓtØ÷¦éhÚÿI§1£³—ỈÙßc:§?èßô'ưEÿ¡ÿ¤“qÉ7tß8Ù¿>>»q¾ÁkÖ®zØ–¬1ăq­ḱ \:óÓ'ÁÂhÛ̀¤OÎ\ư`£̀<^u¨°™Sªç×*ƠØ&ª¹º¼ï^}vªÑ5ª~ÙXØó´´oVM\£XäUWͨ攒9}”â•ñm¡¯xHi/°¬ ̣OWW.`¨ ‹̀q #ÖÆ ŒG#2÷èBTHÊ‘ÀÇ€¥§”Öû{Öyn};_ƒeY³ +>gíKwŸ÷/æk\Rå yÈé>Bóº>R£N^ O£­çèóíÁÎWÄcj–ÊvH?ZăIŸ(†’'·j†K«{û¥ăíùw t£˜zutzpï@ÛĐY~a%ơ åZĐg°±v ñ´W¨ïY•=lˆçY(^µ0ă£“‹Ăܧ®O»ƯÚĂe…’U9µ2VP+^.ÔÊ9/el¶U“Oḅ) ªÇ~ÖôR0ÁĂ$yô›¿yÅáđ[:[܆±ÿaSăr›ôçă bÈs‰Ïj²\²b\—\.,< ³ê?DÁJ–“3ưèXu5Ú™öwnwœ\×9baS¶˜Ê®Ù”ṇ̃-kËÔ^”F¡₫Ó׽˫=¥&6ª8 PokÅ̃ Åè7Ciå÷oÎ>u”ÚrÊêE ×ï±Ë6æ©Nôf8â÷éí×»£¹[Wá»J˜1ˆà:^¢p̃®8”Qm¬Éa2{¡°üĂÚö«ØÁ|ô‡iV—Đ7´Ç'gg˜öÖ÷7D¼HBä•ÆÊ´.K±vQ(VëĂ´ö½o¥’bí†çƒ]V—m q¬Qˆ»í\tº'Nÿ›r@®6”d»̃Ö™¨Ï°âHKeWVgü(Ơ’5 g×;·÷µvK—~GÅ»vô·÷%ĐÉ]­q–ëEܸ>Ḍ†–CÖkÈmÄ6à·¶'0ơÀñÇ“t½36́÷;÷÷GW̃B5ưÜn…$1(Øøưªóº́ưÙeîè}eßkäoÏöOî²íƒœàÚÊÚw[[˜¬Ë%¯ê³É\ŒÛÂû²ÈVéc«ÙÊ”ñ=>Ưhƒ;ët.¿œüv}Đ9cöbVzµ1d[ày‹Äs(™ëu×µºëúÜqTÛƠy˜é¬†7Û-.öïǹu72QMe˜I ׸11k fY­Aă ;íㄤF»ÂƯùáÙñƒ´Æ>± $üFDÿoHÂèÅưùáe u×X ŶñÀ–a“¥•¢w!jÖ7₫|z½wäƠ‰GÄđ²‘̃‡¨QXèîƯ^í̃ưv=ƒÜ1™ô® OëB¶¬Àb¬gXV•̣_]ØL º<¸¨îu2îÍgt:‡Èw¢h,®v¿̃|>)@ܾ$£Ù˜̉ Vèºơ–C[À ^_ ÇJgr¾ôi/À¯ܶÉđ¡—Đᜇés›Æ3Ü%sØ2đ©à¿’vÅÏƯ‹ûÎÉoçưáĂ|ÚÏÇöt»“>Ïë‚*́Üà+QD,ÏỴ̈b̃SL\Șª+Ïó©O\PÍc̣8> ̉Ÿ°M÷1‡]×5Z»eu[ÍN ÷¿tVÀGYëT€Líư¢¤UT*V"¢\‰Ä«Û-¥4iÏeçX̣a2äóñtq(„ù &&ÙˆKJ*YäöGă„°ÿôUơè1’?¥q*ͺà^Ó ¢ÚÁ¤tîÑ¢9=$&¢—ÄpÚC¢|Äj/"ª§(&®&_ÉÄÅĂ/2îi9‹ÿơ&q…ÍBGÂgUt=˜¹K¼ J̃M¦)₫BèùƯÉ}çܽààj²‚¿XỠ©èA2¡m§Éâ¨}í÷f/Sx–ÈJ\/ÀíÉÁ±€¯@o@äЬ¹g§wƯîÀ¬âoËü±dYđÇ‹%~Ùœ}ơ “²†•%°¶̃¢¹åwA*È T^–7ÔÍ(¿Q@•ˆMA*'@ÜB¥W&*üME¬̃£æüKÇ̣e₫6*óÇögh̃œé́»ÂŸoĐ ưO +́åơçÙ˸9ûâ1l…}Åûd~ưáνt¾̃_<4­p¯ø,.>›gß"/Ḱñ}Ơ{Q ><Ï^µ@_9髈Pñ>!jW¿jáưåS¦ÿ3ù-ÈäU Z¬₫̉ÑP…½z;{ÙbñUs*˜· Ûæ”`ÊüYţ (đoaỵ̈H…?ß ĐB¥3€ ÿÿY]ÿZä åÆ|E€ U¯€!°Üw®Pñ@¥ê5Đ" •ÚĂe₫¼e}̉"¬îF”ÅGä, 9Ïo²…'njT$ÚäÏha˜uUzE˜êF]HSDÁJ¡°Éê+ÿMCó̀qC]‘Ѭ-'JÉüÇÈXí€Wü»á+¼ :Å*bÉ>_íeWÄ’k“QH}>F¨j7º"”z»P̣c„ªö“+B™BñªÚ®øzÔ@(ó&¡.“çtºE?çØtÚ‚ë ¶˜Üw)n₫I¿7%r¿cîKWÂ}ƯæD„ß̉‰đ=ă¿Z1 Ë“„·mIx‹†„ưüDúœ¤©1_ÖÁ_ăÿú¢ª₫ªöLb–JbïF$öI ‰2˜(½Ú1Qq æ[D&ʸB”u–hŸn·c¢ƒaµß±‰¨O ˆBhƠH]Á3&:1¸Ñœ_,ă_‹€Äضgb|#¿¤ ½mŒ¯pđ{:ÿ×7Z2ñ¯÷$·,ûë™Z¿1ëO‹Ú1±¾ K¬/NˆQ_+Ö‘ơjmÉÄwÉÜg îođ&ù7q Â€½Ăö,̣ªđ/óú¿/̀X±H7̣ål»ÈXCx `X†… ÅO6́¬˜?<ÀuÆAæ,Θ«́½‡UˆÉŒG÷é=f‹"dwüúmÉ‹@&t‘ñăÂÀSé`=¬Ç£ÍTÔ²â,83Á2 ùÆ5# ²óÁàK¡t_…ú¢e z³3¯á¢u\Bä²aơ¥XgξÑä\ײq_›/ a&³pˆ î+Ó ,°ïÔâ₫b}.,R1Ÿ ú#$á²2JLBÜg©îÊSgf1µ?Ăă£¬î̃a°ö`˜z9I^zå2LÓĂ ©µÓC₫\JU$–5_O,Ê[)Yx ˆ±¬½¸ËzŸX\%ÆÂǘ\OŒˆE«ˆ‰%±h-±¬'ïˆer‰…ï¿Xv‚PGLˆñUÄâ%1¾X̃™œ%bKèơPEbr1½4€.`1ÛÓ̉«p饯u´n¶*(\¯R¸Z*\©µ´ ú^)—Zê[ñƠ´ülµJÁj©àx½‚eQÁù’e)§ æ.¶e‰g¼´C\²Ă²+ù?²|{ endstream endobj 2503 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20170908180759-05'00') /ModDate (D:20170908180759-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015) kpathsea version 6.2.1) >> endobj 2444 0 obj << /Type /ObjStm /N 96 /First 899 /Length 3413 /Filter /FlateDecode >> stream xÚ•ZÛ#·}Ÿ¯èGOị̈~i A‚$v'Oz4½3²u™H­Ư¬¿>uØÍV±Å–`€¡EÖ©SEIIZƠˆFĐH!é¿i¤÷ô_4JÇFj×hK2­#]#UhŒ']e›₫‹ÆYƯHêó̉>H©ñ"4!̉|Â4ó²!H1̉R¹&*úl0GôM€ KŸ…ú½&óàIÏƠ8̉s–ŒŸ’#=O“X̉ N7ä…Œ$‡‘ää‡$‡R›†üPJØ̣C)œüPä *’r£,€R—#'èO9àk”·¾!­ <©K­€A†˜&×8z¼-çÑ:£ii%*>—…óæä¼*œ× “”{³ISV;¯kîêk|´¨!jW­®Ä«’ǿßhZ™Â¿ ÉäŸ.ƒ«–6®Qê Y0ªjÑQ×èÈ2:óèi®³̣J´4ơÑ“mQ}%Z;nˆ"EÄÉbULvÖˆ×àˆÅª˜Œ,ô¯D‹{D‹bd×'„"p„ùÓʺs¥†Är‰Ä1‰2Í>Æ@à–¸f“Y©Êb°g³9xHn/@À!F`ÈÛl‰̃§~ó:wÏCëÀ¿Updº¢~sTÙuç×Û~÷ÜŒơ›c±èÜöç¾RNG½©gÓ C¿Ûµ:º̉w̃œú₫‘j4··9¾ö‡VèÇti\úVĂ»W÷q́>÷C׿œûÏ­ àØPôœ‡§nóÚZd°çî=úÜŸZMáóËûưi; ­7˜L°—ÓvCL!d.VƯbCê.½\¶»ÇÓsk œ <0/—aØw‡Ö ‹½̉jÚ¾P—·€È3‹̀Ÿˆ‡$·\~Üí[+-Kù¯ÛĂËD„öơh0+ëνO‡ÖYd‡/L’P¼æ´ÿÜDÖk‹}ÄúE×™hưÔ^ĐÅópẃ?0¬†Ïœ¦}·Ùt»Ưeß ü5Ußf”•Au¿ö ÿ@Ûo×ɳß<eơ0€N¾*öÊm,¿ÀÙ8\¤¿ûÜ: ˆ¢Ö÷ÔŸç¡ßÚ€·2q[l§O§öܽuđ„GôôkÚLµçÂóæuOÓØ´ÈxôÎưD±¾À®úu/ί§ăeh¥êTîÅÔ…E§‹í¼ßîhÿo~;¿!ÀE•:únxm}ZXÅtÇ_º]ë’œ3r~ë»¶¬Ó+)h]uă¬Œ[q²«<ˆ§„“ð„Ÿ.´Œe”©R•½:‹}kR­åKr8}>ZvËYg!J­°¥&NƠ·+a¸*®!Uóê–’ú’¥Íœ“KÖ— pÊñ¶YœWư N ¸*®át˜¢$”¸s¡d‰˜s q.Èߺ—Áy¹`¤[‡Ồj7àÆ$¥.fD`r¬F‰ÆÏq ñd|¡C4™¼›‡ß ›­ÎZ+Àp… ̣ec”`O’œ®GYÍq©t¢’u\₫ñªUÇ…L²Qó q/+ªt/+Œ"‹l1 Iá,— 'V€Áꬵ ùx$®Z‘› ¤*r¤ûà„í>²Đ!Û~¬"·¸ÂăU«Kkn i͉¢ă z´ĂÆXèànâ €̉VÁꬵ «+/¸$1 ‡§“Øv9§(›Aro ¶f]LƒÙÄ:®øxƠªă2eÇ—àx>ÔEÇ£d<ªAƒè ±!ñU`°:kƠáêUd†%zbA.–Q”]ɽÁƯ$ªbT-U'̀>^•V`¡^i6‹jexpԌŦfªçËFH<“à`£ë ̉θÖ60r|ÅóF …$Ix`qŒÅu&•Ùb˜M¢PE»³Ú 4‡ñ’¯®tá³èR)×…V*äE¾ ͧ¢luÜ\‘üZẸ©~¹íU*é<‰p—¢ÈwŸˆ*¸Ă“¾Àç"ø.e=Ùü\—üZXưx÷áDáAHJ]XIH󂇰¢nੇN˜…H¦cJ=åü\œÂZq ă1‡S̉ù¶ˆPº6KÏ£QEå .]®9Ă¾«ñô^˜KTX+Qxo£ñ¼ñ†/’ÁñF‘tø°(Óŧß§§¡[psku*‚(«¸¿D9ÏW@Q¡X‘ˆR¢8˜àñAÉbw‰„@镼‹sµkƠ*FŒÏÛܹßàºñ‡ñ@èB•h^Jáß|á¤ïRÂ-D ;Ô«PpŬs&Ë™,/ĐY\1.„(ÅùL5 -„a!ụ̂ætÂqpƯUÀ€¶@–€•"À̉¥Ơgá'VÎ"RØ'åíÓ6³Î4WAbưøÅÄX@¹¨œ/OY,̉·1Ns7âtiV5y:î®ÁƪZhßbçư8*ë˜kÖq.”9?µypºÇ»xsP\"[¹çŸ*¦Rả•´ëÊJ‡MÛ[¥#íÀ·î¸´jo¿\ZÂ[¹çOz‘¦f,í‹·¸}BQ‰¦OSUÂ9¾µøÚTàÆß [:äk-è/’:-f°́Ä·ev­ߜŵNÜơZ'®Â~­_ÊÈ£7¸«ƒ‡Ë¸8¯x•‚_íÄÖPu™²úƯø¬Rï5c±k½éXÛkÿXư^ÛiIÔ#m§ä®‡ÚM®eʆîi7>Ơå ×$I§µ|#ex)ñâ¾[¶yÄ+cX¢ç“ă)Jđ†ŸaFIzC(Fá Á qI–7Ơ|¶:k­Ă%Y†úđ8gWÆ¿lŸI#ư(̉¡§†ÏqjXqï›̣;ß±ekÓ•~>=5tn˜ÜȈ¬û=_~ƠªgsÙ›]±Ù•)m̉Ï­§†ú}È7bÙË®¸́Ë®¸L®Ëˆ\ø§-S –Ëè}Fï3zŸ ơ…7÷oêüz’ ø ØgÀ>ö™BŸA„;7ŒÊ))ÛrÈC†2q!ăî·5«›Đl/{²!₫?›A%1Ó³/1û³/1ûr{¢á‹æQ1Çàö-ˆ“°2û{û~ÏÜŒÿ®?“’²‹_~~ë›÷ßvC·;¾àÇ <69A3DF465ED72FE5DAB0E297A66BA17E>] /Length 5859 /Filter /FlateDecode >> stream xÚ%ÛiŒ%ë}×ñóœîîé©}_î́û¾ïsf_zöéÙ· •Ä!2±‘‹Ü¼€87NNÉXFD‘Ad„q@jâëàƒÀä$*HH°D$À7Ra‘ ›₫üï›ï<Ï¿êTש߷ZÎ3­Vú£ï¶[­v+µZ fÿiơ¯·[ăƯÍj ÚjÓj›t‡`xvơ©MjuG`ÚaµwtGaLí„ÚƯq˜«vRm½î<˜P»¢¶Nw櫽Q[«»²ÙÚ`Dmn Ơ樭Ö]‹Ơ–©­̉]KƠ–«­Ô]ËƠV¨­Đ ¬T{¥¶\760»åöôFµøXüñµj¯Ơ–êÆ¯W‹}?_zöh´™ÚbƯ8`›ÔâïÆîÆÁ̃¢¶Um¡îVئvT-¾êvØ¡vL-ÓƯ »Ô^ªÅaÚ {Ú­¡û“jóu÷Â>µ-jqˆ÷õÈcB÷ R»¬ñ†#j‘Ñ\Ư£pLí†ZD{N¨ƯQÓ= §ÔbÿB‹Ópf¶Ök«ÍÑ= çÔ†ÔB©ópA-ß°n.ª-Q /Áeµ8¦Œm_«jád¨| ®«Wc{ûÜT{2[›zW÷Lµ[Ăû2ơV÷6ÜQ›§öF÷.ÜSsœ§^ë̃‡j«Ơ^é>„GjkÔ^êNĂcµµj/tŸÀSµmjÏuŸÁsµƒjÑ•_ªR{ªèµÜ¦bS±“oƠª=Öơû³'ûñ³_xÆÉ4e_úP¿­6_í‘®£ÛV[ æ{ô%ÓY4µæÄÁKºO>7ú¤é³©O³>ÿúÄ́3¶Oå>Çûäï;+úN—¾ó¨ïë;óúÎÆ¾sµḯ;»û†–₫úÔØ׉Øăçęڢ»Nk=l†ư5†ơ~}YßI×O8ƠúÛÀ ÖßN«₫.p2ơ÷€S¨¿œ8ưàté'Iÿ85úÇÀ Ñ?Nƒ₫) ÿ ă‹p6¤Ö¿ßí¼}̀ SŒ2 ô/C'µVüY¬G₫₫U cÿJj­üXpÍ'â€9C§âËÜÔâx ˜Ư¿Üí³©O•₫½ÔÚ|.6ơ"ưĐ‚„}vö™ØçsŸ}g@Ÿu}çLÿ]C¸KËT‚°éIjíù₫¨9÷§v“ëdj}öoEmâJ2 qư‡¸j̀ƒ¸VLB\!€ëÂT®S‹À5`j ù§–ñ~Ê?µ VĂX ë`=l€w`3 §Vçë±Á 3uΟ‚ÓƯûpvÀèÀØ—l`+lƒ°vÁnØûá-©u2öàl‡½°Ï¾Dë ÍÇ̃ƒ3pÎĂ)8Z¯NÄVĂY¸¸±Wátj}d8Vel‡ÙƯÏÏÁỴ6¬€}V¾7à&Ü‚Ûp-µ~øÏc{S¶;yîÁ}xáLĂcxOá<‡đ^¹b3lĐÖ ëî¤Ö§Å_s‰v¯’ŒăăØđŒq|&nx5ú X7˜¿°ÈgĂ)-ÿÓ–÷ Z X7`â`,µ~ùOb½q«¸†ºJN&RëKŸ¥dÄm 1‹SëßưÈ́ßøoŸ¥Kfå~Wë 8.ñ NÀIˆ[’,µ¾<Ÿˆ;Úº]H‡}—ŃU©ơ»b=zh6X—ZÿöyÔ¶Kñe8> ơÀlN­ß]ëño°=µ₫àoGw¯ïF•cŒ0vÀØÁÔúÖÆzdH­?‹.YÔœ†3)ÍßÑJiï­XÊ¿EÄæ™8` ƒËp89¸ 0l@®Á0lp(5 Ô€RJ (5 Ô€RJ (5 Ô€RJ ^¸}Ë dx ³ç̀w~-v—kƒ›<Øc•a˜Ô1̀mÀ̀X ë`+Ü€øØjØû!NØ»°×¦ }ƒ7)M8Ư'¿ôD@QKíé·đ<µưT¬çñÆ…eÜ ß6v¶ Zmh{úƯÔ¾đ-ëÍ„í?ùƒhÍ^ xeÀk;ÛFÂö€u†¹¶Q´=Jí?›Oï]°Èel¨7 Ñ¬=X–Ú?đÅøá Sûå'¢ŸˆG¨°*µ?̣+±€F¸¶‘°mèk˜3XŸÚûpï7§öOGK棶q²=ˆÇªM©ữÅ̉x̣âQ¯=;êµßß bÔ»¤];!µè8;êµ??1{„₫ñÊX™³C_ûç?Ư#¾ó•ô níÁ‰Ô₫‡c±”Æö¶Ñ±mtl¨78›Úÿ́÷b•HÆi5è¤ö¯OÔ.Ù¡Xoöêßüó¨Ư'˜¯mÀkđÚ¼¶±=¸’Ú_û Vf“¡´m(mJÛ†̉öàfjÿÖ§c&"ۆȶ!²mˆl"یۃ;©ư{‹båvh£¯[~\3h ƯoA‚6 Á0ŒÀ˜ ó ¼zÚÿăƒøØ¨-_NĂÏ)ÔæĂxJ_U& ‡ihü7¢–ÁbX˜†₫RÔÁRXËa¬‚5°ÖÁzx6ÁvØ[aIZñ•Øh<\ÄṣJX `#µÏµvÁ¶4´uE|lgº°:Z{aw:º%º{lïVHĂ[~7Zá <ƒçđ ¦Óđö×±Ê đ`<·œñ=̃Âë4|đ ±Êđ­4|·̉í…fï¦áă_‹nJs₫ç¯F‹4½IIĂSǢƿ{£0ă07 ¿üơX…f½ùiøûnD7‡OĂ5]†ơÖ[˜†?öŸcöHÓ£YoY₫«q\züë­LĂ?ưè®IĂ_ùÍhñ¯·: ê{£ËÉ76½m°> w×Ç‚-ÀµO{„둵·9 ÿÊgb¾ô¶§á/‡u=®ơXÜÛ œ́í†=iø_xÀxƠăZï@₫÷!jñv!̃—̀¦ơß¿•Fæưö,Ö}¸Qơ¦áú³Ñ¥mW½“iø›¢&¨^¼À¡hï4Ä{vöÎ¥áïü‡X/̃¿\L#ăÏ£̣\‚x³ăÔèÅûœki$ÿùXW½[idơÎè’°7·áp²w/́Q¥7F.>ŒÖSx”F}2º$́½ëUItŸ¥‘ó_V<4œ‚Ø!vöèØ{ <í½†7iÎnm¥ÑOÿ+ăUÇK“άuÿûû¢ë½JgŒÂŒƒ dg$Íù³OÄzsa‚ăÇa™n9,„ÅàF³K—ƒÇ¯ÎJpßÙYFçÜ‰í­‚Ew¥×àXy&–¾ëÓh₫ÉøÄØ ÓèÊ_Ú&Ø[̉èÚÏE-^¸¸­í¸²wöÂ4ºcm,uKÜqƯḯưi´ó…Xpö¥ÑĂ?]Æ3p$ưQóPƯñPƯ1v£Ñ9'Óè£Çz¹;¯;gÓèëïDÍcZḈ\‹i´ø;±À¸Öñơ;×ÁMyçÄk>ϰx¹ç~¼¯ô<̀wâ¥ƯƠ4úƒÓ±•x¯ïP|vÆ¡›9¤/̣@¼¾{ñ̉îÄ«ºW/èâ×fẩ–`h1C™y¾L§Ñ÷~!Ö ¥̃hÅ[ºci´̉̀„/,™M£ŸûbÔâÁ„a3quÎÓèÏ>aÄŒ(f6¥Ñ¿÷ÙX ó!Ï\†Ù<¾´=ĵ̀±Ÿq4f®¤Ñ¹&\‡s&èÉbƘ‰áÚ˜q fˆbƘq fâË83³Gcä/¶ A†`F`ŒÂŒĂ\˜0 óadĂBX‹a ,…e°VÀJX«a ¬…u°6À;°6ÁfØ[al‡°vÁnØ{á‡pÁa8Gá‡pNÁi8gᜇ Đ‹p .ø ×à:Ü€›p ¦à6Ü»pîĂx`Ăx Ïà9¼€—đ ^Ăx 2/d^ȼy!óBæ…̀ ™2/d^ȼy!óBæ…̀ ™2/d^ȼy!ß"ÊgÏ£¯íˆ¿Æƒbqưí½³Ăơ7¿5 ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP  @A‚ ((PP @C†  4h(ĐP ¡@C†  4h(ĐP ¡@C†¸§}ă´oœö -™72od̃ȼ‘y#óFæ̀™72od̃ȼ‘y#óFæ̀™72od̃ȼ‘y#óFæ̀™72od̃ȼ‘y#óFæ̀™7Bn„ÜDđKÓèï·ă€O£ß₫z´¤ßH¿‘~#ưFúôé7̉o¤ßH¿‘~#ưFúôé7̉o¤ßH¿‘~#ưFúôé7̉o¤ßH¿‘~#ưFúôé7̉o¤ßH¿‘~#ưFúÍlús~º Ú0Ă0s`Æ`æÂ<˜€I˜ ƒÂ"X K`),ƒå°VÂ*X k`-¬ƒơ°̃° 6ĂØ Û`;́€° vĂØ û`?€ƒpĂ8 Çà8œ€“p NĂ8 çà<\€\„Kp®ÀU¸×áÜ„[0·áÜ…{pÀCxÓđÀSxÏἄWđ̃À[y)óRæ¥̀K™—2/e^ʼ”y)óRæ¥̀K™—2/…\Æ?{;øÇwb{“i¬ơ^+-øzt)PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR ¤@I’%J ”()PR œU`ô` ´a†aæÀ(ŒÁ8̀…y0“0@9,„E°–ÀRXËa¬„U°ÖÀZXëa¼al†-°¶ÁvØ;á†=°öÁ~8á†#pÁq8'ᜆ3pÎÁy¸¸—à2\«p nAd¾ Í=\Oc–Gk nø ÷à><€‡đ¦á1<§đ Ă x ¯à5¼· }oF+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW̉¯¤_I¿’~%ưJú•ô+éW×áÜ2T2¯d^ɼ’y%óJæ•̀+™W2¯d^ɼ’y%óJæ•̀+™W2¯d^ɼ’y%óJæµ̀k™×2¯e^˼–y-óZæµ̀k™×2¯e^˼–y-óZæµ̀k™×2¯e^˼–y-óZæµ̀k™×2¯e^˼–y-óZæµ̀k™×2¯e^˼r-ä:Nû›ilƠGăËlNc»₫₫́çäüèR ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS ¦@M5j Ô¨)PS U`̀k›±'hĂ ẰQƒq˜ ó`&a>,€ rX‹`1,¥° –Ă X «`5¬µ°ÖĂx6Â&Ø [`+lƒí°vÂ.Ø {`/́ƒưpÂ!8 Gà(ƒăpNÂ)8 gà,œƒóp:p.Áe¸Wá\‡pnÁ܆;pîÁ#˜†ÇđÂ3¶¦±#O"Æû^ùÜNc7¿'ºÏἄWđ̃À[˜U`<3™"K`úOf~]6 &¢e¦qf~ùÉÆÀ´l.˜s—M€™v™j™wđ™‰Y a,³³¥`hfâgfâN¶V z™y™)d™Ib™‰cÙx̀ù̀LtÍü̃“™:™yó™ù%$3&31&3'&ó3t¶ü˜“ùơ03?'3-ó³If>WæµzfVbæ'Ø̀ô®̀„Î̀¯̀tÙ̀\’̀[ç̀ Ù8 æƯd¦†e ÁOƒ™™:™9ÙU0,óĂMfXæÅev ¼¯Ëü>“™¨™Ư…{ Ớ˜1˜=s³Ç`†döÁsđ `fjgæGå̀l›̀ Ø̀‹óLæ¹̀s™ç2ÏeË<—y.ó\æ¹̀s™ç2ÏeË<—y.ó\æ¹̀s™ç2ÏeË<—y.ó\æ¹̀s™ç2ÏeË<—y.ó\æ¹̀s™ç2ÏeË<—y.ó\æ¹̀s™ç2Ï…œÇiÿ0]₫™ø–;ÓØô·Zi<ÿ/Ñ¥@Nœ9r äÈ)S §@Nœ9r äÈ¥ŸïNco₫nl4~v½çA΃œ9rä<Èyó çA΃œ9rLÅ CN†œ 9r2ädÈÉ“!'CN†œ 9r2ädÈÉ“!'CN†üu{÷V́ó›4ö¥ïÖÛ4ööEëƯ4¾é«1¹ª•&¿ñ³³G­ó“ÑMiüơ¦hµÓø{—¢5”Æ¿ùá̉á4wéƠh¤¹EkNû₫éh¦¹¿¸3ZcinÿJ´ÆÓ¼9_ŒÖÜ4ïn­yĩœÖD÷¿­É4ï¿­ùĩW?­ibéÑỂÄ™ÿ­>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} @ \begin{table}[htpb] \caption{Three correlated factors from the Thurstone 9 variable problem. By default, the solution is transformed obliquely using oblimin. The extraction method is (by default) minimum residual.} \begin{scriptsize} \begin{center} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3t <- fa(Thurstone,3,n.obs=213) f3t } @ \end{center} \end{scriptsize} \label{tab:factor.minres} \end{table}% \subsubsection{Principal Axis Factor Analysis} An alternative, least squares algorithm (included in \pfun{fa} with the fm=pa option or as a standalone function (\pfun{factor.pa}), does a Principal Axis factor analysis by iteratively doing an eigen value decomposition of the correlation matrix with the diagonal replaced by the values estimated by the factors of the previous iteration. This OLS solution is not as sensitive to improper matrices as is the maximum likelihood method, and will sometimes produce more interpretable results. It seems as if the SAS example for PA uses only one iteration. Setting the max.iter parameter to 1 produces the SAS solution. The solutions from the \pfun{fa}, the \pfun{factor.minres} and \pfun{factor.pa} as well as the \pfun{principal} functions can be rotated or transformed with a number of options. Some of these call the \Rpkg{GPArotation} package. Orthogonal rotations include \fun{varimax}, \fun{quartimax}, \pfun{varimin}, \pfun{bifactor} . Oblique transformations include \fun{oblimin}, \fun{quartimin}, \pfun{biquartimin} and then two targeted rotation functions \pfun{Promax} and \pfun{target.rot}. The latter of these will transform a loadings matrix towards an arbitrary target matrix. The default is to transform towards an independent cluster solution. Using the Thurstone data set, three factors were requested and then transformed into an independent clusters solution using \pfun{target.rot} (Table~\ref{tab:Thurstone}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The extraction method was principal axis. The transformation was a targeted transformation to a simple cluster solution.} \begin{center} \begin{scriptsize} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} @ \end{scriptsize} \end{center} \label{tab:Thurstone} \end{table} \subsubsection{Alpha Factor Analysis} Introduced by \cite{kaiser:65} and discussed by \cite{loehlin:17 }, \emph{alpha factor analysis} factors the correlation matrix of correlations or covariances corrected for their communalities. This has the effect of making all correlations corrected for reliabiity to reflect their true, latent correlations. \emph{alpha factor analysis} was added in August, 2017 to increase the range of EFA options available. This is added more completeness rather than an endorsement of the procedure. It is worth comparing solutions from minres, alpha, and MLE, for they are not the same. \subsubsection{Weighted Least Squares Factor Analysis} \label{sect:wls} Similar to the minres approach of minimizing the squared residuals, factor method ``wls" weights the squared residuals by their uniquenesses. This tends to produce slightly smaller overall residuals. In the example of weighted least squares, the output is shown by using the \pfun{print} function with the cut option set to 0. That is, all loadings are shown (Table~\ref{tab:Thurstone.wls}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The factors were extracted using a weighted least squares algorithm. All loadings are shown by using the cut=0 option in the \pfun{print.psych} function.} \begin{scriptsize} <>= f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) @ \end{scriptsize} \label{tab:Thurstone.wls} \end{table} subsection{Displaying factor solutions} The unweighted least squares solution may be shown graphically using the \pfun{fa.plot} function which is called by the generic \fun{plot} function (Figure~\ref{fig:thurstone}). Factors were transformed obliquely using a oblimin. These solutions may be shown as item by factor plots (Figure~\ref{fig:thurstone}) or by a structure diagram (Figure~\ref{fig:thurstone.diagram}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= plot(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{plot}. Factors were transformed to an oblique solution using the oblimin function from the GPArotation package.} \label{fig:thurstone} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= fa.diagram(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{fa.diagram}. Factors were transformed to an oblique solution using oblimin.} \label{fig:thurstone.diagram} \end{center} \end{figure} A comparison of these three approaches suggests that the minres solution is more similar to a maximum likelihood solution and fits slightly better than the pa or wls solutions. Comparisons with SPSS suggest that the pa solution matches the SPSS OLS solution, but that the minres solution is slightly better. At least in one test data set, the weighted least squares solutions, although fitting equally well, had slightly different structure loadings. Note that the rotations used by SPSS will sometimes use the ``Kaiser Normalization''. By default, the rotations used in psych do not normalize, but this can be specified as an option in \pfun{fa}. \subsubsection{Principal Components analysis (PCA)} An alternative to factor analysis, which is unfortunately frequently confused with \iemph{factor analysis}, is \iemph{principal components analysis}. Although the goals of \iemph{PCA} and \iemph{FA} are similar, PCA is a descriptive model of the data, while FA is a structural model. Some psychologists use PCA in a manner similar to factor analysis and thus the \pfun{principal} function produces output that is perhaps more understandable than that produced by \fun{princomp} in the \Rpkg{stats} package. Table~\ref{tab:pca} shows a PCA of the Thurstone 9 variable problem rotated using the \pfun{Promax} function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the \iemph{common variance}. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the \pfun{fa} solution. \begin{table}[htpb] \caption{The Thurstone problem can also be analyzed using Principal Components Analysis. Compare this to Table~\ref{tab:Thurstone}. The loadings are higher for the PCA because the model accounts for the unique as well as the common variance.The fit of the off diagonal elements, however, is much worse than the \pfun{fa} results.} \begin{center} \begin{scriptsize} <>= p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p @ \end{scriptsize} \end{center} \label{tab:pca} \end{table} \subsubsection{Hierarchical and bi-factor solutions} \label{sect:omega} For a long time structural analysis of the ability domain have considered the problem of factors that are themselves correlated. These correlations may themselves be factored to produce a higher order, general factor. An alternative \citep{holzinger:37,jensen:weng} is to consider the general factor affecting each item, and then to have group factors account for the residual variance. Exploratory factor solutions to produce a hierarchical or a bifactor solution are found using the \pfun{omega} function. This technique has more recently been applied to the personality domain to consider such things as the structure of neuroticism (treated as a general factor, with lower order factors of anxiety, depression, and aggression). Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations between the factors (as shown in Figure~\ref{fig:thurstone.diagram} can themselves be factored. This results in a higher order factor model (Figure~\ref{fig:omega}). An an alternative solution is to take this higher order model and then solve for the general factor loadings as well as the loadings on the residualized lower order factors using the \iemph{Schmid-Leiman} procedure. (Figure ~\ref{fig:omega.2}). Yet another solution is to use structural equation modeling to directly solve for the general and group factors. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A higher order factor solution to the Thurstone 9 variable problem} \label{fig:omega} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om <- omega(Thurstone,n.obs=213) @ \end{scriptsize} \caption{A bifactor factor solution to the Thurstone 9 variable problem} \label{fig:omega.2} \end{center} \end{figure} Yet another approach to the bifactor structure is do use the \pfun{bifactor} rotation function in either \Rpkg{psych} or in \Rpkg{GPArotation}. This does the rotation discussed in \cite{jennrich:11}. \subsubsection{Item Cluster Analysis: iclust} \label{sect:iclust} An alternative to factor or components analysis is \iemph{cluster analysis}. The goal of cluster analysis is the same as factor or components analysis (reduce the complexity of the data and attempt to identify homogeneous subgroupings). Mainly used for clustering people or objects (e.g., projectile points if an anthropologist, DNA if a biologist, galaxies if an astronomer), clustering may be used for clustering items or tests as well. Introduced to psychologists by \cite{tryon:39} in the 1930's, the cluster analytic literature exploded in the 1970s and 1980s \citep{blashfield:80,blashfield:88,everitt:74,hartigan:75}. Much of the research is in taxonmetric applications in biology \citep{sneath:73,sokal:63} and marketing \citep{cooksey:06} where clustering remains very popular. It is also used for taxonomic work in forming clusters of people in family \citep{henry:05} and clinical psychology \citep{martinent:07,mun:08}. Interestingly enough it has has had limited applications to psychometrics. This is unfortunate, for as has been pointed out by e.g. \citep{tryon:35,loevinger:53}, the theory of factors, while mathematically compelling, offers little that the geneticist or behaviorist or perhaps even non-specialist finds compelling. \cite{cooksey:06} reviews why the \pfun{iclust} algorithm is particularly appropriate for scale construction in marketing. \emph{Hierarchical cluster analysis} \index{hierarchical cluster analysis} forms clusters that are nested within clusters. The resulting \iemph{tree diagram} (also known somewhat pretentiously as a \iemph{rooted dendritic structure}) shows the nesting structure. Although there are many hierarchical clustering algorithms in \R{} (e.g., \fun{agnes}, \fun{hclust}, and \pfun{iclust}), the one most applicable to the problems of scale construction is \pfun{iclust} \citep{revelle:iclust}. \begin{enumerate} \item Find the proximity (e.g. correlation) matrix, \item Identify the most similar pair of items \item Combine this most similar pair of items to form a new variable (cluster), \item Find the similarity of this cluster to all other items and clusters, \item Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster remains or in \pfun{iclust} if there is a failure to increase reliability coefficients $\alpha$ or $\beta$). \item Purify the solution by reassigning items to the most similar cluster center. \end{enumerate} \pfun{iclust} forms clusters of items using a hierarchical clustering algorithm until one of two measures of internal consistency fails to increase \citep{revelle:iclust}. The number of clusters may be specified a priori, or found empirically. The resulting statistics include the average split half reliability, $\alpha$ \citep{cronbach:51}, as well as the worst split half reliability, $\beta$ \citep{revelle:iclust}, which is an estimate of the general factor saturation of the resulting scale (Figure~\ref{fig:iclust}). Cluster loadings (corresponding to the structure matrix of factor analysis) are reported when printing (Table~\ref{tab:iclust}). The pattern matrix is available as an object in the results. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(bfi) ic <- iclust(bfi[1:25]) @ \end{scriptsize} \caption{Using the \pfun{iclust} function to find the cluster structure of 25 personality items (the three demographic variables were excluded from this analysis). When analyzing many variables, the tree structure may be seen more clearly if the graphic output is saved as a pdf and then enlarged using a pdf viewer.} \label{fig:iclust} \end{center} \end{figure} \begin{table}[htpb] \caption{The summary statistics from an iclust analysis shows three large clusters and smaller cluster.} \begin{center} \begin{scriptsize} <>= summary(ic) #show the results @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% The previous analysis (Figure~\ref{fig:iclust}) was done using the Pearson correlation. A somewhat cleaner structure is obtained when using the \pfun{polychoric} function to find polychoric correlations (Figure~\ref{fig:iclust.poly}). Note that the first time finding the polychoric correlations some time, but the next three analyses were done using that correlation matrix (r.poly\$rho). When using the console for input, \pfun{polychoric} will report on its progress while working using \pfun{progressBar}. \begin{table}[htpb] \caption{The \pfun{polychoric} and the \pfun{tetrachoric} functions can take a long time to finish and report their progress by a series of dots as they work. The dots are suppressed when creating a Sweave document.} \begin{center} \begin{tiny} <>= data(bfi) r.poly <- polychoric(bfi[1:25]) #the ... indicate the progress of the function @ \end{tiny} \end{center} \label{tab:bad} \end{table}% \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations. Compare this solution to the previous one (Figure~\ref{fig:iclust}) which was done using Pearson correlations. } \label{fig:iclust.poly} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the solution set to 5 clusters. Compare this solution to the previous one (Figure~\ref{fig:iclust.poly}) which was done without specifying the number of clusters and to the next one (Figure~\ref{fig:iclust.3}) which was done by changing the beta criterion. } \label{fig:iclust.5} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the beta criterion set to 3. Compare this solution to the previous three (Figure~\ref{fig:iclust},~\ref{fig:iclust.poly}, \ref{fig:iclust.5}).} \label{fig:iclust.3} \end{center} \end{figure} \begin{table}[htpb] \caption{The output from \pfun{iclust} includes the loadings of each item on each cluster. These are equivalent to factor structure loadings. By specifying the value of cut, small loadings are suppressed. The default is for cut=0.su } \begin{center} \begin{scriptsize} <>= print(ic,cut=.3) @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% A comparison of these four cluster solutions suggests both a problem and an advantage of clustering techniques. The problem is that the solutions differ. The advantage is that the structure of the items may be seen more clearly when examining the clusters rather than a simple factor solution. \subsection{Estimates of fit} Exploratory factoring techniques are sometimes criticized because of the lack of statistical information on the solutions. There are perhaps as many fit statistics as there are psychometricians. When using Maximum Likelihood extraction, many of these various fit statistics are based upon the $\chi^{2}$ which is minimized using ML. If not using ML, these same statistics can be found, but they are no longer maximum likelihood estimates. They are, however, still useful. Overall estimates of goodness of fit including $\chi^{2}$ and RMSEA are found in the \pfun{fa} and \pfun{omega} functions. \subsection{Confidence intervals using bootstrapping techniques} Confidence intervals for the factor loadings may be found by doing multiple bootstrapped iterations of the original analysis. This is done by setting the n.iter parameter to the desired number of iterations. This can be done for factoring of Pearson correlation matrices as well as polychoric/tetrachoric matrices (See Table~\ref{tab:bootstrap}). Although the example value for the number of iterations is set to 20, more conventional analyses might use 1000 bootstraps. This will take much longer. Bootstrapped confidence intervals can also be found for the loadings of a factoring of a polychoric matrix. \pfun{fa.poly} will find the polychoric correlation matrix and if the n.iter option is greater than 1, will then randomly resample the data (case wise) to give bootstrapped samples. This will take a long time for large number of items or interations. \begin{table}[htpb] \caption{An example of bootstrapped confidence intervals on 10 items from the Big 5 inventory. The number of bootstrapped samples was set to 20. More conventional bootstrapping would use 100 or 1000 replications. } \begin{tiny} \begin{center} <>= fa(bfi[1:10],2,n.iter=20) @ \end{center} \end{tiny} \label{tab:bootstrap} \end{table}% \subsection{Comparing factor/component/cluster solutions} Cluster analysis, factor analysis, and principal components analysis all produce structure matrices (matrices of correlations between the dimensions and the variables) that can in turn be compared in terms of Burt's \iemph{congruence coefficient} (also known as Tucker's coefficient) which is just the cosine of the angle between the dimensions $$c_{f_{i}f_{j}} = \frac{\sum_{k=1}^{n}{f_{ik}f_{jk}}} {\sum{f_{ik}^{2}}\sum{f_{jk}^{2}}}.$$ Consider the case of a four factor solution and four cluster solution to the Big Five problem. \begin{scriptsize} <>= f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) @ \end{scriptsize} A more complete comparison of oblique factor solutions (both minres and principal axis), bifactor and component solutions to the Thurstone data set is done using the \pfun{factor.congruence} function. (See table~\ref{tab:congruence}). \begin{table}[htpb] \caption{Congruence coefficients for oblique factor, bifactor and component solutions for the Thurstone problem.} \begin{scriptsize} <>= factor.congruence(list(f3t,f3o,om,p3p)) @ \end{scriptsize} \label{tab:congruence} \end{table}% \subsection{Determining the number of dimensions to extract.} How many dimensions to use to represent a correlation matrix is an unsolved problem in psychometrics. There are many solutions to this problem, none of which is uniformly the best. Henry Kaiser once said that ``a solution to the number-of factors problem in factor analysis is easy, that he used to make up one every morning before breakfast. But the problem, of course is to find \emph{the} solution, or at least a solution that others will regard quite highly not as the best" \cite{horn:79}. Techniques most commonly used include 1) Extracting factors until the chi square of the residual matrix is not significant. 2) Extracting factors until the change in chi square from factor n to factor n+1 is not significant. 3) Extracting factors until the eigen values of the real data are less than the corresponding eigen values of a random data set of the same size (parallel analysis) \pfun{fa.parallel} \citep{horn:65}. 4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop in eigen values analogous to the change in slope seen when scrambling up the talus slope of a mountain and approaching the rock face \citep{cattell:scree}. 5) Extracting factors as long as they are interpretable. 6) Using the Very Structure Criterion (\pfun{vss}) \citep{revelle:vss}. 7) Using Wayne Velicer's Minimum Average Partial (\pfun{MAP}) criterion \citep{velicer:76}. 8) Extracting principal components until the eigen value < 1. Each of the procedures has its advantages and disadvantages. Using either the chi square test or the change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is partially sensitive to sample size in that for large samples the eigen values of random factors will all tend towards 1. The scree test is quite appealing but can lead to differences of interpretation as to when the scree ``breaks". Extracting interpretable factors means that the number of factors reflects the investigators creativity more than the data. vss, while very simple to understand, will not work very well if the data are very factorially complex. (Simulations suggests it will work fine if the complexities of some of the items are no more than 2). The eigen value of 1 rule, although the default for many programs, seems to be a rough way of dividing the number of variables by 3 and is probably the worst of all criteria. An additional problem in determining the number of factors is what is considered a factor. Many treatments of factor analysis assume that the residual correlation matrix after the factors of interest are extracted is composed of just random error. An alternative concept is that the matrix is formed from major factors of interest but that there are also numerous minor factors of no substantive interest but that account for some of the shared covariance between variables. The presence of such minor factors can lead one to extract too many factors and to reject solutions on statistical grounds of misfit that are actually very good fits to the data. This problem is partially addressed later in the discussion of simulating complex structures using \pfun{sim.structure} and of small extraneous factors using the \pfun{sim.minor} function. \subsubsection{Very Simple Structure} \label{sect:vss} The \pfun{vss} function compares the fit of a number of factor analyses with the loading matrix ``simplified" by deleting all except the c greatest loadings per item, where c is a measure of factor complexity \cite{revelle:vss}. Included in \pfun{vss} is the MAP criterion (Minimum Absolute Partial correlation) of \cite{velicer:76}. Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal (Figure~\ref{fig:vss}). However, the MAP criterion suggests that 5 is optimal. \begin{figure}[htbp] \begin{center} <>= vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") @ \caption{The Very Simple Structure criterion for the number of factors compares solutions for various levels of item complexity and various numbers of factors. For the Big 5 Inventory, the complexity 1 and 2 solutions both achieve their maxima at four factors. This is in contrast to parallel analysis which suggests 6 and the MAP criterion which suggests 5. } \label{fig:vss} \end{center} \end{figure} \begin{scriptsize} <>= vss @ \end{scriptsize} \subsubsection{Parallel Analysis} \label{sect:fa.parallel} An alternative way to determine the number of factors is to compare the solution to random data with the same properties as the real data set. If the input is a data matrix, the comparison includes random samples from the real data, as well as normally distributed random data with the same number of subjects and variables. For the BFI data, parallel analysis suggests that 6 factors might be most appropriate (Figure~\ref{fig:parallel}). It is interesting to compare \pfun{fa.parallel} with the \fun{paran} from the \Rpkg{paran} package. This latter uses smcs to estimate communalities. Simulations of known structures with a particular number of major factors but with the presence of trivial, minor (but not zero) factors, show that using smcs will tend to lead to too many factors. \begin{figure}[htbp] \begin{scriptsize} \begin{center} <>= fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") @ \caption{Parallel analysis compares factor and principal components solutions to the real data as well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis suggests 6. One more demonstration of Kaiser's dictum.} \label{fig:parallel} \end{center} \end{scriptsize} \end{figure} Experience with problems of various sizes suggests that parallel analysis is useful for less than about 1,000 subjects, and that using the number of components greater than a random solution is more robust than using the number of factors greater than random factors. A more tedious problem in terms of computation is to do parallel analysis of \iemph{polychoric} correlation matrices. This is done by \pfun{fa.parallel.poly}. By default the number of replications is 20. This is appropriate when choosing the number of factors from dicthotomous or polytomous data matrices. \subsection{Factor extension} Sometimes we are interested in the relationship of the factors in one space with the variables in a different space. One solution is to find factors in both spaces separately and then find the structural relationships between them. This is the technique of structural equation modeling in packages such as \Rpkg{sem} or \Rpkg{lavaan}. An alternative is to use the concept of \iemph{factor extension} developed by \citep{dwyer:37}. Consider the case of 16 variables created to represent one two dimensional space. If factors are found from eight of these variables, they may then be extended to the additional eight variables (See Figure~\ref{fig:fa.extension}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) @ \end{scriptsize} \caption{Factor extension applies factors from one set (those on the left) to another set of variables (those on the right). \pfun{fa.extension} is particularly useful when one wants to define the factors with one set of variables and then apply those factors to another set. \pfun{fa.diagram} is used to show the structure. } \label{fig:fa.extension} \end{center} \end{figure} Another way to examine the overlap between two sets is the use of \iemph{set correlation} found by \pfun{setCor} (discussed later). \subsection{Exploratory Structural Equation Modeling (ESEM)} Generaizing the procedures of factor extension, we can do Exploratory Structural Equation Modeling (ESEM). Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Classical Test Theory and Reliability} Surprisingly, 113 years after \cite{spearman:rho} introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's $\alpha$ \citep{cronbach:51} underestimates the reliability of a test and over estimates the first factor saturation \citep{rz:09}. $\alpha$ \citep{cronbach:51} is the same as Guttman's $\lambda3$ \citep{guttman:45} and may be found by $$ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha $$ Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients $\beta$ \citep{revelle:iclust} (see \pfun{iclust}) and $\omega_h$ (see \pfun{omega}) are more appropriate estimates of the general factor saturation. $\omega_t$is a better estimate of the reliability of the total test. Guttman's $\lambda _6$ (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, $e_j^2$, and is $$ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x}. $$ The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpiness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. G6 estimates item reliability by the squared multiple correlation of the other items in a scale. A modification of G6, G6*, takes as an estimate of an item reliability the smc with all the items in an inventory, including those not keyed for a particular scale. This will lead to a better estimate of the reliable variance of a particular item. Alpha, G6 and G6* are positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. More complete reliability analyses of a single scale can be done using the \pfun{omega} function which finds $\omega_h$ and $\omega_t$ based upon a hierarchical factor analysis. Alternative functions \pfun{scoreItems} and \pfun{cluster.cor} will also score multiple scales and report more useful statistics. ``Standardized" alpha is calculated from the inter-item correlations and will differ from raw alpha. Functions for examining the reliability of a single scale or a set of scales include: \begin{description} \item [alpha] Internal consistency measures of reliability range from $\omega_h$ to $\alpha$ to $\omega_t$. The \pfun{alpha} function reports two estimates: Cronbach's coefficient $\alpha$ and Guttman's $\lambda_6$. Also reported are item - whole correlations, $\alpha$ if an item is omitted, and item means and standard deviations. \item [guttman] Eight alternative estimates of test reliability include the six discussed by \cite{guttman:45}, four discussed by ten Berge and Zergers (1978) ($\mu_0 \dots \mu_3$) as well as $\beta$ \citep[the worst split half,][]{revelle:iclust}, the glb (greatest lowest bound) discussed by Bentler and Woodward (1980), and $\omega_h$ and$\omega_t$ (\citep{mcdonald:tt,zinbarg:pm:05}. \item [omega] Calculate McDonald's omega estimates of general and total factor saturation. (\cite{rz:09} compare these coefficients with real and artificial data sets.) \item [cluster.cor] Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n correlation matrix, find the correlations of the composite clusters. \item [scoreItems] Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame of items scores for m items and n people, find the sum scores or average scores for each person and each scale. If the input is a square matrix, then it is assumed that correlations or covariances were used, and the raw scores are not available. In addition, report Cronbach's alpha, coefficient G6*, the average r, the scale intercorrelations, and the item by scale correlations (both raw and corrected for item overlap and scale reliability). Replace missing values with the item median or mean if desired. Will adjust scores for reverse scored items. \item [score.multiple.choice] Ability tests are typically multiple choice with one right answer. score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds total or average number right for each participant. Basic test statistics (alpha, average r, item means, item-whole correlations) are also reported. \item [splitHalf] Given a set of items, consider all (if n.items < 17) or 10,000 random splits of the item into two sets. The correlation between these two split halfs is then adjusted by the Spearman-Brown prophecy formula to show the range of split half reliablities. \end{description} \subsection{Reliability of a single scale} \label{sect:alpha} A conventional (but non-optimal) estimate of the internal consistency reliability of a test is coefficient $\alpha$ \citep{cronbach:51}. Alternative estimates are Guttman's $\lambda_6$, Revelle's $\beta$, McDonald's $\omega_h$ and $\omega_t$. Consider a simulated data set, representing 9 items with a hierarchical structure and the following correlation matrix. Then using the \pfun{alpha} function, the $\alpha$ and $\lambda_6$ estimates of reliability may be found for all 9 items, as well as the if one item is dropped at a time. \begin{scriptsize} <>= set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) @ \end{scriptsize} Some scales have items that need to be reversed before being scored. Rather than reversing the items in the raw data, it is more convenient to just specify which items need to be reversed scored. This may be done in \pfun{alpha} by specifying a \iemph{keys} vector of 1s and -1s. (This concept of keys vector is more useful when scoring multiple scale inventories, see below.) As an example, consider scoring the 7 attitude items in the attitude data set. Assume a conceptual mistake in that items 2 and 6 (complaints and critical) are to be scored (incorrectly) negatively. \begin{scriptsize} <>= alpha(attitude,keys=c("complaints","critical")) @ \end{scriptsize} Note how the reliability of the 7 item scales with an incorrectly reversed item is very poor, but if items 2 and 6 is dropped then the reliability is improved substantially. This suggests that items 2 and 6 were incorrectly scored. Doing the analysis again with the items positively scored produces much more favorable results. \begin{scriptsize} <>= alpha(attitude) @ \end{scriptsize} It is useful when considering items for a potential scale to examine the item distribution. This is done in \pfun{scoreItems} as well as in \pfun{alpha}. \begin{scriptsize} <>= items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures @ \end{scriptsize} \subsection{Using \pfun{omega} to find the reliability of a single scale} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} based upon the exploratory solution from \pfun{omega}. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} \url{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} \url{http://personality-project.org/revelle/publications/revelle.zinbarg.08.pdf} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Four options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), fm=``mle" uses the factanal function, and fm=``pc" does a principal components analysis (\pfun{principal}). For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{scoreItems} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). $\beta$, an alternative to $\omega$, is defined as the worst split half reliability. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ \begin{figure}[htbp] \begin{center} <>= om.9 <- omega(r9,title="9 simulated variables") @ \caption{A bifactor solution for 9 simulated variables with a hierarchical structure. } \label{fig:omega.9} \end{center} \end{figure} In the case of these simulated 9 variables, the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of 9 items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \begin{scriptsize} <>= om.9 @ \end{scriptsize} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{sem} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. \begin{scriptsize} <>= omegaSem(r9,n.obs=500,lavaan=FALSE) @ \end{scriptsize} \subsubsection{Other estimates of reliability} Other estimates of reliability are found by the \pfun{splitHalf} and \pfun{guttman} functions. These are described in more detail in \cite{rz:09} and in \cite{rc:reliability}. They include the 6 estimates from Guttman, four from TenBerge, and an estimate of the greatest lower bound. \begin{scriptsize} <>= splitHalf(r9) @ \end{scriptsize} \subsection{Reliability and correlations of multiple scales within an inventory} \label{sect:score} A typical research question in personality involves an inventory of multiple items purporting to measure multiple constructs. For example, the data set \pfun{bfi} includes 25 items thought to measure five dimensions of personality (Extraversion, Emotional Stability, Conscientiousness, Agreeableness, and Openness). The data may either be the raw data or a correlation matrix (\pfun{scoreItems}) or just a correlation matrix of the items ( \pfun{cluster.cor} and \pfun{cluster.loadings}). When finding reliabilities for multiple scales, item reliabilities can be estimated using the squared multiple correlation of an item with all other items, not just those that are keyed for a particular scale. This leads to an estimate of G6*. \subsubsection{Scoring from raw data} To score these five scales from the 25 items, use the \pfun{scoreItems} function and a list of items to be scored on each scale (a keys.list). Items may be listed by location (convenient but dangerous), or name (probably safer). Make a keys.list by by specifying the items for each scale, preceding items to be negatively keyed with a - sign: \begin{scriptsize} <>= #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list @ \end{scriptsize} \begin{tiny}In the past (prior to version 1.6.9, the keys.list was then converted a keys matrix using the helper function \pfun{make.keys}. This is no longer necessary. Logically, scales are merely the weighted composites of a set of items. The weights used are -1, 0, and 1. 0 implies do not use that item in the scale, 1 implies a positive weight (add the item to the total score), -1 a negative weight (subtract the item from the total score, i.e., reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the maximum + minimum possible value for that item. The minima and maxima can be estimated from all the items, or can be specified by the user. There are two different ways that scale scores tend to be reported. Social psychologists and educational psychologists tend to report the scale score as the \emph{average item score} while many personality psychologists tend to report the \emph{total item score}. The default option for \pfun{scoreItems} is to report item averages (which thus allows interpretation in the same metric as the items) but totals can be found as well. Personality researchers should be encouraged to report scores based upon item means and avoid using the total score although some reviewers are adamant about the following the tradition of total scores. The printed output includes coefficients $\alpha$ and G6*, the average correlation of the items within the scale (corrected for item ovelap and scale relliability), as well as the correlations between the scales (below the diagonal, the correlations above the diagonal are corrected for attenuation. As is the case for most of the \Rpkg{psych} functions, additional information is returned as part of the object. First, create keys matrix using the \pfun{make.keys} function. (The keys matrix could also be prepared externally using a spreadsheet and then copying it into \R{}). Although not normally necessary, show the keys to understand what is happening. There are two ways to make up the keys. You can specify the items by \emph{location} (the old way) or by \emph{name} (the newer and probably preferred way). To use the newer way you must specify the file on which you will use the keys. The example below shows how to construct keys either way. Note that the number of items to specify in the \pfun{make.keys} function is the total number of items in the inventory. This is done automatically in the new way of forming keys, but if using the older way, the number must be specified. That is, if scoring just 5 items from a 25 item inventory, \pfun{make.keys} should be told that there are 25 items. \pfun{make.keys} just changes a list of items on each scale to make up a scoring matrix. Because the \pfun{bfi} data set has 25 items as well as 3 demographic items, the number of variables is specified as 28. \end{tiny} Then, use this keys list to score the items. \begin{scriptsize} <>= scores <- scoreItems(keys.list,bfi) scores @ \end{scriptsize} To see the additional information (the raw correlations, the individual scores, etc.), they may be specified by name. Then, to visualize the correlations between the raw scores, use the \pfun{pairs.panels} function on the scores values of scores. (See figure~\ref{fig:scores} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() @ \end{scriptsize} \includegraphics{scores} \caption{A graphic analysis of the Big Five scales found by using the scoreItems function. The pair.wise plot allows us to see that some participants have reached the ceiling of the scale for these 5 items scales. Using the pch='.' option in pairs.panels is recommended when plotting many cases. The data points were ``jittered'' by setting jiggle=TRUE. Jiggling this way shows the density more clearly. To save space, the figure was done as a png. For a clearer figure, save as a pdf.} \label{fig:scores} \end{center} \end{figure} \subsubsection{Forming scales from a correlation matrix} There are some situations when the raw data are not available, but the correlation matrix between the items is available. In this case, it is not possible to find individual scores, but it is possible to find the reliability and intercorrelations of the scales. This may be done using the \pfun{cluster.cor} function or the \pfun{scoreItems} function. The use of a keys matrix is the same as in the raw data case. Consider the same \pfun{bfi} data set, but first find the correlations, and then use \pfun{scoreItems}. \begin{scriptsize} <>= r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) @ \end{scriptsize} To find the correlations of the items with each of the scales (the ``structure" matrix) or the correlations of the items controlling for the other scales (the ``pattern" matrix), use the \pfun{cluster.loadings} function. To do both at once (e.g., the correlations of the scales as well as the item by scale correlations), it is also possible to just use \pfun{scoreItems}. \subsection{Scoring Multiple Choice Items} Some items (typically associated with ability tests) are not themselves mini-scales ranging from low to high levels of expression of the item of interest, but are rather multiple choice where one response is the correct response. Two analyses are useful for this kind of item: examining the response patterns to all the alternatives (looking for good or bad distractors) and scoring the items as correct or incorrect. Both of these operations may be done using the \pfun{score.multiple.choice} function. Consider the 16 example items taken from an online ability test at the Personality Project: \url{http://test.personality-project.org}. This is part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) study discussed in \cite{rcw:methods,rwr:sapa}. \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results @ \end{scriptsize} Once the items have been scored as true or false (assigned scores of 1 or 0), they made then be scored into multiple scales using the normal \pfun{scoreItems} function. \subsection{Item analysis} Basic item analysis starts with describing the data (\pfun{describe}, finding the number of dimensions using factor analysis (\pfun{fa}) and cluster analysis \pfun{iclust} perhaps using the Very Simple Structure criterion (\pfun{vss}), or perhaps parallel analysis \pfun{fa.parallel}. Item whole correlations may then be found for scales scored on one dimension (\pfun{alpha} or many scales simultaneously (\pfun{scoreItems}). Scales can be modified by changing the keys matrix (i.e., dropping particular items, changing the scale on which an item is to be scored). This analysis can be done on the normal Pearson correlation matrix or by using polychoric correlations. Validities of the scales can be found using multiple correlation of the raw data or based upon correlation matrices using the \pfun{setCor} function. However, more powerful item analysis tools are now available by using Item Response Theory approaches. Although the \pfun{response.frequencies} output from \pfun{score.multiple.choice} is useful to examine in terms of the probability of various alternatives being endorsed, it is even better to examine the pattern of these responses as a function of the underlying latent trait or just the total score. This may be done by using \pfun{irt.responses} (Figure~\ref{fig:irt.response}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) @ \end{scriptsize} \caption{ The pattern of responses to multiple choice ability items can show that some items have poor distractors. This may be done by using the the \pfun{irt.responses} function. A good distractor is one that is negatively related to ability.} \label{fig:irt.response} \end{center} \end{figure} \subsubsection{Exploring the item structure of scales} The Big Five scales found above can be understood in terms of the item - whole correlations, but it is also useful to think of the endorsement frequency of the items. The \pfun{item.lookup} function will sort items by their factor loading/item-whole correlation, and then resort those above a certain threshold in terms of the item means. Item content is shown by using the dictionary developed for those items. This allows one to see the structure of each scale in terms of its endorsement range. This is a simple way of thinking of items that is also possible to do using the various IRT approaches discussed later. \begin{tiny} <>= m <- colMeans(bfi,na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) @ \end{tiny} \subsubsection{Empirical scale construction} There are some situations where one wants to identify those items that most relate to a particular criterion. Although this will capitalize on chance and the results should interpreted cautiously, it does give a feel for what is being measured. Consider the following example from the \pfun{bfi} data set. The items that best predicted gender, education, and age may be found using the \pfun{bestScales} function. This also shows the use of a dictionary that has the item content. \begin{scriptsize} <>= data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) @ \end{scriptsize} \section{Item Response Theory analysis} The use of Item Response Theory has become is said to be the ``new psychometrics". The emphasis is upon item properties, particularly those of item difficulty or location and item discrimination. These two parameters are easily found from classic techniques when using factor analyses of correlation matrices formed by \pfun{polychoric} or \pfun{tetrachoric} correlations. The \pfun{irt.fa} function does this and then graphically displays item discrimination and item location as well as item and test information (see Figure~\ref{fig:irt}). \subsection{Factor analysis and Item Response Theory} If the correlations of all of the items reflect one underlying latent variable, then factor analysis of the matrix of tetrachoric correlations should allow for the identification of the regression slopes ($\alpha$) of the items on the latent variable. These regressions are, of course just the factor loadings. Item difficulty, $\delta_j$ and item discrimination, $\alpha_j$ may be found from factor analysis of the tetrachoric correlations where $\lambda_j$ is just the factor loading on the first factor and $\tau_j$ is the normal threshold reported by the \pfun{tetrachoric} function. \begin{equation} \delta_j = \frac{D\tau}{\sqrt{1-\lambda_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\; \alpha_j = \frac{\lambda_j}{\sqrt{1-\lambda_j^2}} \label{eq:irt:diff} \end{equation} where D is a scaling factor used when converting to the parameterization of \iemph{logistic} model and is 1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of the normal model, factor loadings ($\lambda_j$) and item thresholds ($\tau$) are just \begin{equation*} \lambda_j = \frac{\alpha_j}{\sqrt{1+\alpha_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\;\tau_j = \frac{\delta_j}{\sqrt{1+\alpha_j^2}}. \end{equation*} Consider 9 dichotomous items representing one factor but differing in their levels of difficulty \begin{scriptsize} <>= set.seed(17) d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items test <- irt.fa(d9$items) test @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A graphic analysis of 9 dichotomous (simulated) items. The top panel shows the probability of item endorsement as the value of the latent trait increases. Items differ in their location (difficulty) and discrimination (slope). The middle panel shows the information in each item as a function of latent trait level. An item is most informative when the probability of endorsement is 50\%. The lower panel shows the total test information. These items form a test that is most informative (most accurate) at the middle range of the latent trait.} \label{fig:irt} \end{center} \end{figure} Similar analyses can be done for polytomous items such as those of the bfi extraversion scale: \begin{scriptsize} <>= data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt @ \end{scriptsize} The item information functions show that not all of items are equally good (Figure~\ref{fig:e.irt}): \begin{figure}[htbp] \begin{center} <>= e.info <- plot(e.irt,type="IIC") @ \caption{A graphic analysis of 5 extraversion items from the bfi. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print e.info to see the average information for each item.} \label{fig:e.irt} \end{center} \end{figure} These procedures can be generalized to more than one factor by specifying the number of factors in \pfun{irt.fa}. The plots can be limited to those items with discriminations greater than some value of cut. An invisible object is returned when plotting the output from \pfun{irt.fa} that includes the average information for each item that has loadings greater than cut. \begin{scriptsize} <>= print(e.info,sort=TRUE) @ \end{scriptsize} More extensive IRT packages include the \Rpkg{ltm} and \Rpkg{eRm} and should be used for serious Item Response Theory analysis. \subsection{Speeding up analyses} Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed up the process of analysis, the original correlation matrix is saved as part of the output of both \pfun{irt.fa} and \pfun{omega}. Subsequent analyses may be done by using this correlation matrix. This is done by doing the analysis not on the original data, but rather on the output of the previous analysis. In addition, recent releases of the \Rpkg{psych} take advantage of the \Rpkg{parallels} package and use multi-cores. The default for Macs and Unix machines is to use two cores, but this can be increased using the options command. The biggest step up in improvement is from 1 to 2 cores, but for large problems using polychoric correlations, the more cores available, the better. For example of taking the output from the 16 ability items from the \iemph{SAPA} project when scored for True/False using \pfun{score.multiple.choice} we can first do a simple IRT analysis of one factor (Figure~\ref{fig:iq.irt}) and then use that correlation matrix to do an \pfun{omega} analysis to show the sub-structure of the ability items . We can also show the total test information (merely the sum of the item information. This shows that even with just 16 items, the test is very reliable for most of the range of ability. The \pfun{fa.irt} function saves the correlation matrix and item statistics so that they can be redrawn with other options. \begin{scriptsize} \begin{Schunk} \begin{Sinput} detectCores() #how many are available options("mc.cores") #how many have been set to be used options("mc.cores"=4) #set to use 4 cores \end{Sinput} \end{Schunk} \end{scriptsize} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= iq.irt <- irt.fa(ability) @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print iq.irt to see the average information for each item. Partly because this is a power test (it is given on the web) and partly because the items have not been carefully chosen, the items are not very discriminating at the high end of the ability dimension. } \label{fig:iq.irt} \end{figure} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= plot(iq.irt,type='test') @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The total test information at all levels of difficulty may be shown by specifying the type='test' option in the plot function. } \label{fig:iq.irt.test} \end{figure} \begin{scriptsize} <>= iq.irt @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= om <- omega(iq.irt$rho,4) @ \caption{An Omega analysis of 16 ability items sampled from the SAPA project. The items represent a general factor as well as four lower level factors. The analysis is done using the tetrachoric correlations found in the previous \pfun{irt.fa} analysis. The four matrix items have some serious problems, which may be seen later when examine the item response functions.} \label{fig:iq.irt} \end{center} \end{figure} \subsection{IRT based scoring} The primary advantage of IRT analyses is examining the item properties (both difficulty and discrimination). With complete data, the scores based upon simple total scores and based upon IRT are practically identical (this may be seen in the examples for \pfun{scoreIrt}). However, when working with data such as those found in the Synthetic Aperture Personality Assessment (\iemph{SAPA}) project, it is advantageous to use IRT based scoring. \iemph{SAPA} data might have 2-3 items/person sampled from scales with 10-20 items. Simply finding the average of the three (classical test theory) fails to consider that the items might differ in either discrimination or in difficulty. The \pfun{scoreIrt} function applies basic IRT to this problem. Consider 1000 randomly generated subjects with scores on 9 true/false items differing in difficulty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest items for the 1/3 top subjects (this is a crude example of what tailored testing would do). Then score these subjects: \begin{scriptsize} <>= v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") @ \end{scriptsize} These results are seen in Figure~\ref{fig:score.irt.pdf}. \begin{figure}[htbp] \begin{center} \caption{IRT based scoring and total test scores for 1000 simulated subjects. True theta values are reported and then the IRT and total scoring systems. } <>= pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) @ \label{fig:score.irt.pdf} \end{center} \end{figure} \subsubsection{1 versus 2 parameter IRT scoring} In Item Response Theory, items can be assumed to be equally discriminating but to differ in their difficulty (the Rasch model) or to vary in their discriminability. Two functions (\pfun{scoreIrt.1pl} and \pfun{scoreIrt.2pl}) are meant to find multiple IRT based scales using the Rasch model or the 2 parameter model. Both allow for negatively keyed as well as positively keyed items. Consider the \pfun{bfi} data set with scoring keys key.list and items listed as an item.list. (This is the same as the key.list, but with the negative signs removed.) \begin{scriptsize} <>= keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function @ \end{scriptsize} We can compare these three ways of doing the analysis using the \pfun{cor2} function which correlates two separate data frames. All three models produce vey simillar results for the case of almost complete data. It is when we have massively missing completely at random data (MMCAR) that the results show the superiority of the irt scoring. \begin{scriptsize} <>= #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) @ \end{scriptsize} \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \ \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \subsection{Multilevel reliability} The \pfun{mlr} and \pfun{multilevelReliablity} functions follow the advice of \cite{shrout:12a} for estimating multievel reliablilty. A detailed discussion of this procedure is given in \cite{rw:paid:17} which is available at \url{https://personality-project.org/revelle/publications/rw.paid.17.final.pdf}. \section{Set Correlation and Multiple Regression from the correlation matrix} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{setCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{setCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{setCor}. Two things to notice. \pfun{setCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{setCor}. <>= #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{setCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Simulation functions} It is particularly helpful, when trying to understand psychometric concepts, to be able to generate sample data sets that meet certain specifications. By knowing ``truth" it is possible to see how well various algorithms can capture it. Several of the \pfun{sim} functions create artificial data sets with known structures. A number of functions in the psych package will generate simulated data. These functions include \pfun{sim} for a factor simplex, and \pfun{sim.simplex} for a data simplex, \pfun{sim.circ} for a circumplex structure, \pfun{sim.congeneric} for a one factor factor congeneric model, \pfun{sim.dichot} to simulate dichotomous items, \pfun{sim.hierarchical} to create a hierarchical factor model, \pfun{sim.item} is a more general item simulation, \pfun{sim.minor} to simulate major and minor factors, \pfun{sim.omega} to test various examples of omega, \pfun{sim.parallel} to compare the efficiency of various ways of determining the number of factors, \pfun{sim.rasch} to create simulated rasch data, \pfun{sim.irt} to create general 1 to 4 parameter IRT data by calling \pfun{sim.npl} 1 to 4 parameter logistic IRT or \pfun{sim.npn} 1 to 4 paramater normal IRT, \pfun{sim.structural} a general simulation of structural models, and \pfun{sim.anova} for ANOVA and lm simulations, and \pfun{sim.vss}. Some of these functions are separately documented and are listed here for ease of the help function. See each function for more detailed help. \begin{description} \item [\pfun{sim}] The default version is to generate a four factor simplex structure over three occasions, although more general models are possible. \item [\pfun{sim.simple}] Create major and minor factors. The default is for 12 variables with 3 major factors and 6 minor factors. \item [\pfun{sim.structure}] To combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. \item [\pfun{sim.hierarchical}] To create data with a hierarchical (bifactor) structure. \item [\pfun{sim.congeneric}] To create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item [\pfun{sim.circ}] To create data with a circumplex structure. \item [\pfun{sim.item}]To create items that either have a simple structure or a circumplex structure. \item [\pfun{sim.dichot}] Create dichotomous item data with a simple or circumplex structure. \item[\pfun{sim.rasch}] Simulate a 1 parameter logistic (Rasch) model. \item[\pfun{sim.irt}] Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also do 3 and 4 PL and PN models. \item[\pfun{sim.multilevel}] Simulate data with different within group and between group correlational structures. \end{description} Some of these functions are described in more detail in the companion vignette: \href{"psych_for_sem.pdf"}{psych for sem}. The default values for \pfun{sim.structure} is to generate a 4 factor, 12 variable data set with a simplex structure between the factors. Two data structures that are particular challenges to exploratory factor analysis are the simplex structure and the presence of minor factors. Simplex structures \pfun{sim.simplex} will typically occur in developmental or learning contexts and have a correlation structure of r between adjacent variables and $r^n$ for variables n apart. Although just one latent variable (r) needs to be estimated, the structure will have nvar-1 factors. Many simulations of factor structures assume that except for the major factors, all residuals are normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the major factors. \pfun{sim.minor} generates such structures. The structures generated can be thought of as having a a major factor structure with some small correlated residuals. Although coefficient $\omega_h$ is a very useful indicator of the general factor saturation of a unifactorial test (one with perhaps several sub factors), it has problems with the case of multiple, independent factors. In this situation, one of the factors is labelled as ``general'' and the omega estimate is too large. This situation may be explored using the \pfun{sim.omega} function. The four irt simulations, \pfun{sim.rasch}, \pfun{sim.irt}, \pfun{sim.npl} and \pfun{sim.npn}, simulate dichotomous items following the Item Response model. \pfun{sim.irt} just calls either \pfun{sim.npl} (for logistic models) or \pfun{sim.npn} (for normal models) depending upon the specification of the model. The logistic model is \begin{equation} P(x | \theta_i, \delta_j, \gamma_j, \zeta_j )= \gamma_j + \frac{\zeta_j - \gamma_j}{1+e^{\alpha_j(\delta_j - \theta_i}}. \end{equation} where $\gamma$ is the lower asymptote or guessing parameter, $\zeta$ is the upper asymptote (normally 1), $\alpha_j$ is item discrimination and $\delta_j$ is item difficulty. For the 1 Paramater Logistic (Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify. (Graphics of these may be seen in the demonstrations for the logistic function.) The normal model (\pfun{irt.npn} calculates the probability using \fun{pnorm} instead of the logistic function used in \pfun{irt.npl}, but the meaning of the parameters are otherwise the same. With the a = $\alpha$ parameter = 1.702 in the logiistic model the two models are practically identical. \section{Graphical Displays} Many of the functions in the \Rpkg{psych} package include graphic output and examples have been shown in the previous figures. After running \pfun{fa}, \pfun{iclust}, \pfun{omega}, \pfun{irt.fa}, plotting the resulting object is done by the \pfun{plot.psych} function as well as specific diagram functions. e.g., (but not shown) \begin{scriptsize} \begin{Schunk} \begin{Sinput} f3 <- fa(Thurstone,3) plot(f3) fa.diagram(f3) c <- iclust(Thurstone) plot(c) #a pretty boring plot iclust.diagram(c) #a better diagram c3 <- iclust(Thurstone,3) plot(c3) #a more interesting plot data(bfi) e.irt <- irt.fa(bfi[11:15]) plot(e.irt) ot <- omega(Thurstone) plot(ot) omega.diagram(ot) \end{Sinput} \end{Schunk} \end{scriptsize} The ability to show path diagrams to represent factor analytic and structural models is discussed in somewhat more detail in the accompanying vignette, \href{"psych_for_sem.pdf"}{psych for sem}. Basic routines to draw path diagrams are included in the \pfun{dia.rect} and accompanying functions. These are used by the \pfun{fa.diagram}, \pfun{structure.diagram} and \pfun{iclust.diagram} functions. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demontration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim) ur <- dia.ellipse(9,9,"upper right",xlim=xlim,ylim=ylim) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) @ \end{scriptsize} \caption{The basic graphic capabilities of the dia functions are shown in this figure.} \label{fig:dia} \end{center} \end{figure} \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{setCor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For a Mac, this version can be installed directly using the ``other repository" option in the package installer. For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version > "1.5.0",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2015}]{psych} Revelle, W. (2015). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.5.8 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2014]{rc:reliability} Revelle, W. and Condon, D.~M. (2014). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell (in press). \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Wilt}{2017}]{rw:paid:17} Revelle, W. and Wilt, J. (2017). \newblock Analyzing dynamic data: a tutoria.l \newblock {\em Personality and Individual Differences}, in press. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[{Shrout and Lane(2012)}]{shrout:12a} Shrout, P., Lane, S.~P., 2012. Psychometrics. In: Handbook of research methods for studying daily life. Guilford Press. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psych/inst/doc/psych_for_sem.Rnw0000644000176200001440000012201713016157640016460 0ustar liggesusers% \VignetteIndexEntry{input for sem} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} \usepackage{longtable} %\usepackage{geometry} \usepackage{Sweave} %\usepackage{/Library/Frameworks/R.framework/Versions/2.7/Resources/share/texmf/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \newcommand{\vect}[1]{\boldsymbol{#1}} \def\vec#1{\ensuremath{\mathchoice {\mbox{\boldmath$\displaystyle\mathbf{#1}$}} {\mbox{\boldmath$\textstyle\mathbf{#1}$}} {\mbox{\boldmath$\scriptstyle\mathbf{#1}$}} {\mbox{\boldmath$\scriptscriptstyle\mathbf{#1}$}}}}% \makeindex % used for the subject index \title{Using the psych package to generate and test structural models} \author{William Revelle} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle %\section{} %\subsection{} \tableofcontents \newpage \section{The psych package} \subsection{Preface} The \Rpkg{psych} package \citep{psych} has been developed to include those functions most useful for teaching and learning basic psychometrics and personality theory. Functions have been developed for many parts of the analysis of test data, including basic descriptive statistics (\pfun{describe} and \pfun{pairs.panels}), dimensionality analysis (\pfun{ICLUST}, \pfun{VSS}, \pfun{principal}, \pfun{factor.pa}), reliability analysis (\pfun{omega}, \pfun{guttman}) and eventual scale construction (\pfun{cluster.cor}, \pfun{score.items}). The use of these and other functions is described in more detail in the accompanying vignette (\href{"An overview of the psych package"}{overview.pdf}) as well as in the complete user's manual and the relevant help pages. (These vignettes are also available at \href{"http://personality-project.org/r/overview.pdf"}{\url{http://personality-project.org/r/overview.pdf}}) and \href{"http://personality-project.org/r/psych_for_sem.pdf"}{\url{http://personality-project.org/r/psych_for_sem.pdf}}) . This vignette is concerned with the problem of modeling structural data and using the \Rpkg{psych} package as a front end for the much more powerful \Rpkg{sem} package of John Fox \citep{fox:06,sem:09,sem}. Future releases of this vignette will include examples for using the \Rpkg{lavaan} package of Yves Rosseel \citep{lavaan}. The first section discusses how to simulate particular latent variable structures. The second considers several Exploratory Factor Analysis (EFA) solutions to these problems. The third section considers how to do confirmatory factor analysis and structural equation modeling using the \Rpkg{sem} package but with the input prepared using functions in the \Rpkg{psych} package. \subsection{Creating and modeling structural relations} One common application of \pfun{psych} is the creation of simulated data matrices with particular structures to use as examples for principal components analysis, factor analysis, cluster analysis, and structural equation modeling. This vignette describes some of the functions used for creating, analyzing, and displaying such data sets. The examples use two other packages: \Rpkg{Rgraphviz} and \Rpkg{sem}. Although not required to use the \Rpkg{psych} package, sem is required for these examples. Although \Rpkg{Rgraphviz} had been used for the graphical displays, it has now been replaced with graphical functions within psych. The analyses themselves require only the \Rpkg{sem} package to do the structural modeling. <>= if(!require(sem)) stop('The package sem is required to do these analyses') if(!require('GPArotation')) stop('The package GPArotation is required to do these analyses') @ \section{Functions for generating correlational matrices with a particular structure} The \pfun{sim} family of functions create data sets with particular structure. Most of these functions have default values that will produce useful examples. Although graphical summaries of these structures will be shown here, some of the options of the graphical displays will be discussed in a later section. The \pfun{sim} functions include: \begin{description} \item[sim.structure ]A function to combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. Combined with structure.diagram to see the proposed structure. \item[sim.congeneric] A function to create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item[sim.hierarchical ]A function to create data with a hierarchical (bifactor) structure. \item[sim.general] A function to simulate a general factor and multiple group factors. This is done in a somewhat more obvious, although less general, method than \pfun{sim.hierarcical}. \item[sim.item] A function to create items that either have a simple structure or a circumplex structure. \item[sim.circ] Create data with a circumplex structure. \item[sim.dichot ]Create dichotomous item data with a simple or circumplex structure. \item[sim.minor] Create a factor structure for nvar variables defined by nfact major factors and $\frac{nvar}{2} $``minor" factors for n observations. \item[sim.parallel] Create a number of simulated data sets using sim.minor to show how parallel analysis works. \item[sim.rasch] Create IRT data following a Rasch model. \item[sim.irt] Create a two parameter IRT logistic (2PL) model. \item[sim.anova] Simulate a 3 way balanced ANOVA or linear model, with or without repeated measures. Useful for teaching courses in research methods. \end{description} To make these examples replicable for readers, all simulations are prefaced by setting the random seed to a fixed (and for some, memorable) number \citep{adams:80}. For normal use of the simulations, this is not necessary. \subsection{\pfun{sim.congeneric}} Classical test theory considers tests to be \iemph{tau} equivalent if they have the same covariance with a vector of latent true scores, but perhaps different error variances. Tests are considered \iemph{congeneric} if they each have the same true score component (perhaps to a different degree) and independent error components. The \pfun{sim.congeneric} function may be used to generate either structure. The first example considers four tests with equal loadings on a latent factor (that is, a $\tau$ equivalent model). If the number of subjects is not specified, a population correlation matrix will be generated. If N is specified, then the sample correlation matrix is returned. If the ``short'' option is FALSE, then the population matrix, sample matrix, and sample data are all returned as elements of a list. \begin{scriptsize} <>= library(psych) set.seed(42) tau <- sim.congeneric(loads=c(.8,.8,.8,.8)) #population values tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100) # sample correlation matrix for 100 cases round(tau.samp,2) tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100, short=FALSE) tau.samp dim(tau.samp$observed) @ \end{scriptsize} In this last case, the generated data are retrieved from tau.samp\$observed. \label{congeneric} Congeneric data are created by specifying unequal loading values. The default values are loadings of c(.8,.7,.6,.5). As seen in Figure~\ref{fig:tau}, tau equivalence is the special case where all paths are equal. \begin{scriptsize} <>= cong <- sim.congeneric(N=100) round(cong,2) @ \end{scriptsize} \begin{figure}[htpb] \begin{center} <>= #plot.new() m1 <- structure.diagram(c("a","b","c","d")) @ \caption{Tau equivalent tests are special cases of congeneric tests. Tau equivalence assumes a=b=c=d} \label{fig:tau} \end{center} \end{figure} \subsection{\pfun{sim.hierarchical}} The previous function, \pfun{sim.congeneric}, is used when one factor accounts for the pattern of correlations. A slightly more complicated model is when one broad factor and several narrower factors are observed. An example of this structure might be the structure of mental abilities, where there is a broad factor of general ability and several narrower factors (e.g., spatial ability, verbal ability, working memory capacity). Another example is in the measure of psychopathology where a broad general factor of neuroticism is seen along with more specific anxiety, depression, and aggression factors. This kind of structure may be simulated with \pfun{sim.hierarchical} specifying the loadings of each sub factor on a general factor (the g-loadings) as well as the loadings of individual items on the lower order factors (the f-loadings). An early paper describing a \iemph{bifactor} structure was by \cite{holzinger:37}. A helpful description of what makes a good general factor is that of \cite{jensen:weng}. For those who prefer real data to simulated data, six data sets are included in the \pfun{bifactor} data set. One is the original 14 variable problem of \cite{holzinger:37} (holzinger), a second is a nine variable problem adapted by \cite{bechtoldt:61} from \cite{thurstone:41} (the data set is used as an example in the SAS manual and discussed in great detail by \cite{mcdonald:tt}), a third is from a recent paper by \cite{reise:07} with 16 measures of patient reports of interactions with their health care provider. \begin{scriptsize} <>= set.seed(42) gload=matrix(c(.9,.8,.7),nrow=3) fload <- matrix(c(.8,.7,.6,rep(0,9),.7,.6,.5, rep(0,9),.7,.6,.4), ncol=3) fload #echo it to see the structureSw bifact <- sim.hierarchical(gload=gload,fload=fload) round(bifact,2) @ \end{scriptsize} These data can be represented as either a \iemph{bifactor} (Figure~\ref{fig:bifact} panel A) or \iemph{hierarchical} (Figure~\ref{fig:bifact} Panel B) factor solution. The analysis was done with the \pfun{omega} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) m.bi <- omega(bifact,title="A bifactor model") m.hi <- omega(bifact,sl=FALSE,title="A hierarchical model") op <- par(mfrow = c(1,1)) @ \end{scriptsize} \caption{(Left panel) A bifactor solution represents each test in terms of a general factor and a residualized group factor. (Right Panel) A hierarchical factor solution has g as a second order factor accounting for the correlations between the first order factors} \label{fig:bifact} \end{center} \end{figure} \subsection{\pfun{sim.item} and \pfun{sim.circ}} Many personality questionnaires are thought to represent multiple, independent factors. A particularly interesting case is when there are two factors and the items either have \iemph{simple structure} or \iemph{circumplex structure}. Examples of such items with a circumplex structure are measures of emotion \citep{rafaeli:revelle:06} where many different emotion terms can be arranged in a two dimensional space, but where there is no obvious clustering of items. Typical personality scales are constructed to have simple structure, where items load on one and only one factor. An additional challenge to measurement with emotion or personality items is that the items can be highly skewed and are assessed with a small number of discrete categories (do not agree, somewhat agree, strongly agree). The more general \pfun{sim.item} function, and the more specific, \pfun{sim.circ} functions simulate items with a two dimensional structure, with or without skew, and varying the number of categories for the items. An example of a circumplex structure is shown in Figure~\ref{fig:circ} \begin{figure}[htbp] \begin{center} <>= circ <- sim.circ(16) f2 <- fa(circ,2) plot(f2,title="16 simulated variables in a circumplex pattern") @ \caption{Emotion items or interpersonal items frequently show a circumplex structure. Data generated by sim.circ and factor loadings found by the principal axis algorithm using factor.pa.} \label{fig:circ} \end{center} \end{figure} \subsection{\pfun{sim.structure}} A more general case is to consider three matrices, $\vec{f}_x,\vec{\phi_{xy}}, \vec{f}_y $ which describe, in turn, a measurement model of x variables, $\vec{f}_x$, a measurement model of y variables, $\vec{f}_x$, and a covariance matrix between and within the two sets of factors. If $\vec{f}_x$ is a vector and $\vec{f}_y$ and $\vec{phi}_{xy}$ are NULL, then this is just the congeneric model. If $\vec{f}_x$ is a matrix of loadings with n rows and c columns, then this is a measurement model for n variables across c factors. If $\vec{phi}_{xy}$ is not null, but $\vec{f}_y$ is NULL, then the factors in $\vec{f}_x$ are correlated. Finally, if all three matrices are not NULL, then the data show the standard linear structural relations (LISREL) structure. Consider the following examples: \subsubsection{ $\vec{f}_x$ is a vector implies a congeneric model} \begin{scriptsize} <>= set.seed(42) fx <- c(.9,.8,.7,.6) cong1 <- sim.structure(fx) cong1 @ \end{scriptsize} \subsubsection{$\vec{f}_x$ is a matrix implies an independent factors model:} \begin{scriptsize} <>= set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) three.fact <- sim.structure(fx) three.fact @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= #plot.new() three.fact.mod <-structure.diagram(fx) @ \caption{Three uncorrelated factors generated using the sim.structure function and drawn using structure.diagram.} \label{fig:3f} \end{center} \end{figure} \subsubsection{$\vec{f}_x$ is a matrix and Phi $\neq I$ is a correlated factors model} \begin{scriptsize} <>= Phi = matrix(c(1,.5,.3,.5,1,.2,.3,.2,1), ncol=3) cor.f3 <- sim.structure(fx,Phi) fx Phi cor.f3 @ \end{scriptsize} \paragraph{Using symbolic loadings and path coefficients} For some purposes, it is helpful not to specify particular values for the paths, but rather to think of them symbolically. This can be shown with symbolic loadings and path coefficients by using the \pfun{structure.list} and \pfun{phi.list} functions to create the fx and Phi matrices (Figure~\ref{fig:symb3}). <>= fxs <- structure.list(9,list(F1=c(1,2,3),F2=c(4,5,6),F3=c(7,8,9))) Phis <- phi.list(3,list(F1=c(2,3),F2=c(1,3),F3=c(1,2))) fxs #show the matrix Phis #show this one as well @ The \pfun{structure.list} and \pfun{phi.list} functions allow for creation of fx, Phi, and fy matrices in a very compact form, just by specifying the relevant variables. \begin{figure}[htbp] \begin{center} <>= #plot.new() corf3.mod <- structure.diagram(fxs,Phis) @ \caption{Three correlated factors with symbolic paths. Created using structure.diagram and structure.list and phi.list for ease of input.} \label{fig:symb3} \end{center} \end{figure} \paragraph{Drawing path models from Exploratory Factor Analysis solutions} Alternatively, this result can represent the estimated factor loadings and oblique correlations found using \fun{factanal} (Maximum Likelihood factoring) or \pfun{fa} (Principal axis or minimum residual (minres) factoring) followed by a promax rotation using the \pfun{Promax} function (Figure~\ref{fig:f3:emp}. Comparing this figure with the previous one (Figure~\ref{fig:symb3}), it will be seen that one path was dropped because it was less than the arbitrary ``cut" value of .2. <>= f3.p <- Promax(fa(cor.f3$model,3)) @ \begin{figure}[htbp] \begin{center} <>= #plot.new() mod.f3p <- structure.diagram(f3.p,cut=.2) @ \caption{The empirically fitted structural model. Paths less than cut (.2 in this case, the default is .3) are not shown.} \label{fig:f3:emp} \end{center} \end{figure} \subsubsection{ $\vec{f}_x$ and $\vec{f}_y$ are matrices, and Phi $\neq I$ represents their correlations} A more complicated model is when there is a $\vec{f}_y$ vector or matrix representing a set of Y latent variables that are associated with the a set of y variables. In this case, the Phi matrix is a set of correlations within the X set and between the X and Y set. \begin{scriptsize} <>= set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) fy <- c(.6,.5,.4) Phi <- matrix(c(1,.48,.32,.4,.48,1,.32,.3,.32,.32,1,.2,.4,.3,.2,1), ncol=4) twelveV <- sim.structure(fx,Phi, fy)$model colnames(twelveV) <-rownames(twelveV) <- c(paste("x",1:9,sep=""),paste("y",1:3,sep="")) round(twelveV,2) @ \end{scriptsize} Data with this structure may be created using the \pfun{sim.structure} function, and shown either with the numeric values or symbolically using the \pfun{structure.diagram} function (Figure~\ref{fig:symbxy}). \begin{scriptsize} <>= fxs <- structure.list(9,list(X1=c(1,2,3), X2 =c(4,5,6),X3 = c(7,8,9))) phi <- phi.list(4,list(F1=c(4),F2=c(4),F3=c(4),F4=c(1,2,3))) fyx <- structure.list(3,list(Y=c(1,2,3)),"Y") @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= #plot.new() sg3 <- structure.diagram(fxs,phi,fyx) @ \caption{A symbolic structural model. Three independent latent variables are regressed on a latent Y.} \label{fig:symbxy} \end{center} \end{figure} \subsubsection{A hierarchical structure among the latent predictors.} Measures of intelligence and psychopathology frequently have a general factor as well as multiple group factors. The general factor then is thought to predict some dependent latent variable. Compare this with the previous model (see Figure~\ref{fig:symbxy}). \begin{figure}[htpb] \begin{center} <>= fxh <- structure.list(9,list(X1=c(1:3),X2=c(4:6),X3=c(7:9),g=NULL)) fy <- structure.list(3,list(Y=c(1,2,3))) Phi <- diag(1,5,5) Phi[4,c(1:3)] <- letters[1:3] Phi[5,4] <- "r" #plot.new() hi.mod <-structure.diagram(fxh,Phi, fy) @ \caption{A symbolic structural model with a general factor and three group factors. The general factor is regressed on the latent Y variable.} \label{fig:symb:gy} \end{center} \end{figure} These two models can be compared using structural modeling procedures (see below). \section{Exploratory functions for analyzing structure} Given correlation matrices such as those seen above for congeneric or bifactor models, the question becomes how best to estimate the underlying structure. Because these data sets were generated from a known model, the question becomes how well does a particular model recover the underlying structure. \subsection{Exploratory simple structure models} The technique of \iemph{principal components} provides a set of weighted linear composites that best approximates a particular correlation or covariance matrix. If these are then \iemph{rotated} to provide a more interpretable solution, the components are no longer the \iemph{principal} components. The \pfun{principal} function will extract the first n principal components (default value is 1) and if n>1, rotate to \iemph{simple structure} using a \fun{varimax}, \fun{quartimin}, or \pfun{Promax} criterion. \begin{scriptsize} <>= principal(cong1$model) fa(cong1$model) @ \end{scriptsize} It is important to note that although the \pfun{principal} components function does not exactly reproduce the model parameters, the \pfun{factor.pa} function, implementing principal axes or minimum residual (minres) factor analysis, does. Consider the case of three underlying factors as seen in the bifact example above. Because the number of observations is not specified, there is no associated $\chi^2$ value. The \pfun{factor.congruence} function reports the cosine of the angle between the factors. \begin{scriptsize} <>= pc3 <- principal(bifact,3) pa3 <- fa(bifact,3,fm="pa") ml3 <- fa(bifact,3,fm="ml") pc3 pa3 ml3 factor.congruence(list(pc3,pa3,ml3)) @ \end{scriptsize} By default, all three of these procedures use the varimax rotation criterion. Perhaps it is useful to apply an oblique transformation such as \pfun{Promax} or \fun{oblimin} to the results. The \pfun{Promax} function in \Rpkg{psych} differs slightly from the standard \fun{promax} in that it reports the factor intercorrelations. \begin{scriptsize} <>= ml3p <- Promax(ml3) ml3p @ \end{scriptsize} \subsection{Exploratory hierarchical models} In addition to the conventional oblique factor model, an alternative model is to consider the correlations between the factors to represent a higher order factor. This can be shown either as a \iemph{bifactor} solution \cite{holzinger:37,schmid:57} with a general factor for all variables and a set of residualized group factors, or as a hierarchical structure. An exploratory hierarchical model can be applied to this kind of data structure using the \pfun{omega} function. Graphic options include drawing a Schmid - Leiman bifactor solution (Figure~\ref{fig:om:bi}) or drawing a hierarchical factor solution f(Figure~\ref{fig:om:hi}). \subsubsection{A bifactor solution} \begin{figure}[htpb] \begin{center} <>= om.bi <- omega(bifact) @ \caption{An exploratory bifactor solution to the nine variable problem} \label{fig:om:bi} \end{center} \end{figure} The \iemph{bifactor} solution has a general factor loading for each variable as well as a set of residual group factors. This approach has been used extensively in the measurement of ability and has more recently been used in the measure of psychopathology \citep{reise:07}. Data sets included in the \pfun{bifactor} data include the original \citep{holzinger:37} data set (\pfun{holzinger}) as well as a set from \cite{reise:07} (\pfun{reise}) and a nine variable problem from Thurstone. \subsubsection{A hierarchical solution} \begin{figure}[htpb] \begin{center} <>= om.hi <- omega(bifact,sl=FALSE) @ \caption{An exploratory hierarchical solution to the nine variable problem.} \label{fig:om:hi} \end{center} \end{figure} Both of these graphical representations are reflected in the output of the \pfun{omega} function. The first was done using a Schmid-Leiman transformation, the second was not. As will be seen later, the objects returned from these two analyses may be used as models for a \fun{sem} analysis. It is also useful to examine the estimates of reliability reported by \pfun{omega}. <>= om.bi @ Yet one more way to treat the hierarchical structure of a data set is to consider hierarchical cluster analysis using the \pfun{ICLUST} algorithm (Figure~\ref{fig:iclust}). ICLUST is most appropriate for forming item composites. \begin{figure}[htpb] \begin{center} <>= ic <- ICLUST(bifact,title="Hierarchical cluster analysis of bifact data") @ \caption{A hierarchical cluster analysis of the bifact data set using ICLUST} \label{fig:iclust} \end{center} \end{figure} \section{Exploratory Structural Equation Modeling (ESEM)} Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Confirmatory models} Although the exploratory models shown above do estimate the goodness of fit of the model and compare the residual matrix to a zero matrix using a $\chi^2$ statistic, they estimate more parameters than are necessary if there is indeed a simple structure, and they do not allow for tests of competing models. The \fun{sem} function in the \Rpkg{sem} package by John Fox allows for confirmatory tests. The interested reader is referred to the \Rpkg{sem} manual for more detail \citep{sem}. \subsection{Using psych as a front end for the sem package} Because preparation of the \fun{sem} commands is a bit tedious, several of the \Rpkg{psych} package functions have been designed to provide the appropriate commands. That is, the functions \pfun{structure.list}, \pfun{phi.list}, \pfun{structure.diagram}, \pfun{structure.sem}, and \pfun{omega.graph} may be used as a front end to \fun{sem}. Usually with no modification, but sometimes with just slight modification, the model output from the \pfun{structure.diagram}, \pfun{structure.sem}, and \pfun{omega.graph} functions is meant to provide the appropriate commands for \fun{sem}. \subsection{Testing a congeneric model versus a tau equivalent model} The congeneric model is a one factor model with possibly unequal factor loadings. The tau equivalent model model is one with equal factor loadings. Tests for these may be done by creating the appropriate structures. The \pfun{structure.graph} function which requires \fun{Rgraphviz}, or \pfun{structure.diagram} or the \pfun{structure.sem} functions which do not may be used. The following example tests the hypothesis (which is actually false) that the correlations found in the cong data set (see \ref{congeneric}) are tau equivalent. Because the variable labels in that data set were V1 ... V4, we specify the labels to match those. \begin{scriptsize} <>= library(sem) mod.tau <- structure.sem(c("a","a","a","a"),labels=paste("V",1:4,sep="")) mod.tau #show it sem.tau <- sem(mod.tau,cong,100) summary(sem.tau,digits=2) @ \end{scriptsize} Test whether the data are congeneric. That is, whether a one factor model fits. Compare this to the prior model using the \fun{anova} function. \begin{scriptsize} <>= mod.cong <- structure.sem(c("a","b","c","d"),labels=paste("V",1:4,sep="")) mod.cong #show the model sem.cong <- sem(mod.cong,cong,100) summary(sem.cong,digits=2) anova(sem.cong,sem.tau) #test the difference between the two models @ \end{scriptsize} The \fun{anova} comparison of the congeneric versus tau equivalent model shows that the change in $\chi^2$ is significant given the change in degrees of freedom. \subsection{Testing the dimensionality of a hierarchical data set by creating the model} The bifact correlation matrix was created to represent a hierarchical structure. Various confirmatory models can be applied to this matrix. The first example creates the model directly, the next several create models based upon exploratory factor analyses. mod.one is a congeneric model of one factor accounting for the relationships between the nine variables. Although not correct, with 100 subjects, this model can not be rejected. However, an examination of the residuals suggests serious problems with the model. \begin{scriptsize} <>= mod.one <- structure.sem(letters[1:9],labels=paste("V",1:9,sep="")) mod.one #show the model sem.one <- sem(mod.one,bifact,100) summary(sem.one,digits=2) round(residuals(sem.one),2) @ \end{scriptsize} \subsection{Testing the dimensionality based upon an exploratory analysis} Alternatively, the output from an exploratory factor analysis can be used as input to the structure.sem function. \begin{scriptsize} <>= f1 <- fa(bifact) mod.f1 <- structure.sem(f1) sem.f1 <- sem(mod.f1,bifact,100) sem.f1 @ \end{scriptsize} The answers are, of course, identical. \subsection{Specifying a three factor model} An alternative model is to extract three factors and try this solution. The \pfun{fa} factor analysis function (using the \iemph{minimum residual} algorithm) is used to detect the structure. Alternatively, the \fun{factanal} could have been used. Rather than use the default rotation of \pfun{oblimin}, we force an orthogonal solution (even though we know it will be a poor solution). \begin{scriptsize} <>= f3 <-fa(bifact,3,rotate="varimax") mod.f3 <- structure.sem(f3) sem.f3 <- sem(mod.f3,bifact,100) summary(sem.f3,digits=2) round(residuals(sem.f3),2) @ \end{scriptsize} The residuals show serious problems with this model. Although the residuals within each of the three factors are zero, the residuals between groups are much too large. \subsection{Allowing for an oblique solution} The previous solution is clearly very bad. What would happen if the exploratory solution were allowed to have correlated (oblique) factors? \begin{scriptsize} <>= f3 <-fa(bifact,3) #extract three factors and do an oblique rotation mod.f3 <- structure.sem(f3) #create the sem model mod.f3 #show it @ \end{scriptsize} The structure being tested may be seen using \pfun{structure.graph} \begin{figure}[htpb] \begin{center} <>= #plot.new() mod.f3 <- structure.diagram(f3) @ \caption{A three factor, oblique solution.} \label{default} \end{center} \end{figure} This makes much better sense, and in fact (as hoped) recovers the original structure. \subsection{Extract a bifactor solution using \pfun{omega} and then test that model using \fun{sem}} A bifactor solution has previously been shown (Figure~\ref{fig:om:bi}). The output from the \pfun{omega} function includes the sem commands for the analysis. As an example of doing this with real rather than simulated data, consider 9 variables from Thurstone. For completeness, the \fun{stdCoef} from \Rpkg{sem} is used as well as the \fun{summary} function. \subsubsection{sem of Thurstone 9 variable problem} The \Rpkg{sem} manual includes an example of a hierarchical solution to 9 mental abilities originally reported by Thurstone and used in the SAS manual for PROC CALIS and discussed in detail by \cite{mcdonald:tt}. The data matrix, as reported by Fox may be found in the \pfun{Thurstone} data set (which is ``lazy loaded''). Using the commands just shown, it is possible to analyze this data set using a bifactor solution (Figure~\ref{fig:thurstone:bi}). \begin{figure}[htbp] \begin{center} <>= om.th.bi <- omega(Thurstone,digits=3) @ \caption{A bifactor solution to the Thurstone 9 variable problem. All items load on a general factor of ability, the residual factors account for the correlations between items within groups. } \label{fig:thurstone:bi} \end{center} \end{figure} \begin{scriptsize} <>= sem.bi <- sem(om.th.bi$model$sem,Thurstone,213) #use the model created by omega summary(sem.bi,digits=2) stdCoef(sem.bi,digits=2) @ \end{scriptsize} Compare this solution to the one reported below, and to the \Rpkg{sem} manual. \subsection{Examining a hierarchical solution} A hierarchical solution to this data set was previously found by the \pfun{omega} function (Figure~\ref{fig:om:hi}). The output of that analysis can be used as a model for a \fun{sem} analysis. Once again, the \fun{stdCoef} function helps see the structure. Alternatively, using the \pfun{omega} function on the \pfun{Thurstone} data will create the model for this particular data set. \begin{figure}[htpb] \begin{center} <>= om.hi <- omega(Thurstone,digits=3,sl=FALSE) @ \caption{Hierarchical analysis of the Thurstone 9 variable problem using an exploratory algorithm can provide the appropriate sem code for analysis using the sem package.} \label{fig:thurstone:hi} \end{center} \end{figure} \begin{scriptsize} <>= sem.hi <- sem(om.hi$model$sem,Thurstone,213) summary(sem.hi,digits=2) stdCoef(sem.hi,digits=2) anova(sem.hi,sem.bi) @ \end{scriptsize} Using the Thurstone data set, we see what happens when a hierarchical model is applied to real data. The exploratory structure derived from the \pfun{omega} function (Figure~\ref{fig:thurstone:hi}) provides estimates in close approximation to those found using \fun{sem}. The model definition created by using \pfun{omega} is the same hierarchical model discussed in the \fun{sem} help page. The \iemph{bifactor} model, with 6 more parameters does provide a better fit to the data than the hierarchical model. Similar analyses can be done with other data that are organized hierarchically. Examples of these analyses are analyzing the 14 variables of \pfun{holzinger} and the 16 variables of \pfun{reise}. The output from the following analyses has been limited to just the comparison between the bifactor and hierarchical solutions. \begin{scriptsize} <>= om.holz.bi <- omega(Holzinger,4) sem.holz.bi <- sem(om.holz.bi$model$sem,Holzinger,355) om.holz.hi <- omega(Holzinger,4,sl=FALSE) sem.holz.hi <- sem(om.holz.hi$model$sem,Holzinger,355) anova(sem.holz.bi,sem.holz.hi) @ \end{scriptsize} \subsection{Estimating Omega using EFA followed by CFA} The function \pfun{omegaSem} combines both an exploratory factor analysis using \pfun{omega}, then calls the appropriate \fun{sem} functions and organizes the results as in a standard \pfun{omega} analysis. An example is found from the Thurstone data set of 9 cognitive variables: \begin{scriptsize} <>= om.sem <- omegaSem(Thurstone,n.obs=213) @ \end{scriptsize} Comparing the two models graphically (Figure~\ref{fig:omega:cfa} with Figure~\ref{fig:thurstone:bi} shows that while not identical, they are very similar. The sem version is basically a forced simple structure. Notice that the values of $\omega_h$ are not identical from the EFA and CFA models. The CFA solution yields higher values of $\omega_{h}$ because, by forcing a pure cluster solution (no cross loadings), the correlations between the factors is forced to be through the \emph{g} factor. \begin{figure}[htpb] \begin{center} <>= omega.diagram(om.sem,sort=FALSE) @ \caption{Confirmatory Omega structure using \pfun{omegaSem} } \label{fig:omega:cfa} \end{center} \end{figure} \section{Summary and conclusion} The use of exploratory and confirmatory models for understanding real data structures is an important advance in psychological research. To understand these approaches it is helpful to try them first on ``baby" data sets. To the extent that the models we use can be tested on simple, artificial examples, it is perhaps easier to practice their application. The \Rpkg{psych} tools for simulating structural models and for specifying models are a useful supplement to the power of packages such as \Rpkg{sem}. The techniques that can be used on simulated data set can also be applied to real data sets. \clearpage \begin{scriptsize} <>= sessionInfo() @ \end{scriptsize} %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Adams}{1980}]{adams:80} Adams, D. (1980). \newblock {\em The hitchhiker's guide to the galaxy}. \newblock Harmony Books, New York, 1st {American} edition. \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Fox}{2006}]{fox:06} Fox, J. (2006). \newblock Structural equation modeling with the sem package in {R}. \newblock {\em Structural Equation Modeling}, 13:465--486. \bibitem[\protect\astroncite{Fox}{2009}]{sem:09} Fox, J. (2009). \newblock {\em sem: Structural Equation Models}. \newblock R package version 0.9-15. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem}. Fox, J. Nie, Zhenghua and Byrnes, J. (2013) \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Rafaeli and Revelle}{2006}]{rafaeli:revelle:06} Rafaeli, E. and Revelle, W. (2006). \newblock A premature consensus: Are happiness and sadness truly opposite affects? \newblock {\em Motivation and Emotion}, 30(1):1--12. \bibitem[\protect\astroncite{Reise et~al.}{2007}]{reise:07} Reise, S., Morizot, J., and Hays, R. (2007). \newblock The role of the bifactor model in resolving dimensionality issues in health outcomes measures. \newblock {\em Quality of Life Research}, 16(0):19--31. \bibitem[\protect\astroncite{Revelle}{2014}]{psych} Revelle, W. (2014). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.4.1 \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {\em llavaan: An R Package for Structural Equation Modeling}. \newblock {\em Journal of Statistical Software}, 48(2):1-36. \newblock R package version 0.5-14. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \end{thebibliography} \printindex \end{document} psych/inst/doc/intro.pdf0000644000176200001440000307435613154621301014766 0ustar liggesusers%PDF-1.5 %ĐÔÅØ 148 0 obj << /Length 864 >> stream concordance:intro.tex:intro.Rnw:1 445 1 1 2 1 0 2 1 19 0 1 2 4 1 1 3 25 0 1 2 5 1 1 3 2 0 1 1 15 0 1 2 7 1 1 2 1 0 2 1 7 0 1 2 15 1 1 2 1 0 3 1 18 0 1 2 22 1 1 2 1 0 3 1 7 0 1 2 11 1 1 2 1 0 1 2 1 0 1 1 7 0 1 2 11 1 1 10 9 0 1 1 8 0 1 7 16 1 1 2 1 0 3 1 7 0 1 2 24 1 1 2 1 0 1 1 4 0 1 2 10 1 1 3 6 0 1 2 11 1 1 2 1 0 1 1 1 2 5 0 1 2 16 1 1 2 1 0 3 1 1 3 2 0 1 2 1 0 1 1 4 0 1 2 13 1 1 2 1 0 2 1 7 0 1 2 14 1 1 2 13 0 1 2 4 1 1 2 1 0 2 1 10 0 1 1 10 0 2 1 11 0 1 2 3 1 1 2 1 0 1 1 11 0 1 2 8 1 1 2 1 0 2 1 7 0 1 2 9 1 1 2 1 0 4 1 7 0 1 2 11 1 1 2 1 0 4 1 7 0 1 2 14 1 1 2 33 0 1 2 8 1 1 2 11 0 1 2 3 1 1 2 10 0 1 2 4 1 1 2 10 0 1 2 3 1 1 2 11 0 1 2 5 1 1 2 9 0 1 2 11 1 1 2 5 0 1 2 68 1 1 2 50 0 1 2 4 1 1 2 47 0 1 1 17 0 1 2 9 1 1 18 36 0 1 2 4 1 1 2 5 0 1 2 8 1 1 2 1 0 1 1 4 0 1 2 38 1 1 2 55 0 1 2 21 1 1 3 1 0 2 1 24 0 1 2 1 3 83 0 1 2 107 1 1 2 26 0 1 2 319 1 endstream endobj 172 0 obj << /Length 1603 /Filter /FlateDecode >> stream xÚƯYKoÛF¾ûWđH%Ë}ñÑ[ó¨Ûi ÇEi4EËB%Q ¥nÿ|çµ)Ñv¢6€ƒ̀åîpwö›™of×I0 ’àü,¹çùâếûŸ2¨,ÖÊÙàê&P6‹‹"R«cB×4ø₫¸D&IÂùD…«‰ÎÂMÛL"íÂéz*ømæ ‘Ø¦‘ç-ôƠØVáƯIë4¼é,}ß_gèmVĂŸ&‘M\x#ØÙnx_h́Ï«7Íă,"­âBå¬çTæÛ”,\ïơ½ă’zH’ôKóKƯ¡:-ntMÛ‚?Í × @ÁbÎi*…åaƯÈdq’§¼₫ï(¾ß\”YẤƠeưq¢ó°öĂ5m"̉½)‚H™¸°Oó ‡=6°qœzVøư†gC´o°™†¨̣]…ƒˆwƒ“ăđ́Vp1ÉüÓ¯Ÿ÷¿ú„!TvƠ­Vùm%û`Ơq¤Ă× ¾̣ô æ7`PqR8ÿ½×Ÿæ[¢đ5¸K3Đ¼9ôÇM@[Á/csđF›È‘J³X)DVÅJ ̀/Ù(FàV‡ßŸ)đë$hg7.ÏÁÁ• TI¡ÈÁÓØ€_GV1H“‘J´ ß@{»$ˆŒ1a') ±¹8ĐŒ ÄU/̀`ØF¡(AK¬ÉJ-·üÁP1“€b;q\°BĂ@X@̀êJ^q¶-¦YF‡7MË 6(G¢̀’æ!½÷±@@y >D @C¸ôp û·‡,y0™Ê´ Í ÷Ø&`Wëb;̣Kg‹´˜áb(M½¬q'­́¿âm̃ ¹Đ"•7Oƒo–íÎvI½ó¿qhÊØÍÅé½I‡_ƠUăId?¢đ ;HŸæ¦.»°Q0ÇP´ 7p ¨çÚÖ‰kƒWƒ†ï(ˆAy bÚAư ¶“ë•ä† {.èÁ{éw bä¢ÜỘ>%â «í¡Đ »ăƯ$Y¦÷(üh¬Yăswîƒ –¤Hä0-Ñ…UYä¡EÄƠ /̣¢Ä9çowŸ ü̃Ë…8aǨ®™¥©6û2æé»¼é3ÏyߥÈ#g£.9ơA-”prÇιơÊöHªÅØ/§¸Ô‰²˜€6Kí#₫ù”đ_EÆ$Ç$Œf’°=¿¼:‘ ér»^®i–ª§±Ê'ø5'¶†åÈ'U¢’§à‰§`lă^xhSª10ÿíë+æâ‚e¨)½ÿw¾Q…ͳ'†̃K­n•<†·v1̣ÉèJ”MĂw[A×;jƯöŒ@ ÚÏ—LƯv¸>I’AÅmtîK̀G«P̀ôwpH‚.‰5ưOÄ<£–P1E§‰0º;4…S@́ÊÀ¿Ï9S1¼¯(ûQ[¸"ÎvÅe'ue+&¹~Đ&s8́=˜/3Áq8±Áe]q¹‰rzuE©gÍ®°„¬Ï…•̃Ô]^ûc['£œÆ¸’¤¼].ùdÄIBÖë•™0£“Ñê×̃₫Gô–[w {<ؽôa…³ßÏ¥[/†‡}âÛ †r6Áщưvœµó̀>ÍÔwÂA‡·'ÓµíÓơûʧ½ S(yËå¥yë%(yV£^S¤ù3*7rd{JÙaû´û$Ă B’ÏË> stream xÚÍWKoÛ8¾çWèH•Ê—(ñ˜>tÑAëĂÅ[qØQ`9[ôßw¤,ÉÊ&é6»=H"‡#ræ›áÇ¡LÖ‰LÎOdø*xËd·N¸ñéüäÍâäơ™*%s/½J×ЬråÄU.Y¬’/Âä©.Í”ÔF\¦ºí$ßáYbï+4Ú¼nP̣*ÍŒÑbí_8PôH ̉3â.Í´;LØ5ø êÔ›¨¤E}»âÆ®̉áÔq=P£y–ш΀ÿÖ{ooqÖô¯Å= É—LW•ÈÓ¬?ÖûÇ>s“9•ÖV;₫ú̀ĐΔ˳I¦mn‹·iæu!.Àô{ô†<Ù4§AƒWZl[øJ±B068®uEé…¡âĐœA“đ{”É ëƒ=˜*dÀ;\‘à̃bđ º‹Û5ÇbEèă‹ûlh¢¬eÙ7bÿkü™å5º±âöåd‘®Ä7üCÛÜr*`ˆ"D@Â)°#@¢ƒ )Î.Ø x€óR½7¶ÊA !Ç»`d¾ØC©:Ä9~§P:/½s÷Hj$™•*Wº`đ‹ö:`΄üg9îGà­‚÷ƯæNđ}ï¡îÿØ¢œs, p¥̃4¢“s§?±w¯̣Üø(Úr&ÇMÀù,­,°ÖI%pPƯ“ÔML(d$–Úk J{7Ç8Øô_`ñ‚!˜…¹ü|ẂFV£ÄmíŒø„Y¹&zïÂ>¼iC*¿b•-ªPÖæŸ ørw8ÆJư‚í€x¨±D¥!¯ô+EÙX+‰mËÁ¶Åm ’M B…6('ukzw I Çk´¸Ưrg5äâ˜ÎK>,çÈ2 ûS½™óÖ:÷BiøS©6ƯÑÅ9/Ù1ruP]\đñzEeȌ攦ñ/ƯÿÀOW™ĂƠÊ'âZ `Dù¹¡Ô$t̃N믑ÓĂéß…Ñ^~²YÀͯàLÇ5âÛÄ P *:¶wûá9ÖfƯßÅ̃¾åñÓËÔ;qÊB®z 'zdà}}«ƒ%÷‘ˆë|ŒU•NÊÜ—’́×Î縢s©ƒơ§¬7ö³È­óàåAmj‰Ë.Qnµfùû(ưøÏ#¼%`PN?LÈ ̃rW¸1ºå¡§ûƲÙPNSíÁ 8\‡.-ÿápж´Œ©2F­¨Øw´›êCpư1ó(¯ØSÿØäưạx³hĂ©»å2“®q´(ï"ﵡ^Ÿœ˜ơ8/XŸeë€Ñ ¿Gar̃X¨”ODF‘nf %.»₫2jø:æm>¼–¼₫"Ü4(v»£ £STÖ“ ê6(¶á3o‹> stream xÚµYMoă8½ûWÔqhĐâ7 4è̃̀̀b‚ :9̀n6Åf̉BË–!Ééñ₫ú}%Ñîdºkñ‰¢L>¾ªz$«dIỶ–Å@‘¤Ö$ ’Ñá‘”BcH9Ỏ“hiiIỈÆÎ”"ß”%S( #c #ă àÂđ¬Á0CÖk̉pu g<I.ø~ö4–¼Că(p/R°MđÖPÄë)F4T¥"ZëfN¡ơ‘œ%)%Z—Àq0K†Hv)í<¤̣h lo³4“vđLfxKà̀i¥"—÷éßjI÷Ûj™è®i‡ƠjSöUZ÷?¾¼‚W¸`¼f•ú¶ZĐƯv=üÜQÙ&ê¶«UÙVÿIKªÖ6f7ë%=T÷ëÔ÷é;+døLÿ©}¨̉jî0¿,f·©.{`.›ÅvƯó0™ă/XŒí‘–Ï×ăø÷ec–e_bÁ²̃uU÷¢3ôï~!¶u˜~»£mÇoÚT.Å]U§#@™ñ\­7ÛîÚf5.êjsÛ”ị́ÄS#R·h«M_=$6¿¯º¾ZBFK¸€î(¯¬éR+oëÔÁo}CKˆoG¥~:â93Â_b Ôé‰ëîÛrói’ằ̃q— ×ĂquÓÓyÉû#M¿—@ZwU¿#lˇª©±ƒ6@„Ưt'[&µ-`nËv̉ố†¿&gCy»­Ëvà;¢\}A,ªÓ`/á¹ÛÔå®ă-½zJp9·Óâ3!̀·Üâdè„h5 Á?7íp’Œ´º¾Ư.úm›¦ „á×Tö«róĤÅÿ‚z€Üû*uĂññä˜d³;.ah́ ơ8‹Ë}gƒºù×oGßVcïØy,…ómƯắzH5­°£ Æûy6Á́ÔƠ¦vùr<Ó´/óơÈ'ơ_RZÓ₫˜Ô₫lÀ¡Ơ½ßYîpĐ¯S[>dđZđ¼€py•‹Êßß|ß·Ívó‚Ăr$iđŸ"Ó}›:ÿè}Y ƽÜØæg¦Ú¥~zØí̃½‡UÚĂ*ă}1øÔẢêÅ3è­ö‡Gæ:Đ;?Đv#Ú½ /a×£ö¼ăÜ~W®qç÷ù†áûzywñ:ØÁÎ~<áGiü^^¥?G̀ûü¼ê©®Ëuj¶Ư× åùyáÑŒ°¼02îEY5ÎE份ÓJđDẁ¯^ÈuïdRWŸRÓî^˜´¿eƨÿ¶¾k¾|ÍIqAi~Vơ7<üíÛÙüj·I4¿@ö7›ĂÛ=gPÈ.œÍ?¦®Ù¶PÉp¯%¼o₫¤ë/¸ÈđQỪѲÅ)í0îƯzû‰®‡œ—å |lenUnunMnmn]n}nCn3Ëx.ă¹Œç2Ëx.ă¹Œç2ËxnÄ»™=qÉÀ6¿Ü̃öCÿ÷jưy6ß´₫`zq3ÿu₫Ûüçk9tØY‹^.¼`hT¡î2̉‰¡2p^ho0îMÈƠ_—‹Q‚‹$9•°Ơ"¨ LÔë1‰…¨,ŒhQn© > stream xÚ­ÙnăF̣}¾BÈ¼Đ€Å°›Í+È"˜`$ÈdÉ"ÙJ¢%e$Q ¥±ưù­«JÔØÆäÁrŸUƠuW1™,'ÉäƯ‹D₫ÿxóâÛ·¥™(WY¦'7·“JÅe¢&y™On“?£äJE±º*¥Môóq»¿¦Eơ°|¨á§ĂÁ~vK̃9ÀxƠ\ư÷æçoß*U„°•Qq€@ïÈüÍW||HIZƹÊÜaD6¿JUôé*O#œ-›ÿÁohM´<"‹†‰¸…qÛñÎaƠđ`½…U‚C7;„vJ³‰Jâ*©¢ª2‰u©'S]Ä©pâ?WeµG„/$̀ºˆ>ăOĂ‹Äøë‘ơ~đ¯Y0* QT:6yzÎ ä̃Ii¥²çÿJ2LßàƨÛ^|‡’I·œđà㻓?‰Z…FV>M¡BĂ!5ªƠ¨:ScLtĂî°6Œ¶¶ƒjéwË4°®ăÏ‘â,û ?$±¯…àïNy¦tÈ4p!I–yö—VÉ9 Ă²(­.¼µVCAÊÀMØí%×µ‚ ø¡ ù¡çÇ̃Û +T’ PçEœéÊⶦXDä«"÷º¶îmL“3ă="ÓÑ êØZ¨¸³÷78Ï£‹ÎÑ)ó y•\ƯÍQT+^ºC ;!¦EiƯ±“Đª«È‡N‚*;Ñ@X°8ÉD¡gªrgÄƠfË7îVrʹ+†+n&ózÇç«̀)€EiXIÊÎJ܉ß%¾×rP?Ư>z’W($ơ|¸&–$C^ôG²q•ßĂ¡ HFÈYE¥G̃ËàÖó,q|ºĂ›?n®ưMtưgâza¹\[Vz‰₫ؽx¥đêß5ÓwC *Hß{»Ÿó>R̉_±Â]!’L!çĂY7$V?º—ñJÉN†n¿î6œæC ́T‚æÄ&́ Ô““ ˜²d»F¬Ûd>rŸ#đä±`h€:@“́NÂèZëâ¦éƯ°ƒ×[éÍ‚¸³é€˜ÎI=eBªÇ™¥6ˆŸB©ÙPtî’a Û‘¾%%Óiô= §<|Ü…¹°È)^zÉÿ́9a3.Ăi-z»¥iƒñ: «Üø¥£‹gÉËL<.íd aoö†·,Ú&ˆù‡s Î­9ª̉ØT‚Ñ×D°W‹iÛƠ>¡ßÙlˆ¨̉ ơfà‘—à,MYX¿iỂ9YbîƯZ₫6$áná³î8ÏQ7áäAôOØÿ…bén-œª›ÓVÍÊvÖJ‹“ÛD› ¥Ù³̉.ăö¸ôñà:c¶ªFă¢ĂÂfbƒ]Đ>Áơ@Ă2·ˆUn|™;êƒKEåôÀ Û6ØÖ»Èq¿́…ªº—0ưƯÊ‘™lĐÎ{Í'¢jlƒ̉ê™›;O|{HHÔ6ÂW±ÉÍÓ¸ø¤wª §—œ.D”=G\"¼&ŸèsöcĐûü}ܽtîOxV(Đ­KÑçÆˆƯºüÙ3º´Û}0{iÍ8ăÅá8yç"Z¯}Rúd1]+Áz7ª6¶ÖéÜ+œÂơÔFÀ'v~ÇÖ/ͨÖcEƠ³[˜f4‚üâ}¡°O"TÙ8ƯÛÄÜW7=_H;r‡“ù#EV‘Äó¶?E“³ ¸(î:^qé¸ ’<º=x_i^M¿%àá´{î¥øp’9QñŒ±IóË¿ßó¦èĐoó¾Đ邺=đü½=dÍâ^¾IiVØGH†…æ3>U';M½rkS:ë'‹ƠÔ¶m¬êP¡âÊçáÏÿ¯ n.÷¯)KS«Â ê(j¢RÉ+‘Ú¹ÍSª”¼“Â=ë+ẢÙX{úb“ƹï碵w'Ïå°´Ê[‡Ï%h:‡«·ßxΦR:.´†ÍçIîi₫́ÜK^æ̀“!>î~Âge£îÇW.Ơ°́N+3́9#5k›€̉öùçIX́Û­ẹ̀tâåBN9SÍLô·SgL©LRIăƒJ™t[đú(\Ÿ; ¾îÀ„ó]i'wI`½&xÏ£b…LC½±œ•8]°L’Jă<́ƒzØ1)°Á)ûù{đ8™ZC"P—­HE\ø:®‘PÊtŒ˜Îâ2­Ù%³+¸bĂÿA¹1†º̀ă¢rfÇK=ƒ’Oă\Ơ#z¦'›¦ZÅeY’¨ÊD»jL }ñËÜăƯyĐ -{qÖ©8gĂ2?Nblơ^2¾ê<ÇiÄĂ,åÿµïL¬̉–ĂvđN[~Ÿô`—.aäñ‡PZªüNËĂ_aøê‰.¦ˆsU2?óQó ©÷„w¬g?ˆµø…Ô}Ù÷e:™pÛÙXÚ÷RüÙƠ¦öđ̉0q¾¤|^蛹MyŸô Ø\.‡/hÛ˜v ź±(Tœ¯ ª„¨^AAhyQˆƠ ®¼¹yñ' %ö endstream endobj 230 0 obj << /Length 2279 /Filter /FlateDecode >> stream xÚíYKoăȾϯ’ Œhv“É s˜{AÁÅ»ŸóS ï妢XDÿ8ø+ Ôü ÅÖGf~ £…Œ-^Óœ0, Ñ+Äx0nÂ;öŸ¨¸KÆÔM¡¿®–‹«±Ó(FGÉ"– $¼E´íïOb5{áPœ¢s`̣´b³µØÛZŒµŒÔsµÈƒ á‡W₫AzÂéÇU@o®Pi&Åo´|Ñ…)ßeùßă>dy-íj džDđ1ˆ§ASÑøă¤Í.D¦Ñ²ƒ3$ëh₫GXœ²3æïDâ12Æ¢( ¡‘]Ẽk:™§°}jĂª¸(E“ådzöùpµÂΤ L)DÏÂ$\u*Ä~pA6g+™á,퇑™YñàôïHƒƒj§Q¼ˆ́w7̉o³u×rc‹;ÔbZ0’8+,ù¹4·¸bÈÀ$¦oÄ: 1Q9Pÿ*ƒ*Y'kgRƯÀ%¤-oă›\ÁSµB¨0Ä))÷÷Ư$Q¢ˆíœÁÓYyÓ̃6 ÑlÔ7ÇooĂÄIœdß´§]XÖ äSđâđ³¯o…̀0‘£8~+Û.̀dnXơ¯dY8†ê0i¨è“\ŒƠîåÄ—y¢y‘}Œ¥ü>è’×;é“©Ơ‡ÇUµ“̣€Ç(íçcFBiwÍT¶†Q`ơ6ï ^$ˆxö‘ç^Wỗ%Ó.¢V³- ¦+?Uôug0§Ḿúrm×ø ¨9 …ơ$¥ÅfïÍÆ̉æ@(.WÅ™̃‡75l+¿9ûơöo†÷~#ïîE€FÆ>zsí…¹— cv4vXwöÖiœĐ“g×<Íq.Ùȧё¨÷z×`8ØØÍ¾L|ÛYCRË×êÿ4äSo•ïLø¯¡—¯ÎµÇB;YEHăÄ”Sf‹<„0đ! ûKÅ/́ ăăSºqƯÙ¼p„  r!‡\ĂĐ^ʤ€vÇà%'üzÙ*uèe«l"b{8‚ ÎüQYßoœß̉4¥ ŒP-—[$_ñ|`²q‚<7–]_˜ÓK˜IHùk›Â…«Ï#Åzdb̉̀’ •—%9‘³ £Æ\qéÄpë[äeôư‘—9µ́†~Ë5 ’[Ór{Ø1ˆt8Ơ’ó˜Tî¨4v̉´%é1~OÁ‚ó¿ưÑ?·€m¯†G—â·₫´CưW²ÿiØsíÿ· Í,&­,Gˆ¢A@4è8Đ)Ë–¨Â y°TUœñ0‰7Ñs¬ºzë"8íÈ­\`8×WO^:D3£"́U´ÊLå _+Âẵ]˜2n¶á!EB¾–Q!í3¯›Ä…ç^åqZ‘X1‰Ï9¾µåË y  ˜ó —8œđ…ŸnP'@BÁ́:|a—™_D¿¢bô3Iäª^̣ÎQ¯ªÇ~xÔ!ØWÿñ![ªV»zË‚{O¢8&—«̉˜^í»ÿ#à˜¥!Mö7¿œ@sơúư¸yû¥̀fÆÄU[BK@ÈyÇƠB*%xàØÂ>ÆfÑO¨¹ss“‚é /d£ÇëºpKË¥lÁ5 *µơ<^»Ú7u‘Îi«u?²ä¡KàÜzÇOWJ•ơm³×ïE0̣„;¬p =^Db°"[Ä©|“ûÁ•JđâgẺT{Lê/0÷@ÅĂ rèª!V’¼N§… r₫§Ô‹Übµ—Oíäa½·¦% ¸4¶—ô¹ RÓpS¸}¦×,—¤÷¬‹É³Bbƒ®o¥‚~é>_áQOTË"lmo÷̃:­§n¤<† PSHo€̉A•´?.s‡?̉™ä#Ë“l̃̉——y–Ùèƒ^EöÇIƠ–elÁV…êG|¹Œµ,b!î¶`ÏÜ¿—d˜:KWäßiq»^+`WçI5] â‚+¢¿Î´ơ××Éa²p̀>êÁ$¬ü~·̣;xߟz¯\­lÔXÏ|ÑÎØơ›Đ/̃§½÷ëv%;t̃N½PjD·¢œµ¬ßy·c¿.{+tŸ> stream xÚ­ZYÛÈ~÷¯°/°¢ûàdal6ñÆë ́Ù‚8´Ä‘¸–DA”f2ùơ©«r8¶Çȃ†Í>ªª«¾:º9j±]¨ÅÏ/”<ÿtóâåk/´JkUëÅÍíBë:Ue¶(ªbq³Yü+¹,ur…ߥ?Ăß~Í₫ ËU¦Tr ½ÿ¾ùååëÚÆT V&Dâµ,«¶¬HkS»u¿No[œ¼XÙ2K¬Xi›æYͳN‰;̉Én¹²y ä¡}–6*w-„ip ´uà0̀îÁ@ºD–æ‚“8zÔâÓµ̃"‚”-µ©5ná9Ëï¿?Àï¥üđ½%IY”úHX Ë:”tËiÅYf₫.«×2+•~ß ‡³HÍpl'›fF;QÓédmâÙ+«²4·¨¿JM©yÑ£Ơ癨´*+ÇăfYY’z¸,W&g$PăBæĂ-Á+êÁ”äwl|„Î"iej+k½] ĸŒà£KS%ưUÖl i–f!Ư¡mo¹ïÔœoïđ´À²Đ áóAåJ`36¾Ơ:5ÁơoÅœ©˜»9ïňû9 TWÜŸ@+tˆ1ÊđØ@@¸fú£8׈-R[yc¿z5‹z ™ùp›Ôà2–Â=#óI!ÔñùN~'Đi“÷‚ÈóƠIu•mË„'µ§mfÚ;Ï8Ƽ‡–©Îêip+0-̣üÛvœÊd£ ÄÖ¥b0 ,\é"5¶~®7j†ÔŸeÚEÄͬ«:Ílª‡¯¦đ?\ ]}“¿^VDUdĐÈÊŒĂ»÷•ÿ¶Ü+̉>©+§M´.hu€Uèµ €•/ „ÂÉïậ{w—ÉCĺ#%è ¹lx́ˆ‘`KJ‰»4ŒáŸœ)dO:4D́h²' …¼¹AR·ÍU,|á^È*ô¤]A´FÇ!ÎBnŵÄô-<´~O‚nÆô¶:̃ ́êÀ´È¹\¾Ü\)ăy®(±p¥¤rqªî8‚ÈæM “¹m‘zñg|!q´¤Í!úHïHŸÔ#›=–ûNÜÉVeA Ư‚y„Nq:4d̀y#Ú2Äè§…]œF;qBa?PhB8́¢êZ²ZƒÚHxÙD¿Ôé0íq,1Çđ¢̀l™dŒÓQŒ4$u‘ü>Ñä̀J8ï~/œ@9yQ&?ơ(̉É©§Ä¨BGè÷®b éÀÓ¹Ù̀a‰t®iÎkTô ¬A|(ádíHH Ó1öΤH¬÷¦I–ể +NyóÓß~Ådq#"’Ù²BǛ¹ŒñBQåũ.¸ñîç ù;$y‡̣¶!àÆÑ̀%ˆÙå´ ]—ơt‰$Ç̃‡±Xwú‰¼²EA áPІPÄưH6EK€A×4Ư{®„%iø±“¡–­`ËƯdä#{ S¡ ’+}Œ¬9â´Đ] ibK₫vqÙĐ+*-C?—_Wn̉\ úœfn“ŸŸ¹ơiÛÚ´¨Ëù¬ừŒœóêN oï²äỤ̂{/KZ)ƯŸ!×T+j¼Ë7·ß+†ñẠ̊)‚²–ƒ̀À##nĐl¢éΑ 'Î/4J>Hđ=¶K)Ư/̣L|À…‘Hâ:.zà—+Cƒf…ˆ1[m›<-BYâG^XiŸ|56‹P!‚…Q]Eđ¸'NM.œe>GQ¥8“ÿ¡—̣5VÎG™¶æÈMF¤œg=Ú‰!¿¼µÿkiq~fiøđ@›vÛEơ'@¬ü‰â5w¸˜z’Ú / pÄÅ$®êµËQ²¹°¤‹:ƠÖG†æ‰à‘)/3¥{`†% ÊĐºGơ •D"(Öø<·QqÑŒK F2$r‹e°8à[a^ädËg;]©2ĸ!‡$åµ/Á°Ưđ#䨽L$/°ÔĐRñ–;¤~=‚åe‡¬ĂÖIüpV›Ö¤9IƠg\‡Ø~1́9œmÍ7ÅưUnḷÂÔÙÉz˜¯¯½2Èg¯.$ÀÁ®(Àóq½ëlVÖă" T?¹ă’Ô–U(²jrQªÓ<€J¶”*gEaÙ°v%;W™•” ,.ư!ÓíÎEØÖU0 8bÂÈ·Ù¶AzBmÉÁ%ưQ)¢̉9ª‡a®.ÉTƠÂsV¤Vù4>HØêưe€ÑH|j%nÍô dêÏĂ …‰ óyxÙ4ÏŸ/ ^̣ơ¨ÛrïúX…¯wË\N+$ƠuàîÙhÂ7I0J—Yđ́ầI&”µD“*mÇø\S‘œ*z$Å «ïÖ°á­DY:`%^Ï*;ªëè:®“Vu>cµggË3YrïO¾œ%²Ña¦ª§,½?YÅó5œG J‹* ×ñ»p“Dç¸XW'¿û|ø„ú8°}]]A€ÔÉw¢ó1)…kzÅÑ[nF²ăk÷û~½4ăÛ¤Ë#rîºXÈ9qèÊ))6Ưî̃ʾ%gẹG¾iFr!ơÉ“ í‡ñ] q‰úü üÁ dÆI‘|+Ưg?DŒàÇ:LÔBg?+í<ê+¥]Éưº̃₫ .1!²ĂE8™EÔ ikù9±Zæ Çøñǿà ÎbÈ?²Å×EÎGø};1×÷_Æ6‚à;±ăvB´bévtÅù$ü†oÛ½—b‡ÁñûYrÇà­tï'ϧ1°æĂÜ̃/œ;.äKˆÄ²´©9pC}n.\ơûª_B|åf†PîbL»[R~nS¹g¾–¡°ºnÇ›î¢gÆ¡2—t;R̉.>©åRƯæzƠÇé,†cí«½É÷·¹êÚÂÄg´†®0>QºÜx”_'»ÙộÍ#ƒ¤̀ùĂŸàhè²·ªH°k>”S‡xBÈ>êQK>®ùvØÁ‡ă{fÎé7úJHUf©̣Ÿø„́Vå|!‹d³o® k®7ás&ơN]áLØÉ(²¸#ê/̃ëYÈP¥EŸDï—Ráíñ#V]s-©ÆĐđúwRˆ+EïÜEÓ=ªä·Y"GÇR)oÎ.ÔOW¶û“Äë~2[%ÛöÂÆ­–o™¿ơ‚Á«‹̀$•MlÄè&WTa₫ưíF/k:ÀA#>UM”SpBc¢R,ŒA[Ă¡Ö—ï¨MøĐ;>cUÙèŒ5ù̀]Áá³üz2EüoxÔ©«ä]{hơŒV‚ Ỗ¹jíÄï|+q~’;×yå½#yŒf.H¡uT÷}Œ¾₫ÁzD…¹m88ƯÔ£»ßr%8) Ûÿ htåâOU°üÖ}Él¤<{ç>Ñx”‚Ô¶_¼5( È•©»ùÍGs₫róâÛ÷9 endstream endobj 274 0 obj << /Length 3828 /Filter /FlateDecode >> stream xÚ¥[[—Û¶~ϯĐ[¤s"„ xmŸ§N̉kíö¡I¸w—±´Ü’×ίï\A"µZ÷aHp€sùf€w‹hñĂW‘ü~÷₫«oßÉÂ&Æ%Y¼x»(­)"»Èlñ~»øeiWkkădù+/ëĂÊ.?Â_S?­Ö.O–í-ÿ¡ñ¾éø¥‚—‡->§ËC /;lA’ZZ·-üÚåæ´ÇÆ‡•ăÏƯê?ïÿüí›.ldʨ´8¥h¤ÆZÇ3z]˜°t!áŒMĐƯctŸáoƒS›G2OdƠfçË«4[VwơjDvùk”Fؤ-́â€¢Ă‡·?|µøÅ.ßÖWq±¬w¸L™—0R|3Û›Æ#›ú OËÜq±UÇÏ7«uœ-kè·lkÚåß>E¾ÄÆ-TGü–o´CHú„k¬;Ư‘C?Ü?pkyÜôËQ¸µÚ·3¶°ë—`ظ25IQ,Öqd\œđ·wbZë8YÜ)Ïæ^ÚĐz‡ÖOvÛñWR&^†¹3+ÑŒs™ºÈÄư„̉¥"Ûå•ß¼v}à.*µ&IrbOjʤ¸Äé̀c ×Jd½â\D&Ëç9{’­pî„£åÍÜÚ’Ôäξ€Ă£̀¹ ´ÏÈ*ÑBµßÉx&-³HS×¢ a­JUÂfC³?vaÄ52Ëă—®?3ÎzÜ £›1"áÊËdJ‹rc3÷N{Ñÿ]ü®ZqJ^Àé&ưÙu$ “ÖÎP$.‡/̣zÉy4F‚[ Åø@,:‰ذ­Ä•ú‰gñYÆGÈHÔȇ”‚´û±W 0t˜›=W‰Æă đúÎq́®vŸEug4*‡êçg¡¢ƠxYQHUẵT=Raw…4ơ₫q¥p ¿ư^sûÑ»bañ€_ÿ+[_Kodày+£ïk^Ñ'ơ;[́» ¦A_=2ó‹ZîzơFe$²¦“ǴÚhË{óLkÜCÅôñè È4454;u„àë†äÎđ­}hG7Ïá“+ÙÀÈœÍLœ{GDëŸ̉wÈ~2 ÉNgâ…Y Å»ô-S¤mú$ ‹|¤¥¬X¨"-ô-÷Mb‚"ÙLZWæƒÙSœD5IPÊ–H¿_kËS“å¡-GS¬Á»8ôJ´Qú§=3<¬ *ḱiHaSA-7e:§C@÷™Z¯lï©âàëèñS3myô»7Ë̀Ë€„öx_ñرz{™¤3Q^¿¦§Z†C¸u¬Qv[QdÁÚ‘25# ©4ă0¯~¢ „?J¸½8»̀¤¹Ÿÿ˜ñÛ22&ïö»ÎcË€~7Tq6);?)k “%̃₫Ä!LåíÖD=`@­«>©ư£ÉHÛ [Sq:XeB»7åV¤1Wô0‰¥ áuc£‰563J§C[ƯîÉÇ¡SŒ¨%_“O–¯&<Ø‹\_¿’:̀3 ¨v>'à÷ CáôÄc]ú®©Ú¡EãƯó€ ÄñùÔơÔÔư÷yß ¡pIˆ½ŒỒ8é&̉̀D¹WZJçđKS>›9?¾N¬5q2*ELúsi-¿¯Ă:È^@̃g{I¹B"ë$<ÜhɾQ)¬ZĐÚ Ơæ¢n(¿–%C—Ôusä!ö•ÔcđEæÀô[Z^­_ˆj"ÔŸTÛ$ 8ưfÓë¿V…ă0EŸ4¥T̀ñQơ ub'ÍßN‡~Œ+kƒÊuTà€Ïo9VJaDL₫áE6˜¨-ór¦ÂLô\Ç£̉ØÂû¥buÓ¾yŸBơˆ¤È–óUơFƒ*pÅ2 ư½“‹¼»‘Où骃*1ƒ§˜ÁÓAk!d₫Ç´í@ÁG’p₫åËiQ ü̉Ë"œ ›CP2ªơ…0Pêó:$œ(Ónƒ/üx94Ä ½QF¤Så¨öbR)/ÂqÍyèŸjÙ-OKÔ€Nd„ñ~¢—½dyf274-̣E&  ]²|¯blÉB^)Ñù§·XP~/NÚ÷-ơ¦Œ`×q›ætø¼• c€…$°§`,”J%S ́œÊïß^|H\Lq ç‰ ë“êsbÁ(ZIà›ÚØ$3eáC±êđ10‹(F;¨O™Gn²¾:1ú“tú[Q̀Ï/âe!½ófÓjm§fg$y¸å{m<4¤iSy((ụ̂s×pGc)¼ÔªOa™‡“ ؉2¢JØYi{¤È́½D е»8@-7 œƒơ! ­¶ă{ßàÁOA€đÔ£‘½ç€€SŸ>jÙđ_'წ³,Æ…dˆ¹à‚UïÆ#÷¤Œd?àá¾QA X¸V³c¢ÛÊ;ê/µŒƒ¤24̣Éï)Sôöôö/u§rƯWj[îtĂçMôÜă,Qh{Ç^€²lYÀ_kéaÊ>½}‘cº%ơƯŸU [>‡¸̃…²¡½̃r?Sl1œÊƠ :ZÈøg0–-æcnC^U‚i²ÄíóÊÓ3́ŒËœ¬˜TI¦tGơpĐîpIs€ £̉ô¬Bѹiăa~+G³S©p™¾ôªUÛ1ÿ³‚­5iïáºVëSßöüIöÔñw¯¯?#54xx÷¤®®¾Ơx±oúÅÓîôÄå3vÓ3Hól8K•}˜‘ÂXȾ/¡Ơ₫6#¶&wù0m*u|Dز‡́“¦q°¼ÆăY›Âs>ÏKúÏIˆç³§2§Gh®?BÛT’¹<‚đơ° ]Wxr¶vY)ëÍ£`‰đ²åL“_NaĆă}ÿQÁ½¼VMÔ}áĂ« h ÍW^•@ù¼øª?ŸÈ…ÜϹ¢4E–‡ÊCÜKÇ,äd† ¶*‰éË@ÏfÊÆe<_¬°çņ¿Àû6ù¤°…‰}y}È•e£pC‚Qù±©n‚Q½ A4ê_#›i',Q°œâ×rºA/àé*{ll\Œ+Ñ3̣úÀ¤‹^˹¿^]đ‘Ẹ́Q 1ÊÎø E®_ ÍơL­4Æ̣n|ùt.7‰+ÇQ¯ơ[ †‚}q*_|âø,§i·%WHp{l<½Ó‘‰wV ™̉ N¯¯̃L—‘!ºÙ+çÿs1å´‹ùăå.Ó¥,§₫­¦®ç˜€™ăñ9&iúáî5NJ¼j5ăñë¬^ă‰Aùeq» ƯÂÖq6ß+0­vèñ¾ơEf’~OJSàQJ©úBιÆÀê­™©ăg@6Œ¸‚zÆeü ט¹f.S>e”TÏhç¹t^ (^[–_²Ù%ø̃²O·Åàk9ºÂ‰'"6[₫àË#§ _˽<¶ OB¼Â‘ơÜ_= ̣'́‹…[₫es‘˜Ă7ŒÇÎ5!*¡ƠgîêSûFB₫¾GºX 9ó;EKôë£,b$÷kF±e’ÎßN‹SGW;q §Á­8nÓoѶz•˲ÑIưaÜ8|±ß¤óv`đ LăñA‹DW:*b̃Q§ƒ°ÔGñÜ”T—Ù,<̉(¥¿®4…ÀÀơ.`¾Æ˜–N.hẦD±é™Nó«.¬àŒơè'Ṽƒ.类OS`OM €/•¥ầÁw³—€Y£Ü”@ºùâ6௤¿&‡đâ5ư]YoÇÁơFIGø’V„Ơaü$Uyç4˜̀ܰă}¢FűøüF/­6\W\v…ÁÍ%ÄK/0eĂCTzŸ½æ©ùY\4ågo° L%›’xô¾?‘Éâq«M´­bºGq ‚ÄJAơèæ×` ‰Û‘ëÄ¥A‘X C:º /E|₫DwÁÖiÊ·E•‰ô©¨,ØṿêƯuƯ³̉uXÎG”»çωçÚEyÏ?Y₫V«í¡EÛŒç-w^oƒúoøDçxÁId…‰“ôºÛ“vùÅ‘/¾Û—¸,DÚÇàNcwiôÄ×ß̉™;±fI<5}”@9̃5ư)5ÜT]p{-*.]§ƒ,)¶Å¥ëtth–ùª&>{a¦SÔ¸₫vç»J"É̉Á]ªÙÛÁÂ-ÛÚDPơ6 ơÜṽñµ‡GíDfĂ'‡é¬è]&ç«“YN3 ÔÄŸvÁO1ơä8ưˆ-¹1ô§bͱÿ÷ ꩬĐÀ…_»œ̃Ñ­Ç©dO½Áå^$‰P‰±4g×Đa¡ ½£n“÷́ÊđPt¸Ÿ¥ßÏ-ơ‘₫B ´=uLu\[BMW-ÉY§$$` ̣£~ß|á~#ú›—V₫}bÊ'Á·–ÖBL† *l(^‰)%0 OÄÿô₫«ÿ°¨p endstream endobj 300 0 obj << /Length 3153 /Filter /FlateDecode >> stream xÚ½ZY“Û6~÷¯PùIª²hI0õªk³›Ë™Ú—d+Å‘(b]KJÏ¿ß>AP¢&>’}Đ ˆ«F_7NÖ“ṭöE*ÿÿv÷âơ÷&Ÿ˜4©̉ÊLîV“Ê$>5““»åä—éif¦øíÙ<+̣i½‡%—±Û›üé’Ùî~€é̉4Ï›ÄX F“a¿-ü̃ÉÿMÀĂ«È|b}ö¸‘₫[¦»n¡\áÏĂØB¸î0³åôằúiÓrÍ )RÙM›zíüƠ¡é~6Ïóéï8ÍBæ{5º%ă}RdW›z¿V~5üQkœmlƒy¸~Åa ƠƠ2qÙm~©óL .K\QLæ&KrWñØ^Ÿˆđ<˲égÆÓ@͉ØMEâü~Í<²ƒâY9\ßănQ2;]7¡°C^…*1[œƒ·´•n°èH›ÙJ¯ưä81·i’YÇz‹Œ”#†x 5Îâªé‡uG¡V#é'Yṃœđ[`ă™ùF ?c%í”$…‚0x₫©S+ëûÄ•¿¦yú³Hî¿~ú₫Bá¶c˜ ăs67*@Yæ’̉TzúG˜ÅÑ ü‘ 5B£¦Â'yUêt¯p[ÈÎ5g¡qi–dæBhZ=‡Z Äpn ?ưƠdù̃@ËÜVprtƯKifŒkñ‘X‹·Ÿ£̣.MR¨‘¡̀]$½B,N¬»†v—N™uj„ˆ4ªÂáæY•úÜ0a3 SÍe×a]F‚Üm‚mÔZ—d „²Ú•œT"ªº‘ïudv£f LL‘ơ'7FkîldåÅá!‰ÀÓ×,ÁßmơüÄù°Y¥Ô åÀW©k¾f@0 äüFÅ~)Bî«6^ØÄ—U¬5¦œÖ¨Â&›>¢YiÔç@…6D®†¾iÇ`æ¶@ơƒh¸Aü , ­½&Úw0Œ¢,“ÆÜ‰Æ‡Y^€Ql’Ù¼ô³¡>Å;%SëÊRd’¶¹Qă @s™÷6IỌ́Zè‘+>¿àwˆE°`ÙnG‚úÄ-Äøß3‚>w5Ë<}¬pØ~A‘Ă¾ă¦¨Í0ÎG—'¾p_ÀG»®k>2Ar§₫hZ Ó9*TêxÓºĂậ̀¨†£${EL̀{€;à!€M‚w L±ỴG€¾P^¸‡Dy¡ÊT¦‘)C›èË`UwÍ^=#Z̃2 q=»idÁ¦ ûu¾¶ưêl+¯œ3ÁËKÇ‚'OÁ†¦#Ös¯ yÉ w/oÇ̉xV™“8ĂT˜.|˜héŸ/®m1à]|¾C‘0ÓßÈÉôpí,åmd”py+¡Êá×Ú•CÔôq£RÜ#YÁ¸M$9Q5Jî- ÄSëù$ 9³Îb%²èĐö!†M‹¤(́ÍDT¡ónPÙ̉³ 톧Zơ¯ûE6>TZ±¼:̉.ùKƠTGH§¬G₫&S»×ØĐ¹÷)£SǶX˜²â(á#©£Æ’ơư¶'ÿ%âUUâ̓¨7@î~§…{ xøÚ_K¿&BûơôO$ós—ÓˆVz₫.£‘×S˜½ mDé¯V›£Ơ+€4·Ệ ¹®B¶ó†Öû&bU&"ÏJ^ ¯ăqWXb´x']¿ä溼ÿ¯ÏÊ|ö™üµç±Æü&}9§/8óy5À´Î²ư& Lj̉©Ép&v2ô­Y'A_—^VÖzw&;&đ.àîª=€¯†Z…˜oâAeGÍ-Ho  Đ̣9GŒÄĐNâZ~@ú{₫ø~†è;â^ä¾HIÎÚơ„ ïß¾˜üb.û{„„ô¿f5 û¿º9Q³©±c"•r&W³¦…ƒnh7 $Å"-©V?c é8M'eq¡8Ϩ̃ç¹Đ,éÓߢ…­e|M8T˜e^â¬Q÷'ḳGǵ;X–Å•Åc’´*† )Ú̉2'P ÿÈ;7äAƯô³gṬЇ¼Ë‘v ¾9|s̀– Âj»:Ù|ÄÔKåZ.û<ó%̀?ÖJh%«ÜácÇ­¼̉Äø^¼Œ€bWÁ´uÇyFú:R2È!MZoYöÀ–=q/ư)ÜkgQTMî |WÓp¿°|(¯Ï}:÷jœ7Œ³Nö¼çIU=z?H±ƯæqbJ})ç(xGA¡tS‚èIfăMṆ̃¾̀ÿB@í̉?ÑÿÆß V¯kO ï­´w3u{àz]§óŸơ²¦YŸA˜ç•ïu-Ăv?æÈ`\æÍߟÚYna-Û—!™¦–Kó&CqˆvjœZ–\vÆ`ŒwHRa6Í´GCÁ(|ÔÇă6$} c}êA{é0"3C³vƯeÏ d™T™‰‰3¥¨†){Ơ0”‚¢†Ơ‰û4Ơ1ṆvÜư‹"8ˆĐm!₫ŸHbw„FƠđTn ê½̀…¿Ï â0{ûƒ×߃ ‡æƠQºçcåjÏÎæÆX7}ËÙ,¹°€h;ço­̉Dé¸ÁÀ®f0¡±ăé°óV₫IS ̃^éd›¾ÿ?$=©‚«·r#i_Mßaçº̣i ½ë«[N³̉¬ ŸñV6¤™'¡À)Î G§œº̀jqB,x¤ó¶¿ísŒj½!âüapoOí`µ@hºâóIƒơ¶b¼ºqáàï.nzÆü®I\ö79>)m~yg¤,?D>jq¨ ¸s̀¸‚÷×ëßHơxkoĂŒù7Ry|î&sä>́Æươèư€ƒ `ñr¥9kơóÏï–/"ɰp¥́‘6zc2D~áû]ˆ%Ô\̃w\Ưß7®o¼7̉‘F\Çè‰_.ơ>‹W]Ǩüừ%îbnsN₫§åó|V%iŸ8{K·Âe1}3³¨åˆPNµZŸÂó¬([\€›ñk ˜Œ#e±­.+úÊ ‡Æ+63Ts=±à¡]­QS–“‹*”ÂFS£dç¶[9&¡y¯0;Ăh̃¸–s¥Æ’Üi½U°Á&̣jơañ£áM,Oä<.| ‘è>đGä,Å=Øè~x~&-—»øzÿôqÔº ËK pGä§G~æéér\¼âßÀYÚ¼¤— ï4̣¦É‡7 y¨€½£J`Çñˆy±ÊĐ:‹C^zzÏËk˜íúÖáƯ.½m¡ c ¬Øô/h‚ç‡jJƠ,H,»9x¦Ñ70!ƠQ7í»ÇÿbolÅoUØ·.13o½̣Ó"ªªáƒªªă;ŒÂ„AŸGÎ4Ü›/SèÍϽƔ4€ t`  EhŒ©AŒÂeÓ»°üpc17î|ú·=÷ºÄ†à́hº³’µRuÀ"q”îÑeÜ6x[jÙØôCuyÓÜ<½‘KѬÏÂa‘è¢Ñ,]iê܇áă¥Ø ĐØßĂS₫Îäå‘êÓÅƠ˜fa™Çßi2!½Àî$lYFïHê !ĂÇH Jú'lµ 7æ€Q}¨& IÏA*¾&Ù«V›üÊ‚ñéè†ƠW‰.äƠŒ^ÉA¿ÏNåàGđc)9yX =o¨ĂƠ&4âM<.… úBF\¼Y¢·,‘’˜Êô¦óéÖMêíåIM}dW²Øy|7L^[„Ă¥Å‡g‰3o–ƒ>¿{ñ?y è endstream endobj 309 0 obj << /Length 2155 /Filter /FlateDecode >> stream xÚÅYK¯Û¸̃çW3Èe%QÏA»HĐf®Đt¡+˶Û2d;¾iÑÿ̃ó$)_ƯÉû~́ùç1<~<Ⳍa)Y₫kơwàå!±&Ïj¾Æká7Ê‘øüâ zéåö,œ¡ï…»Ûs“©/rÅ~ü²å"œô²~¾“´™‡ỂØØ4c̃âmsÅỰ!-m4lđ™̉É;™[Ë ă¤h¯¢ëË2­€¯É¦ CrªIÈ\[&»ˆŕ©iñŒO˼ˆmÇüÖ6ä7µ©IÀú1óûa™³1ÇeFÍi§êû÷œ°YỉÚí} —V0vƯÈls‘>#+ÂØvlNÂjÏZ¥éÙ/-‘¶TÚGxQבW¢Ña¶6¶N§¶Gv|je8ñ¶5竤pÚeà) Æ$É¢À1r0\(®in¸^$Ë]é|ÚĬTQ;PÍq­×d̀aµ@Ü=M~ƒ¤•³†¶”ïN;Í1p¦µiº9ë')¼AFˆÄ…µ“ØÇ¡HE¤{rÿí•ukØ?ª üØØ¬H%oe‰IRáÊ¢*̉,z«é”ó߃-óhƯp…AFéöHâ‹R_È‹ÎOR>ÿ X²*#RÖ•̉-Ø^"}ĵ5>•©óBưø4MƯ3÷Bz‹í7Ă¹ÁƠ¦íƒ¼zQŸê˜"Đ19'‰×r½RÖé¹Öí Ó£×Đäù ÷j̃'ó0Íc¨'(±á\«uèt—R)ü¿túÖù&àó%¬cF}‘Ê••œ‚º‹Ö`G̀%K 1d‹:9Đ»sy[pÈâ¤×Ôl₫̀MZf?`ÅØ”yö-+ ›ư…Y‘ĐGnp¹kI‘xW#¶RFE¨ƒËLS hH¨§Ec»rỂ+0é'Ö(¡B¤ƠĪ&ˆN ̃Ạ̀.€E_`͉ק&K]ö~-ÍƠk̀@KÉüÀåđ¡ŸÂẠ$›§SÏø„vR/Á¤‡Ü”I1ÅJ« { Nûă}>$Ưă=¯…”8~ưî½äîĂѤ'üÿzÇM¦ï¸ÄS₫ÂÖgÛ‰;ÿä—YBˆ{TË&$\ưsp›„Ôs^iJ@¾lSæiê|0̉xơˆ^6îî4!^<O3VưYOq¥‡(\1娮֒4_óràŸ!ơ]Û1]œ8» çƯyUˆ92oA.½Êß&/_<ÿ}÷¥31 “—/+uÁÿS;̣7P©û́YÛƒsçàÜybX^M¶ümơê_ÏRX endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 904 /Length 2769 /Filter /FlateDecode >> stream xÚÍ[mo7₫®_AôSóá¸9$ £@Ú wî€ Éw…c«±¯dHrÚô×ß3e[¶%¯­µ}@Ư宸܇Ăyy†ĂPrÆÊÁPĐk4>¡Åb\“‰Q¯ÙHñ¸“½*ÎÑ+"§ üèCQAoNO0LÔ1J4$!¡~)ă¢7„O9Â_ÄwKFoxÂƯ;ÜpĐ>ø Ù<>ăÅëO Ex«èï®Öq<¾ÇúA\<Ü£é3£‘ ³O:8 _ÁH(¼'4":{o8:팟"{ÎÙx3₫ç}0\Dy4 *1 “ !à {4²Œ<³ ‘I¸$%› ĐŒ')(4r̉w‚Á§1üEʘ àGöúDĐàKŒÅđD@#+ˆŒ8E A 鄃©| ÀÙ‰E…XŒ$ æ!(É 0€:9ÄGo FÆZ'_ôI0)°ö‰&E,bRÂô}L&eųÉô ´‚¢.ƒz`u½ÉUâM9°`0a“ñ`rÑ5—h )0hTñ s+AI6%êRă{EtĐׂo A¦àF†~9‚ @wĐÀ<$–Á\ȱjMÖVT­ƒzAg‘ö˺KEÖ~ªÉD*Uebæ‘W]¦ We&‰: ´ö‚9ª:{§*¥%¯FÁĐlÂZfØ€†ÓnY[X vÚYuP0Û<Úßuï¿M÷r2™.FƯ»óO‹zÿ÷“Éo£îÇé́h<û Æê>vë~î~ú@ơfÔ½.̀rÉä%ÙÛ { l€Ø¤%¡ßK³¿oºw¦ûëôưÔt¯̀÷óóOs¼|2X¶̣ÂüđĂÿí¥8›a—³ ºV”m¤%9ë$̃¥áĂ¡¸H€ %¡$¡'¹K Á̉#@a² GÁ H¤ĐØ:¢»±øGÀBɦ́Ơ²­.–/Đ—Pxp=‰…-ü5|"Y‚5 ¶Ä²UOâđ‰©Ø?Í9Y ÙĂ]‰¡(QÄjŒaÑbK¡în, (1›à-¼^è@́åÅC ºŒû‚è¹Ø¼i…áƯZtÑfÄ3Ïpkˆ}*–Ëv·–G2´´qÛFåU&i+<< èF•náë BĐÛ¶›n;Ë•§‰•¤ôË[ç·‚ 7< —­é!„9%>XÄ™;`¬ùW0:8g̃î_ÿ₫©ƒ¤!ZdĐÔÉùééÇUß×ÓÉ¢ûZ)Fjo½V‚’©ƯSNï/îÔ†—w¤{3›¾¿é̃¼zmº÷ă?æăºH̃|ºŸđ­ñd1G$¯¯ëÄçÓóÙáx^Ùr}ôñÑÉÁÓ?L• 'œ&ÿæ`†wƒ—ưª”çøªr|Å¢y•vMíÛu9¹Ă¬(­é @”!%«¾â!m7ă½«z9<­lDyènKñ›,è*_0ꆧAæÏ&5k±ÜpÎVîæ<¤«Ë Èb üiÔa%ÜVÜfÚv롆 ́Ơ¥¤j –¢‰²‡‹K•Ơ’÷½ñĂ KHé`ôˆ¢™:jªMBVƠSB|ÍñhêƯËñÜèKµ¯`}@Úúơ… y¯¾`©ç¸ ÛIHÖzơ¥b…ûa@Z]3‡>}‘₫YÇe“³Ö–”WYƯ…ƠƯ×]·úES’‹·¼*ß->₫¡^Ư ¯îóC½ºç¥×öÍ»ûæƯ½ éÅéJôc:›Dwn@@đĨ–Ü­ÛÀ€¬̀C¥I3:¤Ưu÷D(by”¤”ÔĐ€-xÄåÈ’ M!€#E©YŃ^6'X·}:hè̉e†X9J½€ c‘x@8œ±Hâ+8ºU¬Ơág‚\\V—È#G„â²ZGgḉŸ€ª\`΀@H dåù@¢Zµ‡©Ç‹ÊD [¼ßál:ùtpx¼iđ€ê«\T©'Tzb0,$ä 4U™ôÏ]hm­4̀çt 9?+ .P’K@у–ë5ûsÏ•áƠ&‘M¹ñ0 WêŒrx2Tđ%x›¨+=Nå‡V;43¹Ç—Ă#¥G{‹•D#’»[¡ –Yp= Z]Ñ\qSóv”y©;·¨Ïç‹Å—ƒÉ^ˆ|Êé¬ÀÀg=©̣`JÄ7ëY;Øt6¤Å—zj&Ùå錨¢rĂ{p«'Gá5 Đó—Lu×R©]¬ ˜7>XR¼ăÙô|±—†4çÖ]Ï[.±§Çuü±è~Uâ₫[Äk}·loªüôƯ躶¥₫"í²Åîf­§ô«ơđ²Nuÿ*·}²DÈít§\^W÷mÿ¨´ư£̉öJÛ?*©½vÛ †UGu z‚3ZA Á²]ºGƯ¡îÏüOr~pz­”pODz*G ?‘ÙÖ³½ D^Ç> stream xÚ½ÉnăÈỡ_!d.0bH—b:™éd‚dĐèö’ÊesZ”’jÛŸ·ƠBvO<l©ª^½zû¦du·JV~“Èçõüö]Z¬̉$®“:]ỨWuë$]•º\ỨVÿŒ~د7*/£qF÷đ×đ̣_IĂêàwZø:đWƒUĂ·ïàŸÁËfz‘n°,’X·ŒŸö† |¸̣‘×'!a†ï[Ü­yw7Ûèw‹á½Sï±öđ·ăS (åggŸn×›¢ˆ~Æ-ü×ÿ¾ù+Hq“ª¸Èk–ÖC+B9À¥²ŒàNVXà₫É́|,d¹›æ̀@GÜÇûøå¯TÑĂ=“M÷Ö™̀À‹É;!á ²†LU9Ól5P~¿»Ç‹ăẸ̉yU~é Q],° …b²‡ŔAĐ̀Œ¡ôÆ,˜%9¡Đƒzêz†wöÈÛ©ăÅÇ÷°øˆß̣FKdÑW2¼{Àµ&+‹…dvÙ 3÷¼5œ$Q‡‚mij¿°:q%ỨQ%´9̣ƒ§ó($œÂ7`CˆƠ–·‰SĐÉÙ‚[EôŒ”‰8äGÊP]_éÜ/ vOº́‚i1܉ÑBL/̣h-%¼Å“{ƒG†”O$óe!«Aºvï¤f”LG˜‘Å-ùS¡ơ€¨̃äE8+ ‘ !\'àî(„€ŸÊj9NÁ²ÄŸ¶‚‰¶>—ç[°J0älT¦4đ¤DŸÍ#Ÿ ư‰DÛ3#W"g´Pó8Îp£z )„ái€†Z÷ơUà?}ï53²ö{y`&l@»ó̀‘âG ­‘Bª+¶3pæ™- @PX§ ŸvxHáwäÁù#r¼E‘́Ÿ“Ă‹§[ă@i,ˆâƯ:M³èíß>N„!ÄgI¬²œ‰¿YkÅ|«ÀˆàItô÷”ø0Œ ƒ˜£À:ĂPÑ'²̀ơöÀ†{8d}#KĂ#‰́$µ$ ø{âÓ‹71ÅBz±kg9ë̀4H PfIXÎẠ̈Ë ©ṂE¦|f7Ä­O¢ˆ†)Æ­€k\~&âK¿}í[¹|đḮI”p »†# …h]˜ÆcÔmWi95Τ–:gù„—̉×ßĂ÷ ắ—¡,ÊWæïˆó9Ø5‹¼¿̀£x+–«đ÷ü9+%Ơè|•¦q]jf#\©"NtÆ\)ÄŸ i–Gßá £áÊêó]ª*$uaçµ đ}‹Ä´g°Å̉6\P³usă¨b%­GĐ^4™(Dé;†¶"É ¡úÁŸt†ê†'>§Ø,‰ơ(ëGøµ9r1ËÑól´Âc.«à6_‹:NRÄƠ–«â¸Jl±Jï|àPB/Üñk®Às¢€ô‰< ̀9­p‡LE1ÉÄñÀOA±`®³]²Å10&W1Î9*³8KjË’¸n^fA4é)¦ŸíÑÄ_²£â8/ÁY,{ºçº”†àơ‰ï‚××Ạ̈Zj¹£sˆï2XË¢lA§S•ă±#¬å`€{ÃB—ßĂaeÈÆÙ^£²rUqq+U ®‰‹VZ+Ú±ŸĂYúD¶‚oä=;ƯaƯM[”è Kë‘×làb£âÄdQ·p¶’!4\ºă!¾b†Q‡¿ÀØUÅ*Í₫'cGÔäË-GϪëXåz@m5'¹ï*ó*ªÛeq+¾P¤fé5–L¢Vœ9Ç|½©§q¡'A f̃́Ÿ¦XLxÅ/b%IÔ‚ee¦¡ÚNU¾ÂÚ3Q‰¯ M#~#@œ(̃ÿ ˆëD fF¢N«"N«j*jD|f¤D¾à8‹ Îf°}T4øVYÛ·₫N}ÜàK¿̀:1ë<­ëROkh³ĐcmóĂ’̉2ø®Ëê%­9¡D»ÄBp ZÔ9TÎ,©MÁäUs*QuNѵr´3Ö5Œ5&Ÿ†¿,8’vV«Xg³Ûz_™¹1€”®{[”ó¸æ UÄ]ÉhVD½ZFá SaqîM̃N_”·B¤ÆÜO…Ç 7í%ºâ—Îpd;ß%¨°΂v"“j™r̃À½ø‹ÛC_Alå—Ę&Ë’Wb˜Äi?híæu°Ô@q½ëDX;;CAˆÎ¥$ƒ¾,KáWŒ¨¯L‘7u]û¦©N—çºâ2¯a('\pJ́ưéÄîØA{äc¹öüpAÛI‚֓Ζ×RĂ]@ñ%øÄR+ôÔ[`ƯP¥uÇ­Ŕ0º,&£  ›¢XœÎÑ7ưïÑ€@j^´‚•¬ªĐ‹/Aö–ª¶C]¨¥BÅ„ågĂBS7[¨Ö/5·É—§o¯*´¯ÓLƒ †iæräj$ø)t#áR×yml¬µæ«ơæû›7ÿk{æ‹ endstream endobj 319 0 obj << /Length 2470 /Filter /FlateDecode >> stream xÚ½ËăÆñ¾_!8*0iö‹À`ר5 l|±sàHJỈjÆ_Ÿzu³9ĂY¯'́îêªêzW+_u«|ơư›\̃ïõ|óQé|¥̣¬Îkµº¹[Ơ*«rµ*ªbu³]ư’üm:m’ăZ%Ođdđláià9Ó›–¿…Ï”?ølb+;6đàÙĂóÏ-<½À ÷kîrx²Á̃Âó.)c…̃W ©Ö©r¥J₫"›qÇ8јxÁ»ù°!̣4́…̀Y6ö²ùëiyXÿûæï «T™̀ÙúU‘L˜ÿ—"zNIDöLÿç"’<3ÁḰ’X!}¶‘CÉæÓ~'øOÂơ\| /°)›ˆOç™Ñ–Å÷q]Ù¤Ö©Íó˜nqôwü̃6"F°†éó×\¡Y<¶$ºîETŒ7€µrÄíè炱ơGOî0á!ưª"¼3íl·§ ₫Lç§Ï]³Ö%ÈKW₫₫Œ{ÙŒ́QÈG"AêC«[0µMÿ€ˆÖ©±µ§bœàlù;˜ÛMª‹¤o†-ïi„˰‰9§µñ€ÛÍ^ÜÇÓà+"$ë¨\k› r·ă‘¨£1" ˆyøP·(àăƒ°/³|Ẩ£$¯_ă¼ñ'^’Äà °ôií\̉ b™Í­ÇK¨|;|Ơ a\» 3ŸFv~œ̣ȱE ÷§­ `3@(=ĂEi1O¸NNh„ȀəKQ‚É1['†}† ×QđXk†Eá¤b^°(F—‰¿ÎsÀ3‡ư¿¥€L̀đ*o1Ÿ«l›¬̣­ 0GÚS ~Q&%K.v»EH#Kv‚¤‰«²+¥²Ú9-̉2.«‹Ê RWJÛä}#¼î7 ‡̉%[¤3n¼e>œ9¸Vmi“ÑxZ¡Ñ~3¾VË̀H₫đF‚§Ö³À ĂY@ƒ±·:ü¦Ï#™– lmp¹)¬ç33Q…Êl©€âÀçáQÔâÏxKó p`cÆúíư°LÄ‚!ê/£¡’÷d£ ´€Ơ²(=JzèĐƒ6Ÿ¼­µ¼rK iOä‚ Û1Đ~˜åHùè„©®Ê¬ªíÜY·|<̀œWê’Ơ‚Osê|Z«  ønø5%DÜ8%1Qn9lÖÆ&ßơäñ̃ƒÚ!cÊ3±d¼%•Sfº :£XÉ7× z°.³Æ=́‚@ö;9,\Êb4•ÎJÀ0O>”±3Á®".`@2é<(ó?0‘–s$.°nÛ-P“$~v9ï ?%₫ ¡₫ÄoĂHI¤Ç¾#- 7€4J8ù4'x|bp̀̃GÉ3g₫…˜~¤à:¢…ñPÖ¿Pسx₫»c{¬ÊTå¼ö(np Ñ"!SƠÀM²©Í-—¢r`”̣–‰ïq́½O 67|Î--ΦCŒÂAóèé˜Øs"Ê÷^ïW»¿È©© 9¡³Û¬Vz.m¯(m ñàÙA´qèSŒ°‡"„¥Æ£Ơ}0¡¶ăú@ü2©°9đää†à½V©äŸ$‘”P\¾<Çt‚{Åêá\ C”!ûK·c _ËĐ|̉>sA:E/N2ÏM-T'ÎRÀªƯăO'Ö,«faK6,åJ̃ÍÉ„z¯ĂÙfdÜ\̉ÔÂQqZóä´8y¡¬TĐ-C™8ñ¼¡È„¸º~đƯ›¶n}ăØñ(o#I8DŒê)ÖS˜ÔS­ WïÊ^“²–¡bŤé::,_÷Q‰ ͉çÿú;®%€.8¸ùƒỴUG/tV¨ês®kû¹À\dsûĐ–&Ñ-ùÎ=í9M¸¹₫—‰[<ñwèÛp°i|ă *F ¿ù[€éKFSæ½bT-æ­. ]tƺ™tíiÊ “Ê»V¾¨=Ä3eS¡ˆuu™Ơe>ו*2mæ— ‡HECT?M%éƒïIè́¢µÎl1¯ØçUú́e9a¿Dè^ üœa})T嶤Ë[Yª¬ÏzX¾’£C†̣*m>ƒJ ú˜Tb5xÍ\!Ÿî%Såj FøÖ˜ÓøâAhGđZ½Û±ơÙ †LnØc˜<¢_k…]Săa÷EÅÙ#KÂⓨ¼ĐÉxƒ+›¡°i–Èi+iÄ”ªÄ¦Q•0…•±M½]á„ù<³CêÆUcc¢P/E%਴L6ëDɬ–Ó*>@Ó%óhQ_µ˜ÂùèZĆ1ƒ8T³iđf„7‚1jSù£È¬̃ÜŒ·jÁ‘.°B…ÖLV(q́]†ñ¸ä5"KfzJ ñV à­6„ecA-&Æi¿ÔO¾”̃»ï`áF8´¯pX‡N[bCGz̃uEKÖ’ô¼!xM!*2"Ƀłz‡ ₫ IYÖ^äTVăG¡>8£B})LÔ¹Èñê<" [í¨ˆºØ²“Áï*6Ÿ"ZHÉj‹%‰2Ă?Ă…đY•aÚ©uD̃‘ưØW.q]ÿ »~éÚ\•{jÖ|ü}M> îƠ`²çk>iåzAŸËîÊ>”—̀,‡· ÜàP•…ƒ“"u´Ç,YP0qÜCtœ‰ö¨êU%₫,~Á¸ ŸËfhr嫦ê5Ïf³#5̣«¾à–úfç«[,zÖ ă˜Â¸¯I*¾,¡q(~q@•asÀÔư›”¯ Ă—»øƯ ư%dù@±•ËÍS´k?^è²´£LG¬̀ ưöÈŒCg\.¹ù` ¦ª }8Ïâ ‹5´,’’ö¥ J­ÍC]Ó6÷Ø×Tóú'âû\vQæoÄÂźà€"œwô—¸À± m6LólE Y+KÜ2¯35Gt)“ÇGt¹3o fvQU ÔMUr76̣•=.„ÇÖ› ạ̈ \†4‘è¯_üư v(81Ư…¿htn3§Â­ï¢¹nD7·Q9Fs‹—ge™YP¼ ¤ÿèÏŸđÏœCÊ¿2Ư]†p£€·„ùjèVüñă÷oV¿Đ7ëCè6_n¦!àUÉ{Aøæ<5krѦ²º0Ï.Ú¸•À–ÿ-3ô»üß°đÇ¢kËÑ•Áèa5Â~`ăEÿˆ†JNz˸œ`ï[ ù£oèZ!$̃ Lhȱ°¤+ÁCZ¥ÆƠϵNóÎ_e%ö,¢£ă„L}¸yó_\1Ó¦ endstream endobj 330 0 obj << /Length 1871 /Filter /FlateDecode >> stream xÚµX[oÜD~ϯ°¨ÍÜm£R©…¶AQÛ…—ƒău.b7Ùl̉ü{Îm¼³“†>̀îxæ̀¹Ÿ9Ÿ­²“Le¯”ü¿X|ûJ•UeS)-³F—5̀B²Å2û?;,´rU₫Ơ¡Î`´060Î`t‡…76_´—寥l_À¸’ù5ÑùF–Ûd{“̀;z&RxËÓ–ÿN„ÿc+2đĐ9Œ&¹̃QV4_‰åá_‹ŸÁü¢)]p£•Yr$ë/Hÿ©¼²hE)óNŸ|bÿkR˜Ù¢̣QôeröoY»ñ=ŒW0ĂøÆ{/…öRxŸ'<7œơ5:bom{Wk²B‡̉ˆ_~$Vùáâ‰Q´±–b¶¡ßcfU~tË'¦íy»Ö‰ËÇ}Ç'H§̀™2Rz¦¼¦h{í Fâ¿É×=›\˜à}¾YỆ¦;6Q ¹zÉN.l¥+H‚ ,¹Jøk –RÂNÑí‚́¨4yD¿c·í(̉gj¤!—Œđv°y[̀á-’¼‹́ơ”½èƯHíX­r;ÑXC¾¬á7çåTi>3£øó`g!œƯ=œë²‚ßF8{² $œ­™Ñù=¦ÜâĂÂUU“{6Ñ _œíÑt­cÜa8䥅1J,M˜Q™¿Æ!2 ÁăºJ̉Ø$ŒÑ¸(`«ˆ¿{w?w{é®uwkÂLkÂư?5á?U˜¶̃ óøp¨ ‡Q²iM˜Ö„ơ)û¹4˜«‰Qă]MĐRZ¶J2×¹Åçjâç8áL©„³1÷¦î¤&œ·±&ĐÖ2„$u ©,¡̀6ơ½Å6© ç O|bôFÆ|U c[KCđ™Ve£j Ç(È´8e¯Û@–J#»à ,Öù1åï)p“0g¥RÖM]zïAq~\ăÑĐ7eU™Èæ“»`Á¥(ƒL[™a}D;đÈ€â:HY2‚á„©È€©Z₫[SĂ‹Ê}£éøzÍQñvsËT-ªƠ®n#|ÚpIj_ƒ+˜Xh ›qthjÄ=Vù| 7Æ…… ̣1ƯízCÈ¢pÖå?ó~»\~äƒáœ@Bé¼än¼Ø¹ä‡$Éå]+Æ[ˆReP\ =É_íÀdH°˜U°˜yKkG ¶E¯ø/O0åRWlÚ5眵vDˆëÆMÑ«bôb›=XqXIq˜Œ¶â]üEÀßjmq́1˜đ¡³½œÙÊz°áIØÙƯ½ ¾¨ÿ%¡ç“½0ƯÆ;¿Oàé́kmYû°~Ͼ_ œEc¹5ë ÀƠ±¯=¶)S/ŒM9 ¾©j"w(ÔêÚË€¦;®C[*Ùˆ„JÎ!ÖT€FFΙ{X%æ!3Xad'è©ê3-pÂÈM,¸#Àÿ Ê’¯V"xúSù™ïŒ7̣d`¦( „CÔsiBQ̀èÎîE¶ ‰t„'ö¼­ ‚C% Pà†É[ÙèÛ—OEÆN€Í/û Ö#Dî1]øë~ñqG¶â¾b·́¾{:‹öơÖØ’ü@€’ôXâ–ɇc&IDâăÎCpTÎG…'Hi€xÎWĐ̃´£›‘·&L6ÿHèÛË>J´ù¯¸pÊxQ̣p4B—QôÙøƠî¼Ûñ‹hçÔ“Åß3I#́t Tcа́&/™dT₫œ÷ºùÁÉ—Fp¼I†ä¸,÷é[!áƯˆ˜ú%ïqˆV[¦¸1piÓZ°Ê‹̉ø̉̉Eʺq™…̣ĂÍ\U¹̉Ơ®‚D5@"9¾×퓯ø:ÑR<ùsđ­€ íÊ*Xv½\³ˆ(ôí˜s„Ä‹1Æ£zJà°¾±®†+~¸‰o§ü½lBͧÊ×ĂFˆ12ă+S/H)Ól0¡™)G̣̣Xµ̣².±³^‰Î'ÛËøq !B*»<Éx̣îơAöÎP7¿~³o´¼Bq~Ïb‡í̃ơx9—Ó’9èĂ^.(„˜Ÿ8?“{:–bÏók´±ï©XA¸º4å¾~FƠeå|VÔĐ2D¦̃·áåâà_Jj?I endstream endobj 336 0 obj << /Length 806 /Filter /FlateDecode >> stream xÚ…UƯoÓ0Ï_á7RiñüÇFÀ›@âa¨HHÀC×fm¥¶Í6ØÏÏN¨6U§Úñ}üîü»³`k&ØU!^ø?/Î/¥¬á¾’Ío™—ÜÁÊÁ½2l¾bßËw³ªVº¼›Ẹ́²ù!j1û9ÿæÚdæÊs¾*“4t̉èÀ×È=Èd ̉‚A8ÈóD0Ssÿ|,ÇđI0KTb•k¸“–Ur\A,EË7°¬hùÊP Yö ‹¨Âăz÷gq&@̃FGæJó´zŒä6J œ`qt–º˜¤w@ø»xƠ’¼>bË6Ä6k5‰\æ…G‚I•çp¨jϵ‘l¹/~¼‘F¨ -Ă‘q"l̉?|<ÿ¸—́¢+®á—¼VÑm•ù%RÖL…ÏI©tỊ́„đ2̃ĂúáT™F”̣ơ¬j¤+¿öxtXÓW¼ƒM‹$DîY ˆ/ÍËt$ă * Ÿ4.™â•< U—÷Ѱ;Œá;\Xĺ@Ro¶‘‹z"UdѦ›©¦üMºÍ¥\¨\mËùfL=zX Á¶=m¶˜c ‚vèi[₫c°J÷±Mqs“9Ühv·)?=!†u\ùáv—§2´Üùú¥ ¨7y†H”îxu"û¸9̀” dÜ#nf•²é$‚̉l©Úv¬¥Me%×ÚO/ĂQ¹EănT²B—sê‘J;›‘.µÀ‘œă᪇moà(œl’ft³c°?Ñ>¦@›~º™~À/5ô5ƤÆ@Otˆˆ¨§³Ç`ÚÊZ7\7'ïẫFôÙ‹²ˆÚ˜cêâC'<˜oSÅv\3Z|¹*T_p馬\¢¸Ö@æĂû¡H°‹¤5Q% •U:5ûî˜Ñg„ŒOB¡•p¼10mâµpq̉OñÁÈÿ p̣ÛX endstream endobj 324 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 339 0 R /Length 19495 /Filter /FlateDecode >> stream xÚíy\ÍÙÿÇÛ„¢ÈRBhQ ![ IEe)K“%¦/CË “m c) Æ”adL3Œ-´O«¢}Oû̃­ë÷~ôỳ}Üß-Wh¹ƠëùGó9û¹ŸÏ9Ÿóü¼Ï¹Ÿåí[ºÉÉɨT/@p¨­­ƠÓÓ[³fÁ±cÇP!¨^€€àçç·k×.JÔÔÔŒ5ª¾¾u‚ê ¨T/LJJJnƯºuæ̀™/^´Eyq}¶´´”16›ưA«=qâÄ7¸3£¢¢è»ndxx8ạ̊YaPPĐóçÏ[¾Ï=£Ø×4?88¸…FÅnưÇưû÷£££›Öjjjªªª*ư·“º̀QtJûXTTÔ£ë£yóæÍ¥K—èH+//oIùÎ^½ Ăïµk׋‹khhLŸ>]LLŒÎơ|<ó¡å›RPP $$Dæä¯&kkë–¯“<Ö³gω'2#Jöööô]<åi›)ÿŸ₫á³NCCĂmÛ¶µ|ôôô\]][±ih³¿ụ̈˦ùFFFNNN-Y£’m¤W¯^´ËăÇúô)§@bb¢Úƒ:éÑ{èĐ!JTTTĐ̃Ñ)µ%G×§@ǘœœÜÂ… «««ß[¸³W/èp¶lÙ2jÔ¨ÿư—/]ºtذaééé­R₫ăü¼oß>’Ë÷ÂËËKFF¦ipH~2d9Âîø³ÿ₫×ÏYYYT‡-ô³––çÄ––FµJzajƒÖCöà4eg„‚æ§7Ú;’!9³MưL13­¼…Áp¨^бDFF̉ñöèÑ#î̀ªª*uuơU«V}byiœ>^WWdzڦå-Z4hĐ *ÿêƠ+?“fÇ{îÜ9NæÖ­[×­[Çíçđđđo¾ù† ïß¿?%%…ÛÏwîÜ¡S’»»; T¹§G–çös³®]»F½•VøÅ_́Ù³‡lÉg§8~¦OmÚ´‰,ÄP_¿~ưáÇL$aÚ£Ÿ₫¹¡¡Ÿ95`À&ü¦ƠJKKùââbîy¡ăÇsY,Eª̀đÿF¨À­[·høá:9ÂlµT^^Sæơë×L>£Ù«W¯̉^õ¼ù̀™3555œ©°°đôéÓTÈQáííMçª"Ê¡2̀™‹ûè¢VûöÛoéS?₫ø#çX¢ƠR=;88Đh‹Bîf·¼²²̣Ô©ST†Ó‚¹¹¹TVN»ó矾·sñ©^Zđ#FŒhïââBNûẠ̈L°1zôhSSÓíÛ·KJJRâñ3©^\\|Ú´iÔ%I°&L Î¢«««  àææÆ‘C³åÉüäR̉•ç™jfüLƯj₫üùcPDM’áø™<Ó·o_ê‰dHZ¡””3/M”——Ÿ$t}Jy¦[­Y³†SFTT4;;›»Qg´±±a ”––öêƠ‹"U>óï*O'eeå¦å??₫\LLŒ™ ’!i€Ïñ3Å9GeÊS/!c0:¥’̀4crr2•üø1Ỵ̈?óY!y¹ÎŒM+ḍßµSäç2J¡Ê$‰QÊígªÛ¥K—2|̣ä 9³%~¦b¤µ÷sçÎå̀r/[¶ŒQñ{¿‘›„„îـŋó÷3™mÆŒ111L>…¯œ‰óËÅƠL>÷üF³~&!3†g‚v½)M¾ươ×_™ü'Nܼy“gËéDObç̀0ÓèŒNœ-çl!§rŒ­¬¬˜Åµk×Ra\MZẹyêÔ©Mó/_¾LV¡h"¨ËÿA£¼÷–oêgÎdọ3Å*œD9” os>Bæ¡Cư]~æS¿Ÿ)Ab¤.%(d¢À‰ÛÏ̀,:y›:/•§¼~ư:£SêkœU‘Ó®\¹Â§<÷üÆ»VH‹œ’.|||ǿù™ăm‚â@R·ŸI,Tíä4 ØbccùÏ?s (½%—{ựË/s’gÊÊÊz÷îÍÔƠ{¿‘ª.:×p,wö́Ù÷ÆÏf·nƯ:tèí/ÅđMg}™±#@>~®©©¡Mµ¶¶₫î?(ffï+Vá?û́³Ÿ~ú©Ù™üyóæqNC£-¡¯hÖÏÿư7ư¥SjRRÉô¥Ï=ƒ[À§C~ ÑbÓ9^¯=¤2¹ÿ ¾ụ̀̃MừéÅ 44&“szÏ”ç|dÆ ¶½ËÏ|Ê¿×Ï´#ÔéX,E¤‰‰‰Ü~&oHJJ̉ÇÉÆ^^^={öäè”û÷Aí̉Æó)Ïñs WHăwooo>;E~̃½{7'ơêƠ¦¦¦oÿÿơ¤ÚÇaÆÑJ–,Y¶5ëg™ơó‡N!ï̃½K» ¤¤ÄÉçÿÜ|ÿư÷C‡å,Rmsû922’É'3ùt\Ñ Ié3gÎܹs§³³3ăH¤>¦|@@-RṢ÷3Ô(A;ëÀ3¡m¦233#KÓWSgË)¦ àU£UѧY?3ĐiˆZmmmj&ˆ´ ™™™Q?âŒơ.\¸@ ùf‡®TéV4Je©1ºæô ÚÚZ-)ă|„<đ¿ÿưû÷ï×ÑÑáY!Ỵ̈ïơó‹/ÄÄÄȇ“'O~Ûx+ăg²ơPÎF2ù̀à·Y?ó)Ïø¹å+dǜg§ÈÏœ|…/¾ø‚ÛÏä Ærl6Û××—[bị̈s||<Ơ3”x/4Ö S ×È<SñÿFnh¬D8×^R›2.--¥|Îe~t1ùtö§sçB }P1ú¢ó3}ôË}X̉¹&::FyW¯^e.¦ô5k†γåTíÜơæââBç£wÍop °¼_¿~œß=øthtIÊƯ³gOrr2Ôè8¤Î¢¢¢ÂóĂÜG”gºçqqqYYYæææ]PèÂ=¼¥̃1v́XÆ“Ç'u0‡0?D¦¥¥ñ\2ǧ<?3AÑàÁƒiœËíg3~0½ƠÆÆ†̣™8¹Y?ó)Ïø¹å+dǜg§ÈÏ}ûö ¦º=zô(iœ¹]…ăç½{÷̉˜=##ƒj‰äFcpªg?Óƒ!;‘ ©½è Å\ñ^H‰4\¢öå8ó]ßH103Fà9Ÿ̉¹fụ̀å¹¹¹duÎïƒôYjˆuëÖQ̀ụ̀åK*ĂäÓáDûÎüÂKĂ æu*ĂÇÏsæ̀¡“µf³óÏtR{øđ!}#·´r:)Đ8¬¾uëVjú5…ë<[N[B»Fă úöĐ¡Håùû955•ú $99´UT9ÿ₫ûïưû÷ih@Áü«¸¸˜vđmăµ+Tùï°T†Îe¡¡¡Ô³à%Àá?₫ ĐÑEÇu"[[[999ê>Ü× Dy¦[ÑñO#V*L½€ù›»•””X[[‹ˆˆP‘#Gr¦aID¤b‰‰‰Üë|Wù–ø™bTêtän?¿m¼v: ¬¬,¹ˆEệLøú®ùw•ç̀o´p…?¿k§¨’i°LF•””¤ÀŒ¢>Î5ăg̉Ë’%Kè[¤¤¤ddd8ÓăÜ~úZù˜1cH t¡—ªª*ç̉>ßhffF»ÙôăÏŸ?'ŸSTL»@ûÈ™g₫í·ßh̀Ơ£G5ÅÉo¯\¹’NIC‡¥M%ÿSrùø™‚gZ‰¦¦f³~¦̉¹´LßNç)΃O<™1cFŸ>}hĂ(~ sDÓ-§í#UmçÆ™+ ùø™Bnª¨íÛ·sr¨)n¡Ï.[¶ŒNR̀ Lt½{÷nÂĐêêê9rdÊ”)tê¤̃Agccc:˜!%ÀÅTçp4HGgñăÊsº!ü臘¸1;;›'“z+s=[ Ë"äíúÍư½å?t…ïÚ)ªZŸ+é[233ÛóPùĐo¤ư¢Xçw@Z ‡7Èåà5=™Ëß}5ϰ‚¡´´´éJÜPÓÀ¡%xï̃=: PPáëëËÜ-H&?3;Ñx)A£*fœÎYôí4¨¡=¥PáĐ¡Ctb"?Ó9ưCkÀÇÁö̀¤qû¹ËPWWGc7f„d¾hÑ¢ÇÓ@‰ǜŒ›fúÎS:::OŸ>]±b-’̀µµµ---ׯ_Oƒ ̣3óăí 9GƯvOB‹G5;ƠÙ9räÈ Aƒ8³Füñ‡„„ÄùóçÉÏœé,ÆÏ„‰‰‰±±1sû§––V||üÛÆ ]¬¬¬ÈϤk'ĐZTVṾ<+‰ùùµY?߸qcĈ̀$Ɖ'tuu—-[foo?cÆ ø{ ¯¥Đ­¸~ưº̀»kñÛo¿éè蜀ÂÔÔôóÏ?§„¦¦¦««ë÷߯¬¬́ááá́́LiJêèè<|øpƯºù§Æ[UUŤŸ>̃ÆÆÆÜÜüæÍ›̀ †œœÜ¬Y³-ZÔ¿2đ?ü ¡¡Aaó–-[îܹCeHÈ555***?¾|ùrÏ=“““é_÷îƯÓÖÖ&! ~†Ÿ<đL2PbÊ”)5c©9v̉¤IăÇçØ›{ö̀××wûöíL¼aƲ²2ww÷·×Ó§O§ z₫üù̀,‡©©iLL ü ?xàdđóó[¾|ùưû÷W­ZµgϦEÅ?ß¾}›̀Låɽ۶m£¨[ZZzÍ5duZ\½zµ‘‘ÑúơëÉí´6̉2¹— çääĐg©ă/X° <<œ¯\¹B…ÍÍÍ]\\:¼àgø…g’¡¤¤DEE…ÇÏ”5jTuu5¥---ưưư7õüƯwßÑb^^̃´iÓ(Áü8Èó; Ï)æè€ŸágG<“ W¯^=ỵäÛÆß —,ỶÔÏ:::uuu”¦P9((ẹ̀åË_~ù%-FEEѪ:oUÀÏđ3‚Ï$CEE…™™Ù̉¥KƠƠƠ9¾âßđöö¦ÿRđ́èèø¶ñú:̣³––V§öü ? ˜Q4Ï$Cyy9Ỵ̈l6›™âàÄ`~Lä¡¶¶611±  ~†Ÿ‚Cqq±©©éÚµkÅÄĘ‹¥ágø Lœ8ñøñăŒ¨utt˜gtÀÏđ3 Ă100à\¼±oß¾{÷îÁÏđ3 ÉÍÍ=s挧§giié‡vó]»v½m¼=\HH(55~†Ÿ­EEEÅôéÓOŸ‹‹û½ ¦¦¦d{ø¹µ¨®®ö÷÷÷̣̣rww?{ö́_ưÅf³ùäéÓ§Ç0{ölCCCø¹U¨««#-ÛÙÙÑ^øøø 0@XXØÜܼ¦¦æCW…ù üÜlƯºƠÀÀÀÙÙYIIIYY9 àƠ«W¦¦¦W¯^…Ÿ4ÂĂĂ---©Ïúùù½m¼>Ö̃̃~Ö¬Y»wïf øúú˜˜,]º”:2-ÆÇÇÛØØPÄuóæÍfËĂÏ‚̀˜1cJKK)±wï̃M›61™ÑÑѤhøAC__?##£²²räÈ‘ơơơ8v́‚©ëƯ»w¯¬¬LSS“ztJJÊÔ©S©<‰EZ¦üêêj̣đ³€³`Á‚Jdee1 âÊ•+NNNđ3‚É“'OÔƠƠ)addD=—7nÜpqqyøđáºuë˜2cÇ­ªª¢ÅÓ§OGDD¨ªª²X,̣đ³€s÷î]99¹ßÿ“C­&++ ? €PÜ«­­MƯâg )Óßßưúơ555***?¾|ùrÏ=“““oß¾­¤¤Då·oß̃ĐĐÀS~|h4”ÍY ¤ÑÓG¬~ ƯX¼x1E˳fÍ*(( E???77··Î4øơôôœ;wnEEŨQ£![ZZ’“›–‡Ÿ» đ3m Àóçϯªª¢´©©iLL̀–-[₫üóOZtuuươ×_ËÊÊÜƯƯi±¨¨húôé,KGG§®®rV¯^ÄS~†Ÿ­Å•+WŒŒŒ̀ÍÍ™ÙăŒŒ ‹… .Y²„¹mÁÑÑ‘ºá‚ ÂĂĂiÑÛÛ{é̉¥xđÀßß¿;L/ĂÏđ3…ªª*###SSÓ3f0WnÀÏ80àg:œ/¿ụ̈Â… LÚÉÉé̉¥Kđ3ü ?ĐZđ<‰8r䈉‰ÉÆ‹‹‹iÑƯƯ}Z#‹/¦Åׯ_[XXèêễ¸qcÇÁÁÁ»wï666Ö××ß»w/ü ?ĂÏ´%’““IÎ?FÂÏđ3­EÓ' yzz9sæmă††ä̃•+W¾m| EÔ`O™2åÍ›7l6{Μ96geeMœ81** • ?ĂÏ´.eăăăágèp?“œŒŒ¬­­çÍ›WXXø¶ñuđ3t¸Ÿ#""Nœ8A‰ĐĐĐùóçWTTÀÏts>}êàà`bb¹tˆŸËËË“““ß6̃O´hÑ¢ ÀÏt[ÈBBB°%$$ôíÛ÷Áƒ¨“̣3À¤©Qö́Ùó¶q̃~ ËSÚw ¨½½½™4Ål®®®¨¥ô3«)œ:t¨˜˜˜¢¢"q222àgº$äaêïS¦L±²²ª¯¯g2/\¸À\M\¼x~?SƯ»wo'''__ßÈÈÈ[·n™››6¬  ~ ‹A±±sÙ3ùùرcL~uuµªª*u´Ư»wÏŸ?ŸçU° £ül``pøđà%K–9r~ ‹qö́Ù+W®0é„„„uëÖq₫E±ôíÛ·ưüüÊÊÊPQâgEEŸ¸8̀S§N­Y³~ ‹qï̃=}}}fZƒ³-[¶ NÙÏ ÈÍÍåÉôññ±´´„Ÿèz*¤µpvvnO?ỵ̈Ë/jjjÊÊÊß~ûm\\ܸqă._¾ ?Đy©©©ºu륯^½jiiY[[‹jùD¢¢¢<ØÎ¿̃½{÷×_mhhHJJ̣÷÷œ Ÿø’““i\̀=F¨÷nt: ###IËí6¿1eÊ”€€ww÷1ÿÁyđ ü À»(..~ôèyƒY|ưú5|™ë¯ÊÊÊ (Íy,?øP̃¼yÑ%˜œvó3Åê%%%tb ÿÿPCĂÏ2YYYnnn {÷î}₫üù AƒÎ=«§§gllLcáØØX̣̉¦M›æ̀™Óô1ï€?l6;??ŸÈ̀yyy¦RƠQ6-ĐÎ~®««³µµ‘;v¬³³suu5ü € caaÁqïß¿îܹœøÊÅÅåÎ;¨¢0snnnXXXLLLqqñ»µ³Ÿ9¢¯¯O›D›¿hÑ"R4ü € sèĐ!ƒ̣̣̣§OŸ :uÊÆÆæùóç—.]¢E£ZA²³³CCCcccKKKùng?S³₫ù矜Ejb]]]øA¦¾¾~Ưºu3gÎ\½z5…U”óóÏ?¯ZµjçÎ999¨Ÿ–›9++‹̀×Âwă¶³Ÿ¯\¹bnnΙ¤:xđà¾}ûàgđđpKKËiÓ¦Q‡­««C…|â .333$$„ÎnôF’vó³r#¢¢¢bbb&LèׯŸ°°đW_}? Pddd Ñđ–ÅbY[[óÍ7¨“63U&™9!!á#&‚ÚÍÏô-!Í‘””? Pøùù:tˆI.Z´ụ¡Đ©-===88øÅ‹•••·’¹¾îÍ›7QQQ½Íđ3mJXXØüùó™Û´OŸ>={ölÔÉ™9--̀ụ̈åËO¼U§ưLѾ­­- dddDDD,,,jjjàg~øaàÀ[¶l™9s&ÏMà]ÔƠƠ¥¤¤%&&¶Ê•Ăí́g:Ss3?¿~ưÚÜÜ|ï̃½đ3HRRRxx8nÖn 4ÖHNN&3¿zơªcÎvöóÊ•+™ç\1DFFêëëĂÏ€Îkf 5É̀ô·ƠÜ×Î~öôôܾ};gñĉVVVđ3Bii)çVAÀ“)Z&3SäÜFTmg?SÓËËËkkk;99Í=[JJóD,ø€ÅÏÏÏØØxÖ¬Yººº‚óĂR]]””DfNIIiÓ‹ĂÛÿú Rô?ü°uëÖC‡¥§§ NĂÏ ;!$$ÄÜ;¶qăFÁùaH ¨ªªzụ̀epppjj*‹Åjë¯kg?/_¾|üøñcÿƒD ?Đáøøøxzz2é̀̀LKKKÔ 7•••/^¼ 3STÙfî?»¸¸ùûû‡₫Ç«W¯àg:œéÓ§3Wk¬[·Np^ ÚáTTT$$$™322êëëÛó«ÛÙÏ«V­â~>’@?ƒnÎùóçû÷ïomm½zơj¼C(//§3 (ÚÙ̀âçßÿƯÊÊ*//~@ÉÏϧñ;›ÍîæơPVVGfÎÊÊjhhè¨Íhg?{xxôíÛWDDDIIi\#˜¥¥¥±±±¡¡¡ÙÙÙhæñ3Cÿ?˜ ©««;|ø°­­­££c‡ ᇒ’’˜˜˜°°°ÜÜ\AtÈ󑸜»GágĐ 144\»víË—/8àääÔ=+yybxxx^^@Íí´³Ÿ –,Y¢¡¡¡¦¦¦¢¢2räÈåË—ĂÏtÔg̀˜ÁYǘ³Ị̈óó»U FEE‘iÇpÖ½ứêêºpá“'O.X°àúơë±±±­²f‹Ớ pág̉ĐĐàëëKñ3s« ưƯåë‚d2™‡ä,ø'£vö3}#ϱcÇR夦¦~âóëè333‹&çSÍ—””N™2ÅĂĂ~€ÁƯƯƯÔÔTIII^^̃ÇÇgÆ ̉̉̉ÙÙÙoŸólggw₫üy §»¼™óóóIwQQQå‰Öí́縸8))©₫ùgûöíÓ¦M›8qâ>e…Mß d``?@x{{¯]»–ÎÎΓ&MºråÊ™3gÈÉ̀ƯÜÔưI×]̃̀¹¹¹áááÈw¢-oÿë7H§tc±X'OüùçŸ?ñ6%:üx2ƯÜÜlllàgˆ}ûöƯ¿Ÿû÷ï§ô®]»bbb$%%]]]³²²è˜¿~ưz63 ',,,66–yôSç¢Ă¯¯ûD"""”••µµµé0³···²²̉ĐĐPUUMMM…Ÿ`âgcccJÄÇÇËÊÊnܸñÂ… BBB:::ÆP8Ư%÷º¡¡!;;;44ôùó祥¥t/ÚÍϳfÍRomÛ¶}â«««ưưư½¼¼ÜƯƯÏ;đ̃ëdÎ=«Û„¡C‡Îœ9Ưt=¶lÙ2v́ØÅ‹;998pà»ï¾Ë̀̀́ª;Kf¦½ ‰‹‹+++ëÔû̉n~¦êzÚQQQ­₫]ơơơñtqÄÏ ‹QUUåááABŒŒ,((ẹ̀×6SÇg̀œP^^̃ö¨³ßŸ’¾råJIIÉyóæ%%%1™>>>ñôZøt1Y©ªªººº̃¾}ÛĐĐĐÏϯkï,© 88˜̀\YYÙeö«³ßŸBăµ;vP£́ÚµK^^₫åË—đ3ÄÇ9Ïp~ñâÅêƠ«»än²X¬´´423ơư®÷ªñÎ~ʸqă8BZVTT¤ü @@@ơn&MCËO¼Ñ@©««KMM%3'&&v=3wˆŸ[ư₫ssó₫ù‡³xôèQuuơS§NÁÏ ›SSS³hÑ¢cÇƯ¿Đ A·nƯêJfNII ¢óNuuunÄÎ~ÊƯ»weee<ÈÉÙ³gO=àgh́äÈ‘o¾ùÆßß¿ḱQmmmrr2™ùƠ«WƯá ăư₫”·o‹‰‰áÎyôèÑùóçágº̉p€œLf~ưúu÷y÷Vg¿?¥Ÿ@ª««“’’È̀)))uuuƯjßÛÙÏeee¶¶¶£ÿĂÑÑ~ u).. d.gê¼TUU%&&’™SSS»›™;ÄÏ_}ơƠܹsï̃½ûï$''ĂÏ´ _ươ+(̣Ù¹s§¤¤ä… :©™é䜖–Æb±ºmƒ¶³ŸW®\ùçŸ fUÀÏ ³G›½zợôôTTTœ1cÆƠ«W+++)JHHèD{AÛLLfNOOïæïCl?ß¼y“ƯáoÅ…ŸA×ăï¿ÿf^ ¸páÂÄÄD;;»·Ïí,v.//'3‡„„dffẦí́çiÓ¦kDTTTBBb́ر̀âÖ­[ág>888PbçÎ&&&úúúO<ügÑ—••ÅÅÅ1f̀à­Ëû9"""´9^½z?đ‰ÄÆÆ~ûí·.\›0a‚µµ5̉‚¼Ù¥¥¥ÏŸ?'dggẰ>¿ÑÁ¹1~”äää™3g̃ºuËÛÛ{̀˜1‡ü9ç’’:§™srr`fñs«?¿~Ư‹µnƯºk×®1‹gÏ=wîœ opqqqLLLXXXnnî{Ơ?wêç×ÁÏ ;SYYieeEưH\\ü·ß~£œ½{÷ ¬Ÿ‹¢¢¢ÂĂĂọ̣́`fôs«?¿~Ưÿï¾ûîóÏ?2dÈŒ3¢££'M4f̀˜]»v à ###I54‚†™ÖÏ­₫ü:øt>ldd$%%5|øpQQQJJJ0àĐ¡C666ÙÙÙ¦¦¦ëׯ´—¤#¡₫Fp?·úóëàgĐø₫ûï©«.Z´È¢gϧOŸîƠ«ơ&UUU;;» 6Ü¿Ÿ"gÁ¹¡›‚d:S[¢¢¢ÿ?ø™C«?¿~]5kÖ|ø0[@6º3maHHH||¼ ̀®ÀÏ­Emmí­[·(–7nœ§§'ü @SkÏm 8™¢e23EÎ03ü ?đ¶ñjç©S§JKK¯X±‚â稨(̉ờ™3Ûgª««“’’È̀)))‚ù ü ?£@ûọ́åKIIÉ#F(((Lœ8Ñ‚D=ỵä!C†-ÛúÛ«ªªh‚ƒƒSSSY,~†Ÿ` ¨U^^^EE…ÂfOOO%%%WWסC‡ÊÈÈPPƯ¦_]YYùâÅ 2szz:̀ ?ĂÏpSVVFZ^ºt)IRNNn̉¤I”/^XZZ‰‰ơiDRR̉ÜÜ<$$äS̀œ››S\\Œ†Ÿág>ˆªªª›7o._¾\\\œbæaÆ͛7O^^>))éS̀œ““R‚J†Ÿág>ˆÂÂB‘#GöîƯ[¨''' ‹;w̃¸qă#ÖÙĐĐMf~₫üyk]́àgøt+¨O1Ï£cPVV&Q«««›˜˜Đ16dÈ€€€5sfffHHH\\\›>7 ÀÏđ3è”””“EEEç̀™£§§7hĐ ruß¾})SJJJDDdûöí-_[}}=cæ„„„̣̣rT/ü ?đqDEEM4I\\\II‰„¬££Ó§OŸ~ưúQ2eee}₫úë¯w™ùåË—dæ´´4‹…Úđ3ü Ú Ñ£G¯\¹’,­©©9`À€ùóç7-VYY™@fNOO¯¯¯G½ø~m¯¯ï AƒÄÅÅ×®]+++;pà@KăÊËËÉ̀!!!™™™03€ŸágĐ|ươ×¢ôèуyÙkß¾}srr8ÊÊÊâââ3744 Æü ?ƒvàüùó’’’0Ï™3GJJJUUµgÏ`₫[ZZúüùóĐĐĐ́́l˜ÀÏđ3h"""´µµ™'l [[[ >|đàÁÅÅÅ%%%±±±df ¤ñâl?ĂÏ Ưđơơå<̉Y\\\LL¬oß¾̀³é¶oß–›› 3ø~íI~~>yXNNnêÔ©ăÆ•””¤@ZUUợåËáááyyy03€ŸágĐ₫œ>}zÖ¬Y$çQ£FM˜0ả¤I***t̀\¸p¡  fđ3ü :„̀̀LƒÁƒ3³3oÚ´ÉÉÉÉÙÙ¿ø~B}}½•••˜˜3í}ö́ÙƒQø~íÉÖ¶‘mÛ¶ikkó̀cpîœ={v@@ª ÀÏđ3h6õ¼fÍ:t'MÔ¬™)³¬¬ àgø´7nÜĐÑÑY¿~=µÔ„ ¸¯—ă¦W¯^Ÿø¦3àgø´œ-[¶888Đ_uuu¡wcjjZSSƒêđ3ü Ú__ßͨªª̣1óêƠ« P]~†ŸA[Ăf³É·¿₫úë† ”••ߥå̃½{ïܹ·ø~ícæ¼¼¼|ùå—cÆŒy—™{ôè;ü ?ƒv3snnî¥K—Ö­[7zôèw™YFFo6đ3ü Ú‡†††œœœĐĐĐ'N(**¾Ë̀"""ÿüóª ÀÏđ3h3gggîÛ·oøđá|~TVV®®®Fø~í`æ̀̀̀   —!C†ñeâĉ¨1?ĂÏ ­©¯¯'3‡„„=zTNN¿™%$$N<‰Jđ3üŒzhk3§§§GGGó¹jạäɸÙÀϨø¹­a±Xiiidf ›ù\›ÁAOO•àgø~nSêêêRSSƒ‚‚.^¼(++û^35 ~†ŸÛÚ̀)))dæ;wîHKKóײ˜˜X`` * ø~nSjkk_¿~Mf~ơꕳ³ó{cæ]»v¡̉€Ÿáç6¥¦¦†œLf¾ÿ₫È‘#ßkæ=z‡Ñ£GăÍ&ÀÏđs›RZZúüùóĐĐĐƯ»w‹¶$fNKKC½?ĂÏmGIIIll¬®®®ˆˆHK̀¬¢¢‚z~†ŸÛââ☘˜)S¦´Đ̀“'O.//GƠ?ĂÏmDQQQTTÇn‰™g̀˜z~†ŸÛÂÂÂÈÈȈˆˆ«W¯ µ ###<ÀÏđsÛQPP@Z 500h‰– ™™‰Ăø~n#Ølv~~>OŸ>}ï MÆ‹‹™€Ÿáç65s^^^x#ïƠ²ˆˆ.™~†ŸÛÚ̀¹¹¹aaa?₫øcK·M?ĂÏmMCCCvvvhhhppđ¨Q£Zbæ=zDEEáđ~†ŸÛÎ̀YYY?vpp:thK̀<}útÜ ü ?·䨴´´#GX[[ËÉɵÄ̀ñññ8€Ÿáç65óëׯƯÜܬ¬¬Ü3kiiáH~†ŸÛ‹•¾gÏ¥K—8đ½Z–””$“ă~†ŸÛỒ§OŸvuuµ°°‘‘iÌüøñc´>đ3üÜF:t₫üùdæÅ‹÷ë×ï½ZVPPHNNF»?ĂÏm„£££¤¤¤¡¡¡›››©©©´´4-‹>xđÍ ü ?·±±±¤â¾}û“™ŒŒ(Íß̀·nƯB+?ĂÏm‡§§'É–äLÑ2™yÁ‚?ó7ó… Đ¾ÀÏđsQ__¯ªªJ²íß¿ÿâÅ‹]]]çÏŸ/!!Áÿ‰{÷îEË?ĂÏmÇ;w˜GzZXX™ơơơ{ơêơ.-‹‹‹;;;ăÖ?àgø¹­Ăf…AƒYZZº¸¸̀™3‡ôÛ¬–¥¥¥óóóÑÀÏđs[k™6†¬+++K ‡gÍơ.3oÙ²Íü ?·5eeeäd²®¼¼¼ÍÎ;§OŸ.&&Ö́M˜€Ÿáçv ¼¼|ôèÑ̀#+W®Ü±cÇÔ©S›5³²²2iMü ?·7nÜ ñ1ÂÖÖvûöíÚÚÚ"""Mͬ¨¨ˆ–~†ŸÛ‡‡ö́ÙsäÈ‘k×®¥æ˜8qb³f&Μ9ƒf~†ŸÛaaa%%¥ơë×Ó·kjj̉bS-KII…††¢€Ÿáç¶æîƯ»̀Ó˜Ççàààè訮®̃lÀ́ăăƒv~míçââb •ñª¨¨lܸqÓ¦M̀-M9uêZø~nS?'&&.\¸sÆøñă)`̃°aƒ²²r³f^´hÚ?·Ÿ###׬YĂy>†°°°††ÆÖ­[ííínjӬ™¥¤¤^¾|‰†ÀÏ­îçÚÚÚ€€33³̃½{s?¤HKKËÉÉiƯºùåÍM™8q"}M€Ÿ[ÑÏ555Ï=Û¾}»ºº:Ïư×dæÉ“'oÛ¶ÍÎÎNQQ±©–)º₫₫ûïÙl6*?·¢ŸïƯ»gmmƯ¿îË•EéÙ³§ÎÎ;W¯^­  À£åAƒưư÷ߨpüܺ~.--Ư¼yó´iÓ˜G1kjj*))IJJÊËË0@__Ÿ̀lcc3dÈn-÷îƯû³Ï>ËÍÍEUàçV÷3ó´ÏÇ÷¯~TÉx3~nS?gee™Rầ™3_}ơi™,-!!¡««Kf¦đ˜¹ñ„béY³fƯ½{ZÀÏíăç²²2ccằ̀̀ªª*%%¥^½zÍŸ?ÿ믿¶µµƠ××·¶¶öôôÄ“åđsûû™ ¤yÿ₫ưëׯÿùçŸưüü^¼xAºFàçfa±XEEEíà纺º°°0̉rpppuu5!üÜ,µµµ... ̀“ß$$$ÔÔÔ¼¼¼ÚÂÏô]¯_¿ zơêUMM ǜ{{{33³èèẹ̣̀r6›]RR8eÊ>ŸJMM}ÚKKËw=û‚lLN&3'''ăF?üÜsrrx2I¤|>u÷î]·&èëë¯\¹’§duuuRR­0%%¥®® ~n!&&&̃̃̃<™$[›]ƠƠ«W===9‹UUU‰‰‰df ¶afüü¡DDD(++kkk/[¶̀̃̃̃ÊÊJCCCUU•¤úÑ~&3¿xñ"888--Åbá ÀÏGuuµ¿¿¿———»»û¹sç>î‰Cäç³gÏ&$$™322pk ~ÈÏ̃̃̃™™™03~4?sÏ?ü ?ǜ‡ÈÈÈ!C†7ÇäÉ“%$$dºRRR’’’Ưdgû4̉Mv–µoß¾Ưdg©ĂN4ɸ“£¢¢’™™ 9ó'$$dÇƯdgÿúë¯Ă‡w“½té̉ÇƯmÚ9zôèüÑMvÖÅÅ%00ágø~†Ÿü ?ĂÏđ3ü àgø~†Ÿü ?ĂÏđ3ü àgø~†Ÿü ?ĂÏđ3ü ÚÂÂÂn²³UUU%%%ƯdgËé&;KÍZYYÙMv¶¨¨/Ñ@›RWW×Mö”Ífă• «âîî®®®®¨¨H‰.¿³“'OögΜ骻éíí=ỉ$Îâ£Gf̀˜AM¼xñ⢢¢®´§ K—.=pà@—objS=== ›øøønØy»!×®]£[RR’““£©©yûöí.¼³õ¼éß¿EEEe#,«ëí#éwÓ¦Mƒ 8q"“SPP //Mµ“““]—ÙÙđđđ™3gR›rüÜU›˜º§¬¬lnn.¥½¼¼ º[çí¬Y³†ó̉؃®_¿¾ ḯƒæÍ›W^^Ơ%åL\¿~ưË/¿¤®Êñó;wôơơ™trr²´´t—ÙYGGGrÔÆ9~îªMœ••ơøñc&ưï¿ÿöéÓ§»ũî ̀¿ÿ₫;“¾xñ¢™™ỸÙï¾û"ÉqăÆIHHhiiwƠ=}ôèÇÏgÏ¥1“¦RHH¨‹=W‡ÛÏƯ¡‰?ÿüs++«îÖy»'t ß¿Ÿ3×1wîÜ.¼³W®\9tè% i`Hâê~vww···g̉l6›üÜŦ ¹ưÜ囸ܹsC† ÉÈÈèn·{2₫ü7n0éóçϯ\¹²›́8ơÜ.|s挬¬,çÇÁnÛy»vvvßÿ=“₫ꫯ\]]»vüʤ?αV×öóíÛ·§M›Æ¤£££ÇŒÓ…ưÜ…›øâÅ‹rrr±±±Ư³óvOîܹ£¡¡‘•••’’¢¤¤Ö…wöäÉ“óæÍ«««{óæÍ¤I“¼½½»ƒŸkjjüàÁJ¬ZµÊÙÙ¹ û¹«6qrr²¤¤d@@@át·ÎÛ=a³Ùtîׯwï̃Ưµw¶¼¼œªÑ£GÓ₫®Y³¦¶¶¶;øùmăädŸ>}†ª§§×ơ^§Âíç®ÚÄÛ·oúÿTVVv«ÎÛ)--í>ïÊa®ŒínM̀b±ºØÏ‚hânØy‚Íf£@Đ8qℵµuDDj„úúúmÛ¶Q"11ÑÖÖè\TVVv®‡—••}ĐG:t́Ø1´5 ³àçç7}út99¹#Fèëë?~üøÓ×™‘‘qâÄ J„‡‡;–[·nưæ›oZk›íííåååẃØṆ̃œœyơsLL̀ªU«¶lÙ"##£©©••EÁmŸ>}lll?¾`Án?ççç›››KKKkhh0±:‹Å²³³£ZçÁƒy¶033sÛ¶m´Buuu:}P®®®°°°’’’¿¿Kö155URR̉¨7774:@đ©««ëƠ«é‹;3 @NN'âƯ¼y3éZZZ‡®¨¨¸qㆨ¨haaahh¨ˆˆÈ={(Nvpp ·744œ;w´\^^̃t~ƒâj[[Ûœœ//¯Q£FQ fÍơæÍ›øøø¾}û&%%qoḮÙ³©'™“‡K™9s&ÅÛ¤zEEÅ?₫ø£¦îÉÈÈ -$93‹&L8uê%(¦oºGiiiK–,™;wnuu5­jôèÑ´Z44 3"++ËCçˆ#̃?ß¾}[GG§ÿ₫zzz½{÷&Ó’Ÿ3ö7n?“)ê–ăÂÓÓ“âmWW×AƒIKK;::r+úéӧÆ ă,R|N%ùø¹  €b{Đ́Û·™¨€Îˆ©©)gJ–âØÚÚZæ>ZtrrâüËÊÊüLÑ/9ù·ß~£è”Íf÷êƠ+..ǜ8¹%~¦ơËÈÈE™̣ùùù”SUUEk¦˜ü¯¿₫¢@™èæóäóââbf‘âísçÎññ3wwwú¢×¯_£‰à!C~ùå b7lØ0räHR3#}đàÁy󿑇³³³)̀&?§¥¥‘ŸKJJè¿ô!!¡¨¨¨fư|ëÖ­Y³f½mîú:KKË={öĐ×åää 8"j//¯¹sçÖ××Ów-X°€ÛÏ”©¤¤täÈúWdd$};í¿×ϳgÏÆ€ÎN@@Å¥ưÑƠƠ?~üöíÛ+++333•••ååå鯭­-3¿áàà0bĈ‰'®X±bÚ´i×®]kÖÏ))) ĐÔÔlê爈ˆ1cÆ >œÎ̀Ơ9›™™Ñj.\Ès×I`` ƠÆ 4h™œÉäïg̃é«Éêh\@ ¼¼¼ººúmăE'Nœ¨ªªâLA𔬨¨ {¿w…!sV̉Z-Ï‹èÛy~©ä&//¯…8¢:tèăÇ/]ºDú¢–l-€¶fçÎVVVoïX_´hÑ’%K>ô6p­‹ÅrssËÈÈ`ƒƒƒúé'T €ÎÅÿ‚´9 endstream endobj 339 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 345 0 obj << /Length 2569 /Filter /FlateDecode >> stream xÚ•YK“ÛÆ¾ëW°r1X%B˜'®$U²cÅNUT)k­‹äÄr7ÅÇXjµ₫ơé'0äB–s 1₫zzzz¦{ªÅfQ-₫ù¢’ïwW/^½iÂÂTeS5fqu³hL™*³ˆ).®Ö‹…[¢¤?øÙåÊŸïÚjwƯrå’+ÖPnZ®t[¨ơíûñoƒÍ¶8Aq˜Ú~½ú׫7¦ªrd“Léj ‚0Rwđ;ÂG_Ë 3iW:heë̉‰È?ƯùKÀ­ë¢Ạ̊t„†˜HØx#ă;dŒ*jlˆú©d@‹ -WîˆÛX¸Ø̃ß# 2́÷K›”D9µơ₫8±\Úú¬ả&T”«áIR?U†æN¨ïáo=aP… ß•qeđ këz¹²ÁmÍöpLp·ŒˆÍ$̃½´µ]¿Æf_<’:n¹̣öơK&©ø»?g̉é̀IŸ`4́H¦²%áA7üe-°â±NPÛ-A‘k™Æ·Œcßûµ,~eY'ưĂH̉ÀĐ?TH•Æy6i¢'…₫…»È¤sÛqNgÍ»jÊÊ…ÿ˼-­ñ:Mù„`Ưƒ˜.©¸¤I¬Œ7¥…9€l¥³‡|O$åZ6 ‰tÉ´±2ôlÛØO«m¦â/êăÀ L c¹̃PG§jcà.6²J"ù´ ‘×éÔ³Ùb+ÎéxØ 7Ô|U¬”wU.W̃4Åk6Gj6AØđN>Xä€ß&>·¾=RDü₫<Œ{'ûcÏ…-I:‰î°=×]…fÖ4…çB"Ë'4üí©uÜ}Â-=Û§ẹÅÅØ íµvtY 3j(jâ]lx,î—æ‰+¨‰\Ú>«Ù'̀èä™̃`P%›uơqg`…&wÏù®³1²́XûºDOÜ?í¹¡EC\+[1éÀd©/́…F"àçVơ¸º₫7‘¼)ÙÓQÑÓê?ˆ~¦•ÀJQF̃Ë, đ±‚Å-!̃gn"´æ2 ™ä²HuœÊºƠ°œĐ^á‘1˜Ô–:êqqÓj?q½;œdÆ"Ø4c”…?´+ăPZN̉¿°¼Đ?´Ü€ÎØN?ôÑ%¿vØÖ:3ê§ÀĂÙjQ—M]‘‡C^±´Nxư}¹ ÖŸùóWµâ")\V^îÏ̀×ù+_ ¿vÍ$hăoB£ư×rl…æQh®à÷3ü~ß:™{SúèÏÄÍö"èNÎŒạ³2ºœÜ½Œô®¢cXaÎg kbY…ñùfN§ôé”âư_º₫ó<^^hXµ7ˆ¬÷¤µ9SÖqdóÍ,RuF%ơ¼2!•­YƯáLƯ{}”[ésky~¸-Êîd>Aê;1ª½X@7 qÙ”}VRûV.­  —:#¿}ÉA0­Ï¤É§ø%ú·đ{ưUÛ|®,Y'—­mÊWÚ2ü=˜©©¢)̃Ă|I\ôø­÷hlñ>*q­-@´Ü¹©xmm(]cϤư@üF„ÆáE¾¶è·¯™uæLå[Ë$ơFÀÙ^3ơˆ-}° ¨TFËö-C‰£–k™¹IY¯‚Ûjfa>¸ÙfÈökÈ6C¶lSÖ«ÈnvÎ>Gv²dç¾€́2d§È.e½́gçrdŸ!{Aö‚́ư²Ï½"û”ơ*r˜s̀‘C†9rä2bERÖ«ÈqvÎu3ä(ÈQ£ Ç+rT䘲^E®gçœrä:C®¿fau†\+r²^EN³snrä”!§¯!§ 9)rJY¯"7âFđŒ²ç§Ư.ø0@ÁÎ]L¸£Ñ&¦½z²&ioĂä„1;ỵ"ˆ3•Ñ‚…̀µAÏW₫Gj800Ù e”ơa˜˜_†¨ĐDÑœ”)<îéG°)7üQ₫‰ëî w,sö9kœ…\ŸG›ñºoIp`ÜYTuœƒ!Ùz Ï9°̣®.₫‘%=dw°*œX{ขb[ø¶”{b<±ƒơv?&ƒ½rIèÑ\Z© eˆÍL¢ÓI¢ó羓ø¬âp)KivíC¿‘›?…$G Ö WCê v[Îz|a×MIĐw(Ù®W•î$çâ`R]«AÆæ@\;}’°æĂ²K–ûä>Ü‹’6%F¢ÁÈÖ"Ê Å°/Úq‹Bv 3èít¯«6%€¢WƒßszÙHÂW›#'ä=…̉i ŸSfe^¶l»³µOäE é´=•ÇĐf€/QpÎfP6’•'i!LŒºM©¨ó¼$[Ö3Ï®Íñb~̀q223É•D ¸iúkZg̀P‚ x¼åƠơƯ2!f¶fT²3’¯u çØ§Æ̀ËÉp :£JŸÊ8©’Ni‚s£‡;}5aÉ„u?2Ưƒ/+`›£â“x̉¹Óù”ø¼d«m[ÇÛU‰:bçäĐ¢”;zÍuṛĐÓƠïjët­¹0*+“ÑÊѵ¥«ºÛ5whêØ’˜Ơº5*7ù£Á½(e=j~îáb{gtØ$É0½À₫(;¿©Q¢ưAÓ€/1[Ư¿à°BW±%¹._Ûée+üÄ¥‹Äm¦ëkñtw5C~ƒzâ¾Vøvê‹ÅĂ£ ‰Ä₫Ưê{Í«7è}±´ă6üG¶¹¹”½cÉ÷7ñ°}É/›2]̀:ûâûüÈ]Wèæ ¨Ê!¾èE½]9¥É+ˆqÀÈ'T5\  âXs형­Ưx̃!Æv ¯ÍQ.µ;w“0tùƠä>´̉e ȧ÷ÍÚù•pÏN5 :›ñ¢éÑëS(ôXt™Ó¦A»döàÚr´đNYÄ\¬XĂ)K© ?gù1•¡‰“Ë’ñ¹{aj~" ¼=ˆÄ¸3®^üê/ endstream endobj 354 0 obj << /Length 3261 /Filter /FlateDecode >> stream xÚ­ÙăÆñ}¿B0,XÑ́ṇ°ldž71¼Ä‘K¢BJ»;Ÿ:›ƯjœcfÔguuƯUÍl±Yd‹o_ẹûƠư«/¿©ó…1iSvqÿ¸hLZgfQÖåâ~½ø9qw&Ió»¥16ÕïĐ=í»»¥«dƯAo\ đw:ăÿwÎ&2»¡ÅơÛü_wÿ¸ÿ₫ËoL±0YÚdÁă²Å̉V©“Ă¾¥-'ø¿Eh+T—Ñ1₫ÎØè8kª¤äß5 µˆJËưvèȇ;[%Á<ñ$̉íäă₫íyâániˤ?"4̣ˆç ÜÆ…x4á5Œˆx\ ‚Ç ¯£írü:BJ₫¨8í§£["̉Ÿ´È&̀ªGÂp=N%;AδÖR÷pbôFëÎÖ€ ̀²DÉ‹œˆÓcz·̀³2y¿RÂá_7đúqY/›ßéNÇe#úKVdĐ}?Âßy'=˜0¼ù2ÄÁ=gar'R‘e¡X¸²LA†€ tưÑ ÄtJá[+P:ÎÙRFTE¦^pïJ) "µtMbC©ä;Z+l‚Ab]‹ÿDa¡ôÜÜĂ/Lö¿b×MâSăYnÑ7Ow¿dÆuˆ@cÎÈÁïö!”0X̉#F罌vĂ´¹%åö‘.¶DäUZºVµ‰ñ±$̀qâJUƒº*ÿ"'„!wHÓf¸QƠ©u¹2÷ă.Đ€¢¡íÛ/₫‘6tØåĽ¡¯ª_f° n ª âwÜXѽ´9Ѷ¯;}`yeöéÿea]̣Ơ/^‹€=¶^ỹ̀ ®sif¼à*¹–¤ÔË ­RI ^̣Q²¬̉ÚZ=M˜>‡—µi‘=Cëå³çγ©ÉÊ9Îå…MÆ-ÁÎĐ₫b\ÎfjäƯÊ2Qø ^rîqÆ1“Ùô«yi÷{¶ƠÏ`ă†É€P7f6^đ¸Róô.l;˲êÍAơªªÔœ}#ӛˠ€^¸z¶6 nüôí«ÅÏ´§ iơ«œMŸ«Êä~+€üÀM²§éxæ,6fP{¶æñÍ7~²wd;ßá=wDªÀ°ç·¨đ¼™"±hă¼Ë„¶«o_~ÎôØÔṼôƯˆ/áäáOÈZ ÊÍ}’ă3QÓÍnĐX̉T[¸Ô<0ºv…·ß¢£fí́dd puD§}P}yNlæ>̣¿&ö¿ Rx½vC¬#•₫嵉¢9 Œ—EloCSÚspà)Å.¾À,®²áxÛL.E¶ûSWPZ1ƒ2 Êl€\äÉ,ZGÏt¢ÓÇNÔc^Jr¬"Ú@¢0ÙÊ'>T™3÷È4lQ²qT¹Đ1v<Ô æœe*dĐù²1É[Ú—Oă»Û{̃Ê7Â[óºó6 ¦Ê´,MLU²ù-wf80ÔúgUOh·(ß»‘;{Ê7Ájº!\½ÀßƠU’ë2ËöAÀSîMX¯y˜Œ!9̉6̉½Œ¥ ̀ư$è' OüsK9pNă:ܹ'7xKä†V%êˆv·1jwÁ̀5t:8ªö“„ÎîÈ¿“øăÊ›‹M@÷ƒ"àIñÓḌ<Áöµ h¯(и8 Á3‚#]èÆh ‘ –>Í >o$Å ›Ïæ†.»¼øï£pØc_ˆmª&ùă%×,bCzü%N¸rB÷˹h–°(’’XjÊ@nª’¸˜–’lĂ¯$˜*Ø0‚₫ '¶i:ˆ ÷¬EœŸÑ¨Ör¶K2káÉS±,8›°è‰[̉%… ±™˜Óˆ2iëƒÜ«gĂR¾LÇă¯Åï¿Fºæ.¬ÿtNl»£²Óm¶¼k¶ñ̉– –?ù‘Ä$U\ĂÍsơ đăκÿ1„ !?+bØf6®ó¸ˆ¡»„î©U hçØMÛbåÎkE´Œ#L`†L ïParVy§½­ü†nÉÄv't‘D¬€;C:JXèªIê2tcaî•`vèuđ¹myË©‰f\¯"Èûhÿ¨‰mK%X²îUÉu€aаbJ¬êTí{¥ #FÀ;›ƒXđQµú'¾£TîjopaJt¤•®¤|Ø *tWíH-ÇJÈØHÇ¥¢Í4$¥e$—™ ĹÆ «2é)¡̀`?¦*ͨœ€µ®'CÇ·ç 3Vy«c›j2&íĐ®ÂL©©Ơebóߦ»Á8.¦%”Ă²MÇw vJâùQQ¤³÷¾B¨G^—Đn9“üIiJ¶YÑW*8xª„ejÛpË Àăr ød è/gÁ|—pĐĐ—q̣ÇÛÙc÷Ă„’j µùg¯!ÑFÉp̣å|è,|Ă Î̀íw¼n¡ÁvM/ •̣!¸äĂE¾±YAy­r¸AœwB̀U+ÅYp+XܰR<±^é±½¢;j¡Y»ơ<øb«.Z!ôơÎk(›‡vÏ»¤*¡đú@É >Ha·Ê>Tª¿â.Aœ¨Ú¹-₫û¹Ă~95uZ•¾R柛^JCmµOÛ±đwÿbùׯٕö§+³H†¾ÊÓ̉Ô±¿|{T׳•À!wlv?µü(>ÍU’ƒ>Ç?³iVÖŸ­ˆP¹Ô•>{µÄóE±W‹gÙ;*£”w^Üd·¤¹gd˼D₫Â*É3¢/tùĐ%(wåô^¡*À́ª˜êÏÂơ?²ÜîôqĂ*®fTZ+l¹£^£ú­Ú…±.Írăî¸Tô(´e“<—™Öin‹°øëÏé'ÚP…ĐO°^RRTƠW œ8¤ªöè<•»»q~¨?Æw‹f%̣–&ÍẸ̈ª@é—PD½iƒ½̀ÂT«RA₫´²Ñ¾î¨̣²ñƠÍ•́ –U Fê豕¬»(‹ä^=y%æh¯6G⇯ÊÅ¢àÂ×Ûó´Ë?-j›ëÀs±KÏÆOÔgɬĂ×À^‹ư¿Çđ£œ œ^rß°5yTuØlƠ¤1üSs}6»Y˜ _äḥDû7>îgĂª6@–”nưt¡jª×$“•ó5ÿ~¶–̣¤*c ‘ưÂQªú£Ó!.TÙM[–Wiæ>_A´²i™»+[æ*3½MøÏ©>y­èacÙ¶“_ă‘»é'î!bL_sI_½eT<áÚ¡ị̉úœºơ#‚¼öY!¦ ±™̣+pÓ£c“‹[UH~µfç°€}‰ü~¬P7ÔÖ6ç LĂ¾F.>ÎÏœ÷̣³ơ彩äÇÛуđơWák´Ÿn½ÈœuºñV;½ b®{ÿºc’ï4¢¦oBn=Ơ´Ê›KÑL)›Qr⟴đ4 6ơm WˆçÁ¦çe¹êÔ„Đˆª8wÏd¹¨›Æ‹å{‘Q“`‘ArúØMغ–äwx–œ-k—ÖMSŸ6¹‚" ƒ|I~ä-›åÑ›™ºaa Œ÷ü*Ê6)…Ú]9 Ø̉$o½áOh”àŸ»Èờ́(I⨅ôó/<ÎÔUj̣H8qç¿f#B“BªKƒ'ykE¿ơÀ'9q"¨£9¬£í¥̉g2’Í^½a0™ ‹4«̣ÏiH³Ú“b|ö5b”û¨ˆ>h ¬©ÅÆ̉WcfJ~èfQ ƒç§Ô¼‰‹ ¶´́âê«„ƒÀ¹¢ˆÂÁĐƯÅDtq$àÜô1‹DDR‘plZ©twµ:~¬Fëz b)~–rÓ×X8œr̀4®ÏY–*́sđ^uÍè›ø]ùëûWÿqo•• endstream endobj 359 0 obj << /Length 950 /Filter /FlateDecode >> stream xÚ•VYoÛ0 ~ϯ¶‡:X­I²äcǾê°= Ø=u}pS§)–Ä]́ôø÷#)*–{ CAXơ‘üx¤Jœ %>OÔ?¾ïg“—GÚ(QȪPZ̀¢̉²„Uî´̀L̀ÎÄq̣v:“%—Sl@ÎA~)§¦'³¯đ<³ÑsSIÊ?<`•‘ YĐ@̀äd ̉„3´Ơ€¬ø\̣÷áă¹‘¹uO/¥ƠAbШ#R­¬tƈ´’6w£ ;v¦gÎ@Œ¿z ËÔ/Ï"­5î× ѦïâzÎûĂ½í=$ÏY£e°Sæ̀sD*øx9l#G»È³vÑzN{R N{;ttʾ/øx;ظfoú!/ô?xĂ)Ÿ{¯"ïV|¢‚¡?Đ}ÈÄb¿aGùÉ3ÛmÅd\óƯ!OùnǺÏBur< E¹áHĐ¼t_€à÷„¡/Ù›%{fø₫0Êd‘€:3 ?A>èˆÊqŸ±ĂẀIË™X ^l»,ê©qj6új¨™´¹¢ói´Ffă>#ÈɧÙûR - §¡…ɨ:1_O₫Ld¡­2¤-éÊ–6á ‡/¿¬øØN¾Ă_@M6pưøsB+Y©*&Ëe©yüq…ï¸ô3 {5M!†ägw±Ipa}4̀“R#đBæUùÔè{¼x=̃È׸´y€ĂDíđÍ<´u»ñ®ö”Nrîœër¿µ|ëU»%é ›PĨPG¨Úë] § —̀–›Üx°úf?kü”-”TÖb*¤³•wÛ³—fÎQ°ơ/ưAG.ö\ßÍO-ñ³j{¿!ÿđd‹¯»†Đ¡÷# Q¢‰„Ûyús½ñWS8®·́lM-ÜPs¥Y®BBéñ­E6˜hØ£=}pĐy ¦`̀©*ùÖöüd(́¥˜æ†ƒ§8×bÈ®ç̀]j¬J-/öê;ôçĂŒª‹¾,î+]†™Öû=¤¡L–äyMƠtw€çœ€º¦[¯TăÇ.4úÇÅÛ¦©đXñ*œw?º°ö?€6/ùg&Ø/€ ̉H[׿QƒÈUä|æ!«ơ&„§ÜHơ¦ÜÁÕ.X«†ƒå¸Q\Lfu?9\(*£_ó•OX8¥›¯d:*KƯÉQ5PVoëùĐ${cF?ÄN½!̃̉,ƒ!f$Mß»ÿ £JY`«æ•¬,ÏAíFÊ0²ÿ&Wơ endstream endobj 350 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 361 0 R /Length 87945 /Filter /FlateDecode >> stream xÚ́XÇûÇ÷å(̉{¤(" ‚¡¨ EQ± D¢(b/±w»Q»&]“X» ö;¿`Ă–Ä»ÂÁÿ{ŒÙÿæ8ăhœïĂĂ³»³åƯٙϼ37¥¨ˆê?©·oß̃½{·¼W=₫üï¿ÿVáqyyy[ ?,Ö_ư¥àœ7õ5jTTT Í5‰R…ª²ôùçŸ_¼x ´̣WeeeI$¸ĐÈ/Ê_ơêƠ«=z |T1üĂ?,^¼øÆ Î`‡ Bø<~üøĂ‡+_£9xđ ¹jÏ=Û¶m[¹r%vÏpkMÂ5Ư¹s'6fÏ ̀¶oß^ëëׯ•enÄÊ\Vcûøñăø îđƯwß}óÍ7HöÑÑÑwîÜ‹‚ƒ_}ơlăD©BUYB¡ÿôéSl É•·RŒô¹iÓ&åÏ:tèï¿ÿ^.¤×-Y²¤OŸ>ăÆëÛ·¯‚ÓÖ¯_OøŒZ (Ñ»wod|%₫7hĐơî¹sçîƯ»GÆŒsæ̀™Z“@bË–-á?#­’#p*”enÄr¯ÊÎÎ&Pºª¸ÊĂĂĂÇÇ ₫å—_¦OŸNÜr@›k¥ Ue è¸wï6Úµk§üUpÓ̉̉ˆ¢¤Nœ88aÂWW×;v|<1Œ¸"¨³m• ø\PP@®úä“O”¹?iy>räjëË–-û₫ûﱋÚú­[·jS4₫ïÿ‹ŒŒ¢±MÜ]’h•enÄr¯ÊÍÍ‹‹Ă6ê8#GTp‡ŒŒŒsçÎa#44eÊ\lă«m̃¼™k¥ UeiÆ S¦L¹páB÷îƯ•¿ ©W]ºt ₫°̣9Å {ôèÑÇĂpƠV¬XW\q`ùœ¼ïnÀ€ẽUÖ­[?xđàË/¿„SÂté̉À.jMûF£F>Œ$‡ễ°aĂvï̃ºÛÔ©S•enÄÊ\ÿụ̀åË£G₫é§ŸÜaÑ¢Exh^^^||üÛ·oó(’’’PjpM¢T¡ªDíÚµ °ưă?”¿dæ̀™ăµtẹ́̉>PèăÑ»wïV­Zµ`ÁÅƯ~+6₫úë¯9sædee) X@ƠvÔ²Éùį»víZmĂ«W¯ûGgÏE”¢î6₫|l(ÿÊ2˽ ̀G‡ Åw@ơçLŸ>4bΈyÔ\ÈWæDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEU^½~ư:;;[nĐÓ§OOŸ>-7èáǤ¿AIƯ¹sçúơërƒrrrJë¤zé̉¥ÔÖH&£!¸úóÏ?ÏŸ?/sđ̣åˤ;:W‡ÊÏÏ/ó†Ï=;uê”̀Á7nÔ²ĐDH*H0ÊÄ3IurnË=¥d_¦wï̃‘~2BÆAö¡ ¡ª:Ư½{·k×®rƒV322äíß¿¿´Á°›6mZ¸p¡Ü %K–¬_¿^nĐ”)SjñÜ!!!2G=Zr4ÄŒ3víÚ%s0&&æùóçẽÅ%q̀ƠâÅ‹Ë́6ö_’ Œ2ñ }óÍ7ß}÷’'=ú×_•9ø×_Éx‚Œ£ÂÜbTT”ϔϔϔÏT”ϔϔϔÏTT”ϔϔϔÏT*ëàÁƒ½{÷¤6JMMU0v{Ö¬YÉÉÉuêÔi ONNNÆÆÆrƒ̀̀̀äÙÚÚZZZÊ ²²²²±±‘„»…‡‡₫ùçoß¾•k*…ÂB}"633sÍ5¥ÉƠ«Wó́É:::2ïëèèhbb"sĐÜÜÜ̃̃^æ ^ưúơeÅb™#ÎÎÎFFF%#<(( 0&•f-^'¨OÜâC—,’ˆ{́Ø1X[ZÄ~ñÅxSöäåË—Ë¼ï† @E™ƒˆ7D¬̀A\»uëV™ƒË–-Sæc!Â÷́ÙđQ,‹×QŸ¸…³úË/¿È5ơ÷ßOJJBR‘›üJF‹‚T'÷d||™ƒ[¶lY±bEÉ“‘q},9GÏ=[}"–x3Ÿ\ZŸ´Ñ̉¥Kđ¹eË–j{=zôPÀgÔ=ƠÇT¸FíÛ·/-ôË/¿üá‡ÔÇÚüEFi¡x‘rMUƠ‚‡¬€ÏŸ~ú©Z%Z3Á’)ưƠÇÔU«V¡"‘ÜN†”ϔϔϔϔÏƠ,øü 4 ₫s¥ßöåË—ª ß |¦|¦|¦|¦|®R>ï̃½»OŸ>”ϔϔϔϔÏUÄg‰D‚Đ/^ܺu‹LåM9Ăóóósssïß¿èĐ!v:wd iÇ,Ÿ_½zuá²ưôéÓG=z´´éß)Ÿ)Ÿ)Ÿ)ŸËÅç›7o^»v Q=mÚ4¹ăèk%ŸáÈÈH ¨sçÎvvv999çÏŸÇÇ9rdhhè‰'>|hoo—hº÷íÛçáá1hĐ úơë>¯Y³&::OZŸ?¾nƯ:WW×øøøĂ‡S>S>S>S>WÏçÎë\,¤ưû÷ẃØQñ̉?µ†ÏhƠªñ™MMMÁçlܸXF<ôêƠ :::dÅO??¿¼¼¼°°0̉[ás@@.Ä™“&M"‡´}ƒ̣™̣™̣¹Rø bÑ6lvA³gÏ~ |ÆÇ‚'L¶ƒƒƒY@8111¹XC‡u5jÄpëÖ-ggç'O`wÏ=à3f̉%hÅàóđáĂ)Ÿ)Ÿ)Ÿ)Ÿ+…ÏH HíÚµC->%%¥K—.Iû^Ü××÷ưû÷?Ö̉̉ŸGŒAÖK½xñâ¼yóÀçÆsùœ°}ûv́7øÏAAAdHé† öîƯ‹ËqÊgÊgÊgÊçJá3W RQí’âß׬Yƒ¯™ Ç8//ïæÍ›È±±± ñ™3gJ̣977×ËË ”îÚµ+á3˜IÚŸ)Ÿ)Ÿ)Ÿ)Ÿ•ѲeËÄbq¹Æ§|ÿư÷%ç$¯•|~̣ä ™.´‹‹Kaa!9₫êƠ+Å÷$-̉\•y å3å3å3åsưç¢â5#₫₫ûïÄîÖ­¼å   ̉fx«tQ>S>S>S>«̀çª}£¨x=)‰DRmöP>S>S>S>+Ïç­[·››ÇpTZ–¬•|®fQ>S>S>S>—Ë4iRmŒ]Møœ››ë́îníàĐ>)‰̣™̣™̣™̣Yy>ççç#yS>W‘̃¾}«¥¥¥Ư°¡nj*ϧ|¦|¦|¦|.¢íÏjÀg‰DR¿~ư&MØ~ù¥ơåË-[R>S>S>S>S>«Ÿ—/_””8>7jÛ–̣™̣™̣™̣™̣¹ÆùüêƠ«-Zܾ}[ ùLæè£|¦|®j>³# äêưû÷Oà.ùhá.ˆ)w5Ø ̣Y±1d–Kç—fí›7oJ¶!«0>…̣¹µbÅ ¤mlTŸsss{ö́éîîÿ%§±’H$'Nôññ ?sæ 9øøñcä WW×Î;“yPAfd   rIUóY®U\!r¢¢¢|}}-ZÄ\»vmLLL³fÍ.\῭đŸÊâ³ 1̀ªC‡«W¯®N>Ë:Åï‚́––æíí=lذœœœ*å3Ø…g¹¸¸8;;Ë½Ă³gÏ2Éœ™·nƯ²ø·tïß¿Ÿ——ĐáY#FŒ8₫#ºàM988 JÉ4;2Ú¿¿——7̣·ˆ^$ “¸ÖBÇ›4i’Ln¢₫s ̣‰I½²øŒªcÆŒ¹qăF»ví’’’dN˜3gNhhè•+WæÎkbbBÖ\0`@ëÖ­¯_¿¾qăÆºuë>|øy9""YÆßßÿøñăUÍg¹V±"lmmÁ«ƒ:99mƯº=mü‡Ù¸w¨>«ĂD ,àñxø_m|–uß%??ß̃̃n’Á¸qă«”ÏxPÇásfggƒ{2U6|_ĐI[[›đ¿úG™™™Ÿ}öˆ §ÂÈȨk×®đK;Ü$,, ŸR&¨RøŒL±nƯ:vèĐ¡2‘9õ<́â³OŸ>Eäß¼yç'&&nÚ´Iµàppp0¾ñÖ(ŸƠÏ{ö́óÀµçó‰'́́́H} 8̉̉̉’)å‘ơX̃"•Â{G~455E!N¶jƠ¤Od[8°°Ú7JZÅ 2d;‹ l#3¾ÎŸ?Y›DʇX=|V!†ÉöåË—‘ÑPV'ŸåFâwAJè̃½;[U×ĐĐ`«Ïx‘Ư»w“íÆËäDx¸-}¯^½‡<`›8J³ïøĂÍ>räå³đû9*…ÏYYY‘‘‘́.JósçÎqÛñëÑ!ñ5 CGGçÎ;ä`\\25’"ªZÈ­ VUóY®UÜàÚ-_¾œl#·Ö«W¯¤ §Ô®D>«Ăt¨‰À́Đ¡CụYqÔ)~è§Ÿ~̉ƠƠU¦íHe>ûùù±¾ALL̀÷ß_̣œ’|†ÛB™l“̣ññăÇ$a-Ù– ª8ŸQÏuqq!Û¤ClÉsPaù<~üøèèhTB===ñj/^¼(ÓZœ#Ó|]^>£ Lù\)B oÛTUq>#GwêÔ‰Ưussă₫pûömĐƒƯ…‡Œ]ºtINN¾ÿ₫Î;‘QùR₫-*Îç̉¬b·­˜ÿöÛo2ÊÄĵÈêá³j1#iµmÛ–ƯE₫b̉ Æ0 û[ *YpÓÓÓÍÍÍqíĐ¡CGYƠ|>uêTđ?ÂÓåZÅÍMk×®%ÛÇg}hö́ÙȪl¯">Ïœ9“˜™™©B >|kNNèƯ¦M› &üơ×_UÇgúÄÚ;v(ˆ:Å©å̀™3VVV_}ơ•’É \|ñz  8đ¨æ“ăM›6•»v Ÿ‘aÇW‘¬W.>÷íÛ—X‹¯fllLæååƠ¯__1Ÿ‘8SSSÙ¶r¹=åâsAAÁ´iÓ€%‰jO¡|.©¨¨(¸¬•Ëç]»vùøøp«`23 Â=f‘OLL$̃уØßeºu릤ËT>?|øpĂ?B…N®U¬È§NÊVß"""X&€{Ê´VÏ(Mˆ©‡R!†gÍeÿàtÁ³ª:>Ăa&Öâ»”uSË‘#GLMMÉ̀ºUÁg®1̉·áúơë¤hCAÆueø ŒĂ¯6>sHZ˧OŸNfwưú5²\>ĂÏwvv&]¨7)ó¶j|fË_|nn•œ̣YeÁsèß¿?÷H¥đÉn0̣]aa!Ô°°0rüäÉ“=Ậ̉xö́Y d„C:}]½zy„›̃ª¡}£4«rss‘ÂI+(|•»wï>ỵ$44tñâÅ8ˆÚ"LEüe±ª­j1̀ªÛ7äFƯ‹/@`Ø/÷]à3l̃¼ùå?Rf̣F•ù cđ\777 Œư1Z(r‹]>Ă¼ Î5¡2ŸOœ8j́AAZ’Qr›æ̣BÑ ÂËË+>>¾d¿he„ûă†¯8R0*kË–-»gS>+#€ ù¢̉ùLºª¿¿?KNxnkÖ¬!ơ2???¤1¶#.^i ©¨aÆevب >˵jèĐ¡111d»_¿~đK­­­»wïN’Ÿ““Ă‘¥¥eơđYµ®)>Ë:%l#LÉw1bóo•̃Já3ÑăÇ«“*Ÿ;åö|.Mïß¿¯ÈlùË—/ÇçkÍQ™u‡3f\»ṿYeá{³2}æ+qü JXŲvÉ́P®TW¹|V`×7¨àªñ•8~Pµ.—*qü â¨+ó]ª´}£FDÇwÿ‡Ô«W/ÖUHIIQ~!*•µ~ưú &”ôÊèüU*:¾»êDùLù\EJNN¶ô÷¯‹*s||@@(]Ơ«¥$%%Ét4¥|¦|¦|¦|Vϵ~ư»à`đÙµK—¼¼<###Pt&¯ ]»v­C‡%S>S>S>S>«æ?×îơS¸|.*₫I¥ê08mÚ4¶K*å3å3å3åsÅù\»×O‘á3Îv­D½|ù2$$Dî﹔ϔϔϔϪñ¹K.Ÿÿúë/{{ûJï×±nƯº̉EùLùLùLùLù¬ Ÿ‹ûö{{{«Ö«¼4µiÓæÊ•+”ϔϔϔÏÊhóæÍ...w8ª†fÿ >O(3ËkEà³37R>S>S>S>—©•+WtăèèÑ£”ÏD¯_¿Fåbß¾}•̣ èèh ‹̣™̣™̣™̣™¶oTœÏEŃaœœ”™pL±víÚ•˜˜¨àÊgÊgÊgÊgÊçrñ:ujTTTEQPPĐ´iS ̣™̣™̣™̣™̣¹ùL>è°aĂT~Ï®cEùLùLùLù\¹|¾råÊœ9s&L˜°|ùrµJƠĂç¿ÿ₫ÛÚÚm»\‚Û́ààPfïqÊgÊgÊgÊgø|ôèÑ;îß¿¨A²Ae¿"3æưù\T<"Ă0C‡-×Í>|ṕر2Ϥ|¦|¦|¦|VÏK–,áv<˜;w®’+ Ơ&>ZÑ××W¾ÇƯ™3g€tv!KÊgÊgÊgÊçJç3RBbb"j÷@S—.]úơë÷±µop󸟟Ÿ¥¥å¡C‡Ÿ¹lÙ2åáLùLùLùLù\R7ntrr:ÏÑÓ§Oåù÷ßçääàí[?|K•á3Ṇ̃å˵µµ­¬¬,>̀Nv÷̣åË́́́‘#Gêêê:88œ8qBy3Ÿaå3å3å3å3Ñ–-[@’ Êœt¢–­Ÿ‚z¦±1À¤Îœ9ó¥…¸ 455rdbb4tèĐoÊ)ÜM§I˜áêª`iNÜÿu ÷ÜÜ\¹¦=zÔÓÓS}L6mw©8!4..N}¬W0C*qUk½½½á™È5ÉĂÑÑQ­-̣li›••…ü«>¦¦¥¥¥¤¤}Ä‚[…B`üN 3BX{áÂ…ïÔIGQ`í®]»ÔÊZó–¿~ưú;5L*ÍZ¼ˆZ™*³˜¦ŒHÔÊZd"Ö"ª•µµuâP***ªZ¯Ú½~ ƠZµxư***ªÿ´jñú)TTTTTTTTTTTTTTTTTTTTTTTTTTTfÍåî΄…ñmlxzzzŸÔ†iÚ”çïÏ71aΟ?_µÁÁÁŸ¨“6løøñc¹¦̃¾}ÛÉÉI}L U°₫ă;lmmƠÇÚ¦M›Â¤̉¬Å‹àơ±ÖÙÙùÖ­[rM}̣ä ‰Z%Ú̉"öÂ… ¦¦¦êcjóæÍ¨ ȯ_¿¾Ë‘Ó¦@"#´°`jÊ*đù×_µ̃¾7lÈ£óoT…èüU':ÿFéôéÓƒ ú¨øœƯ•£úơ™#G´t®_×63«1>7hÀƒ ø>\DùLùLùLùüq̣¹¤ăêîÎ[³FĂÔ”Ñ̉ª1>ĂuOÌ™#âóÊgÊgÊgÊgÊgÈÓÓˆæñđ©YKX3(Ÿ)Ÿ)Ÿ)Ÿ)Ÿ Ÿ·mÛV‰7|̣äÉÅ‹÷íÛ—••µbÅŋϟ?ÿ믿^³fÍ;=[PPPÚåK—.­ Ÿõ¼©à₫eêÁƒ́ŒÖ”ϔϔϔÏÿi>^»vmƯºuC‡oÛ¶mFFÆÄ‰ÁäƠ«Wƒ̉Û·oÇw_µjƠ¬Y³FŒ¦EDDôîƯ{Ñ¢EgΜ‘aiÅùđđáC°₫<’ÙÈ‘#CCCQ.€̉QQQ e«V­ Áçµk×<¾yóÆƠƠ(q ₫ççç8°cÇ8ÇηیÓvíÚ…"p„ưưư 9₫|\îíí3|øp{{{–ɔϔϔϔÏ*hăÆÊœÆ0Œ•ÏƠ•'2<¯̀óás¦§§§¥¥8p —b6èë+ơû ȉ‡÷ïßß«W¯#GTđêêêÊ峩©é³gÏ—5Aî̃²e é{÷î%$$¬[·îâÅ‹đäJøŒkLJƯwï̃¹¹¹áLü'«¥ <˜µ̣™̣™̣™̣YImÚ´ #‹ØØØÈ]JàéÓ§ÜơpŒ˜O?é̀›'²²RÔ…ăưû÷pn‘5vï̃]é–£˜¸zUûÑ#±µµR|öóóKLLL.ÖĐ¡Cq üyÔ¤IÂçQ£F¯Z >¿xñ¢^½zÜ[M˜0! %%¥E‹8Y†Ï½{÷̃¾};9³qăÆ¹¹¹àó«W¯°;v́ØU«VQ>S>S>S>—K¨æO›6 y ₫^×®]K{eîz¸̀¾}̉ñ)¿ư¦ml\*Ÿ&ø̀#G$Œªt¹»Ÿ̉·¯P>1N/6ÀƠyóæá¿OQñèHmmmđyóæÍ={öÄ‘cÇÿ988˜4÷ë×ïèÑ£ÖÖÖ¤!:**jơêƠ¨´iÓ†åó÷ßO€ầÀÀ€øÏdE<ÊgÊgÊgÊg•uüøñÔÔÔÖ­[+é¸B3g >_>Ÿá‚º»»O4©êl67çéé1£G‹44”̣Ÿõ¼‰L ê9s†äxÎp§Ṛû §§g«V­ºuëFÖ­̃»wodd$œd4ØíÔ©S»víp“)S¦<₫ÜÁÁaüøñ„Ïoß¾{‡xq çS>S>S>S>W@Ô-[¶(s&ŸB$÷@ lé̉¥Um3k†̣ưëdœù7õÈœOœe^‡Ư“Ù¾EÅ=@̃¿/s²â6vÊgÊgÊgÊçªS™ư7&L˜@ÈêQÅû?W§(Ÿ)Ÿ)Ÿ)Ÿ«Ï…oß₫ñGáưû…wï̃¼Y˜“Sxízá¥Ëg²²’¢¢̃₫]˜}´đđÉ₫’Ÿ÷Jví‘|ÿ£dëvɦ-’¬’o×IV­‘,[!ùz©ä«Å’y %³æ̀ø² KJ~Û„ü.Ư F->ª`đ°‚ŒAé ̉úôJ+HíUĐ-µ srA‡Î  Ú&´‰-üưwÊgÊgÊgÊgÊg.ŸÁۂĤ‚¤n]S Rzôè]Đ»_A¿Œa₫~ŒoW0ldÁ¨1c'H&L–L™.™ñ%,™»@²p‘dñ×’¥Ë%+WKÖ|+Y—%Ù¸YÊí?ä×÷Î×7Ég4óµê䇷.<~¢đô™Âsç /₫VxåjáœÂÜÜÂÛ· ïƯ+|ô¨đñăÂgÏ _¾¬~ÿùèÉ“<@ ¡±¾ôÙ†)Ÿ)Ÿ)Ÿ)ŸkÏFFF Ă˜››Ë={ö,&&†ÛB«¤ -É×ԗ™üƒÿe^EŸ«™Ï_̀›‡‡j†„¤«ÄRÊgÊgÊgÊçªèdfÆđK₫DxêÔ©ªpÏ‚N]ÿÎÅ£Ç)¾DCƒ±µåYXHG©T'Ÿ ®©›œÜ.9™̣™̣™̣™̣¹fEÆÜ±Gé|û­†Í¿øüóÏ?O›6M>/ÿ?Ÿµë,XTf1qï6̀hƯZP|N₫ôSƯ=ëŒVÜù™̣™̣™̣™̣¹ơÛo¿MäÈÙ™ùáM€ñÔ)-CĂñù§Ÿ~RÏ…ä;ºåóµ¥péæë™¾{§ø77^~¾ftî\­|­3r¤ñ‚7ÿoñ™;ï_aa!·Jf·Æù,c̀Œ…r'ƒ­8Ÿñ:QQQ¾¾¾‹Éñ rss{ö́éîîÿ/‹ø€V®\ú"""ªÏˆäDŸđđp̉™_™wYµj́ \±bEụYqÓweåô»wï²Ûøˆoß¾%Ûõ¼)9»mß Íƒ dÛ7†»uë¦b–|ö¬ ¥g~xë‚!Ă KtB.)SSéè˜>}„::ƠÚ¾l8k–é† ®ƠÀg¹X`uóæÍP²³³åB@{ÿ₫}PPÉÚØ]·nƯܹs èdv+Âgň#B7¥¤¤°ÖN™2¥¤=08..î̃½{rw+‹Ï999¶¶¶¸ÉÁƒœœ¶nƯ*CÄ̃˜1cnܸѮ]»¤¤$ö¶x—‹µk×®jăóœ9s]W®\A,™˜˜<₫¼̀wAÚ¨[·îŋϟ?oii WªøŒÔÛ¢E ¤'O”<ơq///v¯ƒÄăêê:cÆŒ¢âÑ÷ïßÏËË–3#FŒ€ưyÅ:v́ؤI“dr峂ñ)È;‰‰‰¥-L\E%E5¯Ÿ̉ÀËËxåJ‹Ÿ®[¯^~~~•̣¹4,°Ú¸qcăÆüGdë’ĐjgggÿăÇÇÆÆ6kÖ, 7Ç#dvUæ³bđי?¾P(dùßICCcË–-ÄÚsçÎá ×dđ† º¸¸ ƒ7åw·ùÛÛÛă;²đ”ñ‡å¾Ë={vîÜI¢€›r¡È£:ŒLJ̃9.$$äñăÇ%wUæ³bÄAưû÷Gå–?2²XÉHæÚsêÔ©F}öÙg$Tf·²øŒâoụ̀ådä”™++++22’ƯU`9¼V>ŸOàçç×¶mÛË—/WŸQ¬Ï<`À2¯—2ïwtÉ’%æææå²V5>Ă{ZI;H ï^iå3° óHĂ…••üd’f&NœH̉Ở̉̉` Rê’€?̉™"’̣YI>ă£¤¦¦¢ÚRmöàsTŸ‘w>ƒŸUÊg¹Xà©Æ9M4Y»vmQñô’ĐÀGAMlT‹g|Ư°aĂîƯ» "dvUæ³bÄAäŧNỆŸ··7â•Ǜ̀L̉€#cÊ_”ƒ¨đ’…dv+‹Ï¨†°ÿo¿ưf``À Å;uêÄ¹íƯ»÷Â… pçàb£W¯^x‘êáóíÛ·ÁgnÉ+SZ)x—™3gÖ¯_g¹*¹ªñuøĂ,{á]”<C–Ḯ ᓤ§§“]â’µ­W¯^±^‚^¼x!Ó|Mù\æønÔs}}}QÉ­c̃´µµ«Ï@hD«V„ÏamÚ°VŸåb{ÜQ`íÊ•+‹/ÖÑѹ~ưzE !£̣̣Y1âXqù>ăă"…ÄÄÄ”ṿBXXÜ¿ª3ơ# ˜1₫üjăóæÍ›ÛẃHøƯ±£ =‹ÊÅç2±ÀU×®]‡^hTÏeb¡$Ÿ¹Ú±c‡“““Ê+8TϨôÁ0²½qăF|íÚµ‹̀F˺‚đ̃ᇰ1€Z¼¥¥å±cǪ§ưYWWO'Û‰‰‰Ë–-+ó]vîÜÉ&”̣†††UÄç¾}ûö.Ö_ưellLæååÁoẀgœÏ6Ι3'%%…̣™`aåÊ•d¶́́lîbyrefffdÄ´j%Ÿßµ´Óî߿߳gÏ#FTz¿STpfÍ%J‡É¸º20¦Úø 75µW/Âç=zLœ8±Jù, l(jvøṕôzưû÷‡/]hTÏ'—Ï4¢ú «`"ßÜÜŸÛđùá{÷ûb9‰È₫RP |FÎêÓ§ÀÙ³g-,,nß¾MÚHs–ÜwY²dIHH²9®B¥Œ[îWQû©ß‘µ9¦OŸƒ‹\à†Ëg¤¤öÂbÅÅÅ©æƯƠ2>ĂÏéׯ¾ œaD¢±¤»uçÎMYX03fˆtvîÔ´·/cưDrll,2ÜƯ[ `̉¤IHZ¨=¡txúTÚÿ¹cÇêëÿ<~üøƒ>‘¨«R>ËÅ l#Ç‘&eäPœ‰¯YhTÏr±ÀBC.Ÿ.\جY3¤¸ú;v¬HΪxÿg|MDµµu÷îƯI¤qâŒôöönÚ´)iĨºu+™\]nû^ÑÛ¨Q#دBç¨ÚÇgÄ-à¢âtPªN<¹$Ÿ¯_¿¾£zơ˜ơë5ƃµêÔaÊ|¾ ’PBB*>ø:å]öƠ«W0iîܹ:t@Ă(wqá½~-.?ȯ6>§¥¥7đ9}ôhøª>Ëň@ÛƠƠ™q„ „Fù, \h”ä3°Œj¬““*eđ·•\̀½ø\T< zÉNæ¬ äZøèÑ£̣Z[)ăñF _¹ï‚—é¥S¥|.*îG'·çsiB9Â6­S>£®w”Ô~₫ùgäè2›+MLLÀ‡®]Åë§đ•|̉6À2sæL¸IñññcÆŒùúë¯ñD”°×®]ƒ?nĂÇFy 8@úé¡•‘‘±nƯ:b$+cciÏç(#ªÏ°|ú́Ù„ÏC§LRÊ[Ê«0~°4,pK@™eTƒFÅù\&âä ùñ™#’ªÏƠ&:¾»TûÚŸQÀ±C±†‰wª@¨Æ‚uêÔQí‰@jè€*ếđ¯z÷ܭX½zơBôN4iÙ²e{ö́ë.w0/J˜Ë«‡Ï(ÙQX̀[¼˜å3 –é-‘Häº4ÏŸ?Ÿ={ö¡C‡èüU$ÊgÊç"ÚC‰₫uƠ¬jŸ£ạ́yøđáÜêÆæ;Q^D¢ƒ¿₫*smJFê(w…tÊgÊgÊgÊgÊçèäɓÆ ặyΜ9ßÿ={BL‡|33¾‘Q÷£Û|›5ÓëƠKĂϯiÓ¦”ϔϔϔϔϕËg @æ̣yÆ ¤—‘—¿¿á̀™u† ‘¹ÖÚÁÁlëVưŒ ///ÊgÊgÊgÊçªă³««+ªêr;œW§ªyư¤Ă¬¬,.Ÿ‘ÅØéY^½ze[·®Ù?˜¬^íè́̀m…ÎÍÍupq±üåăùó)Ÿ)Ÿ)Ÿ)Ÿ«H–––zzLr²l‰D5e†‘ăâ äW[ÿ±cÇ>|˜Ëç;wî$ÿ³ ‚™ïÚe¶i“@;́¢¨¸Ïg@Ë–à³ẹ́å(Ô(Ÿ)Ÿ)Ÿ)Ÿ+K999K8²³c–-“ö>tH«n]^MY%2¯^Iû?÷́YMăSkà sù,‘H¢¢¢H;đ*®sgÂçØöí¹S>3¦Mç΄Ͼ¾¾”ϔϔϔϕ¥[·n­çÈ̃Y²DÊç;4ơơ™²Êɉ÷́™”ÏMTÓø”ÈÈÈ÷ïßsùŒƒđŸÉ`½øøø´aĂŸûffr‡‚áɃ>7kÖŒ̣™̣™̣™̣¹êÚ7†‰â©̃ºâ"«·„‡ó«£}ă₫ưû;wƆ Ÿ§L™²}ûö»wïâA£f̀ |2{vHHé¹}óæM û³Ñ£ ŸĂĂĂ)Ÿ)Ÿ)Ÿ)Ÿ«Hpy<^£FjÖ‘HTm¿>|˜̀‚.Ăg`!==}Ñ¢EcÇeùÿ·ú×!/8;;Ă­”§ÈđùÑ£G¤ɱcǸ|^³fÍüùó‹§́Û)Ÿ)Ÿ)Ÿ)Ÿ)ŸeäëëKøYÇ̀ŒS½yó†;OKŸ>}È¢Q2|.((X¶là€m.Ÿoß¾­££z7hĐ ??Ỵ̈™̣™̣™̣™̣YFÖÖÖæíÛÛæåé›<˜”MĐVb¡£G’ Àâ‘&ÏŸ?ỏ¤ ™ƒH†Ï\qùŒƯæÍ›ă“&MÂ6å3å3å3åsơđ™4üÖ`çg"‚ĐŒŒ |vqqq;|HH́́¦999¸V́çgYŒbî*À7õÄ OO³í۱ѫW¯ˆˆˆ®]»’PåùüäÉ“1cÆ ÊgÊgÊgÊgtåÊ•9sæL˜0aụ̀åʤa===±˜:TDđXSf›˜0¼èh®®¢₫„ÏÁ]ºŒ1‚,‘H°Ñ¬Y3Û/¾°¾|9´Ć²7Á †††ưµå±c ¯ÉΙ©<Ÿ¹¢|¦|¦|¦|.¯P‘ïØ±ă₫ưûO<‰%³,2té̉¥)ÙÚ27jéœ:¥åàPcăS´µ™÷ï¥ưŸ33… øÜ´iS–ÏØÅËZXX€·«W¯Æû>Ǧ¥:u SSSI‡¤:ÂçOGŒ¹!å3å3å3åsơhÉ’%¿r&Ăœ;w.w`2у~æÈÁụ̀KéúV«WkÀw­)ËëÖå=|(峋 ¯L>ƒº„ÏđœGE–!|Fø\T¼<®®nbb"IuÄm–Ëg$—Ï$H.ŸIå3å3å3å³’B¢‘à7fddté̉E™ơp²¥%/pwçééé}ZC‹ :.N`oÏ9r¤4k4h`06üä™; ÏÚ¶l‰ ÆQQ2A §ÍÛ´‘ ‹#AŸ´m+̃¶- j+M‚\\\>|(×Ôk×®!ôSµ†‚UD׬Yăíí­>Ö˜Tµ±±±øÜêc­››Û•+Wääáááñ©:©aÆ¥E,²£££ú˜Ú¢E îoIµCd±ø’-rơöíÛßƠI¹¹¹ ¬}̣ä‰ZY[œ‰̣̣̣ÔÊZ‹éü®fR°Ô^D­LŇV HÔÊZÅ "ª•µY¾ªVêùó翨“²³³X{ëÖ-µ²¶´Q DçÎS+kôÖ~÷îƯ/j&˜Tµxµ2ZA2@"Q+k‘‰X‹ ¨VÖP3Ÿ˜đyM«}ûÎffá&&íơơíwîÜYµÎÎΟ«6laaÑ]OÏƯÖÖåîƯ»¥ÁÙƯƯưsµÑˆ#BCCK‹ØE‹…„„¨µưû÷‡I¥Y–®>Özxx”†è¼¼<77·ÏƠIÈD¥É®]»¼½½ƠÇÔAƒedd|̀|xđ ¡a¤AO-­8cc_ÊgÊgÊçåsy'U¦|.¯̀ÍLLLD¢:"_Íùü×_1 cdd%h»»[R>S>S>× Ÿ•™T™̣¹‚b>Ă,g˜ÏBÍùoÚ´©yóæ'Nộ̣ZµjŒ?¹©oß¾>>>K—.}ưúu«V­b£££¿₫úkÊgÊçÚÍgøÆÉÉÉw9*¹*´ “*ÿ‡”™™ia¡Û­[x„×®]«)3ôô¬&av0Œ *ø¼{÷î-[¶(˜²²¤̣óóẃØQ’Z(ơơùÁÁF"ÏÀ@¿ùŒK|xï̃½&MP>S>×n>¯\¹²N:]9*­ÿ-™Ty§¨v)99iÉ¢"´ÂĂ½k®}C[ 0ê …¢Jçs·nư ătu“ll\ß¼y£̀%………Í›7́ƯÛÔß_§}ûpnP=ÜÜxˆ±ü|qX¿ùŒâÔá3à)€°¯¯/ ;v,øŒÊNppp̣?R<‘/å3åóÏÛ¶mkĐ âsà<¿xñ^tdddÏ=Ë冩¹âăĂ¾ùFÊç~Đ45Ö”ºº‚¶mơV¬Đ²¶6ª\>£N¤«ë@Oôổñ•¬XµliŒhÁ_§Nö.\`ƒêƠ«ÊÇñwïÄu%̣¹aƤ 3mÚ4$9løøøÜ¿é­iÓ¦àó={àWăø«W¯ T®tHùLù\+ùŒ|qúôéU«VưôÓOØưꫯNõ¼ÙÑQÆÚÛ× ̉ïĐ¡ƒ2W=|øÅŒ±²b¬­Ålß hܸq¸Ûŋڛ6izxđ+·ÿ’w\ó’%K ‹W*?v́{D")ï)Ÿ)Ÿk%Ÿ¡C‡¥¥¥µk×®OŸ>µÉy†7÷S>S>W‘[Ăw4I„Z¼›[2®»HÄddơôuàsff¦Ó¸1¿m[8ÿ_¿®\¹®µăäÄóđĐP†Ï1©©¶íÛ»ddX¶j…ÚJ÷îƯ)Ÿ)Ÿ)ŸiûF™êÓ§7@äê*ñ'))¾¦̀ÀÓÔzùŔíÍSÏÇgƠurªÓ»wg%záÂ<7'Gû₫}m;;₫®]»¸|Fÿ₫»´[ËáĂ‡Ù eË–¥§‹22“& ?ùD[>Gới““S·¨H['3ÓÚÚúÑ£G”ϔϔϔϕ’̉® ›8 «)3<‚fÍ̉4HhhÈl̃¼™ ễ½»®.(qé́̀(Ïg«óçơúöŸq<==ư#ä³Lù¨ G7åsíăsaa!w\•̀®ÜÄ $ŸkñüüÙnß® ¬=«ecScưŸá‘z{ó:uÔ­«"ŸgϨ­Í>ÜÔÜÜ€̀ùFtçÎ{{=â §§›rçߨ·o_ÆüNø]» àsGLŸœœ́áá—ƒüóرcaaaC‡%ñÅá5Í;—${™]¤¸¸¸{÷îÉd eø\»ççoÜØ.6–- ’:„5eFñĐE)BÇW}₫ºC‡ჾxñ‚{đáÇöö‚Ç¥®µ³eËnh›68ؼ¹°Q#'îñG‰ÅŒƒ܆ÿ̀ͧ¸K·n>"#ùÊóÙpútó={Àç5kÖôéÓ§—EPÏpr@Ñ1cƶíÚµKJJ*y2£“““‚ƒÈÚÎÎÎ₫₫₫Ç—Ù­">çääØÚÚâV„1[·nỤƠ€ @5J+W:ŸU°6;;»nƯº/^<₫¼¥¥%÷ẂÊâ³b«P…HÏ÷ï߇U(8H́Y[[O›6 ®QZZZçÎ̉߃bcc›5k€·À»pwQî4lØĐÅÅh7n\yù\»ççpurâƯ¹£)€[SfØÙñöï—₫>¨¡QÉưŸõ¼Ù¤‰ ̣Zx8¿uk’Z¼x1¾©̀ÁŒŒ \̣Ë/Z;wj™1“&Mbƒ¤âưù§øÂm{ûr´o襥Y_»FøŒ\€çª?ŸOœ8aggGæÁ´´´d&5E™hff6cÆ .Ÿå[|||ö́Ù#w·*øăî®,Ÿ-O·o_·¨ˆđWÊÄUÊg@²S§Ń®›››Ü "Ăg•T¥đ¹qăÆl}u^|¸2_ XœI)_Í|VÁZ²=sæ̀úơë#9Ưºu«̉ù¬Ø*¢ăÇ7õ5&̉C¸®S§ÎêƠ«‘äàØ…Â;v¨– ”ñŸoß¾}àáƠđ…B­á³¿¿cPăâÂûä~ ₫>¨£##óé§B8̉ªñYCCđ́™´‘¹W/c™Fæ̉„„*"NrăÆRú³µEđÆèë3ææ ·æ¥¡¡ahÈôï/´¶æy{+Ëg³;ôdùŒƒiiiđ+ÔœÏÈ­mÛ¶ewmmmå°U>·nƯ:¸X`rëÚµkY†¸¸¸”ùj Àw¹],đå²2“ «Æg”ÁÿHQÁZî ƒ ˆˆ¨t>+¶«cÇ ̉^±ÿ~xû666ăÇ÷óóC•¤êø|ôèQGGG|‚9sæàYø_ưƒ ªNnnF"³nF` ¬)3tủ;.3S¨jÿ:x¸Cx¸® ŸQƯnƯº™‡‡mɹa]]MQ*¹»ó̀͵¹ ´´˜‘#…cÇlmy¤aˆÏç7mÊ5JÔ»·04TÙ₫ÆK—}ù%—Ϩ6Λ7OÍù ÈÇLJlĂÛG]UîăêĂg”¹…ï’:uêTr•n|É}µ°°0û>ƒ0¬">Ă9ßđ̃½{§‚µ;wîd) wÚĐа̉ù¬Øªëׯ³]O ŒŒöíÛ÷₫ư{–0U___åJö¯CbèƯ»÷={ºvíZËÚ7́́4’¶?çähDå½¼   77÷Đ¡CYYYsçÎ0aÂàÁƒWH“Ư…ï‹]DI §!Áă™&{{]‚ Ơø¼uëºâ¡Ó¶-Zø’ŸQˆ̣AÚ-øơëóP9s†¤©)œ=[cáB‘……₫{÷î!#›"‘ÜîÚUĐ«—ĐÙ™‡j›ä¤SB3̀¦MC†]\”ơŸ &M2]¿Ëçk×®qk¬êÉgä/sssÄ ¢tÚ´iÀ9’륨gûÆO?ư„ÿƯ»wŸĐ¬Y³âăU•\®ñ)_ưµ̀Ï—µ@NNÂÔTA~¾«’ưëP§X´hQŸ>}PÂăÆĂ."ơT ‘1‘,ọ̣́PIÄ·»qăËÛ·oÇi'Ń̃½;.́Ơ«Kđ¹-,¤ĂñÂÂøuê¨₫û ˆnÈt¡D©;¯_¯yê”–©)ĂE"\  >ùmÔߟרQ£víÚMŸ>>˜†††¥%sö¬ÖÁƒ̉_µµµccc‘&q•¦¦ægŸ}˜Ÿ?<\Ù₫uúưû[9Âå3„_mó½¨ÜÿÇQ<¡BíïïϾ,ÜKö-Ô–ÏP¿~ưtuu­­­‘äH©‚JZ₫å¾ZMñY®µC‡‰‰)íC 'âæÎÎΦ¦¦-Z´Pṛ™̣öV‡K—.uww¯W¯¥¥åîƯ»É%đp`•——Wxx8wí¡*ås­T½z:ff̉±!<±¸ >³@qëÖ­‘l@Q”́ÜáxåügàtÓ¦McÆŒA©§­ÍÀ-…Ë Tăó©SÇ›7w²·Sd*†đœCBøxÍæÍùÜüy##&&†ÊGz#K²!u¡´‚ăíîÎà~·¸yó&ÎÁ+#2çÎimß®‰bEI>‹m₫÷?đÙxÖ,ï°°¤̀Lü¹úú9RÍùLjIƠ$ÜJ+1µâăD(ŸƯƯmMLkk^Ưº̉9%J; ̃oJJJÏ=wîÜYé?̣à3₫44Tç3à™›+m!‰‰1â„ ?₫}|xHÿđüÉÀOŒ”̣™Û× î½¢åĂ„pơqpË–-p₫=<<€ncitùJ̣Y+8Ø₫ÍđY/%ÅxÑ"«³gñg4¾­««úó¹úEÇwWèüÿ!yzééIç  äö¯G@Uéx7Ï̃× £̣ú°N 0øÜ§Ï¿æß¸{÷nD„-iˆ‹ÓCƇ³§=99ÙŒup`HÓ4÷·GGGÆÏG @ªC à —é zh½{'Ṿ÷Á–ƯºiGD΄Ï&kÖm«‹ LMŸ>}JùLùLù\RÈÈ666k9B5ö£â³››áÖ­̉ù7Μт£(úöí[___Ơº>#ÙóSáƠkÊœŒ¢!>^°t©P©ŸgÎ+óÇŒ156Ö“iu±´YẒúơêéñ6nÜ·zơj‰D2pà@@ø³Ï„Kú‹º™óz6nÂ^¢£££«ËŒ-8Qääij´´,üư÷uÉ)sxMe™…âü|±‡‡R|j×N§[·’|¶¾t©ÛÿỴ̈™̣™̣Y†ÏVVVË8*-»ƠV¹ºêøûó@E;;¦dÿºÁƒ«ç‚₫óíœ̣M¬̣u ¦Í,ó|ø¨ÄÅ7Nơù7öíÛ·iÓ&™æp̉Á·gæ–-ÁÁ<'''v²£E‹yyñ ÆkåÛi>ÖĐx!̉-ôaœ P(üäéO‡…¯Å#½ßµß·ïÔ90đJv6dzµeêƠ“®?èë«Tû†_T”₫àÁrùÜ"1144”̣™̣™̣™¶o””‘‘´•œeÖï¾~ưºjư Öeå ÅùŒæ‡?C‹ÂĂG_bjÊ4h À3*w₫ ”¹ææLLŒÀĐPÚE„;@ué̉¥ñb̃;FăÿMƠ7•ü(%‰\­xO§h¾ƠËk‰aƠÈâß̣p¡P:›‡̣ó‹6h̃œt~.Éçø~ư7o~́Ø1ÊgÊgÊgÊgYZJû¿y#0@hañ/>ïÙ³gúôéªđ¹S·ÿ'^ñ_Áçă_Âă1păí́¤®©Ê|ÎÍÍ-9º­OŸ> ê¨Q„ £««Ëué̉e_ kêgi… O˜©É vü‰‰‰ä§s¦X‰OŸÖ Pª}ĂÙ××ô»ïJăóÚµkÉ_”ϔϔϔÏ\ÙÙ1¿₫úa|Jq#ĂÿëôéÓ P…Ïiéÿ‚H·àË9/)¹HÚû""‚¯Ÿ·mËjÜØ¢Y3“O> àvNOOwqa’’ÿ-₫ôSwŒ>=|ă÷|©<­‚.Ư :'OfơyÑÑÔ/P„A—.]bMeû?7o®Ÿ­]\,(ϰÖ̃̃₫âÅ‹”ϔϔÏ*óY¦ƒ_í±±>?ÏѨ/H×áK–¯”¬X%ư[¹úí̉åIMü2zŒdơZéßo?ü­ưṆí:éßwë¥벤ë7H²6’¿‚¹ ̣,₫å”âªÍ[%[¶I¶nÿđ·m‡dû÷̉¿?௷_²C»đoqjª@5>ĂïÓG'%pg©=r䈶6Ó¤ õ< œĂ]›USS³­?ßá_₫s~Rrᙳˆ₫î; â0s‹MM©C̃»·ĐƠµ́ö $ë«WKă3ÎY¸pa“&M(Ÿ)Ÿ)ŸËËç—/_"†£££cbbâăăÇ_›ølo/ÅÚg!üÅÍ…½Ä|)~ W­¢ÏMœ9JJl {ÙK—Kÿ¾Y&ùz釿%ßH-ư[´ă&æÛ8æ›Ùæ{7*˜8Y²à+éßü…’y %s|ø›3_ú7{dÖÜquCE‚=…*÷63ăEEñ¿úJdmÍLœ8‘=>ỉ$ é4G|mmaBB—´VVLËz¼F¢<»Œ¨`ÉRR #(0·`F×®‚:u₫Åg>Ÿß²%oútÑ’%nneóùöíÛ–NNd}X>[:$¶±©‰?HdfoOùLùLù\.>/^¼˜»²ó”)Sªº*Z20§];éÏgø+yƒÀ´+V¨O²K»đ¼øóO…"ŸÛ¾W̃»Wëôi-̉ȘǓâ^²d~IKfÍ;{ôèQ&Ÿû÷ï« Ÿ]¢£wîÜÉü#x•Xg¡|¦|₫ÏñùôéÓ́êZ „¼¶råJ²*tvv6ªüµ†Ïà¹9s挖¿?_™ơá?ÿôÓOHuï̃½)d¥k׮ɬʪXÈ\çÎËÊÊ7n\»víºu릧'uS##ùùܤ /?_,Ù¯}¬£ÆFPÚ« MlAë¶ØXb,”̀Ö–l̉^ÚMä̀đ ÿñóW­Z7o·c‡ô—¾fÍqùŒçâơƯÜx‰?ÿüs¹–Ơ.“Ï………aaa©©Êđ¹§§OLŒ|<₫¬\\´´´'2ƯDùLùLù\P·íׯßâÅ‹cbbPñœ>}z5¯¼\¥24d€D€ .×úƯ‰äêƠ«[·n6m@ \ÇÆÆ¦¤¤ >'M4cÆŒ… .øG8(0`ê ­[·“QÁñ}ûö‘i„ML¤½uëJ!©€Ï^^Œ•ïÀTc>f¸Í…ÿ” VVLÆü¥Ke»[ÀN[[q:̉æ¶á¹sæ̀;v¬¡¡!̃]Cƒ!CẀ̀̀Ê{ẹµ-”>dưÁ2ù,nĐÀîÏ?í<ÁŸí!)iií“’`˜¥µơ•k×*ø¡)Ÿ)Ÿk%Ÿa0iÓÀ'èÔ©ÓäÉ“kŸœ¤?FEñÅbét¹Ơßÿ››‹È9tèĐ®]»€îÍÅÚ¶mÛ={9r₫üù»wïÊ]0HS“‰çGGóµ?{ẓæÎƠøâ QzºÇû—µÀ;ˆ¥ÍÏŒ̀¦@t\\LëÖ-ׯ_ Á¤ï¿ÿöܼyWYZ2K‡OªĐ´^&ŸI9¥,Ÿ==í_¼ ÛmÚ˜,_n¶u+Næ-°Ỵ̈™̣™̣™«´mÛööíÛØFư×ÆÆ¦6ñ966yßÖVZÓ70Ö”ööü¤ăSœœÍÔ°!ị̈eéiiiBwww™P###--­•+W–ëÑnnnÎÎÎäûV:Ÿ===oƯº¥Ÿ cb,~₫ùĂi?₫è́äîNª›6ÍÉÉ¡|¦|¦|&*,,d›%‘0ÊƠÖªæú́³p›‹ÇV3>5eFƒ̉q2±±‚–-ÍÔ¨‘>NKHDDđ{ơêYă±§˜Ï7nÑ¢ÈÔ®V‡̉†$®ø|éœ×¤ÜØ˜ĂˆDâ´4í/¿„CÊ /8X»K—:S¦đSR®®ºƒkuﮕ $W1ŒXGÇØØØĂĂẲ̉R__3À̀̀ @ .₫“¾F=¢|¦|®­|®ÅỀ̀lØĐ¥~}Ó¤¤päRxxĂ¹sE¿ü¢))̣Ÿœ?ÿ\x̣¤fT”ÎÖ­[ÿ¨iuï̃]ŸơêÔ霒¡O†ˆ+#@[Gç_GP|JCŒ¥³cëéñơơyææ"??Añ¦ÖÖ<±XÊ—®2Àđx̉~̃ÿÈØÔÔÇÏÏÏßáÂ… VgŸƠ!>YmÛ¶MŸîƯ»§>Ö1BŸ“““ÿP')˜/|₫ꫯÔÇÔcÇP3Ÿ×¬YƒïƠ¾¦ߢ…LL€§gS¼vëÖ­E‹F11[µl¯‹‹+­3<\VÏĐP¯–-]̀œœø"Qd.^vV ©)ÔƠeYÍ4ơô ¬­¡PÏÄDS,Z¹ºÙØ8ùù9ùúê!Ö,]\́½½Ḿ́̀êÖƠ75Ån£¶m76wrrôñÁ™–öö^^^}úô)-b>Đ^mc`RiÖ=:&&F}¬ +m¥BÔµcccÛ«“¸SÈY…¹ú˜ 4q—¹¤¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢R[]»vmÀ€Ư»wêׯß5ªF¹¸¸ddd(˜~ÇŸ₫ùđáC¦L™ṚS§NcÆŒ’oÍ(#>=z„G|¡6»‰ å /"÷SÖ”đ¡K›©É‰ä u2Qi‹¬‡´¤>¦â+_½zơcæsË–-E"&%E:5D:ÂkH††Lb¢`î\‘P¨h~QGGƒfÍxăÇKÇ/gffrḯ›˜¨A]½z57¨aCçèh…ººëׯg/[¶LG‡4H˜™)´l²Asæ̀ÑĐ`&Ouë&]ù é„ ={6ѨcoÏ8:*Z¿;==çƒb1/<œ"]ùéXQr²ÀÚqp`¶lÑ$#-̉hÚ”ƒ›6ihi1cƈzôÚÚ"k»¸ØÁxXHoƯª‰§gföÅ‘Ñ.\¬½zµtbU2›ëªU«dkk2|¸vf¦¦­­™E0  ´ˆÅ âªƠFø‚(/J³6&&¯£>Ö†„„(ߘ˜ø£:ÉÖÖ¶´ˆưî»ï਩ȭ©©©3Ÿ½½ơèhÁ?+V׌¬¬>¬8c†Háüu|oo^d¤ÀÙ™çééÁ ²¶;Lœ(Zºt){üÎ;––†"‘#Ÿoc``đư÷ß³A®®®MđÉUƯ» ôơơÙ ##£èèA11{ÎÊ­ÎÎΦ¦LP¿xÎϲ×ܹ́ớÙ"ccæ—_4»vư`dëÖü]»4‰µééBr0 €?b„°eK>{±1èÊ«WOºĐa` ô‰Â;w´--¸—IIá))8xđ ôVß~«áẩÄÖ¶;¬\¹6.ÎÜ'#Ă.;;›ÎTu¢ó#U‘>Âù‘nƯº•Å‘……t'™ ¹¦¬vîÔ|úT¬ØöôäƯ¼)_´wo¡¦¦&7ÈÜœùáé #öøñăÇáx2̀[†) [ 8 ̉ÓÓĂU/jădb!6HKKË̉’—“£}ù²¶̀Ôư"‘%O__êE—Éç€wœùÉ'üÑ£…ˆgÜóÊé=Ó̉¯_‹=#ÎGh·n|77££Ñđá8xë–6|ï—/Å8ßÚÚN_ßÀÂÂÅØØ°Aóß~Ó₫ưwé³rss)Ÿ)Ÿ)ŸƠ_7nÜX̀Q:€3Ç÷óăÁ-¬)«çÆ”.qe` ˆÏ!!¼GÄ€̉„ "±X[†đ&&L›6‚† yb±˜=~á W†ÉŸù|ï©S§²AÂâỹP0~ˆîª+†††d&9”Å »ÔeƒÅÓ„zyñp₫—ÉçáĂûÀÍFƯêĐA€aw¶²âƠ­+}t±ë÷˜³ƯưïÚ›7kZ[3?₫¨áëËëÙSêcçç‹55¥±´h‘9RzđáC1.40¶{ ,¨[WJûÔTá§Ÿ¶CÅ!1±É‘#‹èüϔϔÏÿAÙÙIW©1C>¹ƠË—/óé§BGGÏ¿›+ÛóßƠÈÈV¦P03cú÷N˜ $—Ăàß~ûíöíÛ`éÊ•«Wk´hÂËKu‘ˆ©Bw÷2øŒ?qâYˆ6'' ,Đpuå₫k×jØÚ2ááüÁƒ…@®«+3t¨ñ€1e~/J"xé¸ÖÓSºWÆp­¥S6l¨il̀ÏÍƠÆ Ă„NNZææ¼Ö­óç‹pçíÛ¥mh7o^ŸkO¥óùQ±d>~üøÔ©Śo¦W₫-Äå3å3åsaa¡’g"Ă=KL”r.¨’W=₫Q—••5sæ̀ŒŒŒ¤¤¤đđđ˜˜˜;"5¦§§÷ïß‹ ~ưú¥¥¥ué̉%>>>,, ÿ{ơê5v́X$ƒ={öäää¼ @đáL6n¬ˆÏ..p)y..̉Ú̀!<́ñàîúúúrƒ\]Mmx°¦¦Z0̣óóa?^WÅÄđçà %!±9998œRÀ Å…ÁÁÁ́Ưø|~çΑăăù øÜ¾}«O>±CñŒëé1(zÈUŸ}& âEGóµµ™^½„ƒ ½½yÿ̀0*°0ik3¢L†‘8Â7k&=ƒÏÁÁ|ص²̉©WïĂÇ•Îbºw¯–¿¿ÖøñĂ«”Ï-[¶l̃¼9»‹(íܹsPPPÏ=½½½·lÙR¼¬˜TÖÖÖØÀS(Ÿ)Ÿ?Z>ĂƒEbˆ*AÂñăÇ—y àƒL¬½q£†¹¹">#»={vîܹ)))¸?8¶xñbdj|øđaiư‹dJ øWÚ¡C‡Ö­[7ỵdܪU«VU:u4oÎPÄgWW₫ơë̉öç®] 4q†IÓG›6ÿú9oÑ¢EަMùpGëƠ«7gÎb?ùI´K<”/³ª¬t̃{ fÿ~MD€&Ăÿgƒœœxÿ-¾vMÛ̃^Qû³‡‡¾D"~÷NÂÇMP₫ö›öîƯä¹(bpdà@á‹ââ¥Ă56”¶x€çÅ M:ωí́¤È~úTÜ¥‹`ÈikÆåËÚNǸ?jZXH™ŒkƯÜ´Q®<©ơúµ˜4%$đ}}í23»7kÖàĐ¡UÁçk×®E 5rdĈ́Têwï̃ợ̣bûIvêÔiçδ}ƒ̣ù#ç3€¹k×.vwÊ”)/^T| *øÛ¶IkÄÙÙZp̉äóâÅ‹åË—·k×®wï̃6l¸₫́X×ׯ§Ïî̉{ï EéE@DAˆØ‰%VD±÷%Øc×Ä®Q“¨±DM"–£Fæ‹Æn-ÆJñ{ïÙŒ¨ 6đoö<ûđ,sggî½3ó»ï9sËÉ“/1Ï÷îƯ;pà¨J'&’H¬>ׯÏ"·K— ï¼Ă98Ø=n$DA5cÁ Íö€Z}$îØ!ªß¸ K—.½víDZØgŸ‰_|AÊ^Ïññeư( \i†k !Z YCúBµB®kás»vv̉¼¼hiơp(dä¿Âé̉̉Ø3g”È6 ́䀶™YYüùêU¶ 6ll¨5kHàb̀̉Œ^»F„½~Nø\Zª26æyƒÎ‡ àîN₫¹°ă,Ư»săÆñ¶¶JiµÜ—ËgÔ*n \)Ü̉–€€€sçÎ=qgŸu|Öñ¶sçNḉٳׯ_?uêüͧ­î¡1hfXNgdDVOzâ1!Åß{ï½ÊËỘ×{K6}ZúĂáẾ,yè¿ü¢l̉DÛúƯööä…Ư!¼:*[ëÑ$QfU*ÈÔ£í«W¯¦V¦§³ơë3pÀå%.ưV5¡BѲfË"ÖLJnĐ€A‡mŸ¡¡!ô?~¥é×°¡¶øFtt?œ‚5ÉKFpX¡î£‘À€ù.(KÏ©SUtL]ÚߟƵ““ŸFƒƠ­‹ø¤§“E«ZµbñCĐ^cxz’ˆܦM“úơC:v4iĐ€up`ƒ‚LMMÍŒŒê¨T9H_.Ÿ‹ÜÜÜpkA!ÛÙÙI÷*çi>”Ï:>ëø,ÙöíÛáf¶nƯåú₫ûïßá›o¾é)3h¹Ơ«8Ư›7‹ÎÎåù¼bÅ pà̀™3Ïấ\Œ-‹ôL‹‡Uf‚:uâv́P ĐÂçFÉÓ¦ñ*y’±1=>t5ß§Û½{wÍöœœ©ïDA_®§œ̃Íß4§„«”Püv) ‚7:‰ađ3 A,½rẻ AŒ‹Ñ"½c¬˜ŸÏ[ZrZøœ•••–¦·m›¸z5é#—’Â^¼¨”úB¼í́™¿­Éy¯‰ÂoúÂ/ÄđpfâD̉ïư÷9?/Ú¢4b¢Dº½Sº[5>Đ€ËP2/S–¬Pîè ä2§ˆ÷ßSŒ¶̃s3,)P–ä+W~Ó4cc0‰Ï*̣»¸Ä’5ë^"Ÿ7mÚdmm©6đyÖ¬YØ~́Ø1Í>đ³pFŸu|ÖñYn`éùóçO<‰Û÷Æă;ÀI?*3°«o_®d—ª0R˜Â³Åƒ†U2z\ɸ Çóú§ûù_Ÿ˜_2}fÉ́¹%ó–,ZR²́£’«đ¼—¬ßy\²ykɶí%_́*ự«̉Â}¥–~÷}ñ¸ Eœ^%–}Œ,±éŸ–̃¸QzëVé½{¥‰†0nÖŒÍÍ%ăø´đ98˜Ú½[>·nÍÊ;9Ă ,»uă >Ez²f{AATkt4Ó»7§Öœr>·3cîÑ¿YƠ3-:%L±‹ô¹¯øŸ…-ÿ1-g¶̃×8u@@PŧÙÑf,¶»;¯…Ï:tˆ5-úUYÓ•D›QÏÈ94pV;²3ûïI)ñ>-Ụ̈‡ŔÖP~½·…ă³•L=æ@=áP’0ňư{b{C~m?Öœ=ÚC,ù@¹¨>߆e~Ÿ¡8:JL¥˜^n&7W*¿)65¢››µ´ơ¯C-§ kÓÊ}ïÏ(={ö%̣955UFÛ·oŸ¯¯/¾LŸ>½Y³f̉‹éƒúøøƒ̉s>(™1«dÚô’‚i%“¦€äà9¨^¢¸0ḳâL Ÿmm‰†¦…•wr†Ë£Gó_}¥@‰4|.-*?b„MA‹&¸’NInBJ´ôCaĂÇóå³V§dɲ8Íđ¡-X̉WÙɉD­q´mÛ¶3Fñ…J¸Â₫u£GôưPà7³|ª@§Ø÷Ùw=Ø»(æ[p7äí%₫ÊđK;ñí½Ø@#ªK®aCfØ0Âó#G”ä¥!0•ª,@óº¹Q«V‰ễÔ d ~ĂPô÷ß+Úµc½¼,ÔĂă†Ï—̣ó²ø|åÊ{{{ù¬#@1 ‹/ưû÷ Œˆˆˆ‰‰·uñ Ÿu|–<ÍÇŸ;wnÉ’%øwÑ¢E( öŸ88 (ȆÇÙĐđ‘øÜƠZµjiTĐ37ºçÑ2â úÅÓ ..&Zúï¿¡«½,©8¦MK=Öú~))Q•Tíê-dQ i, íó JFmÂç(û+ [-§₫7Ĺaa/²ÛíùÍ®üt=v¶½iY,B£“"* ́=JÆIFQ¥ÂW:>ëøüßäóÅ‹!ï̃½‹ï………ééév„¶¶¦¤ Đ]÷={6ĦkY%­ôôé"·2̣¨A]zë–öŸË1öö$̃«µ‘=-ÙaÆl±‘ôk×—|¶¥d×îd úƯlîûµ¢=E¹“@ZăªÀ]£FeC?4}À$ØPç”Â5¢¥¿¥ê®,KÆ!J Œf :uê}XRRÂ0ä•ܶm> ç+äsX˜»‡é&·`™ûÈË‹¼é?†ÿ„åˆep¾* %Ÿ+¯]Sy{Ó äø®®ôÊ•p­îTC²1`¿~½èíÍ=z´F «eËÄ˦WÂoo›́lJûÛoưúaß¼ydµđù¥˜Ï:>¿‘ñgͽ{÷îUf¨µ-ØnƯ¸¦Mṕ‰—,55uåÊ•†JAô™3EÑE¾ÁÅYmK/^¬p@<´qx¸6>»¸À`Ë8;;—;è„&@322̉l—ú×ưü³ẫ=¨ååå%ÿ ́£Êû1âQ_Kq¥ÿD́MLL€Êû÷UR§bđ¹E‹’+>£Q³±!!eíưŸÁç3¦{{³´}úppO`ư¥ºz•L»agIí÷âÏ ÇL…öV´ÔÅ÷÷''ÿ?TÛ¶‰h³®\!¯Dq¥Ö¬!@vww€‹́!₫̣‹bÀÎ××|„ñ~~ö††,Ê8r$¿h‘`e¥¯ă³Ï:>ÿOË’°ÆÁƒ '§§ï¾pá¸qă ̀'L˜€+**zéÙ ¾ûÚµkëÖ­ëƠ«WBB Aƒ–.]úƯwß]½zơE2ó÷ßĂ7_±bMT~û­¢K’«ôt¶cG¥““jƯºU¯Ÿ“Ú´ ÏÈŒƠSAñd¼Ov¶Ạ̊åø˜Dèø¬ă³N?ÿăÈ“—₫gÏ*ăăIس’P|æÎ‹ªKKKKNNîѣǨQ£æ̀™̉ñ¼yï̃½8räÈj;v́H^XX¸sçN~Ñ¢EĐá}úôiÑ¢Ebbb÷îƯ§OŸnlL₫øc•J…óv́HÂ;R¬…ÊË˃§`jjª§G­]+‰Ø̃¸qc9ŸQihÔV¯Á˜ ăÏææBÏÔ2Äp~>'Í¡áà@âííÛ³[¶[Z–M¾Ñ£ƒƒ₫¹¸}»Bư"‚¦QBc{x9îđChiơËAsKKeBƒËQMÔ¸4¿fkÈÑ®]»¸Ô35µnÖ¬YuñÙ=!Áñ÷ß51"ù4iÑÂåáC»Ÿ~¢ nÜÀwë¹su|ÖñYÇgYYq*a£©iù₫•´›7o?~ü‹/¾X¹r%=ỉ¤áÇ÷ïß?77·‡Úzö́‰Jëø\ÎÔ‰ÉK70êióoTyy•E'rs9-|vwg6d&L ¸‹‹køhAèîƯ¹+D–}d| °ăăC«g%%s\geei’́́́¤E¬&M"“ ±,û/O@sôvƒê0åñ —=Êâ±±÷¯;tèîåE¦B‚ôENV¬7g¥W™ø›—Wv4{{2?Rx8‰«€Ûàyh(ăêj¿#/¯Ïüù$qÿ¾ÊÁ¼hLKsîÚ5k̀˜á..ôÎ @¾K—sæ€ 0îêj&e#'gEm¡(´_ƒ‚ªŸÏʤ$d_̀æÎƠđÙîÇ11¯ ŸË-(©ưßjç³–́•––>qFßׄϕ©XŸÁ}ûHüù̀%DiueÎ~A¯=₫ 5@·hÁÚØ@yË“\]y‰r ÷̀™3åIööd6û5É'W®\Ñl744Œ. öfgsr>·nƯ:%¥lQ@&iäÈ‘8;²™É::V¬Ÿª' tu¥ëƠ#ïøä4¯›6%ï₫ ~§Oç›5c¥8J‡Çå.\P?®@Í„‡›×®ḿâ".^¬‰16¬J! ML ư¿ÿ#Ü>p@Ñ¡CJíÚ *ăâ  (¨₫Í7ßX[×a˜•JÏøøÄêå³µº÷¸ăơëåøL¸owäÈsó 3fL```\\\³Ç̉¡C‡úÿü8 _(5~¿víZÍq̉̉̉.^¼(áB₫/́Áƒ̉ü-å¸÷¬|>}út§N|||đ÷ï¿ÿ.—zæ̀™ú2Û»wïCơÄÚ8§§g«V­>,MŸÇÿ…3'ñqµç\²S§NùùùißXÉƠñÙÔ”£₫øC•‘Á>±]Ơ<ư… …9s ,íñçË—  9—'%'‡âçÏ“ø3 ¤Ù”),ä°ºS1·uë¿£6ôôô,,È€ñÇ•åæ…̀F̉·ß* IDwĐ A¤¼¼”;~‚{Cú¾{÷né:¢e í̉¥‹Æûÿ 4AoË›øçà3Nêèè(1E¡PH³ƯjlđàÁr= =³©¶%–Ëüß;wî ¢££ïaơÜ|®0ç¨F´t“&M’óù‰+Y±ÿA>£ºÈ¬F jï^߀› UW®¤å¥Z·fµ¿ ¥ƯêÖe22̉åI|íÚ £̉ùßÙ6nܨY¤ûí·9y£;¤Q£²¤´4V₫ÂqÇẠ̀øñ|v6kb¼j’pr̃̃4̣eX!Ÿ{ơjµr¥ î:BºaK§ £¥Ơ¸<<Ȧ'¾ƒÓ¹º2À8™µ©É~ùeY¿G´›-Z8¶lùHtbö́™‹)¤E ½½-+¬ájç³"&ÆêÓOŸÆgâhÜØ|üøçà3¼c–e5RsÈ!̣ưkÿ;ÂÅîÓ§ó›7o2 ]‡ö:33SC×yóæ?0Áå₫$Ç "=¾ ̀3ñyåÊ•5̉ükmm-éy¿¸K±Oxxø²e˪{LÁ×ÓL¯––Ö¯_¿rù)÷ï±cÇV­ZµeË–Ç3öÜ|®0ç—/_¾uëÖÏ?ÿ,Gñ7V²buñ kkCi´|êjŒoØØ^d#Gr­ßm ©B&ÿ,7{ª¹9åâBz2@ËïÀââb[[.>™>¼U„+G7Ø É:aÏó”4O²dÓ§OoܸŒ¥ø²bÅ M̉ơë×ơô¸nƯ8ÀÖßß¾B>₫ùÍúƒdî!C8¥: 2u*Ï0T͸‡ëƠ«ătÀr¿~¼´œ÷Ç‹Ê ÆH!Çr=́°x±œ¬ß½{»×œÏQQBPœÆóÙd̉$£́́çà3®©üƯĘF˜I6aÂ8ûŸ₫yPPиqă?."ˆ› .¶¾¾₫Ÿ₫ùÜ¥{&>£\-[¶”½̣Ú¾}»|‡ˆˆ4"Èá́Ù³ei9ŒÖ­[·k×î̉¥KĐÈ­ü ø³Úsó¹ÂœKVÅZ6Vh:>»¹Yfd0‘YYŒS]Ù€tïØ‘1‚×Îç; b={ê-Z´HDÓ”!É̀dƯƯƯåIđơ||<ưüÚÛ›/\¨Ï6_}¥Œ~>£ÅD]i&4À­©ùÇ ơéæælâ'—̉Æ””´ÈUĂg§Óüëàà  \_¸p×Ós¾_;Ÿ±ïá±té̉çˆ?CR‚̉÷ŒŒŒùóçËS!ó4-́—_~ °æ óﻃ^½zåææV ŸñljÖ—G6 …K‘́₫ưû¹n1iF/xXmÛ¶-WÀWÇço¾ùf•Úvï̃­=ç:>WhóæÍÛ¶mTZÔ'®c…³ƒz{ÛJPÚÚ¯Fư ‚Íœ)\Zø\§N8rÛ¥‹mJJD¹C©©Ñê^Á¬±1ưøBKp ).½•YÛḳd¾F :99Yqq±6̀`̀ă-båS¨»ņ…7h`“”T¿2|†PW‘i–¨ÈBáÿ÷”fƠ*ÁƠƠ¼[7‡¢(\\\mơâY×~铜T#Ÿ‡ bV£†ÅOä3 A׫'u~{V>wêÔ©k×®¸îßÿ½µµµÅ:xđ 4jÆŒQQQxî̃½›™™)=̣ø"¡‡²··‘â?ŸA6È`°:j„ ±±±̉vMn£££¥H,J=¥÷5’& >qℳ³3p]ơñ s®ăs…|œ§N*u]¸páû‚>ªŸíMMɤ ƒ½½Q5̣YÂÔđá¼V>שUËÊ××$&&¤\Ó3eÊ82¬ĂĂĂ¼ÜÖ­[^§½³³ANN¶|ûèÑ£5“ˆ6oÎÊ»v¶ha-%½ơ–Ëăáß}ûöÁ¹ëرceø çÔ‚ª_ŸŒƯÎÏç7&Ạ˜̣*Ó̀L1jÿ•”䂇§~¦©_s>߸qĂÎÎÎ-.®2|6lƯUú|†D¶µµi%=T÷ĐÔ8°Ü¡C777KKËøøxiá-4ÙpÛƯƯƯÍÍÍØ)ă³öFUCƇ„„hîMn% ÏÓÓNnQ ©‚‚‚üüüïçP5|®0ç:>k74dp̉Qÿ#GÄ÷´´´Çû\]¼xq³̀́íMG$#;Ö­]]Åêʹµ5ơƠWd PíëÛŸ-?•äs»v !ÍÊ5jĐFF́úơ¤Î ööü¬Y‚ íáÁmذáƠƠp•ñ9¸Q#“¡C-çÏÇÇ|Ú4Z¡0?^áçW>[͘áååQ¡›ăƠ™n₫ê28ƯS5ùpæ§ÄŸ½ƠÓ¦ ÆÆôÊ•+«+çÙÙÍ́ĺ̉ÂçÈÈ0́6p m\\@9ÙóÏCC¶\̉;ï 61á»t±©Sǯ2]*o•äó¾}…È[§Nœ‘]¯^Í'N¨Kacooœ`nƯ¡C³WZĂUÆçø·̃²ÿ剷F¿óÓßëW†ÏÖsçÖ­[÷èÑ£:>ëøüæñù̉¥Kµk׆ ÛóƯªha)___øơăÆĂÎƠ›ù%K–L˜0aúôéZø ç÷Đ¡CÛ¶m{b¹¤#<ñraaá;^úK·J̣ù¡zơ¬Y³Ö¬Y#åêÖ­[¥×̉•zƠƠ[ơ|¶ư₫{Z©tº}û™øÜ¦MPBÇgŸßÈøÆ‘#Gʹđ̣ùă?~}̣?õ<í|~­j»̣|®v«z>ó>>æóæáË3ñYƯ¬ă³ÏuăSt|ÖñùƠđÙ|ñb̃×W¢î3ñ^Frr²Ï:>ëø¬ă³Ï¯‚Ïv'O2¦¦¶>ŸˆÆ/[¶LÇgŸÿƒ|₫á‡Ë̀ÂÂB̃wQÇgŸ_œÏ†ưûëedh¨û¬|4hĐØ±cu|Öñù?Èg<§…2suu]µj•Ï:>¿,>Ƕm˘™iºp<ŸqCfggëø¬ă³.¾¡‹oèøürù́¨×²¥œºÏÊçăÇÇÄÄèø¬ă³Ï:>ëøüù|óæM^­¿úêEøŒăøùùÉ×DĐñYÇgŸu|Öñù-77×ÁËKÜx>>§¥¥Mœ8QÇgŸßT>W8sÏ:>¿\>Ÿ:uJ„ú­[¿8Ÿûơë'Md§ă³Ïo “×­[WXXxụ̀åÄÄĤ¤¤ÊLâ­ă³Ï/‹Ïùùụ̀ñƯÏÍç… j¦nÓñYÇç7äùŸ ¤¬ß{ï=i±Ü¶oß-3===ùºN:>ëø\y[¹aƒ±««gj*>EéYYá‹^ÍÏÍg«Ù³{÷î½víZH‹áĂ‡ëø¬ăóÆçöíÛçæænܸñÖ­[ÙÙỤ̀y³Ÿhyyy-Ztqu­ăë[ûîƯ»o$Ÿ₫ùçèèV&&ö+V¬}øëøüXqqñ±cÇPÉ[·n=tèPeæñîØ±3ÇÅPÔ–íÓ«Wơë½—Îg´SdåjE]62ªUႯϸ:&&) L›™””ư¿ÎgU32m çî.ÁùEùܶ­ÅGIßGΜ©ă³Ïÿñ₫:t¥¨½ơ¢Nƽy|>wsºº€MLú|úé§ƠËçüü©ơ‘:?w­¬¼_+>?Să5zôhQ½ ¹"9Y¿[7ư='M4 ¡­-YsWmt½zMKß©Œ JcØ₫tŸGÍ¥ă³Ïÿq>wíÚUư@|̀óν{ç}RƯ6qâD-|ˆˆxÖnÚ´Éß?ăæ}ĐbíÚµ/1·-Z´ĐÂç={>₫“™3gª+|‰(Æ4nœYe»~ưú&M<­bÑ”˜[Xèéë[XXXÛØØÙÙƠ¬Y388Ø_mø™V™ỵ̈–¦ơ»talmÉÇɉ ¥ÔÄ~Ää[đ[™›ká³Ơ'Ÿ ™:ơi¹EAPœO^ëƠ«—>gdd|̣:Ydd¤>O˜0áơÉệåËåkmüí§Ÿ~7nÜøñăÆ)¯áöĐ²ú̃ÆŸï°ăƠ–ŸŸÿrs»té̉rËÔj́₫ưû³fÍz⯠d%­ÊU ₫2d´âˆ#Æ‹"´m×®ÿ₫éjƒ¦mß¾}ll¬…¥¥··7/dÅ.Đ@OOO¢nƯºu5ÎÊÊzË4Mâˈ‘#µ¼:AAPœ)¯áB?m‘,ܸI¦¼N†‡èi‹G¯oKí(8qâ¡Ît¦3éLg:Ó™Ît¦3éLg:Ó™Ît¦3éLg:Ó™Ît¦3ưcÇŸ:uêèÑ£,XđZu¼Ô™Ît¦³ÿ²fffîܹóàÁƒŸ~úiBBÂÍ›7uƠ¢3éLgƠnsæ̀ùúë¯5ÿN›6íèÑ£ºjÑ™Ît¦³j·ßÿ=###;;»wï̃­[·îѣǛTº¥K—:9‰QQŒ Û¸qăæƠdµjQ” pO‘KOO÷ơU±nn6åЬY³„„èøø°ÇK‘–––””œœ\.)(((*óó£½¼¼Ê%…‡‡ÇÄèת…ʉ*—„SÔ¯Y_₫úë¯'fơ·ß~«_¿¾´íÚ¾¾‚·7)`­Zœ››yT”Y­Z5k:FG{„‡›¹5hP¯qăĐØØHi¬GÓ¦MQ¢—XĂ8–ùôö́ÙS»ví—~YQ?qq^uë:FEƠINˆp q¬WÏ68Ø>&&0..ºaCß  c__Ñߟ÷ña¼½¹ˆ£€/-£iP&M4m úÊ•+Òê­[·RRR¿NÖ¾}û§U,=<¯OVSSS+¹zơÍ›7O:ơæE6¼½]¼¼¨%K„¤$ÆÂ‚ú£Œ x^"œ>­tp µŒï¶³£’“|,-);;;ùLL ¦LRXZ*vîÜ©Ù~₫üyüÓOÅăÇ•ÎÎp…4Iï¾û.’¾üRñƯw ss Ï‘&)??Iؾ{·ẦŒúàƒ4IÀÙkÖ$cœZÆw£)ï̃½¥™™`hHICè6mOœPâ\ ̣C‡rø’“ĂƠ«Ç0 elL=ªlÓFѿ׼¼.qqØƵ8#P¿fÍ%K–,_¾|Û¶mÏWĂ—.]̉2¾{Ê”)ëׯ¹×ô§Ÿ~B¶mS9¢45¥vícb|~ÿ]•ÀÚÚ¢©¢»uăp×ố©77zØ0ị̂eeôˆ#–[´5/^üăµ1íă»ÁĂ?^'Ó>¾{æ̀™¯OV÷íÛWáøî¿ÿ₫û­·̃‚Àí U3jÔ¨7‰Ïµk 04MDƠ• <êá3f ¯…Ïtn.÷í· çYyR­Z éï¼ĂÏ”M}ö믿¦¤8½û®Đ»7—›k!Ÿ¥Íßß?!‘~Ơ²%knn®IˆˆhƯ•’ââ\}MR½zơ jôh9‰ˆ µđÙÉÉ@^¸PÜƯ©àà²sơéĂ Ä-]*M°û÷Uø ̃ŸÿơWep°»••€ƯÀ±ºu]®_¿̃¢EBË––NNlï̃d.‹5k>|®²ơa5†¦$6VÜ£·u«Ø¾=÷ăJü‹¿`rP™EiÀ₫Ưwyªys¦n]æÎvX»V8°ßÓ¬›éÉh~¤ èééÉç«ß¾}{¹}fϽyófÍ¿ăÇ?räÈĂgCÊߟ¥!çª+VV”·7moO ¥…ÏÁÁtI y~?üPpvv”'AÓ» ˜Üƒ+**25ọ́¸™3y¢N-Q©Èy%ñæåå¥IjÙ²%ĐѺ5Ư¦ Ͳ”|%oooÈƯÀ@ m„‡¥u~${‰Nññ foS‰ˆ“â‹ä¶à¼ơÙ³JWWjà@ÎÍM¬QC-=r$‡ÚÚêㆠ2nܘñô¤qÍ›ÅØXϧMúQÎàtC6WŸ!l¬¬Ä.]ØÅ‹I1§NåQT5P(\ Ür;w’ÂΘÁ£øpĐ`9;SØ -  §ăóœÏüq­Zµ´ïg¹oß¾gÏ…’9uêT«V­rü_4ww…’Ââ ÂÓQ]ÙÀÙW®ÏŸW::j‹oøùÑ;s‡+#"''y’½=ƒ'M ₫4H®Ÿ##M%Nöï¯'Ÿ_Ô¢öí#8ÊÎó¼¼QđnÉ­X³f&)99z80Ä7<=µñ90ĐzưzqƠ*Qª[ÉùưûømbíÚ(£¹¸£5m‹¿Ÿ}&×ÖÖ´¿¿₫àÁ½Nœ8áăcŒígÎ(?ùD´±¡jÖD– Ÿj;₫üúơë?¾téœèhGcc± `tµđ¹k×iiÎêZ²ÍÊ¥(Üo(®Ôºuṭ𸨴b¨ 8&ü¡̣ñ¡  ă³Ị̈ù¡zM¨>}ú´nƯ¿ÿ₫û7)¾á́L¡`×̣å“jo Îiás:LRÓ©ײ%ëèøŸ!JcbH¾ÈĂhX@ïçŸIp`₫üù$CCĂÄÄăHƠ$5jԈ穢"y€œ“ r+++(güäÖ-üq-|ÎÉÉIJª[¿¾7üw"˜{öä¤ÓƠ«Ç ¤8ăÄh̉„Ƀ‚,Ëvè×ÏÊÊz¨R̀ÑÑfØ0^Ú&cûv1?_9f̀#øºzơj¿~=ÂÂjèé1ăÆ‘Æ"™Gbc­:TÅ|^´hÑÀ¦R(#.Îjm«T„œ.-E3ªTR&đÈç±c$èÑ¡‡Û@o¬^-æäôzA>CGBS•––j6â;/Í–ăÚ… N< ŸK³?TÙÓ̃ưéøü:đùÖ­[]Ô6~üø„„„îƯ»¿I|¶·§¡jđD<¨01©6>COÆÆ̉ï¿/p¥U?%CظqcäI úÈËălll4Û÷ïß_£ăáAgd°AÀÈ‘#5I&Ĩ́lvôh:ZY“Û¨Qº!éÛ¶m«I255ÍÊ* M‡„0ÎÏụ̀eQ¤Ü܈G1ss¹₫ư9đjÛ6±Q£²ă4mÊnÜ(2nnFéé́̉¥$  ñïꪔ¡±˜3‡„ĐơơÉ+Å5kÄÖ­S5çºÿ¾RÉă'+Vđ/6dNœPøù•ä#"LöîƯ[Å|;wö¤Iú8; Ez: §¤0~HöÛoÊ€zÍáäI¥«+}ó&¹phÅĐ’º¹‘û 8đEøüÅ_xzzâÂEGGÇÇÇk&­…Ö200øüóÏñ½¤¤$Mmvvvø‚z@ă.Ÿ3;;{ơêƠ:>¿¶|^ºté={àKoç̀™óă?¾1|v$Ư¨„ÆÈˆ‚̣|îă@cüđĂ»wïÆ½½|ùrȧyóæáZă .ú† vîÜ wé̉¥'ÆNÁ[|€/@L ŸƯƯͬ­I »­]»öÑ@: ß¹•…gMß@Ñôô¨ÈHº¹̉$ñïØ±C©äÚ·Wùø¨Ú´É°µeÂÂh©ÈAA443,”¨ o H́í $ûëÖ%ñç±cǼŸSSS5ï’P«ÈæÍÂ{ï½ËwÆÆÏ>ûLú{µE‹̉÷Û·o»ºº>mngŸ_>ăÙ́ׯ_Ï=333ñ°÷êƠ ¾äĂg¨¨»1cˆúÂCQÉ_Á=—Ö­[7nÜ8ŒFeddäææB̀Ÿ?X^±b.÷âÅ‹.\(ïÛ·/́ŒçeĈH=räˆäKJ}Hºu#úP Ÿ]]™ĐPfĐ ’Ûàà ykXb"[³&Sh¶£Q€´NNf33Y @Ăă¶mÛ¶Aƒ±, <úûÓø‰´²Ç‚ ̃yç=zƒØơë3¾¾Z”N®Ÿ‘[HAl¯U«b>£A”̉̉hàU}û¶ræLr›4a¥ t|<麀ƯBBH;…J€̀¶µ¥»táÂĂIÁBCI;²v­0q¢hmmR¿~hË–¦vvô°a¤*RS |;vŒÄ¨Ơ3á{£ÅD›ˆJfY…¡á4uå$U Ÿ7n\çæ¦7'E5ªß‡’àÆ¥KJZêÁ²¤mB3B°ŒÊ”̃̉¢Å”LKoíÊđ×±~ưú¸Eåúk×®ATC6{yy?₫‰|Æ é́́,ưjÙ²e•Y_IÇçê?C{€̉đ”»víGûMo@ÔIñ£G•NNóùàÁƒùùù'`́´iÓ 6₫ùçJv'ĐØ™3g€Y³f½ưöÛÉÉɸ½ñß¹CÔ/t”>CƒIñÉ)SxcäIđ‹ÿøCyå*=µ²²̉lŸ8q"À( ËvíXkkkh'À> àáQ•̃j~t»»Ó#Fđii¬·7­§§§IÂnII¬F©VÈgÁÙ™tö€N†~©̣̣84‹?ưDÊ»i“87lÈde!o$$[£¥‰ŸÄÅ1Ạ̀–-b¿~||¼P«–]ï̃m‚ÈH³-ØY³Hï5TZ¥E‹ss…²aẴ½»k\̣öí»SÔ‡êåO‡…5©>ûú:>MJ·f× "@–²Λ'`£ô*°Y3R̉}ûH/ýêÖü|}®·…´¤/^¿~=À‹›ûKK¥Ï˜1cøđáÉêăäư«å|†Á%¨PvüøqŸ«Ë–,YbnñOfoØë¿ ÿ!äÙ™6W¿öz²AsânoƠªU·nƯÖ¬YóǼ¬ À…D“‡SC¬NJºká3wđ Bư.‰U(̣$;;"º¤­ƒĂ¿¯ß}÷]è̀ß~S̃ĐØ†††/^ÔÖÅ…¾qCuïJ̉l_‰¢¥‡í'N÷[¥RidĐíëKºùư₫»ª2ñ @́-,Ñ ¡€ º‡é\'½  =îđiƯ B&£¢H«qáy¡¹x±đÖ[,®PĐ’“3FDØté¢MÁnû÷+ Ë»w¢£Ă!!hZ·HèE‹æ¨›§©‚ĐGÍçeÁÁơ«†ÏYY Afé½'È́ïO'4:ÊĐ̀Đùø×Û›jÓ†‰aP“W¿TÖ¢è…́ǵùº"éêéêJáa|n>Ă¿Û°aƒôâ!''GÂrPPPhhhdddXX˜½½½æ=`9>ÿôÓO 48wî\Ưºu+S^Ÿ_‘Af¸¹¹}#³7)vQI>õŒd á`>qŸï¾û.++ ´9v́Ø+ʆ´Ú³­- ká³½= C€œÄh[Ëj Í́íÉ_a„1cÆ:tXÖ́ШQ£uëÖ=‘ϰèèh4‹-̉ñùơo¼ÁæèH‚¨ÎÎ4 <2ï°eË–ŒŒ ÜÛ¯4P€x–ñØâñÔÂg__e—.Ü=D1¶oßNdhHâŸNV%Åó¨Ù~çÎ<́ C^«1½A“¤§§µ BJÑ`9Ÿ•êU§W¬¦Nåáz[XXŒ9R EB?#iăFqÄ̃Í­>Ü·¯1Å~%" jD ø€K=zpühđ/Nµu«˜“Ă¹º̉`8N'Ï̀d±-Q­Zô?áÖÂBÈ̀ä¾úJ¡T²………ƠÀLL~(Àây‹F”wïªú÷çk×ö—ç§júoÀË@åÄÆ2G’øFAkbâóö&êYjơ «×ÖPÜ₫A¤&Ñ*áöCS•‘Á~ư5|#¸uC^„Ï?₫ø#€¿)))7nÜèƠ«×ôéÓå ·†Tód655…s§ă³ÏƠhêm̀ưûª~ư8¡\ê®]»Ô}to<ëaK/]*~»GQ£ÆÅyK<¨pœeÇÅ­[ªÀ@F Ÿƒ‚©Ử¥‚—W y’ŸŸ‘±I“ùœ*›7oÆÁÓәѣy:;;[~RØ©ưÄ"?bKÿé……í¬̉á¤Ăà 7kÖLS¢K̉níZ±iÓ âÏ'ù±¹XÜ\QOIóơí·?ÿT!¡¡´:ĐN¼+n7á·Î"¢71‘ññ¡ÔU!¦¦’(Jl,é=¡~ㆠ•#In\,́¼n8ỵ;gÏur2ÂÆ~ưpx¢©TéææöÊU«V-^¼ú¹Ÿ«W«†ÏË—/OJâ êZâà89ÑhŒ¾ưVTÏÅ!^ÿJù‰÷•_ÔN<"ŒnUÖßÛÚèj82̉û…M›Ä¼¼ÜŒ?KÑ3-ËÁ¿,ÓñYÇçWdÍ:°‘‘ h ~öˆJMM•ˆ®,œoƯ*¢Ä"VI₫ Ea¥ÿ­ư'̉k}ơ?mľ}¹“'•hSÂÂBåIxÀ'Nä!ºW~êq‘äàmÛ²̣·B nJ<[$ˆEœˆ¬̃¡„"/¿Ru€KȤFqq$¶ Bh¦T,›5}º>EÙÔ¸²X;Ÿá}¸¸(Oï"|£ÏÏP”|£́Ô–ÍÏç÷™ñTä¼ø\ÓÖ¤Y’Ú´!íBëÖlưú´îâ §íí©Y33ª{wîÔ)er²ÉöíÛ£¢ PAï̉¿U-™@Ê$ZĐj–K‰«Üơöú*7°ÂƯØF% W ŸQææ̀† âÊ•ÈƯ»Ă'¢ùEÙ¾=‡¦§o"{¤"ßc„Sa¤Û Ô2”?v=› !ăC¥‘DRÄøù\5¦ă³Ï¯Èœ8<Ø/x₫ /‰#ŸØFøl ââV œĐ¤8)¥89µ¸IÓâ”fÅiÍ‹›f§g7oYÜ¢Uqfë⬶ŭÚ·n_Ü6»¸Ư[E5‹h…ô’§*-îSÜ3·¸WŸẫ}‹sóûô+îÛ¿¸ßÀâ₫ƒ™ªb? àM Œ̉ÚÿÙ̉̃ö6¦‚ è_¶~^ẓTéO'¥ŸH‡Đu,©psªgJjé… ¥W®¶¹ow5Ó§†ôă¦Nâ-)jdë6¥ß~ẈÅ®’ ›º¨ >¹û´đoVeQXân½zó(îFsñZ’¸Iä¶«Œă’ö… tqÛª4ØbÈ-3#=Ä‚ƒ+àó¢E³mLM fM¨¹)Ü×ơù¥÷¥‚û›’—O ‰ ¤·>áá Ï“¸‡ÿê+ÅƠ«ª^ô7›Å£kÅ8=ú-3¦‡’™`ÂN¦ÙÅwº¦đ{q!7‰á0úY½¶Æ̉BUéÿ©&5Y¹r嫈o Ö§fMÇQii±ÑÑn¶¶æÇïÑ£½¨î́Gb8hh̃{E "½½æ)Ê‹|R Ißoˆx+ÎÎä ˆ‰ùXZR£GÖñYÇçÿ8Ÿ¡Ç’“Ù’Ơ°a$h™.))-.₫́“O&_zï¼₫̉Û·¡Kÿú«ôÆ̉ë×Á½̉?ÿ,ưư÷̉ß~+½|¹ổ¥̉‹ Ï+={¶¨ISùcˆOqץǗư±ôÈÑ̉—ú¡ôûCàdé7ß–8Xºÿ@Sfd<›•ÂöêÅj᳓µv­x’b%ÿ‘Iq—îäóv|fPÜÁ0á›8a•1·Rψ4h8µèbf1KÅñ~ñö»̣K•†hJF+™ú~ÙDqå²Z”Yzü„;E禱¥çU¥—U‰µ}.}đ °°pÈ!RT’ơøqeP¶ùëđ`bÏÛ·U@Ü“sç@PB“ÍṆg{”ÏE†âƒxq¥!7›â₫j)æ‡sưô˜ơ¦ÜF®¸¥¢¸±âˆ£p¶0“æ~H‹ #<Ù‚$î§•bŒ;íªî»rö¬̣̣e¥¿?³{·èă£8zTY\¬EZ¦ñrù¼jƠ*œñúuƠ‰d&º“'¹¹¼½=_»6Ñü¿₫ªüà¡~}¦´TåZÚ³G„_pẠ̊‘"?0û{²™™4nBx+©©¤Urw§›5#=ƠûôéS•|nƠ³gĂđ MN^±aƒt•Ó̉̉₫®ÈơÓñùƠÙÚµk===/ʬ ¢U¯•¹»y—¹ÜüH§OŸÎÈÈÏ]PI+>«HÏôß'Qi±ªư'[cÆđ‡)´÷ßhĐ€~đ€Ä',D‘“'ÙÙ‘á3g ´›››f{:uđøOŸ^µµµ•ÇŸÇø°EF2H*Œ—,“’ ú¦Nåû÷çÔ¯ IÍ,^¼x̃¼yø®™F#.N[ü¹U«Vï¼c†Ư\]‰Û₫Ưw9sÈD Ơ7ËÅ aunDˆ½ºr~†T·D¶ô¬j̣P®¾íHSÖÔÎܬ@óäæV¡ưè#¡I2ƯߟÈÎ̀L )K™™́–-P° ơ°©SÇJùy¹|ÎÏÏï̃½lîĐ5é;D;;-‘#Ê´4Ÿ™ÑYYmܨỡ•â¿/o•qFO¾uḳÔË‹~ï=̉7R‹cèP.'§GỤÙ-!Á₫ôi|,V¬Pw>Iعs§‹‹ ¾—””àÆÓ|jü¹¨¨((¼ÈÀœ<ƒvÅ-ÛVøÀ3Mk?Há¹s[[Ú̃̃^daQÁ6ŒŸ8q¢fûêƠ«¡Í́íˆ>|X{w°µ¦¹ó—†‰ÿD³­ñä r 0**ª¸¸­h,¶O›Æ³Úôsß¾}£¢-Ü …Ó&B‘‘µj‘‘t£Fñ .ÿ´4º^=ºW/IêPé:uˆ¼œ7Opr¢û÷g›7gÑ0ÙØđB§NBV«¯O;9é/\8·\~^.Ÿ/_¾́⢜2EÈÎæLLpÿ(¼¼ØŸ~R©ó·̃â’“ÉĐËnƯXÔ‹ ½y´0—fÓiú%üÅ ôUQØ‘NÜuPƯ––TAÚ†NÀÉÖ“ÏéZ|®Ñ¤‰ËÇøˆQQ.5₫}ơܽ{wdåƠñù5o<‡’|ưÍĂĂLôöøüH÷îƯ‹3f̀s¹dƯÇÅsæ•|^©á–̉$ À¯©©6>‡„ˆË— ³g ï¾Ëgd4”đdè Ô5ß¡CÍö«W¯˜èyx~tffŒ|.w85i¿¾³Đß„i.*eƠâ¡knNÖI:êƠ«7{ölii8\íÚ‘øª§'•œ\Aü̃ñûïOÓÓc££¥~Ô¤˜wïªÖ®%¯Æ‚9z^07̉…q·&Âxî\₫́Y%`Ë©|ă†Å e’’X Ci ´t„Æ{ơêƠ¨Q¼££=ϳ+VˆƒsÁÁ4-ì8ÇQåf)éñç›7off6ïܹó?₫8}ú{“q̃Îm¤x2¨@²úÖ[lOmRrÎF×p¦ÚR̀½©ùƯy©Ó{l,=y2V ”îæMYT¾|&«*ă³ƯO?±¶¶½₫y‰ oˆ¨_¿~¹™:>¿>|~³×OqtdgÎ$óêlß®Àcơø8óöÛo¿ºÁ)Ơó‹B}í߯èÚU[ÿ:H}h­èhÆÛ›®YÓ»\hdNLdáM7hĐ@³}×®],K̃¸Ư¹£‚¨“ÏD×)&†ÑD*`$8¶́÷ß+~øAáí́́¬™÷ÛÄÄ„çÉ$óưúq8i…ăSöíÛ¨~öyơÙ»77z4¯éQ·ÑÓ“L  ×ùÁw”|;tµÁÑ]»fÎ5#2’C«„~ư5¶ÿ;y]|¼Ïwß)Đ<-\( WØạ́e%Ó©S̉+åóăvîÜ9hÍÍåÆçkƠ¢›6e‚MèÁ|é%Ơ‚ÂĐ¡Üºubÿ₫eÑ!4(»ÔaÍÓ¶mÛ ˜Ø:u˜fÍ-ë[½:>öécĐ«WvŸ>'ƠÖ%/Ï8-Í~Ú4ĂÆ–} ù\njù¿Đ“p_:ŸµÈÔ'&=xđ@¾]>í ." ôưîƯ»J® Ÿß́ơSÜÜ<×x@>ùDÔ2¿è;Z¶l™››{àÀgm£2XµkǦ§³Úă¾¾L^wäˆYµµµ‘'98Ù„ uÏÛ.í+V¬ü§Nå;uâjÔ âăăe±¥³3 h ÂKú4ImÚ´‘â íÛ³@¥½½ưƒzq«TªæÍ˺F7lXñümÛ6oA-4¤ă”)<$±t4‹ĐçÀä}TYWÑÏH__ÊÊ,æU¿¾8aÂĐ æÅÆÇAú‰••hm­ŸŸOæŒù›Ơ­Ë,^,HÓ\\¸ Dqüü\«€Ï€Xaa¡æ–ÀqÂÂʼ֭Ùw‚¹& fa/M-×®©ĐZđêYMˆ̉3†Ï̀$}÷ë×3 €¬oeeEüw##̉qg3†[±BÀââèI“ø 饤´.­±1é—îçG·lÉøùÙ4mÚÄ̉̉W£F<ڦ͛ÅTÑÑf̉æ-[¶¤§725åÍÍÙÚµWWÖÉɰÜÄ>¯‚ÏŸ|²̃Ün—`cc Π–T*²đ믿’$­)f9k,”…,Pd|OO2¹(n6”ƠbfV6Ú½aĂh##â#«6lÇWÅ|6_¼ØxäH“)S, ’˜lœªá³sƒđª(N‰ÏÀ/(:|øpÀ$==]Z…Anx¸Μ9³gÏKKKG“4}út¦¥Q³fÍÀƯƯƯCBB€Ärÿâ!ª]»6ÎUNÖ>7Ÿq|0đïß¿ï̃½åIx¬¤gî*Úi#nĐ*Hâó¯¿₫ xBü@EÎ@}ll,nK«‡CÙÖ¬IĂm_¶LÖ×C#̀FF2}$  À¿È@z:™³ GS…ë̉ ‰x̀™ƒ#0áá^ëÖ­‹uüg!ùÂ[x  FààlÚ´éñ%?^ŸQçĐüêBѶ‡ áŒEj‚-;[ɨÈj\’Á…ÉÈ`¤qôđ&âăéùóÉÅêÙ“…kƒ(æĐ¡üˆ<¼ ü‹G¾ù¬ˆ‰±;zôi|ölÚ­¶4¯Ư‹đÈÑÑQb&.B¡(§Eœœ°ô·¢æ;v́`•””¤¥ÈCfoƯºơñ!VqGGG?>¡ĐóñY½§©0iÑTÉSÿüóOIµÂÑ®ñÏÛƠœœT‹¿¿¿fÂü^½z3F'̉¢[·nÈ ²ÆđL¾ụ̈K]üùÑ÷ƒeưë~ù^ưL¿Å%;qâêpêÔ©¨ó̀̀̀  –Ú¶m‹ªF ›ó¡Ѻ5jÔ(99¹C‡¸Ÿá*¢©Ơ`túgt¶¶ơ»#"˜¢"®œ7OĐÓ{d₫:Ȱ¸8ÆÁr”Áư¯Ù₫ÙgŸiÏÊËăĐvă¡@û À0dÉB8Ô½zq̉dø¸Êƒ622"ªoĐ ôđđĐP__¿]»²øˆªÏ&Œœ±'/åP¥i©RSYœºaCÀG»Ó¦ ‚’×亜9£tw'ù;–ọ́##mxäÇ720PT̃…yé|Æ£:×\h{ăeËÄ̉˪éâ8s¶†[ÙØ8(~Ÿ>\«V,ÚÔTÆ‘*püx>=̀q7y2¯Y0=!¤ªX?ÛGF*-|FóEú‚|ƽ'ŸŸÜÚÚZ>¹ÍÍ›7q[ÂÙÏÎÎÆ¥9́ưû÷!Œ¡H¡g$>ăé;v,Øk÷ø¿€ùªU«àX=±çăóéÓ§5àÅ]WnöHÉPRCCCùb09Ÿ¥–Hj2P¢Û·ok$A¼•[ ­!˜!³Ç‹ófÇŸmmé¶mY8ËÅçGzVĂ vñâÅŸ₫ùèÑ£‡Ơ†«ƒ»ªûîƯ»Oûbi₫ íë[Ó+Wwïª@N•J%O]üQYZª c4ÖCơtjvvôwß‘!xØ÷°& Î#œñ-[ÄíÛEuŸN3‰¨§§'jæüyå©SJµëƯPÖ˜¡!ûăƠ?(€í|^±bEÆú÷î©à×K9ỏ„MNfPG| c±±D6ûùQµk3û÷+ 0Ơ]M¨-ÈuéÛ—ô ¾~]Åó”²3GLM­»xñbiNăêâsJJL­ZĐÿ¤Ph°P@8Aí˜MÅö& ˆ-ͰeK̉è*¤ơÊá/ ·nïÜQ©Ç€0ÇóÑÑ$l¥©đúơé*?h`gg¹fv>?T/Ë"­ơÜ|Éđ,àçvvṿ5ä|~Vƒ·ˆ“₫.³ÇÉ›°42"£ÛÜƯ©—Âçç3ÀGZyĐÂgooâơ»©…Y¹ù7BBL$ơƠ¥ ‡ÛLÔ³gOXđñq’oÏÊÊ’f¹Œ‰apØ   YdơpR¡ ¨„2”?}Pà;̣JU"₫ÜƯ‚…bÄ)iĐxƠ*ÿnÛ&"W  VIĐ₫úkÑÙ™lCCJߺºB‚~ö™FI½fŸé³ÖđËå3œÓÚµ ÿ]…Lzz’IœÆă'Öc7\]#à—:wtc^±‚¼tF%Ă?ÂjèPNj}b §QÉ>>héŒÍ̀ÈD‚¸áq¼ÿ¾0n\Ơéç“'O úúÎ%%̣µ¯üEø ‚¥¤¤È”‰d¹\¦¢y‚îư§L÷́Ù‚–K‚vđ¹{÷îo« g”f¡]¸pÁÛû‘̃S£æEgdd¤|2Àáó³®ßưæÅŸ]]đøPxÄÔ^gợ0w®pü¸̉ÁÖÂçÀ@^r¨±s½z̀nlL–<˜ëÀFÍv8P¸áW¯¿ÿ^¡äΑ“Öߟ âSRQƯ7nT¯*EKS$áÑ$Í;IÏĐĂ@M…|?~” }ú4éá½p!Y₫>Î _̃}j*‹Ô€ÍÇÙ³dđ47²Ÿ~¢̀Ëă MĂ”óçφ'‚#LœÈ“H¼…yófU#Ÿ¿ụ̈Ë”+\ˆû÷% ̀–̀V·U´¨ÇÀ‘̃rΘ!ಢ-ƒM™ÂK@Æ舠=aé¨Q£zơ*ëÁ›”$VÈç·ßnÆvïÎÂ#Fđ§N)Ô½¸™»wUú±}$4lH"8 4>¥ẢƯ.;›Cc@’ºt!+–&$„L›Æ8 8xPѹsójä³ú‘̀vpPxz²ábOfO˜Đ< 9zTÙ½;×±#Yr FÑĐ,¶iĂîÛ§pw§¥áÛ?₫῭̀d¥Nw¶¶tbb øööÛvï¾K‹‰ˆ03f .AƠđy÷îƯÖÖÖW†Ï¤ïóñL¶²²L€” &ÄÆÆJÛ<Îà nQ©/Êhoo_îºTq|Cn°µµo¡¥Ḥúơë%¯ó̉¥KIIIR‘eË–=-₫ü*ø¯^½g±²"á‹>¥Î 8)¶@[nÛFºØÙÙ‘ÊÁI–ÂBEq± ZZØÅÀ€Y½z¥ #ÉD"¦¦Ü– ûkƒü*úo+üJ¼û–Øa'Œ'=̀ѬԨAÂ>( œ²đp²°. >éédÄ·™)&˜ ßäóÏEơ$!‘€Ø‘#Gx<™ïÜ™ƒN@«Z5|.**222Ú°aƒf|w…|₫ơ×_!¡Ÿ›ÏRÄØØØÁÁ!$$Dsÿ@K2¬«W¯»»»¹¹y¹₫fƠËgÉ}(×ÛDn/=đ[I>ÎS§NEU?T¿Rüî»ï̃>ÇÄxÙÚRÀ‚´trueƒaÊú•™›SZçç·ÄS UfoOÍ5C¤é̃ªU+ÍösçΩ§§ Á[đÓO?Ơ$ ?$̀q| wñb!4₫+ Sà¼đ¤®¿'O’ÅyÛ¶%ưwîTääp=z~%%ªqăàÚÄ<$½•Ú$&:©ƒ Ö­[-?×̃½{êÖuut4́Ó§sỤùí„€ë â¶ÜiN$*(ˆ–Ú 2.”†³sù²ÇÅ9’ïÖ7M‰á''Ç„‡“^èz^^"ªÇiß̃ª>ă¢KKUÈg#__¯ØØZ‰‰n‘‘µjíܹó¹ùüP=@û"W¯^-×™áeÙ6¾~wjäÈ‘ø––öÄQ“ÿ£æéiHư¾€ÇêÊç3g”ꈶñƯ~~Æ»w‹çÏ+›5ăú÷ï/Orr¢×¯ÿüS¥^-%]~‰±å?ȃDÈoÎÎ;#éÖ-ƠƒdVùb £G¶·§¯\Qưú+ }̀Ÿ?_“”œœ ƒœ×®© ä+Ăç₫ư;£1‚WïßWƯ¹£̣ô¤hi=‚ÄDF½ŒC†f 9€GS£† –ú=Ö­[kÁ‚yyÆø÷àA…½wï×åjï©ö̀ï]đø\úÍ·¿†„GStl¬5|cÇ”}ûruë’²́Ú¥pu%o ›4ảÓYéÊî߯@{Ô¦ ‹ Ïßz‹ŒGû(d<´„zA™ĂÅ(ª€Ï¸Ó8“ºTÈg=Ç?ÿtºsÇ₫äÉÀ† ¥́só¹íˆÏ«V­ruu-”™–F Ú₫¥Œ˜{­¬NÇÍ›I¯<#ZÆw¿úf‚†ú’–8Ñ:¿¨3ń6c†rÆŒ÷ }8H¶äéH¶hÑ"xµđ5I¹¹¹‘‘eIAA À«I3gNX œ¦¥±”|H“&M4ưŸ±Oeø|µ=騀 H?„üFk‚/«V‰ÈöG‰=z°À2øÖ¬Û¼yâ²e˼¼¸¥KIOiÓ fΜ^P@ö¿ySea¥ưÈ#ï"6;ÛxơêƠUÀç’O>;èäÔ«¡µBÁ Ö‡çÉIÈci:Ú5 B[âă[[zÏv¨WF똫û<“̣¶oÏ'&²·oK×Tef¦ßºùáĂ?ÀÍyE|¾|ùrƒ̀̀Œœœ”NĐh:ëV̀ç€Çk×đÅ₫çŸă³³ĂÂÂ4}wu|~E¶téRssóÁ2“÷uù/XÓ¦M¤÷æđÙU*¡º² AGÁóU*µÅ7"#CÛÁƒơ£¢j”›©»¨¨(2242̣ÇSzqp0­K2×%ä´&éèÑ£`…‡Wk–{~¨Ô[@ËŒ ÖΑ•̃ºu+àÑ˸¸•á³:<γ, à@ĂC=¢)”†Ú¡Ô,@½ÛØpêN æ‰'6¬Ûª7g0e ßµkSàˆaÈPǵä%?×øñƒŒ¹-́́̀6„ó%̣¹dΗ⒢=H‹PT¤ ´́ĐÁߥîÍ}ú@Ó̉åG%%5À5 §Ñn¢̃zôà•JÚ̉’·/_†$ CCɯTƠ­ë…«#½ xu|¿p¡Ù̀™v‡ aaCG>g>NêF®2|¶ưæ•©‹‹¥··¥å̃ưûu|®ÆøÆ›m}úôEP‚16VJ¯«ÅLLww2Z;Ÿưư= ÁXÀª‡Ÿhbmd”mffwëÖ-Íö+W®ÄÆ:5lÈ„…Ñ~~Ê;vh’₫üóO;;±sgÄ"NŸ>­IúöÛoyüÊÙlgLù¹úơ{[_Ÿst4JKK® Ÿ»ví%‰VgA¡‡ ù ˆ/ÿóÏÄư·³SëÖ­Ăíééе«>Z̀±cù;áá5ªß曘Ô®mQ»¶û¥K—Ê­̉úơ뵬7ưRø\zÿ~ñˆÑŽû~µekV–ÄgCCÁƯƯäđaå7ß(Ôc·ÿŸ½ë€Ïézÿw¿#‰́½÷̃;d‰L+ ‰3ö̃ªµWí¢fQZ«6-5ÚE鯭NÔ¨•Äÿ{̃o¯à!¢ưç|̣ñ¹î¹ï½g~ŸïsÎs‡sr"»Ÿ½{“V-)éXÎ̀äD§÷ í›íÜ©Ÿ™iyú´<&Æxụ̀ÙóæƠás>×PêÓ§Ï¡C‡0j7p ¸–¸7Ô»·&ûºà`í7ÈcăÆñ­[gK³”Jc*¥¨‡::ƒ*O™;w2Ë‚$[5k/½úôi%äÀ3<¼tỵ¨Ă‡¹¸X´k×hèĐ??#]]HO…äÅĐ₫ê+²¼¼y³,*ÊUư6 ô?ü ₫ïôô¢Đ}ø³²j>sæ̀äÏsç̉ÚÚæŸ}¦iyö, ×öÆ ­ààÂg\(ơÆŒ©Ăç:|®Q|W¬ơbØÙ‘Ó˜¸Đ€ÏÑÑFÇ“É5YêD”¬º4¤¨0»ÁáI¨ùúë¯Ơ>gÔ騱cªèErÑ¡åGư„ëĉÑÑf ‡wî ÇgpñÙÑQkƯ:‚ö;rææôæ₫ú‹Ø?GF²-ZdHñÇ))Fxø·ß”*ÓWcoÿ’ø\₫Ă¥-Û”-ỳ´ơèÑ£§N’În]]öÏ?•îîôÇËD£Ẩ¥dQºW/ÎƯƯöYïG ˜˜ÄPÔº#nÈÖ> aaZ99Ä$ăåđÙhñbEZZ>×ás⳯¯‡•okkQ‹Å03ă•JZ_Ÿ„̉Óè_4“7,L µ«”µgÏ~•£Ô¬¬ö•²ñ¼9~ü°Z^¾|YzØ¡cfFŒu#"ä•|g;X_ŸµµƠZ° ²¹é÷ß_\<¨C‡.yyyUÁçíÛ·«́ÍX##ÚÍÍǛLáîN5i´m˘ÈFŒè[XØîúơëêßöîƯÑÚZ'2̉n÷îOÛtË–-îÖ­íÚµ«¥7ïܹ3jÔÄ́́ơVéËàsù_–¦7-Û¹ë©¹ăÆ ups³ ÷<˜ëÛ—o׿8ÊÁ±°P9rDu$ŸAMƠj¸psóĐÓ3‘–7MêÙØ4X´heÍ­ot+.&†‘·o¿<>Û₫ơçà0mÖ¬:|®ĂçJM›6ƠÑ¡ ^âƯƯk ¢µ´HĐƠµker¹æø° /]ºôTûó  ¢"6Z.g/\¸ ¾_ZZjkk:j”rÉA__!=™ ưĐ1y2?s&‰µ´nƯ:uÖíÛ·1‹çÏ—-óñ±•.)\»vMẽ»ăú¸¹5¨â₫`||„g%3†70 |}éưûå2U\̀O˜ ss³ºjG95P§·̃åå%G÷ik³R£h''/¡¨µ§!ºÚø\¶iKifọ́“§;qâ[¨Ô¾}äl h¾g ÄÎîƯ+ç8ºC‡__J¨T26T´0Ëj1LGÚ@Q¬Ôvñ×_ ¨jŸ₫ùg”°^¿~&Í/‡ÏÄiBBAaa>×ás ¥´´@(ø}ß}§°±¡k«ööç»§L4ăó³²ÂÂ,Ä7̀œ©/]×MJ²~ttÅLB¹¹¹±±oùù\ưúơ¥èZXh)fuè`+ơ¹yófCĂâJ©M«*ⳇ‡IP±₫ßéâB‹ËŸ}&ïٓ؟Ú=zôEÛ-99'ÚEµPß77K¨£3uƠªUƠÆç²¹óKÛä–?®wHSd¤ûöídüüñ‡̉Ö–—q""Ñà|×.¹‡‡±hÿ|ø°¼k×VđÙZ,Ï¿£>à,M¯Ÿ÷îƯ»bÅ ¦}||Œ–,yUø¬;x°Ÿ¿>×P‚́V*•Ñ’$ơơ÷ÿ!ed$‡†2?ÿ¬h̉„­W©­bXX0 ±çÏ+4ûƠ€Ïiia³fÉDï”R8ơˆpY½Zvú4É:₫¼T:ÿ¢¢áÁ́Ùÿxº|ù²££XØ ²¤<¿ùæ;:NQMM=«ˆÏ¹¹)ľœÄ:KóǽO?™X\̀â+OºRn3f@Ó¦P >>²Q£₫9 ́ïŸúêâµbẸ̀Åç̣{÷ÊFŒ.-îU®ñĐn—.¼¼ÈøéĐ :8¡ÑÑln.‡›ææ|ZZ|óæ \{zÊÆŒ.₫J¡0§¨©ơ-7nܸÆç3gÎ躹1zzÚ©©‚³ó+ÄgăåËí‹‹ëđ¹Öùó2~wŸ>} ‰{{-©YÚkN7nT1VVæƠĂç«W¯úû»eg7Ø´ic¥¬+W®øù¹ää4Ü¿_¥¬¾}û**Í›7¯”X pîØ1M é°÷€££VVQ›6mªˆÏ·nỰơu50röö¼µµÜÂB;"Âqđà̃AA®M*™đU1=xđ U«ŒÆ'M-Ÿª̃€ ZmÚ´µëÏå×®•v..=®üyq¯MQÖÖ‚••,7·ñÈ‘ƒ##Ư’’ÂÜƯmSRgÏ„¶h‘œ0ỵ?%DÛ2ŒB©´’ô¬9|>}ú´¶ƒƒÑ‚@Töí_->7ÏÎNLL¬ĂçÚÂçÿvü”7Ä~#*Ê·Y3nÚ4¡Úü¹©´´ỔR¯¤„ïÙ“36V>©ó¹©öê4jTßädk¥’U(˜‰w +̃{=-\u|.ÿñÇ̉́œ²ÅKª×¤æC‡jơé£pv6–=öÖ­ƒƒÍCC’“ë?5¢ß«Åg ÙüûïÀçw¦Lquu­ĂçÚÂçÿvü”7ŸÍ̀*ÖŸÇ^>õ¼9(¨bư¹];¡#ó…đùرc††²̣ren.»ÅË–Ño>—uŒ˜jl¯æ*ßñăÇÓÓ-…G´9xđàScYZ\ ÎË3nËÖ>‹Î;tơ•ăó́yó0,ëđ¹¶đù¿?øŒ¡ơƠW_Ií»^rr’ÍŸ/́Û'çùáÏ.\—a+A¨µ5 +:º”:Ù¨ |†lÚ”́9¾ư6Eă»íÛ ÉÉ1o>¯_¿₫ä®]·“RŸeªQ•tåÊ//ÓS§ß~«Pù¼ú₫©ÅÇ;ÿư7Áç-tV®\©¾æ̀™sçν*|î>|8ñúAQ¾ ZæåƠ>÷́Ù³Ÿk Ÿ₫§ă§ ^&&.VV*p~Í)77 (˺Ëd¯ŸgÍZlnU¯gZZÛJ›~~ÁåÎ0F––Ơxó‹®oäç7ww×Ö×· ¨D­£«·́\øliél’}ñÅK¹Ï=rä°¥¥AË–áŸ~º÷YϬZµ•ïÜÙÊ××Q½¾Ñ¹sKË&<_oذ‰/ÏóçÏ™³Å±cÆ«W´jUsø\g¿Q»ø ±>eÊ”‘#G.\¸đ•¦¬Ư”—ב¦§¨Œ¶6õ­¶Á0ỵ̈Ë/4ÍQÔ=¼ÜȨ¥Ô>¤h :³öĐÔ4ơÈ‘#5ÏIØ‘ 3ZƠàßPT|óæ]ß|;v,ËæªJu&<¼Åk(ÏÉ“'÷íÛ§vq åB.·P ̀¢Ñܹs«Ï—/_öhÙ̉5"¢‘ơ(™¸¸ˆçPL6l¨Ăç#>¯X±ÂÊÊj…$I}ˆéàÁƒ-[¶Üµkæ/ÄzRR’4ºÖ¿=uèPDQËUób‡¯oTmĂѱEƯF1ạ̈äWÏÖÖq"kkGlÛ¶MUÚ̉2Y4ÄỞṛxMàóŒ³f˜ê£ßS”±Oư7ŸÇDzăT¥º```ưú&—™Y3±/ ‹9sæhÆçóçφ‡'6mÜ B rđ(ц†öMØ&'S<|V6mª;p Éày!<œ\0Œ,:„ƯÅ=??êE]€€xŒU¥:|®¡´yóæÀÀÀ¹’$=z&¦wß}WotêÔ©RŸÿöÔ½{w¥̉Ǜ¬«‰I@·nƯ×RjÑ"GKËÑ̀¬S½z¶̉à¿OÀ¸c5^̃¤I mm73³>ÿ']…Ô¥ºT—ể“X·fÍѵû;w đªBZ¼̣ôßvR—êR]ªKÿ̃ôßvR—êR]ªKÿ̃ôßvR—êR]ªKÿêô¢®Bî̃½ûí›”4ûùóÏ?ߨ̉₫̣Ë/J{é̉¥7ª´„uiié·oXzªßQ1¡"oTQŸuFIL$oTi5‡À|£J €ú/áó‹º )..vp bcÊÎÎ.¿–’qH]¿>caAUÓ*M–––”¿?mjJµmÛVú†-ÇÇ;EEYÄLJWzy\\DLŒVX˜, À₫‰ïj¡î>>´P)ËƠU?,Œ±µ¥ÜƯM+eyy'$pø•é³ úܹsÉÉÁÁÁ®œ«+ecC¡‚!!ŒƒƒâÑ'l||˜  Ú̃ơơ5ÎÊJW"///*Ê5-ÍÚ×W– ôöÖ‹ ~¡&íĐ¡CzzzZZú…øï³vé̉¥~~~¯¼[cbBccµ‚ƒwwƒ–-í}}M7o*fåææ6hàÉ™™QÎÎTTíëK;:RøóôäP¤g•6##£y󿝶¨h®èh¯ädóyLŒix¸‡§§²qcÖÉ c@ËÑăG =<˜„ÖÆTXmiI99Q,æƯ³ÀÙÓÓ3ÿMJèèg5,¦í›SÔÖ­[2ä?ÎUqråÊ•í’dfÆÈdT£F ĂPÆÆTm•œ¢¨_~!'SSY ₫7́́¨¸S§††”¶¶v¥7œ;GâÜ%'Há1quó&yyT á¥Îễ½;²îƯS–•)ù̉@xÈ̉̉"̣²`âĉ̉,¥’rs£,”ÿvvºÛ¶ÉÖ¬‘=:L\Q  ttttï̃]œé¾}9¦ÂĂ阺A1ÖÎ;ô‚‚]]êØ1â):;›µ²b=<¬ûôé®XJSVV£œ£øøzqqAøÉËÄï®^ụ́Ë/QåÛ·I•!•_¾¬HHđsÛµk^\̀*Ä“‘UXÈvèÀơëÇuè€j̉ÉÉ̀èÑ£Ÿơæ—‰ßưÔtçΔ”X¾z•Ø̃^œZ₫©@w7i ~ƒó¸‰>Å÷ï—ÏŸ/ØÛÓ.u₫7j"}ñŽ{÷₫ÏàsU\…œ>}z¬$>ûLnnNƒB×VÉƯÜHܺo¾Qˆ4à3@¬¼œLŸåË–},mB‚Ăôé<à®S'i|Xˆ*??^ôËJmZ4iÁ\¼¨øî;…·7íîî®ÎVcª.X ŒÍcBꩳBBBµr¥Đ£ç⢠Ÿ‹‹+ẩ&&̉x‰§'‰AđăˆZ(̀ú¿₫"u™:U@ơår ‚o; \¿^–Ỵ̈Fÿú«â?”¸³n¬cGÎÎéׯÓsÛóäÉ“â×ọ́¬8đúñyÏ=ÁÁ¤å?ùDæèHÏ™#ܺ¥05å||LÍ̀ a™¦MiUYI F:h7lÁèîN 6́âóAUª¤àL›6iÙ²e¸öơuîÑC6{6é¡ ́…đÍË#Á|?ø@Î@|ú©ÜÚÎÍ%7?₫X†'ÅæUéDuø\‡ÏÏOƠp‚qxøpE,sóZĂgˆ++¨ù´¾¾&ÿüP*›5cQ`À©4ËƯƯÂÁ‹ÉEWZÄNL ®WüĐØXö@P/663󹸰°°Pg 4(3³"Öv|<3mÚ4)tçä5– è¦M ǿçg¶|¹léR°·[7³µóó£y?'ß[¾sg\=) YTHˆ{rrrŸ>œøéĐPÂèÈñN“&lp°µ†°jƠ*(Ph°0sĐuhxàúơă3RƒzzhX×Ûߟ52â32ø[·”Âh4KAAE½@° (B×LJ4ÔS½ÿUŸ[µJ̣öæ Ó̉*<4₫üóÏaaVË–AäMœ8,0ĐeˆŒ$̣b̀@¹ ­ 1AV0 \öí#=ơÓO/ƃ8fZ·fgÍâ¡xâá:|®Ăç*&ÑUˆ4ä´f|ÆÔăwcvÔâúÆo¿2™’ÂhÀg0a`xd$ăêJEFFTzĂ!|n.‡éÓ§Oi–••vP$Ú±‹ÉÀÀ€eÉú89đ–a₫ _åp¡ß½hÑ"u– fz×®(Ÿµµ&₫Ü«W¯æÍ“ ³ml¨/¾q…”•) €£äL™̣öÊ•äCwï¢/”ææ̀¼yBt4íêJc"@OA£0]ºp.è>HU€s‹,4&²z̀€í#9;¿,>ß¿ÿ˜*I½B•——Ÿ9sF}Ö́‡~8#Ỉ°ÅÇ'Nœ¨â©´:|®­tóæÍNª4v́ؤ¤¤.]º<÷'àééLXÓ±#«RÙj'¢`̀c¾¤¥iZßđñá==©¸8¦M&++S¥«K—”pP<’*ëׯ73£øAqæŒó®U«Vê,KKËààøƒÀI™L¦Îª4g(CCJ\ÿ‘†™¦i:%…~â™™̀sư?·j•Oƒ!‡‡Ó V|r߾ܯ¿*–-’’0I 4Jxô¨; xµ‹ Ao<1IjgG7kÆÄÄ8K?”‘ØBÁqø›­r¡|ÇƠ5é¡*¦9’øXMăsPgß¾²‹îî 6üùçŸF//ư₫ưùytn\ojJ‚^m̃,ù́Ü™mƠÅÀóóc  Àñ4a.]">p §ab¾>/]º4:º‚¥;91K–¸·kÖ¬‰Ö¹sGù̃{x2Æ ḅB|²¨ˆCÙpqå q/‚A—),d¨ˆˆNô÷gV¯†炃_j}œ! ###33ÓËËK ¼;v́ĐÑÑùä“OÄÿ8Ïøùù9;;ă"//7úé'OOϰ°0èËnnn¨Ăç76a(îÛ·oÓ¦MƯ»w—£OŸ>­ù'À00RLp†Ú*¹•á!`M ¥đ9<\×Ö–pN<ß¶m4 Ø%Î ø~ưúI»ê'æ& œVellŒº[YÑYYÄ 0Çq’…îđ[€4ÚÀ˜­ÎâyeHO'̃ƯÁ¬‹Ï£GÀWđ’Ó§e( ŸÊù!‰đ|: €F™!(ßz‹ÿæ^$®T“¨Ó¶,.đ_`8¤(\¥Hd::́È‘<ذ…a(ªŒ¢±,_©<5Ï T„\¿^Ö£G__Ëôt …‚>sFîåE£â4{÷Ễ_Àôcc̉ă+{öÈ ­p5b7 9(ưúơ}y|†˜đó³³±áĐËÉÉœ‡‡©:«GFFLÛ¶ld$-ö&º ƒDlmåå~÷]!&†Æèj×Ă3è¸äd¤:!A-5bôơ‰¾ó2ø7̀q>×b ¥:TTT´}ûöç>Î5ƒ ¸‡ëç®1î̃½{̀˜1-Z´ÀéÓ§Ä=Æ>zêÔ© .üü(Aí‚ṿäId­[·>tèPhdIIIÀ@ t7©́ÀT… 1]R>»¹̃̉«áW––̉,ăâv́cB™™™©ï£„@Úw̃á7laÆÙÙÙAÅ@§§¥¥Ñ4 <ÄÜœ7OÀk111›0Ñ Mê©Âj̉́¾¾¾R₫¬C²\ïíư|₫èƒï¢‚À¥o¿Uà[ c€,0FaqAFT±À€á¨ÈûïËĐ@ihÓh<ƒÂlÛ&CQ`ô×r÷>ÿ\™I6³\] °lÙ"ëߟè*™Âá'ºº21ˆ@Mă3dÈ₫%%h^3´ç‘#rÈ(hÀ@ѦY3bߢNNôàÁ<®ñ Ç‘G 毖ȷÔăn‘ᩦSm|.)ÉÿđC‚ÏăÇó&&Ú4Ơ.†KR¸40₫₫¤ÍÑ˜Đ°ĐAhmôÅ5GÈ2B§¥1èh”gút^́)w'º·9{ÖFØâÀ/nĂ=« b^rưùèÑ£ U`¿AAA¢H9s&¦ .0Ư¤¦,R|̃¹s§Ô(T%%G;¶Ÿÿ½ À-I˜Ú u(û÷çÏúđv̉¤I©©©ưû÷ߺu«t—í…RiiéÙ³g7n܈!'Xºt)̃~J¶đ@c4೿?Ñư—, 2+B¥lq}cỄÔô5ưëï_‘•“Ă* Lˆ0à & ªïëKH²ˆ!ê_±, 6HÏÎ&Fn̉¥iÑ’ù?”ÇÍ]3>£Ưđ00Ÿ4 A€@é̉R² °b…dX´H ‰'bÄ̉Béˆ Răí·ù!C*Lmlèû÷ɯ֮•¡:¸€ne¥¥6Œ¿qC ؇́À¯Đ˜È6Í`åÊ•¯Ÿ_‹¶ûưwRÈƯ»å ̉p(•¸>¸ÿC&M"ö+– q^̀"#vQ4gA”8­eEEù/ÏPÙđ9èbüíÙ³#4Ô ¢wĐæyy,Æ̉₫ự›7• 4è 2Ï´nÍâÂ}ÁøÑô±h₫̃xykU× ă€Ø/ƒÏà<ĐæÄk°¨(bdbee¥V<¥øŒ>U*•·nƯR¿ªmÛ¶bw×áó#AƒĂŒ¸pAñÔó)ååå³fÍÊÈÈxï½÷^¹7́3f4mÚTÜ6B15c5ÚoT H±••e%E`̀₫Ä ²f+%˜8P¥ăÆơYaVŒđ Ù„bJJñÔ­±u«lĂ²̣¸VÏqTDKè¹ñyüøQóçChµlI‹È †DŒdÀ„£¢˜Æ‰̣’•Å®Á®ĂĂ+L¼đi\\»¦Ü¹R€̉Ó£Áó*诂ÂÙ5b€{¸8Pîæfka¡­ÚÇd‡'H¾oÙg[ăơđgi:´{V–€ê€yÚØPàó¾â^ ‰B1=º¢³ê[Đ:Ê»ø±ăs€;HêsçÈưüü¯d00Đ `‹6G ₫<=-Ú´Ipq¡—-ÄE*”G4MÇ_ÇlP- k°ë´4|€e©@ưc‰́fY=ezôh''§çN̉:|₫%;;B ¡ĐÄT›×%HíæÍ›ƒ6«å{M$j€UQס ‰?Óà÷î)1Áœ s ¼1ÄÇÇ«ïoÚ´Iu—¶µ%ºjëÖ­ƠY Àש *¤ø¬¯¯|ÄÁB·!™V-¤(ÀƠ! €̉àWñyù̉¥ÁdÊàÁ,J(Â₫đr”ogÆ}U#‹Ïè…íÛ}}²à V<‡zLsvf!Jf̀à›6%‡ ă66Œ‰ ‡Ÿøù™EDøÚÙ™ß̃}—ÀΡCr##YûöÉ»wï*,`oßÀÀÀ,++ëơà3†M£Fơ™#¸V­ÈhA[^®—æ8¢; H́ÖÜÜè=kdu¹)‰Ä*C#£zA—.l÷îůŸ{ơêRÑ́ø¨LÆƯ¾}ÛÓÓ=‹~Y¾\ÆóTn.‹¾5ª‚á£ưqñ“OdºZÔÆx₫°‚¿8OöÛ%€Dzñb"µ#"*êø2ø|íÚµôôt77·ĐĐPq}£¸¸¼EưÀ5kÔ Z ŸQ—́́l‡ „‡‡ăßăÇ×áó&ÂÂhđ̉À@2q*å>üơÄõ¶&ŒźjÀg &xH95`ff*ÍÂÏ?ûL~÷®ÓGOOOªáÓ™™́Ơ«„•Í;WºˆáæFđ”ÉĂă±ơ 333•iQrUVÊP<{ö́‰,---GGjâD₫í·yäjÆghŸZÛ Ñb­ É& ‚ 8˜Aù¡VÏ™#|ÿ½bùrbâåâB‰!SȦØđ «Ú å¿ÿ^îçÇ|ó¥ợüü¼¼øŒ ²”±w¯¬°PÙ«WgªeKQ^ ZÚ¿ÿ`¯OQ¥4=©~ưä׃Ï'NœĐÑáQ/´Vi©̉Á4²“©~~>Û§Hli:%3ß{ưU»½€Dˆ'h¿àº§={öx%øüùt14̀ĐëÖơÙ²eÁÁr|ÅƯl»¼óZ’A륧3EE,¤6ºüÿMqÜQXlÆÙꑆơ÷'û¹ññÄœcçNưú«̣êU²¸ộçS Ԫ͂đ[ơCƠ¹›g•¤Ÿÿ ăTagga>¿œçJ»t/0¸lÜ[e3gÿỏ”ơëßÛ¾£üèåßœ/¿r¥\5ª’ÊO]̣ÀƯ÷AlBy¦ødR3k13Ó€ÏQQÂóæ ăÇóaa!̉, 2SRÂI—‹Ï⦼jKN¶cÇ)¤%´ä¾vN³ü~/´Q®­­ i¾×§‡&²²²ÂML4€Ïó {ø!æ;x́s÷Ëï̃¤Çv¤_z–!&Mâí̀¨“ñ¹đœ/°bÚ'OÉѹ ˆ9 Ú·¡!›ÎNŸ.4hÀà»­[³FFtzzbvv q)ăâEPzï^yÛ¶©„zuh1&7ççå+Ë–,+;a¯wèÇTx!ơ.EưôzđÙÆÆH<~\̃³'§²&ìIf}'₫0Çß²‘µáçSÜú‘tqăˆv| #$AuÈêׯϫÂg¤+V 4è믿ÿ;cÆ”÷̃“‹ë íâaÆvíØw̃ú²gơ…+&Â]îbœ¬%E´–%¨Tx8±†¸£€tÆư  0YƯùÁ:|®‰<ܸQvà€üèNY)U₫ơ™̣ƒŸ—}²½́ƒuÛz÷›’Z6rLiIÿ̉N]J³sJ§•Æ%–f6/mס´[Ï̉ACËÆO,›ưnÙ²åe?.Û³·ü˯Ê/\(;ỵ%«ø£e\¼Êÿ]s1T[“]‡å5à³­-ŒjM»QÁN%¾1©Û¶e{À@éBëÊ•+í́tÅĂ/ÁÁ:»víRg)•ÊúŸ¢âÏÎE„hKKKà¡X¤F˜poỴ̈Ÿ^5eê´’¾-LÍrô˜ÎŒ¶ñ¹´´ôàÁƒÆÆ -jˆœ™@±ûÇ Ë—É ¨;¶²û\Åw¯+„‰1\t49Ou,KWÑ́ ¹Ó¯ ±¶ÖÎËË>pàÀøñă ̉ÙóÈ{ÕYÎ c¹S1î¥5ư=2æjvz­lÁ¢²í;N­]çhÆ0K —„„ẀŸ> ªüä}KKùÑ£̣±c9ggâi+“‘ơœ²íFU¾K xÊÊ(ÏŸW™Q5È#©Ü\öÄ „ÔÈ‘#«‚Ï/^üüóÏ¥ÇîL;wîœ?¾ô™ .xy™FDĐÀXOÏ S:4₫lsöOZKx̃ÈJ ª°y³́矉‰Äæù́YETíÉÅ…>C!̣÷×®Ăç:|®‰¤£CFf·ndå x%„8p`eb\ZZ~ơjù?–ŸÇÅååY‰ë™@¡ö‘̀,=ö— Ù {‹¤­tâ,È*4̉ï¿+‡ ăMLÈ5@à«£²¿¿WøRt¦ÀLvă&iq;m´¶±Âc~ÅÔf‡:Ú¹é¶ ÑwµP’¥¢;·ªḲư÷ßÏ5gÍ5¯v066ÀLJءơêơ˜¿¦Aƒ--‰-hpĂC-Èv§£LZå?BÙ6Eß¾dQÚÖ¶b‰„V´ß1bøsñùèÑ#nnF:XÊåü³LưÇŒbkË$&rÚÚ̀ïxÂ¥K— û Œ T€\ÀÍvr¢~¢딋‚à@̀¹‰M#´•fÍXQMûñG…½=9t"1ààÀ×ás>¿’æ0O’,,¨¹sñ±Ícø|ûöí´´´+W®¼đ~_vÎcøLÉÀ·Ë6o%À8oAÙ;SJ‡,íÙ§4¿°´Y6ÁØøÆ«)Únëh6.NÓ₫ ·7-º!-)áêƠÓ©÷î•ß¼iÂR·.(Ê¿SÊ`S-­Ê?ư ́¬¾]ph†@/âv4ㇰS\Ü áŸ;%iO1;X®RQ¤e•ù¢ )'rNSR\OƒŒk//2I³B¾!ƒÜÔT¦Q#º¨ˆ ÊÈ`¿úrÑ=SÏnnVxXeF¨xûí§û#…ưé'…¨€äåµÛ¸q}^^x/0n9"̀fe1ª¦¾¼SØÈî}©>ƒÆ€ÿÇÇ““'Éi Ü,,$F·feƠ₫úÆúơë©G‰S*Û¨N×áó¿.M-—$`̣¼y‚è2ñIÿH ]‚ Ü®̣²s>¿¿â¡”?—í̃£i±ú₫ư@;úúqEùßm4às\wñ"™kC†€^I³œœèk×*\ KíŸ!b@áÄ%‚Î9///éús‘-ó@W2YeÙ‡Å,ÑưBY™RK«bëđ½÷̃ƒ¬²ß#Y÷î)A 5ăs^‘ÊQñ¤´i1 0€¬±//ü¤ü îr½LĂP7Ki`Ed$1Áưøcđ²r¥ ²= ö p.;–Ÿ:U@5ôJñC}$»tIº¾mÛæĂçÉ“' b«ºº̉bHˆ~ô]\œÈs|<9:íëKÛÙ‘–„yç~'ËƯ{³ë3Đ–/ärªgOâÿZX4â­·̃z.>·k׫Â^y¿~OßOôñÑlăCơëG††́Û'£iªwob$ !¢­]áúuigö #Ü—â³Lv÷Ë‰Ä LrÅĂ¯rsÙQ£x´3~èåUËüƒœ¬¶¹»Û^¿n¯½ÏvÂ_‡Ïµ˜^4~ ¨Rb"#­~̣3fôèÑă¹çÄ+CtÛöôL˜=°q*đvUöÅb`jkôÏO¬̉̉È™‚J~̀̀uE>üđCơưY³f¡'N(®_'6¥₫ù“Yö/Fø~`ä¥}ú‹Y~~~ÈBa€xø·aÆeee-[¶y{{ƒDÙØ­Íë Û))Qáá†ææœhYâáµ1΢:{0@€«‚p™v)9'@NZ@¡ +¢––ä¦(ÀHEO₫øoÛ¶fîîäÔgÓ¦́ºuÄX:%…­üü˜eË„́́5‡Ï7nÜpuƠ{ûm!7—óđ †è»vm÷đ0lß̃­ Ư_4 ´¶¦ọ́ÈB³$v¢Œ$cÿ4₫R ¨ơïåĂ¢³T.ˆéê‚̣»º#Ằ̀¤·ß~û¹ø|êÔ)¼¼cG;»g±ˆwßg22GG-GG¹¸Dñh\ƒáă‹ ̣¿4”E×£nQÂo¼p…æÏ̉|œ- é"ö—èl?IJbŒA¡ymmºaCĂ””µˆÏb˜‰»wïú§§‹ølơÍ7ZººÏ:>\‡Ïµ•ª?å‰9N{˜&Ï:?¨Ï̀̀Ü·oß ¦üĐá²-ÛÊO®ÊĂ˜#AATÓ¦ÄóŒFÿỊ̈­[e«W =z0:´—f‰8®‹ZHè._¾ ΃)è32¢¤Q“À¥ñ«˜ºW,ÓÆ€‰Tj©³@_AM àr:uÂ;ÅP;111¸““öhÁ>×¾_}ơUJJ,^…_yz’BN›ÆÓ%™!Ô®^B-ÍÑ$0 Ænø/0€0g37g† aë×Wvê”süøñ{÷î}ùå— ú9CÈá̉¥BXñ,Ư® tÿợr¬9|~¨\Ù¿ß Æ£$`öö²  fóf]aÚ4¬åGă{ZQKX®…œ!ÖŒ:Ô₫²Î¬“œX܉†è…NèÑ£Y1”ÏÍ›P£ăÆ«Ê₫ êúر¿ÿ₫û©OnÚ´1;;ÆÎNÏËËo ̀Oüđ‡„…//ÚØ*̉cÏ'È|<‰+QˆºF}n†,ÆOv°Đ,,t .‡ ă¾ûN½ciΡqcĂÉ“ßÁÀ¨-|0`€VIñ98)Iê…¦Ÿß„T•ø)•’­-KB¿aôjđ/ XXXX\\|øđá(9đGT–¡3jô_Ç|ÿ=£Aƒ8sóḈŸ1Ó¡/X@ÖÚ´i#]—¾%~ÿ]Ùµ+—*ÙƠÁôá>à_¦+ û={ä}$ƒ́ÈÏÏ&ˆæ©­ZU¸îON~¾ÑñăGÆE/LNNÄÀ»cGö‹/ä>>DtêDLøTç‰ÚÖTqîÈqÂnƯÈFÛ¢EÄ©›aÎsæđQQ¶ º.FŒ(Ùºu“JïÖ‘Éè́́äÏ?ÿÜ××¹~}ËF|+iO5w~ŒÊ›´ê(ºß¼pAMi»æ²óŒ¹" •EƠ'ƠÄ¿ c•±cù„R5\ˆ§8ÅxXï¿/;vLUđù© í°wï^H1̀ÎDfA×ÛÚR(’ØqĐ5̣ó¹¹½Û„™Jv™=Ê wDswQD‚0œÅƠ?0çÂBîÿS€äÀA/€(™?_øæE»v ¯ŸÁ1°gÏÍóüÏ?ÿü$>§têÔ Aƒ§º¯|I|Öàeº*¨¥¾Đ‰êđ¯wîÜùư +¯ºø)ffÄĂ0†¥ÊƠ°¦´sçN1nă5kªèÿ¿ÉƆ₫äÙ_)¤ư#¡œà®îî´₫ăK !3“8~—ú…NÚóöÛÄ©‘Ê…i±dQÅXjdd„ñ#fÉårGGr0᫯Èêçâsaa3[[ZdÎÀ"ºY3ôqÆ ¾¸˜KOgñ¦MÙ{÷È ;”Àµh/nA¢đS§ >( ˆ1^EÓ`¼¼\ Í=Z²dÉsÉÖ>£¦=zØ ´·n)h†+VP`§v•ÊÓS›sèYT’¨sgƠDeo¹¹lY™u;E32̀ííµÍ̀¸> Ë5UY~jêÛ·(%Å,$D74Ôcî\m`₫Ăøº{₫<9©‰\O›ÚîÏ÷˜)SHk÷́ÉáæÆ²À@ºsg…„àÆ`6ŒW;  Ç ̃Œñ–’̉đ5ă3D®ŸŸƠÔ©r//¹…₫ûT|?₫ScĐTŸ¿ûî;(vvvP̀Ơ~ÅÅ=°ăëë¹bÅ ñfÇÍ%Ljè8%ĐÄ¡̉–Ñ2`A½—U "uôèÑ•fÓ5~Êùó矻²ñemÛbŒ±`hUôÏ&ÅÜí̃½;úí\VVö’eï̉Ơ%tÀ¥Ÿ1q0ư« £^^̉,¥’gxÑœ9s¤û¡@B0¢à`BØÔv°aaa`ª˜¹ä ·Ôë4ü*8¸bùwÆ ê, 6d¥ŸkÿŒ‹U«̃Gi]]IœƠ«ỐÀëë[áeóö& ÚªơgJåÚˆ,È́Û'QLJđ9µÇ<êg.:ủ®3ÉĂçÇåä4²²̉ut4ÔƠe@å 4û÷gE—t'O*¶¼-[gÆÙs„ó_¹¢ˆŒ¤‹ˆÿ=ÑÚ•EÅ'MâṆ̃¸65Uº¸²ªƠ`ÚÅŪ*ëÏO¦ .XYi‰m•m"lVVŒ[¾\¶}» ·{·lăDY¼œçiđdèAàó€qh+âËËÔ”̣ơeÖ¬! ư«,ÉY!´?$¾¹9ä"ô:ñäÙǹóC‡8»Ñ£Ơë̀•đø¤GßjăsBBæ;&{ß¾}Á¥Y'NÄđg(S¢tÇmUB1~øá‡Ö­[äää€Eœơqqqx~ø!Ø>4ÓJѺÿcø|ëÖ- †&M£`ÑÑVâq$33Ù²eËôôä#G̣x§…Q¾ (!G¦¤rûŒù1=ÉáP”¹ Ï|íÚ%«];îƯw V»¹B¼jĂ!4”ö÷§µ´è~ưH¯¡„Pøû÷˃‚L_?>kå䘬_o?f̀³đwºté ë•à3æ;F¾ÈÄĐÈööö̉Üưû÷«—Y³@`˜  à«¯¾R?íuÔ¨Q"äî̃½»sçÎ( x5øcn†@ÿU|oܲe‹ú¿cÇU¦ªS%ÿ¢ÀÑB  Wíø°7õD@¶â‹ ¨Đ€Z¶l §¤¤Đ=tèĐAƒÁ¢µ1\wèÓ₫ưû/X°cp(r·̃â5ÆïfEŸœË– ––f•ÖŸU'Y{{ÚOb\ôLjÁ UăØ={ö`̀¬ZµªW¯^âé‰^½¸xÑÈ977%Gx8d‹Í#SưBQO³đLUđ9<Üm Ƶj. 9†éÍeĐ ̣!ggÂcêT+"&5•ÔÀ'.]R@Ưºv%Ñ»P}??b L5jXƠûèƠâó'Ÿ|2t¨…Ø11Ó‰7o*QÍ&MØŸß‘¿Oqë̃©đ¿¡¥EÚY99lûö\^qø&₫vâDí¯:ÚÉ́ÜI"e‹JĐÚµ²ûUo}cÁ‚é,K''Û Bl€ưưÅ1³r¥¬ẩj|(»‘â6Î$æ=zăçÆ‘…&2~ Ơ!kQà1cH@[Pî3„Ÿ~RXYÑâ Hç]ñÉ.]¬^3>5k&øù"5ăóG}„ øJđù»ï¾iQo Ëạ̊g½ÁÇÇç₫ưû1|ạ̊¬¬¬˜˜ñ…¸*"̣7P đj5—C`¤ßøáó®]»PüñÚµkçÏŸ>×Ù …ñ3Å ăjé«* Úù—_~A =Ư«àâØ±c±À̀JK"˜¼ÙÙ́–-2è•đ̀'6–Ùµ‹,üø=¾4Í`úœ;§ÈÍeûêûàÉ>>̀µkJ¨ØœT§°±±H÷†åT¾Få ô¢>ˆ7€²N›ÆăôOêµCK‹?ZºTÀ̀¯ >ÛÚê::n™”ĶlI,7>ù„8Û'³ŸÀđj\«¿øB.úyûôS̉/(I\a§Û·ƒ’öƯ»å‡J˜đ»*½|Fçk/ZD¢ï¡œP¾D¤r°£:*™£AˆîÄg*…n &…# lØ ½%±ĐƯ¸nƠ™0]ÿ}‚ @-aQ‡yªÆ₫ ¦À™3gĐơ@33>.à/¯_Ÿ9uJ>B`—˸ä- Ơ m̃œ:Uˆ¢Ñƒq(É’%(7èñ¢Eä§¥%ÙƠứ3y` ñá¯.¡³³ùر²E‹ä66z¯Ÿ×®]K¢q> (6i×NÏÎÎ->:^^•đ¼422²è½>/\¸p¾*>}ÚÍÍM¼ øU*•O₫3.ÎŒ7u0Ä®]»?¾5ưï­?IÀ Û´iƒzI5‹g%ss%æ†.P#¶¶-F?ÄÖßÊÁ8C€¾ˆ“zr~HÂüơÇDë̃×Ö¤ÙÜœ)Ơ×' R¤MIIn‹ D& vÍá́YE@©‹èË÷ƒơëÓrvv”h†åkm­¯§Ç99餦¦VoưYL`eÚÁÁ¼*-(±(nÎøz4Ù¿đơ%́(Œ—— ₫9D±QÎÀ@bḉéYá~EÅ“ètqßÁÓ“ u€&~ưúơNÚÑsíµásii)±#ÉóÇú©©¦Û¶ÙƯ»‡?¥¯o%|—8Ôf«Ïøy¡*S7/_¾́îî^é·S¦Lñöö}đ>Tѝ—-[&°üÿŸ¿ÿ₫û_ư˜°eË–Ñ£GóÍ7Ïư‰• JØÖbün1§Èá5à3¦†x4RzHPd́]»6nÜÄIzëÖ­ÏW¯₫‘hé8 Çt‹Œ$aû€“̉ăWcÇ̣½{s ¾cÆücë…É.F}n|Ø)S&EEư]\~ñ÷gPrÔ³ˆ$ ̀Ê"”_Aơ‹hÉNØcÇäC‡̣¡¡Îjă%h%xƠß+1#ë×7ûúë¯Qơ¨(Ó§UÖ„ư†\΋ƯÑ´)3´÷CŒl’)đ̃½̣† 阉LŒJàçGF—ê¨#rj*³ja­ë× ư¥tw×VOç‡*¯Ư/ƒÏ..Vâñ@0|QèGEĐEÚ̀J»w]Ṿó#,ûüs™ q¸Ư±#!̉âQooZ„k¼á÷ß•®®ÚÑÑt>r IIÑ̉Ͻ6û ̀h¯{÷îvcƨñÙlûvñZK‚ϱÙÙÇTịäÉRÑ/³?ˆù‚Ù„‹ &=T¼.–,Y"µéÚ·oŸ¯¯/-4åôôt鹃ÿ·ø 5dûöíhĂnƯºíƯ»·mÛ¶̉Ø‘Ï`¤$*´?‘ƠÔVÉÁ̃ọ́X¨™ªè{ÖŸñ óÔ©¼®®¶4+6687W©2Ec §$«‘ üü₫YInĐàŸSuÎÎÎÖÖ ¡3ÚÚÿ¼0µbÔ(®°œq“Z*â ˜# ’ĐHÏo5ỉ„™ªuÎ ˆ‡í  ’$&’0¯À%\OŸÎ£Ö±>"ǴŃœË— Í›³x¬¼œxÎÉÉÀP7n°§§¾¾_a¢ipèĐ¡ăÇ·li#̃iĐÀààÁƒ¯Ÿ7ö»cá`~Ÿ9?Ä›Ä%?ÿơW%j1s&‘>ׯ+Eç̃ëÖÉÀ±EwÖ+VÚATµoÏN›&üö›̉ÙYPöªđ9"ÂyË̉́G’ßIcù ́J}ÎØ€ºy“ØÅ…îÙ“øŸo!Ÿ}&û´ €èóçómÛ1úƯwrà³±1/ZAưµ"0˜q:8˜L™2₫5ă³é8;;[ÜÔ€ÏfûöÉ­­]zôÀŸ››»‡‡ªÏ‡¶°°êB…W’ׯ_ ¢yVr90¤"‰0h trrjѢųưĂg´  q¨/Z´èË/¿Ôü[[ƒuë̀Ư»etm•ÜÜœÄqu¥ë×g4ú¯#æn Fx¾̉üơđ0ÀÜÜđ†Ê;ŒÖÖÄ>*6–XGܼyS}]okK6­Z¶$1Œ¤QW@Qüưià Xn@-=ˆ1Ü¡CÅ₫`|<§ŸÁ.T9Ñ›»;5|87|8/uDCy·„€Pù“ÙÛ¿Óâûÿ}ûêééÉ¿ûî»±cG¸¹±À“¢"|ÄÇGÖ¾½Irr¤ø¹́́d­6m ưü\¥g”ªÏh´ 6`FT½×–/_€2Oo«ơ±œO¨G£^ÊAûÑÚâ¢Ô–S§ˆÿqă*â'BBñÏ5„ôTN”¾ù¹ø¼{÷n€C%K!ÔqÀ€¨ËÆñÎ!C==:µ~Đ\ë«`Ẻæ ª0›Ä@€±²Â“¼ת>eΟ'g œœ( 1‹‰ À¿%%rCC ²¹ùË/ ??-µĂç÷Ö®m’Ÿß´[·Ø-Tkb>²ßĐ€Ï¦Û¶4m*̃4^¶,*:zÏ=/ÏU'P*Y>kN ̉÷ÿŸ9̉ºuk´ÿđáĂq‘‘ñ\Ëd33 Ö„ 1 ÜƠâú³èd¬Q#F£ư³¦¿¯/9£ñÇ<ơ ƠJGƒMMeQQ ¸( Qêoö́Ùà{))$ ø^~₫?I³²²€̀GGZÊŸOœ8ajJŸ;§Ø±Cno/î₫àíÛ·7&ç»TеA1ñpj‡c%%„}ù¥Üߟ $QÅ¿ÿ^±q£L̀]½z¥J´ß¿¿Â¢“˜ Y\ZZª₫âG}h=b1q[¶l̃ á3ÀăúúcđÛU«ÖW±×æÎVb¢XCscr‰G”ӧɶæàÁ¼hh)ƒ·á"?Ÿœ'Bï,Y" í‰Ú‰…â8­‡‡VƠ×77NÑÖ¶×Ó)†\õ¹sGK‹éÖ(#ii‘§NV¯™4ùAÖƯŒíÜ™¸@ ƒr‹‹£1¶n•‰A{ÑægÏ*öî%_|!Ÿ8‘}’ƒÿ»¸(´´øvítU{‚†7n(TQ}e&Œªi|NÊÏ·8||˜”đÑ₫È‹âsaçÎ̉óºóƯµ æîJ|×KtáÁ’dkˈè¿úJngWkǿäD‹qZ[·f5ï¶ơÓw̃Ñ3gÖăÔßÍuëÖMº¾¡«H¨Qûöœt}#&&ÆÖ¶b}#3¼ÈAUPP :©Cf=Z²9´ €ƒ·%%)«b¿¾°·§§Oç}|h±ê6OJ"¯8‘àó(¡\CJp ‘uù²âôiEfføCb̉¶ “tÛ6™ê@½ysåå4È̀™ÚxÏíÛÊädÂç±cÇ̉ô8‚˜ûÍÏ/­*]vưÈÑwe²O|øeÓHáû÷ç@†k¸F¾ưV¡2i  @3À²µ5“”ăím‰'Û·g‘«6f31aÔçà‹Ï uAUÚ5={QkCèzñm̃̃} *í8øúƒ›ơíKj!=î’ O Kê£}ûö  €ü6""B5qâDª€¦Ir‚oñâÅRÖB¢^»¦tvæ«‚Ï*$clÆ‹¡©æÎ¬­ioo²Đ¾½̀ƠUim-_½@7ó!CÚ,\(XXTxº†––—‘‘¸mÛ¶'¿¸bÅ6mtEï<Ͼ>?ç;¨oW½zÆÏ‘₫×®ƯûÖz^ÖƯ8­Á×­#V!³Tfá,È¿JVæ¬2–BwHßàæ&ÿßÿhv¨-±± Tô{ƠùsDDcZ̉r\^·n½Ơr36– *„¾X₫ég[´´̉¬ˆW (&¸ß­Çó´ØDEÀj•©9x99MEÍwDă”(Rr2u ø.\ÈZXØ\½Zm|»`AÇƠ⯟ÿE ¤Q&#硳w¶OïN2ÂG¥R «1₫`KMu(.Îybmçsd™çJï_ºtÉÔT¦ÂFÆÜœĂÄ|yGP)£Í̀˜JĂÁAh‹ÑœÏ=ûx1|9NGGGYE|₫裢 sp &[ i––$8iHư÷ß`¼&¨ø̃½;T®!¬ÜÜŒ€pu??窴aiii³f‰S‘‘_|qtøđ Í›wPï¹ëÏnnA&&¡NN‘̉}ºÊÈ\ZZ¶fmiZÖ×={wí`|êC„Ăøñ÷7¬A䉛€¾¾¢“"ggcµ“yófS”\OOÇ̉RY¯àímºyó‡U_Î̀̀Ä;mm›DE¥ïß¿¿oß‚=:£ú̃̃62Y=mmù¦‚ü¯\=BM€üL÷îÄÁi@ÎÍÍpr2DÏ¢#<×Z&†±Q)×ø§ŸĂÂBCơûơ3à8¦êœOœ8®P₫₫Ö«W?¶$‚®‡r-®1æå±RÓhL·¢"+1+?ßNz̉gË–-††Å̉ÚØ´ª >̣Éccâ9De¨À®]Ktÿ»w•¡¡ŒÊäŒÏ̀ :p Â½öúơëG6~Ö¢zưba)–PGgèÓéëÊ₫¹tđ°̉6¹åŸRßüàƒåP:Ä£Óï¿/Ÿ9s:n;v¬U+«M›dÎÎôàÁ-,Ñ%́áẶ[ñ·ưôŸơ¥={v…„¸víÚRºeöd:ulÆ®ffœŸŸeJJ¬Ô“äƠ«W=<ăâr¶lù¤ëÏOâsÙ®Ư¥Í²ËÆN(”AØ…†úººêØÚ²r9e` ăắL¼<¥¤0>>´‹ -“23C.¯^8|ø0Ë*årˤ¤ø§¾¹êçSV®\V¿¾Ç Î­î´Ë¢M\ss‰wáëà hÜ8 nÁ‚Ó§k‡„X‡*á.{M4²Q#7CĂzR ̃³g¯¯®Ư±c›ÚÅç3gÎèéé%äæ¾*|¶ưûoˆ%h uøü&' ×?$ÉÚÚ(.¹wOYRÂYZrµU*ÑÏçJOOMñ­Ä³{Û÷ê•÷Ô7üơ—2(Hw÷îƯêûâ©«/¾ÿñ‡̉̃–:˜]¸p!²Àl/^$~Éúôé£Î1CÖ?_î–– Ôö§–'??¿jüÙosr"Ë£`Îx'$Qß¾ÜưûÊ´4väH₫Ûõ̃&%Uo±uëÖåå7jÄtéB<̃·m«œ4i¬†ç_ŸË/\(íÖ³´S—̣¯Ïh.FBB¬‡‰>z4ïâBVàÚÊ:”ÇEr21̀èÖ”°eK6++QƯYÛ¶ÉĐƯÁÁº̉eÿjà3)íåË¥Ù9CœñÚëו{÷Ê+y*X»vmZÏ“ÿèh̉¤[·nFwî(ß{Oh×®¢Tj¼á³ÏäW¯*œi”´×‰Ï7nÜè9l˜©…ERf¦Wṛ«ÂgüéùúN<¹Ÿßä´ÿ₫¦’da!`@‰̀Í™Ú*•—W…2æưÁge%';>¥·zơjơưC‡EFVXëØ‘9r¤D=ï³̉ÓÙØØXuÖüùóÛµ«ˆOÅ=Ë ~ñ¹yóÈ/¿”ĐmÚT|ÎƯƒJC¦tíÊ©\XXTÅŸ•:Í›÷V<́öé§̣öí3^ŸËÿú«l̉Ổ̀æe›¶T%\Q£FâIêß~Sœ×¬!ש©́¯¿*Å đ66Ôÿ₫GJ¸oŸÜßßJüUbbEg««·Q=|.?s¶´QrÙÖm¦¦¦tâkUÇö%«4ååEEm\\*œÓ.Z¤Ơ¦MË%Käbv77S5e ©èô=yñ°̃ëÇg̉¯iiœéÖ­:¡¡¯Ÿ­²²’’’êđ¹ÖSUf–˜œœœüü˜µke˜\II1µU`°¬9sÍñS4àsII~Ÿ>óæC혲²²€‹øw̃!çÚ¤Ê, Ë̉’ƤIJé+sr̉4IèƯ›¯W}Ö"pñù½÷æfg›4jDü)MÄ÷éĂikÛ¹>¡H½z) ̉rt´¨dHđPå¼úË/¿|ªÙÀ… ÂĂ­»wçbcY¼G¡`?ưtÿKâ3ÙLË*›1«üÖ­*vÜ¢E‹ÜƯÙƠ«''ÚƠ•†²b‰ Û¤‰°r%Y?·²b6$[¢ ¯³gW)êß¿°G½yóä•:ëEñ¹üàç(°¸k f%hÁ¡Y3â2åÉ_Ù§kWĂE‹ (Í!µĂ¬V­’ÅÆê đOȳÛ^½øéÓÉNîSMé^>Oœ<™sv‘¶^DÄ+Äg—âbÿ˜˜˜:|®•Tø)̃̃̃mÛ¶ợrÎÍÍ­Å’¯]»\<`nl¬[=|~H¿;eÊÛ—/_®¼ZVÖ¬YVÓ¦©•\Û! ̃U¿K¨”uóæÍ´´”¶m[kØHª">#m̃¼ỵä·zôèáååæî™Ö¿ÿI“&¿₫T•ø)Oâ³ÚÍK-&g ơë××OKÓª>N»wR¿~“ªÛM‚êê eeJƠú†E5B“WŸ1éÆŒ™ÛlΜUyh¨çÖ­d¹`̃<äÈK¶pÍŇ­FVôøÚ©“zíè»ï¾kÛ¶gLLתàsÙü…å¼ ?MX/NJjÛ«×µ.yâÄ ssÅ£ÀëV/„À¯ Ÿmmm3²²Œ—-«!|̃»w¯ÔÏy>¿ÎTø)o >+Xv$E}ʲƠäÏ&&Ö,;oÉ «8ơĐDÉÉÖ">»ºj×>·iS ÉuZ¬W­ªjD×¢¢ Ñ!̉¬Y²¼¼ÿ%|wư¨¤¦j¯Y³w0bU§K6QÔBKKOÜ|ÿ¢Ó§Ïæ8+Uƒ‡[Âàøñăéé–¨•o>ß½{wà„ ÄW^“&aññ5‡Ï l¾¾¾uø\[IŒŸd®bü”7Ÿ ‚Ä 3®zøle-¾AKk†Y¿;th/mmÎß_¯  :XE|öơM ¨+ªâ}Ú®]wqà͘1Kè©é̀™3˜°]»Ú8:h\ơoÄçơëW jùùÖáá^¢‹Eà›™Y7±­¬r§OŸ®ŸW¯^=sæl©£oiỀ, ¨£ª·}ú»§=ÚÛÙi¥¤Xôí[ô «ọ́øŒú¢Ah…Âlß>í–-kŸ£££ëđ¹VRơÖŸß|66ö¢¨₫u˜¢¸êásLLs†DQ‡0ÎAŒ«̣Qh¾!ry™l|ppăj¸¯">8çă(êk–5xï½¥GaY9Ă¼ob’ºjƠZ ïKº÷ªçç¦M›æääXÚÛ› } ´Ü­›Ơ½{üü$gÏ,Y¢7mÁ0Ök̀ÿL’üJ`Ơi[[~‹°€¥đ÷ ̣óÇEE×ï>}º««käÇFXX˜……·­m#è…o¾ù¦¬̉†††¾ßë™›ûÙÙ5¬W/¨‡{{{—5” Q̉ÁÁ¡Ô£"""œœêXY5pq nĐ AƠX800°]»vevÛ¶m–––×êÖE]ØÛG… 0(RY¥ẼgnîfmƯĐĂ#Æüè̃ëèèxóæÍR‹úøñckkk #OOgg{{˰0‡èh|@˜Öơë›ùùYRR©]Ɔîî?sZZ”‚ù±á×|!+ÊÏ$YlCxx¸êÅp₫üyCCĂÈjPª&ñ3d[nn®°$rFƠåœDˆ!BÄlj'²³³,XÿâÅ‹I“&Uh¹O"Dˆñ°xñb¡Oă«¯¾JMMÍÉÉùY„"ª6"#54Éd=FS E½ß뺸økh´•J,,\.\XÑĂ®_¿^jQ;æééYêQăÆcYm™lI²}úô­ ÏŸ?_ÍÄ́'NLJJúˆ°xñbT†F7‰$ØƠµ̃äÉ“'L˜PVi=<<%™l E±0æG÷^ooﲦ"„{èéÙhh4—JÛX£>ziË2́ºuëBBB–T̀œ93==ư­$öư÷ßcÏ1cÆ,[¶¬†ñy¿~ưªĂ<--+a"¹|T•Í¿qñâE}ưáºff™‡®è*7ÿF||ÁV\÷bÆm«ÆÂƠ|₫¯¾úJ_?Z¨ +«ÖsçÎU3ÿ†OA\Ẃ¼¥gÏê>ÿ†©éë9¸ŒŒzï̃½û£—¶†Í¿!”’’²ÿ₫S§NíØ±#::ºÔÓD~~¸¸DÄ%ø0MU?ߺuËÔüü„ ^SÇT ?6eáfIrO°ÈÏÀ… ŒŒê)*â7Ô„~!ˆ0 Ë6ëƠk@5çgkë†yŸ₫&êøñă"?¿_~FÚ«:eå¬Y³̃ăÊ "? 8wîû̀ĂĂCư>·nƯ:đpkø[e9©ÈÏ"?‹ü,̣󅟯\¹rîÜ9Ÿ·mÛ6xđ`l|úô©Ăߟ;foo*˜9s¦¯¯/₫B´×$~1blll‡AƒF(W¢ÿ(¸~ưú™3g̃…Ÿ…3”ܬ';{hxxÂåË—??ƒOÿúë/|ÿüóÉÉY©© 1ª?>2)©kZZǪ,U1|ûí·ß}÷Ư[ù999yذq¥ææ®*kˆ(ü½,Ưø¾øù₫ưûgÏUßa5ةӀÈÈÄŸ~úé¿ÅÏcÆŒÁ™ÓÓÓ---ÁÏÊí¨ĐÊÏBăêÚµë={Ú´iSĂú723³hÚŒ ¾å¸:&̀úXÅøôÓM&&u ê;:Ö©?+Π¯æï©ÚÀ6‰œ¢æÄn¹Ü¨¬Ÿ?(?#.¹˜›·a^dlMg&¹cÇ₫Ơ„Ÿ'O¬X^¥J̀ÈôQ| K—~‰,«;lØ$ơüÚăÄy–5Ù¼¹”Ơ=zdnîjiÙ·†¬ü|êÔi##7SÓæeÍZ†h¢¨…-±ÜÔÔåûüŒV¦§§'ÈÆ+ùáÆƯƯ}ÿ₫ư”Ÿ,Z´¨I“&5ŒŸÛµëª²}üÇ*Msqn¯44:VŸ)Π£ÓeË–-Êí7õ´´Œ Œ{¿Y|9ùÙѱ¶° ,ÂDxx AlV”ç/[ÛzƠ„ŸÇOÛ¥zik[·êàôéÓ2™µ¢…ææQhkjøÙ×7V±d$v>Ô¹s)ă¯’’ÚäaÙ->øựđ³¡!îî¼bLàØéÓ町óÑ£GÍͳ_µ´́ô:??ß½{×ÛÛ[ø>xđ`Ÿ¯]»v­49W”Ÿk$ ŸYÖ• .q\dFFÏU ‡Fñ n)‘DWŸ_ŸA.Ù¼y³rûË—/ƯÜ­ơ¤ÉíÛ·«Ÿcb ä+øyzăÆ g„…e³«lđó[ùỷ¤I cBX¶kƯº ª̃N:ejÚL &™̀B=?‡‡G³,rï)J{åÊR¼¥{÷á$¹Zq¶=̃̃¡ƠŸCBZ #ü¦ÿÈ‘ăÊÊÓơơíb+A|_ư@“ ₫ ¤-øR¿~}đó½{÷@­åYUäg5èׯ_·n½ĂÂ’'L˜Y+Ñ—…•+7̣k›§ÛÚzUŸW­Ú¤8CGoïbéO< ‰jÚ4ă½¥̉ü|áÂEÙ²P˜M›> iÚ¯ßhÄjÂÏÓ¦M8phHHâÀc…,µêѺu–¦¦³©i“^½†¿µÿ¹eËvµYºte©;ÜS,mfÖƠÀÀñêƠ«ƠŸE€&,,º››×R3µÈ7‚‚·mÛGXeă?ÄÏÛ¶mswwoƠªU£FÀÏÙÙÙºººÎÿ r®.̣sơ¿qụ̀å'N@8Uúù Îpüøñª|a¡üÏ>|ˆ²}Ä‘?ÿ‰ñgΜfïy÷ñÏ=;v́؇{ÊVQ~~¥èŒ…‡«!çªÁ‡¿¦÷.£E~®Îü,@_÷ÿ™Ÿ•Ç×ưùù½CäçêĂÏ¿₫ú+Æ…ŸïܹøOđ3TÍÍ›7QàªçgThå!T7~ÎÏÏ¿qăFÉ—‹«? %,O7ˆŸ×¬Ycaa±ReM)̣óÅÁƒ_YYƠÓÑqˆ¬₫üÜ¿ÿX+«(‚ ââVs~Fƒ ˆ¶±IBi›6mZ•üܲe¦­-Ư‹¿ûOó3hÙß6ä§Ñ¸wï^5äg”ĐÏ/J¨åû÷ï¿#?ï̃½{Û¶m[·n7nǗÙ³ßïÔJđó2TÁhI‘ŸKB1́ó0AœÔĐhZÍùùÈ‘#,k ”xÊÚ:ºỤ́óåË—O<™Ư‡a2#vÅT?çååikR\÷B@@rÉ®\¹rêÔ©²^‰ª?âœïư-¤³¦§â^>kÖ,óCđ3vCÉ+ưè¤}û®4ƯGQÂM-Zt{~îÙ³§–ŸŸƠôé–S§*Z%aåé)öoü?çg}}/‚p%ˆ:añ̃ùYvLLG ×Ư»÷¾{Q÷́ÙĂq‘BßjÅÏ‹åùù%ÚØ8Ï»ØÄ$P_?ÜĤA#;¯S'ªÊøy₫ü…7YqƯß55‹O¿zơFcăCĂÆÊá"§NnĐ ­¥¥ówß}W ~Ơ×«×ØÂ¢(%7wƯ»ß¼%0°…¥¥S‡=bƒ0_·ƒƒÏ{çç;¾02ªmd”hmíZ¹§‡YYƒoµ „ß89ù*·_¼x±Q£VV®ªïƠªç第,óyó́^½²º}›óóÓêÚƠ¾nƯE "?WưLÄS…ƒµ}¿ü ‡W¨€/⪶¶ă»Ï »wï^’tVơo]ƯFƠ‡Ÿ÷ïßod„¨ñ$§“$GÏQHmíN¸y}ưá¶±±±UÆÏ?–H4ơô²uu}.̀-ö+Ëj(æyFñ²7nÜøJÑŸ¯¨¦o âÆÆn ̣3Rr¹<\Q//́íß5ÏBŒP”çG‚Øfg °á--ÛC‡¼w~–Ét âbà÷ÀÜܼJ”öÚµkÿÔ²ơW_½áí—_~QÜÂIäzúúµ`á ñ³é—_êe´f©³³ÈÏ‘ŸûöíîƯ¾}êGœJ—a ÿP4®ˆÊñóo¿ưÖ¿ç |>¤ºưæÍ›C₫Å}ưÁfÅ<}út…fM?xđ ¡aKá@#£€̣óÉ“'‘ÉVÎJ¨ )SFÅÇNœ8ºä¯C† ¥¨ưÔâÂSS‘Ÿ?ºt鬣Cde1´ưûwûX۵ơQÄúd‚Đ©?hÏœ)9wNjj*S}>lcăEiî"~üX­Zú™™æ C! Ô«¥§bbRoÙ²OK•ô¸è=’Ï>“Ôªe BSJeGGƒŒ Kü“¼RLÓ”“3†e屘ă88x©¿Çwäç}û)*«sXX²ªF‚éæÏŸ»aÆvíZ$$đơîî.]µ*W金‘₫;Z2 ¹`Á4•4j¯‡‡aëÖfææúVVî4=˜¢æ0ŒD9´£œü¬;|¸Ù‘#6¿ư¦ehø̃dùù­HKK;–ưôSẸ́圗—̃Ç*Çéé\›6͛ӕăçđpëW¯4đ™3GOơ ?ưôN/‰‹ÓŒdT§æ€Ø°´” G¥¦Z(Fy€€Ă+4¾BƯÙY ׺_æçgP‰IqoÜá 'OJ»ti®Œëë“Ø~ơª̀̀L«_¿hæW¯^Å•ï„~,~ ̣Ü¿_²­\)iÛ6ÁÈH²~½D"!.ärrǾlƯơë׿Rxp=e >==Bˆ&ÇKV®\©TŒIIQAAvµj§¤Ä—‡Ÿ!>q̣öímưưká<™™ºBE7ib_êH¦RSㆠë.ôc(;¥q’NlÜÜ,;vL©_ŸkÙ’61ÁÚÁAêåå¨ú’8H>==ÖÙÙdÈ^ïÂÏ11¡{÷̣Aú?>>@•·;wññq1cFÆZư%ÏÍåôôw† ̃7lX£ê ­[Çyy陯[—§̣€ƒŸè##Ă699Lù¶ơÑ£GRRꙘè|ơƠ¡̣đ³Íï¿ËÁ̉àgÇ  !C†T[~^°`Á®]»”ÿ?¾ =W[dfv4Hªˆ¶’àà:«ZZDQß`!]̃ïø 4.èç{÷xZ (BȦU‚ª¨âèÑ£BcoƯÚFx£̀+D5¢hđö–UôùàäÉ“SRøÓBUêêjTÚbóæÍY´ˆ?Ï‹̣¨(4ɹsÙyóX##ÂÍËù —.Éñ”A}‚ª€ŸÇŒ6gëùE^¿¾cr²é;²1c$íÚ5éÛ73"ÂẸö®`miI]¼Èk<]]bÖ¬g777D*Å*›0aÂ[ùY ̀ .¼|ùrï̃½QQđ¢~áB*ùo¿ưvæ̀XIOïu(ïÚơµ!bCB\„aoùùùææ\íÚ$<*4TC9Ëq%ø¹N»¡C\hâDÖÚZWØøđáC\Á₫ưRắ́tggă¶m£”Ú¸$ ?=ëÄIâấ́ô22Z )ÿíÛ·qZ˜åêU™‡‡Qxxø[ùỤ̀‡´ºvøÙÔÇÇÎÅ¥Ûȑ§߸qU6…Hyøyÿ₫ư}ûö½uëÖ“'O®^½Úºuë´¾nÍÖÖ´vmă&Mü?â}YZmÚеkS•ÔÏàŸ¬¬>>öÛ¶mVƯ~óæÍĐPø'51Qsûöíª¿̃¹s§W¯6 ø›å nhụ̈¥*Ǫ¾U™™ÉZ:)Ư·-—©(?¤¤ÄxzEEy©™́-kêÔ1>>¦VV:“&-¹Ă5kZ¶ä»OœrƯ²¥…Đ›Jÿï’™39MjÚ´1C¸©~^²dQz:QddÚÚ²U«ø¸_P ··×GDkÖŒvt$##ùææăc 6nL'$°Đ½PÎĐ<¸å¨(7dë8jÅ nüøœ̣đ³*† ëea¡áræ̀]UçÏŸoÑ¢¡——í̉¥‹zơjY·ÔÙá®\¹âèÈ̃¾Í›QS“ˆˆxưl""ÂBœ–•Ơ11‘H5!<9§¢ü|øđ¡Îă5 4¨»‰ BùùQ!!¾JUĐ³§pÑ´4ËR*ÙO¢êœp~kkÚÆ†üåY\œø¿₫ú묬קm̃Ü<44ô­ü Ñ6LàgyíÚœ¯¯ñîƯ¦‡ăc—­ÚơA‘››«««ÛV¥>$ụ́Ë/ûôé“––6{ïsT~\à¾,-5cbø¹*˜‰±,àêµj66D¥ù™eé¼<îúu™½½¦ªÿüơ×_áá^ăÇK W•è•=WØ̉¤ moOj{1vúôñºº”­­ÖêƠËßd¡%nn|Ë"I¨AªBü ̃¡C”›› ø_¹ñôéÓ‰‰Q‰‰qªó»N˜0ÆÙ™~øP°ecC¯\¹\¸—Ë—/ §Ø9--ÁƯƯĐÍÍ´~}o{{ÊĂƒ ¦pGÈMoƯ’™²¡¡L¿~2ccä¹UÀÏ—±±aà̃ Üúôé¡£Cää°mÛjÔªe§x( ûäÎÚÁư"]²¶&œœH†!’’â†76ơ÷w:utF†Ñ§Ỵ̈5…D£¢ü¼`ÁÜÚµMŒ4ï̃½«Ü¸oß^SS" €Bf¡§G̀™Ăñ,qr2V}d¦,P+.FŸ¥RjÅ vĹ““¥ DûöM?tH*<‡Å©”$_N~<=+…7ÆÄÔ51Ñ©UKĂÓÓF9E ’……^ƒ´¥%)‘0oèµmÛ„æÍ­qÎW ZđưÆ ÙâÅ\\=m7räP¤M407×›9SsØ0 [[µ‹½ægămÛôgÍøY£n]í=̀Ç¿ø8 Teü¼iÓ¦ZµjƯVêHƠ¶&:săTÛø­Z%O›ÆÂåvî”;|¬b 9ốÉlÙ"ykÿóúơë§OŸ\²yFFÚ aêT]hKƠŸàö-ZÄớ™Vlü*Úüù«¯¤çÎI-,¨µk×*‚à§%K¸1cX''Ơ„nụ̀åh>¸Đ_ÉëÖ-??~|æ̀©›7oÆ9¿₫Zú¿ÿI]]…^Mø6.\È…†R&ÊĂ{ơjẃOwîÈ©®][¢H` đL£FAÂ*“'ơđà‰Bçcç¦Myf[°@feEÅÆJÖ®•H$” ªrüFß¾Yáạ́Ç¥ ßđđФ¤ÄÉ“¡v́́ø̉b;‚)‚ˆ¹9OÑ nüÔ£‡ö+@3gN™?~EßOÙ·oμ}»¤];u-eÇ…DB"jăüƯº12±|9[lüF±‡M‘‘Á  ¸Zµà<§L£äÔ#.AM„Â+2̀=sèĐ¡åág8ǾÙú‚ÜÜô Yx‚™»dÉ‘‘6â k-QºZ8ç¬Yú{&L,\¹º<ü\ôƯ÷E.–³Ê?Ö®]Coo'e/ ²ƒ;v ;ỵ̈‹\p*˜hÖ,©±1¹r%×¹³ÔÚÚ´wo₫§oŸvv&…§LÑY²d±²“¿¢üÜ»wï±c_[̉Ë‹ùgϘڵɟ~’+7ëçG¶nM ú¼T%vøđáÚµÍÉ/¿”Î™Ă¹¹I„yjëÖÍÙÙ­Æ­¯¯¨ưçỴ̈ˆ Ẵ½eS¦ÈÂĂ]ËĂÏ—.]̉Ơ•à̀cÆÈ,,$àa”êÇe-Z„ ; yïÖÍB¸…V­hÚÏO¿¬)`¢öíơ„ñú£G®_¿Îqôúơ’®]„…ëRhPB/²•åË%íÛkù¼•Ÿơ&M2Ù³GÉÏfGj÷ëW=ùyñâÅBŸª 555''§&ñsXÿîjJ ­¯Oàó±aaA|̣ ‹´¤¤†ŸƯܤ{÷JAŒQ)))oöo0C‚’&&\9‡k¾|ù̉ÇǾo_váB¾ªä 6ÀĂ!­*F@íWí64$Đê!k-- ơü<₫' Ơ?ÿ”ÁˆAººdN7uª„e‰Û·¥-[Ê7¶µ¥>”ƒÊëkÖ©C7oN£5Ơ«çêî³ví*Eçjφ )4g4·#G¤:%+É LLdgÎäGë5o®íííè’›ËƯ:(@Đ¿Ä&•ïù`у­ÛốSṭ-o8̃¸q!̀Îôđ°@†̣ÙgÜƯuûô1Æö=Úú(¹{W&Q¸sgÆÚÚhÆŒ‰-[6‡Úµc@S¦đÅ̃¶M¢đ@6 À ùx^^̃ºuë*ÊÏà+\î̉%Ùœ̣ù`ß¾²³iü›™ÉDDP ơ8dHV±iè–-[œ˜‡bb(Dy==^y¾|)?~\jk«ƒüÎߟBơùøA¯*F3uë¾à:h”³ÿùüùóÍEƯúô‰ơëËîƯ“ÅÄH;vl%ü” B”AJ+‘üEErØ'-­”‰ .èè¾¾|¿–««ÑÈ‘}BCk¹¸Ø˜hÙÚĐÈ¿´µ Ü r+dR4Í3v~¾<<Üô­ü¬3`€ù™3J~¶ùăYăÆƠ“Ÿ‘&$$}MpKKËÄÏ>>fđ„.]xFu<ư¬¡¡ÁûÇ©ăç d‚P\°€ Qư ´€†‰LÙ̉’5j”êO ̃9s¦Đ³äspKBBăÔÔÄb}VC† AÀöàU#£7Æ<}úEåû3­¬8ơü?ƒñàcºº¼†WĂÏĐ E@w™›Ë—¿ñØ®ví×OÛGfçÏŸÿæONưúì™#ÑÖ–k×QQ©©º11>>Nªc:wî fN<|øpåOÖ$ „Mƒoéß@óDCFÓ¸Ÿ, O¾GÂæË/%^^²I“Æ`ç]»vÈå4¸·ïçÇwVàCQäéÓ§{÷nè¼téüădz,Ơµ«T1àyê?½:á?üÀ³âÖ­ØŸMK%…³e¿GJr\̀‹TưÏEÇd÷*Hk_¸swQ‰‰YÖ¯_$Z°5b„Mè0‹“N™2ñÀVV̉E‹8p4ö=<¡!¢̉±ÏÅ‹2ÍÖ­[B„‡“HCÀxBÀBˆ4ˆ×ƠàÏ ñ3²!mmYN¹97xđ¿3 (£" ×®åBB$Ưºµ¶±Ñ â•?ŒæêÊ99i c6bcIeṕ×AFÍ›Ç $‰ ›Î÷Æ l}úô8|ø°•_¡H̀̀¸̣óœ9³àó_|ÁgRƒ÷QêgdRÁ”¢óxÊM??Í:ulôơi??] éăÇÁE::¢Û‰¼Á¡ILLĸO?•deñ•Ơ ©ƒÖ‘¯xy‡ñôt²°à…©)â”Ù[ùYgó́™*?ë/ôHWC~®ÁpvÖE ̃DđưXÅP¼ @'&̉₫₫ễôđĐ˜=›:•MM¥33ߘ‰·]»¸ØX₫ #N¥Úÿ Ùb,4º¡CuUçG‚ qv~íÉhqÊŸF­¥E ‘ÆÂ>K—.U₫djjŸÚ¶E‡^%̃Úÿœ’̉ÔƯ30rt4ư6–¹¹ÙEDøîر.11bƠ*^,}óÔÄ„“HÈÀ@“%Kf98XËw8:ʬ­Ùñăyâ0mƠêơÖƠ«—#qؼ™¯>-’ØƠŒưÆ+\([=Ÿ30xc Ê=,:ÿmÁ€ÁÉ)…7©¼æ¼}ûvx ²$ăà™[·¤Gđ–OJ²kÚ4ü QQu¼½YØvút>$MœÈÖ­K5lH (ggKDX¾ç2™nQ[ _!‹%A%ù™gÎB,}ñÅçÎÛ°aC«Vƒ³QQvʧLm9`£˜]_ff&]¹R2cº̣ÚÙ1II4J}‚ø×Z··§¿?‘‘A''Ó F¤'`ăÂBù¾}…¬đ8̣÷ßå/_Ê#" ̃ÊÏ=úđ6ü§ÓÛÍÍḥd¶wo&'‡ơôÔCùqPˆÈ¦uëº|ÿư÷O<™1c®bcC˜™ñĐñÙ²ªÈHnÎIÇR„ //1bS¿>_ êuÁ¿íåéIXXб±±;Ë…©_ßQ=?›Í…¼NèÍP̣³éZƯº‰ü\ŨSÇ ÚF4Ÿơô772(ˆB^¦†Ÿƒƒ5á«¶¶|"ß²eó7:@E ÍG#Rå̀{÷îA6@¨@f(̃kû÷ư”/¿üö˜;—… ={¶ª£¢$øXóĂ—4FåONNNà“V­xç $ßÊÏYY©(΃z9^v挺±vmêđa)Ç‘µkÛÇÅñ©ơüù\Û¶̉„„¨ àØĐP‡¿ÿ曄:̣káa=ÈÍ××M¸ 5Úf‡–ôxgú¼#÷rº4̀ƒrt$t|}Ưߟ_³ôµk…£Ç$&®XU¤H![¶4î̃A:ÆtZÍëƠsơöÖ€=!æ[´àûÍø|đ[:D“&́`n®yưúơnƯºEE½X¸)dơêñï?‚Æ ‰ñăÇ«çç¢sßüƯ1cŸ‰áÆÆúÆ̣ú,¡7»M>£ï̃½ |»aĂ]]Fè19“E-˜™Q(öÆœ‹ ?RbÜ8FK‹óô¤ââh”SA€̀ˆl½z¤·7/́áT––¤­­TG‡Ö¨28*ªCK‹‚§Ơ«‡|‡Œ‹3z+?]½V˜3± >©pꌢ+WMM5á]0 î_ ùÛ¶540Đ̉Ñ‘'%±Œ··ưèÑ#}|ŒÍ̀h3Tz—.ŒÂ˜óæÍ35%7nä"²€  2 À5’ÚU€,\,/÷E†‡Sµk3ơ걸‹ơë9dmAAVêùÙ$'G£M›bülóâççgụ̂¥ÈÏU OO‹¾}ù$h̉$²đc¬ụ¤´];uó#Aá€yüư)|©U«–êO`K¡vêÄddd(·ß¾};,̀n !+Q}tÈ!H`ÿy‰ƒnÑ¢…̣'È„ ¸:ü#Lb# Y³f(ƒđ¨­X ?ăü[·nµ°7nL)rUVxqØÉ‰D f¼ˆ/ Ï¡llÈF‚çÎ;õaNáĂ»Iöî•êëCe‘PJh•(̉Ư»wÏŸ?Ÿ”âǵ#¨[Ü#ÚÙ€€ơ PML˜̀̀–Å^̣z÷ñuEwïN™^×´p₫‚_~‰‹«ïí-ñ÷çïlŒ ~Ư Ó!F@íă<“SRèFHJph‡˜›Ó jWW7̉Ăƒñ§đ¡ƠL¤ ́ßX¸pÁ²!…Se6‘,ÑÖ̀kÅ)O¸¹Q è³g¥¨)XçÇF¤<ĐüÇIP µ»; µ‰ë:9iÔ©ắеk—+¼xEAyâ$(dNÎPWWT¼Î ̀n1|8 ¢Æ½Rffd9û7₫ø£píú‚”´ †:WfIPÚ”SH a4//áñÓ´) “"§8tHÅO¸kA„ cc²V-¾l2ÿŒü1A2˜Đ8>‚ÈĂÇđ’bá""(¸«âN'ơül4x°vï̃Åø™Ÿ1©C“={D~®J¸¸HQû¥¨÷̣?|₫üùµk×?¾sçεk×"ư&›8qb&L˜2eʬY³.\¸råÊ-[¶@‚"/»yóf©/‡Âù¡ àB jÇoC‡²ḥÅ̃á…À¸rEx™l̉¤‰rûÇáÉqqTBÿF øŒ}äÈ‘uëÖ¥¤¤ 9´oO Ó«†††B]>|øÆÙÙÙ8 r6AsVå¾}ûB> ©1¿~ t Ôˆå%âéÓX„¯©É¿%…†ˆpÿ¾ ̣ ªe†hDĐ$ñ·kW‰³³^§Nm`«¦MăêÔá_ßFCơÁ>h¡Œ‡½¤».}؈ư2ơ1'Ñ©&M–,YRêC½÷5₫¹è—_ çÍKçz»ÙÉÉiÓøY§G8:̣±,8˜ŒŒ¤X–˜8‘E>¿}[¦Høû2„—  8|À{  94”ß–×yxđœ ³ŒÉĐÿ­ü¼jƠª.]tp•+ßIëÓÔ49ư{É×-9‚<}Z*thëó#ÔøwÁi™™”Đ@Qü£É₫ưÙÔKFFº‡‡#22øT ʆêñT¡Q P68¢ =ÜL1fƒVè^";›Aô©hÿsg‡è³(ÉW¦2o῭LÆÉ‰@KL¤…·Ë‘m!ÀiñåÀ©đ̃bëÖ4.‡KĂs`yx ~57×ÓÔdPŸAÁ̉øéÈ r½gÏøA ææ$b v¨Wï-Ï zôĐËÉ)ÉÏFë×kee‰ü\•@EĂ!“¢úĐ^ÊÚ Dq́ر €6m :hĐ ´k00 ,¹cÇ/ÿØÔ6l{##;v,MOODZqqq8|ܸq8§}ôè”ÉÓ§¼_©×ÏîîÚÅ—_Ji¾Ư¼QZ´&Ü‚•?2ªK—.ªJXĐlđg´>;;»¶mÛ9r₫üù¶àt’obàÈ MMMÜàđáĂÛµk'‘H°ó5’[·dà777•ŒĂ:Œ &©[W?'$Ï™Ă͘Á÷K ÍDË‚3€P\D3 Àø 7µz5‡3#”àÖ-â !´ĂÂøÎÛ₫ư_+%ĐK«$jQ³O—kǸđăÁ@A^^v%_ˆûü,à«;GÙhÔgs¤t3W₫ ÛQ)Pѳg³Ư»ó=đ+hK¨8¨bØöŸ6Û¾]’œ̀w_„„PP°p¹K—ø©Qđ]˜œùÓO%ü!}úô~+?çççGFûúZ¶nƯQ;Ô›ZÅäJ™Z̀ƒq̉~µ_?QĂߟ÷™ƒ¥ôđ¾¾$¾ûûót"¨MƯºÑÎÎ|ùÁ“6p¨,8 v@pÆxdd0>>Tf& YÏgågss†{‘Ươè»ơ%·ă$1•ƠÂE…QÜH¯ Wà™3fđ=ü XD±èhºwo.$ ®_…ñaC|ñ”¦¥ñƒ́́ø(#tMĂCàÉY^9GGJ=?ëuè`°hQI~¶y₫9ƒC¿~UÆÏ ¹\^_à–ÿWü —;uêµ̉(µÿù́Ù³Ă† ‹ïß¿?¤̣©S§~ûí·r ­ă'ø'8ß–²ÔÓ§O/]º´wï^ØàÀÍ5ƒ#ÁÓÀQHÁÔđ3tZA¼èkù¦iơ&?+|•§A¹»ÿÛơ ơ®x›DƪrµU(ƯH1·†́Ñ>Y{CÊ—ø×omllÀÀsçr-ZĐh#ÎÎÎJQ*çA ̀téBCđ¨áçèh³Gk¤í9*9‰ïBDÉaçyóXXl,/äjœéTC²¿¢‹ ¼îºm¡n‚ qPzÿ-CKJâÉU`oO´jE¯ư”‹ ÈvTŸ ́àçG¦öí“€FÂÂx á)>́Ơ«g9Ço •CˆŸ9s¦¯/\₫̣e₫ACÛpª¯ơ™ŒÙ*gz™̉ƒ:1ˆŒ'OJ…×Pq ̃o¾‘ £J`CØÅ…@Qtc ÷ÉNåHZDQçÎIá–(<´7ª/'‡mܘï¥~̣ «xùT"°_EùÙ××aÀ¾̉»wg ̉\¨½ơÙ=fCOnËo"ê-\È%'Ó`Ưóç¥ñ{Ó&¡ ½x1×·/Sô¼p«¬ƒ#¤±x1‹&,HÄG„•iäep|GdT<˜¦]\Xơü¬Ư¼¹ñgŸ•äg¾‹£cGÓÄDQ?Wú‘¹¹‘66¼®+öë́Ù³¥RéîƯ»+:cUAÇŒ| »|=Ó|¹^ÁèqoƯŸåđ%5ü U3lóÓ,écv'Ádơ(œ9§pÇ®¢«×ô´è̀Ï>ă,Éd2å!9hT,?Ü"/₫L{yư»MÓQQä¹Xî‰÷˜á~%¸‚n¯9!<<Jj¼AR!wúôé#¼qÆ¿ Hđ \„̣¨ƠÏqéÙfô0¶6E‚̀l̃̀)2z’§h ̣G’}Hpî:ĂF‡Q66ä_HÀiIhzøàBnn< eó§÷±#zéö?ä¾¾T‹|7 Z«âƠƒWUÉÏ@×®­À`­ăÇ¥êÓC¤gm¸Îµ{¹Äؘ ­Fu ₫ŽØ[»YæÉưDpù„dM:‹=…¬\ˆ411 k₫a"ô@9ùY‰¤¤†ZZ¤½=?cøpÆ̀ŒDrQOF₫9IZ(½äÅílĂZệ½I¨CT+L—’B!Ú" BƒÜœˆ“4{ä~åøƹCuóẲBBø‘đ+V°B†̉âPYöödZ忦WQ~₫ư÷ßµ´;;ÊÁAfkKäærµu]‰̃6Ô ³ËíaD¯_À)^Y"5£ĐHáB±ëÔ!‹äIIT_9ơH›û]ÂÁ‹N›3¤b€ B BaÇŒ‡4?\—DiëÔyƯ¾àcvvơü¬Ù¸±ÙÑ£¥̣³ÉîƯZnn"?W@àå˹:uxÙ£úR‰¦M›¾U˜•BΫ>Íg5à̃¯?z¦…û¨?¤V-rÄá¾OuúÙÓ“ï¢LM¥}|HˆóÂÍŸNœ‚p°c?3e‡êу Ú0Ä¿%$Ï n‰GákÖpN¸˜ Ú²đ©lrsÚ™-&-úQnkË?L-C₫!#3†•ɨRgcûĐü¬¨C7¤7ÈP¼MˆSÜçRöK_6Ơ–9Ô'ô-ƒÀ«iæ9ơ¯µïp\ ÿ´‹—¯B÷;n91‘KÇÇSå×ÏÅ7₫ƠH\ù䢉 ±¨P>3YÆ1î`¶‰”LiÆßˆ#gjÄ$÷·?üî&¹̣ ÿQñ‘ÏS„N›Ơ«%‚”Eu€Ø]]‰wYߪvm>DuèÀ?nƯ’~ù‰d¨½a¶¸0ư}Hï4æ{W„̉BSá{¨„|£¨$—cECcC9@*c·  ̉Ï_ºîûïe¸S0O…Ö®ư–₫ yp°åµk¥̣³mAk` :ƯÈψÎH ÷Ë~I—̀Ô¢ Ç/œ2½pö¼ÂEKöl¡¯ÿp÷ƒ‡Ÿ(:÷MÑ÷—®_/ºw¯è×_‹?/R™rí_~Ni£J>ø ©¾P h¸Ÿúù‘HáưÁO>á %̃PàqûKiáÙ'6̀2‚)ˆçGœÎ_íêfļ²¢ÖÓûw /¨¨Y]¼¨]²„̃¨ ‡€dÀ䝸ŠÍ™3‡Ïcé¢s|1 ÏÔđs·nƯ øÁ hMƯµ¨ 9émÍß ổ¹q’‡$«zƯïɬbU>".4Đ$b9r®>}P‡™mH×–“£G3«Wsà rË ´ –•Ơ®œoK}~₫ă?¬¬ ƯÜtëÖåÇl„…ñ –œHw°¤.EK ZJ—6b 8BXâĐ!é%æ[~¡)iÉQ 8Üï„Ñl*E­Ñ`º̉0;¢[åøùƠëÉư’­­¥¨ !5‹¦ ÔQ§½º0™öÔZæ†́ ºt¼•B Qø*áŸ_ơ¸±-ùQ%|׺"5㇠A¾î˜Æµ¡©©’ユB3¼ ?£--œ ,,haj|‚ƒ©V-é$¹T›₫V—íaA¥…SÖF¶ă^ºtaz’Ô_Ä¥ưœd`íôt® ¢†ÈoØÚ¿Ủ̉́®A-0Ç+ơü ß²y₫¼T~æ×%ôóS}]Käç hÔuá#Ù́öLC ¡[¸swá–­…kÖ.ÏËIH́X·̃…̃ưøá¯ƒ‡ôîWƠƒù·u»‚¤1  6)ˆM,HN)Hk_Đ©kA·ù̃~o-ÏOI+\·̉”§ú‹/:s–ŸçÇ‹î̃-zôÙmV¤ A ?›› o–±`¼b-ÂÙ™føoÓ†ï¼åcÇÙs…Ÿ®me‹¯Ơă₫è&Í1 S)¶èÈWüuÿüÛ—Ù0ù´JQ)iÁ a? Ó³Ÿ;'µ4"\²pÇ®Sưf{ûl!˜/4ÙC¥×®ÉÔß6lØÙ³g›4 wAúän{&Ó–4&œ¾[Œ ô¹Â½²ăư$ĂM)kh³æRI×Z(ûèQé“'rGGđŸ¨‚d ˜À@ç Í3đáæ¯»~ưº››A“&ÔđáLZmnN‚@ñ”ƯIçÚ3Ô$kº`¶´o}I÷[~©+iH·ÏI/—DËÈY–ôBg&ÊŒfƒILŒ©4?+ ¦x¹ƒüăÙÇr¸ĐP¯\‘×Hî|Î÷?•P6‘|îÅfI¨»ôä>Á5°åiÊó鯲 ´3KœŒà^FI6̉̀@)}#O*̀eô.ü¬”ưuëzĂ£¦Mă‡¾¸º̣Z¦¡¨¶ä­\®9Ú†̃ g —Ê Ëx1Đ̀ª¥Ư¬ÁDEñÏj£QOÏIZZPMr7Íl%™ ‘ÜÓ̉¼JñơUÇÏ:u’zz*Ù¸$?[¦¥‰ü\5€*¨]›ôơå’ ’;́̃½»uëÖÛ¶m{üøq)~•Ÿ_ôô)8–gÚ~ënƯolơ†(]°¨ŸYs 'M-“S0dxAß<Ơẁà©>9e'Ă|gÉíœ#ù¨Ÿ_Ô:Ă@oîܹ%¨›ïîÛ—ô’r;D¬½=‘ÚŒ>µB2³Ó•B̀tè\»‘`̣8湆äoƠ¢V0bô8‚̃îÆæ÷“´–×cçCO˜\Ç̃~uN®bà“0ba¢<ó‹‚W‘º¢HOO5áNúrÓ9ú*Í*»V₫ ¸V̀Ï¥“D—nÍéf¡$ƯÜáûàÁ|omHHP©c~D~~ÅOûvĐØX&µ™3Yaèj @Fmt©éÆt~€$Ÿ{mgh¿g2î¤ —ßF̣÷8©¹œè̉ ÜN\¾̀3/%%%¾#? ßÚ¾EÊĐ­₫ø1¿° Eñơ.^”uê„܈0Ó"ºx̉cl¨ÿI™çÿT JxCÎn’0[µ™ûa’‚héĂ6œ5EÑd\5k× Ÿ>+©*ÁϯkÁèèPˆtˆ)ÇK 7ttGG̃†ááÔ™3|·¼§qo’ôï^’Ăû Áư+¡5%]˜ÙĂçbúÜ6vq#ÆWJt §QNáÙt^Lz{«ăçÔÔTyh¨~v4ÈÑÑṇ̃åË"?WŒù…,ˆÏ?çûßÊz¿Ùâ©S§&M”˜˜˜>õ¼}ûö•:çῤưăùuC̣Ư} Z¦©L–^Z®]+™3‡í̃½’ëw£èê"w£T,”Û6lˆVïăC¼@¥\YŸ Z¸’ừ©krö”ûÁ,ÏC] Ăää̀tfjOVÆwæQQQß*æđyƯûQ«V¹øÙÔT@àhÑB11é Y@ÚGF¬§˜+,{‚fSuĐ$ù« }vq!„QU;óCs£¢¨nƯü«KVœ_UÉüÏáÎÎ|?gf&@¶kG ưí…‘× Ä|Ö½H°÷äÜV9mJ˜Kø9ü­¬HaÀÜ@àgdR=ztw~~¥˜C*¥LLø¡qàd©”ÖQêîÎëüÎùñ9øŒÅîÛÇt€uË{`̀M$è Ÿ#Ưh̉X1³´bmG₫IºđÆ\ÈߟTLuøøù•bâ#wwkW~•~ÅŸ±cùq̣(-JF9…y9`(øR‡`̣Ẵ¦¸+Ź"W:˜"æd1Eä7Vøqđ9¤øđáüËMë×K„₫gKK™~‰‰ÑWĂϦ))†¶¶zææ¡­[ăă¹ưƒyùơN’|€†§½u₫ ¤`ˆ›ëÖ­5jT«V­7nܵk×qăÆ-]º2ûäÉ“È(ươW5“«r>\ñÆ'NœØ¾};èÎÁúT+ÇϦ¦|O£ïĂyyÿ.—Ù¹sg´M4CƒbfxØ¿ÿåË—ă_ø0ÈḍdV1ÔîßÛ˜ÜɉoẨ(=ÿ3ômyø¹~}WØ-zÿ~É‘#¼B@\½^܈Œä_ÊFó±µå•v«VTH?,-(ˆ¼-HK!{4đ«tEW?#đ™̣ËÀª̃̃$̣…¦Mi”4fÛøùñµƒû5AN¡`E₫ơs` ?Đà“ÊöÉc;¾(† è¼/~~¥X#ÀÂÂ9BƠ×_K=ŸË-[ÆÁ]øå]¼¼xÏÉÍå‡g§¥ÑS§²PƯ(äéÓ̉®]ù æÁ₫Đ̀8>pBOOç ¨áçàà`½NÔđ³nÆÆÛ¶ño&&'[Ư½k²kW¯1cD~₫@đóóB #Ná:öÅ‹Â0æ+VL™2eÀ€ ĂfÍ5jÔ˜””OW ##£S§N:thß¾=W||<˜j®;pàÀ3fÀƠáOŸÊÇc+ÇÏ×®]“H(hƒ¾}ßĐ]7õ„—‚öyÆ[¹råË—/SÏoØJNæỴ̈+̃;È@iq &LÊ®Y#{«R7x |fFÁ™ËĂÏ& Ñ̉⃠İbá$‘7§ccùܧäçó“Zƒzơ¢„á^h¤98;k´jƠ´¬Ù>« ? 5j$¬ § HăúuÙ̀™,n7‹»F$ÂÙỤ́³m G˜?ŸC€ự¦Lyc&mơüldd$kÚ”P¹œ “·mKÙÙ hE’©cl’œ\?&©ô„‰Ađax…êR¶J́Ù³§ÔÂàđ 68::^TAÉ—ă;–’’²ÿ₫S§NÁm1•ë9ÖôîƯûàÁƒyyyŸ•X¸¢?mÙ²¬ÔŸ6mÚ”››[r;< ±̃ɉTÿ|0$$äëJ-hĐ ¨DƠ¸qpZZ%¾́ÚµKùÓáÇQlú-Qơ¥¶uëÖjø¶UîyäÈ!0Ăđ#]œx *†4ÂvđtZœ‡‡=n?!!ªuë¤́́́±cÇÂ8ëׯ‡́/Ơ0&LZrûæÍ›×¬Y£ZÔăÇ#a)˰ Ăbû¿8p <<@__ndÄë:|øë¾O4á* å55%.\¨zàÚµk‘‘•UZÜn§TC*‡F]¯ĂíÚµm×®¶6ÿLÙƯ]ļ́‡ÈG¥àcmÍ÷ `;>(³…åââÔ·o_åI`´;wBä¨ágd‘ïnIKKÑοÆK*æÖă 1]ȹPlÅèÂư` øa±S©_¿ÛƠƠ•wú·Bø‹̉Èd´—_ˆ2 ££Ăqœ¡¡¡±‰‰‡——O:H±&‚‚‚ ×µ´´đ788[¢¢¢üüüđ%,,̀ÎÎÎ×××ÄÄ$[%Ÿ¿ÀspÊgÍơ^ôL58*33S[[Û³ hhhTô'wwwؼԟœuuuKnG#—KärMO4>}z¿÷ ø°‡‡3ÊƠ½{÷’¿¶iÓ¦mÛ¶heÚụ̀eY#p̣bûwëÖÍÆÆƱ±1µ··¡\€Yà¢r¹¼T£ÙÛÛCƠ”úŒéââRr»››ƒê¥{ơê’/˰—/_†̀ë÷!kÄÅÅ……§¦&&%5mÖ¬JUêÎ(Œ¸Xªûá®m„‰@%wÆF_p?E-ÔRŒ̉ƠĐଭ­q(By¶R/gee>Á­¡ºK-*ÜṆ~-Ù³gϬ¬¬Ó;tèíÚµkûöíÑ–ñ«ĐˆÔ$Y¸ øưm`¥R ]]V"ÑÔƠỞ×7±¶ÖĐÖ6¶°°ww§e2 +''| ÍÍ­kƠ2·³3³±Á¿f¶¶&66R™̀êÀÎzzzø«Ü.‚f‰‰ G¾Œ ¨Á@-Z´HOO‡K¤¥¥Ăk^/tưúơßăOÏŸ?‡yKưéöíÛ`¼Rúæ›o`áßá¿dÉ’²„²́‰ nH]|pÈ»¥ A¨F-×`§íß¿I‰uï̃=d:%wF».)ʲv©—ƒ~^´hQM²*’_Ơ‰ĐK¡AuºƯ 1Æ+ÅÊ•+jvX¼x1d|E‹ưûï¿_»v­&ơlˆü,̣³ÈÏ"?× ~₫èê"?‹ü,̣³ÈÏ"?‹ü,̣³ÈÏ"?‹ü,̣s©P3ëu%~*((8xđ`YÔ ÿ/ơ§'OThB‰ÿ(~øá¸h…́ùË/¿ x•úÓÑ£GKúơï¿ÿV]îöÿÓ={¶ä:0 Ur篾úªäăƯ²¬]êåñ¼yíÚµdƠ;wî¨wûÔ©Sê»yƠO¡ÿ́Ù³ăÇ«Ùö,«ˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!BDMEÉ9œùD0rYøüóÏ,XpơêƠW÷¤T*gÀc#""đ·C‡ׯ_W=ªfX»œv(‰€R^)^N)”E#•.F äœ̣»̉ Ïr_E&¢†Ÿ4 (s忈ªđóàà`Ủ®ñ€ß" B?+œz²0`À?₫(XrâÉ“'ø‚cƠdĐà‡öíÛ¯[·nÖ¬Y› ´3gÎÔ"`áö¿ûî;Uk9rd̉¤IøÀ·xñb5‡/\¸033¯[·nPªG•³F^ñë°d‡„„DEEåçç«U3¬]~;”eË– 2¤˜mËs`1yÇbÔH~.,,lÚ´©À¥CÔ.ˆ z ̉èS§N•“Ÿ‘} w§§§—5r n³qăÆÂ B"ÈƯ²ö?ỵd``à˜1cœ·mÛb¹wïúC^ñ«áø½|ùÔ:‚…·oß°üÍ›7ÿëD\KLL^TµÆ¹sç@¹‚À̃´i“3ÀĂ…/Ȼ᫪G•§F^)ÖéÈÊÊ—yóæ­_¿^ơ¨aírÚ¡TÀ&[寑²hä]Q#ùY˜àúâdذa_|ñÅ[‚†%ươ×k×®!ÙD¤+¹´AI~₫ù矯\¹̣ÁU†'%% kîÔø₫ äæ/^„đ8pàîƯ»7nÜ8aÂ5ZñH4>|6?~üùóç¡Ơ\"®‚Ú́̉¥ l––†4̃}̣Ÿ6 Z=¢Œ̃¿_ƠˆG111 ÄV­Z©_wụ̀å0)¸ØQå©¡!đ₫øă=z@$«U3¬]N;”Úû„ÛGí€@Ê_#J£‘J£†AèÓ{¥˜“ä•bŒiÓ¦!5.ÏQ ǻ&D=p®¨~:…ÿJ€SpÇŬ*;v́‘#GÔŸÖÎËË›;w®0BIơ¨̣×È7ß|ƒ2́ß¿¿äQ5ÀỤ́LU€ „Ú£X+¶œ5R J©t1Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"Dˆ!B„"DˆQ³ñH­a endstream endobj 361 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 364 0 obj << /Length 723 /Filter /FlateDecode >> stream xÚ•UÛnÛ0 }ÏWĂ€ÙX¬êfË.°¶ÛÛ€́©íƒë¸I±ÄÎr[û÷£D*–{Á6„-‹çđÁL°/ñ—çÇÙä́B*Á,¯¬lvË*ÉKx+tÉËR±Ùœ]&ïÓ,W:Ù¤2éÀ`W"éớÀµ‰à*ç"/ÜßË(‚áJëàQ×-Y Ö€íÁ8Øï™@Fr[è‚¥sb™Í¹*-Ë*nüI‚NĐØl ©IŒ¹¢=_ùb—`̀€Ó»»›‚ƯP-߆è^QtG5§ơ”7½&ÈÏGû¿Á–”Á8Ă¢=_TûR&¯Á.ˆÖÁ×Q̣[R&2új ¬³Á:¿M3-öøPèpNʇgăû̃ ²%Xë{à·\Røêˆ{°ăS¯Sª‘¬qûç8RÛûH ơ&¸Ó¨££6N³så]­€Uc Û£Ó´>¶Q\«Q|O9ù<›H L28êÈ”±¼„S߬'¿&ÜJ#”wˆ^ư–)…_„'|<ûºÖ́S?ù¿Àmñâ 3)x%ªøPÊ€NºBó<™@Q&ú<ÍŒÉ]hå7ötZ*•#~ÍK{Ëÿ›9äɵ’kq¢s½:8L³'̉¾DơøºpêM”¦^Q€Üw–}ª,̀“ÿÆqUG¬ '0lPufd̀–¾<6¹Gl}ON;\ă™÷7‘,r.máĂsSamƯ¤ª„úeZ¨ñ!Ă,oñëÆ‰í÷¸đâ6á̉ص´ï1¦sKåǪ_¹CºîĐá˜æER‡Ùªo;u{ú1øqZ§í (”ÏAˆ©©Ô­+—®°\„¢úíp–hPăâ ¹úÉrÍ´V¾ûưa‹‹91] ©[́\aÉuí÷|Ô¨¡›Gè6û }ü÷É”(¹50Q¥áyæbä Sư{?°¬ endstream endobj 351 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 367 0 R /Length 69267 /Filter /FlateDecode >> stream xÚ́XTKÇg“Xº»lE± APAAQD EA½÷Úu•R,¬k#WE¯¨X7íîäÚA}ïÑóíƯ\%ßÿ³̀Ι;gÎõ™3óNa! …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …ú ?~|Û¶mươ—Tü›7ỏÓÓçΛ‘‘!ûơ”ŸŸ_æÿèÑ#¸øS§N•̣8¹¹¹pœ={öTµ»óçŸÂ…Ư»w * ơ½éƯ»wZZZ„›‚‚ÉMmÛ¶%ŒÜƯƯe¿~•^¼x1tèĐùóç—ùơïØ±.©sçÎ¥<Îëׯá8ºººUíơêƠ .,-- Ë* ơ½)55•|Ö¾}û$íI>£k×®={öLêë×eäÈ‘püÙ³g—ùơ_ºtiܸqk×®­®|̃¸q#üÀ3gÎ`YE¡¾71 \̣ơơ…¿]ºt¡‘O<‰†55µ©S§fffJ~¥¬¸|ùrLL̀àÁƒSRṚ̣̣ØfggϘ1#**jụ̀å´U~êÔ©Ö­[Ó³¬\¹Ṛ́G…îß¿Ÿ™5kÄ€UOwLLL„CAä•+Wh‚ 6@‚ëׯ5 €ñâEøºe˺5''g̃¼y‘‘‘Ó§O¿ÿ>{X8ÔØ±c!~É’%€ôø|ûöí‰'6́đáĂ•_²fÙ¼y3Äœ?^rw8>D={vçÎ?üđ\đÛ·oïܹ ×ỵäI6å«W¯¹?ưôd)_B>À!páÂ_d¶CêÙüqĈéééOŸ>Å‚B)ºÀæp8ÆÆÆ=0zøđ!Ä|ˆ„âăă%¿.[¶,##CUUÂ***đđKY;êëëC XÚ”ç·nƯ9s&»oăÆ%/à÷߇HúơرcđƠÅÅÂ[·n…0ǃƒ@@SS®â}||૽½=ư+Ù¿èsrrb¯ `ûÏ?ÿ@<ü…¯pÁp"8 ’’€´H>Ă&ØKYYÂ3đK lllàëŸ₫YÈt¡ÀA~üøÍ›7’_Á¨«Y³&|;ÂÁÁÁ¦†1…'XŒÔÜ9Đ7pà@ˆ‹¬k©kpvv†Mô_DDå?„Áhộ̣kñ`³§hĐ Áñădz²²$ùüóÏ?C€WµnƯ:j±C|¿~ư À‡đ¡C‡À¾=xđ`‘|ë̃¿¿hÑ"Jø?ÆÅÅAx̀˜1tw{{{KíNù xü÷ßáé¡`Gà$½xj‡„„@800̉Àơhhh¢ÿøặA’ÏEf;ä¶¶6ÔH °ÿñ}" ¥Đƒå Ïø€*@?[[[Ó·„Đ®‡¯`̉Ä’_Ñ+Ø+V¬€f5| …MÔÖ½yó&55Y+®„₫ç¥K—¦AƒsÀHdAuÀv•¬^½ØN¯€Ị̈999™¦‘ä3íE6l\ü¨D"ÄC¥C ö6œ[\ÿØ̀đëà+`™ZªP1K¢`EC<́‘kÖ¬)’Ïaaaô+µo©Á?ỵd=2–6.Xë2'%äËç²j+ƒéFû¤I“ Í‚Å…Rhmß¾¥_ưµd>_¿~ÂB¡ĐQBưû÷³“ĂèÅ‹Rç*Ï@!`Xª=HIă§L™T„M]»v¥ä ,`ù¼k×.Y>Ó®©ä…Áñ¡¦€£ÙÚÚ²¿qÚ´iẸ~Ô‡hL5Øn °ä!|̣äI¨)ÔƠƠß¾}[$ŸÂô+´đ aøƠtä ”Çă±í—øé§ŸJÈ–ÏÅe;¤¹sçT tí¥¹xñ"–pJqƠ±cGx–›7oôY”oô-a |YYYjè{¨Ë—/gff̉Ƶ¹¹9$Û½{7„¯^½êââ2~üx ~ÆŒE^ °¶ZZZ²<²ÁñÁŒ|ụ̀%|’â3Øü²|5jÛ B߬QK₫÷ßOMM…c‚%LA ×_\ÿÆÑ£Gáëưû÷éWú»Ö®] á-ZHɲ|¦} ,Ÿ)Æ)ŸáÚ Ü¸qcõ¼™&kÔ¨ÛQd>Hơo™íöƒnÛ¶ ª¡S§NÑ„£P ªđù|©÷\ôµ Ä?|ø°d>Óf¾‡‡Ç’%KÀf¦cóÀL¥ƯÔÆ «_¿> htC¸iÓ¦S§N•½˜¿ÿ₫›ÂĐÙÙ™Æ|üøÑÈÈ»xñâyóæÑ®88ËgvŒ$Ÿûí7C1kÖ¬îƯ»CxÀ€*„ưưưÓÓÓGŒaWW×âú7ÔÔÔnuëÖ•VMûèEÊö]ËÏ礤$úÚPܬY3ÚåB«™R|.2Ûá,vvvß°aƒd[…B)¢(HÛ¶m+¥o Kæ3Đ,88ÚÚ´Ëí¸®Ü }MíÀ¡C‡̉9ƒçÎÓÑÑ¡‰‹¼°´a+à‹Y¹r%¼¥/₫(-Kà3hÑ¢E”ƯºuËÉÉ¡t£×̀̀Œ̉à|ăÆ"ù ö-0–₫.Ư£GØô'\’Ô,¯â3E4d¼ù/ƠW,›’|..Û¡àíí-‰hÈ?₫XS5Q(” h,9ƘUnnîƯ»w¥"?|ø@cÈ| a‘Çÿ¢îƯ»Wä³;wî¼zơê‹»ƠeÇ™ôîƯè7nܸ2É:h¡°½Đe•íóæMø‹%…B}'úå—_ÚµkÇápT1˜!( UE4`À€³………́°: …BU®°;…B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B}'ÊÍÍ}Ĉ.çW²Ø¯ nƯºUär!ß ?̉¥±©nß¾]†äáhyyy4üâÅ‹'OàM/?ÉŸĂ´Ô}1q™9©•J³3TykëÖ­íÛ·2dHjjjÉ)×­[צM›BfM¨;=º_¿~¥¿€?ÿü3(((::.1nÜ8v±́̉¨G ¾¾¾đ́́Ù³§W¯^;w¦ë!¢Ê\̣çđƯ»w¡ÔÑ…#+¬Èâçç7ỵä={Â×éÓ§>ÜËË‹.ŒÅ UƠsøđaÙ5§¤täÈ‘ÄÄD(̃²eKJJ ÂĂĂ%—áû6é :à}/ÉŸĂ‹/8p 4¢¢¢*¾È;v ́[¡`œĐÅܱ˜¡ªh§Y~~¾§§§œ|NNѾ}; m(µÆô·i₫üùÆ +((øë¯¿à™…˜µkצ§§—₫Èïß¿/d–É̃°a5–@]ºtÁû^’?‡ÙEg€i%¿k(ó"—‘‘—÷öí[¸ˆ3l,f¨*¨°°00HÀ8@N>Cy†æá7 (²ïD¾Y€b8Ú¹sçΟ?å¼}ûöđß¹s§”G~úôi@@À“'OBCC/^¼8jÔ¨={ölܸ1!!ï{yH₫{xụ̀åW¯^¥%ªÂÜ?ÿüÓªU+0 ¼½{÷́g(uăÇÿơ×_±˜¡ª  \A½Ÿ––&O±–̉  ƯK—.•₫RSS£ÅÆÆÂW€s\\\fff™üºÓ§OOœ8ñèÑ£†¶gJJÊ/¿üR&oQ²’?‡!Á+æÍ›÷űe[äÀx₫¬G=₫<11 ?3 …B¡P( …B¡P( …B¡P( …BUº^¼xñûï¿Ë™877÷đáẶüÀ唸èÑ£tÜ©<ú믿>}÷º¼•}æ̀yR¾}ûöĉr6##£̀‹ü)³²²̃½{'OÊ¿ÿ₫=o ÊVgÏ¥³ªåÑëׯÙṚÈƠƠµœwíÚh gâ‘#G:u ïuy êî‰'Ê“̣Ö­[}úô‘'eAA»»{™!ùS³nJÖèÑ£å¯tP(ä3̣ù\eù|áÂ…Ù³gÇÆÆ.[¶L₫ÂŒB>#ŸQÈçråsVVVPPPFF”̀;wúøøÈăă…|F>£ÏåÍçÅ‹Ó)‡Tsæ̀'±Ú”„̀̀̀ÈÈȨÏ6lX ¯<:UäƯºuÓƠƠ­+ŸjƠª¥®®^Wn‰D¢rJ¬©©éää$gb}}}É_=tèPÈ“oÈ®ïS%g4»Ú·oo`` ÏqppĐÖÖ–'e:uä/å‘RKKËÑÑQÎbÖ±cGȇAƒ-X°à’„^½z%•i`]€öă?†„„À.Ơ©¦₫é§Ÿ@BÔG´¬^¾|yơêƠ/^T³–ÔđáĂåö=èŸ₫)ÁX×e嫹z诿₫‚:«„Ú`.±úóÏ?Á„.¡öÿûï¿1—XmÙ²¥víÚ%§ÉÉɉˆˆ€\vww/!{‘ÏÈgä3̣ù\‘|†vè¾}û̉̉̉èc;wîÜ‹/"Ÿ‘Ï(ä3̣¹̉ù¼gÏ„„„wï̃Ư¼yóơë×ááá’«$#Ÿ‘ÏÈgä3̣¹²ø\PPÆ3]>æôéÓƠl=Yä3̣ùŒ|V\>Wo!Ÿ‘ÏÈgä3̣ùŒ|F>#Ÿ‘ÏÈçªĂçk×®­/JtwIưöÛo6l`—$–Ôƒv́رyóæ7n Ÿ‘ÏÈgä3̣¹L´páBR”\\\$“½yóF]]Ăá́ÚµKê³gÏVRR̉ÔÔ400àr¹#GD>#Ÿ‘ÏÈgäsYñù‹#^RRRôơơ¤¼R ÉcÇÍÉÉÉÍÍVĂѶmÛ†|F>#Ÿ‘ÏÈçás«V­zö́¹qăF ñíÛ·Ùø™3gª¨¨<{öŒ~DÆḲùŒ|F>#ŸËÏW®\4p/ÀHÖĐĐ?~¼äVÉé;wîÀ§L™‚|F>#Ÿ‘ÏÈç2á3ò%ùØ;¬b:¼ÿ₫FFF4,«¨¨(55µ›7o"Ÿ‘ÏÈçj¯uëÖYXXl•ĐƯ»w‘ÏeÎçºuë6ü¯vï̃Mäå噘˜°ÏxVV¤_¿~½́¡âăă9Î+Ê5CÏÈgäsQjj*Xk³%té̉%äsEöóܹ´lÙ²;£   .—ëææ&ƠÅÉăñ’’’Ê;CÏÈgä3öo Ÿ©:wîlnn₫£„¼½½aÖ ƠÇ»ví*‰v́ØQ‚|F>#Ÿ‘ÏÈçBfí@0ỵdÉÈ€©̀>ơ;vÔ×ׯ0*"Ÿ‘ÏÈgäówÅ礤$Ù)„¹¹¹3gÎäp8’ê¨üüü´´´̃¾}»råJØsÉËuíuä3̣ùŒ|₫®ø\¤^¿~]«V­"×—„û –-[Ö¢E ÙCBBÏÈgä3̣ùü½ ùŒ|F>#Ÿ‘ÏÈgä3̣ùŒ|F>#Ÿ‘ÏÈgä3̣ùŒ|F>#Ÿ+ÏÈgä3̣ùŒ|®:|~óæMß¾}}}}ưüübbbÏÈg̣ù\ø¼hÑ"ÖYḥäÉgΜA>#ŸQÈgäs¥ó9##ÊÛ·o?₫üÊ•+=zôxơệùŒB>#ŸËU©©©†††Ó$t₫üyÙdû÷ï‡\ Çrû7äÑ»wïN:µdÉdž MlmơÍÍuLLtŒ ,,,œj·jǻ.ùỉ¾ư½{÷ÏÈgä3 ”––fii¹[B÷ïß—MvôèÑ””ê”øØ±c>D>§‹/NŸ>ƯÛÛÛ¢[·nÔoĐ@oùrƒ-[ ÷́~ZöŒ¢^½ø66Êúë×›]½J?¿ü5&̣ùŒ|FÉÙ¿qâĉAƒ-Z´ÈÏÏ/''gêÔ©Ơ©C ¬øü₫ưû¥K—6kÖ¬aÆ“'O>ỵ$îuYÍîƯ­ ‹ülÛ¦Ô´©ZX˜ÅóçđƠpéRä3̣ùŒ’ŸÏIII´OăÈ‘#Ư»wŸ4iRuå34öʧ°á]»vAưejjêåå5wî\©”k×®µ ,Ïô£=i’ V-Ó₫A>#Ÿ‘ϘK_Åg°;v́H}¬íÛ·Ï̀̀¬ẒùøñăZuêXM™"ÏG¹F ½à`öë'45Usv65ªÈ”F¨»º–̀g±å¼w/WGGoÚ4ä3̣ùŒ’ŸÏ…̀̀”¼¼<ÎÎÎ~ưúuơăóÁƒ­cc¿RúÑrw7>zT=*J©iS㬬Rü󆇇<ÇÔ_»–"å ùŒ|F>#Ÿ¿[}ŸƠ›488hc•›[rJùù,Æ₫?˜››WîcÈgä3̣ù¬¸|6ܹ“«¢¢3g<‰¿Ï†K—3¦uëÖO<ùNøœ••Ơ­[7(„Í›79rä7üåË—...;w..Á¦M›úơë×€Q¯^½à*.Ÿ¿!»FƠ¯D±)¡]< •U—f%̣ù›KÚ›7oâăă]]]kÖ¬´`Á:’MJwï̃…Ûíááakkëææ6hĐ 7n Ÿ+˜Ïº‹ êÖUwq1ùư÷̣àsjjjrrrÏ=+ËÛIẸyæ̀™tÅ}}} ¨¨¨HNVư¢̣óó;tè;B¥&»ơưû÷ưû÷§§022̉ÔÔ„ÇKIIQD>[vA‹Œ”(¶¤9r¤¸4E.(¯@|₫æ’öøñcà--6–––ô íÛ·ÏÉÉ‘Lù„MJJJ^YY™¢”% ùüU|Ö>\©ys‹'O´ÜƯËÏô¹2eJơæ3Đ€ĂáˆD¢íÛ·Ă×¼¼¼%K–ÀS ®\¹"Ï^½zƠ§OúÈÉçÑ£GĂ& ‹'N0¢Ï)<>×®]S,>svmذ!EF`èééAV@ưŦœ7oÄxyyɦ¿yó¦ậ¹4%ÍÓỌ́Ä××÷Å‹ÔHvvv†˜ĐĐP6 DMM "'MDMkø aZ̉Î;‡|®>륤@†›?x@ß–+Ÿß¾} Ebß¾}Ơ˜Ït™̣¸¸8ÉÈ#F@d 0«={öPËÏçÉgx ÀR‚­Ç“ŒwqqôS§NU,>—2»¤4qâDرY³f>|`#ĂĂĂ!ØUÍúŸ¿9ë?i€½đ<²‘OŸ>Ub”-iôèÑCj÷ˆ/¡x ŸËÏz«V)»ºß¿Ïß(W>ƒ®^½êææöàÁƒjÉg0}¹\.X5R}tpv(̉ZZZïß¿/awÈ%j6ûùù)X$Ÿ¡ñpÁRñ§OŸ†]N<©@|.evIé·ß~ƒ£©ªªJYÅ5‚£•ëèÙçsi²näÈ‘ÚhRñ’U—+Ÿ6ib₫đ¡äøº̣æ3hƯºuÁÁÁƠ’ÏPtíííe7¦’Ï2{öl;;»U«VAxÛ¶mẸÚé,*×́ª>—2»$•››[«V-ÙăM( ©EưøñặF[ñ|.MÖµjƠ ¬]»V*~Ñ¢EÔ6 _?~üxçÎ7õH%ƒ†dAAAÈç̣ă3Ø̀JÍ™9#5₫¹ø ƒ ăîî^‘7¥bøëΟ¯ñĂEά>ƒ€‡€èçÏŸW'>Ó÷S`ÍÊn‚f#l3gNiø ؉RQQṇ̣̃º|ùr!3ơuàÀtàuâsYe×®]» ±ººº¬ w¸³°IGGçÈ‘#lä̉¥K!!~Í5 ÊçoÎ:¨ËhơD][H=’´ïº¸“&&&̉âwøđá̉\<öo”Àg³+W”==©g¹Jä3hñâÅƠ‰Ï³fÍ‚ܽ{wÙMtD“ü£äóÓ§OéĂåèè(9DDÇK˾ô©Ê|.«̣́÷÷‡ÄQQQ²›^¾| wVvàv©W¯^çóÇo₫Wt’Wi²”–Ï{ôèQˆ766–Ư¥  `ܸqÎ¥÷¥ƒ|.Ïj¡¡†»vç£"ù êß¿¿üM₫ªÏç´´4(ĂmÛ¶•ƯÔ°aCØ´nƯºRöoĐ9²ÖÑÎ;!¾N: Äç2É®бˆ_ỢäIØE(æææVe>»ººJÍ©¶R)³ÎÁÁdeeIÅoß¾âkÖ¬)–Se/==½ôÙ…|.φ۷«÷ï_‚¤ æ34HáÖW€çÀásff&cgggÙMVVV° nG)ùL§}mÛ¶M*₫âÅ‹¦‘ñ¹L²+!!á†{Ơ)îØá¾U“Ï>>>jÿ½/¥É:HºT<8'Uä?y ñººº``—IéB>Ég«÷ïU||̀®^­:|Áu¶jƠª¼]sT Ÿ¡ù %YSSSjôé³gÏ‡Ă¡ÓµJĂgú°ÈNälóæÍˆÏe’]ơêƠƒƒ7ăxö́Ù£F’]̃îĉeXU|ÿsi²ÎN•ÊDßưI­úôiƯºu!̉ÎÎNÎÙ¯Èçoæ³^r²VttÉ₫E+Ï eË–uëÖ­\]sTØüA:J ddRRDBĂS₫ăÇçÅ‹C¼»»»T|\\Ä‹ˆÏ¥Ï®×¯_Ó7}Å]OÓ¦M‹¬;f̀ˆ÷ööVP>—&ëö́Ù#Û÷OŸ™™ÄÓÙâ4¦E‹Ó¨Q£ÿư· ¯ù,ËgË7oT¼½-=ªx>,Yµ¦DA;®{÷î(§¾ ă3DZ¿~}°=h̀½{÷h§ÄêƠ«%íø±²s¾Èç>˜Â¦øøx6̣́Ù³êêê@*©IßUŸÏ¥̀®C‡Ñ—VÅM—£I $!a/%%%02Ëjºe¥đ¹4YGÇHƒ]ÄÆL›6ÏÏϧ1tˆ5¶Ç—í•#Ÿeù¬›”¤=uêưó—Ÿ5BCUÜƯ “’Jø,\¨T¯fD„º©©Bó9//6666£G†#SœvèĐ{Røy\.păkùL‹· à̀›ØØØÈÈH: º ß´VŸK™]t¼́+-V@›6mÚĐi)Đ蘫÷食úÅdæ÷ï+»ºZ–b^Uà3èƯ»wưúơƒ̉Nß@ ‚ÁƒKÍ“- Ÿ ™iqÎÎÎúA[uáÂ…e˜]é_´4Ùˆï̉¥K Çûömtt4;‘² ¬DÙ·c ÇçRfƯáÇ­­­Ùa!NNN`·>}ºd÷­¾bø\Y‰+’Ïúk×jOŸ.ÏúV•Èg±K¬,²í́ªx>S}üøÛS§N½|ù²œị̂ëׯ³²²ÊdB%̣¹b²+77÷̣åËG))Q•»~Ji²îÑ£Gêëׯ³Ư yø µLß¾}Á°÷óó ˆ‰‰©®|¶8Q50Đ́Ö­ªÏgñËÄúơ;wî\æ¥×·ªâ|VháúVeÎçE‹I.40ỵdh3VK>ö́©9nœœëĂV:Ÿí;v„Ç¿¬&̃"Ÿ‘ÏÈgEäsFF<•·o߆öΕ+Wzôè!;y¿zđY­^=“?₫P >C{­C‡6l@>#Ÿ‘ÏƠOÉÉɪªª®’u¦‚HÈƠx#Ÿ‘Ïߟ?ø_=zô¨ñùßÿ+ÔjâDEäs!ăZaôèÑÈgä3̣ù{ăóƒ€][·n=üYƠÉG4åó̉¥K¡l|qưî*Ëç¼¼¼ÀÀ@vÂ)̣ùŒ|₫~ú7Μ9#9„£ơoœ:uÊßß?==]qù ºqăF«V­Jß´A>#Ÿ‘ÏÅçj,àó¢E‹FŒQ̣úƯUŸÏ…̀z²¡¡¡Ègä3̣ù\møtäÈ‘jÀçBÆ¿¤Ëä3̣ùŒ|V\A‘ .(«Ÿ³³³ƯÜÜîܹƒ|F>#Ÿ‘Ï®Pÿ“ Çg›¶m+Jqqq̃̃̃R‘R®`ÏÈgä3̣¹ê+44”º T8>+YXXVcâDÙzƒ́W}?¿Á& Ÿ‘ÏÈgä³b)""¢¸ơa«8ŸUëÖµ|ñ¢h¤({x˜ß½ûÉÙƯ‘#₫ùŒ|F>#ŸKÀ¢êÇgñR,7ª…‡#Ÿ‘ÏÈçï‡Ï?~¬f9PÜúƯÎgøŸơׯG>#Ÿ‘ÏƠ˜Ï›6mÊÊÊzøđa»víÚ·o?v́Xä³BđÙü̃=e77ø‹|F>#ŸQ̣ø¯[ºté¾}ûfΜyúôiø:wîÜëׯ#Ÿ«>Ÿá£Ÿ–¦Ö»7̣ùŒ|®®ö3đ¹OŸ>P̉¶mÛöúơë°°°2_¦ù\N|3"Bs̀ä3̣ù\-ùœ——w₫üù5kÖ́Ư» üÅ₫ â³Å¿ÿ 5 8ùŒ|F>W?>WoU{>ĂGgÎ3kk9D#Ÿ‘ÏÈgä3̣¹Âøl|äH7·ÈÈHä3̣ùŒ|F>W5>üùç   yóæ!Ÿ‘ÏÈgä3̣¹ªñùÅ‹­[·NOOG>#Ÿ‘ÏÈgäs•âs!ăĂß̉̉266ùŒ|F>#Ÿ‘ÏUÏ —/_jjj®\¹ùŒ|F>#Ÿ‘ÏUÏ ›7oÖ©S§¸ä3̣ùŒ|F>WŸA? éׯŸ¬_hä3̣ùŒ|F>W"Ÿ©bccœœ¤ iä3̣ù¬ˆ|.((@>W'>ƒàqpwwwssc×gG>#Ÿ‘ÏUD›6mrppx"¡>H¥&pß¾}}}}ưüübbbª%Ÿ7lØ@ÔƠÅ“÷́ưđƒÂóçĂÇü₫}å  Ưuë FĐ²¥îË—àP>sœÄâîß'zz†Ê4@7Ÿ‰Hô)‰É§¥O:tÿ÷ßyA¼ú¤IÂN †˜›ó½½! lÛVgï^6%|4'M¢¸àhkS>³iôÖ¬¡a›64`È₫Ú4mWºÖ®]«¯¯ßEB™™™Ri-ZÄW É“'Ÿ9s¦úñ¹ÿ₫„1Ü<=‰’’°\KK½”Âáđ6ó“ jP>Ó]Äi˜€8†Ăù`bÄ|–MĂ”{ö„€8^W—ÆÀ_"̉ M)¦±††ä¾4@ù̀Æđíí¥̉(µj%ß=¾ü₫É~´ç̀ÑŒ†€nr²Áöíâ˜ÄD½ÔTµˆ®nçΑÏÈgäs¥ ĐO\Éi222 ÍíÛ·Ÿ?~åÊ•=z¼zơ ù¬X|VgöÿƠUv́Đ[¾\Üơ‘™ivưº8fófK¦i`5l4—ÏÈgä³Bđ´ÿ~ÈƠH 9\r`æ̀™€µ̃̃"@¡¦¦PKËØÙ™p¹*úú ô7¸\ WWÅi˜Ưô)ÀÄØíeÓp8đWĂÊ b §ªJcÄ|fN ÿá2Ø”đ᫪JVàñl¼¼$Ó¨èéI¥Q73ƒ¿Vnnº4†~L›65jÔæ-ZXº¹‰c\\¬==!`P¿>]Đ¼HMŸ>2ÊơYNNNS§N-.»¦M› 0—$³ PqÙ•€Ù%)xÖ±B¡P( …B¡P( …B¡P( …B¡P( …B¡P( …B¡P¨ª¯́́́U¨ÿêÑ£G˜]̣ëñăÇÅelÂü‘¡â² æüÙơ=(444***ơYsçÎ ..»z÷î=xđ`̀%Vsæ̀éÑ£GqÙ2dÈ̀%É́êƠ«WqÙ9ùă?b.IfWŸ>}¾g>³₫7ª¾ úơëgmmÍçó˯VEÿ¢_%ô¿ñUBÿ_%9ưo(.\¸0{ö́ØØØeË–É1âóÔ©SaÔ¡Cä3̣ùŒ|V eeeeddœ:ujçÎ>>>/_¾¬6|0aù,“â’ÁO¾víÚ7/¦€|F>#Ÿ‘Ïå¡Å‹=z”ư:gΜ³gÏV>_ºt‰ñ?*TSSûå—_Lsụ̀e ccc;;»wï̃!Ÿ‘ÏÈgäsQvvv×®]ĂÂÂàF‡„„ 4H6̓öJÈÓÓóẠ̀ŸW)AÿêƠ«/^¼(rëùóç§HÈĐĐ055µ”g„seff̃¿¿̉»‹‹ å3—Ë9r$̣ùŒ|F>WåääDDD@ˆvww/¡$°ªS§Î–-[Js̉gÏéêꘘ+ưaܳgx}}55µâj(ä3̣ùŒ|®x%%%íÛ·/--fîܹ/^,o>÷íÛ—ĂáP«ƠËË«̉3áÂ… {÷î}úôé·í|F>#Ÿ‘Ïåd=&$$¼{÷îæÍ›¯_¿/anWYñy„ <̣ÙÚÚº¸d™™™ééépUU<+—ÏEë‹Q~~>›́úơësûömÙ#ÀƯ?tèĐºuëNœ8ñ̓XÏÈgäs™ G0?~üáÓ§Oƒ-]ưÏŸ?WQQ111144¼téR‘iÀ’×ĐĐPWW†?|øù\œ 'I1úđá›,((Ú,¡¡¡R»ĂµYZZr¹\Ø¥iÓ¦å==ùŒ|F>—ŸJÏgÔđ–Đ¥ ¥¥E!ĂçógÏ|₫¢²²² »~ươWÙMÏJJJ ˜?{öLr“‹‹ËƯ»w!|æ̀¨CBBÏÈgäó÷̀ç/ªeË–”Ï`B'%%•ë¹6õÏ›7OMM -"‘hÖ¬Y’Àí+V°1%LäA>#Ÿ‘ÏÈgĐ7€6VVV½{÷.×M‰n¬*ZGøÍŒM¾­¨W}>ׯ_Ÿº$‚¿öööR̀’_›7õ Aä3̣ùŒ|® ªkn₫”s‰̉ÂO˜8±úñpˆ§oöïßጌŒ"pèĐ!غpáBä3̣ùŒ|–U~~₫¹sûuíºg÷î/&~đà<ÎƯ»w‡'zÔÀ}CB̃¾}ûµǵ0‹đß¡7¯˜9à ÍçÁƒ›™™Ñ±đ×ÜÜ<00Pv÷“'Ojiiùùù•÷ä3̣ù¬ |ا—’Ê!"Pạ́ÀØ+!å›7oGFH%¼Ñ<¡{ưút,ü ö÷̉˜p4 ç·ß~«f|~ÿ₫½¶¶¶¥¥e÷Ï‚0ŸÏ‡ªM2Ù¶mÛTUUưưư!}y_'̣ùŒ|VP>»Ô°Ífz~%‚qÅ?Å #Gz‡Èá"Ø«³¥Ơ7¾êŒ,­3gÜAø1£GW3>¯[·" đăg 4j´¸¸86ÍÊ•+y<̃!C$ÇK#Ÿ‘ÏÈçjÉgÀQßöí›Ô®-e¤É£ááá!₫5"TçpV2ă ^¼xÑ»wo''§;vH¦¼ÿ¾¦¦&;Ö÷á¯'||­º¡¡a|áU"̉¦MøuiiiRi®]»Ù¼yó .(Ÿ½¼¼êׯ/•̉ƠƠƠÜÜß½{(qŒÖ~K˯ư Táp ñù”“´CEEåĉlẾ́lÎÎööQƯº}ƒĂ%hÑ{»º¶l©­¥Eg5*++ߺu ²N–½«V­‚”Û¶m{øđ!Ôq...’³7n܈|F>#ŸEû÷ïw•H$JNN..ñ¾}ûÆç%øø›™7=°89::²Ô¥ÎN-,,èWÀ&€…MyôèQêa djjZzZZZ²́æÏŸ/Ù§a°¢%ƯeWq>ÇÄÄ@#[¡äää@­çăă3gÎÙY‡B¡ùŒ|F>WKûùñăÇújj)„?')+çææBä‚™3Û::i««Ó¹Ă1Ƶ¬Q£¦•Ơ›7o$w;v,»"æççÇçóiŒ¤ûếCÀ©Ô\æôñăÇaaa--Ư\\¤v ¥§–u₫öí[''§ÄÄÄƠ«WĂV© .DÿHÈgä3̣YAø ºwï^ˆ¿̀ȑϟ?/ǘÀó®#ü.-ZBĹĉÂ×Dø3WđSŸÿx„t=:$$„ím¢öéÓ§oß¾²‹¶ĐÅàvÈï2"¸sç ¾đ-ö(Ç#¹)//¯_¿~@é#GHí?â'L˜Pdÿ ̣ùŒ|F>+ Ÿ¥”’’2_ ’K”̃aM=}±‘#Ÿ‘ÏUœÏV­jcSCÈă­Y¾\2₫æÍ›.æ«9‚*" +++0§ë„ë BÓââ ™wpí7iejfkföÅ9&£F¢=:uúÚ‹ß°n] ¡R:ákbcmmbbbcc“““ƒ|F>#Ÿ‘ÏƠ•Ï—/_¦ÏÁ$64‚¯’[?~œ×£G¶oY‡Âû‰pté Z4l8“#6kÇñ•âÇ-á́§Nbßdq8œơë×ƠÅûùùơéÓgê¤I¬<¸¤˜˜ä3̣ùŒ|®N|¾uëÖ™3gXlö45£Ă6ZéèÂWÙ§L™Â.›¢FHáÿFøơ­m`Sï¶mÿbº¶~°¯/MÿđáĂsçÎåççĂÑ̉ÓÓ!æđáĂăÆc}ûĂÑØU¹Ï={ưúuö\yyy°¯́Đ…ÈÈÈcÇA Aƒ,ç»ví|F>#Ÿ‘ÏƠ†Ï7nlÚ´)Pà–ÏÈ«iÓÖª¢0-ÆMÜñÎ;b2«©©ªªéʰ1–±]0~{fªk© …t- ¨¡¡¡¶¶6Ä­%Ơ¬QĂỂ’ụ̂\.— 633ƒ˜%K–2^&‚Û¶íe!îH9ÎĐ˜ƠñăÇ!rÖ¬YpÔy)ŸÏ¿vị́ùŒ|F>W>§¦¦Ü^½z_CBBvîÜYÈ ½n÷́Ù³E‹ÅơÀ.6l`GÓ…Yé¦ .¤¥¥]¹r…~¥ü” Î ôiÓÆ•„ë­op̣äɃ²kˆ¥Áê^¾|ù‘Xă׈°Sƒ†R×păÆuëÖ?Ln8£¤Ơ] ø¼y×®)sçF âæååáíưèQ¿:„|F>#Ÿ¿>¯ZµªM›6tüpÛ¶m·oßN7 0@(̉EO† öíÛ&ëÛ·oươWS`x³Ô…”42###>>5e6l(Åg[[j-7nÔ¨áL#¼:"5cTT”Û™›ÙâɆBaA=]½-̀låè‰Ôƈư)©ª¨€ÑêLcÏ®]öZƒơÄ—÷ŵq«>Ÿơ9VÖ……đ1̣~×¢E‹ÏÈgä³ÂéÍ›7}ûöơơơơóó g$û~ Fff&u³C5}útv®‹ÊÿØÀ…̀L=6ÆƯƯbŒ””3ï7~kGˆ‘ÜË M#TƠi@8̣(80ø´ œ?‰`0áJåÇ£]Ù °nƯ–>¤#Ÿ‘Ï•¨ŒŒ ø9·oß~₫üù•+WzôèAßú}‘ÏNæ6DØŸac```ï̃½µ‚(‘†²ª•®®¡¡áÿ±̀áèéé=ZPPĐ©S'ºü+ă=CII)‰Û®<¡@84iR“&MØ}á¯:ŸË•4ÇM9B” ©Aˆ:ᘋDÄƯp88¬››[!3ÓœÆÀ_ ee_S3GñUi3G ­øƠ´´̣jÜäk}ûW)>‡„„€‘lïç'ËçBÆhXX̣ùŒ|V,íß¿ <Ưđ» 0È&8ỵä éè耙­Ïá̉¾…!Dv<}út eUff¾mÛ6°u½Ç×®]{̣ä mé̉¥`xCàêƠ«æææ„8©KÈGG0hƒ‚‚¦Nú믿ÂV8oZZÚ‡²³³<́°:%fæ`‡XsY™ñ8m#FÀ?3N_Y׫WṔÓ¬ÙA¿H„‡¿¿¿?ư/_¾„½$;jÏá}ûö…@q|ớÙ“´A>#Ÿ‘Ï"°iSRR¨éx́Ø1É T`Q_’½½ư’%K̀xJcwÓ¥sæ̀@m6>Ă˜P‡ö\™̃ •_»v?ÿüó‘#GF,à•ù¤!Æööµ’́IsssûôéÓ¨Q#º°)Xø.—Ç Ô V­Ú5l%µqăF0›³đ€Ó3±Ù¡wt ß„Ÿ~Ï÷6æ ;1 /dü!³đ»àY(a–ÿư7..ǹ˜1’ë@U:Ÿ¡ ƒúˆM,Ï—/_nÛ¶­¬ÿ½êÍ第¬nƯºƠ®]»yóæ#G”ÿ^@FÅÇÇ»ººÖ¬Ỳ† ”ܼ‚Z̃ÅÅ¥sçÎ ÍçoÎ.ЦM›úơë×€Q¯^½à¹Ms÷î]¸Å¶¶¶đ´4èk<ú®ø|âÄ È"à˜ŸŸ_NNØ®²nấß ăèXùøø ÿáÀÛÁq÷¶m4¥Ø<&Bg挅Ÿç€§y‡¸„˜‰̃â¡ÿơ)mmmÍœ¾Û̉à "w6³×„;‘đT?›Ó¦ZZ³gÏó̃ÄĤ}ûötl°ÀdnÖ¬ •>t¶ææMMÍz·oOGSZY†ÓûbQRÇăq¹\>Ÿïääĺ'­t>/\¸066–†Kà3îï æ^|'|9s&[;khhĐUv˱ô04Á î8;\ÊUqƒ0óóó¡AiZ·n­¸|₫ǽs¥ÿ₫t_###º°d~’ÉÖ¯_OŸ5xĐ {•••é)¤’!ŸY%%%Ñ> 0h»wï>ỉ$yø•‡ÏĐ̣̣̣*[‹¥Ệ4‡Ă‰Dt|>TÖĐ>‚›+ØiPÅÉÓÓ¯ï‹/¨Ơḉ́ 1¡¡¡²‰!W¡­G †ậ¹4Ù5zôhúP€½WÀˆ¢̀Îh€ƒĐIgÚ¿¦Éا ù,©‡v́Ø‘ú½ß·oÀJ>¯ZµJ̉~îÔÆÓÏ͈wé̉%xÊüưư/^ †«••W¼qăÆ†|á"° Ä’pîÁ ÂÓ!¤ áÔäp»2K{8:6TU5WR±Ç3f X¿&åƯDpƒéáXAøçĦ7YNx'™@xçÎ₫̃̃ëÖ­°C3ÊØÀ.p̀ơëÓưưû‡… d»—çÍḲñé“0}úthï7lØPj {ö́‘ưáP̉´µµÙdÏ=«t>7ññ1´·7­]»n‡đ©Ơ¶­V³f%đ™6Bø=đNp›â₫;f’¾’(x…ŸL$])B ¨ÄHÊÙ8æ5 ¡#K—Ïßœ]P…±MG´JÆĂcûB“M’á=zôÚ=$$â,q1èï¹ÿ*;–]Pö¾¸b đ9==]KMĂô-€r`Đ«kÜ¿@ 1PhgÏ 4Û¿ÿرc¡-Ă€qđÓëBq#G—ñbÇ»7nÜ¡C‡TUơ8?B₫"D‹DMæ=zT…Ë­)̉ĂÚPCĂÓÁQ[KËR_¿[ ñP_‰`çÿC¯¡¸œ ‚`®€9ÅßAûÁƒÅaâ⦠…µ9Ăåj̣xüσ´ÅĂ@8zơêÁu÷Ûûí7h¾yxxH.[‰|¶j×N¹M‹ÿµ|ư>ÏŸ‹7.™Ï h(Á}©̃|› Ü\©ÆÜ,¸éZZZ’o¤4räHH&±T|@@€$p@ÔÑmâÑ[ Êç̉d×”)S ,¡Í yṛäIúL5H&ëprÅO\!ŸK/àọ́åË=̀̀i¿„‡G»FÿÊ*J¶F¦ EÑ%¤]\Z̉„#Pöe‡F+ñxCŒLx<#°L™ûùüOˆ6m{ö³gÏÓđđáĂ<¸sçÎñzp«Ÿ÷ÙàB̀G"4"ú̀Ñ^ÛØ4ƒ]<<‚9ÇÄ8Hœ<ˆ‰Ù=jÔ·8­D>kÛÛlÜÈ̉Ø̣Ơ+yø  9WSP>gddÀ}µ/jơ:̣³„›̉ªT²víZ©øE‹Q³1`„ØÙÙÑe1·mÛ¦¸|.MvyyyA0]J>ÅÇïܹ#ûzê;v²̣¹Lø¼qăÆ6ơêÇ~áCƒá`:z¸ºÙ›˜BmÛ®];SSSz×  CÛçîƯ»NNN†±q>_S–ÏLG´­@ŸĂiOÈEBÚŒ­&Rûù̃½{¾¾áffNVV6+W®Üϸ¼s̉̉Vç̣D|A]ÂÑøï÷₫0®P…€‘|N èmiY»N¯5ê … áø\®!íâf́g3Bêƒ]ߺu€M£E‹–)ŸÁ>Q33³ÊÏÿZ>ƒ¢££ç̀™Sù¼dɸ¹-Z´ƯT«4 ]¾H‹̉Ë61 Ø³s`ÙîA¶í©Đ|.MvÁsM»ûΟ??bĈ&MÔ­[7,,L.e€6T °;Pù\V|̃°ac£:é“¶ÊÊÆÎNAâ:4‹Ö‹y(vm±oß>[[[333(±W¯^ˆˆsW(fgg{yx{]*fB#!½>GŸ§ª®^C‰p&̃="´&\€É»wïèî ä5´• ‘ßOÁ!"`ûI œ###û…‡7°³ÿăÉÉ+Zµ hÙ²=Ÿ_›y¼0'§Æ.cÇÆôë×ÏÓÓÓĐà<Ç„¨@1!侪ª“ä*ØU–ÏĐ0ww—¤±ü|~ụ̀¥««ëßû(.Ÿg̀˜QÜ ;Ô—&»444ÀÔÉ̀̀¤k^PïÁô­mY” Ú¿]£F/®„|–ŸÏ)))––í˜>Bmí† êèèôP×Àî%‚AưúÓ”¾¾¾”`xŒ7núôé›6m‚¯CĂĂ0Sª{îi&pt 1·t46172‚4–|åÆ-ÆÂ÷m׌gKËNŸÏ8l¨ñ»rù´k¥å'g̉âg‡v >|x„ ́5‡†eúU`÷"‘Úܹsŵ 3̉ĂÁ¡ !¯˜M Ƀ—»z̃¼ÿß(x₫¼àêƠ‚¬ăù;vå'/ÏŸ2=ï§áy=zçơî[‰|̃¾};Ty5ƒ‚¾ÏỖƒ:®º̣yâĉp‹‹œ2éçç›k>äççË.O÷‘vÆV?>sv½~ưyRQQṇ̣̃¢ ' 6pà@:v®ÿ½‰‰‰t_xZË*»ÏÀçÍ›7{zvÀ‚]9 uß›7o´ù‚Ÿ /–p¡̃„»ùóÏ?ƒâ¤*6E4ÔµTø6´Øïܹ³±x¨’¶!±à3ƒ™÷XÑ"%¥ääd¨|™¯ú˜Z'‚çD¸C¼V ḷ9¤!kà µk׆³¨q8ñ„f6_üöÜ–®P¨mgçÅạ̊úôécnnƠzß¾ĂllÜ•” N‡ƒØjjj=z´yG|+øø1:j” ±¨C̀[íN\‡2bœÈz‘QÍÍj5Êól—שK^ø€¼1ăógÍÍ_•ÿ뾂?ÿ*¸w¯€qvZ)|†Ö< —.]’‡Ï5˜ö‹¤ØÁx ø¢…£ |5k”“"+ :v.åPœA è«IAÉxccăêÇçoÎ.(Kô¹vtt”z£A„˾f-dÆ$€ÁFáœZ†Ù…|¦óṢ̣̣†6ØÇǧqCD§?7mè\D0đ˜¡r Ù§®b -++`isBÀP™)$¢a„«MNơfNƒ˜˜içÎßcŒgø¼%ÂĂÄFHîĂ!BÄÓÉƠ->÷f€%S«FŸ¦¼¶ë=!Ç5Ô¬ĂCBÆtiA¬}ɶ¤ÿ b:–$̀Úl̉§¥¥AQhÛ¶­́&êZ|ƯºuÅíëààÀ6¯¤Ú,_³fÍêÇç̉df"k`ƒ%&^ ºN©xÀ8S;̉uëÏeÎçBf<đéÓ§·¦¦¦íÛ·—ơ&ª"~Ï'H¸:âñ…Lïæ‰'²›‰¹Ë#Ú×ˆĐ™ƒÁ¢CÔ!Ë&ºxå:Ơ£p¦Ÿ7DơqÙCTè×SD¸„đ'̃Uơ«‘CV6rù‰ïIF‘À)¤å"¹‘tÅQçT;«A³X̉u™×‡,ô'¦®äP²¶_èS§N°·ÏÛ—/áWÔ«ç —AÈBV)î±²̣¦)"ÑØ^‹TŸï߿ߦM›çÏŸËÉg•Zµ$càcçơÿ©@ëׯ—’Z øœ™™ %ĐÙÙYv]A₫àÁƒÅíëááAzRñt$XqVh>—&»èDËmŸg ³ºxñ¢¸í¬¡! åLˆ×ƠƠ¥-Yäsyđ911ÑÚÚZOOÏ̃̃^__ŸÏç³Ë¶̉aËâû„L%|=ñj°J<2ŸC\t¹Ê?úúĸ.‰ñ%úD@xID°—g¸4ŸK”nú!·†£$Ÿ_å$ІA„ XÖû¬3mL”~¿FÛz¬’’ÄÎl¡Í^Â{ö́¡¥ºL©+v5·êÄç̉d×âÅ‹Yoê’‹‹ƒxꬒf ]_ ¬&äs™è́Ù³±200˜>}zíڵϟ?¸đơơe×₫Ë`Äç’½-Ȫ^Dw u%¶;‰r^ÔI5koeFkÜ'B3î °«ÀÂîúú¦Î,É9I4É₫ bđ³µ±ÇY>’Êç7êĐ¡Cß¾}ơô" 9IÈY‘ÈlĐ AăÆ£~ÜƯ}˜¢é¾0e=Ä‹±ˆÔƠ-!MăÆÙ‰r:©D>CI¶ Ë„Ï 0È PÍøL‡+ׯ_Ÿ}zï̃=Úg Ôt\³fÔl:èwÙ²ÿ„‡zŸÎàÈÏϯ–|₫ǽúđá́/ uuuhS³“¾ékHùm«È!Ÿ¿ªĂ\ߨá4*i¾€8ÚÓD}™ån;Ç]ѯz¦SxJ…-¸MT‰FMû†l{§_ÙT́¶7đ´Å®ơ‰áÂ}444ܼy3`ŸD†Ÿ£ÚN7̉Á‰khaaí́Ü”ËU₫ gH߀Ă1ô‚L—®««ŸÏçráăGܪ¢¢àœDÜ¿ÍSRÊœP<†5x  ?O+ĐeÖ`]jTM>oÚ´IêDeÅgzÔ•kµás^^µ mllF ?bêtI_ß«V­¢ $÷…Å ªl¨'OL%%¥fÉ):ŸK™]đø@v… &\dd$ÍÎÉÉÑÑÑ¡V¯(ɾFD>3ŸgΜ ¶́¦ b?́&A£yKÚuX5|„³“½ƯĐB_¾|ÙËË‹ú\­|.d"öë×u m4(RSŒ‹N!3„^̉É­““ÓJ8—¢ó¹”Ùuæ̀gggvN.<û .d·>}”('Èç²â³G@»ˆ½ Ü’ÍÀIÇbÁ‚`$wa0çææÂ¾}ûöرcéƯlܸñøñă ™»PÛB`ô€«>jh >JmÚ´MuêÔ5k˜ÓO<±µu„đ™Ï·'ä!שKù̀ç»Đ ÚiLˆ'!₫̀ôp̃­[·àtP̃`p¬ °?—/_^·n] 9\”(8Evv6¨2¾èªrù¼xñâ₫ưû¯₫¯jtî\V|.dVŸ„l¯N|¦úøñ#PîÔ©S/™;_ụ̂@ ƠbqƯå­_?¥4ÙQVV–œ/n°£üú7Ú¹‹½¶&*±—}ee×5>½DèÛ·/˜Ênnn@BKKÊÏk×®A«li##£1cÆ2îàà ̃-uf0$4¬TTD̀Ø0•uUU'ˆ}4n*öÄëÑFUUü"OIèÁå¢"4ç‹Ç†èóxơ55M¬¬êYX4bv´%ÄjÀ€!Ô†·²²¢wM(N˜0y¨®­= ªxh¾ÅÇlj́55Çæ{÷îUM>C  3uKKƒädö£› jƠª ù Ï#˜Đå=×·ªâ|Vh!ŸÙñÏ))) ÀÀ]»vĨ¹u«kÍ"¦•ÄăÍVUjo/vÙAé° ¤§)Û´ d!ĐöÙçáÑmåÊ•äÓLmÏ^æ6ó8ç‰à$ŒWUc˜¾ƒ€¦S`` ÓÍú«ĐæpT ÄÖªU ÚYûöíë̃½»ººz!3„Œ:6#Ÿ‘ÏËgÀ2´¯ç̀ ¦€z₫üùHNN¦6ê}"ü› 9`?ô·†Hh>_¾|yÁ‚°;Đ²KçÎ-[¶åñ6β´´ƒ>Ÿ:WĂ8ás(¼s˜>k¡¾Ñ£Ú¼y3‡#èÁ̉&D<ÚVQQQÀg ºˆÀ¼yó€Ï'N¤u5YOÏX1ææM‰å9|~›øø93áÉ“'óç/¤ï÷˃ÏâƠ+V­›5 >£bcḿ́¢†· .>›4mJ̀~ÆML1‰‰öƒGZµq#;ùŒ|F>+Ÿ}|º‹Ô T,•UÂÂÂæ̀™£¤¤¤¬¬ H́M>-íí$÷—Ø­!`6[XXˆD¢+VĐ·á€woUUu3³¶Æ†VúzúëÖ®­ÅL­å|JW‡uáß̃Êzpï̃RWâëÛ™yÁc¬îÎOÍ›wª|øđÁÀÀ€ÇăQ>s8MMM¸6{û¦††6|¾ÈÜܧNWº€Q­5gáÛ)©ÈYÔ¡Àç+ 3ÔƠGuïU|>₫¼uÏÛ¶ÁGÔ§zd¤Î¼yZ:” Ÿ•mm ¶l¡§ƒM›hXóçŸUÚµ³ñó{đạ̀ùŒ|V8>cëêéSâ Á”=}ú4ëWĐˆ9„I¸z<¾¡­­+ơØi´µµÁrûvÇ…̀̀ˆZöö÷ïß·45¥¯=ÚXGçtw5‹éjff›dgOPsƯĂĂcàÀÚÚéŒl+«À›7o²Ưp" ÛéǸܢEà½{÷>0‚S×21}¼è\Oø ŒưEmß¾]Kë§Ïǵ´ÿ₫̣à³}T”ÂOŸªøøX¾~mtø°–¯o™đYÅÉÉêĂÉQ½z–/^üÿkP¥̣ùŒ|VD>§¥¥µ´µ;FÏHÁ₫₫]_U|¢Êw“fB%fơ¨'O[·n 0¤₫R5j¤££1Đ„Ơd¦ç»5k6vôèÜÜÜṽ̃ºBa0áZq8f¦Ö5Øoß¾‰™‘™™9₫|0}Áhúô)ĐO[»!!Ï 9 Çỏ¤eƒÎtœØ̣åË%ÖI„ ËărÇ5lø'äư:ùÏ#ü"´åñçă$Î2nÜä>}"éé'NhiÁ_̣u¤S~|Ö™;WwáBT$Ÿöïײ·G>#Ÿ‘Ï•® .̀=P¹lÙ2yÆĐ₫ 33;á™SÀ_,áÍ¿ªăpÄN68D}̃¼yÆmذ!u9oeeE ½àspóyäȉlê£fM7Ú£bbâdfƦƒ+¡#ŸáçK-^̣̀ÄÄ$˜₫4“¤).,Ÿ÷ƒ”ÏzÉÉ:³f}²i+–ÏfnnEzîE>#Ÿ‘ϦŋKús˜3gÎÙ³g¿Èç 689¹’ |B¶2˜wy™„ˆ}˜õ¼™:™éƯ»·««ëˆa#Œuk©ªh›˜X´lhiYSM$êØ´iMKK°¢=zFu÷îƯ?û)U!N1•Ïoà}úôi.ÚÚ₫`wèĐErÎ)Ü_ßp+«Zêê]ºta&‰ˆß°a£PhlhX[YYÏɩĴnƯñb°M«WÏ«iS¿æÍƯ€®Àj555:¢CJO<10€“f"¶Æe{ÂˉÏv¨øú„+…Ï5ƒƒÛµkWÏ>̣ùŒ|–SÙÙÙ]»v ƒ2hĐ yú7̉ÓÓƒP>_ÉÁ¢—§çŒéÓ•Ú¦ºuÄkhªk´ÔO'́JLLÔÓÓ#äq℆†Ÿï>rä'[÷Î;̀aK Ñ…†@||<ơ4>v́X.— ‡í̃=¸I“VÓ»÷0Bv2|̃ÄáXrM(tªYÓÉßß^ÜO¾té’­mưvíÂŲ[Ë‰ÏÆ̃̃Z11ÿï®p>¯^½zÈ!Ègä3̣¹rợåK€Xq=û÷ïw•H$9s¦…ŧeL455i¯Ơ¾}ûÆç¥4Âư<Âή ƒÄ„Ͻ ï ˆxøÇ"tuª tÜĐ5<<M-­r>«˜9}:@˜]×~èĐI„,¯SçÓ²z»ví̉Ó‹¦ưZZnÔ«s«Vb»»{í̃½»™vjllZøy“!<.ặöÊêÑ#ª4¹WN|V³±1»zµùüàÁƒN:ɳ 3̣ùŒ|®"¢ö3]ơ†Ễ̃ M»+á¡ÖSQYGøă OYYyï̃½±±±B¡!‡9bÏr`rçóƒÑq"h£¤ƠW¼ÊêôéÓ55­Œë 6úú†¦Fæ¸ü£DĐBW¯Y³f–––PĐs"ŒÔ½{wccceemB¶p¹s áïÙ³g„ `„Ăa§L™¢ª*“»cÇVV5 ¯ CĂÂê›Ô´°âóẹ̈§™º¶ªñŒy­ºu%Y)|̃¾}{ ,E>#Ÿ‘ÏåªÍ›7úIˆÚŸ%ó™ñDôA€ơkbb²xñâË—/‹}ººơ ²³³Ăø¼páB#½î-ÛnƯº­C‡^ññ‰kV¯îåëûKb"u;£§cÂL̀!¤£‡G»7õ´hÑÊÁ̃á‡=ñwµ–ë„‚¹å*77¿¡C'=z´[·nqqqtƯ¸]]Ưàà`__ß₫ưÅ«÷ ̣ç _ao²góV;G¬Y³¾”yX|† ¶ ¬t>té̉¥lMhä3̣ù,¿âăă¿j$¿aùy »~MÏ=;v,iÛ¶­œ«Øèk90é 9Ö®]p!ă­±iSq]₫́¿âÓ~%¥®tev`H‘¥t̉¤IÔUÈ‹/èr}}}ÿ`Ö8M]dV|¨"|¦«ĐñÏ•Ëg¸h <ùŒ|F>W ÉÿU®éøgGGGSSS555mmm0Yç̀™Ăår]­¬…<¾¦&Ø̀#FŒ¨[·.ơáĦƒŸB­­ÛÊz‹È€w'³8WKK ¾¸XZ:êê9YXđù|Ö!íçÑA2@ å3::.9œC̣fÁå5kÖ v>|¸¸½.^Ë’đ „ÂÍe´vp™ó9**jÙ²eU„Ï…̀8ÉăÇ#Ÿ‘ÏÈçª/àóüùórW¯^ÍÏÏoÔ¨0ĐÉɉˆ}! Ÿ¡³¾Á!C MNNíB122*df‹˜Ú2F̣vOÏ^R‡†»¶l£¡¡Á.aµ‹1tTƠºwïÀ‡Ó%$$€I|íÚ5wOßöÎ=7õ¼â\7O:µE‹ôÂÂÂh$4âÆ³°¬2¤lù ? ́üÁªÀç̀̀L¸Ègä3̣Y!ø#Ÿ«,Ÿ·lÙbggg``0f̀¡PøôéÓ¼¼¼Ö xªˆúkhÙYYu`Üq¬\¹’²‘Y"Đ›ÇăpÄÎëF.Úඪªªª0©EÍml[Ûđëíí-‰Øu·¥tưúu8XѵkצSÅù µ]»ªñêAOOÏo^bùŒ|F>W$Ÿ!Đ­[7xf/\¸@ă*ééé“&M254₫đáCË–-ïܹ³nƯ:%¥L·ÆmÆe(₫nÙ²Øọ̈É“'SSSÁ*>xđàÚµkïß¿_Üc®££“ŸŸŸ››ëááqé̉¥"“AỪ/aYÏ*ÅçáÇoß¾½PÂ?Rá3í,‰‰A>#Ÿ‘Ï Áç"Peư6­^½:::ZUu<ƒå—„¨1[ZZ&lÈ×*++kñâÅAAAG°­­mqcÀ^¾| —ôÅAƒUÏđ Qă¹j̣ùưû÷PCn#Ÿ‘ÏÈgå3´:th̃¼¹···®®•¡áB¸jjúººÁÚÚ M}ư--Gmm½1cÆBÀZ₫Ú €ü÷óósvv‰Løü6\®±ƒC“"S¾zơJKK ª 8TU™Ï/^lß¾ư/¿ürQZZƯÀUÏ…Œï-Z×Ư„|F>#Ÿ«8Ÿ©~ûí·iÓ¦©©ù1Ör®¥¥±P>|øpèĐ¡àààùóç2k²÷–Y¥d]ºtÉ̉̉’vƒ0+z‹§u›úi?5Çû´FaÓÿ±wpQ\[?³;Û » »ỗE¤ƒ€TATlØMlØ{ï{Ç’X£Ï̃M4v’ïå=ób,Í{bÔ˜HùÎ̀ƠÍQQçü6ä:{wʹÿ{ÎsÏ ¬±|F8+¬­Î䣋5Î̀¬i|.c3!¶nƯă3ÇgÏï/ŸQ¶oß®Vg>Ö²ṇ̃åË+W®́Ô©ÓøñăñŸ»víª[·îKư§Ÿ~ˆˆ@ÎăsKQ>%È>_ú̀ùç)S¦èăókµÚËçC‡Ií́,¿ûNGƯ¦MwÊgÇÔÔ5kÖ́5’N%33s̀˜1Ÿ9>s|~Órîܹëׯ—––"NGe®ù5ùŒûLNn¥RyZX®]Ë„k¾qăEQÓ§O'Q•RSSëƠ«‡¼}Ùs7oH$JHH‹µ––‘ăÇÏ|fÍXZZ™™YXX|ÿư÷5–Ï]»vƠâñóYếlÑ­›ư¨QúÚÑqé̉¥Û¶m[·n»»{ZZÚ+̀Mq|æø̀ñ¹ê²páÂƯ»wïØ±£[·nû÷ïGÓơ¯¿₫*Wç믿în ÆÆÆU÷U#nϤŒü'Ó¿₫ú+̉ơäÉ“¯<“y₫üù³gÏuºÿç2v>ÏáöíÛo® _“ÏøDùøø8~üqâ³ÜÏÏúêƠÔñôÔuéb;q"~¬† c–s*•Ïs›áø̀ñ™ăsµđá5œÏÊ  «4<–@¥êÓ§ÇgÏŸßeee5jÔhذaXNMM%å*‘̃½{c#¼Â±‹‹322<==ËÅßø`ùœ™™9qâD´P̃;>ăÇ¡}{¼›&Lxá3Ăñ™ă3Ççב̉̉̉GU¥æ+ó¹¶ÊẸ̈›úÓƠ«gÍŸÜ./ 8ốù̃ñÙ¥[7f]Û¶ÁÁÁU TÈñ™ă3Çç7*„Ïh˜>¼E‹úơƒŸ«ÈçØtëF;;ËZ·6Y¾\ûÙgF˜äå½|&NË—/·´´1bDU†xÏŸ9>¿Q>a3f̀Î;Ơj5yUÇñ¹|̃ºu«ÔÉIjWZJ@g²l™I~₫ûËg”ëׯçååÙÙÙ}̣É'wîÜáø̀ñ™ăó»â3b9**üsÊ”)†ù9>WÂçâââ•+WjµZuÆz~>eg“-Ö¿ÿNø,IN&[Ôß~Kø ¡¡¤¾Ññă„Ïàăcûø1nÔœ8ä3ètd·‚uëH ¦Ni©̣Èü‹Đj ŸñWä`cCø¬8xùUI åîNøl~íÚ†7h@ølyûö“ùç¼<Âg}đí3gÎôïß/0--mÅW¯^Ơ¥Ÿ£æø̀ñ™ăóåóÑ£Găââ¦M›†ä! 9>WÎç[·nM:ƠÚÚ:>>~É’%C‡>Ñœ Ÿ)±˜l¡]\Ÿ±aŸÀ“-0|Đ®\‰h%[>¨† Q‡ơ¸qf_}E¾ÂƯ’Ăg¬3l˜å‰X°üßÿ,¾₫ „φ‡ |Æ‚Í;äè„Ï@Ó¤O¡ |¦”J²…/—§ççw:4*%ÿâ'0:ºmϬëïïîí­02’Êd™™™3f̀9r$ uÅñ™ă3Çç7Êgl„»wï6lØ0''çàÁƒø#Q9Ÿ±‰ÔZ­D.wđđđ oÛ·odjªÍ€µ€ÏxΦ۷ă‰)û÷Ç¿ø»¸˜nÙb¸EÑ »¿¿g@€Z§I$2¥RgeUÉ¢~ÏŸ9>¿$$$|̀ÉSINN®D!́Ô©“̀ÁÁ±cGûÜ\³ØX,X¥§k‚ƒ]>ú?fqqø×¶ukJ [ ₫µk×IRÎn!‡Ü\,˜'&:wíJ¶8wë†ă  “°0,à_ë̀Ḷ•›MŒ©Ó½;©c›Í`¹U+›–-±€¿Ơï™;uzRèØÑ2%…Awn.³…Ç#uP[ÆóÄ%‘-X°nÙRøÁ+µl̃¼Ü{Ơ¸Å¾}{¼.©]^^̃ó YÔ¸qcî¡̉ ¶F%NæX!))‰k%½ P2Ÿx\û”gGp 'œp 'œp 'œp 'œp 'œp 'œp 'å„äúä„N8ᤆÈưû÷Û·oŸ”””œœœ––V-Yé9á„N8y}™;wîöíÛơÿ3fŒ>ŒL-ü‡“Jå½\ûpÍÅ5×[“ú?ïÛ·¯W¯^.\¸{÷î™3g²²²îƯ»WkøÜ¯_?nư ¡tèĐ¡GÏk®‚‚nA\¹æªdnï̃½¹æ*×\•,ˆĂ,_å„HzzºN§kj ÏLö´gÏ={fggă£øïÿ»6Y`|~j³²>ö÷₫ñÇ+~ûúùa«.₫ùgAÁˆ€€Æ .}O“‹ôRÂÅßx)Y¿~½››ÛmÁ.S±Ú¹sç.]ºtúôéI“&½BjÏ5G~ÿưw`dÀ6Æá—_~y‡|ˆHÚœ‰́6mÚÄñ™ă3ÇgCù׿₫U·nƯÊë¡^’’‚·nƯúđáCÏï© ]­­sÊđcñåĐ¡CïÏÎΡ¿±'³£W¯!Ÿ9>s|~Y>Ï™3û́Å‹—-[†ÿ,,,¬M@ûĐø|ï̃= w °Ơèß~ûị́¹gÏáA4À7x&»wïæø̀ñ™ăóẸ̈ùÊ•+¨<ÿñÇX>räHzzzmr„₫çŸõ¼™˜Ø¼C‡~.\¨øíÛäsqqq§N7mÚñ_ÿÚü6&ÇgÏï–ÏeÙ|ª˜›ăóû+o“ϵ@8>s|~ç|®ÅÂñ™ă3ÇgÏŸ9>s|æø̀ñ™ă3Çç‡ÏHË%K–œW‹$%%;v¬ŒơQÏÏÏÇ‚¹¹¹¾Ỵ̈*Å5Ï̃̃̃ú+oܸ1Ù““Sn\Mà³̃ỊáÇ_}ơ••••›››aµÂÂB­V›––†Œáö̉4}àÀ,£Á…¬Öh4•dŸäø̀ñ™ăsƠ ÿ₫ûïiìÍëæå}üBmÿÏ?ÿ̀Éémcă×¾}/[ÛQ4|||:wîŒä±#>(>Ëår+d"ÈĂĂCO9$¶………₫ 9‚Ö¬YSÎaaa¦¦¦çÎăø̀éÏŸŒL<”JC>ÿüóWÛÉ̀™³iÚwBQ“5ëdøUƒ ø|₫?_ăọ́ó;Ôp>ÛÙ¹QÔX¼"‰$¶°pYå•““›Ót€G•MQơÙ‚ !Å °ºuëö¡ñyæ̀™‹XY¿~=>̀?ÖWغu+V Íd%##[¬aƆ;¹tékÖÖÖ†^Ÿ9>8|vvø Œ¢>›8qjƠxæ̀™ëׯ?Ueÿb£½ưjiY÷Ô©SúÜ ÁÁÁư¬Bªx”̉_~)0øíóÙÓ3à<ÀY€u½z ®¨]ă5êi×à{ọ̈¿H` 1¯ué×9%Tă±Íõ¼ù>ÎoT”¦M›"x C¾ÇÅÅáO~øáRá́Ù³¶¶¶̃̃̃—/_~ Ưă3ÇçÈçÁƒ'đùæ«,,¯\¹RÅ_åä䤦¦boụ́Ë/ X­‹ư]P̉¿".ĐDŒ<’lÙ²¥JDúö?ÅiÍKv́|û|îÛw¨V«ọ́H$å8†­äççפIµZMÖM¬]»D®æóñQm̃È8«‚X,^²dÉëœR^Ó¦ÍlíqW_?₫¾óùÆØ2cÆŒ1ÜxơêU´2È9Ÿ;wÎ̀̀,&&æúÔq|æø\ĂùL:f̀äï¿ÿ¾ơ7mÚDn êÏú·6¨Ú >666–¼…GwîÜY_äÈ‘Z#£ x ¢´hæ´i/|øp4ç_ç|V®\ÙÇHƒ­w„½ê½ï|Ʀ£(ªb”Âääd•J…ÆWRR’T*ÅÍpbƠơÏŸk Ÿ«.=Âû2xđà>}ú”±ïÅ4a…®^½ xæÈ1²ñĉëׯoâ[Ù‚„É êÛ—|…@Ă¯Ê½µ/}ü¸dÜÄâüÎ¥ÿL¡̣6ùÜ¢E âÍ5a„₫ưû“ØCñl[µjEî˲eËRRRƠÈ ´Êñ+CÏ̃ê•ÂÂÂ!9¶̃j¤̉÷ÏḮơø«É“'Ă³ä&²áø̀ñù½æsqq±½½§FÓC(´62²NOO +§[?ûQAAêŸEEE„À666£Gæ±]l€©¹V¡$Ó}ú W«£•Ê<•ÊLoÆ–̃¼YÜ©[Ɉѥ̉™½M>ăiăÙ"™MMMÉÙ¢Jlgg‡†a *•Z"1U©Æá?E"J5 ozØ>fjukI}ñ²… k>Ÿß;áø̀ñù½æó;ŒŒ̉H₫)këÄåË—ươ׫Ư½{w×®]ú¥₫₫₫$äÂÆsss÷́ÙƒÈW2™)@)îM©²jƠ*Îߟ,NÏ(Y³î™'đ–ưŸÏœ9ƒLÖŸ­Ï©S§°đùçŸwé̉¯±N €"¶Avd±…/33»¾¡öG+cï̃½UO‚̀ñ™ă3ÇçÏ7õ;thFÓ¦ÆÆX¢̃FEñÆä©2dȈ#:„]~̉¤IßÁ úvé’’’̣ÙgŸá?;uêT·N]ÿ:ơ>ưôSRÁÅ%àbM °ÚºukɶÅ©ÍJ=ï4̃Ơú”ÂÂB<ùÔÔÔîƯ»ăMIHH ÜkÓ¦'E-b]_z «Ëx¼!7#¿Ú´is×®ư?ưt¥~?Hû~]».Z¸•óƯ»Ï3§Üܳçđ!C^Öiœă3ÇgϵÏ=âóx3y¾ĐDi!‘hmmC·la–0_¼x1((hË–-x§ˆƠOÓôĐ¡Cñ«¥‹› „»á‰ûBRR’¥U đ6ÿœ?~³$á8–í́:æơ.ùdVqëœ̉Jçoß Ÿq·b±˜\­­-2 $ØÚ­[·x<¾M‚Ÿ_œ@ ¶¶ó÷O¸ÿ>~µjƠZ6ø‚Ç“-^¼‚X"o”3Ó³f|zÆ„ •ưüùófæØh₫áÀ®/§™s|æøüÎù|̣äÉiÓ¦¡₫¶xñb¢Ñq|®^9|øp{3‹Ç ÂO{k[4±ơ&ÿ́Ù³‰2Œ§ª‰C”5‹Œú–ơÖÀ¿­ă®\¹¢å î°ï7FöđÛo¿ựăÅ=z÷TúÔeºFñÙÉÉIi¹¹¹¸åË/¿,(( ß>~ü/­¸¸˜ôÑññÙÿÇÎxœÊb̀‡–-÷± ̉Jcá ^ä=sÆŒe<¦Ñ0Ü̃ă3Çç÷ˆÏGÉÈÈØ·o_QQÈñññ•øĂs|~5A%ÙI­9‚CÀèÂ$º₫† ›ƒ‚™Úº¸¸ụ̈Ë/mÚ´A%ÓÂÂÿºººb… ǧ Å×A#ujß·xY:¸ D<¾’ÏÏÏË';/ưé§â–­K.&k¨q´mß¾½———~–u÷î}aa™vvu~oÏ¿ÿ₫;̣* `ÎÓ9‡‡bûăooo# € $$äæÍ›ÎÎΆÓ8é›Ó^½†{xDfgç“ÈÏăÇO‰’n i͵Â-ógÏK°AÂ(~ „hadPP%“*iiiؼnéeN¡hZÍñ™ăó{Äçyóæ:tHÿÏéÓ§—‹₫Íñ¹Z‡?wk›¶±±ÄGŸdV<°ÄÖÖß××·Q£Fr¹A½¾K—.Y™M„»¹ïƯ› K%÷¢hD;ÅC–2p₫ê`q“ổưÈQnßf¦µwu ĂíoˆÏx84Á®^½êáá±y3“°»Aƒ¸C¼"µX̉x¨ëÖ¥¹eLL̀”)SÊư<;;W @߉‘̀ạ̈32rđœ?úhQªqê—ä́Ü·cÇ̃]º:9÷ÎË{^RămÛ¶eee]»vmذa¢£}́́»dd¾lÏŸß-ŸoܸѼyóœœl½́́́®]»Ö¦¨±ñëV­Z%“}B9̀ÍpËÈ‘#Éú TDŸ·ÙA"½ËÎo¬::8¤dù§Å-²JÏ5ä ™@@ÉËË;|øđÆ5qä@‘»wï~C| û“uçûüóÏIlꨨ(b‹ÚÙ]cO{;üƯŸ½0$:: à{ÿ‰É|ư:u*‰„geđí ñ¾/+•-[¶̀={üøñ3f̀سg¡hËœ?₫Î;Ÿ?L©zü:́GgÏ­M35œÏ?ÿü3E Vä;9y•±sÔ¨æîÚµ+66¶{÷îÏüUrd¤3P»@ ø6µYq÷¥Oç±ơS ^^^C‡?>îí?₫¸råH¤(ÚÚºcyC|>|¸ŸŸßÎ;ñ1#6RÚƯƯ9)€P»Ù¹dÔsƠå|¾ `¿@`ºté§Ï¬ƒ¤E]‚älzዼ̣2==½U«Vo”ÏGQƠ­ë8|ø3?ºôt± ­RI]\̃̃B#£&MàY¡àââ¢Ơjœœp€C5 Ø÷W'çø\íúóƯ»wñ™ !ñ&L˜P›"×X>oß¾{e›6ûöI6=z»<ªÏ‹ÆYRR’›êéơ]`hÉÄ)¥Ị̈Cơ;ÂèÑ£ơCD·mÛyÔ¨IHï77ÿŒçŒ&À AƒVú-dåà$¥Öñ©<çË̉¥Ëóó{¯_ÿ¯çUè̉¥ ±V¬XQ•@vx±ˆ‹¹sç¾r*Ă*̣™Yw3z´}YY¹í½{’ÄDI|¼ù¡Cú.ÏÂÔ¯¿₫J–ˆb¹ºº5êöíÛŸ?p>¢i†0ê¨ü ưU›Ú×äù ’@!fnn^q̉ Ơ΋/"Z±`oíçM›¯†G=Z½öƠû®üŸÑ:Û·oßưû÷ÑpÀ+2 p}áÂĂ7•Hß¾}‰ú¹¿¿ÿ[¸M¯Ăg»âbQ` ¢sçrÛ]ª€)l®‚‚Ô®qD«!©̀9>¿>c¯Á‘úÑ£GươWË–-SRR8>¿A@™˜˜t́ØÜr™^ùå¥̉̀̀lç2™¹©i_,ewߌ³I n¨nÁç >ưôÓÅ‹¿́”Ô;á󌜴Úîx! …N× $âåwß}§TÚ˜öÁ-ˆnR¿¨¨hÁ‚ÿûßÿÊíçäÉ“X Ukkë½{÷Öp>Ë23E¡¡•j—*c Ÿ´ßBèfÏ5“Ϩ¿­]»–t–?₫ø­ÑÓ§Os|~ ̣çŸbËW|#™™ °„}S°…-́ÊÎ́Ṿɬ•"•9f·$ …AÁxĂTt5–Ï––nÿcO{@Wvµạ̀̃½‡áWơêá5`¿ZŸŸß—…ùWB¡†¦ ÙÙøƯåvuưúul´·6CûÊ|6),TtèPÎ/Åg"h28;;“YŸ?4>×nyç|~øđáüùóÑJE°̀9sÚÔ©ú@s8&N4iîܹgΜ™Ÿ&Y >ùd6»¡ €1»„e€EơfqtàwZ­–xÊ?~œ¦¨5@7”+Ù–¢ă(~»–-kŸUÆ™,ZôL8¿ŸËØdî)))‹/æø¬—#G´hÑ\PPPơG÷₫ưû£FˆˆpuuÍÈȘ={v¹đ¼}ûöÍ«T8>×>#NMMM ‘bx|²¾;ׯ!‰À‘Édÿ Í+cƯíPoüͬ¾-¾gW1Ÿ•PIöy÷î]Ü-‰AêäWPđriߟƯLMï³NÎË)Aû6m₫ÄéÚήq럀§ƯAµ$ơ€Ÿ_<ÀpÜiđû“C|¾‘¥e€N硯•;eeízº¾{3ĐX¸ Bg™¼FñÙú̉%I\œƯ£GƠËg2܇……?ăs›€<8|+•̀x-‘H¶oß₫¢%K vdkkKv’˜˜ˆ¦®¾µµ5T*/̀ẁñ¹Zø|âĉ´´N DêóV£à>U*•„ à™0Kø„ÿc}€¯^½Ú£P(ĐˆŸ̃seÔ#€I4ˆÂÁ4„Ç@ø„éÀ7KËM›tï̃½Aƒ/n½ÚùŒg2hĐ ”ú~sFDç©4á|¾ À€ƒxa .%•Û´iC2½âÅZ[ו˭¬ê|̀ÎƠ EĐ™-¤ØØ8cå¡C‡ …B̉¬t:'¥‘­VÛL(Ɖ^PXè<•H\£ø¬;Ödé̉çÁùuø\ƾ-"¡±ª…ï/Ÿ<ˆj8d¥jqq1¶ >'h¨9s¦̣ß6jÔˆD#‹I/]ºäçç‡[Úµkg8SWXA-Zdb‚ựóó9ưù-đ9ɲâ+€B{{?Ă´ZäÂ… L¾{ ·ƒÀ(TÚ, đø±ce¬ÿ3{èoFVZV¤&&®J¥ ê–0uXYO|5HFl¸g{{{’Ñ[$‘RïÏơêƠëׯß÷ß篖˹º¹XØÑt'€1 €½B¡-GRR2đ™Ơ* gÓ¿p`ËØA”́G}Ü’ÊDCB“3$$ÄÅÂ’Ѱ…Á@Ùk4̃–VùééNææZß˲êÉ^ߟ‡çÆmïßC|&’™™‰¬øùL̉à9̉pcŸ>ŒP%'PÆ.1À:r¹üA$±Û·o‹X©|Ñ* øÛ   ?+¤½àøü&øŒƯJ§@̀p+«¦Ä‡­eÚ´i””Lkd€̀pí|·nƯ&“CóxL4$×;v`¡mjÎtÈ£đ3€=[çûèè,yÖÛ_<oæ̀™ïÏdơªŸ|̣ {!ÁØÓF8ÿÆvốÉäïọ̈¸Ænq¸È°¿x±7ưún“,Çö´´:ÂNküB;™́m>?/ËgíªUêI“*sµđ¹¤¤¤iÓ¦sªûºöñù̃½{øØ£₫¬wÈÔ?ÛØ#Đb}^H”‚‚¬Ó¶mÛrÛÓ̉̉ˆëæó~¸ÿ~<¨T*=wî\u5ÇçêÏr¹)ÀzoG“aqàÀqNN±Uñ[»{÷.j2éééåV¨ơø¸‡€™¯`&/¦½‰Ø,œ¨1bđé‹¥66Œ©O1zûöíÑ^ûvÓæíjÓ¶Lî²ùº}Q>|,è#"2tººVVnD655}©xV¯Ég´4HS©l{ô¤ÿIóæÍ?̃°aC´]ñ77w71q–ÉT|~$À7xH0¬@>ïÛ·Ÿ(—_‘×=•<Ăaaà›å•+ËmŸ;w.nONN~æ¯?~ŒƯ¼r€s|~óÏ8ÇÆ¦wï>ˆ¬¥E3œÇCs»`‚¨̣;;;ămEe¦U«VXĐo/**2|•́ë›Å[ ¯EºE‹äµW‡lmÉû5Û$R4– ¯E­̉üY»o¯^ð‚±±92è$5̣óóÏÈÈxÙe¯Éç§ÓAÅJe4YʇnNN8¸¬[·[ +V¬À+%¥IddLÓ¦ÿơ¯ÍzůgÏ₫H]ÔC† ¾gÏ///ÏFز*·5ûÏXÛ!“Ơ¨+vegF¨§3ơ6ææUÏỴ̈vølùƯẉÜÜÊá̀¼@lƠ*³S§#G¾đóѰa[oƯº²k×®Ï$¶ ^{ůE+ñh27G*.:ÀGWwư™†0ʹy¼¦|₫ùç¸ÏŸ DŸB”ă³aÔ¯ÏZ¼x±P8“eB±Z‰YErèĐ!dQÅyÎ&M îûÇá˜$ă&²lÙ2ÁS8£@Ó~lÏb±8ˆ?0` Â-/Ơ±cÇ®-]₫°qê¦qămmưX}²ˆƠ3½Ù“) ˆĆ[ªm‚AḶ§dgç¼Bƒ¼&ŸcÙÁ«L$VXXXnJLà‘åÛØ˜#FŒ(·‡/¿ürèĐ¡&&Úèèh<ܸqă˜7¨ŒØ°/ñªQ;2c îØ frÍc¹₫óúN˜ÓồçÇôÀ{‡—SÅơ;¥¥¥x+˽]z)>k&OÖ®^ưB>……é6m2Û·ï…ÓíÛCZ´¨äœOŸ>Ư Aƒ~øáƒâó¤I“̀&M§/X°ày¿%NS×7ÜÂÂ♳Id:qÖ¬YƠÛ\؃T*U{9zô(ÇgCÉm̃<ÍÂR̀çÏ`-—+W®àF+1Ư»`•À”Æ“‰ ˦—‘#GăsBÓt¹O<¯ hÙ2‹µßSÚ(rṛq{ï̃}£¢b•Je¯º^ËvS(“’’ØEĐÆ[ÀÓt¡@`dddga¿…3́ĹF »çå¿}>§¤´bßúMÀ3)½Ÿ^܈v„VËØ˜3g2ÿÔÇJ"2gεZăèèLÚ³mÛ¶Øt¬^Ă^¬kb$_KXßp¹••#Ù2 „ơä¿D"ɪ̣ü)8ö5 é`Í8P>xđ…-ƒ]Û̉̉+/_¾üøl;r¤´I›Û·_̀爋ÿüç…Ơˆ«^Ä‹"ïá¡#""HF°„Ïä=Zm¿JNfºêôéÓŸ7oO¥“c$Ú!̉²â¯¶mÛFº¤aĐn~ă-đù«¯¾r‘ʰ›ÿÂHK+r×ĐÄX´hñ7˜7õ°àÄê`¶¶1 ¹†?GÛuÚ26èßäÉ“ơÏ₫¶iÓ¦‰ à.;!₫Ô4'Äđ)’†‰–;Ó/ §·ï•“?Ô¯_÷ЬY32Í…ªfË–-Q°µE«m«HÏöù5Æa2*Ơ¬̃ŸOr!êü'ñv́Ø*»¨dÀbêêåUÿŸÚ‹"88xàÀh0â膧©)̣s3{i^ëØÂgÍ›wÀ«‰‰Á¿Ø­[·Fÿ"–É=ễ½»Œ¢˜ü)üçæO™>mÚ81ssOƒ0Ư¿AåÍ‚öÑÓơA`gg÷ |6ïØQÙ£GU¨[½|&_Ç?>O:oSfæ3‚„ß9’ó™B<¥+z ŒÛ+F*CIMMůHÊ Ïo™ÏÍu¦$3‘PXÑ^²dIß¾LPˆK—. …Fÿˆ-ß®];̉=‡ ̉¯_¿26Úëøˆ?~À€15ŸíX½F…±«ÅƠúo\â2¿ÜöíÙ—•rb }ñÅxQQY,äqWSy 1G¥{­ç3>x›bcc+~åëë‹_­Zµêy¿uss«hÖ¡l̃ŒJ¼r†‚½’5ñ b´.Ïoa~#;9ÅS©Œ45kÙ4Ó×7U­63¤ôÇíííCCC­¬T*›'N”{ñÆuíÚoúÍ›7ѪB†>|˜|{ăÆ 6]sc“hOŒ7ZÀˆ €{°sƒâÜ¿'—ÉPg³°°‰D¨4øÜÜ\[[[4¸P™'ܰ´́¢Ñ0Öº+¯æ­ư|FT²gb‰ -Ơ¨ă?¯\¹bX§ÿŒă8ƒ¢”Ä¡tÉ’O¥RW/}ñ))©x]!!!htœ9s†Ưag…‚50[(ñ(el|Ü̉¡C'''d/Yùùùdâơœr÷‚TF{ÿ.[¶ŒØAv¦fÍtf&Ú}ÏIKa8âïïˆÖét†NUäóÎ;%nnU™ÜxC|₫å—_6lXÎ߬¶̣Ơ*¼Ë~~~¿Â~„_l)'QQ̀›z’¨ÈPpdÇíáááå¶‹ª`Û¾‰æâø\•÷ƒXŒÈ¿́ps‹0ü¶¸¸mŸơë×ăHZñ·¸ñرcEEEYYY“&M*§L₫ñÇø->-¨§¤¤`_F{ö,€ y—=sæ̀æä¦M›†J%¡ØÚÖCj8¤ǜăÅ6kÖFïxçμĹ8û÷ïÇ«̃µk—̃–ÄöįțÙ̉̉R<óiÓ¦¡̉æI¹#<˜¼¯¼{÷®̃K ©‹7·êÔÂv.÷®­|Æ›¨¨ rߟQ9ø~|>wîó®ÂȨœŸ3>H¨ưPUI–ɶmÛ>ÓM¬m!9= ¥^=|t¡Ü«pÏo“Ï(ˆ_#£ñdµˆNç_±¡C† Y²dyÓ¦ù&LƠk×®®^|¾̉ÜÜ¢[·nxë÷îƯ;hĐ Æ£6x‹-p\¶ƠêÔr9­WnnS67S¸Üă_<£p nß¾½nƯ:TÑMh#óx¼ŒŒŒîƯ»oj<"b È¥´´´jiêZŸ̉¼yó}ûö•”” çœ””tàÀI£FµIIÁkÑ·§§§B¡°´t`ç2ÙPØÈßFF¦#×SRÚ®xªu÷OOOǽ¡Zäïß>5mú”)ÑQ1F »:nOák×®Ơ¯_5xđÈ~½{ûYYE¤7mjcee¬Ñ  _±b¤>̃V­Zá>_* Z²íÚµCSÏ¿|ÆÇCۢŻås»è‰Øµ›Ï(ذcnD 7úúúṾĂ;v`¤®áF|lđ™Áídµ¸^P= « ̃P<[ÏUä3v|SÔ ±87((¶œ*(‰p'ÖÖö<%À7ĂŒ̀ü°D¢a½Â²$̃̃̃¨fcMrCqÇ1zƠªUX3{6yrV=ø)@]hüI‡Njµ I.­Uj1™ÇÀß’‡üÁƒ...AAAH~TÅkŸÉ̉uÔđ]]]I” Æ›î&RÉ/—ËŸFÛ`̃jµ^la›Ph˜ØT$ ø¦MÖ®]O¦”±q,³ăÓÇ@`”€ñùÙ¯~p“tf E‰zđ(k³̣Pà ”ơyä¶…¹¹——d·nƯ"ª¯N§#íÙ¡C‡*¶̃‘§öø<Ÿªđíb«¾}ߟë6j4s̃¼ª|đ!»råJddd¹é¦ZÉg⮌NïD„Ɖz„´¡¦ưÙgŸ•{‘M|¤ #N˜0¸7—KUóå—_’'¡’‰ŸßŸËØ¥y ›3g~9tDQ££[°á2Pư;Ñœ™)˜ÆnÙăéXÆ®q&|Æg Œơ? -cßgŸ,ỗÏ—œØº 7Ö¯„Öz›Ö­[·÷üû" ©̃PƒTûúnâ“Fd{!k8–YíH‚ÑiÑF0`$ê0̃̃±úơƯ-[2³ÈU’"1 ࿬!₫5aVPb³R‰-ó² »+À.€$94ÛËÖ¹Â@{{2­afffxb8>ênè’Q¹lذA¥R‘_¡É³sçỊ̂Ÿ„˜˜˜gæ|M>›)BCµ«VUé3räêƠ«GxVµÏhÚÁÁ¡_¿~øÜ’çMWC[iụ̀å°å¨HÓ4jh"3†x´¢f¥·ûôB^ưT|iÈñùíó¹¢àíĂ!•C[µ:ĐÖN)Qj€? …anØ‹ù|%Bÿ'ÔŸä g­ÖÅÊZÍú›Ï;wÛ¶mµzÍ5ØëN€àg Î-º‘7eÄ]ME ¾A3­çÉ3ß}¼¬ uïïïçiˆÜjç3¶á°D$j£O‚ Qc’’’R§N###™L†—immÊm~~~çvS±ĐI£Ñ™˜¸Éd&'2óE£GÖé\-,¼e´Ä(oÔ·™%…hSüLQ¡R‰Ễ̃̃̉̉V$̣€́”³-ˆC‘PøÓO?eee) rJSFŒruÓ©TØéH÷´ÑjcëÔÑ©Ơ/̀¸ẓäIâh‡ư—Çă½Ïl̉7Äg£¸¸*îÖlî\âî’‘‘ñR!³̃G>“—;yyyä“®Ô­[·r~àÏäs“£ç>Núî†Ïê3×á5 ¿MOOçø\ÓøŒ·ÉöàÁƒ¤øø:@Ưá®ă˜bnn‹7Ÿ45Ó“ÅJ0EÈÎú7Öªx·@èÈêÀ999C‡UÊd–ju_à¯TkÛÇÄh4vv₫ñÀG«‘¯o£Đ0R±ó´¡M›¾nCŸ*–úÅƠÎǵ&!!!5B»2¾aẮèh3SÓ©S§bÓ!Ÿ‘ºmÛ¶ơơơEơøáÇÑQQ¡́0$‡víúnÁí$¾“D¨d§<u đ-đ¥ ¥igvcW÷0­AƒĐ:uBDOgT˜]ñx:ÎÅÑ‘°·°°Đ˜ÏÇ{1•¢ăëûƠ¯_?!!¡•±É].:»Q£^Ñ‘#G<==[·nV•ùçN:Í›7¯æđï ï$éÛÏŸ‚Ö.‡Ñ—MÄYÆ:½ ¨qpWx«ÈgÔĐĐ1bÄâÅ‹+°W ø|åÊ•çE B¦á-#e|ÂÑTÜ·o_第í¬)} „ÎÎS¦LA³c´|C¯±é°±ˆ™ĐôÀŸ L₫ÀOLL$Sa_>¼9"j³«Ç…³g/]ºÅΓ¬ÖU5ƒÙ́!hÎÿjeåơÂK»uë₫êyߢEB >ëW>¾>Ÿñ ỹq₫ùç/¿ü2::ø±â´×®]KºíæÍ›‹¥:hoñ»ÚÛ·oG}1.¦đlOâåk!â¶Á¿al o€ÓÿaC2âăăƒ¬H _@¨»Ÿ9sæ̃½{¸OlÔ!+ÙĐư¿‚ĐỪ{ßäI“đ™»ó„.ZíK=?/ä3^>*»víª9|F0`À;yQÈå·ªv>£¶€A„cĐÖ­[ăăă_a$z_øŒÈ µ°°À¸\MÔ‚HŒApu•Ê888’@`5ĐuÅ3…RĂƠJâïêªqkF[[˼₫ă[³q33̀°ä Ä<ÑTpđE´J.ó£(M h¥'ŒP hn«·¶VJ¥Áƒ©üº;fii©Ơj4hđ̀˜-HHü–¦i4ôÂḳùàÁƒ₫¬$''—søüóÏÍÍ-ëÖơV«Qs^³fD"‰ÄøtaÆ OÖ2:oÖØ8Đ·¾€q₫Gƒ"˜m.æ:Ưx=Đ*váw&…Á0jƯâ%K–à±̉úÖ“„$ †——qEY t¸Dæáà O±è©¼{ûöƠËçY³f¡ǜüƯïϨf Ơđö;2Ççjç3fäm;‘éÓ§¿T¼Ê÷ˆÏ¨»b?%øôê’”±Ṇ̃I¸B6€g7NNJJ&Ö¢ƒƒë˜aĂllܺÂe@§†3u¦N™¢’9 ˜ÅÚà TP*öm°ªđz>! àOrƠé,œ5k†ƒEHHH™µ»“ H¨ë9|øXÔ6_x]úuÖ$XÜ3ë<|øpäÈ‘3gÎ4t–~M>óx<²‚¯M›6ëÖ­3üJ(b÷ÄBnn‡ĐÉ“'k4I|~Mç´i“3a¼………ọ́d)ùùøñă¥R&H- ñ¥4iA#£nƯºaƒ÷îƠËC¥b­ºUbâ°aĂôË H½ơQ®4zذvíÚé3ˆùúú:ªr«¿ôñẳïO–lØX2aùܱcGÔmjŸËX¿ô1cÆp|®É‚÷ ơ‡íRÑ÷ÍƠæÍ›çää`ëeggƯe|FS711‘”ĂĂĂ ¡jG̃z£©ÑhʘØti“'O!ó!2™Ÿ:G+«•́ÜŸ×!Í+›̀ ²³ ø™ÍEđ$ÎơLàç₫í•Aü«̀ọ̣́!hû¯_¿¾gĂÙeÈ7Ah\!øüéÓ§Q/=₫ü‰'°²> ñ"*ǻÙ³«̃ ¯Ég4¯vî܉ͅL9 ÚƠƠù¹qăÆI“¦‡ nĐ Ú#]ñx“zö́uN:¥Ñ8©ƠMQ^¼x1îgÆŒ2YRw˜q¬~Ñ"eO3K, L†æÉ  ÖÇ›Û!22²’Üp&&&xt¼ơúQ ơùgùáẲÿ`€âf¬_ß [¡°;€@&s32H.[£ÉU(tdI—¹¹3>” $  0^Ó¬W₫sƒ}ÍÚ57—øQˆX­˜¸°;wN¡PoU’ÿI€\.ÙîHµ ™T166ÆvÓƒ«ôúởăE%+>+:¢¸U;È]?.ùdVɶ¥gÏ–VXÆR9ŸQ™!Qzj Ÿ‰Öѽ{wÏïơüÆÑ£G'ÿSôïÈjŸ¹...DƒÍ̉r1º‹‹‹±—?~\¿åîƯ»ˆTtëׯñâEü9‚•:?vµ̣h6&| 2C¼ü ’A0z#¿nï ˜˜ƒ°H"́,¸CÏ™¢fœ(µ³k„'SqRBHÈ>öM™a.a}¤2¬'ü²½_“ÏHB2Œ5ªÜ¢W’ÜfÙkJ’Xñxó<<ê®X±âîùó¥ß₫§dăæ¦ƒ¡ÓÇ0½/$÷€úĂ'M`Đ6à_ Z`_1ơW””TƤZ³fMë7åîî÷oÊưû÷±ô›€úÇư\a wc ư<}FÉ´Å=z7nRœQÜw@Éü…%û¾(½xñ…N•ó9??,ëé]3ù\ÆxŒgcó]r|~Où|ơêUÔ*Ñ,=đTjS C>_¹rÅÏÏoôèÑh–D"‚b¼|Ü̉·oß“'O ïÓgvÉ=‡ 4 G®¼¼ffæhÔ#ÓĐ¢'«NZµú  @ "ØÊz è?¿ø Xº€Ö̀Dk$WPÔß^ÍH6Â₫ª”Ímr€YˆGÎđÈ‘#xnS¦L!ÿ́×¹óá³ÇÓØ¤4M·É7\ƠËçÄÄD¡ÂÉÉiưzfƯߟ₫™•Ñ̉ߣBáJA?sè\Ü“`l,L9Ç)Œ6Û8̃ .₫¨gÉô™C=ë…1ơ‘Q K‚.­aywûŸAëáçOư[m^ôĐ¡£eO£á“Í=Ê´$đ¥-₫&4ô5—¾&ŸI N¤4¶3]póf3ÙDœÁo³å=•/îü<¥W(́Uª…S˜h½ämlưØKy²@O§‹ĐxuíŸ*ôŒä&%ÿû₫÷={dLƯh+›‡»'§]®8Ÿ/Z¬2ÉI:Û9÷éw#2v+FĐƒx‚NƯ‚/È·wlª1‰rt|ưÙ×ÊùܺuërùkŸÉ$ù[ =ÊñùMđ¹K¹ùÆ“rÿ₫ư÷²¢ï}ÁÁñLrXđ k¤—°‰đÆ´Ñó™„^ñơ&³6Öñd ù«-¡ïFñ̃qçr¼rpï̃>>>¨œcßÉ̀̀$®×¿ụ̈ËƯ»wËØhú9’Y˜ɃÙœuư½đïøø6¨ÿ¿TœŸ7Áç̉«Wïoßqg̣4dcqJÓâf™Ÿ€à;*yƒJ÷°Y4Ó›7oâ5âăöƠW_mÛ¶møđáeLôƯPÖ^À+ÚÛ¢E>^~«RƠ ‡K %>äßÀ×̀\?¤b}:ûœfÍ\€Ê IJô›ÿë—Ó^ßhHK²JöÁƒ¯ÿüTÎç¼¼¼Ïg´5jtçÎÏŸk&ŸJ^^^ÆÄĤ™™†}­_G­1âóÍÍÍû÷ïg»øwĂY,_aóÙ¥R½ZĦêèƯ{¸@Đ–kudÓ˜̃ª m FÎ 466–Ëå:& €Å"‹P×"}Ơ°aC{{{⨦—U«VI$̣ÑƯƯ· >Q(l†âsr:UKƒ¼,ŸKïÜ)=|ä·OfîôöÛ«4¾^’1..>6Œ8Éd>ÉÉM¯_¿¦ u₫îîa<øq@9S¼« t₫;5ăªá́́́èèˆwSowàY!ÀÚ¤Á³³³ßŸË凭±|.cœ̉s‰w:ÇgÏ5ÏøĐ¢̣¬ïË=€w-út5¢xKY¯¶äääÓ§O/Z´h- ´#£<¯g'1?›u»öL~¡¬ X0.Lå5&L¹|ù²>Yjw¨Hë_Đlß¾¤G!É‚ß~‹ªó™ÑŸzËGGG“´iÓ·†è±OeÛ~́”QS€-lR¿ưORSS/^¼¸uënSSSBÚ¯¿₫ÚOc¼~ưú¶‰‰ß>_Ë&M4à3·nƯŸ—s½èß¿¿¾rŸăs9A0ÆÆÆV{†SÏŸ_“ÏEEE¶¶¶-Z´ 1c[ođå̀D đQåB‹˜t|ưê`? |&¨² Ó¤d™°̃óáP²eÛí†1Ư„gM̉Ø— }é$ZI$VÙ`ÁÇG›ÜÖ‚$2²Ó"̀Û1µúífyµùç¼¼¼&MlÚ´Iß›7o‹íy<3kë:ä*‰’̀ă¡ëÄf”Ñ´+@4nT³¯T¥́€% ±†™™\2™L¥Ríß¿_¡Pđ˜ĐÌûT)ọ́U`ʾƯ-ơwäU< RhüøñfÆÆb>Ó:ÆËƯƯĐù¹bæĐœœrs+‰XR»ùŒ2ỉ¤J®…ă3ÇçwÂg2·Œ*tHHˆ···›½}›D²3đ†ßàûï¿×‡† kÍ¢BB¼êz°Jà>¡đI ‡¦M›2p>uº¸c×âî=]xüƠ¬sïI€%[k<ñCB……àØôJàd/Đh¶7°´Ô‡•«á|...îÛ·ïÀơë›Øèߨ>4D–^>~ü8<<ÜÏÏõ¼y#GíÚuà¡C‡ÆŒ™ÙØH.'1‹̣áIU ç̀™ƒ¿ÂƯD"¥RI1&ƒ¥ù:9÷øøăuk×ö̀Í5 cÚ¯-P¶29.ÎÎúñO)á~Zµl‰Cjă_Gµ₫gæĐåË—ă=Ơăưƒå3£hw<Ïüáø̀ñùđûN||ü²eË&OܶmÛ±cÇ"@²-­Èü†·HŒ–ơçŸNf/ÉæÖ­[CB>;}‹è̀ˆ·µMÉÔO›¶¸¶â³½{÷º©Î±.æÿX^Œ|̃¥z4đ÷€ ¨1Àïe{ŸY ÇÂÊIiT1^ á3ûöí«dù†LVà–ÏŸ$%%ce½—…¡lß¾}È!f*Ơv wƒ-2 bnnØœ8qâ‚ är9 ¥o¹\…_é3&Û)$„à× Àªx7ë¬Fáóxx/:åä,f[ơ"u:<ŸÓ§Oÿ₫ûï8:<˜X. ̀_”È»ó¹́é¼¹Ÿ9>×>óÍ7>>>¨ƯiÂXm̉ÈV© ‘HÛª4¦Rizz:ïÔÓ¸F4Eu7µxú«€¢́YûV­ºï ±Yɼß/B}̀ÔÔôÉRb‘ôïNŒˆGÄ<đ? ühpyª]³«á(~P!uê¼ư© Ÿ§L™™đLê¢deå±ïû …VøŒåä䘘˜”‹0ṃd3¿•XFâ8µÏ̀|²̣ILu•>ˆbói²ÛŒJ©´3ˆ[>ă|T‚<^s•q¹€2é›!Jµ›\¡•É ̀˜lfffúE…(íÛ¶ưùLF^´% ƒƒq|®É|>wîÜơë×QS¾0jÔ(’c¨6ñyưúơb±­ïŸ₫Ù˜ÿd­_kS3T¤·lÙ‚üÙ°aCóæÍ#(f²¢1PÎ́êàÁ|a—Î zơ–Ê5N)îúÑ¥ƒëXXà>ơz2DGG#ÓPGk½K—.mÚ´ Å¿"‘ơ Fơ»À6¶E~â°èÍ@ÇXÛ–s±« |F]T­Vcs•±ñ%6mÚô¼ÊÓ§OÇúX™Ä =z4&†¹'Y½w$đíí¯]»†Úrvv6vaÖ$9Ê6Ë*‰ÄtíÚµgÏE¥¿R(,Ø÷‰øƠngç ²«mÛ¶5nÜØỠ¾!ûÆ0É`z_/ÁÁÁhuÊÏïÇF{î<}D»a@ăÍƯt’§gmå³vôèzQQ->₫ø…Ÿ¨æÍ±M̃DÏ/%Ÿ~ú)êS ¤\úx”… âÓµcÇnƯº¡1غuë—·Sóù¼uëVTí.^¼èħÉ"K‘ØP…1bD4-œÈ¸°Ưy23#Áÿ´ïé:ơæH3O3ëH¥̉‰cÇꃧñx<2#]ÆÄ»k¢ÓéÆŒ³té̉ÁZY…Üg!c‹j [x2ÄækοưP'/äó—_~Ù°aC¢ »»»ăƒQù±Ș>|øđ: ®{ụ̀åuëÖM?¾V÷Ëç¶À Áă¡ûôéSÆÄGµ`VÆ3Í2˜Ï—`«êç½½¼"˜øÍ̀Wó•JóI“&ácyäÈ‘ÁØXY° ̃3Åg­V;uâÄüÜÜ^l<ÀsJmXw@(c'« ‡H<Äܹsßw>+³³M-Â=Wéăïïèèø²¹r8>W¯¬ZµÊÆÆf“`ß©ÈǵƒÓ¦M#‹a—,YRíwíÏo8;3oưú1*±;v˜JíneehŒc+ a|í́J?‚p+ĐiÀ[t4ûjo%ª»ㆱh/6T €„Ïß¼yóùóçµOˆ T´PRÈ:3öµµuŸhOde•`nΰ_(â¡` Ë•ÿŒ/Tsæ7ЬÀSMMMÍËË{á±>VF­¸~ưúö5kÖxÔ©SO,YI ê2™¼ F&7g×ƯÔ©SG©T’øÛóçÏg,”R+¡[5JgJ"VuêЉñK6äQѺAÅXLQ@ùI寻ÆXm0YMjnnN¦›>:Gcb¯133÷2·°··Çí¨¢ø:»„kũææGÿé¼Mî;ŸÏW(¹¹¹ï;Ÿµ«WW±²KăÆ8ê!¢«÷u!ÇçjŸß(**ÊÊÊjԨѰaðŒ½̣]eăzC|Fƒ]«ơ¸Œö²§gà… Đ”îß¿¿aüç=Ó¦ojw6.1ÇƠ}ˆ¥ êZ£¿ˆ}ßÔx›Ÿ¾xr`§>B€ú70]×?Âϟͺ̣·ª6• Î3 µî™3Ïœ9SƆ,&n]8xđ`Ơ•ùw̉ U|?ˆăxESëyróæM¼"777²~»üX™DÂÑm`Ÿ>Û·ođàÁ¯¿₫úư÷ßGGGϘ1ƒüêÔ©S8 FzƠ#s ‡@đ»®ÄQ­Ûü @Ç«ÔG2‘IR""bZôiA=€XŸê'¢’ÉđT >úè3ö6Ưa‚§îüÖ­[¥¥¥x đô°€[*æn[½zµôéܵƒƒĂÅç26YPPP~~~u­¸äø\í|Ö >Ă¯{§f̣ùĐ¡Cvv~*U}## µZ€ºzơ*öG;;©îH›œ¯,]תL{™ZtjÚ”ød›ÙÑ‚  ~a&đÙô‚ư'f hÆqIŒ‡jt]£ỵ •ó>ÀûƠî™øKµç‡½}û6Ráæăăƒ¶>B™ ä8± -°³«'“9¶j•î¤Vg6kV¿~€µµÛ¸qS&Nœ˜’’ÔøØ¼QÀ óóK u2· ^*PÖ|Ú×·¾/ë <¬Ó…¢%LZï¿₫Ï/ ñ4–ÆIdXg"E;XYUñäqŒF•^¿«Ïe¬Óê*hÚ :Íñ¹&ó¹V ̣ùÈ‘#hÀÎ5ëØ±c …ơ¥Ö~₫€·"ALÈ-™`ÎLÈwD“"ú»ï¾CˆiÄbg“zææjZP( ƒ©N´²ûß ¼A<§³³]!¡(‰H_ÇcÁS-±ÖóY¥Rá¯P7Æ‚L&‹uvvÎÍÍ=ỵ¤V«eAz À,xß3 ç)IP>ˆÏùûû£r‹ nP(ÆŸƒyŸhÅăckÿBSƒ7–H}¬¬»ddÆÅ5µ´ô–K5ú¯Ôb Ñ.ºç溛™µON~©4S§NƠh4 6|¦ESëùLäđáẴ̃̃]ºtyÍØÂŸ9>¿,ŸW®\éáá]Æ®+Ù›üÎî×’Ọ́„AÖL µ2€t€ăk‡ ‰uĐ Gά[·dT)cS«Ô1Ñ₫Œ p¡b':‚ÀN,Æ:¶vÙ×hÑ£^X“¤ÚùŒ€%±AÖ¬Y“^ÆD &ñC6õ, byG'“Ô`rh‹[Ôjשּׁ¬:Œ=º‰̉¿:sJÄ®æ†OÙ¥†^t4-1<¨̉ 7ư,½·ºäásUfđàÁîîî$¢5ÇgÏoM¶´´éÓ§Ï­s²ç¥R³iél“ÏÈz!‘HvíÚ5räH¡PˆêŸ­­-jƯ‰‰‰6664§ƒ¬”0nrîÂØÈH§Ó© ê)+HØÿÿưo²V&Ÿ5yríæshhhZZ^µñ¿E5¬Qt£¢¢"¶Iê|ƒÿser–ëgé—K¥FơêƠ[µj•X,ÆÆ JȮ新í¬jä?ù,àñ„|>EQ8[£ŸPb^ÚÙ+¤RYÔP˜¬‘XùÚµkå¾6l˜““îD|åø¬<đ†¶k×®bcr|æøü&øŒ}‡Ä)26₫Ǻ3ËYêàçCVIÈår¦"##SSSµZ3…Tđ'§_ `É’½믕 ¼ôÆKJJ w‡J8«TđƠ7´ †đUe77·    &-8ø5:˜è$<^(ˆRAë<¹áè&‘-X°µ5qXÄAMĂ®KÉfơ »å`f[&đ”!C?K,gnƒq#…B̀®c  xwæƯ‘ỠơRXX¨_ÖƯ¨Q#Ă¯¶nƯªwÆaåä³S|üƠçÈ•+Wè́́¼xñb²¥ê±9>s|~Y>£Ư­_̃k(ß‚àk´©BBBĐ$º¨ °ç®X±‚8Z 8ÿŸAX—u]NêĐGA° èæ±qXÇĐ×ÍƠợåËI¶v߃à8:©4hæ×J>£æ‰•+zû8‰Äÿc¯ǵë́´Ï2 íY´>™L66¾páẨ¥K#""ôy]M™pŒ#ÇW 0“ÉcƠ;́o“Mtx;H<@T=€Âíg«RᱺåæNdf.ƒĐÓÚæ›o¾Ñ»”O:U¿fßÄÄÄđ ơQ£™©*v?Ÿ¥NM›º¶lù¼]B‚ÄÄDiooâå5vÖ,ϟߟ±ÏjEb4eƯ™%Ö<ÖÔ¶4%YHh¡T† ÀƠR)₫ÅMQ ™, {î„ SqC‡µ˜| +€…l •ªElÖA5cΜ9†|&óá~áRÊY N<ʈxüÖ2>oƯºK§óÑjœ¼Ë]`Lx8Z @I¢(₫LvfHed¤æóƒ˜÷ƒàǻܧO5đ±AGơª¬Å›Œ“9̉8)1‘ 6È·16A5˜fQ«băÚá];Bc“éÓ§#xùU—â¹J¤vă|k[̣·Œu³¶¶h‘|az¹víH8"+üüü‘϶¿ÿ^y»̉Rơر|+«øæÍ9>s|~C|₫́³Ï°kßc•±Æ Ÿ72¹³!¼ë8gÍúb=~üØƯÙ9‚QÏ€GŰ¯´®ËåL6Ø:tèô| §?ÁϯM›6ˆ ¢/Y²Ä̃̃¾mÛ¶Û·ooƠªUXXØçŸÛoܸÁă ™I&ÙSÖÎ;kŸE"9› L*í±|ùrĂ¯¬ŒÿĂRt-JKIÁö‘Ëd3f̀đ’2‰Î€0ÜÊZ¼lY@‹ت«W¯^·ǹ̀̀P¿Åư¬_¿̃[£A¼~ZTîGËz?¢9ă”ƒL®Ÿ…FGGF~Ä.ëF%¼ex89“;wînÛ¶­âù߿ѢE6l¨ü2?d>“É̉¥æ66Í5«Ç>ÇgÏ/ËçU«V¹²̀Øy}ơ|¦å ₫#¦aĂ26~¦D"‰fƒcĐt7–Ï7„¼V­Ù ñ.VVÈd77·O>ù #GÔg‘̃±cV₫•Í|¶±‰"|–É‚víÚU›øŒcÓ̉¥KëÖMbf/˜ “––†Zè¥K—FƯ¡C‡´ú~ÿcÙÛÉxÅøyzb¯/_áCÊsJº­3h)Đ¡¡¡+V¬À =âááA°¹fÍW¹¼đú/ØÓ<ÄĂ£đ(điF£Ñ/!LMNÇ.Á¡Á̃Ô´º‹ă³Ù₫ưƯ† ›9s¦Ưرc+₫ÀñùÍñ¹’`’ïûü†ŒM´ r%ck‹Äâh ”ôÓéGd‚———L&§a0ûöI!„̣ùv¨ÏËÊÍZ£QŒ¦6àøÄâ?û÷ïGAP£¥Lf°/\¸€[f̀X„†»…EVÆMjTƒ¼&Ÿ»uë¯T6‰†’€p––ƠFŸM hàå̉É̉ÚÍÊL}ÄÇÄ 2iâDÆŸC©œ1~¼ƒƒ–“)™œ¤QñARR6y'H³J2₫7Oôd¡_Pê§‘`ơ¯ ˜×Ba–™¹«±1YuÈñ¹ùŒ×xưúơ;:99-X°ày”æø\í|FC¯}ûöIIIÉÉɨ‘<˵‰Ï;w¦˜Eg'„‚>¨'£&x:營9uêv{{û#FTŒ¾Èñù¥íPÔô:y{e(sçÎ%Qv‰Œ3æÄ‰µ‰Ï“&Mâó­Ø  ¡ª…fÚ¾}ûè§|vttÄ MiO¶ÂdoaaaºT₫}ŸÅçñăÇc̀Œ wWW,4lØPŸ{Ù^“ä5ù́ë› p „Ï7"¡Gëiu;@đ—Ár?dkëÖ­ Ơ ^½Å‹c!4$$,4 öö®Ó¦MĂBZZºP((G^>ùßJÿêPL1‘!C+¬­­«½¹ªÈçF1‰̀ÊÊ(''¤M·l¡ {&Ñ >YLÇÓ^»F¶>“Ÿ‚ơ¥Kß~k¸wbÎúë·TS¦H›5Ă(“1GÄvĐé˜ 4­d <ükºk—´yṣ[¬öd'4Mø̀³¶&[då t:†|F2/\¸\8‚Æ suu>}úüùóIhÏ/%‡ÊÈÈ8e D"¬°W¢U~÷îƯ3gÎdee½é$’o~#4$œYă@»ÈÅOü¬zü1×](455‰Dص•r³g=u2£—””´JMu7ÑÆy{ë—BXXXXZZ†‡‡ …BGÇúd¡ÜåË—I€nƯºƠđyM>ÿôÓÓ•Æôí;l!ëP<$̉¤4í[ÁdĂçÇă¹;9øøÈ̉ß}÷MÓvvVVd~CïhǬB±€gkf́,`ÅÜܼ‹‹¿…eóÈ(OOOügDD„¿¿¿™™YXXXHHˆN§Ă¿$Cú;á³Á&°>ö&K—2´đÙ̉’´gÏ>ÏV?₫h~đ á“ÂÂJø¬((…†>9"Ÿ•É‹RRAÚ¹3S (&.ôªUÂ'/û Ÿ́„¢Ÿ)¥’l……•+đLM™Ÿ¬Z%53s‰±Đ89aÁđcåï¯qpÊd|‘H¦ưö®>ªbëŸ[w³›Í–$›Mï=„4R „N/Ih¡WQé̉«ô^¥wPéHAÊûï¡ ˆ t’|çÎ$û–„äßÂïæîƯ{ç9óŸÿ™9sÆ̃J§{HÎCŸËB¶¸G^¶k×.́ợóóñâç° ûó”Ö­[wíÚu¡,¥‚R~ûT³ ïÅ.FÖ’Y°/CÆ̣ uáW=zôÀË\\\$ø]°H66;ÛN™¢ë×OppÈÊÊzºrss¢e£2K·nƯZ?æ†>ÿ0ùù矗Êr¯>~̀˜1R×;ï¼(kÉR]æ}»Ê ~%««ŒºĐ„¤.4¼   YK–ê2§SûȤr¢ù7[ —/_vø,rA<yêûVf9ỵ$Ú?ÖÈß¡‚ù7›u-[¶ĺر4Íx%9?̉cIóo¼,̣©œ3>7jÔH¥Rqçááq₫üyŸ_ \¸pÁÙÙ™a½^ÿÄYs+>çääPẹ̈ôôÄ·“ñYÆçÊ&Lå´ÿ₫&b4W®\ùÜgggWºEµƠß¡m2>ÿ}AGÛœzÔŸ¤}ÙñÙl]jµzƠªU2>Ëø\Ùä̀™3?üđĂ×_­ïôéÓå/¸yóæÏ¸aÆçV¼ˆˆÿ¥‹Æ®DÆç(k×®U©J¶\±±±ùàs•*ÙÖµwï^Ÿe|®TräÈ‘† ¢—‡ÿoÙ²¥~ưúæ:b̉ï¿ÿ₫s+áùóç•J%v S¦L©œ:|¥ÆŸ?Ѫ[·î/¿ụ̈Àç³gÏ¢_4cƌʩpŸ_e|5kÂ˹sçè₫΋-zäØ̣sÆçÊ/¯>ÿ}©Tø\ùEÆçWŸüñG$ÏtËу6jÔè‘Đ2>Ëø,ă³ŒÏ2>?),,¤t¿³GŒÏ2>Ëø,ă³ŒÏ•Sd|–ñYÆçWŸwíÚµuëÖ2'/\¸°fÍ«W¯Z<}ú4<{ölù› {¾wï̃U«V:tèY¯S–ñYÆgŸe|~Eđ9** è¶̣fÙ¼y3üöÛo-O6kÖŒa˜6mÚ”¹¿»»;˲^^̉¶ÅƠ«W¦ûOÉø,ă³ŒÏ2>¿Røl2™~ươׇà3~«P(:uêdeeUf¯¯¯oLL̀?ü€Çdz±±ÉÏÏ—ñYÆgŸe|–ñùïăs\\œµµµ%¨–ÇçéÓ§ă5W®\Q«Ơ–é/NŸ>¸½xñbó™;:99Éø,ă³ŒÏ2>Ëøü÷ñ9//oÖ¬YÈæV_ŸĂÂÂđ2<ÀÿưüüÊ 2[₫‰h.ă³ŒÏ2>Ëø,ăóSÁgØÚµk;88ĐEIeđKˆîܹ³˜̀'âñ={î{·½{÷â·ˆö2>Ëø,ă³ŒÏ2>?|.&Y ¬­­sssËăs÷îƯ]\\h˜.₫ïêêÚ¸qặ·:|ø°N§ËÎÎ~¦!¯ >_¸pa»…xxx¬^½Zn82>Ëøüêàs1ÉEŒ°¼aĂK|¾yó¦^¯wwwo^*x̀ó|™d€7nT©Tơëׯà" Ÿ+.Çk!&“©ræ‘“ñYÆgŸŸ>#ïMNN6‹-2ăóªU«đ¸S§N=K¥[·n Ă >Ü|“%K–p×£GóR8Ÿåñ Ÿe|–ñù)â3Ê÷߯ÑhœÍøœ’’VæW‰‰‰®®®wï̃¥à̀²́ĉŸºd|–ñYÆgŸ_M|F™3gMÇøŒpT¹<ö.]º”®j¹xñ¢V«‰‰Yc!ëÖ­“ñYÆgŸe|–ñù©ă3J:u(>:”ă¸̣ûÎ\¿~ƯÆÆ&--mÊ”)PNDQ”ñYÆgŸe|–ñùUŸŸ >ß½{÷ܹs4¯©ŒÏ•_°¾Ê¤Äy©ñùÏ?ÿ¬œÛYÊø,ăó‹Åç[·n¥W¯ăîÎÎKÑF^q|Fpn’’RßĂëëÔ©Sÿ|>v́X´»G”½1³f"Æ’ñYÆgŸKÚ`×®íyÅPl¾Cưú2>Wr™đÎ;)‚T_û@È«Uë€Ï*…â(øF-ƠeË–Éø,ă³ŒÏfôÆ+ÇÖñU=½d|®́ø¿(9xđ`³fÍö́ÙsäÈ‘-[¶¤¥¥ưñÇÏŸ‹IÂØ7?~ü ĂWa~đÚµkhÜ;øeÁçb²sưÖ­[¯\¹RÉ5/ăó«ŒÏsæ̀ùôÓOÍN™2å‹/¾xøüH¹qăÆà7̃È‹ÛXîYçÏŸ½U«äèè]»vơÈÍ­ób'+?>͘8±aÍûô1g§™7cFÓ¤¤;WƯ.Y° 79¹m~₫32« øŒœyPϱ±ëV¯~«sçÔèèO>ù¤̀5'Ó̃¼yrơêåă{e|–ñùùÈÏ?ÿܤI“‚‚¬èüüünƯº=‡ñHdppO^ñ9ö¢h™®‰z¦«€ß‚`1đË÷7™~ÿưwŸ$o÷ï_UTœ!BTLŸ0ÏL8Ñ]ƒ (Æ*óâÅZû„tA1´W¯6>Wơ÷ïÍ‹ÿÁ Ă}‚A¡°|îåË—Ñ̀v€°ø '§?ÿü³’ăó‰' ^^¾99 ­Kńß Á}?NÑÑ=IËøü²ÈüqêÔ©l MM´µZ½`Áú«K—.= nƒ·­îîq̀à¬~¸qæo‘̃纸áyü°üûÀ_±¥³+±ŒÏ’¼ÔÔÏI¸Â1$Ơ¾xñbûF’3§@̀Œ–ÊÙ¾ưnræGkWä¶?ưôÓ ̃>.>_¹rṆ̃é*¤º›ûMb]+€ŸL¦ª§¨l,9öíÛ×ÓÑ™Y‹+Vqï|ûömTïSt@*ˆÏ~ø¡ûÈ‘B@€M¯^ÅÅœ««í¼yxP₫ăôŸÿ4}°₫e|®T‚Æü9>>~óæÍøç¸qă &”?ºo_‚§—“µơ[]»>Ạ̊ /Y+(¸ºÉÑO§ò‹HlRŒG±äÏ¡nîÓ~đÈÂXàỊ̂T~|?s¦¯ ₫ „ Qâêêæ®ä'^À3± eï=đukÖØ1̀Qj“ߨÑ#ïùzë6éOưXø¼yÆZ^6 ÅäQ£¢B rê5{¨0†Íeù½ à‹œ>}Ú̉¯tÑéĐM{—‘¾ª u!ÍN‹ªíâj§Ơ>rç©ă³C»vêü| Âî¿ÿ®LKsùáŸ_jY´hÑáDZ»oÑ¢Å;ÆûÈ9 Äç+V Ñ! ¤®̃–nđTÄÓÉi-á3]E«êaa]7ÙVn{÷_~ù¥AƯºơêc®ø;ˆÑöFËÆ%ăsy?ztËŒŒ˜*Ũâ¤Z›Á™±±yii3&N¤#̉oöèÇđ¹ÀÛ¾̃#‚̉—,ỴºV÷9BăØØg„ÏçÏŸÇ*₫Ä Ö´7>E5*!˜ÎÀÖ•±áá]›6;tèP™kÎ;W¿N~]ºTÜILIHÉJ>ÈXN@z½ç‰Ï˜ÇưûÍ8l¿l™îí·e|~©eÏ=#FŒ¸yó&úe¹¹¹999ÁgDơTOêưµÖhû÷ï¿aÆ'óéN<¹zơêo¾ù†₫Ù0&†Â₫\à_ïÜù¾?),,ܲeËh“-C”̃đgI^ |>~ü8êyă.2ˆñ)µ##éWص­]»¶S‹«IÏxÄPúƠ?₫ˆ_•7‰™3f¼#(ñb́M66ÏŸ¿úê«®%cYuơ†>úẸ̀Ê«W¯bÙ*È åÖ¬YsñâEÄaüU²ŸÿïÄ̀f Ê)“'?-%·Ï©·Ÿ¨w'9{!Ïcá3¾*(ȇ=nß¶JOwưñGŸ_^Aî„æJănܸѯ_¿¯¿₫º"ăC̃|Ó–úèlµ EăÆ6lvëÖ­Çzú±cÇt Å;=̉¤ưû÷ă™Mï¿Çc´tÀÄ[RSSơz½ÅÊ*Qe¯·­ŸœüuXùñÛ¸A©GôLƠë RQÆøƯwßY[[O4‰~5ÔFïim½mËêăsgcc#MÈ®ZeyCüa˜7mtƠ´º™™Ú÷±Æ7Z7hl¥ê¬·­h¹/ZÍ ­AËñ#úö}$ qss?~<¾ˆJ¥̉h4ôe‡élüü®]»ö´ôŒ*ÅÛÖôJ%ÚöóÄçê32Ê@±ƯÂ…†É“e|~¥Ä¿±k×®éÓ§̉ó]»vÅ3u«ÉÉ;ß@7¹]v¶¹ư®_¿™Ûƒx N§£íËd23fëÖ­Ïa_†—Ÿ3jĐ¹¿O@ÈKK[·nƯ—_~I¿jÛ¶-ú>Ô‘iÔ¨›K‹%G¦ª.¿ç̣ơë×ñậaiOŸQ¶oßöV¦ëG_ ƒµ ¥Ö©Z‚C£F ƒ9Ëe«V­đ¶tĂÓ§(Øß¡zÍ₫àsĂg$H]º”b·_µÊÎv¿qCÆçWŸ‹Étÿo¿ưvçÎäZ–y‘Áo¼1Œ ‡b…丸üäܹsæVVrQV~|îß½ûX¢çÁ¬Q»¶åWăÆëKøç¼yó¢¢¢,¿1c†R©¤z¶³³{Z…y*ñuÚ©:iü[ir~1ÖÎÂ… ñÀƠƠ•¾ C† y)[EđùæÍ›ÑÑÑî#F”mÖ â°y³ŒÏ¯&>£lÛ¶ >99yö́Ù{««W¯:ÙÙƠrqM«V­â!¦kÖ¬Á'zxx €T…T~|₫ă?́´Ú$×¬ØØ29B‘'$$¤¥¥•!“·o߯Vo4ñ‚¹3/ Ÿ%Åv́è¢Ñ$úø=|øáWâ{ñ<_·nỪ̀Lj9999/ÖçzºøŒ¼ù³ÇèÑ÷™ ü÷¿­Û´‘ñù•ÅgYäüü/Ÿ_©>£ïÓ§OŸûâ3~ÔyyÎ'OÊø,ă3•Ó§§x{#QÙ¹m[å .¤V 3:dÔ¬yçΟ.½Úµ«ëé…•{ö́Yzf@÷î©ä Ư0ôeÇç­ï¿Ÿ́ă«„wgÍúûw;₫|JhƠP{c½ää' pª>wï̃}Ö¬YÂgûƠ«ơï¼#ă³ŒÏT?4,ùˆƠœœŸÅç+Nvv4âºR=ç‰ä«ƒÏÈÓ^×èPW‚Đ<1Ϭ_¿¾£̃Ï¡~µè—Ÿ¿ÿ₫{´̃_@üÄX{ă#sÑôÑGxP†ܹ́³»Ñ‘N¬‡ê t"û?₫øàƒhƯƒdăÆưúơ³l‡Ú´iÓc- ü믿°Hûöí3ŸùùçŸñщΠØ̉jÄIÀơ¢¼/ >mß¾}Ñ¢Eï½÷̃™3gÊ_pôèÑ₫ưûõ¼ùâÅ‹¨4˱˗/cơ~ă$ô]ơzÉWZ°`¼B…g®ƒè¨±Aåß7¢ăÆøsGåÉđùÖ­[#ˆà̃j·EZÚ+W®`i?ưôSZ×»̉ÿă?Æ_Ư¾}»˜dhJ²œ!ÜZC#[̀rơêU¼¯¯øÍ3C«₫D­§2ü>£Î;uêôá‡>Ÿ¥YÂaĂŒë×ËøüêàóÀSSSóóó½¼¼,!ôæÍ›îîMƠ¦Z}ÓôtÚ²ÔJå½2“…˜Ñ›7w® ?#-Ù¦+Í‘ªiµZNÇ0LE²R“ù,–e±!“‰!…BA£ªÄùß́ÖÍ 'pO ̣²às£”T¬”0` œ¤çĂ÷N«!8+‘*P ˜1cđñ¿úư÷ßƠ Å0ƒ= ~¬¶‰´ÑÎ aÏ4º¯Ú&ÎF+"UơÄ{#¢±wvvNƠhA@m<>ë4‘Dû)X¶›ÁÎU¡x½m[jo‰Aƒ ’uYYY9À+¨4c,3µ4:s˜ªP¢5¾ÅJ+»ÍhÖ…—Ñ;vlï¿üƯwñúñÖR΢ ñăâ3j{êÔ©Çgç/¾°nÙRÆç¤ ₫ ¶£Ñ8cÆ GGGúí[o½…|¬L{\½z52 :E¾pá +¤è3Öơó¿ï#L Åg$@wđñ¾~x†.‹@áy~rÅVx­ZµJ­VÓ_a¯! –öêeà-c3 iø©’N²²²,/÷ñY~ûˆJ+<ƒ»qăÆx0lđàQdỤ̀Ó«TY³fåR¾k×®­\¹ÍÀŒçăăcyç-+WU£IèîîÔ÷qñY:WQ),##Ynîß}÷ỨÙ³§ßWPL ©ù.\¸Đ Aƒ ªE¥RÑÛj4+VĐ“1t•åº4iJO.[¶̀|±··wÅ5Ä›ĂÀ<Ÿ»wï¾cLJă3~4:8ưûß2>ÿóûưO,¡}ä5jĐ¼¸&“éákl×®]ÛD£¥ÉÓh¨êøñă‘{£µ›G§c==pxXWW<GÛ‚µµ5^œ^¾Ù;w®_—.Ͳ³ươW ¶l1/]¡6ṃgsl× ÁÛX.CCÉOÑIc'Œ6́ŸÏăF̣ă»F†QbĨŒŸ~ú __ßÿ7E=¬^Í0øƠ¦M›h77wΜJ5~µÛ¬æÆ>ÚÜ¥’±Ê†¤e|dkz]emX4¡ÇÅgäĂBi?‹² ø_È[`á±kÈ% U°|AAA1Y-ˆ6yß›#s@¿;&|5z_1׆ĐzrÛ¶m~~6 ÅF^9œrRR̀e0÷₫Œ¸~ºëĂñ9;;{̉Gâ³ĂöíÚ~ưd|~EÆ7öíÛ‡V°Ù¿ÿ‡_,ºYFf°ÁAøs’¡mÛ¶·nƯBÜÎËˣל8qïVă=Ôj ¶ß|ó UÅF~1%̉–£Óüñ\üT†rv¡áÓxCtBñWtŸj"¢fÙĂ TÄI#GZ/99ïS=Ă ‘ÿ#ñỷ¸q̃¢xg`u:¬DºuvÈîPQØá"äÅăŒ}Ç!FG©K—.TIƠªEâ||¤½²V́===éÈÉùSßön)đUXN̉¿Zä5üdă sr°dT©Ü=¶+„ÜF©u«ØÚÆxxV«V->>{väƠ÷½yưúơi¶DI…‡ƒ©°‚`Ųh„tø-₫¹‡›³s´ŸŸ9,ŸN"@[¤ÆÄT|FĂKHH(&ù‘Ïwïªrr\Ï•ñùUÀçb2/Sñ­%Đ¿£gÍEÓGc«·t„¯^½zäÈ‘7nX¹xñ¢““e,è>/Y²Äüí:•fè-pu3?¾̀¦Ex¦}“¦ûI₫ÄŒÈ{:Ò¤ô$>7K®óŸ̉üÏj&¢ßa^.Ư=^¼xq7–GưœÁ¡T!æÅû´™ª¯¡%ưç¿gâjöU¨r777¬Êß~û­øoÄo`—}̣äÉb²"íÄÍ‚vHôá…DwÀ\×´Ç9—˜Đ4µỊ́åËׯ__§Nz1L™2ÅüÛeË–Mµ̉œ©{¢›[%Áǵ@›7o^|–íV¬Đ!ăó+‚ÏO&HN¢££-Z£ÑhÊ44ü³Q£FHz333i4rRR˲´MQ₫@éG»¼¼•4²aऌÙăYÁÖF[Iđߨ_¿~Äg÷7¬²²ví’ñYÆç‡vú´™`ËmÚ´©åWȨçÏŸ³H4̣_ưU½zơÔÔTK€X‡?<âÑ[hlˆºŸ€1"#:fô Ae‘=¦§§×®]»Œ'{ʆϵjƠ¢É%zơê5¤µ/**z«gÏœØØêU«b„g†I¦ DZBf­Z¨êmÛ¦²̉¼Û,à“ð÷DŒ¢QgÎ'¿>W;µ?pt"ÍĂĂ#,, «̉²~*ø¼{÷nó̀¯¿¿‹‡¯ƒư>v:Çmá6ˆuUÖU||Z×MÛE†;Đ³ÀN˜0aúôéH?Á3WAüDW^ˆ îƠ¾ưóÜLíáøln&ÁgZÓµ«ŒÏ¯>üñÇh………}ô‘å^ååÊ•+³è‘™ƯLOOÏ2#„”´¬X±¢eË–;v́°ñ@ùàƒê¨ÔÔ'M–¦e«ik7sæ̀O>ùäúơëÛ¶m;xđ ̉i|ĐóÆÊ†Ï¨7|÷-[¶lذ!77×̣«îƯ»Ó퀫|₫/1xq—V­·ø@usߺuëÉ“'WñVædwCæ;w ¼{·aÓƒ‡X[[ÓÊƠjïĂ3+ˆÏû÷ïHfÂƠ«W›§#u:Ùù¢¥½xñ"₫ö¾CåH¶ÑBjûúưE‚væóÊ×_{ ÏPgíØ±c¨=³)bÜUYbo.,W&ÿ/¿ü‚¿Eâ]₫A¨½§²?øĂñK»…$ƒ­ >{ܺ¥ˆÍhƯZÆçWŸ{´i“mgL²ÑºkµMí́CƠêǛ̀û₫đêƠ«zµz½4ºÉ( •JµråJËkèÎ,³gÏÆÿ± t-Ù6Xw½>ázJô9ë+U¬mTJ{{û.‚`¯Ơº 1³,[ÅË«?yĐºåË_5|Fî‡Đ¨V¿¯Ư™åW4µÔô)SQ·È?§oC"[†J±(XqÜ`¢=­RIv”ÛÅæp>sæn»Nw¾]ôûïXYÇ)•J|D[¢üø<¤wï;û­ëñ¾IÅûí7QéSZ´ANk(µ.­B1ØN:°Ü›¯·µµ¥/;Q©̉écơ†\ÁĂÁáÚµkh]è©!ÁF×#88]-„zĂ´åÄ,^ôwr.3§×ëÑUÁ[Y®—)–¶/üD£ñ°³ˆ_=̉³û;øœ——G­«‚øŒưĉ̃UªÈøü*à3RO†²‹z GƠ;9ß‘F:„d¹<bf•ĐÅ‹ßwE!¶©%K–˜c™Ÿ§M›Væ´Ø®]»^¾|á½_¿~66uñ£RE¡‹\(ÚÇô ˆAÁ¯>‡†Ö8H²¹mÛ{VD6¨“2¸ÀÏ®0xPK­¦û¢"]4;5̃¨½ÎÀ&A§Al}ÿˆ…"D´e+î6hRøáÿb,Ñ‹ÁÊ-Ó5TŸë́¬¬¨Qơ0Ø=h± :Vh'æ§¼Ư¿?Ư[ª9° H€ôç ´¸w㇒™Ó›̣óó—.]ªS*o"ư–FG©BQQöb«V­2;nˆÛ:tèÓ§O™ô,x†N 9s¦É½“^^áÇH¬zíµÏŸ[µjẽߪ‚ǿôŸÿ¸úú>Ö*HŸ_R|>₫|œ³ó ̃ñ´°­åÈT‹åO>üFAA­øø®d)Á~˜îĂŸk¦#lH¿G…i&$.\À朜œlk›NÚÂU¼>?¿K³f­€ ̀1¬D±̀±vé̉…ÆTP°#6lXAAÁ}—€U6|ÎÏ€ á¸aî̃®¡í Ú¯Xº´s󿙵’¦Ú3Z©‡¿jÚ´©yDWĐCg‹NJW‚Ï»Ap±³/e†ûz÷îộ“O>y£i³ƒBï¼ùVÑăd¹$>ă#Ü=~&°éªPTpÓ‡™Ó§÷ [nu!º;pùÀVơó³¼&%%ÅÜé4ÏÔôöé¯T·̉hƯ¡eË–h]æ¼O”©S§̉¹9,¡Ngđó‹ÉÎnP:6̉ ;G¬­C‡îÏŸÑCy|NÉÍÍÈȸyó¦ŒÏ•_K'OŒø³páÂ,A-3¾±zÉ)ÿ³³ ₫?¸ À9i4–ÉœiLé²xÁM««á`rs¿ï¥|ùå—t‚©^½zÅ$̀ƠƠƠ‘¹ :•H’ÿúë/J„X–U«Mjµ‹£c Y^¶AZkíco¬æêVê===:d4‘>UD?è_£Ă>{öl)E˜‡ «̀ø|é̉%̉ÖÀÚÚ Àà3”Î,÷)FWq|–‹kŒ¯V­ÎtqộBU¤§§GEEÙÛÛ;99Q’‰^L`@€5Ă$ØÚ¹ˆ „Mú¦µjƠBê•T«Va=đơ8¡]»vU¼Œolß´ Ëéæ₫f‡¼-¢:2?`lˆ đÈ"Iœ̀rúôiº†{J†ư|}»wï¾yófDl„A¤Í¶¶¶\ëGSg#æ;;»’°èÏ\4üé<#VAxxr™ ”§‹Ï;v||nÚ³çàÁƒ±‘ñ¹’ËÁƒ›5k¶gÏ#GlÙ²%--í‘û—ŸD@Ø´iSC£zıÀ479Zæv˜?₫\^IƯƠx7wd¿Üz/C2C—û¡Á§¦¦̉ó£G¦Ù–L&¥CƯ[·nEU«'Ó7·d́Êc)²D:ÛuüøqóLĐ#úÂôq¸ü˜L%ŒÆ>±Hoípµa 1æøç¼”ü A dfN”™×°áíÛ·¿ûî;DºNµ‡ jD?¥fÍxf„ ëׯ/ºpáv—sT6F¢|„»§ÏÅdƠªÙQÚùá‡-SRâÂ#b9He©1 >D^öˆ~*U™Ë°[Ç72ÇđÄ–n>¯¶œLUŒ1‚θUDĐ8ñnnnUĂû^¯0£7*óÉ2ÖVŸ»víúdøŒÄ:}äf£2>¿X™3gåÊ”)SMJñù«¯¾ªV­F£¡¹bN¿Ah̉¤IAA6d‰Ưºu+ ¥fA°B¦aFN‡®%æ¶%iE[Mø'zÁ4pôá&Ǹ  ¤˜ê üƠàZ´߃è U pÎ ›dk,*èđéó/ÈÊ*º|ùî›}×Nmß§OŸ… ¢wß¶mÛ2f=E|¦5“›H†Áñă^btÇúQë:‚™b¨_¯Vd0IÀ˜x̃Ci•ù ±¥(¾G[ ù¿̉*×ÑÙ‹e]\\Zµj…%u¯Èƒ~Á̃ÍdxäˆGơêµ4ï„„´maon/Hi4súøl̃ö đ™Â;24Ÿ+¹ ³sêÔ©9Ÿ}öY A@:uª‡‡‡Ù̃ĐçÅßú88Lgø…̉ú3@>Œ'Ùèw‚p„@ƒï3jÔ;́Åè´…x g@¬ââ2f̀˜ôjƠ¿„·€‹ Âæß½{÷víÚ!$ºÙhû;ø‰uè–Læ₫đ“ €w̃y§¯=egOs/`Ÿ²gϬ, 5·|îhïÙásJ@àŸdl9#Œ#+MÊK£Ø¸ïÈ5ŸW¿₫®]»î»zfçΩ©M´S€:˜.ÀöÖàQÀÔæC¤Ù[¢á~À­"?ƒX`°»[¿qáU₫₫û̃½{¾‚bW&uáÓÅg¤µÍƯ<–'J“müëÀ’yøßɃJAÛaÆ4¤¢Ă X–zÈ–-[†‚¾öË:th̃¼yăÆ½ ¶sÈÅ“‰iáMz‡&g9m2u؇º±·O®øEtͰ ._¾\æ¼OI₫=Q¤+°*>ÿöÛoHoPÏ2>ÿc„o$DD3l,°ÖĐ&[4l8èµ×°å̉?­QCl2"X rûúë¯cx~‘•Upk›w9…—BÉĐ 6<ŸÅp<ĂL™2 [º™'Ó˜ŸŸ­±iÍÓ¬kœ4%€º0Vd_i¥RéÄqcolW)1ÂíÛ·SÂÂ{9H‰;6®[÷đ×éÚ¥ W¸đ¸©ƯŸ5>O7.×Ö~6¯¬îêö hV,YRßhZÀIi\¬­ß4:Zn>Ei¿ÁʪªRUÚInĂÅ bÈä_:x‹b/ị̈Jo¥UˆV·˜S̀¬¾¨[ôƯwHG±öé°¿›(v$É¢ß~̀N­âøŒN„«[-¬V`ôÈx}V₫“ªË`điÀÚ“OJ”–ßÏÓ³cÇ™™™¨|ĂM›6a –-Yân­i¢3 ²ª«Ô,oÅ0ÈÉ›Z\á›jµöD1œ^o|ĐàRAsu¶±éCª€îLahZww÷ ο<|.&jÔ«WïÉö̃’ñùY ̣‡l yä.rØB—,Ybíª3Ü×_Ă“æf$Ûæ±ÜùólÙ²åûï¿G>c9€́lg?wîÜû"$Rq¤j–™Bœœ´Z-Ík'á?0s€G¢•âêöĂ?̀9sYó…Ä/#8äá¯ăi4.ÙÔ@Fÿú¢đ¹˜¤»D„yPB6*@Ơ…zz~J¼’•À÷/¥‚7õ\µj•ƒ­mc`‚ÿƒFƒơâêê å$>>~̃¼yØäٹ뛨êǺ÷," ½±hJ ”Q„¾¢†CÊg„Ïq.¥kEóŒ¦₫ưû7mÚô‰ Y6­nƯÀÀÀ!$PÙµ¹üˆ÷Ư1Ç×Ññ+b´3X±U^*;²¶mÛV«V-%%eđàÁæù2T)Y‰e:;?2܈Jrtô6R[AèYnöÛVÚçS₫ûøŒ̉·o_t@d|®œ2bĈ‡'p.ÏË—/Opsÿ…˜ºŸ¨Øvï>°çÏŸ2dvÊháÖÖÖEÍf°Œ-¢víÚ1aa¦̉•\̉đ¯Bѳ àƒdöøùçŸÍH¢ 1±G5g{%₫ø¥9—.]ÚQ­¡»©DE™[­Y³¦  €.Ê@ÉOª}€´©‚bØÛoW6|.#Hä,X€CM¾;₫kæTù]7₫€¸êƒ¡vl~5jäÈ&M`]tÉÏ_ÈHï˜ÿË¢¬T(Úµk—––Æ£¹ŸiZ8g̃ÅÄ:#4E ¡AÛœ„?ŸŒZ£†ùÇL†\q|FđŒwtºF̀̀N><}útËDĐX₫đđđfd~³ºEùÑBêׯ߻wïØÈÈÎ:•Lä%'ï'u] (̃8Ñ;¹E‹Î§NBШQ#|Äơë×±™4>E¥¤x=Pùb›o¶)XJª`#Ô+Mư7å9àóµk×°{ú́³Ïd|®„rçỊ̂Ăeß°’–¡HÄ=J:¥BåÏ?ÿÄóˆ~hTˆŸH̃5kV«V-ü ɼzKZ ‚‰æI)?Ëí[ß{ë×ß—Ldk!ü'°,¯éׯ¶D[[[{½̃V¡¨îè´jñb:¾Q#<¼†½1ÂÉùĐ½V‡†2@lt4[)ăƒêÔ©ƒu*¢2hΓ>¯¿/RX=€Çç­N%[Ï`Ÿ…_5vuóÔK:¤S¢´đ¤iJ‡8P†wérwĐ :hJWs {ç!F‡ËÑÑÑ^T„0¬+Ë-|œÑÔÇÂg„Aƒ(â[Äă è|!ùäÉ8O†ºĐ‘Qk‘èAKÀ‚YfÑW©TR\´ZƯ•@4̉c<Ù̀Í£VX­ëĐĐXQ́°–eÅÓ§Oă 3¦uëÖ/^́Ơ«vFH'MTLC™×¶<(́…4usộ.ÛYiñ™>¥fÍÏ3ÏÏnüyÊ”)BiÎO%0– A*n₫3==:Œéd#Blăæ†ăDïyà°Ußt„.Í—(6̀$'çïAÓa°7¯ù=sæ ²,$æk̀9â°£D]Ñđ˜Ư»wÓ„̀ÏŸOœ8ÑÀÙå4ˆ_ƒø–É=ḍ]~đĂ€:xpaaáàÁƒƯÜÜÖ­[‡cÙĐ̃đOs±ƒ‚‚è}BJY#á5æ@D“© ˜W«g,/MƠ‚¨¶tîÜ9z) )|xÈ7"<ª÷±65® øŒ2sæ̀ ®ñ¹’ăó+¬JÇ!QÖ[0^l¼^^^YÔø¬^½ZÊS'HsRÇQÎ&’¡ùÀ؃hđ!̉0c0€̀7a› Đ êăSÅFkĂ0.VV«€?N¦ï;ă¼hÑ¢ˆˆôÔ5a3÷óóC₫S&\yøđá”?ó<^¼““̉QÚZ/]º„­̉ÎÎîq£8>c¿Ó²n]£1&2{"äiÖÖÖ‰ ÷ˆFöˆqwvÖ‚ ¸D`Q½a¼àÄ+€S3|§ÆM¢\]½ƯÜđ•]\\ÉS)(Đ‘º¨ ÖĐàæŸ]5ŒñW&Qÿ AƒP±ÈHËçz\|F+m¢Ñ8­m·p”TzjpˆR©#±Đ“C/ 33 ƒ_¥ø(‘wëæííÍ[Ljèơz¬Ö¤ZµBÉ ơ_|á*¶F+U³ÄZ̃vvNUæH{£XV2ó¨¨j!!é*•₫ÓO%÷DóØ;>¢âתU«€€€víÚ¡‰ ÿ‘û ½(|–Æụ́óßyçŸ_v|¦KXpuQô(“%́ÀxMÆ Z“́¥q¼®À¶ÖNTaƒ ­RÅtZƯˆ?~ÄÀ%Ü›­W»6̃ÛØR௠L`¯‚XÁ\§k^3q÷FËiÄ5ºiÛ·oG·”6%:´b$ÉècñŒF#(…B1~üxüÊ<ÛˆĐ÷XªÏŸ́ígmhD˜‘‘äë›éîà@÷/`¤À³ZÈq²sN ­ªa¹ÖÀƯ±¸(`P½~ăÏ%cMØu$“ L'`[ †Œ?O4É–a}±)ÈÉ¡̉<æỴ̈¤ă«ÄgDḄ„£¿x¡‘äbŸ!I˜´¾ä …¢ËÿˆÈÿKßÎÆÆ±4888À××ÓƠ­níÚ4,áup×ALaơ«²vppoºaĂ=Y˜èHˆd¶pÊd Çq×®]f¥W4éÚáœ9sđéæß¢uU|{ñçŒÏè\$$$<Ù.o2>W|^¼x±‡G&u mlúoذÁüíùóçÑ4iBÖH­­”b¤±Đ₫( À~̣É']Z¶|8¤@ €¡ÛvBÄ6ï¥7LŸ>Ư“h†̃EÀe‘ úÁÀÑíđP†JSÓ 0àí̉I=́5°÷Ÿ:uêÀÍ«N±àÑQ5—IÔ”)S¢¢¢̀M†îäëK½ḌÑ׫Tø\78ä ÑFœ‹ [X»vm÷îƯ±KB¾¤ØnyÜØídô6m ¯̃ ün>>è0¥>ëÈD~ƠGZ›Ư ¬ăPi}^{m p´½H“AîgfƯØÁ=#|̃½{·‡Gµ.ißX,[3²w~’-ª4Ắ%eó˜Ü{dájÉèYé’FôöíÛ‡;rä*ĘŸˆÑs'£:‹8±¿~øj–‰¦—,Y‚ÖåèØ“àón£±.Ú̀Ê•+Ís£hT*ÿ… đ‰æ´Ïiiitư9ủ€Êÿ\^N<‚&-ăóË‹ÏèưµhñMoŸBW£˜+ù•‘ÖpY¸)”³ye]Q2ëñ ħå¸NR&%J¢Rµ0°,Ox ¿eÙø}À<àgL“¦ƒ€†™ÙLd‚HB Jy$C;z²qqqsçÎussĂR «T©TJ¥­££4q¶ÿb’ơ]Ë0̉Ó¤́ñ ¬S ơôWè₫ỵ̈8 Ù>O7®•­ư»Œ€Ñ¢E ä±̉(¨ÖO멈â¤-sƠÓDLG=[k¡)4I+‘ßÑ®È<ÿ ¼Ơ½¸M½ a(èé”JZqæF=»ñæÍ»i4}y~" ÎÁ^Ç`pƯ€Ă·ªĆ­%— ˜«J_É<®QЦM1 ÿpÓë_wt¦ö¦"^FÀ»Ä–j(UóYÑ]g²µ±µÍöơ §;0°*Ë¢XW ÂkWÅÏ/Ñûܹs¨L:|È̃=î[øo¿ưÖ]¯ïar2Û*2‚‚‚%$‡²źú]]]+iÿsÆgäW製¤-ă³9?̉Â… §M›¹wï̃¦M›¢‡'ĂĂĂäCfrÄ0–ï̃¥K×®]ûöí[?»^|Lơ7H₫gi« ̉¦„F;ẻ$‹;­KçNP2¤é!Aj l•´Óô¢E‹ÊÇë"”`C(& !'Od û»¬êƠÉ»ø6„FSUؼGP±wh€@:*x†¬s!*D KÆ”¿6T G¥§´È#ñ́đùÆ&LHMMơ"£ÄRü3©úˆ«°\ 0ŸѲü5ƠêD–u&ă}:tXBôàN6©( ”±è[¡>###³²²đooTÀo’B”1Øîܹ“‘Ü‘|¤0Q́Áévü•ˆ-]FƯ¿đ­ZÑñ3¾~iºEóÄÇ̀™s»víM“/½@|6íßïU§M›‡¢³³…¢çàÁ2>¿@ÁÎ{É‹/"´fddTdr™âs•*± Åk#‘#_E²óçÏ/3÷„ÛÎΆ9a»Ăf¬38”Äæ} ÷ö–¦Z̉Ó³Íq¹4ĂÂÿđi˜H&@Fü A‰–_êÆ l‰WËXq2™pæÎ»xñâ«W¯:8x˜LơBhe"ëXÁă*²­̃‹Ågooo¬¬#,3m¤ˆ̀5kÖ$4lt¢P(‰a†MªCỒyVù+Qàï nA»wï¦×xAôP½\¾“‹Y%Ç̃Ï%‘Öè ‚Éd2™&Ç`£Ñ™$ˆFybrU|P( ́ƺ#+hÆו”´&S;€m»]]Û—ÙôùđáĂe”·àm-¡/_¾Œls°¿X|öôô¤›\ ¿I§AĂĂĂé""ºw Ç ftBÔÂẤÙ³gyxµ[‚µY?ØF#QJ®t`ןL­ZµP3 ´FÖ đÀ¨¨L´?7÷iÀ~ÂW ¸‹ ª½ÂÂB¬¸Ÿ~ú hr¤'V×#ñ¡† £uƯÊäD×MGT­ºoß¾µk×4¡ắÙ³¡hU«V¥qươ—9ŸÀơë×/t́ú§…-ưÄ* ·í@í%$$àx|µéÓ§¯X± ƒe“èÔ$Ë 2£2Gi.ré#G<äí®]»†+ŸÓÏh ($;ª,œ7o₫‹Åg»V­*r¥ëÅ‹A‰‰¨¨íÛ·Ëøü¢đ¹uëÖØ6n܈F…XZ>¿q1ÉTc–„ _ßXGÇkkglA{÷đN:…* >ƒ-…Æ<“4&“·O¢ XKA[’_Ù‰ç­ñ«ÄÄ”–-[_¹rÅ@ î%çæRè\’f-Ưj’²#‚?>] †…#<Ï{zxˆ¢HwÂ*&aºÈ£ºÇÄÄ‚À²,Í{pûöí¶m{»»GGG'6ỉ¯ùûÉa Ÿ‘kµlÙ¸|‚G¤^èÎ GGpÀ¥Y³féQƠL¦ê¡¡èăüú믨(­µµF­,Æ„ûí7Ÿ5¢ÆRø*ª~ûå—qvs¥84IÂ<öÙg₫₫₫fªî¨Ơix£é91‘K…u€)eÿ®SG©TÚ[Yy’:Đ&½¼¼ĐBĐùà^[ÂO³(êéZ ´ƒåË—S̃›’’‚ÎĂ8Ư¥4ăÉAZ•ÊÜ̃gϬÑhúö˜ªÓÙ—Ic‹»M›6îîîˆieÖ©Ó`:Àe£±¶——Ÿă›7ÿæ›oP/K\ô? Ÿ!sرc6êü‘ătúàă?FûDkDWÔÅÅíù Mœk$XZ&Ÿli®43D0˜@[ÓĂ³èôé¿©k°ohtn Đ´ö_Àß²à<‚b™­)Ø/AøÄ<`Éb ÆÆhôôơÇG £CÎ́`48q9|NNNÇ[´hñ¿üKÎ̉æËåó|s)Ï10ŒÆ?ӼϟñÑ[·nE2Œ jΡAżB{:77·¬¬,£V;‰á‘&Y©±'ª[·.vFaaaÈ“±÷EuBB’ÑhD\R*Ơ›B#nój³ñ5N1ßƠc¢ÖÖÅ̃››ƒ̃P“aïMp˜FÙÛh‰'V6Fa8ZăÉÆ7x~i äÿđ –åÁ¯ $i¯×Ûúùgdd\ûá‡̀Ȩ@TQ=N¨vă×_û¿ù&êm6p7,lé7Đ4åWkÑ¢%´đnh-hX*´"TË¢-W¥iÆJóÚK—.Ñèú̉̀̉¸8¼›ÚʲđÙÙÙtu ÖÎà{Gn±¢]\¼##ëÍ™³èÅ??.>“́7è87mÚÔrß:Ÿ+§Đøç̀̀Lúg=J¦¥́́LŸ¾tü;c Fl{IÂÏÀx Ri~hƠvƒ£Ç"HZMvB`5¸eÀ/fŃ¡?5oq·O¿Â¡#Fr+¥­‰BôU¿³Ö;fÜp¦„­~&đß.ªÏg7X±81©p箢Ïÿ“àá9vøˆáÇ÷íÛw‹6Å‘ÔPnl˜Ÿ“d’`óDl²äOŒÏHùèÁ¨Q£&NœxèĐ!s®9W0C²­â™ä€@ª–¥À÷êÑăÀj++º`Ù²e&{{K~k2y|{äèA}‹SÑA×3 ®bÄÂơïE‡…Ñ­ÇZggo¾!°¨Lƒ9¶LơăÀ-ûßç‰ÏÅ$2­K—.yîø ŸZ̀K¢d¥§8cfáÖí…Óg₫·NÚéªQw:wßmçx†¨èsAu)®æỨƠL̃!¨h@µ¥›€Ö¥ŸƯ—B­M®¾{ckLƠÛS8qʺÄڳ£®N¶:9ơ¿Ư^ûºOß•$z¿3°­4ÿjÑzwV½^‚²+°;øN aC*lÉĐ¹}ñeÑÙ³EdЉΗlèSZ¿S*>S2dZf%ßø[Æg:?ˆô¸s[Œn#¬aÄ |¦°̃À*f“5k€ïª–LU3́Hz]¤¹,DĐÄ4ápS2éƒo)H›OóZ²qtîsŸld¹`&CÉ qATª[ÇOœ¿°5'#(t)»Ö¥Ä Ÿáâl<Ø8`²ƒ₫üó½÷6’Ç~Àq:-†·²±q7™ZZ[,?̀“á3¶¬ªU«¾ûî»ø"H¡‘$‡‡‡ÓÑæÜ¦MÉ>5Ë̉é€)£GÛ°́Jáëçç‡mŸcÝqæÎK†ùóñ¼y·>[ƒ´bÓÚµc8Åŕß|£ä>ôéƯHZ!kBÑ_Öñ¾Ñ0e‚7Tª·Ÿ(³ßăs|•*h-A$́¹± Á)œHR‘Àe;,B×7{œ>ؤ˜?>í\œ7)óºuëĐ³Óˆ"Ö¾̀-¢ö^…€¬À»Ă ñÀ¶qq[ß¾c=P7ăă››Ë 7–,ĂO+FÚQ+˜ú`oHÊ>¬đnù¼¢°¡`€°9<₫nÏ7ï¶,¸›Óđnô³ƠâÄc#|Ù¶Cáü……«ÖnÙVôé$Eß~[ôóÏE¥‹^:|Fùä“O¢ÑÚŸb‚ŸŸ>!µ[Ñó‹Û¶ÏíÛop÷î®Ê’M`Ă«Bw)Jḥ™OiØXb°ùùùÇ7|¦™3¢Më„Đ´zơj<0¨Ơ” öU¨–n¹…¨ØaÆ­{ÔOŸ—.]*”†Ơ v¦£Ë!7ïµÀïí$²t´]ÁqtRûÂ… cÆŒiĐ 9́Äßßư»e¥ÑÈU=½R’“KƯó¦øâ¢h–­HjÜ̃°¡”é=D'²È’ụ̀Ơ-gç΅RÏ=‹f\~DZ¢+W>]¹rv·îÿ7uÂráÊƠ…sæŸx÷íaŒ·ët·Y₫ƯŒœ»µëJ¦˜×ênÇ®w{÷E· ¼æ«×¢SP´ÿÓ¢ÿü·¨4/S¥Âg:¶çíím¹jXÆçʆϷoß3kÖ ¾}ÏŸ?ßëơ×ëedÖ²7Nnp*iP7‰ç½¸’Å×̀Kè¢́¯¾úJEfº”à3’mÙ“ˆÆ*ôíÛ÷رcÚ·OˆƯ·oÅgO`h›ơF¡PØÛ?û́3́#FŒqîܹ‘#GæææGn‘Kùä§Â(R†ÿ̉xÑơë¿»hnËÖŸ‚̃ñƯAC6:ømZïAĂ¹LƠƯñI…³æ +“ÚÈ©SEåèô¯¿₫ÇĐ¡C-g₫fü:Å4×PƯºui“¯ñ-E'…ºFBB5öîƯÛµK×1ñ;ÙÙÙöCNNNơêƠíư™É .MJÊFj­×ÛI±ĐÀ¼Ü:iË0{#09Ú]\¼̃ªÁy6Ñ<ú!^^ °µÈÅ2hĐ ơ©KEđÙûïy¬ˆ ö5ÿÀ‚́lä̉ I&›æ˜…*{đŒää*!!æ.F£Ñ 1dÄÆ® ¯NDơ*Å$^Ѽɔ9Ó‘Á`ppđ—,QRăúÈÈĉ§eeƠb˜* “K z¼´Û pz÷?nÜC¶SÙ¶m[¿~ĂhÆ×IQaaÑưøcÑɯ‹₫ưyá̃ 7n.\¾²pö\ ̀ ‘À|ÀàʉÏTPóh~)))ܹ@ÆççŒÏµ££;(U“¥¤”Đ“áß^)µ|¶@‚FfêÔ©M›6Å&Ï€/ N…-B§Ó!A„¡A¥Y# [Z 4i úÑæ,æ \ú•ÑZ"áñ g#(EZZ¢1nçÎÑĂLJ²%aỞz_‡b²œP§s0™ÛÛ=* ’¬_»Ö(ˆ›É@M4Ÿß,«kî Ö_ 8¯]_8mÆƯoKÜINƯ,É{E’3~â­w—ḍb$Ëyr|DPy¼úoâs²´âP]ˆ*tébƒ”)M1°¨¦Œ4JO —]¼5Y©]@tă0‹ NètÍáíMa®nÿzưÍEÀÏ>XV9ÀhX•ĐA¡ ±«dŒ¤)R†¹ÿ Ôç„{7œ}năX³ăÇGç;ëÁƒ£U ¶°4 Ç0 È È—_~é)ˆ+÷ÆQ¥2™Lh ø«Ö­[Ó÷ʵµ·ÁëY¶eË–´û–̀²45–e²;{û<£ÑÏÖÖỸfÙ^̃ø“ÜÜ<̣ål²¬#ˆƯ[´¸oáW¬X#N[È ̉¦ÀøsLÆç,èưѹÚ/¾øâq· –ñùÙáó¢E‹¢ŒtûŒØ̉°äÀ}ÂXàZ”Z/"³Ư»w#E7n₫p₫üùhokks£@ƒt”fÀ(&¿å¢^v6C||üÎ;—/_₫Æ#EG×oÛ¶Í”̀³ôÚ¾-Fr\½á;wđ‰èÓ?Öªu”\¡ă_@V¹¸T8%… ÀÚG–¥:7nH³?G¢»zâ­₫ĂÔ6Èè÷(5—6}*øŒ°Œ˜9sæb²¿€¿½ñ’TÓdfẲ.n4¡»Hû‹z~ø$¢ù-ÀwrqưsæœyV?Ñq<ôè’¥&“v[XMx󌌌¬¬,=́­7nTXXx̣äI£Ñù‘ËCCCŸ?>÷èÑÍ€úY4J¥]Ë–4S°Ôw {¶¶lÑb>Cç₫D?¥Öµ¿¿ÿ́Ù³‹I Ê9rđàÁ*₫₫GEÿâ믿Æê@ ‡rùFP9û÷ïwtlPĐN¢ĐkÛ²e Ïw&ÔzÅÀ̉P½Úî÷-|||=€/é́sưú^v|v₫úk¥‹‹~₫C>¾ÍÙ†„pVVö®®æ¬Ú2>¿X|^½zu„³ËV’ ăSN‘ơ°Aàª%rœC‡âÏ0JÿÜ­[7)·Œo S1¥1],ùêÖ­[½zơªV­6̀2tÿ0™œu:½‹‹+⌇‡r†É«Zµ:~)̃ £b̃ƠƠGd•adÜæµ°Ñùúú"5­Y³››§ÖZÓØßÀ6ÄÇ7**ÊÏ/ÄB àbªªU«:;;Ót£åå›o¾1/½A1/û›øŒN¢M0ËÚbáidl#,«½1H§÷b¹ Àưb`ơƒ‹̃6FJŒ)6ơ`Pb7±¤£U6-4ÚXkƯk]»^»v-""‚ç‘2;°¬†ăˆE³¨ºFE„‡£ÿ×_!]7gc3o¤Ræùs@@ÀóÇǵ¤âFFfÚÚºÛÛÛ>|øôéÓ@¶đ₫\:f5 †‘2`·;lذ†ưÄ…Às$!?ÖQbb–Ÿ_¢NçHîææ¦QY»¹EªTv66ç@œ,gÀ󿥓³fͺté’Făbkë$"*A§ %A˜Xé?Lơ¸â:âÎX–q©n\œ‡̉J'*8®vª<ŸÖ…½¤ef¼— Ÿ₫û_›Úµ+r¥Ë÷ßk|||è,¿ŒÏ/ŸÉ́ Øj4é!U  ¶sß’_$ÿeK° •ä½¼°U%¾Ô—,DÎx{–üAk³³³é5jÔ°³³#Ëx²%À¡^½zçβ‘Ó?üàääŒ₫º«+Ư&ă+)gÿÑG! i4ZÏëăë[]"W-[FäIII¡¡UÑëÚµ«Ak´-ø88øá½•êmà~1²t•zÁ[·n½ï»#GÄHLL´\ôú7ñ™tA+~đÆ®¡¨¨È‰V øçÆÍ¯;8ơ”+l–0Â×¾A7̉sæ²Va`Ê…!©àß„n;¥ '¾H­Zµ0 vRj7¸J2ÿ)̀a¶z½›ƒI­¶µ·̉éÜ͸¤ƠjÁPWùùù®®®yyymÛ¶ÅÄđklđTđ)+)×.€¥ l›èèhµ•Z˜KI‘¿ØÏóô*Dû;8Ô®Zºc Ofô®*USSSQ3¹¹¹*U QẬ`’V:J%‚+4!sHHˆƒƒĂ¾}û>û́3<ƒ züøq²R~7À¿ÆH~è!çc4¶NK/³|2>:&a¯€ØáƯtoï877/4 |4rø2™a₫‘ǿQXèW»6Ú¹4¹¼té̉ îx.ăó³Àç‘#G"3Y¶lÙØ±cûöí‹ P’ ÖQ||<™RAđü‘§K—.99È,̀’屄¼yyyá}i L˜0úÔHzÆ™Đà#èW&'§¢ùƠ¬YóÔ©Sh®;÷lÖ¬6"–mBŸ¨PD"÷ÆÂøûK·°Ú̃> [.–]#‚ÑyFÄy¤fË>²¶öB‹qs§y*Ö”¤ß”x#²²2;‰'R¦áĐ̀fÄgZø’a“;w.^,:~¢hß'MX·N0§?Œ™‰»́L_ºzmVë~hØô?Íó÷·n;¾FΩÍbŒÎ[Ö­Ă´·¯ €nÈa€÷Z€ê0 &GºV}×®]H₫TÉl/¢™ÏHG·LU >|Û¶mZm4"´§Ÿyg^+«çi?Äç1cÆ4H§ˆñt‹‰‰©_¿¾y_€$‚ưkQ G@€ˆu½ÿ₫̉y €÷–ëơ9»;¦ƠÆÇÊ à8ËZGÔøooïêô¹øĐ† ¢s†D±%+«11ׂ`Ö7tèP4¤L™2żĐ;. `ú@/̉ƯÚ!"33ơ /((ÀW¾{÷îÁƒW®\i9€ß>(6Æl]/>Ó"a—““ƒ~îÀﻋºŒÏ%'Nœ˜tóº“-ÅÊJ¡V]zÜ2¼¿{đJ„·C€³gF JÔ Æ&$$àûv-Ù+‡¸¸J¥äưK•ÙÚÖOLäy^¡P"ç$ƒ¨«t<Ÿ¤âÈlxi&₫œ’ôSJËỞÔd¥Âg¼ÊË+ÀÛ»Fc`Äj'µÚÎÿÚØè°^°ZU*½“Só̉|Z¾ẽÑ`h-ÍwØ\×± £‹ËEQ¯7T«VG£ArÓ¿âGèñÿöí; #Ăq|xxM++kµZËó5ÉÈe3èâxúÜ™3çb™{¿ù¦R/åügôÖÖmÚ´¡fl0 !aĐëG'ÑÖ†©.¶t*­I“&...4{˜¥¤¦6qq‘æp/^ửá3•³gÏ1ww÷N:­Zµî.ăóc öéÈE÷́ÙƒdÛ8ºcå3-œ9sf…… ÑE…# ó‹µ@Fï¶K\Kî^ñÁ ’—ä« \"ÙÖ‹É „ë½+ Ô4¹ :ƒM{¹»É•3Hö¤Ä',.ǧô"{[ˆ¤¥Ô#)ܤUA@ßó÷ß÷ôô¥l94´ê!CªVEĐë¬TÁ&°„\¼ “¬jeIX́Yr¦ƒÅ:];́‰H4 &·1™²Đ°-¨TaäÊ›nn‰üñĂñù£>B½~ưzѱ/̃lĐpç½”‰ÀCđ„—v”nÛ ]rüʆ½Ϳ׿ÿP–mD̃µÈâđ ’j¥2ÅÊ ]•íÈχ1̣̉w–܆9J‘æ̉ÁóªID-ä4â±Rá3âê„®€HKK'áX̣–{³̃ºu‹ ‚å‘nú-i“ ¢«Ïâßÿ=V:@Ö«Ăûô1cöĐ¡ĂRR̉Ο?Oö Ö±̉¦^qHÂɦ™V<ÿ¶ ¼ikk_L2φ2¿ †Üá7i­Œ”¦ ̃ÊJʾèçˆ ¿vl,B®¿¿4£êàà-m.]<¹}û×HÅơç¸‘ä ²₫ÎØÜA Q‰‰‰Ó¦M³$Ơ*]8pƯĂ#iï̃½/>{%$|y?A·nôèÑmÛ¶EjdooŸ>jÔ¨o¾ùFÆçÈœ9s,wD¯N‹[ úYó,$**î¾Öơư÷ß ̉~Ñ…ÄœJ‚KëÖMĂ_!Ymܸ1mJ‚”﹘ ±Z‘ƒSäÀŸm+Đ›7o®P ̃ˆ¸¨×¤%)R£ÀFºữ…nØḍxi±̃m¹î°¬êÂ… Ø´iZéK—.! áA›6Ưà5¢…<\¼NZ¢GZPiaÜIR̀0Ø¢gâJ•FñÙÙ9³t—g϶¶¥=‚º"ø\»t BP£q®<º ½â _Ơj—È̃îî™Z­³\2HlßƯ=㨩r»T_ß`q)233G«uuu¿¢STjÚ´9ööS]\‚JK÷+¹¾!̉¾$$$`„̣‚˜̃ÙƯƯƯÖVL+‡»RVDÓ;#Z•J-Ï2߯Æ^[.PœSàÇ,ºN0UT„É[˜ψ•/‰ Ç vâú†?=c¶oíú†N']m µ³s”'D¾ê%=[âèè(¥ọ̈2ÄÅÑ1ÔÁÁK>ºùy +éiúÎïg»rïal°+ˉơrsK5,’θ¹ưC§ Ư`˜£Ơ¨tÍtÎyøđ̃̃~ƒ;©Ơ?ªƠăQ®RM‘ëŒ<˜kAÁæNÓ¤âÑÑ‹áó!dffͺ́í¥qâ+0¨”M}ñàÁß‹SÜwΘ1c̀˜1=kÖ5y²Ñ̃>ĐÅ%pçÎ*¼¾Ñ5)»Đ{₫ù}AøgIS¾\/Ê5’ Rơté’–5¥­ŸFK½‚…‡Çđ?₫Ä₫)ùgӿئ¦ö ­íÖ­"oa`P(ÑÊÙ››8€ó#t„ EEE¼üGyåzR]]-æFøK̃looG¬pIô œÓQz½>ëđáĂÉÉÉ‹-B¨ù‹ øÆÈÈHxXfNNjoÊ”)ˆ +**Đ¹`™‡ÂpăÆeeeîíÚµ nßÛÛ;//oụ̀å'NÜ´iºOTTVÉÍÍÅṽÄÄÄ`@Z[[ é₫Èh4†……IïË P>~ü86›eœk öïß0̀;6~üø´´4Ä*ĐÙºu+|æ–-[= MlvÏ=P.))9v́Ø;°'ØÚIÛ·o/--=Ùl» k!"2ÓƒDua³8j„ ¿* ?]ºt {(Gc   œ̣°Ïṕ¨mÄ̀• ~0III5j4QŸĂ† C؉ NÇ‚ªóđđ@ơb,‰£F•"̀ö÷÷ÇH³²²›Â±ü̃O`¸Ö[u!΄Ôàµ́ííÑú¾¾¾8^ÔóèÑđ 'Nœ@óá,säÈ( ơÑ  ‰ËËËÑÄP'°ỐuC‚)¢áĐ.0'T;Ú¶^¿~=êmAá°µY³fA€ à'(À0‹‹QĂ………ƯÆ€¿ÆÉÍ„Á^¡S ›…u¡¥ ÔÔÔäççcơªª*X°Vvv6JN~ ¬‚CÖ…̉[u‰Á¨®®l¿ùù]´\‚Ï…!åå]̣Cà¢\ííư¦J…O9‘4¥++|jüư-ƃ :ÔùäIIpqqùơW·ß~ë^wPT”Äb“˜¨Û´IZ××W”Xhµ+W¯î^2V­̉ûùùO™2̣»ï¬­­1àuswÿ₫‡|'ṂÑë§OÁy:, ‹Áh4̀œ9}ÆŒiAAĐ÷ó÷Ç^>>==]ƯÜĐâ¡Mm₫??¿oƒÍĂéÁux*±4<³Mô5…›EX‚ Y¡²̣Íbđ…ØU¡2ÜœoƠUWW'ª‹222.\¸Đ[uá'(@ §'åÖ…&€ U¢‰P @¹uá4÷Ơ­ §'''…Ê:NäÖü$çÏŸƠ%ÜrôRémG &E~ןXTjµDIrF†Ú£ÆƠXY¡dµµßÔ©́„¦ƒ³³ĐÄOĐ„́6r$>'OŸ®Ÿ<Ÿø´4?z{/ưé'Î..bƯĐˆ!ˆÅµx1„€à`Q2) éçŸ{.QqqƯrBZÚ’ÔÔ¸””ؤ¤đèèùK—Æ,]:ß´ÄÄÇcY°Kb"tb&'‡ED *CU$%%¡N:Ig'â=‘£D ˆd̃Àíèè0¼/Øüơsç •}•‡N?Vñ­ÍBđ ¾¾ñ¿BeôÊ––%õ¼ {?3 öîƯ«|n(åÖ…1Ôºuë*chöß»›FèŸéŸ ư3ư3¡¦¦¦&„₫™₫™₫™₫™|³<~üøƒ¬Ùæ¹̣ÍÜ?ú€¦¦¦î¼!}¢üÆÁÓ§O•'ƯFwûéS‰ ­­íúơë •N‚³¿ùÉ™{rëÖ­{¦ỵ¿¢u=ỵäƒÙ̀pụ̀åo?ë!„B!„B!„B!„~äùóç ç3iooÿ—LwNỠèNøîƯ»»wï~•, øÓÖÖÖî¯---}î†:::z>ÓơđáĂ/^Đ*h]´.̉ïœ9s&111&&æÜ¹s}*/X°`•̀;ẁ¨UWW‡††BxơêƠ¼yóÖ¯_¿|ụ̀/ÜÏ«W¯ÆÅÅåçççææâkZZZNNÎ́Ù³ÅbŸ |Bdddqqqzz:¾nÛ¶-++Ëh4?@Bë¢u‘ÿ .Dœđ̣åËØØX%Êæ¶¾¾¾´´t®œS[LÖ)¿Ơ‚¸èKö³®®Nd‹ ¾wï˜9mß¾}½eTȃnß¾ưöí[‘`ư½S~Æ»¨¨ˆ¶Aë¢u‘₫E˜z§”é)¢Ï*̀lç΃¡Ï¡SN öÏËËS₫ˆ***6lØ€NZRR̉)çvù¬" [³fM·¹ÿ¾x­‹ÖEúqN£Ë>•Ej 0ËÊÊ”ô ̣̣̣S§Nuʹ”¿Ø{÷î]»ví»wï®]»†¡(JªªªD:­ÏG$’_ÄÇÇ755EGGCF̀ƒ~JÛ uѺHÿ’}æ̀™ÚÚÚÍ›7›×|ôèº>“““?NơÉS„e677cEÑû>tlêÆ7õ|ưúuxx8ºä’%K”¿·ûIÛ´¶¶"ÀC¨ƒÛÏÍÍ={ö,mƒÖEë"ưË›7o<¸{÷n%·B®\¹RPP d!¼0đD4̉ØØø…ûYYY™/SXXˆ¯è>EEE/^ụ̈8}ú4¶)öđÙ³g¥¥¥5554 Z­‹B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B¾₫ Ù‚-¸ endstream endobj 367 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 372 0 obj << /Length 1559 /Filter /FlateDecode >> stream xÚ•XÛnÛF}÷WỈ¨Åry‹¶@̉ÚF‹"(RåÉÍMƯØR¢"Jư÷Û’CTí‡ÉƯ3³³3gfG̣&ë‰7¹½đäù~~ñưñ½I⦉g&óƠ$5î ̃âY<™/&wÎÏ—ÓÈœ/³„ñ£æ©áuʯ[xÍ`X”«̃YÂ8{‘­|~qĂÀøF#‚ñÆŒF!Ø£ÿ<ÿ́¦n‡l̃wlÀ5 ̃ñëOüÈÛ-߈u¹¨BµbƯÚ$̃ÈÔNky·bùs‘YBh%bø<‰ñ=ø×«V-‡¡¨y¡¼ ¨è‰i¥ˆU2ï{Û7¢Ê­QăÖФ¼^ö\VJP{ÛNå¼¥À́#Pëу@ð…̣èWÙÁj„đ¾ư--Œ&Î\óÂôIQH´*̣ơ°SÿøQÁç[Ér&3~ÁƹHßå3WÖöĂ₫û"Ë…"̣HàlDÊ­ç¹1•K•bÅx4s•R ™Xâ*nÔÊp :I\—ƒ?φưµàQé8ÎTk eêNêAV¨PïÿŸÿ 3Ë·­R3"–ơhº=ê`l£$³£‘íơ–U 1­>_N÷½:rÀRu|Q=@éÄ LÉ1n¼"Ïơ=ñp¾è×û‡ó‘[ $ϤµÊéŔ|ÖVK2¡Î¦=ÛP×ÏĆiă)­ÛbTWœx«_u–Ă)saょ¹ïˆ\Âßz{ÎéhlLªÎyûÍê7Åm·»é7=WÏƠH×Ó77ê˜ûVÜjK‹í‡  BƠ¿ù©ëĂ„ÇÂß ¤Óâ…€,B[çvöS½\ys¤i»)HÄá-?öó±ÉÚ“©l+»¢q¾9³v%Ï­¬UªZÙ„Æ̉€ÍĂGŸ`\0¿=ơ][dÉ¿öîú¢É\‚ ¥`!D?©<©$VµƠl¥jĐ¡íË—ªœs])°åÇ60y“½çÓé,gí%öĐëDWm ­b R41›z)Q túø²Ñ§ºh¸9 ưXÅŒ…=OKGÆeâëè5`L±S«z:”É›¸́ШˆŒªØ¾5ƠqÜac/»¬äî™ Tœ«K?Ζ&(4ÔJµZk+N5Ơ½œ&~ă¸ƠC§æÄ ! µh³ä44~èÆ¥© Ü(Lù0ŒáæÂ#~™$a;Ơ Ÿ`1¹+·?F¸Ô&Qà̀9~dlöØ0¦­EđJ”̀qÇèͳî…K0ÛX̉)EfíÉIt¹€Í3GYỤ̀>óÊöÍ[Ù÷á2̀fVvo/¸o¶oÈ„ÔÓ¢€Ư#Ûơ†đyh‚ÀpØ.̉ÛáqØuÓÄÄ­Ï–uq²Kvhq«J²?¶äÇúÔDŒñ,I₫ˆÄÚ[Ne%"|qvlO@%D´³4̣QàĐtp–YĂ Z˜DT5Û@‡rf¥́EÍOíÊKÈ<`|—”Dk™¯óêĐ¢è¤đ4(kneѪ=¤‹G:۪퉼v¼ăjGHû¥Bïmt‚ =„P§2~•‘ÇAàóïzÆ̉wÍÑ\I²RŒQˆ.rRZpúæ̉ßy÷Ç_×älªWi¿x‘ŵq¡ä­·• g|%Ñe—Q@¥)˜ùreÂkĐü¿S¥$1Bö¥½:ë±â¸ü‹t‹ú¸¢:.…pâ™×4ü:§3]U„‘ö“ÔYdÜ̉ä–X̣Ä+÷ä¿%të!bOö”BfH$fØckKiÓ¦æ9ñ:¾*µ¬A±– ¢>¹àl C²Ư‚—üˆ± •íè„pA?Y^Dh ÚG /unúe¼Â4Æßº(½g±6wVüßi¤̀;Úg—µ)€hVbÉ đcÅÏι#,¥ÅED éIV {4ÍL§“Ù1́DƯÄ¥Ñ>z¯÷¼×¡§úƠúîÙb†)°28‘c¶á{cÿÛ“ ê. ˆz“ĂzÂ/o/&w$̉²ưkƠv¿’í¼‰À€™Áôˆ]?‘jb’êz~ñĐÙƠË endstream endobj 376 0 obj << /Length 713 /Filter /FlateDecode >> stream xÚUmkÛ@ ₫î_qŒÁl¨¯÷Ÿ ¬t VæíK×iœ—Băt±ÓÑ?$'öÚÑÄéÎ̉£wE‰¥PâS¢^8ϪäøB% YJ‹j!J-pdFTµ¸Jßg¹76½ÏtÚ-~)¯²ëê ¨[7P7^*ß±ÈÈ‚“ÆÚ^â°n6@ẁGè`ïCNËbb_oÖQHä…—&"/¥›øQ€5›u|b:mÏ’ùß÷°ƯđÑ=¾ÎÀ:]½ ó–‹4gs5ó[Ö]2Ϻ ë¯Yؽ7@_ù<¢À"{ÁO˜^3Pç)‹œœiù{‡9@´oœ >ăÓÍáëó‘à§+ñơ;°€*º₫¤cº×ÅëåĐíAå¶B4ôÀ)VLœ– v¦´Ư¸] îP-»ÿ£ŸÍѶ3̉‘}„L>V‰ %´€¶—f\!LÀlüNd¡2(0`ñ“ /ư ÇŸ×Nœo’Køơ¨9Ăæ\Ú^h%KU·1üämpÁ\¤Ü*›º“,w&¤?Z¬ư’^cW(DyRjî!gåK›€f…ôG¾¹R*×kǺ́¢ø¬ëqƒbỤ̂¦Hÿ üăjÖk;ÛØƒ;îÔ[‚3éfAâÔkÁÆf³ÊÅf‹ÏSî´È_̉Mº%$F7oii S—±̉»’‚Ùƒ”ÔpsR‹ưØÊ,Ÿè"­Vœû’Æǧ£{œ°‡oøx(^׬ñ¢±æÚ)?°¬Ră»qC OHøá>ËÁJ¿Zfó&ƒè @₫"°K§́ÆŸŒâH vKg·ï“8@ĂlŒQ·1kĐà´ỴmÚÔÄ́+ |[ă°oẠ̀#yRk ›C­£ÄAü÷Sdá`p‚“¾ŸÙ0’…áư x+«ô endstream endobj 369 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 378 0 R /Length 33853 /Filter /FlateDecode >> stream xÚ́XIÚÇuƯۻϽ»ƯïvïÛ {«·®¢˜Ö€‘(E]AÁ„ ‚ (*L(f0`«¢ˆ®®9gv¨ï­©q` ĂLwơPÿ‡‡§ßoưú­êª·bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb̉—¶lÙ²ñöïßé̉%=ưĐñăÇá'nܸ¡Y#‚ǹiÓ¦ôôtØ›æ£;wîÀú£G–e?ïưÑ́́lØĂưû÷i»;p;àẠ̣̣̀*²¸­3f̀XµjUaa¡Ö;áy®̉‚ âăă322̃½Œ°¹A÷îƯÓ¬¼~ưúÆ÷)33³äw·nƯ +á>–\ýØ1Xyæ̀Ư^̉ƒÂn?~ü̃O_½z̀›7/111++‹ă8†&U½zơ*–‹‹ËÍ›7u₫C½{÷†%`¹  `øđáP̉Ë₫ơ¿ÿưïo§)Ñ›7o³K—.¥ï¡”…]Ávï̃MÛƯ™5kØÈ‘#µ̃pFsÅ|hiiỴâ7hĐàÖ­[%·!w4jÔ(ÍÊ+VTyŸàëï^ÿ’+ÿóŸÿÀJØ­n/©™™́öđáĂï~+ëׯ_̣8›5kvúôiF &yù3nÜ8R(:tè óZ»ví˜1cN:ËP„áWâââÊËçñăÇGGGơƠW`•Ï¥ü¨ó¹[·nä¬ï̃½«ơNÂÂÂ`'@¶åË—'%%ƒÙ£G’Û8;;¦ưûßÿ.**"+Ï;7C%øèÇ$æ²eËJ~v Ÿ₫÷¿ÿ-‰JXóơ×_¿~ưZ>ß¾}ûŸÿü'|daa±hÑ¢ùóç·jƠ ̀ï¾ûîéÓ§ L2̣ùÊ•+Ä|ôè X³}ûv²æ÷ß_¾|™˜)))`(̃Ëç}ûöM˜0! 99™ÔÄßúÑ÷̣9==}îܹ₫₫₫s’3-ă±Ö¯_?dÈxv@Å₫'$$”l™#gÓ4+£¢¢€pqà±pơêƠ §OŸ>hĐ ¸¶oñù½÷bÍ5pT/^„§p¸$Đ.\X§NØĂ€`3²¶$§«i‹€ç&́äÈ‘#đÑèÑ£a›’gשS'Ø \ b‰Àe„ó- ·O?ư<ÇÔÔTSKz7ºâ½× Ÿ={öùçŸĂF*p0á ßƯøúơëpáúDDDddd•çÏŸ‡ă‡û₫Ûo¿Á¥†'xnn®æ+ĂJx@Ÿ1b¬ÿT%Ø3 ‘¬‡‹qæÏ?ÿüüƒ|˜ ëáPŒŒÀ„#ùä“Oà4|₫Đ½ _·n]̣¿ä‘@WÓD\%[´€¨ÀdX£f' ’pM<VÂyuîÜ=o5ƒ€°0°Đ±cÇrñYăQp¹ˆ ̀C‡½µÄß|ó |ôå—_’C… ¬ß°a,·hÑ’¸ ,´á£½{÷Â}!wV’×»|&-[·n-¹IzªN21iÇçqăÆÁ¾}ûÂr½zơ`yíÚµ/_¾́Ù³',“àSĂgö®^½Jˆ5hVÿ÷ÿ÷ÿ₫ïÿÈûˆCCCÉ;A Ÿá+„e¨5Cüvö́YX₫é§Ÿêå”>`×»-¥¤Đ¹¸¸Àa@́"¨·øœ––ËPºDîœÁ„Øé­}/ŸÛ´iäÉË˃ă'átY .°ØQ%T"ÈU‚<|Ñ0ù‡~¸víD}đ̀‚(‘¼…$µÈÈHˆÖæ̀™Cx ëà°Ü¼yó›7o¯רQCĂçƯ rđđ¨ÊÎÎÎÊÊz«Ư˜Ô6nÜXPP_$UxxÄÀ™’§́NđN¶|·Ébṛ‹DpñmllJ6˜Àƒ†@®8œ5acÙù¼mÛ6Ø fÍpA ~«¹C£̀̀Lgggrâ¤q›Ô;È)¼Ågø <a=ÔPJ®ß¿?yp3P0QÂg̉NëăăDàƠK–,6l˜]kø A,ù ùÎ;Ë X₫!×́¹äûÁ·‚I ÊÉɨÂÀµ?ka'P‹´]”ä3 qá¡@¾EmăÆË̉₫L"1ae96̣DĐ¢5 ŸgÏMm—¨ü×Dh„Ï$…Ú·æ =<<`¢}²7xJ>—r/ÈÁCàú̃ûkeeŸgÜ`ẸÑ«W¯ÈU(>ÛÚÚ–â*p§L™è#O*/%Où¾Jđ }ë-aYø •,¨PÀ6đ˜#ơ¨ˆ½wË¢¢¢;vŒ;êAç¹Ñp©É6à`Nœ8h13,Ă#’4¾}ñÅïŸÉ“ ©%WÂ3<Â(˜(á³››¬Đ÷âÅ‹¤¢]¿„€Û>§¤¤¯[À„x–¡ U4ƠO(d})|^°`yÙ7xđ`Xxo/! ćX>₫üƯ²OøÜµkWX^¾|¹¦YLˆBËÂgM‰9zôhM³ÆG Ö”$-á3ĐŒ´!”¼€dq¤đË 6„eGGGX^¹r%Ù[xx8ás)÷‚ü[ó÷̣.>,ĂOh>%1ù¡C‡Ÿ đß̉‹/ ‡#Ñ´lĂ“¨€éééùn’o ËÂgĐ!CH#IíÚµ5û·¡5\OàÅä#i| |Ö´qA`@ªW3“–X 5hĐà½|nÑ¢¬‡Çyñ<,á?001IÏgÀ iRÎÏÏ'Í€°L̃ñA©„bN.Ÿ5@ÓđùÙ³g¤A"[(J®®®Pª$ŸIÍ:::|Tá· "ù¯ư«d¹₫Pûó‡ø X†˜|4mÚ4MÓë[?ú.Ÿ!(%fÛ¶mÁ2—åØ=z¸€Ëçæ„ 4|>v́˜¦NâLÏåàªV­ZUƒ; ŸI`¬9sssMûƇî9ø]»v}”Ïpơ`®$Ơ¥K—»`?„Ï xw‚’&ßyóæitHC=Äÿđ]̉ Ñ½{w÷7"‘pÉ·„eá3é³AÈ´|ï6äùẼuîÙ³ç->Ă1¼ÅgX&mø¤)˜¼_x—ÏÄsêÔ©ÛÀ36ƒ‹wVÂÅa `’‘Ï@$¨·6kÖ́ÓO?-Y9…`†¼î™?¾‘‘8-T-Ká3D¶?ÿü3l" XÑ×[|&ÅÇÔÔtêÔ©d̀ÏÏï½ÇYF>_¸pâ+8 bŸ>}È[6̉*ûî¾ÅgøV·nƯzôè ÿkz|ôØEb°@1 Ÿ Ùà’o§OŸ ”Âg8iZ‡G TdÈ2áó‡îEéḲdmm &Ü£áÇ÷Ưw>8đ½;‰ŒŒ$×§uëÖ...¤)À̉̉>"çpâ%·'a?ÜưrñDz›€f̀˜ñ̃ ÈKđ.̉’N[:ŸÉ k8f¨ˆÏđÜl̉¤ ‰üÁW‰Kƒ~øá‡÷ LL’ñ™ >¿páBÍè0¨è(s€-Æñ–srr ²OºKÁMdo%ùœ——G"Ø'Ùà…CvvvEø :sæ @˜Cä́ååEÚ`!î3f Oé|† -…Ï/^¼€'5|©§JŸÑ<¶HBf̉ úWËÄTAAhQ̃…đ`i)ƒ W¯^Ơ<€¢$®ÓƠ1=̃-ăoưè{AtưúuMزÄĂ³fÍÚ¸q#i'-̃$¶Ôè±Je?xă>tÁµ¸ï ®Àµk×4=¨Ë(¸,đÓäE›¼º{÷nycÚ'O”ưÀ₫I'`{pp03111>S¢¢¢¢5kV­ZµJ•*Ơ«W766NJJb|fbbb|–W¾¾¾NNN¹¹¹………¢(dee™˜˜̀;—ñ™‰‰‰ñYFƠªUëöíÛo­̀Îζ±±a|fbbb|–QÉÉÉo­;v¬‡‡ă3ă³Œ:~ü¸‘‘QË–-{ôèáëëëîî̃¸qă \¹r…ñ™‰‰‰ñY^½|ù2333)))22211qï̃½¢(j±Æg&&&Æg}ˆơ¯cbbb|¦J¬ă3̉®Ư¾}û¦½#‡~ưúÑyË–¡É“Ql¬úoútYlÆÄüÉ„¿°0tç!û­xí?% ₫„Ø™äá#§›Ñ±j3f†°e›á]#G̃vø{Ëœ2¥4sêT¼ư5†ë$¿Ç^1yj±WL+6§Ç »hÏ>T9û×ư₫ûïÛ̃‘³³³££#…ç8gúö[\7nĉ‰ÈÔMœ¨6—.Effhôhµ™’‚:vD=z ggCæ3ר9×ÑVHY#lÜ |đά£°l…ÚŒ˜Äµn/,L"&×ÔD<“oH§å jÖ ß÷ààâûne…V›ë֡Α——Ú\¿u놺wW›đ³¯]‹\\°i€p.*âê6äLÚ ³ç7æ̀Ăft¬ÚLYÍƠ®'de3>ëO:́_иFcef̀.]&éàƯ»ÅPúˆ} ĐI0~›¶/^T»ÁÙs¼sWpµyơ*ߥ;ß °>ñỶaÿ::ù\PÏ Äqåƒ3() ÍŸo˜|Ö¦ 3f—ÎP*…m鼯¿Áœ>à·N”–¦8#üÚ5j„N28'‰Ÿ ˆ.Îà*ẫ}üØPÆg½ªdÿºùóçoÛ¶M»₫uṭadd¹á\T„‘‰‰ạ™1J̀>\F8‹ùgñW]ÅÇ ăô7mÂïtç Đ¯¿"¨€NdpN̉»/ ?g¼üü9ßÉQSc|Ö¹|èåå¥E; ùüà~Íwé’6pFª^ññÇç£Çø€‘傳xîwÎÜ÷j§₫<êƠK—p&̣ôD«WPăÆÆÍBT̀Gá .Ä æÎc|Ö“4hđ́Ù3X 4hYyîÜ9{{{àó5ø½vpƯº…΅R±¢7'2¼pÎ?‹› Ó3x§.púÑÑhÅ Ă95uê„m8A!Ẩ…³°6U<÷đb|Ö“ºvíºaÆ‚‚ SSÓ7X[3¼Sù|Àå´ƒ3”ÍÜ ëäIƒâ3×Ơë́\.8“BÊ{z‹—/+;<‚äÎĂœ .gŸ>̉&̣<׳çèúQ8«¯˜[ñ>ºŒÏ:QVV–‘‘ÑgŸ}8`ÀXvww¯Q£Æ… ”ÎgàjíÚ¸ñYk8‡†âW?•†Pô=ằ:¯_—Îxăéq”w¦ú¨vîÄl}À”’b ®"¬^ËƠ5å”Îâ«W|//aJă³¾Ê¬(>xđ@嫯6nܸté̉/^h¬̉Åg@ë́Ù‚3,À…quEZơg¡̣^<įœÅ78[̃»¿¢OèPdo¯8ƒrrPÓ¦èÍ£OÉ|_Œß̉áüô)ÿë>h ÂøL¹hă3„Iyy‚3l¬È ø¢?¢£rĂ™ FØÆ»¸)÷Ü/_FÿùOqŸvƯÂy×.üĂÏíƯ«x'á»÷‚Çqá,,X(¾|Éwv5Wñ™ñùcºrÈ­8œ§LÁ¯5Ưe_ôúùgÏig’i¿U|ó-Å Âæèh=Â. ,+¼†uñ"ß«OÙᬾ€Áâ¾ưŒÏŒÏeTb"₫«8œĐưûÑEEÊoÜxñ‚·wâẃÔÎ8ê6mQèé÷ïNŸÖ#œ‘jX¸fKEÖ°–­æ— Î"Çñ#yoÆgÆç2 ‚çœÀÊ2h﬉  æó±ε›Öp=⺺ó}}”xîPŸêÚU¿p9ƒZ·Fóæ)ØIx_Ü—²́p~ơ:œ›È;¸0>3>—E&ơê¥38ƒÔ­%ÊnÜ Á£½®]ÓÎPH{x̣óiî́ZzăÔ§ô ç£Gñ`¨”üJ}‚?|ÈYu*/œ¡VEÀ.Îc|f|₫¨""P›6:ƒóüù¨o_<AÑơVD 5¦Êg!ũ‰‹›XP ¸s‡çơÙ³z‡3ÄÏ WWÜ&¦ÈÆE‹9ă¦ZÀwÉ2ãÆgÆçø˜€êƠC[·ê ÎưûăÔ ‘‘hĂ…óÙÎQ|₫¼"pÆ; RÖ‰™{ö”Î đ®+”é!}ú [¶jgQù©QP;c|f|.]àÔsº…3n²ŸŸ‚ïx锾 ÂY|̣„³°Q\.è™3qî}iàœŸ:tÀ(ÏC^¼ÀƯäT/ÂËgçdžâ?wO±üy‰Ÿ+Ÿ¹éé:†3hï^dd„Û¹ [· ‘Ó*g<a\?l„²ÎêSnoú†3˜Gà^´x₫°‡́Ú͇ŒÓΰ€¶,£«æÀøLŸ pÑÆêÎk×â rl,~ǤT>GÇ Óă*g<áùs̃̃IA'đ́ÛWR8ƒf̀À/ æ!“„ŒZĂ›§NÓ6ă3U|^·ÏÚ©8C!½~]ƯGK‰â»{pVv„³zW^¿*(QR|<Î+%œ‘j¬·²:üà>̀öNÂå+ZĂ~~"gÔH¼{—ñ™ñù½ê×'D̉œ‰Dûö)ïÖà¹>7̃̀ñZ8ăR f́L¥œ{÷îèÆ Iá ›Ás¼];D¨>æ!̣ƒ†UÎQ1¸#ô´é$ă3ăó[úưw\ơç;q·=Ø^y|Î=eGp~ùçöî/Ä̀Pĉ9á‘-=œÁUfÎÄS*¦zg®œÁ=Äßó~ơÿf|¦‡Ï'"33= éùó́-¬Læ$èÎBt,NÉ®Dvsæà‘)̉Ă©̉ÛöWH¶?œđ¹Qs~ẹ́ ™˜œ½³p…–÷èŒÏ”đ¹¨ƠªUÜêΤFEáiY”%>l‚¸wŸNàŒ—·w•‘ÄƯ'ä—ÎÄÛµĂ_QŸ÷í× Û¯ œ…ÄE\+3~ÑÆgÆç’JOGcÆèΠƒ‘¥¥̉øÜƠ]ØP'pVï°——°™öDIgÏ¢† å3́\¨Oe<Ê·Â:3₫ú¡,z’´0>SÂç!CÔS¥èÎP¡TÂS§s_pRk{]Á̉1ă9{'aíè9wæÑ̀­ 1œÁ‘rr‹Kqt…ÿ:³¨º ¼»‡&Í ă3ăóåËøÍ 4p†²¹aî­ +’¹úMÄœßtg~|¸°{ü§üÄ==ÑÈg|¹Dää„>¤Û=¶n"&éθÜÅÄñă#ŸŸ‰bcÑ’%Áôâ27/₫"í|N˜/,_©C8Ă‚x÷.ås©À#[ÓY8ƒÀCÀO(OÛÂ&́ÊÔ!œ…ơiœ£+GÇ &ÆgÙù\T„£”›7%‚3R I33SLï)\”NœÔ!œÉι«  OéÓ²e8+¬¼p ÇÍ,ô6nܼÉ9uåúùêθqß~C4U6ÆçỀçÍ›qv)á &ü(Ms-~¸"oƠI|ưZ·p¦MçZ¶¶§S{â}ûâẉÂÜ .˜­-*,¤ơÙ=+kƯ^çpÆËi›„đ‰ŒÏŒÏưúáÆg)áL:M €_ÑÎçs¿ó>~:‡3?l„°"EˆŸKçY!\]å‡3ј1(-R÷àŒó&éÎØ<™Ë5j.ÊƯÈø,/Ÿ!Fª[W8“¸₫±„a>l‚ÎáŒGɧj¤XI;w¦Îàx..Å=?ézvge*Ơ-œwg̣®Ưøà1ºơŒÏ•™ÏPèfÏ–ÎW®`³U+ÚßÎó\»:‡³úSk{‘ă(WZ>?{†³‰̃J gØx÷nœcäF£V\«v‚¦Û³îàŒÍÅKqÎ¥¬lÚNî8ÏṆ̃ÂyêT¼à ;‚-i;ë3ÔØ¤΂€G3µmKÓƒ»¨ÜÂơz„ó±̃¹«p"\Ơ\tÆçJĂç³gñ1á ;Ó%¹Ñ(åóŒÙÂÚT=ÁY½+ÚÎÚĂß)JàLR›ÂŸƒzôˆÇؼ•¯o8‹ª|ă¼2ÎëÍø,ŸcbPr²̀p†R_T„[;é̀8Êûø YÙz‚3)•œqSJ2-=x€[œhƒ3,DD Œ jĂÓ›ëÙ[8ăO/\àZ™É•íñY>¿~ß å…3QTW‹6Aáâ,í8w}ÁyƯz¾goœ‹cE£Tà¶:9Qg¤ệ§é*sđœ• OUiàŒ»ß;wåûù ›äÉvÈø, Ÿ¡”µjEœŸ=Ă?Ô±#}Ü₫l¬W8‹÷îA¹¦DÑsÖ¸¹I3^8‡45¥âqvB´tpÁóÆÊÔÑñY>wîŒß¹hú”ÊgpÛ¾}ñ Ưº!jù*D$,àgÏƠ+œñw/]¢j.<Ímp†l`g‡Ÿæ2ת®]ă»º«§Û–Îêkâë¯IoËølØ|÷±µ-¦±́p%$ ¤$ÊøNEdÈ!++₫ơk8%~;{w₫öm(#ƒwuåáaB”Í;9ñ§N©ÍÓ§±™•¥6a³.]øôtµ ;qwçW­R›óưúñ jóùs~È>2Rmñ!!øˆ¦NÅ<{†ÿË azœ ÇJJ8‹·nq®đuÆçÊÀgfh(Ep&Ñ—·7e|vq?Ö+œ…]»ù.ƯùƒÄ£Çh8åS§^Ö¨a jÔẸ̀›o,Í̀,‰~ùẠ̊ßÿ¶lÛVm¶liùơ×–­Z©MSSl¶h¡6a3ؾB;]5l¨6ÍÍ-¿ÿ̃̉ÈHmZXX₫đƒåO?©Í-kƠ°@T§̃ C¼\·®å”)Gä á!Ø|̣DR8CÄN’±ƒïÖS¼z•ñYÛØƒ{T±@’ñ9<íØAœĨéÆÑíÛ´ÜMñæM RưĂJœ°h±°„Q”ééØ%hkÖĐä™77¿È<§¬ÆÓûJg2y–°"Yúiß•Î碢¢5kV­ZµJ•*Ơ«W766N̉ª®. Ÿ·ăAI¡ ÎÓ§ă?zzq`x'œñ®eñ£FÓpÖ‰‰x$5p^°wü“wFo< å…?d3₫îƒ\s‰›Â”Îg___''§ÜÜÜÂÂBQ ²²²LLLæÎK'ŸOB~~ÔÁ´?=–ÛÊÏËu´•ÎØ<{kIÅè¸1cpf$:áüë¯8€›|sÎàÁƒä‚3$Ơ«ïá-¬YÇø\vƠªUëö;Ợ́́l:ù¼x1Chƒ3Ru´³´,Tf>¬™P¯p…RÉYuïÜ‘ư¬==Ѿ}”™\Îdó~ø()œñPÖü³|OÆç²ËÁÁ!9ùí7cÇơđđ “ÏÀÀñă‹³“Qgpỹ~ù¥¸s—̀|îä¨Îª8ăB;Ü@ö³îƯOsF-œAƯºÉ“V¸y“«× '#œƠẀÇ̀¶Æø\?~ÜÈȨeË–€V___ww÷Æ7hĐàÊ›{AŸ¦‹*8ĂSÖĐ0S. ^¿JgüÑ̉å¢ŲŸ8ÜĐÂBzᜑ4@'OÊpeøÑcùISÄ7±»\p_¼à}çd|.£^¾|™™™™˜˜8~üxø¿wï^Q«:˜|¾~½xÖ?Úà ›7ă9•d—°s—0a²dpÆŸîÙq‘́'̃±#îØC'œ×¯ÇNååU|0’̣¹[Oṇ̃e™áüô)ü?{®Ü½xÁø\)«ÿƘ„t©RêùûSÀçy ø¥+$ƒ3,pv\G[ÙO¼iSªá ̀ Àq¥®OÎÓ<=å…3¸¾z¡BzăsY¤¬₫+VàN¤t™<5êƠ£ ñyÈp®{/ÉàŒMXÙÙY”;‹_£FŨ)„36;~\̣çuÜ,ae %pÆ{ÎÜĂ3>—EÚơߘ?¾ù;ªQ£F»víôz´AAǵíÓ¬­ÓRR̉ˆ‚‚̉̀̀̉–.U›i¦¦i‰‰j3**ÍÄ$mölµ `FG«Í đÆ&¨MØI»viÁÁj399­cÇ´AƒÔæ5iđÓ̃̃j355ÍÍ-­{w¼@Ô»wƒCZ³fi²çXØ₫CíT̃ä¨6¤¦¦ºuOí̃cĂ›]ßÇ;ƠÁiœ1ưüS­m7ÀÙ3htªY‡ o.èúˆ ©¦m7¼¹ ¢¢SMZo˜¯6gÇc3 _ĐT'—{öỄ¾A3œ ŸOŸ–£qăÆ Jà,q#ƒ¸M¥iâ`ư7¤ŒŸÛ´9`o7uj‘—WÜ/¿ÄMœ¨6ŒkÔ(.4TmÄ5l7z´Ú Ææđájsüx¼±ŸŸÚ„À®úöU›S¦Ä™˜Ä¹»«Í¨¨¸ví✜ÔfLLœ•Uœ ^ rpˆkß>.::ÎÂ"®üoVuZ™-(Hḷ 9ªØ˜˜+›ÛØ7ăàÓ̃<·˜ƯºÇ˜¶‰…³%¦wߘ_Zľ¹ 1~~1ƾ¹ ±Ăc6}sAa›ê ẵóºÜ)H́́pÇjáœ7Çmt’úĂù |Ÿ~´ÀùƠ+¨¸ÁÁp‘S…Ÿ?*eơßđó+îÀFO³”_(¤¤?öđá240₫©<?Á”¬YCm̃¸ÁÙtæ–×™ƯܰĐ gp6p9WWu@é7V$ó®Ư©‚³(ÂÆÍԌϥ‹ôßHJJŒŒ¤¼ÿ†—îÂA-œA£F¡-[ä¼›P:„Ùs$…óƠ«|Ww~ÑbÙù́䄬¬è…38¡ÄÍ_\G[đñƒ̉gơw{öf|₫¨ñ¼Ék|®b’€ÏP¾ XQ g(ƯPƯ´IV>O‰6m‘ÎÂÎ]xÊQ«Ṇ:3Ü»C‡è…3|ƯÂBÚÊ”(̣ÖöÔÁYø° \]cñ₫}Æç̉Ơ´iÓ6mÚ\¼xQ|† lR½p†2®É­'—x_n€¿ÄpVÿ´‡—(qíưÏF[·R gU,„G KÊç €“tÁùMö<~L¨cN €Ï øæ›obbb (糉 övjá %}̉¤bÈ"®vƯ? ă• Îba!çØẼQ„Ë—ăvt´oê×OÚÊÔÖídö1Úà x̀éÂ$Æç̣9''çÂ… VVVÿûßƠx¢UGV ø\̣ơ …pMœˆöÊ×Ë §}öđ*.’Á iÏ̃üà27‡\Ú¿ D)œC-[bG’”Ïsçá÷ôÁ‘´´cCŸËÂg²|ö́Ù‘#GÖªUë“O>é_₫LµđÂ2J•N8ƒ<<ĐáẶñyß~MÚ:‰á ;Ä¿!£3Ă•oÖ ]¸@#œÁ!ƒ‚ĐÆ̉6vˇŒ£ÎøØæ'r­Û3>—Ï={ö́jùg¢‘€Ï@ÎS§è…3”}ˆ‘̣̣d»›x*U ƒôpFª^v²̀1Wüxqÿ £Îà–₫₫Ø{¥ÔÂÿÖ mØ8<$$B¥°=ĂÀ5Jmzy‡‡Ǹpßaơꇬ6‡ Á¦Ú1"¬¾qXŸ>j3((¬Q“°îîjs̀˜°f-ÂÔæøña¦­Ă¬mĂĂñÖ̃₫`AưÓ6¶¡&¦Ñ?Ơe|.]ÉÉÉw5U1IÀçĐPG/œđGzÊ"~\˜xà ,p&1×̃R²Ô7/:wF8ƒ:u*̃‰4:Ö¦ư®ôôL•vELÜÙÁrwjªÚœ³³ùîädbîN˜·³Ùî¤ÅjsÉRlΙ£6W­ÚiÖaWT´Ú\¿~§¥Í®°pµ¹eËÎN»FŒT›éé;»¸ị́ơÛ½{76wîÜéÑ₫`AưÓüvººí̃¾}K±bsê<Ÿu( ø Ÿ32đ̀ƒt™´yÂek|NÛÄ A.8ăƯ¦gÓ¦Ëè„—/#ooêàüûï8÷iLŒ´|₫ă~À já,$-á-lôƯñYJ>Ÿ:…YJ'œAééx%Ùøœ¼JH˜/#œƠLđî/¯B¦°"8Ÿ=‹ÍÎÑHËç¼3\''zá́ƯŸ˜$d́`|6>ß¿ç¤Î;w"SS<~P6>‡O2÷È çW¯¸Á\½FŲ(8"¤ Î{÷b>KíkÖqöN"<«¨„³XP ÄÎ6oe|6>#Ơ¢Aœ»vEaahƯ:Ù®?€T¼}[F8ă[¢b N-:-£ÆÇ£-(‚3T÷Ɖ %¾¹£FS g¼K̀g(J—.Ñg`Dn‘kRÆ/øÁĂd‡3₫•ø¹¹Éè‡ĂĐPà JLDK–H?=Æ«æĐ¡ÎøúÇÄé{ˆ7ă³Ä|†uÿ~á rwGï̀E#Ÿ³²9{ÙáL~Hˆ˜$£r²µÅÿ)3hèP$=$¹üè±ÔÂ"g®Y+XÉølH|^´¿§΄RçÓsăÆĐ|ØñMßk¹àŒSGN™Æµh-¯+úùa6RçÂBÔªØEz>s={S g̃ƯƒŸÇÎäƒÇPg¸AC9;Gy½1"¿%”«Í6& =ÂẸ̈<¤~?Ï»ơ Ι{x×nüÈ  4ă³ñÙ×mØ@œApru®ă¬:q](3IĐÄ{ư*’©dRJJ1å‚3hëV@„LOmPMÍÄ7Ùiƒ3¸‡>QÜ·ŸñÙÀøœ€V­¢ ΢† ‘Êy%“8kÛAxư8ăåÉS…­ÛeôF(”2Ăœ§U+YßJ¼É…B!œñ­3^ß¥ç3ϳfQgXèÔ '‘§æá £ ÎØœÏÑáV::Ê gp!p›ưûer ¸¿}}¨…3.•°Ÿ́ĂŒÏÆçphDœÁ\½·ºÈS]·^ˆ›Eœ,äºt—=‘đyøp9á äî^<„Ô|¾~÷ô¦Îâ™|®™©ÆåŸ †ÏYYÈØ·́QgXyđ ₫ yø<% ÷ß  θŒ?xÀÛ9²´ø¼TjæÍCọaËçׯ‘l§ï²kwJáœóïÔ…÷ñ×ă³ÁđùÎâ©‚h€3hË+Ïeçûä—­  Î$.­²¾"œ=SW.8ƒ.]¿"—„#G¸¦&?Ó gˆŸñŸ Ï@W–PgĐ̀™81ˆ 1’ pÍZqàü”Á™´. «×Êè@Ư¸8Ùà Ú»WÎ|àz?Hœ™ÎøPă³ñdm?¦ΰYɄÒÆH™{¸vâăÇ´ÁYHƯÀµnÏO“Ñ!EAAÚĂù₫ưû³gg[Zjg Ộ† “ÏüÁûúS g¤Q‚ơß0H>Cü ÎO œ¡úø mÛäàó®Ư|Ø á̀÷đ¶¥óÁ2:äÍ›¨I-áüàÁƒêƠÛÿơ¯Û«Ti°gỊ̈Â\ ~6kH)"Ư6|ư©…38$å5@>·j… Pç]»ÔY©eàóâ¥Â²Â~B¼y“̀-—àx¡¥Q¹5#ªTI8W©R¥]»vZÀ~nÄtâ„||>un+¥pVơ*Á3J¤g0>Ÿ!^%³m̉g¤Ü“#ŸĂ' {öRgbr­Ûk¾(‹à=z¤M›s½zg«UkD²}ơU[-à ‚*ÄđrIضkĐD3€68‹‡q³X₫:ƒäó!(/8“ăÑ´RJ"öˆÓ"Q ga×n®U;ñúu}̉Ï·KhñBđÈ‘Â₫óŸßÿư¿ÿmÖ±ăS-à "Ó¸È?ÊâLJS g¼eÂ|Í!1>Ÿ;uŹáܬY°…E0ѨQÁ¦¦ÁmÚà"sóàæÍƒGT›¶¶Á¨Mgçàúơƒ‡ Q›îîÁuëûù©Í̃½ƒëÔ ₫ơWµ `ÂJ"Ø 6†¯ÁN¾ÿ~̀2ŒCàÚYà̀TÂjÖ|@ ¾;P•®°0œ”[»̃ÇmÚt¾S§"íà ¿èâ"gyvg “¦P g]Leùë ’Ïß}×ê“O₫öé§#úë_ÿV­₫ƒ"ø¨ó/ù|ưCægŸa₫¿×„ÍÀ„¯”4«Uû|ụ̀t©¤/¸†Í'È  ÎpÂô8!m“Œ>é닦LAoĐ¢Ç®toÁ¹¨ÿtË–²̣yëv¸kÔÂY¼vkÙFs$ŒÏ†Ägø¤$ù›549@`‡wîH^½v÷ú•Z8ăåå+…E‹eôÉ”Ÿç̀AkÖĐgA@ff2¼©¶§ó£©…3˜°n?2HFŸ¼t ç}•ΠY³g‘§}#q‘¼Z8csß~!bă³áñ9!—£ Âù̉%>//ïöíÛ3àª_?ôóÏ2\đ)ε?û¬vÿU©ö₫SûóÏkûÚüñÇÚŸÿ½öÿ}£6kƠªưÔ₫úßjôÏ/jÿë_Åæ—_â¿ÚµƠk₫ơ/¼A­Zjóë¯ñ×5æ7ßàÿø£Úüî»ÚƠ?‡P›ß×ÀfÍđ×îÛïM 9ÉĐºuñøAÉà ̣÷Ç!´œ|Ÿ+¬YG/œ>ä\¹®=ŸË"ă‘®üJà3DÎÑÑÅó•hçË—kkëü±J“víTÎóæá)k¥×† Ñ&­z«äÙ¥‹Ç~ô´²R›ƯºyÔªíÙ̃\mº»{üô³§ikµÙ«—G½úÍ«M†<5†ơ_{Ơ‡ÍÔ¦©©GŸa'jÓÜï¼[7µieåñĂpj³“½GÍÿx::áe—QM~‘×±ml™[F28“I7G§OËÊç¹ó„É”Âù₫}¾W~̉øuÆçRTTTR³fͪU«V©R¥zơêÆÆÆI¾´̣yơj_¡f„„8Y€s•*iơê¹h ç… ø¯“³U )«U#mÍÅ p2ṿ®̣zx÷îèÖ-©á ®®èMÏGÙÚŸ¹¶ÔÂÇöÙ‡ù ÆçRäëëëää”››[XX7®   ++ËÄÄdîܹ4óyëVS¡6g8ÁO?m£Ê±PÿóÏ?×Î (₫|Ô’̣y}Ôauç@ưÍ÷]Ütg1ÿ,đ¾.¯‡Y*1œ9îO©?äás`đŸî;epÆËé»{̉ù\«V­ÛïL;mƠBù¼o0¡B/wï.¬Vmó_˜₫ë_ÿZ¼x±Öp]¼(ÏäVÂÖí€V]EÎƠªU ¬R-¦JµÿưŸÿÉQ%© œñûÁ•)üđ@¹#üđÚ5éà @2©Â‡Ưca’úư •pÆæ̃}ÂÄHÆçRäààœüö˱cÇz”?"”’ÏÀ3³öÖ8y²hçÎ'Nœ¨œ‹đ› ++9 àÚT®I pr4kLụ́+€ó_Um\Ë—/¯8œÅ#Gq€4.L^_¼-]*)œA'OâOeæọ́•@Zzáüü9ß§ü1>—¢ăǵlÙĐêëëëîî̃¸qă \ÑÔ©ä3À ©é YWº·àụ̈%&æç'Ï4âé<2>E'mÎ)ßÿ§ú'ƠHƶ{S¢*g¼å–mB̀ y=<#f’ÎH5cKß¾róyăf>f¥pVơ*á}ư„y ŸK×Ë—/333“’’"##÷îƯ«Ư´Ṛù₫}Œ\à7ˆ“cñÎ̃­̉Ñ Á—»¸¸ôêƠëbÈ8À™´ôÔ2*/?@%†sÇH«ẃ:åsú<~V8 óñßÊÆç²HYưëÀÅH¹́p&5èåËå¹k¼­ƒpë%½5̃Éx÷.oa;”×± qS˜”p† BBĐróˆ:hØŸî;MpFdêù7¯NŸß+…ö¯¹¸ 3ä‡3Rơ!IO—‰Ï=<9GWá¬êUÂÙv/]’ƯÉÛ´)î¼!œárzx Yó^«nÁƒp¿¨…3¾€p §N3>—"íú×Ư¸qăØ;8»H˜ñÖÂó¢#yá ‚g„,“b÷ñ–.§Îüöt̃ÎQ»¶2]RDʨ4p~ưZ=¿¼́ºeasæ·ß̣øĂ_~^̃Y•ÎŒ ÎóôÊ?qBmǸsqË?zTmÎÏëäđ Ú\²4ÏÊ6×.bæ¯[—ga¿y‹Úܶ-¯£u₫ªƠj333ÏÚî̀ÂEj3++¯³ó™¸™j3''¯k÷3Ôfnîåf­ÄƠÙ ÏÚơ¯Ûºukà;jÖ¬™•„ư""j̃N9áL45l([°$lØ(ÄΤÎPoÅóß  ÁÉđ€&iàLPQºÿñ—¿T¡XPc¿«IŒÂøü>)´RÍ(GZ}å…ó¸q¨Cùê°—.ñ={Sgüť˅„ù489¸Ä AÁ™<üư©(Ư{;9${ơMIIY¥R²Gïd;û”eËÔæ@¿ds‹”¤$µ9bdrë¶)óç«Íñă“[¦̀Ë ,¨U¥Êˆ*ŸÔ¨RåóÏ?J‰Mna’2qÙ8%>>ÙÄ4ỳXµ¹`Ar[³ä€ájsñâd Ëä₫¾jsụ̀d{‡d›N[œơ>¶”ơ¯“‹Ï;vàÔ¾̣Âyüx<8ÅÛ[Î;ˆ“̀ôêCœñ%‚_É¡¢h\»†5C.HçÄDx«|ươדkƯæŒưsx 0%_¶B‚wǬ\|>§8ΰ°g^QFÎø»OŸr–v¢ŒÓ£₫Y;«ß#ëÎđuwwüÔ¦Aâ•+P½B~!1€SŸỵ̈—¿T«VÍè“jE®„3† e1>——Ơ¯I¶/êù ‡Ù¸±̀p%%O“§ <ÄMœa'\k®[Oz;$eeIç[·ƒE%HËGLªxo¢¢¢ˆˆˆ„á#^Ø9VΘÏEưÏi¡t>_½zµwï̃Ç»wï^¿~ư¾øâ‹êƠ«÷íÛnå|ơ飲\pV9Ú¼YV>¿~Í;º ÷îÑgˆÙ8×nP̉éñó•+qk˜¾á —AA4ñ€9c–ø¦8ËƠ•®$œ™Íoˆ§¯t>{yy;öÅ‹ăÇïÓ§Ïơë×ÿøă77·qăÆÑÏç p+´Œp6 ưôSñOËV'Lǽé3¿t9oïDOăhÏÔ¤ :zT¿pFª™}ä¬ô₫&èô >4‚*8ăK:*„=ñù£ª]»6 •6ld&+Ï=knnN?Ÿ×¬Áïåe„ó€̣d~~» nǛûøQgamª°n½æµ-a$› Ÿ?×/œAâåô÷íqp–Èüs\פ…w†ñù£²µµMTÍ@?xđàY³f‘•ÑÑÑưû÷§ŸÏ7"xŒhz¸K çaĂpÖwJ*³ÀIñâEàŒ¦w_ñtm®ˆ̉/œ¡*W§¢`DΟ}ĂoïëOœ‡à»HsîJç3Ä̀FFF¦¦¦Ÿ}öYÓ¦M›5kV§N[·nÑÏgü;uR—éá ›Añ¤¤2‹3-Ç̀ ÎxXw ]}Ơ*4}ºá¼~=N‹4du'đä̀­(3vÑ•)ŒٌÏe­‰bFFÏcÆŒÈ9--ÓªåPz>#Uöơ³gå3RaÓÀç›7™ÏV8ĂOlÙ‚ÛŸ©”®_çƯzHgüR ơ¢Å rT`FƯºø^ëÎ'N cc”’¢Œs¦M¶¥K gaaḉÆ¡ÁøLŸA66xP à Åe–öH ª“§NëÎBT NmJñ˜Á÷ªwïâ)+çcÇpÇ{33¤„W£*T®MâfI ǵ6K– ³âŸ+-Ÿưưq®Q à ̣ô,înMoIL^Å Ơ7œÅ³ç`½â|n7T‚tgXÙ«—bN\“¸·"p>w7v™*́ÄùÑc¹V’Á™w÷r~ăûÊ3`@2>geeí߿ѢEµk×>tèPbb"đ9…—̣̣Ôµ«zö"ưÁ©̉™îÜ©œÂØ×G<ApÆC`º{h’¡)N3g¢*g0ÁU4£ăÁüÔhÉà,̃¹ƒ;ùøúW†ö ??¿eË–iL ´½½=ă309/O¿p†ư7ms}(EBÜ,a}>à,đ.Êm›<÷»Đ¸p>|8 ¤Î¨’ôỶÀ÷d.?bTeàsPPĐà†-óûôéĂøLäæ¶ª];·Ÿ~rkÔȨkW7##·úơñ|T§›««ÚlÖ̀­V-7ggµijêöĂnjÓ̀̀­F 7{{µÙ±£Û÷ß»}÷]M)V@aܺºº†3,à4;’§#Ó¡ÂîÀ´v-Îư¢0>O¶l“ Î8FŸÈ{xûÆß8W«V­6mÚ Í̀̀jÔ¨qâÄ Æg¢èèç––÷ĂĂïƯ¹s? à₫È‘x(4ô¾¯ïưë×ƠfL̀}OÏû—.©Í¤¤û]ºÜ?{Vm¦¦̃ïÜù₫‰j3#ă¾ƯưC‡î·oÿ@Âùy**ñÂΤÎáŒËàêµÂÜyÊåóàzSEà =»xH”’ªT+S$ƒ³¹‡³°á‡Éó(—¾ÿÆƯ»w,X0jÔ(õ¼IÏ}—Ï“&¡˜½4k9‚Ke~>Æ ’øú5gÖQçpÆWxô8aÉ2ạ̊p®œïßG––hÑ"…8>‘ë`-œy×n¶tØg%á3ÑíÛ·9Ê\ÊÎç;p£¢₫àŒTó³ôî­´̣ØĂS¼qC·p†¸†¿ÊÉ)ú^ă>™ÚÁùÚ5́$ø•„Âüh¼|¥dp/_ÏäóW> ‚0qâÄF5lØ0==ƯÙÙù+•ÏGâ!̃úƒ3('§x.-Å”Ç1ăqÁÑ)œùa#8;GñùsEóÙ̃¾Bp†xÀÓϯ0›@&”ÎH5ơa%é¿‘`aaqáÂàóëׯưưư'A­ñY¥ pw)ưÁÚ¶U7Z*©\‡pFª™́4áà‡D^(kgĐƒÈÑQ|îó+×½—dpæ» 'Ṇåy­.1ŸïܹóĂ?4õü«¯¾255ưöÛoó¨y?!;ŸAP™ ßôg¤êOµn̉øüǸ@éθŒÏœÍ‡ŒW:Ÿ‡ A:`êjgp''< ¥âÄưbÂ/^*œEUz¾ƒ<5 éûo.\¸044t÷îƯ¼¦&Ïø¬R·nèáC}Á4eJq U Ÿ 9;GÂYX°35V$#…kÑ"\!̉νzáit†*°3³°PJ8ăutåÈ™.1Ÿăăă£¢¢nß¾Má}§Ï}úà.z‚óưûÈÂ-_®ÀégcAơÊ^'pæÀ ß́P¹JIÁ׮ÅÓ+ϬÈRÂên\‹Ö"”Cçsnnnÿ₫ư¿úê+‡ÔÔÔ¢¢"Æç’²±Áyo4WE‡p†ÍºvÅkÎU`‘́ƯW¼~]WpŸ<ÁÓaü~^é|̃¼͘¡%œ‘ª×5§Êă 6%…ó¹ßy7̃̃Y–I*eỴ̣̈åËƠ«W;99Ơ¨Q"jƯ„X÷èÑ#¥ó9, í߯/8ï܉g §²ị̂±"9b”x2WWpÆ;́ê.ËtºUf&̣óÓΠ5kÓp)©2åà"1œǺĂ¼ŸfR-ƒçó³gÏ–/_̃¹sçüq̃¼ å@€<$$¤fÍU«V­R¥JơêƠ“’´™Q>ÇÆâ HOpFª oÜVI&Ỏ6é ÎP®y«NHùZ½µiSÜy£\p~ú¿ŒV\r$̀ç¶Ă©&ĐLaÀ|ÎÉÉñđđø̣Ë/]\\6nÜXñ!̃¾¾¾‡çææÂ-+((ÈÊÊ211™[~ϣϋăöa=ÁĐec£Hññs9s+À›»vs-ÚŸO§ƠÎ>>øe‡"_F˜u”ÎØFV†ùag̀˜sWw .kƠªơîÛǼ́l›̣“ˆ>§¦âŒ ú€3è÷ßQûö‘0g9M7p^Ÿ†{ƒx÷GÊpªœ¡Ú:{vñJ%=¬»t—Îâµk8‰âÉ\ƒç30pÊ”):Ü¡ƒƒC̣;Ó;V‹a/4đJÍÈ‘Åïug؉ƒ̃›%9Ê«8ó=<…µ©Âä©Àç[·p íà Béé ä³[‰á̀wuÇIº̃l`À|‹‹ëƠ«—»=?~ÜÈȨeË–€V___ww÷Æ7hĐà¦UNQ|†ë!z3́ ŒJ́O…ËÈ•+¸ ‡.à,̃½+,_©i*Q´H²vpFª—Ñ{÷*°}ĂÁEb8 ;ṿ¾₫²tø‘˜ÏóæÍûç?ÿY½zơzơê5PiøđáÜçË—/333“’’"##÷îƯ+j&WŸõÄ‘>à ;ܺU‘ïëÉmm¯8“â,lƯ”/8ơ ß– ΂€¼¼”7˜ó¹v=‰áŒ/µ×¯âÏgk³UÚ²eË`áüyƯ<• £Ưë×ÈÖV/p-Y‚ÿ*®IK~ÑâĂ—µ>ưD…g~ÖÈÆP• ί^á1P­[{‘’JÅ7I÷¤³ºQ¥bxQŸuÿÙÀú×5Cnnº‡3Råô€Z©±â aäMá,́Îä5ÉDéÊÜ} ‘p¾¡ô£4Oè̃KTu ΫËƠáGéùŸµë_·qăÆÁï¨I“&4$;…Zç¹sº‡sQÆ₫êƠJtóVÀÙ¹+gŸ‰úôÁÓ:hgQÄ̃"GHXQíí½kÑ¢üv¸vƯµmÛn•vµĂ®ó®ƠfÄÄ,w­]«6§Ḉhg¾kåJbîJHØÑÆ v¢6—,ÙѶư®Ùñj3%e‡Y‡Ó¢Ôæúơ`₫Öè—ÊÀgçÖ®Ư;wN¿#OOOWWùs¶§B¨C8®úơC&&H&4ñym*7«‚pæ»tÇÿ`0|öđÀ9œµ€3R%K¤)?YYµÍ«oxó–᦭#ÆŸ R¸³Kø/-"ÆŒQ›={…7l¤6½û†×7>œ˜†5ˆ߸qăơë×OŸ>1cÆúơë+¸·̃½{ŸUèß¿³ôëÎ ¸̉3g*œÏ£F‹‡TÎâ¥K\ƒ¦$»»ahÙ24kV¹á 99 ~^ó®|ü\ià Ágm¯q0Ăæó¡C‡ªW¯~ưúuŸ_~ùÅØØx¡† Z v’®†»=xÁ¹<|øđ÷ßïܹsDD„Bù ²¶ÆYætg(¤VV8ĐR´ Éwï¥=œåp¶åèSOZº@¹á {öàñƒ çØ…Ÿ¯yÎêÎ……œ»‡ŒÙ´$泟Ÿ_rr2·_|ñÅéÓ§Oœ8agW¡£>ûí·““•°[ ạ̊ê«VéÎPH;t€Ë¢p>/Z̀,n‚.'œñDŸIK…đ‰†Äç­[1oË gІ 8đVª'¬HÖ̀«W8ă©v ƠŒZ5x>÷êƠkçλwï₫ùçŸÁ<|øp÷îƯ+ÈçY³fƯºuËÅÅạ̊››²lÙ28/ạ̊yÈœ×W3ÑIÅá|EOk8‹g̣…y „”ƠÈ€”›‹ïoyá ƯÚÚúßÿ₫÷gŸ}Fèöơ×_çæ–; =|†êªfVÀùÑ#äâb8ÂÔ½wO;8£ƒ F×®¡̃½Ë çèhÔ®"“o¨ï©(̣ùäUú†3"3Ă>~\Iø ÊÈÈX½zµ .\È̀̀ÔƠnoܸ‘¯jÈÎÎ.Ôê=|>~‘¬Q:3èèQh|àGigQJ¦n0 §;8”ÎC‡âiˆ*y‚\~\gn¥o8ă@½ÿ@OS®ù­®Ê1Ù¢Rø á½½Îà JNFsæŸĂ&¢‹ß–ÎøS(k]{ ƒS›6ÅÓT•Î/^à‰ ÏœQđYă–À`½Âï9q‘f¹2đùơë×̃̃̃Ÿ|̣IơêƠëÖ­;zôè—oÊăsIÙÙá?ÀÊ&„X»v‹ÄÓyüà-à,=Ç™´å‡@'đ’M«́pFª‡Jœ)¸Ø pËÔĂơg¨jqmÁs*Ÿ£££;v́xêÔ)QóóóÑŒÏïÊÛ»xn‹ ÂyüxÔ²%ză¿ ç3ÇñÖö¸T–Î`̣ Û̉‘Áià@œP«\pYY¡ O₫)wejĐ0aÉ2=Ây€?ׯ\̃s”˜Ï[¶lјyyyæææ”Ünªø¼h‘:WsÅá„́́ Gü€AxlB9áŒgÈêƯWTb>ÍiÜ8< J¹à ₫cd¤øÖ¬ăÚYè ÎüˆQxƒ³+ŸW¬XáêêZđfÔÏÔ©S'N¤¥?*U|>p—¯ĂỳÜËß߀ø}ÊwvF†¨iÓ“S9à n®Đ™(ÿT™º}›ëä¤'8 S¢xÿ¡âoÇ+ Ÿ[·nm¤RµjƠ>ưôÓ¦M›~ùå—U«VÆçw(¶¶Öœa¾g88ÂÉÄ&F– Έ̀0;<¢FF±±Å÷ư£p₫ơWÜsC3Í¥²Ö}}ÄS§ơgáÁ̃ÁE»L>Jä3üÊ‘÷éÂ… ŒÏïUóæ8©Qᬪ¤ íÛ Gx®Ø>ưÊg|MfÏ&!CÔæÍhÆŒrÀ*¯™™¨bÓbPó°^¾’ Ñ9œËÂú4‡ Ể¾QTT´hÑ"KKËÀÀÀ­”M¶DŸQVVEáŒTSl\¼hPDâm:óÛÓËgñêU®Y+qß~ƒäóêÛ]F8ƒÖ¬Qđàî?=¬oÜÀwöMO]ÁûØáâá#•‡Ï………€å&MŒ92>>~Ô¨Qß~ûíp,Æç() ¿"¬ œá£ZµÜµ4]óÙן³²+;œä¼¥¨è₫dV~>îÂQv8ƒÎ †â }}H8ÂYxđ€³é,R0›…d|ö÷÷ïÙ³gÉ´ŸOŸ>mܸñZMî-Æç?ëĐ!4jT…ษ©©ưû÷g|~¯î̃ÅMĐ3l’‚bb HÂÆÍÂô¸2ÂYعK̀=Åf¨|æ8ü*Y£ÂÙƯ „6Ó/^ä;»èÎ|Ø'́ù¼x)?%ê£pÖ¦7nđ^†íºóæá!'e³«+<èçghW@Ü»WA8ă’5a?¢lŒÏ”óyÀ<p~̣7K£8#’Æ?ra»îæÍ¨{÷2Áñóĉxøƒ8Û΂s_¾‹;U'ÅøL9Ÿ7lÀ³\ig(›nn{³đËú̃}? gñéS®ƒ5Ÿ¸ÈàÛ7FŒ@™K3ÂS*c·1@>O›®ô§œù!Ă…”54äDb|VŸOÂư¦Ê g„»/âBj°|~ñ¿gÿœy?¾[/aÓĂvƯăÇqÿº²À9'îNL4D—¸pïë£5œ±G/î?Àø̀ø\vâf -àljZœØ ÅYÛs.n¥ĂY˜·Ï'{à a»î¹sêW~…³“ U¿L4ÀüáÊUíà đEÊŸ)ç3ÈÙ¿Đ)œá<‚ƒÑ†|¿øÖüê5¥Ăo6p°f˜¡¡êÆ Ü³,p>sÏ´²Å@ë|ÈxÎÖA 8ăOsOñ¾ÔÍ3ÄøL?ŸÎ̃̃åƒó½{¨Ùư§Â88@̀?[:œñf^†YT£Çqu©,pED }û ó: óùˆIZÀ™<Ç)œÁñ™~>O„V­*œAÖÖ5†÷=|†²–•]:œq3HG[Qs½ µ©‡C-Z,ÎHƠcóD8"ñξKw-à,,^Ê5l&ûlƒŒÏJäóhîỤ̈Á*¼~¿ø¹óùµ©¥À )7xW·aeđ^DÆă–çsçPË–è́YĂơáÂíÛå†sワµ½X";=ă3ăs…kđàrÀ4s¦LZZIŒÁµíP œù¡Ăùđ‰¼»Geđ̃.]°3|ÎÎÎxp÷ơë{„¨>`d¹à̀{÷öî§sú`Ægúùüü9ª[·p̃µ ×vIÈmÈ|1‹“Ơù½p†¢“·÷ó­ ̃Û³'î•ñQ8>ŒI₫đ¡ạ́9coïT.8‹ÂÂ$’¡”ñ™ñY ¹¹'́ư(œ¡'̀1Ø’¸=]ˆ-ÎxùÄI~dPeđ^ooüÆá£pFªd₫‘,†'ÜíÖ£\pFd6Ø4¦B`|VŸ!x&w©,p¾zơ5à6FuIçáư‡–g<â`\ß`eđ̃ĐPtđàÇᜟڴ1ôƠ¤)ü€Ae„367oá́é<ÆgEđyĂÜ£Œp†•<²»˜Ï#9»}Î 场̣‹WïBééóµkøÁíêjè|̃²·u(+œÓ6q­ÚñÑ”µe|VŸÇaOYà Ú»·o>ŸŸ>åÚ˜—gü73^XŸV¼7!#ºt8ƒ“,^Œ| ư}©xå ÉU8óîP Ó̀ưÍø̀ø¬…=Â…«,p>zw̃7®RÜ221ʇà Âä©Âî̀Êp)V®Ä›K‡ó8ÀÖdR2dÇppŸ<) œñûDƠÆŒÏzÇq€bÊg¤jR~úôăp&É:6mª|vê"ܽû!8#Ơh1§R„ii((è#pFªÑ+*ÁûR~d¹,p/_æ{ơ¡öD”Î碢¢5kV­ZµJ•*Ơ«W766NJ̉f=å|:ç£û(œ!‚2>]9øÜ§çƯÿCpÆOm;GñâÅÊp)öíÉ5J‡3R½È˜=»8Æè±üä©ÅMĐ€3^̃–.Lf|Ö“|}}œœrss Eî@AVV–‰‰ÉỤ̈Ï œÏ>>xä—¦đ!8#Ơ”…ÏŸW >ăù2/ưœ…˜x,ŒQB¹¹ø ^:œOđip°á_ ñXf<`)pFªñ†ÂÆÍŒÏzR­Zµn¿“,;;ÛÆÆÆÀøœZù”g ‘O›̣–„‰‘BæÁ™Àu´­$—âÆ \·*Î÷ïă¤}úlrÑ?ñùùs̃Áå£p³²¹zÊṛŸ’““ßZ9v́Xrg] œÏp—È´¥À´f NPVYø?WX·₫CpƳ…ºv«$—¢°5ị8ƒohºI~‡§7?=¶´ÈyÏ^ι+gn%’ÄRŒÏzĐñăÇŒŒZ¶l hơơơuwwoܸqƒ ®hFº Ÿ=Â.Îùù¸ó†aO›̣'>¯Lá¼ÎâË—øƠOŸ~¨̉È̉R$üCpF¸=Đđ–ªƯ bgc_ œáÙ“uĐ—“ßø zụ̀efffbbâøñăáÿ̃½ÿß̃™€eÚ<ïmµÛí̃º]µ´̀´p-M­ÜEESvTTÄÜÈ¥\@Ü(EÜ1 EsÅ0qAIÜ0\IÜ—Ï̀™ÿ̀{^o@>½BæûyzzÎû²Èû;3Ÿ3sÎ̀ï§eG)c~æ´oḮ́'g₫̉Ë‹mƯ*Ÿ·mW¬m”³˜½&"£½åñ3—đµk“3§k×üD.e¼m,[AfÍ}Œœùå›FDÑÀRư¸ë7 ägW×|÷)ç¤$qsăäI& tư&2ld₫K 9‹—Á¡¤¿4÷z˜X·ó89óaKóæ²DC=|Dk&gqr&3çđ ¬<ÑÎ_;WXÎưû‹‡ƒ#FHÔ<”fփ˟ÉYMOWê6(…5SÊ’ŸåY¿¡©ØÉéOå̀Ù°ŸP&¤í—dǼÂrV³²È„ÉễxyB±m›HÁñgræö‰µ,%j#FÑư‰EË9ù̉®#±-í¹¢°~Ă@~æúä“üưƒäüÛoböÊ»¡\~îÚCéëQXÎâKC‡«§NË£GÙÈ‘*gÎ̉¥â?y Á!4|m‘r&.ôÇå¥?7x™Y¿æïï_¶×o0Óó÷+W–³‹‹è˜{öHæçn=éÁäÂr_â]’ÛJnÜàÓÉ?•33‚×ïNKáçmÛ©ÿô"å¬₫z‚û™††•̣PÆ̣×qWg=m**Cøyüx_´œwîdîîby•TĐ)Ó´ uä¬&́S>¨ùtWjăbe%G‘r~øY[K´¶G´'—"åln9»vĂÏ%ÉÊ•+û?mîcCø™ÏOgÍ*Zι¹¬C&tÑbºnC9ÓM‘cÅÖI¶hôíË4–ó×_³O?Û %̣ó½{"‹~ɶ³˜^ ̣RSÏÀÏÅJơêƠÿeAụ̀å_|ñE~ЧOŸ2ég>:jÚ´9sN9”¤óó¦H̉­g9W7ºïg2ø+Ù¢1a‚h!EÊỵd‘½_6Dnçû÷ ËY=ªÔưTÏ> ? 5jÔđóóK3èêêÊn=ùGCøụ̀eq±°œ9[·²éÓåóóâP̣ơ•O,ä¬̃¸!ªÇNô“-¡¡,$¤9O›ÆRRÄéǜɧS‹sG{¥]Ç̉ÿ÷—ûYYYîîîÎÎÎÜÉe₫₫3¥Yà6* ç̀L‘ÀŸ‘dC=y Z@ÎÚq)ߺ[DD° ³ª²Ÿ~’ṇ̃ͯÑtQH9‹Åk×boi™¹ÿ¼víÚ5köéÓ§̀ûyà@û9߼ɺwăêÇåóóÍ›ÜÉä,:&W/[)[4̀Ï^h)gNPP₫º‰ǘ;Iù¢¿ˆ[ÊYM< Æ'ĐÉßÁÏ%Izzº­­­¯¯oÙö3ïqM›”óúơ"uR^².™ü¬ª¤µM9ÓƯ±J­éréüœ“Ă´³ä̀L™ë"#¥k–Ó(]Îâưuè‚ ̉ÿ÷£>¬áǜGAÆ”37³““¤'Nù¬™âÔƠRÎÄ© ñ¬>"a4ºvå•?È™±,³V-ñđBºË÷₫D2~R9‹F²0˜®ß?ĂÏÏœ¤$s%P]Î̀´wløpIOéÙ‡=g)g5-M$f̣=¤e€Ñ£Å•r;–=yA¡2ág®å!Ă ÈY½u‹´ư’. ŸáçgÎơë"‡¤¥œ9«W³™3%=qdÔXơ@’¥œÅ›íƠ»w%ŒÆ¼yÂÏ–röơk/ûö•̉Ï7o*ÿ çôtââ*̣&=?ĂÏŵµ˜Æêræj̃\$G’:}Ưc)gQñʦ“œÑؼÙ\@G—³¢°Ư»ÙwßÉ UQD’º?ÊY”MáÓ+½Đü ??SZ¶̀¯̣Éå<`€(­̣Ë/²ú98D”¸Ê“³xçÔi¥IK9£qô¨Xçl)gÎ’%,,L̉æA:Ø™ëéäÉ™iûVŒ0½‚Ÿèg??—/çà`q¯£Pliü0Si×QÍûüêÁd¥M{̉µ‡œÑ¸sGÜ₫²”3g̀×™ưÜ£o–rf¦´´†øăág#ú™‡V®̀—3¥bü,-tw,6C—³Ø}°nñö•6 VVâ.t^IFñ`¢Nvü¸¬~äEă,åLÓ~3Êô ~6¢Ÿ££ÅíDMÎ̀´éûÉË”ÄîƯQcu9«'N̉;©ÿtỉ¯;{6_ÎÆ‰=§̣T=+ègÏ!u{]Îê­[SbgŒƠ¨đ³ư|ô¨²¾÷àÁüÂF2úù́YQH.OÎb€´~#],m@&O6ß₫̉ä|ơª¼kă…Ÿ ̉Ëœ‰•u=z‘yóyƒŸáçbâúuÖ¢…ùøÑ#6dëƠKb?߸AÚtĐå,üFW¬’6 ²U«̀r~đ@ä|öô”·yˆå=[¶ér¦k׫G‘áÆ¨?ÑÏ”²víÄÁÇâa}çÎâv´¼~~đ@©ßXÍ«û¥?¯|̃\ÂäH:QQb³¿&gNl¬¤‹ë̀%hƯ°I—3Ó6N0F*1øÙˆ~æ8;‹\Î3f°€¶}»ÔçŸÍr6í#ƒé8i£±b…ØLª?œ?Ÿ'±Ÿ—.# ërfÚå©đ3ü\|ôí+îihơGfÉÉrûÙÁE½{×¼÷@ă£&ËÛª/\5BCÙçŸK=½¢ák•f­u9óÙéƯŸô?ĂÏÅŸÀê;<<Øùórû¹gº7A“3“¯rw²²˜££YÎ\ÔcÇæ%”ÑÏ‘›É€Af9߻ljç´~†Ÿ‹©SYLŒIMD îÜ‘ÛÏ.Ư”649‹—n½U “µYĐª[¼XÈ93“ $WYØ‚~̃Mg̀Öå, V®XEƒC ñÇĂÏơsPÈ¿Áå”9 ́œ9媨ê.íæÑ$∷¯.gfJØBĂ×ÂÏđsñÉøëă#ví*û¹£₫Óé®Ưœéúri5Ê\́,1‘Ơ¨!wÛØ³Wù¸‘.g‘ÛpđWzBø~.bbDAXBD¡X™7û`à|ºd©&g­J??¶w¯(Û¹3{Ú‚œeÆÏqd”·Yι¹dø×SW?ĂÏÅï}&ˆƒÔT1™•ư₫ÆÔ¥Q.gÑ32ˆcgÉ2}ºHaçê*Rtï.u(Ôc)dØH]Î4`&™6ƒFcĂülP?'%‰›̀T/CÛK(µŸçÎ#Á¡æñRJ é`'y@†gööbUÏÙ³ù½%ơó‰“Äk„.gUUµ»ađ3ü\|hg̀w¡¥­<˜?‡ _«%DơŒ́‰«›ä cË–‰ƒcÇÄ&S©ưœz†ô¨ËY\Í'úe{)ülP?ÿú+k̉D˜9.Ndb—ƯÏQ?Ñy ¸œEv²ÀïÉPÙ¯X«W‹Í)̀ôœ¢gO¹ÛÆéT¥ö'ºœ™iû]½~†Ÿ‹;DR2JÙÏ?‹Uv²û9fñ›"r,¬ß(²“}3F̣€lÜÈ-™‘Z´‰’¤n§N“¾æ'4âÙñ„ÉJ“–4ágø~.>Î5?Ü»~{D…ơEL< sñ¨(6x°Hû̀̉~~rß߸z•tw×åLÆMà—oơ 1ÖÀÏơóùóf?%ªËIúó~Å­·ùxo<üä™?_ÔL¹víÜɦM“»m\¿.JæÉYU2j¬zè0ü ?.ˆv¡¡bwØäɲŸ;Q¬£%¤ë6%»oñÁ[ÅÀ̀ÁA܈;Wn?gg“Nºœ‰×̉g€ª8‡Ÿáçbà̀‘חÇIß|#ưøù̉%½"]N—,•< Ë–±/¾“¬¨((÷ÍơáC̉Ñ^—³¨Ÿâ1X5HA øÙ ~>}Z¬̃´I<¦—¹ºœ¹^¿®íäQi߉.[ñ³–%"Bz?SJ¬Ûëræï÷¾jZü ?'N0±¹{Ë‘ Gv?ß¾Mºt#¥‘£ˆ‹«Q²ûññæÇ‚‘‘"C‹ä(Ơkérf¦jhê•+đs‰Eùư+™a,??.ÊZƯ¸Á`̃̃̉ûù̃=ÅÖ‘Ë™N›Açÿ@7l’< Ú®%>Éjܘ){ó ­̣3ˆÑUá\×T¯^?'¹¹¹>>>•+W.W®ÜsÏ=W¾|ùÚµk‡é•SË´ŸµeuÂÏbk˜̉ƯËYd' œO7o‘< û÷‹¬à"Ñèüù̉ûÙc°jª'’„÷ó$Uƒ́4ºŸ===ííí;vï̃=̃7333÷ïß߸qă   ²íç£Gù¹11²'ø5O 5ÑàĐ™sŒ’Ư·øX³†5h J¨DDÀÏŒØ:ªhræ N]T­4#ü\̀T­ZơZ¡â—‰‰‰6O^“ÏX~NNóÖƯ»YëÖb— P[›;£×º8ṬhÄÇ›³nØÀ¾ÿ^z?wr ?,Ôä,^ÚtR R‘Ñè~¶µµ]½zu7}}}ƯÜ8°±ü|đ ¨á́̀¶n5¤eïƒ6èÇÄw"5Ư³Ẉh$$˜³fq?/}³S6QÜzëcf¥i+ơÑ#ø¹8|ø°••U£F¸Z===]]]ëƠ«W«V­´'_?c,?‡‡‹‘ó­[HÀ×ÛÛ*cÇq?“1ăÔÄ’Gcß>±ệÊfmͶô×în=Ơ«Wµc¹Y©ù±Q₫̣2°~#'''666,,̀ßß?$$$..NOÄ]†ư¬×·JIA4ù¹v}2}¦HS6ÚÛ(ÙÉÄDqƠvqk/ɾ™’‰;¦›s—îµaÊ»c}qư¬mKá=Ñ8uqöAW7ơömq0â5å¸äÑøé'V§ÈÏ¿n[¼Xú¶1p¨zî—3o$ôb±s‚ŸKi××q-{{‹»Đ­[37Ù«í™ú`^Ú¦2`M–}Ëo£G‹ƒU«àgñȘ̀[ ®àׯ«wîWø¹dxºơu'Nœˆ(„­ Ÿ{÷ p""P6o{ñ"9G›;yJ̣hđ>=j”ÙÏO5Z)[mcø×J»\ÎL+§̉³ü\2<Ưúº}ûö¢eË–:æÆÔúơ"NZæơAÏ!dŒ6’tuSÓÓ%†Ö*23E‰«±c¥oC‡Ñ¨Ÿ̀ÇákH'Gø¹dv}]r²9¯¯¾QEr”¶_’9óD îîêÍ›’GăÄ ‘~¶G‘e”¡%‡úO§»v‹ƒ=qJ›dü\2H»¾N×̣"‘E?Î]²;¬øHJb5k{_ ©–́~3₫´•Ë™8u¡?m1Pyw¬¯3¨ŸSRذáÔ)Ö¢ëƠ zfÄw¢j*Z$väe*“– ̀åæÏ––ƯÏ‹“IßmƯ.¨ ûÈDĂ´(cùE !YYYO÷³†Ë/êæ&††"¿¨©úMQăö̉°•zŸª”JôtóU{ΑVö¶±l…̉¸)—³8ÙAfÂÏ%Ă£Gø°¹oß¾üS„‡‡¿ùæ›åÊ•srrzøđaÙös\ûä1~Ö3±Ë̃§¯Ç>”f­›7YçÎ,7WäÎB₫gº~#™l.¢L7Dø¹¤>|¸··wơêƠ­¬¬âââÎ;ggg·fͲíg>èß_́̃ͦLû½̉¦½qC+f$9̀̃^´₫~—½mDo§3fó5ụ̀éçÄo*ü\2Ô¨QC»¡áçç7tèPíÍcÇqE—m?_¹"Îs¶ne3f@HŒ̀K\¡̃»ǴœV­ ›˜ÈŒ„©q{ɤo¹œ‰ƒ ?0Py£û¹}ûöIII&_]Ñ8+W®ùäE#Œåç[·D₫ºôtñ|럙)ơ:]½F½u‹të‰h¨*kgª2z4;rDúhp3÷êÇå¬ÿƠXåŒî瘘˜+FFFêïøøøT¨Páøñ'ÎÀ`,?gf̣k“È/8f?/_I—.£;v)M[!îgni//ñ(Yö¶±c§̣E ơ·ßÄñ”i4vü\bdee]ÍKÈDeŸưÙÙÙOñ{ŒåçGXb•ỰålÉ؈ñI+8Téä@º»#œ/¿dˆ§„ ̉ŸÓÓơ=Ưd°—ô ül8Œågµ©`Hh(6ˆ™ü<}ŸÀ̉IÄ éVNNbó`ưụ́́eéư|çé,º¶z:UiÔTưƠ03 øÙ¸~æXE6nÄÙctk41[=r”ŒøÑà4h n|qK¤jqúùÑ#QÓêtªx>èØE}̣ÍÅđ3üü¤88ˆUlölœ=FwÇ̉©|êJ|°]GàáÁΟgvvLúÍ”¥U;Å̃YM< j©'= ül\?s3;;‹ ±±8{Lưy?ü̃N<‡ œaĂÄ“Á¶m “Ÿ?oίàü€Ø9hû?ül\?7i¢£E•ŸÆÙcê$¥[O¥i+̣ơhDƒ3j”¨Bب"!ĂfS₫g̉ÚÆ@6ül\?ÄΜƯ'C7F(­mèuÚN10q"ëÙ“5oH˜ǘ1X=fekû?ül\?{y‰4́Ü̉'Oấ1ơÄI2ø+ơˆhp¦LO(\\ “Ÿ½FˆUĐöÎÆZ?×Ï̃̃âÎ,˜ư|ö,äE7l¢?,D48₫₫,8˜ơí‹H˜ü&>ăé¶íˆ'9™µiĂ&MB$L~̃±“̀Ô8ÀÏđs ÍÆenn8uf”mèÔº=¡àlÚÄ5caaˆ„Éϱ{ˆï$̉»?ñ6̉SøÙ¸~̃½›Ÿ>ñ hëöÔº–¦ ¤¦Çk×"Úøy—̣Ic̉­§±ĂÏÆơó̃½¢8lÓ¦8uyăç–mEufăT—+V̉̉XăÆb L~̃IF·  ơø~6®ŸĂĂEv//œºâ0û¹N}Åcˆº?¡àܸÁêƠ;LÓ̉~5’NŸEwáçàȱÀơTÛ˃|iÇç°ê$„‚sç{÷]¶m"ạó©ÓdàP̉ …Ÿáç %E$XđöÆ©Ëó³½3ùf¬ô BÁ¹{—}ô‹G$ôÄI¥nqûk¯‘"?×Ï'Nˆ‡ƒH€“ïçNä«êÁd„‚““ẴµỊ̈ü|,…¸÷#ă&¨ûŒøÙ¸~̃¾]$çŸ0§ÎŒb·¥ë6 œÜ\áç_0™0!̉ÏöîO|Ækz?×ÏgΈÁóĉ8uy~®ßXqvUC(Ĉ‘ûÏèÜf?_»Fzô"c|Ôd#E~6®ŸÏc¶¶̀ϧΠéÚƒxQS#o½%²páç7ˆkO>½R…Ÿáçóó¼y8uy~îîÎHôä)„B£Z5ö믃ÉÏ·n‘v{zÜH—oøÙ¸~¾p5iÂÜƯqệǘêFÜûªđso¿-"áçŒ ¥Q2p¨zÂHƠîágăú96–ÙØˆvÀ́ç}”vtû„B£Jvú4Â`̣sVqêB†WO)"đ³¡ÇÏíÛ‹ @Cù¼¹̉ªzö,B¡ŸÏœAL~6•o ƒƠ3Fjđ³qưœ–Æ:t`Ó¦áÔåŸû$ƯzªüºLT¬ÈΟGL~~đ€Ø:̣é•j¨ˆÀφö3?ĂÏù~öL:wWy\€‰*U.Vf?çæ*Í­•¦­Ô‹áç¿`n«(¿ÿ₫»T~₫í7Ö¼9óđ@ç³đ³³zù2B¡Q¹2ĂÅẾgJ•º H÷^jz:ü\bäææúøøT®\¹\¹rÏ=÷\ụ̀åk×®öTE#Œ˜ÿ¹~}<´đó /¥]Gj¨®ÅÊ»ï‹807¶_å=†º|ƯÏöööÇ»w着™™™û÷ïoܸqPPP™÷3´iĂüưÑọ́æP­Ú) ¿P¯_G(4̃y‡j´X̀Í£¹5éÚĂXÍĂè~®Zµêµk× ¼™˜˜hcc#Ăư ₫)qÿ9€4l$io«̃¼‰PhT¬È.]ḄG»ÄƠÍXÍĂè~¶µµ]½zu7}}}Ư¼lªáǜ»₫¡~=÷Aơ΄B¿¿›ñùăç)5j«yƯχ¶²²jÔ¨W«§§§««k½zơjƠª•öäÏEŒèçÏ>ă#ô¼cÿÛœ²lM¯º»+U>P)…ŸKŒ§[_—“““QˆÅ‹Ï;×Xÿúuéđ¡oü±#Íăî]Ă5¬¯ÓY³fÍÂ… ÑŒđó3ᮯƒŸđó³Ä\_§(ÊÇágüüré̉%ww÷W_}µmÛ¶g󳇇‡wé̉~ÀÏ!#G3f̀©S§&L˜P©R¥ÔÔTø?—>úè£èĂæªU«^¾|~ÀÏ9NNNñññúËÙ³g×­[wÁ‚đ3~₫k‰‰‰©P¡B€Å&ºÉ“'¿đ đ3~₫˹ÿ~JJå;{ö́ …ŸđsÙ~ÀÏđ3ÀÏÿ9̣öÛow2o¼ñÆ¿₫ơ¯7€‰×_½|ụ̀ˆƒÎK/½„ è¼öÚkï½÷±:xÍ5/£Ä‚aqssĂéÓá# >̃@tZ¶l‰ èDEEÍ™3qđ3ü ?ĂÏ~†Ÿágø~đ3ü ?ĂÏÀÏđ3ü ?ø~†Ÿágàgø~†Ÿ$ܼy“ a¹¹¹wPĐ‚«W¯":ÙÙÙ™™™ˆ€²Ê£G°±¢™™™<@UÛPU5##1)«1ÅÁµk×:v́øú믿ûî»*T¶üê°aĂÊ—/ÿûï¿k/—/_₫‰_|ñ…^Đ₫₫÷¿_¼xṆ̃›5kfY!÷̣åËÏ=÷Ọ́{ Àß¼qăFi‹É®]»ªW¯^©R¥7ß|óÓO?=zô¨₫%Ji•*Ulmmơwœµ8”+WÇJ;:uj£F,'ÀË/¿|ëÖ-ưƠ«Wó¸½fÁ‚ ÊXÛĐ~„v''§ÿ₫÷¿5jÔ¨[·îôéÓ ÿ[_|ñà•+Wôwbbbxó9&ü^zé%Ë‚\ ²Ñ»wﯾúJQ~œúÊ+¯¼°Ÿyó°´1¿|¿ơÖ[¥ÍÏ%̃`ø÷ÀQ2Ó¹sg~Ñ×_&''ë Ư¼y³££ă¡C‡>₫øăÇ··•+WZ~Ï”)SÜÜÜ ŒùXqĐ AAAAúèÈĂĂ£ú9''‡ZôNLJÓZ主»¯ZµÊÛÛ›ÆÇø™ăàà`ù=ơêƠ‹ŒŒ4–ŸŸIÛ˜={6¿¢Y~Ă¥K—øÅú̃½{ǜªuëÖ–—oẲæç’Œ ü ’’’ød­víÚ>>>ûöíSUƠ²)r‡đ>Ó E¶·́́l>ù:ỵ¤ö’÷,>Î,́gîä6mÚhïôïß?::ºt̃ßøî»ï₫y>)˜7o^ZZ₫₫ưû÷ÿóŸÿܽ{÷èÑ£|üc«Â~̃´iS:u´ă””>|ôèQ?óqøâ<6nÜX&ÛF·nƯ K†Ïëăăă øyƯºuüư›7ọ—Û·oçăg.±̉æç’Œ ÷3ÿz 9|ø0|%!W¯^5kÖçŸίà:tà₫áofddđi¾vA?~üÀÓ̃8ưúơ›8q¢6¢¨R¥ ¥´°Ÿ¹ ¸ßnß¾ÍGGƠ«Wøđaéô³Ö ù0‰û“ÇDÏ ¹lÙ2gggíø£>âăêÇø977÷Í7ß<~ü8?3f̀ˆ# ü¼/ÿóŸÿl—G—™¶Ñ¼yó¿–Ï&4•Yú™_Ñúôé£}³vù.…~.ɘp?øá‡z á7ÈJ6,^¼x‘OÍ´Yyppđ‹/¾XƯD¥J•¸Iøèñ1~æjâĂ~ÀE4nܸÿægfʽdÉ>:êƯ»7{”B?B,§™|̉ú̉K/¥¦¦̣c>øă7´˜üăÿà£ Çø™ĂCÄCÁ/UüKG)́çR~ă™´ ///íÂm ÿ~,́稨(n<~ùæÓ~+…~.ɘà₫†äđlụ̀å/\¸ ¿3cÆŒ={̣ƒ¦M›̣qă¯yđ Ử¥Kăg.[>Ú‹·³³óôôä=±tú™ÿ… 6´|‡¿ä–NOOç±âP HLL ÷¶å"«Â~₫å—_xoƯ»woá’¥ßÏϪm,_¾ÜÊÊJKÀĂÈÆúP³€Ÿsrrø—ø)Đ₫¡̉æç ü ø„½uëÖçÏŸçÇgΜ©S§NXXعsç^~ùemâ¦1mÚ4̃ăgØÚỤ́Vø_ÑưœÍgư|¤Í{béô3 ñ‘̀·ß~ËxẩàCåÛ·o888X~gƒ ăgfºÏc2wî\ĂùùYµ >nÛ¶m¿~ư¸|¸xy”*T¨PغŸ5'đÁ¥ĐÏ%øđÂ{¼̣Ê+ÜK¾¾¾\›“&M*ࢴ´´råÊéO‹ôóÙ³g¹o ¬-àgfZØàêêª ¹KçưçÇóñÏóÏ?ÏGÈï½÷¶Ö®V­Z+W®´ü¶Y³féOÿ̀ϼỴ̈ßSäg,ư~~Vm###£k×®o½ơ¿4׬YÓÚÚºM›6§N*̉Ï«V­zơƠWµA¥ĐÏ%øhPJ¯^½Z`A‚äpEXn'AÛøß~;hÏ=ûöíCLÊRL$äÿÍ.!¥ endstream endobj 378 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 387 0 obj << /Length 2760 /Filter /FlateDecode >> stream xÚµZIsܸ¾ëW°¦*UTE “¸ Us˜IÙÎ$•TỨ9PỨ%îmÈn·•_Ÿ·a¡’́Éä &<<oư¨,Y%Ỵ₫&“ç÷7õÙ2É3e3›'÷ËÄæªẸ́¤jªä~‘|Hơm*ƒ?đ§ogynô¯đ̃µ{øngºÑ)½/đ½H»̃û₫pǼ¶ưpûóưŸß¼ËG«eɬ¨•–µ~X — üœàŸ‡}»E&UCƯ?ó^ÆèómѤ’Ơé GÛ#ü¬qhî¶X%îr¾…Ÿ3±cÎÈf-ïí’m…ñ ?ªs¹}{[Ôé…Ïdu|¦¢©U–7p6:TG‚À¿9TLVTÊâ9±”…2Eá8ö¼…¡ÉȉË ûÛ;d¥-1MfZ[eL2˵*efÜ72Ú’` ÓÓ°L$D> u°J‘ g⇶wû(E²Ü úL$̉À–¥k̉/LŒÅ°tK:ÂFÖèæAûa‘¥_½LQ½­'N º•Ö¦÷k²Y˜vÛñdÙ (‹—8“‰<Ùk(Ëb™JÙÚ\+Ù阆L_ÚÓ®U^iÇænr©JUå7®ú§V­̉ùÿkƠ“ô=L­Üd*+lXl¼`¿˜Ü„†¦̀_ÛĂ<êä¯{ÑtrïY I|4¼Z¦k­ <ÎLéÂ|£ªc¾£=T…ªB|ÖÄHœ­²l b¯Đ´%?Ç9™åÇ,7äD@F+Ä́µ yíçÛÂÚ½¨j̉%¹PƠĐ)Ú9®ºæ +ÙOG‹§Ùv<äüø·ü‡ÛK ;¡ç5lºĂΙ„¢RiSưí$̉Ú|!ÎL‘9¿å㕉CÏÀ=Ιñ„NqqÁç#>)dbsÏQ#Ow˜G°ÇK—º±S“G¹9Đ÷"é¶_0¹d8 Hˆ¡xb₫ļWSÑæ‡­ø qÛ·WÙ̀éá8Ê…¨D Æpg÷₫̃ß̀d̃^:£Ø`ÇÑ́UÄ¥ăI ïö0đà5 ‡°?)èH/‹Kó«Å5B,Ϭ)•it,2)@d 'G~Ê]R`ÚqăäŔyMcc 0₫âÊ57QpĂ–‡à´v;Æ©ÂçA· €̃YÙ¨"»̃D#çÁ~PûNA¼?ȽS—ó°Y™ ö*F•Qn´‚úÑ#GÔ$5€éŒ Såu»S•« S8ĐwV'Ơ÷BeF¦¯‰U…­#^7oïo~¹A\ ´Ia•5y2UuS&óƯ͇Ÿ³dƒ¢ +“ ‘î’¢„í£l“Ưüƒ«gÜ} YKcmbXµ–¤wüEêÄ«½e „—Ê₫·I@«¬ö$Ÿ¿Zt® I³¼­¿!¶ô¾˜ó8}eü,èLÏ–‘i¶b|_$¨t!>ùzK îr¡§;ÅI¡¬¡ƯE’¶̀cæ£̃»“àÙƒ{îE>FWª©seóê·­ó €*¼uLÖ·´1êÖ×!÷r±/W—*Ô;? |÷ ¾\́¨XÓ‘:Ή5)@ăªç̀ᬠ\߀hu=‚RrÖ*bk[¦ï„óêÜ;‘O÷«„_₫ù₫&ù@ÄåÈ`§pƠ¡sÏËaoœ"@´÷'#!mÜPa¼gP*¸gú̃£ên/£OFØd+V Êd‡Q$ &8²Zs›7Iû:‡E·QI 3̣ỗúmq°nh¹&ô殽ºï¸o˜·[qx”S•¥§¥©*qX\\Â^s›6¼Z³ÛBOÍjBMwxñÔă ₫~ÁÔî& àbTH¡‚ÆGhƒëM<1Ÿ‹Œ¶ë¢b–32Î m&¡yçyÉ™ŒÚp™ˆ/Äl ̃’vĐ¹Â„®¾6s&#™P`‚Æ‘ñ̉đ`öHxÈZ”(´=SyƠps$CÖÉ£đóôÆ:ˆƒ#¥1p¡„ Ô;v‡1Rt5ßè¸ë@$F́]„}ÄÊœ¢¬¿ ˜óEœS°¡PU¶‚ÄÇU›³ Zª^ú?9Y^|Ơâ±ùUĐ÷·ˆrö8Kú}M! ưјŒErâ÷^LbăÎe³Ox5[Ur­L´ođ*Wµˆà˜x*ø̀!Đw?ŸKʨ¼´ÿóơd9)¤̣é2Úd6¾<Ʊ<¾**•Ơئ$½¬<ôÈ)°Mö9p…2÷wR”"ÁÈܱÕ₫äum\¹_oÂ2Ÿ|mçAĐº̉7FU¥ÏÍ‹Gº±Ù9|*)›¸¶½JĹjª&‚i¸—¯Î`¸±z2ƒÁ”Mí̃Zn5°̉Ä£È>¯TY<ù°Û Ö.âjÂƠ>đ#glỎp.c £Ö…4cœaă+E™§M̉sÿxÛ Yu¾—PoJơ ¥F|,Ü̃ædøƒG,†“ăÓ <¸´µÂöQç°„ 1ƒƠ+VEQy¿Û`̃Åøb–‹êhO¢)Öà§Ä½ưåוjÂMđZÄt<ô¼Ñ“?:`äñâ-·Ü{7z´«i/„ö!úƒđz›éœ×\Ͱ´BëTؽˆü “A-U…ëơ™Éêô§=KÆé ßqÏ_èRá(7Í…äµµ$@Xÿ.®Í̀D":¹‹6aNæY›ñå] r±ÛGß̉ê2u3³;ùFuëqx3đópz²Ă:ú̀ï=e¿U‡y•|r7Ñ’üXƯ‡É*‡Ç›J‰ku’¡îQÚ%u¾H3ÚđVˆ±rÄLÇô28L¹£›í? ͺaÉa₫²êÄ4t%×0Î&ư#c«K|=D@¾cb+|bŒ́ HHA·‘F[²̃ª$?ưܬKJ™ø¶mäÛöÛq¢¤ÏÛ#đÔHá†ù:ç,®ÔJ/ï¥}ư³÷ŸÆïsÀ~¬̉̀:Ø ­fK‚çpđÀiC*“~.<—|¹D=.²BM1₫Ødù’¶÷8ˆĂ—]]F‡´æé·gK ưÅi's‰ÏÙaBkÂưŸƠÑƯÔU|̀®?µ#„4![­•ìkÅ Rh̉Sr9qc>B‹¹oy„́đè.”ÑØm1₫Z…Lw.`#JÇv,́÷èbƯåk NçF5Mù›“…¼Ø€1Ú¯ú>¾‹M¬Q5₫ÍTç<5·#¢·÷7ÿƠ` endstream endobj 395 0 obj << /Length 541 /Filter /FlateDecode >> stream xÚ•TKoÛ0 ¾ûWĂ 0«zZV1́P¬2́Đ̃©íÁKœÄ@êt±Ó!ÿ~$%NöFÀâó#)Y²5“́C&ÿ¯ª́âFiɼ^*V­XP¢©PAø̉±jÉîø»Yî´áË™â5Đø½tXôÔ  ¯@«t5{¨>Bµ<[œ&ÄÈ}¢]âc†:û‰îøoEï€̃@—@ c’₫O±¯ḮÛÄQ÷ÈNÊ®«LAg’)¦ŒZ¦ +JåØâ1û– Œ)Éc"’iŒK‹ù£cïwÙgø¦|̀™O’Æ9¦¤2L7¦­F8à›{}Øø\ÉƯå,·Zó/=ºuÔâ67 ö‰¥<É́„ €¡œÿ¿­˜ó¬÷–fL‰S?tđ·à]Qơª¢=ÿ̃OpÖÊÀûfKK# µørÁw(ˆtm¨ö/Đû«·-Ưb]ÆX !Ô˜²IƠÀ¯m®¼†§pÂÙa”q®¿¢I£́_ÿŒÙ“}̃aIƒÇ¦ °Çèó> /ExtGState << >>/ColorSpace << /sRGB 401 0 R >>>> /Length 45904 /Filter /FlateDecode >> stream xœ¼½M¯.;r¥7¿¿bO ¨}ŸArÚm·a6`ß‚=hô K*ÙnU»%öÏ÷K>k1sÈm <¨[gíÈ—I?"±È̀_ù•¿₫îë?ỵ̈?~ư篾~¤ö5êÖ¾j+?Fù*kưèåëïÿøơ¿|ưù—ưÿÓûo¾₫í¯¿¤)¥¯÷ư·ÿĂ篣ưŸ¿üûÿđ•¾₫ú—üơ—ŸÿưƯ/y?đơßÿ’?ÿèù«̀ü£¥¯?}åÏëæú*#ưXñơÛׯ¿äưêø*?Zưøó®‹{pÿÑÁz^øûú›_r´¥—~DŸ2bưˆ‹»x”]Ôo÷yă]F)Ÿ¦¥OSơ(µ₫ÈÿvñG9ç½~̃ø”±̣.0t̉O룅‹3.©₫XàóüÅ»ŒÚu_?Jù”Q#m] ÿvñø}Fß?¼•ôÖDfáL»?ÉHÔO ÷'q₫1iî}O4‹y©m×ÄrÁG®×Y₫zû?c¶ücÄ×g=Ê™eăŸ̉Đñ·¹}ƠÎû¿ü×¥|^ç×cñ/₫yMÅœŸ·¿mơŸ~i‰62§ ë8KÏoVâwè‡ưÿĂö³¦”ѷͺkLYiëƯŸwÍçŸ~°­́ø‘^ø×ûx~¡"] !ËÜØ†)ÿ(K?ø Âăámợ1Â)₫˜rđËoăøÁ³ ×/̣ÑÙ1„ocúÁ‘…g=xá(ôí´lĂX§đöL>§àƒW§‰]F÷fÔƒW̃Îg¨¼oîuwăÊ>z·çó³ó₫Ưóàṽ—3í{ÙøÓđưüüQÎûs=Sóƒă¼ÿc†·Ă1Ö₫ÙÆ}ëÛy₫¬ØÈçyÿg±ÛïßÓiïÇ̀~&ÑÆ}¯yđâưëÇÀ?¬ç}%íe{ăQ…Ç₫ưÇI:ï/ù¬‚Ü“ñ:x®·üÓ?óưûOÿÄ»üO7÷÷ûóâÖïÓå]ÿ¾›ơj_ÿéƠ₫^ó¥ŸùéŸñ̉ßxé÷ăÂæö̉ÿ÷úêŸ^åƠsîj?ưûÁ±^ư?×~́Üâ5~>x¾Ç×g†”ö{ÆÔ×øüø„)¿Æï:₫û3¾?x¬×ø_vj5?>¸{>eäËói·ïăÔú<đŸë,Ü¿ƯùûÁm o}¿q.ߟßí}Ê+._ï+gu~êó©è|×·ü¨ñnO9ư÷´÷üă¥¼'ÂK_錟GŸ¿h>ú₫,P+=Ưñ%̃Ú.z}:óăôî¶»¯×±üw(¬¾‡È) ¬ú ¤ío­gœ}Ú³M¬‡ánÎxFé§vçEÄŸ÷ 1₫yán²§À~afÈ–̣L O‘{#àù55=4ưf§’8Û3y-ƠÜöo5ơ]²V¿W ‡k¥uÅuÖ²ăiUR{½hI^Ó¤+/ỷ¤WDéÙ ¦zÁë©úÈË­zĐ«±ú׋µzßk¹ÆÆ³Ô3tSÀĐzLCï1% ÍÇÔ0tSÄĐ~LCÿ1eLÇÔ›F™B¦Öc*™zoSzLÁ1µÏÔ5₫gl¿ù gí™éíô=köÚuz¦ËÖ́µ¬¬ơỰƒ½ö%ɽ©Oȵ6ÄYë7Â…÷cë6æưÍåUÉ]̃Qp×Z¾×Ú cÚ‡íøàmÇÖnL}b ơÑZvÆÍÁ.ođ¾ẹ́fûửÏt{äk¬lÛ@ư´|…î3ĐGœ8ËÁÇ·ˆíƒ ƒ³Ë«<Ÿí»4϶M ßEư3N\gcÛª(̀»±À.oh¾¸¼Étj~ÿâ}ÍíY¼¯ÙV&̃§₫ùØv~ọÁj_Ø·*ü>ºpåưí¥½êŸ‰og[ÿÁ¡[2¦¼Ù„Ơ9…'ơ[.oQ?|¥íOÔOư³˜àĂư³v”èà!|úg¸ơ^@¾æpkí•făậ‚µ­¸¼oy}‘ÉûƠ?ZÀ†ûg1ÿ>Ư₫öe6áLưđå>XơeÁû`Ơ·Oá¦vl‘úÓ?Âö}_̣ƒ'ícÁüà”—Y†|¥ÎÂS¸€å›eÆû°/›s» à.Ü„CØå pvy§ÿçv!ÁK˜öÆïTÿ|pÂÇLí ²ü¹]2đY>Øåupsyg|N÷ÏÇ €Ơ?Å–PưS‰HL÷ÁÉm)‹paoö}+˜½Ê·vyÓª₫©Ö—ú§Z_Ó{é ßÿƒíÅ€î"í[×ÇÎă«}đ™ßËưÓ¶b ¬₫ìçå₫ì‡µÍø¬¿K¾ơ/aï nG½{) ơOg|-÷Og¯¹Ü?ñ¿¼—;†eă…ƒöu—'¿¦»¼I{Ăå-aÚ#{¸Ü?Áz²Ü?± çÁS¸iïW„»°Ë“¾–ËÂUx áă'÷Ï`/—¼Ẃ¥’÷¶1íe\…‡pß½[Ă)TÿŒco7ÂÁ̃Tư3ÎøŸgO’Í{Ư=̃6ö̃1ჶŸ÷¾Y¸à…ªæ~ÑÁK¸±wVÿœ‰w°÷Îú —Ôg¸¼Áû‡Ë›¼ïîeï›̃{K¿êŸÅ^ó,‹à,Ÿz ëè”?]v<ËåI?Ëå)v²n¬£Ÿ Sr{±‘äö́ơiùÓ%±¡,̣×6æụ̀́Ï—·(¿¸¼+)꟒‰eơÏǼçèŸù=₫ÚÆüí‰å4——)¯»¼¬ưa³} Ç‚2å«2±˜"ºèE₫ÚÆ¼Ụ̈KJ?áößñÊ?á₫½üµ̃¸Ê_s}ªü5×·Ê_s{ªûGí­îéĂ8뫺¤Ï*mc̃WÛ»?ªü5÷W•¿öÄ̉Z÷wuÿhºû'\¿ë¯©~×_;ơ ûk"I„ưµ`½ ÷OÇ_ ÷OÇ₫„û§c¿Â₫t§¿Ă₫ZÇ^ÆăO7đơ§ÏüŒ—?-lÿw¬f<₫ô±Wá₫iŒÇ°¿Öđ7Â₫Ú™/áNûĂû&́ưA¥ưĂûƒB{ÇÍ­Đ¾áưFOïŸí›̃?MÚ³¼´gyÿẪ?ur Éû§3†û§â/ß\QÅ~ ûkû<́¯æï°¿Vđ¿†û‡âîŸÂú<Ü?ǻ×7ö₫²›÷—•ÜHsyEØåepwyI!oï×_Âέ "æá\X€‡÷ÿ]Øå5a—WÁÓûơ"́ưzVD̃ûçrÏpÄ̃ñŒI|?9>¢xr|$ÀÙñ‘3₫§ûG₫åtÿÈîŸtâ•óæöd¦ưéÄú<ÿ<±ƒï™äă=gư˜êŸ´°ÇSư³ăEä¦èŸ´Đçtüsa_§ăŸËơ —W¨O¸¼L}†ăWÊ… ǯïÇ-̃7ß“~§ă{},Ç÷‚̣—ă{ö-ÇăÎüqî3Mê¿?•³ă{ÇXNæÓrüs2>–ăŸ²/ë‰.~_ü¾:₫:ù}uüuđ₫ÿ ~ăŸA²©¹<¥—ºËkdŸºËS.1­<¿*[¿ª}ĂñǛóăæy~̃t¾’_w/ÚăÓ“ú/ÇÛ'ú_·«½Ëñö½¯äø'¢]^'÷–]̃Ém¦W®=À·ïö¯ä₫ r™ÉưCüc%Ç?a:ØíÉ’»¼Œ¼¹¼D}n₫ Qßf®€r‡Ư¹Ø…¼›+0)?œ›”NĐ¼É;!”ëwœôûf¬ßÓtü‡ư¾0nïú$¿¿™©÷«=́77v.tH?C8h_uyê¯ậ:ơ/.Oư¥₫H?ơW"÷<ß’û+»=ê¯äö——5̃\^Öxsy©?ăq)œ áºä/V›µpf‹Ñ̉Z¹X«–B‹¥l-,ă­ţ‰¶–çi(MèiÀÊĂg•] £´X„wNQk‚R›ỀÀª¢D8²&₫­ÖŸœP ÈtN¼¡…uù@µèŸ%ß|a›–\óuŸm=+çR ËÖÉ:£uwM›­Ó kÚ «ú‰Ezª(Ù€c“×° Ê ËРÀ^ôÂT/È=Ÿ¸ KÑBÑf—lj³ñU¶NE•̣˜Â¥•P–̣S{ é"7§z!ØFLܤEVoN¼¨”‘‚@®dQQm>.À’‡.aÉAŸêÖ§9ñÿVX“Ç=\dKçÀ{\Ư‚ăüàXo³:¦ßi陋g´:ªê…Έø½«³Ê‚w{¡¢’ i ëñé>pÎÇåûÀ!˜CJönʆØ€UEUy§*ªª¨ŒoJ/4ÓvèyæC½Píh̀"ñ½¡r3au<^¹²S•=½ —<Ô ̣ȃÚ’Cb“ÈöwKî¸øç¨ƯÔÙ½/9ăæ"ï¥è…â­½P̃ÁÎto¤ºÈ%ÚGuÑ)´jâhE/do¢è…́=½½…¢²wPgG₫EPE‰k•U”¶OǼ/E§´Û\ >i3º[ ơ±‰&`gç"K¡.ªâ@8ÓR˜XÛè•E `Ê{>£îb±,FN'Ạ̈b̃t`f jeRKlÀJ4öŒ A§æBW_d*4ÓqUæÄó́"Óhåï8:/¹5„UN/́ợUÁû?°UÉăƒÍéJmÊcæ$dž™ÑRQ—™Ó“ñh)Ú4SÁ&ñ†bMI¢kÊ–đ@Ơ ”…R\^€Æà0Ù„å0›za8ØMKâEÇG2 iB_ƯPE%¦Â-ª¢RM…E‡RtŒ^™h8GRɬ¢úËfeñ¢¬¢:/¢‚åZqÏ »̉ xÅÑU ⧈™zb®*ª($«¢"²z¯àCMP<{¨ _‡ hu¨ IDN•x¸›XFÉÇ)Ư‘éö&–)½¡âÚ8ùíqS§¢Rb £Vq6¤EEEM…ÜỡAÄ;‹ß¦€6½@>vVơB§+NÑTô«âq̣ºy°«}‡ùœăÛogưÇúû«§È•,8EnBÁ)r•rqóËí%˜Ü ¢÷µùRlSPj/8Eó°’N²èÍ,·¿u/,ªQ4&“U“Ê3eI¥™r} ³‚S„¹8PE)‡“4&•\“E¸öü§hÂÿÚù»xMœ,¢d8:TTÑYïí’ª AÉ¡&%‡0à>v5a(o©¢&uî*j* ª¢–’ Z'Ó=Ÿ$YµNf2”Ơ\O.Z'•-*ªRrQQJf­“J~f­“:'­“Á‹’ÖI50i›s©(åá—ơsÊj$e½e52Iuza30døRê2|Uu¾FÉ¡¢:ùüPQ¡t¾̃;”͗᛼¨Ëđ‰ÛĐdø-jr”y¯rtú°Ê (‚r*´ƒ"¶n”Đ©s‘À,7@,7`“’&í‰Ï`§(÷‡®Á6ư²9V2Y×4Á-[×)ê‚ræÊ0ÿXPEÍxx(ëtû¥©,²˜cÉ5%©:–\ÓlN®i6¥Ç®©*vMEPi*J|»¦3?ôœíÖÂæ©̣®Eæ)̣®Åå)̣®EåÉrÔ¥œ,G]D,ﺇw´i6fÜĂ+(azĐ^—ă`ÆñÀŸ Ÿï̀Éđ¸†ºï“ µw™K.NyđèJ˜₫Ï.tc̉ă{Ÿ½/‹–wè  ƯaEàS?Ó-w:N¿̣a]₫0Tïÿ¨‘t˜ê7´=rưGQúLíÛçÊ«ưĂô5é烡KHCëwŸ‡j/ưßă@êŸaºŒúïOQÿÓ7Ôÿ6TC‘iŸáô¼Æ×¥Ăkü §‹5>ízüN§£4¾g=Hăß»ϽUë¯ù3³è9_—^©ùwÆj~:Îáù;«è?¡LĂ ÷ơ~>\¾ÊS²á¾ïÙ+WaÓm)¯›¬öt¶€·½ˆåƠG3]]új̃RHŸƠÇ#¤ïSÑWp ưöWè÷gdWú;̃±ÇC‡Î|ÇKŸ́%<úÀy¼u¹j]t~×®ùâñ܉íßñ̃u|Ăó¡C?¹ó¥Ë.y>uè„w¾5’w>6ü;_tí;Ÿ-÷|×ïïz ̣ïz¡÷ßơDơ»ëê×#µï®Wjÿ]ϤŸ»̃Iw=”~ïz)ưßơTưs×[ơß]Ơ¿w½Vÿßơ\ăă®÷?×h|]{¡ñ÷ØÆçco¿=b|?öñÿØ3æÇcï˜?=d~=ö2l?eO™Ÿ½e₫vÓ!¿Ùg,ö7¿á¬PÛ%¾^A0Bºp‘†îq˜&wă8J– ç±° éY!¹f FœoY ¬á±°X&Ù’0á" (… q2÷3‚Œ}ø@Æ  &4 ₫‘´‚ ‘¾đ>Yh<,¯”7,o”7-oÔo^ƒú-{ảDz<đ8’å$Y¾÷•‘¥Ïy^„Pn[¬ÄóxÂ}ø@Å€`¾|aƠ­`Ë+3¦Y^y_³¼ñûnª3£¤Oâ+¡°eæ¨đÁ–~?,Ÿ¼_ú<'6–>3ưéû(2å1ăFq{–å§=Åú,¬€>1 +`Ñ 5 ưUDHfBqåă!tpx€̣P ơ/" NP‡BÜÛăH¼‹¸1+”ô)­Èâí£Ù¼¿[~VDpư´·G–> áD±ÇDb:|Â{T×wZ¾XA±àƒË6Â{çJQl¼cá ûè98_K8„;XúlŒXئ4\-ŸÂ–/—>!đ†( <Ü-Wưºåª_X®ú…=ÆNû¤ÏĂ¼>Ç̣£¿ê+zøG÷FŸä¬¶!©ÂYØ̣m1ÂFØâ%Ë›,`>ă±i§8Xñ£ÙĂ%Â>`0ư0;ÓA¾1ơɺP:răÂ¥Y~,j“GÀĨƒ-ß{ÆhÖ'iøÁ€oÍ7Ñœ-_´oÚĂO´Gú$‚>00ˆÖđ²¼̉¾eyÇĂH–‡đ̃aºđÎz© _ @ucíààG…ŒĂnÚ¸z‡"¦Z~́’́7aË;Xú”ư³‡9y<$˧°å‹!ĐLèË‘’)ûå &TÂÿ™X¿»whDJÂp]ÆÁKX;ÎäÚ¶|âñeË—0r"!¾ÆÆYx ư)•¹̀£„øÏsùŸ®†ëZGíHŸp>ë‡ôs̉nă°üø !{¾·*ÔWú,®/VR†OË ïŸ–W̃·,¯”/}ç{t³`ÿMÀßiT<èlù©¿èo<À̃áOvøøG;ưËï‹å ];ê“Z>x ŸöŒgÇ^x_³¼đ¾nyåùnyăy鳺}áˆC§>ẶNbX´Z®…ôYY/†ơYYÿí1ò%Y~́ óœ́ÚXúl¬wÓúä€Eˆ0?¡œ…w¬“ç1ái¬¯&ÀCÙx\9ay§}̉gCÿ&¼ṣë́đ®œ÷¯+ßí3Á}’k ï°§́órÄ©1^}~>·„^y[ŸÇ_Z>¯\¦ô₫Y¾¾ÿ₫êÓø'y´ïơ‰ơ½¾WŸjÏƠ§Ú;ëw}̀ù]_«¾ơ¹^úlg̃ư1LHŸºP@ÙW÷çđu.QÚøêó$RL@ŸÊ”)|p_9ïk–̃wơYx¾[ß…̣ûÿÔ'îø¯à;(ïê3Qßa}'"øGS${¾1̣iùD¾n‘̣—×›“†ÈXVrEYö|cnÊ–ŸDª˜O¨–#Ë?‚t°åUË+—êơäDd²ơ©ˆM–4ï HỰDùƯöaQßđú¾tù ×÷IưÇ]ÿy߸ößO˃ßO¯ÿßÏwxˆ’9y]Ø6É~qJ–ŸˆT±>áub}ßø”mO–ÇO"V×"¸ƠööÔßÀ§̣íE₫ÑT:¾<ö¼¾ö¼RŸîˆ±nLGÀ³°åg<–Ç?ZÂ!<©ÿơ†°ưŸ_ÿ¨ [~ô[mÏ“/ƒ¼₫Q¶”Á×?JÂø«đ-F}üÍ)<…Äjy[̃ÁỊ́F„üú›ܯ¿ZÀן‡å'3]ŸŒÄ"b© œ–áÙp *ƒ»°åƖ啈>ú$m¿#¦É₫¶üè«9̃åsøÀơĐP¯ŒÊă ](ƠïÎTËÛj¹"¸̉'œH€ÏFÍñ`~û@ơPJ½9̃¡ ºn†×hAúº7¸ ˜—Ă—OróƠÁ–Ú·œQÊÂ΀$2¡wèrºîx‡x ƯñÑnÆ ÿ̃6{Ü…-oÊ|̃ư5ñêưoö₫8½3©£ùB6Å;/(ë–á)¬Ll8ñí‚´!{ÚïhĐËU¿éx„ê7o†åº`mY.RIºñ<2lÉñ¾)jˆåâÑdˇ.(³< ‹ǵ:\’›Ái§Z̃à©4ËuÁXs|´ˆ?ăø©¸8Ưrgo|•úǯƒ>9ôa}&ß9,¼oZ®ë"§åjßr¼:(9^-ÆV²\|%Ë›2”–W]8văÙP­Êw“Á,–g] f¹ØeƠr]Üœ?Xï Äbù®̀nụ̀̀ÉûẬÁûÂùƒñ¾0, 3.Â,;̣yó’;Đ/礟e¹hzẸ́ ?09ăùñ\f,–cr†¨Ă ¤¬÷Y.Ù²\¶Ư S}Ñ÷Î#+ƒ¥Œ¢/P‹æ áÂr_Èf¹/wF_•ơCgÚ2Êç·¨î¯fù̀ï₫®î¯êŒ́Đø°\Âby×x³¼ç×xŒê₫y8'Ô/Y.₫b²¼h~X® —3xYóÉâÄóÊđ_PÈúÅ—¹ËÅ>‹›1d}‘>‹iỰ`}è–wQ́,]Oú,dx}Bˆ&ª#i™ÔåsáâNLđûbyÖYXb"›Ó‡} â_c8ƒ}c²\öAú̀¶ÊhfÛ‡i¹́Ă´¼b†å²̉g¾lNaÙ‡°\d8eôÅœ²= ­Ÿ¾Đ3¸0· ́ C-לỢ^ö6’/(•>/ X^¨_¶\ơÍ–§Mng¤—°3Ôb†-ËÅ$[–xZ̃Å”+ Œ>û2ómX^̃L¸Î!¯á cú2ó}öÉxđµ}¢O3ßúô…²Ị́WË»˜nMX—Ơ—›¡¶\æ̃ ¾.ØÍ–ëB^ôÙ‡™„øÿ]₫½/ê Øn¤ạ̊ï—ạ̊ï¥Ïëß³?é׿–Ë¿–'0ûÉ~ư{éóú÷́Ÿúơï»ạ̊ï›ạ̊ï¥ÏëßKŸÁ₫¬iׯ_,ÏÚ¿XhŸô)bq³>uar“½êùĐdÏz÷ÏËrïϺ°÷gIøŒ/3‚º.ÿ÷\½{?‹=îñ W}ù~oø7¾̀_ ̉!®»ö§–7°ô){è ʺâWf(ơ{¶Ê_ẹ́ç«ü™^½Ÿ•>«÷³büÈ~UùK½²~TÙó^Y?|['>|Á[çđîĐ!­_™—#lycÏû½q[ú”ÿ^̀@’ÿ^äụĂàuŃ/éêƯ8 WâÍr1åúØEµ<)~ƒ>É¿3j:'}‡/́Ηç÷Lûă =;¾"}f́c±>9ư;|¡aÏè׌²Ÿ›–1 ͘ÊÄ»¤O.¼`Û ̀ï±ç]öÅ:vø7^×ÅôÍf<%ßh̃-o–Ï7ËŸ«fp5¯fX5Å'-¯OZ^¨¶¼(̃Y„Ơ^1°’ă‘Ẹ́#lYˆ÷bÏÛÂ$é³-ÆŸPüăĐa©ƒ‰/ËÅø ˇâÅM8ˆçöË0SüùÊy_³¼ßnf¬)̃̀pë<_-o‡[̃(¿\9ơEŸ«3†C¬øû•óûtåß_y~ÅûâAü†!;¯œüÀ¼ṛăÊÛ+Ѹ`5Ö£ÏB~"®œ÷÷ù₫I~ơiÜ¾ăº¾—_Ûw\Ö÷ú\}ª¾%}oOîßÛ›Ów}¤₫]_ßơ©³L“/[ï₫Ươá₫ _ư0¯>•?Ö·̣gqåäóẬÎû»åç¯>;Ï7ë;(ÿ2,جwü§W¾°¿ùèsP^±|̉̃lù¤}Ụ̀U^ù̀¦üÿ´”àçøÂñ.>À°=OÎ÷.ËÅ¿Œ̉¢|¬×›J¾uÜơˆüî¸ëùƯ¸ëÙ|åƒ;ṇ̃öÄoó…m €Â#êÉù̃fù,¯|uç¡öÄ/đs KĂÖw.@a{Ữ́ơ¿(oûP•3nẮẉá ö:ñ¥đ|øS„ư#ñÙ|áŸ-lÏ9BñØóDùqí­ø ×ó¾kÏ ü‹Çó₫fnăư͌⮖‡ø–êW,W}¥Ïâú^ÿ( ÛÿÉàë‰qư£ ßæúGMØ₫O_ÿ(„-đq†åâëHŸƠ|éS|µnÿH|5ŸêúBg·=W~¾¿üMø<íú£Â×_…¿S¯?+|ư]ø:Å₫èFßƯ|ùGƯ|lùá7uÛs.Ήn}ß|§)–ø[Ọ́ _kZ¾À̉'Å‹ÁÅß²\ü´¸ wp·\ü´n·øị8€Í₫Ñå§5ËÍOó~̀ü4ïÇÄO+–‹ŸVî~öä»ß6C_ü´dF¹øiẸ́!>å‡_ă ƒ;'Ë/Ÿ¯Oø4Ơú$_—áO>+ª́y'ߺÑấ—…½ÿíàîưqÀhï–p³| [¾„Ñ'ÇÈ£Ê?ê‹ơă8XŒ/]^ñfĐ[®LùÆ#¨_¾ñ đw ázăK˜ø₫høí ?>²GÅñ#âƠá »!v¾«ăC~jø@À·½ñ£ß¶[>̃|ÛHè³<ñ£ßVñ£́úÖ{b„úËÅ/.>q åË/¶ÜübËÅ/N–‹_üÄăàC¯¯ƒ½nÚù}sü´óûfyˆ_n¹ÚSo|~xq|T|öâø©ǿ:P}‚CçªùßÉràKW«}Éñ́¿Y^ÅÇ·¼éD å:ß0o¼óăÆ³uàÆ»97¿?n¼œ÷wÇ«'çºăÙ:ÏĐ,÷yçơ«Îè…úE¸”søü~F¸àˆœï>¢'~úÅ₫"6:1₫ơ₫…2_῭[¢1ß2̃ë÷Çó‹möåOđ™wïu­́^©œØ-Ơ_é&Xd'6̃v»ˆG°ñEv¿Tâ,EöÚxûqEyß÷ơƠ¾µ4®„©º›Ạ̈¦8„ß2óÂå7;ñû›âf®_«nơoơ{ûx%n“gư´îö¡¿&¿ÜúmwŒ£ÿ¦¼³û§‰·ê₫kÊsº›âîÿ.¡ÇG×9%Ÿ.^›ÇW—̣øë?Ñă³‹‡äñÛuÁ㻋÷âñßå'{~tñÎ=z¸}̀¯.³ç_WÏó³ë¢iÏß¾Ü>ö½o¼íø}¾,—Oye¹|̃WØÇßúâ·¾…¼đmOáœÀmoá* «B^äê«đ¡º«ÏÂ…Wß%¨û£p)Ơí¯Â‡ nx²·¿ <Ê; ỳ;^ ¼½; ‘ßñ–ñëîx̀œ›¸ă5sqêÏ™¼Çï™s2w>dNJ̃ù’±Kw>ex›w¾ẹ¶w>î‹æă5_3¼ø;Ÿ%¿ó]¿¿ëÊ¿ë…̃×Ơï®7ªÿ]Ô¾»^©ưw=“~îz'ưƯơPú½ë¥ô×SơÏ]oƠw=Vÿ̃ơZư×s»̃kü\{ ñuí…Æßµ'Ÿ×̃hü^{¤ñ}í•Æÿµg×̃i₫\{¨ùuí¥æßÛ¦ønowÿ•d{ơ¶Ï¶Øí›W€gùxdꋘFRưÁ^±&̣Ü…̣’‘—©1!¯Í¹,4#®(²u0r­ÀớlÊ]Á+‚"igÅí?Ú'¦ĐÁqđ´°w>Èû–대ë1œÑ]Gă1d?¿=Ñ2½â≄8B#Ê$áa4{Û1GÎTàùn/­đ|øùÂọ́`˜=7—…âî†2m`Ú”i “¿(²|đûùÁŒÉMxâ×÷̀Ưæu0¿¯¶ ‰ß«¿ùt_Y¶˜'Äs&B±ÅMàe<˜±]øxxº:ă½³(:‰°±Ú3ưü <Í®e,ëñđ&++Vå̀lÁ‰ôÔëY®Úl\đ«Ÿ/¬@5„w¤ j'²ñöü«27w̃/˜ûGkz<ÎÇÉ [¹£°&÷wàñi§ợHçỊ̂P›đάVí́ÎR.́ç·Su2`ă.~~Ï—8Ạ̀À¸>¶ê$ôÆ{gZ•é“)9+6Ïsr±êäóÆö  xdá*<„xúù–G>]¿åçOư=."CU—ZœißÂ#W¦vă,l₫èO'—7nàæç÷ _‹w0dîjñ“ûÙüc…‡đÂâñ4nE®bâoœÙaĐß &}ƠIä«đ̃ëaU$ê¸X\,T#ÓPmL¡Z½# ³P«w07«=´F&¡*̉¶q÷,¼wÊULú; đó;r̀² á̃‘ăZŸÔ¤=Ú¡ÀܪúTÙÙ1Œăa`Ï™*¦ÇÆŒ=k…ñ¯HéÆÛ¯b–l`́Y+ö`ŸŸẪÑùÙ¼c"Pụ÷¸vÂ!|vhúTØÆUØ;¢~¾³CÄ5́WmîoNU1ƒ6à»Ă\´¦cé́ÈêÁx́L@ƠÉƯăº‚›Ÿo`́Yƒ™RuRwăcÏŸ‚­ºÇ{ăc¨ö Öî%ö¥ê ñăJÏ/-Û଱w˜;RS•iÙxÛ˪“·7<Öâç;;h́Y#SPủöàuđỮww¸Ç#Ơ§²Ï—̣±g &R ÷7ߨº/oăL}‡wđ…úbÏ7çVœ=˜ß/?ßđĐàSéu¸¿¹Đº~0>ö¬¼˜“O¯®ï¤üæçÏ7·ïô˜ß{«´#mU™Î3å…#ÚQ ?¿ưª̀êÁÔoúù|9Q‰``Ï™Œ*æëÁȱgmĐ¿:Ézp€CøèÇ;€Fæ£NG$dïÄ́ƯxP^wûåu×÷́HÄ̀̃x²Ănßäùáç'ÏO·oûWUñ¸ùDp;ºäúư‹Ip"8ÆDtÔßœªb.̀°̃Đ<{ÖøHƠWS6>ư¹ÜßÜŒ™û‡q9Xö́â™~Â?=¿ê ·ä₫~p¼̃×’íك׫¾-½"\ëàzÛ7Àó¥–Üß0/[²=ă&Í–lÏĐwK¶ggcq̀èí?ÊăƠŸ-ÙÑß-=ư=ùựø<‰l{ÆƯf-Û1̃Z¶=ă&‰¦“œ¯-Û1·Yöó'b—mϘ-ÛqăËOpû7-Ûñi¬–Ưß́ [¶=ănª–mÏøL˶g|*«eÛ32—-Ûç1ëw}Yg?Ÿˆ8f¯‡GÿÅö,Đo±=ă2­Øñ©ÇVlϸ17@ë%˜îç;χ×ĂÎóáơ°Q₫đú¹×«Véö[±ÿ“µÛ3nYoƠư˜^{¶ç{«=S„ơÚ³IDéÚ³AyƠÏå]{Ö)¯ùùíÿ´úسFù²g|:²UÛ3î&kƠö¬»₫ĂÏŸùTmÏÛj{v#^Ë₫Èéf{Æ₫´Ư9'IZ³=ădkÿrÆ_³=ƒ Ûí7´f{ó¡5Û3˜­Ù9ÑíûÿÖÜß0/ÚØs²­5Û3â­ÙU×oÙ?¬D “Ÿ/ÂC8ƒóơ'ÓÁ²gœdkƯö¬ ¿n{VĐ_·=#óغưnrjƯöŒ“Đ p!‚ö—3xØÿƯö¤uÛ3N>·n{v6jg˜z?p"ƯöŒOK¶°=ăæ’¶gœtna{ÆI‰¶gÜ]×Âö &k ÷7Ÿbna{sµ…í7ª·°=ă$Y Û3˜ZífXø”d‹gVÁÓÏ"Äw–iÏƯŸñ5¼‡IÚt̉D†ñ,{Ux{ÿyæëđ~üPå&wü¡ g`2´áư87æ7}ê8Ẫ/đƯ+~÷ăCØûëOï¯;øîÇÏz8 M%Â~÷ăEØûñ V¼¥MïÇeO§ăøSmz??Öṭê8Â~¾ƒ»ă#Û_lóÉUaÇG₫¦ă|Z¸é$Ưq¼•A¸Âtđr¼h ;₫³÷‹m9̃({³œáäÓŒm9̃Èh#öUöe9CÄMXm¹¿ù’Y“ơl|ÖÁƯñªăéS–g£ÄûĂñ»Åû‡ăw“÷ ÇïNÆc¹¿;₫„3 •ưS[7²¿êÉñe>Eܓ㛓ûfWO/wîfL7v2VÉñeNVôäx#ö¥'Ç—ÙOöäørănÉä₫†™Ö“ăËçÓFÇS•¿vê?oü•÷­å}ËñÔs¿tvĂ$€€ >«üd3ÏÇ_ÏW×÷ä́³ăËœD́ÙñeN"ö́₫æ$bÏ/ssPÏ7r³PÏO†<(oÜø9åƯ h§¼éxx£¼ơθ÷âø2̀‘^o¬ôoq|™øG/7Ö³>ơâ₫&^̉‹ăË0Yzq¼‘øJw†¬ú¿8̃H<¦Ç—aÎôâørá.íâ₫&cÖ‹ăË?s"¦ßÿ`ưŒ̉đû™?$J×M„'1¡ú9Ă©÷³—á÷³^ü÷^Œh¨ưÅyñó‡Ir3føë]7•œÄK§?˜ö%×·’Q]~₫ô—n’<¸€]ß̀ø¼Ú̀ø ×7Qö´àŸ÷́ ñ́!#̃Á<ŸỠ¡ù±„ƒç‹9+]óÉÏw¿ăÆóÉÏW2Æ7#XY¯–ë[Xđg _æê:éq°Ö?ŸX_…ï1ơä₫æk‘=9ĂÎM=9ƒÍªº>p³qđ{e(9™Ö_ήơ1 7Ö·́ç+ơg₫•ÎM¶:©qR•¬ßø£¥Û>L×WöAưÍɵ¦Ïµn,û Œi³}PƵÙ>°₫n¦h:yq0öơ«ÀœjËưÍúÙt3ÖÆEö° g̃3ü {ÈúZ*₫ŒNªŸÔ+ö›ơùa,?²çƯûÍú_8ÙÖtrbă£ûQäÏëc¨ŸưÆ|Üü|¦}äW›NFœŒ7˜ơ°¿m:¾q€³Ÿï`́k‰Ø¦û›ïU¶a†7¿¶ñ0 2₫©Å₫ª2Ü0óÛÍs’­éÓñüYü‹Â̓M7ElÜñgñO ̀ϦϧœÔ¶üÙ,œåïúù„?‹TäßgÜåßߌ}2Cÿ«\ÿ~ùyù÷øo…›‹Z¸¿¯ÿW®f,È¿¿ ‘C₫½Nl<Ù¿43 Bû?ßµŸ™Âư ₫oædOÓIë íÁΜlnº‰ecíÏÄXCª›2½?Ăåéưö,Oög:9°qcÏ2_(núÔæÆ•ư(ö,ó±ÖeỊ̈4£«!³„‹đd?*† ùŦ“чQ"́ç;ûÚY–?¯“Đ}‰ù¿qƒ=ËØ¯¦›U7NàaFËÓßûÔ3œlnbö ïĂe˜₫­ÉẹÁ­i¿’ĂơĂeùïÍư½ibîoœIÆÄ?Ä0â“­Áƒ}i:©|;Äs°g¹³~T÷wg¿¡“É7â7سL~¾UÙ³Œ¿̃tsÖÁ¼¿ùù̀û/ă)ñ>́YnÄ t³ñaQ>ö,+¤“ÆS^2C)¨ọóxö,sóQÓÍÍœfXU⇗Uˆ×…Ÿ/Äë ¨L¼®ûùÄóØ³Œ̃́Y&ßÖtRxăÉóØ³Œ̃tSÜÆƒø!ö,ĂGif¼åj†¥WđYN #l™ÑƠO3¾̣áç+̣aFYE~¾ Çeø9M̀öƒ/vû2ñÜæúfâÏƠÏ'Ê+n_¢¼âú&â¿Ù ¶ă-™á¶x{–ËŸwáI|₫ĈcNöT̀ôƒ¿7Cnđ{́™t; äçOÿèfȃ‰ç·û<ù́Y&_ÜtåÁÊG¸}Áû.ƒÏØÏù€Ô_¸.÷÷ƒËw<ă;ë'\_ï«úfà§W}«“jO]¶gø#uÙ¡ºlϸ©‘0”0ï/ù¥ïºlÏØƠe{VÈ_/Û³âüÙW×ù0ù¹éú~Ï|ú{‘ÏŸ‰|[x>%ïw|̣|÷ø̀”ßü|¦>Ơó©(Ÿèç å]Æe¡¾Ùó©’ßËw₫!OO F÷̣ó|ẹ̈|êÈçeˆ"Ÿw½ ;\ßÓĂö ~[t’oí~~R^sûå5¯Ÿ‰̣ê]'ùe¯‡™ú¯Ÿ…ç³×ûÂóÉÏWÊO^¿ŒÔN~~Ươ|üôzäă‡ŸCu¸¾Sùx?/Fk÷z¿(ïÚ³Dy=£¼kÏ åU?_©Ÿ́Y‡îo¾µTĂö¬“Û³îú§k¯ág,Ûë ßbúù¿bÚIđ+®ÿ’Å·°?RàW„ư‹ ¾₫K…oÑ́4a?ßá_Tû#!ld€‹Ïœí?-áëoeφù:Ë₫™ø:²gĂ|iÿ°‡ưÉ.lÿ0Àáç'|nr ›ÁÄ籿œ…íÿø;Ơ₫rû¿âë”ë/ĂÏÉö—Å×I~₫đ›íÙ„ORmϦùMÓûkÚ¿ÏđµÆƯ€Ăû +ü|‡¿ƠÍ`ñµ’đŸ« Oø[Ơû—«̃ư|-íÏÄO«Ï₫¬ĐíÇ9)_ë³?k0¼—Ÿïœ˜¹û³€Ÿ7ï~|÷g~̃đ₫3ÁÇ ïW³°÷ŸE|’ÀƠñƠ¯:>¢úÇG̀'øjÙûq̣Ÿ5;̃H~tóSâ«:>ræg̣~œ›ˆj’=+ÜÄW“û[ö&y?ÎÍÜ59̃H¼½úDD‘}I7r’½ê&đ¢~Ơñ­ ~ÅÏêSß¼?;^5yr|Küâäx\‚¿¼¿Ëđ——ăw₫̣ôó₫̣pü®Â¯ß5Xsü®‹_íø]ˆ_íç~us|rÀ¯®7>Iưªă“‹ßßxăâ÷Ùñ×Äï³ă©jOzŸÈ)ËñåcƯñÔ=~Êt|™ïö–éx#ûå2_&V¦ăËá|7¾â×;¾;~yvüyv}u₫#ùD—Î$ŸXyŸBưĂ/ep^gÇù§/á’a°ï“¬ë$ûüÄO¿ø”¹NŒçâ_ư•qá2]âÅûgŸçñ3ÿtđgߘy²odć̉:œ<·]Çïܘuk=X37 $å7̃ă,iŸđg%剮\çîïÅSù×ûKRJơÛ8^ơ/IöñO}ˆ<ơ%ñ´‡sO{¹qöÑ7P<ú:ƠKŸÜ¨ñ蛥nLǹºưÅBóôç<ç§¿'qí;&yL—2áíy<}ñÄăm¼¶´g<îƠn;æñZô çưñك͋œ“ñ|8W÷g¾èă²w>éCơw¾é›đw>êÓíw¾«fÛ3Ÿ¯Üq=ÿ̃¼Ê¿ë…̃×Ơï®7ªÿ]Ô¾»^©ưw=“~îz'ưƯơPú½ë¥ô×SơÏ]oƠw=Vÿ̃ơZưÿ¬çŒ×zÆÏËœñơ²™ơơÚ“3>_ö¦Đ₫k ëûµWgü¿́Ù™/{wæÏËV́çµ—g₫½́陟/{{æ¯́ñßÿú³ßpV¨’̃^ÁÉÔÆëày-j[^‘/Ẹ̈ey[Gƒ̀ºö`¯˜Æ³å…ΖÉ—qĐ#Í+n[~Úçæ zǛu<ÑÙ™¯Ă¬8Ø+zæ}Ự̀û˜Áë„à6{Q…̣ẬJư/‹úëq0¢¤Ïa}L˃ç—åA{d¡NrXésĐ~GÖ`ÄVëó,e_§€—ñbX5#,/̀­°'${đ4æ}Ị́Æûåßw[Ôà÷̉çÙ‚œiùàưaù¤½ĂÙ¢₫̉çÙm,}.{pÓrµG|1¾ëcñ++D²¼áá%ËÏ öÉ·u2ËgEi§ơ¹¨¿™Ôkáqú$Ü:‘>·rúCw4oœy³¼đ₫ë±T°<œÄüköˆỘNưÂrƠwdaƠwØ£àiù¢₫ù¡àm¼́Qeá.|Vđ₫x\UØ̣&¼„;8Ûƒa˸X>…§đKŸ…ùÜ­ÏÚ¸Y~ú¿[Ÿ…ùÚ_£°å–‹¡odn<ÀĂÿYºơy2oKŸ•ñ©odnœÁ̉ge=éÖç9bp, åÚ1¤&|æSXŸg¢lœ-ŸlùYÅü̃tÂâJŸ }…ơÙĐWXŸçÀÆ­Ÿ]dXŸ́èÖơÀó;}`Ñ# OaôƠ™Ïa}væCXŸơWw^n\…»p£}ëîhϲ<„—đ̃q®a}vÆÿ°>åccéó¤Ậ`¤Ï£Èƒ-¯àjù±‡Ăú Ö“a}ăäuw(ÁtXŸ§a#èkXŸ²_Ăú¬Ăú¬ĂúŒ¯a}Æ×°>‡w Ẹ̈!l¹ê·¼Cx€̉çÀ̃NëS;́i}NÆÿ´>'Q‹i}NÆÛ´>e_¦ơywÀƠ;ʨKŸ‡bv°åÇ^Nës¢OƯq0ơ‘>ư=­ÏÅz7­Ï…}ÔMg‡Ëû¦w¼̣§åM;tË»sbư×Iǃyß´|"_–Oäˉ%¹# {GtsÅ`$v@ÉJb~GOă~p¹̣¶|g¶R²>¹8%ëf^JÖ''ûS²>3;¾d}²ăMÉúä$OJÖ'7¤d}+#6–>¹2%ëSd}̣ͪ”¬ÏCI9ØúèDˆ–ơƠ)]yœåƠçH$1M_}v"JWŸÂå'yßñƠ§ñø^₫Ơ§q|¯ÏƠ§ê{ơyÚ“}vvÈñMùÑçÑW₫IŸùÑgă}³½û#?úl”·¾EỤ̈£ÏÓߺiă‡̣èóŒ—̣èóŒ§̣è³đ|¹ăç¯>3å_}*‚wơ™‰ 4ëc3ùRyô™(ïÎ÷¡Jå™ï‹ˆÄï“÷ůXÜùŒü™ïÈï|ÊŸÏÁû§çs§~w¾wêçû‰Vë39™¼₫U"*Ụ̀BÄ実g~Wë¦jªÖ'ߨLºÙă¬¿”/{s5Ué3q7Uª̉gâ›>ÎúÏûºåøÄµü>®=‰ƒÇOÖÇ%°íE¡¼i{’)oZ®ö,ÛçEư–íïéO1%N`ËÜlù©¿N{MÄ«Ø₫6"ÀẠ̊3̃›ơÉɶ¤“§Ç_ˆƒ¥ON’¤f}rr$5ës¸¾Ư₫ʇư™¶¼ƒ‡åˆÜ°?S…íïđ´\¼iy¢¼eÿo Ûÿ;ơëÖ'̀Ô­O˜!ILƯă/Q̀ö¸X^‰Ë ¸Z~́W·>É<¦n}̀Áö·'¸[>ˆ`öëOƒăúÛ|ưñ|đ¸₫:ưa»Ûß̃̀Üԭφ¾ºơÙ¬¯åưÉ ưËû“ñ ë“›»RXŸ|ă<…ơ s7¼#đ)¬ON6§°>9Ùœ‚ˆßÙOepO2Ị́!lyWÄØû¹cŸĂú„IÂúäáÖ'ö¤ohư$Xú„©—Âú䮿Ö'̀¤ohư,xyÜ…-ox[î¸÷Çœ½?ÎD̀³å ,}ṛ!)3zöó`é“oÂ¥a}r²9 ë&ỈIÜWF§ßxƒđGP¿¸ñ aÇ’0úâÎiXŸÜ†ơÉ] I'uO<¥ƒ¿éÊ X̃„-ß̀ï4­O¾‰™¦ơ){3­O¾™¦ơÉ7u’Ọ.¾Ù‘|ËâÉ̀ÉÅ7A’3óKŸ́]ܹ|3Ëâ¤ḌÍz‹›¹’™l6Oă}áx×Y_æ“1M”3¬‹ö Ç홪₫ÓñĂAyẸ̈ ¼uă‹»<3[ÙØ¶mG¶ƒ³åGÿ>é´&ë÷z2¾…ßKŸœ¤N>)¼do|²j+tJ̣M}‹̀~23dq²:ùä0í’|óË‚I|s÷¥Ïáö…åç‡åçÇÍH*æøu¥ưỌ́Bư—å;#˜|³ßâ¦́“ÆBJöÉ·EÆ)û¦˜…=Ëfî,N"fŸ<^œôÈ>iGàæd́,ʘ̃|ïk7ĐÀ–wäư•O8Øñ₫F}ºóú†åÊ †åù°¼P₫e ÊŸÎÈ|çD°?xăÆïɨ­ï<åY^U~5FÎ(éưa¹̃ß-ÏëƯ^ü÷́›'»p{…©»…¿₫è;¹¿êͨª¿,?XŸŒ\Éư¥₫Nî¯́ Zđ¾dyç}Ẹ́₫m¼qR,™y¿₫Ơz8'•ù8-/߯»ÖK3ñ—2ªËúä®×ä“ùs±₫x¾ÍåùªŒặ|m–o–̣ï“oŒ%ßü4µú¤å„)|óÀ\f 0?&ßœJ¾ijÂy9₫‘™`s¹}Ẹ́¤ơ‘ «üugdç¡ôŸơỘ©ơỌ̈Áz;œ!ÊCŸsÚ>„ạ̊ÂrÛ‡%,ûĐ•}h–Ë>4Ë“́ú®¿ô9\ÿj¹Ạ̊!{è pđ~éSëå|2Ä {˜,¯Ô']ö\úäd[̣Í·s°₫ë3¨¯oî˜̣çÍ<›̣ç}Óî”?ï›Ü&ë™ư‘øÉp [^ÀỊ́¼èàN ,}rr:ù¦ºÙßfªMnêK¾™xv×/[®úeËU¿d†D¡}̉''£“OLî®O>9:a¸ØƯx Wá!ÿÖrù÷Ărù÷Êè73€Â ù÷Ưrù÷—a…Íè/}^ÿ^ú¼₫}µ\₫}µ\₫½ôyưûb†ƒüûl¹üûl¹ü{é““4É'Q§ü{ßü3‹÷gËríϤO¾Ù™|2uïφå̃ŸY®ưY˜¡¡ư™ôY¼?“>³÷g̉gö₫Lú̀̃ŸIŸÿÍw›ÏlFWµ¼i…+XúT|«[Ÿ_uë“o:{¿¼(ÚÏJŸ?uëSñ&Ÿ”˜Ø/ï×7V¼Búä›@©YŸ‰ưONLN6;^đfø,á$ Æo8'Ÿ¤ù$́àÎI߸Ú8ÀỊ́®xˆå Œ:8éœô« ñ‡b¹âẠ̊L<ÿx,öúÆƠùx<ñôÉÇâḲM±C₫ºo"̣׫ô9&ñŸÄàăï[̃ˆOË0">…>ù¸û‰YÅ(´úf·Á7»ö¶<„Ơé“›₫’ÕÙ3œÚT­Oùç¾9x ·/Y^Ÿ´\ñ[éSöÈ7ó±ơµ<ÿ–'12ÍøZÄ{‡b“øqX>‘Ç•ó{ö{=ùäî́¯oúÜ$’|óÊÆÔŸư&[?ñæ0VüùÊ)¯X̃ˆÿ3ÔÏg3ÚÏgË?·Üñój¬øû4VüỰB₫`Z^ÈLëC º«ÏÓ?ùÑg!?pơ™É„ơ‘)ÿê3+?qåÊO\9ùƒ?aë+SŸ«OăŸäe|ÿưƠ§p₫I~ơ©ú¤ù½¾WŸ™ü̉Ơ§̣a>•_o}¥Ÿô™^ú$_öè“̣¯>«̣_ưƯŸéÑgå÷WŸ•ú\}6åÛîø"Ÿuơ©|Ù3>yß3>•ÿ³¾º̣—AI}®>CùDËå]}ê{ơ9É¿^}*¿{ơ¹Äà¾óù¼ŒṂ­̉繉!/Ç Æ ÔƯ|ëÁÊÇzư+äcẶ¢ü®åµ?ù̃³ñ¾æơ¯‘¿m–ẉ¯Ïú™Ÿ|óÁ<_¼₫ Ê/–Oê{×Oåw³×·Eư“íIâ}Éö$“¿öH Ơuí ùưù£uZ̃”ß·¼ç'ß́ù}éS|6ß\<ÎÇ‚¶|ö‡oṕ)ü…nû›Ä_¸öYü…k¿ÓĂw8ö]Ø ÜJûåâË;ơ¹ö=„«đ€o!}.ø0¾ip,Æ›¨3ÁóÍ̉3ÁđM83Ạ́Éœ™Đ¯¿42ÅđMÖ3Á‡̉çLđA}Rg&óuẬ FŸ3¹~Ư₫a‚¿Ó́faË ¸¡\áó Ï™á7 ésür^>‰=3ưí›tf†Ÿà›'g6_'Ùß_'Ùß¿i][Ø₫¶ùM–‹ß4-¿ Fü,æ7 3Đü­aù„¿–/øZáưGËû“,₫ÖehĂ×jw_«™/~Zơ₫Eü´jù =ÅrñÓ80/?-{¿'~Zö~Oü´d¹øiéî÷àă­»¶¼‹gywá!~÷ƒ<,_đó†÷Ï ̃ŸùÙ­ÏÎüô‰ÙÑ—oö™ơÄ7Éξ|R|vø?₫rÀ́đ—|ÓϤăIØñ† Î7aË+8Y®KÉñ†u9̃ PẸ̈uZ>…˜đS§ă <¿IđU‡ă;YüUÇgø«ßTø©Ựÿ´[̃á×6ÇoBØñ›ß·Z>iOµ|Qøºs¸¾Åñ.Ơ7;–©O¶¼PŸtăaâ;̃Ơà//Ë;üåey‡¿|O¨œñ雟çd>WëóäKỤ́¿¾ôœÔß7MÏÅzX­ÏÅ|̣Iö¹àW¯=óƯ7[ÏÅúX­ÏŸ×'Ûçb¼˜/>Å—®ÖçsâẬAư³å:q—o<–÷¥¯ÿƯ'4’ø̣o§o|ùDûùßâ·ù$¼OI–çDQƠ‰@Ë›N„8~Ư87¾­ó7¾ ¿¿ßø8ïï_ëÏàø¶Î3Ç·—N¨8_ ó Ùù‚Äù„|óœOHÎHÉrÿX–W·,ŸÈ̉‰Jé3£ߌ´2ó1[Ÿ™ñ}Ï“|?…ú‡_j|ưhüO_Æ“»ù¿~ưOjó‹sƒ­y]7ÊƯøÜ@©kç !¿~ăómzƯ˜»qC/©O¾­/<ƠNœ%¤×ϷصÕø|»WçFv Ï·sÍCâ£Âç[à§>-´NƠ(|‹¸·¯₫–±yø₫ö¯âx•º—0ï<:ßJV\´_}Q¥7J‡ü¨|Ă/tb‰÷™Ç;²ñ‰;ÖQh¿NÄo|¾®†y¸?SûT¯©/txüMíû=>§nœơøæ5j|OƯ0́ñ?µîz~LƯ€âù3u®Çók*.éù7}EósÊñü<鯻ưæ‚çùpù*<Íó>öñO}ˆ<ơå‹O{¸Ñái/7=ú /̣è‹_}r£Æ£o¾Ư}û£scÖí¯~®Vyú³Ă‹½ưÍƠÛÏxh'aúŒ®b}Æ“¾ÀsÇ[;~Ư3¹ª̣¯ú‚ÄÏ|ÚâïíÈg>đ±Ơg¾è w>qÜ3ßø4Í3u£ÿ¯•vî|¶ÜóƯ¿÷zạ̀½^øư^OT¿»̃¨₫w=Rûîz¥ößơLú¹ëôw×Cé÷®—̉ÿ]OƠ?w½UÿƯơXư{×kơÿ]Ï5>îz¯ñsíÆ×µ×h|>ö†ñûØ#Æ÷c¯ÿ=c~<öùóØCæ×c/Ăö3{₫íùù¶·ç†pñ¾Ûg[́úÍ+8‘ŒÇ+èŒPäûà ÅÍ+̣él"_^ạ́eù±pƠ+6L¬Pä₫`äÙ:c¡³WØL0‚LQèOđ̣ Üæn†€ºtăFr²-`V„N^̀ûºë¼¯»¾AyáúÊ»aR̃p}'ơ{¼.ê‡~#[²H²đf™º¨¶hÜ!fG¶‡’́ÁT<é—“Ѭ_N6„ïâ˜üá&¸c*ơ›™‘ú¦ÍÁ¼¯º¾“ßW×w1£¤ß¹9ØUâ÷̉ï9²|đ°ÅåửïIqÆëàay£¼k±Ơ˜đQÜé—;$ĂLă8[˜—ë;ÑÏr}—<>êKf9ºơËUa¦qđMèÖ/w=D·Á7ƒ£[¿Ü©ƯúÅcnưVæg·~¹31|23*úïÖ/w$F×|c1|23È܇OfFs}¥ß†‡́“™ÁƯÑ­_î¨nưrGU˜yLǼ„'xY¾„©ogü›yÜaưÂt3££Ï°~aJGX¿ùÖo§~aưvê'&Âñ…—đ¿¡»a‚o”DX¿₫ÂúƠî“Af%Âú%ó>©dîÂ'5ƒođFX¿a‹'ư ŸÔ ˜3Ö/+~„ơˆa&rÀ´3‘ƒLj˜‰‡¼q¶G}ô5¬_¾Ăúå›a&rÀÜŒaưjG7¬_˜K1¬_N&İ~Åöà)|æó°~É|‡OnߨaưÊ#Đ¢/Ú#ư.ÖŸÜŒC;G.´Gú…©Ăú…yĂú=—Ñ<…cfrÀ<e6`éw1?ÍL²bbmœ…C¸€Ñï€ bzmÜ„—p£ßÁI “lăF¿ƒ;ëCßÜxÑï³ăD¿#cíqŒ́ú¡ß‘éOŸä0SÂ'9‡́Orlư¡ßqRÂ/áÍ< e¦ê}Qæê½.Âgư°‡4¸'́ñ¾ÁËú-ÔWLå;hé—o„˜‹ïõÑ̃×¼”ß½CŸ”ß]ßcÿíÑ ¾ÁËú­®¿ôË7ibY¿Üéú&ÆÆ•ßK¿Üá>Ù9ø&}ødç¨nỊ̈=đđ¥_́Ͱ:ˆù ï¨L®‘¬ßseÄÆẠ̊Ư?#Y¿ÇQÙ¸:°ׇ‘¬ßæE»nÂ…÷I¿Ü©8́1îjÉú=™ŒẶÆïĂ‹FùĂÆû‡#úM×W”y#&´o¹¾Áû–ë”·\ߣ?Ÿô0ó†Ozî˜>é¹#,́úˆI¶~o„¦Ü ;¸«ßÅï¯~O„#?úUD§]ù»¾‹ú°ƒØç‘­_¾É2²ơË’#[¿₫ÍÖ/wlư^,ưvï8g|Ç̉ïƒû÷ßK¿ÂÅú}đ|×Ç'?]ßbưª=>ùéöúä§ơQ^úào²̣̉/ï{ôKùW¿“̣z{÷gyÆïä÷wüNêsÇïàưwüÚ;®œ÷Ưñ¼oº¾ÁóÏø¥üåúvêsÇï^/F}Æo#qÇïöoF}Æo#"‘ï|́D(\ߪˆ…ë[_ưfÊ¿úÍ”ơ›ˆ(^ư&ê×¼-"ƯëƯ‰ÙvÖ+̃^ïï‹»̃",^ÏÎü®Ö¯"6ơY;ÏO¯ẉïú[©ïºë3ÏdùöG³~a²eÂ*̃8»¾˜ækOø}±ưs„ƠöoÛûÑûvƃO†¾1?|2tÀtÍúå$Û“̣ØKÊï¶…úvÛ¿̀ûâF¨©\{Íû†ư‹%lÿb̉¾iù >Ó₫EPŸeÿ£ Û¿8ăÑ7é öĂ£[¿0a‡#Bƒ› †#œ#³~të÷0#6.×_¶ÿ6ÀƠû¶ÿÖÁÍ₫]¶ÿVÁƯ₫ê×í¿eêßí¿%pØß\Â×߬ë ;Ăṕ—¾qüYaûÇ{?5º3œ„¾Y'8Y1n†ca¿}³ÛÁö÷OÄƯ7ëÄd<†3,|ĂsøfàĂ'Gƒox1!Î~ˆ*ú NJ Ÿ î&7ăÂ7̣†OÆp†€ˆ&̉Àà†÷Sö„÷Sö 離°÷S…öMï§2í™̃/%EŒ½ÿ[´oyxÖß½Ü!<ôM©³_¬à%ÜÁÙûƠ½_¾i'¸‹qø¦6Ê{¿ÁƠûƠ3?oF;˜‡O’²ñ?Øûï "̃½¿îẪ_7aï¯+Xúíg:†ơÛYÿ‡ơËÉæ¡“!'~_LaÇ7¡__¨~Ëñ Eü“ă'Â=­_Ù/ß¼̣/}óNpèĐ74N9ûdư²ŸŸÎĐĹ²æ`ÇĂ÷z2“ơË7¦oæ n ™¾™'8™=uẂÁ”Wo”×n”̣ăá•úu×·P¿~ă÷¼/\ß̀ûÂơƯëÓLÖ/7‡L1¦>ăæÏ›@>oF9úíËúYf e³q“ù™ÑyÿÅܹÿuö‡Sß 8ùtF*g¤BíwF´Ó¾pÆTư…>{su×÷d¤“3fíö—ë«₫j®o¡>ÍơUU×7k|¸¾‰÷gh×{¼uüó™ œú‡ñÚñÏgzqP/ÉréCú•¾¬ßêơGú%2–ơ«ơÓó±OËú%̃rçs?›3ß]߬ơẠ́ÄúĐq\¬̉/ߌËúå›ScY¿|3ă®W½YÖoqû¤_ùëËú-ø¿b‚o\i¯ôKükøæ3>~|Ög×Wóäúª=̉o¶}~³íĂrF}`¤ßlû0-́‘ô+ÿ}:ă*ÿ}Z¿œdÓúƠúi{×¹™ì'ă›ÖË^vÖË1­_C'g7ÔGú½ öKüߘÖor}¥ßäúJ¿äÇ´~åÏÛŸàcă"܃Ï~Ă76̣¥Ă76̣«Ă7 ̣1ôăï„pgáF¿“mcH¿|Üöñ·ßđú†êÆÜ-OÂf@,êË~›ƠÜ…‡p0úmÜ]?|sIƒárưÑ6±—¾ù¤É¿·?Û&ăSLñ8™‘±đgÑo»₫½ô{ư{é÷ú÷̉/7]½]ÿ^ú½₫ư0CA₫½ô{ư{â5íú÷a†Èdÿ"ựMéáo4ù÷aưóû28¹5ÂúådÏƯµđ₫Lú ïψ¶ä›zZ¿û33V¼?«ÂÚŸ%36´?“~»÷³̉o÷~[ú=WĐœ„3ûÑiy¦¾—ù&ئxh·~±‡£[¿_y?Üø¦ó0ƒ©ÉŸ÷~º5ïg¥_Å—»âÍ|Üôà$œÀÄSù˜éÁYx‚‹=C¸‹ñ#ự çohƠơ“~̣ÍVM₫{³~å¿‹I¾q¦¾7$ưr̉yøfâ&û⛋Æ‘ô[ˆÿ™áƠ û]ߌÜÈ¿&~C<¾@j!LÎÔ§™!”x3ƒh)>uO¼OúÍè·Y¿7$ưfÖߔֲëŸ-oÔWúåæ£á›ØZv|Rú…O1|“[ËŒÇóüójư±èx`“½1®áŸ1Ë7 åw]ß©üî]ÏÄ0¿ëùƠ»₫&̣³Éësâù»₫f̣ÙËës!Ÿ½,/ä³§×gåë§×çF>{z}îđ†×ç>_ùô–ÍPkÕùø‡ÑÚ]ßE>¾[¾(¯Ù₫%Êk¶jOµư+Ô¯Ú₫)__m¯åÛëöæ+´âúçk¯á\ÆđàưÉöZ'’íµø&Ë₫E¿Â₫Åá3MëWüµiư_`>G«đÁ̀˜æăë[à¸₫P_ Üí-aûw Ǘ¿eÊköïJyñ]Zsưªư7Ơ¯ÚSư¤ßpQM~>¦ơK₫5¦ơK>7|Ó`#¿Óúíæ7-ûÇ>Ó²ÿ,~Ó´,~Ó´ÿÜÁĂrñ›†ưcñ›†ưgñ›Â₫¾øMa_ü¦îư‡øMƯ kñ›÷â75ïOºø[–‡ø[̃Ÿ pñ₫d̉¾âưÉ¢=Åû©4_|²&~Ú°~~÷Sæ§y?Ơáÿ-ËÅç“~ÅOóÍœMü4ßÜÙÄOóÍMü4óíÚ„¿Ö¯øiæë5nÖ y¡Mø4a?ùªđ—ù¬¸'ÈwEX¿Ó'‚ª÷³âóI¿ }ÅsA|¾âx@v< ‚³åMøÆÄ¿ñaÇ|ÓåxÁv<@ü×éø†N@MÇ/2x8¾Qà§Ë«°ă- Çtøªqă-â«̃xŒ°ă-¾js”áÛÇ í-–WÚS?R}³ă]]|ßÏ¢>鯻¨Or<ËübÇ»̀/v}üåéø\Ùñ¹ y8>Wà/ÇçøĐ'VXs<±Q^8Ø)¯;”×/ ê×O<öE'O¼’ßW×wñûêú.~_¯U{ăµjOq¼¶ Ÿ́x­ǿÙñZóÙ¯Ơ tă¹đå—ăµ]|yÇsCüzÇkCüzÇkÇ›ßÙχOØtøm—ÏßÉç…oÿ¿;;{e[vd+ûç)¶ Rêß…“â´Gà\ â 0x}viŒ/k®Ùtàœî±×L•¤Ê’̣g¤4t'đä¤ñÑ5^N"]ë1'•N=C'~ªwèÄË]ÏĐˆßSÏ@|¿«Aü̃ơ Aü̃ơ •¿×W¿÷|Tú;]Ÿ‘ùơ§d>Bơ!'+`TQyèïÖß7ưuưǦ¿Gơ!‹ ³Ï*Ôúă Ü—_úo½ÿưóßüû?®yü¿₫ø¿îÅCOô?ư*¿₫˵º¾ăÚ'ưª®âưúóú¸ê¿ÿ¥ß³[₫úuo‰₫=£Măç×¶toúưFÿb+F:Mç̃{t³ñe!=ƠµVöăå₫₫Åß÷ú₫çÿ₫Ç¿₫ÛÿêßƠ_ơ×ß₫ëï̃₫íüº»́ïßéÿT§s“ơëoưúÿü/ưí¿ƯŸ₫ñoÿö—’G¿¹Ûÿgñ{o×ụơÿCü(r^/àÿYü*²ˆĂ¿÷ß¿ç…û5Ö÷@Ăß¯ÙØ…r¿_€.Wä_ÿü'/₫â?ó_ÔÄ+Aí₫|Å%óóùûỘ̀‚}îƒ•àŸ¾¬̣Á.ȸ­Z:̉]p«Îđ¿d3vAÈu0¼Æ»ÁWÉw †iÜÇkTù~ u±.µ¦ àÁGW=(x]ưƯ`Sư} ̣·¿¾œÂ{ơUA}û[Âø X×Ú0à¯AU«~Ó„‚Zm0›Đ]«›G \­KN˜Ơz”]­6˜œ00åÛ¿PB÷ÁÛ„áÛ¿H‡ô<́é»àåß}ơJÊ;@‘íûh²|¾ ®ôo… ú¿|ôă#ÀÄø—¯₫`~ p2Ët̀ị̈Q̀?B̃Ị̈Æû/̣}¿LyÿË:úáưY.¸B¿Äƒ}ơ€7ú¹| úK€ư^6 Ñf|Ë>|?ËGçđ}‘`áû[vø>!Pñư.°<8ÆO\÷Ïß;âö‚Ÿ<Ïư‰$´Uẵ?Çj?Ç[•àËùpÀ:çë%$ —$k¹uă]ê¥:ïV Ơz· ©̃»•TjϼƠ¾¨·"©ö»U¹ú;·²`+|gn…ú´>·Êºn¥1ØjßOüç·™p£R>­€É7‹•« 7›cơß±« µ™øªëª.0¹x‚×Ï͵ëơøc×¹ˆD3́ê±B{ĂÑÚóf\ho¹ö–¢+•ñmµWßöæÎø|¾Hnö壯–ŒÎ‹½£Y1ŒCÏöïi¯9:D{n¿5hÉÛwtén.ñi|,êÿ½˜.ƫͱ,i”Ù§>ê_§=7c¦hüƒÍ­J̃›ÙÎèØ[₫·ơi ‰<‹ÿæ}j³.›êÉI{ÓƠ‰´çñ,ÚsôlÑ̃Qÿ¼¹̃×ÚÆŸƠ‹wó.ÆYÉÀ›Ơ¡ÿ2|ïƠô½+UjÜh%íMW7̉—›C{®₫<´çù?26ÄÆ{V« >ŸÆ¢²ÓlÛ‡ñ2ÆI =W7VÚZ++íMcÚ[Æ´Gơ%í92Æ*Ñ\¯ÎF¸ú²ú^8Ϋ¨¾Wèr­YƯØhÏƠö¦1íy'h´ÇÚO{ÇXă ŒkÓAơe_ÆñQƯùà¦ùƠ¸Ó̃0¦½©÷3hoëư Ú;ẨÿÚˆÎÏn\?¶²;:¯»6yûă³)Úl¶×ƒ‡¼ùE{¯E{~Ÿ‹ööGuéƒ]­jçDƠAT›₫½³Ñơ};Ûñà®ñÉ®8;̣àiL{Kă;´·5C{®î´₫«úŒêƠ;;T>û×ùd·´̃Wg \ƯúàaÜçGvèÁKVJ¥½íl’Úó₫xĐÿIµià|„ñ4¶óegĹ#ªél›Öû:5_®}đ2^ÆÎ®5Ús5oW{‹jØsT%oư÷~tĐÿoçpÑ?­÷ƠÙ³/<'Xó#ă».æỏ̃ÖüNÚ;ëÿ&ûgưß¼_ëÿ·³*vÛ4›ôÁ]ăƠz_wf/ØVç1öû̃´ḉߦ½­çmÚ;Ϊ½Cµ´ơÿuqVëGµđƒƯ­÷ơ½”½SuƠ2ûöÁ]wÁwö¹ĐƠÆ´÷Ymüà¥ltMgº¾Ùä‹ơ{¯÷f‡¸ùqÆ‹œsgçeïDÁ‚ÎÆË̃‰̀Æí…Æé́;[N{®.n´çêb­÷Q¨.n\]¬ơ>؇fÏ?x~dë/v6ŸöV¼Ùư‹] M{Kí ÚÛjodđc¾́ŸïÄø~?ßù¨¦¾Xó53x¢÷33Xbù/»á3Ø̉ŒÍ–X´WỠ¢=ûdZï£&›"Àf_t°æksdïDå}ŸlÏƠÚñ…û_xbW dûf|âñÙ³M²ÿ®¸Øl•ú9̃J0«âưÖóUѳŸ+úov«Ç/v59ăs5w0¾b6 úu>Ø6«? ư2{æ ®i¼©ÿfß´¯àYêÿrơ9úµ\­Î÷¸|>újvQG_Ífèëø`]¬ñ Úë₫;íuÅRÿ›₫úß>ªƯïzà¿3¾Đó'ăóû[Œ¯ªÿ‹ù¢:ơĐó»X=Ÿ‹ơĐó·Y=_›ơĐ́©ë«Ïz?ü{Öû¡₫äzïñÛ̃1;¼bï8œT±wă=´WØ)́tơ=ûÑ®°¹ú½°?ºº½Ü]́·»ß™Ç~;*ª́·]íWÚk Cí9˜|uu?íUWÿÓOÈà³Ù‡ ûÄƠù ûÄlÁ†}bv_Ă>qíuŸ@{MưO{'Œi¯Ó^1NûÉ́É9NÀƒƯˆ=7?N¸ö›đÄ>ô|NÚsÿfÚ‡êÿ¤½jL{>pa¿ŸN€ưkvæÂ₫]ÏE2ÀïÛöÎưØ;CúØ;Cßg`ï ̃o&ê»ôÚẳ‡´÷­¶w:́ĐC°ƯaMÛ;¶­í»¶à˜M[hϧ” ̃ë4ƒB{>½ ¦?cŒäm%™²„­ÿ§O[8Æœ‰¿Ö”,p²¡é{öéy×3¦='"ư?³‡ñ'nø“·ô'IFŒÓ®?jÆÍlf’Ga<Üè™Üé/ă{¾₫·çkàÏÓ ªï¥_ ÿ¶Â$·̀†v2F§ïÁ̃¾ñăL¶/â>}b¯p}e¼Â§M¯˜>M‚d §K|ëfŸwcÏŸ“CEÉ%³n¼åă4ê{×W{ă;~¿o|Ḉwâ;˧W/̣é…ä‘OĐz_泓<9ɶ_ÆÍ§]ă0{Ÿö|úE¥½b6?ñ5'Ÿ*ñµăÓ0ˆ¯q^*ñµ¥üGïsµƒ“=:]lùÜúª |cù´ĂïS{øas>%ă‡j¯Ñ^uơíUơ/“«ÅƠÄ7ä;ñVW?tâ­> £oơxñÖ©ù™¬s5íù4A{ưă´ê{ÙW'¾)f§wÜx¯̃Ï$̃Zư{â­®FYÄoËG5Ég²0“‡ÿ"̃½ƠÿE¼›Ó?2̃­çoÚ³₫mÚói ÏwơGÆó­Nvê¼ƠeöƠg̣’ø¹ßĐóNæT­ThÏɼB{®n*´WüwÚsµSf<>9Ơ÷hb'S ŸîQH®ưù¼ÂiÎ7¨º›ÓP.vµĐ6ö|ù{/9_ƯØúrhù¢=Ïצ=§7í9¹¼iÏß÷f|Ơ§¿0¾¢öîzxL¾“›₫ÚïjzGƯ,'¿–uóZ•Ư”ÓØÓMó*ú9|'Ó‰3«É5“8–Ëœ¹s8ÂG9VÅH–tºs)̀9>ÅçŸC¹ÖƯàÎ&{Û®ơçĐƯóˆ”ÎÛŒè—Ƕ±+§McR½›º­»sŸ̀ê+A¹ùÎĂMyá¦ü–ÂMùŸ»¨•kđ1ô<½_‹ưä‚¥Œs’ ®₫ŸEŸ•']ô¹¸)/NÅM¹̉¬¸©ø8Hé,,…ă¦lXƯûĹªûƯa’øX1wƠĐ-?.Á¡=r»©î‚/7Ơ>ê¿tCO,Ó ÏľZnʇWƯåđ¸ÓgM—b’́½w­= ơ.4|'ëO7Ơ Ư”OnÊfßpSîƠpSî•ô¹ç ZUpđIø€ËüÅÓ9KÉëÎ\]ætĂênʵvÍMÙXinʶqsS~ƒ̉ç´ŒïÎ|̉0!íâ»¯ë– » Vqb»©¬nÊ“SƯ”-bésÄ̉ç´‡ïúüM}¡M«ó‰ß]“OÅ%£@ơ5ÔÛ—eúæq|ÊƠwº6åÂÛTÁ[–>{³²3x ¾½ôù'EäØ̉ơ¹wÇeM¾ Æ÷™¯Ưr¼­„̀Sđ⇛̣‘~×(Ú‡ø†™.¼ú¼ßú¾%8?ÊưöÁÿ¼ ²¯!_>́oÛ Y{ûÀ́ºÆàsGcnÊ¡‘f>‰Ï ¼ú¼7ûƠç½yƒWŸ¿ 3›[7•4X¡yo:ymäm“5dBï_Ư” ƠM¹Z³¸)g^}̃ª¥ ³Î<¼Ç…~wAö ă«ỂĐ…SY¦¸q¹ă¦ºĂTnª™ä¦BAªí¦ƒƯĐx\Đè¦|~ä]÷"Àyäí}¡ÊÀØ“Ă5¯±'ÑÊe&’î¼ÆÄ&§›¢0r‘z5Ư”Ç;ƯT÷)›ÛPæ)µ38·.c}`ê¹Ă„(ÏFwS¡áw(O°º)Ç“»›rx²»)G‹›Gä`eóˆ|è]÷ààĐk`́AƯd˜—åcHĂD,ŸRz Œ=‡›2‰+ÜÔvĐ—c̃ÓPMƯÙ7±SϹ̉k`Àói«{äá«nʵ¥¥ÿ„4¥n”̣úÿ€ŸMù×X?ë"Ѹ>:é’Q†àŒ¯¤ƠMv7CÂä¸|t}Ló)ü7hû¬[è8yă‘ûñˆHưxrd§5Çe°°̣Æ‹>;̓>Ă»C „̣·àœJ÷gå\·†êVB—ĂvV>í·óYiDÍM9‰>ÿ•/ÔuSÓơˆœy ȉ·đˆüÂ#̣´‡'ÇYµpSÉêåËSW½|q¥ Ë×GứÖEÖ$D÷"É‚́á³ wg[Í`ôå-×ÀØ îÀñJ8]x릖2ҵ]‰̣̣#O¼}m•ÓÈ{ĂrØ̃­ª’ÄÛlOḉ·7> z½ñ5×çzăóqƠËM urAu:ƯM¹Ï‹=4̃ä»îô»ĐTS¦­‚âL¿­‚ªn [>%|Ø*hºá¦̀ÊÀÀđÄb`¸Â8 ŒùRöVá™́6™¨&¶Éät|³Éd¶H3É–£Ëm}yê›r¯ UÁpSk½DSx¿!gh{̉sUÍnơ‘êƠÔ_ö¯¡«í.´ijFCuS&ˆ7µôÊ`sØ»›2{ƒ2M¬•Í'8ˆ^¼èàúc»ƯD²c»Ư<¨ă¦LƒÚđu Ư”IPÛ̃„9PÛ̃„)PË4i3 –¹¾ †`7ßÉN ô§*höÓtS&?MhÆnƒúíj™ù4íj™h'/yOĂ”ăfhÏeI`ä%MĂ<đơQ‘}:́åî¦\¿Ư퇗kÛ¥z?ÔÅÙöC©Ư6ó™̉í&èÊífvº ËÁ0±ÁФĂMC;éîUØIw¯ªt÷ªÚIoQ5»3ï¹Rc2W`LIŒ‰"¸Üf;º)¿A"æªÁ¨††ø̃ŒcxQô8&c̃ívLf˜&º§Y¢ĂP¤Ô ¥ÜQ7%•đ©ù‚ÂE¤HZXƠbu]§}Ù¯[Đ¥đÓ±¯nî:¥ „Ùn欛jj¸)W¡7e4U®‘nê˜ïÀ`qÁ“ƒƠd (̀@v`ĐCè1zÚ››ê~sS°‰1́́¦̀ nnÊ…₫áÀ uơ1n¯cÜ₫±cŒ~)AÖ‡T°Å4q°Ơ4ñ Ă&NX×ÊU3¬«§g˜Ùo.ẰĐÜØ4wº¾äædá íMÿ=ĂÖ¦ƯÓk̃N†ÁMÛÏ0¸hùföµYóóY øL«ư²öŸbRaỬv‹IUwË/¾$~?Iç®$₫3ÿEm¼n3[ÿĂ:Cqú£ßUÿ¯‹ŸUª“*“=X©'q棓ÊÑ·ñàÍ߇¥W₫–Éú`³*NôƒEĐæđàÍߟ9îÓ:"çƒ-¯ÔaŸ–—Å₫`ÉËC‹É}°Ri E‡z¯`åƒơN•ăz_• щn¶¼îuyɾíyEÏûA^ u¨«:Q5:TĐ­Ôq‡Z©+ăc@UÜ*TPÿ¶.yr‚¼.yD2 R½Wªy¨>´ïXL>?wÿyợß nĐă×y§ïü Rå¿áÀ6ó;œg₫‡ ¼ŸÑ‘×û¤zü~Ç@^ïP dưø•º´₫ _4†~é5Èú7|±ú9|°;ú;&̣̉ïÁfư y}ƒ̉?Ăû ß×đ^Î÷7lđ}ưÊ?ßïØÈ˃üÄs|₫^îèÛR•ïóöyû£TăÛ_yóïxtå;̃ÁºăùĐAÅï|‰ú₫Χ>|çûñ?̃‡bƯù¾|Ñ_¾Ï)êc¾ï)*mêĂĐVú2DN}*5J}:¸>ơñwĂO(+ơƠ§>—¥¾Ë{¿}xï÷2®Êä{"ç÷Ö•1̀ﱋ ßk¿'”¿ßóûw}ïȳĐ>ëÏg=¡¬7î®G_®W®gŸ\ï<¹z~s½ôüçzê÷“ë­ß_®Ç~¿¹^ûưçznưÈỡú“ûơ+÷ ëß»ŸH?ßưFúûîG̉ïw¿’₫¿û™¾w¿Ó÷óî‡ú¾̃ưr²_6₫>Çç~«ï··w?}÷ç»óÿ´&î ơ8äi+(@pqkÇÙCU°₫>_úû@₫ Bu_=XUp1̣O¸¯û*Â*VÿÅƯ+,o`Ơ_‘™ƒzđÂÖ©z̃B>ỖB¾©½…|S{̃d5v¬4Eü¢cÅ©.÷bä§æë ?ơüƒü̉ị̈Û¿G~KC ̣G©ŨèëƯ‘4Ü‚ÈÙƯGUU…«/F₫Z`XÙb9_Œ|×óù!ù@~J>·È/[HÈ?QÆ×bù­S\¹̃/đ€Ơ^göx:W¨½|S{ù®₫ 仿g o m ?ç§—+ÀD̃ưŸÈ»ÿ‹¡èy °j<"Ó‰åxq7=!ÿDé:Å’ÊQß ù¡₫i«ïbäƯß¼û{?ẓRÄz»xWăm|-j!Å"»ùnŒü0F~ Wä—1̣Ûùc,yÅbúFÿŒéTQ|1ûÈwïÈÛoÈOcä—-rä·pG₫È"Ùy)iĐ7ú§¼@w ©ềê»Ca63ïÆÈïhÈOyùeŒü&è/®%ư£xq©ø¬oôo1_"s®Å¹ïïB̃,¦ù¥ñÙCẒ 6ú·8îGd«%N§8QwĐD§8q‰́̃7ú'ÎOw¼ôÁCMA~Ú#B ù»ŸPŒ¸TœÜúwï¸xß‘âĂ%rg§øPwD?èŸ÷G}ùà!,ŸöĐÿá±-E:ņKl±îhùăña‘/·÷/ uÇÉÅø#ß…̣ĂùiŒü2F~«¿ùc,yçt'(l oâz₫D®Ü*>în]•Đ)Ü̃_œJy°ßïF6Œ·ôc#¿eQnœ†{<æ" ;đ¨‹/ưÛºÊ{Pü·uôúpFđb=¯!ßôû†|·¼ÇבêOG̃AG~ª½üR{ù¥ñŒ¨y ô÷‰üÑß'‡â¿°æ¨z¾ơ¯3? ùªùXȇ<–• =o#ßỖF¾i>dnOŒ‚₫uôEöàÖ~9(ÖÛb— ơöåX^ŒüĐọ́ĂÙWÄ¥ =pó¶®~çmåEFEÿT>̀D¸XíWäá©)¯çEÊá₫…S^ư‰ógÄü%ßÖ₫z~/Üö·¯Ÿăé_ă9̣ˆGÎßúơ#‚åùçç|§₫ Íß̀÷§öRÿºÚ›ù₫%Ÿú×%¿Rô¾RÿÆ¿·GúG„ ùPû²·®:ơƠ¿ª₫ÈÜ:xÔWÿÚ;ȵgưÓQ‘ƒb¹}«.búwù§O°ÿü̉ß+̣Oú{P·u<Π8në(æèŸ́ßaÚØÅx̣]Ï ä›Ú ä›" ùPD²!_ơû†|ơï‘/j_öàÖƠHƒ“϶̣¬¬çŸơÏ'ùî₫ ù¼#8ùạ́ßD¾i>&̣¡₫O䫿{"ïñ,ä!²₫Ũ§́Á]‰ØZÿäÏ Ùv¥ÿù¡ço仿ÙÏ»Æw÷û8Ø¡₫ä«1̣¿2ú§bïa>jƠiOă¥[Á™ÂùaŒ|7F¾#¼#x|1–=­xÅh¯=è₫ÙÑU£½öà4F~(¢ƯïÂù¦ˆbG̃Ƽ#ù"lDŬ£áˆ®ÿFĐuXĂhø#[ë#ÅfKÅ«ƒb3ƯA£áè(êÑđG6óµ÷|¥?â÷™₫ÈÖxÓYŸÔ¥£´G{ư‘¡ñm䛯“₫Hü™ªñ䋯cD¼§Añ˜îTºƯb|¿gÇtçj Çt'̉ÅÈwEˆ+̣w=§XLw]Œüư^;₫ˆŒ£ăˆ”8úëoăa<±N؆|7F¾)bƯw;ưá*Ü‘/ÆøóÇxocâKXö ª°.F̃—|7F̃ư›È»y÷o"_4¾I<äËTUáÅÄS<²Uy1̣Sx#?ô¾2ă÷»‘w†@ö èü>ÈWé́AUÙÆ ˜KU»/ăû½R %ûÅa¼”á(Èßơ„b«å Å[ënT#ÿÄ'Æ@ÿt4÷àäFñµÈWµÈµdLÚ—=(₫óͰdUí9ƒWµùbä‡úבG¾+בo’ïȇ?Éä=|Qÿñá£ùÈ ñÑó&ñå­çM2€Ë¿G~é÷ y/ăÓC¿_Èÿy¿¯jơ#ßÔÿ|h¾6̣~Ÿ®z₫A¾èùŸöû<ÄçæïŸ¿ă÷QüUüÉ‹‰ïoeä ̣ËG~)CW‘ŸÊèUä§ÿ¼3¢ù»~ù*¸¿g*èp¬ÓŒ«öïiÎWy?8üü öß‘¯~>̣EÏ/È=ßC]:¦÷é~q5̃z?Ú_fă{8È;CyŸ~?Èûû̃ÈûûØÈ¿oä»̃çF¾é}:#««R†¯®{pX?»qµ~"ïŒ÷D¾Xÿ%èË$£Æ÷Rư½dnùûD~ùûD̃ăÈ}ù®₫uäñíÈ7¿#Îà#ïŒoC¾z}B¾x}"C|Ôg¼+ïSö߬|ÿAÆÑës ïñTäYŸ‘g}F̃ï«"ïơ¹ ïơ¬ ï÷Swÿ­*wO¯_ÓN3.(¦ơU˃bäY’!¼í‰|×~º‘õ?‘·½³¯ÆË¸h?]dtqoơ_ú7tøÖpǺƒmM䇯7‘ïÂùfŒ|#ïưz _„;èc¼Œ=Ÿ̉¿±±µ_ ]-ªŒ…a¤ ß‘·=ÑÍG _‘/Ï c~ŒĂxÛ̃<ƶw´̃Ñ.‡Ka<Œ‘ofÔ o†DÃöXA¾HŸ´_ ñG‡¯.|đ¶½½Œ—üéߘøoyûoù.ÿa#ßä?läa` _‹±ư#éŸ6Ê‹‡±ư#ëßÀ?̉~.C!‡kh!ºyü#äñ‡‚¼ư#Ù#£ăYÿ:₫¤́_}1ú×ñ:̣Ăùnÿùf ̣aŒ¼)ÉP9ÆÅØóeưk̀—́Ááư«¡fX¹µÊQ½₫6̣ÍyûoùjŒü7cÆư“=<Ÿá°›aû™ĂpFÀ8;ÈOcä9ÈwÅẉMñ“¼ăKùŸ t?ưÓƠlõªU»64l/s‘¯êV¤@d 3•xÙD¾ëy3:!£ù0#y÷ _Ôß|Qÿ:Œ Ç“¬Ê' ‹R`ưâb́x`KF‘×êoC~ø÷ÈwÇ‘w¼)÷û ä/ äªÈWơ·"ïøYM”W‘/z^2¦,yÙƒ¾{¸àôbÅḳËñZä—âÛùéx-̣‡oäßßÈ;¾½‘w<{#?_È;~-{°ŸŒ_#ß?–=Øu˜æà0¹®ª£ÁasƯŒ9£{f3åŸG>ŸG>ŸG>ŸG̃ñị̈Î̀/œ̣Τ¼æ«í/<¿pûÂ_̣±¶ó ·Ÿư‰¯₫×”Wü¿ÎŸă­)¯÷_ëÏùJưkêOÉù×óRÿœ_(9ÿÎ?åûw₫)ß¿̣]©]ù®ƒ|w¾+ƒÊwmä}ơÏ¿G~:ÿ–ú«öSÿœO”=Ømï•Wÿ–Ú“=Øo-¯₫mo"ïüjêßQ¾Óö íÏCSùøÁa¤CU Ău ;|h¼yç;̣Îvä=¿ yÏgC̃ó×÷|5ä§~È/ư>ßú} œOF̃ă·=¨Ó† =ë°?Q°+ă•₫)ñwóßÈ7çĂ‘÷ø ̣Ăùuä‡̣÷yó'̣Ëù{ä·ó÷Èåïm*¿Ñ]ÖYµP_ÜÁæ Tökṇ̃MÏ_È›ï±ǼçSü†‰ü2Æp'̣æ£̀düªÿÖ?]5×ö`ƒŸ`ưsm‡E+ư  >EG~#¿Œ‘7_¦!ïùL{Đư³₫uø {2„­ºúM˶p7ŸùaŒüÔ|Väư¾+̣æ£TäÍï¨ØÓæËXÿï·`O‡q7†_„ü_ê ?‘7í ¿ÅŸ:Èó¥đG1₫Hư¬èÉKÄü°•₫Œ1̣懭ô‡ÄŸZÈoñ§₫ ü0ü1øaĂØ|º‰?g~˜íÁä‡ äÍÈ›67?l ¿̀C~›‡ü1ÆŸ-¯íAíÑ÷ë›ñm{P¥×}¿₫p7F̃ó•₫°ç+7Ÿ.߯ÈáJ< có×*ñ€0.ÆM¸ ß‘wÅOA~ª¿ù%~èÃ|àƒü?Tú7U5×¹ cø²›xJ˜:Œ›1̣]|Ѽù¾™â».ä—ø® ùm¾+̣[|WÙƒSUÙËFf¥¿²§çé F|…ß+{pVéă¢b£&¿yø½È›ßÛ‘7¿·#¿̀F~›?Œü1y÷¿eňùÍ͸ßL…I¨=Ùƒ3¨@äÍ÷ ä=ÿüpẠ̊C̣y§"¿̀ïF̃ï£ Ÿù£çe|ÚüåBÅC1_ør5_0_ùđï‘oâ×g|úg…ùÍóO»q#?į_ÈO=!¿ỖB~©½ŒO»`f|ƯơŸW{“ø>ơßÿ߯z̃ ?P]߀|¸¾ùp}̣ÍơÈ7ÿ]̣?k3ÿQƠg4ùµíÚơưwñ&ë?C;ñ%ñÏgø‚‰?kz3ç2j9Œ¾—§úŒ˜?ßx³M6T³Ïöà'FÚ́ƒ>ọ́è`³OưܹzïA4íéÍŸçjÖgÏoæ̀<·¶̃₫ø€µhºÀ¢ù¹è:жù̃è²±›c¢Ï„?{LsŒ÷)×yÖÄæøS̃c|„o²öéf‹3ĐœóôÇ̣à-́«d]¥äÅưÁ×'1ùÿÁ üØĐÍ5)ùw×x¤¼k&²}× äóÍéÏ₫Ù†È₫Û&ÊñÙÆËñÛfÍù± Îüust™ßîª4æ¿ûB̃O·OËûëöÑy¿Ư1̃w ưè ¡?Ưœ0ô«›c…₫u°~ö&›ưí>ưî£ÿƯ1}¾nÎßO7ï«;§Ï÷×#çû́Î9óưvWM>¸/?_ÚG{q¨b«àû<ú¶yèo(æă ]–ă­u‡ùhœóK{2ó:ˆ-ç;tdE¾p!ï+tAQ¾Ïç4ßwˆ³œú̃SÑ—P/ơ)\Ó…¾UÛtècƠk©¯>`?ơ¹N°ô½ªF%¿đßK½É–÷{ª¡ç÷V•“Íï±êh˜ü^«r¬ù=ów¾wäYhŸơ‚ç³Đ?ÖúÏzÄøX¯?ëóĂzçùËơĐó›ë¥ç?×S¿Ÿ\oư₫r=öûÍơÚï?×sëG®÷֟ܬ_¹_Xÿr?±~æ~cưÍưÈúû•ơ?÷3¹ßùûÉưĐß×»_êûûÜOŸïós¿}¾ßp×ÏưY;ÿkâ®@§}Ú Êâ·Ê¦(E3‹übưƯ+ŒªZe‡T–¦9ÊùàĐß#WH=?x\|­èw½‘Æ ë7ЦñPưêO§SÏëôoéy₫] qùÁ[í ú·ƠÿAÿú'm7y1;‚çcbkUÿ₫[Ă´4±ØZeEíŒatµ¿+ØIgRÿ­bÁ7ǵñú·4‡₫m=ïĐ¿kùT̀{Ë|`}1‹ÈP­Æa ©³cJ̃X†-ĐeI[ :—¡úà$ЇK?¹˜ù®>è₫ÙèƒÎl>L,4ëƒê¬[ ba¶@&ư·>èpË胮Hm>è÷èĂu7.ÆKóe}ĐÙ{-Đy-Đ·×}PÔ¦ú s¤[ :סú ³H[ Êâ·x-¡ñXtºR ôa±ÂZ–¾‡†>xl胪üZCt¥@k胢8­¡â4gܱІçMQœæ+>̀Æî_SÿxÛÆUX;ZÓI­a±)k̉‡ÎHjβ?xÈBX”Óx_ ×WtôÀâ°Çs?Ä‹»ñ6^ÆGăµGåưĐ,æW_úđzl®ÙƒĂ£ñ|Yóe}PÔ£uôA¬ÀÖÑ«Ó:úàư©£ªk}đ~Ôчô ­₫<0÷Ïú srZG:ơA,”6Đ·×ú ÷Ú@¼¿ ôá̉Ù.Æwư0KîÁañî—f_W¤ oă¡₫ÙCUT¿™Ơw±' ­ëøÚf–ñ=°c Ó¿£ö»ú§³ùYˆ>đăncVåñüÆ¡₫Ê¢́b)µÇ¬+=Y“>^ăâe<ôü…Gïñ¬Vÿư[₫=ưóûØôoÛ‚§Çúw4?¾¨ỵ̈Đt¼ÄÅ ü´7E¼áLEJ˃}©đéÅl#Œ»₫^ù=¿j?øưĐó­ªi}P–¢Í7b1åñ4Ƴô¼Æxîú4Ñ,Û&ú°´¾OôAY6Ñï—} ¯MôA¶‰>¨j¾Í7‚r$o}ȈŒơA'¶‰>l<6냮xm}đ₫<Ñ™̃&úàÏDtDb›èCâ“!çô/¼>ñB^ܾđüÂçóy }ÈTŸưw”<Ç·ˆ0)«Ô|jI·¯„¿¸_Ür₫ôü–ó§ç5̃ïQû÷{Ô^Ï÷Û„óưªÿ÷»%?x¿[ú@ÿ¶?Rÿôûù#B笉¹˜₫Mw̉¿©₫¬ü>4_‹₫ µ·èßĐx7ưëߦ]ÏÛô¯éï'#úûÉï]íújÿĐ¿»_n"v:Oº9Kæô„ÍJ¯GxTÖ¯£beưÚj¯̣û;Ç¥ßëë]6ú ,kÛèƒNƯn}ĐY÷m£ÊÚ>˜ơ5ÔÿNÿîú·Ñ‡Éx;ư»ú¸ÑT̃6ú0ß`ÚÉ₫´Ỗdjo²z<“ư³«ưÅ₫ÙƠ₫bÿlêïbÿ G èŸû¿é_ÑüíÜßơüƒư±5?ûĂïă`Lć¡ˆnIûĂûăî}kµù€ækÏcTEÜ*ư+ÂưvŒ±ß¶1öÛ2Æ~s¯a¿ =¯a¿¹ ûÍưëØoî_Ç~+ßk_ Û¾TƠW;Ø—ª’hûR綃}Úÿö¥X+í`_ªj¸́K±TÛÁ¾Ô±Ôí`_ªª«¡êbÙ´ƒ}©3¯ÛÁ¾+µ́ËÊ|m2¯ô7<_éo„Æ›₫Fuăf ö¥O%!¢Öu¶j/èCFd+¿âA½ ªî} «ôAW·ô‚>ˆ%Ú ú Vh/èC!£₫ç1ÆÿtÄ8ưÏiŒÿ94̃×ÿÔø̉ÿlÆøŸaŒÿY5₫ô?‹đÄ?>éCS•BÏ Ùf¾₫û4Æ÷|-ü÷.¼ñß›1₫{ă¿Wằ â ǘø‚ûwˆ,Eè ñǴ ñaœñEđ+ñfLü#”¨Ä?ªqfô¶2Ÿ9ÂĶ1ñ£›!0+Ô¡ô‹‰]E%C9•ơö&×pTª?jO'~ä₫vâGUưßRư+z₫ ^wôüIümëy“ø›33ăoz̃"₫6Ô₫"₫6Ô₫"₫Ö5EüÍưßÄƯÿM<±ª½̀°VơïĐ?gäñÎ#ùC¼s+WˆwneàJÆ;»pÆG•!ªü~–Ï Ïé ôAWäö@tªKôÁYư@TEØ}è_ :u£ú ÿ¼ú ªèƒYx>蔜èC#3߉{¼#ăßÊ€ âßSÏÄ¿‡Ú›Ä¿‡Ú›Ä¿»Ú›ŸWÿư#ĂIÿBÏ[ô/ô¼EÿªæÓ?ÏǦEưÙô¯(cg}Đ f=Їo¦‚O!ûÄjß;߉‡Æ«xi,±jˆ§†üÇN¼5óµÈy¾d?ÅË‘xn,æË«Å|MúêϤ¯Iÿª7è_Ơóư+~ßú½́ăddf@·ú§ư'dwW]\lưÆÓúÆÎxkÿ‹)–’O]y°ÇïŒéT†×U;KÿBư¯ôÏúQéŸÇ[è_ÑüÉ ŸÊG¾"t7S'ŸƒơØú0Ä’"ƒưĂú *®N>%†̃/ù–Đ-|L íwäkbˆƠI>'ûÉ¢^Ÿ'ưóúl}P•W'Ÿ=×çb́ơÙúĐYŸ­:E¡“ÏNÿåo„NêäĂÂëù²èb“O ³|É·…×+̣q¡S¹:ùºPUs'ŸMúE¾/¼‘ŒÆ~â l‹|bÈîäCöt¯o†74ÅB§ötW9<Øó«ư!B߃OÙºcÙsf(₫Û]Ơđà)́Œ°YyFCH|*؃m/.2̉¡çi=ŒÀ^\0 ̀HÑz•₫i½ ăÀ ˆ»_\§°3ÔfAª̣ê}Đ)½ i_w~oûÚúöu#oûÚúđÅxˆ‚½h}xíëeŒ}Ư›q5¶}m}HûÚúöµi_¶¯¥ Ă₫B1ị̂—¤ơàIêÁ?2£âÈÿ=Ö‡zđ¤u§ăcË’>Ô$}ø`„4cûG F„ư#éCƯøG̉‡ºa@™ááø—Oq|ÇxowÀ@Y²ªö¿vl_|0T±ưɃĂó%û¥.æKöM]ø“fœ8~́S2FÈ1ÆÛF̀–ưU¯9¶Ï>3ÍØư«0NÜ?ÙUössÀƒ«q5.G¨‘?RUǛú¿¸ürÚQØñ%ù;U÷₫4Ÿúàáx ™®ø‰ü©ª*áf–ÿƒCñ3rd/7Ỵ̈z±7é_Ñó& ¡£xüÁÚŸ̃èCÆc’Q´4ÎïÍ@²>¨j£môA§ô´>8>³Ñ’Ø6ú SÛF:ă±>È>n}èÄǬ÷a}}Ü6úĐˆ7YÏÙèƒóg}PUrÛèCc¼ÆÓ0£jƒÍhÆ]ñÖCÿº₫¾é_Óß7ư3#rÓ¿Pû›₫…ăµô¯:^KÿªăµôÏññIÿïôÏñíIÿ϶>è»æS°/Öï_¨AüÚŒ® ~-û²êỔæS¹/vüFÙ6CtĂ@`=_öe âÛAÿ–úôoi₫‚₫9₫ôÏŒ¶Jÿ¦óư Ó¿©ñ”ư…ÇÓSÚ?ñüÂíóyÆ›û7m_̉Ÿ*Ÿăó©ó;¿³?çĂ,ø‹ßÉùÓó'ưs¾j̉¿­ö'ưÛjoæûU₫)ơüUêƒóWü₫˜!ÈxßÑ×¢ß'ƒĐù©–úêüúZC_O ¾§p>ï)Ô^đ=57øÆWùWé_÷ߓᨿ—ü̃Ơ~¡Síú7•>ôo9Jÿ–̣«'×#åWưÛʯnúwỖf½t~y³^:?¾r½T>v±^†~¿XÏC¿Ÿ¬çMíOÖó®₫LÖó¡₫OÖó¡|̣`=÷xưs~yĐ?ç—;ưóø:ư;Î₫YÔ^cÿ¬j¯±z<ư³9Ï₫ÙÔ~°vơ7Ø?‡ù́Ÿîeÿ\¿û»Ÿ \çĂ ö‡ßGÁ₫¨ÆØa¾CÚâ—́óQöÇ0Æ₫˜Âûhß²±–1öÑ^ôïc¿ć7óeVÚoz̃Ä~sÿ&ö›û7ù½û7øửø¿ßÆØ{ÇüÇùƠ>8ßÛч ¿¨a/›̉°—ÍGii/‹Ï̉’A,ØËæö2ü"́å#\Ó¿Èúp˜¯ô7<_éox¾̉ß0¿(ư©ñ¥¿a~Xú懥¿a~ØÁ2?l§?$>ØÆ2?lă¯ÁĂ_3Ÿnᯙ¶̉_?lᯙ6ñ×̀KÿÓü°ô?«ùqø“a>\úŸæĂ…qî0¸‡ñ4O†½1₫ñÖ|4üăcŒÿîùjøïæÓ₫»ç+đß›1₫{®øïĂÿ}ă¿/câ [¸_pÿ ñ÷¯ÿ0öÿcâMüĐCü£ oâC|ÑMüĂ|Ù æ‹f|FüĐE|æ?2ßw?*âƒNâGƠ|WâGa¾+¿o⻌7i<ƒß»¿ƒxÓTÿ:ñ&ó{;ñ&ó{{ÆĂôüN<̀ü̃F¼Îü̃F¼Îü̃F¼Î|ÙÈxÚâuMă âuî%^ç₫Wâ‰SíeEÉTÿ*ñDW ú·%_èŸç¿Đ?óíOÆ;Åï>Äc«ùƯÄcCüîM<6Äï̃Äc›øï›x¬ùô›xl7ÿœx́0ÿœx́4_x́4¿=ăÅæ·Ó¿­ßOú·ƠŸAÿú3ˆ»qÿöxGÆ¿Åïÿ6¿Ÿø·ë :ñy×4âóMíµŒÏ»€ø<Äç‡ôÏơAÿ̀¯úçù¨ôo¹₫₫-ñơ+ưÛú»ù̉?k3ÿaƠç‘_[ï:ù×/phŸzª>Îûô/¾$~?éh¤à?ó_ÔÆ+́}nü«>}ys½9ä¿.~Ö´J÷ˆcZÉ¡Ơ8Tr˜¾À¹’Cª9¨¬1GU<•̉¹dÆë:èyâäTª„r´Ơ'U?óĐôwÙèGº ù¨§Â>ÚÓ«9¸­Üàê5eëÅ:¹±ƒÚn ©æ€¶¢BơÉœ­ˆóR]UƠlÔjb+—ÜwMA=O6W5¯Ư+_ÍkEùVsĐZ½ä†kª…ñ̉߯Ï̉ªª««†|å}Sуº:f•wL-åóËöÍAÉç›BÿÂ'ËĐ…†ßñ…câŒ?³g~Â9æ/œó`~Ă9æ?œ3âư„sZ¼¿đIû¼ß`Oơûj¬A ơ'àđ[¿½ơ/:ú/ưŒ₫¾Cë¿ô;ÆOư|Oæï'đư}>­¿¿Àçö÷Äüư1 _ä₫‰Ç₫ü½|ä·=Ô÷>Oœ÷·?Êé¾ưÙánb{Ç+í„÷Ηn¦{çS7¼ó­“-̣}lạ̊}mƯ•ïsËÉ÷½•ƒM}ØÚSÑ—ØÊñ¡Oá›6Đ·Ø²éĐÇØªY@_Ă7 Ï± X6ø̉I#|±¶çï%Ö Îå÷K1t¾·ßơ…¼o"ă{}pưøóï₫̃S*BÚ‡³Éóᔺ¬7ôŸơˆñ±^1~Ö3æ‡ơùc=d~Y/™ÖS̃ë-ïơ˜÷ËzÍûÏơÜúñ®÷̉Ÿw?~½û…ôïƯO¤Ÿï~#ư}÷#é÷»_IÿßưLßÇ»ß5öËÅ÷ö|_ï~©ïïƯOơ}¾û­¾ß §ëÇ₫¬ÿ‡5qW¨^>m…É;;æĐß;êĐßåơE-jă WƠ[ơÙ¦¾;UPç^ºy1+䕬Ÿ+è₫å`°ß€¼Ö£(GÅ«=Ê*U¼̃£ª„ê»".Öó¼"Ưđ±“Æjo#ßÔYÙG·'×\aT…P©:bU¼ü#ÖH% pVèị̈ï‘ß̉ĐJ·~_éïÑïeeEQªÏî}p•…bĐÙIƠwA<8¤ñ|Sÿε€ˆªœ- †ª©#Ö_¥jêl, ʫTM­÷ÛÑ'± k®àÊ’Ö>é\†Jéx!Êtă±>é,Äê»ÜÔ?ë“Φ¬TQEe*UTGgËW¢b'WëÓ¡ÿ ‹`ëy›₫ú}l,À¢ñ́éçă0ÆâđüŸaÜƠŸ³ÁG+̣÷ ÷ùài<—VÀrŒ·p­ÆG+fUu·AơƯ®ÆÇø‰BTWY=¸§5>-\UùUïèÆÍxOămŒüîꯢ8Ơg·?¸/cïư7ïaÜ?vˆ[àÈOáYŒ—æs6ămŒü1V•µ¨> ÿÁ×ÂxÊBTWa=¸k[ÇØĂăiù'JXú¤¬Aè“î̃ªÎ*<°çËúÔyŸÖ'e]ëÄCÑÙCu¢OÊâÖ‰>¥Gb}êú¾'úÔåMôIU}u¢Ob5Uga|¿‡‰>©ª NôI,ª:Ñ'UñƠ‰> é×DŸ^i/ăc¼5>ëÓ-O»XưX«j|Ö'{Œ}̣₫8Ñ'Úzđ´‡–‹Æo}RT¤Ú‚~°çËú´˜/ë“÷¯‰>Ù¢™è“ÎƠ©}̣₫4ѧ%ưr׃§ñúơÓƒ,ÆîßÁ;ơIUPu¢O ¯àVăṇ0 ̃Ơ·…>yqU׃‡,̀<í2^²8­ObƠTg|çs¡O:»¯.ôIQưêsO\ơ|ë“Î̃­ }̉Y¹u¡Oª¯ }z=́n5ɧ>5ơ'#lMÏO} ÈRŸBÏK}"†|ơïéoUû©OUưéô·(úTỖà{=êïà{=ßà{ß₫{~¯@L¾×¥¿çú´$ŸëÓôßY_¦ŸÉ¡ñæú4Ôÿw}̉ø6ươüæúäù̀ơÉó·é¯çëĐߪßçúTôûĂúü{Öÿ£daưߨÖÿ¥MÉơßNÖÿ©ˆfeư’¯¬ÿ7¢Ũî3¾(́w:[6 ûÎW¥ƯưLí½û"ªưù¨ưu«ư–û«úÛØŸqí́Ïîg½ÖÂ~wé€7¹̀₫ÜôüÁ₫ÆØUăiOÓ÷7#̃Ûûg©ÿûg ¯´Œ‘ïÆØ?ßưÆØ?Ơû©cïaGà'óy°÷Ü¿ƒ½7Ơÿƒ}9Á.i_cŸ6E öiẂËç{>éT£¨è“X+QÑ'eìûk/+BiO+‚ØÓĂ{úYߢ¢OÊFEŸÄJ> " ÿáÎWEŸÄB>©ª!\¥pư GP‹ñĐøFú+ÏÀ_iÆéïh|¥j<¥h<ÿêăŸ-g¥¦ñ¬̀à#ß5¾Ö4ëSS·¢O!̃éO üߣñüßm<—Æ{đû+}R•Bú¤*…ôIU èSñ®ø¿U‘ÿ[ŒÓ_2^Û8ư}cüưiL|Á—F|¡ŸhÆÄ'B¸_pľ#_Œ‰§câ)[ó3ˆ§,ăŒ§ô_&{?û€ÄS2“ø33ă?[ùÑôIö|P5vó¹ˆWmg$ˆw¹¿;ăUă#cqäUsçñ:Ä»ˆ¯y~ñ5¿ÿC¼«*CR2>7™¼âø2*…xâq†,3¦!LuôI§lDGŸT+%85́èn·àÔ°¿c*Ⱦ₫Äθ:##.`íÙÏ‘ñxƯưœbvt·UpÊÙñú’ñ₫Â|‰å{ ó•#ëË!£äùr¾¡0_›Œ¥3”›ŒæÔó.ú¾9ơíÈ>N…;²#ó%EÙ̀§È>̀`É>FüÜç„f¾ÆçˆÂê;…Œ·3n×0¾8À₫}1¶¾d†m9ÛÁê3²—µ­*­đ]èîẓ[ñư€å·ß ăëï#è¯Çô×ă ú[¼>©¿¶—?2Ä[ư—>ídHŸöæû—>íÍx ̣~™‘́Ú¤O{çú<À^Ÿ›1ës1®Ú¯6ư-̃$oû™*ë­|RP…½½~Q¥½—́}X€{±_KŸö˜dX»ö£‰|3nÆ¡₫IŸ¶×#ª˜÷¢¿™Áu­O¶§anÛÓT5ï){Ÿªæíơ„ªæ=™ß†|3ÆaÜŒ½_+¶X‚[¬¼€%¸ó0–q1ÂÖ§Aÿ¬Oƒ₫)ß·Å:|́³cl{Âú¤*â C¼ÅXƒ[,È€5¸uªkÀÜ÷Ró‹›ñ´=I†Ưöµơ)íkåKwÚ×Ö§´¯­Oi_[ŸtÊNÀ"Üi_[Ÿ̉¾0&¦ñ0¶}m}JûÚú”öơ€1`ûz #ŒíYŸÿHùÉøGF‚ư£ƒĂ₫‘̣Ÿ;´₫R½#ư£fŒTŒ« ÈĂQ+₫‘ơ©â)¿»+₫‘ơ©âU%ÆE×x ̣Íx‡Æk}̣₫G•ôCÇ‘¿o}̉]bÁ©-[ñ‘Å…§đ†áâxơ©hưöƯonÂÖ'åKƒªéíưˆªé]´sJÍR¼<`<¬ŒÏL)˸›q6aÜ Ç#–±ă1ÊG/UG±>­C¼@úôWÅO¤O ä‹ă)ê¯̣Á©@kÓ_åÛ—íeªª×&~ }Z›ø†̣ùkk,Ö§;>C§9̃tŒĂñ&äï>­Mÿ+ươ|Ë>[:¥'¨²^‹ø‡ôié”Ä ÊzéTÅÊ©NKUÆ•SŸ–́ăÊ©Pk¯Ư0º~/}Z‹x«ôiiÿ©¾ËíÁ¡øàB̃ñÓE«Ú[ô×ñ̉E‹âÖ'óM8Ek‰ÅüɸÚ₫;Œª­¿WK0²–âùåx-Œ.ÏO‡55=ZOZŸ&ñîF?mô×ñ́†¼ă©₫vÇ£éoSûA›úô·9₫M›Wé¯ăÙơ‹Véo8>OĂñù”W{…₫VÇçéou~à‹Ñv¯ó;‡₫Vå’1NyåGvÿÂơ'^û§ü_¸ư|₫*?qê“û›úäñ¤>…ó;ô× ƯÔ'ç§RŸBươs¾÷«O¡|KêSs₫‰₫:•úD₫₫6É¿ú¤|Z£¿]ăơIăI}‚QH¿I}r>(ơi:Ÿ—ú¯ö*ư]ÎçÑߥöRŸ¶ÆWèïöß‘?₫;ư=ÊwÖ—¢üéa}q¾5×§ê|(ëKu>”ơÅùäw}R¾3×§¦ç-ÖĂ®ör}êÊŸæúäüx®OS¿Ÿô×ùÖÉzºÔ₫¤¿[ùÙAú3?ßÈơ_ϬÿỤưÊŒrëSæû“±êñuö«îü:̣Î'ç~75ßưÊăÉưÎŒơÜïœ/úk†j`órVÿ+ûsèù{ éùyçĂ ö„ßGÁp₫»`Lć‰%¾ÉÁ0å`˜’öSecÿTćów6öO3Æ~ê {mc¯™/“ö“ù2 {m Ó5÷obŸćÓ*<°/C|}ÙŒ±O»ù4اæIŸv¥Â¡#o~QÇ>5_¦cO›/cÆpÀ/’>í€_dÆvh}£|ü¢@̃ü¢À₫÷|ö¿ç«b¿û}V́ÿ£ñVü•̣QÑqưó©đwÆWđWºÆSđẀß)È›vđẁ;øWÛ|0ü+óĂ6₫™ùaÿ̀ü°?h>ƯÆŸlâÇ-üÉ.₫ÛŸ4qáNóáđ'—đÄŸ<âĂMüßbŒÿ\Ňéÿăÿ6ăôŸ5ÿÙ5ƯóƠñ×—1₫ó6Æ_?ÂøB1&>Q‰O˜a_0&¾à₫EÆ'Œ‰O¸Ö'óÅ8ơ~{ÿâTü=™¿J<ÅóW2b¾(ñŸjLü'Äo=Äø­yó}ñŸaLügïñ#ñm³bÂüåMüçˆßº‰Wóm‰w™ß»ˆw™ß»ˆ¯™ß»‡ßK¼«‹o;3¾¦çMâkĂüaâsSíâsKíâk[í¬1¿™₫ó›‰'ó›‰GVó›‰'†ú׈6¿ÿlzxdwÅYÆ?ơü ₫i¾r ïññO¿Jüsk>*ư…ONá“ï5ÿº_.櫟öø ñé¿₫Ÿóá‰/ß÷•ùB}Á!>íZÄM|y˜ü0Ÿøô¿Ó_×,ä—øú‹₫º`Ñ_×Lú{Ô¿Éx]O03₫ï¿ÿ¯®oÈüëÈ„ÿ̃ÀêâáÇ|Ÿ̀ư¬ÍüGUŸÍw0Ï»®ÿơ ¼´.ưúó÷/´ø_ÿüG›ª]ÿ™ÿ¢6^ ·™-‚ÿQƠç#÷́™Ó5$~Ö´éƠƒŸw4­~̃É´6ßÿ<]CІbÚÓ₫7ư]UƒC5Ók⃟w8½f·!nú&?>öôÍϸŸ˜À„Ó<Å9œp§8bs#>Å1Ÿ¶±ïĂp\çM=Xœ›©“'Ï©›B¦mú6C˜ö9Ú”=íµ©œÄôÉđmƯà̀ƒ•3^,ÀR~Â9[â LŸ,̃ÖUî+'½t2턵ṭú‚ƒ´tRØ‚´n±ÁƒÅézÿ¾×§¼c´¿\iÍó—+¿éß‚á₫/8 ßr ñ/ŸtÊü,çÈ™¿å5ó»œ#f₫—¿ÃÏrÎŒ÷·œÓăư.×Đđ₫—kXĐå= ưYƯœë×¢¦Âú·¨i°~®ñê÷íßø©ßk¾úưèÿ¢ ØßÇè·¾ŸÇÛßׂcíïoÁqö÷¹|̉ßị̈ÉcÍ÷Áâ2>/ùmO9á÷ya½ưQN÷í¯bïx¦ÚÏñÖχN~çK5ï|ꤹw¾u²E¾¡@¾¯¡}¾Ï!i¾ï!ÎrêC×ú̉ÅAO}̉Åæ¯¾ù&ÔÇ®›́R_»ªtSŸ»ªøRß»NÉïÁ'éç÷¢#LßïIGt¾ß[SN6¿G]2ú~¯í’3ßïùư»¾wäYÜ~®~~®'î_®7î®G_®W®gŸ\ï<¹z~s½ôüçzê÷“ë­ß_®Ç~¿¹^ûưçznưÈỡú“ûơ+÷ ë_î'ÖÏw¿́Ä?ôûƯ¯¤ÿï~¦ïăƯïôư¼û¡¾¯w¿Ô÷÷¹Ÿ–ñs¿­Á~ü~ß3Ï{ø²&îôxưi+ŒĂưE)¦Ï2{V¸¢ø°ƒï¨ØU;haE|¢b“ª¢yé«ođ¹¸"ÿX“ã@eïÚ‘+̣̃±ƒyèy^ÁÅêTÍ¢¶×±Úk¹¢«½†üVÿÄJ›7ưuṇ̃P¬1¬ç‹•6+¦/dÅ6绣„|³FVăn‹ù®₫ŒÜ‘Ô±çM—>x"¿ô¼‰…³ô¼‰¼- ‰ü‘¼w¸`|«%/伇à\œ“æ{#ßÔÿÍʈ|W{yG_È ̃ßA~©=éç ¾Øƒ¼ß×ÃZI n₫´àîû¡Jiªîz²£MƠ9ú©(Í\è§ÎÊŸ*^¬¨bQL[ˆÈ?QÁIỞ”0©Z:ûïÓ¢,ê_Ă‚q­Ÿ₫j˜ỂÏ…~*‹?…}đ0F~j|ÖOƯƯ7©bºKa.ôSwĂ~Z¸Å¸Wc,°0>ÆOë§¢8F~#ï₫Y?ư[ÈoïÍø|îZˆ.̃ÆUóeưœ̀ŸvØ©,פÊi*«1©r̉‡÷àƒü4Æơû=Èûưä­ÖOEmæÆ‚UÔfRơ¤ñ2îÚ! ̣CØúil»Nsñ4̃Úq+̣GØúùz$Íø~ßœ 3·<(ª ¦ªúæF?ÅjJQ˜¹ÑOULg•¼…;̣Gă±~é—ïÎúô–qh|¶đU>©’ir1ÄĐø̣Óø/w"¿‘?¯ôsyÿ£JêĂc«Æ¡ù¹ÄÊ›Î>Øóµđø†đF̃=&«3©ZjLª¦V‘~Q5µ¼Q5µÄzœÎ’>Øïóà5yŒùnŒj ¯ ?åQ¦·Œñ–GZ‘¿ß§³ÂXdAÊ‚=ÚDz8¥ŸK¬é¬ôƒƯßÀ#î¶@‘z~C~êù téy ù¥ö¥ŸKQ₫é³Î¯«ñ霢¥»_'UV«Ñ{đMóM••\…‹Ă¸I~ ß5^éçj̀ÿD̃ă™ÈO=o¦Ç¯çMä—Œ·Ú_È{| y¿ë§ÎÚfQ<~Q{¿ª=U­/e¦ï₫ºơÏúÙF ₫~ˆ04ÿˆD÷ß‘ÖăUĐO{Tf\¬EA~(ÂQ2b!§"ÿ¬ß‹ª,¹?""KSE~ù÷̀Ç’ÇÈoµ̀ÇVù­₫̣GÏk̀DZG†<æóèùù8jOĂRVeqÖR₫2+ébµoừơSg'.ª¶–îö[ư|qÊ«?³|áøÂ_̣ÖÏÄëëù+¾pÿÙßµ~gŸăß¼{´©ŸÏú½Ê«ŸÏ}~ÎwêçÑü¥~nµwßj/ơs+ÂU¿‰úêçRÄ,ơs)bV·Çÿê§#lÈOµŸú9Ơ~êçPÄ-̣ûP{©Ÿ]íE~_j/ơ³)‚úÙô÷†|è著á¿#_ưw䟬ûªè§Î!Z•¥Î¶^ư”ư»ê»~G<*ë•7X=Ÿù¥ùÈOÍï»~ê÷ù¡ßÏ\Ơ₫D¾i>̣MưÉơ34¾•ë¿·X‹ä7̣àX?u–úªèg0¾Í~¸4›ừúpǓbGˆ̣M©’ûéΈ¬#PÈE`­Ÿº‹}_{µ¨Ó@/Æ>XđVä§"¸}1Œ‘ü•觪êŒ}í#b¶Tơ¼¨"[ÊÚ¬ ­,Ï¢L ÁÅØkKXöæR¼`úYˆàơ´×Œ‘÷|´÷ÚG„ïÙ(ŒÓ^4–ư«ª‰EUÙTƠ× üơĂüÙRñ ü¡CDqaÿvcäCïg¥ư|>"’S§b¬À̉YØ+đ×U%¼HYÓøC:k{₫Đf¾̣/ûë›÷y×₫îz^ ]w]¯öúCw=høëªbXíơ‡ÁMh(Bk]UÀ«½₫а7üơ¥ˆĂRƠ‚>sᢈpàß9Ăø—[â†x×ó†?¤¬ÿƒ‘_Ă?́Âù¦ñvüË0F¾h¼ö‡¿½…Ó__ô×ÁNƯó•₫zN½#ÆÈWcüơ"l½“q±~Újøë₫-âîßÎø…1̣]ăÛÿ0F̃ów÷üâÖ·ƒ¼ơÍúÙô}v2v:…iuüuÙ׫¿ñ¤iŒüP"ăI]¥Œ'5e *̣÷{ío<)”±¨ÈWe82TÔŸ >wô|ûë:‹üÁÛø‰OÈ́z^C~ªưF|n¨ư†|Wû=ă{Î!OG>Ô^'>WỠÈø¢æg/=ê_Æ;Æ?ˆ·n½A¼tI~"?ơü‰ü”|Æ;=‰¼ßÇ"^Ú4 ùæŒ_ÆkQ"^Zơû|Ơï7ñVoÿ>₫=ñkë×Éø³ú“Å­₫ŸŒ_«ÿù©ŒcA~*CVˆ_eĐJÆÏ0ñï® dfį>úî‹‹C˜ø÷]ɸM±@§ÆM±×@?¯£u1̣Eư‰̀'øïʈ2¢|ÄV3ƒù“© SÈ>±3®²†ư9N¥:U`qjƯĐƯ¯‹Sí†ưÇáïitæ+ïz~Eù`Ị̈d„ÉXz¾ ̣Ơïùâ÷ÓÁz^!cåïCûåĐÙưË,®›Á̉÷éüícNº `eÊö1§ůW'ĂƠÈxoä»_Œ½~-äù^ç{ÉŒ¬|ơ÷¹½9#¦»^—Oy|đVÿœq 2¾²§F°;c-g®'#Èøä‡×§cÜơü|Sÿ;̣¡ù×~<‚ï¿!ïơÙÀ`<̣—Fe}¶~V¾wëgå}É̃•ơÙú™ëY ï÷È»ÿ• hÓó*̣~ÖO3.̀{°ÖOÅWG? ó/aäúdư+k5ô³`ïä‡q7î²—̣Mx#²¯¬Ÿ:ålù×Û“~v±Ú–«¦¼—ñ2ÆÓùa\Œ»đD¾#ÆÍØöâD̃ égßÉHÆÛ¸›q ứ[ûF†|kÿ"ĂÛ·ü»F~ëûsUơƒĂöæ1¶½Ó/²‡wÛ×̉ÏöµÖçöµô³§}{Û×|3†1aûº"ïù2ă íkí?=íkégOûºÀ°}­ưíƒÑŒm_äíäíọ̈ö̀€éămhăucûGy!ÈÛ?²~ü£…¼ưÉdL˜5‘/ö%ïxU Ÿ\öQ÷~è§÷?We?ØŒ”|3nƯ¼ç«Ăp)ÆF¼@öao²÷ưô₫ä»§<͈A~3fwÿ¬ŸÏpêL·ưègƒqfưl̀Ÿ́—øăÖOU/Wm?Øñëgđ~ëÿ™Á£{÷è’íXœ̉£K´/F>¿ÙÆƠñä‹âCFăeÉĐÙ7mă¥øơóïE'nä‡Ú³~Vâ… ù®₫Y?+ñÁ…|èùùP¼+CNä‹gư,0˜’átô{ë§íă~zÿq•÷ƒ—ăƒÅØñ²üt¼yÇK­Ÿ…øYG¾ëyÖOñQVE?uNürƠ÷Å’·~Ú^vƠwë…÷ÈWÇk;Xă ä/­̀‡ßE¾8₫{åu‰ñÅv<:^êf})È¿F~k¾¤ŸºÄøÆ»‘_Ă@[Ÿ#o†ÙIyÇç·ñt|ùéø< 5çg6Œ¶é|@Ê;0¿pÊ;?̣çÏó…çî_øK~œŸíơ…ûÏ₫ŒøÙỵ̈Êôơs¼=çĂùø9_=çSưì‡óUÉ\j¿%ăOí5ä·̃G ¿%̀ÇVyç?‚ùp¾ª"ô¼<ŒBôÛùú­ö ú]ÏËïĂù¼ü>Ô^á{å+̣¡üçá{w~ơ ï|ñA¾ûïù½K~#?ô÷ë…̣¡›ïƯùïür~•ï})Ÿ¹r½r~ùíü*óáụ̈dưv~|²₫ư~²~Wÿ>×_ư~°₫6ç“‘÷øëoW>wäúoF'̣ogư6£¼#ï|¿ô³WÆ×?ί#ï|rËưLí5öCç“ê_°ú}̣f¨J?»Nåx¨Aÿ+̣Î{ưTé⫝̸´oŒ‘ŸÆØ'æïlä·ñ2>Æ’W¼`rÊnW₫mr oïđeö^3Æ̃sÿöº+íEች·ŒÓ̃Ÿf"Œ±‹ø4ö‡ü¢ưl>íÍ¿h o¾LÇ₫5¿¨#?±Ÿá¥ư.~‘ơs߸ÑÏ ¿Èöæd¾₫ˆßgKÂü)äÍ/ôG̀ŸB~™?•₫ŒpÅ1çơ‡4ëçfco¾ü°m ?l§ o~˜ơsÁ¨>Èoñạ́®`9ø—æ#üKó7₫eˆ·ñ/›1̣]|8ë§N1™œ:̃7|I맪¾çB?u ×ä³¾áÓ¥¿^Ä¿L½§¿nŒ¿̃ŒÓßT˜Ï92^`Œü2®Æ[¸#Œ‰¸‚¨?©ÆÄ?B¸ÿhŸ†¼ç¯ÿ0±!?ơ>ùeLüÄï77_2ăIæsf<©ïJ<*̀wÍx’ù®È7ơ?ăIîoIF¾ù¶Ï2ß–x”ơ± ¿yø½Tpñ‡ñÁ"₫đ!¾WÍG&>æ#g|Ï|dâ{Í|däÍ7_Ä÷†Ú[_T{ ù©₫-âƒKüø‰ü–ü$>x$ÿÆ;%?‰·z<3ă¥âggÅB¨ÿ#ă­êÿ ̃j>ư@¾›N¼Ơüëñ^óƠ‘Ÿ₫=ñç©ß7ä—Ú·~~WP˜_6ÑÏ¿<2~­ñFÆ¿ơü ₫]Ơ^ϯj¯R‘ázëgÏzäͧ¯ÈSOñ|ÍoA~èy%ó®o@̃ï»d>ÁơÄó—ë#2á¿æ/¨·ø§?₫Ăÿs1× endstream endobj 403 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 406 0 obj << /Length 549 /Filter /FlateDecode >> stream xÚ…TÉnÛ0½ë+ˆ  .¢$HIè¡zJrP¼Èl©µd´₫û9ĂZ Æ3—y³đq(ÉZ&ÙçD¾3^ƠÉÙ­̉’••R±zÉœ̀ • YT¬³{₫)ͬ6|‘*¾#ô4 À ¡ơ0Ù;¤•´í)#™ư|Fë{€œ À#àôŸ€àKêsïÈ÷eI€đđpxơW!s"/r<éÇ4ËKeù†üŸ(îfgv<Ö àQ7D=¡üxK{ÛW8Bơ@¦˜ñ‚(w€ËPyĐ äQûi¶¿o„øŸ ÎÜÔ‰‚K¦˜2Fh혶NHW±Ù6ùˆ̉SÆdLÑ6ξl vƯ'ßáMYŒ™M‚b‡Y¦¤p̉M;L+lU¢î^¨µ¿Ó=,Ó•äÅ9܆*A‚LYË”ɯI­®ñ’®Ç#ù ĐáÔàQđ~ ¶̉ñ»Ë´2^EO *ö!Í€;Í€´Æ/_‚iï›j6RU}‡Ä¯]„Æ –uè$uÇ¢₫¤º„°đw@Ï ÛàÛ¡™¯©ÛØ“ÊkQ_Å ccđæ›Đđø³<7üêà­ïª¹k‘̃àÄç­÷k¼`«Sôz%EÓµ 4úư8UóK:²ç‡›ëúØ“óX&Ô1áêè1Đ;nv#R–ñ»²E‚¡c_~°˜–•(ó’N˜Â DZ=cCŸÿ© endstream endobj 383 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-011.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 409 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 410 0 R/F3 411 0 R>> /ExtGState << >>/ColorSpace << /sRGB 412 0 R >>>> /Length 650 /Filter /FlateDecode >> stream xœíUKOÜ0¾çẀ¥˜zÆñëXP©„D¥6‘z@ªe‘@YPÙJưûÇvœ ôÁrƯC¢|3₫æáy„àîáGóE÷Û¯ŸNaµm*¥`₫̃®²ú¬{AƯ}©3đ«¹º7 Á…<÷ ÅpÙ8B§á„²«±uÀÁ#xZĂéI<’6Èj—¥•Gm‹^Œ“-#=óe£́™¯ỂlĐ.|±¨8±âöÿ¼£s– ío³"½&æ˜PëĐ0ô8ºü>¬¡¿o>ö£ơ¿Óµ2è|¥_‹Ö›hçú‹hèCƠÙW»đ5b2„­¶fŒUa0ï`ơøp{w³~X­a¸ÛÜưܾ₫,æ“Y*̣,P0(Åß}8©dĐKLO»9¼©áŒ”®çĐ1l !m=ZtK5¡/¨j‰-2Mê gz×¢›é¬zf«]ôÎô26T}‚U¯Y!U}†3}Jg̉×́^Ѩ(U+ójÁº˜Q,>+ơB'6‘ Gº̃‡nå>½ƯƒÎ¤ăuEºÙ‡nÇjDºƯƒ®¥Ét·ƯH-ƯH÷•.C‘;ÙÉ~’·;–Cˆ AÖÔ7xă&•Ÿ“€bǵMœÜØZâË×  ءán’$•‘Mƒv \Œ]½‚½àÔ₫T\̉åÄ‚1v)¨Œ»I’lTF¶9Y,X¶ƒ‰$g¼àø#qc$? ]O,rN¡™án’$•‘mN îmÜ(‘Q°Z¢(XVO£®ÖrbÁmƠè£àn’$•‘mN îËø°ŒËx¹Œç‹xÓ´j<àP vœ¶Zî‘]XË€5¿Ü"R endstream endobj 414 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 417 0 obj << /Length 944 /Filter /FlateDecode >> stream xÚ¥VÛnÓ@}ÏWX<9"^́]_bHT´—đ<8‰›D“7 ư{æo–¡h³·™Ù3ggf³ ̃öâú³QïÙEbă 0e'Áè2(3„QÅ&w°2 ¾‡¯úQf]8âîE? #îa¸€vmíGœÅеĐ*Y62È| =®¡-¡ƠêL¦+hSoE­–µ˜Ó#ÁZtÀL¢ƯÏÑ{đ2*M§GlEa/Jh¨‘ÚËH Ưv{̉É<öQúổß‘PÏ̀VÈ  ­€1·óÀ ÄܺöR‹I½w#|«)•ÿäÁØxpÉ%Ô8¼äáùƒ×Ab„Øké— ß÷:Ơù÷Ăơ”Ó(xÊ&Q[ˆøÿ±Ñzq´9Ä5m‰úĂ¥?‚³å=œiDơÎG½¼ƒ$Hœ3Ö–-rS8L̃¯)Jç†$á iKơdáÙ»¦̃¬{Ÿá§[‘ÚŒ<£\+² ‰M—~­°J3·ầl·ẻÄ…Åó~”ÇP@æºfĂ Q¼éĂáúˆ̃ ¬/Yư¯&}›óFM{¤£ DÚußĂzÉ+ÿ Gó¥YÅœ­–D€@"ưaÖM¥7`9¬œñ¢Äoz±¢ZEªzJ­¡–8“¥%ó±Gà₫y j3ˆ r¼ËĐȦćOÄ ¹Â? ry"gyX#g.•`‰*ÄŒ IU\Aaœ±,ñ½my¥Úª=€R¡GµÈîØ<’S:[g¨T­¦Ưá'®€§ x½¼̉¢M…5º‹uPï © ü>Æ&ë¥$Nƒ¦[¤̀¥IJ®¢gYIYµ^­Đ#Ơ¿0ç˜#Œ(\¯†đ×RÉø+. °¼? ́ÇĐ£O¿“*d0̉†‡ü±YN+~h2Û¦Á˜cCV×dœiÖĂ{ÆMº>z(¦ !yt*™"¦9ûwxta#§4bÄ­ù"¸v¶xo⋬"Ư£/8üṽ½êæ.¤”9ÔbˆD4ñ«‰-3)̣`ïZ6Ú…~€Ü°eÄ•„NV-oh à˜«=Ñă…fưZHö!Í>·ú€¯0@(ód‡(ç¼DU¼e—„_H}zö\_‚ k7‡đÙũƒ%#ùâÀèp*'¾·Uă=OÎ9*´´{¸w -q(âW ˜NµöV<ǰ ̃ß® =r«MM—ẉØxh4 ¢Â!õöH̃º?¾Ñv× endstream endobj 384 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-012.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 419 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 420 0 R/F3 421 0 R>> /ExtGState << >>/ColorSpace << /sRGB 422 0 R >>>> /Length 2146 /Filter /FlateDecode >> stream xœíYËƯÆƯ߯àr´0Ơo²·6́B$¹daxáÈ#$•äX‰ƒü}Nu=XäP‰&³ ’…æê°NÉêzu3N¯¦8½₫rù₫½üøû_}9}u½„9„0ñß8₫^¿ú ®.uúûå»ï§0ưx‰Ó+ü{{‰D›¾½,q^̣S!Ö»iIs*€uNuºMW•Ç>·F̣eÎùL^æº@¾¦¹¤yèsYI¾̀5ÉËœ;Éû¼4ȇ™M̃ûœœ8â)vâ2§àÄx‰̀â:‡4uXsâ°̀± ñæ‰ÓøÙÖJf÷ẫæ̃†”Ư₫úă%:·ó߯ß_z$ˆ̣…ĐÔÖMaLëÜ 3ÙàŸ¦7—˜–¹±g y>¦N½1=€2`+“ïc.sï§ ø‡¼ ïŒÿÆ>uë¡"»8̣ Ľ•'±qâÜyb‰sG½V‘/äse«sé›+RȬ‰0³ _®y®iDq)t‹N%‡9¯|e ë`ô¹¶3¼ÆzÀ%­2ÊÇzÀ«K9aàz åHđA­#œ†i!!‘‹™0üª¾RB@T ¡'ïm#Äy•åè‹÷¶àí…W#…L.Po§ééƠÛé‘{%̀lĂäí”û(H¼ nQ̣ÜÊp©̃Ca.y0ÖQ3Ày0j¦å)ă ›đotøjWØÆ¦!6Í¢b(è»Ëøö¦8Ù@D¥cÙ ́b±í́_íJ’¼<Ø4‹ÉrO攸t>¹ULÇÄrÚ‰mѺ1´5Ot–iøjWØÆ¦!6Í¢bḥ6e%:S+tV£Œƒ D:5|µ+lcÓ›fQ±`±4₫©xû†’ĂhFÊ8h`«F3|µ+lcÓ›fQ± zô®¹I–n•cDtéº1°™–ѹ_ơØ0 µ© Û8I).'·Œ‘\YOLF+ă A§ü5MñƠ®°MClEÅ6´Rr4‚•b=ÏlăJ :íÏđU¯ˆ ÓP›jÑ0úÓ基Ë' endstream endobj 424 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 432 0 obj << /Length 728 /Filter /FlateDecode >> stream xÚ…UKoÛ0 ¾÷W;ÉÀ́êåGÙĐlØ¡èÁ—¡ƯAM”4@b¶Û"ÿ~$E;qW`É"EQäDzLv‰L~ÜH₫~knnW‹"Q2_È…Jm²Py-URÖẻl’GaR%r‹Œ"Í”²µh`ư%B™Z‹ È{GßÂÜ£`BÁĐÄL&ư ¦nàù3™“ØFwGïÚqC ×n⃮ëRE¦]Ÿ₫i~Ư®Ô,z™dºÊ Ç₫;¿~€ÓV‚›0À¹¾C¦ +ˆ¦sT iL –›Á^Œ6n ÛÀ¾Æü¤2ƒ(t-†¸»FÇíh3@c–Á¥¾„ Å+jư%2 ³–̣:mct®J éS̃ÀßïWrÏĂÓ÷+mGw[0{Åh×'™•6·@L™¼°‹h5pr¡ÍÓ¬¬­X¥0!> stream xÚµX[oÛ6~÷¯ú2‹X’¢nĂ< ëÚnVd›ß̉>(¶âó%“6é¯ß¹Q¢Ùk× !^Î9üΑ̃Œô¿|œ¿6VG¹*sm¢éuTUÀ,ËK•$Ñt]8‹S›Œ·gf|ËÓïaóô¦ŒÆ;jø¬a\Ë2}„11ëH Œs–·Œÿ¼Ÿ₫ ÀâR¹̀µ—›47ă¹Ü³—¯ªä.µÜ±–¨2d+ù"̉Ư#Ơ¼Ï`\ C%×ü%ûç̣m¼·êßÀX ´ºwîå̃g'Œ¡]NÚ.…mư9ØÿÜ}l?h‚yHóVpƯ ₫Fd­dU#<èrècT¤Vçïư ơö—bœF¤­ḌîĐ$¯`¼ Ơ˜́÷ƒor"̣. ƯÑh×]Ä¿—íE Ào"·¿îyÚ#̣x%·¯DÁ‰ :ŒäyMß² ï{â&6"¾˜µ(¹$‰ưEưîQxp?¹f*b7Â[®ØNäR(2:0}Plpë₫4w1́´sqĐL²z"e}#§F‰–÷ÂbEÔp%êÀ ³ÈµXdIÆ£­ €¸ ¢k”1 à"@ßÍAƠ/”3à7¹îƒÈ®»̀«c¾í›.¥‡]7„Nke{[NbØTeQô« Uȯ( G ĂÛ¯, Ăí¿¦³9·¢̣.è9Kñg\CŸ¯'sØ·ˆE Ú]Ù>%†ÓÊ6ó °Ư0ª ¥¬¶g6'7í?̉oÛp[>œûÖTSgi$èĂù–38¼h2×H(¯ˆü¡RW2Î5êSm€4) ˜P!£yƯZ£á ̣̀ªÙQù3§[ûăá;m\ÓV5Ú±¦¸ÈÇûí°J§̉́é|`Ué‚ö`¦áœm˜æÄr¥tọÏ4¹¨B*T̃m´ZÊå"åÚ›¤ae‚‰m–«T'‡¯URŸ¥VêÀ€‰†&Ưö`ê+Ô(”OñjP]Â.ÙƠâ4Øà7cŒ¡³Á;̃{'Áé‚ K4Kyf-đÄAqK3p®è\]­:&̀&D©HÜị̈Ü_K̉!Y“×US3_ă”Âô°mœ¢ó©Zë¢*:‘Ÿóâ =öÀóÎ °tüt¤¿â% †¢¶ă7́Nà¿áăúŒêmRï±µ Û¼Ü=ï‘ezt»Ö=í½ơø¥7¶>nlƯóŸô…Đ$”éJö±‡l‰$ó…Ơwè)Û%ªÍØ8ËOƯ•@^¯Îgm­Ä¸K×Ư¶²ù¡H÷€N.Q¯|Pđ €sŒPTk_®äNªjŸ¤¹"‰¯ˆ8'½fxÙ SK$ßR1 ́$ư³­LI/0˜ ”\’±æÅ>ฮÿ’—¤Ä•0û™H`‹³ÿƒ^Î8”°·rl̉ ÿx3.I₫_ûÇܪ}\ĐY½g1TA•ÈáÿÓ·å®~L>¼‰´±=6ßơŵçV*‡̃;§r#í׺bx'üJ+8 endstream endobj 425 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-013.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 439 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 440 0 R/F2 441 0 R/F3 442 0 R>> /ExtGState << >>/ColorSpace << /sRGB 443 0 R >>>> /Length 4193 /Filter /FlateDecode >> stream xœµZË·Ư߯襴H›Å7—¶a'0#ÉÈÂđB°Ç†¹’3räïS§M̃ëÑH£È ƯÑi’ƠdñÔƒ¬¦í«¶Ÿ·₫¾ưk+cykiÏy£X÷·8Æ^âv»ưs{uúäÍ?₫üÙöƯ›SØCÛúûæ»W§Ï^œ>ù’Xà‹¶°½¸ß(ï£̣ƒư¯µ½†-–¸Çº½8oÏîo/~–¾§/^œèäpÛb£}ä·J]ßKjí{d5”²—₫€Ôu–OJvbPË̃ăbyLËŸß< å›Ï¿æ§­lÿ9}ó-ú₫DÛWüïç¡Ăö×SM{K¶‡ç:Ï­¼Ûn®Ơ•¢µ§=£UÑl¥÷§l…K{Œ{³]á̉IHàí —öJ{¡Ù®pi_s¬m¶Cùô“/£î ÅƯôGq ˜pn`<¶¦ck°+²­u§¶ ¥ø₫c)•=öup}Âà–÷4–Á1ø`5ç÷’X]+µ7Q×U3a3ÍVJ̀¶z4\Ú[ƯGŸí g{Œ̀¡p´\ÚëØsœí g{¢²×|´\Úu9Gû\Ưª¹E]Z´Èük⓺:# ©ưÑÁóú#;₫øèöD::?yt¤Íz;a]#üˆŒ~çN¡ï£]ñíưG³S¥¡£ă%[͸ÙÖ‹l:.‡©E¸Œ;ßưKèo$˜MC¢đî$ó°Pö>Î"™áå+ĂœÆNÄ¿mÏ¢Æom}ư|cz?ûí§Û7Ûí?°íÁWSăẠ̀˜mCÇóû™£ỪŒB:t3h “(:FĂ∦8>¹ÀóÁQHMAh\u>Á±Èc5Oodđ—aW˜`¯¬³¸2 =¿Ki-œÄTˆÊ2sfw•’àÍ0q™&Ä,g3J± ˜/[ßË´†Ö̀~@#ŒªD† : êu푵V]±ufïâƠ$S8^Ä>=Ô9 ˆăœ$ûDz,ư£ÊȱD¼§-ŸM"÷©œ́ÊT{Ï^§b«9S;CÛÅà½ăºkđ½aÙUNÎ́zµXä¬à©…´°†gṇ”Uˆ{+ëªu²Rùd-G•à¬F°s– 닦'—V1Ửú ·ÄAºŸ~ĂY‰d~íäƒvKp Ưïæêi†×çÓ¥8‡* Ư™ü?ấ¶àÜe°+3ôím¶_vqe7₫@ÇƯMœ s¸8¤ëëw8$>AcƠÈđIÛ¯oÿưë½&àKFËo«?V·™#k$䀌»uü¢Ú4æ°·jPô0÷/́ĂN|Û'1Ä&$A•]“‡sêŸû5K¦Ă`cÁi¹t…;Ú`gêå`ß•WM/ 5ỳ̉‘Í‘ ¹"ªY†Ü“@¡<Ï]¦QƠ°Ê{³ 0iØD‡‘º9¶w4•cÈîxŒ(‡!DñQN•ăUó/ ÙàBG_¤T³s±ÓDq0—Ú‹¹W›'âPl’œ&ˆ·µ%p`¢0Èܯ}.Ÿ3kÊá|DS*UçPmLÅ2Liª¡,Đ6%[b[vä_º¡,Y<…m7’µ6ÉÀ³¿`TAâS'‘x ½OqŒ/m’sFQQ´dU˜óÍl™èÍÙ¨8È ̣ĂÚ~‡ ÿ#~5ÉÆó"Îré3¢c½ÔŸÙQŸ¯FܘçQI=ÉĐ'çÓ•̀«DMe*¸Ä*Ù™b†­³¨³ÇƠ•™|sĐ7ûÊZ—ư`œë²_ÅÜ”ï'ă^—ưfy¹,|đs•óçÙ¾đ‰ç[ûÂ7v́ä|D~×¾VËÏ&T_Æwöñ™=Ô®76—öâ}’`ư¡e«Èi+8ẸóÎG©[¥ ç9hm|¼ÂUâ] 9 Œ̣ñ*W©JÇêCbÿïʃ}VŸ2œ±”®®Ú Ị̂OÂñz¯pi瀻T· .íë ÷Ạ̈ćg©æ eD¢¼ªM%NÇ9¬-ơ¥¯́ß2XÓ¢‡*[fx0¹ˆád7gزëUâµG×ăÉÑCñ̉7_rGl= /=R¨zf±†×:³ÙcÎô=.ÏqŸ$%Ÿèuæ§T||t—Ó'F?¥âc£qÁGpçñѸø‰ôvö¼c4{ơq](»đ½çS´Vm e߆+|Y·±jÍX¹Á –Ö̉Íă•›?¡p“‚„©£róͳ¿=ß *@o~úơ§ßø……EnŸBzzDúÛ¶%vMö¤ og̃_¾ḲS"æÿáÈYpbÁ©{ÂZĂîÊÑ÷ÆHƯ/Gܘ́jœ³ÉĐ'çÓ•̀«D"œ ñÄoF‰¸ïA:{\`™$çÆßø“qŒp™.ñÀ¡Èƒ =¹Ël¸Ù½ª̣ ^Æ¡iÁxèY˜Ï§‰í‡H°TORÊÀ&+e¦¦ qâ„’²Œ¦ưe`ʤ ;¢ĐÀ¾ÙƠ'2v ‰OÔ’P¢,IBëP\‘é%>̀ÅEw©ë© }èíL†3E`9Ф ·™ÀrT£ëûºî´Â1>it.ˆtÚ›àŒ“@ÊY4Qï.*A0!k䀄{Y¤:©ëư0g²)U½ôÀE-ô,¡ư­áFz@ÿÍœă¢<ö₫Èøú"ólIØư}œ—Ûzu>¼MrQäóåm‘¡¯‡́Ô×ËÛĂ¢̃†¾ê‹·¡†EŸÁp×wȺ^ß̃¦—ư VÀóưä₫iƯo< ø1…/z:ùÄc_øÆç¸̣‘ÿdç¯$CÆ0ùLvÀs¾G; öôvi/o¯ áö÷± o V¥X|‡ơȤ•–ËwÆÔ¸ }r>]É<°JTo#Å6bQ…$£Ơ⟪f>د1{\€WÔ»%Ç7₫Äd#\¦K<đ‡×ˆ¤̉wwÿ̉í²H”8~¡îh:Œë₫”Û0"äyÉ’`vj1½\À&2×b²kRY×Â¥r1fÅQ³ !A”̣£µG¹îgß%·rB®HådÍRäR®v)d»ÿE,@}Ÿ±ÎǤ$¸:wQ€/Sn“Tëp±ŒûRYmnK]Uơ2AŒ¤ÈǜvªÔlØ÷æh¶•/j0Bègxÿ$[²ï̉÷ÉÙj¼>_lcXÖ“ê…S¡”m¿M)¹Q«¾Øé´è3Ù4®oÆ4l?’¯×ö+ÙÇ:¾ŸØæ¼́7Ë× a|à?ªă ÿQ'o|BưtåÓ°Æ…LcubÆW6̣Âçlßl9ß=!?́!XBa/o¯A¥"ÎV. Å‰áÛ½áX܇ơḤ1ƠùjÄƯQÔ7—d2ôÉùt%óÀÉ>ÏÂ`–ûjäơJP1/Ú¾BNJDïq5‚eâ°à›ă‰Ê˜#Læ!Ññ‡× à.™tƒ́ å‡kP©ËW‹®iÁâ–=!DñØÊ±À¸Ơ@t’ÅM]T¢„§ S̉³ÔÜ’[´~ä†iZÑÉơ1[ưÓÓ¸ÖƠ"I‹ă ů¡ ‹jZă`¬%w¬ß´&£yÜ&›@zÄ*ßÊá}ú₫ÚÔ¢íH–Ôc~º^¸¦ ¯iTÍnñT¡6,Pƒ»®„P2,M«öáxµ4…q²ɳa¶o£S·ơ[*¶^“Gv¤ơ÷Qđùé|8Ñ#·Í7ا¾ù9,ëeÆ–¶è#Ø÷€¦¯áMƠ‰Û‰EÛĂ7W7ƒ KSxƯ«Ñl©º•¸†ks§Y².\‰0†E6ăIÙŒG¥NqÖ©z6÷̀ÆÓ0lÆc̣uÏ)ûëƠpw̃O;‘ËÊÓÿ‰Ÿ’ endstream endobj 311 0 obj << /Type /ObjStm /N 100 /First 870 /Length 2095 /Filter /FlateDecode >> stream xÚíYKsÛȾóẀÑ:d̃O—k«ôˆ½ªJv·$¥²Y•ɈIBAÇ₫÷ù¤e€eânªâP zzº¿îî™Q‰I¦ ³–XŒ̀(ĂT x;¦“fMăñ©™‰ïÈl¢·g^:f´dÁ¤‘Q,Dƒn0¡!:±dè n̉a,”à˜̉øktD#`ơX¥Đƒ†³Ôh$72à B+Ø„€_Æ21·ÄZ’Ö3­$$Jx£×¼Ijhƒ©ÆÑÅ´%¾zyÂF(è!„ÅèHj;°”ÖBÄ1‡I•))¡ˆÔE’Ư“ˆ†EĂjđud¾ˆÎ ăÁ®ƠÀc₫VO@’ô‘ZB@*¸ «4d;"‘PGÊ‘ Ö*I,˜uÀœô±ÎĂl*{‰Ñ=ĉو/’ÍI"੃.ÎhÏ\Â;ȦâàË8K%Ë\Ë`¸ 1&aL40ÅDÂJ0s+œÀc:©Ñˆ‰b®32=ÆQãJ cyHFb̃CRÈؘ¬ï£¦ŒJ˜Ư }̉-0,À+Đˆh¤8"^Aø ẪÂ<Á Îè0PdÁ[êÑ,C¸4ŸH0Í¢$߇LQú0²0;,C.dàÅ̃Ă›á d4à4K´đ w‹>a!@ô9¼+¢wÈBȘT½y3ǵÚ@É.˜øơ¿±¤x|.$N Í“ÉÍ臣…3ñ©z´o«YẴ¼aâ­‚ö˜´ẴB)̉ê6P̃åGD…ø… ¶TpúGñK]å—EĂ®™øǻ-Wŧ†=Nvơù¡À́¾‰SL\̀9¢Ẩđ‘¸(æƠ¢Î‹y»Z´]-ÆevR}b×4»GwHúÓd5Æ"Â\K×цÿª·lơ†‘y„E70êÑ®đÔ’c¥ØQ•>`}X°iô€ ¥MÂN ‰ăÙ¬«ëvñ%YÖ¦lÿÄåâ¶i¿ÿRÎ>ŒÄIU‹ºe-oÄâ\œ^«öƒ„É¡…u†S+ïy  ñ’;L¤¸³tÇ-z—L¼«®*́_Ư•÷‹ºàîˆé$î`¾§ÂÁp÷qñ­^/„³ÑêEæ3rĂ|:îk>mj>›x›©eäXZ‘x dˆHˆ1>g=µn=†[¯G»´N‰K8Đ0ëu¬²˜=ó%G)ÿ10‘̀­|ä,g^˜ÆoXÖØƯ,û®®mư²nèĐ5t+ÀX\«:›ÍˆU₫™‰ÓKqV|,óââƯ 笩ÅAÜ£µ# Lº ̣¹vä,±ó½îÆ ÷.-ª2.‘ÇQ{qƒè–ª«]EiªèÂ₫Ñ÷̣–_¾ư'AD³ŸO©î´Ï{¨à<§ß̣(ë6<ÊaeĂz>´v8è=ÚeHúäyZ¯¶Đ"!qˆ³Í>ư8́£¾=­n·ă¾ë6Ë §w‚·¡«O;‚å;®̃éK´BFơmP`'ä#W–ÊđÄ“Oƒ3́ …OÜcCBIÖkÚâ@ÚnDÏQC?'…=œ* º€ç ́æp#ksIµÜ[?xEz™H˜<)ÚVh$Ó¤äرµRÉvZƯ%«3ĂCô ŹÑÀ×l Ñ~40¥v6{‡äfqëÂn!ÙÏ¡]v¨(»´Ê$Ñ¡YÖüYg3—Đ¡ƒ+ïî :ă)hA´NLËÙbÎ’ÿZTM1)î: ˆ¸I1Ÿ—â¾Î>"ËM!̣²ÎÓ»IñI4åd\ˆi–׈̃Ûº †dy'ăS̀˹àX=ÆÅ¨1·ÈáY“IöØù~1»ÏêÅt’-QƯW³âƒÈ3â7Ẹ̀¢„i‡c‡.-Ơ†Q!²° F§÷8È}>Ϲọ̈¡håFá@7Jÿ“¡øí0Z̃ >Œ¾̣í†Ṇ̃¢è; #+‡W’=Z #OØ6q:ÄÜ5Œ6‡®ƒÍ‹Gm†tsú₫G?8ú» 5¼¸́Ñ*”¿meGw™áqƒB>ÚÅÙ8h°Fî7¤«¾ïÓ>St)¤pn7oÚ¬±{î,ị́ö•Y½vPÿÿy¹,ïw¿@}åÛ] –W^7£ÿxŸp endstream endobj 445 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 452 0 obj << /Length 420 /Filter /FlateDecode >> stream xÚuSËnÂ0¼ç+|´¥ÆxmçuE*H=V¹Ñ̉‚*¢öë»k;ˆHí!~́wf–E±–)¶TØ—e´X % U+w¬™+`i²rË6Üà̉̉‚_*b›óeU ü(b“k~éư₫ˆYbĂˆ "€·ø éFñ^¾,V0#V,Ö™4¶¤·MÀ)ơÔ m"̃‰ôä9åO«e¦îOw»q©/¡H±¶)¯xéºjñŸÆÇ ·çZèœï¤rb>8jtL‡Ú]ñ~7UÀW7¡1â-è‰ïsô7•(*GZZ0̃U' TE·¾i:âXÈ>‹S+!Ó,#[xÛd̉VđÛØÔÎù–® ÿIÂïÆ+jé©ñÈIu{f àUK!GêpäñÛŸ·Ô”ü̃¨äÙÍf²iZ0sồÔĂ₫ŸÜ̃ơƠ!Úi†5QË› s´·×a¡đ7Wlh™?¼®#¶qàÂ¥§ÿvÇÙ qŵÊef-‹£¥…̀wR'3Ôsư€DZ endstream endobj 458 0 obj << /Length 731 /Filter /FlateDecode >> stream xÚ…UKÓ0¾çWX{!•ˆ×¯Ø1H X'½±²mÚ­Ô6¥Iw…ÿñxÜ&mF~Íó›G[2Á>fâ?ë»iv{'f{'$›.˜ªª̀>L3 “ *&¤Z‹g³Mö3ăN¡a°Å'S <¤.o?m<{ßf_áKZ R[ ôÆN,™Ü ±xÉ+ˆJ)Ă¥vÑĂ;ÊỤ̂°™R¥Èư«I~@áHå´O»„¶‡v×TM䯗¤' ´ê¨~÷©©=Ùl·‘-¤¡%ư›³ÜÅS½ŸX¬ƒ5ƠK¸í1™ÊåÏ]4=̣Dä‡îä8ó+Ä]•\[ũư—m…G€Áap%Q›Ù(PƕԼ„\àÛ”œ̉&VcƯ£n8›íñmb¸¨©Â₫„t»o7ñ *!ânøº߬]§QJRªº[g̃!’MŒÚëbÊaGPØßB›™8 år#­¸-đîĐYHˆC›€Åa?…‹@j+¸”n ä,ƨy”6¯Wi\=¬ï!r­̣ ơñj6¬ĂøÎJBjÉ•ưâ´½ÜU2±ÆÔÖÑ<Ö^µ¦Àù¯’•–»†¿ú£ù¢́ˆÇ_#ơ¬Î endstream endobj 449 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 461 0 R /Length 14335 /Filter /FlateDecode >> stream xÚíƯ XTơ₫øñ£̀ «́Ë,,ƒ́*  ‰;Êâæ’¦i¡a.iYjF–z54o™]SÔ°(Ók˜]ÍÄJỊ́vKå–b]Ó—Ÿ!©©©¸Ñÿûx₫ÍC0ầÀûơ|Ÿăó=3o‡₫ø4¯½öZFFƆ ̀~Gi[ố³Ï÷̃à [RR">Œ… V~Ñ™3g¦OŸ>xđà_|±̃ûúơëÅ{ÏÏÏçX©‹/6kÖL’$…BqëÖ-s]­§§§¸Îº‹OƠ¤ÛnܸѰkûÍ7߈ĂÆÆ¦̣‹<<<ä̉ƠƠµ̃{`` ¸₫©S§r'¬Ôĉ¥?=̉£ÏfïóƠ«Wåp×®]ǣόÇoâQ́íí-₫Ơét¾0`@ddäă?₫ñÇ÷îƯûå—_–_ôá‡&$$ˆ7îÚµkwêó‚ FŒѦM›1cÆÈ¯¶jƠ*q=óæÍ“_M\Øç6‘¬̣o>~üxñj§N2dHTTÔÓO?-.ï=&&¦oß¾ß~û­üjçΛ;wn|||\\܃>x₫üy£}3gxĂN:-_¾Üđ.>,̃oDDD¯^½Ä5ù®_| £FúñÇ ëS₫­¦OŸ..W——W¹Ïßÿ}÷îƯåPÜÆwß}÷Nëiâ"999ưû÷ëlq‹xDB¿‰‡póæÍå#=¡  @~‘h‘J¥2ZÛÛÛ‹Û·o/^$¥r\\\*'ZfĂ«‰KÄåk×®ÛJ¥R~µ—^zI¾† oîää$.·³³3¼¹F£1l;88ȧbôz}ùÄp® |ŸcccË¿(˜¸P¼¹|ëÄG"_’’Ry}ª¸₫fÍ̃Vy”_$Jn¸P¾ùú¼eË–̣×ùĐCƯi=M\Ñmé¯Än­Đç;½‹®]»Ê§ø ņ££c…O”JÇÅ£R$ElË}C¦ $?`8 åǯÜg¹KO<ñÄÅ‹ÄvzzºÑ>·hÑB”óæỊ́)nq8-^dkk+¶ß~ûm±-ùĶ845Úç‘‘>¹*6l8r䈼ŸŸ́ر   đđpñ:b[¾¼¨¨¨|Ÿßyç¹{÷îƯ¿¿Lq% .¢`âu ÅQô°aĂ*| w½~±V¢Ă‡7|ùüóÏå-]ºT\­ŸŸ_å>‹k‡¸ráÅ1°XĂ;­§)‹ ^Mc»»»ñÅâ¶È;1--­BŸ¾ ñúÍn;qâ„üEA·nƯø~"` Ä£^îƠâÅ‹ÅC^<¨Ë—P>t4Ê!}I‘ă ¾L~øá‡Å—Æb;88ØhŸGŒ!ÿWnBrr²ØG°b»C‡¢̣ ¾„7ÚçùóçÿqûẸ́¼ü"ùH^λđ̃{ï‰+Ôjµ̣G%ƠoèóĐ¡Cņ³³óĂ·‰Ïâ¿sçÎƯºu«ü:¢N:NÜ.£«TÅơ‹O=̣+ÈG¹†CYñÁËo;õ<£çŸåÚ‹Û.¶«XOÓáđáĂ&LhƠª•¼âV—ïsïB¾y‰’’’Äç€%˜={¶dLff¦x©¿¿ù#[qd%÷y÷îỰ«©Ê™Fû,ØäÿÆÇÇ‹ÿĂu9&̣'‚üăbC¼£Ê›œ¦µk×í^xÁpzD+^$eå“çâªÄ§ù]\yù>÷êƠKpùvÆŒâuÄÍ”ßÜpº ÂÇp×ë—O|øá‡b[|Q Ÿ1–ÏB”?•QuŸ«XOSAlË·Qđơơ•?`qH_¾ÏU¼ ñe…µ|ÓdÛ¶mă¡48ù„ߟä£)ù»„cÆŒ1l‹•?ÿ,z%¶åï%‰:-[¶L₫¹rŸÅ¡ZùŒ=Z₫¯üe¸|¡á{…•û¼~ưzC¼¼¼*¤[1ÊQ’Ï'Ë‘‘Ÿqmèó›o¾Y>kK—.}çw._¾,º”‘‘!¶ ņ|öF¼rùá®×/¿Zù>¯X±B²œîaÆƯµÏU¬§)‹ >‰ÈŒü5ˆüeN…>ßé]œ9s楗^7_,TNN¼Sä]  8p@~\‹ Ă…†o]́ß¿_̃vtt”Ư†¯77·Q£FÉße«üÄ<¹ÏrßäCqÑ7ĂÓD ßA3úôS̉$ÏK©TΜ93$$D¾Bq¬X¾Ï¢«̣—üâ3…| WÜ–“'O._¾\̃_̣‹[!·WÜạ̈Ă]¯¿rŸÅm‘Ï®‹Ûµk'¿Ú]û|§ơ4eÄçù9R>™#ˆ#ê }6ú.Î;'Ÿ—NLLœ6mZùco H₫¢ØĂĂĂhåï.^¼X6‹vˆ‡°¸¼k×®̣₫̣ùd9qƒ ª|ưrŸÓ̉̉äô‰†ˆk3¼ôêƠ«rUbcc~x¦¤Il‹¯ÍåCÜùñ”)S₫øëó76nÜ(7S>3üúë¯Ë×3bÄĂÙWñÁÈ'=*¨úú+÷Yغu«áƯ=øàƒ¦ôùNëiâ"¤§§ËÇÿâß.]ºˆ ñ¡Vèó̃…¸ĂOÊÈŸÅüIăî*;;[äE|Á.ÿW~à‹£/Ă+ˆ#·¯¾úê®×#`Åqi…ŸL_YËƯ®ư•‹ƒ@Sµ{â¶Ê—‹T/ªøÁI¯¿±2Ơ}¢‰ëy§E6åmïô.Äåÿ₫÷¿Å¿Üí«`ø¦’ø̉8""Â\ß<ºxñbëÖ­å/«Yg¨ûï¿ßđ#vvvÓ§O7ËƠÊGÎâ+ô;w²ÈPcfü¥Iœä€&eăÆÿ˰k×.²,{÷Ưw;v́¸,C«V­8@œ… 6dee±,ÄO<ñƠW_±ô}¦Ï@Ÿé3úLŸ€>Ógô™>}¦Ï@Ÿé3úlvׯ_§Ïè³¥Y¿~}\\œá¿»wïîܹ³^¯4hĐ… ä 333###Å…bƒ> ÏuMäẉäÉ^^^±±±̣%çÎÓh4âˆzÚ´iiiiâÂÜÜ\Q́ââ⢢¢èèè¼¼<úŒú·ÿ~M§Ï7nœ1c†è­¡ÏÛ·oïÙ³§¼}́Ø1±1v́XCc-Z”NŸQÿ”J%‹€¦ÓgÙîƯ» }^µjƠ¨Q£äíË—/K’TZZ””´yófùœœœÔÔTú ú ú\Ï}Î̀̀?~¼¼]VV&ú|áÂ…˜˜˜;vÈæææ&&&½Ñöî•øúú&$$p—}}®eŸW¯^=bÄy»¤¤ÄÎÎNl$''oÚ´I¾0;;{ôèѦ_ùă?n¸B 6† Â" )÷9///>>^̃.(( iiiK–,‘/œ={vFF}ÇÏ ÏơÜç̉̉Rooï;w1cÆ̀5ëÛß4Œ*,,<~üxppp~~>}}}®ç>ÿqû ³“““N§ëѣǥK—₫¸}"ZB»ººªƠê9sæTëÊé3̀E’$M­Ï•Ư¸qĂđ“)%%%â ººWEŸa.å h²}6#ú sáüè3}}}¦Ï€é8ÿ úLŸa™Z´hÁ"€>ÓgX Îo€>ÓgĐgĐgú ˜N¥R± Ïôˆï‚>ÓgX&Îo€>ÓgĐgĐgú ˜.88˜E}¦Ï°@œ}¦Ï°Lœß}¦Ï Ï Ïô0]µ₫01@Ÿé38~}¦Ï Ï,è3}}}¦Ï€‰î»ï>ô™>ƒăgĐgú ĐgĐgú «ÆÏ‚>ÓgX¦®]»² Ïôˆó Ïôôô™>¦ăü3è3}†erwwg@Ÿé3,ç7@Ÿé3è3è3}LtôèQÖô™>Ă¢́̃½ÛÖVÓ¼9}}¦Ï°,k×®m̃<ËÖÖ‰¥}¦Ï Ï Ïô¸«C‡©TNZ­¥}¦Ï°@ü| è3}†eâùu Ïôôô™>¦ëÿî;ï° Ïô–¦B9Î[½oß>–ô™>Ă¢´W¨¦k|é3è3}†¥‰V(]\é3è3}†¥éÓ¹óóÓ§_¹r…¥}¦Ï°(<ô™>ƒ>ƒ>Óg€>ƒ>ÓgX¯ăÇwèÔ)‰¥}¦Ï°(·Ư«ü₫:Đgú ‹́3¿_ô™>Ăâ¼ÿ₫ûJe ¿¿ô™>Ăí̃½ÛËË‹u}¦Ï°@<ô™>ƒ>ƒ>ÓgÀDÇkÖ¬ëúLŸaQ>û́3;;µB¡b)ĐÄûœ———˜˜Ø¶mÛqăÆ={V¾033322R¯×‹ úŒzÆóë@Ÿ…+W®ètºï¾ûNlÏœ9Sܱ‘››Û¹sçââ⢢¢èèhpú ú ú\Ï~ÿưw[[Û'NˆíùóçËi;vlVV–ü ‹-JOO§Ï¨øä“OV¯^­PØ»»«Y4å> â±0xđàđđpù@:))ióæỊ́KsrrRSSé3êÁÑ£G]\"<=ç‰qw‚ŸOAïóƠ«W‡đôÓO­_¿^\³cÇùrss¾íªU«ºW¢ÓéºtéÂ]5PPPàë;UTùöœçüxŸ?øàƒàà`y{Ï=^^^eeeÉÉÉ›6m’/̀ÎÎ=z4ÇϨŸ>kµ%éçÛs\¥rdMĐ”ûœ••ơÀÈỤ̂¹èâââ´´´%K–ÈÎ=;##ƒ>£\¼x±K—Á;?¢uëXqüÀ² Éöù́Ù³~~~§OŸÛË–-ëß¿¿ØØ¾}{TTTaaáí_ĂœŸŸOŸQÿ\$©µ½M¶Ị̈!t»víÂĂĂûơë÷ơ×_‹KÊÊÊÄ!´«««Z­3gNµ®>Ă\Ú+TÓ5¾ôM¹Ï²’’’Ê—”––V÷zè3̀%Z¡́åêFŸAŸÍ…>Ă,G >8­[T́3'^¾|™}¦Ï°·~đï<ô™>Ă"û̀Ïwƒ>ÓgXbŸ›5{V¡°e)@Ÿé3,ÊÍ›7—-[Ù1$lDbâ… XĐgú ‹«PNQky₫è3}†¥áùÏ Ïô–ÉU’"Z8£aÉϯ»GåxMRí”s&OfM@Ÿé3,ªÏ7$Ûôô™>Ăb|̣É'*•ÚK¡§ơá£yî±Ç‹‹YĐgúŒ÷ùçŸ+•n^JÛ~Z˜áú½e}¦ÏhpåÏoÈÓKȲ€>ÓgĐgĐgú %M …“ÚÖ>A­•'.(ˆe}¦Ïhpyyy*U€—̣i­ü­+ĐgúŒSPPàë;U’₫¸=ç9ÿ úLŸa9}Öh–¤üÛóE´ÂîKI)Ok¿úLŸÑp._¾}̃´i_~ú) úLŸÑ°¢Ê<é/³IRŒéÑ“•}¦ÏhXí*Ăùgy¾“Tă’SXĐgúŒ†©P¾#)ÊO¤è×®=+úLŸQo&MƯ»÷ø̣“””ÖÖ7°{hØ=úiă₫Ç /ˆyeÑ¢oùs„ ÏôơÈϯ³$ùë|«tøVR¾/)8‰%}¦Ïh >íù Ïæï[>Óg4 ggm‹/•'§Ü›Ù,náú¬£sÆÄ‰,è3}Fƒ8zôèûå,_¾ÜÎÎEëè£Ó‰I í^a’BBGöîÍ̉>ÓgÔ'ù÷‹¶W9^’TwbI•ÆZ>ÓgÔŸËÿ₫Êó›¤GѬè3}F}Ú±c‡­­Î[¡zÔ×ÿN3IçwOpkúLŸQ~x–·wçÀÀû*OW/¥]’NWÅ đز§×™3YLĐgú 38đQI:Té™uF~¿hóI9côhô™>ƒ>ƒ>Óg4z'Îöö¾G¯èç×O£éU~Ôêd•}/ö®“à£öPÚ¾}ụ̂óóYRĐgú ọ́ñ Ơhf”oïG¼mTOjt¦OkÇ>úˆÅ}¦Ï0£*~¾ÛôYicûöÛo³˜ ÏôfäïßM’ÿ:gÚ)~•T¦Ï 6*ú úLŸa^;ö÷÷ï^~üüº:»w÷¨zz¶LŒ’'B­ù₫ûïYLĐgú 3rtô¶³{µüØÚÎwofóSƠåàøù石€ Ïôu¤ÆçŸŸợù”¿ úLŸQg|};IRÁ_ç¿mv_Iʪg¸‹+}}¦Ï¨;3f,¼÷̃©ƒ=9 ,¬·˜ĐĐ^m5₫½Ă«„°đy3f,~öỤ̀“ưÊ+7nÜ`UAŸé3̀¥  @­~H’>¸=ÿRØo‘5˜Ñjí¡C‡XOĐgú 3öÙ×wjŸÿl˜É¾₫ôô™>£Ÿ·ÜwÛØ¨̃“5˜¸Îôô™>£–Ο?ß§ÏC>*&5uRddï°°bBBzDiü{†…×`zGFML8yà  3´[÷“'O²æô™>¦Ø¶m›³óÜÛ¿Å®Â|£tøZRq²$Ū+XsúLŸû́Ⲹ6¿_Ôôy‹>ÓgúLŸa²?₫ØÎ.Ö̃~Y…±³{Ù½™ÍR{'3Îl[‡×_{5§ÏVdï̃½qqq­ZµêׯßáÇå 333###ơz½Ø Ï0¯ ||ÂÛ´I•'  ƒŸ_» £ƠFû9»Åùù×lÜƯgÏœùn%eee¬?}¶¥¥¥-[¶ụ̈Ë/Åö?ÿùÏ!C†ˆÜÜÜÎ;EGGçååÑg˜Ṇ̃å«%éMI*©rδW:—T5›Í’bá¬Y,5¬ºÏï½÷^JJØ56\8v́ج¬,y{Ñ¢Eéééôæîóº;üY+óœ₫@R̉gX{Ÿ_~ùe‘Ó®]»*•Jq ưí·ß “’’6õ,¿BNNNjj*}†åæ¾çà­ÑL¯r÷²Q>¡ñ­Ù<́­~uáB–VƯ猌ŒæÍ›¯[·î·ß~›4ỉèÛg3&&fÇ>”r¾íªU«ºW¢ÓéºtéÂ]UËÿ«€€H­6¡üøøÄ{©́ºku5T}à À–Ơ₫úä¸8v}¶‹/ŒŒ”·O<éââríÚµäääM›6Éfgg®ÎGæø5`–¿oe–¹$©z……³Gè³%X¿~}§NäíÓ§O«Tª«W¯¦¥¥-Y²D¾pö́Ùâ›>ƒ>ƒ>׳ß~ûÍĂĂcß¾}b{Á‚ƯºuÛ·o*,,<~üxpppµ₫l=}F „„Ü0D«`¦¯Ê®¿Vgú ĐúÑÖrë{¶mË¡ÏbË–-jµ:(((,,́رcâ’²²2qíêê*.Ÿ3gNµ®>£f.\î́ÜQ§{Lµz¬·B5EçoúD8:¾o4>ËA>{öl… KJJJKK«{Uô5óÔS‹$i{mÎo¬´±åïw£ñơÙŒè3jÑçm’tåÏ9×^éø›¤2}^¶QÑgĐgúŒÚûïÿ»¥œ3游´Ôéºü9œ\ºè|MS‹åË—o1Á={XúLŸ£NŸ>í́́ä´äNăèøœG3›¿;¹ÖÅ´vjÁ–>ÓgÀ¨S§NéơÔƯÏwW=34º½{÷²è3}ŒöÙÏo˜$¾óÄ(́Iʺ˜aîô™>ÓgÀ¨̉̉̉Q£ïÛw¢adž†ö ë-ØRû‹ÿ×rúD´z¤Oß }û•ŸqRËÿB0Đgú TaÆŒLIÊ–¤÷₫œw¢ö%E-g†³kµ~A.è3}*¨ưóŸN¦«}¦Ïô™>£ÖÇÏën'Z÷#mTHÊZNo;úLŸé3}†‰~₫¹°wï1Ç?Q~úơK IO–'44±­6 )<¼6soÇN Ÿ~úÊ•+¬9}fè3Lqû溺”¤ÿV9_Æ(öJÊÚLG??Vô™>£}®Û¿o%Ow½Ơ}¦Ï0ƯÊ•ÙÍ›÷T(VU9¯º5k¾BaW›ñpp`µAŸé3LwëÖ­7̃x#4´^ÏÆÏ/VïêÙ^¯¯Í$FD 5L´¯ß·ß|ĂúÓçúQTTtăÆ ú «sêÔ©€€û%é×;OQ;¥ă/’ÊŒ³FR¬Z±‚ŧÏu}ø1₫üÈÈÈ6mÚ|øá‡¬üÛ›é3,¼Ïơÿû7̃¢Ïô¹îeeeơèÑă‡~}¾~ưú¤I“,X@ŸaEΜ9ăîêăóôÆÛ{†—̣)­'ƯÓ;wĂŸ>ש‘#GnÛ¶ị́åË¢Ïâ¿ßÿ}Ï=é3¬‹8ÀøâOQM§̣ăí穲ï¨ÑqÜí́>ç7?Óç:öÔSOÍ5ËĐç¿ÿưï£F¢Ï°^ơó÷»9¿AŸëÁ/¿üâçççáá¯V«¿ưö[ú úLŸÑà}.]º”ưÜsÏíÚµëæÍ›–³ôF(₫W%_ßH­vhùÑhîơQÚ ÑúqR¼}Ö¬^]₫ư9s†½CŸ›úŒÊ´Ú6~~«nœF3ºüøø ñ´Q= Ñ™wñ (?mt:ö}6¯ èË lƯºơ!C~₫ùgú ¤×÷½ÛOs×ëß·2Lo} {‡>›×矾jƠªƒCCC׬Y#¢Ư¶m[ú ‹́sIºQÍùµ½Êñª¤ªÓIátĐgsKOO_¿~½á¿o¾ùæ”)SÄF»ví~ùåú KÓ¶mÏ  ¤r“¨Ñt¬zÔê:‡æ}~<Ưô‰AẠ́ôŒ‰aïĐgó5kÖß₫ö7ĂŸyæ™'Ÿ|RlDGG—””ĐgX¸œœ·UªN®®/T1ÎÎÍm2]=̀;³œƯ:³ èsƯ9räˆ^¯ïѣnj3ºvíªV«øá‡iÓ¦ 8ó°|ơöûE+ÏI5ÈN¢÷ùÛOXZ±b…8l~ÿư÷¯^½*.±§@Óg˜ÖçlIú±Êù.VaDR™w¾‘”‰á́ú\?Ä‘óôéÓ'Nœh!KAŸaÂö§¶m{%&Ó³çØđđ>¡¡½*LHHJß”Đ0óNrHèđ¤¤¯¼Ra~÷û…>›ËÍ›7ÿơ¯¥¤¤ØØØˆẃØAŸa¶mÛÖ¢ÅS’´¡̉¬TØ­“ơ0Ù’bT÷ö}®½Â¹sçêtº–-[:99>|Ø¢–‚>£º}vqYÜPÏ–ç;I56)™}AŸkiÔ¨Q^^^ăÆû́³ÏÊÊÊ‚‚‚.^¼HŸaåÇÏÏH̉®Jóa”íÇ’²f‹¤H½§û‚>×RTTT=^yåùyÎôÖbï̃Æ=úàƒ³*̀È‘O„‡'…‡÷ª0aaÉm5)áơ0Éác’’zđ¡ÚÏäa÷}ơå—́î¦Ùgq̀¼sçÎûï¿ßÉÉ©ÿ₫îîî–ö ^è3Œ?~¶$½/I_<{b”ÿ–”Ö5›%Å3ăaw7Í>ˆĂæåË—ÇÆÆº¸¸Œ7.??Ÿ>Ă’M˜đœ$}ji¿Ắ³KR>;a»»‰÷ÙààÁƒS§N`1w ú £F~\’’¤×MU®Í¿&)¬k^”l¦>đ»›>[&ú á·ß~ëÖmh|üư†i×nHPP¼é£×· ̣Tw ²„‰ ĐëÛ÷MÓs ÏôëèÑ£~~c%ét-ædœ̉ñÿ$•%̀’jx|<»•>Óg4>ûû¯₫ï|¶ĐóÏ'%Ơư;±[é3}F#pâÄ W×0OÏ9µ˜g<+ơô±„™åéƯ;.ƯJŸé3¬Z||߀€z}²VÛQ­«ñxyEzÛ:ÄƠæ*̀7£ûơgç̉gú «ÚK’Jkwfƒó Ïôô™>ÓgúŒ¦"<¼³¿ÿƯiüüÆèt£î:Zío…íHoừhư˜€À;ÍHÿ€á=Ù¹ô™>Ăª•””¯R›6Ư||hµĂ«Ÿ₫^ Ơ0­®¦‡§çđääª?́ßÿKŸé3·èè{%é‚Eßà÷‹̉gú ĐgĐgúŒtưúơw—âéăă_ơx{ߣ¶sŒ÷Q×ĂÄyyêÓ÷Nđ'Ÿ|Â>¥ÏôĂ’%«́í»{x̀¯Í¸¹M÷l®˜ëáƯàcg¿eËv+}¦Ïh,X*Iï5ç×­²Q­]»–ƯJŸé3ùó_–¤J̉ÿƠn~SØ“T >Ï6W̉gúLŸaÖ¬ycơệ́3kÖ&&88¹6”ØÊK›̉ Ó;<â.]åéÑêĉ́húLŸa]̃zë­fÍ—¤·ê`Ö´Qؽ!)duóàÛ‚ô™>ĂúûœmŸæ¶¬óÏÏyúĐgúl9>úè#777Ă333###ơz½Ø Ï¨²Ï/Ỉ¿ë`>‰²±Ư-)d89Ógúl!.\¸ j́êê*ÿ777·sçÎÅÅÅEEEÑÑÑyyyôF]¼xqĈGÓÓg””´ĐĐ”đđ̃5˜°°”X­¾WxDƒLr«VO÷́„ FgÍ̉¥́zú\oFơú믟Ǜ••%o/Z´(==>£ÆH̉‡’ôYfg[¥ư.IiïëËÎ¥ÏơC-7îäÉ“†>'%%m̃¼ỸÎÉÉIMM¥Ï¨ÄÄq’ôc#øư¢&A¯gç̉çzPTTÔ¦MñUjù>ÇÄÄ́رĂPïÄDă¿YqƠªUƯ+Ñét]ºtá.¡[·$é5Iz»FóF«æÊ7%…‡½;—>׃ÁƒO˜0aëÖ­kÖ¬qtt¥¥¥ÉÉÉ›6m’_!;;{ôèÑ?£~üñ§¬¬×*ÏܹϫƠ!!«˜–-;„yi;…„Xàô‹‰Ó=Á0=Ú´ù₫èQv7}6;Ñ̉·ÅÆÆÚØØˆóçϧ¥¥-Y²D~…Ù³ggddĐg˜Ṇ̃å«%i$¨r~ˆS:ü(©,VK•¯¾Ên¥Ïu§üùíÛ·GEE?~<888??Ÿ>ĂÜ}^g½çŸ+̀[ô™>×cŸËÊÊÄ!´«««Z­3gNµ®‡>ă®̃|s­í=îî ª7·¹Íóܽ,sqûÍ7Ù­ô¹>•”””––V÷­èsÓ4õ+¡z}‚)ĐƯÇ'ªêñđ÷²sˆôñ±é&n’^_~¼œ>̀ƒ>[úÜ49C’ö7Ÿï®ư,µwÚ¸q#w úLŸAŸé3è3}FeçÏŸ=z›[w­v¬ùæAo…mÖ×J'ÈÑqÓ¦M'¹ví÷úLŸQ?tº(ÿQ:Ư@3·w²—Â6Uçk¥3Pçû€>°̣tñô;u*÷úLŸQ?ôú¡́÷‹ÖƯ|))Ÿ9’û }¦Ï Ïôô™>75‡ú́OZmkµº›yÇǧ«­}7µÆ*&Ehât÷óÿû3Ïpÿ¡ÏôuäèÑ£..̃̃ÏƠƯxx<æe£œí­¶üigï°aƯ:îô™>Ăkµ“%©¨.çÿâ”§$•åO6}¦Ïô mÓ¦MoƯ–••Ơ²e‡–-ën{„{¨{¶ ²üé°đùçß2Á–-[¸Ñgú ³ËËËS©îĩ<»¾f±[³æ««ÓÄØÙï̃½›û}¦Ï0¯>øÀÙyqŸsnäϯ{ÎÓ{×®]Ü—è3}†ÙûÜ¢Ås’´¯¾æóh…Ư$ecÁ-œé3}¦Ï0¯={ö§§Ï ë̃§~&,¬W¬Vß;<¢1MbDÄ́É“çO›ftÖ¿ö÷4úLŸQ]}û—¤Í’´£'/Ziÿ¡¤l:¯óåFŸé3ªkÀ€É’ôm=|n´?ß]ÅôĐrO£ÏôƠƠ§Oº$½.IïÔă¼Ưº¹j½¤h:ăíèÈ=>ÓgT×Ñ£?¾øâ«K–¬èĐ¡ohh·z˜  .̃¾ƯêçYÆ ˆ—œR­›”üÜ”)Ü?é3}†àç×E’~¨—9§tøNR1Ùÿ$eBË î–ô™>CèÁùg˙˒*)8„»%}¦ÏœuÎ΋ëe2=Û,tvcª˜Lg· //î–ô™>7nGqsÓ'W=₫₫4¶ơ0̃̃­Ơ-Új´L€‡ç›o¾ùÁüôÓOÜ{é3}nÜ6nÜhg·L’®Ỳœk¯r_¿33ƠÚ/¾ø‚»(}¦ÏM»Ï¯Öï3œ9ÿl̉ưôÓÓƠqåÊîØô™>[»¢¢"ŸV÷‹Ñéúêt},d||¼”v½t¾L?_¿á-MŸ>:ßIIÜ·é3}¶vGñ÷oI§58¿QÛ9%©î»§÷múLŸé3}¦Ïô™>£.œ={V£i­×÷7L@@_&©ÁG­î¡VÙ'j´̀]'Y«ë§4Lïư˜¾ư¸oÓgúÜøL:ÏÙ¹·Z=«aÇÛ{’—r¦ZÇÜuZ;»́ß¿Ÿ».}¦Ï̃øñÏJ̉ÎoXÑ̀ơđ̃¹s'w]úLŸ½ôôÙ’´K䱡ç—vJ‡3’¹ë<áæAŸé3}¶X7õÜ`&'Îôö HhØñ÷ḯêÙ=@ÏÜuÚh4+V¬¨ñ?pà}¦Ï¨;Ë—¿fcÓÓÖvE£•êy·fÍ—Ù:0u=:§ô™>£îüă+%éŸù49Î?[úôlIŸé3ê¸Ï¯Ỉ×höµUØí—”L]OŒ—7}¦Ï¨;'Nü_ṛÆM«zâ⇇÷± ë£ èÁ˜a""¦ ̣ø°aFg₫´iô™>£Áùúö‘¤<+™-QJû­’‚©ưd8¹lƯºµÉ̃íé3}¶ zưPÎ?7ÁyÁÙ>óđ§ÏN§ë-Iÿ²’Émc£zWR0µŸD[;ú̀ĂŸ>×̃éÓ§;uº·ÿIu111BC{ZÅ„„$Dªư{††3µŸNÁÁ………ôô¹–rrr$éUIú_“Ÿƒ±J‡IÉÔ~æ¶påø™¶Đg3ơùÆơLfÎ?s₫™>ÓçÆ`Æ EG‡¥M~^tofó’ƒ3Sû‰µ³ÿè£è3èsññưZµª̃øúÆ1M”ÎÉ5Öשư´÷÷ïÛªu£Ÿö₫Ë, ÏôÙtz}?Iú©₫œm¯t,–T cấ•”S† ¡Ïô¹:}ÀÉdÎ?3ơ0ù’rêĐ¡ô™>›ÎÛ;L§›ÆTw´Ú©^6ªÇt~ câŒWkàúLŸM÷óÏ?]k üƯÑÑO«Ml:ăăÓÉKe×S«c˜ÊÓÎËkPBBåGÊ¥K—è3}®góæ-‘¤-œß`y~’TtíÆó7è3}¦Ï }¦Ï¸“·ß̃ä́¬×6qtº₫Zm?«¦·Ê®¯VÇÔ`RưîƠ·lÄ3 @ÿđ Aô™>[/¾ø¢E‹V:ƯV=juº—êqSƯă­îß¡„ÆÑçơë×÷èÑ#**jÔ¨Q‡–/̀̀̀ŒŒŒÔëơbƒ>[—­[·¶hñ"ç7́œ’T÷ƯCŸCŸ‹|||~ùå±ưú믧¤¤ˆÜÜÜÎ;‹—FGGçååÑgkëó ’tÉÊçl{¥ĂEIÅTwNHª!íÚó@h}.,,ǘ³ÏämqœœœÄÆØ±c³²²ä -Z”NŸ­È±cÇ´Ú6Ơư¡r1~~Ư|}»ZÈètơ-\»øú1̣ô ïÛª•)Ó+<âÉ´4́üó#<2|øp±‘””´yófùœœœÔÔT£¯ëÖ­•L:U¾X—-[¶¨T÷88¼b!co?×½™ÍgF̀p•Ưô±c¹—6Ù>¿öÚkZ­öÔ©Sb;&&fÇ̣å¹¹¹‰‰‰Fß$;;;©??¿®]»r—°:7n´³{•óÏ–9ŸHÊÙăá^Ú4û¼råJĂ7“““7mÚdˆđèÑ£9¿Ñúlk»X’¾µ˜9£°;()1HÊœ²h’}ÎÉÉQ«Ơß|óá’´´´%K–ÈÛ³gÏÎÈÈ Ï̃™3g†0ù®“œ<.4´WXXï:^m5½ÂÂ-jRBĂÆ¥¤LZÏ3¾o¿=Mø87Ù>;v̀ÑÑñÓO?=ÿ'qáöíÛ£¢¢ ?œŸŸOŸađä“ÏK̉ë’´¹gc”Â~“¤°¨yMR,˜>û}®Ó§O—₫ệåËeeeâÚƠƠUWÏ™3§ZWHŸ½3J̉‡Móüó’2sæLîô¹Á•”””––V÷­èsÓ8~^+IÛêx6GÚ¨̃—59’â¹Çă>@Ÿ­}nôNœ85}úüŒŒÅf™iÓæ…„tO®0¡¡‰ÑÚ€¤đ3N'}à3>úBFFgá¬Y§Nä>@Ÿé3‚mÛ¶µh1G’Tư1J‡|IiÆY!)V­XÁÓgú ˜Øg—Åơs₫ù-úLŸé3}†É>₫øc[Û8[ÛF¥ú‡[³æËl̀8Ï©́³W­bÍé3}LôÁ¼sÛ5k"Ú‹ñơÑ»z¶—ÿS»‰P«ÇƯ¿ü.ÊÊÊXpúLŸê*((Đé&K̉…Ûs¦½̉ñ¬¤ªứ—”“R²¼ôôµé³¯ïT³Ÿ₫ZRN8ˆå¥Ï Ï¨±~øÁƠ5\­~JŒÏ“^6Êj]íçQoÍ„!CX^ú úŒÚøî»ïºvàéÙÖË«—ʾ³F[~Z»{ŒèÓgoơ•””°¶ôôµÔ±ăHIúÙèùï$Ơ¸ä–ô™>ƒ>ƒ>Óg4z¥¥¥‡LÓ©Ó@/¯Df ̉î^­®üôSkGơê}ÈdgÏeåAŸé3ª6kÖbW×î¾¾̃utº M·÷}6ʇ4º óˆÎo’¯¿‰ÓJ§cåAŸé3ª6aÂs’ôi=ÿ~Ñîz=+úLŸaBŸ?‘¤k&Ϲö*ÇË’ª6ÓÅ?€•}¦Ï¨Úʕ뼼"BBRLœàà$'—NZ<ƯôÉ!¡Ơ¾;²̣ Ïôfç&I‹œƯäñsqaA@Ÿé3,D{…Êp&¹—>}¦Ï°± åaéÿOœ}¦Ï°=££NI‘gzÚXô™>ĂB(•Jô™>ƒ>ƒ>Óg€>ƒ>ÓgXµ”øø™ăÆư₫ûï,è3}†Ei«PNôÑ́Û·¥}¦Ï°(íªé_ú úLŸai\$©µƒă₫ưûY Đgú ‹³}ûvÖô™>Ẳđü Đgú ú úLŸÓI’Ä"€>ÓgX wwwô™>Ăq~ô™>ƒ>ƒ>ÓgÀt666,è3}†âûƒ Ïô–‰ó Ïôôô™>¦óơơe@Ÿé3,çŸAŸé3,ç7@Ÿé3è3è3}L×§Oô™>ƒăgĐgú ĐgĐgú ú Đgú 3ºxñâ}÷ḾƠ«?KúLŸaQÖ®]Û¼ù‹*•#KúLŸay}βµub)@Ÿé3,­ÏÍ=­Pز Ïô–fÍ7:uêÄ:€>ÓgX ¿úLŸAŸAŸé3`:~è³Q™™™‘‘‘z½^lĐg4FĂ"€>W››Û¹sçââ⢢¢èèè¼¼<úŒúÇù ĐçÊÆ›••%o/Z´(==>ƒ>ƒ>[‚¤¤¤Í›7ËÛ999©©©F_íúơë¿W2ỵäûî»»j¯Y³f,ès111;v́·sss¾Úo¼Ñ¯’ñ/w ô¹.$''oÚ´ĨÎÎÎ=z´éo»aĂĂ¹ Ïæ•––¶dÉy{ö́Ùô}¶Û·o*,,<~üxppp~~>}@Ÿ-AYY™8„vuuU«Ơsæ̀©ÖÛ̉gô¹®•”””––V÷­è3úl™è3úLŸ€>Ógô™>}¦Ïè3}úܰ8 ƠjûYƒîƯ»ÛÙÙ¹7nnn¶¶¶îˆJ¥âæX,{{û~V"""âçŸ&ÎÖ¥¨¨¨1ư*Ô+W®ôéÓ§1í ñ ”›ĂÍ}¦Ï€›CŸAŸé3Aăæô™ps¸9 Ïô™psúLŸ¹9ÜĐgúL¸9ôơïæÍ›gΜi47§¬¬L|ÆiL;èôéÓÜn–£¬¬́æÍ›¬Pׯ_gPGnƯº5tèĐ… .É̀̀ŒŒŒÔëơbC¾äÂ… Æ nÓ¦Í₫óË¿Qùùù~åÈ!Âên…Q»wïîܹ³Ø;ƒ ·ÈJoE»ví {gåʕֻwÖ¯_Wỡ©ü€Lñßÿ₫·K—.nnn†>çææ;XqqqQQQttt^^¸P‹6®₫Sqq±¸Ü××799yëÖ­¿ụ̈Kÿ₫ưzè¡¢¢¢×_]$T¼ô§Ÿ~ué>zôhÛÛÄ…=öØß₫ö7ùj}ôQ‘k±Qùm÷ïßß¼yó¹sç>}z„ ưúơü†……íÛ·ï»ï¾Ÿ?>xđ`Q~ñ¢7nxyyZ MªÏ]»vM₫“\BÑçmÛ¶‰óçÏ‹œ>|¸ä¶.]ºˆ#^‘q±!_ƒ¨¨8 6Úg£o+ú́êê*¿Ú§Ÿ~*ÂÅÆĐ¡CçÍ›'_(^A|RÈÍÍíÖ­›øï; ï 8¿!ú|èĐ!±!jcc£.'+++##cêÔ©†œ̃©ÏFßV¼~hh¨üjùùùâ°YlDFF£ṇ̃À•+W\\\D¨Ç¿lÙ2öúlèóÿ₫÷?±qíÚ5ww÷sçÎÉ—Ÿ={V\"­ OóذaƒÜçiÓ¦=ó̀3̣…Ç}6ú¶¢Ïr“Ë÷Y*/]ºT¾đ“O>‘?5Œ5J¨kµZQiöú\¡Ï°aĂæÎ{ëÖ­¢¢"OOOqT|ơêUÇ—––̃{ï½rŸ-Z”””TVVvúôiùüså·5ÚgqàđÛo¿‰Ăæ–-[~óÍ7â­[·†‡‡÷́Ù“Ư€>íó×_âïï(",_øê«¯:::êtºääd¹Ï?ÿü³È©F£ÿ>ôĐCrŸ+¿­Ñ>_ºt)55U4_ÄÙp.¶ƯÜÜV­ZÅn€*œ={V—¿D<—””́Ù³G~₫†áƠLy[£Äµ‰&₫+¥Eÿ/\¸Àâ@ Tè³¹¬]»6%%åñÇg… f~ùå—Í›7›ưj?ú裬¬¬ëׯ³Â€̣₫­Íó endstream endobj 461 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 464 0 obj << /Length 1724 /Filter /FlateDecode >> stream xÚƯYƯoÛ6ï_ᇕXå·¤a-ë°+ĐƠíÚ“mÅ1–H%7ë?ïHQ²â¸Ư˰Åü8̃¿;2l¶±ÙÏOư₫¸|̣́U¡gœ¥+øly5+x3>3¹™-7³‰œó$UđÇ~Ù|Á¹Ê“—í́é«nÊnga¬¶_y3_È\&­mw@pXCëäƠüỌ́×g¯ø@$›-D–J¸¼ñ|¡2‘”¡Í“Û²‹,ù‚½û¹È“̉ ´8̉9=ܲ è:ÜƯ€RѲuÓ«S°ÈP·ÎÎEnX²œ[Êhíˆö¸¹̃ùQä rFªäd4«rEä_pä]÷„·@Ôvàp—©VúbƯÀämS£^irơ°–IÚ·;l¸Á+/÷û.@¿3;k‘2[©(6q?µI‚§ŒiO B ƠºwÛ¹(pMÇoOº₫̃O·Ø,áGá>xN%đܼḈÖmÑÄüí<1eŒ`Ej˜̣̃1÷Äüæ¶ <5a Y‘“ wà~G{gƒZñ=ë,ßà€ßL2L ‚ĐÎ~dÙ°¿G6D»Ưu´Â– «:ZpÇÜF¾_bÑb;}ª=5—Ä ä–ÛÆR»uѼ;íZï™®}y*v¦]».oÈ·íô†ª4ăÙ¹Á)D u{†nt´…ĐêTéi`Çó?ÁËsm½³#³îwÑüÓ ë3† ưîºâÍsÛK«¹&hñTp&’§SJs£SU^ØM™Éd¬¯J<~kc7 F+"ôA#3:D`̣¯‰ˆO¥ ‹Ï>TáOÀ%€? !M1ƒ;¥Q³¯¤D€9Đ‘Rœ€S¤….*ë 6&Ă1®‰…¸cë&(ÊĂQ”ĂX¤B ‚Ͳ´È˜ÏBܤBRt¾°p+ä#±Î½Û€,˜(¡½¦¾w®(e$P‰T¡Đ-ˆ¨7Ö(-YRm&ÖĐ“Đ\2¹–Ôy{ ÷¶ÇŒH̃ÚÎạ̊ n'É(ReÔ@ùN­3æÓÎW—¾e;ØO+Á’¦`rẠ&V“(¯±´Ç8YÀ”‰ÀCÛ¾<`vJoh̀C<â=₫¨VÁ[’ç&Ỳ½="đ!N?’Z›‡eèXÆ› NơS/CdÈŒ"¦4ÊKt”́¡"ÙÍ&+ÿ€ƒSQ.æ*‰»̉Ăz‹ă{ i{°Á“ÇͰŒ°„»RøD'˵f;$ßb¢™p6.`´Hvh\Á™GÅ)4ÙåUMlÜ(£Bs² D+Hă’$4u5U[aÉ))"N¶OÍ Û{Ä_@rL8w¯ ă°‡Vl÷è́­àÈ!N‰đ~s’Ộp?¦o‚Ưp 6’X¢È¦÷0ŒÇEè„oœ=†ºâS)™¼k§ I“§Y!NƠïœFøU¥qĂ,ăÙøM·đ¾é›](¶¾ŸBñEªó|̀¯Hø-!ô nLư`› l¶”FWQêï΃ú‹G濃ÂXâvözNŸˆRÆV^ ΅¿­?ŸĐ_=’SÇ&œ™u‡~àÉÇUøôu™×eºuWcæ-·!Ñ‚äh]j}O@ưöriûljödîœÈt£l©„½`#́ócØ =ö‹¸ÏN.«pƯË= !¿† >X`’2ƒDô¸F}êë9æƒÂAƹ"æŸO&º3ê´Ă¾|cLMcÄÿ.¶´ø×±¶ơ+b+Ä–Œ÷^Ëo-9à8(›t«k䱛΋­E ƠgÄƠq¶ ñ5E~Aˆ=±äŒî‰Ó!c2ÔˆoÚAˆi[5`đ‚/]äö±®´GçF®®,y}Ù¿?X0Їeƒđ“'ƯÈ,‚,Á…J^ĂĂ¹åT~ă `GŸ‡÷Ö‚“ÈÖQaŸŸ:&:Wü!vZ»(™a§$ÂTx₫%Ñ3‰EÆEǿî-Búæ*ZGc®TÄÛØfê ˜ ¥à®ü;WG: /™'­=ÑđÄ•̣á¿3Á́}B©™̀Tq‰nÙ€è§å“}ó’l endstream endobj 483 0 obj << /Length 2975 /Filter /FlateDecode >> stream xÚ¥ZYăÆ~ß_!ä‰V »›'Ø,lobÀp¼r€À›D^IHÉëɯOͦ†̉,’}TWWW}up’Ùv–̀¾{“Èï_—o₫ø­±É¬ˆ«"1³åfV™¸„V^æ³åzöKô—ù"³.ZÏM´‡g#OÏƯ‚æb¾0IZDh·đ|§§ƒçgxỊ̂hß§$Kàgjú[x®K°ÿ–ƒ?Ă³„ç'Ùæ&mæÿ^₫·¨â4OGgèdGÜá$…™—ÇăMm@$å\ ©ÔÆÎÎ&­́Ó ™ëª†¿—}{¹d•êmƒÊMôîưRZß!ëÿ¾¾àQ₫AŒ/„jÀư ª©iÿđNH%qR![0'a¢ lÇIe¡l2¦^oI΋ܦÁKnæ klư/ï˜ $…Ó®NIxwb÷®( mrb̃9“‰„ä,̉”g;Á0K EW¦FVX^±`6sá‡î&›àXo"¤]r†÷4 ‘'Ê6½•t';‘ÂTÙ̀$q•T¤0°—Ëâ,¯x3‡äSü.6i}ÀÛ¨/Çú<_¸̉zǺÏb2ơ¶f t¥#…̃đܶ;ỘæP_pa+^x2ªơ¥X]®b^¨÷-·¶ˆÀÀs[F ÑƠgÙ=M€úy!çQƒ{âóÎU`Ú¶€)đç™;.d°„-¬ix9vïX ñµ2s)́v ÓØÓ™ÂƯWm§! ]Df­L;RO'½¿sç~8„ç*¹wÈz-7êB¹2‹áÖ@V$¤]3Ï,î¿p¹‹ÈËyJ´ ]·0.ÎRч®1MPiRF+ä®c OÁé€Ï̀+/wr$¤4Eáơ|ÉQbHó…Dpâª=đVüÆB¬HÏ[Ë4H̃g|ßеXœB;Ñ)^u¬·'Ù‹ns­§+ƇnÔ$C±Ü¿]8{•Ñr§—†7UÍ"º’–! _Üó…${â—Ëp/ Qœ¶L)ÔKx=¡  4xÎ'{(¢†GÁi¸]MjKœ\ɶ5÷¬é(̣BŒ^ èPï_°ˆFp`u,IB%3eœfª™K™ª¯&¦1‰Yy®$Ö*|ä8É”ch;–ê~…̣ÙaOJ›Ơ=·k₫YÛ:^â˜ÊHX4Đ“^ÉÛ©C·8êo±o+x<¿1À_2ë¶3nüôƯ›Ù/´À$4®¡œ€9±¢{GÙë½^½•‰̃ă‚àđä¥ [“•L>€t¡J#›̣ïoó ŒOơ«~:ù‡¿¨íxyÍƯ«½\×´0©ƒY½ñu¥–Ơ‰¶Âb˜́¹½z¤¿#3 h̀¤̀H+s+0Óđî\đcEhAÀÄ}À³OX{îº>—îØ"0˜’×ù’t¡S1Û÷a‚c9˜”å ‹Öt%ŸÅ·QWOK6Gî!ơ»íuĐ>+(ϵ›Ụ́rKíi«hNØ̃Ö¤ă¿“â8 öê™e:Ø;æ{R‰Ô™ù’́>“ïn{MÀ?,*F ñ́]Ÿ„‡s@­=øSgF &±Q•ơÿÅ :r[µ´%*ádv×âa¾CˆÛâm ÿ₫5‡ 1-5€̉§ÖóK¢*Çñ v¨; éÓØ}ëÄQuЦ ‰\Y™, M€Ậ ¡€]Éö.‚äp “pŒVw* .<<o¸€Rư$sY‰JæG̉Z•YÇá[{l¸ÿØÔ§Đ&6̀ĉY ÄÛ˜ÍÖf‰'n+ÂØc%4;l\1̉"‰4¿k¾ÆkS¿àV’DL¥ÈǗEÂƯèB±ăÄX4á̃¿ôÔM­.®¡LÉÉW•D.3ÙÁ@ù«.Fm8Ts·¦­t0ef€Ahß µpùhúĐư ¾äÍûÁÍ^“ŒY¢jh³ •9 )wNè>mCô4Luí_ Lm±OÔd£îÇpH#ÑÁHˆó0ƒ5Ơâˆyu êzm‹BÈs<ç˜àGMy`øëƯ2̉²wƯ2…me:3&®²̀if•A‰™6fÁË9 KÓkpEnºÈ$s$àÓ_ưë©áû‚0AJƯ*1øöäcm˜Ă˜x0€-’Î/¼Q’°Ñù-zuï$z¹ú*Å®øhw½đ¼¾=Ù6­t«SÈÏô5â²^&´óĐ‘8…‰À;%·FH́IÏÑØêSbœ̀^₫CBmß̣ôV¦Đ2\́¿¡‰GØP'ÛñhëÙëP{SË@5f¸ RÙ,Ơ,a%IE'u‹t±=¡Ki;gu9iyµrX’Æi™¿È{„²j¬a n"iÏʸ0…îHŒƠ—I=·9¤PNg½œ>“ăÜ6‚ °aè<”6³—M‘–Gi¸™”ƒ–ƠK῭%çA x¸ÅíNä{SÖđç?ÎIă<ơÉ^'6åqaºŒQUqy› W8º§Êâèwˆîn¯¦Èc€)eâĂÑ'öÈÍ2Tóà‚87]́¿n¹_%¢º6AJsäPRJ@•}ưR‰±.úÛiL|̣œ6Íă¬đ:xÆ>‹Èw“5qb²û}ËÖâJHúA·G̣j™ Ê)óưj°…{iÂc;MÛ$Ưè.î$q¼R˃q±ơçR{©»^3 —¥ÑGpá ”ºU đ½F"ëú j¡fÔ1­û gvœó§±u7é™jUa4…)¾&ë=§¾l™EÍ $Cg{j¤!=“–) ơ"xÙˆ”ê#§©Ă:©í©WlzÊ}Kă`œÏ0^ ‡£*l.Ơ®#₫—ºp¯ ÏiŸ4ûíS̃3Œq@g£¾©ü8ÁºoÄýr†8¯Ăµ ’‹y³®Ô%d+ñIW²?øèÖ? ?jơè k_Ær^'œ2yFư|̣aâ%ø´T_tÉ3æ”oUïz©39eæT3âÔב(±ÊGT@Qh¤„§VjQ¢Ô( Ö• ÓÔ… €úi-LƒÁ &""7½Æ÷>VAyĐî%ºÆ&rÚ^48¡/CƧÄVíË'.ªsb±ă—¶¯åü¥²¡Ü$—:\ÎÙ?‰MJ¬™Ë¥&*§$+)4ƠœJ 2±éÿ‹”©ñ$DHÓ›ÅCà1µƠäwWÆ6÷^"´çœKqµ¤³(Q7¶PƯö₫́Sl¸w |ƯđBja¬ûï¥^(ë•ÚHR>p.¹mơ;û²WR̃~ íyl%üK $z ß>FEâëÚ§Ÿº—&-8z/x¢Áú$^ŒÉzßÍj̀ÂR{8Œ H¶(_K{@‰ ³¯ÂqW€ôë”g0&Ï!Ă½ÁÏe€hVá7/„ÆÚüö±ê³€fëC²>@µ«|¼½)PÄkK₫4[„É©_îáB°,¯¨(Sú« ³_…ÅÄ|ºé»‚‹?ªˆ÷̣)âÆXpΫÆRN~á{;î´ ¤ûiJ51HrYü¶Múfùæ¿BǺå endstream endobj 493 0 obj << /Length 789 /Filter /FlateDecode >> stream xÚUKOÛ@¾çW¬zÁ‘đ²»^'v¥VªVÚ’JÆ1!Rb§yÿ¾óZ²FQ‹ĐÈËη3ß³M&  ;mDƯ ƠäTΈY‚ÜÉ}À;?@~‚\Ê›„¼đˆ½9¹¹‰đS9H%eùv)¸¹pĆ;²ùLÔs ¿{¢C°½XYGï$Q EG°{t䘮̃’·wœf.“áơ›p*Ƚ4¾¾‘Ø.YÔ ¦Wđy,`5ă<6{Œ§nÈ·w:s=ÿdrp9X0d”UĐ‹”./uæ­ª—ƒ?=¶̃8DGRùÂĐ?á —g_–Ö¨OƯà;ü³©ØM#Ă<§¹²0”¦ŒçÔe¹.\ɯ¤&³Ư æÊ2±æư0ơnÄù§Ë"Ùl¥»Zª?éîE-±&–· íе¬_VÁ̀üéđ¢jÙÊ|FIpØ4Tf~×EÎêĐ9ƠOÏ ™SIé¸xï‡yÀĐ{Ôx̉uh«b»̉<6Ó¹—Ồ¨w+æ4¦Ùºf…¡₫©jêÇ5k«–Œ´[éƯ¦e]à„ç¢Y72œ¥®eVøXXÑ›₫¡ºq̣ÈùÀËdmÁ°½Ó¼È“ Î ±e7ó—•x &TNHÆyïÀA@óvr,1Ư*̀9Q>Cfå¼”œ/dr ÊDAÁ9l¡ mđ ư>cH$ạ́́•!U ˆĐg.¹xfO4…TˆƯBXáSwËđKÑl$h½mCk<1v.n_¥]ü̃¡±ÛÙ±ÑR^)KÖºäüú怩ª̣rQÍzZ ÍbyÈĂ´¼÷éöÖXÍ3¶.¡×?ăÊ™B=́ŒÂéÜLÛ•=0l®¿¤í×g endstream endobj 468 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 495 0 R /Length 35145 /Filter /FlateDecode >> stream xÚ́X×Ú€‡Ë̉Ù]–¥,½•ªô.MPD@EPP±Åh"*5FăU#±Å‚)×JlÉMn 1(ÆX~#j,4Áÿ“sçî.Bâ÷>çáùæœ3uÙw¾93»ûä ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚üçÎ;pàÀ7₫ÜÍ€mØ·o³¦½½₫VVVB}IIÉŸ~ JKKaKnƯºƠCŸüúÔÔÔ¼ǗR^^——·iÓ¦ÿû¿ÿ{sû{óæÍ}]ñ¯ư«Ë×ëµC₫äí¤¥¥%<<œzÆÜ¹s;::₫¬QTT„m oɲ²2OOO¢2đÔGEEưé‡kܸq°%»wïî¡O`` ô9qâÄËÍ. ׯ_WWW'/Ù† ̃Ü₫îØ±ƒê kkkh•——‡ø ­ú₫ưû™™™ëׯÇ7)̣Ö’ o±áǯ]»VWWâưû÷ÿY“••5₫|r‚ …°1ÄÏ—.]‚ú;w₫é‡kï̃½°%p¹ñçú¹  –ăăăS]]ƯÔÔôæöüN&Mk444$“Û¶m{Ó~3g,üă?Æ7)̣Öâêê ï‚~øâƠ«WCĐåe&¤RÓ¦M[¶lÙéÓ§™9vqqñ’%Kf̀˜₫d^₫öÛo ²w̃yç̀™3/_¾¼¢¢êÁÿWVV‚¦̉ÓÓW¬XQ__Ofù裠 o ؘwß}÷§Ÿ~úư÷ß¡₫›o¾¹{÷.ëÖ­£×rèĐ!¨U@üđáChJKKûđĂoß¾-² =Ï ̣[·n:uêâÅ‹9B:‹ôw··74ÉÈÈHII1¯©A¿̀Ë^wwwxG@ư¿ÿưo%%%¨QTT„ÀÜÜb2€ >ˆù|>›Í†`Á‚LÁ‚ÜÈ1!­jjjp¡ư # /r¸‚‚‚Äư 6‹Å¢7tDư₫ûïäƒnkkcî(ỳïܹ#²‘=¼.ÎÎÎ0ioo¯¢¢B¶ T»@ü AƒºƯêÁÏfffªªªdEŸ|̣ 9¶ä¥'ƯJKKéy7õ 1ùà5êrÁ´ôÆC 9ƯĂEĐÖÖÉ“åÇĂÍ€"­äÔđ é礤¤À¿î̀™3ïß¿Ë|[Ñ÷¼M₫øă+W®€Àêđ~'‚ …đ̃”$“3Ói9X¢¥¥̣̣®ñ3ØïÆä½C27ÚÏéééAüóÏ?C7æø3äÛC®ñ±cÇ Bü̃{ïA lnñµkI½Dv¤»yÿơ¯…‡‡“<Œ¸£?ƯÁ>BÍ,ä~~~° °Á$¡ÍÏϧư G®Ο?ÏårI:-âg ˆ÷îƯ III$¥¯úI—Po(2ùÍ7ßÜ ̃&đ®‡˜<“ÄQL?Ăơ5™Ë̉̉&/]ºôäï2ÇŸ™~†w+h̉E0L||<Ô“Ëjr9 '-[¶€'a”••Ev¤»yÉN=z’O8 ÑopÚÏôŒÈ,pûöí`X&Ô“Áâg’Ľ|đsvđ*1h 6Ô “‰‰‰ĐgÀ€ƒsÀ«K—.…ô^üUƒËyè×̣]ndw¯ íg2BêÀI7GGG˜üå—_zëgø"ĂYĂB$ñ3s ­»ưe?Ă b+++̉'}r±pụ̀eÚÏàmˆáâˆ̃YI₫%¤Ÿ©Ë¦M›Ö¬Yéü?ÛØØˆt x|öÙg"ơ#G„z™æ›éçeË–Á,×ÅÄÄ@̃H_Ư?CbLf™7oHgÎ~ơêUÀò­…UC¸H"=̉V!§g?37²»×…öóéÓ§E® èK̉Ô+?“!P%Ͷ¶´ŸA›¤Û©S§DüLÎD„îö—ég8b1‚‹\}û&ÄÏdtˆ¹₫K H¿åäÉ“pH̀Ĩ;ăÇé3kÖ,æ{ ®å£££!]Œê!?d÷»¿¿?ÄO:Ÿß ơƠŸám1ɦDüL²)’öïsçÎ¥GàzöàÁƒ×®]ßß.ç…7>½µEEE"~†Ë q?Ch®5HÖ:eÊ?CJLfqssƒÉ¼¼<½Ă –@n‡U¾ûî;8=` áÚ.2l¦z¡Ÿ™ÙĂëBü -íçàà`̉ÍÅÅååüLb¦2lE½÷́Ù#âçÉ“'Óc5Ưí/ÄX¹r%ÄđRB 93¼²O:Ÿư&#ÿ$€Ă(%%%¾₫K H¿´@†̣¦N )%üŸŸ?^¤È̃²²² VrµÑ́W®\´f JHH€w+ä“ÿùÏ iưúơ$ƒ‚°X̣FÉËäääˆ<ÿLn0Áª!¥O4P£¯¯¿zơj2NK@ñyÉPg\\(\n“«~¢>---q?·¶¶Bú Ù¸qăºuëÈ­+Ȩi?CäƠ°%@rH<̀ô3pˆ½½½A¶p}Ư=ÚÔÔdffqvv6l 3-ïÙÏ̀́áué3?“Ü^kH€É­¦Ÿá€“n=́ï̉¥K!† ^¾|9Lúùù‘{‘™™™d4 ̉²îü,ù¿‚ô[àÿ̃Ưä:ä]ö ‡< 9 x’~–́·ß~ƒw¨›$¥̀Ù³²² ȳ$‡$NHèg˜‹<`Y¸ŸÉư}___æFnذ ¡«ªª5$oâˆÏ ojØBX\\¿ÿ₫û̉¿†††ü ñÖ­[É#`r+l!ñ3¤mdÔêñăÇÅg‡…ĂÉ(ÎÈȈ~Đ  ¬¬L@ ÿ ]Ï~îáué3?ÿư÷p€GF'ºôsû y‚¦¦&98$†+;¸`!Ïc̀Ÿ?Ÿ¾̉Ÿ%ÿ—@₫L[[ÛÍ›7_ØíöíÛô›‚ \¥’»34;v́عs'}9IF kkk{µUĐŸù˜«„ܺuKä4 ©ªªêrïz £££‡§j¡jÏŸÇ„<¼Ë%@==øû*/«øë̉—ÀK₫Iö.÷^̣x ]ñüA?+₫¦ÿ%äo yvK(Ι3‡Œî0 ‚ ÈŸdnIIIppéúF¿ÆAé-øưc‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¯‘̃₫d9̉ǵ̃½ÛƯƯ= A~Œ§§gUUƠkû···GGG/[¶ MØ?™7o^qqñ=Aú1S§NưÏ₫#₫₫¥¨çeĐ ̃½÷OŸ> ¹™††ú¹ß̣î»ïvùº#̉ÿß§¯â猌Œ‚‚‚)S¦ ŸÑÏ‚¼Q?ëëºjƠªb\¾|¹‡%£ŸÑÏ‚¼i?««úđĂw‰qíÚ5ô3úA?ÑÏNú¯¿₫ÚÛ%£ŸÑÏ‚ Ÿô3‚¼=ïSYêyᢟÑÏ‚ Ÿô3‚ oØÏúAô3‚~Fô3‚~FưÜ©®®nooG?#‚~î'€“³²²444ŒƠÔÔzµ„… >zôưŒ È«¿OU¨ç…ÿÖûùàÁƒ&&&uuu?xđÀ××wΜ9’Ï₫øñc¢››ÑÏ‚ Ÿ_/{ö́1553“É›7o={öIçw\ggg ]]Ư¥K—Â$Tz{{₫ùçàsO>ùj¢££ÁÏæææ555ƠƠƠ‘‘‘„ÛÛÛCë¹sç !Ÿ6m¦¦¦ƒƒCYYY˲eË ]‡nŸ}öYwëÚ¶m›¾¾>̀«¨­­E?#úùm̀́êꪥ¥•˜˜®¦E½uëV ‹̉̉̉’’›S§NA¥¡¡¡ŸŸßÅ‹8 //ÿ₫}H¼ÁÏ ƠĐĐPXÄùùù _èóJKK/Z´èÎ;©©©!!!PùÅ_À’úé'X—˽víøº !g³ÙgΜååäät¹ñ«V­JV½eËüÿGôó߀–––‚‚‚¨¨(HŒOŸ>MRååË—×w\°`ñóÑ£GÉ\çÂ… ôøÆ½{÷@ÅPCfqww‡l|«®®NúŸ>>//T666̃¿Ÿøùܹs]ú²\MMÍ̉Z]] 5àgâd¦Ÿ‡ ¶fÍRù¯ư (¾®ööö;wîÀäùóç!±÷ññA?#úùmc÷îƯÚÚÚGikk7¦¦¦Aữ½{]\\jkkÁƠáááYYY]ú…ÊÊJbbb-Zj­¨¨€e’ñ q?/Y²ÄÓÓ³¡¡ááĂ‡ÆÆÆpüÅ×UUU¶¿yó&ôß´iúÃ?s¨çEÇŸŸ¿¬¬¬µµ5333))‰ÙúđáC@pñâEˆçÎ;sæL| ĐÏ‚ôŸ ½½½I\^^®¦¦Æl}đà‚‚Âơë×!ÎÎÎÅ—ưŒ ÈKûY¨VRR̉$ÆăÇÅg̀ÍÍ‹‹#1ô¡(₫e(B^^¡¡aTT”¥¥%I¤ô3‚ /çg-öp`1?.>cNNNJJ ‰;::ÀÏ̀!èæææèèhOOOX¯‰‰ÉÎ;ñ%@?#̉7ăÓ£ơơờÖƒ’ø»ï¾ăp8’|M=‚~Fôó«ûùđáĂÎÎÎ$.++333c¶nذ!>>Äd,ü¦*‚~FDB?ÛéŸ=qâi-..vuu…Ê´´´ææf¨Ù²e‹¥¥¥²²̣€JJJˆŸccc¨­­={öḷ&åååd!nnnׯ_§ưÜÔÔ4ỵd]]] èè膆¨ôôô\¶l—Ë…m9r$™±­­ÍÉÉéîƯ»¯âg)JE—ºGb9j6u”ÙªH…«QAÀ£.IQ,Ơ&çSwŸÙ;‘MMG?#ú¹oøúë¯mmmI|îÜ9‡ÓÚÚ ñ°aĂÁ̉¹¹¹l6ûöíÛ Üüü|0dhhèÇüÿ÷`æ̉̉̉ÚÚÚI“&ùûû?Cÿ}ûö•••YXXl̃¼*Aé—.]"káñx0#í眜__ߪª*è`nn¾iÓ&¨ÔÓÓóóó;pàÀƠ«Wa°PyôèQ8;t¹ĐíW1¬­­Ơ©|‘Á ’gØ8D“ÚÁ́À£~•¥,”¨‘2”¾µ…QQ‰–¥¬t¨?ĐÏ‚~î=z¤¥¥Eö}îܹ3f̀€àæÍ›E+ëׯ߳gmrèpæ̀™úúúóçÏĂäưû÷A×Ä·àç°°0̉mñâÅAAA=ûrịYKBBB²³³‰Ÿ:DúÇÄĬ[·8¬]»¶Ë½XµjUºp®Q£Öưïđ̣)Jƒ1Ö­Nmdv€IYÊ\…zOr†lY@µ‘z.UªBÍ—¡Œ4¨MègA?÷S§N?~{{;X¬û¤spX__Ÿî –,Y’œœ̀œ±££ăư÷߇¤WGGÇƯƯƯÆÆ†øRb̉áàÁƒ=ûTær¹0;,jÑ¢EÄÏ̀“₫_}ơ•§§çăÇaFḅ—ßĐ¥ê(J†T üµ¨ưô$ØXRwÆí̉”®6UÄœ]›:.Mi ¨ô3‚ Ÿû†’’SSÓââbâRạ̀åË222uuudÜ»iÓ&H¡ƯÜÜHÍüñơ×_oÙ²ÅÊÊ·}ûöY[[?ƒđI·?ü0 €ø¶¬¬ ЬœœÓÏ3O<¹ªª âøøø¬¬,̉ÿ·ß~# innÖĐĐøæ›oÀ̉½Ú¯nÆŸÙ:ÔMCª̀¥Î̉M|ªZR3?ư¡Aås©ÓtͧîÀe….U‹~FôsŸaiiI†”É$XŒ½råJÈ!£VRR‚ƒ„àÂ… Đ!##Dºzơj2”Ư"##É÷øŸ! nll½:ôÿøQenn.»wïÅ1ứ́́L~ÅiÈ!Qñ30nÜ8ØÂ 6¼ºŸYT²2•©²&ơ¥,e) Z;ă">UÓ™QûjR»;GBÊ¥( P18YR¥ƒ·U¨ùr”=o Høyø€çÅÚü­öó²eËdeeIK€#& ơơơ9N~~>©+++ƒºï̃½[YY9pà@{{{È¢?øà6›ƯÔÔDÆŸMLL´´´FE~YæË/¿„a#G´µµeúù«¯¾244“2$555&&FÜχ†Íëí/ívégê,e+MéÊP&ôđ…4ÅÓ¢u3—(RÁ a(Ôg¤Uú‡,eE‰áQçÑÏ‚~E~\ ­­Mäë¬AÔííí"3¶¶¶̉Ă#tMw_'«èù1û÷ï§ï9¾¢Ÿé¡Œ>¨KƠ‹Ô¨ñJô3‚ Ÿßf@Ưsæ̀lüßÿ₫÷kô3~¾AĐÏÈ«³zơê.ưŒ ègä/ úAĐÏúA×ëç@÷çÅÎ ưŒ~F?#úA?#‚~F?£ŸưŒ ŸA?#ègA?#ègô3‚ Ÿô3‚ ŸŸđ¼8ÚơÎÏEEEnnnB¡0""Bük%N:r°¶¶ !_ø†ü)~æRÛM©'›‚ èçRSSĂçóËÊÊZ[[333“’’˜­---ÆÆÆ?₫ø#Ä»ví¢>A?£ŸäMû¹°°ĐÛÛ›Äåååjjj̀Ö¯¿₫üŸÈ÷¼!ègô3‚¼i?çææÆÅÅ‘¸©©‰¢(̣-Ç„?₫866ÖĂĂCNNị }úưŒ /çg}·¯¯ïH1Äg̀ÉÉIII!qGGø™9=₫|iié/¾ø¢¡¡aÊ”)ăÆĂ—ưŒ~F—ö³½ÍäÿûßwÅ`&Æ4yyy!“¸¾¾^QQ‘Ùúᇒ_nܸ¡¦¦öèÑ#|ĐÏègéƒñÇ;;;“¸¬¬ŒüîÍÎ;]]]I|çÎyyùææf|ĐÏèg‘ÜÏñ#Ÿ§½đ3$Ơ\.÷øñă$$$̀›7*kkk;ACCƒ––ÖO?ưñ̉¥K‡ †/úưŒ }ăg   €Íf //¯ÆÆF¨)..f±X¤uß¾}:::&&&åååø ŸÑÏ̉g~~̉ùK©Ưưàé“Îû†½ư½iưŒ~FĐϯÅÏúưŒ ègưŒ~FĐÏưŸêêêööö×»̀úúzô3úAú‰ŸS—¡ƒû»ŸÁÉYYYÆÆÆjjj ½ZÂÂ… ÅŸÄ®¬¬9r¤¾¾¾¹¹¹³³ó¶mÛ^ă6OŸ>}É’%/Ü##£³gÏöŸ¨Z6#G™ÊS¶êf“ª’¡ô˜…Cm„z>uX‰̣‘§U¨ FTµ„.Ơ¥)7YJ¨LEÀJ™M\j³È„Ô-¨×¤)PN ÔP-j%úA?ÿ…ü|đàA“ºº:ˆßÎÎîĉPsîÜ9HÚÓ̉̉455®^½:|øp==½Ơ«W“ÖØØØñăÇs8œ°°°ªª*¦Ÿ«««###!í···'₫gnlĂ¥K— ̣äɓР®ÂĂĂáÜñ¤óĂ˜}ôѰaĂ`^X₫Ç_ÑÏR”uÄ Ô ]꨸ÁÉ`H>u°3~@Q †ÔơÎü6›MÅJâg>U¨Dy“Ø*—¦Ôº́ ¼,eH¶‡G}™3©—§́u¨¯ĐÏúù¯âg0³«««––Vbb"¸ơÖ­[-,,JKKKJJlllN:•†††~~~`ÚÈËËß¿ođ!Hœ²í. %ÂÀ̉¹¹¹l6R\X¾””Ô+®_¿îèè>~üø™3g@×---Đ ËŸ;wî½{÷RRR@ÑL?‡††Ẩ`íùùùÆÆÆPĂÜ2¾Q^^®ªª §8ơ€ÉwÂæAJ_XX+533Û²eË«øÙˆª¥(yz’E…đ¨âÔ¤rXT(=É¡̣À¢å‚´I"ư¡rÙTÜ3Û?ư-ÈÅ»ÉS\j+Ư V¡H¹+R.ljT—ưưÜo DEE©¨¨@b|úôi’*/_¾¼¾“U«V-X°€øùèÑ£d.é… º߀EAî-¾"0$t9“I°ñúơëÁÀôp µ1b‰!.éDVV– ‰_¹rEFF¶–øŒ--- Û@6̉ƯƯ½¬¬Œ¹=Äχӟ‹‡%@+$áàçI“&‘Ê)S¦,Z´¨Ë#MĂÅ€Óµé7ê4¥AO*SÑd„Y¤ÈQtújL5C7%ÊSƒzW–2áQ;%ñ3^•J¡‡M`_D† ¡èSç ™-?›,“§la.*¼ ›~FĐÏ?ƒÊè/k‚ ==ƯÁÁbH!©ÖyFpp0ñ38t …">¤yÿư÷˜5 Ä»wï~ÿư÷úúútejjêüùóÁÀ¦¦¦ôŒtâmkkûă?B+ÙœA._¾Lü k]ë0ذaƒ¸Ÿ¡ó̀™3é%ÀNArk!g’K¿÷̃{¯–?C̉.CO*Q₫|j¿ˆơ¨Ó̉”¶ ơèÙHÅA9ÊôÙpÄw̉|+A₫œG„SơR”¢xuêj=©B‡S‰Ơ¨ U* ưŒ Ÿÿ*~†K₫+VГ׮]SRRêèèˆÏËË#•äGÀÏçÎ{¡Ÿ¿ùæpcSS]ù*¨ŒJîEñnÚ´ ç‚ü¬ªª kỷù­}0ûljŸ=z¤©©I{WWWC¸Ÿ!“ $}îܹ#%%ûÂṭ«û¹sü™-¤n>Ë“Íơ©³"4¨÷U©I Ón`SñÏLût,Úˆº/ÁøóaÊ™NŒå(³.³t]êădá¥Cí{ö€Ç6„~F̃f?Ϙ̣¼¸¹ôw?ï̃½[[[ûÈ‘#mmmàaÈiƒ‚‚ ~ï̃½...µµµàêđđ𬬬.ư ‚‚Bee%.\ ;Û̃̃îííi3¨̣óÏ?'CÍ OH•W®\ Ë„$NĐÿ…~ß~ùå—0ËâŋɷBÑăÏ ưE‹Áê***`/D¶‡ø– ¬¬|₫üyèK€Å8ùµøY…J†́Ô„jÓ¡¾”£,M¨Ṿ,œUólĐc¤6µ‘rWËRúBêÄPÏ—P-2W—: • NÍ#£ß´a½É ©JfÊ­LEw>C̣EĐẳègưÜÿư ¬Y³†ÇăÖäåå}||HF Ùodd$ä®&&&¡¡¡ä ‡.ư Ù©¬¬,0===11‘ÎTĂ ¿…% >KêáˆÁŒúúú'??j^ègØ6;;;===¨ùă?˜~.--533300/_¾œ̀Hoưü3\ °X,X),áÊ•+oÂφÔ5yÊV†̉•¥L@ˤR†âñ©CÏîÙÙ1ÓZ’B+PN s¢O•Jøü³U¹º %€Äؘj́)–¢XÏFÂ/1GÂ;“óU*U²‡d[•BK£Ÿôó_ÂÏĐ²øcf:yá¼Ươ”•Íf>ïÑ´½ïƯ»×]Ÿêêj‘¥‰o\ܽ{÷µ¨>?(ùÇL₫¬ïí,¥‹ß|aâM}£Ÿôó_ÎÏưfvƯOÀÏw#ú!Y==6‚~F?#úA?#úA?£Ÿ¤Ïü¼`Îó2ÜưŒ~F?#úA?£ŸưŒ~F?#úA?£ŸưŒ ŸưŒ ŸÑÏ‚~FĐÏègưü”œEÏ‹·'úưŒ~F¿ƒŸ‹ÜÜÜ„BaDDDmmm—}9¢¡¡ÇÿOôsXđvæỦ*̀/£…ù‰ª7Zä¯ëç>Ÿ_VVÖÚÚ™™™””$̃¤mgg§®®ÇưŒ~F>ósaa¡··7‰ËËËƠÔÔÄûÄÅÅåççc₫Œ~F?#È+úyˆÓ˜µk×îƒ|ϼ¹¹¹ _75=ưufú— &L¸qăúưŒ~FWôó‡ˆ9sæ¬ă·ß~ëbÆœœ””wt<ưufætEE…­­m]]úưŒ~F—óóÚUÏ‹¿_/Æ7̣̣̣bccI\__¯¨¨ÈlJMM=pàÀæÍ›•••!É®ô3úß>́́́Lâ²²2333f+¨Û¥“ÊÈÈ@ĐĂO>!ègô3‚~~~†|˜Ëå?~‚„„„yóæ=é|`ăØ±c̀n8¾~F?#HûùIç@6›-¼¼¼¡¦¸¸˜Åb¡ŸÑÏègùsưü¤ó—¦»ûd ‚~F?#ÈŸègưŒ~Fô3‚~F?#o•Ÿ7ç>/ÁAègô3úưŒ Ÿÿd?~LQ›ÍVy†Ô={ö…³/\¸đÑ£G̀•+WFFFJ²jz̃o¿ưöĉ}ï癵V1ê¦mÛñcè̉·³§Ơ«ªŒ9Ƭ}DQACr?‡úñ8nle¡P?büèÚ.ûû‘—× qr\ó ‡ÅêvÚZNnC>‘ÜÏ®Cs´4íTU„tç[[«I¶Ö)$NM®57­©aÅăđÙ~FĐÏưĐÏ7nÜ©¿}ûvkk«$ó677¿„Ÿ™óBÿmÛ¶ơ½ŸAÎĂƯ³çÏîˆ]¤̀âÍñPÜ·ö¶I êL?ƒƠ9ÚvP)¡ŸFƠ°”ø#G”MŒoµ³Ê47Iï̉ËË©“IO·mº:>Ic¡pµ}¨  IûÙÎ&uđÀù¤$Vi¨[¤$U£Ÿôsÿ÷3dÑ—.]‚züøñAAA÷ïßOJJRSS300X¾|9ô‰†yÍÍÍkjjzösuu5T¼öööÅÅÅ̀y׬YÙ;ŸÏß¾}{GGGvv¶@ ĐƠƠ]ºt)LBOOOÏeË–q¹ÜÂÂBи¾¾¾¦¦&̀̃«fºô³¼œỀô{$Öá sT¤CtÄ7Ótu†0ưlc˜/y₫äS¨«ăMâØÈry95ñ>¦FqĂ]óéüYïïå¾Ä΃>‚¬[?ÛX&{Û@b7çå'‹t˜œ|W‡ç<Ô)‹øyZêci…´‰ơé)3&?Âñ ưÜ?ư ̀{x˜ßøñÇedd²²²8°{÷n»wï^¸pAEEåÊ•+uuu0oEEi~ MLL„ùùùÆÆÆPCÏ )4´nذ¡¥¥eëÖ­p"(---))±±±9uêôÔÓÓóóóƒ ¸~ư:˜ǜ™30/œ2rrrºÜ£Ă‡oC(ùmÜ––§'MCÂCv0;̀˜R¥Ă8{Z=ÓÏQav̉'ßÜÏι ßÿ\Œ}ú ZâZ˜|‡X˜Nuƒö³Eú@û,[˜&C -‰Ÿơơ|Gư“Ä₫̃[Œ…a"̀Lb"B¿ơpYIü<1á–¢¢öA de•ed}†ç¢Ÿôs?ô3ˆ×ï7õdúYYY™ôüꫯÀrû÷ïoéḌñ{÷îIKKƒƠë;qww/++ër|ĂÛÛ2s̉mƠªU , ~>tèĐ“Îj²X,¨¯¬¬ô~ ?§M¼Ât¬¥y´HsÓˆQQ  ư<=­‚£m;+£®W~< Ç̉,…Ä“Æ=ư-æt|L…†ºíøØ:¦ŸCưO**h»Y7tà‡ªl®»$~æhˆqŒëĐø0[}¿°²H€€öóØQg(J*S'Ô…PWOŸÜ‚~FĐÏư|ƒö3$´¤¦½½}₫üùGMM-##l)¡ŸÁÆ„ë0€l¹K?Ăº´´´ènÁÁÁÄÏçÎ#‹:xđ ½½=,Í××÷̉¥K¯2¾•’’¡'„₫1‘ûéɈĐ]m;đ3M óáîÙSS®Y˜E tH…ÀÍrrʼ“Ù"A₫œg"Œ%qbl½Œ´"³Uheeàu`˜ËfÈc! ÙµÛOt¸ÖæiĂ]?§Óïưl çđ‰}=?³4ÇÙPRä@R ¶±L6ÔơŸ¤økđ$Œ¹Dúèp‡†íG?#ưĐÏ»¿x^ÂF ŸŸûÙÚÚÔ<|ø2á¶¶6Èf!Ư¸q£„~†\WSS“£®®®†.ưŸ——Gº566’‘đ3ùfW8Aܹs‚óçÏGEE‘çL^eüYN‘z“Ä á‰ăÏ̉MÁ₫y]R ›¶–uTØ^kËXR£Ăn‡€¾îÁÏ>‡é‘#ÊTÙ˜­ n.ǶæÓeB0úä̉ñ1•¤Ă ‡ǺHâgkˤan«I¬¨È ñ;™q‚£í<̣ÀF°ï1f7æøÆ0—ÏŒ ¢É³jªæ1a$ñsDh¡¶–=øc5UÓ1Ñ?C叨 ñ£ev£Ç7Ȉ4Ñø¸Øßdd”&ŒûưŒ Ÿÿ~†̀9,,̀ĐĐ„ÔĐĐ•²²²Đ¦§§'&&?S ¸\.T–––™™Àbɳ̀ysssåää–,ỶÔÔ¹´ªªª‰‰Ihh(d́L?«W¯† €M‚E•””¼¢Ÿ§¦\ăhÛ²•uƠƠM@ˤR™Å=̣Đkô3¹(+Ëf) ty^Ic¡fD@±¬ «;?'Ç5ë骩Z@qw̃(áóÏÓÓ: …VWg)é uÊ"•¶éÖ‰Ưù„̀ăQW3STĐ̣÷̃‚÷ôó_æææúúzf̓$œ·ººù¤s^X,œ)èÊ— Ëéíf÷đùÁS«ûàóƒăÛºûdJw%1ö₫¤q½ưüàÓç庺Í×C™œ|wZêc|¾A?# øùnü|7‚~FĐÏègA?#ègô3̣6øùà¾ç%*ưŒ~F?£Ÿô3‚~F?#úưŒ~F?#ègưŒ~Fô3‚~F?#ègưŒ~F¾ösñ¿—Q1ègô3úưŒ Ÿô3úÔŸ‹ÜÜÜ„BaDD„ø.íܹÓËËË̃̃>..îÂ… øü½ưÜgÚ́ƒ}!eø€¾(̣&ü\SSĂçóËÊÊZ[[333“’’˜­<|‹f~~¾¿¿?¾ègô3úé?z{{“¸¼¼\MMÙzûöṃs¨À/¿üÂf³ñ%@?£ŸÑÏHßø9777..ÄMMOư“ü6Ÿ8“'O=z4¾ègô3úyi?;:z899 ăÛo¿Ÿ1'''%%…ÄOưS|úIçï}èêê’ß₫@ĐÏègô3"¹ŸOÿü¼ŒÛ‹ü9///66–Äơơơâ}6nÜÈăñđæ úưŒ~Fú̉χvvv&qYY™™™™H‡-[¶èèèà{ègô3úéc?·´´p¹ÜăÇC0õ<¨¬­­=v́Ø“Î;†ÊÊÊ'O¤/_ô3úưŒôŸ‚‚6›-¼¼¼Ÿf³X,fÏMư/MMMø* ŸÑÏèg¤oüü¤ó·­»¼-ˆ ŸÑÏègäÏơ3‚~F?£Ÿô3‚~F?#o•Ÿ/_|^ĐÏèç~áçéiègưÜ?ư¼sçNëׯÅe®\¹222R’ .|ôèß~ûí‰'$_Emm­´´4ùÖ`ụ̀åE•••‘É7úùùơj›ÓÓÓsrr^»ŸgfÔZYÄh¨›r´mÇư¡K;ÍV¯ªb06晌Ư¥'pÓ̉´²¶Œ5í¾„~^Ä×qSUE¤&×vÙ'2ôˆ‚‚=éáºJCƯRSĂÆ̃vê´ÔÇúÙÓ#‡£m§¦*„ ;ß:ÚO`Ỵ̈ßoÛKú v„˱74đ±[B?»ÚƠrÔcåMY¶f?tƠ:¥`¥Âli¸j̀ 6ËËé1‹³Í-ô3̣7đó!C^ï2%ôóăÇAªÍÍÍCÿmÛ¶ơj- øúë¯Ííí KK“ɸ¸8:₫sư rî=vGüè"eoâv²·MRPP'~2骲²ÎŒ©ƠO-g7qˆÓLIü<9©†ÅâÇ*˘Ü:À>ÓÚ2I¼H[KÓNA^ư¿>;ÁÑ0eRă´Ô6 ³±¾;$ñsTXœ;à¬1=­‚Ëq=̣°xŸQQ5i?úÚ Á´´Û,wú”JIü ṛ³‡9v8˜ÉẸ́Ü2[ùZ©¼ù¸ØV))X¸ØVslswh"EÀ™¦­…ù3̣7öóÉ“'ÁxáááPóÁ|ú駤5;;rT<==—-[Æår {ösuu5Tª©©ÙÛÛ“/t?›››¯Y³†ÍfóùüíÛ·wttÀ®®î̉¥Ka²»µ̀œ9sö́ÙO:¿“ÄĐĐđ»ï¾ƒn¤ÉÀÀàçŸîr/ÀÛK–,åO›6 ™™©££ăîîAü § }}}MMMؼ^=0Ó¥ŸååTf¦ß#±oĐ˜˜£"¢#¾蘦«3„øL™~÷™·œ.‰Ÿ#B ỡ$N/——Wïcaçç•OçÏæ¦±¾›¦§u¤M¬—||ĂÁ69Đo‰½†-‡«˜ÚI›xEQAƒåùmdv07u?OH(u:_MÍ(8`“$~vckBßïƒ=eAOJ¬Đ̉´MPÇô³ª©ºù¸Øó‰q¿kiÚ…í—ÄÏ<îz;£Â „>̀Öđ/́l ÷sê„Ële~DèNIÆŸ‡X_‘•Ñ 'µƠ£Íô7̉“ƒ,ÎP”4O3ÁÍ®ÎÖø€ŒŒº‡CË›,ÏAâíîĐ„~F₫Æă`<đ= '¤”Ưùùܹs/ô3ØXFFF‡dË]ú’gXƯ-88¸»µNNNp¨­¬¬@¿dfÑ¢Ep!·8»Ü ¨yï½÷H¡¡!ưJeff’l ooo[ ¶¿té̉«äÏ+JIÉĐ“FBÿ˜ÈưôdDè.¶ø¦†ùp÷́©)×DN%%íù³;^œ?{晛ƒ8mb½ŒŒ"³ƠÔ8ÊÎ&5,ø€¯×fYYe »ærœ\†d?»Qø‘¥ù8Iüldè72ü+‡|fk=9²ÁRâ@R »ă`›l, ?ö?ôåÈ™y¡ŸA¼%COj¨øÛï§'‡Z_ƒ›ÁV—Ȥ k(ƯªÏ}GGk>¿¼„Ÿoßz^&$÷k?ggg’øÎ;RRR¬‚ÁH6 Œ=öóo¿ưöB?C.ª©©YSSCECM—~'É0ĐØØëín-Àœ9s.\­dûˆ# pñâÅîöüœ••E*=<<>û́3‡‡‡ƒŸÛÛÛ¡'L?>**ÊÇÇçÇŸå䨩7I 8₫,ỨŸ'Đu!ºikYG…íMwα§¥Ưă33£ö…~9¬Ăs&qܨ2u53f+¨›ÏsÂÑç R“ï™Ew[C:xº¯‡Kâg{Û$_¯Ơ$vs~’|ºiÊÄßéƯQU5Tfñ:¦‘;*lA€Ïú^=_'-Ív¶¹Ib%óAgé&È–Á̃ζ·É¤²‡•p÷³ö&ÇĐÏÈßÛÏ%%%ÊÊÊà(đƠâÅ‹mmmÉ5H);::À`<OÜÏ.\ ;~ ¡¿¯©®®*cbb ¹…VTThkk“gáÈ2hyíÚµ́Ư»×ÅÅ¥¶¶VÎ$.ír-O:¿ÙOWWwܸqd²­­ÍØØX(ö°L?Ăöøûû?xđàúơëà窪*8ïĐ̃´iÓ«û2I§ïÎj‹ ûRKÓ’Ü)‹]”9µ†Ùß'+È«̉çÏnûq9ö’Œo@>¬¤Ä ;•E‚Ó€yä¨ǘƯ˜ă!{µµ́ÓSN™ÔÈ×qơôX'‰ŸcGÂ&MK» ©¾†ºỉ¸Ÿ;Óă “evcot]‡̀™~”y3IâgÍd]íŒamÖF_*)Xz8¶B¥ƒi‘«] yºƒ<¿ádù›´”̉P›?zÛ±¼íb[‰~F₫̃~V¬XÁb±ôơơAkdôàÖ­[–––|>₫&&&û9== 킟™ß×Äår¡²´´Ồ̀̀ÀÀÀÈȈ~ø ̣[YYYPhnn®œœÜ’%K —VUU511 }øđawk`öüü|z³h]w¹L?·¶¶Â)€ß l ßX½zµ¡¡¡µµ5l*₫ư ăhÛ²•uƠƠM@ˤrËÑ#uég(~̃ÿĐP7ƒbe“’t^Â矃ư ädÙÊÊ=(j¢#eeYƯùyZêc» –’‹Å·0;=­]?ÏŸƯATVÖñpÍ"•N̉ím»ôsR|‰È—wÚ"‰Ÿ‡Z_c)ÚÊËê*Ê›€–I¥œ,ÏÖøĐÓV›?TXC”̀de´, ¶ÖÁV—˜£Öègäoàç€tôîƯ»"•ƠƠƠ¯²L˜<2Gé+ ››?~LW̉ơob/Dî3̉ë}•ỨáóƒäyfÉ hpö´ú̃~~pZj[wŸLé®<ÍŸ'6ôöóƒ°mïd¶ôÁç]l«{đ­«ƯƯañóƒÈÛégäuù¿?ß Ÿô3úưŒ¼„Ÿë럗”ô3úưŒ~FĐÏúưŒÿ¡úưŒ~F?#ègưŒ~F?#ègưŒ~FĐÏúưŒ~FĐÏúưŒ ŸEIOG?£ŸÑÏègưŒ ŸÑÏø ŸÑÏègô3̣vù¹¨¨ÈÍÍM(FDDôêGñôsÿ÷sd@_”ø‘}T·ÊÏ555|>¿¬¬¬µµ5333)) 2úưŒ~FúƒŸ ½½½I\^^®¦¦†ưŒ~F?#oÈÏcÆŒIă§Ÿ~›G⦦§¿ÎÜ̉̉‚ÇưŒ~F?#¯ÍÏŒ “âă¿₫úë_Å ?%BNNNJJ ‰;:₫:3A£ŸÑÏègä ù9=%Ẹñ¼¼¼ØØØg˨WTTăŒ~F?£Ÿ‘₫àçÇ;;;“¸¬¬̀̀̀ 2úưŒ~FúƒŸ[ZZ¸\îñăÇ!HHH˜7odô3úưŒô?l6[ xyy566âAF?£ŸÑÏH?ñó“Îß¡ÆÛ‚ègô3úé‡~FĐÏègô3̣†üÜqë6]¦&O@?£ŸÑÏègưü÷ ººº½½ư…Ư=zTUUEâÊÊÊÖÖVô3úưŒ Ÿßà䬬, ccc55µ„„„†††î:‘ÜÏ9m;5U!ƯùÖÑ~̉û”öñ…~ñ®đb”Y¦*lÛaC~iơt₫YIQŸ.ĂoAåPǯµ5<¡¿nâß& ứ;¬ˆ£å¦̀êéFÄŒ¨iµ·ZÄR̉'EÀÁl2N25JA?£Ÿßr@¹&&&ä“•<đơơ3gNw'M´téR=jooỎé;wîüY~9wÏ?»#~t‘2‹7wÆCq;ÙÛ&)(¨Óî24đupîŒ&(ïd6KâçÉI5,?nTYÆäÖö™Ö–Iâ}@Ú`cyu2à³M_à3eR#sßnIüV 'p›5í₫ô´ .ÇaôÈĂâ}`ă5Eü,²/ô3ÈÙÊ4;¿Ă}p‘‚øôÓOIevvöÆ—-[ 6—ËMLLÔÓÓSRREŸ?>  ££#**ê“O>Î7nÜptt,//‡J˜Q èêê‚ƠaZ·mÛ¦¯¯¯©©Ư«fºô³¼œỀô{$Öá sT¤CtÄ7Ótu†ĐîRRÔÊL¿;qüYÈ9%߈-Ôx“8)¾\^^M¼…YœŸW>?èûøl'±‡ëGuKâgÛä@¿ $ö¶̣d‘°å¾³‡kÓÏâûøB?Ëʨ„xƯ#±ºê ·AG™­B½ÉÖ¹₫Ă® »NjØ|¦Ă #qÀ°?¤¤dĂ|›_ègo·B00‰#ËådƠD:ÈËkÅ„̃ ñ9;*¬®„mMg;«,ô3ú3»ººjiiuÁƠ´¨§OŸ¾dɧ§§ƒ®>|8v́Ø+V444@OȺOŸ>MÆ7~øáuuơÊÊÊàà`x fëÖ­¥¥¥%%%666§Njnnf³ÙgΜƒ‚‚rrrºÜ¤U«V‰·‡Ăñ÷^'2¸!--OO‡„‡́ø_ÓVép‚‡iweL₫CZZN[ËF…-—WuB?û Ïư’xꤧߠ•>¹…Ù!Ø¿ÀÆjḄ¸´ŸlÓ‡:e‘ØÆ2RhIü,4ôø'‰Gm13 ¿^ˆ₫ÖgøJÚÏâûøB?‡x×JIÉÓ“<í'»̀jC•YfP`OÍ„s¡Æcp±²5iuô-Ô¿ùB?+Ô#1dÈ0טˆº52U@Å/çgđ*¼ÿñIH!-×yäƠd¸Û̃̃^FFÆ××÷̉¥K¯2¾•’’¡'„₫1‘ûéɈĐ]m;pM óáîÙSS®ưÏXÁÔH¿gL­~q₫́™gnKâ´‰ơ22̀VSă(;›Ô°à¾^›ee•! Ùµ—Ç'º|{›4?ïÏéô»g?ú ÿÄ!ŸÙZcl°”8TĂî8Ø& ÆưÏ ÷±›ü¹¢dèI®–¿ó€ưƯ=•ÁÑô%ööt₫2m>'|ØïeeT#ü;^œ?̀3Ô‹%ñ¨°z°zwdD‡ÖHKÉđ¿¤ ÏqqÚâézÀÄ0™Ï đüúưü6»bÅ ẓÚµkJJJ™™™ñ’ÊÑ£GKâçqăÆùøøđù|2°Ÿ——Gïß¿ß̃̃Nn&?̉uèüăÏrŕŒÔ›$AM–n öÏèºƯ´µ¬£ÂöNH8ø9é‘z êÅo‹4<ä0=@7ªL]͌٠êæó\ p´Âù‚Ôä{KOJ¬$œ/2h$~¶·ṂơZMb7ç÷\‡Î§›¦Lü̃UUCeo cZ—û(Éø³Œ › `³̀½]Î̉Ma¾Í–&‹èáeMu×!_…ú4øº]$5>n`Iîz¹ÖÖt&qˆo™ ÛŒÙ́sÆeĐç$ ¾%+ĂơûM[Ó…e–¡¢Ï̀8 ưŒ~~›Ù½{·¶¶ö‘#GÚÚÚÀ¢©©©AAAP¿|ùrHqAÔ`T÷B?êêê644€¥“““¡fï̃½...àjXHxxxVVVUU•¦¦æÍ›7¡uÓ¦M¯îgÈ$f¼;«-*́K-MËy3[¡2~täÆ̀nÏÇŸSoÉË©¤O¾ñî¬Ç.Cç™›FH2¾ù°’7*́8V Næ‘6¢Fcvcoøz~fjMưPW3{A?Ç,äŕ§¥Ư†4XCƯ4iÜÏP99ù¤Ä_™Ư˜ăâû(‰Ÿ ÉÆá~mC¾d+[†ûµB¥ûà¢`¯´4†9X­‡`øĐS̉̉J#|ƒ=«ä幡̃÷¡̉@7ÑÆl¹$~Ñ¢ Àơñ8‘A‚ż§·ÿFÔú¸û¯“eU"ƒnŒz Mzº̀yq|ưŒÖ¬YVPP——gÖÔÔ@å­[·,--!†¿ åưüàÁCCĂ={ö@ HXCCăĉMMM‘‘‘ªªª&&&¡¡¡>„ÖƠ«WCOkkkƒ’’’Wô3xŒ£mËVÖUW7-“JÈ-G<Ô»|=Wi¨›©ªp9i¯Høüs°œ,[YY 'đ2©ñésD±¬,«;?§§4êj¨[@ñ¾QÂçŸçÏî OÊ)+ëx¸f‘J§éö¶‰¯×Ï₫Ă®©°mt••L@ˤRAç2đÆüi³2ËLNVƯÉ~'iµ6[ÆR2RQ¶èŒđ,áóÏC 1VRđ8^£Ă¡ÆoX±Œ 뙄WARÍR2PWs¸‚~F?#ƯZ& eR]]ư‹}ĐÉ«/¶‡Ï!÷\@ƒ™éw{ûùÁi©mƯ}2¥»’6á₫ô´̃~~pö´úw2[úàóƒÁ^Ơ=|0Äë^„;³̉́>zûùÁ±‘mâŸL¡K\TGLè]üü úùKƒŸïÆÏw£ŸÿÂ~₫ùºL‡~F?£ŸÑÏúA?£ŸÑÏúưŒ~F?#ègưŒ~F?#ègưŒ~F?£Ÿô3úưŒ Ÿô3úưŒ~~êç¢bºL…~F?£ŸÑÏúA?£ŸÑÏúưŒ~F?#o­Ÿ‹ÜÜÜ„BaDD„ø0íܹÓËËË̃̃>..îÂ… ørüưüÜg%g–—)»¿è£‚ô7?×ÔÔđùü²²²ÖÖÖ̀̀̀¤¤$fkEEÇ«¬¬„8??ßßß_ô3úưŒôŸ ½½½I\^^®¦¦Æl½}ûvqq1‰ùå6›/úưŒ~F^èçöưé’¸k×®1î̃½ÛóÂsssăââHÜÔôô-éß~ạäÉ£GÆ—ưŒ~F?#½̣sĐPçÄÄÄ9b_>휜œ”””ÿ&äOÑR|úIçoèêê’ßAĐÏègô3"¹Ÿ§FFI>¾1qâD¹N ÈËË‹%ơơơơâư7nÜÈăñđæ úưŒ~F̃´ŸoܸñK'ׯ_?|ø°³³3©/++333é¼eË|xưŒ~F?#}àg&---\.÷øñă$$$̀›7*kkk;Fî*++Ÿ¡¡¡<~ü˜¢¨æææ^­eüøñmmm_¾|YIIéçŸ~á\p¸sçNßøä<Ü={₫́đ§2‹7wÆCq ÚÛ&)(¨Ó~64đupîŒ&(ïd6K"ç̀©5le₫Äñeóf¶” ï̉æhÛÁȤŸ÷?,̀¢æÏnŸ3ư[Yw|̣ܽó‚95*l~FjYöû­nΙ“º4k§¨¨₫~UúzeƠg¶2oñ‚‡̀VC÷QQ_ÿƒ0!€ª*‚S/B<̀m®›Ë̀×»FR`7aw^ÂÏ3¦˜›»åoº¿ñ“ ‡wæf¶¦LÜ4Ø), eĐÀ0˜„ÊFÄÇ­Úµ£cåójª¼ÜO«ĐÏèç7êç“'OÚÛÛCºYSSsûöm>ŸÏf³ăâ⢣£ÁÏÖB}uu5t€nĐ™|ƯÓÙ³gAÅAAA< sM›6™CF AÏK()) x̉ùù́́l@ ««»téR˜„ÊmÛ¶éëëkjjÂÂ{ơL—~–—S™™~Ä:¼Acbtˆøf c®ÎÚÏJZ™éw'? yµ„ÉśÈB°:‰§N*WWïcc˜OçÏïd¶̀̃œ2””´Æ|ß+?'Æy“xöôr5ñ>vq#Ăó_.–—Wyoî=ẹ̈%;Êl}oî]éÓœý!]Í #£0gÆuˆA³ö¶±¯wPâF3Ô)MO0ä%ǘ9‚%Ă\ /\ígooïåË—“n«V­Z°`AKK ‹Å‚¸²²²‡Ápè.‡Ăñ÷^Çô[ÚÄ+LZGùmdv07uÚÏ©.;ÚMœ•Q÷î¬ÇĂÜ }%ñ³§GÎûÏŸưô[³˜CĐÓÓ*8Ú¶°Lq?GØmk=N)Iç{ågŸœÁƒRH ©,¬‘9ưî¬ ×öưwê^Îϳ2®0ç²µƯ(̉N~̃è †ÚÙŒẒ̃£Å ¡›‘Đs¸û»&£Gî|½k´¶ŒHs‚—ó³ĐpÀ‚wÑc¶6>â}vl}4p@èÁ#ɤŸïSSgè́ÊMLX‹~F?¿9?¿÷̃{`H·nƯ÷3¸]f· 6€]!Ñ_Ëưû÷éøÚµkK—.}áh?C––Ư-88*2‹‚‚ùe®˜ÿoï<ࢸÖ₫¯̉aaiK[zï]ºHW‘*ˆ€ˆˆ¢¢Á ¢¨(b7J‚%z“M¢)7v£yyă_£±kL¼^Ûµc "ˆ äÿ“s3ïÜ]À 1ÉóưœŸgÏ9Svfö;ÏaRRfÏ Ũ¸qCWW—Nđư|àÀ¦_(444ôüùóˆÿùÏ:;;oذá¹sàü¼uëVÿ{÷îáL1dȲ²²[·nÁí́ÿf¯[·îÅứæœííY0}jKbÜÇ:ÚöÅSÙµpÈùƯ₫oü9甆‚ú„±—§O}âï[lk/Ëø̣aUU½ô¡û¸8e`B6úÍưæÈ |c`d5̣y¬’|}/dï]̣3ô¨¦¦—±‡[Fÿ b6+ñƯ¿{ă(^Ù₫>HÓ‡~,̉µ/ŸÙ̀®è›Qt¥E„Œ ̀±>}&åÿPRT+Ô0)z•ƒ­²³}¹KäJ÷Æ7§í65q}«êÚÊơơ­ç—Cå’EgW₫Aƈåh­®º₫ö»(́gAW—¨I!x½h§•¥çj̣3ùù¥ø™ÿoÆʪª*555¸ÑÍÍíĐ¡ClPBGG/8P^^‰+ncccjjjaaQYYÉ~ƯăûY__çÎ,éMJJB­¢¢ùϘ1ƒưDØù8?㬑€ ­¬¬Æă ‚ÊeË–™™™¡3&?zôè úy|îE‘®³@ÍHSÓ Zf•jªú©I;Ûơ3JDÈR$Àê¦z"·q9çd¼„#1n ’muØ̀$´hR=jF¦”—WíÈÏÓ&789¤kiZ£øùLk7KïÜBĂR¶ ™ÔP[‡–M¯6°yPAAơ¥ø¹h̉E}=guu#m-+H’U ÔôG¥ïD0.ç[¤ÍÈrÅF}S“>`­0¶ØÈjµ³‰™0öÄË]â úùƒ÷[‘B«ªj …I‰e¬r@ä„₫Á™tuÍøw·hTÎ);d,vBæliá½xáiº₫™üÜ g–x†²\&FÀ¿v®¶¶–»£sØ „tgçđ° éi»úÖ:¹P–1d~)y­µp®̃î‡d¸£;S:*E“bªnß?ˆl³£;S^Jéü6“vG0f×ưvK|Áû7¬«ÛøNS—î\¿ö>Ư?H~&^º¿› Ưßưöọ́•\E~&?“ŸÉÏäg̣3A~&?“Ÿ ̣3ù™üL~&?“Ÿ ̣3ù™üLŸ ̣3̣3ù™ ?“ŸÉÏäçöó¼\N~&?“ŸÉÏäg̣3A~&?“Ÿ ̣3ù™üL~&?“Ÿ ̣3ù™üL¼R~>pà@`` ¹¹y|||G`Ú»w¯––í‹ös€÷ÆI¿PéjY¹ôOUÖ¯é¡̉3{‡ü,;·oß644¬©©inn.,,̀ÊÊ’îi»¸¸hjj’3ÉÏäg̣3ù¹Çü¼{÷î°°0_¸pA(J÷>|ø† (&?“ŸÉÏägưü¤¸”+ùÁư»çç5kÖ@¿,nhxö\Φ¦&~‡-[¶Œ=ụ́åËäg̣3ù™üL~ƒ¬¬¼½½ûK±gÏÎg^QQ‘››ËâÖÖgÏåäA߸qĂÙÙù₫ưûäg̣3ù™üL~îü9''G¡ k×®MKKcơuuuÊÊÊü‰‰‰yyyÛ·o_¿~½‰́ ?“ŸÉÏäç—èg$ĂÇÛ¸té̉®]»üüüX}MM ¿'Ôí߆§§§œœ‚»wï’9ÉÏäg̣3ù¹ÆŸ‘ëééíß¿AFFFqq1»`cß¾}J§ñ ̣3ù™üL~îI?³_X, ­¯¯GÍÁƒUUUÉÏäg̣3ù™üüûú´´´ttg A~&?“ŸÉÏ]ösA!Ẉé₫ṇ3̣3ù™üLŸÉÏäg̣3ù™üL…üL~&?ÿ9 SVVVWW×ĐĐĐÑÑ6l˜,Cë_ưµ‡‡‚iӦ͘1ă•ơsÊà{¦âµPĂy@È!‰ÖAaÇTUL¸’}•k Ú«¨ %û‡("ø€H'PMƠÜØ( •huu˜Í-El8˜ßdm>ÆÚ"Wö¹;Uhj¸`A¤[µ5½¹ùx¬FM\ÔY¬̃¾Vß¡Geôseù=w·]kCçÉI´–¾~ÖÅ9M¦&}§N:Ê*EÍÖÔ4aÅÙq°Œ.-wÀẪiÆbW{»°±9ÊèçnoChkz ƠÅ1ƒ#ÏŸÉÏ~^»v-‹¢££G-»Ÿïß¿ÿóÏ?¿²~ƇÅͱ|xb+ü©¬¤ŸßÈoơñ¨¶2ËN̉À ºqŸ28PAASFg&Ç̃VQ6Œ‰¨IOh¶·.´4Ë’è / ØÁ–2,₫WJEmÙưÜÏw ÎCă~N¹¡)t Üơ_rˆ½ƒsJÚ‡lAé -¨éöƯÄÎ8ª*¦2úrX₫Æ’VøS] ¿¤²‘ßji”1|‚q¹{µ4MY¥uØØÑ;–,h@YZùH9Ẁ¹­¡nøúÔå‹C‚ }ûfñ[g•œWW7˜?§±¿oNhÿ)0g¶ˆåwqú€Àeñs^îk«ÀU+~^¶è†±±Ûä‚]üÖa©oxz$®«~úÖʇB£’×£̉Ñ!rtæ»–,¼¦®®·lñMYüÜƠămX|“@Ír@Èa´ù|`"N"?“Ÿ;̣3X¼xñ€ÔÖÖ&$$…BWW׃²ÖO>ùÄÙÙÙ̀̀¬°°ùyÉ’%Ë—/ÿ¥í’B¸][[;33311›÷Ô©S£F4hƯÇ¿úê+̀ 3Äloß¾ưKÛ ̣åååb±ØÈÈh̃¼yx‰Ê÷̃{ÏÄÄóINNî̉E2íúY^^=eđƯ_sK¯đ /ø­6c}=Öļ?đ¿̃Üd¸¿×Ùóç°ÀƯ00‹ă^PJtPTÔơÔÂùu2&ÏycvĂê,.+¹ ¬,ä·b˜!‹}úföï7‰ßÚª÷(Ç7‚²G¤W³8)¡28h ¿uuUSƠT¯jt‹‹¾«ÇûlÍ[ͬƒHd%¡ôüÜƠă-ØïSC½(8ç̉øù¹?CLJBW¯^—±±±0í76lØ`ii‰óçÏëèè|öÙgßÿ=ºIŒoMœ8ñÚµkøÛ«W¯cÇ>|XNN®¬¬lûöí°½ººúƯ_¿ÙN™2“¼ûî»P÷‰'=êäätäÈ‘G ‚“'O"-‡Ø+**^ÄÏHƒûôVä^âûc`ß÷ùt´|Ơ6(XaGÛi\je>:aĐeÙưŒ”ÎbäE˜̣"®5aĐ¿{÷Vª;©(‹ä5"ú}ÉåZa{<]Ëîgè·¿ÿßÝïư±a¿ƠÓe ̉x œœª–Đcèàû\“½ơ$,6ÅÏ•å÷ää¹—1#Óß—Ö „)ÔÎüñœ̉÷é£` ï„e% y_ÊâçÔä5̃ĂYŒ”ÛméÂ&‰>3¦ưèç€EđXT¥ÇC:̣³ƒ}Ä„qgqvæ;î®q̉}rs>03ơ đ9óë§Ñ¯¦ª½jùưçú¹Ç›—ër3ă4=~8BHÇF₫ëú9{,Ẉ}üÈÏœŸUTTÖªªªâ° ‡ï̃½Û§OŸ3gÎÔµ÷ÖÔÔÀÛÁÁÁl*ä̀|?ß¼yưYº‹É¡eæg555ÖÓúùù±¹;wÎ̃̃-º²²’U.]ºóijjÂj Æ ?~ÜÑ:çççKÿo+ˆƯÓe)ÿÀ2àß±¦âd6$Ë[ËüÈ₫_#ˆ?!×G%9¶6)æ†PĂfë’ŸƯ*8Ç"YÅfäAÇEµ6ÏÁ<ÓŸ¸:̀cQØw“…iF›T»àgX7}”;©F58ê'%E`̀ßÊ,ÛPÀ€ÿ'[₫́÷ ‹ư<ßn÷ằ¥ôöNOhÁB¹́½³üỹữ½å¸—ö¶Qc²·µkÂå‹Zj"‰l¹bÎm¤ßlܸ󒖲–Ó́Âùụ̣Êơ?v¿.TAÑѶ7f́~vtˆ̀û ‹3G¾ wtIFp¿Üà<Ï›ó#ä̀ Œ<×ÏƯ8̃<œij¸üú=벂¼PúJ~¦ñ ‰Jä®ÚÚÚl”˜E£fåÊ•lhlÚ´‰ï熆$áÈœQS__///ÏǘèèÈúoÛ¶-22’›ÿµk×Z[[GŒÁ-Sá́đôéÓëׯă%N‰‰‰Hæ_tüYN0è ‹Ơ¶1᧸¦añ\fs¿Öéj@}Ь®¶?¶¦'>k¸áÄNJhà.]m?ÇDÔà ,¿5:ü¤¿×ßXœ}«ù[ ª™²’¾å8Yüli–å庌ÅÎö¥È¾$̣gî /×x/xw¶EÜ)IµDF×Ñø³¢¢`Î̀+,‰l_Ÿzêÿ2çÊGa!EÜ@„…y ²ëiSNOư«™;ë*&—å'¼œ]æ¦~,~}jH׆ßúÚä︼½¼́:—]¿ö½ªªÎÅOe÷s`@waFltì ~kfÆúÅG¸ß Yv]9F¦xxZU—®¯ëêñè³Á¯ÇÆuœ»ù?“Ÿ‰vư RRRfÏ ã¸qCWW·¦ ¡Pxö́ÙG 2DbüúEPWW‡©¸ñgÎÏ'Nœ@¼qăF—'OlƯºƠßßÿ̃½{p5fXVVvëÖ-œ®\¹‚nëÖ­{q?#;µ³*@ếû±†º}zB3»y,=Ưà¾îÚ'|ßLRÏ4îÂø¨¤¤̃o? Ó '»b6ÉÆ"9Y^3LO|‚&c£øÿ4îÂøFXànM ×Äèkñ/ Ô¬…CåàÈ3±ÿ@Đ×m²2¼Ç”Ø;Ú^ǿ³KGØOèÜ»·N ²øÙÏ';8¨éqö¨ơố—/jf×Â!7f—j MªnSè±>}¦ư'+)©Ï.½¼bñ“ˆ°bçxYÆ7 y@¹1‚¾^˜~»9YYYˆÓT^bdèʦÊù‘•ep—®\°ÛX́ºdáµ…ó/ꉬK§{vỨ3sfưă™fÓ«£Ö¾Ơ²jù}3S¯ø¸rTZY ŒöƲ»¬¬yó±,~îêñ–÷@QQg`è·¨tsœ‡4¾A~–ÅÏp©©©©……Eee%«\µj•X,NMM•đó?₫èëë »fddˆD"ÈœïgPUU¥¦¦fkkëæævèĐ!v9_BB¼mee ‡£rÙ²efff˜‹>zôè új8«( Ô¬đ1a•ÈWCv"rÙ ̉]Mf³îù™#wRQë‹B™ç#ƒÊÉ©₫*á¥Xª©¦ĐmÈ€sƯöóđÄV¤ĐX[e%‡²ÿŒjZM°4ËD€å"gÆ;Eˆ‚}SÆgi3r9­¾A>ÈxưFÙŒ‹†ÎFº:VĐ2«TèÍÙ‰`ê¤o‘6#¯65éË]á?x)`-MS#C·™ÓÏÉx GVÆ$ÛB ±UèâzÔL̀?¨  ÊZ“âßÀlCz¹]]ƠNîL­íDz)ƒïO|úâ÷y!k’¾3…¯V¤µ/冲¡quŒ³kk¥&ù¹÷v>†̀néè8Ù ²ô®Ä`ó”ư‚½Îï¬ZQ·ºª©£Ö·V>D ưRî́êñ†c£“I₫*~NÉ•|OọóËeĈiiio¾ùfxxxvvvϯƯßM÷wÓưƯäg¢]=z´wï̃… îÙ³çéÓ§äg̣3ù™üL~&ÈÏäg̣3ù™ ?“ŸÉÏäg̣3A~&?“ŸÉÏù™üL~&?“Ÿ ̣3ù™üL~nÇσ“¹’ïæA~&?S!?“ŸÉÏù™üL~&?“ŸÉÏTÈÏäg̣3A~&?“ŸÉÏäg‚üL~&?“ŸŸËÍÍÍăăă¥wäȈÂÑÑ1&&æ̀™3¤ÍôóĐ„³ù­ËŸ̀fÏ!Uô§*=æç„=Q&ç÷PùøùöíÛ†††555ÍÍÍ………YYYüÖ¦¦&KKËÇ#₫àƒ’’’H›äg̣3ù™üü|?‡ âJ¾“k÷ü¼{÷î°°0_¸pA(̣[?ưôÓ¨¨(܃¢̣3ù™üL~î’Ÿ›YLœ8±Bï¿ÿ¾ó™¯Y³føđá,nhxöÄaä̀\ẹ̈åËÓ̉̉úơë§  €DúôéÓ¤Ṃ3ù™üL~î’Ÿ‡YÛ´{¥¸víZç3‡ĂsssYÜÚú́‰Ăü!è’’’>}úlÚ´éÁƒùùù#G$m’ŸÉÏäg̣óo7¾‘““£Đ‚µk×"CfơuuuÊÊÊü‹-rqqañåË—…BáăÇÉœäg̣3ù™üüù¦=̃Æ¥K—víÚåççÇêkjjlllø=7õÀâëׯ+**>zôˆ̀I~&?“ŸÉÏ=đû`SS“̃₫ưûddd£̣̃½{ûöíCđàÁo¿ưñ¼y󂃃I›äg̣3ù™üÜ3~[¶lb±844´¾¾5TUUe­Ÿ₫¹•••Ư… H›äg̣3ù™üü|?û†p%ß̃éEîlii‘¾3…£µµµŸ&ÈÏäg̣3ùùÅưLŸÉÏäg̣3ù™ ?“ŸÉÏägâExøđaCCù¹«å%­ä翬Ÿă£ZÉÏA?_¾|¹W¯^OMb£¾ùc²ÊQĂwYY„¸{{Œ.)ª•ÑÏăX˜jk™»8ÇW–ß“h5â´êë9xº§-œ÷3«Œ¼TOÏ̃@ß©_àø‹ŸÈè̉Øè C,Df̉o²ØÈ Jˆ[Æ*±215é;2}£Œ~RpÏÁ.EKÓZ¤ë<*ưP»|mb†ºizÊ>ö2>v³™I¨ÈƠÉaøǾ32ºtDêcq PĂÜÖ: m·Ï°ä½ÊJZÜKC}ouuVE®–Ñωñb±‹9‰¦uƠO"Â'›»8¤¦,c•åe?øx§‹]ííÂÆæ|Ø ?;ÚTh\T•ÍH·:Û-¨Ù««9Y˜Œz̉U?' 9`h¨¡nneŸ—}¯Ư> ±{•”´¸—z"oÀ„•°₫«ÉÏ?'$$¼÷̃{¿´]¼ÛƠ•••…„„\¿~½Ä– …—.]zEü 9G„–Ï/kÍu@ ¦?gF#¿Ờ4hhâ&Y#ö …¦ĐAC]µfù¢æàBß¾YüÖY%çƠƠ æÏ©Éï›Ú ‚ y_‹=WÔ/_Ôâå‘>2ư}Y䜕±‡áç•Ư02tËËÙÅoMĂƠ%qÅâ§‹+jhN<ŒÊ@ÿ¼Èđógß̉Ù±Ơx®Ÿ!ç₫Aå%¯µÂŸjªúÓ&7J÷quÎRR̉d~4îºMÊ¿‰8và ó(Yä\8₫¶@Í0gTMñ”f¯B̀°Ư3…H× úÏ$îÀƠE“N›Ü€2}j‹,~ÎËƯbm¸jÅÏËƯ06v›\°‹ß:,ơ OÄuƠOßZùPShṬúaT::DÎ|Á’…×ÔƠơ–-¾Ù%?û¸mÑÖ Œ ûyPÈ u7Ï]üÖ ï/…êƒĂë‡D¶¦{»¼ß%?ͺ­ªj8|hMÁØf×BGû,é>¶¶‹’¢æ&ɾWópü˜”‰y-¯œŸ]ü¸’omÿôskkkyy¹X,6227o^®_¿^ "sÆ_Ä́¿‹|ơƠW®®®0-́}ûömÔTVVÎ;ÓNœ8‘‹Ê¹sçøKÙ¾};Rqđö‚ ôôôvï̃}ơêƠ©S§b...,]?~üx\\›äرcñññ¿´Ư€9{ölOOO“̉̉̉÷³¢¢zé´»,62ôÊù¿µtÚ¨ûYΜ¾S]ƯÁ́’‡rrJE“/!†Ø]Ódñs̃˜Ư6Öa,.+¹ ¬,”ÁX0÷‹}úföï7 é´”uhZ8¿Nö?Ÿ́¡IƠ,Séï;†ßºtaÓ¢ù,©lTSÓ<ádỘrJXj–-|,ûø†¢‚ú” wYl ï5,å ‰ÉñŸyº32đa~8îÚÈ´ƒ¬);㸂‚@?§%í63 cñø1”…̉}Cø\₫œ>t¿¹YDѤúœQ§Ú•s»~ È‘^Í⤄Êà 1üÖƠUMUo<@P½ªQ Đ-.ú®?î³5o5³"‘•„̉Ÿëg3q¶›c5‹l*ÍÇđ[ÅiNëâ£ZcĂëº1¾»ÛXÆâ¬…̉}́l†G†nạ̀çĸư&Æùcê‡=Ơ®œÉÏ¿»Ÿß}÷];;»'N=zÔÉÉéÈ‘#MMMÈ™«««×­[7`À€úúúÚÚZuuơ7"+Î̀̀œ2e ¦Å_Ï>ûŒƯ}Ă8ỵ¤Äđăcll ]ß¼y388³‚¥×¬Yƒ³Àµk×¾ùæî^ø¯¿₫ÚƯƯAQQZáó₫óŸÎÎÎX‡vç¼k×®w¤xö¹cVK nÈÉ)r/ílb†&¾/íÛßIÈ™‡§~Ê^Æ^«)4srHéÚ³Dú¹~NM^ăí9œÅK<û¯YP¥¤§ưèç0§ôßxia00ª yuŸ>̣®Î È“_lm"r²₫Îâáiï8;ÅI÷5âc/ïQH¤çκ QGÈPTT“—WÆzÊâg¤¬}ú(r/­-c†Ä¼Ïï09ÿ–çkë8?ó‹‡ÛX»TYü<(j ôËb$ĂØn¯6ñ;$Æmqs=áeÎÏá!KrkkÙÉË«êëyL-¸/‹Ÿ́#&Œû;‹³3ßqw“î“›ó™©W€ÿ(È™_?ụ~5UíUËïwÉÏ"í_¿³ØÓùQ¿U[3À̃ªLIÑ woyC½„!‘»äçđ₫k _#Æv›0¶‰ß!:j‹“Ăè́‘—9?÷ X‚”[KóÙvézä¾O~~Ơü†4¸®¥K—Θ1£ƯñƠ«Wûùù±nÈíí홟!X‰¥lÛ¶Í̉̉’û}¬gH›™ŸwîÜÉF¶±23ë WUUuä瘘V9₫|¬›́~ Lú _¤S Î)+kñÆ:’‡Ä®–íÜ̉¦È°ùÆb_§¡sKÏ™ñƯ,̀CúM×Ö²JMÚ,‹Ÿc£+ür¹loVzº¨đDdx‰¶¶̉f¼ÔƠ±‰l§9ư_†.c²·Éâgc±Çø±û¸±[›pé>™#>́ë5̉@ß 3Ÿ6ådï̃}úzeTλŸ›½]EYSúÄ!íçq9çøă½ö¶ÉĂ¼¶ÖñC·#ösô€u5£‚¼+²ø9¤_…‡k.‹K^{¶ƯøCĐ“ÆƯé:ĂÀ|?ăL¼đÙIdÂ]cq /‹ŸMM<¦ÑÇu8؇K÷›ó¡¿ïH#C§¹e§¹ÊùsÏ …†¹£7wuüY¨îè½ëi‡ó[ƠT­ª¶á§#ûưKCàâç±­K~đ­pv̀eñ¤q϶zLæ mg˜ïçïù-l÷¸khĂ“Ÿ_5?#yFlđ+ÑÑÑíú¹´´TMMÍ€Ô ?K8`)½{÷f7Q¶´´|ÚFbbb~~>ó3û­P±‰‰ 7U^^^II ßÏäüÿüó~ưú!hllÔĐĐ8qâb¸Y.<Ï÷3÷ÿ ÀÎ;Á¦M›êêêà|,ZÆ.àû“[[[/^¼Ë=ỵ¤ 6₫ùóç 3GeJJ K•ágL…3ÎUUU/èg/lŸ¤ÇéC?éÚ—ÏlFeΨ3n#°´ƒä9֧¤üJj…&ÅS¯£rđ Uv¶±²Œo@ƒrc}½2"ÂÙ…ml,NVVΙyeÅâ§0ª‘¡kÛèÄVK*WÔ[˜$'¬’ÅÏycvc*ø‰±®ơk“¡²dÚ™â×₫`hRµ½mỘE-•óî›{±üÜƯ-…i|zÑ ̣*lôû¹~vsÎöö,˜>µ%1îcmûâ)Í́Z¸Âñ·ùƯ¸ññc. Å‘öÊ,~F>¬ªª—>t?§ ßb6ú-1fÂ߈ _enơ)œpÇ@ß+>v³,~\°ÛX́ºdáµ…ó/ꉬK§{vỨ3sfưăÙc^Ó«£Ö¾Ơ²jù}3S¯ø¸rTZY ŒöƲ»¬¬yóq—üà¹[Cà:°ÿµ¨à‹jªÖ!~ÇPx&<àm#[ÑÑ88¼^[3ÀƠ~U—üŒ|XEE/1n?» obvÁFâà}ünüñ~«LŒ# Æ6;£'̣¹™üü»û™ÏÁƒ-Ă½VVVH•áá_Ú£  0wîÜ‹/êèè0OBŒjjjÈoṇ̃Đ¡Clü™ó3ÿÿA>úÈÇÇGYYI²……Euu5”Ë÷3»îÎÜÜÜÄÄD$mذUfeeÁífffH¹9?ă ¢§§g``0jÔ(6ŸñsѤ‹úzÎêêFÚZVĐ2«¨éJ߉`\ηH›‘W‹ú¦&}ÀZal±‘7dng3á ¯ÎÊØ‚\]¨!¶± …rQ31ÿ ‚‚*—Í"©F-§f×*¨«h¨zy¤CƯ2̃̀‚ZEYŒ*c•ư'øôÍd?MbVđ6Jxè´¥•P !›ø`Ѫª:ĂÓ̃‘ñúñ¹EºÎ5#MM+h™Uª©ê§&íl×Ͼ}_“8̃¦MnEщq[„« Äf&¡E“êQ32í ¼¼jG~Fä̀X+%%MœD§<–ÅÏo¯nE ­¢¢©¡a[Æ*ĂB&úg"xkUƒ¯O:¼'¯®zT:ư¨ÄÛÉÎ|§K~jE ­ ¯©¤h`oUÆ*-M'˜e¶µ>±4-@“’¢¡±az|ÔÓ®^ÿµEA^ ¦&6‡æ©GMrü³íÖ‘ŸÑ9³PĂJIQÓÉ>»`́ăWÎÏVn\É·°ùË̃?ø° ~Í£GØHÈÓ§O™´Ỷ{çÎÙg ù?÷©‹·nƯ’P.&á?Â~.--E̓º±ß¥ừJ»·™pEz£­²®«÷>K\¥~ä«UúR:äḮ¸.̀§ƯŸùXY\ñk"Q¹`îNnéH“Ç×öÀí~È̉;º3¥£Â.~îêưƒU+êVW5uÔúÖʇH¡_îưƒ±áuq‘Mµ" Đíû'æµttgJG…]üü̃?H~~åa~îö~ïÈÏôÿ7è₫núÿ¯úưƯäçW£G?~œüL~&?“ŸÉ‡&ÈÏäg̣3ù™ ?“ŸÉÏäg̣3A~&?“ŸÉÏù™üL~&?ÿn~6°ăJ¾‰%ù™üL~&?“ŸÉÏù™üL~&?“ŸÉÏäg̣3ù™üLŸÉÏäg̣3ù™x.Ó¦M˱–½Œ¾+.ºjhÂÆ.•‘é].I «̉S7tc®–ø¸¥Ư˜*.ºk%zÀÛ«º:U7JTت˜º:UNV—Kj̣̉nLåå̉µâáô¶«CUW§̃å´*2tCW§ê«V­ú]dâĉ¿©Ÿ8ǿiññ÷îƯ“hƯµkWxx¸»»ûèÑ£kkkI›=Ʊcǰë§w…!C†zưöˆD"GGÇX@ è¥ØÚÚ̉v£í„Báô.2cÆ ‰ÿÿóư|ûömláæææÂ¬¬,~kcc£X,₫ñÇY:Ç E¼²|ươ×3gÎ́M˜0¡g¾¯ơïߟ¶m·?âvkQ2ăJ¾¾Y÷Ö÷îƯaaa,¾pá‚ÄÓ÷p^PRRbO¯.//OKK#’ŸÉ3´Ưh»uÉÏ£E&ûöí»"ECCCç3Y³f {Âơ/mÿQ³W¯^MMMük×®533KLL´··g‰4A~&ÏĐv£í&»ŸĂ5tbccGHñ¿ÿû¿Ï¤¢¢"77—Å­­Ï̀È‚~ôèQrrrHHÈôéÓ­¬¬6õL$?“gh»ÑvûíÆ7rrrÚ@€ô˜µ¨««SVVæ÷ܱc‡µµ5·/D"Q—BŸÉ3´ƯÈÏ]̣óåË—·qé̉¥]»vùùù±ú~Ïêêj$á,fcÑÏ}¤A~&ÏĐv£íöR~ljj̉ÓÓÛ¿?‚ŒŒŒâââ_xÏK­­­511¹~ư:âU«V±Ça¯,§NZ·n],hé̉¥çÏŸï±'§Óv£íö‡Ûn-½ ¸’/2éöùeË–-@,‡††Ö××ỵ̈ßÏKE ííímooĂMAôŒŸŸÍª¥EúÎ>uuu´Á ‚ z̃ÏAù™ ‚üLAŸ ‚ ̣3AÄ+ïgm®ä‹Ääg‚ ̣3AA~₫+P[[ûôéSÚ„4?ÿüscc£,=õ¼ÙÜÜŒà₫ưû< MG~&^8¹¬¬LKKË̉̉R(fddtơc5kÖ¬ÇÿE6WBB‚’’’:«W¯N›6mÆŒÏvÏ=_~ù%¿æ̣å˽zơẓä‰́Ó^¹reåÊ•=ö~÷ïßommmhh¨££ăååuêÔ©z̃½{=öîƯ›››‹I°Y,,,:™ä·¦ººZNNûHCCǶŸŸßsÿ—&C__ÿ_ÿú×wß}gkkK~&~Gv́Øaee…lç—¶?QTT$ûäp óèÑ£¿Ÿ/^,Q‰­'Ëÿ́´ï½÷^÷ǜM»yóæû48íâÄÍÎ 8¯X±¾í¨ó_|áêêÊbMMͳgÏ"¸víK§/?GFFr/ß|óM¼Y¶6ó3̃>û·?ägâ÷â£>BÚĂ=¼ éKxZ[[ËËËÅb±‘‘ѼyóØÿt ûÛß₫ŸàhGMrr2 ƒ4ăöíÛµµµĐ|N<ˆÖï¿ÿ ùĉµµµƯÜÜjjjØR,X€tỮ~ûí–™˜˜`B,¢óÿw?/Y²dụ̀åBBBđÖôôôvï̃-±₫ëׯÈ*7nÜØ¹Ÿ¥·7-2güÈgñƠW_abƒc­°ưQSYY9wî\L‹mCúúú¢³‡‡G»}.8íâË—s¶´´ ÆßăÇÇÅűÊcÇÅÇÇă˜166VQQÁúôïß¿wï̃8¨₫ç₫'<<ü§Ÿ~Z³f ú³ƯºvíÚvW₫ÅW¸s?_ºt é4N¦íoØÄ×l:‘H?Ÿ>}zÀ€lL™2[̃ÛÛ»¤¤„ü}-}ä÷̀$?ÿé™pXfffÂƠœ¨ß}÷];;»'N=zÔÉÉéÈ‘#¨433Ăÿă?nß¾]QQI#væÆ8†‘×a&ˆ7lØư¢?¦íÓ§ḮÙ³‘‡äååÅÄÄ rÓ¦M˜ó·ß~‹ùàđ¾xñ¢ô²`Æ'OÄü TQQñêø¾]û+́¿uqăp¶6T ±₫MMMØ>0ÿÙ@íúYzkpÓ666®[·̉¨¯¯‡đͶǶÅfgÏåÄ_́ÊÏ>û ›7))i₫üù˜V‡º÷~á1yyù¨¨¨7̃xƒ=c|óÍ7...,₫úë¯ƯƯƯñpđøûûăưÖƠƠ©ªªÂEÈœÙøö¦ ̃NîxGÈKÛ]ù—²Âù™|~~>ÎÛÁÁÁW¯^ÍÍÍÅNáo`}`f®Ÿ|̣ ÎAØƯü}}óæMé#¿g̃  ~VçJ¾ÈüüGÿ-[¶$&&âˆBbŒĂ’¥ÊHÆêÚXºt)óüŒ¯±l*ägΜáÆ7î̃½ £†M„lÇ?¾êré> ,å3g«D̃̉ËÂ*á3­¯Ôà6üŒÏlä¯à\#áç;w²M*½₫2o´»å¥Ç7V¯^íççǺ;wÎ̃̃ù6`óA¦}sÄÓ§O_dªGJinnư»lÙ²vưŒo¼_¿~¬RMM o7₫Œ\É*NÇØă­üËZa¾ŸqrA«¡¡íŒ„kÛîÆÑ‹l¡h ?ă}qÿÂ96çg¶¯Û=̣{æ ’Ÿÿô@­\F‡`„ nnnˆ‘` 3ø•èèhægnŒXÄœŸăË£|:đaä~aÁà>ÚøJÈ_‡v—µcÇ|=Ä<#""đùUßàûùûï¿çö%Ö_F?·»5¤ư\ZZ ̣78Ä?£Ë¬  €]đ₫ûïwăÍbÅØ?ûelÛ¶MII ‰1ßÏø:/‹Ÿ——W`` ‹Û]ù_ai?C’5m`æÜs—¤·0ÎAØwÜ„09ßÏxÉ’0sæLÎÏl_·{ä÷̀$?ÿéIKK[¸p!÷̣âÅ‹ø‡#yĈlœàCÊ~ÿ‚Ÿ9ÿHøY¢¶¶6gcßïP?3'óưŒ/’+V¬`•H«0Cée!Á`?Íœ>})ûZú‡đó?üđKÛ¯ỉë/£ŸÛỰ̉~†-ùƒ«̀?đsYY«¹uë’4dwHz‘àƯ¹s§«o_çñ½_ƒ—XîáǹÓîÇ,‹Ÿ1•••^"èhå_|…;îd ߸qKä~%‡Bù~ÆÆg?”€¸¸8ÎÏl_·{ä÷̀$?ÿéùđĂuuu÷îƯÛ̉̉‚c5//oĐ A¨ßºu«¿¿ÿ½{÷p\ 2„}ê¥ưŒ9û0¦¤¤̀=jÂÑy²ñ i?Ï;7$$äÁƒ–––8f¤—…#Çü•+WĐ_-ÿp~nwư¡vi÷l æg|¢ï₫ öB»[›öóÏ?gÄÖĂ×v6¾qăF$´đ<ßÏØo½ơ[œs9ÈÄ…E`!À̀?ưôS@«œ?3DBˆ5ÄNg_¸:ñ3¾ăcËàKÓöíÛàe»+ÿâ+,£ŸÛƯÂ,m€%Æ7°ƒ‚‚₫ưïơƠWXm ?·{ä÷̀$?ÿÀa©¯¯Í***Â$́°ihh€‹pŒ!íAÂÆnOh×Ï”——G¢ˆ£ÑÆÆÆÔÔŸÊÊÊJ6¼,ígœ„à &ä̀´Öî²c`qøÔ`†lĐ̣äçv×Í5H̀ ;îÙ@̀Ï|ĐÔîÖà¦Ål:¦Äªª*˜ÁËC‡±ñgÎÏĐ êíííq¦X´hQ÷̃/ö©““ö/¼îúí¬¬,¸5ÅÅÅÏơ3NúÉÉɬ >ÄËvW₫¥¬°,~nw ăÆK¨»Œïg|=̀ÎΆx===áX6‚Äß×̉G~ϼẠó_hYú±‡m> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 498 0 obj << /Length 804 /Filter /FlateDecode >> stream xÚVKsÓ0¾çWè†3S«z9¶à@¡ œ`&œ(ă<™ÅX¦ttf²Ç̃á‡1²P22·éÿ”Ñ©4™Ëæ‚C̃³–(ñËpí¦í€ÙíƠjz×,—DÁi‡ñ ṛv>Ѥ„p[,nărHJ*ÊưäûD¦Ú)C=“¶\¦h¾°xư~¯µxSM>ÁO€7îû’­d®̣~1f&m xË©ZŸkR)q#­ŸOc›»ès³m9́8ª̀ {•Ơ nO~uuæ剡«Cw¶̣N͆l“F?Ă%:\t8wà‚C³đÇ˶ڨԨÎ|‘aÆc§UtSƠ5×Á®IèT[™°,«aµ‰6¤2^6ô8iO.Á&D¿;± ×²&ôbG¯Ög~ÂöÀ@ˆ ̣æ/¤XóK”2Ăá-ÛºÚÿSøâ°@£#çà’n\4˾.g9Ö‹nƯŒÉṚàIµhº­ÀÄ¥¾ÁƠ$Uí:U«ó̉ÛÔËN¡Ó„¼e.º¡ÔR¡̉ơ:ל8óç’Ụ…̀¡Ú<‚]Vû=—#NûÚt^ˆU´ø9¦q·&*˲ưs;çà1áªöc5‰aüvG<¼•s¨ÏæÊ»l¹ÚĐlü÷ơ’Sœ‹#« OqÜ¡¸ó₫§Êobánƒ£ =2­:v'VÎ́Ăă«»”`?»üoE•ÉÔAûI­TÎz¡¬8Cü *đ½ endstream endobj 469 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceRGB /SMask 500 0 R /Length 17669 /Filter /FlateDecode >> stream xÚíƯ \Tẽÿq6QD̉\D*Ÿ`Ň u-µP¬Ø034ܶ¬téiïº-Ú¬ê€æÚ–`˜©˜‹X–ÏEjêV ©©¢w­ù…&///¹ËƯƯ]›G€­5°¦›ÈËÑN-Z´¨ÖbË 1­‰,óä¯K_;l‘µqäÈ™322RnÊcµ'ïƯ»·Üü®&̉éÑ£GûH¿S§N7Ưt“¶$²kø¹æKé{{{_sÍ5Úê•u²lÙ2ÅƠ(»*¹Ù«W/Ñû;î₫Ô©SÙ^i²È·0âééYZZ*7·lÙ"7e'[h}ç7(wi_-ÅÅÅI_“SW£F’¯ˆ7aÂÓ9Íço¼ñ³Ï>ûôÓOÍañî½÷̃ûï¿_X“~Û¶meúÙhÎÈà°¢¢BˆÓÜp̀ayê©§¤Ï=÷Èè=--MúăÆ“é}ô‘6]₫„à#£è… 6è³Æ¸Ø₫ÿ÷̉>|x­ùÿơ¯Ư~ûí2~–¾Œe[n¹¥Ö<½ƒ B¿₫úk‘öúë¯ß,}×®]«Ù«­"9¾ĐƱ²c={vƒ>KäĐC¦Ë₫Qúƒ–‡ÿóŸÿ”₫!CL>KdP}æ̀yfṂŸ~úIe5ʪ7T{6ùWv^̣¾°É̉4‘aV‰6’!YÏ=üñG+>/^¼Xî’c|Ùœe,ă7™ßtVAsÆŒ2f“y>K–,©Fɾ}ûd¸.V899ÉôÓ§Ok>ËBú3...2åßÿ₫·9,B¨ôyäʾ@^ˆ/Óå`_ˆzxxqÿøÇ?´Ó/ ú|êÔ)my¤dù‘MÖƠ“O>)×ixll¬L饗Ló[OĐ|₫ăÿhz”vÄ‘ŸŸ¯”¸pá‚6½–Ï2”5÷Y¥M‰‰1™eI_̃DsŸe§©íµ‘ÿÁƒUV£äûï¿Ïå^Y?»víb“!¤Ép–£]1*##Ă|́'‡đ7ÜpCŸ>}¤/û̉¯ụV4“e4»|ùr™çЦ‹̣„r— ‡……É]25ù¬ôjÁ(ks<¾vŒ/Èk> ×&ß4öîƯkKÿ₫ư5‹úEÛYlÚ´I÷5¥%2æWñY“₫áÇ¥Pk~9d¬ä56LÆü2ü‰ZóÈ»ÖΨ>Ÿ§L™¢Ư%¿«‰ qk=Jóùư÷ß×nvï̃ƯÜçßÿ₫÷Útó£˜ăÇ›î̉|–•`÷^wƯu2eûöí«Qö ĐöÚyrBˆÑÙºu«l¶‚RVV–i¢¹w¼k£&é[~¹&&˽×^{­f¦vÆXf–Giß9ÆÇÇ×̣Ùü™`”}„tÄsíhÚÓÓSnÎo|̣É'r׉'´›¥¥¥æ°̀™3ÇtEFÈëׯ׆ Â×Úµk¿øâ 9"¶œ–Ă¿Z>‹Úôú|?~¼LOOO—~vvv>?úè£æöN˜0ả¤I2,·ôyúôé¦GuëÖM¦h;Jí̉G¢›Æÿüç?®ù O[`“ϲÏ2÷YêôY"kFni§Äe¨²%Ï<óŒé|û!C´ư!ÄĐhç]\\ú]‚)VÎoH„¾ZăR¡ K—.²ù'%%-X°@;¡qk>õ¼ÙF™¨}S¶zơê©S§jÏ)ă4Óù ¶Í=;((È„‰9,[¶l‘¾àöꫯjßrjè}üñÇ2Ê•¡•œœ,Ăr;v¬‘>Ϙ1C¦GGG Ñ7̃x£ôeäYkƒÊSɾïî»ï₫ÓŸ₫$óÈ˯sü,Ïfz”¬(™"ËùÈ#È‹i0¬M—wgÑ¢Eááạ́¢lóY†ưưë_µg¾í¶ÛW£ ³å…È‘́2dD-ÓçÎ˶Cˆ¡ùæ›o,«îóÏ—¾“JII1~kಥk_9i›¿Ÿ¥/CMíkÁÑ£GËü̉IKKÓ|4hPBB‚vR:,,L;9\ëÂ0«C‡2E¹óÎ;µËó$o¼ñ†ªæăă³jƠªÏo4è³L •ÙZ·nưôÓO §mÚ´‘!z­ÙdÄ̃µkW휀,§v¡uŸRÙ ÉÓjG%³fÍ̉–JF†*eQe¢öm^Ÿe_)o‡vưƈ#N<©²üñG___Ó[üé§ŸÊÊ®ùÉ!!—iª««Í/BVLyyyqqq}÷rmw[ªªª&Mô /À¬Í™0a‚ƒĂI‡b•¶$¹™ÛḮßt¥hß~Ơ¶vb+\¦£¥¼©Ú₫ßëªí¹T›úsêjÊ/J}­₫̉¶ïPlê€ưût4ơáº÷UÛ믪6ơÍjü¸™Ÿ~ú©%¿6½ÿ)úîƯ»‡Ú¡C|6¥²²RïC"##̀ß+mẠ̊fn‡Ú¿é;^;~Bµeç(¶ªÖëh©ïª¶Åoª¶×æ«6ơçÔƠ”_”úZư¥:¬ØÔ?'ëhꜩ¶7“U›úfu×ÛƯç|0===>>₫ÊöYöA/¿ü²ù”×_}ôèÑ–s¦¦¦Đ»ñŸñŸ|îÖíyóæ%Yäđakkï÷yñâÅưû÷7Ÿ2hĐ ¡Ø|JIIÉ̀™3;wî\kN|Æg|Æg»ǿî~çK/½”f‘üüüß²ÏeeemÚ´1í¤¤ăæævîÜ9óyV®\9{ö́ŒŒ |Æg|Æg#|îÜùÏûöíÓËËï³$**êÙgŸƠúO?ưôư÷ß_çlÙÙÙøŒÏøŒÏøÜ”Ù¸qcß¾}µ~Ï=·mÛf›Ïâ|¤EÚ·oÏøŒÏølùb¯vøµyâs=¹xñ¢··÷_|!2ûúúÖ7[ƒ>ÿry˜E<<<đŸñŸñÙæ<öØc?₫ø̀™3Ÿ{î9›}®3:uÂg|Æg|6ÂçßHdÍöèÑă»ï¾Ăg|Æg|Æç±÷æ›o¶2>ă3>ă3>_IÁg|Æg|Æg|Æg|Æg|&øŒÏøŒÏô¹Ă¯ÍŸ›ÉçÅIEï£"ẳŒøI[¿Vµí̃¥Útmq†H®«íÚ£ÚÔw©«Î¾zÓ³/Ó±®Ô%/+SoFH®¾ à3>ă3>ă3>|Æg|Æg|nQQ©/zàÀ¨¨¨   đđđ+Và3>ă3>ăsD¥¾è¨Q£̃zë­_¾¼8qÂÓÓóÔ©SøŒÏøŒÏølt¬/ZUUµfÍÓÿœ̉«W¯ŒŒ |Æg|Æg|n‚(Ö•deeyxx”––Öyï‹/¾˜h|Æg|ÆgËÏpg‡_Û5ø\Oë‹ÊĐÚÛÛ»Ö©ódffn²HûöíñŸñŸñÙ¶¨Ô=xđ ̀³hÑ"®ßÀg|Æg|nÊX¯/úí·ßúøø,\¸ëëđŸñŸ›8Öë‹2dΜ9Å—̣ÓO?á3>ă3>ăs“¥¾ú¢;wîtøï,[¶ ŸñŸñŸùư >ă3>ă3Ág|Æg|n2Ÿ¯qøµuÇçﳺºê’ä³zS/í(M};2Âü_Ø7¢l©5K¥=÷‚jS_]˜Q¶TƯü]{Œ\}ࡾ LÆg|Æg|Æg|&øŒÏøŒÏølxTê×>|8""" `Đ A;wîÄg|Æg|Æç&ˆJư:1|ụ̀å̉Ù´iS÷îƯñŸñŸñ¹ ̉`ư:IQQQuuµt6lØĐµkW|Æg|ÆçÆûÜÛá×ö{>ggg‡††öèÑCíKJJjƯ›‘‘qóÍ7ßpĂ ÷Ưw_AAÁeM´bưº‡zÈÇÇgơêƠơ=Oăë#á3>ă3>7˜ÂÂBooïÜÜÜÊÊÊY³fÅÆÆß+ĂK‘êàÁ_₫oæ9sæ<̣È#—µÏ*ơë***₫ùààà;ï¼³¾ßw7¾¾(>ă3>ă³ YáááZ?//OùÍïưñÇ[·n}äÈéÏ;WÆŸ—µÏ*ơë´\¸p¡sçΛ7oæü>ă3>ÛÑçعsg¹ED'Ë&''GGGk}™ÇÁÁAæ3¤¤¤\{íµ'Nô÷÷×̉—u¬Ô¯;₫ǘÙ³M/?444)) ŸñŸñÙ>wt1lذ[-’••eù@90‹‹ûÏ'¶ºZ|6?-dM4馛nÓzơêe¥dưåëơëäPB«ü¼k×.GGÇà3>ă3>7×ù ›ÎZ”••9;;›ß»~ưú̃½{kư­[·Ê!¿vyĂeúê×Iv́Ø!Ăf??¿Aƒ¥¥¥qư>ă3>7£Ï!!!Z?77·ÖYYLN<Ùü\ô™3g®ø+ñl{øŒÏøŒÏuúØå×Ö»›Ÿ+**<==³²²¤“ KJJ233¥SPPĐ­[·ï¿ÿ^ú ,7n×Qă3>ă3>7Ï’ôôtWWWŸ°°°³gÏÊ”œœÓzàÀ₫₫₫cÇƯ»w/ÛÅg#ºä̉æÏSmê»]>«7ơ-NOÅJ=eK•kfê0_R½˜Q³T×̉*6c œªÔ?ê’ß¿ư}Ö.'³üeJ­ß!0>ă3>ăsÓûLđŸñŸñ¹¹¢R¿Ît°Đ½{wí <>ă3>ă3>•úuZbccƯƯƯñŸñŸñ¹i¢R¿N²fÍx`đàÁøŒÏøŒÏvñy°ï¯­Ïïñ¹î4X¿îôéÓ2ÆÉ­û\\\\d|Æg|Æg|¶- Ö¯‹ˆˆX·nƯ/ëÓªÏâ|¤EœœœđŸñŸñÙ¶X¯_—––¸®&~~~sçÎÍÏÏçü>ă3>ăsÓÄJưº”””?\««k¿~ưV®\‰ÏøŒÏøŒÏMëơë~]Ÿ|?ˆÏøŒÏøÜä±R¿ŸñŸñŸùư >ă3>ÿF|qă¯­Ÿ>ă3>ă3>ă3ùƠçíŸ)Ö̀4¢¼§:¹̉Œ\WSg_} ¨oG̉Ô œªọ:$×S]Óˆª¡2¢R UæêkU}W®>Bxè/øŒÏøŒÏøŒÏŸñŸñŸ Jưº]»vu3ËñăÇñŸñŸñÙè¨Ô¯[´hÑÔ©SË/E׆‹ÏøŒÏø\§Ïc†₫ÚûâsQ©_7}úôäääüüü#Gp~ŸñŸñ¹É̉`ưºàà`ß888̀™3ŸñŸñŸ›& Ö¯‹ßºu«töîƯ+ƒí‚‚‚:ŸgÔ¨Q7YÄÑÑŸñŸñŸm‹ơúuµ2räȤ¤$ÆÏøŒÏøŒÏM+ơëΟ?ÿ̀3ÏÈ¿ÚÍ!C†¬Zµ ŸñŸñŸ›&Öë× >|áÂ…̉Ù¾}{›6mÎ=‹ÏøŒÏøŒÏM+ơë¶mÛ&Ăf___ww÷:ÿëX|Æg|Æg½>Oøă¯í†@}>ggg‡††Ê2""¢¤¤¤Ö½2’0`@¿~ưÆûƠW_ư/..®ªªâú:|Æg|n^Ÿ ½½½sss+++gÍk~oEEEÏ=?û́³Ÿk₫û§ÈÈH†ßøŒÏøŒÏMăóÆĂĂõ~^^›››ù½«W¯Ö~}æ̀Æg|Æg|nJŸ“““£££µ~yy¹ƒƒƒŒ™M÷¾öÚkQQQÆ stt”ô₫ưûqØ.>«3¢®“ºx̉Œ\Wµê'g«6ơç4¨¬´ŸƠkJẹ̈ÙˆúÏê>÷‚!’ëZZeÉƠKp«ïLƠ??úhƒ>wó 9rd¤E²³³-˜˜˜§ơ«««ÅgóSĐO<ñÄUW]µ|ụ̀~ø!>>₫{îÁa|Æg|Æg›}ºnúÇ\dó±))))2B6U¨pvv6¿÷¥—^ ÔúGussûé§Ÿ.S?Uê×ɾ鮻îêÛ·ï Aƒ̃~ûm|Æg|Ægûú¬ëüFFFFHHˆÖÏÍÍ­ơ«ºÔÔÔ!C†hưï¿ÿ̃ÉÉÉôóË.*ơëf̀˜!‡ ̉9}útŸ>}êû}7>ă3>ă³ºÏ“#moÔá³ ª===³²²¤“  #µÿ½ú‡~èØ±ă;¤ÿÜsÏ >ụ̈=ÿĐ`ưº‹/¶nƯZf“‰6&à3>ă3>Û×gIzzº«««OXX˜ö‹¹œœí̃µk×vé̉¥W¯^2̀ËË»¬O[¯_wüøq1öÉ'ŸlÛ¶­³³srr2>ă3>ăsóú,¹pá‚å/SL©®®Öu¤ßbc½~ƯçŸ~ƠUWÉADiiéºuëÜƯƯëă3>ă³Ư}₫Äzưºüü|‡C‡i7ƒƒƒ?øàƒú~`hùơ«‡‡>ă3>ă3>Û+ơëd´ÜªU«'Nh7‡ ¶bÅ Îoà3>ă3>7M¬×¯»ă;´ë78ЦM›:çÁg|Æg|Öås\̀¯-x>[‹•úụàÁƒ}}};v́¸lÙ2¾Äg|Æg|nQ)**ºxñ"××á3>ă3>óûn|Æg|Æg‚ÏøŒÏøŒÏ¿AŸ‹gVÇA—9êMƯguƠ%×U¶T×~G½©¯+ơB”êÑQ‰Tº9ÊMÊeKu±¯£©/ª•HñŸñŸñŸ >ă3>ăsSúüpü¯-ôø\G¬/zúôék₫;IIIøŒÏøŒÏølt¬/Z]]]~)›7oọ̣̈:ỵ$>ă3>ă3>ë‹"ưưưׯ_Ïù |Æg|Æç¦‰ơú¢¦$&&7ÎÊó¼øâ‹‰qqqÁg|Æg|ÆgÛb½¾¨)}úôYµj••çÉ̀̀Üd‘öíÛă3>ă3>ă³m±^_TËîƯ»;uêdÛÿŸ‚ÏøŒÏøŒÏ6ÇJ}ÑÏ{à3>ă3>Ûà³ùïaG Åçzc½¾¨$22rÁ‚øŒÏøŒÏøÜô±R_T"zkÿ7.>ă3>ă3>_Ág|Æg|Æg|Æg|Æg|&º|.Ü·O±¼¤úÓ*,•¦ËguÇÔ ª“««liâ3ªMרïwÔK¼ª¿Yº¢Crơ¥Ê;iÍî³úQ³Ty­&Ü‡ÏøŒÏøŒÏøLđŸñŸé³ù§4ü&|®# Ö¯“;vḷäÉ×_ư˜1c¶lÙ‚ÏøŒÏøÜ¼>ggg‡††öèÑ#""¢¤¤¤Îy6mÚÔ¡C‡ËÚçë×I¦M›–˜˜(]»vớÙóÂ… øŒÏøŒÏÍåsaa¡··wnnneeå¬Y³bcc-ç´ƯƯƯ/kŸUê×Ư~ûí¯¼̣t:äââRQQÏøŒÏøÜ\>oܸ1<<\ëçåå Y–óDGG/]ºôr?ÿ¬P¿NÖ[Ÿ>}"##»uë¶lÙ²ú§¾úHøŒÏøŒÏÖ}<đOóçÏ_k‘:Ñœœœ,üjự̣r‡ZƒÆôôôûî»ïèÑ£W€Ï Ö¯KJJ̣óó{ê©§BBB¦L™Rßùúê‹â3>ă3>[÷ùÆë#fÏưªE8PÇăââ₫ó1¨®ŸÍOAŸă3>ăsø,ăaOOϬ¬,éÄÄÄ$$$hlÔªáveœßĐb¥~ƯÎ;o½ơÖ ,Y²„ëŸñŸñ¹}Ö¾tuuơññ ;{ö¬LÉÉÉqqq¹R}V¹ßâ3>ăsKđYûjL×±<Ág|Æg|nŸ‰}|~ÿƠjŒKS¯Dª«©›£î˜®̣êê!¹4ơEU_WêûG]o–zSơÏ•¾b¤FH̃́Í€¥ Ñ“ñŸñŸñù2̣Ùüătë-øŒÏøŒÏøŒÏ—MTê×:tè̃{ïơ÷÷ Û³g>ă3>ă3>7ATê×?~̃¼yƠƠƠû÷ï÷̣̣:}ú4>ă3>ă3>7ÁUsÖë×Ë Ú†’àààZză3>ă3>ă³A±^¿®ªªÊÛÛ[«RrñâÅ:¼úê«u>H^d|Æg|Æg|¶- Ö¯‹ IOOŸ̉"NNNøŒÏøŒÏøl[¬×¯“œ9sfÆŒ#FŒX°`ÁƯwß½víZÎoà3>ăs#}6ßLnÏơÆJư:É={Äp­ ’ă3>ă3>ăsÓÄzưºÑ£G¿ûî»̉Ù°aĂàÁƒMVă3>ă3>ăsÄJưºmÛ¶]wƯu2r8pà₫ưû¹₫ŸñŸñ¹E¥´´”ßâ3>ă3>óûn|Æg|Ægb´Ïï¤*¾êÛ‘àèh»w©6#j–JS/j„ä̉Ô@Ưg#$—¦₫¶ªÏª£f©®²¥êèd©Ï©¾#K˜‹ÏøŒÏøŒÏ—‘ÏæoưÄ ø¬#.\¨®®Æg|Æg|Æç&Èüùó d>åøñăÎÎÎ………µæüî»ïºvíúÍ7ßh7KJJî¸ẵ½{X₫ºŸñŸñŸqØÉÉɤ®äå—_0aB­Ù–,Ỷ«W/GGGÓœ‚óܹse8íååe^= ŸñŸñŸí’Ûo¿Ưü‚AAAï¿ÿ¾ù ?ưôÓèÑ£>ܹsg“ÏíÚµ+..Öú øè£đŸñŸñÙ¾Y½zu@@€Öỵ̈Ë/áÊÊÊ:ç4ù\RR"£nÓô±cǾóÎ;øŒÏøŒÏølßÈđ¸cÇÚz˜3gÎĂ?\ßœ&Ÿ¿₫úë:˜¦O4)))©Î‡Œ5ê&‹8::â3>ă3>[n›æïæwàó/™9sæOøà… ̃{ï=yl}§¬ñŸñŸ›ÀçÂÂBooïÜÜ\±hÖ¬Y±±±æ÷çççtíÚµW¯^²Ûâúg|Æg|nFŸ7nÜ®ơọ̣́ÜÜǛï=qâDNNÖß³g₫ÿNŒđûA|Æg|nvŸ“““£££µ~yy¹ƒƒCEEEsNŸ>ư®»îâ´6>ă3>ă³Í>ßpð°È‡~hùÀÄÄĸ¸8­_]]->[‚–,^¼XúMß|Æg|ÆgEŸÍ7¨»ïÖ1~NII‰º´—9;;[Γ””äååuÙ}9Ø >'/Q,“«₫×Q§W½öïñ‡₫¬ØÔËë2Lj²̉êäJS—\}Ô_”®ueDYi]»s-uÉ•‹*ÿ̉Ơgơ–i_Ÿ322BBB´~nn®åÿj½lÙ².]º\Á́ƠY¿NוøŒÏøŒÏFø\QQáé陕•%˜˜˜„„í—Ι™™Ú7†mÛ¶Ư²eKñ¥\äÚ\¿ÎtIá€đŸñŸ›×gIzzº«««OXXØÙ³g9›“ăââ"Ç{̀á¿S^^̣̃}¶¹~́˜fΜٹsç₫ưûă3>ă3>7»ÏÚ1~_ ^¾±­~ƯÊ•+gÏ‘‘ÏøŒÏøÜB|¾̣bCư:óTâ3>ă3>ă³A±¡~ºÏQQQ‘qrrÂg|Æg|¶Ă|ƒ‰Áç_¢·~ºÏÅÅÅEñđđÀg|Æg|Æg•ØP¿óøŒÏøŒÏM½ơëđŸñŸñ¹i¢·~>ă3>ă3>óûn|Æg|Æg‚ÏøŒÏøŒÏøŒÏøŒÏø\+æk₫¾©øÜL>¿öºƯ+ª†uUŒÔWT­éƯˆ¢ºººÍ^³ÔÉu½Y:b„ùÇOè\m€dPK¸3 ŸñŸñŸñù·:ë‹â3>ă3>ă³±¹¾è¢¢¢‚‚‚ÂĂĂW¬XÏøŒÏøŒÏöÍơEGơÖ[oư\óăzzzjÿq9>ă3>ă3>Û16Ô­ªªZ³f©̀Đ‘‘ÏøŒÏøÜHŸÍ_z\>7ª¾¨$++ËĂĂ£´´´Î‡¼øâ‹‰qqqÁg|Æg|ÆçÓ˜ú¢2¨öööNMM­ï!™™™›,̉¾}{|Æg|Æg|V‰mơE<(8/Z´ˆë7đŸñŸ ơE¿ưö[Ÿ… r}>ă3>ă³¡Ñ[_tÈ!sæ̀1ưgå?ưô>ă3>ă3>]ơEe¼]ë?+_¶l>ă3>ă3>_îÁg|Æg|®ÓgóüùÏøŒÏøŒÏøŒÏÄ̀çç^°mCåφJ¤̉Ô1W̃ˆt­.ơ§êæèBO½¨5KƠÿº® «ê/÷.MGÙR$ÿsơñŒ[Văë‹â3>ă3>ăó•çsvvvhhh="""JJJ~k®Ú³~>ă3>ă³ư|.,,ôööÎÍÍ­¬¬œ5kVlĺ@®Íơë>,;©€€yøÎ;ñŸñŸ›Ñç7†‡‡kư¼¼<77·+Àg›ë× :tụ̀å̉Ù´iS÷îƯñŸñŸíëó˜1c₫ô§?ưÙ";v́°œ9999::Zë———;88TTT\DÛP¿NRTT¤ëذaƒŒ«ñŸñŸíà³Ùk‰ă3>[}±‹S?¿‘’’ué9Êœ¯Œoưl®_'‡Ï?ÿ|ppđw̃Yßï»ë­/ÏøŒÏøl?Ÿ322BBB´~nn®¯¯ïsa†mơëLuÈôÍ›7s~ŸñŸ›Ëg.zzzfeeI'&&&!!áñYoưºóçÏÏ=Ûtú=444)) ŸñŸñ¹¹|–¤§§»ººúøø„……={öJº¶Yoưºđđp­̣ó®]»8€ÏøŒÏøÜŒ>k‡óWä/StƠ¯“́رC†Í~~~ƒ JKKăú |Æg|nvŸ‰yΜ9cĂ£đŸñŸëôÙ|3™9ơ>|núà3>ă3>ăsËơY¹¾¨!MO!Äê]{́ßt8U:FÔáÔž:¹ê’K3Âgƒ œªïvƠßÖ_ØW—\ù¨c{Q®n=ŸñŸñŸñù·{Ö¯Ăg|Æg|Æg«±¹~Ư¥ceƯ»wÏ̀̀Äg|Æg|ÆgûÆæúuZbccƯƯƯñŸñŸíă³ÙßĂù Ûê×IÖ¬YóÀ <ŸñŸñŸˆmơëNŸ>Ư¿ÿ²²2ë>YÄĂĂŸñŸñŸŒmơë"""Ö­['ë>GEEEZÄÉÉ ŸñŸñŸU¢·~]ZZZ``àºøùùÍ;7??ŸóøŒÏøŒÏṽúu)))¸WW×~ưú­\¹ŸñŸñŸˆ̃úu¦đư >ă3>ă³¡Ñ[¿ŸñŸñÙ₫>›m&3ïÆç¦>ă3>ă3>ă3>ă3>ă31ÊgÅ2¤̉{Aµ„¹̣sTàTOJÍÉƠ!ƠƠÔ%W/…ª«©ïwÔÍW—\Ñ1đP₫T'L‰Åg|Æg|Æg|₫-¤yê×á3>ă3>ÿ&csưº]»vu3‹< ŸñŸñŸí›ë×-Z´hêÔ©å—¢k\ÏøŒÏø\·Ïfó̀¼ăNÎoØV¿núôéÉÉÉùùùGáü>ă3>ă³±­~]pp°oMæ̀™ƒÏøŒÏøŒÏvmơëâăă·nƯ*½{÷¶iÓ¦   Î‡Œ5ê&‹8::â3>ă3>çsvvvhhh="""JJJjƯ›ưƠW_µp¢ơÖ¯«•‘#G&%%1~Æg|Æç–àsaa¡··wnnneeå¬Y³bccÍï=ỵ¤——שS§¤¿té̉Ñ£G·pŸơÖ¯;₫ü3Ï<#ÿjÓ‡ ²jƠ*|Æg|Æç–àóÆĂĂõ~^^›››ù½'Nœë´₫={\]][₫Y½ơ놾páBélß¾½M›6gÏÅg|Æg|n¤Ïæ¿ùă˜´´´)**²¾ÀÉÉÉÑÑÑZ¿¼¼ÜÁÁ¡¢¢¢Î9§OŸ~×]wµ|ŸơÖ¯Û¶m› ›}}}ƯƯƯSSSù~ŸñŸíëó-Á!S¦L™m‘Ư»w[_àÄÄĸ¸¸ÿ,|uµøly Z²xñâ®]»;v́Jưn±¸¸¸ªªëëđŸñÙî>Ïœ0QưüÆ´iÓk"”””¨¨(mzYY™³³³åüIII^^^-ÿËÁ¦>ă3>ă³}}>zôè9r$###$$D›››+‡ùµf^¶lY—.]¸xŸñŸñ¹ |6OEE…§§gVV–tbbbdbII‰ö?‰äååµmÛvË–-Å—‚ɵ}N^¢ºÏ@ªoaÏê[ÇñMĐF”•6¨ü²:¤FÔ”ÖƠŒ\ú›¥₫Pÿ\©%ˆ7ÎgIzzº«««OXX˜vơBNN‹‹‹t{́1‡ÿNyyùàª=ë×á3>ă3>æ³æU_ ^F±¹~¼đ»îº«oß¾̣đ·ß~ŸñŸñÙ>›m§3ÇßFư:Ûê×͘1ă‰'ÎéÓ§ûôéSßï»ñŸñŸñÙæØP¿îâÅ‹­[·.++;wîœÜËù |Æg|Æg#bCưºăÇ‹±O>ùdÛ¶m“““ñŸñŸñÙ~ƯçŸ~ƠUWÅÄÄ”––®[·ÎƯƯ½¾ŸOFEEEZÄÉÉ ŸñŸñŸU¢·~]~~¾ƒƒĂ¡C‡´éÁÁÁ|đA}?0,²ˆ‡‡>ă3>ă3>«Doư:-·jƠêĉÚôaÆ­X±‚óøŒÏøŒÏFDoưº;î¸C»~ăÀmÚ´ùî»ïđŸñŸë³Ùf2óÖ[ñY‹̃úụàÁƒ}}};v́¸lÙ2¾Äg|Æg|nQ)**ºxñ"××á3>ă3>SŸñŸñ™à3>ă3>ăóoĐçÂ÷?PÔɼ^JMR=íbÂS­Ù œQ³Tú–¬¾Éï̃¥Ú ̣Ùˆ¥̉ŸQmOÎVmºØWßEª¿YêQ—<á/á3>ă3>ă3>ÿbÇú¢øŒÏøŒÏuøl¶éÍ5ú7î³mơEOŸ>}Í')) ŸñŸñŸíÛê‹Ê(ºüR6ṍååụäI|Æg|Æg|¶ol¨/jʹsçüưưׯ_Ïù |Æg|Æg»Ç†ú¢¦$&&7ÎÊ“¿øâ‹‰qqqÁg|Æg|ÆçcC}QSúôé³jƠ*+O™™¹É"íÛ·Çg|Æg|Æg•è­/ªe÷îƯ:u²íÿOÁg|Æg|®Ăg³ÍdføÍøü³₫ú¢Z~úéû￟ëëđŸñŸ ̃ú¢’ÈÈÈ à3>ă3>ă³¡Ñ[_T˜™™‰ÏøŒÏøŒÏWLđŸñŸ ơ9;;;44´G%%%uγiÓ¦:2>ă3>ăs“ù\XXèíí››[YY9kÖ¬ØØXËyíÀÀ@www@®Ăç϶«ú \]SG}Q=MƯg’³+Ñ!¹zÍR]eK•cDÍRiêE;ƠÅS'W’ëjF8Uß™ª›ÿè£çóÆĂĂõ~^^›››å<ÑÑÑK—.eüŒÏøŒÏø¬è³ùf?|„m>''' ¿Z¿¼¼ÜÁÁ¡¢¢Â|†ôôôûî»ïèÑ£W’Ïö¬_‡ÏøŒÏølƠ硽z 8p„E>üđC럮ÄÄĸ¸¸ÿœr©®ŸÍOAŸ§Đư‡ôïß¿U«V̉)..n±ChÛê×É£^yåé:tÈÅÅEןñŸñÙ¸óÏ‘§§gVV–tbbb´ 6jư^ă²8ÿl[ư:Yo}úô‰ŒŒ́Ö­Û²eËê{̣zë#á3>ă3>ă³ö  «««OXXØÙ³geJNNŒ$/;Ÿm«_—””äçç÷ÔSOÉqÄ”)Sê;¿Qo}Q|Æg|ÆgĂ|Ö®g¨ï—)—WôÖ¯“.cà½{÷₫r½bUU×®]³³³9¿ÏøŒÏơùÁY¦?$”ßwÿ¬¿~]AAAÛ¶mEfmúøñă—.]ÏøŒÏøŒÏFDoưº‘#G®X±BûyN‡tGà3>ă3>ă³zôÖ¯“!÷­·̃T“%K–pư3>ă3>ăs‹J™®â)øŒÏøŒÏøÜ²ƒÏøŒÏøŒÏ-Ö碢"Å™uTÂT®®©h媡†T"ƠƠÔ%×SàT]r#jV>¨£©W"U×I½¨4#$×µêVƠוú₫Q}·ûĐ_đŸñŸñù²̣yêtS‹‚Ϻ®÷¶Wư:|Æg|Æg|¶›ë×:tè̃{ïơ÷÷ Û³g>ă3>ă3>Û76ׯ?~ü¼yód8½ÿ~///ëæá3>ă3>ă³ ±¡~]qqq›6m´ª#’àààÔÔT|Æg|Æg|¶ol¨_WUUåíí}àÀ_ÖçÅ‹:txơƠWë|ˆH^d|Æg|Æg|n0¶Ơ¯‹ IOOŸă3>ă³Ư£·~dÏ=/^Ôú_|ñ>ă3>ă3>½ơëFưî»ïJgÆ ƒ6YÏøŒÏøŒÏö̃úuÛ¶m»îºëdäă3>ăs‹Jii© Âg|Æg|Æç–|Æg|Æg|n±>ïÛW¤ø>ªọ:*‘~°^GS—\½f÷YWS^W:*‘*¿­ê›¼4#$W¯Ø©«©:¹ê’K3¢¾¨úºR_ÿñÔăóøI¦ưøŒÏøŒÏøŒÏŸñŸñŸ£R¿®²²̣±ÇP“„„„Ÿ~úI&–””Üqǽ{÷ضm>ă3>ă3>Û7*ơë/^,S*krÛm·ÉM™(8Ï;·ºº:;;ÛËËëܹsøŒÏøŒÏølß4X¿nçÎ&ÀeüúŸñŸñ¹…ø,ăÆĐĐĐ=zDDDÈÁ~­{·oß.jơë×óر_}ơUKöY½~Ư?₫ؽ{÷÷̃{O^¯ŒºMÓå5¾óÎ;øŒÏøŒÏ-ÁçÂÂBooïÜÜ\¡lÖ¬Y±±±æ÷VTTốÙó³Ï>“~ZZZdddKöY±~̀6nÜ8íµ|ươ×:t0Ư5ỉ¤¤¤¤:5jÔ¨›,âèèˆÏøŒÏø\‡Ïá·˜ZüuA¶ù¼qăÆđđp­Ÿ——çææVkD:zôèŸk¼]§8¬_'8Ë ù–[nѾ,--mƠª•é^y±|đăg|Æg|¶£Ïă¯ưư_₫̣—D‹Èa¾ua’““£££µ~yy¹ƒƒƒŒ™M÷¾öÚkQQQÆ “¢ ¤ơ–§húX¯_wáÂ… &Œ3æüù󦉮®®ÇÓú~~~zë×á3>ă3>[÷ùO½ưDÚM9qâ„uaÄ𸸸ÿü¹ºZ|6?-cÑ«®ºjụ̀å?üđC||ü=÷ÜỌ́‡ĐVê×ÉÄ   ï¿ÿ¾¸&Úk5uêÔ|Pè~ï½÷ä±ơ²Æg|Æg|n‚óÓ¦Ms¬‰tRRRd„¬M/++svv6Ÿó¥—^ ÔúGussÓN ´äX©_wíµ×:˜åÖ[o•‰ùùù]»víƠ«Wvv6×?ă3>ăs3ú,̉î©É‘#G222BBB´é¹¹¹¾¾¾æs¦¦¦2Dë˰ÓÉÉÉǜÀ•”‚‚~?ˆÏøŒÏ-êûÁ OOϬ¬,éÄÄÄ$$$h?©Ë̀̀”Î?üбcÇ;vHÿ¹ç>|8¿éÆg|Æg|nŸ%ééé®®®>>>aaaÚ)Ùœœí̃µk×vé̉Eưûôé“——‡ÉøŒÏøŒÏ û|“©Åû_טß^¸pẠ́—)¦TWWÛvøÿ[đyû§Eï£ú¶i„äú07BriF«kÔ›ºäÊźuÔ”ÖSVZưs¥^ưX:ê…uí Ô%W_#$Ÿm¸ÏäçêIøŒÏøŒÏøl÷Ø\¿ÎôM¨LÄg|Æg|Æg»Çæúu%%%3gÎܹ́sÿ₫ưñŸñŸñÙˆØV¿nåÊ•³gÏÎÈÈÀg|Æg|ÆgƒbCư:Ó”́́l|Æg|Æg»ùbjñ½ưñÙ†úuê>GEEEZÄÉÉ ŸñŸñŸU¢·~ºÏÅÅÅEñđđÀg|Æg|Æg•ØP¿óøŒÏøŒÏM½ơëđŸñŸñ¹i¢·~>ă3>ă3>_yÁg|Æg|Æg|Æg|ÆçËÉç^×›Züï}ñŸñŸñŸ‰ÉçÖ)~àƠ+!¹>̀•ÍÑWà´y%×Ơ ØCU:¬̃Ô?„ºÔWoFP¦₫œ̉ÔƠ5¢f©z‹œˆÏøŒÏøŒÏøLđŸñŸñÙ±¹¾è¢¢¢‚‚‚ÂĂĂW¬XÏøŒÏøŒÏöÍơEGơÖ[oự=ˉ§NÂg|Æg|ÆgûƆú¢UUUkÖ¬1•¹ëƠ«WFF>ă3>ăsc}î̉ÇÔâ»ơÄçÆÔ•deeyxx”––Öù_|1Ñ"...øŒÏøŒÏøÜ`S_ôđáẴ̃̃©©©ơ=yffæ&‹´oߟñŸñŸUb[}у ΋-âú |Æg|ÆgƒbC}Ño¿ưÖÇÇgáÂ…\_‡ÏøŒÏølhôÖ2dÈœ9s/¥VƯ~|Æg|Æçfô9;;;44´G%%%µîÍÈȸùæ›o¸á†û   åû¬«¾¨Œ·₫;Ë–-Ăg|Æg|n >z{{çææVVVÎ5+66Öü̃sçÎɱÿÁƒµoÜyäÆçøŒÏøŒÏ ú|¡ơµ¦ïu­m>oܸ1<<\ëçåå¹¹¹Ơº­uëÖG‘₫ܹs£¢¢0ŸñŸñY—Ï÷uî–™™ỳ"åååÖßÜäääèèh­/3Ë~EE…ù )))×^{íĉưưưµ41÷ùơyEï£úÇx÷.Ơ¦«b¤ú¶©C]N *[jDS_Tc{ü„bÓơÙ6âC¨¾ èÂ܈¥êư®;öùæöÇ7Ù"ü±ơw!111..NëWWW‹Ïæ§ ÏŸ??ỉ¤›nºéñÇïƠ«—•˃ñŸñŸñ¹ñç7¦M›æXéÈđØtÖ¢¬¬̀ÙÙÙ|Îơë×÷îƯ[ëoƯºµsçÎb8,ă3>ă3>äóÑ£G÷ÔäÈ‘#!!!ÚôÜÜ\___ó9-Z$ƒpósÑgΜi™TÚ\¿îđáẶđ;wâ3>ă3>7£Ï橨¨đôồÊÊ’NLLŒ¨%KJJ233¥SPPĐ­[·ï¿ÿ^ú ,7n\‹ÊÚ\¿nèĐ¡Ë—/—ΦM›ºwïÏøŒÏølŸº˜Z|çn6_ÿœîêêêăă¦ưd#''ÇÅÅÅ4„8p ¿¿ÿرc÷îƯÛ’Ï6ØP¿N:EEEÚI› 6tíÚŸñŸñ¹åø¬ưđỤ̀—)ÿ} OÙÏ->©_÷ĐCÉJ¡¾'¯¯>>ă3>ă³¡>_±¹~]EEÅóÏ?|çwÖ÷ûîúê‹â3>ă3>ă³Jl«_g:ˆ!÷æÍ›9¿ÏøŒÏøl÷è­_'Ù³g›~’””„ÏøŒÏøŒÏFDoưºđđp­̣ó®]»8€ÏøŒÏøŒÏFDWư:™¸cÇ6ûùù 4(--ë7đŸñÙ>{˜Z|g|nLlûƯ >ă3>ă3>óûn|Æg|Æg¢ËçÅIEºª&Ú·`£úF$Í ²¥F8U¯Yª^ ơ—j¨Fø¬₫œzj±êx]ê;SeÉ¥©¿±êŸ+ơ»̉Ô·uŸƠ·AuÉ»tÁg|Æg|Æg|&øŒÏøŒÏølÏØ\¿NKYYY÷îƯµªPøŒÏøŒÏølÇØ\¿NKll¬»»;>ă3>ă³|ngjñ½9¿a[ư:É5kxàÁƒă3>ă3>ă³±­~ƯéÓ§û÷ï_VVfƯçâââ"‹xxxà3>ă3>ăsƒ±­~]DDĺuë¤cƯ稨¨H‹´oߟñŸñŸU¢·~]ZZZ``àºøùùÍ;7??_ưÏ ÑøŒÏøŒÏø¬½ơëRRR₫p)®®®ưúơ[¹r%>ă3>ă3>½ơëL±áûA|Æg|Æg|ṼúuøŒÏøŒÏøÜÚÔâ;{ásÓŸñŸñŸ[f&L˜ô'…hû¶Ô·U[V¦¶oŸj+ÊÏ7¢fnVlï¤*¶Â÷?Po¯½®Ú’—¨6ơçT~Qú^×gÛUÛ¾}êMưUÿ\mÿTGSß ^Ÿ§ÚÔ·AƠæå5Ÿ[f₫ú׿j—ê™§CM:)¤]»vmÛ¶U™³cÇÔ"sÊü*sÊ_—eP™S^QëÖ­Ơ@qÎ6mÚ¸¹¹©̀)³É̀v_yQ¼Y¼Yê‹zûí·×Ú̃ĂÂÂê<›Ï-3S¦L9räˆÊœï½÷̃‚ /í=z´âÈœơư/äµ"]û‘Nƒ‘Wdú¹eƒ1b„âœ?^÷±¡ed6™Ùî À›Å›eÄ›ewŸ«««/^¼ˆ®ø̀&ϛśƠ¢|®ªª4ỉ /¼€®ø̀&ϛśƠr|̃½{÷Đ¡C;tè€Ïø̀&ϛśƠ¢|~đÁÓÓÓăăăñŸÙäy³x³ZÚù >ă3›um7hĐ 0‹lÚ´ Ÿ›8Ó¦M;zô¨Êœ«W¯~ă7T欬¬;v¬âÈœơV­ùë² *sÊ+’×¥¸#GTœóé§Ÿ̃¾}»Êœ2›̀l÷àÍâÍ2âͪåó…!Ơu¥¾—éXó7Ÿ !Ä^©å³úe´§&æ øL!Íî3ç7!ä2 >B!„B!„B!„B!„+5ÔnåƯ´c.\¸PßOÏ~# PgÔÙG®ø?~¼U«Vùùù懺dÉ’ZsêªƯ:₫üAƒƠúCÎÎÎ………¦)‚ĂĂ?|Ă 7ôíÛ÷ƠW_µ×¢>ó̀3Ư.eüøñvYÔ &\c–qăÆ5ø´²`/¿ü²ù”×_½V…„C‡Ư{ï½₫₫₫aaa{ö́iÆwSLx́±ÇÔ$!!A½8ƒ +SËwß}×µk×o¾ùF»¹k×®nf‘G5ñ;vḷäÉ×_ư˜1c¶lÙbó[ ²VÖvjjªLl̀g@åƒwàÀ¨¨¨   đđđ+V˜ßµiÓ¦:cˉ¼wæêÊÖƯ¶mÛ²²2óyôÖn•O£“““éĂ/‘ÏŒ(Wëc3qâDâÇ”-å³Ï>³Ë¢ÊGnưúơå59₫¼]UG{Âââẫ½{§¥¥5ø´‹/îß¿¿ùÙleë3Ÿ"»yóæÉnÿ₫ư^^^u₫ïBMónỂÊK®¬Ém·Ư&7mûë*+S"û‹^½z9::æ\´hÑÔ©SË/Åæa­Í 0mÚ´ÄÄDmOѳgOZ·u®í’’’™3gvîܹÖÇFoT>x£Fzë­·¤sâÄ OOÏS§NiÓeƯƯƯQ±åäw̃‘aƒéæsÏ=]kj·̃~ûị́T¦›²³~ÿư÷Íg¨¨¨øá‡¤sîܹN:}̣É'vYÔ;}ñŵPj̀¢̣è£ÊˆWå9寷iÓæđáĂÚM鸹¹É+5Í ÔË gÏƠn×Úˆ̣Ưܹs§‰Ñ©W³aej•Öd…ˆE¦?:}úôäädÙ›(v³ûÈ£^yåí ÆÅÅE>œÆ-@k{åÊ•³gÏÎÈÈh¤Ï ~đdD´fÍÓYÙOÉƠụ́QYºt)ăç®´k×¾̉nÊávfffsệyơêƠZÿË/¿”m¡Îk2•:AO>6_T9h•AÑu×]çăăÓ¾}ûÍ›7ÛqQå£.[®Œ1×€B>û́³Zÿé§Ÿ¾ÿ₫ûkađöö–#MíTl*'yŒ~7åX¦{÷îơ?³2%æ<ÊîÉ·&sæ̀ì°möíÛ×§OŸÈÈÈnƯº-[¶¬iÀrmggg7̉ç?xæÉÊỆđđ(--•¾́²ï»ï¾£GâsK‹Z₫íoÓ|åóY•º|–Q eµj̃²Å=üđĂuζbÅ{î¹GD•cüÆ/ª*ª̣yñä#ªX̣QqQå£.Ÿ|ơµºqăÆ¾}ûj}9d̃¶m›åú ‘íḅäÉr˜9₫üæ}7e=hÿ{c₫ºâʬţ,̀Ö­[¥³wï^₫4ñ$%%ùùù=ơÔṢÈ€Öæóê PçÚ¶‹Ï ~đL‹Œ´£¶“'OÊ>E6|nÙ²e‹ ]¤#Ÿ¥'x¢¾ÙôÖ6™9s¦<›øpÍ5×|₫ùçV挋‹›1c†Ơt&PqKWYTù¨øá‡ê/_ọ̈ùÿâ‹/dÑ–¹VΜ9#¯zĈ ,¸ûî»×®]ÛŒï¦p1v́Ø[n¹Åæ/ơ¾ïæ[ùàÉ+uøï˜ÏÄ> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 503 0 obj << /Length 609 /Filter /FlateDecode >> stream xÚ¥UKÓ0¾çWX\H¤×¯$ÎEⱋà„Ë¡¤­Ô4K›–í¿gÆ4N)bªF¶'3ß7/»‚-˜`ï"ñ—ơu]̃J%XÁËBHVÍY)¹…]®snuɪ)û¿L̉Léø!‘ñdr'2‘|«>€»6»Ê¸È,€;Ççd2b0\iƯ[l q— SÈ„“̃ó!2’¹~:,ш¥EÆ•-XZr“›Q‚-‘¾I‡œ'“ËYÆ ÈœTèñä¤LÈ­XüÂ3g#æ?•đ¿SH¢Èi•-îí@ªGBÀó™ú6¥;Z¯ƒÔÔ†ö”<êV$h_|ùrCv á-©h÷ äóÙdå^Q]»¡)s¿ơA»íi\;âëf.ggºZ¸¤ư÷ÀlKavèÜl¸í‡ úô¤ñè«´§®´Ä10{¼':¸ădÖX§Ơ P5Ơ~%©gÛ(®ƠˆßAF7U$H0ÉàrSđ> stream xÚ́XW†7¿¦¨ÑÄ®ỗw—̃{i JW¥£"ˆˆ(¢¢¢`G±wcÅ5b/»Á *î“Íî².Es̃ç><³³Ă”»ß|sî̀sY,AAAAAAAAAAAAAAAAAAAAAAAAAAAA₫[¬]»622244tÍ5Ï=ă³äŒ3rrr8f₫̣Ë/ÑÑÑ7õlû<|øVµmÛ6>ËÀ₫ñÇ‚¬íÅ‹&Lđơơ]±bûük×®åååÍ™3ç₫ưû́óÏŸ?qúôé®yçΰŸ÷îƯëà_ªă·Ë‹“'O.((øB*A¾>¦NJ£Ñ D§Ó¿ùæ…÷ïß7·°®®®††Ç̀üü|XĂÑ£GÛ¾3—/_†U¥¥¥5·À‘#G¼wï^AÖîksww‡ 5ó·ß~ƒẮׯßÏ?ÿÜ¥K—sçΑùoß¾ƠÔԄ嫪ª>ºæiÓ¦uëÖ ü¼ƒ¬¬¬,ØCjŸ;₫G*..nddôÙwA¾V”••eee©3«wï̃à~/_¾|Ú da¨1Êߨ麺:ÔáˆàÏœ9s ˜‡z£ÂN¸@åĂAAkâúơë<­½ªa»đ‘¬ €:ÿơ×_©ư‡‡oa·ÉÇßÿ>’=„‡Cƒ°3¤ÑÁ~DÔ‘ÂW°üúx"bbbHY^^n@f‚ËÁL p0˜#§¶ªª*ø9LܹsGDD¾êÚµ« ñg0F2³W¯^ä6E\\„©L&æĂYLmw„ 0ÇÊÊ ¢Y˜đ÷÷çđgđ1ˆê‰g éỈ>°dÉö£˜7oÙU²Û`¿ăǧ户Éåܾ"₫ ̣í·ß†††̣ôç±cÇÂ|ØOØÄ¤I“Ø-.0m ø ÎÿđáCr¤°đ?₫H®YĐ$Èœ¬J^^L‡……ớÙ₫ñ»ï¾ƒåaÓpe„ÿ‚™ÄÀá¢É`0 ß¾­^½}»<«̀J.--…‰””v†Ǻíí©vü¦ĂF¿ÿ₫{X^MM “ăˆ¨-Ư»w‡½%‡v́Ø1âÏđÓôíÛ~bØ“•+W~t'7lØ×ǪDEE¹¯³‚P€ÓêëëƒS&$$"1âÏ`&UTTÀôœ9sØưyîܹ0sÍ5ïÁâÏ+V¬€ 8åŸ>}ª££###Cüf5 â1öx‰ø3øx˜3X\ØưYII Nüƒ‚3ƒMIJJBÜEîÆ¬Zµ ÂU A/\4ÁôÀäÁ¡ơÁ~ đ€‹B%_¸p₫Ú àŸđ7//&’’’`&l‹ăˆ¨-‚¯†‡‡“8æÀ|âÏ0½ÿ~hÀvMLL>º“0qăÆ XyFF́ ƒÂMá<…œPğᜅ¯àä{´´´d÷g›₫ưû“; ‰‰‰ÄŸI(îêê:lØ0:Ó`SÄŸ¹ïF†“¦Áºaº¸¸˜̣g¸jÀĈ#ÈÂ$²÷€e`bß¾}Ü7À7õ Óp WWWW'·2`>uŸ¬ÛÀÀ®Ë–-ƒà¢ÑựË/óçÏ‡å ¨v@ Ç»µÂ…ŒÚ.Ϫ†%É% VÅqÔ§OŸ&æ- XÛ­[·`&ø$˜$\ªH̀qDÔ¡¡~ Ơ sbcc‰?+**R7`µóßI¸¶’`.P·́·á¸g §I@@u[Nˆ$‰?CĐHnC€çăăĂîÏ~~~ĐÚ%ñ0¸ñ眜˜˜2eJÙ p"₫ kæéÏÄT!6#Ñ8åÏpÚÂÉn@ọ̣̈‚ù`ÚÄŸ9îW,^¼fBœÓ/_¾́Ö­Øos₫ ŒŒ Å½|ùrª±Oû7°çỘ¤¥@†ø. ºsø3ø YØÔÔbrÛCàM1 ²€°°0»?“%Á´!Ø&nÉîÏ?ưô©aøà ̣êƠ+j»<«–œ8q"9„sGª¥¥%!!áääDưúơƒßtƯºu¤a?"ÇQ[ưᇠúØ1̉B!₫LƯnΟ!2„Æ8Äœ3f̀`ưûù ´…­­­á+¸|˜››“`7ÂîƯ»edd`>øRRRRcccs₫,--Í*ĂQP_ñ¼ÿ ,X°̀–Ç#07ƒ—ÜK‡Ư¶°°€º…™;v́€…£ppp›ÜỴ̈h¢ṇ<½kGUC‹CJJjÀ€Po°Àwß},̉%ƒ~5¨=êA@DDÄ÷Mº***jΟáÚGDG!&&GGü®ézzz0VKîVñÙIVSÇXœêÄÍÍíáÇx" °a·PâÏà™oß¾åó2D’Ü]¤` ﮫ«{ö́øFs‹ƒ‘F1xNsë‡ùÅÚ 0|Á‡ă¶*ÔÉăÇ[´E0gƒaâÁƒÍơH°ªù»Ê}‹¾¹Jxôèϯ rZ´“°Q‚åÏŸn”?cmó÷gAv L*//¯­­ưt›øơ×_áƯävÖ¯_¿uëV¬AAAAAAAAAAAAAAAAAAAAAAAAùZyö́Y}}=ûœ›7o’‰'Ođü—1cÆ̀Ÿ?ŸLïƯ»×ĂĂƒúêÁƒt:c¬=X!ûÀ|°Ej Â{÷îáO€ „'555ZZZÔÇ«W¯2™L˜:t¨———™™Ù/¿üÂñ/§N266&Ó›7o¦¾‚áûÛÎÎnÓ¦MÔÇaÆ­]»N"SSS___mmíóçÏă „ˆ.^¼H¦'M4{ö́'N8::ÂÇ£Gº¸¸pÿ‹¦¦f]]ƯŸ₫©¤¤ÔØØHf^»vMQQ‘{ ëƠ«Wûùù‘éçÏŸKKK¿}û655µ¨¨æ9rdé̉¥ø+ ¨gá&//Ô Eä£G A]³fMhhèÔ©S¹ÿ¥°°0;;{ñâÅ jfrrr~~>÷Âõ¼‘%Ăô¢E‹`ÂÄĤºº:..BîSAPÏ€z!l`5Ư|ƒf L<|øĐƠƠ5 @WWwÅd1ˆ..]ºṭäÉ}ûö­\¹RVVVEEN„̀&fÍ%))YPPÍChBB›ṇ̃åË/_¾$ÿ»dɘ€&¬&äååƯÜÜvï̃íááAƯưCÔ3‚pàíí}øđá#F́Ù³>æääL™2"„ôíÛD :[[Û°°°èèhø8mÚ4mmm&“YUUܱcÇÚµk₫ùç¹sçÂÿ¦¤¤Œ7¶±±6l¨B}}ưóçÏ›’-êèè|íÚµ°°°đđp===ï&̃¼yÓ)v~Í5‘‘‘¤%èîîîââ"++ËúA=w°'MJÓƠq^^₫üÙĐ F[ØäÏÑyyy¨g¤E466.[¶ d@i€ưqvg‚ ggg< mH=GPϯçêêjyí’¢[`Îå¯ ¢ÓhÏÁŸ¿ù¦̀×7ơŒ\£!̀ˆ‹‹{đàAg?–›7o92&&ÚƒøË¢?Ë@Ü₫×3Á̀Ă`ÎP²§éÛ×̀¹©QT4C=ÿ7áó₫pçÎöÔû₫ưû²²2¸Foܸñ«©8(< v‚F"||úô)GV^ö7 ÆHïSơÜ.444¨«ëEZH̀ÊđÀ¼o¾ơÁŸë{ơb ÿ›4÷ 0õ<{{{2}äȃall¬¨¨û„ÍÜ€h!đ˜6mÚ¡C‡x¦ù%ÖO?ư„‘ ê¹qwóru‰¡̀ “áD£múàϬîƯ jkkQÏÿAx¾‚ÁÁÁ”ơơơa~DD„ªªêöíÛ¿ÖÚ€zHJJ‚\YY™#Í/ùÖÑÑQ\\ơŒzn/22&kk9’g‚¤”-¬0@…Fk¤ü¹GÑ………¨çÿ&ܯ ±̃œ:wî¥g)))??¿E‹egg¢=fÖo¿ư=ưô)kƠª¿§=bmỤ̀÷ôăǬf̣Ö´›EçææêèèÄÅűØ̉üÂ4Éâ U„zF=·‹7õ,/§U\x“=xN¸ư§^6”9CùßÿæŒz₫oÂư₫̉sMMMÏ=ÉĐ<Ë–-KLLlÇ­¿}ËZ¼øïé;wX3füăĂÔX@Oü£mhçQۇ囂£ö§¸¸¸W¯^ׯ_§̉ü8qÂ×÷¯7mQϨçvÑó7ää˜S&d7g(“h´ ́₫L£ưÂdZ¡ÿ›đ|̉óùóçmmm………É̀yóæñ÷¡¥”—³ÈC‰—/Y­Nú²jJ»ø—.±Ú÷M)h9;;“4¿ÚÚÚ#GLIIªˆ~ưú5*ơÜj=744hhè9ŸĂœ¡HK̉h§₫íÏw{÷VC=ÿga]ÏĐ,̉×ׯ­­500¸rå ̀ôññÙ·o_ë¶rïë₫ư¿§©£½8{–Ơ4èÄßñIÛÙ¶m›‡‡G=nƯº¡É¼© yyù¥K—¾…8 A=·VÏ>Nc¹ÍỹܨưÛœÿ*ƯºiC¼z₫oB½?Å>³ªªjÀ€d„hZ[[=ºƠ[IJbuLC ¢¶iù/¥¤¤ Æprr‚†!5Ûƒ¨gz~ñâ…¬¬fî}\\¼ øˆ$33S[Ëaù̉Ü₫½ª[77^₫¼páBÔ3Bøư÷ß]]]?Î>³InÙ›{Ö˲¡áï‚‚¶Ko×®]̃̃̃ơŸô©$̉Éơüüùs u=7×$Yi;'ÛJmQ"BjJúC†ø—••±')Úºu«¼¼VQa·9C±²M£ÍâöçÿưoÎÈ‘£PÏë¯g‡ ²…ê3Ñ*ˆzư•uâÄg;؇‘#Ûa=Ë–-ƒÆ̣'Sé¼znhh000ơöJ)™÷»ˆ°Z| Jlä»áCÏÚY/Rg f¨2CCĂJKKååT33öó4ç••ïD„Ui´ÛÜ₫L£í̉̉²C=#¯_¿/£¼µC‡₫¹5÷y¡F`;¾MëÉÍÍÇ7­PÏÜXYÙ;;wU7ơ÷>J,*Ñ£^ûûµ6ŸûóỎ¾><ÍỀgú÷ÓåeÎPnö막z₫ÓØØ8~üøœœœ6®§¸˜ơ¥ựK–°Ú’Ç—tơŸ6mờ‡‡·•ePạ̊â±>̃“µ48ü™*&övQÍùó¨ˆ̉o»4ăϬnƯTï³]$PÏÿAJJJ  Öêÿ’sr¼Ï"oñ¶z̀tDDD{|z 34đb̉—–ºKFÚªu₫¬«ăG£•7çÏ=z ­¬¬D=eđÉÓĐĐÀ₫˜àÊ•+ööö¤ûMëHNîrêTëßj©««ƒ*âH†@e›yö́Ù‹/Prÿ='&&ijØ-Yô˜Ưc—”=¢ÇF¾m©?ƒÉ¨B£½hΟ¿ư6—¼Q‚z₫h.c̀»wï†J5pࣿ¿¿¨¨èÑ£G[º êX§¸›;¹kWëÿ=##càÀÔG*Û̀ĉơôôZ—*é\z:5‡É4[PrÛi5ÔƯÜ×·ÔŸ33ôécÖœ97ùsj—.?°¿‰z₫ à™1æÑ£GPóÚÚÚ”SRRú÷ï///ß =wüM,âââ6Sò¶¸e÷×ßsçX­j²OŸ>óæÍ#I¶™'Oøùù±úY‰ˆˆ ê¾n=ƒI*)é7×G.$hC%¬¥₫0tƠ¼?ïÑC-uâo ÆQQăPÏ_Üc x₫üù¹sç=ƒƯ™››_¾|ÙËË«znË廥¶œ`ll¬©©I£ÑD„%ơt [Ưo¿®Ơ:ƒOMM•““£`Ï6C̃ 2%÷ëyß¾}ß}÷ƒ|s·‘s²IJµÔŸU”mi´Í˜sc—.ÎC}‹ç²rsêhûØÙ9½zơ ơüuĐ\Æ¢gh “,‹­Óó§æÂ… Ф522̉̉̉‚C8tè(G^~ötă‚ù;­­ƯUU5³³³¨v©À\¾Üưùă?„……cbb¨l3„Ơ«WÛÚÚ;–J~|ezçWP`æçí54đ1|O§­\̃ "̀ˆ «ÜŸ–>0€̃|đ¼zĐ@c0gRæ̀zmg› ÊÔå~ăơÜi.c ÑsYYÙĉÉÁơ ^gFMM;ïê›7o¨nó£½}tÔƠ¡Ư Í®#GPY6õlddwî,‹”Ê£̃^¡ÊJLĐ÷(ó=VôÓ÷öööôô´°° ÙfØëHM»× ̣èùéÓ§ªªÚ',Ư·ơŒ„8³|Ésmjle^̀ËŸgóôçäñ›{ơ²oÆœŸuíª½Ỵ̈gRưçËȨrËơÜá™1ô í'''jüÁơüä «½.ªàÉTÇNˆ“¡ÑºsçN777e¡CCC¹{ÑÇÇ=2̣gR6U_ I”•QVW׃pZđ!'*+Y´lŸ·mÛí¾Ÿ₫™$₫ª««311!_©««³£„|5z65µÊs&Å×'ÑÚ*‚§?³TĨGpvuO£¥ñôç.]¦ÑU¼9̀™”Øq{¤¤Ôá¨QÏcà—…‹fnn.5§#ïoP¦Y³f={–Ơô0"==]OGÇÜØxñœ¹.]9…Ÿˆ Ư ëk9üÊö­×…„¤²³–Å©ªê2ÎN®-̣j!Ùf̀̀̀Èo¬¦+ÖÖÖ3gÎD½}}zđæè´{Ç;ʟ׭¾ö8+¯–ÛogϺ &ª-øư I ]­–—?_ÿî;fΔÛ<ưJƤḲrFÅÅ+[qsơü…~ÁÆư¾‰½u+kúô¶ϰQêÅ"­¹3f(ÊÉE…†̃¼¥ñ̃ư÷÷@áéÏpn̉éÜæ ÅĂ=,8(‰Ư®gÏZ¯¦¦÷—W;»6¶ùVsk\ÂĂĂƒºë±¾0ûUêỵäÉzºv[6>£̀™”¸˜u5n¿]½â½¤¤vȰ+‚øóœÙ— Đä}D¸oë¡;; .œ̉l đÓ]¿ÎjK²X̣ëC@ËƠ0''GATtbL,±eªđôçåË+l¬½¸Íyé’̣̣§O½åiƯ;¶Ư˜µô‡ºÆsÇêêX11¬gÏZÜĐ®ªªB-}Åz...fĐơV­øĂœ¡́Øú®b’”°Û¢ă ơ²ñçè±Ưºyṇ̃ç={j̀ÍËÇœE„Ơ#B×ÚXÇL˜0ơü5ñçŸ:;;wpêW:÷I§OŸV•W¨Lähf&ˆ?…''Ïå°_°e]kp`æ eeåqYYơI©»¬,ƒ|}‡¶×]¸pÁÛÛÓ›­z†_¶wï₫“Ó×r›3)3¦m—•Ñæö礄 r2N‚ø³¹Y86—Ëœßvéb="péGͦS'œQ× ú„£¿/^êÏ+–¿b̉h9üù›oÊEE,1gRôuưÚëE?ÔógçåË—®®®-z,ûô)kùrV ;¯ư͆ û*"<<ÜÅơư}P¬ÔÔ÷®«âïÏ'OTW3à°ßC)(h®Zqâ£æL;t£¢¢"îư*ÉÊjÙa;wnÈ!í½ _]\\”®Ú´ñ‹^ZvABœY¶°Ă¢••­|Ü÷ñ÷çé9'ûơ3à uíª™œxB@snê˱W]Ươüuq,ƠG´˜5kÏùp™Ö£ÓÿX_Mü9+$4:<‚¿?Ï;ÏÍ-˜ĂGÊpr& 9“R0뢜¬Ï7ÄÀ̃ ”Q£F}ïơ Ûx”²ưÜo÷Ügñ·èÀai¦¦ó’­©ĂߟĂBæuù_0WŸº ơa‚›3”ytËM›6¡¿wuØ[ÙM/pϬ¯¯WUTüev1g({̣̣-´uøû³‹‹×̀«Øxㆠ22̀ƒûë7gR²3ËÈ0NŸ>Ưö\µjUÛ“ #_W¯^íèèæL ‹®®ª—‘Ñœ1í»À2̉öJKYđ÷g-M/mƠ¿ưùÂ?0ssê7gRÂCV™›Û¶Ë£?#Ï=sppà~ŸÙÙ¬¦„-ăØ±c#¾±]ÓŸK °°¤̀ÊÓM[T$$^ÿ~«9†=——W9u¢Ư„́ÆŒÜRs₫đg¢¢w Êúú–¥Ơưă?±3̉W¦g?¿¡ù³R₫̀ߢ'Œ_Ê [²««|ñ3!!zô¨†æüøWNцÏN“›1gµæ̀JÃKmñêù ¡®®ưÆÑÓ§O©l'?&̃¸qcZZ|üS+~¨«W¯:uç›û°W†ÚÚÉ^̃VtƲ‰)́íed¼r~is₫¼wï^]] v^0§’¢vë̀™{»1ƒIŕáë׬̀LA[… àđ°Ÿ‡"sîß¿ÕR‡ĂỔ¶%̣ÅèYUUưhÍUv&-'Çä¶è]Ûߨ«Y‹Zή.mo'»UÍù3ؽ{[ü;x̃Ùûgí–FÎT:¤ĐÂ܉û@PÏ_vvv́÷ † FÆG€ZUTT$÷”¢££ <==ÍÍÍÙGdèêëëơ55Ó|‡¼[¹z_F¦†”Ô›»(.3ÂwHs₫œ™™C™đ©¯ƠƠM ̣«Zgγ.JIjÉËë¬_¿¾ƠG.1hĐ %K–dee ËÊÊ‚¤×¬Ycbbâååǻ́L^›E:‘÷íÛgblÁaÎü-º ¿””æåoÙo/3”ƒ›óg?ß,-†Íœ_wíj:2¬ªu朑zQKÓođ`¹68êùÓ±zơj’¸ơï{̉̉oß¾Óét’ ÷É“'111$QRRâ¿ÂÇYÍw¾höú[SSĂst`øJO]}@ăª5¤„ZX$ù ¥üùDÉ|:£966¶(_r€̣áô´R}»V˜óâ…|}2ÅD™>̃éđ1>vµ…E›nÜEFFæååA+ûÍ›7{ö́qww‡™zzzd8øøø̣̣rgç̉sHHÈ”)ù<ư™E;؇¹»gï!!nĐœ?+(@đ|€­O]©”¤]+̀yæôG.™ÂÂL¯4 q¥¶W;êùơ)!!A^ö\´hQBB«©ÏùüAr@ ˜ M&Î= AÿnßÎÚ»·eû°eË–3¼ú•©êâéàH™3”+s ™bbwÖ¬%₫ܰcSRêAíyn¾}û¶¢"“̣á_ö̃—“SçÈÂñQs^YñvlÔ2II-#£ªCỘ̣—̣rÜ9:víb<)Đ!Ÿ:uÊØØ¹ưû÷rt ñđđX±b³séYLL:((̣̃ƯÆYtå²k̀̉’»T÷fQæè‡Ü₫<¿èöÀL¶àù₫·ßª§M¬m‘9Î~4|™˜¨–‘áßz–’d4—Âơü% m˜033»té5Ÿè9..d•©««SQQÙƯÇ~­¥ªªJ_A)*¶99…Ư¢sü¼ML©:ÜÁqÎÔ©ü9“̣ç 6˜:QV4"ÉË#¼Eæ8§øọ́”TO;{n;&&zl6±âukÎÈʨ­y. 9Ï›{ĂÊr¤¤„fTäR @À##Í„r«®°°œÄĐĐp̉¤IỒäädhâͺΨghÎ_¹reï̃½&&ÆÆÖ{öœĐ¢7W?•“ÓÉÊ<ô!½ÆrEy/nv°‹¡Ñ²?øó™nƯTósŸ hÎY7Œ G‰ñĐ³®Ó¾}ûÚ~ø¨çO‡‘‘Ôí̉¥K9ô¼eËh›Ü¾}›N§Ÿ ©sô(«E½ƒaưÓ¼ ¤®!'÷lé20dn‹^g¢¢BüùRù2Myyûïß¿WUƠÚ²ù Xñog̃[˜{&&ä bÎåK䉩ºº$V.oàsSÚƯ5>)i|«ëüÉ“'ºººưúơ»üa‹”””°°0Œ4:©ơơơI¸̃ĐаhÑbCĂ×wÄ¥‹±èôI«”M¨ôtb¢Z÷7V¯x/&¦E£]i2ç÷]ºxzyä bÎàáî¹ÂÂÍêÙÂ<`ƠªUm¯sÔó§£´´*–ă 蹤¤$))iôèѽ{÷VøŸ^ƠƠ­|¡››°ĐĐ́€a”!sXô›Ê•NêE1±Ä¢uäÎí?ÀîÏĐdc0₫îG7wN5]Eï£æ¼ª²1!n´´®Wɼß?ÚÑnæŒ3J» Úlzˆ-bbbç΃é»wïvíÚUVV–Tr~~>ʲséÙÀÀ€ưFÁü1aBª’399û£½{Ç;]爰b"-)) ¡µ́₫<{Ö…ưµ?ÏƠưúé ̣†`DØ: q]]¾zvvâÎØzî,:_´hQÇo"á₫ư¯ÎÇ~Û™Ă¢k¦æ¨K¼̃¶ü9iˆ_zB"»?/Y²Ä̃ÎÜøøÑ ºAéüüÍyúÔ®̣̣F™éû?ềT16ôæ¿₫Ö­tÿÎÍÍ%ÀήghÚs?2†9^^~jjºË—mâoÑÅóIJ¨‘×Ơe¼N:»?‰\̣ư÷¾Mæü¢kWƒqcṿ7çäÄ º«œ́Çớ7$às\¨ç/–„„„ƒ~¢•_½zÚD<¿*//ÿ©[7G5ơK³çđ±è(;û(đçMSśŒŒÙư9 (}̉|0ä¤Ä|3S·̀YFĂœK‹ï8:Ä‹«‡ÏÜ™¡T”¿â›Ù¯ŸĐ•+WZ] ƠƠƠ-Í¢†|™zÖÓÓûí·ßx~µuëV==c++§#WøX´»ÛX»qdxAY{v66 ¢Ñæƒ?ÿïù ̣nÿ˜³ç‚Ó²îXǪçàC¡¿|\\\ ™&à›7³y9›Đöœ…"Â-ÓsxXq;¦7G=w×Ô°PÏ_ 'Nœˆÿ,›†`øáŒ<đgRNLHqcªÊÊîIËà°èçåËơeåv̀È1&$„øó¬Y³½¼Â++Êɪ:ÑÀaÎëëú‚Í‚EóÑđ’²'i©»|}2•ÍÅDUÁÉü§AlĂ'IKƯmjâ§  >n\ysJ‚ƒƒ¯_¿zë́z’óts›;w.ÿ1 ÁƜܵ4 ×­ƯĂaÑÛ6¿PT4˜”²3Àº:3øsĐˆÙß|N£íÑCmn~‡9OxNSƯWJRP=++™Kˆ«:ÇÆLƒ¦%œ††f|ööưû–=ôG=w ûöíKMMưD+ß¶m÷ÀU„cÇ™)«PæLÊÛ¹Ek#FéJH¸kkß(,b·èơIăơäå™]`®©IüÙ̃̃µ`özCÇôIóÙÍîEE™₫~9<5 ÉiS‡ÍỞt¡ÓU¬]]¨©đ÷Dii4›»!ÉNdd$éÔz¶±²Ú\Q±¼¨8Üo(SAÑ@SsÄđá«V­âL666®[W¥¥¥ç`ïqêd»EgO©–—ÓÏ̀Ø/-iNüYMƠ•F[ßµ«£¿ß|vs1ơ½íDaáëY[Ë]L”®©a4"aYù!ö·´vÊÔjǪ@=w 7nl®s27§O³–-tͯ^½âîö@‘““#Ô«W´…Ơ˜8—~7;×Ó‹)$ëäüjy%eÑ^:ºÓ"FªˆK̀LOyÈË«LŸV¡®fB™35rT™„„†¹YÈ̉²§Ü‰Æ)77 ë–“3´°Mˆ¯âßùù£®¡Ạ́rZææ6ü“)%%%Q‰¿Î«gw7· KËI?ü†[·ÓÜ5oÚt/{{Y9 #£˜˜î×@?>cÆLee樑q·~o ,ÚØÈâg!!3£<;›ÈTh´ÁƒL(s†(:0 LT„¯ÍBÄD™JJ†îî¡ùUYvÿIv²AFF±ëơÜ1TVVΛ7Oà›{¬7Úg»eeetF–µ¥”4cà eåL×K™”K_Ÿ’=̉ÈD]Tlá¨H°hU1±Ê˜¦¸¸§‘qäˆ h^ééZ*)éäÍ\M̀9#m¯²’ƒa3sÆYJĂ JîMHÚèâ” -¥#%©m çV̀=äPKEù«„¸5êÖjjz3f̀àJM™2eûöí¨·Î®ç€€€̣ÂybByvíÚuUYă'X2äll²²²ØûüÔƠƠ……RQQÏŸµXtZêJ Um-/5Æ ³àŸ¶́ÚU'\ú@|¢­¢’©‚bet Xt ±±§¡‘ƒ™¹µ¥•™©›™©+˜stT…©ÉIIÍØèUäA^FÚ>¿©tkQ†ªĂß̀ÙyÚד¹Ëêï33X[ÉÊ2ÇŒ‰¢ÆŒ&ÉóóóI—Qɑ΢gh¸N›ÆíḮåÎÙ³cÇ…‡k3ÚL¦§gqq1yTqøđa++{}=³ù%+åd™V–Ătt<¥%tÍMIÁ̀9dD…îqqzcèé9DÉܸႠ̀^lm=ytEµ%È[€¨çö‚¤l¥jJÙÊbË”›——·fÍgggooo55µ#G´×Öûí·3|BVy–N,”w“³jÇÆ,ñôR×d h(!j`´&|ä’ÁZbânZÚ*BB²ưĐEÅÄ…D„„ä%%èaĐ¾ọ́L™sbc=]_¤¢AƠŸÚ“y–¹³¯øú¤ÉȨº»y;vŒ$+^¸páâÅ‹YÍ$+F:‹SRR2'LàïÏTi¼wÿüÁCKçûø0äå µµCCC×­[·ti¹ªª–½½»””̣Àrú3z÷–è̉E~Đ@º¡~˜°Đ?zÖ×óQQSµ½xѾ–z2{1<¦¹?[ê¹}/÷%%%dJÙÊ)7##~µ́́lVS¢ ___>k[½ú¯~8RSSĂߟ èô³QăØư™½¼J›\3rôlGg7E%•,dåœTèr}ûôê%Ù£‡hÏŸúô0@^CĂÙÔ$HLLUVÖÀ̀tDô¸ỆWŸÅ–9JÙÂú‘%Jztu}}ưU«VÍ™3‡g²bTi'̉3¬’g²bTi'̉sùÂ…bBBĂÛR¼½­Œ% _6¥Ñ\i?÷ÿNlĐ@mk•'¥OÍ.oß’˜giɯ tU«ùÿ@’oC̀xƯÇ+S_/tĐ Ó¾}ư¾ù&•FÛA£5₫{lÍÏU}óÍ̉nƯLL̉̉̉˜Lfzz:ÏdÅ(ÑÎ¥ç #2‚CØÇ/¤¼̃¶cMÆä`;{C99†°¿v“ûôíÖ]̣»ï¤»ÿ(Ö·]Jjr||ˆ³‹‰”´ŒBŒMÙ¤ùg}ׯ;§N68;ù‡„„¶×OP[[‹zn/|µ<8TS\"Ø̀¬$b¤¦ŒŒ¦¦»¹¹½µµ®¹¶–•³ÓHq1í  I mcĂa³g] æR’·y¸§KKÙàĐ½{dSN°ÛầÇøàO?1Coü»gí!Czö́ɬơÜơ<6**nˆ_s|½¢rjX¸£¶SDô<Ùùßz Ö3(ñĐ²–’q•–µ—•3“•µTTpt̉QR®˜6][E%ÀƯăüÁCïï?øăÂÅ­+V¤gÇTµ“’UÖÈñ³¯ú’Àgéểíí—_Xl÷*>ê¹c úóÿù矹Ư+W®÷îă§¥­-&®!*mn¹6bÔÍ́*>•œb¥¨d¡¬²'=cqd˜sej±¡††›«kHp”§G„”¤êب9â:©'‹ªz{e,^øèŸ¬æ\^ie-"b̃¿¿Ç·]h´54Ú‹ö¶å74Ú¦îƯ]…„´ ÑÇó•v́Ïÿ5éùùóçL…ó‹—Rü¤zÓ‚„D?3smI) Q±h ËuÜzVP´“ß·xx˜s…ÏcaCQ7%åHSópC#U É‚±cÁ¢/lÜ”9FU^>=.®₫â%ªȵcÇẀ/f&§à&-©f0/*ëØÁ'͙󬙫éTWüvơÜ1lܸqúôéŸbÍpÉæ3̃ú₫ưû{wï^ø[jú۹ɷ8êsg ×7Đ—X4:̣ỢJbÎg.̉UT\›?›¡¤äëă3-g¢¢–¿ßX÷q±1ÅÄ¢ssêơt†IJhS¾²âí¿Fè®|7sÆ™‘᥺:Aƒöí@£¥Óh{Û́̀»t)íÖMŸÉ4çhëq€ïĂ~ez4iR£ÓǼ©áNNÆ t!¡@½E#xëYO_CD¾…#1çÓcÆê ¯qve èË`Î2TKTlŒ™y´»GQL,±è? prÖTQY:·đÍí;́½ỡ̃¹{zÏ̃̉Ü™A&’RCd•â í˧,a7çeK)*0>Q– Ôsǰwï^ÁóÉܼÉj‘ö«ªªË˜éêmËqÿ9ËƠ)"êéơ`aYăª5”9g…„ µµ+”èç;¤¤¸RYYgƯÚ3̉̉j%EÇ)‹&ƒJ(*X̉é6™xöL^¾ôEfÆ₫€¡¹*Ê^XôêJ£Í¢ÑηЙ¯tí̃½;ÓÎÎS6æ“ùÊôÜØØH—–¦ O÷đ:”ôbö\¹ÿ̉³pª½ăƒ¦÷a)sβ¶ñSPœga¬®9„©º<8TKĹtJªª¸Ä±¢Ê¢ßÿvîøÊUÚ:Ö†Fû««yö¬₫óú_6l˜11ÅÓĐÈ\\2Pæ°já^ủÿP@V®dưûvêùóṣäɸ¸8Á—ov¬}(--ơÖÑ¥”\=:RGRÊÏÀđ·¼|’_”2çGƠU¥eέßàcga*ñggç!ÙYKRSôt]vïxÇnÑP‚ËÅÅ4-,Âç͹Î?ÁQ̣øÍ®Î)’Ö8wëE£-¢Ṇ̃uæCƯº…₫ü³ª•U¤à-Ç   í•»ù2ô ^=ÄËKKFfeXÄ›Ç̀ëY\ÂOS "j2‡2çúäfÿ₫g‡ù((.ñô&₫́«© ꢫ÷vçnv‹†R>5GCQ)̀oèµcÇù¼sÿ\í¦åăĂ#ö́µ`ÁÁÇÔgnÑø±¨çá̃½{Ÿkëệ̣gR̉.¤Mv 3Œäå7'O¤̣óSæü~Ͼá¶v)aá Rm&óÂ… ÄŸóf–:;€vœ*Ó$#mơ¾Ư,‹›ÿÖÖ:ITT5Àzùâg}ăoÎ́ËÑc+̀Í¢„„Lû÷÷ị̂¿$m=ÖđÁ–_Ñhk»u³×6mZ‹’“¿{÷ÎÆÆ ÿ*ơ Í|cgu£IÉćÿ̉³ ƯHZ½yH™scföpuơ‰ºúï¢ăµ Cü¹xhÀ=}X̉HN~UZȾɢ•(‹~óëéÄàUyùi))O¯^ă󢢯›{TTTfffà¯G¶ÔsGâääô¨_ üw€1}út>ijâăâô¤¥ƠÄÄæ……¿XVÁÓœ-] !/ÿđÀÁ‹›6먫¿ÿøó¥‹e¤§N6”/9  ¯»¹ú)·ECÉ™r[SĂ[ZJ7>vÍÊÊw‚¼½bù›é9'ĂBµ44ëƯ;°k×9Ư»kkiY·nX̀Ë—/>•ö빨¨HUV.ÚÚf¢½ƒ°È€=̉9ơüêƠ+'GǾ=~¼–ù¯^ứæ ÅJJz‘=Ïú†ñFÆ”?ÿ9KÉizcËKSkZxÑ?·ECÙ¿´ÜH]ƯÅ̉êØö́æ\V0Â>}ơüÅRRRBRQ 4ëÛ··—›{ÉÈQÍ™sEJª¥¶öëS§@“¦¦Ơ #6>>©üyï»’’̀Êå×ùX4”¡¾Eb¢jvăæƯÜ¢‡ùgGEåØímÛX‚gR̀ËË[½z5*í¿¡g·‰NÎÍ™óro_ 1ñ—Q1àÏöR2Ùư9̀Đ8ßÇ&~ÏÆ—¸VQÉfÑÊ e^Jª‚¸à[§Ï€9ܸ‰©¢B’NĂuDđÁ×PÏŸ’²•úÈ‘²uÛ¶mÉÉÉÔ·÷ïßïÈDĐGÑWRzS¹’ÛœßíÚ£)'¿·l1Q#SQ‘<£üyÉ’ơ¦&®¤7QpP’£}8ñg>]÷ÊÜlœ˜¨jHĐœåå/ÉꬬdđÑ!Aù×vPPIåÇ=®ô³gÏ:¸ç9êù“̣üùs5yùícc¸ÍùmÆAƒv{ù‚9Caôp'i»?WåÊ`cO°± ³w úW7gÑ/Ÿˆ̣÷WUP(̀ÉÑTU%6 ~,Xđéjơܾ”­ÔG”­đ›zzz’¯nܸñÓO?µo‡vzgΜÉg]Ưm)©æ e‚@‹+Ñ!¸´Ơ‡—ư)¾sû­´ưđÁÇàϧO½•“Ơ(ÈßÿQ‹†’™~M•é*'k8!i9ă “¡Û–Úö‡ÓGUớÙ³¦¦¦>>>æææÔx…õ¼ÑÔÔ¬¨¨@‰~Mz̃¹s§–Œ̀‚€á́æ e‚©Y2˜ón/+)i2Ỵ̈熂B•Aƒësg‘i IÉư³ç|Ô¢_?15&ö‡ï¿¿rùrÔ6ê¹Ư!)[©ë;wÊVGGG<à* âââüơ|îk̀˜öܽ¢¢"cees¾³f-SZæÊ–­D„ÑĂ³? Où3}}ëów’:'»\]Ưz×·‚X4”±‘Û¥¥ôuu¼ó؆â(Á#̣ÂÂ"8v8-ơđ¡ µ-&&Cn΀{„„„o!̀c0¨ç¯LÏ@¸¯o÷o¿Í±µßú`ÂĦA‚Æ3ûơ¿4"”øó8uÍ,k†b­ ¸}l4uoÄF]ăÍÎ]ÍYô»3g×Ï™c ¡áäàÀ́*₫ ?/$eëó¦Ôy¦l…Ú®©©!iÁtuu?Å ¡|¨¯¯—8èäüRö$¾æYcÇRA‚…®5̣&»??jd:ơΔ¦¦åÄ å”?Ô¢¡x¸Íaº»NXXú€ÛŸU™æû÷ïgßÛ—/?2hGmC,7åĂ•(((9r$L8p„””„z₫ÊôLسgÏèQ£¬ô èbb&rr¢½~©ª–oa5Ï̉fµ­lï>›Gpûs‚µmºă?·¯-•–&Od?/(‹>Z¹ÂỞÊPOÂuj£ï̃½ËÍÍå?.¨ç/ØØX’ —gÊVh= 6ñ‰ô¼cÇ Í§ÇZºt©•¶ö«m;¨¬_ÚJJ!æüúä)yy¢̃¶ơ¨ºº)åÏ«Vœ•Ѭ®ªo‘Eçç>72×QÊ>¢wÁ¬‹ÊJm¬íààà½{÷R• ØtưéÓ§đƠ³gÏPÏ_¥98qâÄôéÓá:n¤.-ă¨B_âåăCgP₫|$q¼‰Œ,åÏÇÆ'C»²~ĂFÊŸoT®ŒpvQ’’R‘•+,,äØĐŸ₫ ̉ú¤µz₫ÔÖÖÚØØ\¿~gÊÖGưôÓOaaa)))ÂÂÂÑÑÑü;ŸĂ5·¥÷º^¾| ?ëËæß µ·±™CDhÂdVÎÈ¥‚g˜öqs£–d÷g(rrj;wܤ,ÚÑqØđÀtv&-Î×¢¡¤M¬UQ¶SR4KKƯEüydxq@À°¶Ô¶¡¡¡ƒƒy™eÆ ªªª7õ„i8Uííí¡¶ơơơƯƯƯù'ÊF:£¡ªªÊĂÙ¹×÷?x¨k¬ù4o6x²ª°p]Ö?‰•ôôSüvçÍjª®¡¦¤äîê——×¢7¤Ú«¶QÏŸ###¸6—²ƠĂĂ.ñ›6m’——‡e>Ơ.§-éÔđqêêê˜̣̣W–U”Æ%8¾=}†̣çá®®ÅEEÍù³µ•k~̃ZÊŸ’T]Zv¡ %"t­„„¶‰Q`A₫%m-{ k×Bƒ®µ Î0ỵdø¸uëVêy÷éÓ§75ơÚ¾wïêó+Ós‹€HØÎÜœ)!9ÖÚÆZQi¯ßîèØbÿac¬¬% 272đÉô¹}ûößÿ½EÛE=9”––öëׯ¹”­ëׯ'5ÿIï×Á%˜O«0==ƯÇ̉RMVöHEûjuuön₫œ6i†ß±́™»ÆŒliÀáÏ‚[4'‡ô>}DÅÅ•ÚXÛ‘‘‘€ÊÊÊÈ)41tèPj1l~Åzn)ơơơYYY*RR¢}ûZáºøÓØØxüøq >Em£?O<¡Z.Ÿ”_~ùåÖ­[Í}+ܯ_\àpvs¾³w¯ª {üĂáϧNÖ)(hœ=ƯÈnÑ Ú3ǵäiÑâºü-º 不ÛT qååË·¶åH¡• UúæÍT×VÏ_pùpttD=.âââ¨;ÿ‚Ư‘`ñù#¼ÿç.¦²̣¶’ù”?ÏINf_†ĂŸ¡Đéºë×ưÆîÏùU †Ù­¯[jÑɉ'T”-\9^¿z÷µ};ëĂ#Jkñ5Øÿ¸;€-[¶´â¿PÏM›6qŒ¹ùQ.]bµ: ´@yÎ?t誒RME%ñgkëÊÊJ₫₫́áî?9c!Çàúñ±ó¹ư¹9‹&a³Œ4“çÛÁçα>ôï”1cÆùZơü©Y¶lY+₫ ơÜéxñâ…³³óƒ:fs«O8 RפÓÏWoÖPQ¹úïÔ-Ü₫<§`±½}‡?oX_+-­^µæ¾ =1锥ƒ½ëC>=ơ[́³··wG¾YŒ|±z₫|̉»Í¨ç/“̉̉̉ÜÜÜư øY•²‡× ʰ'úêêEëirö@æöçkWŸKKÓO{ÉaÑ^á~¾ăyú3eÑi)µ^î9̉R̀²%2ûÉÉÉ­KF|•znw¢¢¢:²&QÏ_Ï=srrjQÈñ₫ư_}“Ú2ÖM~~>Ï~¤YYYRÂ"ñM9Eùû3MMÓeKqøóÑçRRª KÏđôçm›_x{Åôë+imípÿ₫ưævoăFßt <¸r凇GGöPE¾|=· ”PŸ|É”Ûî\»vÍÍÍ ƒ Ô3O=·å† ¬°ă{‰ ;h%±§i…ËưíÛ·É4ü3f̀˜={6«©ßû«°ç€åÉ¢E¬¦ŒVm‚’14ÙßƯ·oŸ‰‰‰­­-Lđôç{w¥¥éÔsûséüJú“Ó×:1ZiiiÏèW‡[XÈâÊpđ/ ®8ú¾BÅ&''¯X±jŒc °|¼‚zØÿW2ægff¶½PψœœœøøxêăÂ… Éă¨đ¡C‡¦§§CÈQ___YY)""¢̃ľ–vÇi/_¾¤^ûJJJ"ƒ———Ó%åi9ó»̀nц†¶%ÅÛ([₫í̀û.äd/ợ PQÏ —Ư»w“ûKPí¬¦÷7¡ 6wî\Đ3´‡ ÚIĂ„àï(ÁµwâDÖ‡>-°ĂrÀ5ƯÉÉE[KWLT¢wï [[8ÙÓN¶đv´(Y±yêÔ)ccc2mjjêääDƯ!„:¥ÚP·ÅmyE ùªơü‰@=wFª««ƒ‚‚X6₫|j>Ñ3©ˆIÀOŸ>­££óå¿:­³¶7Z¡ kÑ{¯T\¾|ùÇ$éׯ_ƒ¶Ù߇:u*T#É£‹ ;Ôs'åƯ»w/_¾d0́ÏË(=³ú&‘7d¡×̉M|¦^[Ïưmẹ́ÂÂBhîYZZzyyQ Xkkkª)={6xđàæºDPϨgdüøñ‰‰‰ÁÿÎ>Dé¹±±Ú‰>>>{ö́5jT+:@vx·Ó6à­|^ÿäÉ999qqq̣Ê-Ô›™™{ ¨ê¦`æ® ơŒzF> 4aºvíÊÑĐc7 1M˜~ưúÙÙÙQ½}Z¤ÂăÇ_t=<{ö×ßV÷½uë–ˆˆˆ……ù'₫wß}§đ¨̃††E\]]­¬¬¶mÛ†ÂC=£‘ö"77·¥yÀ8ˆg}±=%!FX½ºơÿ₫₫ưû¨¨(Azî±wĐEPϨg¤Jïbbḅóó[½†»wYäơ£O–– • @Ö_cw úh›'©©©dœơŒzF> /_¾1bDÛßïX·ơ…Œ5±s'ëCG¡ÖSXX8v́X|>‚zF=#Ÿ—‡zyyµ1wâÓ§,êîàgn‚j–ææ¶µ‰ºvíÚ€€€ç-꺄 QÏȧáÚµk...gΜi—µÙÑûÍR₫ùgÿ₫ư8N1êơŒt0|²Íœ8qBGG„ưạ́ưOæd₫P¯÷ư₫;«]³0rB¾rù2«¥ƒiđ̀śØ18¯Ï=Ë1ŃzF=#Ÿ”æ²ÍóæÍ300066¾~ưúñăÇ544 ‘hiiÙ–Q}ëê₫éYJºµ Ô…†¶~%ÜcÄÄÄ455‡Î1æ̉¥K¦¦¦>>>æææ¿uê—QϨgÔó— Ïl30 b†ßqûöí®®®ZZZµµµDđ'Ol—MWV²ÊËÿ†çc9 9bƒ̃c…Ó±½ܰgŒ)((èׯ_MM GƘ˜˜˜ê¦—6õ‚B=£‘Ow¶àÀçÎ=Ă4´‰zôè1eʸà₫úë¯í¸éYYK—₫ơT°~ư?ͺ³gÿiÖmỤ̀W+0q"ëâÅb˜ö‚ÊSUUÁ¥mWÆ"ø‘#A=£ÿK4—m†̉óƯ»w»uë&++;aÂ:̃êdq‹êŸøaƠ*Ö… O:Ä¢î~ºèĐ̀ÊỆơơ•““£Â0îŒ1;v́PTT¤̉ü"¨gÔ3̣)h.Û ¥gøêǼsçÈ̃ÓÓ³]†xø2yÿ₫½ƒƒƒ•]‡Å+c̀† TUU©|_êơŒ|:xf›¡ô 0™Lh-‚°ƠÔÔ©‡_<ÄÄÄ$%%éèèØÙÙ5—1fëÖ­ø¼ơŒzF:ÙfØơ|àÀ ø•árœŸŸïææ¶k×®¯©Ö¯_ïââBFL€ĂüĐ å̀£¬¬,,,L>:ŃzF=#_B[‰‘çâÅ‹Ă‡OMM}ü…§÷€{÷îA˜1räȺv|0ƒ QÏÈçăíÛ·óçχÀƒ<+ï¤lذÁÙÙ¹¢¢âưgyeA=£‘6ÓÜkY.\€À#11‘Ü¿zÉF[ºư·/&qÜ^ƒĐö?!!!44ôơ@½‰†††úúzüÅQϨg¤³À絬9s樨¨899åææ̉ét2¢}ß¾}Ù—ÿ¼ÔÔÔhiiQ<8hĐ 3\]]í́́¨©XM₫‡Ê=¸‚zF=#_,}-ëÉ“'ÅÅÅ  PơÙ³gAá?ib‚'ÚÅ‹!̀È̀̀”““ó÷÷¿víÇ‹T=̉ÓÓÓÖÖF=£QÏHç⣯e±‘,-- lụ™OAJJ œƒ`”——ËË˳÷§¢^¤‚fàùóçÙÇHBPϨg¤SđÑײ v 4A<'NܵkW+Fk/₫üóÏ-[¶$%%Á ẮƯ»—½÷‹T¨gÔ3êét|ôµ,Brr2N–ܺukbb¢ƒƒœûöík }z`Ó;v́˜0áD aØ´··÷áÇGŒAåiç9”<êơŒzF:#}- ĐÖÖ>sæ ûóeh$Bø ‹êêjø«®®>gΜƒnƯº¤ :ÅfeeA+²oß¾£F‘ƒÂ}}}!~€…aåäp?'œ={6 ̣̣̣dNQQi êù/í;rÅçx¾ Pz>qâ„‘‘éq:cÆ ???2ÿùóç̉̉̉oß¾ưCÜ„ ¢v%r]¶lÏçïuuu*** ơ§OŸB$Cf‰‰‰ø» ¨g¸Ÿ/sèÙÎÎq¬¦N§ä†yŒí>̣Ô… à¼đ̣̣"z>t臇ù_KKKW¸Ÿ¿_¾|ÄLr‘A¨ç™?õ<̣APÏÂñ|™[Ï-@&@đ±±±K–,fff́CZPz&MË’’瀪ªª8¿ß¾}âöáä ’¹rå Løøø€₫ñGAPÏÂjêđĂ₫|™[ÏçÏŸ‡øäêèèXÛDׯ_755e_̉3P__Ÿ››[VṾ믿r<=ztï̃½©GØï̃½«©©±¶¶666†¯đAPÏ̉j^¿~ưæÍĐ!û̀††*O•Ć3¾Ă… ¨gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAù{çÖḌ₫ñ½?̃ớ•̃[H¡$ỗ{ï T)̉DATAPÅv°£ú³b=Ø•SơT°‹ù́¹—KB(ú~yx6›Íf™|óÍ;³3ï´ËóçÏŸ}z^^̃™3g¬­­ÑĂ“'OÚÙÙq¾DUUµ¾¾₫åË— ---øÎ[·nÉË˳†87nôôôÄ·_¼x!))ù₫ưûÔÔÔ%K– ='Nœ(++ƒO='999H]hI ̣éÓ§¨A‡»iÓ¦   9sæp¾¤°°033såÊ•HÿÄÎäää… rüîƯ;111¤d´½bÅ)S¦  ==½mÛ¶ÅÅÅ¡P„ó+ g@ ơ¢°ÙÚù†hăï¿ÿ¶··÷ññQWW¯¨¨ÀCÑŵk×Î={èĐ¡ơë×KKK“H$ôEHo%77W\\|8-jĐ™››GGG£‡sçÎ¥Óé eëÖ­H“{÷îƯ¼yó!C ĐkSRR&OŒ633óơơEjG!¦¦f]]¾¾>₫ ăèÑ£hặåËÆÆÆđ gàGàáÇ(6`mƯ¿ßf»µM°gÏ•W¯^UWW£H€L&#£ăÆÛ½{w}}}'Zm---7õܵkFÆ‹Z…ZZZ3gÎDͤI“JKKÑ1[¶lÁƒ̃ßÜÜü¦´1èô ôRĐ/~||<ñpụ̀å‘‘‘W¯^Em1$TCCCb8’1̉zỂ̉rêÔ©HèHSSSHtÉU•”” Đ¥¶¶};ââ⌌Œ¼µµµ©Tê­[·x_<ÚPTTTn…¸5€AÏ@¯ăÁƒH*Ämh==½ .DEEá=o«W¯Fm:ü)ôÛ}èĐ¡´´4++«„„$cÖßz¢·­;hjjªªª Eo‘‘qâĉ>´uñèë†dŸ,èô |ØÙÙư₫ûï̀Ö1BêêêhE/^DG166F «̣̣rTÄÆÆnß¾ưùóç_ëRŸ>}Bôusqq©¬¬|ÿ₫=çÅ#µkhh„……¡¶$L=ƒ^ͶmÛüưưÑ%đ»É¨aeaa¤‹4,**joo?cÆŒ»wï~;×|åÊ•ÄÄDgggÔ ?~<ëÅ£ ÅHwîÜ)((033ƒÏô zz/¨m%//td2¨‰À{á455ÑSơơơßæ•_»v-))iĐ A¨ƯJ"‘ˆ‹'@_ÆgÏÁG z=½¤„„„€€\̃AAAÚÚÚ™™™\‡èS„„„ ï’.j!¢‡¨é‚´ÑĐĐ€¾¡đá‚AÏ@¯æúơë}úô9~üø­[·‚ƒƒ'Nœ¨¡¡áÚÊ»wïzÅÅoÚ´)<<o :::ÚÙÙIKK³¦>@Ï g —̉̉̉²fÍ$B¬·³{ (ذµµEj÷ÁĐ3èè½ ßhfÄÅÅ=zô¨·ÿ/₫ùghhhLL jÂ' z=ß<æO!₫úë/Ö©÷ăÇ¥¥¥è7zûöíßM%  (vBDôđÙ³glYyYg„¡ĂGŸ gĐ3Đ­´5 ±xñbKKK|ûĉd2YWWW^^>66ö;38A¢EÇܹs;Æ5Í/h <"Đ3èè¸NABZZZ„555Ñ₫*•Z]]ư½Öª‡ÄÄDôWTTdKó‹?kmm-** z=ƒs ³uæÔåË— =KHHxzz®X±bÉ’%™™™Ưt%¨™ué̉?ÛÏ17løgûéSæ®]ÿl762ÛÈ[Óe’ÎÎÎf0qqqL–4¿hÏ⋪ô z==çü)BÏ555ƒ —æY³fMBBB¾ûû÷̀•+ÿÙ₫ë/æüùÿê–X ¨©é_m×Ö2‰÷GÇ·G]OQQÑo¿ưvûöm"Íï™3gÜƯƯÑèô zz ®ó§=×ƠƠ™›› â;/^̀uƯ‡²z5¿)ñú5³ÓI¿¬ZÓ.~âÚ5f×ΔBMc[[[<Í/N MIIAUưöí[Pèô ô¬ó§XơŒEµµµZZZ7nÜ@;ƯÜÜ:Ô¹wyđ€ùđá?ÛDŒÑU\¼Èl]tâŸøäËÙ³g““Ó€îƯ»‡¢&óVdeeËÊỄ£8 =ƒî‡˜?źsëÖ­£FÂWØAMBSSS]]ƯI“&uú]™=ÓBÑ;_z’–– cØØØ †!±Úƒ gĐ3đu¹{÷®½½ưéÓ§Ywv"É-ks¯ÇFY67ÿóÅAAÁ—Koÿ₫ư®®®Oºơ.z=üÑØØèá᱋¸ÇÜ)pơ₫ñó̀™¯ö k í‚ó¬Y³5–»5;z=ị́öíÛ‰'–7*:űcÿvÍ}]ˆØêê¾è<ÙÙÙñññ0Ó ô z¾---IIIYYY_x¢"æ·öɯZÅü’<¾øPÿ¹sç‚H@Ï gà«P\\\RR̉é—w"‡ACCú)ï\[?2ñY¼^ó]dHHHW­ |—zî1@Ïß<2Æ477³̃&¸qă†¥¥%>ü¦s$'wààC‡Y[;ˆ‹+ sæ̀Ñ£G‰l3Ó¦M³µµƠĐĐ(,,Ơư8z₫ê€{5\3Æ<}úƠzÈ<ü¿ËQQI$ÅÅÅƠÏϯ©KRÆ|¦¼œÙÑ~”={ö vß!CđÄ_ơơơzzzøSÊÊʬë(߇;äÉ?Ïf‰¿uë¾]YYIt¬Y³†¸~M@Ï?8\3Æ =£Í́́lbO—´ß¿4QAAsÖŒÿ±í²â¢¢Ê¹9µœ>œ—{EBœÎ¹?À/÷g¼\©{œ]¬¦¦¡«¡…O×O$ØíYđl3øòÖ+VVV¦¦¦ ,½}Ozæ¢ 77÷âÅ‹„NÚ}!2p"Æ=¨……‚‡œ¹º{7s̃¼6ƒû÷ïS© +‹0¶₫d¼„Ó¨Vœû7V|” /Ê»ÁÛŸñrâø5Á±‚ÚÚÚH?EEEøû~ùrL…\ÂÉɉÈ͈b˜0ûé™OĐ›.[¶́sCs§Ï³óó>Đ3°|ụ̀yH‹™·o3ÛJ‹ÜrÄp1¿\®Ÿn®y+'§—8¥’ó)[ëxO ~ü¹hÉZgÇ7õ”””Đh4___ôí8{ö́Úµk¿¤6êë™11̀çÏ;ÜĐ̃ºu+hé»Ô3Ÿ­Eæ§ePj»¶ôüƒọ́åK[[Û.œ 2sæ,YÍđĐ‚ă(ÉI;Û²èÔäjI .]‰Sª”i6üøóxOÔ’ÅßôÉ“'³gÏ&“ÉqqqÄL±œôtåÊWWWHo₫ưé™P@̉}b=ÿȬ\¹rΜ9L›3Iƒ‚&*‘Lç̀¾WTÀLˆ;ÎÛ¢µµ¼ƯƯf±í,)n"·ëÏ÷ï½#É)² ä¸sç·7]AƠ“59eÊ”mÛ¶¢¾'=óƯ7²»₫5ĐóÆëׯííí;Ô"{öŒ‰Ú[œc‚ĐO­µ•½:Ă=g^#2g¼đ¶è¼Ü+ÂÂÎj’¢É̀´C¼ưyÿ¾³ê*t¶kxúô©*…âheÚ÷z熶‚ª$#ƒÙ¡¡O—/_öđđèO@虪ªªẓ¿=ÿh ß}bŒè—ĐØØ¨©¡ol¾(÷ aÎüX´«s¾̃x¶™6Ö1¼ưynVŸŸ{×Êôé>..×]Ñ Ó+++‰ưˆe’;óçaPüöC̓ø^ờ'¹¹¹_åß=ÿ $$$́ÿâY¬wîÜ!“¶³ç`3g¢ǣ¤LƯÍéÏ(xS?÷ëΙixû³…=›J¯\¹BQPx|åêLJnßAQR"îàƯÔ=đÅụ̀$ĂÀ×Ơ3ÿ|­Q  ççÏŸ[YY½yó†ÿ—df2[ü˦M»¤$)ă½—ruf¢L‰=&؆EG†—‘HƬ{V¯|.$¨T¾¶¹-¾u󹼌Ûø% Èœñ2ÆL3Sü©NÏK}̣¤ciu?~lmm ƒ‘z¯ùáÔ©Sl+̣O}}ư;2~ARiĐsoÉ€µăèÙ³gÄ”¥ÆÆF\ĂÛ·oOKKCùïbª«»¶råÊèèh{­û÷7î×OÑ׳„·?ó°èµï”H¦“#ײîdĐ]c£7´åÏ[·4ĐÑc½°}ûöÑ)TœQi¾wßÉÆvúôéøè¼páBGoë¿}ËLOç·Uˆ~/îƯ»ýØ1| àñè ơ´£mK ûơÜ ă¹yóæ¹sç8}úƠƠƠ)))vv’BẬ¢bd–²²ªªº:ƒDRSU“”r¢3$GŒÄ0 u§+ôÜ«±°°`ưô}}}ñơP­ÊËËă}JÈfµ´´œ ËËË9Orÿ₫ưÄÄDss'IIƯAƒ”ú÷×0ÀÿçŸ`Øv »Œa¯1Œ‰a5}úX§Ÿw¢s>󰸘jÅÚ÷ÄàÀņmùó´¤ô˜˜Ơ½Ơ×Ö̃Rº’ƠŸQ©;zLh̀BĂHZ•••wï̃í¦:G.1f̀˜U«Veddà–––F’̃´i“‹‹‹­­->mø*zî¦Wgg-:CQFÆÆĐ0-<|K^₫ê¬,ª„d]ñåÜ…̀_p*k̃/oíYN^ËâbTººjé(KJ¢h§Óo zî½lܸOÜÊlN%))ù₫ư{$c%%%<nSS“ îr(äPPPx̣äɶmÛPâàà.'g0x0¥_?•¼~ù%Ă6cØ9 kjuc®åĂO?Uôé£F!{̀Íhè„E;Ú'çe•‘ÖjËŸu5ôX3–›²™ó©ê½Ệ̣*į““ƒZÙï̃½;pà€££#Ú©¡¡/ç¿zơjgÏè™÷ ™|âÉb 6z8a„1#GIKH,Jöǽ¹—.%ÈÑ1ÑѱeĂ&¼œ;OKR 7gÜŸ# /¦¦iÈÈÎïàTôÜM úĂSc­X±bÊ”)̀Ö;h?Æs A??¿¬¬,_ÿû¿¾ưúQtîÛw:†•£ĂµíÆm•&̀_¡X˜M[œß̉!‹.\tKD˜RRÜ@tz SV”üÍéÏÎßW’S$₫Sôƒ®¬¤tùđNs̃”»0̉×7??Ÿí[ÖÑưưû™gỊ̈u$jùêêê¢@îđáĂăÇßùß<¼NNN¨=ấ=£H25Ư[¹xñ" ªyŸ°ºyđ`Ç®a×®]>“FïHWU ØxưƧ›Ñ²²»Yưùæî=IÉûÅ%¸?¿]WA~8/›ƠŸÑÆÍô =y…䤤åË—Ÿ?¾5zî¥ÄÆÆ¢¶ Ú000¸ví±׳¬¬zß_‡ö맆ã&Œaö±ă†̀µÜøí7Ơ ÿY´÷\ÖäuÆF >ûsáÏe«ª¬̀,‰'1>>ØÇ‡«9£¯IaJjHHkµ ¸kæ̀™Dâ~@ÁÂđđBUUÈŒ3PÇÚ:{ölsssMÚMz‹‹Ă³$Ơ×דH¤ß;qÛo¦OŸ®L¡l^ùoW‹ăª©E„ĐÁFÆùnl₫ŒÊƉ¡c TQƠ•P;VQPpèÀ Ôô“’¢ˆ‰) ‰ñ[ß¾È!¹^ è¹—R[[kffvûöm}}}Öư¸­­­edhÊT_5•àÑ£hC‡2~₫ÙĂ–cØ‹.réC}ú‰˜¦$çÓ¢ËJŸIJ02̉ᣣÖj0\8ư9,0233ÿ_PĂcÔî¶mĐƯØØÈ`0ĐLJ\:ej2EA!#9¹]‹~₫‚Î’àÜ¢’—Rg°úsíô™j‚Bxđ\iç¨!(ÄƠœQyW¾̃CO/–eØèù;Öù+ˆ‡1Ñq²2†S¢ïàM””„'₫¾Ơ†úÓ…u† UîÛ×Ăr0́~§\º¶O¯aĂÔĂCwđ¶è¬̀S¢"4|rƒ]’›ë V.X´ÊÍÅÙËK“Nß»asFåôú cFŒàS>}ºCëdƯ»×á²ÙÙÙø0 çơÜå ±¡>qÿ‘Ù›ÂÓÅ•A£m_³–·EŸ,¯ JH¾Y[<6Ñ̃!ÍÚ†ƠŸWNđw““Gæü<|²æØqƠ~₫\Í/-]¦$*ÆÚÏz₫.™2eÊÑ£GY÷deÍ•W »ÈfÑDAîí麑¡>j$uØP>}|0¬ Ă^uĐ¥w÷Đ‘–²™z‡E[ZDYYLFÉI;©KVörñÁW]˜›konÁĂœï8ăăC“’éîN‘‘é¾a¢mDhÛ:E èB=w!uuuzzzIIIœsRvï̃­«¡imbrưD ‹̣đŒ´²B»}j²‰ÄêÏ~êKŒÍ?çÙÉɳ˜óX6s¾W\ce­,&F–’bëá=gØÙÙ=~ü˜m'úĐÅD•'iË¢ñ2{ú‡¨° vË”H^Ç‘ÿ¦aVÍ·E¿ù¿ÿ[̣óÏ4­°üœW\-ºxÉ=aêâ‚;ËK µæÅưù̃ƯfYỔDfKUT¼}ú Ws~uúLẠ4ª”t˜¹Å‹²5HÛ‹‚ƒµéôLf{ơêU|iiàké¹-vîḍ?9ûơë×$)**ª­̃tÀâÂB*‰:Áïåí;\-úî₫ß©’R· ?(Y®$(Døó›üB¥1c‡FÜ ¡y+v ×Èùå굋ƒ¨"¢afæ¯Ö¬;ŸĂ—ÏéÙƠ¦@Ï=Æ£G¸>U]]-&JïUÅÛ¢‰2#ùUHÀQ ³ù’–Æ* `aÓ1́.Ư ß¿?ÅƯ%Ÿ«E#CVS±G²Åô”}¸?ï̃U£ÍĐ@×̀Ơœw,^¢C¡Ø¨Ñ¯å-"₫aưÆ –%ă?·²Î;Çg½ƠÔ0gÏæ·’Ño©©é—¬p|¹ÛèèÀb"d²››[»ŸcCCC|t4UA!/#“«Eç%%ÙÑHædJud4îÏÇ’tDÅPđAỦĐäjÎ(äÖ‘•µQQeƠóE…zJää©SAÏßgΜ‰oëYôùJIR]—óiÑDỊh‚÷.}äqc5† UùơWg ËG>̀Ó¥Ïơp5J;&ê›E¯-{%#­…œÙÇ{¥E$îÏé¹ÁÁÁ'O¤)*¾½{Íœ/UVº›˜ªËÈîHJfmâ¥iƠjee¶¨ăÍ›7Ïù₫®¢Öm‡n*ܾ}ôöuơü%œ?~́X!*U]IIƠÁÁ¥  €÷7ôƯq°±ÑV£ܲ•Í¢_:­¥¤T2}®·rfÜŸÑß`%Êqoê¨Qỏf±™óŹîê II®z¾_\b®¢z₫Î8tèPjj*îܹ£  fe6'#ícG]/ñQ7ƯËƠTBF ¢) 0¡u₫K37‹nÁ°­}úh(È9fΪgµè¤„m̉Ré3+Èâ₫libUYYiefVœ½€Ơœ₫ïđ´  „D¦—7§’Qy³¶ü䜹)Î.Cú÷.˜­sc;4kè&=wI“&¥¦d=zˆBÍEKÖyyN”—£ª¨hN˜à·aĂ®ÁdKKËÖ-[ÔUU-­î´‘&,ºjQ†œÜ¡™é²r¸?Û)‘7Û8X‰KÙ;°óƒ’åÉNaãzΙàaØ₫}û@ÏßÛ·oŸ;w.ïcgTd´œŒQBt}×Z4Qb"®º9­V¦ŒN2Dû§Ÿ‚0l†­éÓGMQÁqôh̉È2cÆÇ•S’–vtBAÈ4g—ÓY󖇸ih’„„ŒÈäÉÎ.só¸jgĂ%K–ồ§€'+^¾|9Ư—k²bàké™O44´÷́>ɧ?åáƒÇ^),(ss @A5®´eË–ƠeejTªƒ¥%IRRźX¥Ñ£Å‘ùm°̉ÈQAFFa‘ꙵ„:8¦¡PôÜ/..Æ·‰”­¬™rgΜ™››‹§Úµk—»»;³mÜøiΜ9Y’â“']ê&‹ÆË¬”æđ‰§m­ äd‡ U4ÈẮ¤ôĐ_â·"Â#FÈ Ú¨ªúéPEDµde'˜­KI}½§·€.*P£Pź#À“oذaÑ¢E\“ƒJ¿®ÛåÚµkÊÊj }è¨?³–{w›«÷œỀ(05u‘Q̉Ñ1²¶²•6\|à Ñ_û  ;j´JGờVÎ/[NSṔ¾áư ç.OÙo)[Y3åÆÇÇ×´j´®®ÎÙÙ5ÄxœíæÍVĂ)++QÖÖŒe¨†ö@¡«+SÆKI˜ $₫óÏ¢ ØhsLP±¹Ñ£M••Qh±$&¶lê4>‹µºF[Kj®]»–ÿ©Á[·2ùY™OVŒbŒ9sæpMV *ưêzæO”ñ„ñ¡]U||‚]]}uùÆŒ0@ ĂL‡`"¿êœ9‹‘zªÖ×׿|ù’-e+^™ §NBQm3 <§.?L™’aXTD~ltQw—ˆđ…ö¶a*Êf£GËựË(I ÿåWéƒ̀FŒô>r¼˜¸¯ºŸeè€÷ïßoËŸKJJø¬™|öíÅÆÆ"£æ¬$ú-è™ÊÊzfº\ÏÊÊf£FÉưú+’³Tß¾C‡J 3ç¢Fru³°óµ±ítq15cÉ ç^Aaa!jî­\¹’-• ^™¨=H$È}₫üùرcùo™˜X$%–úÙeïîæ™i--´ÅÄÈF†>tºƠ˜Ñ2#† ‹ $Ù¿¿ÈàÁJcÇÎru ÔỔ;ÎCP8E´ÇÓ÷Ư¢ÅÄÊA\‹ÑÖZœèû̃éƠyP[[K¡Pf̀˜Á5Y1HôÑ3WƒêôüíÓÔÔ¤¡¡aaa¢ÎÊ\°`ú5LJJb¶ÎK¥qƠ@°};óÀ?^A^u{åÓ.´åÂücî®ñ4±¨I[ËyrTáâ‚/Ï$q1…y€´4YXXZ^LBE£FS„„I$}y…=)©Ggg挟àF¡ë/,2WYí|T WbiÅÿYœ>uü,--mnnΙ¬ôüíè™+ùùùö!_¨g*ÅXHˆD§;fήqpHGÑT5’üÓỎÆ* "5z”¼„•Á0VglX¿wçă3fäê빋‹*Èw1KÙWRÅ¿E¯˜áhozîøøøXYY±íÄ+sé̉¥¥¥¥hÛ̃̃̃ÄÄdÏ=<Îóà“­cÀÓÓ{bpæzrùÚ;ƒ²4ÔmÄŨd²A€ß́œ́ßwn{†JM)—–R³0Œ+QTTƠ×7³³u´000D:¦̉BLLè’k'GÓ%$|ttksóZ6lú{yé®i)iNÎ’R–cÇM/Ö7¼›6“đç%̃¾ÁÁÁ_^«ÿû“¥m׃ âLV z₫¦ồ‰ư¬´MĐ³:ĂFT„ª oàá6;-ơ÷²̉gŸ–\.*ª¦©èăY2n¬ª°™Àÿ9IKZJˆÊË™˜‡(È3æÍ]G"Ñ}½̣è!óê•'{&GÍ R,$Ä-iÁ“<²®l?ÄÛŸ=J–“Çơ{/Äx₫—/_vâå(D‘•¥T¬½ÓQÕQơ,!~¹‘¡§Œ CJRÅÙ1fö¬Ê÷ˆ–-=¯L3¥RŒ̣r%'•!s^Z\¡©©ÇPÓt°´Œ ±²¦ˆæ"‹®[˜?ĂÍ",2ĂƠíñ•Äx₫›‹Ëcb'›˜ ;“’ÙhëPbknÎơßA¾M, ѵÀx₫^¡gN¼7olàSφRR q1+˘Ä)•ÅKî‹eÏ;OR4••1|Èo|2g— ½aCuä5‘:Z!ÂÂÔ €yyúmW#&Í’•¥ÆÅͼvơ)1äô©Û%K×ûøDËÊJI:j̉ÂgG-n²®t¼ry£Ÿ°ŸïªÂ¼w¸9G…]2DöŒA¡<́¬ «|Ju\„¢hdÑG?±µñ%‘T Vÿuÿ=ëh½†¿>•5ÏH‘dªD₫߬t®ùdfyz9ÛØ|yƠ­_ÏüoóO¦·è™•€€ÀèÉ\ơL£™ ’”i¶₫ÎɨY·ú «'ÅË3SPbe1=;ëqQ“0gS£LO [ªL  (yº;— 1R’/ˆÓ²2O}ù"sCÅƯXGÛlÛ¶#\GVß¹ưªªêpÊ´lmm1Q#EÙ ̃Ö3—íDm¬©…A=÷RÎ=‹`₫o]vŒ¼¼%nỤ̀’ ¿ïưÀOô¯́lĂ$Äi±ÑKX{Ù±cGÿ Ø߆8 Î°áÇ–ñàŸ/(H11Ÿ›ÑÀº̃1«9£"8Îô§ŸV¶æf̀ĐÑœ̉Ṇg´!.¦›_ƒ^¢¦âæă=?-§E£²zƠee]c;äÀ<üyó¦ß-,,AϽââb<?473¸?µoß>Ugßæv9wÁEm-MÇ’âslO±™sqq…1/ÑẦªªl5«?{ûäED"¾·aED”èjæjÑ×̣ öíKL.ă臼ܡÁ¢{ö0ùϤ˜““³qăFPZï̉sCCƒ´´ ?ÎW.]±ÅÅÙôüƒ§l%²¥lƯ³gOrr2ñ́Ç;8×ĐĐtzÊ:μ~]½¶“¼œǽY[́kámÎZÈdUbA 9̉_/²úsåªUöZxÚ®)ÁFÆ„³YôÓ̉UFTZnNN[ơ³lÙ²î«mÿ .0[“³üüùó®© zîr=‹‹“Ö¬zÉĂ™—ÖÓƠœÄÅ4Cƒ·.Îoámγ§· ¤F,4lej\«?ûxT’•́ñ×›&M$̃¨-‹>sê·×d99jFÆ¢ú;¯Ùü9oကĐó7²•xÈ–²uçÎÎÎÎøSwîÜ|˜BÖâ:vnïîf7—8q1ê¤Đ»v¼à<€ÍœQ‰6~ü?êB.m m€¯³Iøó»û‘ÄÄnÛüùỮư*¬cê‹~W¾̃ÏÄ$ §z̀ØjÛÛÛ›J¥^¼xQ__ßÍÍÍĐĐđ̉¥KøSï̃½SUU]·nHôÛÔ3YI½ ÿ&Wg._Ûlk'8êâ´`aö 6gæ4gTôu¦ |^脘)¾ŸđçY©ïÇŒVʙ׈^^°đ½¨ˆJú̀ĂíZ4*»w̃20°WVÖZ»f«?ÏH›Çºœ èùÛOÙosMÙjmmô+‰6DEEyëụ̀efDD›Ï˜XL›ZÆæ½ ñË%%”mmÂPǜ5®æ4ç‹(Ä A111éS§±ù3*¦{ç/ÀCèƠÉÓL•Ȭ3Sp‹ǽbô9)e—–Æüûo~k[DDÄÇÇ]ÿ¶mÛ˜­SñgQ˜G&“AÏ߬utL2̉qó¤ĐåÂBʺ:aø*Æü˜sR\Ă/¿P1́Æg13ĂæÏ¨HK™N؇ŸÄüj%%³µïø±hT–US(VV®Ä÷(*2a₫üù çoûsóđa$b©eV :)%©OœmZâ9q1ỞåO:dÑ'k^89)(¨hhèïÛ·ôüíS[[kffvûöm®)[Ÿ>}:xđàààà””AAÁèèh̃ƒÏÑo.´+gΜ’#øÏ̃^ƠÈăv!WsFE]]¿¼¼‚8aEE…ƒ•nÈl₫Œ MJª¾baÑ>&¦i.®xÎ WƯä©S¿bmkkk[YYáăOªªª¨TêŸ₫Éü´ºÁKKKTÛuuu ÑoPÏYYY.ÎIÊ[\§ £ØÛdäÎojË™Û2gTF̉ǰ –µé7(Ê»ϲú3*ăÆÑ2Óÿ$ΩÁđuu™ÁÖÁ̉®E£Rµơr¿~ï̃½ zîèèè ßÁ¶R¶:99Í›7oDz²²è˜v³£ŸÓsçÚ|–FÓ̉Ö²å¡Á9ç,(13³f½ç>̃wÂ’yÙmù³±É¦™³~\¹""Z››—È£Ûi¬ººº£êƯ¼5è:PÛÈfÍ…î̃½[KK‹¸ß}₫üù­ úGÚ~đàèóÔóÆååµÄDƠ4ÔưfM¿ÎĂ™y˜³£]‰€€5†} üY@Àß̃fI[₫¬(o´™8mvÖa!J^î•Zô²cº ç̃BIIɈ#ÚJÙZYY‰×ü—÷o0["ÑÖÖŸ<§£æ|ïn³I…m5]Eắ₫ưmùó¼éiQ¬KdÎđó·WS#KK·µº¼Ó§OsÍÂѵµ~äÈôPQQrr­xyy‡A{đ[Ö3É ##Âvñvfæ<+¥y@ «a ™Ă†jG„œmËŸ-MçèG±ÜÖz––çmJ̃=9jvLL èùû ©©‰h¹t OơÅØ1Jù9¯Ù,ZG{¢½]R[É@‹̃¿÷®‚ôüưñüùs›…?~›Ä{­ÉÅËË“tt ăâR×®Ùq₫{¬æœ>+×ÎÎù#:×AíӄȘvưM2YUV®ˆ£ñáÇø1Û¥£lßÎ\° c/¹q㆓“S̃l¾ºƒ‚&Z˜ÅñiÎÖ¹Îö‘ĂŸÓôu¦¶ëϨHˆëO‰=ÆæÏ ³_ S̀¿ÀÛ¢g¤-utt=— ‹ËÍÍí¦“Ÿ½w_JĺĐ!CpLEùă?ÚßÚ¤¦¦nèĐrAÀ7¯gcÈHÓăkÚ5gưöíKŰóæ̀4Èr‚÷.~üY]m’‹ÓÎo§Ư…m ZÖ’_ùóÏ¿úùE€¿KPœimmÍ™9°Ë9wîܬY³lĺ†>|øˆ)S¦lƯºơöíÛ¬ÇÈË*>ª­ăêÏ÷Î_(Ê^` ££®¦ÏÚ½|àÀ|ă¯¿₫âŒÉ»›[·n988@°ñưéyåÊ•̉R¼ÍUåNsnùLṆˆöó̃­¨`ÍuĈ¤„fRÂ6®æ¼¾üƒu”©‰%kFPĐs¯µúYïĽ{÷˜Ê>ˆùóççåå1[çq¼ùL»Ÿø̀ÖŒVáÚµk™™™ööö*** #66vóæÍUUUºº.]¾QṣßÙ¾}wEņeËä$%- È$OÂÑơ¿ùœa<==ưË«ư»……Ÿ P]Ư»w­b“““+**ĐÅ ˆ‹ơ)dp{¥·ëYVFYK=œ‡9Ç„_éÓGĂpóç}R–œ/áêϳ§·Œ£„¯úÍV&Ǵ“–̉Z[öÍœQPí́˜¨«cÄƠKAϽˆ¬¬,s—/_ß>Cîåå5cÆ rŒZ̀Ö©1xR5 ÷ê} ’” ̃;9ƠÇ£R@@Ẵrơç!C &áߟ ôR,ÍS¸úsÆ̀;"ÂÔâÅw sö›­¬¬ñå_Đó7 Pÿưw¼ U;³uFv]]]AẢ3j!úúú"m#I£ ₫çÜ¡ß̃iÓ˜ŸWTè•8ÀLOg̣†œ;wN÷s&}}}¢ÇƠ¡°°0ÑĐFuë́́\Ä{Ê%Đô|̣äI1Q*k ¼ Lǰê6‚çWÇ)ÍH~Å¿?G†Ójk̃¢‘Ád óHÜœC'.!“éDÜz₫ضm›¿¿?óÓê iK—.%öăzÆëÅ$7n<₫<ƒÁøA¦54|äÛ¡y¯ªªª(¨¸~ưúÀñt‹ˆ·oß"m³Î‡3gªF<.ĐÛơŒÎ#!FŸ}‡°ScƒY>m˜3*«•H^\»DỤ́gT„UfϸÅƠŸ 6 Ó²2NFG­U§µ5ư ôÜKùđჼ¼üëׯÉḍ –ÏĐ3³ul>Cµqâââ:ú••½¬NöîÅ»Ư:öªÂÂBÔÜ366vqq!:dLMM‰j$x₫üùرcÛÍu ô =geÍ•“5NM|Œ4%áɯ¿P0́J[₫ܧ¯“Ư²ú3IÁ1(`}[!´—G‘””ºŒ̀¿ËÀ¿'’’’ØVø%ôÜ̉̉‚Ú‰nnn ëÄÈnFƯM_đN?ijj’‘‘ÅcTo+W®$X·nªêÖ`¦F£đ¾=…¨Đl =Öx5âPfĈÄèµ9Ncă7]ÏŸúÛé²÷îƯ2úœ” }ñùå¹Ï êmnnF¡ˆ½½½‰‰É={@xß“MM¬ª}ú¨bØ“¶ưù₫¨‘´ÙÓ?tÔŸ“âÇQ9S3M‰=&/§ăîæÅu(èù‡";;»£yÀ؈g~³#%QŒ°qcç_₫ñăÇÈÈẸ̣̣̀väLư|zFáå˜Ñ2?ưTÎ#xưuzD[C̣xø3*b"ZÓ’₫ œ9?畃í,iiêÆ6T z₫{öbbb.\Øé3440ñßùÿ.vñơ;4˜ŸRß0¿`Äè§©¯ø:À«ç̀̀̀¾}ăyøsÿ~^n›:çÏ*Ô ̃KqsNN<«¨hdgçÔÈ­E z₫ayưúµŸŸ?¿ª¼Ù²…ùßùI_}û˜m,~Ơ £¢¢à₫È®çÚÚÚ~ưÔyv>+'D×wΟÑS*4÷E¹o]çKIRÛÊ'z₫Áùûï¿]\\ˆùÔăÙ3&Ñ;Øă‰1₫1Z¹_Úå²yófŸº|§z1BĂnµáϧ„…tyL çíÏ©‰M#†K)‘̀LM­9R=·nƯ²³³»páB—œ-4´§¯©›w₫₫9|ø°³³3¬S zÆ16vÀ°ÍmøóT#ư4₫ư99₫aHà1‡R½X9AAEI ê¬Yó@Ïl3gΜa0HØŸ¾?´5k©]®]ûgăîƯOIÑ»›7ÿÙ¸~ÙÑÅ4¸fŒ9uêú^_¼x‘3c ˆçÇÔsVVÖ¯¿Ærơçß™ûûVóđg2ÉĂΪĐÖ*Wî'&ª&.Fe0Œ¼½}çÏŸ́Ø1δç;Öo@Ϧ¦¶‘ÍŸú)ÄÚb!WsNIx¢(o z:J[Ùf=744ôë×OZZzêÔ©JJJ׈̃äîáܹ㇠˜W®ü³}́“è/́¾!¨˜‘‘áîî.##C„aœcöîƯ+//Ïy“øô<₫ü~ư¢ØüyèƯ° ®ỰV“AÏ@'h+Û ¡gôÔÀÿúë/${ggç.Y²äÛäăÇVVVDv&·Œ1UUUT*•È÷ühz¾qăF¿~jÿơçg#†“g¥¼e_ 0©‰L²›z: ×l3„ µ‘°i4µµ5qÓá{111‰‰‰ Ă¢­Œ1»wïÖ̉̉‚ûƯ?¸GF₫|ÅŸ—S)Ø̀9mês ÙÑÏ/ô | \³Í°êùÈ‘#***èSF?Ç .tppØ¿ÿ÷T•••vvvøŒ-ôo~î`aÏ£¨¨(((ˆ?ộ̣ñü˜z¶°pư ŸùÙËÅ¡ô¿æü‚Jqñññ==ÓV"–Ô¹zơê„ RSS¿ñtu|đàÁf„††Öwáà{×sNNNÿ₫‘ÿNë¦^K˜óŒäW*477/Đ3đUxÿ₫ử¥KQàß+ï¥TUUÙÚÚ®[·îăW™‚ôZ=#÷ë×OĂ>¶úó­1£T3̉>âæyƒ~hwZ‚N§_¸pơ₫2j$¢đ#&& {Ö¬YUUU¬]y›Èơ₫{CC’n||<ºt©ƠƠƠHØ---ZS̉́Ù³'$$DEEzÄ9‘ ô zî¨Í̀,~ưu0™¬NƠ gàkÑî´¬Ö߸'N°̃_¾yó&…BAMMMÙÙÙưúơCME‡ˆˆ999CCC]]ƯN/Åï¿ÿơ×_HÀEEEfffbbb̉̉̉ÚÚÚè„øzsèJPt¤¯¯ïââ‚â% ‰̀̀Lü œ©@Ï çêỷ¤¨>¿€̃~ß>}z^^Ú())AÑÈÈ‘#Ñ6ÂĂĂQ-11QQQQFF&22µạ̀̃óó KKKQ„€d¶k×.r#ù­X±5-‘’‘Ï;;;£æçªU«h4Ú‘#G¶nƯ‚jllTPP@wîÜÃ̃̃(ü€Ï=@NNNjj*³u­¼¼<̃è;ỵ$j¸‰âÇ:tÈÈÈhÛ¶m诲²̣¢E‹=º{÷n$]¤C¤ØŒŒ Ô>|xXX9R¸»»;ĐÁèä(Èá¼ÿsñâEô¦hCVVß³dÉ"̉Đ3đ#ƒÚwø/>Ûưe¡ç3gÎèèèà#NçÏŸïéé‰ïñâ…¤¤äû÷ï‘₫QÜ‚4‰6đoW"\׬YĂơ₫{}}=‰DBRö́dđèà„„ø\Đ3 8ï/³éÙÂÂ5☭ƒNñ7ü6:j÷á ®\¹‚¾...¸;æäôÏ´Yccc®p̃¿~ư:3‹ …:è{ï_¼x1~@ÏÀv™SÏ(Z@ @´?~üøØØØU«V¡‡¬KZzÆ›–ÅÅÅHœ£FÚºu+Ûư÷û÷ï£ø„u99Éܸqm¸¹¹!ưÇ€€Ù:à‡ơ₫2§ëêêPü€äjmm]Û :nß¾­¯¯Ïz<¡gÄ“'O²³³KKKÿøă¶ûï“&M:t(q ûÇ555¦¦¦ºººè)øDĐ3t·oß¾{÷éugss3‘Đ€È!öç$è€îæÿÈưư endstream endobj 506 0 obj << /Type /XObject /Subtype /Image /Width 480 /Height 480 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 471 /Filter /FlateDecode >> stream xÚíÁ  ÷/í§9€€:æí@° endstream endobj 509 0 obj << /Length 1211 /Filter /FlateDecode >> stream xÚµWKoÛF¾ûWđHÑv\. ĂIQôĐÔD.i´DY $QhÇî¯ï<–"—¢U'E’f¹;ß73;ĂÉè>’ÑÇ+9ø}_\ưôAÙHI‘Ë\EÅ2ʕȤ¬u"7Q±ˆ¾ÄÅ$3qy7Qñ>Ơd«·“i$q±¢g¿’”}('…t9ÊÎƠđ9ø€OCº*>’̀56Ê%-Ä=́àkkܱ5Xí'SÆơÁyk^·Œ_vªÈúÙŒŒ£í +ư¡¿«̃¡©a9Ñ.₫Æë₫^¹ùë@.Đ³hªt*´5 a“œ]Ú£m5Æ–¼̃xâf¢³øyÓøqbm\âb’Eb4๙v—¾ ²É…Îl«„²#XѬüå[ÇV#ü[±:«½Éôh WABÉ0/_ ïoéÉÁ?}"¦™Jă÷Ï>¤Æ ¥tRŒ~…©R>l|*À£I\U,—‹¯> tI[LĂ^hĂû´Sñ¥¸Ô5GE‚a{éh½Dk ¨à2¢V |¼¾Đù_j´cëqåÑ–ÿ”V¾¨«Üå-ÔP½Đ2‚Bu’.RFÓ\$iÂqøy2µÚ¼¢î›ÁË̉?^wG”ç4æœÓ2ç5ªl6oQ±>]CD§x£Œßñ6D5oZ†!$@”MÙ´éÚ[̉¦ôx"ÅD £ƒÜÓµ.*̣”ª̃́œs ‘”Í!à K³ë$™ªøvVÀ™Ï´̉~ơ‰ó®GdLjŒỂX¡_Rú:/dFÈx oFXk6iÊ{ÉiơÚ=”áØŒ÷­ÂD˜Ó…u0r>´| k½ kÛîÑIÛ?)ÍÈu”÷₫5 “¬µ\› ÛCpăJ©¾W¨œ!0#nήa« “á™ H1FO®§'×-éܽÛ²Á¥§\ÏNƯ^c¦I€¾̀Ÿ&#₫1ă§€½r£ ÍÀÿị̉S¤ä˜˜2Û½oæ{˽îÇ‹—j*! f>Ÿ¤ï¨ „ĂˆÉÁ¹CYúHtR½ªX´‚w#iCÊZ —±%É×ÚÍ2]T°·¾­ÿa˜÷‰s9äs…_́ˆ̀ưEQ₫^ÈubIa‘9Ï̉.yLfà`qÆâ}ùƯ&đ}·æ¹ä™Á±cœF|âÛ̉Í&5?†\¾Ă®óèË£PÆ> stream xÚÍYKÛ6¾ï¯0̉‹ ¬U‘”d9èH‚&@­oIZ[^ °-W’³É₫ú΋%Ëû [9ĂÎăă&w“ḥá*’çÛåƠ¯ïU2QQ¸ˆj²ÜL*̀"5I³t²\O>ë© ăt¦Ó 8@{]Â6î¦3cLpâ±ê€¯:h·HÏC–̣x‚¿~¯§Ÿ—‚à™‡‹4aêS”(˜#΂÷Ó̀UÍ/9>A“ïÀºăi©ç}è̃רA|T,×<‚2·O×rWî yäË4I‚œºI7ĐdMN·rO™©öæ(²DcĐ&ºŸê90À*vưRĐŸ §—u¬‘á°¢Qk6ê…˜•y[¢`)¯#Dp¬&`èyDE₫4ÔfÁü¿Og‰6¤y(îÁYiƒS"x$đĂçµR"À˜Ë̃U¨TMËÎ[TÍ’‘Ơ´$MV¶ă4¾œ ơ¹Ă–tjEá¿áévÍm\†̉̃pD¡¯¬"Ö[̣¼̀€n¸I>¾;”è₫r•“ ¯ˆ¥Êz¾Ø!U[V¤JÁº·$‘ód'A†Mª2p¾̉qp²!hc¾®n‘ăûw%Úë₫ÆÙ#¬Ï†9’­HµMI1%E%µ.ă Ä /+ Ñ̉ÚJHÈé́íǸd™¾Ëµ¤r{© /ƒÎÉa8ê@ëâóÀ—¦ÔEúè, \¸– l%{’¸ªV„ xáÂKI/¼î”Å.O Ÿ•đúĐ×Đ ´×Ưœ†́èå,܃S¿Å\ È‚¢8ôÚ‰“'s”́­É˜™¹}Áºâø(₫P®5L`UÄà+×¢¢0ߢNß°ÅSz²̣ºă  ©‘ ­bơôØ×Î*V;œj%£̀”z6©°#ƒEŸ‡r³bqˆÿ°™°Å^;ưœy äXq( ̃̉" yn³áhöÑâ–¢ø¾`gº5̃W˜¬‹# SœZÖf (›!RV’–²X¼)δ́úQ›‡©ÊX¾aPˆă,æ0ç==£N¯Á÷»"wø…Ư¿c)Êđ‡48ß°àZi%j\•íƠ†I»©‘Ôtú֬ʮŒ(ÖV“”ľáå¥Ó:TÂĐ•%&2²ö«=Ld¬ôZ̀aªr*î8«™SS†œ6(Ä¢®n"‹à ’ Û¦4`ndi¤̀|C>{¼ê‰_‚ J°Á\À‡Äk«ŸƠgΩW€ ƠîPƒvq&¼–<¨U·«ßØÜÀ5ÄÜçè̀ô'‹B52™™,á>qÈ«Ÿ;«Q9̃Y!?ízáơ²mF ËôàD =Qp¬QúmiZî”̣ùsÑ'fô1IÜ¡¾@ư„ù-ĐC=ô˜$±Đc8SX ›Äp†#ƒ·?#}¯p±‰hÍ·œ»]b[đd~ºCU:ü9ôÓÂ@)'<á̀;[´`÷]›ôelê†CuIƒn¨ đB—¼é±oŸ./+=Æà%”¶=¿@ă·3 A÷°üâI,Ä~wöŒÈ ¾C›YÁ]o€%/,vÈ2æ“«æR§_Í$®Ô!Lö™)×RˬÍ9óܯ£̀9sâ$Ç£’qe`…ÎzÈQëq]2WyÍ|®„œ‚¼Ù̉;öh0—ª¯%€₫êK?u~ÔP¡ÙíyI‡F̀;Ơ«UđưKek fĂçq|́ Sj ø¯ÜÉơIt^mô°Ç¨s(‘₫ -oï©·<%ĂßIf\3… &¿_ñđÙv'/“ƒª]¨»4³ Ư™Íê™0‰% ‡ø Ø©?"ŸDlÂ,[VºÛíh<$RÈ^E0¬&5^^bă¯W“¤áÈI&3đE§ê\@a‘E¶ÀnÉàñmÅæ•²ÛPÍAi®S »SÖ÷Wu’‚[GήD±ê.(q sÚs?=zḲ\Ræµ=ÅC/EuaïÜ`Ă£4•¢KL|½TwÍ ‡đÔËQßWÚïKq¥ÍDœû¡[‹)üøÜ+́øRÂ^½TçjƤAis±«Y§ä­Leë>¤Ê…z…ÎÙ–ø‹ár₫0|reJÍ$vu8H=ÙÁ-_”8×ó-wcb®¶ƒ‡₫tƯǺ©èÈ}m(3«±t—²”;å8§̉À:±8s¼Yp áÓÏex-ƯƠ²¥/ùv*CÔF!’ºzj§j§åÖ[7Î(Ï#&ñ1p¹;ÛµăMÉĐ̣M±×í¸Ó^·c›p3ßÛÛö̉~l€¡ûá0b°Ç¡0³u&5qïÈR·̉¿ÙÇ11ƒƯMÎoû /6ä¸=Ïó`wßiEÀèVíUEµ|^w¥-ơ÷kj`î»aE‘ƒˆTđfg­@àr·³lÊXKÓ̉Éæ×£ëPÏ¿°c8Ömª´·ÂË©±© /­XF™₫îC÷¡.TëakqäLs•PƯm6µ­dJ.Aø Ư×'9 =/$ ó(^Ơ|¡zZ±₫4v Bbæ9Ÿ7ƒL‡¤=?8ñMwù\µvbÉZ]"b₫û‰¨aƒ̣9?öO'24¶<ç^°™ 1kyuGî|–/T¶L¥ïX[)>í·+v¡÷EPÓ>9ô¥ưˆƒ´óĐéuMÙnd‹)åôàF¹áÎ.ûà¤Ö9àgµËïÎk—«»úqĂ0Đt”…ó8r7 ³D¾©Óăùcyơ/₫́¥ endstream endobj 521 0 obj << /Length 2713 /Filter /FlateDecode >> stream xÚË’ă¶ñ¾_¡Ê‰Sµ¢I€ÏT¶\N*ëÚ\œ²çfç@IÔ#–DY”V3₫z÷9”vA nô»›Él3Kf?~HäùÏçß}N­•q]&é́y=«Ó¸‚QQ³çỚ×è¹}J£₫̉?Ís›DƯŸi´„Éî|Ƶ}sÿ]wdˆ½wÑöOÿ{₫`×qVd|à¿Ü´ÿ;ü/»ó…Àđÿ·$O~NùOŒ¥GĐKŒÿË ¬§t\køÈ\Ü"¼ç—?`|mÎx.Ï|mö8%o)Œ­Éá?Î̀ÓÁQˆiÿLÀ·m‡wÛ-?>Ím™EDqÁ©æÄ p2áµG¶Đ*I~”ÓæăÇ ¼Nß’åÜ=¯,‘”3ñ÷äqkÏ×KóYÄuR“.àM[Ơ¤-Ë$³5ÜË”bhÎH*N/‰̣ÑùÁ:ª>W2¿ÄcđØî̉đqí=ínà=KX–Hú_~GÚ;<¥+X$¥håbƆ7³Æ6‡̉ƠÖS·9u­ Àº¹Üù·$-Đ˜¦ÑUåHḉ…Ôm‡ó@ M;åP¤âf?YÍ úú”|©Y)îi?¢̣G’-̉ØÔæ¡`ë¸,œèoÊd0̣£ĂoEöĂÎS®̀®±e8e±¼2µê¨ øÔơ ÀÀrH<ƯœPHÆN$³̣ۻखm›&<½"náY¿ă]OJJ Y¦q’—C~ÿ„gÀÁ¶Ê"²éưUd§Œ+B­rw±]ÏK'1ưnAè<+–;Ú{•[è´f’„’2I§̃LơªÁÄST]æØ­LH½(ă¤,¼9ß÷THÔn¶DíÜ.wô"$\»’đĐ?À~â0hil̉tÈâ@lR Ÿ‚#qïywqø“œ´Ÿ ƒ.„¼P°=)x&ưÜó«º×₫0eñFœp®R‡ÑN÷t)jY·huÉG0ạ\¶‚ƒ|ÙN O´·Û…’ơœc=ßùÈ ¬Qßè€tB ¦ÄÆY•z?†y¤<$ä8B²óCw ÙŬí@Ô“Æä-9Đ½{ÁÜ^?ăÙ›«*’ơIHfçÍŒ?ÿøaö+́)¢”2 —Ê‘”! øÏ[Ơ8@à†…8ß³êcü“û́lͶ’R OÂ0Dz–'ÑJÂ1¨{GvzÀ‰?Ù«ƒăF¨t Àđhe.®:T̀œ=i ›ˆˆ½>ĐF5\Y«ëÊN¹*ø$)SZdSç©sSZ´tNcB{²8TC{€f<Îmæí &êñ•£ ¡ª‡iF™SÔï¿¿“TY©0^O0ÑøÓĂùC~d/́OëhÓ²SÜ&}l%H9†;¥“÷rFÓḲ[‚a°×OP%¯BŒâ;9Ê*u%‚«B´Ä%qéqj^̣îXÉ0¤ X2ºbMPL[“ óakÅÚœûđií™I ©¹¦C¬S€å=/Ưœ¶à1‘H¼Ë ·u*O.$·¥— ›4f{`$cåưº ƯSÉÛ”ơƒSÂR²âÀB·pÅ ă\ñú ¡bƯè¦G&]ѧ)àE0H¸â„jØ4LẮZ3”ƒœ&;ƒÈê|˜FVx]q¾ăcÏÉ¿Ñ[s¬CC¥f¬ÆÄ¸‹‡¥HI₫®ÜÅz[‚áÿ…º₫Üx²|Ăé3\¥ƒ8Ö̀ÇÆZÀ¡̣ÜXŒ|,Iô[£~¹Œ¨ùtW-cáM|ë5‡’+ơ°l=d°JK)·ÉO‚;ÆTF Œ»ShfäĂĐR”̃Ù4Ôz™$=¸wÍÏĐÛáñ÷R3Xăˆ K:3ÈP䣰Iw€eêÆØåøº0i–́ÑólÊ3‘Ÿz_U?P¹ådgOÜDkÂö‡Gqqç Œy¹ăIa¯Ọ́ÁVkĐ^ă@p>b£₫D >›“+©”Ô•¿1÷";¨ÊäV#V6Á˜bà‹̃E¬›«KÔ”U’‘Y“†)·i¸l<<&̀̉)®#ưµªtaä°A:̉h×"f—-ꮄªB?ÁŸI>"]Äü$¡wĐRâzk£ơ“Vßl̀&“afÅKKÍÖÂÆ ºµaưe‡>…äÓI.'o í3ÚJ••—Œ¹uDyÍilB¦¬™đa¢/Nidg¼I=U5CØ2Ë©ûhªú[ °ƒ[́Â8C¤î?Nø_/Z©X郞ưoà´|[ûÈÉÆ„ÿớê-ëJ¿‡xUÆInël‰âêZs̀Œ3.|µ ¢ÊHrƠ3®•̉¯¾YD L'{î &j±?Ëñ‰‹BPím.ÚçĂ®if} Î(îI" "»~œ" "­“<) ›Sg@ó‘¾ƠáØYÏ –ûh¸OëVz«DƠ‘ç`ÍÇ  ăÀñH;L•¾eNîÔK¥déœưµ+ÑTÔT=û ¿‚‹§f'ÇÍo>ªĐơ©öí¨‡‡+́WÙÊ^³°̀Ă¢cäÜLc¢q!¨cA|¹ÎEÙéđ‚_À5J8e‡°ióQÁ=è½CVÖ¬¨^á…fœŸĂ“è½Ïiº¥̃‹t)MMT8K\øPº°‡^Béʬ7¿‹*›0£>0 ˜h¯ª́U}aQGîÓ˲ÙßSÀFÙ“¾Bf‡ˆ2ÿ‰–8Ụ̀`Ưh¿ºï4Îi¹7À3ÊÊóD?¤wX©áêüs[t%1fỤ̀RƒB¡–KmÖ¤sÔ đßàQÛÏ íå^ưĂ‘~ûVÿƒÜĂ}³đ‰ïƒÏ:€Œ³™âMÂÓ·¢¦|üôç‹"ÎMæW×-Ÿ0&“ǵÿDqÛ¿’&ó 'W̃6«€XiƠ¼óơ7:¹ éZ§"¦ÎϱÙK*hMœ'ĂvñăÖƒ‹Ñ/Ï/â@—~9¸ÎyçúŒZsÛ X³NÖbsà½v,ƒ¾¡µĂPéùẲŒ‡Mvü Tfà†ểđJ¾Øg ?ø „u endstream endobj 526 0 obj << /Length 522 /Filter /FlateDecode >> stream xÚ…TM›0½ó+|4¼0ôĐCƠnƠZ‰[» IÂÂFư÷ñG–í®TEÖ83õ0o$Û3É>'̣?öC“ÜƯƒ’̀ˆÚH`ÍÀj̃J(„Qk:öƒ¿O³Bĩ¥Àg<ÏÀsÁÓc?e!½ô¡ù|jÀr’­…R5S„ÖÀvc̣;¦ÖºrˆÍƠ…b^pÜ}A³Ṣ1–ẺlĂê;+HQËzۙʨ öƯăsñ́×Ù5’©²æ ß¥Y7è;ç­Q×å.U?LsHßỳÎ9f‚E9ÇéLÁ÷Ë% GÉŸw= Ç,#ù7¢ïí́ À=ÅŸ’_ó_Seø´R óđ–LljO•Ÿ‚̉¡p¢ÈƒX9Ï lSE*ïhÉñ‡îùë =€m©Ữ#¦!Ø–»Ÿo5;ïJ‹’ÛÓJÁÅ»́BĐu$WëÀsy„öÅêñ´AiôxÓP_,Î(ˆîÂgʘƯ(No‰A›~\âZS6®q€ÓÙm?Rĩà‚ ½Fz»mU)¤ÛdG8̀‹…Äkñ ys¸aøZkw_èªø/̉×Éư±>¼]Ÿ¢̀™Ç !²·ÆI@ F́åàå!®© ‹è³; 3$AÜ…{Éÿư´0% ¬PXY ™ߥ.^ ñÓđ^°z endstream endobj 518 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-027.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 528 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 529 0 R/F6 530 0 R>> /ExtGState << >>/ColorSpace << /sRGB 531 0 R >>>> /Length 5115 /Filter /FlateDecode >> stream xœí[M¯%·qƯß_ÑKi¡ëæW“â,l$$€£ĂöÊNàoäD2ưüÔ9§ØdßÑè>O đB9Ă&‹U§Åºaûr Û×ÛÿÜ~eÿứ»ư§_l¿üê¶ß÷}ßÖÿơ˱­eûßÛo~·íÛnaû̉₫ûúĐaûç[>î{ßR¹·c{¿¥=Ü[tø²}ơĐ,û½5¶¶v¯ál­!…{Jg³Ă¥½¦{/³]p¶ÇpÜK=Û.í¥ßă>Ûgûe3ç̃fû/̃¹è~ÿƯˆî»ßsûÙ?F“ó»ÿÜ$­ù?á¼ßSßB¾§¼½{¿}öEú|{÷ơí̃qêm龇ulüñcC,÷#­ƒĂƒk¸‡º ̃üØ̉½®;~â»±÷—±Ol8ö~ßó2ö´Wzù̃Ú*piÖÑ ÍV©íh­®µ£Ùá̉.­=Ûg»kíhw¸´KkÏvÁÙî›íË̃V±-²úba ÷\M_WĐ–¾®¡́úº~|´4ơUưè`WƠW•ôăƒ¥«¯jéÇKY@M‰n)Äû>ˆïå„úăet~€̃ù+P₫b )æåoÿcû·í›g˜í•­|Imu¿’Ă¯ÇVđùuI±÷ĐǾ€¿È%Eû -g—¸ẫïÙˆßLơ ×{O<á(|Ü#Úó=4â|ϸ G:P°àư^ MDp ½Ưs"ÎØæ 2ƠƒØlÚq!¶sVÿT›¸L{ÄÖ±ñ{E8£ëiß‚¾gÿœ€k»7‘+<@”ظw7N¡FÛadbÉÇÄÂư‡£á/ËÁơ¶Që¿í? ‚X‚Ú÷{¶3±DÎWµ×Äê1\ /ˆegÿBA‡nçÍơ–ữM,Ú_6Î4&4±¶ĂÚB‚Q©Ö“óư0e2±î/GpX0j)”øPh6-q²ó¶ùM,‰̣Oṽ`Úr¯ü^:°?ˆEë3È;•5«ƯüDÙÂQÁÀ‰ó™X¨!Å{µ₫G¼»ă`ó™X|¾Àơ–êëKè:ˆ ¼hvư±ơ%ÄÑ器ÈÁxÛ×_ Kè¾|ÏÄậà_üŸ%?ëèĂ _NäÓJ₫ưùY-Ä—¥óĂ₫´l/¿Çméü¡Ú601\ăÍåb¦ ]¬̉¿]ß ü¾ÂEúËñ<6à:ÖŸë?" »́ƒóQ-€‹äAµ‘}¥csµ‚ưQÑ\퀓΃j)û5Euµ¦"»ZË₫ƒÎ·~€:Ñ:íú|}sZÖ÷¸9mk=¶§uáLÚ×~œÿºæ££p·ṇ̃àOàBcăÑúæaL#1 tæ Lƒ:ÂÎp¯œÁDKœeÑ W—Em ¿I¢½y¸d;J\q®ø ‚·Ä₫°ÈD\Ùnª̃s₫x`aÀQ'Ôùb¾PưDy•1Å,Ccl‡&áăp–*×+‹·í' €‡jƠ=RØX'Û¨µ×înñ b‘Ç4Ơ‡6±8C†íÎh±ms‹:a#J ̣2‹œÏöc̣f¡oû1ÆÜŸíÛ±h’ Đí|á/₫x¹É\q¼T́-S{dek¶oÀ&íàèz—ÚẢµ˜á ²<f¶ơ§†HG^“È„‘SÙÙR)̀üɺª̣rËÔn§²^vBÁÂ4® k&ªBƯI¶Đ±æ=AJ„ÆW¦lÉ'6YÛQ̣(rç¦h;¶$;@Û …’!¾}¹Æ¢y;ºTÄvÛfÛ‡Ä`êß ±ú›Ä8^sâÜúÉßỚ\¸&­Ï׫µăH¹™yâÜj!˜!©@_(&ÉLS9_¸ˆ%o(@§!ïƒơFtx:Ih:Vç ȃ—À.¨̉¹)4HpçïÎñ¢ '`Å$Ưc^§'`R‘“]ZDUN\/7§2'6a£:'>ÇÆ "Fa£J'NÍ—p=N./Q­/0©Ø‰Yë=ÄP}÷ư8ƒ ‹êø_<}ÄfŸÆ­́Ăû½·,ühJẾ10–î="CÙC›m̃Ă‚¦²ö†xÊá=¹söḥ=ܹ0±vöF=“–®+Æ:²¯Ă‚“ËJ÷v~Å¢´ËJ›¢ÿ1Ée¥ÍdÆ:,¹¬Ô1̀2{~]©cSïâs@E×m9û˜ă§îư=:¼ÿÀîưO<îĂ»÷xxÿŸñđđ₫'vïb÷₫ï?đđ₫'vï?đđïâxƯßpÿÿâcÄ‹ĂĂ?%ÜÏ,EŸX†°`ÊÄ2¤‰eh ¦!N,CX†¼`ú‚I|Ö‰I$‹h¬ûÚÄ&n—ưưÔc‡c‰¿ø¥ )–CùX‹m‘ưöÚ~¾YỴ̈ÄÓOáp$åôÿûÿ¥ỶOW1s<ä×µ˜¿ >>₫ ÄdĐ2øïŸ|0å³ ₫ó3Ë® 7J¯H¿~fÙun~jÙ™W̉9øƯ_vmLf¼I؈›.âú»?ÖŒ ‡7ºV\'ß&i»OÅüFAÛ÷̣F9»V7&̃¦Ôśó:=Ç>¯̉‰­·iôû„n¸BϱOëó›Ä,uCŸÖæ7 YÊü&K—ß$b©̣HxyÓ›Ÿ¿¼™SµŸâưÍk>bÅó=̣MG&¤÷,tÆ€|\‚SÅRh¦T)2‡È£2Ưr0Ăœb×EèHÈ ̣tPª”voí8m@fLj@Đđˆ€©́î£Á(_™çHđc *ORVÆÙ®‘Í>„t6Çl₫;á½ñ†©^PñÂÖ}§ä¯kÉädÁ“åˆ ́CxBÁ̀:Dû^P˜ëx©Hùđ—=̣>̀•’`!D2?̀›eØ+rÂu{dÅvT¬Ï»†ˆtL*~3 Y­„DÚ+ofwC²»®^bDˆ“êî/3YÚ:S/w8Eû¤ÇùMØy&S»é±Ä'ˆÔ’gíL‚Æs©J…Ô˜'h#OŒ̀¾g2c¤rÂBSùµ\X‘cXyd;¾l³R₫„’MLú Æ—÷Ă_† •<ïÍçW$“‘ÙçúV dˆm$ÿj4œüeÆT̀4 ›ởzØB2±çÁ½s/uªæÖù™ PP1Û;„s¼)̉˜çü‘ïü¾ ®æe}&8$6Ïơ[¤ÙÖư™¶å°́ߌ¼×E>¦o6Ñ)?d(÷6å‹ôlwÈO$0̃q>x"©Ëùáåæ;Η/Au?2X0à¡ÑNư‰¦o0á¡_¸ÉÀ†‡₫EÓ7ñĐÏhúfzê/n:0ă¡ßÑôd#3c6 Cö?çi?Ñôm_́ ™.Ø̣°?øø¦}FëHkvóÅǽÖñ¡>7)db7 Öꈦo°çÁ,ñàKÙI<Ñô­ÔÉK±̣%ñ¤­h‚ƒ=VµĂéE=ÙœˆǘyPf´ƒ‚=F 9 Ù2ØóàcÜl`σ®yS+“ÍqS« Ù£´ö<|Á¨°“«¸§\ëRÂηÎçËS^¯aĂ ̀Äaô÷øưe:ªmIæÈ́́lđo>ûĂ7úösû÷²}ö₫·Ÿ}ÿÛÏ?ÿƯöîË¿·ơko²Û-ƯíÀv´|ÿ·Gm¡ö%¼1¶]?Ü.ƒÿüÄ`Ôû5²SˆÚ(ç™Hhgv>©Ä†iqrđ=Œöt¦Åá=Ê&˜/ ßzئR÷¤·âcZøŒÂ¤w-ÎÆ}pɶ̉‘°ndçÙ£EỀŒ:„3¥̣̉£ó%œf/¥²§Y ĐΓˆ'î$qÅ"Ú#†²âc‘̀$̉‰3̃¡¬RƯ;QǸ–‰ÍÀ{[±ˆđÄȽ¬ß7G[×Ӄ-˜Œuâ“Èq}è_GJÈçkJQ}@¬c=ƯKÎ|½iwÇ̣±k¿FüzBpy@KVyÅ剷´È;‡W›Ÿî‹ëy–p=ïÓ±º>à•',úrø;ó‡]úfÊ~,)ΓĮú9ÅđäW1ê',#ôĂóâß›;-P!(åÓL|½¥-åÍü?)zDƒ^±hâ)ÍƯIĂN<—ÓƯ–íđ×zr¬›¹~e/ó¦‡¹Í ¦ÎSU ˜¥W?fœ¿Åsˆ2wB†ÿÍël  6ÙXu®±¹üC6ˆ÷1vÎT½ôF„Ux¥̀«X?<ƒ´ÉÛ6>#ÏỄ…× ÜfV$d'Ñ~(Œ…àN4Lµ £ j…ú̃Ö%¼Ñ£âP˜‘ ;ôï²–dWA|ÅQ[# ŒL}øX µ³°·j[ª|a Ñë ’1* è¢Đ’1. Mº|JW\Œ1 K=¨à¬+ŒL]QÙk9’±AÛY Æt̃Y&‹B>ç=A3B¥ ;Í*ŒÄ÷x¬‡ÑB¾ˆÿY V¦æÀkëäØßî(°:¢¬'›àPyøƒî%³àQƠ$&H™uR¹ư₫ÂÇ₫¾â¢0ö́ïaƯ˜ÏH‹ >¾×¢×£øzLŒ©,ëÅ;@[öÓw)ùØowṿ°kI^å…:¹0åÉ‚°<åw/øôó@]œT]çí3̉u'ëà–ófØ>ơufRwé ̃a¤ï̉'ô]úcÛ¹>‚UÀ-}đ}êsaºë;HUú.{@ˆ̉û´¼Ü—Å" Ë´7Ün¤ï²Gºô]æÊ0¯LkF4´í| “ ”¾‹*p»© “D#¸&ÑÀ µuƠ=BÁZXÙy(âư>\̣~ÿÏ“̃Ù}µỳÆÛéù.÷ n"Đ,<ư•2^ È¦âwÂ9ø‰›H*t6ËàwO F¦ˆ@»® @4•¯1gÿ•‘÷0míüŹ:k•‡/=”Ä|Ï0Rªó§l̃)R₫Đ bÙơ4â6韲ØÂ,¸-nφaƯŸkÖ8pxß<Ù#́?³=/qâh? 3G;²&†eÏqäđg¡“ú_q»âZ®¸=ôïû¾Œ×~WÊÇœ̣ç‡ọ̈€zÅơáû=¬Xú°âP¯8Å+ÎíÇCûơ{})ú¾âËün/+®¸_úËWœêáÛ*烧vÅÇCÿë~̉ơ¼œ¯VÜ.óåó‡¬+®øº¿r)$|;±øxŹ]ñEïW\/ó?èŸû“‰åoV\×ùÜ_­¸­ßw·â¾Îç₫rât=÷·ç‡ùä¯W|±_÷÷׫=z¼0±â‰‰û¥rÄ#+¾è¿Ç3?è—ÇCç«=z<5q¹®Ï㱉ë•<›Xñ̃‰=œXñâÄñº_7'~ĐgW'>úׇùO¬xùÄuư‘ĂËoO¯|äñúÄùjÿïO|\å9î 'nW{÷_/ä^Đ‘$($ÙÊ«4¼Fz,‹=Iđ«ÛÿömÈ´ endstream endobj 533 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 540 0 obj << /Length 2736 /Filter /FlateDecode >> stream xÚÅÉë¸ñ̃_ᣌ´5\´ñËK2$=‡™d[m;ă¥!¹Ÿ»óơ©eËå fnq)’µW±Øj¶™©Ùç%ßOOß|[e3¥6+̀́éeætZ)=+ªbö´}Ÿdó…Ö&K₫ñ¶?Ïu²ÛĂŸæËܤÙ϶̀“Œœ ©’u³ßA縙ÿçéïß|«ó™V©SNăÆj¶°:ƠỤ́¾9µ¿·¬isÜéØÁ^°ưr¾0ẻÀĐynªä2Çv<¿;B{«¾ÈŔ¼Ơ¸›lqÙ jÖFÛíé” Ÿ=„IÖ¸ÇJ[jù$XrÆYh†o8UïyhÓ°ÿ*§ư rƯ%RÓ5k$:ú$xăÆ)ü6é#² ù¢mgù̉à1[:¨Z igÄäc^eÉ#rZ%ơ¦¡́C˜"í„·̀¯N{!µ€…q69ÔóE'ÿE‘ï²Ú4G̃ÈkD¡ư näg ó˜“ăwuæ%5K›oˆîØ?!ª>₫ïy„'Í^øK˲ª@ Ăö u„I«»Ê3_dyûîElê·å÷êN’–1ë^* v…Ym+Lßß €´,Cv4ơ‘5nàºxÓ’DXĂPgFñ4Xd\d+'XMÙYÀuÛ¯̃UbA4̃ÆÑ ^ ÔXËụ“Äàîơ±·é€ȸN:GOG&Î̃k G–̃x'í¥^ä_n¬6¨7ÀƠrêÀoÅK¶ă‘£F½îŸÔùÆj/d笖Hnö¿çÆÚ{¦)Ä•@*Há&Ne~•‘Jxt „b&¹¨¦Xq §üblÍyn’’£MŒº X¢ñĐ̣–§E‹GæU]ơÏ‚1ÔËÄé(̀ÓŒ×}X@º½:$:v ×ü9î̃ễy î"dú¼‡É<{dÈăÈq[ÙØ›ơ:x ́/̃²Å´Xa¥é-Wy]Xı̣Ñơ‚ ’7Eâƒ^Đ k'%¤’ăF`ÇĂ,'Å:u }Ÿ»æ©+*Ÿœ–Äø¯Íê„C&ï̃3•'kL’Đ½c‡Ù`–pà‚¨²+8̣HÍÚâ °€7沸¬áJ“ĂD—‡ڛQ¨€·øéÓs`wD£Ui¡K„ËJ&´cÜá¶>Áïc,µ_øµ¦Lmg&>ƯƒËA·Ïü%jöÂ4àETQhuđ-x2Aø ‘̣ ïi_$ˆí= hÁ g¤ˆ´?D䵈gcŒ.S Y1êGD‹£Ư±¦Hu‘yXÑñ=UªÊ°çÁcxöö̃ˆm±ơŒ”©Ñ~½dâ/]¶́y8•%nR.y™K^m²Ă«?̣ $æRÛÇÉÑRï?È,):RÈ$WÑÎe¯Û2%(v|úàă%N2½%XØó!¬̣8ƒT¡^­Â¥b»X¦VjÀæ>»>‰%GÖé]oä †×iÜà•«!>@zçjªØAB~“V.‡paÓª”Ê]Ûƒ–©+»̉Ôd/-|€‰è¸Û…¦2+{Ø?û-íœS!nÇ-̉¼¬® `±•eA¹M[t©vv‘$NNti¡Ä¤•5>́*;[{ÿB̀>îaV}-fƠ=̀~¨è•©Vz½¡HoĐûÓ(× çp¿­@m)±f9ʶ đr›ÿ¾̣ü Ä~q̃`we¡»lˆ%MˆR›Lg3­˽èåüc´X“…ưIj́Ïơ#èp±‘“ÙjPy….•(Ûƒ\aqd*0âüŇmÄ2[b oèØ‘¨Èà₫̃×û%¬è.Î0¼–Cn Ơ¶ª‡K°ƯAº›_‡É{áÙeĂƯp`ª̣1ĐùçÙ׈íWù¯)óةė­+$N«"ÿ p,";¢h½³]¥ªèÎGƠ]J̃û’ö®¯ÿöÅél:ÑĂ’÷‹”–£2øÚRù9 /|}±9pËÜ^_¢|ă¶yS¬áºđ₫ͧC<̀·›f¨°vđj2Y)£êŒ‘ềçæH‰îƒ¡́^öul¯wrS|Ư×XPù2 Lfpº•"ß9ʤ¬7¢²/̣Œ]PƠ ,r •>.ÏG¹£62~‘văï ×jRViî́ơ½ƠQ–J_yn÷TJÛÅ =8hÑèª mz¼{¤ä>¾½‹2eg¦“¹vL¾V¹`ƠăúĽbm:_”p{Ô3›ùƠư&¯˜@„Sñ¦[ÁÂxürjØÁjôß$zÙ(rgđYh₫ö5ơ]ú›BMGL¿‘`isÇ\$Yrp„12Gôc,1‘”lÀ°Ư–ŸŒØĐz î½SܾăÆñUM²ÿQ…ëˆu˲|±Oº}Öx ƯB ¿$Ô?¼ôàƠ582!ËØäiŸm[®9Rÿ*¸ë o´Ô°́aT•–!TU’gÙbô·§‡ÿnºí endstream endobj 549 0 obj << /Length 2515 /Filter /FlateDecode >> stream xÚYYăÆ~ß_!$/0¢Ù¯À~Yc×I¿lÆ@Û‰£V—Iigf}êl6%®ÆÉƒ†}wUu_Ơd³ơ,›ưô.“ïûûwß}4ù̀diƠfvÿ8«MZefVTǺ~5û5y˜/l‘´§¹­’ç¹-“vn’v?_8S&ë:‡ó‘{Ḱt8ÔnáOs‚?“ƠÏØÁÁ'îS³åv»–°̉$+iâ6~ªda¾qĐîÅùnØÈ4I:_xW%ÿjuG%…p é®~ËŒß̉ôï÷ÿ©-ŒKs_³t‰eœ9fY,HS¤EëiƯ³ˆBïÂ6̣÷æñgi·4ÇG¦,ÓÚçz$n9‰Î›p"JđHrÇWzÅ;đÖ·<°¢WỉI’µO ›Ï6Kơ|O/äîHzü=‹ˆô…·Böùn§È¯\Z&HD÷m™°u‹̣h;Uœ–YëùjP¾sĐ©v%¼Đ@Ă Iª0)Ă;ƈÜVQf! ?‰̉œ—²ôLªL¢-„ú‘hîŸT/®DiMZÚÀl/'6̣íåé_E¦ô–ü;M>½szjƯŵŒM̀–KA¤j‹øiö(¨Ă×}my\MÛëî€:ªN®ù¨/ó¼HG›‡đÆ4µGÑ©¸hÁ–˜¢I%i×ö|>̃O ´$1j¢!HÏ¥¶đcÛ¢i‚¸P£‹,!ZOd „›tns~Œ Ó —Ít̀gT¡–₫lInëaS-kÔû@{¤ªĐ? çd8Y!AËñÑäpZ }ạ́:Yµ,"¦ÿ‘ç7˜˜đ6ïÜXø̀1ŸØ¶.ư"¯åN;vh»ü¤_[æçÁƒQ#¸î–B“kD¼Az;«@iú̀G.uÊ6œñiV₫ŸÆÁc½8¡üy’×)ăYè…W®ûÚˆÈ9æ-qđQ(Ùˆi S‰#†û†hx^dÛ«!'‡̣ï™y騳üH‘œßw,¼É㋱»lú¡ƒW…526‹{ G^sàÁJH`&â‹âg?\¨ïÇ—ÿd.íà¸Wyf²P Wd®”Âûrçd¼̉ŒöYYà@^å’Iï^ÉCÀ—Ô,v O`ê·,ÏDµØóˆÛ1a¦QơkHg`Øè‡A;“Ơ ±Ó€Ûs„nØfqlˆ\¸ }Áö\ékd¡t`À—’ ˹˜ ă]ÑEÑĂÅFÓ5ƒư(ŒAF(–XFtj«V%¢á]F•ư»•Ÿ“ÖynÑ>—§5 %âÄă:7_c}̣q^;²îåé@6¾peNûFLíµgø3Xw†tÚª,ư”S@ƒ+SWÄö† ÷́ˆ¯;”…¯2̣üèä+Ë:~©^¢.\P†Ç`5ä«lPwh«ôº³Êé,î«•S6b'Đ}q1¸@Ă·̉`‡7²]T;+âr̉°äFWJ*ɬv#ÇmS?€̉D|M3 WáMó€$@äå3y•u‹¯tÉß8ÈZú…Ü âơ¾àÈ„4¡F½(À=xè^E!¢×hÀ6²ú%j“ô;ú }™`¤‰…̉"ñK>—`KQ¥YvW®ç1FOEx°ù´U9ùE°¬K´“ù5!>NƯæiÖơP,@ÅÅib'( v(˜£kÅH›¨Ù°Eü¾¹<2ÎẾ…]¡ă:ơ…}Lpè]9{“C ª¨C)øµñ}”…]/r@2Å=·á̀  óắ³çµdÁ¬RđîYp•—#};¢Ytÿ åưˇ;̣áJE+$3̀?ï§Á¤µó^@bC’©$o B­«Ô–5 5çuâ¼$fœ"çG(è·†8`l6ư.3uÉ4[WZñ€°Ø%ßCsÁÍ[hQbĐƒÀ6$á×9ûC™Âô7øYøådÜ.‡p₫;›%̃µ@Ỵ̈đû‹€Œ•z‘ˆ¬ß˺;™?ÈY½œq¿Ođû~ôvq̀h~ê½L Räô½°ÛÈM§‰Ụ̂ŒMæË䯑„D­ßH“±›ógú́đñnç+„ƯÑ6:́iº-IZöB *[(”đ&5VÔ80đçó–=±Bó¬N>á!ë ¸"è:´7k1º6ÑœZ)äv’̀&M+xó^¼‰*ÚwVíH—ñ¥­OmfAéÁÀI †´_:‰_ºÛ¿Æ „|EKÊ?£6G G›å¼‹€̣ ïm|•º¼ŒqÀnD“§…)oÇ"¼J“v¹[yR i6¶§4¬m:ff')øĐ¨Cíÿđ1ă|¦yØF¸[îoØÅ™ÂẈ&aOHwZÆjƠØCܯ“ó¢ÉºJ/¥IĂï =7g†2“̣LPó¶ü}ê«B—‰”‘„•^‰cë½$V`ê›oâl„˜à̀ s[4ơf›đ^NI ”dlM³º˘Ôÿq…ÄC:­l>cßrF́7²¨‰Ë*̃çÉ?NĂdÇí'b5`Ï8ǵd ¹·]{* J–ªá±ĂJÚA¡N %ÚĂ$ vu ñ[Ÿ(”VO±î€©÷¹…6üᘔK ®‹•q²ö!W\©rxb9×kơLV¿Ù1‰ÂÂáđ]’Äâ‚Ç^«_0Ëy“Ø ¿pƠ¸0E͕ⵖûgͦ9ÔƠ›…$àÉ1ŒÔbú!́Le&UZDô¬äQṿÄœpÉo+œ é|”ÛÔÅP!$¼mè·’·^)±‹”øwƯ/̀å»lŰpê 7Dÿƒ¹FŸă#–ƒă¹‘”—Ia‘¤ü*œBÖ}+œ̣ô#á¨'æ+o w¢´~Ií‹¢UtÈNăb§ü¿™Øß*Ñ»´¬Üÿ®<`OÙQÍçơ¨ïój\†Æ ưc›Êh9×̀ ;°8χé£>ój£hUf¼î.®;ñz×Ë»XÁ8Ơ…´ë‹H÷<5ZẸ̀‘)ø¬ ›a80I½¾_yÅR}qO¡Â,…̀,!Jơ:̉,<ˆ3ÙC¸<'ö²> stream xÚÍX[ÓF~çWä­‰´1sơ•JuHU7Ư>Nâ$®’8Ø^²đë{nNÆ»^(jy˜Ä9sæ;×9Çj´©Ñ‹GJ₫ŸÍ=¾ÔF’(K”ÍV£LG)<Åi<-GoÆ?M¦̃Øq3ÑăF ă9Œ F ă­̣ ₫>2ƠS₫ó0óFăÆ-Œ§0´̀;™_ÂÈ…i.437r@#ëxà^@À¡ẓnö+`·6À®FSGÆf ư9̣ÜnŸ(«ÆMAØ«:€l5A†?‚œ]0émo‰P;YZæmÎO²:#°5Á¬`‡à¤QfÎkiÛ–đ{Ø̀ä÷bB î/a?Í®j”vḈHCuyËkå₫€¶C'<# å¼ïˆ|Ë5ª³mˆ:N¢DÛÑ4‹\́yÇeEè#ø}Eúi zù³BXˆY]!Ñj…o ² MŸvÀot… u,ÿ†ÏË’,†ßÛó«›¡›†đĂ#¦û–~ÈB«Xgc…U6™Øû13R ñÇ53AsN­Nc¦4z2uI’1¥Qê=\£ùƯæ5»‡V*•Mr˜†èt˜Vg |Rê3.OyÑ„§ơÅÈwhÏ-©… qÖcdf: ‰“ï%@ơ"ïIB¢L$¼D¿«<& JM]&à}zÓù“BE…gá<.…5ûÏ]}@}÷CPüộüÜ£¾ă€¤Îq¡àÄà}¤tÜÓ g¤}ÇBÆöd Lª[CJÏZ¥>î‰ÔĂÔsđ8<Ö ³–0Û éÑ Y÷W¤ëK(̉©“"%4Ï´î¾"ư×(2<ÖØ¾"¿ä‘/÷«-̃<4˹W/qfA7NÍ3r_\¿¼¤̀&ưX®@=…‡«×Ï»ËIî„c|d3Óí^Z£H¾®xöœv9ˆ̉ïç̉…ö™à¦Pn{ögƯ1‘í|=¶‰[4Q̉؃̣’5M&̣¬Ug"kúJưï»cê[oHœ¥ÜYÆÿÔÁưl¾cßơ½$àÓ“ï:*h¾₫µï:ѲWQ’º³¯Ó²¹§æï2×Bàj–·.E¸^°ß0×Êå?˜"®sÔ$% ÉÑ–;ÊAiS­XÛsĂ#É+ùËLZ[^ë"L1ÍP1đ¤x/ݘF̣=U“å‚X™§ª».(A ±Qß`̣÷đÍfRkÁe—¤Œ“K •ĽW—_q£PM? ×AXëBd†ç÷},ꥤçíy¾:‰½O©º3b§E‘ô›b/•¿wAåÏYN1áC½Jb; ®esIS3 Bªk°ü€1¥r$“E±ñŸ‰×P'=ó…GœüH̃Û„s{¬Âî¥ ‘Äv ie*ëZ!Ơ™Ư=ƒ«ÄO–:@D'äÚ Ä¸úˆH¤»Z#YL BÀ-û PßP?sL`~^Ă8@zd{KP9₫…/,̉0k"ă#G…œ\í™tG3u)-ăÎ&ăü@ a¡:HSXJ@̉®¢k%N©ŸâˆM& 8=•«6̣N\úЬdmJ!Œ¿ ‚°Ù¸Å ₫ĂÄÇàÉ7|tËîíœÓE^Rä2ZÂ'ùq°đ‰V”Åö̉G]ci2 & ó–Xđ̃æ;ºÎ<ß*íö’×ñ½•¶Z˜Đé̉z>¤•FLĂ˜UBeÉŒà=u¹¨sÚv‡5Í[̣ư’ß ¿£êBæráKnÎ2l¥×oPÖów¢‹́8ôuă!úµ ô„ư­ÑJh i§PÅd¯í|(~à1N»tqœHÀ”ëÍİ2ûJ ÅÏë#2‹ơÁ â;ZVüº¯ZI)’‰u}c,¦óâu®ç”S±ˆöM ¯».n·û….rA G#¬—"eÈK`ÀdE(4́¥1”/ÏXÎ. /ͦ3đQø'ÎЉ8#Ç•d´ ä*øLJä˜Ë¾U÷aÁ( %±D>g9Ù¼r‡[¨BÄ]¢™o;_äe?ÍøáØEö†ù>è@K‚ăg’b'. uñWuÿ‹–»÷-nÁ?Rđ~»/tö}¡Ă½Ÿî|ơ3ÿù—;û•_î.xáS¿Ç#́đÓ§Ó» è4JD­³‘Ö]«•ööü2{ô7,; á endstream endobj 561 0 obj << /Length 1131 /Filter /FlateDecode >> stream xÚÍWËnÛFƯû+¸(P ('ó&¹H€$ˆƒ PÔjºH³PdJ& KH×₫üÜlj'¶…7Ô¼ï¹ç>%‹M!‹·'2ü¾Zœ<;UÆ•h*©Åºh”¨aäk_,΋O³×s5Û|¯¶í¼tFÎ₫l7˜·}ßn¿ăƠơaÓKœÀÏÆĂ¡»å½nwóëa₫yñ;H.U-Ư°„W-]̣½|·ÛÀ÷bèé´¯D¥LQ6ÂzË7NQĐơAÀ÷};àí–&ïÖyÏOá¡ơ!̃¢ˆ°<Ư€¯8ĂCmÿăól{†ŸÜy‹ßươ¡+cxáÑ£»½̃_¢â[ºOLUÖ˜™æz^jï̀`"É—3Ü̉ÎK£jÜÓ0Wó̉VUNÖ#‹1%h CbDŒ¨măùUW“D ïX'Ă“Z‘¸p  ¸öŒÊY,ë1(—³‚ÊØIæ E¼¼'ÇÈDßYØM…-o ç„T>a‡”Dí}ËJZ?Ù"0̀{xR1Ă¥1¢v>Q)Á”xB|8k$?Ă ]æxÔO‡H)ªÚf4¯(}#ơȤ©™\Œ+ä°†u*u#¼¶ä3>K—Mxm„÷g¾Û­·0_̉*'+5;Å•2 ̉Ê?̉!₫ïNa¤øês̃RÏæ¼¯Jœ}xÍSÅ»Ï3»7(×hX Ï!Ib̀»ơÂ9h®HsH̃Tœy4X-ŒNYøknZÔwsA܇¬üĂÀ-­ĐF?áèµ6^ă¦èE2ª$zí½Ú§Î=ös,ë;4Û§B³‹ôUML³̉IÁ21Í£ÿe˜{ͱXY¥I2öæKRh EôºK ë¨xï×̀ö ¨̉7|K´·"^mœúLE=û—ÔĂbÜ/w{´{·BTÛ°Ø”¶Í>Tư„¾ú™ï°SsƠ—ȯ&‚)₫ÙGb^₫K~27mPÆ_S|+ƇJw4øV ¾¸gƒ§¤×Sp—̉í¢ƯáôÎF½¢VŒ%ùà¯áD̉M¢*f<ơel ftŸE²+"D¾,µLÇBâî‰Æ˜”*^BífæĂEÖáfσü¨‘èĐ>ÔA]-#u±Ọ r°Ú ¸¨ÍŒ‰¼ÓÄTmĐˆh©_ă<86b Çđ ;ưFú‡Ê“áº̣BUUàÿ́”É2#ˆŸJpÇ„ăôÔ¡*îʸ'æÂŸ4©>Wv‘¯ơÙ»Å̃]i­ôñ­c·íeHXĐ9¹M-0ÉÊ…Â=©¶q®¸%5³rzöØÖWîØÖ×üi²F”¯C®…ƒ$FMư;úDƒ÷₫!đSN–uR¿I˜I€á { ¹¥m-°ø₫(eN?́ü¯‡J‘Éåèḯ f¨¦Zu—̃{ x́_M•tÇ0Đư¦dÈG4c-E>IÊôG3k¡¤hdĂ™UÖ¢²–₫^zmøQÓ$w̃,N¾|S½È endstream endobj 569 0 obj << /Length 2438 /Filter /FlateDecode >> stream xÚÅYKsÛF¾ûW°tY°JD03x ¼¥ƒ,˱Sq•Wb\ëJö’ Ä„$´¤ươÛ¯(9©Ôæ@`î¯3ÓŒF7£hôư«H̃o¦¯¾{gă‘Ra$z4]rÚHR›¦‹ÑÏA2VA¨Ç¥t|,«ø­*xlÇ“%mÜ₫XÁ[‹ÆöG‰ñ±~€G½ÂÇø?Ó¾{§’‘Â<ÊJ&: Èq¾V·Ơ7·ăI ̀6c8°¦eà·ĂNɳ{h—7ô¬ƯZƠç̉€×%²‚GjdÄÅWÖ8´Ä¯öwcmƒb¿uËVœ1ˆÈ0“2».‹$„ÄFÄÛ̉ù3ñqË_"ez̃đ@µD` eÂ$ÎNg‡îN:ÀÇ$&Ø‘Æ Yq̃°P¤.Nÿ%‘®­xnC£cX–¹°@æYD$qhăÄ SgÅdyäQ™0·‰ăóÏ!>:ÔQæ(ôË,Tđ¯;¹;RZ£éjÈ•t˜)đ̣Nh€@1èø.ø5ß jd8×qD_Ç x‹-f́j*8Åi<ŒḿÚuµqÖ¯*—̀’É&،ٜwü†c Ïd·UÉ;°‹̃!Dèˆ̀Đæ}©¶̣af;z kmpOï,(j₫băS ªHÑ3ô½l§A±­œ́¤L@©9¥0ß0oç}„¢‘í1aăêûW£ŸUđ …Å‹9.å3/¶ï b²¬…ç4drztúXGQüèöHuăIÓ[ä|¨ÇÂëq̃áꯉ{íMáđØ+–`G©M̉Z¨Wœ6¬½ |œÙîDMư%BZm¸sÏ/çB&!{r³I(nKɼ¹l:‘*±É `†^¹¦ÔâM´l©M̉ï%ÉôV CƠS%ptƯ \ºIùœö”1œ˜}€¬ä‹rÛ‰5i›1˜Œ,{­R̃Œ)-u»9:Ê®ƯvC·h·£….ˆ-’qâ4÷5ˆ³ˆ½G›öDKg¯Íñ¬ƒ_ri¸ŸÙ…óTl?—Ùˆà…z4¹ñJµ·"…×Ă9ÙÓđÁ¡ĐP|Ïç5ü­¶ĐØöаh7·•mË÷qÏèˆçaë¶©vû…¸÷2´k”y†™ºü¿ä˜ô¿Ù“Đ;ç!²›ë‰>:JĂ8J^Ö÷₫øs8øm†ôµI˜Å-k̀2y.YKˆÅ[Á}‰ jÓṆ̃àR ¬$±wxĐi@ç:„e{–́µë.|ä°:„B’ĂÁ;ưSF£0R’rø3̃m’{«@Æ4ÔFd¼ +Áú5 b"8_/º³zü«àŒ§O®Ïa|úá'§ưÏk₫"ä×T\Û8û™›Èçßnm¹+8ă·éûKè]cùr”ëוD8EV{ºÙÍÖđº“úLV9Ÿ"7ĆĂA§·$y»j÷F\ÛË%PƒF§QEw-§[O¢1LĐÄÈh`|?“á(̀`8…^’›àĂó2l­-$FISDZđ.;cG«áV &Âí]Nă¤Ơn_Íèx‹ß®W ưoQ3xæ¤<ŒS9½}²f¹\º½ØyÍÜẂENÁMƸàúÇPpÅR-ÅóàRh8p9›°oöñ¥$´A‚¯ÎkÄ\è0¢­̣ˆ|lœ ¶CÔ'1Zz¢ơB)Mßf*ÄsJkºœƯ2 Ưlú¶xXH±&™ ó8eSÈÆÿjaßK»è£Eº˜¨Z0aâưå†ó0%S‰ÛƯÊÙOÄO€Lrư%3àA醴eéPÿªjp l¨â²ÛÉ gWߤ¡ 0ê Ó›øtè¥2¢Pî÷Rñè3AÏτɈÆ])4èYCÁĂÑMiü´ÛÉÉè9̣̀Ely¥;Ó¸tWQjưˆáÊ9ĂE÷°… Flê²äFs+uµ½ñdC½̣ͧ !?_-Å ë[$Ú7½=çƯù˜ö/Å>́+ØlÚíi´ñ§ —ÊNÛf(ñ¾£Đº'Ú2̀‹Yº́ûŸçQ‚ ¯Z÷¢`̃î:S8Aû6đ¼=ïj¶ |Âp¥`4&´IÚG~ /±µS–€:F"PcrÆ80Èm:¤é‹¹¶ä{͆5¨ªN“øxV: óTưÁLçYhŒ} .…ÖF"éÏÁ…¹·ƒK¢¢M£4Ăi1H-.Áózäj¹C{¤6¾L<›„™o™—¡+sz~¥Ă4o‹‹Tv[öà‘Å]èYf\1ófæÁ3sï.±$Ë|V{X±4¶³Ø³¢ô/ƒsö7Âù §ÏoD̉óJ$be=$µ‘!̉¿̀/‘´¤íÿIŒ¹lüSÙđñRƯÑỴ̈¿YWx`:)èwwÈyI¨R&¥Ô­+ÈçÄ• rÛÇ«¢íV½vUƠ–´ÿWQÔ/$ ûF{|Á“¤đ3~ÍƯơNè:'ù1_œ?cQ€§NQO•?!ù‘(÷ÿÁ)Sß/¤®”rpµTW†a·₫ªü‰+/•ƯTÁ…ǧè-^{3¡´]áû´#iD¨3Ñ /4?aZđ ~tö¢LYÆ™Mb ¹Vb:îGôåôƠÿ¿º endstream endobj 446 0 obj << /Type /ObjStm /N 100 /First 881 /Length 2310 /Filter /FlateDecode >> stream xÚåZKs7¾óWà]0@‡Ê•*GZ;®ÚƯ¸lWmvU>PäH„"µä0åä×ï×CJâˆ"E&ÎaOó@OăC¿ï½2ÊSRD׬\ˆÊ»¨Øâ½KÙăêç¤<[è|R ÷ÊÉ«h•5” n"a *kåKÎÊRVÖápƒ}pÊ2a¶€¡@¤¢\ØR6Êü 7ɹÇ[2l€,`ùh9‚ ¦#/Œñ@́ñUôB”7YQ²`˜@œoÖ™œFœơn® ’U–”I¹F¤>Ê+Ç$C aÁ—£rÑ`&pr©p#ëÍr“ó€ ¤`œS,¨1hÀKæb^ä7@ä„¡LăSÆM’Ơ¯¥!ŸµÉ n ¸[™’fkå-¦°àExÍX+;H-̃: c€b ¦A¾€ 9ú ÌÂdÉù>̀ĐĂ‚aaU°;£A- G˜ øƒƒơˆCLN… (0ËWø6_ObØS6ÀÅ0äl½Đ=‰H!́!!øn¢ĐD,ˆ̀àƠ«Añé÷ÛR›făjz=(~.Ê»'Uü«¾.ª‡áóêꪜ—ÓQ¹PđŸâ¦.*‡â¿ËY]NÊ«ZYï‹ñ¬”‹EU\χ¿•Åp´¬ËbTÍGË›«Iùµ¨«É¸,n†£ùlZ\ÎKĐà“áhTNëb\aEµ(ôtVË«b¹‹Q9®&“áưË/Ëéơp¾¼™ —u1»MË_‹ÑPø-n‡£̣óàûï7VøzÏÅÇåeƯ<ÿ½₫ƠÎæăr~aẁçâÇâ]q†‹‡Añ¡ƠêÂ뛵́t€p]:HhĐ>XP½V¯^©â£*̃Î>ÍTq®¾Uu©7ÀZ•§¿Ü.nOô&;-¡åŒ·QÂFg8çêÂĂ Œú ŸÿưØNFâª× QfºœL>4ü„\̉±±Eûf6­$o,l`éÍgo,œËÁeÖOˆ±pèơb˜ŸƠSÆ¢’iÀ²øù§Ë_DẬƯ ¢ñưØûùlô±„tTñ₫ü*>•_kơHûï‡×å 8*Ø×vÛ̀#b]̀–s1fIÍ«À̀†?̀¾ªFá,f‚dßaö5èü®Ñaă~µÎg›‡;ûh!{„/ouûcÖMXóÚ~RÅWƠơr^êüX³l×l‹Ö6´0{svh1Ñ&ûœ*;k(mk(§¡·óỤ̀™´1•ÖZărÙ E®×!‡€,»Ëä%Ás'Œ}€œ́ȾĐª}̃/lPA¾gÏ =ø-¡:Jè’C|:XÊ-Ú­¯%¹m]̣vÅ—ûªø̣ß&-J9í$Ö¹¬ÑVÿÙÂDº ½Trl¶,Svz&̣₫~aÊn̉¡ÂlÑ0…ˆ( ³á?[˜„,iûf̃fNÎIÙ}¢ˆ2,+I‘15o:›đ-“³E‰‚Ví‰c-•m$¥#¬-µ›5'Û…¨àüî0¸»sè½Y`Ë[vd]G;’ WÁ"û­=Ú‘KYLF¡)0=y퀑P}‡”¾u=ăŒv¨vïÀÈ¢sW0b!ÖfM»,dỎĂ®“Ư¶ÜÙBbŸm¡4d2 ;̉„¾P20ȵy¦/tƠ@æp§nÑ®÷Ø4­È.•µô²QçmiÓÉqÍÓû%ege†-e’?J™kögórXW³éù°.Ơwç§dl4Ù$T¶ÑÛ°›w}ªê F>¨·óáí—j´P?-ëÛe}̉,j¼•sEw­ÍÉz®™¼:i¯NÄ»a6̣̉odŒV ËÉoe]†ƒûs…æˆfcE° ›,?₫~s9›È×Å»³3ƒg F-'–I‰=P íØ£jÔm9₫2üc9?ͱ¿li95[T÷h!w‡¿ ¡răØ;4„äM‘Gs9©ÊEyjz,I¥~€3?`IđæXÄ·\>Ü[´{ö¶wĐ¢jÔŒJ~/-œ¶9¥”$ˆbL1h$‹]±`OÚô¨ª==¿ĂbåWu¿ó8Ûf¬̀û—EŒí¶̀Ø–­N»6äh3Z´k-ú­p­k3D+§«1ÆíKK;OAºÊ·N˜©«́Ù]”ï«ĂY₫‡x:‰!8G;RZ9„í‚sW9s´ö­|W2ï¼Öm ÇùÛF†^Ÿ«̣ꜷùoeuơ½¶³’uªE’X~ÓơOđrº´g3âeđè zHă{́g9E|@“€BÎöÿ4$§&ÍoENSN°£¤³•?‡̣·Fă\Đ„†ë 2™‘$ÑMăOGÄô=̃×W¶̣^+èd#eÇÓérŸ3Ă¥È¦£#øÿvH@ endstream endobj 574 0 obj << /Length 605 /Filter /FlateDecode >> stream xÚ…TIÓ0¾çWøèHÄă-¤a`XN rc8x̉4Ñ4¥MAóïy‹Ó¦#!T¹±¿·ïÙZôB‹‰₫Ï÷m“ÜÜ«E©êRѬEmT»ÂZUU¹hVâ»|“f¹urH́`­`=Á °¦ˆ©xë÷h÷ s Ÿ}„»(jamâùÀj&ưÑ|Ñ7‰µ0Â8§¬­…-Kå*ÑɯD•µƒ=*,¶$Í"pói0^¼“¯đ›eÙ́3»8e.ra´ªu½äÂæNUEÅ\ÜÇ"ûב¹¼’Æ¿N3_{yËçh".¦3i,SˆITu[„J¢0üLm%»+­#ăÀç/*´¨³aª»‹ă!¿Ïäæđ+€ /­Ö~V^q¼ă¸ùỏŒÆ'˜îZG¦Á @‹ÖK^4¨r_3%ÿ 6¾âÔ[U: .È+=aĐvÆă¦)ó¦ §Y_Ÿ  `EăD oXiI-Ă=ÓCfh1²Æ·0F̉Öryî&yØ ́øÛ=hă(ª–°qͪxÊ:`‹\₫Ù »í̀‡È"WNç{…;ù´›éœ/ V́•û¹\> /ExtGState << >>/ColorSpace << /sRGB 581 0 R >>>> /Length 473 /Filter /FlateDecode >> stream xœ½”OOA Åïó)|ƒ\̀Ø¿‡¢-‘@]©ª‡*I%"6R©_¿Ùl€ˆ péa7™̀¿ß<[!˜Á̀>ăÖœ¬§ßÆ0[‹ÖZxư^ÏVæä«¨¾ư äp³Ñ¿ú5EArDç¡íàør1¿ÿơç₫qƯă|ñ0‚viÎÛâ>£uqŒ‘sFÏđ¼€°:‡78¼ƒS×d m¦„)Wœöûùôôúç€Ñ—?k̃)ßœ]é¯ÑĂ_s{æ†`¢Ï̉Pu¸4zÉ́´¸CŸ 0æ¨÷G–‚ßTøéÄ ûîö¸9é¦U΋ftí¤@£Â±1’€Y>gÄ́ „3&é¶>íôb¼ub&̀¬B_ºà<&úœÅŒQ3‰jàiS°¥<³ zw@I' Vµ³đ ”cN\¢í`‡$UÁ̀åŒp¡3; ĂäK[kẶIHp¦PÏà ¨"†}è́t̃ð®`>Ơn¡k/ ‘+S.ÂÎ́(¶ûzµt8ºơŒM壢ớNö³ë—öŒ₫;{%ï7Ăâh£ }U$Ëex9ú~Ä  9i?´ôI~Zלkß%UèócÑæ endstream endobj 583 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 586 0 obj << /Length 499 /Filter /FlateDecode >> stream xÚ…TÛÓ0}ÏWø1‘6̃±×1$.[.âD̃XB¶›"m’̉4+ñ÷Œ=c5] Pug.Ç3g¦Ñ ï2øÏóu“]o•á¤w Ds/¼’56ª’°©Es'¾å/‹̉j“ •;D‹è{~?RÈs<–tœÙsB¼ALœ} đ¡WLÂ&Í&C¦1ṣ&|XÙùâb‹x…ø„ø¸I4ß›Øméeµ©.ú[‰’Yr£=ÛĂy8×ûo=Ηg7M¦°J(c¤Ö^hë%øZtCö+“ÎSLjƠ1ºR®? Ê·Sö?ÉW&̉rÅJ£µBôà×£ƠÆJ[;RbËmö uR·É•}†•7ûdt±»i,´Ë ]ç»1|Ÿ8}ÛÊ4}’eÉK¾a*J̀̉î8ü>¸td{.ásĐ0 Û…+cÖq<±¨÷mđ₫…ë®Đ\»\TîjOq@ñ}¦yóJ(#­%!æ)́µÈΗÀêû`0T`́ óQ]€µ¼5H0i‰èx¿h·(ïb*{&e9–Đ_wV6.dYUíèphÓ¨°ÆÓăæs‰ÓÓjăë!)ú˜˜—™8nAUư’Ü2®́Ó áA:gQ2đ̉l •[é‹`Üó?w₫Í endstream endobj 566 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-033.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 589 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 590 0 R/F3 591 0 R>> /ExtGState << >>/ColorSpace << /sRGB 592 0 R >>>> /Length 878 /Filter /FlateDecode >> stream xœ•UMoG ½ï¯à1¾0Cr>q¶1¢±ESâ5$ưû}ä¬dKHPç`o‡Ë÷æñc…nHè₫Ỹăïz»¼<Ü₫|MŸKâ”=ư=|zX^₫dˆß₫I’y=˜?K­¬J6çBÛ=½¸½ûëëƯáđ÷—z÷åóƯîpEÛûåÍÖù¨ N™qÎdY¹)é\”¾̃Ñïôđ,Aº ̉ A¥(çNZ ‹„ í/on_ưöÇQÆLÿzóô›×¿âi+ôị̈á#%ú¼Ưàï~‘`x·Hl†́‰»PU¤±ëß„úÿ‘‡7ÿrm.ïĂ‹WW8KĐ¹½}{}ơ‘¶7.SJă!ˆïl•rq¾b̉nΤ̉¹É´9Q½Ưœˆ´ [A\æ̉É*ûA"DƒA‹q«áxâlG»A† :8+íI ÓÂÁÔh5å^ñ~áZ=b¤¡?"Zfiñ¤vÚ/8ïó|x†Ự<Ơ™Û ébªO¢“ykJƒ=D'®ÁS’jQ‘”̣Ѱ­"È¡ßKM,)DK¾²6ÇĂ_Ü-̃Ú=C…¸8Ç<¯†ăÜƯZé•s \ƯéƯ…8ÎÑ{C¦Á"± ẳă–(₫(<²cĂ´:î.Ăqă‚B¥äepŒR ¹Y)ôYæFHÅKíØ¢1Rs§«[¡&©+NU¤Øt́ˆ0á’ÜKnz¢P\ƒx*W¨Ö½W0â"£¯ ‘mu‰ Œ§é gÜÆM­¸êÆÖơ†5răĂAélƠé j̃úíè øT¬¹é ˆƠ×…®‚X2p^̀-·¶ƠÁăzÓÁÍEÍ÷t̃#̃g₫$º©4ºæ,"p³8› UÈyÎê9ñ[]±|zä¼Đå†5éXơ™'ƯéÛbÈ:p*§‰Ơå{åƒÑq‘YY¿…ăÊç<{IñÁÑ•[1µà\wß/Zº\&FIµÊtÁq÷J˜ïÇcz‚‘+®î@ơ!Ư-–bĐÏpNñ½ù, Käs\èq<Ê£^K(F~¼cTít_Ă…?«ĂŸđË+pî6̉™£±‘Föﮢɥ¯?‰Oü‹ác<×蹪=]°̉&î‘u¾SóR—¥ Î9ß/ÿ÷E±E endstream endobj 594 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 602 0 obj << /Length 3057 /Filter /FlateDecode >> stream xÚƠZKÛ8¾çWsr±V"E=Èa6˜d™¹Lö ¶Ư¶1~Ar§;óë·|Èr'Ù؃,,’Åbñ«Ï6³|öË›|ô₫Çư›¿ư\fVäY›·Ǻ₫MV´Ơ¬jªÙưjöÇü“)̣»ƯÿÓ÷‚.yvɺ6¢?Üó5<+xvđtđ\¨¾.îZÚ̀äµv}Fú== ÓêÖưygè ṽÓx¦?3Áª#n<ơ\ÙñkyBj|Ö8$Qâø§#“´²ÇÚé{$Ωü)/Jø:úO—cOaçâç ?ÛÀđvÍå3/ ^ ”Âl!ë^6seË«çÑ0Oj7Dn{.pƠO"]ÊyOr%‚/üú|çªy‡#íº!_܆L¬ÏP®ækZ… ¶W4<6×,#µ™?ỰåjJ\ÀC<%)-¾»x½ v:á´›-É%O%;i-́ÔZ™M6›&ç†'»[”e9ÿ@œ%͇­Ô“· ¸ä• #¯Î‹- ßË ˆëH¤&öHâ'¬ĐÑM̉L†ÉguÖÖ9 ”E•Û~íXª ÎØù;~-µ¾~€¯_áù{x~‡çn"…+æoùëez‚FPp©Ëˆ (“ŒúVºt¤_ÜurB\Ø»À$2ø^˜ü!P­¢Ù:e7.TgR^Ê÷[i¿ÓïdÔđüÏOBs”¾»H¢½Đ;xr–A1Á7‚‚ “gÖ”ÿ ́tYWSØYº:ÅN¬è8ñc¥JƯáwăQ Û÷’OÁ=ú®¦ñt­̀pÖA¥Nk8€LyàA ÔkOÀ ÆG^[‚×xV€ƒ‘lÉXOÓÑÁ<ÚC[<Z8—„­xÎưÀåđCFưÂD‚4 31°É«ÀjÖ*°3=eXË ¿nÀy„•N„“bƠQ¶̀ç—­(óéiƒ¦¨dk ¯à†MWKUD-́üĂEæ}ÇeRŸ –ÁRªXjJ1Îc)\ª X*R,Ù®Ăk§fc ®` ̣ù½»ÓÜë²—ªS gjF†^ºCdí°v'vj˜±L{ å(Øô©¹ Ÿú Ă: v:î»­‘S†…aK'VèPkŨ-ƒÔÄâ'Uđ{ªù‘ư¤jZPZ¶đ̉¢ª«¤´,₫µŒqzä7ñ¥Àé·—•¡­ƒ'¤ÁGª®L#ÖÅ»GŸÄ: e¼¾„‘N\ị́)Yø}‚ó;xçf­ªHaa­k6Ê+lýÄPí­åc.ß¼‚ÔÄ{m8c.Ïs1üM9+¬uÎ%1ufj;[X—µUĂKAC”Ù»Xr₫+JÀ‚ơ“ ë{oÙOØŒœF·âÚÿˆêỴîD5q´ ˜ù…[7k9‡¬O{¤₫Ëk ©xéX@}L±µ·!†Ñئ6(eÂ÷D‚×¼{]̉Àhm,[fko6a×Zµà;8#½sܲÜvíœh™jû„¸ µ¥ÎEg̣3™dô$cÅ{ù€K₫"̃ø³],|üåÍ́°ß»±[AÍ›ê[ó¢m̀¨;64¶?F ;ñ‡a¾‰Í“÷´áKÅ‹ś³k¾Ư×ø6yn'ù¦#́jđl£9&5ă$¼xµ€sÀ{spTnB‡c;|-B>÷¦FỤѨÜë Ür`°Ío”}ÜB·“P†â{(¼" »¤ÜŒB§ăRừ+sºeÛ(^EíAđ‚ªü|§zäF­m…l6@@6̃7|Æeă(\!¨¯ưq÷ç180P·m• »½yû‰T!~_È'Å©"€ăFÙ~ | °FđR̀7¥ÄpGæú¦ŒĐº‡ÚS* l}VÇ [–<«aÎÈ•ÓåíÄ9"—„ưrïđ›–±“+™D7‚Œ| †/̣iva₫]p}̀4̃"đË SÎÀ—Æ5¶-³âd9¶;©ó2ÆËw‹[ܶ§#‡ÙÑH€¯:‚—$Ơ«…Ùbv›„Â4IVµ`} ê¬(Å8~R0–!(¯²ªr³2s¹°g¦–QA "Áˆ́], ₫Z•Q!ƪ ä“cŸÀ_Ü–2++ƒ„k…uµE%T»¬Î[’-ĐƠ,Û¶ÖøÔ75f™ª-¬VWaçרLf oHßM‹«hÍh…£ 63˜/ åIŒÁ•´€ÔÚÿH\‰[ƯzÍÜO­Ü®¦AeƠơêcăƠÀsD¥I°-˜- 9[&RŸ·êC­'³°ƒAÿ gU.Đ,¡º•ặEÈkaƠFÓd̉ơ)tR·W]y,¯ÇƯ*é;×Ë“º™Ă.Ncwú:×)ôq¦ṿ—U-¦_đÔ5évé₫çM;ÖÚÑ`Xô:̣Ñ«Ú+8©ÛƠ +mº§ &Yô´bK ø··Ö™g8 [¦‹LE₫ªDQh̀/“cÖ€m¬.ÿ+¾b¯úVö̀×Ù3×́‰đÚüuî₫>iØŒsYcFúùZ²G¹Ồ±7Ç)¦Äô§…ˆÏŸˆ>$$º¨«¿,"?¤»ˆoMïá%&Óÿß³—äjvh6[ñû‹̉¹̃‰q˜*¾•O@ ̣\Ï>3GuH₫ÈäĂé ¹›î(ơy$¿ëÀ„1:IºÅ>ˆ8|XKÁ/™WhƯj¾ÇU£0…ü+çÖ5~2LMˆˆSdà.·1[ø90̃j"Wk81¾(•‰GĐ몡¼ÖpÁp«û5'q"kÀ́£ée7°JP¦ëöw!+ÈéÈRüÊ­̣,̃Öß ă®SŸËYhKÉÂàX­í́YÔØ”¯¬ăܨP¯Bä%5h‹đ=éO‰»d>µyü*ÛÖ…e'̃Ùdž](⸘=Âr'uAk@̃­ÍỸ­É{B5‚ô­­1|ä÷>¾å8Ƈư3G)@&I8ß2øT©Œ†ç£H]ø)ä¶ñóâMwÍ—µ4mdü%…³§# J€…•¯¡ vđ²ĐpÖj Q¦;œú[Q,eáÎ=ç]ä̉—]6ÀäéMÎ7‡0œæÂû@¸•y¤PîVzË“hJ›1èYwOöBm°?Ø"êäê–´É!­- $½Ă|Ç…s×Gî™rơÊ₫ø¬,ÿ* Ûz|Æ«¨̃gM¬‘Ä-±t¦hP†û†ä0öá"ªđ¹Z–̃ñ bb·ÑÛÖFÿß‚L•)Ö†÷¼äl"Má–aùVÆBlUËÎî¨SÅḾt_ßjKO},ĐŸ̉aS‚_’'aøôeéô?3Z[Ä©K½/´U¤XöŸ‘ס‚V²RÖ& <’TƯ^⤦ʜ5ßqÏWBÛtŒ̀Ln2MÜùă7)đá¬V«ô†Đ1ºlù#˜¥zÚ¹)…Éè–j2áy>é÷fB,­¿F[ LƯkÊÈ/ÎO>„Ê“œÄ²ÉÊܦ²2]̃†>Û‚ÖØïg"+UƯŸ"0 üGiz¾j²¢öó$oÔßη»*3¾ó©ŸÓ%e›NđYœ ¥¹¦Æw0~ó xâ»Ă[÷²EHé&ÏZ Ñ‹JÆ&[#đ¬è¥§DDËn-ï<(OẳO₫œ’œèhD7I±íÅó0bê-/(±¾eó{9p#ͺ´5kr₫|«¢œxänÈ¡|óV´ˆï‡AcN6ßjßÅ[÷9&·¡•-!œv5KªL/}~ºóo7› endstream endobj 610 0 obj << /Length 1723 /Filter /FlateDecode >> stream xÚíYYoÜ6~÷¯ü̉5êeHºäÁơQ8h$̃.Ú>́¡=€½¢ƠÆơ¿/ç–Ô^6`)P,°’Èáp8óÍ7¤$ƒQ ƒŸOä‘ëO“77* ƒDd‰TAgdJ¤ö.¶W£Ó 3₫h]vÏTk:}{ÖBÙåû8é–¹½ü)#ùíªơºûĐtj»î.:öÿÓ©}Vö朤₫v„U«Ï*N/́Íeç”ËÎH#ËÂ|ƒuŒ)' û??='‰A·´]Oơ ZJ̉ựǘ¯Îû@Å"³kjgÂÄ-mz̃@0b”Ïa‘yqº±|.`Ù¸êÂÙy¾™µôơ>¹æ¥¡!íÊ•ÚkF¦tÆ0#¹ú¾ù‡áăCwuÖV2Ö­;+{ÑùDÍ‚'rÜ: î·ØÁ—’Á ^-µP,îÁ ØÎÍ;f™aH&‘9  öoĐRLº=ÀM6Ø›UezÈkFo²˜W«Ɇs NewJ"W“Œè—¤¬sŒ4OÖßL#‡́¶‹Ë3=À„hÆzoßqŸ„`G©}²½-®E Lj ù©d$N ²Ă_¨Ê@XG¬ï‘4¦!Ë,́u{đÖ|ñè¶3UàrÈH9$På…!,”B‘ïĂ@›á‘q2âFÎb̀Nè౺ö•Q†~²(6¢é ÛÄ~¯?ØrG%Ü“ ³Êtđ˜d–£EĐÚ›L1(~àÈơíD‰̀ÄsÜÎû¥ ÁĐ>c±ÛÛ$à¢ö&Yå?pP•ÙĐÓ©\XB¶ H“ÑøV•Ñm)`^µ6`pwNöAz.àUY€–Ë|C‡“ă t&„\Pl ïUÙEEƯb£:/pUE#¡øú ˜ơàđ́åí¾é´̉¦ơ¥¶Ü“—Ûùó Œ2¡ù¸m«á\3´Ç+mD¯2O¸K,n j}„“t7º™X S@JƯZ@väm»P‰¾†©E/@4~₫Ï5^ͽá‹£µcSĂé°’kÑ(pX*<¤ª¦ÄMúP1ƯO7RdPŒ¿ÛỪưg‹Ê™mÔ64n4\¬½Ôn†ÄƠ¸fËÿ<8Ë^wKĂç†#ơ°#ZÖ#Â9jí̉6xíĐ&xÉà ́?F2²b—%˜³-©í]î³̃„‚ÎvB¬œÓ`Ya‚* -´çNKS´Â<§›r̀7ÓÅ|äœhër‰ÿ|_¡³û“á#?A¨(½w7à»k å ÜÖ- l-Ó4â!Ç£¦mßÁ®7k|=á™¶ÆÔ9JÅ tçX¡À‚ͺ̣P߯đa*dê¿IØp/dæÉ:"Ha¼~DŒô(ưŒ ïW'ª0QÉæü Ó×&Û£¤†>îBœJ0üG¹«7vQ`Ûfº¥œö2 Ï«QNîØ"z&7hÓÂT’6¿¶©TC!iDªƠ®@- ù ‰b†o RÖÉf¡P:Y¬Y)0Vi*̉ļz´³ưÑ_1ÚqH]¸µÜđ’ÑVN´3íD»&#Ç#ÔƯ¯éP”•q–T"ªœ5€…¯aŒª\ÑëȪ\­|˜ÖG*Ë„—7@ˆRĂV±+Ă6N- NĨ'GG`´I9"Ù¶nM‰qN”’nưà2ëwPs¨OLZ)ô¦!Íđrpèư{pĐJ¨èü^ö!QäS‚¨Mql{̃ô3XA—‰œ.e’# Ÿœ_;=¢Å¯™`¦éQđ^u†¬7¼ơ‚§ª=Óz¹¤}J“v£íª4fj”¼ḿù$[Ö„¶ïŸk¸‘c¢ö6ír¯â: I|€p ¡¯7jÉííâÉuç*Ÿ T`C%´Mª¶̉‰eôg'_OD’…a"Î-vU¹áÍíLÅÁƠâä“ưU’*™v¥ƯQN™¢@ÙăŸ̀ ‘i â‘©b?̃œÑp´.({Â0´døỌ̈— [ ₫v‰I‹ßcÀy î ¨í×v­§ˆ2̉³Ä¯Ô‹Gø¿Zq?p6L­_!÷¸_*­¨“¸µ98-̀ô@σʌ.~¶Øû¥-°i)âÔ:…IùĂ1̃ ¥„,KL endstream endobj 595 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./intro-034.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 613 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 614 0 R/F3 615 0 R>> /ExtGState << >>/ColorSpace << /sRGB 616 0 R >>>> /Length 1606 /Filter /FlateDecode >> stream xœ½XMo\E¼ï¯˜ÉÉtÏ÷‰)RÀ+å€ly‘€øûTờ{»ë́’ớuï›7]Ó]]Ưcq/¸wîÏÍOøy¾Ư<ûøóÏƯơÇMđ!wøûăơưæÙ÷ë·¿;I~>¿†-5xQ{ơ)»íÎ=yơ₫æöĂoưñ₫̃íđçƯS·}·ùnKw.w’«Ñ§äbR_Ơiï>«ûpë~q÷áщGà1[¤ú"N¥ùÖ‰çơ“oŸºÜ“Û§oÜö%¡ /®N¸¸zñ#¾­Ùư³yưÆw³÷?ï6b^^mDÇ~óçæ´x­ˆ‚×È3\Ù >ÑÄ(^FÈ̃̃̃#fK $4_‹˜$>Ë#ñ…ƯKyƒ_ß̃ß|XÑ›m¢/Ùñ-=ÎSL‰TàI†§+¸…¯íO«¦º•%d1ùúÈY:‘ƠTH†́öæïk#Ù5•́;èWQ]®\ÿ¸¨•ê3@FơƯ¢ö̀.kR°/Ÿjô8Ü[*Vgߪ»ƒiê0ÆFF́Ü(ߣ­P±GÊüØm¬Øh§̀ê%À¾,2(Ÿ¯Á§`¨¯Ư7+r;˜QÓ6`©û̃ö+–|íWÄX|‰æ ù̃m¬XŸ£ÚåĐ_¶S¤^5±÷óØA¸ćˆ^í_»T¤éoͧ8Éö¨I@t€•H²´àc†Ô!ßy’%S´uªçI² zA^Íá8ESCÎró¡<‚,(qmFÚ•,_m:‡|f|[$̉ñäñ«ø3ϾŒo¤ŸŒx·´3z—³%ă£Àk?`ËgÁ1đ¹Nđ™-Hуjưbà¥*3/µ̣ ØAVØÅø!Xl̉Avv•̀¦j|éÁ$½Ủæ´¸ßq°©!§ø 6$4µKcʨ8÷Ø‹Ë9Üܼw(i¢ëîBsJÈéL¸»É&à·Óá¶XĐF̃.Å™AíÄ|¨,ÿ\Ơ€§2×¥ÎĂ9’ÿÀ»UÙA"OVzkă’S€ ÉÇd,/ƒ'‘'Ê#í,½+TY)§`C̉A¿&́eà™  ¼™^ÚÁD¢¡P¹h‹ïlB°´ƒT´îÊF±̣ăÎæcf`2hWÎ-d2† Ú…Ờ¶Ù‹ÙÙ öOm赓ÍÂÖ@ó%C¦’á cĐDFcœvÀ~Å´‚¶‚D <Á”µŒÖt[)öbM“IêB7w4[;r!Ă„[ív3¬,ËcsÁđ -M̉q¦̉'˜@»±­§Ú¯Ø9Pv§]ùÚ8X1l(/•qŒ {{åø̉Q‘̣öqƒD|Î{QµµdE…Œ|Rls6±A> #RöẬàmĂ8Ù¢˜{%»•ŸàÀÆHP¡Œ’LáÓ>øˆG5KÔAG˜˜xejl„‰‚‹‘&ôHP+Ơ`$Ù;f¢=5>LÀt§iØăeèó]4™œFƒ¸â!4Y“*LL”1gc"PiÆAÄn#­ ̣‡#b™4ư 52i(L—à蓆pC3ªK è^›4̀F2°ỷ°”)´d ’‹¦ 69a7„hrH*†il|^™Ô;£h¦ÊâwŸPôê8Á;wÄ’ơ¡ØØÙbÑa¿çyÑC@§«Æ®’ªÂÖtªjCHá—©ƠFk)ÊImax=ÇđÂ:ØS´ R{%m³Ire)¤1è–`EL{¢ĐøîB> stream xœ–wTSهϽ7½P’”ĐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏƯgï}ÖºüƒÂLX € ¡Xáçň‹g` đlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜Œç̣øÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“ṣ,[|ö™e9ó2„<ËsÎâeđäÜ'ă9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ăyàHÉ_đ̉/X̀ÏËÅÎ̀Z.$§ˆ&\S†“‹áÏÏMç‹Å̀07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøĂöW~™ °¦eµÙú‡mi]ëP»ư‡Í`/²¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ưïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇ø₫uü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸøĂ₫¤Ù¹–‰ÚøĐ–X¥!@~(* {d+Đï} ÆGù͋љ˜ûÏ‚₫}W¸L₫È$cGD2¸QÎ́üZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0€)đ ̀@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8„ÁÉđ28.‚·À•p|î„OĂ—àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹H‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j ơMFk¢ÍÑÎèt,:‹.FW ›Đè³èô8úƒ¡cŒ1L&³³³Ó9…ÆŒa¦±X¬:Öë År°bl1¶ {{{;}ƒ#âtp¶8_\¡8áú"ăEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎổ€¥µK§¸lî.îoo’ïÊ/çO$¹&•'=JvM̃<™âR‘̣TÀT §ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³̀³³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2ă–S“ó&7:÷Hr0o`¹Ụ̀MË'̣}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUĐª¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑ¢±ơ~ë[‹EÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°̀¡lÏV̀VáÖëÛÜ·(W.Ï/Û²½scGÉ—;—́¼PaWQ·‹°K²KZ\Ù]ePµµê}uJơHWM{­fí¦Ú×»y»¯́ñØÓV§UWZ÷n¯`ïÍz¿úΣ†}˜}9û6F7öÍúº¹I£©´éĂ~á~éˆ}ÍÍÍ--e­p«¤ụ`ÂÁËßxÓƯÆl«o§·—‡$‡›øíơĂA‡{°´}gø]mµ£¤ê\̃9Ơ•̉%íë>x´·Ç¥§ă{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼ođlĐÙóç|Ïé÷́?ỹơü± Î^d]́ºäp©sÀ~ ăû:;‡‡º/;]î7|âû•ÓW½¯»pí̉Èü‘áëQ×õH¸!½É»ùèVú­ç·snÏÜYs}·ä̉½û÷~4ư±]ê =>ê=:đ`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\û̀äÙw¿xü20;5₫\ôüÓ¯›_¨¿Øÿ̉îeïtØôưW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 621 0 obj << /Length 1699 /Filter /FlateDecode >> stream xÚ­XYo7~ϯ̉‡®/Ăk/# à¨qXÍKÛ‡­D)*t¸+)v€ ¿½œƒ{Ø´ëyX-ápæ›áđ[ÉÑr$GoŸH~¿>yq®²‘’¢’•M£J‰RªQ^æ£é|ô{²«d?Nm%“ưƠ8Ơyâf0ö‡TÖ¿ÜÜÿœŒÓLWÉ®!9˜^Póà›Ÿµë­ïÔkÿóeïZŪ¿¨ÛmyÅnKïu‘\“<Ơ ºæ÷‡0‚ªBcæwKmY¡‡y›Û‡†,·,>Í@Ó~ƒÙÿ9ưÅă•*#2[.ơ•¹ZóJ„A9-…Ñ–äÎÇ¥Ed2™́-ôƯ ́¶U É;¶jQ‘zKÁ¢̃ʶY0dd0ôµv³n\Ú5¥[÷Ñ âùƠ ŒdIS·*¡ÊzK:[ä~)W2DÉg–£BT…Ĭé\hẲ¯ ¬&™Đë¥_–RđÏgŒV&H…¶nϸâŸ#Ë8ÿü䟧7–[±Ç×m>’ÜSR¯‚'•°y60mÆ̀y@ªî˜ £›ÎÔ3ÿLü3ơÏ¿$±äơÛ®†¦ÓËñ̀‘ư ¾®Ø‚í@fƒÎ÷Ơ ÂC ƯvÜß³)~j†đKçf›N±¾1÷*×ëÓøëæô7›#f²7̀€[øBŒ§ÔŒL–ÑÅ$öƯç4‰Gö8£s€‡ ›«—á4Pmjà]ö¸LÔˆY0UJ³#Zܧ^pä“VBål/VHS¨"QïÇ©Ê*\ ‰«&̣Äø £Ê<¹‹nPWÚSÆ ¥ÚOg~mVz]2÷ ipÀÏÊ¥(|¿È+îû³êû•Vܯ„Îư€‘1Ï&¿[,À¼Ù ó÷Đù—yƯ¥8øf+L˜ƒ# /ah.×7X™°NHCüŒ¥ïẸ̀¿6üW_aå×ö´¿!ƒrïĐ.˜ £nô/vĂJ{I&ÙÖÉ»̉‘AIª¥Ï´é{&a7]”¼€Ÿn·ƒ} X™ÅÜKS¬®w÷¿„#´Ü"÷d'^sG‰Éê¹₫d¶W\¨¢đúPѱe}y2A¢ ̣mMJ‹¼ÊÔT¢/,A8IÓ¥3a*ưMVE´”ˆĐÿ” Ûƒ…æñæÄt€„₫Vx²ï`ø^ÖD¡ñ·”ÆVf_T!H¶FqởYé}ɺ;¨îH¡çuƒ—+ƯbĐnv å8ŒXu½¤^`¾™W]ÂB´ḷâNrAÍM̀wx™ß=„@Ö‡2`GÆ}H÷ÿ ±È0ç§m­’xâ5ñ«m™œW‘;öăëû4`‰’1Rr"ß§jG¼vJåX̣Êâ†ïx,È Ô[†æçs2ëÅè×+æ(5–ÔœĂl#ŒÆönËÍ2%–ÉlrÖ¼ÚSçzEE^4yT¼Á“×ࣟ[m9e#;¼Æx2Y‡ q+  Ÿ×C1e£ …ßö2?g1G H`)å‹ß ô];äΟ®ă›{LF£øPrµ7̃₫¯QK+2å³Î¢0́Ík̃LŸüÅŸ¨± endstream endobj 625 0 obj << /Length 1326 /Filter /FlateDecode >> stream xÚ­XMsÛ6½ûWđVj¦BñA€äL}p RÀ㨆~x¥OÀ§&¯̀$øÛ3}âWyÆá̃‰¦üv #μ9qnĂÄÑ ÊÜ$Zí¬ạ̀,ÄXz¼đf˜8s™ôHe†̣©¯¨æ&¼ÎÓ,%àºÁϲŸư#?]aP»ñ«¦ÄliÀBÅ-¦Ư™úAÁ‚^¾e`ÅËƯ¯ï‘ѦÂư=DĐvƠ•J½ÿăCÙÑí ô™ß––uC·d‰gTïÛ‰´¿ÿ„» Eʾ¯)9jLă ËÖ?§ü R¶“.‚„m‡kf¬‰~ª]c%©ÚOă›Ạ̈ °å€êÂÙ z#”o<ôælS¾úŒT5¸ưºdóö”CK|EăI¨H_³/GMĐL‘‚¶›’Ä7M›7MNÉ ̣+FwQ Åô+Ú¡2”Ưpêơ$²;ŸP—‡¦Y–ûü´ÂäfDóiñưÑ6¸ñÖ7-$É7 }̀î4%_] ê¡<^ µ§ÏëzC]v±T‰<±?‚2å@q”̉Ññ:_[Q}.S¤;–×<“"QßwÛ?¯¨/ˆ¡çºÛøƯK=T…Cé¸Ư¯TÏM¤ µËœ®µ„›¹ÇôGƯù W’Æ8ÜPQÁ¹ăyé½HºIµ‹@.gh@̀Q·ØƯäB¥‡“)ö”>_(, ¼m…­­Á¶˜Ê^×°±Á®~&-hŒ¡Lđ»¥xO6:ü<³`®*Jäåÿm„ê,~AgÔ$öÇd@ÑPJ8ƠĂ›øêñDE7BÇè¶Äs#8$"Æ–ƒ^ñ¸'¼äé²GƠñƠÑ =ü‹…VqKC6]s àEW°H±§–¥ *đ&‰ï¹ơï@Ë@ê|ø¼”·¶#3<ªƯ®w̃Ă]†»]h¦âŸí¸²ư¯Ÿ>nÖˆÎB‘@INƯ!9ïúôuAú:ᜋŒÈư¯o=%¶ ~‰ÁưbXƠGb̀ˆy˜"Đbç'iéu²a¡&‘áwxZyNˆÏåˆËƒÅÉö“ä+oơDÇñ₫ˆ ‡¨Ï‘zF7Zq³¸ø FJÖ« endstream endobj 630 0 obj << /Length 1830 /Filter /FlateDecode >> stream xÚµXKÛ6¾ûWè(1Ă·¨̃̉ Ц@5Úi­µ±­­ÙÍ¿ï̀”H¯œMÚô°^>†œ™o/V/^Mxøÿó|̣ô¥Ó…ĐLi+‹ùuQ æ¸(¬³Å|Y¼/ít&„Ôåón*ÊƯT‰̣3₫´0Ûáçf·ÎT¥Ëî„Ó[ø…©)q̉ùá3¾™Ö Dy8N•,¿Àꦈøû¸Á{́t¸A–+Ọzúa₫ËÓ—µ)g5¯ « gR’©JzqŸy²\§qS³„ld…cFºb¦˜pƯ¿ˆëU‘¬¾ó—Œ7ÊÈ”«` ˜*đ߀̀¨Îº;Áïj ̉S^#{?̃v¢¡É- ‘p;I[và lZNÆă´n*•F8Ç,×`Uăên62²l>ÓhDå@́x„»U1SW‘æW”Å9¾½O± `ĨX³˜Êªü45¶lVíaĐxï6—¨ă"Z¶`Û́üŒ@$¿Bœpđ„,G5ăR3Q×ç¡Û’²3%ẹ̈™´|‹ÀK=4 ~ d(N8¬$Êms |Ûe¶Eăgo¦N“3Ăœ®îÆÇæ#Îđ0MgZËr¾¾ J¡‚³óădø Á²Û œđxo~X¸l~Í93ª·Ô=J?ˆ1ê¾ñH†àC«çZêøÁ;'Æ•]Ä€$$‘ÑùÁ5G Év@ª¢ ̃ÂåM:üäÎ)¶·a¸äú8,¡nwđÄ÷BJUí½w¢ô(0Zb=êÍü«4ƠŸT$H[* ¹CŸº ·Üv»Á‰‹°Àó”}U3¥dÊó£ §èđw?&½†ẳÄăw7áÜfp?¬ü ×îc88Â_qÏĐíBđ4;²û—˜’‚'ǘ +·!‰íZ²Ü(4˜¿#úu¼ă”D¸!Ê„¨Ø̀¢ ¥¬ëX„Vâëûœ%˜…¼&`Ad5á !†wD¾"X¨U mÓ€ë¦H–ß VlcVz`D̀° r°A<ÿ› i@N!Ç ‰ŸÈ†~!³ ,FaE\†0ñû>¿íĂê}8‹ZúñaM‚ïNkbâÊMØđ®CÛqĂƒ³ Åé– ̃Ç:-¿f5‹¶LºÄC­í¼›À…â2®¹"$7A‘ăw¢jE_,å¯4È7eͽ]]̃Ä;·~ïpL±=ÄÁ"½…n›]5¦¨³¶Ó‰ÁŸÿ±$U1mM%Ngiq`Ưùá¶ Ù'™æ»p¨¥µĐdm™Ô.¿Ñ¸“̀Ơ>́ä·„<;çĂΜ‡.’åwCCØ+)Ơ{/dMđF¡ûlă³–S|IpÅd`Ë€öw%Zû¨'‘€₫ßr#E9‹—xÙø˜HÈqØÊ(Ơ÷̉0Oy–3í₫đY(r 4àPdtà·ó´Øz4¾Z t×~wÀ'&€¨oe×­§رEx|\TrđX¥ó̉9†0Œ±ó8ÄLÿ‚pua“!Ü䉳Ù<#o¾œ÷vlăy±_~đöƠ¤xOÄ’¶ăs8°l¡ß˜9H©ZĐ[Æ)…Ï9ùÂ~¬ĐȾ´ôÑñàâA]C±ºjD°·g̉k€¶c½,ÏeI3́¹ë$€¹‹ØÛº´·…S ¶ô®™¼˜O₫ -̃nÀ­ C/¶“÷x±„½_ Ø©]qG”ÛBÖ¾ñbS\M~÷ë3Ÿ³Ú:Y¤<´̀TŒSu’₫ă·༶~"Ó‰‚‰ÚQƧ0F¢…‘qt-Y¥åRÉ)Ê#₫ù9”‘6¶êø₫ÓFT%Ç’V£RB¹rFS®aª+Q3”ŸfN¦3áÂL¥ @ây}"DưûrA"&‚ø ~M¨x¸¹Î¸Ú\$• ‘‰$́ăB$ Ñsß oB¸P…Æ̣ ü£4êĂŒ§́«L4YơÂÙˆ$/CaßbOñ:pôÏăĐÛ”[ÏÛÙ!‰§FăÖë6cK⛺Û/½,ÂYí RöU‹„±^C•‹¡/Yç}‚½¦FóÔÉz.tuâ.ƠÙđѱ–!Ç'º£Mî*qă?€) ̣æ=ăiD?#qÊJöêK÷¸̃P‡B ùjD¡µBú» Äœ·éyëªçö5ưk5Æ{€W1‘Ÿè9@¹̀”·YD̀uæR]N‚ªm Äÿ˜$¨tÅ„M’à•¯+ơ]CpS§C_8iÉlôgчZgæ+bKè;Á£~ØPÛ„ -K,9Ö@‡éÀdIÓŒFW¬TtG~j́Fyñ•Ư¡ÏNå7^ ¿Vö{°âcßÉÏ^øù ú6!ÀˆUè˜Àï̉.¤ùÖB>̀ endstream endobj 635 0 obj << /Length 2657 /Filter /FlateDecode >> stream xÚZ[oă6~Ÿ_á·ÚÀX%’Ûlg±‹vf± ´û ØJlĶ ËLúë{®$åḰä!EñrÎáw®L:z¥£¿Jåùóư§¿Tvdl’[—îGµIªÔŒ\åF÷óÑïăr25&³ă¯Ë~bƳv¿«~6m¿‡~2ÍK;~Äöf¶_³Ûô“ÿßÿóÇ/¦™4©ÓÚàÊéh›Ä˜œ₫ &ZXf’UăĂ&Ó¬·°Â¿¥ăî‘ÇĐâ¸å ~öđ·́6đÛó¨E3ißp…–{ÂBí†{æøÂCnëG̀yÀc'{"—ƯºåeQ è5| sgÈí©±Øæ[¢–xÀ}Úµ’Ét/à¯Ù I$©ˆ#ê…ö(;–É“ÂÖ,,Ühƒlâ*Œ/²qC¯ü̉ẹ́í;f ö •OP_Ùq2™i6¾_´<¥Ú­H¸Đ ïăñsN[öÜl6c’ÔÔ#=™:ß3DÙÄƠ50†Ư¯hmÉ F(¸ÿß_Œ¢îÿ²ö ‚¶,Ç_ zâ­`ÄŸ_đô{26¿,ZÂ}ù /8­=rñ6̉Đ:‘ÈŒ1àËaW$ ypX8oÙÆơ#6Ăºû˜–9hfƒÿ lÀ)OmÍA‰!,Ă+.KÁ~«›i@DO€¬Ôüéß“*ÇØ _Àƒ^Ơ•cgn¸ç,¨2©É‹@U^€Ty#¤oAUµ©Ç¿µjr¶}wV‘!́4Iq¬«rPí„“:É]~¤³çöËÀt†Hc)ç±Ï^`}­-u‰k¸4@ZVÖçÙGö˜ú m‘XWëÆÿ¢8$ ¦C|ö!”̃‰§ÂîÇa€.iBĂ‹ ̣ŒDËÓÙ­œX/ᙬ³›lU*=\Î¥L4û¥0I½œ‘(˜ë¢²A¢Ó²‚X=˜$Đ7;dvĐ_#–‚ƾ,8!f!)³üÈ́…häû5ö‰`×Ósîk9È[)¹rŸ«È©'#aâ<¶¯đ™hcqPC(£‡úÜÑ„ÉKÄ6y”ÅxK†DAºÛHH©ª-±¢|é‚ÿ„ˆ;+O“O©‰|©ŒHOÉ̉6¡èU3껪7ŸÏ̉Á_Â9ªÎí<‹µç$lonëÛ,C₫̃W‘₫*ï»[¨2¦ăàÚŒRM UCl‘fĂ`-cÉgưg…|‘8kùĐÄZÏO".̉Ú82™]̉è‹r«`—*¸ß7ü=hY{ /"Y E›kTœhx™˜̀ÇiR©ÔtelŒñµÙR¨ÛF́J ß+¯J4XµÛểá=Gz‰S^đ]Œ#ƠN³PçÄ/–ùqíÂgfóS@ l¨ÏÜÑß[Ç—e‰Ko^£‹ôK­â³œÖV₫s§n¥0₫Ô](¼øÀw«0h¨öỂà”$£HÓ¢³WTÅóé(×!–‘ñ̃«sγ¨̉€ïaû4ÍÀK 俈À;×HE3‰wäø³«°̃Ù D¤±hÏ»Rp®ˆ5-ræ<2—ØP^º‚àPOz{ƯKE5ä¦öG MµÛ>&’ÏXÁ«œöNË{ 鸞M6Y?xG­Å2è#ơÂI¼œh™&¥yâ²£2Tß å¨P(AÎ>¨îE“p‘Ÿ¥­!̃ơÊà0QÅļÁ"yVqi&«*[ă¸\qÈhư»3Đ©û¨|ă) ¿4Ơ{°•¦îl¥I Ñ-ØÖ½Œ-”€` ›ƒ`;b•Úˆ*…IĐS;BóàÙgÆÄ8‹̀¸„ 3öä\¦ σÇ—Ä_Œ/qBvz6Æ&sµŒÛ;¢h«•Ê^Ók2¶\Ç!₫ô®#/¢ä·›×IYxÄÎ(`aí^QèJ¾ZZRV[¸¨’¬>ÛÚ¢22¿̉óæ„ ¾ù•C` ½+ƒ†–2Djxơ₫™ÂÀ¡†ÛÏŸÄT̀øÅ£™«Â­” ‰ÙM–X¬ÄØ:®á`ÆÔiü¨· ëög¸î%Z‚ß›çg!s§!—ÇüÑ] ]Z("…^*ú^‡×0Ơ¥ÙåJ=]~I°ü98ưÏC…̉+¡(ƒiYĂ¥¶¯à ¥‰’|êèư=É5Ư©œÈµ‰ªLA®¼¼o·́´Öί²’‚HYP1²ÿW~S£‚]T‚g¬ ¾VעĂÑ`+>¿óCưs#NS…èĐñƠg9¤ƠûáƠƒ¥2Æ@*r”Ơàyôạ̀•B/̀æªÖ¾‚G₫F&b̉ 6đΦ¡«é»M“Ô¡`%†âJ€Iy•›!>â{@ÍËµjĂ xw5«MâQó¢±îê$UˆGùüñ×èøΟ,Y§eLª¨:=¾v{ºª;Dñ ƒWοEÙ»R|@s Sn¼9åaMí£ÿàĐ † æøä)ç¡çÂHB‚#´²Áÿ`àt•ÿÄIkdău·‹·ˆª §÷’ùà´åF§÷ú¿'×ó`Û]ö‹ô„“×Ơ Rt)̉HäÂà₫ yZëV‚EëÑ˪Ø.æ 6Ïê󯓭¹`ä/Ÿ`öA㙨`̉íÅv:\£ñ{jO¯ïG¦2àvA) ›X+÷ ¶ úå₫Ó_úTHE endstream endobj 649 0 obj << /Length 3063 /Filter /FlateDecode >> stream xÚµZI—ÛÆ¾ëWđåú‰0z8b[Ṽs¢H“\¬@ä â2&8~}jëF?çÀzAwUu-_UO6ÛβÙÛWÙèùæöƠ÷?©,›©,­²JÍn7³J¥e¦fEỲn׳_“n®’øƯĂ¯ß ~¿À¯†ßYÚ-ü¾Îÿuû—°2,›Ç«ejŒ…!Zóv^¤₫<×ẻtó….3X øçˆ*9x`?§wÜœÛ5í[®°·{ ưUF´¥đÛ¦̉qĂóët®ùư ¹ ú¤W8îçÚ%Kaă€ëTr‡í=·Û̉‡½Bc=_¨)c?¢˜î¡»Hb¶°*Í 5[(“æ¶bÎ…ú 3•üi¾0NëĐEζ²H½­̣äxà'|óxÏï;́̃Èiƒ¹É“7ñ×69GŸîˆ|àøÿđ‰̉€'j{‡Ñb^‚8)ëxÅÍñ$K³Œx»@eäCu°#$ ă7”Y½À6²oGG¹(‹!/H;¤uƒo;îŒ%¹Âo?c<̉™x̉†ÔgïOw˽«ă₫Z¿̣W¬O¸đmË‚4'?K¶!]ÜÓb(,́e1âaÖû{Zs[Üđt\úm÷̀%Lü₫§̉ΔM-4Ú ¨hª!RZ̀°USÚ&?ƯƠ¨4–Ơ°Äh¡ÍÁ₫VPW@Q–UBR~ ¥&µ¥±ăŸe²&-­¹“ä~î¸Áâä÷5±$äL‡xö’á€!"ăƯ“?¤;2¹Æ{>mà´£+5@£2,Ødiđ§Èx?)[Qñ²ëå½êŸŒhvŒtép€A)ˆuvBd/̃¾ưJü‚ªûE°µ6ư2ÉÏä2`JUU>‹•\(Zé  ª*C ^Ô­b ‘Û;ÓI/H)~™’Đ.Y6gGÖ…ß–ÉCP¨cP¥X@ÂU9X5)ú˜7¾{d̉$q4Ío^ù5O—ÙÅ%̃4½={/Çî}¿@ĂøµODX¤ôÀ:Ë>v Vb`n! •Ó)”®¸”Fª|<‘ăÜyƠoú9[â‡Ê™UñL042J-Lù™̣¾×n¥¬ˆC‡[µ́•i|\¥Nñ›øZó#)>¿Ă‡ Íñ×Êë$á°P̉åÀA}÷uEô‰nx<†È1¶Æ1á®wÅÜ!k8øŒ5́ô!–lXqë;~HkïW;Eß’>ô»NÈ´‹% „¾ª,Ç*ïíg9°•á øÈ¹—|M¹p+.́@\hsß=“°°*đ™{0ÂM›Li W Î?¬å9ÙsAÑ BÅơ°&Ê₫'¡gÑ«°Î‹ÚabÁe4oƠwQfAb–=üôaÛ!yƒ¹K²f)‰Sr<ëë°ù’$p̃P‹V t ’>ëåèH:ɹñÛ]ơ´¡æûÛ¥¯¾ä[U•°1¦Ö×rksúä$>èwbm™ñÁQÁgÉ ¨gă+A¸R|YÍw!o z±J­Vxß_‡ô4Ç"ÅIïÄDú/Øiƒ– Â¹´¬ª Ä$ßă₫”N¼ o„|TH#̉¤¶¯#£.z?gßùŒñ.)i.áb)`ó£dÛ‡X»›s¸?¡oXø$†sTk’5¦SáÈ“ĐG¢]êtrë˜a}ĐPŸ|¼y?‡½o.ỖàuT̃2ª¿ÛZr{Yw>I0êr€u'`®ä91œ ÖO₫;̉ Ja|DSCaǘQ¹Úº̀2Ö1D|¶bÇÅ©pp7[«‰¢ÛJ|@¸ 1:\ÅI°’´‰¯đ1¾¿A‡~X«̃«k.Œ\$¬ê]¿ø$Ùy_ơ°®‡×8ÉŒ̉tu .„FƠ}a«wç¸D8Ö¡tN|¤̀IߟYדH2ÚKR¶ÿÙ'vä=Rdâ%¯h!“ \.XY•M•¥Û»XÁIOm)ç* iû™û₫VC]&Åù;¾È‡áđ > {ɇ±ùĂ¤Ø‡ =€-/z-£̣Tơ7(oæX¡Ù§…Í­CT„gŸL`J›–)bÊ­_° OÍRÔ>qjx0 ¢«Ñy4*F;éĐ”Æ9œX !/Ƴ“^V'*;a‘… ck=̀©í4“†Ça\fƒ½ÉI˜~W§Ẃ…¶×|[‡YîrUoĐ+² Ü™td*`g ’[±‚Ç BTĐcµrÀEº)̃Á“%äO×÷¶€饢©VPØZ)1̉đ ¬æ©ó®¸„`6*œµÚzøçx`VÛ8zpiDqp£û9Âe2dÊxvSÂ)ŒGØØs>›d€jwÓ¸VVmœ/¹”́WØ)…æ®&p´#‡̉e×n 憺•—aZ8­}o&:5T¦I2 *IARH0ă$‘ĐÅ~å‚u˜TbŸĂƒx_ "a’äÂ%»°K$„ƒÆđúŸ?̣{=8€P¨+e ×?²®crÆĂû•½xö¹ß/̉±}5ñĐ„¢0× ¡Bá¤ñ=›#éÚew‡ơ4.ˆ‹4̀ gĐ÷rokyÄ_8Ơ~êN³8L¢Ë;ôNI‘9­ÜÖâ,’"Œ+x8IK¶ˆ$-zB›ŒaO§í°Uz°̣†jqÛ9¸±eơ *'~_6 ë̉rMÀ«&ÀÍ­K0‚Hp¡¨/’₫Ê=¤¾đ,'€.g{k'́¥¦3û)ódXƒIœpœ5́³˜Vă‰Ä¾ Ód2@RfŸ˜,øY©-)<ÅYñà́×Eó¯ÿàÊŒÔ.(¿Í@–ÿ `àà"“Û}|÷ƒª”s Íö"«FÄcÿ ÄS<%¶CtªÁd5ˆE t̉;â­?HriÊD!Y.By5‰±wâ^…".Y#ƒưƠˆ<ø°"™™$´I‚àE‹Y•ó…1qüØÜÏ‘=b₫n϶j9C\Àƒ­"†=4R1d‘6¿3Á¬¶ă·5)÷ª™̣†pÁ˜1Ö û ÓÚ¥/­Ö¶\₫½Ø/0ÛU8Z‘đ¼?-W|AŒS= ! g½çñÎ;`F28R”²+ر›?_8ôÓ=§ ÇN#(A·G9t¥^v1e¤u4CrÀ¸PLù ƠúËL[™́»ˆlI Y›K̃7ÂƠIê׿‡¿—̣§Y°ªÁQMV«×²î‘øOî•@ ×'IgäßÜßJ}ée>SGy¢_Ø0‰¶B ̉½°MºïËÓzưØư wÇï´Ä«+RgË´ï¡Jè8£dc­ôypocơeœÚƠê5î½—haỤ́,đ_ĐŸ-y¸ëÎeë¸×¦º“  –Ư§l”ô)«¯lI…;SË/I²àQk¬²p¾ÏFÇ8J³₫¤µ]+sˆ•7Xú8N)ûʹу¤AX7›ªNüry·̀:đ·¦ziæX–&—L³«¶ø”^¢B“…¶L+ÆĂÏNÚ5½³V Ÿ×‰ †}yµ:@b’º\Ù…å4âÄ¡¢¶i¹‹’¾ăY3[´Đ2Ă’—å ˜Füá# ₫Jé,ÆÜ4á»R ƒOøq©+i¸¬Â¦=\åLGăr#|ª¾¶î«ŒØ$u ·©«-’(SC<@¦ŸM2ÙP^U/<‡¨›¥±\©). æô<9çÂ0º¢Hÿ…"ÔZú·ưôÇCȽ„‘¦÷%~©3Áë¼|àÂÊàßZ/J­D́úQ®\®rQÚÙ̉ô0´Y2á‰8}Á ‹K°ér’}bOM+*E=+î=w>*ûb:¶4ËY,}pí¦pơd;°?ù´£Âáơơ‡WïBîrđÚÓØĂ¡“X¤Ä₫°8åăzdhÇ%P6†₫Ă”@O:ôÙCéRLî=.æµØ××(¿ô%‘v¨Væ_?}ÿº/¹ôTwà &÷»v¢Å^Aǯ¼Ú¹Zà™«đ [ >?Ù¢ÿJIµ¦{¹ªbÓ¡`ÁFUçßÉ6Ö„¢‹>÷u¤›©2clLåÎ}Ưub”µV²/ê0Đ̀úùæˆ̉·Vjx`R?æ,â¸pË•ê¿đÇØ9ưÔ SSè̃¦ØƒăÄ}©Q¼1ùªfväöµ8ñ=÷ 1„Uu­U9úÈQ¶₫§e/²–‡k èp?ôxô“®"5 ͹‡¡ëöÜĂ0¤¹çʃü–‚48‹JI>¸ÖQ0¶qf‰ơïéÛW è1¿v³È’V8PD;úA€f̉Œr—a’:ºưA*(†,ÙăĂcb‹WàüʼnË2,óßø¸”º ₫)s*ÙớíÊ–À5бàÓÜÊ»æAễ(oư®R¢†]¿Ü©‰ÓOaàÉß‚h%yZ«?mIûÄ0ơm™:oåcq:Èơpëwo ưwøû(”ÂÚkèûÓ«woßôc~¼í¦ Ë~¹ÏöÉG(%©€ÎZ„Ø–¿ZçTAnSA‡­8÷‰¤¦Dºê±¢QJïßĐ÷óE{«D=Äsüm¤—ư'Zơ=4¿ăæshÑ—\!)ü¬C•èÜikqö;™7¥›ÏƠ?]S½8*Â<?¡7–“¹¯ysó́?ÂU endstream endobj 685 0 obj << /Length 1658 /Filter /FlateDecode >> stream xÚÅWKoÛF¾ûWđH!Åạ̊éC'­ƒ4Èn.i`¬DZRE‰IÙñ¿ï̀7K•¤=ơ j¹3;ïùv8K'p̃^öÿơƯÅô:‹ù:JBçîÁÉ•ŸÊI²Ä¹+œÏ®(7˜xJ…±û‘Öí3=­ÜUM«mÙѳYcÓÓí̃­Jz©z½V±£?rÅ ÇÓÊWJ‹ü»1–˜ë1cúy?øö-²R}N°¦¥V?±™Å$LƯÍ$N\³,ɼ,vW¦åEäÎ'ÙÖr'¤‚ד0sË]ØGâ–…đwµÀ\LßËû₫’ÇÔ§—“–£ÓÅCFBºÉ¸¶Ñ8Z%{Xf,ÊŸxI¸̀ÍzæúƯw¼X³ï§´G¹¸Ư!:QO™û@Ëưv5¦­ëµ(HƯ'VS6={ú£µ³\6ơ°G”[•(VĂ;á6̣7‡ˆÁ®7²÷ẂƠ!ç+p6N¿zO©‚à¤âÀO¨4lbWÖ“Îj¿¤ßÔ₫öpE!œ-¬e›(Öl%{oÏqº¼‰IöËù·=ƯÇÊ·ûL_BẪÛs÷ÆZ0·gø·±>J¯½(׌-コ¢Œ”†…Èu'VqØ8+‡!¼m™mB"[³¯BddÜ|DÚÍv'vú ¬äư ií£µ0#¥(œ£•̉ƒá7M˜øiÚ{5;×§JQØ’eT \Í̉‘Ǻí…óY¹3[œÀªG!¦̀ñê»§a*\¢6NO²f%Ơqê³'ư£ÆóÜ:¬ÜDn; èÆ–ù¡ă÷LâiÏrÿµvM­‹ÿÖ&èdsÔ»üúp°JGm­¶†³ü,ºz “C̀†ƒÅØ̣ṣåܱ3Y–€D‡¯ĂH"q=!ø#ÇƒÛºÇ B"ë×ζͮµf>NÄf/Ö¶CÛí7Ơ‹×‡ö(]pîŵ@ơ“æù»¡̃l£ ï[ˆFå₫ Ô’êÄÖeÅ÷2_tB±̣èÎ̀1„@‘Ă€™z̀—y¼äl“̉Z9?‡+€,JÈ< x9†¦ƒ7Í-„£_³„^»ĂÈ=Éfy÷Oó„ܨ˜Ë;ñƒ£-r`æúÊ0{‡̀,E› 8°Âê߲ŷ"ùvX5F^©Y{è'½xq¥ö6ă£&¯" EV2X´—"¤(Ùis¢ò|}C„«[Ë=½ayóUú<½fs Ç«|,l8=Ó™ÿđ‚Àñ ®µv"j†˜ 3t]}À$\¶¼U­9ÇÓ úfÈ·a&?đ¹­…pÆà›+"|¼zCÏ÷6,ïf=7 tÓk¬QaO€”M;±ô‡„é'àw»@{ª9î1”-»whh”)u~´Vqöf±aáų%ŒÓe{5¿0˜x.ÇnÙ¯¦Ï\Đ_ÄŸ7ç`Bé .EÆN×Üđ«=³„Í—gâ6V€Óñ́‘Ät‡5đbµ^¶© !ôåèüJĂy,̃Û"ÆơZơg ØEvt£³2¨âs²à½8×ö ©<çZ-óB#®˜øê,li£O6ü\¢–~æ¡  Æ̉{.8;Ù¹.BZL1Rơ¸Æí‰µưÛ {+©xîAËØÉ |\B]”"pL—@çϬ^à|¿ú5÷ h~Œ¦°•w;pªº—Zµ ¤²fU{z–2 ”cp^/wL($„bI~ΪøhƠ®‚û"RyŒIp9Tt‡lwhÿm'f[¼Ø̉–§bd¢V4VRÉ(¶̣ÑÜùICû§† £†fú0 üHÛÚ́ưvwñ‚É à endstream endobj 690 0 obj << /Length 2538 /Filter /FlateDecode >> stream xÚ­YYoÛH~ϯĐÓ‚"¦o’~s¼96»É‰Á́̀>Đm ѵ¤”LÖ~«ª«xÈ”ó`³Ơ¬î®®ó«¢ÜMÔäÍ3ÅÏ—×Ï^¼ÎƯD»Ôº`&×·“B§¹̉“‡Éơḅ{̣©ºê¤ªñßv^Á£™₫çú]»…<_¼Ö~¢UZ¨Bă>j23°«Íă6/qå|j²d95yr€_»ơ₫ăèùtf½K̃¦đtẸ‡̣ fu4 5 á…+lr¹Ơf“+ø«W´­NÊ5î¡€¹¸å÷₫Éw·ñÎ/ññ'̃«œ'u$,·° .ƒK®è¦4Ư MyƒG®ùÜ^‚·_â­pÍ~:3!ÙÑ1U»Gâzñº°}é8•¥6IçcĂÇÎx2³EHÏ&3mSïH„×\î6tà fV¾ sñŒ¡¼I–PÄÖ$&°pKöÂ)ï¬IG•:™›j]€.Ujc]¢Jdyù‡̉™EÔ¤×&ù„ Ë|̣OÖ]:¥æªSj©äU‚Dwx©Êó[TÍ¢₫p·9r ƒỈ́¥]Lg™)’ëin“̃À~»­p§“_§¹KÊzÑÍ”ÛEǗ¿DÚ†VŒ*/‡Êy¬!äá+ ˆTâ\H^²ê–åWÖÛ É§©7DĐT8Â¥ô?¦aí³Ô+w¢cíèØøÊ&÷ñá|~Nß:ä©Óö) wÀ")\B/·DBÓ—B^Ñ$̃±nĂ oñ^–æÉçn—ÎḷÎl2xq½Œˆ6•¸ö\0K°°ˆƒ=Ùz02Rmø=œ‡^QđVQM~8¦hºV¹&sC-6̀R'ÿ€đä\| 6WïJºúóhÍïđf.‹"êÈ$ ®păC´—¸rÍ̉É:ê—i7‡d‹»Ă¯Ø<³WSxˆé¹˜ÉÛ¨™´±Ú×î ́lG0ÉæÈg÷lyÈU1<ɆÁ 7Rô"C„«í¡ ̉  w1¤­Iq°êc¶oơn؈pœb÷'Kó‡ ̉ܙؗws´}—Ư»̀¦ñƯG¼)ñ‡AidùUÓp‚êƠ·øö7Œ-$ñ/½·¿uªL§™×#Nµ¢#Ø:¬Îá\ˆMÈœöÉߣiáPÄ¡TÑK‰ÚŸƒ—8đndà_1=E+¢åö ñ\$Ü̃Åw4ĂzxÚ̉q4]ÆÇ$ê¶¿'ơº; Ù [;>âÔê°ïă­9eF^Ek¶́•è(̃j}Ö5÷”Đqù—)„ST;iK"û~nùœM%¶2ÇC`½O¢ÙœƠ)3ĐWéUt_‘²¸¯¶ä¾¶È(đ°C9¡Si°¡lHÔ ‡Ô3 ´9„)„É-]vD=c†Á Á’I Ás€~ÎÁĐGl&ơ£$çô¹$gĐ÷#´Q.Í̀Íø$1ƒ\ÈiÑÙ̀çtêü4ñ‰áJ̃3Îß›,œS!$Àa?£BÜư‡Œ—ülơ—u™i,„ÔÛéµÊm8®bB±rzG‚c#h50ˆ ¬7$&å£?@­£¡±€Ë¶lP6đ·–đ<₫bûaø;'^“ù´€h<”ïn)0wÍA.iæ{É̃t.á#~&ĉætp-9’ôµ¢đ‚`°á'>ỎA„2(÷dcáå+ ‰jåeẸ̈»œqÚG9KLó†§àcÜ“"ƠnÜ‘ôçyj¬zFçdœ€G’̣![>LB ƯiÁ 3VíùXª‚”Z]0΢•œ×io9˜O] =E¾0ÍrØ*É©ªMüËëA´âÄ„PÑç`¯r¿Ÿ¨Ú0‰çô{†Ô¬óJ0"„rzOh­»SÏe½b«^ö¸19ßéR‡‘Û•̉‹´=€„?Å6dÜ gđư₫N<'ªư—ç•% D eAL®¡¼ºi훑hĂ²á`4ö@̉È2+~ơ‹Ä $ÄƠêư Ø©¶ ₫}<%ÁŸRÈ{J©K)½͹CV'9¡¸€UY~_œí"́"ä'ÏU=äua6x4ÆHaœ(`œë €ïơ àÖ¾[ n›H÷Ëè¸U´gÛ*Ç«¶b!á!½4˜ê¶€9J1 P±ølÖá<€ö!U&Đçëåmät³®v) Bñ—ºp̉"ÔUbº·Ö=%®a©ùí;ƠW̉’q]1êŒïz2=˜f³^Oʸ¶•DTk¶̣ƯˆïvpÍÇ ßjÇö,RQ \´îßDBY\â°̃ª-cE+S¹„ûÜR}ºéÍ‹e¨mlFr‰ ^{̉4oá Åû»vpƯU ?°åĩA±¿Æjbÿ÷Í]è̀̃ăqçÙ©‚Bk`,¯¢ ³®Ësè5̣!óS‰¤z=ß̀=†° †Đbă«¶'­0´Ô9¹5Ô¶ó74X¥¸«ËJT€Ê^¯ä{äơoñAùz+E6ÉƠì7éU-G|omL¤Á”·çÉ_¸?v»«Û̃)y²Æ‘Û¡ñ½¢äµ–@¿x3¿F·%Ăư³ClµÜJNđăß½C`ûµ»P†³R­u°QÚ> stream xÚåZ[o¹~ׯ ö)~‡×CRpÈ¥Ù Đv'E·MBíiäïh´M₫}¿3É’e%²¬ÄEó pÄËáÇsçÅ+”đ!äQ$aŒ>*a₫G-l²(peđ‚lBI‚"ÿ7"˜ˆv/¢S“Hă’Z%-´v\c„6C@NÏ4ƒĐú…ö†k>( REÀà uø„ÎÉ£s¨Ä Ơrg+Œ hרqF£FáƒU¡†‚́&pvÂD`!í…IÁH–J5‘?°h‹¡¤ >•TÄf&¾x ‚`’%Å>:'l nÁèAK²1qSN¡L`6¢ÆjáLèX"œ²à°í†GáœBgë„ó†›H8º4'eđÑFèĐ9j³Ax…U8âµïÅd ṢZxÇŒr`(K–œfÉ¡³cQ3[/RÅ9Ǭá>qƒ™¸í\ëDđD<© ø€”‰Ơ"„®]ÅlñQÍÄ 3hˆÖ3´@#1ˆiX"óœ‰'¦¨-S"È£fyT‘U† (1å$ R „2%Ma‘'f/@‰&³Ç´‰°€äÁ ÑD¬ÇA‹y82u³³`”ö`ŒC+«@)rcfDêṭ‹ñ¬Úq¿N"±ûb¥‰Üa ÄF l„Ø ´‚>wǘàøx½ût]ˆ́Íè¢d/êª-ªv*˜×Jœ ²“bZϼ˜vöÖUư¹—£çơGñ^ Ơ)jHæt ÆB̀ºë÷ăùM1j˺z9j ñäåĐ( ¬ £ ’#«Ç[Û̃•í-'â§ft}YæSñˬ½µhzÓÔăY^4Üj¥—ꨟ«æª£ÅôóƠ½ÂºÙÛÙYÛưåJ=È₫2ºâ63Ȧ÷ÙÏÅä÷¢-óÑ ûc•×ă²ºè<ĐÊv iï$ùôy=ßM÷}öúÅ 2F-;œӕ¹#æT—ă³¿•Ơ³jZ̃4¿,ÏÏ Håơœ]•Ơl ]Ë~›Ơm1)Î[è‹ËÆ5ø:–ÙE3ú½ÈFù¬-²¼ḷÙƠù¤ø˜µåd\dW£¼©«́¬)ĐCFygăSLËi&«ºçYƒ¹³Z1™Œ–•—³êbỒ®&£Y›ƠuU|Ẹ̀Ó›^̣âtÁÍ—â½ïÂÀ‰È~ưû?`D2Âëd„W³Édk_8w`9đ³̉Á…®uî˜| ihxN?×{ç«a¬ư¸k=ƒÀ¸́×_Î₫]äóq¯¯à°=,lÑ•Ëß-8›½yù 2/>¶ât]-nÛQ¤ ;î{µ£d¿ƯĐ]µ£ä¾7;~w;Zí«I v—¤Fœ;¸!#zˆ‘2·íˆ3­]́ˆ3¥®ß³ ,eyrfÇX8±›—±/ç˹¥·¢¢*«Đ ºM7¥:Í~Î^g/đ&{Ê ±ô÷H¥â´)X™ ¢F[i‘0ºH2$~Ï:₫¼ÙOơ»Z@,Ọ²-d^_ƠpZ´G̀®ƒ`1:IN´–Xœ•iÀc`±PÉdo°Øäe;óEÙĂAAf,­¹â Áö„«âÍĂ®¸̃Ww}½ ̉X½Ơ¡ÛFÇ;lî¶9®Y*omÂbo¢ZöĂ&„Å?˜¾µ ‚‰Sw·hB¶Njùϰ-ˆ Ë´I=ȺµÚ´îx/ë₫ÿ‰’¼üQr…îJ”¤¹:}GQ’7æ»ÛèJ_£₫\<Ơl¤H ·)ü‡5zi–È!ư1ó(Iˆ@Ê6i>íé´ñÚÚO+Kßîƒ>ËLô0büÆÊƯ{åî̃+ßMèN{«ÿƯ—vÓ“¸gÄGFʇt÷gl-²LU’Lœ! ‰·X~–î ¶íèlRHs;̀{˜đZßy˜¥D’ô>Ûת(cDHF¶‚ºEđë±Ơó‰á]b_ºë:pí·›Úo÷Ö~ëvgîZßÏ0w Ă¾%\Úà‘ »ñțۖaç–Á'ór¾ïÙ»ăÎy¹øoú̉ö¥ëKß—tÈRH©ƒæĂX©y_‘æ’̃¤¹f{Z{•ëj4ÛCî=bÁ/ÁX­%|ăă`qđ=Ä=oÀ)¾|øörÖL[äC§§3/ϧç’UA;”|®„wüÖh´ ˜VßÀ Z>Á8Ư©̃ w,dfv`ÎY‘_¶È}Û! ¢»Ä>áƒKŒ₫±à¸°×đ€£̉R‘y'kbÜçbVNÎA~èƯơ;"Ë( ­:ùzˆ”4¾1íâüÜe&YÉ÷j_DSÍ*8œÉ§!…j±R̉#<,Đă$Âơ¾`8躸{€^ëÛhC’ïí¶¥²Û¶$¬d>ûÆç°qRNÁíŸ}Ÿ}Ÿ}Ÿû‚ïçe—©ËÔÇå₫ÔŸúƠRzÉ€órQßÓ ‹RôÑ©b¥#àk4AÊ|³í“ôñ3>güŸOE3´TcĐ™%’„¬˜Oˆ ¦ÖHæœ2đMºơ2̣Ùzm¿±³1È~x"b­z4ÁˆÅ³@c=Áù<„&‡ÔLDüNñ±Đ ˜pƒÆÙØÙ̉Ñ|•¨À{_~ײƒT§{—ñ8`‚ŸÈÍM.±+³¢©¦mQVĂxÈ@4BäHÖ‰_ăä7Î#Y'÷x¸’‘ájËhBÎk½0q 0śjœ9GŶÏBnˆL§Ë¥u+ËwdÏr>"Ï̃f=yÍ¿'ÿTN]6Åù~¸lÛëa–]Í”7_eûééuSó!¥¬›‹¬ùáèÑÁ~ â₫­ ’_]É×ö +àDß}8€Ù´É³yOSeû£í÷V'i¿2̉~+Æ·æ®̃€„ÎX#™ßZ6gḍ‡Ä{=ư”_₫ëjTÍFy=>?ZÏĂî—äë}çÙ³3I·ơƒîßåP¿¨Ó}mĐ!iHƯ£BI+±ˆ¼’®‹E‡R“³º₫đ`ë#́æ‡&¤b˜pr‘¾̀ûGz ?́a#=“B¿½%rñ¥ÜdR K¸ú€™’²àođxD̉Äïaƒgg1ú€y±§°7ëŸËdƯÅØpV;.äe{5¹åâ=ÎÛ£Ûư2ă¾|ƠâM8́ÙüVµ~-¶¯÷J›7Z1̃Ë{­̣äGqóâ((Û=]ùl_́9#xÀ¶Vè₫…T† endstream endobj 703 0 obj << /Length 2628 /Filter /FlateDecode >> stream xÚ­Y[sÚH~ϯàiGTE}•4/[¶;É:©T́ÙTjgd˜ ‚\†?¿çÖ’Qv²• i¾Ëw¾ÓJF‹Q2ºz’ üß>yv©ÜH%qäjt;å*Î5̣™ƯÎFÿ®Æ*Úïà ?ëbßOÇÙè:†ßTG¿'.^•[MMx`¬Îøù]QCß>5v˜hÍjËiÂbơ ¾ÿ©Í‚ÅpÁGac²•;émñÏ w2z…¿»±Î¢ocØd<₫÷íëg—¹éÑ$&Ö΀ èˆïp¸ƒ)|î«uX —\~ÂÉy’cEù<66sˆNT"Ú°¢_á£;à £‰ñ*ö°—‰2±ƒÁ4TgvùÈ: FË&:‰¶,₫²Ø5–‹`ă³èµ(̃ëèŒ~Uk™´µ̀ u(åâ@Ùhư³`̣4¢z[«ƒ*o¦c'Ø>#à(>Ó7ƒÎÆÎô`đZư7]́–™–Sj0lîă$u=»ú(Á¬xüMđXïi2Œ>Î3{ÊÆr耟•[¥ÄFÿà‰u¸}ó%@i9Ø9£!&º$yß:‰I;ù4s€&à×%ODéáa^kSJ…GëR:îÙ~³¡°3I'Êư„4˜uu §×ưÂŒ¨`öưœÆ›¾~É0†T“ßl̉a¾ỹfFđ|[́*¦èቌMi@`$áÙ}Éưlè“̉CÔ¨²MRP‹d¡‰Ä8ºuéq²æĂ!:kƠ‹“ôƒE¥ùAenÈ~ PåCæÓ¹æÓư®å· h¿ADlÀgM#MôÄơiđĤA¸è"¡â/Â6afÔÙ”«ä®ññ¿˜ ›$Féºă@Í ›w #đ ܸ³d“íp†I°»º:”O»›BÎC®Jü•Âw5§s};ûzÍ*©6,œÛ›zÎL“Îù·‹&5wq&@¼Yá.ÖPââ$kơ ˜̣̀’¶‰g§ÀŒ’H乨ës‡f•8·Ly¤¦÷˜ĐK‰›’Äi9ư)ï¶*¶yÖOñV|É÷«ÜbBñؽ_s6f·Ư.»$‡–ÉÈqIÅ–Đ8/Çb†Æ{¶­x`†(Ù:¥Z_‡P§8ù‰k§`k}ă¡ £o£Ïü†̣‚ö±Öægç8âC±(C̉ g6ö^[©Ơ‚™äÇ*ỈgµRÆø ¨s^®U6±?ÂÚcƠ¥`úƠIđû^~ !ø€́†,Dúw3 e–éRNỚúƒ0ơbÇRËZ&çyœ”Cj澿Ÿ2ƒÎ’X™_áÆwŒpà”Tö.Ä"\åI|·q̣àUö(Œ:h— &hccåô±V¯ùeàcdBΖ¿itµ (× AoGBBÅGϨΫà§mˆØ^ˆ¨Ü™nˆ8Ÿâ«li½<¢hɱlÊJ‰æÜĐ~C麣äuµAiÙ(Ù²·Î–m½@·*é¼½ăr›ˆéËb°Đæ1rCg̣k›È]¯Ø{ÙTqUˆ¹©$H I4+…7̃U¨Æu)‘¸«Y†±sÔÙKGBAbÉÂXh̉‰hĐ 6Ûn8xÛæ,(BóH9sP©C rYt]0ÈMäf*á ‚/„Æ®0#L»èÁ»®„‡5)ü2äơ°2€Ç;´ï]¸á¬[V(Wc¹o{,X˜†ˆèèíë€"1]RđnwXoïpÎ̀Ó5j!ơmÚLÇ¡ûVº›1‹œŒK—*¬̃đùôѽöđ8́&â ¿ÄRéâ£Z?0µ Û?º á©B0–rQŒ*ƯJ¾/¿ν̉€Œ°¤k„ àhô%,wÏÿ9Y•æG÷24B`Í’ m…¨XJ9]T—ëms:5@*‡ÔФüw›Đ²45RÆ4”ĐxÅ÷5!›Ó•$<{.¿'Ê”m¤µ̀c ¦T¦¡íÛ˜"¯·ÊÆÖ÷ WkÄ3̉έ̣©?(Ÿùußéó¶ü'Ô’z4ä€À$°Ự¸üû×äi %p8Ê-¢b(E°”ô`ºûP– !'¯‚£̉‹Ï Q¢%©™ ;B*r°íNjƠÁi]̃¹R×'><AZ™¡gͽguƯ^éµS·º9ŒQÎÇ̃ônÎßb*₫pe/ï,\ÂƠ ¦©TGă¶›‚KX|đ‚’2F¯<=ëH·ç ßÙz¹úÎbØĐ©¶Jé³z¼­«¶ÙâVÖ¹hD¿ wz³Î{›¯ß†;͇zSöpà{/LØ}Æ1!3Rá2c‰i Tus³OÄ G`Àû<èíeÙ}S-¨¨)«½„Jt¸ªE& zœ‘Ö\Í›×o‹À]ÛÅúwÅäh%Ÿ8éáN…E±B ô3_bS•„ÓO+y¡@rû¦Üõ,Púû4¨Æ­ Áñ\@ósç~¨zy³ă›æÇ¯*ŒÅáw,7=êlmÿ̃̀fê`óÁ{3€…8µ½²ê-EĂHWáE®Đ)?/úe¨O¿_6Ö₫/Ơ SÖˆ\ é!÷qÚ!ư#ü½"øÑäex¹· ¤$¼¶›Êk;f»}HåÄ‚S¼́¤…œ9yqûä¿7ĂN endstream endobj 717 0 obj << /Length 2704 /Filter /FlateDecode >> stream xÚ­YKsÛȾûW°rØ«L,0ƒÁĂ7K~ÈÊzK%iוds€Hˆd ,²,ëϧŸxP bW|5zzfz¾î₫ºL–“`̣₫EpäÿÉơ‹_ß…n~dáäúv’…~„“8'׋ɿ¼ß說·ƯÂG^ÂGù0M#ïåtf’Ô;‡> cçÊÿ%<>)`¼Çé5|4ømßdö™r&ÿÿ \¯Ă,`’î_Ÿÿú.³ư öS“À₫i¨û₫æđ·ª6đ‰ 5¸îz³ÈkđU1uÆ«ö$MjÎûA–ªVØ’µÆûˆJßă)̣©I¼û Ïđ %ÚBÎñ{qÏøÇ4µ¼Âg\aÀOm2™Å~d+₫½™E¡ñSg'³ÄMį́Mg­¥#,p¡FŒVmÉOnp2ă3Lf°˜UUS“zŃϻ½n7đ̃¢¹]ÏÜỴœ¹Ă đăÖÚQ½ÁMíJ²ö̀¤îÙál¼¤[‡¢–?>Æ̃zËSnTh•A‘'̉Tg§…tçô®úƠt~ư•öBĐË›₫JùvÁƒ¨‚2ë\’#`CúIwhK‹ül1 ­ï¢ŒßåhÛy…n²o6'„˜9¯ó´"ßÁË‚e.p >]ËWä.µ^Äw_5L™°@t…kÈmG.ó₫Î.Á&λ!Ùg„ëü ;Ó¬Ô{Mr‘÷®›"p1AĐyç,‰"ï wpu¥Ă8ù †¯¯x¼“HP!½9ÁûN5ËÜâû=ë)j₫&ת^²èÇ3v2±IÿNøë½D‚9^J çû+­<@ƒĂĂTổPºé¡R8!uyÓC±¾âă, ¹ÜúHÀr>UÁt"ûĐË¡my—-Üëêwù¨ámUá›EÍ7m³ÄûĐZ<ùÂm#÷j³Øû…¬;íwBç¿kd.€qÄ9\èÛ4Ôă¼d8ÛX¢èx•„ÉcbĂcXo |‰k~Q,’Çr>Àä'ŒÉÎvq+É: º ‚À¬ù&ßÏ1®ÈÓ1˜à¼¹è¼«%¬’›̀8j”§j–V ['éC0_3 ¿U"Ù‘̃ªvº 3-ÎY ºå†>K#'‚T> ½Œ{¸Oç‡ 7¸Di_ÈZλ°^<;§}áÓ`k}#8mæ‡Á!ÂH/HàÑÑæt|/lè}â·6èbRèKaÚă0Ó}î„á¼ ơµÜ&‹»^¢ëÓ(…ă \Mq̉º!ơđ̃‘o<>à)%ER¶\ÏƠßK¾|.ñƯ…ÉŒF®G_" ̀¤Ú+v4I¼Ă As߆ÿ¢é2ÿØ2MĐ9™’ÀW¥(ơöËÔǺ1¤¡ÚJÚˆ,œ„Dv9yäç)ZESà̃J }çĂ×ô’àqĸ QÄD‰!ÄH̀ǯ;M»g)P˜ú°15îë©q¤ %¢¦C΂]ØŒˆ4₫p÷”¨F`ĐfÀRiÚ½8k³âïụ̀“†Đ˜Z6$‡KѡǘMøA}³Áü½Ûḳ]ÖưŸr)è»êÆ&c6‚ƒSB΂>ÉM'öq̀ñ{d$² ¯IŒ*¿‘—C̀à‡-k¬¹¿oé…¬zÁ’í.N8ÑWêṂøº'̉& ŸaÈ_RÊ€̀{Œ¥đÑ¥ÈO=èúyâ!ăĐÏ\‹ÄOzÄB …ơ Æù’Èçgø»˜A`qü –<‹ù¦T}様˜đÿÑ1G2×Ó$nÁ}»K@z`ƒ¹|óëR´>Đ–Ë–¿̣3%Ïëæ[â8†´`ˆA[o®qWŒŸ×(3×öëRñÑ›¡DË„ẵ‰›î½²ñ¸æ°Csj¬÷±9+!ÊË–Ú ‚|A[§ ùk<0-àxD˜¶âjùF^½V™Ö²°ƯW%+_‰µˆûê´+u1¬*Ô ́eLG¼,àă;­đhÁ¡Ă cb&ăɱZWZE…²*DÅ®”ZYÖṽåø1r;?‰ÉUkÿ|×rt®0HàUA‚­…•g@Á¥—ñi­%(EùvèvZ¨uØ”×±ÿÓuÛ¦_¨¹î„Á¥‚ºvÙë ab¾¦ nœ́'Iâư‰È+4O‚ä•Ö‹;^–¹2qí„ôOËñªY(e ¸M¯¸À¯ƠN¥7‚"|Jå®GNtƒí&Ü-¼ …(ó´,¡ä]4 Ën•[ºø.׌׭ø}·~Öñs5¾ÿñĂ9ß$YçÇéJ[x´(ûˆ̉?%ô󀉲ΩîÙ¹Ä3·íPÈ™—U=º+í©jlº¸¿.æMIW.¬j²Ân°‰C³¹åƒyµÜ*£X++…}C!wUđ¶v¦¡ZaLϵYt…A›ü!pLº¶ÂA`û1d£̣î½ú$‚àÛgJ[èöc¼„ L~êˆöÆîkyơ¾—jv³ßÔM´îVå'½)ß› ¬K}¶uƠh*@}à„̀KD~`'ề,ÔkÖm~ÀíÍa^Ö¬ĐÏ$©É†§måHơ™Tp·1Ä*O¦mÿđKí£Ø¨ß?°:é¦̃Û¯ê–s‰o eµ‚93“†¶X•£ƠEjưtа—µz•¨ˆÛº(_µ-_jùy.yŒ2ÉhcÊvOŸ)mW8f̉IÆÁ?Û8{Cño)²—$訽r]¿´—¹2âåaÁvdŒDơmà®e¹r§Bôßđ,¬>­6ød™ă¬¤ÇŒ’~^A…Ẹ̈†Üÿ¸/ilí­E9¥×ÿh·rÓ‘Ÿ 2? ĂïúucC>£8óm”pŸäIc)ŒÜcè÷4ó³øà¯ú,vCtí%——ç]¥ỹ¦RÓÁø·‚ów¯6=Z›Â°¥,.Ö¦×qQcOÁ́‚hô®oy’ f ÿ©ƒI¸æ_tă]c„ÉœÔDÏïzˆc9~ ÿÇ¥wf̀á¥ö1 ƯXøÆ%O/lEÔ‹ÎC- t«=·]{§u¿Ós]K{AçđoôŸ Å`H0S—a¶’<½g–ŒUu-p;™‚(URe>H³5ÄâxÖ5•b‰ñzM§œÊS¢…µ2A|¾Ï;ǸM‰ÑiÚÏoÖ=ê¬-;̃ÄrÆ·±9â—cƯȲkßơ†¶Â؈ëI|„T0 „È‘I:oœøa4‚…¹Tß %2ºN nÖ«Ă-çJjƯôh¼¡‚m¥ăq¨đ|¨ˆ»TÚcæ ÜIO™́ ,Îô€T„Ë_{?Đ/q­Z|̉Ô¬gYĐï±·©ôw˜Œñ<ç®Kg7¤P6F¸+?N ›ÍE¡·×/₫ N¿b endstream endobj 724 0 obj << /Length 2276 /Filter /FlateDecode >> stream xÚ­YKsÛF¾ûW°ö°JDæ‰|Ù’)v*̃rÙLR»›=@$±L*-ëÏo¿T6U{°gˆéyt÷×ƯߌỐn¦f?¾R̉¾Y¾ú₫Jû™Vi¡ =[̃BפAϲ<›-ofÿNnç:©÷ó…Ët̉Bÿ₫Uü󺫹ɓÏĐûû|‘Cw_Aÿw¥ƯÚ5üÛƯMN.AÆ¢́ªÁ?p¥j±' @ÛâèÎU° öæ “%u·nƒ² KÔ·¼KơuÎ;ăªåÜÙ’|ÇLçÿY₫ôưUa‡†°YHuÈÀNd‡ŸPøWÂåÖ÷©³E^h›zWđ”•lÜĐF0‡ơiA 뜬sĂưOơ܃-D—·>K>à̀§•hXoHè¿ñ‰\—é´ÈºŸÁÖ$ZÙß•W0É@«¡}mUölMFjwXˆ-èL?[•ZăxµOxX̣ 7EH>̀sæ[˜’ [$rN]+GôŒ.̣ÔXơüze+¨As¯Wso؆:#ï—_Éơ–LïÙ´×Ađ@uăd ¡ AcÔwOâlü₫{Íjö;~ºÂa^Üj[î€F“ûËƯLÉ–FEWơI Z—Ú"qŒ&›e„&ë n!”hîîCgDè¢Ä[™}.¿; f/Ѩ,UE-ÿaEÑê¹f«C»#¼N£ 7x=êN¹Ï½qäsÑ·kW ́2•ÏR_¸1FÇ@h8qDXK™~ K¦©辕ö ‡‡@7ÁĐ'Ëhhµ–ùHóc<Љɵû-¡ ÷Ñ>¹ L̃‘Êu\8•'K)E(DÑ/Êß̣§>Ч˜-ñ€¤ữaiY€'ÁîMĂ«ti¼•CĂ×Ưa©–}ÁjDÚñ2ư×:~´² ë7“tĐWºËùKœ"ÙÈEªU{ú|n|2…v\‰ ~%»4çRuÏxx¹(y—*wT”|ôL¬IÁ„epÅ÷–¬PC÷–»%7+Z“ ´‰É¨Ắ³-#QY=MJ²T{Ưeœ¼!U#ß§Æ™1̃ ¬IfáñF˨›p§ ièK¯x3‡ Ă8ÿlüIwº<Íœ{“"²Fơ¯;ôå˜÷̉vîÔùÀÎÀ2KlÑ!OóH<é¡̣Y¦«rû8Ír̉*¿Ñ9¦>¤Ư`BTÿ=™3Å„©ŒKs˜Ê„× oÁ<ÖÛSæ19ähḉùá1̣É–˜ku†~Ë“ŸQ{¨-±ù û81“÷壹K™ó£1×½uÅç´-¶µQ¿«yB‹êư€ÆºÂñyñ7ëUဠv qm%PTɆ‚ZÄw=Ë:Î/@Vs?¨„ybzg܃5V!î¡ë _Đ2‘qµŒZLrqódyW3P0!ĐM§iÎ&„äۻ͜cê¯Ôµe¬Ox¸+²CtÙre36ë]d}&÷HŒ ưu«æµhj„-¿á¼ễ÷•}½·¡Ôø×XFŒT=˜üŒå…ˆ„µ‘q́ºÄ&¦%™Vê+ëos-ˆÉ3„¶³çªh—¡Çn»;!iåPËjÓ…1Ksgÿj¢¤Z÷‘Á&Ó|™B–W§âÛqLôÊkgü³ƒ"x ÀÇ̣Â₫)pñ’ü.“ -^¼/Á•¨j<éjúÓóªí%_QŸb,4SZŸúñe’îå  pBỤ¦Ï¨oˆ[u®&ω6ç;á‚ç”ôfû>ë¿g߀ˆƯ•»—")@aBZKf´|º_©´Çk÷*à ߺªâ ¨ú‹gÖS|ü bø–̣TGÊp:ăË.µ‹É–êëjÏcô*…6ÙÊûÅî= Ä­"đh‡O¬ë“²~ÛgßĂX̣l—™y‰4§0”ÙTeîD8E>Ù̉¡>ÓSËt²"s0ZŒo»× £Ÿ­ '=í,xØŒ=ư/ö`ålpwÆ·y\@Nx™F~·ÄÓS̀Ï•|gHÈ¥R%ÿDüÔư«J‹ä»XwY€]~^÷ßë7üH©A¶ö*${.Ç„Lp1!7@3æ€ØAÿ̀3ij†|dé)¥Oo5ˆrœ=½ƒµú`|$‘«‡I‹àG Ăp^ưÉG¹¹yQI_¤Ỹ­˜MûAÉ \÷Ø4³̣VùvuÀÂf¡3|&1BÖœM¡’øü¸̣sKư²î %₫®JNPük˜çèCDöG×;ÜôùÀ[ßAYfE›Sæzh…ªó;â·.på|dø`ÓÔ=~€‚HÛWâøuïó›ÁË*½†LE¾KCÿ‡È?¤ÂÃÏÚÚÓ‘ïqºq©œ|ç-ƠJgä²iü|̉›~èƯ@,Æ Ú(^dˆ¢ú†_q—Cp£ÛGÉñ½É&̉GÅ! ‹UÉe³wÇÖ]•QpĂïX¨çâ$Qễ™¿±Ÿ7=µåtyZ¨¹[bc“®tO8øÇyAÇç¯7̣€C̀·x{=\qƒ¼_ó‹×`‹F^—zh0Ö̉&€=ÁƒÍ”A>Ûo÷Đ¥‰ËĂ–¡j•p+«ÊĂÖ-¬?•s¥^é?Í9sN°’Öî§đî(5 ¤&#+¤¹ïJêù’̣ _Ẓwÿ¸Êß ̃Ç™ñ©JHl Ñ];ư˜§ÆD¦U‡÷y 5Y»;[@–6ă‡o$"½I]._ư{ïr endstream endobj 835 0 obj << /Length 1114 /Filter /FlateDecode >> stream xÚÅYËrÚ0Ưç+¼43ű$ÛÀ²d´]u:Ùµ]8X1LŒM-h“|}u¯% „X’íLÁ sßOB/÷Bïæ"B™|Â)/b€f­"ñi?ü; !=#2Ù7q4ŒÙ°‡l!Ǜ`öH7Wb¯D<Çñ‰ÿtrÎøOÈGOàÂÉ|ÂƠÀ"£TE5KÿZ€=€WC)„FV­ÍRFS#…]­ÖÙăXSa †–đq'Okˆ‘z…â¬Ávđ‹4Óv)]Ơưtñ&x¡>•\K¼+=ÔXZvCOÁwJÉ8ªX(k§[ETèĂB ăẤQqØW;ñRå̉‡QœøéfcQ¨LŒÚä:±À¾„a¥H¿́ôñ)îVkqkj#0-´ÙesbÎ×¢bĂĂ7åƠÖ€f£}­©É”S×¼L¨7v²H C±ñÂŚ½Dâ²k%t¦³ “½¡?fƒ¡wª YœEN9ÓÚW©LgÑ$+YUŸäa₫4FÆâÔ^­Z,”g¬îdFH|>păDÂa£̣<Ósy–aF‡ê7 /-!mẪÿß,ˆ•>ͱ‰[ ̀Hu ]Ö_ë„E.¨#•YêÔ úôƯ£d©‡Q@ÈÜn½nbP†_#̉Œ[ŒÁ̀(̀S‰zÖ} o: Í¾YiO'\wn6Ù·Í5ùFáØ3_§Tw¬®‹T…ơï¬F9b*¹}· ÑqÉÁ:óỪ¹̉ç̀% KBrƯƠœa¥Ăîrăp7¨C`)ÁFBđî̃ŸĂ¾Â™6Đ4ràûÊgÊZs½q@aÎÑà\…Ú»*d1ØOvåÈÔ÷¨³í¾ÍªÊ~ƒ`ƒ…bW͘½Ö èFÇîwĐ¯,=Ă,Bă#Fh‘êrûh¦?tW‚,̀m ³đ½‚Ă i‰}̉¾ úí°â Öz`©­V̀Ÿ8ÁÛ́&FÛB_Uˆ¾C‘jĐ[ƒĂz¿…¼Wg©àÅRï?ŸƯ½ë8!æ©Ú¾‰ ÇœÂ÷ñ ¦-dMgßñ´™†Oü†cœ÷v¾œăÆ•oơ´ªov¸íƒ7¸‘3×ÇZ÷¦ûQo­N˜ƒ¶€µ¶Y,¾ñ—jÚ› /®¼ÊƒPï¥Eâj]Z¢Ăá2´ŒV嵸*zAÜ| ±Ö}ñ TÿS” V‰?ă¼#Î ©=à˜„AÄòâ ™MØø¥_|º½øØL endstream endobj 700 0 obj << /Type /ObjStm /N 100 /First 875 /Length 2013 /Filter /FlateDecode >> stream xÚ½ZK·¾Ï¯à1¹pXU,V øM$€!éd¡ƒ"/#Æ®¡àüû|Ơ[Úµ7³3´3™ƒÄîêëMö)¥•1{é½hÅwZHă(dZF…ib´ÂCđÜ4-́½HÇsoE¦́Æổ%~¥{ Î¢ÜËP-:€ØDÅZ`3Æ^̀‰.ñ\‹c>Ăû“æ®û,ó±K¡†‡Ô´áÂq̉Öf!/F PL@̀&Æ…A˜đºPÖ#ê;Ă ơ`¡x̉{ ă­˜ÏOT ˜b(d?…*´C-Ö[QĂĂâ¹c g/lvăøLÙăb`vn…[‹Ùă¢™ ÿ9tB¸`\àU††˜Y` ¨…GĐÀÏB´3i®ôVû\S/ºÑ ø’l‡ÙtM½LTÍÖø’amM/5XíÓ¨a^ȲO¢†e=j~.{*É> dŸ+5‡DŸ+5‡d¥U¤¸5ÙçJÍY4₫uº¯Év¤c̉5Y4J6×8<a‡dEØiÅ/±Eëw€ö¿x³‹>ơfl)~•7½½Ôơ¶s .±q»-GÏñ~Q–+ˆ=ÛưÈ9J=ÇÄë‰×¯'^Oôbễ¿s«Ú´ÚÎé•Z}Æ÷%$…觼ƙ¶U¾T~@ˆ®É*¾d#P½½µ#¡ÉṽtM¦`ñđ(«oœZ•_(G oÇ‘¢‘¥£—,- 5'Jö3o·,N„¶>Fâ€`híX?gçÍ“Q°8a×! $ü¼Ö€W”¬ç!„­H‚±ë‘fêœ@t‘BHI¡â[áx®óRÁ {$ù‚çiÂç´Æ¨ñ7&åÊ¢§›5NQ„P9èB@\v¤0lû8sÂYƠ;F§è¥`?j™áÇH<´1ÿ¬×•q endstream endobj 945 0 obj << /Length 1271 /Filter /FlateDecode >> stream xÚµYË’â6Ư÷Wxiª‚bIøµœéJ&JƠTY‘,Ôà̉~fº“Ÿ]=Ü6Đ–„= ÆöÑ}éèè:đ¶^à}º Ô÷ÇåƯ?ăĐĂJƒ{Ë'/Å( °%‘·Üx+ÿ—*Ÿaÿ¿=?”ü³Íj~üaö÷̣·;̀1¯̃ẓÇç;o5§”ø‹T\×£đĂœ”XB₫zo ~Ô‡XÇL.ÆÄ…‹T ö¯Á“ÿ4G³‘#⟠üͶ!Vđă«ø¡„z“ñĂ‹9R—3û`%˜VÍæülƯù₫̃W%ÿ“ȸNˆÏ^ÁOxxLcÿå}đ\Í*¸đ*q¾ị̂ÑÄmvz4EIØ7.æ’GNćŸ ¥üY^«¤W¬Fqr̀ƒº§wKŒë;Ür2ÇA‚`"\Äó_0́„ût8„Đ¡„ n¥¹2È`­µĂ“\G_É©xüí’Âïd]5ƒŸa G j¿̀ÂÈg¬4ÀÑx0A¹*øG1±e•'ÔäobÄ,Æ›U—_á xù¾²agÇÄ‘Ạ́¹bźnđïO`ƒà/¨Ñz̉`"^ ^Ág$¶¡ö×kcÅÜ®¥ÑŸ-nxƠ*DñóïÙmËi¨^Ôœ( t'ñCp+̉{}¶“kÎÛÊ3ά]k[M\ï‹Àớúụé¤IuÁ ‹9  åÜ[ E₫ˆ_ĂØÍ^xbùèdí•É6J%­mH.ë̀úP«•‹•Û̀,“†¹@ ~¤p¼I¼ơ°êÑk”Đ0øe v‚æZë!%Øö£”pø|®Ä—™béǗ}¸:ªƠ¿BK²Gåc.Uç#¾l/F&åÂ’ƒ:É$ÿ ¶ÚF̀$¡eƯ×úîÂOLËơªnœ7Pg`^X°ç•Ôt «Ym§–¬ưhœ{§'^¸ hAe ¤å¨Wy@i»̣<&—±ă9ÀämÛƒĐâ?ÀµÊ®!4dXXºá0nÓ Xl_‹ØXêc!q E(4B3q¦\›±cy'våªïV₫ÿï>àăØÉú¨A®–Ơz”¢Qùk6%HÆ\7ÄÆđ…1"y¥»0í†v¬&èĂJçD7̀fû[DªÊU%á ¹m«L\ÛĂJªkL̀¬nëê6Ünđj-3×{@ ÔĐaÄ7 ×évÓŒ¬øó&Ù¤LF⑸ń]¸́ù XâÁÅïAæú]'‘!Mh•hơy|…OÉYëư`é›Çm©oví¶pÜâÓŸo³·báÓ^¨¹|£Ø hk&ñÉ8|Ơ< Si9·ïÍĂË£nÁ5Ó$ g&‰̀Ÿ1ª…ˆ¢Ó°{×\¶]Ä2ó¬Ơ¡Đ^›Ê¦•0¨`€“Ơjk´µ¥P‘_R¶¥L3ùÚ=€çchq°fmG¥D ºªÇÉåwÁơ¦¤̀´wè»'öu¬¼ùƠQØÁ×´œYt1 2m]‰÷D¥b¢gÑœ?,(Ø›’¡,1À®¦h_’ ñ·YÖ-đQ‡ñö]^ØǺ¼°y±˜Çñ´oT¥ µ̀$˜ÔajáB‰Ăè2M6ï/¾‹öUÂéƠ>‰7§¢áß ©R\a??-ï¾xæ} endstream endobj 838 0 obj << /Type /ObjStm /N 100 /First 918 /Length 2880 /Filter /FlateDecode >> stream xÚ½[M‹]¹Ư¿_¡e²ÑS•ªJ%0ó“@f́Å$Æ‹ÉL† îÁcĂäßçœûÔƯxá÷zq¹Đ ÛƯzç•Jơ¡ª7F+­Œ!EºbÔ¢a{és`´âÿ÷ÁÿGÓ1251f‘œ0‹ÈÔÓÈF$LI@cNjO|0{‘!V$ ¯I/2'GQiœ<ª ²hœ3‹z‹Ó˜ Ü:æL):À{L° ´&è¶œi¥K\HvQºqiXNw®mféÁÅáß={;ekX-–—M5|4jª‡^¬cÙ¬˜K6/ÊÉQl¸áaKO,À›pÎ,.diÅH‘â&˜,ZÜ È„Öø«#Å‹ÏK”hØ’”QBA!%KôÎÏă”Ú°# *%˜àÔ^bb©X­`›’û¡@,it)ëwå@x˜ÜE=e§øđ‰́”Q€OïM/Ó¸Zl,¤V x w)Sœs”Á‡‰y`—†9î †íœ‘vJĂ®; XÓđ JkĐ¢Äỏ x ƒ„́{>^[RA¦PA ¡L»¢‘{ZJï°Ê¯¨îêë÷<=ª̉‘C ·pæ)¸₫lƠ®8¬])@äÛI„)À(µ·‹$f“+'rO# 7µ&5g¸̀ÍcôÚ]!Ñlüv˜WFï=á3á¾ÂGEè{å8́hœ™WGàADg:?èKåJđ ;:n„Ü•YF4(%t¢ÉLåƠ®êİ °IÛc‰Ae4hÊ5Ø3€éXëö„Z"í# q̀VxDÚ‹ĐÊlÅa óÓѪ"̣1Ùâ­Ö‰´è‘CHIorØ3ëS«?R°æPE}…=÷ûoÈ&ÉVG–ÙsÂ<‘Œx³c¼6̣ØÚà±HNÄ”|‰7ĂD*’½Gjđú ;î†éÄvĂ`¥=c7tÏƯ€i ]rCHcÉƯ±IR Ó̉Kf·8Ÿ O¥±ÏÉíg÷8ƒ ^€q”^s p°ÊK#G&ê×HèÎ.¼¯£.‘í&z¨ë• G÷ô[X¯Áglo´:9ï?,Øú1öº#€ïO æ{ŒÛÆî{Ö€ë|ä7æ&·9́Û÷Ø[^\"±AxI?0SFfqŒ éÍ Èª$’­à„8{^¹ñ=­âh˜ÅbÈ6i`7ó 4ÄàÈí˜KS°I¦0Œ2 íEĂ5Ä:¯$›¾¯yˆœOlóÖô&‡=Åo%<Œm")TÑ6H©Ơq-ç̃ơ\@öĂä‘C̣>NŸÁ!÷µQ3¡đñ}«Ü™†{%¿ØS8ˆÚ˜æÁq!óf|¥@t.ÖH1̃‰¨J .¼  oˆơ…̀j6™ î> ëHƯ¹®¦w`–Û‘ÿwÖ1‘zS+zmí(F§‰°¡²₫·Å3ŒcúD̀o‡ÜÄtC(Ị̈œÀ)Äá“w0…1Å<ª|A]¶ceÙ’$”cS8¬~ŒĂ²̀ZÇ€Ăblß.ơ ̃ɘs8§ ¿HV_á-àÁ/#'çm₫A» ÁĐ^aCX-o,.!ïèy…€Q–¢œ J‚‡Ă %3íw ÷‚7RÉ¢9<ºå²à.Y¦4 Ø ‡‰ ‚ »~Ôñ„™f+³Å@+|1ÆQ$_A YÆ€vÆvÚx‹#̉ÇA·s¬ñ²§ÂéDssä­ H5,ö £cÙxam&|n×”N”¥Îѯœ ưl7¾+o³¿/ç₫ù¯Ó˦Œ¸”ï?ưúë»/ΕmnÀ2úđÏç¾¼ÿq{ÿKÊiäåS/à*Ă_0ñüêĂưO¯ï°r~ơƯËr~s÷ÇÇ̣îs½éÓù[àƯ½ÿø{a>N1ü~ÿéĂOwüS¿üéw?ỵ̈ă7÷”Mp!lBa(óêÇø,u™·Éüw¼•mä®˨k¼pdKÅe\ÿ·ơÿË·vËèkŒ55æ/<_x¾đ|áùÂó…ç Ï/<_x±đbáÅ‹… /^,¼Xx±đbá…7̃Xxcá…7̃Xxcá­ÎµÇ™ /^.¼\x¹đráåÂË…— /̃\xsáÍ…7̃\xsáÍ…7̃\xó‚7[[£¬Qר×hkô5ÆÇs O,$æA—‰< ́j5˜c_W÷Ê₫a¤ê¬QÓÇÓ&̣ơ1X›½¢{ eúÄ!ؽ·9è‚`1NÛp8Yÿ¤íŒ?YºZÿÚ•%¡¬oÀ2l$Xs±y½₫µ+ Ê/Q°G€0ª¿ÀZÔƠØ®]À́&b¬ Ë ¼2@0[Œü( 8b±µ•uc[=äÀop̀ 9(ªE¹}#d\¼º Yw°qP8%È$ØÙR¼bKx¡µJU’åÀ+̀Ù·đ̃̀¶»î>ú1f ï^à=p`¦ÁjÜMmßø>b>‘€tĂn’س8W¯ă öüơḉÆ]á[£Ṽé±ùM-Öëµ°1ƠÚ́—Ẩg³M¾mư°l"Ñá}Y¡WX„6.wƯ¼Èd•TØ GµóûYt̉YË˃͠qPÖ9¡Œ^t̀í’Ÿ!?̀8±tĂ½T8t•ÉïdUöç³&4úêÄæ¥¡Äö%4ˆÅ(–àw{Ơúùf™ëÀ endstream endobj 1065 0 obj << /Length 1188 /Filter /FlateDecode >> stream xÚ½YKÛ6¾ûWè(±*zù/̣hAáœ6=ж,»‘,W’›uúçË‘Z{‘IQéae ~œ÷|3öÜñ3_|®Ö³_̃“È!¾·ô—ÄYïBˆ—±§±³̃9î¶jæÄ=̣¿SUóç›ùŸëßf„Ÿ÷:wº—?>̀œÇ¥¦øy,ơ¢p)Đ.b€-4xËA¼GÈN¶ó u¯üeu§á04uI¨†n¶ü j7óE»™BÜø̣Q¥ñ ¼bßhHæç¡*lj(ËOW–¥‡öAÁŸ ¢){̉§d{ßP³y¸ß<₫ –¯j•™CHÔL|Ö̀úṚG đ˜#̀ă$qw™Ú~„…_¶¥¢U#ÑAI³³@l¾øĂÛË¡gU£â¿©|ˆXžÛy?g2«ÆfªpUàñ¬•̀t”;Y=ùEHÙÂ%́d•tLüu~„WKJU’¢cØnBlÔÇb´ £@P7?@HN3<¤ËÁ„;ë†"a?V îw, qV[KúëĂĂÄ,Uá@Œ,PB·iÇö¬è54;‹¿üt²ôHJœ($̃2NŸoư[® ¢•¢:´ ư^£„ÇÓ’Ÿ₫₫›™Úîÿ<ó¢@njÉAt– j̀̉ªƒØ¥`j†æÜƒÖÂÊtjI”¼ăwé¬É‘?8ck†@¨í.(ÙW`ªØûû·«F™U,̉@ÿ·Ÿ4Bd°†”iÈü™]ü–Y_|0…&Đx¥GLP#ư.|(ê¤b;UB„¿•Ă-;åÙXÚƯ~“QƠZ5uĪmg·²=Én5뻋P ‡JđÁAøx|»~¿½æŸ¹¨5…p|_0´6â₫âf¯Ë“øÓm%ɯ[Í*L|ÚÆ­₫*ÉÿÑ2:•Z.ÊƠ‚A‰¡¯xÈßÿÖÖè¬t©¤jĐZXàl5àü|¬u¦e2Ưcu£9Ä]VhlÔ~öO&‰a ¾ôëˆ5￯pI¢¶d-—\¬/víúŒ?bm™Ũw 3”öSlÁ$E%'À[6¶{ÔN7:uˆx¢a¨ª¸vÛŸÔ=TưBdâØ¦¡¶$\ue ̀½ §óí-¨$:OëízÍjyơœzïë<9éË༳ä³qp/ ûâ ơxÛZó|LøóAc.v ½Êuç*#S(äî „ØưJüÀ ¿¿gú BgA‰G#q[t_ ß­gÿS¥<Å endstream endobj 947 0 obj << /Type /ObjStm /N 100 /First 919 /Length 2816 /Filter /FlateDecode >> stream xÚ½[M«d·Ư÷¯Đ2Ù¨U¥ª’ƒÁLH`°½H2̀±ÁÄ̀3ă18ÿ>çÜ–ºăÅt¿ÅåÛW¯ßí££R}K¯7M%ơV“èÀÓ’†àé©g$×À³¥đgOmđ÷# Åï{IRÜ1$̉ăÔ»&©¨HsÅÀ’xç;¤ Pz$éi{K2:ßéIE ƒ‘T ƒQ’VLß1z§>Ü /ƒ˜60́lGá; [*&‘*æÀ ¥0è©Z%àHƠ#̉(%ƠÀO£Hª½ÊiÅj£â“¬uK¦Ê—=YÅÊ9H̉’… =Ys¾<’q)CJ̣‚‘äâ@…ü ‰!5¹aÿ¹_öäù Œ»đ–|&D”Fœ‘0æ̉’¢B,f= ƠR܆h€j)z zjkX@“ê´Ô4¨Ø?+|g¤æ“Ö’ZP,URk£ŸFÚ1~øu/I)>|B¯ÀB7w§X*µC Ƚw¼l…̉‡œ·%©†q‘˜K6T%3ƒ̃”ªAq9bJEPm¨NEëο1 TÊ%øßÅç"jqØêÍ€VâwØ­2"^è" *?À]„»;shư˜C©=& Z¡#0‡–Kươ§̣¢R ̀í+®Jùÿ˜£ê.U!Θ£V¼=°?R Ú90Ô€øG£É4êͰB­O¯^Îß₫÷ç§t₫üưûç§ó7¿₫ëăöó_|ÿŸÓù‹ç?<}x[`»åƯùÏ翜¿|+Û§ó×OßLoÅj¦êh¨^2 –”GÇKŸ§W¯̉ù›t₫Óó·ÏéüUúĂÏßưû)ÇÓgŸđï>„¡ê¹qÓ9ü7̉º€ßF@ü4 Û“L¢ÁYF¥ Ͱkå*w„ï)¤qv£shưöÔÉÎR¢%c ‡¯ª%8!¢ZSïUälƠưö1½ûưªß€Ééü%Ÿ̃ü…·©œßçâ~y₫ơĂ÷OÛgợÙß~øñ»/K›ñúÄë¯O¼>ñúÄë¯O¼>ñúÄoL¼1ñÆÄoL¼1ñÆÄo\đ¤”²²ºu l | b Úô5XȲe!ËB–…, Y²,dYȲe!ëBÖ…¬ Y².d]Ⱥu!ëBÖ…\r]Èu!×…\r]Èu!×…\r]ȶm!ÛB¶…l Ù²-d[ȶm!ûBö…́ Ù²/d_Ⱦ}!ûBö…<ëƯN7—ØÂç]ày[FPF»\ª¥¹Âû)°¥à) 6I¾œW%:Ẹ̈ƒzD\8où†;̉:̃«C9&¼’‹Œë^jµgW09o*#Œf†qpB Nà¦ÇÜdă©3—=t62í!){^¯ốpá‹{VÛmơûvƠȸœ®„öĐD&yÛnC¾}̀]:ÙÎûn xÜùˆÁ®Wm5G¿QP6³ÇC{ªoÔ*ç•‚Ö,n9Ⱦ6é¼›/¼ŸÁ\›½Ó NÁœđ˜º7j ̉‘+ ØÓ‘Ç$ö´ øå€E Ê?ư`n R5kÓcZ±§Aë¯ƠĐäcä¦ƯI`phÈO¼¡t“ Á; €vL×’É›t—àL]½ñđÍñR†Z)—óÂ3̉Z–[™—;Oßü¸Đí¨¼ÖÜ‘œQ/yKÅh¸Çœ:2@ …ºQ€vz¯9́= W(Â"¡(ÄyÁó1‰=7£5àñnLÙ₫PCPBóog¼̣đ ¸!È^ªÏEBKËơ$lÏà¥́ƯH¨g₫Úc;nÛ¶½ß¶ƒ­äö‚ƯĐ]:½8è#O4„§ Èó]IûQzé[+Ç`$}ܺ—(¦½ï¼E®5¢1hùÅQûïîè½ÓWÛY¼€8zI+̣{ămĂ»ôkĐølÎ endstream endobj 1189 0 obj << /Length 1199 /Filter /FlateDecode >> stream xÚÅZKÛ6¾ûWè(µ*êícvѦ P œÓ¦­MËÆJ–*ÉÉ&ưóÑŒH¯íx5¤)§Y‚?Î{†ëZ™åZo'®ø½[L~ÿ“…s¹;gÖbm19Q2·¢$²+ëÁ~œ2û³Ë‚ߦÿ,̃OX·Îµềê_>¾X3ß÷l/¿Kän!± ˜Ÿ.p­ó0˜¿l»uº¼¤u÷h@]^¨µÀÿ鈗7ƯƒÛ-ĐλÊ|MÚ~@²ÈËé̀‹íåÔḰ§îÛBé®{¬Ê‚¢Ôi&¹¸Cø²Á[‰àÚŒíÔ¯·ƒÏ}÷VđîQƒ—ú<ß`~™®¤Zv€.ëëDA‚çâkÇå霛î‡C ̉Ö-â·™7´‚Cw˜o ÚåÀ X>MĂÈN« ¸ ¢¬fƯÛ{ ̀7†&‰Àè/8₫¬à/±nèS9ÜaFeK ÅƒE,)¬ ‰‰n0̣N"wGy6 aă64ZiÓ*‹*e#¡ ơ½in ̀¼î•Ô)T¾’.×ỗÜ%oƯËƯ·iÁtØ;ºY n;·‹l>r^fî¸ît™ô]÷®"Ưô|óÓ2FvưÿÆ/ P§̀¿*'¾WÂrx&¹NÍ>@ï!‡Ñ3Æ”²â´øˆ„W"T`1 •ôƠ~€”QµÏ‚7«Ï£½àJ̃}/å?ºÇ˜ƒn%ÜëÏ Fœ>^'Øđ">†:̀P W° -¥Ưc ;ä*Ø^ ƒ­AÚvº5YbúÚ̃ %c¢s(ă3́Ñ “Z¯Gé=ËrçP”;³J¾Ç. ˜ØçGM‚^ĹZIwÀvÍJ¡oỊ̣́%&^Ệ̀¬ĐIœ5‘ÂJôi+X¶‡hPÈJµV́éNÑÏ-Í–XaÀœy”\̃S¥ĂSđ#DÈû¹6ùsT‘}›œ̉|7ÓY–J_0ơ¯Œăd†·²L…&¿ḯé¶Ùd{Á²-pL`ä*ư¼»îƯ Kàn08ç8ÛÀ´¸Í›+DÙ ³ë´5Ưj¬øưW ÇưÎ „ymLôƯưưÈ5!!n´8˜œJ¯iÂ#ñcüeç ¿hŒzo¬$͵BŒ4gĐ}Üÿ¨„tö‹;@œ[ơíZ÷@;¾W”èÖƯ±.¿¥XFG₫I¯Â®Ç××m ́¨HŸ ÔâưỖ`\¡¸ˆÿ͇i⛹eơÖ®†ƒ\\÷₫ŒÆ:²Ú³$¦»À×:Ÿ#åÖG°´PH™î ¥lE¹ÊW"́,U<˜`àodw–î2NóŒiDĂ™ö Vm[F³™h!o­m(a#t|} _ƒÏEPÿ2¡&—W|ø–ơ(¶ÏFÀtc1,/¨IÖéR¼uC‹n°DçÈÆN‘öSÊZE£©}Ă-½`øö¢:VoeÔ`_¶­E Ü·i V+Œ\n= 5ơ|.¶+æ€ÿ½ºÀf1©”´n/ú["²a…wËÔÈO{êV²†—½₫ç,~åMu«›8đ³Àu|/°f>süPl’₫c1ùBƒz, endstream endobj 1067 0 obj << /Type /ObjStm /N 100 /First 988 /Length 2762 /Filter /FlateDecode >> stream xÚ½[M·¼ï¯à1¹đ±ÙÍ& ü'@°uH"èàØ‹Àˆ¡5dp₫}ª¸ÛïÅí́@̉RûfjjÈ₫¨fóÍn©¤Ù[­øé©ºágO:;~ÔêÀÏ™ÜqƯ(©O\7$ÍëFMRc Id̀»9ŒH¼Ö¤ €á¯tÚI†M f’…5Kª"¸kJªƠpRŸSSmRîæ4rSü¦¥ÚÁtN°8 ªÅxûH*x¥9gR-x`)%©éàH’¶^8ªI{!÷¢I‡êF†WÆ»cÔ’`cäÉjơdêÂÑHfs]7“yåHJ²̃x‡H²Á÷+x›V*ïMMábœN²’–UrO­5r‘sÚ &© Y×ÍÔfău¸Ø §™ ^…×a]O«Ü†à ä.Ä«-y·u‡'}ư®§ÎÄh¤.Êgà{u¢(–× Ÿ¦’zS̃º¯yQM½OÇ3Ôhœmi_×y2‰ Đ¡uá4¬­ëfmr6¬$P!+“4FăXº±¬¢p}¥̣= «XŸKsĐ5k†Eo²®ƒ=ù£y®y¡EÍ5/ë^ƒáZNk’uMM[×[ĂsÖ#Z_×̣̃^æ£MK&ë3ü3ûº )üŒo%uÙC0“¼Öñ‘´Bt§G4.đÍÄ ­Œ&TéB²f­â9ÄºĐ‹We–ÅC]SEpµG~¸MÛ´/+"=ëe—/Ă!ï^½º»¼ùïÏ÷ẹ́ùû÷ï.ß₫ú¯ëÿưñưî._<|øá₫ĂÛ‚P̃]₫|ùËåË·²₫swùæ₫ûé­TÏ‚w²Vs#¸jv˜³¹åª‚ë>O¯^¥Ë·ẹ́§‡7ẹ́UúĂÏßưû>ûÓgŸƯáÏ:rÅ;]9XˆȡoäĐJVD¶+×\ᩇl' ïñÍtf0é-ÜÙÀÍG=gºfXU<.4<;|Ä´gưOSheçZXV†Y‘<´Å%w¸UÍmè96‰uWx.Ü,+H8¦IÉÏLÄεđlj7Cór̀Á÷®Å„/Â7̣`V‰ºi¶ÑṆ‹^ù°‰Ñ2ÓÅ1‰±7Ju$H¤\™`¡'qÀÂ[¹‘°‚Å@­qLb£ỏ ©Ó)d¡ëº'Ạ̊F=ERª!UuLd¬OˆØO}NÜëVs˜¬o“SÇkO–yÜ…™Ôçöbvƒ¬g˜Fæ†å!‡ºs"à„"pNˆé†8Iå~± ̉f¯'‘àL¨¤6³Lgu05¦5PôH Á­yf 0 œO“6á¬ükjTÓ¬³œ>2Aª¢́8Gá³ĐŸ/1­Ó×îĂ@ØjÈ%7'…)¬‚ ´iÓF°OèÜfƯ~ƒbå«È̀Q؇9ä°±đ4̃Ñ1H˜8̀̉_@B6’¨²R÷•„“Ç1ƯÈar²Ï…ʦBN̉Ç`K!/z?g5ÖN\ V6-ƒg”°ö{FËèV»́eM2”6Â%b6à†¨9ú9[SŒK£H2äQG˜‚ºª˜ ‚çPhÜe÷ñ’ÍXf﹟¤k!ă›£Ÿ³b5ç%¸?·e¼5aÀ Uúµ¡³„­ÛqCgăD˜8™^;:́ä°¯uÔĐñ½éÂf»ös˜.&5Ơ‰ư…!6¯½rR6ÿ *ï1O‡‘§êZiÇúæ ƒóđÔJY%FñăVîƠ÷ÍÇÊîDrÙ)kû’µAⱩ¦/ QwÎDË<%=%&P9́)Ơ­EgY2zJÊ0M‚iä¹-ü­’²1WÍkSI¡©9! ăzR´¦̣ưŸºJT”ƒnzÔUÚ©£ tTpX!Óơ˜ĂÎŒAËÖwp¨(øz=µ»f«‹f7Æf«sØéfNóÖfDÜ|”t‡$6Z¥yÍîr#Ñ^b̉÷Æ)„‡k³SÇ@¼ÇÍν!BQñƠèv2l­ˆ!Øv’ª́|t4;¹‡ ]ÍÎ2Oê笜ÑơF‚9ƒè#;;®Ü†HÙÑqU({EܪÜ$r̉₫c%®: p'GCíœăR|&BFĂ•9„‡ Wß«d ±18PÉp?àƒn.u¸?M_–½Ü#;lún%ÑÇ SÑôåêPÙ6}ÛΉ˜¹ºß8@OvyAăy«Èç₫đµí̀ é/h;op•Ç Z¾\ á‰Ù£–ïVI·Td¿ö[u@ä‹­~«Ïq’AØÚ¼r`³“G~8́”t¿ßz¾&Ü·́Ç=߉ëJâ±é{åpÔôư=‡¯̉[)ί4|“.ÿÇ?Ó,k³ j‘™ô₫ן~zưđ₫ăưG@ú\wá³Ëëß{Rẹ́ú«¯ÓåÍưoӻ߿çk<üị̂% îßüe}ù÷óu~yøơĂ÷÷ëwưñw»ÿáÇï¾xø-­àéü¾:v¯¿û€»Éîñº5y¿à¹ë 8é¬câOƒƒù4è%qq‹!ƒAA ÷@<ỵäÈ#G @<ỵ äÈ3g Ï@<ỵ|B–Rb 1¨1ĐX Z <=#,,,,,,,,,,\¹r äÈ5k ×@®\¹²²²²²²²²²²²²²²²²²²²²r äÈ-[ ·@nܹr äÈÈáVnŬó4dddäđA ”đA ”đA ”đA ”đA ”đÁˆC0–@”đA ”đAỵÁwûéYóëñFaJ'AÆ|fçÉ÷™,ÿwGØÜäwŸHl=†ª¾Éí̀:Î K9ó¿]àü Wp<ö‚S8uç× ·7®xv”!ü˜ĂÖ¯]Ȫ§â/̣‹oG‡pDw.ÆX§‰¯¦ä>_@bg)³4#‚=Z'i”'víívˆÇËùe¾Ă£@›§ßoˆc8µàư‘ôáÜ âĐY:” endstream endobj 1191 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2387 /Filter /FlateDecode >> stream xÚ½[M‹%¹¼÷¯ĐѾè)?%Á°°¶Á6øäƯÛàƒ?†e1̀,Ëøàïu¿z§yƠ`Q0ôTwë•B™©̀H…ZZÏ̉´̃‹˜ñaÍäĂ,6'F+aÂ)™Î-}r̀°2uás "2íOaº†áåkÜ(sĂ·]9ăÄü#ø₫brp›ZT”À¦ƠXă¼¨ñơmFÑ9€B3Ö¸^´¾ybSÖ'°„æ@ ­¬OR̀Dù¤ÅÜOV,úçÅz[ă¢Øp}ÁSÂËj½8¿àiWo|Å­c6<Æ÷‰Oă'0‘wSÈÇägÅK4|’‚9$Kè\Ÿí%\׸Q"h5سD̉84I å8•38‡jÉeX9Si5Áà*5Júp̀Wd ߌ×gw¾0rŒ5n–̃h5±V:ÜÅ')]—] ÷eIălæ¥g'*,µŸ‹%"ĂÖ'z-×'FÚ8‡Í2̀ˆ¦¾́âRFL¾ÏµŒÎ@·2F Ü3æ$€‹9àĐ©±>ÑË4†ø(3Öʱ¬¹"Bđeöµ¶2§đ-4IkN#¬˜’±F2øl-mîy‚¡c²Ë;V¸¯±sÅW‘m—›ËOÎys-ºsÁk5ÑÖØ×ï‰!‰ FÄl˳ñ=‰_i³ờ¦oŸÀËU¹í¤cf 2Ú_cMßñÍÉ1ơ5N8»N.@ÆHyùđáåöăùTnß₫üåëËí‡ÿüăëú₫/?₫÷Ëíw_~ư×§_?6d†ö·ÛŸn¾ư₫£¬o^nưôϯ壌^'‘Mjp³¶VœbU»bÜ÷åÇrû¡Ü₫øåÇ/åö‡̣›_₫₫Ó§êă·å»ï^đïÿ¡̉k"ncŒÚàµV™©bÎÔr $¬:°£{u¦(L->²Âø©ÈÈ n›Ó+‚>ºV—₫m Ñ6bQ;r~x¯Æ0…a[Ăfm=.2DŸuĐfˆG‚Đ-54¿Á|'†V3™Đ[Ufüa5’˜¤Î₫Ä̃wzcT”ƒ;Å>e:?ǰÓ©µ!Ï!íƠ䀆÷ckȨÈ^ß±ÓU‘ơ}Z̉™•ù…º=ɺ5*µÔŸ· ưÓ̃Hl ™•uÿuÔ#Ÿ ÛÖ/2ÄÀ‚±îf¯¨Xç¶Úù(`|Đ*ä H‘€ĐÅd)³®ÀzA†<´F„Ơt’F¯M/«Qw†!?“ag€Ù‘Ă"o?+ásçÎ@Eqêdd¨<”ùê Ù™°–@Âv”îIPdƒ®HÜăÉö̀†¡âÂï°%²S ²³„O”IÆåmHÔ~aoÇœh2 ôÁH̀‘+Á"Đw¡–±_–¹VöaϪ–î,†”¤smºEÁÙáï Ù×°Jq T̀q¡ïm~Íûj˜‚ZbØÊçØnñȘÉÊ"Äæ"¸cÆ5v¥́MW“Åm)à’ɦKiŸ¸èĐ6½*%lK2{é<½fºÏ›yQëë‹×’ϵüß©MƳÓë½”̉f`˜Ûµ×[_íÆ¹ä́{«…#KX&Ư‚Ä¥ư¢²‰¹̣¡0²çé s—ª{œ¼­ưªî1LCô\̃Û錹ˆăNàñs moíîÖ Đ[¤½Cçô¢³ƒ¬¯ßA82T{7lgËuđ₫›Øê6£8[wºƒ›a VƯÅVoåĂa{d뻬… Ç;d­Ü[1<Æ¡j±b̀KƠÓ.*¹n¿ßÅbâNuüüÙyqnf¶& ¨bÆ?c:ð5;t4–rèI‹Jä8”l§f‡¤åMQôÂÎËZäëµî ‰‚®u Bw:£-₫vWÖlđ(Θ‹º-Ÿáó&«-6+ư\V;Âá?ó£ endstream endobj 1331 0 obj << /Length 934 /Filter /FlateDecode >> stream xÚíZÏoÚ0¾óWø¤‘Åq’+ƠVm̉.7ÖC€"%%¡]µ~~M ¢±#ÖÑ€@à{Ïï÷ûZ­ƒnLŸ¿baÇœ£éÂ.¶ƒ0BA éͬí[YQÓg›>¶Ă‘XEF/Ÿ‡!±> ï§ß˜¢9¨\¡æâîv€f#B\k̀n qôi„‰í{‘€nÀ)Úbè†Öº(ée o%ÀÁ!đL¦ñ”5©è#zÄ™)0¶JÚÀ¡RfATÿøx̃ü₫6ö_äWܾckM/d’Öó”<ê€k9JñâÍ Đn˜óK¸\ÔÜüÅF&X\B/¹̃‹Œ#oçËc¸¿”9Y3Út£3Ôú>±"ó³[êr Gm¦,í>$–èèdp§€ˆ‚'–Í— Ï;§tÛÁ§M¥ëÚ"¿́àä}%̉a¤̃AiI+5=…³?BĂbv¬aû‚wl-U$´­* 7^@TIа£Ûuá‘v}AK¦s-º'(¿N»D C‡á 瑽́8hZ(;ëL œ(‡z‰”‰µåå†ỮwÙ‚ 1‰é±…èò¬`€JwrèØXØ“ë *ïær¯Ͷ‡%A¸ …̣æ¹r°zŸØåÙsˆ„w£„¥›ÏcƯ|v €üº‘èI²!eéG’C5Øeܩȿ¦ g a×¾•T[QgˆaÉf‚R!w%¹ơS̀5ô° Ư¿<ĂºZ‹ª}. 4eI`ÉGYtBcHĐ9k¼Mû-jóPVĐ̣œ9YÅ„*²K>®±j¶kH[²­tÅö¦Ühûfz¿ÄB2ˆø­PAÛ§$Ö²dü̉™„…öLpîÏ#gºfU£ä>­Ùf™h.¯3C“œVÜJˆ¹± (\“BLaEn6ƒ6ơt•́·Ve+ư¸ çđ(È€L)J¥ ë6Q<ÖGZ;>¨]Ụöa6±¿"G6‘ïa; ÂF•§”;0elÜJ=ÜlÈđv#K0ÓZ>¨Jî5JÍ@¨0¸=9u[dÆMis#=9u ä”ÿÿqS§ UÇs±Ö™¿§¼:§¼ü«e¼NđN=åơ>)/ÿ0^̣Œî)¯Fyù=ăƠă¥ÍEơ”—ôo9`¼Á-‘ca,‘èf k+wùÿµù§Lœßq‡ˆ{­÷å˜84"M€ç"Ø&>×!84í—éà/µ†R endstream endobj 1192 0 obj << /Type /ObjStm /N 100 /First 1022 /Length 2791 /Filter /FlateDecode >> stream xÚ½[M‹d·Ư÷¯Đ2Ù¨$ƯI0ü“@ƒíE’aƯ3mÆcp₫}ÎQƠíJî7ñ`èV×<w¥û©[µvO%ƠÚ{ª̉8©¹r0“L|ZGIÖ&5¹ó™ÑRŸÆ¤ÙÖ3˜Qœ@ƒŸOyÀBHB ‚; Dđ™^?óÔºơpjcpîÔ$¥V,IUáÈ“4Ĩ'ѲF#‰‰s tJ+%É(•£ ⢵„ Α$å4Œ4é¢Ñ%U_3<©F=ioÆÑH:̀0I'_¡UHkrT!ăÜÚ’ÉàÜ*ɬrnƠd®k†%ë|·V=ÙÄĂơäE׌‘¼vȪÔ¥s+ÉUȹAܶ̃­µä½¥ỊÁ}j¢O_3,ơ2× O½µ5£§.F¦ø³ëlX{Ø}½^¿w#?©©Áç:J#²HƠˆ !¶̃\, mdjËz®§ácá4FXCfsÉEKeđ9­8$•ï«-acȯ?µs]Ơ4}ÉE-Í®\@àë9,^JYâ½JƠUœ|jàT´#—-&|–üw¢.c‰–ïTæ’­ñ”_Ị̈Dñ¨`È£,ÂW2Lu¾ÅXṃÙuÂû:=<88Ä|­¥síÀú»®-¸îÍ:_¾„4¹Ä:ÖÖ´¾₫k 9¡Åj‹Ó¬œÜ©@eÉ«F¨›6êQ%‡¹¢J\ Cl‰¤c5éeMĂÎ5:8:a²|xơêạ́Í¿zL—Oß½{úđpùú—|Xÿù‡wÿz¸|öô₫ûÇ÷o ,Dy{ùăåO—ÏßÔơÇĂå«Çï>¤7Z5¯}œ–+¸¶'!T*÷éxîÓôêUº|.xúæ)]¾H¿ûéÛ>fÿ}úä“üÛÀ¡y¶1îDsÁ&rè9ÈÈNk¬fƒ½9äPÛFæ²æà3WœÍcº‘CoÙiàƒÄ° Kù$6î†`Q¡Ø¨™̀‘iNáj2LÊo“б‘„ ^ ’đ‘ ,=T’‰m±vjˆw¨'́ƒAM¡ûđY'Ë^äÀ½»QhuƒÄ́ỷ&‘°²‘¤¾§(¢çF»e z:?̉F|‘̃Àæ•.ưÛßáá2c‹3°µï~ùñÇ·ñđ—Oï>,̀/`-ÎÂÿ]^¿úîëGpJ—×_|™.ß<₫ú!½ưß×|µ.ŸâñƯ‡Ÿ—Áç|¾ÍÏO¿¼ÿµyứ/ßÿđígO¿¦%:Ó>y¾^û³ÉîúÜ’ƯÏXwE_¤³‚¯Û@c`1x~¦Ç`Äàú6+êº j Z $‹Ç Ç`Ä k ×@®\¹r äÈ5k ×@nܹr äÈ-[ ·@nÜYYYYYYYYYYYYYYYYYYYYÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙ¹räÈ={ ÷@îܹräÈ#G @<9´‰±̣mÈ#g Ï@:ØB[è` l¡ƒ-t°…Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „Jè „ÊMßîq t̀´̃>ZŒ;Â'(ˆOeÔpJÜÈ5+Óê™….qH6¨”#pÀpJŒ‡–W₫yăS¨ô˜‚èN1` °»n–;ÓQ„ öƠ¿ø<‰ăeX\×–Áv¦ä$y¾®Ùέ(¹đ̃ HQ˜‚#;Ï#b´àù ‚U÷k´@=W½V馣Ÿ³¬BHpà+!‡ö^íù2•&³³ûzZÆX…cQ;ç6‡î“/~ăÀR„ó”qØz"°Œe¢3»Qê<îŒÛ{,g^½¢·Î¸e=Ù0ÊøBO ó;ôSÇsc/ ûj‘¢©8k3dêàÀM ½:$±ơ¢Ó}yhŒ[́_f½LçI¡ œƠ7$&ăªR‘è{ËBS}#q½_ñ ±ó\*¢¸ùÜ"È@sí†5zNiÈn›q£àuu¤RØÙMÍ‹n~EáÖ£m"ÄÇ]1;ƒ:¶p¯¯› ¸n~™à˜ÄÎ.bH_í̃#¤ÄÁ©díră‚Ê1]4ưv:¬®ÆÄy'u2/Rc„µäk_Œ¼të¼UEW@ô¥P.́8êK‘½Áâg MÙpÄ`ëC½38­qLaç>ÀF»3Đ·ǛBhȵư¹;H¥À4Èê­Æí¤ÑDÙÛµ9¨ơvØ rëGQlAa3ȉ )¼.ĐÑŸR¸üæƯaCÊNµD–gÓïT–<Îl!¶ÆFSŒÂPv̀3›bèÖơÿ­-Fáóúÿ¨-Fv~Óƒ­Ü9 ÊöqLaç7^x“³´\ç!‡₫’!5¿!zë̀‘É;•ñtæüÉvU¶ endstream endobj 1434 0 obj << /Length 1073 /Filter /FlateDecode >> stream xÚÍYK“@¾û+8bU–0 ×­dó¨T¥Œ7“"«V@ˆ¬ûH₫|¦{˜U‰;!›Pt˜¯{º¿~̀àZK˵®nó=^¿%E\'vcbMo,Bˆ3̣B+ŒBkº°föưzH́[v­Øµ̃°q†ÿx‘}?ôFv?7¯†ß¦„ÁºÖviñ›ÉơÀ]PêÙ4Äq!˜áª&Œ'\؉½€}S'đc®ÛdÈ¥vÅHRĐåû0íd™Á\ëÔŒVrÇ.…ø–t÷å|FԾܲ»0øS•›³ ü®Œ]©Æ‹¤*~§×MX¾|¹9¬̀{‡æM6†¾kÁµc˜y£̃n2t đ©‘ ¡0ª%ˆ€kÈ̀cµêGp¨¶R‡ñœÚAûù_Ï>oG†1ä™Nhó@ªM@¤˜,!6’j‰â® Ÿ 䜮…Yx©×Ëe>w­æ¤"&¿02›hb–ÉΠ͆M%sB }´ sÑƯra³´«~lá6ƯgL ½ƠRƯÙK€%‹ÆĩhY͇^h— Œ/zÍmZ#Ă,ËH¤µ`ªuçs̉Œ́ C7.7 Kô$ FJJŸ[5ç{̀£·g:ơ¤ÔèªÂÏ·ÈI’}u‰Ÿëç—#©¡n“yC”¬“ù'üÖµ¯áG^Dà«#z´d.Ù  ÑKÔpAo_/yï¬**aÇJ®œ¸̣̉eßá› æqM·8¦́ö©\ßT´*pe¢¯ÖU\Ú3pÆUÑ`Ñs Ô+ẶÁöÑBT"2ĂV½„¡4;kÙ'D¿G³‚j±₫rÚ"¾ZgPy7ïĂB¨ºGÇÖ®Ô(¾'åÜ¿è÷ùá>ºï(³Üh‹ïS"[oÛßö·å±6DV@#‡F¤%åJKBÇóµƯƯÙN=Á4́|E胯‹&áDöîé¸B$^{sS¤·JdƠLo£Al*·‰J•HzØüûºû5~F¾Ư-1évà̀ôˆiÖƠÏ'Tzͱ_ă][yÛNºbàÏêhQ atl¨#{Û́° ́Ä~ßY4,OxWYt9'Eµ¶&Ÿ!$8wŸ† Ư#Näû><~¿ñf:ø :ÑH¸ endstream endobj 1333 0 obj << /Type /ObjStm /N 100 /First 1019 /Length 2751 /Filter /FlateDecode >> stream xÚ½[M«d·Ư¿_¡e²Q«J¥’ƒÁ8 $0Ø^$fáØ`bæ™ñœŸsÔ]ưâ…ß…¸0t«ßÜ{tn©T_ª+Úg*Ità£*’ÔêÔÔªp`ÉƯ8h©Ïu§©•ƒ¤´u?n‘Q0€^6nÖ9Nă\:qq̃10Œ¸³¯ëZR‘u'U[×ơ¤µ/¼‘´•9æ[h-%iïÆ`–Æ¡ÔÁQMÓqd©̣£–ªUçÈSm¾®ë©ö²®©ç¨eB|î BV@#I¦ºP@”£̀(–*–̀u\ߺS¶âÉ2T'ÈLR’¹H­X®µ₫> )IŒ–zw'1GñIÔº4/Ó. ÏĐ̉cVwJbfîKë3cOÂxçAƒ=%Ă₫>ß©˜₫ÀñøØ=lLĂwç̀ ́0Đ7ˆÀWè¡Z†KÖ47Xl3ɰ»æ–µÊI2plÈ ŃFF3 çk­dëöûÚNó4` ÇÍ“ÂËrØ(“’´;­Đ‚ỳAlç†Đ\£¦– “¤)Óa ôë´‘ü­;…m ×qHAvrđ«4‘<‹bK¾¹(U_0º“D‡đm¹†K €ï náçYN$ „̀ƒ±8Vg®¤[ä%+µS+é!̀9LX+D¤‡jßi#zÖ•n\Ip¿Ê5é8DÙi$ †JIhÏÀó˜ÄÎè¡jf"r'a ̃â#–Ă6l¤Hˆ(ÿo9`¹ÆGPØi± ä@Ơ%+È)́Đ<«Ÿ¤–̃VP‹t)÷•Ổrõd."$ÖÈ”² YCZ” ’jdvH9ô$ßƠë²Ñµä;c™Kä» µ|Ú9Á TÁ‘ßTÓBªJËU·"ƒ‡Ơ“*âî°'œ‹rÄ¡nƯŒâïh·Tơ#8lµØ“c,.eƶp›¬/TlS™çP0è³;Eh?°! ~-Ô9‰„ &I;äÁBaƒÔ`duJ¢Qg[Qœ̉L;#́çTpbÆÙNªB8\vǤđ¬̉bxOÅßç|©°“R­U8­-w§¡¦:BE !¦ÙIQƯ` I(ÈĐPcyXĐÊ:M;ÇN͹jBÁª¹jB‡ªí-ÇĐi ²[e™k³ æy„½Ä„U $7́‰½%ºÉ˜ª ,ƒc9Ơé*ƠùI$`’Œ§C–Ư\n„åø‰zÚ̃€©beØa…1%LËẰBæ8GT çÉÅUbï‘h;k•)8T¢Ùr \U–g¹ÊæIa—§%7VZæQÈ!‡¾·6ÓxJ¡æ¨Ab§^6x)h€>m·µ€;)í¤2™s)æB/†SøÓø"½„è₫*]₫₫¦‰0½HꉜJz÷Ë?¾‹¿|z÷aa~ÉÊuú±.¯ß?}÷ơ#8¥Ëë/¾L—oữ₫ö1_cî‡Ëç€x|÷ág°FÎûù4??ự₫»Çơ7½₫íoßÿđígO¿¦%G˜ÔWậúÛ÷¸›úơÂ%¼Ÿ1ñ: #Ÿu>w\g¸ÎƯƒ¸¸̃/·•H 45lllllܹr äÈ-[ ·@nܹ²²²²²²²²²²räÈ={ ÷@îܹräÈ#G @<ỵäÈ#G Ï@<ỵ äÈ3g Ï@7d+%AÅ ÅÀcĐc0bÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈȱ­,¶•i ×@®Wä·{ › 6è”d'ƒ/h”OcrNʬpllƒ¸“@îäĐvj6<Û;ZÆrع9‘ˆ)œáĂT¤Íă˜ĂV 1‘›?¯ wö!Çv…-€?~&ûT>J!d§F`Rv́Á^1¬ ül°Û¥·s4¢6fvaÖ<Ø>gÈ–  ÆS9Ému˜D}¦€5q¶ qØYº`È0ïƯfLÇ­Û̀^j)Ùº/Oỗn&́g¡dàû,×ɹï-VŒ Ь«ñâ åNª™‰̃­ÅªẸ̀ )wgÙ¨N]Œ&+sƯÚêqj½SÑè"Û@£Ë ©÷ªk}×8©È+NóđÜcD¹¿ö!ä?Çy³³LŸ{Œd4F/Çv1cæQư™û*F=æ0v¦Z²|Up ădÆ~Èa§™5S'omN‚=ɦúĂ6§ÍØiwkr"ço³QÏ¡0y6«÷'f̃s$Ăv’,³$­$2%½6“ØKæ¡îäl̃)h©Èưû1…¹—‚̣‹[; 9xûˆv–¹7†Zg.·n¤½ˆăÚq7KƯœvĂH̃94dư#:jvID «¥*8Àyú¨ÇÆ̃l³SnM=Œä„úĐ x?GÀđeèé¡~°ZzØÓ³5 …ôÑîÍ,L?}ôỜ̉ëI}˜ 'Ù@qkfaư¡ƠqØ̀²5rÈ>)bɹ̃ỢøÖ̉úKưÖ ́"tđN¢yˆäIlƠ,A&ÁŒÖ!‰g³Â&¶À2¬×ÅLV?¤2°'½̀B¥¤§°Zæz̀aç»,̀í¹Ư_ăĐvL¶VÅí6¾ï_ 9Đj7¾óÏqΫ, Éfq­́rcÓ3_¿S¤Â¥~…ÿoĂŸ endstream endobj 1465 0 obj << /Length1 2164 /Length2 17594 /Length3 0 /Length 18884 /Filter /FlateDecode >> stream xÚŒ÷P\ÛÖ ăîî4îîîîNpkÜƯ5¸[° ÁƯƯƯ58w‚s®äÜïÿ«̃«®¢÷˜>æs톂DYAÄ̀Á(é`ïÊÀÂÈ̀ SƠfa03³123³ÂQP¨[¹Úÿ#‡£Đ:»X9Øó₫ĂB̀h́ú!7vư0Tp°ȺÙXØ,œ¼,\¼̀̀Vffÿ:8óÄƯ­̀ ŒY{  …˜ƒ£—³•…¥ëGÿ<¨Mi,<<\ô»D́€ÎV¦ÆöcWK ƯGFSc[€ƒ©ĐƠëBPó[ºº:̣21yxx0Û¹0:8[̉Đ<¬\-ª@ ³;Đ đe€¢±đßÔá(ê–V.ÿR¨9˜»z;[+S ½Ë‡‹›½Đđ‘ &#PrÚÿËX₫_ô€7ÀÂẸ̀ßpÿö₫+•ưßÎÆ¦¦vÆö^Vös+[ @IRÑƠÓ•`loö—¡±­‹Ă‡¿±»±•­±É‡Áߥ$ETÆ ÿÍÏÅÔÙÊÑƠ…ÑÅÊö/L…ùh³„½™˜ƒĐ̃Ơî¯úÄ­œ¦}÷bú÷áÚØ;xØûü™[Ù›™ÿEẰÍ‘IẴÊÉ (#₫o›Ü™ĐÀÁ̀̀̀ÅÉ :€¦–L%P÷r₫­dùKüÁÁÏÇÑÁ`₫Aègeüø‚óq1v\Ư€~>ÿTü/‚ca˜Y™ºL€Vöp¢ˆæÿÂçïlå Đe₫?ó_Ÿÿ>éL˜™ƒ½­×ó¿˜IQYă“Ư¿)ÿW)*êà đaàà0°r0XX8Ù\~ÿGÙØêßuüĂWÆ̃ÜÀó¯r?úôŸ’Ưÿ=Ôÿ^ÀÿÆRtø˜\ €úÏ ë1s0›~üaùÿ<î»üÿ›̣¿¢ü¿úÿ­H̉ÍÖöo=ơ¿ ₫ôÆvV¶^ÿ¶ø˜\7×-PpøØûÿkªü×ê:Øư_Œ«ñÇ.ˆØ[Ø₫·V.’V@3e+WSËË¿ä-­•=PÙÁÅ꯫ÀÀẦütÛejóq}¸|̀äß*àÇ̣üoJ {S³¿¶Œơă„½à>ùq|X>ÖÑ èù÷˜í\?\äüæÎp('€Iä/Ñ¿'€Iôâ0‰ưAÜ&ñ?ˆÀ$ñ_ÄÅ`’úƒXL̉€IæúÈ ÿ}dPøƒ>b*ưq3˜”ÿ ˜ªĐGLµ?ˆÀ¤₫}Ô©ư_Äó‘ÁøúĐ™üAùLÿ‹Ø?¢|\Zv¬ÿ:&³À–ÀÿÂv3ưk₫|i₫₫…¬₫سưƯÿà/½ƒ›ó?ü?L,₫?*²üü8*«Àf6ÿ€Ôlÿ?¸Ùư“ưŸ̀®öăơư5‡?­øpvøơG©Ồ?V×á½ùx29ư™¿Đåï¹₫cóÁçlY>ø¸ü©é/t₫£Ês—[đĂG̃?Ư₫¸K˜\-ÿhèIW‡8|đtûüh‘û?àKœÖG<¯??l½Îÿ ö?gêǽüñ̃ùûNüXÇÿà¿_r@ 'ĐnuÉÁ”ï³uưç·Z|†ƒi­tŸUç.·'$èT¯Á[οERÇúQ6ö$¨ï„׈_}ÎÚ¡ĂÛ“U:}_ Uç:àVf±†g ÏD†a Ô…}_|5ƒlÀÛ@{d)̣œÜ¸‘” Đ<¥<†Ê×'Ă–Tk8åà_Êçb5bô‚J¾Sä›d/âB¹2ÂĐ¢]y"¿û½€–;óN,›HçwËV䣳Í÷¸è½Y©Îể‹K«ƒC~‡69Gé#züE{Ù§´8fK`9‡+2~tíó`̉¢œ&.©¿2óç2¬@ùṭ̃\Ó,g[MÓE%qŒO(E©”yr5ÙX©a6UÀă+¡Z’6¨]WQïù…F­oR</ḰÑ´ÑoôƯîlΗG(¦ ă9)yÈTsdkJXóSjù~ªc.±…>ºCïùŒÅ÷ ÖàÖá¾Å®vz?xá=¹±•§ŸM”“/¾ơ$Xé6ƠbÜa†̀¢vóD́ͺ²¾±%7s]¦—aÅEúY‘Í=*›¾Å¼ˆaçB ¦5«̣d¦}NB07$„´đƯư³\h]åíœư'P5Z:^!1Ă1Àpv@èkĐ>÷E¯Ă o‹[¡x²®]†Ó¨qÓÂÆaÀ{L“í-ûh̉"Ö«<¿?%±Vfh¥‡¼12LŸ“åJ`ætV¯µ{ơM襾K“*éëlÍH(ÙKđ¢—°%ơñRG.@Yú*ÑY2‹ÿ^B¶ ₫9“{QÑÿ¬,Ps¡Ö F^–ÎpÆz¡qÎơí“»ÜjqPÏ &C₫JÅ)_3IFd)ïô‘ǸÚđ婤x ™fGÑ£°»MÔ˜k+£¯wENU_b‚’1÷.é̀J™´ÈW÷’ iEηll×ó/c|´s¶đ=đ’’ˆ¢ZûO,¡jD$oC`…¬´MçøPß§Œđc¸yµÚƒ~ÙjTàA·~–)¸̉ơ¨ĂÛ4…¥Ô92*Á+Ëí₫Q‹àb& ”,N£Âj¥u9Ú%FïÓCŒR©èÍ•ûë¾Ê¬¢§7&6½’µ9đđA•%æÖ|qfBd ¶¤tœç„ư`‡ñ>w¨´?.~¦áÎÁ£Ó«©́#±w{yœahƠÓ.Óɨ Ÿ3`(Uƒ¨")£2(ë¹QÛP¿¸êl=Cè9ør¤*”´r6Óv× ÷¯̣ׯL§ÇÅ4ĐwÈߘ[Ó¥$wwơL€₫>ËË&ơdî¿·$¯ØrÓ^óÛ9^%] 3“I” …¥X÷ê¹3ö¹z¶Á`–Á^&ÙHô}²-¨)ö3 gdÊÂ5ŒÜ‰%¤B —Éía5‰#ZÛ×Èzah‡ă#lˆ7û>PvæG ÜÙ[ewö¯£€` {ÖÆœ™´¹ơ á‡ÍƠ%è3.5Û\²½{S_DL:¥ˆ †ùMmˆ/g‰¼ƠĤ[̀ÀëäcK9!²¿LºơëmèÏjçÚZ|ï²ỈÿD³á¼zÉMuÙ.¸µÍ%›×a:Ư@5ØLƒê ×¾Û<×+5¶TVT®ăŸ%v”­Á(-ֱÖ é·d ´ÿ2X²+XỊ$ö¢ë99åYmß/æDÖD¦nƠΈrkơ µ̀tmu@"$g´6–“?ˆ²úÿîwbÁ7Ư“X\™,\Ø#¸$]XÙwöüxY¶ngÏ3É’ñÄ~÷ŒY¦‹’ZùsqáÈƠ †mHaÓk×»øó!ưÎU‹đá“*†²¨•àÍ₫́YÑåùº{„¦ä¢ˆ¥MCzs5ä6ÊWnb(° ˆËKZ¨aÂHE<÷v0ï÷Höå{» d€=7 ¡xöé–‰₫Èjô;ÿ唵ÅÁƯÊăêB#%Ö´è¶×Bœuo6Hæ=ø‰;uÍZŸÎØCéË„hƒpƯn º­èÈî.bZá {Œâu(`¿÷)«MP°G˜[¦’<ËIǺ5·ơ³ '7́NF À ³µÏ¥÷æzÅQ½Ë›"@70Ư‰»̉]ܿ䫫¹S'È$‹₫¹<Û¹åÁŲÚ̉‹dÏFsBm´+\₫AƯrÔX=ùcÓál,è₫su5‚–™‹†̀ƒÀ¥₫ÓB‚ïdf¢™́ƒ̃§rU¤ )¯@äv3j”-Åø=‚VR,ÛG½(€¾Íh5·&\Æèå•È¥€À̀ƒó@sß à7íç5đ¾’à—€̃đx-Éă[̃€hs wàlÛœ6âR†BYmWcLÚJÉ.œcÜvz4͈óeBÿ₫&ËM&|ÿr|&4?_€}ÁgÑy6½r¯ăt©ïUµM§*w;WÓ-‘ |TDs`Đó¹ák¶â|pG­%Úq¶Q®¨dx÷zyïv_;ÑE´äµÄö;lr”»₫ṂnƯƯ¾˜×Đts >\ö·èØú\(ë¶›¤§Ï ‰QPáÄi[?6I(5đ0z;-#‹Ê:6¨¿gXïÛ–szêB Jè;Û]J8º³IÓ†zBqZ®ü£¡L|m±M¤‡ªUv›ưƠ¹Y4Ơ¿Ë0²$âôœGµXúæ’RfÑA¼ö–"WiD'£®ôº…×,‚Nbfd…́NN«)Ÿo¹Ù –æÆw‘{æÄs› Œ_x¸ö [{g}ªÆJ²Đ*tH œ×lWăi/;œ@ƒ³prö VÛW¢̣] äÅ@-æáxíMda#äÛâñRFœ¬9 yÀËU5d‘ª¸€˜Û¿́ë)ÎwfjÑ? §ºº.|!Z‡ˆÀfñăw"ƠrƠăË)}€Ôùö ’¨₫ßg̀ĂËËW#ßç4LË߶g̉øMá2¤;ơÂe}¹meÙp®sđyzQPr:z0-Ê=I%|̀9÷ ,é©:›“"Ç4œ¬pÄ¿)>-jBé6™Ne¼ªÆ’ùk8́—„wCt1°"Å99 ơjôH Oi ñ‡»*J̣ßUN2ê¤Çµ& ¡[­”³‰ETáÀü:.Rn=ñ"vm¢Ns\ƒœGÖ Øäq²é₫ܰăKÍÈ~L+¼à"´gơ1ẳh2´«ç ˃$R1°­ĂÿèNW>U#/¶ß‘:MWJ¸Î ñ…àÑ+ÑSl~u8—2¸G£4ƠoUOæ/™8{üi[Ö!»w‡÷p]\¯lMơ µñË9!G¬¶*‚ÓúSW©4Q5÷6&r|ôîà$8¥|đ¤¯áâăXe^’»ñé¶ÚA—Ť ø<‚¨¨Ñ…«M¡¬DÿrS ^„´*âđ©dÆéOm”Úpß ¯™K7ÿTË ›wvMè…ÂuÎ×èi0²¡’>™qR™hÍ¥U|J–Ơ0Ÿµ²<̃06̉.ª)E°mµ­»/S¢%Â/Üz¼—%PËù[¨ưÄ5†Q}\ª́ -?ˆYÑEăndú$QøÆ-!”sÉÂĐư N₫Đ¡H¢¦u¸À_†¦Q„MûzÚ£ D^å₫Íç¾/Ưu˜ÂˆÿÛtX¦D$W$½ „My Ưw³~oXXæx[炉nÀ-Ç’₫́EkÁ”r9XºÆUyª@à·ÂеM1|Ơr—+‚Å]¯̣ÔÖ&“qå†ëư½º¸_*kºË;F§FỔE H;v4.Ù‚ =uѧL«YßƠÿjsó³_­Q₫̉ëü‡á›ơĂDºêr3ÿåà×dÛ"Œ3SKEv–t߆á̃¹oô˜ ưj̉ˆdr¹Èغ”Ë•8‡·¦Cy¸¿øø³̀ÚˆQ ê·v‡EV©N踅½¼TÔÎÜÆQ/Sf´½ßŕNVÙ<—o#­äHb«\Ü¢g“̀¢VœqÄê´…nl;CR'5´̀¼6×9d‘æm6Î˜ÏæàƠÚ;,Ơ6åÚöciZ1!‰—ŸÊñ"S›l[Mv\®đkß|@Ïxe|(jo‹ßêA ̉«?ư°(ä)»Ÿ l8O™“„đ~[ÆôضG"^ăCnKœ‹<ÉÁf YÄơC(&:…¦A°ƒÔs£Đ Æ«MÁ™‚ô¢m–¦«ªµÍÈOñÙ°»ÁØPƒùâ·ÊÇÆÿeưt¼‰ÿ4  ¦a6ïàx‹̉ønNÊ!, [pxmâ„q ªOđ»[k‰VS)H¡Êum‰^íÊÂÆP¿)94ªú”Aj\{ñÁ»á˜NÊ7 &ßÜ0ÉY_B*q}ËØiưkœEB‰́¢~“‚ư·÷4wêZñz¦ÆÛ5y“ Ô€“èe³ƯËUƠ*¾u©,!!cÙMuä7/ƒăơª÷‹ov₫Û™Fơ:¬1Ç;³¾Ñ³>û"²¦i*ª…NöfÔ?׿zeüjùí >e¤^.+±q#î­j¼q;²@¨üRÿúm9eù4rÜsø«˜pÇ[L²‚ă4¿n|,óŒPé+p„LGưô6.´LU·ÀæÁbh¦$ö3d;Å2´‡´Ü É Îd骶{ku–vï%÷íÜù₫|ơÚ·—·ER1AT©OĂilCÚäÊXªF\©æ'9'9»«|gJ¬ h\§̀…¢ Ø̉W§&cF¹ Túá*Á@±$/8ÛT.ª;ódxÊF‡q–¡2̃ĐC«·ùĐ2Ô7ÂzD»¾M âL hn˜0 @TôùóÂO‡:ÿ;6¾2:[/¨ yä>ŒQù­Ç³øJeưv~²Ÿ<3Œ“Ặ́Ï@Æíêå6.û₫¦¦˜¨hP™üѳç‹‹aY%.µëøÎ~·ăœ”Đưæ.~Đ)/;¦Ñ­¹™û™mÛñË 7ª¸}̣p7åĂ&².›Âí Ô ëúLy_«:ßÑẺs3²f¾¸xó&ô7„ÅB•]ïÀ·ñ"å|Z91 §$›<”=² ¡#›¶ZxDØëŸÏRªDµ#Z2ˆÄ¤ªŸ¸®J´̃:6æAN—†kÏ"/3ö˜é„§Ơ7ƠG„n±c ×/‚Œ;d+<½üÛ¸qGƯ› |Û…8.kqßÉui\^Íø³Éâjf·O4*¾SsÏ"e˜Hô¨œI£@¡¸2ö›sá/åh`L® Œä̉ä{î̀ä*Y-'µ83é™:̀DªñN’AˆƯ Ëư9`ÍEk)̃Ï9A¨B²'”¶SZM¯(Ï3AâQNÈëÆƒn}&vèIƒK[û<«„aµ>,S:È£ª¡Vê…ÅzºGgK’œLQ}ûăW´áH|åª6¿Ó±_üë«ë˜²hăqtFOˆÑ"WÑoĐ¢!†L°HsÅbFz¹…B’ăk^'7îC†Æ/c“›Ë‘ 1f|Ø{(ˆ«?²Zp®•®Qœ$đd.ç˜I=ÔŸđû1‘zF!Ề¿Ø̣Óº LË6ă₫́,øÚm·Hkꄤ䇿ê?ĐŒ¦O×b,§lÉMïn&NZ“‘ûÆ•9Ôk—r&¥~À‹îÏN¥6¹Î›¯RPÈ´±7ôUĂ^•CĂ/O#ß–µœT¾"ÚD̉ƯNAÓÄ;yAGç/ïëV±Ñ÷/>¾–C\”"}¥”Â.ù«åƯ+̀ ẻ¨Ÿ0 UƯ¿ê¹L'L½Á{x ¶Üu?­¤Îyµ•¬¼ån$9½‚úm›ÆnK ¢vz™Y *¯M«éÀO¢ËØl~ƠñÍœ_ç÷̣đøÄç’äâÍF#Ó?ủh“©KSpŸ®Èo×µ̉íÅf0€Ñ{Œ«¾`Đªø¦=º -ÉóÛ=0æ̣îgƯ@çRÉ7Á#W¿đu×EºM–̣¢‰zPW‹9…=–µnyQÉ„₫td"Z‚‹d£Ä˜­Œ¸Vèá¤@•ƯêtË—ù^S…|úä­·¦=‚ó)Ëëö›He3ơÍđ{» ›ÈÖơ·Áâ“Đs&BWH'ï[5ßGÎá˜F,}cđ%J¾3Ä<_±º/²‡œuUálæ¯a·Œq—yeÉÜĐG …u""6‰jœ\‹ËZ:sŒûSPv(¸¶qC"ªïÜ+Ñcyœ(ôD—Ç„hÅûÖ+„gùŸˆw¨ ¸ºÓWLY_î·Ó“úpëÎ|gεÉ—L°¯¾™À²2]søˆÛ F ư1lö;™ ê¹Ø|‹̣g¢{†Eâ^8Ée$7Â,L†Z3=D&rAỒ‰)ù)ÑéNá¾vöú¹1Ñ´½́û¶)» ̀(á W Ï‘¾ƠÔ¨Q½GœÅ´~<ÀÈ(R|²¤¸M¶US28(©½¨âÔ|ÏTÁ-ŸqṢ"?N`ÀV˜Æ=afjPđ.Ix“›¸àx¹IÂñ(ß›tRm°û>‘”µhnơC;ˆ½æå²HB Y殆…VPŒa9¯ĐH|ëÇ#}»ŒÍ…YW/8cáø}L.Ú¤F7zO™Û€P®è»¼đâ×7#êûÄŒÉÄ!PWªà¢Ñí¡6ḷPPîJŸ€Ờs%(T‘æ"n¤Ê#\íZM0ạ̈}đKN=µRÍKÆ̣>ªÙµÇb©hgạ́éƠJ^Ëgxø&G]Ăø°ñ&YKâåüà&ÉË©dÉåê{É~ö6©ơqơƯèèÍ Ÿ áP™ÇóyÄwׂ{ơ·9Ơ/Y“ÛZR₫úÑbÑŒU>¯°ZA½D¬^=P¯R‰áZ÷S̉[ă/m=¡)‘ô#¢›aÂ\hÚ¨¿c¸¸°ĐmMO×K³ü €M ³êXG¦³ÜH³ÉĂ–k@gZŸqR ƠzB’œHÅtwMˆIUÉ5ï|»*oÁjÚ'ï¨g«%Éœèèzä׿½÷{8l©ï6Èeq5®¥>™¶úJø:utaóF{ÄŒÁIEY¬Ê©ªU„¾GwÎE§à’́>bEbº‰WB_̣;ưÅ3lYY…Æhˆl.~Lp₫ÊVÁæ4€jMµôB<~ç,LDÄ„üY¤Æô#É×1ËÖ€t…êÁÙ²]œ";g:Ël=F¤cPè»Ó(x‘Ë{-1Wf{ªÄ́¯NgO¿w/äë†w‹Û±OïÚ¹>­&?Rµt/ÀñIfÑä ä#èˆ'Œ-¦8´*l¡P̀l )¯9{Âög“XNơûD¢ ¹Í\˜(XUK8z{\}öí(k†¿cT̀ê}AD¡}_9œr+¸’œ€ßïP₫âçZÏ…0ÚN:ra¬<`*Ѩ³ FƠ´¡Â0¦ Z¨åè}uå©HÚÚó$É{•́#uÏn ×Ùµ|³UoZ’G>í®¯ƒ|¦s«~cduĂtŸ̃$¨‹Ë“&¬X©¿¤†Ḥ¶q˜"H́´ô†’qίLï{k¼[Iº ÂÖc₫"K¢–^!ê1¢¦dlQ<´'”*Û´[lâ«$ ¤ ÜùäÂå¦ư¼§,v€ëhSr#ZUªµX?.²‰'ĂÑp,0a˜·Æ=À\€Ê•ÛÑ{×:ÏnÓme]́ÂĐ3÷`5?j&!Û¿ăj;:œ̣̉>~²'[‘¹ùsë .á ̀ñàmÁ)xïu?ü/^Íçç7ˆ̉/xNUSO£ªèSB4 T@ÉÂ;rÔƯ>¤›¸áu!Aơ¦XÉp[ev¬ 0Óß>5;^­ûÎæI·LL6Uû=·Íå;HS²ôs€`çtKpëx 8̣Ă›D`ó›¬̀Q¾`º—Èz̀!ؾ¿?A³Făœ":₫fơsŒß7:sm¸†Ă½¿Zq…À!0¨Í̀Ÿ—a~ͽ²“RÑwôT¯̃á4ûaó=Ç"¤Ê·mfM˜¦Zê=±˜đ‡x¬ |öA§ª®¯•îÔ€àû+M¡»©Àœ§‘Ë&²Â¹ –—¹¸Ó4‹hº¶ûBô‰j€cxvx¥#₫\~LÚø6שză$(!~çe·›äs§S RHYĐØ8¡+è;a½n*zC̃gÈs̃U¡²©­sVù…‡¨øê¬’t4ûaưQ2Ÿ¸Vf!ævD;5jë‰M,ù(†u{£÷ÂäëS\ÈÖ¢ˆÚœ_úr¸̉³œ–·8~MI Ö¦đ.¤Ăc̣²ª¨=[*¾j$ƠÏ¥̣Yƒ°‚$*§ÆwÜ¡₫§ä h‚đtÍÛ.ơ"4%r½}¾`¾A~Ư‡ÔWZ§C›¢₫:¤³è†,èTợØË36\q'©Óñ)UµeH1}O˜æÓD„Ă¼ó~iÊuÿÇàq‘”3ÊËlöÂGªHel,‡ß-̀—Óªz¾GG:ñîèÊfí¤of¨3¿¶”ƯDûÖƠ‹•–>=R\Ñ€³~²uư¹¥¢vMïƯN„^PơñKÀáeƠï¼Hd÷6ẁéQúḥÅdƯ‹ïj́33w“ G“̃nbe++₫/½•¨Êm·ø(·xAn½m¬Ùºơ(Ê:'˜Ï₫¶ÀÍûíI ?P&Đo8}.±¤ÜÜ)K®„áÛư£û‚±ÊrĂ$b#" ˜ä1q·xVü¨.ó5Qb³ïx·!÷Áb°#‡éÛr ơÜvƯ÷t9ê9sÛ“$đ̃½=8¤TBP\<ŤéĂyô®¥ï º…X\ ¬Y¤’̀UdˆÅôù0̀^VCD°î?è3io”³»Í¥äd‰»$®.ë!ÆTÆ”4VOoöSw—„çª*™Çù}VçA@b¸ +̀2x7-êmdY–Ö ¼ÙĂÑ.¹‰Æl>]µ“2̣s¶ä`4ʶ‡œPªÔTÇ¥íAEW=‘øfx̉K¾ rñ£Ö£Ú:¦0Ÿ đ*̀@“yè›jÔûo) :ñôRỐÿ ¤]zÖØŒ·Pbó43ª9;§;‹÷.?ÛüÂÊp¾)—qÛÂ>‰Ưúµ‚~w±“ïaœ1hhøă•ÑɤSfañ'—&TîÂ}¼“{QÂÑïöND -´qL¹‚Ấo=ï^ÅMdÖ́8{ï(V³+:ộûG8û/€L¬ơ~ÖÓ±e²ÓïĂÂ)ø8ú­Ø[ađ¬®ÆSÜÅzôÑ€* ˰rWXµÅ„bÚ•ÎP¹7'ẓ́ƯQ iûz|dđQ-â¾°%L²‚$~Œ"¯û/«ËàT$,ËÖϪy~®¬ß© »/Ve> P6ăá­đ­¦ƒ \®7ç×F…-Ëö₫dxgêÜH¸æƠ—áô%ÆTĈMiOÁ‰A.`téúwâå§oÍ̉ƒ•úN2Ê*Nậ9£-­ơ<ÍÆÓôäû»‡²“Qа_ƒ=ZL£*£ƒCz6‡ƒÉë´_đ]…d(ÄàîJ­FjÄO¤H·&6«Ô+®'T…H$è/XrƠ¸¾“Rû¨§œ₫Ú˜T;KarR|<…öSÓ™6s1 „nù 6~øçÍ †jùLìÔWÚî­´Q5xwσ ‚²´Î‘P„‰Ă}†hrdßfo›_“%áiñ¶àûjpl*ÏHÁøkª4ùgÓëg_ E;VXÀL…̃B™iºÊYº,/2¤ôåï;¬üRËâ5ùd–E¡;ñ\=â·́Ç&Œx3đ"xé˜hN¼Ö鋟€×. ½Yô†u8ĂMÚêíù̃H¹3§16OhĐikÏ» à·_¨Í—1+Œ¾bé^-‘à¼æq@>µ{#~$ÄÙ¨ù₫øĂ$Ä ¯1ßƯ°Êrp·6=»Ï«rÇ1×Úñut·‹æµ Vñ˜&lăéÇUî¤p'7×øè­w1Æ÷¬Ù’K0RĐŸ‘ïèƠî›Z½gÂ,ph <Ÿ´Î¦uŸñ ¦BÛP´©Ú²]4(mó´ºTW:^PaÈ®Ÿ ±JÅë£I³5ƠfS_ùöêfê<ÀƒT0® ,‚ü°®%#~ûW2¡6”â2ÓĂơŒ‹VđæÔÖJt±'ÚœoOpŒ4Zµâ’}†ØÄ7Q/Ă`è'm°ªÊ•Me /)¬1»Nđ¸y₫M'µÏWk›H- É÷D<̃m̀™p¨6\Â;ç Ÿ cf9 “^/ÓQE ̉§ÿ• “ÙHĐ:VÖ„ĂSÇA¤…[Û1íz Î £˜6i¯IK¿ANúR¸Á¶è„è~ü+´̀ÂD¶₫Jn‡ôä=\ăë0­x₫K.6Ê‹;½’½ï,5pÍ4>%s⤠Y©‘kW§BéÀÆÄ¯8U2’±VùÍU›älûdúL‡s—M̀e$†×{¿NqE/Üc¢wíÑg^Úa_S†~Đ·MÊ ›iêqW§¹$Nû’•Ê+¦E·wĂ}cáBéMf!Iăd¬cBMa¶‹A¿ )„ŸÈ‚ceơÓÏxæ qz†pw“o‡iaúSß~‚ºëÏOE€›đ‘5‹$…5 ¡ârƯ ª?áQ0W¢ (—S-E&kG!Å:ñxđ́.đ$§ê—ô†Jά„%m€ëíZGḱà³·—?v/̉ÀJ `<\ŒöÎÏS"eQd†[µF*e!%̣¨8º?‹ăÊ÷öä)÷nÔ¹îÂÙơÏÚÉâjÀ¦K(rÇí"ƯµëR)̀Úѹ'½®W%r¡¤@1t~KïøU.üà èî‹ÔEjµ™È)¡ª'*¿dƠ”’¸ô_Q €+3<ÄM·Ùăû¶|£¬ˆCôHaßĘ8ưÊø₫;^3Ṭ° »I/ùjÁ´3º,åØ)˜åŸưª¦Ñ³µBu§È*å…²̀GSÁŸi Wô™0“;AyN©À4́g÷oÉ–Ö]¸Ê“d?A7©3XƯƒ8‡ÖYWtâzB ~†üÓ̃;̃̀8U½ÀmVÆ×LÑÛqêWQxÄB.f‰̃Ͼ='÷ˆÅÚ¹Û^÷Bl-2X$0Êí‡,áå…̃_B¹C”ôH“‘ÖÂpÈ~ñºµ CYMeºh3´S#±î̃kL ª+´x€z!i=‘ô‰ñøNW¼|ÿyȬr¼Qœ¶Ÿ °ùeúlô}§L.6ëư¡Ä̃÷h%Z̀̃m1Ë0ßîËW"^₫œ ̉÷ŒOç{¥uëÖ«₫Ơí?^<§ ‰ÜÙáÛ7J•8ø#ù!À­’ÔOºK(k-SÆADmùH».L¤6ÂsŸH˜¾¡±öd#{>8k‚Ö÷ºRj·^ßÛ&ŸmÀ ¿«‚vƯ6F®R#o:Æ3§sj!øUIZ¼ à¼¯̉ñ•_Éïgéóåó"5½Ñ«ïÑN?́|Ö}Đ×;´”K₫©ms´ÊŸ°uø¥4̀˜Ư0!Â[,ÁS¼zåÑ34É/O™ïJæ9KZRÑ„Ö/^oÑS ½µ?¯¬¯GC‡vJ:ájÓx¹đÀĐp̉̀. mY@Eˆ.–TÛÙĂz3ª4đR?g&7î09®ë¨œÎ½5Ơ˼)\ó«a[u1:j9k«̀́”|nÈÎÖßv¡]S.~úLBÏÔF6•Ÿ1z‰:ơ›J̣í‡r÷p§$‹ a*ÇÉu,­êÀ]‘` kY²q'çtˆÚŒ¥HHÖ!DŸ H˜SW’vbñÎÅØqÛR×÷‰ŸS`DvØXr ̉µˆ?¹á6Z=BÀ­m%ëâNÄñb%”–¯†hYœqÖUVµ‰̃Úư u´g²eø§²ÂL¤Ki JxKNÿdA;.®Éñ *gmàhµî]£æLWmj¼»YA #ÇgÅ!½‰¨»'»Ädó«í¿ÛF£2«U0Är¬ ÓªYùf`\¾LôÂ×î¼ïµùøpºc™‹ĂR6Â÷Í®E ÑÊAvA-àÖ0èNÏ($Ô2-ëüÀ!¹XÀso¥†eơ™‚í¦ăµ§ÎŸ8MÂ']ûGÄj°P˜gF“ÍfưoƠ‚ë̉8ô8 d >K!q,™%̉ŸVPáuÚs?+eiÉ+ëЬÆ׬1ưnñ@l]»Ê÷Åđá–îÛ„/ñí¤k̀Ö¡bĐb§@·ưÀÆa÷°à0F çS×ÏáWó‹3ÈYD¢¬΅WÈÁ;K²>çVdÚTÖ 5~V°¼Áª£Z½ÇƯyư´»Nr“UPFăoÉ(EûɦƠ_̣˜@ûaדsH[¤™7¼ ơˆDs'îTè„{³Ôp¿K_ÇP a}7úº&c„wă¢÷́8ǰ$¾·)äœ~‹{xŸ“Â0}` ûf•ÉVëßF9E6±E’ƠS:áUˆÙ©Y>‹nÅk!Jük@F®OÀ#:¹¦Î©IúQï=­«à¾¨«IëAĂ2ŒŸŸ•WXQ «ÜÜ ë­ÖÊßùD”\²µHu½nïPpZńĪ VĐqÙ®ÛM({ñËçLÈf¾ j©>#!m„*fuÅ ú"YíEM«qÿ.s‚/ÀÅ ÍƯú÷(3kcLü¢~²:U|'Å(bù$;‘ú„ NƯÇbÚ»)ùÛ3ákuED Ç$bwu!̣À7›j_!›mˆ.Aª`̀×v‘©¹®Úhñ^¨^y3Ơ0”đ8냇>à"…_]†̃¦¨‚mpO´|êƒè€̃"₫}8ú—Cå|K‚´á&ܶ ~ÉD] ñÍư¹¾“ë†^j‰ŒyZ.̃xưx1%‚—%߸–Ó¬eƯU•{%B„ˆä9¾ºQkÜ(Xøư´ô(ƠÁ£èâ‡tX)?ñúÇ#̀àÅJnÖfl ´tÏÔ‚-l‘ô, iøy&8F©Ü|÷Û»¶‡ ÍIæè’„%Ë‚“Ȩw™ù¨ë‹¢á+¼QcS$nµkîç@ĂSímOF"8åH6§̉bsôÊÑ~·S„Ö’Ùœ…HÏí²NHƒÇpw–xªnn+xu°îS\ây[z²Ơ¨X}àjEÑ‚9̃s¹ñĐ×£î$m,ÄYʾ­ä0¾ÀÓ¿Ú“b–fà*¸›êêF³]$@z{xr  h¹•‚đ‚K |–×z£–]λN„ß¼?Û”8̣I, ¢ø§ÛÅH7È·bm# ‰¼ÇP-V‰ØÔYơê*dë—̣ù.îQû©+că÷ «„đÄh ü¸=º?DÏKa‘̉éÜĸ—™0sÀ›3äC9{¿¼³}¨ß58?}k%¿ù À¨OĂÁL5d¡úûÖKOPºSü$B][÷Z_3ÔÉ—AyA¨ẶSŸ0́éízc½Ê.(ˆfC’B Æ•_-˜`[ÂxöĂSÔàØáÖz‰¥=J¨UÔk{9Ͱƒö ¼ Û¸Ÿ²PnƒªPŒâVä– 0°m[÷̣èÔ_{º|1FDLf¨Ó«hl¤d­´‘̀‘!V‹HÏDµlösăXÛ’™Ơ+d445̣R²öw¿&ư‰÷D£?eađ½#¹¨Ÿùù•.ÜcªùĐjúÛ|rVÏD8§Û½å^ đÓTæ|,œù Xè{±qº›´}c¼pijÖ¹^YU׬ÚûÀ›Ä̉Ü/|ßvvŸÂ Ÿ́t¹ bØyîu}#è…U.J:ó̃%ÈhA¡¡oØåÍ©é,ßc¥ –¿Œ÷ <1́íK嵺@*¢ü” q5*!%*̃€‚SQKJc|hîÚ®Ùü9& ưJÎ+^d÷f®SSă7º«‰›†î~^g,ßÍùæ€răd®¾߆}óÄ́tdü{Zs;ñ~å j‚Íܲf#á̀†»ơ—˜=Õooô†ơïêxèÍ[IÚñ½eTVØCT%f`Ú²+—meµ™á[ạ̊É^eú]$ Î ßË •Ê¡ u‰zĐÔªµˆàéF̣]©;¡#|Ü[cÉ#XYP×·ªư/ξà·́^Ç©]î®û‡ºZ‚ÄOIhRkŸ`#œZËŒ1 !ï·2Äcḳn5À± ¤Ö“B„É‚#D=ÏâFá6~®#e6m]Ñ•ùbmHăZGŒI;ô©TZ­5E`m‰å‡pK-ÜH^² ³9n„üΫÿl{•‰+ p¹0XÍ5¾×è“äA(rf£° đUNR æ*û”ѽ^«7¾íQ˜ ă ×,À›&&óz€$ 9₫ÍoÊܵd—ÛVåé0€́û5₫°̀¼DrÍëGaºđχQíK$窒3À6Â[4Z5¦ƠGùÏäˆ;R˜ñ‹z‰ÑWæ¤ÙµS̃₫ÑJ̣* Ú«Ê=„ …ÉŸ\щÔÑ~*Y¸KÜôÍ[fÏ1óƠZ8_â©~3Gô}ü“饓tèØ—ơ2µLÙ Đ•]EsO‡Æö̃jø¤ë‰´ªîˆ•.¶.gwRçîR¶§jh;™¡pñG”̃~›S@¨ŒÄ;„´éîơ^qÛ49½½ï U¨Ñ́“Fh¿ƯH5ƒ/ơ¥±§\§ø|®–‰eæ[QqM YæC7H™o:227%÷Ûºâº_jZ›‘ÿ÷ˆ́—à'Iz¯àº%…ö· ¸7#j/_¾zjf=ÜTá›â(³xç>=gc„°à¼ßbâ‚ÙgÎØThù6’ĂiZ`e£%˜µ¾1ÍơßöO i„˜ß¥Ï̃'p±Ơæ4b¿I®aIu4N NËK€X³çr‡hªa ñÅÆKâ9,Ÿ ^¢1‹Ăi^µÎ¦Ă(P#=₫ƠH˜ôÛü†ot’đøÙ?å̀ŸT ơ§Bƒ¡ t®êỲđéî2/ïQ–̀ç\z kÜK¾b]¾ÚdhÑÁ ̉“¶ÚŹK·Pá#A^°2lƯ<ÔF4Ư4&o:ˆ…›úëΰ®)̀éM€Í ˜'­?¬$Xö­ä£ëai³­¤Ê [XKÈ®ƒÄ²ơE_ée²×=C+]Ñ78N¦¬.àÍ0o_ô˜jZ¿ÖO1jy„ Ÿ¡<ø`Zƒ–|wá.Mxă¢§j±}nøî§̉̃úĐ. VQÊÎRÓ#|d°̣…`Ú„ Z¥v§û *]2̃Ù —£JàEñ!©É‘ Â(Rị́ƒ>‹^Ó íP^ ¢a7w}¦©g£}‰ç!ÁäÿĂMx̃c%À—PcVă~î¢ï§Dˆ2Ùd¹ă*Sï%ÔOí‡á6PCÚ|`Ÿ^“É/>XÛ‡]ë&賿äa†̣—=ƒØYg]³æë,XÜWåÔ|°&HQ9ügô·…•₫Gù8†CÄ!V¶B³0-óµ̀Íï¼ÍNuÆg/¿̉·¥Å“ÅåƯ“$×ШÄi6‹}ơsb‚LAœEU9`a®'lu]äWÉ{¡-KÊNÚË3Uơ„LpÛ.¿¡Æ¸†÷Çp"6¹ÖéÆäù2ó+2«ă ƒm Ô|¬)y䟕HÜwO¥åª&»|_2*ܦ~KóÏ.¬™$@ß~¥s®^ătægNHŒµO·=Xƒ́ »zq2 &“®øIû"© / ñDQûTƠ8Rs>¼ {­·tUyŧ/lÿ¹ë'%ƒ%>ÑĐ•È;8àç„‘"´º^½̀µyiƯ²ßëɲ¥î§ÓnµE ̉̀ê˜b†d¿g̉¦ºñ4£QÃxûZ;,_‚ûïOö_íHDI½ëÍI•ĂêáZ¸-đó~P@œSH(‹ª]WóÚ9³Dat»cèÊ"l…‘0Ñø!¨IsDí+Â}.ntÔÂúî#ÍÂjœ/e«µŸêÓ.ÜcÚÓâ癿ÆäíFô07ç[èÄ«;‰ü•üó¤~6Ll˜¿!Đ(Û°ÑBTeh²TT,‡{*iÁL?åđ—ôÑJ₫N_]w,Å_Ï‹FÁ ÄXxœ¾A€#q₫2ĐjëØÜrâZê=¿ăHÊ,5uÖ¾íƒô¤•µ/'î,W₫ÓS 8“ˆ†Ơ:dGöƠ· ”è°$³é«œ¦d¦;aiBÜ>Ïͯ”DÊ8Î.¿bºœ]xr6ñWoªBÓ²K» Ư¿­ĐŒy_‡®́JªûS1­̃ÍèÙ¡¸¾RRàt ö_ EøôYˆ%÷OPóbßvÿ:GbĐXSL|¯6¥dEñHóññ"øÅí¯B÷I½Å0isl5ÍÔ!¸ª±µ–W”¿¡˜~«h½Y<Œ Ó_À¼½aaĐ^é`4Ø¢åe,3±ưÆ₫ÿ<Ă÷̀¶z>Pw[l2…aœ !¸Ă>€yđ9́âµ· ЧK“[Zn¹4ÖÊqyYNü5“ÿ•™îÀ°Œă%<®Ø¿%P9"{—±WáÖi·íă-SX¡*Í`¨’5L4 ›wúËGơª2°C RMÁaª§,Z”V²H+¹³¹Û±"Ñ™‡b¿Og;梟$íîµ`_œöÿ¦ư‰awñ÷­|ĂöÀ§!éj»{ª§ÿĐmÁ¨Éàÿó'Tíj™ù™̀_-È9ÂÀ̀ÆVPÙÔŒXWÓOøP̀a¼X©[ôº+& ÅF^ç»̃·§ö9NügxûÖ@ œÖ’'ĂI%]E,Úi¾VvуơU2 &Y;±ùLE@5èW›¿bË”µ «ăˆ%bS—^уŸáê&ƒơp´£h ưÖÔ˜l̃k†4̃_'¯VŒÁ±BÍ@̉?¥×5GLf˜6̣T °ÈK‹¦ëaœI>ê Ưô¤°¹đÆiU¯¿¥E„9û$+¥y@À Ä¿m]Đà6áŸ̃Tm,k/'|=mÿu^ (ëØÇE÷Y¯ %+=g_8úîj€ª©CgtRù&b©_¼2ƒ5₫i`m—Áé\/´ÍơêÚ—́d¨Œ«.~ù"iT¥J'_º&"ữ¸|”/„/:J[%·°&ëÑ›!¤Ü½Å₫˜ßNAlÓHY²Å¬>³¨E_œÔJ©ßí, Ê1á¼,àíŸX'R¨*Q 5̃æ½iÔ&úAdßø₫°J_fT7OƯ]~ULׯ±5_áä¨ ü…”´¶r—6Çhc{^˜$G‚ó9‘-/*oÈ}¾ÿnx+q”=™TĐ₫¥¡»ZbÈ÷că (7₫¬ç%C2:Ơ܇1À%A1̀Ëaađ3“/„v”SŰÀƒídÉzt=óÓt=Œ×Œ&ƒ|:₫€ÿŸoè œ³`÷·̉̃e5JíSWµDŸVŸ‡k¹œCwôúXUâÓø~ă@†O-ƒg@q­3Xi„ˆ®xßvéi2GbÛ_9n¸è́…đQÛØ]<²Æ̉±ûUỨ+°‘Ơ úçs.韋ÑécôM=e$A[[uø»̃.Ô·—¹‰_?û‹‚)‘Yå@D´R^'ÄàáîVÄ9>#¿±Ûº{ųŇVê„®T¼ rB9öœq}QxíÖB ²ÓÏD É»øîP€ ,¹Pû˜üן­çqÍ]%ê¿é¡yâè°ú1á0¤T×™e<| éñ×ô//PÙùåƒg{θÊFê)¦RÛØ?`£§đ U¯càNºÂlăU"uÇŒÿÇvF*ù¸z~J‹ƒ¤•Úv&frs˜*ºèá #©æ 'É“«½…sèVÜ£dMÂÙ_P‚HäöoúŸ|iÏÀßa {ÙúübƠóNi.¶HÛëFUÂ<æ¥Ư,~ ÙI<*Àơν‰úU ¥’À d¤ OoˆŸn*²ÏEâ³+(Á¦[=îƠ)d́÷e=| ‡! ¾Bưçú$ ƯFM\@à &„À|=<ô₫“/ÔÑ/·2“â„…æ]hă&¬}ă•b1€Wø=ñ́ örH3]pHÑrị̂,ȼö—:¹:Qr1ó5¯ä‡ Ä,üC¶§ˆÅxfĺgŸicqă÷̃…¹cÆFK‡!ç#éj?›ØÛ²Ù8¸ù)Ï ĂJ5!»y÷|È"Q3{Søơ4‚è*'Ckº¯.wx¥PK H7ßaWû!6®AÊâÓ€: ÍÊÿ¢S×ư$?ƠđE:·âçWÿmrLªå|l6°D å<%¦»d½U@´àû/̀¼BK¾ú™‚ö§FÅö̀Ô³3‘²û&Œ°æ/=äÖ#N°¡fAÛ&W\ßJË0ÇN²ÙüÑFÏÉ–ˆPu@ă‹tú‡(İ´¯̣²đ¾¥ô4«âƠc×TmùzM­åË7Ê ÔñU:^}B@då~‘Ñx1Å04£}x‡·BƠ´ÇY/F•zΡӂ¥îiIøÑµi oBªÙ¡pSª{NqiĂƠ€ă£Ñibc„H-Êë÷¾/êÛ¬ß.jk½ ·^²!ÏB˜#ỳ₫Ơ¨ø¾Hû['p Ï/ª§S7rRÖ²Îổ?ĂV'¢%gé®Wy‹mơăz×Öà@Ë–çÁuT çÜ}W(gZø‡Å3 €°­a ©ê'pQG§¬¬FP_)™à:Ù#&G†Đ_½Z/¦5‰-ØüẼ8₫”I)ÄDÜøº . _§QO©&¶›̀₫ç×ĂÀâKOỄ8%ÛñK² €ë±¶^~ơñd)Ûmé«!Kóà(¹P18Äû0†Cµÿ«f*²x~!¸îÜ2å•J›E‚&Ëßo“Nûå S¤á×i‹UíÅ«Đáz†ư-~G;Ôé ̉§ÛÀ¨^ÇÏ̃æÎÔkÈ Â2¼zcƸaî¾Ă”vâ¡ée: Yq b.̉1!úûf¸̉Üw"“¥8°ÓÉÎePĂ¯˜7ÜiÎX_ÉB›ù!¸D Qfô[]—¹¤'ª endstream endobj 1467 0 obj << /Length1 2211 /Length2 15490 /Length3 0 /Length 16802 /Filter /FlateDecode >> stream xÚŒ÷Pj̉âîîlÜƯ=¸»·»»Cpw×àÜ5 ¸;ww —3gfræ¯ễ¢ öj_ưu÷.(H”T„Míöv. ,Œ̀¼Qy-V33#33+…¥‹ đ?r8  “³¥½ï?,D€F.21#—Cy{;€Œ« €… ÀÂÉËÂÅË̀ `efæù¡½/@̀ÈÍ̉ ϱ·:ĂQˆÚ;x:Y[¸|äùÏGµ €…‡‡‹₫_îa[ “¥‰‘@̃ÈÅhû‘ÑÄÈ job tñüŸÔü..¼LLîîîŒF¶ÎŒöNæ‚4ôwK € Đèä4üE `d ü75F8 €…¥óß U{3w#' àC`ci´s₫pqµ3:>²T¥å@»¿å₫6 ü»9F–ÿ†û·÷_,í₫åldbboë`dçiig0³´%ä]<\èFv¦Ù8Ûø¹YÚü«t#€„°2Àèƒá¿ù9›8Y:¸83:[ÚüÅ‘é¯0m·3µ·µÚ¹8ĂưUŸ˜¥Đä£ïLÿ~\k;{w;ïÿ 3K;S³¿h˜º:0©ÛY:º¥Å₫mó!‚û#3º8˜™™¹8y@GĐĂÄ‚é¯jÀ)Y₫pđơv°w˜}ĐúZ?₫Ày;¹.N®@_ï*₫Á±°L-M\Æ@sK;¸?Ñ?Ä@³¿ñÇû;Yzt˜?ÆÀü×Ï?é}L˜©½çó=1Óg5MEQºS₫¯RDÄ̃àÍÀÁ``å`°°°ñ¸8˜¾ÿGÉẸ̀ßu0ÿñ•¶3³đü]îGŸ₫S²Û¿g€úß BøßX ö“ Pÿt]ff“_,ÿŸÇư_.ÿÿ¦ü¯(ÿ¯ƒ₫+’pµ±ù—úoƒÿ½‘­¥ç¿->&×Ơåc äí?vÁîÿjÿ^]{Óÿ«“v1úØa;s›ÿ¶Ñ̉YẨhªdébbñ÷¸ü-WÿkÑl,í€JöΖ 3óÿÑ}l—‰ơÇùp₫˜É©€Ëó¿)ÅíĹMÿÚ2VN€‘““‘'óÇ(±rp¼Y>ÖÑèñ¯)01ÚÙ»|¸>Èù̀́à₫zQN“đ_¢¿'€Iäâ0‰₫AÜ&±?ˆÀ$₫_ÄÅ `’øƒXL’€Iúb0ÉüAùä₫ |̣ĐGÅÿ"î J+€IåúÈ ú}dPûƒ>ªÖú/âùÈ`ô}èŒÿ |&ÿÉQ>N˜íë¿^‡Éôđƒ%đ¿đ£ùLÆ X?Êúx/#g‹8}nö“dù'Û_ĐíAÿ̉Û»:ưĂÿĂÄüđ£Ê?ÑÙ?̃̉ÂÓÁâăfÿ±øY₫~4Àúđ£6ÿ€-°ưY>ÿ Åñáj÷1“ÿĐtÀ₫OögûÿQTïđGưÑ ‡}·ÿG Y>Êÿ9–Zÿäû Ư₫A†ăĂÜùă,₫qøˆù§áÇ…ÉÅ ø₫}pq·ÿ‡Ă×Àúnÿ€ Üÿñ8̃ÿHÆú̃óđƒ×v‘¼€N§úŸ5qurúøú× ư˜†ÿà}'@¸å{¾«úÎÇoÂøî {³{é4 ̃ËN]®ÏHĐ)4µÙA›N÷Â)#ư(k;âÔwŸVˆß¼OÚ¡¿´')w¼ø¼$¨LïuÀ-Maư˜,>n$„%`Pû´ïóæè£h ̃Ú#C‘ïèʤTˆ₫è> éÑ0X±:¶°§¼_Ë) ÿZ1Ă£­X:GQ`œ3C åÂ@C‹vé(Ă³\Íá5hïÖ‚ øå1Ó`²Vcu›2=^HïßrOL‚…Vôù÷Ÿ>!€ưZtTÛs Y2­ĐNÇfZñÊôÙAŒÊ¾D’±ª~ÓI>̀1F«’ ²©çª-32*N(¤Âkưb~[ú DÈ;Ñ8]>dZ+bè3-]1u*¥ï.\S9 $»`É©dÓL*ê`›ºé‘aÄâ\¬™#äOWĂ•9%m q¡ƭRẦMEØ&ËlѶ껷(i¢KWÿí^û~µ÷ÚH¿û}j[wKSQ´„ZcF÷BaŸ ¿«¿•  rNXèÚÆÅ¹¯\>L©å¡¾;ÖÓLƠ³lk¡ÇøêøwCWB‡Ø÷JÛĂñß\hä\-Êcçƒf†Å&– Úû”æ¢ôK}qZZ‰!{{çàvÊ&¼ÔiÇW‰Øªüîw¤Jܱƒ½ö”yÁæG ;ˆ‘¶Æ“§1M<Ú+°Üp̉*đ¨3ƒĐøµù#9—29dWç2@gé¼^Q%» ˜Aizư>W%Ẹ.ÖbŒ˜‚b‰ –pIk̀¾A.́åk¾·e©è!6eó @jkgÚú˜`Û‡|©‹ ’Öµ S ó³ËH>̃;C¸ÏÇeÖÅ}3“CÈr‚XZ€Hé Tx÷ƒYY?‹ÍªîEç ¡₫Iµ²O˜ÖgVŒøÊTb¢™,–>ô†[Æ üóYåµ.rYHûz!ÄẠ̀LOæ+¹Ă%zÉ)áÚ OC´ @€KûÚ·<{-^îÄ £­“ñʶ‰¡›vs§÷ûW ̣åd 1m†ÚÔ¾Œ9ÍÙT‡¦Z„óÂÖæ?5ׇ’ËÅ“̀„*’§@?£,J.öâàÈ裵™AhzvºÑ l“}¶A¶o£¸CÜÖƒđ§gP6˜Âv0ñ›F™{MA-÷ ½Cˆs=¼—¥:äăy¦¼S–&˜ Vo¢/̣¬»†cN5rq7¼E8» ÅĂÏ¿ª»Çư~ư6ÉG[”7„-ûNbÆc ¨t\ë #Q\~_-¹´Ÿ̉œ½ĂÔIÈíS‡¡“Á9ƒ|µFÅEग̣«Ñ¯U¬ơCEÛđ£àÁN•̀cÀ0¡›œû•ÆúØo›i¹ÿ4‘ĂâT—R~z;(¨]y>¶!4;ν­¤ j{Ef SºÎ, çlÇOH~âùê&`!̃k EưĂ3>Lá1¯ôÛ”c¿pC‹½²ƒ$îAK4 ê›8‘̀}lew î̉œVN{*QcMÖë² mëÜ>ïg‚&A‡®û”V¹ö—Æ¡%íÜ!Q¿†!›»§»ªH´Ó –âq^¦Àg€9 =Æ\×oL’̣Ư%4›†7 ;E9ÆfáD²¦©y‘ „„ ÔÓ‘nk¿̣ qF¦1Å_ø vßíÁÉij~%;X›P …†ư›Ù¢ƒ–A¸‹€#U'NE›œß"_tĂ=½‹øê…]I=ÙƯ¸Ç_ê‰ÍRÜ7$¨I¹ÄöÔë!Eó‘œpö\G<ŸƯ=tÀÁK…Ió鉶#°̀È@r¿)ÉÖ"©hvMƠÙp ă˜ƠR Ă˜³ ẾJ ^ø@xÚEY±·J/< ëÎ@JÇ̃@¾Q"8ÓVœ.@Vü$K« Ö)Qëa0 ӕ<oL8Qô¥èFÛ4î²ÜâKj|}TÜ€ ‡ÂYyá†ĂNœ3ø×œ6I¹€eÅ Á›¼Yû˜ÛÙ“ü²¼^¾K:][¸ bÜNœŸưÖ¸è± ¶<¤P C±™>®KÀ¡§»·0² ¿ÀF›oÖ²ˆhÉ&̀ m¤³đbÚ©™́ºÛj’Àê˜̉$U»§âÁ?²TÚ0=ÂÜ&]ËK̀'™qË́Ÿ£é¶2Ù€YW~¸'­ê(’ï}„¥¤§»Q (ö¹m}˜?—¶2¾¾Üü³Â±cæ=É*-׈«œbç„€±ÿ¸ßù«Áº ́›h´?ÇU $¼‚—siă™¯«œaªüR@E7)W®l÷,<øùĂAÇơnØ:·§" Êûú:¾Ø'ß͆¨ŸQ,Œ€€­`y?E–<£è6£@Ïæ_Ÿ™:³îü=G »ă׬Ê{DRI¿bsÀ˜It%ëiB0Eà«§˜®|#ª*Ổ¥rLç|“Ù­d©₫«.Ç—²e7LĐÏ“4˜X²»ª%ú~vmỢxZ/ôÜ”E\Fˆ?Lɧ­§Àë»0i¢.yNöø÷ à”ÂÜT±·*ËzÓ, Œƒ„ju vØăW´³–Sđ,C€ÈŸ”å̃ă|ªîÉ I9{dc䈕´F7½Œ‘¾æi‡™̀<ø¾ÑP`Ë-É)²"¯×nÿP+̀5ªÇ×24ß»œüó¢¯]T*Û<£Ơ¬m°Û©~ƠKÍ"lđL1$Ó<ơ¼¸ÖÁơº̉aØ4̃í²7µz•›È9IÂzT“̉á…¬r›À{ ỬŒPxŒ’ǤmGü¦iyq.gvc&1ÇT*_2–l21f`4N’¿†¸-ŕ¢wç¤Û…Yµ‘¬Â”áÄ^|rx‚%ÿ\–5’µ(áî?|ä Ơ»öoÔîU'r]\l₫êT+4¬o2‚ªŒß̃øǗ ûØ¥¶ÑƯrËZ£›P£à¼9ûŕßM!¼b}½JN°H¿u#˜·ÿïÆ₫H6m…T*g²i9ĐZÉ:!‚R¦>ÎE%SGƯ|ÑA8”5}]m¢$½¿ơÀh“¯<j5"Aa•W¦ÔÇr̃áè:RS§°!Og+Û̉öcÈŒt‰Í¯h –ïå>•«‰«¯Z`Ôá@…" rÿ—]*ŒH3Á'»}ĐwNaæ£~‹^  oyj ̃ñÔ…”é—䛡ñ₫¼£·=xïwq̣ïV½ĐeyKø§ñ`Ø!ï+á’ÛĂn-APB†ª¼¿Nxe€*?ÆGư·y²*A¢óG×ù??èØ §5Wßm€ÅÀ`̀₫ễZæ>&î!#ÂL  Í[Â^™m˜…¤ÆEçÂ× •5"(¹ă‹7ñ”̃M’+t„¬đ¾•½‡“ZiAvh9ƒ¿É;á-‹×6æ̀˽’’œ̉áĐe‘€ª G$L₫C bCëƯñàJ½â$Ăïy7"¹‰ß!FyƒIq-Á2.leJÚ”́iX#H)=è–ëoí̀“ß; tÓŒ Å3}Å{à‰åϲGQG9>Yæªàç(ßÁĩQ‘d4”đ‘âh ïPz ²˜ï—T9¦[§¤†F3´Y:Ăbj;×¥t.j2w%ŒÀÛUƯ>ÍY5»̀x’½™f¾ƒơ^„¡P8ÿÜôË̉>E<ÎêQÇ^¬Àñî]±¶ M£¯­y‡æïíHæ-äÂ|ªçưQ`Sơ<èl´Ï}¸Ü-Ù>£iÖq+ƒÚY°Ö}R2& ÊoØvË t~§ÇÇps‚%é«JNdäƒđ°e°ØlíJuá…̣V›æ"qœ²áđ½‘•£-iÀWv£[DtRĐS(SÑ`²“= í•w;¥ÎXü _C/„¥yFặɘ>˜ô‹¬½³©q¼^û)îûX̃†»¤₫X•u"µ÷Á÷q̃58˜Œ¦ßz @™–%c¼”Q“Ày!̀º¼×1‹‘g:´‰BÿÈçMÎY¹?Të±s é\Ê<-A뮦ǜ~·Q4^K°á¾£”ä•lDQÊû.­– ³å‰Y[Æèæ9¹ n^ñ=X¶ ătŸG`ÂÙKLg˜Xß)dÍE=Û>»-bÎÓ°f¦¬f$î’“!r>M{ÿ¾€y­<Ø®iÖ•p»S?Ơ$„ï °9‡£đ€Ô1oœC9 µâô+A…ŸĂ\#MLÔ·¶­¿đDn_£ øML3Ea׬9/‘­È‚!’áYí?‚1wàw£íØuV¾Bl)]H₫5OtT-‹Ö#¸bPï¥â •æ–Ø2Ô…];+UdNÏv/"Pc$aEñ%)0 æ®“ÆẠ̈wÜ5˜Œú|³ojZ\sLŒx¡&_°¢aÔ!Âé,¸.¸å Ù' `½yxwƶ¬~Û:¹Ưe)ƯÆ’! &æĂx\ẃ+1CÆAÉ(aùQ úñlS~/ÙpëÛÖ'… †́¦éú¢Åq€/`®0d¤€²T_NĂ¹½àŲfî&tÀÎÙÀ(uŸ€uḄû¦Iáö­Ïªp[‘°¬ c¹Ûxư}¯¸-Ô¥@âÚóz¿aïị̂ÂûÆ]Y‡N;R&±Đ±®mëüÅ­ư¦•¼¸™4‚-|™$a­:Duăg¤Zî₫̀G…Ṕ²¢÷Y”H^|½b’Al¡̀È‹ªEaÆ{ë^o~¥á₫4¡=r&ă •ÆÀ°-»NÚàë̀ îHâ5dWµœăL–fbÊsZH`±‚>e©«´ÏƯSƯûsy)›²Q–„‘Ù刦ª$Ạ̊́n~î†+*ÖfÚ.S̃}O‹?̃g±ç± ơrÇ•¬ă'¯ÏèT'çFÁ"»ÔÓ·’9k§+?éñØÛÛ¹«L·êˆZcú~L À­a”Ï¡ŸZ̉9Èa·ôR=³̣–s‰ÆùiÑ́§w«Iî k ¸èEm˜"v7’À.0lÓºnB®zƯïb Jÿ†Réôyú́k½Bä·¼f›i\sëa2EÓ¤ấ.{‘¼“aº€'÷%Œ%iÜöÍGÜ €—m€nÑæ½ÏÇíîCLH°÷Å«‘P.ØàRÆJjQ²P…ÆØ_qk{ËT/²lå®ÄY¹häÔÓH¾”û̃Y•́J›©Âß·y½ƯLzÁË~â7‘ñCYư¶Ü¤› "‡¯ÀÓ é'@g4ÑeTÀô¼ÖAƯ÷×₫söƯ‰§Â¢urxŸp»È®k†^ÖmÔ#}ÛƠÓH́JÙ›{Êî‰yÓƒ³åîŒßfĐSMî¼ëëd£H”z‡̣í|Y´-œ w¯Ûụ́ư3/’¦mwr¥œ$ơD²¿è3ẃú°ˆäü4Åè|œjJrÖÔ{²@Wb@k±CÊJ–Ô“ œsM°Í38a¡ $°“Ú!N§ÊÜ,£áC¥lc̣1úƉÉ΃®Ùiâ+r7ö¸é<Á &y é×d²MéÿÙó?MüW'‹Ë†(¶›[”üü%>çẲäƒEî`7I£ª¿ô/9µÖ¯ØAϬA 0èĐsµŒ ázÆ5nN|][·uÛí^qñøíG»ÙMm¶(S'lyÔt„¬đe·Ñ!‹·4'Yz/Έ©Qé È4rÆ6™̣ú:6˜­ă‰¡ßv±º!ˆ¡|™öWµ°¡GÜŸlv˜HE"j|!á©“›UƯ\öS®ơ5„m+ö(j.ôjÛôB‡1.ă5ỳ¿ëÙÊåS¾U5”Léçq©SåˆF8|‘ ô{x²đgc9Ư½¤TñA"çë{ß÷™&¾*u%pÄÖ®&V,ñÂuĂŒ?¡¸]~×ÖÓ[‹* * &×ʧH•2 ÓeÊÄI¬¦mP‰ơ%p5kĒƱˆôù|vç«–KR̀̉L#»¨Äˆ8"(a{2îäщsµ]÷đÔâMqyêj€†âP?¡Cˆ×Ô‰ÉQägÈvÂ"è°yftRmơbj¯61tœA¹¤÷«FFgø÷·uĂ€OC=”dÜ–;°ú<]ĸe½ÑØD }¥‡"_v÷ù¥̣.”ê8ÔƠÄLÎn= Ú=‚’´KAP©.¢0[2E¾ÂÙ”¸†̣ÑÍƯWëÇ'6u×™¹x-‘¹ø¼́|9_ù¾ËF¾S̉²ëxè9ÙX7m>2ígÜ$¿’|fT™‹_—~'|JœêcZRÙ¥ztG²É¡ÜOÜv΢R¿jKЦ%̣Ö 4óÅ@ÚømÉN™×«óºÈØ*»ª̀.”‹ç™ØowÖ̉~(‡^à?yz c=4ÜË”/óÇj¨ÈHÚ7<Ÿ¡¶Áû#å2Hǵ±̉“»¡s#}Á¥^jQ‡’Œ#̉Úư!7?PnG &°ƯIßÑW™‰e//¶väM%7×ưẳä›Đ“D+hST¼:º`C₫úóCÍñ¹•„º¢{Kb²Êø£·TÅX̣Ao\Ws ¸%₫XƯ@Ưa/®këv„*>³äê’Â7e°²1·™{ư%À»ư«–ü] æÁEû·ÉÍjƠù“µ2Đ́­¡(Ư>4,1\³̃́fjrWê“îR<~¦"zÖuñäŒa&ˆ1n¸drÚđƯ®ùÁRĂÄC[È=ß~V0¸¤m ²Gø¹đ´ëQAYA ëkÑx¼Ü—̀øû>Íx’ ±ºxFÔ9%UŸâJpđăôÄmHTư-,Ê`qÑÉ@{Eqs5TH³`#çITÙøÉ¶±‘Y'ÅÂu*`§Rd–Ri₫@ ×VŸ´ú=¹yÎȧxz0(:Y.ö½{µ+¥/LÍVÔ¾tå´6‹Î$Ȇzô”¼ÚăÖaXÂŒµÙNµ̉‘)ZfQ\ ẩªæ™.8·›OC_†cÖJímI–ƒ¨9ù|•L+ä¤'< ªx M¿éÔÉ &i.Âm# [MHÆÎR>ùªªÇ>b¡¬Ô/yá³¢´\ZN )4,’Ÿ‰1ơçånˆ†¡×̣ù”²q_Œ‰̀ó‚øzpÏvBIà#´<µ¸;xë€₫Uq¢yÈíĐÍÔOgB¿`n?ịœ̣ÎkÂñÇ›´H<=4Ï9÷¼I×Ô\9¼ƯÍ+jS6 ¸ B˜~’½ü—t6’ów1ËŸOpÆ*mL …ạªù¥Wâ=ƒt§ÏGøu3¿µ Ă{aNf”'‡7e¦fÛă„vU—Öºäe—âª@M÷}đ²8BÛ}’‘/Ăô¸ Êk{éOÛ:HÄ’ǽ6ËPX|VH̃Ơ¸¢Ueq(y¦å¹úº‰̃-¢åzIl?/Ë)̃ûƠĐ›4Uă{R“4•›ORˆƠë¿̣^ÆßÔåR¡¸ëÀîiđK¯³́¤¯Ǘ¤Îs•KµØµŒ·’́«m— ±6—Ù¢ev(¾*"„ÿiăfwq‡„Ä·yc(b´-ßøÁ)ƒ< •M™?å|œS»ÈñÜ ^‘#fª½†½§Ê©́ú®[ úIÈRNO!ës‹̉ÆÜªùWê•[´wo+̣íTƒú×w±s:mÈäÏ6)•$₫|¿ö,ơ Z-QÆøtĐÊ K”0ˆŒøá©a1T ®¾!WăvRŒHåÜlør˜'¦œyĂÑyˆ6º¾FJÖ²Á˜¯±F|Ewäb̃ámKS|¢ÀåVæ–—Øyíjr Ưé0¶Ö/±"@t¸*erKÈCL tqî¾Ă,₫́n«–9¢=ˆ<Ÿv8=¨½:°¾?I‘sù̉[̣ÎáqÿlÆúi˸Ö"J¢`âw=>¥—Ç6ÏÄ"æ7ëÉÇî₫(Å"×&ÿ%$¢ HJ÷Á·ß[ƯIûNöOƯdh́„¨Û×­'…áfVOˆKåiØõ]pơ m|UÇ4èR©Ó»7vØ '}¦Ó|S_Ûmd=G{™>1×Ơ ‰¸:Déb!®/^j°¿ÖP»Ûqê $Ŭ¢«ăª'Ü3/ÂÔô^üĐh¨̉`¢ˆGœy«a*8̉â a.´>#Ç-oIÍGoÎæôBrñ.ơ *¼‰nÆ#v1 `¢J»₫ƯˆG#H4ÂÊLIÑđÆÊÓ‘̃ûî·ư7v$\̉óêóR!a+s]{r†¹Y}©VT³, ß¿7DClL4ß²z‡Â³lt²$GóµàG5\*· ¨¼†9láŒïïê0¶µàƯ´tµJ¼dZ©˜’_6ÙNºË‰dGgî ÅÀM(U„p?r̀Ú{åÜXd¡Nïn‚ˆÜÉmhô—³̃ïăaѯ¯l¶™ƒ¶¸¶}xª¶“×.‡ …<æ˜^^tt`|ô¤³%ë'6~¸—­1©ÅgÇî·à×ôª3¢"‹Enq8Èà :¨‰§w³®‹‡ÑËÅ\‹|^¸ÂƠă¡Aÿ³mĂĐá$—ÓËUÉ`“²€“~§ư¶ÂapL6k½”'êƯ_Íeh&ĐÖ¼EưĂÛc ̣˜vK­û ªƒ5*á ¤ Ji RV’üjw +äñ§0%—ØY‚¿bßéçP½x ©ß»{ªø'MRÙ¥[¼Yṇ&°ÂZ¬‰7•†%Y(el* 9Ø'®dD§äªüÉëĐÖ¨Œ©@"50W^²¨ĂaI”?m·¼iàK¿"–—uÎËÚÏ•åe„}ă_Á¦Aü¢}ÇDº×ΫV!g»sœ₫ĂÚ•[y”#|›&Ú"ÔH´y÷—Æœâ×k̀æï™Gª]´™# 3˜q(̃|”"́¦íäU~>™ởBẦOµ ü‰5!oÈ(LØ“ bK8z·?.a¼·4çø1q0ªoj¯•O¬¿ çt¼è̀I<÷ê1U¶¼¿a€Ï. íG™”¬¹ƯLd)úƒ­]¥sgO[5[O.œKq×QQX²)ÈO™ç*ç®A€ă êk´(Ù(Ÿ(”¹á¶oq?êp&Ẫj5€åœ©PĂ ë±ú;áF~2—̉h†û‘d]£MûÆKVÎp>́Cˆ¼y~AƠn«ê©xỌQpsësx/đÛ¸ RV—5-ÖôBuML 3½|ă™ÜHĂ/¹™án:CL®¸èĂP«¸»!MQïÚY :€¡@ªÁí’6âđ'c¤ÿ¦å7£ÄtP <’ú½×Û/Öª:¦=äKABUăQ+o³@Đº‚l}©µö~gœË›Ö$Ô´–à3ÈK³³cæµütü̉¿ o ĂËUe9UïÅ?$$îdđ|{̣BKö|5h*¥ơ-ĆU˜ư°ç6³˜¾=ˆj$1aL º₫’Ú̃O¶üưr~ˆÖÖ•ë½kX=Fv|ªË‰Í›[Ú{¶Uº‘J•®iÜêd“…<­…GRª¯ló’uPÙĂmÓ÷Iœ9·¯́g !b²’É•¹9›̉v£bÏz[‡·]<ÔV£ç?‡GÈír ‘bhÖ pXøZd$j£ÇÔE«[C»¦qÇQvåÔ™‚̀#µ;0æö•äÏCiö°û­ §_|̣̣°«jĂ>w2éN^.́ª̃—7ØT«¼˜ÎÉ?/J!̀ˆƒ‘Zq …OkÊ"=ÿjRÙ°qˆæç‘«ªR–B~9óưOµGqM̀¿’ă÷*©¡uç¡-mXüMñÁÁơJùJ«NŒ‰ûLfÔªKXÙlF>ÛøÊá7́“0́©®ÚøcnÉ岕F¦ƒ×Å)œ9¼ïơÜ@‚³Ă¨ù¼rAg&ä¾ óNUºé9å±ơb·Üé¾1jÂÊi¨¶Ä¥Đ–ˆD[äÓɘjSŸaHj¿¼̉Wë*C¿HøqP(ÏívßÛÔï̉Ê‚¢Ø¢_e8ä{È7¹agœƠß‘ÊÚFÍT;ÈyHäîiXo§øÆŸ JpBùÁ«¹°µI‚ưå±¶›pù”ºĐ”ˆS©ÂK\J“‚ŸzW] ê §ñÚûăü~ôÙn7 °D+²;W–Ç̃‚IÑ0ä‘ aÏ¥xF ³ïô\ö zä_¿½ñ¿ÅèT£¦&âE-XÛ´f§!ä{OœöÏ sj‚́\MüÙ—l±R,’™Z6q\§›¾¾oC„,ßáM2Bs7ôÿ$ß?gä²›½̣zÜïVPV/²UFĂçâSf6"‰á˜lJ9µ ŒỌ̈íƯlbß`çừ½Ù••«ùƌβđ$)¤7e«ZÊ(́6Ưö›”’0ïs2%Ç9Â#¨}?>ƒ“a¦¿,è„ÈyDœUûp/ £€=T9ÙSÙ©·×è(SI.ơ¬“G0Rj5̣ñë¬5ÁÎ$ôr¢ù–â½2TE)ª;7”œ£[¾uè¡ñ§oWè¢,±GóÏă! (‹Ù–tIönt¾)´\YfÈ;èÈqß®¾ÀG̣z‘ÜÁaZÊƠc2G+U‡'ÈzÚY:’Ëá%>Àâ›#×A[\v>ê¼TE ¤yô²Iï ”|I¹Ø)JÁ1딡h*ÈĂ´ÄJÖ aC§éÓ®™zU &UzÄ̉(81÷ 0îÁ÷ƒ2³¬¢ªo¨+KµÆ\ó2{¯đÚ$[p`¡3c%–ÂgôI­ùh//Ö îLk8±™ùr‰ä JăJ̀p“èxÄ{zwʨí́v%ax¸ϧÀÍL4ĂÑ °Øf1(ëÎGÁtΈYZ øóÔ•ńyß­̃C'tO[6DqYz $–‘Ùbù®đtE2ư8Ɔ–±±׬ºêøöÛ"iúw!¥8åÑÿ©́{Ë üÄüv¦ó'B§Œ_ËØæ›SRöâçtVªW‚«¦<2øŒSˆr[.¼ô\ùvdHXÖô|HM†0/S’{¿˜ Q!ˆœ-bûŸlè!ß6„2̉«µêBJ @£×peáÓ̉xv"ùô›¢ P€a–~œk Uîé ¢ ùœ́:qkѦ, s̃2JÜ[-HSƒ1êÁ¿¸¶ÁØ×Fëw«ObÛrø `đ¹Vë%ă¤Fú/ {²&ăm0›Ù[ÅöR Y<°)KBƠt;Î̉„ÉKIĐ¾Æƒ›j?–3¼+€Đú•YŸqÚNg<Ï©´] Èº[䦭̉Ă}_3´iâóf+|P~%rJº1wc]™7*ül¼ÑQ®D½çÅ“êU@ßy4«Ü~Wr3Trœ,¦ñÚôwù]Ñ–8 ³ë¶ë¤́jG¿”UñbZ9ï#u^nA]ơ5ơqÄ%:÷¶++}-(]j/£w Ié»^Xß$Âc‚—÷ ²¹;a×!o‹=’©é,»ë ̀4¡ă¾÷ÊFá:ŸÛÀO8Ár…¹ơ Ÿª}9qK, .Zm}K̉”‘µC§në§jơàzW½)a°‘5¸nôO:…O$¼£Íơ?ƒÙeUFΑŸRỂÅHÏb'ü/ñ«r„**ùXÁ^N¦×ë~ʵĐ#Êâ~ÖƠ,=s¥c°l£]Züü½3· Öô,ë*ËÓa±̀²hv„ÉïLÚ$)V«ÂœZ“¥©́,zÚ}T.;GæÉD‡MˆX§±@ÇÇÀJ" $n€,Qáå~Î;t¥ÈNœÀ<™,ÚN^Ö¾ñ¸œO΅m‰ Đ:eŸÑc¤Ø^í@ưQó{\­#B8>ÏûÊP$›¯Ä“Óä—~ÀÅ ₫ó]N§7¬¬Ơ×QØÎ;_6oC^}w¤ñ© ăÓ!—n² "xăeO¯¬ï₫ûŸ¹˜v)y×rn*°÷„rx̉êøjÉ”ûĂ½‘[AvóÊđD½àÑpÍ.½:£Ö:´mWI¶ôW¹2Ú÷Ñ¡=nè­Ø@r2|6Ë̃øÙpø»̃A”аV\n\>̀§”x‹ïîÉW"R8KÛ;̀’ó&‘£¤b¯{ùÛ°?k`Æ¡ä6 {œ Å+rœ¬©J¾¿^đ\Ó­Öˆ¡på×o©ù±ïï «€7ƵÄÏa9„eÊ‹&=,¼³Ă…H-Û@‚ƠăÄ×¥Ye*úåùÙ̃Ñú½ª¡?⾕zDøaưlă§º¯uvQI‚ßå|Í)­‡ËztÙ6Ê-Áô©÷&§m1,/¦ÍM3Ăï>(₫T¼̀øÀÖSă×0À0Ë©ÓĐ$¶äM!l–fÊÀ¶àă ÈrÙb07'Ơ1-Û˜‚–cî‹tv•+î±ôÖ˜5 ºpb¾8γ¾üJ JåTƯQhî}’ƠMÏtV¦çĂf¬¾:â}Ê•5SYƠ€;Ú°œǺpâ6ÏơxÙ?}.wTSÆĂÑvL+?ơK[’™ˆEF*xÛ*×uqÓĐ>ă¬¥ưœC›h= îSëQ8¸§Oà–±F¾Éƒ´ÇäÛàṾØÙ•^•jv¤áG’ƒ:iÅœê ü¹Jß³:CG}Óæ}¹×œ‰“́Hy‰GC'?«¹«ơÎâƯª#©Xz Ó¤ ñîK Ó®]ăsL8’ÉÛ å³]gb½Ó‘©`Öå´RdZS›‹Êö‹#TßëÔ)÷F¼(OmÄO%]ùŸ°̉¤=ߨ”Q¿bü¦ACƠܳ’º~´•kF5Vơ½í.Íe6o£¤´¨ÖM”¶Λ]ͼßÍ\ñÆeWăäd‘óÿºë¤%D ¼YJyrø{`ĂîKL“7̃£O«I’—ÀàöA/̣7¢„÷*üÚE@̃ÁÜqؘ“a\×(¹àûE¾íj ‹̀|‰ä§«åÍ4ßyĂ^èdVÓµé'´ùß+™í?‹H©@ÈVá׿ºtis°íW¡½oÚZàáC*\ẩö"ßụ̈-—3¿9—Ƕƒ;n>²·¶Z××B-·M…·e ñ#uï#â›K56mu%®ÇfÇN°2µß‘dU¸ñ¬ÿ8>~&đƯ(Ê/Q’—óDyÜƠ‚ …MËgù ²1;¾]̀+\…¨GDî\Đ,ÅYồ «ˆq“˜Tñ¢>JgYïr)s§§‰>$w»!…$§&å6‚¶màíü:èÆ$©Ú2₫‚mímdxê}/3D4LW¥WÇøăÁÊP?ü+«ïªñ¼Zá1»E—äÙ"ѧ1”–˜$º|đFæ ¡åx„Sư—Ù̉ư ä–ªf¼M̃k̀à#O÷̣ơ‰{ÓÓ7Âöë¡o»dr€ËªïM…ẬeMφ—JÓ»tä(¿:µ fZß(r¬‡øÍ¯qĐ/`›0ø=6²V9ˆFfÙ}Kúï:¯{"̀ÛQ́%yg¬OƒïÄr¢nMlĂü¨‘÷½E8u’¬ºœ ,_·+Ù—¯=‹ëŸ³ÖlBk†ơMQ.azåá‹‚¤ Ê'̣¿*W”•wfoÅ#z̀Këyª|÷‹Á­ &QhÁFK³@%>Cت¡Äểè3˜QÚ=èóÓ³^Œ“|ơ\œ…à ÖñIÁäƒQ̉T…'ZY½˜_}çÍ5NÎ8c5€¢~æü<¿̉ϸ„t̀•ø°kÍÓÏ·n™†Ơó)À§=S¾VZ₫µ'Ug`°ÈÈöóñå/íªÀéiV}^÷NÈ«ù!û¡ŸơmrçJ×ë‹1+Áư\µ7̀½"^*ÄjÊHS ‡tgftÆd@Î ÎE¯Óg°–­¤r&XúLŒÜ¾ ǸO¡́Z8Ù_oiÔ¦Ê.…$9HæơŸbtc¥^Œ}oằˆ<¯ï°Dđ;©”ÎÈëÚÍÁd5<Ï+Í9­‹¨̉ K\·É!)©q~ׄ^vªËéyg¿q-üđ₫Â’K*›Í­è^Üèv†[jl`¡)Ï¢3[®Y¼y!ºù‚Ù·‚ñ”{×øü₫ưæǼ=­–s2ªLÑ’è¢%QB¸Î0:AÎ4*P¯ç^m^±8„ÇHÿ܆ƒ¿¡vÎ₫¾î6>Z¹ZØ6‡Z̀w¯Ueµ̉Ç?输½&ñˆ(°o¬¦Ø€ơîÛ׉½ W y^²>#!8ɽ (íXœ©lîˆ́>3ÅE÷Ưl<†Ă/Z"¡-ÛÙB2ÿlå_Œ́j§¹Ó¥›p?̉œæ5ŕ_D,ÂßS- m­T(Y—Æ*’®/…5øb¦ơúmˆ²}S \Œxyè<†‘‰Æ½›±‰½à -¬=UưÖÄă"•…P¼(§ÑÍ…éú|—\0XƯïñÜäơ§²=–H³+=¦{Ö-Ÿ—~ïoØïÿX=¸\ªGT®Œ“$­’w¬&T­ƠÂÆô!*K7º*øBĐ^§‹W[([³¬…Îgc2çͼî0¶Kº^ú›®ÀKvÿ”²¶+µƒTÀ2Ú“?¿ÅvDá|N}qỵ´Î̉8«7áóyÆ]÷PŒÎ~Éíœ̣Ç?ơÑO ‹\]éă†~;Lâª?±¬Ó¾P±̃S£®¹H‰ºUZ”Í´€]óxnGIƯ/Œ³ë1Üấaä»ê=æc̣é§8mä­ªB ‹$w«µQ“:î_Ó*¬},¾'á|=Ó›Ô|¬ckĐrL÷ÔŸ ™”[×iÿ)7äø5 ÂyE³₫ô“E-,«yeHiﬖÖWi±fo\áăZŸîßèxâèTôÆ'CjªD RÀ̃ˆ!½Ï ƠâÂ,`ÏKơ¥  m¥–X6ĂôºØªbm!Q_έ™-@^n6­JØîÓ$+Ó5#Í´V¥¯̀}â/¿aSZd0&(È-w™D€˜zl–(£[Æ“„ô¡’1.rJ́²²¾*c¤h;¤ÈîÀÔ! ê¦é6zyûÆ<0Qƒª“7ÜL\`7s PjÈ_́ó Áư–ÿ̉¿hÇH“ %àËô‚C ¤̃ÔN¤Eg¶O§Tö~Ư+®\íWÔ„2†'₫¦̣ƠÉâd̃ơ(“qv†đGĂ”3Y÷`ŸÄy.2Δ²/n¯£.ôàƒQ¿+¶½Ấ̀9·»J7¢Ơ,Gf“È&ॠç~®̣|No^PÖöđpÉe~œṼˆƠû„ £’¨¦¾™­x̣Eß°#¢àèÅ‘Øb•¾xÊKw9€·BƯVɵ=¾¾†KÑ›ëR±±…F½ĐX¬†ĐƠ è’¬8bPÊ+®[Ët‘é””ÍéHë%~÷y~¢Ü2q)–ïÇ!æ”k£bos?gĨí€sá¡@¢”â·óË-K͸Îpü₫K'ƠÁY¨‡&Ä^ƒX<…ÈVùUÇ[Sr)ßææ7QÓÙÇÿâyz´fû2>ó¹qTĐlA©Ăÿ{“Ÿkô¦î<=°ß/Œ°ÎIÉđ–óRj•綨đj=éVź̀ÍÍÁN%}V7œñÉv·à)„ÓÇƠjl)íTEw2ÈíTœ7 ‡"¢ôđ¥';º¢­]îæ$L©#å”â÷¬>GeWÎñ€ÿ5ª YQ¨nö.,/pLu?9î1˜—ÿÅúí5ỤË/¾H R÷IU>˜Z³³‰¹[Kú–9A_©âªªÇåü·IÙ\¤Ç0m…À¤M²ñNJ¡·x×8vA]wh`‡2¾Ÿè!Œù™Ü»ÅÂPÅêïƒëF bÄ'ëï_8âߨ«±rè¼)RJÆU†́gŒ¹ß¸ÉỊÔïú±óûĂHÁ´îµt†ô aëáCÆ¿ /«Ø‚́ùô`Ú•îÖÉ^[í,V ơ?ô)GƯñk²ÔàPÙ®[]ĂÈøªûPn ¿H#¬ªç²&^q`Ơë3V́ô…u¢,V05Đnu¾ÓÎx¶È ‹ùé¸eÄV™ôZFEƒå1‰Ưq²²„Ü6j{¾6K·l_96;ˆ‹|LƠ%JNÔ ¸^áK4ăŸ Æv­b–±fL¸/o^À¥¬KL©X[ï‚!D$‚Ơ®Nuv́`Ó¼†dard…8‰ˆߥ_i(Áîåđ£`v4º ö\r¡”{Ôå1Nrœ‡K¢î²;9lKGб^<ʺ³§ ¬;—̃†æÉ’!œ" ºóĐÓB"6Ökñ8Âí¬O3ïñlT¥ejĂ—L}ڳ饋βd“°7Di;"ú"‚›F6¥ =ùzUz¾Œè½̀úq_-Æ—A³™Ö´ÑO‚fÔ+£1ûߣf-ƒ¿.ùqđ'u5Ü‹6؆iƒ^5¦ơƯÖ%å¢ÓÆa**Ä<ˤv‡´î&ƯÔˆ±û₫ZXr^1(&Z7WïÑB 4“ÿ~[r”íÊxđ̣ö™¼‘LáKz@¿1û¬hV¯́œVhç¤.†}Ö»{C»c ŸŒ8£}´ŸÑ–­eq‡*0\…­èËW·ê;<܇1YVnREª¥Có\ KG€Pu₫/¨BïÛ)Ö}¾sñ…ê3ñG²ô €V¦öy®#ß§jFjΠجe~™vnÚ>À«· ZÆJẹ̈PrÜ¥%FÍÈÆF~|·$‡½2“đ¿7¡{ Y¿´œ¬x MøµïSCƒ‰q’X­ï¥{îbw“º Eêj8ÆØâ`»jœE¸°[:H"÷µ‹‰%¤æ ûz3!¯‹&mª´UC˜<,ÉÚ÷˜ÍϸPv”Ç£|å¬HzéÏî‰ÿj’éEL)pyÖîúhƯîq¦Ă I8·J·Ä¿‡d`¾×·'u‹îw¡v¤ùÛüt•6æÀ96“ÓË‹ ­¹½ä3Ÿ‡/úr®@˜J Tôj•Í›.1́:Ơ qË4ó‘†Ö`÷}œÊ…#éŒógu7«×pÑùiư[)ëé+Y¼ˆ+^‹‡%aß7ƒ₫Qêæ̣S[å¸ïËàgÎưº O×~"R!Ûiˆv›«C¼~뇲¢¦˜•¿6=,}/€ï-°Ö,:Ï38Ü!l.—¯NÖ́4 ³ÿ†$ó6ïEÈ·åè ê†H¸—Ï„©È:9‰=}gũzÔ–ŸÂC7T­-Ó*è³1ÛÎ5öŒ9r£‚ê´1½d\Ü û—o¯¨ †‚³¥y19Ññ₫?T-ă2áwr"I¢’Ö†d»aŒˆ ß^}ŒoBH£ ÔVƠưçu¡Q§ß…®(utƒ/ÀëªnƠ „Đn • hömwà”JwÔ^,5¿ÀMÉHNŒôpÍI¢ßôÍ’z} ­b ị‚ĦóÎ>C ÑƯÖ”›¤Û@4̣YÊÅê};Ÿ¿É%XRÂ¨ê ¸½ól|Tçë'å¼´xËD_₫RåG)xuº‚‡ÉD¸6À¥Ó YM™‚Ưk5Øø ƒÿÿlÑ!o÷ßV/•|í’1½`äæUơ.̀TŸ2ªÏ endstream endobj 1469 0 obj << /Length1 1361 /Length2 6023 /Length3 0 /Length 6963 /Filter /FlateDecode >> stream xÚw4œßö¶ Ä(A¢·Ñ;ƒhÑ£EïD7̀`”fF'È轋=j%j"J¢÷-Z”$BƯRî½ÿßư¾µ¾o½kÍ{Î̃Ï̃gﳟç]k8Yơ• {¨Ư*ëÜ{ Ä„@ Q'§1 íưkpB‘(~÷”‘P0kS£±8¨éåHÜ‘¼ EA éÈ»@°7 Ôj"àP€Sáᇄ99£±Çük äqàHKK ü*¹C‘00¨F;CƯ±':€Ư€Fí÷<²Îh´Ç]aa!°;Jt’çúÀĐÎ@C( ô†B€¿ê‚Ư¡:pa¨?v#„#ÚŒ„±7˜ÂFxÁ!P${8ĐHC¨ç…ÿkÿÿ̃ PDHäßé₫FÿJƒÿ;8 Ü=Àp?Ü èsƒơÔ´…Đ¾h ù»¡Øx°7æ¶Ç~Wª)ÁØÿ¶‡r@Â<Đ(!̀íW‹Â¿̉`oYQF¸»CáhàW}*0$Ô{í~Â&ë GøÀ₫napˆă¯& ^Â&p˜§TCå/küÇæEÅA ¤„ê „ú:8 ÿJóçưíùeÆvàđ:b›€Á¡Ø ö†ÑH/hPÀÿvüsB`h =Ô ü';Ö uü³Ç óZ‚°Ü‚~=ÿ^YcéAÀƯü₫ÿ=_amscc5₫?ÿÛwï (. EDÅÄ’ØEĐ?ÓèƒaËư'VîˆJÿ©{MÿªØû/x₫ƒøÏ\º,k¡@ÿÜ $rÀ₫ˆüSưwÈÿῲü¿H₫ß©y¹¹ưvóüöÿn°;̀Íï/KZ/4V:¬ àÿ 5ƒ₫í=„ä¿}h0VJp'·_" ¥ó…Bôahç?\ùc7ù¥17ª@Á~}T€‚" Đù°ÂrpÅ~8PXB₫vA±ºù瑪pä—ÀDÅ%€`$́À»ˆ`•ú₫¦0PX@cC€Øæ‚€$à×<%ÄÂJ¿L€¤uđB"±ºú=v́™ÿÚÿ1ê ùN!dÂ\jĂZ_*1ø®És®›=æ ˜E¶y’¦óVç:ÅΩî/¯¦Môê ,pä`á×qÏί'V_滪TÓíRĐđÙñÜa/κ6ú5Ạ̊z]Æç~^Ă|À÷%™okL¾Lªz:ï!J¢¬ÆÜ™û6Iơ—µµO8DzçxÛ¶\²°¦:¡…ɹº±éQB™¨„oøW|/¥cú ÜÅ̃Ùàe¤wüg[n7z:ÈPÇË(†×Ê~µhÙ{\¬R9ËS >q’„a´>ƒM'|ïa²ÇB…MøŒvà•Æc‘ˉ±¸NW ïÛ́¼/¦µBn»ÛkxŒ•\ÛïR”­ü̃rTîñD’CÑmñÈ'O`/{¿ƒVT¦P¦ u2¡]¼Â»—£P“Ñ騔L’ûÈƯă>¡1»MÏà£É/™ô¢ôƠan_l|™»p«,̣¶CVCĐU%øúVŸ5RiU@°vd»¾t́JU>qƒ¤åz÷€@A§Ê6’¤9& £¼==—›-ü‚₫mƯb…·”gíư«y¦= -Û5:¨X jïNƯºiOö(§µêÎÉ‹óŒ>2¨¶gÍ1s”:  1N5Qs^?_/Ø> # ›È°{ŸsÀW>öDPïÆ*x,“ÓX¡R‚4rrÂI—<‡Í [«­ïg>·ß®©̃ăegj…fÇî̉oi=”!GiÁ2vHW̃cư ÑínXÊöö,̉­W_nTưÄ¿KUÂ7Iô^oj¼r°ÿ~̀î Ç®„€Ï““ ̣D|?Cb?Rú$½ov ¸g§Úhµz¤v=³ºĂV(ÜPAœ {ioÆÏHo7æ $+àá[mO‡ù̀̉g •:]¶" ̣d>̣äSAë¾Î¬yû|ư÷?Î) sˆ{| Ô!ẤÔXw¥u< ³ˆ”£ÍµÊ•gÓèƠ;\úÈÅ3¼'¾G9 h^™©§¡¤#ơ¥­>~kñI~HI9Ô4F¥p–dhÖ-7™8åúË„ƠÄíéƠ¾q›nihư\Aªăཛb=·Jm¼ ²ÅùîƯ)f°ܱ́FéÇOT¶p*F—ƒ`–íøŸºb¶vr׌5¶B­Á¡œ ›ª&»ĐX¼n‰¯hy®¸º*^ô¥jL&mʆ{(>f‘Ơ"‚§93bÇEq¸z~+¥e2àËc™ @æ•áwđ@´ÿ²’8{è¤LN!&¥z• ]“¡¿‘2ä¼.Îå3¤™ê +÷̀@'ÄÚ¼´¤£¶z9y÷(i,9Âc‹HÇ™Ơ¯uÉ6‹ùF|đ&tïÉë8©’#†$. ƒ·>§ËÅOá&¬L̀˜ñ¯æ³ $măGZZ@sûîd̉}£_>?ûmB›Çư‘"û!*-„ĐÇ8§«*]b‰œvA,́»(«¼e\ÿéNºÙơẃ§̃#T"VV^Îđü`n¢ZtKëTr^º³Ađ!oÆCeÇ̃vbơAÚƠǿ‡@qOÛ̃§ÑwVFĤgüϧ«%¼JlWËzÍ0¤MfOÏ[N¢f8́̀ÑÆê¾đÉđÛžT˜ăœ‹©›:Ă–­Đnee&áH`+WJơÁ—¯¹‹`ƶZÚ ]/­̉·R¬gº…²;ăUHˆpÁ[BæäÊ, H„¿$1}ơ~x0j%SÆ̃—{og‹¢6¾#Ă—ƯøñàÄ+á(%«IỌ́=QƠ5 lŒofl²P©RHü”ăhúR·€W/ẃ€æ₫¤_ƒ˜‹ƯơÍÙ}*ÉÀ‚ ÂªJx`ĂÜF6A“ç­•˜cU¿ÇmóËE^$q¯âig}Æez¿fđ,·q üˆ4ÂoŸ­ V¶nëÜm§³ĂCøöÅ’5 Ñ̉ L…f_û·%®9@ß̣ ÇÅák¼IW›*æè.^ÎH£'Ǽô)R]̣”cÊ–@Q¦á¾Sqdf]Pq†ªÔ·áqă¹ĐÑÖ© Æ ¯7IôÓ§r«p³8«]ÆzÉ#m£ÚØ …¸æ[”OóNçÍD_HZó÷¼¥Ïúqn#M¯67²X>3¡o ñY&êUq«Ư¸¾A₫AV4} KLœ?Ôºp‚]|YØ/ăt'̣Ÿ~ÓWηÏ~P ₫È8(œ>¤;@?ö@gw„Eayä`XÂÖ#¨J‘a_¿s­Ú¢Á;&Bu#̉4¡?LÇfQ;Ó`Ù@æû-óơƠ´Iñ£¯­J̀EVÏMYö_éÎÓ¶V£ØPÄhz²;l˜ç¥±—¡ªWĐ·½Ç2ñM³Â›o`EÇbÉHÔ¶¬HO ‚ ÿ'Û—éó¦Ăg´Ñ-uj?½dOâcµ£”¼Ơp¹íôØKôŸ÷|;U jʳHÙñœwŸŸ»X˜í2)̣c„«IÖ͉6܃Scÿ°ú“EƠî̃ÈEñ4Ø%…̃I|G §´Qìèœ_,º<üVéͰÇ÷¼Ơé/È6Oư6”åÓóæ~oùÖ‡´•Ôí%U 5]pÀ ̃^—nR;}nsZ0il¤ù`~²ˆc¨jïñ“§y_v ´âÅË̃㩵?Xe$z óo^eî‡U¼[~Éæîyíoi*½­½H/†¢"×’Ö?6•.d46µlhææ:D¯MfIZ'5“ S»?z¾ÙÂÊÿÆéÄân"®ß} Ú¡¯©.1ÉÉ M‹ơỠî“DïùJi 僜±H¥‡^ÄEn—œßº̀#ñèY‹è¶·¥••#¹¼j¿Ụ́JW–Ơí//¨†"ơ€ƒ!́”©ŒN%Å~__tóT*­ƠDƠ¤Zâç>wƠyû½P0£0ÍNăzZêÚø†~íYñMwJS¹TÅêd” Ojêàáø;”&í¨½ûC¤ùKK•Ç̃5âÊ/\¨(ÉÖ^ ¯đ÷ÁêIÚ N}4`¸—^NZu°](}̉ç­IúöXª{¢OJ·†’)ư?çDตƠ>úªöĂ>Z§réü¬Ç¹ÑƠÊ!Œơ#óºưẸ̈°V)—ă¯̉˜ÍÍÄB½ø]TA|âÜH{ë@Wç›HÜ=­NOÅéYèB̉ί5µY<ÛMº¿·÷6Q`hƠ‰®±*èh ^{c=wjüñMư˜ÁG"}³$6ñ÷èÈ*ƯṔĂiTviv~ô”©—g*Ê£đnTw¶ƯÍiÙL?KÇ-X#©g8âĂß™°ëôൂw-®&äMs=~)>ˆ'滸a!n¾Kn™å2i"JB“äÀ¾ÆÄúMFFÆÉ7™G0VhVự¸¥s¦n¢üd¬s=Ï÷¬¨ñ%Nó ´­ec‚³̃O™?µk²NX ] ! ŒơZ.¯*­5̉éƠ¬PmuÜc6éµhe¥ÓUdP|).ơµÁÍ̉Z¹B²gv:-Ø̃滑H¥ËrV4ÛuÁ¤0]:µ=WsĂÔ­–Ë øcÛÄë¡̃JäJuR}¦I`¡¢áƒ{ …eŸ–Fí[đZ¿́HÈÜ&Oï_ǵ#h¬&$Œ̣Çúđ!®0Ăpi­ÎÚQ™i—é[óS”²([ƒ˜;— q†&‘)J™T¤“G5C$ØÙD9?±`’‘:Ư WAXÍVëg½äçÇé~«KĂ™™A¿í›gûă¦;cX ¥¢SÊx)¦†t~A/3YƲôÙ₫׃߲}aC&Ó?5tÇÔ–¨ ḯ2ôʦ–Óz,Œñ&:±7-1rkß#7ƒ×92Ïí^† €m]¢Yéµá ÿO*u…LœŒËù›–…Ÿ½ø}Çj¥ùo¤u790̃fˆÁavê6PÔ¸¡»Ô—~8ªï~˜ß§= ¡&¹­ö¥¯Ç¢áêd„ApŒŒă&|²¨ÜƯD´£Ü›Ós$§dƒn>&S<µ[¸º`‘Ñ'Xë)3ơè Ä1Ùơă wHÊ–y₫,Kë3H¬(ă¦œ9KFüÊOæ:¿ó̀ƒ Ỹyú"Ơà\xfê7Ü®çÆÍ?%®êĉ– ̣q‰æv .­µ½³>êMñ¾ë̀“̀œÉ &‰ÅY·|@eñÎÜâuÔ |AWÿV`¾̉ûsuz×Âb¥ÅÓá·TÇ&x”·©œoÔwéï…¹e ‘#%…'Ó¦ỳlçbm^1E³YÓi8¶BsH?IºÓ"Kª ëÂI{ÅqpkƒT›'=€åUZ)ÂnÙèoá:‘Љ!=HºLª•¤E%N/ê5j™¯;¿à!í©]¼‰¢Úđ¹è¹v4°éÁÏÿ|úB"N 1­Å¸À :Å«åĐb­b̃œ£<¿LQ­Á²^ NÉ[₫ÄÀê,±vdß¾,Al2:(̀®KCöZw“\…gc|}đâpm‚U>•¿H£TéĐ2̉wq†¨*q!ïézÑO0ƠkhÇaơÍ}q`/Ụ́…só¹;8ñ-ĂÇ”åFP…¸˜èú9™YºÔkR³RÇểR¾¸ö ¡+o:35?qLÍó/i`aÊ“¢ XK&ù‘Ÿ­Qvđ˵Çbá'Ûeb¥ËÙµ.3,©V -µi¥l‘ëóÅa…¹j…ªö§ ¶áœ=â]Y¥¹ư6bµó&µă~¢ÜRÍÖS½(2Á…f™0°"à~“·¸ï‹Ä©æöøør+ßK™~¸*s2|sv÷([øÆÏ"J<›ŒÇŸM-})¢û™Ç½÷§“«v(́1j¤që&$Y”«L;Ui Àb6åkÛ̃P|¶Å˜èùs¬¥*É[ùäë uđˆ“Å#6ó́™ƠÜ"»izƒÛÏc †ưzLÄJ†âŒ0Ó gù[p₫`,C"GƒfT ˆÔæÇ´’é´+†„ÿNnđóQ»Cœø §*ë;ÏJú‡æỉ±“k2uY~BÏẠ̊"æưĂ3ª !»·i—œ@«ÑN¿·¯/îËHî S°f§>ÑUL8³#Üg¾<¨;4¨¯`yrY9^'åă ́l«>~̀+ßá2oD!9«wÀ\ƯUL#đ­¾ âsNÜ[Ê6œÿ!ÆbàÇ»¡™|–˜1±hă… ¨Û́› મÚ9qOɆǗª›₫üÎäÚ1”q®ßạ̀ ÕÆLù# ùfzƒ¦r̉ tBĂæñƯ}Kæ:ƠQ©“æµ-*oJ* #j—Àñ^ ù†fm說‘ă¾"¹̃{Mx„ &-5ÍƯ’ôRG„NÉÀ÷vUœ‘<Œwe |ºøÁđŸÙĂîLÉÊÜŸ1ÅöÚHmÀ›¤™ªt}»Æ‹àö.îTưß«ŒzG.hj‡èœi¸ÛΟ›đHµÉË~fl¾Ñîèj±¾ëtƒzá¬Ô´ÔCđ'ói„|eh‚ơTñTu;ÆŸöf§ÿ#đ«3‡ƒ¯ŒQ´îÍNÿ–zöœÉ­ø}¸Ê½rÛ̉Ÿá:6£6B:jÁâ¡vŸ…ürL×F$)JTØ cóRơI”¬5ó G~ḶN)»"Ï[í̉§›kr‹4ñ£ z¢x‰ïï®}z#ÁËæ«¦.¡u^yöt _à«,Äx©›DÄzȘÊ+ư*Ø Œ1%-åR¯»^̃?ƠơlvqˆœaĂ² ß÷ƠŒÙÈ“á³dpEÎbùY=²›í‚Ơ’™¸Œ@V±"Ó ơ_ë%Æ1P6Œ½’V§ÙĂs`Ǵ°®ûăy2Û¨9‹Đä÷ö ±¤å¬æÓN­Ö›Dë2j{ó5N‡bbSă)%.h¿íUWç<-®¤Åï.ùˆ"ZÖQbè|§>w+́±4QT¿v’IHù̉"÷t¶×=¾¼¨2Mëg8 ,2‡đ…ÀÜkY×½₫Ñ6r°çè@·̃IƠE›°(ÀÅ6ÛR Ü»Ơ6¹nÚ$L¯\#m|Câ%û9OZÎ:£ĐPr5ß×ó‚óƒü(ÈƠë¬8‰/+×R¿nƠa^Ççâ’/03̣w>ht¢>h˜vº-Ïơ³¬û£m• endstream endobj 1471 0 obj << /Length1 1450 /Length2 6781 /Length3 0 /Length 7759 /Filter /FlateDecode >> stream xÚWuT”Ư·¦éF éîÉ‘nd€F†˜¤CAZR–în¥»»‘”.úƠïûƯûÇ]ïZó¾{ïgï³÷9ÏsÖÖÚźV 1îßé90b‚4@(;°ĂíV (@n£ÜÿU‚]Ú…r”äăsuuå9 yá[n€+eĐ#Á°5àרMøïáxñYúvä!=¸ Ê„nPˆ†¼Mr†Yƒ€Ûơz*ê-G0́°únÀŸÛàø»ÜŸÙ¿ A`¿“AVVpG̀³Ø@ `€På†â€`Ö¿€ (~›rA  Ë[ÀïæA œt;ăŸ"­G’ ₫’ïW™ÛV‚Y+ÀÀ0ÿWØêvçƯù₫>b{ÜæùmYÛüÅÚÙ‘Ïqr«(₫‰ºuáÿă³£"üüübb°́feÇ÷k}wGđïào÷í̃pG€Íí(`oˆ øö…€(„3ØÛó?ÿ¶đÖ+Àl áÿSưÖ ¶ùĂ¾eâ0å¿%¡€ÿ×ó÷—Ù-Ϭá0¨û?đßͧ§¥j ¡Èơ÷ЇååánOA  ?@@PL &" đ₫w%mäÏN₫#WfHüÑđíNưƠ´ËŸL`ÿS(€×̉„ß2 `ÿ‡đÏøEø­n₫ß´ỵ̈±ưW•ÿáÿ»' 3úÁ₫ä!@¨ûŸ˜[;£nơ ¿Ú¿¡OÁÈXµ₫ï˜ t« 9˜í-³y„yù…ÿđC@ˆØZ‚²²ûƒ9ø ~é µáHȯ»æ6‹Ÿÿ¿b·b³²¿½O·ôüßjéßë*Á¬àÖ¿D'(" ! wüÛÓ¾µD·ê´»ư&4€GƯ¦n'ôØÀø¿VBÀgơËơÛ¸íÏîS@Àçø¦€ù)(àsÿm₫«%+gâV§¿ÙsÛï_öïK v[áOÁ­¤_”ÖËѹ̣¬~&́8|}ŒûtE‰Æe]Ç_AúüHècØ„\ÓÈZØùé¶`ÎM¥½%¿½ù¼×»0IÊɲ:lËen¯̉GÛHugÁ5µÆF !˜µ-å÷*Ư.×cÙa*n§ƒƠÑ”Í'̉« O ́¾ßa«Øá%Àøv‡Z\\ˆ#°^.¥¾P¾Dnx¤A…y(ûm7æ>póü]{¯ ÈRÇT7:dñƯÖ¡£ÚqÊ–LâF‹(­Å`˜u¥E‰ú2Ưÿ¸.ĐƯÙ§W ¶‘4qÙéNy8ñNµïIy†÷ó`”„–%™€æºB¥N $¤^̉¥L"¨u2 "¼*¡G–– l^Ĥă°^ úh 1E­(ÓŢĮư,[¯E >p’'6`=rÚZà Ÿ8Ơë₫ÙS²¬Ơâ±qú5oỉ>«Ư+;:—% È®̃ÈĂÿỞvoǘ‰Đ̃’+Ï÷ơdVt,͈̀ R¬ø‚tGm̃Ö z³µ’¨i®2.,YÊ8ó>® )Ù([µ!|FJWôAÍ·j}“WÀ±ĂaMÉ誧¡[ß Ûy'|Üç~æ“m˜„ø₫à±âŒ©‹q%́¢²˜œ'…§ë'&u£Ă Iܧéa½fE×@̀&æäVùAw±{Eœ»üëY|ƪGƠÆÖRjïbf“̉ÁR5„50Về]JĂl°ÚóÙø»®r|Qă(U‹đS·ºdfñèº]my¹ªơÍrâ#ÆkliÖƯ G$\¦öDÍẫ®ƯL¢Ù*1u¤ ÙÏhîïÊÙ:¨jŒÿ¢_ùÉÙut|́ƈȿтHæ¾2ëÎÇG@›•zñ9Ä,`³¶QvxUgÑ3 2.Ơª¦œG¨†_DMƠeg̉ñÚÑZH¨1Îv?¨”Œ]²,‹,I"…èºƯˆ¶A`r\Ô,Vñ·Ñ*xÇ&-¢Đ]1ë\p’À˜W»ûúd…³—|6Ak†?‹- £÷ a…³‹uÆ6&©nVZ›@CÍHºM,Âe¨dHY 'ê€ …ÜJ•‘Cƒ¬Ưäp‹`› Ƕ±üäÄ‹ `ÏËù¥Ü —Ú½~ÙâŸ{wädÍÀ#¡ḶúoVt8µt8±ïƠJ"vd“çÅø—WÓØrûđÍÁ±´‡ÜªW Ohº×…#k]nö8½ñR‚=sYܲ{Í» 8¿yoƒ6ˆ€/£-R©äY>îyªS«L)–É"ÏΤ…Å*ơ:ëIáRàͳ¾ÏÂ,Ắç{E»/(•p§XÛ¿¦¡ÈhØôèdP¯)Đ85/LxẪ¥£VÈUÚ”ÑZ°Â…RÖƯ‚đé„”™ÚŒÔ¼¾yIÏV̀•c$ƠÚ­à#¬edJXP…×bÛ½_ôv[úA£¦¶EñԔğJXpE¡EdŒ¼­!Ÿ7–ï¢Ê8à‚Â+5VîÁusŒ]³§Aßl|ÿ‘'ÏĂÊŸVt¤FÖkZKS#¦$îF²…²u:dS<}d—ÑÖs;9!l¦Ơ† ¯̃çôR¥ơR8̀ÅḶw&ÈFècSuµofDÆ=L6z¼o´ÓßWN““Ń ÙrºPcf9«¥u¤óûö;oj¦ƒ¿ëx³ûú–H%¾¶“¡Æé¶"r¼a~ÉÏÄÖpxăI^àCöCªzÈ lAÄNÈ́@…Ç;—Đk§ºíáb×ËÈ—NM­!?đÚ µ¶É!ßÖce“"ă}CY4˜ß;‡”K>¾£!­\”.+₫sƯœˆs*A=Z§Tƒ]Økơyoøi8:#O4ơeeŸêr-üœ% d98¥ç¥ böËƠ“U—$e²W–¤²éܼ/ôÑYß*”¦'Rm¼•®V½÷h§'§Û˜­€C—Ü‹|Í>àô!×·ê¼m¥C—ø6Ám1’æ|Ư©IÁ>å~ës`o'z †È  “(̉ûåñ‡©Ùöêï¦_¾ä 5‘ób«ñª®Ưẹ|µ0Ơî¶Ảʲ.¿¯¤îêJzḍjX{³a₫-hD0Ëfs!©®PmĐT0 ½æ\²c>Y+ƠŸE×OEë󱋣˜¨yë J«±k*ÍB›ơ¯.j¤Ï}ÊZ Uå®2¿^’7ÑØạdnI72z©“Î4ûÛî.øzŒ§B́ '¦̀–̣pI¸HZÍ’Œ¾ưPÿ† ¹Àî2oIhĂđ˜A<¥*¥¨¥$¶5ÀÓ¿W³zo)>­µ"»2 C+₫€ø@!¹6–5¢Ñưé+î$wNcOU!†Èư(#hXÁ1‡¤—{Ă£µX Y£A|ƒª̣ÿ“l&Œ³ ¾ |&eaØO+ëûwVä‹c-™c(b-hF-íÍ—§a™Ư Ñd]NRtï=„*_Íf°S4‹f öĂd7ró6o”öKÇ®æØÀ›.j™¥%®øT,¸µ½²?cVîË^.¸áo®7s“‹"¶´Ùc©ơ²ê…™³ù?̣|·º&)§óVØô“»#9>\C¿;‰M¢PX•fö)Gˆb+/Ÿ~1ÔÑé­kùk%[ëê ¡̀ĂºDx{0¿-oÍGOOt9€$nFg97 ́@.SÍ–²ĂÍ“³j̀ØMJÉ×îº Ï'ƒ eŸ̀¿çSr&́N…ûwOp̃‘'ܶŸ²cHÉ!b¨.T̀Täά̉"&¦™caüù)Øl'ĐF†F¬:™U#öÎ8Ûé,f5P=¤éój̃âF tjÜñ8-›æ”älEä·hÔg¹…éÖtcd‡i–‘ÂüAƠ AD1U=NC–?ᇺñ¶L$rk;‹Gn4.¾¦µ£$#àkI&ë’<Ÿ÷3è+NGñgX¦à—A庮̣νL²„ó“Ÿg5fa]'×?ÈË}.ÎzNȼîc₫½ñÂËPẹóËÏ-[M‚’ü\—f̉NƯ¤zq‘Ùåăë̉ztÆo—÷˜́û}+s¡_œ ¥ ĩ¥ÑP¤£ïƯÄÊ‘ớ² Ơ:-Ræk¹Ü˜\ø2₫Đƒ^·ojLĐo<°g>ó5ú²MÑçï₫à”ld:|#8çñ •ÂWo²*‡̀Wơå¨á†uícb ¬YöGÜMÏ×đ†ä°.DÆ{^æÖtỹă=Èo¦î’¿8mĂ?6û¸ơđ„±­v+%©0‰êĐOđẵRíN‚N®è¨Î/g̀ϹfaE&̃u±¢s›Ở ˜vó®"ÆƠN¦u M2]‹Đ 6´x„€ñ‹W©m.Ă(Å@× PD<‘Wª­hwhƯ¥zœ ̣TJ¶2ñ›Í´‹èÁ́§ăfëù†¦@mosÙ:ăºˆEău@/™êqÜwzEª-åÇ …P̣´(HQ;75×̀°=dû9@ùg¨\×a«××IƯ˜˜ªôµ§Œ-zÎâ,n¼³¦ÙxÔª Mƒ ‰!?HgÂÔƯY¨dÂ3P₫đµë¯ë”—•›éû‘ÖZœ´å…7øÑ!«,G ‘à{Ï1'=en@áƒbÉUî@¦Æ×R/ŸÈq/”?~£† ¸“uÿù6K7¿ăÊ,Ü– [ÁÇ¨åæ¥=\)NâÓƯ–.’ É/ÚËc:V²Ü z«N±–ø₫Pdv~óµ†}qD›˜Iø@½Ơ5û':.Ú6ˆô*‘CO#‹gIÔë1Œ`"§ï§ïáÔ³Œä¯©¦ds?AÎ̀”î¿–IøÀ–Ø%>S7%ö@̃¾›:Ĩ_¸?˼RŸ̀¿¼c~H…+í1>êP¾Í¢°Ä':G¯ ÀF2¸Ñ ¥FÇễâv­úq&•Ê-û:“+9•ÎƯ” - ªb›xù₫X‹àyºK/h¿@ê"¢…CÅú5ơ’®–ú4N¿16!1@'e@ị̂Ü©“†<Ưø[jxÔ›Ú¼₫‡÷¶»‰\x3ÈÊ9W[™H{Œ»{'i #y“DdÓND²µ/ûæư…Ïø ¾6;Qû$W<₫¸ô¢YYº„[8˜Ls庂%ŸyEVźKØÓ Ñ]á­tíy ±¢A|QD|{Lw¯]ŸIụù]Ơ2¡‰Ô ffö¢@W¸öOø`˜=CÍWƯ%F^ˆ×¾#¥*ùĐ¾ÓO!3Am×û+)ߨEÊlK•öwx¢ă¼Ùw„nùFàwä³XâTg¬÷½=Çå(‚³½Đ¶[bîP7VÎ̃[3̣aöå¸i³Y›A₫ÁT<øPÉ[\¸(±ưĂ&p"Ó§¿ŸƯƠcÜÜöù$ѵá#Ù×»´f½Vĵ> S¯<3´8D§̃}®(ôy;ØäƠz~&'äËüƒ̣̣>~gÓ›ü.ÊÑƠB® ̉-h~”hú)­ŒÉU¯I©(ë›Ư&Ü\l‡*@ykÍ×'TÅco-… )Ê=.êtªË5±86a£û)Û<îîVÄïˆc`ÉĂßâ±U,’É",ôưñ(‘¬YL(ô¼5oEà‡}ÚƠ3Ÿị̈8&4' ư«»‘̣­¥ÁoBt2û~oxÖ´\Ey”ï̀Êí+$sÇ(£VÓVCÚÄå€=±¸Ư˜ø¸bc:V@;úcî OÎæù̉¹‹± ‰«éw‚ó ́Œ§oă][‘7Lô|«!¡YÑÍ¡ô©`ù/©Ü|:³̀óoBg>§ßi÷ØkØ\uä=I Ó µocÎwỊ́øhÇ•ÛÔ3ú“iÓÂÆ$4rÓÊ~—Â(ŒØG¹X³ÔŸJMÔLÄök³öơMSŒÂ$æoö¬Ú̉«1Ơè™ÜîÂ_½äÚûđ=L?₫,Çiẓ̀©vx˜ֶœ[lÓÜ’Vuđ3ưA!…Ơå##¼w"ư§₫AZÊÕœè¤]™1«m5?zûzßÿ¼úÙ‡åqRÆ •gäG„tă5¸8 ¿»6‹UVŒøYư=÷¶è*ÿä£  endstream endobj 1473 0 obj << /Length1 1382 /Length2 5893 /Length3 0 /Length 6838 /Filter /FlateDecode >> stream xÚtT”ëÚ6Ư -¨À" 3twJw Ă0À30 9t7ˆ”̉%H·̉%  H*)!-(!RºƯçœ}₫­ï[³Ö;ïsß×Ïu½l̀º¼̣v[¨ âñ%Zʦ äˆØØ a(èßv"6c(̉†€KüB £nlJ`Ô P <ôt€  ¨Åÿ"%°̀ Åxˆ€C=ˆØn¾H˜ƒ#ê¦Î߯'$..Êó; ï E `8@ Œr„º̃T„€] ̣ưG )GÊM‚ŸßÛÛ›́êÁ‡@:Èp̣¼a(G€>Ôô‚Ú~ Đ»BÿŒÆGÄ0t„yüå0@Ø£¼ÁH(àÆàƒ@á7!p;(pS` ® ĐqƒÂÿk₫àüYÄúWº?Ñ¿Á࿃ÁÂƠ ÷…Áö0(@GE“åƒâ€áv¿€`ÄM<Ø sÛ̃~·¨ÈëÀ7₫™Ï‚„¹¡<ø<`.¿fäÿ•æfÍÊp;E„«+̣ úƠŸ …ǗƯ—ÿÏå:Ẵpôß'{ÜÎ₫×vnüFp˜»'T]鿯Dôo› ˆˆ î¨Ä‘ÿWC_7èo'è—ùf†´ `34f½ù#B{€½ ̉€₫OÇ?OD ÀAl¡08Ñ¿³ß˜¡öoî óXoèư₫ơfuĂ0;ÜÅ÷ßđßẀo"oª¥¬Æưgä9>4¯€€W@\ DEÿL¤ †ưiä?‚Ơáö€ø_ữ,êï½₫€ăB8ÿ̀¥¸¡.Àño¦[…›èÿ̀÷ß!ÿ?ÿỆ¿2ư¿;Rñtqùíçø đÿøÁ®0ß?ˆêz¢nd …¸ü¿¡&Đ¿´«µƒyº₫·W¾‘ƒ<ÜÁå_‹„y¨À| vº0Äñ/Æüe7ú¥5ª‹đ€ưúºxA@àùnq¾ù‚xÜĐ̣· z£Ÿ–T†Cv¿„& ,#‘`_¢›k¾9 Đ EÚA}~ÀÏG nB7ắH¢_w  ø‘`»_Ë·…9ürư£Ä‰¼QÚoÜTÿûü[ÖP¨B47€H†;Ơ‡·ÿ¨•¿ëÍ»>*ưmƯ$““=‡́đüI†ŸÆY“º„<‘O{ÛK>¿ª̀q,÷‘é½Ó̉ˆƠúD¯íÜÿÂú±₫øzÑ́íÀûâù†~Â{¼†r₫—î₫Æ!ÎØ-˜]Ụ̀Ư=ÅÈt ©~x¿Vơiè/ÿô.rz]o£FDƒø¢|‚7Á(̃2¤t’­À6gÅË@ÀEyàsḳøäẽûk¦‡¹‰vKĐæË‰gS~ •†Ưô÷éÍé°)ß?@+l¦?¼=ƒ.+Y,dN´w»V•µ81 A9{f³ Óêè@ßF,øª̃*¤í* €©#¤ïŒª’!Eß¼óvîW*jÙiàßĂ|`ifˆfơª$u} hÇSmU \* á´è/‰x&/ØŸC+ñÀS»ÀJađ!”‚¸xôÊë¼—ƒ̣s4–èC u2~\gsNE¬çÎ!Oü*r‰–˜zzy?{M_:ùĂáÁt\¥ÑÅ>5·R•‰|Iỵ̈̉dăĂÚà”nd›2‡B®xÿ:1¢@?­z9xo=Đ₫çC¡đ±Ù3´WªÖQá Ÿ_²dV~ÁMÙö~æUùyp2êÔ´sơzGƒÄơ¡©óBgœDê©­~aRnBô"Ư€Å° ÂÍeơÇ̃WI ïĐ)“KÓyrÂ2Z·`³g€p¼O´̃ƒ3+rO°!/ØƠiÆ÷RvQú¾ ©ëç\´ñT/¢OÇw@́²áĂÓדXÙ.è85ukªh£_Ù–Zï̉YeÀy&RƯ ëp²˜¤Q«Ÿl0ĐJq²+Ñ D›+¬?ăø± [)±Ïæmi²Đ%T-ǽ ₫!cMô5aÙO¼sƒ}ˆÉI^†̀RoúhXƯïT-âE­ïưŒÂûH\’Æ»s|üu>N#b‚YäøÇŸöWdÂüdîltÜ?ƠÏöâưøÍ«h™óÂаH‰‹¡M]3 ¯Ùư^íç²O¶>32§' dÉƠ¶$Fw¤]¬¦wŸ#$^¾lŒÚ.V~WûTºg‘$ÿ(ưưå iô Eÿ­ueưÉ7‡ú[ ’©d,"ư/4îÊ*2ÈH:8rvN‘¨‚[¾Ăơ^0-tK…ÊỮ8ˆ̀á b’úˆuן;’3`Jw`8ZàÁ‹:;ÆtwWÈÅëª:™c}ófßºÊ Tưœ7Ú ‡!w$œ ¾öå?ºÂmïë• ¬>ïƯ±̣̉‰’=\ˆ3§|3¤Íª¾_Íi)>ïưö¼/B·Û-éûn«Ív¬j‡cM`X—ÓϾ¤đ[M¼|ûĐc ÙÇAgC×ADµ?qöó¢9‹U(«sØæMâP _”Ø;+2àS[„äU§ÏûĐÇ/°KûDö˜©}{A $̣ +¥¤¹¬ô:KH(jĐ)î6̃®€eM>ŒÔ\¦ûđ“-%=廉¥‚AÁ"AT= ²˜¿êûsË‚>íÍ]±âUZçKÿ–™ A=°NẂ¿Ÿ»£n¥4›9PQÎ^˜₫xô뉒j”̃k½ûÁn˜w˧»đE¤®¿ü¨ Ä?`QÚêr˜ÊQ/Ó"&qø¹Å¾W‡¬È̀›åt„bƯ1Íæ®~?¶][u2ÑÓÙ#a»Â”B«g~—¬ ”ƒ²4…èÿzóRÆ]n£y¼æEÍ’Í=†Í¼á°ˆÍàBN'Éæ¼9ÚBÊÿ̀k—…0ôÛ'­½8̣)"Ó‘Úè ˆ7l­iV tJçơ6’2ê;í EëÍ̀Ù°ÍÙ¾L„ưØ ĂíX:O „`¾o:ƒÑÁBá̀%8—¶Gw—ưÉrŒ}…ÜJÖS¯ÙÏ•±Wæ—5NÄÚ ơVa%Ô|¾¯`Ç&‚}ç„Âèèø7÷Y0¨$ïn͘]XU$Úä3Ă@‡è‹ú:óđZø-ÿï•áÆ<^5"óưŸùÁ®÷ưWÙ¨çdÆ'>ïq)v}IŸtf)z,ÈD½¨—ẳ7áIœ‰^“ºË*Ô+D`ï£4pđ!¡<úÄˆÖ a•ˆÊˆ¬~fåưe1÷8KQ¾<7Ưɪ@úü\C(÷ˆa_Y¾Oº¸nTbXKg<0ÁmlúÖbơ¹-σ+x«%–.eDD<Ă<¶Öj¨¸­=:̀¿Æ†qè½,5mÊëPe³Đ{v)À90ÆÀĂ8Ϳƻ­ăU'ŒƯOÑ#çô".T`ƠÊ:v93₫ǽ;¦O`$ă+3áp‘ß[)sŒcD"ÊvPÁ¾ơÎ^ór`îPoa-ÛD¥~´¿%‰LƒK›í p‡¬m=ñÀv.×)uo ‰zÿ.Ø^?ùÉàëŸơ‰bñ r»ÄDĬL‰¯Zc.&;Á´í­&@zÜKÉàÚóÜYµíÛ/Ñ˃{ØwóÔ3æY]`_7}Ü#¸¤Z’jDÑgÅÂL1Á}ù{ï©ṇ̃¤.̉S ƒŸ…Ä$©¯EŒ“¾X¡‰_·ÂcøHWÛĂƒ­̣ưT¢V­`6eÚÅŒT%]Í hŸvïÍă;±ƯôiªÔf«G—á­ßT0ưö0bĐ&æ ‹µ×Í„¦,eᆇh~JØu½ªc†¶hå†Î́Ơ Ơxiâ?§§L벤X N¦÷åÇØÿ¾ḿ>0ñ3‡|`̃|jHÛÚ̉ ƯDH œR8Eĺö4ygÔơûïáÊp~ZTÂƯµÛÊQ“ñUâÉS´uzÀƠDFÊ₫B–Ô:“ù1Ûv’â{ÏĂ®3̣̀»;mÈê ̀›j₫³è=nÇe«]¦¶ƯǦánÙJÑĐ¢ZÿŒ‹íô¯“oC½Ûå==ßÈ  û•¬D[¯w̃Ø­́¢ŸœULĐ¯ h¾…i¹QEæĂ>†pPœr[̣Ü&u3·{ÙƠWØRå q±V¾³;{Ñưj4X‹ơîÙ̀䇺̃fÊíªg̉Vf¢”\Ù‰ÓÈ0½+³‰̃ü‡pdÿqù‰æ²–8c÷ø®6Ưz@cç½D¬́åXÛ%Áđ-…Vœ[Pr’9¾£îZ‚ˆ3ËÓ̀_ˆ7Y¦mÙÀ€ÚÔôáƒÚŒlrÿe#aQA µÛÖ;åĐ{·6×ÓđU: ª?©^†9HMoµƯ^û¤°Ưzf¾cÙ…¥@ĂX!́ƒl¼E¯\”Nc÷ˆªß»¼7kÖổP(‰,@BÇ"Û¿Mdec]GûÂ@‡/¦Ëˆi¹5zä™Ír/LœM<Ÿâö÷,»p‘ IzÓÙ€ÈxîƠ\Í·feß?̣• m’1v8ÑFơw.Æ ơô®{<*üvk™ ±“ ,j¢wd{H²BỎˆ6\ˆt]l9T̀ÄFT)~.Ơí Ợơ“B È0ê­Ê¤êêS¨måĐï̃Ë3ạD“¾µ—‰GtŸh ˆdđ/|éJíë§̉Q«†Ê¯Gá ²’K8í¯5—t‹4Ưºg¶Ö=öHߋٸ%‹Ûx[ûÇ´ñ„úøœ¨é¹Ï£]ù­Ñ©ë¥Àʹ9L¸¨ƒëÇ6æa˪ú6Œ†i‚»j=B+93́ăP }R›̣ùçî—‹ô+‹äN₫+-¢óˆå65m]ü™mØ̣£đí̃W먈^§Gq¼ắđb¸/y‘„ÎÚƠ¤¬QbjyPir§ Ÿ¤ ¼RNS̀oMÅ»<¦”Ǩg¾§³¦Ç7T§9z"—Ịb–ÙÈǵ[à-¨¾“´‘ôh‰’ûFÆó¥”¹â[ç8#îY£JRK€¦8MÛ>ÁöĂë pÈÚ.ÛG«™Iœêª×Ø$·;ÖÁ{Í™ú¾‘y¤Ÿ̀?JL%ô¹]iNqIÄVĐ¾›̀Ë_¨5ûˆôsŒë—Ư†8Îå¦3ÿ g‚Q›á|‰Đ‰'ïøôRLy<à~«S7/#Ư²ùg:G«ï3m̉åóGŸçv°94K›‰A‚sN^Q~G±÷¦¶Ä·^¦VÇndܦ2?V4;ÁĂ\Ohny§Ó³\.ÁĂü2å̉ˆ:Bñ>×GG Ơ^6L¡„MÈ£NVîbß'é",c2úú¼¬oM5Ùº̀ri “ß*ÅØUTñX,â]TVWG©nç‡D; ›BBÇêº:$éâƒQi–èưđªƒëvG6/ñcv-₫‚£uIc‰^Úƒ°Ÿ*×nư“%Ÿ&yÄLâÖw2OvTZ̃«ä…d>éæƠ+V6iSR®÷öÈeå3ÄS‘ëĂb+ë$Îï/p‡!¹¶ªLRƒr³Npƒ«l»²-­”˼<đưûd5ơʼn:ƠÅ“W°A•„˜XŸ´±?ĐÊ]XßO1o|B¾œ;¶Á,Ùµl`Â}â=₫§V ¿¬aƯ*pC9ơÇö=VLÍ|•7BôºêΤ*t3fŸÀˆÂúpIL£ÅiûM¹xXƠ“…5o$[c X±5+₫бuªV́:”q̀G9hăCÿ{–*ô‰€»¹ÓjƯó-”‰]G­F¹ä€XÍÀsùlƯî–÷²ÖDc'\=¬ZĐ9$ă>üøû1;uŸt¼2+W‘‰±1IG¾ú²®Ø]đÑê%¶̀ärŒdJˆÎÖ•°—¢Øv´₫l¨sœOצ̃82Î.đ=¸1=1êuîíÂgsy:´Çp¶ÀĐÏ\m–‘á—5Í2|¦²ä¬?̣´yjt§ê™ó [\¦º§-øny¥ÿ1Ê“Î~—tD5/û²v×́¹AâÏó~SZ­$²j«t™S2Qw}FZ´uŒ›êú¶´¹NÖ ÇWị̂K›5B¢VảÀgÙăŒQ¢vo°º¦+¬Œ?§&Ăw³ )Æ”8FM,úø©QªD&€T&̉]¿ü<85Ó ›=傿̀q 2G‰¥qK&3`2•RÉêPïBà⤫a“A>½6u>twd^“̉¦ –\­%‘BÎ<Â!{ó‚h~̀cÓŒó"3R¼Ør·¹·œj#ëÎ$V~Kœ´WĐ(ï7ö-%r[iú7ç:÷6½‡ü$“¤4ö›>" $ûü ÉLíŒđcóÚƠ€§ÊûỰƠ^̀ï·êƒ,˜Fú9‰Ỡ+$ñbÉ?°MD+xtómáÎ/Dơơ¢Ơr}ÉÛ§öK«̃÷̀óMŸ¹%w6_c¼ç̣º7S€fÍ RÁP:ÙH­ôÙ\Fb{9V£ü½¬ f|Ưí4đ¡¬¦¥4U·(ŒQÛÇâÙ ñ×±đ£ Ư™ Vü1¯’,y±Å.‘;¿'¯r4÷Qªû¶Âº9̃<|9I¬mxñWc*sƯûØB—T Ƨrà{:ëi%~Ïà̀=Ä6nm†̃àpƠyÑ«ÔiRÛ-¿mɱâât3¹„æl`,ZüBa_ä₫PÆd©slâ^óệ tªärA $gTG~mÁt©ê\U§ûp$3À§´UĂÙKf,N¦bˆ.$MËê_æxx¶˜&ôMÏZºfbư!½Åö¥,2g-àiuNétëcéç€~Ẵ â¨PzˆUậº¿£ F”ö‰µ=¾†{¥ëƒ4đOÖ|³«÷K_ïh%jñÓˆnxgD¹ú†ÁÅû¸ó:R5—&•°W<¦]xôX±iÿÅëÄÎ;º₫V^¿ÁÊû‚zIª-@¬T5L¦O¯¸vÊHÖ̀GÅk †7ÖÂRW_>rVë/¯¸£å~?~²\.Nn‹̀ÖÛáẸ̈tÿ>Ë2Ö°r0¦~ùqkràg/úehíeđ<ä[SÚa@\ 3° ü£o¥Øé4ơ?:å3 endstream endobj 1475 0 obj << /Length1 1434 /Length2 6075 /Length3 0 /Length 7056 /Filter /FlateDecode >> stream xÚwT“Û̉6̉¤J©8tỗ{EJBIB)¡Hï(½7é̉{¥ ˆRU¤J‘¦(½|±œ{ï¹ÿ¿Ö÷­¬•¼û™gfḮyf¯7\†&‚J{¨: ¥*zzZ Eȸ¸La7èß8—9…†!à̉ÿÁPAAÁ¦ Æàˆz8@û$ IHƒîH Pêo"% P{ÂzBm&ăRA }P0'g nŸ¿<^HJêÀ/w€’;ƒ€á=0ÆêÛv˜ 0(Æç!xd1¤´°°———Ø-„@9Éó ¼`g€1 EyB?KèƒƯ¡J"ă˜:ĂĐ¿ &GŒà7 Gă\À (nw€‰–.À …ÿ&ë₫&₫$úW¸?̃?Á࿜Á †ûÀàNG˜` ®+„ñÆÀp‡ŸD°ó{‚an`{áWê`€º’Œ«đO}h †Ä …Đ0·Ÿ5 ÿ ƒ;f5¸ƒ ÂƯ Ç É~æ§ CA!¸s÷₫Ó\W8 îû÷ÊwpüY†Ă¤°æñª¥ú‡ƒƒÈ₫9A1q äQIqÔơ†8 ÿÜÀÔ ưeư„q5øû"H€#® ¨?̀û!óEƒ=¡ êÔß÷? ÿ\‘@°‡:Áàdÿƒ¡¿×¸₫£`̃+ N~ đçç_OÖ8…9 àn>ÿ¦ÿj±°²º±¡)ÿŸ’ÿeTVFx|EE‚"â@(& ¸ƒ{đÿgC0́Oÿá«wD~û™/î ₫ÎÙóx₫L/àŸÁô8éB<ÿVú} 8‚ûưŸơ₫Ëåÿ'óŸQ₫W¥ÿwFêÜÜ~Ùy~₫;Øææó‡“î n ô¸a€ÿ7Ơú{vơ °îÿmƠ€qă wÂIZ$&ûĂĐê0o¨ƒ! q₫-›ß¸ÙÏsƒÁ¡†4́çƒóÿˆ›2ˆ+îAă´ùÛFăFó«‘?×PÜPư358áđsúDÄ%` ́C†k>n%đáÆÔêưKƯa!8ƒsàjö8"Pd?-.ư;ø'ü‘#qưB8ü ’„Ñn`´ó/äûC P¸ —Üßë_Wê …}˜F@dB]êC;k•X¼WGe‰v̉-EG‹lH0}jă¶K‰&9Ù3:åêzAê6.]úÊǹóïö|WØ}ÄÙƠרíă§/¯L&ù±̃¦jÅ{b‘ª|SºƠ‡gÈCƯMªààÔgÂEå÷W}Ïû$/nú2ơ;ÚaúƯµeÙº ¬RæÛŸŒ1möƒ¦«âûŒå}r²{?*M?ó–lç Y¢W ơâÀĐà,M/Û‹˜ mÏàƠoœá5™AVU±«5æ³×~ä•znẻúÚkĐ)n9ôU,đ¦×ëï:¯́nYsđ$wßq¶KvŒmcOØh³ôÊé¨üµh‡¹́-̣IGhó ˜æËùªOl®Úa:>3“=c‹?è¤iY½éåĐK”»¨\Ùöoâzçéß₫Wm*Í?C6樂cHA?§[Î́!Oؤ…ˆ•dºs‡©|ɬTh{ %¨(¥',½Ú́pÓç«Åw}±b{ÊÜ351đ8ÚX́bì_fÑ“Óđ«FHF]¬ ÖË}éĐ¯Æ{ÉZwÀQ́_…ípÿ²øæQ,BÀût³+:4Q¨=êVƠÇå̃ȃ›•øñxeúù§ûA ¯ûx¢deA±§[Øó-üL€>²KTnx]Æ|¼ËIb  _₫ƒÀåwùö4ƒ@m1w%àȹ±hótư o'Cû ­ÍŔÁê½äE*gAº<(ƒéC6Çv(-î·åÅđNÔ±L~¡è(“ "’zú9{k_Ô‰…y/[î»U§-û¥ư%Âöú7eVó¢…Ó₫àá«Í»·Ø¿0á¯4çd½\ïn î©£ xC“‹¸vDvÛ¼bơŸUMhʨú|#ù˜“Đw7åZÇ—Æ:˽ê§²kÄ] ûζlír°Ÿ]§s\©ưC̃^wCv VÜ@—äoơ–xw|Èè̉™LZ ¸‰úÓ"/Ç7§mà³i[²>71¬ùÆ̃:Üxo±‹Í6ªXÓÀ‡ơKMH±€ µHđ>ÈÈR7y´€}óø±k¾€M¬}bæ7́p ˜|8L̀V™xy“ˆvö¬ô´Ă?6C3q…jÛ¢©^d‰ÈV=Ë®ˆ"èô–r|§ÙpjÅnmªvøÂ%Óx0:@˜ÿŒ|e…a™N=ç&¹‚µœMDÖïçeåhr˜Í94s4Ê8ˆS}—X>ơ¤¿ Ñỳ7;-Ă}sưªel -–̉p£ÈhbÁ«ÓÑo/± Ó:mƠ¡æS€¾:J‹Ütlk–ưæ¢óăѧk«Ûá<—í¾;§5u†Ô²`oH₫ê W°îđCæÙ“tÓ7† ß·At̀ôđü¨GS¹ê3¾ö¦ÏG:‰Ă?}ɯ̣̉ßấî&²̀‘Z*Y<=úÚ´ ¯D7³̉hÿ~ñƠØ+sbI,âf´m‡Lx—4ª}ơ#ƒÏÙ—Ök₫¡ù˜µË‚ö[ww=0¡‹§₫Ư´kcɼµá’„&Æ–)>7he³Ñ".)6K!íÔ\ƯÍrÚĂ}å'ă„ó+kª¸#V£\•₫Oo8|öuf“¦¾jă¥ẒMj´ïp­—` s¸;f³¨ØƠ¤@‚¤€‰Ê°Ö)÷µ)±AÏÎńPŒƯª̉l¬Ù’‘íËÿxơĂ1&WÄÇJ×újøÔ§(đĂm$1g†Ù(+¸$°>0GÜHä¨4cN Ë ́]1_Đñ%Ä\‹©–@‚Ç¥wë8 æ2W®¿.b —Åö.åvØ^£2yú|¬q¶á{¡©ó¡Îï₫₫û»Q^tM̀z[…¢|M½Ñâ₫BåÅR%7jónI€;i®AïndúÇH<ñ× ~µ5¯e}{ơăˆp©DwÀpp×U91²ÿÂí«¼Wâ¼å¦́'Í»qµư„̃´ÏéüWÔ9³neÙÓsđ4a]UŒí12 ×6\Z{s\ÉWô™Ū&ˆÅN2öf/]”ø²́œÆ#ŒÊëêIyJ>Ë ƠQ±‡ª í×_+Ê÷¨àIA7¸Ơ­xbÈ ~„ÄŸ”(Œ2Æ¡đ¢¿¤w´ÛîW‡]¥w4 ±˜‹¿\–Wöà8w”ç*œXÍ]#~@ñj¼́¤iê=iPà‚î]ó{åöÛb–¹V#À#. ̣j“®ơơ–}ƯºñÍÇÒ̉j³–zn§¦¬ƒđñ Ÿ¬^¨Yÿåt˜álv4"L”}ÔÏPc±²Æ‚m Ó¯æNaNÖ˜2)6… KáË Œi]Ù|£Mæ,é 4{/¬ƒOàöÎQÂÛc1ŸÔ‡¬̃Ë¿.XSS¸ëô£}kRÍ»u>ï·Í.Ơ_Ó¼ ëM§Ü÷iâ…ßPhÏ5_ÖnfºyB̀Ï>Èâ Ë·bÀÎ8¦×̉¦½sÔ⛳rd’Ă×£eàåêø₫´:É£¼ºÙ€‡¨ë¾à=X¦›¹[Ú=d¼¬(£Ăø&6#ñǦŒöº₫Ậ£â®´ÛŒGrF^wÄD̃f‘Ny'P`fË k¨Đ40tC_¥zÍDïp ¶3E9#Ÿr¦ÿÍQä*ÅêwQ¾w.·-zrT7%×c8w'üvs9ZÔ£†F¢[/˜7ft“dl’9¥jkq6·§öÜäyÏÈàń±NwT¨mŘà8MM %Z!Ñđé†-è´p"À @₫lë)«‰‘è±B ù̃´̉dß‚Ođ²î•¶7˜gù́;fñ´_·×I»™*ÜÇùÎâMé¥â?ªµá[8 ΤN¿ˆ¥ªƠÜ@®1^kß¼Er[t₫’Zx|âf¨‹9‘o(j4bZ—b®{>.îc¡ă‡ ß[Nûæ7ÓŒ¹Zä¢́°f.Wư :Óm:­бfUßÙt1%jw£B̀(ồ-ʳ…>ÓƯĬg¤oÔVƠ‹`s¦¾'„ăEÉH`@Mn½svḮ3×¢ṇ̃Úñ´¶ÆØlysîéMÚB©Ơ®™`(‹Í âÛ¯U–c‚}âỖºª¯»”̉£›÷é—°½5&èÆ|Év́÷^QåI ç×ÏLg„ÍÆ•¿{‹¦́ùĐ̣éT5ORKpsOÍê© AåyËöÁµơ² ́óÔƠǨj"ªÍÅqÎbårr]|áèøÏ̉­Ê €éùwÜ,¹ă£ @k´]Yâ~_f{OƒX̃B)ÏÆ7åúsA×gm¹ư©®ÅKûgÏtnV»Ç̀)ÎÛ)ưµö®û^ûD7-‰§1”Ô}RƠ *®;0ü­ú[9±ål’̉¹¤»öĂÁçlB‡N}™[+ŒÄc‰eÈ…Ă´ë­L*%דôßæƠ>ê]đ“è\ư*AƯ­´p49`g·̉é"-Lï^ĂăÀË ³.¾S –ûï÷•×–’fd‡6W c9‘.UƯư^=˜0~XÙ<¬ºH»|2·åÇ$à¹Yqßđ7ôúƯö—0ÿ²û/1*›Ww†Nnf“©.­ ‘ú ½Ë•²OjX:7ßœû½̣MƒÔF¸F̣”2̀c82×0)Ssô~àƯ“Pw‹́ ÁïMzKJ£X´Ú̃?>7öĂyºU‘̃6 Ư!ŒŸ–»¬ÙJe¨ö²"Íík̀¼ó} ;û+‡à›’E™-œ<ó»ƒ6f¢t5™“;Ë{*D·*.=»bZ\.hđẩóNg‡•Ø&ZÖÄ…ÊĐ̉Ö,2"ƠaÏëܺë!ô´+x†ÅGûP’›‚Đ£÷Ầ ö²á)I³ç®g«¾ ÄcɈ¬Ñ|ºĐǯû –·‹%5¸h¢£¯¶ú[ô¾KO¤œÂÏ_rBL·XÄ9ÊsÛ)ÑŸfĂ8R›VTI'nKÊP<|²Ûx¹‡&d˳٬•sRùVĐ4§p²¾ơ{U&ÎÖ:©€ûO¨™T%Œùó·.¡̣ô†Ó£¶ô“W,̉T'ÊrRœW¿l1rfñµH$œ:£¨8BHÙ¡•2ëĂ×Ç-ú„Ê4.€jéK£¤xEó •æâ8oXm´y¹EÂHkMErơ4̣³S‘₫/ë…éûÙ³h÷¯ ¹Bï‹uOe|LÛÄ‚©Ă»ó^>.Ơ/Ø™¤^$îtƯŹuXô~¡å¬&7RYlh˜&vûS¶Ơ >û’%2ÇT}›²8‚0ăb³Ï´6l*̣àܧÍ̀8Èu‘ ÷F̉4ÅRñ:¨+<Ô¯Ẳp2ßüyÏv~lÓƯ×óù£} _̃È÷L5jFƯs"¹­ Æur^0+gSŒ«´´™H½́d'ƒ‰âxîK=ó%ƒ<êpô+Ç:.Ù3ä¨êGÍ["ÜDé‚Èhr€Ú(ûå}Q¹j{FÉi$<[ª²2 .µ½C-§ ´VODĐôlÍ gJNáI¯ơM¢!ư"“?Úß¡h…Âç–ïL©<²QQÎ_Y¯¥—›CÅÙ¥î̉g»yTñˆXÏueèCYrtÖ“ lÛ ¥ăHPêÑwr›¸ôƯkô×í L.Ùåtæ.ÔNÖtX²²¸ø÷¢ Q÷9EH9­̃Å {O#E;ñ¶>Ư5{RéBÔćo—<=R"¯J2“́èCÄó!Ѭ'”jŇn®¥öp#₫½ă„Xxnb”ˆÏ›đ†ĐÍ₫7Ÿ­ël¼×17 ¹]!ɼ››‚T“îôÊÉcPƒĐ’'åơTöÈilD•jØ}{•lÉḱ½3Ÿ¸OĐëM*>&4ă\v›¤]U“i3ïp̉đ¢A»˜b9¼u'¨XÚƒ¡ĐÙGg®ñB]FöîẽÛ°=~»- ¤“4tû¦Â¨®óö¥^ûÍÂÆ³·J.7́>0€₫œ¤j¨¢/¦s¿ynwMAíöwcøøQÊ­Í%×Ûsyû‰&ù§~Úä¼—û÷ Yˆéư’Ç=ÍTey‡Sw¬‹²Î‹¾¦<û–Xùi~CăíÍ‹$"¼–LSÎu-½Ă%Ÿ¼LI1a=6¿Ú–®Ûyrv̀ưDøD JºQIס›°‚ubYû“”́¼¶+dËyŒ‘ü7eä(³5>>|ˆ•¤¾c‚Br‡×sF¹¬¼V\&i*IëF¾L½A{¨êw–¾o_óéf9F7Br¬˜6é÷fb³Óà&ï‚ÇÛUjơ iªA~¡œw}q{Q̀ åûÛµ>¹Ë$ês₫´q©Ơp%ÿÆ'÷É—|l¨ä¼mc_T˜={ܽđD€$ÂEyfYR!L!ôóª*ѳ8¼V«Gû>ªÉº®º[”Ø̃N´_¦úyñ̉hÙ-RUơÀÀ`?p?ú¹ v)̣–è ’"÷âó/ Ÿ&‚…‰‰Ăđ»S‡1c̀ä̃ä){ü# |ww4ߨÉî3‚<Ñm!¦W>ºN‰§9X¢OS5Ơ…8¸Z ï¬zøËÜ\̣&—Û̀öŒ$ü¡ñ†̃¿önÛW,$cr¿æ / ÿ»»ùôO¥nfê²…S̀Ó+¨Q9á:ª.nº©¿ơ÷Ñ' ¥&\¬Üz­>q…wU’IíO–[KâøI•¼®ë’=°V%d“ªI¬°¹Y "d‰Å.ơ†l™­M#3₫J÷¬a;S0̣!sY {›[´”üđyºŸ`-D—0t¿Ñ”&ï+6`†?û’E÷”9üÎdq•ÿ½îá<åØº…è®M¹V>î‘ Ó;’#âo§/öw¹¥¼”d¿̃̀^ß÷¼ƠYû¬¥äE>kKÜ¥ư*ƒœ&–E2¤íºµ́Ô6¾FË·{áU€Æ“°ó±?Vg ÙM,ëùØpBó‹,­hp¨$ V{˜t6ÄƯCü¸¿´èø¡n›°qNpjyÆÄN…/øÔ4³ˆ¡TÖ¾˜‰ÄÔ·̀×bL- ́ÂYÇ¿‰ xsz'z¦ù₫èØ²•)¿rØIRGƒ̃ö+°#h±-±ù62 “ ¶èàß%LÓièèú1mJèơù)Ú#´²Ó9X5³¹«›Ä-mq7º·##°́T^Ô¤ë ¯s5‹RñLtê₫W}iÉ'… 9n”,˜)̀ó®LÛsÍ b[Ó×å£%(—{xÓI É*Xz‰¿¾5¼äçQÆeâfœ×®èÔ o]Lº9pđ"—¨w€¸íŒ3ƯàêƯ]½"hœÏ#_̀7zJ:^¶=("éܱ¾Óî§%$₫à…‘aáÑt0¯Ư÷§iFFÍét¢̃é»Àd̀Ó³‘ªZœ1ă¾@rát²™¿f¤ø¬ªG­óíŒVcó«C>[q—ôqGt_®M₫đª:fë{[q£w´xkÀ-ÙÜ[ôÀ4§œâK×ËLlo‚h”EHÇO™<‡„̃€yù éMÅ\WaWeq¿†5½¯đ¼ªïë»Å5#h»œ+˜ÎŸ×F+„PdơR¼ØĂỵ̈%86RÊÆpVLË« Ûz„CơâˆS^Ó³*₫úQæ8ăXI „Ww;œS`#£¼D ƠQQA|Ưß́¦¹NbrƯkwo2G¼¨¿Ú¾–̉…”ßèYT”>ë\ÙvTAy?Oøt)Ë`÷F^’†€‚wÅă®Đm-ô¥S&g™̀'¯%;,~r‡œ́÷ö¿_>è j«xđư­‹›û…ÎLØÁ£g‰đ…a=*ƒ‰Ïgåó̉×_]×5yækVmî/´ÎLn¢N<ĂJTîÍu;2al¹¨@÷ŸHô‰CÓ5ª;¯åoßâ¤N‰§bè5¬O”Á²h~¡P¦+‹Ta3m¶̀Üß9ưøj\'€~Ë èU»½L%CJ´´0ú°³çá†ă Ê¿$YBLs(Văă7J ÇWW‚w\3-}JCŸ½L¡xUüá˷ᶤT¯D ào¸µ¦Ú̃U R:^ÙÛŒyB|ötlÛ¶–µÈbÚ8Ú#mwŸ> stream xÚŒ¶T” ¸. ̉%0tIwwwƒt % ƯƯHwƒtIK—t§tw7HJÜqï}¶îóÿkƯ»Xk˜çÍç­ïrbE:!# ¸ È‘‰‘ "§̀Ä`dd¡gddF 'Wµp´₫#F WÚ;XØ€¸ÿ0±:‚e¢†`;9@ÚÉ ÀÄ`bçfâàfd032rư¡=7@ÔĐÙ G¶ÈEllỨ-̀̀Ái₫ç+€Ê˜ÀÄÅÅñ₫/w€5Đ̃ÂØ3t4Zƒ3ZTlŒ-€nÿ AÅkîèhËÍÀàââBohí@ocoÆOưàbáhP:í&€_ä ­WF@P5·pø[®bcêèbh€VÆ@ØĂ d´€“T¤d ¶@Đ߯²¼üÓ=Ó¿á₫ñ₫Èô—³¡±±µ­!ÈÍd0µ°Äeé]ß A&¿ ­lÀ₫†Î†V†F`ƒ¿˜Ä…”†àÿ)ÏÁØ̃ÂÖÑ̃ÁÂêW‰ ¿Â€»,2±±¶‚~ñµ°ƒÛîÆđ÷d?‚l\@ÿS ‰é¯"LœlÔ@vN@)ÑLÀ"„ß23 #€‘‘‘ƒ‹´]Í~…Wu³₫¥dú%Wàåakc 0ô²0‚ÿ!x8:öN@/?ÿELL cG€Đ̀„đ;:X 4ưƒ‡ooá Đfï€ñ×ß¿ßtÁëeb²rûm₫×|dT¤eÔ$hÿ®ø_°°+Àƒ•@Ç̀Æ`úµdà/^ÿ £hhñ?|¥@¦6®¿Ù‚Ûô?ŒÿYªƒđßX̣6à­¨~/¹#£1øƒéÿyƠÿrùÿÛđ_Q₫oK₫¿ ‰;YYư¥¦úKÿÿQZ[X¹ưc^Z'GđÈÙ€Ïô¿M5€­ĐÄÂÉúk¥ Á‡ 2³ú·â®@E Gcó¿·åo¹Ú¯+³²m,~=VtàÑü/ø´Œ?‚à•üK_ÎSŒmL~3;ÀĐ̃̃Đ ¿IÇ̉"xG²x|XgºŸq_)SevèÀ%Ăư€Cu62Iá!¼Ÿ$=çQ\°Ü7ïÚÄ[@ôé}̣2Ư[ú}æôJ åpPCwµóÈB;Óvv" ¿};¾º¤CßD³²E?Ư±å#`¿ƯTx¥ơF½ÓÔ2ùƯ"×÷¯/€i$-ó#߯NŸµv+ƒC}t·ÁÉÍwƒ C[^E½ï̀\˜hÄ̀µĂ–—¸Ó ’aJG_uh¥0̃¾_tNä|„1 âơđ¿~ÀcÚ̀gdüÀ Ó 9̣î”-Ûó"Ê«¼î\¾}}uÎÊM7à%€]₫Åè[̣ùy>®9‹˜AF0UNºXç§œƠhJ%`Ưt@)Ăùz9½h‰‘lÜ&ÛüE?Y«”D÷Î\Å`˜¿›å=Wư©z¹ZK [ñöq8Ưè~߀p@P×É₫æÍ—/Âz˜6ê÷çå.¡ÂƒQª9ŸÚ•}?w8(¤J…¿*¼Ưé†7"=Qv&¶nˆFÑPå{Øí(|ty_*%JNY° ×+sÀâ¹ ;/ZĐ[å+ˆơéºÁ—¹¦Má âMÆÛ•(̣ŒƯ%(Rư¶Áơ‹gªˆ°gÓ°ÆU5¡ÚÅwƠéÓ}Àµăhả×m,ŒücÇ’€üÊŒUÙZŒ—Ùø,ËM÷LÁ¢èF¾ UŒk̃ /|:Zdk¢¡j‡đ»́‰Ÿ¿»Jä(ú¿à§…án[T’Ï&dÏM"È2C`Wkg¥¡₫Ø*đ¡&0 ̉ô‡3̃G ‡ƒØâ¡Ä¨‰NºPFWdË!¤ă®F¥D]B–F©¤‡Yè©‘ƒv,… èöà€a¯F ơSŸèè8™•œÁ¿ g(BŸ3s!gKˆv¹P %ó¬|ñ³QâÛKFDœ4đ®çÍ$db,ñ„K}ám9°>«m¸ŸÏX4?_Í\+?đ…«««ªJÄ5¸âH:ÂBÔɆÑNl¿âtUäee!¸âs¿“„XDAâaOmjô²—qb:`ù™¦&c‘†U+éX^39åuă†C8û́mLH®³fwæ«Óܼ˪ÀêL¬®+Ơœ[uöµ̣³o×8qàË¥œô½Üg-Ʋ‘hgö5œ„Y»nÀ+ûÏvƒi$,¸|·P ™ªßµdè—ep©;ßcK Éx†|–ÈjC $p[¢B“¡ îfV`œRO®`—R$#³úyđPÖH½®Ưs4  ¿ëÇƒĂ•™£`&7K0ªt¹•ÁM}ïdă-WÆÜƒă¾ê—2ÍN“ÖBSˆÔÛ…ôẹ…ëÛXñ@OL–15Îđøí†Î¹ÙgÇr ’­¨ñ?A°ªG.mñ»­dÙ&̣:"éùc‹ 7³ă‚̀®DûœvIJ&ß+¶đm¼·™Ô"„ù«<œ3Æuj娏ߓÜOÜöû’÷”›ÄtÙXƯ`Öµ)í^Tè? H™£8íç[ŸĂbs×1!ĂÍ'™À• ¸±ßúw,®Ä‘qdAl*—.%tGSU•YîwÅ\‡8|”qÛT#O­Ræ̣µ³Û hä&(YgăkL‹ºÂ¹ăCëÁ™àrœürëe#rÆ…ƒ´£×=9ñkñ ¦×Ư™Vmäb̀9Ü„êBÔ*² »¼¥X§lè¥"YByk·™V<ĂˆT¤Íó0 qØ8¸pˆˆ@Nåy›8ÔÎUlªm}óWFBÏ>26rˆúè³SɨkÏïbÛܶåö_Ø}¿dWëµƯ:fÁ *0å0dBˆ_%Ô³¸’¦n£ÈÉÍMHô~xZц².{iv÷…G³*½ÿB̉%Í_„WÖ~çµ§N½¬2°dû>ç̀oµèL «« ­E<²ª´M1“~¿Mz̉×ơºG_{LS=»ÿê‡Rv%’ªâ˵s@ö=pè}œíó"^€½yüCc¼ÖEL`„­•Ü-Pév6F_Đ›OrMÑĐỷWmS¿êó(F߇/L„4¥Ûư‘h•Ñr´ưF¶¾Á<+¥#đ~åJ,Xûêê<ó9­£¡SÈHh ô Yëï[99¿̀w™}æÓá[$_¿SÍ1ú™Û®îeEeeVÑ™¹hô½Z\¡î’W~çHq4_!JHgÈ98̃gơ»U.Å^ƯÖÎ\-儯âÄNEG.£Ÿ à3Á̃bỼQ^—g»dÁ̀gH7úKílצÍG&!§̣̉̀7¶BăôÚ¬y*ó̀F. ´ÆÇ’üSy ù;Ñ‘Ä^’TbBïí/<´¶:ù.®¸hZ›z+lb£Ëûñ˜hï>ë/7%IÔƯnœøR ½±j@ŸX;I`ÓR¹–í 5À˜âà:;€‹¦Á$î:~:½Ÿ¼0{¶¬sUw»®[D̀$Ñ%u÷ÆI.²u¾́DÊ$M½™ï-¦·æúD† jÔ)azèq,5$½-愘ø(2.S™=Å“×q8oå'₫@‹8!Vɳ¾Q`̣\Öơó2®üíăMko_aNâV/z z)”CG!oD4’ˆ˜AúA®ùzÛ`9¦Rü˜xb[Ïæ$j€YiLÉ$ Kë­"××ñ‡H®HJƒ­rB¤cûE{nù„‚㇩ë₫„"AXÓ€7z+À¬.h%VdÓ̀gè5.+A}Ç \F/y;$ …ŸÑ‡F5ºiÄÑtW ÜJ#”ªáCt”»đÅiJ—-T±."÷ơä7&úyrùÁ*äª_å›e8¢+áh•Sgµí ̉´®{ÑO´́€^­Ơóï̃„ßÎk…(>ü@‡TË=¾z8Ÿ’ è˜A‘Œ ¬©ă‡ü $8†"µ°îH·ư’”Ñ¡]LÍÑCÑ₫˜m>Ê|S{ E9½dØU¯Ú}A©iï3½–Ể%BIËæ`!ÂQ% "ỐeO¤!”×ÉxȈ׭-ë}L7ZízcÈVæéÂ-æ«å@6ơz<†¢9oÉ®-7ïæ²Æÿ`J!óA··z9uHÄè껺}Xƒ¢Imá+¹r¸>·IÇ0ôˆu›E„#! ÷À6†£×đùP|F¸Ëˆ B\7² 2sPL1!£›Ô¹©›N§åµưÖˆb…₫ƳÉ;½–sÿ~°'©Öt¬ßƯ­Ø9€hC¿Fؽb(äsđfçéV8ØW‡W­×s!Ư†yÄœ¸3ùÖIK!8f. įàî8vÄáµƯTt½/‚>¿J-¿·²=(‹‡'JÊt&f¼ßoOđ³²öpZ"¶f¨êoz§èÊê+”éyøZă±–gI‚pă­: ‹đ¶…«ÇƯ» I’©/Ú°wLIc©'Æḷw\¥¶ǜ̉-ÂOWu P§aơfT?J\1•̃#;̣kWlrÆK8ô6úq)“qé²cP„>X»UP[Ôá†9XvƯh‡Ëö( ë( Z};rưªŸ=§•É]Ă&WT ½¶{º„qö=ª¥¥ß§ø'ƒe~ĐzïB±×ªAÂé‘(…Æ;ß̉íY%Í&2Xɵ¢=”G©ụ̈VxŸú­w‚ó ̀/öIoơƒ–ưºàÚ·…äaèd‘@IáÉ0ú«XzúAKfqũYX}Ñ<‘„U'Å2Â!«ḉÀúÎe¢ÊØF₫„}«oJ¶±Áx_r}¦¨;‚ë3ïë ."y^«àR¾Ñkºæ̃v„–®¶<Äpự5@ŒQbˆg¬sIÉîUTIÂGUʦó¬·ăÊïˆU6₫Lç^‘̉Å÷Ueº^M5£#h+Ë—jÑíø{«Ø?»²äµ$Jf&x¹ #ßéB—LbkA`… ²ùÆ­¬MRá!ÜeẠ̈#fv4 JZ†ä¾ƯrÀ´Çôw]NBØ¥ïâ_œ˜­¬̀ÿ˜\±hƠĂC‘TIÊ»·˜Vu Œ¡6ÜwO7hèoÈƯ’2†T‘¤Hâ}i;…:ƒ 8Ñư2Åưßél©W—²ô^– »¹µnq_LÑbdç¹Ă$ùË=Ï~Ú`0ơbYKJ?.́ß"‘(IB-ߣ4•s˜|=M¤©¡öäơxS×ШƠS©‡è;=Gn9ÚO,Ù~® ù78E¤_γR3vé»)Ư蜃\ă§»L@¶đºe‰RÄ\À-•7P牠åd¸ªóB0¾'>Ͱ¬Ö—#UÈÇ8,øÀÊF²Vê2Ö¢¡ˆtÉ`n¤åa¹dÀâiơÊ™ Â ™RÊ*ûÉg½x§ö1çzJ±kèØ#!V¬2åŒòÖp_ÑõüHá#”AfĂiú–íƯĂ›rN'·e2ûˤ•«D'S/c»nZ¶N7oâ§Ư™̀ü»cdµ÷åíÙԻܒ—Ùí A=KTú@¿qơög» X,₫2§ươ: îĐ‹÷€¬ tÉ:äÑj'Îó„Hî[z8ëĂ‘nä¾̣ª›ơ,|8Gë­Ö̉qwXtS,·[s’‚Ë1~¦ăO•é̉¯Ÿœ)}û­éÑ(GU¶ºD[F¬Ü‰p8â±rßh]Ï|-ïµ>¨Ó«¯”pbÓ—H}W·ÀTøÅ‘!bñy=rdóaơS5S9(Tÿ§(¿—-,í®i©—9ÁCq/¤®à™Ü½Á¼̃÷& ™¶/°ù.ưG-ĐÛRövgBÅ,¦B₫kZ¨Ne¾]+ÛƯ—m“gÇßÑ´́߈^ßpGG.¾V.€ZÄ 9¢¾9¢+yA½ÙlX?Øl¾9Î¥=]äô§²‡Ă%‡ˆÚ£*Sb¨I¶íb6_¯ ½ùÊ5ß®? Ï Z*é¥Ợ-›lQ©T‡q—§9aY¬»è&ºÚxWŒK‹V$mÛSÙî±³½ñü̃ ¦o—uV> Àü~H§;ÁWxĐeÇD˜³Ë¡ûµi}z‹́ø§ Yn“? ÏsĐ ´+ÇẪ|oËÊërÁë„96$Ä“ă¾kq)kˆæe9Tµ7(ø3/lÇ«×Çe÷L£æuê(Ä!*…Dƒ́\i%đ¡Äư*Ơ¡}DSœ§W)yq ^<0a$S­27S¤c±ªÙ Èâ·:{xO·zÓñPxPˆ<©đ‡ÊQ$I§iö¥̃§‰ÊL%–#W̉Æ("–+"•îRK#Ô“%̣FGéØ× üC9 /§öê«~]¸®ºUM°­üÔ›gŸ;ët}­2ï¡ØlÚßjïåLˆó¼}/OQL‰nQ¦S-¯Ô)u)9=úc‚¨C@•ûDp^ü {O₫ñµfç c5ou‹ùºÆ,¬_«i“¸hƒyôưüWƠWÔz*0“t„A ¯§÷ˆ¡äÅ0'D T̃"j!F*ĂëÜ»¦oÎYZ¿ë ÔÏ;ÜØYí¯& óñ̉:Ë_±Ëß]b/âø>̃£xÂ;¶[2Mö¥ íÙ?‡aVtLV<ăH;w½—!̣„„¿¬ OT_‰É@HyLW ¬Ơ^^åUëÔä~í¿¸$`L{C¾^ "ß²,¬ÂÆ|Đù2²4‹¤{¶'ă«Ù¾êAëʶQ‰F/́U  ¶́nŸ3,"~+HCؾ¼[˽€· ˜Û>™GÈDJ߀!ÔÏ ÎÉî®3lu‰2̣–!ĂG3ê'C‡;·¢Q ²£>Z!T*AĐƒƠ³ü€ưuâûˆØóü„¤"G'v%á‰Ö¶Æ ]ø ˜\́œnÚ€đ§ÍÏdhº̀ä¼JM»›̃»Pæz„[#ÇU>yư¤‹ư&…¶.“‡D6p\öñ£j ÷a/vƯ+>Eư­,¿Ouª€V%U[¥yeí¢°[›ü' öRz“¾r(Okr*ơúèv¾(¼Í"f6ÇLä›ú‹%'“á J—Dù vU,Ϊ @óanSƒßû+‡Ç²ŒB à0Zɺădâ`U袂µ@ë'œĐ:$9îd43›Ñ’‰e°^̣! ?˜iü}́!!„€0Y‰b“0u÷Oj(?΋/*¿æÜđ́8‹±iÅÖ*rÍ7á“L~~K?}Ă·0PÍ1@æÂ©¡×R Â1ê•l_ÅỲ ơ4AwüAb›T›£‘óÑøåÔsĐ£yƠ*W’ă‹WƠ®¬³âÍ"t;—ÆyÄ›ơÇï.ÄIלï±q#iXư·y•† bQônü×cªÍ§̀…hT¤ÂŒÜ z5Ă0„h(d^}‹â ‚Ö‰¾}6§ö¼K%\Ñ@åMV̉xỵ̈*ă’¬ÑEè‡Ú"ÎṚă¶}%Ơ=qD^8x9<AưsôrÈ;˜•ÙèÊ‹J£üđă®̣ù́—ü‹`=,IÍĂÆ«âöV]ƒ̣ä«…·2A,Ê<́́”‹×ŒT—¯J–ÍĂ-Íñ; ¿|¹ 8÷|ܬµ5Àák7¢¿W4éûY« ²×DF8€ó·ÔLH^ûX_,yÿtÜgÀø¸t&×̣.Yæ•,Ëb`9\OYvé¥ë Ăñ-hP¸¸Đ+Íá(»³”`Ƹ²Y¦†'sç)QÈ 'à _±V_(F‹-ƒ_[±sYË:ÁöÉ“{«dÖZa_,½á}ă3ÁŒ"‰3dëÿ@Ü’¥s·Ô ă’ÔIMæ¾D½\Ǹ»³d~•ṚàEOi=›#́6§ÂÚz»̣bOßg-SU®\œ¸çđ₫¦Ø [·!'Ú£PZ#-³‚$ÀÀ–±—ĐcYÂÛØ˜îaÊZ¶±T…ä ₫€-Lh¯¥ÊjR>ÊñÙ—Âà£z$]iiاăêxă´X2–¾Û7Z"4₫ñ_[>¢›½=ï -2°2¦Ó›Î¡qT°]BXÄê ˜„t×tsÛø€Ư‰-¥ é!h‹P[ Rí2‹|µß‡Æ"ô-› ·Ÿéëc¤+ơ»W\*á:·X>øQÅ o+ZÛIU¬¹†@4¯xÚlêí|‰Î*bp»+˜Ûä6àư]àĐÏYỂγ—f0ôQJ=½•J ß!Í#¿yͶôó́ˆ&È^̣½³×›ûÿ*Sª® )Wr Iyû"$N…\$•‡Ú֦ѹØ{!ư`=çtnÀ±Óîä JKDËU×2%ug>ASèà˜, Ū\µ£ôĵĐ`’„ŒĹ€ K^ÿ¦çí‘z¬gÀ̀ŒT¹¤¬Öe[®@ʺhi„|¤6₫Q¨ö••Óôî>ÿUä*cÁI?4ÑHÜßó]H±·gÜ[ư¦É)øV¯Üæ…DưCú}$¡ :m2äÍ‘ÉÜd¥3ù÷2’̃«o0aH‚m?n˜Tß]ï_—ß´4‰í=ÉÍhÖ™)$/ijÍG’k“è§Ǿk̃Z) | ÆJhăYe!nß!Ö“—vM¬¼§AOÿù½àmá$t3I ¢E`ŸÊqź÷¹hÖ_¿,-@׃׿±‹ ¼MCR¡M[&x:û’±Ê¦Bfvwh­°º~-_Æ®…Lä¶Tµ¦fHO0Ï!£~́=2ýù¦Z‡ö„V†æÑ>³zes|p!CÑL±Ọ́ø︷¹¿h€" îrk¼F•öÆw—¹yŸêaÅE=úz‰AƠg‰é®öYœq̣đœ§ÊEÎî̃ëi^ư&u³/[–Ơi!º¾8œy¤5ïøT' s”6Ă˜SíúHj`™^)¹LY2º›Xă¹(/Đ¯îƯÛ]Êg®X₫ Â0µú‡#º§=ö´L‰Ă t‰;§ ¨m¡éN'Ôöµ¹IÈ –fä·-²Ăæ£D o4[-ÙcbÓ’†#¼C]ù…Ø0Lđ4ŒÚ%¯B ™¢†ăG_y×Ñç.Û‹À1ëÓ{{p9Ó’;-¹E!aémØ̣œûÍ:˜‹ËŸËdà`¤ÛÑ<Ú̀đ*urÎr×ú!Ơ"ù.íC-\Rö„édCÅ'Yw{è¦ÀWEfyYWÑíES¬{mA—ZNzá¼ ¯¯4ØnÉ£J¢¨Â~”µ&ø½ki?¸ö¤™-1G£¾´NKFùóÄæ÷̃wSÆ”́9œëä—$"öΠOj[59”%['(ï""|{̃Ç¡„aœça0mƒz8¨̃Ă|ñôxÿå{ŸqZßú¶(WüiB~m؉0¯|«¢ eúnÇJúRƒHùÖ!B́Å@uº`Ú]fËVm–¼q%^ņI£ÇA‹ Â%½[&£Âd‹Im‡µƒC7]J=+À–‡JÔÙ‚ƯƯ®ĂÚçFaN˜"vèºß¹/x¾èÇFæ§vơ]Ạ̊Đm‰Zgÿ<̉ơ&S(=̣‰n„qLĂ$q¹Ú‹Œ™Û†“Û‚¹¨Óđ ljZ̃·‹¸V$&`à[\4Ô+øÛÙ éÍa˶ê•-Gzé³ÄP~/âÿr›‚:‚ ±ÈêûZ…Vî8 »ºˆgœË'Ăê₫Í+tü±̃íª!Ụ̂Gº[tô¡Ơă"©tRF̃ÉÓ‹Æèç+̀©á7©ZªØ- ƒÓ\= p²¾îDyœ†hl§9a°ÈJ5˽nÆ4Ÿzp_Ö¾†X5T¼¯ưT¢ZØË+5dś%º÷xk?!FÚ{G´Gbcø³ ÷ÜđY:û5ư]€¹%)\+üÙÍËK¢·Í¸E}dÏ>±Î¤Đ^ߤMITŒéTƯµñÀ)”ÎÜœî󱇵l*pœYjVjṔ’W“E‡·íï×}s?ÄM:As¼Â¨đ^ǿ₫A~Ê<§_à0ª9Î{óS„Ù8‹Ñ-†‹ú0±¯,TâH‚avø£ù7s?8˜¶w₫l~̉A₫Á›aM1£’£QcvM¥t«j#RyBN‰(àuM?ơotà7¦—´Bå‚Ü?_ŒOÀØ¿ynpEȲL&Ö´̀z|O^pæ÷đd‘:·^¾ḯSQ&Z0í¸QfÜg¶ˆ¤œ Yñ!X ö|—}èqóăI·ï:¹¹G3´yߨ"†‰Á*—eçxơІ¤Çs(₫€ø»8Ú#t5ÇGóÎ ^Ä[»̀ÏfŒ$ư" | ^ƒ-œ>ÛïG©4pĂ×Û=i­”m½J} ¤/0%´ñÚ• aŸ ¦aæ]l¯gWµ™¡Ø ú¿N8 .#– ölÎ#otú*|ó"# ¹†£“hzueêcQ*`xâû>A¸b]|‚vnGØY‹¦UmLñÔ,JΓ.¸»»(Fzu‘ºÓ^–ŒçˆVÿ†Ÿ䬣¾₫ÅûÛjấü¼räă»ïzCÊS]v.Ó¨ —©jơÛiU˜:2Öï÷¸è¸̃2+.|YUu÷ï©@V€w¦\}„+œ:ß7Ó¼!fjºÊ/˶ڇ͉¡…ỉü°Ư×uÀăG•©›*)Đæñ›¶ï´¡ÚF‚~\Y×P#Çå ÜNqç8„8ªƒdœD̀?@I c`pK‹ng¡zb=$©*ŒbCpơûFç*¦â1äw>Äà÷#“1¢Vµ5¨jóóˆÚ&½é;hơ¨™E’^±ø!ʳ’Ñ´rØéï Ûñme%¶Ö¥%çK—mB~÷ncµ̉ñß̉®#§¦‰̀™ß²Ĺ½N9 Ê®¼¹rx§¼–Ï‘RMj~M´èCÂs̀Á¢lÎKÑ=¡[ ±̉æTºXÿ¢ó“lu³¥— “h¾ªÛ{6 “r~‘^Vz›Íj>A…‹_Yú±~~ï“<*¬$n™"YB1¾ñ°đ ´ß îf},ßH‡‡m‰!5±ªÙèÀ—à1‡ï̃__ÏgbmçíɉZư0?_˦6æ§@uêh ƒ#ø^yrTªØêđÚº·&[w‡ gÊ&ÊƠá́óç%ÿA·upºT;_o¹ºÈj»qeˆ¾ohâ“D–Ë«đ @ëȦ¢&³O¢GîI4n¨¤©wp'ÖûGeN‰½,ôR^—¼y<±z(æAÑ[Ù3“ÊƯR·û¸±À~ÚµÀÓÖ }¹ˆ¸­ ͦzL4½µÈ´—èCü ®‹C”q÷Éå…áƯw9Ó%{…׈;Đé…ÄÖÀGQ¶)´‰MÜUư·™ÊhI? gM­Ü? ‹“„¦CÔâ K"¦0]ÈÛ|§Ä…ÚÏĂ(8̉Û_IÆs¸|¬˜x¥´ơï±8SdÛ{äưĂ+i’˜ßÔj(˜fîU)̣¬.Ä`öR`¿ªNKÇÎDZhéÙƯœùÁc₫ÁŒÜQ­¸{MÑ\;‡¾KoÖá¯éúZ¼jË=KƯå•¢”û†ªi§sÙMÉœPÍĐNI­º–¢Ç¹¿yŒ¬_µ¤9Áî„ûèæY×fI±€¥“l{,AïI½ÀÀ!BX4üû—N®l Ñ&üJF9̃1f̃9çpêŸW”'NøƯd%+̀jŒâ‘—¯®ÊêÄKB¨,à¬5¥²—&¾œfüûÇÈO‡́2!b·Ñ½!îăpQj™'V?PX¾ÎÇm‹R…Ó–a"N²¸¡F~ž±‰>…§’–âoP,O(|B†[LI4ó xѾÔ‚ª¡PNqz/µ•f â=œ=`´¿-¤Ä’PlzG5~s *HÜù”¢Û|j#ÙE ÁđN¼ô-'ăO¬8¦+“A>kĂñƠ8Pè5W–Ëđr`Œ̉àe¹0„λœZáË6d`B&½ăŒ]̉ÑjÅ›==N_cÁÖ“˜o¯–†¼HØ÷¤±üüœ—5’úé§ c#uæ4Â7» )¡ LZ¹’3ú±„Ñ<#GÎ(¼#̣/v%_€=È(¨Qh¥ă|ÊŸ R ¢öáíÓä̉£r3†«̃„–̉ÂmJñÁË|g_&̀9 »¯÷½ùâªaW‡ >g^ŸC‹w$f¨&zû²Ë²½çÙØ$-†kÔ‚¯ÍænFă âäq{®=UhÑR‘élăP¤ ÊƠëA¹V[½µ`>ơBƒÇUprR4¹Å'ÿµAlv냺zmÑù«n'F"6…‘zvûIl%xRHj}«ÊcäDƯ–øơ°¬¯å0#åk“mK—ÚV–¹Q¦1Æ·ºBƯ!-Ó¸TĐq¨ª*®H8FĐ-–Ó÷Öá²øˆßfPNl,ǻ¹œ»5Ù»?`X,»Ø2>6#x^÷ 7øJÓâº7ỢŒÊÏÁF~•b\¸vÛ-y}Đ₫³'…$äÛs¤¤ rMÄ®±]C<$]²2iŒ5]Aëª₫ )re¤'n¤8i`YäJ×y [³#S} “ÉÁMˆ„¨Ñ¶'„§ÏçOû6%urrˆÔÏwx–4œ'éó+8ƒÚ÷ùßy…{\æ~î×aµ—7i]«v³mdi Ư²×Ö£,FáÖ¿ ĂĂO E½Á½hO5hG]V–>iúrV¡SMEû3è8ØÔƒZ ́)ç{.(éœfH̉ Œ¥ôèXœÙ¬-’@©Á<Ï™‚f÷ÉĐë"ç›:Ơ°ŒÙ}C0÷x‘ôơoÉ̃§m°È~`û1<óç<ÍÎpF¯ s¶ñTs<³m6iÉí´ G'q¸u?Hmë÷¬ëä§tâwƯ áçî¢ ’3¨3”̣§:¶ƠKزé%í×dư[àfĐ”±̀^½D+.ô˜†1½¸3rư}sÑ,% ˜.`9¦avMơ†qâ ­±Ú̀yT+£é9ú=́§NIÂeh›=…רi¥Ö@'[´$·₫×ÛäOQªY)#µ&„Í8ªaè3ăvôŸqÜñÅ<¢ê@Æë\²û=¥³măÁÉUîº#ƒdcKç;ñ3̣́:«Ë·&Åmû‚6at> ù_Á\:&̃̃ơ>æ^6úNå¾cˆ£J ȲC–ËÜQ:œCĐ0m|]c¤^EÙ0OqnPzêècH5rÎJ<×́^ÎĐª¨¹¨ëiË´\| öf›±q{Y“ÙTĐÑ•%Đ* 0~>›ûQD‚d!9´£í5É}}ª(¨_{?¼®Ål3\¥6ºnf|ÀÅ&‰"¾µß\Ñ¥Ö³ci¸đÁ ŸÄA¹#}'<íđ°l"̃[®´¬¹o[Ÿ¾ØnÿøùLÏR‹aWf’©ư@Â3 ̉­â>½¶çYÄØ„ǿỏ+@NËN5̉I‰FKØóV¬*H÷{#Lï;^U<2y,ÉÓ29¬§W*ª¼DǹóëƯÎ)§ô4O…úsÊ´‡—…¼5„`¤ǹ¡¹;,ùëàm\$R´Á‹²-ÿV Ḱ ¯ô{r—p€÷H¦¿œ”ô‚ñ0»‰rrWÔk—½̣µ .ù¢âkÓ®¤éæE>ڹȌ¿ă“cÅ ÁP¬X®*¦âpÖ•®h2)6°>qñM–é5’[Ó^!Ÿ—^ƒå"1s Ó–ˆU}ªy‘΢Ñ"f«PØ`,Ơ¦P½.$¾KˆRüÇàQPM›¯úYΔ°\[ø̉»D₫4é~Pd>,ï\Ñ5ÂÅJíñeäÔ…4Q†Ï6à&¬ëüb¦èê(Ά˜#¸öß ñđ ‡Jè`Ư¦b4[F„i­™=n>>öÆưR× >ÊɾYäo[Æ­æY,««×Kë‹û˜Èp7íƠ“„!nUæî¦uP ªÇ´eä:}Vˆ8¡O₫‰¥%YvTopÅ(—\+)/‘ïHPïYXû-Ơ5<'>›ß°±]ˆ_νÀåT!ºO0àP…öŸ-唸&TÈàÇíúë>•gy{K„§8zEØ ´‹".e₫2e¦,§üô×öZË:đR¯:_N†çëuåÑ:†>Å÷v¼râ™Ạ¨Ø₫j'·*…JŒÅ"Ù´Ê-Pسq™ ñ»aøyß•‡>₫èÂÏFøÜüé…·‡Èa ̃˜î“đ×¹Ää̃‡• œïOÜùç0ßpEèæ}J¼Œ.V[ .d}å UIyI>‚‰^V¿4c™­«GUÛ¨NÈ8½ÚŸ́›UͯéD7F|½_†+~ É`6P«$uiîeµdvkª€Êßÿ]~¸!æàyb¼¥j˜ÓïµAÈ -jÊ~1Uưà T c³ ³âA_Â[”V(, RqÍ÷Đ!§æz(‹0#‘Vá„.|—gʺ³Í‘ *åöíy©të&Œ­K•=F«~ƒ)J«‘đál$ß`¢˜#|Ú>®®đéI£ÆÜúófï@t1j æùüœJ™ŸºÚlĂ^g»RèCFt%¡höææ!Æ₫ª}5É¡Æ ô«ÅFZ8çƒUúœ=Ámh«ºÀRµƠ¢-N/Z₫éü¨\´üj Ô–¢ö[êù”n5 øHqV̀^h… y–be»•FüV›‹QÿƠáÍ“½)²‰ơư2.Ï’ü¥#uơO5¼ñû̃<#ÅäÊÎñ\»¿Wz\E6‹)Gâ›ă¼Ëèg+wD0|e‹ Êbd7)ÂǬ₫Đ¢¦·ƒ÷”ù…–†c ]ää}±ùyá…²Á:Ư­ß‰tŒ́xà,CZư ¼ß¸H6ά®U_9Ưl¼rï{ÄPÎ.~.†Á~Æâ9©~Üù4+ÓrpB8ƯH$WS}SA&o¢‰]^^\L:8ÙN¨eå¶yîpÿ‰+é{û•vĹIJẵ₫vÛ?S9kéXO9.º®‘™̣›¯¡àѵ#po52B3&\̣­₫G!çÈY«—¹C™ù‰Đœ\*ÓcƠ ẾσËB3…åÜ2…÷ÉỦKÖ¿Íï7¾›|©ƒ.5́̉Z(±íÆh%¥ï>b4K¬G’{vÿ¨ơyŒœÀ5ÿ+T!£(ÅÛ$ư¯Ăß¾ªÔPå»°RÓÆZôùÊorÑß"­₫đr·½$Êôó9䶈µèÅÏÿ<ư9AWS8³M¨Ó^Åϯ¶£à³ùÓ¹ă&â`ü›ÇB’µæ̃çx,˜3+k`”óf¤¿L–$=Û±ÈwÓÓràÄ˺6‚”7XU’?#zÍ¥u5hå¼k!½₫½Ö·µ*6\!$ÖMhÑi)vË÷üBßo^›ÁCñ₫, Q ¬ •2W‡×ÉÜc—C ̃˜½ă"Á.^es7Áhó‰sÏßƯỤ̀̉mÑ':ŒQö¦bt>´Ä´³éƠ.‡ă+ª> ƠS  a áø ´'wø’b6M•Ÿ*¨jô”ß“À#A¯ù£Ö"·¸µï®ă_ƒj×ÉôîLcÛepOŸlpĐ#₫.×5"-•ø ù„/S•¨{ŒI€œÔü˜ióziÿ‘½÷ •qTI3“ă»ïs_’›48 y½Pçf­‚Ç7vaKaxơ'ò°\ie»`…2j»²©xD+1,¨Jœ >L›·¯sßàºB†év±Y=a;*„\„å R¼N ÊNpdĐBN öÔJ8ZøÀîu™ë<×v/ ÄæVævx₫ó3ÔΘpđ̉‚Q_xàƒz¶€¸bùzô hưjÄa(ä¥(¯JY-ù^"Dw"¤«ïnÖ8^ ~PÜÊäj®”ePđs!¶ñ3­>áíÑƯNÿ‹èÑ̀y?ăÏÛ³AÏPZ£| ׉FèîIá>s]‹“™c½ØÅXKÏV4€€]ù\x[§ŸĂN`_Oâk÷dỤ̈E37 &âơWK·íE9y£₫ÓV„Æ̀Éùhhc3‘qP³ËgÍBª}“„”± xDnnÉ̃îwíyî½ ‰Ï3º„*Y×7¥Z mHĐ#j"Ø|ù?ä+V•oѰ c8¤đ¹ä?g©åËH~Ä5²9p]±’AÓ(¬)k`A´w¾—+xcö”óhå¤ñI¸‹Â5Ơ^»zP†Q;ÜöJĂª²a§é$0:óGé|₫„OÙ·Ë-~‡Ëb”-¾Í´˜¥£ƒÎ2í{?IQ«7H{¾°7&øđ²=Gé×A-—́–_ĺå'É9`Ḱe§̣—H1„ÁCœwaUø‘¸¥ö:™ÆV"VÀ£¸ƒ#Ü1‚x/±óƠư²[I‹9ºEă7Ă _ö›ö°½&“Ö–¶8¶qIh́•“'₫‰×?|Ly³p±{'ÄwÛQiĂ£í*Hoʯ¾ ©bŒ~û^£̀÷‘ߘ9¯"d8س†Ç j3~­ Ï¿àîơƠ‰9¾kƯX¤ËQÊ‹Q€9Ǧ¾Q³Íe ×Ùn)¦«Ùá´ „w´6+ˆÿƠ‚å)ẠƠüH¶?d(8·) Ää‚ZP{̀æI5Ÿđ’ü“_ô4%n±:Û¹‡Ü6΂¥xøƯÈûËpˆ^½ïPüA‹¦øË̃ĂV¯„Årp…¡6ßR>g%÷øFz+4§Ø̀Ù¿đw!§VÍDx¹q~w±Ơ˜S­ ä_V±íPmĐ\ÀÜànèCÎ’£§}(°2âgcEɹ{PûU±ó’ç‹ÀÚ-e0ư5áNơ"ö|ƠÇ]y‚;G([Dl‰é&œáAl¼ t+,̉,Á)FX2vØ÷ñ½‚Í­¼?·±q2Û¤–mU-¯N¶yØÜÂ5‹\đ>|Û°º×(Hº~Ë.Ồ$ăd§¨MAÈEzâëÈÔå¹TÈuHµÍ·'ñÜEÙfoµY¿²5I]†3¹ơ4µ+úéJźÿƒ"|ƯáD´u££¬®ó$oÛÖ©²4ض€‡è¹„=₫ø »í¸¿ÔÜç¾iR³§5ƯfØI§Æôüª#Œâ=©%Nͺ…î—¥ër)æö¼Vé/̃S¢o4‰‹‡°‡L‚#ʳ·’Ÿ=·G+ ’WGM6ÿ˦r'“íæO•PÀkIWÚQ̀é03~´îªâÉßpV½{³çׇï)O¦–ÄÛV Jí¹i¢"˨o8HƠ€ÏÚ 3<Ëóc¢W3K$Ø̉b¡9ˆ¯¼‚x‹÷,ösNkÊ0¤cÅœä¸] À;F*×@´Ë`pP R/p@{=CđûàÍ™v¶û9XX:c2¨̣¥Ô¸€¯·‰^ Ñ´%¯Q¾RÚâAd=ÅeÈ0µ5ă }̀3nÆÍYض>GŸ¤¸ÛĐ’đ&Ú’^Â=b“°ñ T̃Ñ.î?/¯jÖCA%Ū R·hnüKp#ó~́HŸ[®¿aœ¹̣XàxÊw NƠ­3Rü‚ l=CWI¹ơ@EU×aêÑë«9í,¿ßZ&9™CeăôÇêà ø…eºWØW5s¾Ñîo¿ä4Yù”®[oÄI â®N<ë!–¡JMod̀Tå# ­™LOGâ¾(ïPŒˆ(>4̉¥\%h·$g¾!\äön›$u·—(q¡“¯•åê}z„kóI đ$‹°•(”æ—ü>¼A qi:¿âp-µN ­½₫{Ç sŸ©Ë }1MÎï&9Iï K¾û€Ñä7WrÂí»,€–³m¸6åLƠY\K‹[ƠW¡†[S̀»+¸d̃}™<y³ ˜hê^ ¶ºÆPW Øÿ´P÷¦Đ¹qø‘ô§CĂH`¬‘Đjå,K¾¶T¸́Rñz´âeƠ7̉1 ¤ %d/”‹^pfî´µÓïÖ›Çié‡"6BˆSÑ@ñÏëöå´k¾ÿI9T¨UâsDiërÚTdˆo¤œk‰)˜¹t³×U€ä)xYÈ\́¦?KÊ 9¢]ÓECiRü…‡2—>ÊöÊD5‚bdYBßkT¸p óÀ̃M:ªo°9_áñ#â{+|Vt×̀‹“ÛẬŸU6³”1ƠW™ zf÷Ú‰ÖO¥æ`¶‰ Í(×vDD7Ă¼Đ  `̣r•²+Ë+ÁƒJóÛ·0à<êđ(¹̃‡çn³¹Óˆ.v!ˆîôÔƯd²f×Xà}±iµ‰€©¡Œă['c—kDÏ0.“L´¨UFÄÔæ ³†c<>'À|ZJä0ß-ÊKº *ù•›Ù,.UÁ)ŤÙñªMcs}¨ Kw´$*a³́æ-µˆU‘!™·®”D₫›Lú8!zZh~Md*SUË₫kÜ­}øw9 £nñ¼äró£Aù­ª›~“— g”Y -fø¾ëŒ ưd{`ø®+TÅƯe¯iŸ³³[éшŸ‘#nBNÍ̉¿ÍƒÑôÑĐvÔ%æZÚ䇠L§p^RÆëén.HÄn d™«t‘Êèä!QIf{1®ä]ïhׯ”­0Z˜fÏΖC¶O8ꛕVñU2ÄưX%Ă\°‰7ǰµ¾‘!ưpB].dóü´Ñû₫@FC̣©Œó́¡đV †Ê‘bÀ ®ÇJ3¸49́Œ}£ª’Ưă`_Îh³7\‚ÆgÂâuÉƠ²è³»n œµ+êR¾ƠDQó̃¾;Gfb™p\Zë¸zn±û6pÆI~\ßƠƠ+¼úơÛYцøqăÁd°¯0H ßR>6&© Ư+cà̉ñ×ÂKÙ&GvÉÇ39V…tîƠÙ1˜«> @Ș¶“ ỖŸ‚xGü¦¬˼h€=*ñ¯ê€Ê*ÆImd;q:S×h)[À¢[©/¢¨Êû “†€®|1ÜqÖe!ăh ‘?*6 ₫Ú̀.t™¦àfhwt~±[W"±c<¾ÁO*G_f¢$38tÄC¡d]§̃¿kC­|²‡Ắ {ù ¡’=¸@‰¾×W9ó…„’"HøG’½'IĂó<7¿’sYµ¨rIg₫~ö%JÖĂ[P]ưgE€¼+¹‡°$è ŸC‹L \“3ºp.(Ơy¦̃ _̀:'m™ «̀9Ả=)b‚(Ë;ÓÚC±´±}P°€÷©K§Uvt®ÄÁ́l¹¦**úñ_¤Æ«¯É2æªÎIäøÁÖsl&NA›3æn¬¡̉_‘®ÓDá}(¨"_³x]ƯŸÅư˜A Í]&JE|¬¼1ÁÿFáå¦9)y~¯[.;½”s¯̀×6̉…'Û5₫‹¨ư0"MJ+»lfëL|Pà &äư0,B^ ^$‰2̀âqrbTÁ붤/Ç6Ipÿ¾Î£«„ DKM=ëø±z¬jæb=>“s̉â%ÚÚg…½@“¯"ü¡ ·tJí( »`đÔ1B–yÓ{æÎ˜z”·)0ºØ˜å*0ÜöˆS¡P:Ïh½)0̀™UÚ”‚/˜\ïQiæùEŸ ¹½¸"q´í œ̣•ÙĐë¿W$ñ²wc:ü}NÂËØ1<’wªñ30₫cỂ¿È·fÿ₫tƒ¶mÖ|öỀ–D¥øO åMm€đ Mo²O€W_ƒÍ^0:Eñ5LÍ?p%‘Q;˜èÉ‹Z_†Êưê}|₫yßät ¸!_™ÅüÈ“8k¿5 ™‘` ĐÀ·™ĐyK —ĐNưJÏ`ưz}«^ˆ]_ø_¢9)̀dí¿z³íäm¥0yFÛëiƯ ơA—·;P'̀Ü̃úX¹HU¥³ô9"?45sN¼íe£âK*meÈ5 ˜Ư?¤ªÊ› †pMñÊ¡ U±ˆ ̣6²’m ­Y-'7ă²Hh°x GjDn½ü/‚ªo)Hï67Ư×?̣ zcŒÄlMÄe‰käöäît¡k½OÆØ]¿˜å’: yfÑs©2~Jú>ú¹áO‰·’óưx­ U¹¿À0*xjKÎ?3†q†éÜèº ơüθ;¤`Yj$¸¹XÊËÍ'̀ˆH˜ôº!Ç뽂;†n²àđîH:d\nå[¯`“6N‹^S,¾¯µj/IPH¥Ïµ=î€/bn˜RÅï%²›2!Ùk^{XÀ6`|Q“\₫7ÜqĐ…TÙÉC “ؤé9$PÉä̉à‘„Ç*WϹ‰#ª]<„€ĩº”+ 4*₫¹‹X&m°¼L«1Ưx₫ K©mTF”½×oÄ£‹@rA\9á[*âZCËG³ZĂLđ ñß¹̣tđǗBµáÑÉW‹–…Ék †»Z>øĐWƒwGT½úèÁ>⡟ÑD¦ ¨mXö«È®*S)7P—*>Ëf;e¦Ú(3̉»§‘­•9Qâ%!‚ Å¥ÖŸ sj‚:èBdY¸¤-²­Ôü;È0)(Nß^.ÂÍëʨY™¥}»^1ª>u'Ï̀ÊͪnâSÑ&f§³ÖÂ^¤éởĐĐhP&'²-3wo#…Wz¤!Ñ»ẠbÖ¿aâ+%nóc6–Ï9 —M”ø_ˆa5)Úa{/Œ`Núc›Ùă¦ce‚Ø@#—œßjÿS´̉†>•6Rô ¢±±ZAîÙmBA‰¬²i‹,§¨OÓïÔĂ„|£°æÙ\è–dĐN~–º8Ö½JÏ.x‡ó-Yg-j½`”½ă³Ú9¢*iÉÅ@»î¹#!±FwßggP ç„eăT¢RÓcC†Q»o«²d₫ßƯVàƠeuæà·¥₫h ₫aLî4+ùẳÔ o‘á1¶'¥àÁø¡HC ¨—ÎóWdƯ=]ÉÊ!?₫›åƠ”êá3eÑZ½&Dư֒ƽ4¯)à«@ổ̀Ÿ‚`¹ŒèB&bÏ kè!̃9.ä_l$3—¯UK6e/cn^‘0@9&üék$̃Ø „ß¹U!hé•̀r-Îư:â£r¸ó0‡x[ v/x0OµÆ¢w>)ºÇÈ#h0*xgïoñBsxđ iÿ¡øÚ¡ÙlTbTg5®8“`H2ñS·̣ ?¿ăhXÍ Eo`jRÁơ|RX+\Á‰ĂÊ e (|nCnú²]M(’2%WhFóÀÙsèÛ8„wµ_öK«Fq)‹% lûYíE?¼‡fRy˜ă¨&đ/`ב@ qăÖ³dEM\q”I^:|fÖY~<ï!¼©6ñoCúúÑœ‰UsS¶\?¦ƒ’¥ëœW¢íDqt H·If—¶F*ÄVñ#SB›®×!&«µtÎüÄLvh»_cO¿´SÆ8öêˆ'u¡}?§å²#J¼èæ¶ “!s{ïŒÊ²!Vù¯%7·«j”‹hg;­³?Ü{np#ùJnÆL®ú„’Í/¾ƒ¨Ù +"sDcN»P4̀›˜¥–M¦(ơ^J()Ø~Ó¬á^gÿ@6CñÖ₫á •.g×–ñ̃iZü·fê₫ÚÜb%̣S0I>m°”]̃÷" ˆ—Åa:œÎ‘8CµÏbÅƯ©{ä§j‘Â֥ɯ?₫Ês£ÁR—›ÖÚ¾qĂ6îôUñ¡̉DëÈ­X´måáéG¢R›sP1í ?S½ÅZtRØF«,ÉÅ4àđÓDá\`åNÁ #~ ̀´ogÊü"t­̃(æƠb5$› æÇëªÁÅÛmÚGJÙØ$i«rwỶ• \¹ˆ²Ö‡HZ©-=¦OứQ½¾0¤̣vÀôL¸¢Ímƒ|ÀÚµºxÇàfÎéÙyJÛ´Ơ ]ṆgơÏZ:Qƒw´¾VrP%Ù½}ë­oBp3É¡T ˜Y¶₫ˆsG· •C[‚»7ø*\^fK§ècÿ!c A[X’“”QêûSCsc /Î:̀?;7±†~ÆÍ·}b«Ô\A0€#6e$R´Îü¦]:XnyÉ4QEÄÁ¿F ÊVI»Åد¢TµÂ\áAÉkJ4Ù5á#¿I›óêƯLjŸîÿ‡>¸h)érxm%”Y÷ê.ªJQ+‰ï66B¤?Óic*P5®\îxXôHí…»ó¥gÜg¡é¢7¦Ô¿2Ô Æ_ΰî»ÿW±Å÷Qcc·å´Xü(¶á ·/z™”ñ&Q1  Iû›̃2¹_}oáUÆ©—Øv`WZ=ÍïRLîÓuáRg2¹hHBA¨Ö¯̀I‡{ÅZ0Ă!'™tSwT4Gk«Ơw‘†AƒlköYzØ]@Daë‚Ûü˜@Ó%ukÛx·ÚÈ2K'{bN0öB ̉«kB¸qîæ°OÄ×ØÑ”ö«ă8Ü¡ÊJÇ_JíêÎc‹[*ë—VeÜÙ@̣Ö»ƯŸÈú¶e‚§‡h='T-I~[í}‚‘lIN9E±JS[:6O‹Æ‚ɳ¶F\¢jÿ“Ho©½…ñb.lSnƒU` ¼OP-’k‰$F)ăÓ³%™µ”,âç'HƒhÙmÎÿw–k&›çơ\°³Vq¸‡i´ˆ¬0(|b”;·mĐÆy ”ơ!ÑLÙM‘߃ ˆ™j)×™ x‡K¿+™ëñÊÍû™uwJ©-º_©ïÙT%#I¼*•I>«'¥ÿ\¨ u®vK}awȰ€íèRÄ:- áđ_ G„²›Ød‚A<W¦CUÎG¥&Ê)ªư‘uưZuÉ¡×Ѭ©Û‘Ăïa­_&s†—/#”ßÁ9›å~ wͪG®Ø…›Â=&yæÎkêàÙơ3³âKæmÂ=h _lÛqéVv1¨p‚̉F…Û7¾(–„~'³ÉđËÍ&<*bº[ún¾áD½mkñô‹–™ ¾ávN°¨‡Ñ ư1æ×©l8á`Å^á½!ï™Ó1AăXØơ>çt*Ä%¯•áŒÙ Uø:¿ó§ ^¯|œ íº"öîcO©o¹N–Ü;¬˜^Bz‡ö–᪹t"ŒoÔª-mrŸi¥ÎVXu¦(‚WƒÆ˜́?ƒ'¡Ä­ •¿Œü™cp4¯äXß!´Q‘Ÿ´°Süo) ;>ØKb€y±åß0-§ỉ/Ó¶ö®ëZF‘¤ḷ"psÖ3Q3]ê¢êe%ĂW+, Oâ'ÁœƠ.E´R3ïc,¤çW¡¾hm‚5ưL?.¾6“0±ßPgmß¡VqÚÍï’æ0à°bP=Z) œ° <\^%}Ø!{x¹PÿÙpg‡ÇÅX%Úơ”àk¦X_Ï„3›½e wŒ©÷ÿôPư ô¶ˆœÀ(Ơxç1ÖŒ¥kµƠÔ ƒo‰ÜîG* ú k {pü [µpÈw¬É #{b<÷yú°Ơ •XÇ ï¨®8Ø +¢{ÊIƠTÏÅÖ́JW–„— ¤é†̃ïâa53ƒ©˜æOoJ̃Ï1¶đùƠï!éçR…ܳ-~oÊl½¼Ư×àºÙ%8ëà­„Œ¡=oZ•uû‡À‚e^‚Ă:†f‡‘º¿&ŸâÙXö )¼ ́/kĂ!Ö"bMˆÔ2Ÿb‡y€úíaº¹ùÓâ~*:}MỴ̈̀ó–°¢{o>²ÁzÍͽôZ2â©´QcêÀZ˜5‹î„Í:€ÆJÜ>†Œ‘mw†„ñ̉…Lô§m¨5§ebêûª³ßIp'GA¤ ưØkVŒÁj›‹ư•ƒj̣xîØ.S()(y²P­lÔPáŸRL¯[°FB„\E86È» ©381ß›€#s̃qÛ_…7VB¡hüû@µø`¼eÙ¥“Íh?Îàœ$eÑ_9©mö5qƠ©Mj1 dÎ/ôBÁb·À}-ÿ7²iúư8ÄgMû}£÷d™‚¼ DZĽfGÔñă)©7oŸ5!4̣ê›îQ=“¤7ÁƠp@³ơTª¾¤“²Ç’Cô™Xi Úzjg&º¥̣àVÀùÙk2!±}á?÷Ñ‚{ùe"ÑÿºIRùL¼ơCN{g¨ä .©w‚™mHI}đ‡ÚœÜ)væu@Mư%Ÿ6­G–̀|Ç.ô>‰tÓJyúLfµ~´ĂVÅ”ˆ–±¨wxªÑØWbÂ,=[½Œg`ù=j|¿¬¶kwåRÖ»đ'o8XJœĐ•”ÊÑ7ÏÑ´“²%󖬽ذđsĐ…¥@\ ¤Ä-Z`&Jp'—‚£”?Pa¢oJq­#ƒÇ̃R‘Ÿ*̀GbÜ,EºM18p>úZÁo%Éu`¥‘Ù̃'s£¡•ƒq'&́”n¿°AKè¡–¬‰|ÑĐ]”«¶ÜúƠº7Yq~nĐ]¿+Q™Ûä)Û7¢£\ØHÏ₫uÜU¯aRΔ2̀7U;)€¨³ ¢ÎxÚ6]'záơAề’d¼MFÇs q3¶Jᯙ:] e¼ÓNư™$´Çf —>#9®–6–»‰à0¸6HÚ¦¿®ư9Ă«{·Ö\©È¥ gQÔB˜¸¨EV03Në¾WpM{Ôª—ñJY [—ÅăèqDê¯eœ-M€ÊŸÄX&ù ÜPâÄ`M¡Ï¨@%´ñ0¸”ØØCQ`—̣ºQ»äFG—4_€ â$YQ‹8v ˜Ï­F¡§sm»oUg̃¸0$¡Ê†Ehầ¾U@³U–âÈâ $ JNfPÛQ™î¬©1MB¢đ<‘Đỡ§ö++ÀƯ\å|æ œjÙ7ăíÆ:œ&\È£KÂeÛ4­ỘØ t¼䂱ü2„,wñ³°4ø“ ŸhOHV‰àÉ!iÎ&¤‰đZvñAP‰‰;ƯÙ\¼½®A‰MZ¿q>8Mˆï‘Ÿj®/̃!ï^gÜƠ"âÜg’ˆ̉‰ÍíăhÜ©ë2Ÿ¾Ç´\ºÏ̃Ü÷Ÿá½úCH EI$4—Bn̉É8=&{zE|¤+-<Ï:e~†,ªÏY¨âqß3 YĂ®Hỳx+¬JŒLQZÂ[‹FÍư ]寵̃4;uÁóYƯBÓpÀ{{ö³äcêøŒM¿c5-æíy¦ºF¦mŸĂ rÑj ̉Arh?-­€`œZ«+Ö"3VɈÛ%ÖDó¯à䔿÷o})¥ˆF\ûäE¦!óñIÈâd™|Yh+€«¤¸“¾Â¯ü™ư< 1ƯZPÇYK¯Z(æPÍ 5î)%›-§¯Qï…VʤFI¥ÄÖ%]̀.KcÉ@j4 Zr½?ÂrZa§7y+Y¯NẒGßtˆ¡?£¼Z9Ù´5qƠ)dûg?¬ L₫I‚++[ Öơ“[ÏF Üê±2Àhư´`gÎ ·ÅÑ9¿Ơ^‰ßC ́RGI¦ÅẠ̀¥Ï%S10&<ÈĂ…ïC±+ ̣§·”Yiî„#nơ~Œ”z£O6÷™ù ăEçËkw¥Oj¶!"©Í̉½ûnç•ơ¾¸[Á ø)¯Ăv1f¬·Iˆ#©±ûAơ˜NTª;A)¤×c|*/’¶NËÜ?©ܹA5%FP_ ơœï»†ß‰ààD¶qcM• ê?½Ÿd'¼_Sơ|c—,"xGîg9•ßK8?;r"ŸŸºÈÈÿË1DúzoyùT,‡çn"̣,ç» :u×N@¿1ˆï̃đ°áWĐáæ¯È¦SäK*̀{óA¸¸₫’B_@êSŸç´³;öe‚NË<9†^ÚnØïÆ"rîp)Æ4ùïÙß+u¿îĂø(NÛfKtp  hơéÔˆ†̀́É–¹]¼LàRPQenrƒFEvL難‰̉ǿ h ³l₫nc硆úDoă‹`Üú—›ăïG‘;¹_cÖl!$ưJ;L“J„²^FBƒ—##p{ƒ07åzr¤v¼†JúX&÷$Æ₫»åAq]eLƠ(Ï!È¥ák«H1Ô,×ê¸ BV¦×ơÛúÁ…+ùRU¾ĂAF…’Ôuw<ÓÈnp̣ÖZ®:qíŸ ÅÉÆû„»]Zz›7·»9l-I§ửÖ êŸqàxÊÖ+a€§W½Í:ịY3ÿ]=ú]gÈ>ö)øaRWbR˜s‘×̉„T® vgo)œ.à¢×lÑđä̀Ơ¸6(«n3ư±8)2yÿŒçT-+ñ¥HưgU±<‰kI †pCQÍ»‘p±óâϵy3̉ç¶}`è×/²§w“̃–< hDÈT…r_•\ê~ ̃ÔˆảySÔ[`ç¾Ä™Çeî'.pûç;/ÜnfƠHNz(äÖ.T¿ï¥ï¸Ú̃9¾́éÙº3Xÿ™}/Ï̃’€» QˆæƯ:ů«{%p§ÛCR±ÄQ–è+‚T$íô¼•È|·6S̃S§ ©?)́~E*ÊD=h Î̃{æG *Æ”ó ·bÏb”½%<,>•‡ÛÑ…̀c2 ‰.¦S£Fßé¶‚qèY®“sß09 ^{‘Oœùµ°¼`pÏܸ |yøư¹ÿ>íÏ6I)>JEX®î>đr2È–"ƯÙ4 $c?” Pg–á[+7ÎÎïè.y°e„§ua‘'·3”é–—8Ç5N’„u#&’:]øjÏ5‰vù"‰§¦[ε¾y§ÍâúÀxÏcúR[V°É`‚ĐÅCÄÁ[ôÈD{ÔíáL5¿’7‚~ØÚúö̃ª H †ß:¼‘nGÜḮuŒD 3däSoϨÂà3 rÀtjÚÅIsIJ×›øløÓĘËu¿X̃Đæ—&§½®Á ëăLŸ­ñp§w{̉\½•ÿî[¹óJ1”¯N„a$rÎ(QÆ ~ÁQ¯¯`)öû5ƯăóÏ.p°/̣\ƽY¨_œƯtÁ ÈÏĂJv»¤; HƯ‚R¶Â²FD̉j¡¢0åY#5Ơ$Ÿ‘¼ uƒàü|b¬q₫cvǺ:DbrBGi­Å;퉵™)\1ßè “k¨ÿä5Ÿh}8äÔ1̉Ï— Zû¤›É’é4‹¤‡#¤ Fä4?È2T¤b¦f¦>´@ mlwmC \spv³¯å2X…½‰sÑ‹q"¡·f}ô·g߉áASy™iwô>¦ơÓªM endstream endobj 1479 0 obj << /Length1 1831 /Length2 11722 /Length3 0 /Length 12868 /Filter /FlateDecode >> stream xÚ·PÚ¶-Ü¡q и»»»KÓXăîn!¸…` î‚‚»;‚OGö̃÷dŸûƠ{ƠUt©c®5檂–RM“EÜÊÙ$ắäÎÂÎ H*k°s€@NV …–V ́îúÇŒB«‚¸₫ ™»?Û¤̀ƯŸă” vN;;¯àùÿ'Đ"2÷[”Y ÎN 7ZIgoØÆÖư¹Íÿü0X2Øùùy_ÿ•wAÀ–æNesw[ăsGKs€¦³%äîư_%„lƯƯ]ØØ¼¼¼XÍƯX!6"Œ¯^`w[€È ñY~ P1wư=+ -@Ë́ö·]ÓÙÚƯË<À– '·ç '+đÜ )¯Pu9ư¬ôwÀkÀ?g`geÿO¹²;ư•lnié́èbîä v²Xƒ@U%Vw¨ûk€¹“Ơï@s7çç|sOs°ƒ¹ÅsÀ_̀Í2âêóçÿÏÍvqwcu;ü‘íw™çS–v²’tvt9¹»¡üæ'†€,ŸƯ›íwröṛưXƒ¬¬aåá¦ívơÉKựlBùc³¹¸@ /?ä A-mÙ~—×̣vưådÿm~Àß×ÅÙ`ư<Èl z₫Bñu3÷Ü! ß;₫¡°³¬À–î Ø åOơg3Èúoü|ù0`|Ö;øûóŸ_ÆỊ̈²rvrđ₫₫×ư²)Jk*(ë0ÿ=ñ|ÎP€/ '€…ƒ›ÀÏÇàåüÿ»9øÀ?©̣NÖÎ₫¿É>Ÿ̉ÿöüç₫₫Ù FÀ×Rq~-ÀđGăF@n åóöÿg¥ÿ•̣ÿ'đßU₫oÿß„d<₫r3üåÿÿ¸ÍÁ̃ÿûH xuzL‘¶xéơN½Ü‘d°ùơtQÅ»6ƒ÷ñkFƒ–«Ă«¸-üf̉d­A[69u^Á«Z”C+Đ/̣3ç >SQÛL¸g—–ÙÎƯßFƯ¬‰L`ÓiC„÷kÚ̉ó¥P™IbñësÉ<®ù[Iˆă©Ós² Z9ƠPMëvQ³«÷Ûû½Pn£ú¿oăVhW<‰W,àËÁz‡,‡”˜p× ¹9ê/;±) µ†¹©•đÈQt¡ûñóÅh×Å©q1 PˆµÂFSMÅ! Ç O5Iétº0›Ä„¿¡÷Q T± ÁïD%$́É·7°T1'ưz(ï—kH§Đ$zø¦N½ÿ‘^¯÷à8đ <ºL„6$Häm0¤vạ̊̃b»_ä©vaÅeœ=XS§Ö?qPàư§µ ó + mß¼o` #â,‡×ñH₫›Ÿxá6Üđ!o¾œÂ Ü…’’đˆØÅŒ_̀0 qjN¢‡[uWÂ)ôẦ(‘»2Å^uÓ’„o yѳ¸_˜¨Hy7Åå½Êa•íkĐtꀜ¼KÁ÷™Î₫Å«›ª|IÁ±,4Ôwâù 6mD-Ä.O­jºë¶ú®½ï‹̀GMïö1¾Å†Ư2³;bÄíSjJáÙ/ô|GµJF(ưÏíD:_3ë9[̀h‚›ñûWHñà6çdÊ•ăFí*H.0ÎÉkEu²Ê¦ SÙz KđûaE´L̀ƒ ̃•Ï¢êoéđ³¹àú úf3ß1G;ª÷Ñăđól.Èó"™óí̉KåÀMRQè‹Ï‡[²î˜¿[­K¼ÁBL±)5÷n:_7i²Ó\a†˜xÅŸÅÍzNgëR@€V£ ô[?Ơ÷ר·Üå¨8p?pĐ₫‰çCYaL ư%ÊdM±~ë—4{=ÉP$})Û3Đ-†Đ†ådŸà³:^é/V½é]ÛVÈ‹«Ïg̀{[i؇ŒØ₫7‹L;ºWøÁû4û Ï%í¬E#_û¦åƯ °£­ ')„₫ ËFvyNú¤»ü“8”i¤˜f“rņBP.H†´RP£GæX{#èH”̉á}¼̣â‡IƠưeVÜp­>̃TŸM^ă©Œ¢­đ%’/× ̃èXạ̀lÙgç•_)~°DGQù”Æt¾/Kúéư»E¿́”™^̣(íwO–£UëEûCe3›©N!Îíj7âÍ¿–!ơeZ ƒÇùcN±ëAª¢‰6aHI÷'‰t·Ÿ&ĐoöÆ‘ND«sܾfóåÄ#¼F_LÙ)¦ÙcL׌V”Ś̉K–Ó†,èQ°Ơª±eÅaØy”¸•ă-U{óâÊăÏÖ[ɹXZâ~}­+z˸Ab»)˜|ç9v2å '¥ÇDf˜³TƠÇF¶³±Đ½éüé„]<¼!®–„†JŒ0 ´Ø‘/4•úæ³5rxÈâÉ6@|yơ4¢ ¡5AÄŒ_~BÇÍ)NS&ùf®-è¥ ¿·¢́Ô@…MËŒÊjd:/@ î̃áÿV@ YƠ/e…c¿ĐKœbASóSç|0¢ÂÄư —¿-7(yMN% ̉'÷Q¾äµj3ưF Ñæ8–CQ=ED6JØS„êwÂ%j¨9 ̣°ªṼK]–v†fJ…Æfƒ.o½uäÎ2JăjŸù±yÖ¦ ̣;<4îăh˜q–ÄT)¥nSÈ¢ÜîÁGW›̉j6rÈ^iÈ«}›Ñj5ÚÔX(àƒƠ÷î7Ÿ 3â–‡ưo‡ÛÆ ‹îơ­V˜̣nă­̀¢Ä•ªY„ÅE°8½K<¨v‘bLƯX=à`C74 *Ëøˆ¹ÿÆ‚Û g’IU™; ½V[Ëö'Ѫƒg7;‰)#́Ư Ñ‹dvÖÀ!Ù+æ†åäÙ%µ_:±)ª.…Ăƒî–’fm³[À́„¾º *>îúâ ưô)Q́ Y¨ŒhÄƠ8iÓÂĂN¢̉. ›æ®XE1FƠwßé¿r-’uù+êV37Z͉˜X®éẠ̈ `¥ Ü_yÀÅ!bü¾†T)ê?Nçs;a½'óIp?2}Ë€n8uQôHÿ‚“R{i+ÑàÊ_-™´8-~2GƠ¯Á»-,²§̃¨̣íqéƯlxMí}ØtòÅ'[₫DiÊè˜î³‚Ôù–Ü[¡¥l¿Nûà¼Đ”Ü#¹ŒéÓzå„åûâ¨q¤]Ơ­xGún6x逄¢Æˆxàc̉ÊÎD»’DMå86µÂNlăÙ§‹Ç̃ó2 ̃(fL/\+Y‘×@Iʼ8ửú›<{©èŒ{/ưŸCœ|la₫"̀p#Òà ¢È·èB¡̀…uåkÀm4oÁ.ø«pTC`u;÷®O¯|å‹÷M,¬J·‹xô.Dm7c A›dX̣x%½¸6¼KU#.8æ o^b lO°CïÓ~|Ù1KFÔù”~N'- —,ÚdùcîMr9c0“—·Ålp‘æEơGeÏu¤ïdßñưêĂéÜúâÆĐªxô(ûl¨¬Æ# S½°v‚¬2œgœ)nJMẲœ90¶…VÛ+á¢jIÑ{0áÈ#¡ÊỊƯ&(— i¬¤´¾̀½ºC›êµëk̃Iû©²îIó{Yhµ¹ơK ù$mÎe}i l̀â°9ƒ{7wËSöjcyÔẸ́–¢ơÇr².1;F 8Ơº“^ÑÈ9{#l;W¸Sr°"Yª$ ¾xù¦0? ·đ±® tt„ÜĐ÷´”'H^Ó³äÎGđÊ_%ÿrN>Aj8,-åmtweV E7epáÜB•±?l“ nwÿ§äEi-/`!ä÷Ÿ!œæøÀÁĂ~Jrë­”Á}„öÍ:]<_’9˜*ÄeÓ'ô Œ¾̉F¶ŒL]K”`ô]öÔî|ïd¾z6´¶9D¶íểËÅ̉Ö̃Á!¹¯˜Ldü‰)¨EÑÔH¾%´± ̃Ÿ¼!v́ °;KËIy)ăIª3 ˆV<[`}…dD¯_t=pi“O5ç÷ ›Ÿ)§³cÍ‹¹Ù¤̃àỒPâVÇ̃=f3Œë$%4L RƠđ•Ü‹́Êö£–øÀü¬¶SûZưÚNw/8 _c©Êƒ·Áư¨ưÖÎÑ%"&‹3Ÿr匈’vHF>xeæÑÇGYÇMC\où¢́N[;ó^uX0À¹ ³ëÖJ$,æ ñËaŒ‘7wè6m]H°Ú÷Î%1ù̀XơTê´>Â}4eÚ0°BÍx <²×Ă +#‘k;ơ´Ww½íùơS¸Æ„Ơ$ưĂîWL9Vǵ®pqèàPAµ²¼ó)%̣onă:êÖ=lmÉ×È1¿(ˆÖO³ó@”[~ ©2‚ñsINxAœW²vI‘7ŒöéY#‹Êôâ±¥Ë"’¤mëÊ&₫?#¬”$TÓKÎÉÅ_ªxŒôóđ̉ûjÇÜú]hPY8§¨ôu«Æ«| Øu„Ưà Ëqm?Ơè­Úd4 IáÅÈè¤*§¤‡†=n³‘ôâ×›l3g&AnQb₫á…3Lơ•yY0Rè‡ơ›œd›Œa߈iS̀/™À¹Q†¯ ºÓ%>~ÙZ# Û:̣ÊÛƠÖLëÅa<ŸñF,÷ª–L„2r4¸G=Y¼ª˜v•1£î.̃°‡è½GGî…(HX‡å’i¼‡CûîÈQ7pÙ¢2„ĂØôt đu±̀%̀ïÅ»eđ?Ê&¼₫†¯•ƒ¨…ªœ‘¦ö±6Ä́Ôe&ªĐ̀'Î÷‘>;' }Çœ•‚̣•@èDÈ}>…_%k±gdƯA^¬`Ơ-·WøÔ „Y3²5̣‚à:đ»ÂXE9Sü|Mw¹’afs_¼“¥Í•ØB€£½µg™$ßêđ NX::¿–‹X¢ VèÈ|iX˜×¥¹’£)=D]©²·îË'ôf|+±=F ă'[Ñ%CÇpQê#hqđơ ¯o¢Î>ơ?²›W^Êoy¨HÈảÁÖŸ%ôëèVàÅQêñ̀€²ôÚ/ØưƯn½Gs³–ưùÙ£;ŸvÜßFơ!̃x D»$Ø«q,–E÷2zG ùC¦€1˜nư“£r4-ɋ킑n¤,£âƯ=#?x]$?+•b—(H´¯®±®²5îŸxC>"{ªm1âÈVßoïª̉bÖYÓ&ªº&¶în:XwˆÛ#mb‹ Íå‡o6Rø7‰E™7×m?!”_èẩí•1"PßÍƠdÅÍưb.$ Jâø6Í,—Èơñ|qjFj,y0hlɼ<×Ö€À:|×Xµ«Ll툸)œ7ựˆè<@±|‘páØ¦ƒR₫ºD˰ă±xqÎ<́”¾’°ÔµØ<&̀\ÀzànÚ8ơ>èưg5Æ¥‹‰̉<Ó4Ö&—n¸ËºÊ1{Â5I©đN$°«Ä¡SöÙwÙ}ñ/A3ñ¯÷ăûfo)Ä‹çdŕØ,Œ®¶÷ë<åWo¾ Á5£Âªc¯a_äÂJƠÎ|¿øeëö¦ÈV¤)Ë,<9ß<¾\­†!ÀV­*¢åË&J£¬®CºRđ¤(\fnäNăÙƯûë«Éåt=1¶W0täâ°4¯âBâgh&đ[©¡QÉ2P­¡ơoUÜ=\5Fl! }êÁMŸză₫‚4.?ƒ™*u'ˆ¤w©%´BgK.&3åj‰¨1]v)ÿF³¥Ùq U7:U9ë–Ä̉뢇XÙ#Y_Wà*€ÏÏY"kLûúHÖÂG¶‰z«¶iα~c̃Đ¢6»7£Z#Ø'çØsˆg‹́̉‘†Ô­îiøL [cE¼a¼µ±_M¥‡FZH¨Y Uo—˜L%¼¦Ä́-ôœƯu\@U L®eªªeÓ¬ƒụ̂NXy„ß_̀pYƒsó§8³J¨Ơ!Ơ–'Œ ²ôUá)+fáØ´Jˆ Ùöç= [B¼¸b? ́3Å=î©XVnÅÍŸxÓ"̀H¡̀\í̃³bexk¹ ³'†ú-iWÈÈX̀î±ẩ£Ó’ÏG“)KJYüʯ4t”!<ÈV4Xvñ7•^U âü¶ñÇ ´¬f¬×?ĐƯ?¥¢˜ ŒÊÛ¿nHtbßµ`:ùL.ƒ4r7‚¨îwp×Tkà#½>{©z0© ̃bØĂ@-cr3Ÿtgzø?È}vå«áz7Åy^4öăÇ|àlöeQ(k°f"ó1:̀Θd£¾IăO¹ºë…”E*k%.‹xæ½'ÀëćÄU§öii©x´¤}IˆÀyÍÖî̀‘ú«ÂÅ;0Éû¸[#¹º$đø|¾äÉ’Ú Í‚Íêî$Û¹†U1ëØXvY ~úđê\_¾I á€ÆNœwvJ‘Ó0g§”eá#6Ètẁ¡”]ƠuÅQÎ×2l £Ånûö?̣½.j£×ơ­ài»Â$‹Jzhé?Îv 9` ÅoB-;ê $g«Œ×zßBE=cÆsă h¦åZŸ„T*Y­~QL}™NÆ* ¿9p>ŸÇrŸrÁÛ}t®ÁùJP\5†%&r„EJF‚bw¡K»+ÀHÿ@SÖPE?&¬‰5̣,A,{́;‚#>¿^ ‘íhénYö…KÄsĐ» Áîk°Á‘‚SQ¥̀Ù«¿Ú¢`¯7å{%çºpeû°è¶bñ™¤iô%¾Ă|xÀæx.°ÈèV[Ăxl¬Ó>ån>‘Jè́ú2zÙà8ÍnXÙ|ÿÊgư1oÅËP­Mê%y)̉Ë®£ÎË%*̃m”ïẻs£EYÑè\ Oñ":रơ¥™ÎZÿiŒ9–Q₫/søå{ÎÎ3·Á_"4\OFdiêu_́¨ó] ̃/±±9í⩵ù}v1KË Ÿœ•  bø(Í}ŸH¿nøÅ#ºr Y¡weËá0ÀưÍøk¢‹Œ¼3®:²<ÊÍaŸ¶€ÎyûcA —‘¨5µ´dö!ÿˆ%¶ÿ ¨Ê.#¤ùæûÈØ,ë†æ1ö¶Æ Trzª0‘Â31\Äs/N¸á¼ƒAú8`̀&–œ· k@¦‡Ù,ư O`´*S$)XÎ/ßSY|ù‹g¥»Ñ×Y  wÑ΄[nµ¶^®¡hK5è“øe]áÚ ÂĂ¼ƒ·¬QèæÔ*çî­Ñî¶,« Á+¼ŒƒüuáϘÏÆđ6Æ…7>»TG  ơPl&©Öº:äåmƠ(Œ²A¸H‡Ü«„,¯ẉI¼¼Y7ÑæWưêS‘®̃¿3¬`ˆCd0ŒO²WME‡âßÛ8««"¤mtAÖ,R ó NmI©~¶á$1÷vđ©ÈÇ<< ÿPu ™LÅIôvf&¬ŒưÊ^gcÉ₫HÎpïªáSḈn90tËôVë%˜×£Z3†ÖĐoI~6Ù‰âûŒukjÔ.t(]wÎÖŸ·¼èÂͳ|fèÉáåg5<~z¸)Bîq÷ɉm›¿²s˜¦S½ØăJ@à=¹f $K{—óâGơWd+Ñë^i…ÁNËÉœI?q­Ñ]“1c~.jMÇ#«€©`6ëllt:'ÆåÇô ­ÛXcæ¸RÎ(#=ĂŸû(úqY.‘å̀£ˆ2µ—Âój us|-a8­ od8x™²bSi¡¡¹h.¹ˆ}Ö%t‚•ˆ£PzÆ€ºÍ‡_I)ÖæĐ>[ø$¥åơ,Çœ´âÔUMy0Ó¢n¸“²^„i4‚¶üÏáiÓ>C¾ u>øăĐußc₫t@.²̣̀hÈ1ÉV€SÑ÷AïÈă«́à9Ë$¥×PPơf—àñ4¥âL:+9=¶x×ô0ÄuD³·U¾NHY —̉!bhÛƯ\NX›5 Đư ˆ¸˜ºkêÉZ{{Åơ.́„äÂWÈ1Öâ±Æ>µc¶êÉ̀êz…(·B¤Q6n}ȰNÑae#ä¼X\±₫ <^‹̣¡€±ˆ Jyºˆn9y‰­k²a»RN(E¤Û<íp$§ •H(Ö 2%ûN:ÿ‚÷ ç4ñ“Å|›¤8T²œ3m;j—[₫à6ïDx=T1ó«á öÚ*>ËÊ‹ư¦“>Ưs7^…’–hNÓ2æNùjäñM±rÙ„¿‘\ÔhƯB29’¨QwIômµ7˜£ â踵Ưæß^̣‰Ñ©\êà–ƒÜơe(©Z¾ˆåwj6GtLR_k¯n©³wM>|Ñ5́Çh|s÷”ZI6ƯÔX¥]ôwê@YÈ–ºî+Ë•ÏƯBûµËÉ_¥ă7,$H÷«̃ïh°É!_‘iºăª«ªH’\-^ÜØƒ±Ø­ÜÁ ó“6Óµ›üGvă‹¹†đfÊd™•£o2s?Ó—ÎôD':‡ư`̃̉™¬Æă*~ơT#É^†ßD€ßï”ă°—§1"bZ2†úœ”8̉E5C™n´›Àè}’Üñ)ư*ÓM}’B ”wBvؼ?œIJŒåf[ú*BLKâằä‚t½ 5Œ~z ]º´—Úz?1̀Z8Z€ ö:ÚĐH!HƠÁc®O-k¿´1®†¯̣!©Ôƒ9 ”M{’Z¯ăyË×åØÊ4 ̣k”¢–¼Æqp­Ë°ó°”> pÅŒ}·ÿëh&Û>UíÛ9>kưĂq#x%1Đ;‰Jö^eƯr1¨ä`:¿‰$L˜4¥MÙûGc¦C'́đ´o­ #+ÛZÉL#y“= —)¢rQŸB¦K1^¾×SßtÆøáM¡â q”߈d,Û±ô*².Ï9Åëqaê9«Z̀–aÆûk·:æ÷³½D:ô¶-é‚kTákHFe”ç˜ƠH{^~Pt˜VRÀ;v7L6L$î´;AºÁZĂæª.:¬rÊP½©µBº¹̀w+™Tɨí+Rœc©¼ÀËfa´+âṇ̃ʆ^—ç¶/äúa˜Û́ÙmÓ²„ÅÇ€DQY,U œcxÚ›µ˜1Oöj E0?ñJ¨yƠ¢Ú[9f¿ˆ¦÷M6I|v»Ÿ÷z3&ZƯåBĐ—16+¥÷¼³nëü¶9kl)•[ÅuZüa_wÛ³̀§DF+ä‹k«ûp…A¡&A¿ök± ¯Uô6´:( ü›±[—q¸·äiMª˜¡Ÿ‘•uƠ¹ëë\Œ¥Ü˜aß:_‘£j ­ÉÿäZÎ8ỷ ½kéơ.‰¬˜Æ±YX<5.´ÖÁø3ÄF ]ƠÊ 5}0JH²₫ (âwéÙ+¤:‚h«§¹-̉˜-ºĂE÷¾'³.·'Ư₫;)HDÔWOrˆÅïët¦j_N2BŸ-[4Á8ÂÀhV;2#Tˆ‰`1B÷ù(KÈ(^ă˜ïˆêgè·ø¥¦đ1'úF!¥µ£ZûCJ2é;ư_Éá»<À45 Û₫b'å]”ø #,¼Îƒ₫-ÿvnD#éån†t™xÊDqŒj#q ÙÔLÜ»0׃Î÷Ê…j¢KÀTñ½HÍÄÍ0¶S{ÊAåHĐDËA V.̀1E ÂẽơŒe&z¼nWàg[Gz_CŒzÁ±N™¶8d ‰ư4Ü₫ă àĂWóÄ¢—EOZZ&Kú[J•³Há³Ê\5³%ŸÍº®7×ÏIÔ¢wĐ+>'nnt́-ÎaƯWô*‰~´¬Ø£â±ZXMÇGyzt…‚››¬ril!¤n>±ßú̀»›Ëg?,6Vö]Ü(,`殧꤇ƯÉƠ13|µ½==Íơ¨ Yt°¡jă½Û‡tlv2¤›Q.̃j ăgV± ̉ă ›:Rú[™Ÿ‡́•WÂYs´æ–¥¸—gĂƒÊ*V·³‚Ö•·Ï#¸ȧmZ’™‡œă=j°Ï£'rZP·£í£Ä¯VkI‹t‘_%8`wOƠ\¹ÂpZđ)ؘѥÊT\¿4ö«¢W„ 8£¨/Œ;V‡B́k¢¶„ó|R}5yẂƦvÅ<ß~/?i\I(˜w2Yx”â™êåŸl¼íǵņŒ}…¿Zđ–$¦ùĂ sÀV;Rí‹XêóGózo,KÇDn`û7*l/TNuç Χ³W.SµÅYœ~Î"èÏÏvfJ2œ ø]O÷‰Ư0úµUDYÚX.₫Fe'O¥zù" .pä¢7ß̣p浑A/Uï<‰¶yHop{"“‰÷ÅÆ‡Æ Ceÿs–3Wqtc•¾•:ÄÛTxªíæ„Bû±p¥Vb¶8UÁ£íú¤²Z`{jÑ·`=› ©u¨1kä˜qMÁ¡¥ ö†xc̃đ;µ ùªwdqß̀uÉnTÍ÷\?6¿ ßÿ ê’<ĂRê{DÏ=iæáLkUÏ™Srp([1]¿W†§YǺ‹V÷? ú ½©åĐD Ë^ Û¯…¸a[·ø…†§lJ>sD›ÁY‘8uX³ÍjÊK¶Û£ư>?‡ê„£¤ ø ;­bÇ2xq‰̣ñ{¼‰dªàMÄ6î4¥– ÷g:‹¯¾*ºk±gg˜¨̃&ûí;›oN>|^m{…“øÜ™V‹ïꣻzf=ÀÉ~Ư…AÏ8VµAÙ´,ƒ~ÑƠézctơ‹Ê‘üôKoG—¥ƠLư١ٯÑx˜¯éˆ³tx+nÄv5ƒè91ü †b¼é»ëXDư¢çÁûx½””€)ÍIÆxÁø¢3nv:æCM,ûđ»̃i¸Éæ¶ĐÉ®·7‘û[¾‹Á•n]'ÂÑéK˜å‚¼=,±¾vA?˜~Xc†K!]œß¥À t½zCh`×û y©QqÉe6µÈ :è6ÖÏ`¹gÄƯÆÄ\¶‹ÆU&œ9ùu¨&¦f\3Œ  K}•¢d³Ñ |’¡×6~‰Í¶éáàReżó²Pï¬0¦5z¢{¿bf7‘4¨ÁĂo gÜû°‡\œh´Z8Qdóù̀÷ÛXÁ\¶÷ %›\[²Ù®6¤-aŸ‘vj´à—CÑ^??©¹‰̣MÏϼËyu×ßÎ3j 9.{&s}¼ø¥sí.â´ÁôÈA¤ˆ·9”9k²¬êĐœ±w@×"́¥ #* ơl#8Ú©¶¢ÅHÄÎÈ¥@Ă)ư± t—̣8Û=njN?"fæ‘%§aÁŸ×¿3Hf?‰Ă !Ñ́¼o߉°êV(Đù¢Ü>{â‰@Eêbmë\lpàµ)Y}^>××…´eư~è•Ü —¾hU€gÙt¨°ßÇK–A ‚I4°g&ê—•ÆTÎÈâ«FL‹†ă±¶n*É©¨ôÅ‚—ÔW¡ØaC̃.ÂB¤(oÓ›ÆùIÑ Ù¥¥®·¯f+å=£—rf¤ ƒLûv]€032w4útû¿pˆlÆÍ ¥S̀¨}²Tl^Ơh R-¯Ư¤ĐÑYÅƠmJˆ=}r* ́«¿³»Ç9Z¡½ÉösĐ,™üI¯[xĂyѰ†öf.^!­nŒrÁ «§¤[·»?-—à^ É•%1ơH­ơ_đùîÆ9đaÁ}ÀZđD“U{-lú¤;ÔcÛĂTæÑ¶ Çéç`¨TOlùÆ›ù₫ô °ZÿÉéIQ§æ ¹95Ù×_Ø…̃^­ÈÓvcæW‘’ăcuøK8¡˜}̉̀}±]âÆS£Ö´ØÇ•çư¹í'7 0Æw]ùë%>:uđI(¶%_#*‡ºb  áĐÍÂÂLÉTåj½WogFV»„g"ø»`ĂtÆÙußÇÁ(A¦]‹ˆŸûá5|"ïi{FdyS3<ÓÆ›¾Ïˆ¹«…AX+tưQ–!NÜ—*«Úôăđ’6ü]ƒdD:Í^QîP™â“0N¥=ËwÿîEưùKP«¬W‘ïç̣̀e–ÁùU©ÊÛă*k$/g储%8'Nˆ¾æ`ºDn#ç  €ˆóc̀8ö—9‰¯®Ă~h‘42RX+g®I O©«áÔ™¾¯ûw˜ÑA¢Œ¸ˆ˜́L8}FßA­˜8»]Ë£Ä{&ÇrF7<¾Ó²:˜yQÛw`±Cæ^¦}È wtd鶉ƃL₫*yó®q¡nTxÇ\_Ö'$Ñ&N…ô•hMX–€đgVß–̣w8p‘±Ó\” ª®Î€rª–#¿¡Ti¦ªTKtˆ$SuÑ~NQö\íÇxH»ƒW©¯‹[Ô"R×ùô®à¥áâ»îú–pÜ›¹´v?ÆĂF‚ ‰Ïc­Œ(*E"Úziă]–®ưxĐ»gÍ7ôB7v»‚~Ư EºÛà%|SĐç4º'L/+XñƯ₫º/'zn¬ßbåÚ¬s0Ù‚3÷ æǺrtk- ¬°‡=—#D¿_Y—H‚Ê\€È»QÊBî8ô*@¯₫–çmeT¦B?©üÙ,ó Ç—ÔáÅ`*}`-¤B+Í„˜ÜJ&̃»"ụ̈“̉Ç-¾Ü@¯A±^}3vͯÍđc-í)¸Gfá0G«3“_ußDˆƠ,¿MWég½̀Á’¡ûeÏé—Aí½EjèÖ' FK²@y$¿ä—ÑÉ;×Ö²?"äröd@RE4xMj!àhg2”‹N¤§O-Í‹y$€Ñ´lqĐ_‘œ ›z@ăæ1³ÑlƯÅÆ&dû&ç„b\qă‘ΕÅÅ,iëđrGåñ©¡ü›m,O‡-¾³Ăt4́ÔcĂ ?–ƠTn_ÛŸ·%à̀e3ÚHêQ³/Ÿ ëum¤âTÈ’î}ßëU“L‹₫êy €û!~tv)z‚¯́Sï×ÈB ¸ñç10±£Êx@àœb§B“<2qơæĐ6Ö‹5…­„a$kdz/«qèbpøßcÁ*äđ>~†ËJïLî…u¬‚~̣p3{¡ËƯß#ÿRp̀ÿDHaR–}5QÏÀ—zúRQ̉t¢è¶_Ä>…÷jÆù4&E8DVoVŸü5nQ₫÷¯¨AFÓÔ¡ zsæÜˆÇ_¬$[†·ô;Æ[Ñè^Éa£µnÊBzZ€6\'ü,T„0e$Ơ—'“Ö=I~ZœB@x/%*=¿3ÄÎgººYƒÿ1YoxÔèÀkƯP‚à%R̉®³¤²½otđ$›Jl¤*¯CŒékl¾3 ZÂrí^OßaÊ«óØ•fS5 's‡7íVhi„o´U˜*ë©SÓs|¤ 9^ªë°§ÜáÆ¿ôµlÇ@Tˆø9®3+O ÷9ơ„mwÍ*³ÅNTĂGÅfSƒđ1=&–Sú®W<†P̣9Ƽœ`¿ÿ~çÛé:Ö?¤’eÏ9Z—¸ØH́u[NPưa–éc‹:?]|½l³ø₫ơåPŒïp éK†‘‘‰Ă_*x0«÷rÅûL±1„h ©ÑS¤Ó)…*’)iê9'pÛ¬­˜à‹é(J‡Ư(¡uc|¢®́Åc245p¸̃Đ¯Cbạ̀¸)J¾Óà<Né$Ǥf₫iÏH,ø‚å[Ï•›G2&qurBåUÔ «„WĐ÷øœCéU«höÇnI¯]“–Wbè67L»ăL¤1v/J¾`Ë\é‚M†Tnño0ê^ZĐRMA£Ñm“´¡Ó]ç"VäØ^Å[îé×A f˜Ộ¸}‹}`a©ṿ2Èw3SPÏßoX(¦Ưæ)uô‰¤Í­1̃LâE+̀W¥U9¢DZ“¹ÊÂ^ẹ́÷-kÄ|¤̃'û Ƴt> mă5öôäT {Ầ•í sseW‰₫Wy“b²Ek ơÛ¦~vjgŒ°ÅeZgĂ&¡¿T-g…^¿ƒT´Ù$uR N«|/‡R€ucj¸¹˜°sÏË̀4î–[ª¾««o¯LB½Á#CxïR¢·¹)‡`Ư¡äŒn×§´Úq¥:ÿ xb:Po½×ÓµAîƯƒvl)Ü„çl9£|Ø€<̉Z ZjjÇËhlÊàxÍ6 ÆŸƠqQáf3›9Đđ9̀¼Œ-‰.åôƠr•(ḉ/́ÙµƠQ|Ÿ•dY{]»WæØŸ}Kî*² v9j¿b¡Ï̉b;'—É*ñ i‡ƒËgÀ¯sÈy[m.ÉC#Tạ̈̀^œü‰TmØ5¨É1…|Óûût™ÁÂ]vÓ—iå=ưt8 —ư;¿öu†*¶çØ;‰¯=:"àĂa° Mđ3M\TôíñåÇ´…WZ ´Ÿ³¬8*Û“W²îa-<Ă / ·°Ư>zëÄa*f\›E¦›-`ß~FƠƯM¢J̃û?ÂúÊ endstream endobj 1481 0 obj << /Length1 1646 /Length2 9418 /Length3 0 /Length 10484 /Filter /FlateDecode >> stream xÚ·T›é.Œk)Z¤X)ÜƯƯƯ ‚$¸»»§¸SÜ‹+VÜ‹;mq•b—Î̀™™s₫­{WÖJ¾gû̃ï³ßơ啪³˜̀, ƒº0³±ùJêl< ƒdÇxơJâb₫KŒñJ́ä Aùÿe á6sy’I¹<Ù)Á yW;€›Ÿ‡°|ÿ1„9ñ$ÍÜ %€< vÆx%sđt‚XY»<¥ùÏ#€Ä`ăăăaúĂ fv‚€̀ %3k°ưSF™@‚€]<ÿ+½ µ‹‹?+«»»;‹™½3 ̀ÉJ˜ àq±¨ƒÁNn` Àï†Êföà?;cÁxĐ´†8ÿ)×€Yº¸›9O; u~̣p…Z€OÉr0ôOcÅ? ˜ÍÀÆÂöw¸¿¼‚@ÿp6`öfPOÔ ` ±T¤Y\<\˜fP‹ß†fvΰ'373ˆ™ù“Á•›¤ÅÔfO ₫Ơ3È âàầâ ±ûƯ"ëï0OS–‚ZHÀ́íÁPgŒßơIBœÀ §±{²₫y²¶P˜;Ôû/` ZX₫nÂÂƠU qtËI₫ẹ$ÂøGfvp@>.ØöY³₫¯éé₫CÉö[üÔ¯·̀`ùÔØb ~úÁđv6s\œ\Á¾̃ÿVü7Â`cX@@.s°ñOô'1Ø̣OütøN€đ‰{làïÏßOFOô²€Aí<ÿ1ÿă|Y¥eÔôµ$ßüÙñß:qq˜À›™ƒÀ̀Îđqrx8ù¾ÿEƠ ̣WÀ\å –0ߟÅ>Mé?»ưu₫ôíà¿c)ĂH ĐÿĂqC ôôÅöÿ̀ô?\₫ÿ₫;Êÿăÿ[´«Ưjú?ôÿµ™=ÄÎó/ƒ'κº<ñ_ ö´Đÿ5Ơÿ¹³J` ˆ«ưÿjå\̀ö@ je÷÷!Î̉°…*Ädư'Y₫”kư^2;¬ s†ü¾Ùl@àÿè6 dûts8?1̣øiq₫;¥³ø½á\Ü3''3O à‘ع¸̃lO«höøƒĂV(̀åÉđÔ/Àæ„ñûD¹¹¬b¿E «Ü߈`UưññXÍ₫A|VĐ߈‹÷ Á́øäw/¬ÿ‚lVđ¿àS"«AN«ơ¿àSQÁ§̀¶ÿ@¶§ÈÿJô´L¬°Av«Ă¿àSd§Á§ÈÎÿ‚ÜV—Á§D®ÿ@ö§ÈÀÿ9ÈƠÉéé̉ùc)Îă?ø öƒ0ça ›úŸµb¤î̀»ăB3¯vủ˜½:]=GMa¨y´ît%–2Ü‹³²-E)ºDyï}đ¡5¼í­Zû­ÏI¢úÔn;Æ—I‰¢±†~rt2fMÑ=Ÿ{Gí@[Äđ]̣¯̣]yŸ«àÿtÿ$ăÑĐ_±<6¿«¶WĂ­€yW1Í«cX:û*ß<{˜Å…™ïÔ{ọ̈j/wâ‘R>ñ †ïa,G±·₫{ÜÍœ×j¥&»s7 -‰>19â%̃èÔkoño©̣D ̃e%Ñ8­,#́÷̣ÙF‡‘_ä©èwú¼mÆzP%¯6¢^{€Ă:Gö®|QĐN½¤;$Ñ¢÷tBơd0éơ¾c‡Ơ½ê0î§•Ụ̂­ÊÓªf%(@èø¹gơ•¢Sơđ5̀y"ºƠ/đG”W¹eâêœƯy¢áæ}ñÛDï(™¡ëÏQ7ØBn‹̀ÂĂX|xƒwx~¢­¨Ñ œ £1#ù—ëÄ#qBèœyg_Ü!§ ²X¥—™́„Ê=áf—R–'áÑQÎÄÙs’khø8̀̃Æ)jmÉÛödØ”î 2Ï¥ü7ñw~ËÆđyÉßm¼̣âRÚËDÎ=ïóËÑÛ½ÿª»W‚iñ:5̉Farµư¤7ܸSÑăÎîTɲÄx*Œ|JŸ§©ệƯÄñc.«û7…,KS¡F¾Sñ‘âK /!Đ\äy|YäW21å ß;¡₫åÄÆEđíx̃¼if¯&*MjM9ÄĐ̀ %̃mÇ~ ¶-ˆÓjđº(ʇ™Ä®ºzyP¡~é$y¾•ĂŸëß4z˜`JFË^" z'Ù‘u&êă"ürl̉ňÀ¶GK4'‡Ç’ĂÁPỊíù„¥Á£mvE³₫¸ư„,›(©´0&æ¹&Q]Ëñ40udi©‰O}ÿÙ–ÉBOt✌XçƠñśÄÂâáö”2÷R=Í̃µàí€cª>³ăÖCoP™¦î¿đaëZ{r½÷q¼*ƵÎ<"]ă±aRñ˜ o¹\I×th]ú¨Đ§¦–âKw®+§U ïàGT†4Ÿ̉S~?0Ưk¿rX™ UÚtK¾…V¬ ̀ꄇ[t86"3ÏÆT.ma»z† fUú¼ưÀDS&WK~\Ó+m+đ́Zœk~I¶̣›¡O éơzŸºo0`—±` XçPaD2L3ă=fĂRˆ̀äÈùæ\đIÚíO…¾Yæü’‡nć&Ë,q†:D­) K)^–,9 ÷ÚÖ ̀lÉqḥ7ô&|ñºë¨±Pq|uëöUÜçû][ &ëá—]JW‹>Z’Qkïç¢ÇûO{¦U=́?æÔ:Q́¿ØŒæ`Ơư¬Ị‚§S=DœƠ•à™ûO]öÀk?ÏÚÑu€¶`ăkkIÈ₫Æ.đ;JM2ƒo…l)æ¶Åä>*㫱Ỡ"­™·k_"̀BÔ7Oü GFwcøièHQ K[Ês/a:ŒïW&Êsq½¯E±̣BäI´’‘­˜ Œ[œ¹]j eaΗÜ A#Áäm—”_[Ô7ÿ̉à/3ëA¤̣ºư1(t¸_o`[hwànAl˵• ¼¬m,m¿)TxBøë×O”˜̉LÛQ–«“Û]Éz`ñ*§¨®PÀèGûă*oưHă.-uïO+éù¼v¾»W'sëc!b!câœ61œz×Çm̃¥>ƯwW¤XµÜ₫ư°Gb¥†wæ£=|uđ­®o#5ơî¬å 7ü)́C,V{«ŸqàáWM^V\ÆG =~¸Êqư ;.¤;Ÿ5-Eưº–]­}3÷²Ø”ŸUثٜg1çÎæ« S$-döóvj»÷#Ë̉̀({ƒ¨NU!²ÖûíĐWŸ£Î—’Bß…¤*TÓ ­„́ç5VáÎoƯ;̃é%&Ù©é̀z2̃ƒYṕ[¶,ED?Ó3Eù[ĂN˜Ÿ„‚ơѪ_FÛ»é„ {"‡Ï̉sª¦Ê ‹µbH•¸oÙÄ Ÿß?óp †cíŸPJkd³B¨u( OmÎK1`ÉZK_)ç@;‡EM7ºäl¬‚?;=w±u%2s[•Ău·©»…ËÓWóY¥!£CͨJî\&zSAEÉ”7 ÑZW¨y›úTû„i^Ú{êq_#âJܤ(¢n ºEvÏ܂Ӆ×ÑŸ Ḱ».6È?ÔJ5æÏ^ŸÈ×Ìö­₫óÚÔ0øXơËZ!sưÛÛ2NzÅOäÇÉûUÑiø¹,¥•ÔD<À\»4퉈¶éz°Ü-“Ççeÿ¾eítïØ«­É ¡óCN«ÊØu60[$±ˆæ¶¦ Êi€Èđ„à:Đ×`•'k&Ÿ̀¿fÓđC£;¸ôSʹ;Ç”f̃¦Ö&» >̉ŒÿÈÜWJÇK½à”ŪÓP̀Ÿϧ2í^¾Ëà)æ6aW̉!z­àOë3¹@ÇÜ>¶Xq, ÷N½æÂ‹‹~ ¡²q@~³Ó̉Å‚Ô&X—óñ¥ÚÆ`ïE„ºPŸÜ$W…Á-ûCö²k·Ö›DƯ´¨°ïrnjo3đ˜ Œ›¾²t3t¼2´R}WT™ÜræÉpØ„C„̃̀ø,BÄà£U׫ɷËÑÔ‘?K~Ï¢́Æ—«¼ñÓÇùoKA'R(»iBư>pú*$o6ªGw%À™&49®¾éH|+|Ö›å|jéx9Owøw4¤:ă—z< ¨½ë¦åc>¸ZnwŸ±›¹E54ăk{ÅÁÑv“A₫Gä›Î¼vÍ€Ưpß$GịÓ­\8hư%̃Î#ߨL9 ±Û²V¸ª^ĐÑ QÚͦ'ËnάåKí¹—(­l¥ˆA‹¯6)ru"đ¼s´¢™ÔqüŒư*ñÀị̈ॲ·-A½=ÊÙj¤¶ï÷ĂtsÑ́Ú®ô¤oR›.ÆĂHæj[Ó|̃m9qÓz‘ • ç“kGG›)¸6`•H¼¶ÁS¡¥Ê‚á7Ơt#9z3=¬æØbzÖJNºE´ñRѶwX²OGï¾X̉7÷ ÂyÊ ê¬`«·Æb̀ráD_›\ÍÍÜbO½>]ÂănÈÎÚ¹,CÀơ †^¶g½n IMÖñ«ŸîÖ³X!Q–Mn @wĂJw¦Ÿ¨̉"x•÷†,¹g·× ¿k„7Z2yªÅ&Óœ«ˆy51T.½r¯,²?8L!7Al6˜sĂº¹k ŒyÙŒéF4C¬e)ƒ_´|ƒF·¡D@Ú:NÓm«´Eơ[)‘ñ É8ḿmIGq5í--M+•³¦Y‰‹UBHS Û›­âxçIUP>¥O3{™ÇÅèóŸ¸Í wÁßtkË<ùnh̃ÁO}³D!­¯”R›Ô—æITúr™kèáüéÄWÖâpaÙú±©®4ó<Îw. }…o‡̉n¤ø‘)nSsD£pLB£]©»®ị́+_È̉óoÈẸ̀²iCS‚/eT´8m,ª:,x‡%Év U7!=-ï9¶øÓT›Ó†”óỷ®Ø­̃WôW©×sƠÙ9¦¾l£üts"27»0»‰à ›̃¤Øz@ăÿ°b₫ưKzè¤ë~5•ƒ‰HNÈM7€ }̀Ï&²–GY<(X1ÏDD>bt¦å“q!,^Œs¤!́¾$´ŒLkó¸¦uLô|Ø‘DîË·‹E±1Í7"'|®ë¡ÙŒ1Ú~mw׃ÿ¨/ ¹"üL¯,D?ï₫Î.†mæÂ¬D¯$ØURéǵŸ¢˜@ëÓsĂq»•ê)´~1ÔŸ?wç¦ÿVJ¥-rØj^ø;¶è÷sƯ)ö­jVG¾fÛÆúC0)½…{£ˆ(́½dk€ƯùVÏ3 ¬"à…̣»²) ‘¦Ê~Ïé¥È£›,¤”7¿]út`̣hº~¶4×)‹²m—>öF•-Gb©¶²$½®Y•‘ÈûDhW˜̀£öɨ¤~‡©:BA„‹C¿ĐtŸ₫‹Àù˜j•₫ÙVw°âù(²Å‚ä@H¥¡*̣J’Ç2Z0r¬1N îY\ö=à̀G[Œº ư@₫œ‰æb.JQ}ƒµ¤4Ă&‘eµé$ä×<¦C_V¼Çú–Ç{X{ẃq›£²í×₫Ls8ÖMM°äOÂ-Fú?!ˆ¸L8ÍåϰÇlƒÅ”zÑë¾ö#Ư©Ùâ†>óçSL¾Û‹Ëm¹’w»dÜIv7LÓ̀y|ˆÓđbØ¡uïO“­ˆ"ĐÛ|n'7pđ³ #ÍoË:–:úkR}—vµB°Áœ––Àe…*7úö‡Â(·¯Ÿ[8“Q)?:P»*Đ£B­½Á8—™øær¦'ùÔCÂÛ?s…³SñH·Ç4®Î+¸èÊÇO3½”Ù™Ú™+ĐôÛÚ±34+Ó ç÷ÇăÖ;¤¯UÔ\ĐHÔơ0¯̉—¡MHdÙE®dV(ªœ†êÉJ4…¯ü¶h¾÷G£!¨œ—÷é¿l‹Ë4¼è6À4]‡Pˆ/%^ÁN¶y¢‚)4)Ê’Öăi‡¤ L£Ü2å0˜ ˜ÍĐ]’ÇÔó~„ØGD·µ0?~ß̃§Á°_#¡¸\±ND6¿Ëè²Ơ8`ÉÚñ’ƒ{dJm76ṣj.2}JqÏ÷;‘l*q̣i½›Đ¤7yà YƒĐµzÓ=ª=QGîNưy[Ô¸ª̉¼:xÆ77Ú./ç|¿'|äZY€WD´‚è̀«J®*»­gÙ¹x‹ó+ĂÇ‹ÚÚ¥AK‡ q|#~ä9âq]s Åhó2ôÍÙ/P1Øiü!ưy~îƒC/g³ H@<É·Ơ~Ùqÿ0%’$­r&p'âMn¿ä‹Èơ ’üL¿5?!cĂ»’¦jî–e©̉Ë­74ộ±¢tˆ¾“½BÇâT¦wg G…-UXaö%n‘çØ6‘ơP₫Iđ÷œâû¥ăªf™È@‰¬ñç»Ñ"”4ϧZĐ4ôøc ư E²6Ú±ưùôơ?~ØI‡S¾éƠ¶å¿cæÉlMîÉĐËD`¿2¨Èjùij¿Yæ&Djæ±s5X*…Ù©P¿Lh˧Ơ=NđÛG¦ÁP2Ç×;¾–&æeù¹ó $F“EDµ".„Rwñ0°µhDt¿ÎÿY†ú«Q̉1yëåN©¿bVíP̃g<³ÚX3k¦éYŸåIđíei'Û±" À® %Ë.Y¬¢ùj&r,'{úóẈ ü["Ù/™«z‰£é÷s ÔtåʺÄ́ỲnÙg%“LÁ"Œ'ƯnyË ¦ª.g\¼Z§kâç„auzl|}عs¿Üü±}|́߯Ơßü°¶¸]«¸â»¾̉ÍbjJà¾ÈK+ç +å I´¦{¹•¦ä₫¼è¼½rWZKÿ x5–á[ ôkÿÙÛjc 3|º«sOôD Ùæ=üU.][ û?²"c¿ÓtoT<îL%TŸ–Ea´ôËư2>îƯ¨”µ}2¤ÖÜưÎ(Cíë÷¢FW]é#2Z¸}ËÔ‹!Œư‡ rB“©Éƒc–¦ÆG’̃½pqªñ_s¥tcáE±«¤wå^H0mú±évkÉü2R>ÓAÁIS0O ÏÆR±–q»gUl´§”_§º—5†X0-¯N&̉mMVÇÑÄ Sø(c4ÛÉv!Êç7$lí ‰#¿¾Ék—&½7aUż·́D™16Ioа?H^Ûÿ2ÆLŸ{ó°Øô­â£n–Pü|GÂŒ3Ù|pç¥M1Î$‡«Œ8[.P¢´×`̣Jđ8!HÓ,ö6½êi$̉ôae 5E|£–v¡›àÊ|÷÷E–†cYÓ䪽ûÂOáRΨGaï¥'pv9wƠ@ÀÔ9Ûè‘~û–©˜ĂÓéP»Î5̃ÀORHÊ’¾u¥:2₫dü}‡MS.KĂQ™³vΪ•UÈd¤ùj̀ˆy °₫̣Ă3C™¦`+æ J»RƒÑL§B,ư)•½Ă ¢íôæ?ÎƯ£±4hD:¼,›)Ÿa}=• ~ €„;Ø̃Ø´cåË Ñ`µøÓ™Z³•¥—"Đí6N%óêx¢‘%-SÔ5ÏÇĐ彄ÔĂ0bAn’Ư–yæG$¤ç=à/>HéG€WQç@xÍÄ5XŒïçV„¾₫R1£å̃ÈH¿Â?Đ?jQ³(‚™@ÇæÑÎ+ F̣ øuođq·,¬l‚́@_P_™ÿº<Xv^»No—Ø-Dú°Ơ>–^nùµ2a£tâ„*/^[¢Q̃—A§ofÖÆ0ÁXÀh>·1¸̃å6ƯBKk&„V~'Ó~N1ÔÑëĂŸ‡¦ $Ç;’“pÎP.«jß‚fª,I'û₫Ü\% J0bNÎT¼ăNe²LU'R\ñ¶©L_@©)Ÿv0§ÈÀ ́ªơ1a¦­‡7}dÜÀl[Ôƒ•®ăñE"6ÁÈÍ,Iv‹¨ MË ®<;Ươ…5¿EÚJ̃¦üd™°u8ú˜D=±i çJI÷(ưĐ ÛÉđ‰‹LàVî/#¾X›ƒD*ëNç~åWÍé|82½k&4è µk¢Ê 6“Ovç<äkè5<œÄƠ§‹1½˜=r±ứ ƯĂ=Á²0mù½éôC”R~Å@íÖ‰ †™Öζm Ww³¬ÚzơEĂÆhj³ĂÏl")ÚŒ±(j\ª†ñ ùœê%å)©‡‘2Ô›¨_»¸‹_bƒ„vm†î†éº‘± àémœœM)1̃•£M‚ ‡·"â'Đpƒñ¿€9̣˜á™Ù8±—Åú äƠÂ[ï²\sªEoA‚Ñ»ü¢aêvëTaÄ{••Û«Çt‡ö¶czå¥lˆrmê¬á˜l[6«7đ›ƠqxØ´—D˜¾xá«B,¸.CQ˜/ {ƠâoX]÷4ÉíÔU´ÈâºØ^ œëÏCÛr(Éß·æM®¼Ñ¼}Nº×­Dđ(ñ‘;x"Æ3ó‹ vøö)/e¾“<[¡È àÚŒ%œ£§^ ¥§4W|.¾ê‰yöc±ÔRZ.↨7XÙ±oñp%¤p*bv.RÅí"̀E¤0̉„ê/ ̣±G/âĐ«çs™‚b,R³$e\£®ŒÉ³®…ͯ{ß]I k¤.í̉]£M‹¾"áºQÆï:9LẒA+n'ÛۯľkLTz<8IpM,íjb||Ù™Mï7Œl„ơoöK°¼¯³8Ϙ±¦Ü6€ ¦’kJ'¤%7S‡¯ṣ₫j¯¸u²æÂu1sM:öCW•₫ư÷¼JÇ ĐûĂ ¦eơB¯̀J̉èE«ç,%úËW±ÛkXÆ$;²¢=đsù« èKí­ï^ç]¾ÀÅ[ª+‘îønPqp"lïôd¸â>6*ơÚœýø@́G]ưæÙvD#mti>+VÑB+?{7S9~^v|ñ£×=-¾{ßK‹₫72OΆâ"Xé¢J d§!z§W ™UÅ’+ ‹D:w$Iâ˜rL(Ö)>ë<îŸk®b’Áztn^Ѭmûù¯¶?S_L±Åƒ(¨ÉvwNAíQZ¹æî'ïÂ{β’øyî¥}ÏƯi¯LĂvˆẈ•×Oyè…ƯÔ“â¿atZĂÿ¼ $yä+â¬øÖ  îí₫¹„Ïíg#¼u₫µm—ûîÍú>2ưB35%uI]Ê`ˆ7ÁÅK<'ªën»©q̀°A…»i"à¿ ¹LoºuåX0úơÙgx™¬J—BQ©LzVåep’â¸ḥajkgÛ«_Ïø›̉b| ˜Î?äuS5ÅG¾{ṭgăX8X½p‚˜©ă÷́+Z¹†?S¤Å×Äl‹v¬¤cCÆh`)÷¨*yÖ;[c¹ï(½. äPxÎ!xv²0 rf§´ö#ÅNuèut°¨¨A¤éf"º ¨Æ€ÜnK¸ËTÇŒ4:×z/₫¸‹ó‰ñ÷<ĂNƒ$}ç´PË6›{v“̃Ơ{µ¼†kWÑæ%ëë @²üBÓ é¦M«D¦}%}‰Å,?[#ñbT‡Œé”RwïÄT®=ÀnáÔEA®ßBåm$4ÜO>s?4¾á(Sê«5v{áë¦÷oÉœ”?V“3,Çæø™T©Sí…<˜¥ï¼]À¾íí^TˆN5Ǽ<”`Ê“lv Lù&eM³CU.a7XâyÓ`¬ªíˆ}×Éúp~EKX×DqÈ5†̣-Hu€Ç~¼ÉŒư/U¯TA»‡;(¦á×"ÁúĐçA£à¥ĐbåY"ó)u†f”R{בRÓ>m’+ùn ̣4¬höɦơ·j̉Xj”=î?‚n¢µÄxWiÔîŒ3u[™3 ·¸í(¦°ôŒû™§tReâ,O@Ù-UñعŒF¶:Đ,>Ä0¯e¥¹kÚûz  d a¢tK f +)á–’Y%¦GFf́«8%é\Æ–ÆY£Ü Ư»ùEA]3$Kˆ’ )F¸ó3¹{oן,ÅÑƯ2[’~Άʡ•¾`@>:ױά´°MVñä&3j|fö <†##Ó—ˆ|ÀĐ… ¼öÆ.á½ï<ë©;Öµ{^V%ÜÙÂ1£ iJ̀¨8”ônưÈ:›•ÑSÊ3k:ÿÔwÅlƠë®ÁôËAhÈæø áq-©W¦y90|›ư8z#$j˜nBJ¯Ä’=¢Öß—}ËOX¯j“¡}€–mƒü†"¯éöÆăö1±e¼i"†Idz’úaÁrµ\©Fu•¶-iUeîX•›;.9¬©Èƒđ Y£lY>%¢¾„!Sm[ƯêđËkŒ‰{±KzưSܳ&dC+3,7ÇT•fn`í^¢\• úʘ{̉FO¥Ú°đ†÷ Ï2±uZ.ÊbÖéóØÇ½+«‚H©d+oÍ” ¬ÖªKv¼\NÇ0ơJm(àª:ïđI{¸zđ»&1æƯ\¶¶ÈÅW k½´ô/ÍÛL¸%$D\kÖuƒP.öá-̀ªíd>äÈ>ɽ›ÂÔám¾>ïÜ™³™Ñ6²ïT_´ÔÖc.âó¤đºµÂ’Ôv–Å”u© …³ËƯăËĂƠG¦RyŸá0ÊÜFVƯP€Û/¦©vÎ]ŸÉàÉËÀ5£¾ÑöÅ''„hͤ ä«™†G’_ơƠaäfkáÜæÊY¡ö;SGTĐt·H&›_\ÔơY"ñ&œ{Ou™¸S|u]Hr$Nó&0Đ'(³Ñ^9đ§eï¶7Fd•³Å†I¦˜…äD…J·‰À{‡ÚCå“tgC½ahÔ­U¤ 9:$/wưôợNxM¹^e@ï’_K¯/[U„‰î}̣ ¯_̀jY[‘»#?®®Ç:è̉ê Đ<~:ăôsÑ‹ÿ ] endstream endobj 1483 0 obj << /Length1 1671 /Length2 9625 /Length3 0 /Length 10698 /Filter /FlateDecode >> stream xÚ¶PØ6Œ»»¶Á]Bq)îîÅ5@ $¸—âŵP\ ´PÜƯ¡PÜ)P ´¸twïî̃ûÿ3ß7™IÎóÚy^; mIk¨%Hêărr ¤UµÜÜ/8¹¹y0tÀ0èO)ƒÈƠ u₫—^Úd{’ÉXÀ̀T¡N%wøä ssx¸¹…₫cuÈXx€­ªœ%¨È ƒAếí ¶µƒ=ỰŸ#€Ù`ÿĂ ér[Y8T-`v ǧ­, m¨ó₫¯̀¢v0˜³0—§§'§…£'ÔƠö% ;À ³hÜ@® kÀïtj ?ăÄ`èØƯ₫kCm`® À“¶9¹=9¸;Yƒ\Ow´UêÎ §?U₫4`üUøw¸¿¼;ưálaeut¶p̣;ÙlÀ@]N…æcX8Yÿ6´€¸AŸü-<,À Ë'ƒ?ˆ[ä$5Oùư•›•+ØæÆé†üÎëw˜§"Ë:YKCAN07ŒßüdÀ® «§ª{sưÑV'¨§“ïŸg°“µÍï¬Ư¹tÀ.î E™¿,DÿÈlA077·€r€¼¬́¸~×ñvư¡üCüÄßß×ê °yJä¶=ư`øºYx€0Ww¿ï¿ÿ0€@€5Ø °Ù‚0₫‰₫$Ùü‰Ÿ:ï öq? Àưûó÷Éäi¶¬¡Nï̀ÿh.—¶¶¡–ª Û ÿ­’’‚z|9^đ8xø¸@nn€ÀÓÁÿ¿£hX€ÿbÁư¯¢“  ô'Ù§*ư‡°Ç_Ưg₫k1XÿK ú4± ó?ǹÍÇmơôüó?\₫ÿ¦ûw”ÿË€ÿ/9wä-óoơÿGká†xÿ¥WwØÓ́«BŸ6ÀéMơA®«*È́îø¿ZE˜ÅÓH:ÙB₫."ØḾ²Öì́₫•?庿 vi@ƯÀ¿›ûtO[eåđôh¸=Íă*ĐÓ̉ü÷•²NVPëßÛÅĂǰpuµđÆxjñâøŸÖĐäơǸ8 °'ÀSz₫¨+Æï~̣ó¸$‹₫D.é¿‘Đ²ø ¸,ÿF¿¹rYÿ \ A—Í?đ7ÿKË à²û|âđo­€Ëñø´*\ĐÁ§XÎC̃'ÎOo—dûG üKúçèư-æ? ô_¼OT\ÿŸ¨¸ư >yÀ₫Ÿ â₫/øDÔóø_-±rw}ºöÇÊ<ơë?ø×̣Ya,̀A­D̃Ø×½i½ª•¤ô䨛aØÑOgáđ]pms¿ÁAMa©É~½æz!™2Ô·¼%Ë|.±øü̃÷ûçÔđædÍ–[¿;³D­©Œ¯“$ưï¿KÖ÷Q£SqèH́úƯ»øé; ~†ïPbÈwqÄÑ( ¼̣́•÷ªï+_ ›ÛÑÜ­áWƼ+ŸæˆƠ1.™exg™ó…ŒÆAÆJpâ…;{~1C7ñø\)‘ Ăÿ0öE‘¯á:OÜơŸ•J·NrzrC2jÄs‚Ñ)F_©½T%̉yß̉¢5×Ñ´/$mco=fŸ5­+×ư_¦Œ Ầäd\ˆDÑ1kÍ I%4I(¼9'ËJk^¿>[º±«'Ơ!u8f½§¶Sơémnü"»)ƯiA9i MU₫0¯öNE¥¨½p¹‡Ă&(¿0nÅ–Ê?=Ï ₫–£°é Q@eöJÔà̉º}û¨’Aùk`,VûJ‘ÉÍr•²¥p> 0ÅO£Ñ9…DÍJ¸©ºJr¬äüüƒT­^ÿV-‹]bñ„©4>®B*³Ö–w {§ ›ÂZ´È–#\7+©ø·— Ùm´á£ j±-"‚L–§‹ḥ(„±†=)É–ÖëØ¦àCúª¦“æ³0…èâ­[~cïêFˆ DØÿÙcÍ‹íW‰ÈØÔªWˆ¥ ̣j'íó}¤́ÓÅm\æ“‘—´Y‡ˆJÈx êˤŒà‚^Á÷ç*̉S,°+„Eµ÷).¾äÉ\Àbù×\VMÚQÔĐàíĂßQè˜J‚úêBN/êí…´¬º—RØ †½œcñ;̣WCmˆï¨¾L†G ~  ^ÜOơƯrGíÁµ*dƯ)‰/Zî¬ ÀAô*ü.Çñ%̃÷NqàPÙ—´ÙúØ®wgyö®@AçvɺΌ—f_¯µ9}Twîeè1kÈ̉+CçÆ0DX9̉ï“ríñ¸i Ø?î_ˆ¨5âsU ÷wAÓ9ñp´—Û©°Tí%¶ÍƯ8êê ¿@ïƠSÿNßư–¼Xû¬ÎoÊÛñ’ƒwŒƒ}äg6¦M¨Ü…—₫ Nl[EÛÇXg·¦W4±ü.ñoTq™ ïßơÅ/®ÑúÙO›Ư¼†>*j¦!eơf_è=̉Ù ́¼È–öĐCÉÈ`F*Đ1=V¾à(pù9ô#s&‰sCÄÚ—åˆ3”)oå^¼».:&k]ņđcr‘ˆ(5ƒÛë4E›C‚¯²ÆØœy/́3ˆ·É?]¨›¶?é8{ÄÊ„¦%ơö¢>É\Â>ó¢OÿxÄf9ÛöJJ$·+ĐU#¶IÔæIyâJ|£Jîà]_ă6yÄN+{•*]¼:²üœđ  ‡<¹¿Ù̀í‘Ï]¦̉ô†I|k ữäBrµ‡Úus^‚ŒUÛÊLHÖv=“¼ )ënĂàƠ½ḈH‹/…ÉléêbàBîo2^¡@m;°Đ Gö̃Y ?¹ JøƒÚ‚¦$±5|ëQØ—/)?ƒh:0ûOv›]jr \ Z$ë]20A=huyâh*K¨íø4ÅăOß•³́F¥Ø2*½£?~^B„4;¾>°d¯mB̀8 <”s™e<`]z•É.‡„ÿ̉¶Q{K˜æëbH…^Ă„(1°ntå¡ṇ½§Uî•9+€́ËDŸă…-éÄă’ e>¾̣çµibAº̀$̃âRéö–µsIZ5³N•IvóR‹¨Íø6 <ç}8Â}jMOù&nwO&NbĐ²đóü¹‰ÈF .svG’zpî!̃®öú¦.Mơ%ätle7¡đÆpóK Ê¡L)§‚Øe £ Ué,÷Ư[÷A)ï::¶̣Ú2 Â¡ÅwËa•8ÀÛÈŒ̀Ÿ!ç;ư˜ú–ÏkMX4cñçímœPăGœí‚ñv`U"ăÆ Ë1‚Ấ¾uub÷ˆJ¸²!5úÚi”æ¹;Fhº5Ư96Ơ¿D̉•Ô¨ö̉ ÓË*ÚpñÁkñ”`Ùg­à4̀:I ÈáÎf*2[û5§°==h–¦aCÍj¥̀9Ú€Eüó̀Ư¯D¢óäQoB°+ƒ3•.S\Èx$I«/Äçăû3:P‘ç ßSº%ÔæôÆkúëe °%ƯâÜœ{L  n‡¯8l,—ư¤́ Ë>̣÷ˆ ₫̣!ÈnØÏ5±J-₫N3gP+îÏH„gùê}z“Ë™ÆdRÉR#MÖß34}`ƲQ̣‰Ư2}†™ƠÀ”R_‡†p̉ˆ­hà‹³xÓJ2Rpl@€3fØôî́̃*dfÊ6Ôº]Wh†kËïƯÙŒ̃D›É #½YV%I¨0ăÖ‡p\~^~Ăk`‹ !’¶îSqÜå9¹´^”51¶†ôëîƯ¼ÁOè¼đc‚½ô Yđ`M_‘ûÙ¹r›yyíˆ{ẉâ‘ë"ÛưÆÓB›Û  ƒĐù¿>M¨ÀܸÏư sjÿ5<,;‚¤„‰¤e·ĂËù̀¨T$ÖEµÚÿµ̉ª&wâ¢Ïë†ùù ¸“,ʳ‰øZm´É}3å+öÅ3ăs´±Røf~S€^FúĂ{ú:”˜#ª$›„íñ£¹ĂÔ #·9¸ÀK^¥– ®jmợ '%cZÇAc_à»zdÊØ·³wX‘#”î”’ü˜Û œÚ=¥ 烼CŒöfíṃ•ø«œ5qUw–F'Ÿ•vKRÈNXiià‚ÆÇs* ®béúÊ_Ç‹›CÚđ̣zÊYBbDư<ÂTqÈQ¯:{r/rq´µÑd qT '{œ÷½Sj¹”±ŒæđxÓÚ™1Bç Â‘ó†ÔŸµaƒSÑ$iŸR¬²³WÀm¹˜NXgQđíđímǴԬ祈>D̀j̀¹ă=·åˆæÇ™̀ø(-åÓö©/¥£̉€¬̉C™¥k9 hD–°[×p{«4}—öKX¸‘"ø¹¨‹ơÆL¡çñ^fCĂ21°?„M¢|;ÄÜ¿xډ͡÷3úáŒrö$Û[³ó-¼lUÊ -L5ù( –a‡ Z?ÊéÛ¯•„Í:Í SEÎ>^ß®{°M° ÑßNYḷVNx´~%Á† ƯÈᇯyˆ₫ÈƯ|ó6%¿ăD4)ɾ ́ÁƒVDCđ‡Q¢O€Zpû›˜T`¤* ₫¥§ÍêåK¾Û‡đ~êµ@ÉÅLE¥h¦x_IH½ÈGº*ͦg|Ï­­¹)Ü_°•?Ÿ“¶ .?7œÁ™ơvHơˆ́â~ÚÈÇÖ‰xVÛ<åß½ÜzpêËz–÷‰UƯtˆo[¤¸“­¶Wq$1&Ă‘£ßKâafi8̃mÚ¨ƒ®5=F*^zÁ25­¼Ø’UÀ6sU±è„ïî¿“S}sli%zûVæ£Øb.äÂçeV`Ô ñM¡²!W¾é“dQmïÆ–ºCFˆ‡`ö~ĂN ~Ÿ¸Fíüi…oÁ{àèµ¶÷Üg^Ơ~ :½ä3tăƒK1 ĂT5âfw¥â-é_ÅMü'æ¿ø`S øBăxJOµ—­g­è!Ääêʈˆ^Ë÷êƒ5„“+,_@öÜ’x¾\so0'©R’Q²—5Dçzº UgÑ´Ú{¦<±Êá³×’"«Ó bŸ̃ôP €äKưç{—ĐC-¦UR' ÄCF8`XªÛ÷Ùœ(Ué€.ˆöÑfƆ}‹ r6̉^G•Q}UÛßËmăá¢aƒđRT‘k<¼C´?äè̃¯*gW©<ʲJí;–Q-{b¬X±ƠÚ±ç‰̉Ù´x1<°=[SáăÍOñ¾ƯïĐ‚C‹¥‹K;Ơvk e›D=³/ghëܘ»ßëquÙÉSªÍ îH¨{]‹Û¼3|I¾ƒz©p˜Vl¾Œ‚¯í—rÎdAL#`t1gÈÄ)å¡,Âë0VĂ$û–²}Q¼¶r-%„ÅoÛå¤Ëè4*§’Åç ôµ—Ó".2¡0P³F­¡Î*ËË`63†¬éIÈ f¶Á‡œ û¯Ÿ‹Œk§C”e%*‡HQú̃k̉΢n¯1èÉœ–EVFÇ5g‡Mï~ö>¢‰á&)±7ç,{̃˜rÀ|-T·¼ygNṢ–[$>>•˾7úô% tÓ:Î$Gưe'˜KÅcÅ'kê«b[}ˆŸSÊ—:ôŸ[rñ² ÓYÆ&ÊGœé7I#DŸ7~₫ßIp¿Ưâ×-÷ƯËWKµ;5Æw+«FæÜ©S߯d‚ÎîVsƒf‚¿÷è‰ÛAµø¼ßˆ¯dxä÷6>H05³u:z§ómK<vÎ&î;ÙGsiÑ5÷ĂàYG{÷@Î(1Ö  ‰É¸C¯Å<‰_<‡~ïê0`+Wî_Ê ’ë郅úôr5úh9^›ø°çBz„^t36`ÆaUÅ>zßö26Uc¼ ođ`+ôxu@ØüƯ]çQ±:ç% ïŒÂ6$#ÉḾ–ÙyG³µä"ŸVK³s¿DÛè9Z̀₫mh3a$ÿºƯÄ‹ñùX ~ C^z3Ÿ́])ÖOœœcÚM†IUäɲ£NïÄk» ``¯aTb:sÿ³‚{l˜z'Å3áw“däY¼P̣“.Ç€Ù¬½y‘ÍèË•ú•‡à yư™·¢DfTÍI£JØY‰,á<¾hÈ8ÛÊ–gv~&—YpÛ+µÓ0½q•ưNEqƒÁƯlrw₫çư®ë¶¥ÍoĂÑI`.b×xßTÅjÄoÜ¿ñØ XØË?–yÂÏ¥†½)ü’Q{o)øƠO`¿'pïÀŒ0… ^̣×ÀG·—G®_âévfÇĂ)ª:̀o‰¢'Z­•eÔlBóŸ×ḷs÷ñ̉µ0̣'Ÿ×ó ­UÎ<œ­l½’¯V×}宅 *ËeÊd”‹¡;ÑØĐ‹9kërEº©±¬ÂJ2‡_•âåvÀùR[nÄï:ƠSç̀ô¯¿m\zîG¾!ͤnyo:¡tJèL_̃x¿)Áïu#)$vƯƯcîơ¾8hΡÓ*º¬+ÿ(‘ƒºẢ#ƒZn/ç(nZ=¬­ä M0>¼ă@́k,ÛÂIŒÖwóÿà‰>SŒoqº?ïW¬TpÔï]´†³$̀îe3tÙđ*ûLS¢8.ư¾̃KÅʦ÷Ưw! {&‹̉ô‹̀’ès§₫ˆÙ&ïËtè ơOÎ3:Ñ âAq:̉·e¤ƒFbïó·u£Ơ^t +«¾VÛÖéÿ9a–âËÅ>“ué t4fH¿%÷½F₫ÍlßèÑj”¯v·å*Qen,øœkz7y‰đKˆJư¦J·“oaîó¦Ëu¥A¦D/½P'tmÉG"W¸¿Fưèí§%ÑÅâĐº7˜ś!1)ĂÆ\!¾h¯­¸6‹„$¨º8̃¨¿ÂÍ…„ÿ±ẩÀ•̣(!>-uÓѧYJ£Ú22•Ô„F ÿª`´ÙImKŒểüdKé¼Ä2Ï©ƒv¥đ¶Ó£‡ë³¦]78¬1ù;ÑÙK»–Ѥâ dRµøD}è'ÔNï¯Ưøa «Îz~VË’ÏC4¼ƒú7*]|m¤§Û[ÈBx3ë—sLî¥ÁŸª‘à•sˆy¸̃öề4QGZœ³àĐKíúœØ·­8É7¶'f^'á Uë5ˆµ_}½s‘̣Fê„æ&×̀>Sb°¯½uƯ{ܺO£ÂÜ"–'hDËEb°ë¡É/á3gª*£›øs²è¼HÆ…@ŒßßÉh®₫:¯ÂR“Ưst¿îsb̉°Ä~êFˆ®ÅæÅÊưh.··YÜ ÍÖ¼IKäĐ#*̉×§  ‡Ưè4™ừ¤AQölKtơH¡¦/̀R}ÿËâbo@ỶHÏe€ ]Ỵ%$K_äJ¬‘æ›—ëÆú¾tdU$ßih»„$SJT/©AÚ}Q¨µă¦HÙdhóO6˜%Ă„îÜƯÍ×ÂÔø7Qpé‡Ü9ByÍ×}§ôÊÓu=~)A iơh^›ia0fà’Ø̉— }5–ëyVfÉ=e€h7Ă^r@¬Sz¢Â£uöÉ+­Ü*uUúvÇ&Ư -f–£¸1a~}ÛĂåapËc|‚¥û­æƯ¯•¯<¥Xàa;¿$P¶ẃµ÷¤µX±=ø¨dïvMªŒ´ Çwñ'ÈÖÔQ±YÜÙ„$eÛèJ 8áæơq?'CỲ™$uä-TÉ]ƒtËase×.k£H/ ¼•Öïy ŸÊQÖ}É‘¥yeÓo-Ä‘Lœ )`a6÷¢Îâ½£Úzü´PƯkÀ$;©¤<Äó ) ÏÆj5…µA¸Hœ™êC=à¨ÂÎÀÎ|9²ï«Ÿ…h(…K?ÚF7'®wÊ…¦vÏ<Ëj¥î‰·zéå7.c`âøúâ÷L¬í?*ئçá¯{¿ ªĂM:½©êv*KVœûWVvlƒñâ¤.ÜæRÛ̃È&xËgR™ )‰áu?ÓK×Ç.ÑÄ+đUÿâqcư£br®tâV¯Ë‹÷ơÁ^$ÚCÆVAR‘‚„í™&e«·‡Ë ¬L«Ö¦ửÈEb¸ư~ÅûY!F’̉ÂVđµxÀ>-{é´kG„:A %$̃sÇëÂ1V0t;0³*²àêÜç@xwđĐ¿Ÿ­(6æg4bư4!Âù‡/5UeÊæWBiC§-ZïV×¶™FbÙ›Üư3ßr±Û‹T;¨Ÿ•ÍÑXTíùRBñ?]ê»I'c_¥Hơ¼ÁEïÚr·¥”ZóVcí̃Π‹¡Ê5÷Ȫ‚ßkÿ~+í9Z·ç^̣‘¥j~ú{Pt̉Ơë¶øI@Vm®ÇE¦ú``º‹Œ,eåNÖÉQyvZ‘—ÍG™7”¯¬Î†R0ógÎPUđŒđÆW2ZtP;¬ö'?e®q;‰‰Éûgp «úY đ̀RÖºs> ‘JH¾Ÿí̉ê?́{-ÜŸñ%?xºKNúíK_Bwâ4₫’ K3˜t[®^ùx©đ«»½4@C®ö^‘{I×eZ§ºÏÖL̃êÄ*p$É – 6E.F3îEÊÂ<¡Ú¤Ç _»sỀäæàŒ n‡h.ÚV¼¦å ]ȧçFưÊg²=±÷]8$Ơ&¡ª'jgM'êܱ©ﯾ‰ö¿y]‡«áuŸ®đ¢{Qú¶ Iá¼Û¢xñG ¼~̃€`ÑŒ˜û6Ó¬eö2ó¿­Ä;ư‰” Öºz@jöezËüRÒuçî2ï4²+°=ß•?Nä´¶kñ¬I6Që“¶„…̣ơbæk ‹Ÿh­‹U,ÓÛC÷äŸ?oQ~ĂÈ@è%ËôÎó6£„È,ô\¼,ừ¨ßV„ưè·`}R£)ó•xꤕ‚„uZI®¶ç DƒŸD;º”ïøëuC¦ñơ±R æÊ µÜÍx©Úçʘ Nu›®1Xƒè´\!ùkäøRɬKɨ<xc¤¢½œIƒÿ†|×N[<±1ßÙE仑!,¸^UméÉWbÀ÷Q­ơŸv½«öăOÍtÛB₫A# ;È1ˆV¶₫V¤[²`ØcÓ•₫údz4µØŸdm!…‹{—^¿"Ïh í¿ÜÇæV0`”ưđ>È¢¶´"4vL'Íp(3+PóS ăÇËewø#×`¾Lj¾ËN]d’)ƒ‚·!Ifdç(Ơx¦9¢„ËD•9–̃Ï~{Å ª‰©ù‚Ä·‰4äÎÔü&tPÊbïđ̣¨†®ûøúr@ÅRNXÏ̃oµ¡â†HƴƼ“]†8ïø€Ø÷ͱÆÑC÷k‘vÓ;Ú@{å̃Ơ·¼w#Qü ‚€ ö²ñ"bë́Å'>”‰D6í]¼êï_+úw5·̣bv»óƠ¾₫ßđ¯̣§±5ëulơá?6cè~³éXMûµ•ư²j¦¿eúÑêq¦˜»ÛèÚ!º„M4—%PŸ¤,2zG¼·Z*0 ÿ‰„µzCÖË2ëThV²·åo†D/•½}k„9!47ÀükªÁ§€JÔÅrksëôç:SA¯ÿ1/kG̉̃Éc̣ÂNÔ4‰>@Ơë¦Üÿ¯OG^k¬%,₫yê1êUm§=ù‹ÏÑê£?ÓîT- †½₫N8î8LKrbÇa~è¾KzGă­÷°‹ùr³l˜L¼@ÖR©øöP¿y ŸmÜ·}²˜S̀1ư°nCb€cʼ¥Y÷ưp ZLÚ²0H¸É>µ9£nµ?q|çvw ñˆdî†1T5̀Á"ß"í2{¢É±zŹÛQ/?î#w‡é›q£îx [‚¤k¨a~©l%B®?_¶g¾²Ă²¨ >F„^¿Œ”±Í|Ⱥ®:ú~ÔŒ8s|iûxK´”(́^Uw——EZŒYƒTEÔ¸n_?ÛáV?ädñ—°„˜Ä¢z¬àÛ\Fà·₫KèíOsKzh"±G xT±,ăb„ï:Ï[;§}đ0́I¶\¶o[à8æÏ Hå¤P¿v³#pçeçYFMíE?¦4c`ûwqˆ #ï™>ˆv5cqNô¯̃˜U…¾G¼$¼-q\=E“×ƯA¢à#0i1´æU¼¿̃ X¯©“ăâʺ¥è‡ï—ƠYus„3Avæ»ËïÖ7u#6‹(0?$…hëL ’|ëêâ—_âFêU:Øg÷Ѹ·dÆ3üÀ(æ₫À×ø6fÀ‘TU `²Éó,éz£%đM8ÊɲæûƠ)j Ư-x7÷“©Èµ×k¶ ÁôØSXHW˜¡ÏêĂ6¡ZlvSĂ*¹¤‹ßæCé=™x×ü̉èΖ‘é6ü’¹Ÿ‹J8e«µO×ñÖÇ",xƠçHƠ‚ïó,«8cOx»‚ -?íªE¥®UoH’P­¡,F?êzæ飖U>BÙaq=¦??ή½º)́fbä(S‡…)æjN%½©d¶ư\ư#µ”q*•8üóØRrZºÅ/ßă›ƒˆr̉a„GHÀ«½=̣ïíL₫cäˆg²È8Ç,¡„Ui@wÿ»Æ]ưÔ¡@ư³•,¸ïö„Ѿ\.ø¢̉åuø—{N̉Æđ<°cû3 Ä[¦=É~<%z• ÉÑpÿK  ~K‘ù2×öó·Î¬r2ˆhAÏđ>^uDµËqT:"¼ËÊ 7›ä J„m†¯á«UD€*ùÑ¢,¾ĂIeYClˆ¬Èl2)û}á¤ë×äß«Øïà ùƒđFs7BåGN4)˜S ‰ËN¡×&U®uèd¯©¸çë«õxÊ4=±ª%h¬8´J~å†ÁJèJ±f̀Úryó×ú 1,?g2°+¤XBQ§ü•óD̃A˜jkè>’×~̉´öè[a:dk~o¥ơ·µØÏ‡ªøoà:í.ô ḅ7ó Aỡ˜ >ˆó oaZÔ^ iqád«ºI.P̃è-[ ËCÛ’GyC¶hØ ßam2#­q ‰N#Í3̃ß®*æQóTDo¾ —₫Ø5Ô÷1 Bÿ`5üôW$±zS4µÂsv9¾‡̃<”B<Á­Ó¨¤'Ư@øIøøúơæ2^9ÏØ+Æ1IÿC2̃-ºü T¦ÍÎËBjbq{hY•ơy1xŸÚnXB°4A5.”¡Q=´hCÑzboôY| ‡Ÿ9|W&»WÂÿÈu÷¦ endstream endobj 1485 0 obj << /Length1 2643 /Length2 17676 /Length3 0 /Length 19194 /Filter /FlateDecode >> stream xÚŒ·eT\Ửˆ»»Ó¸»»;ÁƯ­qww®ÁƯ!XpIîN€4¸w˜Î•7¹ß̀Y½ƯOÙSU»jŸ™:“˜…“PÚÉщ™• ñN]QCƒÀÊÊÁ̀ÊÊ@E¥aănü£A ̉ººÙ89̣ÿe#á 4uÉ$MƯA¦ïœ̣ö67??++€••ᅥN®üISO À;f€¼“#Đ JÂÉÙÇƠÆÊÚÄôߟZs:ă¿Üb@WsSGÀ;Swk ˆÑÜÔ îdnt÷ùŸ´‚ÖîîÎü,,^^^̀¦ǹN®VÂtŒ/wk€Đ èê ´ü. dêü§8f*€†µÛ¿UêN–î^¦®@H`octt9y8Z] ~€ºœ"@ÙèøocÅ0₫Ó3Û?á₫ăư;ă¿œMÍÍœM}l­–6ö@€²´"³»·;#ÀÔÑâ·¡©½›ÈßÔÓÔÆ̃Ô dđ¯äM̉bªSPÿ©ĐÍÜƠÆÙƯÙÍÆ₫w•,¿Ă€-åh!áäàttwCøŸ¤+ĐÔy–ØÎÑÉËÑï¶´q´°ü]…‡3‹¦£‹PṆ?V ™ĐÀÅÊÊÊ :X  èmnỊ́›DĂÇø/%Ûo1¨?g'g€%¨`€%ô…àçfê ¸»zü₫Vü/B`cXؘ»̀€V6¢ƒÄ@ËcиÚxôYACÈ`ưưùç—!hÎ,œí}₫˜ÿë YÄdµ•ÔƠ₫)úµ¸¸“7À‰ÀÄÎÁàfăpóq₫7©ÍùËUÎÑ̉ À÷ï|AúoÎÿÚÿ́ àc)9 ư3ï¬\¬æ ?lÿ¿§₫_.ÿ_Ă₫;Êÿyÿ¿9I{ØÛÿË‚ö¿&ÿ/ S{ŸÿØ€FØĂ´ïœ@KáøMµÿ̃âw@ ‡ÿ«•s7­…˜£h´™ø˜9¹ÿ-¶q“¶ñZ¨Ø¸›[ÿkL₫-Öü½vö6@'7›ßW €‰•ơÿè@»fnºNÜ@Óù/´JÿË*åhîdñ{çØ¹¸¦®®¦>¬ ¡bçâø±–Óèư¯y°0;:¹ƒ\  –N®¿–› 4B¿EÿFÜñ?ˆÀ"ññX$ÿ >‹Ô?ˆ‡À"ư±Xd₫ v‹́Ä`‘ûƒ@́ ˆ]ñ±¿ûƒ@́Jÿ ^ŸÊâSưƒ@|jˆOưâ°hüA vÍ?Ä®ơصÿA| dúbc™º™Û€ÎÍ̃øÇ ”£ÙÊẰÔÜÎÍ̃ÔÍú/_PBf®¦æ@{ ¥û_b®ÿˆÿ½8ÿaû·Øè₫?ö|ÿÈÿè\̀ÿA\ Œ̀́AĂơ_ 'ço‰ƒĂ_Ơ€¦ÅâȪÍÂÉ̃̃Ôơ/ PÊÍ đH¹ë]<@[üÇT½åPº–6Åø­ṿø›dbơ'"HoơûÑ üÛ”ûŸNr‚:fíăl tüË$³ù ‚2µư ‚NÑî/jΟŒ¹A]°ÿ½iô V:ü »•å(–#hCÿô Díèá`öû´ú+%Đ½Ïâô'iPL§¿¼ØØ@…:ÿQƒ8œAhÇÿ9lN¶ÿHÿ÷¨A ‹3h^œ₫'¨‰ÎözeaqùSäoätû×}óO朿…Nî@ ³¿ $ư«÷l ̣₫„åú€µ dîzxưqe÷'WĐ€ÅƯÚø×€Ju÷rúËÔQ¿ èt<ÿ‚ Æyưµ. ï¿ÈØAá}₫‚ ¦ú₫i (’/ĐơßTÿsy{¸‚ºê₫¯çèfư/₫×Û è 4GXYr2·m ï¾o#ôbÚâèçÖ¼}ó åDˆ·ßa†øª„gWEÈYtĂ›'©2n-üQ̣$xd¡T<—Ÿx3,f„l Á s³ ?̉/8Ú™ Ö~‚ä8¼̀‚C Ÿ!Ùs²[]*a‰I ơH'́ â{½ưeB’’:xåƒ%:>œÇĐ3eYû@U~˜…Ñ^IVÛШLDùÏ­³4̣zˆ­'w˜u=&‹KâÈ\A ‘2îM¿̀u«xø{'?³?Z÷(ˆö‚a,‹-¤Ù¿b,½[Q„L ¤ råQÅéx|M+—”^:d1‹W6tö^ ç_Bú` oér\f-{–à›ÏSu<̀=/K{^€1÷Ùfn„bª@é½ Nd‘e”IJv́´Ơ¡l„XGÛ ₫í›}̣®4w²‘ñ'|xƯçÅ´a÷M„‘` y­}ôS #"´+¤²dß¼‰‚©~ Ñ©?Ă möøÂÖV ”´†>o7[‡©wÚÍJÉ"¿ùÀœ§¡̃¯¾Ú½>‘ÍÓïfÙ’«t|Of?‘xNs†Ơá¿vQ ¥ ‰Î,ƒïă/“<^̀ËÓë>“¡ aÛD·l÷k°Ÿ# ÎË‚tèơ½U‹MĐútC D4ϬE`Ù{˜ƒ²øNCm¾¬e@`ñă%æM',“×djU‡°j•uư6>kÅËeă˜™ÇŸ&ùô;x™t=äyÑ4N-2J 34́̃&²Ï‘†?YC­·AæĐ'̉0&ú2²¢ïÑ₫ŸvÑøĐúPPFUøfb¼&0ăqÜX˜×ậÄ^ăæÚsƠ>É3Køf"ÊDÁ\+ç;{rEM«óâ^|ï Æ¶Çc±”‡Ûz×f µ®sUP>Ê9 ¥£™Ѽa1œ_aƧÂSg¶X°wV¤üĐ͉ۛÂúzÎCFR3N}SÉ„±»ék…éÁÁũMnÅIà,¢™BèÚl~Ût´›ù¦Â’ ₫cÛÉ3‹̀`:¿Æ£ª¡Ä;v”B?˜Ǜ2(åœ\g›¢¤j·q8ÚN»v1ºẁ(†÷}ÍjºFóÔ¶̃1î 3”$î°=wºûÅôÅƯ*B¿ơ·ĐwŒ<à“‹¼1 ¸gbĐ8Nçîµx¦ïÏrû2‹…-&ËVZ4‚ÇÇhăơx6ăG%ŒÒ•Z5·E%e9Ÿlî#äjú…Mœ^¥-tN1I`|ŸëlßË¡%Ä{Ă£çâU‡{Ó˜m+³ÔCÎ÷ZmO+ª̃®”z:º‰rEZ_«û¸àÊ£ăÜ(>¸ ±Xö8LX¿GqƠŸœ·øñÍñu"óª©ù“k|8#ưi)¡¼©óy°Pæj1„•#Œåajđñ­jøǻ-x9S[ègæ‹}»-5‚|XßÄ>ö¬#¶ÀSñIƯëŸM±Ÿ”TQÓXÈĐkŸ®,äØP⬼ô WTÄT; Ų„µ8,{³ê†S)î¥yâ+6Lå(E4%|„¢PûZ¡.ởPø̀eÙ´¯É+đa`oÙ( PEĐpă€$´½Îë½'—«:ƒø|¯÷CŸ¶>(¯ueUxăgåR2•¬r̉ÁÏễ3ûÑ,bAA% =.{ë$>¨`hi&L3“xjèÙ;¯ß”S)¾Ø -‰W±"Y}©Ü₫a-/ÍỷôI Ê%é8Sơ=OI¼?çÛ“7É,ÉëSË®/'̀Ëß;ñb# aÁQ˜ÍÉq_‰Œ—-Ă[N®­¨;;0/ë£ä›-PKöŒM₫!ƠÓg7¢‚ÖSP̉Öb=Ï-H<hºÍê2ikß"üđ 1èă,ÆKE`à˜¥)M³¯Í™ÄƠ¥bNƒw V@̣H«3¹‡}Èü½>ЬnE·â2g$‚áóÅ÷BĐáóPJVâå×ϧJ1´ó¥ó``_³Y}/CÎKg2bgûôÅmŸ4J™›Ú»ø±ËDâ½rd{I¥̃ạ̊ĵ_åS}:_·ßcÎ́[dhắ…¤ÆüơÖăÙÉ₫eQ¡…è;…Ùø³¶é¯%;åèöéĂ6dÅQ%ÜC©Lÿ´£̉ ÿÙRÏ*ăF́KôY3'Æ{óhÅƯÎTØ f¥Ó¦¯xC”4Í̃/jÈơŒXĐ¼Æhm?EYƒ¢Ÿ=¥È"/›|f7½ûä¸È™ÊÍ W}ú„éK ×̀– WÑ}ß)›8`r¢˜D7†­)²°º›Jt¨/Œ1RÎƠçXGedJ‡Ëâ’Eÿzú\#ª1àÅ ñä¥ôN#Ư¹ớh"I®úV+ï©Ùă³<´=Á#̉œU»-°¸ÆẫшÜđăĉiøÿûOCuwF‹̃å¤5ω¤̣Oy+«±ë ëÍ€|íùüCâRơi‡₫VZض`‹”¨€ùZñŸØá ¿÷ưĐLyNSYx_†°û3B’ÈœôÑmwâÈ® {Wík"~ádnñ×ă¢Ô7±á{!±gÆFÜ€óĂÅ̀“]üœ®†̣€x>N8Ă”wƒàäÖùó…!EÖ˜s²¦r¸‰ÑzpÜ[Êçí½¾µ‘± YMéçŒé´ë„I?G§9“ĐåaeÈW]«~Ö¨d™U©±ß„ çƠôµç1Às’æ¯Å.₫ĐGg‹dÁ³½«QqDe(Ù~œ[VƠ1ç˜Y)’lEÈÎĂÁƒ Í‘ ñƠjwl¿âù₫2Æb^Hʸ&Kœ3&m~;DoÀæJ¨k –¾Âpơnf·ªpPQ²_û̃Í́3׺ ih—îü!7&ÓäƯL/KF›̃gt%úåy{ ̀!è/¯˜Ñ†Ồ!棯f·îıˆHMa¦ ë IüƠ8̉G'kD)à?ùlCDUâ ̃›eÓAq·l”GΦå¦kơçû@€»’(p¤ë¡}̃¼yÈ Ă´OÅ‘·KY¬G‚ÙÓĂ™›̀5%ÜO@4" ‘­Ơge,ÈKvƠÈ’D¥¼ÇJßa ¨ pfÙXóE?‹w“ơ$‡WDr.¢uÖơâ 3_ñ3]§ß³èæ¹Øähf€ Ăk¿±•Eû)Ná½U²5jV 7̣C*ëÎèï~/†?˜*2{™ZœöyÓf̀“jáë XGÓº+̣Ù+*i)ñ«̉tîÓáßæüçÎg°stD%ªfRŒrHP̀‘₫ιŒœ;"µ‘Íă£œÇo„£qË~?4‰o>º*|hX¥z¿¤N¢Ÿ §ê£|#đQ€Ns@VË ÉÍ™¡̣Á ơJàiQyÑ‘E˜¯Øé;÷ i ‰ÿƠ=ù»û³qVŸwÜ.boêHpyp2¢:îU˜WO·ÇÏÆ#‘±ˆBj¹µŸr…~'Tó ßÍ!æẠ¦¼JK»sÅÇ$¿ŒºAÄ":åAˆÛLV³ùÑJUܳms±z˦v…‡₫B>2IDÇ•Û>”XÚˆ»ç?1–.¿ö}¾LU´¾×ÑiƒÎ÷ơ›₫|:.©¨S‡Ê™˜<Ó²z»†ï¬G6€̉êFô@C¼á)‹̉Î×\<Ñ»yr„Ñ8¦ÈW ¤GĐ/'j¿p^Ÿ¸³ÆƠ.·¥–óD÷·>RÚ6‚ ë¶W¡âáXO_0À" ?•¾Ù@‹Äq7¯.§ÊMØÿ¢>J9ŸNNµG¡r‘VKøạEï÷ >I.AI·!%˪6Øj—â‡ñåpÇ[==Ñâ·°L’˳óÊ2BYPËSPѧ|í͉‚ư&¢îz[ùȱmŸuăñ›ö^y2ÁFrÚ8zN#fYHÅcs¡q1T~ö¹ ‡Ïôª8»qåÏ÷»›S½ lQ«hŒˆ-^99D°̣o0ÈhöYªđüøc‹V#jÛfơ˜Âñ>Jê3ßÊ24Lm̃¡°—ŸvÛ ₫y6tåˤ…Çïmi₫‘E¾‰Ûzơ!=‰_£L| ù>¶çæäÎ{”h¾–ºÊà0 —mCçqˆ ç,̀6`Íøkçׂ’ÈËÛs¶&½X¿<¥’REpÏ5¢ÿ Á¾Úó·ƠO0¦ƠÍ‹7<¬Jøä0ÛeƯ¦R Ù2Ù1½̉z€IïÈ'Üđ%ÕcFo;´,¿øĂ”MëºÆ̉Nq¦3Yúj|½OåûÜm¹Óï§yט+·9__y?,Î÷ |eX—okqZ‹à3̀³[a²PÂ)`ê™̣³“ª/x'û‹JŸIØ₫BØs^¶¥ ¡LDlƒlJeX{QŸÖ?ßă¥µ…—Ư’&ö¢­Œ//Y;²(pEWƠBI˜«-{ïÍ,qÅ.Ú=08‚•xiư}H[ù$ơ›#.Çó6ăÇ^®ÖS¥"y¨¹e²öêăÔ#džٹ_R»K÷àØ‡Mb=Ç„̉Ô@ÉÄ‹öŒÔơ5·¸5¸zYÓK%Ưùđ-`¸Êđ''"éˆÈg„|Rœ«·F­iº7Â'Nr…à ¾ºÚ́Ú¯‡«¾Ñ€†;0r÷™Đ¸ÄƒĂw@đơ.w+WÂk;9pLË™Ô|<7<‹i¯ïËIâ<öI[åw˜ Lôï₫†Tê4Ó4u܈#P©&jÓ-Ă¢éÑÈ}bơ5|F[N5RÖæƠܤÚ×# ®Ëà5LnĐØG!ƯŒñ!8kúĐÂv{{#dÛ›2ư£Åη+.h]ÄÀµƠL‹ǾÔĐËvÛ%Ơ1đï1Yi¤ƠÛæºr™(Ú­Ñy³°·¡+kZƼ‹ă2’`XWÈ‚öÈ©Ízq3Í–ë›äµÆÚÙ'Y9 >¸jỶ°?ª‡±Ø6S8!øÜLơØ‹pDWÓú.Èʨ¨y*nåÓA7÷WáZ?³ÆNÂa-m!>ơaË̀1“oi>Pæ!ù †%èX,Dn¢îkUdóñH=/zql`̀&—mI•HåCÔĂQ´ Ô_ˆßöùđ” «? T¾}D¶KÉg̣Ï Tlă¿E$“à[w**Á0lêPó¯üáû-•!̃D+ƯTWå“́ûhÔûtÓ±‹wFë%¢ƠƠs.Ë$ùá{#]×ÁW₫ˆ£ö¤;l yîÁ3E4æ[[¬8ÇÑ’sí™W¤>“Ơ]øë°ưà—| È|ó½Niµèß‹œ:{:ó{®×µ*ÉÛăE]i­äϵ ¤½a¬}¿¸"F•<2ïV­r–J¬Í—kO¡4}đ)b2àTZt¹×°$̃êØFxˆRiNÇ)a£•"üù+êS±₫Úí’±iêPq•€ÊØ—eR ôN­d{xđÎ5Ÿ<Í7ö(6́²p)È϶\Ó²µ¥éKnAÊnüçBø|ŸơŸ`m9räˆ)>™†}ú}4WßoÆF>).¸ăki(µ™³™#ÔhøFfáV×H̃Ă…SñƠ\°…üĐ:\?Ñ8₫¶ª7D­œ;ăà#ÙºI"R¼¶Vºvso¼fÀñ³l¹¹²¯Đ¾Œ[æÆ1™÷ËP¦̃\CÍÛäîÀ4úx––8>!Đih‡äLÀƯT¤ëËAß'jÍÁX$L¡yœ>ûfµo5f‘pÁû-ïù2Húß§øzE’¥æ™['FÁëeoódYÁ]çߣ¤ó{ơ‰ÜÊ+€ïàîy­tK†LT0"—«É:ÅÕ}e÷+*¦̀[77ï"íIhđ­`1#;Ñnèsx2(·‘âbI·́¥ÿ@ øó]=) “Ô_ó0§ «¾tÓI×&Sö³ă³Àf˜NÊD|ư>[€ªÜá-ÛYÑw¤t¸ø*ƒuü9¡`ü£ ¥ª7…=ˆ›½—?|RƽEHL¡₫™­J´°Ez£2[É5àà ßav Q[’¿ª.ÊS5àa®»krsÊÔzK\jv’î†ÅâwRÖd½® 49Û3)­)ơ bñ­°óù1?²–̃† ă¡˜íV? ₫!Pó6µbe¦Îë£4‹»Ơ¹7wÊœ$q'ú}&wë¢(Uè́ƒ*"Ýk½Œ\ñeB¶¹7©æ₫ëÉDÉB÷}̀LB8́kf%%aÍŸï¹åXw>S)ÿ0‡÷rÔ·i;e}~D£¸%!uüZ![Oí9YhL©ù é—Hăè–¥i½ç„95»øư²¡zí Uy~x/›ápJwkKYk Vt†¶¼†Ô)€é$‰~/€ïtjơ2en–å(1̉kCHMă–û¨MB»©ÛNwë­»"øí âFmư0E2ÚƠ;K´¯Íô:áÁî}[èµæEëF¡æ9Ú sÈ·>Ñ×j­¡‹ưÙ{ÎeÛ¥±^÷Pzu!ha›è«X́$í7!18¹T¶–ÁöƯÍ=8?ÏW¬sW2*fü‰O° &âdø¾mo°>¹è-Đn$…£kM\_ÜGc̃5ßưÏ!meâZTǸg1·³T9+ ºơ÷!qçµæ”­‘ü4Ѽ¼Â/W·û…fâJb(íé3!>‡́ùæD’Øó4 ~snáÀÉ%CS%>&03<\}æ‹îùéđ%Zx̃,^àĐa7¹W?\âW«¾¹¨Mu_©.éC­4œ̉›̀N>̃Çr-íyܨåNàç´¨Î0&6 _*1BùkÜ9£Ïrz+₫çúr̃R…ûö"ÔG»WueÍñØÛ¶s Đn…aˆ×2¶'!ùKVPđ́YlÖ½Â]¿DD* Z®ĂrñWg^`¯bz8¯Ú™¨E…ơjlïŸ ±ú7c¾â{˶mñ˜̃“´!Yà1Ô•üÚlÎERá?xĂÈ)£ú.Ơ₫{Ï ¼S¿HN,ó%fÿ!̣(,ÁÈJZ€»•È#¼–œ¡·Ê˜{û†T££hƯfLJáÎ0̀¤n­M“­G=[V&^¨ Ă<Ơe ^vƒä!?#X3jơ<[ MxGXP‹}P˜FÖxèQHđø(L>Bà¯ÂùóNïåo|¿ß@bQfáZ]º.RánJù<́¿_¦’̃¹[°gæ€'?àú“]ëÆPÙ½s.V€úôƯè+Szj©Ç\ÙzÙl¥Ă&ơLŒmâå3J_RØë’JöÎ'¯ÖwHùnsĂ?o=¶~8³«e3AAê×í|zRĐ`âR‰ é¸ {₫‚›o`sF´÷đí:Æ‘{“”Eró*¹H¾c¼æ€¤¡Î̉ǵ‰iẃBRRơé¨5|óæ̉V@e<¬ánT47s» ¬S#b€Ó”ø]s³9¦₫ºæ‡w2}__Đ—¬ÛD¹Ư‰e2°AfY(ZùÙ°+²º_{wG‘[DÙ}+Ë0*‘́ cH±ªWđ½̉ßĂ”uœ:è"cï̃c¨ÔcAÄ̀=đ"j¶C̣ ! «t.pXÂ×ƯI­~ê@ºá½ê§é»æŸ›œ*–”Ÿ¶tÉ´ir¥­Ô æáLñ̉gp]-ûj *mÄH8t/̃¯smÇéYiÅèvÄpüYṃÆ 8…Ú€/7˜l^‘ƒ7ªNU­­b*]{ÏE¿m«TƯÇ^jjAk{¦«ÓK¥çy C„7GJ ÖªG#Ål!*æ!¾ưq¬çB%¤÷¼ñ›ÔçS«U®é^½ú—¸Z¨đ__ÎzÑ*DYwæ•’1í<Ơ—­‘-|ëc™ñåÏáÁ€¹v/¬n¦æĐwéƠđơj}[ư9•ŸùISpĂ„©L‹"~ạ̀by4Û¿'¬ûé<ÛyJlĐM“ו¡…Ó+æí­+̃í‘mµ©P¿_ZSÈZ--¶ÎÂkZ¥OFjG»ô`udNóRƒ6œÙI& qƯZ>›EÜ·Ôb»@¢PơÖBûµ:mă[uå!Ĩ‡Ç̣ kY/‹đ ªC+jZ ™mw:DĐñÁj©O8˜,wçO¤·É{)¦¯|Üß<≼)yX¼ ÔWỬ?h$ߦ¾đ+ê—¿—jvđï-ăb±©zbÄ$ ‹ÖácÏÓ–®9§¯¼̃ˉó¼Æ}ë‰Î ï$>±3#EwƯ=[Âj₫5.Û±&]²‰–rØ{>₫HåRâjnËÓrµT­ÇˆÙÊoîkN¯Œ®₫sÀ{ ‘đ’²æÀ¦MÚ4|ófâĂxûÓ,{ù]ç`.k:»$óµítîQx«Æ*¢©¦`ñ`¡ÁƒÅ[›ÛlxüLæ<¡„ơç`H½ơÚ>NG3N«NMxMÍƠëó§ˆ_¾ âÛå0{'É©¤”¥¸à¬ a~a«úÔf§¹\í`Y V¡róü 0‹ĐªÖ<û©¤7Ÿ£Ư]¨ÙçÓ́b₫¸–$¶_VŸ¤ Í—¬=àá²6åÚˆÏû·Ñæ̃Óª%p,/OªôxlMd¤ƒ \WŸyơˆFи‘áymOÜ¿Z†o(! ¥œ8Ăn<цÉA ήï•Ñ󵌨}J:’: ”ăΩOªŒÉ—á†}Eø‘Ä>™bĐFÓ81á–VpíÔƯü¹ SÿI®Oß&“»/H!ĐÓmi1ƒ¡éÏÜ•Ö7œ}L`ØHÑcQĐc$‡Ăÿ²ïk·]Ó]æÈBÓghÚĐa).æÅ×ßzÎ¥<ʶ,oc´é=MÆvÁ¤‚.ùëGYúoñâ”÷U÷§’¼L”¡Lm„;,Uđ»q̃´9ö‹p‘§ÙÇ£/.Ó¸k}&TŸsÔññ~^<]÷½¨Vư¤B38E¦!!Qb j²BÆà†:ߦs§ĐØFÈ<¹S(™”÷m:P΋&5·N'[îụ̀³Á”B\ULeµÂ˜₫x¡£#ƯÉÎ₫ôl¡"-ư •o†œï;{·€Œ%‹'«|WÓ‰ư+`å~̉í¬xaá{dT[mă/WÉAkC:²z<a6›“đơFyP?ÑŒĐHg¨¹Ox¤ jV"|Ö:H¸Y F”ƒè́¬ëvà0jͨŸjU m̉z‡‰øœ‡§e£f¿Øăj̣Yx¯X{k8V¼d»ö[̀®–,üH7_B©xªä¨PK:º¡\Æ¡̣À$Öü~àœ¯b|ĐAXưưÜVdñ&ÏtÄ1ºÔo©µ¢‡.KAO~·tÅ /CIỜ`@Ă åÛIăuíqƯ1øn¾©¼'Tă3±lçăáœób¤G÷×Êwè}ƠVµ b?ÊZW*·N¹å´%DÙdµ̣„:ïD¿´ˆßc ÷VÈå±PèߨÄ9×Ïq›B¼Ç*y´>¥BK{ÛíĂ´Wblÿ>ï :}YÊÎC†Í™é›·51? è¿x…đy¦{´ ¬Ơ)«Îmä¤L–Y¢˜78øO½©„Ù»Á®–ëFm»É%Ç'T?œă Oñù¾Ï…~˜™|ª\.ÇF>ª<°¬àđéC₫À„íËŸó=-ëö¼c_|Û‡̃|Ef眲FΙøú`Ư!bnĂ|Yµæô€ó÷RTăºgåKEixÁà-ÇU}o‚æ÷, ›*ă˜Đ såëV~7`Êà¾öÎM‰̉“Û¾ûm†È­z³=}”̃1*y‚öa¹È*RI`WF-CƯ!³ƒ£í‹¡ŸËÉt%=àdf1œˆ#K¯‡̃>­ÜXá,sù°´øÓ}`Á«ôjpÊ#z"͈ØèÉG ¸"°?+X]Ơº=¯îɦ{Ơ6ïTâmu{/V}17£˜̣WB{j…ØU1ăѨT­öQ[´î¼µí¯ÀMºíép%Åo+E&Ÿ~ æ`²ÉĂ´ö±̉Ü,®ŸÓ—¯ÖD̃®›Ú” 7ÓD$&er%Jg~ömbÿUÏ’ÀS0í…Ŭ骾qo\¿5ˆ¼xtë?bÑNđº"̃ăÊp¦É‘Ñß G¤.qMFiÈo?”¿›œA½í8ÍƠđ 9ˆ¶(Q̃ÔId.[§FIa ½óåđ=|öz¶l©]ǿeÄÑάۯ¾”²N₫̣…ůŒIô~œM~® Ÿ5̀c[>ܳ_½kkŕ ¤…¼₫ú];`¯ôögW¹}ÈW9¨=¸¼̃ÏÊ%˜Ñ£ú2¤“Fßßç LJ{ZØë¬l̀‹-NƯPt#hp&côF‹0z‹Ëø$#Ô y›O{TÉ;/ŸXóÀÏç›Ùêa ›ă3±¦È¿Z •Ó…6,/&€.BÆùRϰ[ä(4÷H¹Ù¡0LY ï†KÊuá=0—"¥đ+[sÔS¬̉“ù÷DôöÊÇ"ư>3¼zWvö­ªC‚>¼ú•/ɽZå†È`JG¶€%8|H--):„ÀRxœÖ[ϳ çœá¨U+?d(÷~%#HK·Ưïă'u{̣!2™a$ Fă °NÉ!zJ°x„ʉѕ¦rÎÄ'lÇÎ*¤å®ñ5ó˜¥@µø¨üFj䦸?œztÀ7¶ÆáÊû6¸*‚'ØÏ†X?—m\¯ßơ­…’_X¤²ç8”Ïlq“Üâ5Û ËÓâ[rÖZGzíÅk ̃́«§qh₫ơœÎxB0ú©|\”²AøJŒPú̃ÀT¦xutN¯?6æˆÆt¸+ < ¶A*ê­³ÄXuÛ@­„J5Y >›A úu#¯ÆOK»œñÀÑßçɾ̀µœ“âkpCüÂ]·’ÀZ¿@ß]ß̀Ä"©ĂS«ñÇxùE¢EqÄ» ÇúÖ¸ Ê-…ƒ *(άó~^¹dëúo4́où#w:óá*<ÜƠL«¿Búd;GU™bµÄK¶Ị!kæµ³‹1ä'$X̣uª_̣à”ú5íÁ´_”cë&ƯÆátHơ…¨vƠ q×Q¬—¤fÈ£Í\æ/đ¤/eĂyÖdrÜøÆi:̀QC£nĐ}x gŒ§„µ.fĐñév ƯjT½°†́£âÏơ¤ÜôäÁZƒ`J(~´ăs{! Ĭ¯À¹^8²:=F̀]È –‡&ÖÊd°îz°N® {£â#nGÚ·¦ÀˆÆ3ƒ¬ó-V¢]XÁ_5Ç— m/ûŸ&̀_÷B… å4íâú¨Ó°s„6rm,ViY[çGRº|ƒ~ͯ>„]ïgÙHK$ÓƯV/|AâaùàîPfB—?]R^PP¬IAO`²ø˜¸hƒAZ¨ưĂº¡ÑÓä`¶¹à•}|;fi»bÑÿ|¡xˆI¿7Ǖۡ»h.*ÿ>­Ú¸ê^¤w³Urñ}©“·£È¯J!Ëäù`G•utM©‰XÇ!JÖeáƠX˧| °âÚTíÇ Ô¶ÎÏ O(tmQr¬ ^à³Ø”ƠƠ3SËntơ*N£fCẠEf³5Z_Ä÷!½ñÁEuÔ†KHËù9$0ÿ}κ¢@ùMîMÅ—£Q!ØƯÑDƒ\ÿ9°Â ¶áKÍ–ú‡Pn:S÷¾|‹Oæ\qÓÆ(rƒ.¯̣¿&B5é8ßmˆTØ#z¥Áæ#'¯ÄQy¤Cy†¿5 •ï\’¼| _ ]à|扻r/µó•Ó-.g g¿b™ç¨!(—(BÔLa¦9¾Œvñ¨p™¢­ÉjNôg¨q¨đT1ö:ÛĐaª¶:̃ ²™™Ä‘[ÍéḾê‚ÇFö>Ư¢afG€̃ ’qk› MͰ)¤Ï†Ú‘¨2[]Ṣ¼ÿ!±[;~sáGçNRß…æO÷ˆ…å7oÀ0Pô. RÁíÈ*å ¦)(œ#áÙäs"ˬ†„½éc¥Äpp`¾ẳÚ#<&îÄ; Ă¡ñµ¾Æ2 …ư₫£d.°iÛ8Eø~ ’.ƯW5©_ưÚâèéCúH…₫.6>ḷMQ×ûïU°*%'’5 µ‘X·g´†”ö¸Àf™pp‡0ă8軂}r™Og àï¼LXíü˺„G;ƠüA¨¥_ÅÔÙ©_⩱•WT+vÜBÍ`r´Đ ̣;–L·‹(8L?§©c-éøyÍ= zV½ü¦Å9œP§p/ê³nJz÷C[¥i©X‚8¯gOz4ƒt³azn·‹ëB`v»àúăˆaF:Œ¦ûÔȯä}æ¸^øÙÇ\®lĐ½“‡;‡pÁỴ̈,U"ïa'Fˆ†S!é“ëBîè+ợ¬(Ë2«Ê’‘áiÔµ—̀C Çi£¥kưl@a ‹/C%‹ÎÆ0T'ºæ1N8Ƨ;ÉĂä`l“*ià ^Û4ă_Ù0„÷UbFÍLœ+Û¼ø¤4ú-3'6/LẶcSX†}O7j‹v‹*¾m]¦ƠyÅ~+ûµÊ"ư"†äIá0¯?ÉXđøXÙ1Ö[́…Û¯́dáujÊ0ü3Ôư˜lTŸZV©×‘”/»*­Åơ\6-LöÑT[Û‚Ïî´Mó*ÅœéÚ)ô¢P¥›™ ç1Í êÊ·uótMƯ£½|N_¨ÇD¢;íÓ•ùÁu8m O’¿…{1¾ ̉̀Ká~Ựơ˜ß+¬Â'–¹\Ư½`̉ûI€n¿öNH[<&́§yChLüư£º“BÈf×Ï«Óo~U',™!í_]£÷ś©«·±oNŸK5½§¤†¾Oeºb*T¥Ë…K”S<É“v>{†bl N&D¹ó¸.,₫.#7JäÛb‹CF½́,ê[Á̀«{UĐ̀T—Ä»ÍßI%Ơ«™ kܺá™Zå/ÓơfW3|hTPi +[ ʺá*륦q5áZ“ơ+̃s=äƠú±¤]/Ư÷‹¹LiÙC‘l̉*EÛG>0Ø(;₫dûºëCœ¤6x€«ŒƠêWè¦39Q¾µj¬ùÑÏđÄJÇ̀msÎZJŸmèÅÀÈiJĂubœ÷Q_Rªˆ‰JÖ“pµnNWªlb ^¯> ư±!ëẺCÛSüdÆ1nĐÀî́üÛ$r EŸQ¢-[Øgœô7ĂUØædb¸ª÷é´ß¾¸RÇ\aĂưd§Ơ+DŸÂG₫Å[ñÚ!ă,”-£ùq"©’ö¬²Y>á—=ë03ûd^¥ O¼è³Çáç!Ù {kÿ\¦]§>RƠŒtÄĂeICá ¡¶¢Ø ç<§1SCÈù3tI»—Œmª ª|Đ¿¤ º˜o]zqVÄ^íÖ̀‡ö±ùæ6ĂN ²Á‹?ÎkÖ"Û„;Y;_? £ï•ƠßoYEHÆÁ„ᨠQVjéÿª“_z Î@PA蟿A–î˜ î«ü÷Q̉÷€9¯]"-0“8íôRIư„\»åL{r{ơ¾|ßÉâߣœZ€„ Ơô„#·Æ«eĐ₫¨)Ê« 8ŒK©œb~ươo §‡—̀Lº63©»Y}a¾R9øäZC:¶ûeh¦äủ:Î:Ÿ,´«‘øØ(TP-6“+AĂîƠĐ@ơ!Å:îl*#^‚hªØ¢¨ƠÖ«[’é¯*Å#y!úZ-ºV«WA5˜àC£"•6 A0ù¢AïBz¦l‰Çø áÅc¤½¢ó–P…¢™ ³‰M>X­~˜[æ̀¬ăoà>^lÄ8̉wÂCYhêÈ|Vøx7¸ƒ6 ßü#±â!Á½5ƒ\ ̃\yübpÂÍa:q]q÷Pqå™ö°£ÇÙë—ÿ©¿ BàM‘₫ùÎlf`Úêo!ç?Ô„>Ơéͽw†Êªr8;öÄ4Û³8˜àKq”]?C.ØáW¶Ÿơ°kCƯh)(ø¨f0̃3Üî‘—ÜîD"M}élábĐ-f[vyư,±´óÛ*mu8nwpí è¨3ñ˜/¹́u §kv›oÛ<èØfy<»Ă)§‰yµ/µă&3C? Y'̉¼-Ö¿ñVØøs×§đv—Ꙅ,k¦{؈B O2î(WÖ¹ NiäçÔ‚û¢9®¢Ö鿽c³Œ_Z{ä‹Ó)Èwér!±B£ÛNº{et&ă"`9J)¦PœàXÇÙSƯ8_̀đ³(u;µ ˜™‘àücHtÈ1N<×Áñ¨(J'¦â×£j|å®îßéEÛ–¸ÏQ¡àæ|§°’ÉP‚y‘lùRÏGQÇîN|•mʼnê#ÎôûÍ2ƠÈ̉“被;:ê£üN¤G}´›æÔœÊ3¼úy~¬6ñ†©œ=°4+K—†z9QrßÈÓq£ûøÁä?;/>‚´pºqÿ›¼“gEcHMK+g/êU=pÉÁج9*á¸)ÅóQRÙËmày’ú́ÿ)#ç:Ö[;îø@)~Jø=Ôo3¾c®›§o¡V^=-Ô™FƠø©,baÓO•ä–VZT(ªfÆØ9`0h®¥êvÜ4…t„‘"g!µ>­üqÅø˜ÄI+aüA™êb[ư¼î¿° ©øÿĂNËVÀÚN#åiL̉yeD“Ê!Ë e*—,HÓ’ïư`B{ ¶ñî »NÄ”}(–Gˆ³ “ơƠj̣<#̀,)éÈ Ül¿åü8Ỷ ́<Óä|ñúDïl̃xÑ:"’[̃ÂTµŸ|T“€:ÆB•èđqñúé[lü#¿(„±đ‰Ll¼â7ÔÀ@ĂO­Ä‘ˆúûYºS¥bM¾k¿ŸƯ½ä¾ÑđÈ óÑD-66 ˆø Iá]óO|Ö“ ±°8éE–„î^m™vOÿYÓ=Ø‘¨ê‰UĐêût„é[̃-sJ3́âûAUcl-ƯëMμ é„Àû ¹0k*OUNoߦQWgbú[>YÑ!1LöaCß“’ ᯑMSSÀMÔe!̉YP ̀à|ÏL‚³¸÷2C›l j€UwMëE£¿dˆ8€pVSƠăÅF©6b8’«I;«ÿÅf·>¹#ºÎ,ͬ|` ô®+÷2½–¶ç$$₫­Ö‹®>ú]?5—¦ô«ơÔÀhÇÂ/>ƒg†XbDm6.Qù•̣ÿX5}À•¤ ÇƯNKsRß̀*œjzÈåHÚO³äÂ:5=?ñn_nH»Ä®¤ˆ̃ TđTZ‚HJzé,VŸƠuV)¾¨ôçªJÓJ£¬ù«I×0ÇöÇ/ÊÓ¾$dX…cNŒê‰Gk‘®–»Ti´ /×x?!¼K£îê—î̉ÎD…³á¯îôm,/k1Å´S<àŒ3aœëH¡  *¥Zµ)ÙơÉ„x[Bè\‘œïÆ4•N-µZN¶i(ùA©ow¼\]¬bNÿæ±R‚å̃ÈNR¼½i™Đ‡3à&¬̀ûƒb Éí” ễ¤„üߺ<}I‰êDj9¿0N$ƠákŒmḈ°k— bĂî‡̃ÇM ơTüh¾g=̀é¯Îƒ^Üê¯r ™xèÔY–gCË ûp,g¼iCâ¹æñÜÿ•îèß¿QsT%} :₫ÍÊĐ´dI™¹|QẢÈyưh“% °(@¡̀lûL•4œáÜ÷…Sd_f±é̀Ä{2d‚Dk2bØvl4ôđñ8‰ÂbÀPnâñ7w«®Z`p¡2ĐœHr1OË;Ư¢1-ÉÂñ¤¢•)ªç=gg@·dg'ZpHƒ‡c½~ƠèïÜׯŒÆ₫T=ȇA÷y‡1S<Æß+Bb¿"Ơ©ÊUÓ dÿ́¥¥D@Û!ª§ql å;s #üUĂÇÙGlQÍ÷OBÙÀ J%< ¸ÛĐÍ+đ«­‰Kù6®5eº/²†*đåw¸óê"đTdJáẹ/đR@Ôœú$”èØ^Zªk$à³ëqKÀ‰«@dP@³ij_U¤-c„Êî8ƒ̣è‰ÓM¢ÎY©ÆMTº½#ư›1̃C®]?ưd¢ạ́´â1Fǽ!Js©ĂáÄÔN5CèĂb$Ké‚Q(oßí,ùLÑ Ắæ°P‹¡ Ú™ÄBA;3ª_Ø}ÀŒ1âÈ>“©¢™Jv ›Æ‹¬¨"{ÏI2åHzëöT̀(k®Ké”< ùTF· Ít$ç̣ÊĂƒÂSFÆ^”{`¤Óλ9[rèP< ’c@‚RW†ÈG8çà1Çx̉$`::”l¤Ó@̃…Är§̀‚nl0?ÚF9d20¸éôÚ"2 &Đ>Đ»?W1 p‰¥Uûôf…ÈCÁL/“>UÅKÊt~‡̃&€BUï“¿QÉn& endstream endobj 1487 0 obj << /Length1 1370 /Length2 5960 /Length3 0 /Length 6892 /Filter /FlateDecode >> stream xÚwT”ëÚ6R H‡ÀK7 ‚¤tw0À3À ]̉ !̉-©”´€4‚()%!̉ƯºƯçœ}₫­ï[³Ö̀ûÜ÷uçs]ïZĂD§©Ă%m·‚(ÀaH.^n «¦£Ă @ ~nˆ‡‰It‚ümÇả‡¸! p˜Ø dƯ `ä­MŒ¼ªÁa€²»ÀËđ ‰ñ ‹@$ú7î&È= 6€7  ‡A8L²po7¨=̣¶Îß«5À+**̀ù;v†¸A­Á0@ Œ´‡8ßV´;:pk(éư¬öH¤‹§§'7ØÁ w³“dă<¡H{@‚€¸y@l€_#ê`gȟѸq˜]{(â/‡Üé vƒ·'¨5†¸ q‡Ù@Ü€Ûꀒ* áưVư À üYÀËÍû¯t¢%‚Â~ƒ­­áÎ.`˜7fØB €†‚*7̉ É €a6¿€`'ü6́†:­n¿[ ̉ZøvÂ?ó!¬Ư .H7êôkF_in×,³‘…;;C`Hί₫ä nëÛ½{óü¹\GÜæû÷É ³±ư5†»  êêQ’ûƒ¹5áüÛfA‚ HÄ@\ˆ—µ=ϯº̃.ßÑ_æÛü}]à.€íí¨-äöÇö€H7wˆ¿ï:₫yÂáål ÖHÀ b…áü;û­bû×ùö₫Ư ^€ è–~¼è×ç_Of· ³Ăœ¼ÿ ÿ}Å<̣̉†̉úF₫—SFîør ñ\|‚ @TTüÿ™F ưÓÆ„*Álá€è_Ữ®éï=₫P€ơ>Ø€æR‡ß°₫›ç¦ Aơíïÿ™í¿C₫$ÿ•ååùw¤àîäôÛÏúàÿñƒ¡Ñ·ÄuG̃@ ~+ØC )W buw₫o¯|+i˜Ó¿ E(@½ 6P¤µư_|ùË®÷KiNPD€₫z·\¼ Đùnåeíxû₫@Ü’̣· r«–”‡YĂm~ÉŒOP»¹½q@·\â|yoơhñúMc€‡G̃†·ăù¶p7œ_w*Âđhÿ2áü#­µ»›Û­º~_ưmͿϿ¥ xA¬q¦&àÖâ¡Ơ¡-gỦT\ËŸ0ç[£âz"‘̀_s}íUï¦?q•±´)'HÑœ, đ£bß9̣2íÈ KV̀A¢È÷,É́qåơŸvØAhlà”vŸ…S¢–́&hQă[ ›°$L\… ẉ¯V¬\·"VE7g è„€.™ +Ưº‰mDǸˆühdJGèf’ꮫ¤÷ù5w*ÓCqî½d—öñÛ·¾̀̃₫ƒ|•®J¡̣p" beº́(H2•(̀2‚'²¥‰ü»c](¹1G¶îù[iuie¥x E¡Ư}gmˆF¹©_Ÿ´C«ÚƒE)"W`ó|dÅ}ƒêhF/éj«N~0(.Đ5IẲªSPbEè÷,f́´—oCÁơ!Èvv5!}Y¾ôßw·_₫,a!o.ÅoqÙ‡ÀWØèG[ưÇåU,JLÙ‚dÙOÎí¯h‹BƒS+B¦>ÈÚ¬ª1¯‰| ‘Öëă3î^iƯAàÖK£‚ ¶ c°À©íƯ‡½'áEüB©ÔƠ/ï=$“{¸Ö&²³Qç%:(Ÿw„DóƯÄq÷»ë"FÍÛ4g]æóLđ˜2Ñ<óB±ÿi _”•iU]ÿæ«ÇKS}°íÂHç‚§̀æ1@̀œ÷†­î̀¶hẀ̉§ ïÁ-=§&ômílë%UƠL'‹s¤H3‘vÄŒ€˧W¯‹ñ&S)¿¡Ô GTÖ±íPƯˆ2~Ïøa·‘Ơ”o=Ê9z¼Ø×¶æj±sÀ©ÈŸ÷ê°&\×:‰áï²#ÄÆdÉÔçơÄ7Äj\uÚ´Mzßl=«J×/ªº­‡¾bAU‚e½ iu±OÙ£6•UưĐç 1ơ³›m哽÷]·`¬×¼o\ïä¡x+Uï̃¦ ¬O8|V“Nå8wÔŸdß­é°|¯&é'g½eDº±éqÿê³%.VÏïSÓkî5$=6&t₫ AZ0µưóÄÄ­xwÑq”¢:”æ× ‘Ê%µkÛ¯Ù m‚Ätê#Ù₫ØEíØT°àĂØŸÁTg˜×ơgD¨̉đ{}<¥[^m€üw;g˜dɳ躉¡A7Léâ).|Z̉*¡®Â'Bĵ9¶ÓRr™wÙ«„|wBêœÓwB%±Ä+ÂS—© T”6ÒlË; X—$‹iQ¥1oH©ë„RÅ‘¡>«1Í~b¤ŸÊyô*WÂHưÔ 4‹£:t8|ưÊ-³0BÄÎĐÄ ùˆj™ú±¢ßăaµ)ỡÉåË-9'VuÙjú:óû‡0ó ̣@{<½=Ù- ®¨¹²mE ©Ư–J¤6¦‹ÜÍürÊÜJÂÅeC̃–7éîÂF×c´sC;Û«MAUµ-gi×ƠÂơ@1ç ELCÓ³Đ’éeÇ # ™ÙÛúë°é'é%•ÏưEúÓÑIP?I{ñæpC2bÿØÆèo7j½9Çø»>Bᆠ]“ƒMÊÁ₫bëe„FtÄs»Wc ?ËÂmO9uJ˜êĐÛoDû^Â):¾©è4$FƠ¹Ư£ á9ÑĐx)&UTǾiª‰—¦ßÍă1à טµëmJrHÆ‘H´)z!ºÖë¦%_B 2ú~Ÿ®Xrz]Z^ûêÍ|Œ.Ăæ̃̀£8*÷oX“Œ́¾Ô!YÊI:4DúºF:É¢˜8ƒ›Î5éµ£Ÿæv»]áÀE+ %¤©r$ÛsÛ±Èơ«ƒ¬‘Ôsóº(e÷3Cé$vŒoˆl6 Gkч ÅÓAI9â¹*®4‰©G¢v;?+°$¥ºG“ƒ‡ævÇo…ù¼̉ÜîK-Áø$YÖ-^a›yr+×ç!°“Ó@ÚYÎg)ëÇ¡¶ï%,„gA‡̉Đt\ẒM«~™ԴÂzÅg³™vQIÍ0̣Ôl›¶Ê7µ2Êé_9¯ LQ¥ù‰Ï`ÛÄgÇYÏSû˜7̃´˜Fwt~nˆñ0€Çö#7W&DX%̃/KR€́T¢«•ÉüøH#œP7‚1¶® v’´¹ßñÄ,3‚V\hæj$ˆ‹\Ûºd½ï`8Ơ §Xúd×ô¨Ḿ˜†:$ów*ø®›@Ư^EW§´k'²é³ü#äĂ]ªĐ, j¢LØ|1Ü‹®3£Œ³’iwcƯ¹7™^Ưˆ’n/”Hn>Ë}0X’°ßy'A’ `?-ÄÑ>̣îëP«‡*ˆæ¨ôàæđt.WtÆPÖDơ:•̉xXˆ-¨›dL.Z¢œ{ú|ĐưJ› DưrŒ^x¦‘’đ@Ư»̣ă@¹‰Pg Ñ]h9úÖ̃ÆsÄ“S¢ŸIa/ IÜúădô?A9[ºI‹Péë >=ñ~øfÈM‹k0Ûüồ#(Ïí3uüV£Hܹ‰w¼ BGó±₫fo`¾’‰3»öÎÂZHÚ¼)ÍïÛR†±»«±‘ñ*c9£×÷kG¥«Ö{ª?́LFOÜoŸk±w-q…¿aK´P_ûĐ· Áâ ßf‹¯¹™Vdÿ=ÑŸ°¢°o¬¸K·#¡Â3dỂfö˜Â½Ú¥̀­̉ eÔœ—Cơ Û‚.¬ÇpØjRỤpYË»›àœ£̉LÙX¾¤kPä³~+Üh;œ²+ӱð<wû‚E¶&±\èÈÇ«æ8ôĐÅ{Xá›ÍpNX¬]¿ư€ó́èꛃW¡ û.»ï°s ©ô¸ØÅKªÅe6äÈ@æFq˜½OÜ ă›5­YHÈ× ñaQCs;åæN)v xè8ôa†N¶¤Ë•̉SdC̣‚Đ­Ă₫u÷o›·p,̣aï÷2âj¶ª™̃L @üƠú…¨G“øR+=¨Ÿ‰_v7eœ2t=3h1¬‹8P .ÍQå̀›dƯ²:å#cAíN«µ([ơߦ¬VVÀÉ=>EN’]ÏZy¸Z‹L.Ód©k*Æ­Ù—µ¼¨ †d:†„ep®—›ó9éxBr¹û»“;Ö‹p»÷3ûÆVŒ´? ÊÀOÄ&̃-â½& |ga´îê0$_î/cYÙ##ĹçŸĂo£z#Ç< aÀ~ôåÉ ¿?IU¹úçD¡ư|G‡ôÖ±™ærw½E ˜¸"ô„ºY„[ËÙÚ7@fø̣‹ÖË|¥é,ËL‡z2̉ÍœŸ‡¥ßªP‰ d×Î^­íhBçOhggs$t8’@6\AuºbTÀƯWj<,Ue¦ç_îÛ̃´Í»#ŸÎpÖ_É‚ó³jă÷½₫Ặ»Í¥Ö¾¯3Nï°*éCéḮÓÅ&²F:̀9„Ơß̃‹:¦‹D‘ßë-ưä§X‚WÙ`/û₫qî.R.+DWêzJÎRẦ¾i³}ù.z­v:~÷ØöP/Œă†¸–¶ÙÛF !-r®́™M»Nçí ̉*,²P~¸æ ˆÖßÎ «jú™V­‚̣®§_ü Yçb‡4Ñ%®7Ëû¢håÉ|§£}üZ^OÜ/=+Ê“Û×Ù«¹O9XœÓ•negM^Đ­2̉îKđỴªTàÓåruĂ›`àÂÎT§Û;¾˜àå e ³áŒ¨›̉U•ứƠ"o“6²o)„c¢S”h4&ïl&̣”Ø"7Í%"a ‚wØĂ£:mƒ½½‹¿¹½L*êñ‘ylư¼o—ñIkàeƯÔw…ͬ₫“XU@fĂ¹)Î)‡o,Ë].Ê`º gmŒcô°;u«úM’¥)­ _åă0ṿ¢!¾¼…—× îëK̉œ¦%´G ¹áÇZ\ŒƯ¯7G¨JL|¤ÇpuÙó+©!¦y]ó>ÓäK½˜´”RÜ,IyäC’UªrUMÓ₫º‘m²3[膌úå Ë²ü®cV-«ỵ̈CRŸüJ V¿>Ôè D‚yÿ>mtÿU² í>ŸCH:\†’™˜ÍwX}s-”̣#5¥{ûª(^c̉Ó́+Àü¢)àç¨RíE¹¸;}tw´¿­o$P$‡$äZÚ¶Đ膔E‹‹”¾0Zöq£“ƠïĐ?Œ™ Œ2Á›â¦“L8uÊRI–1mg2¸äœ1™ăîo–ÜL)Ë´ËRâ|£ĐÀĂ®Ä÷rC+î`Œ2?¾,ûƒÉKâDIl’ØăK-9©.hïq,Ü©}fû’¥́®Ñjs˨{sưû½ăS™<*{çÛŸ¯:#±ĐAZÑØDrZ+¹÷ónt$­%à œ0¡̉PÂÙe+4ÍMéÆ+?q½ơbdĐíJѦÍhi#àIXÔ¹> èưư¦&´›ØCPö8vI“!­Cù3\CÆVƯ·.¢ØÏĐ£&%ÍƠB]°Ï“'–>®Â‚^ëƠÉ &s²áæ¬à„—ËFt¾'ˆö¤:çz\͵Êàsè·rKOï̀ºo(÷JÜ|îm=I!ƠñJ¡t¤¾ ´Đ.e6÷ ŸŸŸnă"‹ÿVÎ'äǴqô*OR{8ñÂO`¼₫̀đ̣́A¨çYÀº¢®rVD0úE÷‰ÆW1¾¥l“L·₫À×'K¤½£V”T,IJệ®Dö¢Ự́éơlε¬Q§Nººx3•Óetr 8z ;I9k§yW++“—÷mÍËC\+iy63b¹6 =§‚ ] ́¡¯{÷›xl´ ˜¥PĐǽ“ l‘+Kôz¶|—,GêđÁ^c₫ ÔŸ–2.j8½$Åôóh­F©$¿™¾®\8úË!ö —Ûøå̀Âüd)/¸dæe“¤œ[ o ¡³r„Ă! èmp ëŰ\×ï2PÍÖfÎÉêøƯŸ4ă,ªÊâ*8F¤é|Yô_…ŒW‚m†ÚdđL|ù¡;+Ç™fñVlˆlđ]’³«¹W»cƯb$Æ*‘áäF/Íjd‹‡Z”%̀„«j,¢‹̀ÎƠ*ơeÉăHçñ́F¥oTâláÖ™öÆ.‡6ƃŸÉé­<@ß;zÊÙB~t…Ú̃Pü“V†¿ A>ˆ/zÑơüMÀ½̣Y…@i.®ä[ö•ª>ç¾wÓñWÍ/üŒ×́û̉³‡»¯+©QâȾÑ:́ ºú›˜Ê3đ¨Ÿ¿$r bj`̃Dz0T¹Œ› q_~0Ơ=T$rÿ ¡êỡ³7á êæ}?@̣Lißå‡ ø«¡eb % ơ:¥±{ó—&ô22ÎJG{Æè‹µŸj:ơ&_QơÆÉ:Ú>/`±àÄàüñ¨ ¯‚5ưu±P]̀°qé>`Ê}ìÁ·®Ö*ÁŸH¯mƒ½#PăjíV;¹?M2/&~N6Ị̂”fX‡HJcƯtF»CêMÖÊ»,n(Z²R…D×̀^H¤™ä3¤´¿¸_…hÛI²ê(N₫©Yá½3đˆs€a^=Ùñ½™n©qµ¬ƒî0î̃FÔpûhOLÿZIâüL&5‚«íûRïî§păĐv]3S+7Ùå³ÅÅa/~¦MÉgØ%™ôṢ‡?ŸQ]÷);•¢"J^…(đ¾S—JȺT¼ü0°́V‘Úé †¾H³H}̀ø<Ï—Ø̃4ăMg@̃ÏñüZûÓ/ÊưÛ:Ë.{,nî5ëܘU ?4î›\»0PbÆ{2# Œ¬G::6 >[d´b A¶¨N;zá¯v#•àÁ&]Ñ́†÷ƠzU>Ëæ÷ Øµ> '^˜ ™HD¦J~F`7 ̉ª!³ǵĐü¤C?êÊ׺B́7óÇ­F¬¶÷èL‹…Z —ÛÇGo÷æë`2*N£Zá[*ê&Oö±Ø4J­‹_´»¼ç3£̉‘ÔÖ¢­pØ–…’pûà‹]c¤̣F+‹½ ajƼc¯ă₫uXÂĂaßmeÄ‘ƒMùAlÿ˜]Ÿ5vÿú]–»2I?‰T6ïäWåTßa!+kY7®́l•H¶Û "|û~1-f˜vÇÖ«‰̀€.­b9(ºñ&́Ù#<ªưX“ ±°%b6híf«#̀îÀ¡OäÉ!n¹¶ƒx₫VJªhCŒÏèÚ"ÇJo‡}<ÏxÑ„¡Îåz̀T³Ïj .öœ…¹ ‹‰SIĐâ¢ơç™Ñ»ô¢Ù¬ơ9F =?k˜ˆ*Óưy.$ù®Ăq6ÆÖ¶d)­Ăÿ°xùơ~9ö‚ƒI ÔËæ))VÎơiv¥Å;Orîàp‹Q˺ÿ¯UV endstream endobj 1489 0 obj << /Length1 1381 /Length2 5936 /Length3 0 /Length 6878 /Filter /FlateDecode >> stream xÚwX“íÛ>!Cé ̉0J¤;G+1Æ€ŒQ̉ˆ„€”¤¤ˆ ̉’̉Ư]̉ùMßú½¿ÿÿ8¾ïØq<{îë:¯ºïó|¶‡È'o‹´© h>A~$PQ VA a~HÀÎnG;Ă₫vØa(w8!ùE ‚ÆØ” h R‰jx8…‚÷%Å$A  $ñ‰’*A<á¶@m~ s°+"]}Pp{4¦Đ_·@N(PPBBŒ÷w8P̃†‚C! 6ísÁT„Bœ`$Cûü+§´í*) àååÅqqçG¢́e¹x^p´ĐæCyÂl¿†ê@\`ÍÆ`:ÀƯÿđ€‘vh/ ÄœáPÂă°…¡€˜̣@°ºP׆ø¬ơ€øçîùÿN÷gô¯DpÄï`tq… |à{ ÜÔUÑâG{£y„í/ ÄÙ‰‰‡xBàÎ àwï ¼>‚ñÏƯ¡(¸+ÚßîükH_i0û¬Œ°UDº¸ÀhwÀ¯₫”à(³ñ>¯é…đư{iGØÚưÄÖĂUÀwó€©+ư ˜ÿǾah (ÇDÁÜ€0o¨ƒÀ¯†>®°ßNÁ_f̀₫¾®HW f˜?܆ùøºCe ecmEC¿f₫Û« €ôụ́Iˆù„DA@A˜PLTèÿïDzøŸüG¬: ”ø£_̀FưƠ³çŸ4àüS$\Àç̉AbØ r₫CöG Qsü?S₫wÈÿ鿲üïdÿï–T<œ8ÿDü?ˆ ÜÙçO†¾hŒ´‘A ₫jûCÀÚ0[¸‡Ë{ƠÑŒ$äöZó ưa„»«À½a¶zp4ÔáÖüa7ú¥8g8¦‡t‡ÿzÈ`B@ ỵ̈aduÂ1—ûˆñ1«¬Ù3ÛÄ\a%ú3°Tcå$+0I Ú°ô£H›ålíÛÀ́$~e-c‰^÷( UÄ4Öé44•fhQ3Ho- kl: —Eîpd/¸Ä>YŒ~™¢“Ϊ)Ưp Hđ*!ûÚƠ1EÖÊØ¬á²¼{7 M¦,ƠÁ $r³ÄxêñEvçf:¹¯*ŃMÛ¶wcªÏ/ ê_®¾sÄ…Î’Ạ̊|®ñ©5S5Kmûu₫Ô~̣ÆŒ=Æt„`À M͉äÊ4Dï¶ zT³s8a.GĂ„O¦ĐëơÅ!tëă³å¶<™±—zzưáè®Æ0í̉Ă:¨Æ(WVµõ¯>ÉHïxÓd˜)B3gÔNOç•kỂJijHư·µ³'&‹Íâl©ÆF ¼†ơăå«¡–œ /̉™×-X­±-?@@á 0$ é~LïJ»Ë€_XêăN)·Á\J₫Bí›—,°Ư¥y%ƠZ÷Æ›b`6ñ _èK T@%׳÷YËFF½Áôf^9àơa?EsâÔơ·4Rârëơ¬J]î|Ï0ä‹,~Ñgy›DpLµ ÅXÀmgüvéÛW5j¨Q:í&^•Q̣PÈÄ—O鄲w̃mÈN~£³¨Ô§̣)ö,‘úxϤˬ>J«¥­éÛ¨GĂZ­M¬ÅÁTx½ôØ·WEÅ¢7kæÙh¦"Ljp_=̃x˜x¼ÁI Ȫø]&e.¨‰~@—ieÿµ«I^§´·²8MÆ”¦&Lëàˆ¸K>a+SµIiÀ¿hÊe¹GÏOéüè›àjAívMOM1Q¯£Ó7Ûâaÿͬr×8#œoêË 5¾8)®¢´b²°¯Ưî83¹[] b$ôʶ­ îy9ÎËu¦Î}iµÜ·y]₫3´đPa)$·JÏßeÅX–Ø·œqw±dP̣‘¦‹èÏơǻ£'[M2/ßàª+KüB«)L©ø»^§̀̉PÑ"Ă,euP·¸ZOÁº^ôç…©¶OÁwÇayîzê§Iäv…ôb`ïoq_½à¶uâߨOZ¹$(Ü$–¡eJíyjÿ8ä¡%3pQ́Xc6ôæÑë~ư½vÏ ©Ù¼ù·Eh6¥ ă½&ú¹³ZẸ́sE)5µÜ_ÉL•¨̃G}“*³ä4>/Z§ ˜îä7¡ZdÉpĐuze1MÙw“'‰oœ¢˜àåU˜‘nç>ö).ÓZ™ÂEĐ²“,%ăümïá=I@HÏÏ÷̣¾7 ±Í…Yˆd«(¤§ÜO(ªw ¶QOM€–O[Acú]é7Ñ=|Âü™àƯÁ}<(–dD<ó¨ÅVZÖDºöçC¼0 ơêÁª©ƯNE[³¸è~É@‡vCíÙ0b ÿZ¯Ơi™àÊ ư[ßÙâ½s̃¿ÍÁå’o±ê£¿ÎØz÷‰ù˜úSˆÁRá•c ëÉq$yÖmeéˆ|y3£̉Ïå»Oǰ=…Î̀ưV"¾xת…mÆO0̉‰¨ˆ*}xècqô*{›#œ`¼'ë£ÿ“9ü^Öuq”xnÎÚkø̉ eăéXïñ‹ø9̣è±̀LåƯàg¤¢Ar௕çéÏo£S€”{ÄSk™fï³¾lÆ4¸‘4¶ọ̈dKç+z×1êO—D¨E|憢¾äăMÁ¾4Æ÷æÏj!¨‡ÖTM”´9v´̀»ïX^U)Ë¿ç|Ưư‚=ªªqO=Éœ¦Øç‡\m8ïfX|_÷ºJª&$–ÓTÍN‡o¥?W]~·mOâçưéÇÄ›ú#â X<;"…O`éĂ“Ùû&¯ßâ_qļzçc"û3 fëü»|d†àø½±U%²1"se.O êºóºÛVô¹̃h}äđ̉YZ.[EĂk"À@Å’bnlü'~DaØ-,å^åWiè„Ñ®Ín5½:ëüÑïÄ„·?Åñx°Ưr-,Ç—vóÑ=ßYbSơ–P7WU™JÉ1@hÓ7]$z¼T÷À̉#wìT/M›ÙØçpj¾Ü̃¶¹oúyó#wT™D¸iT$åÂ?¡úº–¶Lœ «ó¢‚̉ÎyÜ]¿a=¿¬˜2;ѧJíÅâ”Ô®¯ÍU¼9§Ơ•é+˜—L…[@b„øy gĂÍÙ¿Ó1àV€€¦Ù@#Ƀï™Öû±2S%J±o, áYơ‘—gÚ­R½ï§rßóƠjvLE¿µ÷ƠưÁ(•¢©ĐÓaû†§KL…Å]7=[íßF÷§l.ö‘œ’ñDÀ4”œqÉ!ñP–2–Qv¼³MîçV´¤gº ~2ÖưyÓ̀Ëñˆl=WÜÂá=CH¸¤ÚúKkßT‡ú­¹‹Ô`Z*Íak¿ŒguüºĂÏDibÀ‹F-£Ï_83̣œXÚÓùå¶ÆXNüHÉo˜„6ß­Y|¯W®îưĐdưi¶œ°.‰â‘’RDc³ăÉQ*üPk÷×ID»U¹•6ăâ z5·íS¤Ä³ñ.z£jji¼_ñ¡¢s~{qgÓ~Åó*ÿqÇaAœè\½>mÓÀsyăµ  ¿èæÔ0ᄈ‰Ä·eclè8ʃW(UÓ2,Ø8”́¢> XïKˆ'1~Ü8ùsȸC©RE꣠àµWc ·¼ÓÈ@O"1À¼”Ssư1ˆj₫c5½“<Êk}@Ö;0¹˜czé£å|ƠóT½ûn>a Rû ‹ŸÓO³¥+æ–£ËI +ß.àm21)J}ủ{]̣4¹¯¸´+ñÜí‚fKn‹p}6(ÈaÛæ”N¾…ÛEéí,w2FSàÁàNvׂûà/¶ˆs̉×ö¯rŸX9UƠf­_h’nƯ0]ü|™ï;íqQơ=]9}à{Ÿ·ÿ]iÇâj¯ÊAºÇÓÜÇă5Åys-Ík0¼¼qö®§Å93àÅÈç©‚ñĐíÙ,ĂëA¹/–8<³VdÄ´ˆæª2Á`Ơ5ßÙ~-̃§JË?X>¤«dP$D ûq+M--L¼”hY2°¯)H°¬Ê- ¤ù:±ó“¢°Wîơµ̃[ë9b Ó’ ¡”đÚ¹{\l~:°sd~+£Â£‚O^‘A’“uH˜ƯAF‡#yóá=“$±¹· f¯zØ”s2lơWơQo64“.=ŒUn‚èä…&3‘«øGoU¶Üh¡Í, V.ñ’Û·]dÛxŸmÔedü€4iO<Ü©«Aí®„Mưz+^^ ˜|€Ñª„™4ƒW7e·uÓ1ñç;­¶<2ô<&ƯŒà9|÷ÊÖÅŸpÎî 3U{æV•â·Œ'R¶ïxIåkư³xfZ<Ă56Á=ÚI!*kà }84¼'¦—=U’cX"ÚL<̣"ô¥-n› ŸY[ơË#3˜ö±ˆñ¡É—¸zÆÂ3' ƠçhA–ɳ¨ÊänĐØ÷$•/k4ÊeΪÂ6.IgEŒơƒé@ÔºTKÂ~~8¯ç °0¿E-2¯‹X?ÀNyw[‹heøaøơ%3©nçtp¸Ơ¸§ÎƠm\¾P»E)kŸwlÖxºïÄWMEóî¤ÑP‘½íE•9ƒSBƠq+±'°êăóàF à'T}ȳdH.ñ·²kqÓ^å§Y¦s Å÷vçBư›y«ĂŒï6”%®qdùƯ>ìm·ÜµB»Ø½Î¯VR¾GÅ ’,4Ÿwó(ĐKd1$Đ²T¸v|́#cpR7Êúµ',dŸ₫,¸r àó'ƯÆgªï†—LỌ4€Û\ßx³–ÂLy†ZÊ©Iñe  ¢½nGb·å&¨jˆ!.z}­Æ›U„(,¸h_-ïâÙ-¼$ùçè0²…fŒĐDf§̃oc»fµaưY°ô)ö±kÔËÁ™¸º£MQ>J̉»”àÖO¹‚AÉŒ:/&iTĐGd·®æ®Sˆè‡U»‡n§Ó (ß6ØËH•‹àVi>©EkD {$U›pYơéúø¥LgÓ„ú¨ǘMæÈ¥^;̉cÓc:ü₫ôÛÙpËtđA”ØæK°èîwŸ/dùÊƯ²4ĂC*èYÍ“à Î󪓱T’̀Fz3û V26m*‹¯·ê¯ôî§c—0½Oâ’@¹£Rïøá‘'OôóH1} ÆẼøëâî–ïVv_©§€>ƒÈnĂẰ!È,­–bî¸U«¶ñÜm¥ơµÍ ™0ä!̉¾öSÉËksKSi<áæoO.P*ŸÓ,¼Q° pX€¿Î´&Ÿtă+¾:© 8*úôYßÙ;Ñ:•mQ0óD<¡îA¦}|₫‚¤„æ)$á°9–KÎØP*£À <¯wË%ûè^8o¡ÉF[̃ƯMØMØíb¯ưºab·Û™4“¦ørë‘)7¤…¨4äyµđ´y@Îó{49¶I¿uà( ‹̃;k8JÁb×»Ùç(„OöiK—Jc̣qăO k3fg²cÈÅÎJẂv»¹@txH[w`₫}¤½’̉‰¤ œ„ ñtp=ƒ³NL7ëTZºïµ¢Í´9ûÎÏ'RÜÍÏ8‡ÊƠߨçóŒéTF¿6GŒ&œt߸3 v­¸¬C°§K“Ăí$ØDW>GđÛ”ĐRÂÛ€́¶/f d¦Đ¾đ5EFh@m¹7Ñó¬¾Î¿;₫íŰñƯ¼¼B„_œ¹fÇIÑOŸ‡À™²Ị̈¥̀ÓëAZç÷Œ# |·÷̀ˆ¯ÍfˆÔY|à$‘J€<äß™‡a‡`ïƠÛÄɸ÷­6™­HV$elÁƠs|2³|„êg›)m£¼üv–‰äMVƯË‹ Ùáë2(AîRIÇŸ£ ÅÏ^*ep€₫m.·Å;§dB?_Xö¼^?ăª ÍêÇQĐ¦Ï¹̉fJ¨m ư` áF±ôĐ”M÷º½ô#ë«On>ëÛ¢s‰ûµ?ˆ«Ü8¥̉RnÄñíg/Đ'W‹ªôI‹…/×I cvÂ7;?7™° /ü̃°8F$Yơñ˜‚n=¡ÛͲ)=éÍ"14\xt¸}ON~)?Sm&úu§e‡yñÍîR ‡Ùí©œ̀R› Ç!\ñ¯Wß̀É4jÖZ97ă¾_•‘¿‘IíƒEN[²ö ä’J~‰ -‡i¿|ÔöÂonïQLƒYgCÙ×I½¥æÍ|âѳÉôBcŸ7îµX©)9…ă;V¶ÊthÓÑávÊUfnU«oÏhM¥‡G°û…Ue5#/WmßOró2 óăŸ…ơûhú $Ëéi ̃'x¦;!ZK.lê(ΰÖ­L\wNŒ²WÅÊïi6̣ξ£[!G´ÊæàS<ûôÑd›®Œ†G‘¿|åE¬²,[%¬îQ:ˆ;GÎxjK]t±·Ñ…¾Ï'¾Ăw}Ä6RY?/Rxê‚úÓ~8™øÇ¢9âJ¥•œA´¿dfƯÎú’Ưv,Ù½Ÿkü@*¢«'µ­¸k40ؘ  * ôï«å&Àă»o6¿½EÙŒjôîÉLû¶Ù¶Ạ̀#”1ÜhóÛéZµÍaÜ£‚éăbj—»cÓ/‰ö°Äª̃ 7±T‹Œ»3ö¥Ëv5«}L̀…BRèéÀÄ x2`0RPv%ë÷$öÉ,c×k[BRºàÚN Eưh|Y•‚B@[xñ¾B̃ƠHưÎH{] yl¡.w2á*mz\¢̣ùKĂ¾£—&·Ï­­EĐàÇÆ̀Äß? =ÎeBU“êPz9ÈuÀ;D'Óđßm¡ú:/Óơ‘o¶-gbZÓë-ă»ị́8®»ñƠrÛ¨ñbïb₫?M<Ô¾_Æ–J?ªZ¸‘ÚgđÀ«Æ >:ÿ†DøñÛå°¢höS‘ÔÁ`—½‹„»GbD—‘M°Ab·&*ơ–è’æK‰Ë“4T Ktª̀ÄÄ*]]¾¢Ñ’±–ƯdXÑ„À5n¶ß§ú›"ô¯ËÆR̀ñø:ZZX¨œÍDÍưûªCZÜ”©‰kß}fkWJƒÍÚ¼‡́á1_Êi”=S¯$̀æÍAúÍJK±ơ7‹ /íO¾ÏoÜP˜ÁÎÈ'›näưpƯâ—›ăîz!_̉u¸kÈ÷zöĂ7¿_¶Øăơ©ô!ï‡ Ơ,Y´,Í„Á!o½(fyèÁ³t®wt O_¤•2Q } ç.ú -J–Y 5µKfQº“‰&¹Lwa!qƠe$¿.hlêb7ŒvÙ¦';öỊçjƠüø°YĂ w)Ë?·$ÆeầÛă3)v³N“KÓơV¡w{è›ÏR³‰Ó—®fSË[œO…¼B—-ÖF&§'_Æ2ä‡ú?o¤¦4¹72̉Íp8*rîĐăđªèˆ Kº¡:†·ŸåØ–0Gè`2%¸¼itq÷`««ưæ „‡FÓÏ:q‘ßE¯÷}§N³Ä₫!~£çÑíoŸZƠ,ßumœ—úĐ¾ºæë‚µÈ ¨{Sï×¾ª $H@drÉ™ª"¿¨—fÚK¯Ñ2H…NÎWS± »SHEUÅK¿J̉é¿€Đfë}uÖrDvçæ´»«:V”9‡¸ §rÜn±ÏÑyíœ.[¯g₫äD]| endstream endobj 1491 0 obj << /Length1 1403 /Length2 6102 /Length3 0 /Length 7066 /Filter /FlateDecode >> stream xÚx4\íÚ¶ ZtÑÛ½‚è½Eï-ʘ cF̀è½D‹èD Jt‰D-ZtAù&yós̃óÿk}ßµö́羯»=Ïu홵9Ù Œ• H¨:JTt-E€ PL%âä4¡áĐ¿íDœfP ‰₫„„ÆØTAh P‰Ü÷„DÄ"̉"’̉@ @”úˆô¨‚¼`€®à>Eqª Ư}=`NÎhL¿o<`^€ˆ””¤Àïp€’Ô!º ´3Ô S ‚Œ‘`íû<²Îh´»´°°···È %„ôp’çxĂĐÎ#( êá…~ Đ¹AÿŒ&DÄ 0q†¡₫r#Ñ̃ (c€ĂÀP ≀@=˜êc-€¾;ñXç/€àÏæD„D₫•îOô¯D0Äï`Œts!|a'€# è«ë¡}Đ̣ ‚£˜x9`¿[Ô•  ̀„æC=`îh” ÿ5£đ¯4˜mVC@TnnPEô«?U˜ŒÙw_á?‡ë@z#üÿ^9ÂÇ_c@<Ư…M°‡P-Ơ?Œ‰èß6'( ”’@ >`gá_L|Ư¡¿¿Í˜ưƯ‘îG̀Đ@˜#óEäyAhOh ÿ:₫¹"@``4ÀêCư;;Æ uük9˜Àˆ¡Ÿøëó¯; Ă HÜ÷ßđßG,¬¡ei¨«Ăÿgä9••‘>AQ)€ ” """”₫3ö§ÿˆƠB8"Rµ‹Ù§¿[öúĂ?áü3—Ă\(€çßD‚1‘ÿ3Ư‡üÿX₫+ËÿJôÿîHƯÿíçù đÿøAn0¸ï†¹hŒ t‘- ₫jưKººP̀Óí¿½ZhF J' £Eî ï₫e‡¡Ôa>Pˆ v₫‹5ÙMé C@ (د' & ü/Fd`ẀS…¡æo£¡ÖUC€‘_b—€<<@¾D˜³Æ¬Ä₫"UB >¿É B јfÆ@€#̉ƒè×Á„A(̀̀0”+æœ9Ûa7ÂơÛđ`OŒü~SÓÎßëßZ‡B} `¢¹i$X&ÂåUDÛy£·àú0̃̉rGL¢eo´8k晿³~–ÆÄCe{HƯĐSƒÙ²ÈñéF¾½óŸosBÓ5óÑXj½«Ê‚ßß:AY H§Qɧ1«ûI†̀döÖ¸ÖÜ)æÓ—$»Ä6^~yqƠÚ°’Ú¸OÉÙ̉ÑO”̣:v°[²q,£-ÇSzXgxh™^a?†ÅŸ)·ÅÑ÷]µÏüôé]N_ïS±£Bíîj‰ªH*úÛ~÷Ụ̀†’ûé©“rî¿Faq)‹Ÿª”¥%²Ó¹Er-âØK.₫˜,́kMêólp̉S ½¥ô¾Ñ³)>-—×µxÄd·–ṃ]˜„®)9ÆY æ)‡2g5ët0c¿Z ßKĂÀ«ëXø©;‰,)=³ÔÁoŒĂ ³ư2Fwnÿ$+IDÔ&M~¯ÿóse 8‹û£ùü¥l€“Ê@ GÍeÙsè€Đ·ç½° ÖÄÉfÓ»¶Á®¨$Ç3ơDh¢E{ÖNÏv̉k-ñÓf|jèZíd§oB^Âd°Q~®Ak‡†Œ•¢Ố{‚™Y ÅŒ‰ÎV†¡¥ô#¥IrR*×½2æ—ó•ïŸÉ…5É¥Ư -ŒÜP5ü@^»z˰ëûMÛDaQ[íü+gû=îû軉°ÆÄËMeˉĐÉéÅ|åkÓ`;ª̉ ùO~ÄÛ8iØÏ·Pª‹¶‚ǤvN¯Ú=ÏÜnƠÏ”ñf́kw;wÚ†fĂÅ)î•Ă †t?{D¼¢1A¼EåSuŒ©uH§í¤‰À£ë½căÉwbë3™»k¡î¶› zûî?Ê*«(ɸgI‰­Vé†pIùăG›«’|»GIkFa9;6­Á´çi w¬97ÅRÔ]h¸œv3}¢j©e¾ßï>Ă) S¿÷ĂË@́ăga }‰w¾JÈÎÚ½  󇌪aºÍxÑ–w—J#›( -¦̃Z¨è\‰®Ú‰6ߪj.Cj¦ù‰ĐúLĐߨæîló¤hE’œŸ^˜ë±2e©¥ïf6'LbŸüàJ]Í€³ªÿ¤y¬Cmä,̣’E=Ïá°¸j4? N¢rn(.Zèâ!ˆ`̣rœB†ó;̉åèî́²ÖÁ˜À|‹Ñ́{U¶ÁF•_lÊƯ"×È?ÀJ"´Ëơ&âÙ´nŽ|ơcƒî›ŵz̉\&³óưaF¿§"Ïr4ßûªÉ[¦ÏrüV¿}3 ‰­«—Âq̉:ïùàV2⿘@'k+•vU­ÈԱ͛-]“¨´ ̃7CÖ=]đjÉû¬ĐU—Ê*“S+7ôQ^ ¢oµ¤¢ă{Å÷Æ´,Úq£Ư›^F*i³E¸9†ªÎDô¤“vyư4C9dí®”4OáJZç¶Øåu™̃sYTÅ­M?Wđ™X¸ÏD–ØĐ¯Æƒ¦Zu₫Ú#eĂ(†GÄ{Ă–Ơm»Â_½̃&ŒZ4ÿ˜eỉáÔ/PÜÉÔ L¡”]4à¿ÿ|h!Ø+iJ £ƯÙ´DWá¤nGa9Åo:B̉‹t†VnÁ@¸ªA–¢øB/YÜö@,-Æd½îcK$€Á×°8*¼YŸ7¢¤(9ùe‚“ôa„ñ‹‹d#¿çTÇÇ[₫Qc¶ªÎOd× ư33W”Ó†¶§/̃ôÍå¡D¹U}Wj́ú_N¾T´³ÜK©E0H>ä§ÿrC;ụ́®«¾íîu…â´) ¹ô#\à“Ríñ"íẂ™|¤’q¬çÙđ¾]¼™Ưœ|€l ³áxÍ·~|dCq–°öỜñV8qeÅ–7‹Íd½'DrŒ½\¹77V·LÚǹ^ “°™véi‹eC¤$~”)¡,G±Pè…XÈ4Y%¨ÊL¨mc4~VFe#Œ7,è=̃7 ˜?™Îÿ˜) Fzăª qG ,¬ÖO~̣/'Ñ+ ĂÚwæD}/ß:È`5Ï,ë½  [[¯4›_éï•eÙœl*L cï9  à)ÎäI?ơ£½º́JđŒ¶̃×I%lq vÙ ƯÏß&25{Hœµ½•)ª³Jß́́[óe‘r%ö¥ˆ§iĐLöu—aP˜Y¤¸ĐïäŒIEØT~ÊvđÓPQ`ç €~*̣fÛ¬M–x2Tdd°Éñåu³ôÏö¼íñjwf7‹ Ü•Ư댂ÍÄïD±„{œ‡ñQsŒq³i‰Ư†U[]2ôễ}s2÷é8iöMKÖ )¿›­ë&Ñ*‹ÁÂ=è –¤̃ŒÈ›%Hf¾Ư§Rq}£SZ .Ơ¦»Ú§T>.-B„xĂçü"5Ó¯‰»µ²áª:û†V8b¡g‚äIÛQ;·́˜eûTđ«ˆđ9i\¾dhŸø§¨ĂÈøt•rykuB?'¶±h¾çȬɛ.±ơ~„î W!î%ôj{:}zâĂ'bKE&4;̉µSK¬cṭîçå¹Ém8h„ĆóöW!öbûÄÖ2»—†¯aLÁ kîoN{ăYññQÉØâ¾Bá 8LĂ/y¿0́bŸBD´ó ]+*̃Ǻ| ®($`DưhË5^2/³>Œy°*37Üâô‹˜¤»ÿªyÖâCa—ZËØÓñ\ẉNL¯uỀáªwÔ>„%»»W«óU”~«]̀đÚ÷ĐŸ„Œ $·^PLà8J…óU3~µ₫Ö±!ßß–%Í7¼¨Ắˆ=ü„º[*™ ”́"ĂḮOƯ Œ"ä›WJvê®ÑæÛµĐîÂ^0käö›³:~¯Ä<ÏKˆØ;½U7ẻ–JÑ™¸ 3²DzgÿhËVVze]| ’ÍưØ$ÚÅvx{Ñ4ê" +ữwq³ˆÇqÓØí‡¡g—r?ă²0ÿgºÄơ ºñ6QYR‡%,ñkë)|D̀üNîJ!5oå\*DÅ)TÂ$³¿M'ï§W7Bc4W»HT½WÏm^„·3&Rï@ù«%Su?ö£_Τâ 6[̃pf@çœú¹r¸ºrØÜƯ©¦Æ=;6\T“·ªà§+ ÿË=}êÎ 7¬~–bø%3×a¹”ZØưøFĂñ3&“”‡êă÷pí®§”(’;;T†đºiÇûsùÉÈNuæá…º­ZĂ$ß̉Ôïä[¶ÔdvIiXiỚ÷ọï7²µÏ¢' zÆ¡^ú!]SuîÈŒAÁưßwüiómƒENu¹Ö°®₫>å(¼Ó¹Ó íYçº ½zë&\­A»íè‚¿Å G BÙÉôÔ¸ËĐöw1¿Êj"Ó÷¹Û®–?qØâ‘…áÏ?( ¡XÑuu,#=ïKå“o×y-owk/˜ûçèN.)̀$<)Ó=²ù.mN/s›Â‹5ñyÆM‹™›ʬɄ1%T BËZ2 ùl&/¢B·^£h¾âœÚ¬½ O–·ˆ½¾u•,^ÿ&6Ä#D-ï+WÉ·ê ‚ÓdK̉îeṬ¨-€s7÷§]ßxpr6›?À¤½^`Â%‰F“aŸzjøÉh;Ư?Â"óÚ“—}«Næâ£qZz—WûĐÁå7• :…Îûá­ÂÉế¦B5@ù <́₫Ú†“@zöÁÉq¹ĐCÔÖân¸̣¾Ị́L9Û{ïK ưOBóBĐ;CÁâ…f+Ceuü•E¯+«̃\2KÆÖ™¢Â²^N—ơùn¬ö¤à›äÇ©ˆ_jx8­˜âơ‹¿çHˆzÇP“ĐĐK”öI£|mö^̃Óm’‚j<]¯ơ%ZtIøê€äp´q¸›m3bÓkˆữœî‘₫lC´©PÜóøªB#ëÚ± ¤¬Ë/×Üa=m"UT³¤odYÉ=Đ ÎOóHÏBjNE®RYẽeÑvÂ-ëƯ|ÑU¶AF¥—cR™ ˜â²söiØj~.|·zä©™“Cx̀rƠsOJèjº¤uĂÁK̀¬Öɯ@< ^Í—:±h6C8j©oH+t¡SgñŒMơGÀ}¤.¢*nÖEŸ+ô%åC]Í/\‹ ËÚ±‡,ª¹Ă_í1ÓäQwÉ–¼Ñ[¸§ƒ„¸, fHÅÈ£ä‰3ï02¦£¹-̉ ÔRüj’µzkx™¸{₫½6Gqn͹ÂQô·úÉóZgâ©‹ ^ô-±#ñ,ÓO¯Y½‘îT'[™l™j=¹’ê HºÑ2©•£*ö́·N)ʱ¹q#½s{ñ'2ʶ† úe)bß;ù”o‰Ơ…{"Zq8^/iơ‘nÿ̀·Óǃ^Û bÍàx³d((Em(ÜS´®[ ÉS˜}Û?°=QÓpƒ…ü«óMl±ĂA'áƠVëv…Ư¶΅øùpz?.ùW4SWyơhNm4ưư‚ë2}ÅœºIZa‹[$èâ†Y/¼đÈ© Í«ăƯGºfêÔƒ@ñŸ#ü®Zë¢æṚée¯äcç='bè¨ÆŸ-.å‘ÅỨ%ơ_Nö§‰̣û¬©'ubó±ă-)©ëxg‘â’®ÔK×)w8ƒñ5“` TúŒœ ªQ>»Ey²êÚ«kQ³7‡wKn5[IŒÑ=ÂrXw64·¢L ŹOÇưºælP®tí£·̃zn^.Ăq®/¾d°áƯm7£ŒeÓ^‹b·]ÿîôđZ Xë¨ÖÇ#ăÎ.w=èÊvƠ@íN© í„®Æê?ܱ§$(qOÎđoZ*Ơ’ UI×¾RÁö®Éu»_ñqĐøÇKĂ,ă*:'…ÇIM4>̃„Ÿ;™©7-fßä" bXSK‘ h”±Ç%ë%öúÁyÎ:_mb½ ƳÙƒbDzk<5epy²Tá{€ọ̈™’ö„&ÑxZùÚƯ~eaO)îÀ¿ñV?̉f^íó™[ÂûhUÂâ• y§ª6‹>>ưÛ(Çl'EoÇb³̀¡.ëíà 8ơï[,¶dJb^•„ư+úÙ^ƠL¢7¼ˆ‰ü.ÖM/†€sŸn;Ü9;aíç;<Å ©\p 1RújÏÓûHÑ?Q¹|çAôüERơ†¯â—̃ŸÍ¦Ë¿_)tkÊôƒưÓd}•$Ëàl\> -7Ë¢>́§B pÚ=×¶`u caÏ>ăöÜ  f“_û¬BÛƯöÜvêe*ïT¦ ÿkư„æưé Qr£̉®z2Ÿw›;¬Ñ†½'̃ÊNcI+mWÆW­yÙ́3åđl‡ƒS?™æÚ -ß©j37ßmǸ{”ºê¿VÄŚ‚r½y&––ïŒAŸ}éádƯåƯv7ê?_œ{SÎN'ÚàI”¡M?çA•Xq3Ü®m.ù–ñyĂ!ÚđĂÉA1œ2ߥ÷HÏà‡ïEE¾²Ä)D¥í÷@ïvAlÄÆåêÚ6¾À*ÔLt‚BN—IÅ{[0ô>¸ß́ó é Ó9Ññ&ù‘è™w)́d†æ-ÏÂơ¯¾'ƯåÓ÷ûÑ"n:v§VXr].}œ¥Jøº-·#I™jI—Yz₫î`[@I1¨µ¤›&œ£pù>6s™Ä„ª×ăÛxẻR—Jü9ܨ gÂ2Áđ™}Óm ÀRétă™Gù‘䓺gÇY@u17ûv—]iצѰï!Ơr†=ÿÖœ¹"Rñ’©‘+ë]…R®V·½+Eíù Â×Û'›~/¼·M¼³çIñ¤à‡q8NoîuÆñ¹1åMz«ï[É iâet¬ïí‹3Ổ×p›²ÏI—À‚u£7Ùơk. &°]$́×±2̣̃¶¾:yđv'ŸX´ø“©§b¢o,x?!·g¾dƠâD_Y6íÔ(‘¯¶]Ü}ÿ–v‹gÛ^9º ,TüóóöñÜ”âÚ«/2‡VBMIİ1•²ƒ°¼¼QTWÅ»SÑÆ–‘sßwK*¯âÇ[¹·Ù;,^ à(‚7̀NR¯=àíת_ÚV…Àj8±™`¨[£Ü,@¿ ÿgéuq%0 FĂY7„4UuëM$‘ĐKinABºØkØ÷É àW¤ i•„5t¢$éÎ|₫÷nW½‹ƒ;rbÍÑ2(Óê!½đ.KéK9-R¥/åhù’lmÅUÁôëf@ó0 ̣[p̃ª̀×zÜï¥bÅgJÉ»íQèjµĂEÎzëN‡ÏÅhŸÑNăñ{SqÍ„;öu„,Đ v;M¹̉5.}«à¼ño®ÑѨ×cÛN—&Á*ÿ̉x¶Y endstream endobj 1493 0 obj << /Length1 2329 /Length2 19856 /Length3 0 /Length 21215 /Filter /FlateDecode >> stream xÚŒơtƯëö ǶƠfŶƯض¹bÛIc·QăÆNcÛfcÛ¶“›}ö9§ûü¿oŒ{GÇH×3ç3=çû##RP¦4±3ÙÙ:Ó1Ñ3r„eU$™ŒŒ,ôŒŒ̀pdd*ÎÖÀÿÈáÈÔ€Nv¶Üÿ`; ?d"†ÎDY;[€”‹5€‰ÀÄÎÍÄÁÍÈ`fdäúÑΑ bèja¥HÙÙàÈ„í́=-̀̀?âüç'€̉˜ ÀÄÅÅAû/s€  ĐÑÂØĐ kèl´ùˆhlh P¶3¶:{ü J^sgg{n777zC'z;G3~*Z€›…³9@ ètt₫* ghüwiôpds §¿Êv¦În†@À‡ÀÚÂhëôaâbkt|D(KÊäí¶“e₫&Đ₫Ư=ÓƯưÛú/G¶ÿ2646¶³±7´ơ°°5˜ZX̣b2ôÎîδC[“¿ˆ†ÖNvö†®†Ö†F„¥nT~TøïúœŒ-́è,¬ÿª‘á/7mµ5¶³±Ú:;Áư•Ÿˆ…#Đø£ï ÿ®•­›­×©…­‰é_e˜¸Ø3¨ÚZ8¸%E₫ÍùÁư‘™lŒŒŒœ̀œ ènlÎđW{à¿”L‰?jđñ²·³˜~”ô±0~üçådè 8;º}¼₫©ø_ÇÄ0±0vÍ,lá₫xÿMÿÆów´ph3~¬€ñ¯ÿư¥û±a&v¶Öèÿ1ƒ˜˜¸„¨Í¿K₫¯RHÈÎàEÇ cfc011³8>~øü¯C‹çñ[I[S;×ßé~ôé?)»₫{(ÿ} T€ÿơ%g÷±¹@åŸE×adc4₫øĂôÿyƯÿẹÿoËỵ̣̈ÿºèÿ7#1këé)ÿ&üÿè m,¬=₫ÍøØ\ç+µû¸ÛÿKU₫}º²@ ›ÿ«•t6ü¸A[³¦cb¥gdư[ná$fá4Q°p66ÿ{k₫–«₫uoÖ¶@;'‹¿^˜+FÆÿ£û82c«WÄéc5ÿ¥~ÜĐÿƵ5¶3ùëØ˜ÙØ††p³₫@l/¦«4ºÿk™ ô¶vÎ&€}¦vp – À ø—èoÄ`úƒ8 Â'€Aäâ0ˆ₫q0~láÄ`ÿƒ˜  €Ạb0HưA¹HÿAÑeÿ èrĐGtùÿ"Îè ĐG<¥?è#̣ôOåúˆ§ú}Ô®ö}DWÿ/âú@†ÿE,¹ÚØÜÂ_OÚ9R£?è#Căÿ"¶±ơÇÿ#aeưKbcóÇë_Óg0ùüè"đO¿ÿB.g̣‡đQ¨éøA0ưüKiṇ̃G̀₫?›ÿIæ£æöæ@Û0>dÿ´ÿè€Ơ?àGAÿLå£Z›¤̣QÉ?\ư•ƯŸ`Ü/ă?Ô©ÚÿQØÚ|œl­¦Î¤Lÿ–₫ưªüWü1³9XØư£oßf‡?sø`8¸Ø9ÿÇ ׿¥ÿë‰é£-ÿ€=pú́£NÖ†Næÿ |xÿc₫q£ ÎnvÿPX¸ü~4Íơđ# · ́ĂÚưđ£bÀ&y₫IåĂ“'ĐñïPÿó»8~tÉù_÷Çcñü¯/1è4†[œ³3æ ²¬j}¨Äw£ÛgfÉ¿¸QßÅuƯW æ}¼fÉ\́œÙ‹|Ü@;f.zo°̉Àb´̉[÷N‰äÆZ¬m…45Ú¦ơDă{:v’qã“îèĐ2`±51Ă:oTt»ù2M…Mëp¹;›~(ÎK̃X~ÿËü¢₫„l<:‡““,¨M0½­\¨Jpz¦]’ÔéêËøiü'±ĂÇ”¾f¶­₫¥ZP‹Íü£#D{é›ô#₫äƒnvmû)‚üŒ†¶œ·Ö_ ˜p®RÍkíA–€'#B¸|₫|L –GàÍ>q6*Îe‘™4ú̀ĐJÁĐ4ˆÇp Ru†;Đc̣”e7ÇtƯß«>©/Ö;×₫³ÊÁU†Ø̃\ùé]Q!NÙ~}¨óUËæ/\̣ÄâIÍéÛ ƒpI¸@ïå'Ô) Óéצm‚‘PƯ÷ ^°0Ï—ª‹÷´ÖêIïÁŸT«FMc#àK}&²¢ơŒiƒ¿”%z…ƠŒ°wû¯ DH)wT—ôÖ¸̃’&ÔÜXÔ“^VËGÁå¤fª-*Æ ƒ¬À0ƒ\•–±°—¸äŒø U»øæV·‚l}₫µûƒë¶c·§dL–¯Ú”̃íjz°tϯQüó4BĂqñÉÎ×́biÂ\|´¥§̀’€¡d\ uûÁ…bỌ̈)58O¯8+ .£%éøá¬†+µz”Sô±ÄÛ¢m9¬¹Æ›*^>}Ÿ!!‡ÆÀo60/_hÙÏ}‰~ø•MäÄ[Ë‚D́̃çO›©Pzp³2æ¿Ê %±|P>§ ·1ÈÛ÷iê•n/Nä¨ơ%é@Ik:Ú–‡‡N6 ˆK$OÅ˃ø{†¢ Û ĂåTEí\Rsj.H=;;wŒ€²?# sĂ-h0,j ͵îi{ß°+VYHuÔúñBo×›Ÿ.‚*6§ïèøÎf4`ùê5”̉ŸmŸçÓ5VGå¶TàÍĂB“]Qä~I!•G½/:̀ÔQæûŒ™œµ÷åQüÊeÆá”%)ư÷ÇXtáé!₫ß&;¨ÙƯ, c"xzÄ„”Ï«%qÅ%ËON¥ !N"A8Î嬟Ù ¥ f^Œós Ợ“}Öz–G$)̃”DÍWÀŸ?´øƒÚÙŸåúX´tDY;HPäÅñG€1?Ư"ư耩^”Ÿ°b.Tä‘Ä?A!h·à¤:uÚå À‚4?‹8_=îḤ÷KâöYDiăb]Ô5=m̉X´6½Ê¥{÷^ôhà™®pBû‘+˜ß8ʘ‡©»-ÅG zIÓ&jB0Ú†C¨yR5 Œß\2v0ư«&•–í¢4  )̀¨Ø0†K¹u*̀‘35ÅÛˆ›<\U³=æ Æµ†uf%åëv¸ɤ_Ât9ásÊ2•öëEonj/ƠÍk{AÆÚCđ¶Ưœº©ĐC«YÙs€u§œW‰ªjU¤Î<'N¾ílU@c®ÆKZ¬¯bV(s¼Pị̈ qćÉ%p®W;íñREÉS–Í\µrzt3J·đàËñ »OåöëØ‘ă¯BrÅÄyFíö´)AYƯŸ¦³{ơ#-Rö.lUùŸÎ¿æ¬ 7¾RNuªÄ⦌Ñc 2É@Đ׺ƠZ†¯Iü*};¼'¦30ăĂÆ.7]¥‚S‰¯ñ{ŦIºˆbÚ ˆá›ÁO³¥t9q•Ä~«E"̣¿™×t́ Ë̃œg^Ë́tö=`´qÆ›s[~²€MÙ5&å´" 8³>­èFö¶öFEE(®a(}XIå¡H¡dVĐå…Ư´½Ÿ®y€³Öé~YđßàÎMÜŒJ§đ¦›v đÆœcnˆ&QŸEĂ'ƪY–’̣ rzsØm ›‹ư]ñ£&2 B¾Ø×Ó0ƒúnœOt8QñHñ4¥N…mH1×ưöĐ¥gz„Ù¡æDQ0îïƒè¡É¶9s|ûjÖ¹̃ß Fcpä˜À2‡U]Lá́¬!ï¢.C˜9‡r0R”ß'4Ă º 3ª`ƒ’Ñk´̃yëĐ₫eÄ5ܸö(§T́ÔCÆ(·q>@¿ƯsbÄÙ«’“"́A«€érÊAF ×̃ŸÆ„6Ö»ĐŒz£ ­*¹́ÙT”¹¸cú¸Yí´̉AQœ"fá&NÎAúÖ!«È­0Ñ:Ú©sÖ9îVp×ÂpíúŲ‘oü}C_&ñKH₫}‰[ÜïF¨ ± ˜¦Øáˆ3·È½óq²fCÙ"ă,¿c†œ3‚K#£Ï~̉4˜iìk¥¦¦¨1A(]Äp¶2Èóv !nÑûđ0ezÔêè9 †ƠEùéaávơ—Ï›Ÿ­Ï˜q©jÉèO˜4 µÁ÷ífo¹iađ¯ïAGíDƠfµˆ₫¦=5n-áÎóé̉9Z³ÏÎ÷·äS`Y´¼$ ¯T[É´É}‘“ÑĐ{dLD‰y Yơ•5!êÄö./€›C%G¦¢ơmÇ——Jô/¡”đz ˆÎơ›ïJzŒ!‘c̉Îhç^³ÈfB5Ïijë…÷ç"¦Dë|̃‘qÅópàÛÜ/—ñ”°Ú=¾Eâ¨ÑN®Ÿ-ưR†ă­JàͶ.pjø æ¯ï¾ë몂|ΪïJô<"ŒGP9§%U+âBµ;[ÖZ¯»ùọ̈éƯm«}½¡Đ9hvDÑa´üt1å·¸•ñøƯæ™W^¬w¡Ró#Ø« ( üv¿.†«° ùi?2%[¶?ç± '§Ư2ÓÈCReÉ`xx¶̣°ü ‚ «€@dRBÖzË,ØvS¬•Ÿµ«ÑÚD.(çwơ`N›>™×Åï¢~rrOIh̀ôÛJ$ơ'µ6å' UÁèsµ\Ué8̉AŸ8„Ö[ñÛ—ƒ Ÿ©Œ7r?€æ”jĂ%2COÔ஡¤ápẺ5mÿŒăÜßUºµ†Æ©%[Ä3‹Ùé²²è­₫ˆ•¦ëĐ¯½=|—›_ĐÖÏ₫I…an±‘\ă=ff(5{Y%†ö‹J`0[)üÛ}ñ næYe‰ç`ëtáÖÄ‘'pö|Ơ*ΘÏsàâÖpçQÂ`Ö€ûÇk/ê2ÜDäÄ¢¸^:…3Œú»úëÔđË₫¸ µQ84׋ÜÖxt-ùL…ÏRI5̀ ÜÇSß~(ƒ÷Sp¾sºÿ̀ˆ:V'‘›`̉ ¾Ơà…,ïå©€ ẹ̀6+NSÜ̉&~̉ƒë_Á£€]fi†ºÍưéD₫ơOѤI3‹Có §U2ÊrˆlƯb|kTáưD$óœ @ï¡…±ø³ªD(}¹̣9E°FôÛn¼́¢ŒBÈôøeUÁ—H̃/úØĂµ«åp›jA<²YkălÎo`²6ç?ê,úßÚ¤ÂæªtƯ,lºzdF ³ï6 d¦²¬øă$$À ô+ªôŸ4/@̣0V$.È$&`LĂăuưôшƒ7AçØ¾Óp‰N₫FcVé…mÜ®½ˆ‘ỏ©™E/Ÿ~@¼ú böÈÊ{ñe£†Y†µ_¯¼}¶ĐL/sƒ%¸ó¢4y뮀ףÁưØd÷E¥!4›̉ưƠÉ gÙxh²ó@±j 5ï:‹¬ñs¾5é(ß5đ£O@l{ƒ(mNé-DÏwăé ú¬ơ¨¨(Ăq|¾Ør%°_ÉÖ̀G›kè9yö$;V²;ÿ̀ù]ñ"‰bñÈ\Û½t¹^<Îî+f§²O”%Øå 5Q±´Ck{Ó›}[⽿ӿ…y«̃#‰¥2Í1¡êÛöëV¿ RéœbĐà lE´̀E¢?Gâ\¦Âär  ̉ǵ±k>»r¼ök6 9´Ó²ëÆ÷añ$í™X¬JUyZ“ó|ÇIÑ€Ô 3#å_q„F <~ öTnµ8ZI ö¸ „T•‡ƠêÍȰŸ*“8{ߟ¿„²V°©øZu¾\bÿÅ–ÖĂ¯›€uk̀©t˜»Ï].­.û0PZĂ™ä &ÜÅÙ²₫eÂÚ‡^]»=0¿…Äß̉¿‚₫@+¶f{í¡k*¡ÿªÇ#‡ä!¡ɰJBLơyöƯ¹ꜾxÄ¿¸“h"ÍÂ-Üưgî'/¿#á›Ua#ïÈÉvœ_đ( -)'A†•™ ±Ÿ×èY6.¸GMó TK–ÅɳÚ!¬ƯlÉK]ÜçƯƠ¼íG;&ÍL‹€‡s‡ p~¶jzcÅQI8£}R,Đ܇•lz> ª=„”j'wlƠ2‚Å®”Wîç™ñuă2$y((56NÂmKi7‘È3b́ÿ1̉™ºf̃§5Q­ˆ!U8à§/û¶ˆ»íÅ#L´–4Ö° ̉¦/„²ç̀¥oåˆÚ$]ÛâBDÓ+‰o¿ †«K‚@ụ́™SÔ?yĂIó$UAOÊùÁƯ¿×>=bæÄ ÂË ̃¦̀đTÜ/ Dø ½o³ ¶ç00/ s¢¢̉C/Z¸³¸+₫±™Î„©Ô·p  œÀéûÑ_>@đ-¶ñ€ĐŒ•pªƠ¡«OC œf̉[̉Ô(È+Û|A4;,@—-PÛ–6Í›S÷s…p-v«Đ,¨Ú1µ\@¾ÖLĂÀP’YBŵA­ÀẸ̈wèŒ|…axá –ŸW×T2³¢"K(Ư+¿Ïñ”•ÇÁđœåÂaKtR¡UøŸoư§únû: #ïêK„ jLŰ ïRG`Wè OP -¬ƒuƯÂŒ¦A‰»ă-Z’6NiöuŸK«¿Æ1]¥E¯ưØÏfĐ´r₫̉EÏåÇvơèÆÛ£§3V÷ó~K đaF©pQƠÿ6j\ÔÛó —„Œ Z¢ë§Œûè\ØF"·¾E¤¥,¿Û&₫i‚̣rFÄ«w© ÷+̃ÈÎO?T~$‰é#±vẵ%9Lድ90 ÂC§ø©‹í úDœê0°‰ -4NAö„i-Ysü6¢÷âö?g²î¶³ôyZđv\>a38ë“wÀ·V—ël$eeđ§¿·ă¤Å¿™–¸áẹ́{¼¿¤‰9í‹ß׋,ÍdxíxNfaµ̣Ú›Åç¾đcĂ²3ÖĂ³j#\‰¼ÛªĂ´”C¸50Ú²ÿôÑoxÉ¢¾×©„ ñ̀ó&…dl4¤CåeĐR§b Ú·êw÷•̉â'tđωpç@!̀3£¡ß¼ÙùĐ/V-OOßI0dS ?/ó:œRÆ·œ™£xt%™t§ô}7±sqéÀjËÇtÆ¿“îf³F4–¹m«á¯?IJs.¦\%é\ľÈxcâW´¦Œ'óç-wg<!q&…d×J~=Ó}cÊBOF=ê´WoB~á?o)³óŒ°™V'¹÷zD\q<ÅÛî6Ê’ƯóÿÍ“Bçç"â1Æ„Kå%˜z%JuH^›ªº:+r×F”iá…|•·:ÿå`\™’²=·#BQÙ÷‰.₫ÚYœFÇ«ÔÑø½0H*¢l÷çRÂt a6å&-±° #˜7»ƒ@¥úW¥ÖŸX"ä·\ïC¾y ăRĐû2©ë÷Ó笰··Ö¦¢0ileÁWẓ6̣å*`®¿Ñ8ù́S£ÿ¾CÇŒ` €7¼ÂéhWæ`kª§™Îi£™†̉5)ÎI˜äWÚÆĂ ñA9˜=iÁ̀Oi¸Ä§8ƒ/‚@ơ¾†ÙŒªamđ5LG–Ÿ$kÄ1]_*ªÛ˜ ƠYˆhädr~ƒ«ªhj=¿ g”ª.qºÍ/¿Ú›đSN øT&ëĂñ̉gpó#Ÿ²¬¦¾j1ǸSB_†i2À @ºl̃á…gÂÔƒg¦.|V9xë<¿ ‘ÛçƯÆ´d@=D°9R¥Dú+ØÉ¨-ơîKùëøÑJö×é́ÍÎ7‘©úAæ‰ …TÑ̀Yߌ.ÿÊâ/±AÅ"“WʱĂÑ£§ ï€×púî-µ‘±øMkÙb\ ÑÄJâaåÆ39¤$ÄÛHÔ[ơk[`J̀¾ß1ê~ßÀḰÆCçDÈÀ2à‡́–öƒ qºÑ^Tá„4RÎFvº·¼ …ïơè®`ă6%e\ÔwW™™Oέ¡îüʦæ$ưíF(dD0̃ÿY0Àv¥̣ú»²–¯]—6÷¶©X7)M)lù€ñẃ+̣I¬M+dĐ]¤yBå·å:" •Ï]U†i£tV‰qÅ¥ƒ7\IÜs9‹›¹ütN™¡•€Ăïà#§,;¾®–L¦"‰3‚¥O_`,̀Dèª7ôK2̀gÚú4Y.?‘đéđ„0YÅr”zú™‰+/© o;kШ©–²égF G<–ÓS´íØ+ÑfÖ̃º·IÙÚSJkºmΆ|#0@*Đ+nÿÂ)2¸°_"·ŸïYƽKp>3<N[å?fû^XI‚̣úüÛÔE–^>í>H̀(=Đ™ÖFơ:₫̃ơí³Øf³FüÖ^ít·mºd–Ër×ăqJ…µkĂZ•ÉWW¬f¯8cFæ,"SG¾-÷¸ hÉ1̀àF±;IÀ2¤^Ïéç—•‹Ê[<‘„öÀă¥ïâ/ö6̉Œ_Jè2E³¥æôÅ"y­Cë9Ÿ¾.ñÊ­”×§keÆøJwjû@Û%ä#€ö8Å+ñ,cIE@O挑‹~‰;Êi,¥ÄN°›ɈĂfˆ£vúEˆ“ü~R8KæĂơȼÛóüc/ŸñƯñËi=•ˆ\îtámko„©ilºb“Ó°gFÙ­kN?T%(ÓÔÓC“á* g«FÍ8Œ, îA ËgCj™£¨ưæíÓ¦ṣëV~¸°nék"́%Ô¥°Óômx«âz¼]¯{£cÁlçBÈ ¾ÅâØ ¹Yå #ºß@ÑëW!àC16’!J‚ÍËWQÎEöHü•\cÂ*Ú~f̃„or×Q}#Ô2ùơ’Ư¼°ß÷2*À›Î*pD§@k,@ö³zÈr›½rÇuẳ€WœÔZ–‹ Ñxp×¼rPëwÆW¶ekD'—í¥ǻê7N5%8Ë×±v?Ó·t]g &…ă~ÅPÖ£.RIå௠K|ºt¤S8%ÜJ)îâLñ•©WcÂ[YÔÛw~”Ú²×UgÀ/$ÚIYmøIă¢&»ú„î˜éêJ²yÚIƒ›”OêñüFå:Ăs¦®ô}»ê°Ô $‡w]Œv|ÀŒR/ñæfS(‘ÎÁȤaZ°Â«VC(د×?˜r̃v"@ó—ÿF̀Ó/MÖ$Jï7Y:]:q~Ặ=SïæZë}p“€ ü6\ÁWÙ÷¹ËôSæzÔ|Üçëœf5î°Ø4ÿ÷*.)‡Öù$u¸(+x)=Ø̀ ĂÖëƠRƒ kAƒp>%₫†Pîgf!8Á‰ÄÈOk!IDi‚_|çw`Cü¢àkJJ‰àê#Á¢¯b0œ-™5YÛÚèl_VB24AÂy*̀aT7”Ʊ·¸Ư7‹›Fø«t¶Ư_ {ơĐ1‘ˆ2‰Hx¡)Äû^CûO´º4{#Û›¡‚ 5̉[ ×áH!¦mß½pw‡$&sOY¡đjf¸ ©å…væY„îàó° ±¼gÔĂM±(æx Hze’÷¯) XmÑ&¡x<̉×Ïü1­O#aíSA ׫‰KtÄE ô¼>ud₫7Ăï£ œ5ˆŸpw₫´: ³’ô>ŸT†íĆ„·C₫µÓ¦Å₫Ë7Y{/ƒB£¬ ₫åB¦«R‘éœßjﻌƯ´0×ûUđMäp‰œÏû[«v6ÿ,CÇŒØcæ,å{¬Ÿe8Âë» -Ñ"<ĐÈêW/D ₫¥Ÿ—Đl¦²[j¢³̉ªl̃½ñhJƒƠcÉx¹·Ï@¿.ưûÁ ĂÚw&¸Æ&]ZÓ«.íđfºv¦áç,Áđ¯YR ”ûŸj»µñĂÅḤđèª( HĐ£¥ơжw‡ˆèKÜ©âùª ¸ Pñ9*Đ.á]Ș¾½@Üs ïX7tŃs ¹©ĂrêN56|3̀3ăï]e)¥iæÚ\D°Èo¥‚1<]èB ”œ0dÉÍcØŸ «đa’×¾« ñŸFîç°GÄütƒnç&$€Z̉¢¯ˆëöi²íƒ¡6¸÷ÓçÂFíÑÿ^Ư~̣#́í -“)¬¾ZŸÚºẸ"dí§r¨j>¸a¿‹°Á8“Q­¨Ê,«æbá\Œ¢/R‰"üV…ºBj/Ü”7wm¿! ‘cÛăụ̂açLkí¤̣}*)¤ÅÊÛ3Áï%y{:‡4Ỹ‡ëOI¼bnª9CD#1…ù‡GƠÎÉèc“`ˆ^Ä®BúZûû1óø9Úö•­lç̣;>]z[ê½~ƒ@GĐ®mÿ+ aüxíMàă¦ĂŒ¤ßªâr<›•ß,Á®Í²‹±ÚU)î»̉YôĂdoïÍ-|gk.}mơđtºBeC ļ‰XTü˜|K$Ơ`c‹Ÿnh@w3¿kz ;ôzŸSQxBö* -Ư!<|‘Çï\äôµ=(7y?zéäÊr,ºååÇÁvRØÍ’ó‚»w1*tHlÄaYv‘ÏPf=BÖtTÆYA·qỘz“›ñÎ e*TnaX ́[‹Yun¢Bו<#À¢ñÇ”´><;çnaçGû+‚2°Â“íxû 8ô‘n UÈ“yƒ4+|1l`ụ̂€ähB9kc"@î¸- Kß}4•q¹Èk”ôñ1,WtƒH$VO×hÖ¾]üd»>PFïí;²úÜ}̃ÛƯ?]{ôÁ±n¹ïO#ú̃fơÜùP¨4Pœ”•Úwç̉L®[Lc[)¡¬¢ùåÙ`¯øơS×:zF‡,§¡Fơ<™Pḷ~úk]×÷ˆê÷¼Rô26<ÑơpôÉ$7U4lƠ²LhÈ…Ädw^$h́%f*ܨYî[ö‹$‰¯.1î• ùÔ°bæ¼ú)0k(©¾{ÅTçR/øÚTÍx6§Æ1VÓ±ËgạÚ© èæP¢WWăùe›Ø̃ù\»!'¢Zá• ₫ØßiƯ-£)ôṭ§–^•^œ‚½]øKøh<‚?çư₫=²uäm£ ô₫‡]X́`]Z(B!êÙû‹đ¥D¡ÈÀ†·… ÅïÙ ¿ÔèHÎß<«[Ç8ÇÑG&chØ2{Å8”´a‚Ï—È ́D±^¹Rv¢Œà"°«é/ß0Î ,í}q«iµÉq"¼hM(‚P´ÜEĂ<+–¡̉µK¾ ÊÓ-+í¯ Öwñ9J5™kjµă°£µ÷ª}›øZNŸ\̀²ºe±hYn×¹G˜lĂđrÁÀEÿiY'ÓñD2̉”íú.Ÿ·3£5_ë´!Ô₫W%Ê’i°₫®ØJ‰ë^Pç0.wA)5ry–]̀Gq FÔ ûDÏ­HÍ€³jÉ ‡X‡ô'4µnv›(³yÿQ°&VÓ ư\fH5P"R\ÍÚéẂLßĂ—Ô+©)¬ {]e˜û -dÖ4B‘S¡(¥ÚANFÏ“ÀµíÆ›FmjêỐÛ{) _,êÚ’Œâ;¶º6S{}¹Å3nÛMâoXü´’b ÿæ»$„§ÏÏ4̣i'µX›!i ôwI:>Ne4› B Ö®Ë-VRäú7+æZË'wä!–Ç`b5(:,ÙbưÁ¥Àâ„₫n­ÆÛă»đ₫áœL“èB³|(ª±º2ư3ĐÂJŒœ*$Ä¡Aùtek&½x¾s?¬¼˜Øä§;«¸J¥w¼q>»­@ysŸ‰tÛkA ¾æôΙx6Ú5®w6R: à¤V ¤s*Qt?.…#åÓq̃U¤¿z^AÖ/ïP₫%¥n²@^&˵ô®°‚Ø7.é©Ạ–%5Ôöç'B_åD!¤̣ăéQªÊ•«̃̉DT†GB×ÏøJ\Ù!Zî%0ÖU ®9Sç>!zE¶o“1û/4jø\hƒ„‹ŸĂÀ“X¨à0ëº}2 ù] ]Œ̀~•̀wq=}öÄÍÀÔJ–kQrQÈ.1F4ؽŒûJá"|kèêF¬^è¶Aß’ỊcOû˜×§`«‰;?}'}‘ăçÖKKV&“éµR´”Ô‡ëøQRº6ï4ºå‚§ŒÀJÛÏ.¥“Ëơ½h¢™¤­V8lƯ&·È—¼¨G)v]ËƠùqßf_œP.Êhùnvû¶#Ä1ôï?j»À™ä£ư‰¢æÍRÊ¥́•Yæ@!ù± ³?%Càgâ«@‰A˜À¨65=¸×N:üÚGxÅ–̉8R¹æ´ÙM¶aMđ¼ôûå^´Æ ñ•”z‹¡Ùƒû¹nH (½&Œ¼O₫Æqëqˆƒ°J cN‡è?ôâŸqÂôx½SUBñÄ_Úf´Ẃ7ä°2xÑÄ&Ñ #¨=Fa—ï`©èaYŲ0ÀëJ́ ̣₫©¯2ø¢ó0mbèêº8¶…¬ˆ̉¤»Ầ\¤>@Gèe˜ØéxD:eæ¡H̉±ÏLh!̉B̃¦ _!FOB9xi/µRØÏç¦è(Ø/ N Eµù°ˆåŒ’aÈÀ<öjsPPçs¯Ơ9ơ¾_èu9«óúœ4d-±ƒÛ¶̉yHỷ•rÿDiËdog¢úL°¼R*¿LÔ¯dÁæfYv_ơZÓ;¥ ́êñ\-e. ñXĐ/d:§<'UiɤjxéF₫,oª)$i#(Ÿ ´HøqÑLIw%#\ú•û̀CcŸªD„@—q^`âI[DZ$Oeû^Æ„dĩđêœa;¶Wq³†Ö̃}x́ĐhBºuŸö½9f+(©SeBÛß1XbÇDv¡ ëÆyù³ïư‡U[{«̣·‚«k¦3tô’o.adwÎÁ)Ç"i£X«̣Ó8–2׋fŸ]Û²ƒÛWú4$£÷À™nß½¢Î`²C¢ÊfR”ƯÛó.HOtab¦î>y䯇N¤Ü3Ç6÷ƠF3â£~;¡€Î¡V¢´m=8@—÷‹Ï­là *ª}ë~(Läb_©©L ƺy©úÑ]`cû&<³Ùeeüơu[Iæ[ùẨÜ'̀¯ÜÓ_ …'#™`?Û‡êrÅWÛĐçÿæ÷ư- ç©ÜXkŒZG6́}¹ùª6á‚âeưlë|Ư5ôpf?©½Ư5đ°»û̉µôíxL¯/K8ơƯ¶#-¦tƒ¡ö€IA´L4ïÖóܳ³5’,ÍNç.nơñ¤]†m đSK>–%=ƯO›ụ̂ç},gRæơ0f̣á+¹ơ¶>£¦¶‡XJ½ºR(UÑṭÚÊ9™µ“c/¿h̉>è ˜}¥d$Ê;“ƠE°:SÑÆÉ`ËKêû·¬aI"₫E*Äê©1F̣¤æÄß4Å£¡XJ¯&I®ByaêÑö±Óö÷kÁe³M¨P c~|¤êHß-'u, `¬Ư:qxk{†¦^H©´.6‰µËÑ™díwĂ¹JhjÉKË~€…Í,»?FúÛæ±úbo1¦6…vØæª¦¹g‚ø¡07lªR5¯º‚Í3ªiù*.K#h߸1ù=<úy™¥¶ß%™¸¼‹¸f?%ƒÆ§œ*.K5₫ö₫ærIÿ6ÉÈØ(ÄDƯƒe×êËC}PÀÈISÂoHú̃·iØsx¥IˆˆñÓ ø…ªá©Ó[àª̉¼Œá7½iÉwè5\ÎΨp$GUï?öñ=Î~̃üÈnè™ú^6ºD+,89K ¾«1\.·`ơ{–è́€Kçé‘»úMt“@R}‹t—ù¢RuºM[ËÙƒ½dˆbÓñ4C²u×±N‚²Ä?u>‰ÈÚaù‘VxDVbÊđ…ú3m™Ổ„¶‡IÜ6¼ÆDpP̣ú; ơyÊxPºµẶ%>7¼n¤ă¬Â>ƒà¶”₫å«Óâ¢fñæ’«@XÛ¬µưÙ̀)í(ẳªœÆdD†¦˜½t̉[üjkÀ'+|áĐ,; Ö“̣æi–³˜sîÍQèÛÉMtŒGë‘́}Ñøă©éá[ësRÁ* J±!×ĂFDŨ},É*CF?›¨Ä/_YagïQY}ÎÖZzû± eèä¯]„¿ú²gĐº­·:…3FÁƠQRYm‹ËÀ¿Ñ¨DX´Bq!½çÚ{ß&̀éLă%̉nT̃Ÿ?“Ñz -]̉Ø» ̀­jµtx!^%t²£¶_H́F#ằböNf™tn{^{­fGpcAr,fk²îơÙ¶G„éÊÉv6•œ)t.^. \Ó¡:ÈÉnˤ­Üøé‘È‚Ă±>NŒÔ:Ûº®í¡§¼{OæX̃ׄ=7ÔßÇÄ&¨Ep×^̉ñ¶ÖP˜A‚“A“‹™Éè P5ê W¿îÆ A5’y|u ‹]¸²Ï?Ûz¦¤¨fƒÀ_ 4´.Șnb´d©qºŸ08Zºèlj¬Üź<,UB¾îƠîX́‡ ˆÚé8)=x[onC0k»¶„ÙP₫Lă¤&¼k2Ă,]ÊZ̀cB¾äUŸ)a¼Ỵ̈Ô:sƯÑ«ó· càmŸ‹øi{ÁÏ–8AÏ]Äé^¶¸ë´M# ä?¸Îđxj¢ÂP ²ÀªüéÚ¥ÆËBÎ̃'ÿ¶ªmµ“Ò œJœ´z̃dÖk}€faØÜ~‰ ‘‘ĐQ±—/6DĂ"—€¸HáJ²¦I˜{ICº¼bàCÊÁtcÀFávÍ́2d&lsưe/z;‹aJ$#ZuU×°®p~n„ɾ«ßb?Ô´»ÎøCKÎDDRŒ!Ù·J TæM¦H%> #ä9S¹¶Çn9­r %ü÷Hº¼‚fëƯ+=RkH}‚ëÏÀK#ËxJ[…!¥À,HÀƯIiÖ àÛºơ¤Ó‡ñévÈÂM0V/²̀z«FV¦yú FÇ.í‚Ô¢0 ô6=¶ÄȾDÚáfA]ECªu…1¶ïÅøFV$•Q|±?ÿÜÑ@rI‚•Gf`|’ßÂ@%̣·Z6? Ħ#Uó̀{$wœŒ›5-ù÷é­ă&ÙPLĂđ™"ó™”÷N 0¢qæ¢ø +І+™ăÇIûåS5iƉf™<9¶¯ÑĂÅ`Ka™¹iÉ«$•-Ô¼úA’r¦ia½(ø«rª6p›;¸|I»îS_“wà¼üvß0ÖîA{ëÜÑ5m³is³öR5Ư´'clöh¯€ĐMu)̀K5qV]¥Å¯kx°+óc ¿¤  •å¤DX´́¸¹(ê ;"Z½›áR«rŒæv!¶àÑPÿËŒî*aqƠ¡º¿ĂÖ;-jŸ\5O’Iáöî§÷ơذÜÙ{Ö·–³à«êjºOxhª/öA*q̉CƒƯ«'. I.n—RS¯}¹Îx‘–usæÏ¹ưÂă—« H×# âPă0ó)¦l™œ`?w[§Ú@ Ó²sëwö,Ö1¢ÀèüC¬́è…78¿–i×\·Ö>:Ë(ÖéÉ´“ZyĂf3é¼X¾·ë)£Éûơ›úoŒTG|!´l¶u•,­Xjí–Ẩ8ĐƒßÀ0̀Ư/‡åª™f'¸ă¸ưº cñk’’¬û1 XüPç)Ÿúµ¡eSP¯aÖäBươ>#KÇjädÈç“;óé:ÛËDÔ ‰̣äµ̀O½m­œeÚxl‡,¦°!´€2\E'îp"×a¼$2«æ/.Oñ„§„`̀`i4©sQ¸f…ª%T¢W•‹LÉg¤n­Ê₫¦]“ï:ü"w˜h`m đàÉ%  Ë´Ô³îcŸJƒøt=ÄkbÜnxơNcú7†KÍíQơ&ÓDĂéX{³OÜ%zÖVwa†³¤YÔ=`èä[Ñj-{Ê/(Ñ<̣¸á<>˜‹{é·‚ä›Cø?6́*’€ºë£]/‡êÑ5JaØ4 ( ³kôû‰ÆIu%Q̃cÈl[í÷Á«Çœ§VÇN¾î)·åmưteÈ¢ñ»1 {‡,^Ywß`a8ZŸƯÀîqiUÜî%94ÊR=QÇ̣.zWºŸ†âƒ-äƯ¥;ÍSİ’UÆèô¾ƒl³ÆL,bBêT°#{a-S amm‹ơZ$< ³ó²]ôQà"Ÿ™OA+û±ƒ &çk|r×ơü\åY1—¦̀a¿Ô;Á{ĂZ™ú8-K[Ú×ư}[Í̃7<£›ø 8bö“Ă *×OĂrË2yB}PÆrÄj/*WïH%ÙÈ–Đ'rÔ®B—-¬ÖgÚ¤z•GÀpó÷€₫ƒ}¨K#|3añ’sĂ…û#%ˆqy´<Ц₫1%Rq ₫R¸Úögá©ùˆTUO´Qîòyñ¢´ÑvOꮿ.­iJ̣ñ#¤c{,‹î¦SbBă&H|m–¼Ḿ,Tl…¢4àÚWµf®ªÔƠ‰•×x"œPå₫dư\%!ÇùÉ™éÙ¼=˜”©Œ5ĐRÂfÙæ¼zẠ́¨#Ỹä+ èăáyNZ­÷£ÏƠª–•À¼Ø=æư”̀–>̀sÁÑ’ÿ+AB0C!º̃n̉¼nKÍ×9’¶8YÄ7nÔưÏcs3 ­Ÿ̃ ]wSÑëëbÑƒđ¡»­©Ê<»//d6î>e ÏÀØ"…S4[0QbF´A K?è íz* ÖÇüjø%Ö.ÛàĂ¾Ü¬îÔÑ»'’¯ó«v÷^Û"?Ô2r)\€å'₫Z)ºØX²7Áˆf®̀đJo3¼dĐeÈÂÜ. &^~8đÓîû­h ?Û)%¤‚Ê„V3b‚̣܆å|ưÂl<†V”Çá¿F´Ü3§‚nĂ"cöáÚá¡K?Ú:>œuR²ƯÏ £x÷»dææ¬ṢM“(ĂJÄ\€Fw9Jry ?M]ÊØ·ºah ¹úI/&®™»Æ̉á“ilÆGc²y]è.Ôc¢äß!yæƯ®mà‚ÊBDăóƠœH[04m)Ó×U£ƒ½ĂÑßô鹓îYe¸{8Y`ÄƯçœ3jˆqn·Ÿvz Ÿ#± ñwƒÔ–㬤ư}ă`Èáö*HOÔ‹g&¢5%Áø̀ô×ö“W7¤dBB¯qâf^/z®JËq̃7¿h@̃哯Àï1ÓóΫW*ka°rf¶åg]9DDæ 941×̣Ơ>ñ¼Ÿ¢ƠKç@<Ïû¢ù7CJLîGópÙú̉œ®¼·UxÛvpȵºé_éfÚlÆz½ ¹g^̃D†vƒđ₫âKvÆØÛùÔ6¿\;se#éÆHåN(Ä:b•ÜƠ::‡“ÇeÖƯ“ß«ÁqĐ?hœỚíĂeÊùé4së đÀµϦ8]‚íh ư““NcW DH5Ún£>p€5'-:k§Kf÷ {½Êï¾C-ÄđØÜ>·»+0 9^«cB£Ÿ vÈi-#ŒrÍ/, ®à«o48!O˜ª₫îÜVÑ.¯ß4smĂCĐ^Ê÷ïfjóÛ:›•´ÇŸ¿‡«"{ˆJ›hTüŒÀơ† ±œåpp*y8 ›5úKÔ£ê lVB7¥Ơtf˜ÈàWq!‡rR|NeééN/ч•̃¡ë˜¬̣q̃q¬‡IMén²ä$jÁ'̃±C¤Đ •·x|XؽÊCä0Üæa:4¥˜ÄƠ"tϬcg»ûîÍX ÔPæ°±\•BUI°ñ^^|Ùîû<;oÓ¯…¨…d”¯”_N‰¯"%ZƯF}ôq^ô# á¦k¯$É×}YëÔv)ƠW¹¹?Æ&r²»Ï°¶V†¿~éDÔgäpa17¸H>u:GÜÄóY¶̀\q©·L¼ă¢µ̀ũơÚ³MŒ%́̀ ¤ Â0L[1!ë^‚Ơ 2“ZR{Ë ØÛœ†Bë6†èˆµz‹»Çưoä.¹¡”gÚûe¹ƒ¯vH8eÍă³âa[sMéH©`×·‰ß_ƠËl:ØH[!Çk…Шƒè6>ƒH2Á“§ÁX‰B)MyºwMÁ”dâÄ̀nä/9_ªù‘₫0›^k­×v$-ņúê§ Ƈ³́Üanơ\#«Ụ́Đ ̣ÿEºî ‡'©Ă¤/]·“¬=IÎ|dÅfÉ¿ơÙÀ­́†kjŸ_æÅ åzÜ™µFÊíZZ©3B›<Ơ)˜`C0ñ} è’G¯™âuÀ«¸´Ø3́ƒ1zŸ[ é`#ËĂÅ›GK½†Æ pñ¡MñđÛ³†›t>¸5é¬ó́Æ”±Ä‘b̉ư„º|̉â`ù¾¯xFÇÉÛ¼÷ưJ+’u>´TÚaÄXsD`é7ó$: ô0C¢~ $ùú2ïN¢¾d6'æLB ²b•doȘ_@SsÁ§=¯¬À˜Óg…)ô!0¡́´J[’œ!S‚^@»ÄûƒJ#âdË́L¿Œ#.:!nĈ‚…bo¢„R¥œO>c‹ˆJFÁñ¢>æyăæ§œlÄ(Ë·ON0q:´;=¯äƠÍơÜĐ–os*|h˜)>óuz·8¬"ăiQÓÛB3zëz`HB.ªäß$>SŒù(Näñ…ÇOk9†Óo?n7ï™̉³D,2ûkÆUÿĂ~Ôư>·Êah(È¥«Ñ Ñú͵^ø5K»đYOÈÆDÈ₫•£ñ ửĐè—XU IW‘&Äæ̀[/7Cß‚îfºGßÀmT]¨ïƯDRƒ «Îrͳ¾̉sơd- Ën7ÄæJ9 »²†G —zoµûØTç"ï×âE:¹LA!§Á÷á́”‹€T§„̃LNÈĂ$D*[Ï£ăä4kk™ME¶GÅEÅ·Q=Á̉vŸÔô*ưG"÷Ạ ÿ;ñ­Ñ =¯ÿ€û„…a9™V™Ë†KU›zÔôûOÖn4́·j‚G‡º9pưæ|•÷Üb 1^ˆÓ.`8†Dư[»¼“'.ÆêÁBâsOă~đ̃6´#ÎûkåR©àÏß~Æ\Ya5R¦=½¿Ñ²u«œlk~À  Áæh‘îÊ´ê%;3V¼Œ#đµ¥-Vß½„ÑG÷(ệÛÙ)QÁÇï̃Ç#µJ¸®ÙGÍ_}Ø‚±kŒ`lGVy?\lZ&÷Q¶9̀%\®I-ƯíX2°ˆhÈ´́ĂC½âº…geÍŸoC{áƯÜäµón±7‹Ïz͈í™̃Öi©ïÍúç4K±‚¼êL/&GưMf¯ñœa¹;·\¾Úf¼ˆa©Î¢,i.L]»…²ƒâD,ĂïÅ?w½"{ÓKÈqa‹̣ºẓœÚVÔyQ'3&__ØrzF»ö¥y·pÍƯïpP>YQ¶3Kƒ̀jyÚ X‰¾Ád®ó“7ÖC‘ZÓf"DiœÚ7öNË¢&}çªDŸ$3½‚⬌/N`–S‰bđG/́oêvÑØÖh1ƒ́“TdĹ- »)y†?°ûîXùoé8Û`¡ô ÎøDî­ ¿„„ïZ‰+9èâáhưó}¹ˆÀSß0eM6gù„t~¶â6AÓô¢”×̉_v‡%&“³¥y™™“Pj¶üW¯=NÓ¿ø¨ö­Ÿ®²ÿ}›]íøI"n3 X”a³sLM8ư…²'w1·,çoH… ­‚<{ù¸ÿú˜ÑŸÑ́(ÇĂæ0H1₫í2ïñơ_đ“í₫̉l äÍPr?Ö¸Y}º0>¨§®íè/Đ/ß̃ḉ@ „r̃Z0Bét‘•r°Püº²Äc¬"m₫^>˜*áûµ Q/p•^ràÄêƠT}´uăÁ_Ư%¼¹Ù‘£í¨ú°øËZKüđJưWLlX·›tÚ̀Ä!!Jơ6<î–Ô`¿ñï0‡WU ‡ă³®Jyx+°y+₫5ëÖx ñNº9 $R"̀rCJlL¡äT|öÅ‹‚jû2G,#ø6kº $Ï豈4á₫Jø œY I…¾$³®̃ü’ oÛØÏÄ¥Péà®`ÎNßQ4­ß!È¿6¸öÉ]ñĂ%”iZÿăô¶ỉ)ªÖÇÈ…R)Î@ơ '¿†IP÷¤íµí^¼j÷3₫Đ)V!]Ecÿ!b‚€u@E%Z«Ég¬k锉¼àƯ÷θX»¡© J]Đ8ÀKéT æ´Û±úúÙÓü8_}E«áK œ1÷rï¦Lâ! ‹çÏƠ—Ø~=M_¢÷¸Frn¢âüư+å¯1˜Ô?Ú;7ïHÉIĐXß]+»h]Oq*vn±¹”Xíư•D« Í”,wû‘øKÊwŸG¥u ¹›8ls:= XL'®戺RêçP–ö₫±å~ʨÿëwØü³eF³u/Ù±HƯ7#‚–Æê‚q óÔÈO *Ä ơÏetđBÂŒVå–:OO9”ñ…‘âPŒ/¼́Sërœû/$íx› Ø$Ñ?$Ÿgä‚”¾SpsMBù¢Ç„/Êí.7¢%œ:”÷Ç)9ØxÎ&ÅTùºÇ‰ ŒáHœ)êל©c£àrqÛOÊD§9-y øÇCZˆÍÚ• ’Ñ¥ÉFưi:KgÁu°½´¥˜Çø¥ư¨̃%RÁ×́øƯ6/í³+bJÎÀCC[2æ,¶3Đ÷I3ë6Ñt¥Ó5°¡Â}‘Ư7U9ÁYÛ‹)́lê0²­̉v… Ñ.uh?“5$̃º䩃áÚcR]nu₫Y¢Ù’Ô$~Ó;û·P•ÀX³ç]f=u¥°8XúN"µ ËOÉÆÄÍöCª@ÓÅ\û7 Ù¬œnÈÛÁÀÇŒåNÙ̉µ”F^̀#ÎÙîÜ`ªùx3ô1 6ík+‚] ăƒˆ;º"1C ĐåY–}JÀo:lꍕ@ÿø rcæ`¶ƯXê)Bï;™'sœ)ơ!ÛÍh"đ\m´~e°$ưi\u3dH!Œïæ₫¢a₫Ûà b˜Üm€pe´d_ô³ ơớ—̣B©î'ƠK˜s, ƯóôHc™W5›Åʰ\•ñœåMÛ@è4«°Oæ™v x|E‡BØ_ă«0ËÈ NkHnUˆ đïÑø×à{oættÀ­ÊÙ̉ ̃ b%îçä÷M_׉Ns’"ônG‚¹‰dăr]Aé–níD^sw´5KÑLáâ:Ñd)]Ùjè¬1Fº©ISt…FÎgk´Ơ3ÆèÖLƒA&2ñÁÅL¾ü<Ÿi-̉Ó‡¤’ñ&ÿ^™o'9>DEj8}ÄM¥®«H=ƒ)ë/Äđr mơÚÄÑzËÑ]Æy¡Ưû,Ϥ23ƠlvĦ>ø‰)X5óKṬ¸*±(¸ơú˜$rĐKƯêˆ*/Đ@g‡”‰| ̃X'<×ùØDn‹ÓP\ÜäÙª¤ñøa—f̃ߺ«F´ }ÀÍnï&LÊ[Ѥ™[@2‘êwÊqqTêKeÏQ¹Ÿ́~÷<Ψ±tΡĐTm›<̃…¤·œZa†6}Ѷ«^6bdĐ¢rè‡Y7­|fiîëü #v¢å£̉¦ówvµ˜H&Øđ¸´%üiªí0(`-¥ù‰Üà³ƯTTE-âøđó²JLµfrëĂâqÀăÍù~Óp\)rKă¯”¡Ê¿åôÇj¨ªßÉ8ÑÄĐ¯ähÁ“”zÅ«Jv•yˆöfơ5'ë…Đ bh6À}6–¯ñœ ™¤%ï—¬?¥5ưcø)¦â!ơ¿qh×Ú¼ip'$ư¾Îk0„K?C1ƠÏô¿Ø ~ç%¿uPnæXNµX(‰íÚÆvƺ‡Œc® g$6f \ n‡¡eYL™Y…j×ÓÎÿWBmö·AV±m X4€^',iûP₫?ÙÑæ̀̉Î_đ= ĂêEûÁΔà™.FËKŸ6º̉9ª€v,¦àp—+…K‚¯ă'%f/ÛO€n‡đÿrnđ‰;Ï}GF& ç endstream endobj 1495 0 obj << /Length1 2042 /Length2 13987 /Length3 0 /Length 15228 /Filter /FlateDecode >> stream xÚơPÚ̉ ăîî îîîîÜ`pw‚H€àÁƯ=¸»;'¸{p‚?ιrr¿ÿ¯z¯¦jfVëễƯ{S‘©j0‰Y8¥ܘؘYùJl¬VVfVVv**M›đ?rª@W£ÿ.@S·w™¤©Û»¡’£@̃ƯÀÆ`ăægăáge°³²̣ưÇĐÑ… iê²(1䀮TÑ. +k·÷<ÿù  5§°ñññ0₫í³º€̀MJ¦nÖ@û÷Œæ¦v GsĐÍûBĐ Z»¹9ñ³°xzz2›Ú»2;ºX Ó1·înï; äø¾ ÿ×Tø¯ÅUZ€Üíÿ¯VÎÍô}Ĭ́₫ÛH«4È h¡ r3·₫{6₫%ÖúkḮ@@UGWĐ_7 €‰•ơÿè̃—ËÜöưöp}É¿UÀ÷ƯùߌRæ-;7ÀÔÅÅÔơ}’ع¸¾lïÛhôú{ˆ,̀nï.€÷êü–.)7€É/Ñ¿7€EüÄ`‘ø/âa°È₫ƒ8,rÿ wK¥ÿ"^V‹ê?èƯOưôî§ñâ°h₫ƒ̃¹hưñ½Ç4ưñX̀₫A|óÿ"®w¹£Ư{ ÿ#ù«“,@6 đøNẸ́øÎÉêøNÊú¿ó”µ·“5đÏèï2Đđ½k6Àwâ¶ÀwvvÀwêöÿÀ÷Eeù#̣ûƠÀâøOîwÛ÷Çăơ;q§ÔïỹwÈñJß_$ç?à{-.Àwâ®ÿø¿uµ3uµ₫Ăà=¤Û?}găfíü‡Áû²¸y:₫áđĂưŸsyÿ÷âjîẹ̀'ï÷xüßẹ̈ü²¿ơú¾gơ₫¾×́ó7üŸÁ7wwqy¿ưÿ¾›̃·â?øï§ô#,/8 „ÚÔ†¶ÿ₫.FèÉ´7)4Kµ§BÇä»́̉á₫ˆ›DW¼ár'–4̉‹¶º#E{+ºBúâ{̉R̃ Ööä÷l§>³×†°438Up"V7@ OĤ)ºï÷ấ÷!Ȳ¼K*ÇÙE5ó·g¿ŒWƯ@ÙÏñ°…=µưjnÄç²LÑZQAÅsT¹f™óxä0nLÄpô^¨s·w³ÙSo¤̣q ₫§Ñ…¾z›́_æ}Ö*4Ù]»ñ)ñơđˆ!o1Æg¨}Å¿Éă.ú–Em-f±̉1ƒmŒúu‘ñë+Êaà²Ú¹,óÉŒSú·Ơ±éô!Áǵi˜8Ñ×: ,â1XzzJËä©4ơí‡ĂßG¸0X(yÄÀ*{ûîo-CƯêÜ*œœƠNéûŒê[nĂ#lc¯6‰¯I¾„;ûc)ÁỨóvûؤ—RÖøöÙL:Ízí{it –K»£ À$¥¢¢a¤5̣PÄƯÖ`rÀWóµ™ÁôĐéà¯Hkưdv¾Üå<Ë×KáUx̣ñô$jđ¶Kœ*’ă2Ăh"µ1;ÓĂ®€@Iư˜À“]°0R¦PĂÿ›BT₫§E•èL›ô)ø„RøÁ}qYî“:…Cíă‰PÓ¡đɨ9½̀pÓ€æ¦dm¢/Ê·X_d¹tYVvơj  rĂÀq¥& ơÇ&©s¢å{9çïï£va¾¡âY;ÙZ6E(ëWfPáˆ?Œ^UK÷X©§*”Ö~ˆÔ˜U nî~C©(º-ÛÖ'êKX6üNñ1e\o¶GoÉ{Ôk¸:ª6¼f(H›ZR?nö,£a¯u^€œ¨í“ªÿƒgÜFWߌéí‚ ³ñËdtÎʘ,iĂĂ~´ÑñïAϘ‘Y¥¦Yz/ûæyœ}Ưªd¬qáÓUdf—=̀X'K_VÉn?nṆ̃ƒ́£LĂc–êNk¿©iæßÅêbPë#ßæ í3́îŒV©µWq#׆|Ị.^́¥û Ö~•gÖ'w®̀§pÄJ+|”Ă +äÅÑä[UzRQEùÂ,đu-6Jv”¦S“%à_ÿ; kßf@WçVjѽœ´=Ÿk¨Íég¬¸\{ÑVî Îsi“ZG4'«9¸lêÜ<ç…»₫)²§nGß·´¬½Löv}·é#£ßṾ£ê3D¬oR¿4›el½̉/CP"X |¡¨~Bú”₫™?<8ç²”îk©ŸÖ̀¯Á̉“(K\˜‡rLɆ·ßhsɽÅ9Bé\×í „ç6<=T' Ñ·dœm̀at:|đ™ˆ1M°iç­Ơié£ûضD7©©àMky¢È3y¸lø}ùµ̉Fê"ߘ2“2¯z‹œqBa2È¢ èÙ¬<ïØ»s9Yr²›9ºDË· ¾óøü4ơ9a#:¢ûÜļ™zq)å¬KÓ:\v̀!m ä`ÓɾƯ1³`uëɆưü{ü#Đ,[Î0<ăKws-ÿ×ñ]dË…Ü̉ƠăÈ„½ăË¢§K«Sª.§Ü'AĐ%© -oì|ígù«Æ¾0†Ẉírl†p»}j²{ߟä^º2P|¾Äq6º5î Ó*¤'ù\¯(ñdù&)¶2 \ÅwF:åsŸéVºöpĐÓï)®µŒU{±¹a†œ‹£>k£ùñéæ8¤áx&F(ÙªÔß¿ïôWÄ̃««§—IJ@Us½đQ܈m1ˆ ‰ŸP¬Ñ‹Æ×̣ÓjÓ́3B†ƒ½È”!á3¹Äkæ†%Íăè‚¡PCÅm3!K¨Ñ&Ë¥ÈÓƯ/Û–u7KM~ £Ï™€ƠÓ&UÎ̉Àا>#*Đ *lÏ"Óg£gHmª*3̣+ú~ÑàaWGå6È̃aº˜7Âщ¦ üyx Ắl̉}¯K˜}ơdlZVâ9¾¬\¥å4QlRYy³¦ÄW³kŒ%oơẰ“l;i¼Ưµ?hTóG"X¥d7¤Yđ¿¶3™ah0׳-Áäí°  6f¯×dÓÚ¦IS3F®ÜAö3Đn·1½c"₫êë}_ ÆÚƯÂNPJàƯ…„Ä)b…Vª\—­eÿ®üsV×LE Ë©Ê#´&• ơ)‘o(-Â?³Ä)hB/¯ËKv€ Óc[êyÓ˘‹$b/&g¹ơùKZ?ăMV±Å¶Ù˜Ù3ă7Ù;f€JÂ÷C̃-xee‡{½~™+hXg÷ ’¦¡¥DˆÎ›«§£9 HfXdzôưß0¶Z;QG»€XN¿ÇØÎkưQÀNi¿ự#˜vUÚ!6 #e5Œùă£ùa\e`€a”ưX)¦}Zaẹ̈ÈV×y^³‰%ûubË%t-ñÂn$i§9K*t´ơ]=3©ÅJ¶đL$ô[ E–‘óaiÊ8”¥éÔ£ ư¼ –º¤4YÀ]°ù5fPm<â+xœ φoµ¢Ó:zßư:*LŒ­CÛÑUĐÓTMÇ‚g Ná&½7—áï¾m.¸=Zzo|ReÙ s2U[îqœ|+›&øÎ,Á[P¼¶¿Åh|̣˰ä#]¬éÖ¹dv÷²”1“zföÔxú”êÈØ [(®hk«Đà Ëg geờnwäWNƯNøEiØ”>̣î3q—Åj£đ)Ö©ùQÀD_#l9MV¸C³2êtê$[TÚA‘öú`ù+lẸ́Û‡U¤̉ew¾·TNôHoTÚ™̃× ä’ ä̃î/ä•>£Û(*½Æ‰~æz¯D>âû!¢Mzb¤k›¢¦ù@¯o{„f"±Â䓨Iào#°ºƯŸ~g,à~>̉,²¯·ƒÂ\æÓz‘>–¯!ÇĐw2́E\u´ZêÉ™́/¹ Ó‚à œOđÉ=XïT © |„HÀ}æ'Qˆ¨º}̀Ơ~£×I ½…¢\ çÇ5ásÚ©—6²HŸ$YW§çÖg̉¤?ă$ˈñÖ3¡Qjx¡…D¬„«>UÂ,W£´Œ Ô$·$"‡̃'¿êSÇ«wöK –°+‡ơƒqC!]XÓñRc³ˆ›¢Y†Ü}K Ămeh¸pCkRˆ„Ôa÷é`Û ä¦Äṇ ̉Ü`³Ùmóp¼PvrÖÁ¿××J÷=&s5ƯƠ[ø×®„.ư‰¤êÇJhw4FÇ&X™ºª¿²­Ó!Z<áD†P\ÊÁL´ªâbtŒ4\¶à¨ƒw½&=&µÊA2&’‹¤g&Ư혉gOM?/̣ú­₫”™ÊZ_ûe Đ*‹„à0¸cαQíEª3 ƒ•ĂF&¿‰½…̣̃m Ç‚¤oG„ªeæ>É*ô‹FPß'-8öÉ0ºaM—ü(yiĂôø .´ÿT%”ÛăÖǽ VÔ,>räUo>¸fậƒÚ¥û€Eîô#?f¥ÅX.™MăXĂú oO—̣ü“ ]AoåíL?̃"?ôœó®$tCÄßê†Ó̉rU¶^é6VfY² p̀´ü=Û¿Ê3ˆ˜£¦!’© œœ»Ên„q*„|¼W|â'̀ ]̉·¹«ÂZns‡×+Üd4W%^¦I*ÓÎÛA†¼”X̃ÍMâ.ȾB–Ư”4éß₫ô·!Tô‘(en®y8éàÊ>æmiÅOÁ\2'–z›³€€cöHâ9‹r" đ/;†f®>4]Ăü{S¦Úbơe©Âœx /E\îḄ$W• ²Øà¼%º[M8͘ÓS¾Ï5LA¨í¿á²Ü̃~ø«>Ÿ&ºơcçË{Ơ%ñ.ϪưÜbÆ5đ5q_{ÓÇ $m(¾¡:já艈y₫ÄÓk0ïâ¦,OÚpü9u•ú’#]i[Q‹X}Ơ©bÓ•ÜAPµ±²ÏP« $˜Ÿv-UÿIWö;åÛuÏ&l™ü¥î‡Ë±t̃úÓn¶ yE6L¥úaḶt³âqµ¢_-–æMÓ³Ù.ơƠˆ‚Vv£%ÇqéV+L í]X ˆFĂrÍ˺n?Ư®b³\m·FÛ~ Zsß·Ú H|É\8Gó§á´KNÜ}¨î2V‘ÛháÁOŸbñ5‚̣ñf²p™ÀóB¶$̀í'}Äà‘ߘY¸üº8Û}_¯‘YºC“M@èă‹ßrbÖP8kn«j÷q0l 5·¦·ïwÑ„áÜl%Y(²fHs¤zå,c!IpÉ)KΡ8XÁévµT oO]êĐ³¼§Ö}Æ)g̣̉J?cÆ&¨(\×d£…¸d¨Ëí|£W@ß”ù±•°ÛgµUpƯ;Hk_bZ4,Y7?Œ0[̉°ulẴ=3l’ûÉ_å_YÓ¬A}¾åcº1Ç—yơçø90ơ„œêGä1Ä8µÓ Ç[((È¥ạÉ_µ{¨»°[ü´ơhB§eáGD÷Ă'y,Tụ́÷GCµ#ĂLă®đ«W+q³ø]q©`=HèÉ•ÇaHR¼·mø”å  S¹¢­ç×P™ ¾<́*’˜Ía÷0V[©8Đđb<—UV‘áHÍ…Ñ¿~bĂ„ï„eŒĐà_›ê ́ˆJf+îxÈs'Í5ˆ~#W#Lôt´IÇN˜·Öa»¯ ¹-™†®7*rFœ¢ưuđØĂ%Ó äE354B$$5†·Hf°+×$÷%q7öpù ̣'/ <ÖæÛAvp™uȆKªW[îw噳ÁY-v‘++‰s,µ r, ']9Xưà‡ÆÎÙ{±”_êªă¤°ª¶ Á{mMđ½„‚XäÍ“·I•ˆxƠÁ4»ñ˜;M_zVMÄ ªañ•½å¤ZhÖÄd'ü·³WÅ‹úDúä•ơÉDSe˜=aÓ —vÎÅ„yQü‹Î²äÄj.¬:ˆăÖ . v¿¤¥:C“¹*â͵ü§N/ñkÚÜ´½}d`ÚO©ÊjÅă~Ă Y¿J„̃ï5áMÛá.Ø®â‹ßcÄơÅ{ß»ÛQË́Pnk RwĂ÷%W¡Ü(8_ö/€ç=]dàpâºVh)P0+05₫8¹¦)“ÁÙåS–ØésVÙEms¯:EÆ n‰l¹́tb (¾%¿혇,~ω+/ñQ¥W+MÖXTß³ '=°S>Ă]1Ă´ /Å‚đ́p7(†Ä#bƯÀă(4î²ï‚d9ÜP»¼©s·¼ÙÎC¸¤‘ƒW†ÊkÛÁt¶)»L¥Cưz’6[ËƠ˜+†14C<í’·ƯVÊM-;(Á·`ïí×ÇăR‹q-ó@Å~%ị̈Ú(¸N[n%cÔÛ__÷±ÚKơÆ(Pa{}·gS÷Q÷“äXùïæDJ,Ë&’ä•´ ô–x±]ÇĂˆç mÍO@?ÛÙ^¿ù¤;ă`FIXîă¿RA;pÖ`|ÊnèøÄñŸø‚ÛÜAæû®»̣æz~=XĐ”Ăú3$ /‹À‹Ää÷`Oµ›ƒ~bq>̉[ºœwÚ°KD²£)̣[ÅYGtß°¨2Íô»ĐUDú.°³Ơ=Ă7Z†¤*¹̣Eȳ´÷üæ«ä¸Ï£!u h ,¾*<ܸú³Gáûª‰ÑyÈ»Áêl~Åq¸G©cp@h¦;sÅ™ù‘|áâzr¶£¢3ƒJàd…\#’†+úˆ¸œfSÔüœÇÆ2đ°!—^½ÍÖẲ¯tÊếtÑ æ6ăâ¸#û¨Q—êásy>rŒX¾äŒ1)–Ư§´” ©6ơºÀ&Aê¥ßÀÊoû©´'!q“÷¹*ñ–ơ¹K¡kú¤†DƠ>„PïïQ¤'ư¹§9#A2¦"6Êï\‰ëJèèrL¯8ó‰rç`lạ́|çÔ©r1Ÿ(jSV_7ÍéÛÄÑÁJ*±W¥µ,”ü§ÔuƯSÍT!›‚+=̉̀EŒ­”l¹ôû×°v‰J²ëB~Xæ„A~ÄƯ8“é{^j8™ˆ`̀FË©HÙ±²1„âÅlLÉ^21Pf1q‚)F=˜Ü>bgA–<ºÁÓ²è÷‹îø Hm€ºpï̀ëÜ"‡j73B´KD~SÁ¹û¬vúYפäÀD̃X¼z“ĺxÎụ̀“‰L`„ùjjˆ°‹¾¿KQé¾bè×AºYWb‘’~²©¯™£BºÜ¾ĂŒV¨c3¡ç¼ñG|Ï|´_œz§3±úE9Íc)ê>¸Æă‚£Üƒ~ØŸ† M«áÈh}ă ½ăS›0¢ªü×D®‚êe^OT¥*X)~(„/£ä¡Í³e¿J¶L‹¼p¦t‘¾ÔÙ#Ư×L£¯~ư*%7sƯ9 3öè9Œ÷•¤ś÷F§Çi k¬—Ÿ°ÛB”§êMoÙ ¯«ĐƠÙ4Ụ̂üæ6eEÁ–́Êñ ü±*h£ä‚8Ăub"|B]sá¦ñ³xĂ¾XJcm_ï¨ư÷Ü3‹đ 9fĐßd`Î3₫dv\BévWËv̀Üè?²04Ûc>ó\í»[.(˜îqz¿Ú¼3î³p.øˆ8vùmx: ŒoÜf¯!ˆ<Ă,Ø­1u4…̉ûhºl!÷Ă)ÀPû^ïÂ9áüµVÈ,ôÛRƠñø&mzb=‰‘Áô/*YÇAđ'¬uGó¦1¸­Á“ Ư­0{¡5\“I÷L₫<Ÿƒáæq–™z̉éq›å$ªb|Ù†[Âľ¤lè ÔíÂVỨÄÑÊÀ!8¤`pïbµÇäñv¸6̀Đ%_”ïkIIh<{‘‘Á÷1jmÈ“À´=꼕&Í,=̉[ ˆ¨çĂda«ÂBĐfÛeôƒ-?ơcS'”ªv{5×SËa॥¾Ä€„hQÇ’s}øƒơưi”Ç P3†ơ¹rvŨª7ËÏQ³ú$Ánè­>3»3Ö`æ…|ߪt4xO1|3ăPæ3u+ä9m±][.h(]̉Ử^Â÷yèBé6́©#µÇƠæwyè*ë¬î›‚¯ă&âÉ™#ºÛß,hRé/ôÛ¨ßq•Fï‚ùyˆªoḿÓS ‘ÊÈh º°8Z¼°ú ơ]ç»åPçŸsđOb׌R][Gø³’•|ûø¤°fˆ ÆygÖÄwÜW´)Nê´]ÂsÄû÷¢í4œR{™ñ"+B:³L¼ zư‘Ú?ôû»gï2ràiÄIßXăR—ÚÂNT½v_EdøX6tl¹$I .¡[4 û¯>ˆºñ+' (jád ¯Sm.,>*«f;NỤ̂ßêƠÏ.cr&«ö–v3÷‚B)¹¶t[́æ̣$œZÑ)eØ‘ö¡ój¥!ûJ$₫BH’ơV]₫—̉âz|¼[ÉÈ_ó'ƺlĂ•…›¥ƒ,?KpV…„e|ÛÏ#øÁÇ_^­₫êê‹âyƒ ̣œ8ºô€vazv, ơU¬@=!Ômt”\)£¡ôu~ªa™îưP›²e·]Egx̀ÊÁEwá¸1Ă !( µœÂ³g̉¬~¿é±m “º€Ä8Äö=üκªăđk¡€¡ñdœée¬_÷7₫>*ÄÜđp¨§̣d́áÓ5¨Î¤.Ê]W†U¨Êüñ¡=dNúÍTCŒÀáq‚–F5˜-Ñ\9&G¸X_ú́}“7¦TM3˜_Ƴ›>£ôơ–ÿ‚KÂøå*u $ ÉÔ8ohÊ… ÅK+ tKó̃]˜†=£ÙœÙ­ÅhSµt¼Ur÷Ÿ¹ym¯ªD²–:<»Ä~£%Qv­4MIZ_‡ß‰î-l¡ă¯”IíÓŸçtăËsÁágóËçfĐçeΟg·F‡_Ơ¿pô*Iï?AÊ.C ` Ëçc‚h>f/` y0‡Ù8(†LW̉6™Ù˜²Bÿtiƒ;µ®ơgع"˜Û†~®²f/¨>Á—½¿o?ÂZçé_³e ÍoR&XdI·R¯‰¿Yz6˜Ó€:‰Xá)úHÔù(ă”̉ö9²’̀í[¥- …B ›ú‘‹ÅĂ:6lŸ—çùr¸Đ„3±ÉD§ơ™ê#k¬œm²Fo ]¯YÉzérÜå¶x ç-é‘Ö0 g è@™¹…+•(Ó'Ĩ9²[¹¶&iéAŸñª1٭ܦO™á>—E‹hÔ/7dlñQI¥‘§Ô`EfÍ;‚A$Ú-±ØF«µcø¬ I ̉¹«­¿Tgªä: oéHéÆ/‹Ír‰I{ºŚ‚]đÚ°ăKË…‘Dx‡̀ï‡Y¡ăÏhV 42}Ă3‚ô·«]MÂbêU‘~î*è2oú¾¹×{ ~ !–ê 4 ‹¤ĐÈi ̉ûjyJ̃ăƯÅûCËnY¸ mO°~íö‡Mè/u“Ç+g^£6–<£‚­•ËBû)ÎÙlLi®[+Ê~&2ÓŸ¡Â‹ÄHW'hĐOyüÄÚ#ÚđQÏ­6çÅTéM Öm2ÀúƯ˜|CưÎø70/₫̀0Éå]<_ ¼-$¤›ÑÉ=5ach â=«4å8+«co2wÓ·«ø4‡º`7ø“)†̣«>ÎnóWÖ ă]̃;mĂ¥“xS¸»Ñ2Qs[á\çf‰©Î§•ÔÄ'P̃[³µ>…²Ăœ±%l~˃P?ä¤AÙÛ­}¼Îülđ̉ó‚Ô°Z`äßÄ[1Ö2<̀Đ:Zï àŒdv!›áƯZÆÖc"›₫ó©µ Gó±p’9'uVçcÈ69́*³K Ăn~¢V­c ^®øJ±@!¶w껌 u·Ü¸x.,ƒö™¬´µäO¾Lâf®‚¸Û7– ªt¶œ·¨ÍfẠ̊à3ùóŸX^ÔkuC¶|Œ _•›ÄkÅçsèÜæü5Ñ¡ûÙ…E}̀*!=Ô3Ë6üÀ"?ù™÷¿qÛuMèà T…J³¹à4̃±UB(Xœ„Øéíù·‘Áuh>ŸbD ‹“GƧ{»£¨à­)¤ÊnÅÍ6c~: œÚ=m©O!j1’₫^ç&’.Ô¯B¯¦f#üœÎ¯snNYÿlVó2nˆo»̀éI#HE¸¾fºê½G^Ö0¼m¯…©3-ç™0á/Évn¬±¦›¨¦ø™ ¸/ÖéD&Ë86ÖOà›\Y#÷ưđ¹I0¢]¿'Ù3ÿ:æc'Ûk€åb%Ùñ±/»„ê|¼íuYÓ”4C”ôx÷=ÓD {‡r¢uŒÉcƠ7ơfkIfKÜ3 uÔ­₫ˆ̃lâÜơrcÈm₫›£Ơàă2đ$Ç­>±“}›lœ¢5Œ4¦¶}°í«"@<Ö,O¢̃‰ïå)6>42”¹ííætv—¶\Tc[̀ˆ#•AD²Píâ0ïKÍÅÙ׆y7²t+WƠîAȆƒYạ=/ô„ÜæªÜ<:âá}™mVyèYÜfƯ¸¹o[ÄH^J{*ÏÄëxç°b·µ[ZKpé#bqđs~“Ờœ^ư¾¿/Îå»Bï ‘#|‹Tưq;F„Å~ú¾€Ơ‹¢ílT =llÙx±—Ü}úeß'+O‡ÙWìóF„è‹ăJÂ’qÊØÑ12! ưb¢äư!¾<óáÀÊI¸9i£1$´’ă³ÚGè¶ƯlS₫èH}îfÚV¶6i#ƒèq¾ªsĐi›?~ºÍ¬ßÓû·k,²L(A#yÏ6.h\ÈÉq*×S₫ÄăæKûü%É-‚<âƠ¬h%¥”¯àrØă÷¶˜{Êî ÿ%yb z­÷Ë÷ƒă³?I–Pd³Oß"Ơ¼ô^J&|ŒƯ´ŒÖyXUlKNdQGqæ²Ä^T]†ËYj»¸ÄMCâẪ©»k*úŒ¾zÍ® ̉‡2£ÂÊp!7'göN=5_u‚̣I{+Q0kCD´m£0J‚‹ërûÆ̀“(ÁƯ¨¦d¤@éË_²B­¬\₫„÷“ wvâDuP¼e°dÀ‚;›¿jù²Dbr̀OKiªÇ–%ÙÆơ~^9ŧCÁ"ÁÏVØÓ8±₫PŸưK;¨h¸CŒZ™F"zĂß@œ”•w¶Nªç‹Mó ¸'Øví,È"× ø(ѼÙ^ï_}EäagèC°g¤OO _«˜̀2ïÔ7²QÆaYKäÄOá79'4(&Sù»²eHÑ|÷`Ø&l³6N7W₫u: /Å iQ¶ ë®ùªœöYñËqÓ/#7~ZÙÉƠ‡éaí;ëß(#¶m|[#b„£÷J8sŒç’OLäΟ}ƒ¡ƯA£^oOú¢îzù±¿{WŸ?ŒfWo7'BQÿ̀ST;NzÙá¿đ «I¥¹ó/È› ,†‘EUơÄưj̀‹È䇗6è̀'Q)VéTMÆă{55ÙL&!§r₫lfq«`ơ©₫µ²6j³]mK”ÉYóç‚ÎM̉N®uƯiµi÷Z_lư3₫OǾÔÉÉX»­–T9P…˜àpDîL|ù[¼3i²̣Q2!I ª%g‘uלe}Ú‡†<*F\L¼lß¹äT“ tj×\¸²^)l.ăªásgđ4Ä̉5¿S+XeÆ®å©uâH¡àjóüs]éĂ– æ̀D¶Y‹Ûé|„‡Áæ=% R³y1̉ÊP±èi¼]pq³́±bD LIr:K4NLú§Xqơ6'²æÍ-ö€vtåv˘ŒD´ßØ,G<¿º«ç‡‹‹6å« dÓƒXaû¸ơZƯØÓ–Év,»ưƒÏGu3Ơ´¿—è… sÜƯWƒ‘BTÍĂ|RăØñ ›ËF›ü±f°–Ó³²XWnUׯ]²IBô.—Cê; Må{A×z‹ªĐ™a!Éo²s:S¬ÈÄđI¤yê¬!₫Kú²;đ¯Å‚&́„jyÓŸpĐÈ q"¸m;ÓCƒùH§WÍ¢WH¹¡l đ_ ¤̀2Ä ơ’ơóâm̃©Y•Ứ!(#?̀Pë”Í­t?~©ª=ÚDđ""ûeÂơœeÔº³Ó@ _À¹ &-A‘4¦ é+AçÅ%²ßÓÛ~0B@pè¶ä³Z½Lw{¤l¾À/ß*9î |“ªĂ´Ó]¼_˜ûÚ¢@YK5q‹́ˆjK…U*Èr²z °’hßR•˜Î41BÚF[¨¯Ç3ƒµwS@øÆ®}~Uc6J¡ôV·&œÿ€(p[:”™á§€˜£&±E§¬0ëÍáwäjkÙyFå#rSddQÈ=ä}“¾häu { ’“¸á³}†Kæ…˜}PÏy mÑß.d”5̣­88¯$<̀&Æs;)L†Ä¿bv¸nH-ÂQcfñÖNÿĐ})́bÉ@ÿf[|_Ë“fvö„éUÂ"r%÷úUxÍrÚ¾›xá6₫îb«1~láú+6:Æ/Iä‚• fœư—Mß×WĂ0ëL¶ciÓWăbùQÅ‹™‰Ü¤nHÁçÔÇút)öµ `âoEÏÔ7HsI$A>ȪN ËE©‚Y¢0 5´©BgqdëHϹêđØú§¤ºăå?hZ§1¸û̃‚’ă¥àúŒ£†ÉÎ ?Î,íÀg[ X¢?âBœß”ôơ > ü–.K ¸ÆØƒa5·êdSÑ[<ñ+¨ö1&ƯƠ#bCÁƒQ¬MăNp ½¶>À]FEöGơFë¿&Bă‹‚9¯x8ÀÈD'M7¸|+ƒW¥ëœÅ‚)ʇV9ø\œÛMc¼r¾æøÁáWA´ÑQ"Øüx Ô'¡¦™fJ.ó}'dŒv¥©1p÷n¾ºÅĂ;¸‘´ú>jN_¦V»øwˆÓừ¯4£9Äạ́}áaÁéØy)Í3· ¦CÜaL5îÛ#¯ôj$ilF@1[#àI2]pSX;́Ă»’JĐGư,¨ü5ë·©O*¯3ø‰ çÈ.~ito¤\› 6¤‘Ç¢­3€5’’l¤È˜ŸªœˆªúŸ‰\‡:W©‹~đ@i™éÍ(•mB½Á?y€¥ï…<;¸•́ºûaI­Óí₫ú́Ñ’_­©5?—HyË ûdX¡»Û0đ8)úsq›Ö°|i0øäOû®·p%‚¾ÎĂĂ?.`oäí}¹oåp»̀“÷Á̀Ñ©>OA$»u„&-œØïÊÿE ̉·ª.µ̣X Æc¬Ơú‹ú‹\D÷’†¡đ ơHPt’dT’{ ~ÓÓ¨2yí: _A_iÙg0Ă‚>ÂÉÚ,+c$JOGêæđ̀´'–!mühQi_ăH¿LjÆ(ơ[Á°çRÇ«×ñæh©ơÈ‰ÇØŒÛ„ÙẸơĐ÷f«*SR1˜÷¯ Đ&¨8{R‰«óăHñ놙T¯I…ÊûêÇI¶gđéu«Đtœ$f ̀'²˜z‡6gù̀‰Dü¯8ËådB1rê§•¶¢ÚFüÅÙ^ʙڷbËàç›wƠ3!ï!-ɰrŒ.A”Ÿöªƒ¯µ̣]Ư‰àØZ:SPö=°̀&‰ÛDJ¿sêA¿àDpѨéèWƯ¹·ŸaV›“̀~óVh̃¨S7ïB7E—%ni¥x•<ûđ'VÀq)”…§M RÀ$æ| Đ ™9­¨÷ë°½¼ôÚ»9¾³A€D±ƒ't’/¾°nlí®₫n’jYeáÖœ\Ă•U¨_íq Yä9½Ûz~dêx‚'€¸æÓ|" Ù*$-¬Á‡„…nª\ P8üCÿï+#Êk–Úæ2Á§à=L°…?5̀ï'b5T ̃:V\r;1´¯’ZƯấ4.øÈz6|³³À|ªæùhCDª†¤ˆÅ3IÎßs]ä;ǿ¼µ6₫ƒ4Ë_r~ĩ"‰*µ]ư¸µĂÇJ¹¼i•2FAùhN‡çW‰~k“ë™çƯß®t³ÚÚIr’uḌy´›sÄLXx˜ÉZ¥đêDlĐ_ưg„A'Æ•Èv×ơÁh£Ư½­!ë¾₫qÅœeä&ÔđM±9BtTơML-1߇®× „À…hƒ2=ØŒîÏJñ„REåߨ0¯G_ͧ iaƯøqûŸO}âS•&Ÿwvá¢X̉²æ/E¶l™±¾Ïp¦Ü8%CĐñ}×|•ÚLk_́ïhX2^lEÔéOi€†_ó]7K›©¯qKejï4CDW–ïïûÈV[€¿̃æ»bĹ‚dy­áoDS±pT÷ ŸÎ`êÑ‘—̀ª\˜’ó¨éíaâ Á±7,}ª!6¨|gÑKåẺ̉Ùj“ç’*ÈzÚ¾1kv²]È€¯@åÑjƒm†ÖØ=Tñ.G\롤eê:ZMåưáó˜CÑâÇƯà kÇçÜ‹h½S Ä·é›÷˜}¿`; §¢‚^eªta(N`ơ„npØÀ;ÆÎüLÙו̃’r\»̀́"Q́BƯp×Èoà_æ¨Î}b¡Û›)É̃ỷWµî;¯—¾ ~€føŒZ7jáÈÇCIf¬±Ơ&ÔƠˆu2Ö]Ú₫ùÊPÁÆëƒ'bWTуĐ-œøƒ\2_­×ªhcÖ¾—_2·2$-€ßî‚gë¢?˜§ÈÊÍV½‰[a«sÖÂ—Ă˜§ó,rÛ²g¹ƯWS»̣#‘bn¢²dèJñIäêAđâ¾®Í× d́áöÀàØ> ¦¦kIF.»•u;]noöÂOK¾¡ÖYAÎHPS^̃û䢪°}é)o¿_A2Đ„‚hR èèẰ%9{Åçnfe„dµđ;TRcLˆisë ̃Ë "z•éÙĐØ¥úÔ\® ó¢̉V·»B§ÇÈÆ`†̉¿V \çÊnFÈ#ÏAÿz(đ·Êh×B º~†¡¬Í,Í¥\0Œe‰VzKf7Øsư«løTM_ªx¥?AmjC×)ø3ªµ³5H™0ïÆè̃U™=¤¨Aå›S€Ù¡pªk@¯qc³÷̀<9^(ïGH—”½a¤Ùư È^E…@¥µä¶&`!‘ưë+ư!_Öä°ôăøt3øÓ¼y©É”‘®R_¥(s, ͨ–P‡`¹¼‚ !-ß´Íó|ßr¢jY0¤(÷-Ư“Ky¸ă ߯Đ&¦¢9ÆüÊ‘>Ɔxox Å’{жW®Ôœ²vö“³˜ơ6j{̣ß‘K]îùÙlÔ%ˆªâ%́àÀ|dïé”Ú+íJMøƒ2?,-_1kÿ´[ë;tJ#å'N°á̃áÇ.«¶.Ơ³’»đBPäçsY.²Đmä|0₫zƠƠÄ CôM\d“×M’Ed>î·¦凯OQDtxçδ!­ë‡¾¹Ộ¿đ‘˜±|YËl9ûÓÊr-¾EùNƠ0ñMxỌ̈ A©¾Æ40›3b*VŸ#°w„Ø C¼DCÍî[ˆ²t!°éA:̣W×ßog•ù”!ÔÁïÔZ$̀•$zXIñ€ñ­H Ü&•HoûPjT9D¬˜`5Ê‘]®¿·NbˆÆfûT )’̣ˆúˆǘ"@®Ñ¥Ç)O䃟€̀ÉA˜h×úËtB±Æ/[j́ÝtVs»oö.v†Á5¥6t1Rå ±₫­©Ô…ù·ÛsơóÌÉ¿nơådÍù‘:âcPk Ǥ́…•çŒeoèÖƯ¬<¥®º~pÀ¿„₫ª>®ÅÊ Båܸ¼:›ë—ÏW!¹„>¬¤Uµ”†«Yữjươ‘ư !:$ «•œß¢w‰T4ï3V/ „Äg®EÄơó,C̉́.ó¾ÖôPˆ dÙŸhU²¥¡†G6]ư1:Ăb’,Å÷nÙ3K’ƠŸS½ùU¢?:w%)|;lơ†x(©o¨“}ë(ü_‚S|"f¹:§™è_UäD7/…÷&ªZj(n„÷d\sÎ`R„â´‰¾%?¿^Ct9m¹™Æ'Ă1´¬e‘h²Iˆ̀ÇïO»ósX÷Ó¶¹’\DVnÚ^ ›ûºh|L µç}âWŒÀ…)ÍtyÇ¢zv¡¯̣,ä ăí÷:Ïé1bˆe&@¢m3vªÿ–ö†kj`™BLü1§å}o')hç̀`Đ²Yé̉ÉÜŒ8ÇøRJ†5¡£J>ˆƒk •ïçèfA88Á‘`2™đüỒˆÏä(Œ$QM¹)m 4‹ÅöF:E$²NÓE nN̉~¾&vŸ»ĂÑ̉ƒÓ̃J–µôײêâO@°xªß`Å_£?Ortũá«;'y¡Cù©÷ÊẦƠ‰múFêEpc¨esj>jÿṿĂL ¡̀5ø¶ÿׇŸô;„߈uyÁ ÙY‡„y5VĂ]*{7}GU1 =¯·®mơÍv!6eư¤AWß§åÀ{öGغcóË^s–ç;Ÿăuhvë8ÛÇ“6~®—!”́̉‘ëSóG0­̃Ïssk%Åvư¦Ág(̣Ù"z32ĂD(<ûA ¡³–¿ïDNo8ÛM/h9#²»ä¿Ñ2„¶’Z[`î[oîfß2a7öaÈÇ­5Óë3„#úÊæX—whÀ™§]ƠwQ€ÏéLº̀½5<ºU•”ăàĐóC'³ƒF­ÇB3ôV~x…œøÑ±.¯Ø̀Ê,^÷v=]~‹oy(&ỌPPIà”?4±À: Ăb6fØï³G#˜OdÍM¶Î!k£|Ü™ Çç6qGđCSï%1/˜V×PË·2l;[ÔÜ÷¹"ƒº“we…Ă#O¾gCùmÈ5¥;ÿZ}áÑù»½@²®lœQ‹â£̀Æt Å:2Å.TÇ)Œ<~«-èDªj?—[7K‘̣NâX M}ùvÇ¿ÍäM•Y!Êîi.b8>äđy-:‡®@É©%)JMB̀3 ¥s{ŒÀ~_n6|j‡\²/U¤ü&Ư ¦ü.O·¯rŸÎºt©K…˜ƒ3mḱMn\í‚›3Ñ?8a‘UmûÁ₫î:nܵ-„qUR‚ÍơÂîáS„ ̣¯I/Z…¤^¬¡Jæ ùîü=87BK>|MjØuZTfØ—£¥îåJ&7놩ö4ƒåÂ\0Á2ÑeŒà†¾JĂ)‘”Qƒă¹ #ÑX1˜<̃1W%C!ôC_!¦eă;(­æÈ›RRđr&Û6‰Z´‹ú_₫l#.ºƠAAÛnn‡¦ s`*áF²k=¼£æVÜ¥rk3PI9Pà”hü0ÁèAô9"3uQ¬ªzëä½MŸ;Ó£à̉Đu·q؃jW3l s¦Ü[‘ÉœqsP‘ó'BxíÄÔYF \Œµ¾K“;đ§|đG9­ªëPÔu­aØạÅa[#)bÇyñk«)í–ŒgÔAhÁ ¦ÿ9å÷V₫u”èr¹ƠuñÄl4ißz˜¾ÖZ¤Ư(¥J̀£×sM¢2çgRœ§̣±ª =G«%Í6 î¸`Ë?@ơt%&#Ï–¯Îêw>í¥ƯWr:‰@Høеû÷1!̃™¶<’vokh s̃jÏÜß$eó(ú]k~rCª~çREG;bdư™°à"]¶¦çŒY¶Ü]ü9ÇƯY[ĐÉDNûÏ…±q“Ír÷Æ6ƯÁܪ% ÄH?+´ä ëÊs’XYÎÍg?|4©£WqÀ·‘Ømt(^Eq‡̀嬇‰~z¢%Hs«‡WrLéàQ2Bp¹±{ÊéSc>çù¦ƒù©¶=y›@¾JKÙ¦÷æfUư­5½9’¾|-?bUécZq¯̀Ăg®&WùÓÈqréd/wZµæƯr–ù/ qêp£™÷è¾̣₫‹_帰ûhb[XîI 5s)µçC1F¾éƠ}À@kôÚäªw­’¦›çÚ5Üwœrï›f1^b-5Å0‡ÜI$„ÄäÔ¹´vi/U d"°jÑư¨³±–"i¨E\r±Øÿ¤T¨=1óÈ4É(.·¿Ø6ˆàDLJŤökÑíÀê©æPtZÑs‚2Ï·Æ¿¥÷ZQ=ö¹™Ô¢zqdé·˜ÈvH-`ÏbÇ7!íËVSª‡Rh]wư1Çé›Ä¼ ,Ù›F†Nªç–Låḯ±'¾q3€é]/Ư{¿đGUp#EÀcàäè?‰zUưư s³  [ê ± ŸmVï:G̃G«¾§5~đÄƠ=]!(6æ,“WcR[Éxˆh¼FŔÙ»{\^H~x.6"Ycö‘#;¶Êç€/+S₫sC¡°…´h&ê}́Ê<#(,KZơa¸¢_C~=Êü?94¢è endstream endobj 1497 0 obj << /Length1 1427 /Length2 1840 /Length3 0 /Length 2753 /Filter /FlateDecode >> stream xÚT 8Tk.'Å”S̉EJ¾ Æ\ $’븑Jm3{fv½Ù3ŒKJ¥”p̉EEG9*)%•"Oú;tP¢’Üé¢PèúïAuêÿŸçÿŸư<{ïµÖ»Ö·Ö÷½ï§·Èƒgl#Àa{ •3¨tXéêíÍ`:E¥Ó™$==oD&¿øIz«a\`(爕8 ÉŸ$#€® œC%€Á SĂŒC§&n₫ˆá`…!àJÎ KIz+±à‰eÄ:_~™oææf”Ñt`ăB+$ĂAÄ|Hxeß• [e²`&—Ë©P”á¢å GdbàKa< ÅÈÀ ‚ÇG£’ô€·‘x˜P&‡p ‡Q)‘ `«¸Ăè˜; €ñÍ *ăk¹ñlE!M†ø|,(B#T„ˆîö\ª,\F*P!‰#̣¡0‘@`´uØÛxˆ˜p|>)G‚eRª‘(f¤)ÊÛ¼ ¬Ä‚‚`T&%)ú³Cp˜Ó{müp7£˜úb T TŒ! ¦ù HH(́d7!\¤o>,l:¾ŒÅp€Ăùbbïˆ`x4ÈP¸‰¢£‚±` $Æ€£!L|HQR( 2<úgà{‹Ä`—@X„ ¤oƠ 7,³‰óÇ‘p°–NĐèçëßz‚a •D|ƒ1Í}•Ïj;/£ñ‘¿mm±pèÆL– `3M€©9D_ÅBÆ» ËtB…0k–Ø¥/ ‡3€<.đ}-7Œà- Èßh¾Î¦ó‰ăÿ&ûhÊă¸¢Êÿ¤ùÙ‡J$£q̣à?âP"‰G¼ •pÅ% ?B}á1áºÂ$4èǨ“ "´`ƒ$_7‘Ú#á°À‘ñÅ£Üsû(t&APØ“"›3èôb„¸ø›‰ÛCJPr4Úù~ÅU((DÆd›Ç¡`“ÍQ B8|”Ä€FE1‘ˆé¢ĂI#554[…kÔ274è«Å`°Mú“Àʾ™L EŒßuÄÅqB–£¤!Úưb̃0óI×c|‹øM⋇ómæË;ª˜&j·ûwªø¶¯Öå¹u¥åÈëDâ#›̉‰#-3Ÿ1s>_̃́7‡¾9àÉ–ƒ‰œ9_,V¶Q¶Ồ´z÷LÊ evº””øod¡Ñœ¾"¯;̣Áµs)!¯;êô8Xêå ÷MYZøœ:M©joâÍeËXÓ”â¯Û¹g{̃¦öÁ §%̉₫U/~Ơ¶ï9X^Éd·̃nÈ¥LDœßÛ«́2x¤wyzw™©–ËÆP«×^¶Jó}2yë`q|9Pz×#9ÛDKèƯùYv¨»n|^ôâB»cơé3̀¶ûÖƒ̃^ÏÍâ EkS:¨Ó¸¶*yW[qf¡J²¹Ørñª„[Q̃_o³­¯‘®8îåẈzéªú‡>5dV4#Nƒ½ù…W_'9‘úzđeV¾r§ưïmy—¼"ĂÙ¡ °­bú!‹₫7ư‹K+ßL¾̃ª¸&.́ÓÙç7”•Ơ”Ió7̀~̉ïâºÚ‘í–ê»Ă5í«<פeÔo ±Ău ÓƯåV{6Xî>ç5‹qkªă+yY‹mZºç’¢Ç†ï±Z5‡\]¥‡2ä&)¯ë¢Oâ•í8S«WtVíJdSÚàO²̉ÄnU4é­g Ū´|ơ¢Áê´­óWœ{gÜHèûiW½đ]Fk₫a¿sówVk6ª†́Ü/ ñß”­ql]ÁÊĐ<%÷{YmI=âY·×µ¨ctÚ‘A ¡áº|ƯÀéK;_¨ÿtoy₫b›%. ‰²“øÀöxá¡ø©±ù Y¼fóîéÿ·K_9Uûó=₫“Yª]7\û;/}<µÓÔªR¯Å=f¾6.4z₫²ª~~9–»/nđb˜Åǧ¿ECFq¨<ΛGuï¥íh£ăư‡«.ÚÏû´³Ç^¨qŒ’ƠxÎ"<äö7ïœO¨»‘I¾ùùµßŒŒÚu -gç$¸ Ü.o=·Nç_6åi¿ôĐJ­¼‘qM¨ÿ„Ăeÿ~¾¼óE‘Û„ú¶ÎmîƠ@c3sÓµGwk\ÛÚ´k"Z8qF,q®ÁË®ÏeƯœ†0÷ƒ:V,̃Ư>ùáÀ ‹¼f́Ó}î)'«Ä¡Úçm)v}7S&̀±âq[¦j½xủ§T̀bÍMM^ÈzgæjØ•x¦³øĐêaµ'ún~…Yâđ@ÿ©¹÷ yÛè–#Ûđ‚"ç‰ÊJẃñƯwŒ¦Z¸mâRåFĂX|×]qªùUGs<_úd{ +¯¬ëôȈ|p)¯Zs²Ñ3“g×”́8)@{zđt„ÓÏe,Ÿưg̀ ©øIi±K™êº|ûi²₫̀f°ÈW3¼B— ̉w#©íÏiêéøŸWgÈ,J3'Øù››ä́̉ÇUamÍ—¤"eë»so ,¤íkÿ¬¦~è0‡·VqÜ¥’$ßPç@#vá¤fÍØ£¬ëINÚûB¦mI[pơ3j×â½5 'vG—œ̣{›ËƯj¿skL64đ ácpÁ ½;H«u‹OtסG‚–êXv]–z]́ñ›€>¯‰™×ÿ̀‰±*<́[ŲºKqkªw pµ|zújhº×ưV4E~¸ơ¡¿§+aÿå:ØÏ0Â-·n—¢4ï×T±ơ/³<ôÏ\ i¤ø—äå9¶Ô5³&ƯÙ]ÜV¼£lĂ´ghÇĂ©Œºµ% j‰@£ÜÙă–ü|8oÖ‹XXµª/U ³QÑ“GhĂ<>褽æƯ2slí6̃©‚§*feS20u^A¦C¹ÉËN>g¨iA¦éçî ”MÍÖÔ7#YúUCy‹˜lëµ=Û»öXÑ{̀ ›.6.̉9«¶_ă˜Ùé3î-óíl1¯¬̀®JÉÿË&̃UÇŸÑ<¹Å÷Â…ơJ_O_ơ†}ü-y—î4_iOHU:¡ưYO¥çÆƯ|qßÓ/àô”ƒ gÑ´?6v¥Cz̀ž¿´tƠuGn [8€™„»t käe¼XæÑ3#äê¶eŒ¶û7ŸOŸœ½à•ÙeóœÇ¶*¢‹I©’“AÇä¯S-¢ncû× ÄJáM{©ơ)o=…Óu͵®•T s̉ử’~~YÙA;×6SX&°¢Í–¾¿n™¯±Ö†=7Ú ·lÀ¸xµ¡¦à–₫Ûj£Ó53©Qïµ—sOä̀Ù“µ~v’˽I´ô"ƠC7çùWMÑ÷›9¯iäriSdRNëß%9¢Đäi¾¾CÛ —®Ÿ”’”¸ä|櫽²̃MÊ!mf‹*¨_<>)ĂR™LëTÙy·k̀‰pùH)¤´£ß[»âVo±Ó§ü ₫ú¬âK?̃4¨LF5(”t ¸³ư¾ú†;́ảaM®~¨ÏKƯ{´µêÍs¥‰oçn Ïpty`±₫ñdµ‡ ƒößEœÜưÊ3#N½kæfư¡NÑh;?4äg©„ ÿ­¸fË endstream endobj 1499 0 obj << /Length1 2603 /Length2 11973 /Length3 0 /Length 13452 /Filter /FlateDecode >> stream xÚ¸T” ¸.L‰ "!2¤tww· 9ÀĐ̀À0t#ƯƯR̉Ư ’̉­ˆ ƯƯyǽ÷Ù¸Ïÿ¯uïb-àyóyëû¨ÈT̃2@Œ@R0Œ‘•‰… ®¨®Î`aagbaaC£¢R·€Yƒ₫£Q½Aí- `¾? Ä¡ .“Âàv0@ÎÁÀÊ`åâcåæca°±°đ₫!Ê:Z˜™r0ÈJbëµ03‡ÁÓüϯcZ+//7Ă_îQÔÂ(aæ xFc 5à-ÄØsùOs̀–™ÙÉɉ hcÏ Ñ2œ,`æ5=ê2ü. ´ư]@ƯÜÂ₫où[ˆ)̀ àk cØîá6Ađ䀷² e[øoc…¿ ÿôÀÊÄúo¸¼²ÿå 46†ØØÁ.`3€©…5 ,¥Às†1€`“߆@k{Üè´°Á ₫bH‰ª€đÿ)Ï̃ja ³g²·°₫]"óï0đ.K‚MÄ!66 0̀í7? (È̃væ¿'k†8Ư₫¦`ÓßE˜8Ø2k€-́@²ÿ˜ÀEh23 ÀÉÂÂÂĂÎÙ@ÎÆæ̀¿Ă«»Ø‚₫R²₫Ă+đp³…ØLáE€<,LAđhnö@Guy¸ư©ø/Bce˜XĂF 3 0ÚCt¸dú7†já Đaï+€å÷׿¿éÁ×˶vy0ÿk¾̀ï4•DEeèÿ®ø_˜ÄàÆÈ `dcgprp¸xyÿ ¢´ø‡˃§,Øàư›+¼IÿĂ×ñŸñÓüs´€ÿÆR‚Àw yXq]Ncø7ÖÿçEÿËåÿo¿Gù¿­øÿ&$å`mư—æ/ưÿG ´±°vùǾ²0øú+BàG₫ߦ ¿OVdbá`ó¿µ²0 ü DÁfÖÿ¶ÑÂ^ÊÂd¢b36ÿk1₫kü>1k 0Hboñû™`deaù_:ø][ÁŸöđ}üK‚ŸÍ3J‚!&¿ï‹“ „B.h,đ5bă丱ÂÑäüט™ÀܯÎ` ¢ư('€Yô·èoÄ`{@ÜfñÄ`–x@¼fÉ7 €Y걘¥€Y汘e<»ü‚gWx@đ́]éÁ³+ÿ‹xàÙU<»ê‚gW{@đ́o€YưÁ¹h< 8—wÎEóÁ¹h= 8í/Üø/beƒ‡Ú[À'lmúWÎÁö[ _2 {«WxX£?\á́Œ€Đ5¼.#(ĐØ I™Âä́ÿÊÿ>µpbÆÿ"Nxtcˆ5|Ï₫%Áñ[bcó]ø2›üá)HĂ÷‹ôŸ \¿ơvđ›}pWfúàçfjáøGŒßjˆô¸‰ÙCD¸̃́÷»ô§ œ¨ùmøœ̀]lÍAà?,à2‹? œ©å>«? ¼Œ¹à%[ÿ¾°=¼o6nđ ¿̀?ôđ&@ØÁ!ÿQĂ+²}PĂƒÙÂß¶àÿŒƒơéÈ/Ă¾#‡‘pÀ»ekíđ[ø‡f»!;¼UvÈÄè¡°Â¥ô“̃­‡œ¿ÈñvrÂÍíᯓÂk¶·Ú›ÿNí(ü©Î 3‡‚₫˜3¼N˜äx ‡‡Ơ„çüë3†½1úg³à£qü›éôÇEÀƒ:ÿáY]₫€đF»>p†GrAÿfđŸ'¦±̃iØ_¯4øăôđ_O@ g1Ú·iˆ1¿Ÿe•_óE…(±ăê0dz£“'+’„몾â—ḈŸBgEÛ'×B/q¶Ù îë­´đY¬ôÜ“Cùđ¿Ơ4?25ZfpżڶWp`[“ok{oÈ61ĂßoPës:™ }É`w¸:•¶)-@ƯPv^j¾ÿøMỬpxècv $¿Ñ´–2±JщÉVYJû#‘áƯX©ÍËäî¯lœK=ß‹-~%om=³•?IÛJÚèä"’7LP­tJ\GÑø4ûùĐÙªÄ ]¾b@ öơ¯^̉ •o~NªNÎ"/Ñ[µV>’úØJV#áG)3½¦ó‡QhLåwó‚–'vS"íŸMªKĂ•3#ºåI»‹̀]68QÙèQ¿ ²½Lms°­V10Èv“?®>¸ADªÄÉP_.[d™‰qÔI_\‘ Ö-§z:̣^—>’˜—–:\° “³×:÷«Q1FºĐ.G¾ÍûÊÚå«+́%|Z®âØtŸàg±ûŒµ±£â‰t±1 \LÄĐÍù†8ñ‹¿µßbEÜóÓ́¯´Mä#  ǶÈĂńü|Ç×ßÁ8"àƒÑMœ¬¶zë‘j’qO÷ư)₫pxGu4™9̃ˆÏ¿XJ°_ë!‚̃u7ÿæö„Œ¸?ºA??₫³V["².DMÄÅÙ´ù¿Bmô«:sØÍ@fF¬Z›üyæÖØiŸb;¦,ï3Qîªpf„~ŸsvZAÇÊ—×đ¼åÛ³>Óí Ï»*7Ë]{ÄŒ˜̀Ø–³à#E|ƯöCÿé]XU¾p$Æ)“ᮛ˜’ƯW…’A¬oˆ_v¨Ê|#a˰Ơ/å Ûi3½‡è¡´üKF}ÛM§§Ô {JiÓUG̉ă” U|:5ôöºQ\v¨§̉DñWv“(•T’"á¡VÓ5¯.úQ§‡ïüÎu,´å{́t"g*ŸŒ Xă“C½ËÉ=‹¬®Í\¾B„´X«M~­º×å:gˆÑ¹˜Åo\°.2YƒÎ> 39KCk_ß9·“ÿ(†‹"Ä&W"˜̉¸Ñnø¹¼#ñ¾Ă¸´!Á&»åCt³̃¢w̃Ñ~À’¯TÀ¨Ó.‡'¸Öă²Z¦X$ͤO»IØ„ĂÏo÷Æ€aưE=h¯>"¯QY‚­v9&̉9ĐnÉYŒ= ̀|l"å é$4ª¸¯jxºˆW ¨ÁzAH;‚ÂƠ3A¼ˆƠß$ˆC(¦PV x’©̃®j¥ 6´R.‚&^X¹rs̉Ñ'”Û&tyaÎïî́Ñ¿_ơI0DG\úz¶r¾4O¯ a»Đ:8wư¾¼³|æUƯ½ù q´đNåĂr/́¸ 0ĐËx‹&$_È«ŸÚöóđ"´dq¬%MK•D×l»Ê¤°"ƒ~R÷5¿Sª\á‡ZÉ<Ÿk@@Ë/Ö(đ&<+™µ¾ï(WñvƯoèÆÓoDvƠQxÉ{¨Vs)éñ¢BËYn8u¹’Á§Ćx¬Eeđ&/ÿ¯re‹‹×£›ù²y°±ÊÉSPA×_jºC̃Úǽ¾Aûé¢D­üôqÈÆ̃~P#ÖSo'Àté&ÆÉ!´Æă…à³}̀ë\kï_̃ừJö%Z\¯¶Ó}ÜR^0`'ÀĐ ún\QÅ Ï%·¹à=ĂëÅ­ê}‡í^<Î₫)=·M°ºJ“¦ÏÓƠ*Hôáuä«/§pàw×…ù̀Ÿ Bí FŒd§n]t Ó̀åzĐAÏĐ•w<(o8›*µt^¼È0D–2¼løÜh&¬ëûuëRm₫Zƒ‘í&Ù¸*ºªA¿Z3&́U8˜ÿºSYw‰9z§ ¢ài$ÏF¢}’³Í<…G߃Zbÿ¥ßi’w‰xRJ1‚jJgÈ¿¹Ù•dʘ™Aqœë`‰™H–h2œ1§¨·&-Âu¥€2ÉXñ¥1×̀ _P{§Üi—Öñơ¹rErQéơRơ=^eº”WÜ‹£d·'Oô¯< ̃!p₫@Pm•î-9{1¶v*́FL1YV`h<¢Ç€óƒ7‚||ß]T¦èỴó"ünÛợ~|ö(€èœÇmÇ4 ]ưf\Cë°°Ü,„M¾®®´»¶̀ z!ü£&É\é¦,Ç…8ïØ`JơÔu¼Ùe ’?Ó©Xd÷srGüj(]É?ØN/c÷aóY6+ÅÈz†iÁ¯V°¿đƯ³æ¨ç÷^”艗´’¦ù‹¨8‘Tïof Ôê‚©;¿)Y[Ô{à/dv„́°́œhÍ|Cn] #åL C̉Q‹ǻMÛP¼nÓHxÿ½1ǺYoI˜̉;½œz¥çg•¯y!²¤ÊÔ­²̃=₫øz A+Ë,Âèç%ß~ºy‰Ä¯Đëê¾#Ä0/=‰ˆ.ÙsVÏh˜7sµ Â˜ö± :°°~†q•Y$Æ#:íº1µ WmĂ00›R­2›©+Ç'#d$ËS̃ VueÿÙ¾ß₫ZSéÀÓèØ-+¢s[M.‰Ü8̣¼Alz=ư2ä2vYçŒáÅ]äs',?/- ÚÄ"[bˆwÓ4 *JÀ êÑBwj>eúPuD/'ưvLhçøơî Î×Ê_Æå‰<Öªo»K%ơ¤>_ f>vG½@f§Đ÷Ö~ÏnƠ’ă@ễpÉù‰4E’Êwiêăl̃¤[ë%I±]^LAê(íƯ›¶…ÓËOkṾhUt PE;ôœ1®†]ªk2Oåá:Ü6©÷¿rgÄЉ i D~f¨Ø¤±(ÁvêÄ́Q ØÖ®]•m^O_D„Ø;Ïo¦/TN¿¢¦1và. ?Y3@›où^ƒ]¿Vfí̉uî¶á," * vd›cÉăëAí’ÖH wR‹?8³'&@S°wg‚r&úµ̃}XÔlë–®¸Ÿ¡œè3@¥|mˆæW°é=Œ&éWv"ÀuåƠÂ5¼Mä]ZÉưDZâ{‹çÛÖ‘ư !jWé+)«h½û¼Ê©€₫OXí•™µ_4ƯíáyăÛ/ƒ=đĂMyJúA¸ƒD:¦DYj´S$Ø̃u„ óâe²÷x &% ̃/|½Ff\Y0jœË\l»Æ°ÁÛs–UcÈk(ưÎa7öä zß©M2Z!¬}5qêsuúỬóv¸À6TÆïéùÂ¥¢ï/ƒˆË¡|SµQ“s¤m‚úçèg—ª‚jvlŸHQ_£-£ÈŒ7yE¡o½1GÄq+ưÖHÆ_ù&\o¸P\»Äî{kóWêªƠ₫ §%ÂƯ)Jjçôk5₫+-[c€ùDÿŒ­@×ăA*´Ÿ¡“$H~l ÚS‰7]ăM‡—ü1”\éuï8½G>(zUfưv¹ d¹­@O˜ ”âè”cA‡­e„ khLµÚ>^¸0g²m/¡N%̉ë6“ß×d਷l2ó…56˜™÷gCq+:x$2Yç³T;9{‘é¢ÉÖ̀x¼¨]Úh?"IœÉNŸWJ³Q–cïÇ£´|^i6æøŒ%Ó&Ơ˜\3rûơ')Âêơ(*—|FĐ¯n9e+ê:d¡‰¡,"#a›>q‚gü]ü¾û®ØNkjé³4Æ 1ƠÊ×FöûÊJ<˜‰Ò0=»åjd§Üsp…ÿN"̉BµíVĂè¶o‘c÷̀AdG˜dø̣™¦kW×¼uZ“]¤đhka.k‚³̣’INKü›W®¸)¢O8ßÉ*Đ0́Ơ1Í]P)$o¬đ7.ùoe%â-øRbfWỶ~fO³$íu¦é.Üe6»ƒk·'ơb]}•”|z>mäđ}çèZ ¿ »éb¿x1đHÅÓlưCµ4T¯qÊr5po}öˆ.ÎÈ¢Ă Ơ TyI}f ¼u-­´ÀâBÜRY ÚƯæev͇–ßņn¢vÆR@íh­k”yL̃x•sŒ[,Xu\ô?“XFhG=Ú2QßÄ\m-â`Ù(đAEb—fœưC˜¿¸ÚQ•–$…ÊVmʵ=¦z,•0·U°đh>‹‰V^Ä´>”Pß”̉?@“̣\;DfBPåïçO“q àƤă7bVbgâ £4½Ö [’k«}wñÜ̉¡å¤.í"ª­ˆbø4áÄlS1NŸOÑ‚ùZkë@̣©/ºùÎëÌJÓ%©jrU.e^(ºÆçô›É†§†¸P¬üúkS‘c¥|}?\ï¤/v‡ ²â‘D"* ÄÉqơñ•U™8”»t7.¬@/§Ch¡ñ·ÎtÎ"‹ Pl¥JbÍ̉ª#—S¤µSo—{ Ƚ0[›ƒ̀6±¡Êa‹<°µ:ïe3¡ơKÇsT¿sjªÉ…zo8…«\†=ç²¹F©|ââóÈ”/!‘¾ôĂRï ÷đÚl,…¸ ¡öÍCŸ$µN2%!̃i6“¾ơDwÔqŒKs¶ƯGÉwk̃Ñ‘.ÛDôE¶zWoƠ[ưaÚOY¥N^ÜUÓ«J;wpÄ ~}(îÜ00Œ1®ü=Ëởµuk¥‚5yé&?íUN¼3ËR}Û>ỡr»<ä&Më¼±¶xJFóLà)sâäªnôÚ–`̃ȸg·ư,DÈ Óˆÿ"\.rr;ÑRë¢a¾_Ù†¾`Œ-₫ÙơX,Neä”Ơ˜y¼3ëˆ!WR¶ÇzroE^(Ñ¥u ¹ÿÜgí^B¡–¾F̣¯ëÙ—™2³ÚÂÅôơŸ‰$́B YW¯pÍ ë¹ÔoĐ9Ù¡Ơ%Cb9J uÛDeó(tß+ #â9ZdØ̣ëEQ^̃_ñ₫*ÏÆÍ°’₫lÚ–Y6,Ê–^ÓÄç“z>°7ÊQ{±wăÁ¼U>˜₫rÛm-¯ÈElf§\{̃xí₫ÓZ5Wû‹g˜ô¥…Ö+ÊRJvä²v>₫Uj¥„_ŒB("Ù–ÅS^Af̃AKA†uR‚…jzQÔn”7Nö'vuø£.tϹÎÎzeÊíª')lÓÔµ¾Àúđà¶ăỷ›êûÔU‘G^DNûùđ®ê}`“/ÖÊ^ˆĂˆ¯†́G\ 3'€yÙÜ/êÛ\—…Â)ä½,qóĂ^ÛóÅX¸GxA’̃̉d̀‹ûF”©3i#ub½¤n!^Ëẽ¾ø1aơăƯ++E[°|₫K¼£†äÏ((shù]@y¯.kü­Øœnư%´SDnYƒ4ÖÅzÖƠơøa€(Â[²½<÷*­¨¹¦Î;¦×?ĐgÜC}¬`°¯”Nº›†C˜}_(ÊFOfÀY=Ù”̃ưfÚ©®6™×³Qö₫’–üIâ¢\Ũß?ö¤ÔZ;ÇcQ™rô đ=!̣­|YÓ0.̀Ö‹V²|•DCÿ9ùÀNnîüÄ©±E^»z³«@ f̣S$Ø̀p2¦iku öc!ض÷ûå^ØƠùjäq8K6ƒĐCä§ŒkJºl´y £ÚxÔ´+•¬K2îơÓ¢̣d¼RÁ5ÚD3ưH»¯NÄÚ&¹Ø7ÈC*ˆÅ̉”YKÁ‚%æA.êØ&}D‰§mơ£»¥uTùDY©!—$ẵ•ho›leƯ×¼ç5IGsI¶É­¾6ÀàµU0^H™Ôyö‹7Páí~uç­ô ØRyy{ß}!(°ó¾Q• T¨Mc‹`a¿¿ N¹7ñÚm̀³[¥wBÑå̃Wñ¢é¸OkIʶ¿F’ë|;Ăæ.?o´îñ́RÙÔ»øơ—±8‘5MijƠ e%#G²́l·‚°uơa\BBi=ÇTCÉƯ¤¡E¦Ê5ê½.-{}]­ÆM3̣_«5û%I'8~º;du‚=¢/ GöEçS›i^¿ñ3FOµ1Y/&$àIét¯±ïưr‡7úB†JÜ÷ úÖλ„YŸ:I?BưM©ú]Đfîü¿mYÁTÛà³Y#_I‹Ä ®}\Ó̉[DU&®¾“†DÆ:Y¬p¼4ưf]ç8^{%^k^Au,G[£s¡½F₫Îñí´ú‹%Ówó!\¦8o/³lOÀYRé?>„byị́*a®1Èvt…µqG ">a×Qp÷«%¿ÇÉŸÀmÜm1µs¬Q¿À_Öư‘Ÿưæ:KiÎ+ƒ”g₫øÜë̉¶ăWÉ́úG?´•”Í ô³đoYóv÷”±Œè]·ß‹×́̀´ç7g- ÛEƒÓcÅ»îëSé̉¿&V:' øV[hí(¶œñL7·(ÈD́îCƯƯ¶Åá2g ¶b’Ø/ù·†5-[øe9?²Ăư=ä‰3Ñ3 ÷&©JØ· ë‘(D?“h/É›Ù:œơå|™†ö†>‹ÈÙËÁ¾¦ºƯ;.=²ºZC»ÀÚÎlƒû½ÚØ*Möơöx²#b— Ü «åÜ€Xä~Ñrđ|˜â´ >å`VzJßDú“̀Î_`08{;êE–»¢Ÿ`¼?wI&c4Jbh'fNÛm@ưxá£ÅÙoZYIÇo³M%î‰>ôÁ|/*AÊ;28ïjV HŸÑtR)PƠÏ/Ú©äNà5;,>‡ĵ b9±G`f’{Z̃>î́ÔưṆâĐà­sª °ö»›w.qü×Y$]œR¦­|ŸvƠ4º¦(…̣s;ª¾oèxÄ?¹ îªÏ³Ï% ÛÍ|"×ln3 Óư4÷uMZü‰é©u€5 àÅ1K_Íâî“8đZ:‡ĐE"‡^kâ[/Qˆ(P>z¥\Đ¢0«+ÙưB.[úæSĂ¼¸·äơÁÉU$ß¶Wy¨†4«(5g·<ôxÔM; Y[m-ơ·!—!ä}Ù É‘/?å™ÏsWÜ'i²t½O>­1ĂÆª˜¥=^-óÜO¬²…Hóà©•Å´>º‹#^»ä.“̀O~>)Äw+Lx¯ÚÍ‘7E6CëøÑ¥{³3ĐÇ´T•˜!©fhXKéøĐXỤ̈}æ›8f–À·7ÓØ;¥ &}ùùèƯ¤z´ưî°Ë·7Ă—ƒÎqzXŸ~vûT̃±Vø`>¢ụ̀¡áĂ$ ‡nº¼¾½³Pnö£Ư`²Đ{‹àl¯¶f—ºÈ^ÆhT§%A¦̉â+©H4«Yw†_sS¼M’a@[´’ào 5)‡Á.C Î̉ư~a}z9×Å{ö*±œd ưTB߀Uü´§‹n4K1·²ƒ<”y9¸X º_qöFׇVäu‘Ó£ÍƠ ̉'ÉÛŒ0f…#(q×Q Ù'û]á·ª»;Rj}2I#‘P{_q‹x¢²̉T‰@x%ƒ2<œ,₫ÚÀ“fÈ:ï§û)sªoÛk‹ñ×ZeŸ†Ẃ+('Ø‹A²GFSÚ3·³C{…£‹¹i½Æ!©"ÅæïĂ{;eT$‰4ïû*IÖ—yl¬V/p¢Ơ0#£”OÆRẰqªüéö)ZuĐ Ÿÿx…u›¡aû£s/®ªÈ7F*‘åq̀ÊU@ú÷Cf…ï“Å*TŸù¬ëÔvTyçÊ«̉*G–âwQ {(Î`ƒ|Ës†}>…=X¶2«Ï7ÏƠyÏc™™\í Åèo)€^†ă™ă§¢,S°ĐK(æÅ½yÊÍ¢qËô¨ ́`FŒµº8·1eQÂZ!²̃Bü¨û©E ]®>Oû¦½Ë4û,gZ’yX^†̣,ÿb‰vÁä+ƒJf̀]MÆÀ€káøÔ2mÓÁI—‚đ«ס·sÎLµƯ•ÉËHùQ‰7²¯B(=§9Ú$×Gá’Å@SÛïCѤˆÙ¢’ºN¨û [‘Ib Ư4ëÔ₫úÇP|«rQø{Û#pË€3Z:GzÁAéw–Ï-y!V›L©øGî>>u5}•QØeƠxb=Ä訮çJÁóá`•ªÚ´!QS6Î|@ƒä%T*›YX¼́[ ¦§ t[;­MµÉÔ'V‘#U¦Qù=6@nU v[ƠBè¾í ̀—v™³±¥™Ú¨Å Ó@¶VÜŸôṆ¤âa+QĐß~6>ŸÁÚ¾­ơá-d[]à8>¬¬:ü8¼ ‘™lKyÎU;½"ê~½i€¢|Ÿ ©ó1æÄ,¿x̀Sá´Đ¿[¨jjḲ™5 ‰À±}¬t@+Çå•n©µƯrÈI÷¤Pî=üÍW‚̣”[`,*•£9†9ºăé«àGÁ ß 8 tÛa:ăË—@21\[5¥̣TÚ̃ê'ơ\~î§ü¼ø:‰q,ñ½…g„?÷;m—¸i’¡Ú ®%Äêü©¾Ơ¶æT®«Ê=ä .ÇL'¹»†Ÿú¼î=ø-X(@‰ÑßWKÇø:¾¾À°c¡© —Óa­ä ÀEçöÈqpÓAIĐ³¿‰Üsç³ÛFFj;cÇ/è}¦û‰M‘ ¢8i¶,Å!pfi.j z.QSăÂèrBơÄ-Â!êФNºí+¡ÔsÀÅö êñ9_–¸…¶2nT³!₫—mËôö¢¡Ä“Êf3T4l¾­—6±tÍ·k¥Ÿ­Æ#è‹[ƯjÜO^Đ< “µ%|ñtvÆo+´Daf̣Ai€~»é”™KbI[µäq7·(&¢]úé·%¨·ƒnÚQôÂÇ:ˆ4_Q;±­ç~mWË+f­…$é+Nâà́›Y²¨6%zû—Åi²*x(Oº;¶q·ßZœNqE+Q“´̉çü¢±i©L–oÎz1’ĂŒñ́ZÈ~âr¥|›ØÜp­4f{9Z#̀:w₫mÖÑïÉ÷+úŸøÈú5&Ûñ2J?te€s$̉”’ë7x?âÈ{ÅĐviÔH±\Pr'–úÁ(kåƒHǽî„ùRZÂê%Lr¬s{<Ăˆ¾O-„±×®b/kϤu€®EÖô¾Æ–áëÜ N9:ú"¾ªÿºbR]r!ß6ŒÁ;jáÖ3Vä" ̃ éù¥‚ÉÊ|x|Åưl„×ú"êÇxUÚ«.•UT¡,îqL¢k 1‘ ~(®'aB5Ÿ ư:, ¼G3oéẲÂṛÂ0Óóï(AbVª«uM ¢m¤A^V7–́<àiÙÔÛ6ùDäúª\›“&Năë9dư43Ók^\˜?eW+̃¹!O ¸iËäƯK₫ÁÁ‚o*ăhă˳úú_uu?tÉ9ÎZb5Đ®ă_7únO£é^Á \º_-ûnÏ©¾¹́́›́‡û¢åJœG„zRÓxÿ†{,̣M´^ÅB†"ˆª)Û´EKü₫fË'ØeđfóÄ”$́Óc1u–Ø6Ÿ/YÈfœ€‚@\Bßû·MÅÙj’‰YèQ8ú$yA™å³ơ„Ûzo¢Ók'|©yr…¾Ÿau°Lú­tªÄÿ43:âYí­w÷àÁÓ£¤a))ơ¢¬ü Iwp½Vt|;qáđ3wùV[½Ú—­eö¬ŒÚoQ:ÈOx Fù²ă.réȨ6Øß ³C5½/¹øZB©›û¯xbÄÖ̀t¾¶Á‚q¶uöl¦+^¤­ưߤ5\†€bNL§üjÑç½ăơ«%C.RÅÉ‹J<F¼”@6ªwŒ́´ÍŒÜz1IÛt“§-÷ï÷>¹P};y>Ṕm„*ûÖ¸ù‹! 2X=½Óß#¯ă8D…•\œ>)ß»ǹº̉á«; [̀/mIo\Íơ…5uŸ<Ê

5¶?g ơv}@B ,,·b ·¶&Ç‹ô q4ê|9÷]²léy~‘¶u#vÁG§è±~º4œ8tÁRî.Jv¶,œî8œ®÷ñu,ï2w3­f¡#Œư-m¯ïOÍ+æ™̃ØæÛå'ø/Ù̉p&Ú́ƠL%6¨ª˜Ÿ`Êđ7Çi¸zk‰¤˜fÈY:?ê’½§öƒ¤Đ”W³d,Ít%vbä>5Eû†̀Jư ½Êj%RZê ÿvØ}›g₫m‘T1UçÉAíÈUñ‰²ü…Ø‚z‘÷ƠÔ~Ä™×íc‹øO׿µñ]=»êJ?Ïxy†’FP~ØB°-µÅÚHyLû3ùúB…ÑBÙ~j\Yî¨=¡2ñJ×¥à>7Ô;¥c¹Ú›.â°́{éÛ₫ñÈŸæC&é–”áÜÁŕgk²në<÷ƒ& ej̉®pÀñ×»utº§öç ‡Øènly½DfŒôÏqj³Ü§¨Ơ扮n¨pü„Qw.¸~â¦á̃V›¦%_Ö~ ..!+Á́O\X"_R¢Íó HM꫘ш8ÛÁÔ{¶D€”b34ȼeÜsh\û&—–m ¤Á6¬I´_P$Ÿ{_̣œ„JY~ÖGб€2‘̉ûÄë ’ÊPN‚ ¯Î‰ âOœ̃¡®·œ˜˜½8,$=ǰ_]×ß4pÜê:Ưú›"ù?)™kNKÀ³×`ºÏ }³̀&¹‡S[9-È@Cá] yZ(m;jëæ^04¿Ÿ̀œ;ÛÖư ¿öƯoóƯX%R“°¶¤iYÖ ́U‚â³4g·ê€d9™¯ål?¾!È«b<Ín’N»0^±Íưà7X̃dnÅInx,áÆ«GѾí†̉Y{QÙå}Qêœ.Pïî­ư´°12Rk¹èLH«TèSͼ Ó[¹¨- 5ƒoÑØ|2'=+ơèD ENÄ3Ïä̉Yœí íxơÄQÓI¥rüđƠØĂF Èå¹=SJV+¿†ÅÓÏ!T4̃Ù(-æë‰µ_T¾ÔHz¨i®æäÚ]èè̀] =%Eƒ—L±x!îf¹MWKxO¶¿Yl GfJ^R)=K¶Ê¨m-xµñ}µÔWæ#ºlH#À•a '±l$)CÊà259²)‚7Ú‹êdûîl jĐÀhư)43Ή©›pT ¥³8e sƠÜVv̀/\7¥(€'ô¥k긹¨<ßNó̀zLɬÑ@!Ơ÷ÏFœÖ’›ˆ?ª2<*9Ăæm«®é̀ĂH —j5–ư(&7µd‹g¿Ä×)₫]±E¶×Q;ç6c+æñ£Ï «gom)»K¾‰G<₫đ©cÜ1G7Œ8̀ÓMâ±Ï‰ mwUª#÷]È®ÍÖ´:ö©i½¶Ưyú$ï©aÄƯ¨ä́;¡đ¦Bl<ư(̃pI?t1%›;;—̃-½»ÆP̀鯠̣ëƯU%¶V9L†!ƠĐ[Åu ûfe>Ùmî*ùö×í$ßzpö’§5X&Ö "ơƒÅö̉jaŒB4çt‰ä§¼Yœf<i¦ưºàúwN½„ß›’^«ÄQk³æƯli ªĂ=¡ U­52&v¯ol´;ƒ^ªäç?Í® y¼sđ•qM6$$¯§@~xµ×9úø Ei5•©Ơ¨EæBGOœßí’Dz»c̀H–/g¹Ơko¥ó/J&‹Đ²åîH•ºÄ"ÛËæ>oÀ÷¨KÎ;Ü«%w“ouÄc,®˜+U@÷é ­QF-8„Ä̀cÂüÈv“÷¯ÀÄlO-1ùÄ!vÔù_‘¥·ÂgÂöè²*̉ÅæÂƠL@á_4+(¤Ÿz{}¸FÂpt•´ÂÑfi ü¦G¹í,µ€«B~d-‘¶ø\«]¡µ„­Ür=ÍY„­N§,çª̀¨ơƠoïËœO(@­ïØ·&×,êhyí¡|…d$e ^ºR0E¦ø¸RV1®æ25^ÿ̀$Ô˜u}Ádé2ß»¯ñó’3³­d3‰l¯ºÈ2fg̃7|ÎDÚ}æ3̃Ñ«5x5¥ ”Ư&åU}/¬PJ5:~‚ùJø(±(x:Í̉->“ ¹ïåƯy†è†VƯky¼» ƒù7±êjÍ?ú£×̀QKqë_ƒÑWë®iÍÎ^ åßä¾ 89Z|Ñå#ïâËGµI•¥¶!¹QWÛQ¡­µNĐ$xE|øt6́ºfjr¾UèMÿ­>N±Nh /y6$‚àñ\Gñ6¹\,ñ1¹ÂDc°œ—É‘ĐØ“]»Î 1¡:̀Æ6&É3P<ÆdUx&y vĂ8ÑF ùfÈÜijX!,QœÓĐK࣠&́ Ñ‚Ùcƒë;Ÿí/¶1¼7D£X‚ă-y†–‚¶Wî:”[>{wËFëåM¥º=»tMs~6®#ưúy’(]V’=đ̃ôËÊe/Ù ËXưá̀¨àÚ¡÷OmF.–Ѭg€Ó8×|(¸éÿI¤¦{ endstream endobj 1501 0 obj << /Length1 721 /Length2 6909 /Length3 0 /Length 7498 /Filter /FlateDecode >> stream xÚmwuTÔkÔ5R̉å̉ƯỬ5tÇ 3ÀÀ0Ă ”2tJ¤ ]‚„tƒ4 HJỊyï}ï}×»Ö·~ÿœ³Ï>ëÙg?g=kư8X5´©¿'TD@DPX`¢a¬/",##âàPCAAhñ„†Ê, € Ô " !â¨!=ưQ0W4€Û‰ço`A`0À G>…9¹äŸ>}ªüÔÛGå£(ø§É  ]¡g P3Zih¸5 ̀P‚€>`8̀  s‚"¼¡<g$ ÿ'8!Ø_¼ÿ€x E¡ÿsF!=úê¦*†¦u5!S5èiưiG ½eÿ°¡N(¿¦ă ÿ‹à ÿ"đÑU”ß?‘ ‘ˆsBÀP‚Hè/ß´ÎH€ä?0ÄÇóß̉Ãô¸ÿxÈ€@ÿ°}àpÀ­†ôđôACQ}$BŒ‘ Ä¿, îÿÿåưC úăƒ ÂåsÂÿ@0o ˜„¡ÿXí ‚ÿ±èoÜúϽèC!0ú¡üøs£$îÿ?G₫ăï…ôfº|ÿ-Àßeu„C¸LĐ¼¡ ÿ— Ø?Û󯘷 ̣¿¹>‚ùl„ÿZ῾#»ÿe©ª"ưD¤¥b¢Âqq €Œ¸hđÿ‘ëäƒBAè¿ ÿ3Ë¿ùß‹…úAˆf‘Nr‘n˜Æå!êEăø|ă£f|³"Øs#G6°^WˆĂ׆S†|_æ±0°ÂÚ₫ªöI(J²ơy85Ún–Ი½Â%¤jùÚ¨àª6Ú₫Ïœ̃ĂÉï(汸äÏÊƯ­̉ñ*U Đ‰s,kéÆ'_y5?u†Đä±ă¢̀´₫MƯà{G>îú¼đ¬t¹¾€•±FrÄAïàZXæù5ÊêT‚»IfuºYà‡Öă”ç”ø²₫x*ƯÔh̀6ÜĐh'gg~ʧ”d(M¾KåđæĂ~ ¬‘¾2à@4ù®KÎÛZ*,è‚ôbfûIvj¦ñÎA™:µ»7"Í®¿ĐÓeWô¤Ó3}Ư”0`o¾~Ï”¢Ùi‰Rm.£¢™*2u¸·a¦Ë-É—ñ!÷F•›­Y¯¢åü¢¼icáD¢ô‰´à•©îóœûñ'j¸z½>£+dËDƒ„”ơBÁÏKxŸ|'V6_x_w'«íçȽi·B̃&Jw'©œéĂMặÜƯ* {bË#"™ß¼p…æ7)øï¢T)åM¹h­÷k“ô®§ÍXw6û÷Ï=Y±Ü,* Ÿ¤ æÊ×·̃]ĂÛÙŒq ào¥r>›+'~Æ\"&3»»P">¯¤<‡Øÿ­ÄË_{Ư3zÙ̉ —`<Æ,G­·Ê/ăæïoM >+f4Êh,ơÛ̃hƠ3µÆ®‹Îë êV¶=6d°EMòö“»1dnheß>/„Èrùf½́¨â Sè̃N`ªfƒ̀]ȃû)–%±I‡̀FÚª±Ú•EÁ¬i,n¬]tµ!T—¾ë>sffV“Ïx]ƒ¹Í­ôªơ‚Ë]€(€pxu¬8^Ô\E³ó¢f̃́‰‡a ›‹ƒ} ˜´0i²»OO¾ nM•l×ă:í ³ü9]%iL đ—#‹ơÇ¥d­OñxÔ“4Vê˜âu|éưK*ôÅ e³µOt„n>®Ê¿1¡äÚ‰6f·¢Wç³Àq×iڄ︯OBÙ›ôn˜0«?éÎtŹåÖÔUc„7¼èæ‘̉$G™ßd­XœĐPé*ă=kDˆÉ ¤½yBđ»eŸ/rµ-r½ÚÏï8Ïwl¹t—9ê*ê¾÷[¨ £Ä/{#NI·5ïµ3é~²·ÊrƯ¡×0&x™“Í®“È ă>ØŒ¿Œ}ˆ·¡ÍÜÀ—*6qDg%̉¿”ÑáÊÀùåG@j₫¾êØ3¢“ÆßK„CÆ 'êÁ‰îeÔ© 6ö́§¹3§ ‡'ă0̣öw“ÏƯïÏ„-}È0±|²KºH)̀'³QëAøɸ¿Đă nÊGC¦•K=·vÔçrà¯È̃·Ù?6j `Ă#…äüiç’9ûăÌƯ“ˆù0u ^iVÉ)́Ügå₫=qÔAp-`j*Ç”¤ÛAÏoS5Ñ­Û†à®̃>F́:!›­êơj½kÀñT×OTñwỜq 7O¾S„7Kô¡‹D]Ơa‘„£Œ Â=H£Ëh"³âñxƒS‹#%o’ơ~+°#+R:и÷aƒî ëT‹ụ̈<.™l3¶_|V{Ÿ{4•é–.9jºV Q^°ÿ…CêƠí)ïđ}½·R₫¦WĐóG¾ÉÍ– ³P$a6]éÓô½m™ÔM­Ç_42ÔTüø¿Ujîj͆m̃~KƠĂàNâT]ñˆœ́â1°6¹®RRœ ªq->hÅḷs«F¿csá~ Ô~OAɳ<±²©©ăzª*•î}oLÓø€sGÛÑç•K…a‚†[óơâ@h¼;U1o˜9Ux÷qe®b~gf/^ê™ú$@ç:WºÎ=ü¥C—™Z¢ ÚJ";ÈK¦÷ »ơÍÆ8ù E•AgÇózßÑEđˆ.¼M¡/Ç1 ưÆé!Ư‘mĐ=¯¢½<„“2+²›gđƠ¥™Ưr¿P®¤É›ÖQh÷4c–¦̉í|÷†& ½ÂĐÆÄϾ'|a¯Ø…ׇ‚̃ẽ¤’¸/ºZE“ÔŒYæ¯k>!w»n?̣øZÊ¡9l e³/³œ2®âÙ@º¥ígÀ;ç?¨züđ2$â©ÿ铵¦øĐ¦¹„£ÜO…4~C¶.i¿J»Ø”rÅI<üF? sŸNQ­àîl >•êkưRDPá4*PWwƠ+TO°8 ₫¶!CƠ“$™S&ù‚ÊO,o]U¼LùÚñUçh…₫Üç2vÍ•N9¶ƠƠŒ¦s&Đ²Ä­½£ÀǼMhcºÓ&º†Ww¼ÚŒ½Rlêu¯'~¦p–µµ‘˜Ÿ¿üèöæ™» 1gº2pË’>(+ŸÏ4ÆvÁ$û åpºiưÚ̉eØ`"´!\3¿oÏkWÉ¥UT|NŸS?§jƯË KëÚĐ&?ÛèÁ¶ôRf ß IeS¸°[b[Å̃ñï}º{î\w•_¥SºG'–!ˆQ31~XWΪ­ÖƠwóªúøq¯j¿…VúÄ ̀ÊcØOtë˜g[ă¨}ùi*ü`‚Aw¨9¸èn—–û¦d!.ë•b :p¶r3î¹²oƠÉXÈ!S1Qy™ez1ƒƯêH1ö;Û—3¢₫>ÏNƒ™áN+á­†Ôld 6Ufi YBÈ3¥øÁVđMZâ·€ göà¬aä%ÚµĐwù©µL^O88¯·Í xöóP̀·èwÂ-7;ăkÛKj},cv&ub:q ŸÁD¯ùøç{¹qÓ¦¾95®" ¶ÑÅÈ ̣®ôí \¶˜Y‹…½–H$¦ưÁªƠ{#₫ˆ)ä·đ€ôÓsÅ`AXKn6¥KƯñ;ØÇû´ßü£c8Ÿ04èr¸dYA7Ø4éºMAÑ¡ïËQ]ü$AJ'Ư¸°ÏûŒ!ăộô„•M[KáæXeI͉…’âtÙE"öơˆTÎr}é¯~is Í:§¿u<¬–öÍ1éx¤=µCđm›÷Vynä”ó2¶©¤5æÍÊ:A7é|®Ö%55@½x=Î́ÄÄçdÇÑHæÈÚ>`ϱvÁ̀BÔÖôA®ÔïË}̣csoTur>KÍÑmêY0îs0­GÍ\ §…K-o9evVb́ˆ*–„Ê÷×>Áºä¢»pö—K¦ÖürZ®ĐAÖf,±̃LƒF÷ î̃Ư„¿ĂỈÏô•Ơ–ư4·…;£§Sà)àñ!QƯî…ỡ¼ä÷ñ£®ó̀@ÑX=ah>c`Ü"ÆÎ]ç(uçÓmđỰ̉X^¨A"̉1Y´Ÿ›2ç%ûL@ ÀˆzÊ߯wMøK…ê'ËÔ†P&+b ¹Q¬LKü /‚¨pb1ç•Kæk^ư…1aaO1…å¯Ư45ßùœgZÇÅÈđSç«›æQ:L‚¯̉c7ˆ«sÖĂ₫l÷T‡½6̣ Ï<ä‚s†ªèeDBßRR…‚&ü4U»âëSË„Üx̣{ƒÂ÷ó#ă¢ƠJH»©̉€ç,1±k3Ă;KÎY¾à6ÁP£₫›¢vÅ·JY,L‹¢]ªº· D^\…ï}Œ₫²‘‡ƠK*̀§ơḅWQû´´¼p™Å₫ [ÀGCYÈỊ̈›gm9Ủ2sdË% FO;P/w wo"6Ó{^́Bg¡Ê¨$e‘%XPÑ<‰ŒÖÖ¦ùmx§4;5 ÷ɱŒ‚JñƠ¼ơ³¨ĂHÚđg˜´?؆:S0kƠ.OŒ÷=¾Å’7&IƯ} ½+³1˜â{éô]o}Óíy…Hw«·wK:<§ˆUñ Tb|é\Œµ"|æÇKñÖá9à₫Óv™Ăv—ï}̣èlePwµÅöéÄWc̉fl»°r©$ƒ¥[‘KdÀ=QZ`ẀĂGGƒ“ælWA/"G¤Ø³Ÿï¯¸#iå¬R#ó£¥C êÈÏ'Ôi­ư;Œ—ÚkÜËZË3+×¹KR\´?÷'dpJy%&ú­0Ô„ăJ²EG#‹~=êµú†.&çCª·e'éƒĆQn¬ôB§Å̀Ụ̈¾°LßBù'vŸ÷Y·I4–kVô¨à9ß}!DƸ·f§é—EÖĂÄqMÖ„”tB bđZÏR­1«TÛ‹_YOÁàCvµECrÆƠGÅÔf¦IÂ%t‚ç8}Ÿ$óZæ¼R'nñäMe O­b=ÎÂGúóÅ·›Ưîër©̀­k7éʳ ©=ĐIGËƯ Ücí‘ú¦¯ë},En¶IÓ+­K‚§½âñ^s=æ[ö}˜r¾ºÊ2Í¡„ «ÜGœ'HQú\t,µT03‡áÈß]ï íç21Oé&̃¤JÆ4§iÚ£„‹#ÍzÅ”Œlö)ô¸»ÎLT«g#₫&/îüHÀN£eè'Á=Ïó fÄÑøM­}ăúˆ iÏộø·£ó”M–b+—y2µƠ~Gưôg2„.o .¡̣¼-N"…=:ïG¶‡—ê¨ưBª́pä­´e¶#Àrùk•Ʃɳιͤ̀Nªơ›c•u7¨O}ˆcíMïcqpˆº¥8ˆ˜ÅHº}øÇ\3~ –t6 ª3‰ö”%ơ^~{W`öÄáqV®1ÉáÅbđ<#DæëÛˆüÛA²c ’ÜX:±Lfÿ”A₫œÏă¯|Tp‘ ¹8²1–,~[¯r¤`˱ÑƯ‹Ñ¯—’j₫¾55Kœn™Ö±đ"âÇ%6co8nCù)ª>‹ Áwly÷•z´œñ÷M̃tǵØ­jưx6‚¸[Ư†)¬ÉQí󥯾¤5ê-JĂzVa°nñsf8™™GfÏ¥àosØ/Q=ßéeú©›«Ë}åÖ‚cÍÄ1öT1˨ đß1Ô`hW÷Æg@®FLûu·yn¼Ïî¹è± ư‹̣¦Ăú«%›T£Çû]|,æ®J9?½ -fZÀ»Y«0Ú₫$´aûtÓ«àƒ’MµGå7†æÀ<‡ßMN‚Xê2 +Áâtẵ0°jÔç“ĐUUé®@5Ú%)rÆ`%Ư÷6»Đ.¼›ưtâéYÙ29=E/储w³lûa¥EÖ Ó¤Y&«(ç¦Zuj>Y®ú₫̉÷"̣ăl_̣Ñ 1b}TÏ“)‡ïÎKs˜î¡,ÛĐ˜ö„— ÍnÄÊU•ỡòDnJTl~‰ƒH 7‚z’ßÿ2UaËÓ¬m'øæa^k‰ĐŒnô~Y…z?¢³•#4±¬ñnŸÈ.µ–æE/zM±G‚œRê¤^°•Od,JæJÿZûÎ؉ÄC-çØ§êèÙ Hù­5ïwÖkí?\‚Ïó́su­ ă­tVrlâ“ƠmûêÓø ;ëgפjá ¹8ß…}@ùŸ9Ê (ÇÆ]jG»2U¢cÙ‹¤¶q|*1YĂÉ×ÄƯ¾¥™f»ḍåEáª5…lÇäŒóƠk×FơZ{1ˆĂmü†ÊưºD‚ÅèƒÉèWjsß3U¿ßd4€»f5¨rƯv_JJ£ïÁªi ¯·Ä/<7îewtóù$|àx’† >în{œôÅ æ₫‚œ#Ù¥ È2ÄÅ?́çZ_iy¢¥»Ơ\qÙ^Ê(P'6Đ¥{¸¹+³æa¨̣˜å8¹ÛsY­¼|¾¼ªÈ:0LƯ’x¸̣©@ ¨Ép§Ê}l^©4)dÖhŸ>¾Œ̣`íí̀6A<3èà]Ẹ̀oVŒ¸æÅ}»Ú̀%+ÓŸŸ=½ÙyÅ[0 .¼¤" ¬¼3ÂM-IY»)Ươ^ß«§÷¬G™§¬«{™›¿|†§’¤+Ơq"Ib³™¨YLp½̣äp¨— @Z-Å^ú:ù %́ü¾Î4d L߉Âmcדm­Á*}ÍrĂ<£Kñw–Z*_{fç=uF\e&G¾'ĂWfE ;R(n‘k÷€KÇ=$Ưđ₫ÇÛJ0¯}™±]ÈBÊêă¡ø³uÚU†~û ̉á¼…ÚÓuüÖµưiüUí×;’r¯Å .C›O¢Üv¨ùïIÉM=öÿ¬ó̃*GE+ åx̀O¨©‚W-¥¿§ —¸®n"Ÿ±ƒ~_{zï ?È7ê• ̃:O©Ôç>‰ÿ~ZMMÅÙø9H~È+‚¡®ûy纖Ïo* ƒ£0n;)o.—BÚ́¶¬u^ç# 8íP˶8'¾Ơ:̃đw‚DO*3„²~·©°¾6U'©—©½gsÅ)>ÎhNª.ạ̀£ÊȵĂ{4|~Nc0¥ñ¶FĶVh–ÿÑ÷¾Ơh&NB ø„MÙ»ë‹Èá̀l.»êcƒ™²Åà̀gë+éU®1C,ƒ‡44Ï#À'`L”ù¤‰Ơk)u€*T/ÑM­¹F‘e²ĐÍÉI u:i8ÖHQ¨–¾­ÑV$ưĂ 'œÛ̃OI@ËeôBEóØwK2„́éG±ô÷É̉äß?Z}N!ÖV ©˜5ø¼W{°ÙŸ÷ràfû(ơđ‰CmĂ%ɧ» ú³„Q v o%â5aôkeŸïOË(¶đkRú¼è¿̀!Ù[Ä{Mí¨Óa`s§4s~Lé²²í>Y˜ÿQÛmyq»öÂá£3í̃FÜ6¬ËË’ñö>v·?ºe¾‡o¯ñúJ•ÎÍ…¹]kÁfdóóê¼U5  Œơ­ª`7ô&bæ]ÛṛBöYËOÚÖï‘m_…‹K§v_îY}Á…~7—fÅ–'ºÂ‘ï«Ë̀̀YÇ S69v̉2~huû²"^ÏnRSm]7Ù”|½„̃µ ¶*Ơ•÷̣?óÚ±ygø&mb|u_&Âá—> Ó£fD‰‹t6¶³ríW\{ít‡9IâÁÜt̀ºñØu_Uo¾©Å ªÍ₫¡ªn¡ƠbûVºÿ‚ñ‹™̃sn°‹ÉÑG‘ Ơ©ä‰Æå¯9 ¾C̀0]_ö©ưüÆ !öø¢<=Û¼ƒ âaÖ:qé£1aa7 ÍäT­ïóµ{̉®(kF3µ ç2 J,B*Kn> 3÷£¼ä‘†Zˆ-‡Z‚SĐGFJöÿơSƯ endstream endobj 1503 0 obj << /Length1 737 /Length2 976 /Length3 0 /Length 1545 /Filter /FlateDecode >> stream xÚmR{8TiH‰È¥ÔN©ư4˜‰ˆÂj2w3aƯ™ó1‡™stœqé^"Ê¥–OQ*—Œ6›Km¥íºƯ¤›hK̉=w©ÊÖ¦ốó́óưó¾¿÷̣ữßû™pqŒä'ÇA¶ ›ÉrÜ@>k‹XL;m33…$cË„$tA0°€,[Û pđ¸d–ÀBl9‚•R!‚ÊP¬Ä¥x*–€% ?%ÄË™„Ü•IBH Q¨¯_ÏÇXxú€'Ä !”?¹H*†X<´Q8¤*ˆq AG9Å3Ç` )bQ.̃|w®¯xplù Ä൜*ÇÈxg*ăÉÑé¬9nI…ă–hÜI*‹©Íf“@£QLÛvT7…ŒÈă¾…(Bñ?`Aih EeË¥R¡  .‹““̃8 ŒjŸH £H TˆQ“|+ÊPịÿ}Íà‘BJw,’ÑÆ‰iï ‚Ñx.?”¤´' 9TÁAPµ'oˆ r™ª¤ô¡6Œà˜4ùë¯ÔXcÚụ̂úïÿp,=¢Oc%M&öÑèÏ$ ´oñ›Ư¾xß›«Ë] <Ù™«*N₫1Q¿cgÛàÓ2œaXôógØe¥Đo‘¤è¹)Ÿ´«o+MéÔé7£EJTn{¶-Àµ-÷Ë̃a·ÚyAî}×îùÏƯ¦°¶ç‘íP^MÚïLc½́̃Ơg•…˜‡tÏ:»ÅM§/JNtv«‹±+^c·.Ö89ª­~È ó̉–Vađ̀@±]AơŸû½æ>ȹtø‹Ú̀¦VïÅe₫Ưµ]JÍ—ñWKPÆ{ô›6l³Ù¢'^DmÓ=yhXÀûÈvwb~?/S1YĐ8¿M̃Ơ¬ä²ª:K–®‘œ}o[fˆ¸&jA_ ơ°ñ„Üw‘BcÖ]ós陸¿"?kwĐđpÉÅsß >˜íĐzYr™îöđµŸ<ô·ơW±¦R¼3C|eĂñ7Ă#ÂÆXs-•?s@!uä­»lô‰[½9·‡ÔßñÆÅëmvơG-ÍÔeç_¯ñW ¶n¿̣ö±Âk°ÿÓ]ryt‡ă©×»ŸĐxN.³¼̣sÚÜ7É*lh^Ç*Ë~ŒSTơ-P¯Ë«UhYOá.Ù:=ÏùüPÏéËûf”#~î5w:é©gÏi µ¬Ô¹•O§₫~ø̉Îö`z̉jÏü|ư:̉+²G íL;̉GŒ %&&y~›æưÜ/ă·º=²†ênơˆû5Sé?65Í]rQhÙ_̉Ѩ˜´–Q­b₫̃’kl¿qÛ•ŒÆE§Œ†.Lz40Í4%;ÆƠFƒ\)‹ÅLÊvjá®Á;{Î^ ̃›{e×>2|OÁƠ{ͺF¯Sn«#`ƠÓ®É{ÙFÔêö ₫`t{­wëB‘2Èåiẁäˆá"ÁSZØHư‰Đ†£N¡¯²çÄVWœÜ₫ZÔ69énc—­^»4¬`;±¬-5©ˆ‘Ưœ«+X~°´¸Ñ×Ëx¼4ó<£qƯQÛ^øÅá`=¯œ~¥ ïæ̀å©ÍfÊù §ƯÎIÅ-'Ö‰«s+D‡ễå*tϾ'bLw Ïy9]ïß°q¿§V`zOÖŒ¢‡x]·?áü Í””MÎôw ¬ÑÊ´Ư—º$Sơưºƒ^Đ:¸Ă¤qư¹¶tCq²́<÷¹ÿ-FĂ‹wkở½jÚ§hnlíÙåOḍÿ¸¨ÑÎ endstream endobj 1505 0 obj << /Length1 725 /Length2 975 /Length3 0 /Length 1535 /Filter /FlateDecode >> stream xÚmR{4Tk_¤Hnä¦îˆ|Bà˜1IiBÓBƒÑ(¯fæ|8̀œ£ăŒG¯{+ZÊ-¢•̣HỮI¥‡W·$Ơ-%©«©Ü܃hƯµîú₫Ùû·{íß₫}ÛÂÔÇHAR,d3ØL–đXóY,Àbr´-,¸‘(-‘Đ !`,`Û;‹­m¸xlFF‘ÀRb5 ‚åR‚ÊP,Ç¥x<*‰ âăăÆÇÉ™„Ü•I5@È("P)Üeü<_/`éå¼  ‘đåb)*̃¨bqĐ Dà$@‚c:¤)9,‹‡I ‹ pđñ¸{.ó®­€ D¼—PíçD±¡„$‡¶³äX$Eâ±h¬J$DLm6 ¨„b‰bÚ¶C¾ñ°̀ýh‰Gé–”‡V[.•údXrqY¬œ„đÁH``Èû¥QªH†J“₫—üÁ#E”îX$ekBă<ÑDˆđQ’̣›$äp‘¿ñ*—´CÊêW“&}ŸH­2<ÏvÙJß%|}́†Ë˜GP,”Ÿ"†Ë|:rA£ZF/ °ä>"’@A0‹9t"¬¡7…₫`-Z„'®eر9€Á±wl£=˜oÏ^ÿ¹9A@Œ6Úe4>&¡D»µ —8'GçVn)̃àQÔP2̃pwU ½‰­Ö|çbOđôj₫̣½¡R`X c|o£Ø¥½ëOY1K” u₫º]ŸnÚd¨:lV¹¡́鿃ŸO¥†uk,§É$¾=i}ä̃Ç­›øÖơsó¼-[ºú¨Ë/vúªc5Œ×kËjyøó² £¿oå7ØAWè5D¥v‹ƯTÏ[Ơ·ln×é± …GoŒ}¹Ơßµ%{Đ˜wÄ­|–Đ½ûö¡ư9;f´èú¯ízj«ÜU¶å±Oº‘nÆ{»̉Kª½… ̀Cºgǹöµ¨áNnÑœ¼5œu1FI9“mơVœ]Đđ™/öæqrKoôù8óú‘Aµéµ½M~>ÎE~ïÊ;T¯ăệÑ9ă4Íî1Ø3ļ°̣LGc]ypˆx«Ÿ;aƯĂKWhV[·È{"îª<Ù}U%íù‹ÖD]êŸ[¥‰=MƠ4„ƒĐæ£Ñ¸́¿ĂE;;œû)rv́>O\ËyæñÙbûÄ×ù7̀ÜṭåÁÿ¸­¯Ăj tÚv]TZ TUg̃N™̣q@T3›FKLïUHúxëê‚ ¾z–ǹî"ơ¶¿uñ₫Qúe¢fJ¯‹ªưÏ7‡ËÍ“·ƯúđLáƯ×óơ¹$²Íá|çîç´*c˜Ë…¡÷¼œ̀÷ßdÇ4ïSÅE&±’nç^ơ]åªÜ‰6“¸{$OƯåtEÙuáÆiG¾{ÙĂv³”K—5ơ'̉Ơ=‹Û]H9wäzVkoY7̉4—ù­¾y/‹ès̀ÛRŒ+’¿z@óyÅO;]±GVUúN=¬¹l²™Imí̀söZơä·U+&¬S éÑŸ6eÄÍưuë­´êùç ”W'<íưÙ|sF´+CƒT,‹ÁL‹vj¡®AY]ơ¯ ƒö§ÆÜÚy€ Ư“[×x÷'ƒN£Í÷‰Ơap ưEÇ1­ưlqjưû~1xp€ö>Ù^¬º¼x­öq_à̉hsZÈ@åÙàªÁo2ŒcJƠlë·h%>ªî°Ơm•†ñÑÖ}‘Åœdb£;í÷Ư–'K"ơ¾¸í+ªXp¿YÙª’WfoƠYÈø YXo2˜Pd‘RëpÔcµ0ü±zGͺ Œe•“¯Lr2\”s!óöí`¿œ¤Á¤€Ă¾ê·^N½]QÛo2^XB+|hZ̃bư&ÍurºIt̀¢Ÿ¹"C»¬gEÍü|ns´Ñé\Á}ụ̈ËO7ÀÚ6æÔ®fç·ÓăF̃¶ŒËư9®Ö₫çơẈvæÿ ¬£Í endstream endobj 1507 0 obj << /Length1 1604 /Length2 1078 /Length3 0 /Length 1878 /Filter /FlateDecode >> stream xÚ­TkXW±X¡.ú¨èäVHHÑ€¢D•Eî‚«fNÈÀdfœ™`"ríª•¢Ö®—–Ö»BAmEđ‚t‹T®Ơ¥ˆVXQPt´ Ư= ZZº?Ügư‘ỵ]Îû½ß÷ï8O‰ŒL"T2´ –I¤~ FÀhăˆ½& H¥È'.rvÇAL : ˆUkA.oÉår‘3˜Ç°zLR `at<ˆaTÂJŒƒ¿ñ£Ä QoŒ£ü×ËjT$Á¼ˆÈÅóĂC€[HøBiÈaˆÔ&R$ÂH̉ÁoºÇX–̉›N3¦¬_9)•D$óF5‘ˆ‰0‰¤E^Æ+0ŸV1@&đZöU,r¦¹½¼îˆF04¥T‰¼ÂUn¯¡ªä͉ú$}#‚¾9ÿ?1‡ 28z·ÿi3‡â(µi´¯̃€†D†âAØr1 Ié_7;Đ‹†IZ ㆆç ê=NBó—J¤N’W’:HD’®*ŒBƒ1ù̉ä(’†H@Ó́€ØÛ[>$«&ñÚ8i_S̉ÄĐ&&₫^AÁ!‹Câ<~÷R"‘ÎB¬E¬^ö±€!~5Œ £ibÙL)b!Ÿ†ÖI.E™4ư¿T3!Éí˜À‘:€Z–ÊL¿ü ZLă a¼̃Ó}Æq˜^„ê!k:H“¡{M@q7ÔÀKB3:X­nÜ)‘qĂ½eÓ€ÚB‹VED¿Cǵ‡®™é=@óze›ÖBÄE7Üṃ®¿å …c÷WT%\(“YT¬cÇ~Qu‚1dîZK~́ƒ¾“ë$%Ơ~¿|­o¸Ïö·†¾×VYfO¹vÀ‡ŸMLwr//°mv)áѶÆkÙ!›üøMi]ơa-–K|¥qm·«¢¢—́{Ë¡ºtgƯơÔ=Ë)µ k̀Ô^vT¾ó˼?]bfWøùư—OÚŸöº^úöJÅeĂc«̣Ö ụ̂F8ûcc3¶ßŸ²MĐÀuóVĐ̃bÏ OÛüĐa‹~₫ÈZ¤>ñvhđmוEoröôgfnW "ªøäöĂí†PƯKQ•fÿxr9g–YVÑfṛZ}LMcSôó·Ẵ½¡· §̀é¼SVnÅΈ˜ư‘ơ„­µ)SÇ}#f{ÜÓ½m>³)¶nÅ}2¯ÖƯû̃nùnú¦ẹ̈îöí[\®V¯ßpÁ̉+WÛ»3àB£,0}Ờlơùº˜ {ǧœ-Ë, 5GA˹ÊMÉ Ơ¿ç§ïR2 -/Ï­¶ªsœ9¼Ê2pâ‘Û¸€ˆƒq¾N9›Stw›kÏ´»fN²™ehŸ±yv“k…¦~~K¿‡ă óí¸£=ÿnê80»qă]É{‹̉₫ücÏáư'W—œæ—Úå˜Ó¡êÍÍGv¯~v(dó̀ă—×àfmÚ´¯nîQ„ØuXîU—Ñ““Öbè¾fïàÿäN„y–®ûéă¥7^ ó·[EÆn—³owÉê½níă'üR~̀oeÆw·Æù­ÿâ‰O~P€c(á̃8÷¯Ñcm–'őʹơN·î‹îƠÓˆF›âåw/ü<đC?_Ù÷CÏ©ïW?ư©Pi=êạå¶¾YmÔ†«·r̀|î̀,Vœ$QÓ:>?Ù¾1₫ïŸîR$w‰̀—FÙ[Ö;b?$@¶K(Ë>?đ¡b·ă™y·NÆ·í]'o+ªérïôJy4æø¥¥¶Æ%¦R2³øËnï̀`m¢(>xËåuç¨ÅÅ­·6*—œ4Tw¦jíô¼ÿcó2…}½ËÙÑæ©•a•®7¤ÚNÏ-l-7Ä¥D/}t÷ăÍyḳ½-üB`¿:Dêö¢tEî‘‹[rl>̃5nøí\ûÅ·¦Ư®?̣₫³̣QMÅkÜ· ötÏá»ĂFж²Áơ5¥ç¢¾ïßZ“—Ú¤¬úDºIA ÏO-_12ÙªÏç Ădé£1…×su%Å gO=yÖëlvc•ƠÔ¼t½‹ĂíĐwœ’±G¥¡&Œ_6\Qù ”8Æ endstream endobj 1437 0 obj << /Type /ObjStm /N 100 /First 1017 /Length 4729 /Filter /FlateDecode >> stream xÚí\YoY~ϯ¨Çµ¨ºû"µF’ : »úÁ$nđ§»™_?ßwn•]©8+OHøúø®g_nUĐ6éJUÚ&ƒF[™ÀÉU6;¾̣ÆUđ‰@¬b–É©ÊÆÈ•V>b¿NiÆOĂ&c?ç¹WÆdŸ¸·Z 4ÉÉZ49̣„+£5È©2Æ¡œ+c#–9¥*ăUܤ­Ś3•‰QYÉ< l ä+«C$*k•¬ˆ•uÖJ•ơAæåʤ/4ÎĐŒÜO› 3¸‹¶•3ä—Ó®r– s ƹ,óBå‚‘y±rÑË~©rI¡såꌪ¼ö¤ḷ†¬sÆT̃‘§l¼'Oq•à5 È"‘§Î„Êg̣Ôá  ’̀KU0Zæå*XÏư€dpÉâ ««4çY_…舕5€g‹µIúÀÎ<ñsX‘q€)r¶F°w®) äåŒ3 FhÏp æÎØ4Ù¥$´y È’o*‹çz ÈÇ¢*Y{ơ„d4TÙ[̉)9ˆ,¡Œ9˜’3•ĐEḾ ́CéÄùÆe^«*”¾5ÂÅ@ Îà¨(z¢xV¤è “…*C>GY`yơÖ%Ñ„„ev¿¡Z2†e>k™€eAGîK±† ̀£üCVœ@E‰Zq_1k¥Ëb´\³ĐIñ4OeN& ˆ&ẸÆ“ª”K/ÍJ'4]gXáÆ¯¿n4û_?«æîÉÉét£Ù»x?•ßO&'Ÿ6{§g‡ă³w ÎAưÑx8æâH£tº%¥tˆÈFL‰Á…°9Ă U†ÏXÄzêLfH8Ä ¯âr$Öê$ đØÎĂCKfi$ĂvÔV}[8„Tóf©µgf đ‚Ơy¯©oË>™Ir‘Öµ±ª>Ü'xå@§Đ!½Y†„_gå‡ß[ÄM|¨¤ĂLÂi¥*̃R’a ¹‡D‚"ÇZÄ:cÊî@—Ư"á Ô§ ±N½„è3ƒVÖ5{¡₫«ùD†ÈhmoåîØ:JĂÍq`fA[Y†CXonéù”êȘźÜS34ï–â'̣ØhXú2^̉<á¹-qḄăí”N±¼°3$¨ÂYÄ/hÖÂUó¹)Û,ÏJk•üMsËM>A½¦ªƯªyưæm‹ăCh]Í'˜'GGt“·OO¦²é6Ÿ#ƒà*Œ5ÏÏNöÆÀªjonWÍ₫øŸi%Ë̃%–>ï<°Dy#¢Ÿ£-°WăÚƠLQ¶kiÉQuŸ´ ¾Ûµ­A@ƒ½W£‚T́`1®E›ézxÑħÄhḰûh…Ú7µå€̉–Iåà>ܟɤ˴m;§7J3 »ưHÛÇ­´-1¨XcÛ–B|ôsZ²µ&̀» Ùr-Ê:ßÎd̃¤°óØ4{¡Ê`_nç´;Ë-Œ<+´B*§´çJ«æ~GpyFDŸ o‰k‰–[ öàéKÿ‚V lO{è.ơæ—9ºṾµNŒưQ!hl^«bú­kạ̀e^¹̣ĂG¹Ư‡/8d#’áM¨|F¨â{„ù±Vîdfc©…ùéæ¹!2̃±*é`ös#i€eá x ̀Àưoöƒ{ Çî:MoLđka'ÖÆ7S‰³“8ƒŒíoÙ2ÙV?ÛŸí ZèK€#KŒ×­̉÷ ¢SöÎX¯{{F73>j`gXZ—y­Q̣Ó):¿]«ä}ƒéRß :Cêúû2Óz)bç†Ôá+ä\Bf̃eù”SÀ†₫Œ—Ú0G¾£…ïnAÆg¿[˜sd-Æ£æÓ*Fa—Q¨Đ₫Ly;ïççÖ>âơJäÓ óÄ~/+íж¥ßđ’NŸ!Ü«nuo’&8T"Ô1>†B-Ö1æ%‰Ø/`°Èø?uàGäPqóMI¶̀8mÛZd|©™£DÿÍ'{]$K„¢dRví ­…©µ̀,ưƯ® 6m Írg¨?Ë9îZZ9±¿C²3¯ÂnèÓ®aÑbë˜r–¶ôê’N’ ]H'‘Ôđö^Q̉O–ªhß~.peVäXÈBº’/NIÈX±œZ8”ü-ăg$&ˆå`¾>,Ṣ —(ü*˜‡|™*ï;iÙ´°‰b‘4Ko_ÆA…YO‘E»r6»̀p‘´;/­È¦?ZxU`i©aÚJ̃*öhĂäéä©èl±₫¢Mm’(Ê·[½åÈ·«Ú¶‘D§à7bà S<œÀÚ•L90«î`9_æÈĂ´¶-;öG­çün·ë0½IÛîÙkËYư9¥':̣/*Q B3ĐG‘‘7’ùSeïƒØw "#¶™{;É®e}{‚Í µ'”™̉æ̀}ú=E¢}¾ö¹̉§©ôPf"·Ù¯–ß³¾₫öÉ µÓă‹́gôLb­öØnuÄɉ™9á‡̀cœ¿áKL*gXö”¶ÔQVÉè%Rô’íÔ®+ȯ®ê‚™),µªW˜™Ù”r̀êϲḅ¥•íûc=ônRËÍÓ¹ËX”]K©ZÚ̉C̉¢•(d óBs.J&₫‰ól(¢˜Ó _RíxÛ'kÛƯ‹ƒ†·ûûÂN­̀́xF‘ïœĐËP²Y+Ü“ô.ÈỒ÷hEág—Vܶ-₫©¤7Z(pig:Aog|a‡u×ZMWÏÛĂ(Ú́Ûä2aâø(éƯ8´+ñK;Ûöw{ËỈí‰ev糜üv½½fĐỡ¤mẃa&À›¶åïBk̀™̉(tb5Ï Œâ· t°Î˜)_₫ƠH¢—ç Hˆ¾æ_ÜđEïvB‚²¸=߉o3‰8"BC©“yYxL –6¤¹¬xNŸ}¼“èfœä»øĂ|Ù» ờ¶ô©ÈºÙÜ2î<ñpX‘Z)ÍÇ ‡ ܶÔî ÷@¼y’«=@. ¿~ å.Ư'^¤¹`ħ²-=Ñ:¹¬ëd˜=" s‚"+³øZs{++¥b¥̀%käxÙ¯¬l÷6’å»Ù̃œeåú%̀~øœ^„濸 _Ö1=È@íúă²Bú¼â$ º];›UƬ( —˜t ,-…ă§^u£d[zÈNu*=ß<ÄL„Ä oăIûx8*3­áu»ƒ“9Ñ‘Êx»«¬ná$•VunOhÏ”6ăd¿Đă“₵CZ®€û=eg§äæ·›(̃½9íÚ̉/±¥åM4]dmO™Ă;k-/ă¹î ,í½§A|²9>?8›|•'.OGÇyúüÅ›·;¿Üß¹÷Z+ >œW®̀¸wïôŸêƯª;†ñJÇHÅg@çă“)_•Ưhî>?O>|œ̣nb£á1»£9øh::Ü=ùp4®°ữt|ü’.|£yƯ.BÁGg|Đó¯æns¯¹ßl6[Íy>ơ¤Ùi5Ï›Ưf¯Ùo^7£æ}sĐœĂfÜÈ&ÍŸÍŸüûkÜüyzqÖ|h>6“æSsÔ7'ÍÉädÜœ6§h?7ŸÇg“ÓĂæKóåb|>œ4gÍys>₫k|̉œO₫i¦ÍôăÙxÜLÿ>m.¿¿›¯ÍÿÆg§ÿ.,Ù€Í?3RƠîâ·a¿yºÿêÙưÂc3ÀcKó/Öè=ÖÁc•oÀămpùQóÛ ¹<>9¼Ù¿~₫^ÏóeŒ₫‡¬¾Ùqfïë×Ăkc†y}‰–¼ -{Ï~{±³)´́?2O3#'̉<Ư÷’s‡VÙ)O$èâ₫ I~]$,êU{u÷ơÎÖC¶5èuŒY™ÏÉ?…gœÓåTŸ,Ơ#*(5 #×§Èê>Eg£ĂÉÁèèưäĂ%’́*$Ư{¼½û|$í JÊVRÊ¥%go(©hÉ*ÖÛÚ̃ù,÷y+ù°Ç{¿=~ñäíQçTGÊ?BƯLd!̉¶èÁ{,^́©ø±ß[Oö¢yÙ¼‚?{Ó¼…Oƒ磓Ăft>_Î?µnîa`ÀÙ¿\Œẹ̀øo2÷|GW8¿ÿ¸¿ÑÙøähüç´@g²=0!ư|>]œ÷ƒ̉—‹Óéøđư‘,ë~”•̣«€Å£O sß*̉^ÁĂÆ•<́ă­½ßv^* D3ëJ4Ë)­Gü &lBâ%n½€¤ûqk”t H¦Ê<M…AC‘>®ä°·ü₫öŦ°&°Æ+á ́Ñ峯°ÆÛ>kÔ¢‘<kF3 §nw™Q˜0…n\̣åi%_¾·÷vwç iˆ·¶ËUTkQ‡®q ÷E H«ä)$÷Xˆ2Ă.5!#₫¾Äˆ•"ÀƯ‡¯îí‚{Oö÷Ă½¤<±ä_Ü…/´^àÎxa˜a,„€ü]^²ó‘—=$|ăùÁd2Á½÷£ƒOŇ¼?Œ…i¦ü4κ—˾ôđôèht6w©/íåÎÆ#¸³oƯèÑøü|îKO.ßĂwO>œ,u«×¹ÓïÎAÓJÁrëîë‡wé!÷ö†ô èÖdËkü̃Ä&̉`ƶ{‰”•œưo[/wîï )ƒyM3?B̀Æ“BNR7&g%ưàÑ›ßÅYí½¹.Ÿ–¼ơ.̣N?§¾ëû²4§m´ËDGÓÍñääâ|‘¼¼’/̃̃~đpë)È.Pó´Ơ¼qkJBCZ1Që̉´K.h–]™•ơ±ÉƠEçM<Ă—â æyU/“겦¥̃ ¯v¶_½zµG¡ FW‚‚·?n9S;=Œz,/¡s ±ưæeq=gzqraœçœ¼ÄÄ•\ê³­/7w ²NzT^̃Íúgâp̉y cÂp)oÊ+yÖ—¯̃½ûP(º¨ A¼¹å½d₫a‚®M›†2…««©…|¡WL½G´¿qv°†´`¥\àÊ঺{•X)̣́́î>ñø—½íƯ­˜Î_©Â(˜îX£Êÿª•]ï̉cèÎcèÂĂ«ÁÂàưêÊé1^­g^?{´ơæ5ˆÙÛWI 85 ÀVnpoæơÊÄ̀³Ük¨ÁO¸àI+yégoŸ>|¾’ö¯!Éh”o–ÿ#ÿ.ü{HR?DÑJ.ssëÁ›/Ù›"¤Î÷¾?̉:%üÏùÿ2¥{IW—’‚¸àk̉u}âÔqŸÏN/.kß̀s₫²Wơ endstream endobj 1509 0 obj << /Length1 1740 /Length2 3069 /Length3 0 /Length 3979 /Filter /FlateDecode >> stream xÚ­Ty<”ëÛ/ÛÉØJ%ZôPŒl3#»M¶dÉ cæ™™‡13Í"“µ¤$[R‘¥le ´ÈRt,Q–²!!û^ïC¿sNoïûÇy?ïùg¹¯ë{¯å{]·Œ”•’æѨ,%Œ2Z°aᨃ`Ăñ4Đh؆VCÈÈb€8D£bq,P°%³K< PÁ---„ pˆFç0 ™ØslhDÖTüÉ57ΪÆÿ3” ,2! ²´:nja È[ØÆ dà(€ÛásR™à>€Hc”O£ Ơ¤™Ê0—ÀL:ˆ‡àk 7¤¯º:Èđ„˜Lø?1Ge€E *Â&¬&Û‰pƒ`:ƒ#Zûáå̉BĂ?´ßÿw ó÷ù(Å€¼hxç00ëê½ü/pêĂT<°:(*jêÁÀqp<ø¤ø`à)'€̃«›BPÊT ¾ĐÙ,¿Ơ C¬î;<(…NÆ­X4”ÈúÉ  đdè¯3­  ~`Đđ ÎÓđ“ ߢyÂÓ₫L@Ñ&¨(&ḌüùouáÙ <îkï¬ÙŸçµơAoøĐBĂë\p¿yƒ•·-éU-öDù ÷«`zúCÛ´”ÀZi@|HV¶ërn°ra½ö·ÇœæÏô•~3ùêbdi,8–¼ÓoϾ²”M²O4ΣœÓ…nŒ8„ùŒ7™wó8©£ízk­9ß[æÛUÿd?cĂøÜ¾À=^)[öÎ̉…ưñq‘[Ÿn,\'—úyDöÚĐÜ,²̣uƠ«—¥¼eư;#ùetpÛü¯–aq\ÓÏù°·*ú+nºaÆå¸pe‚œ#hv¸y¦%¢‹q÷ÖJÀ¹C†™XB-Ó}(c¨Ồût¥uơº6½©—AÖæGA»/pl[Ú- o¶äpS¥¥~ùø¢Œ—®a©{eĂ­Ño=ö_´Q¢ḮóSJPÚĐW ¨{7üFÔ%*̉₫^kzèzt³l]}ÈårT8{6N¯¼càwVóùÙ;›Ë··{”¼H¡zfƯO«ĂÜ~™¾ÿ̉î¥Eưz̃wû”Reœå1ØyK †¡7:J¸g¯¾kOP”‡÷`çÛGCÈI¡¥CQºíÈWM¦Ư+ ̉9ë ÙâY3ßÛGîê¶„*Ë;úé˜ÉHÊơ-,f ZO5#GT¬˜öO7>(£yÿåyüº¶Ïï]· EGxb…ßùÏùt—N7ˆí̉™úh¹>Đ{znâä‡%.1û³íu­ç‰ …¾·¹å†¶ïøV–­}Æ?vs´½vHÚ”ê ¬´a_‹₫% a´r!ÙæCÔ qrÓG‡ßư„¡‡#Ư²F5KÚ øô…ªÄÖ™¢Ó&]§È&Oí«9<¢Wó Œ$¥J/D<ªlkg²Êg7&K¥ŸpÍI{±mdÁsÛÁmÁØ#©a‘™»…oµ.§tßS®Ï¼'Gœr˜₫́'S{É4ÏÏ× êÆWdÉ®O…xLOsÇáT]ù£_YĂưÈĹC5F:‡~wrûWKb|h÷ñ¢¹̉fç(UClI§CÛñơêáéëÀc´Uç'ùE ³ GéµÄ÷­'ØÙ›—”+‘b÷®{.é‹ÎÙƯßü¨¯O -G¸ă»́±©‹·ç†n~¶øp‘̣Ûg%dFÄ•ïBF¥Ÿ…ĂÚZ# únzœGÜe<½C/)ܰ<™Uѳ $/:ÆÓ1HâRH]́W(v”÷%ågtÈ=F—«L,Ø#Ï·oƠ`,â6»#œçÛ¶¤b8\4‰+ÄL—\.s/ù é{jª0iu•ÁĂ¹:¡szÙ$ƒQXq\nÖå,Ưw×éÑLÿF¯wJáŒäÆaNW(¶“Zùß}â‹jå d¦åí8 !l2'rä5+̉vσ_1̀'=²뇴´~ă­ưJ··ŸËª}øÜyVg§§đf?ÆJl¤ÀEĐơC¡‰'´Q+œZÇ#U1{ÎN]©u[Z:/çjṼ¾,5üF*À禸ƒåÙơĐÀÅ-̉»êÄO¥6¦}_'¿=$£JÚt´²|<ø4é•âüü:¾•uùđ₫m’·ófïŒbæS†h–AEåºc©÷)‚¢-…>¶_OáR{YÉMPæÆÑB&ׇ2£R›C4/$#½wo…U5-ưË}T½$må*Å;)øö4†"}®eé^KLßäÙ€HÔÿîSVÍ{C.»ï0vz+Ô6¼ª«ÿ̉ *¤Ô+e,Ñ1v²¯óÄ&?y¹Í¥ö{„Epœr±@/j^äơI ä.*¼'pÂ…h ]geJ¯›G‹/q›vQ¼³ƒ†½Ô Æô¼ç§C‹„H²}Ñüơ/#ï¹™º2bYĂ|„ë鸩Ư-¼RŸÚ$l¥¹¿Ö_ :Êó´×åb7§úytæ…U WÂ^$V1ƒÉî“'*-m2£”…&!O¡Â ‰:<ÏùÊHO¹Îª¼½¹ëbƠµƒ¨ñÜ*w‚Œ¨8m¡kµ‡Ogf³Êwø›`ä(Ơçú£]1*³§ă$¤Ÿ…æaIß/5ôú袪x_gÊ£ ’Ô·ç¾Û§ÏêÅNI › ø ›ÆÄÑøœÀ±¼Ḿ;Fm‘ûW¶èàQ¡<“6N /QY½†:ç"R&ö{8jÚ1:Ă÷ú ê‰nèrÉNͪuY·³–̉ïsM.Iæb^m¾ûà`À{Sñ³çnYÚÎ(ûÔü„wêo¡Öw“-©³\́Ø‚æ ë§ÙØÑ£‡^ú8‡ßéÚ=·wCO)ßöêÖ[zM³—ë_&/¼‰6¬0đ”¼ÑÑ…*²oA6ûAÊlƠĺ£›urxë†Zăm¬\{µk4×ë'd•¶æ öËàߘçê0ƒă*—J.º;,÷UäÊÈđ?îà;”̣º§[x­5É5ÉN¦ËjàªƯÅÁQ“9ó®\ï÷v„ñüV•¨U‘àahĐ̀ívá ŸOËDZûß”j‘¿ß̣/¸²̃1íp¦¾a×T[6óLÖúmÖ³Ùü̃åéX›ê$› úq:Ω‰•í9™—˜¨M=‚•Y7Ï3»Rv؈ÍË…Ö†^}Ï«; ˆ;“̃º£aèXi¬o8Ë5kB•ˆØç9]/W3:G<…͈±Đ2-ÉgVêFn<º›ÈơæbVßơ…ÔÇü “²íd ₫{Æ–4Ó­X̃ˆdư“óYf{äÆơ-7ÜÇÈ·%¼Ỉn¸tNêlIC̃à9ËQ9å‚ å±Öäñ|äk×À¤QÍ2uÇđ«îmñ_OƠ9RÜdë#ü.qóQ¡=èơÀJRhQí³ÅĐ@yărd¤Bó]́ñów¯}‘øu 5•yoX{úŒÙ7]̣ĂfÔ˜(öö-wÓ⃌(ÁXÉ@QöBæ@5V7µƒẈôÇă ü+2aơ¬pö~*zVúÙ1OSô¢zĐN/ƒA±ƒVöPQ}÷ç¥’Ë ä«V ¡'Ơ²ÅJ7úHg9ø˜"ƠÅN™‰̀Ä9e-}ˆp©ä’p̉óceĐæ ®[î{$­äÅÇ6’U•BÂå¿N·´g ~ú²r¡¤)̉øiyLjRÆô˜¢ơơss˜WËxuƠă¢³º̉m{#ª°´Í¶Î'­ÂñÊÉ3Ñ“ "¢u©CĂ\;ŸÇ<7·̀¬Œ?c,àøÄ  ¬« Ø »Êæ@’l4ÉBÍ

¶ Eº%Ô”´Ëk8fv-áÏîŒ=Ä?úE~NƠñ‚+`Vèó« É…K•áÜû^V^aä Â[v}áz'̃ÿ½uZÿBöejÓ5„Ă '́i4x’—̀íÚ¿W©£Û•ü_-̃AJ endstream endobj 1512 0 obj << /Length1 1630 /Length2 3440 /Length3 0 /Length 4251 /Filter /FlateDecode >> stream xÚ­TuX“ưúg )‘’x”ftJHäa„c0ÛÜF TBJi¤CB¥$$D  G(%ê‹„ü÷¼ç̣wÎ?ç¼<×ơÜơ¹ăsoÑ“V¶2zHœÊ‡%ÉÈËB4 ´Ÿ‡?ÑçgS‡ÊØ ¼üª^,*ªO@ÁIhÖNBi00@!@^]], èăđdÚË›ˆÛÛÀ$¤¤¤ÿ̉́»ä?-ÔH"Ú ˆQP̃…%Q!₫ë@[ y£O4è[Z9™ZâÆö€1 ‹"À1€•¿ h KDI8€ù%‰̃o(KÅ̉#p€ˆG!ĐÔ0T…ß7IxÁM$Rÿ4đ"À±$ê H8E`ü‘ûPơ¸ƒ‚đƠĂj£‚Yáˆ$"‚€Æ“jV+£_u’¼á¤ưÜD4Ơ à<©H¿¥†j%ÁÑX"@B‘ösy $ˆÇÀÉÔÜT0<}P†?ơú«i€€̣‚‘H…¡bïOç¯>éÇcÈѸ¯Ö€&QOY°¼5'‚DÍí…Æ‚åöwÅë‰ä!¿ôHüŸ¶á`@âû;#A-Äa1d‰̣ËYàHÔ”€øDźßG̣ß@ñßBđßBïÿFîïưË#₫_ßóïĐF₫Œܺ¿n @=2p,@½3Ø?48áÿÅÀưĐ̣úƯ†úUî3%Á©cÑĂzQ©ÈB~)ÑD#t i…&!¼O8†:³½=‰"`ĐX•Ûƒ±2̣Èo6;o4»O‚̣/ ‹ü½*]ơËéÙ:YIư›{àhE]’O­íƯœĂ!ÿ)́Ăœ=‹ .ÉÈ«¨2 j̣Ô÷G-H]AéÊ¿Iy$ÿ—|N" ƒjßùƒîÿñư%]ø Æ‹À!÷WÇ–Ç"©ÛöOžáO PI>8Ô®ÿ”ö… B!Àc8„æ5ŸÔŒ4RwVW¿ËÓ6yº®Hüƒ»üÜ«¸ÖĐÔè·ê¥îß+#ek5~>!®à,˜I.ö´qaN·¦ Ösø¯K´ç²O‹5ªJ-†Ë¹>8¶ ‹»ôq:{ÈYâ°Hé·¶q-ü~X`°Q‘Àøq[âªp@îUN‘-‚U°'ÚŸø6æ/$²ÿö˜|ÚEA¯==ĐF BÚđ¸]»?g­{˜™m1rèq凭;–2Ùå_ Ö•°D7lK‰§G₫#á—v»“öu>œ ²GiÏ1Äj—ÓŸơZ\¸¿ <¿qâñ¢Á»ë̀gG9X<‘ĐgNoKu5;¯&ËU"ƒíĐTÇ-#åE¦Cg˜†Ç½–?Θ>˜6ø¡Xe¿2đ!¬æưđvÛ=g$Gä{|XKôÉb:+XíàOøùøË§àBˆ›j²\4ú3ß³JƯz+ÆZ²YL°«º-É<(Qæ3›Ÿy§&LyÑ­¹P“ĶL¤ßàŸÓ L½Í6åú2Àvv»H¨G+Ü'©kå«k&³ñza{ˆåôNÉÜư†̣Ơôí™Èä́œ7”{?¢k̉´JùB”@Ac0K ưе÷ đCù³£½C£\$w2™ßQÅ ¤Ç<=Wl¦}ƒzkÑ%È?l£9墿®œßƒ° iÊ´¦5º́Œ÷IS?ß« ¿Á“5;\êÑí|éQT ̣øZẸ́U¹<¬nʯJ¢ồ%ÙS‚jAf ·÷¶§°U-ÁlÅx‡`e)Wª")st|!y/.L ăîRÀ²<DƠ¿qÆ?W¤ÉÓOÆ[Ÿü^jhzæ }ªË~ú+„<×\P¹Yå¥4û»»Ă/¢£AV:ç!§ßĂî;•& jß¾́=*Bʱ ̣W¼øù2I/†©gÙÏxJ–₫åÏöO·BÖ“9wË@ÿ¦ö‡=kS;Æ –¼TeÑÁíqïêÂBéBƒ»ê…åz‡ÚÈ*ׯ–­%:„GĐñ<6.+đ÷3ˆ±£ê¬ªe‘Ó [äíëFÏ„ắéù cÁ$?¯¤º•Ur4—ŒQ÷·µ—~N–€oưŸ1$Åé§|jR}_ÍY«¡­€Ï¼än’…Ưbc´r½Y]³TG \Ÿ¸[Áë9¾ÍçGq̃×°¯Öç̉R±Y2f?ËÜ̃ô)œq‡ +̀q ¤̀)Eg°¾wÑ”ư¡M rÖ*sóä̉Ôà*Bă)[©Tă…JSµºÆÔÅ<Ÿ¶=^ï˜r«Í6XƯ†…²OvđầưµŸ‘³¾Ü'½ÊüûÀ¾ #Z¦, [0]X¿dRƯäăxÉׯ…‡Yj4•bƠ¦™ăs¡êej_âEW¿„&h?/o}¡‚JÙœŸ2_ƒóm?ç·R:¬éä[Áªµ;ŒÍ%*i “BFQ´5²ØªOkú½J†‰ó&ôôîªKCr¾*—•k¬́8ÚÖ9À‰M¦›?¾µ¨Ù¥/ê;ăèêb¸g4́B¸ú[´å¢\—Œ:Đ|¶uGƯÜYàÁ8xbÎWv«³îGUN«XW.×eK2ù X̣₫¨sf—[ßÛx× >¶X2-”·¸Ô5/Wmk±åú y[ƯoeøÜ]¸J+)Égœ;2º‘‹át¬ÙJÁ?’¼å‡k¶ˆeC ™.é_]/ºæïX̀Aô•sX­¸£;yl¹Ñ}gR¶ÓZù‘ÇĂY£ôM' ³´/ßñ ÉËÔVkƠxÍÖÔºîăô¤&ª%SÓ´£÷œĐ¬cVGDqj̉:æñBñỊĂy®vđ¸ˆ±Y¿ưíå• ÄÊ+@ùåy₫ÓS¦ÜBzy¶ÈE¢ß̀å3EµM9I­8½T‘Ù¯¡†ăÖü2I5Äg÷âwiy5ă z®™?¤Ơ·ûQŸ!̀Oí¾p uë8¡³½ÇYÑœÂưX?ç+̉”Û~øzjü½¨å—ĐªÔÀÔQ6É]oiT'ûëk}ñ ơu”§¼Oô£î<uŸ÷h¸öˆNÉZvâï›ëƯª ‡.ºîé;³]®4;4¡vOƯW1cœĂkĂºÙ67D;ê5—È.)»³|2¢=L…ơÓº¸®`ơÚYđE¾Ün­üabÛ%&²äIđêÏrµz_Ö†vüG˜ÿ…íµ³Ü ’jvhC̉ñ„2öר+YÓ&ó“¿̀€cYëuÄ=J¥Ăïø§?AƒÇ: C[+;h¢´‹;^f)#[ Ç5z9­?Ÿjíé»*¬³Z‘’ܺªÚ'-_ ‚ rrÇ'&ˆ5dc̣̀̉}æ”.ú̃²|ºDü ïP°„›™6¦_뉋’1ˆ³äȇ­Đ¦nJ\àOúÆ®`ÚÚƯgµØĂç!Ä·x¹²ÓßøufZ–fmVpo$~×¹̀bÜÅ·‚îç»Û!çŸÙV ̃6A_%- -nˆ8=µÔ)ă ́ă ¬×Ơw„èô¨̃_p]ƒÔú¼¢ Å'™í|₫éV\e!,Ưún]¦î`>\=¹<Ñx“Ó$·Ä™0Øös}X}f@aµ=E'—|ëæMđr̃p€pÇܸÉ'hM‚†È«&k óåiÓ®U—ªÆÉï¥Ñ"y·^dHJ}µ§å2¯¼cñÍ›FÛ™‘fL}*‡ ‹²~M+œ+9́ñ;cƠ;¤É6)·wÉüFö¤3™æư<GOưÅ%A3Ö”–“v“7¸Ï÷×¶ Ú8¯T<ÀwN¿t}[pÎa³D=rÏUÅT8‰ƒ†|茨F'Ê~œ—AD:OH£±X÷’Ơ]ÚÛ?UA\Å¿Î9ÖÏùĂ©¡ÍÁ0JñU¶¢¿H† W²åKf₫;Ó̃×%6Öz¤ïvkX+E-*‰xj`ûÁp̉YO~—™Æ£%¬|çă’í÷§ÊäÎq™•o2¯ÉÙÓø"2û1áÿÈ£¸H endstream endobj 1514 0 obj << /Length1 1647 /Length2 7393 /Length3 0 /Length 8213 /Filter /FlateDecode >> stream xÚ­TeX›Ư–ÅƯww+Å¥¸»&@h ”;´¸/R 8‡R¤¸/CÑà6´ßÜ{çùfæÏ̀ư‘<ïÙë́µeí³Yu xåP{ Ô Î+È' Đ»Ú{Âô¡®ÚPIM^}“§:ÜxÀDqXY=@vp0ÔMÉ’˜€€%@H ())‰Ă P„ºûx€œá#}NnnY~_Øûüyđ„Ül^ ÔƯä ø?;€@¸3à†€:ºfêÚªUm#€*È äñP„®§=́Đ;€Ü` N€#Ôùëp€ºÁ¿Kƒñ=pÉĂv˜;Èüạ̀v¹ÿ†xî W0 öđ ĂNvnđ‡À¡°›Äø;»#ôOBîЇ®Ø™.‡9x€Ưဇ¨ºJ*å w¶ƒÿ ?À¨ăĂM ÔÁówI°nvƒà oøïXö  s‡Øù<Ä~ s÷ÿIĂvsúW<“‚Áh¸wç_u₫KơvîîŸ?̃Đ?·₫™Aùp…b:Àb;ƯpøÏ‹º›# (đ—èé₫̀ äñ§A¿g†ó! ; Ô â‚qøµ¡đ‡ÿ›Ê|ÿ>‘ÿ ÿ[₫·Èûÿ÷ïư—Güÿ}ϧVñ„@´í\à¯=xX4vn€‡]Đü^6;Àï…vøo®v®`ˆÏÿæü÷Û& ¿²₫OοĂ…wszPˆWP”Oô/3¦öuÁpg€£ä¡ýFn@́zùOœ₫†:ƒ¹ưVCô/äü{ ºư©€_KËL[YûÙ¶.ë>LÜĐÇøÏH&ZPà?¿© ̃?^A1I¯¸ÀĂc|x’B"ÿCØ?D‚ÿ:kÙÁ=À̃ >AÀĂÿ?~ÿ:YưFÙÍ ü=Gp;7àĂèưÓđvđôđxPüÏ6x¨üç?̣9à̀MC¤Ă]̉̃¥Ă«(sz‡”,¾|Díp/®5,È®€v¥½₫!Yf{SÁW7"u×äómÇưvMƒk½ï3„½#´ŸGÀ̀Ù™Oü­Eœ{=”ߺ?}×$Úï`JsÍ\LÀx}eHOߺèƒn¤EØëàœ3˜Ù+?˜Œå̀ Đ!µ&¼•¨‰¤êưÎ.[âÖù{wÿ×̃#ôεGÜÙqج̉v”É;ŒIp[D­Ăú•—¸'î |?̉ô[Oæ7¦4¨bµïÄ¥P0GKñI؈¥B*¬vιNÀ÷ á¬(Ë xEq“!î¢RÅëđ̣øhí‹ô)¡ṃ·†QF›—iđiíl ¾¿ ?‡pƺ÷±]®‰©ˆsƒ´Ê<‡₫Ư;\ƒ3O½O[A4d yY3đ¡̃¼±†Ê§µ…nẾñ[× ùưË/¶Ôüµ¾c CÂYI|ăs®¶™Îö<ô+ ùïT/ä •¹̀Eû̃Ô8‹«蓵“æ‘NXw«DöÿzÄ̃ ø©"_É₫¤cSq©ª${^l,¢\ e?1[†ëÉu²b}Í$6æ°¢h›èÀ2̃O¹j ¡Y₫¸è†rG±ñ±}Y-%eíèLØ„áK,ÍRZ —V*ơ[ç7zø¶}͸jMS(L“.È4}dQ…A Tä"Ë8f~Ăt—qÓJ·¥°óUQu8Ú¨kï†Ë˜X,>G¶'[É—EÅ̀®øđi?u¶ù¾_ŸWêˉ:{ =Ơ;< 1ëy¤×ÛæHÜßê·TÚ́È‘†ÅQ#®_•º;+>c ÜgøThƒ}¶ I|´^àK̉ LqÜ ”êt<>%©7˜½13J`•åwúÔdŒ²jÍÈID5iArÙcṿ¸×]Ëëª;¼êÉi´Xâ;̣§$±ø¢Ïs-[Ă%¥Jøé°+éÁG`h¹&ñëL‹ ¸½ü)™Où#ÏuưJM ^q”€ù4k†Ăº®æ̀ùí/ ÛÈJ®Ọ°1đä€9>Îu÷½ Ü!£+êÄXMqÏă—¹æDÄ£ˆµ¯'­ Ú)Äơ1,QmOZ̀öÛ”M5)gj”Ç•V* w$îHCW Ok }).̉3)êm‘ánÏ& ̣ͺ'Rq•èyµËQĂyùá!¶̉¤íÓÜOtú‰u8¾5¨@½>ˆÅÄ%+jÁ&¸ß¿́ÎjŒêELåt́—Éñål”´^0i¨Ưà¼[éAEz.Zœ½·ÊÓ5rªö¹Đ÷59†đÉ¥ø¶-˜̃´ô¤½¥(‰¼C…"₫¥;—3ó‡+GÅ›™Sk¤̃ó]k'8»8•£9Y¬eđ)3•î)́œ÷FÛí@’¶ọ-¦÷6ç|M™úÏ ö%³co*_ö̀¦0EJ]”8đÛ|?]:©˜“­ “ƠÚb~é©à¥j÷üyV‹1̃Ø•O sRâa·p8§am¦Û]fmY¯†0EĂÄ~Qruó äËn|­̉w₫X7«Ÿ@2¬hCÚ|+]ë˶{V8%†BF—NŸ/}i©!ơFè|ê9̉}dÀÓ¥G_«gçÓ· (îl ue‚è‘_ü]Đ»i¬ œrf"@¯z Ö³)² ÀuÏ› S <_ăªXfû¥É¨¼³,ö„V+âÀLƒ¾ÅxVÈgpߨ|Ưåq½€Q**¼cEÄ‹ÓêFX»KƠg]ơgÛ‘¡çắCóQmà̃hD¨ï1{đăd8GIĐ ï zơ±7—ê?¼ ÏNUîx{å[ưÔ?œ̃€L¦µ³…±ªHtfŒêöÈ7UÜđûSd†đÊѺ··Bl̃%ï³¶äéÊÏ5ĂK¬(Öl8÷BŹöYE‘$c"'ÿrp_́ÓË÷GÎôx7N˜¸‰iËÈçđ¡[wG< ™?WëeèXê÷â÷ ב‚e¥}ƒ@áH&Éă $•NüSƠIưL¢̀* a¶)u„è~¹«™Î)”o¬Ïà $'5e¹kMbÜ₫ÆômzdzÇêPÈ´:âOÊZÑ¢uaˆïî@{F*’ơ@£É-g²V>k1Ÿage)¤ˆZ²„´9Í ̃°µµ¦´r´-!¿M‰”À\«Ă´›§­.0óÂØÇ‹9q:åJÇ iç<̃m|ÛƠɨSöÍ%ŸY]q‘Ö.đÜX‰đ~A•×Ü|Ú0&±Œø*)UƯTœBöơÅí?Æùê¹5 Ië î<²ƒÿ₫†Kz“r×|´|.|®#!ySmƠ¼Œ+µ  ́̃ª~•[ ß{A.=Ç0›lD̉[Ä~e•Ssé¦}½i”C=—ƠvçÀDáÍYªơîÇù«Gx‹½ïC¯®¯’øƠeñF¼'“F]äiù>Dr\~èq»6+T2uŸƯ‘½í'iGdrŒL.h{•‡½ Z¾~¼“êt­7ª°_î÷Él­\½~çNè\\ÖwpûJ}ékImo—¿>úơ× -K=¼×Ó(CèRĂ×=„îĂå~!j3y¯É²MÏ2¥ßz >Ù•]]:ª•ndjPđ„„ÙÀI¶ÀÖèøyóLÜ街ĺ¼ƠcÖ*oV3?>~Ÿg+é!]jnúÓJŒÜĂˆ́+|îÅ}Ć_ă)̉s‚Ư_…Œ~ùê]¤AØÇăgïÆE%K uéfDưÑơ(IBÓ‰$‚Hæ«#BŸfOˆ[Ľ|Rlsx£¸”̉ؽ³ÇªÙL(yÉE%èâ§Åfv:˜;‡µ!µëéæ8ëÁnÈư‹8½HbÔ6yˆn&?ơfSæÂQÅvw uº~Må205t̉uñ\ÀÁ́Y¸xm •âªÈ¨xá_¤ùå¼ÁÅRwc_q;dó̀æ]HKíü‰i–—¿†¥J‚•̃8 FçÏZ0¢vcÁLü¹ñ>,p§ä¿ó¬y®̉€4$wJ=̉½:K½GpÜ Ơy’§xg6À•$1:¼É308»Ü·²?ăçYT\¹»£bÔă0¯Lÿú­F+—ØƠÔ˜$|%kŸ;æy!­„*Rj"½¬;ÖyoÆ»A.-‰‡J¸q{|̣32ç­b‹“m2ÇŒÉ iüÈ2‹ç,‘0ûµv2,đ4”DŸtó₫΂-ïØù£„|{[Vôßú©ưˆ`¨søéä9îd ^̣ênÅ™„üZÇúÚؘ,ä¬FswRnơçí²\ª·̃p1´[‚üpỌp± ¦œ[̉µëuÊæá<>L ǹ3 CßW¨­æBö£Á,±ăĂY»lA}ŸûR€YÇ#@w¹qŒ±ëAœ®×¹Ư&ǧ•¦ëcƠ c„€a‚é¥á²í“pÖ®9ç‚úB‘°œ[3;5=ỖÉ”Đ]Lî;Z,ÿ{û̀nûHH }[ár¼VĐVº)̀¹¯‚̃̀SJkñ;ûg0ëßè4é P‘lüZa ±kÊ•ÿá9ưtú1+’ê6Ñ©©·jSƯY«bÈ; ¢ÜO/đ(¨0 §ưx$Í0ÏIùùnc²¦ÔÛư/À b3Ư›ø±y¥×­+·ñ׋œ¿ÉV'9Xi’ÅJÔMvcư(¼cĂÛR›m¼{1Tsl¡UûƯh̀ØÙ$Ö m4ÛaÉ䬳׬•r”Ơq·g2@ˆ4ŒëNeªÑèæÑßµ̉ ˜KÔ>â\̀»€¤´I/ 3¶¯3V¸:ª?¹ºƯj w*Âá×ç`§r+ư ,¥± 0"«‡Æ"¿½ƠÉÏ-b{–‘L’ÅÀ^À(1¢Üxº’ë¼ƯKÿÁ qẀ›4¾BÆb«MT†@̉I³àĂïă X•›«æBe¡j¢AwtßÏåY€́–MNi­¡ögÂцè}””vD–năá `­k\7yÙ¶ÀªÖ+©4äеp­¢¦t9]Ô!ou¦Ô¼f₫+ºåu wh-Ư€KÇTÛ;)ô-ºè©¡náÙ›!×x½À‚ÚSăR3Ÿ àXoÁ?ùsö›ÇErX´}K~o¹`îÔSúœÉí­ÑÖÇ-b eUCíŸêè”÷•ˆëR/B!j Ú&p} _—:¸æÂ•‹›î>P•?-¾ÈoêùJC‡ÁÔ\uX΅Yü\™§ê7/ïpÍlxo¶éöD7½́³̃íÇ̣­J6øÖªMv©TƯp”©Dn׬®ÄÄïèôúôl˜₫˜`39Ó`JÁO'ŸÍ°ĂHL´pn°Î/0à*SLeS:æ¥ï‹TNÜ7;CÇD ëakç¦b;w[ôrÚëµà(nUq©ŸâXÈŒ³N`U«í*>;~Ă=ƈ#üÙXÊ+/Zñç-ĐY“ÇY·RTÉ́ƒ´áxºy4'<øa®çJ&sùË:ÇØO•4h.Tî¤É3m§ï_ÑZÎđXH‰µø-·=ăbæw /̉„d¨´W[<±Vt3<œC+6KÎïT‹(¬̃£ú–…ë₫¹jKü“Ư=rI˜Ç•5¹ùëÙç¸ea35–P³E­aÜô1©e5-ó½ưÎ;ÚÎÇE¶ºø…« ÍLj̃Ûâ5ưƯAĂ$Ï •~”u%füUo MQ†{ât̃O×eÉRéw¹á{ªă>5£ê V•ĂvQåàŒ,­UǦôŸ=8{;̃±1†Úvù£‘`@„x¿ñ€ˆæ^¾íGÔ™‘̀¯=…Íơ(Í|Ôî–µ«0Jó;fö₫¾ûIOz̀Êù•`që׿/j*Î'ö¦¼×±5°f¤{7ö‘́å{w¾¢U›D;a~»”i1î@)îàsr+̣ØPô3"wlÄC ‹§éyŒ_ÙR?å§úKÿ$ª¥èé÷\Ó¹×*'8n^#m ƯÛsñ)Ă#¬®ia˜hÍQ5‹ˆø…ç]gí46N²[Hè…]QÊ|ÊÑüª…păHÈ—găŸ>¿a4NÓ™­ơ¦&ዽđÅ»•rTc?”)ÙXn¬\Ơ°F K OåÈ4ZH]"w*ÖPË÷R‡)}“eâpœ{ó\HÿƤ¹\€|&"ºă| •óØRhnÓ°Kb ¿¹D¸TÆwI¹¦ơjö/’Loô©‚̃BE÷ÍÄê~—` ̉Ñ̉lô‘öú¹ĐM9©bơ–2#‰¹‡O}«|ÍÈë¡Ët¼Ă¹B›`S‘×f`‚ø(EDCCyÆ'X_€=Ă‚Ù CÇ©§1ºRGg—7?»;F‡Ÿ&/ªD—~iˆ5§N<₫$.=¡¹ møQÄDr7M\q`ÿîàV_²[¼CX4²,ªR§\¿‹í|êeÅÍ9 ĂqIn‡TÉẶ ¬_FáPaFÜƠ:ø|w8ÄxM²Ă::%JtIéFÂ.4¢|¤USs亘·fxÀÑ;%$L¸oL*'#$÷̉BÛm|}_+¢×lQ:^¨ÂeY§â§ÓüyUuö$µ)g’wâ åÃ̉´Ó{iÆå® ựÜ-_s†©Åí¼ 4`¦o;™ĐN§›¦ÉţʑéâpÑư‰Úxh¯ă=AµÏwÉv€@MVW}M<Ư ÓµE]Aơ°bEVœb™f1EÀkŒ€¢4á|Fă0¿ĐÊvY÷Èv„ưæ1̃p$úO I fQ邹“f›{œ¯Ñ™Ñä&UjưkPFiï¥( Dxf럭WmjÓ:ëÓ¨#:nJ̀g‘B:‹9‰ơ«*–@Ó›IVü¥>ʶT7[mă×HB«.w1ïçăEÓBpùÖ¿‰x|%́Í;`nTÂv~G»½¢o\¥Â3²̣b²çëJ'êÇ' 64U‡úù'̣³«à%Ö|töÊ L»]$"êVª†yÙûÜĐU/_’Œ`”"iÖ z¿7—}¯XkÅñHwOä,)à 2m¯0&₫¹dó@^̉!ø:9„ÂăäR3;¨YŒöî]sóÚuƠmÂ÷ÆÁÉ+¢U³;¯:W¢ C@?<Ú*Åù¬?»“a@eQ‚ÚOS»ËóªđŒ́óé=X}ơf]fúŒTïEư”cü₫¬L¤O>2ƯOÏEî>¡O;æ‘æùÏXeÂjYV{r*8˜JâK´̀¼›˜Ÿ`₫×5̣Æd•́Éáûû·ÓI~aû`ĂîpŒCRÙxæl̀®—ëmGN ÑÖ.Ơ(™ÎE‹R—rT,zsPH\úµ7êX ÛƯ¢C q\‘V>í+ưÏ[ÔöדÖƠ”µbăÀ†vÖË âÇ´/#æ/´rÙ÷oZ@́Ó§ ¥³ª½̣èØÅyœ?½…Ç¡wk½2†i-*艕ô†©ÉH|ƒ7g0ûáÀçZÙ #ÒÔogè2XÎemƠ#ư⋳ټ³̣Ë9~‰*zf®è*€+pÊ#ü(œOju^ZΓ˜Đ¦¶¡ßB_« ̉[ÜÍ•w@¹¼óËZù`Ê!ºĐ‰̉}k^ai&o‹j2w:U‘×ÔÑ©Wï·ÇñŸª[¡đ†,`TszĐÄ µ<»,ÊÂÏçÅ{µæ6̃´h©m”‚úó¦öÇ‹4|úÙd£0găºŸpz|Ü÷›«4ûăŸ³ƒqyêºáᣃ œ ˜ƠYöÈi8äß¶ôƠ¡÷âZ(Pêü£®'.ñøäØ€,ư&)®°÷­ñÙªkz%u`óư/ŸéNà ²<}÷™̀‘—Ó·ѸûÆX jå=t¾ø h»_¹Î{ L× x»^¡ăIs«â±2„ʆĂÎ%”ŒAûj»́§ˆo6ŒÖ-„—\Œưh™Í"ÑƠ!Œ½“3ähœưOm©@Ö=˜Z¡/}&k+b¤ÍOÛ(«ç¨e#(í²Æ"¼K¡O¦»ûHB>cä¿h7© R|ijXg·̉<Đwb’S)#‹Ư¸u©-ÄN½jœH¢÷<*rÄƯ!œ•xÎr|Éß’ê£AÇư¶Ö³=~rC´åp¢K“́„́ª̃ȶO U5Á¦Ws]ÛÄôÉËg –‡P¦₫ “ôT3ê?e1%e‹Âc+¨)××c ·œÛWơQ–öuKå%m„>ïô/á‚„ƯáPᮆ̀ße3›Ø5­OÍcdæ̉U°¤ívíä¸y¿]Zt¤ê?̀éËúDjîùĂä¬i"¾?ĂpˆAXû 'lt¾Ço䡤¬uj®A å€yá¨ưdà̃|7JnâH¾·>³¯¯^û×=>íàöN¦Z~¼Ï]’ÖÚŒlÉ̉ºk7Ï€£ÖûĂáá:,km¤»/´Í9)u™âư·ïz®Ÿû|¸pQÜF$̃)…®ñÙû¶Nçúé$í87PyÑAúƒêVP<äéƒA„…C£! lÎ[ôWdëH£¬´&©1×›Ÿ‡Ï>fp¼É?^µ³BåÑúhÄ6*­glƯ1öóG;ɱ½%¥æ5™ÜæcaáÁrÓ~?¤ºU¶f°đºiç̃_ˆk,±º±N®t ™ NÇ»®Êf±I±jp̉ÑăSQ¾¤hâé™Rx応l¢ÂÆÑ̀,VÂ+ûÙYj̀Û„¦ÈṚ¤ÚÅ96ù“¨Ơ}ZÿLÅ7a:›¯·¿x·ÅØjÏbN6œ(“Œ(ËMî0½CRW—H 3ơˆỤ̂ÎGÍ‘fê¾5"¥ÁÖÚ–f¼«r[[Ø#é¼ăl¼ Tç÷°BKIĐÖ7d)8ˆœ9­̉é¼Aơ²ü‘`¸a!{Æ­¡k7ƒ-º)Nïyiẹ̀´·©^Êǜ©²ƒx€½Jư±»ëçÎÉÉ.”€Ä,\É6L„nî·Ï"Ÿ=E 舖œ©e&]ó÷;øH5—{?3"<†J7NÍ6åÆïÔo5¾›æ]̃Ë‚±¥.µ|—Øy¿Ư¢Uåg Å­ŸÈî1›•JÙ¦ }K,F†ơ\܉­w eœ÷ÿ<ê­Ï?²Cà H„Å2b5µ$w,¡÷xS‰Œ endstream endobj 1511 0 obj << /Type /ObjStm /N 100 /First 906 /Length 3422 /Filter /FlateDecode >> stream xÚ­YisÛ6₫®_ñd\â>4Î8‰§‰Är§“y‡–‹­—¢’¸¿₫Ư%! %V;9H.€ƯgŸ=RL1J(a Âus£ˆt’0) 1đIáˆ5pcq¦KƠpÊ cÎÎ`¾àë`¾̉=áP•Ơ0$Ç Ï'0̣öƯÓÁ§·u>½É«›ÁưäƠá`œOëÿ1m`â8¿Ù®x̣döüqˆ…sÈ]]`ôs/;‹i é sŸæw§Ey;ª!   ăØ!đô¢ÎÇåđhz;.È¡ëeƒº˜¼'´—}ôkàöé(¯EMeùøn”g×EgĂQ™áuœO®ọl6)nó́„ọ́v’´OJPËT%½ß~û)\_½y|^N®ó‹Ùä|æ^^·‹-₫Cr˘BË•ûÚØÈ}ÅB÷™Ư§Kï­Z¹/UDÀ°¬†‹É—qñ=›M‹¬₫6‹=…~€§ggWçÇO"¬m̃:€nÚ@¯y«coñ±ó–9±l¦–₫"K¿’…₫>ËN³ó́"»În³QVfÓ́.û;«²:û–}Ïîל—›ÎO‡³›rz PÊ/_ª˜‹9ùCº%”Ù3è+Ù)àÈÎ¡æ³ âlv Ö*ÔͦXf­ú~Y;S‹[g™Ï?…@¸́ïŬ.æeCª¸^ŒÇEưy3z@ÔâºnQ =ÉḉüÍ»«OgŸ=ùÈho-ØĐƯ¡ )ÙIYÍk$Ú\/{•w íCyS渱n)”]®Î/?¼~Úà)öD@ó‡8{uuyỷ° û†®Û×*°+ÿÍĂÍ^ÿ₫î́Yc₫̣E2†¯#pn{ôĂ!|8úxv| Ó9`äFâàS‡@ª‡#x̣̣äâÍ% 8ÛBÁF*!d@ʇÛ9øưå»ç`ÿ"m~3Ùöd{Ø?ü~ö¾±Ÿª»‘ƒRnÍ-nÿäùÛOï5öMÊ>ßIÿư=ø >]œ½Bû©´rw `. ÿî~8\€ùÁ«ËËdØqtXƒ{TÀñÑÇÓ#̀€Á `#mÈ +PíÑ?~öô²±Ÿ.AG€>ÀóWo›\¥íoä ̀‡(÷(À““ç§Çç`}Kṿ t_ïá₫Ùɇ €n#¥Ú @Ù‡x}üîư³‹@ª¹Ôzk{dàûçGG§ €DP”> å‘gÇϯ¿̃]R06hàL8§‡Ø#?z‡ZGÄ6ˆqfkwT{tÇ]/4`ÄFFgEÉs¹<â¶ßt^:?x ÙÀ¨62yûn¦ØƒñââÍ»—'gøJ¬₫Öµ…:%7`‰=r₫ăëÇWÖà’ZJS°6Ÿ*¢­Wÿ' ^:?…Ăààär+(ưPô§@½Éo‹9¼:Îø*Úƒç _<›ïaÍú—å ¼v±6ø¿¹à•3Ö^¹í87M!|̃Ë÷ÊEÛlˆh« ®₫ÙBíoD´çdüüè¯^¹öφùë¿1̉› "­1IU{m§)˜¿₫ #¾F‰ư"₫Lü±•ø£\Í₫F|}¿ÿµ€à×½öÚz¦Úäúi#&2"½r¥½ríåÆË­Ú߈¦-]ºư¬…ßaưUú«— ù/ŒxOt›=Đa½rÛ*7NÓ²¼ŸĂ[:l‹”8Ÿ̉ŒjĂÚc34OAd‡mµă‡Ơ,"˜6Zn}Eù侇àGû6o}*ÑF•«­V”Z†Ơ3®<Ăœæÿ¨ffŸ₫kË^/êq9Å•M&~—ÀÜü6Đơ×SŸ®â@ă8,mø(¤¼¥ïÎn_뢤§‰¤w]œLêñK\G¸Û™àK¼¦đ©ØFå.Âl"Ghi ±fNÚiË·¯”a–ØD²Ûss.Ă\5‰ô2ËFîXRnŒ›qC·«Ñ¡)4º#RëjÂNbDw¬j¾CM}`Uw¬ª¬ª0“u"ƪ£Xí X…ëŪ£X¥)nVª«²cUîHÏh爾evØZ°qï°k¶:ê×6MVj_Zm˜kûe´2Ú,S{åj«\Û)#ÿRVûâÚ¶Ñí‰2j"lrgÇXm›|GH¢-3µc®6LnÍÊÔö́»O'!ßÑÇÍ]›6rW¯m «Ưt÷ñ%ŒQr/]m¥;;{´­&JbƠgvi‰N, úWÛä-m-… ñ'i8¸>z6꼪€œöèûèE]L~a8 L (p@‚À¿µ…Ö‡³W夬×L.§}^‡ƠÈ5.ç> , Ú×…GĂ².~¹.†£z6¾©ûĐ₫UÁóùèKYŒoú– [-ÊuØKH©ùøưœ²˜}ê ăêÀØ0¯ëb<îÉMc+56VEƒ*œiŸó ù¼¨q ̉6›ư5/îûT£*³îÓ:̀EidžƠlzG}…YbC’o¾ƯU_@¤´¥¼øZTe]÷D 6¹­Ê!XÇpù9^¾(Ç_fƠM_ᥢ¡ºäӾiji¯"ŒË̉~ )Ë[˜a@±¡¡Ià·FyHđh6ô P'­‹Åÿ”Ó[O·"«¦}Ưh2ëbÔdÚà†GºxMÚ?‹éÈơC­!>CÆ|+¦·0ÄÂHgÅ׺8Æ‚±I>æăñb̉§Çx4đ¦ĐwüXẹ̀dx3›æP+ulè¤ÜÍui' ¨‹öÂ,œ.¦°l|ßטˆJ§†®‹j:¯‹rÚ·˜`6ôó®¸åÿ,ª¾3X»a"ÜUd°Ca•2Ѫùưp₫™tü–PĂÉi§ªa¿*Æe~]Ëú cW ¿ơ'E=Ừaˆ‡±ƒÍzGÑ/‡ăÅ©–<5:­«ât‰Á¯ó9†(̉ú­êÏó»­±¤kë€×Ömṇ̃Ÿ¦çp̉;&%Ô|S5!øy19€QÊù¨-ê¦f¸ [Ê|R¡©ơÿ¼›ßAeʰ̀æÓ"¯G}ƒ¹ÍÓ‰è­ÏO{1Ÿư•ûºQÙ¹+̣ »M5áX„̉ ̀̉k€çB®k,éë”5s ó»ht'Ù´èËf{ k¬®îgÓ¾À¾²üz·æ× êÚ´g~;’Ọ́:vƠ7¸?Ge-ï:¯nûùƯ¤ÙqL´7/Gq°AéĂ[ü½Èër6ưEâ¡CI¿æKy»¨ ‰å÷Ä5VW“7\YPlÑ*VÍP¦cG™‰eÀ˜âk°ê_[ ^)»Qü‚`æV ¸S/«—&!i$HBÇæ‘P± ëơ’nŨ‚‰Û Bm k…Lơ¿̃v"Ü—»ö]~ÛD’ù/̣^@ %M´Ùt`·›¶­@¦üoJ^‚D-_­¤á)†4é‡FI46yØYífmfqy øË®ƠHđ€ílđäÇ…Ø9f, Ơp̀WfÓ¸́ÁjV¸0(\¢$2¡0’ÑL"åB Đ##Â8¦„•I`hµ›µ¦ÿ¬•4¯! %íBû=…¡X̀L§q¹ƒƠ¬4.u¿,©V‚UÏC„Æ6FJE0,JB°©ö;Ñ0´ÚÍj€ưZ,V endstream endobj 1561 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20170908180744-05'00') /ModDate (D:20170908180744-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015) kpathsea version 6.2.1) >> endobj 1540 0 obj << /Type /ObjStm /N 21 /First 201 /Length 863 /Filter /FlateDecode >> stream xÚ•VMoÛ0 ½çWè¸ Xm‰¢dE¡»íëvzp¯&EălØ¿)‡®lËÁvhÀ>Q|Ï”eT©4ZM?üg‚̉pÊ"r`•Ó1•÷1p*Øx¥uYqD?PøGÛ…F¤O»)¢Ê¡̣et̀CPÆh̃‹V0̀I|Æv‘S pä•qà8ª”ñ%‹Ä LUjâp%EWW‹âSưØÔWOơCsa—TTSo_Ơ (— I~‚hF0E !¤3A`©\ )B••ïŇÍă¦MIû¤»ÅơuF̉nê0©çq)â j¯äB0í¹á—…Ë>)/ ÉçÓÆ‘̀qUJ‰d ©,$s|iS„đôP„¸½Á¬.fí³f„‘;Ơ s$w‚ ä.Ư"{´©?TÈ ¶#v `̣̉Ụ̈%-/Í‘CÚBZ’¤A™:DÊ@§*§-‡fƠnö»×\H̀ïÁèv^3§‰}ư°{ĂÊ‘M hE]CTä3‡̀]ª ÉœSÊ''ŒD!?Ơ‘vz*ÚŒ$yÆFy<0ªÇ#8#4Ư—̀©Îă½¬–́ hHạÆO`àlÜđ@fpàÉà¤Đú‰ü‘®ñ–s[\å¤ñ¡›J³L0ƒS+!dprJ€Ư ê3ÍDmă=çÁ83dß/ ³ăĂĹEª ³;©®…üb´ Ï5ơf÷e»&ñ5…s̀$ ĂÜ"_^³ùṇs‹ß́s‹t=æºèÎn₫‡–éDûSWm}¿mØ`[U)Âòéë<[ªßÑ3¿ß¬)[£é̃Öh Œ •`̉ó»ưêÍm[?·Ä±Ú´ÍÅăj½ßƠÛơeÛfÈœ̣T„S"&ăÔw—%·ôsóp|&_pỂH -œfŸÑ“—ŒTîïD€ ‡(QnÅA+ôVè­Í^l`g.6!±¢ÖZ+ÎYá·Âß}ÍßJçQógø?æ ¥w”̃Q¬Gi¥ôçæiÂñ®9PRü0¦m‚~ûóÔ¨â¦nëí₫aQ|!c9©û*[Ÿív³ë ĐAƯ©‹ŸƠṇ̃̃q¿nï‡F̉‹ÛßMư«¹ÙïVûçu½[5ôq %ŸƯÛèaN´ü{:Œ endstream endobj 1562 0 obj << /Type /XRef /Index [0 1563] /Size 1563 /W [1 3 1] /Root 1560 0 R /Info 1561 0 R /ID [<4B153A1FE1A923526E052BB7589100DC> <4B153A1FE1A923526E052BB7589100DC>] /Length 3649 /Filter /FlateDecode >> stream xÚ%™klG†÷;ïñ=v́8÷Øq́8±ss²9¹Û'‰;_Çvâ[B Qô‚R$**å "„bF*ª)Ë!ˆ‘$-W!™–BK«Rq-çụ̀çñ̀·ë={öygwÏLÉè;¹(ÊE5}«ú' [rQq}€µ}Ô&éæAÚ4µ ºEPCm•Ú5º1(U[¨]¥[ ê¨ µ+tëAµ"µËtAµ:jăt›ÁjÍÔÆè¶€VjzΗènmÔ¶R¥Û6QÛMm„nØL­›ÚEº[ÀVj‡©] » l§vÚyº;ÀNjg¨UèîÔnS¦Ûª)Y-µ!ºƯ`µjçèö€^j;¨¥»ôQÛIí Ư}`?µSÔNÓíÔ®P;E÷8Hí*µ“tĂÔ&¨ { R›¡V¦{£6Kí8Ư§vvuçÔîP;FW?¨z¹Êfjz(=É3Ô¨ ̉Ơ/xÚjzzq†© S;LW/́yjú¹úTÊEjKỔU¡£Ô–©é××0hJÆ%IvNĂ¥©Ó8jN5Àlü4˜³à:¸æÀM0À"¸nƒ%°̀0ĐO»#Q₫m­ î­P6m`'Gaø~ º ƒ¡t¨1ÀB 0¬B`0B¡ làÓîJT7¤£[GO,ÑâÓÚmŒ™Đ)a`|„NĐ"QGEwV«ú‘:¶’a-IØAÏv"ö‚À~Đ%Q×ïơȽ€È‡>€Á€Ú@B¿Dư›u¿C|FơkåRư7"ÈZ „tbˆh è`†F Áa`ø¢°À†x f›B \4̉¸‚R H ‚R >áˆDÉ?ôœÉU圷rÎ{Aè ô h%ṕ-€Ü’Hb „Ba „BÖÀ¬D#§ơ È_˜ă ¸c$»8r=÷+MX5¬Ó¿ÑïJQVy”k@^¢‡^Ônè]ÿ­¡Gïé½¹éíu4Jôä‡tCkÉWß¡µèƯ»A¢Ç¾‰ÛB«èªYû¸>ŒÊ: ¶KtE»{Á ÷Ưm C¢_¼¬[5zóƯ:%z}>’ÜÄ”nån[®êw´Û¸Ă•¹½–{$zuZ7ôJńKÚâ~Z̃'¹+Úå–[î—ü̉—µ{P̣÷¾¡­#à€äWj÷HÀ ä₫œÖJ₫oÏj«,ùÿ½ -n›å“Røî½H ÷ƒÖ΂ă’ÿû íê ^/¬>ơœçÁ%pṆÿypÎ#` ƒ 8.€‹RđM1)|çMíN€I0.ƒ+à*¸&…ïë~ `Z ?ù±vo‚0 ®ƒ`N /}¤úe^ûJTu₫̀;U¼ˆøL@]–À¢Ö‹z¨[l(̉Z–Â+zư²<Đ˜­€U°l¤XW=x<ùˆë-–â–gô¼[d5Rlû”vK\:}₫6̃(²z)nzB·6°µI3h—÷ˆ¬Y×ß̉.aÍxÈÚ¥øH5Můé†MR3zW[€WˆlKơ”^ª~é(̉/}èó——‰Œ°f3Û(Åê ¥ÅE¦§¦Ï}}¨æµ2ƯnĐ)Åw¿¡ÿÑ%Å·îh‹±í‘âÛ¯j·Gj*{µƠú¤æÂsÚƠ—¶n©Y¿v k6 5/ÿS»„5; ôi¯÷A©yMơd¤8;!q±C»§AYj̃¾¯Ư“€„eÁ‰s©n zQÎ΂™̀¬"ñVö÷ˆŒgc€üe$1‘xÏ+ºËeNœ›BvV+—d H˦$>ôƯY_Cơ…ñ‘ÍI|ªY7Üd·ŒŒèeË@S· ñđt—E@Ö²U‰o=]ÍƠ#ŸÖ µÛí®ñá=¼`p®T÷›çĂs•KüçKÚyPE‰—_Đ­Ǜ+µß×n3à1V©ơ 4‚&‰«~ĐSºóF@6*<&*›ÀĐ*ñă÷u—¾¯‚3M‹@Ïo7Ø*ñ'Út¿Nж퀇Me'Ø%ñgŸ×ưôûvKüÅsÚE@…çV¥Wb;¨5e•ư€'XeŸÄ_{N7đh«đ« ‚C?ß§ÈxåHÀqpœúîxèăY ï‰pTấ×z”!Pæ«ọ̈-ơï̉ẩ¥<Ú*€¾'};¼ÆÀ8¸ ®€k`L‚)0n‚°n€ó‡Ưz³à*˜æskA7Ư[`TăøËî̀À¯̀³K­jà~Û Wåô–F†Rⓟ4$mRûÏt ¦Í¿ñ¸vơUH )IÉFÚ6R’꛺St§˜N€.‰ÿÛ¬G!%é>€ĐtpÓA)ůë.G̣Rä¥ÈK‘—â-Å[²ôfô=o)ođ)>R|¤øHñ‘â#ÅG)>R®i”))RR¤¤z1“ríÓë)éÀVª—e)ÊRT¤\ût ,̀¤«@¶^ûj|̣£yPEPbPµ ÔƒĐ@3ØZ@+ØÚ@;Ø:Àf°lÛÀv°́»@'è»A7Øz@/Ø úÀ>°ôƒp‡Àap ‚£àHÀqP'ÀIp œĂ Î†i:,¥–½ˆgÀY)u?¬Ư à"£àăà2¸®‚k`L‚)0 fÀ,¸n€9p̀ƒ°nÛ` ,ƒ° ÖÀ€}Ï™ź{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{́{üú³à$“O"<Î=Î=’=’½’̉Îz±G¤t¬Q[Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Ø÷Uû…₫È<(€"¨1(ZPêAhM l- lm l`3ض‚m`;Øv‚] tƯ ́= ́}`ØúÁ8‚Cà08ÁQp $à8(ƒà$8Nƒ3à,8†À0¨€óà¸FÀ(¸ÆÀ8¸ ®€«à˜“` Lƒ0 ®ƒ`,‚[@Å_’̉¡ƠxSJŸĐÖm°–Á XkàÀ¾eg‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}‹}{̀ƒ@,a°8·8·8·8·8·8·8·8w8w8w8w8w8w8w8w8w8w8wHv:â¤4ôQ=@”&¿IiéĂÚ%8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#8"àˆ€#®bÂÚDÂbD’yPLÅ&LÏ&1`&!a:&a:&aÊ6a₫ aB7a&+ab5Ù˜ØOZ³º 3YI;Øø…–0a•°h‘0“0‰l,$̀ø'»@'è¬\$,U${@è{Aà÷~²ôæÛ“à `ê49 _ưI±đ1½‡¥ỗ9m%à8àVrœLI%,‚$¬z$goúÉ`Ö>©€óà¸FÓŸÉ%0Æ¿̣-V)~ê'¬M$“` đÛ>am"a1"a ¹˜̀LøŸ̀ƒ°nV`–¦:“Àô{¤{ÂzE‚}~Û ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö «Z†%34Ơ_wïù¹^²±̃' 9†¬ëƠ †0Â`ƒ! †0]ÓKG" ‰0$ÂC" ‰0$ÂC" ‰0$ÂC" ‰0$ÂsMJ}RÏeBJßû¶&¥¶đGmMImçSÚ–Ú!Í®™‘ÚÅ'µ5+µ|°ơºÔ¾ø>mƯº¦mÍI]ùimƯ”ºµ—´5/u_Ÿ̉Ö‚Ôưè›ÚZ”º?5hë–ÔG»´u[êgÓÖ’ÔæÁ‘—¥₫ N[+RÿÓgµµ*ơ}T[kRÿæëÚº#ơÿzX[w¥¡½KWF#i˜ûa==Úi8~R[dr]çđ°ºƠu]CÓ/]±Ó%:]cT¬ë¿N{1*ÖëŒuFź®Kꢙ.0*ÖuQJ—¢t¯:*j ƠsyèW-9P5 %P ê@=h  4ƒ  ´‚ M̃ơùê§ƯsÑÿÊ£l, endstream endobj startxref 813480 %%EOF psych/inst/doc/intro.Rnw0000644000176200001440000025623713153072116014763 0ustar liggesusers% \VignetteIndexEntry{Introduction to the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} %\usepackage{gensymb} \usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{siunitx} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \makeindex % used for the subject index \title{An introduction to the psych package: Part I: \\ data entry and data description} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \newpage \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package: \begin{scriptsize} \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} \end{scriptsize} \item Input your data (section \ref{sect:read}). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, then the file will be opened and the data will be read in (or loaded in the case of Rda files) \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using your normal operating system \end{Sinput} \end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} \end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} \begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or describeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} \end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} (section~\ref{sect:pairs}) Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} \begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data (section \ref{sect:scrub}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} \end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable (section \ref{sect:errorbars}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} \end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} \begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} \end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. \begin{itemize} \item \pfun{setCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") setCor(y = c( "y1", "y2"), x = c("x1","x2"), data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", mod = "mod1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in the second vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in the \emph{Overview Vignette}, which may be downloaded from \url{http://personality-project.org/r/psych/vignettes/overview.pdf} . A brief review of the functions available is included here. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{http://personality-project.org/r}. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}, section \ref{sect:fa.parallel}) or Very Simple Structure (\pfun{vss}, \ref{sect:vss}) . \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Factor analyze (see section 4.1) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities such as minres (section 4.1.1), alpha factoring, and wls. Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section 4.1.6). Also consider a hierarchical factor solution to find coefficient $\omega$ (see \ref{sect:omega}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} \end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} \begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function (see \ref{sect:alpha}). Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function (see \ref{sect:score}) and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} \begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{http://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes six methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{alpha factoring}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51}(\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} \pfun{mlr} will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \url{psych_manual.pdf} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{http://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \url{http://personalty-project.org/r/psych_for_sem.pdf}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"http://personality-project.org/r/book/psych_for_sem.pdf"}{\url{http://personality-project.org/r/psych/vignettes/psych_for_sem.pdf}}). For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{http://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{http://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in the Overview Vignette require other packages. This is not the case for the functions listed in this Introduction. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: \begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt") \end{Sinput} \end{Schunk} Alternatively, many packages for psychometric can be downloaded at once using the ``Psychometrics" task view: \begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} \end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., \begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych)} \end{Sinput} \end{Schunk} \subsection{Getting the data by using read.file} \label{sect:read} Although many find copying the data to the clipboard and then using the \pfun{read.clipboard} functions (see below), a helpful alternative is to read the data in directly. This can be done using the \pfun{read.file} function which calls \fun{file.choose} to find the file and then based upon the suffix of the file, chooses the appropriate way to read it. For files with suffixes of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, the file will be read correctly. \begin{Schunk} \begin{Sinput} my.data <- read.file() \end{Sinput} \end{Schunk} If the file contains Fixed Width Format (fwf) data, the column information can be specified with the widths command. \begin{Schunk} \begin{Sinput} my.data <- read.file(widths = c(4,rep(1,35)) #will read in a file without a header row # and 36 fields, the first of which is 4 colums, the rest of which are 1 column each. \end{Sinput} \end{Schunk} If the file is a .RData file (with suffix of .RData, .Rda, .rda, .Rdata, or .rdata) the object will be loaded. Depending what was stored, this might be several objects. If the file is a .sav file from SPSS, it will be read with the most useful default options (converting the file to a data.frame and converting character fields to numeric). Alternative options may be specified. If it is an export file from SAS (.xpt or .XPT) it will be read. .csv files (comma separated files), normal .txt or .text files, .data, or .dat files will be read as well. These are assumed to have a header row of variable labels (header=TRUE). If the data do not have a header row, you must specify read.file(header=FALSE). To read SPSS files and to keep the value labels, specify use.value.labels=TRUE. \begin{Schunk} \begin{Sinput} #this will keep the value labels for .sav files my.spss <- read.file(use.value.labels=TRUE) \end{Sinput} \end{Schunk} \subsection{Data input from the clipboard} There are of course many ways to enter data into \R. Reading from a local file using \fun{read.table} is perhaps the most preferred. However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using \fun{read.table} and specifying the input file as ``clipboard" (PCs) or ``pipe(pbpaste)" (Macs). Alternatively, the \pfun{read.clipboard} set of functions are perhaps more user friendly: \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command \begin{Schunk} \begin{Sinput} my.data <- read.clipboard() \end{Sinput} \end{Schunk} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. \begin{Schunk} \begin{Sinput} > my.data <- read.clipboard(sep="\t") #define the tab option, or > my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Sinput} \end{Schunk} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). \begin{Schunk} \begin{Sinput} > my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Sinput} \end{Schunk} \subsection{Basic descriptive statistics} \label{sect:describe} Once the data are read in, then \pfun{describe} or \pfun{describeBy} will provide basic descriptive statistics arranged in a data frame format. Consider the data set \pfun{sat.act} which includes data from 700 web based participants on 3 demographic variables and 3 ability measures. \begin{description} \item[\pfun{describe}] reports means, standard deviations, medians, min, max, range, skew, kurtosis and standard errors for integer or real data. Non-numeric data, although the statistics are meaningless, will be treated as if numeric (based upon the categorical coding of the data), and will be flagged with an *. \item[\pfun{describeBy}] reports descriptive statistics broken down by some categorizing variable (e.g., gender, age, etc.) \end{description} \begin{scriptsize} <>= library(psych) data(sat.act) describe(sat.act) #basic descriptive statistics @ \end{scriptsize} These data may then be analyzed by groups defined in a logical statement or by some other variable. E.g., break down the descriptive data for males or females. These descriptive data can also be seen graphically using the \pfun{error.bars.by} function (Figure~\ref{fig:error.bars}). By setting skew=FALSE and ranges=FALSE, the output is limited to the most basic statistics. \begin{scriptsize} <>= #basic descriptive statistics by a grouping variable. describeBy(sat.act,sat.act$gender,skew=FALSE,ranges=FALSE) @ \end{scriptsize} The output from the \pfun{describeBy} function can be forced into a matrix form for easy analysis by other programs. In addition, describeBy can group by several grouping variables at the same time. \begin{scriptsize} <>= sa.mat <- describeBy(sat.act,list(sat.act$gender,sat.act$education), skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) @ \end{scriptsize} \subsubsection{Outlier detection using \pfun{outlier}} One way to detect unusual data is to consider how far each data point is from the multivariate centroid of the data. That is, find the squared Mahalanobis distance for each data point and then compare these to the expected values of $\chi^{2}$. This produces a Q-Q (quantle-quantile) plot with the n most extreme data points labeled (Figure~\ref{fig:outlier}). The outlier values are in the vector d2. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() @ \end{scriptsize} \includegraphics{outlier} \caption{Using the \pfun{outlier} function to graphically show outliers. The y axis is the Mahalanobis $D^{2}$, the X axis is the distribution of $\chi^{2}$ for the same number of degrees of freedom. The outliers detected here may be shown graphically using \pfun{pairs.panels} (see \ref{fig:pairs.panels}, and may be found by sorting d2. } \label{fig:outlier} \end{center} \end{figure} \subsubsection{Basic data cleaning using \pfun{scrub}} \label{sect:scrub} If, after describing the data it is apparent that there were data entry errors that need to be globally replaced with NA, or only certain ranges of data will be analyzed, the data can be ``cleaned" using the \pfun{scrub} function. Consider a data set of 10 rows of 12 columns with values from 1 - 120. All values of columns 3 - 5 that are less than 30, 40, or 50 respectively, or greater than 70 in any of the three columns will be replaced with NA. In addition, any value exactly equal to 45 will be set to NA. (max and isvalue are set to one value here, but they could be a different value for every column). \begin{scriptsize} <>= x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x @ \end{scriptsize} Note that the number of subjects for those columns has decreased, and the minimums have gone up but the maximums down. Data cleaning and examination for outliers should be a routine part of any data analysis. \subsubsection{Recoding categorical variables into dummy coded variables} Sometimes categorical variables (e.g., college major, occupation, ethnicity) are to be analyzed using correlation or regression. To do this, one can form ``dummy codes'' which are merely binary variables for each category. This may be done using \pfun{dummy.code}. Subsequent analyses using these dummy coded variables may be using \pfun{biserial} or point biserial (regular Pearson r) to show effect sizes and may be plotted in e.g., \pfun{spider} plots. Alternatively, sometimes data were coded originally as categorical (Male/Female, High School, some College, in college, etc.) and you want to convert these columns of data to numeric. This is done by \pfun{char2numeric}. \subsection{Simple descriptive graphics} Graphic descriptions of data are very helpful both for understanding the data as well as communicating important results. Scatter Plot Matrices (SPLOMS) using the \pfun{pairs.panels} function are useful ways to look for strange effects involving outliers and non-linearities. \pfun{error.bars.by} will show group means with 95\% confidence boundaries. By default, \pfun{error.bars.by} and \pfun{error.bars} will show ``cats eyes'' to graphically show the confidence limits (Figure~\ref{fig:error.bars}) This may be turned off by specifying eyes=FALSE. \pfun{densityBy} or \pfun{violinBy} may be used to show the distribution of the data in ``violin'' plots (Figure~\ref{fig:violin}). (These are sometimes called ``lava-lamp" plots.) \subsubsection{Scatter Plot Matrices} Scatter Plot Matrices (SPLOMS) are very useful for describing the data. The \pfun{pairs.panels} function, adapted from the help menu for the \fun{pairs} function produces xy scatter plots of each pair of variables below the diagonal, shows the histogram of each variable on the diagonal, and shows the \iemph{lowess} locally fit regression line as well. An ellipse around the mean with the axis length reflecting one standard deviation of the x and y variables is also drawn. The x axis in each scatter plot represents the column variable, the y axis the row variable (Figure~\ref{fig:pairs.panels}). When plotting many subjects, it is both faster and cleaner to set the plot character (pch) to be '.'. (See Figure~\ref{fig:pairs.panels} for an example.) \begin{description} \label{sect:pairs} \item[\pfun{pairs.panels} ] will show the pairwise scatter plots of all the variables as well as histograms, locally smoothed regressions, and the Pearson correlation. When plotting many data points (as in the case of the sat.act data, it is possible to specify that the plot character is a period to get a somewhat cleaner graphic. However, in this figure, to show the outliers, we use colors and a larger plot character. If we want to indicate 'significance' of the correlations by the conventional use of 'magic astricks' we can set the \pfun{stars}=TRUE option. \end{description} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() @ \end{scriptsize} \includegraphics{pairspanels} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. Note the extreme outlier for the ACT. If the plot character were set to a period (pch='.') it would make a cleaner graphic, but in to show the outliers in color we use the plot characters 21 and 22. } \label{fig:pairs.panels} \end{center} \end{figure} Another example of \pfun{pairs.panels} is to show differences between experimental groups. Consider the data in the \pfun{affect} data set. The scores reflect post test scores on positive and negative affect and energetic and tense arousal. The colors show the results for four movie conditions: depressing, frightening movie, neutral, and a comedy. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() @ \end{scriptsize} \includegraphics{affect} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. The coloring represent four different movie conditions. } \label{fig:pairs.panels2} \end{center} \end{figure} Yet another demonstration of \pfun{pairs.panels} is useful when you have many subjects and want to show the density of the distributions. To do this we will use the \pfun{make.keys} and \pfun{scoreItems} functions (discussed in the second vignette) to create scales measuring Energetic Arousal, Tense Arousal, Positive Affect, and Negative Affect (see the \pfun{msq} help file). We then show a \pfun{pairs.panels} scatter plot matrix where we smooth the data points and show the density of the distribution by color. %\begin{figure}[htbp] %\begin{center} \begin{scriptsize} <>= keys <- make.keys(msq[1:75],list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) ) scores <- scoreItems(keys,msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() @ \end{scriptsize} %\includegraphics{msq} Using the \pfun{pairs.panels} function to graphically show relationships. (Not shown in the interests of space.) The x axis in each scatter plot represents the column variable, the y axis the row variable. The variables are four measures of motivational state for 3896 participants. Each scale is the average score of 10 items measuring motivational state. Compare this a plot with smoother set to FALSE. %\label{fig:pairs.panels3} %\end{center} %\end{figure} \subsubsection{Density or violin plots} Graphical presentation of data may be shown using box plots to show the median and 25th and 75th percentiles. A powerful alternative is to show the density distribution using the \pfun{violinBy} function (Figure~\ref{fig:violin}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('violin.png') data(sat.act) violinBy(sat.act[5:6],sat.act$gender,grp.name=c("M", "F"),main="Density Plot by gender for SAT V and Q") dev.off() @ \end{scriptsize} \includegraphics{violin} \caption{Using the \pfun{violinBy} function to show the distribution of SAT V and Q for males and females. The plot shows the medians, and 25th and 75th percentiles, as well as the entire range and the density distribution. } \label{fig:violin} \end{center} \end{figure} \clearpage \subsubsection{Means and error bars} \label{sect:errorbars} Additional descriptive graphics include the ability to draw \iemph{error bars} on sets of data, as well as to draw error bars in both the x and y directions for paired data. These are the functions \pfun{error.bars}, \pfun{error.bars.by}, \pfun{error.bars.tab}, and \pfun{error.crosses}. \begin{description} \item [\pfun{error.bars}] show the 95 \% confidence intervals for each variable in a data frame or matrix. These errors are based upon normal theory and the standard errors of the mean. Alternative options include +/- one standard deviation or 1 standard error. If the data are repeated measures, the error bars will be reflect the between variable correlations. By default, the confidence intervals are displayed using a ``cats eyes'' plot which emphasizes the distribution of confidence within the confidence interval. \item [\pfun{error.bars.by}] does the same, but grouping the data by some condition. \item [\pfun{error.bars.tab}] draws bar graphs from tabular data with error bars based upon the standard error of proportion ($\sigma_{p} = \sqrt{pq/N} $) \item [\pfun{error.crosses}] draw the confidence intervals for an x set and a y set of the same size. \end{description} The use of the \pfun{error.bars.by} function allows for graphic comparisons of different groups (see Figure~\ref{fig:error.bars}). Five personality measures are shown as a function of high versus low scores on a ``lie" scale. People with higher lie scores tend to report being more agreeable, conscientious and less neurotic than people with lower lie scores. The error bars are based upon normal theory and thus are symmetric rather than reflect any skewing in the data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) @ \end{scriptsize} \caption{Using the \pfun{error.bars.by} function shows that self reported personality scales on the Big Five Inventory vary as a function of the Lie scale on the EPI. The ``cats eyes'' show the distribution of the confidence. } \label{fig:error.bars} \end{center} \end{figure} Although not recommended, it is possible to use the \pfun{error.bars} function to draw bar graphs with associated error bars. (This kind of \iemph{dynamite plot} (Figure~\ref{fig:dynamite}) can be very misleading in that the scale is arbitrary. Go to a discussion of the problems in presenting data this way at \url{http://emdbolker.wikidot.com/blog:dynamite}. In the example shown, note that the graph starts at 0, although is out of the range. This is a function of using bars, which always are assumed to start at zero. Consider other ways of showing your data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") @ \end{scriptsize} \caption{A ``Dynamite plot" of SAT scores as a function of gender is one way of misleading the reader. By using a bar graph, the range of scores is ignored. Bar graphs start from 0. } \label{fig:dynamite} \end{center} \end{figure} \subsubsection{Error bars for tabular data} However, it is sometimes useful to show error bars for tabular data, either found by the \fun{table} function or just directly input. These may be found using the \pfun{error.bars.tab} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") @ \end{scriptsize} \caption{The proportion of each education level that is Male or Female. By using the way="both" option, the percentages and errors are based upon the grand total. Alternatively, way="columns" finds column wise percentages, way="rows" finds rowwise percentages. The data can be converted to percentages (as shown) or by total count (raw=TRUE). The function invisibly returns the probabilities and standard errors. See the help menu for an example of entering the data as a data.frame. } \label{fig:dynamite} \end{center} \end{figure} \clearpage \subsubsection{Two dimensional displays of means and errors} Yet another way to display data for different conditions is to use the \pfun{errorCrosses} function. For instance, the effect of various movies on both ``Energetic Arousal'' and ``Tense Arousal'' can be seen in one graph and compared to the same movie manipulations on ``Positive Affect'' and ``Negative Affect''. Note how Energetic Arousal is increased by three of the movie manipulations, but that Positive Affect increases following the Happy movie only. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{The use of the \pfun{errorCircles} function allows for two dimensional displays of means and error bars. The first call to \pfun{errorCircles} finds descriptive statistics for the \iemph{affect} data.frame based upon the grouping variable of Film. These data are returned and then used by the second call which examines the effect of the same grouping variable upon different measures. The size of the circles represent the relative sample sizes for each group. The data are from the PMC lab and reported in \cite{smillie:jpsp}.} \label{fig:errorCircles} \end{center} \end{figure} \clearpage \subsubsection{Back to back histograms} The \pfun{bi.bars} function summarize the characteristics of two groups (e.g., males and females) on a second variable (e.g., age) by drawing back to back histograms (see Figure~\ref{fig:bibars}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} % <>= data(bfi) <>= png( 'bibars.png' ) with(bfi,{bi.bars(age,gender,ylab="Age",main="Age by males and females")}) dev.off() @ \end{scriptsize} \includegraphics{bibars.png} \caption{A bar plot of the age distribution for males and females shows the use of \pfun{bi.bars}. The data are males and females from 2800 cases collected using the \iemph{SAPA} procedure and are available as part of the \pfun{bfi} data set. } \label{fig:bibars} \end{center} \end{figure} \clearpage \subsubsection{Correlational structure} \label{sect:lowerCor} There are many ways to display correlations. Tabular displays are probably the most common. The output from the \fun{cor} function in core R is a rectangular matrix. \pfun{lowerMat} will round this to (2) digits and then display as a lower off diagonal matrix. \pfun{lowerCor} calls \fun{cor} with \emph{use=`pairwise', method=`pearson'} as default values and returns (invisibly) the full correlation matrix and displays the lower off diagonal matrix. \begin{scriptsize} <>= lowerCor(sat.act) @ \end{scriptsize} When comparing results from two different groups, it is convenient to display them as one matrix, with the results from one group below the diagonal, and the other group above the diagonal. Use \pfun{lowerUpper} to do this: \begin{scriptsize} <>= female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) @ \end{scriptsize} It is also possible to compare two matrices by taking their differences and displaying one (below the diagonal) and the difference of the second from the first above the diagonal: \begin{scriptsize} <>= diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) @ \end{scriptsize} \subsubsection{Heatmap displays of correlational structure} \label{sect:corplot} Perhaps a better way to see the structure in a correlation matrix is to display a \emph{heat map} of the correlations. This is just a matrix color coded to represent the magnitude of the correlation. This is useful when considering the number of factors in a data set. Consider the \pfun{Thurstone} data set which has a clear 3 factor solution (Figure~\ref{fig:cor.plot}) or a simulated data set of 24 variables with a circumplex structure (Figure~\ref{fig:cor.plot.circ}). The color coding represents a ``heat map'' of the correlations, with darker shades of red representing stronger negative and darker shades of blue stronger positive correlations. As an option, the value of the correlation can be shown. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,main="9 cognitive variables from Thurstone") dev.off() @ \end{scriptsize} \includegraphics{corplot.png} \caption{The structure of correlation matrix can be seen more clearly if the variables are grouped by factor and then the correlations are shown by color. By using the 'numbers' option, the values are displayed as well. By default, the complete matrix is shown. Setting upper=FALSE and diag=FALSE shows a cleaner figure. } \label{fig:cor.plot} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() @ \end{scriptsize} \includegraphics{circplot.png} \caption{Using the corPlot function to show the correlations in a circumplex. Correlations are highest near the diagonal, diminish to zero further from the diagonal, and the increase again towards the corners of the matrix. Circumplex structures are common in the study of affect. For circumplex structures, it is perhaps useful to show the complete matrix.} \label{fig:cor.plot.circ} \end{center} \end{figure} Yet another way to show structure is to use ``spider'' plots. Particularly if variables are ordered in some meaningful way (e.g., in a circumplex), a spider plot will show this structure easily. This is just a plot of the magnitude of the correlation as a radial line, with length ranging from 0 (for a correlation of -1) to 1 (for a correlation of 1). (See Figure~\ref{fig:cor.plot.spider}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() @ \end{scriptsize} \includegraphics{spider.png} \caption{A spider plot can show circumplex structure very clearly. Circumplex structures are common in the study of affect.} \label{fig:cor.plot.spider} \end{center} \end{figure} \subsection{Testing correlations} \label{sect:corr.test} Correlations are wonderful descriptive statistics of the data but some people like to test whether these correlations differ from zero, or differ from each other. The \fun{cor.test} function (in the \Rpkg{stats} package) will test the significance of a single correlation, and the \fun{rcorr} function in the \Rpkg{Hmisc} package will do this for many correlations. In the \Rpkg{psych} package, the \pfun{corr.test} function reports the correlation (Pearson, Spearman, or Kendall) between all variables in either one or two data frames or matrices, as well as the number of observations for each case, and the (two-tailed) probability for each correlation. Unfortunately, these probability values have not been corrected for multiple comparisons and so should be taken with a great deal of salt. Thus, in \pfun{corr.test} and \pfun{corr.p} the raw probabilities are reported below the diagonal and the probabilities adjusted for multiple comparisons using (by default) the Holm correction are reported above the diagonal (Table~\ref{tab:corr.test}). (See the \fun{p.adjust} function for a discussion of \cite{holm:79} and other corrections.) \begin{table}[htpb] \caption{The \pfun{corr.test} function reports correlations, cell sizes, and raw and adjusted probability values. \pfun{corr.p} reports the probability values for a correlation matrix. By default, the adjustment used is that of \cite{holm:79}.} \begin{scriptsize} <>= corr.test(sat.act) @ \end{scriptsize} \label{tab:corr.test} \end{table}% Testing the difference between any two correlations can be done using the \pfun{r.test} function. The function actually does four different tests (based upon an article by \cite{steiger:80b}, depending upon the input: 1) For a sample size n, find the t and p value for a single correlation as well as the confidence interval. \begin{scriptsize} <>= r.test(50,.3) @ \end{scriptsize} 2) For sample sizes of n and n2 (n2 = n if not specified) find the z of the difference between the z transformed correlations divided by the standard error of the difference of two z scores. \begin{scriptsize} <>= r.test(30,.4,.6) @ \end{scriptsize} 3) For sample size n, and correlations ra= r12, rb= r23 and r13 specified, test for the difference of two dependent correlations (Steiger case A). \begin{scriptsize} <>= r.test(103,.4,.5,.1) @ \end{scriptsize} 4) For sample size n, test for the difference between two dependent correlations involving different variables. (Steiger case B). \begin{scriptsize} <>= r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B @ \end{scriptsize} To test whether a matrix of correlations differs from what would be expected if the population correlations were all zero, the function \pfun{cortest} follows \cite{steiger:80b} who pointed out that the sum of the squared elements of a correlation matrix, or the Fisher z score equivalents, is distributed as chi square under the null hypothesis that the values are zero (i.e., elements of the identity matrix). This is particularly useful for examining whether correlations in a single matrix differ from zero or for comparing two matrices. Although obvious, \pfun{cortest} can be used to test whether the \pfun{sat.act} data matrix produces non-zero correlations (it does). This is a much more appropriate test when testing whether a residual matrix differs from zero. \begin{scriptsize} <>= cortest(sat.act) @ \end{scriptsize} \subsection{Polychoric, tetrachoric, polyserial, and biserial correlations} The Pearson correlation of dichotomous data is also known as the $\phi$ coefficient. If the data, e.g., ability items, are thought to represent an underlying continuous although latent variable, the $\phi$ will underestimate the value of the Pearson applied to these latent variables. One solution to this problem is to use the \pfun{tetrachoric} correlation which is based upon the assumption of a bivariate normal distribution that has been cut at certain points. The \pfun{draw.tetra} function demonstrates the process (Figure~\ref{fig:tetra}). This is also shown in terms of dichotomizing the bivariate normal density function using the \pfun{draw.cor} function (Figure~\ref{fig:draw.cor}). A simple generalization of this to the case of the multiple cuts is the \pfun{polychoric} correlation. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= draw.tetra() @ \end{scriptsize} \caption{The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values.} \label{fig:tetra} \end{center} \end{figure} The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values. It is found (laboriously) by optimizing the fit of the bivariate normal for various values of the correlation to the observed cell frequencies. In the interests of space, we do not show the next figure but it can be created by draw.cor(expand=20,cuts=c(0,0) Other estimated correlations based upon the assumption of bivariate normality with cut points include the \pfun{biserial} and \pfun{polyserial} correlation. If the data are a mix of continuous, polytomous and dichotomous variables, the \pfun{mixed.cor} function will calculate the appropriate mixture of Pearson, polychoric, tetrachoric, biserial, and polyserial correlations. The correlation matrix resulting from a number of tetrachoric or polychoric correlation matrix sometimes will not be positive semi-definite. This will sometimes happen if the correlation matrix is formed by using pair-wise deletion of cases. The \pfun{cor.smooth} function will adjust the smallest eigen values of the correlation matrix to make them positive, rescale all of them to sum to the number of variables, and produce a ``smoothed'' correlation matrix. An example of this problem is a data set of \pfun{burt} which probably had a typo in the original correlation matrix. Smoothing the matrix corrects this problem. \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \section{ Multiple Regression, mediation, moderation, and set correlations} The typical application of the \fun{lm} function is to do a linear model of one Y variable as a function of multiple X variables. Because \fun{lm} is designed to analyze complex interactions, it requires raw data as input. It is, however, sometimes convenient to do \iemph{multiple regression} from a correlation or covariance matrix. This is done using the \pfun{setCor} which will work with either raw data, covariance matrices, or correlation matrices. \subsection{Multiple regression from data or correlation matrices} The \pfun{setCor} function will take a set of y variables predicted from a set of x variables, perhaps with a set of z covariates removed from both x and y. Consider the \iemph{Thurstone} correlation matrix and find the multiple correlation of the last five variables as a function of the first 4. \begin{scriptsize} <>= setCor(y = 5:9,x=1:4,data=Thurstone) @ \end{scriptsize} By specifying the number of subjects in correlation matrix, appropriate estimates of standard errors, t-values, and probabilities are also found. The next example finds the regressions with variables 1 and 2 used as covariates. The $\hat{\beta}$ weights for variables 3 and 4 do not change, but the multiple correlation is much less. It also shows how to find the residual correlations between variables 5-9 with variables 1-4 removed. \begin{scriptsize} <>= sc <- setCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) @ \end{scriptsize} \subsection{Mediation and Moderation analysis} Although multiple regression is a straightforward method for determining the effect of multiple predictors ($x_{1, 2, ... i}$) on a criterion variable, y, some prefer to think of the effect of one predictor, x, as mediated by another variable, m \citep{preacher:04}. Thus, we we may find the indirect path from x to m, and then from m to y as well as the direct path from x to y. Call these paths a, b, and c, respectively. Then the indirect effect of x on y through m is just ab and the direct effect is c. Statistical tests of the ab effect are best done by bootstrapping. Consider the example from \cite{preacher:04} as analyzed using the \pfun{mediate} function and the subsequent graphic from \pfun{mediate.diagram}. The data are found in the example for \pfun{mediate}. \begin{scriptsize} <>= #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) @ <>= preacher <- mediate(y="SATIS",x="THERAPY",m="ATTRIB",data=sobel) #The example in Preacher and Hayes @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= mediate.diagram(preacher) @ \end{scriptsize} \caption{A mediated model taken from Preacher and Hayes, 2004 and solved using the \pfun{mediate} function. The direct path from Therapy to Satisfaction has a an effect of .76, while the indirect path through Attribution has an effect of .33. Compare this to the normal regression graphic created by setCor.diagram.} \label{fig:mediate} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= preacher <- setCor(1,c(2,3),sobel,std=FALSE) setCor.diagram(preacher) @ \end{scriptsize} \caption{The conventional regression model for the Preacher and Hayes, 2004 data set solved using the \pfun{sector} function. Compare this to the previous figure.} \label{fig:mediate} \end{center} \end{figure} \begin{itemize} \item \pfun{setCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} setCor(y = c( "SATV" , "SATQ"), x = c("education" ,"age" ), data = sat.act, std=TRUE) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "SATV" ), x = c("education" ,"age" ), m= "ACT", data =sat.act,std=TRUE,n.iter=50) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. The particular example is for demonstration purposes only and shows neither moderation nor mediation. The number of iterations for the boot strap was set to 50 for speed. The default number of boot straps is 5000. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= mediate(y = c( "SATQ" ), x = c("ACT" ), m="education", mod="gender", data =sat.act,std=TRUE,n.iter=50) @ \end{scriptsize} \caption{Moderated multiple regression requires the raw data.} \label{default} \end{center} \end{figure} \end{itemize} \subsection{Set Correlation} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{setCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{setCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{setCor}. Two things to notice. \pfun{setCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{setCor}. <>= #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{setCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{set.cor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For a Mac, this version can be installed directly using the ``other repository" option in the package installer. For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version >= "1.7.8",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2015}]{psych} Revelle, W. (2015). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.5.8 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2014]{rc:reliability} Revelle, W. and Condon, D.~M. (2014). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell (in press). \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psych/NAMESPACE0000755000176200001440000001432213147664075012641 0ustar liggesusers#last modified August 14 2017 by William Revelle #added the various imports from stats, graphics, etc. importFrom(mnormt,rmnorm,sadmvn,dmnorm) importFrom(parallel,mclapply,mcmapply) importFrom(lattice,xyplot,strip.custom) importFrom(nlme,lme,VarCorr) importFrom(graphics,plot,pairs,points,abline,arrows,axis,barplot,box,curve,hist,image,layout,legend, lines,mtext,par,persp,plot.new,plot.window, polygon,rect,segments,strheight,strwidth,text,axTicks,title,smoothScatter) importFrom(stats,aov,cov,cor,var,sd,median,mad,cov2cor,biplot,loess,predict,predict.lm,rnorm,dnorm,rbinom,density, kmeans, lm,lm.fit,loadings,complete.cases, na.omit,na.fail,nlminb,optim, quantile,qnorm, pnorm,qqnorm,qqline,qqplot,pchisq,qchisq,qt,pt,dt,pf,qf,ppoints,p.adjust,optimize,residuals,spline,symnum,weighted.mean,promax,varimax,uniroot) #importFrom(datasets,USArrests,attitude,Harman23.cor,Harman74.cov,ability.cov,iris) importFrom(utils,head,tail,read.table,write.table,read.fwf,stack,example,download.file,getFromNamespace,View) importFrom(grDevices,colorRampPalette,topo.colors,devAskNewPage,dev.flush,dev.hold, palette, grey,rainbow,rgb,col2rgb,trans3d,adjustcolor) importFrom(methods,new) importFrom(tools,file_ext) importFrom(foreign,read.spss,read.xport) S3method(print,psych) S3method(biplot,psych) S3method(pairs,panels) S3method(plot,psych) S3method(plot,irt) S3method(plot,poly) S3method(plot,poly.parallel) S3method(plot,residuals) S3method(predict,psych) S3method(residuals,psych) S3method(summary,psych) S3method(anova,psych) export(alpha, anova.psych, autoR, bestItems, bestScales, biplot.psych, bi.bars, biserial, bifactor, biquartimin, block.random, char2numeric, chi2r, circ.tests, circ.sim, circ.sim.plot, circ.simulation, circadian.cor, circadian.phase, cosinor.plot, circadian.reliability, circadian.linear.cor, circadian.mean, circadian.sd, circadian.F, circadian.stats, circular.mean, circular.cor, cluster.cor, cluster.fit, cluster.loadings, cluster.plot, cluster2keys, cohen.kappa, cohen.d, cohen.d.ci, cohen.d.by, con2cat, correct.cor, cor.plot, corPlot, cor.plot.upperLowerCi, corPlotUpperLowerCi, corFiml, cor.wt, cor2dist, cor2cov, cor2latex, cor.ci, corCi, cor.smooth, cor.smoother, corr.test, corr.p, cortest, cortest.bartlett, cortest.jennrich, cortest.mat, cortest.normal, count.pairwise, comorbidity, cosinor, cosinor.period, congeneric.sim, cor2, cta.15, cta, d.ci, d2r, d2t, df2latex, dfOrder, densityBy, describe, describeBy, describe.by, describeData, diagram, dia.shape, dia.rect, dia.ellipse, dia.ellipse1, dia.triangle, dia.arrow, dia.curve, dia.curved.arrow, dia.self, dia.cone, draw.cor, draw.tetra, dummy.code, eigen.loadings, ellipses, equamax, error.bars, error.bars.by, error.bars.tab, error.crosses, error.dots, errorCircles, esem, esem.diagram, fa, faBy, fa.extension, fa.extend, fa.parallel, fa.parallel.poly, fa.graph, fa.rgraph, fa.congruence, fa.stats, fa.diagram, fa2irt, fa.random, fa.sort, fa2latex, fa.lookup, fac, fa.multi, fa.multi.diagram, fa.organize, fa.poly, fa.plot, fa.sapa, factor.congruence, factor.fit, factor.model, factor.pa, factor.minres, factor.wls, factor.plot, factor.residuals, factor.rotate, factor.scores, factor.stats, factor2cluster, fisherz, fisherz2r, g2r, geometric.mean, harmonic.mean, headtail, headTail, het.diagram, histBy, ICC, ICC2latex, iclust, ICLUST, ICLUST.cluster, iclust.diagram, ICLUST.graph, ICLUST.rgraph, ICLUST.sort, iclust.sort, interp.median, interp.quantiles, interp.q, interp.quart, interp.quartiles, interp.values, interp.boxplot, interp.qplot.by, interbattery, irt.fa, irt.select, irt.0p, irt.1p, irt.2p, irt.discrim, irt.item.diff.rasch, irt.person.rasch, irt.responses, irt.se, irt.stats.like, irt.tau, item.dichot, item.sim, item.lookup, irt2latex, isCorrelation, glb, glb.algebraic, glb.fa, guttman, wkappa, kaiser, KMO, keys.lookup, keysort, keys2list, kurtosi, lavaan.diagram, levels2numeric, logit, logistic, logistic.grm, lookup, lowerCor, lowerMat, lowerUpper, make.congeneric, make.hierarchical, make.keys, mardia, matReg, mat.regress, mat.sort, "%+%", mediate, mediate.diagram, moderate.diagram, minkowski, mixedCor, mixed.cor, mssd, multi.hist, multilevel.reliability, mlr, mlArrange, mlPlot, nfactors, omega, omega.diagram, omega.graph, omegah, omegaSem, omegaFromSem, omega2latex, outlier, paired.r, pairs.panels, pairwiseDescribe, parcels, partial.r, phi, phi2tetra, phi2poly, phi2poly.matrix, plot.psych, plot.irt, plot.poly, plot.poly.parallel, plot.residuals, polar, polychoric, polydi, polyserial, poly.mat, p.rep, p.rep.f, p.rep.r, p.rep.t, predict.psych, principal, pca, print.psych, progressBar, Promax, psych, phi.demo, phi.list, psych.misc, quickView, radar, rangeCorrection, read.clipboard, read.clipboard.csv, read.clipboard.fwf, read.clipboard.tab, read.clipboard.lower, read.clipboard.upper, read.file, read.file.csv, read.https, residuals.psych, reflect, resid.psych, rescale, response.frequencies, reverse.code, r.con, r.test, r2c, r2d, r2t, r2chi, rmssd, scaling.fits, scatterHist, scatter.hist, score.alpha, scoreItems, score.items, scoreFast, score.multiple.choice, scoreIrt, scoreIrt.1pl, scoreIrt.2pl, score.irt, score.irt.2, score.irt.poly, scoreOverlap, scree, schmid, scrub, SD, selectFromKeys, sem.diagram, sem.graph, set.cor, setCor, setCor.diagram, shannon, sim, sim.anova, sim.circ, simulation.circ, sim.congeneric, sim.correlation, sim.dichot, sim.general, sim.item, sim.spherical, sim.minor, sim.omega, sim.parallel, sim.rasch, sim.irt, sim.npl, sim.npn, sim.poly, sim.poly.npl, sim.poly.npn, sim.poly.ideal, sim.poly.ideal.npl, sim.poly.ideal.npn, sim.poly.mat, sim.simplex, sim.structure, sim.structural, sim.hierarchical, sim.multilevel, sim.multi, sim.VSS, smc, spider, splitHalf, statsBy, statsBy.boot, statsBy.boot.summary, summary.psych, superMatrix, super.matrix, structure.diagram, structure.graph, structure.list, structure.sem, tableF, table2df, table2matrix, target.rot, TargetQ, test.psych, test.all, test.irt, tenberge, tetrachoric, thurstone, topBottom, tr, t2d, t2r, skew, unidim, varimin, violinBy, vgQ.bimin, vgQ.targetQ, vgQ.varimin, VSS.parallel, VSS.plot, vss, VSS, VSS.scree, VSS.sim, VSS.simulate, winsor, winsor.means, winsor.mean, winsor.sd, winsor.var, write.file, write.file.csv, Yule, YuleCor, YuleBonett, Yule.inv, Yule2phi, Yule2phi.matrix, Yule2poly, Yule2poly.matrix, Yule2tetra ) psych/data/0000755000176200001440000000000013154366636012326 5ustar liggesuserspsych/data/blot.rda0000644000176200001440000000200713154621324013741 0ustar liggesusersBZh91AY&SYG5†#yà₫ºÈˆH‰à@?œ€@àx`½ÄjPưU€ ơĂCM4ĐF¡£!¦†ˆÉ‘2$¤I5h@††h4! B¨ ÉĐ'äP „J"D ªR¨… (RªPˆ©B¥%" KJP HJ R- @¡B£M ´ D…+J %RˆkëgÔT3!’EÀ”_œˆbJèË€™OßƯ @t@"ä'NolY$™$–$¤Û»|¤Ü8Ï8v:"œ $ §4̣E U„c…ƒúcOwpîü¼ \oƠMP×YÛ»=µëtôy:í’/6h¦́¢’´&‡®# )8Ù ơ'wœkF́hf¢¾›Ü½P5êC¶̃°tSAѦ6 ÑT́jVjB“F¡iZ kC ¥ˆFº̉Ph+X´A“OOƠëz¾;/¿,̉ûujăº¡´jªB˜h4âz×– ̣«`¢´ỵáđ¼ƒËöqµç¯«µ]¾;Ôv.̃xy´SM.;!DGKˆơ„½cẤń|ó½úƯZª^ÛOlPtPM?Ÿ<ƯµƒßuÁQE1 PiÖ'|v’hób¨ EÑ‚X¨+N<´WÑûRWŒzçCDM3ìƯÑØƯ­‚óxCF=ńè­ñPy>k¸è¥ih+Ư¢¨ió[{´TÓJßfÇ’hỷ]ƒBQm`¸Ú"  -nŒÅ²é()ª†d¡"©¥¡Ñ¢NỰÏ_E‚óR4m̉Ä[|v_wGf6N!4UƠùcR°̉iJh#`Đ”:Zè CT4ˆPyt%Qëy¹̉tÄ̉lSMRPRº h)4 %VµJR„M4FØ)̣t̉Hté4Ÿ=Ü/–‡¥ÑIAE !AHÑ£LDTòI@Ptè-Œ´P§‘ J@¡i{d‰ZcPÓƠ4CJPP-Iî@ƠPº ‚†…¨ƒ¡t”…-/ER©(Hj‘jÙĐDơ¤¤ )éSA@i BÔIAQÑB¥ I@RD´ˆU(̉Đ… CCJ©@%(Đ­RP‰B"P%IJ+1wuE2@5U4V‚Âx$CUO-¬VJ#ígRt+¥’)üÿïßù}?Ç»¹Nîú̀36&™‘Îq$’I$øüèU* Tw‡oßcÎ.¾RïV³jåéáa u¦L̉4?‹¹"œ(H#Ăpsych/data/cities.rda0000644000176200001440000000124313154621324014262 0ustar liggesusers‹ÍSMhAf7­‰DzA¢¨½¤x0̀&›Jk44é†Ô’BHU1Á4Ú‹(B©ôT – ₫Ô/ù'?¤/›çeÁqc¿dqh₫4Oơkø¯ }Âó|ÜéΤ˜?ÍӘϺđO~HŸđ´úʇî—î‹æOó¤ùP¿äŸü¾ï₫²́¹Ô5ú°X¿!$’26Ó@$f¦‘¨j¦jPi§¡‹fVfza¤ >o¦±P»´±±‰nWéljÆteÓ©bÊw¥Ă]pG!_̣í•FØn—;~̃Y_6ŸN3ù\ë&ÀrʵCƠêcÿo>öFÓÆ^pí§®?;>Ëc¯×sû+¿äß̃~{4Γ˥̉J Ÿ»ÍÂa¼©%M;9_ăS+º¾üç— ¶>ÿæỡç¡•ÊâW½Ăzσ×ƯnÇ÷ü¢ë¯¶®8«Ơµ[Çø™z¥27tƒ«ÉFăóÓ ~nCà-³K¥rư¦h̉ÖlMÜÖjVçsWÛcLL2aÿ½K¹¹G®í₫=Y»'psych/data/spi.rda0000644000176200001440000061543013154621330013603 0ustar liggesusersư7zXZi"̃6!ÏX̀́‘ïÿ])TW"änRÊŸ’ØâªÙuà,øü=¿ö!ăzv~Vƒw~ ô{’¦„µñÚ«:¨‡º²t—Lˆ&Ÿ-x*Iô!Z’2¾€%Ưß…U=Íb„%'E ?úJái!s ‰Ïöđ,AC(2£4ĐÀ,¿#·F{Ä-äŸÖä º̣[¢•ºù©tz’™*Bn2ôDµæXCkIû$/G*B—„wy2F„®ú'¬đ%vT˜P®ÖDuí$ô÷@–@kf%°‰Œ?öCÀNpAl)HÜR Lóùúa†qÓÈbU»å—áUJÔÊ©k¡°RI…m3»¿®Œîjó‚WơŸ«¨§Cmb9,x팽ëcv ÿ½ïIEH~c•Úü«(»¿xK@w¹K(6É'ɉb~ÓTDn÷8A|´¢W:„`.½ÿ‹Ês{¶0Ü̃Z\BnÙÀ$t{î2dq'bc·¡À%¤¥Ç63¹I:–$Œ×  Äđ¢C̃5̣+k¹«)O6§· 5ĐeèB»ơ겪ù\¡{<³Ä(Ù[èF…®Ï¯̉#éÿe´¡_º»@3>Äí©Ve_Ó¡o™bbö÷ñIbÔ~±85nqqøp™ƒh¢æwƒŸ”€|Âü‡Ñưü‹WSh¦· ÔXô1Cq >­U¼Ḱzªêƒ̉U2 ăÁæØrB±́‚¸=›éË©“«ưIx–^æ[|. ÷Y{!“ÉpÛ9¦K a&‰'Іªăäơ“ˆÊÑ|°*ÀjO}Ơß”ês$ôm‚-ă÷ÆÆ­ · 6ÄYŸz©Ï=@‘€ĐÂÏ4ƱưTRøskCÂÙĂU•ö£mè¥sêơ­£¥åår÷́§£­"gTŸ=ï…`ÖO“ÊßRñ„a¹2 y€)=a>iĈרl„®l£}ÄGwÚƯ–>d́ê7ˆ`7ÿ l" Oú7Q_™ƒ¢=ï?ƯªÔæÓnT¼O›:ỵƒˆK¹‰¯ăb8—SÔ¢îcÏ£mèÈ´ß+S̃y—`è±ëánNk•ïª$ùḾÎr!^¸~ăø¨ß@¼Ô#n§Í铤Z̉ ó1xÓ´ƒ”¿‘5*̃E†QưmÊ‹cëˆLf侑äÆk¶Ç¡d®}8KÄN¦Ü…a§,-ªŸhă‰æ±54)82ÎD¿¢æÈ6ÀđZ¢vNó;oü™?¡q›?ă?-¤$|Ăç?•'"ÍK¦¬ÿĐ¾>ˆtÙlÉÂA!Đ—2BmÂ9¥ËvØ‚,ÙW;lOGMÔ¬³=¤HnϧˆHB% ƒCMf†I‚®í¹²"ín‡+Á`Hwñ$—ƯV¹öt+ª₫øŸåü¢$¤€¬oà)¶µie˜Fg‰:fƒ°Eđ ŸK!úr©ˆ‰')\ÉŒ$i¨Ÿ³[:Á¨Ä³åáóaÉÚ₫è¨ ÉOƠϪæĐpPM–B`Bè‡Ơ|ÓĂ„c>fÄÁhwÉô 5™ÆOC®4nŸ‚ûß8F^h‘6ô{ ¦€LF ßĐẸ̀ÆÁ:'°Èâ+>“çĂ+Øi(JÁ̃ 7RnꌔÇ5’/i–{¢̀́Ƹ£É£Rp»ÿ#Léá¾¥™V嬒̉±æ±¼4í9ö8…Kª"ÓÊÙÿZPg‡˜Æqt™;×Óư Iù¢0Jớq±•Å–KÔ(©rîè;@é`$‘¸Í§•Hÿă8¨é5·Ûâ?]Î(FZ̀ÇBÜ¿ ŒU7û¬«›×©fæ=Êê[­Úɽ-´§Ç–Âg(̃יѵW.å3Zóyäé¹d<F…Ơn{§Œ]X₫á¼LZºÊ¢~uª/E,±åï;^9öLăJxó@ehBCü}̃+íưˆÔåǶ%& =•…4pú‡–­É5²ØơJñĐ˜ Äg@¾-î…"-8×èMhpÓ>ÇÅ ¡ Ư„˜ĐQ°°Ëưgî&['Ă]ă%m`¾Yp¤ó.æđÙơôđ]Ă¥[R,hkÔMÈ´¾†é2qn—ÉÔ†.3Ày{f®@€8³Ô/­¹í-Ö®«¹‡ĂÀ! >M/úàxzåTd­È‚¯É•‚đ¤]_úñØ7,Ă™ơÔoj"lJ«ưvi ³À«´·G’̀ç |o¿ä³zSú€0† ¸½ơí7ÎTú4®á,:¸ƒè\è©y|‹ôuÅ$×>?–*̣Ʋ7Œ̉˜9}$íă}ɃÈ‚"OÓ }g!·Ơb.)CØÛ8T‚Ö]cø× !‡¯ ‚]T”&ơŸ»_V—Ô±§¢ơ2ºư_Ñ~D. €•wQƒKPçaơÇYăÅäµqi„[Ư^0C̀ˉ|ömFb €o@è×°n—H£ạ¨/-”—œÉ<¨7v·6WB#kÈù̉ƒLJjÂ?uđëNªû, ~¨Ê'dïaëCmÖĐ|lÅïuIg„–²ƒơˆs~ô?̃‘MÂ\ḶǛ£Œmô—˜eFRUgÍ÷Äâ¼#¼ŒlÙ9«¢: uăïëéØ-hze‘±"èTW5–j-sŸ8ÀË{6rêk¦5±Đw«å„/%Æp'…ơ¸`x­;]¿Œs%ÏñHRÜTƒÊ)Ô?{€é©g NÊ¥m4_—ñüIZ“ Ñ_ßÔ|˜0â7TôÇË¢f̃¸kQrÖn‹t'QïU¥D}Sÿl]'!\…yơ!'Ü#Á‘±ØHSÇD]̀S‹OøxP=“ E⣔›`»’øp@éÖ£%mM̀h ăÿdsç9 _[íIÊ«ơ½ß~wP<đ±H‘A8È/ˆ̃n$SKy7}CÅ>…Qñ´ÑÓV­¡`Ç…H2ô¨SÓT~SNơ˜̀ÈXÊ5Fº›ï’¡.÷ëƯâø$¡;DºÅ \V̀­¿ê°#yrt£̀êClè bíO¹,ÓU€Z¥H́”‹<{D̀ ẹ́Ơ(¸}tñ}L^DùK›“m¾¡^L“³“ÿgn\Iö©p›¨éh…­­p%ù}=,óă9{vzˆ9Ö´éeÂ]çÚ¼”eF29ÎX ‘àô*¥¬îF nÛef_# àÛ‹̉ Âyû,%vq -]\£ă×G÷×ĐPàN¤¿`k#ă›slÔáU‹¤xfXáÆ̣)œ¨û67/“=çhÁÂJ/d‹”e3O±È̀¦ïY÷Ú6uWn:a}±ù" L*Ç+cógĂLj;ÅSXWöœB0-‚ˆÅƯ?ÍJ¾•1ÂwÎYư¿{9®Î¥Xø­½‚vµ ™-`4tÎJ‹¾Ú.đa)‚S-Cưl©'”újÚ–W8TI-Q3?Ü5¿ëư`Ỵ̈åÍTGï à‡* ǽṆe\Ù<ƒBđ“Á«iÔQg¦_É­¼Ë‰’I÷Q< Vé–„/Ï^zwÛ—¯ág~p^t·ú_’Hä}aƠTƒ~a“Φ˜8ß²T‡±ó¿p•u«Zx8Oùf§ÇØÀâϤ-rƒ©Byô¤6”jU¶MóܪÙ¡@$4­V×Á;M g>åÔ/ï#¬Ó>đCQV`»{ë¶Fre²̉9¦¢ó`Ưpve˜!›9kŇC2Áè‡ßä+%₫2¯ƒc̉F±§¿e~Æ¥¨Ÿ8ÔƠ°v9,ư9Vk`ÇCäæ­ ˆ;·QD´x[¼TA“))&QiN3£¼ü₫z{÷i·ç& Â9 ÷%H˜ˆ?Ă¯HÂÅx] ăŒ±\đô™ÛsgLH óùÓ¤Yo“´g2_mH ï=PЉLiç·ëGî₫"áíyT#•Û¸'ŒIĐ!±ü¬‡‘p¶ˆ1t·²¾D]đ†³®Md·ÍÛûGư°³i6•5¥ƒÊƯ@"fäưéB“©„́i)Ëiç*‹]ÎT1’Ư;Èy¿â¹«µ‚³¥|iÙ§ ̀¹H-(°I21ÿù¦:+}¶¿Ë£º>đ‹²Î+>ÙĂV‹X4O~̉†Z¼†ÿW/C‡¼¿ºÚ´É‹t-Uù«–&đ1;G ç¦ww“42‘“…‰?5{ù°̃¬¸´éĵ£‚F­C¾Vơø4?ó¹*æ¤ÇÀO‰.Ÿư(đ¨VŒx‰|"Z¼€ç¹Á¼½‚B9!j¿øúIeÑz^Z_J “•51)- ƒ+9áMdí0^W/¸H,ŸuH•Fc‡S:B¾,æ†̉ƒW’DÊT ‡„7œw,$Ó8yÅpr”ø[~ơÂ5ŸUœˆ̃DO0,ûËO°è5«—‰ ß½–úتµæ¦EI‰3 é ±ê­Ó̃IVØëVReAÍ"sû®¾°‚sk€M¬súÈÄ(Ë‹3]Is—Û[ >aÓ“Mé&µf»¿̉ Ç*RB4»àîơ)̉¥ ÎÈè¬VNê.-Èz ÿéS"Đ́„E´YTưjR‡GË]_’Å6eÏ|Á~¯^ë) râ‘ ¹hÇ­¢m^´$ ^¿̃#9̃ïeƯ¥YÍrfsí¤¨;¦€ÍhŒ—…’o]À©ụ́Ac¼‘ÂDàdm‹5y›2w\رø6 ü[[/¨ Ù¼¿ÿzx‘¼Dnœ¿eóÈûP̣›CnPtŸƒ¹©Ñ̀¸_¹ÿt:‹¸€8Äܺø #·×™O ßâ§¥êÚ'̃4äêo¾­eª̀²Tfä²sVXáAÇA˲cƒÈáÑ(€WYämâíƒJx¹]³§¢9A¥èƸ¸p#/ïÇË BÈơ]´©bELtU‡g€n°,̣-ÓJ©{m™\!̃ëñ˜`?Uá"°‚jÍÎöYEb4Ăªhz[­qª«twz÷IîF’áĐ3¼• {ØÊ€Äd†=x_®n¨¶–#ËûRlÓ }ơÜĐ´!¡IÄ!‘gœÖ#íÅ¿ÉJTÎ=-Aá³g¬ˆ™¸¾=v0îN ?’2>]ïđ˜gŒ«Á%j`³x«è°«ć/ùæÖ#–èyüöâă{ïØä©‘ƒ)¶^ªåsùƒÔA}Ä"Ï^"œ›ơ¨¼'_Z3ư*ÔÙxÉđ‹ûđ4T“`*ît¢Ö.¡k˜1 Úk1#Ä\aYƯ…få¤Zx‰ípàBƯWWƒ¨¸³|£©ö¤MƯ§;Í“»ûO“C{ /8öEÔ«_m.B÷Wî óexư–…ÂÁW=ÅkWt=Ù±"C"74•¬ûTÊÀߥ]i– :èđ¡ñܨg2®¿rñí ¼ôuçͽ?8 ¸·Û(Íï²,›i­ƠÄ1-̉OILBÑă$€ăJ"aË=“[ÅÀ™i‚nAl¯>—Ô$–0‹/ûæ—e]‘}Ë"’@vBk4+!·;ä»Ê¼à¦y‹Å!0è–ođŸÀ)O„Ç0èŸ@];² 8NhQKsAÄ: ⺠ó‚Ñ|Ÿ55p¡¾Ö«¢¾]{:’H*Â0¹©;ô7Ñ Ë@+®E 6³‚ØÏéñ £uE·Ư©Â%ôƠ¯o’u ÚYfẠ̀pILQmD Çïđù ñÜeLuz‚­ aÜ#•B|ÚˆúgÙë³¾ºÛC¯1Ñ¡₫@S ́ Í•*%öûÁæ9V¯HNv9**‚…ïê±gÏø«a"£ü*†4üáă³gº¡{¥6¢Ơ¤ÓWˈCr²Ñ )UsF!Ö SHî¢w{́sz¾*Y -ƒhÏóÔ|´U\yv‚ĂK₫§OSé¬Y‚oưI0ésdØJˆù,Xµw,~Ơg=4?Ă er$Qª´Ü*¥₫·w•éq^ặ5 C̀ ^SŸCsÑèIÛx²!`À́]}Đ>o^{6ês½<.¬ÂëFU¤_ÀSOé…sxø/ÀSZoîæNë2Z`ϽÓDÚȳ$ ¶&‘Lj*×Ú‚N2¾#W ¼W@dỊ̈2tds¢ªEU‚|WÑhƒß‘!íFÖ3Èú÷,tw¾÷çïl­¨ 2:ñ ÂU L¸ûʺ>øß51CƯ¦êKs0` ÁK¿öÓ÷¸ÈB¹ÇÇ ‰4dÍ–˜!fÖËr)0ºB&Zÿ’₫ngö́ê,Ζ(¯K¸+LB½÷QT‡ €đ"^®Œ¬€́Q¨£4YÔÔư§ƒ%¡̣º2¸”€*T€̃{•‰iđ 7 P§f\|ÑM‘ñ¢ÙßûƯYç̉fË«Jd—¶ÿ$à!ä÷£±MŒX³»·=Gí"0­ÜÓC°ß¬îÚ&×Í>­q½Rißè¢cœRûgؽZBY]oYE₫É¢í &¼3Tđ7¦ƠÅ3cFÚ4å+`áZ>Ñ´?ªñÈ"\»5¯xÊ#ÁŒ^)év`¼"xJ˜²î6ª·ÆJ~kc1¨`̣• /±<BĐcïó\ ô¨¤u¡ëÓs2f <¯̃ cÙ¥đÎ µæ ^₫EGaw"RœËö®Œi_̀¹¦WăʽaàpđỔNcÈeüºẨ‰ưÇËĂô…‡ÆôäKßÉà§¾m„$ ~(Œ~ê ¦“¨¸¸ç97öh̃Ù"À| đ% êÙME,ö»Ö̃Qÿ!=‹ceŸ@vgËÍ£ø|ÚúJ]ÎÚ>n?ræÁ?ụܹ́ù› Œ4EÄbâÿ­Âraåü§K“Y„…;ø¿àđ©ñ¨ÿûë÷³ ù¾"z[’>Q(Ơ ‰ÏƠ« ƒ¢@uĐÅ–«BXJ‰8ư‘¡äq3åư``åƠ,¯÷ʼP¾ûμ||%ơ”8è ‹¦ a’ø$€’ëh×sK„‰A¹´̉–;“‘ º]QΩ¨ä>€éÍ«øGè:G̃ôߦæ]&D‚×RơbŒ´â—`n í}¾jjîaăœ!™rÏ»´Ư{ )áœ}ùRDœ‚ĂÛ>œ  €à~TB]¬#Wÿ"{M•O¨?>µêÙ^0¶Ÿ6Ù¦&F´€‹M´[ Ó–0D¾37DfN1Ư"¦´DÔuM|›¦öµ`æû$-0ê©)ÈnYJfñ7V#ÓĂ‚†¹Oµ3{›g¼ŸĂ}PX̃Bà2l³ÅΫÔaÛ·kEè’ẹ̈~@â9Kú@YNäÏĐ»‘¿vÂYÚk ̉ç½z’º°) ,YjOVgÔµXIƒĂ–u)ÖYªÁ_=´Û­…àöJxPíÇEÜ /›‰Zí4«Â8«°g°AºÍÊ_ç«8¡Đ‹²Đˆ*±”9[oáú†Ö¬<—óÖ÷øga>âx́H78ösĂ7‡5ê>©U2§µy^Y¬Ô&Éë SY4ïªG‹ ÍΘy÷´áÏü/ˆçk¢†Æ¾8`/Û(ǹ0˜Wđ̀Î́´*‡;k··è(WÏFKgºưn‹ ­óyâ۰뻺OơÈ3Ó°vÙ E2ÇóÑ”3¼¿k¡Ö rÅh/M»!$±•×rÛđ ©pu2¬1 Àh£Í‚uÍÇùÿ­» ª„MÉöç_UQ–®…É\=đƒ³[îdÆ =±~> @¨BXûô$‡;Ç5*è̃(àœ;‘L´ư£°cÙ­£—Oe„lXŸ蜵Ưè•ev‡ËVY(¯1§Ă=́½Ë©Ñi"†Œ;⵫Üeƒ¯ê†'¿¬1ă)` Øü¨í Ă{Sk­í £½3()^Öđÿ‘äß[ư›|Ö0̃•ưB\¤¾ôF¦Om~}÷ƒEzPûCƯ WE®́ñª₫3¯¸ñçƠ'W1ô€×F’÷Ù ḤoĪÆĐûF‚‹$Ïу¾U^¯¡êcQjMôUm̃q·{)ă¼Ï&û•Öh&!aOo?­r+¢Ú4ºYh@²JI<}r™~È­Å„Â@ÍFÈ 7÷÷»B<‰¬Ù6‚pÔYS®sÿIÎW¹ÈxÑÉ?Htà‡ê0&âºX‰Ëæg,¶ÉÑ`H̃ÅÂ˦4#Hö}Ç)¹JßiÉ‘6qÑÍi¡{ºu°̣Ôü­ª÷µº å QÏ·-µ)Đ̉A{A)"1^¹® Üđà§ëN›Z™eEvª¢®K<_G½È;_N»aEºÛ»¼`€Ơ ôW†ä²̃¯çÏƯop$éÄg ÛË’øœ±öC¥›¿œDc7÷¾ÚÉ“̉ưZ(S·E"†g|~dŸ@‚Pá“‹µ x§R’7¸ ]Æë‰ZͰÛ8Ë« Ră6Ñ•t!à WÆ¡;irnđE-k"Í1¨̉̀·À eĂDYơsV\u„q4¯û’+•·ÔÏ₫ 'ơ‚ơ”r$o‹dåܪÚQSÖ>úv¸.Ät̃m(§~Äà4ăưÅt4Åôlèz¼aw'rĂ)·áÅÜçƒ ¤4)~¯øC(±@y·}u‡û́ôâJIiwk$‰́ïµ» ÓÛm§á¿4 ̉´Q,pMØ(•±¯̣ăWº\QÉÑ(S…‰\œZ¢½ûÀjOó= uLDâÎư ×ú<`›qpü¬‹Úù±Œ[yye×øry¸R&̀1j¿ñaü¢ưùxÖC£¼‹ØÜ̃଄À¥ÿd¨¿qy>í+μw8ÚT¸"ö–¾ú:Fu¶T₫c¨€hªï[ˆ¾â©ơ—U†H0,Ñø£zË)+T"}¹a€V, m®mh_+¾DE!x´ËüAs¨:\$˯­P2äN–‰Aäôo43¢Ö̀)|©„ù;ƒÿ% óÉÓC&Ëî—C‘n•ߨª-90Ïe„|´ó T.HGËrî²íxy…‚€PÓ$wr7œăj)啉‹&“¶›X*·]å̃%|? u*Ă¹Qoupnf©ù—·¼€|& ÇUŸSûw¯ơ´*Zö3ơ €L¹‹bª©øD2ßÖ,ă²yY®ÍÀºßÆ'P†Î8à'ˈ_;ÿư8û7Ĩƒ¡@Ö“¦ˆ/ÿ·d·dp^/œ TÅ3xRoˆ™´L« €ŒÚp¾.D̀Ö)ά¹H„LØrk¾@MÎfĐCâ <ơKô₫%¦¬₫] HäK­/”ßêÊ7ßµ¾~)nf¿eÙ!âoQđỗ‹uø¯3ß|₫xs»¾tZÿ̀#K³5™e"ÎAey8k›Zv’iaZ{\0_ ăx¢rVÁ ÀQ₫k¸DÈ̀×B­ày±̣؉`XgÑJ†‘_—næÎ«jÆÔÄ){ Ûëmvj”£Úø/‘¡A‚đn›ËÎ*e?’ó_çÑ÷[¡ÈưqugØ¢PfD)? {ÄoYlbS°¿•¸¯'#¾µ°”i )§ñF-<§Ów,4ǵZỂNH>’†Ç§írTv_F,sÖ¡ÙâƯ›ñ!¤¾ÖG|™ÿ%›©¨ˆlfÄ9¿²tFe&6¡¸T®É(¯¢ú—Ë·d·ĐÅz½”̃K äà4ËÜJ(>x¼ç.M)x8Múe¥´çj^=G²r̉uͺÏäµÚ µY``5mêξD¡1K˜²0Ra î»D®óÆ7Rä´ÔăL˜£Fª´±•ß<Ñ6 ƯXÍn<É!‰H¦ü¹~“Ù{O—ß[vèEHµœ?<iº*kZ›»^(µ9ÍL*ZFkª« LÓøQ.Ѱ̃ÀVnÔC!vûẃü;eĂL¿H­ÈÜCÜé“t3Å̀2Ñ(|-v}©`Ü<`ưÜ„W•àr¸bưµK!È`iE„:™`+xæ}₫-Dlˆ û•U«Đ9—§Ï¬n„&–ÚCÄp iƯ›¸Ü2HưÄ4‚¢™Đ=ªo ¼/G)ê P-¦`ôiŒÅF÷f̃9²¤ ¬‡‚®’2 ¿©ÊÓl[a‹a]Ûö¼zTñưMmquXGaçt†ŒPtàô˜¦«×QÂ!¢”-^Ïö lEIèFƠAP(&ö²e-<Ϫ†{Â=D¤gzqçüÈ{₫µÍ¼ùµ 8´çeBˆ³¯ƯB,<˦‚°ó)³ +SWó˜ẹ́áÇ~LrpÜ¢qÉ×î³–:’²ăÔƒơ9…:\ù4Ÿ TMq¤Û†éJÇGAGvΰơGÀ =γ¥6Z˜÷Ư^* Ṕ|Ê"EШo­;.Ö\j0w ½¦d÷â…Ö *¬Œ¹;:^wÛơª3ßǸÑÔøèlÁ$̣ºeÉOM³C¥Ë^đ X˜SưW”nZÎÄ¿d®uس¡•¶‘ûÙÓ~kxÍå(ó¿/grܳ3™VÎ0#²Œ°º†¸²̀éÿwX&¦̀ûÑ6renDÉ,#¾ \ ûqƠăwµ*m¥%5ĂUûú*óäÜÎ…n’‰cÓôÏHKî‚óÔ£Ç1{‡ߔŒ‡±3‚å.T1ê¢.m$a7₫Ëù¥O4ÅoÄ*FܸùÿÙ«?Hf1‡‚Wôz¯]Bß{?2À̀·lNÍ<Ïưذa°µ!¶M3Ä _[•ȬÄÜQ̉t¾ơµ^±Íóḷ0PI«Q@>¬öÆ̃KÖG´¼-¶j®ÔÇÏđ£ă]Oe•Êû²–DèÂñÿ$³-À÷ËàØËZêƠÏ̉“Q¬n°.d¤ˆíbĐ›` ửyÂ/03„4z¯—Øúµ¦ Ô`FĐá_:¥G=sÂ=zÄ ¼?v%˜:ªÂÙ‰"i₫»́!)Y_/[>¢ëÙǸv:êlà:³”`Ăd”₫qnñđŒƠ3îÉÁæQq0x «Rî¼v%Q’¯÷ö#ß÷¸đpÍ·ïTƯ‚{Ëpùq€>ѷѼ"#™ñà}† \&bÉ̉"( ¹Nˆ×àî[c=§7Ú5n Ï‘> ø‘e\+]!‡±|­½û¦º&yɃ)Jå@±îbÄÔÚP…Ûä0ˆNÖ$‹jϺƠ Qx'PÇÁÿ93ô˜Çóà5₫˜+Ø ¹¬ <£À›pĂϹ’¥øCÙ×è…ö ÿâ>Ŧa™ơ ̃ ̃;lơbúÆ©¨­öŒléÅÙdÙ” ¤]ûWNLÙ+%s_÷ß}Zä¬ ¼O!n‘û*O·C‹XÍ fôéEo](A’KŽÙVw,Ŧ*à¥wGSŒơ¢°&5~Ú>®p› èzŒG&7ha™ïÛEĐÀHNthÀ7Äxd¬!rHŸÚcêq i¿Êÿ5¦t˜ecņ>{V‘åMee0Ó[¿v¢ß†D–¬› Q,r̉ùv^ú‚%¥úX3œc»Fø)K4ÄiVâv6NVßÚÖ‚‘u’xÑtˆ| ơó¸TgLMÙöŒs¦¯,æW¢º;T;¬î̃Á’27UÈ̃E‰rvÛ.ù'¡ ÿv›B₫¹î§́Ø´êÉƠÉÀ‡§^¤sH-³©»ù-7„Đ¢pæÛÑ›ÜröŒ.hŸ§Â3˜ñ×îÑFGÏ‚ơmDưeèœfVYiƠùÄh×4D]«æ$đ€bvù·¯†¥‰<̉+Æn_ƒÉlQ¶˜;SăÄK᯦¥vÑ:‹rí¯1y5̀ó?IÉƯ” ?« VÛëå¸àÛ;-G?r ÚF¿A"%¶OĐ´)‰DŒ°N|O$.´¼²øÆ˜èQ:z ₫˸ʨÆ=Hœº–%-Æïí@&¡gO¦lµT^ûµăG7笌=CFW0 cØ_´Ú›ÙÎS >Ü@›Ḷ²-ŸG̀›*y @ƒZsŸè`UBPÛâăß’åÔ§S\ÆÆ›½`Ù5`"m2©'«ÿÙ'Nœ=±‰rîy2€/N&ßb ½(·ê”}́ë₫*ßË|oÄ3Ë÷ÊjO¬  µ́±y›AI¦gÄ ›ë24dJ'ç{.quB,p(›·³&ĂàB½åuKTÉ¥€›g÷h̀QWvĐkb[_.¾Ù’vïÉ_Èl4¡§³›ûÏ;cïS®ƒº̃ɱäb8’̣rÍ6ªP¬?û¨†ơX­¦4¼€”ý#ưO-BYú½•o**aÊ^ʢ馨sפ”æpáKmN÷⃪ï Åé$ö–ÇÖf g™3ô—S‡;ÙÔƯœB¯(¨¦ĐÀÁÔWåĐ;62ư™ëtWf|ñæÔøÍrªt%}Iæ¬mQ½¾{°UiÙ*àL–áæâŒ4§„5̣¯—ă1âK.x yĂ4–]àZ™Öù2uѤe¿<Ó1ŕ„́Z;n'¿ÀBcÙËÖXX‚á¶KŸvƯØ­ëæº’2ÀEó¤a0 ÛÜï¦Cá†c‹ăü²s·FÑqe8Fö¡ài£;E.…€§B=üüƯá̀„@„Âá¦-n!2²-ÿ;ÎÅHÆ5øçŸH+œÊ`H¼Ÿ@\Íik.Ø”†“d8¨'&pƯV×UNM™q×:µ]§µ3‹=ø¸§71 'CVn²¹ƺø[ уë@|“±µÿ“PÁ›áư»‹[»F~À—¤”è`cƒđ¡YkH_Â÷bÍ_FaÇŒ›¯^MïEô¾€Té€üơrƒ1ªëaW/B¹ú…4 ¥ $:뵑@ÔЧéƯúAr,́e·+óGßT âçÚ ?‹æ=M& ̣Y8t“ĂMlLbœ7̀27Ù\âc¿ P]¸IJ¬ ư Á*koém‚¿¡¡äY¾ ”áÉO´J̣ ŒwÎYNRgr°˜¿]î8áéă§ïÂ$û†µag,nÖ¢öåWÈ™y‡yđÆ F&‡Ñ[~Gh̉Ŭ©u ¤Gœè«T2×áx’ocùơÉ’̉ï!rÓôf±°Ií8‡¿aøÍ|Æ5e%y+B%&_ŒƯ!†«ÍeP:y‰(†qöŒ;$)L.´èÊê₫.'¥Œ“+h->fæ ÛsÇüÆc&|?́Å€gû¿…°åPüa.u=”sTxëR´écµO‘ tdd'¢VuFB<ƯW›́Gáó"ù‡sâ˜êÀuL ² 7­_‹N°WÛ°àÊk–Û>́-ü WD@Éßykê!î†÷é÷7–y,€ë–¥‘¯[‹ÓD½EqóƯȼº±6Vï/–’&ûÈí¸¾s¥@©uĐø`eæsđÏÛ¿:ªöu7$É|V©åÚ¡\ªư´[ƒfL›~o ½D]|4lqéyÏAûăA¥|Ϡ–êG½WœiŸÄ—œ~÷QE> ÁàC„´—¸ƒÉy¼á™•j‰LÖ+ÁwôjQH>Ø/f%e§AñÁŒ ˜„°É¥Fm ă'D>±/̀÷ùÄÓ¤kṂ×áÎÜàÚr‚­óÊWÿ†³2…\^m0ØL@à1ÿd!Ö,èûXÓy†D—*!|»£ ̣Ăú́”HFTê9Mụ̂zÎá«­ ›VÊ«YG@ßs+̃!‹CñÙ±/@ÛØb`h₫ƯÁj ³H¯TnđV†IvBŸë̀Ôb₫9̣Vøfo8Êg̃văÇ ×9½¦̉£w¿öó%̀½…bä¸-ñ&´v¶¾‹§ñUü`§ơÇ0 ¸ ³rÖÿ¤jôxÍÇBÆV₫JÑ́^̃½0̀NOĐ¢‡́i6$~’€Ô'q¦—üm°ñöCÓ¹8Fï0£₫ÿÊOăè¹=íjCÄ-ÊU_r”.Ç(Ï>¾÷Cf[Ea?Ÿ¯œÇ,Øp‚í&·ß$ÙÑ5 g[ÜÆëæë$‘Đ~ưÇ49ĂÇNƒ“Ơơ_Á÷¯Q=½ør’³ó³¸eăK-¢å̉“^₫û’ÉM¬%–¬¸ÛæÀ×FTiAKo¼Ü/ HU ¢ô°¶¸œöÏQ́MÛ0«]\ÏÍ×y%Ơ¿øŒV˜Z:/Ñ9À‘5‚«å:«Ú-#,®}‹H¥u·HuOM)#jE¿àZ‹Ïưœ(B74Ó†awË‹Ö(óíƒry4AІ"Á÷ă~;…Í#êf±.N¤™+Gíô]ÅĤ'W4©¾Ñ¯Br5cmÿÑi:4ư|¦û‰JºÑ˜S̉JÅ8/ÆØW(J·8.øö*×F‚•¾‡¦<‹ñÿØs˱¦‘¥èƠUưuÿèZ̉ä£â™iÎÓ& É™Ï)Ü&E‚XỚ‘zȵ¸óô¡”_¯hbô ·»A”¡¥½_gÇä´ŸÙQ×ù0­µG |-X¬\73̀ `ç‘¢Ä:>TL4Ce’` ñ6-¸ñB±—=¬ˆ<¿7~`å½µ°ètLØ(ºfÉÄYJíhZ“·E|”×Ës… Vîüw^G\ÊŒh)W²J­¯—"ûNQ¶¦^¿A¼s¾‹₫ï³}êÜø̣Ó“iÛ›¨wëÎÖiv¯‹»Fz ¾ºáªG²ưTPÊæ§L¬Á"Ä,åäÔ¡pXtc»D†f:%µ ‚sJá­ IZËúÂé^A“ ~¹Vi…û‰öZ­Vơ ÄX=DyDx™ è¥R<Ù³ÿƯ=̀p¸QÛW d×?‘Ø8$4tÜØ˜Äc ‚ư§÷Z6¾7úXÛ²–8Q+D,ƒç‡ ¥N‹ă›g‹êu³œÓT§Åئ]Æí¦¢ni©ùmw *p‹ X)ÁÛEiË|›sÂơJ…ÄçƠ§½÷5f _M½H»/}2†Û)Ê©ÆL¾ú™c+í™|Å"́Ë,,î¤ÔÄ…̀Û%°₫4Ô „çR®)@w„†ÏÛ¼|¥Ô’“ú‘˜°Ê7œ[M"ÈFsn©Áºvb›¹Á°…źdöµ ØN.l›đ~ơù3¿)~×W§D % ³/_Ơơ×'(8²• ˆ¸H¯Ư.úÂá`“ɨE6$9E€ËØ´|Á8vÔ$‡Z.Q@_Ê83ïß‘r™/2â3x;úرñ¤øÎ+W[R['öØá¹´‡’RüÁ́çiù¯ 3¦ư8ơ[E#¬h63âm€åàôæA¹CØ5*HàđW" ­AF—Ått™RU»ˆúkøÈ;)U¥ßTŸBœ„†\°,CÏ*Qûê°ǽ‚«àè̉ ê„é›Ư×uuæÜ6Å1W\ÖÍ]´âtyùGÍ8…Ăđ±¢pæ̉4Œ¤6Æt@®i‡¸^°P*LîKë!FZĂ¡˜Ô9fæ7+äƠ"h¹4“R®í Ël¿¢x½¸>¨kR§6ÏÎ2ô‡­]?£̣ÿ^'{‘ Q_ơUÚ9"à‘̣cm÷ª̀ çœüiSˆH;Jø´ ûc*«Zéê…|,²=Ưl'­¯§̣â’:©7BG²×l®„bT¨†mØ{G¬û̃Óü2<ƯO¶øL%yư sçÜ©:3pGpˆH5ÉwI¦ÖGđêĐq´™E ¸o¼¼ñ.ô;–â“;{ÏÇß¼]6×ÅÜVEºĂZüL!Pæ1‹"9o½ J‚‹S–×)hV¡ˆÎûû7Ä ï#»,´v 9Ø Tô·l>Ÿn£Ï+Ï/Í₫ú]è¶<® ]r5̀mă^“;ÜZEyd`Z‚-Â.¿ %ˆĐ²ß(çqră—ûÍ·túĂX3ñ¿̉đ×/_‹Úx<1Rªl̃ÙxU3Hôh{’l,Í àÖ4¶w›7­ƒ‚đnûC¬Qv=ÿ(pù]{s˜¬NKË›,Øz›‰ ê¥_|¢×b>ÁfKê  'es°¨’n[Ï=ôÖI|đ¦”êgtÓV¡¿ùÀ{Í x»?ú©“ñH4DÓ‡¢á˜¯?qW­F0`{ Åzẉ¾¥ßºqÚ-₫ºï±æÄ~”ma†™w»a¹‰ÊR†KW«é:’Ñöù4á÷ä´ơׯscØô3÷₫‚²x’_K†jcAmQà'r…¤µ»Úª³*1;[Ăêá‹,º¤nK}}tLÁÅÁăCˆ̀*¶Đ\ ÙƠÔ†ˆ ̉XXư*̃6³Ơ‰Ÿ–«Q·.OZ™xiQY¶0?†ÿ¼½N¯¶"ÚÔ å¥®lå¦d ™óƒÎöñÛ“¹4f—́=*[E=±ûp'UÚ<ói?U‡_ BZ¹ùĂ È’̃ å¢7P—7„ .‘W$`,ûà=vÂ"GM7QC¾'P»åÙtŒ@·̃᪲`Á~¸øưĐH|Æu—ƒ̣û2V¼‘¦Z>W¬’¦û`WùSQÜî0“RK¾/‰pÉẠ̊öÁưå7Pn)ß× ¥ù¥ƠúØÓVˆ7±Ëgt¦±àH‰îtÅïhqŒº7¹Æ*đÅÔƯå/‰+èáxËXô¹“cB)˜äbˆx²Ä,Œ; =…“4Ä´à2…YoÈløg™iI%£¢ymé’³–£–êµhùfiÂÔIί[ΰvv˜e]Ô¤w…Y6¯hŸ„gđh*Ô‚§÷§¥̣MP»w¡/ÑƯp+ØÁ»«¤·á[̀ơ|0|7í±^Âf ®q ₫Ñ&.p3LÙXơU?‚2¢Ztï‹kw¢¶¨1EëêLB WøĂ®·â¤dW?Z2Ù½‡j/)ùĐNoœª¿20=ºŒ7¢œˆ˜û¦ÎN82—8a>6%ø7pĐ¿Û·:tø ß%…ÁÉKï®á®œüQ₫ Sbíä“®\† ²æ™ebèñ.æÇßËÙn¶Ù§Ưú¯£éÍÑyéáƠÓ1~?"ƠF·Iàf6æQ?9Ă+ ¹L ø:½V<Œ–Ê:¸4ö¥$VxÅ&’̃œs̉¤fÊԮM¬ ÛMsĂA%FI£}w°k̃a2=€l ²A–ú$Ác Œ>|ÿu)We„j‘9ÚxÙÅO‚ˆ˜¡ê"t2»{B=5£¦˜̣Œ¼Mă®X“‰§Ïámµ©~’“Ăỏ ̣¹YV*ê%¸9àa 9Ÿ\ºé¾̉ÄÍÈÉHMKùơÎ7‰@V…µ7[j†€{„ª-ÂDáskRæ:¥öÑ-‡Ư£°™¥ÎqjàÛ˜¼ª½ 9Ẹ̀Œ§–SßỔÁP ÷ĐïÇÈ̀9(j1Å`06lŸtĂb³’ʆLá­Ọ9ư¡g§üs ÜôÀëÙ92Ö>̉ç1j¿j§äN[Û„û'KJÛO~A#P>˜èƒ ̃¹©hÉ›̣Øa@Ơ5úËIç®sôßơ ơVæ {Kßë‘·2µïB*aù÷̀|½™g‰Kº̃S â³”|/WN Ÿ 2e‡{e+8[£´ăæL-Ăöw¸¸ÿ°K0'åÀÎ+椢úÙ“Ú¬ºĐ>€à-?)1´àN'©rx…›ƒÅu|©åăå̃ÙÎn­w?ö'Xî²Ôë3˯O;¬ŒÄ›Àr}ƒè§o‹è™ºĐ÷“â Gè¢K‘ø{çmCà˜(«ôÂß³úxXíl̀̀|2ă^FIàfb´) ,¶«‘¥¥&́Aú× ³Nÿ©ue¢5Ơ„Û‡#=PŸ₫DªL)®b‘&=ùÈjk¾¾zÑ|2_Höv¢0„§đù ³ŸÄ ÑëIƯ£âÅ2A.ïiå­hÓa¡•JDÔ¾v¼Ø ¦pGˆbø¾ªÙ`=`:îzÙåñä4ü¨Ô-¼ôíø…2øêQÏèE#ÈWƠ³N7i6mÄç5Ă P¯“̀ZÓđô4pëP¬]µ)̣ư9ÿvAđÔ¿˜₫b€ăô4¥"Íÿdọ?đªh ¡âpÍ…Œ;¸µo£{lœ!¾)ĐÖ£Üưéoÿ·¶¡ SKèÈđ· 5JêvÖ²“ßxÖÑI¥r-.qóSŒÇơ€€mư<Ë<#ư„~Ï– ¿µcWNÛØLiưc—,&×ÀIœ”ÂrÇßú€K¾Y¸ü“¹16³f'È“éCˆq¹¿zW(”²$:Đ¥9wˆÊ§ñY¬ ê#†b"OF\´œá`4xB•’²Đe ]ô£yÑ—™îñt´4}¹w™uô«øú&B€îëx›ƒ¹\å¹C5ó±`‰†øe {ö?©₫Pn…bíưÙîld6?QXpívưŒzđàưI‚Ë¥ï.ºîFÓ†Gt[ơ°>…J‘˜‹™D7 /ëg4­×±\†cÿŒ÷Ñq|ô¶}`g!üùP̀¹UÚ‡×#¤ ‹¬%̃Q¥hùA¾Rø&`¡¡̉-¦©¬9g6Ơº¥pLûäbÜ +ªqG˜˜Å'Hp*ôüd$Y)¦-a  Ù È"₫ ô:¦yî’‚-›VƠ¦P÷ Bƒ¡*3Ññj5°$ôE΄:×°ïk ¸ÜßFÂSïªôÀ*lfIö+½·P̉X¿5̀qmY>.fR×¹:†k¡ëIgp›Z¶×,$Qµ„tÉ>qí; â³̣éItœ u¼~}WḅM 5›HơMẢ"³Đÿ-,˜ŒKw, a—©E„[rĐÔ¦Z±.TJs†Ëês,§TR×{dù¡)"Î`+#¦úf`7”Ë?$₫.}÷d0{ưÔæùçV…Ă1·e×&œñ`ÓÂ1ëWÅLX.*²êc¯(Mô˜ø™\ü_¸J;h@DÈÆŒnÿ%ÓçÔ¥₫S·ư||tS8‡ä6ư}Û Ù`ÄL™ơ=—z.îha”§7—|ƒØ¸}%$Ü …ÚÈH¢5]–0Øôû““ä ̃]¿L{‘ùÔ©é ´—ï°ßÅøÀüêO5¾₫-Vö¹rV#̉–ö‘!H¾“©eĂÎ¶ÇÆ1÷̃Â^êt—pvÇ'"EYSN—ÈÁƠ—ô\RƠB”m§E±yKôkÊ8w₫Ä»}T«ÙCN‹ËdUÈf̣úÜĐHƠ;-äơYÑ|+VÛơH¿ơSó¿Ä{ ¨ïæe²b?…­Ë"_âq¼̉ËñfÂnn´æ#e-jj^zäÿ¤rø—‹Ô£e\² .û©ê}9ÚWS[”‘Í‹ư¸*Qds1‡­#V«c!ø4gb„µ£C¬0!Á:tô¦+ ¬U%X¬ư&´F²3Óʇ‡¶Yz₫#i£qp.` ™F”;q³m%BU4b¹o:BÄśûƒơMsư8²×´!*²øÛ=́Q†̣îå:Cê„5ˆc¡Úí³*7;B¤sJ ÄpôSʸ¦Âm¨..ÛWj*}£Êqå§b{Nùù—]‰Á±øG°(î$G¤B¿†Ôü_º~Ñ¥ûuq×Co?IáĂ2pB»¸¯IË‘o´~- «åÜg‹›ËÛjWĐAÀ>ßùfl€å}/;'FÅ7Hî×G÷œ à× ø!èx ỉl‘‹m̉A:„ơ¾;ṇ@ÄĂíNw˜ï•wË1ëEÛ́vÓüƠ'Y‚1\Ë×9ó¿1ªǛ>!?‘Qđ4̃)<󠻸gƠ>ß¾««`,/ƠăÆ™©$™̉vÏ)vd6Đ­|j¬öÔO¡Ù̀0Ç™ưđA{XÈá¶%Ykë%b\†ÙAgFÔíé? ư•û©}́£§v‚¼® Ù×’©Ë‘€€ˆn&KÄç"å8iÇ÷X³€ˆIƯæ’0‰<ù\cÊÎp {Í"92¨Kfç÷;ÄMƒµ5Z²ÉhJKˆ‰6o{ăÚîÇ&Ơ5'¯¼æÀ_R´£ó‘ ¦VÄåO¿•Ÿ¿÷/̉hÚ~` ‡Óuekk;ßœ¬Uơ•üV"s_₫bkœ¬8è²/h'#¹ÚÁÖ¢#x‚ÜIf—g2èºü|íÿû·yp.mxèÂ|î²÷­óµˆÍ=6ƯÊèæÉ\Ù¦đ(Œí*ể2‰Ơ@¹·½~äFE×îG€ú×h êv™tNîÔs‘—:ÖƒÙ¹ơÚÏø¢ï½†yµïÓóđ9•ÂÓ¦²F³è³\½ŸôǤè´ù"³±Çª±[ ¹i•aùÂñëÿnÙz}Y³—ËÚÉ€ó ̀Å´• HKZ̉¹{Â)à3̀që ‹!AN ¢Ù›1u¹wñơÂÙ–·8h´«đ¤Ü¤‰=z9±Ç‹¤–“í–§¹‡)åVÔvZ³”À«ùLæíA¢́Tȯ%\âѩԈï`rÚ_•THÈxÜÎÔÖMhΫ^ʲü;Ú³=âPûÿ:ç¥@=³̣NP!lƒï¦—­÷¾<ñ¦À̃ưÇO×Ä3'ÜÇÅ&`ũ¤«(°”`»ö†W,P}Ả.—Ăʼ˜§ƯCđs‚©QpN'Õă~S /̣©–Û}×ßxrèg~¨Ụ̂iñ™MZ[ˆ2£]̀£ïÓAư÷Ù̃­đ“àµh6Å~ ü° y™z-©Ô7™’L¦ ~ {‹̃F©®ùFÀ*‡™¹0" }å=gi)Ü‹•áh'ƒîxó FR¢kTÈE9¥ÆÑG)D‹N g&ĐOôơ+¶¯Œ& °¾N·;Ù&´öÂl÷âfü ‘zT;BÔ ¢²©˜æcÑŒ9LÛ¾“娀ô˜Üh™Ü- ™'_zÔ`ï)Ṕ·H¸tï(Æ\\Ưâj•ơYµKyÍäwI¶ çàÇun2ộ Æ›ÊIîÔ²·˜\°Ô"ù=·‹¤=«E±ĂTç‡ûô‘9ư|’" zå‰tŒƒK€¸$™¸8ÅF…ÿ•†$)ö­B™ïIÀuF»°5̉§;×b¤´vOGcŸ’I8Ư‘(]_KÚeb;¶«'ªØêôô=‹Ü ̀f¨W®ÜîÄ“Ø*wr¼È-ü[ß½3eÀ/o¼l•đùÄ̉i®úüe•‘yºÆ} +â´Ÿ¼êåu!§‡rlá(hßï¸MÚ¬`{,¦^×¢Ú„àô<6)¨˜«E“Ά“°èƒ!3åüPçXdeñ„Ç ™œhu‡aÿ˜2;¤Q»Ă;Ø÷Ú̃›Ă{ónb©3Ó“#Akzæ̀ç̀&å´ (Oq́‘,‚+¡÷ˆ4µ̣œ¹ˆ{0đùa‡JQ·×eÄqæăNV¡—×ÜÎ_’æD—çµ́Üäà5qÇ­ƒăb̉{¸Ta7mÆÑ«~„|î'KÖ~qäZ0c«DB̃léÀ‘æ`ơ˜by‚ x¤ IKI W6Ú+Mj˜V›(˜ ä‡D 'çÉθ7êMYƠ&¶æ¬bËʺa¾+zï„IßœƯùʵ₫`º lOF‰¡·fm1'åđQQÄ5.³™.®SU„ê®Øp ‚0K¬5ñ8c6 –!ëWM^ͳe!HĐ÷ÁÎG4á‘%[*ôÿµœXÓ̃ü2`$9…‚4ăbbY¶F¦ú#ñv ÂR<¡fVÁ̉4¢vÛ¸¶³¤A´J ¼3࿱HÚR¼₫eÚÛhÿÔ’Ôø`ͪc±xÂĐ#†úa$‹Úè=€CV«Đ¯ôÁîm`¬FHU`_ ±Ô0¨L“\5̀=|sψ`¬`’Âi‘½G#á!Æë/̀ Ü®9Đ_ö ß„Ûàdă,•÷?³Yˆ´gцüØ0e—À‰g'äD‘4“jêÑUˆUô~wM ¶1ÜO4¿ỉÈ–¢ƒĐ}“¹4*æ¹Ül/™øÑ@^-©(€ F†ÂÙh:™àÛƠÈÄ9É₫P~4ó¤BUºu&!hÇâ¡ưnOĂØ(£ư”6‰)ø˜Ă P™a5h0ûù·ªË¬$Í™X¡aË]Ù½! !ëaÜÉmö- ˾r4Î(˜¥Ë$º)ç]₫ª®w|„”Ú^’‡F,mó.y9ºL»ƒ‹D$fû\Ú•:‡x;¿¶ƒ“&Lß¿w/…̉”ï£ç‡…4«AW(™7pí.ºpB6fp—ÛW–.«ẓ†lI«IÏyÚm¶́_6?s u N•Q÷¯f̀˜ßCÄê_êḲ ƠCh,5Á₫wNéKúœ„æ1a•¶F† n}"ÿabñöcøùœÑ 9¤¼Fô$Đ`˜ôÖöø³ú0—ÀÑqàºUÓÀäcwéµ q(N’J_5’ª< EmæX[‰±̣Ŷe~ÊErưz¤iÜ~;‡Â™OæA_˜µĂ‰ Öî>Çva5®Ê£€ äáZÑØcOY‘wp‘ƒ+Ẹ̀ô å´Yd»ÁûÓT߇?)öíàÙ3Uù0m5Ñ%ÿˆ`8c˜ºeOOBF‘ª¥I7ƒ₫z’&0ĐŒ[#@ÛW¾ª±Ëswÿ¿‹Ü°lDËå4ØM¦Gó?ĐEÜÉ#¯åí3¶Ÿ¸µ×¾™¢ MùÓ’Á#}ƒ ±ª¯đ$ŹÜƯ§üÆÓă‹j¸‘ܬ =G#x«–4r†iíơ„äî ¬­è+Ưÿâ₫à`G"D’?¦B®üư¿’5mf—B(ù v…>­Ơ±a2‘± ̉Cvù;˜áÅÇLjΔ²®µ»2z~n OÔJm«grïÚ,T±Ú%¿„¸nÿ—JPÿǽ̃ ^@;.m£iå²₫¦ë^Ú.÷ÍÖÍ5ºÈ³i'lsr]l1­bVÇîÿ5¿ &ơ’§dÿÈJ_;ßÄ™=Jö:‘–œh2§0ê±̃@9‰t[ñÔ:ƒh®Ï;rª»́¯̉(gWjøW¡ Z#nêDđöá~ÛtË k3¾ö1̉‹µ~^ñœẠưÍ£=§gè½dÉz•ßh!!ƒ…‰–æ^<ÆDanóˆf’3¿öC‘³Ihª>u¸ăHÂ_æˆ5UoŸH&¼S“щ¯tƠ:éN°;‚<íëñá* v‚CSPFđÖó |{§d¿ÀaèJ1~^§¿×ä·ÎaxG^†ïQ¸ũaăºKrÈuMÈUxdÑ®ëy‚2Kư,×kç'­¶;é₫f“q')¸ô1€¼‡̃Ä¢èÍ˼ªâ„W$è°÷‰GăÂ% ̉‘Un昇„ÄlƘZvúÀL$°°@.`fÜ™?r̃°n)̃NuódÀ·ç“O\¹‚àñ[V×›S¤đübW@^ơ×oùèÅ-{‡ÅPª $ôk£¾à–QÈ+v‘˜̀Ú̃¢KK§PG»c{¬Â_;êºhå²[Ê,̀Îă:ƠXB â²p:°ƒ^cQ‡Ụuq̀€Rî v† ,'ơˆ!V¦D™Ÿñ€Í>œÎ–TŒ–́ơº‘Jµ[Mù‡D 1Â×7â¨ñp2ôkûÛ¯d.F̉ÅÙ³EŒÑy?ùÛmî£hîdP¯“_ °ùlºîưY »+ƒÜÊpI]i»ÅiÙv¿H®ö¤°óNá[Ç~=9ÈDLrrknWÖỢ!ă+ü˜ˆ₫Ca₫Áî%ßè1Ù°idcÊDµ=Mdß –.t²L«ƒ¶9Ä’¤÷ ‡ß Óä\F¯•ˆœY&ç)®7Ä´7•htĂÈ…óÛ¶Pë1))!™ÿƠbö+Så̃è‚§úç«áưîBn¼ˆxX[×̀@™]1Àù\߉e Ʋ]„µl:踽 ûÄăú.n vUsá‰ä'̣a’-û€>«0oAßàgmísú¦]Ă8%`ÏƯ?ç`«6Ơ›L(?[9Û§5"grÀ iX¡xúƯ(ѹƒĂǜî'Ö«(Î!†áƯOáè?Wô‡'ÆHk¬¹z¡ödØb.¥}€Êz̃!MS {æˆ*ñôºP²%@VLyH.8l°P̉c”íZ¢GiºwöÆh¶ÖE_PªÄ]ăa¡@~V -ü™7G{·j[ Ÿ¥É+Ö³LåƠŒ¤F̃WEü7ç‹4"$÷Q’́Eæ’ùYPcO)‰C‚ wTëÖQ²¿^"JqÜ®X.bĂË…Gú›&Áèˆ|R÷}Ö%…m)ơE.f¬v)«˜Ă|‚`C³̣Ù’½Ç9”̉x€fäH"WHp(2 ç‚ñŒÆ¯Ü¸È’oK'«‚Ú4]¡r¢œ§”üÄ‘Æâư!å €b§²¼TSe^{¶²©AŸ¤‹ig“xØbÛÇVLÿ„×¶ÉñÇ È+¬₫̉¿x‘§¼Èˆ—Ÿíw\<¯‚“ö^y©û²ö8ÑWÿ‘ˆÖÊJ7kØøVËĂñÎ%äÁR¨Đ¸ŸëkỊ̈zô­áùô$ƯƯ4Æ8$ ¦F'Ÿ×³œ´yv<Ô× ê¦¢Z­€c¿3¢$Ö’ÏÙŸ3c7‘đ˜‰̣Èœ ³̀Tc¬¤óçjyBÀ÷¼¶6M×!t¸¬ŒXj́I¬¬‚²z΃ÇÍSÖ&¢¿!‘æÄÔùîỄ¶«ë=[8••D́V”ưVà ¦¯Çªs󺸑c{*:đĐ4cÅTÜŒ ÖÏ7₫÷)‘0©û™~ „ĂHpNc‹•Ö~ikAf9ÏJ\\‡:ó0 b2£̣»\¯\ƯêN~€A.™Oñ¡ƠŸZÄjÙˆ ÷Ơ•‚-ŒUDºkRdz±6́_xWÖDÛŒY:·öƠ—Cï » ©ë8wÆd,5åÀj$ˆæÜ̃G°>-·ä̀ÿ©Ă¸Eḯ—ǺpZ_$̀(L›MÁmÛßÂÜØw“;b +„íQoÂÊ]hpnSQP^Ç® Å›Œ[Ç'”û4Î7«ù¥¢ÆÀ̀l`Đ́-#âœZÂF9\·âX ·×ñĐñ:æLYî¥FƠM.M¬'”ƒ¾̣.—ûáüE‚:„©¡Ÿ¨X̉*ö€2ÓªÅÆ5ß¾Q’3')«·%I) w ³bDæ#aºèüÅÿƠhùμ«=†·`†P¿»Z0¦ôẸ̈C7wU¹úÍ~¬Ưl‡îPJ °,8<®œ́ôº»̀‡smăe·ÊëÈ;Äjú ʺÿr÷› Ù[ÆF~f7²Eđ́ªĐµ7[l¾0„ A,ë8͉t¡å´dt­”‘R »ï±·—’5|G0ï¯$çAGæP6& ÿÏYÜ%{Uî5j@ơĐĂ xNr}çéf Öª-nˆ&@]äseMJç¾.₫0Ä^‡ÜŒ†‹\eïE%ÂzS#ĐƯæj;75ê#¾WÄ™ÍÍ£@7Z4/NÎqó­“®f½ó̃ù5~³{€zö÷`7,ÀÁ?^àß.ùMÔK× |äg¥‘’¤^Ù”pÖQBÛ TSJ*‹Î øÚ-¤ é5„[K™ƯCD"Ơº&# rªđ´‰h Z,˜É˜#¯ŸÆ¾ÈxÉ;ÛâơLe€ËàÉ-zoÓTà¿ÂJ5@(È«Åï“…ÔßéÂó¿S<€ùëû­s¬=W¦ù È•kʳ äÇÁz₫ `ùçS×µ‚±2¶¹̉á\pJpđß¿Ó>L(oDä—Ê|½È‘åD›]Úr—÷̉ÙbĐăÓŒk]¡[l ÅGt W7yÉI²M|‰3êQèÚ€ḅÖ³7Ø>^ưo@ĐÁtÑĐœr§'§„vAêÈXQ­['7#ë̉÷ÂĸfÙŸáKX\ç?3œqÿ cVgrZH_̣=z¡øªjÔ²yöRpRÈåÀĐ² ›4¶Ôßk„ëú—•Ơ²̃`÷8ɼ€ÿ(‰_°ÉÚ?a1S–X|DÁÚ\éÄ÷Œyù8j>wN¹ ›àʨc‡ÂÓ ·c¬"½Ö̃ïcUÏ·êñ™µóø|›}¯;§âƒükƒv¬1²-ëų…Ñxá¦\‡×ô€ÅÑ8ï<¤S¦e¼9WJßä*áă·8êÎ:—k‰UÔögơ-?»û¤ĐÄ£<î]f̣yUF»!·0Ñ̀̃ù i]Û…)Ú½)Âf‹!`‡¨ỮƠëùÙQ߆Æ98û²#9–ƒĂë™§ƯÜBR‡N’|đK Ï5FAÑÅt“@Ñ3:"é#?CuåâÀ…[µ#±‰íöÍ5Oz\–•DÏujdJBÖøà₫2'ç !fôÈúÜ'vñÁ¯™,y(“n‡§ÓF¨°&§«œ2S$O4Œ”Á­;%YÑ·tna3.€Ó_³÷É”o÷×w¬`µKêù¸̉Ă &ÈË5t‚đkÑơÅTp×Ưoë÷₫%&1Ed"\Ä _p +±=HÀ JåP 7²EùïâgMÀÜm8ùÖü£Ñ&iN>ч,0°ĂŸqQêJơ„|ăVa”å~TW êIÎYcæµ67ÜưJ¾Ö}^UĂ ’ª!I>̣Øÿ‰bS•K'àĂ Üœ!k0+r)±4:ưƒ´¢§Èl’ö÷JrJÅ@øẠ̊tx 35 :ûD̀)¹jæƒW`)äă—Ñ·ăfŸÍÚĂ yĐoêËæ2MFä/sọ̈«Ưỉ1†\‡HSO ׬K›g´đ¬ùÓV3yIđø½ç‰è‡$/Í[(dz˜~T́!uÍ‚…©!í"Só0™ˆ|ËÉÎxÔÏ­;èX™đÍëEé¼ü>‡SØÑVí²äˆîбbÙ„î·ÓØÛ~ç\v¨…X%³ߥ14½ôÀ́dæcèô_0³’¡•â@¿Å'î@úiߪù̀\¹@ô·Á«’í/…ÁذIû?.Qđ£è½ ý+k™‘Ï.@SöÏPo‹/- é©—ĂèÇQ½ÿí*Fû„–DG₫Æ“¸Đùj˜X—¼›lÆ&ÈëÈ[c-:réPNGZr§á~́1¼đë9E¨Ÿö9Q˜4¢­.”DÇU<— û’ü‹?¤n q`‰|ăƯH÷4)>̉lßúË|Kznˆn¯?£Ñ=̣qùùq¸™ËYă”eU9¯̃V QB÷ß )#~µZä/¸´cƒ˜r_eCÅN‘Ï_Äè$ĂtÖˆ¦£î₫đB/xâ ½ñNCçÑ_Y7œû¥º)ötuöæƠÙÇ|p ×›ñ×™€,^½&¡ªeZ¾ê₫ôÔ”´jWºëjơ?¡B9‰Á[£U‰—ÉØ+·œª êíBÓ€Uó9ăLƒ£=Q" ̃I9bÇ:w_ơƯ¯A&¡“Gà,äfS4åÙƯÁ•W.øó]ùåÎÑ¥qPỖ°’ƠÙ¾û²ZŒ"Û/¤Ư}D¥5œÓï´̀¦Ê4‡Íl#üÈ!AU3xùwJajcœr̉ —>"èÀ¾ÎÛ^¼ă>‡§* ¬Zÿ³<¥Kb£4 è5HÇLS7+ásd;üë¿)‘âØ¼ºaÆ÷>_₫‰‹uФE\‘aG&GmºCCj$E~̀Áë°“û;HAdÇ£ s52à$́̀|ßGNf¶!˜äGlª’~£rèj!¹ÿø\¿VF¯ö$?Y8µ>æ¢Ùr§|Y"́đJ®P¢í•´¨ơ¶.¶q”§‚"‹‹RR0K+ïù w—·ñ ©,=£¬)‘w!K·đÉ_Cq¾È &‚‘xnUg*3º Û¤ơKíitq°ynæ@Ă]q ¼¯<W”°1’|c³N¡E=s ´́Sñ“N>äcÏ”od­®`/¸ÊL‡¯ ́›Pî¿!‡d$E'A–l5÷Ph‘rCËëAf±|­L\NÎ|Cc6:9à‚đ6ÊÅ”I%å÷)w~KƠ‹4|ûÜUÛ;b0^9¹í*’C³đƳd’c´m U~ÓƯÍsFÛErRÉwO¾Qä½”å¾ËaG@;ÚƯ]è/ó× h—0Öăv{qYYWđxXZG|§úê₫²EX̃fÊ$Û‰+¬ó[–ÚÆÊxuPÀ‰—’à̉ x­¯²$̣9f/±R ,%Z5¦#»¥0[¨É€X=MnE-Ÿh­›{̀—kèyh¸ ́–çÀ0NS¾è5‹Ơ’6¾xmÆV+MΫµà’“]‚å…É£9 l÷â¤pj|xĐ“Çä#ÿó=è`bỵ̈¼XÇBbˆ¥ûí‡.,ƒÂÛû=æÈ®qØS̀ÀĐ¡&PaqH‘Đë5i€ä^NđD¡u i¾R/bÅöÊLPÜ(=ßWF 5h@ªˆ ¡|8·F²Qñöá$\àÉÎÛCEâßæàp:¥„1{Uœ/À)G3oj!4côÓ«3á³MªVyɵåf'‡Ó§¶=À0Z?év<öfZp¥à²ôR ƒQ·ÜCRñm °ÿuSéÄÙE³ă_é‰:•¶1dÈy¨h–º%hƒÈ‹́2ÇRÉD̃ êJúdÎGå64¤Äz1Qç¦9´SùvÇs‰¢ƒ:XØúº©¨%tÛ¿I ïÎëè¨,‡ư‹1 Â6ícå›s¤›»"t±«°œg̣ză‘½*BH‰ô†Áíƒ#óɘo¶¿ƒ€©â´IIµmkÀïX6DÏØ~c‘%P¥nRvs³u„Êq&á¿ RPƠ_ﻆ „15ØêͼN/ê9µ¸¢üđé&§’ǜìI˜ÚŒå´ÛơăXŒ«~&508†êènÅÏơ!oqK‚”̃»zX_|~wy7?Sª {ç`à‹‚ÓÂæPoégrÊbưkWwÎä;r½—ăïô¥0ÆVáñ8KYѯïuĂroß3rᄲ#đÜ>O¬‡¹W$…Æq;äË]sq‰âíÓBjÚ)ˆ•¦uÚw2«…×L`#» ¬æB§§ëÓsj® aØ’JŒKè‰.óz̃Z)̣]Ÿ`ü#ÖØ ½]ŒơÊ…Œ̀yD̀¹é¶çü8ÛhmW(H9~Ë W(D=¨z`…ü e¾¬¯T ưbÿ&¨uŒFÓđ”¡¤Ø©̉à¤ÑTH)Ö‘D¢:ËN;¥SßÔO5XXo®âËæØyKyïLeIl—ϽÏbh¢Îś*HÑuQÛ\ÿ…Wáö½?d6Úè¡’´ ¿ñGµSS2±¤Àf‰ÿÄq?7CdưTÊÆµ́vÀÂ_f¾µf—OLDặ€=­EW<ÏVx)Ÿ@å"¬ÿNÅ—E¼xvmsûbø¤T¡’¶Bï7Ơ Hƒñÿ‹œ%è&²¸« «@w¤Åd0âçơo¥ơ÷a+btÍ̉Ûw Óå°ç¸Ư ¼Æ©_Û¨÷T"¸Đ ­­Êy69t¶¹{̃[B̉•ëSîPQ])c8¡*K$åñói1úª"ænÅYHƒ¥Êj đè$ßJÍ’ÂÁd°ˆ¢BtNTÄ‹ ôî´‹S°¥¯ '”¦ó<.‡ºyzxY‹3Ëx®~ÚZxeÂM”Đ˜È‡R‘́đ¥ï˜d—‡;? J—*T’™rđä.¿üG»QdøÂ}´…©Ô°à¯¡˜¾`‡-&²¶‰ưåäZûú@çÑ>}˜G€¶ÙQWáŸêgQÏÖËo®Ÿ¹óµ —£LÓ)÷Dº îeë]ĐMdJAcé†7JŒöö>å2mîí®E?C®h9ʋ֘—;,ÉTó̉Ơ[ ₫Ûp©YúqqơØX /_åŒḤËb/hY– “@Ÿ>£n*µúA(¢Ï¾GzKóÄF ;62ÿ{Ä?ê­đ?ævÆót›Éâ)j S¼Á¤Ù”+6 À°¡wÛ±΢hʈ”eY*DØ4À:%]©Xµ̃?«N„ˆSáüG¤J&¹ ÂJÁVœ5~E-:đ#gémg51̉'ƒA‡Œ¥YĐ8 ®/“Ád'—4 u‹y¥<<œ¤#€Œç~`Eưq{†Mºu•(v° Á Lñÿ̀0Yg³̉ 63£úóØkQØ:nÔÀ™wzöà³6\«D₫F}—ûjXVp=»µù–½ñjÏ>$J䤣æàé›=ß ³]Å̃âl ws8̀8*\ëö»e•TëÀ gÆóuC,¾)C`ôËÇçéăXM1¨7jt—`[óèipÂt!½[:D`̉&Œ˜.₫À ±nÚ¨j¦|d ¹wÁ›E'%áËE¤9̀¨^)£W¾ZrUÚæ¶Z`+s/wu‹^®MÿWÔàRª8źÀ̀ư…ªÑxƯ¨œ¿ U ”'(àzMYɆ,QNJ׸ÖMê=°s_¦"¸I˯ÚC³È}È́\û>áƠî7JQFÏß@C5Ëg+Â…§²„ëûÇk»縘‹¤¹₫B^çpÏ"T*‘ªø:!è}„æF—qlM:‘2dºŸ>i‘y÷'¬+†¼{=iêØ‘ç¼È₫Đ—U«LºÂ8öíiO<{ĐĐæÿơ­å.YÚˆ_‚·5jëç¨i¤­ÁW̃Æ̣¡̣vñ0 Vfưw;Cå&”?“ˆülv&.ó0èDxÿHÔ+/RĂ ÈyÊsîådZ;m¬nÇṕ̃„@F±l&|ơ~{£ƒVJ×4'B_ÖÀ,í$#ˆM.ơñîË́ɾʒ†„Z¾T,H;Tk>#…à6âçx¨\©ijíè"‰€ƯÁ ÂX°/‰é§Oé´«¾±°µ¬u#$‰K®Æ`M¶í jŸŒ£±n¾Lúó‹c}ª+üµ@â_ ÉK†˜)™ª¥µØÂ#­J%Ï\|l~tFö±₫ Iêü₫æF₫°Ñ1Íç%đZtI 郖%†Ê–î̃Ѳ̣ưÅ›:ÇnxĐ:æí 5 }¼7È%ư19¤Ç#N©ß6 }i.$‚́°¶W‰¾Éˆ-Ăß/ yîa•û}7\ăw„gơ) ê¸ÍáhôNÖv­/„D—?ư­̣ôäø úØû©˜Îèw`.Ï…îÂ)ø£y E?•%³hP«<œâ[ơ×ች‰<$çLÙ⸔•JẠ̈4üÀfŸ·<[º£®*  b~̀/›QúжpÇ #ÂH6́ñäÊ0Àtơ1×"Á_ΨeYƒ <íÑm;Æ)Ün;d¾/TtnûŒÜưÏúÊ„vE‚B9;öƒă“È»ë¿*È•4,kăöI " N³Î Î₫a”Q¡‚ÇƠưGƒ"‹Ï̃@âTÊ ̣¤‚WSdظ&’èO€7̣¿±Àóƒra–5 *×Mÿª0–¶ê`ĂẼư_‘‰•ùuæÖmU?S̉¦¯Í0öêI¢;ø–Üö9™k»8"%²2~¿Ro„Û4çØå)}^RUx:M¶®̉Úå^·)˜»w~Ó¢,ưdM„ä§§öÔ¥BDºfîgn?SäƯ qñ=)WèÚR÷ éy-® Rùºå”N~4 ă½f('‡Èªî`g‰̃ Zs¥»˜)·U«|0ÜDù‹‹§éw¯ï¾ºÏ à‡-+½σnÁv’”B­ơ‰2I-ëé¡:Âk\…‚@FhƠ†´à"¦$l"ÑFŒIđT§;°́U¯“to)›TôÓUaŒÉ•*.<Æáơ×Y÷¦_’Ç3N·œ,›ïW¼ŒBâäù§ºÍU©^01èU†n+[ B‚]ƒ€^Ê›89Ä.Q$dØ:-h ¼è£‹b}a_¦¤ßƒ¦Á/!tX×hôB6bđ £îvM”#8ŧ{Û„ămN¿ï¯ê"Ën$Ä̃ÿ‚ ³JY÷Ü"ë‡e›¨êÄPÈơ QÖơ›ÓY ´ĂOØØŸ»%&µ± cJºf+‰20Ù×ĂŒájÿË@¯4ÆSeÖ̃+sc’,;i:âÏ\ñ9ŕ ̀:ŸôöʤÔG ĂŒ rë*‰.ä’ǹ¤ª&-ùKIÆ ¨Ó-•2‰?´XL´í¶HæèkïĐp¸à_ÀZ Z²'ơ“cjÄÓ Êó·¶rœíRÜ÷^œh+iè„>lŒCơ|MÙc>¶3…+Ïvj~>k­NẺ÷›J«ˆ­ÈZ̃û5i›̣N Ư„®ñĐ zI¶·€ÔJÆÅóf*ăÔ.•‰ÆYç(¬gkœÂn$ØÚ7g̉¢©Ÿ́jlù:eàz̉ƒÓ½x F5(Ñ^)ÿW˜ MNŒçñ*'Ă~ÛÈ–îÙ‘:äöÇÔ>ÙRÿrr©œƠĂY=m±d€§LS^ü†â=Ÿ ,‘t–±ïï°nl„¿ø6{»oW¡·nÚRûºâƠØ|ŸÆjä¹Bà9J›´œkqEWƒt̀àjÚè—ÿf1ZÔ¦”º‚¾ß)Œ½c9©)P{ĂƯQDø¼V)₫x¢i˜v~Cñ~¤bÅ‘ÅàI_£Iª)c’WÇà̃¯ záÆeôI[%„“uK2’º­‚‡áơ°ƒÍÔÔC½œ³àÆÂiM—Ăp¯êuz¿L ‘;S\D÷TếÿHăá%­Ñï)º$ËC2|%x.]IÀüèêr|”KvQøC´™zWr̉åJb}EzKÚ±O[‰SÓô’$₫ë˜K₫Ç› '‚~+ößÛå½NEê¦(롇æm˜ÖÚă•G¨®ñ6¸#ĂpVYÀ“`^Ä8<ÑÈc˜×®₫!§ÛKsï(1ÑgkZNè«ßä¿ÑwḄdà)¢”œûÚĐ®¹'– ¯KI0FiƒŸEÉaĐ“}lÂïÖëỐ™{›{%;„5¬Ç;"qY‚đ=•8̉ÀµÓơƠn+Êa<6/À¥qÓn¹ù„>â£Q 0¶µPl k±0]Ūְ‹IVƒ4Tø\45DåèĂÉ©…|êƠùơ~8CH7V—zÄ@ÂÅ(s˜« —Û!Påø’m¾•4RZ·5áÚvs?̃ƠđÇ'́L Lø hTQÔwS­j ûîH^áÖƠ‡¨ÿÛ¡fzGKF¨Út_l??“ [#«€JëÓúL·¡›*èUl ‹8ñrؤTY0Âl;Œ®Râ\¯4ÎÙt¬OºƠíé¶Ê—{Ơ ôU” ]34c"9Èç·ÿ 9‡Mƒ S ΛĂK23~³—fF’W;¹ÊUéi]Ÿ9­Cƒ(Û̀·)v£Íy¨oli×ñgò_¬ÿx•­¤,™&MJwc”d¾ÓÀ‰»$†~«güêHíÏ÷AÄ‹µ•ªLZ₫‘!—; yË gđœă¶‹STj<52TOQkc̀Đ¾0½Å t儬$6̉ï¾Î(¤ä¯/cT Dµt¹©§ƒ§ưÉ59ë5Ë<‰­µ•’Jah£·y'|AÔ»IÁ3T_³!+¨ø]}·ª+JÛO´ÛJ /†Z“Â4³-:8«XßiKyMξéoëz»¤©ÂGmƒYÈè°TOñ»èl³3½ ÂÜ,Ưđv×Q³ “á’Çöê ²́]0duĺà5¢³a5ÀXæ‚Á6‰—̃22¨b±»̣­»©SßE·Áè4ÎR‘́iÊhëo‡ÈÚ6Ú,˜ ¿“(sUu2¢M„'gr'E†"^`çG̉Óhê1} -†ÏZ·ǃˆ>&)¯Œ ©ÓAêçÛ¯.bß~“øzBăt´é­B´ ‡y–%Ö™Nd3öĐ "sé>RNªM8¶—Zô¡Èo“è·€é —~KÍͨHnj£wĐÇ _í¥YØ¢ùûăù7GC$H¿™Ưc '¬ña= Ÿ™ï•SÍ.O÷†·³₫$ư¤u(úƠÉ [5óƠÆŸÊơ勿ɭ ̀:PjT EU/›„ÿ:Ú«^î̃EG=4ÁõV°¢l5¶íPr¼’ơV…qT9^Œ,×Ûô~öXÏâØÄ̉DOk2ÇÔẳŒ5ñ%‡u>ă¹G̀Fû‚sª¥?»ÜÍøưcM`YßM9÷ä"*’»ï”ÀÿkŒ:ׄóû°,̉r©==#́V‹ ˆo/̣[ÎŒr%èsS¤¼o•åzđP*MÍȪ}œ£æÙ7F‡”w\’±å‹/<ØQ ăJÚBm Œ ©‚÷‰AÓđGʼqƒc¹™Á¬o²̣A¿,rn’ÇIĐCñ#¨¸5ÀµáU—ØŒxΆ¿¬q;NW¯ ¹é‡ >Ôèy !€Æ¦ëfª ¥a{zÓL¾UC?Đ:<ÄU“Ru2ö£Pr®ư©?pư6\ £ø=Gª¤đé7¼R¶¸i£¨•dHïŒJMˆs'Ó˨: Đ7¼ˆÓú§aÔx;¶̉fíú,̀+×çû\é:’AB›‘~đîƒ!̣́V'¨<›–—(•=½ê®[¼/=₫`²`å2¹‡̃!ûÚש\¾r¾%dg§À@wàwbàm­¨₫Đ*µfáNhO¯ạ̈” Ó×J:ăsSuñø²_É(Z~J#]÷£fiÓr„O‹¥ó~—p®ăD¬mC`i‚KœUÊ)¾¬ư£œ‘Uàˆ×ˆá2zœït¸ˆˆjûÛÖ(~D!×Đ— åÚ‚nđ æ.ÙL¶n—ºb[Ù2=Ư¼aQ¥,zXŒÆà͸û`^Mƒ?yK^̀-éç̃ϳ ).dhụ«©ˆ•ïpƠ˜~`rzzâgû1đÆS@,÷;¢ưj/NÎw»]^ÊÔ€#Ô6Å©µÈ%¶–À/Ñ¡ơQ̣+‘NÊ™½Êô‰‰v}Q7€"cV¼(ÿD×B¡Y„«óFXÛ F¸̀^¡HuÙ€~Gz ªåßâÀGÄ#€!^j¨ưÆ!:̵!§ÀUÇ_å ÁÓĂ¾fù ’ÔI¯cVçT7„ë<·V•_Áh6h7ÄI3ÁeØÖ×ê’ÿË@¥êé 1:->X̀¯µ™uRØâ‹‰†çåT9 .=JÜ\勱Aº Ro®~ 5tÿT{ø¢ ¾Ü!‘£:›¼gl ¹kÈXeÛ¼çg»€ RƵFÚs¥ÊI¢™aÅ̃¢€hÙ˜ 4h K‡è́‹ymíô]ˆ’ÏÁ )fÇ#ô«ldÖé]«a¿³g8¤–̃¨`Á0n–íd?Æ¥Ñ̃¿nïm1Å…Ê`º£üéŒEA´}'!­­Í¡ùqâ4qx¯öÖ‡]÷åÊywÆ'8 ¢Y%b5±Ê®đÜsô³äMÍ]ü–đHy£ÎF®ê•ßÛ=ͲJ¸­½G°¨XDÖ d¼Q] ¸đœ<ÀèVb?8”YSÉẨ;Lu™ĐO÷ÇγוJ@üáAû˜₫c¾ó ƯÏ-‚?»5†ûGưîñư©ºƯ;“#=¦@đ´m<™}m†ʈyjq§x̉ GgǸê8¥¡›#5/Áª†€â­¤\ >ÑiàºS-•p%P2Ø.¿‡H1±1¨›¤è¼ 4ca7K½Á ¹ơñ̉Q5F#ªNÀ»ÄíY͵Kv¾ï"€$Y£ üœÖƒÛà¨B,1Û2¨h³ ăƒv—¶YY…Ü¿®œ0¿ñT÷*º‰ ‰ÎºåV¦Î9ÜaÚ°=±‚­ădwŒ«•`xV6äÜ©Á.Ag¯ŸđóPm^­Häv˜ûL‰m₫²QëúÎ,±) ĂgÍ/±F|PYÛ^ü0PËX ’‘?@=Ă´À\Y}y®çÓ‰Q•£ $ù¦ør̉Đr,‘̀ li©´gH´ÇÔ‰±1Y‹£ b¥ư"ˆ² -4Ø,E '"|²eÂ5@*P@×ư[&mÛ(:Æ«ÜÜHÛ5i©ÂïÍS£%ÓüÓáåƠ!XḱMG̃ÀM éÚrE—³’‡BÚPZ‡ä$Ư[¥³aK ÊáSµ•¥gØ™¸'j€·¿)×lkf0¤å]4;¶j³¿C¥¸íyƯnL¾g|£(o©Xp9ÿ]/ñfí½>W.^¸Ï¦̃7ơ’]JM₫ÛL|~Ûúô–¸D\>.ÚÂë%r7V˜Ôæ&û! iöƯx‚;aU;̉Ï ê'=JăăP₫›•­XiVV mTĐ£ c ®w2ÿùøÇÚ¨Ư—Đ%Yvoô₫²²Ÿjj“Ă—‰S…BºƯ°B\̀*SëX±ÔiçÏ} Ù3+[æ^Âf4d(½;ËrBM»Ë¿,*Â3’ '.û% ˆöä¹j0Åé©t( Û.k˜ü–¿̃¸…Öª½PǾß§«÷=öà*®ƯC[[PX»E æ•‚ ¿`Œñ¾̉^è.p†(Ä@yÚ!û¦ûĂHv-§‹DƠx ¿+“¦—ë²x› ßJ°V®­ÚÏv k4e$•JéKª ́QưcË́¬ôë”Ơ»ÄŒÚ̀?—C̀ÏăØ~«Ÿ ?•;Éÿ²/à ‚̀0Èv‘JäÑgk”èj.£Á0Ö´̃£“ƯF%œe½¾€å >³µ^ ¬¶TïºÇgió¯0•ˆUñæÿ(Ó™ĐI^±9œ©_´ L1™z7,îJÀ°ÀSe đµö …E.âDz²¶Ă±Ụ̂HŒ}Ǹg¼c?T.±8Ь‡Ơ…ØÎʆ Möôg@¿L;—zÂ.m7”+WÆ3₫‰Í­_ŸÍkpÚæFWË©Qø¥̃SehÙïWœ5¸wÂ’™9R 5«‡Ñ&­~‰‰o4{ªF)«(H nĆQ́ƠäKN=o  úạ̀¹éÜa[ê¼ÿ†æÏe Q߉CQ$ñư¼Ff^Ö­d…Íè ÄV×@d₫ë÷‡ÙƯs7†@µó-mMq[d» Ơ5ïÔ+• jv^”Ø0àà¬\IŸ­XüW(y_;Á´ÉX·JOá-“‰GĐWŸiDœ÷„ùWÀñNür›y Ég'₫Zç·ÈLjñÄs[…· ‹iÖ¶| V²q¡´·ä¤ÛÇ—WÉ/½tµÅ×ùlÎ[̃…ψ₫!¶QfhéfĐq›6^ëZ¤đËLÑÂGw=àe@·úM·C°0ypÛñ–†X́IôT~¸ ơ vq#mÖû:;/Ạ̊Ăf·¦Ưri64¶Ñ̀»Aû¤kI®˜Œ yeÚ¾ ̣8EẹÆ6ÜôơKó.Åq4ˆßæàûTß4ˆ0L†ê†‰»–®W¸̀¥ơä¸{ç[A Wn•–1›í5ø]üq¿“H‡™/†ûǦyX ˜߶¾uÇG*< {r¨j»,k¹)¢ÁWs⼉û.<ä³ù :eRRUâ²$ÿ̉\œ‘ơ1¬)c›Üªâ¤Ÿ̉h-Ó \̣B~íú„OưKl>èá¡ Fêb*=F“BRæ¹₫„đàa8Óùđ—¾»­àø¢Üôëù́xg—®ÄC•y¿́pƒkî3ơ¸ÚƯµÑHñ'ÂmHç€5™ Q™Đ¿üưœYyë®́5h[ ÷aK©@™t>&â5|jº«Ç"rî¼bA¸> «{èácƒÎºæ¼ïí½c#÷O9j‡âº¹ØÍ&ÉĐÈ₫£Pfw%lP¤[È“ƒËÓü€_´ü¦đpêă¶gªÆl^ˆ³R5k;º’½´˜¢æÜ¹kn₫Uˆ¯¸́ˆÜQ~9mMÓÄ“è¡<´|†0̀&t;–”Í%DÇÏSç]D£ÙHu‚3qñ:U¼8²§é„xj¶5ï8j́6x—¬è5rÎ +ư₫Sơ*‘r­Ç>÷DQ5Hưt‡³¨³ =—Ü8ú‚ED’ÔÊp~Mp=ª¦œ2;2 uÖ_0Ú@V¾N/‚)[Åå-hĐÄ0öñ0 2½3W’Èyö₫féëÙÓåïƯÁ$g¨¤»——ÿ[ü—:ºVrÎêl=,‰ ™TƠÛü@’Ơƒ¨dÑVcm=0¾\„:Œ­̣m»7¹?3É\7Ư¢tP"mư`xM¦Ú̃~F1À™PúFv³[|ü }|ƯÖ+È+Ün×>-2Hhu³ ½é8À+.|9O7Î & ó˜9 IO5wByør†%!óË,½1“Ä>@Ö.;5„€(²¬Å¬”N“Ưè™ñFä뺈+:1ơ¯ú<̉aRZA†«Ç g ?1ƒ÷åm**¥IäĐ ˆá?w]gIĂîDñ—ÓÚĐË1µµÊ¾–Áz7çV+‹1}̀}ñç$†+6nÄï;£/Rú´4ĐjÂÏJ(ơq¦K]²÷ZÖ¦d‰Ÿæ2G‰jôÙ–¨iZæ`¸¶í…jN•ŸæB@í¯Áfød‹%™ª=y\çàU‰ª÷,ß5'NG‘@81]îÑ–£$ƯM1:¸k@ÚÚ#¶6j%ÀP8#‹U@}ͳ¯p¥e¤Ñ̃F#sRøƒ(QS:¡M̉› RŸ3FÊIg-ëæ̣°ÅÓyqæ8Ÿ8˜#G–íérÙÊq±¥Øºåñ‡ØFÀ>Í:“ăØÏÜ›ªM×¶±©P=,D©¹(& qâ/²D P©¶µ̃<óûÀªÚÄ)G(HAƯÁÄ2-³uTYäY5O8"ϳ⺠¯ô¾¸ÁÇ₫ÀÏåÇ;ŸXw2PqO–xÜ2ʰ“B«Z0¨˜ç=„mÄÖôg73£c^^É]sEä`O‘ß1f/YhÄ_„•‡[nÄÎß3Ü¿‰ º®ßđBÏâ†Ç=Ytû‰5g ́À‹h%ŸñW]ÀY6Æ^Zđ é¾¥¦‡­^‡•Æ”–hzÈG@KV€¯Ëà‘gëB}Wx ïz‰¥ưÔOî˜ #;aW:C¯Ú«]z_¹ªr‹ó’†«(ụ́ÔƠ ÂY¾1åCX,rë ˆ»¼«ûÊ]„“ÊF\”ÙÛ…|0”̀ȽE<˜]_4wä0iÏÊ^„f5¿¶h³ÈUtϸ` «xwBËâ­<k{“Ô·|á˜ÊG ¸î¢ó€Â+À…óÊñIŸm©¾Uæ£,N ç¹ïé­nyî–!¥&T5:ˆĐ̉G‡»q%ï>:r‰ĐuØƠPưî <PÊĂ·Q'o€xUBª" Mú•m¶wăăyñ ]H»HP½ú@Bâ ±mpPRZ°¯c±66ºÎER¿.‹®e²*OÏâ1i}çöÙn`-/ê~©_?E—ƒ1<êˆpLĂá”ÿ¶ urXåÍÔ8Ü&\¹jAgá´÷s°ÖaƠÈ#`Ä#ë«›¬Í dÁYv̀óưÎùqª«d9(Ókjß¹¤¡Ù9,ao^jX‚§+;Btøï¯—˜Ü®À¾T†N¶©:Voº0foá„Ï«mm–±Rdªª¿Ø™F§í»’¬sPqQ¦ÇZ DƒƯW¸Ùà†Ç ¥¹Ëc­øl^đ¹ĐÏ£wnTǼˆ®;Öñ¼rt ¤ă1~Ë ’O%aƠL>‡÷$ú',đmWÊ¢8¥ƯÇe¶ômV—U‚¥₫F¬2ë§z̉d6ÀL¹{^q?ă óâ‹ó‡3ÄØ̃j°ˆ€æăRÇßÍù§Ä¡̀÷Là]ùDe ¬Cb́³lQx¡€ c——Ưå!¶±+Äåÿ×»}´aœ@¬Ö‘<đª{£fºQ{ĂĐñk±&ÇØ;2(#Á.đÓHö#=F̣Ôz ¡«sU …¯Œôn»©å¼=é*b¼ÎIí8^)Ôœj•¯D•Ă#Ơ]Ö÷µ›üߣ·$r_|Mi±ưC1ë!úMCªK¢́Êç~Ä,†Å$ícéll÷³2́}`h„+̉Ă,è̀g~aÙîå:§VlyCÆ%1VAtGöO¬Ä±\´;6eÏ£ XyxκљR/%Ë €o™qÁơ[zɺ’üP»#ÓĐô*¸•³Ú̀Ùö₫ ÷¦nÀC–ø¨64 †ù°²ï‡:vß^ă™Nô{ê!à_¨EfÄaÙƠ!iâgd gvSÑ—·BÔüL‰ª;È&%₫ *8(¨)X­YP ¬Ù¼ÙÑÀªƒsMÚpÊz9—C.ûŒ±+"l~Œơy‘²"ß·¤§óVSN&½’±•R*C Ÿ6îGL>Aß̀Âe¼›P„J đ 5 zÓ mj”æ̣>7́Næ4 ¥1O°ä®ư;̉ÏSX®Süçˆ- ›í O(íÛÈ“&˜‰Û`¿Y§„àP '̃á»j‹úzơ×¼n÷~N]-ù)1=(”™}W^ª§ëëQî=“b´a)åư¸nă¡oûµF™ßÚ#ÈMû”Nï-~ưS´× áĐ¢²]VÉ;ßÉ×OÀ” Nœï~ ̉ל^̀pN3§Y-ØëY÷ed’­ƯLŸbÀ'<¸\H Q#çhnPÍÔ‹0Ï(Đ|ÄÁªz`9¢Cgâzdè®Ơ"Iï×̣Æé]yΑ>€½Xh/pt¤·ø‡3KGB÷3`ø‹‘!ªƯâeđBSå@>Q]ÎAop—âȱÑÉö<üjhˆ€äX;±:|¶Ë~Ï D›ôêĐ?ïA;ôĐßGSfØ™(/åÿ̃¨ü ¨s-¬waÄ¢qf¾…NO¼ï|±›úQơüN¼#O”Ô&\#®wü‹¨´æ`ú̀…p×Iàv0%=ç Ú18f*™åp¦Yq÷“èî QˆLƠ¡<â œåXŒÎ«Tˆ–9Påå¢cQWÅáRú}ôG6ÂÑ{Á¹8đà•\!^〰0ccÁç~–®Rv¹–?˜[¹‹Ë>5‡¿Qr’Ö>½{ª4}ܽĂT-́®C É ™?XWçï̀›Ÿ$Ë́~`•f¶̀mùU)ü‹=œâc†ưoÄÜn³´†•²[ÿʤÀ{i â_fƯ+)Pă”@ú̉ª§c¡Údèđ¿§_·ư¿i˜üTV£₫}^ZƠ"¯;Ag°>âđ § :i ÜERA{ă'¬%:¤b8$˜ƒÖÂ~ßeơ«¥ÛOƯ…Å^—Bï‡ZµßT<¤`\˜Jä]dX@ k.A·"T˜/vY­–×å ¯'­ù„ø”×(́‰Nvÿfum X+)C˜ 5ƒ1«˜•UUÀ‘ZŸ gûẹ6-„Û„H}í\&Đ9e€Ö÷M?ºiÁø}7¢ ™™́b¾£Đ¥N·:ÚŒ±,Ù0Dë~dFpà¬ÅÛ9u”DQ¿¨&§FS̉;ƒá–f§Î ¿o_B̃±÷w̃Å¥̀‘1#­àWËOŒ*Z8b‰}•™ù\ÚD«âơŸ‹bđ'́ ¡̣Ô₫·Áưâ à¬Í”­¹–˜3QxCa½Äk̉fr ¢VôJ‚¹ ̣󌋟Pï‹ƠfD•îdG‚Ro´Eë×Ѧ\œ{eAªä¢Fv¹‹Û…€‰½¡’ªÔơÑ/Ø¿ ­,¡Ñ¼d‡Ë÷ÉÀa¥}$—mAÑ£nf±®öñÔâfơÚ*3²rPaĐº\ÎÍ ưô/²iṬxñ]o+½ÏÜéÊl‘¬Z 1Đë—WĂy›¼ĐÄ—óÀ¢y1`Ă–ªrKù÷ñgÅN¯hÖ§È«yFcê%sËcÁ°Œ‹Ö©:¶Yx’²ÅcÏbÈ<̃Ó“CĂÁ~@] 2ÚƠÙ«Tù)¹ĐRjÊ|¤!_Œl ûUÈÂlTÔÍç!66ị́%6ÙlHc@¿¾æ̣ÍTrPÈ<ûá‰ÿ¤eÑ”‚ñ™H'ơ @]ÏóK}+áÇ)"Ñè0’ Àœ[#Öøe'á‹•+a˜yNPʕǰ>K˜yÁ0E₫B#¼Åï„WåoæÂ#jkq,×»·åÜ„P…{u6xaOyÇhëX>O”Ơd@Æ»÷à.ÖP¤µû›“F'טÀÜ®JÍDß:l=nÅ·úºhfjØqmïíge_f׫@Ç9Z™Î*̃×ô5.ª?;đ$¥£Ü6HĐp"E^¿”́IØ5=̀YµB‡4^+ŒUExK\§£Lȶ1ïdbçÆxa¬[rƠq/ÆÂÓëIzẩèÙ«ˆ —8k¾ü ÷é6bIh_ çàG?69D¶ôÑz0=¡d•~ĐJ ¤¥@6 Z.ÓO ¢§hưß₫H>YÉXPV 3j[sNQƯNøDxËVG¸ö®gQồÅbi‘µd«” 'Î.ԙŲŒÚ±¦çˆ=°HöÂíZ™w6Œ¸ùVÚw«ÂŸ̀@ÿÙ…´‰ôWI$¾uÔ_†—³ïê`Óê•ØX₫¹\m¦¥qC=úŸx°-Çq¹…Ió•e±,µ ‹6z&ÓmpØóV²ùơu˜m'æhû/¡TêHYt&}„̣jBÛ€.jp¿y®Êö§,Nư>]CΛù¼=fm{¸°P¿²POë?µ) 0íÚ2Mˆ₫N¤åç›+ªU7ï™lÅú¿ÙºsñÓĂFxHÆÔÊÅq°Ü̉;ze2Qod¦0ï-7a²·`•ämđ È̀w}© Ü…[ëi0cc9&Û§Ê?Áóé©o‘pH:èñ´©Oœ˜³?‡F&ĂîÜ6LOÚ£†›Q Ïè3(Z>GºưZöôÀ6á§¶÷ĐÇ1,„²”¹»îæà,µ£º—|*H¾ªèOöâK<”¶Ăy/bBŒû!”/ưWeaï7wÖä-^‹ Báy…‚U¼ÜKNJO¿̉d[q‰×œ&“́fX̣8 ºB"L÷ ­IÖû»7À5ơ›¡N_jÄắ›„¶RÊ°Ă»`½·†̃.¢$O—º Ír—«¤øÎ’#üד}^Ï1øpăÛdé̀çÖOƯw³Đ~PN™ưyàBƠ¤HưøJYÖâBY7wjh—Ç §pdºÈUeF-ÎèpYGsÚyÛYùäfx1âØ,v$máåL÷x¤°æÁUß;èƠ#Œ,Á¼\wÉT₫^° Ê,P 1̃ß’|¼¢́₫¢–?Îâh >1ẩÚ_ñeµ6Wç Ó‡µ^N£x¢» ë²Çç›t-Ïœ#Ñ—Û.[5øæ©TóBßœb¨áư›a©b3}Û'óR I 9kÏœđßƯƠ#¬ÑvŒ¾L²ü– W-v\2êu×][bưeGd¬ö nJÑñ¡£<Ôa§œu¾tƠÜ  k¡íÍûÿv¸¹ƒ\nO0ȶăzíçŧG**#¤ö7EŸ"«u[D‘qmHâ‚Ư‘Q*¶;9Z…Èi·è7(¾ûBlb°a•Ö³KÔà µ1¼È”¥8H₫^™w/ Ó=cO«́ƯÔ9T¬;̀ –¹´%?P‰p&nÊWèÆ­ÎÛ`‡ë«l¿Æ <¦ÆÖhÔ¶-0#p3¬ư8S-5ؘ¾?á©7¥ög‰œ¶3üÎܨ0ήûqêóVB·ÀêJøη“4’ƯH¸óüwó8LäöüÙr*€æIM~~caÊp€‡B”VHRƒôSfW›´ÀBsÂ3JyưS – P­Tø‰÷ 6-%*íç!t±oß#¬SĐe¥©wk•1îëºøI4•|»MxSW›eOs+2Ỵ̈Ü¢*ç18¦oñ¤VÀ¤­vZz£Ïu”ÂY(+́̃Ç[,AEBeÁ‡dH—6‰u€ñ:u¹Zé)äiê¶/8ˆ<Ôq²B‚:ùüÎWèËÇç»L6æn“î8‰ê'¼ÿ́f¡lŸ.XLEC—ÊUÇẴYa½ñŒp¹(œA•¥¾œ_è3µg¥®Ăá¤kôƠ:,#Ú€‘.,hƯIW&,K^”Ë6êL>za[ï,,€6öŸ®Ø¸“ÛåÅŒệ.$¨¯CŒ–Đ…6lÛj¢f£œu>ù”nỲŸd Ü9‚%i¤YŸ«<¼°÷"¨Ä o½è•c~¥;*b «»]ܬÔ.då[´wÎê±tABư <d‹&‡z¬Ö2Z:Ăîs&,4nŒ)̣`‰¹{<Û¥†=ư꣑{î[CåITu×AâpÜ̃‰T•ÔχWP‘̣¡…P̀ëË2\ÈABés¨ưv§Iªx9öÑ£ăvÄ7¸)%Ѩ^´Ë †—`ƠI[¸ÙUiíg)Ñ ~K¤(+%ñº”É„ucOă1Ạ̀ èadZ6 k‚/ƯÊ%¨1. ûÆ6´̃”£ÜB¨ÈV’;,÷ ~ËÚCË/<«É—µ¶{\÷*a©ûÉ ÷Ø×e2@(Í='ɯdQßjhR‡Í2ütÑW?(9ƪ£³œl’ƒ­€$üYäæ·\ipû@̉¬Ñ«Èáa%5ó´×D*1¤•GÍ2 n®—•ŒV­=oÁS º V†ÚhdÿÑm‹¢¤¸Q¶Y¨ä†öFêär¾[y=«ü2ƒ£†µä¾xlFU¶Ø¯\e‹\å¼À"Qp,:£.\^¦¸!Ñ›ñ’êûûÏdÎl"á¡j{5,.[•I¿(W{9 £q ¬ v7êFbÂöR´Ïä̃º ăûª©uOè‰E{TÈ^ö?G3A\AÎ>uúɦNM[J¬á±Ô‚ÁKCøƠØ«Ô0«O#ów₫¼J4bE{z:B–#ûÎ̃™rM±ö¶¼Bü&)=¬mº‡(„(|û.´¶ hrÍhl½ÜGoIBỀ„ÊÁ7±«(-ÇüQ̀Ôw˜\.–ú/̉àæ)çZP̉ËËôZÎÁj*»˜vđ¸™Ú?3»c¯¡çúÆàÚLƯîÆn$Vr;XYT/Œ{÷8Ca$ÿPQ!x4@­Ï“ÖÄbüåó…TpeFèZơ{œèu¦Mº±˜êjÆÅ7×»îgâF·À‡5ÄZ_Ç—¸Â«-8)\2@’‰b×cĐïi8&I«7iî™pEm—&¹.0üi•Wâ­,a{†*quüˆ>‰³d¹ăÄRèÅĐÿûSœ)G‘k{O‰A[3è@́¨Œ/äâ2‹¨æøøÙ‡Ë±ơ³ûđÑ‚pÓŒx€[yÖ d)-‡́̃ €^Ï̀ÏX¦H´ø€ô–+hnY‹Ó0Y¦n-}g(ô¿rÅ¥*¸“;À6ê‚(«oïăë2XjÀFÅ‹¥ßànùxÄs–‘èl0 oF·wer‰­đÔ”"!0́¾¢0+A2].Â){›l:–!éøWèf?ïmoCÇgé™Ä „Å{¼éí×§zGµăví³t‚'C‚¯Pcẹ́æ‚Í=å°ă®ßÆà¥EĂæĐ₫âä”K Ơ`mÍrϘŒ0dz"•cl?̣!ˆJ¥GÀ똽rë¨u¦­±D‚Τ‚¾G‰C̣ ?Ûf¡ơÊcK5&[&eåPm"…ù8–|K—ˆ̃ C…₫MëåÀSZŸ™Ÿ7GÇZ̃Ä©fu rÖÊZmZ·ăPsN€±°':vꤧM·HÏO©*Pç^–"—äN°0<ÍÆ’ï¯È-îƯ¨H­̣¿wN”ß@a=Ât¯c+ioV®¿·3Ëg@JåŒVo™Đhä«„•·́+úŸ<(3] 3(^₫ﯵđ*ÁFºû̀œqĂXa{²$Å’̣̀û°56é] ²¦{ ̃wHL’‰kËÿÀUÿ‹³€Ë̉q¾₫ ̉ß§ẸɵèpSCĂ:Q̣àÚ_àộ³ưÓké¨yĐq³„ƒÏÇ­@!ñCă±Ÿ(s‚0¶¿óF”?ä'YÂÀßñùkç 1&É1Q­v/I†S₫R sûi8“âÉơ—ÊZ&i •‚2yĐdZÓ^ƒ\Æ)%Ç.ù̉~ºáxz+‰0`6LÿÙ3. fiu­K§j́’C4“½WÔëáieÑÖèøÇ$̉ßIé1VWưoÊ™`T5ÿl+{%ă_ Q]ÀÊ\róœ!0;Ư*ËfëØ)c0L︫:Èï°6¾5+ ñÈoơs}‰m¥+N|Eö¯}ØƠ²Ï̃*É»WÑ\–lä/Ïæ+]Åv5ió¹ dMú‡­PW×7"ï/‰t(Åa"£2r._·2¤œĂâ,á;•›Ñ÷ ›•u/b­|75G%‹ç©¸u1Ć٫‘†ù[êncH½Í™ƒÏ-8¨Yä5FÑ[̣Åyh¡Ç"‘øể@é»ÖĐr€º[P;ÖẒƯ’lRH"iSqặw=Vœ‡¢u‡&h¥µ®r9©øh[-kͰÄ‚Íüu8Ư¶óÚvd7k‹‡¯LG»”¥i_”à|Véáïë7¢sXS›@ ¹,«sÂép~́jÚ¦ơôˆçävÇơ}G]̃²L‰Z¬½eI5D¯µ'TöÙđ"?0é›W̃9<~nÖ̉ơ˜Yp5̣¨¯×72#sSrƠîÀ¾+˜“7´Vi‹Yι[¢y¢ẪÆăÑKÍXº´„"e§|Ă#e¬‰¢•|Cµè£̀ùS½ñÖÉ4p[¯^ª©0r•“Ü.̃öK(èÀ) ®̉#«Î'bô>BElñV Xk‘lu‘N‡ÆŒỤ̈3MßÔoJïÑ´nú,?N#ÂĐ2¥A¥ûÇ7–‹æ© ˜1’|ºSØí‰”øÓ¥ÄS6u‰„'"iüÙT`§T…ÜË”ä·íAmí>ÉÖ2|* R¢ ,‹ °N;ür0ƨËå>s—}̉Ǜưs„¶‚(; Üp#đF[€2ÜƠèûx²FƯDûTz‚%ôå†ÿÚFơ>ö9#¹@¬*~u"ÁĂÅ3µ‰8%† ”B¯óíbúăêƠ}¡¾Åù>†—4A‹µGäc…® —©{>zÁEăqc|.Y¢c›< =₫YÁă0îkKÛŸIS£¡%[xYëÜ ,'wñÎɨ¨Ï›ßUq|Ï0¨ˆ°)7øö× †3 ¦Ö¯5Îèëä̃…xY, ·¹:Jµ=çwå/aHpÆ“Uá4µƠ4à\Œä¯J‘½g$-rËK‘M.eYmƠRưëh=g`'Ză„3ƒ½Ëà‰‰"1ÿ³(ckq̣qHîr;F¹hŸÏ½bKṣ³Q¢>0_§\đ¯Wo)ƒ2ox…´*_DñVZ€OŸpßÿv¡Læ`u801ă–ç f-NLꉽ}U½Ëđl ¯É™~¦ (+̉fÄøÂ/ÔXêÎ{‹£¾_rêá'“×wÅÏ÷¬óuuè"Ú–¿‹Äåơ>ơ Ê#ÂB‹³ñÏ1Ü:‚Ç~‘r_…¶–y¿Köƒ´ëz ”4^÷'^x¶}"%xMĂÉtá䵸WßK ÔÈ ©! mȳ»Ô齜ŕ£ô1ÉÇê‹æhœÅ7«Ă‡È±IÎ@áG̣3ñ=ó8=`=Qbxï­ ú&tu×».q²H¦¨–üÉjv—³á¢ü™¢¶°X(•‚N“EïáTp\êÄÇøùô¬ Â4…Ñå?˜"KŒ·xdZ|BÍ´ĐÆxø;!ˆ̃ú‹‡»¨ ^4mRSÂPi’B1’úÄUSŸéîUWÍÄ’twweLY*wrÚ’±ÍïË\ÏÎë [zEÈäîu- ÜẸ̈–ÆçÊ™”’±cdó’[Gé9PG¢m?́O\ùÔQr„Îʪ|§Ü×UÅ×µx¿J¾ÓO4ñö×÷;0;ê^ư5œ9ù!7¡‰0ALU«ûQ³ ïÚ"ÖSpe¥ÿ?I½‰Ơ‹ÛUñư|̣;ú——û3ơºÿßÁ¢°– ư=¤Fm«RÅ¥Xù~¥ÛHGEa ̣/JªS̀ƠtæY0lÖzÉn$ ™́È̃9wç?GĂ¯oÙ#WñÔ„\LƠ€Ù£X̀ÎWŸærQ~†Ñ¡S±…ß$;ó µRO¯₫âˆ`}wß6öP†.‰æÈĐ”Ø†²‡‹}SmĂ7ÇîÙ0Xí•M[é́œG†ú™¾Tư¢ê5ç: çƠ±ÛÔ‡(epZ/UÓ¯ó Ø ‘{‡èØÂb•1>0Ÿ©X9½Ä«Ó½~₫ÑQwü—m†2_<èt<Ñï@¡Í+ơPµ1Ô³³{j¨¶Áh¬Oé£r£– ¶=­–Vû‰@û*¹Á̃`€ ¯g̣0†£ó̉_Ï®k·3™‚o‡̉Ú`-Fœ®ïçÄ}¤̣•̣¿“wG·ylT‹ïRyɈΥ뢒¦N»̉)±{àN"Uw&H”°“Œ)fR *Ă¿úû^W™ùŸzßƯÖº¿v.[ôI)đ$yªOvP†l%^ïÍ1Fü*bbtÚtHB2ˆvƯƠqZT ₫O‚³#-Ç/Eë <9sch¦IµL”RƠP0;©¢́Í7NUxÖ”Jp˜Î@í’wä,x.[KT¾I•¸8ÜHăæ g&₫¡ûrWèPÿÑט7¡P™Öù7 7³̀¼-1ÏwƇtœ–<±„€-œ»î}Øñ˯fưĐú¤?6ªê¼›ƯÑ£ÓRÓ[²c£÷ 2ØqT5^*ù+ÑúîĂa"Ô:!n|;!M™¿ys¼ÀŒ,æn/đ%¸\Áy»U×ÇÀ¥ƯÿJRV‹T$GÎlr¿Í›&µÚ $a]hÉq₫Đ ÉEr£},9n†’`¨îqß-“eeèKÀ^ ˆCëÂÆÉ9 ·Cḳ½çNåÊÙhU)¨•å±­µ1³cbơɉ[d^Z0|ÿr’I ä˜@iWy€3ÍÄV Ù@ö6ôêùhÜ͵âAukY¦ªï`£’v̉̉Lx"¢®₫—­kEÏ'¼Û¦px<)ơä0tmi¢™º´’>M_5íÍÂÎêøc̣‹ À1yÇÏüÉú_—@s>Êf»NBzCø{°©ÆÖ×-o²+Àuq–÷ăB¸Å²j® lóƯÊ9Kđˆye|‡ߦM¤Ç°îv>ÅûqÚc`ï§NuŘùÆ:«l£‘§̃fư&u©é×̣?™̀ki‚á¬ixí<£Ǘh«¸ø6æd\“€3Ë0Kj¦ư3ƒúΠ܃H6îäèø₫î ‚[Óüp -Ʀuǰ”BĂ¸Ê“Ñ‹êy×RÔ£Háđºh‰í̉¶|T!6&2¬{§%Ÿ{Ö±̉;’…6xǵ¯"vz(à₫¢́¯üZð‡bTËU²‘%v&æÇ@›ïd’>KÀ Ê‘PM¢đä²_ưF©„l†ë™}%DoPk³pón9̃oơ€{IyŒù³.̃–´Ñ‡]päÛF0l߇.kí3 "kĂ–b€i₫ơ-o\’e;…đb›îÈÛœK¢Ë'å{̀‰đ1”Ád) op“ơçˆuơôB"?̉ÊfêÁb₫ÿµfơêøâ‚rÆ.Æ+’mJd.Ÿ,̀͘Ơz: á§+2 µëØ;û₫.Q9HÜne®,BE_¿µH ë¾VơÖûÁfEÖç'ụ̀³•àc ~“*̃$ô–¦w E—Ä_ZS»V/Fn^=r;xn­|8I%Ơ½è ‰übhÁ`R?fĐdÅ#ƒÂ“eyŒ[|ÖîN÷ÊéÎÈ—Æ–ưûv(r¸¦“Í´vI§© ª8 Áj'Ê$µs2Ñ$ æiêÿ)x ¼.°²Û²CL_Ó×*ú₫¹—î­Ưª‚̀đđCní+D‡ŸZHDCV/œjưÑUƠqº½Q ͤv­“ưÊÚû̉–(vbÛB(½|cCgg̉Ă-Í#6_G×T]xƒ3˜9æ…’s+˜Æ‘9ÙY‚Dd¼¯§è…xóe|ÚÓ¥ø …\Û4ĂZ=*|v(ï\‰—Pắ d¬húÚςʛÇÛQ̉ĐLĐ4…º8P̃ ^)MvcZăó{™ê\]ø¬¯.$l+E‚(S‡v`>å̃¨¶æ>ˆ·s䓯Aº9•?ÉE–Ü5•UđªÂtôẨ¸€‰tr1¾hŒ†*Í.YG•¤¼~lQÆJ%Ọ̈²*AçÏ#̉º-m°¬´ÍĂ8²kt¨S‘èYf *jFˆnÿ6MËtº±Ë–‚PV#+bX" ”Y’²ü¸‡ä6Od— cƯj ç…7đ;"ĂÂIAï[T¸àa'î´ŒÂȲS̉½r¥b¥ ~/.JJá= †Vz¯@L{u±2T­ŒíË÷<́1•pIwTrSËßEZ̃ÂHÄ>ĂÙËîF[ )%v­³@ßF‚Z‘wÅE“ºd@€|uØQØ'e;WqÀu›đ/÷ 7‹ëOæ× Àçå …€¦Í“G 2ÛorƒB¸Ç–ÇƠ›zÈiÉÖ< ñSeÖmó Mä½0ë‡?<~ËU&™9s£w+ÖÄ]•ñBĂ2-J3Øy2§ÑBóÖ*æùÁ…ƒë…”́Eíâ›8¨?¦2‰¤ê:Tï)9¶üùĐF¡¾Ö‚w•NFbøMåÆ<}ñœ‹ ªNßǬÚNÅƠ~¼P:8.y{MS~—ơÔ_ ơÉ:¼ºtv«î¦ÏÍ$•$Œ¾}ñcó{%á«.ˆÓZËŸ›¢æè³‰Ơ†fOE§m놢Ơ ©÷úLˆQcÔË¡ àÜ‚†×oéºsh?Ûr¦'oäèM`9ô@ËtÇ̃ ~¬0¾̣ẁÿ0íd+ ü₫”gûñôöÏmñÓ«^¢G‹Ö,Çg¾…8?ßy fÙFT-ơkzùmåñ¸Â¢A©‚… ²®Á/ ïÔN*‹´R–»bÙ‘E©DRY¤ÏWÑΟóÑFÂƠ–)`÷°KÓw|N›$4ÅR­V5‡BÔ»P,† ‘ÍiÏU8»ç Ï¢E@"‚Àj ¹Gíºábœ‚“ºh0;nñ/TçÆ]ë'qä…ưÎØÇKÄGK»´.;*únÆ  œ̃vœ è{I Íj&ÔÎü 8cÑèbm–!wM´¢½™ Â[Éj’w§¨Ê›/|å·‡·\–’â2hlÅ’ç·+éLr¤âü^;´€ö>ŒÈQ̣…^"Mi$<ÈÙSj1·1»Ú Q|&èƯ9́‡Đf û 'ÍhlI\́é–ncªnAâÏt/”¥IŒÓºBv1Œº“`t«&´™ç4ÖĂk3ù’î(ñ5Yô¦ TÈdHúœƯư×!Ưk¨|1“÷]i$̃4Œ)˦ Ơ¬ùëÀdÁÏ^;ó¿‘N_g±™æÍ}̣D^¬aL}´`s©yßrûçïÿê $&°p_'åƒ'cIPWó[ ¿ÄƯ,øü®̀mÏT/̀gjPB PZM>há N¾äêwfCŒ)΂zàn+¡ó>”D)“̃¾Í'ÂĂƒƯyg LcÄÁ¤iÍ…fûªJ•áOĐmj˜™úw¿̉£öñ̃Öuî#q¶c¦Tu™^í²jµH|Ẁ_̉¥¶âé$ø]Áp.?Có÷'÷½’À´Ÿƒ¬íiyA{·ÈEøƯ3&uR”Ç„÷ÉÈDD~NVú {Ÿ¦3Íœºâ7kÛRÇ:Úhsg$—£%Ơ_k—̀o# æ„kygëWÂ%éÎóæÈ6†At‡Bc…O௬iÙ[î•}ŸÆđI[oó5ˆ¡¡@¸ œE8´F ª*mLkøă× Y2ÇyĐÂl?Uô–ơ)dÔ#Ͱ™XE2íµl0’f‰±ûDaǾÀƠO^Mà½-Bü&s•i₫+#pfå«û¥ÄUĐ‚´=! ¢s÷ áÁ WëP›Ô|¢9¨Ü'Ú‰„y¨äR¹p¹ñ ¡Es¢̣¥F¹½1óy¦o{q ‡ß¡ÔÇ4;J,±ư «'N’°8ÄƯ›đ—fô΋å^²”́@B<Ïó°ûy; ĐF-ơéH8MM ́Ú>Óµ1ªm"Ö)—i²s$nÅ7èŨcĂô²vøTä‘ )Ê÷eëàốµ*# -."2̣àJûGÑZV†QPÇơ>Ó­ƒŒÔØơăÚU«>á»ă5«µ5º1mè]ú¸đ#œ¥?8đúí=ă™Íö,¦È,öAi|w•!½­¤†\¹áĐi·̀¸eB2¿ƯÈKØA’j̣Œ³”óá1#HÂ*ß²•¡\*zWßĂ -_˜ù½Á׸=0¿~CØFØÏ3f¸±‡Ao†[‰âs×ăN“Ù)¶Ó»`“­̉s†59cÖØGú·‘G³Á9+c¤ö½"p(ă28ŒD|@\=̃™„¸’KÅ3b!€m4•ÑÛô«€Z³ùY¥ÚYßÈ̉‹£¶³Æ×a&¯é;¥®JWÎß]€w¡,4áçEEĺ+ơ»`m÷Ugil×_eç̣É£«¯dr3O·‰äYẓ|¾"5²‹c:J~̀Ù/u?‰ÎWRHe³û(†E[êEÍ…EDX4*_׃"Ÿ”'& [̉#¦UèS{mM¶ĂÅaĂ¿8\‰[2„:—Q/î*đă¡œ+UEœ³i;‡+—°ăb À¦°:rE0[Û..”'íè ÛKÚíÙ–8ÑëWv‚ÔíânŒđ²ds0ObC˜¥e!³ƯX§É÷Ïvư³—€Eü)ÚLkÔ—°vׯ·ÜĐRúƯl8Ÿ[­̃K£S{??…á ẑ®ÑByí=WRœpE£i6©2vöL<$zÊ£¬Ùú-*}8éWuŸËæ¥`̀3x…¢̣ôâú“Ñ ï…×f½ơCAߘó{R¯@{?¹‡_ϰ(pÇ%½'@°;E;”`Æ^ànbds6Ö“kíÇ7…ñR¾Í«yïEkB®lùqSCæs÷–¯A 8¬[XKXxÀ%V¦ö¨Ă8ự£Û P”¾³¼oà0# +m•gjUı@ØùÓ̉ûh.&è\ô|§Én¸F¾4ÀUQtüơôÑ#ö́ư#ç~ºĂPĐP Ö̃R“´M~Ó÷íå$‚kS=íí–´FÙLäyÛíüÙ‰}đ¶†â7~Ăô ÂÚếa±kƒu9%Ÿ©Ư©9^¥>‰LÅFO¶ñI¥}u¶¯O0Á<“’4´FÁ¨YD€«/Ù£qB *ă‰Te4ڗ푾E³Nâ$ë+Çđév­wr4JÖ‚ªî½ Ê40¥ß.âÖ_k§ÑCË‚̃éú”î‡Y’¹p­Ùö/B£«ÍHƠ1çz¶°wæ)LÚFVßüªuqq½!í¥¾.7tùuù`ßÔ¶§̣̉Êé+;g- %EŒ]^Y9î[6ªúd’8—4ŒçÏHçưIôaĂK ~}ơ—ÓOµ^óv ÔCß{pâÙRa¤‰F¹O@‡ù?OΜXCÓo  ™ÚÈăô¤¯íx<ÏÂùn³9ùæ“g~Ë|4CR,¤8ÏC=g_ÀêH¬ñNEƒV̉G›×L_ë/¨=Á7Ê›uÎÔ¢ÚNä7)mÄU±ÓÑỊ́́̉"±A«{Q¥gµ÷zoÎóƯÏ ½?¯á@À¾ŸC¼Äb!‹¹ÚC©–*Êj“Øn,ƒĂ¨´LÜGïÔaÔ¹a°|0@¸1zä̉o:,m:@ẶăÎøC/ă£ïọ*èÈŤư&:Z̀·çmƯ8Đ¾ Wú/rä£nÅ­©¢ÿ 'Û|*Z–V×TÜœ^–Ä*7̣ßj¾'fn¸€µ»-đ¾pÉ7́:ŒëcÍ~ô Í“XÖùk¿ÈQ-äé £o‚¦bvÜIuĂĐóSIÄXzê?³yÁ&­x i{a¯*ư»©n¬̉`Á58́¿€säù<7‹¥Ư¾¦“c¦•b -ªPÑ%ŒT'î§>~z\¯ßwâ}|&¯HÔc7LF´Ëƒ÷Ê˹:̀¼Ô,xÀ>w„¹4D'îơBåôrÇ2)¶›_߈iƒEó×7µưyÑ7•#́gñ-å¶«€`#„ècÛz:´ Ú˜¹²Ñ9iíöTO!·ĐĐ-G¤eg•o˜8V§ÁÎÖ̃'ŒÖ6ákÓÍ4ôlSüEÉr²b|›-Èu½ˆªSŒ`F*9ƒŸ›±ÅY²à÷¼"½k̃]Ø «‘Ăl™̉J’ƸĔa.xaù/5Ûèç.ƯrûÆÇn­ơT«r2Öùạ̀± ©Ë@qfÚ6 è¿%Ălñk²@–™¡_<”[5³<ßIve!¡Ä"€ä9ªêÓ­!UXo¹'Ù}-ÔCè·âT´ø>¹¸˜’\O<Ë‹kÙTj̉oÍJ¡S@áµâ|‘#øÊB°¯H®Ö±ªËEî/®XÂhbëd°c8&9f«i»Ỉ”wq´pLU».S¾°¥@JªFnîêi|ßÀù‰Ú«}ü}Ù:ë‚€ƯC*À~J3zí—¢m»̀ođ§ X$Î4€ÆQ?á-”h”v ~ÂÑ»ó°yµß!±Jđọ̈™­ơ˜ŒeưÆS”s­Ø½³²ïNQ–Ô@‘¥́₫ïZ₫Ö‚àX9×¹¹(­„ œ8µq€đi¤ă0rk×ÁU=#v˜i´>o~”¿tǶyx‰$7$ni; 'çfÙ GN†.)˜ŒW©‰¤t:4褖Ø:RéÍG¸ :†ˆ•1YÑé¶½ÔDỊ9Qdư&ó_Q‰·̃ÚtúxŸy[$`¾NÊxï¬(^‰,û̀å¸7µÇ0ܨ¥ó9∟¡j…„̣ÛyŒ Å¿)Ü4Æs%­7­U£ wj@C¬Ùx·ù·PçÉÚÆ[©ªĐà“ ¼T6Ÿi[î%0 ˆkFeA΂G§è´³­ÆW´pD‹v¢Ræ—E1£^ÏH¨™Hr̀ßÔMäV¢ŒÀ:— FÚơKJK$Đ\Èmvù•xÑÖ' śYBj–âÙrÑ–ä§NÆ –jø̉å:ë‘“ÈB¢±I¤ÇuLúQ£Sru“¬a«ßTëˆQ ]Ø5cƯ6î ÍØÛ% !§03úp T£]b4(ú—B5¬+ÑĂ9TÑ­Á£îHû¾ăC̀å$0YVBN=́ ư´Û%7Ă7đËG¥ơṆZ9k½=3Æ&®F]₫Äư 8ågç̉üübd”&Ê>:åí·zB{º,Leü±D8®¦˜”\€ÛïƯÊmOØ·H¦̉çƠv®Ë7óÿë́ßÇhà’Z¹] &†₫Ó2ª¢‹x¼¶ç=Ÿ¹óa h÷À¦I'[ PÍ₫ƠÍw¾CÍ´‹ïA„¤Lï¨z÷hEîIC®×w>œÁÀvæ¬4^/œ+=o‹•±‹´I Èä7upù´3‡uö’` “ Ñå†÷ùq×vˬG¡«\r#aS?´Qö7pƯ3‘ô+’³‰>ùô#lßÂ*.2øfưI¥è§ĂöEúô Nµ2%&¸h ÇŒ5;ó·­?,(÷]6ëæP̀îñ5–~&)³æ’-²Q« cÜ ¥̉Msj®Ä±d¡À'À=̀ÿg=÷¨¦ÎäêüWwd¼Ư˜³GRù›N°2¬@ùçí9„jM¥¡¿kgÚơÎD+b‚ÓÖ7v`fhœî¾Ô*i  ûâ>|1Îæµ}Q¸„O»zÁ̃½}÷CÔƒ7ÀƯ®8"<üp †Îís9K*̣ÎXѧ*û;ÛÍXÂéåæA˜go K`P$Œ¸Ôè[,@u1&ª¥®ô,¦Lăœ‚UñKM¡Wx€QQ5_öº^ÑZºv¤G“:q±Ñ¾!£NÎ2h₫ -‚ÁZ«¥÷Èq́îưÄÏ̃á³÷ûl~ƯƠxq¬>DÏVÜ™ ‹êà¡üTk<‘J ®Eß½UÎăÓÍêf\€ª2¨–ëÿ”êtUl?-CCƯW¯Ÿ5p¢±e“8csɼ€gâË@£I ¼‘7Tév`!Q‚{Ef¶&‹”›~ª%ă1ÄÊÉFÊ´©uå“t–ÄêÿÍ+N§¥V4LBơ„A[H+c-ëáà%xĐ6áQaQị₫^]'³sđ}³¯È›ăuâÆÑåû14‹‡zœTŒ*ĂôºP ‹ăÙÔ·S‘0ux¹­Ÿ]½.Đ`wÇ€´‘¼0ÁüR_DnÓ¶YJæjß.Wçâå{Ơ&¡Ñ̀Ö7=m fÁ¨j{̉pÇư iˆzi$–‚JŸ¸¾ –~Üù_X´Í©}²O&âλn|s€³n‘7ؑ雬m¬̣Bb °̉jøy–lqʳ¹_ÈçƒºÚØŒÔ7w`m9X…pe–ûđ釽ÆÄ ºù%ÍƠ× .b₫Ü!¼å’—}ë2,ø¿ó”ú­ă µ­·ñ0cg^¶HGúM?킯Àh°Cö¹q0ˆOS‘v§dˤ‘ÅwÎЧv ¶™æU±lö8ô‘Ä¥̃tv̀?’½v¹…–.ĐÔ0ơÛÏ.bàb&Ö]ʌ˃µÙW’®£ç AçrNÔ§`đ m¶^Ơ8J<…zßEpÍË<Â>Ac0ç™§PYǺÙË̀µØ%²÷/ị́´¸vp¿:¸Ç˸_R·°ÉeÜÔäô½ÿ¢vé@¿Øî0ṿ;?œ”LÜfCx‚Ûe~èƒâbc€Ă¶–EåÀ7}¯è¹4Ơ6̉̉¨½Œ́Îu”qÅF2×AĂ¿LGIí™/ çÛ½pèUJé<¦íÂĐ â8 –=đ»%Àµidû‡ „á7£vÁYœ ¨¥ æÄ îˆr¿+ƒSú'«Ơs§Ø&™ àT;Î=Û v ZN¯9&(đHưŒáY"Öå÷e:cÊX5müÔÔa˜ŸºÍB$+ËêW¥N©r':|H;´iá°Đ$‡e™+ëæYœè—y+ßA•‚ëÄÓ¤i1\̉ ÷è,oÚ̀Ô謒Œ3Ú-|Åxj^9怜W1‡¼`åÇmj'2ơúæDÅ^T}ß'D‹ ºƒ!Ụ̂ß%ÎÜ̃ÉiÛư Ÿ¬ă­̃-ùzgrá(ô_¹ßcËP²;Ă\TQ-Íg¯÷$! vܵN2TŸ³Ï¸Ö¶yaR?ØlđF½Ÿ¿̀¯̉÷÷üتưüU­ó¾Âh"æµ ÷ç?Qêv¾0“Z¿8¯o¬©à€ßTưOX÷üơ€WêÉ?º DÏ h¸hH̃Å×1O6RÊ<ïô`ª©Uƒ8³\¡Dç3\"’å×}ËĐûh¶̣ZÇ,hr™9ÎL£r~ü?$ “-âVl±Ö5Œ× [ÀnZ|Üyj”ÊÎ̃A¾³¬)'¡)½—“ú-8ǯO~½~₫éĐÿRzÖ"Ê×z̀8Fâàu¿³»›gRb„ІƯ½ho}ÔÎ:E¾Í pWùßí1A¨ăZm}Àœ±IË †gTMf aPŸ¥Ö(»Ô®“z¢ÄÉÆˆD ôơuy—_ïRÉNåö̃²ZÜ[ BM¢@ºçlÄ₫~£X̀”ÊSŸJ[Ơáw¹ĂÆæ½˜ $q4|W´@ÊѾ¸ÊŸ%ä< ½¸s%ˆNœf ½&ÂîøÄ^$¾±q[YV•K|ĐlUç)$:0%£I¢₫XF`’ỏăïĐÇ­&£ô“¢¯ĐXi©-¬Â´{ ‰đRl¨lIZUrïÊÔ <Ơ7@´nG™Ô³ĂF?‚AA4Md¾ÆÚy´lc›ÊÊkBç¤ÅlÙ ~/9;Ùd% aŸùÈ©©iû'̃9>†:›ñiûnœ-Ó¦™ˆS¼́> P»ăo„ ñA§W.ữ1áöNø†Q5ŒƯœ 5 u8 Đ‘è‚‘@đ–êHo#O|èíe)ÿơew °€H¸ ªQrü8 Bd̉o¨¯ÜâybSáŒE[{Å̀ÄưaÇ#y+–-·J ñ©?0Ỡ¥®eqñwÎÁ̀j́Œ»ŸÆ|^<îŒ ¼5  ´]f³ƒ¡/µÎÙrÜ_—J~¾áëUm9¬_¡—A§êÿ₫(gîJï9̃úÏÏ,2îl ø ¨Ê±”(içm! ̃úñXûÖ)È\®(eô "·x°ˆ‹5f“p(_m)h ´» ·D̃ø#¸s³Ô=ê6âJ}ÿ@º§Î³§Đ%mƯk”½ßuÁ1zb˜(\Ÿ;ü\œß¼“¨“@m‹Æ*sl+́̉öÛÛ u¹(QÙ™Xy^ÆÍ‘g™;Ă›dÈ|»««¬–J…kV÷J—jÂĐº®kfo± †¦/YV]ƒ@éq³‡Àyí₫úV»}@´°f û'¾"e&(ï·Ăp áÚŸƠ-J0D›˜„óŸAç‘ê¥îO=ÍÑOo6TëZĂÆrb̀ÓYó6^§MÉ-—S₫Ï»oÍs¨»0öªt ³j[Lë/„@²àƯ3ăùUö¯ÅÉ$bG¿0©K›b[(é`‰bÏ—ÆVe-v|¹Ô¿dL ˜T ~&Ă™¥OKb]göZ ë:×vZù{î¥Ó ÿ]1D ©+°x¼öü …â7—%éöæ—\ñG¾Rư_^j ć́×ÚửT1¬.«ºéÂñài_hđ\•Z̀Ú?€€¢G=%ưèà_Z8FeËƠ­¼àøo¿‡€|…„nc ]¹góItl©a]|nMb ;˜ăñ¾1ѯỖ}@bÍXm¥ÛØ‘°Äf PN·—pü Œâ~ t;>¬@ó¡F½™Zól\zö«±Ös£àggP³§f÷ù…•²=)´|锆₫³Yà¶öØ?œ:ÇÊ’9ÁΕ®Ê;±c¶ |ơ"j)+N,—s¼çÎ́QPàSà<5+3dG¾£vz·´ĂD$“W`Å—̣„²â¸Vî=%*Ï8µ¿]³Qd K–/]øuZ:~fLÁó8‚Ü)3ưK" ư…̉YØÏ%«Zá=·˜G–=É@²(ÇÔ’Îe˜ïLeh-<Åơ§7@#4jŸë;)Û=²/GăZ’D¹ïXŸ¬¸%Óqư¹Q–²·…°í7Ÿm°Zv/º¸"l÷AÙn¯ª €„}lƒ© ¹Gđ´~™¹dB`”¿ÖSJƯ₫ÔI 覀ƠÇ›¹ÎeÈ¢M~ñÙ ØrA³áÇ÷Ǜù1M­Eà–ÿÇú©@Ø×Ú4Œ̣³aÎE;gÁœ3;ơØM+QäqaÓÄ£'Û÷4ë‹Ç€îeåYÿ›;éônùÀ HvqUîQRó|ܸ}¡ü̉4D *ÎÓ x§₫Œ'›JF̀Ct̃&S§O7"ö…"„-]¥̣Øb×uÀK~ÄUq¢Ơh„ơ ±®|HĂƠ:oÚb H›ÿ4Ṇ/é¹n²]|ó|9ÇuF’€Ë(G¬Ú µeÈ@ÊqH#KÚOêæ₫ûb§Ô€ơ4¼5ABơ“KsÁ¡´±~ËRÑO´ s»S”>Ö5ŒÙVT 7”`J·Ă§C@p­÷Ơ@çơj@¤Ă¥ÛÙÜÿí¢g΋vZ pFå X`GÂ’CÅr̉k¸¸sÍH³«‘qdüp‰6ó̉×{%ü ÂËm+ï(6”„[Sµq+üÓê\½†˜´u<“¬½·P¿J„uì&iß Ntu¡Xl_̣îY‰}ZÎ/pÍƠ¤lnEû—X¾ÛŸ$ŒỸYÜñÆXàdCŘ²[>¨Ä??èεBñdåâ$Ä3)ëœÓܔϪré^ÈYM–:RưÿC°{ÓîË9̣ºg·+½ ~gÀÄĂ(Dóª¿û#Áaí¼úë» 6&¦7s‹đ̣áUæ|¸]ósÔ2Û“Ưèü?„àă;€ß“|͘˜ ªüƒÂØEF—$xÈt”f&øƯ›·Jf₫y†º«Á2¶8* s®Î´zܳ:?ß'4€íŒè¢ÅÄ‘GŸ©Jơ:ßHZÖÈe´@”ó6Ư©ơs²vÚ # ¸k‘_oÜ 4ûyNÏæÎ· yÍ©…‰2P «ÂµyÜ£¸®Ë˜æ̃æÿÀEKJmcMo“–E©úä5_BîëŒôÇôl`¥²¯W™G¢+ăDZszé]÷Ø›ÏÄS¾££Gº†ñÛ(x]eăd:ú‹ê? ">!ĂÆÑó+FOèÎù³ú<’@J3¿¦œsÙÜÍÖ”zíô'Î$€ÅA Ñ»'!îDtºaè6*|3Ô·üµnmPáX½á­ƒ Ñ̀¢UzẈ)ÂäI‰#˰îYY6ÑA —¢¯¨Lp…*»ó¬îŒ >¡ —klàẬçE¥¨X₫ü£öƯ¤R }?‰ƒÍ̉„´}f<çô%ơƯTeÖ̉Ô¶:÷ïó¾â—v¼¨PùûnXÀ\zđYOúûuƯÉ,?O¸’‡Î*“s—½00Ñ'Đ7Ê]2náÑ_’ Poö:Ơmơ$»«¼‰đƯN±OVC²c+)­—I4>*¢·ăƯĂhtî!S°•À¶)joÎhٻϬî[n†²£s+nŒ\­b:)BñéuÓIđ÷[N‹îb’vk›ù÷¬‘øxP¹ÈQ“]${?8ưó1ÀuÆÚ"s[!+œÖ0(÷§N•é»– ¤7jlmLƯ8­¢iü2n:É₫R5yö}m5ërÿ;ѼûOL·{\ œĐ™¯y#wˆ_I;/ŸJ ‡úE÷¸ógñ%&ï°¡i¼³Cdº‚$sRh;\“9n›ªB{Đù¨ÇJđĂø¢Üæ¸äbÇ®‘}±„4₫{¼¹[«‡q¦~“~ÇPÓé!r… ¶Gø}ë èµ…P(qœJBÑ>Mơ¬ü‘Ç_‡*©Ø`̀ƒ„-›ÙÅR»ÛJæóe3—n˜a^ü€2›Æ@ƒ]èº=àđ ªJ+÷ ¡eA}Ẹ̀!Ѷ[âè)­*̣ï²¢8B†[9†mD¼*ÇÍ®#“•₫uĂX2ÈoíÖü£„ÇÔ„z ¾ÔŒ ÚRâ‡I³$ »ƒpŒµÀô (µè±}2«NJ‰Lơ@t¨‡—.ÊÊƠ)RĨN«$(ô9Æ×) ÿ–ÄWpU@;ừá rÔơ&IơlAhOVÆß®l§‘)¡}«$ç ÖípöØpŒ3)ëôA{áÓ“(!ÿûçPTzIw¬ĐÚ·-ç?¼-å”a-?i —;°ô}öeÙ¸´êÊr—ïáÙªO ̃P:$U0d¬9y€¥v:.Yç̣V!Ư+€CˆË¦œú†»\롽qä:ƒé %NẒ JĂÿoâ4Î ªÿ«¬•E?q’i¿Åy±¤~ØœÛh{,NqZÿ3¸†Ä}&W¦+{ å2óù~U:džK±ÔSB8âj3@ đF©¤¥”ÏKÓä3jÆ ÇÄI VDO©\@ê.çm«ª7Äs´Á9ó}Vé¶÷4ÖïŸc-U‹UwT8uH…œ,¿Œê­ư'ƒI×çl­̃†NÀfÊcúÖ̀n¹ï†HX^{B”b›ÀTøX-€¼g TI~E÷£îá²ö•ÊÇÛ©×”›F4Z¸~l¥˜,âƒ̣+i±Doù>ÔB `G6‡ê¨Ör;Vc5kæă4c•/"pŸŒ´ "=NCˆU+ÉD™6vQS3=(ç{”Æ7B éă}¼H~ªÓK7Íl2q“l3 óíB¼ƒß Ë´úœ¡·"T£³ơîÜ‹®ü¬:á}gØm;”ΨHÏ”|Åoœém•Çä$¦–̉ÎFÀÿLs¶O6AX'™¾Z¸%œVgZq} ØQ~µmµù”9B•aĂ!9HèKÍŸß#Ù<«.¶Üb?a|Cåg4ûŒm¥¥æVR’”t¿•T#êÍơI°•ï"á©é€ZG"¼j{«OP®(œr:₫®+_|mÖE êæ8̉5™…/¸›K’P³Ø9™kÑ$˜§Uº,"½1l‹f–÷ŸmHØBRmS¢tå^2ĂMraïđ ¨uê‚GKlφ₫áˆHẀQ®ÄŒß >ĂNHưĂl&¥‹íç²V]ẈíisoÚ}½¦„àåóP\ V€Ô6Ó³°æC̃ZrƠÄîa©ñ׿>‰ÍäÙơ i›¬|Ưƒ¡…ăÿ2W÷sTÂƯ@!Ʊ¤: ¼C=Éu:@Í®|ơ /¢‰…‰&ĂÏ̀h³º5mïj̀Gaa×8Úgù\GÔ”@:I?m̃ªÙL åäÛï8·ïĂĐ­*]wăÊ_Mø,z¿¢¦b U¶9Sæüa’º< 8Wb]¯<¦Gp©BÎd6[Ăhä÷nÜ®m8ZJå¼€#î­äïH,Ͱ‘æyUws+ÇïÄüIÍ?f§ăíÁ (‘tƯØC!Â0_¨fk3’°ÇĐ2ÍóOa¡eßùo=¬â˜¬€?^7£Ô¤A=4s Ø‚®ú±̉N¥C@ƆŸÔVî»I7~üîÏJXÎ\5´Å{R)ä{›®Ă<;=­iư ‘º—[NÈOاk#­X&{/L? ÁlhđŒKaë°đ{snµë }¼kÎ䥳MÀƯwª`Ÿ·'¯+̣q­A¨µd”Ñ"@ÚŸ˜óVr̃aÏHt\1ƯØB¹ọ̈¬@ƯrJúơ5›·̀gÆX„wˆë·VÛǗ’-fÀ½ êK † aêĂ³‡¸ôôo­›G ôVk1ÿ/7¿Ûbÿv^=ÀÏ-5ư·ƯdăSO&±„)³ưÎÔÍ¿VĐâ¯A 9!̣„3SOˆkb̉FA₫jÎÆ}₫́O¿ª ØN$Ö\?Áa©b oØ9óc=\¡¹u7¢VI=“0øè›̣÷û÷ÙÉ‹—„Û ÏÁ<>‹=D́Ù‘ÿ/†Ñd"¥½ñ†ÊàÉ{d§Ft¬I(µm6!u)đ \²É<•9 ‹^K©ôd7W8_ªC1K‡Ñ~d戧%ßÂ4yåă I‚¯P5©ÁÜIÙ ¢¯­đØ8đS<ä; «E©?¢­̃,Ê›:ödÇ\>ùO¼N‰ªHB¥Ú"w(YÚĐ¡W^6z‘¢íY£‰{É{_G @BÉs"kX±Âăœú@@ơßa=œjÍ +3vU l ijw±…(œ0ø}6Đb±– ›˜¼ jaÇC_6ƯÓªî[ 9ƒÏ5F•ÉpÓ'à¡@ &âÈ««cpˆü€¬ahÿ[×â ” Ư[Öví©–+s+µá!6Güz4KùÑ>²ßđ&;¿Uuä»ó?€&]² ËØƒÅô-h5ÀÖ^„”₫\zĂØzặ’\F±èrQVÖ¾ưtbJö¬r G«wá: Å/háÁèÔk—¦¤ ב!ÀÄ}l Ú«ƯùO¸~D$MJü›ŒÉ“´Zóh Ü]¤p)Ơ<ß“T»iưc!V˜đcÜ(׿á;l ‘¾Aà5[2G ê f=°a:ÿŸ—ÿˆ 2)¸;\ÉRzipV8Ơ 1?sb<#§èKû»¥̀Sk̉Ñ:[È̃í„ÿCvi÷uS‹O zO@€v@ Œ̉®DÅ”T$Ķ̣AZàè¿@Ăn)Üăï Ú´mCŒ‰à®" ζÊZbâ…9½Sb…‘©!Êİ}S ú1Û“*G4ªÿw¢ö‹CÈej#u®h.’o'¾öá¿UđiΪ»Ú ù29hŒô"¯¢™†7àAg:ââ ßÖ•dM{½›ûX;ÁÂÀ¶и¬a9y| > + ©Z‚ÏZmј¥C„²¤8‰°Ûs9W̉ÎÖ's<ØlĂä\!$°RÎÆ.PB·Ô¼Ó=ƒ»˜¡6LËÎB,vTîb²¢[:­OăA~̀TpnnÊ^4æ̃‡ÛÉø5 yq“Ư®tx~ø^©£aRÅíÖ“‚ÿ}‰Ëe# ̃†«†j£²ÿtÄ₪‹½çÎÏ3§©Ç5̃¦«æ#Eë9y®O±½y`>ñ–¹ËËÔ_T`sèD‚È ̣¥q¹¸!>e#ä>öA{Q|&ßUÎç¼~îĐ\‹́9h»·ăBàd%^"ZUpMƠo²ÔR©+[á–S‡ë‹zï°ăØ ÜĂ;‹-Àr¨Öâå4Ă¡#÷â l~¯ ƯB8‹Ă¯p,ǼP¬dÀĐINrĐ=(‹ úeló]‡ûsëƒY4¼O†á«fè`_Ü™-£¶†ƯÓ~ÄúËÉ•¨UI¥^Ó́”Ää}…¼¥]éua²Ÿ- _Ÿe’®M±‡@NœR¶î³­«3‹E!µñ€´‚ªn.3%F‰“^§ü)ßDưŒÆñ̀ƒT©"'í=w(Bi Àî¹,Y‡·ïº ÎÑ3ơǤÄèbk¾³g=ß!‘|̃e|åç1eŸíÇ=Êă f¢të|P"ơĽ3¼ă%™9xzd37Å"}øÂvÑ(Dv<Ÿy)³̣±¦ôƒØÍ‘µEh”jvû̀îzUwè-øèbö¬ø)¢} CêF <ƒQ#ø€v£t¡(Ú>1î!̀ä7[Ơi&±eÓÛF“ÆƯĐ'¢ñ¤bưúRkiD…“l2‚Ưüí«]&bK~¸4;É-|f\·¡ö~sWê«; Íu®&Y!Ûeïu¥V:HP@Å>»€€[Œr̀ ́™RU†uYÁY¿²j ï̀+bĐÎp3_.₫¾S†ê€Rú“¢`C@Ù+_® ÍHwÏî̃ÎË)p² ½Í̃À@†¶0§»¤NcÑ́4¦±Üˆ ™aG×*7y^oeb2Ë„_¡{WN{rA²aäÙ$H°×uí¹ùÚ•z ÈIEËA²IlÀLø‘ÿ\ŒûøïUKăÈœít5êÛÜ ó‰²@.sĂ7`ùöF a(„ïpÚG «a"\º÷¤Æ”¾Å> ~ĐŒ6(/~Ïßô5L†‹LÇJheÁ/Ik^ăŒ>2­cjư}4{øâÚ³ZÉ9ù`ơZV$‘©ÇŒ£W¼³ëªE’:5p4¯²«èƒÖ,̣MC˜È.µØß´Ë ÆåS™ˆâY {'UÑ, V¶É« ÄT;̀h0sˆ¥{³ ÁË·j “ w?•lüƠcÔ€D( ¢zFY˜„ʺăüËEIG‡µ~ LèN“|ÜÙæ½ÓkÍ: "³+ƒV~1´aæ4aƠ?ñ‹¿½´pÁ^ÁĐÊ^È̉Ç€*”Aåd5đµ+ÿE2`ï¤y8f «Ă>ËK¦á{̉-ü¥ŒyÉ"‰–̣©ÙÎd ]îñ/á›4wùx8KÖ4ÿSƠóW¼ ÉÅ’Û¾}±)翇‹sipM~ø}|›v”üpVöĐ’èY'ÄÊ»7XT"-öaѶºd#|ïĶƯ Z•yi ÿœ`OöÜʇxÿ.~Ñ´ÿ•—’ ^»úèơx b|(˜áê|Px‹¡û"-ɉư‹R¿~®||Û?›:,…ÁtÜîäÜtô †ư8I´Ơ¡¢dó髨5ß`ß™ăS iè“ÄT´kÑ2-Û6¾ù÷±́¹ÍúØA¸gùIÀ†LJ„^KujÑ’ê:̉=¸é8"øXn~Zp₫1bdH8aÑ•^ÇÆ*Ñô‚•©å˜Úº›'”[WÆœ\ÁæÇcđl¶(˜cT—ª;jÿ­ tªYÁ-‰Ü*slà’ W¬A‡[ÖZY’æŸÖeêp‰4½ —´¬ÎM̉ȈJ:oËo;H›²ƨKˆŒü¾¢™ÊÎVi q‰ö<É›û×Ü¿w¤÷ ;øUSeq&Fư(I" ü*$Ü̉"çA,mÉ:DÎG ü7=¢ñ®&ÿ8R¬È‚Ø­Sơ…ˆ‡J:¸Å Ÿá†ùª–›Â];:F̣wYßdƒß ƯïzQ›:V/™~¦;áaä f§»ùÏ•à¸cÿ£¶ídS &” I%Q§,›>êL̉9úCöíg1.uMNqĐ¼°Éé "£^7º^˜¢DỞ°3Œûï,aiªÜ÷ZáÇ„ cü¹àó/„H<‚#½E1ve•Ë́°;©À\AâÊ:jKñx®J-ĐË3×=…(wM{÷RH¾)¼*Yµñ̀ê‹GE†Wü$K/™(̀¨ÔÀFë©øtgªëÛ“ƠoŒǺɰw%?ó1Ö«Í|5)ñÇ£RÜ'üRâr—½¬U `ä’¹FѦ€km̀­úd‹.-¡%B<¼?OgƯº|' É[ºa3¶¸÷ªK]†QOÇ‹3ưú€ø;ƒ¼ĐôÑ%}›¹-z¼c­ư¡gÙr0’¤Püƺ|Ù¼ˆY¶uúꣵ‹"̣ïÿÊwtøø{î˜Æ¼B(G²æ6„z¤Rl{ÄV×aW&¾ Çûaù<ü¥ê¢¤̃ưs1ú¿eoA6çT4h î.iÓ‡8dưg´R ]¤· ©ß¹F‡'̃¢ÛƠÖÏèAˆÆÇ å`ăÀ5Œư»>¨”§gÿưMæaTÜâ׫¬ZÿÏ9V/̀zÈ’[lË\xÆÑË¢Y~₫ûa9”ĐŸ,ÆY'«„̃WÑç«Æ$ï@CŒU ;w9<°§wpŸn ítfé~¸cª>RaȺˆhƒ±n•å5€̉¡ƒÔJ5lCCÿEvÁG¡;b%É“Zµ¤ÄƠ#ađJ5†µèỄV,°Íñ÷±3u;°³™XQ{Y;\75È~3ăyÅX1.ëÆµÛËĹö₫l¼mư‹ÅÅơ>Í`•́jRnb ôú©~¶ór…đ3¬P9bçWשcø1?foÏ}ms§’́£j/ÁÄ”»¨×ˆON̉ æÁ¬ơQyÉ=eûi½ 9 hT0óï5¥đ"÷†H́yqBä.ƒ°̣è‰Ui+wøé.ʤ·¼I‘ AdR+hV -f ­v}C₫̃º¿ĂyZ¨{¥)‘qÑ÷¹ˆèÈö8ÔƯE?sÀw‡È:q8¼v” N₫Åøt{ GJƯͤ-`˜Û3à|¦tCơyj˜ø÷Féà¬4æ@l«^§đ”ûơæÂT'l1—¶å9¥#­\Cƒ9ü|4°7aO:ÍuÔƒü‰èÆÏÖL:®|;l‹ĐÑöƒđ7)Đ₫»«}9p¥¸¦±,«áP.iûCS´Æ#̣ÖY[•p´2² ߯HeUö!›4>a [Hl©”Cj?3Éaÿ̃8ẽ[†I¥z@“(ÛQưTcMwú“EƠ° ¤¢6m gÀ—dˆî ßYôxG/¨&6˜@ü”đ₫Zès¬„ưpÄ+)ˈ+*«@„Î ^ăÑtUÍW¶ˆØ cqjx„ø7%C‹•¹L·´¼§\G9d_ PËlƒÛ°’ÈéH*:…¦X¸(¼‰º÷g'ă¢„ëÍE—çr·¡Œ{ù2\0ÿ!đ 4FïJÂ(e÷/4MŒ².ơ <T0h˜ë-Úx­Û TpÊ/º6ª›\ßµˆ)M>b2̃lÅZ·eYWøh†o8|7ø?[‘¯®²̀†¦@Áʈ?i‚ß_ÏJBsh3¿ƒ|ù ǾCÖ"¦*J¶Í·ḥVr1«¢SŒÏü'ØÜÉẠ̈F3r托R2†Çb¥]}•æáF™(ZèÎ_g•̃f6h÷)ưm:[I3<Û¢5µ×ô••øç‚|.¼¸±WQZÛr0®'TŸRHx®ß5Ó2}‚9‚ä~F̣̀tªÅ ϲؔª4¼øŸgy–¢1̣8I®3¦L·!Ùi‚æĐâLJÖØ_Èg#às´t2ƠiPÙđˆ :Ùj¦?©\ô’È $·€´]ÈmñíjΙT̀U°;’ë>>Ïo m? ̀=¬.vǨsƒ0ǯÚíŒv=₫',ë î›BEÏf‹Đ8›‘TC8‚¡0.₫&ÎZf}iµ­µ<G’́h¬MK#»öžËá₫eÇ7-níÚLN]Ÿê¢’Íd,.?>qÍpiŸÿ!>«{í$z€¯DN9¨ K³4cº: ̣5ÏùÑßr¡ çsVl3SàŸ<̃>̀½Ÿmí/Ûx†̃LböØ”Àµ:QcưgĂc¢Â»µ ÿñ \Ͱ&ÜU‹§đQ ›Â(¼ØŒcn‘QâN¿,è¥QÙW5ç̣#]ŸåcSƯÇ»5V<›(¯€Èu¥Ÿ>œ~\n ,árÈmđöno@\îï_*OèÍdž0 ÈD/^Đ8ÖRKOg9GBveâÀ§W²Î#FeLtO ́¥̉x§·i'FïªN*bô4ƒ~¹-_ZÉAˆçAt^UÍÜÖ₫ß_[Oô¨à™AΙuÂ’!.§,ü‹T¢ˆ!H‡Hố5ß$»c$dBT¢­‰!UgzFés¹Ơ zøL a’óŒñ$‰iß$«6­»—8–ŸpXÑ̃úTï%,›:X[:.½₫)uÇ×́å.¿¼ûnÈ̉áÉf@R2Â{Vaù›¶ø " 2ͦ"övD«µơ=¿¢‡Öéj™ú<Ă]{Íe £s¦ËĂîú˜‘æ¡Øo÷ú“æåx`|ô[Í|!t’5êHIa*€ÀÛKăíÖ́Ëx¤r̉°À́¾ƒ…ÏuL&YnüN)́zŒ3̀ÑSFê _ä…K£³. ï40HâaTmÄÿÿŸ÷̉0ZÛkwW ǯ—ïå fÛƠu\Ï!_ÇVƒIÿ•Á3n Z͹ϢñÙp_½uïỚ„s]đNr¢¾hkqtôD®œµˆV[!7f½S %)(]­j»"+©¢ÅB¨:~₫`ZmàªçÂĂ¢\–àôC e€å¶èbñÆ9r¬Â₫A¸Æ3Üœ ¢„Èœ„_.öâp̃b?qNí†9₫ÊÔfˆˆtÎÓ`ú·ZwÄ™©s,-£aƒÍwE [Uư“£z·8‘"aëÙùE`áÈđLfQˆ¸ë6hđ:³NT3fN<́~(˜QÆï;ƯNçÙph(ç̣Æ#1â´A°Ä´rª]M¡0Eߌ6tôv!¤*qáw( ÈÀ_#˜>Ó́]‰ëM»ÑèµmUÔÚÈr· B¾ÅVÿ1Đ ¬ßÑá{>éûØO£ ²µØmA-ßÛ N(x#’™¤(ˆ(€ÖOØmG¥¯ưq@̉ˉ୯Ú§i*¢îDaŒJж5:{T{»£4Ăeû:µÏ~h#f {tl ’b{ï 4¢˜½÷~\€+D=‰®û¨&¯©783×Qóâwåg9˜Ôb?®œ̉[mŸP)£iäwˆ_LpP“'ÍđN u„ÿº₫cN¼ßƒ®®’Ús‡{mÀ à(ç³Aƒº±7b$eâW¢‘¿ª¦̉ *½„—h_‡hư¦?AÑÙû±]Ï”>’Í¢…n• OdR˜½>§ á39ÄÉ8₫ü` –âà„­ÏXƯkv&Aư yé€̃Æ8Ö˜&•÷‹›‚±*9¾¶¤_1Ó”>?\²  ü(Ïmæu%₫\ưé ­$_tøĂº”J)ƒÅtµÉS„íÑnDÅ€â.'INk%gÁ^VÄ©LưFb¹M(ܵÿŒ@öà@q¢3ÇÀ­~ӈϑŸÏc$Ú©˜$sK)‰yOÓÊƯ3t×Iö`Å*ª®eè§~£5ÜD÷fMoFúƒ€Ù*nNÀ$½[”£;̀¡Öç©¿Đo3·PÙ̃DA÷ư ï99å0¿‡„¢1æû^̣çœ&ÿÖùc̀¬™yđ<…n2 ?d₫SQß«̉ï79Ikä¦6Ÿ²ö-Û`LTCØ`;‹êVüø\L¸|v0Ü{˜`“”k$ ßø*LY *(UÜ ¬#N²Uñ“?—¸.SÓäØà6sư?wÖ́³äósøđà›Ê3ư’§Ncn1s,ZÚ¡ZcĐ₫³¡½¾z%¡åC&r7-m5ûP¡ °G(Ë ÁE×Ö÷7§L̃\LmùD¨ka_<ÅÄè ÀTA&ç½²#”-µÓàƯ ºđ ~́ªˆ˜,®Û!îö]Ê©jo,ÀCûÖhÀ7Ä`Ú%‚<¶rú³è0=¯z§ê”=FÙî¡̃#̉Ơ‰2V%^Ưó€˜Áú‡éîkh.¥å°Dưÿ,UU1¶™n,iï@T¿‹µH·9È §£ç›s}c€IÁè;¯¸ (I怹ªÍ| N\Cư²O ÿ:¤ª·;ëˆFp–â[+¢àæ~Y\bô²W™X M ¢ .€çz.j³¿Ạ́sÜL›•MĂ:2[7)@~Èà˜zưqO‚ÓĂßÓ ³ăË<œ«ÎZmu„]}=%ÁpŸuus%÷{¥_#K9[̣d `+ÀäÜävĂt¸Äªf…ØÄ6đ¢Ñµy®mă7vƒ±¦óZ}¡ÉdÙH´³Ư~÷?e”÷Ïñ`¥gtˆë-Y¥UiW3LyăyL P½"Ú6µ£Ú(ÅXØÏ±ópªơMúƃNqo²×̣°f”â¾ù y¾®»4/b6×N)6+} ¿Ø»­‚¶b4¢&î^£rm¨Á Ëà³^PëÖ)F-kW«Û'%ÂÍôA´âocPÖzwư¼á]̉¶™-B'zÍ)¹8¾$ÁWDĂÇÊđ“ Ç3»=̀Á†S÷ñNï@*ĐÙj,cû1Ë8ø?ÛT¨àÀc/R%̉a¬NÙ}Ÿưz ƒíb¾¥{ç:º°áut>£‰L‘V²́₫ …D(É8+¬4óÜdYàẃ†…7 ‘!íaBí J́eü!蔌¼6̉º+&xÿQÅv{ç^IRĂMà–ju²`cïÆ7)Ư'eèÔ0ĐAóƒ«ăIZÛ†ơ ơÔ9„ˆÍÚ6²­íĐ®dÎÀßF2‹êø©ÏaÜj[Ñ(—u›&5ù‘º{lP:ơ~brÁÑ(›} dÜĂ&ơßÈ~éRßî­$(é‡5ªMƒÄó[8Ïɘ? ă&¿¢„ÓƒI;N椅'XƤJæ·a¾lK3ÓÑ™xœ€ÖÔoG³ÊÚh)ExO¬¤á0¼̉ÎE¢ÚÚÂsôEêÁ[\wCEº`¦i°T"Ù±NU¾ü\ÛÂú#AÂT‹«*ß¹—x–>×[\¯VPÚß;hú‘₫VJ‹ËÀCÜHfÓ&!Œÿ,ưËj¨¿ŒzdDáå¸1̀Aág2RƯ3BÙ;ªí,:&OUaĐ*Ûø·¾CûŒ€â É¢¯̃@„6Ơ´ƒpË>‘æ‡ß <\öD0»CDU›Í2¦µZâ—xÛ`Mb:41G[økjÑ)ÜÑÈLÇçˆ́6ú¦ºCÂ?ÅFĐ₫ Đ©G‘S@·„…ºÂă‡Â‡¢'ûd;­£ ±`ÿ(æ´;:Û¤ÎR1̉¥đÓ_<æ§̣$ăá¿®lEu"ḈK‹̉Ù@’°WưzAS8¶«ÿ‚6zpúñR¸¸́×Á/°Ñ-® #>°̃0üO÷Û„Vw¶a¾‘¡Â®Q÷-^2߯º%‰”QúJ/OÂÛ H/¹F§Ư¦¬œ^…ed¶r’̀i‡}“zƯ«Œ¼7'¥’•u Qê1k* L¢ÎéH́T‰¿íœ8GµÛP›Ÿsˆ…“±üà3:åïˆ Ù–8µtnzy`Îåuđªöa¨ =v‰ @ JṼ –[ºEm¥¿È?Ͱ-ü@—¬aôĐ́:ư—.îB£ rÑY 4̣6íÏRW$.c©ûư3̉_aöcGơ!ó®@C%Ú#0Îë[ʇ!ÿ‚@Ăm0€Œ§†S¶Í I[“¶:kI׋\?#—67& ¶dÎ)ï~P½ ‘†øK₫Ă!…‘+‡Đy^¡¶b¬*‚ÏUÁ»ŒÍ9†¶V~ư@äƒôÓ§h.́ѬĐ׆ˆÑÁœœ´´ç ×V âwjê飆]󯉀bêúªÙær¯lh2TH#Ö̀M:+©Y²m÷ÀU””49qí}S Đàăw ²LNÿ®Tˆ†ç1U|R6.…oơ¢ÉïcnÂ=jóXb5}”ÄdĐ¿;Q:tÆh¿Ë×½÷&§C/âÓ/:.`øá̃³ó‰¶¾đu^¨s®œ ®8Àsơ?ó"×ơƠæj*ª}ø4¼‡zëvùzD­¶£œKø€ŸW¶ê¬¥egKă|Ơơn°,»’’ªÔ~ùØ‘â$[¥,€©’̣TA²ïÊYmGYG{G̣qÙ¼J;^z}Ă•‹ÉÛ“5ÇLnøiPt]>BĐïbˆƒÚ+½ñHVýñ†•’Iûº7;LhÓỌäÇ.qnæÔoiPR!ºR7í´ULƒÔµ_Ô!U£~ίzƒ§|Xé’Lê¸Z“øË.] ä뼦⒤­Ø³”Óđ/CZ |n¹FÁæÑ•€*ÜE0Ô… +VûƠˆÓ ¢É—SnÅ̃±g2)TøÔÖ“Ÿˆ'È8ă g®Un|ÿc«¿tµ́}¡hư€z§j$·q%ÿ›jW„…æd'ˉ±ä÷û¸îäWm.s m- ÷&'d&â°tû:kׂöj—Z;ø“½ơ&¨%™°»•ÑÎbBKzE-L¥[$q<Çz lX±ELNùñGtóè€c!ộÿ"‡íCÅ “đ” %F_C‘Ă€†‘èß̃ê`);{A.¨°!à˜:h¦Z±"̃%î qé¢À‰°¥ y5u‘ é<ưÈiT`†(F¤RÜ¢×Ăm`w-Üṇ̃ΤÇ-ÉƠvædRÛ«X?̃÷qÓ04¬âÜ{mä½Ú=inp̃₫íƯ¸8₫Â_ “Oïbx"đæKå” M1€bÍ ¶O¡k–5ŒVh̀'›gÏc<˜¸.å·êkîƠ‘dNÙơ.4v–M×qñÁ:@½²‘̉&ÂÛ¼·¹̀Ơ#%$<ά}\ ñGÙxgZđ_³?$ ¾ă;Ÿ¼¯̀P3ˆÛφ¿˜4{̀t‡%÷ƠHñƒåè-æ•`¿¬` óĐ6SÎɇPøB₫ 6h₫‡t₫•´™›ê£]Ip*!1‹¢ÆPL :-mkêï=MÔ>Qˆf€w^FqP—LoÀ€á¨Gœè¢ˆÁB]ê[5§p½Ú&vZN_ÈÂ2K}ósRÉ…t¬ă ç€uø°l¯^>[ÛôO|xäT¿Ï¶Ë;ÿt¯h&ù¹œ[¢6Xf̣ùùA5̃F ÍÙä˜ø z̃Ơä_O‰êê^éæHÑ4X *NåÑ*ƒæO?£\ ´bí5ơ‡°$džïXÏI¹‘ÀÔÔY ÛKR‚áÍG'ÁÜWkÇÀô‡̣Êó‘¤U)ˆ¾¶°¼“ơ[Ko€Œ\Ú×%‡RÎËà²u$R~ªEOü¬×¼lüR {›]ítzÖ›K Ư 3¹/µÉÎi¶üưE2-¶ $ÓNü…:¸pÇ÷c›¦Æ|̣3n!‡¢-„ÆDyKÛ §DŸ†~öî4z½—ư ü9>‰)A7ÁßX^3ª}-hkºç'̉P–Áèï«¢|" ‘§EBs=bk®fÖ¯×ç¬,7øö&^-%iø ^ơü&yjn"„¥àbÉĂ„˜Z¨g8À4sB1û!Îßç²#]$Ç/™:«\–x&…ËØ5yDw›HFÏÄî×',äbm`YˆÂ´ĐRơ…ư:fw¨đ·‚>éưÙO‘̉ơ%Ú5Åøü’DÜ¥uÀA&†B6mPpªÈIÜAö_F Æ"ú€µ®@Ædƒ[ç0>TÅH!¿íEæû°ơYfƯ6È6H}:m‡$gBfÅ£®đ;L™Đ&Ề F®ø‡ï?Ô‚Í1(y¦·,ôÊ£?S6ç:¡tÔ·kÅP¡[£‹iˆeĂ? ?0Ä×Ă„XÜo°œÍ×5h”!̉Aå º ¬)‡—ùÅk Hë%—¦t ‡^6›É’D()§ÉÄaƠ[OÙ7r—#2âøëO²`:¯¯…ÊDr®äæW`ư—RƠ‘ßñ0«”Ẳl–¬œÜ_̀Ê¿£zưâ‘¶Tjøí¡ 5…{x2°É´öOk{g F·Ê×ζpÊdRߨÁµ)‡LuŒåhº¼8̣hGƒ$Y= ÷'­%P₫M><ܹG:™*BxÁ½N¯É¬;yiÉLÛª­¾̀R3©ÈoÛ3‰¡|+W{)tD;Là*®I´ùµ"}0eÖ¢?ǪΧÝF1¶èʆT“ë¼rÈ£¢+³Ă3U¤¶5 ̀‰B•ïÀÿNA¨\´¾y¬>± êx Ăl©ÆB̉@Å_Ù©b]ô2ƠœêÀqq£è¡ij†æŸ‹ÚP—.2ÈL©÷B–«˜u"yÊ$´¶Qà₫UzÜaôâ™ X×h×—/œPâJ…7{üúJXÑZ̉]Ëj,‰ UFÏ‘ ¾‘è̃ÉôDéjEïNå·ûknܰHĂQ8́ÿP6×ô¥’…‚×1µơú"I S×,[¼½f¦^'¹›^"Ôªæ”XM(Ùâè™~†B¾*B!ûÆC#” r¾£DÚ‘ƠØ3n\–×$?\Ah ¹#ed¾ê{‡Î-:~ÿ₫ôY#pö4O5XËQä̉ăc"͇ ç;àƯ0åæ·ZÈú;Œ’îS²íîP É\icè₫hö#Ø>LG™ô©]~úoi‚颼ë7)P|Æ…¶A<çdă|ÀM7oP#^ î³W­́¡²–Û}vÅfzI©ơ,œ3r•c¾ëè ^Xdy&=¾záâ„?t“|:“ƠûÄŒàJ#aVË‚dïÇ…Í‚$?Ú÷†.áWm:²ÈØô§à>c‹0i\÷å¨ÄêơYú¢-Qº¯O`ŸÈ¼jÏG^(ú„d½1æQèI&PA¹¾óc₫KçóÚ§… av׳eȈ6Äăcó•Gµ¢ú†¬íÄà&q~«/k„5àđûƠ(„YgŸ×wfxWÜ’ =ZäÂơüyÇCǼwpÇ6Ôơàµèđ‰ØâŒ§pÇ+ø˜Ÿ‘v$]¤[º—Y5In„ê­·Ké:تvèô\o0<åi§± ³6¢TÁÚÎ1æQªƠF³ÿ$ù€ßË:>¯óz¾¸sX2/øĂ´ǵ=?M˜Âªê‹á„€i—âæđET1tˆlBĂÜ*̉9ï̀₫ß́ư¹Î€ÔzÈ|€¾AßÚ9Cj̉V´>wt®ù´öͳK¨̣0rÙ­XĂ.5ă„Ơ—Óù¼”ºø̀èc§Ơ«¿Ç¡¯xiMJaoQ$S•—éeeáY²ßÊăf7%`~o\˜çâ.̉T©½–yz Ôù…ê: ç̣ø¾ÊQ/=ÖrF—µ4ư¢aYơ œX~ªgÑçÑY­7—ăÚ*O;›N×AZYh ?AQyä¯/âf¥̀³¢}-½ “üä„̣•™‘Öú¹¾Oï/¬8¶i•$ºHxv«bæAæ<y”ÜÉÄÀëe¥×† l|˜(-$M¼¨MkÂøK-A`€V¬ƠUB#1rŸsñ6 7ܼ²G§ïÏă¥‹cûñϘfë÷/«á^ÿVn¶ÇÑ´̣H{¾@Tœ:AËFñÑ(!w¼N‚NS¥ŸFïvÁ₫<Æ«¬QU₫7Ù—í¡ÚÇ©?1&©oÚÓB÷ªÀÍ@8ªî_¯:Ÿ$AD!…40̣ ˆäÂ((4ù X‰‹Ô~bë×̀³íƠ-…uØâ}ƒŸí¯È΋7ó‹̉~̃¬Y¾8ÊUÄ1çd÷)«Öc**Û£c¼} `ץֽơ€gÏÜD³ FØ…ºÈ'óḤĐ̉—Ü&;6œ¸ú§kL^×ñŸÍPO¨RÖ¿à²&]"}Lùéđ ×f₫åWtœ Q$öªÿ¸ø–Æ··ÍÅ& cF½á éwÆ%Pf²¼²8æßR@ €̃¹?ïb́&Ñ 7B ‚_“QÎ19—•Gͱu—ï¢" ôEăŸêiɇËànÀqc_&̣X—´?ÛH³™ G& âé´Z×DGi:&v_´EÉ»ˆ·̉`̉Ïdّ܃ơ¨5Ć’₫^(3I‚ÑÖaø–ƯŒ́Îá(£œºÆt%i Ü›Qb&rP%·ö,-q” ² ̃ ™lm?6ÖªÚ•{p7Z/Èp,‘îlI¦r?yÏPB’8̃`Q+1•)7$IdßX…¢c¶lñÅuó<¸*´½1G¦q¶É¨Å@½₫üh ¼ú*™ÛÖ^ (d'´‡¬êœrÄ#¦©•ÄTñ»;kªÇ7œ]Fg½‘nM†ÜM!øíØŸBr&3èH¾0*Íë¸Å¡«́ ™ă;á̀ªÅ R¦lH†ü•ÖđÈÁơ0M*ƒÁEơ·lïhn’OÙr+¼âF÷O•÷µñ₫©u¥¶×/ƒÙ{pŔơ­:áuN}„º•b½₫é÷ăa›ḲéÇkóŸÂåH34£DÈpëÄöü;‰‰ö˜Ưèa\/̃Ün™‚K›₫]ójGǾy†7s<€)9ŒƠ¤I.§A ( {–ZAc‰¥ jí±<8½‚́·để »WŒjqW̉4ñ«ÂzTL.Nzf!̉”̀Ÿçâ!c₫ÿ‹ ÅÆSéÆpŒt;“‚2Χ˜Ø#8M4$+mµ6„é¥[­æî7iä›ö[@ƠÂJĂC³<¸Ăª"3u GáƒD^ÊTzY…‹.G5¥Ăg£SÄZQ¸ù=đø{â¥"[>ï+àYú+\T=É|-«?Éöá·H°+”cŒÄ•R?N‰0½É8ø§°Íî;:̉×'V+qî¾!̃§´Æƒ¶üº[¥º*÷Ô²,¦Đï_Wk†[?´ó™ }å₫²»…=ç‹—<ñ:‡`áăÚÍ%Q7öÓ mæ[÷èEÓ<ûÓÄ8IDó7e—ÎY1*#XÜÉM飣Ɍg/ôk ₫–½ØXsñ˜ø̣ ûU0ÅË@=[àÏÈ‘³[O9µ#ư«E ª ;jˆíëjQPl¦4-`ÏÚ×” "Æ)-ë-áF{ZŒ¹ƒƯ W‚¦j°ßºiÈ_gM×È9ù$×6%™psf)|sÂÔYƯ@¹°á´fF§€·ñO„Í ­t´“jº~¦bំZĂ¯ƒY:́•äd¸’xx]÷Ụ̂6j¸Q'—€['…íhîî”QŒ:xà:Å«aÂ÷-ƒ­”b6ù&Mă( […C2}¶Æ–WV›C”´ºnR’°²<{?RƯï®%èM9¶èGëàUIa§1¯Æ^ÖÔÀƠ…z”¤möÅ]Ü@1kïZϱ³¨Ô-KÙ&E· ¼»è”oC÷KœWv²Œ-₫₫[Øtư₫PÍÅ(bÄ&f¾ë@¤üÅ®Á7R›µ’ht¹s‹ÏÓâLáăgWçî>0È€±̀øävø½sK-»́m})^̉Á†ôëœ:zRŒXqơHZíº+”^³rI ÍøGöY2%£ª4løn›³SÈúÇä‚'Ọ́Œ)¯ägª6Z3+­Ui#pIVµŸñ«S¶Â&ïé́תw)áˆOl%ḉû:›Ù}sïÄ\‰Ky€½&ES½Æ²Đ+3íçM¤‡³ ¥ÅôkăKô¹/èÉIæ0£Q½uɼ†z2}}ùÑ¿1âXÜnæZ~c¦™yÔƯ›÷WdWûDÓ]II ú`**„Hh‡YGS²|OÙŒ•œGH°–©?7½-¯•[KÂy—¡'Ô²fJ‡mtD#¿›²̃:é ú—48˜Ü2̃™¾ tĐ¯GÑ£å» ;¡4y¼2(ÆåÅD\ÑYUˆÂ®I(äB´hÊ‘´Œ•(4JĂqgo#́4Ư”âKê4ê;€Æ¿¬o<=< Tè£ùÛ´| Æk´“}Côe¦Ÿåd¼i¤ x²[Ï€:ßƯ‰„¡˜Ëf=½¯ zkbº¯ Íl.㉬‰u2âÄ´ªzêµ&ư¹½iW°ÏÀ ””•ªÛû åµZO’̣wKH¶x6N‚n…1—ë̀·&]ăJÅÅ|Dd¤̣‹/ÅQå7>P&Ơî®V¨>¹›g4̣‡Sư‹©jÔoV0c‚œ +_A–•KmJN¦ç±lä;xåÀBÔ«öúükÖAäÚé˜iK{çRjef ºM̀’nGx›÷`øIíư™³·ă*bÉ–ÆSÊ®(èÅâ>¢"ư÷_dLêç¶ß9Œvư™}gªjÀ¹C{õï'Á§Ä^ø H‚D?F•‘x¡·àˆÿbr.ZÎLé×_c”[ u•Î…ªHñX7ă·z$³êƯÀÔ$[7;§ƒj,_°ÍYnnđ긄 Y¬nĦxMAA\:"Ù«ß7œ°ÀQÈCi—ˆº3v„yk<œÚûC‹"ÓÈ$Ñ{kQ}©¬Æ.YÑN­†C:c7Ÿ„Ÿºº+9|†d(nđmv¾Ăy˜́="{æ„#`¹BU*èT8̀)úÔ]3gô>ïäL¨ä¡~NÏ’RJíĂ,†£â÷r¶­…îĐb8LçǹÁ–аÉ*÷Ñ®Åc¤/r% "g Áå|2¶¼áM·N K˜!ƒSc»Ư—fLâ·ˆ* }wS*sU6¦đṭ¥râH¹á›$º/Úfç+ `  VfaAá‹-ˆnÉÉh©ÖÛYŒ½rº] ÏEmJ4û8®“öaÆÅ²KỐ™˜3 äµ§Ơâê†ôÄm½Ô)tJXđđ% Fv­¤,ơ}av¯Çv[7.ÉgªÏdz¢TÁ&˜]vỶ“y±ï@B”*ù—{nM×êƯ;9¬Ê, ñŸ́ت=ïh·/êüÙ]ñº²đkåûWtSà‹q‰±ÁÀ¾Ơ3àpǼ¿!̉?ơ@đ¨6EK ÎöƯJƒ&lû&mäúñl`Øk›Om̃×ú¦H£SÔÓ7¨Ö×.æèG\åƠˆåí́ ²lqA0å’YJ*Úe·XÙdp5»cô‰́]½Ưˆ‰pÜB•~û½2¸6G1ßAå»ô&Û®1|kÑçKĂ¼$¶n Uéàqi&Rª‘ < 1ßfæ²"}daÜeU^ÅÈ=²RL¨.ƯOT¨µ[Tù¸?ûo\ÑüÜc™«?4½nEm[I*Ÿ¾@7«9¹ÙIß½Ï(¥*—Pï¹Ó₫Ô»Áå3*BQÿ¿đp}ñ„7%¢ÆÆU‡~³•mh NáWë¾f!j?i5M´+ĐÀưȨö®.âÍw¡Y<v«6°©…ŸâưÅ@ùá‹pÆÙùs`+A FµX„&bnajr²»•D¦“ æ₫d)–¦K“V“Îpß½“nđÑ•ưUL3d¾aÉÛï²`×̣Œ^Cƒ°̃l&Ù^18ö}[’ă4ÀT’n½̉¡uërƠºHK榶…ÉDÈLK¥øC2¬E¬Ûú·«©¥ơèSrÀŸ"“ñékÀ/¼¼làèç¬ö>à£ZSµyëe-?O€¿4yP{/pw 7 ̃Đ₫ Çä̀”VtUµOù/k&nÂr‡–|H* R ®|+Ç—¡Ï₫†‘¸ÑæU¡"*\Ç}G=0A.ç\™đ´̃y<Ÿ7a_R‚Ç€KA(¡7-¨G¦ƒî”àj+Ú!`ăR:YÁÔ]Å3Ùy›»rG¿Ï àU0́®Vܾ†B’͸¢Á°nr" \» >‡`¦Ñ‚̉Ư擤F‹ ¡ƒÎ$;qŸø¥™ (đS¸àZg»>fØ'±´Đ4 “Ù¾»²‰YN©cÔĂgR†ơôøøfç¬>üœí8û0ô~»?›”’~ +Năûqpº3y³(¼È̉8cà¿tXû­¦¢—74ªfư‹ù„jàB¿yÔæ–³ 0_cªë„ÓăO„Ơc:Í̉µLJÆàÂäÂ7Ô¯K¯4…U¦vĂnûlÛá~°•‘C=( Ÿ7CâyÙánưv‚ÔECÊÍëzcŒËe‘ÜvÆ»XwübBƒWƯ!½>â>ºøV# X‡&bM›ó¯Ávª™´̃× ]–¡Ÿm mdi-2Ê'¡Â¹+ d­¶Ïz¤₫©1*f!ˆÓî:`ơ÷'kỎ½µ¾ ñÇ̉Vđ†©A›âù¹öµULÉ×z¡ÑÁy‘Ơá¸Ùí´;$á= è%[ˆ!΃BÅëûê¯ñ¹!×.ƯÜJÊÙŸ¥>uC‰I₫­+L×ôăöèÆ,¯ŒŸyàDÀ¦°úDâ´s'=®í³VƯ@›j+û_œ±:r~QV<5 uLG¢K›”'ĐĂYxˆ7:£7~l+ÈsQQ‹E,¹5Û † V¯¹îcÇ y>!Ó·ñT¹æggy˜@ḳá¾.²¶ƒ&I&/̉HrË÷́ǹ$øT¯ùŸÎ%%E#˜¸Já§À óYb#¯±/ª2=4Îx@r'¸"¸L&‰¤fQ¹½‹0©Ct½¢dƒ.ƒÿ‡ù¦̃±íQç9ÛåMâ5Ể~R¤jXJ*s6(çr6vׂºÿÈ4 w6Œÿ—L₫[í©ÙJœè|] Ạ̀‚? å¶̣öËï×4ü9˜ă9ÿ§Ù‘áZIùsđü5Ä!/¬ÅX=í]€¢X˜©èd[\h“æ÷öQIĐĂdæÀ«[#w–x€¶˜ñÍ…Oï+YçK±Î¥XÙ)g ă)&ÇÂí‰ÀçäiÁnmƯ„”0¤å)pU{„v̀™ß.ưKô­¬ă& đèí].₫ơÉé“SúD±Ç£íH·̃+Ím~S#‰pZ¯±•˜6qB< zœÓw¿çmL;›l¼•N–$#yqÏôîÙ¶æ¸-üâ9#[¼IŸ•ZB¬eđ[Ù´·R̃gă‰đáÎ!z?ªüâ >Yz‹‹àđtH̃?KVc¢Q¾÷á“Xyß]R«µQÓs Ï­ˆ§!°çf»ÛÛ”¸ ;ØU³DhÔz¦R*: +†>RƯL^?zy‘,ky ˆpûGI‡îâ?¶5ªŒ¥Ÿ”:ÿĐnˆ”ç÷6*QN_”x²Ê‚RD ÖÚ;ÔdÄ0¤t¦]…øƯeIƒæfÍ2Ù²¦\H̃À4 ̀-':`µÓ$fè`ÉË)aœ`=yUgÈÉo ªƯ%«|r­â°]UE{¤-|:3sØjÑsÎĐ ư€(½Jœ̃“(7nôj½€̣¸¹—! éưœ¨´ƒ¸Zd6¾1]Ư–‚o·O g"P±Qđ»!;‡D à%4\ºßzµt5¿qˆTdhŸ₫+"·Ăÿă¥D˜½îü†rN[ »3,y^æTßàÀ0¸(´K~Mị́Çüˆlá:ö%0ÇœCØÂ÷äö_ÿs´F¹:ˆëU(D–öOÙL™huĂ%(„Gä̃ Đu¯D·T»ÑvUêƠ‡́è‡ơµ]¶Ÿ£àc²°….cÀĐæ_¦¸6êÑRux5œm÷p™Is—¹ ›̃›>½PH%Éw·É½.Äù“Ö´J[ÇaËoHñơơ!̣Ú‹ơæó—²xÓS óO¬Ô¦D÷ßy„’**$ÛáôÂMWP#6Mĺ×Å»‚íön£e^`Ô¾îE?3ïQ}ăăÉØ F¢„µáq Dœ4‡jêüT,ŒkÔ¼"_¼:ăkvú)7Å0f†₫5ôïwđsÙ‚I¹nÅ͉ĐĂ6S«åƠ%Àjœ́ÔaJíí²Ø©Ñl>äT¾p­›aÂ3V%Å­T{Opà{»́êÛv́A3ùt„\¼æàâđm̃²‰`gDÜLe‹₫-ô…á_Ë./ç'/Éù—µFæó¾q,)¬BC c5˜FZÏdñbÙ‘8Èi ¢"TtỪÑܸå*<ĂlÛƒ©–h`°#Ú9¼£ímQCă^f‰ơæ§q„¿€r|íX»̀'„Ïf‹™ÙơºT\¦¼<º21c/…÷ƒ²lq2éôWF¼øK=ư¶]:åhùÉ!8}ËÈô—É?2b]L2\%Ö7‹ß¤-ºÉ· %2>mKÅKÀ³†ÈÆ{d‚½eBåzÂYhcŸ{_;rÙƠ¤IÓJ-]”²}r$4ÑÆåÿĂD‰hrđ2ƒƯÚZ̉ÂSÚF±ˆÑú”˜Ÿ4›ªûP+ĺuÉ­”Ws¨¦Q#!j]5»CBRÆ}7#£WMŒÉ*Xót~5»<Ă©„ •(˜³pƯơº̀³èD(›½¿æ9¯Z„K ±[œßU-ë‡n—_›A¬œ+e+!Hh5YsŒÍgØ:kŸö§"à+ơ;ª2©Á BÔJínL{楼&œ” ÑËåR‘ –Ư‡Ó[¤:́ü~“^ÈßJÅ̀$ª6¼z̃=̣%Úe…Ộó†ie‹Â³kY´Pª…½R@¦?ÓKÁXeS\¨˜F+ ÈúĂIá‘V½q-ÛØÄ@ïß4ô¢9øpc@²Û1@W™o†Q&û­¿»ß‰)à •ù*ÚFÚ±Ơ‚î5W㬠ßc·“Ú˜4±¨I•0QöJẢøjT¯'ïᙼåça ÂΛ`&‡-–& WÙBܰé襟¶2v÷đÜÅzúú-W&º…L¼™¼ÀMLÉƠœ”2y†_µnúơÿAvŒ™ 0‰̀z0Û́[vï.j®× 9Í,̉ É\|Óbù/ír`µ~ dºcÔóqü“…3/ưuˆ•…ttBŸ­†Rèù.^œ¤Ú_ñ7̣†*¸+ÇîsDÇ JVăƯ{ÑœwYè°UuĐ à7O´]gÔ“Å4ê‰ñ®,/©üA@-EpÍåÉO‘Cnˆ ¥Q…vQ̃Tâ(<6Vl”v¢§‘&ÿ¬×~8)³¨̉Ăx̀•0©à>êÔ„3<ÓWΡ/ëô8Ô¤~Ñ”v³ím˜Hˆ‘3¹'û HYºB³³ªú#ç^9œ£Nb²”½síÏj»Ds'Á‡‹o0¯fÀè‹&óiă9 ¥¿ó®EVĂm¯}Û¦C(&÷ˆĂáầ~Q-.YAd[H‰Fôở“sVͼUóoÇß=çpÚLteK+I| ĂC•#p)g*F¦%<đDA‰T¹L¨/ỹ, h¼¸<Á3g‡×1>ô\ßÀ=‘Û·7Ø1‰\:BR0JÀ€ÈẰéúmbÿVoZKu‘ơC5ơçzóÔp者志L‰ *§qă÷.NL?FÅ“¿¦¯¬B5îF·†ÀcfÄÇy>v¯»ÜZUṣưgA~gô|̃7û_Ó¸)Y†ơXÁ,r™‡#á½X ´ ³Œ'Æ8D‰ĂGÇÄ₫6ÿÔQ,ơ˜rR«¤®¨à››­Sç¨yx´ÂC^CF“\¶7D:pÂSàxaáÔF§LeTÆU^­–yzMß`Yf«Ư±€F-g³•/)Ѿ̉ {•I=ôWÓ‘»œuŤ°K\»3%ÚÚ¸`öÛû䈘Ơÿ<ÇÀÆ2]“CÎ:ŸwN£´”5ö~S%³ËÍ&ÊÖtá3ơ¬̣µ¢…ÈÙ®‚»*‹A¥bîS(­‰ă_óbÓ¢0N­j{â=E6¦¥lh•¶ZđvŒăñÏ.ë½2ùåܬmr R‰Ï£7êâ`ú¹3Óm™:§ ûĂœA‹Ơ‘ÆÎ}P@¾³ö₫`ŒjÍ\åÛa€©$²R¶V†ÿ0ç‚]›ÈkǶ$X®ù·»ÓM"yíD|ÏŒ“™û™óƒ¨ư ̃úZMcé¤tÏU¯»z¦âvAñ5xætH8@^Pû-ùTH²J 6̉Ä:¼"Ï•̉nvO[đYho‰(ơúD»¿•¨{î-®ơ¦¶Ÿ}3mĂ·4" BƤ”Ơ”gS¤2ă`È*E…_ö«aiÍR’EL¡"ç5î’ÂU"*ø;Œ"EÿÛÿ=l5‡BC‚}®[uơHqx‰¬aÆ=UĂôŸamá‰â¬†9ˆ^ä†í·*™c(Ö₫àQ€±›{k8wéDË£ÜĂI¦í₫ÅX!-V}̃ưcÖLªÚƒe½ÑpÖ#đGé¯^ ~²¨¶Ë–›Xn ₫˜=¾‰§‡([GuÇÚ…K¦;·’9ÆË°‘r”©ÍNsŸ~4 ±¶`7ø)örD£w(Œeµ̀£ßί}øs#"6p€=86ŒD°QűQ8DcØ—¯¾Jæ’ô_O"—ï·öFJ àé% Å`L²o`×Ṃœ7\„j}€¼,”kñÔí ;H[\£ƠÂ&!÷eâ,9xLg~˜—+:Q™"L÷3̉y ñL.C}à¶ÿơºG­á̉üñ̀%w'9xä› ÙÖè²Ö£×,Lf»:6Aƒ.Üàgø3ƠÙ¶mr”ă¡Gd–­Ö½ÛjđQR %°nÿ¿°½q4mQó́ÓHKª-̀¢è¥Ú'‰K%¼Œ×€DĂ}Ñù‹–Ê¡а,@'™Un!O´ι•¥˜öß.ÊysåÓ<•\€̉™ eh¯ºw¾"ƒƯøz*H9ËmYBØfÔ¸ZäsBæ…wUL<‰́íuó%gÏ£n…›|„³"?s•¬¢[³D…ç?Ùhơ4r6̉œoxĐ¥yŸG5m³ƒ|hÏËđ₫máà„.ßÜQJäm#ă»qŸq»>êQ©́ük Q¦[L÷n z¬ú̃  …÷^ăqCÖƠ¯>ÛØg;4~ư—èÓ„Y¼<"W:”¼IÅ»EZ~3t¯±£7é†ê¸¦c×Ñ-ͳ «/0jæ6i®(xn@¦ç×cÍÁ5zVâ8A†œªøÀÆÁÖSñó}çx’ÖË¥ănG1÷œg68¨˜Aüz V>²E?ê5¡…–»$£=­đai¹ÑŒmœ8ă¢úq‚>¨úÅôçêCÔ«ÜÆ‰níÑ&Ç•Éû”üâƠáQüh¥d Ọ̈}QcS=kÙ¼°a빤§}ù kD8ƯăW u™•œ9ÅY-Oל5uQo7™C¤a*ä" uĂg̃_ÂA•rÇʈ w±¡Íđơ²sÁO52MLG@»ư,É:Ê)QªUú½[²hM~z:?ÿcÁà` MHD—ªÛïÜ›¿"̉Ù¬D»íB$¥é¿k!ßm cRLïliÔ&M0=¼´rÜđñTUœGlêtóỎß½Q+5ÉZa‘^¿d~mR»M¦’Ùåsôh́đÊZüy[á s̀ă8€ø̣ªZÉÀ Ä…ÏS²÷ʳư ÿÖs¹ëÉ~8£=¸gÖ~`—ï…Ü„nG ¦¥7«:r}*S= X!GYâo±¤ˆkɈy1b_ánƒ÷ªÛÈ„S9>»CψaîaŸç-û…"Ă5ñWX÷ÑŸÜ#I9ö^…?<²Ñ–vY_}aÈ]°‰§È21}2eöúO@7s_ØÎ~D«uqȪÚïJj7₫óMsÚe7]'y_×,¹÷£ ˜\ïˆ÷­m^ÇÙ~qº·YÆurî•ápÑ\·«ÖM¢)eî₫'QcM§sˆ­Ođ”°fƯ™“TË»Ë&ă<ư™Ü7×]âEX<[»x/·.ñDä÷Tœâz}Ñj@\è¯x7O,W[(¦ƒ`ÆÎßd¥ú¬2àÄg°Æ!K×”î÷$¸ô.Q¡ä@̃²wKCyßËj\nÔB¨Ú ƒñ*v¿ ÂL: çG½få­«"=j[j´WÖF»Ö!½‘kW €ǘ»P@G¢B¤+—ûĂAQTjÛ›=7DÁ₫M–A–¬X¼¡}$©'F÷„“ZÏÚ’Á¤è  予̀ x ätú‚*M8墌ümv*x¤bØCHs~CËw€ø§~Ô¡¾éđƠë=́’ä&)²Ö?z¿‚ ZWÖt‹O\ñ?$‚kwDÍô&BëÉÍËNŒ¦é•¤Ư‚!ưÊ5·dÁ{ Të0;¸îSư V;/–‹8…£0ô)åñ@ñ,1₫¶>MƯ^Íuªee]ÀmÇq÷±Û‡——Ăz ¨‚=аW)´1j(“àNéñ£ç )hBó3̣³îè¹=?O*¹ê* N§ưđÖ£¢ï¤W6Üv'VÀÙ:ù¯åw“oq.EÔ®<ƒS˼¾köOœÓë@¶¶iˆÓ¿¯ Ï%äb¯ß@£ÁđÑk¾zđªy4ZîZ|ÇÛˆ¢ˆá •I₫æ‚lpŒ©WâÑ“ªt¹Qp8:‹¥Åí[Öó»)ÚgĐoŸ¤·Yd­êpxQÈO "o dçè(~̣yùéˆ Q|Oˆ È×P8(½í Óq•̃œcå„ÂåÎ÷;·´ „ m­ +”:́C yu6&`,̃€8ämº°ư™,üMÈ\—qƯˆ5ƒƒqˬaß,°5}}DÈØ —9&“–ĂÇ[ï»JÀû„Dˆ¡…̃đ·"{vèÄ (ѲVq3:*]È(/naRN’-QûÔ‹ ¤TZg˜§v®axƯjï³@w úr.m‰sC iÇư2 ôËTp‚6̣«Èéhh†;À)ß°ºHÎ@ê₫ßú!’ (́¼û¿Ä,î#¸AĂ-ûÈ™¯̀å₫Ë4¸«ë$[× ºCƠ™l÷²÷ pGÙúÉlß‘ËÖ߉øƒZº2ËŸ²:ïjc?ᦴă’«qf/#ÁmS—hA“‡OíyÂIÖÛÎŒiV'èÈäácor®h“ >tQR#Bda®â4Ọ̈ÏĐ^ßFC?8ư¹²5â Ëe¹́)K&̉t©?…+/Bóex@ăü…Ơê¦p²½ÜRpÿèP~F6ô¸bQp¤É{¸iFG̉ÛÄ«1vvf¬ f(”97EƯëßgLW–­2µ1zq|à°¬$ [ÎLéºĂÓi‰ñ ¤”*l² ºR̃‹áávhQpM­P(<ÎS[¤ºp ’ÄØ̀+¶¡§! ăÊIºC¥¬,_>á(å`ZhRn°!SèÉ€1›$“ù|ßKNå¦nº%S?ÇWZLJ•ïơÎí_Ô[œÖ^MH£ ₫û®­úF>„́q²êơăḿ]5]́TÔGOÂÖ—Sd>‡ÜoêO»l½;ç–C$gC qĐơwˆq~z6­z"hÁwƯ_L$5‹3pÓêJQœáPBP²äÂô^:¥†ÅeĐ$Ṇ̃S5Áwù‚+öl»ñÊ@:›ùÔ¨. jú DœU¥xèZAơLÔôé%Óv$ÚÈ`áŨ«<Ü&3gFGZhgb8§ºv—ÜÓD!í©h2=OSH]$¨¦¸ =²äú̀Ơ]5BWT#åR+G¯„v ¶§T¨ÿé̀œd Ûđg¹IgaĂé¦oå±×¥Áè†4* àø¢Öxl¥-¤’lĐL@¹uK¹+Q‡éƒD«I&Qç¿íôïܾsaZ‘Ñ$Ë‘Ú:[̣W$s1E¾t»Ơé€p_̃6vª³/SMœ¯ËüØж…äư`'Ùf\̣çHAªíc¬sV÷êl.™RïE&<’ºÆxÄ#Ú¯œócQ§ßGH̉ÚÏ6D&¶"Äg—²)”æÀÆfª¿¥«̃dè­pB́€KC̀²nưétaùĂ7d×cBÑëɉN¡r®Ö %72q(‹Ítñz’J ƠKí@rtxz¦Ô¨OûkÀÓ›à$ç!¡›B!ªüF^Êû»B… Öë:ó ¿±çÚ̀”&ŸÄîakt­= Vœ<¿2µêÏ<FÑÓOHeø†k[,¢Q/#†zÅǵ[iqxöI ú½-­ơ=´”EH—]ø™ö¼ugAëk'ˆÅF@±á*5Bo¦®B[ï@~rQ6‚¯#/X¨aF™jrK1©>¦{˵φù§€BÑ€€™ :l¨IºÎ4¶æZ–~ –áAG:ˆµ#“Ï€wº Ăî話ú"ö¾–MưÂ2ẵ×5®™Zóa·‰ÚK´¢5á&”_̉ª¦i¿y»°X›M­’*’ i»ă¬å]ÙNĂä£ËÖÿ̉K³ÏçM³0‚hhë~:*ß]5ºU¸Jx:²ÓÅü2z¹­U Û®c?]©±}E[™è2nz8؇ “¶wW«[G=±¥vi‚³€m¥'ü…nm hˆđ̃ÔÀyg@Đ @% à7l»÷§e6¡ÈZùÍ]ÀÎzH[đ†ØÁv¼È'!0̃₫q¤©ªº95̃us7Të«`VB_';çG @/;ØàªÍ×]eÑ]¸‹=`+ÿ…,1è}9záMÔv$Ë5®Sö‡„;ª7bY^ÿ… |>ÁzlcU ’ă3ª™¨¿×çM“aOK®ăuzûûhèSfù̀«¹¦öV1Âú5èƯf7çËŒ§Đ~–/‰E~o¡9ÈeH0À4+Ñc|g>%Z؃ *p}5f<^«7/AÖ‡Ă: ĐNŸäO%ô<LáUIn?À£„iQ́I|?ÉfúoV?Q ¯·®%¥kà,&Θ úØoØ‚F€8]ˈ$ên&ÔG…‹S½vJ»çơ]¤GÀU(đ-ü¯@»û˜ÿHfR’µwøIa‰eÀoѬ‡6­s=<7R8Eäï)ÜŒ±}Ă¿¬à!Đ"×¹dMƯ!UăĂo+ÿ₫/ht}®­»±/!6©ú¬í¨ÚOQ¨d¹sâ1wNsu«yɦɗ =`ùZ˜·ÁdƠ,¸ç1§\=₫;QE2#ờö3½ơkQ&É: Ơ-–îe}±Yqx~n²tÅnP ˜ÙOÀ†'ø@dè%ÁÙ¬ÿ2đr|z€¹̉ ~ø¸¨Éd¾²h lH2g6g#&(w̉%tM?w_›æ7Çî%ŹÚôkbSb:ÍßüÁ¥* ‘n€iµˆîSÄ)–:¼#ØĂ›̉¼_XĐ7ÀÜ̃'‡äu °S¨^£Kª¯.Û§j›{T …/Ç|ù‰§Z56$/l¼ DÚÓ5dl~ÀCQØ4…´ĂÀóF&@Å÷¡œG—½“Géveí¸l½,/ÚÉ}  /MùdùmµyL–mJƒ<¿’d†Æ)'üY³Î·we‹ŒÆăüøÀs‹3ăû(ïrEÄ9QɧQ̃™;>MgHIñc×9Ë̉÷ë'$Á̃t312K rĂ Å¨$!ôÿ–#5O0+”ö¯?jy¥[́nX*O₫0OV«6º¯KB½¬Efº̀À!·7e;˜ßƯ,‡½öƯóÓ=—B¥ç’VÁÆü¤q±‹ÊÓh¦¤vú+ë0¢a\9jáï*9b«OŸ5s?¯Î‰uióÊy†XÍïå)k; ­µ`l5»ØÎ|ØùTQJ†Y$-wÔ¸{Êí[ đ§ơ‹F•´JGt.àPsK¥5VydÖuScIkzÑ¡‹ƒh·ú™;ÈFñ}`˜à¨œvÁ»ËÆ®_Í}k‹—ªGs Öqp½®—4w hæLƯ@?¹Ÿ„&Ôe'´'z«û3êJ]sĐ%ráà²k¢ äJ®IF(>®©ƒ.Îó_‰”ƒ̀Æ»àW³ŒËñ¸è{F;s{øÏOƯ”ôÅ@;> _¶ Û‚â&ÂZºÿ‹Ü‹-²Å#̣Z…>²¡µ³Ä¬́!́5ó‰x­>ˆGªèd+„ôvÅGW !×f¨ëGÓå#|¨¡̃Ó[)‚–ß}ä₫ ÏC̀Gÿ¢F;9”]¾”f³ƯåøtÅ—å9Â?èà̃KW”ä0_îuơC÷®tKQÛ7úˆ¾<a(±ÁÎƯH‚Ü-.÷$€2Á™ /† àOgĺ6œ5Ä_(÷@# ú«ơăƒ9zm/9&M:1ŸŸ¿) ˆúÈdơÙ#8®™ %)ù₫E0Ă ÖebĐúX"ñ]o±‹ó—ê¡$«Œ±áT‡âœ¨Et…À‚µØ«YU°[‡ËLÀØaäæI˜d†&+̃Ămb₫ƒA§·sÆ‹.j‹Í«3 x~D-=ssƠË{—D«Ye˜ƒ‡¡ôöó¢ƠÊ áÀé/‡q5”Ea\7Êaq ùä¹÷² µ/×P.ëU²u˜̉=À‰`±?¸|5Ôªk'+­üôsMÁTƠçÚäÁ 7\êùG½öhä;KÏCP¬°9a[†8„R—Ø+™x€!đQ_¯.„Eßs¹ Û ư]̣ôèåq"صq°\8î ùêœí®×€å‘ïOøªK*̉Ÿ æ³[Åœå|98£orfM°ç “ œ³y§`đÔ«MŒ{M ‚“Fl±â°₫uVª4´W ¬zs·¨ĐÙ·;‡ ¥ÇĐp{‚œÅĂ´Ï~’”¨©+÷6ŒÔPªjPƯ–v:]›^wŸ®3ệCÑöÑæCq4˯= ¨pYÎS¤D×”~(Áû? R—=ÓWNdƒD–èë8ªÔ₫{ă‡_¿î§ºI°^FÓ{lÍ >Ós)Ïă‡E»Âp Đ™‹ sJĐ$ ¯²5*pÂsƒ¸Ϫ&ßOFá|=Y&3M®ĂM¨CS•Ètüođ‹5;Fiûúư?¢“…P—©A¥å5”îÁ«Ê! eÿƸË,6Z…œ̃€p›®å èiZVµĂ\Í:Ø¢àê-fE<–üœ#¹<‚¨Û¹%À¼—©”È©Œ³ö$?¨‘VB¯Êˆø®üÅ3¤_›²yÂ^ËÀª™¢ÀZkƠ0=R°^ÜÚ̃°i&’´₫ï̃ ­Ö#œœR?z¼NvUº.î?sñÿü6¸·u€äJË?æƠ"h‰1æÇ²Ñ‘{Ú‹뉗©6nÍTüCOæÆâÎP^΢|"¨ƒd&T6Êáwú_+, ’#¼hk‘ç%îrO0ăë–#^ªˆ  „-’’́{K$œṼ&'ë†!Fª²SÜ₫đ2f6‡9÷´Ù¬! $+>™ufăG_5'ƯÂŒ(o«›®)(g®9¢Á@•µùFÄƯóË2À%‘̀ç[N4GĂzî_Ú¶”R4†+)Y@Å¿°=¢mÓt ·0“&̀´Dѵ'Øxôâ\óCŒA3«-íZùå¢!NÄT¯˜f*MD7ÇOPàÎm›²ê*-t–C¶ÅXU$« †Ao†dA_Ù̀m#~îÅÀµ%pˆ^LBdÄoOÂfHOÈ!¤ÉÀ%̃mq;À0˜½făŒ¡$Bàáªu5ưWm}z«$(Cw×(“ ‘P­©mpƠFmÙèËP¤ƒ¬Ç‘kL‹àßÁă¥É”R€FîfJ¡×…èơÇ´a6vĐÀ×;ˆÎŸ=%‹¶EG‹ƯWÓ§+[>£7Ø[¥HPÍ©‡E’öÂ×Ö'L¯U½ €ÉQ¤×W+àŸ?đ¬Îª̀§:בÈc{†`ơ]Đ9¥øŸraêå ›Y=·àÄѬÑMUá%̣¦ùh¬{¦“âtügZ¹ü›d•¨Ö9Ö+LGUơ=C“g„Đ‹`³´\‚ÀĐÁ3ØĂe¹p˜}³ ëÍ»†Y P¡›h•Ø)ÁˆæÑ̀Qeîewº˜ŒS̉ÏLZd"%›¸N[øÍ/=¹âŸô .@臭±Ä3§û óÀ︧0æñ©e·_/!€Æµ6'ö€sá`Ơ*Ï{“óüÑq·Ư ¡i³÷Ú‚í½9Á;ÚÅÿ@~æm‚̃‡Á¹U®…Cÿ 7Ø­ ³&¨̣êo›T`!È‹q!wû½ Ú{f¿5gÎđƯM|>d‚öA_¦ÈŸÍÈOC²Æ|Ö½5†ug¹ÍÈmªy ˜$Đë¢Î&ˆƯ;±°(\m̉‹Ø9@O|Îm^"ù.…¤­°¿+ÈM¯t€ ‹Æ_́R“½t‚;™!HœêcS-‡ó>.}¿ÂoÔ †MăWđp?Bü 31O§·|ùM`2¹’ăV~Fñ₫`Iâiª{•2C,öZº¾„(Q,8“¹£›æ&M× @N"aă‹9©¡%İ£v™|¾›ÿ·Üÿ{‰ÎÍ ô†Æ§p‚Đ_ÏBè‚3Ir‹Eïÿ÷™¿»¥u£eü«|’yÿf:06¸¨/;ë&îÈă ;¥âïÍry²ă×ÿ-jkïîp†¨;¦Îï} ˆâhpñ^GÀE—æ˜+˜Ö~rÎ>‘Ws”ʼĐ"ñp¦ÇC*|5é;'JÜ •ï3'çèÈ W=̃dÄ₫«zắüK« MĐp*́d*]ICúàḈ ÑVé“fË‚"2&aI Ñ›à•+0¹½»̀í¤Ä³izP¨Đ­x$ ̀Åå F”O n% €¦~Œ7Œô\(ê¾À¶đ„$̃Yó[3I6ŸsL€LÂV|ú°? ]oe@RYh<ô¢¾’Yoî{’â6 (’¿øî‡“<=en#SÜb$’Ú̉!ÔL€-*̉ ¨N´xS3MRksaï à9àè̉£( €đ‹^;©t75ítÇ̀tkiè(™7V.Ÿ›¦OP~áîóJ ¾ 1…­P™ü¬„ºOíđĂ´[¡ùKô¤̣7Nă?ïÁưf¢₫vébăV‘Ố62#¾O"Ú8€̉Ô¡$åEs[Xª31 ?ö0A₫/Ú½ÂÉGA©BO^&ÄéR%èPz…ũiS}äJ~%HÄ{ÇÅцû£ÎÙÉÿ/4ÀZM_úÎve’‚đđ‘ờzÇ 5Ip¬Y¨óg¡AÂ2ªô‡#Û™¶í{§:’ïD¾ÏÛ[ªû®^³IÏ”¶4ó®"V‹o`Î:|Rñ6L²?[Ü·M¦Ăn+ấ¨|íë!ÔĐ´BQ°&‡Rđ™Ô¸đtF™Ê£üʧ<1̣²Ó [6˜ûỌ̈f¤¡(MåñÚ!¼½_đ8K³ƯÁª ÖJ½¿ûĂÊ C»ÊÜ‘̉Í`åa‘9ÎHÑFGZƒ™È˜íRÍ9Ù‚=U¦0Úa?ü2ë HóZÉ€™³?ÖĐwS)k+X Û~åjcFñí̉k´È¶w+[ªz·›œ±!†$rĐ¥ö₫ỏ‹êK"…7gÔ¼6%VƠÑ^e•K™B;`rF ÂƠÎ;·z¸­Ăy—ƠM̉¨ûƯÄƠ₫ệè§æ2;(»6™¶K¾¨Ú{Qô₫%-àQn Â(› 0á) ,¨¼ˆV¹>EZ€øḌ-Ă¼§À ¢«¤@'qó~Zơü€œ~}“¹™P3?» lÿ¹(&ËƯ÷Î÷/Vn]ăíÊ^}¯Ù{<ªø•'ë3ŒüQÔª ¯z”­ÔÅçEÙ€í6çæ8ÏæYQ_'nCï1T"[k`N+Ï-AZŸ1Ó;—̃˜}‚̀'G Ờˆ`½Kñ“øUà}1…fX'›cÆ1=Ùº‹Kæ­ŒßOỴ̈ê:xû,…ÆK¥́'"™mZÅ—xÿ¿ÑDU’Ú‚îüÛ8 œêÑÆă_LgåQ¹3Q̃Á÷n4Ù—GJ/8Jç(ר|‹3|²æf—¦jö!Ü…èíBW°ÊçŸx·q€‰uö»W‚ĂÙmO/K“Tƒ´:3`ˆđê±€Dổ6+aÜl6 M•À÷*ß /(óD¢̣î}HoÈFç ßhËó;Åc¬j¶¸é Yj6v>,#ƯøZgsº Q<)}ÿ ½ç)7©Çëơñ™€60P«́…?ơ ëRZ„â#c^¤(b/¤ed]ûü­°ÊóQñû”µçö¾ÄËN ˜^‹­¶Ä¦O×ÎÁ¾h·åó÷¬Å-Á—v8 ƒÆ‹¸>WmÖï„;‰™q “œ¿_<„ugy^MîO B¢Ocàô>Û™Èo×¢ÓÖ´LÈñw̃ă¡4&Qׇkøªhj¯l5ÂrdE—›+…°7F‹8 €đă‚´âÊư q¬H°)öC½¼Ê…4 »!̃qlx¬cơÛ X±ñ©Â zÓo‡ à+ÎMo}ơDé§ô´7ec–[̃­ơƯƒyósdRÀ}ʈÉ'QF±nBx£B‘…œ7B’5–¯ÛV0Ú¢ :M6\ÔĐ›cµ ̉Yg¦&1˜(¬À¶˜rr‚QZi—Ÿ$Rü¢ªÔѧK†ÿèw‰û;ư5é(¸̃%0¤dÀR"±lÖÛ‚Lüy—\̣xÑ )Â’·¤Ø»̀J́¬0_r+áz¥PÆS>1…ß„#,bĐö|«á¿¾CÍ»KíÀMGç\ÿ1è)X́Ñ̃©Å)ÔPF¾ru–wâÙE¦]¼,ç̀0ëTÆ̣T®Æ–k—z‘ȸùég Í uñe󦑿 _1'G¬˪Í®×ùû¿S»¬¾‡°S£ÀƯ„;»æDçLÔô)@ù`£†  Ÿÿ=06<•¡Œ}±•ô?}À¹œd>F÷HơM|ư'£yq1 ˆ»6œ«™TÂÍÎJü½’ÿ²¢ÀÉLö`ßu„€tf$đ67/J̀[:JH˜}F7ƼˆƒCă.÷MsÂ~\96kă·démÉĐƠsT¶D>WgFQ‘“Îcï%±‘êö^÷Ơ·€ÓVZSWY¼B÷K¡°Hy0b¹ )ëM®ư•PIúôêßCbyÖyFV7~Eä†p·åd~H•јº1E(kP©¯½qơ€N²eZ₫ƠüÅ|ă «̀•­‚v€ô|YA3O¶:×₫ä] d!¯ °,‹¿9ñ ¶©<6À'®$UÍD®ÊS×t‡aRs±öf̀n[%F™•Æđ‰oKÓ{G Woب•F­Ë•f¿–É-u5ưN#5 $¯ñÄè°đÏ“Û½îøºD@?OĐV @¼xß"ÙS̃™§{¢¼í̉&k{‹{]O ÷i¶“ϾL][ùí´|Yc;bg—…¬y_ÿæ&ߥFùÑZT™V«=K78ï[ÏU®4ÍxZá¼ûA÷D>g@Åá)¶N“Æưk;²}›í̉Nøà¿³ĺb=M+:2́°úaü‚Ç̀{€˜âY܉"#ƒ(Ü5 ó\«Â¾a? 7:7q„~ếˆ %r•°h«YB' “º©̃•«P&bÙṔVˆÁåRhº=hḌÜ×8Åߦ=r'«ÓÆ6Ijµ¤ÅÓÄf4ê4ec§´£X$J&LañBÿÓƯâSƒq ,.ßIÊĂ® å1”«¨ C³ ]ú̃r=ËǦHÇ“xÚÖ(s&síäjná*›̃j̃@pa^÷A<÷1Ïq̀‘¢@%EÜåÙw fáâ4‹µrP , O-A´¶íÀUư˜<‘L·Đؾ!äf¡¢X‘fÍ„„½úh‹?¸âĂº?#‡>FT V‘º»w•₫Ư/ßÙ¶B&(½°m­„̉‰r·Â‹*@¥(­3¥ëFƒoF¯/üÀ Tÿd­ …kEÛ‰L¢‡H|—ߪG₫;ưüäLÄÁ¦B߉î¾<‹óî::̉k¶¯ÑXT¤×D¦¡H‘s*)< 3µ‹:µÚ!6p>ôÏ!V’•¶'W‘„œ³±ˆ C.o18¬zM ŸØÇ¢À^çwn9hlk¿%ÔÁ/Oưû½£uĐĐœ ?+3§s…"¡wK{aÂd/& ¸o5u¶MáGâ,/W3k<Á/ ؤ丸yâ[Á+Öª¶‰đ»'0‰aX†o<Ûn˜—÷%'²đĐó˜ăÉ•¥üù7ÙG¨¶[ñTµw¶Æ ¶™Ü¥´ÖÜê­­+'ü,>TûL›+æ>ûرÎ÷§7½H«{̃¼ï¯îç³ç¶µÜS¼‡‡¡nb×tM«XË"í0Ăô`ÀBeÎù́}ơx̀b¾i èC§+¬ÿ|â=zÊÚŕÚ¡öiŒÙc:‚Œ+ó&!–gCrF~UHkÀØB®äYÄ&ơ7H­WôÔaÿ¬5‰vxĐÿI³Ú™É÷ơ¤Á6y„üÙ!v$Ëfï ƒ±nŸÂé₫¿O–CïWEQë€Đ) ŒÇŒú´æs[ç[HJü:ËEl—ñ$NW1ØmE?  ç̃æùoÅD Á̀·₫6¥cœ9,ÇÔ•LÉ œÎsE4ü˜ÁŸñºMN¯74XpĂ+ÅPYàùŒ5>`÷Jb½Ñ8Hq/¨_%;Ø‹€sl[eà:ôbç…I‰ñû·eúĂÁ%ºV*ˆ2–’p°Æ%^&̉¥9s©Ä#+Ơà̀°ñŸCư=Á̉ÜÏ Ñê(~¥‡ß‡èàg _aKK»EKN˜ZR¿7SÿÜ_M!o?đc†>óÚđçÿeL¿Øx]wZcă|Ÿ~ö.>ÅcdW;uyæç]̉äđ*j¿!”âJ§̀rÉ2‹ç×¶¸`“î‚ƠCôÛLT5¹¸à}p%%uUÆ•.†ˆ9ë`û­·€¹Sdˆ ê× L­Ơ¸_8r·‰ ÜC}”Ëv½yÓ=#ȇz̀OyKÆ—ltˆôø~Ub•­¥²X­&ëEø÷ÓèʹÏ oúw†ÂÉÏyă!8ߟ±ẻß´â¡ă·| Z7ëlN)q-¹«€éó¯W5]ôü¼”WÖCn°³³ÿ›½>¨x—ôö—÷Û[÷Í ?•<68@S¶hy!ôz¸NqKµq™&†x6æ0m_ùLf¦R~vÊ¿½[UÙ]ÿ°*ƒ-Ê®V’₫U¶4Ư# +;§₫(H·Ï‰³~¸U¢"+£dMm¨Ơ˜yô`ÇR“ "÷'¹cÇû©ORqX›ˆ7%">Ü)̃Ø1±SÏ]O²“Öñu”±:ËCư.dúÈçÛæ˜:­}¹WtD™ÚÁ̉µc´g‡ñK<˜½ê}AåÂĐâÑ·¾O'ææËđ¢aU˜¶æ³èêW\ø7‹aÍA›sˆî~x)å÷pëªă†&;è9B̀ˆXæS1 }mïµ@Ñ”Ii¾V†WÊÆ—Q($/„Œ›‘̀Íu> ›+9Æ7ÓbƯˆăà²2?6PÚ´_[º¸`l¾Ú4YDĐ0y9đÉ7³³ŸcXâ»\–xẰ³ >]of¦!ïi6gEy1¯,é ¥²ö=Î*Èäéÿ'5\Ûo´ÿè”r˜™Ä˜“{)Ø0/Ưwcu>8~¤Å”´©Í#£sœœ`ú₫’¡ÁSD'~Ù;çÿo»¯âœÛcí£yu !HxÎÿºCF Oê°4„&\¦¼K‚OŒü=4]Kü+—•}c¿Ọù6]q‚eÙñ‡»Ù£ƒjzII8.ă*Ô]©|€ Ô‚#Rđn°Py3Œoà¢aáñ§²ß)6‰ôÉÍñ~Ú·) ơ|µ»À‚ÎC Ơ÷ê¼PÔÀ‚¼-˜ßä/XƠûÛơª›¿˜́h‰ơmôÀg“¬0SÙR†Ÿ,›7ƯO1>]'Ø'¨â^÷ùWÉ+–tuDǾ [£PuDq=]‹Uoú¨9jêƯPị̈xDeù „‘³• x†}.˜a¡?ÿocVçÆ\fX‰ư`Q¶(©=§ÑÎ4ˆ}f}2Y3 ^.²PñËÀ±"̉E¾dQ°ơƯ &̉€¬÷œƒFÄkBv̀˜¶Å̃Û¾;Ú,éˆL±«ÀLsâåë>̀l3Æ×餄ö.å|¶ß6‹&4÷,ªr“ŸÏ̃nFDkjàßvÅÉ€Yßó"ŒÜ u×·ÆÄ¢í!=äJ¾₫áß ‚¼†©ÔJ‰²¹i¬¾₫ˆO ¯KÜvº’²Ä= Đ³Pú¤ÆâkîcfĂ[ÊüØÎ@u9DSz̀ŒĂqru¼5“E8¦`̃âdWàWźWÈz!‘ùƠÓ§D¶Ùu`篅æă¾ ­*tcuˆN4¬̀ÉaÉ÷}Kđ*¸EÅÎC^i!Gí¿S1]1­#0Y]î£$Êz¿yè³$}% øE¬…˜\¿T”Ö¬›'f4%±ÅĐ-Ïü̃EuJ@‘Åß@¨_@»vA_₫AuugÖèµM ®Ó ²°vÇ"­¥nî-Æ5M*ê"”Êx¿¦–48HăiDïÜêü/Ưf7[«*\0j <åœ?ª“ù̉¸H₫º±wV$䂲o}he¯t  ˜Î…̀ÑUưµnÛGó½¥ÙƠ®–öqTÅö &ª;ˆ¦ª3©çS¯2ó6”½¨‰¶U³$hbä&›ÁúZ¤{ï— ¤m`Ft0HQ9•SÏ^r&À²²»ÈỐĂ×’Á3ÖHrvp¨‰r™DëNå´pcEká’]—đKuVxhr§ Q'.È$×£Ă·äpđÀ@YC:8y’qà¡GYG0F̀{:35‘BGoûĂË ~(…pD N©!{¿oT'o:zs*cϹF…feDGy_6)„ §£&QÄèW⨪>Å]>¬8KM°̉ÁÓ^f¯ú[‡Ö@_¸Ó€n!/¨FíKeNµ³¾RQM‹=ØÈ‚,·›ÓH8CÍûƯøÁ/Ø”˜Çøƒ / Â?“®;KÇë́×I."å®ÜJ>ÁçµƯa‚\Po«|ïY¨y*•¿ˆ-L8ŒÏưàix…¾Û6sŸZ Y/ eăcoê?êR-¾û¥DèË mf̀ƨ&àr†ḥ¯/™;Ayẳ¤ßáâgdzEÄÆ²=,›ås0µÜ0åù*]åÙ:e ́àH*ô‡X¾‡(|fQ–ftÔ¹¡ó‘6́ă(—\w¢ Ziiyăë§;ªuî1 ‰æ çºËÑØÏ—.×ümF\æ>\Î[ÜJíúÂ₫ ÿ«₫IÖÑ%a¢Bql}LȱÈvÄ©F~èæà¥%(}e5<¬_ 8~ˆ4•ÿ́̃V]₫VúœßđÍÍ<¼ƯÜ¢,lÍ$\!@Qßr)c´µÓ ³B¤»,×;˜=*4>~rÖ±g÷ºÚ‚¦ Nßœ2ˆè/¦ úŒÇ8FïpÖ±•¾H?₫Ó%EyÈwœCXÍóôë4x‚ ƯƇ)5™ )(+›¾eN¤(² –Ó+2ÿ߈»„Læn`̣Rh¿P,ÜAæËÖ¨`ÜØv₫§́—›MR¤‰¬̃ñ ¿x« Ă4ªƠèª^Q ®D“GØbʼL) ¯µ{FúÑÈçÿTåÇ¥ààÁƯ“̃É ‚àJÈ $NfnơÀÔ!̀0Ë}+æ™ÁV‘o>4m 6¼–ƠÛ₫fdCdƯ²t½bEn`ËĂ¥8nè°đđvzwQÊO-Ä‚ºƒÚÎFq8Ô߀‰zó;‰₫zî₫l&ç̉>×w™®ç§§§ÎQ7PæeÊ¿@²œV).Ưˆ+¢Wºf~ÄD₫âä;V¾ºú§c#̃7D»“©­ÊqçFÚ“—ë]!‡N₫©/¸eª­Øm¢ŒTtGb̃nÊáa ›¿–ä]>#Œˆ{©:¥RøW Ÿóá¥)ûƒC€ÛJ_60tEî‚M“Ÿ£{Ư~“Ùë›̣ơI}T Këà†±¯L0a‚¨§²z¯ÈÓ`C`Çí Ñü©¨;kƠ_?{Öv}q³ÿª́µ„ÿ|pî":Ápu˜©ư64&ÑHhxáOfÂ,ebëỘ£8•¢;°•eæú"K 1‡ØÇüL—„ÏÆŸ,v="đÍÀcưUqOé#ÙRdoPƯ †›#2ó)¯4ñY¢ÏO° ïU2Ú¤áQjD¥̃Œ,Í%‰Ä?ú\3ñ8|âÚx[Œl…¢o«´a8G†ß£éú÷Öt^„%’ƯÁÓ©eW-£k.ù!®ˆ‰;H¶YÛ̀…óØÛ½!̣̀Iû¤†)Ưèö ó"ôÚа9Ưܾφ\¯3·JÖШZ„¹±ƯŸq¹tƒzKPlkĂÿ ˜đê+àà÷dyÜBiƒÅ> j* @$¿C̉R×°ªOúÍBâ30TÇIHɦƵ*ă»)?>aí£Iˆ.%öÂÿ8È\…T]>t³fUúă`¹{0_á“$̉½ä^£ö“G›úh’ ³Œ¾ ́¯PÙIAGUä bs¿AíQ—x‰ä7§ø‚Û:€Í±’ ÷ytÚ Ơ`ÿ¬vWx $%(.kư¼Ud¿1}̣À¼5ă ÁHÆU”¬´€i-gí§oEßORræ2‰e?¸,U.ç ßmØ e™ûë4WƯƯŘ ·Âh$Íêvaĉ§̉ÄƯ@3JRậ€¿‰́L=U®ä'‘¥k|S“‘¢évnèqÁ}¥¾úÈ́†?Ñ#A ₫碼XÀë₫yw)ÜO1êX•À†$ØôĐOÿ¦Œ ÀYû}0ÅÙtŒÀчúzAPjÅû?Ö,Đơ«¾ßƯÛ/r„Ú+©«‚™ư&W$ª+¢öE-q;éÜn₫©cJ Ù~:ă£tă-Đ4D…i5KØd³Å“[ÍĂ>áA9f‚Å2ÍhX8‹kùY fn (ŒÜ`ƒÔ)шũlwTÍêD¹]¸¬́eü₫ôÀàU<ŸBí’zF‰J·"ó]œ78tc«æ{™ToA•‹6‚óƯ9Z:é;jÚ-Ù†5 ©<$—rTüüÓÈÆ î6 '|+ĐCUïl‚_Í‹ßă²'ét²{á@³¯*^q¿w77̀©C̉rd­Ïª©µ-zÿŸ…}Ñɲ©¼¥•·¢¦“h• éc¯íüÙ(a‡¤¯Ç,(7ÓrPQ˜HÎt£ôp¦?5K¦N.ƯÿäâD›«˜Ô¨đl{Á^Ëv£90_ NéVÁ „h–¼L0ísˆvθ×°̉Äy á(Ûj…§†1ùfM<æ7A¤àơ<¸Ë~ĂEα;ˆ½€À1b&È¢œJɼÚ=ú"́l»àîÚ©µ¿±8® ºƯĂäÓ'̃_1/íü;Å‹jiĂ¥OEå¦.€Ä05ñ„é%₫D̉“»¡o–å’ö»-kwg,,ö”«C‡Ăƒ»\>rƠL7^NÈÎăû<ÈÆ>…¨R\’Àăæ$F ¢÷Ë‹¢qäạ̊ü/[²t¼‰wrUĂà›x‡&; 7ÿ ª`ÏẲÜëcç˜̀Mº ².xǸT¸ÅP±L%N~™é²?̀7¥Ùr5l<́Zt¡…±ï5öâ?+{º˜’Ée8˜;§¤rÎ|?î÷̃Nçº2â§ßWF©< ¼è%RˆdxÔvf<îŽ_ÑÓ/G5̀e'~+i(́ô|ư´ƠÍÖ/ÀeÈ|÷×¶₫ĐiÊó³â»>”}ǃ!•ªâOrĐ¦Ë¹7v́ ÔR}̀Ä•ÙûÍxMZ\Xød™æĂđ]PÅ̀Ñú.yÉFƯ(pºÎNÎÈ“æ£ ’¦–ưE)"U•„=*¦0æO@:·§̣v”edZI`c—'p"0ó̉TEăïÍ­¶@1«Đ¥§‹~Z¾êu‚FB±yX¥·«‹₫*–Ñ×dÿzạ̊[dGf–I"M;3eđ~°ª˜%ü†-Å!½$»ØL—`æ₫¨h#Èö¼ïX‚€—¦£ÿVàw—°¿^¼kỌôϵR]4O£Øè6S·“£%û€ÓÀÎâJ}ê|\ĂƯ%ÅØÀå_“´Ø‡y2y÷çë±·¨6"Âÿ>c%A©€7©DLˆJøÄÅ ¢}›2h5ÿæ!¦#Çđ¶+…bö\u®b ‚)œ&Ï_›N]ü¹Ï&åsf²Å‰"û«ñÁX’¿½¹£:ÅXH8osT;“”dSyĐ̣A%ÔỈ¥µ×&™æÍ₫Ä;Ñ›̣ß2ÅĂÀ¢ơ ;IŒÆÍ“¢ HhÔßƯ“wæAѵâÆ{÷ÛÅ´BiM˯ç¿E†•uM2xN%d"†L̀ĂBÑM¡…Z…›ôjƠK̃a¨Çé‹^%Ú#/—L`çÛÁDï…Q`ëđwå9Œ̣NÙ¬+ †²ơ6ă[{è￱nT ’º•ɲđ=éđ´ËÛàù³ơOyH»­Ă…ú-¶¢q µĐ)åÿkôÛS⤠K† P,„{_RGY‡'‚ï:M‰§ #'#SÇSq´übqÂ&4` ¢́₫“•*Äâ°÷ØïƠăåols™´÷±₫£*Æ #ă“e A’(Âă ÙŸÿI¡…|Gáê’âŒè—H©Û Ă½r´ä½²ư‘ï Mwj‚sâă¥˜`VüJ÷àT¶ ’¿²ưÛZدßܦÁ·E„€¸yyÓtÅ®‡À cóúø S/a‚HôßÊ©:‘&nh%%’àˆ‰Áµ˜t× &ÿ:eÔWDh=¨¨ô!£đ9„\<̀̀iú` ¯Eb7µ^â§z¿‘vS"]ß…Ơ‹SŸ®Œÿ¸üQíă¸/¯;i'tµ;Å0\6› †‡¦œAI)—c‚?ĂÖÊr£¨³Ñú 7…¤§§=NÁ³‡u+24ÁZœßºâ$> !ÈŸåú¤₫•Đc‡ä%Ă¾vn%cÎÇ4n[²:ƯRæ¡7Z'¸̣”«‚q›»ûOÆ:|'Êđl—TÚφÎPˆÙüăơLâÅ cÆ?sU/èéJi®ËêrÚÊø†ª̣yç£Ú"óémzü‚‘Ă|ó₫ÿ¸oÓvYH×1q~£×.ú”Fÿ’9ꉋŸơœsîÑ= ‹‰ƒí-¾XñDdFꈡ\À&nŒ5ÆaY]r î–´C•+‰(Sñ)mùs´ lu B1˜ n—FÈ_nÁ†$%&~bÄI.$fRŒ¸@Å1ø•«ËOP-Øo/ºq€bP9NO>"41ª¬Øïqïa„ĐÓ•²ǿn }®ĐÔè/ÉwIϯ«m§0塟*“%6mÆÔ¿X”(¼! ¨)-D-º"ưײsÍÄûé¿·Ùïäc£ơhÅ W/GÀrĐœ5Ë@z~¯}8Ëd8e2º<¸)] Ê«HÙk‡#=»¨ç¥Ën˜¤ °#"²%;ỵ̈,›₫a2ëgñâ2¾Ë¡öÊơy–uÁkÍ 7üOË/Eg¹Ê)Ç©Gø¡jÖûñGf¯Ơ–$ “¹u©…øŒßóÙLùRÙØ,±…UûÇÊåƠk /Y±â>Éù̃Y±€ï~×I®F-c?n¹('`ÚX¨ÂâĂÁƒ4VûXÇÅVwyiáHגּơê³JKS²?€IÄƠÇăû‚Ù>y ”êÛ¯E‘âœ×ÂrG=øv™ƒ¨c2P6™n³¸+g¿D¶Ă6Ư^« wb÷†=Uu°,˜ua–óxÏ₫üd¬¢ÛœÍvî‘¡AoRrº»Ô.½ Êó{§ÂOºj”¯FV í̀^éûä-îqS°b3ü@”p̃E­UóÖY+T  ¦e€=Bf›è.´çĂÊ ª£öñ6÷ -›CKç̣ZZ¸7MÎúe=ô–×$uv–-^ĂèMïºñSSH@†ˆI#½œ‘kÈj¢Ñ /È6ßF‘‹ƒá<»Ç¨áè.±¹Êu-<‰;™ïL4ÊÖsRŸüŸ0y‘~sccÔ¶•¬_̉ 7̃\RÈLojéyÆ®–„üEHÿ:ƒP‚WëuTü)UßBÙZ­̃HÙrcJϪØN"Ï *¦“áj“ÊC|î%ÇOc=0Ă9)ÀZë? lk­³~>sÿú ê£̀{@ç…Rñ•¼¿œî%ˆmS_,ê~I ä€K G¸Ÿ£´Pö!91\…ù)fñ¿QÑGc»́Î6²S:€r^ÈÓª·4 u•\ëU®y<¹÷®ë,|¨ œe›"]¾â¹¿qmgüå`/Eü aR¨¶§–¥AßQ¥¸̃¬ÚRK‡cmóN¸đÏ xT …êy9er5d›̉˜̃®hVZœ;ÄÁ‚¨.£\©¥Đˆe‰H00é<†ñ¦Cûàcê奋ØC]RưŒO,£í&ål`û§sZHl¿â4œÈf)Êi˜˜*˜—n#MơÄÄK ¶sñœ˜c.#\ú»·/=¸¾´ KÑ©Z̉Hh#9kTÿ°äb s«Ci s}l¬Tßeè́¯5K¯<ôv”ÁvPªấçY›Ơ›ï™¬(&h2ÈÍ Ñ°~S9Sè{qƒ Œ »¡àåk'F¼Í§ŸïyỪ¬«676ăC+öVrRbơ«”…ûWUĐB—vfV7ơÓO³v’é{=—œüVê¶Ó&²X\¢N§Y41 &Q₫3Ô¡œ×Ñê;S雼¤·í­Û²2f4Äi 0¥t£ D&Œˆ6#´ü£T³ç¶cÈ™bªX8.æ† Lçđ=Îf̣€B0tD@FQ|ls6GÛ•> ü‘>çéÆtØ)äG﨟4¥ä¢¶¬Äù;Ñ âЇmæñ[›ÚE’<8±Úl½·i2Â?Q(Ÿôw’9̃ Ç0ªDOp¯th¢gfôP`Yx¯]¢̀3ƠDÉŸ áÄU 0HrK“#;Nùhû•…ïÙ¦±f O‚‚¼±âö¿»åƠ§ƠQZ{cĐHåđnxiª÷”˜ÏW…N'Eyˆ8 ä%ưt)Êc\. é©&2Uu¾E.—p`Ư1ôV§ZÛÍÁé¥è²÷m"ơ)-{¸ø²µnøn€QåÀIDá˜uVË«•₫pw?cÙJt§\R¶BJñg='(¼.=ÇĂ $n—ßĐL ÿ †q5d ѱ}2ñÍ.`6MûĐxÙ†›‡ñÂ’o+ŸÖ¢̀L+î[mQ!ÜwĂ…à»Ư@‘D̃äœË nŒÿŸ0i¬v!̃“œ©Đ5Í/Eq‚˸B >a»UPxBNÑDàÙ!S‡ô-Ÿíp (øô$¤w·»Ă ¤”j†Oqnœ>—ÿ£Y# A:£đfñÍ’;Û₫Ͻ̃J…‹\5˜ÙÍIAÔC²¸ ûƒO¯ Ñ­ăv«v¿û©%CTï6(ƒ4€₫¿îOËâñH1Â:€º(ñw‘ä}“Đö IñIƪnNô·QÁÎ8á ¦2|d3Æ]KwÛ,|Ù˜0-½;×ë²ó ó£aAvF$z$gƒ-ZT ƯŸ¿́ŒâŸh1ʤ™¾GÄZàƯ7œơˆ$dproEN3Ụ́337*ü\–ipD¶r‰|ăÖÎq: Vf#Ø™:¶b­+´̣8æ#ë"‘ÇÙ…ƒ0=‚nר×íGËA³_¾„´.â]‘€˜¾¸ËÀ—J}dơçưḮÓ¯3y4McIi…Ú₫o 4¤L^¨£Ïa³É„Ï?äQ₫x¹µØ~ÍGa¹T”PÎ|9«ëûư™P&+sÇơœßy«w wV´‘ûû¯|øĐ'êd‡áú¦˜›;w Póâ`î<ç ,yÜ09ºh°Á¯}+8Qn xÓÛ\"¦8ü#r]A½éÇh‹ađ)ï ệ‰ènÁè8NỊ̃à$ÔïR¨nq^b T"ÙhWỨÖ1Pư0æyń¸§¤đ¦vÆƯïIö‡>¿ƯÁƯ/†2dÀO÷œAOÍg=àºe¿ÅƠ¯p–G­Ø±˜ßsg6”³lucZû*µï‰»£b½<{ø¢!­ ăäêÊö”è'B!b"°+&ÈñƠ&¡RăXŸM‡2Jơ_*º%ư ̣†ªñq©=Jø°´Ă3¼ê˜` Oª%Ê€ÛÔÓËô ¬ó[†§9vơÀ‹p¤p]À5–v)94!'ÍF[;#Ơ*Óm?pbU1~r¾m<ÿtü²dñSIS‚$?îÉp—%RPÑÏÔ3Y¿§¡9*¡]Àx‰§.¼"ÿVđ"Vt̀5±6@Zđ{hf*‰¶'‹¨Äo—‡2̀@4Á™?º³Ûọ„}³‰¥©à4Ǘ¥µÓëe´l»­±'đ2₫_,@’î›Ü’¬=·Đ©²ºö–&Ç}×÷ËÛ6U0³+}Akºªø{±pÇiè:E' 'æÂæhw"¿CI5{ïw ˆ!R„äX̉Ë{™ºƒKƯŸe¾îµơAcĆ˜Åë~S¡ŸxÜÊ÷qNe¦½Rv¢#“i¡dN¿âK ˜FÚhIóÅD䬃ư]î`yơñ÷?:Ë%»5­b•°B¹©2 ´~¼¢£%¤z“brØÜ†™0&Ø‘²ó« °•MíÅ$öêFkY6l¶F‹d[‘unt± CUơ¬Gû:ÊÉ=ÈAèŒxfú9̃Z^ƒƯ׋“>Ù©x]Ơ9«Ù `%¹p¢u8Ô@̣~®".òE-dädQ^ÏÙmÀI´UÚª˜ 9h] 3« kÙ{Kc¡Ç2ÔäI +uv̀¸hégø3~Çr “¢i[}Ÿ‹k\¤D<~ëæ©2-'b'Ê*^¶ĂX'r„»7É6¿ü‹éâ„ ‚á̀–̣ª(ÓØ•kBçØ:åÁ¾d=J“¼èbx&4=†ƯØf´6ÚAÿ OµÑ8­bµ¬n•€ßyĐ́ưÚæ*JŸ Å·ß ¹ :ú¿Œ„JÑ|v¼JÇ9£ ú\ỸÖÇæ©T̀HÜ™bư{ëO ñI@cLñé•iå_ üí僓uçb́°uE}|AÖáI'G[¡,èt^s:ê¶Ñ®çwµœ_ĐR ƒsÀci„°’$>eCÜ!ë߆ Ư)XË₫ïÅđ3Heư­F³F€3±e`̀p·ÉBÈWư#îü;ü‰dº›¾q+iÛö¸\] N₫ÓÁÔ7Á ­á’â×­ Nf4‘(…©Ô¶BQgªÑÛ 5ĐGüĂI s‡G•|û›SIœÏî,l5Ư³z–Đà2uBD¤5Đ[ç]vèÎ-î́ÔA Û™„Œ=Èä7̃k v>¤õ² bnÚé$¾·óÓÖr‘­2Á¾Z%¼¡ˆÜÑùíqÎ…Æ_ÿSư7‘ï:~¬ÀgËÿظḄă1îŸ;H ¹rnÈ«/ô–ơbr¬™üº)06¦lº¶$&'âä9?5oÖGŒ j©qBëV|×êÊ!§`{²²ÖÙ?(V̉R’Ù¼‘–A‘I¿!Ư`çåtV=yb-½‰gX́qJ|́×èÅư-¶'#½Væzÿ4Ç’ECceăr¥}ûª“F×û³f.•#\¸?p÷7̣Kl²‘+KÉV ½…¼×Z?7„‡ÚåDMÈ?’t¡Ä½7á¢6ƯX€ơ舣XщY6uíÈHy¼O¦df7êÜÄ”BQ Jb“¶«ÆˆLè_;h5=Xø¼åkærBHüi¡˜¶»_£"áËßrđ~ïbÄ^NRœù`Á·i+ ‘t¦ÜMnê}8[üAsîwÛjÆŒwXWvR½dtœ"ô6Íqy®́†C­;SWUlo]LGö]†a/9DSÉÑùŸ!ç¢Qµà_'ëaù£đúŸºÆC9°*5‹¾b°î¼ơ˜7ÂmùÜ ¾Ü å ²Œ7Œf]fuÇvn›|ÿ¢‰̣ ₫'êw虀÷”/µ3ố˜T#áµXeIŸ ,‹ÄÉ́^V#ö1q W˪½S9[Ïát¿¦™åÖE4SSªƠÄp"øÑ4ôÂ] ±Œxâú́7i»w9L<…k¸9YcƒJcr±Æ ÜO¦dúª\>¦)»Ư+I鹺„Ơ¶Üúœ6»R¿;Kß̃bÜ9’ÿưưV„$âLjÉ­ùícfÙ_à0Ö[;×ÜäèơÜabËo)³a}₫&Ơ˜E{^¿è3ưt̃Gâ º½è|¤z^ đ6œ ÄFª_M5¼Ñ”Bï„ènº ÎpÚN]m»ÛY2ÑÎ₫²u7đo‚Œôcɨ̃‡†y‡ök÷n&RØơ¢ăí¾ú|$hº—²=@lt]ơ~Ç ®‰,bë‘å¿*}!Ûúƒ/)Øă•©óâ—ËŒLú:T c4ưæREê¾ Í#¨¥èŒ÷ˆ,§˜JéT<•ru@²C/Đ”~,S–€ñelWÖZ%›ªÏüˆ1@{‚ôIp16Đ >z ‚!G±c&lÉb:úP)†‰˜ư <̀r꺬úQê³¶ÍÙ¤09 c7‰¿s™u#¢́§,Ï?×È>ÊÛ†C&Ḍ¸Ë=;~w+åüɈÓ6%~Ÿåèáö¦(冷 <»§úă‡0t1«ëĂvL¿~=LZÂNÔ„M Ø<Óđ0̃W͇çΟ9-4ü«̉9À1Ơ÷nϼhQôXæÔö- ¯÷hơY’úh#¯÷ÉåFÿäïµ»ö°‡ˆ61ÿN̉åÏv'îÏÎTSß—€#Oß´™3‚uW2U˜äqNÿî9wIv¬TW-YÖ¾àzĂGw¦đ ™à#Î|&†5Fï—Ơ0œ̀zyrÁ»Ơ|ïàiÓyµpbỐùË×¼º¶ßƠ²’”§f́%¹,­!r»QÎ&ë ÷d[ă_÷̃u¾-#n_¨ ‡‚úiËEâ‚/F¸ï2út¬'Ổºû‰Ư7çR3w# Gè“‹9¾Ăô—¬–Ÿú»YƯƯÁU 3 ‚bU–6®€{£?È ̃p±ÁNŒ¢Éêá{Û“cµ²jÿG?›r[[çǶœŸm”¯º¡] 0~Ï\&c®t?Z=*ô¦é¥¤ø¹Æù’pÊ@â+…¹MüOÿ.å‡{×ä#˾ZtùfN-sUËÔ$—œ¥”đcRe0i0ßÙ‘ƒ8è¬ÆÈ¬Ûâ^ˆue­ß#]U›q§gú¬¾̃¿ḅ#;¯¾´n-GEæ®EÚç-P̣½¤Íq*›;Tvđ‡öLàP*Đçbùị́Uº%°_9§µvo_$¶H~¢à§\Ă&‚•®euâ§é¹H«‡¡1#×=ËV?‡©äé0>æç°nKy?ùÛ#å-ÁæÄĐxơ¯l. ç±ƯúîsÏQ´$ÇU³E>À¢5÷«©ºœhÉtÆÇÀ¶eƠüCùW] ™=Ö„F6Ă 9ÁhÄËæ\º¡H!±Ro(₫½XƯAM;̃¿ä/2ÁÙ¢ ]hhMôy¸·ßëPHƒGï}‘ÎLÛçZøjG%¢rF©¯y¨¶ÜJPâߟó‡̉îröT(Ö·f_7eß¼gä‘ü¯1<ÈLß“!®2^ˆƠTàêÈñ?”H ÂÉ£Y•à>ÉÄù·UL̉¬^ß S6iyît½Ø8CˆĂ~9p®+BÛb¡dƠéÔcy,sØ}F¸6]!Ú&œI}î†Êa¦¬ë/8.«]8ç-a‰ëh-®ĂwxĐ,¤ …Ü^G€l’\o¨èmsJ’Af}k—ËĂ¼e=ÈÍ1 rÅtưë„óEÏæY™_Oˆ_YŸí÷Í£_œmZ₫0X₫ Ê?ƒ¥Kp7º-AoÂÔ*( ÛY¦%AÄÿØ"ûù©‹Ê—÷¬̃±½ø9 o)‰q5aW]1ơ’\^¼Göá”æ>sYÑ(²mƠ ù+Q×á"̣‰,”.Äû¢áægzÍ ‡äÛ–Âgo ÀNu3F÷z]1}Ù~f³uQ9ç%­â½Í7máZ¡¾ô g4¯ß3á¶G=™cÎ~’çQÄ`àéLÁÚ+4²é˜qṼh!‚:Ỡ;âƠ Iâ^â¹üm`ÚĂEŸU€â¨°¿̃`u¦ÿRŸ£‚‡ƒk¶¿îẬ¿̉.  L¶Á|­ Å…£¯gœPx1 ü#¦il¿Ơ$Fgẩ? S¢Lư€@Îà7³ÅuîQ6nY«ÿê±”ư Ø0MGèơƯ+̉đå¬.Ư&¢LjḯđFµ]™„̣X¨Î¼ß팷äwQeÓ*±z0÷Du$………?³rẂơ='¢'è"₫¤¤.”Z4¬1V ¯±?”0ơ·ÔÁđªLbÊç6;×· ;)‰Éẹ́ïé#X—üçt‘́ôÆêG¼–³‚Í#¬\̣}ÓÆ£ u5=%=«6ä†E°4P"ËTµR+ñqê-ÿ4 ÉpbM×:´ØXđ?p2G̉[‚₫(JÎø₫·Å‡9?Gx2m‰(-åƒ[*Ÿ³₫/ù(–_m«ă¢Y„ËwT[Ÿ@P´ `6}4Ûs)⟠{j̉Ä©lß®z^so(Å'@4¼û_XñzJÎÏNw₫3å3I4̀h¹Ư@|́gÜ « w`N‘ay5ÅÔZÜơă¤R*r 'WIuDoÍ-ÅÁ¯Iyiß̉0·ØN+y@̀N ̉2…¢±-ZøÖØ9îƯ#64{Hư]ñ .½¸u(Øä&’(3ŸÿY£Æ=̣¡z£QÈóZûÉH`T~p©Aô+”'ă©ƒ₫c5æàN G§"5¸xP¶.鸟w©PG¥w«¨¯Rˆb«»©d* ?”ˆ¥’â5h³(ügh* ǜr'ÄÛ7ëœÚ~Ö̃î́ÀYùb±è+~ÎHF:ƯàŒpD’Wâ6³…©Ù Ví”û|Qr;ù—Ư²E“0‰ˆî¥Âơ`e¦¡—Zú«h<˜É;?ÇâÑăŒsDˆIñ·Âó’Z¯vƠÓS&‡YÀÆƠ6v̉ÖV²̀T KyơÔ)rœ<›7»Ó§±¢Êp›wƒä½¤̀gơ䌸¶;—JguăßåÇLÿÖî;œfÈêpxl ‡ư¿´gÂ7‹= wíV© ờ đEd=g°½^ʳ¼-~Ù¬ŒW;¹v¢§G ÅzR}£™Nf]1N9¬̃ï ÙnÖØi$Ư²uOƒ£|²åûăƠa‰\ mC8I1nj đ@í]?s̉¿ƒh»[q­ |ZW¹LA„m؆gHùe’í}n¸g鳫9œŸÈ/…ʯ²QÅ-íZiëăÙ%6’››;”&÷‹y‚GQ6¦rúh;̉¡9̃#½Í¤B>ñ˜F“B̉‰[©& ¾(¯âWưç•£×5µOƯÜgÊƯ(m::û@cÖTeÆ2™Ư­§àØÜ=7QyáŒÎ“ó·3Œ‡4„²\ƯÂÏđuu À‰·£₫ ¤ƯU#Í?ª …È¿HvÈù•‰!aºk:uº.ö@Tœ%¹H¡*T?}1›ój:z+á¦ÄơG¬9O «éÙÖ³£­Üa•àœ*KNQ{~óÄè›ù“Åu·‘ɾñV°±çă%óQJ#B́¥ÇÛkđ;œó¹øøKüÔ?ˆy8 á"d`ä$˪*₫z¾G)Ṃz_?¥Y5?Z¢êuHŸuPÅvôXE}ÿÎa†…¢vJ¹^¨úgê²óx…úÊü/(èÊ0F17á%üµ̣ΑYÇ¢y…¸¢5PƠăccNŸ]…±MÏ̃¦ 3ÜbzÙ®ÖU# oaT*·4äµZvˆƠG¶đæ_Ñë€>BúÆÓº ­Èµ'Êø…{f̀ÿ’ ÿ,̀d>ïUÜăsư>ÍÿÛå·o¨„®h¨êĂw¾;ÄQ]—Ÿ­tn|›×^O«=V₫ÙJk,bqL7’¨"ˆ[ X:?KwMăƠÇ&ƒ¬̀z̉ÜưÂY.CgF gíÏÑG×»\ñT; !đ®±b(K“ï'k/3ơPTPĂkå3S±µf0¬ó̉Åbm¬^¤à® 9>æsëʯ%b‘Ɇ¢Y«á†Ï|l-ṢgŒ´>HM’₫bOÈqh”n­Œ"R7ưeô}•߸|·́>Ö.;½ÚÜåʆxÆđÿmØuŒ=ătÇà%ª„«²Ó¸ÏĐo‘¾¶jU—*̣2L¬s/X4ïçy %éLñ’œÿ|u¸ưÿ{‡œP×Q_é< Á`$¦A!_ÎE¿„s §©O<ÆA˃1¹Sdî«~>u₫Üă°;¬v<ĐÎNF̀fí+$m@X.|FfEøCkh‡V¿Ôv³ÏG­gQ[¤<2t]£V_@”¿©ár“’B1ÍË̃ÊJc¦ÿ]åS$³ÂcÂ\£1[6'àï# œ¹aw { ƒÆSµÉ•]ẰUè´ ·\˱^‡LÆ@  tÎbâŒ:àèX›k¬Α¡¶!³ÜmƠ!Ă]₫æÁ₫^ÏHÔ°á¾k.”ïGe¤4¿< uß›p÷đbYM†¡ˆ',°Dḳ è°ôS¦/]aÏ}đºÆ›©Fb]̣®y:æä´o£nJÄQØ¥¶xcö̃Óm¥ù,[œé{™×´ Exö×T‰Z ₫©¹†Äïi7}4¢đºÍ¤‰y#OÖ&’’ iÉÁ|ÀÄPTQ¨-»Ơg­–`3¦ /LO·‹l‚Û ‚å̉RĂ(6G €~4Ö>r8¾u‘DmÛª-E| iw[Ï PúLe §NçæƯ„„ÔLf´wí,1è́u &tù×xFĐö0F£ÓÈ@@»đ3V.Ưn<¨ÙEyD7Í 1cX 2œr5̣`¤ØÖÑ¿ôæPÖPùêAËwëUĐÀwŒ‡d vx¡́nxÍ÷đ4ê>¹›äc7­€[vÁpÀÅ1HË€ '>œúq<¸N@ƠĵIáQktr*"»Tbjû·‚IÑ•\%zøúÏ}³#à´»–-zÓ &Eú±ëhצ;L“™7 ™pRAhËQå©JJ‡D›±¹̀Ë4¾Oƒ|ªd«|>¢Bï©5̣H¶¼•ö„cù ¼¼D"g™) H%뇂íÎ@ÂA0›Ñô«©₫ÅIØíDƠgâíÈk+¿Ù¤D#ÉHÁà¡È¹‘-˜^€‚x>¸ª:ȃăg’đB·sÇ{‚ÿ`¡G놾0mȰ£N‹ûYQwß`ægàZCĂ}<–ư1åÖ°À£ỞÍCµHÁ؃w2)œ¿ø€ ¬|gï²……:15ă`[WªÍd-úCAă’p¯‰QPÿñÖ.öö̉*!72>€á…³!v‚+u)W ®l3S›Å±Ä*‡³€KT¿°—W³ ó¸·”©“hxºè–4Íí+êа¬&KƠ€{PBuL<ÈîW]ù…¦ÛSÅÈOGÓaˆLóOèóÂ|s¨/9¿˜ M÷À}œiâ킃>•M÷©U„u'"gqqg;uѱ×ÄZ^Jñ«ªW2ñ#4C±9„ ëP¬DÚ jÄp<₫ ~Ùy-†àæ2u ËB|/nºÊ‡ Ó°!â+É€¸½V\Rm…P Îl1̣ë' Iî…DF¯j¶ÉxׯWN>r&ÍSm¼uưd6`à’Ǧº8ƠĂƯ‚P‹•Đ>-0_́ª \$(õÛdˆ ;ï’c!ưˆË§ä”ÖêỞ̃~ûñ”à8Ç \©u!ë d/h‰P:̀½&Ú¼o-gJ?,¼BZùêºÂ¬á¢¬À¢æºÂ 8óŸk>§Üböwäl;<¼(0̣6>'“MZÍa_}úèÁH/%ö‹8Ÿ,&s¶ ƒỔMƠ5 }3;â•ÈøÈA'óëø~í{Ù`ị̂hˆ–₫EBóWsÀb ¯XÅ -pª ỔêthU}‡9gÚÆĂâ¦pƒïï̉á„èhê°jl¥'®(œmOï9p{AË̃œ?ɘä|'đÅ5(¼ù >—ù÷ÏZV)_́g"¡DI€q¢é„̉ï†QGEÈƠ§ Mf^Ä—èă#>M ƒ%W¿åKÍ è7]¸M§êÄï?Ä'¹œÏœßL™×àb¶­IÎÍ›¿¤D’‘‚âưÛÓzÓw[>à-†xjàáî; eH ¶̉Ä«¢5¦M‰“’M!Ë ±¨¶Qñ¤zÎ=Âåv¼&ẳÓ­\{…–áÈÏn‰‰m%“œ¢"OKM‰eV«™̉é”mèÑÜ¡ˆUŸÙàöY?uIT.œ^˜¹‹ænÅIŒ2ÂËê.)ư»9;öRøƯ–ª0LWzưÎÂÏGC?§f-î0É™% xƯ«iüËŒ:ë¦S[±,Î3­&¯SøẼˆ\”wz&¹đÏCḲ~è̉QT4~ä *Đè]½áTïªÄKƯAª tîäS…»t¯H₫E‡±\‰́Å@‘¥­Ă=– ¥ƒesH/‡*˜ë́‚ÀÈưđ|T<‚ ϯ¶i]éK%dLlhy2u3á…Eˆq°˜9oĂ32TtÂG'´ƯEÎä€#Ï̃oCYx÷E–ÍƠRb ü]xXAº?Å⋺ĂÂe¦W–Y6YĂû†®ưਦVKḉ“́Mµ!-œ}o™s+„XY?,‡dođW\á́= đÖj ¬@É‚6’›éàÚĐ)u 9,Œ ° Á(Ấ›E(B¼ñn†±zmÁƠwx.#•!¬X¾ Ê«³AG¾ö~îÙ¢å_%ʶüđ}£́!́Ø n4Æ »ûă!†®²¾e¥Nqî£RU×g˜Êơ&E:/ºúơd j2@›\Ó• qÎKllûrôó R™2Ơí'†ÔÆêû8‡êư éñ\ÛÂƠ„s‘èm‹Đ >&¼?+aèïe‹-"tǼŒs[ñ"ÄúY_4=´.KD{‰:‘ÆÎ™z2x¸é$AÆ.ƒoÇ—đÍ]kPåmçơ À/ñ¡‹K1)L騍ÍZ.|Åö‹8iñ2^ÔÊXª8Í źáƒ%Ư›ß2›ùàr¡k¿)TyÇí7zJYE B!Ú\P; [ṕ̃¨ƒ¥•ëµµ{kÿ” ÏvKµW†¡Ï.4íµ½äHVƠ¶ ˆ#Ñ©ß#¥“xƯÏ£køze|µ±×Ïö¿8uàÙ¥¾i?ÈÍ}›bwÎ-“’!C è@Ăđôyoª û¸ÿ>o½1Œè”•¾¾oRàÓha é*Ơߣ}œ±âé$¦,®U6Ö?°mu­æ’è‚«HíG*̣$sèp†Ë₫¢îN&Cyk„E)p…W] $—üOqäM”¾q»øójZa3Ê”ÿè©ân$@!Ù@.#Ưø¯ÄyÊE€{úÿË’Ï‹^ ¤ëd¤KHù¾̀HØ÷‘Em̃¯+‹gW@V£éèWđ†Gq`¾cVçƠ‡ÖÓâRwÛÛ­–Ö~ù¾Ä%đȱ+Đ´×LôwØè‡c-y[¼H¢Sz²&nÙ¨t4"ÈÈÇ߯Éôó¿å¨W.ªYí)ơ4ü4è0’E¶Q–̣‡@ÖïL¸ ¢*9:†ÖÀ¯2=Í¥Ä,&ˆdw|¢F́&Z)Åîí €Ó@«jóVjgRàYÖ$¸O…[’ÅƠ¸\ƠÖ§˜@3\ôŒx#V›ƒ–1Vr|E 6h»câñ™k`A¢ü\¿ÈZÏ/Èơ'ÔCoÑ|Cés̉†0˜ÛaàD&ù´Wo™û©åë»´0 |̀0L:·0À¯~¼:3'è®L)́B¦©đÀÑVÏëù‰P@ï7.[•€yÀñ¹>›E‰Æt'Wự É,µ‡ĐQBÉj̃Ó”5³ôuO\bEy/ öô¬l§‘¢jl̃ØG9ëLz̉­×:H{₫¸?uLŦJWăç¶äíøfđ틘¼"鑬ß|’Üjª…ï‹ùU Ÿ)³*.¦öb[Kˆ¾å²Ùƒ̣ yq›â »;>b4Ơ¥ówØøàQáÛJ_{³Ê)ï"̃m)Y„đđ©œj¼ 8à@†â­=}Z›ñ[1Qæ´¿œ¤üăÎa¬,±¼½×8yqÙáQArJăh§¡ëÙŒfjÆázz:Ó‡§‘«-zUÆêïZôR X½?¤[y¦ EØWœF´ij[ïƒl(íË ăçÖy?ư ³\ö˜̉UZU]̀h6ĆÓP±¶í₫_hC€P{Û±\Å̃øœœí~ŒĂ‡A.W"g‚R¶dÓœnuVhX—;BxѧJ₫XZ”‡º¡4â˜b«óÁ–.Ă³üL|uéFåïá8ª(VùMÖ¨´3à„²+đˆ:y}·ÁÑl¬)¼V́D=Ư§ôç᲋ÂĐK˜ 3?³¶ô¥buưÆ:(ƠVĐxă³v‚Z‰·HÄ”j`j£äIÿ—I@AªFÇíJ-íH!†‘²¢³¤pej`d„jz=ÅuK7û²ƒ½±x—/5pNº ôsA:?øŸ"å!‹ÄL7fÄöÖGÀ÷ëç“„`Íé`‚̃ZÏ`Èj©§Ä¦ÆÔÓe.€g5»;¿₫ï5îÆz¼D±¸đù°F{̀·üÎɕߋàX²ªÛ“á(¾`-ÑöƠü—7a/¦:ơsÂÇ×̣Àïø¤ ˜¬̀K›V;ÈÙ¨\\JßNÚg„óy-w½`Q.Ơ:́?Ù#Y·µP˜̀îʸɽ´àåÖê¢ÄĐ+ÿ’zcùs©Đ®̀₫„^Xn,èÚëAXv˜ ̃ÈÍ:?Ï» :₫ă¡ <Æ­¦H-‘tr-l-³›ÂÊ¢×4®ÇP¨¥ØœjyåQ@Ÿ×b̀ùÑzä¥×·:%Xn#̉¼v±fƒ7›rÛy¥çó ,äz̃eĐ”2úư¡ ú3éü…8gvdèéx̃¼n´Hưs.ˆ°TÂ₫yY! Ç·‚@¸çú¾É}³Êù‡­NĐXÚ̃¦û+Ca¦ßv€¶?EWïËK+ÆáSb₫ÇT™)†Kt WÀáÆf\ĐÎQBËK£"XÏÀÍÑx6êna„Uÿ₫¶Î-aפ”Ă—7cƯ×fîU‚¡6â˪™Pd§w₫ƒÖM3g^‚+â¼×îà, ùhÍÅÅ<È^í[%ü•_-ÉÈĂ¥s–ùÉ6­Ig¸5;Oó®@@ëÑa­àÏCE& ÂdïĐ,?R¢Rù—ƒVíß ÓF65X”9ṣƯ79µ’¤¢ú`JáÆæ[Æ Ío®´ ÿÏƯ¹ĂŒwÍ/WçQŸˆÏ„¶p·îê| N|vËñÁĐê¡Q]È¥6.ñ´°¸8)₫ VÜFJè́Á÷¯¾‰`Ñ2¥³àÍE¥qEzMh ]zó<¤„5B³₫ ä?á5ÅbfQÍ|«~å̉kå\¹à̃ùÀĂÖœ%¬ pj  .Ù äïP.ÈÇôÅ+¾sà .QÊÚ»9Đ-ŒGÉÿBT%Äơ×±:Đ1OaÎ5B:óư QÜí1cn¯ơÓ†ưÂdµ¯¦DÈ-OBQç ÖÏƠLv?N¿MU:́¸rô>-ăT²Ü̃æ9á&Bh%ón‘ W4’O»€1̣ü¸ÜÀV¨7IJ6p¡ x2•s€-ăbfÀĐá±UƯ<ß–Å÷¤+|jóßnơh”óY—Ưư ¤₫úéŸjUÿ¨Ó1~qk5Ùep¹Ú*ªø?êƯ7ùú™w`0¢ÏŸẾƯíí9QÍ-´Ù0o)¬½+™Âú­IÆlÚ$̉èƠfùm&>'ûÖ“̃,•VvU5“ˆ<`fđ+Æ™áeˆ­Q5Œ¹>çKl/4¢n’Ơà‚̀_*œ•ÇVx12Ă{qiăíÔ[›m1ĐÇ¥û?́3^̀4ƒæùui¢21ñiơC̉"è•¥'Ñ) ô…hkØË×Îú«đ:Â*<Ü(̣`Åç­‚{"%(c¡4H±yѱl¢²và+ÎÅ’óøYÿË‚ªö8Ó÷î̉́t€®bê­0Cº˜T’˜"¨üCá­sCJe¤‹÷¿̣lñ£Æ£e­«Uä4&áỌ® •`uŸ0¥0‘]ưÂë>¢Rb‹ËpùF:.´[oûH߀<ÿs´Ó‘-*Îc };•đ’C2ÙÏă2n-E%`£T…ÙÓv)éxçñHa¬j̃Ä×Al|&ộ+¶²F=¢„6~%¯`kO|£Œ·qAàG³(Ï>$ẹ̀µ!³̣áú¸hÈ›W荒Eºơ.ÄMªáßĂB‡’<í;G-ä†Ú3ɋθúsÇ÷’^ 7@(¼{$Ƴ̀Ë}“°̀…â¿ågƤƯy9×́—w³TÇ H·f‚/Ạq`-«î¢W Ú# Ä‚3e.÷Ô¹è³"Å×®ÆM½ §uỤ̂›>‚æÍÆ wv(ÚHđûμ$èÇíéÿç@ V€CƠ}Nˆä̉º>PrâdQ{/5VùƯTçΘr7úYÉ›*"ºô»(] ïÿ)­§qk[|%Í+K±’©>₫Ùcb¥»^$¹‰~Û3÷JX Â:ªLëeá–ÿ‹SôêØƯ!߀ -ó8m÷̣µRå#ÆT×v¹¸êBqvNCXî½^R©Œa•”fvû§̀ơj Ùl¸Ư p@ÅŸ†§p½I¬Jº£*¨®©íé ™§úR¯oÓ–£Ôn ̣oˆ²đ˜ù0¤óÎ4¤+ ,^²ô†­3f6̀ïÛƯÁ3Ơ­¹æ$‹÷z~ª"^¥HƠ4Ü0`³ËuûXo¦?J‘-ươm[Áån¶µt01ư¹f£È́4ÎÑ…êr‘’[d̉ c]‡Ñ$Mߌ—úåw¿û‰Z o»ŒÁ³Í»‡1tû@~ê?äag{•Wïê– w½‘­$²Q™ƯR4©ÅC©5´Đ£ú•ø₫ÆHbÙëˆD¸¦K¼BÈ ˜$Ïơ7×iăÚß¹>ÑÈ́úƒ ùĂÛ&u_ñg w£ï‚?ưº»Äx8̀Ñ.á½Hyo0Ơđ©ú;1çiç‹OW5[ªR*YEèWJ*̣T!}8OäƯód^ƠCo:ËUô?´/2ù=¹Iö–Åk@ê.>~Y‘\&=¿Æ¿º‡µÁ”nâOyO°"Dy †ÀbĐw,p­¨§‹] @_Ll~§üzñ_Íxcư đO"{9 tÄLRêÈ;‰Ö`ë¼`÷j#·R|*MĂ%̉|ϸnÉ‚æw¹@Ås„G¢¾^ĐàÖü{Ñ^j 1b2M!zré(bxÆĐàª~đ7v3•7 5°B†‘~̉ă­Cn™§É3ñ̀²Ơ(jX¼{°̣̀ ÿỐ7¹Aû›ô~F窅 „”]ZϹ–[ˆÄ¿m Û‘t¦Yª¨ZOYTiÖ-ủÖ,ˆ=ˆW5¸Áf#ªƒ¼±h0á€B½ñ~È¡Ÿ\“CQ¼¼›ú₫O^’3—‚®¼Ö\æúưª?Œ–ÅæBÅçá/Øsr̃Ôó‹o;ÁđóHÏëi[ˆ:ñî̀à7‹‚ÈÊ0ʳI æÑÛQaKR*Đ$76æU#2èkÎH‡`£$¶ø$́#BM%؈ª`Í/̀s´œ0Ü̃dl±¬Mó˜’8‘ft|†,jÂÖJ:Ô½…¥:ÔD…pV:“Ơʃœ_©Æ ®Û=r~¸gú~g0y‹Ö7²ØeQ; ü3T/aÛLA³–l’n8—af¯̃p¸ ê® ‘¼O^‘¨09TXƯ0¬-]ZßSVt HăJWS9́³HÔ®˜$ñ‰H·Æï&< ËƠ}4³;»fzkØ+t‚†&6A™ß•O½+đ&A{GX†ẹ̀E Jy)̉‚ÊɈWêỚOà–Ê!äƒ%øÖöơN=:VRÖ*¶µĐđ¼ÿ£ëơ@&b&}€¤kú7\N¥èŒ¹]_¦Xj ׉TÚåa$úRg€ ü)!I–̃®Kÿc”ä‚Û öZx-1°+¦£ˆÜäÜ©g‚₫{U·û¶XàiÜHj%+Wí4n*6¢&󣯛]ÇѸVơ”ƠÊ> ‘]­9Whª¥P­|Pwyf6/j±ÅT¼ñDUµ.1€â¯'"€¢÷l”öhüç!•˜đ³\‘œ‰+óÖ¤3\4±FÛ_ 2ÿÉ+HU¤Àx!±£8è[îÄ"Ă¯&Ö©×hÈ—I‚'Å“ AÈ\¡9IT¡ŸˆO°0 C»Z®̣Wg.ÿ¼n[³’Ad |ƠBäÍ‹=¹Á˜ñ ‚%Ă­c~iÓÜ…=ɤỞtHăƯÛæq6?¯Äç£ Í,ÚÛg®g×ànü=\æ2CFL8¸GHÉB|h[[D‡¨tø’?LæĐµ›¼sŸ¢ú¹ƯÍ_`J̉RO¸ä„kWE¹ô@+ ¬ÇN°~SVvºkw¾Ü Ư*w¢á»ĂƯ/Ê|yUD®K&N›Î.ùE›zĐ b qKf@j"b2ĂœƒÏ¡´ˆeü₫ĂV=ØÏ<‡7Ñ1́Ïn»K‚-HêŒÈ^M6¨_1Ë ‘ˆ́7´·Ạ‡85̣7GBl7BlÉÂy₫ălt %›?bº7¿T¬K3vnW¦.}uËÑ-¢¡Ê;rư¥å̉ĂôÍH[Û¼J…¶P^LP4ỚY]cÀw'AzđA±X̉"³^ÑÇr™l‘“äKµ DIĂÇ.æiÖUe.ăR`úÀæz• àu§ùD8»MÅw•¼ÇjFÙ¸ {ÑÉ0¤5® ¡Sö£ü¼LEPRˆ.ˆG¾»?¾Ô~*~„%ø¯”ëà¦|N¦³}›Û‹…áªÏC·1å++ÖùéɈÓéöÍ=baN4\˜GƒYª§̣^œôjï2tbS₫é¹´Ú̀ÿ|+¨§"´¡ơ˜øN"nÓ Śu¢÷”Ïr\9Ó)¦®VW¹ÔWè±ôÛ©L‚Ñ“‘ ‹cĂ Ăœb€\ƯYVä‘ưº„—È*}}qgA¿ø3Ÿ"7̣ôä̉!ú ĐÅ¢=H?(’ª€- ËñU“a`êr}lHÁ°ưº2ÇÚÜ&}́Èé—µY…Ï>£üfÏ–°Á­VưódÑNZ-wœæ V*­áQª2›~çÿ¨m3ô‹A#¼,Æp‰ởÀ+fûÓX2¦¸̀–æ£ư”q%7²YD‘¡6Eîă'ZG»¿Xÿ́PéƒÈ§vÇ<ß1ï4üJ%Çâöàí©Ñ.ØÛËƯ-§ºñNZó}ÛÆ\„\pà°×tm̉æ³9ÄÍÖ+!mÛØ!Ñ·A•&ˆ=8Bmi –ߟǃ7ÈƯ˜^₫l”¼Öh^¬í”́„«ÜVD_ˆ™i;¿NuĺjË2]˜ˆ&ù́#ïfpÂgĂ΂¯ĂC ÑHÉwH×1üÈê_;¸LxwËđ·‹?"81çú?]cÆÀø₫cĐ&²%1TM₫º}_³·¾ơ™'OVA!vvÄ]b‚<ưXªˆÇ)ª“çÄL,¸§—zƯ.Á ¹*Ø8mÛ#>r½ ›9/‡Eû…EÔ›[¢ø9'Ó0ÅvN›åq́u/ ²áåüîá× ưÑcœ,rTỔà́ÎÜÁ€£È¦½c¹JË)Ü·h¥ùɤ•ë¾úÖ@œ‚~\›„C`²Î5d÷̉vN(oJœêÑ')½®k ‡*„q6̉ο{: “6l©»'>ËÅdÓvâRvđzönÿ‡Mó„̉v²1Såcp+‚Ø·2©—t"ÎZ¶/Ú{Z²Ö C5øë?́Adû¼m6|[¹WÀfă3•°ÂÉ6)àYjä6ÛË­–~Á €ÆÈ¡áo=×ơAÈ2wî£7™y^ØaJ7eë9– U¤h/ïü¦hίÍçJŸdR™Ơ53ÆÎÀđ××ÑßKCX)È|kUSƯm3nFr°Âë.àƯ‹âÊDô¨oÊñP+Hø>°ÚËưîcÆÜ-†.o«Íœ́K§!BfriÂëĐ%xMV±È(¥è]́-êü¿%Ën]kö—°*øŸª×:JÁ’.màéïĂ_a¿Ôă:;ÁÜ$H_S+¿Ùr–qJ¦8¦PÍF]½mCSZ(%WPJÛ„̃N©M±IíUP×â¸H"Jơ,iª+vTʲÖ7:&ˆBâ8%eÔÊ.Êz°VúIÀ1,RîŸ{s¢¬üÂüÉ@Ô‹²̣æèà_ù¸*]wú<«»̀³åKè™§Mé¿sG…ûÀÓ˜·~yz'Ùcé¥ÉRv²Ô"WVÆ̀Ú[ EÙV#́ù—Ă×w;ç«>joǬ½v‘–Å5ÿ¤7³*ÅóI¥Í”̉bÇÙæ\‚’^]A-̣[ưc}êܹ ‹&ÑC¬d¸âlÓ±NR¿ÈeTaÇĂok½=/NÏn¦7¿mtƯÎư„?ñ€Ñ´›‡j̀ßRƒSo‰’ ˆÇVÔç>jvé[®D¥…”̃¶Hôᘩïö¥Î=èǼÿǛûÁ™ÂÊGg_–’a Ûô·.)ZÜc̀ÜÄH³ơ”ª‹³……ÚÅ‹óI‡“ª½ ŒÍ8ö•áÅÁ½PæÄÅÂăi:åÿëh$f–à$ÂæFÈ‹fó%æÿ€æ87»T 2H‰Y.àĂ›.mœ=‚ pûË‹U×¥· †ˆ´̉“&¤øpëÂĐKO$ŸëMƯºăơ—úKơ4z₫œûR€e_¼P |ƒÉ₫ôâPw”ϋگữz5Ơk|Y<˜á|¢7¦üK·…áËÇ~tơÚCÎáa¾α(OƠ»¢2º^Y8(3ˆ-§³L«ë+₫$yi–V́é>’æn!Ïă¦ƒlEJ¦h|j¥‰̀cŸÍP“N.ø¬"̀úåúy¬&/ˆ•c ôÏ==ê7örüœ¬ơ‘±,_–FU*§ÍiÖAƠ~ÅĐ'2s8ÉuMg™N:O ÊÓ1U©wß‚ơ ¬@Ñn‘Øq#̉,"ÓÖ÷$6ÉÔßHfÅr2Ï‚~êgÔ‚ŒK‹dc±é0éΡa†¥’r½Xƒø÷ 'zµâö¸$<_ ŸưƯ Ê*îß 8oRΖDv#ÙqÓ‹MÙ»ƠÇÁ´2Fraàß'é¨$¾́²¸3TI8.™Z#ÖæâÀ´Ưàí#6D)œnLø!1á[°ÖƠ‰Hl…¯;­ÿUÁj¸Ù=^ëÎusF€&{jóM5<ƒ)‹$4éæ®1Æ~Ug³SU…Ù̉~pơ¡¯[‡Å¶¢‘©ÑAÙ.—œ|G«Ú:æ'"́ {›X+kÛÅÈo²ú0hü'µ÷È‘la‡ï[æQh¬.J>̃½ûoơÊÁ'̃1µÙüª)]•·J+weg‚L¦¢gÇ ºbƠé[8•­LÉaí=v+©ÿÍ=ùgíƯL–f†6YÚ鸧‹ øh™z‚²µïé¹¢^ưW§pë®B±«Eüçú¸qô’m,²r>4M_Ư‘^Yà²%’B iîG ¶Œơ@đD?H:n¹|Ă_IMlS½N©&¨é0~övZ±w›­'«&ALàcs´˜t-Ä1 3—kÄ•€=.æ/ú\ÇóêÑznÅx¢ O"ö­Ñ‡eat‘œ˜ÜŒ:bVhQ<öí¡⇬:vyĐ4§­‹¯{>„Úfœ‰ÅúFÎnéæ‹=ư28Ô&_8ËSYĂ¼Ri¼‡{?ÆÓ†‘§£Sïo{œ¤OV©’̀”Ub³‘fuañ•hÜ °ö¶\*º} s”¸&¦Y)`æåÚƯÚ]¬Ö}؉‹é7Ï|Ơ¼Qè?ê@& ¼Î=u“K}d|û;ơÙ5%CûR̀ơÜy2¤Ô`üư&ÍjƠç’L:Íí–Áˆ+zæc&»^R/₫û{$£+91ÎóÅÏ( u(ø.±b~ ô‚c0I°i¼âwhm)IôQ,ç^#¼?»jƠ¡5±‘\¼źJÔî=e.m!{u0$ưË»¸È¤±“Ö~ U¢'hĐooÖG*7¿Æ¼…z±“ºúP‚j†Â‘œ¾ç®ùcÁÛÀ† ? ]ŹŸ%²o»liºxIɯÑ9ủ~EÇŸ–OiĂJ§:̣–wʤúžíjÇ–©-ÍĂË€øö¯Ê*!́·©dÚÅq©ûù@XO• Öhä‹`å÷)¦Ód¥¶–ɽuïDu 情6Ä6z%%ÑV¹h(Xz¾(»s±ü‘H¸ 5åº[Ç̣ƒZ`̉.å | vfZêÆ< ă*tÊÈ…wÚ"¸ ï»…óCw¸AïU†&úIíÊ(Og«Å̉9ÀJ ˜’Fu5>röm_ëc¥¦²X₫ÇÁØẺF2_#²CµÜ‰…Óèáÿ§“ f#á_y³–²F—ID¶Ơ†$a} ă°₫«p&Yæq£ĐE'Ñ>¡‘~Tá8¡‘₫ºơt@´Â8!”¦s(³§NûĐ˜Øµ.çôB3qªÏ]‹…|µ¹- QFê2g>3…t@['!b –)4È–°¯&}u=DK5Ơvă$>—đ–ñˆà¯êpŸ ?—GBH¦ƠèM)g§•`gŸéáçù$œă÷ÔÜpäÎxæăc†v$³±@܈‹Y¬k+ÇÍJâw#;HSÁK9HÚ#Ö2=Yk{Ϭƒÿ 4r"èaÖëqå½M¬="m-°̉½81ơ‡ăị̂ çèơ€ö°„̣Ô!ÜA ầË₫uÙÂ’öñ[5ѤăƠyĂEÈpê÷ŘàN¦x4OƠÉ”k‘ l˜f†éNDiLé¸s·yLúOöu,0rÁE{Méq¦êaÈb9ÂH5dèUø‹Oñ•JqªDR.t«¿ø¹&‡üܬ6`,R±"“gèîăU”¼HĂxó+(ŒÚđQL‘ ‹Bl¨0÷ƒóî;ßÜ‚_\û5¶D$w©ˆµdM'«§.ĂQ+»̀‘ŸaâÀ‹£SÖ5̃Qh´>B?ăX~IVùô¤Öfx¨…4á4¶<Év ’f2KơŒ®—ÜÛpëå@è[¦ÊÚ@8ËE’ó˜(”A¸øÑ&bba³t^% ®aŸegÏ.JkøúÊŒ87́ÀÍœi I`âfŸ˜VNí aÿ& @³ ]†@̀̀ơÊ/‹q£2ùü^ƒ]ö=¡à \~Hø’vMÓÑ1Å~ß `Ûøª˜e´„h¸ ƒ‰ÍÉ•-ÂÈ]+Ư²˜iU#¾WH„>¸w¡©¿ê›́Ä–ÀØRÁhŒ±n÷a–¡jƯù4lD'" qĐÇí®§?0.đHjÀ~0r©waĂèư¶IéÁ4Â"xö`k¸ jØ´!°ñü‚BÇÊÆoaÉoú Ç|µôç;‚P#&t&UẂË,E‰Ä¶-…%uKd)xúâH~ÉŸ¬mo؉2V9` ­$‰–xÀ¡²ßA7̀lÇTÙÈ™ơ=nV_‡0·u=¾Bø‹̀Đk’+Iáơ¤M®9°^.k!6pØ('e] ¾ñàáèܾ…Ftä‚ÍÅÔºl}ZÇ‘sZIÙđˆŒTÛïè)y€…F{6ó«leBqåѹù4ÿ,bíÎc₫±À§"z5ü!7| !yOü¥~‡¶„Ⓣ̉÷Ù ¿/SŸƯ¯êTA¡"”øN<ÅgQ|¹oÄBơ{{(`„˜·7—ư(¦ÊÎă₫çb>ƯN±üÀ Öß¡ÉƠcû¨¡©¥Xlƫ袬E¤·®·ÿ9ù4rÖ}ĐAå”å$†9²,z¹Ú’R°Ôçǻ¹µ”ít$Ï€¡º9Zø6EÁ}ͱ–Û1CFïnÊÄ@ç”rUUj^OO2©‚ª²¥׿¿)\$,^ £€µă€‚ Úp¦¿ ñ¦Â‹Œ¡‰]ïYÊcá̃x§¨×+>¢ƒX”æMˆÏºÉ́é̃óÖƠHT2‘6–Ẻ¹]¤E LG5ˆĐE¾§r¡{f₫}«₫]Ë_>70ơYº÷¼1£<®́ À†Äzư₫/oŒ86¯¡UÖü¢§sÙôù.‘ơHfí±[&%̀û/Ê€̃lAM1Ø ́&‘~U<’PµQđ³®iDCŸÆÓo·«V„ßù,à&dEöÉ¡ÂÛ2‰2ăÿ̃[ǽ6×6€ÓùzÚJK†ë^“½$ ÀöØ(rÑ>î·ƒ`ï¢5|-”tÿx<”½ư浺̉ÿlÓn&Pçv%‚ÙÂb’ăoB^¶Đ§đƯK—n‡Ä[u«×f=7d÷́í•RƠ3H¶‰‡1ÅÖlæUÁâ»k¨³Ü(&ö™}P¶´¦!M¶·ógEC{Üư63³¾l&–C{ơ@‰ü¶ÈP-p°Å7JÁ=CŒaÀÙSb31êfƯ´ûxÇOLu‰wz̉Í*Nó~QŸ·L^LKÁ‹…úß<Ăăd5Ÿ×ñ®üuÂô–_zSĐt-hđ¬É«'6W¾k ÙæœÄÇt5H£6­Í-¼bó½)›ÿ¯Ó¦mdWË6b̉4ṛ’ëâÉ‹hU• bSCy˜ä›LTs¯•®[rËdèÚn=ÂđkÁ†ư9Uµ5YL³´Vø„l«°=7Rû6ˆ‘̃XpRmQÑƯºk.ÓWöÑ’J›¢Œª±í±U,9׃k¶º…ÖMf:[›ö» Bïx’½ët_çX¨`7Ô4½×Çä„;Æ¥xeSÈ9@j¦iµ;,âsËÅd†;‘Z`gA#YZ¬¢¬³b'-n<¡1ÉÿâhúỐ\…ËpÚ/º9ÿ­¼²°dăLÿ³V¯&ăC13wë´/tÆCÖBD*ͽÂïcx&±đFß\-•e~âøæ›X‡ÊÆv̉m•OáÀ½̣úÜz«>ô‹†?Yl¥ÈbẠ̀Å<"’s¼t:Ñp O½Ï_E{ÅƠô§ßB,ƒ`øÊE¼yăª@c?aơ‡…Èéh¢ÔÍ©̣} 8SªÎëx«Nộv[qÑöß·—¾/³ ; "Mv+ï«Yç}A¾¾ÂÍ&á¿e“˜àÄɳ×÷&×Gưrrù¼[ú$(Up;rE¬i"¥ÙZÏ9ˆu’¹”=P©Ộ/Ư[ÖbÔ l}¤ê™q—L^vÖØĐ)âm đDĐ́i¥«ö” CÚ̉x₫̉ÏÖ3_h:è•Zfö̀ ɹ²_ủØ]/Räû́#(Ú§å-`ÙZÁ : "RÈ2¥<+èF4KîŸ$¥lZƯ=Ëæ§²Ä¥̀Â=_ÂÜi)âØ‚,Á¤ĂÇU7#“́Ö 1ÈZR+`Oå>bV³Hî¹$Œ/ơ¸Ggွœ½ÁÊ d‹zdơ*ó—Îs²¡o£bưEa~¿$¡ BS°ô„f0“³RbÏÁ‡̣²0„|ÅlG-äôôÖÊUA¼A*¾ÜtŒ5 QÍÚ@6 ¥®ç(ét™Û,BB'¥¿_˜›̉‡vÊÚƯ¢}_ˆ[V®ncÜưºÈ SĐ́dž?Éâ$c÷̀„k$ç 9ư/ƒ’á¿í.@?ƠfÑ—ÓŒ`XÄ·ÑR¾'ht'/*¼QÓñH`Ö53]ÑÙ%L÷üe yV&º ö²w ¤Í¼äç’,Ïé½éiă@ÍîƯ¼₫?èŒ'Ơ;xăq†a €¢I^7".¼)º&!g‚V‘Đ“ÀñêQ•N)FjX»çH©vjŒí”…×U“ªÎ¶uú]´S·₫Ë3*̀7éZ¤Nó–V£Ü›Á:‘ÄPä0Ô({ø°JÏ«UL1ÜĐ´ưØI¿P´°—±­ZöqÛe»lY8bJÁº+ÊÜPP“bYA*ơ÷J><¥ ª'{ïjaíá/D"Ùú…‘î¨B~ÿ†›œ'ă䔺ZÈv¿åªÈczMüH%4¨ƒÁá3c´…× @wS†Úhj~rC œµ Ù:Úp_w]L:Y–$iøḤÇ%&KOj³ #há̃Í( 7p5¦V¹_“¥·p:¿ë´ª7‡4.5Z¸JÔ@39À{íëLøÛO ¢îÿöT̃ȈeX"kD=o˜2Í·s‚I{¯®F4Lœr{¯ƒc¹&”aXG%BQùµàµ»²a×êz€%©­µä"ËC™î₫{²»£ÀăÀ¢„£o’@ư“B^“ưƪÀ#©—Ü…_›R§—¨Œ4q·!Ë”O>o—,ñ-±ƒf\Ä|„̣ưè†F5ô¥ ü®âb\\=.’T3'Úí×°̣sñ¾¶™ÏơµßicöÅn£«ÓÓëđ²Xº§èª% z×nÂnlïv×ăä#DB¬Löâ“:qĐ¹å­e#P4º#̣²¨•“2&[„ÿso”ÑêUÂch¤ú=©B];̣L$3ñC›Ï+µT"¾´x!¾2`Ñ¢¦#Ïi=†²uîË%›ñ˜=[ŒÑTChăË¡Üút5§}¥¾¤Zæú}­É: ˜× â ñ¹MbúđU=̃~bñLËĐf4enS›–F{GGơ³Y’¸8QËÊôOù™ưḯI;ao¥/’Zx ưî°B^̓Ô>ÆHjÑ6χͩIvµ%U’Œ•̃Áùqª+àkñ@ÜàJ]&¤çìæŸÂă¥Ă^œ.7wĂÔ¯¶ a¡×QÜ[£´ˆÑ*“°f  Ü€vñ†•“á‚Tä$4‘Ñ,C’u4[e”I5²A§˜–‹33$„ó–$F×  &L;£₫&ễ̀mö₫×DfXùO* =/‘ÚÂ~I”È‚–Ư TÛ¶b¶Á\o3%î¤|±÷hpf(H1Đ4“÷lơºµ‡[)ºfd'²Jº*”ºÈ±ÜsrÚÚ4¯ ÈÉ6Ế…çÙêóB‰"8·ÊÙøÖ|})œUú*EU8ăÙçy²́‚d¸fî?ieÛ™§ƒ (+»'{₫d<ΨH†`^T=fZ{ø…‚_÷@Ô 7‰| %½¬đNé¸)ï‡D*ê§¢ÏjÎ=§ 7^­”‡†Xç.ï â ]×i J^Đ—F¿ØĂǿ°s|æQ̃÷ç38ºæÆ÷ÅXđ6̉A\?³8̣¼_T́+_ͨŒuj~<) î©[&µlƒ‚b]›bî¸̀QSjhÁûoøz.ö2̀±¯R~³oH¤ƯÉÎOĂx"ËnÂ]~`r'NúiYpp};ˆØy)¾ Â:É(¹“Å)/ơI˜J§abçlÈ¿̃̀Èqè¢ó§’¿ •†¨ö&>= BÎÅÚ‰]LïÛêí}c ̃Àµ̀œ‰ă–ơË©H »Pûb¨đ| Q†å“t'‰N(ËÊ4™ü\Đ½ÁKvö]jn@FÏ£¬Ci{R œ±Ăo¢[ Y¦[ ñk&AÔYÍ{5n™9Άø×̉zßW·0°œM«3¶'(¢t˜÷D~'½Đ‘7c|’ÛĂàà÷ª:u–¡³₫/¾IOç`˜Û_SÎñ”/·î¬¢ÂœYå ¡˜†‡7…dôÄȯzKäѸd>Á£©đÉÓ…~Ưi¦ˆíăBÉÿ‡£Yp59Ẹ̈$đ̣zuúÍTÛ×lZ\^E“̣¨Gt6‘"ûrv,̣€ƒêéiĐ! >ûĬp£₫n¦© œëw†¤;u>ç\f¤âÄ¿Q!ª‹¾º›?Ûu³P(ưE}Ú×­a˜B́²ÆèE2¡Ü%âÄă΂´̃‘£Ô•Æ,ö ÇƯ)¢ WđXŒªÜÀñivó¦ #Dx™¾u•wL€ÎU«éL«dÎM°S™akJ›r F_’¶üÛr“Kë•]Ñ¢™e6¸²¯>hº¯_^²ØDđ•PE@•ø,gȾ7IŒ¶]JĐà[>t‰/âÎU>âC³̃È ~9dö,i¾ÀC}yà O ~hintîJgEtówn­>Q7!¯$í³ơóB́ ª-)ăÍÙ”±ùṇ̃ñM·Ù¿Ûg‚œgP¢̃«Í³y¿ d%n.µåX%H¶æf¨ îd® »x$™©Vt§Á)Ø!ƠñOÁ/ó?¡E&Ê–hAß¡ 80Dl;.íZ©‚@Ö&†ª%ºÏ̀¸ /`²55Á[QøL±6~•|'7ØíJÈèØEÈF_Ñ‹ôkă™±‘cNXN[}é8iºEè+ j ̀”\[ ½Ô¬5ÔôméœvrZs}j*ʽ ½1si/¡Dh&í7́Úîô>¶­~µ`ªg̉ˆ"Ơ¤xóöºpæR%®|^u+r¨M¦â¾̃Ki–÷¬:_³Ă¨-9.đË4Ö2Ú¢=vĐç¸äđZÛ•ÛÇ€Z°¤„CÎá¤Q́hsɧNŸUŒQ>ȵ¹K&́Hn*Ú ¨·yŒ’¨ĂªËÔ€³LkRÜaÔ4FôVŕ́ră§Úr»1&KóEwå1XX¥È“ûTʶ9Ù¦̀(Û(»`èÏ7+#UUÛæ% WƯëÔ|hákßáˆự­!…‡ÎI5ˆŒ©ưlØè < üƠ›¨¸Ët“ưœühÆ >¢.ïă{4ûª¥‘ 3E½Ơ¸= f¦OôÏ Ó¿3¹Èihữ75×K|4½=<¡eoÊg¼̣=4¡óh̉’îo–ÔW¦b®{ª œ¸Øß™e´›Û”ê¾6"đíLJѬi¹ƒH5 ñ̀S¿Äd¶‰YOĐtÊ0FózµêN€®́%Giß…) Ấ‡ƯrûpF₫k×úâ‚´[Ư%î-âl%ÅbơQ[Fu‘-̀“*nị̂±é¦ûçÁæ̣̉1ä§Èè}–2\r Y›‡évđ™ ,Ó—Ù04ôŒḌæ„÷̃¼{÷Å„Í=¥®æ+Ü¡̃ n‡½̉0sàXf·™§×”*^\Æn' €ÿ¦§^o1[=ƒ²€®êG0øG€¾f ú! n6Cs× Ñ‘ ×­I V¼´lÔÚh’ˆJ‡¿Rưă¿°4æD.ÖöëƒpøÛ«¯–0ÈÜö±Wo/xÂ,H‰&̃‡ư÷L"1Nú̃0áơ²Ị̂Äæxh^.Bé?2ă|‹̃6,帩#­°íáíïéËN˜¿ÄXI®w6‹̣ăw##*ípq½û¨éc̣̉ơo¨ÚƯ‡XFIÉfW̃̉–ơ= å7Q[o:Í¿^kö0¯¿7„ŒÈ₫ø+æ²ï ¤Û;[}DH*㇑yǃ~6ơĂL4̃}f°9,p,¥Đ/—†́µ đlÊ:í0Ư&8¡~׿Lq¬f6 B @°́Û9[>VÊ^ümZ‡a„#~’`ù×áÁüáăq!K¿Z|Nå‹̀̀ˆŒ…¢éÿwív) 0„rI­ÏOZNẹ†üÄ_Æú¾đrƯ-Œ+Íớ•«°ê·æg¹o½ßsÀ L:—,O'ˆ9@fˆkØó5N×ü«öÿá^sûªüvï|88VEŒO.´ƒGcm…‘sY¾Ă—·!µDŸ=‰ÏNz¬À«ÿ>wPÙºÀh3:£†’~í—?dmÏÑLh–>yF!O{ó/U ûjû.XËWvgkzÔLư ¦ -F©ñ$¾IJôM‹7ü ̣y+§;ÙÁ!±ƒ²Œ½₫ăOWÑ©̉ÂufSÙ½†“̃>€WD#ñøØRN~b\¾I9ÛƠǘynê6¡Óß÷·Æå»×€Û^«Í¬ÿ¦2¯pRƯÿï48đ2ưz„+x"QˆƠXÖ¡†ªGR D|™¯9cEèị̈3k<n©{b̀¥_ùäFáG#¸Á́ư±HÇ5Ác:áÂá]DBF̃ªđ:l©9œ×º‘ö»ơđÏ‚̃êyDËđǜG™ ÅÊ'mIßZIÎ` Đ`C¦½¦®Ơf¬(₫%bRaâBñ“7) 9à± •ß*ÉOŒ@×R¹µ ª—I—_(J̉ë&é¿"U”×°\Ø`åËYk9®Wf‘Ta@ ‡ù§nq…*69>ÅQWôiëS¡=ă;#ŒU„0Ø ïƯÏƯ£Ñ¸»\çñe³”Ô.í,¦‚’n³…đ̀Ô}dh|̀.XÖ¾— ÷åÛ ó~ÔÆZR–/ƒzO¿ H=Ư½É³­í‡åA™ºœ‚¸ƒ )¿[Itâñˆ"bI2;ù¢³«´Ö$5-< ! ¢…J‹ÉÊđ[,_mv¦n‹ÄD}cÖ'†±6v¿~îá ®Ô³{Çï:̣ZĽ5@*A?0>ˆ¿Û+mÛÿHÁà4,mvLÙÆ`˜t@¶²â’pÖ!hÉz°³™øoӶࣂܷS.k_CHräư¥Pyä­F•”j#Đ?úÅèăY%d²Ix‹y)Uͦb]Ữu-ư@Hnd º£[T³¸AÚFâñ́80VX¢k2½nr?û5ï₫făœº-²kjéßL&ø_:X¯…åăđÎđñ̉'â¢|Í(.øsE=€çµ˜ï¬¡p•ø¦g†= ơ¼iáwb@¤ù¦+cvÉ ;íÈŦÏE. {å\Xơbßøh[–&øe·ûh>Û˜ËHØÄu™đÁàXé2›¿GK›Ưăó`“+À1v ̀Yî₫X %œ‘¼]…™oŸ¨³"̀Z5;ñ¥GpÖʱÿ~ç ÉœcđwYsÑùL«œ0˜Q%Ô ¼Tü²H¹KÔƒs2‚&ÔåxF]₫ƠF&fNÖs—„÷ʆ>Y`ª¢ zP‰X^véáÔœ#£eè£MÙ¸pꯗ(5ˆ#`£8›²€Çày3mH^ ûPhÁÍ–ÿñ*+úz´.ÑùÅUŒá‹Èë¤Â­µ’̃†½[}<€ÿ/Q>NWpçÅ¥L¾»º ¸=₫°Z¼ç¢HÅOÿơº́: âcPûiB‚Û•rxü‚¥ÿ(đ~LÉ÷7̃ËH—–DfJ­²|4‚ŸîTå,‘2ô!f₫ ` ÔO!4# à*n Ê–î¡O lƒ§Ùc)oà¥;”´ưF6º_ôjª^N]`SW¤T^Fvf EHZ]răFåzî?‚vÎĂXmàa(Úâ%¸^]•Q’„¡ à<̀Z¶Q×ßîq}|:Yî È$±&u—Qÿp ˜Iö>ImˆV»I¾ôËOP.ƒH̉…¬-XùrơckndaÍ₫À –¿èM̀»§-ç…,9¬IC«’›‹_cÂÛQxY₫®…Ör¼ừ©¶wZWïæ1CjˆÄ‡à‹æXÎöyN«é®ç§ăK¸^ØÚÁ¹v²¤Sb…[ÖăE]£cœY?­è®)á¿÷ÛăZ}ùf±´ ;…)̣…™,'Ñ&Ô‡XƬ3Rà…xàđ·|ƯäpC }I‘Ê— O¡z ‰Ry\/ÄElÁ^÷5È%…?ªmứ«å£Îi0ê’Ñ#3oH7ưA×2ª/M¾ôu•˜»Ñ!eÏ4µ:C÷ñÉƠƠ®¹AfN¡ƠU~é‚D³ÁÀæ‘úÏÂÎáøƠ/k=Xè@{'V&ï((ÎÚ ¨û–#`, ©åyö9\Mư(°Ôan``FØ=L§$L{M3×ôơ€ĂŒ]²²Ư/Ô@kc‡æÅ/á8 ·@OưÙ¾n¯ŒÛ|ûMIDÂÆ(|,@5«jăó臂g̃-Q®[d[»`-₫®Ïœ\)–­øëCè'ûc…Ÿ°-₫u°½|rP´·!„›wmËç&”¢•|¼WÓíDùÛÂưƠÁqËÏÚ¶f&Wưît£3ö#Ø)#÷¿’̀|Û‰} HoŸµs₫™F2½"Íf%? ^iè¶ûn&©Ÿ5¥\BÖK]²f}́]>ăüx\€lv­=ë<±ovÿæđ²{HY¬ö•;#ḶSA½¿ŒsÚŸçáĐª/Ü´ÈÈyE™#GªÆ(Ư8çE`E#å”rP ¦.%fßḍß`@8ÑÅ»rV¼óVXØ/ƯKÜËUk9î_LVL‡sytÊ?ỗ(ÚÿÚâKYæÈGKèjhfÉk7‘j º2­’4kÁ½§Û@º/áL+©Ÿ¬RÛX¼rÓrúó?léq4'í‡Ùæñ‘çµEĂ|L0$|É™}_ʲ–çq·Kí';x!(…ú.›7®±3SäQå!Ëب/s0'ZAZY‘:àÅR #öWsŸX)ê:²ó|xÑVÇ# ăÔä¾0HȨ§Ç†‰%û”~Fmy A½:7­4MqT±½T^¥½ _éÇæơÂê[#÷º̣ sw·œsư_×R¿Æt[w#Öx7}{ºI- £‘…³Á£Á~̃TkLá’s—âÙ1Ăi8°I+zÀ£\¼>x¼ß^±Z1_8vQgë$„GÖ@“Ù¬ÚRC#… ljṔ½°›d`X2w€Üc ÙÆàcO–̃À 6â1ÉZ[ØÆŒª™W5k̃M ïE*¿ÈŲMÜä,­…à₫畨Å äÍ!ù|—5èá‹Óz­l6;â “·)z¿³á›GcƠd7S^…ƒúĐ›O¼Å̃¦…[ơ/²kl)RĐÚø^e©¨G:•OåR™U0r_ÆØÆ÷†[¦N¤p«kN^º]QcÙÏ( ÷\°©¡Í‰+ÆrƯƒí̃™Ê¼#|ˆ̀uơ-¸ ·Œ ̃û5:ä*aÚbïEÛă‚™Ö X>“¦jƠ…ÙÎ̃¤€¸Y¡̀äÁÚ Ê mwYĂÂBáëùt²Iơt: '#̃‰£R={´¥•K9ăÿs© ºO?7Çî)n­ˆ÷A­ \¼Rd!Ïốƒô“PÆ¿³¯Æ ”¸›Z¿uK˜ŸOm˜.˜ÉŒëª âËú$®ÎI=Ô÷~Å« mïÖϺûƯ3uOÊÛ̃8iÔ×yÁ£x>€&a+ wlZl÷EĐØ–Ç(lAÚ }Ñ9¹è…½£Æ¦£ëtJÇDœRt‘ ª &'\î âVŒiv“©Ö­¶V¸1üËQÉÊă)”̀ó=|h5TGö›û Ù:6y« …nm$î€Hvœ²c§?$+Ü̃RƯ¤2a¥¿ÅuiÖ̉)>kÅbđ~6|‘íåä«Yv7lœ¨…ut}­́ ‚>ÿ¨Z¢÷h#<Üô@yŸu~J­[ƯVpiëïùkûLÁ‹AêÙÀ‰~2„.·ă\Æ{*M—Ư:IGp #Ë‘¾8ôdK;>y+H̉oÈreAÖêÊXVÑQ!3¯ëO:§¦îh¹aÙ¨í á‡ç| ¹AZ9^E¡R°=9«S"rY†J(¢°¹^i¾NL¡Áo&¯Ư4¡ =¢g,`E[p=xMSªn7ÜÁl §|²U ă%)²~·#(Á]rT…ĐÆp£ưíK§BđnÔÂéÑ{ơ…6RÙ\@ÄjS_䮡Ö]WB$`JÑ9dâĐÅ,rQ!xóB^ÛÅfưBæY§Q˜#ZƯ9·|MήgZvạ¨÷3ô»É•¡{÷Áx›Pq ?_•°á"vÁˆó›/'ܸHÍ™÷ư¾²³ơaôM̀¸Â‚ÿ©yĂ#H̃$ëNp`(o ­Z"•ñS¾fƯæ2̉º{¼Ÿªu8caƠđ̉ç¤ÜHê.›¡”:QÊB­^̉í]GKŸ¸B °̃eæè&ÑÖøV…»zwĂR˜#MœN®|KÂö“âÇè̀ÍHÛÏÓ̃8â¹Jâ¨ô1gRlltñçË;đ$£O²)®tgv²«̣>Ëå ¡egEÓÀ̀V̀…_ô¤&•¹BÁá«ä0 …â%$ ŸơA¿»0"%­¶¨R­ĂÜ«™3‡²D8AF}e÷±rïíÚ)é9øägl›P̉€¹dÇ« ,©%ßk?|~¦vMÚœƯ©’ÛDơ³·B•Ud4LGyéöQάÏnzÏÎyƯ{Ơá+(*p‹x>x×I2 üTù?LÉöăí·GJÊÄå~„N¾y{Ư”ùYóñí`tˆ̉çüAǶ`l-/Wc ‰ œư\í³¾ ¸jMªqCë ÷̃̃|“#øå¡ÑF]©ÚÖbZRû<¿ˆ*Mh+f$ ÁA „gJJÎ@_LẠ́߯}­bH»–d{hS~Ơ†)Jû,R+BÆ…(F)à̃¾²ß‹¾Áú³́ƯÉ(1{ üÆÍ:v'„%ûµSƯ3!2+̣v†ÔưĐ¡y®™ơwĂN=Å|v8 ´hI¼íØ05 «¡´ÉŸÿ0„Ÿ—‘.ú3ùhq´*pŸ—cgejK7m¾CZÚ]ëó¼0–J«k0§'Éü4}lör¨BT¹=;cûz ~]©ö]óçVBM‘‹lY ÖƠ>ox‹2́ÇLzHÊL«FXç̉v­>GỂ¢>¿˾-’&Íb¼̉c*®Wm•–LâÅ«0(»Ô6pWs¡³ Lœ¢~tÏüY¥¤¤u8́̃T‰tÓÉQ×Q²‰œöÑznXôxÊĐ¡cñ›ë÷k4ăq’©3®̣ø8öc«răG™[…øar„ͼe_I­°!8a¡3y7ª!Ô!̀âX£áï#G;5¶N¢́ ˜T/F2qg‘Ç8k…ùÈuÔ±Ç0ÉκºÜH÷3WQQ5x¥Kó“/u=ƒøA5Î:rö»!Uh˽?¢¦QBYjúüU+G”´í²aÈ;ƒ™¬ÿAæÙ—G1Øư1 tơ9TX‰a¡̣ ¯$D%Añj¾ÑÊă'àM©U24Ä??vöÅP\൶o¦Q•ŸOAMógúèöK8₫½%̣_g<~¼{–Ă´ÔD¹Ù×Ç|³¶d9WÉÛ̉jz-zÛ¥ă5³Ơ¿ăđßµüU‘}¦ệŸ•åN,Îet¨Kjr̃sº©–w˜4>“÷˜'ÂéD­ ×¶ÁîFvá±çjxÈ@]S²8̉c₫à™¤k`¡øe†*"Q™ †¦ơœx²ÑŸ—9ç«è×ϧBđ„9rø!¼¤TOCkÇh ăÓ4¯wê#$#¯.>_æ}¥g*$H…®8‘6=´:ơ¬Cơ­Ú̀qZ6Q Ö›tt̃¡ %û —Ơ#„±54ECr4‡ˆ:&‡yL´6æxå n_áí¨¥útU‡ûEê6\ÜNÓásùMZ·Tú$êñ)ậbú[üw¹g‹Ÿ·“%Ú߀R®œû8ê}‡ÙK;*y\‹À­0‘Î"”e…ÏໄËi»mܬ‚ e›G₫)ât ü'Á4€-¥3Äàë0o#@|Đ;¦ú°x¾ECùϼN¥LS¢¸Á|=‘*÷̃¿QÇ<;/!‰¨ÇˆÔŒótjđKßö‹LÔ…L ;lˆË7—¤ƒ_²¿R·Ç ¬e,-ÖÜ=YFC̀–®í₫́äø̃gÚ¡ )hx†YÅw-§º8Spp²ëèTc³pÚư÷95˜Å̃¼s6̉óø·â­$ !àäG€×Ăÿë)HMÏæ\²¨>Ñ¿‹ô#·JpͰ»ê8Œ‡¹_Ù‹%–6·X*1@ÀḲđôĐ›4v‚'CUŒJæÓ₫̉£=B&94Ư$/rïÅ߈v¥¾?"Ơ/y~§jélRÉ…N[Ç׿ 7r‚ÿ84P2΢Ÿ.í°¡Æ¡q۱Ƕ_Ơ”à†[Ë:F´zĐ—3V€đ>ŸºÉG·yđà^«¬Œœç_Ă΢|¤ơƠ'P¿Dëßi¥´E#ö L~`D(ø°Ó¤›ÄN^›T»çÂk¤9Đü‡<Èà[„¬z…VJđđÜ¢°›»îóOöL6öª´©rºßyÂåÄ™ùĐÓÿ_aƠdÆB)çU,¿8(Ú›U²+´ÆŸđmxÙ彜àåßȬøro]Ö]Ö́ùXnÏó‹Xb9ÿny28aæ[s ̣ ƠîHº¼MN°Kä[ĐÈă(ĂsĂ©™½ ùDQP¦îkÆ|øB€¤êŸÄÁL¡ºÛÍ̃Ä»K²̣Ñ×₫œßôáéF€Ozè th²¦pûî¬ëS¶Ó•^eh•Ṣ/ ›&†ÑÿY(æsB‘C!’p°â¾g*=Á»X$t̃âJm]S©è½<¥lî áÄö₫"§ú–°¶ÏÊPûpĐOnXmoïđ/º§÷q́å­oöB"À2BW  :düR^e1¿/8DÜ p«Â†ù 3Ç{‰̉é fÎQyîâĂXhÎ…6å¯éÏ~T&˜ßMÀ#îY0ŒÊ. n|Ơ5çN^«W½¸D‡Àñ›U¡nÊl ´uM¢Ù8eöZ̀ÆœÚ/“(© —̉&”»¯`ĐK=1D†4ñÖÑ̀ƒXµ³ëAo z‘\u‘€UFƒS¡ˆm èÜt}¤ḾØtO_’8wú[ÊG2bPG”ê^kÂôî…ưRw©¨qäl§!bx¼^ºƠ6ª78Èi‡3ÿúîp<0]Â{Z• Ÿïc:ê6Z¦¶]„(…¨qçÀؽ@¼”Ǽµ8CóÇYäî\eC1@d æ˜Ï·ưY2n†lVÍ?Ăx¬ƠzƠ9è%”É•éÔ Dp‘d ù|oßT-È^ËJưt#¸é 2ƯÜ)t‡:Uˆ¼·Oß½Ư® !–B2=#̉¹Ḉ¼YDæiæÖØ|•₫¨úfÂA»½I")đăçEÆÈ€j']sR‰%_o₫Áơ»£¶ơˆÜñ)KO»¯đû̃?½ëºa«ze”µß‡Ö.±µđ́₫¸áOÆ– ª¨fIlFkLXú:äYÉ>ÑË1Ÿ7%m9|NÂi7®ÎWv{vÊeYÿơ`xU1XÈX.wÄy™¼ªÑÄm•§Uí]sÈídø₫¤IYêmƒùzđH×ÚU{&ç­w̉ü’qºS¢#1Îêe`E£`½ÿt¦yĐ’ °oÖú¿A9YܶáºNö¦ˆ)X~Dè1ˆtÖ!hW*Éh$ÜP*§ö@s&±Ô%« éÔƯ„1Q*fC²{€ûöˆ+âyÑÂNqJÑZˆŒđ́̉÷ĐU.̃3âˆÊbÄfM—wRyü,!Nª87;7iü̃)mVx:ÆgiØbD¨¾Í6́f …Ÿ̉ /cŒ3¯̀uO&‰ŒÖœgu²Ă¿Ê³Ç(8hô^ÜP!è~ç˜lİæ~¶i¤5J]'€©g%ÄƯƯö'ÿ1ó+Ajç&z•…ÓlD#ơơˆ×ºö`(Ơ¦‰(®­Đ̀+½RµvîúiiSWJjâ5é¡ưÔUr4îJ.C÷I½®CLG9•]ª8JEªrcÄEm7ŒB---Ëkn5̀,o©ónFÏ>́Hhx?}ĂG~6³:ËßÜ~Yö<—óÑœ–§¹fƒA₫ưvIµßa¢ë/4‡:è9¿̣ ûë”~̀|„›~7è¸%ñ¬Ư\º°‚ựƒjWjÑôÇ2s±Ö¡àI^®‹ö=YđÊ™©+„¶ ¿K­nK™ÂŒĂÁqvV•³G™íiôY¸c×*}Í«³ØáƠO-¼¿¦ËS‹ÏƯG-1`Ñ¥¾zÏư|PfĂ¯àå—&ƒO;$nù]†3ñÓSèh”êÓ˜̀—êfå`á¹r dO{­ªjïË6ÖîɆKuî¼Ùn«®Ú÷Å×3p dQxàäK_K<$3Öårơ5'Á)ü-Ú/d—í#tNÇWÅÏ“…¤æ%!‚'çơ¹₫¡<˜B^Úái…qIç̉Œ₫•*ă`ôWb^\*=É–Ư» lơ…'†Â®yLë”b$Åü‹k¤45W†“GJÇ› èˆÖa p» I”ñW%3b8&₫g͉‘]‰58Û“;°Ü(FUù̃¢Ê_|€ó{Lp‚ăÆG…4ÓwŒ9 ¾L¬§ ‘đüxlc$€y 6¦ <’±,l¿¶”Oç̉ô·Û³ƒÙŒ€&Ø›>ʰ”°CGî™̀Ÿ`‡jkxd}Y/“‚î““ƒÍ}O Øç×–)—¼×ûjqÈYS´~ăBG[í- Å „=¨¿7rláéÖ‹PU®áÄ_z¿Ü]J°o4bTmƠưÜÚđ5×ûThl˜4ưÄj'éêL9iAxC•¢XKfk[˜SHôEäTđ-iÈyÎÉ-¼z=ÂÈܺá÷yYÖ¢7ñI„i D](´Pñµ¥?“ j”œÜol•E£K „đÍCF׸4¾t£Ö';†n¡€u™Ÿ€{FIç“'<¡9  M J¶ØY4´î»âöü‰/i© ®Ụ̀àí‰I ÆßÁ:'&K4ºúO?‡Sz3…  Í¢Û¹ë“;/ PDĐ}~½Øyñ„5ÀI‹§Q¾ïÀ2ă’×f̉˜Ù¶]TlKI)×xBÄX‘³ÉÔo¢Đ ׂ†'ü^GyjÂWj×@åsá §á‚“yw7đA”«ñX!´R ¼îœ d0çºz̀q¶§»ëG v0́ëW‹[KÆI½”@Ü*g`‰9ÿ[ÛÍÚ"…¼½Ôï¥(n¥©,¡ÇĐÀÀÇ—¯5Ä<öKvÛ(s6AA>|ñsm³ÏÚoÊ`:ă•‚;í ¦Y>Ë“»+Âm©örƠNé•ï‚&³¡ÿ¤j?Cé¤ÖVe.ơEăïƠÅëĩ:ae˜f Ïfne4Pñ¨´ƠrY/_ vœ<%:q¯3€nbĐ*ßNy_¾w ó(1‚/“QËR̀¹é~qơC ¥]ÛÙ®ú&–Oßơ>«mGED¾&Öơ—XĂà ¼á.̉?äËÚ²#ÁẸ́Qȸj4n.Vxh¢¼teéƠœs{è­́{ÎG‡"ihDè%®ƒ!¸H (•æÈ'bàƯĐåælµ%bî#ë2~Œârø±tUÏ%”Ï M§¢“Nû”æ·‘ËcŸƠ&7)F.шeŒ×Q!zđE? V’d bæFÜÔ]æ@‰­Vô6ƒ«Í5–±•ZÄynäÛÏ¡‚°¡²&/¢ú|±ân̉,dM^€)¼~Ủ¡ËXÚgư<¹nÍ}°d¿Çđá`ƺGqÊlW×Ç©€Ñ¥i¼ ΋ µ½´$„(ßÉhü>›”Dn`¯>2‹¦8C²ƒÙ[i‰L³zúf”ø‚¯ˆå8‚y&_’ú2ṽM̃ǻ ‚Léäh‘‘Y Jˆf½Qåa‘×Ù.(¿oƯ$®ºV{ ¡—¶SGº€´e• Hº₫WÊÔ¸÷„4ä]&]§íË<{¿sƠ±ÿá`/Lmû‡Ă}*édj×*&PÆ2+í¯±+´¬î"\ç1µǘ¬Mû[”Ê ¬à{₫}G(³°fŸ %ä5rÜ72IŒÊ”ù Ø¿Ù1q|nˆj¯!œXû‘w­úrÑ…Åö̃_ÏM#™Y5½„§ÏÎÅæ¤ 9¦29e·’Î2‚‚¿»®Í™j8¥[}ï&ß]ơf!Zc)æÄ¢ư°ºÆØd¼yÙ£ƒÆsØ~å?+äªăNH?~xî ½2Mö±Ó(~œm£®4 ×‚ơ Yǘ˜”âåzÉ̉Ñ%qQB'È·±2-ç¹ ¤u¬1tŒ7æ©2OcÊ1óßµ÷¥ï¹£œöyhf-DÁµƯuƒ‘ck6¥gXB T]çà́[ư»kåÂ&¥₫‹Ăó³…¥Ú¸¼æÅÉ å£tÙ…R± BŸ†â₫"–øÉëâ¶Nô¼/lưبƒ¢ă:9ëêä{„0é[æ—WʼnÜ]Nñ{˜Â#­C+¨¶ER›¯*@¨Đ*̉x>°æ̀â™g†i`h˜T}>Y-3 œ=É ¸ư?I<á? Yx¥îyÄW¡0˜„)ù¦Hx?€¾̃Í₫₫¤7Å+_q‰§ëzWn®w¢ç&Æ·+C‰»¦G5|̃Ơ¸­ô¾:ëL,ÏÆk« Ⱦwu4›Đ₫Qß‚èűÎăÖ”m”9ÜrºLù!+́R 6Û½r̃É ’W&°/nrÈÍÓ¾<§V+̃Ăp¢œ3rÍó3ú8ê†[±&d>˜ˆ¨>¦đ%fŒÀVLœ©kKH #´¤ Ô­yḯ±pÛ}1l¶;MÜåÍC|€»ơ«íYê-OÁ¿J5ÿÇ–×0SGÖÑE3²Ób"gn@g˜º<ó…Ä»?‚ºp˦Åö}†rDơØKªoFïÔ`‚Œ1ấ°©ñÔùÂu…êz„pË™IG¶M`¿áœDÙÅj:¿(·]>Œ3áZEÇVÙ¥ÊèÜI´rvû[")ñ¶p  t'Ơ‘kCKơE¬,$9:íÍaÚü›…r'8[•¿‘́‰2~œmUd(ÅÊѶÊÎp?¥úưzÇ)æX‰÷-N¨‡ÕÓºå̃DÖ2Öáww³ˆG–¸I¨’4„<Éí|f„JºNL0 ¶̀¤µÄ¬T‘ "†v‚¯Ø•ä_ÇïNEtÿ¥êïûsLä¯ÀîQ àx{"Iu]qeÉ+x„8ÑU»$̀Áa0À"̃éj€FR†ˆ¹?ƠóêÖ àR&ÅñØ‚‰‰đ'«^×–Á Ün~昉J+ü”Ókœ3¼Ÿh42ób–]•åøXg¤Í|5S¨é¼¾?¥Î̀G/9—+IL‘•p›¯»±ÙyV–Ï&æÏäà₫ÇŒ„„°ư\°ñî½G¸tsy¬́Ÿi# s¨ë6*‡Uwñ¶JÔ£ ₫XE·‘P¡2'a*Œ<œÎ>$¡á›æ±oÅü̃Ø m¶Êy¯‰Ø§ùYYÙgQ’§íi4Xkbƒüˆ³ËwuÙáË“o“‹́Æh(‚¶æ¥×Zœ̃/Ù 9˜ÅôƯņĂÂÀÍŪ}}éXh°«…J¶|¤M¤VRaÀơ¢*–*Fkf>Â7Sd22yU₫ađa:qé¼A«µ1I=(EÈd 5Ú\²ơ_P8Ơ:=Ê®6Vá%`˜oÆÙ-ù„øûqXăéÔøDÊ3csŒßüTóA!¯E{ô `{€±5@æ^b –ƠyÊ÷n´w幄n3ˆ'¶7íÀP›÷®:¹¬’îæ)'»wÚ’U6 ¡¶„±₫²"f» ñÅ祂ồkkA5”À˜‡+œpÖÇFñI—+æM%) Êä{FEåÓª·µ6ÖÓÖ”üÙØÏW§b ½U«€DßPƒ­p"tó̉ñçÓ_C‚ë¾@”àó.çrѧøY™ơ la ăơÂ⯠o¦z7mçq²¾ G₫5j̃©Î «çËå ,;‚rÍ âte ß~4SJûï­*ªê ¤4ªéF_}¨âc3uäđá<*ù (H­ă¯×{)ăû±ëM0îêºa†~]XöjÈK5„²WÖĂ—- ¢äâƠ™µ&­¶0;˜QànÑ?̣̀ȼQ4 H'ä]ØLNsù®ç¼Ÿ”Ä¥¥¬P÷.<¹)̃6`¥VBom D,â{Húmó:;!̉8g9²&Tœ„) ¥&º×1ˆU‡q;XÆ%®ànË-6.t˜Ù#”Ï%i˜¦!ƒ€Ûî xZÇV(n hdho8y«_¹ô—†²Ö4™'¦}₫3­yuáVT<Ôl:Ù¤jnôÆ ³ n0¿©|Éémđ³éo.á£vÏúöĂD3`M“ôk–kvú6f$àÛC[=îû²„!Ö…'Í̀UQX ¥.đăæv¤ca‰”~”7[VËåÔ'æ†?´Ù-‘º, mÈ‚å96‚˜S¾N ́®’ÉWƠbê˜{‘N‘é₫¦0w“<P¢»çI ́©Ị̀z¶)æ?¬Yl´ùto@»`/lzÅ5 â2¤„P0÷[1ö§ÜëZä´ØZ²‚Ư],çµ4r!º}ñ­ê—́à§5á’-nJí{qú6Ùª¿’¤Iº5¥!)°¬´ätVÍ”̀úƯ´{œƒ°Ú9ă+—·ûS4Iœjrô® ¯öz¹Ă”ZÈ¿ÇHc}o9M´×lnψÁ kœÂ'vpL˜)•r“¢,á èàØU¢̃–«î¢êÖ%ç”DUª¤™¦Ùlu¯<߇-Ê5GàvG÷ƒd ?£) í‚çC*F($û́(² ñ Ø/̀rYd«8.¬₫kñµĐ§×(÷’®ÿ₫ÿ ©KjĐ-†Ö4É?¾Zse{đñơ`§a}₫z¾ÇÚ«à4É3µ/F1E}„wPḯéCë8 ,¡ëÛü}íBg¿-ˆ9γÙG„ˆEs†›Pÿ¯ÿw*èẘĐY=ƒµVSpè‚Ûœ¶ »ï9c¤­5‚Jdâ’GâSô¸Ÿíüṽ.Ă߃‡FUWi¬ù@vñ–œJ¸C«×N`, ÓJIJ>7Zt!9íd‹"Ú‘»ß.ëƒáà;væơ¥©W+‚¬7x4÷7oĂb¯Ô[O3Ââ·]Đ́^öXtäûâÓ&§Đ;Ïï{y5–ÔœVc¤HX“D5û®¶~")I¢Ôa0ú!&$Kü°³h?ZWí§æ‚cɓͷ¡-…m\^.f›³â3Uª̃RlÑy ?(̣œ#Ôö3Ÿe‘€ü{¦¿˜]“ db`̀ăÀĂQgפH=r.&=³‘̉ư 2”A«çRç''>Ó©dÀ¬ơé*«{¤äÓ0Q¨]¯đ\ ™ßŒ)p7%–Ë̀ß;:Aơæ˜*s¹§éç̃2M­cVæ…­~M[Ê¥qËØzÜÿPü—ºƠ–W¾ œôQ©+#ºWIï7ư…Áaô¬ÁV…’Ư™ }_Œ¶P…6»(À1fRRT¸ăIÿ  »¿́,„­éç¯Hgà;*6ou÷Á#T6Lº/ÿ‘đD_qê mÄ̃´21́ü‰ă¤ÇNŸ,ë«÷T•ẬE\4Ô/t|̃>jđCñ̀î1¿t‘êôûºd¦e´‘Ô-O3Çp»ºÄÄÉÏ7ÊD3•’ëM2µÎlùöÆÂ gÈÛíă÷¬–¢₫ă–*2>•†¥`„³9Ksbdfê9¶#‘–ˆQAŒÖ™›û}MT*2ÇƠé… TCq[­æFœJØ8¢£ S¬D?ù`&§â‡Wqă9á)ׂ{;4‚€²ÍÔ¦Ú§“b®̣T +RëfH }›;߆½<ÈNáw%ù—tÉ,qWĐÊ ¿-œ® ØÀNÄÁᕉ—UÆ È*‰ ¾Í¾F±œs‘æ¡^qÏÅó[GÆWÈyí¥Tß‹w:ưA°èáQ7éfS̃íl†jB—«ptàF́æÊ¼á ‘àî ŸÁvvo­đêDb탻g̀?Â4¼ J¯̉oÏlø²¼íä₫‚\óh¤‹îæa–ËØ=ÈrïËRÏ>ëơ.ûËÜÅy–° đay“öô• ²ǘdö#B1¶9 ̣â¸ûŒ„Xơ+”˜Ôơ¡Û́jÂeñS™Ä S‰fơ•ÿeÊ è‰PC†¡ú…¿TÓüWlOø%́Ø!q₫½»¡OœÚ₫Ö:́ïu"Ä¥\?>¹J™ÿŒ9\ºæcZ)ƠÅCrwî0¨—sÛQ2y­4Âûëw6nl Îê}ªărzÉ¥¨Zx‡bơ­Ç*¿Zi^-¹ç[=±&,‘­<=‘²#˜tkØäö %So¿@ÿ]OZ/%GjY.ưáằ`³9ÈÑ»yzvÛ&±kưlyˆàü·¾k»™HAZØÔå^úâ2µŒƒ°ZÚ@n3Ë”²?9ÛFb²Àï]&k9̀‘ÙÙ«'%ä2 ñÍóQ˜Y#n´ïhtơÙ«ÔYJm¦á2Æ­¬°"Ñ ^ŸHn²đÓpª9Œ³6ö<²H³¿-1Ù Ădü‡ºØc3Á N¨’y®~êđª€áçÙ¡–p©‘Ê ̉Ch¨FJ)±:ưăG=oơб7˜–Öä^%ƒ“„u›sô߿۔ÇäđơNë»5è,Ă%FÓwtyơ™.¹LĂ9 @l^ƒ=¨²¶b¼w¹#ûh̀D­"n™ựÏ ®kí2˃àÆ=j½ñc,†-ễ€« 0µ`¿åÈ A-4Út‘céRÈZ:©BNx¸é†¬s÷ç¾ipÆo=‰x₫áÀ̃â¯Â¨¦×öIT/âN/bYk¬©¢Xƒ®nÀŦD=Đʳî!GbƠJû{å?Ü–Œ)Xe5¶»úÊdg0ñ˜§¦ZQ₫¸D@?û׿ÿêúä’ŔëÏñ«¨ZÁDåCÊ»sC¿vuå3 JĂCÿ ¬ûa W[ª cv°Él/êá¿pGb¯´:J ´¬Î£ŸÉÎA×– 58¥¡§2®m!)j„ƯF/„†–÷ᆘ0µBZté4üđA+ÍY¢C@€%ïd½•́‚Dq̣dX̉G$6™¬•üTö7†1FëtbX¼œ½…‡Z»æB–/Ṿï„ÚçƯŸ, :DËù-Gè̃#yâÁ|Cq⇄‘öÿHËà]-Ù¶~n6OơŒyØBT€´Ü˜‰đœª€ÙJ+³̃¬â”—ËƠcÉë3 ™½tÍÏEùư¢ƒè¢Ä!|\Û¦ºđKí,i…QÍ 0–½tö§B®èDÄÁôxxĐn¾Ơ¡ØßíË-àŒlî´l9mI‰³ù+6‚Ơ½Ávøúëi7 7L¤R²̣™íBû±„Å₫×U›Løcöß<ÑÁú­ä๠ưÀ±©»*;Ù`¹‹C"Ù­B¬̀ß!ȬËáx(́‰.Éo¬ÿó²gư‰̉‡)ˆÇÈ—1Úí4è}x#æºẃö¹Ç÷;2aÔè6Ó¸KÚĐ?‡µ₫OBt53S„T‚ (H ̉?JŸ–?IÄ ̉U㬷ÖKN¿ˆ£ŒXͽl/'ª‚e´ºPÙ\“‰Û7~’›¼®Ÿá0AmĐV¿ăG6wÆ’¡Áeâ Ư‘¡ÍoûtR— €4è-Ê)´ú±âăk†KTøÛ vHCxđÍÆ%">æ\j߆xĐƠ„ÛœUƠ›^;Ä́»̀_9ûl‹càl­…Ư}ĐÅæd=©‚qs0ÓÓͶuL Fí/ÁF¯CÑiW˜åâOM²3â˜øíĂ²̉£_.iéjuí!¥&äaà¡"‹ƯƯ{“‡~tFJ2< ‰c2»l}z)³ô漡Mí“ûƒG)‹üzâBFidî}ƒÄ1gæ ̣û³“æJ¾sÓÀÁĂƒ@9WÿUzÏÔ^&zß.G³ Ö3äH‹ùÇ.±1…€Ơáin²ºù«ùéÇæ:ß®ÿÈy†́›tÑ+s9Ø¥H†¸½ÛÇs*P0 ÍÚ‰•À̉l ÙS±ÜKBC2¼P¥±Ú.ŒuÀ’¢Ù9äÓY0+m–èư4l#<…§0ª’qç§`X‚÷oÅ[‡ŒêmÖ°₫rˆá\Êñxä0¦¨¦µUèÆWÍïo……₫ z î~Ă4J«1².S²$av¶˜QZä»­£IÅC{Ïâüf–™-¹â/úE5ĐÓÉïÀwú›êoĂ-JƯ'Í|•kprfó"ó'kn JË€Êe3ö̃eïG(V\;ó–²+潤CˆUiŸ].nR_º\_ÿ³#–ëp}-è~8Zd(EC”@©`)T`F{4êsG¨›ÖˆÙÊ=¹¯z½ú®€̃]FRAIW…ú<â Ûñ`’#Ït¿“I`‘z÷O48áÏïµøP4œOÍ5@nº•“³ÚY:ưBèc9ñÀý-Ạ́¬ïi ƯoÆ¢øê–¡‰_¯”‘Ó\̣ZåeY›G?̣èÿ¨= å)ùùy\á=uÊÿ¬O5WÏoèơoâ#í›vMÁ^ûF—S±NA"ùíl9¶j€;ƯH°4ĂDýêÇ¡¼₫I73°Ÿ¤Üi+¾ú ˆg?́B§„X×qƠ(xÖ,ĂÆ¤3)¼°ˆ™:”-8NƯ˜s@£`”œQŸ ̀ß@…ÿb×îáÆv.+5óq··R;zÄÚ¹ơ₫"…‡rđp;÷ Á–Ë<"iăco)«ÎzÂƯ¬ÔÆî±¥—úđ‘ BJî×Ö¤èô(Ô‡¥÷ˆơJ6€y;,­HÑ̉ùRbveptmYçû»æW»L1(¬Ơ4Ơ¥̀“:Ǫɡ́C{đ Q=Ă%´XÁÖVv5TX1,"……S3¤Ÿ»SÁ²‚w,ïÆ i™¸¼©n+l!Ü‘*ÿ«U?·µ@ÏÏæ?)ƠtU;YͼTí̀N–ˆîôát“çÓưÛ»‡EÓÀ0}ç#Àq́:^Yt|{:bÆ^Y©åÍÖâæ»đ %"é»1C₫*Î3Df“¬p¡ÜÓóÄ8|ÎäüA-̣çùÿë³Zåá *rÛܹ׃¼ç×+sˆÏ]Kö„…VÂÂÆP¬́„n\\Ñ„náӧκ’¦î‡s“Ư’I/QŸ5|¬,×ÿcÿ0˜đAª„ôLЉEïE‡çºS O®'œWƯÖÆ_J^à›„₫evª—©̀\9…¢µØØó¤áNˆHê]Ág…ä’°Ú/ĐZ îÄäw@ˆ$'‹úH_¤âĵß$t\pœ7ÆÀä÷Éj!̃äo¶,lt{_V¨~DpQ1ă77œÙXk¦œå ̉²vV«èưáđŸY$YHÓŒtj)‚Ë£`® t›/s£ñăàÙL–¯’ˆß̉•NÜ…kûÆ=7xÍÄ9Ø¢5vñćƠÁ¸â¾}2 Öˆ\?ê†C,OçiĂ`?ö§Á-_)₫»”D[₫Äáh´„DÎÇç]é+üØpâI3W"¡‘ˆöÅc¯l!2/ï%êúß2.!îûƯtl#ºïÿLRǴµe´KJÚ":ä…PÉ_¸×ĐC“÷o¤>û†Wg¼'˜û¶̣ÂÇư—5f¾ơZÆ¥q”…̉àÑè \ÏôÅX 9§¨¹¹£›¿Û¬¤ÊR±b11,úm‡N=¤Aj31Óđ̣¡FƠ¢µ?zLrÑQdk]#| 4Y×uÿVUîR³HÄ=²Tưï·à±éWä±Y”5’®î½ø ‹«íđ£Z!åÀ„4xdëÜç]:yÂ/ºÈu$–Ç »{¼̉M{9…yàÔO)\å͉^DoTƒîz·Ô­-ܤdYH RùüvBÓ‚ûÛá£!đ_ÅfCksFˆí{‹×™uÓvße¡ ~,Ù”9zA• q===ÈF²ÁŒ´v è²§[£H=b̀¹-Ôưf8Æàèq\ºíSëài¬œ+/̉cŒ^)Ï}æ^˜ăjóøC×&‰‘¯QP„OR¨?³äF·óƒNÿfC\X>4„„É‚ #6 I=7\oÇ»¢Ẩd¥)YîJRđèPRa+RÜÙ|‰ö·¯I2ÉÀtV$¸q½ê­ÜŇ'éä#§Ô¬½.đ&UƯŒNßå×gÁär€“'‹/ó.ê~ˆ́…a³` ŨÙç_;ƒLư®ÿOû¢å¾köÉz̀×U²geÛ>»º̀ÎÁ.Sb=&pÎ_©˜¤È?ZgÑôf?ؽS|lí=}ø*ºÏY?Ơ Ksu°½̃>ĐgH ©îx!sLuüf9…æˆs“­œhŒ̉]=đNæ:¿Ó:PƯÿ+ªª¢6*©\ ăèN¥ml)„e}qZS›¦¹„¹`íÏăOtTwQ3”̣µc­}†63yüXF1h9¡f &đ°–µ¦u™§RªÂƯ>ëºo=:¨nZÑ>ệ’ÂØÑÑ¢dÓ%Ăh¢­„ k’ómú€ô ¢…†¥áN¾3_I°Ù ÁnçæI °₫WgØY·OT±ÍËwŬd‹ù•‡€j•ȘJ3Fr«}RyósÄ«?N©dĐêF»# "oj” ~€(0¦¿çhi!øP&”ÂI‚‘’ª€tÑKiEơy¶=9‰+½L bŸY ¤Y₫!ÊY₫¶Ï*9¦1(×Q`ôQç­Yú‹”Í¡‹ø›G¬̣æ#Á!¹?8ă ¯Ê¼/Ûm.@÷"9åI+7£¾M<âœÇÆøVøWY‰ät©Ê‘*)¶ljƯ­†‰èTátÓrÂ4₫ÙƠEܺSáÎLï•Ø̣ÔMe¶G)ylrYÿxà{뺹²FË;4Á@²j¼”º›GÆrä·T EÉ0`ßh•4₫-7HhFU`d'˜mñƒđîMJÑäV’>iP> #üÿ4w‹uö˜/›âbÚ’)œWÇ î×Ç"d~E®½¡À/°̀ĐØĐ€‘‡¸Tú 2çI4F‹R c.ÙÂ^ùưÉ»ÑØï SÏw£€Ï¥ÇZC8¦©^ı ÈÀ&”j'ô-Ö8Ôº}“…„HđT7)%Ô9áO$?)yoÂÑ3l@Ê|ÄïK wÊ3Pܤ„9Q6v®5øtÿùalÚÁe>Ww7ƯÓ4z¢»ÓPoơb¢³t“ º¨Î.ë6ñß}ÖG¼á}“½¦éắ†¯ÄÁ 3ŸCl¼g¤(̀ïù9€W³"» â{œr£Ä²¥ø aàă`–^‹́»ŕáă 9vÓÅßbèbigy-›Ln$¿ˆ:”×8!Ó¢^“UȺ8½lú°DäUjc±T•¤†Ér¬3v1Ü>C&̃§£L§U_÷äuˆJÏh $ ®ƯI3’Ç¿$úÊ·ŸröJ<̉|¤#üÑY”̣íËpoZ¶·̃ç†öü´+GÖrBß¡fƠLT:~†x8ơ¸£n·$¿,9طߣJ…§‚đÚ0Ï$¶ ÆŸJĐ™»bÑg"ySÁ,EI©âÁØÂCÑÑÿÈ₫qVe=̃*¿ÄṢ0¤±́H%_Ơij°5WÛAav‡¬_ĂÅè¾̀ªÂ à2Ư:¢e₫¡8S²Qe8oy©-k#ôi>Ù÷:Gä‚£n'–ÊdÍlWŸc~À³±urCß!¸¶uÀ»;̃x ³•™rü Xg½k^ wá¾Iú³[‘·ÿAză²‡ ©ùYøç}cHĐ< s»Ÿ‘Ê;Öºâà0åÿ­0„Oº·0ωߘïQ2ÊÇü›jTä‡ïÛ̀mFnƠ Û%‰ $}3ËyÚa%âÛÈN×;uSĂyÛ¤§_Uë,ƒ†±u’#ÈiC`ăÁíñ{\Ä0YBWÊ5ªä-@2<̀œ¤Ạ́Y~´̉燨¹a œB₫đEË(2åëÛ¥€ˆư¯Å!(ÈÜç¤l^₫̀׫YûÔ4V@ÛđËÏÊøµ™Ä—Qûmü”öײ₫DTáôˆ€ôĐO%́oíYrj¸_C§h*>·ĐIm£Ä™§g-—ÁPn*ó¤+¹›{3̀¤ÈŒuư…]Ù]¬×~µä”¨fÅƠ›Ï­€₫P-mHÉ«F.œ@;:ôÈ£¸c—‹ư9 §GX?å˜ïQøûBi«ÙôçÚôB´gå­̀Êœ‰ë¬̉–ê(+£ nÄb>txÜFâ/ÂBÑîËHá©b—ẠI»‚{9ÈvTE3½r=Ú{S#‹Ü¨¶ÔÉ₫cAZ¾Tƒ]½Ư=}GXp˜ä’ÿù©pz·#–Ç®Ṛ 5m… #Íâ£ÿº…đx|gè¶Fç §Êÿt,å,æƠLX´lÊúóv»9́ưq„NgÙlƯóŸâa5™b̀̃Jcê 0h,¢:Ë):_£LIø>!—UK©,§´ ~?LTé^ä+]5&vâƒîÊyn 0Fø×ƠK©kƒÛ…ẹ̈’yâ-ö‚í€#VƠÙt3†±ïùG§^m. üƒ̀ư¿Ç̃D!Ă! jW¦9í̃ÉĂ(;Ơ[ư7}ë’­UZ'ÆQ™Á6r<‹G1DÆá̃żSÆH„EÖê§aMŸLÁ0à˜~ôC-›áqn2Â`â+XÂe5®4%nº]ÅHë-L`D°ïÎG3‡?)[)èUØG^s¤†J~£÷”ø-ÆT4y1mlèd¨m ¨ Î6óW×±P”³MFQ@9ƒÎïsbùée¬cµ]éVN×ÀB4’€ïÁ_DÖâ½ à́¹u9`«Îú(|ôº (½6JL˜|$4³+h)v‡æ_rmÙ¹9D®Ó·ÅdF¸¤2®×WoXè*Àï©ÎqomơE'¼ù¦&~]X+GeÀ_ưàđȱ²«̀8#´zIN†µƯ‹ñ4Yœ ±Ô`&ª›qĐƒậYZÂïµ Ơh(S‘%æU .tÙÖéEVb ¬é”n6™°ÊüR_d!c̀AƯ>M„¢Ä›bï¸*ö́˜1Ï9^¸̃î}Lí'܆àI›®Îˆ\¹,•9¬ú`K(Dz¡J¡2Ï|đưû¨lß×}q´Î”8­FdÚ×Ưd̀ùø?ܬ†ÊÍ·¬¥ÎVb>+­(æ₫É‚p‘G‹‰:•@†^Jơ-ê‹<™ó́‚l̀ç ƒ̀đ_ëuq v̉ûæÙu O|ÏÅ'å)jn@‡Ádđÿ)Ÿ ZD™Ă}º]¨ÙO~đNI@§êBÓFÉHœ¯è‡ŒkƒmÛï’Ùä/É7F=ăCDAp»~!“Y êO€ÚGLy'pÊ™¸†q°T¦ƒè ‡øœÄñÖ©S ÛTµA²C ¬G:^-l!|wụ̊ÎY&Üv,ëT6Étï¨O{·ªh½2¥×e·s!ù’igH=íÎT½¡À|:sLp«;ÈÊ,ät%OẒÂiˆÅyæLÿÙK ˆă¹¿T‹Qöá‚‘ơSoăHYB”—r_GSO1ÁUEÂÔp:Óˆ0ÿrÔVVUÅÄ*©rźcX¬a7 aœ´Ó*º3/qd¡ÄR<4Öt´éTÊ=-àĂu‰ÖO÷©¸ÊÚ3ç‚?%OP¤¢†«S'EË¿bmè‡æ¹Vûh²sO_È}í.Ot_è®CîAÑ)4+Jo?x±ƒá=̉úuyùCÂ~!â{öëWùSùơ´ơ₫ôa¤ˆ"€±ëZÂ[ö=so&́ˆẻk3‘¨T-̀r.4ttœ[§Tˆió»2\f1mƯ§«z÷¤Y&₫đ?'€ Ù¥ZɃ l$êlaö{BơKaó”¢"­œ/Đ̀˜ËÈe–a‡ºâ±äß²$/û·‘,^' JÛ¦*ÂƯëŒƯpø®ÿ̉9ï`’-Ömú/a®Ö«Í†B+‘ưœ,8·QVoÜi$h³¤TRơ‹ˆU6Ä8ÈÂ0 ›O6µ^_èTåFd_>Ñ­¥Œ¾ƒÎ_æîW!¯>·Î:¶¼¼“w<)|UêÊ1XÔñ‘#-í|Đđ÷‹H½ŸÓ9pB̃\añS“¶„1êWÚzÚÛ1ôÂ$Lê.¯ÿ!ÿ»{âoÁë`®Á™Gg¯ê ¿q |(û¾mñ¿ŒƯ/\ WȨÑô„a`p®VÖøK@XlIÜCb) 5‚³öÈL÷XĐ²Î\0„üuÜ;ªgM@*KŒ2üêW|QÆ…½`ú7K=©†O"» K3¶¡í_|rQ·áƯ÷i…ñ ( €$/S~p4€ô¨_ ơ%AÊïĐ (6ê;²ú镨T–đVC\˜̉¤öqYÁŸVv{†Ù+s…Â1–âW–“Hçhv„MƒzđPˆ.ÑBsP̉˸º5挅Ñ'ņ„Y.¬],÷{'úL<†TÙÄ}ಭÈ×gá ²Aâ‰3˜`÷ÿ13ù‡bƠÑ¡Â&¡5U’Ỳ¨GA¬~4Íjyñ…e>øBëåÙ¬§!{1¿H)Iüù²E@-ÊæáÍ\'º*đ¸7€k³Ñ̀2å¾ÿ‹pOd>€«¥†=Êȼññ³{Z»îUªª¼@ÚL<ÿô–í½¿‚Û$×4ÂM¾ü¼Éä -Z×"»dđFó:AtÍÜœ2iT,oÔÓ5Q÷è`“ƠØḉ‰‰.ÑÑCpè6ŸÆ¤U37̣6\Å: Xnmk=_ÂN#e»<Åt¯̃ºD+LÁiÍX¿1­¦±à‘la2z¥₫>nc†ÿfff„₫±öÏœg´È§˜¼äY@†.`ÍÆéi¬ú"Û¨[Û œâ¾N£ß{§oæ₫4EÈù‡ A½è) Đz£d-Bä¤ër‰đVMÖ;È7ûjf¢ƯÖ5¦AÓm…EệƯâo<¼¯8‰¹©)´åÉZ·́i$ÊäĂi‘M‡ö÷ªæeôâpƒt£2¿²ÇNpw9hècyê}‹¢©hWÎ6áµt¯y ä9º¶U‘P8ĂÙ ¤`ë‘Û åÈ‚jPă\¤­ ¤ÚH* áSf:‚y¨æ\¦X3³ÉƠÛư´[Lª½ă–…|.E'ŮщYp¬6W(K^˜O¥¡düñ*Ö\́2³!Uœ$X=A(lÉç´g)¡Ó÷¾ß‡dÖ. E'ÛIå]´ăŒÈí‡4œAL·—s§$J%ËcÜƯ–±'7@q±3¬ ̃P릓À#µK$9ù5 •58²¸râeîqûó…ăøÁôÂóóŬŒ6f4 ÖœÖđ^Gë÷±§¶[+‘áS¿+5§ÿE¯!U4€ÿ5å´D₫ZIÚ æ,Ơ^i'‹Ü£”“B'ÍEÂ'¤§±\oGª@§*¢ƒ´ă´†"e"É{6ơœ2ú0¼a)·•.‘‚јscèê…áˆVõ–jd,́îÔÍ ­{ƒïä~ĂtdœĐè$‘2Ö¾,SÏơï(Áëđ·œvÓA’6Ë…Y°Iùâ&>ưz₫¾H̉Áâ꾸iFª±GËåü’X‰XU‹näăăStp{t#? CÙ4ÿ–¥̀ê£Â¬ïƒOIgtÜ&œ®(đi¿î9yRï«HÈUbq^̉“¼œ‡½NnΤs^L0§ûTª×mÏ#$5ÿÛ¡Bvc´O bj+·„XÂ,vÈ ́^y*¸l3—`¾Ăơ"C¢j.5fÍ[¬ih• üÓ\LE͇I‹¬‰ ÍŒlx…hêơd«º f±Âª̀ª(5•(ŒÇl~è¨>́Aé²^°KËi½ÍÿÄ—d‰WoØ>0C›Y"ÀÅê¾ê¤o[ÔFæ†a}„æ…d•XĐ;=æV¥¥ÁDΣÇ,f¯́¦Ü€ 17ú’ ªÉ„{8§k, }'Ơ$Å#'6èè¦=%ŸÊâaÍ•¡:ƒTưn·³:ưæzüßöĐ́¨'_nsÔøqÉz®#TÙÊêq»GÚÉÁMḍg ªÙ»U¶~F^̣¯)û{A:$ưmuoXQH[lj/§Œ‘/«$=ê™034Z“"5YÏ¥o¡ZưÑéNXé.$»¶yS"qÁ½¬W·BCæyûB§ ‘…̉‰ƠsÄÆ =¾păœ—‡öI^́‘ïHÓ+]dô”©ơÜÓíö)ꮿD€y–Ï®5ü­Ú[wÏÁ6Ă#`oâ–»ËV‹Mp1ÆH†Vaø£% äĂ’::xmMAVZƠ<ÜđÔû¾M´aIx¤vHuG"6]-â2•aƒg̣±¨Ö́ÁœbHèǺáUŸ̀ÙUï许NmœÈ³ôH˜²t1Vm·́éÉæÉ>5("₫…¡%7ƒÎÀÓuͼi)seºŒ ɺ\Wj:C‘bzè÷b¾ă|DăÎaÉWæË8ø¯»cê¬(KÙ}uúb-ƒ Ù‚=1 ÿúº—cĐáu0è,̃¢́•F<¹„4B„"aѶ́Ÿ\öÖ SbéëCKŒj—w&Q[T‚ î26~ÛLÿËăkÆ Ú›cÇ åư^X Êñë”ÆŒK©`DŸø±Iß¼QS5‚Ê Ñp’l/hàFĐ÷Ư$\ wLºh[ø órŸdæc{Äרoá•x́ÈŒ¶ÇN7 »å@=X¤€úÆ€Á›%“­œQ÷¯üôÙ¥§“ÙƯo0Åû!¾e8ö˜©9ºÍÿuĂ`«wJ²ø| è0«ögª¥_oèœûjû×r^• ăpÖ(ª7ö½)qvVƠ„¸®VíÍ0}n7™]¯$T|PW`Ñ̀_A:‰g(Vôî0ơt? 9 ±̣:ƒœÅ|ưDºöÁI8*Ưî]¾D‰ˆóhŒ†î]ˆPÑ2,Đ_`µäGeÛ‚Tơ#„T4Ú SâbñÜHvà©ÅVs걸U÷Ù£&WŒUèK´? ›w£PÙđxÑ́¥‡¶“4=̀GUؽhó^ _Äÿ";˳-04–5ÂxSK²Mnœzƒmí¤Y#¯Yáơ Úû4Ù ˆ=áP‰h¥8•a:踳opu¹¯y±̣³á]Ö6çé““,p ä_=pØÉRwb£N]«"R¦p·÷¥äNA’¹:~4K¡Í…²û,ܘ`ÊPmSEO€ÜDzÆ\°eÔ9yˆP’¶áØ*X¬„l«®ƒ" pF5ÚSá°µÀêッÚóô êè¦Tu­Ë+¢ÄæÅK]Œ¢]ÂMæj [‰#­Ÿ¯‘ Q‡ê6syƒff̉-l6»4‹©º²\B3)&êh^̃D±µ¤ÄŸê+€ŸĐå$…Ÿ¤<*.7ưGÿO}8a Àô5H'́G ,± k”Í´O³‚¶đ.Ë„xÏÅ&[ö¤öéÇæ’‡”%h/ˆ*í¶•ˆ„yŸ¤é̉)øw2âH[œ¡ĂS3<:g³̀î˼‘â6ô#NoĂü%W‹o(¾ÂÀka§ù„#O0A{L|®ƒdh«Åđ‰dʬ|Ôe›çpåYªA„o<Á}Re"*CW¯đñư‘»µ&viH'¨Ö|4¥nÈä¼OgX¾t6e9đ,ÍSÈ "¶(gLËt híO8–´D&̀NÉp»P̀æßµ–¾Z̀Úƒ‘À½乬h˜)¡ï;ºàa(*YB‘b jQˆƯêOu”`—.B&&k2¦,́í‰oï§à×çèN̉ßqƒÄ_ÊåèÏËøtBµ|kÖÆ®µÊÈ.a¬Íø¢L ¥Đ¬)ªyŒï‘,ƒ ™Ù“£Vf}+*Z#¢‘¿ñÙ °—÷pS]-ƒÛdï₫ÄU_lÜ‚kÔơ§8G»y—«PÇ£GkºñÀG¢áv¥Å2ỵv&SZ ½@7('Eæ_sa)«±vY—\æR䙯$₫¹M £²Œ×£Zï|ˆƒa2^# ƒÉ.¤¾|j¤X¿ơ&ÿN¢üÁÈ>W`wÙÆ?mFemWè.dâùiµTèu’€¢dé9SÎ[¨ZÍ͘ˢÙÄ™˜~!U™ydѨrr̀8Jby(ËXñ/—9 m¡f‡\‚ĂÏ&wOü3…¤ơüÛĐÁTËH́;ÇÀ́öÎĂ„̀Ơ`}' Ơp'Á(/kN T"nUÛ®¹:úNÉă8 aV Ùf5iº·#L×0˜'ECw Ơk‡_mvAŸl®—NF¤v•³g²£ƒ–´Ä˜4â,ébóg"ªC Ôà;_H™A¶¾C/\ø‹; ænCuuÈSœLÛAk‘©ÊB'ßH™U.{·l‚IôNkÆ<éç1‚ z€Vä)“WR d2‰5Æ̣X“åIPQ8Uà›/TºTv~™…ec̉… å5H·­pPŒ/KÔU˜[W}àj ÀPÛM±ü£$^2ólï0.àW†™;Dơ¿ñl lÅ(Ơ¯Ù0…¼„i!~7’´CR”M€BÚ8ÄƠOÙÏÍtù,§k”ƒ¬?iDÊ0(K»f¬ül"Ó‘Ük¤n§xtÄ®·2CÍ蟀)تƠó¬ÅỬ¡ˆA¹%¬n³₫f¸‡€æ8$ûu6Á_¦ˆVÔ¶p.~(âÆ ºÓ}!Øe l¶KûË/’·ÅBËt°b²H́L¨̃ƒRú~ö€Ô³£iØE¾@cíß^ĂN´}œ»–æhfRI—´`.‹bqí”éËu%{Mđépv£H+@˜ø®Â Eµ–‰û 7¶ç;hö¨™ÔÉ’'Â8uG\¤—FƯE#Øû "![zîB|+ FSŒ\¨r₫f_µN:ˆE 8̃¹üT–#/y¸_öR=ï$“ê¿©̣¡_2‰ơ+ÔCjǤN 9Å@‘Tç9‹xư{LŒzR¸Ú)vg蘖„C\ÅŸhŸÀ\TƠef(J ÅÄ­ñ&¬óß)qØ+ô>Æđ¤´牗~gPåÛScIđU3¤Ä"‘z2áÜñªj³`¿/Đ÷J®D3˜ư„j#¨ÏÂÙ¿Q÷únp©÷Ôw–»₫– 531À‚‹^“º́Œ;ŸGÛâ˜V„ÿäís¡,+(ÄKY\á`¶°ïœ7q (4ñâ/²¸XóL15ṇ¶đ§F¦ªÚ…œ\µÌW8Î ù´n¢‡„ă ±¹nGvö£úçÖ* ³"x¦ß€¼̀¦Ô"•rVË‘PEé³W‡EN•ͱ›“z̀.^ë÷Ù!ø̀í½"Î)Û 5e)ë—¿E³üø₫à©øѤUn„%—<¯\©́Ư— ’­:cØ•Éế—đ=́à¬éú3ÏüG«ă,f7@b`uë®~Ô¸{-ÄâÍåw›Q]ƠªP‡3».Ëf¯K‘ưÇUâ­ÛöÖÅ@תSÁ§Ê-Ü>VónÇú,®8}³Sæh„l¬¨5ÖsB÷úBÑœ÷×ç68qP_²+ùéyƠ=’Âơi!ĂŸf¢2—UshRç´É[4é§]]T†4¯£đ yZ´ĐKƒƠuÖn¦îêM˜:ø—¿NĐ¾YFM*Ú+zJR7H¾ r¿¤¿Ư±­*¤ư5NeV1Æă‚BŒçÑ3Ë }ˆ3“ RGÿ] äV†ày}EÖ4Ăoăü‡„ú ¦ùk¨’ædϤÿiAO@Ă„ZønĂ‘\íṿTˆ˜Kë±đˆŸó6Ÿ”v0-µYÏB|XÚHz>e¹ùö—é _¨N’—ÖÖ,EÛåqJË©ßzq7Ö^ç† c(KÜ»Dhœ³éѹr xƠpÁûtQ¬¨ëă/':v,y:Ùh@œråq]^5Yªœ¢UÛç4HcŒÊÆ̃À¢ ÿƠ[ô•ôÎYa)T»?Ođ‚ỡkjÍqh]×Ë₫|v^=ÅÑÇ%?;©÷V_pN§m}uœ¤½ ¡5‰UÁC¯G­yÊV%:Îr“­̃î v¤Ä” L<ê'Œy$:fx#ù?lt:D¹5:[Z?"t;èØ*Ơ¶èĂdfÈY…5ÂÇk…G00˜?†[b'¼Ê—åC§Is®wb g̀ÏÔ+å?<¾uh‘)Ïë̉×óIGÜPHÅZløF¥ £uϦ]0®Y·HÀ6ŒöX­—óÓ¦ßh(lD+$đ̣BµtgBưú˜}à÷}ñÖ0¿Û%-ÚƠ/¿:± ŸS'€O@=â„= %˜Ûb¶ ³\n•‡ư›[#aÅsS×i"_ËGN‡™y;}Púq1«Œ̣fĐAøĐ¢Â¼jxư¾› ¯ă›Ñú¹ûÑn&N…Fq*tºĐ3¶ÁR'Ÿ ó/´ó7 áªĐK…ˆàaÖµ€YyưÂÏÆ.áï [jyK×ùAK Å̉$QVRđG ߯"\`o""Ä÷î±6•´Nöj«gR–ềïHAµG T%=DS9…¢'–qTq‹ï›[7L¯rA¹2>_ă%jÿ¬ÓÇÁÏè—m)DÛY=î9”¿&äW‚5<£Y¨YŸtˆÖ›‰'³sV›+j¥l¨#UùzŸV^] ü’—j9büĐmqŒèCp˜”`éc·ƯK4t¾–ŸđÚY{1fcÅ2pœ ¡ă=\¥¡Â}N¨ºø\oŒ#(º2ÚMö”çG‘uÓDÏ̀B£¢˜ơ&½¾đSi\sĐé­ƒ h…Éz>7[çÎæ\wµ”}·[¯y –«Ö ̀x¯÷¹AœS…¼­cY<%¦Ä8~Å™u0|jB+ÿÄü¸ÇÉíi¹çƯm;¢ĐG_4ë ÈÖú— ̃3­)©Àâ3¦Rœ¬%¸ öèƠßIr~ñ? n óeđ¨8¡ă ™ĂĂCézK¶6iûn‡Ĩ B¼Ùê Àüy|F?(Nˆäï°µÚxyJ4¥ aŒÈ¸~3ü‘¬Lêyre’ŸÍR´Ó65-¸,•&Wz¾_7I°)¥üu*í½3XˆÔt‚öDסHÏ¢ ƯpúKÊ_1;¾±â` `B<>:„¢)+!U€éßo…öæÅC Ö)Ʋ¢¼ÿ[TÏƯÈ ê–% `Ü>^_'Ïañˆ-ÓôÖ+àD¾àÓ₫œK]ŸơÉË¡ØaÊ(¤3XÖ̃“ŸZÜ¢ét¸náƠsFQJ®ïgưfaè² PómPµềÀÔL» Lñ®̀\Íơ :X+!³ÑËeè ñÿÈUơ”«ö$2ĂÅ ó÷×` c®̣—W’zÇÁ2› †4:tq¶´À%[Œ½`9H₫ÚÉâ[78v~rDÏ™Eí~J@èÚ̀Dó@y‰°%8̣Àêíyđ;âÛ u(~)×” ö…à=ôyo~gcS›/¼eÚ-#λ%Iˆd?µW^7âÄï—#yA¯HEƠg»«†dóçGxD·Åj¹m”6ĂGOéË ÇXÊ º­9ˬ^ͼD>¶êÿJá6^(3¶L{pI;°S"hơ(édn¯ó¸Ïdß·Áo:Ư|MWáqåß $ß₫B&°teµƠµñ]V ‡t·YĐ\µ½̃à₫’^›¤H}¾äØ.5°̀Zº̃*¸̀0 6ÓÿŸĐWÏp&SiÜĐhJX•-•Œs°3‡É8œˆ$₫Ûå$ÇÚtÆ_3…®̉Đ{~kÉê§¢)÷«b,s‘Æ£(¬EàÔÓ‹"cíă¤(€¡ü‚­°̣̉cm*‚/3èëæcÖ%́,ï«åÅăºÛ•î°^‚l&A¾±CÅBê×Ѱ&Ä&Ù¸5ïºÏpỵî\ƯSöÛĦmIV@/!–D¾È©Z¦Ê>úu&røµÈj¡.UèA)×"ô¦ÉÈt^¥«lÊ"†Å2IgÎå«o—ê€NtưØ¡j“Bá[x̣WLhơ#E;SăḶL<.¥2ù Z}„䨾_ÿÚ.ƯO·¯S²w·_RẠ̀ÅïÔäóÉA²Đ¡"i„J^™å…KZj¶pŒº³§OÚÇ'U exăcd₫×ÛåÂÄƯ‡Đ2ª'ÈÂW¿!M\zß@±å†*§©&ë’ S KŸÆ@%1u¥ï˜̉ư±̀–¾å"±đ˜üs³GKÑ­‹³ˆ2<¹&Ư/íÖi–9„x_|*€RV-Ñw78çá1é¿1–¿¡˜ơ— ̃%I? ‚ÖÖÑĂϽ{!jQaƒË%́ÿ“/…(ÆeơTS6ƒ|ƒd.ß^(P3ßz¦)F=Yọ̈]j´ak•&’~l˜¬®¦¯̣ù* ¾Ă|@“P‘ÍK…ÇA(|æáYµ¶ƒTYMrsÙG,đ₫Z¹ÅBm°‹Ú˜fï£y¦1cĐØÍifÑh₫ 78¿ót́₫Å‚œă÷@b2"d‡§îd*.Ô$ r÷=)Ê">35ô ÷jIæñÄ®Ú?â| ¶\áÑâk±Ê° <a‰ëü7̃ve‰›49’ÈTO®ƒ“•̉³ø_ÔY—N¸̃̉,í¢èâ=Í=JG~¼‚ô}œ+à° q̉%¸½û₫CnÙể+0z|ÍZ[–Çb¥T²ΓÔ }³µö3%Ê*B ‡©PSZób$¨ỄJ–ÆIH 飠dm1è©l-=†EÇø¶Î(üØ/ë̃«›fOü0̀Åö=×—Î,Ïàăô¢s¢Œ#‡Œ>j6;•¥S;'¸†ÇcX51ÄêD.¡^ ă;7EûĐ…èªÔ{™è8ˆơ"|`°M₫8G| ç+?I¤­G#ºK̉é&+¢CA¶Óׯ®Ü‹Ö¹Í>ƒÚtKC%Vr"!¶6^%FR¦ UĂ#g«3é-è©ó­&Yß’'WaQ¼å<©7ƒb=•÷áOÓ̀‰ 3M3ù;ÙÔƠ¸ê¬»¬CI>B—J*ö¨…Î4cY.HJ)Đz˜R™p.xÜu—ư•~kíDx¸Ny~́Ó} @ œc°s [Ơ&× ²œƠß(ô.›«ûÉf>ÆKCeŒÛ„Á*wă ²’0t(ÖíÀ¦©Ồ¢—L2@ÏÅîM?,ưø çz¯á…úFư^Û ¤3lO˜Öe2³ xïfS³¾!Bz,µ̃G1–i†W.Fâ]´jª×Dd{˜ô§WSK\ø¬©pwÚÿ·=é‰<ÑƯû½ƯO¬~Ûư°mĐië‘\àUÓËf(ùw¨¿î‰+1¨«¦Sb¾£Ù™Ú¼X8ƠUỂ”B½«°(?Ửñ÷0=~ó r½àW¯‚¥QM¼é2Ç!q懠Yæ ûÀn«c´ác^0_, ÆÑ̉”Êó¬»Pbî.ˆFa ØËU[®„*TµR ÅœÀûÖükÏ\ư·¢ë'—Ù †¹¿é¥Ö—á±²5Dóx™?Pưä$ÆO«ơ-¨5ñÛÅ¢“ó-„sé±ÙkÄ=ÊÊ–pà¥ñaÔöP Êj\É^ß;¼çs¬½¹ …€:ÄgđO±À.ä~‘đ¬.×Kî˜ ₫8ès˯ß ̃Y+okå‰^È‚1-ÄƯÔ₫ÜÈÔ(’§g®©ycëÅ sßFÛ1äAHxŸ'½~N™…´_Di0CVà?Ê©gP̣‰iºyƯ–&x+tÈ"›´]©3Ó́p#÷±•ÀªúrDÔÙÿ%D¥÷Æog“œrÙơƠlk—ä~Û d<ù]­ø`“ÏOaíœ0‹mÑ”àv%#å›pسگӧ‘ÎđJ$obùYí\߉@üëP­°ë5k±®ûFÜ ̣¥Ă„Oˆ7¤ß¿?M ñ̉†nñ€ØAậ™ˆ”­»@¢-ú(àí´‹Ïiü‘¨ïgJe‡+é5Äo#XËÄơtă ö…yu9ªDm±6I[}z>Ö¦$-E‹$åvT"đí¡Ye1øưT¬¨å V²üw ‡|D_ôÍ¿MëeMqÚóêÅơËƠà·g'Đ!äl¼0O N+çVơ{bÄÖW*[4¢ ’M:MÎĂ•Ûx«µ¯2đÙƯ‰ÖœPø*È?¿E{ÄnJ0~h÷ËIÇh"NRÙÒ\>dAO(x4!=x%(çC;}%ÂEUÀ¾}W¢½äĐaù3G¹­¤‡ó7±~s©b˨8µ}ߘ˜˜Êó€µwïº><"T‹UºÿVºŸ2u1ÿG_Ô¿A{ Uæ6*M5$oêñê°3́¦Ơw î£;Y ïë\S1ÏúOtÿ’Éÿ:1q×T”˜Ô9›ª^Oä…̀Éöá)¤9Nø¢D/(º°k¬̣^ÂÅ“Œ8á¡H2“aÁă­&¢µo{¡NĐ́Ç™Z9»₫HlôßD/g'ºUû÷,Mđ›ÈÚvV¥9,ܽG–¸£nK U$ñäƯkxx˜è&½h̀)'T{Ĥíúh8äBV/Đ̃ª>Zu«]#à*Çï:ơ"LïTi‚­¢p§øˆ!ĂèµÖÄwF¶Êđ0+[}r®{]—zé(?&‹Æ²9ˆƠ¹̃€‘êXK‰‘KªD¹cÑd8z7p—†{{âÓ ,Ñ7×çK^Øăç|6ÁLœàƯzeUwÿv´2Ï×’ÜMIŸŸ“î§v|œi1 ®ç–üc» cödj¹¨5Áơ£s‡wz$r5:q†g  ¹¡Pº±X ؆Ḳïà˜F,ú̃<̃®ÀߪªÊÇ(‰> LÓHûâ²TÁ®ûÜtâ»xX“å‘ {-ÙƒÓËß”&¶  w׫0É[K¤{æ+“LBîÂÉîz­éË”S€¥ƒ}Xw¦W µ„€ÅÍÜîƠÁzQ‚Ưnÿk&o¼#(É£©NÊÿ½K:̣¢ <ÙŒK€¡®=” <+~âO«Î¹ÖÄsă”eïæ¨ǻ[½°´Û®TH}ïRw@ï 6 q¶Áz¢¡î-²3ª̉? É$·>‡·KcÖ•ÅÁ›ÇÖ&̀y¶r”u·­ÊÂ5ÿÇ«~ˆ”á_™LHzÅ‘@•ª¹]ii¸‘é ÄH÷ÍptÉ̃Ç6́ăôr̀¦_Ç)€¨¹Jä£göN¢ ˜ơp‚BÍ~àQ3_øbÀÜÆ÷:½Ư !'tN=œ,Ç5“A ß°ñ˜ëk¨ƯØørưù%¥SŒÄJ(Î&đ:צjƠL©tÁBÜÈcnn.^“ḈƯ"0úa₫/ ·@âkÛôu1X\W&ÎO惰ÉâX '(=?ê¦îÑ$@OÖà±ô^sö¶0W«ÄÜ«|ư’=Î?ơK©è,đJø|ØÊR%H öúCü°ÖÆæee³ôÜà†Zö<ơ¯ˆù`él¬4u®7î¤é32î÷Wz₫ô»ÔÀN×J‹‹«*fHÆÑ©^™,Âv«Ô?X€¿›HKƯÚ“” ƠÓ¶PX ܳ¢ç½Ơ?ơS+,¢Ê€8kÂ,óơLÛ©®fDnG¨v°sX.F–LœqR;?¾„­ỴYæH½M7Ă6‘FF{ä"“á}ªg,B\*†æ–ßsk•G´­8Ë<¶"n?B×\Ñ8ÂMØGđßÈE8Ö'ÙúƠÚXdBIAÚ0ăhSªƯg%Ygï>1f ”†“v~£Ä¨(©T­¯ªn·ÛoÜBl |£Bà¢úöN% )jXîĐtđƒơîéRÉ?ï7Đ Ï¯ R!SÖ‚ôx²µQÎè›đâ½ê0Q$êŒk̉£Í ÷j—EÆÛ|Îâ6~ß{Đâô²½Ü™¨pàùU%Ç>Y!M&#œ…ă9d . j¦N›XÏÅdŒF§]ÂvvRK;…áẼ«z\ă˜S[®Îbmä'E2²~%YFç‘Æ¦?-y;³mlÍx«OẠùyÁ&,8?«¢3E!ºn­ëÿ~'&#,ZS1cyV_v‘!/¸g5‚´0gd¿~ç/½Kçsu8¢×€êƯc§/ê*·nô€̣Ÿ/V˜°1®ÜôØ}ÉQT=óéÙ†¦ˆT„6·$2'‘X{ù™jµ_}̃ÓÉfl̀óK™@@oü×…Â6+mÉz (4¾̉U¾TæKĐ Zö>Ûx¿₫y^!™å9¾‰s…2Dç.lÙrOÚøà,[hCâ⸒%üׂzFfäYoæAÍâ©eT¨#8o.Tu`sY¸“Ă˜EJÛ Î—ïlf¥¥‹xm®œcÖ±®«ƯöèQî„Ô&<°áJkè$ÈƠµ5æ,ˆA–ă(D×)ÊT2èÖz}Ví%ÔKŒˆ¹äÈïgMàç?(ç?è8¡`Eä…-ºĐ~%Ê¥¿ ¹ŸÇ½G5¿₫Ûl¤a!æÁƤÇ/ »O›÷Üœ\çù—â]›¤{*±+g,Ấëkơ¢7Ïù)ê`:Lª ñÇÆZÇʃs ‚&ßœĐnØc/i˱Yĺe¥˜¼{.> pẫ–O7Ê3&ô´ªÄܸ́ÏYM'ÚU]ûÚë!E>3xOºk<fsû4p¾0»}!øÙn´Äèeª›0®ñ­AaiZêë«Øy¬T ̉¥s¿(’£T₫“ö,•‰–8î‘ä¶¼ ³<ºû R̉Í”ÅŨœv¢˜À°ísÉæÊ—è%Ađ‘4"IØß¼ê9̉UO0l*nơ¶V€e–̣=¬-úú3¯VƒĂưé RơK«Çwb×·NbØY´9ÅŒư8P²i6\Ê0Cû›¾¢VVr}\2«ƠHÈp£.đ3n…U¬ÈH‡ƠàV+çá§S×VâvÇø³̀c±q0̀Öü^¡>F̀P´YÍÖi×[„Ư¶è†à9tî¾Ôçw T}Œtw$`Üœ“æưÇKÛT])cY䟻øœ– ’¾j°Àï¾ m™áDư†sỵ̈,I\¿ÅMê ÆŸ v&đ'̀£h ßÿ‹£Zd‘R83 mưA˜éư »uƠ±ø@sß qbiB“_:ˆä*î¥F²/}0öµt›ơº¿4¨áƒ”ÎU"Oñ=6¹[¶Ña²‹UpïâÙ,­I6øó̉84k§Ưx™ït¯‘…o{â Ä>5OSÍ ÎÈ]Ö„âåa’e³{ß¶èµ/Æi(ßbD ·$‘ĐơN--U´Ă ÛöÚ½MÊp´…/¨»@ÚÓÉ”FñŸhê.†Äú @›®kÏ«Ö}ø … ¯âöN•²ß@Ô±yl`Hëê(ÇmÓ/áîíÈûÔ–Ç}ÛP$à]™89h ©ÎDçUHVŸu²'ˆ ÙĂ}°±ôr 0Ÿ=±í©†=cËúÊù˜"0t`¥‘°¸đɦ8Q‚½=鯕b-¼¬·Øh´£½>[~£o|!æàm-‡”ø%3p eôgûñ{:êR‚––Qbn¯ø$Yót<ïÙ¾¯Ëùcb0›ÛGî¢$îoQÛ€`º›:Øác<>̉@â_ͦC±X?¤CÇg̃bËi¿­ÄŚ5ÿƠÀŒïÆp­^ÑÙl””«.…ú«Ú1¦f@],12,đz)†ÑœÛ»˜Ă¶÷rpŸag€qjµ'hT$̣₫q˜À(&Ô|gÛ‚¹Á@µT0­£«ÿtëa¤n}D#™!ɾØÇ5dƯÍØdWuuiØ+éĐ?ƒT@×â¤>„LF#¤â¢…›âÉ;ÁY9Mƒµ¼¾U¤U^²¶¸1® R×Шv«́3p×^+î(\ăH®À[”?ów°ÅÙ’́ÖwîO°fb=Ÿ¼h0û?d~¥FºC\kÚÇ&ás¢Ù™Ø€ă 9Đ́¶¸7‘oÔ2èÓQâÏøøS΋z?î(l›+Ơµ/N2†ûÄ×bηnZêƒ!¾á,²́DÜPZẢƯ öw ¾j#ÅÙQ‡è~‡F^6•é7½}]™_̣w*SZåY—4uy ¾‰{_ ” ‚ØC¬3üƦªvSÛäóÿä¨üBå.»jX#Ăix>ơ„§·¦²Ơ€ă˜X­â¿$Yổ£Tn*2aVL×IÏT.:ï<̃Sâ:ïŒ6µC0«` ´ƒ/·f¯´å™kđ5ËÜD+ºx¯₫®Vø}A¥ ôUßOµtU|êÍ"†øRw(pjól¿)ùơN}̉‘¹2F+?{ç×ÁV'o½*Yo·38 Ñ”´„ʪ¹¡ĂSû—0R ×ô¾¬YƦ-Vd1~r¨Fä%è9`÷+¡Ÿ l è¤u¸JµpÀ¥)‚}åÈä9ưúw² -Y*xÙí­©my£¼g[‡²¾J"?C}4@+‚….WFgÜṃ†«–%à¬)¨ÉŒu¾D3å³éÓoâ]'d‘;àË0‚̃Œ[ÖâŸØ^ȹù#÷ÄâN_ê°z³Ă¯FØ*Æ>óZ¤jå½j¬¿Ø{Uøiä$•¾ÿ<ùúÇǵ;»É´‚̣$<êË6̣\y­Yl]G×ó²'w+07ÎnÓDñØÜY´ª¾ÿëÂç¡ÿ€£ưÄ5́ˆ”vT6F›.m4¤fG±,ªÿëo>N3đˆÈ_¿&8ÿJ1½O-œW„¾Â/"îj²dVKù¼o ¦çXú£ Úƒ₫< S<ÛñÉV5ưJ™œŒ̀œ=.œ¢b£P₫‚Ôä]wÖG ˜ù'l÷«K3~÷ôW2ỚŸS+¿ń«U æ @ßµ‡Që$¸C†ơô†´6í«Vđs‚đ0ÍêÁ½À•)’&ÊQyôĂu6¢ ÉM²_ …˜‘z‘¸"纖©­¶M «\¼¡è¥¥¤,Á- Ïî,mag" ÀØù æ¨êïW¸Ù'&ïOLÖv³¼ê0^ó„e¯¢…D=ô”o }¯ƠwnvÉ´³J C*ZRô áƯæœöWg‡¹ƒ±âvI w1èXÆi”@œT̀»̉́KÆă¹C y0ħ«Âb[ˆ¦¿íÈ¢B5–âŸV́²>`a+¨i×4r3¼æÂ9… Oè¾äfŒ9¥Ȥ'î ×̀ávŸCäê0̉‹.LV)P¹EÙª½¨Kÿ"{*×.5ª„û•0œáÚ«Đ#ÑÜs–̣ä§¹¼•üßTÖêU÷,iyZ•IJ+yđ̉’EÛo1Ú5DÁ‡‡_kÑǬjnĐ}û´ÊL*KØ D¸AÇ*ÈŸ̉ uÚ\÷æe Jq‹Ă¡æ!ºÈˆü“h÷5èáyÀü&Ê›®°³$K“{­£÷ʺ˜¡É¢¨X₫éo ëÑÍ̉ĐwÊhÈ»G₫Öwc—]…ŲEû‰}XXaÂÆn V,¤ß·!Hÿ ƯŸEâ“Äv÷¼:à°’®èå¬Kv­N+ë zDa©îÉÍ…aVx¨4I¸ÆY Ç—:¾̣=́«²­Ú«Áu¼ÁÂ₫L±IÏyËå'k±'ú®‹€$YV ¡ƒO©²ÁĂ»±{MÖJ^đFKLKÄÔC]Âæk{`Œ…C ó’¶·¨ƠŒo~S\Ú¦”"y¿¨Ô#Ÿ—‰̣4$ƒó ̣/÷M¸ÈD™A5¤?¼@Kn`Ă¹È̃Å+¬Ù¥?4–ËXëkơê VDhêÚùÈyïduOúñâ)èÿÉq#s¡7Ȧ[D.ËG?Ơœ £·á¼l'kÈ”f̉C6çè&Ø¥wmÀÔ ËIYb支‡„å©7UÓXzL{Ë6Ù/…qh¤Øq*"Ï «íÖ’·ûé'Mãî—KMî\|0y÷Å&×Q s"S7p#”°±TÏw¶Ó¼’^£{T₫öé*̃ß~¹¹¹$˜xĐØ&ư—»'S΢ẃ½¾»2IÅg|¥H;sPlº¹/W2…F`¯1´ùưñ4ƠÊ ï¾ŒT}l, ?ßÇœ ¸âEú¤ ²U³½ô¾°Q å»ư,³Àt¶zͳóÈ®*ƠøËQp„†ÂUO¬@q‚á9©–¤û”ÿy[Yá2¥qm˜èƒx̃æ"Hndu˜ïQ.ùNZR5< %s‚D£%§}mñK·n ÙÛˆ¸`´]“àÍ2ˆÛ_đ/ا³‘œ4yS‹ØT(CÇø_t°ÄXkpn¶Emm½Ü0̃;u–Ä«ïï¹åJ=fà/7ªfá.lâ}*¼^k~ ư™ƒû"# Ÿ²[à­ëgª}LüË.ØÁ  a¹ZçôUƒ[ é›[Á÷TDwÄuV•t‘ĐèŒcËÔ,s‹ è·¬`v@E<¿ÙKÂ…ûräºy| ”ûũHƒ{8MÍ—ŒJ¿=xñ?o]u₫úhza¥½—ª#¥ïp̉㦰oœ9·Ÿ¸Œ‘-Uú·ˆ%4•;„Ê€0è3Ũ?ÏO€²•àmû‚m÷˜¿ɸ…̃ —ûƠđ›_Í9…ôÊ\«́đ̃×ùÄ1—ùÆ&C§ˆÉû44üØà…>¨»q¿.°®Å³T)Đ`<‡ üÏü’7~tøÈù͘ÆU6[:®°–}1±É(Ô#˜`dÂhü”Œäeú¬EsláSg; LsëÅ©×Á|A–ÀS[ï‡(ú.°{¡÷skÍD…U^å4µ5H„fø£2ƯØ~̃ nAQàI*Ú·(eï ̃î©Z`Ơyé\w{‹5s_ÉÁw̉+À¹EÜ‹?W¡›…=̣‘éñPn44ơKl•±UơÍɇj ¹ă'0ñn³c±_œ»¹iCơú=v 5·^¯Ă <°€ÀIQÚ˜¢wVN¦ tßÔó"ĐT/ÙßúÖHF˜Ü™¹ÊA°eû̀ˆRŸL0ôlÄÆ–P¡~wĂ¿¥ŒD6=̃M@¢y%u±D2.€”ñøk³aqÜè"ù  3†I}ù´̉OŒœtiÂÛ:NSbn‚Ȩ=¸rnï¦b ‡±x¼D "»Ö,®{…pÜ1ơ²ª2æÿ ¢á€…$F:x iÊé>¯öW‰mWàƯ%Ê©?{©á3¥Đ:ÈgœÄ”ÔU@†‚%rË„q₫››q`MlïD)£#³r¡(ÖŸ±w ½Im7=,iz1ÛÏ §:+é*$}aë>‡9d6KBéƯ5³— ÚÈ$̃êÏs¤Y!Z·3f³MÔ’R¿qà<¦O6J®\¨y–7nTxañ@xøLReñjÈ­µ|KöË;e˜ÅæaÁ¶‘‰}\T*‡.Ă´à[!ßêr”LjmÙ²è8yƠ—ûSD cp˜ÔŒü ©ḅ~ĐrJ0¤iÀi=}üªëƒ©0+°­FQ\ÖĐ3™ÎđŸ£ùªNª³¯ï’ §äeÈ́Î×cX‘Z2¬ ỘKX¾}v¥É0z—Sû©Mß%Í"¾8év\_%]+íŒ6̉ru§đ;˜e₫ùxÆËæKø>œaWPu»Ọ̈„)ÛbO9ö5Ơ:ª!9$º¢ö¶®M¤₫cÄÎå¢I¬ˆø‰ÆT­3XçâµṃËgêî3ejÆ·tx­ÆæŒÁÈ)Cûr—™N %B¢ÎQPø̉¬ê”Cwđ¿×xÑ¢ó rKT,?¼ =(àô°£Z"đ¬̉ñø”I•Ñ₫̣ß*KX€ç[XƯeưñª&F³.8RL· R´î8•¶ÖpÙ©SË_öăsßVEÏĂsjkƯ×\Ơ-á)l˜]ùÜĈ °÷Æ]­-ØÚư;gR9văC‰=Û/ØÆ¾gy DEâÙ´!ßsår¿,­´ ƾ:#)úVöC9’'–ë;̀˦j Œºk-÷URS¯D•ơª+à6l¬-ƒ··đËÙß¼¯¾ˆ¿È?CAyú.s.Ùb^a/»4Ke¬<`󨤣™Ú,Páw*¬èÙkđêºúx+KI§K¡æÛ¢5V|3₫QTQ Qu»6i‘ä;ZÛC₫킼~ÁT)ŒÊ¹d/>̃ܲI~Ô‘¯„³¡{ø6l•Oë_ß{¹&¶€onIaaʶi(ñ“­Ï;ö3­P¾̃»I8%o- )„æØ©Áx§̉œQ³]0qEt˜C:VCƯlăa"¨tR9hr'ŸlĂ!¸˜hhùe÷¡º!-eÔ,ùÅrÙA@T rwI0'ÿ$_…Ç%…³. %ieaR´đɶQ’4‹DÜ”kOÓ4§ód³s%¼†»/´ÿTơÿZˆ₫̀{ë·¥^‰¬Å /MËÂa"$›́ º¹M‹đ\ÉËlçrºế®-ë°(GpƯHhA`~”̉ðưod–øöKUß —¦‚Œ̃4¦BVI¦4!t­q>ÿJẠ́o9ö“ø:æél<á¥HjÉ~’ Vs³WO|8Íkés oPu3¯?eÍYظ;j:¯cKÜäQƠÏTƃPŒ$ L˜!чtÚÜŸÎ^Vá|Úđ‹è¥Á·¾F;¾†ư"OEŸ‘à̃̃%fΟV•³:I}¹<ù(̉ôđ&©O'÷²™*@¦ÿÏVä½,ÄX;ÁB‘eßi·åÿæ8Ư}. ±Ç"T$h Äå|Ûë29PÄÜçÓe­‡™¸°ÿD+TLâw/gcS¯N›ñ)9E+È\ßÇæYqÛÅ'¾Đ­₫†ă9†¡“„gHÑév!IJæ̃DX̣«¸{Ăöé>ⓇÊLQWtđ˜È‚W¸@ŒĂZµ®†wƒÛyˆc%Çe^¿h¾aƯT{ó=cÎcưu¥‚ükƠ48³Xú4F»…n0êjG@u/{MöEoPfr˜…}F•’Ç1 ¦µèàÆÍi)\ØÚœ¸?³Û妨ۿd Û¨*Ï,yœ5N W1:×g¶…›ØÁ0{¬Ø¿9Ṿ»săƯ,&<ḅIÂy³©$¦[÷f!EÏ¿ñÂ_™ñåU@ÆQACÚe{Ǥ“ỡ§ƒŒ=lGh¿„Å/ ¾îÙ!˜}t¯û‘@¹ Œ:¹@²ÖI 8ér±4©È[`²#E³VΜ‡}ß/:o¶ï“ø5Ĥ´Ñ{’/l´ulD¡¨û¨’C-(ù}}xëú®Ü¶ô%È®‡xM¡̣N̉®C̀°ÎZ»•ǸF óo¾byÓ¶ó)Ô> Æ[́M|_<·Á½ñêÅ>ï²™¤T̉™LÓ"l¦KQn‚ot¥f€”ư™w8Ÿe­́§d†ƒ$³ :Đ•x5Â’(DÚæØîµŒºíÑ9˜ö"hô¼¸Ăsÿ`6\C‡`YÙĂ`#g´Àlfî ”^IyX3µ¨k¸QaêcÁÇ­ÇæÍ›Q“ö|%µ ù”BađÇ Ç2M†«zŒg“s₫«)wÖh|Ê¢ë”=ÄCP±„¯dJ袾„i)uc¿èL™́¹<;¢Y1'›¾j`bœGC%^ͽt¿Œ́‰\¥̉ƒëÖóÜJˆp¢ªÜŸa ijÏêG ›ˆpTĐæÍ(Ố4G%ÚŸu¹œbQ‚ldc"›ƯSDOZAR?3ØLWƯ<®œçÁµ®By¶i9:9””´_1÷"ä&Mgåe“­}6}‡q`ÜÀ€ËÙß9ŒTz{f—₫£;nÚ5 ùb±˜º(ر9}åœik³É½IØ̣°ùŸ†,±=˃_ØZ«ú(< Ơ¶¥œ0qvđéL߀ú̃—ơë¸Ưäçïn³|3LŒơ+Tùû|_Đªß*›à­Ñư|n%ơçyÛRßÎÅ“`/ÄG¡0'±q²b#ña!àĐ««:ơ F¿1>'|ĂúPƯCÓ¿Rư‡¾CPàd‘ë®±N ±ñ7tµY=L!çËFûè¢>Ăͧ^‚™Üa•XôTayÔ2ë_çÜÜư÷új¡†æ ö_åĪ?óGµr{é‡?Øb¨¥Ú9îAà¹Ïi·Ö„ư0Ç1´o1a³<àdB†ÁJ)Ëêíè̉º‡AœHĂÔ¿âí('` ß~2ÿvöKt¹Óf¾}|> EËö™EË’~́#!Èk…X­Ë,†<…Ÿ?²°c=(¿N¤|Üû€Ûe€Œ±‹Ï đ€RëưäGíIäÇ9å΂́Ăr—_bU¹@“êÁĐ‹~WªïñœSwr¬¼A%X˜ªäTẶ€·±á€è¾_K!<¯á¬¯5|T¢ÑRr¥ïø´=v'”˾Ÿ]!ÍäoÂqºåw5®;T]MÍ‘s|´‚›%ê‚2‡yÔ=«g$ÎøY “×C&[{¶,ØS˜y"s›D'*FCë1ST¼—̀¹_ˆ6D•+31¹Ñ=ËêB ưº1”ă‹”°ª¦Kdơ»¤Èó½Ê×hoä|¦°%ÖAăkºÂ,‹ê$ùù§sÿsF}–$¿ÂD9AP¨U#›ÔP¤ AæêƠ‰̃Ù`i"\,uΆæK₫©{AO~Pø¡OĐNw5ȃ»ºH}“Jlϧ“ ›ê§Y¨rsÛ¨ñ§¥$Ö袵´Œº›ó‰÷"+Ü ̉…¡lÉ̀vF¯¦•˜“ót’¢•Đ]ĂuÀ±|)颵±´Ës.T¹uă ‹Á¶ª₫Cå ï)ªĐ´ƒùû`7°¾ă¶đÀăÖÙ<†¼‰Ă~3qÇN‹ ÔđvÙ|₫ÖûK g¡ÅµOĐ¢›“Bé|î2éẠĐùLnpÈL7@O±Îopñwno4hetÙV¯î™ToöLP#'Bü'ƒbæ¬7ḳIˆØ¡\ƠF-7¶̃ˈ0v8n®9¨ŒÉx»;’…IUḉ,” đ8_//JE×v^D:Êwơ*9í9SG=¢í'cTˆøÄàëpâÀWơ=ÂùvlMn½,µCnnđñ¤₫• ¸năÑ÷qŸèó 1̀œmµufÇ $â¾g4b'¯â¾<F{àD€CÓQr’!ÑP•$R V/œ8 ®® ³~8œë̃æ’‚–Å ËV™v?Œ ,–w•Sô?±ÖŒ™ïù,d4¶'ñ„}:äsHu×”̣ieYPôY͈¼)AĂ:¹̣S‚§PYæ´B0Å̃é‹c¹ëÇöb¡ÖiĂ[y#„…+ôgœ7¨PÿeW1…́á.ª“_̀"®\ú°‹^†¶cY©É;¹ÿ4¯†-ßWE¯ Œçˆ•ÿ[¯âư׌¤èÁƠ7"3ßi'ưEq“Ư9• ṇ&?Ø»ªb3é,ÚO÷[Bí'«œÂô¸Z¬âæ1™Kràó`ç.ñ‚€{.z`Y”[xÑh²÷ƒGḄ‹Á+ ¬xỖ’_¤µœ˜@÷ê@sÿ₫ñ#ĐyÓkđ ’!¬yÆåà6'VÜÏĐÀø\–\ơ¬ˆ„úd«̉V2›mké œlÆõ)³OnŰ‚fGƠÆr¾óƠ 3è 4m!̀w ¢èÅĐNzÇ¿n׌˜{»éÙbëámJ!Å…¡Ô/ëôỳ;±„ªöÂ5ÿÁ<6UfûˆEÄI® ¢̣ÚǺ•/›àd5“¥Ù/ˆ·tz5Ï„m]ă~«‘øQ¶ªq ±mY4ưâ ‚æ¤ư#–áüï>Ü9ë=œ|÷I9Í@q¡Đ„‘âÖc!Ô•ẲcơsÆ uÄʇæ÷@_¸MB‡Â–ù"C&"`×zèöJ£¾Jû¬bm#I<|;‹—ªKauơâ½å:›Ú–“ói¿ébxRÅ@.˜-Eœë«5̉à(®½©£©KËyÑ1v‰ût—€±{·UD¶Ơ₫Çù’ưưkÛu Ơ`'„Ö]e×Ú₫ ‹V4é³/Ê%&Kåk©™4Ÿ¥—¨p9:{È=Åæ,•cn₫^¨w±¿Ôs4„€iÏøº&-‘?p+„æo„ñ´²]2‚ÛƒKÑ*%¼è‹đ́[F´ÔäÑüjưbƒ3Ê–̃Q?¬…: ˪em6xö‚8!›ïta«ó¼é~ÑчJ¡‡u½<¦–fa=­°¾˜pÅ¢Oæ}́6€¤ê«ü­$/nƠ|$Sñ^o”h"XiyZñYÚî<ß0â\•1Ă+ÄÀu[ ß ÏM4®uÛ6Jû-ëÑvƠ [“‹ơË&ö"jf %4…2Åæ´e₫{rë̃]le§Â¡/Îxùä‚d¦ ĂT³sÜ"´¿ïĐÈû?Sí´™øJ×»ơET]Ù !ăjƠ(öip× ±(âê# Đå¡ûQ ëAÿ`ø§Kܵă#r¼]î+̃I\¡§Ø×zÙÎ G‡9ÂYêtnW÷M;¦H©Ê~Å øj ÿà$³.&¾Y¬ ̣ªóØ ƯRz™&¶¥ŸóT §2ë™÷32nwG×Zoïp"•„?)Må`NQZàơÀïj€)˜Ȭh•ɘ-<)!ê\X&MöD¦º2ѧœ́ư¡ö@́Ûsµ°Åïfz'±×^ska’vµ_FÙrcæl,j6ü ˜s3¾4J†²¬c(¶4¶¢¿ô₫µ¢¥T“»/̃Á„ƒ6!K*?z2ÀǗ‡sôhK7Ư"(X#v•á§ÉÍt,‘WKSmsC×—đ:ü‚ỏœ5j}÷P§«ô1BÛüêÑ2C‡˜2é•ɪS•{ ¥ú _+do‹Då°<Ê©MstO¤û²wđÏú$£ùƠûHù¦Ezáeq“̉éßê։זZsúÅ%¡=ö/Gs‘>_f́ EAPÑçƯU‡„yo¦Ă-9.% ¦D >ï$‚R¡¡î‡Z.6©ÔÂ7ÀơOă¶Ù;3"w´b}«răS$å¡Ûm‘ú©JÉÏ“Oây°+K©):ÁÅ;| o+4†6wưL3µ³%›¯j"|}hd’lØhØæ‘ö ] ­ëƠø"dç‚₫¿ŒơẴt5F; 7d¦K;ï¢÷BíG€orRî/B¦©2ă_úÊæ¥}’Ê©]ËqẤX9c·9$0ơPDĐư„́~?Q¡̀›̣(í«"O o´“#¶‹c„c¡ @ ¤óKđ¦Ù¾@ºƯ)ËÏI¤e×g÷ûÁø#éç`ópù<—ËÊÀ ‘Ău4sC;÷xaô¢ û`†’Ÿ†»‡ÀoYÑígù2KÔ Ö¶Z{èpônY£oú*I¥­’½®®•¥́ºt]FBó9oá¯0n`wW#©ª}C̀1È­bœ5–)ØTL‹ß7÷¯…¦sox`i•Oë~Cô3ooÑÿ˜cDpø@_dAXư¦ĂÈ´àhK æÈ ̀9ü©ăV«îáù&ÁP!¯¿o<¨:¦Đïô©4¢,±́>£3ñ>bJm·Ç̣u’úÚFvª,à3ơÊ7Ü ÁlRT둽Œ°ÄúÜsÛ„2«`~æ‚ôF-%L›ËaĂc/€óÖ4V<1j­ĂÚ—Tq%í+ë˜\Ľ̃1Fû\³ŸQ܃™ÿ%oc~̀{p›,% ~8áú9ñ«ơH8ÿüé”;5t•UZLá a(~ƒ”t€v®ù£?đ+Ö$­Oè°-¦ü‚wsR6 Ƙy[y–¹Jw{́S{!Eˆo¸¢¦¶ ¸ú³º hÉ.éƯ- k±”ªy“÷„G349‘ÛgTyW…ëØ̃<{<ñ[ăl=¡2!g÷ ¢ĐJ„¤sj[Ñöó—w¢âµcUôâæäĂ«Û€BHjG«snN₫d"6á‹ =E¶&ÍH¶Ăg–rla>†<9ƯsO*Èêó1íó.`% ’P?ƯÿUëÎ9t$,Ă‘>kƯ:måºoíÆyü_WƯÜÎ?0JßO~…=~Ö]Ư„û ‹ƯàX·:L‘0ÎÑutêđ·Ư3~w„†•½HÙ{=z•Í]pp\{T5OªøäpzW圑 ¦*PrÜrhp|cÍó~r`u(ÖÓÉXuÊ­¬IÉzC&|ÁQ˜ú4’QÏÍé9mHÍQUû±ºu–ˆß?5‰ÇË̉¿Æ9%6XÆ\‰.€Ûï÷&<4Âæuà›»ZûPª{„wsaö¦ö)”áéäQ5"tÊ2˜>Óö,ơzµæ-A6d‘9ùƠá)™2—Î̉̉yNxsG ¡Åoä·¯Îÿ˜3ôc ªj‘0|±[6̃CÖÜøæÈŸ¢ÙGĂó×¼̣– c Oª½ó¬̣º'Cû…–Èb3_Ù¬ĐẸ̈b…ô˜œ,–¤̣ïm“là±lpMỤ̈„¦…¢„À‘¬‚²€£ Îñ®B¦ƒî[dN>(±¡lxdf4ƒ́óŸ|H€¸Cá’ñ̃1±ù±—FF.7§̀©üå€"$½[̀o‹!O÷ṿ„Rư=Y×̀Ñ̃ï[m!~¼{ë4€+A`6Iœăœ®“‹nó=˜01Àá×úÆÅiIA¡ËGȹN·2cdœæ*>®x~20+Kâë\NÏ›ñ̃X‹”*k}‡ë°÷=8`2¦KBɽcs:¨‚¥Ûå`›ú¨¿)¹ïdMß 9ºFë[&1ÆqÙÙ|ĐË̃̉|¢kø­Ÿ-]!S‚[Zx*£V„ ?ûç`d̃}.ê„Ë8v§µ¹)*ï+Ëyu£'ùT£UPBßJ"Ñ›­́\ö¯8Hª9,VEƯ#ªq–Á *óä^y¯²£đ#Iz¦× ^ȉƸ!¢,ƒR÷~Û÷1’Oa‹`‰0Aëưïư˽„Ô ;vägfb†æÑ8:ds1À D>—üKèL­ƯˆóéA)è^Ö!Ú½ÿñk±öî¡@HâèÆ~c »Ơ“—ÏßüFîk4ư¬8×Ç•z‘a5bÊ–4Œ=‰ÚÄ{«<Z\8äˆ~‡™pP÷o˜øzU†́ú8^!0Øö-Ăk‹Ÿßÿ†_4•y‰¬ Îk¡ˆ°yN¡÷£¬Ă‘I`µS¨[Çq·,₫u}ØnÄ ÖñM“RL¸ƠëÍ‚¸äĂßu…Pç(–NPˆư5 ô^J!;j8§Ñ’‘L˜Z̃ÓæÑ'›èƯƒ#¸!€€CJØà‚¡>â/Ợ+Ö€yF@e²]L²‘vvt±}ÜÔ‰‰è²p~XêbƯ1 ±™ú îxœ­FEdS•ÚJQ¡¦aY ¶S%FÄ¡‘ˆLœlM¯ù;ĐK™p@ŒîVx2üRƯ¡¿¯…Ô‚“Á#îSÆ’ §²óæơÚú*3ä»0í3₫ZS4øÁñ%üà{½qç[M´‹†6mf@Z<˜]&£.p§UçLFéñÄêcQ³tù3Y«o}‡³-é#“xB–·e­&¹ƒóøÂÇßW÷ ø ¯{,AçI°vTăg9øåV§±P åV¤ í¬‰Ö"±M Ś3ѽ·üat”ÈWÚ]‚Ç ‡ñl›}¹ÅÀ t¿m°o·ßƠ{á.]Ä]ù̀ădóù™<2|Ư/6 5· åQ̣ b9¢₫̣óÏGioÊ¥JĐm¡\Nr/““ÏC<{X ƠÑWjÖ›?ˆ „«¢À0؉›N;ŒŸú†È¡ü½j^+Q¸ă‹÷RS]ĂØËR‡n"¤.ÈȳMØæ¬¬~%wSEÀ‡ $ŸC€ñ ²ïÈ›]ẰÔr0‡ä%"ï乕IÿÅ…®^Ùv]™U47₫‡ïXa@§µÎ5˜b\¯ĐG₫3]¥+,'k- úO₫I^Lt—Ư+û8|y8W*ºK!W?o¢±ăÜN£₫©wÈtÇb6¿e·+º,YÙiḄ;‘đ̣Co]y¶­Zp ú"œb«˜&ן=<:1Åư8›w„ÿÚŸđ)À{wh‰âoî4DábH-ùn3V[k‡J‹s„3%Ǧu5.~ưZtèø׆÷¨¤×ÔYXyR° œ·M.×¹$á'd“‰2… đ蹃Üà&“ ½b‰ˆrÍ~˜bèü*ÙwƠË5ïÙ{ÖO¯{Ø}·,% €Í‹ x2Úµ—ØËÎføéÎlzzÚ„Ơ₫&Ö±eë軾÷D‘L7pf̉{²Ø^D x;ba"”!ÿWUéÛïä?ôOÂ$Ă6oë­q»³\¢é #‚ræi;„ª¦?:nJ`3,ñ-̣ƠS2Êf¸©¾ØPI¿³0îé+ë’+`7—hQ cœ`nx‰«i2¦‹¤[r1ÍïV̉½·Y;̀¡¶% 7I¿ơo˜̉ü—'ÙàßBf—説¦1¨G;¾ç¡S]5j’Đ ä†È“nwÀêHÈ2Zj«+_k 0 hWF7ÚQÁ]-¼2₫᮸å2áLçȱÑ@¾¾Êz¦PàN¢rêœ;Ï'ZĐ³&ƠÂ!køÙ=‘Ă ©Û|»¿!}™³Ká|¿=BÎ$…́•'jăO£¿ùœ!‰®moŒ!;½ô®q~ZP º‡ü>/©¹œDVΈ^}`JÓ“·¼ á¾kxb<7æ–Ô·VqúL÷b•ÛCNàá$×x !®Ơó_ßn_$ùëĂnÿ́Ëû³>UëñÆÀªçPqtù –Ü ơ­›)€}¸ ‚Qb Ú|PAJ0Œ̣Ô¾BPU .f¯„%3±’Ïz#å“"< ·±Á™Ë˜Is¢ap¯Ưá–­K¹f¹Ṕ®Ûú¿p·m¥ÔÀ́sÛ¨l‡̉#üùU“§¿Uèj>ætY¨äy{ â€M³~=v\Ù]ăÜêçrë÷ÚªD–y«ARP̀EÀ€̉&ĂMLÖ†Èå]üæ4M¢EªØ PÀÛßK v¿ù FÊfhƯ®gœ&öC"³C ,“S¦Ç ÷:mIZ³’¸ß‘ÔM% ¹€øUœÑ„óÇ‚ù99VÉ:Êîú’·'XÙåÑ®~-̀#TS§FüÄ\Rê~VC·2ÿ(q̣̀A}̃µ 8J²£-“ƠÔ+ÎN×£ÖånÿÆçr‡W{Å~©×uƠ G×Nyn"ƠâËâoVøVXYùê ™ˆ̣CI×£=dỮm9££ dĂÂå÷|<µÚ¨¢Ücå°ÜÅç•ß7̃&™,6¹x‘ æôû¬ṇ̃-x(®Ú†|`‹^ôgÑ¢h„¿ ¥~œ;nzRçr8Ø n[(SEŒ0cĐ\¾µˆÿK(o¤8{̀­´‘(^̣$•2ED‘7ø˜y»%&®¯·‡y·ª U‰y ‘¦ÿT!vRdµIè勼ưư‘̣eFQñÈaÀ-ØŸ†°‘îgŒƠ,ú:¤çúM“˜¯—ÑiÑ^EzX.Ûµ́£jUâ/ºJ¼¡Bñ÷%65iÄăØKÈîfƒ™•!®·Mé?TäÔ›.(_ï\ơÖXTX¯‹Zü韶¹dEø PzÖ+ƒ¹Ï/ØŒạ́ƒG,ä¾QOr¥æ ¡Éö₫è~îÉ­„m”M¡$¬Ñ®¼r»àü&×&”§+C'TÓŸT®Ñd#‚j¯̉ÿûÿa Bđ³Ç¨‘¿ƯåͲÖ_‚îr„Êö™#M BÛµ%¶ôÿê4†:•§Đ¢6Åô’̃Ô~aKæ…6ưí æ !?y﨟»£YC¶$â†Ä=QªеáÖ¥¶đè§‘Ï+ôH  “Eåˇ9%ÀºĂ¥/ƯfØ))ßĂ9ĐƠòƯª«î¼¿M‚zœë™''«áüj:º̃ ¸Â ˆ»}&÷–¸¶®˜M-ư(]¥UĂqÛ.ôcØ#¿cù;ÖmN=­¨wáv@đ̣Ih{ _kÂËøû5b1/KQçœFKJ‚-}p-Á4₫WÅÙ;=ï B#×G÷Yaíte(%Xù"C­+Ñ@f2 2Èl˜(ö¤Rm|¡Î̉NïI3©DÑ»'ƒ™ï»lơ3ѱ]?1d-ñM– ÀJÈ1Æâ‰ơ¸…駮ħ-–å/´›˜₫½5ùS¦•JÈsJÑØ’&naæ£YXCM@m96;XÊ›…ài8Nm: Ó¼Pä6¾ïÓ*€17æMµ&^º­³ûܾ£Î̃w½Dè[Ÿ”.ÏKzơ‚«ăr™đ"ûI¦¸Â1¤-]£ÙÛđW/®j@è¾x¼TÅ{o¼àÔs•óÎă|\đxŒ‡ë7øÚ6Û)"ª2É₫&oIºEŸÔbO’ Đ–óÉÀTb ¡zÓkâ逛JT:$hz½¯Â÷ë²đ&v”©Ë#™»>ơđåưYƠ?ÿœ”ă¡pt¢d|2̀j,r1†„pʺ£˜đ¥#´̃6%ç3æ—«ÎNn¤¢ù‡™u®Ü~9X±S£^}Ñ>¯t Gæ_§â…q‰ù>ʨW6ÙvÜáæXˆÙæ}ís™ÇĂL€ÚM•pÎ̀ßn–@¢é?ù%ŸøL»§ÁÁ ô$uG̣ÂôBIK¡d¢oÖ„[€ÜguêW.ghÇ@Ê;$lX(µÙ½ư®Ḉ!dr¬á%vrœá Í<đ½r«#¶Ÿ¹CÑ̃(îh/f¼‡Vû™TÜ„©¥*+µ> ²öaĂBBT~c´]+$ñ›_D‘ú€¼TË(ÑxØWsh1Sy³ï_%™‚Ƨ̃t%X̀Y}†@Ë>†ª¿Ms6qÚ(v¾Ỗ §C$ÿÉ \ÇM‡§—¥5'`OA³Ÿqo^td\;¼”Œÿơ—ZBú;´ïZ£kY4ïDââ‰Ê#S€1̣?ÿÔߤ0hhlP°§> ÷[7¯¬|Xs¢Oq=–ïLÀTl[»Eåv(£ÅÓÈj~9k—ÔvÀü úe¿ à*;ÇGíbß³¯đ9aÿØœOlöIÔ|²9/‰ËÇn¯q‘|3à»(`Øà¸”ÊGN,妨Ôäîb…º|ÊAĐĂ\¾˜¿]Xa›h .Ö€J3xàgPÅ鼨zwRñ̉]:éVwè!ÿrtÍ›mÙCD-́)Ê>$â­2•ü«đÖêeaÔÁä Ù˜RxÉ4íNCưÀJ"–âyjêVÏV^ËpOÂ’¼`Hߨsăˆˆ¯Æ“±P§LÂÎZ9í€Ö¹NJŒ$´ƯV’k ”x à7°äMËÈÑ<ˆ»œ+HMåç^‹Ă²ÙûVP¡Æz5°i‘Üû7|0צ̀nESL_Áú́Ù̃“§í‚Äæq³Â9Á/ âÁô¯„×̀<Á¯~¥ß­ƒƯ«m Ö4GĂVƠ &Û?—{¹u{±¹dx’nV˜ øËB„\/¦óÇF¨ñ—܇U½ËI½SÙ‰Bß-vîm§ÖỂ•iÈ6̀ñÿÙº_TÆ’›msP ³ GVmÁéU- ?‹9Đ"Hn„× ïe‘jơH%ŒQg»eLLi« ̣@[1¿Z«°ơÿ̃(EÖMI†‡ß!ª:4bÆ$j¤! ö¦í\Ü?U§@âO<^éÅBçу½LzÁÚÙ»l_6#b ¾iHGjˆÍ¿Û롛팂VÍê§ $ÂÇJà½À!"c[›Éa wPn†„|’O”rư{ß̃‹(Å,HØ©5>‚’̃3öé<1îƠ_B/n€· ³¬/vZGº±ë(ïDptEvŸ́áü­̃,âưA*%é¹ÂsǴ†ÛT©ÛtSÅüq̀èDaABÙ«ôF,` á₫ ó—Å~¯₫|6Î3ع\FX̉z^,=à­ñ"Rlíăơ°ü£µ³vĐ7[ –iî'ƒĐ̀ĐẠé¤,¼n,✠QË]¹ï$–,¦4ºÄÖmÈŒvT#lTí#‘¨7;g¤É‘Ç’¬êƒZÆX°ÍÖy:(bư뜆½O-<ïceÑ&LL8“cÎ 3đG‘N´“˜´ïa:Ëå¼P'eX˜<ÿEñ›Ëk6 r¬mPẹæÚôÉoÛäUül>æLVË|RÍă&§Äø–rî¾f„ĐQ̀lzưw—Đ̀y©S»é³_â¯é·s ¡Â^²Ơĸ®’@ª´½a—J× >E,×–ÿ uI:ñ5'Ÿ»íSQçMF́ù «…‹^ääx M—Ö„™”W¸ëÛù÷°ï‰ưù—î ³Pz(\çØ™œEp•Å|Ø(¸yÙNUk¬1 ±Œ<‹mW´c€/I úYsqß=9iµúö–ŒK₫/t88†’[M>fƠxâB±‹1¼qg¦J+¸SK)£Rpe„”đTZèWơƯĂ Çh[ªÆ¥vóˆSÑc%'ĐyE)îäưçÍÇ_É\̃¡ ̉Wăcªå^‡II9é2¾}&Sï3ŒWc ¦2âĂÀˆ‰!°*–0ªÄù¦“ˆeî¯́äéCS å5Xvt›˜ÔËÇ®¿ôż"&Ë\Ñ´Å©‡>c%íÌè$)kÅÚPNÀBÖĂ#…{́ưÛ8Ä…,ʰGɆÍỏ%¦+đËâ;*éÇ»äAƠ¦3΅påoú¥L]l¥ÖØ̉ ou4gh9ß·È̃ȢǜÑXo{MŸÇ¼9 *.nP¼r¦Kf|Ùgö&%w+Ü9JJ‡°†÷Å®ë “Â0ßwŒîèT )®*«8cŒ,"D–œñ|}¡Ú̃Kx̉o'~!9j‚€vj̀Â+ÎÏăhăĐ:ÅLQ E±î¿ø¤“ù“Đf#Úl( ƯÇ~̣̉Bơ•(̉‡2Gyđ«ú7h9̀l§Ø"ú&Eàă³©₫]‰)¦ôó’}0<Œ‰Û 'Âgá”1?bơ7.,§¢ơ"¥ÛA^ ‡¹$¡Ÿ€:́Àw£’¢×oe}ik‚â4¤E’ü«Á.jƠăË 6m¾TU0뱜JɱèU,̀i¯öL²B8 –>Ăo¤¯` æ ÓÿCcøû(¹—©ª‘ơË”U_¦RđI-Ơ=ˆ5ÓBÖM¥m\Jđ—Ư„Å-₫ë̉âAỢ,”B ³›÷[$@¦Ô”“¯Äjut’èR‹‚ˆPe°O+K÷½ơ-üÜ‹©:ÿ ú€¬{Fs²hXÀ¼!ºï–1fÖí•[¬=}đ%—#!î\,ơ0ƒ÷¼SX}”L;±/"©drÎ7Äö-WD%·â =új',₫µ‰Ư)el2ˆµ'ẃ&oy ¹ JѡڢœÓ…*¼÷zºX$[₫ßÈ·XOÆ<—̉²IåV:ÊæG§ñ*y,”Æ̣ĂââûßQè)â°;̀¤²ÛÆ/ûÇú+µÏă3 ëØ¾§q=su"í F \ʪwæơ?¡ä7 ¾·Rë|—e£!‰Z{â» 4ừ̉$¯ëºubø¨‡Ư!Rçđ2.Đ~…̉Z,”u{Ơ,UÅa`Ù¥®0Œ—}á÷;v&>ºcƒVN!§µè±§¡7;n™ƠƯĂ`]qû­vb{U{tĐ5¿Ï~€Èf‡&¶²F±l§(E¾7Ưö6$)E7ë8Á5ùn½`ñƒb ç—ˆƠe ¾­ÙïͶOn¡Ùeˆü`5Jf̃Xvƒö >ÁÆüưd%”P̀0Ó 4€Hß½·8›±ŒjmơÖµSßî¸cÇ­G•ÇpÚ–.” •´uBÈĐ&`Ü3óơƇ¶A£K•ơ{½~ç–YTXx£_ÛUyq́¡¾¯:IûÍrgĂQ*.,r₫A?Üœ󔯈PĂ:|ăâ½°V•x̀±®²Ânc}Ô¿Ö{h ó€xC=÷Èưµ#ÙGöÜẴÏràré¢Ë"°Æ­Êêïư؉â¬GƠ.áñê?ƒVg—Ă¡L ë;††øAq·jÊ4ƒ™-º+_™ï2“øªPªc5˜ û8¶ÏĐàË8̀©¦{=Ï$’-Xü´C)4ÖrYQÙÿ$m̉mQUú¾ëéY`/–BFỌ–â°đ#éùjËëØ¿–Åä·Nn«3Ărţ谄ÔlÑ4É ̣Œmçÿ”ñRq¨̉Ô¡ÜL̉ôd±Aâê´RÉÆö‡ơN̉€$Óœjíî]ṇ̃—¬æĂCD=ª7{+ѹ¤K7»3‘©3tèÑIƯ(Ø?×Vb¸³†´•bŒá¤™¢µ•»]¾¥÷‡1>f‘‰ßåSURŒ%h́5¢’#Å>̣8}Á:Öaé?¼zC׸¯Fë ÷ưŸE³_ÈR –|xŒ́½çÇ~£Óøz²@V¹¡ˆ“¾¯… àÜÇĐÜW ;°–ß n̉½‹̃G:ZíkƒöM²ÁúG4™}ÔQ}X(´*¨¤e¯h~¥ÉÚ‚ÉX[SîùňPègÆ…ÙeÎƠ«*#ç+,9´øöçBƠÀ‚éÀ!1¿{áÓÖ•`² j;‰.kưfg<‘B¢3bK0Ü~£µ~IÖ¡÷îJ7 º́²>q&ƯÈîK»Ă1$‡†ô ÇÊcºXơdå„ưs ¨`2ĂÀĂʵ!+ű½jô[—4íçua§º–Œ™*^>ÉÄ̀A³6뛡ÚAÙábaD’/_£+Z"ơlªù„œ‘)7Ö.¥LJ¶7À°Y˜Êö@'éSëz‰¹äÜ}©¾lÈa\D¯"ù  »ÅàÔ¥YP•á±ó_ôƠ—ÿíX²n•t¼u#ïY8ú¶‡‰ÖjH·DAÉtú#ÊÚT(AÊvNê)åQŸ€n;T›¤ơÉÆ½»URÇZD÷G1 _¹ïØS͆Jh\Üyæ!/ëd¨É0¾ˆ₫'|oHKˆá^ÅS˜ÆÅœm;ó `KD^̀µÁÙ?M¥)Ü„}…ïäï ‰°¤Eæḥ̣´5j"?bKY"[£°7\˜OÇ'3îÄ.óS)¹ "|I<[åDâb’†û#ñĹ>ÿN=Ñè_€bY›$ß6y<€ÑFí4·œhèQ âÁå#ÁæĐbï̀ëe #i‰BÑH±̉¤7Hl Â?‚¢‘Q1‚K ú¥²V̀ö4®z¿Vú2q{èH¾5Ê'y× q Á“öĂEU¬̀ØK©ÏÉ#…ϺhØ8Q“ ¦|‹"TËø'Ob}¿›02–YơO|]“̃¨‚+Ơ(`KT G¯¯N™fy&MvLǗ4,~x̀KUIœ 6â…„{Œ3¦ÄQë6»W÷jé5S"R6*¾²xC[ó´7ÀÓ–‘LZç{Ư›‡9̣@á>U%®(›ë¼Ajûø*wÆñ»}1Ç]Ûüæ !èí™à4 Ç*ö6"2ZjfÉKF IÜBơRİdÙàߥ =¼‰1Đg”ˆI;_/`Ÿè‰…™j&\đ¨ÿ¸“TâFă@¾ “̣ï'́8cîơSdIüYµN›ÔGi» $Ø¢9‹8˜«ÏøY[= ¯æ€âJÛf‰Deú~wâ]Đ̀yĂj¨L0‰›(¶ÜĂQmL¶‘D_èœf1ˆ{ô®úc.~BBcTö¶Ăkö:R³ñÓ@&ÚïÂy^S˜«0„¦‡¥áç_ÖäH]ÚẠ̈-€m¿ANï0 Tr¿»óéY  ôăZÑÓ9¾ÊPë c ëD½É5IHaº̃ƒÁßb#g!˜jj.)đƯÈmêϺE=@¿ap˜¹ÿ#”Œ’ø«Ûm‘Zg?»Ë _Ô\*EdÅ,²' ½‡t²KüEOƯf̀¨Ä:jö»©_¥¨:`;ñwa¾„₫³–ÆàOœ¡đB:ß“€ˆ $¦¨>₫jŒ­ù¢UÓ].•Ë$”YXu)9Œ7Ăũ͘:’lrƒ̣ËCŒ“—¼Ky£IdáÖhĐ₫ËưcvA¨Ba”—“EPÏPâùO‚r•›Ùÿ«Ü̃ụk6N?n]‹Ö`ĂKÙîäđĂQ¼»)¾c M‹®ÂCPúO8m¿)?̣1,‹‡Ÿï5æVp(‰ë.ycT(è¶Y·"¬ß²ăqyxW–­i7µoŸ+åĐ:ÿiïv̉œƯyT[NV8·ǻèrÆ Á½¡ˆƠe\4âË%¥sÎ÷°̣Đæ¶^#¼ ËG8;{lñ»±öul1PçÁßIƠÂÿî0[›0XgĂ^›—ĐïÈÚKô₫r^bË–wOà½̀GîÛ  Ösß#ƯR¯»Ó¦Høé×-•1Ó¡Â 1‰2ˆ9¤}/vn¨˜Ó  âƒ»©đóøTẺ‰,+x̀Ï@K1­ØF–@W7ơ„ôœẼáñẹ̈hïw‡¤³Æ¡ĐÜ ;Qeb²é³Uº¥ß—Ơ58Ó¡Ää— §æ[pƠ‡¨Ơ¤ym(Í̉•¢|Üe:H«~€7„ưˆÑ‹ĐÚÍø2!dv>°Éƒ1&b›Ô:K˜ƒßđm/¡Ys׳Œ¼ÖVZ™üøđ` R©M¿T0%üC(yÇœVĐ̃Sh¹H¼ưˆè—¿|l…}!›.ù%¬¿,VƠΣ@E–êM˜îœ¨k-ÓÛfoѤ,¿#™•¥Ơ=‹Â ÙÏ`¨,ÅR)V³1VR²F®Æi¿Ưîùq[²lp—c# µBEúđ¡ ‡`¾Û﹓6‚]“9¤ÈƠ²-ª âŸü¥fíđëD϶魓Đ9¸Óñ ¨kS¨‹N²`¢Èu'´J̀˜ùBË”đeV§°H_¸c–ï¨!j¶ÜîPí|ô(kñ†<Êt­,Œå̃Ä)W$-¯×§ûí’ÓÓ1T@ç[(â,Iƒ,£¦XvÙy¼ÇŒsó]$º¢ó²–q¤¡µØ]T3ZafMâ¦÷Î]otë›ö,Y¦.Èê~ŸH̃ÜS‹+áo]=€y‰%ä=}‡Ó_‘`ưOz'N™²MIĐÔë‰ZèuÜPØ¥­‘ …9A€eé*´(Em~<̀ß ̃ºk̀U÷¬¾@Ö*9~Æßúüt™ëz™Óù‰¸äجúñ±_/2½íªƠ1[Vne²i&`±̉oâqOºÉåƒÙôCDÊ•À°9;•†‰‡ƯSơCïÓÑ êÿB8èpê£j¨Í\Nêvô”•îp(·ă½å#;‰5!2÷Ư»±‘×î² ƯÇçh€Ä$.i7Œ›ù}s`®OHúö`²”¥?I4Àm+¼Nÿ›ÙéŸow—uÖxß[ĂJ³aw>½¼ŸvQ&[ä½M@ü* mº:ƠUÚ® ỉÔ$:—$Jm.̃7¶„ÏQ· ‹'L^É}"ª"™6V¯éXDÔÿY?¬}¤!·=ƠÆ̣}·¡¢m/¢v°Oâ%fä€~#÷hÙ¤Æ9æ&çè±b¤U¶ =¸'îjúÍ:–R‹«f²@7 sj4úÜù–gN?»©§ựư„«µçˆú9„Äj#pzpXv½}D•̃µ˜¢^9·Ñ§3±¾ûa‹xº©ŸÀù]è+0ĐKLọ̈¢¤÷~fÉ>ûÅîF ̃ÿ=b ₫¯ªăHUV¹iúI@ȵ₫Âú.ˆ0Éq{ĂªƯ§ /çnqÜ_¬@Yđ0ữŸ‘,”»„ÀIyœç­aơª#'§!„ªdä<ª-u]ôeàœE›”v`©E¿öƒÔv̀„ñcö·ḥë­Ksht6àM/ÏîZ~œƯ(•8 ñÍpñ^u¡!»Ó·DlŒ̀đ2©nÚŸÉ̉Àú”ÿ†ñ›´fKđͦ̃Ks.“kºQh&Ó Ú&—?BÁ̃³ ÚY*ΗnújAà@OÀï¦y+q¹J}â2ưÀˆöVyï^ Üâ›G™{èÄaKfê+Bùéö T!k‹hºj5Ư¡ĂÓ°Ï/*\‘Ñ@›“0Q¿Û‘(¥z ǗF˜´ ÔIÙñC¾ËVh µé%*  "½ÔS‹G6ÍÆÂ—Ÿ†²£iơ¦±uhÓ ‰8°ééǿ`§˜ê𠵕²9\µ5¥”®mYKGÂYuƒÑJŸóÄé&a±/đÏĐSŒ3Aí¤7Y›«(§₫;ûnC¨] ®(Ükmă Í÷<à‡ÖPàn[§2ç½mS†S_-SC7pn§T>V›ºÉs"-®ß³•@₫₫Ñbbéônođ–ëWm=q6kâ˜À?²•ÛJØ,ÖĐå÷„Ø_Æ82N +Iơu`́»Å‡£'ưc¨è1 UÊ‹lñoE%CPSœX·ØH«®í†cÉhÔ>ö£µ\÷µdOƯeÏ\æªúĂlÖ¿ñ'¾̃ü»#Âàs»+»kö%:àßM–Ä´ư"WȧÍçÁ}2!-x›H$Cw Œ•ŒS”$ß1©*o¤½ÍÄ̉.Fmq¶r´£ zưEÈÑEçH½ª³½]wmà; ô[ăÖ̃ü|~PÓjc+ëka‡å÷DDÄ2íŒo]—’ù ¦3ˆ4Ø[̀yTˆ!j̣h/XXºN8>s0 °́$µïÄí-È$ó³ñ°¯ç„Ú¬A*\NÂ8”ÀäQîÓ´¾ÉM¼Kn₫À6ü÷ü»”oç4Ô ‚ÅÍwÄóÔ³@¤cüb×ơw ê¡JËb”>BÈ/wå4Å@ˆô!)º~6á¢éUË_fNtLæÈ¸—ñ ]M>ñÇnhv (3̣̉ 5„mÆJ[@̉½g3‘Ñüתÿ̉{îuˆDØ94&’xÉ-&ó›(YÏ;öÅ&bè…¦°+÷cHÓit™56VÉä±̃ùIf¶\ëô{ÛZQÛ¶í¾ềÏư>ü”° B&ªL̃Pæ–ñ‹]Jö‚3øëY‘ί9W{…ĂÙ)™ûxï/±3úz-*ÖlÊïŒyº†®\e½6¿¿Œ”ß5󅮬D!&\¥5¾‚<ơŧ_mÔVŒÑ ŸØäXMé¤~ùâzƒî JF î±‚̉›íM'¤¦óÏ5úE·dkµO± ₫ÿđd5¿–/ëZøĂ7"Ñ—\H[ A•=́c~¢´ƯBÙ0Ị̈å²YQ@;ØÖ¥B¨2'%q- øĂÍ´4–es¥lĐ®ëÜ…‹>æFûuÄ'·‡Ú³xnO–_ÿÜUKd>¸ß™•§ø¨îbY¾–pÊ2ĐüÊ]Ÿ†ËH™YX/M”Ô·¡cÛ2:eˆW°Ø@ζ̣52’§([xŸ~Bɺ*÷x2—•Ü'~Ê%ˆ%5'v‰Ù ÿZSè„ 6(<Ë•ü,¡ÍM4øfU»¢Vfë\/˺»„đđWïø€ăÛH™DYe‹¿ÀqyÍçKơ`Kçq7³bÈ4¢3‹ÄäyÊQ®&^́²₫ Y³Q’Ù˜ô–}¬÷¢åç)Ëx¢©®Iª8ă^ï †iMÓéư¹*¦j×ûĂTƒÅ^Cƒ†[â‰T?B…¿¿6^×x‚ô'ïƒÂ`eŸP‡¥ŸWƒŒ0m@cVj-ó±‹"–đ_ …0–«?½üö¹Ï̃[ˆ›óüP¿*ê˜Æ‰cÊ)|2ço ‰™£Zé7P‡â²{1k°¸!A4óí?Ư»›å–+Y”Ç4•E7^ûé_.5ăôttLeSQEó9#EµU ßp[m@äJ矣1ưƨư¥&Îq?0@̣\Üú¾ˆy‰X4!;‚ưéK ́ˆ™[ú󷹫ă c¢ A28 j(Đ%đéÓÓ™¬h:A¨u‹uÛc’\Ư§x>¥¥! jmư·đu ta—…56’ÅëQ k$ỷ 'Ÿ RöÏ[ùvrJ„øN"Ơn¬ëדœÿS î…̃|đ¥Æj­®—êr̉k"3_ ̃T|FVÓ}®» ¢zG?„̃ơ:¡™xXä¼Ag2iÏơụ :½ø~ki‘¥fRµhß~¶q‰ÇCƒ-attKX¬GÄÉÀV ÓÿTd$ôËÇ·®,2áÑ`ăeă5Œ·»ưÛ;yjöZ2©ª!*¥¢c‰Ô ³ñ´§YôB`íơL>;LÊ”Â%ÀáâAÉ̉'nÓ/QײëöĂTFcoù@—úæ¿í8Å-æ2¯ZÊ*e$!Î-4uíc¬IâŸ5ơpÑ ŸZñªwö́ª¨jxü㇑b½Og ̉#3 ?"Ñ|6•&j$d^X6=çQgiçªÀ…a-à¬{?ö†u?́ºíKFz3T,÷Y*á(srY\QVÅÍk>æ[ÚĂwơ~7eÀ2\—9$Y»#íÿyS‹ÊËP±‘kCzRó$Ơơ—¡Ùʸ₫ YÛö ˆLŒ¥sÇá­YÖúΔnåÙ-Ńư¢á%¿Ưäă×r‘ƠÙ–c†1\yà›njĂ83¦cZc$—¿—‘ơặü6\\vho!E©NV{¢¬êâ>çͲUúVq́KÉû1ùJ0©4Úø3ÿ́©± Â{ÿŸVW ®~Ă0[ÿUY‰†U¡«G÷R–› YÑ€.µO«Uö ™ºî]¸„ưo.L÷ ´á$~xL®IûwE¹j~³sw‹Ë xệƯ¶p‹g¤Ă·̣ ió-rAÛ%ñÇ̃5 ö;Ñœ·Â2*ÜyêtR4£‘qdm›éR¤ î‚ñf` äÿCÔZG3"ùÖå:m*z2x-¸vàª́ă’IAÛgÖt% Ї¯ïè§âyæaư©­ÑÜ.Ê·EFpüF•+·m1zS‚°!Üh͸ª÷ÇrúCAvW¹•),í¡ö¿ &|úK̃₫ÍC$tO^úAU«Æs®ˆtÜñ¿\{ ?ø\|-!$#-6¹…ªÂ6ßy’ G n*{‚N¹Ư@Ư¯éƒR—( 7DÅ̉9gO,÷Ic¹[̀ñÏV4U+t̃(Ø ‡ê2¡¢ ̀B₫¥+U(, Y”¶~Ưû—ñàysơP‰Đßø%ÆL¥ÓíÍ·´¸5wïI1YĂØUÔçÏVÇ¢rÓè [ôéûA 2x4rÊ:ư$l°ö·YÓ|&©¯©Ä§Y_B~¡ÈtƒV ˜Ôu”ĂäZl‹ù"|‰"đ*Å3 ‡¦¥ÙEÑTù†´êmR¤µª•‡]x‰n[_ă/ˆ %桪ŸåKÊ¿±'H5“©ú¥v#èrăȘvoñÉ_Ç)¥À06Ë@‘V]_sÄç¤ẁXI«WàÓXưÊL7ư $Œª6}x½wŸÂ™Zø·¢eËsO!‰Î¡+Å7ªé*—°OŃB½n°‡mèä§U9Ë>{¬ÏßÅz-=®ø´yU^EĐ¹øÿH3ă-È£pSà—ƯZN~àYaB­2— ›RĐÎÛ`ƒF˜rf6°îG€Â$AßôËEœ_¿ =@^ôÀÄó=öevscƠ_Œ> ‘¢Ç¬cÉ˾Kö‰@ûµ,B÷? ¸ƠHah÷̃QE‘(ṿ%Qé¥ä@˜x"´:œ§ˆ]áû&úA3GŒ,(5Kê ă₫Có³$¡Pb½ä2üFü*Zt&ùqpV#R<-Œß)Ûí¯|Ñ54̀†ä›¥¥7wTqN¶N¤ß?²Ñ‰xđĹ1&`Ă+_Ơ&]ÓBb‚6/­àö]ÖzđI¬ÿSÁ»Âă‚ûuë‹XÈ× ¥ µâø4²ÅÊg.Ç˾ü@ŸüûûE °µ'røB›ûXÑBj9$W?؆¤@®é¶´J™âÑúZy¥ˆY-‡KŸ‚QˆÙ*h₫˜éó#Vƒ<Á;fºÑ+U¦Æ̣Wʱ{–ä—„bµWçỦóh¥Ÿb§nG¤\̉ØÛÅNi₫”3ˆ…wä2ûX,Œ̣4"$ûŸ Ïÿ@\4gT"5‹SN~¥×1›½<8üY·U1©‹"ûç:âgÉFô»¥ïHW(¡ ܬƠZ·!}ëÏ<'ơf&†Á®pûX_iú§!– uégâjd‡C»AylæoTs»×¯¯€¯ ]|a8½ii´É6Ç¢×EÀÍ›eÊ´:»HƯé¼wÂÖÿë6)•s ½^É×èJ#{]/X$œƠ2|lÙé Ç5o=ê©éC†\mg ü%¸FË ¤çPYîL#?PEgseÓ’–Ûâé‚~₫oă¯w‹@đáMC[|Ç(AúWsµ`Ù‰ .9¨°é/¼¤^œưÔÆÂéD) u*Iv gWƯÈál«0µPTBåίm>̉ÜÜ>e‘æx̀´h·Ưu¦Ä’?b—êØ6¤×Ój̣ŸêW^zˆÑ`s£Y¡hù>¨[eÍójđ_ÅL(‰'ă OöB8eƠpzy¨.ßñØœ¤Tg¬/ ä=ûa'y£"ú[@úø‰W¢}XUŸ£[[áç¬b=đpÀ•ÜB¯Ö@ggL¨äÛ+S4ÔđmÁâÉSoN"Êp²Q,úév—a’Ơ‚bLˆ¢ộNmSQ.µÚLG¾T­d4±ÿgjï9rïJ–ÖÍÚ¹Âùđ¾K)¦o*?lOf‘ê7¢çWq`6, I\“‘S†ơní̉{úqi­æ]Få¢îÔ‰ßbͨ—₫vƯ¾ˆå´ạđ"á«2kªÚÉØN¾ÔP6X§…CØ×’,›²p;ø*:Áú´Ơ”9 ó¶™x™, ŒNƠ²’-ó~0›sÆ ç ØØàÙͰC̉^*j×hÓ(FÀ̉Íà¾z@{ÎPÜ\ÖC;XZ%·&tiưẼÛ÷Ye–Q¹û²-Z 5ÁûL<¿Bt¾²§uô²N‡¨Ex¡×ƯÙyîZM%Á86²KÈ©ÖƯ刿àÖ:­ëèéOEôuJ 5S &U"]2¶ùiƒ‘…1;.|é,†¯*¹Ûï[yåĂC(CÅY³¦é>”E‰ÿÛÊ3hb5¦I¤)YG’<¤éDífv Áp‘ ̉ø·˜́C/̃9 ën3º/ΈنlnñZ$9hlƒÅÜZÁ§¾Ÿ„íÁ#î0u(>èäc dm©tĐ…¨‚ơw†üo*cVs/Ê‘Z‚Ä€g̃®dĐY ËGj’₫XAÿƒÅ ö§C€§ïŸSP¹éiB±Ê [ƒđỴ̈&·\e¹N‘Û›œî×&Eë éƠ%cĐ¢ö Ämí¬F$y—ü¾Gø:8“…˜4ˆ.ăöÏÏ´¥g+åå²0îB’¿9)=>®Ü î ¨k:¤Cá™–¡åÛ¤GG›ˆ–‚ê›MªI»çó P̃¡ H|óPÆ2 ñH ®#xG8ĐO[­<ó‘CÜ:]ă£bẈBÀnê“À̀À]>çRËÔÔÚåOj«/Œ†­ÇVoRqv,3̣ÜOfA|p3-¤—ü˜ ö·¤²•,üL¸È”@M.PÛnª~Ç(.¶ŒúÈ­|ŸôÅ-ÉWˆgW(|²}“ÿºN‰"³eŒ{«K‹½hÅWӯœCăM§»úti½åfüA₫¤NÚ§­«H8[ùG—P1YßXj4ú¡¡vôIjÑ$ËZ(K»‹n3ÖAëĂâÚA˜éè˜Ô Mô“Á½¿íÑSùG&̃Ư’¸ QÇ“Ë_‡¸@CÁjZÎR¶@ÅÙÛÏURÙE”’ưQZôñp̣"’ˆ)Rˆ†˜q=<̀–«ôđ±ëy¹6UzבT[ÖơéÍt¸o«w¨ŸA«¥5½1Z<Đ+3ˆ¢ÉÓª YäB‹É­±ü¹2ưEăv„ ¯t¡8€çT³̃Ê×4ë´¤ö¹R\[ñ!D¦:N`ÊNCWe"f`KÔzØQƠç8€æï€}µºcÊ¸ê†Æ+LÄ©7p¹1̣ ™®̃EËtéZgÔ´₫x?q î\W£¯Ûê Ç[Á3#ßuđÎàîÆlv@¾éœuƵ;ç̃.:4Ç5Ü' Ü|bEc6ng<T‡Üvs´e Ô2¿µWßwô|€_ùđ(øtB5@°ÓˆK4(H²ß”‚̀-,Á³4·ߟƔÛuk#IK#EAÎR¥¸†ô^»GœÔ›bƒÄwí»ÛLƯt£@IÅBI¨øÇ AíPƠÿ(E³«ec€‘†|;Uö[#TÿJÉs¤ư¼­Á;hÁGj7c ‘l-fÜg·9)3–ïEùJià-³‚µ£  m%&*—C©É̉}̉{‚^ l±đ ùÏDf‰ˆÈ ₫‡âûwñ è0`ZT ¡û°Âæ°­z`»h³Đÿ.!Ó„­FZôåØĐ¤rj¡‹8bO+¼Ÿ´¬™ă )´Ư“̃›.®)5È_£9Wᇲ0\eÔ,œüøÜë]ma+Ñ‚»Ló¿¸+’e‘)Œ,‹P³4åï‘àa\#¬«/G”(?& –Kî¾%[AªÁôà/Üëÿ3­äă”—^}ºéâ~¤)u5̣Œ9$BÑVxúáq «‰YÿÑè;­•ËM#F)ù±˜l=-¥ ú@bÖ?!7¸„ÓÔÊq̣0Ÿà¾»™/T Ÿ¬M¸Ùÿ8 {ØƠ>Óßăa ÉØæ{Ï%5H¤¿Œ‹ê=owŒ[̉º8a—¾u× ù$ự½[̃–̉"öNf´ª´Ü’ÛÇ0°¹=£-á99©ˆ»P]×q̣“¬r;w½£5 êŒÇ€Ü7̣ê#sK6BeY¶)̀aø#IÁüb“èD°Ú §ÆxA§ä»Qê¢áé?xPÖ>Ù<Ø©˜øPôåAŸMj×e½\w¬Æ\¨^p$¡Ñ\¥&8ᇷ–bØKúÛö—Rçß́í[× cŒFn”Û%É-¬;„A¿]™î]¬qƠnôÀûºàO₫¤H₫Ï"“£@TÁô»u4xÉnóa霤lh³1¿ª# åîí Ë’r­uáª`±ètËÂ1ÎsöÊÛ‰m+­ơºta€ Ơ)èåé7¿nUi3­Đă¯EBK<»₫´æăîƠ ÷Ütj",%äî&€ø\y Xg”VñÁ°ï>•pÄĂ4Ù<$ ÂĐ5H@ÜØ¿W*åƠ­) Cáh úÛm6í!•­&½Ñ—|Áï®øiÔ9A_§EW÷Ø̣XâÉŒĐÓ«ÊÙ3Ư„íđ… >ƠyÉ̉±^”\zϹlù2#ë,–ºáơ ¯If=†t‹9<Á1c7u! ÆĐ n!ˆ‹Ek“ÿ×,·€S‚I*§3hÄ0®ÙA<ư˦@₫„âĂ™¯Á‹I¨#Åœ#q6†‡»NE£hÀ„vN,”O_Ù`x”\qÛªߺ´+̃kh»p¼­,ÙÑE°bZ½ùg­.¾‹'=/OeVíÿœKơ"—°¦€×'V8iÉO:•èß₫‚̉aùNÙƯ¬™”y‚ˆ«ä/…Ỵ̈OXík₫I{ÆÎ®tNH†ÀxŒÏj½S­½›ïëŸIB•ÿ·ü}ßĂ³bwϳ^(¡y-,Dư©¤¨ ÅêA$µ8±¾0jNÜ<>à;&&úJ'L5?4‰z5jv™’ø;6ÎA¨l ¸’¸­iÚæï¾£B=„2g₫¸+«lŸ’ࢗp₫\ÄhEÚ<Óá÷âhÈpƒÁHh$VxIöfï• ¸øƒ,°=ơqîBùîT₫¼£ƒ¸}wÚdä̃̀oáẻ¼hs´aë}₫AoÖf~K)Œ?Í|S-·«È OĂíd§î_ôƒŒ|8Y₫[ª2ÇkP„Ë4OÖÇ9ÖµH}̣.4ë~¯å&ă¢y¶5¢:“âÿÈÛ‹Ø[₫¹QuĐ4̣#̣v‘pë$Hy!ïNˆdé́|Ơ¤$ili:̀Wö`˜Rö¾Ë“Ûy~̣uëKÈU²À«çi™¼s·0x°Vº¾¢Å&—uûàTèw<ƒ;L=@Ëù“8œÉÇ@«mÈ3WÿåÀ†›'.ơUcø ~„v́™ªD̃r×­v$æWfÿohªGK ™/VŒº>ºµ–Ơ¡qeáư!Q(ëÆS¨ơ6PÈYC\zö˜‘í”F¿ƒ$̉Á@t¶yÉ‘’ +"“ÇßÎBMÜY/ ¡YWgIàÑ$ÿ™Z§âz<ª]DLjCw(hï-”Br0¨d‰xñ² k÷iơOüwdøZ§6ß=o¤€ơH¯¯-wÿ×osÊY Qƒ}˜KËĂÛ0B1’q½$Úó>jp‘ƠucØaû=ƒs[·Y!4ÎÄt«E’¿÷"‚ˆÓA•l̀•Ÿ¸Ù«åëNÇ|4̣«iƠ ¼|›·QÄ£=äÀP^*B`h©£¯(¿ÉäT‰* Öˆ¨=!ó£+ =“DƯ¾ÀZÅÖ%¿ûÏœl÷ß+ F×xvSó̀ơàAG]fP´s[wOjø5ïươÙ}{Èàx–̃cSÏïưDqˆ¹ Ub*<íO°qoœé›â…}}ëÂSÄq'â8¢_ë®–“¦nƒÏbîÆ³WđM³éP26ï9TD¡æ›4 ŒÊ’±ç “ˆÍĂ ûJH̃¬gF°JȈ¹¤ï»&₫nöÅcfÏ€Rû‘ü¾]$¿¦on<-vJÎĐÆ-ªJJĐSưqđMÍ[Qù;c"øü}hÓíùêh₫½5 [ËÖGô¯'„F;g¯ñ*;é †é©ëäKΉósC¬s,çê‘̀€~Ê K)R¡̀0·7íBR¼XÆ“|‘WbÛZ ̣3èˆuÚb„ŒB¾mƒ0¡ƯÉÔ ́¡-¾œªÚóYæ VN°?úăóµ 3˜‘ÔªhL"¥¯ç]áƯê©bƠ Œ›Å*—° å "L¡dTYN˜¯W#²16½Ưr¸Lđ&đ^&lG¦A±çŒ»ß¡e•Đ1á‡ß¢Ă f:^ŸÓ_¢úî‚,6èễV̀f\₫x˜µ€ñ¥K¤Søs4¤ g$>Ô°ÂÛʯ̉ÜóآŴ"ơÇ#Ô¥ˆÔ¾.wăgR¿ eI§®¡åcT¡*iX¥D™T=:ƒYHàm91­z⢴ ç₫%9…´=wo¾Yµnƒ†ë_3U¤©̉>´lö /&,lÄƠFeCMQ;§Óµấ¢ëÙP°h¼>×ϵz_håûÅ̃4[c·‡³v¤P´º¾ÙÁ nƺ‡Å„… n¼ơ blJ(É4N®S’Ợ­›¥UjD| ”AÀˆj‘Ï¡k¹†®Wq©œ¨t̃­ç_¢k‘,âÙ±c©%4[W2÷Ü«"“Øø«2=BöÔß8E÷Xóœ.@x†Ø˜@K"̃ù@9ø·íw4ÜiF’ùƯ÷¹Ú¢V7wj]Ê&%ä·…ª&́€źù³í£d  .x”s˜Éso›Ôª¹®ØŸ0ñ…³’†ù‰†[# ¾æ2Dw¿́BMEÏÚDđ­ßIÚ»Mñ‡É¾¶îÉÓX41Ms̃ªEè#‹)ªĐ“lƯ…†ÄöFPƒ/¿¸»PŸ©ü‡(•àÇ8 p¾¿Ó6>˜̃ËĐ…›ơ­h́cuÀ³“ ‘W•LØ^êĐHùM²ÑÚ²n>\ $m!¥Ă”GGéÁK@DY]èƠ†å‡Æ6G„]ˆpÇ¡ë ù:o ̣|ơp¹ë ömP” 4×%¿É†"ơ]ùf˜ö¿₫ío0³ö¶&×b~iÎ ®rµöü˜±ÊȾL đÜ·îVüÖ¥ó•Öiê’́Ơ‰kS,Œ]%¤ªëÚ Đđñ‘2È’¯ÇäÑëátŸx~o}Ưf'JÙ¯2l„̣5s*ñ蛕$‘-×Â+H®@$boÏ ŸÀHåg­w­ xO?.Ÿ¥<ăYOG‹ư–¡ 'ư¬*æi>YI\ °Ư[5ăX=ơx7ư/RÎϰd^-f1k90rœ*ưxÄ"€;I¹E:"Ÿ0pâ55-äq[́¢RÄè¤ö˜Á"|W?¡97V„ø>¾eGÚB²+̀¨°ç‰₫åµ&çÑPï1₫‰£!7öù̀s0–Iñ˜Ăơy‹ĂDj·nÍñÓéœß+@¡˜b])hÑ ¢!±?¾9°§oâï­»;%lG}´ăÜ…‡³Xå±¾…äy¾!y+²Ú¸Ư‚ÁrRZ™—¨ÀQ¿fß.: ¡à÷Èî„„†xµ¹ƠË’9_.ªc-±pa–×€54êMư19‹0=Sµ±/Çà¡ÛQÇ«k‹ÆpÅÜ‹Ư}EP×]”Aª€œÔîX¡W‚5jăÓ —fQº}³\N±{©B>Ù°N‚|ÄÁ¨Àîˆgœ½6 “”“̉œ₫Ä/¨ẽ÷ F\1̉Kî¸}¼Æ œ©±ky(îERüs>ca­ï?]•}SåËN_ùă–ƠY¥mÁȺ¡I´ú˜+LKħÆñ{sq*Ù¶ú&2ÏæµÚMÁº‚N{”]pg>©‰§é T3¡!<ë1»©G´jç çcÊ‘-äˆÅ3¾§‚uÁÏ#Ư₫Ga<@˜~'ƒœö/Twˆ_Å÷—³/Ó,†X5Z^đ¾W_;˜3Úåè‚!=đñ>B#^é¯JoX±5|׆™„“ɧhÁ äƯƒJG5£îW ^˜*–́æFr=JC‡ø]ńË¥×1}_¬:wÏwôMƠưÓ q™~yÿ÷ÿÔtØê}B[¯Ƚé{:’®̀X˜{}Œ# vơåB€pÜätFLK ƠO~̉ÇÓBàPi=¾[¨ëü¬Äß$ûñ:¼lûupEö Ïuèø!̉°MÀ€Ỵ̈„çyhL¥øêÔLñ… Î7z¹G‰%iAJ£Đç‚$çøp,Èj^̀¯E^c@ »°²@»V9NPñÜéóa;ÎaTßÿ~?lâ å˜t/ṢÂ6NíÚ™×úô=A"ŒÛ¥)qă$*.8 œ=aZX®Ioú[Í|Đ¢ó-₫ŒËIIư͆é˜̀kö±@°QL̉^Gt—>é£PN¿›ớü¨ëøI¦ç¯ÏƠŸC!ßMËN' Ÿ½>fªmS÷Aï²±ê÷*Ø;}[1"BÖUƒx܃¶b¸°(©Ê½{á±/¾//ªu;¨·Ï<\c\w%QJ”°½«æóWv́>ÙQù¤›™¨]ZIVờ4X‹8_‰>a₫ḮÊö°†çe?ç`ºº²:³; ôS0̃> éâA,³Ï’gH×ëÔ0¼°ôp4HlGDăkĂâÛ¬àÆsÔ™²?råV‰Ä÷̀Üh“ OFkCŒ'Ư{MÆ1xRD¸)ÅÖtß1J¢×È×_eÉ5S2öư¥¤ùđ%D%YíFB›»f¹l̀ö(§úö¼uç604CTF·SptgCđ*ê GP±=©¡ y“¦́Ă/c¯ï'B1Ó…zŸ¸„ 0K.z¾Y˜´sÍQÅÓsˆâÆÏ¢`ÆxƯ¿q‚‰úaˆX-p0‰ùAbÂR>&.µ £C¥.uå}»s0åPÜ;̣̃¨̉„ƇN¨Àr¦±̀jÄ#„Ä«?ăBrùÂëám{ÊøD^q<·cEg¾©j{*»{j­̃¤₫3¡5Xë ƒk/;$‰ĐKd9¨ëôÈa¡‘ͫǿL‡mL«¾b̀ßđÔÊdƠÈ\¸®ú ú?\X¿ X­5ÄgA† ¶8”¬·̀Ă¡ị¥Ó*¡'IuM¢'hè³s‚P€‚®RY:.Ù…3—ëÏy9!OÿÓñïåo|‰ÜÏm¡U¿¸×å Í.ÈƯƯ`€Q@Ç.b2Ăø•½ÅÅXh™9 G¥(+›²¬ÅôñáY&ăơ-m3Ö]¯Ëà×)}rĐzGÚœ¹<}fx̉o;ÊÄØDéßÑ›–+GsCG0ƒó¡ ṽ«öó†8º³m§•ñºÉú ó̉øƯ$Âđ Pyœr%è¯ô5kjí¬Xä !P{º3À¢½?¼L‹†öFI诨 ƒá'Œƒ@¹V`­_PO$ˆöP~âWóßï?Îw`'…“¼Í‚M¯’]\W©Ÿk¦ù&$¯&™`¨j̃ûó\rEƒ̣D²e Ø^ï«`nêèo¦•*8̃Lví?ô?tưA¸PúMŲÙ[ú É6ycµö–ÿÁ‹_óMkÖŸ~.j½¶·²ôB´å­_HÈîy‹BztvrÂr ’;l'$…_züC¸zS-_óK|‡7Tèº|^ È%Á̉Ûç s“̉z9p“qK‚ÈBƯ₫ÍßÉ£Ÿœ®¨·Ù€₫†`8°Ï ÈíÊí]¡ËÎ́'…&ÓˆS÷ÇĂ+Z†6Lm9Äs22I\ÉØềq`a-cPùmÜa'¡mQ‘bÔk4¹ÍD‰ܸ«Êr¦Ưr¹Íí‘72È₫fÊ èGXa\¹oëÈ&—P…8ÍÖ^ÆÇưç§*3¯ùMN Öj«0=.ANúƯÀñqWv\|{iƒ™SŸ”güG˜“ª¨c7ư®<¾r)́±W©„ ¶iÍoºµ<tp¸c™Æ¯K½ ÅÖñåm’”v`é„R̀Ă¢ü÷Y²Ù\)3ØÂ#3åb½1Kă©…Û ?@B#Ïi8­u}‹~'QƠOÙ»v—Áæ¶(…‘Ü’‚d={m3•x*[t₫ơ»§À¸Vü¿Ar_׆¶­Yk]6b9Bg¾¡ˆyÅu‰¿̃?¯ˆá©T-Ù¨Q›Ç f¸đFSéG¶“y¡„¯3‰1"_ÁBó³îƒuĐg¥üHR.ô/ KË.1nï±ÅѰ|j¦Í(y4JÚÁ¡U×6X9F₫lùYp¤Ù¾\ƠKµ¥‰XM¤Œaàw´EVÓËn©ü[¯yqidÎăs‚Na‰ù}³/“gœ^‘È^-́"ƠQKä@ÅĂº†e݉ˆ)~‰ï¥‚"njÖEǵ_ơ/œ7'Ơ;×ß wß̃Krœ₫r:oÁ¥|É]tI#ĐtƯ0 ßoû_[ưV.%1 kHK̉¨³›½I;0ÔàQñ]Ê,͑Դ(bÜ„µí@·)ùyVûà4%$9·G&5n/đµÍ́åÇá…Z¾Á/Ë¥±t‰²¢S¬ Đ~ÿH¥?R£$û%#x̃¢Ê!÷ñ¶„˜ªA Ï—Ä•Ö^ûÿBéÑƠW₫8§ºưŒ¼p˜“L‘&ׂ¦àöhR˜"u&_xÊM •‰øOs•&x qåyhP¯¶‹«LÎKËăö™éœ₫tæ)-\iEkl¨Ô>¤ŸÀTÀ·,|"6’"r5́ÙK‡[:YÊi׌£rh·,$„jÑNO­/•©X¢¤R"Vß¼¥¸ÈS–íç¥%b–AZüÖmæÄ¸Ôyvísñ₫ɘ!á V₫’—SpíA3Ja#« )¯̉«¼xeOOï€æ::2ºtMå ñœxư¡ ₫>ưbÔ°¹« ưŸŸûb¢µ·ÜÁ!‡k²g27¥»a•DåȼC_(¬Ơ “C'¾q^_ï«&ÎÑZƒ¼Z¨2̀M~' Ô÷WÊx´0#₫â/±¢uÔ›₫§Àf£)QŒ‡Ü}Ƌӡ~~I£·f!>ŸaÀ'́—Wº΅º}ä¥S¬‡fø»q3x#†+x¯¼Œ¶‚:=Oƒ÷°èØ̣¤›óEErY`3¢DY};U´ öQD;¹(XØ?̉öÛÂüưå-4>¿hº”Å·[ áwNVơê±ÄC›YnO•\ne%ÿt h à:ÑG®¶—“hÔ˜*áyʃ¦®ÔP?–̃00)ø­•JŒŒ6₫Üfi:u€ơ]ikJá¥EîjÜÙ¸ưZ®ƠGÜ”ë¿5à¼ư ODæ¡=>‹à´;®¬¨9Î%©ÿ”/°•̃qj§¡Óơ©÷¡GôxϾئGñaµ.2É_X˜®WÁ„ªPœ₫íÂUÇO#|x-ÓeºRYB”@¶{X'ư,™rÍ?tjUt郈b©¢øö0ê=̉©Ơ ª¹3¹] ##s¦E Ÿ@´' ° 6˜|™ưùr<¬²JĂÁ?Hhađă{dž9ëÜ̃b8­ØRˆ9·PU1)["7¾Éÿn ¥IÏ̃°k₫P3Rï*àÿÑ’™`øÛ´·˜ñj%ûsăà®ÏˆHØ·™•ăXB¡uC±qÚµH«’ sylb5ÍjWˆÿÁ"y>§_o¸)p€?Ă7Bkø$Q³¼Íô0ÆB§¸@4•ë¦ù5ÇÊÄÈüê£øßDg~²ưZ”,¸¬eÄ‹ó;̀¤œpÆ"ê6ßçIṢđ±âéQ>ñ—ÿơà%b0-ó‘w•Cx2£]â{º»\WƯưTơKy\<{|̣%ß@`»r@ö£À…÷Û‚Zí®_ ÄC¢₫ç^j#Ă:$÷Ư`ZµkKX³âà ˆûdhpˆ9ô„ƠûK¯Ô¢)ëÖ=§5fáî<%j‡ÿŸ†¢r³«J@ &Oí‡N=ü4­T¡zônµ$‘,qV>ßá²D¡V«4́Ó¸F́×Û`@0µé¦ß¥Û¬‰… âĂ­ÈUä)Ú/*´îq5‚?́8'”.̣|©»đ%Èf?].ŒXëé³8±A÷cϳƠ÷=€°ïÿ_kƠ¾v¸¡bs¦Nå˜0˜.ÖÄ[+$À₫<Ô¼TR(±¤Éˆ¼°³_iä­n]ÙÁÓ¤Sà^¿åŸhk‰x_ßmå˜}₫Y‡Ô •©ZơºG™™Ó¾â¾ÁÍ̀ª:ƯYË` /iÖÏä-¤/‚f?Go·_T®É`V;)úFW̃Zؼɽv…!³‚øØ3àë$íÜ₫U‘Í• Û‹&…³( CÏø&Kd€Z•ÄQh<´B(|0à¦{º²ªđ0{ …×’)₫ƠBéÅÚßùî$cÆđ².ª2lÊ’ç:3,ßBEĺ´¾ÖJ¥«wxde C¹ b´±‰v׋?ă9æv^ä`¹G)Óf‰z  U3-À ô؆Ñ¥K®í$UFèë jh TÅÜøßQ ƒ*0fˆ¥äIÓÛ¯…àÛƯ\]@û>mÓ†Ùs+ OI9;$¼Äyq€éóùIÉ|ø › ̉€Ö.œT * –ŸŒ1{Ï­.…ÉĐ0 £ûÓLê°x̃2„¡`”TA®©Ô•W ´•’₫Ưz2=‰ưÀ13äâ*;»ö(Ñ‚1:u8ä¡3¤ s~øéû¶6{e-’*KB|ü‘¸À™fMïpÏ5»Ø9$̣=dp>…Đzú¸r%å ˜»8Èkk¼_#íLß’\®X¢D›“Œ¥®û[₫ ¨*ÙÑ#÷lcP÷u¿ÚlïuLºh©ÎzO]9ó2ºâÀ­øçáähF ‹éVoƯƠ³­ Hȼ’_Xă¼ªB ^.¿ÔBmÖ´Îbm Y¼Vèư¸».̀œhÓAè´œ–̃=œ}rb,^»¯²̣º1Çu”V}Å”}úo’̀)O¯6lú"Ñß̃5דA¡EÉ_ˆ·y•›5j@JœÀ¨ÿ V®µL›¸îº±Û (b̉{½9œ‡Á§Jqeá5W`p̉ eY€ÛÄËJư™n½™p9¦kÓTd†ÎnîÀW3‰1 z£ $¶€ñg@e|Ö,÷•uh“f¶»LµY˜( Pœ2PØć\÷KŸ₫µFTœ'–~<f0^m#KÔÂEÔÿ‘"X wóOVU%·SŸ¹§ÊZ£¡KŒï`^¡§.ïïâ@PîÖ 5Rp”‹í7”²xüÙ©™–µ„̉‡®#°°4’„™j¥GáÿÑÇ¥‡íf-”E5F}†;ÔY*¬*ñïÏZCµ́~,YFOùJ°Áœ¨KÂí,5á‹ôÛ13BŸĐ¹´EÖs˾y}”HÔ°ª Ú¥L/w̉ˆuƠ'»v‡^DÎêçá_öQ7Âđñë œfcÏÑg +à‹̃~°!  $]€…¶~ÏĐḾä !E`b~̉à“̣Ř4 ¼ï…@fN”̉ñ*²´É$‚øR}dÑ#½C¡ß×Íæ‡+O^„<3Ăơî/5¡'Toaaw±Êârơ{\—N”ÇNÊÂ]lo·Øû*̣v×á|Ÿ9qJØ‘Ûè™Vo¿ó̀‘è_W»qs¯l@O9+éq€•]–ṛ[”°4®,/qh+\5O<’–9Åô«&‹Vëư•A´¥V£½–̀$¹(Œ-_'2ÛùÉÂÓÚ.,Ị̂ÏúCQGüUjZ^>z”¸ =D1pƸ^6zôa§Qüi«® ÚµúÅÂD¾ÙhÓĐS>æÿ(…mBç+8̀lm{÷¹5°†6z¯Œ—BA±á…*‹́f”iq¦$Ù­koªd}:Çå@n+V«b¨¢¼U½MQÛ€ÿjZ.ŸÓï™>7ëZ“3&o§¶æØz–WY™5'yỌ̈ºŒ)XˆJ¡Đ`µ°Ê^Ë ­•j}7ƒr¤Â¥ËÎP8;;&…VÉ 0lM´ Ó£)Eơo´‚6QN A·É˜¤Âˆ¹ßï!& θ[ä–¨ÿ5*‹¿ûǯԺq¼:ă®½p©‹(º:éươX2̣xZåü_;1/ñqc̣䑪§áuGc‡4ÂĂד’đMI*¬Ñḿ• ,6íöckN‰7'¬×ªj´ƯhÈô"I¶¨ZSèŸÍÓ:n_G*•a–ƒµ¢ÄĐƒUU¶äI<Éoơ‚C4¿Ëí?@Mà]ɬ،À~ăJxØ̣qçT³øBNu<.†©/íÖ>sĂ}WÛx(MLO+#J—†WL‹¶zÅ^s$çÙÆƒ;0Û–x£NŒ÷¡¿v²ăE –Pà z ơđ@äR¾ñGRT̉3pÖ›c±R>@Ơ=¢ÍỊ̈d‹K·³º‰cyzÖˉE°×pß |ưîù¬SŸmơVÙàƠ¥w~²jC̉çɇ[J;6˜̣ µ¢óS¾Œ3|0ÿP*Ä]-W~Æ÷źM4PS"=̣̀›¶)â rIäjcíº;§.,̣‡@Ó°æ±,ÄVI¡· ï•$¯ǻ?₫Á~€p=>́9ø¶̀¥Ô®EÉ x›œßN.&½—ÛdÉ/Zú*œ}}(Ფư:ôƯˆ*QZt¡'ö-´L̃Q‡©ơ}åjèbĐ—ÿ‰à*₫ñE<ùÊ–s0Y!£0üm™èÁÜ>ÿÈ¥Ăê¹5¶>©æU(apöŒf>éÙ`ÿWϧVÙđ‚đ6[ªZW„[î²l±-DVѪBÎ|DsĂª¤¾ 6£üCgê-4 ÷S4zÎÜÀ :¬q₫ëo/ôm̀ùSßùư°Mż{°é¾5˜$Ô½Á:ÂÿX‡n£ÎqMÍw̃t\râZ€́vùöÆjà¯S“RÉuàcÙdĐSDуÑ\ôw·O[ïZĂº…S cÿöö竵{6ç¾Vœ-ĐÑÛ”}èîïÇ0Vơåú…¯ÔmƯßÎ…[ GH‡\¦ªÈ#\‘±Ç.Ë@ỖF7­[²TÈĐA¦‚bŒ¼”ïH<ïÁ³€ 3>™ÆÂÖ‰Ê,çjC+Œƒ*Â;˦© &<Ÿªû¹…Aæ0‚ôîÖf½$VmJ“¸[IÇûÚ¡…çOĐö(êêˆ]8¨(@¯“íœf7ï âëb¼»Ê£s8ÓMVuÄ8'ë&ܵê§WߣôˆïææÏ½<ç…ƒ›‹—é=Ld÷8Å>P½ k ?.úy½ÁçT^dvÆ´1H¶ €kè8a-ñ%€£ø ¬¥Ñ’Txú03}N>ƒïôt4ËîC÷!809̃«`QE'{Å \´ÆåÖ=1߆©¹Đµ:H±?ˆç³¯Àe¾‡§jßµUù© exÍííí̉#cMS+ Biµ8Ơ+ØL¡ ¢ÑFàj[·ˆª¥­üäiÖ̉¯½6R­†¦ @ë}hó̀_üë‚eàï±3ØÛ¯Kp‚5"®aü½Ë>|&úôÄ,‰'ˆä?đ[óq !Q'*²́Ç>EÍ‹?H,û¥[ƒ{k¥̉àµÏ3*eh©é2 sèº,íú›eëgB$Yô nŒ,€Î×á 6l.3ÁnQ“4¡ÜC>ù3;FÜ…{±₫.‰QăÓml'xxü¼Óv}!Ùo!JæG×£fœ®c9Ÿ]’î!q÷×TÙª₫XâßË—1´˜ ~à­ X4 B#sù˜ĐeöÈ)fv䣱8ĐÏ`¶Gs-ÓÈ‹Pħv-+,OJê $Ø-$ZÀXNS¦D}‚ßư”h‚èR§.ï¾Y»2-vU» Ê»Mr‰ü±´ú¨±Í”×[‡¾đ¦KäEm§=J•étÜAÎ,ˆ¡Û©Zc¸P8ËÿÇú–·f-UñÍB$W”]œ} ߃¾+O³1₫;4ĂƯÙ4(„“îÄôSj©%ư…Đ…?fđÛ &ơ&ơ"„oq¤`í½wxtK¾}v߀»<ÊT  u„–ÜehpÜÖ~÷[£ô‹Ù¼Ba =(÷6êÅD}¸Y]¤ŸÎ”›Â²–¬kºá¨ûaöĂôẰ»2×3°iådûG/–Ë>›uÅ₫Èúà~û·»×̣"Âê˜ûaöĂôẰ»îøIèz±¤ưm[ö̃±ǵ¯=ç£ß XøÁüs?̀~˜~˜y>Uoúw4×₫!Û·)nÅMđøƒ…?,ü`₫‡¹f?L?̀¼'öOOÊ<Ç?,₫`á ?˜ÿaî‡ÙÓ5-­2§dæ)^prf q¢)á*ÉK̀M-²…¡êÀê ̣Ü.©i™y™%™ùyÅP!QÇ¢̀’ŒÜÔ’̀äÄœø€¢ü¤œÔ\˜$ŸsNbqqfP¤**âXTËjđÌK/âT˜ 󀹩n‚„_inRjQ|pjQfjq¼s~nAN*’Yœy‰9ùé@9¨€ rg^ZjQj^2̀dÁ€Ä¢Äô¢Ä‚Œø ÔÄ”̀¼ôáî¹ ÆBVÄpsych/data/Bechtoldt.2.rda0000644000176200001440000000233313154621324015053 0ustar liggesusers‹íVlSU®ÛÀm² Ó .j@5D‰c !'cPđÇR‚ !”n}kéÚúhqà‚1ÄB!D‰¨ˆc"1scẤµÛ\çR&‘iP "ñg¼÷î|Çá¿₫ëKÚ×wß½÷œï;ßwn—ί›]ZWêr¹ \…ăÔw¡úYT ¾np¹JÔư¦yVC0 ùcÍVïËƠ›itÙe.úº̣æ™(}wâÂêª-”™U¹»uƯJ¿gpVåÊDßî-ûe†=׺ûo£̀â¡9₫w̉g­ë:?^G{êkR?øƒ>:²`oWÛ&:¡§M̃L‰±ck6₫Fɽñ<ê›ẓ}ĂË(§¾=×¾¤ä–ÇêØYâ#Ÿäkúz̉₫w|Pü0%›{₫¼rÄ-÷3|Om_yÿƠöítJG­ˆĐÇízàé¤&Ö×RjƠ£Ôri%6U„wm[Bg·V¿̣̉ø{)¡áDß¡T›yA_́3À?â#Ÿï6₫ªĐEvÁ[”›¢½H¼x_Ñ|Nïë¬gŒÉ#*ăŸ©g̃(IY³ƯjY—g>ûù₫å»>Y*ü?â#Ÿ‹—vƒÓhh›YHƒ‡,_^t; )6|óµ̣₫¨GûAC<¥M:3)[dPv”(Á‘ç¸ÙC°Ô¼?â#ŸAÖÇÀ#梜Iû>©ĂiŶA& Jđ>©ƯF@¢«₫¿Ú:Ỵ̈FO OĐ̣ÿ‚Ÿß#Ÿ :½©§è|~ᇷnÈSă<|L`:ÔO5iêfƯeX?ĐSë9Ûh.€/8Oè¼àG|äƒúB́‹î]€đ“â|QŸ₫£ZÀ?Po‹!œr¼₫C¾Đê₫ñ‘O«±EZŒL×Óq®ûiEÆGWÑ9ÖqZ»cñ¥̀mơlĐ¾@=gơuNüÿAÿĐê₫ñ‘Ïyÿ 뢋uÑÁ:́å¼Ü?àó¤·HúÆá?èü¢₫àø_ôĂu₫T©QeLíŒ_ú–iơ«ÔÆ}ψÜđ?üư‹₫¸₫àøùtq;¯j€¿HH8zăw%ú™?p₫ăüÅù‡óuBÿEÿCÿÿÁđ@¨?øüן_ÿú«Tè·›Ô­̀ü›r¹&~®›R¬¦„}MÖZơû7Ñ̀ă[nÛYóÖ)<ôlÄñ{kăMơ–ĂC%+³Â 2§ty¤ÁWùœơ©4ECV̀„y¤ltë§­X̀r°p’;w¼!3æ}^‹bO¼±Ñn–ăÜ!_7ºí@Üùç]µòÂ*¿ß¶¼&ÙÑƯà3:aYб,ï";Te£©y=–cË̃%K,¿Ps1p3ÏZèDâQ;øŸÀÿNà_úó7ب°Y psych/data/epi.dictionary.rda0000644000176200001440000000353513154621324015731 0ustar liggesusers‹uW[“µ¼æfHÂ%®A ^ÖlÏŒ½P•¢\8¨<¸́H•¦[=-O·ÔHềŸ¾£kïÎZns¾£sŸï<®n<¾±X,®-NÅ߯_ĂŸg×/âß?‹Q5²vR+n‹ÅÉë₫vq̣'üû%è&èCĐK ¿‚>}:½z túTè#Đç —Aï‚>½úô*h zÎ[ @÷@¯Ǜ\Üưtô7ĐßAo‚V ·@ôŒw@ÿ=:½ zD¯Zƒî‚Îă®ƒè]ä z×?@·Aï>;̣Ès½¸½}¿₫x¿u°ƒXÇ/k´̀êA¸Nª-“èăÊâÆsƠ¸c|Ϭ¢Oø8ơÍLÁF8hư:bœ̃7é{’7àÚHgÙVë†qƠ°FXiø¦ ’6ɼG2¤+&‘ÎsŒÂX­ÏưÄ#¸•ưu“qlß >=‚½•Đß̣©Çgé:Ï«M0c¯Í.)Z%Eƒ¶~¤ˆ¼ ¸ợÚuđUPdï$Y G*æŒ`)¶Ñ“K>²¸eÛIöî)1Ûë½÷ä`¿‘•PÓ>F]f´o³…H²ʹÙ› v %̀öàµ>Ü€6m·̉vIßÇI_¶{¹º?I\*{%ŒÇ¼óJƠ #5‚uH2o'™ÉNÈ€«á̀Öˆü [‘ÁM†{7Ï‚ö Wó€o%z ëe+ï4㬙i#7ňÿ&±dD9´¢GX´ªPOô¡|å¬×qG‰º9\Uyñ@3ÙÀ f&<²íb~ NnÇGîBÅp¥ ËöBŒI¾‚ü<›•ÛœèQR³€Ÿ$ß|ê°á‡Æ>KÓí2̃ Ệ({2YÇiE¨±ù¯t¨>ˆÏªéë(ê‹F:Ô©i< .̣Ù±₫È3Ơ‘ÿ„¤Ëñ x²1áÊîK›øw”ÜRúz̀&„Æ¢|;²T™ơ7”æT_Öéq$O‘rraRv;+£(:^ï|Úï|­d±|á$‘ó™ÈÈû=‡¦‡ờƯ4x©r”³áÿ‚¸ˆóeÈYmô¾A#Ñĺñˆ'z‡Ẩ:^æ 7¼¬MtàêÀ”Üvn@½ä ü*̣ôrGÖ¿;øfí;YwEƠBí’ĂQ¼†­×@n¼’C·æ'eÿ‹Êt]£‰`9 D 먈]è|¡¸³î½pTÆ̃ïƒT¹íơpjøÇ¹†B£SœthívD ѳqĐÀT¼yE°×đ ‹ø-˜3^\aôoŸTƒÈ`Z7äʳD5–́C?3~“6ÈĂ“(Ó0³¢©~ÊtGƒ¦X.›¤ä,*ÑÔ(ÏÚ=ƪsµä}2%I½¥ÊlÚjkåxœæå̉ăië¼Û©è¹WÜŸœCíÁ‡3´×JÁ€_S¡Üü]’ÿ.ÉOM#TƼq(KÁKQhi0̉VQºÔâS)|3+lÉQ­ÑC½°k=nŸó€đ};ơÉxŸ’µøzEîßüdjU½ËÿưÀ†Ä Ï#'¦÷YWơŸyEĂ ‰u:‡:Ă•uhù-%@AAYL}1µüq„Çe2%Ó| ûù;_´³tî́Rh§±$é6. ½Ö;85ºÈ†₫ o©"̉é;¯÷ts`œ¸pí%6ˆFÏlˆNà=v2Ëvˆ[đáˆ8b´b¤ Ôlàl(U­Ơ¥P’)S´6¾Uxµy1yØú½˜Ú@́&)¯OưÖÜáW ‘! ~Ñfb“ZRRy÷!uTï „^$Ó}?ô6£`ö!÷ĂQmM·Ͷgë'll€QMø¶Á8M"?=ÊqˆîiDƯ“ñ”‡XœƠØCô`Oé3Vú6¾T́ËïS¹2Qƒ/ơü°€àÚ¯X—‘K‡¤©Î Ú AÓ̀ûøZëS»¥†’Ô~VÔÖé÷IÜ₫₫—z²G¿8îü‘z¨ơƯ±C¬ÔÿTÚɧEŒṼÛ“zN¨ ́s&ÛU₫°û¤)DÙĐri°Ÿ#ÏZL* Ẃ=‹Øô[/ÿlÑ´Áé—cvÅÑfØŸÿF+ŸG¼/b§9›ó§Ÿ’×~8ϧ*Ÿ–ù´Ê§u>Ưͧ{ùt‘OIóÉç_”ăy9Vå¸,ÇU9®Ëñn9̃+Ç‹r,hUA« ZUĐª‚V´ª U­*hUA« Ú² - Ú² - Ú² - Ú² - Ú² - Úª ­ Úª ­ Úª ­ Úª ­ Úª ­ Úº ­ Úº ­ Úº ­ Úº ­ï…T<ùơ(So4Üñ³Ö )Cr/~ù |"̀»"psych/data/Dwyer.rda0000644000176200001440000000052613154621324014077 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉¬.å•©E@> ÇÁ₫Ø?êÑøz¨ÿÅ×­r;ߨ·T=t_'Rm˶`ñu.û ‰ ûÇ é×­ö‡Á¦f\ÿΙ 0Ë₫Áb Ḱï€TÅhÚ¿Qß`̣0ơp}0÷<„̣Bå¡üư·@Ϊz¸ÿYÀƯ ³ï!97¡ö\Yûơđ₫y;ÀÙÿä œ…ûæN¨}0}ps¶@í¹ Rm[¸ÿ2Ôÿ°púîN¨}p}pïaÿʇ…'4\à₫ƒºf\̀œ P°đ„† ̀pw>@Ó5-q0§dæ)^púa`à€`%@%y‰¹©Å@¶0TXD)̀Î2‚³Œá,8ËÎ2ƒ³̀á, û„uQ¹(+psych/data/income.rda0000644000176200001440000000555513154621325014267 0ustar liggesusers‹í—y<•ÛÇ×»7² äât8Ử J:=k7ÉÉB±±E™ÚÈpÄV¡ mQ(ɤTºœ¤t*%GsTâ¦RÉMîj¯·{î§û¹Ưÿîçú|¶ï~Ö³~Ïzg¿ïz×k½Äa¶’ƒBˆƒ¸̣ä?—|•ă ’C>#OIëäsWJZ/Ÿ“EơZ7ŸkDơ\Z?Ÿ[Gơr´|9ƠËÑ~đå‡S½<í _₫(ƠËÓ₫đL¨^ö‰¯đ‚ê‡Ñ~ñ‡EQư0Ú7¾âXªW¤ưă+–S=ö‘Ï[Eơ<ÚO>OJơJ´¯|¥DªW¢ưå+ÿDơÊ´Ï|å+T¯BûÍWP½ í;_e€êUiÿùªû¨^•₫üá†2=bïœ?Ofà”ûæPÆS«aí2ÖÏÚ́üƒ¬íÈú—S’RŸI™¯FYNyĐ“̣¨6eînV72ç,å‘~Êư¡”yĂ)3/²óYîSdu´<œÎÎÏ5dm+Ö¯@¹»™2‹­?¥2ƒ½nSG²ö~JI2«Ó¥L`û"Á”;ƠniÆ-ĉ̉w:%ËpB=ÓV¯§„ăoî̉7¹Zw\7¾±Æ o¿›cÛ•‰ă^¸ÖZW7ăØ‰vk{q́ɽëænÅ1¿Øé»vâm›'DwïơÂ[Oæ)Gâ-hVó·à-‹* ;ͽqtJ…béÎXüÆifÅ«v,^æT»*ÑGY¶œÔÇ‘“5Zä:ñfNüU“#ñ¯­ƒÖ—åpxcƒfûë^Vÿæ Bl9}VÖ*|„Cº^M˜m8‡(+¹1̃oÎÍ÷­ÂÁö&sơ¬qĐ´’E¹8đr~Gº#”Ÿ̉˜·N‹̀ïß1;uọ̀.P-,Ăị̈vÜÂVX¸È¾û{̣Ö8GÙc¿¹^c¾WĂ¾£§Û`&Æ>µ8­,>‰×¿ù²eFönÍUq°—´î…á2́…‚–<ä…×ÑNªWŒ=çGF₫øp+zàÉ)Ç®`4µŸga÷Û…âm‹±ûȲC®Ê‹±›Ă{Ư>í8,(Ô®<¾ç3vVº ßcWÇ©Ÿ ¡₫̃@wŸ÷ÿç Ơÿ?O -ï~ŸÜátv––ÙÍ‚$ÛÁƒºAƒ̀°‘ă­Ë!g\`ÊăªÈùÀ˜ºj®0Óû¨¼<"G,uµÜË7^yÜúĂÖNŒ*·Å;ç¿9›‚ÔØï6kk«vÖ¡*up5ùîyq¥¸¬̣z®•œk§ˆpA>¬áÖË…ä]§öÙûB?ä€ăS5ɉg°ºa´w°̣Cpx^µÀÝ»û”ÅÍ{•)Ÿ<+³ÁNû*nl#Ø:ü|ß°|=¬ß¦Ûlă 6U;V¾™³l8…¦ê°¶(\•Đê +èÖ¨«Ïsm‰»ÀÊêsK§³X® ]ûB󪹯f̀sÍ—¿yƒ‘÷ø ¿́”#Ñ——vp“À'XøƠp÷ö b 9_¡Àïë÷‘À7áx"ÿ½¯!Uɇ#¦÷¦Ç·ëºû¿®ûÏ×)A@ÏS$ø̣:…¿‘(üÛ‹Ö—¦Ñø¼*„ÔÉ©Ev sæ}„æg ´Ä! ²aؓ…mđA(x&B‘=m/G(%¡ưd#) ñɉêL"B—­ºINuj"§¯V²ÁôLBh 1Ă!fTbÆÎÀ¤>ÄèC̀<1b-AŒ™"blo Æ%1̃«¨‰˜ˆÄÄæ ©qU1ẫI₫3o¥q¤–뤰$„T–’ư‹4Iʼnä¯Bü#¢§›¬­ÔGHêQ"P%O^)ᄯ‘1rRV\Cæ 4ŒœfyĂHL)'§Ââ#ơÊÿ0“ôE‘¼ÇÊ‘¹¤§É̉O9̉?’O7ñ‘W^nBso!4è‡Ơ’˜Ç₫̀›™Jr¹ƒ&9L`úëC„ BZHrY₫ !krw&§ a*B₫äFN¼["”‰P:9%çøGÉo_JzưûBƠŸª-F¨äđ’¬ÑÁ¾*Ä0£ü1Έùá*btS£¯…˜À²vÄX>CŒăXĸ¯@Œ/ùBf"&z5bîƯEœ4 Ä]u)Øk±†i–₫aDk ˆû^ŸU I–#&pµ S´ËµÀR 9ùa§¦BæÁ¿ưIúj©½2çç/|éäÚÎ0/]º24ơØ4¼ƒ́<-7ºN±#7ú„ă$ȱ¾µÄ3̉̉Dß́¯‚%ÇœûÀ’ôq:ye˜©Đ̉ ©Gœf‰^BzêNă§6AÊ©˜Ñɶ65|†éUuH̃Üm¼¯vϪơ^ä̃`öQ£‰aÓ¥áô:’´V¾ú¤XƠ›ŸO€xü]N¿]¤â¹Ñg·@¼úê.W³û°«}F¤“NÄ­i¼XÜ Éö&y—J!FÓ¸ù́4KH˜>oê¨)c-,öº§ ±¥;–΂è‚:“+ƒá›°'"{L'D©u9»å&Ăƒ¬̃ă†P Å&gN–Á®[ÇáÁ°'ïíÊæHvcá ư·{ wè_·¡¡¡ût\îkäÿ¸[ Á6d²psych/data/bfi.dictionary.rda0000644000176200001440000001406613154621324015715 0ustar liggesusersBZh91AY&SYKÓ1˜aÿÿÿÿÿÿÿÿÿûÿÿ₫ÔÿÿÿđH   @àỰøûà=€ $¥ºà ̃÷ÏW̉±£$J=hˆ* ¡(¡tBm Ù b³x`Bf”̃L 2&1©íSĐ MêhÑỘ!E0†&C@4Đ=@=@"PÿUMj0L@ÓMƒ# £#Ñ‘‘“M2iˆ=È42 5ˆ”Ø©í4O)<£Åh†€h4 h4*eÈM Q =L† ĐĐ ̣ƒ@h=4‚DA4&2jc&©êzOSơG”h4h=F¦A¦€=OD₫«ïF3- ]EÄ1lƯ$nd $ A¤j© SPHT H́®PBBŒoÖµYñ Mc8®øÊ‰|́Hä©‚£P z,‡æa="NÙ7¨Jd“î!Ñ  ¬€˜È 1ĐK ¡ÏH“k,ϺđC}g_,H¾úÍưûi¦₫;‹5ÁJDD₫d=NÇ2˜‘»_æ¤Ê¤~ªPLD!R4¡T$ÓK7WGvÔ•¦"1ŒDDW(ˆÆ6|‰,Wc€,Ê_‰đÿ'̣ÿ]ÿ×öç[øz,{Gñ³È'Œ¬̀lœf_ Tjª4³Z-jà†//˜­]13röƯ²)™ß! ̃^+«2ơÑ' ƯáS‰[–iuxơs!Ù4̃eB»tơ “7ăG#^Ç\epÜ„ĐûbLsï–¸zs)TÈM6Q¥+$âOlù!̣Ë—̀¤ơd<‹3s2÷0íŒÙU5̀Å„¶E>=T¾3S§¹³•–ó-yMY1v1ÓKË»³Fªî«·º¼¸¹̀÷ùø₫ÿÖ}æÍxqáߣ:} i]0Ïwç\&“,L[’,„ `ZéB¿d!!2$óI ‚d„ơRIDöjI@₫l›¤ÙÁIM!¤V€KêöñúíE=₫̃o,Ăëă¼̣otnúéÖ˜rÊa>rHĂ₫ơV>.sèx˜Ílm?Ä}g"œ7Ơ÷n»$'›aÿ}'#¿<‚ɱñ̀Å‹aÿÀ{¥·Ô6¥¼yïƒr¹ î› T®ÊÚû8EθĐíĂ¹áÖáÅyÛ‹dĆó±<‘ÀPĂ‹k€ÂTµEÈ‘”*S²¡Àñ”CÅqÛ₫v¨\¹å“8pu=—É?£Ï¶ª3°vá#®;¡Üwy|Às³mâÏcÜñÆE¸\o| |ÆëI`ôt₫ÂóÓ¾bß9C®Ơ»›VAígăÛm«|çĂ9??…Ú 0<”N¯ '¶Ä;q;Ôyè[¦>Qhw‚;{"n}–Ç®wêăv©h®\43^ªB4;;G>`V¤¹HwaÇ“×8-®NûÇ~P•̀W GNƯ§ºÙâVs)¿¦úÔäÜÚvÍDˆúµÅL††GØîÑöûÚo óĐ\Ï=”\²/ÄÈ“Ú@0éü äÜÏѸr{.›TD3ÛÅP÷Œ 5m!î±£²äw±•±|:ØîÔưåó¢ÂŒ0LN-áåé7pbk¸|`6Ú9µăªư¹×RÑà g–zON´́‡@î)‰ xđ„1£̀ö¸Ø!$x<‡ñ¶nñlË>Îx%íEóĂmWMÛ¶ó¡S7ß}ÙÇ|Pô-?Rî"]÷Üm˜Á’¸n÷-â;>Pàô®8ˆ®ÜçƠ^oq£°æÜ÷~Äoæ[qûq̀vl=?‡VËsÓQH8“Ư?ƒÅùËܾ©xơƯåw\íÁ›eÙ©4Bb”Äw6ÛCµ÷m±>Ù¨~;«;íÛ¶`î¾17ßÛÈÏưº4xa×¥Üôº¹$\[ăd ñ"e¯"I—±‡L~*l÷`_ +…ê,wd*åw¶MQ¶Î¨O¡›jÉ~qPPD†éĂ»ª— =§1ÔrÄC"(…·k™ĂUgQ|Æ̉¹HôKLö±!Ä‹T˜:)âåO¶èàN°’î\̣\́R ^gRvÎñ6è·mL&çN3σwmÙ»ú@aç=°»Ïk=›—÷Ñ›a~|zï‰Êu†`ß/—*ï6Ï2´sns>B^ùÂö—¹ ¸˜.‹Muz º₫iDư×¥@¯'Çƹ¹g¬„t}ú*}ëN]2ö³ô¼»‘.6É×\; :VˆHûµư©i¤²m)wAÁnÉàĂ{¨;àÛ÷4=ư]Ë•£¨ Æ-?eïz6;bƯÙèÆ̉ˆÜËKK$M>i,ÎÉ;´đd¦–n±Ư˜AÚáŸÎH¤‰È¸|9!omuƒ <ÚRơ|KyCϧ~Û3k:¶ÓvB¤jhd—GSbÀ8C8pÊq¤n°v—d〤 Ú”E³çÄ’_Ió>ơ¿:S|×¥0÷“!³!ªƠTæ†xxm'D‚k2`3[©È—O‰´£é‚•QE 6 4’¸c$N8`b!@́0È\‡`ăK 2ZÖôư­ëœc₫?xUh i]uµ±·Œ€cXE ²E' .ârñ߆¸̣́)º¤…m’EF$V!&ÄSºhôf#\—HsH(gå 8=^Cˆ$M¦&#9Đ$c³ê¯¯¯¯¯Çß»xñß´CøḥcT;)h—ÄZ²]ư d€O á¸€]ÑÇ1î8̀coNú˜†Đôú_____‡~y^‰ybLÏ…UÙ®©Ü•ǽ̀úM‚·Ëœe¨}̃MnÆ™ÖÅ3Eñp3èŸAéééééÈ̃û¡Ï öO2è¿–{)>ñî6¦gÑ g B&NOÚv́h̉‡€Cä§£ &‚”“ÂÍËh*Lu4¨‡?©¡+ˆÅïq‘ÄZÊ„˜^ß2N;ˆù9 q¢/‚Yˆ&Â{­¾éI#ˆÄ\J‘/¢̀̀IˆÛ¹ C„4ó }€3oÊ Ç…đê‹&*Y‡ø]> ÁtЬăÛP*i0¨L̀îˆ FL0s̀K]ƠCÊFnÈ<61àÊ…²ƠU#y–Ld­S)—w€I;7Ăy4ú‡f˜Ë .tđpÛxbÛa¶M+„”•’™¡đđ6Ù,ä¼ÜÉQầ4†2óOî1ŒUQ,±B™ZBs˜%ha¶ÛNöÉñû£ ÇÍ{)]%ßGÉâéK¸§2-4*92BUéRaÇơ%Aï(àâ¬\Ơ ˳ee×e§æ„r¼4Zê,Ú±8ĂG«–'î,¹2̀Ưˆ"´ñR\¬Ô™D÷¿/ɱ‚Å6ii¯–&)/­M¶O?Óu“6øÑ]`LZ-Á/j<ÜN¥ÇGo2‘ +ïO™‚˯Eqä záRB†vµ×¾œÅàô. &×Uƒ´!EolüJXA+aqŒ¡ *ïªỌ́É ˆv?ZÖđW‹Pm'U¦Ê·•å·+OœzJŒ˜´ç §ºđÜĂ`™w,âR묭 øPºánjj4*£½hXt¼Çjj´´ĐƯ틲ñØ–‹‚Î`¯^Fä'ÑRnÖÛaÊcC×̉|‚!ÓÜ’)*|‰Z˜Àœt5fXƠU¼gæ<’ÈÇ A‚ûgG£8cƒ:æÉ9L[À«­HNzCFÈ ’áâ@ ,ëä)@MÅA,#¶Gç~ Èö'zóÙZ%aóJ˜ÔÊa6Ř˜CñW1™¸d+g‡ërƯû́ÿß;°`ÿ<]¨¨Ú¬–†wumw^~i­>´‘ß>¦.}\T¶–Ư/sF̃ԟ耉ˆé¡Ù§†}¹/•’ØD<ÙB÷ù³‡—#hn‡0ÏÎucV«PB=>iE®§‚˳Æcu×À¶ºNΔwăH™­·fΩQùø”á’e\ÄDvg-.ci] ’t­b2§“ÛwAqƠ¨CN BnÈé¿/¯.Ó*đ uí8‘ÈçÙW´µ”bü…»½½̀đ¤X¹Ă˜j¥1di¡³U&û>/³è)ÇMƠS¸dm(hYŒGá|Ü%|’¹AAƯ€Y"clÙœÓ$ñü‰¤1ÊɰÇB¸u(lUÅä×̉ÁÀ“ K×QtÜ( RƯè©UÙ ÙâÑÆxzÎv:Ă–S½ÉFpỲ1^›×øûNIº(¢“ÆaSD6›/̣‰”‰¤ó*Z\(–×Ar YGëë> Ơ}pmÁVñ’@Ó!Å „í¥K¾K˜æ*MÁͺªˆ*.îÓBkJg¯Zë˜F̣z~¾ï-ÛwUTPÅE6ZÅ©í(£vk>*’6MbAªB™î·*  _ å *ó„{Ùd«zED‘é[ß¼—´•¤<2,“f9o~­áÎ> ÷£ƒ{wqo}ΫLê«äkª\̀3´n¹åÈW€œ´ àáÆ̣yœîN©₫K’/(R[(!¦C—‚!¸PUÖ}·áO-×bC8³ÙSL¶ÍñU§+r…Đf F(±c £&wâY¾æ@Àd8hEÚ‚¬¡Z›¶–ÓEb­´(¬6̀'\è8UuroLImœÔDc„Gg%6á±Ù̉b±DBY5,™­dŒoÓr³$>5ëØăLÈ÷µ’¢» ô‚èæÆÑ~Tå¼+3” †(—ÄeGJJ’ ™$‘Qе£h3ÊU4‹+º™‘›Đ÷­™<7…¿¶‡JLẢ!m[¯RNƠÖ÷Cu®_U\ÜĐË>Ï>,ZaFZ…¡‘ t‚2 ơ•Zt´’̃x ®¦ny¸¤¸UvƯ°nïJ*-̉œ‡{Á¶¤Ü´ÅÔ%Xơb²î}L¡#ú°+ÊË#J̃PĐĐS±aªI!ˆ`Û!J_n±h8µ+²d§›j–© m´eµ‹¬¦sS fjÅÎk+1e¬–Ê@Ư/¸e¤-‚ÏoëªĂ†ƒIuCˆÓ{\¦b˵¤jåƠÑM‰.å&L1AÑ7VŒ&ơ8Z”(QóÆBjâ4hĂH– ±  $S{* ¼`ÍqΠœâ1*¨CJÈ„¿$êY‰Ă—n@F(C–  1—VQBÍfàPU.[,°’Ùd;́D‹êY #º“);,1l1­b+Bå?ÆJ9ú¼t AQëô% ₫Ѫ=í1§̃G¯Sß‡×¾×ØÆ´¥Æ÷p›LPјîCŸL GI7Hb\F(±‹º×¾÷=Éo—»sSĐ? \*ÚlR­àcç~ñ’xl’ ĶǤ$C÷a[ÚhhnơÈ_J̣[ábó<3¢«)Ơ¦™àkGđ»1½ƒÊuH£Á‰:9ĨYHbm'w'^+9—°]3=ĂJ÷¥g̉Ú™<{¶úunß='xù{¦„ó\F†øU€¡Ï-¬dŒ\O,‹|„´ñœJ 2,¡“hÛ1%‘%Z’!ÇFæ¬PH¼w…t£¾æjpMË„ –˜"‘ׯ`J+Æ̀ưY}&TăxĂ0sÊÉåâ³—–Ws‰E ¼DáNnúÁÚàøK*ó4\|¤•Ă\6ÖcrBR>U]̉äJb¶CD9=‹Đ²V…(jD8w!« ¥ÊJ´›”EG¢ÊëËDÓDKt—đ?¹© B{.„&5Ö3t—:‰SEP‡PËß(Ü,̉àÍ…$»™ya Óóœé¡ÀÈ34Üzî Ô?0ü”́&OT…X«ÜHG}pùRHđ Ëàƒ³Nø»’)„‚^™ŒÀpsych/data/Reise.rda0000644000176200001440000000267013154621324014056 0ustar liggesusers‹åV‹OSw­”§J… 0 ¤ND˜˜3.Ÿg‚Âp(ÈJ/R(¥kyFnA]asˆÂÔ F†o#Q!0AômQÁ""ÖL«®ç.î_I?î¯÷œïûÎ9¿±*úĂ©ÑS9‡kc~ç¿Z[™ß¦p¬9æO›F$g̀Wxo₫G&ÎÛ?êó˜èđÓA?Q»7Ç“ú}¾.ø¦&Œt=ă¥K›éΰÖrW?º“|²Ú­¾†nëW'Êû“úóßăóV\¥̃¥—³¯—9“z·×Ü÷~Gú¶Cờƒ`̉N5"=©ûË‘ñó›I™=₫í̃‰Ô]éÅ₫@#‹ ½Mm×R®“á¨Cñ6#iŸ —n_s•ôóK¼7- $ư˜çÔŒUûI7Z.Lơ"CtÑà†ü>RåååÚ—üB]ÜÖ„àB[ê9Ï?5¸ ƒ”¼àX·êºåX^S°ë ƯêqF¥Oµl-ö`ë.xîv-P]ô%MubˆîYé÷GmŸvs3éư‡[—~ G®Ç5GHXɉÚ:‹4§v*U’r?rLưébä«ó‚»IĂ]ŸêƯs€ºjóăÚtf>¶aGÆb©ûS×ø̉{Ù>£^à‚‡ñƹ*ÁX)=̀·á ùfĐ¡êỦFg2.wZw2•j/xÄú“^è§s"ơåà•|‡º£MànRïÇ¥ôÖ™H]æ)ØE*]hƠ¾ ©W~q‘³«/úŒz ÷£O¤.W“1’›»Ö!î.›X»©ÿGyxÂ₫W¤Înuó̀\O]r¾O_ é̉Jđ›IµÑÿ̉Ơ9ÔU×8*”Qç¸iZ±+u†·&0ư¬®ØùZúŒz C#‡—éêɘóXÑ<—ù̃+œ«|H÷ÊăÚÏá÷I­̃¹f4ë5ƯnrÚâ0»™´“IÉƠ#ÏI«(;S“Cj÷Úµ»Ö‘êÊ¥¦ -‡Ơ3t…ù²}¶Ô \đè4y¼?ỪCn7²a¬•zO»,*ọ́µ{yÑEg2\ë|¸Çư3̉.Ơ­ŸSfEª “m»nT;r_V×êHÅƠ}58Æúz†®0_ôơ<₫–̃lEÚ–øßSæg‘²Âă@!qI÷|ÎtŸ6G̉ˆj5…gÔƠù"-àƒệ ˜dÛP÷ŒÉÙ¬á#èºÂ|ÑgÔ \Ö·)»‰­ RÇ»øùNXQßL]Ơ† ê1zÚ™l̀ºç+æG¸“²t~Xž—¤®.Đ›RÙÜ€á#VÏ]a¾è3ê.xh§,ü^så1é+Æw›î~N½Y‹g(ê–jT:/g"Í^Å9ăĐ9R)KBçùÏbó ¹ÿÂGĐ3t…ù¢Ï¨¸lF¶ç5çŶæG§_SW\ÀS̃OgHéj ªư:5˶Ÿ¹™Íæ$̣ ¹ÿÂGĐ3t…ù¢Ï¨¸àqÏu†á̃ë¤æe Ă½ZHshñ̀æ0)ÓBŸd»›Ø|FN"¯đ/|=CW˜/úŒz đ ‡ "¨7&1 ¢r©·ûưÇ Ègä$̣ ¹ÿÂGĐ3t…ù¢Ïl½\–ÇÑøÉĐz!)‹ĂơOØóç̣9‰¼bsĂâ_øz†®0_ôơ—å!\xĂíÄöÄy„sùŒœD^!7à_øz†®0_ôơ×Âă?\¡(ÍüáøöùĂqúçơÎ{ó‰ ‘›¿»¼³Ị̈|!MN—0–…,=3CôïR$K¹Ü²´‹äŒ™©X b—2F.e3,Kë QncŸ˜)Ë`乨̀ˆ¥I™b0HH¥¸f/c’™L€‹&Ñ̀@ Ă!#°w’Ể·ˆ™4€¾¹1~(HYvº,ơÿXđ_o^)™æl] psych/data/Holzinger.rda0000644000176200001440000000157013154621324014746 0ustar liggesusers‹Ơ•‹KTAÆoº‰‰”TDIˆ˜ ®o"¦ö²w")Zº™†˜Y!!&bQ¦•VfEˆ”H”¶¹fÚúÜl}¶ˆˆ…†ØKº3;ß,ùtáî;{v~s¾óÙC±ZçXgEQ́û¥ê§½:ÔØ©Kâ¤>vJÍIÑHÊP¿uU' 4£đ‹F3jÖJĐđe_;—]/È\y÷ƯëKdö4 ˧₫ăü¢ç”ûµ89“:K ÷lI$ưTGưÁ/Ô½·û[ơüơ°×©<2Vœ·¦ß£âduåf2.â€;¾yÍ톬6éX©¢i€…n‘ùđ6CMg^¼đËLưüਖ‡’oâø#4–Î@§i´÷Ïl]d™ùÏ|É~ư¢ƒ×̀p?Åù̀½)¢^¶ºg}tKP3xD-^C,’Z4«¯©h̉3lƠ upÜ:æÛt!{]ûDêƒư@7七‚7ªNÆù|§†­₫M¦†¬Ög¡±ÔÎVuô£†.§₫ªé²Ú®ÔÏ—]N=LÖJuqđ6ɇnÈp¡Ké} S–Ú™*GIÏVƠƯ¤.Ön2XÄOb›qKØG†œ±OƯÏQ«Ÿ÷dvï‚ôêƯ8à^Ơq£Đ{5)ïɳTĂv¼‡úXø\ơÇp¡¥~¸\qÔ•Í º]Ö>@} ̣\£à´ÍO¤„ß Vá»f±̃+á–}Iá̉;°…ïH_Ăođ¬Đ ù€n{zKƒ<ê<µ‰:xY7ĐcQ¯J¡úyÂođêS³(pÀí˜eÆÓS®u_Wijœu£G}cëÎÔÙ§Đ¾†ßàÔº!pÀµÚÑ™LÂïîÜ0Ô)úçúư_ĂođêƯD>’#Ï NYضËjé³µ̣ÜÁy€>EÿÀ×È>ơn2pÀµ,çF# Û}ŒFọÜơEŸ¢àkøMøơ‘º!pÀă6_%ÏQœoÈçúư_ ¿I >Đ ù€#¸‹₫@́S̉ÔÇ2₫£(®ÖûŸG5DŸ–”©Wˆ87gữ.ÚO´b¤‰öß gƒ‹Ö†Ø†¡r诵 lĂ@ÛbAñrÚÏß6 ‘ÚÀ9ü_́pƯ $/ăpsych/data/bock.rda0000644000176200001440000000121113154621324013713 0ustar liggesusersBZh91AY&SY%%Rß=»ÿùÿÿÿÿÜ™ÿÊ„€øĐ?/œÈÀ@ €@@ Àù́9ĂHTöƒ@LQFÔz!åi¦M €Ê $̉d TªyM2h¦†zƒ*@4ÇÀ†óCg&D qDâ0EPă¢füăƠŒ8PDEƯI’̉Ûàtdî6‘XA,4úđb¬@ƒ$ s)ßàđIÈênYœ" ÎzVÛĐ4†Â8hûpÅ|ƠzË <{Ö®́?nÆÀr lü²Ù³~(ØLêµG&̀×R-êí#ZñËMƯ¾YôeÜ`¦`ÀD'iuăVrAÈɇœHÓ”y'ƒ5Ê₫åAAY¨)àÂp†óàb¢Ñ‰Zi$tf Œ@€%2ăÎ#ŒÓ(–ŒWˆˆ „ E5Å„]A^$‡ äˆí%,bL°ƒ«+±>ùAôÊeT́ʃ‰Ä ç@”(ú#ƒµ‘>p¢sàê@£ 0ç@âUCÑ Đ ±†!Ù‘ƯÀ!L@k@‹î•Gm(.æßBå„Ä«ï\øÛ@ iJˆ‰A~ §îTúBó¤¥ưJ(›™Wă"iÈ94ªŸLØCfPP4¥MI]hMiYøÄ ˆéJ!ˆ@?3Đ”r™!håÏë[û´>ăŸŒ;XslVA†h(ˆ¸YnUE6aM"&™bC/aWÈ ¥£†o Ñ Nè] !tÁWîHŒ €Û0¬rçï9¥ÄAÿ‹¹"œ(H’©o€psych/data/epi.bfi.rda0000644000176200001440000000533013154621324014317 0ustar liggesusersBZh91AY&SY{+ûÿùÿÿÿÿÿÿßÿÿÿÿÿÿÿÿÿÿÿÿÿ₫ÖP€à <m=ªŸ•Õ¦M1'£CL =M#244ÓTưL4ÈLFQê6S@ĐhĐôP §¨ÔL4 ‰„iˆ“4¦‚a=M4É“@zĐƒ ¡“Ábhda 4dhi„14dba0™  €4Đ4ÈA?A2" ¨z„h2i„Ó@ 14¡‘ˆA¡¦CM¢  €Ñ„ÓM42 Œ¡“ ‰£04dĐ„À&†˜2@Đ14””Å4ÙF £Q‘‘µ2b`AˆÂ2`zLLF˜ ¦&™ ˜0A¦a „r2fº ñ̃Û’3B2ÑM35 ,+˜$A„Yr„‘ Ơ HEQá¤ƯÂY^U?íX7› H×sÉX@HäB&D À Bjˆ(cjŸ6¡@̀†Â`&†J€b{…$ s³“"QF43V— Ûj=À°Á“ÚôŒT/0·D"ÆÆ)–±Ôa‘Ù@U74£"2!ˆ™8²; åd$A;Tä÷p{äoÅÜ9qŒæ8Ăp_Lbx !‰\&»œ\ AL*̀ªn11B„”—dØÁYG#%d˜yéJDhèă=1"v%*¨8(ˆ   ™c…ÊfL¤eĂ€Âˆ„0„&Ơ KaƠú0(t‚IÙĐÅnØÉ¦"¤w¥[MV礃S˜.¶A¸ ‹ ª̣‰L³âC Jæg|¨ ³¹KbÖß’¡JÚÀ7ÁT³̀ŒFe»•+\Âf*z„Ù¬îZè3 Ñ! © J\ű è侕6'Tå Ó»ëµøñdˆ°h»d́&.ÈvCxx 6(IèèJ¹µ€‡ce#¥`ˆ„5Z ÑR¼vèSvv́́ JZkwC«•&ȆÀâ!0lƠÖü‘ JẠÚ¼R[à2+ªƠl8jä¤ H·ÉêGŒĐĐ³¥ª¡¹\سèÉ#My yfMÜ9‡ơÓ‹MU&5̃è';F›lb „{jI²Ñ×|ă\®÷yµf$£½Í57Äéw Ö’é#{JƠ¬Sb¦& j1¡!*…®K[Ç̉Ø.µ3¾u@̀’p̀(™Æº%Påé‘̃»üN,ï¤u|₫ÿƯëø{ g}Gr/.Ư%K¨u ÖF‡¢DaÈ]X¯9ÊEƠ©ÎN…Ñïæ¿>3…µæ̀nĂ·?Hq®_4Bĉ&œ4̉*‡À%/™ö=,àö½9i0ÍxHN¬z¯Ktr׈äèÚë„­ŸL¦´SR€—N1j̃Œ³P¹1ÁJ&$-J€£E FGXª5-ªVEb:™0Úb«q… .2̣Êfđê3qô€¬,/(«4ÆÁti¯)‰¬KâÓA>̣”nSó ¶0Q55ƒ$ƒ”-B³æ0s­¯*IÑËvA'ÄÏ0£ ½D4êÑÓmcd†LrAaé2ÙPi†&Ö-dQœè­DöI/ư ƒ’™).a¯¤c L´:ÔF£8&¦¡+cƯ>rk‰Ø|‰P~GÏyÙn©>‰ºY€r‰(=1Àr@‰ëŒH|RâˆYPQ"ÊmdéÔsƠÇ^aëÎt 5dägl“ÅIA-œ!iJ tâ$®: ³HÁ / ü3•Ëó‡ÆZùºèA <Öƒ–‚Ä¥¯–'äJ¦̀q́½MÄIÇ1Û]ƒÓVåiĐ²œ±bW¦2-Zàmm¢̀‹mï™S\H„µ+uµsÁ~Y´đPî|¢‹’%‡tBùÜvåDe`({q¡rrµđ"Đ¾ûádđ¥É\^Heië9WÚem¡Ú.˜’0Uƒ«_ÈÏ_°®",øw(^̉vƯP¿Đoç‚ø©O—Ḉߺ@Y%2Đ®4‚>‡ºÚ©Ê*P6™ĂđX—½EiÖq¤Ơëû.Fà7œM™[Hç{·;r\ª9/EÆ¥=@öq6‹ôSƒÍ Buưyă`–=Îq¼[L\nŸ‡_­N¯J#º^)E_[Oxư¿ ä‰=’‰‘•ûÙN—˜#•qè ú?ëg¬è–X‡ ;+ouwïj"%'X6P]p"]{˜£3sđË2(d6’œ-ÀØmˆƒ"BîïCßÉdz}VealvFga´<‘wÅl“>·9}® Ơ¥̉QÊ ?ÜP­Æ_ø‹ưmud,å¿æƯµwÓ°}¤\oë;{(°Ú˜Á[ó{ô²t¶¶6T̀¦ p¶B: 'F€QJœ»4H‡Ô^¶%¯ »T@,Ù»%Y±!ØÚ̉‘]ª[ü¢­¼Kw·Ñøôg7Ö~)S.Ñ0F(pq›$2FŒA•@Êv,ûÇÍ–»Î×.Œê‰¤0OgçURKFpJ~‘{¨Ñª¢s8‹¶ĂÇ…CH8‰/…fB.̀N{đ³ë$¢Å4©1уDQ9ÏóS̉%BgÅÜå›r˜¸R^²+P=^nÜINsˆ_Z³„)6„Åô OÅ1Ö̃«]ĂíÿyT°®ů#O^ÏF³çÔœÎWÚđa(®„ 3ÿ.èĂd—fO"­Í%Ư±ÇaƯ±ÙĂ­’ ³#ûe?„@3»/§-$k̉~{Ư_ë‹Wơ)ÁÀ¿˜ÿ8˜kg`½5œZ«Â®¢-%¼ÄyÈLZ>WCŒtÿ°­ÖfmçăB«Ù-ö¦µĂxÆ–)¶MøÓ.÷m¸óA—xyE¶Ob&³“jaÛ2§8Făº•»,=OtŰfYÔ”EÍ™íÚ̃z£Rlz¸Ô)ïl̀&rèc›2Å`ÓUÚ“~ˆèÍc4ˆÄ(₫đÑM DS±úă µ]âïGå̉Ú½›U (=x À€F‚ªuàw ´Œ‚´R•ª H¨È È„€²,ÄÑ$UddD- -"̉-"¬€H"ˆ’‚H(B ˆ 4™(dR¨+ ’Œ‚¬€wâ%¿¯”¨VÄy´A‘@‘F₫-")ưüôQWµzb̀U·©ƒK Ư^c§d¬­Vh ˆ÷è. ««78ë^ ªR˜bïdBĐÜĐ[ø«mye/ejÂ.vêˆÔáQRóܸ¾³`®½Wµ ]a­Æ¥¾±ïWƯKÙáĐSƪî½+V¹K0aUÀˆ™âîH§ `¥`psych/data/neo.rda0000644000176200001440000000340413154621326013566 0ustar liggesusersBZh91AY&SY™è&mÿ₫÷₫€b?¯ăưÄ?ïÿø„1 !$å₫÷ÿü C`%a)¤.¦¼ôKëp½Ù¿đ‚đ ü¾°¬ª.aÄ;9Ys¶–øy!s1ZáX÷¦€t.m‰%ư—EƒÏĵÔaBS‹EO5¹„æHñ­]0.kêó÷ºÄ[éˆíĂM!F©å®÷këÆ,ºXÏ@&¿…¬¨†°Ä‘0J–2„RÆ©…yG:í°ñ(«¦ÓáUX? ;?MÁ9GîĐ'Ùè+Épú ”&éS’›¯Ở\G$¥u5 $©UgiRw'WR:pj —•p£mÇué%¸íuGu&¯Ö²I[=éùX%DU‚đÔà Ÿ̉í»…Mbª́;EDưÀ ₫ÿÉÅ2ÂÊ¬Ë ³+؆Ài5ư Dà“°›n4ĐĂÜ€M}ˆj©©˜¨¢.xÿN]„¸Ydd•Fˆ«­¬QU,UD̉â1…USE4Ñr?0„ ¦hHU1‹™DQ$EE ÅSQM2_¨€nqÅ]ơrX6ؘărG$Mañr' ‚§ƒÀ@‘AÄŦ“†° ûĐTQ%%P’„ƒ7œ§4fyƯË̀Vîf•sÁóÅỤz¤¡(Å}¹jï¨à¶€²¹°¡¨ÚE•ôNAJ́CmKÉÔc™'u¼ß¡…˜ä˜&ô& C¾r–¶]©4å%ÔB"fnJ±¥D·21Ră4gC\ 4Öc”̣̉jG• ­e7ø9[̃È ®¨âÈ ­“f™É£ØÄ~¡ 7×\»n ÄQ%9́¶®ăàA€¬§±´ĂE§Ú{AơlƯØîÜ›ưscyµµ-„ĐDÁA%î®ç¢ª’¤‰±5j©bŒ3&”‚ˆª*ˆd¢)ˆdJ XH&k†2DAFÄ™45%!1fµ4CU0Å5$Ä„ITK $)&ÙpÀ4P ©1p†ˆ"‚ ¢ÛGtx‘¨ƒ" ÑuT'ü ›¼! e˜6í™ Û‘ÚˆL*3M 4Ô&°®ê₫c SbªñOü]ÉáBBdC ˜psych/data/Harman.rda0000644000176200001440000000125113154621324014207 0ustar liggesusers‹ƠT;oA>b;Øæe)®C ¨­%Q„-¤€l#%…%ëâ[’•|·áîL ÔÔ©¡ uêĐP@!‚Ä#˜" vx†PĐ„2aw=ß’Ü@¬t7·³óÍ73;sµÉ™Kù™¼ă8CN*£̃)ơ™R¯NÚÉ)yªâ†¾\œè„±:?«TWØ/Ç,öc¹1¶ÿl™íî=]«₫d»ơzľ®Uµ†ơ˫ť~…ơ”Qć7{Ezààg¯›/-¬tÙ'’; Û!»-ưn\`[/ơÚ°|ÀÁÏg²ëjty•½½l{J¼›£úă¼|ÀÁÏGCÛ°ø×Ä÷†âA~ˆ|ÀÁϦN{ÿ9ëߺƠl]x ƒŸ„{A|¨'ê‚ü'ø€ƒŸ'¤Ç= ¨ ̣[OđG~-’̣„¯ÄÓE“<ÇL²Ê$p}©ï²+;겺l wV´E|TĂu†r‘vù›<đxđ(ë5iM§¥>¤ƯÉIÍu¢˜¶™ñ`Î¥¯r7üÇ܉ÚhÂ*²½$Œư`̀ªöÚ¾C&®××K\—m'joàáï›QçYoE<¶í„vÜЧ¥Û́nêâ}ëüÀĂß¶é₫"ÛNŒ=Úă‰øÁ¼ư­÷%+ÑÈËæOq8›o‚¿KñC¢~ÈñĂđđ÷₫–Yv¼’ă‰ú!Ä ~àáÏæAơ@½Q଼ÀĂßâGàÏ₫IŸô~àûĐá‘Ï ­O&f:G}}zZ†^Óçn ºt#uÄû;u¥7¿gx;Áø¸C!xók#}{§,°b„ÇfĐƒ›Ă-#{æÚ8 Ă‚*éÁøÛ?ay>¼a·ùñFL‚÷ø¨#Öx££€ÂñeF¯·ÉúÎưÁ9̣₫ÙVeDˆ‹ä[oÖ³ÿEµ9í×]e¾ô _È̉6¡ŸI ĂRúu¢3^Öf2êƯ™ôh½ơª³ê†GÄhx!v"BTíơHc­nJâµ'áèÏØD~=—l¥†«8 ßªùÀ™¤®°oáôă·₫:$VÜỪé ’†›$°¬ê+yùÑ(xê{̃{+₫Ñ[0Øc\+ Ơu° År‡‡̣&o‡o²Ñ7ÿqJä9§|’ }$½I×i³Æ-Îà&œ³P å €áµ@m›Êà0Xo÷µ%°ÂA 7¿vF̀´UÖsÄ%ü >´ ×̀ß́€•Ñ‹&±×ăKÓSâ‚[sY‚¢á}ù“%­yk¬±¢â\3K»Eàọ̣̈Ëx«íXw_  ¥)!~©ËpL¨–×g'rÈÖÿN9m¨i·\¦ Íơ¥yO\Á÷P¡gàîx»Æ›®“€ẬÄî¿‚8Ç/(Ó_æYU ¹Ă ¿;[/|®j¾2zˆµüÚkÈXˤäÜàơè'¤•]IÓ:KO…“ơHˇvØN};'f_‹‡ø³OºU·"ˆr¿íÚúµCÚâ1*bÖv¼—6\çX±*gѾ/¾3”ˆk³lñ’~1äx6¬¹WZÛBHÊtµ;·Æ»„jăâ¯ợ(ÿôs€GZkLW¡Â„.ß@'HÈEßư&ä?Ú ykNÜ¿¯ €¯ÍW,¨>YÍÖ0–©t`=s°¹©Pï“_¤Ÿ ¶EĂT׃²AeŸ.T¼×MĐmèî2Øöx­T!ë@ /l‡ªÉ@̣,€¹ă¾};¥f4 üY«eQs>CÜä| |Ç̉h(m åøp™-»{™₫~Y1;fbû¤]vr̃Æuj~H÷Í$HmÔj |%<Æ0w\ ÛàÆ)Rß_aohb…3ª0B)I9FáFir±Î·EG0ïÀ́í~Xç?‚)®Î+̣¿óÍ®º!KĐ®UkÄ„‘?nüº¨rËï‹•ID`ê˜øuüo½:ïĐ[yL^ă4˜h>¬cµaÓ ½{øH`_̣bS₫k‘:²´G‰ØÁOư7ßæ8• ‘¼v[/ệr–å ÷c¾<ôëаÉ|̀zíªxE}ƒd/mûª µ1Ëp†OùÆË†±ưưdÊæ¼È3³X]êê÷mÚ.÷>‰I:¹—'•¨†PU•ư×úJœSz4%!%ß“€‰¸â |i~2\ơˆç=æÑ¼.nµ¦É¸lsÜ@¢pn]ª'đ#Äè ]¦GgŒ¼<¶Á“3?§™"w:)ø&ÂBÅwøFs¥ÉĂç7‹ÔĐœÚ>1\ù’²Ët>\À­MöÀyIá(0âM„ôxGdí/)ƒỀ£T™¤³}l͵Èưø¥<§*pc{î8W?ä ¥®ØÎËtSa°ÊØ*¥ûó`ȭ事₫á+ ü41{çñ¼:Aưe¨đ×,`›\é2?SăĂ¼ơM3È¿hđ2 ±Á·¬ˆ[(Ȥ…™QÄ—ỤîCEzsĂª°sùÏAÆö‹ô*º‰̣•Iû C¬_èÅƠ’›dâÄíTfMÚ*HñO#¨LB¢î¤ơç·HK$'4/È’V· 7~Œ)°6ƒR-qâ_"âµ±Á_Ÿ6lo{ø»2\‘·Zæ9»(¬ô»å•B÷†tà»H˜óåBËÂiß! ±_AÁÛÀ_65ÊSÿ >»ü,àbê±hµk ̃~]ûM‘SYŸṂ¤7!́ƒ6®÷œÁ©ƒ̃¨+̣ˆpöḰvƠgVƒ¥r4•.©$̉G1 PŒb°¬ÿª‰V6ÅŸ‰{ă7xGe—j¤Ơy\db9¾<ù|r’‚‚zÏøç™]epRÄôËẒ@@ôßw¦UÚ×S‘nnÂ;÷Zå*¬jÓPËÚb»±Qåq²ô6¹(7̉1&̣¬©¸¬0>ĐçÁÜ»d/mÅ÷TăHV”Ä,…#æ©_(aîă!¹tä̉•5­± ZÆ^¤ỗJØ-5caÚúÎ@³Đ‚ÀteZziáo’qz̉2¯Ë!s¦Wªƒ%©`Ú/ÿD§i²=,”}¬dµl7̉™Ÿ¡¢§HÅñYhnß ËIùtx‡ÀE>@ÚçܗƯ•C>Àkºör:” :̉ }°\á3n¢p÷záæ™CÅ£X 9År|4u˜³b$,¡Z?ó*xíĂéJ&÷ªËEÔ®úW;$§—ÊMNv,œªêù€Í‚¨A T3/‘’̣Ó¶Aăçÿæ4Ö®7ëÏM#zë ơB0̣ ôrVZ‚ÊV)>„j YcøÇ˜d7d˜…Q©o{w±c7ư$:ZöThUôê¢Û|¸:AËÓF5œ-»–H€·̀óĂbô· L£†|{Ç7₫}†M…<<7÷û’“å­¥Ă€³HÁ¬·i wªF¹øN[nF d7c€s:Yµ”̣ ëE% €WüÈ©l²ÆƠ7ö²/QzœDPaL ”zS{Ă´̃ƠÄfyûĐjØûo.½§ùéÅă5 5óûŒ#_=«Jï1T)eăơgVWêâ)ç/¥C`Đ̣ăf¢•ŸøØuûvjl˜₫ÚBm$3.*XÉAĐÅ÷̃¯óÂKÑ_¨ƒoEÄ$†B¼u°K=¤y-çđÀ3‡ ă&i–BÍéBÜYF<Ó•æÅ›€ßí¨¦œăûỤ̂ÜSÊlé́-¿Oæ `́„­£³ÀÔ2đ%¦s­Ù„C!La°‚¤$Ïvư†U]ž̉™1<&S̉ÙÄđƒơeêhT¨™÷"ÜSË*}UsƯ×tˆ¯¹¡f´£™Èi]v!p¤đ́°6ˆ/™‹ ÛÎâÆv¢o)¢7ëb³̃uµ“º{ë͆ÎĐë^íèâ«ă‘÷áP̃1çô₫Â3ØgnÚÓ³(Í#”üäâĐ½6€ljBXµí;›rn*Øï ¸–t˜4?ĂøE—àUÿ»2AJÉǹ€0?ÑøEîmª–€åÓhvÉQcÆŸE][#½'æx½ßhŸöZ„zfÈô+©—}UÑîFKûṼ=:Tê₫Övó=r€²­Ô¿v:AE©:hs=Ÿ¼̃üIûể—Lơ¶ŸAú;­TÑ~\$Y•‚ù²äD ĐW Á ¾rc¬ g$;^̉E>ü™Âéößm‹­˜K%9ñO±œ[;ăoœÑµĂÄ¢̉đ¾D4ü™_¹z1U­[##ÖQ7̀ʲÙ&¦\ë¨ É 2* {³>ŒEƒ”#0[+Æë:Ƹ‡­p”öƠ}0O{ºö‰ÖJă¦zÔ´Eă_¤›]IŸ(tƠ·iï†  N₫r‰-œ³€å•Dw&»ó…R%Óƒ=ƒÖöè=9W*Fió(0 5£û¾đß6ª&T¼/%:<¬K l¼‡I …Ä¥̉Ṉüç#´óDh~üB¼Mˆ̃UÏp¤qåtó‰zî@ vă¿ÖÊÁ¤­DC˜}À©Û¤ nÆúb—†“ïÖÛ̃ Jµ’zFâéÜr¡v›‘¯¾xk;EW宾œ?˾óB¦½Ïaœ.í„̣’¼ÿ@¦OdÉظ$Ù-̉È#äß¹/µ"2#˜do,QM½K¬*›¬iVÉ(¯ÿ­¢^zÖå€6ï[%•€øq‹w`(ÙuùŒù±8p¢Đ=A)z[›Đ[’× G6mJË3ú¤úR.µw'Zjvræ‹äkëå#êQ¬ ÂºJØ)í-́¥O­i>ơlïéJRÑ瓯 0Gß?Ư₫E9'V“BÓĂ\êÁ®úÚ°%Rơ‘ßÂ÷ÖÖ¦ÜóÉị́±WƯMll7¸¼;âøê:é49ª¶t©€¨C€{LTµ;…äѽ¤–¦ª5äâ¢<Ă ưu­ư‡*ÿext4éèUœ4¦vå€đ‹&u€±09hoëƯözƠ½éG§®—úrÎÜelíaæAƒ²ÚäT#ưåÑxĐ̃û¬&|…= Đû¼̣|Áü÷ v’;g„1VEÂv—N;îbTkƒ‰Ñ÷qŒ ¤MfnxƯרÉ0”YÙÁn–ị́e¾ÿQ·Á¹³Èo©EŒô~¥Æ†º[—ÙçDV´! ÇôJy‰½^ $ÀyG[›ZƠQÉiYµáP„ÿÓQ·$Ơ Zp*PƒÓ:–Ç¿¾¯ “®eùÙÊmç“Xv;‡>¡ ¸kùđ(µPÍ ¿₫:»E“Ñ‘@É›Ów;á–´]'̃&Ø1%ZMâ5J,>ÉüƠọ́£Ö§‚G¥»NÓÛ* ¡f$”À ¿§Wüz(̃ÎÙ!ó'₫®Ưñå\ÆM³Âyè"LùIn}+fú ĂƯ \5<@0Á2CÇI‚üÇA Ï HB½ü‹ËXr(´·[Û)́sœö92MJ$At1JÍĂïĂ#oëHÆß°Ÿï>¡~hÁÿ}z̃V½R‰¯Ûå M‰tÆÄj:"Ih¸3Z¿«„ÆƠ2éƯÑwø”©xnb2Ù'ÉVG™ Ă?‹;a÷zÔàºùu'噹êđ ‡Ç̀K| äèá&£œmvÔá#˜­¾ÛèEàw¶?C)XqÚ(‚³Í“ ¾’æ8pYôcäyöma€(¶ư¤§gG™ó,ÓƠ0Íô¡½®Í:LT •”æ8©}»•G)k«Únêx£oóL¡¥tÇP ɳ˧ɘÀbuŸr5xÇvt.é"/¼?37‚¨]Igư‚nyÜ® JæmÉVªÖ ;êÓ3Áôi>TC|ª=ĂÿĂH>oúí̀¹éƯZr;¹AGbÄ3˜,è»u_`SDĂ‘JµJYSŒ=,sZj´Í½à†Ø 2¦\Iä̀÷ưä &SƯ=P̀ô†Ẹ̈‰ñ£T˜lwL§¡ú¸"wơl½XöÍ|gXdÇGâè|– Ưk{₫ư÷Ê9y¦™́nàaÅ jOÓ¶°öve_ŒĐ¸-ˆ«Ơ,Øḷâ₫ṽeK’¯…0º—¬+¹$è—¥U¸¹pçGG6°A•&0ÓV¼ùÊù  IIĦcà‚̀­zôsÏzƯ¦¤8¤±Ø¼rÖ Œ¦Èƒ-T̃*'º¹ÈÆ,­jdŸ+2—GjiªÊp>2MÔUư-ùLúƠ×H“ƒ{ó%–¥Í"HƯ®·đĐ'ĐđĂ•jø•PEƠ/~?|©Ń}ŒÊkå¬XÈû¥ùÏŒ‡‘üc ă½£k\Ú̉÷ƒµ âlÊÁơs̉ḯh*_Ƽ“›:Ñíăô×´€Ú¼fOñÚg~„t(™ÆÉ©É}C6ës 9 ŸL‘Û)÷ù5Áó—P» ̣|¶)£tƯª¬t$éÇj2€ÁÜZk̃₫ÿ¯7 9=h¯̣|ûơP\<DÚ14UûĂO,ËÖ‡àÈKª₫ưüÆâ®öR½ZÓ«7{Ô’+ôwÅđœŒJöÄÇ뤌P]sdµj ZPÖä?,ü±Úoß3ˆÍ&×;#Î ²a¢oRÁÊzÀQÇæß=9Eï^&×÷PÇ&¾Đ5̀ÆV× ßCÁ· n›¶áN+e ê;fˆ×e΋•P(]n¬Ư¹¬ªˆ¬ÙwƯĂă/;ÿ˜fA‚P^æä¸ ¬úĂ„aÁ½—x\rÁ Ôè¾–FĐ%3(ă9q=«UiEÿư Ä Ü[wƠb”(£Rj#¹&‘ëÄK@ jøô@Yô¶1¯½á·na9ˆ+Á³¼uU¾ ˜\¤Éºgª¼“²̃0¦<^²z{Är+$ÂĐ“´y}'h‰ªæ3ÜqƒĂÙăƠa&L¤w@ơzøÅy35¬°‘¼DI_îëÚö,̃†ßÓ¸AœèỎ¶&Î{H@JÁ3Kµç­5r[₫0à”rn¬ù9M/G+~̀>‚B(^>6”̣ö¼²:L‡ÛđB<&¥_1½¢+ݬÍO™R¥q ›Îá„‹Ÿ=Ü>̃{é6is¿%[x’L̉¬{Ñ\ä4B¬1 ưÆJj[ërèùO‹OÄl¡®@‚y¥»Ư´,§b»Ù‹éa¶ü€ô÷°Ư×G€‹G©êˆƒ"cî>kc†̉éI¥º¯†å wlÇú¯¹ă¶¿¥):ë¡Ø¹3Î?´¶™îúË­ƠÖ”Ê …»Ç5ØCjÂMûH0† ‡áÓ(ôë~mÔ´«Ä6é4öï3 6@_µq=¢± ¹T¶úÈ9ïClà'@T·œêw đ…¯̃çî²h"û‰qc$Æ¥›Ú¤ƒÛ6\nÓđŒÏÑHToJ ×¥yTôPç^Ăk˜À–ïàèÔă#¥É•Ú¶ÄđpS×’¶ª*ßm4!a2ö÷ưw “Sbc4}®₫ĐôDu~»qèÆ¼¶Æ²•}‡g̣…s**DÁ "ê0)†M\>+ÄÀuOgÚë6Xàsæóœ©niSV÷8ởc>É®÷_ĂjÖVrVk´à—_¡ÅÊ«äF}XJÑ‘OOß2Ÿ¹ă §j®ÊdrTºC²®+ÆfMù„Đ"1ÇÄ¥+Q‚¬C$lxm6! «Ǹ{DÙ¦U^=4í©§HA3_> [n§»s? ;…7àï[ÚÂF Æ5ç¶è A~}âm/Aç€Ú¡¶½jWh0ú̉åL.”âÿ¾ ´'ÖĐ¾ŸŒK"Đnóî ̣)Qt„OÿưÅ—ôNl›–^Ñ VbIºü9z8 ơC‡±ñwÀµUZ¨kxÿPCù³\böçDા3€+±bÄ*U¶=®d+̉ Ú:„Ü@*2RgjÿŒ¯6dk}€‡Í'˜½ Ơ#ŸÑàßó«x‰`°بUúƯü¤¥È 3ÏM·É@;§̃ÀX¨rS¨HĂ8¢ÿ3Z˜ ‚²Î xµ²¦‚Y9—̀ »#»ùälSE¬uª“{YçƯÉǦÛå3IB_çà#m<J¾1ŒâÎAéăWR ơRẻ`ô(®8t¨p[*œ±5›àw_ѧX~₫ưLđJl³̉ºûÜêên-J4»©§ˆ‹#G¢¬>e†“>öæ₫­i+lçY’_}Gs$:ØAâÉăÙË#đr²Ëü%ªü ù –TpƯ»¡Ề Rß,HÑc`TTu‰–êMF}Rª=[ԭذ/&‹çï8ÇL|)íLa8«̃¸¯ ÷±Î³ª4då_7]Ơ먤hG0Ë"PTœMç ! Å‹ú$‘‚÷>F̉\¬ÄÆ­åË₫‰UvJÚÎØY₫Pyü0Cơ§Ù‰\s«K9¨‹” åH<ëĐ•—Ÿ9 Ă&z}— ñ¿£A÷ü/»0•±ƒ×0Ô×BªêÓOn 4–̉_1Zê-¨̃/4RfE]I=mFqè`X@~}¬±±¶·¢ÿȇ·oF7éK̉æ½Â+•M^eçö̃r›¢Zge í9tî²€}\ü»ñTÜ!%+Pê2×l™ç|ø©Û;‡ïUÛG•-Ëà˜Ü@‡÷©–‚|Ơo¸úxĂ/àcĂÆ…æ‹+ߨælQøWtä}N«̉?½Å ưđG¼©Ñ˜W:ƒƠ\ x£槺"́g¶_n.“NÈß5 ÁJ ôŸ*Áy£ØV ØÿiFáÑŒíDƒ¸È‚ ñ̃V9ªó £W"¯Û¾)º/S•!UªX¿+Nøf–̃i½5®ºUà H¾éªw4C`5>>ï̃XQèmô½ïQÛWÀÚ̃€+ê""—Ñ₫€§£btK{}t‡é©Ë¦ÇÚ¤„Ño}*ÆuEŒ̀‹x…+ªyXgÉñ,íÈSl» QªUæ¬Đ ¸ïRAHÍdËp/&nz"?ư MÀ7ÆNyâTvä„É}N:k:NÆtè!ƒ>×_³‹ª5©>Ư?'? f– dxt|é¯í÷¥çTïÙxñ(Ĺß9)§êÙö_H ßs­É¤DƯœÛ¯™ÁU9×t(ư\<‚zûŸ rçßÍMl¨ë6‡YX-Æ6ÏÂt¯Ïη}óÁ¸/–ßăÙP%d$ gËöỡh?/ \’QÁ_L®\¼=w ¥ºû¿VˆÎÓMY.É[¤ö^y!ü¶¥}sÁÆ–áÂñÿ÷k âσ+6aº²Wr=.d‹¸oF°ÛN™tnă,,UưIÁÂ#ÇŒ‚Ê`gªï:dô”UKw+)ÎŒÓ~78&{:Z=‰«¬¶‘´‚Ü}†xÛwƒ©#![N¶2,DCzØuñáúưFÎ\'̉°½HäÅ-–8Uvg©ă wZÓ=T LƯ*½€â×u©BÊyĂÙï§«ibJmÛ=ḿ%5eB.™ú²¥¢×¤›i0¥̃ÀŒÄdT÷Ó»b€óÇSđ#G¤os„Ç’1„!‡üƠăjiyµ©)n¦_L¡ƒÑwlz̃Œà̉9À fæjªq =ÆẩM7ÉWj ù{ÁÄü˜P=<ËöÍJôº­;ñ]8r"J[£¶́âÈÂ~ƯÁƒ¾ÏƯC®£\»¥^ºÑÖI§÷¹WJNæaI½Ñ2Æ3Å!‡d¿^fæ’8ÉÁc„r]ïÜÚô“ù6CÇ+›ñYä‡Û₫À'ĐÉy:ÏtiEö&æ4vúŒù§¾dˆú¶©~²÷X’Ù oñß?êÛ.ZÆ®JƠ v.^Dàc¾s‚œj]̀ô3²]́gêé‚k“Z²…‘‚Çü±HÛ¡÷ß}…ÙÇÆ—e¶j .IƠ2`6NM·b˜Â+k3$ɳÿ àFá̉–ä"îÜ’P‘8Œ²‰ñˆ»›Î€Ï­'7/ârw§¾UºQëeïơm.MÊø};ä€L¼7ưé–6¿ñ  r!ă® 1A¦“rÁù5ÔgÜ´»ûmMF¯!Đxµ0έ"ÿ<{¤=Öy µ!³Èµmä*f¸A{B›ÄQª ¨ăưFL#rŸY ’~ư.‡Ê ü,ª˜ÂW{ä¯ ¬¯¹‹8 ©³dIÀ Ñ‹A˜™ß)cÇÑÍ4¾Ư\XƯS´' ;’~ƒâ[ÖMÏ*ÚO!‰n‡ââIâ)E;̣€Sµ́FÀƯaÏ'Du;º‘•ß?ẸæNp@BÀc<ă›{$Ù”—]F] Vè^xÙ1î9Tw!}uYvÙè‹!0î,·7¼¡oWŸå—¬ƠtĐ úy=5‹“Ôk;aÖƠb'œ×‹±ăÑ/Tc•<ÍPqD´i·¥ưêPA¼fsjtNưH ÍÖ·=í®ß½b©7+kØØ ̀IubOyË*nŒ9§Olh Ú^ËmZ,Iû?`Ö`FêwƠĂK;)ÎqI­DÂ4Oe”pçb6Ú-é¼êíăÙ^çP&–ØoRÓ…đw`lĂi₫0YáP̀> | üQ›^X¡ưÇĐ™nŸ!¼@i’ ÔN.VL°ưÎËà~.F¢„̀h|u9'!:g×Û)ÜSñ*^´Áÿ”Đd¢ÿ̃d]¶ä$û¿Ü-.'̀£X É>—5("V Aÿ‘&É:Pg¡ăḳeí$ÇƯ§`!€§, ơïâµâÖ}›æBŒ&/|Ù!A÷ơá¹u‹U}ryÓü*ơ:•¨…ÙS¿Ăè¾T_Ḷ[p£L¢;¨Çí”Î\{àac‹*—d¯W»51øÆ ²6LƯ™¸t¿„Ư7„À†ëáê¹ơé6sϤù₫û×–ÜL|—iK̀4×ÙtöăMª7ƠÊ4ÊŒ©Àéq³­j¶±Tđ₫;úP9–é9 R₫/̃|ÊvÜJßG–GÔƒư a áÖÂÙ…Ö@ ²:Fz®X4ƠF·iN‰ê¾Z¸=“›}~6yçg"oë”}µ5æFà̀yf}Ú‰ îå#z„°:A üÂƯËÊ€ÉtÄGÑp₫¤ à„ti©Å}sAPZ2Đ7t£kĂS>è͌ىCjM!Fư=}7̃­ªT…HÚª˜*ÚÎbz½8Cv{ DÑ‹ÂỌ̈HÆP`,êös1¤*¥Ûº19(åÛ6\,†-—×ÀZZÉ9gîF¡^5±¥ˆÚ»#½o[î ›O3Nß÷¬IÖÙ*yuµR£Ñ[#] ¾i¦Ü…n怅ʼnñöÑ´đ&ÎÚU*T?å[È$¶FĂáj/Ôíœ\£÷onSÖUŒÅˆbp̉ắ5AÙ=%/đn—T”C¯đX?n¼o$Ü}iO@‹ĂËd?d¯êa±®ßŸ´äMhBаà¹Ñ«ªæI4Kh́ñL›j®†DypÎm×±²ÖÀÔ€Z¥ 5𦬠æu₫/ÙY¶A×cAƒ|O'¦-̃±Äc€_(Æ=Óôwú@f_“pÓÁ\n¹¶»^d–jÛàè₫¤^˜…¸àH¬B>Ó´[«ôQ%¶¯Œ=„hT Cṇ™$øÜ[åÚ‹û°æ$ÔƒdˆkQÏT¬{đË₫b¬SÍ3ùwÔÀĐøÅ–Û?¹¸ ©?Éa;x¾@…ëÑåæû&£:ơz^ủ˜¯1Z>.©ûL\Ï]"5Y©º ₫L₫nå}N‚̃© Ăå_¾Ö¥H)Ÿ¶#w·E9ÑpC»Ô{Ơ{~tƠ!̀ù8ƯŒ¸™EÉ£åẹ́Ûy*$˜™a·y£Ø̀É%§đ€bï—a5œ7ăŸè%ç,I,̉"-QlUM´@=Qbó jeiñơÄŸ _ñƒÔöË×.3  ;– m¾[átt™IYÏëi CRbëE™;"‹yf.ÅOâiä°}&÷¼u‰q6h+Bqv½›` Ơ s2<*ˆ’ƒD8©I@)"Å‚ç:¡,ZÎ-qEóʇó̃Éc¾yéIÖ vM{È:ˆÑ,@¦µÍ'Z~’pQ£\Ü(™íHub‘S´É†*™+Ơºû}™ñéQGËƯ&ăjăÅY»gб©¨É‰ôÖĐ‹¼ß2§Rkx̣Ư?‰Á¹©?ß³ḾXx Ơ¡ŒL°¦Áưñ~Oc0c!ÍëS\ó¦®pp}^‡çY‰D?¯ƒí°œ¯<æCù”ExSÔ.h¹â˜Çb¨/ωY=bîR°â÷‹âöD.}‹₫w€ÉˆTzÖA¾’£‹ÁqY†_,–h×2”Ă,,Ùˆ₫¸€¦âó¸LuábhÔüíq˜Úđ°”Áb£/ tq=`óuUÑÆI{ñ¤€ĂxÜ[Cùn繄d„_è ă€MîùçQ¥h¯M¯æœYîRÚœ1vŸ}>Nfnp³ÚÈÆÜ»æíK­[ﶃ º È G3>Ơy‰ÿ9"~û¯TŸÉÅ€ƠwŸ…wuhCG¥[ܺY8O‡¡1‹ Ÿrÿu|-̀́^c’c…iÜ:beüf–•HSăk‚¹<‹ côá%­ÄÏc‘ö›Ö]&†q!H³îRMÑUÀ¬<~@_B…s.!´ö̃íƯÀ“¬C€F{¤=•RÏu]p\fL^Gé²}0µÇ'À€ƒØ¢ÚÄă™m°¾AǺɘưĐP` :™̉̃™¤{Æß°'3V{ñ¿ö·üƯîÏn·̃¹t%uf]“ñs½e„¦Ô$ñ†‹Ă[Đ‘Lg—̀­›mƯ«ÏçÛRºeNÖkäú6ÖÏ[UgT,¹jöx“…L烽zo¢moụ̂;̉{·P¨‰ „_Ñ#‹C7~öT±ß œ9²̀NpÅ~₫ǃ ă•~…ªªöÏf”¼Ç‹17 ¦S¦[‘«'ÑCÂ$ ,2ˆÛ ¹­¹L4E9aΉ|³S¥dbÏ'6U34è/¬w<¬‘Á—ÄtjΠɾCGx5ƒ6Ȇad+˜ÿgQ °cqµU8ŒÚ÷¦¨¥ÍX"ÈüăQùMÁ‘i‹PËB#…ZS#™åƒÙ€…Úú€¦³Ázw³i‘‡ tM&C0D^Fü?`Ưÿs]©á(ª»L#¾‰O­V_B™›:}±ø (6_ƠózÅS ^yN5‹Finv;0ú ¶°¯>z÷QEÀkm*ÔơĂ·$́}™6ÚXuÆj§gÏ“âö!‡V “ÿ³U‰¤ûĐ-̀̃§qƒü”±)Ah×%y±%ÆUKª©½¢ ˜ŒÏ ư¾kΤ¡D?i%[…b”I8¨×~p8ß·Y²UÏåéD¯ÿï.ÊOMvîUΟ˜ÆÊR€Ä+ÍÏ’ø ’φu ¤M1µ<›@MEOç ÚÔöX Á2L¸\øƒ½ƒièẁdṂz½ ª"Œ ™ú#¨æ̃¾iƯå;`!ụ̈ƒ¿\"aæg©C€Ûê’S”ÛqæÅd‡€6c^ˆ,‹Xß©Åö&ÓHOÍ̃EÅD Ơˆ„ ç뇪£3̣+¶^ư3%₫¢§<>í i[Nµÿị́rÄÈăˆºjʧ̉èØñ9œˆÉ,q°Èíoé¹ °ăö€ÿ́ÑxÎ|A¥”@Hô Y¡ ₫hăk Fª­UíoA5 â¬LY SX¬sXĐHØl÷Đo Mññ¹ ₫—´£9₫•îÙͪB«cô\ù‡́nÀƯ1rEœ=qƒđiâ,@4•mupXàR©§xF^ºÿo w ÜsŸÜË„ÈöµGs¼]p:F™vSäNŸŸ×{â£Èîv/ñv¸ă 0*L )Èxg¥WhƒÖiŸÀ𶤠l̉ íâ« åßó-³”̣̉(ó舥ˣ¯èë(D>¨D-Q„ø’›©Öm>謗OƯV>8zÏQ.r)W8|ưB }“ôǃ„‚;HWs3O©<„T!„[Y³đơ™¨“ö¯{‚1zBTúÚÇtî°i¼#˜"ă›1ºư“ŒĂHVĂùPÖ½:€†ˆ˜ |ɾ-d¡Œî|E/¯„]SäÔÂU8é|4æjå6̀C¹»J/ç8 [ÅHǺĐđ̀i}N7ùêáL©ª¢²o¯“x|iÂU?lºË¨GÓ|q‰‹;‡;d‘ºÊ±¡å1\!ñq£RÛǹcÛÚC=Ä×óJ±üÉ*ƒ‹§Ö¿ƒ–“û̃ºwṇ̃EP)¦5* HÈH›B™thÀêY»+ZâGˆÀ®KÀ¹ï™Q­4¿%ơÉĐDüƒ:)€x<¶0ß)[x\!'œL³\¥Îù₫̃Å?ñqC! 5%eƠÓèíBÜgkTI6÷đ.ưF01U`±½#¹|ŃèÄH[ÓIº*’½ÄV™…«Ư§è  ̀'¨Ơ{ä…9Sô$™+ơs®$ÈsꮯCî Á<2fpüđ‚Æ"ù-g§¬0ưFÁ®rP‡ƒ¨¿èµ ·±ô—ê<‘ urZ )mcñû44jÜQèw¯‹ÜDZ´¼:Ơ:q6ơ9Úï½Wß`ù.® :í“6₫CD+Ó˜ơ’Nyç97˜ »̀(v¡´»º ¥1ŸđƠ9ÿû”g± 1ä<Œ;íeÅ6 ¢à4Ÿ»ÑÔñö„Ï8&,8e™Yzôß%S"F@îM÷5¤azØÓ=xEzƠ. .k(Á! ÏT]¬ypË5Á>Óơ¹̀^S¸­%Ôn`̣«0-MÀ/{ù¡ç]è¼}^4Ù·½„8“₫@9L;*ó´ho•Ä(á9₫ör‘P[M¶Âÿ@‘颷óô¦˜yp½% Èæb¢}ñ4|K‰ƒ·.MçhXé$½ n· dÄX»Î³ÀŸå ơo­5|×%cÇû‚ô“¿¶f…~­¬ëÙdÑ%÷z“óEƠö±÷”M®jê|ê!ú̃€Oë“ày‚S?x‹ü¯îKP¹ˆ±Pxj‰ô¢+úçíÉøÍa«]¼Ê—†|:ÂäeG·+ô\奈åƯx™Ñ—ߣ|ïÚ„3£A§{‰V§)½ÎËnÚ× *ª0Ỵ åeáµz;r\³e÷+ÅÁ™2H<(DæÖ½ÅYăOX÷6³À¤+TŒxƒJ2¹­Béyª7ŒÅw:‡î¶4‘˼S†æNgfd§øPn_í¦PÜ' ^c#0m”a´ĂG“år¤) µ?†¨êÇMJÁä%¢Aüd@#ZăĐqâNöñ Em»’bƒ#©"Ö̃l_@ëÍ—R)Ỡó⋺ơ¾FfÅ¿<ºcœ• B߀»³ʧ¡Ç¿̣.&ñ»Ø¹P·'ëƯ Iö̀†ùˆ™€̣pZhÓăœHÿk GÆơ¼lû“ª0X}+^û1ÈƯƯ¬^ÿ_‘­Ưđgû,ܪ5@`ư₫ÀÄäQw€·øMiSCA™@2i‘ÖÆư¿¹̀Ö]t H,¼Ÿ,h"º ˜6éA χj‹ƒçƯ‡ăꂈ¨;«̣sÑ–[fØk¨¬"`ŸÄÚ!÷ p÷·±đ’æ§™º©U¢~}­Ë(¢/C¸zB\,z›˜ñ+¢&ơ™¦½¬̃øRæÚhezLµ' '@†åÖ:kmmÿ´Ê¹XaI¯²˜´¢±ơt´I ¼s¹ƒó/[T_PĂ-ÂçÙ Rƒé\乑›(‚‚ΉÙń€²å, Bå+7Àa¦:ºÛ“î1c$`1-F T;4¶–L‹n0µqYóø«ûó×Jh ,~` åqûû‡`ƒ‚¯jÍf¤}Ue¶w 5w\œ*à¦âïđÉL™ˆ5Ü”ÜCsÓ¯TPf63ÉuA#7⦠\º\4̉„ͽñ… njŒº]@Ña>{‡l9ƯuÈdMˆƠ×%“{á)Ïç”{Üu= ·1îD±H¡¸[·5i{€c5åŸƠøƠExè„dga¯{P7߉‘‘H¢6ö†`tüư`ǽ?}€åEzëÚP­â;LÊuHŸ³­nyÿ[tN,…«Kl'å±Û¨ZmB+9®Î4½m¤>‘´Â‘«íF†ªÖWÚäCÙÚ0qÖ+“N¥ 3-7æFZf¡Öº̉Uüïp¸OTÁÏü9XMú2k%LW,.›ôj̣H“₫¸UăÁÅëŒqÍ®¥ÿb̉æ§Í(åÔ0µmt±ºô0æ:dÆ;Z;¯‘Ó'–?¥WkG¼”è»ßFÉ“]Ÿ6d8`áÅÍˈîë°Œˆú¸† bđÆlF¹ ¨­MàSn,@ßt$„⌋6tê]KX…å7mÖØÆø¿(ú‡êđ̉ềü̃¬”‘y äDÍêđL·ÖïĂ ¹ÆI)q$„sT[f*,76 $¼‡rñ‡ÎnbóçèïS{ú:ùN˜ˆ—Ëé§¿èÑúá Dc¨ºÆÿ¾@s³ˆÚ+€ÑVhÏ<̀:Ù_¡ºåB­’¿GSré‰@ß—âç¦äëˆ.6y+Ûẁ?¤E?ËGíÙ…t¶+l̀“±¬'&©+ ·g+¯ëÅy®Pw¹ă8x²`·ưaỦë~:œ…| ¿™¾vËuÏNsY»ªL¡qK!뤕›¤5É*y}#“j}³•.A°™Åà­£(+qÊ­‹µq›EU$U¡L²ư«G!DÎ?ÆÉL½¬ˆ´‘Mê<:O ™“c^Ш¥"¯ qÑØÁ[ÜçR,ªff/yG¼ŒZ̉öµƒº[»%mI‡¸Îđ ¥₫N˜ñ_wï‘C>N­1/%ƒG4xvK„GMèpÚ„6ù ‰ßw˃oœsÙ_¶àó«̀ÏăÄ*N¹„€º|üígŸL àë#'Gqr9 [+À₫–C6PPÙ.êåÍÖMưC®»‚“697GKu‚Ưồ©?ú (1d¯!†ĂËÊOdÁ×ͽ VÑ~3Çμ¬́o‡ ÁASɬ`«₫éơ5AJÓV ˜¨«Xÿ[Ï£k-K·XÛSéă<”# ;©K«âcq̃ăqªñ1ŸD‚–́HÏ#/D§7.ơfœø¶ˆ7ÿƒPai[¤ûƒÓ›âsGm·´ .Ÿ7ùϰkå*G/#—¡ÙFñc?sgï5’ &­«eDÔvrü é15kaîŒ~xMcíIº£9·ö’ÿ9›fñRoF³ OÆ©-´ü PĐÏ.ÄXøC®y.¹FCê$734*È‘êµÜg„ÑĂ»|‡²¯°ÍbéÓợu‡Ÿ²Ió¨;²-y6Ï-˜ fÊ?QÈñQå‘èGøM †{Lm¿9©ËåÜ@UJé3F ÏÍ®È-¿̉KÔNˆq‘€Q)(e<%b̉§~ʦüщ vô"|™#ôîĂđ _±ä(,©ÀVµÛ½”ŸaÓr·Ÿ5å`ÙpWæƠ÷,ÿ¥£¥î®+é/«úi&P¨ƒû‚¤ØưÁŒÅ]HĐåüÑe±µ¨v3´¥ê·hü¶Ó[ÑÇÍ;‹̉2Q„åxô¢À^–O«~ú’"N®LØ+ïET`B}$ÈoØ—(Ơv₫â£c¦wf ˜[)†”gø¥<*³‘ø{đj89EË Ủ“c_¿6 § 2ĐÄómàr·<·0&¸d‰% ™Ø~­@_,ú5ê™c3íʬ’¤ ‘—öPº ëîPB›́Çw´²UÜa.^uêk+œ ư°6pÓƯȰÎxÁP !ñ3%xc!2Ÿ¦VĐ™½Æ˜Ó;H;-Å#qG•6dâo ¿ư‰dÉ>|m!ÖiØcÎ?êmí¦4Ç'®^‚dű>ÛÙMçå¥`”}¥‰vÏ ”%ÍÆWëé235‘ úaư˜€¶©æV$©®Á[ƒˆ·] Q-J(’·„c|ʇ^Ÿh¾ç󀄇½Z°ˆzÓ̀Èbe„”8o/á–Pbâ`3́Ó΀a©˜¤á ‘´ 7SÄÚgéµYccø–(V<cé]nCXM¹í.=ÜƠYaG‹}-v… RE)ßjzG@h…$(akè1˜T¦.%MÁ;H£-QNâa{[Ú*Ë™L†ù[ë"ĐÈ7A¬Đ1b¥n¦)Ê;›X‚¦$Ư ?F‹`ú2_\F•Ѹ8͆#Ñ2~bµ·ưXµ%À3\ÅÇƠ}Œ‹oPYuâđ™¯úpúùT̀EvŒÎSÙ²®(BÇí4¦,+ËeG ÄØX̉UNé»m £Œ,_Ư ÀWt̃̀™­pl^~^I«vp›}í|®̣Qî^Ô¬ĂÆ‰ßRpx́([ ÆtzgbK—¼fêƠ•£¾HïË—™mÙ±Ó낟Ơª¯DR©[í ^u›7HZ‘Ÿïâ¤::^Æ 3^¯j̀ß­Üí;önö|c×í8¥Óíé^*‡¢L›­&nÈK2Rqb9!s·ÂäœZe©. ^ö#ơ©Á—wæ‹%³‘«€ªN†Ø†ï)₫hÿ0n¨¼—ºỏ  ‹\>²ïư3–wꂇ½U*{ư›w³²:nø zF.­{+à#­rbi1 Ÿq¥b[8A6@Ô¦|˜KÄ/d½t—7ơ‹û’æ}ÓSç™ Á´@Æ·aíBâH ²vs³”ÈØ kGÆ §w´¬mg22¸qè?«9èVL? Dw;CƠ×`ÓỐ¸¯]đ«¥¹j)v¼4ËÄtE<ï‘_˜bèo/‘Ͳ£5W(`Z‡%Ñά[v¬÷cF™ª¹÷¼F3u[ß’DGƯŒæ]«~­_KÅÉç4ÚÏ3kêđ-J†Y—Åä₫v®|¡B ̃4 Nge9xư<,ö×̉ˆkkHÎsÖó'äÿ^·zG@4§¡&££ïï²ê[â?²ÛÑŒÿµ(́™ơÔ!ü̃%¹¬ mKA$¾ø€%̀[(¤N¨ ‡h#JÎO ưá¸ZáÿKWóä‘ZyxaÊa|€Âl"/à÷Ä="rNAµ’Kék÷ôPÈ=ÏX!‘81'̀1N’̃“ñeÔVs1'óíÑ~Vj¢¹kÆøêû>-ïÀÚ¾,Ê5†Oí½¿Œ×->Û°ƯT¢åy‘ư™$‡äEœ(ùæµLF,̃î¸0îIN™T %‰öI«c‰₫Ÿ(̣b.l½¨¿ïQKßÁúîÀød„‰²œêee†)cw¥Uz)̃V„·L¶·“®6gë`Í)Yê) ₫ˆûkÅá"j”;̉?pÜUöîCH¸‚,®,&]dvEc‹óS3"&›Å₫£etîạ̊Să#Ú67”øFûư¬Ë(˜TÂ#÷ˆ¼RÜ­©-]ß₫œ5 ̉«oI\7Ê5@Ëôÿ.F‰¯y:9`9h‡‰÷‡–FcÏHlSÄw€>\L,[•k·8]éëÛgBë@á¿'Dj°&ç̣yß–u™X„ªtóË8Lr—M5ú*«`xvÕZ‘g5·ÍÂø ºWöyzîµBXH^Ă^üEû;'çE –˜Û–ƯÛ«́¸®ĂpH±cêe‰æQî]ô±¤öÉ3b"zĐù&-v³rq˜¸É¯+éĐ₫w’w˜‰"ä\wß›uûüˆ½¥IôÑ)Ớv@Suxû̀}kR!j¥ø»É\ä.aoăK zĐ3˜ơĐú–‰è“Â]øÉ±­5đx» NOeB}÷ô¬ÚÖ8ëSW¡}rtmó o5­añÖ} Ư7ơ3áœc©¸RḈx•lŒÿV»‘ÎÊf¤ÁaQ(²„”Đƒp0¾6fŒ³ă5 ÏppF Â&k£nS¶1ÉF¢àü:8iÉP³ÿ„r„u”áé<=ÉÂîsAåZJuÈ ×§BuciPRI°|(nî>ỵ̈¾{‘…Ͱ̃̉=½T±±P\çư@…F¾̉9O¤ëdƠ„ỹœ̀mó~âÉæ{đHfïd^å²€ˆ&u bé‘ä÷́ú?×Ö?§z¿¿Ñ o+î₫Œhv& ªÖ%ăœ®ï'Û[ha*· ¿Œ0Ñ́®DRûßé½5d3–VŸ=>—ßÖ6c&c‚1â9÷÷Ór Ÿw(đDˆê ׃6RâNˆ8Ȩx¸FKûRêÉ®ˆ“®;$øóN¯§ö ‰¼Æ¯ü^eœă€4¶jÛ Ó¬À*s k:Ó7éMnáQf: ¦Ú¯¤”6±"sÔ"/ng’|ZÛVÿxăëÀ̉̀¸çú: }„¦9бÇV %8L¶:ˆ–K±OwaS_§F̀™¾¾ =¥3z$‘JÅåÇ׆2¬×#῭?qükV´Uåx= ø–—đ1~¿i˜Üü]ÙÇ«t@ÑBD$»6¸Gk¦ÿ?yQîƠƠ­ïSxëƯÅóf® ñCkm—WQ¿,aùưvgä‘#[̉Œ‰H ê=Â^4or=Ï8Ï-aW†ǾÏçI`HñG€¬9®jø,|\–\)qÇÖùÜøi×OlNsL>>díGđAs̉₫Ù*&hK'ûéë:3ñ~Œ4)O¶¤ö©Vb>u_í„L­̀JB}Wÿ0:2)“! …™µû\.x¿½đ¬„8ÂR ,ä?„Ô‚Út‡9Z¢ѼƯ¬ÀĂl¯aå°3уÿó¬ëA¾ Qơª(›äŒ¢÷÷hj\­fḅ‚W›![Đ Ä²G¨È(˜ÄÈ3È‚°L±Å)pÛbDâL ¾ú…çÀ8:̃)6P[tu’Û‰öël|eÓºM/u ¸4. ]¨ñÛ’F´ªĐ‰BpJÖÔ„BĐ8³)Ÿ ø•¿µ†d]шyjcô8½ëMKG¢€q°a¬@)`ܧ4LN•™}OàvaØÎưÄ,X¿üƠŸÚ¯§@ûöÙ±̃¹ÉZI›„.º„è¬ fºø†ööùïR ™Ưn›©+ xD̀ñä¸2–Lñâ1­†+)®%Â85…{g,[’}.LÙ?ñ#¦zSbDކkV(ÎÑ5KïDÏAÙ'¾æcº`væß¦´s1âÂù6Úü)ư×L,©œf¶ïä•ê›Ô|br¥=}$ÿOæƒ2BXô;́$Ź8=:è— ₫˜léà$µû&B9Ă•ùfÉû‘‚)¸Z[˜áˆ.0fÜ#O¿b'wDÀ”Q§>ïË[ÎcA/½1]|v¯sß₫„½ïa$ßñ̀*Ë['ÂzÑÓÿ=(×h́5QÑ1úŒ«¥6.̣¯ÎƠ]pEÓw`æ=ë3$ Jµ…¬ƒï2† j¥£±zÂ-`×̣“æ§åè"”¼ŸÑIrÎđÎzhû‰]Ï-ѶBÆœK©ă× Kû ú2xN±­ <~#L¡M8ä©́&‰3ܶ}&zœ‰¥Bc5Ɇj2 VäÎ}Ù„O#”WdaÂ:3:?N©’¶BÖđgÚ Óǵâ=Y+_;#yÑÛId7 w"û„ ±‘AŸ-G öHÓÑ9¥̀÷•µTẪ)n©c:m̀E( $0x${₫;£®?€•Ñđ1ô næcp*á®C3ZÈ)0¸7”ડT<>¹ó‚77ưôḲ̉¹—.,BäH¦Qˆ%ŽONXO6¸·È؈øê$‹ĂÛa¦8FafZ£r÷œ¬Ø»Ii@w&Ë8f832Æ«¹+ ZD¶Xñ>ˆŸ„„àÜ9cÅK”L¯5¶§ZWOO*Zk¶ẒÔÁ_4¯'nÖ½ÆHṬغÚ·o₫Uoă8´„4‰xPöíî]PoYé¹¢‘Ï î^r”IƒÏÄéÀ¢=éÓtôp¾5*çá"B"c§Ă4·ø¤­ªq^ ˜ö¤Êg´êĐax.,gFö:®£Jí‰JM)²mzW44²È ¥)t¦¨Üoµ®Áƈh$t̀v-&ŸùåGr£ø¨o“ÊñºhËP‚ƒfV au¡À4¸))́ùXçê’H°,ÎÜ×+OŸM==?|ÉÓ8ÿPZÑ5Øå»7®P¯Ï¦rü‹đ¬Í̉Ä̉Eɉ=m7Hô×ë.fF’£:E%‹\0j~æö–¥×.×+e¤*æÂà>µ”căR0[±*|¯!hßâÂûÖ.XרJ4ïèĐ0‡¸ÎO‡%SH 4Ạ̈5ïh,®öK@rŸÆ@-x4Jle‚82x}.ơjœê°eÔ1jM\ê×™H¨~ẃ ü ~WÁ(ŒC@‘Z|c—mñ¶₫æ|ߣ2û¬Ë“ ¢('ʇÑ\… Ḷ(w#b`̉c%Â4²ä\)QüÖoè\Ëaí̀5¢RƯ;«¢ÓˆL0ƒ<å^…€…ôB%=Î1ïfA(•¦é®çô\Ø•«†Î¿Ílÿ‡¾^Æs9Í'imØíÛ§ |¸á.— `TéôŒ{ठf¥¼•ÏiZ›ÿ–;CĐ³¦øå¢̃ÖÑ_M˜µƯ‹ÎN/ŸOĂ“­½ưnØâ‚c‘¥ç·ÄÛå/Óµ^¦‘!V̉8¢qˆé¿eL0Âz»Rû<û¸­CîGÆF:í‚5ÊNû“7 [ñp°&ôOs×@´9ˆƠ³Æ4|uˆXÿµL5JR<[‹´•°îXCC(VÈ”PĹc,Đù̃*dºUTŸë —¬…J Åđ₫儇¥“Iz΂•ßiÚ] M„ ÷•ƒv\äAQi¾©9¾c”Wơö÷_/2m““«­ª#iMđ7ë’! G¶‰XÇĂ3=²°ơífÁw¢wDZ“÷kØÉ%ZM¦ÍOV£qü´zË—,–̣´™¬ơêHÄŒä5;,SÎ Ïåo‚7p#]2q× nçO P%ŒQLK|Ç÷ÖàƯ-«á‘жH÷P9%D¼^pqĂpØü­Y9Ơu?³Á:Í“¢VgI¾¤ƯT]‚wơÈ8â³'R"»&=$θ¡>Ư¸´ní_ñusƠ&ñQßYÎ8tñ%Ø¥")¼…ƒ¤KUa&ÆÉim̀qa–h¤5‡í7̉Ë=èñ‹¥̣ƠEPgÂLÀh~Ç "Øÿ(Ơ®g9Ū‘Z¸ 'ă—çQø>źN£±ç¨ṽË'Ú³û’̣ê&n•q믟r¯avH-̃œ†UL·ĐIj»í¿ÜH}9/ñéë;QÙEüó¼Wv••ø”váEóĐ£Üs6<:̀s€Ñ$3Ÿ̉#˜QgcÀ¾—[U»BHÓ ,V5ưXƠ¹–qœ±vË^”¼f—ĐvϧC\̃Fµbæ°$w/­ë€}ădÍ̃.ơ^Uw¸@G†‚đlÇLÉ̀JŸßÚ2qá̉)î´*M3XN,˜¾7jà¾m¼›â†›ÓªZ©ùá÷l^Ôh³P#™åYÓ…F:kư]b<øÇö-{'ăµYùÛø2@±ÄBªá‰×]Ië³ß>̣u˜ÿ+t%o \Ê₫˜V¶=Ă–€k×=ËEäÆJ—k®eƒJW ¿UOÔ»≧bw笒¡>:X§ôo3”[DäÚ“³àIäƠ?cX}n6˜+EÈI˜0™£^èP´ë»”à±Ưf›QÆ·ÀÔƯCÄ̀*932Ù©"¤·G"Ẹ̈Ág{ U’É–ø…M½—ÛÉÁ%Wæ÷₫¾w¨ )­6,₫WÈGư³1-·ß¥”È̃1¥mÖ1ù —ë¶íHæĐ@ ªƯ„lLÎÊ8ol1§B.é€SÔB™9H– 9y…ßyV¦”1.™·c°y‚赓MÀùtṕvîŸRü•c‘¼̣˜ù¸¸Tnrđp gºÆ÷Ơ²gä́·À Ç™:qd̃B (™‹ég­kKc>đ«Ó†ĂúªjƒÏEÂR}TIƯܳÆ7Í55\u0‘NÅyçẶxû×KñG÷F)ÉÔéÑ®üIQ#m;èº§Ă¹Á€ÖùXrBºA{räPˆ}¾®#Lûè¡ÔÜJ0₫Yîn2QóJ¬¼®M1 Âr£O0÷@¼;Éåïx…±íË2q/æ¼¼n¹Ûÿâ g‰ït*^˜È̃øµ‚©¢‚•iׇ"a]ÍÇS¡Ơ:Å©2@™ǗMän¿t|éĂ„KzÉ%±Öt̉ǹïa!ÔŒN°êđưU¾…Båæ‘ÎZüÀmpĺttåç„;÷ùô £í<Ö³K97M_?ÎéÚË×Ô@!QœUzƯ·ù µ?à„!é́ߪ\x¯u;” ~ñø‘ÑÉ ÔŸ“œßă*±Ö`Œ-gM¢#hP@G¹¼~!ÿ÷„¡»`™”‹́Ø— 4-¤¹ê+Éi)œ`+ŸZ3• £)½]„èăå¶yË_\Z’Æov®¡ôícKDơ¡„k‰j0o5ößmƒe.ùp‘Î7– ¦̉krÜá0NTa÷ÎĂ“>J“G*~7½xe;¦6ÀÓOÚÔ‚œtÙAŸ=hU8‡›bNïb†‡u*¨,J³)‚tHcäZçÅT¿̉¼Êå=[Đî‹mơ†;O ´'ĐtSM 8d‘Ä ÿÀ‘­ù́úÉÀAEơq̣ÅA$zê&®}PE®¨ƒ±`U‰û sc'=×u&›ùl ‘3fF7Ră"fÁløÁ¾$îAgµ‚'.è²1y·ĐÚÍ\<÷Èe»ªè„|́pÿ¯̀—Fñ}\r ¥=Èc‰¿+G*åÙíˆ6æ°d ÓéfÎ{Ñrë3xt±ÙÖ5'@tü~"‚v<ÑÁLqöÁ;γ…PƯ‘Ï@GY’2 ½ˆ• C. "X©z*Yœ™,b̉ѱ(?êK+ß>ÙíëÚ™o …TRÆS´êÁ8?̣̉Đ¢.÷ûUu_%µ'w[‚ƒLy5K₫ZLm×kE]?Èâ×ûöÎ}IöÂæóyºO$À;σa¯‚Z÷ùÍÛÄĤùMvmL´9ß <Ë+@K§+Ú‡{×Đ ¤̣ k 3¯ » WËa¤Ø*‹ VƯù=™ÇVmÀ ư’fÆ B¤d4 ñkwÇÛ:Ù”ÚâÎx x剤̃h­Ă„äẺ‚d_ó%‚S-B ÷™~ï3úAôê6¸3Vc}}‘&— ÂÈúÀ»Ư,<]Hío`§Ë ¶¹¸| »̉l§ă1H̉ËÁÚº¸x£NA¦)ßC%¡@“üú«{x¡J†¦&’"v\pNdf6q´ï%L¶<2¼'Ô6‹Ø¤®ÊÙ¥dŸâ†¬«·ï›/ë̃…¬)G`©(²fíîi›Ÿmª] |̉º̣ÔƠÖ]¾oÁ-HW` °ỎmÊaEè¦u>r+=-^Æư³ºåẓ•Í'Ä?v1ölL¦[ÖÏÈ#¡íèDo@^Åd6`§Hú[¯Íh,«à/™ÿ‹¢ID>¤‚­æv€tûÿ09æè*4—emơüBúQÀù>OûÍÙØaz¦!BeÛ£«s‡Ü„»"?¯-èЇư^ï^Ÿåúg œI€nY¸”ù9"ÿF°‘È<9å(`}&Ÿæù`8ºC¦P³†æT4’¯âÙ<€¢²zß#†zàÇC£ßˆtC•R&6 ~Mí¤ăÅôZ`ï|¸÷Ơ¨ơt¥Fx}>¥ïdÁkiéÆJUt°nÇ:|®€Ï¦_ …‰à¸Ǘ¤³TßÔàƠơ6†•ºj¶Q= “'Z°¶ÿ÷)ÛHÿ°í{Û(ÓTÉÑÂâ)ä¬S(‡`Ÿ´]́Äñc`Éßíïè”ÈùR–x냯X»¯é!—v2‰«đVƯơ¡^9.…P”†U À’·sÈ₫̃ư\‘Z̃R'€•AOQ›₫'è%Ù7¨R[~gÛ”ÍđZ’¦ÊèØ8%W³€b̉Å#óZøƠÿ$̃lZö~ xLóZ%ázz|ڇǥm8NoƒîÍñ¨Ÿä¼µ‹ÈB3Ô´1&FåxÚÏ,kÉèxFî0₫„_Ö̀A0D´<#‰Ü©àC…R ́ {ÿt' *^»́›¦ú¸ ˆ2ûæÖ Êg Tuº¾Æ÷_ Jsc‚¸²éÈă(̉ö‰µÈ)@!¢=á ́C ó°T.üDøÈŸ:<¦à Oª)WÆû±qƒÛ Ä¸°~Wçnè˨•”3yŒ"·¿ƒ~ÍóñTÎF³¾u Y¼.h U&ĂjDÉ$9i»M@·füCQyÉʼLªå ®—ô] ë̀CñIŸ57„ÅÑKư<2ëĂ"q›Í´;…0Ä4º&ɦN1¦*3D¦hP6;í$®UÆ€ŒVª ouX”Y5n¹Åg«¹@?äĐuhúFÿ°6¤‘Ơud́e¼Â–Ÿ±ôˆÀ”ÍÇ´z‚₫ăZƒ©?•ÉÍmuMÈN ›8ê@2”ư¦ü ̀ˆaå¬ Hú9âK›ë«6¥6UÓnhñy#LÁ¤Ñ“ ?<Äi±'  œ†ºô) ŒoX¤½¤ÈEQ€œôiŒÔÿt̀UƠ'ÏgbîÙPѸ۶L¤}»G¹~È.ø€¾{–ÁA¬{Î#nGvE¬píđRºƒÿ%•ê¼ë;Q’P])Pü̃y;6‘Gç8ØÛ6¢Ư©ëđ ³±OåôªTÛ¬¢À\}́L× [ˆwµÏt/_… v́Î̀èøỖÚ¾ænEØóFd@Aƒ_S‚Ö½AWQhUâb΄c¸cP¼úK-Í—ë±÷Ÿ̀øÏAsV@ÅÉO;ª‰]ø¿O>$ç£.lÅpí–áébbª½ÎƯă.Ú@đă¿­‰ª‘Ú^º [#5$¢A{;Ë ä¢\ÆưǗCè!®dÈ¢o©ä5å׃g?•) ¶2‹àà£ÎCă₫¬́(bÂ+gWü,¡¸ª: O: #EÍQEbqhK˜2@]armq¬Ï“ç@)mÀJY¤=UlO« —r>–[T•)ŸF)ˆPumù¸®x2¹¸|<Ñ['œ mÍ >¬7…Ù “´Ø9;L¿á.¿ª[ÏʬC«₫?f½\\'sOL₫7öºˆ:“ç8„O0¤Ù}˜̣nơ¨¾¾̀Äè ë]UI){…ÍaÜà×ơîäF¾]UÆ„ĂÈL?\£̃Ốjô$<$½Ú€˜Ạ́3̃‚ÂÉEă$Æ`7U™YQä 1¦?BöG/»¹NsZµ’%ˆ÷[R2e- ‰@ÓT‚æe“|…Á’zº>”YºƠ©âË9fBoûûêJH·"pǛXÄ`́ÊEà21Ø@>*¬9¡ ¬KSMI9ů$7Ú€Æq¡\ÂjQɈâ?®w’ư{Ưu›ƠL₫*¡PG"ÔÿÁÜÙ e6”}¨&”{m)‹X*0=ơ7Đ Q˜,Ödü Iß"{$¨¥?W²´Å,àsàp#€°-̃‘}ăcA\ÑæU@ bJœ«9áØºÏcù5pt­¯’[Û¼R_=sh‹NKPëĐ„=AE]—dI¿È~]éÑcø4[Ä œ4Â2†º̀¨;4ăÖ,-4ùpå,Ëy†¹öm-{ÄÚEBÜœí*Ĭ‡áçü‡woJ醪IlĐë;Îǹ"¯sµ¨-<—wë„ä%_Q~ËBVX(ÁC«7»ÆDƯˆŒ ­̀­ó†L‚œ…X“̃›Ođ‰°₫Ÿ”>1 )Ûè§iõôƒ/†(_*Ư₫Vˆb’}ê[]PfhX¯³Ư*ØGí3ßVáL¦• ®[0ó7én5à̉@Ú%äAdA®[`Í"éiéw²Ü†qG¹bwË—8/…‘ªhE7oD-1Á‹:ïñ9r^:ÿÛxp¸R©ƒ½ăNƯ$à₫BeJ6 đ€pîºü6ÚăTV¯¼„Óù§4†*̉, Ñ‚è|9ùø0ZŒ›½DÖ‹₫T)³Ơ?ÿÆ‘óÉœ°Öè²9¯É6Ơ_w"Ñ Ưè₫­̀ ǹ”Jåh{´Qi˘ ₫7a%¬<⇧= ‰Tç>q0Hæ˜ q+(ăÆ¬O3̉ê€Đ¿Éæ|ư+P$3Ê“;¤fuiè®n©(˺¦:ƒô‹©+Ư§w”É©© @9Ëù₫Â.Q° íĂ×;¹<:”n9d•ñ Éͼ̉5üM³pDz4Ÿv Ơ#méOI•Qr2ß…yÅƠzO~‰®´s6=ø9¯!¦›]‹+IŸñB%w˜®s¨ƒ˜|"Ư:Û¹%j6¹—ăÄ·Á“;]·‹pÀï ?ôÛ›ĐAz•ÀŒ Nâ “¢ K ¾ïú̀ÿ·•ÉdHÍúy‡§̀äë₫yIë>1½l§¢°7§„¦­/²[–DvÆ ës“¿rsh¸;7!˜­ÉLL™’ľ₫bđ­ÿA"‘O½Âœ”uß ¿0i2óÎü¬ Øèsée«Ö¼€Ü¸¬ØV;‰;–Hmï‹q½Đ©ËîˆOrƒÛ1tÙkÉ›ç´D¸ÙxnÑÛ·ƠØ(zü–ôûÎA \Où*2ŸÍ?‘%í̀o{ûï8g½@§¸Öú-9dÀ₫oùöj1ăÉ%ÈyƳڤ̣‚¶08¤ ^ÈÖKÏ’ûo6ù²ôùÍYlH<9ÖnàÖ¢™×*“Ï›û<íỄ1 ÷B)kà»ÖlAçüÛ&% κư¡øûHÆw&Û_ÇN~ÿwkï;KUÙ…!₫³x-ÊæŒåơ%“³Ø©»µ‚üí¬qÊĂ•̉QFT‰©$ô9pœ‰öÎï~qæJö0T"b²¯R÷Û®Ÿ©r´ÍQw"aO!àU-O­RÍ—s>ÜB₫˜Ư—jơé̉́âQÚ;’«£ 2`»wX˜QỸ3àƒDf“52[Á¡Ǹä¬àôä…&j§{ü}?zI$"1Ûö Öè ÜF-Hí­º46U‘J#ưyÙµ@ÏdTƒ̀1-€d±<¹>ïñíÊY‡¬̀dOÔ7̣OXZđÊØYè®È.^„7xúÆ; GH0ö¯N»‡ÚYïëA%b5U¿J'hcV·§vk‹¶kÀ8>W]QgÚ¦«Ë̀ ÈVs -ư ƠœáÍe{ScJ¶ˆS“S}6Åóÿ’₫ÁzÑ´ơ³3¹KùÍ1èî/ú†f“3àßCô₫̣•̣È·5l» ù éemB©.ỵ̈Ư`ÆÊ-¬=~Ø:¿—–DƯ*MÊùœ”âQûfû¯*UƯæ^Q›?¬ëSoỨdÚÁùJô"®6k–$₫¥sNÀr˜×”§£# Úñqë•̀‰!%¶·¼‹÷m%¸= zÚ;.@Û+7uC—äÓüoÀ« }x[nËÛßN´3•ˆÅK–>Đ.6x'Æ£¸n ³ƒ´Æ_ÿq¬ĂôtHCu˜Sà¢íŒë¥~MÀQQ¾ăÛ“›‘dÔ¼èo²—ºd0K©¯½DÄ Z®­Â.¼èư’`gíx“Y›`́p q©)\°e³0ö<‚Ằ ăp*`SCm†n…Á:¼CnÊyâ/ÈS‡Ï~§d—^¦2.ˆđ1•¬¤^²Ÿf®n ü¹ƒ, ¥1|‡̀e®¶¡)¢¿a»̣uß´Âuư¡óW3 ?ƯßrŒ œ.¨ĂŸ¨‘©XMxf0¨ªlÏ•l¸EÁă=á‡Âđçû́X®ù .Ç̣óü0Zo7ÎïgÜ‘{E«é…È«÷ï¦E4âg…Ü ÿ̀³àœ¸ưáÇûLÏ(ÚáW³·4‘˜º~ 6åº$":‡(ʳy§™¼U l<Üjrˆøèµ‚Ô&½h5¥±±ûnyu‘R )Ù~,/;y™úox°H´(¡WÍ6ûwf#|)4¡‡ó’(e©*r¾¾)¶…cíçÈ‚X²¤,ÀÂ6EËJíçÉ<ŒÑ@(ÆQº-ÄØŒwBê€GT6ÑQŸlD₫g³'zrG1Ü“s•eÿ­Áøµ°ÔÎTâÍx\¼ÄB*_âô€é\z{ W`bƒă€?ôö @ÁÄÑẸ̀Á`#:]ơ#đ“ªÄFo#Œ¦ ›/®X¡Ü¥_ñVè¨a†3M¾b`Ú¸ă÷Ü>â÷^ik!ù©ˆª7ÎH}ú_¨BµawŸ¸—¸k)ØNzÚ*É\pGwƒđ;WÂÎÑ!Has8üHT–]Ü+”m  ăA—Æ6xƒoIO R¶“ IÄ$ư}”p]‘@Ú_ÖÛNsŲµOă‹«p@‰=PŸiñŒëk&•7Öçö@xZƠ)‰,Ï-~>%JNÖj42ÑD’hÁÁVéÙäp,&u¦Ô})ÿ™û˜½,KÀ,ªP­s‰n*œ54%đ;2ím²4rE9 iä½:ùJÖFª|œ’œÓÜ‚ đ,·Ó/ êÚÀà±Í•]B1}éC’ăÑPô5›ỦbB_ƠÆ¿á~^º'ëQÿ 2íÎdaÅÑ™\’('mP‰<Ùp2UÚçøIP͆_ayŸưḾ¾8—´jí~ø Á»#̃”)\—HíóÑtÁúœ0{Lÿ­6h “Ÿ²0Yô!=o¬;rµÛÍ€îùB°Wï„Âi¹¥1c$ “c¬IX1âæôªỸ÷ĂQ ,1G· Öº¬u2+âbLj{|̀.g;Ău³ŒçÔêñüưu₫̃p -ÏtUç5K?6ÓHxpÔq‚ÈửœT¼îä‹: ÆYđôåS›í²YƯ~5ÂÊ|=´ÄWí¬°̣‹ „Å; ¼ ­]z{Ơ«{3Á¡LV6gjÜk"̀ø?ô‚ #`±b- ¼–AăÂ/«kñÓ£}6y‹×_‰pscíÎØÓï²ß¬đ‚Ú*/r-+´É‹…Ü8†)i₫~€́P£ƒ̃â‘ôư-¥C°¯²vW}û‡0»—1˜jÍÈgô:’ ·Z'p¨‘.;®ÖÖÂ9ê„ ’–¹1˜Z.H¡‘‹‰ómx‡¢î0‹#8¾´S_ôZ`%Ú‡ÆQń¨Hr×?`\VG&©̉L&,ùs7µê=»¸†$êtÇÜ̉ÆÊny`àç2p¯ÏŸ«¯½2‡0\ü5¯YANÂOn@BJyé¢(£”ơ ìâ»b¥dˆØÿS\i.¸L)4)₫eÆ/º̣“ ¼Q’2R@₫¶‰DÅÿ] x/GKßLú)âiëø\ØiC%„/Ú ÔßT>]Ë¡äFjî@°Í?œ9ư†YOÓÑ7qĐ­+v€&©¤ßY´m~mhv!óô¢l̉ơ蜸Pz¾¦EiA9mHxVƠn—¥œ/•BÚFFo‡èæ\P‚á¿h™”ǴOÊ5…‡ô•Èv,¶ 1N ¶†…Mi êÊGư\ĂDç“å˹‹×ΉPá¶Î-zGob©Đf±iB˜#Tú#ÓĂ\̃P6äÖ³‰û¥œ¤Ç á^G5óºAHÓ¥sȤ*ø~O¥¡´}´„‘æ?œ_8¢"¾é§-Ë2înú È÷£t~I¯Ê`ÅF­Ù|¸´eftüq¬÷– ÿAưA˜•-]¿¸B#f+âïqŸJɹ3A€´¢Ú°¯qI›8s—êû3Đ̃>®&Û·oÅ^óQ)Uöt%Ó§{\É$¤¦¤\<†̣è.7·ÀL×ú™¹\&̣Ь÷v—h›áÀ€î£ưerV“ñøïƠKxe¿ÚƯ©R½êŸ¹/ê#6/°»+ vfµ©¸R0Ơz.†yÇ̃E₫¨½Y™̀˜»Î¬%ö½54ư˜₫OơI]<…™k¥1U´üÈÆûF‚ë´<mér€Ñ¹'à₫€ä…η‹N<ŸTû̀ü „² ÿ‘ذ}Í¥ D…’KóZÈ·8¿<È]•¾f¿@ú0W ̣é3ß 8óȶ)ù7đN|Äf-7XLÄ6q1N¶í/‹-,tÀ°7àl€÷8 úje¯ C³Y²ëV;¶»–¢#‰”Tm¨¬tè+yL7lƯU®ưö’”PÖEđ“Cå‹J=EƠ@₫$_Ÿæ"¥Okư×È;93¥ ô—xfêKơ¯g¼đÄ j|ÆÓM¬d)º|¿|Më€Uå}Ă—>ÁôÀ†t —>kÁó™ôÇÆgÈđ²z|ÆJ…Ư¿GzăôrS­ß!(ÅkĐ²Fœ±̀fs#m$Œ¾ ‘£"‡í{i6̉¹°c|wë„Á°¾§876"ßT₫¼Nœ€V$@$ ›ä©(­#¼-«`¡ËÎmq.¬wV{ô2¦î#£V=¨đ›OïºCFÎQx̉âñ:ö) ÛS¶RÆÅd;'·(ăG6ă ́YH2±Íǿ‰^̉'”q­i/PŸ¦×ư!¶±×4¯®xSTv˜Çl\\™₫¤‡M¹`&:c¹bb)ROÍtñœƯ©¬äV¬–…ôfÁë(̃̉@";tÅù¢/±¶øÄµEDz0ÅưƯô(<ĐæiXƯw̃aØ>Fß­U á0RØq‰T–V:~8¡3KL?$w -Öj†ÏøËÖ×CăƠ™ư«ûj EÜ|»àÚ9Ä«'y1ö¦E”½yêNȘwL‰ &ü¸†9¬ ¶ïÇ̃ÁÃáijٷAÿ÷Ÿ-¿Øcé¿rü§Ümÿ9±ư?`[­’+í˜5Ñö–÷YmŸÊ±lgî|âIe¨Qạ̀Á¶tZmÂJ׿2F`ç*È5FT´ø²ñº̉q–D[¯ÍZV:öBäêTAE^\QÀ*uk%°(¦4‘-ZŒ@„ha}Ëú´bóK'‹( 8 æç r µæ·+bơ„vFt?P?~WÎI1¬xêùE”ÜÏÑ_ö»†f³å> ̉á/¥+éGà0âܵZ\–T”!q¬¹º0Co; z/„i3azï$ÄgpXædœ?fq6ăOt ơú—ĂÂ×ö”#*tØ¢Êøà¦sÔ°₫­Bät &làü/"aBH—ÇXÙx,ÇW}ül‹Â5˜‹ œ!¨ ‡Í-7ïƠc§4ç'Êy¥@ăåèÅäâE¿VÉ!]T\•_ k¦w¤/Q6D—Jƒ¥(86tÀ“¼•fiW"c“Æ ¡Rùë^~5́ @­¶kÙk„̀Y-)ïc̀Y:ñ…ïír¹fPFđ>á½Ü.1Ä¢àÎăÉA[iùs¹;Ởî[‹ö Zü \̉*¿ÑKÈÔ"$‹±Rí¦́¯”w>ÿëe8®ùV|`Â൶—WŸ†³?\ ø![ ¼a/N"‚±ÿàV4å%4œ.loŒúƠŸ4欭ßOzÔœ&s=3 ̀¿±-nÛ¼RYzûØ"²p'ơ¹́K47›´±Ünæ§™P¦¼Dªp.¹Î©ÇÄ#›È³.P‡]}2Sa¡ÔËr^ă|÷ntëB…Ơ¦Ơ³ơl_0‰£wü¦ 4H` ̣¶w"û·¦¢•ù£#¡FÙÜ—æ 2çh:u:¾Íu øfÆ:Mzû2*ÜÛoøåçêßkñ‘©̣?̉+®£à“¶%Ñ€«ßaöó ˆo ø“Lw ¨Cúưfª̀®Øcçj é„AâRî₫a8à#£È‡À»[É ̃’2˜’« –µ±ñ^ị́Ăq›ăj!:Z] ~¥Ùoổ„g&Ô!úH"‹Æük ªéK2z ÄH¼Q³Ö•Đ»Íøº×±ñê¨ÁØ\±Å©«U¬‘ߣĂV4KÅ®í³÷iöĂ˜T_'³âÔ ¿̉Á„Z5́ăÖMÍ)ç¬iqcqäp5¢Ç›\ñŸŸxYÑ”b^‹@öêó~-•F™çº'ÀaªÊ¿KÀ,":CfđfêÓZ‹ÉdQ ̀°~QN[ÿ(I­W™S¢¤„ÁA0üÆ*üsq^ES;̣R fm<²N·%¸Í‰$.Æ)̀7äưUÑ~¢0JÆbÄđËP¾E/Fî?({lC²‹ OZ#4áíéåö>HơĐ…qØ[íÆ Páy<+‰'Ê¡»íŸú?ÑI$0\x!¾°2Ö•œÂƯ$ØúgJb'¢Læ××ư¥j¡>}ô¯+Ư ,—+B•VÎ_\ÿ[„ăÈÛ˜dêö$aQ@âÓÚư|¿L…¾ÛGÇ̉ѯá@HßwjF̉¨+÷´±peñ盜¥&BY¢N²”Ư8ó@cé‡̉¢%́ÉJơA¹v빿«̃½.ua{y?ÓÆºOUן3¨ZUÈ«“æ{¼MßÀ¯+̃öN7ÆüA¬+AtACZ&#Ị6†ơr¹Ä¬OtIRØóô÷Ël“áÇîñlµ@S̀~ǦISâסÎ4̃ îÅ¢ÿî“JUU ¼¼öÜ4‰ø7꺛^û₫O¡…¤Ăç;[év‚ 9C/. ¤´"(ldjÿ´Ï…̃Mu6D?ÎCB‹ƠưuóùJ̉‹½«=S‘¹€i°!/ăZVJo:ïº8'<¶œë2>MmDkÁ‹X9h §\Êmuœ|WùQwÓ ¢™›¥gÚ̉Á.3̉ăẓÖ°o‚#P×Rh´?,[n| !k#₫⯺468´² ̀~‹º‹ÈY$ÖÎpφ‡2Jṇ̃C¶phÊ¡6@uA¹aWA‘^£ } Ïñä̀¦ZLơê÷%SÖaUlTÙ"/j,¸?‘üúï«u9d3_!F2,­Çăú~øæÊDÈ/|£áDŒot̀Eù|µfTz̀–]FI)~¦¿Ôd­$(R`F)̉"¥+#À{…¦ÇdÈ:}ƠËơbL”p$-•n‰èåëy}Tt²½Z¿ỊÔ!ƯF ³¥&¹=ô`’άGj¨Â*ưÔu³Q©$ñ#9ê%ă¹ {¼Æ8<…ơI4|¾́¢g-^„/ß„61¯ªÄ~ơ÷>zÂEV{5289sH>@6Â&r ±b‘7 ®‹É½vr²¯›êû×QLúM.©Ă4#+"@c̣«‰ŸM¤ƒk‰{è]»iVwÊ §Ú½éWéx²™ƠßËŸæX/!'FY§ûXÆO‘œÉPr¬ÑªºÆ uÄ”®™yH,[ïÏđ₫‡b@?WơËtƒ|(ªă¦^»jÜŒàÀÙËÿƯ"÷›°«oÔ°ºjÅÉr\Â'ÙåÏå!ÇĈ¿¹øRè9ă*ˆêÔ„¨7‘ü–S₫!í{¾c\À̀́+È: &5'Í€úƠABVŒH>§‡ôVù\#T×ơ?_“Qï)á_âº̣Cª‹ëD́yă3‚ƒx[T]›²¬_FC½gߦưü aÖoî,;:è\/9’Q}f.Zư[ÈM˜ pq$ÂÖuưĂ¼0B î­sÎŇ%a±ºnǪ¬“M >Éóǿ!̣®?rQ¢ úÉF?w×^ ùtØ&Ù/TƠ3ùơưM_¯»Á €Ivíü•ç?;ªdó#p¢s™Ø<µ¬ˆ´[|Η"Dx…ù»£̣Đó¦éƒÿ@<àÎơk?ΧM|=JĐoITÚ H2Ey_’ƒ¨$*ˆl7`&ƠÉöêøt`:Vù$G¼­̃ỔÛùÙ£bḉ¹)àơ§ ¡B{Ăqêó Ê‹bâŒÚÂÙ‰Lyt(„öC¶¢qs1¿åö‡ÜeË èv’åO2ÍàÓ™'êiü‘;‘7/ oàfÅÔÚ́…½iƠÏ@Y%é¾ă·96âØ‰ŸvøLÁ? 8<¹“Ơ›ËÅ»hXZ1Đ>ˆ¶<Qô‰‘`RÍz"ÀUå5<±ø 6”̃§†ŸÁ#¬v-›NóĂgMtđëyRµ;‹S’´»&áu$áöB̀NîˆZE¹Têm·“!xºq º"ØéE‘ ܳ Ó—* ó´u‡(®ñÈ×__—:¡ÊK˜÷Ó½(æ…ÜöÇWqăÅ`üŒqL½&EsæóË*FiÈË*®ûƠ‚A÷ <×\dµs‰ ´ÚÛ8Ó æSî"φd_‡ÊŒc†ßơV7ăÏ%áŸ6qeà@ûC ÍIÉÇ+ vL₫ÅT₫óU£–Ê ’v…¦*x ­±2J±î¹.ÆßsçO+\¨qV"Ë{ÑñM9I¼bkqäúºk%Ñêæ₫§°Ysˆ…Øh o0erüGû­¸À¸#FƠÛ’‰’ài[³̀»²w,L£* XtؼQ,¦í9——F¿nG¦́9ê\%Ễ¤1µ2äúo¬!J{JMËul>o}0ÚÍa¬•ø¤F Ơak]4™ X*xp¯nquU’]LëÀ]mƠ‚[)6‡8î£Ky ;x)‰5iFåhNe:Xv6^ô&^'‰Œ×RQ¥̃©“´0zÓ§j[_9ƯŒ¤y¨„~ѬƯêSƒÁ¬uomY±£¨ëó\Æø 3>沨Pkû–#kñ•tPóßr8% øLnƠKwqs.! {#Øùk!iúFGÎØ×™7¶n¼¶nr«A`ü´®}aΆQnm»O¸ÀÀ~’MÁ9ç®CI~äç™» ~ßøDư,üÖ…SvC²/ve°:]lYÍ ­ï׺ÆÁ…C¸ÀÄÍ¡²½ån6&Ä́ß<î¨ü‘FÔ‰/ úZĐ¾&ƯY¹€_ØMzỮ´Pæ(ÜjniÔ…ˆµ1Ub7=§ëÇåëÈ? zQ?DQç3©̉àë`×ñ¬+WN§Ñ%Ú övØ™”RÆÛR˜ë±b˪…®ÙÍŸ£ÆÈB…niƠ öƠ7èÜ_ê¤_ÂdQÜéÂyƯ „ºN.ÑÙ¡Mº¤6¥Ö‡X3£8›•pÙ¨;cºùeäϲÈ7ª ÓïÜ/ ™=?A ä¬Öw¿5wÊq[bñ=âQÓag¾¤–¯ĂªÓSAûo«Ä&hƯdËöÊ—)Ô§[•f±’(OènÇ Êp?49ë́Ÿó½©“fMœAÄ“•Åp²‡÷©œ»Èæẫ¡‹“wv¥.émË=¡¾1:¥K›(V¡J¤.Tȳ̉úäÚ-wlF!~ [ÎNY­úĂœƠ?Ŧ×g̉î/ƇMNzӢ΅P\‹æßÎúîå_Ç•‚ }áæ`j4¶¾Zhè6PSî³ÀüG,x7ï,º‚›±‘}Ù'¨{æă"¾<0ñé©‘>˜lŒç¾Uænz»‹–;Á@è¾1É1"₫ 0‡o#A«n#_¤̃A5åWb.¤«¸ă„Q2v‰Éè̃F³ ̀îùAƯÓ{|ă. ¤â]l6• wÄx'S)–̀r¦÷XcÙˆº¥ ¸3yÂ7¤å¼êĐ{‹×ç[ ³…û}ÜÁaÓS­Èú©D`[–z̀p'˜†üÅF¯–‹¤Ê ê¸=o ă¥ǘcÁL]Ô’±uÊe?ÜR' î¥',^Nñe1^´™‰nêøïÆEs{OđƠa«ăOÅù!ÑÄF˜·Z™ä}j̣ªAÇ0!¾ùóưY5ø‹d²nÜ–™¥˜¤8#3KÇ|7ô„îzÉ{ &³¿¸Êh-//<Ñy½Kf®å½¤{8C¨Ï¥s&DfÀLâ¡\]‹»"àïD(d—èƯ(S’c̣U#âÇ4$}ÍŸ6ƠtûúƠ?)8¯+¥€.mH6–‘àN­÷ÄÂ’+mö8ÏFa:0‹aáî”—89 ±®çïÜfN '«ŒqĐu¿Ë W“7!WßôƒPöS Qc–Çàë%<€çgº*ß':¸ÂăaĂˆ¸@xôÊüq«+J!—ư‹Ñr8;Eœë­́ÙØ+²ÆĐ00äÉ{7eúQơÜD~ fr´^qă N€4ß\Æñ¤ö@kØ̣Ø6aå2+H$­Ê·æS(\*ÎËîH|!5€1€ù¯zơA(́(aÙÅuàÔ‡:…z³·Hﺓg@½V©J-Q—›,^’s©•êvé2 ¾̃¼Bæ.ȹn Ä/ÎQơF™˜Ư €e<Ơ˜’!D ˆ₫׌{>iUY¯iÀĐ²c2ñ“ŒGæ_y_Ø@Øí̉AR“Û mbo9²'[¹̣im}c,₫øbE )F±g 2[é–ó8¯a‰ưqrväåÎÚGă— Ö‘·Ưk_ŒËkÀ[§Îæ²gư)#Ic û¯vMsxÀ2`̃}UB°Ërc†™ë́µG2‘/F÷ÁƠ"ÛxüƒÇPÓíQLî–D£D»fÎÛK&sơ¢ô"•0”‘yÿ…?"Jôÿ¾·p²‚Ù‹Ê“9ÅÑæÖÇ„ÄÚù]“-mÉTT¶»„¿ª‡à6Ư‰däµ´–ê¤øP½bS½³5Ÿ§Ëœ'ö?¶̣{µÍSµâ$dm, [ ™öHEk·¦,2$'@,T”#8—®¦KƠ¡r×½¨ ¾”ÎÊ(Vx%ụ̂ñÏÔ¹Ú³ç/ Ú˯?J‚¹Ŕø˜ïz¹È|I^»P´@…ë}æt¿ågï-s€]2ÚG¸¡i«Ñü²hßv昡ur{L¹́OŒ ?Ö²ÉÚŧỎQá̉ĂưŸXËïƯ.é’æ*)R‹Ö₫'tûåÿ-ÄÄĂÖ1ÈF̀¡¦ Ô¾t‹^?L8,“cç ¬0ÎW-é₫‹ój%D\nç~RaV_ùíđoµ®ópK˜û‰‰§{1½¥ÛăăĂø”1Í%ï)Ăª¾¥9V÷Đ»>Á} ó¥5!놇8F«¿ '˜#bÓ½Ü/°âN?¢8ë²§ÏÓĐB‹º-Π܈₫h®‚9Æ$O©V hí¶Kđ32 ¼p; ¶:Ï̉¦LAä`¼ƒeîÊa%j¥/Ho»´mú‡• çọ́k0z_Á\ •’˜¾áơ ûĐÎÏ‹ KƯb<0¼=@eYúĂä}åz<¨Ïª§₫S3.˜ùÏÇW»°̃ ¡çw´µüÉÈ&d©́gUIG̃<¦·Ś’Ë ¸?®;CPï|¦K$‘O]¾/4ăôOạ̈=–¢»Î›zL‹ß>Ô¹ăíæV£A3 ƠđÀj½̃ơ›îƒT&Oj—󆤷<*¸ xÍAiá¢ëfô .z¾<÷đCjvuĐ8QẶå"ưùư‰„ó˜ñ`I©VöeújéÛ_ï<ÖƠä%‰C«Sp`BE„°mÈpĐÅ‹q₫‹Bj$§t6Œä²»̣-}øưZ“µƠ µ ÔK•Đ)QÓ́ç3đ5¸©OêaUMüØH́P¦÷¿b*Â÷#îíä3§¶z·¸¡₫Ñ“¡ßP2¬/á×=ÉøEr,O–×ú²|÷̃ơ§ùå(ʫɴϪ3÷ÍtlwAC¾m̃4ă‚I{éơ „|Í‹²>9lu<]!‘*=ü“ĂSƠµÉ¢k(Ÿ­K>đ1ª…ă0”„[Øwx/“ϨOÉuY3µëÚîfú6ènÉCZ’ïQ‘XÓY´–k‹A¹¶Íë4{,{@¢Ç©‚€1Ś;Î6†?‹%°¹«đĐa^Ê~k¥è¹RP¨;ÉN•,ÿ:Ësơ*’,}“₫r kV߈iUH„«O]í“®‰ŸôÓØtđëu67&¿Ó&I†gEA3†‰,‚gyTE…>¸ø‹ƯÁ[ßÁ½…,·|9ø˜a\]7TZÖ2@5ƒ¨®¿eÈ!ë+Öă1ú®$ BßïÉ̃ÔÚ>÷™nn£˜M9σ́Yÿ́_(–8“œFȲéÇ„ÔåÙXbE^O¼Î*Ÿøiî€7-ïZü¨MÄñ–g\@e(M–©Êo=)¤{ƠGí§¡|€H³Í læÂ7sî̃aDV#ÏÓD¥Ö1I₫ƒ>N=₫N`{J4̣X÷œ¾ƯÄúùIÓ$ÈM`÷ÑÚ§æ NÅÖÚ;î 3ËƯ kÙû—³³ żơÜơùŸ˜h­œè§̀9á¶œô˜ôL¡ƒ>Aî¸Ó₫–ŒïÑÎü'´)0¯ ú={¤)M)¾áÑĂ‚¥„*_@æ#ªA*q€¾‘í`aĆPT”Ö¬zÙ¸ºn&[|̀æTLÍ?.ê%@ây™âŸ˜É d²aT‹}_‹2ĐVÅOm'ç44‰:¨ƯæQ@2%] 6 K¦jX­u9|W ŒaØË׉€C~“Í‹µ™°älo“>D–̣ÙÀ”°ªëäÑOû4` fE€2“ô%=÷¨°Œ̃P§nt>戇¢~¸qtÅm̉ê,ªÓ•°ˆŒÄÉÜjú²Ư@M'éñ ½dxMdù4‰—ô®-lœùGb·º¯€Óƒo"$¹c›sMăˆ€Fm`ù–5cFå¥y^åÔÜ«®ăEµ‡¼°4µ€Üä¹&@ÿQÏ$Ă\âáç¶² v K•*á6 ›O1Rx÷„–»¿½¾´v¾;̃Œ²0ó±ïËc+ˆ%4gô§.đbÆvĂkÑl²œ PÇŸà€at̃ÎY;ÔÈû‰GÓ½Hä%̃«f3€Ü¤'ÄúÖgqaHE;N©™«k[RéßÜHïencæ_/=óª¶üèøB$ƯĂe¿ổÀ].Ÿ́׃-‹ <´üPO)¯®WxiƠđ°,c‘̉ïŒEîƯo¤¦z5¾Ü`)ëàg,TđpÿŸ×ă.1S ³ªK>»öņ >:+ #³GçÜÅ¢¨Ơz §DsÀ2'\Ük}í§é Æü¿·b9¥½ƠÊ €*8G[‹́.̃Ó¦g¾Æû`ßj‰_¥EÁ“'ô÷·„µ!ñvHFRNß̣ ÔÆ(:ï·×K̉gF =R‹–Áóœ́øù´8*Håy f™†,ôßÄrf<ê(Ân6!G *ÍĐ ₫ơJ·¢ÍS=’ä á4·8[³z›ïƠM¾3AÚç„dÊeÊ» Ü3ËÑ÷ùÊËm³Áb­‘a||R>9ŸB×ßJ:Áuœ¤ú­æ»YOX+A2`D ¼k!÷t>įFh¤väÙÔ,«¬.JâÙ6`4stvĐÊÖË­Ê#<9¦§¼2DHp̃Ïæ­‘[¦,¢aA*\PơTÚª»rä§¥ß •ÅÿN²cưr¯nÙŸnĂIÆÀ6 (Uư1F×4üeMé_}17,ñ¤pù<ñ±lØRá¯26ÜÛ9/…«y§DM4-»m|ùˆsH°\"ơe[-"œ¢íỤ̂¨(:'×Ê’eK‹|~´§‚; uz^ÇÀ¨˜›H.Ê=&9ÀLô›†nÇ`Æœ|FdzĐF?^¦²ûx[€ÉE[:ÏüB[4Gđ¸Êăa!Uz¢ÄµËŸy¯NpnÊ£Ë́ÛăËfX ßh8ưÎÛ!pÓ£-À¸IÄ́ób&un'ͱ†ˆ c,œ×í·Ăsí%|BVê™X÷₫Am÷s1ñô±û5â}‚®‡c®¦Ü’¢gíñư ›@‡o+Œ@oú^ΆƠb¯`:†ŒBßæÀI«©;³Ö'ơ]Ỵ̈ia’ ‹ăº$…GƠéj’ÿ¦Êf]¦ªu]ñ3»c.Iô¿E(ëäQ-VUi·Æ̣€Ḷo½[[C —¥2½wS–xLµĐ2X=ôúó$ÆUÈ,{ Ññ תyç¶ỵ̈v!C† T”ë÷Bë7³ïÍf:º.loñ”á§Ä>#¼ºŸ3²LíÅä;“ó‹'鸫qŸZ÷´&ŸĐ<–Ă·ö₫kEV|ù³À$Ađ7«ÉÖ¾ççXsû‰“TËʘL"̣ï½jô1ïN8lF^#&‘'uH´I+•¡#Z4‘‰‘§ÜɧAÄL¦µ›óỏÓaÇB,bÑ©…ßEpøÇ’‰Ưå[˜R~zëÿ~Đ'ˆ“ÜØ`é$¶Ü¼†¨óïÑÿê$+Ë{Ó7-6CÅß'.×b$û%lÈ¿*h4¿Æ •á8B¼ẮơÅ [u¤=L׌ü<Ÿ ºrÈNlÚ3Cy ‚Ưø‚b固úÅ‘¯¢ä3 qɃïN‰_)ç>0-̀ù¦ô,D¹6î!M]°0Àêà–]­ö B mÍD'çMˆ‰¨ Ë``—‚ćä8äcêă÷¤H†öp¥º”rD„1.ßÔÆü€fAĐ@C]`.ûà./ßhÎ†æ ºÊNùv[đ#́lĂ»~ä0÷ÿP3V:Đ₫pÀ»º*ÚßD«Öˆ=U`ع‹ø'\û¥ñ1§̀nNđ‡ÁEAXiơ¤(o ·eÇ%Yni¸–EüPE ¬GU§6#‹&(äÚWú­~ǵ‘%ö}Á,_˵ƒĐ\æQ‘ ¸‚v;z9 ØÖÔÇ~qå‰F‰6ߨÈ&¬FÛ4ÿ %[8q®‘)¢Obºr1¾IÄJÑ"Ô%îö)@sc¼l¹¤µGT!^å“ :­̣Åk>vècœv—3ÛæUËă¥p̓u†¬1[£¢Oxœ…•Åđv$È\₫Y8g"ϳ!QÓG|áB7·9 Gj…-â¹ 2ăcî_1´¾WvH/"F„¤1*ymëVHÔ;;ÿDÈ÷Ü£*¨Ær´øÀX́jâI\Á÷ˆµ`^Öä(}¬ÿ”‡jg^¥˜¡T‰°†·{?´âI¡È_]rëñ¹jt)̃`Áà+Ç> l >¬>+^²BwK2a+z×=(áHÿ‰íÖ“5 _æl̉NY™¸ßƒ×£fƠU» Tw}›Âù›‚è®ÍguAå/«QØCù;í§^Ú¿©}w ^I´H̃ {?ˆẳ̃ÉT¹Á̉N%ö[¤¤•CÜû¦Ü‹LƠ®›eÁÀk7H¡¸̣ŒöÖÇf›¸.P¶EuK«kÖƠnî{âøÿ5Ä+,UJÂ:éa¦~ÈÛ¾cH·ÉÓ½uç@}QÏÆ5ç Ưµr‘çÿä ,¼(/[Ê•Q…ذAÆ̀G‘I…óÊáK !­ X1j'î„̣±Aá4¹¶s'# ‚úHŘÄO²Lú'ñ Ch¬ô¯›7‘‘/Ÿfº08Qö†1E6́Aó9q³A§+inĂnDâ}<zPm<úX¸.ÓsA „yY%Míôº(·>Y$À–p+<ĪĂ$DïiI.ĐÎ¥oe —¼],Àzá|O‰‰å1ˆ9לËVFñ'Ù8A‹"&)ôPB†ÿ›7©ZE%Nj™ÏIf7̃0; ÛñïDÿ3%×ÑÖ–öo4[u~AnS_ĂéÔ¥ŒØå„àîÑĐe± ÿXM'Am r‰Mv\ÿw¦Å#ÿo\,è³,¸5…ÜM×AG³‹Ú#€e»Í‹`\äUÚ²•\ïK£ED@²®[W2‚*v…z¹&ÏWœÛyW÷™ĐY¯CĂƯ•§XÅMs½M'd>ÿ©̃€̉!’Äc$T‡OÔ—Ó¦íÂV¢-Qơ˜NZà49 ó©µ₫0övQÖA\LAËú/ô(N+äyâ;…¾7WˆcåŸÓ“öíN™7IpP¡¤áï;ùN¦mÔùϯÜl¢1¯₫kK̃Èâ1đ°̣–o¢l7[—>l,Ó ÂÅ_̣²XÏ™EÍŒ…‚́z:çÓÿè}¦̀·ç7À¦S® ô<ø’u¿†é› Ü}}½¾áy¸ưø0y+~v®Cÿ€ñ¯­«ï!!6J+g]0ơÄ&½è5<&Ăm,ÀÆtàËååÎï¤ăËØùAD³X9>æÆù ó—Yi÷€ơ/ØÔ7₫[ñ-¤í~»H*x‹×bäĂñW;‚ª‰₫üï2Ơ»öf_£‡]0kÛ•œ•0º…¼¼»û} ½E¦{»ès₫Æ¡ §µÓư^å[NE\ƒ.CyNxcoµ¼Lz™¿Ơó¢°x"âdwOÏ…¼ ’i!­É<|Dÿœ<ÈŸ¼âñöºRødM̀lO;B@%L¡{9†Ị̂s{^Âe€̀-ËƠÜtKÉaû(Óqû‘â}¬q€1Wnçâ×x®¯N`ྷöQ~·ú+Wt÷w;#àœ›å}Z‹ủks<â'<•¼“)‚¿áú~Å„£T̃Æ z„̉kÚ‡W(ƒb—ù¼7Yöä 4h̃”ø÷k.°}xW ^•¼Z´mbË>¨¢ÑÉ®&) ÑPæà|ư¨ơ§“]¤cA`¢‚:¥E$ç<¤^SƯ8-.ܵº—¹db¨kz0µ”aŸéóÙQvÉ Đ<'ú•^ÂŒö12`˜Ơ³®©$d¿1!¹ (&Ä)WÿÚµcQÇ@v¶­¨Y!ÇFùpNICdÎLKúl.çF_àjØç¿ø›ni6¹Ñ"9ÿ{½"¸D–ËEôóïK¸dv/Ê+é1FÛl⬽ cP@ŸÈgU!×’Ư§₫ç+©%`—å̃2%è²Éx¢ -I-:Üư ç (í¾ÿ;>„5äLb‰ùjÔÁ$”́PÏÎDj™ °V=vjÇ«&U\ÔaáU¾Yö\Ü#¢ˆæIŒ¨3/t¨o±@˶)·™ïË¿ÔïDRûXC—Ÿb=p3»₫€1C bÚuÚ2©NîE¨Iy½iô¼½o±$âÙ[-TV3Ó³qÑ·12n ¢JÓĂ%Gî45÷äM¯&5z˼.²jn7¤ÊÏ G‘½¼>CgĐ®µàÑb›´Ç>J2Ï·ôù€ÈAÏ}đ{™"|®%èF́Ădª̣ª¥¶Û0¦æBNæ©o±Qí› Ê k÷̉–NÔ¦ù·¾‘Ă ÁĐ‘̀9Ÿ=bç”—+u%óŸB 982†Ăh;â®I›aKhÎ)o{™p^ïX"Í- `ÿÎâ„OÇ™ÏQơ ¦«PÔ`L¿b¬l“Ç{®ÿñÔÎÅ̀æycçè•]Ư}ơfüó„ªL Ë¢üøU1™IÜ[̉îÔÙÙñÑ/y pƠ&´•8¥3´kgPÁܦCcáÙÍVYÓê Rà›Ăyæê•Û©jé$«kOत~ŕ?·jïIྦྷÂtÁµ£¯.üIP)œ--,£,“œ#W !öƒë¢€"xk{*Ăo9Íư₫tÉç‘îlØỹƠYá"0mÇv·j¢₫ÉÓè~†ƒ^Á˜k!—û9.¡ïÈĂIv±; K½{ \zs¼1¦óS›ç‘Ù¤~³Đˆ̉ë€k̉«@bm%œaÅ®°Ô­¾j̣EœÔR®ÙË«xŸ·$bgŸˆá´f́íÈf*@ªb̉ÉÖ­h#[ *̃%Zåk#£CÁÚ©&Ñ–̉'­§ÇX;9:Øpy»8K‚Đ²̀HỴä5́ü{kè3%đÅ( ́G€µKÎQYw _¸¿mCjJæ¼ÔkùQÄÖ›( +Ñ= `±üÜËËeUm-<öæw±LR¢ơ@À*Ûˤf¥ÊéןŒú"uëâ… ị̂¾¹ éÉha·‚gجZ0ÅßÚĂƯi¶{́¼²Ä;S`Û̃KOO’ËtĂgØ];pÿ30m;×$ †’£Çûˆ .dÀYë‰)Xø Á\À1₫ăăï]~²¸NÚ,$–ÙØ’Üùv·R’‰t…₫jD[ˆmvœ[<¶ ÇÙåI× ¡u'[¶_IcÚF6,8Eîµ-Û5ñê₫*‰0eÈiN{êû‡˜œDN¶«ƒ†eÊ€ŸÀ₫ ‰Gz§Í¢CmPpc;£ŒËRÈp©̃Ô'lH°Úà¶ăeU€¹¨zqcÈHøAÔ¶»úÆåÖ´Ö7Ö‰Ăüœ²h{ƒ¹Hÿ.¯,zẠ̀ŒU6ÜYPú²:ÆÁ‡ Û­Ơnùt<™~0Ña&]¸IBá¢qºK›O¥`́:¼Ôœ̀ëbO7Ơ ̀M¸º?S«[BØ~?4R4RñW—ă4‡¦ ¨i²_2TƯ¢7m®<,ÚµÜ,HO…‰0+B’E d '\¤mµy —ê!£LZ€ E¹ _')nưJô¾Z瓯b‹¶*:₫>Δ,J{7¦Â01…hÂLQÿQs¯ Ók©ùG@c…§è…D·‚…:l¤å9Mo¬¹K†.ÄÓ]A7rANÛg£ÚI¡|Bª@5°—¡z'¤¬ÿï +kƯ‘Ÿ>‚¹ ‘[ÓuÛf\˜9§ư/2²âåw窯’im/tht ̣ ³M.D\_]áœå)—¹₫&û|ÅÚt£+Cß8C¯¯1¨¢¯‡%?Ù,·Råư;y¡8DÓ;›åD¸Mï%Ä»F;Q̉²s×!$‡ù”{¥ ĂÉÙ„Œ9{½* ¨[5 VCê·÷aÁ;îW€ÁLb!¹†èijIư¼;e¢Ư.Ö¯öÚ@èvu\ksB~27±:±›‘µ<ú%öÜl盥1Æaº@Ü@îưTy}ˆö|fx ØÉ­ú l®z;’â"̉Í3À}»v·À1€ù]¾ZïüÇqü:6C˜fĂ5‰É æÏ“LƯÇON³p‚µ–É,bØc/LÀ’đ¶IˆªN¶ñ•d±+çè;Ö‡â½{.æM*±–N·•!K¬c@Ăßâ1[Ï "äK…Û¢bnÑƠA}sQ®Zs|ç›ølă­ ¾“q/ ¾„x*›ÊêYL.´ăD¡BA`²€.ù£-̀£ùĐuïlåw1}ür¥eĐ6àd;¼?+é Ơé}¤‘¯Â`E2 1Ô`lÜof¾ø<}xf»Dv‘MëÈ¡K,́FI™"…Ë;:höƠ×qˆơ û>O:» m—´u™´yÍ₫†W#"£B-!÷ÀöP€ë¹ÍL„7¨̣ÓEʸ†I‚·?lTm›«̃1&€²È|2 ĐŸïªÿ~N“ï•ÓÖưÂKÈ•%ö¸°H‘"ä́±á±Æ̀ô¸Â×™A¢‚ Ÿ“ïêrNª?—'|8ú\™<@¶Óa^aHưXT~™~éÁ+ á=ˆ^ßéF¸³£ËÛ¯‡w…ø6üYm̀Øv°É4Æ]Q#¢ÅÙñgP̣óÇDK7ô›®i3£Ès A<†ÜÙDüFµ›ÉôË;ß–Ö} ÆÂ$¸gNä@Pƒ0HäªØ2䙾.©0„Ë;|‚Dmjб7™~^¾0³̣üv¼ĐMSXơGV†_đ¢ˆnCÈ–Đ¶ƠÿY1ç̀5~ôC­ˆù¹¢ ưÖojª¦|5ÄăĐf̀„¾E‡Á{ X©ÂBß8[w+UœRÿ|‘;hÉĐÍ`‹gSgø›éGj6+̉wđ̣g!©Íæ¤r`ǘŸ |4î]!>×>öŸ{Ñ¥yqtqß-lÁ† ~4º4ÀP9†Ç—_›1ç²­Aóî{e乬 =¡e-éJ y#ávA1º€öñ¦h¿;¸Rü™q"%`-£7CH=¤Hbâ*y(’=Y2+-¸‹<Ë8 ₫¥Sô_{ëÿí‚á¿¶çÜ»*(‘J²®ă.lÁû²ưJºZ7M?ÑßB/Ế±mH¤`汘±²UbưîÉ­/¬³ñ31CÉ ơz°N£ƒ†¬¦`œ€bƯk"¥(~Ö^¯s8F|P ̉›¥U V”'"¦µs¾=:åÈŸ„$(₫·ƒ?4°àöß_˜Åùă.Î&oG‹́N³‚íŸYQUÑRD¿̉jä„¢ºá¥ˆA/X¦ÍÍù½F÷{€¤ơÇ~Uñ÷ùmÆ»( ^KÆ=-`°²·O=mO°̀Öa¢â£₫%r¾6‰B•áªÅ€›‡̉Ñ´\€ˆ‹-ø!¥÷ü Ê #€kÆ1ß¾àñ‘6Å h5|HD€û»<_G×EI₫׉GrÆí>ÈYIN•‚ù®̀ăW#b·…éGÀ€ ÀçơvºÂg‘̉e«u^z_c»¢ ·ĂÉ6'` _¡`²¾{‰ªè«G±b5Y¹₫¥z¹f÷\tUëÚ̉ÊèáóE†œÿ*.g®ư¡è;gH;At¸7ʇ´Ï’D,”ÁK₫΀,ôfÆ9Ñ ³¦̣ƯÀÿ†d)½clº€BÏ”făV Ú~xÅœ´:ሙ'L¼A„I¢—û÷<ûÜ7ưÀToWdî́>‚Ç‚BR”¤Ñ@¸i—‚3Ăyç»Ẽ‰¸$d„k© µ₫ßyV×”e5Çâa?0,3,âÆ™YJw‘iSK;Cýoѽ]{NrFÿfáç̀1 f¥ñ¿VĂÆnçQÏĶ –r—Â_‘ëÛ†c48?f*Üy²—Qæ> Å,t7^‹4oßÓ^A¡©Ht¨Ç7j¦Ÿ¿Đ̣Cï“̣TđŒE ŒCæƠ77d6[%'¡/{#ñY2â‰Qà$·WÔˆăÍ$’óÑys¥ú_–ë×àR’6Ư‰'îÑ/ñŸ.}»iŒgHb‡¶Ơu¥đ  '"øñ^¥~C÷;øœ8n[Oµœ!1†Fȱ1RG7™[̉’t;ûD€´>¼lƯ` BƠå†Zƒvzà!FuEafC&W³7W9%U,‡ÑJäx+AƠă|yÎÆ{ăÅ—‹•SM¶w*pÙ¨&rZnâ±P®Ktç1₫ ÖFÎƯÓAF/đ¶9¤Ô¼.gĐj]ơ`âÚ %̣qĂfeưX“W < f­́Û ?FṔ •™é¡`j́c͹£ă#ô²obđѵûf‚gxqQru<‘@ÈmA|&ƠÔø.‡r₫/±Êêf­wñ nykư‹)—–z>ƯÅôÄW-Qù¿°ù%¨˜Gÿ°Î~x²ạ̊¿̃{xb»‘S₫°¢cˆÆÆ ¢¼|;Ç(.\uåƠ`Ê3kÎÅØăVđaWèè*^(âÏG dÔ—jO T)¨ùhÍiÜyaâ>^d«>¥àÚaà&l4íφẹ’’­Ç™¾ÁHù*½gQĂ8™^ß•øÑœ%HO%$•%è»Eä¶¥io (PÍ?;tÅ= ̣̀¶ñø³Û4`u9ÙKhÙé{͉’₫¤DX’x{~ïÄ~Ù>Y¤̀ ù‡˜bQRÙ₫̣øï:Å«l©6nl;MϦx·æÁH ÖEz<îùofU*ѵuç\M[ùEÑ<90Hév́o´1g'oíAÿ³uñAÂWøï\¿ê¢Œ†ÎàLï[pé₫đ¤35ÀѾê₫WñPâ%Je *‘¢©h@d]ß<ÄJ̃Î3æ b,}4yÿ&¹hc€KƯ¼*á²’‚¶<"¥\Í †¨à $lÑLŸ€v)ºæƒ’–Àéè²¥[îO@ô«°°₫q$CP# oIÄNó$ÀÜÿĂF•=¯bçfáXŸuWrĂr0 b)ç× ï3FCơø†¯ä•[ưAÊl™/Ûâ/eö²·ư=´àFƒM$+ؼr…À‰Ñåæ+“LÍM,³̣á¦+·knƒî¾sgÏfZ£̣ÖµªgP¿(ö“KNqH6Χç|–ÂƯ_˜é Єïê \µ/µÛÅ/fñ Ôk‘̉^[8:·àŸ;±̀xÙ¿&"— O92Í„ù-xúRẮp£ÿ̃ă˜.̀o¿a¬Œ)Æ{zx2?̃¡n1„ü‘æ[:à€~~|nï·ƒY —¯l­àAă»7ƒ̃Ú˜6Ï"»“'üb>ÛBȶEQƒ¡|Ưo©«Iƒ¼Ñ4°CwvƒN,ûÂ0YÈïadÊÂÖÅzX›ç¼jđ½ŸN²ÂÁ¾î’®ăMöäÆéµ…5‘`±‰3•rÍÓđp1¬=”9mú×X%p™¦çR abp~·»¢cù­ 5ÄŒƒü~iCÛ¬H,vɈØH¬Ftï“`ăÿ´³N̉¢:N”¥‘5t?’DeØ•œl.ˆx84÷mc^79Să7WÁ>¦ô4Ö0åB÷q]¥Xæê„P{đGT¹/¶×§!ĐÚÿ~) P4eŒL+Úû­Œ6ú!ߟº₫,=û̉Ë4ơ*EÊ´ƠWL©øF¸†ơ@–AÉ™-og•¤ÄË,!$å–F¼_YÓdÏĐq•Hê7d•ƒ’Úqpăꇽo⬔:üyïG̉k:ѯMïÚäC`µâC4µ-:A$a½¦W—ÉïĂ lsàö”ém­–Û5Ц—?ÿg6(yÄÙÈö'/̣—[m̃¨Ơ9Áœ©*¼Â~ö†C7/~mê8då—Í…°Lü féèET…|G\¶ĂèČѴñÁÇçwa*đœo"?E o4ßÿEG măă†›È¥>QµUÆÉ¶ưùÀC6æ‹§NóŒEa$|FƨN†´T¦Å_´ScXí°÷yAQAŸÿm í‹@8™åñØÄh¨[\¡vĆ_F¤”ª‡̉¸3ƠnZ?xóà/Á ›ÑVĂ/-ăb0=%Ëô¹g½å¬|é×¹í$dÚA¹Xç½è^fª4µ†×ÛA\A™)¥¡R$%LÊH̃Ö¦p €á<A‚,’À6‡ó̃‡‡£jâïâQ8r?Ωi*Iña2ˆ 9­Ö”K* À¶äªØÂ%“Úg$Wè÷G5VÎ_¬$·eh}¾} ê:z)ïCD‡b³ÛΨZBüÑà¦æby°lf7¨¦ÈÅœÉ'0PU ÖqŸ,!Âäß°Á-Æg‰÷®,¼Âhª%Ä ¦ Û¤fceä—ö¸Z=¢±·2Àvb‹>j„,3îĂ~Đ%å§„3Đ}¤° ₫.ˆ£U^Áéq9ñQµ·rȉ_é±KúP›Ä‚½†Ä}]\rFFÓ¨~6JC̣O,®Po²ù[ê.uˆ!ÇÜPv5ÂE”‡ß† DưCÇviĐ™¥9ÅùÛ›G¹̀r“»ª]í˜Tă“×c \è6ÛBûY·¸P¿5‘mPđߨ[FwÄq(““ĐxñÂ[÷u™ëûÂZ?”XèX*~í¢C.‘*Täú!å—l‡?k¼Ư~~Q¡s©ÄØ6̣²eåO‡O ûªè9f]ØW¨I'(—o±µ̣$½Z…¹Yæq.=’;À >ñàgCiI+·ètƠ4ÊG~¿L#§„SÊ4=Ưsẳó°2ĐÓåªyd f»tâ(”Æ̀đđé< 2Ëë#aZáàgW m¦đ₫v‡vC§útî”Î=\º½Ë½öÈæ4¢À\ t.ø.Pl1U—ËÀÑë₫¢AÉ Éå3¬x{éœD$Æå€d°?y¦áo»dUAtNËÉU…Lå`́'8^×7`?E>hÛ¦)3•ºà©’<:É÷N³9¸ƠZưÅmy¤†æ¯ăƒ8Ç̣¯rŸ™ËËñé°ï“Iw½©ü̉µ^’Ú²Ơ,äyî*ª‹^¤Ư\G b·oƒHÅQÉÁ}4WIaÊ)aFü̃‰Á´‹ A.”'8˜/ˆá¦O˜´7gñ~¹1 ¢M| “Ú ¿"đÂVÑèjLY·ÀơïƯ¤zà T;Üî̀₫”„¢‰&•ăM(*‡½èw5`… QÅÁª\Âú5e0>rÎ2륺R 3¾ùƠ«œú‹{OsB¹Û¨YÖ«æ<±E¹ÍIÇQ”̉đƠ*½Kyẳ_Ñ!4/VÁÑŒ5á®?X ù±®`45Ă›ä¬K ‡Î2÷s “GuĐ*Ÿ`†»Q¿îzh‰¿„Âæm¨¯É4Ø7P@˜Đ|+¶PX*7́Ê6•$¸ĂºE‘J5#VÖFÈ•^µB%M¾`®dAYö—It= †6&¡¡†6¡Ă­ß±¤eæ·ŸD>gY*nºÅó̉¦°¤–ÂßÔƯ4©*O1ơƒü|yÜÄl½œăö”P +¨Ä U¿DĬ%-§Ü9»ßÖ{Ö¤G{½½ù¡_Rʵơu¯ïʘSÜ‹Qª#Æơ´²pMCu3ØƯo+ ¢´Đ¼¯³•[Ès$×o]oÙ?dü˜§¹la8iăNˆđ%v¨Øyr÷v†×&Mï™Úó˜®åŒœâ[ºU'u(c‘ơ0đ”̣J"ÛŸ1µEÅÇVRØYôªåhÜØ7FgˆÓ>TIñ´û1 eRVæĂ+€p¯\%HËÖïưË’¸°bf½÷ …OFoñ«:$ëOÄ©œ»j·oƒ3XPë{ƒ\uÚă™™́%»₫ˆă9çFr¨wÄùˆz`¢‰¼`ƒ ZLѰ/ ²̣Ø,VÓÙ‹#®ăoêBb@ P³±êY™mqj½ă1 TÇNÔ'—¼ô!â€$î#‘\ÖëMÇ@?äåô@™»ÑøJ[Âơđ8WgËtđ=´çˆCRư,£¥rü‘™½F¢Ÿ w °0¶÷ú®ưÉ#ß.U€ÀÛÜ_#Î%†§-HơæÅÀ,pë §&&äsƠ¤-ÿ°Kc—ùQú´uÂù¹¼†7^áC]»`œ.nj?©F¯Óp06IË^‹éße‘’µ¢œK°~½­j©•O3f¹êqø‰¸h¢`k₫Ơè~ŸÈ7˜^)*KơĐ²Q́ƒû\X8® (Éöä–˜y»f¹QØ €ïn€ ¥û́IUô»áG®Öw0}^‰ïö̃>h̀7êúLàƠ1O—Ç'ÛqCơ¼JYM±‚|(t̀³¬ưú̉Ñ^oµñ«Kiz₫`bƯ: 5Ö½?mP–ÈÁäy±ÈwœNF;Ï$YÜ?ex Wx©½?8æÚºˆîđØ´7Öëî‘CósÉxß¿•6M˜j·ùfûÿfQ®XT€ŒAëe¼đB́MÖÜpÉrôÉ:ŒCƠ¢øD̀Ṕ*®ÜÊ™!Í/ ’ 5-^R¤»Í¯î·Æ†ĂFµ́4â{ڲؖ$Ûw(LGbcưóÁ önI%€§‰•¸7Xù"5¥¾ç¬Ÿ¶CLE´•¯³̉Ôg¯î_‡EøCØ»Îø8HpíXyYz; ̉ÖµÑ>ïÅÛ²ïÂƯNÍưÇåƠưáu_W‘=YJ-±WNCçÑö°´§i-ùGGÅ©}àÉo?-:Ëö#iăÀåYç̃ Cc¿#̉y¢ —xˆ̃£8!êÚ÷¡f`Gä‚[É_B·Ó¨»JmT»±rh‹â妀†}Wiî­Ân…@£â^úæ½úaám`<çÊ₫2âç/î‰Êf_ÇlV_ư*¹w¹ˆa•É Wú¹̣ 7°·泡û áˆƠëà˜2àâ]p˜íÖ”7øÁä8“`Û-¼<+¼}î+03îÿbÈ¥._Ç$̉Ç'#Û[áM°ăï/][,₫DMGR*Ơzó`–|4@!₫ĂQoa/!èñ±MPoƠ¡´ö"Óñwˆ‹zà²Qo"´=¦€®bƠ›P=œ£‹§Z…èY ]Äq„+og©à®}̣ÀV'Âjv̀¬”uaŒË™yǬå :åÚ@\¾ùBÚJUª tÚŸ«¡7đ‹:3ˆøÈëGíÂF3O¬W ²m›́¼đp¶H´ | ?FPï&¦ÖFsǵ¯(|ØÖ2”’:Ëù¬ }¯îø3]£·Ø¥'\´Ÿ§Œ£~.70Dz #δ˜ß‰j¯óđvVs÷5ë¾́¿óđ¥Â‚úôVYơ—´ :ƠÁî–™êÊ·GH93¨@:?$Æ»`ÉM‚Vu€Å%˜(ö ½z^xøê:Ù¹#́A‘hSV₫™¸‹fŸt̉m‹A#±¾x+đª™́t^ŒB%v—d·Oe¢ư .SëˆÉ-¯¥~""妡đ^ÙÚTéÙw Ơté]BùϤ——“Ī®… ŒĂ4+~+cȤlªA¼ºˆ÷‚¾akä ’· ¹ñåœă5X|I¶y‹†>cR»›{æ³P#Røq<÷'KC®\OYív°é %l_ñUuÙ!7p¼Œ³̀«l_p«íS÷o‰+‰'.‡zætKOu$qK”……ë&áB¢ºO2û”ö3Ư¬’MÉíSèÊi¨JÍBÏû!K2m£”Đë\w÷JzL-¥bƒ}“†OưZƠRUí»•9ÄI&SöÄJ]|3¿¾&º¢ăb?æÈ(,u¤$ÚüdQô‚æ̉û11F-$!}âà¹7̉ÉÔdi¸^­,@ˆ ;£LPM€­u¿„mÿj%—ˆ0ºÍ:JQKúïB å".’ æGU–ÑŸđºÿ‹>l^ ]½ Ơªç > mÜ₫ă½ 58ú˜±̃ —‡Œ¾¤s{“mE±‡x™çđÿr7bø$$¶Í|9+¡LÓ64̉©×ˆ¤Nb±Ø̀qÇ5Æ#¼*‹i†·ï^E,̣8gẠ̀y‚´a,ƒO~뼸Đbđ#H¯÷OdbÀ̉¥´LÁI½Ïyk+ä×ö—ºeÎy8:0dŸăt-#4Ć%UkæEsƠŔ]RÔ1E9S}Ơâíê I ^4¶]‹ÚÈĂê›:a^œQ¿Ḿ\ÂT˜ÈÇy.mÁ6³ĐI„’/bpº©9.ØÔa¦yFo.e6²U•µ̉ øÛç÷‘´ RgăºójQ×ÅIŒ§Ä:~$«¯ơG¾Å₫V›ú ËÔ¨§ÙF5(‰´Èè%²Y_:w¢sg»Ûm.Jè%²®zHØrèGÛƯÆZA†‘p¾' 4©«§̉¡ROÓ— 1y«®ë3Ăûn¸lBK‡©=bP¹0¿¦;Œ†›Bkà·0çÊ& ”›„ BÁRß_/.sŸ>‡Ëèq̣ §5đñ˜ÅÓ½ÉXÔ³Uå{IŸªƯÉ|…6*eÖ{´Ód¸µ,¬/m÷À^œâˆ·.!úQ¬=y2FDgÛ£’w¡Bà—]»qÏK›{›¢ê$ëF„^Uu)̉j= EåĐ²ü·P„‰7éæN%#guËQ ®Ư×É8¢C«¡đáFí˜̃$Ö Ñ4PñzÄ1Z­Iüˆ»A$«åèØ©gÂî[û‹‚鯗âPüR™¨ë]èKđyí¿Đ³©Ë0ép®í>E`C”‚ Ưn4aØéb6·£₫  ¬ø×óêu©„.5§1Ÿ-Ù`8æz Ä`ÎVÆr¢QÀ§"Ù÷£îJ™²V™±6[C$PV<(¾sG·Fü²TÄ»nöÊ/ö¦ë†!Ü6–"E=Ăơ—°¸á/¿é±" (^ÁÛ(àĂªC"ñª´aƠ V§¹fâÚf_Oo¹ Ó=HfS¹ kJâ¶đ÷n^5R±:Đù3é{$̃kÉç] 3w…̀ëûûÊ$ª hÑ{x=Æt…Äû‘/^[˜gHËT4Q…¦x"àj[=Rˆn|;/ªQàC;!AUj…µ >yÎƠaøü8`µ\km9H{÷¯¼LÅZ 6½…˜m±Jeqơ‰Ùuó²çÔ¸8½8L#.Đî)ó/¯ĐqÎm̃)’é„’×5zñ6_ÿ•i>ëëeƠ?XqP|Ư­Û( °<µ̉ăB O%ơÍ£M#í`±\ù±áL\ú(‚„´øÜR¸ÀÎG…±°fPFSơVÏ=G롯4½¸We:Öê«Ơ¬ªr´öæ/ †ÑH3pSÓn«3s=‡ä4zũoœµ1ñ6×(µyéÑa’6¿¶çÀâéRLæ’Mư·XIƒ¼íjsÑjP1.i³µÏÿ(Ëú-CZ̃%zû'#¡³:úü&ĂA&œ ƒˆW»[P—Ồ´4\äbĐ̣wV‡}˜Ơ~‹Ö|ó`G”`jô%BQ‚ÿT×óít&|Ë<28nü döGtá’Ç}:éÅ2¼½IƒÙŒ®¢hPúÜ£`M‘¼Ù¨u¦ü°ïŒº#ầÁÙgØ_¸¶µñV= ÄO1(¹©NE2ÿ¨bÿHÜâLwƒ̃ØYÖđ#%ÔÓ̀₫v]ápD®ºb‰…Q́đLßê‚ÆÖaV}áØ _ÓR›H°®ÏƯÆÙ2kÇzˆ̀/̃₫L.̉\ OĂ×Ègµµ7 ]|tVûH·˜ë˜£ù_ô “?Q½ÿ2Ù¦~8ăt߉Ê5Ó¢ §Y71[&±æØÙúb{v₫UĂ÷èôQ×®+vˆ›ëÑe– ĂEéĂÄ2ă^¨×]ö¤ƠOp†k ×’”2 Àñü¬múÇ¢DºÙlI¢d0‚JF…•~ÇüM¹ĐNé¶4¡‘£~Xxi¨v«ăÈ®œ́‡¨âz­ax-|ièđ)h́\ {Ö'¥îˆ'ó’N‡M?Á”t”C|°¿Ạ́î¨pf€¼¹¡Ófü?'RÁ<Å¥ÿULÑư âL ˆQÎ;©ûBw— ¤FCh2.Äíg1¹5èÜMÛú·ce¹–o¦俤L¾Z̃¯‚;5ÅÖ4¡ªŸÈ4I ]É·4@K4+x@0Î"ßgßóØœa6*8?QOyª­ÜK¢(ç₫Wª ́ÿÂ'ɾ…_ß@â%zÖû=ȼÑî«Z₫d7§G~₫]v¬ơó–ĂŒEB[UæJî1ÅV´”zHÆÆ+øVç©H½> H÷_‡Ô“?÷hI´ưÖnë>ÖM‡b.Y0Eó×' »á $eạ̊¿ñÂ):ZHÄ ö¾ÀƠEQÙT\n€¯W! Á?Bơ§‹7¶Éúsî‚‚́-$vesØ`Œi˜ŒÑ́ Ø „Ëa‹ucæsKQ&0Í÷™›‡Ânp°î´S¬®GáñE„ïGđDCÆl{úi‚åAû©À™†À‚»ơ%Ae„¯âĂÏÆ£v̀;&f,´O ÊiW5ĐK&F߉xƯôæC…SéN€ÚVQÁçM”îFÚ2Ưê??²ó½¦G¾‹L–4 EaÜm8üÎDô”̉¤À\¯‹WK¤,L ₫IùSDö©÷‚@a•"O½÷ÈÛỨÁ‚*$vÊ@‡¾á×Sϯjˆ¬'sZùå!‘¾·ÎhÈ7~¿‚DµB[¡|ø̣é¡§ÿ6tË}ÏE`6‰ÙCĂ‹S…RláS±¡nơÑ~ÉJc¹¤+&̣ÏŒ0ºăqA¾‚/À° ˆ70"Cyyn¼z—]3|829,¨ WQƒKMÈEƒlIÔ¥¼xg{Ư c60V‘ ùö¬„†UÚè×î3Ă={rüƒº³4sÖ_"V®ªỴgơƒ”°‹ûwúñ—Ô‡Sf††‹ jÇ j]ˆ@§û‹² ́Fê­ÄZ³)d̃ó}ƒƠÀ«¬R?iFÆ̣ NPƠJm2"] XÏơüÈ+‰fƯ%ª ë…fÈ4Ç*I‰lÊ û¤XR2‡øiJÙĂpWmÈíͺËÓZz *9_À×mÍq6fEÊØg̀\Œe‰L*x\yE˜](ŒX­̀œüøürih®´LY"€wɽ䪸Éb7-;̃ˆ*ª₫bi£›Ê™Å$$0s›Ù­xú…^-Ñ.#; ƯÎ(á¤̃öưL<̉=­{kBËFƯ©DgŒƠô2;q)˜£=É$R 5ùD¶J"ç#̣˜¶|—4m(èRÎ.̃”ÈĐ%›¹@$;ú6B•ùAÄKúƒ$½Rá"f₫%dÀ¹ñ¤º=’î<Ç:®H- ÿQúÏlÇxw‚ÂyøÓÿÎ\¤ÀûYUgÔªÚ¨¬?»e¾zù©î&j̉°h%gCDÏP“LÆ̀Ø.º¤U Áˆr ̉¸Ẁk°ZRÿÔ‚¢ |Y|÷ë9–p™„H€°6¨ùßÍ5RùQóưbBÊ&xư}´½¡Âë‡l¾vEüñ‹âöÆá5û›3CˆvÙocÄ:f刻_È“ ̃9p@ơḥ*—÷_‘ÛB”—!›q¦ÓÀ°Q „y?đ>'\¾0lẨqÙHuØơ”eîÿẫ†³‚µéÀcÉ·‘,E×ÏÔân¿˜™v%.G]„Ô ùuu“Úâ‡á`@N~ßF{ï°Âx ®Ÿ́C–h? k×Ü}đˆ>·`)eXAụ©HÅ•ƯO*±ơ“êųëkƠ©<ä ZÁf}é»~Nz¤Ư†³ù%qó ñH˜3’«aY§œ@>A™Ê´[¤HpX¢®bº[`Ñ<Æ‹¤ă¾=Jˆ«¦¼zùSČܱr!(,2^kĐÓ¹÷¸’L# —+Å3EP)-ưq²cÆJày8%YPj QÓt™µU¡¼fÑÂ=ơúLA$Ê ³"ñŒ û¯ÓK§u[ë0Œ:är›[2q±Í™jæá×2̃lwL>jømŒ°¾" ¬Y¤_Ë¢S¿D ƒ€]Ư ¤KGA³`€ÜƒµÓé»÷Ÿs„¶ä‹ù µu1‚œwZ7%™nX‡‹#Ñ~H¿‰ûG­̃O®}6ÅñTos¯@ư%n^Øáp$jX$A hă₫&‚çàă÷’{ F‹æïúiN¹ÎÔº.ÿÄÁîbo‚ÿ~3´xî€< {*AajRé'\üf0ûƯ$Í )²Ûµ‹À̀ô~ç‰L‚µă· ?Cß¡£ÜM$̃:‹ă+½¶ñg· %„™úX2ékÉ¿´$‚Ï ÿ]$ưëë(ă ^U—́¬kˆ‚ÿÍë›Ëmk£K´ă˜¸5Î×ÓÿIhîQ>…¾üĂ´Ö±ÅN›of=ù÷Â×¢4½Cn÷VpÈ2¢ª•¤` mº„OÅẼµ}“44î?(8ä½*¦ÉxV_»́ØöÿŒÀKä3 Q¦³§ç{)¤&ñ¤$gÂ!æS6̀‡²d×}°~ºLpăÖ`s.5Y/›Øđ·©o™ ÔûH`5đÁ,ưËÁf†ÜjǸ*M±Xœå½–X$Ûíû™ Ÿ¸ÇˆÈ~ʸ°*κ¨R> j6f ©-%ME"IiW•"ήkÓxx_SúØUmY¤> +ˆs₫(‰?·Ä¶^_®(ú HẠ̊̀³Ú£± ̀i¼^æ®X,;*ä½–|Ú-Va= ʆYœy¥Y_mß wiYă4uÉÚ¯˜›²Ât˜VƠ‰Ù Ñ>Đ₫êáåK7KLµfP̃TbÍЧíưæ–È È·Ø^Ư ·˜‡Ơ1ü‘jˆÁ”ZÂf¡Ư˜1XJGßx^Ö…ï²ƠبX8¢KÙ®ZAS¿@°|7qözßçî•r88”ûÀÔb,®`¢•ÙMj¥8)¤Qÿ)̀ç;₫M÷5{KµK4n¼Êí †BŒ¢Á]UU*Z¥¨(ƒt¿Àá¹”V-›ĂBÏÖucd̃¢‰”$.ºÁ„ Ó*ùÜÇ.,Ë£yNƒl¡÷n$‹ÎL ¸Pd é ́5 œz#öYùÎ@Ú$}³ƒ»²–”W©¬ChđG› ­¡Ô¢"¥FúMJ Ÿ—Ơ‰Dr#)Ú†œñ´Yk\8êá 2äÿ"ZÏÊ~ơé;¹ÁÔk“ÊÇ46fĂ@£»%™,ª(!säu°Å¢a=Íđ6¯ö§Ú|\4ºvCn‡€çµB2œ‚éëIÆ­0¤̀k]÷Ăª7Đr éXB‚ü$ëî[Ư´Q;K@Aơ#¦%ÆXLäZâ ©Yb]Ă1™½zGÛ2L.ë”mr¸·"º™ªi#Đxl%<™ĂlB™Æ]³rBzsPVÅÉ(M¦¢ óÀ×°} ̀ÎæËŒ&là³È>›ü‘J:•°ăQ)}ơ'É̃X̃Ë×đÎm¹ ̀‹b‰ï¬V)Gg0ma†̃J´\^lË;ÀS´#fˆI†·9¶áxdueûŒ¹Ĺ^ûmK øeăEIéœU\óœ¶EX®–ÛÔ»ªÊœ¡ùÔr-"o„?* -™c8IêMiô>î"Èị̈àH¶u("óàÆ@GÔ~`ĂE?\àX¥C'³₫œ<~î&yBCx]{h á “ƒR‚‹Yb!o-±yƯû3ăfÊd©Åbx‚‘kS;±ư‡!næt½!†ê‘”ë_y#A唸CæˆÎ²Gd™ÅZè±Ñ®“÷HâéY3O?ư₫¾"¬#ïU¡Ư/̃ùrlˆÜD́ †5^₫¬Â¥¹ß¦9ºôf`´ê'L°®=piüˆ~=<‡ÂWqLÅ’´‰œ¶ÙrỌ̈†PĂqxØ;AÅ\/"*&•tÛ;Ôú&$÷¡£àÊü†Yơƒöê¼FW(xÄäj·=è£+ܤzCrF6ió%5äIê¼q«¸¨@#f^0íơUHËWZÇ÷b>Œ›Fä@¿ÿcb@$a”+$bGj—/:® ‘X5wæJ7è2¶4‚¹! Ùz˜&³a¸€ ä²âh³z=¥ó¢¯ú¸Npê©8÷øc&°Ä¼pưđÎP̣öAôRÓåN{L˜ơi,àm^›Á³'P^ }No»kA_7î…@ÀàjöÚMJÙ}̀}˜W»÷ ¼‰úÊ »iÏ•ù¸€Á)ˆÊ•|µsxP·÷ZÉ—–9§¨ß²·¬Mæ4W&:á₫OK~‡Rwoú ë¤À 䥨’ÁktÑIÚNßƯƒ–}+41¡!­‡Y–Ü[ëärÿ†á_öü‹R :aµ N}YÀx.;.e/6ÇZ®ùó]g©‹SæÉÔóçƠ3â¾ư ;Ê£ựrO8öÓœd¯œKǸ́æWŒ™0ÎîmêU·̉Å*%?˜Ï”ô¬ó±D¤0˜vÿ½U£»“ưåPÜÛa@}ÍçH£"’̃r¡tN…™Z -3Åh°Áj¬†jÜdc̃\è“Yđ›"~OíväçÅZ,f¤ VföµñgFçWlxC …»ôú+̣ë—U}Í «gă]<³Ñª˜âÊ1ö†çj:đJ dIq  <‰, €²:¯ûU'±Œà¶ Y€oe!‚HWP̉=!$mFV̀§Å8Ză##†ê‚¿û§6Æ̀î7¸Ÿ¡t@Ù#é°»V£$wó¨F2B‰E=¸$™·+®Ëaÿ1É!y-@Ă¡‡zxnđ],“££Ü+v¨Ă%Ç„ZïNêP›HÁ¿%²| Us»·bŸJ ,9ĐÆAèVI\aˆQ¶èF‹E8o€érزEû̀YWN³´LÖN1Q¨üđ¹j††Ñ³}ü¤§º•µS>'đơ@VŒ0zضi8z°+ ÷ûWq3£AmÓƒBcvX?üƒn÷j)üRPDB̀Œà9îë&@áóLw@̃Đ;qGƯĂ0Uû&w‚¨+-1‘ß¼±ë¥­œ¥Yׯ!ÆỰk-ë:$³%ŒÚ̃*R™î²jH¿·É¶vW*W²Ó(dw®V¤åPƯÆåÔ¡Åđ5'frP!z̉ùâq~ïÖ:£)9®öÙ>f;‚êe·¸§˜>‰Œô¿JPâ*•Ϙ”Ăñy;‘Q…ư]UÿÛ¤b´U?î…7‰ÏĦ!(ïk×V®°Ø•ù ß¡³¢^dü ̀³F£rTÎZïX¸HÑc†đ"ip*ç(mÄcß{[/ªô÷wr¨­8ƒsÀ71zO´E$¹H zíæ“#Å(e†»YÈma2TE±œ§ù'MăˆŸq³µ—Zo£­£ ÖSLï“¿A)5(áb!đ@AVq2Êl₫»y¸ÓvÏø«ç”˜̃A•“Ǵ‰ë©ùP6<4³ư¸M@„‘¥å{ÅøÉ„–V‘̉¨^&¿ªCÊéfê¥{ælц#®ºÎtPy9„j¶¸[‹löøª©k….¾¯b́»›”n41; P6Ă矖UDBY'%[*Î"Cµdg„¿nÅ<çkŸ#Ê•ÊTRCï(¬Û~äg"0&›GË‘kưáÇdÊ]úoÀ— ĐQœT  †¿ÿñ$_u%I»*ÓÅEˆI¥çoư#,K ó“jˆđä‰iè•mX|-đ`ưy„™Ñseí)x§‰ ¶LU¶ÎüêŒuÇÈ90‹₫Ù½ÚqÉ?l\ÿôy€́‚ ëuö,µA»ÓưDRÿ̃ăªùû‹ ¤Ø|©‰“‡M Üø<•yÄTd‹I’bçʨK'°HdŒ,n‘‹£9jÛ‡(´oˆ:₫(©2µK£±3©'™̀Y‚ôÈ Æä¨àAPÄéÎÔ.ƒÏ0sê /ê@ε #P¿µd7‰LưSV¦â–@-Y´ü#™ô¡ƒƠ¥e:NA”tl£Ú#²8w6©çƠEŸ‰¬®E)²;™|J€·Q§È|fúĐè[—· )R^cÜbeSw(öåaÔç2• ‚1_ï0¿Iưo’ÁUevÚq¤³V¶µÏ•‡JĂ?=H₫y"O–¼Ó:R@83z™đ^ƠB<Íy<æÀ£Q…GéÇ¥DØáîŸ#M´ 5²ÅôŸ¸“%Û•mă›(“­¡zÑ¢ q́ ƒ|†…Í ́Qqîcâ½›rÍG&̃D3¦Ó‘:[ËFDSDHè9î„3>)Ä~Våßä²B@áñN­VöÁ턪äô_†WùERº82“̉Fµ*€O€û[8S9œv›í‚.“Ư£Ë÷<_-–»ù2íWg›Tá́6öo8yÙG¡›iKÛV2"ºÏ!B°WĂÂÈ‚d‰WÆE{ oϨº…œ7Áç‹€ˆÀ¬£ ËS‘) ă‹$½ggđ:ạ̀êc•‡äá/`¾^XY"¾Ka¯SöŒ¬Å9‰ç₫‚—˜½ R’§pϺqXöØRCBí¨˜i5W'7HÂm˜‹|tœXg¾€§'AÉ>±²Vq¦}SX’5oïµêщ*uó«œNZ©}¬ÍVj4U`‚+́z‚́ª²)Y8̀§•Û¹æ}¤”»sùû@&dzvïÜĐ@梇Ñøî8ÁÁLs‘„÷EoÏp¶Ơ ¼Ú† —& RÛ*{Qx¼^Ç”º“ÚûS§`’'рߵ[̣ ‰ÛËf; m_å’k¶đÿ‡Ẳ–RÇ­(¢ÜN„…“p%̣+ŒÇảOóhº¼¿Ù=_®¥míüW9Ú„`”±£‘À¾M{‰!_±‰ơĂÍ B.Pç¼ÙQ\Ä"’Å÷~ZúÎ*́¡Øú*:í̃ƒĐüBvD4\F˜ TfLׇ‚CKi¯Îeđ^&NÀÆc¤Đ‘2ĂÉNÚÅ”L©6i}K÷ü?´R§ éàöíhË+ßT>§èƯ÷g­Ú`Ç‹cW°ƯnL¤,+z|ßä âÑ₫Ó|BVé+ü³#¼eæuÜPWínóQj›”—~«̉0¢D!=ËĐwn‰äj·\åÀx†%‘c! Ê/ù›’ú=pṭ!Igü$/îàgQb½ÑQ¹“›ï/H.†‡M¥éĂ˜¹F@Dä–0ó 2S)ü®â([> Βε–n’‘Ǥ_V\Fµđ5ăv¦Âöh‘̃^\êL¼̃W¦ôÔ†-¶ØV»1›„ImĂÜS¸#“=ª‰tl6èô'¥û•KR₫yßbÛxë[ïôË=Ñ&MÔ<ʹ̣¾/×4¦Û ­‚ ä_´ Ăg§–Æî-aóă°€WÍí` ,vSÜxĂ*$b¾Ib•b́æÖ Öm#ƠÙÑhœËEuP¾ªÓv¦:̉¹uàKæ tèû₫j'“Jvbñ~ ‡˜¶ºñbÒ+oK¡́Fñ@C̃ÏÙ5ÅE—îí8Àî\/£ó˜ó@ö<|.ˆ,u™{–K.ù ¥~̀ &£L£Ÿéç²coeFÓ^Å‚Ê2ÁA.éVÂÿKÆ„‡6„20PO]‚ŸN"Xm'áÜ1s­!‘á́nÁ mI¾mö†m ăŸàs€̃‰‡à—ẉ,â—ê¸%>ÉÚL$sIœ|GOw¯ë4†-<'¬åÙ₫w Áocơ›m½̣Wä¸^/ö ï÷³íœÑøkOÓ ”&̀1@,¿v?;‰ƯÂơX|½‹Ç`1\¦ÙºŒCj̃A‘₫®U@¹ƯÏc₫$°eØ7o>V_ăMnÔ`y„<Ă *T²ÛË·½ï·!/‡ç[¸ÈÓHåa¾ YSÊ™9>ăÈ£…@¿EE–.Çúƒ_égC›hcmé”~2Änµ;™|^wÀ%ê%(g8È겿’èñL¸m rdw2%[øå]{”ŒÙD†jöËŸb À­x́VƒÇ‰.wḌ‰± ƯĐÈ è«HDwNqJqRe>ăư=¼ÁÔ‘ÔxÏc‘iĂ[Ăa¢S"µ‡p̃ÀP¢º¬/}GƒVk{Ô¨ïÊe» Ç`Ư½y˜wĂơêø¼®ª?µ›IlÓKIJ³àûvŸÛ6 w6«§ƒMˆ°œ>K̃u#m»¯üôĂ˜vØp"Lj=·1Ê핆›øøâxt¬EîqAF¯g”ÍÁYæqª̀‡ƒ~đ`W|—‹ß«]í×Ô¾Iz :L“y¢K&9Ôö½Ÿ,»¸äŒ—ªúĦĐ(€×±gL§F4‚ÁăÖK!)}MéQ#¯wLÙđ¦'x0ÂÚq”ăXêü€ăÉrbëÆÍê¥övá$î¶ÚYC²LÁùÜN2Û êO™À:¼QYƸÔäEÔèöœÿJÖKĐ érsç“ë?™^-Î 7!÷?ñ‘é@S_úEeKn½·!È ®ÆŒî¾ư>Ù\²á{Ä'‘»ö[Ñ Wd5Ö5•Æ”ưúÛ¸­đaü}R¢-…bÑ>R3Á,@¼ŒœuÎÙăfŕărpp¶‘ü·ûMj à¶ ‘ư;Ïrz¸èV^+6đ‘©«p¾Å‰åÍ₫£Lç]Xf˜;o ¶¤_c›̉)½VC[çmWdZ¶¢µ̣mŸĐü£Óư v/`i=:œG£5‚¿¡ê´Ă·ØÍ™,)Êߦ9(Ù¤Ÿµ–m?¢CA;èé¤Å+¦ˆ·X=%Ǥt²ß =63V¼œ-2R¿/&ÏÜ!Ÿ2߸\Ù¾2C 6»÷$2’ YÊêv(L[½ ô¥́ˆÿ^N¹}}øJÄBÛÏÏ2ç¼øg ]"È€ăm¥Æ{ ´Ø-a”·̣Ø œ²ÄqbủÏú®w»¦YÁDÄGº§ÿT:69ÁOƠ$~(´¾Y₫-¦m¬{ơ!qL™ṭ̉S´Ë†Ê ó»Î®ân;l.$ᇆ¨w»Ë¥rkñÄi£€“‰ƠAy )îăèyÛÏ,=YönYhª“r„ÁG…3ơ7˜ĂÀI[7Ờêä€öYCíß|Bđ®†h‡·Æddíư;e5™¼„%… #÷ÚI´1}B"Ň]v,³AKL&¾¿HÙ—ÿ[»ƯÁ¼ư»́”×r÷øq…(; ˆ,îѲ̉Ăç@ßÑ{“blênt‡z¤ĐѶ‡t™˜ôƒ$Ài•E˜øx¾+6ơ,Pú² 34Œ3æ_/% Ú¶ù)/½¸åø7́˜•§ªA€–¡®; cvF¸ÿ³Ô4Fʼn‹Q-đ"¼˜`Gµ‘}_æ ?ÍÆíƯđÀ¿Gd ^ø7"ÚÜ.́×»Z_5ÍÆ:4•G‰:Zá9èÇÂäđu^#"-ÇC/°¦Æd;¦gç>q(OÅí±æús»ưXÑy4 uæ&!Ü̃h´áéG–ØêĂÑB¨8“[Ï4¾›6àÁßyçKAy ̀1@›"ª¶¨£êO¹\₫%büJgDÿIÁL2¿²¥*D­LKÏæ¤IC”û\ëHúLæ¡{̀ÄBM¢z¦µÑ,T[TøpV^ó·°ÆM ›i«cjkøh1ĐƯƒ5 ¾ ç@\ó*ư,¾ÇD₫ö€À"ªÉfËkºYđjAø²+ü‹Kذ€jB(¯‘ºØ¨©ÆŃ'lđ\.XCY9§ÔäºÛ$Ï#ưrpû4Êf9VëiFͪ÷̀øë(èa3ƒÅÉo²í+-̉j°G̃Đ3₫¾ "u=5ư 7 ƒbÛ<­¢‰Í áŸü5£‚£n‰f/̣ơ²M;K \¢Î˜#́zŸĂ¾˜‰}¤§O‰SUF‚NæƯ#Œ×Lªoí3É –úÜí·~Y' r˳‚êI]–Ơ¾ªÄ!ëOXH}Ăộÿà®ÖĐḤ̀][7Ô+VÑÁăëBTÎe¦ e§BE÷YŸgƒ‹̃à§mMÆ´°·é!ù‹®°s­4uèf§îÂƠk¯ç̉4Ïg‡?êÀ»—¼̣é0ÄeEmEXṇ1öEhù;¥êÏ|"9“|=ƯµŒY„¨!&¶cV‚í\ÊÈv'O¸$·ƒüÑ*T ¬øÇC¢][—†Vkæ}»{~5èÄ[ïj·v²YMæa!’gŸç‘aë•74#³”ÿe€gzѸ¿®¤ŒœB¾êKQÑ„å̃æ&Y)›œuÈ̃ǽ¤maàXË­¢]*…âiöZ)?*””JspÉîäzgƠ›í|Ï$M Öđ÷up)Édê,;ÿÆ#·0¡đ2:V#Râ{ôtïX׃>u-¾¼_u[|›KSµĂÖí?¸ä+-ogn‰A—ƠëzYÊY&äļ;&ĦĐÊ€Nƒ8CËÚ8 CÏ•Mp'́ĂuÈÆ˜3 3Æơ®6ŒØÜ­È刷•Û?¼/¢àP_ơÄy,9YƠLút¯°fOÅ×è{b '̣\yEơ\Ă %/OË»£ï8¨Ơ÷ÿÚRE½Íl²lµMqLÜD‘·kÊÜ”å5ÔM<í̃c×̃gV‘#ú₫ăkéŸƠ1/J,¤`Ä€:T½œ¯…™agÚáE_ßd Øá̀V 7>̣÷@̀ n»¸Èy½Ư¤ƯnkÜfWƯƠo¥.u/‰G¬0Đ7À×Ê‹&¶ œgGz̀dÎ8M•–«6à÷2…™¨Û³û”)Ó8@zo'ÚÓP–¯UĂ9€nºơ ‘Î%»̃Ov 1 )XÂÏqEÚÚœvhd¦i®r+#êÿÜ‚Ù Åæµ¾¯ă½ 0®XcYV7áNèMOô’g•Í_@±‚}Á`܃ –è=îQ dRvKï)M₫@ÜÓ´ÇÊÔợs±t@49̀öCÁ÷•iåæí·ˆ…ˆA÷ª‘G¿=3ÑÓ Ø%k‘ÔTưç¢=£‹đzsbÖäÖ†yøüă}•ư¡6ädAÛè¨*’ TÑ4NHùÿ$ AfI)¬(ÖÁ&dªGHDÊ p±†ØÅD=}Ư‘">͆™jÓdƠEyĐó¦K—:ƠÎE–Ír4æ=ëçă±f,XÊÆíû.wzgdž ̃ê í6XWËuÈ3Rü ^ß₫F^y$l¿ÊF«’d̃Ù?à}â 2@÷ưíùT*+$Ă?sµƠYzUbơ™[[4VÁđWI#y¦r"w Ñ'ŸKœ|­ W)©Œ…0rSÊ8‚®F%d[;ïH@ŒÑ”;Iâ’<üÅÛà#Lö×}‚D Kn×YO‹ưPïdĂß¾aüFzṬ¸:BWb¤Ç1Ô“ó×’ø–1…°vo7Né(®oW¤ïØwÙl0ăđøư(ʹÆ3¦"Ü_â(ñiDÿ1Jˆ‹Ơ4è Hz’X•–a+́hNX¡sƯë2Û{Ơˆ/Å<́¹™Á“CŸX9 0¹)Môåîô‹äyÙ#:¦TĂ¼éKp|\éf©Jb û§¹ ›¦ag¸&³0É…ª¬Oxø¼y¡Êùü(ˆB·Ï̀ÜuFYĐf,çu ‘Ü©ơh +/ÂƯôW»n÷ơ®ï₫I”TôXLiO:I‚zóPw·À¯H˜!p̣â{ƯÎIx#P2Ø’Tï~­ơe₫7ü £ÑZS[2#́'ïpØ›̃đ"M¯(́f£iÖºJœ€Ë!Üjb%4;¾_‹™W›•Kđ“Çļ3ß0G̣ˆ›²îDCđäËøEdJŸèyô•”Úº#̃(h78>&́ÓÇU”J¦+jY-sfxtdYmHyxµ®ûË®®̉S­̃‹1|>ùÈú†h=W2¨øm\ц‰˜¨E"̉ʶqaH^-₫yδ¿U#ÑNé©kY6Vv8nl„ajXJYÄg3¸RØ•ƠJ9SñÅû7¡Ú»™›™ ÊÀ;·(Æ[‘@0[>+g₫Ẻ&D•lwd4$¹ô‡ûE”K`¶ø̣j¤çåêóR÷@QœX‰a~dº»54•–0û%%±si9ÊÑđçÏ`¤̣ÔÆ¿IBZ³Ù1LM0B3HçV)r¢+Ă“Æ^¸Gä<^ƒ „ ›†¾ CF˜†gS ˆơpådœz|}±B¦‘Wªô£Ơú©̉߆a=aôªB0Ve€®¤²–dC…V{90y|»³ê×å=Xh. j<øQ×Íp÷íK1É™lÓ:Á73b[ëˆ̀"FJ´ç‡KY:©tđ3à”à¨pu–”îæĐzlN‹́¥³"xâM¨íJ€‰­µc=é¼qñˆ¬{ º}%u[Æö¦Ư]D ¨a© Q&Êü4Í+ơFN…"€x¾>ACÿC‹†j`á² v³’ÓÙÏß¡QL‘}+2J0rƒX”PÖơĂÎ:gc¹´&d€6•¦†¡X|¦T•×$Û )¼^\ïv÷n¼/Eµ́0¾ô‚6›Äê Ư-Qoºï:çIlóÙRÛ”2ºöybOưQ¥ àw½¦uPsw!¨™æ®´Iábÿ|»UÆƯ"i“º;?·øN‰®O¸5Í êízĂ}ǼJÖC\@̣̀̀ûü¸}²„H^ 2\ ¢w ₫]‚x4,w™ƯÔ7Ôt©qa¼„Ùk@ƒyµ̣* 9Öe7 Í·3©©Aß²G×ÔæƯA(%È:¦ơ[Ú³́ć^O»[âé°ûí›|é×̉‘-Qû‘+o₫g#y‡Â]àù²ăYÓ/ÇuV¾Ëª¯x¨ ₫…Y²V’i„%íø, »K`ươoàÍ~n€ê¼¥¬¥8Â}¥ă™̃ÎTfªTeIbë5"4"₫’½Đnjñü;ñ<áÊ×ă•—µñ¼“„aÍ à••/̣Ÿu¨[%ùi0x(¥¹·G¸„é”̀₫S];¹(\€#"Ûo·Eg»Ê¯vVA>åû‡¬¼y‹kV…Q‰ ªViY+±Y—*!)Œœ 5fhµŒ0%´L=̃Ø‘ÿUđ¬Cư`n ÚÈơúFR¢¹²Ó,y,åñúN›Ü™yÚ¡‚|Æ̀±:ÎOĐ\'ñ£̀!-<´́lá5¡~oÌ·wRŸº›à¿?‹ (€ÜcÚéđ\ûc7ÇG(ñƒV¢ñṃiº́C•,‡†Êø dHŒ±=ßû/$ùR}ÀÄæ‚h{Îd—Û”%½KÛY#¾W.Á\ê’%Ảçʶ›ZỤ̂́KæÂ-ĂÇse)®|»!!Û'ƽµ̀«aÖÉf½úƯ0O3ÄaÑÀ…sÓ.‰é((Œ­dù‹+}¥Ë–ó!Su¾E5ç>‡PZ©qfaµĐ,ŸP¬~[0eÑ6­–«¸O#÷<ª„âF8÷®on\? l0Z½ƒ5•„¯ƯS Ơ`öeă$”–j5Q̣ Ú®zư6P¢m¶lJ$Ü´øH¯= ?Åh =89$E­à¼~•4‚¿{rœqùDKŒ̣"ưù'Û”l@đ‹zÅ-©vpvâ×ü¸öœ[Ö3Ă—5æÁ„VöZOÜZC> •QÍ„¶\¦ÛE¯ÔÇơ«Đăh*gµ öHfÚß9nf¯́vyqªÅ­(™Ä”ǵŒ®ë+åá’®mQ(üø£¾B¸ªÊJĐİ!2 ÿ^HÓ¨.†¿* £ÏĐV Ta§ÆîêÖ‹¡ƯzVd’ˆqlÚ¿0yÚiC!¹Q’r/1˜B— ̀Rè)`δ³œë0_ {ïteÚü·XÏ(¿â¡8Ûp6鳦¾Ø&Ci€ư¥jú¸ìöZFº·GU’Ó@Vă”!HËO°±÷¢Fpn K»¤ gq+@ƒv¬Ư/¼ èàÚ/Ấº§â°¡·çáÛ­(÷3OÔÊ’¬‚Û†wRµUÜn"ß¹"Û%,pq¥é™;s»†K€KG8~ á¥àÉô¤n!©¨Ö+°»|Ư?âFäđFùÜÔURjs‡[ä LZñÆ~WèüæÔ:X\×Ss>%„N‹gœDƠoºz°q¦ü¹®Ùtܪ¼5û¯ Å3Æ\uă±´>×(ƯëàW–M›ơ ¥#ÄA­³9#¹p₫"ê\ß§Ñ­»ÀHÂßAÆu­@ƒơüë‚}­»¿¾c+̉¦KgçU ±Á ̀,¿"OO³<óêù=ßs®‘άư¤Ed;ôÔÛ_̉cưÑGʬR™|Jqê#9Ỵ̈?KnñûŒL¹[#Í¿˜æ…₫3Ñø¿Ÿ2›`¿QŸÎư‡‡& ̣²́i*'QKú®sY®K"ÂIG¤~€:cq"Z)}û$mƒgB;¶Ÿ•ƠưàƠ¿Á’²đÍXÛ©qø8.¶·p8= ¿…¥B̃7O9Îæ Ë{Äé›dßÚpø=NL^Đ5_Ç”Mí¿ß_„¿É́‚(;c¥¦¶â6Ô³PèœBcÆ‚€·û=5άÙV&₫Œ2”ă´ơ…÷:V¤n‰̃rh £¤ëfË9áÚJYwà¦r}eøn .­ª®¨X†<~¹?y65UhF—|¡áéLẺº.£›#ĐbÏï5ªûú8©ĐÊ•–”ŒÂÜgœqªØTâS7 T·ï‹íhÉ_E X´m»Fï’“À¡â¥‰ß^Ă~'Iß|–Măg*Î3ïØŸơ‰j¹P\ÀẸ́'@Æ2́-åĂíÊùhß^«r¬÷MX†Ư>•:Ís› ½̉hSÿÄ>dÈ©Ón®ạ̀BX]2>^8A¾Êo¤Ó‡©6]:Lª 1lkSMơ]=®@Í>à" «gªˆp«/¤÷0ÁnYÜyd£üLµ> ,.°½¶”o)ÍÜNNußÖp‡ê ‹a&§u¯®;ê­ô ?èÎăéyש Eª@Ox¯‹´ê,¡É¡¦h£·"ÇÙ&0Äjä`˜4Æaô`\Ư8/¸Ñœ#ÏÂfđÉYÑÛh¿[Û­¶A/]„8Ơ (…=hơïlt&oMg‡XÜĐ? kw:ĂE |ă8Ă‰ßˆG  Y¬­²È‚ØáÂáå¯)]p-ZQß>i¤Á»`î=¨ñà¹Æ8)ư£̉6ă%ͽE5 9Amh¾±ƠÉܾ)æ‹‚„Úœ‚đc¡@hc›A8 ÉO5‘oÇr,¿ÔΦ`⸑1’·₫™è/QăYJÏ̉b>Å í₫j¤oàqzS27̉¾ôux˜ƯƠiă,!$LXĂøR$sñ¡k Eʱ Ç¿MÄ0'™Ư¯»vúưLN3ÔÎ~á@„kZ|ÚÊo.@Û½¡„à?dܵ\"p̣/¼óïvåÁ×xÔ%F"ÓốĂaè¤ÑàÊX "ÜØ…xe‚œGø–ìÀñ—Á–ĐÂ¥‡ÊF)LŒđĐ¿k@Ñ*ü0¹Ö²¸G(j4=8¤èÜÜ7â¹¼y0åU¬4|¥Ä*üâ’D¶0ÓöppăëÓôèA˜4ËM|4׳¶}NNQ3¯. æÏÄTIS>HmÄU\ƯSw̃XJ*Ä@/UÎ?¬ùº´‰³Hm¹’£̀¶Ûs¦èIdY3ƠqÍÚ]&öƠ5ùB¸7'i B¶ÜKñÏæcl]̉£Sc¹¨S“]÷ÏĐëÙ|*¨^ô;—Å~Ï•ÔØ ¨—Öu'´˜*ÆGàføMZq2ʇٲ…Ưr¶°¥]B³°.̉æÏ̀CKÎzl‚—*Tä"Đú»uỜ¯§¨§ -=8Eîi›ƒZfxƠ‹̃@¨•±”qŸ´¨ù“âN±µCí„¿×;µÆda•ÍX—ñ¬®«æ¼BÇ_}[ü5xnX5«Ă¸W6…å0Œ waŸB‹NêÇÇkCv²Hvăy±̀ö’~ॆX‘jp?ï eY}5},º[À¨@Íe­$XœW(XĐgKGđækÀ[9ˆàªØv×Í¡‘uPÇ&utQæ£(Çáù½~¢§w??‚ù¬7zè°BfD»à¬ ’ÚN舙¯óMÎƯÄvưJP-$ÀSª€ïúmô;ä]æt‘“â×b±5iOçt¿„Ù™yôđ-à«âÖµç….A ‰Æ³AA€{T/ư1˜eÑYĂú:{\xnóî,hÿŸlAq±U¶qËS¡+”‹Â+ÆX¬‹y‰ZÏ@™Y;¶¡Ñ#µ7:c˜…¦¶VOŒ"¹̃,ß(‹¸RúÖ•8)™M‰¤öAIx=lpC̉^'á¼ ›~Iº ]™…tƯvûN¬E à́„â—G‚Ç€‘¤7¢ïrtgŒYM¨t°îíÅ5•nf\:¹PáMQagÚú‚đëÊÎ0¸bJ̉2-7Ùî¡B_^¤ôe6ê2wæ™F‚”`wâx@.“ÔGF¬*ÀB¹ÛfŸ 1Ø8ï/½û|]ÁR¯wB¦\₫ o8¼ÄPâ½1ÊP”åÁÆÏA˜>’¤g§ÄĂ6\1§-Â;f0Ň‚™éỲd¦b¹¸ ·¿[}̉€Sf#^‹oXÀîWf¿Fµ—Ú»\j{_å7*ùbÇVqn™Ÿ ˜ÑÅ~¶p‹Ăgé>Xû ^k™hÚ 2íWÍxwªïöôéí̃(3јäÉ™ß#2ùá¸@Í5̣Ó8•°6«œÅ̀-XSh›ßÅỳ3— (0‘΅ŸƯèôÔorÀp7ś ́SƤ@Cá)Ó—½§¥’æ‡V^̀=ª&Oz ÿÅ•Ø4Æ%³Q²·qÄä"M\ê”Ä_Äÿ)ƒ‰ĐŸ'+Ñ̃œ¸G¶“|ºÜ Z§7<îèê‹26çnµ̃Á©F;m=3Ù…vÎT.óB¥‚NîsVÿ]ÅâÂmÓ•­ơÖpÿ(Á“År`̃²ØWXª¤Ê%|<¤æư¬*?@Ü_’¤ Çknp³Z³˜Đ@èZ®¤Đx…+\Zr‹@–Ê×áLÁ£đº‚C‘1.GcuûË^̀ÑjV·ØF²®Ÿ¡Ÿ₫G›,wA%s6ÎE°r¶‡%G:Ÿ@×áƠh­Ù™Z“¶̃«DVåè“v>-¯K7>¿SçÈb\>¤k0—„U×–å¢ ̃*öíƠ´üàưór”X¸¯É2| Vw¨¬1$ø²b2wŸ²'Ăǃmá;mC}îx/(<­†Ú°ùd6]Û3Z¾pE»~G¯…0†ƯáđÁ£ ¹̣’¬| .WñÈ´ÚcL¬S^₫Ýå¼đzy<èù±KÂr}̃‚Û£‡ÅLæÄYp܇̉hb¯s—+ÿ@—?¡±vÊ¿y´¡x{ÂÍÆñư#äÚ<¯Đ›Û’"8;„ xX /ABøpÔ¶œêg¡ïŸnamùƯÙæW÷R‹eÿ†‹ëâPÏ7W!ï²›ÈHNB!üm% ­Âˆ°Ú+âQă¦F <ë ,³}7°?ưLùm{#èPDU˜èé£̣{tÆ¿± ’z>ç=‡6œ*¥|̉¹ æ¹_9o?.̣ú‰Jà n=Ç}é@‡ïëÊ…₫‰U£̃¬< ;bÜ V+³vqFg)Çî¡pr?ö9o8îx®3™qđÑÜ«2H‘¥úàL*û1O‰ÆƯ©p1DÓ5/ ßʶ2åó³h@`#p ¦-.Á+-AĐr©ă›Ă}öí¸{3¥¯*IïàK i¦ Ö¸½• ,Ư+OøÓ¬THƠlt!97CÅü3J"iiÛTÊ2R¢†$̀OË‚®f̣ø oyÛe;¶ØN̉‡¢9J÷ïÖâ…Ù8*LK…5XÏ›úXÊ(ú~¾ƒ 2ÔL\¦)<óñÆ{€[µû›l9kQÖ}‚(¿¢á]{Ñzà2øDlV_6.\p¢‘ÄŒhơ;Î\reo ×Lö”üD®×°Ç C¸¥dUè‹I«¦‰è¦ÿ51 Đ’×Ë¿§ƠMAúÖnW₫HZ-Ô #“p÷ó9m7<»$[«tº¤·£pͯu_JÊŸùÊBÄEnÈ®R1a(XvÖD‚uÙäy"s¶dßñ›Ïç̃åJ sḮL³–ñÔûzIdălˆ&ÿ;Êá¼-Ø·C@ú »‹Úa½EÄéáYZ\OfÊhµ̃¡R§oiŸ°íŸ£Æ¥éFH"_ÉPĐ6Đ33Ọ̈Ơ¾Sm]·+X¬‰®Àùƒq¬¶ZĂ„‰iB9èÇđ–YûJiÑƯY篑ڸ=m²đo%…f̀±Lˆ™¤YCA`@.\˜¥ß3î(\J¬_wă1£æ¾ø›oª•¿"-̣mí[AM+Lǵù˜YqxrMÜi½‰ĐăeP{ŒSO»,ø’i÷}₫ƠÖź_DÚ›÷1ozMê¸Y¯_ñê ¶ötÎ=lfyÆđ½k‰–w¨Phl„öT“¢́p3{Æá^Ø‘Ÿ‡Búy₫cc@5qđuĂÜ*öªáäl6Ûe( ¼ùVÔØ÷)™]\rÔtL¢¤úphRÖ=²`+?3l.-@µÎéăyŒtŸ-1'®‡ñÁ½CBâ*C̣ªkÇü îÓî.YÅ¿`\5øØ"Ï̃1 ‚},#¡ÁÔë̀árξ|¹§·™ơ¥YÜ₫Kf R—aSA'O@¹ªiƠÁÔz›uûûU ]œ6x“6c}u´_º.i_̀óD[cÙQư47 ˜+¨W Ê=Ég˜ ç…+«uQr#jmƒâ}sY†/g …Đ9~êó#Ÿ¨§ÔÚiÁư8ư0<7«éé$5Ï¥ÿá÷è₫¦cæ]oIo*Í)déB5A׉v@“±.́Ÿ1o₫gPm°l÷‰/D ’²Qé¶Ñ.ÙbÔqYˆ\÷[ơŸê=»tœS¤ƒ¿¥€”+î%YâÙ2™Ø½ëƽ©ÉÂ]d̉¼àÛ Œ_yj$¦1¸cTJol\{z‘Ôÿ@V^‡|‹íí̃«±xHŚăú²L¤–·CÑW¢„̣Û‚´N²QócP? Üsçp+—›³iÈ ç¼ÔF昻̀îÏí¬w1f̀mJY¨—•e›µŸ®£·éƒÅ;!˜&v Ï©\ê‘Ư:Ï»g¼¬3t ́äuÇ„…໕lß®WÉdifÿË%k¦¯đIÿW_6¨ÿ]ÛCf§)HnnĐ -ûhnÅø’æ,€¸x·öÙñỗÁ%˲1¶.晩N*ví™â¬l÷å [paôñoÅ$»%"_Sê°C'ç@Z¡Ư7™B#qÊ÷gµL<æ)·ÄyĐ)gđ±Ç4,Àöµl9•Œ!­"9²w˜^燼o…—°o$††Ô`}¶0°¿ú\èÆ§ïrRr´ë̃.ă¡Yv{üN(í¿IaI[W;ÔƠå»̀J%Ù½iˆzZKÂ.|W†öööí!ezw±©ÂÊ®èö_p߃ÁNÿl^]W×̀Â4í̀ªu“8X‚=l$˜7¯•fRK¯Ë́>®ÊT¯Rتí&Û&o½Ơ3·́]¡A°Arâ:—³[‹o‰‚Ô ‰Ç m¢uzø LOlÙÅí©^yª!”=w̃ô?)Ă}ưưÉ¿'’û‡¯BGl6ë#Mà̃Ă«̣“RíßĐŸü¹¢éë¶•ñèY¿·`¬‰éÄIfHÆÄŒWÖ(Ư­â¹ŸgÚơOzËĂ₫»Ø@€ÖèwåD£CÀ£jôßøW{¿]5̉_PÑ ‡)Kg÷ªƒ́Á±i‹¶b ‰®Ä/«Ø%†¸rơ_³§ór è>ÂÍ‹'oñ]¡±màxXxµñ,Œap¬L’iïhTªÄ3¾4ªvOY;%̉oăđăql½×gĂI»BxïË¿:rÁ¯Ÿ¸O„a§•<, ;Œÿ•à˜!âœ.g…ư0_@]T%"oƒ¦PêÛY`?̃ 4B•3M i$Đ=Àu¯^Ơç.wíÖîY/aé;HAmKê„ñˆ:sñGøOƱ…g̀OsvY™¶˜Œ5ĐnB gµ ½^™ù3¶çÄJn!k$_aèÔjßßl̀åÄóÔmé"û-ú¶ÜïÉá%‰‰CwÜ÷n„¡ÜtÛHHÄË Öå#?·B₫!ÊRH$’™ú&Īæfg ?÷ µ×Ô¬Ư"Ǘ£đ­µÚ¸ü÷Aj₫ÚỤ́_×d#‹® 7k…zÿ“¡4}ùQ<œDơ‹ Í‘ä_€Û£|¨KóÓhºLº”ƒP°ü;ÛA´4?‰"íÙØ¢H†N›’+S¤úäs/oR‰ă¢æeôm?2pGjøâÜøKóå 6\1¡ˆß‹ŸWć©rØÿ²" ¦U~.Ơô°ZñDFªD u öÇóÎv\˜”ƒ¥§­æng“| HÆ8í/¶Ó5§m1ú¶ 뜌B$@†í#̃8ú˜¦oñ%÷©k̉dË`;”¡¢†É<9ÈÆ,ʹ#Ï ́%E&ÚæÖ Y©ƒL̀2"ÚjÓ.2bíÙĂå«NB2Ûü,£b›0?±m6ˆü|=ÊœfØo”%^ư¡Œô*›g¸µL“ømù+Ô—áË­gQ: ®÷M†Lºạ̈yc(—0ĐĐtµN )9†FZ ÈÈ‘—•}{WdíSâ}~‹çÜ`Û_AöGj́ô˦aêxRÓ3¯¬f0°ù ]JmÙzÑ%ÉRn׿·a¥}Nb{Ô¨“–{L˜‰ˆ,WvG†́))ïÛ,â—AM½6'íå‰`îpzúu:!:xÍ´cg#Á–‚äá8å÷1’¢k‰³$̣]„ư=–RÈF%fJằ8q‘¦4­£ˆ¶©™u &@a7ÿ.owøøưq÷Cơă©’2½G¥ €ƒ*¿püÿ  <”Δwqžûb ¦{.Ø?å} ¦k›§‰Àû]e‹kU=ƒ…}ê¬k1ºdëªr—ăĐƒIkÛnGTä˦Œih<ºà‘gp ̀ª:å ±~kV~×=¦½.Ë×ĐV(öü×ÉZA½EøyÑV]÷êŒ^nÑ \<û9C$bE ÷åĐZ :Â7X}®•Ö¸•5đf+Et–pP‰…Ç©6¤,Ĥ EƯ”gyoư ;_Z›… Ê^]\ª¾U_Üø?‰Uz&¶ä 1ËXÙœêviÖ=‰ưZ¯‰!Y¹3ümØHˆÏ‡l|§•§×̃B̉‡‚´óa°ưdz©%11ˆv¯æXeÈ7Û„¢¹2-«jc±U á™'~^5–£đ¤̣ơÅgøï Âǽ¦Ÿkæ7Ư ¶Â¯À F\ĂdÛÙ¾ºé`Ä<™¤᪰D³¸"Eè>|صŸ†y=q«̃ơ5Ñ׆S•Uå³|^mƯ>p-„̃}xŒ¥Ưz)á‹Ä#ŬAÆVÍ€äK¥³Ö@a‚ Qóœ´É\§ÿ˜Ô%ơb ø'µ¤nCd×cFEûµ6ÿxF‘ü͸Im÷4¥-€ĐÎ{IÜdHkëfJ>|ç¥ö ~m̉Wîy·ÙŸªÛ/Ô‡ö­I:eĐ“g ,pq>eÜ Jô4¥XÑ¥§;H/èU¹·ùđ6u†Uäê Ĩ¯ 21ñ½¡Pü@!Œ Q–§…s}}Ê´á;»̀˜±ƠËc•†:ƒ`‹À¾#‰³R2÷ªih¾³e÷tqdÑéÔ6ù±nf" ²̃£ÜlÉEÜ«,„4LºIg³È­¢ưÔÄf˜m2đ>CÓv[©\•¸»N|¥Î^€xÅAđ½9đ‘RnÀ"v¢»§Uˆ*êlÄè¢~üÄg7lg;ŸÎ‡¶½ñk´W-ÿg¤\uë®öCŸ ÙFú”Çä^/]eTYÑ!æ-ÚïwUƠ(¢ûcơXrÄÿöÁ¯Jí-éđJ$ÁäëÅQ6XRî >‚_¼èÈzAÜYœbeă¨Mß}åc?̃ƯuêK}ă=D˜±w§bƠ†:™R&Qr»¯,槈™Ă ™Ê¹’§wzèÑ=2´@5Ö N³†æ ̉Ù’„£Ùă–”\Ưµê¦êJùûªä¥º@OfÏ̉=̀äx÷¯G {D%jè­± ¼đ£° 0OA“s‡V¡Ơ¥DĐªŸ²´ CU$!Ͷ–ËG[L‘ Œl/˜ªm…e•$ÿ÷>³áh›¯‰@̉R$I0B~|'‹%"å&ưI„˜ÓƠæƯø•I¶”]f( R5̣M— /ÁǦ}U´ºKë)­ ÖơÜo–ǜh7²Ă2;¡h̃â:4JêB‡vv‘Qßíû₫˜ÁñØ·çù¡O5ÿºB6f´Áy­}¦M3iṂ¼¬YÙépỈ6[|(\̣µS`Lô*-›lÏ ˆ`A½(b3¾J ºI˜Œ]åh̃ƒs~„|Z…s8&ƒÊ³ «YÇg$¶Ă¡[*:Pp=6-ˆ,7J¼ö¶Åë>pf½O9_§Ë4z7’̉GVzT@èå9 Ñ‚?ĐĂ÷lÿÂùàÉΦñ ̀ o¹dhîhz‚’`|³¸+ôC±¥Ó₫2Ê ©Z¡rT7[·)Ñk£}ºŸh‚ỰäÏKđD†q%hY™XPn;§[#Cø/”?Ú@•ÚnŒÙƒdåÇÄ t¬›—Ñ ‘©Ç6D¬BÄxap7̃¢n16'EA¼».—<ZQÑæbW'ưÊuŒ©äøÓ̀œ^­Zû(Ơ³9–§;Áè₫ødæÀ®¹ơIÀ‰Nä́UˆµØ@Ú̃‚†F×̀ú“Ÿ£»ÈÿÔËi(ƯèMÄœ1X:ßÍJÇHqă 令~v6̣Ç$Ü‹ù€üO¨€}đ¡-B‹Û¨¤I‡'|l‚Ï(cx˜L+Â|zÊ!̉#Ö˜úaXQ˜*¦}³ÄÄ”RØ{•z8V(Ñng|ºĂ¸>5œÙ¶JN— H´Â2û2P=/䟂8DÛpHÑˆÂØ°‘Äï'̉7º»bPÚ­OâŸóV³¬úÓD•+’7,È@º_äH M%Å0¬T|¾lå£ÇÚ›ZYbÇ–ª#~â !ßkcƒ€Ø0Àë"@)¹˜'đp£¯à@FÅƯĂâC{w>0 ‹YZpsych/data/msq.rda0000644000176200001440000026405013154621326013613 0ustar liggesusersư7zXZi"̃6!ÏX̀đP‘ï₫])TW"änRÊŸ’ØâªÙuà,øü=¿ö!ăzvgUD:ÍX4KAËob ·=¼ü!W¡1V÷½6̀¼-¯Ñ¶eµC‚\Ç«‘&‰“sÄ0pÀ>k._ÊéS®ûT?V{^Eâ_sJ"é(›H«]̣M§3ööÆzÍk̉²>y¯Ù+oë¤ú,‹ƒa¾êY£koƯƒŒ| ;¬®§kưÅRÎc$åŒQá̀Ü@fnÎ+*ܼ¼3̣+e˜P£Yñ‹‚©Ù·öKêôMe”L ¼ư0ơó8±f’î7}¹qrđ¶6₫7dUƒAd““P8đmÊ÷lá­)jn%ë"Àª̉§å²JøsYRÊ ;đ&¹¡ƒnÚcEckç˜$´Ê^¦ æmṢ)Àï–ű›#Å+– lÎ+ăkü>Ô—xƒ¡Ñ¢‡Ùq>•çÏÖ?ƒÔ˜[T¹ëµáëœâ¿ƠÎm{Û¡i*ëj-Ûè)v±Nµè#8«Uœ8((à/8uw€$9̃ίăg4ïÊLv^*6»ZŸ¾ *m cN9‡ePÓc¦ÔPê8 Kù)D¨B0Đ“ÉÉ`r¿/HJ‚_Ăl4¾¼ưª_º¾¤bƠÉ#v„åM̃Đ›0»ö̉\%u&ÂpÁyO½˜ºÙ€×oú}va‡¬nR9ÛZ̀‹PÁ\Á]~ºv P² r µzÙ‹*lç;’f#ÍIpܯ‹î»[~iȹ±±—«̃–~MÉ…Ưi.(<¹¼¨ă1½9»ÿ¹Û {µz¨»jËa­5]!”­dOHV½Åüly°Hó́L´;Đ(Úëy/*FÇíØ,i*̉ ï1~aZ.?ÜN©pf¼uÂo™9Æ·Hå1( ,übÁdÂVyC™•—ˆơα¼>ù ‡a{„§O†h™‰ÀĐ‚±8bZ̀p¯PÄiØ•áZ3»X^„§©ø“²/á;çc¸›{xY·¦µö™°„̣çÅ%´0W´¶ªO›T\r¬P̉ _ưr_bFg}Œm² ̀ç¥Ă ]Œ˜è_bÂ{´¶Ùƈ‹$”¹(UÄ e´v&̉„°1¶ÈÔö—€N ™Aç§'7£N\.̃y៿“90,Æ‚W­Ä%7¼¬á]å€tÆ%Ç aëƯV°fWÚđ8œWÜ~êoÙËTst9Ô ÂÓ#âó'°±÷Å<çVIĽ“0.>LÖöª8ôæyîßQ€J¸QÛ‘ÆQ¹¬S‰69Ôà®®N6q@ ‹£û ĐhÓlÛñ©Pàă Ov{fpˆ!̉(.•© ÍN e©°₫ØÂÉ…÷ªçàh 2ư…•”Ûÿ{8̉̉'䨴UqD†µá×{2O‡úˆfÚD¦…ê™ƠA£áª¨{nvˆ·‡ÔÙÓÏ9ú<”{1ë‘M1u1÷’ÙaÚἬ¡̃+Käo­R§›i‚t´‹‹ˆƒÚÜXB]ïá4ÜƯï 6A)Gl‚ËMѺù1QT/­Z†0©SdèÖRß•$­7é.–ñÜñi=TijyIƒ=)ÆrpI„Dï‘̣3¸fTo$‰Kiz]¡)ﱄƠœ¿½@ñ5M¸ÿ’z.̉ÄY>J÷¥1H˜2J.•²¤üÙö‚©t;x+3$d{kÿ`¸ê*«£è|×vwxÈ®́+á‘ $¾1]Bá´z%=g~•…auß ”ü#…Ûư Ïë3̉:G!,¶…Så~0w.äd½¶Ë¼T>ö‰[¿:¢ÿß5£üĐ̃Oæ½£ei}@¾U®è€Åà&dÊô™«KỌ́g&ôZm3dƒ ơ0#À¾èü¾ó’\3ÔèÿÑeü`>,ŸHSm¢/8 vùm=ö˜@©§‡!gíb¸ˆFÇÀđŒ;øÍa±ZŸKø}¸ëK¡}<ô˜-+’b‚—i@cRÀui|*5]†+pÿNÔ°5tws˜œƯ<',{ộ*ó¦ñ0æÂ§å' ^:N>́:áŸA@¸ÇĂàÄœ Ï5”3éü½ẹ ©ê4 §²7Ă¼:6Đ2f«.Đ’¦ẽ}`đN;¥*\,›¶ñaç“"¼Y”_añ¦÷QơçvV´óC¯öä œ|[»²ú'ȶWđÙ¦T¾ÄŒ½ˆ–s¥wn¶œô'(µa£qgƒ+ç0æ Èh`[mEœ5…×ê}BP?i7WÅ¡ƒ*u FÍ rH;*Ơ0oDÁ °²å……&ÔùîOÉbÀúĐªådµVbƒí'—b×¹ô3ÉÖó¬½×¥*÷Çj#O¯C̃«º2jË̉ßQuƠä½*ϺŒaâºèH>!:₫wU} Fˆ7‰†Ơ æÊ0fz¥>”t WRÔ‡¡2K^̃mè́ˆz4ưŸ+£¶…7é_•x¸ÚTRF#{3ט×!CꨳµWħă@ñ\€…U¤r¸́cévŒ¸±PÁØ5ä̉đ_‡ådeL-a€swÿFGƒÅ't~Dz̉)“ƒƠR†d8”Ów ܺÇå†2̀J&’)0#ÜÛÔVa´äđơùpPº5ßÊ¢$TUêP²z0Íq,:s v¡%—0ÿ]ÛLẤŒ¨6Ă¹ơ9¶\a³°ơæMÉ$­4d®´¥z÷̣<2æ˜Ô"æŒ*”3ÿæ¥àÅvaå‘ÉS%EtñîI›+>Eí˜Eñ„r9h­£ •?$ß:x2N2ˆóÿsA‹t4DíN•D—ÉèîŒl´+Í%­È÷R']oŸgƒ/‡~E#Ă$ØưæaF0WqsŸ×m|{Tưï̃êÎiE9‚‰ª¿K_ExEgX/à`XèÅX¯bBBî°OăªzĂXŸµËJ§̉ø7`½^ÓÆC^ ´Úˆ(ç_ÓF“TBkD²å2èƠ´’̉ëvd­_ȉ®N"[fw†rJÅ)bâ”sư"˜"¨ô´X ]̣, ô¶B±–Å8»¢¦lag”h—¼è+"¾kăk %©X&g̉ÿÄV‘#ǿó¹8U’&¥’"Đ‹oùêûlïˆ%r’ ]É̃ƯJ’ƯJW±Ù¦ÿ¬§Ö¡Ề¬f”Ä©ÓÖ/½đejp!ÉN(Öo*ÊÚy!—3¢k>b?ŒQF{Ü’µ=½̃D®ßN`Úñq¼9øîv)Îd®+!‹•Ç;Œ–ê*ÏspÜ!ÄưV’²'JvŸs“đ‰åÈ̉^ l^râúDî?ä¨qj|Fƪ"³²Oöƒ4₫7¯,*(nă'Àö­n¨Œôf%º¤8ï̉-'ƯgƠå"ËÿU…Ä®tÈ~c„ÑúUÎü .p¬jê+A‚"©mlÁ•ÿùĐ!"z\º²>-₫ ô²?Œà[¤ƒ_»£ñ:í˜hǜ­€œÔC“…+L¯º­ ¦rP"üäÖ+«ëÑO|S̉_ü!₫;~âcæú»ï_÷=-É)p÷E’9Ư°Eá”-TƒG̣Œ¯.º¾ÆT ~Ư™²¾"h¦lPz$YB¼§`D»¬‚ÊÈg¹ù9fÉ›9¤É˜̀₫# ^¦¢pHƯLª₫î₫ àXÔ¹Œ/̣¡¹c™°L~ψ±„}ĐtäßÛÿ©Ëfu8-\8#¿b‹³Đ8·-“Ÿ2Å*tÁT/a7ôûÚW¾Vo™p!»1›²Íé]ÚµY Ä0­ØèÅÚ¬‰öÓÿˆˆ[jgYüù‡b¥7Anm^WÙ–vÉ8W4¶©ºÅRuÖ$ÖE1z]æ ‹RôÁ:4jơrŸvhtƠỊ%£ÍÆK¾b àan;¾ëƒß¬nyI³XŸ›·xŸ4É…T¶¯²Èt„œÇ‹0a¢Ô)ü]{¸¶±1"R÷·ßü5Ï­̉˜ˆ’!º×<›HgnÍUY¿Ü¸z9‰‚%C+Àqv6Eè"È#Â¥³–K×!£E’₫FNá³Æu¢ă öø´Ë ¯¼E½"Ư§”“‰‰ŸÑMOçÍHÀƠÿZx± ™ Î 1†æâ¹ëÇÁC8Öv‚ÜIË9Ô$éP安Û;­º/y·ÜÇE[tY¦FKiÅnFĂ½¹P?%z6t™OƯ‰(â₫Ơ²×¾9=@äYPÙ´)ÈuêÁ‘@\₫Û€Hᜠ¿ßˆŸz§¡·ƒ›=$ÎiƠ„Ä*­âP˜Û‹í{¾ñªûáíGI&áSƒwt±o‚₫í„C—METh¥SiFV×»Á,5¶O"~\’}ÎJcFzĐ¢cLöă;̃….èÉđZ~;7†#«ScTa©Ô°Ïͳrô[†‰~¹ <ư¸ø5]\¡ ₫2ótÀ¢{î×#PÚE×ơqz •“¾ĂVúĐ îy¼Æ=ΪE®[Ä+!¤â¦RdNA:HxVk7 ç.C嬢|ßb"±!i*ï Dˆ́å(Bîdck÷$Ä5eÉÄkU¿îÿåËeëâc|,àCΕƠŸnÙ™n0[DÆÉ[sç£ÇS3yŸÏ ÂrV@,ç±=‡H2±£e«#£ưư~íŒøêIƠ®ÚưKFAPB„́´1´í£Öœbça-PăN ß‚ø2¶¢cØÙ1/±çàiDô₫F$Â/fø¥ăj›(áu 5ưωR'{‚*J.”ơo͈m$µsṔ)W병•~ ´f(‚¬ qâT7åz§Ạ̊đ5Àœ³íÀiyN­Í¼‚ ’Ö Ă6PB(̉a×Ocè r–­B–É Â-@úÎKƯXªIª’±DCmM˜B'M/ „ÙØ0›•ä*-&]/eÛ¨¬Û¤y6§‘^ÛÑÖ8£ñTLmáÜ¿öèD€á̃Ưö!nvÿ¶@”›Zc÷ëÜ=¾èt²"±¢3zKÆáé́îÓ½fsèL>ZßÙ(¿Æ(Ê›EÆÄîßă|¶"]Pè{‰)ÍÇá´@·.+=ÀơÄy™~yáSœ.4é™·€Ÿ;=¼‘Ïÿ宕Wч /seœ?3Âmtx–ăa¢L&÷-̀æMƯ¹£öµáo›éwA´ư’ ¸Ớeú’DÚ$™ä{R½~ơW;b…́G}|>˶₫_É„ç&W}u”L^Ö„"5.ư÷̣™˹WÔ/8K’rî2¿¨ oǨ¸»,Íd¾A†íüqn9G³©˜°ëÀ‰œc<ë2í§ÖJ»T.|—›‘d¦Ö0ù#çÁ6Bé¦B6£ñùj ¯é(b 驟™µêtåÅ!%#*^ot¾Ü₫Ë%Ûwöáczává‹Ç)JÓ,@'2ṽỵ Yñ ‘L²kƠ„9g؆- ±¡qWá]>q¥&€ñ(¯ Ç!àAoꢔˆ<¬Xóg9æ6/©ô§ªBÔÑP¢Xº±{È̉:qĂ:Ơă«ÚơxâèXêIYZÇ©b@½áÓơañl9çÉ—´ØÖÊ3¶Ë-c ½C}®Ư£³öLJ4JĂSsØƯIDA“84•ßDË78ŒyèhȾœÊ›ßƯä~y±àCÀ¢d₫Ĥ~đ$€Áû€½Ó¸Ư¤“÷̃a)Ø?Dk¨?~^Ü,3 …¬³ˆÿ¿×ăÑC|g—̃Kú/Đ®ÿ̀€Ú qÆÚ̉K' ©x§Wy뾪g‘¿»ơ…> „0u%è4„»+ûnwđá_™«»Bv– ,acÁwN±¨Z¹äPkW»|†é8sÅ¥¨ut¼Ǻ#™¬mè·¾Y­“ĂS̉ùÏX4à°“L‘‘‚¿Å+åIdµ¹H»c'7—Omsj¸Ü †æÍU ¸‹ƒA©jà9 ªÙ ûăo©Q¸Ơ€?H7sÚL®D¶ˆkA×’•‘kæ‰ơmM4IcxÛ>îK!Ê +Zpf9»¾¼wnOø= Üæçt=™iAZÍ…~ç^öÑ’©h˜1ƯÔ¦]‡iaN£_"(@ÏÀµâĐ˜Ơ³~¼‰¾OæGO¯́‰H· Z¾«Ê”E^Åe†h+GˆÏ!+‚äĐ₫ Lw¨Ú4T°p\EÆÉ‡Ưœ›”™Àf̣/ª®I¿%¨̣¿ÂÛLuÏî–BƒößÚˆJ!¦cES.L6™LÁCHăv¢¿î©o4szÖSÓÇaV—q¶Øÿ>£S)yÿºÿ DeBêK£¨Ù*Ï\{ßĂ¡”äï2aPmz\!zQƯWF¾ä QćРÉxª_Ùôx.:œËâZ󮱬ù¬·‚ gsa§ ˈ4ÔÔ„ƒ&»²wœœ+ÿd_0`ÏëđÏ àÜ$ ÈDç`Vưœ›aqE(‰% ,ë¦Á.{¼ÓøéƠF×Á&nßô Ÿ›cI0̉;\߯»nê1ĐǽpÎ=lÂM¿ Äw#½k&)vqáTEé#4é±1¯‡i \O₫¥¤BÇú̉ºo9³Æôûµˆ])™vE-ê_–’^™sS1C%*Ä:O÷?™x¢ó‡>+œ×¡W`v¡íïdMV» 5m™ŸV ”+-ÙlÔÀ&Ä0kS^Tcp3\HmÚđ`Ö̀ư–e8.‘BĂ®Á\₫ư}wȦ%Eçô}•Ô.Ó×E)ú.q̃ô±¢L^̣ÉΤ¾"e%çĂE´_31G¨¤́nÆ´g½I ¿̉å÷Yñâ—ib½›Ä2„G(§LW1^Ér†¯rÛpÊl÷Ó¼AtD~ôB¢¬P¶urQPÚäb}Ù…8µ¿[€BâzWíW5¡çÇ~DU+Шè yAÙlóפÜñơº)–ª«A™|íHÅ3}ª~CN©ççû+%Öư¬˜5ÁW¹—HuƠñ²'¡b„Ùß°s°À3Ơ>•÷—6”;‡!W{sˆ¾¡ÜoưKPË¿¿³Wz%ôRÑÜ‘güƠæÍ¹áóÎxTØ?ĐT~S™3&eu´¾ßÇæ…›Ú„ó¼à|wÔ xL -jÄày½†’´ưÙnƯ}ŒV̀´vÁ dŒmơ¡Æ)‰`»äđÄØ₫·K×?8€„›¯hÅaëvªi˜ÚPßƠ"á́́[xđ‚€X"éTÑ~wÇ–eÆß[Ô©'CâèQg©Ơ §BO䟬’„@ßUHºbè<€®á ₫Ñcw:x¯M¹%,S·Ï7cđœtel—¨µé†xˆç Ïë¼r¶Îâ_v»Î?ơ+"P̉ÚØ4æv £Î‹'Nä \̉IZâ₫ôªè«ù³¿ñ*¹I60E>¬“÷\~X‡3PĐ<ª¨̉¨iM™^‹–¢yq«ó×4%óøYßzMR\½Êv^d÷sD„xaá¦f“_·åÇOJ·tzû¡È¼:ûIJûz® ̣7àt~ 1µ̃úȽ?6‰×lj?w¾y|]Zå>^ă#˜^qYéˆÔT ü&Ÿ­³B››ăcDª,€Ù±¸Z ›Q†¼q—Àjdª Pïøœ%Fi©ümô;“vDdÛÖ¾3ulª8°ôÊÑ-;đ’d4*±Đ’å₫?EËESØ´*}Ló„#§Ù.\.'iJb%PƠ][íT¤‰síHÜÄÎiáO Î7µàmSëe/k¨¾(¬_VDqGc"•d̉JxÓ¿åWô²Hsëáï­DóÇ—‡JøôÁµ “Ưđnÿ–ưÈwÍ ªEr—4Q'ÇÎáÿ†Tß“/·«àK§%îó“ßA†#94` ór0Ï ´Ơœ~ưg01K_ Û&°.ít¦†ô¨?KºÍ/Œ9ÖQ‡‚¯Fä&2·o3Q‹´ÊÉו=4ƈ:*ïne%Øj`¥m³̃½©÷y»£¡a•Â(đ–,î¶âLl£ƠÍDÍ.÷<´“́b’wềdơ”(ø?lºeMdÛ‘îÚlªè¬Àư ~¸|&¡¢}|(ÆÓ6½ÿ–&Ú¿Ăf j+‹ÅSp³±TRÉ`-MµH¬…­~–¹R£vÖ3T@Ê£Áà7Ưö6”°­ ̉.g'60đÏhEOÎÜĐĂ,øÔfE¾Q¦Ñ=$¿„ ´ß5¡º;‘Ë÷Gl"Í–H½k_.9ߟ«Ọ́údCcëiná}íă.l…‰q•3-/ÓA¶æF|7–ƒ¥½(I·ii΄t©P¿7_zæ?=$¸0 ¼UG80éC7Ư‰˜k·t&¢A!3Ù›¿ñ€…)9Xn“°Ê>jÉÈ‹•…QAö*NS®Ë-CÑh}Ñ’.Dz2Cô•3‚?€€ÊøçÁAún½®´w£&Ïc’JfnåÇ_‚gzÄÓC•΀øŸßơ`oÄ#g96o€’ ÔCMôhn7Í B%ô)[¯(‘ʳ;~øŸ÷Ú¶Ôy.nB¼(:¬ˆ]ïùb)_SñCD~ÛĂ!4ÚX5߈2;¶›9°kïœÖO¨ÄssƯÙÀÓZ—׬7-ˆKt碘·Îơètơ`4̀¶J¤]b\LklÀỢ âb)ÁH+Çô…ñ¾đRƯ.R'\Bë…«mGFø„lôzN‘0c;ßÿ-Æ…|̃nª;ïHÏg<œ"ï~ngúÿ¼DJ.¢₫¦TDçacđL̉{ÀZ§ê:°‰ÚsDlZâ4PÑŒ ³#́éŸèrmz¼~(EÄÓA't5‡¯ô£̣ª*Y0“y%h »páŹ¿1y»›±T_ăä™:ääʆ±kkaQ¬wÏÁăá,ê@t_wå9³Ô­_Ăñ¶Ă«’*Øø fêÅB.Ñq_›ÄKÆ%¼;ñ́—¸4Ó_×¹ßqÉlms\²yÑ{̣[̃F{aa>Pía"¥o E–Öú¸¯aOÆÉk{zà₫ữÿg([̃…ǘ äÖ‘…aåáès"ǛI¼°ÄÛ­bz_Ạ́éw êéÉÙG5ÚÅ®> ÜÚæ3^–ưUØ“êÇD/Ö8k¢‰ƒr9ø}ÍmfÎB&6BdG[ñÇ©Ăß6ŒHO„RăFKT\E‡hÚp²±ªÓs£¤ơ?»é-”‘m≃BYêQXaœ¹‡¾Ö¢ 5ĂW 08Ă³ò₫%ÿƠa²³Ă½5íF4₫¸ĐꓵÇÈ¢¬|#``…r/¡V˧´­ iÅ̃ƯÛáä&œvW®JYÀ7 #çj$=8xÚ$Z;úơ™¹ ï´zc¥đ@º]¸øæ§! TŒZœôôÅ“}+ơÎs4ºÏYJ7,`UÉ&̀;ă²‡ lze7e%̣s?2ơ*Zˆ±{  륕'-ú«K%Zƒ3—czƠzºïúRñ‰ØAÍ.UơˆÇiX¸¬q÷=]Ckm§ÂÎèÍ́{èÍ'ếÜ@Ùe`ÿ( ÏÓẤ¬ F ÛôpóĐ­4Ú̀- µâ[Ÿ¨_ávAA‰Àu‹Fªư/Ú*Ve¤c^?Gá!rlëvBsij́> _y’¥<•áØ©)ˆ³ ûbqq 2ˆ\A©Á'‡ÅÂă ?uæC$œûøÁ¡÷¢Ư› LÂÔ$4#BhÂƯXoVjï8{èYị́wç*MzĐs₫Íà„ü… o‹«CpÆơ³j$c†²RK*@ ƠܽF£€d̉đ}çÓ¸ÈI›V.j†XTöçΩ0Ưá \ ÉÇ…“%ă™(È `óáî=s›Èé`iƒàÇ]JöÛ¬ËBaße?n|ăzáMđ¼–ûü„Jc®~z€t¼Må£ÿÑ̃ ½¿Z‡)'Ŧw¹¾©Û?»']đÂÜh…ªI₫Eƒ &ú¥.Jw ˜̀ îr„‘^ƠP|»JF=<|•‰G}²đùÓ ¢Áx/qkRçVÈ~u­Táïx˜S÷©—?‹ œ̣htÀOÈL“Œ±ØI~d́5ÜêÁ›áÙ H™æuîÔ×uó›ĂN9o¾Ø9ƒÿ¼^›ĐL53 ¾\Hæwt¯¦èXQŸ·I›ÁwÓn“RÇ¡í[[ú!V9;¹ÆÔL’đá̉X=HÎWp³¦w8ăLeØ$a"óǸJN9|ôÍØ„́±àƒ ÇKơbR<½F£—Ÿbºª¿üL`åD2”ÉÿËømd›6+”êOp œÎŒª¶,ÃÄpÚ²ETFÛnØ‚?2ñ`ụ̀aøé(_<®$`€Mó`ÔŸ}÷jăܶ­3ÖÂ`Æ‹×)Mj‰f“®›ê½a.†‹ù«Kx®MËH+È]1é_rÚétWb8\́Ű¢×áoà•¿|—HæĐá÷­Köå" ¶›Áˆ™ …NGBI-Ơ>9b,ûßfOÔâs¥ûȽ$,ǘĂbQHCmi¤)Đzai\óÎE›úÁºLdŵPœ÷ ½kîe€—Ø_k=.û§Ó—jÚ®Îxü›«̣́ÊOÁ'܇Đ7+”~·= #ƠœUê8`D7! ¶§Pä©y]×»§kḯ]/«QÛđ?…ỪË»I '|Ä℧è¹îúk‹Æ£­–›SÓGĂi¬ßaƠ²̃70%‰ÚªxÔJE¬²9œüÚTñ­üööÚ89ù°&—Ë÷1¨s!†åÜeÁA&!­¦·¤æ¥~m} ú¯°“ÊÍ­ltoËG¬Né́[b ÈcözUGb¦ù3YD,éŒ9uM1"ËÛ†F¡Q³2̉AL0• »²*…Ë]·j+1%`z,BE"»jdM ïƠQ¯ñ’¼à‰ÚM2Ƥf €`Sdöv³à₫=(wÁDÖ7ȦTliDÆÙ@ĐKgÀ‡ˆSJ'Nñÿ{n*){é́¸ßSªĂ-=§P:]¶•­8öó+‡G"÷ ûƒđ4¬Is»o 6•")'ÿöQ8¡÷üÚÆ å 8%̣䇽é2ÿÖ÷ÙŒ`2úÖÂÂ…¦‘­ƒ¿á’Ă³½'Q[kwˆ<éG‹äO±¥1#‚“ÜêûÂg¹ˆ‡BL%ĐÈù¬}̣E^Ơô¿éW7Øj ßê¢< 5¹ÔÔ!ß́“Cg…wç”tqÏcwlÛ_¾Ú‰›ºÁn¡½O`ÚÊ£ÌXVĐq:˜_E¾ärUA¹ÙJ$X®HLÎ åäFoê_àÚ,,«€́S—úúĐ9ïû¾mäüŒß‘Q²g:˜™?>N$ªC™c&ƒ–tÅ HäĐ6zĂäó:lÿ ‚ƒBW §ŒêmRl¡`‚ŸƯÇFïfÏ›}€âk=_“Ô‰£…ÂCA²3L9¬ [fÆeÊs˜ƠEø· ‚Ú8!e°,D°‡ƒp‰v̉<·O|Áèv§©3ù 7üRóÜí0›]Ùå̉'™¶ó”°¬^Ơ¤ñéuxö‰Ố†Wæ¸yl—…{ûˆÿXå Uâ8–Ûx®‹gưa¾9Ơæ7FĂíï0 Ñ3Û9ƯC+¨5<Á .MCÉ'ª>ÊO¯8_›¼ñ₫Üö¦ ² .à7qöú(ÜƠ¦Â»œ‚đ^]̉©Xb4;÷TSÇy!'Íog¢pͤ['"ÄË́Th8==1•HŒôI=æèÇ+₫óv§b kÚơÛÊœơè7¡ƠDD³YÊ,Sm;n˜¡"1U!û’Í B3hwÍ[.î£vđj‚NÊó†₫aùß´ÍèаnØ[¼u¹[s|i~L륇ü½¢]%ôå¹ÖL½N²{Ú¬ÎüF²Uù@}¿Zªư₫X1ÄLÀÆ H7RĂŒí>Y9?$36¤¼4Ør|£¢¼KÍM 8LÚ†ØI?–>Ó‡¨v1û/BVV)ó&Xơ£0SK]̃ªˆª±{Ç%>c sŸÜY÷XÅ®mb&{t…LÇùOĐ0ÖW†§•É‘¸½Ä7xv@\£ˆa& 0U²*!\ÂéƯơÿzs–Û¿=î$•\Ưd1£ƒ@ạ́±0s¼+ȧ٠/e¸*˜0đ¯œ@ØƠ¸,TÏooơ%wĐ –§ø¼ú„ ‰&â™ j5Pó :‰Åâø›2•àÆĐçô„…Kr&@®ü® }¡§Ï€yØÑ\ØF ˆE«t³0´(½́Cùî3ëƯ?ùà O#{Ơ§x½¤üÚt°}aS9ös~uvħ(6ƒ2p/4¼n%ˆ¬h˜?»Eemóù:àYêA}ù^ÓÜøàïQœ;F¶>e†–ÏÊ×áªß̀[?{N¤èĺă(ӧɈo°ÉÚC`ÚlnoPù}:©ôàï¡dB×Y *j¤O÷æ¢9đ¿ÿI‰YJỤ́Ñ<êƠ,Eä̉¤S ’üIŸơ‘—Mæw¸F‚…UÉ̀–cˆàÏ‘.™º{sN^ ̀NæöÎ@,™˜K¾÷ÓÈŸÇ&?_í 7M,uƠÔƯƠÁ‡ÇÁ̉‚~Sû_™£øaÔÈÜwúE{N­Å«ˆÜÛ¢™«!ep 2aHá¡)Oª¬ưCI¤µn¤íßÍbdZß-·*‘·̀&ÏNưùLBGÑ €hC@µƒ_øÀ J .„ƠZ²9è«ơ¸i+o]ÙÈ/Ú†~tX̣R_IJƯ#,doøXÈ#³cô¸—1yÍƠhQÀ,Óđ^Ü̃öéºn½6ߟ É/”§MŒ´AË[Ϻ}p’Éj[Ơj”ŒÊ–Å{ßÓ˜"r/…]Ez<úH₫›aOË/W—'Æ‚ó¿jGéñ8¤E yZóßÓV¡sÔ¡bªe§¾ŒÏRHi–pôbs² puú9*Îû^öQÛˆ̉Ëâî¢éưÀ7mI$ Sb́n¹3Ö₫²;¡ñ±ïÙR»ŸÑgû$¨×&Qö€wÿơg>q4céªĹ°Æå5¼»̀¶bvÍä&ă•?YQ:@̃;¦¥ Ă"Îx—‹{«S¾}LOÚ°¥¼XeÍë´JŒÿö¬e˜_c‰g÷¨_~„¹ïj˜•iŒ+í¸£Ñ<£Ăy?Z#wËŒ]G}Ă´B§¼ß$|́o“̃?Ö¦Ê#Ù+¡á5bY—D_Æw:î$đcŸ;v›ÂqCåƒBgû(h÷J !Ú’¸ëG ·æ¥Öâ‚…Úăạ̊;µ|Z…_ÂEó­{ÉAâˆg̣„_́¿¿SIÀ&ëËb£»ÎÔK} Ø€ô½çB[ß´ Ö¢3`§I¨å)Å+_«%̃'P¨#~k"ü¤âưëÇ &Ơ·JêÇnM¼‰k_@Q»øºÛ|éĩ!J­°¤y xhLÈÀ\è´yæ/‡FókËz₫¥GÜo¬6¡]Ä(Gë´ï^‹` óÙ́ËÓ ơz̀¼2HoÆb.Dë̀ö7.¼y9ˆ*³ —+®Ë}XäáP»„'§ưÚ~C¢bƯ₫|¢ Ës·¼è¸#m§8¯4Ü«O2êÑ l©‘Ÿ³Öáh¥Lߤ…@jV°= 0ÙÆ8¯¬íj#Ă‘ƠŸ‚>¤D‰¨ñ-I±̉xÈs¹Ób¬ og³.₫. °+EÇæ¼®{SaU48&…ÁónÍ™Ừ÷ VöW;$çDŒ#Êg>ƒ’Ét¨¯æÿ7S;j¹éĂơi›á§éHṣ))/!8rjÚúH ̣Ú"OJă2Á©¬†ƯẠ"}¼Ă₫¼ª35¿#6Í(àÿ·[B:}‡)UÂF|a`ÖA•Z»mṾ÷6ÚƠª¥¨™lú?¬Iˆ̀t[ JªœS¼&s§Ë̃óẶ½ØÚQc 0₫²|` [á£nÜ’ônÇ#&8!Bâz4‰ªF®¨@Û‘5Øá`ĂyLƠ®¾̀!~6àïæERr+ÓxrºHßnø#jÓj\]èđ_]4CëVÁHÇ\'dU|–äæèíä‹¡ûư\#̉¨¸v/íâNL¿2z&Ø IŸđ ó°Á§z¨dY(Ø¿[H́ß;!0û™Û5Ưîèø9hA$äƠ®>éóôËCñÓû…Q÷àn¸Áùß«̃^÷'+¿&*Ư?†½[x‡oË6L ̣ÄÂ|»jjƯ]̃Øf·˜¶ ¿¿J{©RA³¾¸ø/#¡¿Ñ¶÷“¬ª!á_uß̀¾;xÚü̉L¸™…¤J‘%¤°>÷ç£ÀW… Pè(q"‚Ü̉øéÙ|¼å8¯‹NE¢ç°oÓ™…w¨̣z„đ×±¸9F¬Çg0<·yd¿êî¼É2óăĂו¢#ú倯)<ˆM%H»û}¡bưÎ,ñ^ä£FѺ?Má–ƠQéa6úŸư‰³œs­Rº"ŒÈuX1Ù½ô₫±¡GªS~pÚ:œ ¤“ÉØt…çN8ẹi(‚'̃ç¦pëù¬en¹ Q›đ™Ï‚ÁƠ¤ÈR«́cËk‰ÆôëxQÛ]=më.(FN5„Q’Ô6Tœ¸ºƯ¶̉µs®ùQ —§1Cws&Ó¡à¢o:~E™âßåVÑ“́† NsèlÙ ô ¼!ê7‡ÿU†Ú´c̉Z̃Öæt”ù,+ÊÓn ¢;¢,ç71[´¨9JÉƯä­]”J`KD2åÔÅtÂ{ç‰lf5hŒSSíVW­+ ¥`~:¦<¦·=+ÇQúMrüTK5̃ÚAë—Ä@ËRÎ\ø¤GºrÜ!ÑóøÉJt£²ËFjÏ AsqúItÓư«ùXPlÿt™¹™È]̣­¦ñg{/†Ç«vAÖ)}"Ê¥©ÜƠ{+uʺÇë…îÄÓUak®Ă¡TEδ/¬ke ΰQ{8,f$ïúú¶Ê›‚Pµ‚YQc!·JÓä_üIxªoñơÔî̃C/EÁ,O)¦>ÈêÙ{Àÿx£EđnÖß<ÄbjNƒ2jºæ%92W~N6Ö¨É;îd•¥îí1ø"t9 å™ÙÈ5Ỷ‘¥2®”¦ĐŒ·h? !«çÁ ß¿ïÈï·AùđsaX­̣QB 5”TU·‹3Q0‚ª»i—N ËgÖRاE‚ÆU'?ì#Ùtk0®Ơ]³^©¥€g9Rv» :xæpçíe²»³Ö¥ùC0g"ªÛÎÚÚø“9Vø§!áŒ~ äß2ưÀøMç„¢“{ø\toDʲø*w¸Q¤•̃D`iƒë$óƒ´SÛª#Ê •¹Ùˆ!Ϭ$|W¬ûÀû¢IöĂÙÉà \°Ü©†W}B™J!µ¸³í5XÀû21Ä}Rà* [ÓÁÙæs•Vs¦æÎÁ$‚Èœ°ß2†Ô¦Ño\voS4nú—é]wÛ‰â–5²©Ă£ëƠÆ„ĂSÊ„(œî’‚•euˆf$ä‡YnkÅ-\(Y:ˆ-uf­¦̀„ 9‹¥è¨â3l]Ư¿8YŒ|búc ºnÈ·‹¢Ïù ktV,ßBE ‰‰Ï?S+Đ²[»–¥ƒüc {Xî5¨V×5µabŒ’¬'7±&qEĐÜZ”…÷°J&p±¦Ô©t¢8«mGù´z DÍj—̉ØnăĂø “˜wṕ°o®GÊ=ñsØđĂÓ^ëß»&@M$£5%$„ d-˜ßÎÍ{@~ệQ₫?üËƯê{qêRë*=€¦\6k¼₫ Ï›(<„ø°¾È=mè²̉yvn¤'ALíxÚzal˜7Ç:i²«WâTÖ.²¶§=–ûÊ´™+Y®\ÿ~AYu#r·™u—› )sB¿̉¿ư™/ÑUïY'5ä”iêDĂªÙÙé(úÛv*ÑG¡HˆV±bßå©3»>\^_ÆU-j3«?ˆ×™Û  ¤Œ̀bÂSÈpéfIlØĂûÎêHø‰-n…ôˆÄáœhr]̉::ÖYÏV÷1_1w„1¡–tíjÜñøÏË›å40˜J‡!½5µö¼ŒªéZº,ü⪠$uk¾* /*àäu2XK–đØ´GmÏШ`aXØ’1j´»gœØdƒlºÎÅ­r'›„ ëÀoâ#ßhüÈ©Á¨¿ÖVû`bƠ+‚ËsóP€SåP—&1›•é̀₫‰₫/éKNḮGZ²o[€«ŸH̃g“æDÑŒú™k®3DB?Œa|Ô0+Ëơ±H?ÔNeix«é•⣬’nÁ;̉́ªÅiwË:¤F½óS£uŸ™é 6øç¢‡Á̀ ˆº¾•‹©LË×AbsE=&½i ©½´o®SIŒJÍ-ÿIé5³{ắU¢@“g¬e«ûè6`HNF¤î OD÷Ê>SĂE䔜!@£¸ïú­­fH5Ñâ”ÍZ:•Å₫Ơ3SƒæäŸ₫cüÔrE).DÏ;¡}Ó/ÔjP@<–*—a‹³‹¦đ¹£áĐŒ˜V呾¬Ö}3­Fṿ̃Û~3^́»ûîN‘E»đCª®åYån&ĂûOO¶L‚·ăoS•cơ9Á+̣›…ÜyR_ñ+§c¡ööĂˆ̃åX wµÖ·(Đ5ÚJp÷† 8‚ Dç¢ÁåÁÿQ6›̀ú·—AÔqOcM3ÍSiܵû$Æœ—i½DăÁ]tÄ¡&m"*=»̣ “Œe@è¹¢KÇr D°+ëöqZ„~È–ø|0&YçÊÀ¾W-›tèôÁƯ`ÿÍoö¹‡.vD”¶æ·E÷ÉÅí¼p³œøB!œ*9ÁU‡l/!ÿ£+»ùâ>—d0ëYĂ{Zøô²Î›Û6 •Æm²å¶ö=69äH:eĂƒªµ§xƯO'mç̉¦Eæ@Ư„Ơ[Ë r¨€0ơn¹Èêx“đbá³Đ&yͬâáˆÑ:/Rª4ƱĂÀ( N±6ËÄûæ@;k̀×ÚRÎÚ;£œCƯ½₫́@î(¶ƒ7{} %\p6 ùq`Ú8sÚ2óßåO°ÀÿăÉ”å÷] Ÿÿ\¸Mc êxæå£ÎñE6WéoÊqey,Nô)¶ÿóÇ 0,»h®_d ¿ù£ux0¡øc S`–ô₫wH4.I(rÂC8¤Qæ‹YO|d“¿W%T2ó»×^zÂôêê"´ÖOÏ0èæ7ÿt_Đ0a¤f-XL…µ‹÷·³¼a/MF]ơqè©üÁåĐy$Úơe+(©'"xÕđüâSƯ@ dmaHÀ!=‹N·=’ZS¢ M?ËZ¥¹&’) Â8ƈ6ö¬ª¬*5ˆøÿe±„Gî¶̉Û\¤ÎO®˜ß~:¦µ₫*a³ü ³h+®J ^G@´µÎ€s¨z´|¼ệṇ̃üu´W­—B½{ăñp‡̃ÿ¥Ä~µ^’¿²gc1ùpï>^y–3PôPXÅ8Èè¥8$iœwư|Ä‚Ṛúíó®HVxÂY¹̃*¤xĂ4¢íZî9 gŸ›Ó+ßÍç[^oùdêî`̃₫uö>'Pó€çÛÜÅư©̃¡E½œB CN3¤Ç§BŒñ·¾’́oYœ ü?=J°Ÿ}̣̉3Ó÷~I9³ _h%6+KG¹aÀDS›]K8l¥XO·tæ™$Ky·Îˆé1 [>RgdW¿å.Ùd5c€¼©̀Áê-fR¡* s¡ÚÖy-Œ-8¨#”wÿvRó<à02yZă—̣Å Đ$Ơhr®"ü¼U$ Ó¤S6ÈĂ€ă’íÅK?³¦L hsȰTùØĐè9ó,’™ă!̀ö¹°;̉ Uˆ®1'1"»ZHE7ơÂà¤É¼5»!Y›Ô28C24z‘gëyjẴ7^—åtĂç9ÂéH×31]”3eˆê˘.8ÀÀM₫1b™GƯ{îiÿ;Û0ä‘?7&±ơ÷Í:b i\«¹ë#ë—µ¤ÓyöÅ2ĂÂ!Ñ®Ơd"g¥^mÇjâk̃êÏƯ¯*YN«½ ¡O¢[Ù×·?bø<»ºqñĐ—vˆÿˆ4?/ùđ̀™¡pTÎÁEÙ́$&ŸxZ₫ƠÖ ØÿpE˼ Á'µrT¿µJFG’†&ï~¸!̉%¬€ç‘¸²›¹¥¦…§F§®°ơơa"´Ư˜®fî)ÚŸ*#&Ơy"{äRÚ^àƯ§m5•ÿ?¡Å¬îỞñ²7 â¾{Z±M”b±Ÿ4Wz$¼`Ï¿ZU!7{ÊhKVƠÑtǴ_GzHR~ô— ²2?“ya=8«8ˆå•Á ª3̣°Ï)…Euˆ…:Èp×Cß?ø¼ñid‹³6}ˆÛŸP\(³"ö'0e‹Â1;› Tơ<à÷F:Éo”9ø™~4×`á}Ú·FåĐwÖ󮸩ñêY¼n Ïî́Hév₫5GŒfˆ2Zu“¼¸½|¿[ˆ¿ŸötvM- ́ ¸pû–¶¢́ªJ ư…Æ`zr˜Î¯BÖFoù¥i…³é0̃¯RÜQ®u`íö€»́´¼±­Ô#é×·\KƠư=èƒ×”zmwR¤[ó̀ÂL…̉F¸2‚s„˜ ă"RCRPà's3¼ơ³Y?ƯÖjum‰È$ơùÖêO‡ªâe¾¡ Æy¿íAcéñá—³¥x! ̃?‹Öơ¨°$ü©¾ZŸv>̉ªj‚@g§$Û¤^º¨¸[eʵ۪ôÚ†j4¨•j{Ï€3@QÇÓ©©´ó­©6lfÿà $ºhI•®F9¬»_ÿ*!/¬Ï< Æ’Ëec †eµÁ™.N¯]ÈDQ¾_™?êÛá́JåsÜ?ź₫s•́úùoéÁÿ1=Ư£PRî8äÙ婾K§üÎhÖ5uÜû₫<€+uÿÑ£*ê ­P¬ĐÏT€wÈz;MtÛ³à¾ÇHn†́̃ïÁ¦” Ê/™à‘[b5e‹XÂ×x&SE@ê‰8ßË €èlD&ˆ¨_o-‰ÓÏ”Ÿ@I±&÷‹ëø©̃/ñƒÿIâeÓ5đ|ÖiêÔ†€ÙgBuÜ€u₫À.½ĐŒ:n½tƒHZ̃±v†~l·ôN ôÎå—÷µ5̃³Ø¶u?b̃ƒ1Äê`t å đ́^û́:ñP‚çj…VóÄ…–û§"N—`ñ~Ï©Ơn¯qÂ;\÷‚ơ6…º0+N\"₫5S¶C-O¨A5åÔÖ—×9MnØø³{ÖöÖƒ‹¥̉œó‘ăPh‘¥³› ³ÈΣ=&:ˆå°('>"Ê-Çv7|ëîÍùßü̃±́áÚÆ•À½?IÔ₫k»ư¹œ´¦>ữ ½ÇB@Ë/|̣Á«C2yc§Pô·ïế‹&¸î ^/â\)D˜‡¹ ư,‚$€ß¿#—̣Ö¬èCÛ&~»R¢©q÷cÇíô*ă’6ă\ƠÑÛØ÷(@8蜬H(Ç;»¦å½̉|µ÷¨¿K^0W“ạ̀‘V²0ƯxÊDwÅœeg©Q‡Kđ?æĂ°¤œËEø[x€ñ³¥º˜ácWg5ƒ¼¡û\™ 1›‹X‘a‹,›Î³¥S û%yNihó…?aü-ñ“Q}’ÇT»ÆÆ@Ë$Ÿ0l2í Qü8»<É/ñ̃ Çè€9jvÓ(SÓQåuvZÊJ§¶-Íîñp8–mÍm¸I9›†ózR¯®ªwøg¨ #¹ÊJµWHVÖ??ƒ:RR¼ÙºÀÁªØuö… ÷j”NYú›̣<-gV5&w±:8 2/ñ™xI,̀r„Y÷n]!X\ EçÅ’$]DÄÁo/¢­N°_w~Uº(“=[Jw×ñ¹¡//®ÿ_ÿ2¶¿@ºûo¹Tœ¢₫͉Reb“ª́‰›hiÆ!%Ăiœǘ´° [c`i(Ýb¹L‘BTT̉Í2¦LO¨W˜ö±Ă?đ̉sAÂÉȰZ[0Ó²§W‰T1Ơ^dy£Û~ÚEz­äå[jú"}A³÷bM `tæè…ĂE#¶È(ßưq@T•ͨTVñtqEt)¢û>9rÏ=X0̉?! âC¯@D§‡g¼ŒFˆ.đllYđ+C̉¨6çÎA£„s¸},äơ&¢+m¼Èc_ËH́ÁâÁMó½bF5†t˜e é¹ Œ́›†Z»®¦eY~r³‘w¹j\Góe:&ƠỮ/•lø)|Gñ±JΓŚ¨jjÂñh¬₫ÎmúÉ(N^W…@¿º;Dy¦”úï{ÂøÖơQ+ɳ»4$1Ö#ZÓgÖe5ôAZºú\Ú)¸ _s0‰¨öëSyë41º|}zU}Ê‘;₫ËMơv‹”0;K,Ö¤í'HÙë E qz̉¢èêCØpvÙvÿÖ•ŸÀ̃Q­í­9_[}—yÅÅ7‹«²ï% È #Æ• EV}ÑÁÿÖqÛ1¾.°_8·U`9Pêï-c(U?Á•V]âê/6Rí¯°¯7!̀[Q‰C1îü"P)xf„¥G5³µ¶ø ¨/ká<{ߌ°4Ä?ˆÛq@)87Ø5ëh/plÖp]r÷LˆùTj#đ0—ƒ†Ëô)ßd¼n“BˆêĐùXÑ#27ä7¶§¨eˉ pG ¹T¤±ü`Íùd|=³ È6£z_í›[¸kQ;̉×ú^:yDAœÍ)cÖ‡¸ôgÇoV"æ/Î÷ă UÆ_Îeđx~oÈŒPÇùÍy¸¨B&^€5Í ”l§eM?9.:BCap)I"iPIdưƠkí}Ç Y¤Ÿ*:Ó F^m®kü]7bUQÅ(Q¢]®½¶íÄ8Fq…·+ÂơAG!—ÄA¨eÖä~ṿaÁMBL€bË•_äß>Íb”ƒ‡êTëY®AëbèÊö… €§^ëƠĐVAŸ³â0À ÈEñ²ù/ÇxJS6™ªL₫£@F6Å`¨æ9$€°OGÛæ]ÏpN&XrÇ>M'Ó` ú)̣*²Ôn“Â`kêyÙ.ó´û3ëâ¯'0ª ˆl=‘ñBÇq:,4WÊLĂ ‹gÔ®ƒ°X»TFŸô‹½Fi×Z(q?øå:IYĂe¶r”0wfŸ Îă<#µYƒưµ›5 ñ›4cLu}uæ2Ë–³#¸f†©4e‘}0NĐ)ø²UKđªS†r ›k¥'K;Ä*‰¹%ùcÊ8[›(›;:̃/âMÖî‘ɪ”N9®†#00*̣n/. ›¡²1)°$‹Iíô~ù“á₫è©÷ÊO|¯©§’â[Z§À¾ ªè\HƠM ù7¥5ĂûêQó́FÈj0qw³$~qR“N¯"=ơ®øU±g%…ún“™Ÿ8moaPæ$7…wØ ̀¸€™™$ B̃B-ª/bÏê]¡."P2µ`3ç.¥”‚៨7M¼76aOàÖpúúÅ}[Dúciăö;â+̉´ïrSË´é{ ăÜ̉rǬmü¦?<¤ơPƒˆ—îqBb¬A¹îu*‘ Gü.Uî—8çµñÛS ùh̉B¯ïY ê3ÀÎ/ñ‘X’ɆẪGo3Ë^¢é Ÿ´Eu¶[ơjư´Ơº)k—·Üÿ<¢,¾åĐͽ‚DgH6yơz Ó^4›j#ƯÛà¬1¸™¤ëá÷&™ü„hÉqiơú‘¥ƯÖß)®Ûv‰ÎÁÑI)0f@öæ€. ëå ôÇh,×è˜Jª?¨Ëđ”ÿuŸ?b̃†tÍ.Û] ¨¸J‰'™tö,„o‹gO”́™àg₫]± \ñÓÂ&²’À«ư á¶a)Ö.=¯´ G½¥»̣Œ¾éƳ7¦ÿüíp÷­}’ekVühÍ긔 *•¥Op7c³Ê•6w×…ql EÓˆ~l’@H–:µ•ñ{̣ú?˜iîô¯Isîêe'Ú ï₫)ISÛ~átsù‚; ÊRV8ă!5ü«y‹Ÿó·ńr_” ư‘ñxh,à‘í2K—x;ÔĐÚçäía8­íäà…̣ ‘ #ÏD%¸z™Çf‹)£¥å`(y¼™»ë…pzg-;ËQÖíN–´N'̀Ë8Ä s±bgÿ¶ü^ ”Èj’éÑoh(O®×ÇE"®×«̉yq4}¯H›ŒŒØ"R _SÙkváü:Í?0!I¿ À:;ܻ֨js½ÙƒRM·ˆ]ÎîOK£‘‰HHDüöƒÅ«¬[Åè̀¶óǜ©cP¶›ơ¹×₫® úJŒJ«±H^«˜scrñp9”*IWp˜‘J¼w7Åàè́ ˆá§KEx.<$å&'ë¸x'Èg阾ƒñW„Ó(µ¹ÚĐpt£‰hÍ&(@h& È/ÉRè ¡â:ÏX;˜ư{[Na˜ªï0¶;TXâJ7f5¥¸â½’ÀĐŶQÅL÷M’á•[ZY Ïfê¤Ö°H“?Á9Náăôt`´Phø”Rw˽›ÎÆÇ»”꣑~¼zOÆÂ¬ưÁ |Jôª.;N~ÚSO¶9s2XÅéí'Sƒ ̃93„$Àº|¢7÷2èqµ–¹¹™]ïEë1øS»xf¯œƒUèÿ‰È̀¹\*’ØT™Ư€ÛƠ»V́îr¾ưíqöèæ¡à5)r­e‡+ßå@t^åagÆ̣RªÏƯ÷ø0«3LSë`aÛó($øcá,ˆÆCÆ₫ÎŒ¶}´a¹kÎ(5_ Ï•D""[ Ÿ\ŒUÛ~nl b̀ÊŒ„¥kdăJ”%IqnỖĐ:›ïOÉ'Ư¨ÍªD‡·âoP-WÛ–W»EÓW‹G̉[Ubü!™a’“ËÛŒƯôyơ?¤Ê:J₫èÔÅK€0™“KÉÔÔ¢xJ?&Ÿ¬Èí<|eÄ₫iPĂ'+­fô÷“˜_=Ưkóbßû"’mÊ{¾*đ¡¾rHÔÓb´FøÙ¨¼–Á¹)ơ-6öŒiw±‚^fg¡hO‘XÂRdûMÛ]úføå*ˆÁ¡<àñ` cĂƒD;³0Ö9:Î]˜«)Ụ÷£‹¨Cz9ª+uDĐF›₫r¦j̣’ˆ€£!›(D†Àså… L:£ï-‡­₫Áµû̉:{O¯0c"†n¤..¥=Ø'¥̀ø¾%ù¸Åä,¥`Xw¼Mv–æ/¬«–u™sñ}NËỊ̂́ñuçw~rwRy¹´øzQ -Åñ÷܇₫à[(.ªxĐî‰;& {Œ‡q€Áh[9¨Öc&Ë…|ˆHØùM*ß’Æ÷voQX±À]áœưÁŸ ̀X :Pc‚»ÔqÔå‘ *‡öÖ±“-ØƸàÚf®úÙ£Çëü4îµoĂˆW_nèGÓ&i" £™0'áí¥´ÊÔ8d¬‘¦Ç–,C#‡!Dr¼ÔËœm‚¼̉øB –çiÊÙ¦Apo° ܶ#dC¦æ†‘̃Ú·ù­\×^Àu«adY“VØûµk´PDưw÷å’Ê¢>hñ́(!.Si,üÁ(mŒ¥M½½„«̉$åmù.Ñ‚L„+·¡¬…Ϩ°¬iËQĂ9å$¿rWd£5̣éb´;‰"म»º÷z7À+;üÓn 6¨̃÷ñ ȇ?\'S´¨/ƠÜ櫺¦!œ” đ’$¦È Åmi A,¿›só÷b[)TÙ̉â„gµªwkAé‘,à²suñ́üÆĂ#Ç?#̣Ü”a£Iư+y*ÇÊ6¢–NÊh£×ÍǽsÙ8S(¤ÜÑù|‚ªk̉ă=Ê¿±ê÷'÷ ¾3|•Éù4LÏæCö½ñí -”ư¬ ªh†i¾höNbg8ÏC»†]ÀKäÙéÇÂå®Éé<WôÔåü«Ú%=@}e@û:r!Ø=4é*đqUq^´XC§CU<‡ˆ›1•~FÆ 2g€Ê|vh…ÑkX ÷₫û2ItfpyĐ©Dj«•à£k̃ẁdo~Œ™̉»“\iè„ơVüt7%”ø4„`~‡%£†Xb/$gp‹JÙ'ẹ̀^ngr[†©̀›́ÀbB¾Ff³F‰à9[ÎÅ($ẽ>d“ѶzíÚ±ơù!ƯJZơĐ>\T¤“ø‰àfFN¼6₫™%\m‰,Ä®szb""§¨Í–ŸTÖ¯»k(ü>UÍU¬a–ÔÑ‹¯t4 f‹µˆÊBBÅ<…)E ơÆY GÊÔ+ø2Bẃ/·;ƒ¬â£:eA¸"?-ǹ±Çe$[dGM‚>B¡á²Ă‘Ỗ£ƒW< œpº¨‘† (g Ǻl2!z8[r@r³™bÆ%*FD!ŒXT²qùa·€1GôÅùÂ[Ơ?^@¢o¢>•cjç!*̀ T£ÔauĂø£ Ú…†I‰,)Ü/6¼ù!̉]»{bU'Ï‘Ùû1‰{·© ¾Î•×k ƠC¥ÆPÁø+É̉‹ÆUª¡r™½{«ÜÊ–S¬̉jocWù`®ơ€75Ù:Åa‰f`édߥ–¿@)^ùR.¼%¸ óæg Ơ’8²êÙÇàpá(ˆ̣OYÔVư£Ú%3E —‰X1*¶ ˆ .QlÛh|¯“Xæ`Väđ/÷(çĂĂ5 tÙÍî•=²kAÁ’¸€ŸÑIïéfM+èUÉv:>ÆÇ̀¶H€¥đ€³ßc5î Ͻd¹†”ZñÓ’O¬ÊQqu¤N÷È(Ú×c³`t¿"¥0úâ(“~„ÉyưôØæd×0rx²é̀Öø;NÁ3ïY'àá†ÀZ”(Vđ‚­Gf{ehF¢Û'Ш¼$ÜNÖ“ùôƠ=çl÷&i·đE³êÁ0 ’í’íPQ ×}ËŸÎ,,‘„₫•½̉’¾¯æíÇbö2yư & û†®=JûĂ ¥9)·ê?yø8°`$ ø Z%M Ă ’ºrÛ7BƠ’ >}̣û©¸?Ê”}€Uo®Èg_²ă•̃‘®<›È¥́x3Xfy(ÁÙ¯ YđÑM¼mƠ:ëtï5HíqƹKx¿—¾È̃%Zt`n¨©ê9œ¥L6%ÛƯµ¦@î¾2œÂÿ¿uÅ=Ÿ^ÿMÀïEc€¶=Æ5œÇvœTïF&SIm“ ˜ƠfrmvcR±ĐbÿïtA‡˜©¸ËXïCđnØ4¾– ÜB³Y›FÄxxg!P“¿K¼¶íåM^çÓ#–ÅV"xÁäµ×.ĐZ»)@1ÄsDW₫uüï†ß:`X™¸åñ]aZ£}Ṣ**Äë|B[Ö¾ỸîbÓƠ2a~ƒPđÊ›•Kç¹ m÷6Æ7S€~ê’.(ˆú_‹c±ú¬Ç)¦0r¿ø/-qù4P§‰Ö)‰‰løñß ´Ä,Í$( t&Ñ/a:̉T|Êz{¾Ÿ-/̣·.Gư“6]ăh…€LC»ßöáø¢,” Ó0 *ˆ#°1Ik‚N<y¸©qWC'cf…"#Sih₫~#Tb3W" é¨cs?â"E6\„ª3m¬Ÿbÿ‚]7Ù'1tå:G­Óœe¥_Áüm(‹Ñx“‘à3tؤêa¢:#?ÑôÙxí„4^³k)(DXÜQ™Œ)„ØÄ«GoCŸoƠƯ6Ï01ơá¡8´´™±²zgálî%Ö@Ïû”åî›áÊ,TPü_.@ø^Î'S,H*gÿ_í?øư"ĂR ÇƯüåBB´ÖJơ j›kyóûh7Ư4ŸaơÑ­•fYÛp¾ĐêÆq‚†üöí(×ÙI<]ÊJ<®₫s˜yÔœ=Z®đdôS“Û_Uééû>Cn¬ ¢ơAƯü!Ũ@‚ç¤ æP†N’<¦­3$yœè6J±NñGÔLđªo3©¨  m†Ç~è₫_RU[³₫¶êÏ G±ƯmƠùo€b_›̣¯I  ´±‹hp;Åfi~¦*Ií}d7v1Ư¬bMí&LÉ Ïw˜yÎQơvM‡_#†j̀x‹³Ú@T™íƠ@»§î©ËrŻňùYbÆ̀áLÄ7x¬IÙp [Uú›#e=$y0*kƠʈ‘gJ#ĐĐŸ*È÷\THÄGÉY×Tkœäo´:°W”Ư4$™¸e,¶å•˜ËÎ-á?wƒóGO¼-AºK©Q^ÈÉ%EѾ2dZ鼕¼[ƒf×â[J?-'rº½f3ö'ûßT^ÿ%í6MăéT‚‘¼éf!ƒ×„â N Ơíº¢íZV¨h, ]&tN):å{uÍ2=¾Ë,—H+|H¶Áa ËzË0<%¿Çcå5:¢—¹•Œ—§VúeOưh›/1 ¾UMˆ:ñkèÑ½Ñ oî a¾L̀¯ÎÔ¾†~¥yµ‚e₫ÊJ̀ø’DÔH9Đ׸.îϵp±V̉Îé I T¥#ơ‚W´;?TJhÚz«Zï’Y­đ4ùUúà•Npëƒ̃ưÔ­UN¬²'T¿jfkÉ$>¬0bqeY8ß~؃tHm*Ë)¢¸6xMPÍ0‚Oñ¦ÿZ‡ë¿ÁĂ¼X3l$»Pë"FƠH&Uׂ' 8›(QåÛ•vJbh‘Rvä|¿"³ĂQä̃¢”cxÜhJúWeüB8Ơ)€xP­BÍ-‹:.f+?1]O ÔW‘.*¸?Ÿ&F ÏD¢kö­!uÎ2ªË~¼àLöÿt́qF•§­\C¬́Rđ³¤”ó€±æ¶sơV¥Éb34<]7©.ïáÔL!í£#çHxœ̃(Ápf‹¸¬cCLHTÅ¡º…¯ó*¡“Àn3Ư_{ Ét­Ï;â1Ï åÎ]dâ–ʭܬ̀vƒX÷r#üz“H¡±¤́?6'Ø47J Dm“C…QSwüG[“€~`@hî:tövøcĂÚÔ2¹₫²:\‚¯"0ôơè.-!ä^fSf<³æ6¡s ‹₫RÊQÿ}@z(ÀåЫ‰ƒ̃>“O˜”î¯OÓ‡âK²jĂ%·æ&©wm™»ÛÖŸ…¸4œ?H—¯' f“̀s‚₫hÍ#—7IÓÇ'„™µ!ñ(-@Ù p̃_7U‰ n}‰¦ø4ßhLƯÍ̉àY½Ç6±‡AµămB°ô 'ưc/Ë<ÀE…‚Ïs² /2høUJĂx¨{ȘÆ¢#4UÖå–<µỏ¼C EL-˜½oÉFö7e®J­|†#(¡¦§d5̀[l̀‘ÿ‰“đ®ṣ•{̃^5|–mśƠ‡\©÷ 5AÇÄ׿^N°¥¹;+à‹,ÍêĂ×#ÈĐÁ3B\¯P°^ŒÑH3MQ+ëÖeñ¥9̉ƒfu,¯úÑ63&œée°³ÀWỲu½R¨9#Ơ ÀuµïËŒđ¬¹±ÔŒv„ÜÚVtB‘Î =¦eÖaD»Ø1|æÎà”v¸û…,dû !:©y„WƠ¸Ç‚Ñhyăa•dBßÁr‚‡îYh‘gRÄ’¢`ºPïÄTI€’¯€å/cz-É6§½ư}ÙsFà»Q<ï*¼̉£µ₫†w)-àYó*̃>…¹M&3’pl¼k[^r.Ńy¼¤§ÊLû̉lö•`¡”°Áê¦Å3U[®ư®× ̣ÑWÎࣧs̃>ß(‹¤Å-|™Ú#UY"$2Lù‹’«ư‰fn Ơ÷Ç9R‹èæ¨d%è'ràoÉwû뮃ĻëDÓ·¹nmE7̉F¢“¹x7cƯÒ¼´|å@+*ß=NÜ餭ld‚ٶ̉ á¢R#ÚZYÖ®m)đrŸ”ă¸X˜´ôúO§¤]hÜ3ßnwưưœ¯Î×£X¤C’v}9Ù?ÿúPë]v§Ç!îhó0Rî̀‹~Tádó7_öŸˆci}ëüŸ¸¼í¥ăà]‡TøẾøŒ»ˆÔ₫Ç(̀¥W¾&/ĂîƯ¯ïøÏѼ(öư"_¤uz»&è©́+*¯iEH](óa¶́â†é̀ôî·Y„ÊÁ­:d´q®›U_»H£ü¼-/Êy¸4¯ư-xˆ·É§Ùç ·¡k½MO-c3ßÉ9S¾¡Ü.go+½6·ăaj~²̃–¦$b+áádü&p‰¿KH=|Â5'µ•hn3¬“¾ê¿°‚0T‹Í¼9#t¦×W¨â‘Usîg€ăóûÄê|  xb©àBØ*g‡”ѸpóO¬zI4?ÍjëØ¢8ø©,g’¤d9¸9|̉W*D ̣:E¤:åAéºW{ẹ̈S³y0€¬ÍT¹¹_éøÄA>¶¾Œ̣:û^íƒṆ̃À{=&; ´RKÁ2YÑlé Ø₫|ªUñ¼E_N'p!6nE'ƒ¿¨ơÔ¤&Ïñ¯kÊèqy­£lu…ÿ*1r–t£(ÚàHÿ̀‹¢öoø‘…4¾`ỰMàÛ᥾úRºSÑy;?S¢"5ÿá¿(̉êê]ûÀ¥sÇO–x­6iƯÆ,¦»âú bÇ ÿƯ´}>¶5DœÙ÷àq¢Đ»H4Y1ØDÏ®\Î÷¢¶ƒº¯ ‡z÷;ÓÿÚ₫m¨ØN¿"H_û•?Ù¯r”Q•f#嶉÷-—è;—9rL¸đ}±fâv₫ÂéB „­.₫Sïpñ, ¾·Ñcîêv¯ÛS±Ç1A ë̀®c'ÄdzÄ ¥~’A¹ƠÖ| §¹’«ËƠ=¬wœæTŸK[‡fj¸=ÖÍøø–˜2ùo .Z‡ÙÉ‚IX¡Â§ÜGí¬“DWÓ1"&ï)¤9|ó*N9Îö´»4ÆM:lüJơI¶|‰ynn¾ÑµW†äL¨×½FeÑ#í,Z:2+̉ëĂ¢̃xGïî ù~Ák)‰ơ<^IöÔƯ<ÓÉÙ,ÁĐöj<6Yï ¬k”1Øuœ_’$Jé $wÂư§S³9q“ĂMÑy£÷cµÛiWDx£ØI¿ê<ϘÁ½Ư#ÚSƠ5f kOĂäĂÏ.YÆ­̀OÙ;”ÈX"̣7mđRâƯ<–ĐꉖçRz1¬Å#o¨>:=D·èo&{Ûs• ܲ×°!£|…˜»µA!Á’yˆŒ¹=ÍŸæüMKoù½MßC/©È ¯P‚•T®IçÜp¢kZ¶”"`̣×\;·°Đ}#×+—»Q7Û´+̀ª4qñ¦'”ÆỌ́̃̀ Z_^\ŒÑ~~Kœku_”}XT’Z_=̃@Ú?[Ùdî`•é´ª-“ä‚áN¢XßN'Ư uƠ°ä9)ß¹Çôöư‡È Èđd2æ¼=jוÄ{µồNp¨Q̃½ 7†!SUå„×€˜Đ¸™ôƠYÁ“œ ËFT•„S}œQRuX8£=Ê÷Ñ•A‹\¬‡́â·†Æ9–àVV"„j;Ù:í¿A1CrŸX*÷½̃‚†pb4ÀUÓwµ”5vøpö÷]Åử̀]é¶Đ«˜®JA0³çG›UwÖ́ÊG‹.—g̀îÓf6R"Đă¦×5Åå<÷•Ƀ“M¯»_`”Ë~ ỂÉÀrmj4VèLá d₫Z®•/.¤«k=F#âêɪ×{¦|=²ù¹¡!èy=̀x¢ao„n)e1Itå®t]€–~Uc€̃??äFvϲ+#¼Ç§ Ç  4œ½nơPµ6®Å]àIóÜü¸kÿ[ÊÂV°±LÍüY5Ơ&‰¶Ë‚=aÀ X¯æiÊ€=Âư4@°!:A]¸‘"»l ´dë'Çœu7$*ö~~äЧ!Ø/`i1Œ?¼ĐN1WÛ[~ÑS'ï/¿4Ïh(đ(’`ülN›̃~@™Çßç/¸Rô#0JÇG1Ч'=<¾Áyô¢³âPƠµ6›¿â!pϸ;-ƒ{Ô-A²gű ¬qmg6¼Ô|±K֡•X¡«Ơ ~毉[›MÂF·”È;¹áÅb=–óÇô ; éZØ9„(ïôŸĂ™§ùú*–½.âĐ]™ # ¿©;<]}xÍĐ¡₫Ị¨p‡€¤îußl…z4¦YE02q/[(ß| 7°?z¸¡Ø:D–t‰ơT2s˜iR©hyÓÔ)÷ Î!J3È8ÇƯeÖ!T"¶R«ê%^f¬Mô6fĂ\Zº¶A°Üv\}uøœç2³W6D¸XHDÄï_¸Â Æüê Ú°œÀd»³‚½±·4öUU´‡*o¤¥25Ä'QÚƠ>v OØ›Ag ÎûY‹­‚UFm̀‰5\ªà Ÿ‹« OE\ähÓ.Á;\Cj‘ØÉå­9zđ „¹*“núoS̀ZÛ•„·5 $É5BÛ“Ïô­oè₫Ó Cg$_Oí;JŸ½ ÉŒI VóṆ̃”óêû®Ë, ˜püJ´˜-ü:wùEîQØ"¸ŸíDy„Oˆá_n-˜ W§NoGµ#¬÷LIƯÅÂ2S\3€HÇÚtmÊU逆ŒḶëezÇ}-¸óºD»3pAÙGï₫7WüĐV¼t¤Û•ØXŸ“u±¦\¯®§•aùù_£Q‡b¥Ø.ËQdÈ_:X½Ơß‚ùr ËÖgÅ`Ø’ˆNĐ/—uµ&edØí°‰/B–Ud;»è$ juT¶„ô WÇ‚xÎàÑJB¯M|f" ˜ĐĐṢQúâ TÁ;̃„Kïc©*nn·‰} ¢ Å÷½V`“5A4®2UGưíYpơú0ʺơ“ÏL¯Œiß’.iÎx^/¹Y~€†¬j@§™’1™áâîK8ú¢‹J”`’¼u½@!2H•¾íE)´À]¸Ê“Èfd3Ÿ£®®ÂcªÏƒ¬ñàª>f³,{Ïu”N=cÛNL\l*×Ppê»:ƒ "ù ¨ë¾|˜ë+âÚ ßܤ’+ºÿöụ̂T;ø"£cÜhÔCæÜ,ñm dϾ›àÁK±{[ˆfƯÎ̃ WO˜— R½<ñ[²f|•ơ_:F/ïáñă|AÊgk™|—Ó›³¥DT[Go’úo÷ËÓKÛ³HLÆJhL‹d8̀Yăq–dI¨¹Ó ©;!ë 4Œ €À›̉,5ZjjÏ₫êÓÍù`Æy4£̃ # &ç—÷Yôñ¢ûI§ˆê ‘̀I £‡´́'4–ă]¯‘.ư>ùC¢ï¯«̣»l|”˜q1 ñ…4‰$Eáú.s™WĐ_h§ªª(ëqt™¾Ü›$?îå7÷ßE₫•²FI|Ô±¾¶ ¦cØM„zÅHåPá‘̀Ö×€Y|Ç='~”—GhtÆya÷÷Ơ? ’ƒaö f1¸U·@‚CX«¹ĂÅä~§ƒ&&pE¨=çư›ôáÑ ‡ƒúôn$Q'౪¡ï©0ª Ñ®%8á1¢®Öâ8ÖÁ'×8ơ^P#½3™Xa‘W–iT„U¯ø79¶Ë’úºîëúœ=Ü¢öb¿.åÉư™œµ?ûE_­Ø`{[ÿ ̉S¢Ú“.t¸w#ă®¥VªY«Yê›°I¶bXŸbH–ÄÉY§¥G*BÔ#rÄJ¹₫îÏæ K"7₫óâV=E~÷“³Œ₫̉¼:Â₫T—וåç³R;’0CèÉèYBkĐÔ´ơw!r,|9v”™‹etlÀ[îâOs®dóxÿ»‚„ß‹ûåGµx­¡'aø7n[á P|¬®»Ó₫ÇåtX"§ƠG„åÊJz™~4Îå8Ç%F:ï<á\€è›ŒƯŒn•™ơ"~(¥ „nùc¸´Ëủa[:l;&?Œ6ÀŒQr[e‹ç*àÙƒ³8±LK±";²rBá6øn‚óájyư₫¯'ÈîDvQ=<Ó;Ô§ËÔ“·Â»M^$ 0r&>‘^$³;'ƒv₫{Œ>¡ºj2ND’%q7@œƯ¢›á`)~ÉY8H‘ƒYñ·.N»Æ8^ đ×­b ‰Æ×Jæt!¨àëc 3w©đ?$B#N¡ÜnY¤=Y¤’O½¬‘¼Ơí¢«f̉$=/hoöƒ%®÷…¼̉Ë/ú‡nlO>½i°Ë0 dî@­úƯØDơÁREî®>êˆ_:Ît(Ë’ 2fêÏ(*u*Û±!–æPªÎ4£ÔØÁ^§ó<É»öjy!9̉ƒü€aË“2P0ëäfÔÖ§5§æK,‡QKpçgyûD»y*Ÿw; ´ck̉úÀ¯| Ár¢_BÊîÑy6¦TJ­Đ@²‘Ư£Ô».’¬t•0Æ’{aEzKćǺ¶¬ax¦ŸĂ`q"5°F\¼ Ū6/ùV${éÓ2QTDŸcÑ'¹çFK̉ ÁೌE„³s¿àađ“{ª ÓK`Đy¯đœWj~n¼qV]„[©'bø5·‹’üxĐ̣Ø¿ñ#,¹Eă.„'… ar"%êZØ8È”eC%ư0eˆyHl` è§â¤Åé~£ø»rËSR‰wµÅê r8*2¥-ḉÿ†[?Ư†M¬¹¼µ_P—úA£sưCÔYĐ9#˜™̣‹Wm;s^«Ÿ‘áM:”¾û̀œá“«ulḰpˆ»̃A|s”ư€¥eoă÷v¸E¹4ĂHå½̉̉÷»üâæ¥ÙÓEư²”Öˆ’±! ÖíË́Oơk )0 ©O-ŸêDî¤z8ô¼O¸öû"#@Ø"° ckâ^6H¸’‚#úÖ8Óó±&¦ơ5QˆöÑ-pCjP¹ăđ–«ÿ$ßöÀ´¢Å£Z–Ñ»7 Vû̃Ï©`ë½G2ˆmK ¦È»¿¥Â¦‹ëVål-\Q*hp}Ê"Û•YáéVÂ-̉7­q½{b¦âMĂ0ÙCz>¡ Ô3R÷PvçÅÇĂwê#p>»!g0‘FT’6â?X¹ố”‚éĂ¢!ó[—mEËPøÙײí¨Kf.»(”'7)í1>£qk2€ø8jï@dµçÜ~£9,8¦Â,̣̀ØÂÄưÆe³ê«[‰d̉±åùél£&ºÉ#AÊiŸIªàJK6~ÇyEÏçÚA"£§`E"¨Ñﺉ}Jßhp˜rƠ¶›20@‘ß°E>ĐŒ‹³V¾X³ô!ưx`¼”¸̃µÁ•ÿ,“G'‘ÉeœHA¶¯½` Ó@›×ÀÎ úk‘5]o/¹'.½p§vÖ:r ̣æGŸđ½ô¨>m(Åá¼dí¸Æ}}{P#ØÀ–’ïWxêzdžïQÓ…2<‹¯`*ExqJñăâj“gfø¹®4W¶Z zvUŸá.ÉEøcÚSÛy¡†xÍU±lĐG$ÈéíĂ­‰•;úb¯̣¬?NÈOÇ›%™è´S~´)îàjV«³PÖà’¢'/ó¾+}?\ˆÎh}zæYĐ\ÁœqͱVwÙ÷p:ÜY,«₫X!b?åKlL63l#"~˜Îó؆(n•Ơ[T6åó´ Ø–î°Â2ï+n²±†:f+Ej Ô©É{›ÚO%WÙoiU2Ó8¬`Øô+z5¨)IÿwsóîR;0 ïZ¤©uyîÏ[Í‚đµä íÀ>" Ḷụ̀­́ œK´yü¼D8 ¢çÁ’Ÿj ú´›ùu!=±deô¸ª¼t¨r%6>]M–JDQ„¦™yƆ6”“‘iÏfø¾Ï5¿£Ih‘¸]¬T}A*Đû±ê4(Kr̀Íơ*¹Z| ª¤²UÖïĂ~ÄrÁ*{¬`t%[°[•Âøs9¢¯ÿY}yÛ«̣¼4W)ô?k}üb‰$ºBÂí¶,pöÜùY·‡x¸ÔĐ̃•y®f” P=-]ĂĂ($gø­=Ü r„¾'@‚é–°â$Y¤ÿFhûơ[˃ôàà÷ÀÏï@`¸̉h_yg4S`¤é§+(§€E9̃‡Æág­„ʘ»­—́ϯ«J–¡L đ@¯1—Ø´Ï#ăcÓH!}øop½¹À Z<Ù€IôUÙImMĐXârT©s<+Äë~/C`®?¡Yƒ§K¤ú̉är½WÜÖ19Oư´kïœÉhî‘x§ăPñf„b Ïg̣f@nΉï†èÚø£®Ä•{dmND¢[NSËÔ;C©¥ís*° ¤ŸÁ ˆ£ÿ3„ÜÙơ4ïB4¹c¥́¥ÂNv=Œ3ó‹øÜ+j; ˆÇÍỦeÿ{8”꘺…ç˜îa²”/2lº•c ṕ‘aÜ:èEU?™üOÈÉ‘₫Älˆ o ~}öw6øåœàkJÅ|tÔî¡QÙñ ƠÏđ#ª̃ÿp*ùåm*ÿLË>‰‚̉2#hº 1[€i&ñ¢ü_qÜ6¨\ºÄ(W§¼ípStBuKV»ÜÙÈr/Rº72é³’–|°aÉ……*øB·:'UŸE½ç¼/ó¼6Nv£{÷ÿE& ÉY"·#wœ´:‰í¸£\P¿y =x£— ÀP“”̀ÛnMM_Áà5®ư%‰W•UPœ^ưñJ…8Âô`=·×UĂ•–{óTVÄöBF–,m¸ó·‡ƒx„ß3;Gœ¹|~F—¨k‘²ÿ$°dG«ùưMê-÷´Ơ/‚Û©Ÿn¯ ^|ºCÀX̣dK2÷0ÇäÎ>È‘:ö˜ü·xm›y”ø+¬B:Fº¸¢‰₫°¾R½x…„›9zäÙ|Î_h6àx‘$T×àäá©úOư·:ơ˜r"®4ÏÆ(åÑäÑ E\S­ăT<084‰?*±™ˆMB<Ên•né̀~±PĂ·AMpJúë>LÄ È(ˆiÁUeî\Ê\7iŒ1áÀ·© ʳ…lx å=xlüf®® ^̉€\Q$1Kñlè‡3‚’Ú­vVDÀ땼¸YÈ”ÇÅ ̀BưĬXMëâz`½±®4}˜>ÿß°Ë)u´©´}­`›nJ,´µ"̀~3Ơ ~ÏD¼”… kÿ^9lÄè)œ{pÈ“₫ _×0fË…R­ÿæ6°₫„2hCÑ«ÜGø—ŸHmº¯ÙôGÂönüàr₫¶”Îđ¹Äà‡.¼àöEJ×öñ:•²¡®Ê œ.>ø©'­ùM˜ÅÁ„;«9ÊkØoFr ©,× d¤ͺ¨ÛDǻØŸ üß?¸>́‡å¡ùp-g#ó´~‰p+?‚7UÓg;øêmj:6¾x'lùјn2á?JªW›-4çÈÔÜÊœPR¹’”P¥̉=©%A¸£­[LJÜö5É´ÆÊÏÓqÚn‰U¬ª$¿ ö}ïjZnG«[7{CQX̃ÁÔ`?'« ‚@‘Å•éñîù»(S×t¾ßÙçse¡>…¾ )ŸÖĂGåđiô¦£:`:_Ü•”lÀ˜DLà=•Q‹IவûƯ´iăI›² »7­-›e¶U‹ƯƠ±̣o‚ÿeă!Œ´pà9Wx+—ü÷RæÀVL^”°y+CxŸÑ](í-vµzJîZç|‡µ2½Ø‘BS'GF4æûV ~~,‚X1H8ƒ³maÚÛøsB¼x¥)ß>¸="º.©x“½xƠNơƠ;)DŒ:–Äîăhu¾:² T-:̀ơÑêƒã¾,n`´ç’¢€»pVpô…e•¦@Có§'ùÖéÁÙ÷åhUeđăµ§̉ucÄ¥cÑTƒÔưñÇYœŸæƠµ{Èơ¥r¥Ö¨Ss«Ăñ‡. >ƒiTZÏS$ØkQ4¦^æÓ`¹g'Ú¥ö˜Iºî–ñ²vo]& @mƠ“öIăd`í¬_\2 '‰́}37è‚­FíăÓï^Í_Û»‰NTׯ652º!+:'º-¯Ûơ ["#Ä̀‘AơkÄ}—ܺ RЉ3Çv1" ”O0Ơ‚aj’ÅçAé› ”D€wq˜YÉ ¿’ÉE'½q‰ÚĂ«Ẩ-€º})ä,w2ß53ûJO÷XBØ0‹0F¤H5tíAC… »Y׺ăoKñ÷fd,§r)ü›™v«²×o@D}ÿlưhÛ¡)ûÀXß°´¾}ưv3úÆ=À)dđp1/!vSªpââYNœ«½uä&Œ™ZU•ÅRô—ƒeNN)S_j0–·̃½¬‰ÇLỠ$qÓ+¿Fh¤›ä\ÑYB c•ï”ÔîÙuøÚóK)ŒÉpƒsK5 ;Ëda'³ÿÙ5j‰OwđW%Ó¥ù¿Úc¯KÔ¼l¼†¦êÏ₫3´gGÆ®ă£œ°øqÊ%V ̣$÷Û¹d‡‡yÿí¶( këAÄñá’9Å„•6A©Q7¸(ª‹V/Ö䯘(Sá¶:º]6-‹¥v¹Æ´Nă÷¦ú˾^aƠwºtPÓ¥<=º8i+åwÄ‹Ü÷é£ï1Bi®ÛT§ æ,`÷X« ˆî­°krߣ€ø‘Ë‚¤.ă#O m$lŸÿêṛ—(ykÜŒ#n(¬ïí«SÛ“–v*”]WöR9û̉ù_©—†~!Z/3 n—œ[™:cú9éî°)}œµ5düœÛ‚ Eƒ½ă¢¶́Œ¢k²7å#ˆ’çªW7`ïhÄ0IF«dRf-&:÷—̣Qɧ„O.îg˼/̣G|—³6ßBYà²ăKnẹ–Ư—W¡̀Füá« ’³ªÂ đÙ,w×É¥¦]ÛDB`²s>„DóÆiBdb$±LæD¤ÎêŒûưCÓ́ö²-‘¢ ẠïÀlÔ¼Ï!{) ïû₫@ïxó̀Ív\*qL±fÿ6O_“éy*9-ÈÈf…«ñ”‡<ƠJ»æ‰u£·&c ëfØ~…Xëv‰Đ¬iÉ4aØ{˜ZEƒe°Ln¼üeIÚŸñÓRGÄcé“Đ+GJW¬tnH(eÁÎGÚ%wPÎƯKaªø·¿ĂC¦ Px!l?ĂÛƯñÚØ~:…®ŒA–¸¨Cz̉-”ƠfkäçÖk¸PŸ> ®Ë¥̣!ë̉S°3NÅÑj}§­đVÈ™±NÜ­îÿQg%ó ̃'@)̀bó9J˜å4>"÷§ǻB_Âaä‚Uá™_¤êÙ@Á K0¸Ñˆ¬xµe_&·Éf‹‹¶Ó×>&áU7'€µ?Å‚sÍÂhw­ab=~_%¦ ä‰ë¨}p4=—8­‡-I‹mÀˆ1hÔÇ^”½Á¶çÇXDo_É;ÀXª2á́¥·èç9-U FƯ€„MW…0́¤5vưyÉ(Æ#B–úW¿<§íơ|aˆœ®́àß~Akº̉½_cbîQ;Ơón#¥¯m,e ŒG’¥ó'ö͹{Û 'd¹NzиIÖ´/â-ó` Œ M ̃€ú3OH‚‡yđé±k½q°¬ÍößđUbë)#Bn¨üï(´¥²é¡óB̀½ÄäơÖצNÆjÉ„5Áô*²Œ°[f TGuèVôÿ}VÏ·ß½¡,5Ç ±óShYMçq)î’d'J÷+êç¨VF؇`êØ®Y¨úKIäàöÓaJ#·ù/‹ƒSÉ^d-(°?O@êeø̀ö÷ÈÿW4%^,t6ÍAtøàloÍí>¶I¡.³eW±pưIïÁ㩤\g uƒ/{™₫À*ôæ¼›eÓ9 e3»‚ÖÈei‘ø$­äû‚́F`œ#Ø̀èùñbU>?%à“Ü<ÖO ñx5ZT“y-,ÎÀ(î655úơ=œ Ê$÷ëΟ­4ÄDôMqÅë{g›ë̃èù G˜˜qøÖ^²8Ô2U˜n WÛp²¸×g ±0:V¬‹«xäY|×Ä7Ç?³úó80Ͳu¯j›^÷₫s¡sNJyü?ƯÅepë}—€}N8Ơưr2bˆt D1ߘ‘lQ5Ä·K¦ŒÛ΃|ºVméíU':†ÙHü×ÂÁ­ E­@w’<‘)i0^7ă˜¤ùÅ¢ ™I®9ÿ¯<ơƠK²E8QÓ¦ÈÆÏ²T›ÊâVëFMª~A‘Í„^"àQĐ/’ÿG¾ađƯ[‰‘% 6%;“ Lïµ9I":¨‰!Æ“(ƠéL̃8ỸƯ 6ûÔ‡ïhÜ冃sÍÙßỤ̈.*:§ë*¿?–°ăФg₫OƠ…°/œ4¬ê›“1̀mƯB¹\S\L¤E ‘Úù¡wξ6è®k—@?ôk$S’=Çܸ›îLàƯp::f ²~w†ßXáØ̀×T~´$¼H‡™dd[&ïâûXâ³½–ºƯA±H>ŸFH‘ñ|€Î¢ˆ™‚»“̀ÄQô»̉û|K¤Â÷>W…O§”h³̀‰md^~j7ĆW‡ˆÿ®»x÷‰’{Ưê텇܀œÄ=ÔÛ:•iø‡Éá/ÂÀv0Ơ6́“ă€V£3#½ë©Úî₫fˆîË́ñô® lT¶ Ư&î æ¨Eä!5O©Rµ+=`ài¶<8\n6®ĂÔ?Ô[ưÇH}đE}ê#_vơOÊhÙÁçr'I•jVscrTGàWs¯°-¸ưAØ(=ô¥UVB¶Î¾{ƠFeª̃YøCơU4`çđÅ^+\—…–̃Ư]V¸_m‰ Uª×<”ûŸ? ™ ́s›ć 9¶¡å±â†è¾;n”₫–ïY‡‰,»eˆµÆ­­GƒåăY±ÂP^Ï0•\çqi’ ₫á̀ú†¾ I€){ƒâ¥Cbjê=̀ƒh›Í̉fú<Ô»>̃hQô+ñZ>¯6afthßZJë̃~· µD]ÀlI•³œt·6n²›{¶è1Í ^zˆrCßp¡̃‰ô ơÁÊ£Ùó³’G¥»F[}üé—éêªi1Ñ£ Mêçø¨;+[)Ë.›é©@Èjï„l[ßwZ}‰U‹·æ%vHc#ó$[~y„™ÿờ%OƠHzE ©HÀD»>w%³É a ¿`8¬H9è-<ïéeă;l=ød9gÔÑ °‡+å«KJ¿«EÀ«…B‚ëª÷à¥8£èỵ\lÇÂx]?5cdŒu[ vƒÎCz¿MâdSÀ̃8̃/Ü8ëFm=Ÿ 䜀]—û4%` ?ÁÿÏÚ—Úø̀ï IƯ«7¿`6‹q^a¬IgTFĐ€±MÏ?{ ÇÎo…Ưj†²¿’¿Â«tơgmè>À“ÄG'9x÷™«¡ÈPy¾hơˆ“×÷=jÉÎ`˜™ü +S»ú—°5hQ=€rKñÇs¨̃r:™Ä®ÆäX¡-í§Q¿€Ôó/à‹ ï¿ªÇO‚o‚Ïvp(K)à ñ₫&.:ï›Öæ÷®ñe¤œ̀P¿̣@ÇtˆëËc>!:̀A¥ëúˆŨÄâzë¥ù®‚̀ö¦·â³?¥©f#ÓY–ĐăxX•éMôµQ¤—³m#æ₫-‚˜P·eƯf$kJi.ÖÆ/ËâA₫ëÖ2ùâ?¹ß>€̣Ô{kæyÛ¥›Đ‘æ¡3÷’°_”ú¯åĐß,@B» »:ÂL 4ÜåºwdÜÀ{7À›¤´­âŸ¿Í ¨Œé~*'¦¸KjhËP‹âѸÏƠ´4₫áđ̀ô5yùÍBû ©°°ÅÍÄÜƯI)C`’FEïEc¥½ôº₫¸¦`UÏ lÿΑ‹=Œ÷°ÁËü×z®@öùvŸÖA :0z¬£AĐ ăx ăT­́ ¨Ù¶·  XUtUéăÙ‚{ %`ÆHG‹¿«Éu/ç3ÉfU‘œ̉ªå7®Œ66â?›đ²`‡ E]+ÿđj\!§úAoM¯=m„Ø9z4N¸©ß¢Xh$µí6 ¦Â₫|–>•ỔùtÖ|åœú ÖÏ]àëܾ[xi®âŒhûâ¬'̃¯W‹²Aˆ¾§M÷^^¦—ë¤}«ƯW¤JUæº#ÎÊ£³›6ë µ<èÜ<ơ™kùØ"`L&I"PÏæĐvT`ùưĐ¢(–Ósm«Ka+tq̣p†?ö·3½~ôĐéá/ëÄ́À†ă™™!7f>ÖûDV7å‡̀¬“Ä·,Pú–Æơ Ï~*'«¨¨*Vp-|¤ă‘¥ú—P+vïC-ÀB:¬ öœ nè­¤́ ÚÓhÜmu]¬i?ƠăÍ6‹×Pp3œY`ŸÎ¡? ‚HFc\’άQ DTÓ7ˆ— 'â=B*æLơ1'ÔP¡V[ׂ¶[OåW¥3¶nl»₫åß8Âç!¢/ÅÉç¥+! Ur¤­\x¨J'ơ(x Œmj̉OAÑ»>SAÜy¤ç;.†®¿À́ ¢OqCVÄToÙƠê¿!!9”É›œẸ̈„ÍSÀá>n®4Â4[Ê?bYê&F̉¨té3)e€Ưùàƒ]gq¸É.?Í vxă4ŸeÄ@…?-Ñ`06pÔê„óœ‚@Îñl Ñù«„e„mÀÊ6§1?ªÄè€ä{¬·iBAmI†̣î}yyH°§fv› “·kŸ©ƒ¿’™4RÉCÔÇ3ʤ2ä‹ +Á' ơ/M׉¯MEå~÷e›ŒSZËC Ÿ@Qñ¢Ÿ…±é]„u+*ø•X°ñ´é“ÆhÙ³G[(¼,t®ÿ—‡Đ§ÖX{Ô|ÙØ ç¥ÔRV¯sQSÙö«aˆIŒo [I%îwu%{è(ú»sÂdAŒS›% *A·nBªDă¨Ộ=â6Ü¢»bû₫Ñ[eµ&aO'ZÄ¥¸hûE7<QøƯy F-@₫HF$Ó̀{r[ï7< &ÓQơ­³*Œgză§ÖêÛé"®”ˆ@>ư}ÍJoF­r;94›zÖÏo mßô@%8D½ûơb³±ÊÁ€ÁúQ}èËØêêơ₫Ë̃¥âîVÙ=Oêy¦̃ Ø¶NÎlüƠ2ÜCé`z¹$Z#¿%´{É*¨˜̃Ø\­ưNö˜†²-₫²CÑÍÄJ¢?ih^8çâSZͧ³‰¦ÁÓlÏ•Dû:đ\jùËĐVÄẹeơHVæúă,’ë"ư¹Éëg‰´̣B =2G₫×0„¢ë~Ău(®tă±¢›ÎH©ˆs3“yXû6‡&é“\O¤ÑóÊ¢C'©Ăønî̃l”‹‚ï©°Qc×9U@¬/#ÂKH¾æåí'¾`ô_Nsy,­3À†¦H“:̀_hq¿ïÔj‘M`\iŸTPAÅV249u ª¸2(ëÛ–dv±',•H€íÜ9ESûÍ]÷̃ëXÛó<1U/̣4×”+ˆ ¢¾é浸bÄÚîê!_µjÑÖï¸oØgwCº0çñö¨ZÂđ+Xû:ơâ&́…¿3àưeH0jf(₫©ĂŒp½®ï“r*hÙ¢Gد¶ )h i„×Đ™­÷S&±”ïXR&l†Q±0ZÅ‹¨ {.4HXNF9¤AåêÇç·DAåăư¦ư=»i:+lQJÉk\i°Ÿm¿7Mî̃ kvÊåÂÿ…Ïe]íFˆ.Wµ¼]aåßåÜ(Vï—œCQWêfÓä4º1 z Z3×Ú_{€»#¬_…´½-)̣Ø0Iת ñX™eóđ éØ%Ú,¿ (5â'•Céu·9¢Ư1/~PÁ>zw>Ả{¸–°ïè]Ư:W«OpaXoQÓ=BR5!Hză$C»x°e.!G„Cnrêà+Ú,(‚ ~ˆnƯ <0đíD趀ē7Ƽ«Ó‚„䟨ñDQ=´oâaªoĂ@ïUt“]ÙÙ­̉áÇnJ°À`«¯‚MXÓæ63+@gÍđlxû³_@÷¬“î>Æm:éẠ̀mHđu×̃̉L!¨¿ñăvó¼ù›¥§ṇ̉¢n³#¸(=1Ï`êá_Píè[©µCû¸ep[Rçˆ!˜™¬²,ó—§ñ̃́ÊŸUÁ4Á_@;½6ØgKÆdØ3@*8Vfó@ç¦B¶©¨eؤ¯f…zwSÀ„è‘ ËÏ @¿!2ónÁÚçí·˜ºó-h m…îëxíÚ„€]ơÖáG©å¢=ñÊM#;n™÷¿ơÀí†Ûèi‰üÚ®~–U3Ê÷#ôSá§ÿ×]x@#gOÝ‚vêU₫îµÀ„EJQ3¡ 2O¼1_èÛÆ¯æ_ÎÅÍÄà*l­ !ß{3œk(|7qZï> ×Ă#ëzVĂ»ió9YD`#K'¥.RÀ̃M ‹ñ@(7îÓ.9·' -›ëøP·) öĂ²Fܧ,açf"¨¥₫äÀb@Lœ—¼ª¢Xeå5Í̀¤§¸.¥àZU¦̃ßÛŒtĂT„*coG¸ŸÓtC„‘ !’“O(A†đQmÙ‚Ù: èí©úÆZƠô‹¢ÄÍΘpÎüE[_,í=̃b3×-C› D₫¸>9Ơ<¾ø¸=|¦¡Á …ƒBhề›5;eTÙ÷³0“Ä‚¢²â@Û¢—9‡„ÉWtµ‡>ˆTÄŒç&b!ÅKb Œ ̃Ơ&RQ6‰ï̀“ØT8AƯSáËèÙÅŒiIƒ¸†[ë:å7M(³ó°ê²–Z~ÑNQ>₫½ŸÖĂ¡ÓÏ µ̃6ô7ößmv@—×*›”̣Ñ©xäø!?ó$áOÊÓà  1.°b«ẺVOÜ›ˆ₫ØÀ»€g’bÎ}écFÍ~ˆ®¨öís0[<Đ«¼V́¹é¢H)‰cÈŸ̃l µ\̣²ŸùqÜOx€K®ù¢£®Úr…‡·@x8¸/Æ‚C<x®m¡æ¨.ï.¼ïKèa"TÈJï”@p6Z™đ¦m%÷ˆÈßÎ"àY‡ÇS%Lú?ÂäCpV]kL~§đPqનuÊ!đ̀8¤Ñöú%í¥ß¤.C³rÀ„u"~#—·ÑÀñ2éê3è¥uà‰à‡E—´ĂCÖ°áA)„¯a(Æ;¹°’ïtÀçÂóá xŸûâ>3|L~•Œ% ‰ó`¾¼ººq¯±µK¥†©s9¤o'—Û+fR4-{4§ÿø₫…D+ăLôV̀]¼BG4₫E>T\—cï̀~§»èFY½·Êñâj:)YyT'M[ZÓ€LlâPjÂ’Ÿ Ù¨û }*6‹yw₫Àvị̈v›ä%̀³2CË©^₫+›áJ î‚A¿É>4üŸ ÀÛ­X@´ù«=Ęá+Íj¼ l_‰Í^‰Æß ̉ơø²O‚­Ü>‰f:×|–½tïđ±ÜÉ̃]nÙàky*ˆh˯9Cë ̀PđL¿¢6±âP ˜¼‚MÚP5„ö€»¾jBD\¨T8Pë½J©đ°ÂưÏOºß”ú6€†áĐf)k·Ơ"“ùÇn|ȯÅÓ­=”+;̃ BªLyÉÇ(F.̀ç̃\‡ÜÎe!q¤¢…ç‹£́‹˜•=G̀ß6«#ø ¶]́JZ¤FÂ7>»¸ß\1ü=ªV/.UŸƠÿºî¯°Ù[O kœo×üË ÙF"oë÷!Æ g䲦N+Jà”)d1ëưB†¤(â¥ü ¡r¸7£ö%JiG4¸Ÿ&¶¥‰©OpĐ™³ ï~.‘yí—˜M=ÙiK¬GrKtëdá‹u¢S «Æ K¹a‘h•TMa¼9áÁ£Go¡w:I₫îÑGƒVgWï ·–ÜpƠŒ @ ă¥́\O°‚­`±Ê%%GÓiy£üLn Áe¢₫(úÚ&OШĐWljŸÂÀ<€jjy[)àKJñÏ<;¡ÜóU—Rág'ÙŒB*¡uẨÎØ¼&€©T™—,m÷ß°JÈïÜ!)ưÊñêZC™—ÑÈT©4 Hc÷̉Q“lÿÔ¯Zxdæ£û~ƒor”OÎ͉CÙl”éÀä> Ör¨ø;£Ö~íú%×4a¨]€ D§)l]=:ÿ° dfæ×wF)‘:4_óe/ ĂF)t¢)µ•ÔÆÚôö-Ây»(Mö„ÑCÈ룗Ï%¬4Tœ;ªÓÑôẺ¡ƒ·4ưD•Q<‚·ĐÈ;DªNô½óÇ|g>¥ íÙĂ1#M€¶Ḥđ®ü yPN“̀}ÄB²ÇÆ’”N7$«€5EÀwæ´¡B& ‰œyæ-gëqÈq7Åmß­ —c>/U ̣P@w{bЬԱUXlÜưn¸?ô¥½!ñpB_ZéE}§R<>+v¼3¸(–&..¸@\“pÇàóæ)™fơ‘Œ½TÑ&ƒ‹è•ÔBˆ€ÊÔC¹C÷ÅPÉ_üÜB›Éë .Ë€€ÀêeíH´¢œQyCF§P<§6©eB([ đù°’<·]‘” w̉z3¥?…ŒÇa‚¹œH¶«Œ™sN¤§¿cÁå2TÈ÷Ѹí¦kđú†€¨„;Ó ™aZ¨H†¼ù沱đ†ưîh¼D0¤#J‡‰~”G.²ÈêøÀ%¥pom© ‰u3Œ~S—î\aâ4Á—e±*é¨M™¾' äÍW+M¦ÂZŸ‡({¯Ë­5 áÑBd³; `ÍÿĂ<÷rà»"®IÛv–±Bæ:vç2â•=å Q „4ë"á«q*•Gív=Ï»ç…ẻF̃›Lkîω2ơh¥ R(vÎÔ¯a ạ̀Ewñüwm¡oÈÛ=cµ§íÏÓ/å₫‡»íIj„›c0Äë‡ñ+Ñ́ Åíáu^nÿL_ä&ˆ‡Ư Ăëÿ¾8ïĂSÉ\df}#S‰=\&\:u¾­•̀X“ñå‹¿(7ŒP©p̀Ä&¡J|i¯ùcưôÛX–=•F@ù+œlÅ(5²/Ơ?ẵ²¸Â_€7’cô. €fä÷vêmw(|3eD lHz3úƶÁF0HS,É̃ ̃ Ç *˜"ÿŸ­e‘d¶}¡h…€T"[5µ¸dÙM®ßí '~ú$9Be† b¢ß b˜$3“¡•I‘´Ÿơ<=R^A.ư<á3uŃưçº)í”Ї÷̉™®w9¶W,Ê fó (à€ßíÁDŸ“*¨†?ƯJ呟‡KmÏë{÷S±â9Ê"¾ô‘ ׿Ä̀½%ç-/|l‰#fƯ ›¦¸Ư₫70¨ö„9ÂLØ/È•đ¥Ù)ñ¬´Yí >»A2#虆VĐ½ë4h₫ô `gœä\&sÁæđg­´Æ’[°âû i*®jA&‹:rÖ£œ¼q‡É̉>Ẳ¬„ô=îĂtùal³jà³ṃ¼£ÏzqØPy8ÅSƯ ¹V§qh:4́á´â~=:Cû/tßsˆ1KP0`©œÅtØÇ`r5´ùÜ|}SÈÛ¼9ƒÈo—F” ¦øá>́rvÜÄ3̉–ù(IA÷~M àkđ6Á;Ô{œxN³8₫”§`¨”&,đưFˆ·&́Ú_V.10´ë+N®«T›quÓ¸`Ä)ư¶ 'È›Ú̉́Ø̉×™Ÿ#,ơáHjüÈ̉¶¹f"[i²Ẃ‚f¼oơ[˧ǀö–²ox$¥!éüµd•¨}_Çh]ø*= Ç$ ¯åă5këj\Áđ>ê(A2¹ëïÀÈ>»/§=–úèÔwԕͧ{ëí61B|‚_P¡ŒÖĂùß5Ö·]øy*‘ọ̈úØk…wDª½ăẸ|;åèe€à¾¥oV¹ä[͆UÔ +PÇèŸÚä_dé"î\b̉÷ˆ} /Cë3t·æªz*`‚ˆÁÎúij7₫¹½₫¡üÜR b9gĂ¼$²^Œw?ê®&mCđø¿ \ª™µ)óâ>Đ¯©ôH8é/-\U• Eî~©Q)MJå¶¶ ö‰pË4ơ¡£j¤©XỗSè·Àï:Ÿzí₫¯¶rÓ¦«̃âVfgSRÛ•~—XÆ–§ÿAV™$™é–Ç©âN|øŸ₫6µ„ô*̀¡A0Ofˆ1mMaQ ?CQåú́› ١Ѧ̃Ø(’e¢2ÈÁ§döU<°ë4¹Î·qt•đKÓ•2vÊø̀˜Ë6gPäɧ ¹ÇÊeÊ’ôG-)(º¹?}sç‰czdñ½̃hx¼ï¹C₫×jÔâbÀÙ³6½,²%²&­êG+Ëøg< ,K˜ç:øđµœMxP]7Ũud×O$$÷ùÆP.ód«.¹®?z ,̀*¨£f&Ôƒ®9Åđ_m½ÄƠ~âæ9{qŸ`¯·6¹»®6ñˆoF₫t‡ÍÀs¤y±KOœĐû¡ZVƯ”´aR¹µ–y¹O÷HÙ{HÿDLi¯́ ~~“Ă““r«°Rtx<’́Ù‘˜ £.#D,ẉ؆ËîLÀ̃c¸ƯÄÀ(§èrÿùX›>(~£Æ ¶ß•/¬₫ôÉ’LØ?~zoFÉ®¥ªk.ơ•±»¿ĂÖ]$¤^ qQñâÚ̉XnTyZ+¬ÆƯ}.—¿½"ĂâwÏø¬6WY‰3!S4Ù+’—Zûâ?~>đÏMiÆc'¿Făeæa˜à;tÜ0c5œĐö-eu%w»@mSŒ%&ưWü$,׉ E‚”t4µñEË„û6ÎĂïâ0Ư“¹êZaCÜ~¼l,åăˆ¹ˆ¤!o-¬2ÏWÎƠ¤Ë-ˆéN¬»ĐÈ,ªV™Z¡‰ !g»°Ä3‡AîÑÀÙ\‰Xûd'L·€LÀ¶kƠ§1 è ÿi]bÑ–ä•̃ f´CM ¥}e!ÈAd₫ÍĐSŸà““8ËY¤̃ƒ‰ô¬qƠô¯cïlÑ&â“ µùwŒ>W¼ ÿ?ÅơSTß3 È¶z/¨œt9Ă eû÷5₫SóªÈ˜ÛÎ3S4wƒë¼BM2É̃*‚4oĂ¹åJî:xˆ^œÇ†zêơ¾è›çÁƒkyxWI(í¦1'\b£ËøB9uZêjàŒ¼“ÜÊ?¸Ûe¹.Nư‚2ƱßÇ*!8Ëĸ ²ÏT·âƯ#Ù'¾Y”ï½<Φ 6Ög“¥”ôUC\tªÿ-è”m‘«Qv§ñÏ÷µƯh®~$Vk*>=îÇZ£¿?±Æum̉§6¶l®ÿƯ0B#î3çR:åBắØơu!V6§SđDz ipœÈëH˜yØ­ée9˜Î<²@NÇ[}Y~ß " "5è*V³̃|{æVt?ˆ_= Û$ëeI§ÉSơ[%¬èi‚ù`Å«Qµ=bî„âIoHÁ´Âæ´aó2m9W>Uå'ư‘&ÚÄ?À~6fE¸<»̀¡ĐÄö2²@Ă}Zƒ>åb`:¼fVNfaF‡ ÀY:É₫ê®xº̀pPŒuéCuKèÖ›Eó@>,v́¿/Á””",¢ä₫î/ë¸Îªwb@'åw+V×1—‡Aê®Q‘:óÁ7ê“b–Ç&¦Næ®qÏưkGG†´uáà± Œª cqHÉ rH~ä•Ä@i2=º–s¹ÎêÙ#ắđtáĂr|1é*U'₫̉ÂiÆ>ÍP)¹›úqÏö-RÙ(‘E'†?̉ØSs¡ÛHöOMç§ß7₫ËÜ[|ÖŸ’ŸøR`æ×>%înKÄ–N·¨™mÿTίXG€ưäw¸Núî9(F°E®’ÿûŒƯ<ÂHÆơëm;§W¢C'6û‘1*âTZWó¯̃₫"CƠlRz‹Ù$]³²ÿ¦kQ²î\ö ]‚Ne<½|mÊ]¡æ›‚NsŒ‘Ï_i›Ï<è³́¨·é´=ˆhÛ5₫È đđ=ôxуº½€X=VôÑ́‚??Û#ëµps+¦; ª× d%oa?K«LJ÷̣́­m{X¤MÂ~ôÙ7°]bS|¨¦áZöRŒ„ö\9èRy³>M“W Cª—QpmËs÷¹¹ê; ƯÍ‚™´°@½ồm©uiœ@Ü-èp®`Ă•đª*å8kg¢ÔÚóÍDZÍ#k,Î;VFäï₫đnÁ¼ñ ä§Ô«é«ˆ¢Ô±ákB¹È₫Y¦ß̀“ &X™à·ÉWÑáõ̉"ú­à±>NFG₫9x¶đÖÍ…»‡‰̉Ř֫•«b Jl§<•¶´₫5‚Údô¯Àœ'ØtvH2¼›1ĂöüŒÿ-»Û—]uî Åt‚01èÚcĐ*±®i#½º ‘M;æ#[EªG²¾«Î*½"+²ª!b˜(¥cæ^pëO}<{0:™¥<»é>Îä|¤´Á6żŸÛÚ5¢Ư`MXÛ̃æ Ü} ÿBÄç)éD}¢—x&Ùđ\Wƒ«ºœ¥PÜB°+'Ê\¢t¥®5(ûÚè«ÚF©¶>vŸÈ¡½úËØn)¯Ä¸̃Đô|jwÂ-¥Æ m’h“—d“ư*8& l´Có`ü=Hä7xjß6qi&²‹;ºÑ·; Nô‘8ZID½£sQÏn½°5&<¦„¡ ́0³c÷¬ ±’XfRƯ?Å‹´3÷p…ƠđEøÁw ==e-g-@d{ÜÏïA8ǹÓS₫„0ÚèA&A|6÷*˜‚ÉA¡°v… @F˜LÚ\uº „«* œ³₫]đf̣f·l!¡^,U46: ´"tÍR¤<ÀYăå¹ê³¾ƒI dúTQŒ*üyœÎ³çA³ÂÂ/EZkÿQ,¨ÅK4Xæ`úg1:îÖ~ »™í0¦ÎÛĆÈ- ’û¥9­:¡(’ñ 0³C^‚¶·j³cj!éÛRGăwj¢–ÉØøT&+¶Ù̉y®0ÀÔØÜéđx^¦’?JvœN]ĂA€’ï~o}_rw^Ù̀·ÇФá)™±¢¦¨¢"À~Œă‡+Ư $xïÜé̃Jec#x&…©C•[†÷¹t„ơ!¡ư4ƠçI$¹ (XxPvÄb À­ßJ:/Z˜KÜùwë–’Ùr”Ư©ă[}b1Ă’²±é1ÎB=§x+1“8ñcơ’£ÿ₫Äœ*¶\鯰¼ˆhÂƠ7^|0ăm¡÷„TĐP'`T¯̉€’C+e]&Ť·hWNch°é dp .qzçf‰EÂz|Ïè)Éö·ª¯£³;&IsaÁ¦†,Ë$“l­œ!ZF₫®g–É…&+Œ₫X.̃(KZ) Ä¿b]TÓ¸Éc:'IY.bô²çrdºĐ½ï̉s-ƒæ”„^˜Ơ”₫›²÷®~0¨éQs|¾÷\³Ê–Á óÑê*̀Ÿu«¼Ÿư;‡Œ?`46Kÿ%ñÜø(s‹jơ¤zÁ°7ŸAøxÉÆ¾· p©;§¸h£$nV–V[ —Ù6 ‡Tédt]²V@ƒ59hÜâ ärƒđ@ôgŸ ó±Ơ¹ùXó¨ˆU(¶†C=»ÔbFØ L2wmÙÎ¥4ÊG~Wg°9z¿ O_ׯÁ¹ |ĐÁỡïhéü¯̀ÓêTÈ‘é ßj¨e’]f¡Nơ¡œE‡¤´¾9×(ÍđưG÷Rˆ×r,´»¿Ă¿₫9 xË0üé-ˆÜ“«:6 $ÚG²Ëˆƒ̉˜]V÷yü‘22–"ƒ"]>Eµ@Lt:hMÆ ă‰ ‚’xê/ÉđM,Hlb†«D}³®ÀB5-¿̀ƒĐÇÍê"êµ¥2åä ©i!1 íjc¼5À‰€[‰è¥%£HˆÈïè´[k“ëËPÖË…pÿñœn&̉äǠǸ&I ¤í#ªBŒóÛzp“®äYŸ’AMZQ´0AñF”Åè6WKÚ<‹JÿOm°É)w9Hđú(ü™.Bm›9 ¨đùŒÊT“%¯ªF— Msîl4Ör e=ệOÖ}|µ™ûÆ ²°j̉³Pî­½8w$,2´™©?M₫ŸëV¼1È×ZjA©È­Ä\æ·Ă“î£ươêöĂÁh$}3º²R\4XÚ̀æo›=…´Ù9Àµ¹Uïx§·ƒĐ}1e0§ ‘æ§…hÅâƒÊ.ŹÑ X’}ôH_yiÓôßc^ï@kœ °©â:(́E«Hb°đ¥˜rgM‰Z'%vßO$[Ś¿ï*ê¨øªå®Íø7Ñ—ơÖǼ’Y2úQŸÉ>®™¢‡Toϙӹ֟ €”è?Đc£Ú¤KÏà¬Û“â{Y´É·q4̣§QNÙ °‰:B¾ßí¢Ư¹»¼´+cBiês‘ϼ ¢È(¡¥ô'w—̣‘2OCi7çtüWÁΦ—s¹odâÈ"d£Z’¿ôy©PÎZØX=Y™ÖjsÔä˜>eëmÖ;œdJ•Y¬¾*˜9'U²_µêDB!ºƯºŸVAÈJ0ĐKư ëú5d‹|Ö÷”vh•]&ûrYÔtĐ‘­ơ3YvKù:cÛs èÁĂÍ¿̣2åíẂœùñ¹Ä^Yä3`û@K»§NMàäü½“çüŚ‘ÎæB£)XÙè́rÛØØ„1"Çñ˜bè¬ư¤‘„0V}̉ƒs‚Í/Ó€+Ü Ó¬0!_â¸è0®@3ṔáÉK­ˆn´ØÛ@úvCK~¡…úÉĂ‹"Æåă,4@³ Ă¯ ÀØvß}ï‚¥<%Ít?‡°${å$¨gÎ3Ûèrféê>áû̃®¹¹¥́¯ÁÖ3^ âfZ;´Â`ÎTGw&BºGXáø>\ó“¨hQGĐ"³„|ܷˇ/W~uY[áö&VS¼#p£. ·yλ˜U‰íó˜́2ŒĐ£]¦!î«rÏVú˜a'jÁ{B®ÂI0g:+磒/ñ±&Á.Ù¥SúƠ[‹N¦Ùt#z¹4ÂÈI¦öEvÀÅf\±,ô˜µÇu9m)%é5™2T?`#¥Jôcđ¶}æz‘3̀ E€,Ç_cÿÀGLTË`zúg@`7ƒ»÷Ư®̀áAëö\ SÈzë„ĂåP‘zăcÛYßµ!ôSë°ÿÔËR₫u‹çø‘²E¤zŸ¸-ßcâœI*eFz†`´̀êeÍ—í¬<†SÇÓ%ÀÛkåQv¯­ È*~>‡%̀‚T̉ —.8½æ¾¤9y[…r[Uj›̣²Đtûî1ạëHzơ]×ç€aÖ;ÅXä»UfăúVÙY •e“Ttœ'i5_C`*jj{É®|jÜĐ’ ơ;\: 1¾TÚ•j7)™_[‡Ă÷İ'¢’Æ@£Ÿ¼µÇbÎâÍhùºĐô¦”è7̀<Î,-w›•1©jXSËÅnQI‹'¥%P÷Åê¹oI#®̉ü>7Sb×ñg+²Ô‘ºWMmTù(JG©Ñ3ư—eÎRº ¬Œăéq2³¢ñ,¶us®,¢éïEjÿL^{3öïĆÛ¼Ơn{ÿN©ºazU G{DǼøP€ĂîßÔ®»T^}RÈË©Äíæ{ô½7Ñ «éw(È(/}I¾V[ qh³(9Ø´²§ưíz~%ăpZ×Ïù=G^‰>ˆfÿ˜¾‡°VçâDFS₫ả­Ư¢Ï‘NơOöƒÍ₫ƒíÈưïó6–ôqØ„•HÜÿ™àKF¥g×8rÁơj©Ñ»Du©Ïz†Eè&à ‘±©¹=—é[éx^º4 bĂ —#C%FÀ¤^‘£˜Æa·…Ï~¢*v<¿ö&År‘_åûèÍøQƒÅ=m‰{¾íƠ›ñY™^-{“¬pÙùÓ÷~²›(̣¾́Ó™ÿ=̃Ѭ8Êpí+¢f¹ } OAE§²æf“mxBü¦ÀgTiQ¶ÿäAo$‹mÿq7pL¹0Ônö2Z[u‹Üèóá„2‘7 °GV2xÊÆ¢~ ?ÆĐ̣ ‹vV€âD¶¨S°WúÛëuå†QK|!gA DÓoöRE£`zV¯Ù@·%̀$Á½Ÿ)’:̀¹É¦&¡éüMë 7˜ôCṢ´[“47kSîµ|g¨êNÉà¡l­C°D ñƠ^~ÎèHF°§Æ $ºkJYMÄlóôkk6Áṿ̃œàËFÏɱØ1G%!úăˆ4ZÇ0êyfNÖƠ Ÿ§xCô‹´®Ú« C~D2¼ïăÚ9»¹ù§éQ„GWÍ%†0¤æ2²)m—râ2øÖ…?"çđ1Ëư4ˆd·es—Ö!üÜû̃×Çm̃¦u³û^:ÁŸ2Êu`JOAĐ9\ÇC:”…ZjP\GLf2ÅƯ°)­¡û “FF |¸ßJ›F­ö“¤|E|0„Ä]à’êJKỵ̈‹ñÊ.«_ÑWÈcÛYêûK«î†L·XÍ@;YÖWEFÁ8«[âÛ¤ÿK»mVƒà€^'ë6-Gơ<»̃»ĂDˆ/1ú$ª—î4ä9 €É# K\JU ‚ư"©†•µâ@-Ÿ̉Áq´̃°Ø’vq‹øÇ¡²q`^¢î?ËcÀD³ ₫ÂHÍ8¡BPËÿ¸›;“Ï¥b6É0P÷¢ÑÉöÿ̀$Vể¬m“úÁTcAđ–›ge±ôNÔRlÙD¯¼ƒlñtö[@øú,-&h{Åu# €às½#›¥_‡¹«•Ö¾]t´z¤~˜Avaù‘₫{5N°ÿ78Ah®i×µ^êmï„ ê½~âñqpE¾¦[¾c̣ø!’đẦe¦¹YLl·ú¾ËÀ¦ư˜&a2®wÍ4P»SrÁH¸­·ˆùŒ¨»Ơ4‡K©he“6ïNöĐ<› º^‹ÜM̃cđWÄ&ÔèÔRBœh7ªÏhÙ<ˆü!™Ü;>Ü®´sO*6sN'áÅ×—Å-&̀æs0₫T®¾k•é¤#ü=Đ~™7ëÍŒ–±đÑUï±(¬¸I ÀÑÚ§̉­—`¹‰¤©`̣-æOƒI@„kr<ư†b$i?„ÏY äÔåË£Ugzè=½Ï e·<Œp”6n¡Wc™~ m€'·îÀ’:Đˆà5́̀w­̉‚ƠßgúxôRD–Ù5¦Ê¼«;Ị̈iÈ…ù¸&UK@óîl}´:çEôÀ;©6v'£Ư`Năđºxöµ;FÍÀ[],ôéÖ+â“°gơˆoÉ3¨¶©PѼd~8^⑺í”ä2Ûç{sU†Q̃ø³­q 0Ä  $*T#4̣-f*¿/=¼̣ú8:¤É+t~ê#¸ë;åÜE˜°Z‹ o µíù$).¿.PrÀGÔÖ‰A[m ŸU‘~¨\οà-ϸeN³ïÀ‘+§9çQ¾Âàÿ¶j»ö¸c1‘‘Ü9s(ApQá¨)ª´iE¾RâÉ^qTBÿ€¨ï´kKWL!VW¡†Ä,xK?çˆü»yÛ́@—K½bos}̃E_Àâ*rÄM©Co€;¿Çw$WJf~f<%¦LVăÁ-“ÇƯÊa2SÇÿƒÆR\4Ül(|/ơ¤>Ó`-ÈëhjWË‘¨÷í¶%MØÍ™Q2{wÿ ¡I’Àj³äË–WÓrËA“°c$Ûxf%‰¾Ö°Jbç#]¹]€ûÅ_•()ÙO—{xơÂƠ:$XÇ̀Á&| kw8»“JßgcÄ\1áErằÁƠ„R\áÎu]'\ O©ó?=V^v@o’É€V¹ßj“»z–­×ä>‚¦év}¼p}jv¥H<ơ?¼}T|GïÜA)Ñ3Đ»?‚Û{^̣;°YæiF̉ñ¼2+Dk”^øpz[`º&x9’̃à‚›™&Y„ÆC—ø¡̣¸ûÛ8Ns• ^|dH—Ü’ø·VUªøÊr}ÊÄííŒưÅ×S¨źZˆûưI{ơ”øû4§ó¤(¡"_Áù— zȤ‘́ ‡º¢p[„ư­ˆ\äzØ/́¾L§Sg€'?®ËqѦ*ÏÎ̃ä2àhâxå¾Ä|F…u%̣öBµRË•ùÇ͹d—+ưAQưˆ ‚¬[ÉJh”VñƼ€N 1˜wËÇĂ®KL£3VÔ—65-âü½8½ ›ˆ”Ï1È‹A9R)ë¼óªE娹•i¢*̀tçÓÜ Ù̉KŸU”Öùû‡ ³5–™̀5(Êä IsÊN}¢_*à|àf̃ë,ù pU»/¨¢r?Úûç¬ámünyO äD̀9̣WÀA‚́º· T±ư$V&©º*c‰ÅŸå2[£k¯rNF̃Ö¡öh©a'Ä-†­ H`®«́‰Œïh®F“^§ưaXó­đÙ<ˆ+7^Ñh ûx«}†ơ‘D eơ’¤Y`r<„?‡¨¾›Ù°cx̃₫ÔH¢ÎhƯQ©‹—| yu€ÈµÛz„LÜöbǬ1y^³P ›•D2µE™Ø̉«úG½7¤v₫|1w}ö}¥4tá…ơ+ i3Á~»AŸyi=Ö¾ü81ëë%º¯Ø|A,Üx*)£€„6BBđ:âƒơ³’_§êCr¹ùµË6 ²äÙä¦Rü[®dưÎéø ^U£í²'0¹˜ø“‚‚);?Ƴtwăp»KùøO›O9Qe ^Ư£’·sÈÑ ́a×@àqøŒÀFqv?Bg.ROk›f5/ΰ@IyäjlóC¾§ªÂÊl4®Ă»ÀđVpÏ«˜·ƒ×LX°ª©(‰e¯Á¸OGE#N¿³9½:nƯK’-–¦ù ´u>èj Ǽ¢ÓyE틯S&́¸—‚Mt©̀Üo5™øÆL[ÈÀúùÑg„wđ!u-ÍØ`­¡ ²e¦ßûä%®§ –¬§|éwú^©Ytæ<Í,¸5˜ÊĂO&ñLw^ Us«ëÚj¬Z 3ơ@|!¢́:îV¬)3 ×iQp€³¾²•BZM‹2–‡Ưî‚§ö‡#$ùÊmÍ×ÿµî₫±Éï.eo¥<í°4ùGz}V˜¹$’¯¾i`ÿX¼Œh-`h̀„'‚,7€üºđ>Ư>S‹ª»zY ̃övzƒ«a¼1O®₫؈ëđơtÚF }Âøă!¶ €uƠ6`ư‹Ư°*TéTßĐÜpiä îé^Ùµ4ª †s©B;=²”•|î”Jyê8ü/Kx9÷öqxˆï=œÉë₫§$ѯ(fû ö'Zû§ŸóNÿăîÄ ̉¢ opđ¡ú TóÜç¶ qxbHE¨·ÍÉr¡ÿlÏŽøïn^ùŒââ¹ç¦cú´uGô¥Eú熀5‡3 Lpï,|(Í\¢ØiÖí-¬[]¤÷ehÏ`q<®l/ó¨@_® +U¬DB"^™ƒiM‹̀‰®ÜOO‚,·¤đ+0ø…B‹÷Ôe‘ʈ¢ĂÁqg–»Äô-ßæô倌ñêT\†Œñ¾˜È,Ă Æ#$₫xåĐó—ư±»pdW:̣køÄ=—£#cø9Ơ3F€ÀY;£êö ˜·nN‹-½qGî«€X éÿJà”T$µ'{”siEe2‚ỞWàX™Í.†Wj@’]ư₫ÛƯØ©$ÄBØû7TƯøItÆĐçÓÉ£€Æ]î6º-r÷ÁL4ù́ÿ&R±Ă$´¨Ö#¬AĐ (øKgIg'fÿ J4ä0ky©$yEG´ùU»åV9óTy5ÿ/ʬÓSĐ¹³Io½ —í€|pY`¬?™L¾¨÷Ù§Ÿæ‰r–â¡è‡h™pÎöd“ûùh •×'(–¯äX8h‘à²;X~3½ ®`ˆü¢U F¶-j4%ûÅm&Z3^É€z´áŒay]£úăK8ÎT»v‘(Cị̂UJ´rv¤½…Û(&~!,G›âq˜-†å«#¾+ߪïî‚5PBÓç,8fŒnô'ÂHrÆ¡ôĐ›ăIkѯœmOñ̃8Ó7®…i,p/»ƠLëóÈyi—åàêèĐ O÷‹F~¦æ8|̉Ⱦ]´½"ó$~•´Ñ‹G¤5,˜+úUµ¸¶NÀSª2™¾™ØÀ!:á)NpØG ¢˜‡›“¿o–.ÓưÙ‘è\–ŸBæ¤!b©Æ›Úi'Ư¥$æn©,ä»EÁ×¥u sơ½}û\p #«çDrL;{‹º¤0 CÆI²L.vºØ‰ å×½˜Æ:GƠ88#}(ÆK;Ül×/ˆˆ¹m=r?˜ơÛÿj­Üû²;/2¥œ2Å¥|̉Äø;eÖè ¦ÿ=ä-7 Ä)snli ‡zMUz3SU-·…hZí ¾Ç÷;ź°+‰ăđÑK545Ñpø©Ñ"s,¨s)L6¨r—  ß%́ ß܉R_™(UdÔÂ;½™–¢/ï”üÜ”q4™ú´B+ßsÁ°ĂÄ̉‡‡d5?-qP[çĂöi éÍ»wÏÙ“̀¹(Ćäa\E®2ie”÷ï Ù²=!ŒøÁ|̀_ÁÍÿ‡¡'Ö  Áa°LΙ>!ª/º÷"¦1XÉ-¬¥/:Ơ:T}ü†ç ¦IYÅu˜ÉhO6­„ñq3́YăY»€"”úct7µFLèIơs^k”ùVÛ–‰Sæ̉)Ï󌣯èrUrÜB‚ơÅü¢ku7÷¨Ûvă¨GoLøwñRR7‘ad̀(¤x¸á{S»ÓØI|¦¬mˆ…(Zư¯¿P2YĂ\ÖX[“®ƒC±è± œ®nè¾}ÆPäT»^G™¢Pz£m‚Üe´j%~x‰¦ê•ï¹£n-EŒ¾×ạ̈„¢àù|¢âÀ_đºÛ¢ƠûL[´̀Z _ÿï<–—·ƒ¤ª¢ §x|ÁúáI„¨bđ]èŒûíé‚ç”±ÄÂVœ{J¼erñKsO—ĂMèŸoư½ËáulJ—@j¨&t˜ẳM]Q¥ÙĐrºÿ_ƒ£² ›,(ƒĐ‘0%À‚@¿Ù6ôçM.¨·uvºGªÉ?qĐ ¥Eîndß-F^n÷9̣ÀK“ƯW ø@yóM¶‚ơ}ẓ.9ÂÓäÊô!UCÓÉî‘#F ‹°Gº^ôbFEh/ÊhtO6_Z>Y #“{=~ơqÚ0ơ¬+¡Ïû¢ÁT#X RÿajÆú…ß›#.;ü̉‘k4%- é]¦W˜âÚ²'Ä1CMqxöu¾é₫¤£tïui. W-¥‡jư6Ú _íbÔ/ăg`ơ?h<%4^̣«ÿ?—½l—ú§ù`ă|³đ¡H—Æ8L‰7™`Gƒ%₫°öî/Rlb+"«tGËàL}*©é7¯a%+†»…ñ£ ”_ÈËï@YVç=ăyăV4ˆ£HƯdÀ¯n‡*É̉}É»à¿D–YÂ…ô«ÿ„đŸa¨G,w’#£÷Z†X-c¡£d[ÛløÔRÓª Ÿ•‹ „]̉ xb~°±̉bBÔÊúwœœṬÜjÊÏ~½³½WơĐñ«c̃5đ4ÅOiƯ#ø–Ñ@đc9Œ% äFØĂ~v₫ H÷iNÆWu$ÇĐ—ëCÔÙ¥ơéÎÇè>›ü4;Nf ¥4̃Ç1Ç`÷8Q”ƒ̃¦(ø„Τ¯Hí­ƒ\pP óÍ×E>ÚÙ́́Ù]iùÈ̃¶À¶¥Á~¦”…¨rbËb€tyiB”£QP̉åÀÜ"XĨ,­S¼¥Ø‚y—îà½zämØŒïyß|YuÖßz–¥dÏ~̉KƠÇ**÷ÿÇ0ù û‹Œ‘* Iw-̣z]ŒKl{í="ĂKç2ä·­²fñ¦]/O ß×V­ÿת©<̃>¾2Ôà…r—t¨&Ë¡¢µÜ;Ă ĐfK„t­æew ö^û}¸êY£`ºº+̃„´ÚUºŒ?¾pøˆ ơá+¤²—ê₫g³æù9¶ˆö?5'´ÎƒđÿÈ@̀#1bqç‹Áq%úÛ†ôe±ä‚ŸƠP ƯúƯñ7=*LD´<6Ơ*c•·R8R9Tí$ß{{°Owª S­üFIáÍVă²•¢*LÏ÷ôc/LúœÜĐÆh¾í±Ç@nˆ®„}suà0–' I³˜#¹~3oƯXQ&̃ó tô0`Kƪ¿®¡~Y{©KÅD׉oĐûèW IË/ïSó6đ¢Ê;dµ»¶¨Ê·Œ̣6æl2fZđYJ<($&$ÑÛY5(Ñp7q·ơ D—w”Ën÷!x† B`ƒâÔG–ħß«ÙËåÓİ‚;wí/ùèÑÍÜ×n']óy·DëZ=n Ǽ¡đÿ¿ès=sk,t|¿?b¾m.±Ơ£©¶â©‚ ëöër¡tv}₫ "³úør©¸~¥X}ù.  [=·[ÿåÆÅÇuB|;µßa+.Æđ‚“TBSFV¾«Ö§%^:RÆÈ{+CÆ­n³ »ÀOë Ç{ŸyJ$ëUñơë?EÂáÔçà¾ósgRê¥&MĂŸ(đ6"“* m~Sª”ñ}úÅù ùƒ'ƯĂárX æđ‰¼ßu_FÄ_† {ˆæ…«U/G"½₫  º%5° (8d›] ùúØ?9­‰è]̃Ó×u’€„I¾²ú₫'Ă»¾'+eLȰ*¯wè=à˜ yÂpä….AµR“ DÅ^ư5éäă*t²jz*(âu-Íù "Üvßñd₫V’ÇƯ«˜ôé܉\‰kí íßă¨X}/tOéơöUH¥˜cWOîÉƯ¼zÉ®ciư¶ñVî^\ÈíÄ×Cb´œÏe%¸5q2¹\́\•0»EèÎxÀÊ{ƒ‚sv̀̉;{¥àwCX ÏlÄ8Ơ_€Ø˜ Đêr¦Ó-–¬Oö/Ă7§Wv‚Q³¿®¥O’µb3rÛÅ{˜2œÖuÅ¡€ñ㧉0 5ùø ÔØ ¶ơC böØM̉éŸ:ĐÆÀ8B­3·§Ó° ´Â ´›9³ ë¬EƠ…x·2Z€¹âđKE¡nÚó†ø8.¡uư×sàoyøÆ7¿'w ÖÚP76tQoWyt”  .»T1h—ø:c{à„xªúƠơ₫ø¡Qsø›̉œH¤z‰]§‡¾å>bNYeÑA1Ç@S¶wG«·&ú¿O…^̀í‹m₫̣árÎ'ñ áÅ–Ă±¬ä‡q»Ià„ÆvÏÁ’8YQE‰B–¿u’“æ|ÄïDJÂĂ9nTÜw#+c¿́; >ŒIM£8‚Đ\ư¨éÖ•Ú•Î=_n–n¿ªBǴ˜÷_(‹ä Y₫²{°¼ß3Ê‘»Kux 8½¨d´|DWCÀ₫`ôÙŒ/Bv1>»~èêîá‘ûÇ‚®Æ?ªë’cÚd¤>§w¸-±à¡9ỶÉ‹å×’@Á¯üz⃇Z(úđf¹º‘ñ“AÖ+ƯÚñ8MMÊ(”ï‘Ô¥ƒ‚fG÷.œ˜”̃ûßVĂ‚Ï ‰/º«<́¡¨`bdơ÷¢?vøiÁÿ‡c!3ăÉ 0œïO7å^‚6A™̣˜7¦¦m‡É)?Q>$ëÑ-/ùú Œ3}yb»ư¤èẠ́Dˆ¹†Ÿ´ôØBôJ/CÍËÅ̃x‚á§5¢„^½jZZ ÂXIwPĐ¼öƯ¥Zf$Ë ~kË‚V¢#*qRđ‚>̃́…îLó„l?ü­Ïº‚™¸h¶i9ú<ủ’́¡"Ă^¦Ê ÇóÚ>/̉Ÿ)¢?.ÛÁă¹O’˜w{mú̉Ù¡&SN8‚”5 »ÛláŸ×©?dç®» ¸óMÄEn™µ_ ?·@Ïë³­#fæÖŒA‰‚„YŒ?X—®ĐG›“Á1KÚ˜PK(đ·ÈÈY©¥ú¯¬"ü`<Î ®tXó¡xjg ƒ—©̣Æôö^Œ°TÍ8Ùê'8v)“˜›Il¬¥c÷§é¤ÀÀªSQ8̃»‹*æ¬ÆøªÄ"ôsI¹L•£¶nêáe” ÷7â⤩ûNwøœ6Û¡ ¾k{\@ dÀ ”›áÂ[è~0P’#"f†^|ƒªïĐZsuHå̉çÛË1À7´%>øÈ ,ï¶÷°³ơ©YZ{µ‡ƒ—¿]$;ư•êü³tñ·Z3" {½ơÁ– +1”à…”›¬Là(In Hu ä÷óƯNuÄS[Ơ¨sk*₫Ưp:gH{Äø ü×¼ y–múrŸ6Jø›¶ÉÆVW *&(Y=Ạ̀+_a=¬w`²/ºæ§ªˆ«o`z§'µ$ZÉă¡®]°,7UrëG5+o±™ ?fÏ0 )vyª\Ư^÷+n±8¿῭°̀+ƪĂ{ƒWô ´1Åü ]~Ti÷03\VH°÷aÙ#Pqú¥±fÀN+!Y1Ú1­„đ»±_>W$‹©tà`•{B¬₫ &zL‹ă÷nÚo oÛÇăùLµë»·fJàì=+­·¹f?Uµrµ]M%º"f»Å–¸Yäpü%0wœIô Øêa ©Ö´·–¼ïƠCdÇú$ó̉¼£·lÏ0[XؤÔ-¯/l-­»BÏ+!â8c ß́R6[ Y#’•çHP˜×‚PQ†p`O²<.4²ú%ÑÂ=̉ÿƒđ,qN|âu)qlâvéä‹F×#aÉ+Ë!¿ĐLØDo"KvÁxÍûäÜÏ€ú°7GÛAs Y ›Ơ¡.<¹4jĂ­X‘§ÖçëvWYb(xuF€èùæ›́=q¨J›ÛeƯ#$=‡,Ü×ïˆ ̣’@|úài!Ú(jñ"†QTÎÆßP»¨dÄBOK‡<̉„ä¼S ăâ§ Î×=¡´hÆÆî¯T¸Æ£ơ¨Êd™-m̀‚.¾ă$sù !8‰zäÎ3;]#\@X–]&0T©7Đ(̀/ü; 8Ré́°q3€Ä_`d™]_̀æÖO´fA J(=8îAºh[‰.nx²øºüycçGtZt,|ê`gS+©^Ñ[Gî…Ơh ×âí5Ư EvÔƠœBY/~_dĐÖ‰,â ›ĐÆj‡¿#wè&_Kf–_Vôk: ơ ̉”tnD ÜyËïêçL+dWÇÉ(•ü>céí ÔMÖL¤¡m3f†Í‹Ø®J¹Av+R¦y½ĐEà6PÑÆâ»ä¶7ø£ßÇgÚGÙçm~΂íươqÓµ+›Nr×́Æ9uö°!–5'âéq™~[DØ0ß•}–Mh*ú‘Aøâ¸]n8‘9Ô>:ä#₫ưƒµóçǾ#UƯÀ³JH×'­ô?¥är^ªŸ£x©¢% »ô™xØ‚dÚ  %́*½×‡éñ›¾̃²µ̣€se­'¿+ăR"‡ư'3…Á–s X7§/9ăuĐD/èTeí1{g#[Û?C¢AöË¥ ¨™zºz®î*l"u·_¦’ BÙ­8êJƒôx=̀°(iÄ«H̃Á₫¢Ó“®KWø—ĂƯ¯éFlÙkÈ“÷ü ]^?â²Ê¨ª̃QxƠóNiăLưbœ¤M Bù]”¤ÅPC®îf¥ø¼Ạ̈<î눪ư†4ƒâ®ƯÅÿ‚zå~A;¸Á?p4eâVÁÛvN|µ ¨<qÁhú#'W‘ºÉ(”/É)ùÇZ¶±ÜB>ẂƯ%OnkÚûêX¥‘&.JŒ¶/ŒÓ(«S³pëƒJkûỪóƒË!Â%‚.Í|PÎaVđ÷¹̣—ºGSwJuü(Wpä«â!K£XË\`́AO,c/ 9ª›Ç¨z¸l¬“p?<¯̣üø‹”‘1…*¦båÍ%v ZÄÀ{°óä"Ïh˜’X…aơ;;kY‘ê,ẳm„ ¢Qh8•ÁºwJÀ!­£k¢¿H5“wxÎ䡵ÍǗcè3¹e1Ư†ÿ́ê ătz‹CvL̃«¨È]oˈëƠê‘t]n˜“1—„v“á­ƯG%qOÈMØâî`´SÛơä‰Ù)|B̉,ÖƒṆỷ¾ïp‡¯»™ÉúF*¦ÄˆFŒoĐ)5̣s5î•…ƒ³Àe „xÈŒÍí]îû‚íh½aoÑÀ]Đ/œàÊiû$– îƯ$_ Í¥„êPFGµ­ĂÖùu¾¼<ˆ½¸̀‹˜́N¢{̀ hfªJsc§¤ –ndØø7ùEâ.À&9í2X¾6¬̣4¤8’.™C…#k€àî±wôœDÜéMpS3/x'̉åiĐEE³9ơ%…¿©§ª$¦]&'¿ör2¥Áùḅ”Nü̃Ơ^#¼¸†\ƠUü‰ ³¤UÅófSê25\Xà'…^Ö©3Îæë¾«øª2SˆçÏÄ`ûkÙ·3í\;h̀iỪÅ߆c8¤î*4§\™û́˜ˆ|%Y&±́}1©p³æÖ$́l©ÖC%a´¿'nbơ\cƯw &¹ÿF”?gJ¤2)Ø+Æ-^5ƒÎâ~m²­|ß§Rk—V·LÔÅuŒ÷eLwÿ9WçK-­ŸçPoÊç”Êß’k̃èÅdÛ̀Zaï–Åê˜X ]V¦…Á5>ßÉ€9Æơđ 7ÀÅn¹o3]e›̣:蕦èä\?©Đ€?}^â¿V´ ®Húíâ(dQ ªƠ|({Á3Ǹ‘¨’Æ é²Ô%́Cè³€Xy’çÈñ\?™²Köw0k‚}“ñ©PŸˆôܧÔeZdc¿oJd„[T—Å™ºđ¤kZBénsĐo»ô0ˆ7¾]ªµJVmFCÄp¨œi$Đ‚s₫ áĂ'.WëơPÖ[}ɬ˜ÖZx ÔÈ!ë/dĂ®Ç:†ª.eæü¿WüÁÛs€́˜ ø,ĂjđÏñ1bÊ Ï´IĬUç²l3sÊëO|ÅAơàó÷æyèK_£‹đúúpʼnơ5Vt‡§ûBÑ+ ºöQ0‰c₫×/ Ù¨´^¨¿VS»lÂÿñ$q.¶¤±—2æ­—KêW={ŒxÎ'¬[ë̉4.Ư#Cº†xơ$‹54̃ͨѳYQă[‡́ơđPe?‘ïÀ&’ xCιĂNöJl‚EŨ—ÇK0 +Ü1놀jláj¥oÎo2ÍŒn°•Q:C<”ËëÏw•›BvXÍß8Ă¾₫#F$ä dÿ—t‚ ̉ïk…Sh»H/Ẹ̈z ¥V 6i’ùiŸ¨¹në)F>6‘ ơç ÇÚÍ^Ç=AĂ‘Äså0Q@Nx›øuB±‘& »f°'Û«¾u¢æ—¨oÎÔ! Uưû@+¡ÈÛJ·# ö4ơÁ-¤C, 2Áù.M?,ƯLºœÅæ†ăÁwsü}&ưÅJ~7đ¸…ö­J¤ŸºgÈútÂR΢gÎ\à} hÄ·µáWÇŸï<DŒE«÷9cV©Úë&EöLÎƠ Å¥ ĐÍ»ứ—°›[I7ĐŒ-ªû÷©3‡kü§,ó¬ƠLăC1Ó’\¾́1Eä‹pp‚yÆ>₫p EfÚô’7Ư₫ƒ;€$ĐÂM½ï1*lNâ˜Ê­›B¡Æjÿ§;ơb&ÆQuVlơP})q*KªnƠĂZ¡ƒ˜Ø÷åŒ$ơùùÖ$’¬l‚I»»]I‰nÍƯÿËL_ͨ¤+ ơJ̉FâO:1 .l1>PH6GT/Ơ0XÜ8 ²û‹Â?~XL_üró4MëÂzñ ×»³ƒX ÍUqm`;£À˜Xç“}Úk¢CG¡Wä14M¬̣Ñ4ăăá°Ç®Iù˜«+Û ‘ÎóåH.ƒ]Ûd¤Ûq¥Ÿ¥Ü55å§ă»_¬Ü¦ÉáççI–ëE™µđ"¦€x‹öCçîhFˆYRrs¢Rca“‹ƯÂîH¿ÏĂ1đÿcÍđ†¦Uư†â3̉d\D¤oG¶æá(ëj<á©äZ€mCn·  ®@ñ)Ьówp¶|¡£)AW´ đ1₫'üRˆ̃}WLçI-,ßĂsZRF¤0“|X<ô_Ü”I¿`¼̉nĐ‚ ºu-#½Î«¤_¥omI¸/@o‚¹Ó@>A;ôÜ ;’j˜3(ùÈ®ÑÏ Á¯’¹K(·̀ÙczEë¤hÄÑ%x¨Dm¶[JĩÊp<…×G)ßè®\Øb‡Œ—fÑ`!o ^Mˆ~jA.Ù8çy‡Áâ¤'5́mN<'ØĐ­üÀ•b{yƒC.l07î—đ?Y›d ^Ê:9 ̀cpNü[ªÏ×ÜÔlP}ÑF{øG"w´N÷ AzHÇ™uEFæí¨X­Ö{­h}½Æ³¾Ÿ¦ÙÀB%$c¼wưgëûåF-ñÙöc´»„ FM)ÍzưSøBï­p|;‡ÄïÎö-₫"—x1N­v̀̉à¼u$ƒjà’Y!àa£ÊDïjø!È éññP»1êtƒ"tl¯‹ƒnkh¼ùí°à¥Ä’àË&Z¯ƯFÀ7ÇËÁ¸øVủ¾Ú*ZË»’=Ôæ$ÎGÚsXßÙÚ´6́®ƠÂÈ¡‹v“l‡,ăL8¼kà³—üÎ/Ä8{÷é^}ø001"ZÏ<À Nẉ7ILZ²ùíC6[-Ä„ÆmBQ9'CßÇå2V)4W( Xp ›˜̉ë?’±ưl¥€‰<éŒQñQÅu˜é»zú~©ÁmR›CÍ™®*R2ưí¸qß±¥åà Y´]íƒEơÿ]­ â8“îà¥ă₫טú‘¦{¿–Ê5º®%ú”T=̣~ưƒu¦ to„Ĩ‚+Ån̉Z¶¢’ ó)Rö½!´5dx£m±@CéKƯ\6Ȱr/v ymíĂX“¦'û™Ë,¥·—­œ3Î’¤íÚ±=ù DÀơ&HTmx:‹øÖ»‹ỦµÍϾœÍ7¾”Ÿº‹°Ô}đ!uªó±&?ƒ_½~£ôqhD•ØÍkwovBàó˜ưá¨Ư$÷V=ÍMTe"*èÈWJ¼pƯÁŸçCQ)g”c2cKe<Ιp¬É%ƒDS,ÉÅ̉riC¾„'Ú¡ 1ÊÇÈ,(½©±à z'5–zÊ 1€Ñe‘yºö…@Å5—n€*¬–eY¤fN€̉Qóă°nl •06`ÉT.?‡eüàéÔ6/!kÖ`\Y¼<ΜOЧHâWÔb>Í¿„€§´€S¼‡’½iI±̣˜Ÿ»¸u…ñÎÏÓ!\mD0º.+&Æ?'@ÅưÂç–ÎៀöAXøøƒk;ó1ïơ6²±wÇlêcØiÈx¸,øeêV£̉ä³YĐSx`¢?”Ø2+Eº„ăƠ6¿G©’$Æ9£Èù¬Uă3„W‰ªJÿ®¬Ô_)úl¯ÚW}P¡ÇÈ9ơÊmù[Ç[ùíRi¸ơ{ù£˜qZl[3–¢‚“H&µyÜœ­u˜Ê¸‹đ¥áÙÛ@Û®†á¦ÿ¼ÚAĐàïn¯¶Î6uŒ¼"l}P²Ø„úCØŸ–6|iL⦭¾un#†rØO‹"Evaw·%Éø“đÜ©/“©R¦Qanjâ-dïnjí¶Üׯ=¤® K°4s]'á7Xg×{˜pîH”Æ:Î7amzZ™›P«  WrTeoÔ7ût¶kN¸ûWÜríªg¶ây”sMÔƯ,{남凒{ç\÷F´YïæmY)¾.@’rêûÏI¿uâàQ…»«qV(#˸ü"÷–(‡jéuüMáÔ†uØSÓ ädh\ßaÊÔˆM= À̃¯i³ûư´¹²+ÙåljåĐ53çù P“gÛ¨%=wL²Ú¹zpˆ{¬¤ Ô´”G̃4IœdUH =±ä«Z8̀Ÿ»r¢̀Æ\¥₫ úÍï1Á)²ÏǯÇyO5Ää;:íÖ°F›'ɽ‹úĂÓNfîÇ’†Q¤kR¶INq ưÓ̀ïƠR‹) LÄ*p§à¬XTTê!éÑm Í6;›†œàđsØ3LÂµàˆ“Ä™2ïÖj»ÏR8è’̣ƒüôW—(>À·ëàƒ{}[ª°µÙ¤f ANrƠ‡r‘ÿëôz-Æ̣Ư†-Ñq`ơtó¶·Ü.y[³ÓºlßHJf£ÈÅƠ"¹Ÿ¤ỏEnĂˆ¢Ñ¨™ n(¶̃HưÊ`ôÚIq*˜…-‰Zó¢đZz15¾ÖÊñÿ“¹wî·M_cĂm)ÑfñEblH́₫ôñ?ëØ5%Â%sĐJ6‚¥6áéÎkC²;4ºå|’àÄ©ƒÙkÏO9)Ém£µ³]7@³±Îéṛbw¹­B(I%~ß0ëü×S4iTI.ÇHân’Uø¡ëªîăÑp>ÁL@ÊÓÿïŸë.Œ'<ä)™"°;Àq·åLFĂÙJp’ƒ=î"ï¸À4:ÂƠP]êPJ×2H]‚;ż欻ñÿ[÷JùH¾ïëiúØQÔfi®¦U;ZY¼¾{r 9 2ƯœZ ₫a-ê|æ4§ØÈ¼@ÁïĐgÔ›]D S63ưÈpOƒ₫àˆË^gg­Å>ÇÆ<«|¡|Vú)ƠäwB́4›áVD‡T&Y‹Í…¬d²bƯéÊÂMå[¤¹ æŸw<çX•M‡ö·¿‡̀Î’ñN[ö—}yp?5k§0¬rç`zëMʾY/“Nv³Ï€jèéN|C Ü#ă‘XÿKt;1ÊưØ«̉,ׇZ&W• I?4Q+2øR¡{[t8Ah°0` Ä́?i·ĐNȪ”Ñd½ª\¸xå¾…çühăMƠ·\…âù¸Ùvy„\L\œ½ea)͉4â×a²fù##|Ô H¶„xư~ơ4V’̣T[@Øqƒ¸·ufä$5ƯaIГDžT´¶#V• ́sj·Ï ¦ƯY¹¦O¦L…!S§Á+yª}-Œ-©’ Säm€§‹lÖqÈï+À˜´ùª¢ÎÆG׈(øđ$æå¨Å{[º¦ø‘÷}^XWÉE©[Å*Ơ)3¶åüú2MD®ƠBÑWf[ú¸F®aç"*40ʳµçvøÔͺ[½đÔÅL‚̉]X´q•œ¬$²Âé׌àÁI^]_R@ßÂM×;–Ă ÄIÊ]ôÍ X lñ°b‚p0² Éÿăí¶9ø¡£$S¹¡=¾ÛÜƠÉ*đ´.ë)²˜-hhƯ,'1M!•÷iƯ¬2Z©̉JéçEnHnÅ#Î^oK"/U›~ƠŒnô÷¦èËv“€ÉH²#¦KĐ7kåR«wüöƒ.׳s«®3‚>ÙThYÔà2kùù9È´ï S ]^ÅsªW¸@Ñôc¯0¢¿æ([%æ:e Ñà›Ă¶¢z R– ¤O.N¯é>ɪ,ˆ«â—_É}¢êÛiƠNü´¿³ÅözêÚA'Àùöå¨qi"ÏåzR[ c‚¹#‹ÿD̀U) n<© ‹(¢¥n†h2cïm`²Œ@_ülbÄ3ïØÎăBơ}ÜÉù—|jñ“H|<Ác=’{Ç9cÏ{á«âª²†p'“LLú‰Î]̣´a}kN0‘zq>?~àÆ‚çk䟥§Q%BM0×I Ødߘ¦©„9ñ¹°D`…¤7‡ ‹WÎsbUÚR »(£GZ¯©zbª•̃Xc Ï??HqËú·y!ß₫•ççZª°¢­5Nt¡dÇP¦ûơÆç1ƒ{2ƠKt-±ùM_•T›ỤtÎ:ºîX.Í$7qÙÊH0ơ"¢7ÔE™µ£~F©"u9`¿ä`8{ßÁe|ù® —Ô¨ÍuŸî‹:(ëZ ÛắEúíy¾w+’‰î††cÌ`:{Cp #ïÓâ¤ă”‰₫ÎíPûê7” C%ú—±3Y[]*aP ƒk0¥"ªÖÔ„ÊŒ‡$'½Û×µññ"®pĂÇ·.‡akœÛ!̀’¨, QÔRx­°.E¢Lå3‰¦×x–ÎÈœ''A Ù“—.k惮è¦5ºc6{˜ƠÓUấÎ7À´îǸ^sOÖg±ä£I¶×Ơ4í$1µŒÑ€‘BX À0.xpư€œNrÅ\8Åá¸6×¾NÅTêè±X:múkđÀ—¨p ÿù]Kn™>VêmÊWü0}8[öI±¶ăƯ`:îƠP‚º]ƒ{Å#nuqÄ́C‰É:^=¬k¨”œ̃y·8z½í Q̣”E<Ø+r‘ŒdöM3»¥¥¿E(m̀ÈW~¾ăƒ<öŒ‹ñ:Z Q Ø@ljüH÷¡[Z?đ̃Œ™‹ÑȹûÓ•ÅEékQËF¾¬nÄ‚ÉÚ"mb^[ÈÛ†9 &¼‚åe´=Ü&¶¢ PPµ +ÂơT@ơ½ î¶é%ÊÏ{á,́I*ºDÆJ×lÏÈœ@{Z¿q‚< 8âŒé’g ö{Zª ‘j ®óíKº6r)Ú¤áRíkĆu¯È™C@1h£^ Ü×¥Lü€Ué¬z†¡¬z½÷­-Ÿiclµ¬:&¤»*±¥”ˆ ¨XÏÍ½ÊØÑ”óß\–₫.»<ƒx4-«6gß¾ÔYđEˆ́á đá„ÄÎB¨™S§,]zt"I`›FSÄjÈÎüC ¿FôXa@wI₫&©‹~ó9đx Ư«–€0œr÷Ñ…Øê:™;WTAăĐÀ4£yă˜ñ¸7[à!G¼ d¤XIJ5ˆEzỀ2Æ ¼C(^~đ¹lùơ¿¼0ª†Æ²ÇEPâđMP™ƒâTë§đƯÈV©éCøñe SơḰódZpy@n—Ë£6ù³̉Fôw¯qÎGæ̃óỘs)ê$ünùÍJˆ’϶ ù›°ÁºùX_jP_&rцV®ƒÁO.#êêb]ѹT9•~ä̉&ÈêÊp¢¶™‹=´›Í†7(¬j»ø.×·7hd\ËUÛí”CĐgßv=[5ù„–îàÜ’ƠíÍ'{VuÙ, £z0j=Ú:lu'ú¥–&1ăíWC«åÛ.Z1“H¯u2ç…’Î'0ODĂ%Wx>²‡Nq“aÓ¯~ GœÚô7nUˆ.«ÉÈ.q¢%¤¢ úÍp(Œr1}%cC^Duw.»ø/Vi3^kêñ¦A”K¶xx«FfKG̉á« Ë2ü»8ʉj~GEF#_Ưa‹ăv4ÛÀ¿b€Ñ®¸‹6’¼1½đ„Ñú°º°å¸Ụ̈%  ₫¸Z:ƠF đÛ´óahñ@¢xwêÆÅflUqƦNˆ>X h̀0JH°D 0ó|àÏw”¬rÑÂåÔiÆ̣ö4vÙ[“)uHeë’̃*8wô [Ëâk¿Í$îi~‚'±K †ąؕ©ƒXa¤~F¾BƯÅưk$hI` 1 …Â@Tü ’³9ÛN„»VƯ#>X \éøçˆn'Î{”ă©h₫¬Î%›óîl4úĂú|×)®-æ…$ SÎba¢yºPщÍϬ@áæV‚Z& x½Úæ=Q/-·±ïÚ–Ù»ëÏ?IN†K½LÏ$ ${ XZù¨{Ợ~½', ƒCp&Uµnëz!×QÍ_s ƒS¢x¿-—<çÇ®’éu¯”0Ÿ¥i¦ «̀.©ßøî@CñFèëă2wlYL ÿ ëÉf›dWÿñưsO];è[¡Ă«vHßÈ/¾X9uvZ9ªÍä Đ1ʆñsV!YÏ„eØ‹ï&Y¡́y*hÛ—åÁ^¹èZ+—¦­x^ ßç0!H#=^ϳ¨Ư±ô* -·+îRÓ{ÙŸ%T˜%GV€1,âƯÇó^¡Ó9çñ©{Æ= }A-©ă €¹§Á¸8ûÓ Z:í«r¼vg¶áÛü¦óÔím̀9ºÏU`K|¬:æÙx P”¤đ6ö. ï,¹aPư¹}¡Œ̉7đÏTÁ%‘´*h%×4ËY^¶'ñàØ)Ơ¸—óÜ%‚₫øB̉—́5‚̉„¹ªL—[$ègÏÿŸ¾Ô²8W_Ôx}<ÎÄ̀kÙºŸ+ÇR)OÂï¹’ÿñ?¡Cê:ߌ8Sù.dƶ- êaĂñ{Ö7_ø°!ÈÈ.ó 8ÄÇ*í5^±í>/’¬Ă¾X!öÙ\đÊ•°è³*©`™`¬¼FŒ‡O¶›mXwn±`(”T(qˆ·'E2ó<jµÖd”ƒÀYwq ÙE 术q¥lñ… i³p3¸° èb\8àkăpmñ‡-ÙTbAç~)l<£Q[.ƯEĐ}6îö³}ε髌GÂøûËZüN#Ô4(Q ¼,(`Í´¤‚hI‘Ô~3A&ŒîÊ=đD#z¸̣U«l_Äëæé’8f ¿¯̃à?J95’G ©ÖçM=.}¶ÓÔ€8O qo5ñ¶iK–n…lSÍ—u+Ó¶̣%éA0ȃ1°¡4Å 5°=Ñ uÊĂç£çœ¿éôS@ö$á¥]ỆỚˆ„æ:ºxÙ₫@—Ă~ç;dŒ,Pmµ{aiæ[köđ«å&„—°¶o(¶đhè [Çî屘¤ Wê¸1C&h¥‘,Üs„=E¤¡%U f:Đvi'$}Ñæ‚m„ß롦p_/ %!́»è«/(œeÔf®^è j’ñƯÊMn­r]#Xđṣ̉D2á§{‚ÇĂAâæ¸€ÖZnEˆ‹®”öSˆ_!èn‡;ê†2ÿíP%‚ÿzü=ÓßLV×#iB§W“]Ào…걿E8ùçÂ`tẹ́€ßÈEÈË.×ñ÷™Ë´?v.ï“»º)î5w‡Â;Î*4-Ă»œç®”ă/Ïî²ï h~á@á°Pm’Ú`èƠĂ¼ï™~—øélÊ‹zŒåà]əνÙij uïˆ&yl¤vưÚA­–ăVÉd%q“~ª$ëyHÈ ¹¯u±Ôơ7“ç.eG¸0±æRsBpmWŸ ¥đk£åÑmç(¬ë7o„÷‘>”ˆq\.}@Ï–2/Ù̃ƒÁ a;/W̉AAKâ‚—ŸüĐ ¬!Cw»ó1T#“g´QØ‹+êcXKÇŒÑ̃p~/q—Sëư›/…J­› !*ưN ;î˜^)cLa°Kê °]F₫₫k̉á—²¶F Zí¤ˆÄf› y¬Bö&~âjÉÑÿä’ä3YÄ•ÀÈM»>ûÍCoÍö«½ûO½¡ÂÙIfÚÓKƠN¢€‘ÎĂO-cS>ç ƯçÚ2íoZ¥36añË÷(¿—ä¬Uị̂6 ÎÇ‘L,c”Å1p9l Xñöơª)̃Ÿœ/arSú‹Sˆ?°ÿ½ª¢…Ûû­à÷óHlXæ¹₫•»i—„Ñ£?µåª$>³­_Àæ´g—BGÔ%ôˆ’H]:¹÷Yà—vê¾ç̉bÜǾ̣đQ°Ư[¾È£Å¼Çôànù„¥ṛÛ&Ïù̉åüƠ‰“aBy¡̉cĐvàđƠ®8ăÛˆ tÎÜáƠIÅ…ßÏ!d ¨ŸN~7Œ*™́t kä ²7nt ̃t”ó™ó¹hxöhÚèú½¹’œ‘,̀4í±‚¬pí?úÖæ/û¹_ü@Ù¦ e>*6›²êùø6â1˜́}ß»ÈTGÜJr÷p{;wc£i ×5ñ™_çđ8a*W(ŒÚ¥4€[æÑucøÀæ€/.BáâJ5— q•ÿí¤j’ÜÑ®B£<¯p 1Úä ’–|p‡ßƯH„¯¾‹c í>BÊá(+$Ûg¡nQ̀‡—Wr6ÅOîI”Çù+EÜĂ âC ócO‡E—¿3‡W©Ơ$.ß­1Üæ₫x‹:Á•&ÆTŒ a-ƒÆû–(ƯAo²Uª[†¨¾¼åÖ|‡_À:½x€¨B<Éx²sôơŸ¤·éˆ῭®đ) æ̉æ xå8¯FhĐÉ+ú ¸Æ.—HÂ0. ‹ŸµHxå´­å´>ØYuÏû‡ ó€Ù¬pNåy9ÀĂÛÀ¤¦ñ¿èp̃Á…äzđF…ö̉¦€®‚$íçR}ù_«Ù×¼~hgh{g¨k×É– uΪË' ̀₫†c P]N¶è7|j½Zk²>e8xƠ˜‘›†IÀ2ª₫ÑÆ-q;‰ç°ÈÛ]á:k®hqÖƯ逆vÆĐkäî?¼P‹?Ñà‡äaˆfíAmw(dÔ‡å±XơUè7sCÍÛ_ü⥴bÔ’ºT(tơ∦M _åÍêĐî…â¤b5Œ¾Ö&üA¿ÔLÚbÀ‡3ÆG´Ûö#´6@#ܬ^¯=³ébf¹Å‚1›t C’}áOÍcÊkÖa´:Ptå9£^¬1ĐK€× ‰Öq×{(?qù^&ù.œ2ië‡é¨42w¢S¾ú W¬4|œ?{ÜlvĂŸË1“‘â’–R5ŸcB44iˤZ˳j5É)}h ÆL?d¶aC^gÿ7Ü”^Óuư§Â[°ÓÜ™̉(b p̓âơ}-™©=¸;÷7_–Ì©l°\™]Íby¤ÚD3oEóúéDƯæk¶T9í,7Ä@|"±¾~‹r¶ŒdùØôņ£¦Gƒ•´Ú·å‘D°{qËOŸ£w•iꜵ‹ï$đÁƠ0½™br •RƠ1¬J₫WcDÀ8u{ ¤Nâ0Ó¡Xq:q %2§Bgëáä†í}©ÿ™T̀[̣đ=¢Y÷½ƠÍ罩 ́ø‡²OÍå6^ˆÙ%Đæâ=@̣₫ô´¶Û1,²ß±à¬Đ\?Kó\v9Ç:â—̀–zƒ·3û¬̃₫µµR¦ÇpôŒ‹°ºxÛP" WwlÙP…̉çåóë¾vw¿Aj¨9aVơ‰“‡ÙºBöˆK f¾;ñƠ›W†>êqBI'&§13 #Ù:7üFß®j“¢C¬}¦ÅÔc½×ȺÊäʼ,1kå¥Ư"ˆƒ“ébω?¾f‡™h₫J["¤'ʧœ— V1ÑNøAô«4Ơ¢9ÛÀc¢Ê <°êj¯º(}0'…ă!Ê:N.ëÇơ ‚Ôí| L––‹‘LŸÊ«1€‹£Åñ×eÑóZcSŸMrŒ¸~%7¡¥!P(„Ç—n)’i`¬ư}Æ}<¾vù/àS2¤½r’3~ˆÊô…¶chßÇàÎ0uù*´E“Ư™Bw",rt@aïS\÷<K¯Å³¯ñF‰mW‚tB®?j‡›4lÆÛDî‘&0¾¡›ª†g «¹ùÔfµ̃Lm»6ˆ{Í₫„.N‘~żêñ¼)¤ ¡MªcIÇù ækƒ^)i‚.™pÿ#?¬Ë…h})₫–àf÷"‰y‡f7Ç]€ Ïæ471OÔEy™|h¢¤îDszD ¢ú²’[ê­Ÿ‹_å¯\ù± W[̀´ÔỄ)¾=J.HrZ[Ó8(́‘Ë½Đ‰̃Øíóù¥ØG¼ÉCN*%8ï"í¦q’hq*C¿sÁv86ߦtñ̀3Ö…«[§Tªz €̉>Á¼àâ©¡åÇD”G—ج;½Ÿ®I%!d ŒçĐÓµxÔ’ỡn÷ÛK^ôƠ•₫&/Ûj¾Ó+ă¹&·}·Äoï:åk₫₫ÜF*8‡™₫qŸc€o”±agƠßv6Úx­ùƯ7¨Xå‹Đ)yU™Æ1Hv£©²́‹tK@›¡P&̀àÙúW»E)'vrï™áʱỶ' ‰+áÓ±¤á'zÛ³À¯'ß›Yg~‘±đ?Zéí¶>Z»¼̣1"ßæ±̀À̉ÔCΑ†‰£I˜è-É-3›‘ ¥å’T zB•Øsñ1ë]ˆE,â#„¡Êö%øû9Ç:^ÛÅ3 ? Ø ơûI¾¢’ÛÚúç̃¿è±Ä̉™r™^ÿʽ)•Äq̉ñ pë">3]‚½“3đ±3†K½–¨•´Ô½Ñ‡_fç³]rr[ ă{PC1ËÜevL8âÚa.&¦ÍńÔ1½Ä̓«́”‘̃I%”Åœ—₫ŸÇûû•»:¸ Ù^Đüue1ö8%(Fh])p&pl|̣.̣‚ZƠ¸n—¸7ˆè’øîÓÄỔv+5×ÿq”}ÛC×ÿíN«^†ƠÂ/`w“K˜ª₫ÁXWE})s =ZT~ Ñ\ÀhqnËXæ<‡L€C@{±u %e×ÔÄHDPík™ưö}Ö³&;)̀ÊFd¼€X˜M•Ï7¾Eüă„'JƒÈÆüh]®â5jmû¢ÎSTù!±8\§ED1ÂeÓ‚ÿ’Ø™~Ư#øqTâiƒGáLR̀„{3”üö¾#8—ˆ©>kl™Œ™SÓ/àIs?Ê.œE₫̃ư6<;ơœj=ÇjÀ{P…åeî¼ÿ‹×n¢p7ôu₫M¤ù¤ÄÄ ÈÁ 9n]øZ{Îöyïdø‡‡a€HquK…có˜V|ưă4E?ëVŒ¢×›–AA¬²xÑđÎ\Y}yÏRf*·¼x×[°ô~wlƯA)–R¤ÆBƠÇ5ñÉ)aYsLP½ß ÛwÈ•NÅ×®9 •f­¸Eø:ÏaMêw›´zè4™çÂ2I³ëëß̀®®0₫­¾ßŸpCÖè«ú³j»:Î…Éç¼øe$.z~=ă–åuÿØX¶·t›Ë¢~¿ $ù\xîW›{b3ú¨v}µƒvúBp¶¼̃V© kd˜G{C¥Ñ”\Z̀ÜjD}]Ü8L—Æ…Eh`ëƒ̉o¯¶*ÍC¡<®ƒæ6 ’R5£(5Çä öÏâiv›9Ûthk‹î?`Ǧ ŒÀq^5À´æ̣S̀Ä&3º¸Ô0nÀ̃‹€ “S=î¥ZƠƸS÷Å/+"7Ü´dCŸ© Fû¡Ô"¶é|!6KïWĐ·1y/ƠÚ¤SÍ{]‰ ‰“ç|&ñơ†í«\5Ï­æucȈhÍ$¬1X“ĉnaÿ_ñ‰cª¯ÏỷD&VQñ¢^ F5.ăÔá_aIÑØe₫“-€`(Ơ¸x(1™²Ù#‚’’iÿĐaÔ#Ô]”Kéc­Q̣æ Rß‹Î’î[DxS0Ơgaº°²›U“Xj_m6ƒö®©,\ư“HHz¢â r¹¿‹).”Ïjµ/¢È$Đ̣ Úˆ m¬™ÙØölç6÷°©%.e(¢$¾ĐŒé‹[_'ƒ½Đ!ú”Ö¦\‹‰öÆ»z¢)¦C̀×NÄà3ÂʪñÎeU—ó·}|ĂÚJÉ)¢œỒÏZ°-'´¹à­·XíÆ÷»ÉĂ ?†¡›øÙ9¿ÀÊ`ĐŸ­©Âñ±Î¡p­±Á«3 ¼<ƒÆ)ª&h1µ?¤–Dwsh ̀€á5Í€cp}E¬N¨à à̀µ¿”~Ù÷»;^tØ71MÇ NR8ÏëØÆÎ»]@—fùÂi& – AKà^رU˜™_}®:w$äiŸ•™ôFVC•„Ä›“$pêFJ{2hr]q\zZ[4Âè”́̃à°Ï«¬KPÊ…>uø':äoö'û+æ¦m¡Ơ“°̃¼µl€¤we‘$Ü“t2ËùüpZ¢­ñu²tåÈ"ªßƠư èh±F”s”›̀(B&ºÙ¶ƒXíË̉q|~ïuÖĐUºx–)ÍA¢ .óç²ÑÀđăäEĂ’ßI6\Jˆœº+.¸ơê1\‹¡ç¸ˆGTFßĐO#J¾ˆ̣?Ê‘WK²”ÙüUF)%fd>|T›k2ªû¯yZ6Üo£Ø¨å\̀D´›7¨°âà±àe9ü©PÂÜ2©1hïJ¤UñGÜèRؾ‚̉™SŒ«v§ÎÛ‹&Áp"ñÙ$ƒH=Ou6pt6Ở±@WbçJư^ơµ£FlØ79Rµ³X'Ă—h€¼~¥@[ €)à¿Ü ¦Ÿă~S|Ë_¦%÷Q)eƒ:{%†ö]ÀúĐÀ÷ßüZ‚í¶0iíUiŒQ̉²äHpUDLKáj .g²AÈ0-º‡à,ÄOùUy¼=¿êÿ>5cv˜åĐ6Ä!ÜṇöD uY£æÎêơ,cq ÙÇ+‹ü&e#_ưÛLM.™ÜA¯;¥%⌳,́Ù°ŒØÇD:[P˜$ đĐ »aƠ0¹$Đ=ܳߤJêÛSƪÈđ0ļuéIszjO9:P‹¡~]>U§MœH£ä«ÄP®ö4 KWa=Í<-_FJÿK$8dpGx]₫¹’Üé„p¸”éƠđ• ơ!œƠRQ—æ«^Eơù9A¤Ÿ |=[Ÿí(ä• ÜWÜl/qN<đuơ-¹;ÖNdaĂÄ@»{H~n–îÙÉQö̀éH&¯ÔƠ7-oÙpëư]{m‹Æå„d¢s5…s8Nsèf÷×>̉đ»l5ëz©5jN Û̃ÂG 5Ss2äP·w-~tC|äºƯ×+@b’‘wæa!ü“åÈà…JFx˜s¤1ñÅAÛK8fïØ2øä9êêaÛ 17ø2êơ£Á¨À6iƒGlư9QJGÑ‘,U¶«> Û /ÈâH¯Ö̀´«±Æºoă˜´[ÇxÑÿ ª´íMxLE¦lŒ±qÀ‘¤¯µ îXѧoËœưî^’4«·—Ͻ6ae—ƒó*YçÂùÑøă“̃ ( øN€QO¦`~gR{ûÙs­5rµ%₫–$H:ö°FDŒl‹/†U@tíB­ÁÍØổmw¤Ùć^,KO%́¦ñ< =Ë÷ö1œÙ „%Åt¯daŸe›yu Ñ3|0đQ‰·n»àµß NçG.B\é Åbè£z^±`¼î‘Ïéplº °Ư6/"›.i¿8vб¯CÚxeo§µ™ù˜́» ”!5—TŸâ¼ø ĂùoÅ冉ôKÆ ̉cÇ1́™îÊ8Đ‹ËcMç;È2ºåºs«O·¶7a«³,¡fº1+ơæ ‡÷y=æfƒ{p 1ëºV4V%z>‰’X¬2+; ̣° >‹u]VáZÄ+q‰®^yđÊq<aˆ¼klCµûó>ă½Œd·̣ˆÿ¨ÿ6V÷hû®5Ù¾UÖ#S^™9×ü¬×ѵuƒ­̣7Â^†½3^}•¿ ́ÔEæÆăÁn)’7Å̀t3ÁvÑü]-µnT²Kùß«°]%ë¿¥a~(ˆ‰ưS袾µ?̃' ß 0ß4 ‚÷¼0¦ä7PjJ1¼üU¦èEO0S/‰ñưA©É|æÓ_¤T>ʤ§̣¯‹ßt’T¸Çq¦«¨ŒĂöxÖ‚ô[₫ƯÁK~Ay4œ>±J0¦)=£Ù±I#ä‚ưÙXJèà’’•$F"pàK_æí®V`t, ¿<¸!!HÚë l_t'ö24âIw;\[ñ› Bfñ‰ûUøå† ồŒ6ă RÇN³Îx5ü.YÁNÆvÔS!ŸîD“[“wZd‚;D­+cđü¨i=… ØÇ1›EFU3¾ü h©™n8OXy\Xa–‰ º́<öù·“l‚ơsÀ¾/{vB-$ơU†(°±^Øs•´mí3›u³PF)Ú¸!’½Îb¦²+¯I—Gáô±̀(ŒPˆ3”;•ß2º©I²6ßnñ1âƯá™Ock¦gYR+…³e05eÿ2dé‰I¥¿ÿ¢üdh†°V N%l‚”¯W¯"üœOÅm£2%Vr¦:¼m&Mÿë—SmÙ‡~û̃xOEϲ\ ϰ¿XçP×âOjûƠ»UÀÏA9rZ÷.&Ó‚ß̉Ëü•ß. WàÂư₫UˆG7«\}#Ô|«Ú T%_O•\tÔ&ÚH„©9Ç₫ [ưJ “7 2A)Đ‚¯m/8†b¤`sEl(₫0 ́Ê Đ«kZưjƠؘ:*ï_Ob4œúF¤QôâCPÛå̃XƯLL8ÁYÿDdØá\}êÚÓ#CÜ¢a©©cø'),¯~_mt'ÚÜ:›­,j„é´Ç~+å>+•âUé˜_?°JÙôû¾z*NáXƒŒ]½e.O·Ö€¢:½Ú4`ÊË ÿÀveêÑ); œơÙD–ñ„óÖp’V‹@,Ùz¿|Id"í́DϦ¡+ÿe₫x̀]e  ̀aµYñøçư¢…üa-, ̉}”b©B.v])Ă5(ĐauƯ₫T¢ệ,&iGCR®sˆ>ŒíŸæ‘É£ĂC*Œîî ¶¯kĂ₫ü5Ó×̃U’ÿ,Q~TÄaP“Wù"sÀ¡ UOX˜7‹®"ÉT£̀”3í%é‰.ƒÂÚúV×ʇj¬D.åQQ–¶?ØÓ.pn[ ̣^ѳ†ÔiÇ×ṣWÈùlÆw‡1ûÖpå»2÷¥Py´2ÙÈM“™åf³PK¶¦©ƒ"Ñ¡;¥HçÍz&’̀Ơ!ô£Sh­§\9̣£Ë©`>NëˆÔoîă'0ë•Lù–qäóà¨.æ¬.m>æ¥Ø¨ø•ÔÁ=&5py Ö¢đHª₫Àî‡öéÍŸb€‹S)*xÑ}èi=xØĐ˜å¸¶₫ûY¦"·Gù²Ó Ä̃KBØS|\W 0«‚l‰́ uÿ—Ù!Ê1nÀí́*¡Å<’á'†₫ àf¥ ‚¶}lEô™ÈÊ× ËĐùÎ…ám̀0<"40ç@¿KßkiXÆ%¦×ĐiF·<|ùÚ›|PRêe:z °¡|z-ÉÁÿ¸m‘‘‘¿̣0Äî¾ăL»ÏIơ2L¾¨ć±33µ'§>éêºóẸ̀=ȈjuU’rJÔ¾Y‚¯½µFà˜ZV¡ÖÙÔï!Ó ƒ ŒG]å×;‰…óÈ=Ëq—Q·£â\µ¹›́·ÛO ,LÇà"˜1ÛqµÅ¿Éɼ™é©QRÏ owNÅÅÅ Í“£×W¿6€&¢Á\‰Nä[ÀÍ…¤€é÷-3Ï—SƒÙYw%e'&… Î5»Ạ̈+†ˆ6y §Óqï OîA»`0ï!ryd /Ô2Œ”G-ºé·rỚSâM€¨ º ª̣ Đ*<Üơ@>¼Î¸Ư€yË2î¢_!M ÛYÙ˘Îé|¹₫|½®-€Œw/Ph¢2̀^¯WÏX₫ ÑĂô‘iÇ3z¥\¢ôF­#  ‘D§h½GºÊàé-öT:²å|[Éư£o{l’PĐÉ0̣HzÊ8¤{‰̃ñ’LÑGxeÏR¶1QÙ˜„~†+>é“fÍ”ÀÙ-öd–âN §!(è-ưqÆ_^™»aª¼2k®`øHè5ƒ…É £Ưç›dÊR@iUø[ä 0”7›~`&?‡VˬïW°Ø-tUjB‚ÊÜü×yèx¿wµÿeY%Û“Ë.olœkWƯ>G À©ˆđ³9!."\*̀ƒđ¤£lĐ¾zf±~B4Ûáhqd›BơmyhÑKê½BHg·²? héE I!2(ăØ÷OxLôJ#̉y®TÊđ •´[½€ẦsµOcZˆŸ7đùMƯ₫bÔA}qXiumAZ}¶#6Ó/—©KE¸’TïM9‚mjfY°lîdû–ŸgS×ÁVåÀ|Gá…}£=6”XAŒ™)¶;«æËÙ¼ă¬¢ïÈC lL³ƒĐ¹₫fß—§`Ú‡̀3DZ₫ưïíÜ»ÿ¶¸~b×/'×F{ÁØ t©bŸ«jñ$Ư[´i²Ÿû¨h'g,¢Ï̀M[0ư†á6G©¬UĂib£gCQ4}¼1H́Tk§æ¦ÁHƳ· •´çj _ÆD,”ư¥³“ưªÙß#ÄÔkæ…¬Ûñ"Ô§ —XÂlâj¼ªN -󱄅ïY X sÎ^QˆÊK̉ƯÚ’ï ÊØf̃««AçĂ¿¡¬́—†û84€’«U8r+@§́_w±2gäरK?½̉CŸZ˜HGn@kBUMâ!råĂGgƒ­M¥dâ‚z?(1Q-!ˆÊÑdăám±*̣!¢jÙ,b›”'úÑÚ*—·x;ÿ¸¬(Bî”è;æ£/…üa5m"—àöØ'¹×ñïhçåb~†Û4̀´Ö0‹°®8ÊhäÆOï*PÇê½ÖæœẸƒ-vB{ô’ưêk<¯ư1.p°ÓJ-’ôeT÷ÏßĂ¥ùˆĂz¿ÂØ`Ç5RˆŸI±L"0Dj3 Â¢†Ö|‹ú fR—2)ˆ+¯ïb»<ƒÑ6å5 Rä<¿WEGɰä9AJ 'Dù0ïÎR¥|¡KđqÜWÇ%jÑ÷OÜ£ó À!3́‹ÑjµVѽüîX₫lN¾C₫Ä¡k‰¦Yṣ»T°ßeÂ,¯1x£2³¥O+ÓÔR.N¶¸14A¾«PÜ@ăΧ„Ûó!ñv;­×¯€¾ÜămZ2êÍŒ2gÀ^̉èé¡xK8xk̃Pa&DâÆÔ½ù!¸ë>’åv/GÿEå}½G­ÜÄW¹³“/ÊæœPM…ú! áJÜ»{Uw À™€Êç¬₫JĂP‹½qf&édæ˜Î\fç–bü©BIà₫nvÁVê¥KÿERKx)‘́ù‡j:©â~j2ûz~¼Øç(ăzë]ô ©"ÍǺIÄL&jÚ9û»Sµr¿~­‚Y¢ª!tÎÜM‡dWw:O¢{¯UBï¿Fđ„Ôé[iay=ƒIp,Û –— ëTĐcdÇ£œ+Ö)-è—°_§ƒ; ² Xv*åjăƠ#ư"L‰Y^KT§´…Â/Ơ]-ô– Øî‰lú€»@¶ØïúÉÀU©;½÷~W&Iâè‘ñ¬¢¹\•V(3¸XóĂí5[îÉ2À^ÎMÙp¾0“—l}J±7̀ÔÈS₫Æs¶;ôµgçÓñÉ7Ê— Í¢ƒµ1,2LJ<ä^fk/No‚ƒ̣v̉ù¹FYØgÔ±vÁ´c'3̣|}D~â#¢³$%jdE=!…%ï³đ'êk9~¾eo³öUgvïMQ­`⯹„¥ÑäÔƒp@vâëåÜMWë«U4…<ÿ~†ôW”VĂ₫ß*¸ï¸w681btÏ-œ¬ –Ï_r-Í¥C°º}ê/ñø¶K$ B¯6'‰¦S ‰ÔSÜ›ÄÉñùáDÎ XÍ“Vt›ÀÅđAƯs¢¼¹æ.ÄäF·4Äû®3,ÈI)§6+_K9œ’àC+ÄT²₫„%»xđ×ô1đúçF»¼ă"JPYđƒN±pdÑÍ›'=T̀̉K>+Èç¨*æ¾oIö`6ŸÄ“> -t>iíÖ°éT,à×È×!vÜI‡Gà¹BưgNŸiº÷ñ/˜ü“•Î(í‰wr93¦ºOïÍf—ÆÅÙÏœ}l_¤‰‚k¬O„à°C3\Ÿ₫ïÅîTĪGd•G¢ÍÛT×3ØD¾U@–Đéê]j¸ØëE6ơzrY&ăaƒ¤Lœ CY9c•‚‡¤›¯Ă£wiălđÿ‡ª©‹‹†!ù©cµew…O¡ÊëÀG‚èaWi\mŒÑÍ~Sâø i}ơ¢DáH#“Ơɤf'Ỹ †ĂưuA®ƒ*á¤STTÉ”Nüo`L=<­—Ư[jgjÖHâ¾¢$MÜ_p¿ R)V‰÷P?kº ÿÛAgDƠ<Åfk["”~|†fA•@GÏOu^dÏ~Êôw¸4ÿ%—(=‡tÆ<ßyÓüöáïÚ=_×λ̣ḱPîuMjÏJQ‘³SïƠ!‡̉ư‚w^›íSSú4©û‰ïcFluÎÁa=®G@|„Å?pÀ?KĂ#É*•£C LŸ™‹ ĂŒHx$l¾g9™̉P)Éu|> ˜O<‹=5Ué†4v<¾¡pË́»h#/½Ç_:Á÷)«Ụ̈? L†kH©o‰ç•ŒS̉N‘‰" ’BÅGă=]ílqß”¾ {1 ̀æ–óë:“è?بƒtư] M›órˆ¤½‚ d¼¡#CaR¿1[&PĐÎd{?‚2£±Ö ‘ >NÔ¸l_ñ:)3ª†¤g»8€Ư›Vñ²è &/ü!ôKuï+ –àÜæÿ}Ăƒ ÀôË’ :™RtÅl>~m§¬*8¿SÎ}£˜4D%?ÚÏyú„9½[<‡·êi·ÿ›QÆî"e‚{0:ï ñ\³ONo¤Ôí/Z"Œ0pçÓơ¨‚ÊPç&¥+â… âàŒ,—fíP·Åï@3ªà̀¢ûÄêÊSï7®áà&3§$¹5e88‚›ă>ưèBÔT"Pæ˜U†Ú¿ª÷"}d3ç‡&ú¸P›Ó‘xí½¯¸—xö*Ô^>ß%)±åæƯ_Kí+Îù})[abÙí¾ù rËß­DÇ!•~2âyM"à*ư3ơZhtÄoÔª¡¥.óü,Áî¹È(Û®# Fƒ(ëØíí6+Vé₫?ï–< *VŸF¥XK¥8ÛvzÜđW̃"R©‘°º´X‰í¿ªµ“TÔEM:Ù’…&¡àÑe(€áÀ ÷wiÚ;âíÿÖ·â ^h³’ï Aăbkh½ö?̀?|÷`é¼é¨›P&çro‹VN×aíöA°³"hè?l'ª!Q˜ôà$'—Ë]62ù 4}¢­)6*OÀ¢ơBsÍ&ÈD~5‚£×ä(ËG£9£:ß|¼÷So–gi?íI†{ü£öÜ.Nñ@Q̣̣Zw zR"döÉœ #£›ù~Ä_̃¿N~Ó®Ú8"¸ƒQüÔ|<.̉uÄz’‰Ưt* Do©‰ »$½IÉ|_•!<~BƒÎEŸË’f8f¬ úík0ü<iJƠû¨º,…»´Êpɨf`kÊ3\t?DJ&›ú̃c¥Øk>Ù>Dz[†û$?Úpß±–u¼äé5üĐYç7Ă“ëGí|"‡”ϧ´½øUá U"û›Ïí)Z¯•íêlÿ*Ǻ0g•†ç Z AI½X­wĐô1€®?VOCi¸cd­!î·«‰é©[ê áYÙ´²ÉÓê»É“‡đơty{!{IỠ Ô<ƠøÜÚÓ¿® Ă™f$đäeƠÎׄçE«Ô[ûT,€A+~…NédP 6d »y₫G„MíP|•(Ïî[Á‚Ư>h6€!« ¶Gx5’\=˜Ót’|´“Ưw*‚Q_–È…$kWÜƯI'Ăñ.p”'˜MX²IøæsN—E"l:öús̀³H|†·v&ʶd‰m+ëv|#!Îr ÔIÖ: Nơ´ÎÏiV´©Ăˆû>²h÷¬”qÂ­ÆØ¼©…5ĂĐÉ•'´,èÑZ€¶û‹,“Ë̃…^H7„Ä!ăKÖP›ÈL÷”eaÛoÇ/‘[CŒ¾^̃Û)EÀó«h —^ưÑ}VgÈ\¤êÚgK]§EMèÊñ’ăÖ{ñ)d‹Iú È-¬l²¨ÄÈ’æ%ú‰$2Ùå3@EôÛÆ€M¼Ñ.íCĐE•~Dkæ6÷Ú€ưߦ֯ŒÂƨïè\̃çÀ m¦†K@6B1Q/M ¶˜̉øk%¤;‘•u…­Ù4¿pŸj>{˜b­ñ8 ‰jù èƒ@Ÿ¿å‰éQû&Ă Â¢‘¯Qâζeüôn§Ñnƒc² N ,ôwų‘?X„3Í«‡[[ưöóÈàgVUˆæƯ!„¹5‹.±6cl̀Ä<³O„Ü\4Œê†á»nÈråï7k›ª²&»1̀Î¥Ú‘ ̉sûKEÖhÑΰ&dùb 亹§i¯¯ekƠ\Mk̃\µyzùđcÙÙ’s|G•Ä7Oz ²^ĂYLêdÄó²ÈÅ_^)~ḮáÂAî5¯¼ĂÖZ“~›å*e€ê8¼‘?~™Ă¨8ºø%¹B?=s ø ”¤¿,‹@\…»é!Ơ ‹æĐå{+^ØÄ¢Øì?¾ƒ¸J®™‚Ü‚N˜7.BÆ̀2UÚxéÄ{ˆßX‚R ªÚ®ĂPÜtàToM(D¤ wrÖ•ưY¦ƯU‘ĐTÙíÆMC-âå̀W4Ćº®I¸PWe¶ŒZË]?¯**·B!àçÓ½¶{ºÍŒQgÁ÷9®§@ëó‡=j…¿|.h#€²!±d¬{ñªUAwó́ú«èŸgl£’걇Á…Á>l)÷ ©Ç¼÷zÔ³­Ö¼ă7Î'\́®’’1ô7Ăă²˜‘}•½ïD¼4÷tån…· >OA.:+ÜLEÿQ:XZÓ?X_}åÆŒàå@(4UbWK_§̣f̀<€SB₫ĐñÖÑí—“w ¦órî@ù£ZÜT½²Í0æ}Ñ » oh̃Ͼ [;ËÛy­¾xûmLäÁ"O0ÂAJGSĹĐ́½·ÖNM*m‹ ˆ ïk¼™Ed¤“{UÓ@ª³—ßÁ„ú"wÓæ®ø̀ÉW‚Ă­÷Z‰’̃!ߘ¢€Üa,ǹ >>Ă:©”Üy3¢đ̀;ÉUÁ£æ…4›,î‚LÏđ• Ø/ ß&˦rÎẉvfú”¡9¯÷C•¡GÓîô§Jçd¢Í]Œl~ –²Sˆ,è >É?gÓZˆ|_ "KñwIëüƠŒ«i’kœ?đ½Ó<₫¦8́ªDøJS&¼ëñh',=^´ÚǨ̉ËŒĐ~­JSÈßwUư?²}eƠ3•¼“L–¡̃lM̀âƯ½,/²\a+¨73…úPñ›Á!)R{#‚vöÔĂ¥¼F—èÙ†^*Xe3-‡Øè_¤„…4è‘s:é7R×,£˜á½ÔG¥tuqßU«—±7ç3+l¾c'£5W4¸ÍÏûÅ–ÿ7yeóçă{½äµo¬ß̃Û² ×*1 tÿ Bἦ½µØD³ßß̉á—äÍæ\¨¸Î+É'=ñ™xNy‡3³%×eKxK.U©ç‰r½́è½_U¡Ë›‰F•tùĂmÖù}êk²g³L̀ÎÅÓYÓfÔ‘å¾È̉HÊK­9ï±d™ûu@Ïcë4‚W̃ụß ˜\,<÷;Gº+$̣Cp˜äC0̀# „®×"“û`¢T1ÿQØ‘)QåY·[ø¼yG¹Ä½²èé7\§ ’‘´Í¤Iúÿ;gÀŒdøy l„ÇM8$E¡' •™Ç#ÀỤ̂–±à[ºYnH¤ÏZ¥¢¤f®î·‡.BÖâè‹Û˜¨U=j¨7§Jy²ÆpI×A‚æMw·|èØäd¨ŒUv©—AB[YÀÚÍ:{é; ÙæĂnωƯï¿&bßÀ*qÇ É;ºv‚7çÎ?€Ơ¿V_LïåêƯ 5ÚW’ǵkïf©MLϦ¼‚₳™U9>zÜäcbŰqÖƯn¬ˆ+ƒ‹Î7¼ñÄ‹$r}àÁ©kå0₫ sp›;h¶ WaÉ-©­CŸ'sœ—øn’7êuO —+!¯Û†‘é(G'Lñ5•zÄøi²­³́Ăt@ƒ‹à¤ưXˆB(é®_¦ñÅmY›×g¿&ó¾¤'·8ñ*- ƠY¨Ór¬F"(àüz$ªpÆ]7qâ9Ï °¿̣́?®«&üj¼ÄW¯"־ؽJ-v}o_Û˜1lñ¥äÜ̃ü]óäå¢_ο„à|'Y©9~©\設¤OÇ-†¢Ń#« F³‰½Ñ\\I dN|#m=ïäáíQùD (¨#jäÆÖQĂFḲæDù˜Ú¸ñ…]ưÓz®ö'sÅă*hK¼49¸N CÊdÛwë9¥/™Á,=»frC‡g."±*'>ÈRVY„æó"úaá±1`̉3ă A ê3ÂÅר!sAF¡8N#Á@T™¥œ2/ê:%èq(r;†“Àøåy‹M£·Úñö…Æ3™àư• ³Oœî₫JÖ.©E¼üR Ï8„`9¡(§#̉«LÚ·;mJ¹ÔŒĂÀ&—ØA6°­R[Ф ë‚ÆÛÚÂclSö3«c³PÊ®nªGt{ytR“Mѯ2Ï5ªöùuÎÿ™ %Aªÿ+´×5>€bá!5$‚º.Z-HµÓQø©hßÇ\á*ç¹1p¤Qœøư#6—#̉ê[GFP‚YœåƒIˆøW¡ÔĐQúv™+£G¢«Hc‡‘€’«‡ùœ a÷ö₫̣„jáHÍ“¸±;œÊ±ü2$‘çÙ>ù'.æ’£ùhEưæÇ­ÀMó6ZfºXXơ8K™â™bK^àIï?»³àR‘éT„£êÜ·,vƒ£Ü‰)àûc`Á»5‹NG÷çˆ{Á$ØyF÷R|3 ë/^‡7¹*9¤^ ®WVÔ¸i¿ÔëR¦µ§ƒ`|Ó́MU<$§&¼ô²YI¤ê#§î‹nÓT́¥iÍ­X¬JÀ7đù¥tdç—2́0M¾é&®95Clë¡”í›í˜4´¢^pçT3£©Ü.ÇÀz7¯¶K 8‡" p,*dú1mñq"%„äGWṿj₫Oéz ù[4&ï’x|ÊÇ¸ÔÆ˜3€í¶xXñî·>–ΕC>I¼Ó}ƒQäGÅøKjäc{›x&"‡Íû ñ„u¥Á́m‘_¡§,ÄS…{J€É?›X57¥|¬¼…â|0¬ê.;{²§¢€Mâùă^V­d¬Tư˜óJ&aËf1îȲV‡¥ùÉ^*…_F _öȯjzábă=ó¸fưÂBv%ÇẩdƠ#à"ạ̀sC›µ ]×áTŸ«̀*ûa!-Às{?$ ±V¥UØT4ü ¸[m“´ ¸~ƒ((¥0<2r\ @¿/8)®´üMªw2LØ©€vOí8Ë”ßn0MĂ ˆ2]Ëlæ¶%¢Ík|*Æ•Ç₫ơ…̣J¡X×pœBǴĂÖc{pở:C¹”ũ²Î·°«í3Ï´°c~ăĂˆĐà°f cG€ˆPüLÅ›ª ,Gâù«¿ZMêsÚ^ZøĂ¢RÖA¶®ö̀ÅÅ&Ùxïúlx¾aÓœÉ^tÅœÆç!} Ïâí^÷8ĂG;½.)´xô°q˜Ïæs<`³̉(Td­*Äîó|TCÿ9ôÿV*e­Œ ©££”6Â:̃ơ p̣ àœă0Æ~ơrh‰[ÚC»œ°€=¸€¿‘ÈüµW}­CÓ¶ÉÖ‘b$ơ}'¡²èn99e;á?.&Îî çÙ8‘]Smcº¨â+û#rwPĂẮG‘́wæ·Åi…h‡4'øYÙ¸q¸Xb2¸Md3Ơ0S ³¢-³úQåFÔí~Ư³`g^Đ‚́›¿Åka›̀ùÆqJCcĐ̃Ip8/ »piiơµư¢8wåü6ø=VyEN‚:Ä1ĐøÙÄ ú‡>¶Ÿm¸ḍCÙaƒUO²ÎXè•@¿́Ó:ÄïOæÓ8sØ_¿é>g.?."pJÛc…•æ0@¬.$Đjº¿¡‹ÛŸ.˜ éđ„4˜YËØ ÿ %zƯ§o“‡[ư K‚³uĐ»­y@¬ªƒ|T´Ü„¹.ÄÊ¢7ư™î½¤-Ä2|{›Ô`Z±¤Ï éèµD”këYím6= đFiâaû_¿ç“X£›–`¸v¾ơÿÍc½ƒGí~¬*)·ĂlUö–CFÂ8ÁiÔ#ØZmI  =ü»µ#ˆÔpC Ï@R¹3“›̉)YÓĸ)E7kƠvØëérï‰å#±–øQUTŒp²₫ø+bÀ! 8¶A±güJ$Ï`ÄƠ¦®ÚÄ·ÇIM¾Bé6§ÿ¬ÁÛ †&q–ƬÔ'̣˜ô”g™̣”OÙ]ơêb[‹ÂÉ §‡ +­<8uà£ëˆq¸hA| ­Å†I×p¦V1Đ¢=ó0MƯ/”–Ë7¹; å«›¡,8ˆ±ö´§IÓßÖ3ïíOÚ¬̃\]Ô ̣çF²—ÙơbNBÉùƯ+j^Ÿ ~Ø÷#§¨^ñ°#ÑUTưî₫úo»^fƠVé»:n¸g­Àß̃£!WW}2ZƒØƒ™!w©^\c} ­c²[…/*)v'[ŸÁ₫_#wi9·>=ù°AÔjWŸïDklûdsÄg~q¤=M…'S"BÊìDĐÓÓx\Ă¥s?éî+W‡çp.µ¢Ü+ &¿¼Ăæï<90[x%:¹à₫TXˆLCW.e㸠DÉ_5́â«°WúʪÎƯg¤Ho₫GfÿÚß́ßîOE­„o‰td²ú}Æÿ-c ăSO‡àÙLÛîJíô¾Îß…\®°Ṽ>„J a6ÔǸ@VA:,üăúqåøzCyĐs}tÁ•ÆƯ©ªư`—‚ÇÍ+å¯va”€»öÓëÚƒj‚ev^vjp÷Û·û›ÙjyU\x­8Â8^kèO?Ú[yđܬ(® 'È4_§—#‰”‰¯àh<¼ÀÅfÜ™̣à΢`A°_²°íbª'~fa·r®b_k?­x9ÏÓôåđÁ *̉$“°kOכ璩`Ăƒµ.̃}¨epv))§™åp”~EVË¢ ƒÜú$z)§"½.E«É‰²1}×2sÿÇ—g\+ü•vªZ9äăDÎàÊbr=J®'³ö¾ú~*Đ·-öæú›oC3’wƯ¾ú–3æựƯO¿éZrăH̀×)OÄO²́¢Â_¾”Ø¡X˜ª@÷̀îˆ0=gF‹~ß?{»Û¨¦#xư¶»æOTÎôe ^º£]­c–ê  Á₫×U€oiÁѲ‰Ê=i=•=µÍøNñ¼́ºƒâ]Ư.“Âè÷+Œđơ¤Ç´èPgªló¿fm;Äz™y5Ơ† –l~HK63q‚z¤Đ«,ëufs¼+JÑ“&å™<–ù9]Ní̉¹†ÄÈ#˜Bç~A•íµ÷X1’Ơ—ç~6Ñce»ñˆl?ÊiưÑFŒq >´Ÿ—]Æ¿^›á¥œ®}j‘#“<-5¬¯;ơ8oijÍäË8} Aj"A½\¥XÏè0Gë†!£‡)I<³ÓjVX´Ớ…Ë₫1ÇÆ- ôƯ1\“ŸÚƠlÂË$-ËçÅà§C”B×K‡Bȶ@ƯQ5™êa~µ5‘ƒ̀¦CAw2g¡Î}“à²)5@Z÷ørȲw™~J˜»j¹ªó₫½ØpÊDr„˜%@j¡ ô§¥mçpY“÷ŒD ,ê–•§–Ăé À¶ª£j̉½‰û¸4₫Çv! Y2²K¶û›˜¤qA¤{~: djvbàG§•îeZîM‡*|Öpôëv:äÚkZ œæ†Ô¢oD³g<Đ ?ÿ_)½’?ûÊŸÚĐDzÆ8yª §d·-y““xæbráåÍ}0sA«x?Qẁ¨®†U¬E˜êM̃¼‰Xf µHÅĐ­ŸQ̀§?¾d¤2¿^¼«d€ê˜U•T®J¬<¥»+ZR4æ Ă`·5P |›¦‡L+ÍßbXWz¼()C¾{YßY¥­ËaFÄßçsï*” ½‘A¼Y_¡ºZÚoÀ|ª°¬ö­üjùÈF÷pxGæÀÏ¡§#E;¡Ïÿɼ§xßiáÍRïæI:ø†d.¢Ô¤Ÿ`¾¥˜++*@~@­·Ăj¥úñwZœÍ[gjKMŸ@ƒS%EơM_ÙχYßÛRgqæÑ·°¯½†'7XZù×R’w†¯ZÚ&`E\ :¾çn h¬ûŒÂñ“.ˆ'ơo”lï ›€­0°Œ…öƯoVDv0å ×>ÎB‹NÎéíÓ’aươïÛµ à+ú΢c\Ú1‘‰ = gđ,6ó´ßo|́S[yÄĐE<Ô´́àÀT µ«,Öv| Ü±Ûø„Qm k¤iËt{ §ùjŒüưºL[¾/êœO”¥m<^*Èç îª ëåå±R&èơHsxtđ³¹₫%?ÀRÏ’ñÍh²psOψ5D&ßÛ©!¯Ù/ÇÉ: â•NTơỶƯô8ü¯¶̣rå uđ+F´'jÏt5;®ä ÎÅéƠ¼¯º‡pJ{»>¡Ơ¡₫₫‚(Sáéđ.ÇŒPOâ'H)¶*„ƠP$5ưÓ/è(TCp¸k|R¹Âc=lú»«ˆâ£}qiïê±82Ùb‘ÏVƒơiiÂú)zàư-ZS‘“b3+ñ\óúoŇÆÂ…É nwỸWĂ©3ó1\²›-jñlûÎ8—Âf䛨,<¤jaË5Ym×F™IYo:{8esQ­!3çÁcjÛ î6æjoRN`ÁS$p÷Rvp™¶ÎÀ8’e=WŸ¿`§²[LçƠlV8¢™”¿¿ Ơ*©_4{?lÅ}j½ÑCG̣=‘đxË·wöW.‘₫O¥­:댢ôud×ÿÎ&X2K› -₫†Ç˜ă&–‘Ç5̃Í ¥Ơ/ÚĐ®¶`_±g.¹€4Cƒdpä)âŒáØ1’#ÅWÖwǼjE/â‘£§b̀o7%]bư<ôí:†v“ŸE^ĐÆ¬kè\ö*äT´D¬?×Ö[ÁÓ . 0m¬"1ßF±JÓiF4£²h;ARøµ–ö$sËyô+Ă»¡y)¿¶Ç@TÆ;Ï?Ïđ ¤º¡è¤vº}¯cƠ4a₫—û1 ¥̀$)¸ßJ¤Æç̀4ñèîíÉhQ₫•ÆïùôEÛăƯ Gn…\ÜÁ^â±Ôó  4\8 ïµ:q’|l,.xö1µm#<ú¿ËÆGƠs\ï ˜Öˆ¾³ 8çpóÉCQ_Ï”xÔÀ*y?gi_ÿeŸtḄUÁK²¨tcăbêX‰AÔ4É‹Wg‚¡ÈüZÖd\ ‡d›Û)”̉Pq¨ÉÄü€®h5ÍKƒ‰ ̉˜Äï3 %!M–ƒ¨‚@–£ —`BUÆ tèµæ¬T¿„|ÀÉÎ[̃˜Ù—éM?)̀O”ÚÉqDÛ‹Y•ÓûjŤ ‚ c‰82ú_q¥j˜ŕ˜8ào2Ç<¸́P¯ûÙ -c4Q3Zˆ¾́Î̀$¾Ư@º/3j檃DÑ̀ºT±£́đ%tb­>¸¡Q†Ÿu3ùĐ^:ÁÎ>Q Œ (dmô¹¢Ÿ<ä́€ï;˜–|Ȃіií÷yîÚO$ØŒẁ7¸ƠÑ@Öfüeºü5đ§Ál‚*F& mÍ1A6a5„é/±Ëà_PBx!¢› #ơs;³ÁscơçpŸa?.NĬ}:£ #t0ñ!¿Đb¼ÙèÔ‚iù˜‡i¨9#ĐwÏ9÷Ơö1,Tl±µ‚fạ̀uwX¡¿₫‘'° ©N¥Vd¥̀Ô4?œJ¥¹¿̃⸫ỵ̈9h¶À̃œÆ¬ü¯Óж7d̉Ü,$îX:Æ‹>é(u Z)?‹·{„жŸ`Wxç‚>0 ‹YZpsych/data/Thurstone.rda0000644000176200001440000000103613154621324014775 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉œ!¥EÅ%ùy©@Y> @ ư0°U÷ó¶̉…§ö/®üư¼Íu‘ư‰É%{²êío/}üưÜMû;³AŒópú¡ÿ}ë”(Yû¯[åvÁơẰ{ñvbFÑEûû½`…öw7ẹ́…±HÚß÷>¶üưÜMpsêKÍßWv̉₫ÚË ÍpûaúaæƯ-X|˶Đ₫¶1Øß‰’YĂa¨nsåïç9Ư.öÅÚµ™x¼́¯‘w?Ü~¨~˜yOAÆ+µôĐ}HƠCûI¾—>®üc- ́Á¦8vÂƯ s?̀~˜~˜y°đ¸¹+ÎÔ¾æươ°́ït;OmdS…‡̀ÿ0÷Ắ‡é‡™w)o:ÈåöWª@ ªí¯œ³ps`î‚ùæ~˜ư0ưp÷êÑøzØ₫1Ô_0û`á?¨ÿaî‡ÙÓ3ï4~`ñ‹?XøĂÂæ˜ûaößA_´„Êœ’™ ¤xÁi™’vÑ”p•ä%æ¦ÙÂPu`uĐ´œW’— Tà ËONL*ÍI,ª„đƒ”è9çç䤖dæçA…yƯ2™DÏ'µ¤$µ¦[Đ-¿´*¦_”“à.MKˬ€[Ă UœZ” ä HMÉL/J… đ@U¹å— i—ÿa¯‘{psych/data/vegetables.rda0000644000176200001440000000105113154621330015115 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉̀e©é@RÈqù@´ư0°?î}lùû¹›́Ï,¾Îe[hÂPíeÅ•öû­S¢dÖpØï^ú8øû¹›ö;o+]xàçoú¸̣÷óœn¸y¯tùÂX$&ĂͽÙi4ùƒưÅ]q¦ö5ḯ/mP82{™=ĐÇNs¸=‡¶­¶?Ñ7ïÈ9ḰCƯ3÷Ää’=Yơps®́ɪûy[nÎI«œ§Áü7ïåçm® O´®ÖiÿÊG7÷ȹo'ÂÍ…ûĂ}HƠC¸yo êŸƒ­Ñµ̃ëèT sXF$ù^¶¿í<µ‘Må®ư¥ùûÊNl±´?¶&a^7H*Üœ§ OhÊ·ñ¨ư}¨8̀Üëçnµk3Ù_…¡:Œ0ïÈl`Lư€ûû58x¸æBưù꘹÷\Á ́¯cçïçmóä}ixü<Eï̉ÇöO/F®ưƒ»úRó÷•£»ñ[¨;^—€~Çh|=Ôcÿ^`î{µͽhI5/17µÈ'vˆ KHiQ,/8'&Á„RSK`ÂÅE0Á™0́ÁzN©‰yÅ0©€ÔD8Û9h>C’s‹a r¥$–$ê¥Ưˆ¦œ³(¿\oƯÎđ„§ËˆKpsych/data/epi.rda0000644000176200001440000010123713154621325013564 0ustar liggesusersBZh91AY&SY¨YÛà)GÀ₫2Hà@/'Ü€@a˜<=÷èê¨R¶H‹’L@Xdf0ƒhmU-Ȇ¨¥¢ ±µEUH¦mBb¦¤´Â*$mM@¢¶VE6³Rª˜jPÖ"‰IJQ”6¹ï€ê€@*>A ¦ ÉT~ơ)?ưUR4z˜CF†@iúUU `!¦# OTªMAhĐ˜`Ôª¦4d#!€C&%R ™6¡ˆh@cư«mk^FÁQ“`ÑÅi [+Ʊ2ÆÑ"[Ôk Û£X±`Ö6K°ZbŦ-ƱQj-£Z60lc `ˆƒFÔV(ÆÀj- EQ¢+Y+5 £¢’™¢ØÑ°ZƒRTj5Æ4j,T`“Y-ˆ6#l†¡‘¨ÆÙÑEA±b-3Q!¨ØÑ££FŨÅh1bÀE ÑFØÅ6‚BØ6#DVÉÖ„666"¢ÑZ+2‹E¢F5‰,”›TY5&6±‹€Ñ”1lETE ÄX, ˆ1I¢ÄQ±i ˆÖ-‹I¨Å`¨Ö- Z ¤´‹ F¢¨ÔTY,3FcQQ°LbMEd¤A`²m`’°XŒËXĐV1E“U(¶(4XɬQ&4c¤¢-V"LÍ“ch±ƒE¤ ¨Œ̀–4h¬[F4T›EdÛFÑd*5¤5-%HXµ%’**"ah¨a™ Ñ‚f“IQ°Œ!IˆŒŒ‚¡66, ØÖ© %F1@ Q¢4 ¤™6eE¤ÄTh1›cb’ŒT¦ŒJ(Ѷa´m†±±F*61¬j(“ ¡ Y"Á’Ö( 2lhư& Ø±ŒE¨²,lQ¶Ńb1 6¢aB BÁcƒ&Æ©1¦bˆÔQ±¨Ø¬cF £)HØ´bÆØ¢Å h‹¢¤©,TƒɨeDF6Á+E±¶0hƤ"*5IIÅ‚Æ1Q%‹Q¤0TRQ£%€Á’JˆÓ‚ ¢Ñb¢ ¢’¤Ô˜’S5Đm¢(¤±bÆD…¤ÚM£AAaA DÙ„ØÖe"´ÉM¬mQ &ˆ(5E)¬E¢4Z„¨ØÚ#bÅQ±X4X̉bˆĐZ!$4A"ѱ¢¢¢Œ[Eµ%¨2RZHÑØf)ˆªJ¨Ù,˜¤L¥Hc%TbF±PƒE¥2T²Q ´lY"J1™²bhÄIƒX+E¤Ö L&lF,˜ £@`JÉÙ(±¢ˆH"M DQI²a0›2ŒQ±FM´XÖ,2Ñ5cTRcÛF-@j5‹h±Œk2H4›lhª6Hµ#PJ ‘#ÚF661¬S1F(̉Q’ %Œh°Q¢ɤŒZ1´21± X££ b±´ØFˆÑ£© $&*f¤*(¦`ÉRlÆjÅ ±ƒA±EŒ(Æ£ˆ¡‘´X#I¨¡61¦Dc‰(ØL“F̉@ù·21"±hÙ5 DZ5i5“AlXÑ™LlX© Ñƒ1a…! LR•2#@JjJ È,hˆÊ&"™%“k‹ ’#k$ 1±‚±¬–Œ[AmAbJÆIk(’Äj-‚4A£i ‹&ˆÚHFˆ¬c¢Ô&Ñ"Æ6 ›¢1E-ˆŒ¢D¶5!`6#hØ2T(ª ÄbA¤´Í¦ÄØƠ£(Ơ&“EŒ‘!Q…A‘M!“!´ ` 6 m £!¨ÉD¢‚ƒXÑ´HƒD5’Å"-46YH„ b4F±™’ ,‘£$T Ñ Æ"Q40RÁF hЉ‹ÁDS1ˆ’¨´jE&̉HhÄZ‹LØŒY,´I’Ô‘l )c""Ñ& cF6 ˜,…Ưv6-Œ&%$bŒc b4m˜4d„ ˜ÀØÅ&E&ƒ% ɉ,E…“"4 ‰6H¢Shƒ QŒËÄ”˜±$E’E&Ø*Y(Äd°V1D% Û%¢ŒE`Æ1„LX5F(¢(Ѫ’(Ƥ “EƒDE““lV‘ Ô%5&ň̀¨¤¢Í$5%I°hÅQ¨±€“%@"‹DQˆ¤¦bMH002FѵZ4P›bƒcPÉ % j ‘X‹B–4”˜‚(4F0-aˆ´€”’lXÚFĐ–„À…€ FŒPbeˆŒVÆ6™£„•$“P…´#6 b„FI4Ê 2m„ 0Y4lQ±²A@I€ÁD‚1(¡He6’´d-ƒTd±&±cE’Ę#!Qb‰…Œ%DÓhÚ 3JcI10T¨ÑD” ‰‰I ˜R™± Ù‘%Qi&R )¦‘€# ˆ¨°¦H„ÆÅ$‚‚ƒ‘±„Æ‹b1‰ 54 h€ÄY m#6H̉„ĐŒ‘!fF1IlPI¤¢1Pc&’¢eh±QŒ¡£BQ˜YHŒ”ZfÉe ,¡ ‰6-‰˜ˆÚ Ă l‹E$a(Ă B #FJ#JQŒ¨(Ød)$2!–!J,†,!¨Ñc(ÅŒa 2LR%±‹FÅJÆ6£I¢Œ i(Å¢ÉI´k%¤Ú4c E£BI`ɨ¤ÖLDˆ„ˆ,kh Kb¨)Ñ¢`Á¢*3"#j66„B£ -i1Ù(±dhɲ&Å¢ 462F!4hÁHÊ,bÑ’È3F˜R„`±1€ÉbE‘Y4`‹±% ±cj,V1QŒ&Æ‹,)‰°T‰¢Å°2’È”i 1m’i"6’ÉŒ›‚Ä"DI(HJ I£Hˆ,ˆmQ3‰Œ̀TQ•ˆ‰’hˆ™&ÅI©#&±©d¶2%C,bɱ‹BAD‘Y6ƒ™CIF„Ä4h,cHB•jfÀI1)(̉A%‚Âa-Æ ‚ˆ€(4˜0 d LJRl˜±‚ÈcIm±±£F°%¢1$eh`D“I„Œ–ÁAÁ#$¢4‚4 ‚€´hÉ@̀k%I42DaI™¦IM&Åc&“C H†Y Q`(˜Ø’! BŒ‚)¢€ÊPÄÉ@1ƒ`Ë3H†‹BT˜5F¢(ÅIƒDb1F¤’ M,”`‘±±h̉c)¨ØÉ£%ÊéBb$Èa‰“F£ bB “ Æ0lF“F’Å$cIÅ1•”…ˆ²Q$i#ĂbÙ"R ÓfH4¤Y ,D% #2”L2¤,•0ÂM($H‚”˜„44&L’Y#`ɃI`J#`™M‹(0 51A¦”E%@BD›LÑff@™%"$&e%!–J%h&¤aÀ̀̀–5€$””F"¦Y,hÆÄT’Q€,Ea,†)&fd dÂbb JFˆĐm,m$cX@ÚÆ6+D„&ƒ¨¤*1DR‚‚Ä•bű´)"*1¢-%’$¶H5&LjI4ZME0!†b‹˜©"J&* ¬ÓEXÔ› DE ,‰©2Å3i$ØL±±i‘¨™ZH¨£É£EbÑ£I „ÅF£4’¤Ú-&f’$Å 4&LlT$hbŒ‚ɱ¡"1A26ÉDQ3$bˆ±‹E¢Ø±hÅcch14hˆÆ€±± ¶4•$Đ#$ÈÆÔ™¦i¤k%Á0”ææX’ÑL¢‹b ±¢ˆÁªL˜Æ  £i#PTQRF ,S",BDb ±¨£T dÁ¦‰ –LE¢Ñ’ Da‚’Bˆ6"6(ÁL(P Z4Q4„–1fbÅFcUÆŒ˜¡H‘ LQcL" Iîè‹dÅ„"ÅD†J4Ä2’‰ "ŒRb(€P©‰ &%& M&ÆE Ó F ±D›’M̀Q2R˜‹‰ 3&@¤”AP€”ц ` T¦)³fQd@’Œ6¢(Æ¢1†jb) F É´È5ŒA‰A b64h£I²lɰZL› `Æ#D–M”‹H £I¤Äc6JShJiˆDBMPÄÂ[$d²Q31FE2£ F1I°J`#d’0@QFLAˆD`F„B,Tb‰ ‚ˆÂ"XBD±6(¢6LiIAe"’4a4I2‚KEb4’É™3! c1¢$ b‰ J˜‘ˆ‹$ŒXÄQ±Hc3$d)6¤!Åb¦a0KEˆÙ*(±´Z4X- d‚CI¥ ÉE"™4’5*D¢ Hb“XÚ$HI4FŒ†̀Ô!LhH“DPV2jFÍ)…2Qf)©‰D"B!$1d£M b‰›$¡-¢’Ñ2#C Ñ’-™46iIAJ„ ‘Œ$Ad‚(Ù$‰0`6#b ” $ÄF2ȃ)D2̀aQ„’"’PÀmĐ €Æ‰”$”ˆE) ‹b”Œ‚IlhÆ‘LR’ZIJM ’C"ÊRHdLƈ‰‘˜ YˆB) £%6"ŒÁ 1 Œ¢ÄÁ#Đ$%CFQL  ˆC2F Hd؆²b("LQ¡¢d– #"c&MDÅl$È €Ék±¡*FˆÆØ¤¤LE¢“LPÍ™iÀD¢6*I#a"Ä”bÉ’- Dm™¨ÛTZ$M2&6¢£ÔX™bÄ#F¢ÅP2£$Q£Q ÅF) 6Œ˜ÆÑb¢“$̀Æ(Œk$h€ ‹F4Z5AA!Pj,±¤‚66¢Ñb™± ¨M’!(f6CJe¢L…„j6KcÅ"„4ÈÑ̉‚ѱ²$dÔh€66-¤C“@XÑh¤“”IF(0QF£IQ¢ °E@„"Y”b’¤JÀ• £c#Y$Ø¢£X³ c$Ê1‘64Td¡"Åj1I™DhÂl!P`¦$$a Ù @”,F$ÚDX"M0ÑhM`-e)˜€±K4…1‚ &0I ¡#©,Ë3Q” ¤Â‰±±±¦hfÙ‘FC F –#PBXÖDÙ$ÅDÀ¤ˆ°dˆ Ád‹D`¬‘Q±1AbÅ,I˜ ”E‹!ŒÍIi &LAŒA’ÅŒAF6I4ĐÔB “EŒh(°„”Ê Ø (Á&Âl&f3&BÊ ˆLi …0h¤HĐi#32˜E2„"‹3 HQ$FŒŒ̀£ĐcFI0›cEcI¶(‹F¢Œ4BIPhÚS B&IP X’(Å̀ÄÑI$PQbĆ1%‰Ad,XLˆF¡0‘"D– PXŒY"™ch¢È´ÂC¢$ŒhE3`¥2L‚ĐF&@Æ#CJ0“(f²Œ˜Ô†‚6™£"“2É“ ¤†,I¨Óe@À¥0h LPfR)‰C2h”$f†PX” b(Ê,!DË$¦H$¤±%,`ˆØĐI°l&"¤1E¬I&*2lb5ŒX¨ÅLÅÉ$Ô‘QXŒ̀FJ"„‘0„ÈcRk10Æ¢6‰$Å¡’†1ƒH̀‰(‘cY,€R ˆÅ bEa""X¢0¨)2M&†XLh€€ÁDZ4d‹$%AQ 0f4&±ˆŒ(…F"c&Jif3$$Ø£ AŒ¢L†²f†L$3&dĐ ¨Œ%™d†dd3L)Ñ4 ‚6Å¢Âc̀ɤƒLÅBƒ"‚C@F!‘’MI°‰£FbÍ’Â4(2¤ B¦4&h‘I 0(d0̉!“"$ "Bb#Iˆ€4B1ÈI Ñ,bJI$ÆÈQf ˜FˈÈR±D"c0@ÆD‚lĐ"(b $’F&1@0ZlI)2$‹h¢¢Ó5‹P‰ ØÑXűD˜¦`¬,mÄ$™c%Ú!#jCQb̀PÄ0ØØÅ¤™Ѱ`‚1²‘D¤¦!‚’’¤`” I E‘" FA $°A„6"”ă"„3%6$aD™¢”Ñi$`¦ÆL–ÆŒMf%˜ŒbRI‚H„˜F@ÉdI LÄ„I–&(M ØÄ…J†hÍJd²‰)"i„H²L¤’I ¶D‘DEŒ&, Æ’@„%F’‚ Dl¦‹’1""Q1I¥†ˆ™‘"Rd¥&• %!DYH64É”aƒ 61HE0ɈBc!€“I“0ÄL¤‘%˜™BL"FA4¤†‹1A0ŒÅY "Q³& €2PI SILa”idR’SPM3&†@̀¡,VD˜‚Zf(b@ŒD€BH£2*CÉ2FdË4Œ„L¢À‰F(`£¡ƒ‘"J ³(XͰ…%VLHQ12aR”̉d˜LA° ”É&4” I©„Ñ,Ă eB@‚Ä„cH–JˆePPi"” 2’Ad’diH– 3#‰ ‚I–F$ ¤@A˜‘a™ bLjR50¤L(Ád3F$ $J3#E#$Ä@ Œ0̉`ÁDd‚LHÍFQŒa ̀ HÀ†J DT4)‰ ¦T±„ $ÂcIªA”„ˆd±!…#I¤b„- IF¤Å£LÑÁ$d(hZ4 )†ƒF“Q!£bÆ,h¨Ø" BB1Q&ØÅ¢ƒE aDSb¢1dÂ%B €£‚ÈÂ(Æ*(±L)HÊ5¶"Ñb5A‹F6(ÔQµ6"Äi4hµ4*0ZK‰£ ‹HmDA²–,QF´j’‰,$‘+• ØM&²h¬@APfŒTcb6$Ä¡±Ø4È€Ô“&Û%ƒ2" Øµ&ÆÆ (±©„XÉÆÁE‰$±QbMdh¬›lm&#PQY#LJJ1Q‚̀H,X€£R#d˜FML(¢²3Q±Z"‚ÄcF¥,…hÚŒV, HbHĂ!¤€‚“A¥+%¦É¢0lmˆ6a",bŒ¨̉DÄ”„Z‹A&"Đ%©†LjL&¢I…E(ƒX¨’ 1™±IDX¨ f 4£"2Xf6 )*2¢Û(“C)¥ˆ) É#e´Y(̉m#j6ˆ¢£& Ah¤Ơ M‰#fFÆ H) S%!†" A&5a ج–KDcQ¢b†’!D˜¨N],„Z`E”`&QˆF2`¤ÅKƒe0Ë H¢DÄÍE"Fd#J„2“L)¢E $ƒDÈ"–i2J1°LÉbB£lA±LKʈѣch¤‚¢Æ‹ADQC`44´Qh¢Æa¢5˜F±"fbJbhÔbB ,E£)ˆLZ"’1*CIf“$”FÄbÁ¨@Å"˜B&je4”Ñ@À˜˜̀Œ˜ËEHT€2fň„Æ L$R&0#B#˜iA4 1 „#a2K)$J)4H¥)&ŒPL™f$“L‘²$&Ȥ̉ E`ÄPl%M,)£Di,D‘“I´TTi4™$ÉQ%,Y–C̉IŒ̉°jK6‰H»®™„ŒP“fF Ô †bƒC)˜Ø1±`FA2bQ$ňÅR‰&I%%Kci”È™3cbІ3mBA Ñ)&‚hH˜¦l dŒ”Ë É”̉LÉ$ˆSwW‘´X̉D#hÄZHHSb ˜ ˆ“B’Ä™…I4XÈC#)2AeŒˆA†,$XSI@&I”4̉Í1‚CC£HMJ4Â0…¤ŒAÍILDÍ “D1"IF)±–PÂÈ1¢Å”’2LHd,RRDQ²a™Â‘4‰ Ù˜&E6BP̉1dKœ)4ÊØ’D Í(¤"À“Aˆ…6"H@ÆDÂKÅ% L L "D̀h•R“F̉Bd̉†–)QŒ„@eØÈÊ-,‘¢ÑX Ô`²2ÂXƠ3P™…JT©&cBcAF)˜˜QEIb’¢ŒY”Í3M,ËŒl˜ŒÀ£b“Sgvº4Ă$Ȉ‚,ÊQ*4&#IˆR‹Ib"4i*™!3—K˜fˆ(È̉F!&@†m$™b"‚’¢Èh ÀĦI™FM˜˜É˜†Rjbc#3H%Fˆƒ "I–Œd‰ÄÈÆ`@‘‘&’jl,‚Ed©•&61¤2$Đ!Q’4 P%% ̀Ñ$°‘&c!€Đa2Jbb(-Âi”dÆD²QŒ³hLÙ&Jblh(’,i…e(”R#& ˜ ‚)™„2™e b(‰D̀I$$H,Œ ‰30ÀIhÀ)\¹A4JF,Dh±‹2J, HÍŒF¤Ú4F…)¢ %‚S2 1b1bPP„H"HĘÈ@ƈ¢ŒD3a’,6K!i›"ILF)(‘(fdĂb²2(Q* ‚PHÂA ”˜Ñ’l0ÁR$$0’X¢˜ A„ HJ%„,!4¢ÂC4¥™›$2€Åc(L‰’A ˆÈ”Ă&II)e)‹)!¤1›  ŒS%&™40™6$Mƒ0ØMEˆ›–H ¥)#1YIDT’4¦P&„£0&H”(”I!™ˆ™HÈ”„†Á*CDC#Ă0ÁbXb,AEQJbBi’2R LAA)A!E3F$™"±”J° ÆHd°†¨F¤Ñ10Äl…#bIQ“XØ)3hÂD$XØÆÆÈ‘$Z1fi($!$)#Ah£̀Ñ#–¤Je(!ŒJD̉`‘™(’“D"$I£2 P” ¨#LB)6I¢˜’(!#D“(Œl@XÆÆÑA‰H¤bHÖ Á‚…ˆ, LC4‰‚C –"I„i‘(Åd¢1&ËD¤„¦›3F±$‚2L̉  R¢ÉI’¤ÄŒÓIÍ,Ù2X¤ƒ$JQD%,!1Mh¦DF Œ̉ĐhÅ‘‹„X´HF3)I##&3HEˆ`dÓMŒE2$fÄ&S$€‰‰‚›%ˆÆ˜”BF,Ø ) ,Lb °M‘c"h“IJ˜‘Œ…A„¥1\Ü3•$d™hÑ!b34PŒLÄJˆe%ŒŒ²dË(*" EPM# wnØ1™ £"ÈhÈ $DŒ“ L4%”(LQ4Œ̉2ˆ™¤Å“21#!Ăh‹ BdB’£ƒ fhi4 ¢ˆ¨,†6$˜$A`ˆÚC „Mˆ$’SD”ÄÂŒÈf,&Æ&ÄRX ”³ ¡F“3“E%¢̀Í0FÄa²QE HƒÉ$•(@C ¢¡",ÂfB5LL@i!4H˜¢„‚ˆ4Ë$”!RbD1h4j6ÆF2FÔ"4fI,¦ÈEˆ"¤³I%D@hˆÔŤÂb4IFÄFŒ$d&b„ˆd)! &JlB ‰¤î¹F¤™ MΑ,jGwd±DHĐP) Ù Q‘$–LfF„ĐHD‰¤É‰%H ¢bA”ÉFL€R…ˆH% Hb4IHÉ2‹™¤‘2IbL˜ÀÚBfI£d̀É3 (‘ˆÔÓ) %)6LŒ‘M&(˜̉Âl@„Ă(È"ˆc  ”£D’BC‰I")™ˆ©4 " & BˆL¨HË2)¢e"T…‰HF(”1AcP`ÄÂ$(‘ A²’d ²fhÈwqbˆÆ„D,RRD „f‘201 C`I"@„¤RB@îä ˆIHƒ‰!Hƒˆ‚̀‘3 i”)4¦HÙaÄ¢ÆML%  €)‰1Q ‚bBDXȘ‰#BM D!1–"ÆJ1S14D42ňØ2 2 !4„È!$Q´Q"cF‰,˜‹,Iˆh TY¥6 !’F¢„̀A†Œ¥À†„Ä‘¦Lb›(L(Y# $&¨"  b¤Ä%¢ÅPL̀M¢H‹!´hÅ)˜XÉ D³LTQAFA"4"h± fĂ$ ÆCfd¤TPE²„¢2dÁ¤¨ĐXØŒDl0™DFˆf H‰•&Å¢£FÑQ%#E¤²°bÉ¡¡d’SB%& %†¤™˜`ѢŬ”46%4S$&! Ó4Ä IQ D… –BI5› (Ɖ XŒX´hÔi0m#ŒQEE¢ˆJ(Œ•¥ ‚Å1ÆM0X a©2F ‹%ˆ$ˆ J !Œ˜(Æ$a4†K,PL²BJMˆd ɤd”%42›2Lj($ &„Æ FÑ´`±Y"06Œ&¢Æ¢Ú+™* 4a 6’ÅFÆ4Th±h(Ø´X‰QkjR)#FŒLÂZ64¦‹21 Sj ’l&2%J(̉EE&“%“h0FfÅI°b’£’±¤ÔY’X¨¢ˆØ¢* "ÅfÑD‘A’HÖÁ±0ÆJK4Y5‹&ˆ€#£6DÄlB•%JjC¢H̀؈¡61 ‰6 ¨£d-±¨ÈlEbJ2Tb¢h°c%¤‚„F‹ƒEcBFÓ 0¢&€£DR…%cb,C•“ƈÉÔX¤i2DXÈ*‚ÈTb,D(L˜ 4Q&ŒcY,”̀’X؆c ²P’"Dh, ,d!1ŒR¦fPPDÉ¢¤ A“ˆTA)Hm%¤¨¤­9](Á“6 ¤Ø‚, ‰–¤„ŒE‚™1"XØÆÄF ±mi„Æh ™¢“F4–)™e‚ˆ4RZMI¨bXÁM &!HQÑh5&#±$Pd¢˜–B"#&™„È̀b’BQ Œ•DX²T…ƒF62lE¤J1X¶H‹°̀hÂIA‹F6ÆÈRB £3b¢eD„&DÑ¢1da”FÅ©4†̀ ££ÁK$B ˆ‰$¤1$#$ÁbÄ ĐØÅF5DÙ3e 3I£&)"03(Ë%5  ÈÈ¢£ÈÉ£b“`fˆ”‰1fBH‰’’’Ñc HÑ‘3)J"LFB(4ÓA‚R±´™ˆlfM&H›0@F˜%fÄ ‰2PVÅ(¬EÁ$@ÅF(¤̉$¡†ÂT`Å1“dÔÂH‚$S¦F¤JRˆ¤b´II¦E Áˆ„d°”&‚2RTÔF‚¦PHY¦I’#Q°›&͉L,‰` ̉mJ̉R̀”$̀Í! %0"%„¦ C$’L@™6Hˆ± ˆH!†È b(%)Œ‰MĐ€ Á”ĐAMB’T)ƒ)"hÂÁ2 ¤J1‚Él’˜’c# bA1 ¡˜Éc$,RcPC6"b”¥ƒIf„Pc1‘$@2A23dŒ)&R4É`‘& Ư¹ ¤"bÈDJfĂF #FцM14¦̀“0M‚1¤¦)#A ¤‰HSA)ŒÄFhŒDl̉”fL’"$Â@ÆR@f¥"€`h£DFĐhĐP$!ˆRÁQ‘¨£XM’¢0cF(ª(fŒb¢H¢̀°™1ªdRb1Q£% ÉŒ›Ab¢"6@5 X’ÆI#1‹“0AR™,4T‚kS&M”¢B¢I ƒA±BQ&¢ ¤R’"Å5 XØ2˜”Ù‘J˜€ÄI‰"dL,% $Ø%)4‚9D$(Æ‚d42)ŒÈÙb ‰ &10ÔI‰,›,J‘‚†RS&PÑHØJ$™’”̀ HÙ4F‹hÛŒf$ɲi’c L²l)±±@)’£E‘‚‚@Œ¦j ÆD °Àfa$ Dc“h`ŒŒe"3B ÀQ40I4¤’ 3P¤É$ˆaF$‘˜̉B hÊS Œ’Œ†Æ4Ha (%FĐFƦA ¨3)“̉&l4ŒÈ¤™F"È‘’L"K ‰2b) L‚F6J$44˜„’2h†$‘”h’S$‚ Đ` ¢CD”!&AA ̀ ¡ „¤¨l%1B@“(bHˆhŒFÁ(00ƒ2H!„Ñ$I#@Úf6,¥ˆ˜ÄS3Q2c)‚£f ÉD¦4 `”LiˆH@FÄÅ&!2LF$€Q4Í0QØ¥,h$d¦˜c2e¡†H¦B¬ĐJÊlËE‘0 2@YM0lFd‰¥”ʤˆ$¢A6L`ÑD ̉Q̀¬XÅ!h´QeJ2M„¤%3 $K Dh¡"PŒ†H™0¢XL‘i1&£jLK‚Å3X¬XMDE@fVeˆ $ÊR4À…(„(²3Y"LDF Á¤¤ÚJ`PQ¢‹cŒ„Q`AXˆ4’D‘´F ÑQ„ ™BIH$)˜̀D±‹ ,BRÁ"3&‰"h‚1BØÆ%’LÓ0Y`˜“i´$‘$TdCAIIDHHQJ$#2d””ZiƒFÓ¢f¦a(Í&e Æ13E )”‘ 1¢i’Ê#S( %(Q²Yd¤ÉHP˜’,”lÙ„‘H̀ … ‰f $Q@”h&&Æ Ù&d‚˜Í Ê,Q˜F 6ÆÊI1ĂiDÓAJfI¢h H¢̀1’RÙf($Á% $¢ 0Ä̀¥&ˆÈa &…Fdi)24Ñ”̉d"Á(T”•Ùa4É‚2a4&R&eD‰dj%”,Â`̉‰&…I’‚‘2f2$̉D1›)Œ† h†TY &#AM1“(d”TfÄÉ”h‰4cJie"$M ’É”Đ%”̉D‘¶BCI10ŒÙ¡’ÉFÂlJ1$Q0Ä̀)„ȃ1‰Ù0‘I3L HaS2#A™D™LÄjfb@dÆC(2ÈÈ ¡&’Da6fØ̀Ö@KH¤E%‹»¨°I Àf$C)‰£&X¢ !”m&‹ ¤*H¢$1›P…’Y "ŒVH̉)Œ†6B1  AH“EƠĂ$m2`&`Db¤ÑÊb2c@&MI&"M3&IE) ™‚””afc4Q̀idÚM„d˜HC AJYP2E……4ŒÆ˜‘”–dI’B‘"fS#̀̀I$1¤$‚FI‘ À˜ÑP0(™£$hÉF–È È@“1PPŒh‚¤) $2™!eŒ¡ %"ȃFÅ(ĐͦF¦F !@ĂIDƒ01¦R’̉E1„cd !™"2jD¨ÄiˆPÔÈ!4P“FJ‰EEI‰"#IQ’3Ld4˜ˆ‚!L„ ™ BQ2c1‰!„̀̉16¤"$Q,S$DMBBC"”&%,‘¤d̀Ñ™Áh$°‰"d % I0T’QJY1c ¡#L Ñ4ÈÊdÓ) 4†@"Å3L)"ÆHLb‹$dJ,”˜(ÁI4ȘƒL„d– ’Âe%# Ø1$ Ø̉%̀„D”ĂEi$Ø-ÅE)C 0BFH0FÁÆe”!3I˜Ù²Œ&D(#RI²HDH„C#bfPa(´i(CI ei1PAb%$ÆBHdb6M¤"Đ̀¢‚H¤ÊF¢ˆÊK AˆP›L)1E¦BH‘%1¬˜Ø°E%”E¢ŒTV‚£ÆÅŒiB¤‰2’c) ‰%Q)“bf’$†)"D̀K 1“RFŒ› ‚M% cRb J$"’#&1‰Y,E3¤1Ê Â2i±&,Éd¨Å±¶K É“0ÄjI* £`ØM4“d3$É–CdÀ”)(5† 1‰°$PD£*4HJT$d£&F&©i‘±h‚ › #P†Œ” ŒF!›%&ˆ!!4Y™2e&ÈbÁ¤PLÀƈ¢“b`H–Œi1²&ƒd"ɤLH‚`I#2(ÆÆ H0&$S4“)&!"˜É’3B1@¡I’ €hC ĐÂS01,h4Lر‹Ø¨Ă I†I„É6ŒÉJ‚”DÅ6SI¦4’ 3Bh(‘4L¢ `É ‘cBbH% Êf4¦J2“AK0RÓ)ˆD¦”!’h`L&f‘’(i0˜dH£!LbÁh‰ FBFl„¢h‰$)b™)”Œ& ÄAR¤4f‘ Ä" ‚$²4È)ÑA„BfÉEF T"D ”™ 4i2SL™$#a*f¢ #HÉ4"m&L!)30 Ê1"d`1¤”c b dDˆÄe&%1L‘78f $)2FD€‰P¦‚,‘’àÓ€¥QLQ)$”¢ÄPdˆ”I„I’0ƒ&Œ)‘˜ 2ÊAFQ‘F˜¦QDD),”„„Æ(̉$b0¡Œ2‰@„3@XdLPB!!  "Q”dØ"A!‚DJP…¥% ‰R¤“R4Û$’H±I ÆH#!£ ‰4b(fE”Ø$&%Â`Œ)a¢eM‚‚‚C$¢Œ#4Ä`E$ˆLD2H‰"™"&fÙ (–()”V "I”‚"" LB £H£‚),•Œ€L› ’I±’,‚&É$¢1´@L‚1K ‘a‹&Rƒ“9ÊPRFJ 6‚T¥ BŒd¤LɃ6Ê#A0‚ÆA4°1‹(°$ ,ƒ 0h¤Äf 2’aˆÔ–I2 9Ø3 F™‚Y"eŒÉÑ“I™RRZE4ÀÄQ„H !¢0fLÉi@‘‰&„JH³!$Ô›¤˜̉“c I3"ɦEŒ €‰˜˜Df)¡‰ Ù1£"LÑ¢#H4%$„˜ˆ ‚lH1P@ƒa (2m&&Áˆ†D¢ ”̉QD`L,($RÂ$ŒÓ I„feDÉ „$¤ÄLKS6ˆÄj1­1“$Z$ÀhÙ“ Äd‘„PŒÀ’be&ˆ£$)´ &‰1ÉŒ2H I&‰$’L#&Œ¡ÎIŒ†‰E%)¡¢0›$„`£2ÑQ%FfÔb¦62$ÈIL”‹#PBi, jP 4†‚,d-"‰Cbˆ"’¡¥†Hi ‚£i6A–1C$l)’ˆÅE–,j% ¢ S1(eDj6’̉Pfj1„jHÆ HÅQI£j Á¤aL@™L’1’„̉LÂR2…,@RQ4Ë F%‰#RE¢23lÊY,È•0¡FJ’2H’É4@I66)†B™F M‘LJ)ID£‘¤h”“hÉH HI¢C™„”#FaL¤‘D™(H–HP¥!"b‚B&̀&d‰$I"A†&‘H$‚C(È£P”bE1¦%” ,2ED0’M(³FYI‚(#‰!˜ŒbPfDh"fĂ#$ȤÀ¤(„4BBH…B(˜Ù4ĂS4’)%‰‘€‚%ˆÙ"M&ƒ@le‰Ỳ’¢R„Á‘ È€… Sb*10̉0¢ƒi¢DQK!F“%•BlX54S$Ù"FAĆÄKd JQ±4"¦a‹wu"(¨CfAdi5$ P@“$f4˜BIBI´e¢ )&$Œ±& "ˆS#‘)6”F6Q"Œ1LF$(Œm ¢” ̀Ř›M¢Äc#ɦËRc!J2i€&È$,‰S!I$™##$BÁ(H̀̀HDh£%L“D“aLÉ ±@ %0dM&)0…d6$ªbdH42™2"D¤‰0lFlƉ0’…"2I`!™ e“1A€&‘ˆÂ)°H̀̀b„¤ÆŒh¢-3 H†ÂRlT3”lDEKAŒQ a#1‹1`ÑF(ØÆH(É´6¤ “‚Ú"KD•%’DĐ3i‘B# ĂX 3a0Đ…™ j1)#j H¦A1 QŒ¦”ŒÈÂĂMFÈcAJ!³I™¢˜£& QMC$ ¤¤4Rîă) RY%)¢ƒ#bIˆ‘2$™(1 $’ R&a0Æ6L… FˆLI³ A" ‚€³ÆÁ£s¡˜DĂeS’L̉6)E’†”³EM$ˆŒd‘ @c`64"e¢MˆÚH̉ÈLĂ%&ŒÈÑa $¢̉X¤Ù"™&1,`Ib)"Ædc QLÄ”̉1a††LeƒLdA¤!†“cÆ PH 0HXŒ£ D”L²T( (ÀÆÀÆ€Ä@lE£b…#X-¤ ‚J@AŒ2›!ƒÔ%*2I¬I"Œl‘©-’Ôk1`²‘”LÑ ‘1,d’0†beˆ„D’IK0F‚€*3Hd˜%#H0Ä@I’‰ Q$¥D,&dDI!†dT#  I¤̉$H26L1A±!(1¤H(4¢ˆÄ$̀5­˜’0 iJŒh(ј˜²Tb4’PhƒA !Ch±£LcQCB4Q´ÊFd̉[I´LY$  ­ ’ÄXÑ5I"™"$D̀Fe4F“AA F™¢‚ ŒFA0$’HL¥ 1’KdL¢(Á£̀)&A!"T€BR ’’Æ„ÄR%Œ&À˜)%,bB‰3(Đ…0”A•D‰ˆ”$’ X‹1 Á ‚Å&¢Œ̀ŒDb£c`"¢Å4lF$£„R””¦lŒP„’L¤!6 2É%°ˆ†Q’ˆ4…R`Å$´ƒh°F(ˆ2d´hÉŒPF,6fŒX¦hR,›dÆC¨°mƒ% &PÄRE1 HKkÄ̉PaCQh£HY1%(È…±)R* ‹…Ĩ,†±I¶@ŒˆHP!¢" ™I„& %#- …“ˆ ¨" I²ldÆJ(„‰ Œi$’¤Ù)(±’(‚“l[IQ„Ó1£TEF´ÄÔ‰¢6ÄiÁ´dƠ¨Í!5„ƒQ‹PF(Ú‹fm)Q Úf)1£h& “ÁT‘cMb#Th¨Đl‰,QbÁ‰ „„Ôj5ŒÍF1j*1¢‹ E±EŒ̉m¢̉Tm)4cQclTmˆ±d£EÉ%”(ÆÉHÖR’ÆCMˆ̀¡,”ˆˆ13QD¦ÁhÆŒX†„!1 M3LL ‚L¤Kʘ̉CHH™4662&I¦€ (†„̉R@³ĂLÈ…&41!„„,h¥4̉ ‚„Í%ˆ1ŒCA!ƒE2Ñ2I ¨ÀˆÉ™*4Ù)(HÈRTF‚"˜(•&H˜ ĐŘ30Œ´L‘†¼̃7…à²DPb´Q&£ZJ±‹D†,h’R!5E±$FF4hɲ†Bƒ,2EdIŒB`ÑQC )”DR•&¤A€`LDQ±”ĐA‚L„*(ÍŒ”ÈÆÅ²)CEL£L % ‰DˆTf˜PJ ‘ È‘¢ÍŒc1ŒHf I†€’,4AŒiK%%IS5E(¦‰›E&‹† É¥HĐÔĂ$“,Qd´0)%£¨²’ÍÁ¦LŒRk$¤‹j€±"Å£cƒDE%„6ÄX±ˆ±¬Y-¢4c´lZ-&"̀Ú1k,TXeĐ•“PÍDcQ£S) *ˆ±E²A‹$lS6I¤¨ HFÆ£i•Ú)™ A¢¡"B¢ hÖ% £bƒ&¡6‚ RE&0ÂÀ‘cPh(¢Æ E4-#d*530Ú EF™!lI¢Ø£h“E664bĐ‘FLA¤ÉQ`Ù(ˆÔb¤ ¢C¨̉E ’°‰IƒA™€É%´AA Q¨Ó )4̉Ú5IX3!l©!)cd4‘,mBˆÆK%(ĂIC! `ÑA(Â3A$h„jM-ÔVf¤ĐFÄRC#(X̉f4VM –1FÊPV(+ 6@±Td‹kEFÄIX),`²%‰1 Ö‹PcJY*B£¤ bÄDT„Å1„fE!˜4jÉ1ƒ$É"ɦhˆ A’[&¤Ö1 E%ˆÄQ¦Y”BhÈ“0@6I’0ÑlA$FŒZ b1“F±¤ ÂjR¢4”’ ! ˜’K™l”H–KÍ’&™$(ÁQ¢2a„D@Æ#c¦“h̉EQbÉ&$Ơ“d… ’ÆÉSdÀÓD`L’h –ˆ E6ˆÊhLQc ¢P´È(‚IÑ’˜Âf‘PbƒˆD„j4FÆ#R”Ê6,"B&Å €f„¡4” ˜‘¤„Fˆa¦À¤™3™C JM¥Æ33(A“f‰†ddÂ3&!‹ÅAˆÉ&±£ØÉ&Æ F1°Ä`±¤´QHĐA´m!¨,mDfÑDÁ¦f̀DÆi ËÑ¢ˆÈ›IL1c$EE¦)4b¢£FØÅFCf„Å”4„$`‘ ̉Ê$Z$Ă)M$D@c0d` Ó)FClI"–JeHH)‘²*$$,„¤@Äi’!Ñb“FL X4Rbc cDf"aII$2S&K ‹FÈR›L‘(˜›)£(É1`&,›‘F IQ $™Y4€b Ä©–PÈ(̀dˆliLˆĐÔDÆ –KfDÄJecÁĂ"FH‰Œ`c%L`É %H™F†$Y“LÑf‘$#D¤˜ FȤÄ I1J e„h!ŒdÙ**5£3R£!Œ–$1fdŒh¬†¢*Lm%ˆØHÅ QF’Á¬h¤‰ˆ…†De²lAa4j6Id(‚DÓ¥  É‘‰4TjfÄb“b i (¤R1„4ˆDEM,RX%†€"$c̀³24Ȁ͋TÊi Áƒ’LÍa”F£ ÁHbŒ–b2DĐ¢¦,‘21 ²) È$ˆBSLXeÄ„3$Ñ„#c“`Ñ#B"F*B…$aD›0’̀ƒ4™2‰‚̀hD¢3d(À̀!̀#$$3BH"e‘ŒÍ¤d&h  ÉH"“#5–JB†˜™)@II2a¦"HI!# ¥ y"ˆˆC1‘4)$£BJHlQ¤̉`Ñ´–(¢‚ÈɘfDS6 iCD dFlD‹)B B2e,È’…L̉1)Q À „  E"…$ĂLRcEbHi‚’M™‚)˜0ŬjI"”$M0‘I’ce2j1 2¦b¨A1L 3F*I–)`&Đ™($ÆAˆ‚aƯnĐd4„¦2Lb22bfSF(Â4M$Æ ̉b4c`() "#&"BL ‰”¤S,¡2‚ …LTlR‰%“ ” Ê1 ±€dcÆ ÍJL[&djŒ4)!‚d K$lfB&ɵRQ¨ŒIFX$̉!EQj @FLQ £E †,b‰ Ù4PŒ4̉F’Ä3‘˜ĐE‘i)h¤±Bi)´hƒBR[ c4‘IƒbblŒÑ”D¨ ¡,`6’ÂjdFi¢,%HÊÆS 0† ̉PcB %†Œ¥„E†Œa-&1€‹0€Ñ&5A&±IŒ1 ÂˆM$B%™`iC$,2D̀ˆ’2„TB’”Æ”c Á…! hA3F)F(34 E¤Q kY“P"É¢),e$„Êm2d$ ,IIŒI “%1"(L&P̉P‰„M02$a˜A,Ăbc$Z" QbbR˜ƒQHF$B&d f`A4”¢‘S&DR@0Œ”JPhÄ ³"4„™‘& ‚Œ„ƒ̀0I”d´&¬b ƒA’‘J)̉% %&iŒ˜P!% ‚‰³1‰¦”™,Â`J(h@¥Àf“™I4C˜Jb(È9®c$°†eÆP 2i²” ’2 l‰01D”Ä)H2Y$A™JBŒD†“˜ 2!Q0Ñ L‰bÊ ™RCÉM3C ŒÅTH’)†(`› ˜ˆÈ Ä&a°‚a”¦RIE‰ 3RJ&$Åd fa €¢ˆŒ#1DF"&*H‘†#"‰0bY ¦YŒ̉I¡(¢(ŒbJDd%’¢EDEX ‚63$È¥,d¦ŒTHÆÑ£!¢’6 I²d Ä¤†’’2I„2e Í"Jb¢LÆe0ˆ”‰D`%¢&cM˜H”É S`Å$©…’@¦)2LFŒ–,PH’I$† THP°AE$R‚(L`Hd¨2JI%ÊDPKHŒ6h¤ (dDÆ! „Æ eˆ¢PD‚”LÉ£‚2f&I"‚L™•“(£D,‰0f‰I"‰H„J ™„ц$4d Ø"HAˆÄD’)%„‘$²XfP’RbF, E)Œ¦LY2I1"A¥1b™¢Đb2Æ`ÑAhĐT3D˜²ÆÉ Öf LĂ2™‘ˆ“,…Ic)M (,4IF˜É(R$ ĂY6$H0`ÊJ팂$I–d`dhF&,( LIe™bCA£dŒdĂe (,‘i„–H4b"$R‰³aM¤2ji°’4QTBR1EFb LƈÆDPh&LÈF“@•4˜¢̀¢ 0D‚!Ab‘ ̀’4̀†Å44bRHˆF4J`ÈĐ FÄ[Jhʼn´É`4”ŒDQL¦!D)4DÀŒÅ1a1„²h„ FˆÙA"#abÑE’™’bZ&h,Fƈ¢ ̉QH(… &‚JŒ’,IJ%dI¤$Fˆ"ŒA0Ă4b’‰*Œc°[˜ˆ² Œ14ȤKF$CDb̉‘…c Ñ2´‰1FIˆ̀˜ ˜BHÂQ hÆ£BI$F &H”P̉ƒ&fA`2LÆR„F36Áˆ¨ÚI,‚)¤¥©"4h¢LŒÙ1ˆHL2"Q¬‘¦F‹!RJmˆÑ%’61d̉cFŒ`(¡1†`1DÈ(ˆ&–6&&ÂBLRHX ¡‰”±Ú̀ˆd„lF2bD“I…$Æ$1C i#)1"4›%ƒ(B,,P&&‘¢ ¬e‚)(R$Đ•HM À&# £2*X›ÊD‰&3A™lXIJB,̉`$±BIFL‰e@DCHƒ¦$$È$²ljMI ”‰,‘`ÄPhd¡LË4¨ĐŒÑ24A¡@E$È”˜"h¤$`l© ,LÈĂCB”Ädĉ1²Q˜Âfdfe"D‚’SC3RH˜L$¤i"Ñ4Ä(†D‘€$Ée-%faEL$cL2¦ˆˆ¤Á…4̉0b-4•±)cDÊ!`˜Æ )H `hiLd!PDX$Đ"M”L˜™)@˜ÄI“6#4#Å‘$dS ‰ Â!)%& Z2!™QM)E(„A&¡ 6M ƒ!F&d2a¡„’IÈ…$&@“&̀ ‚d¡1ˆfŒÑ#HTDшb’@LQ¦dI!!F †1IF!H 4ˆdb$‰"AJ1I&$c$“dY% fE1!d bI”4@b(bh@ØLZK¤J̀ÅH‘²d”0™&$¡%˜ÅQRE$…‰f(©1‹d,D#I¥d“ ÀbJˆ0Q ›„HHlfFˆÀ’ œêP Ke4hh¦4ÂQ’’ˆ ¨˜˜ “0"i„IK" `Àl B%‘€™’b1 Đ‘Ư¸ˆ %)DiEM$јI0ÈR ’MŒ²fLI3JB0É„dÀ" #1³1! ¥(&Ph1#RP¥!‹("‰ÁCFi‘I&b‚0SFB’d&)†ˆFCI¢̉"R”K Ë D„C0B1#2eM4d‚`1#b1)’6 ÈRj ÄUh’ €&DÈL’ÙÍ Rƒ1‘S$ÄY(ˆÍ#"Q-$¤b˜… b@c23C a4ĐdÉĂ FHlÍ RÂM‰ !I&@ !baE"ˤ ¡Li+º́’E!’L"#d#!IHTQ!!‚$I T̉HXÁ¡Œc4¢1)e,M‚‰™a¢lB4ĐÅM))Œ˜‚0„(Œ PÑ’I "‚‹B‚hL‚Fe‚ˆ™‘ ÄX’4ÍDPHÉ4S&‘I 6QIƒ bÅPH”  c`£cBl‘%Ä!‰4Q¤É…‰@’el˜ÆÈ$&ŒÊ0lF1BG7`–#CA“„Æ•#HX̉Rb“&ŒÉ L¤hµ*(*Árélƒb™ˆM̉QI!0¤I&F±K É•˜ƒ%HÂ%, 4Ô c 6`„†`̉Hjf‘˜Æ!™`B¦d"™’‰2`J &Á$…™ ĂeBˆ)D0¤e3(†,’À… l4`„Đ(ÉĂ%&bhŒ`KJÄh”h°È¦HŒ,("HÀI™„$CbH ˆ¦HPHh±„$¬› ”ÄL¢)™‘0„ &A&¡HIBBFLP…˜“FA C’$2€‹M"B‘†¦L’&À`3df£&È–),ÀÑ)°(X¢),›4̉‘)2’iŒÍ( ERI›D”… F,…€ÄRXÊS$ˆ(©66™#)XÆRÑ3H&Á²f&Œ° 2$Ó $`LÄŒ!+1‰‘fm¤²(PÈB AE’ÂÄAˆÈbR@Œ˜LD†4™&H"`!‘ie0b1$‘˜Rb4B”ˆÈ0J ¦Y‰™$‚£"l˜Ù4I¤ dFi ‘¨ˆ”›2b4Æ$ReA#S ™¤ĐIa&D“•`ˆ˜Ă cF BÄÑ)– H’* 2ˆ“I„’À(i ŒŒ‹3E™2f#&PˆD$Å™"4IS1“Í6#b„Ó4hÑL&I ÆI³ED EÊ6ÅI&d) 1¤LT ÄDM&5&$2kÄ’d‘ˆB  2j’$E&ÉAf¤-$kDD`´j6ÁQFBĂ$‰4£ÊQ ̀”),!D %0$"(™’ņH³ Ä1C22D ’“FˆĐ†3P̉1ˆR‚…Xd`Dd±DÆ4RC$%‰¢„¦E›3B, “ I™¤ ÙY)43 ‚@Á BÆÄb6 J"£#Bcd±IDZŒF ˜4cL¨¨!“‘€Q‘)6L" ÑÄ€€˜3D"‚Dd™5d‰„# % ˜¦LÄÑ¢JM$BC› BHÊB6”˜JlÊQ CF ¤©˜†Á2D%E’#„¦‘²!£D%˜F̀Ä`0m)‘ ¨̉c$Í Ñ„Äd)dQ RcPdI„ a1 I¡C@¢2R!"$ÑL±£E‰-˜JJ-3I©‘ŒDh(5F,B°@XÔXH²Zd“a¡i “2)‰ÄQ˜MŒd¦E¢±RlØiBlhÁh1‘Œ¤¤™˜˜‹Êb‚…#3DQ¤Y†ˆQBȉcAŒD–)€)£¦4¤̀Ă&a0&1#CXÔ&P &"a±‰¥&‘)K%‚£FJ*˜À™1€SFE6B‚Œ%¨  c$ Ú‹3F2QDd-ˆÚ ,˜̉FB,lk3DhƠ!̀2£4$Ê2$,ˆ¥L1DĂHBQFBÍ j ÈH̉Q¬b,Q¤°̀S(Ñ’aˆ)HÀ”$ZiÑQIAQDŒ2 E%Œ!hÁDF„̉˜À‰¬ÊJƒPL mÍu m“@#F± ZI4cBe†$ÈÄ›¤ˆ ,l™˜i¶H¥$Ä)A`ˆ-†D1,&Å“I$lLˆJ‚Ä…ƒI!HÚ*4j5)-ŒQ`ɵmƒhÄb2@¤†Á–ÀF¤&h1FbF"!‘1‰”UĐdÂÁPÄ 1Œ*™F‰()#V-LF 3$DÍF”ƒ&¤Ñ¦(Z2QFHØŒÊHÙ-̉3Q¬%´lI±“Bh@I£!¢ÂmfÑ£$˜´X( ĐmCÆLbˆÙ,Q‹`DÔE‰Y"#%´Tj1„Ú4”j(Ú4Qh´XF¢Á£c3I¤Ñ’‹FÊj7wZ‰(Öh¨F‚4D„DhÖ–¢’LF¬ F¢£´lE“d,QbÉ¢6d²Z-¶+a#H(É´EI’‚,̀ d#b“†˜Â&‚C2‹`¤“ ‚JS4LiA(Idm&BÂ&3 †@ja Œ É”%Œ‰44bŒffD1ƒ̉Q&1(d £ICHh$ѱ("Í(ĐÆ˜D1˜1" ¢RfXĐÀII†DI”Ù$Ø̉#¢@±IDLiB1ŒHI,¢Q 2cÅ 14$ÂM™LÈM±l”i"H±AAM#D̀hÆÔbfMFÙ( (ƒF6*,Tȃ@QDج&’ƒˆ±©†°i„̀Rb¢i±°ÉlÙ$K1ÉEb’ ˜Æ¢$ØA f1’I Æ6(†)#0(Œ“Ic&#Qh*0Đi–@ÔQ¤Ù4E‰M1“ Œf’¦D &‰’0Ó1¤4"Œ"£L„„Ă a…A32ØA˜$H@¦ÀD(!5ƒQ¦QFHÔ˜34d(¢Cc&P@b@)) ‚2¦hÉ3Lˆ„4dd‘ ¢¡`ÊRÀÔ&a@ÉA’0¥‘ Œ†),‘1C’!!„³£@3$’ª‚ˆ̉!D̀`4—uÉ!AD’ ATPJ3 ÉbA™6LHXÆ6‰”‰@@Œ$ÙD£3a,X¢Œ¡H¡¤’QLÀLF1H´)©¥‚ŒXÈÈ̀…É…J’E&fAŒÄfhˆF„H@Yh̀Ă)"fFc0R„d 1$$‚l É‹“˜6ˆ2fXÈF‰³Ic’2Ê6(HDJ“&¦c"@шӢÊC˜’4d)¤RHI™S"1’I¦ 3™ %4ĐÓJe&„™!&e$ÁbÆ5A0´Ñ£b™(&ŒŒ`f±Bh("̉”l$XÉLSJ4a´”I‹dÑĂ,ˆˆ™¨ 2)†̉A¤"6,L$ÅF¢1f3cE3i,hÙ$Àb¦"4""‚Qh’Qf“TQ"H™-#FRIÑ€̉#d‰4$B‘™ƒ()’IL„ #L£4Œ(PÉ$Ê‘1Ë$˜¤ÂbÀI™#&ÍÁˆ¢1EfHÑ%"`¢F“""h&H)Æ$I“I@É$!$M23! Ä6(ac(Â%2,SF $ Q II$ ,“4 Œ©JKb†B"‚”"0#)"¤A¢&IA°̀2Ƀ1*Cb Ă ¦M3#c1I26"H1 4hD2‚I ,ˆØE$’f dĐÄÊAÂP‹%1 2)‚L†"EˆQHÊ Bi0 `‚‘“BI! )2’`)›"V$,5”ÂÉ‘‘’ L&ȉŒhF%’(¢*D’ŒIDÓ–$Ô‘£2‹&M‹EH)IDBD‘2)™@‘&‰̉&i›HĐ‘¡J‚ÀL…"™H‰40™¤ f& d4’YE"‰¡(1U&ÀX˜̀C1 ¤™L…,…ŒXĐTd†YX3 Ljc5!JTbJM3E&™ Æ, © &¥2˜dLD–#"‘A”™ (˜PdÑ¢$²E2`±cDQF¤ ’EDA%&³Q¢‹ £@Pb(-&Œ›QE¡†Hb¤,™1€ƒ ˆÆ Ë#E“0$̉+¦34E¢,Y1F 6$¬Ă„˜Đ%‰4̉‹1"( M1ˆXLcM¢É‚Å1˜Œ40&ŒÍb‘”Ä2$¢I©bfLQ€PbA$ˆ)I£$b$ŒƒRXØCJiÆÉ‰) C1E‰„)¦I °¦£1Q* hÑ£1d3%&la2dL&€ €ÉI"ĐRC#B”ÉDLRIA$C2b‘(ƒ‰£FJR&%“P¦2i)1 @˜LY€ÊccCJDi),™I‘¨‘( ™ !#QH‚MlF!C%F#%Z R%¡C1&%„‰"1ˆYA€Œ°D(±I (™¥Œ™“I2Ê‹D’d‘’!”X$££B4¡²Bƒ 2a"FD‘¤É14™cIF`£Æ!¡1H2`Ä̉M¢‰I™6 Œ$d̀ÔbÈÍBh)LÂDDc ""e$ Í"„ Ä,L$Æl$bLÈÑD„D¥2Ù –EXĐ%Đe @Hd±I£T¢)MJ$È2BHƒe3 c˜$•4Bl¢dcF²hÛ”D$À ‚ĐQ‚±¡Q‰"1&’M&̉ Ú”̀ƒdÅĉ€ÆDBˆƒS61ˆ 1” ©6̀LͶJLhÚ4ˆ´‘±cˆ13"$¤̀B˜F"†QCD‰I M HFˆÄ L‰„ %) 41!L HQ¦c"ÆLh(JDÄ¡((%$Ë4`̉C 6,‘1aS€’R&A&„‰1¦DR6FÄ™ (2Œc‘“Ì@ÈF¦i&ˆSA$Ù X± ¢ ’LF ”J@Y’ „˜ª6K!(#EAÓ 2Èd„L³EỈe™FR R€©`3ˆÈDÊSFƆ°À**1°¦À"E% ©4„T“DÄ”ÄEDhÔ˜2`¤"f  ‘‰HÓ ›A‰˜’‘#4˜Ø©(Ä‘¢h¦Èd5ŒŒQ’$Z3hØÚKED`*e#ÀÄÄ™¨!1&4›£h©#DÊ@¤¤ÆĐ”ÍË™$ÆMGw4%+»´Z a4QÈ ‰4JQ1@ÂY¡‘$ˆ"&ÈÀXÉ&e˜ ¤É©0‘’ID"A4¨£ ‚ÉJS!e’–“l, %$BYL‘d#@ËXÅ`QE $˜ÉÆ",RS2hCE›$D2Ä›"„d d,ÑIMFˆÆÈƒDMl"I L4À3(£FÆJ"e"̀ÑÈ¢ À’1²HP˜‰,F¢’f0M&&ŒL44J3ºå£% 4hÅ“lT‰ˆ”¤1&‚&Œ̀ŒÍ¦$Ô$̀H–(É“²$ƒB„̀̀©-0Ó(¬ÄV1 d¡#$Ic4I´D%ŒZ4lhÑEH†M &Ť+¤Æ QIHF¡›‚Ă5‹$f$dÑlQ"Ë2X°XÅ"D¨Ø3"5 FŒÓÄ“ jH„$K$Ă ˆÁ¢2b’ÅFŒ(„²Hh€Ö#&2dL˜Ó0…¨b’‚‚ 4I´cI“PhÔX$Ó1cQ¬˜¢6@±dFR6h±¦hˆ¢¡#”L‘…¤ĐdÅŒ†2bŒ–ˆ’#Ñb‚¢ÁbÆ̉j E¨1Y1ƒA$BQ£L ,(RQ´ È€’ÆM!hÊlX¬RhD£lP†ƒL ‘(R€Å!d°j#DXØ´„Rk&¨Ô£b°$RZ F c&#bLTRQˆ‹TX61´h±bÀFÆÆ1cÆÑX*dFÔR E4XØÔ\ÜÛJ(¬Pj1¨ÔTDm CE£EŒ›X¤¨6Đcd¬lQ¬F„ÄRm`¶ŒVB M¢¨Æ5%ŒX X”1Q°d̀ˆÄ(,bÆ)4„h,&Ø™@†Œ QCB‘0R` ”‘2d̀ÂCiF”Đ1$‘H(¦†YE‚2@ŒfP˜’ˆFb!’Æ ‹K24¦‹!©6’,”QIdŒ"HF̉’H³)3b Øh(#% CR™"‚  H" $ŒÙ&È @Æ"1(m%$Ă`X›4°ˆI4´ B`d†)³¢P™K$E†e Q(Q‘¶H#”bYL(‰‰6QIˆ,"I$™ ؈’f"&À¤F’(!hÈÈ̀¤Å$É@Ă"4lF 1$R2¤$DÊf(’M¥4˜“)“LÄ!‚T‘€2a#LѤ±’4!1i&IHÈ„˜Ù3$LÈÆ,$†ŒTäMˆSB#ÄÆ Œb™˜€!L²‹"†h±"4 Œ̀Ê`&&%2fd‰&™†™ˆ4̀D”’1™–HÅ–2b™$@bL„! ‘‹J–3RHJ0Q)¤„b(fldÆ Rˆ̉HP’ƒ#d!Fe$†$Đ™%$f±$h“B‘!™!Œ̉%BX)™)3L̀¦Eˆ¡FLD†3M(ƒHÀ¡É˜– ¢Ù#A £,” &¤‹4јÄÈH±dÆ¢$3LÈ¡1„…2€a’ ˆ£0Í#H%Ä SS,f¨Æ( Æ£%H؈Ñ–2L 4i1¢@²i#R@Ä,R 2#!’a"K4$bÅ4‘#FшHÅA±KE2‰Û‚€̉F¢‹IhÆIH‘#A±„É4D‘B†’„ÂMLF²I‘AEDDFP$¥ ‚Q²HÈ#Bh‘B‘’‘„¥ Q°Â™˜¢Fd2D,04’@F H 2b„¢H,‰L©")ŒÑ’Pa"L„"fİ6)JÔ‚m(’Å „¡#c!#(R’&̉`BBB€‚(1Œi°b¤†‚H¤¦h‹D&…I#IIe,Ê*@ D%4b¢i¢Âc4ÄF `†"Äm(I$¦¦R”¥(±FI * ™3,’PXJĐY˜6H¥•i "`" ‰A*KA!£A´‘DÑE1) *H¶ s1³4‰´S(¤Æ4Ề™̀Rb(£Dj4ĐQ‚±´d®],kBVLci KE ̉"RF0ÄP’‘¨0C ”20BHi‰DdĂ&d„’QÆ$¥4d‰MIIE„D„dÍ0Êb£a³ĂJXÑ%IC"L†”Ѩ’˜¦e’ˆ $c(¢%HÂDI&a°PhF$¢ƒh£É!D&h¤”Å ²SŒ&#¨̉’F( ¢$¢‘ 4† ’"̉T”’jF$F’CdÉÈFÁ¢LdQ’lÀÑ‹!XÔlhÁª-ˆ°c‹$TL`D ld¢I(1„̀Ë Z 2F@’#&ɤ“h€Ù‚IRY¤Y  m2SF™QaLEÊ@C,—w3HÄ!Bˆ‘"ˆ&cƒFXM%¤%3 HŒ¤D‘†’Dh‘ ‹KF´QVåÊ’ŒRÄ„,ˆFÄ5,He)”Ă(ÉchJHˆ B A£5c)±M°Œ²SÊ4„*@ÑQŒF6I1¤1FÊh¨+Ë ‘X“E’  É0lF Àˆ1Q´I¢ ̀h€11ƒ°ÑÉ‹%’Ù ©1–ÁME4† EE¢ ÀDQ–#X„Ñb+¤ 1ű£LÔ‰2[E±±£&¡"61“Æ ŒÍY6"ƒdÑ’0–(J(ÖÅ‹`Ñ%¢32F¬X4!jK!ˆˆØˆ`ňÔ[I¤¨ÅEF62lTV1´mchÔTXÈf2ˆ¨Æ°RÉb²b¢‚¨Ú4`4”Æ «AD-ˆÆ1£QQ¬M£F‰M1(ƒc5R*$̉XÁ™3b€ĐSII”†Ø1”ÙEÈ‘Œ%”’e†E’(Á ŒH‚‰2ѲÄA%34JJZ!ƒ²Tƒ6PÄ$BII£0‘–e3£H˜DÈLJD`”` Œ$Hh˜‘ !C3 ¡‘D‘F†Q͉ cD Œb(6#c ̀£IXˆØ ̉Ydb¤±D`Œ 0‰!fI(Â21)1aLÉJL“%’0J £ËASf˜’Edƒ¢X¤”#Q"‰™$L62“`M"f1F†h€‰E‰É $¤XɈ̀ÂF(Id̀Ó(³$"‘…dVeHZ4lI£b"JB @`£DD $ˆ“QŒh ÄiJeb#d11cc‰†(¢4bM Ó1‚ÆÅFÄZ"Ñ l@ÑHj+B¢ fÉf A$ *Al¢‰)DÀDш…!‰&id’˜I2( ¤¡ Œ¬̀(XA!)!Œe4‘‰I$j6-4¨¢“!’(Ø´ÊH(Ê ›)”R&´Í$ÚIÅ+ ˆĂ@£0A‰6’”ĐQ±€™$I$FÆÁ¡4FBÅ€¤‰4h’MF" ‘0d¦©DD%™£EƒTEFB Ɉ’Œl–LÍ£dÔR @m‹bcˆ“b“dTĐi€D”Ԅ%™ˆ‚FD‚ Œ˜6HÑ‹S4L4TIb5(É‚VHaJ@É‚"Œ•)£ &¢̀AFLH2)¤d! -ƒaŒ ÑFK bÁhR-’Å„"É€1!cL¢‹cjCTTFÀQŒ&M†̉hLDS IÀŒj2XØÉ¨6L¦),À0Ă& ѨÅ!“dÂ`±¢ÑR†%,flJ0V#&1XÓ6+%¢±¶4Ë1 FIF (e1"2ci‘’eLˆˆÑ„™D"Y1F£DbÉI°‘hÑ‚‹bˆ"“2Æ+hÀ€FH!I ̉l̀AFcd,” b(¨ÁA±DX¢Đ&¡ -@lDPE3F‰5ˆ¥5Q ±°‘¨"ƨ±¨©6´›L±3LX™2Elh¤²m̉X˜E±j0RQ`6CXFi  É% É±lQ±DI‹5Đ’’2, ̀Ñ´hÔQ`™i5‹Q1¬cQ$b£FJ-Ѩ­ˆØÔY0V1’Ø5Fˆ¨ J€´lX’‚1¤©ÁhÑ&‚ˆ±c$PhÉAL”RFA ˆÆM%‚$R”DĐb˜`€˜ aˆSf‘‹!(T–04"%$& ¨ŒbHÉŒfh“2Y–±CwtH"LŒ" ,b&),”Bb6 Úf£™)4hÉŒB"Ka ³,”ÆFPcH¤LJÚ6D 2ˆØH¤‰¢&  ŒJhƈR,&Œ$”„DRcT¡b‚Œ‚53ll˜Ø-!¬EŒ`AERcE)‰ˆ„’–"ÁA`ÂÀ#LRŒci0‘!$‘!i"‰@l ’¢0fI ‰ „ÀÀE2””“Hld“EMc&X’"M%ÉE ¨ÔLŒFdÍXJ FÂ-KÉ’6´´X-rºXˆÆ1X­*#C5 “Z4‚2dB …1’P,̀Íb¦%’#QKHj DJ ±¢6R̀RDY"¤ÚHÓ b,˜Æ,ÊB±¤ÛÖ£HEŒVLd˜VH¤,b Á£I˜ I$XĐZ2R`‹£b‘(ÉRBF,TRhѲ lÙ C"FɱJQI°Qc£d,©"ѱ’&d Ø #&¨Ñ4Å!`ˆ´Ñ&,AXÆ$’™fL¢£d"‹$F±™¬!£0¬kŒJ(Ö5 €ÄX±E&¤ÆÁcb(±¬FÆ$´ˆ–(´° ÔTlF¨¢ÑŒ”C 1Ti hÖ*Mh¢¢(1h£ѲX“ERTmLQQÅE`ƠElc*"ƒl!6¨¨ÄXÆ4‘¨ÔX¢“„‰(6f˜QŒÂhd‚Á¥I4a”2¢"H¬‚k% ,ÓB Ñd’$ÊD’fFbF¤K0Y´$„#,2¤ØMF‰1›Å”,Q1™“&¥6hAIII©+"2ÄZ4X¥4hÑbɈ‹ ±(̀&M2fZ#cbÄm$J2¤ ˆbb£DQ¦$h¢˜Ë ‚BfL"J$ÈÈc ‰-%¢“IH´l–LX’¤±a61C$ÔlX‚”ÈA¢4VɶÈ& P-LI’FÄcQ&ÆK²3)¢"ĐIAŒÊ¤©™1™U!£E²‘llXÔE‚ÁDM(Éf&("1’‚¢ ”ZM& FD¨Ñ$ˆÁH#hÛcHQ)CQƪ ™Q±„±¢$5FÑIY0–hÄF"ÆÆ@ÆebÁ1hÚ61TLÔT%„ˆ,Q`ˆÖÉQ©5‹ ”˜ŒTcI¤Ô&Â6 b4Z4ËQDEX¤5ˆĐYM¨Ø¢ÄXÖ)#E£XÚ4[F1 Ú5ƒclXÆ¢ÅRlQƒ)QcF©0›f "Á““1% Dk$d "FAALE £ɨÚJPRfH!D"Åb؈³#B!±¢L0H$ÈC$FÁ¤(‰Q £D6MA21¢ cj1„Ë,l0-’Ifi…FI"̀ÁhH¦RI¨ŒlI™HTd£FH2cFJ4”bRM˜QcbÉ ¨ØŒ cfdÉ2CX¢Æ4lQ’@6 ˆ`1h„Ôb4"±ˆÆÑ£IDhÊTI¦1E!FÆ1„MF4PRhˆ ƱZH&52Ñ¢¢Ù#m!ÔF1PXLY cTXØ651±“ƒEŒ–0Ú5lj’$•Œh±°h(¶ £5Åb´lkBj„ÑIÆÆÔHhØÔ–´jÙ•LlAh,˜*`D! d6)†X„¢Y "4F$Œ•1cF52ˆ#ED„ÆF)E"&B±fˆ¢£dĐ" M¨¬I±¨²d))($eB)h dFƒıFÑ I`+XÆ1‚ÆÅ@!5#4TQ¢ %ŒQDBPhIŒAE& Å‹b(1E"J6AŒj5€­F6(ÑF$4–)-ª(L•hÑbƒ¨ÔlEcY$¢B’‹E‰6 LjB‹Q Ô`Ú,QXÚ,X¨¢HMlQ¡6 µŒQ¨´XÆ¢-Œh´F6Œj6‹E„Æ2XÔD‰1"MEb’-Cb̉PmŒDlFJÆÆ2+2Æ1³ F‹LQ‚6#T)¢$c’ĐXf64b’Ѭj4@0@FƒBF’ɱ¢±h(Ú *4hŒÄ€6MT–51±&̀´j(¢5`¤©1 ÑF £Bh4dĐQDF-E`Ú0 ¢M"4F£bMJ1X,HL² ŒDFÉ‹B&£j 4hÅEb6JÄQc…’ØÛF±¬dÅ $¢#F&IFÄjH61³4̉£Y– ˆ¤Æ™¶$ÅL† XňɣXÙ61©RQ¬llQ„̉-EA´$P̀V‰1F-Ff‚Ñ-Ä‹˜µ“b#$Q&Ñ%FƤѩ5@¢Ø‹-Q¢+&JÅ£h5DE£bÁ±A3*„±±PX±sr,L’1T¥1+I61$@Q±©,i-ˆ2QP¬QFM´Ph±‰,XĐXŒJh£hÆ Ú*(±¬FF ¶I(5E¢¢“ThÚ$´lXÉ[1XÄTX”(¢¤ØÖÄ2¨ƒFÁ¬2ÂF‹JÅ´cX-¢HѨ´E±¨L`2Z Ñh cQhLhØÑY˜Ù›AF´XÑ 1,U%¢“&+#TlbØ¢£TQQIb‹QQ¨„11c$Q¢1PQÄjJÆŒTl3llI±lmD”X£`´QQT¥cF©5cQc ÔƱj-PhŨ*+$Q‹)CmˆØ¶,h ‹F5¢M’ Dh¨F ±¢ÁcQˆEH`"Ñ$V-BçfLÖaIµ¢¢ÅcE“Y"£QbÁF6ŒF6$¢Æ6,[QTE±Q¤Ô$1¨ÔPT&„ ±„Ôb¢˜PQkF¨³,jZ EXÚ)*1-hÅŒXÈ£IQEd±“E±ÆÆ¬U™’°-„Œj+Tcb£XÅ‹fb1¢£Qj,‹XDTZ#E°ZdcỈQ¨¨$ÁflF¢ÅXÔkh¶(Û%h¨¶6ŵ#cQ¶4˜ÑD!¬ËcQA©4d´4TkF"£E`ˆ Ôcj1±XØ,m“ÅA£Y(¢´[­5Fňƨ !µÅ´V"ÆÑlccb6’Ø*4m£FÅbÅE‚,•ÆÉhÆ6ÆÑª5ƯÖ̉hML̉DZ Ă1¢Ø´k$5‚É‹ŒQ£h¢Æ²Q&Æ£b±QKEFÔQJXMŒĐ%“I´‘„̉A‹ˆƒÔ&ÑTH¥Fˆ¨‚,’j(ÅdÛ2mh6#ÄŒTQ&+Q´I„2bÁ“Vf5"T‘Z1EF”¤€È˜™Q,cS -̀b4”IhØĐ@T†Å”F, ‚¤ ÔÂ114)¥$!44 Ó$C2!(Å „a ‹#Q²C1‚i" ¨È˜Ôd“j"(0Á´FÄPR›F¢ÆÅ’ÑlIdÅ$Æ4’"‘± M ’fD"“L#ØÔi™2DdÁ dQ©›& –’ À‘`Ę‘!– ”PRPEE£$‘@F bˆ,…$Q,S¢É)“F61¢1Q¡D&TÁ¢B’¢Ø(ŒbÁˆÔhÑb”’P€Œ(̀_%µµ­yuy¼kÄbÄb J²Q#Aˆ›d‚ ¤˜QŒ‰‰!‘€l‰B0DLˆ&H!c )¤ÁŒÁbdш̀ÑIbeŒ›530…!–HdŒLˆY±%‰ d„¢˜&€H£dXŒ›A„$,Ă ¤0DRXÔ2Hd†…$!#(É¢J(ÅLÆ@Ra’i4m4Y1EcXÅb¨Å"& TK4£R¦X…Œ`¤Á¢„™I±h‰ 1bDÚd”Æ´R)&£T%“-lÖÛSƯ«ÇŸ_>BvỵI ă…Jwä\{x.1Xª4“í¤̉x̣Ùç—¦Üû»7MhkjmºM´Ib“N†É ڦ¦Ñ([Am@lCj- ›T¦Ñ´„ÙKd­&ĂiQ´¢Ù6-‹b¶±F«cXÛQ£UcE´VÅÄ["Ú¶‚6©[ 6Q[j[@ÚHÚ†ƠCbHlCh¶“m•U¶Ơ [!6ªÚ"Ø ±M¤­•FÆÔÙj+iE°M”–Ä[›°¶¨¶T›Kj›)°›¶ª«`­“e²‹`6$l“b¨Ú›Ø¡µ- Ù Ú)¶ĐÙ›J¶‘T ¶*m!mI¶ÀÚªU²M’›Ú¤ÙM ›ÙTÚ”¶6!²‰´6Sb&È–Ô–Ém6TmiS`[UÚFÄ-¤FƠ6‰m)¤±Æ¢­ŒVÅQlPÙ)²¦Âl©lˆÚ*l©²Ø[i)²“`¶+d̉›R­¥FËdM• ”©²VͤÙĐI[R[ iÄ›ÙƠ-¥VÊl©[6¶¶’l†Ơ°M“d&ĦÛJ›±°­©Ëa´mJ­ÙIl°¶‹`­©RÚ¢Ùm`­ƒb¦À¶¦Đ¶UlKkj‘²FÁVÔlM[[I6¢mTÙ-­…´£bFÔ&Ê›B6QmI±6¨Ú‰²(Ú*m"Ú+`Mˆ›*«amT¶ …l&̉•+h[´‹j-‰²M£il‘6›6–ÓmFÖV‹Thرdµ¤±l[ThÔX¶ÅI¢­ˆµZ5 ’[lĐ­­¢m*m+a)´‘±[Ú6#jbl ÙMª «j­¨‘[µU±bM©#iM‚Ú• Ú6ÚmA²VÁmU6 i ¨¶¤l+a+iI²[QµT6*ÙI°6Ø[J&̉¨¦Ô-‚¶mmM 6U²mJlM’[R¶’Ú6[$Ø¡l • ¥ ªCe[±M”«bIµJÙ#`”‹`ÚÙ[T›H6mJ¶Ú¨ØjRØØlª–Ä6¥6DlHlÚ“j†ĂiØl[ѵ ØÖ6-%¨ÛTm¶-¬kdÑ6´Q¢‹LmF’ÛTÛcZ¥°›lÍSi ¡²Ø©l¦ÅVĐ6ªÚ°M¶¶(l£jU´•lƒeƠ ¶RÚ„¶R6²b›I°[›¶ jÔMª‰M…Em[P­’Ø›ZÔÛZ,m£ѱ@ØSdVɵµRÛj±FÀ–ж a[¶ªM¨+h›Ø+`-%´“eM¶¶¨›E°*JmU6³(Ú‘²Ul-¤ÚM l-©U²[T6"Ú¶[ÉQVÅM‹hÙ •&Ô­£hm6-£ch±mFF£bCclQkÛh¬jÛE«j«d6 Ú²U°£d–Ơ[*› ¡±M‰MmÀ›RlªÚ[Vȶ‘[(ÚeU´Ù ’M¡[ ¶•-‰-l*Ù)´É-’ÙVÔm)µ iKhmFƠl b¶ l›ITBlA±-‘µ°Ø`¶6"6†Đ«h–Ơ eFÂV̉VÁ°l¨l¢M“jªØM‘lØ–Ñb­£¶H#hÖ16ű6‰±U±6[°£b¨´E¶¤ÛFµ&ŬkccAI¶Ø¬˜¨ƠFѬV*KX¶6ÔVÔjMbÆÁ­mXÚ£jÅJ›DئÅ[*±J›*+iM•´„Ù´)²ÂÚ¢l6¤VÂl›iUµ´•´¦Ơµl"¶ˆl¨mCjl@Ùl-¢›ÙVÉM€Ú›&̉¶¦Ä •²ˆÚ…l£h¦Đ­±Ñm(Ù6ÚE²ˆµTm´mµ£Z°Đ°)´+eµI²“ill•µ+i ­«i&ĐM ¶Sb–Ñ[l–ÓjPl«aµK0Ú‘mB¶lTSa6 ÚÙ´‹j“d-¢M‰-¤Fª‹l%¶T›h±QQ´X¶4V(ƠFÔlVÀl£aVÉ6l6©°¶É̉l«jĶ•²¶‘mh¶’¶¶µeSb#i*ØM‰VÁ°6ª›RlȶCb«h[Ø[P›TÙ&ÑFÊÙ6*eÈm6CjM€Ø•²ƒim6Sj h)P¶¨µQ¶¬TZØ5‹jiK`­¤[#ca-¶[&Ê#m›ImJ[DljJÙSe+j&Äl ڰ؃e6›Uµ6ÑlSi´Ù&ÂfM¥Â6¶ ²-¤¶"ØFÔ«eKi±Kj¶I²Ù*l¥° …±!¶ÊlSh£j£a°6R¶#iVÈmM•6‹d›Q[)lCbƠVÈ› ‘5*ÙUmÚFȶ© ÊM¶I±lJ¶› l«`mTm*ØSj¡²ɲ–Ô–ƠËh6@Ø¥´Kh¶…µJ¶©VÑm°‹[Uckj6Æ4°…l›[Ul±M¨6¢ÚصKhƒb­¦Âm[HÚ­6¨Ù+aCdÈmmU6MmE´ªÚ¶dØM¡[$Ø[C`lªØl"¶ `M•l«j¥KeÚM¢l*Ú‹eÆÅ±µRØI±²¥²ØmU[ll”¶–Á6Ù#eÙ°M›Rl ©[#jlTÚTÙIlSb£dmU6¤l-¡´¶µm$Ú«aÅ ¦Ñ6ÙSe› 6[ ¢Ù̉,ÅmHmÂ6QmCal´¶Sh–ÑSa´–Á[mMª[j†ÑM¢«h(¶±[F¶(ÚÑFÚØ¦TV+`ØØÖ ¨+V±T[HPaJ‰µ6[FÂØ¦Êm#e6¶¤­…[kI²Â[²-l ¢6%m-¨U²¢ØM¡M‰´£h¥-¡%±´l©±Q´&ʦ̉6FƠ[I6d¶ÙlØ ¨¶U[Ch¦Å[U ˆÚi*l"lª¶BØØ‹j«hÚQ²’Ùm°66T›$mTؤ¶%lU[Q6&È¦Ê¨Ø ª±&̉MØ+i#h“b›¶ÚJÚ ’6ª¶›A°™ª¨†Ó`حح‚fEm(-›)VÊ[!6R³)°Ø+`[Uµ ¤6M¤mÚÚIµSeM¡lÚ[J¶ d6…°mɰ[EVʶˆ¶¨¶´VѶűV´Q«Å‹Q£lUmE°¦ÊMƒb¶Ul–Ô–ƠC`–¶¶Ú e+jl–ÔÚ&Ëh¶$Ø-ª¦ÊM©A²•´l“hÙÑ6IlAlE°›@Ú̉[Q6¨ÚV­•l‰°  mT¶‚m[JÙ&Í[$Úƒjm+j‰±²ÑƠ-VÀ›[I [Eµ± ª¶•´E´ƒb›ÑSj[TÚ’¶P¶TØUle ¶©VÓeC2M†ĐÚÉ “m©5F´´•¨MFÉÖŒjÑ‹PcF,ÈZ­mmµl¥[$¶Øl¶IbÖ´m´VÛEDkhÅ&ÖÄlˆmÙ ª–̉ÙPÙPÚM”¶ØÙIlKd›6’[(ؤl fÑFƠ°Úªm´C`6¥6 ¶ª¶ÚU6²¥²ØUm-£bF‹b¦̉¶†Ơl ‘´- ›UM¨¶•6Ce[I6eJÙmªŒkcjŨƠ´j6JÚ6%m[H6VÂ+el’Ù³d­¤Ø[E[*6•±SiÄ›(ÍRPØmPÙ#h­¥m° ’l©´±KeU±j†Ôl£a´†ÖʶSh bm[V¶ªØFÀ¶Eµ±Tl¨¶ ©6¦̉m$Ø›"Ø["l«e&É bÙ[R6  m)²Ö¶ØÚFĐ­6aµ[*6ÙUlCjQ´SaM•K1Ơ3Í©[AmØ6RÚVÈØ¶RØ aµ²6(Ö)6l­‘´$6«bFÔ ØhlT­µ+eQ²FÔl6*„RÚ&̉ØØlÚTU¬UÅhÔmbÑ£d­el%²[+chlF¨£d¢Ơu6ƠÍ©ˆÚ6­…±[T­“e°¶VÉl›̉m6¨-¡µ°l–Ëe6¨lM“jTÙJÚVÉ-€Ùm¥6„Úf ¡°¶–Êlj ©mi!´¶Sa´¶–ÀlI±U±lÚCjØ“j6PÙ a[U ”¡µDÙ#iM‰°&ÄÙmQ6+`­©±-¢lVÔ›%M©R FĂeQµM ²›$¶¡²¶Tl[l…µmJl›¶‘m%lCal&ÓaM›(ÚE´Ù°ØmÚÚ(ÚÅ¢´£V+VƠ ƒb“elU´[I+hÙ´mU°­‚ئÁ³jÄVÛQ¨mX¶*­¢[ Ú#e †É²M Úˆl•6Ø«e°[ 򮀦ˆ¶É6¤6¢ÚÚ̀M†ÖÉÊÙ)µ!°l•²‘±M­¨›TÙHÚ b›"Ú+bÚ!±-ƒd-ª¡°Sd¦ĐÚ‹b¦ÅVÊ›JØ› l(ÚEmBÚ-¦À›Iµ `¶%m!±À6!²-ª¤lR6VĐÚÅ6‰6©[DmDØ6ª6¦ÖÓd¶BØ&Ñ&Ơ6!²†Í©[ l“b ©M¨6 Ú&Ëj“hÚ¨Ơ´Z±1Ñh±566i°VÆÑ´­–ÅVÆ¢ÚØ FƠ¢­D©mM–Ȫ Y„mAµ´©²­¢6MmAm h–ĐÙÍ¡²•°¦Â›µFƠV̉¦Ä¶¡°Ø­¢Ø†Ô؆ÔV¶ iJ­¥µ[űVÅ-…6¦Á²Kd¶$¶BÙ&̉Sb­¶Hl¥-¡[&Ñ-‚Ø¡mDm$ØÚ¶’ÚJ¶)6 ‘lCeVĂj•´lµl•²†Â­“i6¦Đ6•´6ª6 µ&̉¶eM‚›D6­”ÚÚU°m›"6U[ j̉+i[*¶‹hJlÚ›BØ-ˆmB¶J¶l…´¤m£kbP•¬jØÚѱb¬T$V*#jƠ˜6²Vŵ-ª«h£iSam$›!m6RØ+jÅM’›%´¦Đ©±[* Ø+`–̉•°6¡l“dlCim)lÚ†̉ÙJ¶‰±+`ÚHØSj­„6J[Qm#j+a ¨ÙhÚQ´–Ñ+bØJØU°Mª hKe-[6”›6¦ÊVÄmQ6FÉ6­…6 ئÉ6¨m)±FÔ¶mAm*›Kb£`¶S`-£U£U¬Uh*ÅfTØHÙmRlª6)[E6"­‰[DÚ‚ÚI±JÙت6ƒiM´•´£bVÀl–ȶڒl Ú’mSd¶R6JÚÔFÊ6•²£`l“a´ƒjت[̉«b6E°ØFƠIµ%²¨Ù[¶Å´‰m$Ø[*M‚6©²©°¥µ ‘mHÚ­…l Ø“jڢ؋jKeM‰- m!l«X‘²«b6E´6[J6)l‹eCb­€ÚˆØ- «j•µCd†Ä–Å-©l–ȶ­‚ØØlCj­€Ø¥´EmEM‚l‘°ªlJ¶6(l+a[k°­ª5 -”Ú¢[DØ¬ĐØ¤Ú©lRÚ‚ÚS`­ ­…mÙaÑ6 ±±Êm)±6)6CiQ´‰±jÚ†̉–Ơ6[QVÔ6)£`Ú‘±I²#d¦Ëi&ÔØ¦a¶Ñ²Q´Mƒb«2¶ˆlÛÉXƠDU6h­щ"­Q4“d¶¥´6M†Ä¶Q›QXƠ¦I’¶Ñ­¨Ö5¨¶-¢¢¨ƠQ­¤ˆÚ6£ZJƒk+hÖ «b´m ­Y Đmµ´-³D–̉l ›TM©6(àƯUuûưW d™GSßû±Œq’IRI4Ưµ{̃÷©$‘µ$’4¤’)$–µ­lêI'µa5TªMU&€xkV>RP¸ˆ)«ÄÎ">ØĂ°„r0Đ;Ù5ÑXålM&•SZ昬¶1Ö̀ÎÄÆ;i¬sc\ƵuSk-\µºtÖÖ¶ê·ڔ湬Ç8̀f¥ÍZ³Z²· ¬Ä˜›N€g*Z£VUHÜr”YZë'Xn:L̉:Ñk©­–Öe¨nº²s²æF¸áJ•ieͧX¶k•ªœj°Íl]5ŵ¶2Ó$̉&]¨ÓXWZÙ¹”ºC¬gdºMJÂfJÖ7t¸”‰Öå›Z¶Æ̉ÎèsdªU:3º-HÁ ª³YŒ4ëV×V˦4ºäÎƠ4̉Ë&²Y¡˜:̀jMI•k9¦RµK"ƠËỲƠ°5¨lªÉd­¬â«'Y™Ùªk7¹:¹5œI¹ HHXbY«M§C:°N²c‹%És¢ævå9Ë,fæ̀íY˜]E©ƠGti¬®b§aVĂ›VZY¬Í5Ë]eIºlØÈΓ©3¶dë³9³²ºc`́m2ÚÂF°˜Ơ5uSM¤Đ¬»R%›êÓLÔ´®ÆPͦØ&¶­lcHTîm'bĂ¢ºÆg3U+dZV2h8ÀăjÂv¹ÑfĂImu–C31ºÙg-i™Ơj²¬ÇMj‘ZN¹1Äâ:ƒl2äÅXÜtÑÉ5i]§&³kWj´ÇZëU&5›j´̀í[MDË,i,›\Ô•6,(¶6µÆ·TÎlƠ¬c•Ú×qŒQÔœĂh®Æ:­+YLk1ÛM;6˜›RëKTçjµÙV»S6ZIS–pwI¶«Në ´²n†MƯ»‰b6ç$fæÜ9W,7k›9ƠUƠIƯj&XºLäulÚ«N­hÁulÈäªÙµ”Ư9©°Ñ†Öªµ[«8¬6Í.Ư][]:nÊÜ3Mdî˜jÙ™T©£[E¶—ZÊíÍv¹Óµ‰̀Ó¸5´k³T›k3¡ÛJÊí»*ă±Û+wNËb¹nWsª+¥hµtÖm¬îÓ`Ư%©]ÆÖvwsWwX®h¸Z«§BPjƠm4×\´¶s3KYǸăM&\̉̉´Û(éÚCUª́f+ỉÔ¦jë˜ÅiªÙŒÛ»§—TQ¬m4ícXÇfGFMZ̀ăijÙ¨ÜmƯƯ]ç$È™§UZ¹Ưb)%4$TmƠ ‡ñ+ƒÈ]ÉáBB¡go€psych/data/Gorsuch.rda0000644000176200001440000000063213154621324014415 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉́îùEÅ¥É@9> 7Å₫Ø?-X|˶Đ₫v«ÜÀ×­ö{4¾êÑÜ¿ñ5HàÍ₫£@Æ×Ă0ơp₫«‡îëDªî?l ps`æ̃d¿dªÜư+g‚À¬ư!æÂÔĂù¯< Đ₫ á‚%p÷À̀™;jTß₫saêáüsöCí‡ù æ˜9pƯ²;hÿ=Tơp>ÔÜư/¡4,|Đü3î̃›¨êá|twBĂƯ_pû¡ú0âÆ?Rjû—¨ê¨¿»Ƈ¹j>,̃aág ó̀=8ü wçÔx‡ÅÜ|XüÁ̉íK4{ æ¢eæ”̀\ Å Îa \Œ¢„¨$/17µÈ†ª«ƒÈ³dæ¥åCÙle©EI‰9Pgb^bN~z&P+Ô¶Ôt˜JÖổ̀œX&.IÍ+Î̀σÉL4‚Y•ƒñYÊ ŒálS3“Áçœ ERC»psych/data/affect.rda0000644000176200001440000001113413154621324014232 0ustar liggesusersBZh91AY&SYf®m€L–ÿÿÿÿÿÿÿÿÿÿÿÿü@/'ßàÀ0@ A Eaà{Îö€Èª¢”§ƯLJӾ̃đª¥ ¤€(Î÷ÁÏOF€@ dOB†F™¤Ú~¨mC5 =OIú Đ Tü€‰*2M4Đ20ÔF iˆ‘‰¦Tư˜“T=@ĐÈÚG¦Sjd@ ™¦hM$¢DÀ4˜0 &˜$•4’= ©ê`›SÔÀ  !A`F€jTSD̉6 @C@z€ mFhhö&øæÂ¡c 8„ BÖ)%JÈE!9?GÈ?lÑms¡×XæÍÛ»Ö* !Eä§0½̉‹9r° °#I Fqœ)ŒA@ø*1aƠbTÇJÅ™ˆD¥iP§ Í1$ZM›ÏѰÛJæ†Ú+íißôè‚îsB6G̉’aóó¥œẰÆ{LpL°Dj—᪹%0'6ơàˆqHº(4‘€¨I‚#+MC²:£¨L ¡‘h$º"W_MƒÑ:E-"R‹.̃ƒ0†¾¸_2MD1['hj‘³Ÿ­m|ăXfb×½ÎôÎÇnL¬ nƒf¾k¢%Q€ÍîË}JÀ\l`Ç{$Y¼DMiÁ€J¤o¹(đ`ÓIbv'…,¬ €³<ˆøM™ˆU Ơ¶;: ƒ½jh¢KPm6OTˆut`Á̉—Ú)~.Ỹ¼q¥¶ökuGÑ’¡å< •6Cy‚EZ¨³ÓÖ$\‚lüË@ˆ ~yÑRE)Â1Ơ·f7²#|™&jDp¬9H&́I$]ÈvưY€BKùίÚăS!o^ÚĐvé/—¶ÔéSơ´›ø̣5ÖØBG=!d¨ "́Æ£‡…|082‘ƒƒag#®ä¾êO£i(đ™ ƒa5‚€("mCïZ”́ ¶½QÔ*TÔQ"¶U÷Œ´Ơ6‘łṯ“xHÍ…ëæ‰*C^kÉY­LItơXÖly2l‹Í€n(,AsjmÍz{6àƠ+dª Ư‘ˆú¬4vL¸Uw€%˜ ˜fQ/0 ¸À̉ºdrhrA¬}(ÑåVKˆ_{f'¦3¬8SyƌͩRY¡)9•£_oñ<Ă)$ÜLưw¶Úº£WHˆªó]üß4â¨Ơ1!„ ›¶dªt;dqƒˆ¨E!;TJ½ÖF¬9/ºđBfé N×[ĐÖ±m…–ËWVdl‡höú";4®ÂÛ©|ÍKÆ5“cô˜Ø"Ëß;÷ª;)̣ºç€ó´ĐZ$‹ÄñĐ4̣ÎơxEar«º)j¥.f Bfâ£+¨ú’\Å]@îø> êÎh 0 ””ɱ .9+F0[†®b|̃l3”•{Éj…¹•S³u#ƒÍƯÁî^“uLa…ŸI*nωr=÷Œ 祄˜æ­üÖ·½Đb qö‡¤e-]?c³ÑĐo:vâ/όϨsơuøGíuE™O—j¡Øfüt`øuk±5÷Ǩh ëĂ´9×uuóouôçŸ/Wđ«\rçÎÖ8x ×ö±EóiżW¹Üï}öù>È9½E‹àaÔá|ó"¥)º_%RYŒƠªh“™'e©#øœĂôŸ9®ăẨz Íx̃kYùœM(†&Ưî<ùÛ1ZL•ÅÏM°yg̉ơĐW̃F±e¾p‰°&5u%»©0ÑIĐåe•zO&wÔµ$‘‚Y-úê}Y.¨`»cí#;:¥*½lă•,X½MCÇ=èÅEđ²Eay-*B£†+ciT ¡Î=ó¤® ´ÿ΋2/¿~µæ”Ç<´uÆ<¢Ó¸¡!Bƒ”¨ –OH†ÁÚVñÎ̀„§ä\1×#C‡-c˜ôzk8ʹ–&De@ OàwH̀á$œË9›»ÛÓĐĐÙhi àRv‡¯¯¯\ƒ5Ê¢Ô¸ĐœĂzÑTQ ][qG†¸¯K–`¤< ¯\HÉ.™Á¡mj„1#ƯÚ¥.@†MY…iƒ:ó¥½é'|d΋G_ú8”ù#¶¬»×_ËÄ0¡WåmTü¾ñk¿HNăđ=̃ÇÇTPaæüÂ¥ ¡n,,êbÄ(üÆÜ[Îiâ÷¼pßÊë—ßÊîă¡’:& äµ´« …C•1U‚…LV.01 NNoêy:Ôæé¡ †ÂÄC̀¼W-²M•†5ª±dǸcf ̣Đ3çj˜̃§üßÓô³ùuG—ÓïØ.ơ!âëû₫¿_“–̃¾¾DüxÜ®¿äù¿/•GÔä^úÍRÁßwvv{Z™\́Í<ĐFêyü"Öοº|;_öR KøjŸW̉–b ßĐ|tÚJ»¾c¯N³X™\ßaWH™TÙ±l¥;o~ôʈñk E‰-Ë·ëo3@_Ö\Ä! ‹™97đ‚îÊ ơJ @¤>[$˜a ”6C^4L, ó±N²?YÔáØüûçé=Ỉ'l÷ăT V2J©„¼œM}#Ï绵³ÍkôÓ6”ye×» ww"÷6娏đD¿dY}y¶S{£f€¿w÷‹‚|æêơnºë¨å»y<-ïÁÇùNz+qùØŒÎ0üP²¨n•R¿YUµV†Ă*eRK T™Ưl”JPb  V)°Ak@- ht¬•n.êăpùµ˜€‰ˆùu®"2ÖlLÅÑ+\©¾îJ桨2s”t‚°@!Q[ Wµ©i 6. ¬9Ë]^ÆE`*¥tY—‘±]XIôdïc̉­Dh5J»¨ÔH@àZ® M7§íÔú $Y¿ ÔĂ÷ñOñ₫ùSÜÔÊxQ .$I-XiÔ@^“_ÙNª!àQ·ºpB¦"4o'ÿrE8Pf®m€psych/data/Schmid.rda0000644000176200001440000000520313154621324014211 0ustar liggesusers‹íY p”Ơ^’ <ÊPÅjÑV´jëø̣ÇX)¥"EˆEJmaMvÉ̉d7d@ªơÑ¡@”R UÚFµ©”"¢BÍIyIHØl6ïl6»y;èï~ß ́Đétœô1Ó {ïưïßùι÷,3&Ε4+Éf³ÅÙâûZÿÆ[Ă„8ëŸ>¶Û5y(Ăá¶ ±–&JøơM-©çËÁ² ª“=K¿±åÊ¡;>.~ù‰/˾ewÆ úæŸä€̃qVÊ.½iÇô.ñß5dfÂçÖH¹µ{Iód©PËG—÷?:ß–ùâC¿Û'̀úä·̀·ïÇĂÜkW>*>›₫H`₫₫Z?²\Ê®Ñ/;"Öî©₫SR½E? ́i€½Í‰·¹ç†|)[»rZÓưéRzÏ ¿ùóÂÄ—|[ÇâÀE#¯DYÿư1âŸêï.<ß&‡6÷·v<%ƠjûíR…÷ưjä<#gë÷¬ßtåè ăíkiÏHí/Ơç5©Ôæ.en÷ïå ;AJ”û¯>/¥«•À½R2̉™ûà 9¹´w¿V?[üQ3¥~Q©6;ËøÉ¸ÚуÀ98{„åéíâ \8ữ×7Èá'ô ⡟2·đoâW¯ù"â·¼¶ 5zjC¥s©O©”W‰_?ü$?âA;Zk“†#QJÀ“}V”,ˤԲe’¼‰WÙ €́{óį¶Ư5D¯Q÷ˆ”nS¼̃àC¹ä)ùÁ¸ÚA¼|°³ṿºü r`Áá°v{–Ô®7eß›'¥J-çI%́!>åà/ó…¸’Œ í¦! K£Ô`^Ÿ® —æü2q@ü˜Gcp7K¹ñéăR qμ%ÿÈṢĂÄ…¼†íEJÁ-Rƒü"®ŒGE4PRs½RÓûFƒO¥răă¿HE®hpf̃2_ÈṢƒq1x`‹b×´&©ÎäuʲÚáËîŸz+ơ©°Đ²“JÈ Q,2r42_4ùÔú¹ä)íf\ˆí£ÎÿÁê#Ÿ«?´u†yÄúĂ¼`ư`ܹNúüi7í5kĂ¥NĂv¿Ô*s.œ‘jäE5xÀïªhá–*àÁºÎzJ™ú¼5u<5ü@\øœvD”7s¿f́¨St=¶Z”Ù#6KƒÊ²ùÏJ=üe₫ñ\a]g=e¾±~0o‰›á)øÁ¸ÄâàY đg=¬‚üJ¾Ï{x¾°®³2î´Ÿyḳ<à¾X,Ơ“æ²gÎqæ¹Ór]·Ë=O§»œsrvïå‹ĨLÏ"µ–Ki·3ÏëHÇ|€Ó“3Ï‘ë̀ËÄÂ@%ÇÚ”æpó¾¹®óÂ@‡Û¡̃p¥Ư=ƒ2yrÜsAyϱr›ïZ.sY¹{gă-g¹¬½—ñ–—Ôª]亥ÉúºC–ÄÔ´Œ, ƯØ^‘“¨m8eĂúơ)pKùè„·_ºVv~å̃o²?-…·lX¿èµȇ¨n«~º q¾ø>Éû|uƒ́Ù´dqæÈ ÙçïLjø^Úr§‘K=UØ_1{é²5GÖIÑ£“‡ŸL\%›ñ]üjGóÖù²IỠ ¯Úâÿø~ÇPÙ?₫ÆgvM~N¶áù»[Z“?ÉÅØK¹ÔS‡S—vL?ü¦i eçĂgNÖLôÉú`̃Ù 7_’C Y"C²K‡)Äó?XÚ-ù™ÁöR.ơĐßüù·Ïx̀ńZ·?ôBÊûÏÉÜ>¸ö]oç;²I}Í{Ăè!¾ÄöR.ơPåwĂ‚Bư¢|lô//Ë–-ºèÎ5zéăF|‰í¥\êỵ×@₫[uÓ¯/ë7G~Ưµëíï>.²̣_‚|̣q#¾ÄöR.ớÆ­­ØZ|dƯÙºê´eä+3Wî” ¨ªäù@¿è'q ½”K=[¬Đ-—µ_}ḱ’Ϭ– ú¦̃v]±,EÈ_̣Œ|0q¾ÄöR.ơ4à,.\30ØX!{÷VÿÉw¦˜¼ É3̣q#¾ÄöR.ơlGW°§ y¼ ¯È3âĸ_â@{)÷åăɼ(ŒÉ#̣q#¾ÄöÆäO´:Å]º́ˆưSëñ—b´A¨bq3“Íh”ƯgF£ÍhŒ5£qf4̃Œ&°lÎL¾·g˜Ü3ơßaBl=OxÜa•üèoK6éÂ0„»^§¾bΗîbAܽú#M¸»sÎ;e+z„îÀ!üFÄơ0îf!Üu‚¸kQoî>܉-©eµ×Iî’uè5ëÑpÎ;[Ë}™”&dKîl\oÖ$›(M¸óÓnă/ôẢ, ăFBè½9oÆ]³ë­è%Ø+q½vFp—kAEœé/ơƒÜF g†Ô§ê¤¿‘p^‹2Œl ç î̀\á|Pư;9_âL¡7¥§”Ä(.)}¢Ơ2%‘̣bqDOAÆơ¶j}¬K½8ăB1Ä₫½ư£“W´›8Ó_ê=ưmû*·©¡Ñ¿«̃¦†₫'¯2fx_ÏptÏpLÏṕÿ¹±·´Á^ƯußépeÙƯ¦ù#ܽƯ|w )êíæ›e¯·›ïjøƠÛÍ7ăÓÛÍ7ÿË¡·›oƧ·›ïđ§·›ọº·›oß¿©ù&¯{»ù₫ß|ÿëÍ·íâßÓ·ÿ™đ!psych/data/sat.act.rda0000644000176200001440000001101413154621326014336 0ustar liggesusersBZh91AY&SY! ï•"ÿÿÿÿÿÿÿÿÿÿưÿưÿÿÿÿÿÿÿÿÿÿÿÿïÿÿÿÿßÿÿÿàw•˜ Tl 44 ï¨ 8é Ñ 0Fơ56„Úf“ĐŒji‘ ÓĐh™<#41¤d€4ÚFÔÑê3B2z˜iĐi bi<„ÍI„ÓS4M&ĐOSA £F€I¦™‚4Sd4ĐMƒ@  ©ûM I1”¦j hĐ €€ 44@UTÿđhi2¡ú“̉yOPd  €€ 2hi%Q h4dĐ  Ó! Đ€Đ ÄĐ2hĐ“BM'¦#DÓM¤ơM”ÓM6£5å•$É£×=IŒ–L‹ăp^µ ÖJ%Pd ‰%̀*EÄÏ‹”‹é—™6$<¬ú’Đª¤-‡ æ*Æ2è'uI4'9ôºb pe‡CEÉFúƠkô!Æ.ăÁ`¹Q¦ú—† ¢¬`ñ0¨VÚ¢DTœ’§ĐW‹UuZ!Ư„Ô.¨Å¯+eú+ƒ©ŒXJ”̣O`²t´·µ• KíÅŃ R†:Ëå²V«Ê#”đ˜Â¦w†ÉÚÔרH¨´4™́âz)(5Pz% ow„¦é ³8i(É%%%^/t\enc§̃áZ› uÓ ”¢Mdâ*™X÷ÈǃÎzÊU@DÎU ¡×²ci¨)ä:%IäÄ—‰B‘6:ÜØ»ÊËÀ&ûi®•LØQăÍ%µW–XÉơB]„¼ŒƠyúơă"K2ñe§ƒøY7ǼåErÎÂon·Sg—̉›&¨ \¤¾ăă¥tú›Pláx̀<2¶sœª$´Ü²Ñ '˜­…™íä¸`ÔMø̣¼Ëh$;ÆÁ S+'¢yd}åµˆĐ…™ª'!2oȉ¹8CÇzÇ6QB s”ơU—)mÀPÆœn²múôœÚ˜-˜4×r“•º\̀8á 0í:đ#>f]g6F-…pM0vñ«×:Í d¤4•5X‹Ÿ Ê•rØÓóO}è«ÏNCƒjUH£|q¯ÄÑ;ÈuU¼ØU¹’›n#®GX̀Úö´;÷qđḲùÖƒ[×lלCØgb¡¥Y—âóXª[Ṿ[¬ chM´&ScÔë0kNüîÔi>4>„p_1Cp££TO¡Â ×1r:bΡ)­[˜I瀵WÅẦå!‹6̀fDô Kyv Ïl¬Á"̃“Ö¿$¾æÙB»I«Ñ eÀŒª­÷æ0¨‚·¸G Hf£³uî‚J„7{’¡Rñ¢·©åRØ{fŸJLWß%4äqë#T\xdÖ6[¼ĂIZJ² µU•ºuÅ“s³(±å²¸ïœ¥À|¦Àa³Ă]Ñ́3ø¥QHôfvK¥¼đsûÎ8Îbh#CG§Ó\Đ=-˜·_$î¿=w%èñU¬œl}qm°27ëY‰ç!Ь©Ï¢½7’È}mOqă"àܯK´ämf8 { ˜1€ư;]EùÖ¿àÚ}«CIaâóËX3̃, ê+ÇŒê[ÛL†Ñ’;DØÖÖ¬*¯¯ÏC°h="‘nÆß”Á‰Áĺœ|ˆ³P¢‰¥¢y“=oª6„ä)ĐöJœÚ‰µ"̃+¸lêÀ vo8©±ánkïăˆÜn1@vĐ̃´w¶BØéîĐ—Ú…{|v6—‹~'Ư!6GùàÊñäO¡ÎÖå#îđSn3™M!{:<ç¸aÍ{†¸¢ %@@TسeåíĂM•-FÇ›¯¶î29~dYc'­®̣2Û̉z\Ƀ̃ƒ¨1β_n_ÆH•«{́”—+ºvæŸ Ä‹rûÎ+ø?<œÙz€,O\ßdµöÚôáœ+>b)à! ˜\œâD¦làS“§‚-7E`épë́RêâÓ&g’5GÉ` W„ H:´ûBÏpdi%ơ NÄMo6= ̀A²d„̉8B…z]¶œíR…W—…îø›ÜµÜ|¬¶†¿0^J¦ j™¦yÉè¾MĐPÙtƠåŒ]›dg¾L@‚áƠœF¼Ư₫äëmo$5ƒÄ f.5T,+ Ên:}B®øpÓè_²ËÅÁ—®M냡_100‡4Ó=ïÑđ´"̃§dŒ8ΘºDáđŬd  9§BWŸˆ3Û -_°¦µ+÷ ̣ï;@5Ơ[BÈ™¯ÇBA›`*ËXnƠFëJz{ùѪ@²„ö)¥§*9Ă)¤¸S…|†SeÍ92³K2:XcöÿuB»O)zéÄ©Ÿüô]‘rª(oÜew›Æàe6"ηK#~0̉/¹¨Ñ¬ 1…ŸE¯çN`Ö!Â5`:ge,Óhl8¨¦*Ûx¢-ˆÉ'#t°ë¨Q²s°PÁt‰ØâQ9Æ‹đœ–7A»Sp9Ö‹FiaÛz^`r°ú*!û¦•.8/.È[Ô¥êèCEêÂ.Óÿ·0 *z*“·M…ÛĂ]ѹ̉Û)¥—j$+ D ˜¹q²₫ºøÏđ’NH;’mhaG<ÈeP„!fW_ơ>Á o²—N¨ÙîÁ4ß§uèyïñµ̀çæÍĐ}5$Ư'‘GÚå“•©—ro‹©½ë8ÏèÆçÀè‡:B&©ú­w›¾Nrɰ`´íæÓŸmØÅG NY_óÙ\Á­Og‹W-~#d׳åË@»€0td¬Đ`@ ]YnP+׆§gƠeo`6”qúÄ¢• ¤ÖÓDZP@¿±bË24¯äm>G'•C2w¿çgçjÛ^Ă¾u‡/v [Ô¦ u[p )”€˜8}V*Ø»‘BÏGÖ¢—©ô¦X‚6˜«H¢VDL+́mÅK*:]<´¹[ùÀ0rw1ÇA¬×øT²3¢`@ZâµëỞ-'T´²ÀˆBæŒEº‚4eÏ(Ê*`V¡´˜¼±fÓdÜ`­lµhˆ©¾Q&)kÍjL!æÊ‹†ÊN¤” VKPăÖ¡ÊX]=lÀ)ÚX]ºj(0Ó¼vÉ$’_¥HƠ „ºsÙŸ`¢眀 cWO¬×â²ÖÍ)¶Ê’‡€BdúIF- £CȺªRØî ßµÜR_0…6» › #³ÔưÎ •ÖÛvÚđÓŸ;#¢’Hß©ÙôƯc“á Ÿ8„ •÷VsJµ˜¶LöXNà˜“D9 ˆ1`˜×h» Í µÂ ïº̣&῭»3@¨†K§»^BQsMEE BRÉ=́ÂôÛ%°[E ÇSÊ9ë=ăma9œŒB\ 4vÿø»’)„O|¨psych/data/cattell.rda0000644000176200001440000000102013154621324014423 0ustar liggesusers‹Ơ”1OA…7bb5´¤4©Ñ D"6(ÜœÉEB²ÁÓ@MMÚĐBMM A"@vHâ„ĐĐ%‚‚JÄîz¿̃üVº›››Ù7oß̀]fdz 5RJµ¨D›¹'̀ck‹¹=Q­ê™±É™¨R‰ ë2îG}­Ü̉—«½Û“—«úô¥[úụ̂ÅèVÏ>,mÔSƒú̀ºËúÇîZ®ÿfOâ߬»»¦¿w0}ºàRüK%¸Ô©[otKpÈ?váybMï¶Ä±ÔùçñápƯöŒđà5GøJ|ÎI¸×øŸ}₫Çaß©É2©Â›üP_ø‚K¿Ö-mêߟ́Z×¼®đ­úøÏnÉ₫P_êV\ê ÿ¯Ûè[á‹%~dƠɽyà=uѾÄå<Ÿü'OJỗ挾Ó7ôEø‚Ḳ°_<Ÿ=?/ô9œK±~ç‡/xÔßù‘]Çÿ}́“z~èøè>¸Ô9÷º×‚86äË< ?z¢|Á ÏĂœ€ÿđ{bè[¨oÈ×× ~O‰÷³Ec:ƯL©ÆƠ”̉nRæ¢b¼h»}̃s—׈?}—óQÿ]Ă ˜-E3qºÉ#–̀ÄÑâü\ºÙ•èøR1—ÓÍ®D_O Meă2­;üf(ûĐ‹*å‡éSo'7ơ;{ƯüP<¡spsych/data/Harman.political.rda0000644000176200001440000000064413154621324016173 0ustar liggesusers‹ÍR=OA]ùHä"†Dk¤ÄÆÂ¬…F Iä Í «nrwK¸SÖÖÔZØXÙXYĐm¢ÀFi5ˆRØ`iÜƯÛ¹Äûn²_³õ¼™s³²nT „P Å“b‹c"&–9”@)±gVӱܵ³©Ok–-@‹Â¾¿øc¸}»Üâ—¾Qh\÷ù`vß­æ¿ñU¯üyíá‘´₫”•†₫—€ƠĐ/ÂĂߤû́ß\Èq‰ßÉŸƠàăª"€xQ®ñø®#ÎđD^ËS>Đ<á=ĐÆ?àyÔûDë€xS­_çêÔñÀ/̀ xÆÊƯàuüB/ÂĂG]•8‡:A=¡.:¿đ ö ơ@¾ú PÈtB<đHŸÄëÔ[ZµBóÁü™×rˆ'ÎK—Q¸à=¹CZÔÓ—”ɘGN‰íkĂ®ƠôÛ¹}æS÷HÛ̉%R§–›3‰ë‹ÎÔÆ"sk¹¤éÓxï¹Äiجí(è)±*ºº !·ê'5˧̀ưÏÂ~äüKnk¸psych/data/Bechtoldt.rda0000644000176200001440000000234313154621324014714 0ustar liggesusers‹íVkl“U®ÛĐ­²9Đ ^¢BđBÈL1dy3ÅÛ&P3³Pºơ£ûL×Îo_'—¡1Ä !†bŒÄKd@ ™†Àظ 7¶oí¶¦´Î¼ 4Ä ÄsNßçĺ¯m̉ËwnÏû>ïó>§+—T?ă®v»\®Wîñ™+~æåˆ;\y®ñ]°Ø¨«·#¡€-f‹Äø,ºæR/º°€Z®l¯'g[ÍStl£Ä̃¿/…¶.¡Ù}c«Ë¶PÏơ¶¥ŸwŸ ¾²- _<µ‡œßÔjË›¹Ă₫öuúzQേ÷çÓ¾]ÇÏy–ÎËÓ¬ƒÔ/—·^£>Ɖ+˜&å—<ñăÚ8 äL}¾}ƠxÎÈéØ-úNFSó4ơWT•÷uß4=üáûú|U]\[I»7Ï•'ÑὉ›çR§ ëm:éUÔqđ±ÎO¾¥GWüüî#G©·Yí¤så¼sçœêꉟÔùñüÔzu§.Ë,K¤„ ºåWêÿH¾>¦!5]EjøÊv’èoư™¤Ă’¶ă›t̃ÈwăÍH˜›¿Ó÷sFæ?¸ë0Ïàùñ\æ¼S[eÓ <æz]PpÓé±[̀P«»´ñË!7µg–¸o}†ậ©ô ?¬ư‹̣̉¸J[’¨Ư”HÊÂ/¯?óüx²̀W?Ơ|$™×ø¨,ÀưÔ#vÏÜ%G·âü =¥Xư5”®­û‡’¢X¢bZ¨?øG₫ÀGÖ×YÖE7ăv3?Đ'ü₫ƒ₫GÿAÿĐŸ®?óü¯ûKª}锿₫Kq¾1æ%Á¾ÿ‡ÿNö?ôú :ƒ₫Pđ„üx2ªư<”R'‡}"Åçá₫ÿOö?øîCî?èúCưÁ?̣>⥸_•»7ŸƠuÀưÿ‡ÿÂÿà?èÍ ×úCưÁ?̣¾î/o”û÷/î?Ü?đ́G]´ÿp¿ ÿ èơ×üs₫c“øÉ°_C¸ơưÇùĂÿá¿ÚÿØĐÿè?èúCưÁ?̣ÏÜ~_Lú£”0ÄW¡ú/årM˾o[’/–„ư F“ø}/¯+Vë²ów{L«ÉöUª%<ôjÄ ø*£ µ†…d^#lá:½Æ]©ó×FC~kFÊ# !Ă6#a)̀ư’aÛ†…Ó<‘¨å ©1ß›ù̃è5æZ0Ạ̊ñp—Ç F­ñ¹rÿ„e€9¶¨"²ÍÆYçŸ0:ơ•zË0|Ï™ÁzUa64Ÿ×°L}vÁr#`ÅZ ÜĂ«–Y‘h£₫Oà'đ–|ÿ !Ì psych/data/Tucker.rda0000644000176200001440000000076213154621324014244 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉l!¥ÉÙ©E ̀Â@H„DÛ`û‡»âLík̃ÙŸå c‘˜\jÂPíeÅ•öwÙTîêKÛ?€̣oɬá2í/¾n•ÛøÆ₫ÜM±vm&¸y0s`æ^ú¸̣÷óœnû3 ]Wíï-?w“.Ÿưƒ¯‡úc4¾Ùß6ûË@EÎSa4Ü<˜{`æÀ̀}1{éăàïçíϤKöØŸ—¿¯́ÄûË%{²ê~̃¶öó¶̉…§ öÏc4@6Á̓ù æ˜90sOƒt9vÚŸy;1£hƒ¢ư%°±–öOOhÊ›aÿ¤ưï¸y°đù æ˜90s,¾Îe[°Ä₫AÑ…#³—Ù_ÚÍ}°p†…̀_0÷À̀™{Ïu!Èeö× ô¥~°pó`ñghøÀüs̀˜¹×Á̃ ³¿<́A¸y°x‡Å,œaáó̀=0s`æ>…„ÜÍ‘7Lf­”`Ơq†ÖFÈ­FdÖ«B=œrëAüç0ë³ âu_˜!ñ>•ñÊâÿXV<÷©-â×ÎCƠE3æ̃Y¼Ïºä[÷\+ó¥Íhü<”-æSû\¨ÄjY—}ñXÁb¹?U~JË“đÆø<^8óªŒWW<ï)/̉uo÷Ûÿ bªdwÀbÈêç-J¤yưíæw(æ̉¹œĂa¿“X}ú±X@tºï~â?¶4ŸZûô=‘ëÆÿpsych/data/cushny.rda0000644000176200001440000000057113154621324014316 0ustar liggesusers‹]SÍJĂ@^›´1éÚHl{Ăº^!Ny4ü#`ï]đÓyHǰ®—ʼ|+ăù+ǜÏ_À×F}Wb₫¥x¤~¦Ḷî0äѼ8ø¯:·,æ[:ô·÷¾Ụ̂đƯ¨isđ5ôœ ó¤:5·UÖna3 î©x8ª.¡ —q”%qH9ódusN×¶“ẹ̈Z„Y@™F…T* ¿/`)   5²`¼L„¶½t3‰ïǤ¹[₫^b+b#Ü®\ÿnzpsych/data/ability.rda0000644000176200001440000001436413154621324014447 0ustar liggesusersư7zXZi"̃6!ÏX̀ă@5µ])TW"änRÊŸ’ØâªÙuà,øü=¿ö!ăz‘¿íÆư74릸&ÔÎØÁinz…½Js…ôSb<;ϱKÍô„J«¥”́ $Đûád@Óó«#ùSñçv]¯Ÿª=ë:Ô•†¨ƒ·¸L2ˆ±Ô®DƠ¹ÇgÇÑÊ h$SØgÁŸNÆŸÑ€O8uOĐè „¼1¯ïP$:,‡=©ËëÂü÷°y1°rPM½Ơ³‹·^0₫äu.„¨đï8iHö\q…Œ¬<,»½R₫̃+Jl àụ̂₫÷BƠªn÷™Ư±Í—₫ÙÚ×$”Œ¼´™W†U±đ¾“‹½©.ÜË’m[;àRA'g]û.̃ÏxåÖήÅn ~Ú‹1œÿ jP™àIÉVQSØÜ]s§;¤‰pç‘È›ê>ø̃Xt¥7d›]Ûå¶ë&?Và8kFùÀ©ú›gƒâaDĐÅóZ 3ÛÍ–^éΧßPÑb̃öÅç2ĂGùÈ|`¶^ô{-nö_¢œ–œA> ÛlÀ«h“åRc›ÖU  ă}PhÄƠö¬!„øEH‘@Ó7ùèÛ…ÔîÉgü̃^GÂ)’Åàè7¶˜ ¥ÄH`h®Z“é¥vÉĂnh…ªBµI­Î†áZ†|Î+mí¹|F Êôo?¬)ÿơ.xFĐ;Åâ„^7Ÿ@;HÿX)‹ƒMu ̀èÍ„ gÔˆÖWN‘H@?k‡Ö‰ơÅcàD×~ÿµ“¹î÷rzë mb ár0z§—oˆnEîD˱à»_s{r?¸UzBöVëƯŒf€TddyE·¼*vv%̉y2†¨¥7˜x›Á$Â6>„" ±YyÅÛpP¶<µÀ¨Vå\GƠ'¶hV¦Ñ/¿w¥NØ„)©ïù{Ú"t…̀rƒ3ñÅ£ív¬#.-HPo_₫î’œœË+̃ó2=WëÁïpˆ”ßËV/=qNàZẠ"ÜG ,g¯̉ä|(Q ü7Ëx6₫‘ÓÊ₫jRJŒjK<̃z¤’<Çqº0%|Å1tôFÉi¨ù¯Y‡I…đvÀ(ÿ§‡¶Á t+ (œ"S|çÁ£{KO&®Ú—ñ®P̀¹ẸZ–¿́ú{Z· lbÈAdó®/pÜ‹ƯplˆÍÚÚ“•1̉h›*·àE$Ëú²}V` Ä~3è%½¤] ÆäsÎûHÍ¿†/y+ăŸueHÎRA©G ”s“HzB@ñóÿ9nÅỉ^â´\ÛiZÚqÆkƠMVut=Fu´×^6á¢0NC–ØåQí4̀rC â*É8Ä?Àî~7^LSEL‘Ư³À?ÓÎy*îØª‚i=ˆ₫o{'nω'M‡X®ÈHǵúsßdJl:«¢ưñđc$µƯ x³Ûjj#½óiGû9ăÍ£®UCđHë,ß‚ïÜ­Ơ)Xe\3bĐ”¢7Á]óy³ø¼ÙÏÅE脯,±À{̃@L‹0؆¿X¤!¡Đ ¯Å–J?':PÑ’\WQ‘êd Đ|©_âX ¸¨U/DÙß́‹́̀Y»,’Qµ8̃ỖàDÄv´÷Y‰·Íê˜áä:‹‡"A ?!sGOohq ÇZy)®̉¿jË©áxqrƠ’jg…¨ü¶œđoÜ Êº˜´s¥Ô×Ùé¥e8ÑÊƯ`8+ ?I¯:fF¢‹µft2óâ°ÛoÄF¡|hfynAªîưmAøvÓߺ²%I˜P¶ê-ñ(1IBÓxTư´—•ªG̉Ó«¤BÉ|LJ‹ùäW«É̃y¤Ü §ẩ}ˆî¸__Øûè\­‹"ñ¾¹¼œ̀ºÛç›! Ô+ŒªÊ¸Cˆ„§L̀ÆÔp´%Yó÷¾X<̃7íïù:XÁqĂÍ]ŒcS•×ÜƠggÓø½Ú½>«1đ³+sÄO>]B€×3v"ЦFĐƯ³ÑX¬{¹ƯPơ¹¨ˆ&ÔƯŸ>T“zιẻé˜ĂẸ́§2×î|E¬Í>ü³>Ê-™³|^=h+Î×Nå«s©vȉ‘̃3̉UĂư÷êÑÎƯ—ùlµRo f@UxƼ ^5·̣&đ•÷Qˆp:ú tÿĆ/G‘;‰dé̉µb?fl JôYDÙ…L‰º ¿N8!vÈ:>0‡®Go2Ë­ÊäÍöÏ×…‡zËa±̃µJƠ]ê\ÿưÂ÷SÔ>•¥¦#-›Ơc¥ BYs×»5×(Nl4혨 yëQ¤é4©Üƒnkcz‡å|£₫x»7«kt‚aÆrx4å‰Ç±Ô5Á"Ư–«èöx6j̉qôr;[r`è=J¥¾ÍB€ÔG}Ok€l\µ‡¨1Aßa6Ï…Œ„d º¦BẸYG¥,";æ(5GÙKˆG$‚*”×Ûrî´%3́=ZlJ—¸Ú '_àÔW9¡₫áùA,4)tÑQ]¿àIS—åHiSÎE’]µ "́1•R!Sw§́ư¶²ÇgÙsú"H5ÀYaŒy³- ¸¨‚̀Ư|¹BÖVâ¿ ‹đÍ[Đ´@NF œ:¨ó ê• o)4Bˆ/#°\MÆÉ.̉b[r¤:'$èéˆô‰bC´₫>Àṇ̣}>Ë×y'̀.oÁ°[*03k ơx j_>JßêŒ&ƒ#R₫ƒ±EùgKÍg̣¬l•IG]ª¸“£&Hë*l ÆF Ül€:«ƒÆ®²E›)øZñ*e-Q´¸&+₫sÎxå̀i!v•'\*̀:ˆîËâ!̉K”Kj@ho‡nt N*¼Ûµ<ÊtèR+QïLơñ§r›…a-ŸJz¬RƠŸ{d₫6Ư‰|¹ƒ—Ékå}…c5߬Nu.wa G3©Ê¥?µ¸½¾Ø† ×»vè›aô`‚÷;·›ƒ©ü×E?E«͵̃ ÚT°wt¥—?ë—§;ߨrœÎ§4»¶lrióK6‘á"` ×Và₫Ă*Ư;#Rß±œ„¬Á|Yc‡ư9`4ûaM(E Qt»ñ;₫=]ª»Ẻ­Ư0[¹¶ü9嘯âMÁ+b™K´¼n.)¼mdj…Æ,{ư­(Äû\ºÙ{E»ÆƯ³Ô¬Á%d˰ëŒñç{́Ö1‘Èư^/ù–Ϫ=÷§@ú^iH4ư¬„ÿ¾®zË”F.* ñf‹ø…ÜË8v2b×o±ö̃¿a*HØ‚‘—¤>ÂMµl¥Èæ©XÿL?“È“(†ÔüĐD¡-”´=ÚDÇưf%;Z¶pµ%Øưñ©ÅXß œn,üÔ,Dû¶h¿É™~+¸*6íüđ™¶x̃ ‚ˆ¤ ahøH£+ụ̈hwYLôDFk”Ÿ^6œ/„ƒ¹-ïóÔ¸àWÚŸzpU>êZÛí™Ư`sâöœ"ÀÄ¢₫ăqƒDrÆX}ßh̃çưEW”aÈÎÄSí#IC_îÏȤPH+rnö8|7/—iʶ»Ú>‚ ÜÜ·5¡C(…ÄÈ+oƯúÈßNm›<×́]ơ©xo€8Ä̉¨IE‚sX#=ºf»³₫2(ëæ#=fÚUtóÙùÈ•2Äø©üv€;2­yt^ơªú•S†L-*̉–¢Ơ“Zû× S‰@¿jC¼{¸º®ơ™ 1tÇu ơ΂c"í@ ³6|-6 y÷ëĂ»W¤̃%øV|̀T4íª©e€/̀±u°€÷jÛăSĐW“‚•,1n¯½ís6WôT̉ûs&JÁc:¡½{Ô釷ç~‹3x?ÂăºZÍ¥zÀ÷>©Æ÷rp_UưD4¾vS6}KêAO ùm _°¦¢g±¥¡O¯ET$U5AÔ¿|œ Z¤†ßj^Ú¾gŒ>×Ï|Pp9^¶íI›xJi#f¥Fé}̉„Vè_RÊÎ=B 1+p *c>ÀePIC1́"ƒ$;ƒN‡!¼ª„wWOÓ²HÉ‘ªƯ« ƒn¬Ñ / “·ƯÂ^₫̉͌˲b!@ØĆ°‰ƒÍ{ªˆ‚y3î6ÿù¤‹µŒÄĐ¥DA]ËúB/¿f’Ê`ú‘‡ø€œË\jưéƯ„Ÿ:"₫< —₫ѵ]±“a;Û»{mæ%h4ƠË€ÍíÍMyœwà£Æ{ˆ£äH~D+y4åôvÓ¥‡€đéËV̉Ѭ‡ö÷¦bͬôwó̃ƯnuiàäDuÄT?À!éC;utrô«¤B% Øuå!Xä«0\$_#­º:AÈoé©9¥ Í«¿Æ=ét Uư¸0ÔËuylX­Tñ˜½ÿE•ëăó=¸½† 0“G÷¤–ÖÔ"áÉ‘ÛØÄ˜bú³*÷u,ŒÍu!«$82ŒUü°¦È¢øLkb[°v£—¿+…Æ( çñ ¨™};Úébƒ:Y)’J’oĐË :jóÓ_y{Û]̣ °Ï•„ªc£øøÆP*̃‘VËÓ0̀o¤^¬DrʤiƠü”˜‹˜ĂR ‰ºÆÇ/¶LĐé¹›ç=ª\¬Œ™—´-x®ÓÔ»Ó7å÷Àq!‘jÅKA”ưOÓñžư&¯:hV‡t¥hÅqsàI11´£W:Sú—Ï_È” çœ›Ă®²ơígiÊ•A81¼Ư—ÎMÓ°̀Ÿ%£™‹‰¿¹-\–4¶ëØ`e«)æPÀ ߇·̃ Ó0MQTÄ*2÷(mñ&!V|ñ$H1r[I=á|ÿ{z5u¤Ú́Vl&¡FóW·K¾̃sU;µÔ lªk?̉ơ»:K)¦CP¡Mu¿Únm¥b‡`>uyiøh?¿wĂdœW.®û{ƠøƯ:̀ÏźxÑ\m\Sÿ³«ä…ëÔN7ŸmXÆÖ§ñ]J´€”ÖDèªâŸ_”)åüâËë›À6ĂñŸ'Éi¥WôûƯ(Nç`XThírh:%áH¢F‹‘cH?°$z±™O‹úM2œóV &±Ó²œP[6ª„á–«-ăjĐÍg W‚gk‰̉Û'¯OT÷¶Óá¨Í´Ø(eKhOàQ~‹Ú¥/åă~X;O¼̉B¯‹Ü^Æ% c•¤ °ps_Ƚ}X‰Ê$͘4Cçt{™­‰Ä̉O¤O¸ˆn ø₫´ÈM·>)‚đl?À ¦¶&¼\’!G£¶Ïb+è¤&}̣§;bR_¢©ÎPƠ©¨năW½œ",%aô7t¹ º7f -ß|rĂî’>â2dWJ?¢G¼H~³¢ƒ Ÿ¦¶ö~ dÀ¹Ólx?†ÇQQLL Ë́aêÅ€—æu”¶’E«ÆƯ¯á­U ßuq‚±*̃$(l²rúKy Ä÷<»7àú¦•v}3ÏÑø îhBµƒ«›₫AjOưqåelsT¯«@µhCkV|†iÊ~Ô$·—Ó2ô}™}¬ưq¹~̃BñÀŸ] á¿O´Ù-6(] ‚O‹t“¨8}̃í¼£<"‰ú,F&~éĐâ©QvXï5wß­I@K™ÜÎNÿ‹ºr¹[Qn˜ 7„]&ß&Qṇ€B…DåV†baf̃Ö ÈVÁåÖ7öEÈ'¶K¤XßÙ›×Óîl•èmvJ2¯«H,Óôræ…é×™UÆöÉÛ! ,¡½öè̉øê‰¹xÀđ-áxzæ=ơÎk:småBUơĆm€›ơÇ·i«ôuQø.ö6‘.P}*_—ÓŸ'ô¯^*{ úHä4Ó[olT¢MÎẸÈó.Î#©„Dùm‚Ơr.–®Ñ—É‹t¿EÙR¡®µ× {gIR0”ăI ¼[œÜˆ¨¥L¬Đ>ó4Û₫ơ¹~€è¸0ÜICba„)ô¯W1”,3‘•ÛR“µáí z®†¨f_böë.hd±ú¨œ>•éÔS¾mđxÚQ¨¾ñP‰W8²ÿLŸ|̉Œ›yôiOÿTX.Óu‡)æ}ï9M?^ØŸˆn°îDg{GÈG0•¨yđ…÷ÔTnuS ˆ‘¸}¾‡6êAZïØIŒ1êÍÚEÀvOx$®ĐÍ-¶~›6:I¡ºƒ"4ÏÜŸïîƠÆn‰ñy•øQ(ôüv+‡@sO[“¯ć@æWÚ¿í¯t|Ư帧W\ă4¥5jç½e¡Ñư…Óđ‰fƒÑ₫‰T̀Ç~˜¾~ẹ̀PܾĐ›× ˜ôS̃øÿơa¢F³ÆĐz©½O3z†oä¢d`GĐø6•z²€Rû%_6EÉ‚Dis˜ À€–RƯÙ/ u>V—δYÿRÅù›Ê”đ•HC…¿;Zʦ‡ éˆU–ªZÔú›‹+ µáOúAÊÊMö϶i²Đ–N }́G%,fÆx¯ ĂŒ̀¯4nA:^¦ø%„sssoŒ0…ùăøp5^Ͼ:ÜàS;íå··ƠnIJ듅„<·Éׂ78ÈKưŒËè…;¨ûÎÂđA4-U°¹«[̀V…á¸y™-Q|Pœ­ÔƯâélÀË“ç̣­(·éª°<ülªèåÇYŸ‹c6M1|óXÊ`öVÂĐ„eµ!Ư,)ÜÊă{É1ơï°ÿÈ;![̉3ëHáô ÖØ₫°ºû9?.z¸Ăr®÷>°uÁ-̃›c>x^Ëárßfä3úUà¿Ă{ˆ\onc»’Wqt‚ÇC¹ăăN6×ơkZ .Ûä¼ç$ơƯcö~¸k…~"É‹½%—qÓÑ<GD£“nW¡Äf>OV[ ´O3%™Û8Ÿ)ʳ<[´5KJS̉÷ µÔ–nßĂXÄÂ¥äĂº¾ Å“7Ÿ6ÍD@èá÷o ß́ƠµÅ«ÖÊ If¿¨<ú{­«•C€V<Yg^€"6>%ÏöơcẬ倯H‘kc6÷~XʪÀË$äWÂÚôy.;·á ‰ŸÆuniíRƯ ưuùÛ́ï]ê-*èÿ'Ä^ÎÇ=ñ—yC-–4¾u•ÖCrĂD’ G̃ÇNÎÁnT$yB›É^Ă‚¿%.AJB ôß—ßằ9mÓ m|æ:.[q̣Ç1"ŸÛ áú¸$Í1¶€ <à>0 ‹YZpsych/data/bfi.rda0000644000176200001440000007360013154621324013550 0ustar liggesusersư7zXZi"̃6!ÏX̀ä÷fwC])TW"änRÊŸ’ØâªÙuà,øü=¿ö!ăzv=n?ÆÄº_KúPü-~Ñüă¼»…>̃0ée)÷Ă₫cµ£4*ƒ‰[—w–ëÙƯ¶6¥C6S÷¤ươ©sAl…ăŒ_Ch„BŨ/¢Ø$ëˆTü/â•r™Z‹9mlG¼³+ê-VQ¨Ÿ{GêÉăhÿ,lµÛáßF 7f­Y»‰Åy»ïÛ”&Șíç:üx́GÌ=]tAyAH‘Ñ–ÉMµER¾±%B¼Ø|ÏÎ>¦-úÊâúöØtj]¨®Pn…ÀôÖ₫gÁƠ+#j¨ÅEœ?Dl©¼ 3ä~{¼̀é8ÁfùAÏ£¶DYg8kËü»Œ<¡ÏIkúö¨¡vû$¯>ÚûziËæ² (M•¤kNF₫?«Èô/kÂ}̀\}Ÿ)–Ú n¥cÓ7éå©è׿§=đ”ĂĐjv!>3{r`C‰/‹v re›Ćæsđ¹tIcî^­®»m´\  2Ÿ?CưâúD?n?_³cÖ=ÎÊjFáƠZ²ḅƒ̉…¾G§«áØmn~£µÔơ’!v[RkQ-¿fÛˆhT(É€Ü8”;ÚüQÉÇàL[¬í̉ïDẠ̀wá8‡¸†“Aø̣8„áÜk2é§¥ÍĐå™Àp,Œ¹£̣$аbÉ– Ƈb€ “Eñơ9°—“½Ô[¥x‹ă°œ—ûøÙƉUßÉÈÊH£T5Ö›Đ`µåÑ»Ûy“É êMóÊà‹cÉ)du=6đáD‚tåÓsVåGåÊđr’¦,¤²&å¢x_sT`jr2sÁ”Ư%K~­̃‰Óư®)=‰b?öçvḱ'ÎfÑ9­&Hmêï`>§¹@…¯T1¼³$hÍnA Ëîl‡Àä¢ ÓÉă/r®æ¥BIf­¯úR̉<Ư'Û „Oiµé6áâ¾'@°)O€ X['»Œi˜̀uñ₫_ó"ñl)Ù¤VÚm#ûˆ{sy`²‹­ÏXéˆ̀»x^ëÖQ¥\Ô ™=s_¦Ñdóâ É5Y¶ibTár1Ëô)Ü"d;¼:ăP~è¨Öé™8Ù@ÓŨxáàUµ@7ÄÓ\%÷’æ ^Æ.n]{†-¯ª̉i•£Í±ö9;¾ÜĐtmx±t»YïÚÈœÈ^¾3û.$øb:ÙrÔûöql§ (xª?0pnỲó4‘µ;₫ï¿ó‹¸¤•" d±Öw7ZJ¤ùæÈQóå‘öÊ\2KÛJ»»Ç0²iº¿@²ể„[ÙXÚN<øºăäñ¥óü éà§/:„píN|Iva[„6æ3æ<*@ü4«=ú8- z“øK­-cº*ÚN‹“–˜±̀ó†Ơä–8”J=¼₫Eóç ØÀûÈôö³MYí€8ø€£¸y®¦mÂúÇYÓ« ưà8́ êÖ¿O«îP^q~ÈTxy‹HĂc"xܨÈ|WMçŒ̃àF¬“Ñí»[\Êô×îàÄäĂÉn|Ø®Î(÷Çđưômy3±\₫‹Ÿ‘¨× ×Đ!Ïóá›wˆFd¹–P—ç×ÑÆ̃k܈Ÿ$®X±ÄÚó·ÿ4á*-W‚xz–~£Uˆµ†‘yÆË₫É́P…µó2½á“¿0=Lm»0NH؃àTqÎ:È0­¬ü’<£ ˜–½ŒÚ—Nóµcç̃¾«ïoy”2¸§¹Ù3Ñ‚ọ̈$:&$¤&kcĂ"»`A”ỤÆ̣b̉‰V¤qTé¼₫ôÏ·cuĐÑCxú† å̉ %«ǽŒ&)̣ªµ½éúßÀ̉J+e{ƒÎC°,ƒ„oqj¦Åp̉¤î ̉[âÎ2<ơgáÙÓ!8?ơm°ÍØû³Eùđ ²Đˆ̉âT„ÉĐÆ-T&ØÄ_BM«½¡ ÂD¾“_ư¦&B`[@P:7Úwï]_ºd“̉ÈKÁ¡åÿ:GÅÿ›Çvú_£ Y¢₫Æư’+Ư 9»MI#}ú³Z\t9à’V¿su-Ú.n.[æBTúäPö•°p /yÎ/øª_&qÑ*·ƒœ@?²`&CÁÊ[Çb<´ç×éH¬iïF¨Ïs¿f/CF»mÀLt>ÉNG…Ÿ›û9É0…Ṽ|dMn¬ºôsÖ¸ Có ‰Èeaĉ\”D́Zg‚9t?MnTY·Iđ†‚Qà™Ô*{‘ñÅà|Ôñ¥XÔ™UiRHåY#Á´=û~Y-+XK¹̉bs`)g!ñz‚K£P£²pe5dùA7í é!â¾ßhœă°*ËTA|`僛Ëv».¢́³̀ß¾¸+æ̃ĂuQ́ˆ·ÑHø·;cß±¬»9ŸG—{/=_ÇèÉheâ¡Ï=TºÛÂB:eµ®́§¨ùơ!9b®¨‹^Ơ₫&’¼ÍÏ0,É%Pkgøè”*÷̣4ñ˜+÷L·L)¦«E 6îÍ‹R̉+Z 1̃/ùal§PÿƠzĐ¥í̃p²´Âª‹LÉ |Y¥QĐDÛË*àÛ±Ó˜[1@an€£ÿ…—V—Ôø‰ –™‘”&˜iB¶¯RưJ|a"Ê)Pؽơ6T…rÈâ¥åâ€T­6Rx‹(Z I†®yíâ’HØ‚’0“¬·jcqË2ÅƯ6ÅP·â'ƒ‚ ´Ÿ;»aσÓKá@´­£ àƠöSA¹Â’…V'VX3&rO”¬’aÑ'Îë[t¯zÀ>ÿ¼„ÔFÉ}¤ ×:’øz*y™3êOrªdÚœÈc›đa‚n8è4ÇÁá3¼\ºÖ )LŸMù·'ĐåÇ/z5£¶N,Àprª:89Ö .„öU S΄úUP]«!ëƯºW!Ect‘ÓîI­Æ0‰Ë  ) FJHc"̉O\JpÍ£‚Ë̃­2Vxú”Ä8.z _Qó€”bR*×.nrÈwMË́\Y¡ă­ ă™ ₫70ˆù̀âIƒͰD5‘QôăCtJ~.Óưf6~Q9IäY'ö¤>ĽÇíËx°:ñ;̣ ̣gÄ I‘­|ûUưAiƒXd›ùÂô bQº±5€ÜÁpÏ®scĂßc"¯ûT²áÍ¥Ä0…cYÎ}Q¸#¦ÅË 5½‘„ ‰ôá©t¤yzfæ­´ˆ‹·›\":Pe’̣%i¶YÖÏ2 ²ÖbËÖ"·5×ÚÚß[¯øVv&QcŒCá±₫ÖLæP‡J‹WCR,”7|꯭ÆÍ₫[å§.%‰„À.ÎzL?̀^éz™ơL:P½v,™¦“«Vè?ª"ï§ç±¡.÷”*÷Ÿ]¦Ư8»·ÏÛ[ÆƯ¥­Û©YMDứ´•["ê2fæ‡4G™êW¿§­a%¤*Ö¸99W’ZüŒ²=ö»í„ åơ/W|ü”‹óí’L;ÿ¤Œ›ø„/dZË2TIƠCnU{ûlZ!AM­÷ôp{ü~æ['‰Qæă]o²ºˆ†ØsûÂÇbà›Êƒơô¢ºK¹]B 1AEô›Ùu×Ổé$J¡î́2½EåHP̉nĂ\ƒÂDv¶[ÖñGRnî·‚%3‡=?s7–L€hq#ŸÙü©̉j¼oè¢*Ï™åêç„YÙç"7w1ÿ«‘¿ g –Mû'₫p``n9I±Nç$WˆĐ¼¢Äç²]¬»8ô[÷ó_I¯xR˜¶‘́K Å^$©9mD± d˜!€ q5J ®pc"Ís0ê÷MøE‹Ï{VzÙÁSªƒ|‘,ä¥;‰;-›W¤Âè™ÿ{î^vB˜êÇË$ûŒÔKb4½åb „ÈHG„œ”ÇÛÓEªÑ¨1»₫ÚUZ{aK°æºtgˆÚ&±B°æĂú ä\†Ö™»ñG£»Èʘ#|é­o>r·h¾a ̉-₫ọ3Y°H7̀‹%™¨öă3[>>ˆåè󬵰¨’™Ëvl%¤ÓÈ̀‹¯P·Ç ÊÖHQ‹Á\Ç®ă¨̣Ç”Zè]Ä¥hơÀÅvư#t`]€Zåâo‚½rEœP5F^J‡|¶*zQÛI Ê‹™©rj°À%&YxÉi”È÷³%ú¬}ơx¹-¤·mº¹K%¿vIPKÏY¼‰ ”Ó_§Ơ}@>ó£­ƯSHˆÊVåœÉ”D›̀f₫Á¨yeh̃ü~Áभå QX÷Ê$Ô‘[¥Ø¼…(ׄ>Ê ½§œÆQ—f32&Pô¤̀´¿›s̀l½×è ²ó Üúɨz®wét•˜4btö´U úǺx)pđ™Ụ̂²º0ú ¬ ¾.,_´A»¡Ë48\Ÿé\Ø™#]mÉ¥‰Ø„ÑÏ·ëà’6QÀ¥v(ê[ Esj$é•ÛÛ'&´ l+Q':ÂszB¸|~#S­ªzÚ¯Ơt˨ïđZa=ÚÉçŸĐb0-ØŒ3U#Ư ÖØKÉÍeŸípxX‡¦áˆß‡ö°!̀D¸²`”é ÜO߮Ļt mz](­„¬„›°ø"©! Ru›̣Ä´¢ }W RçLi(«˜ ¦†¥i×îˆW¿eô¶jƯÀ;¢|Á₫ú=K‰«¾¦eP…B·₫<`²M9`>“S3©r’ø>°(l«—̀(cöJ*ư?:ÁO| hÏA¹Mi° uùîëü| ÿY%³‰s{œç¶“4WÑÁÇ–”L"ơÅèL*ăW)]¯k¡£ñ§FÅ ̉Q_‡«#́϶t ÇTß̣ëˆîyÁ>]?G<÷gñJ4ô¶^GŇ{¤"ü½Aá z†´y^æ÷°Ÿz)hß7ë1VJ ¸ AkcL\½ wû„B^üŒ†åö<ȉXäÓœyœî´‘NƯÛdHÈTh™뀑ŸJ„yơæ*ÀCFS»×Nd§aT9F̣áxàĐ­`p&Œgfdÿ£«ü®€ă0qTl¸ÓbƯ•iÆPÑ•hq½äGNÿB§S?^$ÏûØ£d•ƒ2¥Û4«q¼°s}XÔsé. XÔsÇK—­;{dp±îª–' ưÈđ稕Iw¤ %邜a%¹»ÜÀ‹‹…˜ ›Ä »UYä…×’öÉO<Ú"¬ï;Tˆo/ØD– D4Â[×n]§Ç¦h64¿3Kc îYaN¬¾¤_q a/§!¥w[êƯ˜“‡èÔ¯ÍsđiøE£_O%Yơ÷öîY{F¾w½¼ú±¾åǴÖâơH^ú9ûú¦ïª 6¨Ê”>¨f>r¶±G)áÆ;¯MLVß>)‘¥°JCpO/zåàÚŸ?=₫H­Â(ØÓÍf̃4å…D=…r‚£h”íqr6‚0’“°ÀL·̀`đ L÷àLS`¡c’˜Nơ¤E˼ÆXˆ:·ÂÛ₫ĐØ‘'ïĂ9û-g©Ç/¤H́Ô ‹Đ7ßÖ¯# ¡5ᧆM!Q>4 "ƒ₫¬¼ÉÄ̃{@₫Ù4;{u¹íR2JüŸd^h P+̉9VÍ/p.v5¸„ yÅO%Mi?ˆLëE}L7SyüO<-‹å->!U|rXŸ5? 2u"b̉WHß§œ¿¼†7‡pñàM˜A’ÓK8‡#Ùrô‹ăX¤ƒ#?è|·öÔ ˆT3q1h.a¾ë,¬ÜmÆ€—̃Mñ¶~y@æömÿ϶æZ̉P]-kà˜PX+$"›«‚ÛƠ>§¿ù‰ĐĐ>GEk:…­.XBỸôj(mcÚ¿ª0—±/<34|¦½³8FĂ…}mÆc¤X²K ®ÇK »6Íó²Çi§¾¼t̃â¼ ø̣„ä9H«ŒŸ *¦!«\ưPâ€́¿ọ̈FĐ´]µj/K* —ưи•€ùÛKÿÚ¾s;}è98¹–ºØ(fºé‡ê:?½Âbô Ù)M¨qöf§W§jˆÖøư}ÎÈe·ƒJ’2åjc¢₫h¯E¤Dµuà´à ËIyơ÷¸ 9çp¤vZ ¹F.bꨃº¹xsº{@¥ ¢‚V 㦭S Ơ×{¯é*Âi>BüïÂ..vGß„dsRÓ[¿öª(56à "ŸT׳ v÷×ô›ÚÇ ³Q̀z¿îÚYcç̀8p~ü:HrÉ’ÑÓ“¥Vè©™ÈΓ KÀđ]â/]5EFR %¸Y”‰Jô?]Ờ₫盲Ru³²~‡9‹»Â( jơ!¢\«¼tơo¤8{¡û@¦3(T₫l€u8ĐĂJf*ûÓØ_`ƒ÷.]^Å7”óu>ÔDøcÇ–T®ц¶âWtYŒ»JH‡´dùˆ®rKÜ i)=c@îÄ4“…nÊ V¾…h­ñHÙ5nál™oüº„ kWÙ<‰íẁ6ÇdÑØ{},—kàîûIl9Ï™+´µ÷èăWÏ:ău‡+̣Íyz £Ñ«7R©:U"0H(¥B€Ä‚ê&µ¼Rx_ø½Ư$ÿă;d(÷ó¿¬MG¿gÉRŒ[ËxäE¯K6 ̃&¥ÓÍ*Ikv”i¬NĂ;B2~ä@U˜ JĂƯ Ÿº{á£ëƠŸ>0ƒwTùµô‚ Á dl8ñ¾Ö©@%³“Áa:·F‘lÎâ†øê+đü}ă¿H”î¦ư'¢ÿ‰¿̣Ơ'My¹¢îs̀8íÎ%¢áª%挨ơcµ̃H¥xxl“wÔaÜ&vIÚ₫̀Ó|èé—¸Pqm–©o+€“ÂÅ¡_<ƒx½̉p5æeÀSK9àf…"© ùh ¥È#¼-Ú©´¶zl>×Ѷ\΀&0’Z)̃ â‰y«uiqo’ÿz,¾u>E– Q•ăª$­éw]®ø"ê3`´zÔàX¬è̉)n MœqS¥´öÿq{+ØÆ(×WiĐÑ5º¨äZt:W›²sè(^vË^L‚²Ï–P+vóhX#­g›(­Óơ¢%cå®~ Có‹̣ÄiA¥ëÖ]©NÚµe¨†]ÂTüÿ¯%uhṚ—.• ûBo•¿‡DJiKedç³×—¨èáwÇ̉·D¦*Œ.¡F/ûñß=I@ơơFÔfđÚàÚÁFü.$}'&Đ”ñ«ˆ[Z'5Đ ZÓŸ‹”Xüf,ŸÑnĐº2{uË|7‰N3¯ƠXt_Î÷Á`æV´TûåÏ¥Ï(€^ÂpE™,ôf;¾ûd!8’æÍ}©ú!h¹tWÁC°¶œbt>ơ'Q¥MËư@S¢Â4À]¾ t!ơĐW׬"?S@h‹;s´æÿ:G7¨IóxP{wb·¥¸a e+E`ó4»uŒ~œ56RnÛĂ3ÔÿzE₫T²øÅ/ma0Á™D̀á4Ÿ¢L¡å1{K‰2îcô5}Îđ•£§â|H¦é¿=Ïï£s xÛڵB-#1b ä—í̉Å> hë†ï®2bùO؆ïM“v $‡Âàiç=ÔtÁ:páÂU)`@¥y­èø˜›ˆœÄÇ €ú!zó.ÙÔH~ºOȇ) ≠ĐÙ¨ÏÊûÊ1ËÈ‹­Ë̀³ƒ¥Đ7B*¿µ…rC,K—6÷ô©‹̃$hJ!̉MïØd[-R3¼ăCËKºù&[a;¨àùVHùéZÚÁtuÁ;)à ˆhÔ^xL¶̉ÿ²Î7²„)¡û|˜JkiP7Ê©€˜Êö )ö#ƒĐé%ÉdPVˆv»Ô½/­÷¼TrSJ Ùú…ø†₫1²ù”Z~j‡hS›WZ‹´bkdÀ’±·TBzJ¥ uàm̃•M¯ÙF°^ȧŒ«́&‹'ẵêzŸRj:^MÔ³N³•ÓÎØzDĂđÅ®rÏ!Ø;R],tß‹¿k©]~!¯[‘ ́¹Oër³7Ó¢?ùÜn±* ׿n¡kăE#¥µ#Idœ19-v c#ƠÁo{ ™x0,D¼R{¤ƯeÎ:æ₫NË÷3"!YJËîçÀ̀o„îf•ô*tŸ4ü÷Úe|Ó fĐÆj ¢ØIÍĐƯ;=[àEß=Mˆµơ'¹8N]ívỶy Øc ŒH”#Íi¿Xç =$¸£§…¸SbjẸ̀íáñ¼„—vXw^ø=¾™¥\Lvẵ:¬đ)ă'Y¿–¨·ßfïÿÇíg¥.é̃OÀ|WLh/fÅm XkT…8Ü8s₫ ¡wr•Å+̉ïï…Ç'߉°áưtéᦀ׮a‡5|₫Å l-¬êđàăÛƒa‡ª°Êeå³ñêÖÉO_…Φ'OeÅç:H&~Uø›}đ;Öb¨¥›,Ûeơ;/6𠉔 ûKWæ̀L´KÙƯÛsQ©¬ ¥ ]¶ÚÄ2Ú.Ö$(Ë«·PE1“ÑÓỄ8H̀Ænă·;̀:ẬÜÉ “GøR̉*u(E=;Jˆ|Tö7 }ú»E„g´×£¡³¾û²©ûÇ ÙæăÓ?:Ó`ºñÏ9ßaTxvœ~´[lSaS\Ổ́%”*Ĩhˆ̃\16Ia;—Czàÿl3Í£˜–MV̀ü<:Ê–²ñ{3YÏ¡’Ăí„>Ûu¶9ḅƒ¯̣«@a/Í₫¬G»̣ gÉ »ôñôcŸ°¦DéêĂ8où/ Ơ½|I Đ8Å‘•—ö¢ pFÉ%ùË—¶q}S¦ù9g@5 EÑƯá3n?¨ºH¬©‚OóÓf<¤–t $_¹•' :bV½y•—¥@¡ƒƯfi y+ζ‰¢g7·¹÷ ¬¥ƒ<Ѷ8‹™¹±Ư(”Íܳ¢RQMú̀ç¥9’^‹Jµ¸)®²œF`gsÔsVyƠ®ÖâÛV´Z}F­B—~:=́~MTøxyx˜^/4Pà§â\°np½zAXJ@Fă0Ù‰eE‘¤–̀ûjåQuÅ Ê7ÍY³alú‘¶†ñÏ Mü{iWHơ’x†b¦îØÖàæó^åè¬R̀C-n„·Œ y¢đz yy-û·°́h²’ntáE½`4Ü#m$—]Ă²³™ 0}΃,H÷ Ç6₫¥­I"Ä`‘öÄ›7a¾Đ“[=…^¡ë¨œ5ÍG7w" &±f̃Â!Ç·́µ §}¾AÍĐ x—÷cz̉ÖÂI₫kÑ…ªó‘ÖRyv¤|8†ÍZ´É?È—½§óo<“gØNo\sX“zu¹ßư[mú •á3ú°ª‹Ñ¬ê¨`zaú#₫øÙ£üåGp;tµøQàÙù¿øÀ­‹¹Bœ«Êíª²½ÚÆƠÿC`µ'u´ïøù{~Êc`ù0́ÛÄØñûÿă S ¼ôR¹Ô£˜: ,Ế…p‘Bàẹ%0´Ú §[x#;Œđ›¶ Ü¥Aé¿ø̃œöî8¸æG–âé=ؽ,í]¤<ú]mÔ˜Âe¤-ËïDßæÖp-;Ú3jVتܯ+o}îbü•£SlBĐhÎđnm#Ux‡, ×?XlÁM̉â?7zöÚdˆ—@EE₫¯5 ’åXfµ­î®G¡¢Óv,+Œ 3äɆ²]¶­›ö4=l+#®94ôvÏu_OáXÁÈ4Ç4x ^µ^o’₫"JL’ —ưbăËæœa®Y ṃUnKÛV“O₫Ué‡Û™^hr<Çé.zfúDǘŸÁ~«Ô&æ5¿F–¾ ÂÈD²b§›QAw ©…µ~oñ«­Ä8ßè>}~8SÁ ưĐ–“IB£5,ĐY&|î‹¢h|'K{o³ª²ózc#¶r™­̃Ûmve¡e{Íïä¢Hïs‚Óë&Xq ®äñj®Ë®pD/|éGJÚ&±B‚°[âùcÖÊ>ÈèŒçºq¡tÆE©̀á¬0aq{3ë:ÛeÇ ¯ï¯ºơME]ôuF ü0ÀËI·̉–†fvˆÁnL½á§kC²GE1O†€å><øe2o„ÖKj/Wg`ß´^́Ç DH_Spy½ƒ2¨_ÄnY÷%I %³d¨‘iHĂù̃o´2ûWwƯnʬ‰5©´ )ƒ€ÅnZy‚îđÈá#́â^d­‰øeK·:f&]7+yp\Ke‚U’Ôœ¨ëéHi>Saû¹ŒQHOpѦ©ÆS9ƒ6^{Ó}<`V‡*Ê·÷“54§¥‰›H.z‡vL)oö ¬™©„7+ªS­•çsl×ơl˜Pá6M̉óá> °ăîíø!~u[₫%¶²qÔ7’6 ÊdçG† c¬1ưœ[Ö‚‹HÈĐè£Ơß0¹eô ç̣çvfé‡˨ø4¨’2›,Tä§Ü0ôHƒ´=Â(.Q{&ˆpzåä}ù=Z'Å1²̀L!E7”Ë©’düß—ă>‡˜Mîß*ÑŒ¢r…B&ÈbĐt< ¼Ăư«%#Ó„8WÑ?¨¢^ T-±K#z y\γC”S¿¥,Ú<§‡ß‘…ˆÍŸ‰êh(²¥Ø~ÿ×…9ăaÙóDÀîÔ#̃zSl%TÛ˜!j0H}øơáTÁQ"+ăÉëâ"È̃ç kæÇæzÎr5#Â0Œ ç­u´`‹…]n5·ZƯ¬æÖ·l •–„bfH‰Atœè·°É>?œG‰£Â&!“R;{¼u­ÿ—éáÙ4Æzœ¥—Ú†đRy2]Ơæ8mßM“¾À¼³¶¯f×î2qCJüÔ›Ơ±÷e)&óû`FR·7ºf₫2¯™ô™đí^Yª£c-$“ü© ¬&/.[PêÅÀ´Cc¸†̉Ü8€ĐoöƯRúDÁhKÇĐ²- 8/Å¡$ç₫£~R%a3[àB¤ÿ`Ăđ‡¤…fÆ ơ6hæơhÂÇzÿp,ÂKâxQ‰6\dU6Æ;mB¤™{\ÆÉ­¤‘;èÑ¢-¹;¤,¡ÆÖ§Í9£ëÉôƠT0ä)ªK_És!Éü¢™ƒå„Ó½cWQµ´¥º1ưMªÇ6€=Æo'IMp#dàAèoO»´¥»ç_·6¦ î6ɪ:±̃ lw4YÈFŒCY¦0`o—®¥ék₫j˜E4¹uÄ́sÆ÷}§'<ƯªÍ¼¤êÂ. <[8µßJŸ‘8}茅Æ3]غ à½Q ·À¶/§YÜ…ư¸b)5|?_WOPë"D7ˆ«±{#‚ `¥y¶mø¡]~ß»‰Äz10ë®m»Æ ™º¼nè¶àZơ0Ÿq gÚcªæøAŒ ÁM-Å‹(hi)ÂR™û"™xg.ÉPpé•Ê[/-‘"y£€8¨ômÉLe…je-˜ep¾c,ÿ%Q²g“F%ɇŒÇ:₫GÓj³/r÷— <0”fOG;A”µè7œ‚äzd;4ăƯ«ÈÆ2=†PIÖúô}Đ̃áơÑBŸ«*³kó¾9u:9>€ä¨/ïđ.`hùÍ2ø}¨9;êÖ”Ó ²WwHM/;Årä ¯yÏà¥YôNI@•8˜0æad×¹hÔ¾}̣̣¶´ÙAá¹]¾F>¯l]ÁaÆÍe¡̀S£¨ÓÛÄMs-ÿ [ó#ă´s+ºÁç¢jVÚ-IÆúë·¿µÂàg¬Œ­Xøăº×ÅXƯß̀ä ¨’e NçØÿ¡€{}óđ‘xA¿êù[’œ×W6e©‰%0 \pà1,ß?U¶ưCq¿Y½ÖåX̃åY›ëE₫œÓ’&N'̀ØûîÇîê—u×hRùïtJ&½\9Ó‘lŸ+R´¾Ễ€Pʱ,S5(«çï²À•½5½e,–í85¶ƠIÚI!'7¹fçÜêY ¬é™+*Ôe*êÚóq€¨°rÔÓ‡$²Ç̃ôxUˆ¶é¯·à¤¹ö/W•2Ù̃=¢4Đ«ÈÓ.nGsUI»ÖƠ|Ơ„Ø¿óĐ"9:Æuø‰‘ØüƒlÁèɧª!æØ\º³Y¾<øääpgLæ½å&ØÙ°fb:Ây«”́qÁVĂlÈ}”ßk‚ăêvÔÓï' ‚ ­CÖOÆJ+á)d ”¯Í¡÷¹ÆcÜ_û|H96èªyÊ«̣!ÙB¾¶nø0^jejxçwt¨bªÁbfm˜’q° z¡!6ñ€m¾›¥Ünȳ~¡d¶(Wº¸æ₫ăÎa´ §¯”w#üJ9¯ç\‹¤P|Q₫j¯k‘• ¦G‡Ë2ËAƯgdO)Hø=E{;O´̃jxyÖá,ªsë©BAÈ…áLG%U<\K†üË_ßæ-H;©t́“(_ t¡:‘“Ûkqn&Û‚%‰j“WôĈ"îF–k°8Ô–;Œp^ÍÎ:À KÔÿ6ă+Ø÷¾l˜rPT"kHQg¡™ƒ×s#µ\ &‹‚&†¦îMđ̉NrVùaJ0mp—₫(«ßmt)cĂ–" ö GPÏQ“ë:_kđ±ÔwÅơ tÇ’™9íḉơ¯qÍ?W£¯#€êe"CN…)ü>l÷ËàQ³đŒïRuLXwè‡ĂTí[Ï:»4|@ß—: ă“[Z 2™33!jWC1à/æÿU‚\8HÅ @nↂủÖ£́¤Ă­>Ë ƯcĂô¸f,pº@\Ëz´4/zî´!–¾½ƠÖfG>İ< L!æÉ Is­Í;@ÏiÂ[œ i>É«9·qb§€WT.¯k+‘¿4æ _ ”PâÉ­U¤0.{Ü•·2µiÁ|k‰÷ ƯPoÔV`Wâ²&˜=yƯ;&ˆ¡i+¸§ư…雿Å#%pG€â{9̀ß̉â…ci}Ï>Díé‡ríÇ>é“Pn %Äó»ß¤ØõР ŒệNäG´·Ü˜QpG@4ÈCÔ•Aàøw2F¤'XJàP¦ô~=‰ÊÆ%?ge1+eA#4ư©0₫¯©iÚ³52ß4PW¾¢ËÈcä`n‚–!Z!—¦Ơ”Z¾™5±ÎĂES [½Ùn’,'bmªƒ»1OHñ€øÜƯ’—~XA…CÈ w¹O®gU>+X’ ôfy·jÖ$ÔÏ:O­WÔU£,ăî™Ố[¦~qèvÖÓr₫m[Ưí¶88ăâÇ2$̃†,v…ô÷µˆF…[‚ÿF ƒlJœº?iѯ9 ́ˆ0E’°ÈH‡`AYï éµ»ßÈøßg J–ÙóG]|·ôṾ4åBđn’|$Åö•Ô†ëzxU–M‹’Rïº@‘ĐöÂrKh½å /†fzCĂÙ3ϽXp #…IÑà.#:Sg¿ M6Ót·éàY£ơ£đ”Âo¿Ơˆ{•$]˜aɧÈä.I¢»Ï\DªÚº½}Ƽö÷ Íè‚9§èpKT^ƒ£º{ÀV.cù́ᣩ Ô@å_/uÔc;v\WQøÂUæÅ̉³#ÿbB¹PµvLfOÚÆ̣Èr8º%-FĂ]ü„«Ær“(¬>\G¹øª¢ ë”€Ôµî¢ˆŸµ&÷§$Aª¼PS­ù?Ư™t¸ÿ ó í¤m¿IZ†KÉÊ1³Æ]ƒ11²)­&ôÙ½,º×rê,°¹†&Æ|>—_Úx³+dÚ¾ë‘̃<ơÑÛO6¥¿RKH*ˆơB€ .”{eT5k·Zâb Ẳ ̣¶D6~K/iÙÓ ºKăÄ™aBçÍUAz\íđ oÏ„̣}i–Ơiđ´^O6̃ÿwÉÉ4„qu…|¶9nH]>i|crˆø[_ƒ9iȧ„A`ƯưKÁT9ơơµÁh6Jñ†~4‘\`‚‹½ß9e¦¦§o0÷ 2Çr¿ÖñD„êođỊë§œ멜|ÍÅ5_ïzªùD&÷ùÊ´̀Çr}a.À̀‚€Ơ7‡ñª¢^Ñïß{jT1K _¯²üê†d!Rå°I>÷º<œˆ¹€Ÿ¶üv×¹zT ÁE’‰Ûơà=«ë¡Ó]¨7pbí)#‡\í§óJÔ¥Â"´Ó =)®¢bƯ¯'¨ĂàÅ;VA£B+r‚1®S.…3×w²đ“Â\@?ĩ;æ" åRqÓ¾Bmy%œ¹'‡%nl>ï2|…ăÜ+Á·ùNH¤×o Đ¸°Pû*¹ Úÿ¸“ñ×5‹Ù‚¿¸ ÄZ²¦¶ù(G¤dÀQ^|¿p€̀J«À)™o=©AçSΆb¡¦2Bå䆣ú›NM–̀A saø«/æ+ 3YíûC̃‚±Ï<™ZxöŸ€œrІlM³¤«©Åºd‰5  …—Z*­Y$»;®(æF©‹~.~Ñ™¶Ă§Đdb31X(v:k V†¢H ç=ÊÛÖÛ&ѹ‰{¦ö@Y®_Ç¿H­!´W€E¶œmtH?‰e?ź ­“k¦C{úÇ-ÉïÆ…¬‚™y‡®~­L—v˜qäÖ2DxùU₫uP˜kA}Q$ª›Å`YÛ*Á¢H%“êư–gٴʧ‰.'ặ‰0D[FlYˆÖÙPÑ(Óà9èüLTºØìÅmüV÷Ä};¦)êvŸÆw7ocíóäugN‘3OyV_6鄸4&´¸ñsÔ Êd̀1úѨƒb,`™q)ÆÁnN4 ĐAfæđMÑŒºAÎY¡RMw…½WúX—,ö‰¤1jrz~ç+Đ?â ÖÙ'½ƠÅ¿Ü[’@₫5R±̣"/Uă2›Ø$_Ä¿¹Î)ùÜÓkÀ¦HăÇ”̉Åáu‡˜²h;Uùôơ”rœEpøÉyÆ „æ¥ *[„*üµ-ˆNqœơ;4èí'ÎÀnŸ„’í¾KëÔ ©xÏñ̀îçMZÄÅn1èªO¼VÙ¤c›'½>T °ÉïúÍ'qáa-PÑơ¬à₫×H˜¶€BXÖ0•9×bkå¯ô”dRí¤ˆFÄÔ/s²Xúc‘Eà̃¼CázÑvÆlÈê–R»´½#ç·O­Å?‰ÀúØq—ăøÑifPvÔgHŒ| Tá•…D 8ü¼ŸW8od¹IERØ<w<̣a¯h6jD¤<ÿë‰Ơ/wđ´U¡Œö>ó¬l˜+ù«B3:ÈI¿×] x«N͉6L [j–Mu~Ï:y øÊ†ùJ×äPPX́ăÂléÖ†Í ¬ÖÇoø`Ï•fMi•2º&…±K íßA:gÔs àƯ·<)ÊH®l:’ ª—§¸ÖébƠTă1À­ư³)»*ÛQ²_ïÜ„³‰̣‡7â†(¾}Ц1W ¬ăxÅfđÛé]#5ónñœÎ…Œ°QGàĐƠq£á8ÔS…̣Î>/+(ÀŒ¿a+)Œû.¨Ø°ơ•äå4Dø*½NUôj±‘­›Ñˆ«q_ErƯàwi‹±$][—×ưƠQíüH‘j7÷Tû·ßµéaxf~Ê­¦E`æBŸQƠ#́Ú8$n₫=ÊŒY¯l-ÁHf˜¡Ư½lw•Eq=и¨Wv“®/NœJgÙ@-‰~@Ïÿ"g•%øÿöAü~e›6¶ơɨ~I"ÇÈ媨áI×& RJ'÷áeµ"ZÚ¾„¥.¹7{†é”ºí—爵j́Z…ÖÛx÷{ÀN„i&ïZ˜‰P°1³àºo ßV˜#êE-¾ø…¦Y¦áp@ÆI“IT´„¥½F-jđ×ûgsâaµ&öh6ô%}U£"`“&6éùÈ<—¾Û KÿºÈíŸó°ctGx$u è N}û¥öµréÂEn»×µÓ8?O‚2‚ÈÄƠnX…6~\ëÛ^ ;KJ~‹$ï¨ƠÇéưze F5?­a꼑Æ\ (ȉÅQQWô7NGûuđØVµ̃R”©¥Æß$Xôß!<¸Åß­éWRl…Ù¬¥ö™Œw\„?vª̀²µ\çµÙŸSdž†b®)æư\yœD^‚¬zÅ3-Ó¬#!ï{Gw—N÷n®./åà@"¢I`st}T.ôêáªçR&aŸó ÜÜÂP±yPoR|è%ăƒ}c’ÓÓ¾´¡¹Öu± ˜¿gi"æ+å~!Æ^­‰Ê]ưb¢<ùưëWpcø0…́8đ‡0oâ§ưÆPKum¥1Ơ¼c·ṆĂQ!oª^çøœÊjRø¾…Uâ0©¢.,ĐB—³jöƠyé°jPB½Ïdñ¤‘ºS–§™çJÜ›³Í“ª33ÖÔ’R)ó´­çøÑwVJ¹•ªvgP)2Â6â@÷£Á(;#[±ăZ«4@dhô­„»¦ €¾ Eư"m¾TN¸ co†'È©˜Äé 2Q„rÏæUô L§H8̣Jz~vRư ¹Ú †IdÚª†&»„0AE¢¼¢â;̀s²û«+»#ƯÎW¸?{Iy\|ù)p–đ¥Ï^Ÿh¶ND́ôåÔ·HC9Û“%s j;1/Ù.́2µOxáÍuú3‡؉mÑj²́Mñ[—»üèsHă¤×}̀y ­W®Ê¯4.7Ñ_êư#äÓѺÿ±PCéêđÑ¡À»Bö>˜u|Ñæ0K¼ó³¶ˆÿáÈ'6`êek;–­ˆ‰Ô±’·5ÑÓ„ËR}ỷ\eÛèƯcƒQ†åv´¦YbÜ6£HY+Æ+̃·ŒÉ¹$©Ùüá3ÿ4äùä¶ĐØÇ¸àa€’~)ư$d_Yê±ĂÁÄ·S»ñü'° ô ̣F̃”!q;êe-|YQe`ÙMŒb˜„3ƒ}¡Ÿ{ÖZKøEñRr«J É})B´.MBÚ 0Ë­–÷´K~t¯Ă–58/w—¬©§qÊBPI –éyd"|˜.ÙûVÚä ²…ûÉWDBĐlc‡=†ăRT½ƒ0r«}abêj*¬C%Ø ´ơÜ—áơÏỉdŒ,èF0ô07FFm’á ̃>ÍÀ˜µ#đÛiöîZ ›ˆe=qw¼+–¸d:x‹jĂơªÚáëÙû¿AôÄü¥*€îåEÇg›GAY½{ù]¦ôÍ\?̀BH”á4°aq’i»íÀ›Fª¥\®Ug}Ih„e=¨ưÍÔ2 ñRJ)¬ùØPaDÙ¶&©G/Ħ¡´ºƠ³»¹œ2®̉_-€n ›Æ x‡O†ÀäVóqSGLtåu@ükÆÆGyßÎÄ‚ |@)Ñà‚+V†L Ùd‡—uÊ)Ô{Ùª™Ư›’<«PŸq–÷s¢Ÿ°¢LWLŒ‰Ư%%·˜1đ₫“egoƯK}_ .w÷Ó~7·©a‡QV›˜w’1d*'¸ÔĐ~^:Úé{êv| v^Xu& [`7¤@NÍơLZ'‰&»Ă™ñQ áª{k6ˆ¾¤7È0™ÄM–)“kͯó%ư¹d đÂR6F¯3²ÛJHÁù }æá«UœO`ñ®¨9Ü‘!_V₫P¹£7v÷0‘Ų¦1ë'–¼Â$ÖÆky a ơ"^Wç'ë´RÖr䯛SÊ98ưJÖb››Å½e&ßvºÿœ™âÑ€̀"4` h2|íùa Ű‹±<Ƙäè=̀ˆ₫©‹¦‰OÖ–â|ékܦ 5yüÿ7í=ÖmË ²ËÛä“Ăñ­ơ<· Ä«p±)ăß4-Ä!₫Ư¤̉Ây.×µî@Ÿ°‹́–F‡ÏN½)תø̀áü¹—1<Ët¾æBBûÔª™ô¾Ê5á²~°w„a’“äñi%J±uœ°úpç=ŒßÿN±’X+î‡K̃Ă–ÆjÆèkù‹‚²jtæg-b9àzvëwص]j$Bkrˆw\”ÿÁø˜ª³¢ô¹|¨ZhJ÷å?Í»ÆÑ¸|©ưs—½‰(>¯3í́¦—Ùa¹óÖ#?ëĐĐüÿoKb­–/ØZUàà€ÏÛ¤7›~g+Ê3'Ûj|dW”é̀¨ (ödĂ*Ư[©çYêA×CÜKgĂ-cúW¦‰u _É lÍ>jOC7ºi¦ ê +G "›ÎW }ö°ă]Îe˽;}€ü$ï^–•ɆXtzÜ혦pé·"Ûâ<…LđJµC­ Û8Ù›º–ï»í™XfÊ#CsM–8vÀ²$%úhʼ˜‘ĐÁ¥ —cZ9ÔTÔ4ëÚSyx|AhvLr)¯Œjh×\1¿ê˜¨ânc¤HuµVơ.+rÂm…I{süA%o{«‰¯’#¾ ÜPTp´+Ç^Øópæ‚-c₫6^¸@Ķuw q…H[ơ¦V×’ĂJ¾o¹}`ôĐ6Q 50>osỡåOí(Íơ)M «½ây@Æb–ÆdÂ1QH”ơס‰8 WwV,‹ Œ¨Ô â… „û,ă`%œº$‘z35©;ƒ`Å»Á€‚ĂƠ NJ?T^vX¢j́ĐÁ}lSƯè&¬Œâ³j̣®gÓEw5;» =‚KIÀ§Ù176B{¹p÷¾ÔäưŸü˜¯·U sq]³̉ơN…li€™z""Kđi‹uÜ#ü¨w°ùÿ Éq‹#»à]Hÿ1~!Ûë@đ©àÔƯ#1̃½éâ«ë pwô”¿%(©¥Ă±ˆR¬#ÀXD,¿¶dÔy¼ŒÛ]¹¼™/iH–4gÂ,®?Oü´̃t÷WÅBbÎKNªN›ß-\rH« ¬…yÿ¿Y€:Ûߣ2ßüW”«l¡0]“†-`.‹yđH"öȃ¨Í\{è‡c{¨{q8‘hy¢d/L伺²3ƒÊ$’CĐâÚ¾ªbä®*Ú#QúSŸîN’iè¾mÛWé=S¡•`uˆ=R₫“µđŒGyPª•ü?<®ÎÑrI­çQ«o!> h}^É\E½^œóO¶V>̉Ü̉»“¼’̃ÔÛ3I×/vXª iÛ„èK̀Фó^àÍëwzµ†²Ê1Ü'̃§½Ûä6ks÷_Ï0¶±=âb­÷Àʉ•FsyÄi<̀û Ö ½µ!ĂŸ8Mˆ¦.yîgÁdZCëi çàá;¢Û½ùq\vy1³;@~óïFĐ™ÆU¨àˆĐ“[÷¯»Ă;½Ơ¤±¥h•2?ús]k÷*¶«K“WÄÜŸ¤lƯbHéÎÑ₫E“ô¾$Æ!ȦC›;*¨µeÙ‹Ÿ~¾p:q™Ù›Y@³•5*K[[)GÙŒ ˜´¼—‰‘Ø¥"²èn5U±k˜läY8º»íüĂ‡Ø Uø/K·<Ûå¼’­fa'K`Œ´I©(^sçĐÑF9Ùj‡4䵪æälÿ3>FR›Ÿ«Â₫­k”èr»Í®ŒhÈß¹ÂBZó¹̣`^ú ¤ÆñEbcXđÓ[´Znư·Èfư¥î÷ÔF̀.ÿ9QƠ30½t5OP{¸Ó í]r”OQđJ<Ÿ>h1rú4´cÑ@w×Dî%C4͇™9#E‘ƒë½ÈƯÇ ÏXNJ@ p×7[Ö'ªîÍ#p.»Ë½Â =̣ă@œ¥__´µNW©…¿®ß˜e‘ä¯Åo÷`L;ư:Jwx óú‹R¡ÅÄvÑí?ÂÙÀ:8NƯ|Ă>êåX¨ÍÙLœ;óŨŸg¥¾Ü£Œo4ÈCpü¸>â5¸ÎL°,₫15YH»ˆ"³s°I—@†1D¼7Ơan/2TA&V2@êđkíóÀƒû¦…-G#Dk₫̀¿»×:₫5+\L¥È`7̣Ræ£t¨ª½  €GưFHđ´=ËÁ÷61­Î46Èu,Q·œ2eÍđå1Öơ;ùm²Ë ˜§a)î5IMP‡kơ•đí¸³¨¥¯$”¹²™đ2Êi飸§ŒR₫ hí?ĐI,·wAÙ]ªmeabGö¼³(Ïh«=™6W©&£èưÚkOe›Bœ•Óf¼Nfd i’Óè"¢î„mA>:&D¶ÛăjߧŸÇjwđÈ(Su­Çâ•pƒĐ`­-Ô&W{³7ƒS˜~*!U kël¦`“`ʲ2Û₫öÄ™X`¤DiªGI–d¨9~–,;óhôâ~¥¬oG§•Pbñ|¾÷½¥b —)ùÇq.ư)vG”Á ~ªLØ;FsΉî¶l6Ö¯yü•¡€`9À,j}3­æ WÆ/D˜@¢›,Ä3 ¬E#ôæøÙi³Ê²‚ØaMÛ‹„2Ñ2ûaqå)Qh;x)&l;B¦áó­Lñ°'đeh0 ûqf¸ø¿Œ‹ûˆúܯQY仿§v!Y³§µ°i}¡úÍ TS³Gx§¡4”’½J„4Ë N¾ćx;9"³ñ¡₫™å„₫°+ZY+¢zÆ$H·øÈs5û;oaÀ"óă€ÄûóFéuú6Oø"åË7zbhq¢\Kí,ƒ₫¾Bó²CƠsa¡ÚÉKÑtSjôđ¯-wpQ7ßrá±ÿẹ̈¾¬T0…9pI~Ä<ëyü¢±‚í‡ö~Nfö_[lê'đ™Óv«1öGAw‹¿ă³Ï»H¯«|×Îl•t2„P-Êt{Tâ¢!VØÆ“ŒeçBÀ‡…Í‚‘¡úª(Ơ¦8€E₫|)RIÂ¥!ç'¦8âùœĂr>7d­¦Äkæ/ÖS§0©ÄJŸ#À«<¬Ùá?§£̀¢ç۬ʢ₫„äUøBỔ]n—c`‹ÏS1àÙ~\‚†ïel4¤ÏNS›í*ù™đÿ)áKÀí8­̃èíĐÿpôö¬Sep°Ïüñ^•5tüù™uhi í₫^†nÜUÏN‡Ÿotµ½Ư=xR_R‚]ÚyvẠ̈¦Ëw U¶ s¤G°$œX&rÍðµpè?­½¢ï"÷b!®€2f@j—æ²ø6¡Hö0ar…®ªđ=>ö‰nå>s¤`’¤§áÂêdmßT3PÚuˆ`’oÚÙ> tôào~|EH́>R"¹DüWV¶FAqr£Ø!¢Qz¦uëÓaĐb” »ä{5âwqI-Â!è& x¡¡Ơ6}h§t”3–“7ÅBQzújÿÎ¥ssúPvr99èrµ(t·+E¥r¾¶ Qm€G¢ïwĂ´`ö Ü(7=́‡åö4ăÀ'9nbºF“B>•…đvDÅUá¬MÑ̉›ƒ.»5£̃2‘ñ͆·a>°\GÓˆ-²uïg¼«wÉÚä‰ïÈARXX“±ºa©“Ï¥Çú¤ÈØ*ÖÑí̀kQÇD,5ï¸,SBwÎư-‚}¸3çB—RBYÊQiÜù´† ƒûÖ2;^^³%å’qkM4D[¼RôT̃~·|Ú?JÎÄ£Ïs‹@,o0 <̀P¦W/x¼.jLpÓÈ?£ïQ4ˆñâ%~ÎKºö¸ŒBµ–Œëơ|c7Ÿ5Í”Ü=gÓ—’³¦›á¯³­å+œÔÉzîN܆ßHđé³7ị̂Læn#1H5Húeô’Y ³âŸZé̀A ‘‡kÑǨ"¡ voÙ,ü)Àævt(cë|̉,” ;Èdà]ưĂ8VçXO¨E™ö : e:T+÷œÍqÉ^oªS˜k÷£=¨'ăIäÓ«¹c¬³+q3N}Ú0Ô™Ös>Âd=Ȱp.Ư0#§?\3Sî(̣ôạ7̀¯²¥ÑŸƠOµ̀Û½ÑJs&&¶ÁEr?l@;FFôåÑètå˜EOñ„e'K.S“¦Èù ̉Hëáj<™xm©ùÍHF Ç\„;eéÑ,3ÍƯÛˆÅYJ$¿I…¤rܯ×U©µ.w‘¶Ă¬‹dêàṇi&€́â)Càjđaăơ+>¥C'¾¹~d†©xÑ¡5¦ƠơéŸ#Àê„%±ă°kÄJÿQˆR̉A¿¹&áå÷$|v-êƯ3ö£ B¦å{9Àº v?̉T[{¨·-? Ï½sX×øÊFØÁ ¦ẮCâ·†$Y0á/ ƠE S%|yº³ ưHĂp33úË=¯Ú Î~ézû-sûx5†“a¿ÀåÔ+dDxm8#³LI¸™̀,¾Ÿ!CrÀWæƯ!5Év¿|K…øå˜)óƠp_ Ívl¢ß)J)q W™oÜÄF]Ç îß­×rIØÑ 6Ưcô[RĂÏZ‡ơ[ΕÎ*ÑPØ]”öíoǸX4)‹Ç½K†ÚE7æ›H,‡cÖ*•#ó]¾ÄĐ˜ ‰‰¹j™4§|ر5ơßPÈSEóóç›Ï@‘÷¶ïI†hÚœÑGow¿7`:©F¼ÍØ ©¬³×ÎÈÿúë́pn<̉u9‹ºç¾~D˜&³_³âyT7„6Ơ;Ê•JÉ7Ûi<[XZíÉj‹”bỤ̀BÈ5m;*SàÔY½Œâ¤KµY'Œ¿ƠC;J́¦ä̃áß̉Đ~„n =vO™‹j×bäd ·ß²É…‹Ÿt¶dA¼Æ]úÿ"ˆ©-^· ^cŤCpŸ9wó_W…Üÿí)Qäœ2„r-ÂÖÏL ¡¼~WŒBWi‘VZM,Nr4+̣Èïj5Èl¡¡÷£­w«·˜ƯF÷*¢UK₫‰̉í¦“`2Qñ̃A ³3Ẁb¤qÎ&€c&₫¬EEpâªsaéV°1&Ư §¢ƯºF™[9"»6 ~d¨b_ IÚVj”p¼èƒ.ØTw]3Ă_ÿ°_̃ÇA=ä} †GñØ …¶`2 y ”Qû•÷H»L{[rRN”ifñ„xºÚâ½”˜ûd!OxIÛ[ªÓó̉î©´­ M`Pf%LKZÄ@Ô5åmà‰Tà 0'”a1Å, ơ 83Ÿ÷%"a6ßĐCiNBF™â‹́SvĂaܸlÁÄáËN9m* ÊF[£! Oö¬7ŸưƯù;T( ¯D‚Z>̀'S!Æ[ĂáÚV–/™Ü:XZ„ÍKQ0kůJ¾‚(_Dô_ æSAưé?K×é%ù•Ÿ²a<X»ª””Ă¹\ƒUËfq 9€!^À̉³X²&ZÑŒr‹¨H£öÔÆÓßE‡¹ ¢¨XLVüïɳ:¯á³>€ñ‘Û k>ulTt‹AŒ¹(Ä c÷¥;)C0̀ቬµ—,}?…xP-æ$+<ÖzO>û×–ƒâÁ“·Tă@ÎåNĐ`¾ç-€ÄĂÎúbJ&á1•|›.œèuùà‡%­OLÙ”¹›J! ;̉<³®C»ƒ8&ßéj¨2n’Á“¨O€3»ÏÎaµ u”Qq‡&9"†­M“rÉ“h\¥y^đ°’·Ê΂ÀÆä»1 ̉…&’SQ́ơªØ Ÿ̀K©ôÛơ¥D Æ’äªËѬ=ß™´¡ís*¼J¢0d~€"¼Æi-µ\~́•o^ ¨Äɲ¶LỊ́Æ}ö—›g 5xI3}'·ñaƠ-”ñt…æs ´ hưеJ‰D6HëÇ6Î# ¿Đ€"Á·²^‰'…z,,öíy«‹É3Íz4WQô ơñ]D#ÙkË8¤D6Å̀ûYئ€˜|˜Û¢̣c•¢a×êÁû2çûŚ–vh-¿Ù̀Ň0[ÿNù ÍŒñ{̃¸‹S„ëFî₫GmÎtN₫uî?Œ½æ¿Ÿ}mà‹7ÊŬ¥o°²tdMØŸ5—ûg°²RjăqEưiăñ”-¾A0:÷ACMµgV1‚¦Ù/Ù5ƯhÚurZăw¼î¹“1`RÁ®à§I=†×3ׯ½¼Å8l^×ɃÊC¤Q Ío…ĐjAº<̀Qs×RÍ}ª©}ÛiæM G]<°U8ƠM4„Iñ¾¯; ́|<°̃ûéÄ=g0…¤obµw(²̣°6ZƠm£4¯.§NƠW4¦ư¥c…fÉ|wél̉("{«áIëpAJwaẴHT5e´«A˜øÉ Pw ₫A¡Ô{bïÙaFÏá_|ÀP¾Ewû¥œUx¬tg&p· ǪaG̃"¢₫ªyÊË sF=v£îbÊM| ¯ÙÀ¢sÖ́s@Ah~‹WÀªÇ48`‰ # ¼’E«Ä‹ău¯úm7¡A¦– ³D,¾_a„å[áä)˜†+ô<¯•¢qz'>MÓZ¬̀ê©*5ê,¶Ë ›Øx’).1ç$œ÷j8£ÂÈÁñĂå ŚĐÖ'&’$éEd: Ê ™L­¸X¨pchå|¶ÆñÍF9è­aø·¨Đcx/A öëÏ zÉÜz‘ddQ Ñœ†ô¡s2äyÉRù°²­çCX!9´µ÷ü!´̃3½™~hÁ̉MËEb…î~ „¾œÏ¸#ơ§Pµ¯ÿoS';EÙZ‚²³—/‡» 7ÈÜU]p<¶£1’Ü-vJíb.—΋ ³¬U¿ i;%l-¨ ị̂¼z‡Á̀—Y¢ưÿâ` e ƠæƠV§JG-Rƒ—Ădx‹û~Ϙ[©§ÚÏ }qåï^êÖë´F}ïAˆßsœGíÍ‚0+ ‹ªÏcùè[}ñß—̃ ·*X —9Ü¡ IZËä² ÁqHº2³M›+/Â# ºÁưjßàĂS{Zä†ÿ.P5¼)gyRˆÁƠdŒC˜Z˜âëËIért깄èíD^”Ÿ…́¯ôƒC¸KØÔ¦,â• wlÖhÍÎôïv` k+(û'a.‰¡_› á:w+aï´àăí5ÿï7eXB¡^¡̉²̃¹!=K4̀ŸÑ-[WÈwÅHæâÇ}©Ư]7[/¨ ‘Đa;0 ƒäÀ̉œÂ._̣Ê&3xeuÑ!´=ĂƒƒÀUpM–n(fBP9|a+̀%j³Úơ â%ËÇX6¹ŸpQeeQ´níîîèóc·Ú„KÆ&/Ô;hêđ†­ăäœ>₫J•6!ªôùƯ5uVIœœÍñ óµ̃Ó‚‡Â:JH˜'”Dà BÑåBªn`ŒïaHc#*fj‘…µ™;;ÙöB@—϶Üd£Jœ#Ú`ël—ÚmǪI,0¹#NÅĐC<’™ˆ²¥æQĂ ¬½M˜í)­‚ÑÙÁ“ï®çZ~â×§ĐoT ˆ´™ưœß́{cSü,Á kv•sD¶ÎÛ‹ơæG̃&?€èí[ÓüÓåP )'èă‚LQ°î¦,ƒªổ‘G V°•Û'³NÚ¯|§·wÖ˜y§ràJËÙ åÀœéº©äLoĂWrןe­èêM4₫Ç b–dj1^; N,̃ºûâ«$Î$lq·T$éøvœ‡©ë|dâ}̉9à×¼0ÙÎ Ï–ÙN­đÑÖUù̀~‚c0Kú³aŒ 8»î˜.Ơ*×QA—0œˆ‘ƠGׂđ¹Ôp¬zơâđƒÁz¤·xú"ÁÅ2ûÂ=d¼9úyPµ×(nI.ºÙ|¶5Ơ”"Ï~ƠH"5R4Ü{ˆ“5c³zL#×¼?¿¬é ¼wôv$ÔaơJ¢ç6³ûJ“§NÏ=*YÎúk¼µưm»©fÚ‰\,¿Bµ”«>{Vä Ë́c™]Û~{€Œ—–Ü₫uûîaü̃v™HÏ­¢a†dwU•Î]5úä2 ×ÅjB‡R^ÿ 9ˆ(ZÍà¯ă}ÚÊXº \$Å[€qèë_\xIƳcĐ cáT0:ÊĂ~Ñâc̀˱Áˆ—@ű‹S´Ă±/|µt>J+êUÿ? E3;W£³ûÆ£Â=#‹~²–6dxơÔ3ø\_Eá’ ²™NEF[ëç(ÈÓËsYHY"t8æg?"›»î«¹p,`_\Ó‹DÇĐ´\°:_ ±Ơê[j«bü ó¿PHoh(øµÄdÎwY5J$‹Có·iCăïfQ“‡iÅÅ”Å<å¶6ºĐ×¹ŒaUGĂTŸfY’«)æ)n§ƠZ5…<ƒ$ÈGâëŒ@I*:I$‰bTœƒîÇ1x Æ–Êü’­¦GîE8”]>®Ớ T,Ùg¸ư.;0eÑă™wB¨Bµ¬¬û/ÚI#}”¤”1 ]öÓP†̀Í?Î̀ÑöO8°|ü¶˜Å&{ưÆ&•ëj6@ú·ù¼GSö#çÿbd,ñ ̃®î×6„¹–¾¾` Vh³l7¥í.…DY(ûÖ₫éÛ̀…'‹41±@,;º¿›µ{RH1Ă´|dë×5Ư–)ù)C§å;çà¦iø£mfH¼Ûjî±;†„:Kq7ÏrûI¹m>8G-9ª ÉP*5d½¤ă¨-̃ƯªëáH¼¯¯.7ÛüÓ$ç”Tcí›ƠA%üDÎTfÔ¨]¬kŒẒ́ñ}Aø½́:é|®A@‘(¸k§f×Ăi-X’̀ú-ø™o•¯a Ơ(W|ß½÷ pÅL}6ùm„µ¥´GÚă€âBXµñ{ç#̉³®gmÑa"'Ø.2±çđfÿZÔa$,‰BÀl&/÷²¢=‡w±¥&‹!Ơ.L%Ù÷¸›V—̀„fàë¤̣fq-¬©¢=P¯®#Ó¬È]Ø;í ˼!`§¾„›°ÙÙƠ¢́œ ¾OGÊ'¹·QÂkØ*•cˆ{a..Am<{ÍôI$·ÓºC*01ˆ:½LƯéÖ)»1‘FK``™£˜kv„rV³|ئ…ŸëaªF$Eél\ÁÅaî"ÉɆ,đ?Û›¥“j~»ḉÍ™;i_]§FĂJHF&í£ư\˜Édhs…§!"‹Dê/YFï må~)#̀PS¯2-b8T15ñ¤ 1LD¤ ·ùƒ¨zư¾l˜)1ÙJêa₫”$ P¸5 ”›ê;€XTs0›æ¬ÆSg`rœÄ?½¤]LŸ§ù•Aq5Eö ̃@ë²#¦aä¿$|×w‘s¨ ̉û´¯JYPz@å×UIv¬ñhå oU\ø¯́ +‘¨éµ"úRŒZơ»₫kv6z^”ZQÎö¼ n,_!«Ô¸T̀¬ă€?˜,®©r±-W¿Rq1nÀª¤ iáđ³ƒœw£‚kP¶@ 'p o3•Ól̀|ÄhÅñ₫Đ(¯<8¼Q3—H6 V?'Z8&Ïaû °ÇTËj‰ùÇ*₫à-ăKnMëâ₫ÍÍx§4dĂ€lûùw«©UÎQdhF Â9̉×üF́u2uíy₫ḳCº¼3utS‚`̃á÷Èí/\¬°äsî²®¬í«ëÁ3“„ؘ‹&EW₫øSôsO0DY4y%L‡—ñ‹T>‹–C”p…³f:‹Ö—N¢˜³&ÆWb‡-“è¿\ môù¦\="zUex¬âUæ·¹₫ø …iª ½O†:‘f©ó÷ë&>ưú•‡ZHè ”ƠØÛüºl(*¢onT/Ă  v*è| ÜÆká ÔÍKƠaÎ{€¢½m̀d¨₫ÂÍVÿ…đÚíŸ%dÆŒG[ip«ư¼kï\…´I;¿Đu¶Eµ÷A¤é¦pàïDƒœD$¥SuÚ¦Ui#Æ×e)ơÛèj²f“¬àBB!<Ñ6Ơ·Y<³xY~%Í1æv!÷&Í;ÉI£Pm†âuhèf?Û«vS»ơ÷óỤ̂ϼÑFE,Y¸ÿ]úin<ôŒS?{]/°í€L€Z.ˆñ||ÄuÊ‘w6[p½Ÿ(É ¤ø0₫† S{V5„O/„Ökè6ăˆl¡;æ™t¤Đ»6!̀Ùµhgf¿Uăk‚°ymüû‰Q6ß8º’í†`¡‡€EŸë ‹‘/Ñn\dÉ w~}øÏ‡:yĐÊ„R{—£cu@Tu[×Z|Ụ́Da(o ¤#Đp©́û«¹œÉZ8&¯ûâ4Ê}båT™bŹNƠ@vfI¢Û÷"J‰Œ™+/M̉¶·¶ñA‘́Ÿ±Á@¬ÿQ-ÑÆiüØ- 0)¾<ƒ–@ÄăqT-ró)§½´Ơ&M&®ÿ ơ“ÑzBYª́5µx¥‰ê₫@tP›ĐW7Ó=,µ›…ô“€ËddµäI¼ÀÊ—öÁ†Hל́¼„S¿È¯‹™̃‚néwX”¬/ío±₫;„4¹₫úAt8lm­å‡óÑƯTäp̉`ª“† ¢ïæ©CÆ Ä‡OXxÖƯs…Ñ+e ïơó;Ëÿg’Me ö~‚¨v±¼ĐñV–?ˆ‹´_ƒ{¯đO¥9£ÏdA‹µL“©¶EàƯ)^fG!¡u_ ”Î÷è’¤üpK æáb·™ÏÜ"júÁˆâ?É…ñ‰~̀™P=0®‡z” ể9TÚ¨u”S¤¾W¶t7~>÷†úHâÀơi4·êw¥|dÁ§EüÊK˯zâ]ÇÔ£o%'QÇ}]ÿ® ÍZÎLaï©–¥7×Y"td¦ă ÷„á–lÇçPT3Hê_ ú¥Û+¬¿<ŸØÍ= <à€?Vô8›QÉĂ¿g‡üơ›lÊp̃>åüF3Îk¢;„_"É< ß;ßZ–cœ„ç¥0èÍRæ_}²…LÁTĂ™{ÛÆeüé3NN€v¶&^bAơ¾³/ÇyŒ?ùËÏđJ¦ ]bNx́Jă¾%5Ùˆư²‰?¸]L)‰ºèUHÖßo_…3ƒ7Χƒ D¶­Ơđ@́‹°Ë’|wMFÖ½¦ ÔÙ±1́mæ̣pÆ̣¹ưºÈ¡9;¾CPΪ ưƒ„"“1üŒ—lcU{·O¬®§Æ·:"%@„Y8±»Ä™ê÷ëwPol£„ñé÷é`\º}eđ¹íµ‹ÙëpHh®#W4LhK̉„Éô[*|•W®ö…¼L¤ CP#ïcéê5¤u;Ëâ7úø¢¥&FrĐƯJøQM,%X-bê*(”‡VBê¥çÚê]¯̃ß:‹¨̃úÆCŸ Ij̉  5ßR–9NH˜ ?®é¸É²Œç¼Úk’í₫.ÂMT+ål«ÔQl¿O(‘ăóRÂĐÚîÀ§ir1â(O/Mb'ë«…'I[ñl/Dú;0Øë:F£ÙÛÜÎå*ñfáJÀ°ÏCà7iËôÛñ àSg ߈¥Ä‘ô€ü₫¼Ml™VéÏÏÂ₫…ÜĂ‘ÀÙø¹Pb:’Äáºmÿ Êå¨Àú‘2P塘Qgzrgu 4³2-Se}_Ùú[_ çÀZùçû_vèÁg¼MX¡₫P̣pØbY={€6Óó̉˜° ªcp3•½+:fAw[htˆpÙK¿x2ËY%.9’kcIFB¢0¯Ô x,st Û–3̃ga@Å̃X„˜@V[xoÛl/ø̀<o>"y°U\¶s2!L$§¿g^}7₫Iî0J ù¤Ñ jR0d®́çƠ—ß@6L+V ÚˆKP§ÆƯüb§(¹dÖêâÚHŒ§ 'ªº1MP›cê3Ñ_rëYkĐ«7L*±fÓ¶J ¨Qññe²œ2]#›ḥª`ï¤ÏKL=û̉^lăj ¦>bÈ Ù¡F²ĐăËĐĐ2.°FM74å×6Eù¶…iæ‚RH8ûÖ¢Ó{¢ÂlEBpö‡6*Íú-p&âJÉMǰ„wQi#_íú™é3â½_2qÍàŒ́ë¬ a\ªÓ™Ô‘åđ{âï’©mcNe’ñxÊi¾·Ù7Z. pưÇ=uß‚ưÄ[C³¤ÓÚ³‰q;U×oQiOBâH ½2]Å©’>X[ñ–Ơ@àå̉/^ÑßƠ>ÆÚ¯– u#-†”;@b……DdëeR§„…_r¤€ƠRçQ–º† âç–Óï†Æ'‚]¯Ù¼«®{V´8‚œ ₫Èă+Œ.Ü«ŒOzÀ¶Fo­º„ÏÛ₫ûR;*W'}îa™Ä»'ëƯ9g¾r"'"– `A[PQæw:&{æ³=áF†Ÿ$=QBlK­ûq-r*O¬¶7– e$µV2µ|”O¯­C Ưɬº~@·°)ëÂ÷âB€Z|ĂAsGAÀ—ơQ¨±7½ØØ®Å§øP²ªzóÁ=}«+dmj3”î_Ùˆz×wR{¤:(oè₫&™Bw®BKé8ÁÄ8Ó¥³KtYJƠBë´½ôÖ|Aăla#‘pY˜̉/¨O H:Ä‚R—«ÄÂ!Á4Î3ñøƒÖb1ôDÄ5`'ˆîSFP³*¥4]]™uk_’Ïœi®P¤+ zÉ Eå4*óuïđR©\ ,i÷‚"ô¶ÄßËÄ„v hÆưÍúVÑ̉âÏ)Î@ûÎeEbq”Ư_¯zÓá}ƪƠLưñ}.đ°B:µhh£—*‚ 22Ÿ²œ0H³57t́¬Fƒî`ùaJ Ôÿ¼-v7ï”è0ÎÜM”£Ù¬×d)䑉ZåÀVRcI*ŸÆƯµ»éÓÇ}Ç.­s½ùÉ÷w¹]£bÂö©̣gT)S AơæÉƯ\kÖ̃^Ù5¼á%­Ö€–Ä`ê¿"=á̉]•Ú!´₫Œ'ÛKTâ¡ Pà¿5/ÄR²ñ ¶1€¡dÛ%œ–+øaz–D 3văç©*ˆ‰OÁÜSåäăĂ>‹  ăHnF\@øVÇ@Aˆ(K‰–̃åb– â£ëmùŒo0@­“T€Ơ¯bAù!¿í|]°ùĐ0 ¢Èw³!†llÖ̉#½Ă¿[ó%.Y*¸­…’§‡Ê κNnÅßH)Æ}ÜS˜Ik<麿4WéOÁÜh¨ˆß&t©¶T÷IÔH¢¦ç,¸MÂÎ^Íq#»Ú]/•‚>ṇ(›Áá ©}ÀLÀ>÷rv•1bÏHï¼óÄ^¹¦fĂoÄw}!‚Ö&à\xê97(M:QîåR¦-ÁÛé¶E÷ñ¨@W7ä‚vÁŵ(]°Îo™.ˆ-Ç[@̃A8ÇưeđôZ²pR¬ur¤ỵ·«ª•D€}™Ó;ÖÍè:î**$S_§ÖëOÖ£O)CÏg1Èw\?—rÛ×]‡»7­ŒEb˾…+ÿ{%ˆÇôăđ⦾۷Ư7ÎÁªÔ¼đ1Mˆ&uní4^×®ị́¶?è°I2m–œ[7z±-ÅaQẠ̈-²öP„«Ï S9̉ơ·¦FDüm½œ/!5>”ưÎ7®è&{¸¼ç¡)L̉kÛ>Àæ<5á:bOWRR¹&Đk@y¡}鶃ܫ4Ea‰̀éû¹ˆIOlºÈ6azß’Pa YWéæp„= ˆÏ’HN)M»ú5äçÉÄÎ%jH»̃¨çw:Î/¬ă]>>ÿ@ó|×—øLP9|kêù É›9îÏz®)>Öÿï~ PØ~$3ÔöêN6ûSOOÔD|øÙƈê4Xᡘṃ;ôÖză¦ø±‘ạ́Ễ×»åï6„= ‹ÍQ8µ‡SưZñƯ¢HÎ;1Ä}wp(²…’ †Ï†jPBwÚŒƯF4ßĐƠ ô¡½Ú° ×TáÖ†í½¢·¢6™_k9qêøtqO0º|di{æ¿Z–9ÓZ¶¾/]‹6̣AÔˆíZ»&±Öÿ””–S…·ỜÑ0¡é¨¡=–.ü¯™ôׯśOØ6”©̣àMI¬Dϲ‹D°ÑA®qº´Ă[-¥ü*¼ Qđº£Rü:hèHƯ0µçỈ=%7ÎĐØA¬ùêĐźU!đ?Ë»PceöơLå—7ßrO¢qd¬ÿ’Ëú…JZi.üE£#úe»}‘˜Dµ¡cŒûhƒ(¨ íd¾£†ˆNºLŸÔ&Úù-“³AhùÍ!8d`º̃¼F'B̉Öw}Đ…ª˜Æ¾w¾~àH́Ú‡\z?ØÜØÉ@ˆaql¾@¤̣mñx£”}Ó¸u.×lW<;§‚ºV¶„;‚YCÈ^-K–•ä!Ï?´q‚₫eé.6º¬›‡¥̃đy¡£NÚ[  <×Ë9Íü?¢67« FÊjư9ă‹Qª¯˜x‡!ÿŸdÖ6 ÀÏJ- Œ_§Œ®®Å,R"t”§bÑ/DP”ƒÖÊMY§yd|UḤÔ’̀ïĂ·ßđ^GhZ´jW’–s₫¡dœ¾a]%– Œ#Đz› ®ö“éÿû‚ë/®̉[˜Îj÷¨˜̀[ó —âØ*›Đ‘°fÑ₫¨^fù̃Üâóm-«9•?å‹MÖ?Ÿ}G3̀Z±in¼m„ÄơNK8”Ä,ü-Kn©cWơSG½½ˆ đ‰~ñT‰ªứ.íh³‚ˆâ‚8O¹j¨̃ÆãƠ›oxñQ©¿"«ËăjF›e{+ɽfePØÔcÑÄû©̃™Ỏ›”æäë;Ǹ¶’’…ÅÍ“øÓZĂåÙÜE³¸₫™ ¿3o¥—Öơµ3O„Â3tŒ@åÂ1€¡oÈ‘—„ÚCÿkU‰Œ¼éu¿m°Sñ®…¢ÎyEeR¯X‰.‰¬=»aç̣Î —–´Ik#¢ưR*¬`‘/güÀ–æ"¥· †̀à&¿3 è‡S³Y UÀg=‰J^]ƒæ}™Ç̉­#‰˜v¦v¯ỄDêJË&³ư PPD3toiÂ-̉É\6ׂ̀/L VO<ơÚ‹œLGo¿ÁŒæ÷–¶®̃0 ‹YZpsych/data/spi.keys.rda0000644000176200001440000000160013154621326014546 0ustar liggesusersBZh91AY&SYÎÄ×rô€ÿÿØ€@à>áÜÀ¿ïÿ`PÄ9u.5 i¨M21M©=&§§©è(dmCOPz†‡¨m¥=2 O@ T2Ù@¦H U ¥TÄ`L˜a0˜!‚b`M˜A„É“&FÓLŒL 2 –"(€B€éºë´ß£:ô1Œs\å9À®“M¼=øV‚øđçĐ4Ô°·m9ă/ ôøxïëWM‘‘ÜGC7BÏ{r͇« ½œ­²;Ôm­1Ú!*©'Úä©Ù5TàÁi²Ư ‹¦,‰̃'T"›eØÛI $¹¶‘Û,‡"_Đ—2+[hVH´HÙ—X¢¯ưÄ|8~¥æL}Đ;àÂèê$€<À4’I¦Ui LI 73ɤ" .Æ! 1¤u)Qnœ#‹½Ó[¦XĂîDD}5jk}ÀT e#O¢đ,H¯…ô"• E‘h@Pˆ‰QXF„4\&HTS0Pá»PgQC-¦…"Q2’ƪÀä™êø­m‹2‹«đ22ØÈn —iq¹̉‘ c^³:²̃±Y‹R›7iy@­Q* ’4`°óˆ ê¡UMe´jzu—”cBEL‘`k"(Fw7&áJ(˜u‹fMÙáem™)’æÂ—’UÙŒ‘%"/ºk{)·YƠJPhbË“‚RW Tâw‚ơ+ b̉m"´&B¢Ǻ C²ªJÆïC§8ÔÊhÁq2“‡r¨p$= Đa ̉ wÙ¿´f׬RíëƯß³cƯÙ%l†ÇÆI_ÇØ3¾Ï·€'wvTơÁ áÇơG-¿Pµ`~e¨[^¥à?m ÿΙ1xøb¶BS¢„üa‹sO>@T-ËcÑ ̉"̉LÛAül̃9Â@#ư¿z¿‹(¼ÏÖÅƯ™vß2®â¬ÏḌRtjÔƠ¦>F»úæß÷ @$PÈ&M BĐÄ” P41@” „P8„BbnaùÚ4!æ¿•"F «ỐYçP„ª{Ë ±ÔÁ\̃QUw®]´©¨í# (*v̀]ÉáBC;]Èpsych/data/Holzinger.9.rda0000644000176200001440000000110513154621324015107 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉Üù9U™yé©Ez–@y> P ư0°¿ró…SÔ;û;ÛZº_GëÚ_½ë"êeù„ẃ™äöW¼o/Xª6Í~×#¥‰¿́/¯ß₫’ÿg‘ư} KƯ-¸~˜y·6xmcÛ¾Ê₫¬¾Ôü}e'íd^7Ñ»½Í₫Ä+¯QŸö₫JÎ̃TÑg´~Û̀–ÓÏï|đÏ}&Ü~˜~¸û₫*₫×óxi)ú€”Ù£×ö×,W¶(L´ß,]y“óăGûse¦ÏfÙ_¿yâ¤Üư0ûaúaæ=ûw+M¨y‚ư³; ê•ÏÚŸÚ=ăø£&Gû]“½NưÏ5¶¿"â³rÅj¸ÿaî‡ÙÓ3ïéÛ A“½NÛ_°·c.8{Â₫dĐ%“׳Äí¯Rk˜ë?˜ÿaî‡ÙÓ3ïØ½-½VÏí÷3³²9qÏ₫bÊÚÿMÚûáá ?˜ÿaî‡ÙÓ3ïÑI#̃™®Ûíoî—ºo!<₫`á ?˜ÿaî‡ÙÓ3ï8º“áñ‹?XøĂÂæ˜ûaöĂôCÍCKª̀)™¹@œÀBœhJ8€J̣sS‹la¨:°:¨|Yfq|AjQ2”Ï\T •̀ɯJæ8¿ ±(>9?·Æ/NÍCá—ç¥ä¦&æÁø‰))™%™ù0>gr~i^I|J~ Ü€øäøäÄ‚âAëª !wù5psych/data/galton.rda0000644000176200001440000000075013154621325014271 0ustar liggesusers‹íÛÏNÂ0đO₫˜@Đ˜x̣Ö'ààpđH8qüÄ? ‚¯>/€§>>€7ĈEZâFʺe[;ø–Đ_·¬´]û5 ¤›îuµ[€Ë"-l© ’(AExúè ¦£!@ṇ̃ï.€s‘ç6‡ơÑh³-”ªs.5r²üöûÑ_OTµơ›¶’…~·ư¶%KGăñHJn(ÊB„ư¶e»væ·Nf×̀ÇKÉbLU?@ök©QÖc=î”́0´6̣"wDLIf(øƠÆ©’kÄ•§Öă3orGÄ”d†‚ß¼y=IJt\F₫×z§-ÏXŒ)lTñÇA¹c" Ä÷±k}ưÉ›<#1¦, lŒ¼^Ê3D–­Ç›N"ù}‚Ç—¹ejóưvRÏ̀ÖQLI¶_Óç¹}A™ßÄ~¿Ó´7̣xÅ­#¨ÿAo¿æâøơî*¦óă¶U[ˆă“<4›¤Ug$I:ï‚$I2Û5’$sk“$I’ŒäŒ$Éä1Û©‘‰ØtÄA¦v‹–‡̃K"2°̃,*·¾ză₫pªné==îå*ăÑ[]•=[—}ÉjơÁ zo¢*P«÷̃Ô«?ŒEyqö³₫üë‡Ă—Ù:psych/data/blant.rda0000644000176200001440000001035613154621324014107 0ustar liggesusers‹]Y 4Ơ‰EË4Q*”V£ )KrM«I{B4Bë(­jj̉†™”ÉThhD‰ˆJ”d—̃ë=ë{H¤}4ƠßüÏ»¿wÎt÷¾çüÎ}ß÷Ưï̃ûLu1SwQWQQQSéÔ¥ăµSGÙY­ăEU¥³Ê·ï]¼Öz®óUQé¤ƯñŸ?ÿ¾ă¥Êÿÿ¡%Ö¤íG#<é²đ¶rûD«Ú Cóë˜cg£yï±Y󿢩ïI¯«ƠCĐ:}‚ÛsĐ4d©qJMw4ÍØk‘Ytr‹)›g̀\‹¶‰«Â¯ŸZ‰G‘É{Öù¿AĂ-«Ư³đhüØ„.•hÑ©qrB´´…Ÿ.„¡Q#́̀e›|ÔZ†₫£ÿÈ\?îQ9”‰»Fß%̀ŒF̣†;c̣7£qôơú¥ ~YTjÖr ªâ¦½?́…ú‰v#æ8¡2ÛÔàÄÈ/±9üÜrH¯ŒüfY¥€—8‰»bé›.o¢5{û‹¾•x5™å½ÉxÚó¾ºxT¶9J«Ñp¹Â=à† Z%f}›’ŒĐªRíèwǼƠuUËCƒë+á‹Ï£áH¼Ö¡èuhQđƒ¥…xfüfF£»×{¶¡nù'»¯s!3¯¶Jˆ±@•“UÊW=GÔœQ);ầèˆË­Op+oŸûè”Û¨Èt;5ƠXe_V¶&Xy /%₫q0î6,w ŵ* '¬QºÏfï)¸½ÚạÛÎ^ö“8‰»̉s¶MÑ•'(OkV;mJUOưÑÖ•¸gÜăV¨E}X˜ÿ xî;ˆƠ ?‰rë7É‹&$¢0́â‡Ç±hyư ê»öCö»]W³ÏQRi.*>3U‰₫"Ó÷úưô¶(ßk—hv)Gme–AĂV9D>Ù ¼Ư‰úK½$¸3iVyŸô÷·B|³–EœÛ‹¦bçfçIO­–§uKD}«©«}üȿܕ˜ éÀƠ¾g\ ĐḍäÂ|_wÈúÍ_j±SÀ˹e?‰“¸Ơ‹µLጦ,qÀÛß:ú'n–Pùồ .:h48}À¯ ‡½ÅI¯Aö̉çJqP:d¡̉iư¾₫ù­̉CG?®B«F’ªD» 'ẹ̈́ ×@>¬Oú–?WBÚ·‡mµơEÔdƯ9Û] âçë£×dòÔçÓ#› ?w„]!̉"VeƠü½ , ¤÷.̃@ÉAă™CưÉv½ß̣”¿¼åÖ︖¿ưT-îƯg/̃ưwÔ?»Ñ*àå~rnÙOâ$îg]2£ƒđ¬ÖiáXi¨¿nêÖÔ~mûT7ÿü7,öIßƠŒ–¦Ï̉Wặ!SO:¸ 3̣e+¥%c=P?oÂ8Ÿ́³h,Qµ÷‡üµ\Ún*CíU‡µ[Mơ °"nÔ’:H₫yf*™·U“ûµGѬ‘£'G¦÷âSï³.¡bÀƯ—“ÿDY§½c„ôDÚ~_ÇÚw¸7«"êÊt²£$°RcĂe:ưpûàöQûu–)ñ*xˆûɹe?‰“¸›÷W·ơeɉSẸ̈]Qj™U1b=ræÄ‡4DÑÙˆ-úo²yÎjĐºi·PĐz¾xÄËÜđº Û'ơđ̣®oÉCÜOÎ-ûIœÄ-±=pi§ë·í*t(Ưqư½–§íĂĐrüˆƒç—ÁƯ­,Lxä™Ç´¿Lë¢aÆ8ĂÅ®•hHpùܶ¾sLPµóÔ€QÁ1ûă½ơ˜_QÛ]å¼yeŸĂíW¼CzË1ƒY7O@6bÏä§Ñ ^¯Öõ•-+–HÏ»A²CΦZä- oß0RçƠ–yÍ¡Ụ̈}kÉhe÷“w…|Kâ~ s«è'q ûüỷ©<[?f̣/^q¼×*ë»Ü²Í½u~ÈE­Ó@ÿC¾—а5¥&=&2±WơiƠW|£Ïị́+ÔĂĐ6v̉6H“Ϙ~gÙ‡s‡|¢Ưw ºöJܰ— ¾»ØrÖ …»j8z…!×'`í‰[êH³û9Ư­£ö¯₫¼­®Æzë ÁíØŽê¾GÂÂññ~AƯ”x:÷“w…|Kâ~rnÙOâö;cÆ‘0ë› îWđö¤5d1¶Fc ÚCÚïÛ1¥ƒ¯·y–w†l±mѯáê₫ú¥¦à1ê‚ăơwŸMƒ$r¶uh'DºC='E÷„‡1M›‘âuÅØöD"»îú|+9“ƒvº¿¾‹ô^î®]5× èùĂo©×CÖFÉÎCqÿ ®¥D£đ8®hüb¯?^ÀK=DÀûÉ»B¾%q?9·́'q·ØÆø¹ø.ªĂw³\d‰lêÂúÇA¶W20\\Ú£ç̀ÓGyq—57:ö¤îDçƠ/ăá÷‹íç8©A¼DoÅŒƠÉÈ™•^fׂ Í[Ÿ¾rƯ¼‡£ ç­E₫@ï~vˆ‘&“ŒÎ›KûzîMẺ®uư5ß>ÂơiZcnèĂɰ1n/†ÍđR÷Q :Aq?yWÈ·ä!î'ç–ư$Nân ZîỷÚơ#{'™|FCÊÈW%îMhä7´—ô.¥/? …új÷ Q§T™ß24ÿ䌺§ù/̉ü6¢tB÷„KÚí¸5´Y]&Ù¨³¢{Èû™Vôö1BµƯ½ä§‹PwÚ̉­n} *ëüÚ2³r5ç%gºÚ¢ªw׉›ÆßVê ê[…Nàưä]!ß <¤ØOÎ-ûIœÄ]7sW©hèÈä6}®í@]qùéưÔv_³­¨m:ª.iƯ öuƃ‡ m̃đ‡ôËåƯô‘?ñÁ‡MK‘û|àë¿BœæÜ9ê4đ@eïô:iwÎük¢J Êö›K̉̃9á¶CcØ–øƒ(fè¶h0 GzÚ_ØqAÀKO}KƯG=DÀûÉ»B¾%q?9·́'qwưc•ƠË P×ơƠ5¹(¢‘1…+Î^ƒ(ÈO/û`7Tlß·̣̀’?!ööJ=ỹơs?ÖAú$Í`ăC̃(·(ĂÖw\2öNË(Æ•~ø̃´vE¶dPèëàmøc·ß[µ‹O³³“GmÈÏHỠ̉”{×]Ù_…_¡§¾¥î£t‚â~ wEÁ·)ö“sË~'q7m?nøg¨1j>ëeö9Z©wđ—l£›ơ™>âMÆÚí©7éQèÓWlf…» >‹Ê85ơA³PÚed|ăP ä¾Ó/›Øí î÷ÜPÖ6Ùºó ÷Ç}ư¨€ßÎû W*ị̂4ĂJ©¯¾Œ~…:ú–ºzˆ:÷“w…|Kâ~rnÙOâp…„IGƠ4Ư´Xù€»â<[ËU[Œ«ÜưWÇ~́uuđ—[ÇN½owb³Ÿ̉j'@*Z²´è*Jü_£|Á ßû|œ·~V`{÷ß!réÙ̃j¢O&)ÏN+ư Ẩ—ѯPÇSßR÷QQ'đ~̣®oÉCÜOÎ-ûIœÄ]sÆĐ2_e%D+óĐ0GơsÇ9Ú¡(’×¢j’ˆØSsÍ:|èaăQev/!ßœ”QÓúµn¢tĂZÔ-ùT2 âÈÄB}W4̃?â¯}\Ơg3_ïü¤/à¥Ï¦ÿ¤/£_¡§¾¥î£¢Nàưä]øVÁCÜOÎ-ûIœBîđµsk`ûA4;÷u Ø‹¼̉¥Vƒ‚º#Û&0ĂèG+ˆ´"ĂÆà^ßñ7l"P˜j–´º-kwÛ·›ăú -ÿ U¨øxeÚïă+P* Ôê¿û'/óúlúOÁ—)ü u¼ oºzˆ:÷“w…|+đb?9·́'q |^½{·»Ÿ+r2Ôîx-À•!Çv¥^…²­̃%ĂTŸ¡ÀqÀ‹ï§ôGmË”ßp=üEï-ίp¼·èÔÖÁ(Ñ^ẈƠÓ97—»^JUêgæ&̀è³é?éËèW¨ă©o©û¨‡¨x?yWÈ·ä!î'ç–ư$Nâ¾St'ñɸÄÄ©¾1ñưQê₫nFgQ¸#V¦·èö¹î5 ²‡ÇƯ¡;Ü14éŒcf½¿₫…qÓW—Æmđ2bn¢ÈŸMÿI_F¿BO}KƯG=DÀûÉ»B¾Uđ°Ÿœ[ö“8…~§ơqh¾ Ÿ…6§Zi¢l¼J—½«Üß̣̣̀‡Xr¸¶7?Tùëè}BÑ©EK–÷±Fn߈‚¡Z^æ`|HÈM˜'ĐgÓ̉—ѯPÇSßR÷QQ'đ~*îÀ·ä!î'ç–ư$Nâ¾]›e’zÍù^礋Ư‘{'\cuƠä{¯«xcz¹›&-5ƠÆm§uÚ «£:̃ |SM”|¥Èû˜ƒ1bnÂ<>›₫“¾Œ~…:ú–ºzˆ:÷“w…|Kâ~ s«è'q ¾dß ²BƯ3xöM̃Ü‘öhÜî¼gO‚d«b'M~†&Ó/ûæ/ùự‹^?đ2×d̃ÇŒùsæ ôÙôŸôeô+ÔñÔ·Ô}ÔCÔ ¼Ÿ¼+ä[̣÷S˜[E?‰“¸[·dë뢱üóóÄÂaŸÔüf…\M]́Ëæ_u<çï”s#~đ2¿e®É¼9ó!æ&̀è³é?éËèW¨ă©o©û¨‡¨x?yWÈ·ä!î'ç–ư$NÁ— x{‡–Gî l̃q¢ÿÊ.KæëđA‰‘c¦NPöW‘S3¿e®É¼9ó!æ&̀è³é?éËèW¨ă©o©û¨‡¨„û©¸+ä[̣÷“sË~'q?¿0H6ÓẸ¶sẁƠ₫†lúĂí«’¼̀ă™S3¿e®É¼9ó!æ&̀è³é?éËèW¨ă©o©û¨‡¨x?yWÈ·ä!î'ç–ư$NÁ—\ }E‡O\¹ƠA Rú}Å÷̀ă™S3¿e®É¼9ó!æ&̀è³é?éËèW¨ă©o©û¨‡¨x?yWÈ·ä!î'ç–ư$N¡ßïÔúéơ±đ*¾_á÷̀ă™S3¿e®É¼9ó!æ&̀è³é?éËèW¨ă©o©û¨‡¨x?yWÈ·ä!î'ç–ư$Nâ₫ï—ië<}Vlî(₫=̀¿Ts2*3¡'TæB5^¨&•…PY ••¢êädj¢,M•¥™²§,Í•åxe9AYZ(KKe©|™̣ifʧ™)Ÿf¦|™̣ifʧ™)Ÿf¦|™̣ifVÿưH—­ơǛ”¿T_îéë9få¦Oû?₫í¦ơ¿Œa4₫ư´öt¼|ưúµ±ăíË¿?ÿøí–psych/data/peas.rda0000644000176200001440000000063713154621326013742 0ustar liggesusers‹íÚ½KĂ@đ³i…Eg¥Mr±›àPе]¬Đ%´…ZK[œ\º¸tÖUApqqpü:;×ƠQë¥MÏRL.)¼ƒ¼ßƯq›îx„+æKT/é¡̉RöOÎ7V­Ññ—TëU!/Ư:=3ưÜ7÷‚‡áđ3/nP©;mR¯:Çúr¿oyºÙ—,psych/data/iqitems.rda0000644000176200001440000002335413154621325014465 0ustar liggesusersư7zXZi"̃6!ÏX̀á—D&°])TW"änRÊŸ’ØâªÙuà,øü=¿ö!ăz‘×JOË]¥ûú¤’!|¬Đo"¨Äơ6l2T#ô7eOÄm«4–HæÏu.v§ă1£Â‰5TÓ\ôXm 3E¨\đµvÀ.Jâ,¹huÔ-o&@R2Ô¦ù_¶æ´}”ƒbp8J£öäù́×ÄàlNnSåj­ŸØéNwö¼k~µoájĐ|µÔ¢‡ öe”ăö•r§…=Ă[G&”µr’pø\J‰"m¹RÆP8—̃öSö¾%˜PƯ ªóô½ôlXp•¯̀ø–]jđ»µm‡(˰NZ]›½Pá-FÁp÷;è$”º •ßÑúáÖ(—{œ¸à}K4ˆS¦«!ñ§OÉI®¿W°oŨÖ¡Nv§µ%®-̀ÆtóU°´yjꘛ·åhØ̀-Ñ™c§¤qÉ́û&Í?äMđ~4zÂÔ©xS»nŸ¨E™‡ŒAĂ;£dt¸£ó‹çĐáûMƯ«^L׉Ü\¸æ®ừ6ûú‡₫Ôü˜;5óÆfđ0ÆéÀ‚¶MSMiÓ4€‰¬đ´ÓÁÁÇ®¥FAnENXưçmĐLXP)¥2ÆưLơ]Á]·́‹ Ôz˜;A¹ô¥Ù”ô%.¶Xëik!ơÆBD‹øé P†#É< ëBÖhÅ̀ˆñúĐè4XßèÛÁ(ª6Ua8]Ø}N„ª€"¹’é;El²G§I”ñÜpÈø«…åE­2t2$TŸÎ0:æÏϼuCÑÖ×.†¡5(É@…ÙÔ¡ŸÎÓ %¦úg”÷x ±³X×Á±Øc!v®§ÎÆÜ’I)¬ˆ„d€.fV=Ư¸ü4¦ºÅơáô‡¡®z ̉‡ó‰Jó´T̀ç ¹œ‚|kÚ繦"—g!6àV‘ · ƒ:/.¾6V#ÛÈ`n²̣u~À̀mh–µÍ¯ ‰ßlmW‰B^‚ºơµ` !.©€DMÉJé–-%·Đçä»fÙ(¸„đ™̀¹Rß¶’-v.a (v>³aYY©âgâ÷M2ø(Ăùâyî@ĐLM²ƒ(#¯Ógóv  ”Ë@-Aë>{v–6{ÄRi½¹íØØ˜Z—÷ï‚wñpÏŸÇ÷DLD₫,-®È®ÖéWÛĂËÅÑ+ơ÷¡ D³¹Rq‚µëuĐïϪ´î¶/”«ö}–±§v,¡H\©Ê¡_OĂ£óÆ4@·b0y©kî‘ßé®DÜTæá.âáæ“Ëv̀Eé>`Ó÷¶ ăy¥Ú¡¸I=`q ºkYÁFBG÷ -ßæ×ªª(#]ç´Ñà£X¹DqƯ1jóÄ”uÊpÀÂ/7đÇ₫ûxÖ®#?„äÔk|… N²ù'Đ ¼ ‡ p¦"ÙÏÛ‘p®Íêe<CöĂ_¹[¤Ú±Đ¶ÓèO ®S¨ÖÆËƒºŸÎÓ6§ñ0¥Ó“½¦@±ë§ÅwHiuưxK*₫M/ÓÓ½rr‚R±©VåuÂƯfè¡.€²̀®Lñ<|àz#đ΋Ͽ½kơ"® ¢̀́ˆY3đŸt›̀+©WÙüŸc‚¨fûº̉¨!aÇœáå}Xư$ô±̃DZ˜%ˆ6†Ÿ̃Ÿ”wD²Nºw/ØW²*Htà7*ez¾6ñLˆ½Đ¯e3»ƒÂ7øS_E1Ưñ°£€Ỉ…-E@U{¿NKÀÎ (èateçôêæøÅ¹³åg–±¥¯&Nûáé¦I4W?ƠRªE>×-@¸hqú¹Y~«½ÿæd”Ö/í3=e CK¢?`÷‘!n­2V»ˆÈ¯§Đö̉2Ă$%á@wưåbFrüߤaczÇîhœøDHBé2-̉±Ư(x‹ÙÓç40W!̉öƯ·C;&HÇáÿ<}Íl°ÊÍ7ØÈøÜ~'C7ö Ù#Ë¿Ùú‹£fưß*pNxk³@bâ`*…ÔÍ=|«¹id-Ÿjk˺˜I>̉ùI:ƒqæÔ.đœ}MđƯ.¾2U–,¸R(2Ø–. =f€™ïsJ[Å™¨û\TnV ÉÍ?ÛtFjû¯‹ Ü-ˆ©ƒÇÈ2°ï¦…OckNƒ{g½À k,& [´3ÿ(«0¯̃püûÛëw°ođ±)ƯçM¦V›Ëøü]í¬Ä…¥tđJN\Ú?Y‚̀ ó ø¹p)Ưó^NŒù“ Ë­†6œ{9ªƠA˜Â•F[ếµDñƤƠ E6%Ó„³±#²̃-H2Dûv ËPb^H¥Œnå°:œ*Fù£È©fQ\đZ"Ø‹UpJ ·–WP×Ơí`q¦‰5øă ‰ˆ3̣¦o‰JDø¿á •Ui á¦êĂÚr«vé~ D!³‡^ù‹;%I1Ó 2ˆ²ÂFU Ø€u¢(VPeê‚ê­‚ÈΕæL[Ù1>/µ°ĂïtIĐ%Qï!ƒtCG†̣R7u ù„…½yYï [{åóPª·3à¼o²ÔñÙ±€r“ïá=¾;+Ù€m—SQ\Á3ZÉ  ŒW29‚4ñÄâ[Ÿ]̉— ơ¶:wS³ˆÄÄxePt)(0VÑEÓÈ đt·×< fu]éÈ×…Aå¥v§¤A‹HÇ|äAÓ¤gåz$A@Úß×ÎG'HßÚwXQä=ơ«æîÆ̀kÎ÷́Üñïb|€Î(É5äS¦{ơ)"$¨›ÆåX+‚uÜføC ́2YîđÈ÷X§§WÙCÜ$n\ø…€!/# ʽ‰qú…Roj2_RđŸ¤ñ¼ĂS6¡¢ƯP'oëă¦Xm鿥Z¾ÓbqúỌ̈ÖKG×viR·6”N4=2̉>ăøVf~’¥É?$½¸Ơc_ç!¬i;Œœ( ×NîÜQ˜¯âÉt˜Đă`‘øôÙbÆÿºEŸÚ§J̀ÊÉØ*ă°yUó …Ủ̃TÆ=FËE|•̀á qDx¾B³·7 Íçî8 zBïíUOªÛ×]¡êGÇ1]½P³GÍ3¾€íà Jlj8ă—Ó?‰¯«Ûm17¡É̀BàøêÄøU–ôg\sW„ wp&>Æq\¶—Đ›yï}ư€-J#ßßT™G̉A‘3‹;›^SüY·)Áp/&÷a©_—i¤°¼ Và‘đgz¯ë\Ó÷l]· 74yÃ0ßRY× %dû÷¾OÂÅ\–PcsÚi©× .Ñ“ỖAƒ¢z/˜ ùƯ¿µđËE¤Ö‰^SaÀL{å¶-Z(ÁvXègÉ7®Ê‹9^b`Â/ØG0ƒb°¸2-€[†ÛÉ¡[ ḯ£OäÆB²¾FaƯ˜ +JĐrî±»©m|zĐƯ4«ÀMY`h’—j·̃üÀuÙ#½I>JÇ3©ƒ ÔóI’t*(ŒI§ºmÖ,f€Ùl7ê]ÿeѰÇûà‹gŒˆ¤₫‹°@gB@=ƒëÄÉo‚Øf&Hàåy _F‰ å̃ÎYLb?15ŸçŸ´ëó\•ö†}„É~U ƒîÊ;¼ưy»ÿ'•ü}'—-‹ ¦ öB"Ñ 0~êqºótúh©Zde»¯‡œ}‚Ă»{’w ›n1âOJg¿̀̃ă¶¶{Ö£¼ÿ_2K’ÿÜ’s‡́ƒnxSÏG/v$K_̀yƒßA+‡yµệ|ùÅÛSs®»xE ÿÓœ3l‡}T³Mé…F)füôO/ĐÊ~௷ÀܛƸ‹^M3¡ă>÷øåºsúàè̉ŒÈºÂ9°ëënË(GdjP˦"ư»ÿ µ()ôb ¤\ܸͿŸËïJ93£Né bØ cÇK5 ƒ¨ ­¯ú[̣ơÅ-k6?È”?îpÀ̃Wb×ÓtßbÙ^øå~ äå'B’n‹ưcJuQ³·—ôe÷´Êª£M º[¶‚í¼WđåàZßA•”à‡dÏëF*!n>ÿ;ïÉBë N&sß÷ ‚٠ˀ ñ®3ôBhÄ^‡ê%¥'ëÿ̀―œ­@æÙ½î₫hñ§æ&Mq.]ÙPˆû´e²¶’‡xkBm½Ư£¾=˜‡â€®È)¹âaÜélÙ$àκZÓÔ”_î›E_ÈQ~­¦I¼— KÖ×fê2ÙqA¹|œ¶Q&0EF«:zú%K4(¶1Ø0?É;ĐÇ»˜,Œ‰SÙ§™Àâˆß¾£ŸÀ¯̉WÁ*6|/¾«•=éju÷¼́öÁËA ­đ0@#ÿöm!ˆ`׫Œµ¶·£½J\'âá‚ÑöíV₫_°=“3ƒ¡°¯± î@’¬7¹ ü©P!¢Ă«<üḄyœo]ƒíä_|v6‚MáÓºM‘Lq3Ó̉³¿x¶zÿ*̃“‹ª;B‚xü ô4Ó¢¨†Êyq`1éqKèJ~@eS̃e”× tLs¯ üô¬L×§©₫‡E*·æøäÖ)¦ÇÇøz™ỌĂ đ̣X:3$B›yWàCg¨Œ4—´h† ç˜g€¥}-ºôiN§véQ•ŸgfØ#ͼ|¿*à6̣s-±•gYckr@zôIAl‹àM¶ÍYûƵ†IºÑĂP%s=7ªr©<0(QÖOú†Í=Ỵ☃üØûÛj*|Uđ|>çW “ ¥ÙL)Hnl%1Î:^xÜå .+(zY»¤Ư+(¼XMg­ñ÷₫]æ%„M;9x1̣6’s52G˜“Ǹ₫ûaÏ¿n§~êqñÈ8ëö#0,ÍÿÜoduoKŸÓ~«2ûdØgÁf x’>qDMóz>{/FÖªG”h;2ïÓ₫'́uM†7+ä,½µWæ“ÏØip¯P®Ă´Ơ;Å'ªïhGÜ̉RÀ~́3½gdĐ!νsTÀøĐ̀¶~%³f‰×Á³t/,¡…៵jB›ïđi l¿`ùÚ"âŒèà°“KƯY†6|éĐÈ…¤Ù7 çèQơÉsääwiØ 9—^=°ÍmÅÍ\’‘­ ‘á4·0bt…^¦_ˆoü©Çk…"«g4ªpq}\@ô˜a={Qif́₫IË»^®¸¡SÜû¯‚eàEŘ®´U<îÜKïÙ«jfDg̀­–(ù]äÉ$!jíX̃; ê?0f áu•xr(ÙSà~´¢bÊ™˱®ø21œ@W”"ÀÜCK…oưÔ@ö7¨â<Á³“Ơ €êª)­_®²ÄUm¦P1³l2 Ç0ªáæó*¥·¶ÖÓÍÄƯIïÜ—5|©LFM(’Í́ư]\p£RĂ:Ơ,±Ó•CÎgû)':C>|Á+›xÆ«ŸÔè!$ ₫Å|#z[§ê#VOÈaƒîæăSMƯ¤Ủ́yë,UơÙ1ÑÆÊprÈ+]pÏ·&‹3Ä₫dv̉¼Ăơä£9VxfuÙ7'ÂÍxu;åX&\Œ=Ÿ——º=Đu‘ôÑbÜ2ÅÍœ¾Ï÷»2ÉÖ¿̣4q¨O rư±̀¹±&4ˆµ­éS²̃ÊbÁ¦£₫DZQ‘#ÍîËïŒmđA7…₫–”tjqøme¸ƠÁĂGF•vƒ­—‡“Àfo}!TW„ö¶æl ¸Aà ˧™á̃¹ ?jÓËKkù Ó@™ơ¨`ẦQg ®EúçRŸưPßĨS ÓF¶Ă_-¿2́Çæ;“ồ°Ü™r₫ö4}Dx­¥Ú2éˆíæHÈ$“û¯r•̉?ˆơq@đ¦ổ’nu¬ sF\éVß Ö"dêH•¡FNH< 3Ñ?ù%ǹN1“üF)!_¡ŒÔ6Â{¯zJ¯Y‚·Æ,̃è®yˆRœ6<aúØGºơ#–©øMT'ûÏœ—æLÀ! ‰–n¶E÷·r£́Ư6bˆ\¿iăèu‚ ˆ[ÈÑ£*-ĐW|ôC'i¤ÜÛ_2ÓÂÈÖ íÈ·áfd†b h‰Ôj0 ˆÇúEw[lä©Y 1ÚK©›E‡–Æ1q¤Àv~nK¬FrÀ)؉Î^­Ô…º*(ä₫>* Nó³>‹Ü(F[J»Ûc̉)$6rÔ‡ÍÆ~ÉP¼Ú釨\VU\9ê¯û«ü¬Z'h<5eó6Å##RĂVư >ö%ä—;–¯N)nçßƯŒ# ·Q®† §½ß˜Ơ₫ÿn~¦ ëñ̃à!=\›˜Cư˜̉ß̣µíPs“Ô 6ê7₫¬++1üî\U±®[£„i¾ĐÚt”Åê!hÚĐ̉€˜O…<¸„C˜N"d·.w‰ÏaÍ7ŒÀtV°:úÛI¥ë‘ɸ¯HFQ¢†xÊÚ8*Û¨£²=&Á¦{m^¦́¨¢²ûx™q #%J‘½ªrä‹Ư]EËnµ½|k†‹Åđc ù› ¿£5ü@¿ú[0G ?­™}^¥ ¡–Ž@̣¿e®O©-EoĘgOg‘2 aăÀpW` à‡ƒ]@Hÿ:T+Đ­¶UªPëEL%®s}(î!̣^¿²oæjg3"SCĩ86âQÀ«y\u·Çó…Ư₫”Ö肸ʿγóŒeŒ ä@BđѨŸ9J®¬·’=ú¿£n‘áÓq Æ‘óP¥Ñđ³Ă ñïB§¢$®đR¯-ïö¶LÛ÷T÷/„Û¯5üV­6‹€ö`—±c̉a!₫ÙÚ¤ $Po¢ÂÏÆ0ÆÁ븠̣̀mgY T¦€{ẹ̀…uLiú/=½SIí*NB$Ú¾¹AÖ±́á˜ÊJè[‘ÎÈQê&(RXG+ú²’>zU¡6×ØÈ“öÜAßuâưˆ¡¤’ÀÆ ‰,ÿëjÁ´ws4£¬¨Zvä¡HP:Đ*9Wf1ü ̀fטV*ÈgöáMŒº”›™2 =uU"JÀp ‚ØIª¯Đ1è*‰L°ˆÊ}’¾:Íơ¶̃$úæAïèØ̉̉•ÅShNöÇm»T[$¿ºŸâûé¨z¯°È¦uM0— …ñxR§Æ¢|“́Sơ{Ḿ¯¼Ù8‰‹₫IïÙ"ÿ‰ÿî¥ø!~ă¿ă ½DKñ{ ¹ÜüO²7×Ḿ'ŸÏAEA ÄS=í‹!0*ëYáªƠScĂđ•˱yÏ'w§´§·B¨Ư9̣I2êñ_n¸AͼƠ:˜Åk/l°^%{¨@íÛqÙå|J4(́́(éÇh÷4dŒÅñ́đuưXhŸ̉,ÎÉPx%Ë;%Vo@0ä¸W3̣»S—⪨í÷6†ëú<§ ×úÚ< ÀbUëk ±Y5U °z.ÿL’)®1 xKƯ«Đ)™*賉iưl¢ªÅf̀ôƠmQyoØ'­9~mü »‹£-—¤oµÅgîôº”z¹£É“ê>‡üSôÉIù_! ơå´æ+ØẵTäå G¿K`ƒª£¢Ó¢¡}…›Ơ$+¢ Óf‰h"KrÙá‹–X," ”¿ eĂûÍP˜ië(aûñ;(»ö¡;ư¹°̉/'ư­bc"°"~sû=øûº—¼p/v… ₫^Æ̀—ÛO¢́áÛxÇ÷}•®°ü#+哟- W`âÏ&z¤E­Áçôh°êÖK¨T>1ÉÏiky€Óæ›ü?\0 øSQVºpܘàClؽN üº~÷ÇÙ(I@”œá§ơ} ư'ä̉ ƒ¯RŸT§ïGû£ñx|4±ïU.$~.&´o¿lI§D×:Ơ+µú–Ơ³i1m!C·H9­1ƒéÖ“€JξîøK¢ô¿² Ç î6@]84û¬Å&¿-mØ=vÅv˜“­́C:";ơa*Z†æẢf̃Œ$k«ư_V l®E³Ü 3ÎÖ¡yWË ëf­°†¬…Äuv´®t¾³w³ yqN ks,@gJ^îªéë4&Gw*’ø2]ÄȨN14ˆØ)Uü½Y£œªO×ÊU ›î¯á.YŸ̀Aöÿ¿° {%æW<‘‰†®n¾&p ç‹›\ŸIKÇƯ#Cc7E¢¼,ÙÑæf $6ÉG"E đSä©́]ZÉA[¨f₫qÛ¹ƯË.¤)”@í¸y‰9u¡~Ô§vª’œ2+%2_ !•p²Qó0ˆ8:b—µéĐOúQ¸Û • zd Q́fKô:Ϩs~-IàáËÿ]9ä÷lFÅæ& ÷ygôF´æẦ®©Đ9Æ|̉¢† GĐ…äŒ$¿5&†hE»*Q0rªÄđYMa4₫‘ê;‰9fÇ—fô¡P¶X5²ÔMÚÓ’(v¶Ÿa ±’¿‰™Ó8J#&Ă[‰ßäTní1`j¤ˆ~æ.»“Ç£ûch,í0ùUNÚoÇ+yªxxR¾¸Q@·l2½nÄ̉Ñ~:] ÉÇuÜ1¨ÇŒŸ3lèbA‹£†R l–¯^́B—²>kæ‘Bºø@Ñy\èa¿GO%Ó¾u~0ï.Çi9›FA¿Üoæˆîç|µúgöe—™æVQrvA]Ÿ”Óá“´ËV‚Á/N6Xh#GóŒï]&í’ƒcYRÀÂöBјí‰BM:­ûaWh÷$º_üsj­ñ@S“ç>|pîÙIÔoîâ€ËöœOÚ\º§¹¨2Ÿ?8J2́­yS;Zè¿Ú@x¢“•¿®´=´Ä ,ü Ï¿îPɘCOW):}íKô‹HD[ß~Ÿ€¤Ö'Øb¯Ù…2ù¢Đ8Vê[½v -M¥T¯®€úߢ‘ëæœ\¯¨µL_ÍƠ¿ă¯Îm@eµjÓ=œ,ªh’QE‚œ¿t: 3_·g`wOÖíê—q_‚ª Ü|תA†/û(C16¿óåßÅÜO)QÆR7[üÜ\+¼é'Ơ9ëK¬´ÈÙv<í̃Ù²O¬*ÍLơũŇ¥°Û2o°s6ÉPMûôhª.h˜ä2̉̉Sgík3¼Yçk§<9*œ₫şŘC÷Ñ88Ú@ÅŸIÿ.Ô)ÊP;9<»É\‡6›/ƲƒÄFÛ¢¼T™pÙ¢Ṿº÷"‹t? ¬̃óí•Ö}MG̣ç?MkåñÍw ¦¾´ ZÁ³K¿KêȽ^ˆ 1ĂÿAOüxf^̃ê,ƒ̃Ó̃5Aybèíº¤HS~è©*EÖ…ñ*,TON­· %¯à«ôŸómB´KøHƠ‹yÉçÿÛĐZ¥£ê’ü{Rí¹‹eËÔñ`‡ü»ƠĂ¢mAăƯ×:H ¢¶­(ă®đ!Λ”C‡jÜx&ÇÍ»‘‡ö\N=ShˆŒÿó¬f‰1½[¬²ÖEÜ©nFŸ’hdà%́ħ1—Ó4r*‰V5~? ÛÉ•A,hëx›u%₫†Ç_^ñ&#¾CF¬Ç?n°̀ï̃ 2F„IđJ2^£¢e¨ăƠ‚×{Ï™Đ,-×ID”m™wĐeđzRÀ¨ß~)3Sh*)ÛéØÉ(É;ÔfCH.đ́lRoׇÆ9±R7ßœ•«±₫pâ°æ̉; UM¡»©Ỗ/esÏ› P%Z59T©I`añH̃|Ye #Ó±¸&0$hàˆ°XÊ–|đoM¦ß6¦*è&<ßL”su½æ̉ú‹Ư¶”*ƒó ¡‘#=½R$Xv¬Ö~4­Ágæ²Ù%ˆÅ$@Måơó₫ac8<†OG÷3†Í«”ºU‚ë0k–d(n4ÍPơ‹ê}°́ÖçÔ¯ÓƯiÙ¸º bwư?adb“–ü Ơá†t¸«Ü@‘‰D¡Qâ æÓ£pl„‡?‘ÀÛño­ŒÍ’ÉŲ6În£â·Ëê«ÎL¾Ç̃ä É’WéfÛx›0§:a3q1‘{÷89LÏl348í0[ŒJH¯E9σP¿Ưܾ«æ´É—XÈ^‘ñ•z-K]q·"TH é¥óËË"†ul¯€q8ïïËê,—ö' ó¨<€â­Û%f̃l5ȶ öíüf@8‘âû`{—œ~@Hâ¯" „#( Áe€âU©̉‹?Ä4W ëQœjĂiœ–âëăçl×6ơ%§T«S·#;YÙDÉ[À5Ÿ|Í œ¹‘Ø×dd ñÓ[̣G¿Ù̉»@æ²Ågä÷0—B[Çdr₫üÉñgV ™àơâV7êyç9ăˆw<îÀ—1ªJØ̀1g›ç†-~檲•Q˜ •8&̉µ,[X”‡ç¡à ă %¾ù^u®n J¶ß§Œơ©p_ø2H́‘!ËHE±0₫ô;đV:s–5ÊÇÙ¢|ḥOQ)µUuc¦óѦû¸ƒ‚¤§̀ü$³ß²e^°(ơK¶"₫´¢*UºO¹’#ÿ¦ÂZW„ÛÜy¦!“ˆAÆ„ØÍâ­̀gÇ…̀Û3»Œëg{́óUS¤KSZœ}TYvÈ„›÷a›é"K™¹íµlEFüt?üûÑG̃³Á@ûoT9ƠmÅVˆÄƠ<¬bg‡oœ \\Ü{ª7†|J̣Q*%élT´ˆ¤tLèâà¥_zƒ;\ĐE µüŸ& %ú³[Rø¾? àècÈKeTLà“|&ßPă…³‡î+±/GCđ@"Éw0Ü0‡·èôØ:G»¥ºÂ”××0+»™E'ß8ç(RBÁ‘Û˜m&e5s%̃†áèªDCÓ̃1®^Æc³èH\gàưè@“ÍîÚ25Tø«Ÿ§Gad8îî»ơß>₫æ+™]“‰rúí̀̀^œ…Ew±ơo&‚­[®³‰[¯ƠöăÊŸÇT‰¬gDz×(„—œH¤We^Bïø‰ )¿~?øúÁÄôÊ¿I’“†ºÆÊ¾6PB‰Ơ¸GËgÇƯ¯ ˆ´ ȺIûN˜……2n{’ä5bf“ŘálÆ«±0èØ®ÅÆ¹•¨đÿç$::¼è zpûeI…2`¾NŸÑá\¦><ûă½~‚,Q3†bbv"‡ÈĂ œ³—oI0ퟰà^§—K¸ÂªÁkmīԬÅlû ]m™F;AÉgæỊ́eV³ù·n×3µr æï™ËcU:Ô˜ÂïKÛụ̀>h ă%ȳ đ~ÇDz Ö:ô¨ÅÔWù§pñÓ̀ñtÛc‹ªÊs€é¤¹ï ÁјZW ’ó¼Lz=;Ü@öS¶Âz~úôŸ́fÏ"kwÚ9Åu¬ëXùnby»^e-ăÿûñƯTĂ\ÚsC›̃G†zĐo†alƯfë¿dlX₫̃₫C¥Aå»N q²…v§h$F ÏïÁ69Kø‰Ö kIÄ×&ªYƯÙ†ùgYÇn¤½»qÈMÅ®$¢Z>0 ‹YZpsych/data/Harman.8.rda0000644000176200001440000000077213154621324014364 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉‰E¹‰yz@I> ßÁ₫ؿʛ̃ëß₫å¡₫¯‡í_×¼˜Q´Á₫ëÂS…́oV\ùûy››ưeç©l*wíomP82{\̀œ7†j/+®ü³¶¶¿!ä{éă*û+wơ¥æï+·¿¸+ÎÔ¾æư-5‡úáöÁôÁ̀y ¶6ß₫FàëV¹AöW²ê~̃Vºh.ŒEbrÉûk"UƯ׉ÀƯ ³¦fÎíç9Ư@'Û_åi,µ¿V®hl} Ü0wẤƒéƒ™ó$½̣ưs¨¾'@ß/}˜ÿ`î„ÙÓ3çṆ̃÷s7ẹ́Ù?*;±Å2B°pùæN˜}0}0sÚƒ<^ XxÂÂå:;aöÁôAÍAK̀)™¹@œ„€É‚Q“PI^bnj1- U'V‘góHÍLÏ(©v,ÊU(.H̀ƒ̣}Ró̉K2̣Ọ́̉‹R©*!ŒÈÉ/O-RÈIM‡™l¢¸SfIQ~rFb^IjQf²BJ&Đ1@&TÛ9#µ¸D!=³¨$U¨<3(DcÙƯPœÈå“tÈ™X]Æâ‘YPL´3₫0|&₫ú²psych/data/Harman.5.rda0000644000176200001440000000060413154621324014353 0ustar liggesusers‹ r‰0âàb```b`f’̀@& `d`aà̉‰E¹‰yz¦@I> ߯a› 8ô;@èU ôÚ z=Tü „tB<¡‡AèCĐè­9f9¨³P¾¶1Àå ´T:T?”ÖNe¨>˜ºÅù¦¨₫˜ơÇL¨₫%ºÊ_yƠ¿kPÅa₫.x¡UPéÄTÚMÆOƒÊW$@è¨x$”¾‘ G¨?NA‡ÑÇ ôy¨»NG@è‹S°«;™±5₫™S2s/(‰00đ1+z*ÉK̀M-²…¡êÀj!̣l!E‰É%†(<#1 Ï…gÂ3Cᙣđ,Px–P;ÄvT®!*×êdV¨0WA~AiNbIf~T„³89#??'3/¦$5· '¿275¯*ÂSP”Ÿ–Z\ Ô”˜S•‘_ZœZ–˜S äưa!Âutpsych/data/Gleser.rda0000644000176200001440000000042613154621324014225 0ustar liggesusers‹uRMKÄ@ M'ÓÂÁÿ±°³¿@µû–ˆq-' ŒA"-$6‡~́"¾—§ñÛÑ‚‹t¾ábœqI‡¦ơ!ăètrt誫œ‡3 ưØƯ˹ÁQ§¦:ÜoæÈù~:_€¼ö¨‡ûáNZ¡vÎ×Wt¸WiW¿Ÿw¨S¬½+sÆ‚.€u₫›³ë«sdƯ¿¿·₫è̃ûQÀƯù² ÉO«•Áô“±Éص±kc7ÆnŒƯ»5vǵ.ù_Ư¨*Ù¾v_ỰmÙ]ùbø<.u§ù…“Ó4}Kø™ưÜ¡f̉psych/data/burt.rda0000644000176200001440000000101713154621324013755 0ustar liggesusers‹ƠTM/Aês…Hồ•+gy#ñ·¶½«Ya—n_gç¹Ö¹' QÁA ̉‘PDâăàÂQ̀̀¾Ï$ü“́¾óÎ<ó́ó~̀F{G;­QKQ)BỢ’ÓªJùªU¢^9c™TZn4Éù"}=è5oÿÜÏ̉ËÛJëVä^VƠX£ç­ˆZ¡çI=¨</•é^‚ăí_ô,Đăör%«{vƯđÿM-çJôÈçn*̃AŒ‡:«ˆæèöDS:f<ôüO|®¤PyºäưË.=h—ơ[Ơ¤ÍØf™x¡|à¿Ọ́â&~đ³ÖwÄQÈ#ol/ôüà-ª´~P™ơ\³=̉4ÑÂ6êÂơ@¾/x`ÁđüŸ/ΡˆúÀ₫+æåøM½6T´áeÓ/Đ‹z ˆúÀgôóyÖY8d^äư‚º¢Èâ…>đ1a3è“_ô3ú¼8Ïơ0ùC¼ĐÇ|Fÿv»Íưûưb¾ËùC¼f|̀ÿç‡&œiơo@ˆ†àù©“71cûr̃¸f öëc̃¸“˜v̉‹¼PóR)o=kØv'́”kû>¾9ä舧6Ù«í›N¤Ï…ÛëøÉŒŸf·ºÇMh(f/à7Ơo'°lÅ2cSö¸&ù/*¿Ơó¡øŒ¤psych/data/cubits.rda0000644000176200001440000000037513154621324014300 0ustar liggesusers‹…PÙ Â0ܦ±ÚzTôIđgw¿À'_ë‚xàß‹ƯKP ̀f²3Ù ™Ï£h€¿‚ƠGª4„¸«Ûrw½ø]<ƠM„Q₫­đ‹×s ø,4~xMœ*Á¤¬ÓÎ^£È#:4OÑ}öúôVÑBôÉ_#Í^M<¦¹ÆĐL^́)W@÷¤ÇơVE߯ËĂ?گ簾ɔ ȳÏ!KF̣ ”\*¹T ©Fq2¬öå…3p3Z—×2Ù1cϧ{"c‡$¨lhÙ€YZX–[–Y–Z6µlbÙëĂà XêUÇpsych/data/Schutz.rda0000644000176200001440000000071313154621324014263 0ustar liggesusers‹eR¹NĂ@5 A‰ jHJn(ĐC@ƒPi¬xI\ØÇ‘P¨©©¡…:55|G8"®4 ”ˆƯ;A2+yçzóæý̀üư¹a†1¢1qG…ÛW›Ñn$„íÈæ‹• *JƯ"J³OCöv Ï!;ßë?I°‹ư\êëtŸ5¦·ǹiv›–… »—ÙÜ »ÓxÔѾK‘Vlï{́IÑå¨ÿYă?(m~đ½œ(́ªÚ\¬ơí²ú©xFóa/GÔ!ư˜~đ§5Æd V›bèG,ø^%jë˜̃ëV¢Sß́F².Ö₫íú1ưà{Ôz¯7Ơ!đ₫èưµ₫çP?øz¯Èăû/¼GèÇ|ôƒß xÄØ?öƯ°˜¼æ ư¥QÛq…éR?²¡R‰$. ạ̊²đ{5®GáZơÎơ’o']nyWĐ¹Äm'e¾¬±ÙR)@_²‚|‘Sܳ́́p;9ă;AÑå“×y3Ă]ËñlîÙÙBf¹ïp亜BÅçɹ¢å([å–[I¬ ‘7L̃y£ä‘7Ñy“äM‰ûG>¿Ơ…Ä«psych/data/Bechtoldt.1.rda0000644000176200001440000000234513154621324015055 0ustar liggesusers‹íVklSe>nC·Êæ@ƒx‰Á[’™bẸ̀f ·M f.f¡vë¡;¦kçÙéœC b!ƨAP#BYÈ4Ɔ0ÜØÎÚmM;h xA0hˆˆß÷í}¾ươ¯Mz9ßíyßç}̃ç몥ƠOxª=†aä¹ÓÄg®ø™—#>n2̣Œñ}ë³®̃‰†ƒÎă%b¾H̀̀¡Ë†zÑÙ…Ôrqk=¹[jư£c %wÿ}>¼y) <Ø7örÙ&ê¹̉¶́ÓîcÔW¶iѳ'¾$÷7µ€Ụ́fos¾y…¾Z|é̃½ù´gǑ擇¤3̣4{?ơËå­—©q ¦‰âù%ÿ¸6A9ÓŸn_½Pă#“r:~¾“ÑÔ_`U×V̉®óäItđjorÖÆyÔ©Âz‹ûÔú óă/Fißá•?¿sßaêmV;étùûoߥë€û₫ÿ…ÿÁĐÿ®/ô‡úƒä|Ư_ß(÷%î_ܸàÿغhÿá~AÿAÿĐê¯ùçüǦđ“e¿†pÿêûó‡ÿõÿ±ÿ ÿÑĐ?ô‡úƒ䟽ñ¾˜̣W)7h5ˆ¯BơoÊ0fŒ¿oX’/–D f“ø};¯+Vëøß–ײ›¥ZÂC/Fí ¿2ÖPkÚ0) { mu <- rep(mu,nvar) #observed <- mvrnorm(n = n, mu, Sigma=model, tol = 1e-6, empirical = FALSE) eX <- eigen(model) observed <- matrix(rnorm(nvar * n),n) observed <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(observed) + mu) if(items) {observedp <- matrix(t(pnorm(a*t(observed)- d)),n,nvar) observed[] <- rbinom(n*nvar, cat, observedp)} colnames(observed) <- colnames(model) r <- cor(observed) } reliability <- diag(f %*% t(f)) if(n<1) {results <- list(model=model,reliability=reliability) } else { if (!raw) {results <- list( model=model,reliability=reliability,r=r,N=n )} else { results <- list( model=model,reliability=reliability,r=r,observed= observed,N=n) } } results$Call <- cl class(results) <- c("psych", "sim") return(results)} "sim" <- function (fx=NULL,Phi=NULL,fy=NULL,alpha=.8,lambda = 0,n=0,mu=NULL,raw=TRUE) { cl <- match.call() ##set up some default values if(is.null(fx)) {fx <- matrix(c(rep(c(.8,.7,.6,rep(0,12)),3),.8,.7,.6),ncol=4) if(is.null(Phi)) {Phi <- diag(1,4,4) Phi <- alpha^abs(row(Phi) -col(Phi)) + lambda^2 diag(Phi) <- max((alpha + lambda),1) Phi <- cov2cor(Phi)} if(is.null(mu)) {mu <- c(0,.5,1,2)} } if(is.null(fy)) {f <- fx} else { f <- superMatrix(fx,fy)} if(is.null(mu)) {mu <- rep(0,ncol(fx))} means <- fx %*% mu if(is.vector(f)) {f <- as.matrix(f) #this is the case if doing a congeneric model Phi <- 1} if(!is.null(Phi)) { model <- f %*% Phi %*% t(f) #the model correlation matrix for oblique factors } else { model <- f%*% t(f)} diag(model)<- 1 # put ones along the diagonal nvar <- dim(f)[1] colnames(model) <- rownames(model) <- paste("V",1:nvar,sep="") if(n>0) { # observed <- mvrnorm(n = n, means, Sigma=model, tol = 1e-6, empirical = FALSE) eX <- eigen(model) observed <- matrix(rnorm(nvar * n),n) observed <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(observed) + rep(means,n)) r <- cor(observed) } reliability <- diag(f %*% t(f)) if(n<1) {results <- list(model=model,reliability=reliability) } else { if (!raw) {results <- list( model=model,reliability=reliability,r=r,N=n )} else { results <- list( model=model,reliability=reliability,r=r,observed= observed,N=n) } } results$Call <- cl class(results) <- c("psych", "sim") return(results)} "sim.simplex" <- function(nvar =12, alpha=.8,lambda=0,beta=1,mu=NULL, n=0) { cl <- match.call() R <- matrix(0,nvar,nvar) R[] <- alpha^abs(col(R)-row(R))*beta + lambda^2 diag(R) <- max((alpha * beta) + lambda,1) R <- cov2cor(R) colnames(R) <- rownames(R) <- paste("V",1:nvar,sep="") #require(MASS) if(is.null(mu)) {mu <- rep(0,nvar)} if(n>0) { #observed.scores <- mvrnorm(n = n, mu, Sigma=R, tol = 1e-6, empirical = FALSE) observed <- matrix(rnorm(nvar*n),n) eX <- eigen(R) observed.scores <- matrix(rnorm(nvar * n),n) observed.scores <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(observed)+mu) observed <- cor(observed.scores) results <- list(model=R,r=observed,observed=observed.scores) results$Call <- cl class(results) <- c("psych", "sim")} else {results <- R} results } #simulate major and minor factors "sim.minor" <- function(nvar=12,nfact=3,n=0,g=NULL,fbig=NULL,fsmall = c(-.2,.2),bipolar=TRUE) { if(is.null(fbig)) {loads <- c(.8,.6) } else {loads <- fbig} loads <- sample(loads,nvar/nfact,replace=TRUE) if(nfact == 1) {fx <- matrix(loads,ncol=1)} else {fx <- matrix(c(rep(c(loads,rep(0,nvar)),(nfact-1)),loads),ncol=nfact)} if(bipolar) fx <- 2*((sample(2,nvar,replace=TRUE) %%2)-.5) * fx if(!is.null(g)) {if (length(g) < nvar) {g <- sample(g,nvar,replace=TRUE)} fx <- cbind(g,fx) } fsmall <- c(fsmall,rep(0,nvar/4)) fs <- matrix(sample(fsmall,nvar*floor(nvar/2),replace=TRUE),ncol=floor(nvar/2)) fload <- cbind(fx,fs) if(is.null(g)) { colnames(fload) <- c(paste("F",1:nfact,sep=""),paste("m",1:(nvar/2),sep=""))} else { colnames(fload) <- c("g",paste("F",1:nfact,sep=""),paste("m",1:(nvar/2),sep=""))} rownames(fload) <- paste("V",1:nvar,sep="") results <- sim(fload,n=n) results$fload <- fload class(results) <- c("psych", "sim") return(results) } #simulate various structures and summarize them "sim.omega" <- function(nvar=12,nfact=3,n=500,g=NULL,sem=FALSE,fbig=NULL,fsmall = c(-.2,.2),bipolar=TRUE,om.fact=3,flip=TRUE,option="equal",ntrials=10) { results <- matrix(NaN,nrow=ntrials,ncol=12) colnames(results) <- c("n","om.model","omega","ev.N","e.f1","omega.f1","Beta","omegaCFA","omegaSem","rms","RMSEA","coeff.v") for (i in 1:ntrials) { x <- try(sim.minor(nvar=nvar,nfact=nfact,n=n,g=g,fbig=fbig,fsmall=fsmall,bipolar=bipolar)) if(is.null(g)) {omega.model <- 0} else {gsum <- colSums(x$fload)[1] omega.model <- gsum^2/sum(x$model)} results[i,"om.model"] <- omega.model observed.cor <- cor(x$observed) ev <- eigen(observed.cor)$values f1 <- fa(observed.cor)$loadings om.fa <- sum(f1)^2/sum(observed.cor) e.f1 <- sum(f1^2)/nvar sem.model <- omega.sem(x$fload,sl=TRUE,nf=nfact) #this is the model based upon the true values if(sem) {if(!requireNamespace('sem')) {stop("You must have the sem package installed to use omegaSem")} else {sem.om <- try(sem(model=sem.model,S=observed.cor, N=n))} omega.cfa <- omegaFromSem(observed.cor,sem.om,flip=flip) if(omega.cfa$omega >1) omega.cfa$omega <- NA results[i,"omegaCFA"] <- omega.cfa$omega } else {omega.cfa <- NULL} results[i,"n"] <- n if(n > 0) { if (sem) {om <- try(omegaSem(x$observed,om.fact,flip=flip,plot=FALSE,option=option))} else { om <- try(omega(x$observed,om.fact,flip=flip,plot=FALSE,option=option))} ic <- suppressWarnings(ICLUST(x$observed,1,plot=FALSE))} else { if (sem) {om <- try(omegaSem(x$model,om.fact,flip=flip,plot=FALSE,option=option))} else {om <- try(omega(x$model,om.fact,flip=flip,plot=FALSE,option=option)) if(class(om)=="try-error") {message("Error in sem. iteration = ",i) om <- NA next}} ic <- suppressWarnings(ICLUST(x$model,1,plot=FALSE))} results if(sem) {results[i,"omega"] <- om$omegaSem$omega_h loads <- om$omegaSem$schmid$sl } else {results[i,"omega"] <- om$omega_h loads <- om$schmid$sl } p2 <- loads[,ncol(loads)] mp2 <- mean(p2) vp2 <- var(p2) #results[i,"p2"] <- mp2 #results[i,"p2.sd"] <- sqrt(vp2) results[i,"coeff.v"] <- sqrt(vp2)/mp2 results[i,"Beta"] <- ic$beta results[i,"ev.N"] <- ev[1]/nvar results[i,"e.f1"] <- e.f1 results[i,"omega.f1"] <- om.fa if(sem) { if(!is.null(om$omegaSem$schmid$RMSEA)) {results[i,"RMSEA"] <-om$omegaSem$schmid$RMSEA[1]} else {results[i,"RMSEA"] <- NA} if(!is.null(om$omegaSem$schmid$rms))results[i,"rms"] <- om$omegaSem$schmid$rms results[i,"omegaSem"] <- om$omega.efa$omega if(results[i,"omegaSem"] > 1) {warning("Bad result from sem case = ",i) results[i,"omegaSem"] <- NA} } else { if(!is.null(om$schmid$RMSEA)) {results[i,"RMSEA"] <- om$schmid$RMSEA[1]} else {results[i,"RMSEA"] <- NA} if(!is.null(om$schmid$rms)) results[i,"rms"] <- om$schmid$rms results[i,"omegaSem"] <- NA} } if(n==0) {results <- results[,-which(colnames(results)=="RMSEA")] #drop RMSEA if there are no cases if(!sem) results <- results[,-which(colnames(results)=="omegaSem")] } else {if(!sem) results <- results[,-which(colnames(results)=="omegaSem")] } return(results) } "sim.omega.2" <- function(nvar=12,nfact=3,n=c(100,200,400,800),g=c(0,.1,.2,.3,.4,.5),sem=TRUE,fbig=c(.7,.6),fsmall=c(-.2,.2),bipolar=FALSE,om.fact=3,ntrials=10) { result <- list() k <- 1 progressBar(k,length(n)*length(g),"sim.omega.2") for (ni in 1:length(n)) { for (gi in 1:length(g)) { result[[k]] <- sim.omega(nvar=nvar,nfact=nfact,n=n[ni],g =g[gi],fbig=fbig,fsmall=fsmall,bipolar=bipolar,ntrials=ntrials,om.fact=om.fact,sem=sem) k <- k+1 } } cnames <- colnames(result[[1]]) #result <- unlist(result) #if(sem) {result <- matrix(result,ncol=10,byrow=TRUE)} else {result <- matrix(result,ncol=9,byrow=TRUE) } #colnames(result) <- cnames return(result) } "sim.general" <- function(nvar=9,nfact=3, g=.3,r=.3,n=0) { #require(MASS) r1 <- matrix(r,nvar/nfact,nvar/nfact) R <- matrix(g,nvar,nvar) rf <- superMatrix(r1,r1) if(nfact>2) {for (f in 1:(nfact-2)){ rf <- superMatrix(r1,rf)}} R <- R + rf diag(R) <- 1 colnames(R) <- rownames(R) <- paste((paste("V",1:(nvar/nfact),sep="")),rep(1:nfact,each=(nvar/nfact)),sep="gr") if(n > 0) {#x <- mvrnorm(n = n, mu=rep(0,nvar), Sigma = R, tol = 1e-06,empirical = FALSE) eX <- eigen(R) x <- matrix(rnorm(nvar * n),n) x <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(x)) return(x)} else { return(R)} }psych/R/print.psych.schmid.R0000644000176200001440000001420312436432051015453 0ustar liggesusers"print.psych.schmid" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { if(is.null(cut)) cut <- .2 cat( "Schmid-Leiman analysis \n") cat("Call: ") print(x$Call) cat("\nSchmid Leiman Factor loadings greater than ",cut, "\n") loads <- x$sl nfactor <- ncol(loads)-3 if(sort) { ord <- sort(abs(loads[,1]),decreasing=TRUE,index.return=TRUE) loads[,] <- loads[ord$ix,] rownames(loads) <- rownames(loads)[ord$ix] loads <- cbind(v=ord$ix,loads) } #end sort tn <- colnames(loads) loads <- data.frame(loads) colnames(loads) <- tn #this seems weird, but otherwise we lose the F* name if(sort) {loads[,1] <- as.integer(loads[,1]) load.2 <- loads[,2:(nfactor+1)]} else {load.2 <- loads[,1:nfactor] } h2 <- round(loads[,"h2"],digits) u2 <- round(loads[,"u2"],digits) loads <- round(loads,digits) fx <- format(loads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx[abs(loads)< cut] <- paste(rep(" ", nc), collapse = "") # h2 <- round(rowSums(load.2^2),digits) #u2 <- 1 - h2 p2 <- loads[,"p2"] mp2 <- mean(p2) vp2 <- var(p2) p2 <- round(p2,digits) print(cbind(fx[,1:(nfactor+sort)],h2,u2,p2),quote="FALSE") numfactors <- dim(x$sl)[2] -3 eigenvalues <- diag(t(x$sl[,1:numfactors]) %*% x$sl[,1:numfactors]) cat("\nWith eigenvalues of:\n") ev.rnd <- round(eigenvalues,digits) print(ev.rnd,digits=digits) maxmin <- max(eigenvalues[2:numfactors])/min(eigenvalues[2:numfactors]) gmax <- eigenvalues[1]/max(eigenvalues[2:numfactors]) cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits)) cat("\nmean percent general = ",round(mp2,digits), " with sd = ", round(sqrt(vp2),digits), "and cv of ",round(sqrt(vp2)/mp2,digits),"\n") cat("\n The orthogonal loadings were \n") load <- x$orthog cut <- 0 #but, if we are print factors of covariance matrices, they might be very small # cut <- min(cut,max(abs(load))/2) #removed following a request by Reinhold Hatzinger nitems <- dim(load)[1] nfactors <- dim(load)[2] loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems),unclass(load)) u2.order <- 1:nitems #used if items are sorted if(sort) { #first sort them into clusters #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(load),1,which.max) ord <- sort(loads$cluster,index.return=TRUE) loads[1:nitems,] <- loads[ord$ix,] rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] #now sort column wise #now sort the loadings that have their highest loading on each cluster items <- table(loads$cluster) #how many items are in each cluster? first <- 1 item <- loads$item for (i in 1:length(items)) {# i is the factor number if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(loads[first:last,i+2]),decreasing=TRUE,index.return=TRUE) u2.order[first:last] <- item[ord$ix+first-1] loads[first:last,3:(nfactors+2)] <- load[item[ord$ix+first-1],] loads[first:last,1] <- item[ord$ix+first-1] rownames(loads)[first:last] <- rownames(loads)[ord$ix+first-1] first <- first + items[i] } } } #end of sort #they are now sorted, don't print the small loadings if cut > 0 ncol <- dim(loads)[2]-2 rloads <- round(loads,digits) fx <- format(rloads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx.1 <- fx[,1,drop=FALSE] #drop = FALSE preserves the rownames for single factors fx.2 <- fx[,3:(2+ncol)] load.2 <- as.matrix(loads[,3:(ncol+2)]) fx.2[abs(load.2) < cut] <- paste(rep(" ", nc), collapse = "") if(sort) { fx <- data.frame(V=fx.1,fx.2) if(dim(fx)[2] <3) colnames(fx) <- c("V",colnames(x$loadings)) #for the case of one factor } else {fx <- data.frame(fx.2) colnames(fx) <- colnames(x$orthog)} if(nfactors > 1) {if(is.null(x$Phi)) {h2 <- rowSums(load.2^2)} else {h2 <- diag(load.2 %*% x$Phi %*% t(load.2)) }} else {h2 <-load.2^2} if(!is.null(x$uniquenesses)) {u2 <- x$uniquenesses[u2.order]} else {u2 <- u2[u2.order]} #h2 <- round(h2,digits) vtotal <- sum(h2 + u2) if(isTRUE(all.equal(vtotal,nitems))) { cat("Standardized loadings based upon correlation matrix\n") print(cbind(fx,h2,u2),quote="FALSE",digits=digits) } else { cat("Unstandardized loadings based upon covariance matrix\n") print(cbind(fx,h2,u2,H2=h2/(h2+u2),U2=u2/(h2+u2)),quote="FALSE",digits=digits)} #adapted from print.loadings if(is.null(x$Phi)) {if(nfactors > 1) {vx <- colSums(load.2^2) } else {vx <- sum(load.2^2) }} else {vx <- diag(x$Phi %*% t(load) %*% load) } names(vx) <- colnames(x$orthog) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/vtotal) if (nfactors > 1) varex <- rbind(varex, "Cumulative Var"= cumsum(vx/vtotal)) cat("\n") print(round(varex, digits)) if(!is.null(x$dof)) {cat("\nThe degrees of freedom are",x$dof," and the fit is ",round(x$objective,digits),"\n") if(!is.null(x$n.obs)&&!is.na(x$n.obs)) {cat("The number of observations was ",x$n.obs, " with Chi Square = ",round(x$STATISTIC,digits), " with prob < ", signif(x$PVAL,digits))} } if(!is.null(x$rms)) {cat("\nThe root mean square of the residuals is ", round(x$rms,digits),"\n") } if(!is.null(x$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$crms,digits)) } if(!is.null(x$RMSEA)) {cat("\nRMSEA index = ",round(x$RMSEA[1],digits+1), " and the", (1- x$RMSEA[4])*100,"% confidence intervals are ",round(x$RMSEA[2:3],digits+1)) } if(!is.null(x$BIC)) {cat("\nBIC = ",round(x$BIC,digits))} } psych/R/superMatrix.R0000644000176200001440000000345611764631403014264 0ustar liggesusers "superMatrix" <- function(x,y=NULL) {if(is.list(x)) { if(is.null(y)) { y <- x[-1]} else { y <- list(x[-1],y) } x <- x[[1]] } if(is.list(y)) { if (length(y) > 1) { x <- superMatrix(x,y[[1]]) xy <- superMatrix(x,y[-1]) } else {y <- y[[1]] xy <- superMatrix(x,y)} } else { if(is.vector(x)) {x <- matrix(x) colnames(x) <- "X" if(dim(x)[1] <2) {rownames(x) <- "X"} else {rownames(x) <- paste("Vx",1:dim(x)[1],sep="") } } else {if (is.null(colnames(x))) colnames(x) <- paste("X",1:dim(x)[2],sep="") if (is.null(rownames(x))) rownames(x) <- paste("Vx",1:dim(x)[1],sep="")} if(is.vector(y)) {y <- matrix(y) colnames(y) <- "Y" if(dim(y)[1]<2) {rownames(y) <- "Y"} else {rownames(y) <- paste("Vy",1:dim(y)[1],sep="") } } else {if (is.null(colnames(y))) colnames(y) <- paste("Y",1:dim(y)[2],sep="") if (is.null(rownames(y))) rownames(y) <- paste("Vy",1:dim(y)[1],sep="")} fillx <- rbind(x,matrix(0,ncol=dim(x)[2],nrow=dim(y)[1])) filly <- rbind(matrix(0,ncol=dim(y)[2],nrow=dim(x)[1]),y) xy <- cbind(fillx,filly) colnames(xy) <- c(colnames(x),colnames(y)) rownames(xy) <- c(rownames(x),rownames(y)) } return(xy)} #fixed June 21, 2009 to add rownames of matrices if necessary #modified June 8, 2012 to add list input option "super.matrix" <- function(x,y) { .Deprecated("super.matrix", msg = "super.matrix is deprecated. Please use the superMatrix function") xy <- superMatrix(x,y) return(xy)} #fixed June 21, 2009 to add rownames of matrices if necessary #modified June 8, 2012 to add list input optionpsych/R/Yule.R0000644000176200001440000001002612441471704012645 0ustar liggesusers"Yule" <- function(x,Y=FALSE) { # if(!is.matrix(x)) {stop("x must be a matrix")} stopifnot(prod(dim(x)) == 4 || length(x) == 4) if (is.vector(x)) { x <- matrix(x, 2)} a <- x[1,1] b <- x[1,2] c <- x[2,1] d <- x[2,2] if (Y) {Yule <- (sqrt(a*d) - sqrt(b*c))/(sqrt(a*d)+sqrt(b*c))} else {Yule <- (a*d- b*c)/(a*d + b*c)} return(Yule) #Yule Q } "Yule.inv" <- function(Q,m,n=NULL) {#find the cells for a particular Yule value with fixed marginals if (length(m) > 2) { #this old way is for one correlation at a time with all 4 marginals - R1 <- m[1] R2 <- m[2] C1 <- m[3] C2 <- m[4] } else { #the better way is to specify just two marginals- allows better interface with matrices if(is.null(n)) {n<- 1} #do it as percentages R1 <- m[1] R2 <- n -R1 C1 <- m[2] C2 <- n - C1} f <- function(x) {(Q- Yule(c(x,R1-x,C1-x,R2-C1+x)))^2} xval <- optimize(f,c(min(R1-min(C2,R1),C1-min(R2,C1)),min(R1,C1))) R <- matrix(ncol=2,nrow=2) x <- xval$minimum R[1,1] <- x R[1,2] <- R1-x R[2,1] <- C1 -x R[2,2] <- R2-C1 + x return(R) } "Yule2poly" <- function(Q,m,n=NULL,correct=TRUE) { #find the phi equivalent to a Yule Q with fixed marginals .Deprecated("Yule2tet",msg="Yule2poly has been replaced by Yule2tet, please try again") t <- Yule.inv(Q,m,n=n) r <- tetrachoric(t,correct=correct)$rho return(r) } "Yule2tet" <- function(Q,m,n=NULL,correct=TRUE) { #find the phi equivalent to a Yule Q with fixed marginals t <- Yule.inv(Q,m,n=n) r <- tetrachoric(t,correct=correct)$rho return(r) } "Yule2phi" <- function(Q,m,n=NULL) { #find the phi equivalent to a Yule Q with fixed marginals t <- Yule.inv(Q,m,n=n) return(phi(t,digits=15))} "Yule2tetra" <- function(Q,m,n=NULL,correct=TRUE) { if(!is.matrix(Q) && !is.data.frame(Q)) {result <- Yule2tet(Q,c(m[1],m[2]),n=n,correct=correct) } else { nvar <- nrow(Q) if(nvar !=ncol(Q)) {stop('Matrix must be square')} if (length(m) !=nvar) {stop("length of m must match the number of variables")} result <- Q for(i in 2:nvar) { for (j in 1:(i-1)) { result[i,j] <- result[j,i] <- Yule2tet(Q[i,j],c(m[i],m[j]),n,correct=correct) } }} return(result) } "YuleBonett" <- function(x,c=1,bonett=FALSE,alpha=.05) { # if(!is.matrix(x)) {stop("x must be a matrix")} stopifnot(prod(dim(x)) == 4 || length(x) == 4) if (is.vector(x)) { x <- matrix(x, 2)} p <- x/sum(x) C <- c a <- p[1,1] b <- p[1,2] c <- p[2,1] d <- p[2,2] Rs <- rowSums(p) Cs <- colSums(p) if(bonett) {C <- .5 - (.5 - min(Rs,Cs))^2 } ad <- (a*d)^C bc <- (b*c)^C Yule <- (ad-bc)/(ad+bc) Ystar <- #See Bonett 2007 p 434 w <- (x[1,1] + .1)* (x[2,2] + .1)/((x[2,1] + .1)* (x[1,2] + .1)) #OR estimate Ystar <- (w^C -1)/(w^C+1) #this is the small cell size adjusted value vlQ <- (1/(x[1,1] + .1) + 1/ (x[2,2] + .1) + 1/(x[2,1] + .1)+ 1/ (x[1,2] + .1)) vQ <- (C^2/4)*(1-Ystar^2)^2 *vlQ #equation 9 tanhinv <- atanh(Ystar) upper <- tanh(atanh(Ystar) + qnorm(1-alpha/2) *sqrt( (C^2/4) *vlQ)) lower <- tanh(atanh(Ystar) - qnorm(1-alpha/2) *sqrt( (C^2/4) *vlQ)) result <- list(rho=Ystar,se=sqrt(vQ), upper=upper, lower=lower) class(result) <- c("psych","Yule") return(result) #Yule Q, Y, or generalized Bonett } #Find a correlation matrix of Yule correlations "YuleCor" <- function(x,c=1,bonett=FALSE,alpha=.05) { cl <- match.call() nvar <- ncol(x) rho <- matrix(NA,nvar,nvar) ci <- matrix(NA,nvar,nvar) zp <- matrix(NA,nvar,nvar) for(i in 1:nvar) { for(j in 1:i) { YB <- YuleBonett(table(x[,i],x[,j]),c=c,bonett=bonett,alpha=alpha) rho[i,j] <- rho[j,i] <- YB$rho ci[i,j] <- YB$lower ci[j,i] <- YB$upper zp[i,j] <- YB$rho/YB$se zp[j,i] <- 1-pnorm(zp[i,j]) }} colnames(rho) <- rownames(rho) <- colnames(ci) <- rownames(ci) <- colnames(x) result <- list(rho=rho,ci=ci,zp=zp,Call=cl) class(result) <- c("psych","yule") return(result) } psych/R/comorbidity.R0000644000176200001440000000113311446701203014244 0ustar liggesusers"comorbidity" <- function(d1,d2,com,labels=NULL) { cl <- match.call() twobytwo <- matrix(c(com, d1-com,d2-com,1-d1-d2+com),ncol=2) if(is.null(labels)) { colnames(twobytwo) <- c("D1","d1") rownames(twobytwo) <- c("D2","d2")} else { colnames(twobytwo) <- c(labels[1],paste("-",labels[1],sep="")) rownames(twobytwo) <- c(labels[2],paste("-",labels[2],sep=""))} phi <- phi(twobytwo) Yule <- Yule(twobytwo) tetra<- tetrachoric(twobytwo) answer <- list(twobytwo=twobytwo,phi=phi,Yule=Yule,tetra=tetra,Call=cl) class(answer) <- c("psych","comorbid") return(answer) }psych/R/cortest.mat.R0000644000176200001440000000333611157336472014205 0ustar liggesusers"cortest.mat" <- function(R1,R2=NULL,n1=NULL,n2 = NULL) { cl <- match.call() p <- dim(R1)[2] if(dim(R1)[1] != p) { n1 <- dim(R1)[1] R1 <- cor(R1,use="pairwise") warning ("R1 matrix was not square, correlations found") } if(!is.matrix(R1)) R1 <- as.matrix(R1) #in case R1 is a data.frame if (is.null(n1)) {warning("n1 not specified, set to 100") n1 <-100} if (is.null(R2)) {message("Bartlett's test of is R = I") detR1 <- det(R1) chi2 <- -log(detR1) *(n1 -1 - (2*p + 5)/6) df <- p * (p-1)/2 pval <- pchisq(chi2,df,lower.tail=FALSE) n.obs <- n1 } else { if(dim(R2)[1] != dim(R2)[2] ) {n2 <- dim(R2)[1] R2 <- cor(R2,use="pairwise") warning ("R2 matrix was not square, correlations found") } if (p != dim(R2)[2]) stop("correlation matrices R1 and R2 must be of the same size!") if(!is.matrix(R2)) R2 <- as.matrix(R2) #in case R1 is a data.frame R1.inv <- solve(R1) #inverse of R R2.inv <- solve(R2) #inverse of R R.inv.2 <- R1.inv %*% R2 #inverse of R1 times R2 R.inv.1 <- R2.inv %*% R1 #inverse of R2 times R1 E1 <- .5*(sum((diag(R.inv.2))) -log(det(R.inv.2)) - p ) #likelihood E2 <- .5*(sum((diag(R.inv.1))) -log(det(R.inv.1)) - p ) #likelihood df1 <- p * (p-1)/2 df <- 2*df1 if (is.null(n2)) {n2 <- n1} n.obs <- min(n1,n2) chi21 <- E1 * (n1-1-(2*p - 5)/6) chi22 <- E2 * (n2-1-(2*p - 5)/6) chi2 <- chi21 + chi22} results <- list(chi2 =chi2,prob =pchisq(chi2,df,lower.tail=FALSE), df= df,n.obs=n.obs,Call =cl) class(results) <- c("psych","cortest") return(results) } psych/R/principal.R0000755000176200001440000003513113127173015013713 0ustar liggesusers#pca is just an alias for the principal function "pca" <- function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA, covar=FALSE,scores=TRUE,missing=FALSE,impute="median",oblique.scores=TRUE,method="regression",...) { principal(r=r,nfactors=nfactors,residuals=residuals,rotate=rotate,n.obs=n.obs,covar=covar,scores=scores, missing=missing, impute=impute,oblique.scores=oblique.scores, method=method,...) } #to make principal components more similar in output to normal pca in other systems. "principal" <- function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA, covar=FALSE,scores=TRUE,missing=FALSE,impute="median",oblique.scores=TRUE,method="regression",...) { cl <- match.call() n <- dim(r)[2] if (!isCorrelation(r)) { raw <- TRUE n.obs <- dim(r)[1] if(scores) {x.matrix <- as.matrix(r) #matrices are required for the substitution to work if(missing) { miss <- which(is.na(x.matrix),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x.matrix,na.rm=TRUE) #replace missing values with means x.matrix[miss]<- item.means[miss[,2]]} else { item.med <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians x.matrix[miss]<- item.med[miss[,2]]} }} # 2011.12.21 added the covar option if(!covar) {r <- cor(r,use="pairwise")} else r <- cov(r,use="pairwise") # if given a rectangular matrix, then find the correlations or covariances first } else { raw <- FALSE if(!is.matrix(r)) { r <- as.matrix(r)} sds <- sqrt(diag(r)) #convert covariance matrices to correlation matrices if(!covar) r <- r/(sds %o% sds) } #added June 9, 2008 if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0,fit.off=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0,fit.off=0)} #added 24/4/15 to stop with bad data and give more meaningful help if(any(is.na(r))) { bad <- TRUE tempr <-r wcl <-NULL while(bad) { wc <- table(which(is.na(tempr), arr.ind=TRUE)) #find the correlations that are NA wcl <- c(wcl,as.numeric(names(which(wc==max(wc))))) tempr <- r[-wcl,-wcl] if(any(is.na(tempr))) {bad <- TRUE} else {bad <- FALSE} } cat('\nLikely variables with missing values are ',colnames(r)[wcl],' \n') stop("I am sorry: missing values (NAs) in the correlation matrix do not allow me to continue.\nPlease drop those variables and try again." ) } eigens <- eigen(r) #call the eigen value decomposition routine result$values <- eigens$values eigens$values[ eigens$values < .Machine$double.eps] <- .Machine$double.eps #added May 14, 2009 to fix case of singular matrices loadings <- eigens$vectors %*% sqrt(diag(eigens$values,nrow=length(eigens$values))) #added May 2, 2016 for the weird case of a single variable with covariance > 1 if(nfactors > 0) {loadings <- loadings[,1:nfactors]} else {nfactors <- n} if (nfactors > 1) {communalities <- rowSums(loadings^2)} else {communalities <- loadings^2 } uniquenesses <- diag(r) - communalities # 2011.12.21 uniqueness is now found if covar is true names(communalities) <- colnames(r) # 2009.02.10 Make sure this is a named vector -- correction by Gumundur Arnkelsson #added January 19, 2009 to flip based upon colSums of loadings if (nfactors > 1) {sign.tot <- vector(mode="numeric",length=nfactors) sign.tot <- sign(colSums(loadings)) sign.tot[sign.tot==0] <- 1 loadings <- loadings %*% diag(sign.tot) } else { if (sum(loadings) < 0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)} colnames(loadings) <- "PC1" } colnames(loadings) <- paste("PC",1:nfactors,sep='') rownames(loadings) <- rownames(r) Phi <- NULL rot.mat <- NULL if(rotate != "none") {if (nfactors > 1) { if (rotate=="varimax" |rotate=="Varimax" | rotate=="quartimax" | rotate =="bentlerT" | rotate =="geominT" | rotate =="targetT" | rotate =="bifactor" | rotate =="TargetT"| rotate =="equamax"| rotate =="varimin"|rotate =="specialT" | rotate =="Promax" | rotate =="promax"| rotate =="cluster" |rotate == "biquartimin" |rotate == "TargetQ" |rotate =="specialQ" ) { Phi <- NULL colnames(loadings) <- paste("RC",1:nfactors,sep='') #for rotated component switch(rotate, #The orthogonal cases for GPArotation + ones developed for psych varimax = {rotated <- stats::varimax(loadings,...) #varimax is from stats, the others are from GPArotation loadings <- rotated$loadings rot.mat <- rotated$rotmat}, Varimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #varimax is from the stats package, Varimax is from GPArotations #rotated <- do.call(rotate,list(loadings,...)) #rotated <- do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...)) rotated <- GPArotation::Varimax(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , quartimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings)) rotated <- GPArotation::quartimax(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , bentlerT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::bentlerT(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , geominT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::geominT(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , targetT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} rotated <- GPArotation::targetT(loadings,Tmat=diag(ncol(loadings)),...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , bifactor = {rot <- bifactor(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, TargetT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} rot <- GPArotation::targetT(loadings,Tmat=diag(ncol(loadings)),...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, equamax = {rot <- equamax(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, varimin = {rot <- varimin(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, specialT = {rot <- specialT(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, Promax = {pro <- Promax(loadings,...) loadings <- pro$loadings Phi <- pro$Phi rot.mat <- pro$rotmat}, promax = {pro <- stats::promax(loadings,...) #from stats loadings <- pro$loadings rot.mat <- pro$rotmat ui <- solve(rot.mat) Phi <- cov2cor(ui %*% t(ui))}, cluster = {loadings <- varimax(loadings,...)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi rot.mat <- pro$rotmat}, biquartimin = {ob <- biquartimin(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))}, TargetQ = {ob <- TargetQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))}, specialQ = {ob <- specialQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(pro$Th))}) } else { colnames(loadings) <- paste("TC",1:nfactors,sep='') #for transformed components #The following oblique cases all use GPArotation if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax" | rotate =="geominQ" | rotate =="bentlerQ" |rotate == "targetQ" ) { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- try(do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...))) if(class(ob)== as.character("try-error")) {warning("The requested transformaton failed, Promax was used instead as an oblique transformation") ob <- Promax(loadings)} loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))} } else {message("Specified rotation not found, rotate='none' used") colnames(loadings) <- paste("PC",1:nfactors,sep='') } #not rotated } } } #just in case the rotation changes the order of the components, sort them by size of eigen value if(nfactors >1) { ev.rotated <- diag(t(loadings) %*% loadings) ev.order <- order(ev.rotated,decreasing=TRUE) loadings <- loadings[,ev.order]} if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix! signed <- sign(colSums(loadings)) c.names <- colnames(loadings) signed[signed==0] <- 1 loadings <- loadings %*% diag(signed) #flips factors to be in positive direction but loses the colnames colnames(loadings) <- c.names if(!is.null(Phi)) {Phi <- diag(signed) %*% Phi %*% diag(signed) colnames(Phi) <- rownames(Phi) <- c.names} class(loadings) <- "loadings" #Find the summary statistics of Variance accounted for #normally just found in the print function (added 4/22/17) #from the print function if(is.null(Phi)) {if(nfactors > 1) {vx <- colSums(loadings^2) } else {vx <- sum(loadings^2) }} else {vx <- diag(Phi %*% t(loadings) %*% loadings) } vtotal <- sum(communalities + uniquenesses) names(vx) <- colnames(loadings) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/vtotal) if (nfactors > 1) { varex <- rbind(varex, "Cumulative Var"= cumsum(vx/vtotal)) varex <- rbind(varex, "Proportion Explained"= vx/sum(vx)) varex <- rbind(varex, "Cumulative Proportion"= cumsum(vx/sum(vx))) } result$n.obs <- n.obs stats <- factor.stats(r,loadings,Phi,n.obs,fm="pc") class(result) <- c("psych", "principal") result$fn <- "principal" result$loadings <- loadings result$Phi <- Phi result$Call <- cl result$communality <- communalities result$uniquenesses <- uniquenesses result$complexity <- stats$complexity #result$stats <- stats result$chi <- stats$chi result$EPVAL <- stats$EPVAL result$R2 <- stats$R2 result$objective <- stats$objective result$residual <- stats$residual result$rms <- stats$rms result$fit <- stats$fit result$fit.off <- stats$fit.off result$factors <- stats$factors result$dof <- stats$dof result$null.dof <- stats$null.dof result$null.model <- stats$null.model result$criteria <- stats$criteria result$STATISTIC <- stats$STATISTIC result$PVAL <- stats$PVAL result$weights <- stats$weights result$r.scores <- stats$r.scores result$rot.mat <- rot.mat result$Vaccounted <-varex if(!is.null(Phi) && oblique.scores) { result$Structure <- loadings %*% Phi} else {result$Structure <- loadings } if(scores && raw) { result$weights <- try(solve(r,result$Structure),silent=TRUE) if(class(result$weights) == "try-error") {warning("The matrix is not positive semi-definite, scores found from Structure loadings") result$weights <- result$Structure} # else { result$scores <- scale(x.matrix,scale=!covar) %*% result$weights #} } # result$scores <- factor.scores(scale(x.matrix,scale=!covar),result$Structure,Phi=Phi,method=method,rho=r) # method = method added Nov 20, 2011 # result$weights<- result$scores$weights # result$scores <- result$scores$scores} return(result) } # modified August 10, 2007 # modified Feb 2, 2008 to calculate scores and become a factanal class #Modified June 8,2008 to get chi square values to work or default to statistic if n.obs==NULL. #modified Jan 2, 2009 to report the correlations between oblique factors #modified December 30 to let n.obs ==NA rather than NULL to be compatible with factanal #modified Jan 14, 2009 to change phi to Phi to avoid confusion #modified Jan 19, 2009 to allow for promax rotations #modified May 15, 2009 to allow for singular matrices #correct August 25, 2009 to return result$values #modified August 25 to return result$stats #modified November 20, 2011 to allow multiple scoring approaches to give component scores #modified December 21, 2011 to allow for finding the pc of covariances #modified June 19, 2012 to fix a missing value problem reported by Neil Stewart #modified February 9, 2013 to label the type of rotation/transformation (as is documented but not implemented) #modified February 25, 2013 to make scores=TRUE the default #modified 1/16/14 to output the structure matrix #modified 8/15 to add rot.mat to all rotations #modified 9/3/15 to label rotated PCs as RC and transformed as TC -- perhaps this was dropped out while fixing rotations? #added the pca function as an alias to principal 6/8/16 psych/R/error.bars.R0000644000176200001440000001435612723423741014021 0ustar liggesusers"error.bars" <- function (x,stats=NULL,ylab ="Dependent Variable",xlab="Independent Variable",main=NULL,eyes=TRUE,ylim= NULL,xlim=NULL, alpha=.05, sd=FALSE, labels=NULL,pos=NULL,arrow.len=.05,arrow.col="black",add=FALSE,bars=FALSE,within=FALSE,col="blue",...) # x data frame with { SCALE=.5 #scale the width of the cats eyes if(is.null(stats)) { x.stats <- describe(x) if (within) { x.smc <- smc(x,covar=TRUE) x.stats$se <- sqrt((x.stats$sd^2 - x.smc)/x.stats$n) } if(is.null(dim(x))) { z <- 1} else {z <- dim(x)[2]} #if we just have one variable names <- colnames(x) } else { x.stats <- stats z <- dim(x.stats)[1] names <- rownames(stats) } min.x <- min(x.stats$mean,na.rm=TRUE) max.x <- max(x.stats$mean,na.rm=TRUE) max.se <- max(x.stats$se,na.rm=TRUE) {if(!sd) { if(is.null(stats)) {ci <- qt(1-alpha/2,x.stats$n-1) } else {ci <- rep(1,z) }} else {ci <- sqrt(x.stats$n) max.se <- max(ci * x.stats$se,na.rm=TRUE)} } if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } if(is.null(ylim)) {if(is.na(max.x) | is.na(max.se) | is.na(min.x) | is.infinite(max.x)| is.infinite(min.x) | is.infinite(max.se)) { ylim=c(0,1)} else { if(bars) { ylim=c(min(0,min.x- 3*max.se),max.x+3*max.se) } else { ylim=c(min.x - 3*max.se,max.x+3*max.se) }} } if(bars) {mp =barplot(x.stats$mean,ylim=ylim,xlab=xlab,ylab=ylab,main=main,col=col,...) axis(1,mp[1:z],names) axis(2) box() } else { if(!add){ if(missing(xlim)) {if (is.null(x.stats$values)) {xlim<- c(.5,z+.5) } else {xlim <- c(min(x.stats$values)-.5,max(x.stats$values)+.5)}} if(is.null(x.stats$values)) { plot(x.stats$mean,ylim=ylim,xlab=xlab,ylab=ylab,xlim=xlim,axes=FALSE,main=main,...) axis(1,1:z,names,...) axis(2) box()} else { plot(x.stats$values,x.stats$mean,ylim=ylim,xlim=xlim,xlab=xlab,ylab=ylab,main=main,...) } } else {points(x.stats$mean,...) } } #end of if(bars) if(!is.null(labels)) {lab <- labels} else {lab <- paste("V",1:z,sep="")} if (length(pos)==0) {locate <- rep(1,z)} else {locate <- pos} if (length(labels)==0) lab <- rep("",z) else lab <-labels s <- c(1:z) #this allows us to address each one separately if(bars) {arrows(mp[s],x.stats$mean[s]-ci[s]* x.stats$se[s],mp[s],x.stats$mean[s]+ci[s]* x.stats$se[s],length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} else { if(is.null(x.stats$values)) { arrows(s[s],x.stats$mean[s]-ci[s]* x.stats$se[s],s[s],x.stats$mean[s]+ci[s]* x.stats$se[s],length=arrow.len, angle = 90, code=3,col=arrow.col) } else { arrows(x.stats$values,x.stats$mean[s]-ci[s]* x.stats$se[s],x.stats$values,x.stats$mean[s]+ci[s]* x.stats$se[s],length=arrow.len, angle = 90, code=3, col=arrow.col)} if(eyes) { if(length(col) == 1) col <- rep(col,z) ln <- seq(-3,3,.1) rev <- (length(ln):1) for (s in 1:z){ if(!is.null(x.stats$values[s] )) { catseyes(x=x.stats$values[s],y=x.stats$mean[s],se=x.stats$se[s],n=x.stats$n[s],alpha=alpha,density=-10,col=col[s])} else { catseyes(x=s,y=x.stats$mean[s],se=x.stats$se[s],n=x.stats$n[s],alpha=alpha,density=-10,col=col[s])}} } } } #corrected July 25, 2009 to fix bug reported by Junqian Gordon Xu and then modified to be cleaner code #modified Sept 5, 2009 to handle data with all missing values (why we would want to that is a mystery, but was requested by Junqian Gordon Xu.) #April 5, 2010: the within parameter was added to allow for error bars in repeated measure designs #modified June, 2010 to allow for easier use of stats input #modified June 15, 2010 to allow color bars to match color of lines and to have standard deviations as an option #modified Sept 11, 2013 to pass n -1 to the qt function (reported by Trevor Dodds) #modified March 10, 2014 add the capability to draw "cats eyes" #corrected April 22, 2016 to correctly handle the "stats" option with cats eyes "catseyes" <- function(x,y,se,n,alpha=alpha,density=density,col=col) { SCALE=.7 ln <- seq(-3,3,.1) rev <- (length(ln):1) if(is.null(n) || is.na(n)) {norm <- dnorm(ln) qt <- qnorm(alpha/2) clim <- qnorm(alpha/2)} else {if(n >1) { norm <- dt(ln,n-1) clim <- qt(alpha/2,n-1)}} norm <- c(norm,-norm[rev]) ln <- seq(-3,3,.1) cln <- seq(clim,-clim,.01) cnorm <- dnorm(cln) cnorm <- c(0,cnorm,0,-cnorm,0) #this closes the probability interval polygon(norm*SCALE+x,c(ln,ln[rev])*se+y) polygon(cnorm*SCALE+x,c(clim,cln,-clim,-cln,clim)*se+y,density=density,col=col)} #added May 30, 2016 error.bars.tab <- function(t,way="columns",raw=FALSE,col=c('blue','red'),...) { rnames <- rownames(t) cnames <- colnames(t) t <- as.matrix(t) switch(way, columns = {p <- t(t(t)/colSums(t)) #convert to probabilities if(!raw) {standard.error <- t(sqrt(t(p * (1-p))/colSums(t)))} else {standard.error <- t(sqrt(t(p * (1-p))*colSums(t)))}}, rows = { t <- as.matrix(t) p <- t/rowSums(t) #convert to probabilities if(!raw) {standard.error <-sqrt(p * (1-p)/rowSums(t)) } else {standard.error <-sqrt(p * (1-p)* rowSums(t))}}, both = {p <- t(t(t)/sum(t)) #convert to probabilities if(!raw) {standard.error <- t(sqrt(t(p * (1-p))/sum(t)))} else{standard.error <- t(sqrt(t(p * (1-p))*sum(t)))} }) colnames(p) <-colnames(t) rownames(p) <- rownames(t) nv <- ncol(t) ng <- nrow(t) if(raw) {p <- t} stats <- data.frame(mean=as.vector(p), se=as.vector(standard.error)) rownames(stats) <- paste(rnames,rep(cnames,each=ng)) space <- rep(.1,nv*ng) for(i in 1:(nv-1)) {space[ng*i + 1] <- 1} error.bars(stats=stats,bars=TRUE,space=space, density=c(20,-10,20,-10),col=col,...) invisible(list(p=p,stats=stats)) }psych/R/phi2poly.R0000644000176200001440000000373712267015244013507 0ustar liggesusers"phi2poly" <- function(ph,cp,cc,n=NULL,correct=TRUE) { #.Deprecated(phi2tetra, msg='phi2poly is deprecated, please use phi2tetra') #ph is the phi coefficient #cp is the selection ratio of the predictor #cc is the success rate of the criterion r.marg<-rep(0,2) c.marg<- rep(0,2) p<-array(rep(0,4),dim=c(2,2)) r.marg[1]<- cp r.marg[2]<- 1 -cp c.marg[1]<- cc c.marg[2]<- 1-cc p[1,1]<- r.marg[1]*c.marg[1]+ ph*sqrt(prod(r.marg,c.marg)) p[2,2]<- r.marg[2]*c.marg[2]+ ph*sqrt(prod(r.marg,c.marg)) p[1,2]<- r.marg[1]*c.marg[2]- ph*sqrt(prod(r.marg,c.marg)) p[2,1]<- r.marg[2]*c.marg[1]- ph*sqrt(prod(r.marg,c.marg)) if(!is.null(n)) p <- p*n result<-tetrachoric(p,correct=correct )$rho return(result)} "phi2tet" <- function(ph,cp,cc,n=NULL,correct=TRUE) { if(is.null(n)) n <- 1 #ph is the phi coefficient #cp is the selection ratio of the predictor #cc is the success rate of the criterion r.marg<-rep(0,2) c.marg<- rep(0,2) p<-array(rep(0,4),dim=c(2,2)) r.marg[1]<- cp/n r.marg[2]<- 1 -cp/n c.marg[1]<- cc/n c.marg[2]<- 1-cc/n p[1,1]<- r.marg[1]*c.marg[1]+ ph*sqrt(prod(r.marg,c.marg)) p[2,2]<- r.marg[2]*c.marg[2]+ ph*sqrt(prod(r.marg,c.marg)) p[1,2]<- r.marg[1]*c.marg[2]- ph*sqrt(prod(r.marg,c.marg)) p[2,1]<- r.marg[2]*c.marg[1]- ph*sqrt(prod(r.marg,c.marg)) if(!is.null(n)) p <- p*n result<-tetrachoric(p,correct=correct )$rho return(result)} "phi2tetra" <- function(ph,m,n=NULL,correct=TRUE) { if(!is.matrix(ph) && !is.data.frame(ph)) {result <- phi2tet(ph,m[1],m[2],n=n,correct=correct) } else { nvar <- nrow(ph) if(nvar !=ncol(ph)) {stop('Matrix must be square')} if (length(m) !=nvar) {stop("length of m must match the number of variables")} result <- as.matrix(ph) for(i in 2:nvar) { for (j in 1:(i-1)) { result[i,j] <- result[j,i] <- phi2tet(ph[i,j],m[i],m[j],n=n,correct=correct) } } } return(result) } psych/R/unidim.r0000644000176200001440000000510713127172007013254 0ustar liggesusers #A number of estimates of unidimensinality #Developed March 9. 2017 "unidim" <- function(x,keys.list =NULL,flip=FALSE) { cl <- match.call() n.keys <- 1 all.x <- x results <- list() if(!is.null(keys.list)) {n.keys <- length(keys.list) } else {keys.list <- NULL } for(keys in 1:n.keys) { if(!is.null(keys.list)) { select <- keys.list[[keys]] flipper <- rep(1,length(select)) flipper[grep("-",select)] <- -1 if(is.numeric(select)) {select <- abs(select) } else { select <- sub("-","",unlist(select)) } x <- all.x[,select]} else {flipper <- rep(1,ncol(x))} #this allows us to handle multiple scales if(!isCorrelation(x) ) x <- cor(x,use="pairwise") f1 <- fa(x) g <- sum(f1$model) # sum(f1$loadings %*% t(f1$loadings)) n <- nrow(x) Vt <- sum(x) om.g <- g/Vt #model/ r om.t <- (Vt - sum(f1$uniqueness))/Vt #total reliability uni.orig <- g/ (Vt - sum(f1$uniqueness)) #raw unidimensionality #now, to find traditional alpha, we need to flip negative items if(flip | n.keys == 1) { flipper <- rep(1,n) flipper[sign(f1$loadings ) < 0] <- -1 } x <- diag(flipper) %*% x %*% diag(flipper) Vt <- sum(x) alpha.std <- (1- n/Vt)*(n/(n-1)) av.r <- (Vt-n)/(n*(n-1)) omega.flip <- sum(diag(flipper) %*% f1$model %*% diag(flipper))/Vt omega.total.flip <- (Vt - sum(f1$uniqueness))/Vt flipperped.loadings <- flipper * f1$loadings g.flipperped <- sum(flipperped.loadings%*% t(flipperped.loadings)) uni.flipper <- g.flipperped/(Vt - sum(f1$uniqueness)) stats <- list(uni=uni.orig,uni.flipper = uni.flipper,fit.off= f1$fit.off,alpha=alpha.std,av.r = av.r,om.g=om.g, omega.pos = omega.flip,om.t=om.t,om.total.flip= omega.total.flip) if(!is.null(keys.list)) {results[[names(keys.list[keys])]]<- stats } else {results <- stats} } temp <- matrix(unlist(results),ncol=9,byrow=TRUE) colnames(temp) <- c("Raw Unidim","Adjusted","Fit1","alpha","av.r","original model","adjusted model", "raw.total", "adjusted total") rownames(temp) <- names(keys.list) results <- list(uni=temp) results$Call <- cl class(results) <- c("psych","unidim") return(results) } print.psych.unidim <- function(x,digits=2) { cat("\nA measure of unidimensionality \n Call: ") print(x$Call) cat("\nUnidimensionality index = \n" ) print(round(x$uni,digits=digits)) cat("\nunidim adjusted index reverses negatively scored items.") cat("\nalpha "," Based upon reverse scoring some items.") cat ("\naverage correlations are based upon reversed scored items") } psych/R/guttman.R0000644000176200001440000001130712247407205013410 0ustar liggesusers#revised December 2, 2013 to take advantage of the splitHalf function "guttman" <- function(r,key=NULL) { cl <- match.call() .Deprecated("splitHalf",msg="Guttman has been deprecated. The use of the splitHalf function is recommended") nvar <- dim(r)[2] if(dim(r)[1] != dim(r)[2]) {r <- cor(r,use="pairwise")} else { if(!is.matrix(r)) r <- as.matrix(r) r <- cov2cor(r)} #make sure it is a correlation matrix not a covariance or data matrix if(is.null(colnames(r))) { rownames(r) <- colnames(r) <- paste("V",1:nvar,sep="") } if (!is.null(key)) { key <- as.vector(key) r <- diag(key) %*% r %*% diag(key) flip <- FALSE #we do this if we specify the key } else {key <- rep(1,nvar) } m <- (1-r)/2 diag(m) <- 1 m.names <- colnames(r) colnames(m) <- m.names #flip items if we choose to do so signkey <- strtrim(key,1) signkey[signkey=="1"] <- "" m.names <- paste(m.names,signkey,sep="") colnames(m) <- rownames(m) <- m.names if(nvar < 3) {message("These estimates are not really meaningful if you have less than 3 items, \n Try running the alpha function instead") stop()} # beta <- ICLUST(r,1,plot=FALSE)$beta # worst <- ICLUST(r,2,plot=FALSE) # w.keys <- worst$p.sorted$cluster #the following was a crude attempt at finding the best #this has been replaced with calling splitHalf best <- splitHalf(r) # best <- ICLUST(m,2,plot=FALSE,SMC=FALSE) #best <- ICLUST(m,2,plot=FALSE) #keys <- matrix(rep(0,nvar*2),ncol=2) #b.keys <- best$p.sorted$cluster # m1 <- r #diag(m1) <- 0 # best.kmeans <- kmeans(m,2,nstart=10) #keys.kmean <- matrix(rep(0,nvar*2),ncol=2) # for(i in 1:nvar) { # keys.kmean[i,best.kmeans$cluster[i]] <- 1 } f1 <- fa(r,SMC=FALSE) #one factor solution load <- f1$loadings ord.load <- order(load) key.fa <- matrix(rep(0,nvar*2),ncol=2) for (i in 1:nvar) { key.fa[ord.load[i],1] <- i %% 2 key.fa[ord.load[i],2] <- 1 - key.fa[ord.load[i],1] } f2 <- fa(r,2,SMC=FALSE) #two factor solution load <- f2$loadings key.fa2 <- matrix(rep(0,nvar*2),ncol=2) key.fa2[,1] <- (abs(load[,1]) > abs(load[,2])) + 0 key.fa2[,2 ] <- 1- key.fa2[,1] ev <-eigen(r)$values e <- ev[1] alpha.pc <- (1-1/e) * nvar/(nvar-1) #alpha.pc2 <- (1-1/ev[2]) * nvar/(nvar-1) r.pc <- 2*ev[1]/(ev[1]+ev[2])-1 r.pc <- r.pc * alpha.pc #attenuate the correlation beta.pc <- 2 * r.pc/(1+r.pc) Vt <- sum.r <- sum(r) tr.r <- tr(r) lambda.1 <- 1 - tr.r/Vt off <- r diag(off) <- 0 sum.off <- sum(off) sumsq.off <- sum(off^2) lambda.2 <- (sum.off+ sqrt(sumsq.off*nvar/(nvar-1)))/Vt lambda.3 <- nvar * lambda.1/(nvar-1) sum.smc <- sum(smc(r)) lambda.6 <-(sum.r+sum.smc-sum(diag(r)))/Vt c.co <- colSums(r^2)-diag(r^2) c.co.max <- max(c.co) lambda.5 <- lambda.1 + 2*sqrt(c.co.max)/Vt lambda.5p <- lambda.1 +(nvar)/(nvar-1)* 2*sqrt(c.co.max)/Vt # #this next section is a complete kludge meant to find the most similar splits #a better way is to use the glb function of Andreas Moeltner #revised February 11 to implement equation 51 of Guttman, not 51' # #all of this has been deleted as of December, 2013 to just us splitHalf #keys <- cbind(w.keys,b.keys,keys.kmean,key.fa,key.fa2) #try(colnames(keys) <- c("IC1","IC2","ICr1","ICr2","K1","K2","F1","F2","f1","f2")) #covar <- t(keys) %*% r %*% keys #matrix algebra is our friend # var <- diag(covar) # sd.inv <- 1/sqrt(var) # ident.sd <- diag(sd.inv,ncol = length(sd.inv)) # cluster.correl <- ident.sd %*% covar %*% ident.sd #beta <- abs(cluster.correl[2,1]) *2 /(1+abs(cluster.correl[2,1])) #worst split # beta <- 2 * (1-2/(2+abs(cluster.correl[2,1]))) #glb1 <- cluster.correl[3,4] *2 /(1+cluster.correl[3,4]) # glb2 <- cluster.correl[5,6] * 2/(1+ cluster.correl[5,6] ) # glb3 <- cluster.correl[7,8] * 2/(1+cluster.correl[7,8]) #Vtcl1 <- covar[3,3]+ covar[4,4] + 2 * covar[3,4] #Vtcl2 <- covar[5,5]+ covar[6,6] + 2 * covar[5,6] #Vtcl3 <- covar[7,7]+covar[8,8] + 2 * covar[7,8] #glbIC <- 2*(1-(covar[3,3]+ covar[4,4])/Vtcl1 ) #glb2 <- 2*(1-(covar[5,5]+ covar[6,6])/Vtcl2 ) #glb3 <- 2*(1-(covar[7,7]+ covar[8,8])/Vtcl3 ) #beta.fa <- cluster.correl[9,10] * 2/(1+cluster.correl[9,10]) # glb.max <- max(glbIC,glb2,glb3) sum.smc <- sum(smc(r)) glb <- glb.fa(r)$glb beta <- best$minrb if(beta < 0) beta <- 0 gamma <- (sum.r+sum.smc-sum(diag(r)))/Vt tenberg <- tenberge(r) result <- list(lambda.1=lambda.1,lambda.2=lambda.2,lambda.3=lambda.3,lambda.4 =best$maxrb,lambda.5 = lambda.5,lambda.5p = lambda.5p,lambda.6=lambda.6,alpha.pc = alpha.pc, glb=glb, tenberge=tenberg,r.pc=r.pc,beta.pc=beta.pc,beta=beta,Call=cl) class(result) <- c("psych","guttman") return(result) } psych/R/faBy.R0000644000176200001440000001313012546562674012624 0ustar liggesusers"faBy" <- function(stats,nfactors=1,rotate="oblimin",fm="minres",free=TRUE,all=FALSE,min.n=12,quant=.1,...) { if(class(stats)[2] != "statsBy") stop("Please run statsBy first") cl <- match.call() fo.orth <- fa(stats$pooled,nfactors=nfactors,rotate="none",fm=fm) #get the overall pooled structure fo.rotated <- fa(stats$pooled,nfactors=nfactors,rotate=rotate,fm=fm,...) #could replace with a call to #fo.rotated <- faRotate(fo.orth,rotate=rotate,...) # fl <- fo.rotated$loadings fl <- fo.rotated$loadings f <- list() #hold the results of each fa for each group ngroups <- stats$nG nvar <- ncol(stats$r[[1]]) #replicateslist <- mclapply(1:ngroups,function(x) { stats$r <- pickgood(stats,min.n=min.n) #get the good analyses replicateslist <- lapply(stats$r,function(X,...) { if(!is.null(X) ){ if(!free && (nfactors > 1)) { fs <- try(fac(X,nfactors=nfactors,rotate="none",scores="none",...)) #call fa but do not rotate #First match the orthogonal factors to get the right order and directions #then target rotate the subject solution to the oblique pooled solution #then match the order and directions (fixing the correlations) of this new solution fs$loadings <- faMatch(fo.orth,fs)$loadings #first match them and then target rotate to overall fs<- TargetQ(fs$loadings,Target=list(fl)) fs <- faMatch(fl,fs) #try to match them but don't force a rotation } else { fs <- try(fac(X,nfactors=nfactors,rotate=rotate,scores="none",...)) #call fa with the appropriate parameters fs$loadings <- faMatch(fl,fs)$loadings #try to match them but don't force a rotation } #if( length(class(fs)) ==1 ) {warning("could not factor a within subject matrix")} else { # if(!free && (nfactors > 1)) { else { if(!is.null(fs$Phi)) { phis <- fs$Phi if(all) { replicates <- list(fa=fs,loadings=(fs$loadings),phis=phis,vloadings = as.vector(fs$loadings),vphis = phis[lower.tri(phis)])} else { replicates <- list(loadings=fs$loadings,phis=phis,vloadings = as.vector(fs$loadings),vphis = phis[lower.tri(phis)])} #} else # {replicates <- list(loadings=fs$loadings,vloadings <- as.vector(fs$loadings))} # }} } } } ) #end mclapply fabygroups <- lapply(replicateslist,function(X) X$vloadings) notnullgroup <- unlist(lapply(fabygroups,function(x) !is.null(x))) namesbygroup <- names(fabygroups)[notnullgroup] fabygroups <- matrix(unlist(lapply(replicateslist,function(X) X$vloadings)),ncol=nvar*nfactors,byrow=TRUE) num.groups <- nrow(fabygroups) means <- colMeans(fabygroups,na.rm=TRUE) sds <- apply(fabygroups,2,sd,na.rm=TRUE) quants.low <- apply(fabygroups,2,quantile,quant) quants.high<- apply(fabygroups,2,quantile,1-quant) fnames<- colnames(fo.rotated$loadings)[1:nfactors] vnames <- rownames(fo.rotated$loadings) faby.sum <- matrix(c(as.vector(fl),means,sds,quants.low,quants.high),ncol=5) colnames(faby.sum) <-c("Pooled","mean","sd","low","high") rownames(faby.sum) <- paste(rep(vnames,nfactors)) faby <- t(fabygroups) colnames(faby) <- c(paste0("gr-",namesbygroup)) rownames(faby) <- paste(rep(vnames,nfactors),"-",rep(fnames,each=nvar)) if(!is.null(fo.rotated$Phi)) { vphis <- matrix(unlist(lapply(replicateslist,function(X) X$vphis)),nrow=num.groups,byrow=TRUE) means.phis <- colMeans(vphis) sds.phis <- apply(vphis,2,sd,na.rm=TRUE) phis.low <- apply(vphis,2,quantile,quant) phis.high <- apply(vphis,2,quantile,1-quant) phiby.sum <- matrix(c(fo.rotated$Phi[lower.tri(fo.rotated$Phi)],means.phis,sds.phis,phis.low,phis.high),ncol=5) phiby <- (matrix(c(fo.rotated$Phi[lower.tri(fo.rotated$Phi)],means.phis,sds.phis,phis.low,phis.high,t(vphis)), ncol=(num.groups+5),byrow=FALSE)) colnames(phiby) <- c("Total","Mean","sd","low","high", paste0("gr-",namesbygroup)) rownames(phiby) <-1:(nfactors*(nfactors-1)/2) k <- 1 for (fi in 1:(nfactors-1)) { for (fj in (fi+1):(nfactors)) {rownames(phiby)[k] <- paste(fnames[fi],"-",fnames[fj],sep="") k <- k +1 }} } meanloading <- matrix(means,ncol=nfactors) colnames(meanloading) <- fnames rownames(meanloading) <- vnames phis <- matrix(0,nfactors,nfactors) phis[lower.tri(phis)] <- means.phis phis <-phis + t(phis) diag(phis) <- 1 colnames(phis) <- rownames(phis) <- fnames if(all) {faBy <- list(fa=lapply(replicateslist,function(X) X$fa),loadings=faby,Phi=phiby,Call=cl) } else { faBy <- list(mean.loading= meanloading,mean.Phi= phis,faby.sum=faby.sum,Phi.sum = phiby.sum,loadings=t(faby),Phi=t(phiby),nfactors=nfactors,quant,Call=cl)} class(faBy) <- c("psych","faBy") return(faBy) } "faMatch" <- function(f1,f2) { fc <- factor.congruence(f1,f2) ord <- 1:ncol(fc) for(i in 1:(ncol(fc)-1)) { new <- which(abs(fc[i,])==max(abs(fc[i,])) ) old <- ord[i] ord[i] <- new ord[new] <- old } flip <- rep(1,ncol(fc)) for (i in 1:ncol(fc)) { if(fc[ord[i],ord[i]] < 0) { f2$loadings[,ord[i]] <- f2$loadings[,ord[i]] * -1 flip[i] <- -1 } if(!is.null(f2$Phi)) f2$Phi <- diag(flip) %*% f2$Phi %*% diag(flip) } # ord <- apply(fc,2,function(x) {which(abs(x)==max(abs(x)))}) f2 <- fa.organize(f2,o=ord) return(f2)} "pickgood" <- function(stats,min.n) { #just look at those cases with good data new <- list() for (i in 1: length(stats$r)) { if(!any(is.na(stats$r[[i]])) & (min(stats$n[[i]]) >= min.n)) {new[i] <- stats$r[i] } # if(min(stats$n[[i]]) >= min.n) } names(new) <- names(stats$r) return(new)}psych/R/cor2dist.R0000644000176200001440000000020511607051630013451 0ustar liggesusers"cor2dist" <- function(x) { if(dim(x)[1] != dim(x)[2]) {x <- cor(x,use="pairwise")} dist <- sqrt(2*(1-x)) return(dist) }psych/R/VSS.R0000644000176200001440000002254113151623703012404 0ustar liggesusers#vss is just an alias to VSS to be consistent with naming conventions #added the RMSEA, BIC, SABIC and complexity criteria 1/27/14 "VSS" <- function (x,n=8,rotate="varimax",diagonal=FALSE,fm="minres",n.obs=NULL,plot=TRUE,title="Very Simple Structure",use="pairwise",cor="cor",...) #apply the Very Simple Structure Criterion for up to n factors on data set x {vss(x=x,n=n,rotate=rotate,diagonal=diagonal,fm=fm,n.obs=n.obs,plot=plot,title=title,use=use,cor=cor,...) } "vss" <- function (x,n=8,rotate="varimax",diagonal=FALSE,fm="minres",n.obs=NULL,plot=TRUE,title="Very Simple Structure",use="pairwise",cor="cor",...) #apply the Very Simple Structure Criterion for up to n factors on data set x #x is a data matrix #n is the maximum number of factors to extract (default is 8) #rotate is a string "none" or "varimax" for type of rotation (default is "varimax" #diagonal is a boolean value for whether or not we should count the diagonal (default=FALSE) # ... other parameters for factanal may be passed as well #e.g., to do VSS on a covariance/correlation matrix with up to 8 factors and 3000 cases: #VSS(covmat=msqcovar,n=8,rotate="none",n.obs=3000) { cl <- match.call() if (rotate=="oblimin") {if(!requireNamespace('GPArotation')) {stop("You must have GPArotation installed to use oblimin rotation")}} old_rotate=rotate #used to remember which rotation to use #start Function definition #first some preliminary functions #complexrow sweeps out all except the c largest loadings #complexmat applies complexrow to the loading matrix complexrow <- function(x,c) #sweep out all except c loadings { n=length(x) #how many columns in this row? temp <- x #make a temporary copy of the row x <- rep(0,n) #zero out x for (j in 1:c) { locmax <- which.max(abs(temp)) #where is the maximum (absolute) value x[locmax] <- sign(temp[locmax])*max(abs(temp)) #store it in x temp[locmax] <- 0 #remove this value from the temp copy } return(x) #return the simplified (of complexity c) row } complexmat <- function(x,c) #do it for every row (could tapply somehow?) { nrows <- dim(x)[1] ncols <- dim(x)[2] for (i in 1:nrows) {x[i,] <- complexrow(x[i,],c)} #simplify each row of the loading matrix return(x) } map <- function(x,n) { nvar <- dim(x)[2] min.partial <- rep(NA,n) e <- eigen(x) evect <- e$vectors comp <- evect %*% diag(sqrt(e$values)) if( n >= nvar) {n1 <- nvar -1} else {n1 <- n} for (i in 1:n1) { c11.star <- x - comp[,1:i] %*% t(comp[,1:i]) d <- diag(1/sqrt(diag(c11.star))) rstar <- d %*% c11.star %*% d diag(rstar) <- 0 min.partial[i] <- sum(rstar * rstar) /(nvar*(nvar-1)) } return(min.partial) } if(dim(x)[2] < n) n <- dim(x)[2] #now do the main Very Simple Structure routine complexfit <- array(0,dim=c(n,n)) #store these separately for complex fits complexresid <- array(0,dim=c(n,n)) vss.df <- data.frame(dof=rep(0,n),chisq=NA,prob=NA,sqresid=NA,fit=NA,RMSEA=NA,BIC=NA,SABIC=NA,complex=NA,eChisq=NA,SRMR=NA,eCRMS=NA,eBIC=NA) #keep the basic results here if (dim(x)[1]!=dim(x)[2]) { n.obs <- dim(x)[1] switch(cor, cor = {x <- cor(x,use=use)}, cov = {x <- cov(x,use=use) covar <- TRUE}, tet = {x <- tetrachoric(x)$rho}, tetrachoric = {x <- tetrachoric(x)$rho}, poly = {x <- polychoric(x)$rho}, polychoric = {x <- polychoric(x)$rho}, mixed = {x <- mixed.cor(x,use=use)$rho}, Yuleb = {x <- YuleCor(x,,bonett=TRUE)$rho}, YuleQ = {x <- YuleCor(x,1)$rho}, YuleY = {x <- YuleCor(x,.5)$rho } ) # x <- cor(x,use="pairwise") The case statement allows many types of correlations } else {if(!is.matrix(x)) x <- as.matrix(x)} # if given a rectangular if(is.null(n.obs)) {message("n.obs was not specified and was arbitrarily set to 1000. This only affects the chi square values.") n.obs <- 1000} map.values <- map(x,n) if (n > dim(x)[2]) {n <- dim(x)[2]} #in cases where there are very few variables for (i in 1:n) #loop through 1 to the number of factors requested { PHI <- diag(i) if(i<2) {(rotate="none")} else {rotate=old_rotate} if(!(fm=="pc")) { f <- fa(x,i,rotate=rotate,n.obs=n.obs,warnings=FALSE,fm=fm,scores="none",cor=cor,...) #do a factor analysis with i factors and the rotations specified in the VSS call if (i==1) {original <- x #just find this stuff once sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal }} else {f <- principal(x,i) if (i==1) {original <- x #the input to pc is a correlation matrix, so we don't need to find it again sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal } if((rotate=="varimax") & (i>1)) {f <- varimax(f$loadings) PHI <- diag(i)} else { if(((rotate=="promax")| (rotate=="Promax") )& (i>1)) {f <- Promax(f$loadings) PHI <- f$Phi} else { if((rotate=="oblimin")& (i>1)) {f <- GPArotation::oblimin(f$loadings) U <- f$Th phi <- t(U) %*% U PHI <- cov2cor(phi) }} }} load <- as.matrix(f$loadings ) #the loading matrix model <- load %*% PHI %*% t(load) #reproduce the correlation matrix by the factor law R= FF' residual <- original-model #find the residual R* = R - FF' sqresid <- residual*residual #square the residuals totalresid <- sum(sqresid)- diagonal * sum(diag(sqresid) ) #sum squared residuals - the main diagonal fit <- 1-totalresid/totaloriginal #fit is 1-sumsquared residuals/sumsquared original (of off diagonal elements if ((fm !="pc")) { vss.df[i,"dof"] <- f$dof #degrees of freedom from the factor analysis vss.df[i,"chisq"] <- f$STATISTIC #chi square from the factor analysis vss.df[i,"prob"] <- f$PVAL #probability value of this complete solution\ vss.df[i,"eChisq"] <- f$chi vss.df[i,"SRMR"] <- f$rms vss.df[i,"eRMS"] <- f$rms vss.df[i,"eCRMS"] <- f$crms vss.df[i,"eBIC"] <- f$EBIC if(!is.null(f$RMSEA)) {vss.df[i,"RMSEA"] <- f$RMSEA[1]} else {vss.df[i,"RMSEA"] <- NA} if(!is.null(f$BIC)) {vss.df[i,"BIC"] <- f$BIC} else {vss.df[i,"BIC"] <- NA} if(!is.null(f$SABIC)) {vss.df[i,"SABIC"] <- f$SABIC} else {vss.df[i,"SABIC"] <- NA} if(!is.null(f$complexity)) {vss.df[i,"complex"] <- mean(f$complexity)} else {vss.df[i,"complex"] <- NA} } vss.df[i,"sqresid"] <- totalresid #residual given complete model vss.df[i,"fit"] <- fit #fit of complete model #now do complexities -- how many factors account for each item for (c in 1:i) { simpleload <- complexmat(load,c) #find the simple structure version of the loadings for complexity c model <- simpleload %*% PHI %*% t(simpleload) #the model is now a simple structure version R ? SS' residual <- original- model #R* = R - SS' sqresid <- residual*residual totalsimple <- sum(sqresid) -diagonal * sum(diag(sqresid)) #default is to not count the diagonal simplefit <- 1-totalsimple/totaloriginal complexresid[i,c] <-totalsimple complexfit[i,c] <- simplefit } } #end of i loop for number of factors vss.stats <- data.frame(vss.df,cfit=complexfit,cresidual=complexresid) if (plot) VSS.plot(vss.stats,title=title) vss.results <- list(title=title,map=map.values,cfit.1=complexfit[,1],cfit.2= complexfit[,2],vss.stats=vss.stats,call=cl) class(vss.results) <- c("psych" ,"vss") return(vss.results) } #end of VSS function "nfactors" <- function(x,n=20,rotate="varimax",diagonal=FALSE,fm="minres",n.obs=NULL,title="Number of Factors",pch=16,use="pairwise",cor="cor",...) { vs <- vss(x=x,n=n,rotate=rotate,diagonal=diagonal,fm=fm,n.obs=n.obs,plot=FALSE,title=title,use=use,cor=cor,...) old.par <- par(no.readonly = TRUE) # save default, for resetting... on.exit(par(old.par)) #and when we quit the function, restore to original values op <- par(mfrow=c(2,2)) x <- vs$vss.stats n = dim(x) plot(x$cfit.1, ylim = c(0, 1), typ = "b", ylab = "Very Simple Structure Fit", xlab = "Number of Factors",main="Very Simple Structure",pch=49) lines(x$cfit.1) x$cfit.2[1] <- NA x$cfit.3[1] <- NA x$cfit.3[2] <- NA lines(x$cfit.2) points(x$cfit.2,pch=50) lines(x$cfit.3) points(x$cfit.3,pch=51) plot(vs$vss.stats[,"complex"],xlab="Number of factors",ylab="Complexity",typ="b",main="Complexity",pch=pch,...) plot(vs$vss.stats[,"eBIC"],xlab="Number of factors",ylab="Empirical BIC",typ="b",main="Empirical BIC",pch=pch,...) plot(vs$vss.stats[,"SRMR"],xlab="Number of factors",ylab="SRMR",typ="b",main="Root Mean Residual",pch=pch,...) results <- list(title=title,map=vs$map,vss.stats=vs$vss.stats[,1:16],call=vs$call) class(results) <- c("psych","vss") return(results) } psych/R/mediate.r0000644000176200001440000005453513072753107013415 0ustar liggesusers#The basic logic is to find the regression of Y on X, of M on X, and of Y on M #and then compare the direct (Y on X) also known as c to c - ab #Modified May, 2015 to allow multiple Xs (and multiple Ys) #Revised June, 2015 for prettier output #Revised February 2016 to get moderation to work #The moderate part is a bit more complicated and needs to be cleaned up #Three potential cases of moderate #a) moderation with out mediation -- not yet treated #b) moderation of the independent to mediator #c) moderation of the mediator to dependent -- not yet treated # #substantially revised May 6, 2016 by using matReg to make simpler to understand "mediate" <- function(y,x,m=NULL,data, mod=NULL,n.obs=NULL,use="pairwise",n.iter=5000,alpha=.05,std=FALSE,plot=TRUE) { #this first part just gets the variables right, depending upon the way we input them cl <- match.call() #convert names to locations #first, see if they are in formula mode if(class(y) == "formula") { yn <- all.vars(y) y <- yn[1] x <- yn[2] m <- yn[3:length(yn)] } if(is.numeric(y )) y <- colnames(data)[y] if(is.numeric(x )) x <- colnames(data)[x] if(!is.null(m)) if(is.numeric(m )) m <- colnames(data)[m] if(!is.null(mod) ) {if(is.numeric(mod)) {nmod <- length(mod) #presumably 1 mod <- colnames(data)[mod] } } if(is.null(mod)) {nmod<- 0} else {nmod<- length(mod)} if(ncol(data) == nrow(data)) {raw <- FALSE if(nmod > 0) {stop("Moderation Analysis requires the raw data") } else {data <- data[c(y,x,m),c(y,x,m)]} } else { if(nmod > 0 ) {data <- data[,c(y,x,mod,m)] } else {data <- data[,c(y,x,m)]} #include the moderation variable } var.names <- list(IV=x,DV=y,med=m,mod=mod) if(!is.matrix(data)) data <- as.matrix(data) if((dim(data)[1]!=dim(data)[2])) {n.obs=dim(data)[1] #this does not take into account missing data if(!is.null(mod)) data <- scale(data,scale=FALSE) #0 center C <- cov(data,use=use) raw <- TRUE } else { raw <- FALSE C <- data nvar <- ncol(C) if(is.null(n.obs)) {n.obs <- 1000 message("The data matrix was a correlation matrix and the number of subjects was not specified. \n The replication data matrices were simulated based upon the observed correlation matrix and n.obs set to 1000") } else { message("The replication data matrices were simulated based upon the specified number of subjects and the observed correlation matrix.")} eX <- eigen(C) #we use this in the simulation in the case of a correlation matrix data <- matrix(rnorm(nvar * n.obs),n.obs) data <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(data) ) colnames(data) <- c(y,x,m) } if(std) {C <- cov2cor(C)} #use correlations rather than covariances if(nmod > 0 ) {if(!raw) {stop("Moderation analysis requires the raw data") } else { cen.data <- scale(data,scale=FALSE) ivXm <- matrix(cen.data[,x] * cen.data[,mod],ncol=length(x)) #add in a moderating variable as a product term - just works for one mod colnames(ivXm) <- paste0(abbreviate(x),"X",abbreviate(mod)) data <- cbind(cen.data,ivXm) # if(!(mod %in% m)) {m <- c(m,mod,colnames(ivXm))} else {m <- c(m,colnames(ivXm))} #this is questionable C if(nmod > 0) {ivX <- c(x,mod,colnames(ivXm)) x <- ivX #the x variables now include the moderator and the x * mod products var.names$IV <- x } C <- cov(data,use=use) if(std) { C <- cov2cor(C)} } } ######### ######### #now, we are ready to process the data #We do the basic regressions as matrix operations using matReg xy <- c(x,y) numx <- length(x) numy <- length(y) if(!is.null(m)) {numm <- length(m) nxy <- numx + numy m.matrix <- C[c(x,m),c(x,m),drop=FALSE] #this is the predictor + moderator matrix } else {numm <- 0 nxy <- numx} #the case of moderation without mediation df <- n.obs - nxy - 1 xy.matrix <- C[c(x,m),y,drop=FALSE] #this is the matrix of correlations with the criterion (still just one) ##this is the zero order beta -- the total effect total.reg <- matReg(x,y,C,n.obs) direct <- total.reg$beta #There are 3 broad cases that need to be handled somewhat differently in terms of the matrix operations # 1 IV, 1 or more mv # multiple IV, 1 MV #multiple IV, multiple MV #this is the direct path from X to M #For the purposes of moderation, at least for now, think of this as just 2 or 3 IVs #get a, b and cprime effects and their se if(numm > 0) {a.reg <- matReg(x,m,C,n.obs) #the default case is to have at least one mediator b.reg <- matReg(c(x,m),y,C,n.obs) cprime.reg <- matReg(c(x,m),y,C,n.obs) a <- a.reg$beta b <- b.reg$beta[-(1:numx),,drop=FALSE] c <- total.reg$beta cprime <- cprime.reg$beta # ab <- a * b #these are the ab products for each a and b path c' is c - sum of all of these ab <- a %*% b indirect <- c - ab # if((numx > 1)&& (numy > 1)) {for (i in 1:numx) {ab[i,] <- a[i,] * b}} if(is.null(n.obs)) {message("Bootstrap is not meaningful unless raw data are provided or the number of subjects is specified.") mean.boot <- sd.boot <- ci.quant <- boot <- se <- tvalue <- prob <- NA } else { # if(is.null(mod)) { boot <- boot.mediate(data,x,y,m,n.iter=n.iter,std=std,use=use) #this returns a list of vectors #the first x elements are indirect, the last x * m are ab effects # } else { # boot <- boot.moderate( data,x,y,m,mod,n.iter=n.iter,std=std,use=use) # } mean.boot <- colMeans(boot) sd.boot <- apply(boot,2,sd) ci.quant <- apply(boot,2, function(x) quantile(x,c(alpha/2,1-alpha/2),na.rm=TRUE)) mean.boot <- matrix(mean.boot,nrow=numx) sd.boot <- matrix(sd.boot,nrow=numx) ci.ab <- matrix(ci.quant,nrow=2*numx * numy) boots <- list(mean=mean.boot,sd=sd.boot,ci=ci.quant,ci.ab=ci.ab) } } else { #the case of just an interaction term a.reg <- NA b.reg <- NA c.reg <- NA a <- b <- c <- ab <- cprime <- boot<- boots <- indirect <- cprime.reg <- NA} #beta.x is the effect without the mediators #direct is the effect with the mediators #indirect is ab from the difference #ab is ab from the product of a and b paths # if(n.obs > 1) {if(ncol(mean.boot) == ncol(beta)) {colnames(mean.boot) <- colnames(beta)} else {colnames(mean.boot)[1:ncol(beta)] <- colnames(mean.boot)} #temp # rownames(b) <- rownames(beta)[-c(1:numx)] #the ivs (including the moderators) are the first elements in beta # } result <- list(var.names=var.names,a=a,b=b,ab=ab,c=c,direct=direct,indirect=indirect,cprime = cprime, total.reg=total.reg,a.reg=a.reg,b.reg=b.reg,cprime.reg=cprime.reg,boot=boots,boot.values = boot,sdnames=colnames(data),C=C, Call=cl) class(result) <- c("psych","mediate") if(plot) {if(is.null(m)) {moderate.diagram(result) } else { if(is.null(mod)) { mediate.diagram(result) } else {mediate.diagram(result,main="Moderation model")} } } return(result) } #a helper function to find regressions from covariances #May 6, 2016 matReg <- function(x,y,C,n.obs=0) { numx <- length(x) df <- n.obs -1 - numx Cr <- cov2cor(C) if(numx==1) { beta <- solve(C[x,x,drop=FALSE],(C[x,y,drop=FALSE])) colnames(beta) <- y } else { beta <- solve(C[x,x],(C[x,y])) } if(!is.matrix(beta)) {beta <- matrix(beta,nrow=length(beta))} #beta is a matrix of beta weights if(is.character(x)) {rownames(beta) <- x} else {rownames(beta) <- colnames(C)[x]} if(is.character(y)) { colnames(beta) <- y} else { colnames(beta) <- colnames(C)[y]} R2 <- colSums(beta * C[x,y])/diag(C[y,y,drop=FALSE]) uniq <- 1-(1-1/diag(solve(Cr[x,x,drop=FALSE]))) #1- smc if(n.obs > 2) { se <- (sqrt((1-R2)/(n.obs-1 - numx)) %*% t(sqrt(1/uniq))) #these are the standardized se se <- t( se * sqrt(diag(C[y,y,drop=FALSE])) %*% t(sqrt(1/diag(C[x,x,drop=FALSE]))) ) #But does this work in the general case? colnames(se) <- colnames(beta) } else {se <- NA} if(!any(is.na(se))) { tvalue <- beta/se prob <- 2*(1- pt(abs(tvalue),df)) } else {tvalue <- prob <- NA} result <- list(beta=beta,se=se, t=tvalue,prob=prob,R2=R2) return(result) } boot.mediate <- function(data,x,y,m,n.iter=10,std=FALSE,use="pairwise") { n.obs <- nrow(data) numx <- length(x) numy <- length(y) numm <- length(m) nxy <- numx + numy result <- matrix(NA,nrow=n.iter,ncol = (numx*numy)) if((numm > 1) & (numx > 1)) ab <- matrix(0,nrow=numx,ncol=numy) for (iteration in 1:n.iter) { samp.data <- data[sample.int(n.obs,replace=TRUE),] C <- cov(samp.data,use=use) if(std) C <- cov2cor(C) xy <- c(x,y) m.matrix <- C[c(x,m),c(x,m)] # df <- n.obs - nxy - 1 xy.matrix <- C[c(x,m),y,drop=FALSE] if(numx ==1) { beta.x <- solve(C[x,x],t(C[x,y]) ) } else {beta.x <- solve(C[x,x],C[x,y]) } #this is the zero order beta -- the total effect if(numx ==0) { a <- solve(C[x,x,drop=FALSE],t(C[x,m,drop=FALSE]) ) } else { a <- solve(C[x,x,drop=FALSE],(C[x,m,drop=FALSE]) )} #the a paths beta.xm <- solve(m.matrix,xy.matrix) #solve the equation bY~aX beta <- as.matrix(beta.xm) #these are the individual predictors, x and then m b <- beta[-c(1:numx),drop=FALSE] # if(numx ==1) {ab <- a * t(b)} else { for (i in 1:numx) {ab[i,] <- a[i,] * b}} # ab <- a %*% b #each individual path #this probably is only correct for the numx = 1 model # if((numx > 1) & (numy > 1)) {for (i in 1:numx) {ab[i,] <- a[i,] * b}} # ab <- a * b #we don't really need this indirect <- beta.x - beta[1:numx,1:numy] #this is c' = c - ab # result[iteration,] <- c(indirect,ab) #this is a list of vectors result[iteration,] <- c(indirect) #this is a list of vectors } return(result) } boot.moderate <- function(data,x,y,m,mod,n.iter=10,std=FALSE,use="pairwise") { n.obs <- nrow(data) numx <- 1 numy <- 1 numm <- length(m) nxy <- numx + numy result <- matrix(NA,nrow=n.iter,ncol = (1+numm)) for (iteration in 1:n.iter) { samp.data <- data[sample.int(n.obs,replace=TRUE),] samp.data <- scale(samp.data,scale=FALSE) ivXm <- samp.data[,x] * samp.data[,mod] samp.data <- cbind(samp.data,ivXm) C <- cov(samp.data,use=use) if(std) C <- cov2cor(C) xy <- c(x,y) numx <- 1 numy <- 1 numm <- length(m) nxy <- numx + numy m.matrix <- C[c(x,m),c(x,m)] df <- n.obs - nxy - 1 xy.matrix <- C[c(x,m),y,drop=FALSE] beta.x <- C[x,y]/C[x,x] #this is the zero order beta -- the total effect beta.xm <- solve(m.matrix,xy.matrix) #solve the equation bY~aX beta <- as.matrix(beta.xm) Cm <- C[c(x,m[-1]),c(x,m[-1])] mM <- C[c(x,m[-1]),m[1],drop=FALSE] bM <- solve(Cm,mM) int.ind <- beta[nrow(beta)] * bM[nrow(bM)] R2.x <- beta.x * C[x,y] /(C[y,y]) #R2 for the x predictor by itself beta.xm <- solve(m.matrix,xy.matrix) #solve the equation bY~aX beta <- as.matrix(beta.xm) #these are the individual predictors, x and then m indirect <- beta.x - beta[1] a <- bM #I think b <- beta[-1] ab <- a * b result[iteration,] <- c(int.ind,ab) } return(result) } "print.psych.mediate" <- function(x,digits=2,short=FALSE) { cat("Call: ") print(x$Call) dv <- x$var.names[["DV"]] # iv <- x$var.names[["IV"]] mv <- x$var.names[["med"]] mod <- x$var.names[["mod"]] # dv <- x$names[1] iv <- rownames(x$direct) niv <- length(iv) nmed <- length(mv) ndv <- length(dv) # if(dim(x$a)) {mv <- names(x$a)} else {mv <- colnames(x$a) cat("\nThe DV (Y) was ", dv,". The IV (X) was ", iv,". The mediating variable(s) = ", mv,".") if(!is.null(x$mod)) cat(" The moderating variable(s) = ",mod) if(!is.null(mv)) { for(j in 1:ndv) { for(i in 1:niv) { cat("\n\nTotal Direct effect(c) of ",iv[i], " on ", dv[j]," = ",round(x$direct[i,j],digits), " S.E. = ", round(x$total.reg$se[i,j],digits), " t direct = ",round(x$total.reg$t[i,j],digits), " with probability = ", signif(x$total.reg$prob[i,j],digits)) cat("\nDirect effect (c') of ",iv[i], " on ", dv[i]," removing ", mv ," = ",round(x$indirect[i,j],digits), " S.E. = ", round(x$cprime.reg$se[i,j],digits), " t direct = ",round(x$cprime.reg$t[i,j],digits), " with probability = ", signif(x$cprime.reg$prob[i,j],digits)) if(is.null(x$mod)) { cat("\nIndirect effect (ab) of ",iv[i], " on ", dv[j]," through " ,mv , " = ", round(x$ab[i,j],digits),"\n") cat("Mean bootstrapped indirect effect = ",round(x$boot$mean[j],digits), " with standard error = ",round(x$boot$sd[j],digits), " Lower CI = ",round(x$boot$ci[1,i],digits), " Upper CI = ", round(x$boot$ci[2,i],digits))} } cat("\nR2 of model = ", round(x$cprime.reg$R2[j],digits)) } if(short) cat("\n To see the longer output, specify short = FALSE in the print statement") if(is.null(x$mod)) { # cat("\nratio of indirect to total effect= ", round(x$ratit,digits)) # cat("\nratio of indirect to direct effect= ", round(x$ratid,digits)) cat("\n\n Full output \n") cat("\n Total effect estimates (c) \n") for(j in 1:ndv) { dft <- round(data.frame(direct=x$total.reg$beta[,j],se = x$total.reg$se[,j],t=x$total.reg$t[,j]),digits) dftp <- cbind(dft,p = signif(x$total.reg$prob[,j],digits=digits+1)) colnames(dftp) <- c(dv[j],"se","t","Prob") rownames(dftp) <- rownames(x$total.reg$beta) print(dftp) } cat("\nDirect effect estimates (c') \n") for(j in 1:ndv) { if (niv==1) { dfd <- round(data.frame(direct=x$cprime.reg$beta[,j],se = x$cprime.reg$se[,j],t=x$cprime.reg$t[,j]),digits) dfdp <- cbind(dfd,p=signif(x$cprime.reg$prob[,j],digits=digits+1)) } else { dfd <- round(data.frame(direct=x$cprime.reg$beta[1:niv,j],se = x$cprime.reg$se[1:niv,j],t=x$cprime.reg$t[1:niv,j]),digits) dfdp <- cbind(dfd,p=signif(x$cprime.reg$prob[1:niv,j],digits=digits+1)) } colnames(dfdp) <- c(dv[j],"se","t","Prob") print(dfdp) } cat("\n 'a' effect estimates \n") if(niv==1) { dfa <- round(data.frame(a = x$a.reg$beta[1,1:nmed],se = x$a.reg$se[1,1:nmed],t = x$a.reg$t[1,1:nmed]),digits) dfa <- cbind(dfa,p=signif(x$a.reg$prob[1,nmed],digits=digits+1)) rownames(dfa) <- colnames(x$a.reg$beta) colnames(dfa) <- c(rownames(x$a.reg$beta),"se","t","Prob") print(dfa)} else { for (i in 1:nmed) { dfa <- round(data.frame(a = x$a.reg$beta[,i],se = x$a.reg$se[,i],t = x$a.reg$t[,i]),digits) dfa <- cbind(dfa,p=signif(x$a.reg$prob[,i],digits=digits+1)) rownames(dfa) <-rownames(x$a.reg$beta) colnames(dfa) <- c(colnames(x$a.reg$beta)[i],"se","t","Prob") print(dfa) } } cat("\n 'b' effect estimates \n") for (j in 1:ndv) { if(niv==1) { dfb <- round(data.frame(direct=x$b.reg$beta[-(1:niv),j],se = x$b.reg$se[-(1:niv),j],t=x$b.reg$t[-(1:niv),j]),digits) dfb <- cbind(dfb,p=signif(x$b.reg$prob[-(1:niv),j],digits=digits+1))} else { dfb <- round(data.frame(direct=x$b.reg$beta[-(1:niv),j],se = x$b.reg$se[-(1:niv),j],t=x$b.reg$t[-(1:niv),j]),digits) dfb <- cbind(dfb,p=signif(x$b.reg$prob[-(1:niv),j],digits=digits+1))} rownames(dfb) <- rownames(x$b.reg$beta)[-(1:niv)] colnames(dfb) <- c(dv[j],"se","t", "Prob") print(dfb) } cat("\n 'ab' effect estimates \n") for (j in 1:ndv) { dfab <-round(data.frame(indirect = x$ab[,j],boot = x$boot$mean[,j],sd=x$boot$sd[,j],lower=x$boot$ci[1,(niv*(j-1)+niv):(niv*(j-1)+niv)], upper=x$boot$ci[2,(niv*(j-1)+niv):(niv *(j-1)+niv)]),digits) rownames(dfab) <- rownames(x$ab) colnames(dfab)[1] <- dv[j] print(round(dfab,digits)) } } else { cat("\n\nEffect of interaction of ",iv[1], " with ", iv[2] , " = ", round(x$direct[3],digits)," S.E. = ", round(x$direct.reg$se[3,1],digits), " t direct = ",round(x$direct.reg$t[3,1],digits), " with probability = ", signif(x$direct.reg$prob[3,1],digits)) cat("\nIndirect effect due to interaction of ",iv[1], " with ", iv[2] , " = ", round(x$indirect,digits)) cat("\nMean bootstrapped indirect interaction effect = ",round(x$boot$mean[1],digits), " with standard error = ",round(x$boot$sd[1],digits), " Lower CI = ",round(x$boot$ci.ab[1],digits), " Upper CI = ", round(x$boot$ci.ab[2,i],digits)) cat("\nSummary of a, b, and ab estimates and ab confidence intervals\n") } } else {#This is a pure moderation model, just show it # for(i in 1:ndv) { # cat("\n\nEffect of interaction of ",iv[1], " with ", iv[2] ," on ", dv[i], " = ", round(x$direct[3,i],digits)," S.E. = ", round(x$total.reg$se[3,i],digits), " t direct = ",round(x$total.reg$t[3,i],digits), " with probability = ", signif(x$total.reg$prob[3,i],digits)) # } cat("\nDirect and moderated direct effects \n") print(round(x$direct,digits)) cat("\nProbability of Direct and moderated direct effects \n") print(signif(x$total.reg$prob),digits) } } "mediate.diagram" <- function(medi,digits=2,ylim=c(3,7),xlim=c(-1,10),show.c=TRUE, main="Mediation model",...) { dv <- medi$var.names[["DV"]] # iv <- medi$var.names[["IV"]] iv <- as.matrix(rownames(medi$direct)) mv <- medi$var.names[["med"]] mod <- medi$var.names[["mod"]] numx <- length(medi$var.names[["IV"]]) numy <- length(dv) direct <- round(medi$direct,digits) C <- round(medi$C[c(iv,mv,dv),c(iv,mv,dv)],digits) miny <- 5 - max(length(iv)/2,length(mv),2) - .5 maxy <- 5 + max(length(iv)/2,length(mv),2) + .5 if(missing(ylim)) ylim=c(miny,maxy) plot(NA,xlim=xlim,ylim=ylim,main=main,axes=FALSE,xlab="",ylab="") var.names <- c(rownames(medi$direct),colnames(medi$direct),rownames(medi$b)) if(is.null(mv)) {n.mediate <- 0} else {n.mediate <- length(mv)} m <- list() #c <- as.matrix(round(medi$total,digits)) c <- as.matrix(round(medi$c,digits)) a <- as.matrix(round(medi$a,digits)) if(ncol(a)==1) a <- t(a) b <- as.matrix(round(medi$b,digits)) cprime <- as.matrix(round(medi$cprime,digits)) x <- list() if((numx > 1) && (n.mediate > 1) ) {adj <- 3} else {adj <- 2} #this fixes where to put the labels on the a path viv <- 1:numx for(i in 1:numx) { if((numx %% 2)== 0) { viv[i] <- switch(i,7,3,6,4,8,2,9,1,10) } else { viv[i] <- switch(i,5,7,3,6,4,8,2,9)} x[[i]] <- dia.rect(1,viv[i],iv[i])} vdv <- 1:numy y <- list() for (i in 1:numy) { if((numy %% 2)== 0) { vdv[i] <- switch(i,6,4,7,3,8,2,9,1,10) } else { vdv[i] <- switch(i,5,7,3,6,4,8,2,9)} y[[i]] <- dia.rect(9,vdv[i],dv[i]) } #y <- dia.rect(9,5,dv) v.loc <- 1:n.mediate if(n.mediate > 0) { for (mediate in 1:n.mediate) { if((n.mediate %% 2) ==0) {v.loc[mediate] <- switch(mediate,7,3,9,1,6,4,7,3,10) } else { switch(numx, 1: {v.loc[mediate] <- switch(mediate,7,3,8,1,6,4,9,2)}, 2 : {v.loc[mediate] <- switch(mediate,5,3,7,2,6,4,8,2)}, 3: {v.loc[mediate] <- switch(mediate,5.5,3,7,2,5,4,8,2)}, 4: {v.loc[mediate] <- switch(mediate,5,3,7,2,6,4,8,2)}, 5: {v.loc[mediate] <- switch(mediate,6,3,7,2,5,4,8,2)}, 6: {v.loc[mediate] <- switch(mediate,5,3,7,2,6,4,8,2)}, 7: {v.loc[mediate] <- switch(mediate,6,3,7,2,5,4,8,2)}) } } } v.loc <- sort(v.loc,decreasing=TRUE) if(n.mediate ==0) { for(j in 1:numy) { for(i in 1: numx) { dia.arrow(x[[i]]$right,y[[j]]$left,labels=paste("c = ",direct[i,j]),pos=0,...)} } } else { if(n.mediate==1) a <- t(a) for (mediate in 1:n.mediate) { m[[mediate]] <- dia.rect(5,v.loc[mediate],mv[mediate] ) for(j in 1:numy) { for(i in 1: numx) {dia.arrow(x[[i]]$right,m[[mediate]]$left,labels=a[i,mediate],adj=adj,...) #a term if(show.c) {dia.arrow(x[[i]]$right,y[[j]]$left,labels=paste("c = ",c[i,j]),pos=3,...)} dia.arrow(x[[i]]$right,y[[j]]$left,labels=paste("c' = ",cprime[i,j]),pos=1,...)} dia.arrow(m[[mediate]]$right,y[[j]]$left,labels=b[mediate,j],...) # } } } rviv <- max(viv) if(numx >1) { for (i in 2:numx) { for (k in 1:(i-1)) {dia.curved.arrow(x[[i]]$left,x[[k]]$left,C[i,k],scale=-(numx-1)*(abs(viv[i]-viv[k])/rviv),both=TRUE)} } } } "moderate.diagram" <- function(medi,digits=2,ylim=c(2,8),main="Moderation model",...) { xlim=c(0,10) #plot(NA,xlim=xlim,ylim=ylim,main=main,axes=FALSE,xlab="",ylab="") var.names <- rownames(medi$direct) x.names <- rownames(medi$direct) y.names <- colnames(medi$direct) beta <- round(medi$direct,digits) #c <- round(medi$total,digits) #cprime <-round(medi$direct[1],digits) nx <- length(x.names) ny <- length(y.names) top <- max(nx,ny) xlim=c(-nx/3,10) ylim=c(0,top) top <- max(nx,ny) x <- list() y <- list() x.scale <- top/(nx+1) y.scale <- top/(ny+1) plot(NA,xlim=xlim,ylim=ylim,main=main,axes=FALSE,xlab="",ylab="") # viv <- 1:nx # for(i in 1:nx) { # if((nx %% 2)== 0) { # viv[i] <- switch(i,7,3,6,4,8,2,9,1,10) } else { viv[i] <- switch(i,5,7,3,6,4,8,2,9)} # x[[i]] <- dia.rect(1,viv[i],iv[i])} # # vdv <- 1:ny # y <- list() # for (i in 1:ny) { # if((ny %% 2)== 0) { # vdv[i] <- switch(i,6,4,7,3,8,2,9,1,10) } else { vdv[i] <- switch(i,5,7,3,6,4,8,2,9)} # y[[i]] <- dia.rect(9,vdv[i],dv[i]) # } for(i in 1:nx) {x[[i]] <- dia.rect(2,top-i*x.scale,x.names[i]) } for(j in 1: ny) {y[[j]] <- dia.rect(7,top-j*y.scale,y.names[j]) } y[[1]] <- dia.rect(7,top-y.scale,y.names[1]) # dia.arrow(x[[1]]$right,y[[j]]$left,labels=paste("c = ",c),pos=3,...) #dia.arrow(x[[1]]$right,y[[j]]$left,labels=paste("c' = ",cprime),pos=1,...) for(j in 1:ny){ for(i in 1:nx) { dia.arrow(x[[i]]$right,y[[j]]$left,labels = beta[i,1],adj=2) } } if(nx >1) { for (i in 2:nx) { for (k in 1:(i-1)) {dia.curved.arrow(x[[i]]$left,x[[k]]$left,round(medi$C[i+1,k+1],2),scale= -(abs(k-i)),both=TRUE)} } } } psych/R/mat.plot.R0000644000176200001440000000176211214466057013476 0ustar liggesusers#developed April 24, 2009 # "mat.plot" <- function(r,colors=FALSE, n=10,main=NULL,zlim=c(0,1)){ if(is.null(main)) {main <- "Correlation plot" } if(!is.matrix(r) & (!is.data.frame(r))) {if((length(class(r)) > 1) & (class(r)[1] =="psych")) {if(class(r)[2] =="omega") {r <- r$schmid$sl nff <- ncol(r) r <- r[,1:(nff-2)]} else {r <- r$loadings} } } r <- as.matrix(r) if(min(dim(r)) < 2) {stop ("You need at least two dimensions to make a meaningful plot")} if(is.null(n)) {n <- dim(r)[2]} nf <- dim(r)[2] nvar <- dim(r)[1] if(is.null(rownames(r))) rownames(r) <- paste("V",1:nvar) if(is.null(colnames(r))) colnames(r) <- paste("V",1:nf) if(is.null(zlim)) {zlim <- range(r)} if(colors) {gr <- topo.colors(n) ord <- n:1 gr <- gr[ord]} else { gr <- grey((n:0)/n)} ord1 <- seq(nvar,1,-1) if(nvar != nf) { r <- t(r) } r <- r[,ord1] image(r,col=gr,axes=FALSE,main=main,zlim=zlim) box() at1 <- (0:(nf-1))/(nf-1) at2 <- (0:(nvar-1)) /(nvar-1) axis(1,at=at1,labels=rownames(r)) axis(2,at=at2,labels=colnames(r)) }psych/R/circ.sim.plot.R0000644000176200001440000000201111134463500014377 0ustar liggesusers"circ.sim.plot" <- function(x.df) { with(x.df,{ symb <- c(21,22,20) colors <- c("black","blue", "red") op <- par(mfrow=c(2,2)) plot(c.gap,c.RT,xlim=c(0,.5),ylim=c(0,1),pch=symb[1],col=colors[1],xlab="Gap Test",ylab="Rotation Test",main="Gap x Rotation") points(s.gap,s.RT,pch=symb[2],col=colors[2]) points(e.gap,e.RT,pch=symb[3],col=colors[3]) plot(c.gap,c.fisher,xlim=c(0,.5),ylim=c(0,.50),pch=symb[1],col=colors[1],xlab="Gap Test",ylab="Fisher Test",main="Gap x Fisher") points(s.gap,s.fisher,pch=symb[2],col=colors[2]) points(e.gap,e.fisher,pch=symb[3],col=colors[3]) plot(c.fisher,c.RT,xlim=c(0,.5),ylim=c(0,1),pch=symb[1],col=colors[1],xlab="Fisher Test",ylab="Rotation Test",main="Fisher x Rotation") points(s.gap,s.RT,pch=symb[2],col=colors[2]) points(e.gap,e.RT,pch=symb[3],col=colors[3]) boxplot(x.df,main=" Box Plot of all tests") title(main = "Circumplex Tests for Circumplex, Ellipsoid, and Simple Structure",outer=TRUE,line=-1) }) #end of with op <- par(mfrow=c(1,1)) }psych/R/simGene.R0000644000176200001440000000201413111321042013274 0ustar liggesusers"simGene" <- function(ng=10,traits=1,n.obs=1000,dom=TRUE) { X <- array(sample(2,ng*n.obs*traits*3,replace=TRUE),dim=c(n.obs,ng,traits,3)) MZ <- DZ <- array(NA,dim=c(n.obs,ng,traits)) MZt <- DZt <- matrix(NA,n.obs,traits) for(t in 1:traits) { if(dom) { MZ[,1:ng,t] <- X[,1:ng,t,1] * X[,1:ng,t,2] #the allele values are mulitplied DZ[,1:ng,t] <- X[,1:ng,t,1] * X[,1:ng,t,3]} else { MZ[,1:ng,t] <- X[,1:ng,t,1] + X[,1:ng,t,2] #the allele values are added DZ[,1:ng,t] <- X[,1:ng,t,1] + X[,1:ng,t,3]} MZt[,t] <- rowMeans(MZ[,,t]) #the trait values DZt[,t] <- rowMeans(DZ[,,t]) } X.df <- data.frame(genes=X[,1:ng,1:traits,sample(2,1,replace=TRUE)],MZ=MZt,DZ=DZt) return(X.df)} test.simGene <- function(x, ng=10) { t1 <-rowMeans(x[1:ng]) t2 <- rowMeans(x[(ng+1):(ng*2)]) t11 <-rowMeans(x[1:(ng/2)]) t12 <-rowMeans(x[(ng/2 +1):ng]) t21 <-rowMeans(x[(ng+1):(ng/2 + ng)]) t22 <- rowMeans(x[(ng/2 + ng+1):(ng*2)]) scores <- data.frame(t1=t1,t2=t2,t11=t11,t12=t12,t21 = t21,t22=t22,traits=x[(ng*2 +1):(ng*2+4)]) }psych/R/statsBy.boot.R0000644000176200001440000000242512723146766014340 0ustar liggesusersstatsBy.boot <- function (data,group,ntrials=10,cors=FALSE,replace=TRUE,method="pearson") { # cl <- match.call() result <- vector("list",ntrials) #supposedly allocates more memory for (i in 1:ntrials) { progressBar(i,ntrials,"statsBy") data[,group] <- sample(data[,group],size=nrow(data),replace=replace) result[[i]] <- statsBy(data,group,cors=cors,method=method) } return(result) } statsBy.boot.summary <- function(res.list,var="ICC2") { nreps <- length(res.list) nvar <- length(res.list[[1]][[var]]) cnames <- names(res.list[[1]][[var]]) temp <- matrix(NaN,ncol=nvar,nrow=nreps) colnames(temp) <- cnames for(i in 1:nreps){ temp[i,] <- res.list[[i]][[var]] } return(temp) } # crossValidate <- function(data,group,ntrials=10,cors=FALSE,replace=FALSE,method="pearson",x,y) { # cl <- match.call() # subjects <- 1:nrow(data) # sub2 <- nrow(data)/2 # result <- vector("list",ntrials) #supposedly allocates more memory # # for (i in 1:ntrials) { # progressBar(i,ntrials,"crossValidate") # samp <- sample(subjects,size =sub2,replace=replace) # resultA <- statsBy(data[samp,],group,cors=cors,method=method) # resultB <- statsBy(data[-samp,],group,cors=cors,method=method) # result[[i]] <- cor(resultA$mean,resultB, # # } # # # }psych/R/error.crosses.R0000755000176200001440000000507212766545004014555 0ustar liggesusers"error.crosses" <- function (x,y,labels=NULL,main=NULL,xlim=NULL,ylim= NULL,xlab=NULL,ylab=NULL,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,add=FALSE,colors=NULL,col.arrows=NULL,col.text=NULL,...) # x and y are data frame or descriptive stats {if(is.vector(x)) {x <- describe(x)} xmin <- min(x$mean) xmax <- max(x$mean) if(sd) {max.sex <- max(x$sd,na.rm=TRUE) if(is.null(xlim)) {xlim=c(xmin - max.sex,xmax + max.sex) }} else {max.sex <- max(x$se,na.rm=TRUE)} if(is.vector(y)) {y <- describe(y)} ymin <- min(y$mean) ymax <- max(y$mean) if(sd) {max.sey <- max(y$sd,na.rm=TRUE) if(is.null(ylim)) {ylim=c(ymin - max.sey,ymax +max.sey)}} else { max.sey <- max(y$se,na.rm=TRUE) } if(is.null(xlim)) xlim=c(xmin - 2*max.sex,xmax +2*max.sex) if(is.null(ylim)) ylim=c(ymin - 2*max.sey,ymax +2*max.sey) if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } if(is.null(xlab)) xlab <- "Group 1" if(is.null(ylab)) ylab <- "Group 2" if(is.null(colors)) colors <- "black" if(is.null(col.arrows)) col.arrows <- colors if(is.null(col.text)) col.text <- colors if(!add) plot(x$mean,y$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,col=colors,...) cix <- qt(1-alpha/2,x$n-1) ciy <- qt(1-alpha/2,y$n-1) z <- dim(x)[1] if(sd) {x$se <- x$sd y$se <- y$sd cix <- ciy <- rep(1,z) } if (is.null(pos)) {locate <- rep(1,z)} else {locate <- pos} if (is.null(labels)) {labels <- rownames(x)} if (is.null(labels)) {lab <- paste("V",1:z,sep="")} else {lab <-labels} if(length(col.arrows) < z) {col.arrows <- rep(col.arrows, z)} if(length(col.text) < z) {col.text <- rep(col.text, z)} for (i in 1:z) {xcen <- x$mean[i] ycen <- y$mean[i] xse <- x$se[i] yse <- y$se[i] arrows(xcen-cix[i]* xse,ycen,xcen+ cix[i]* xse,ycen,length=arrow.len, angle = 90, code=3,col = col.arrows[i], lty = NULL, lwd = par("lwd"), xpd = NULL) arrows(xcen,ycen-ciy[i]* yse,xcen,ycen+ ciy[i]*yse,length=arrow.len, angle = 90, code=3,col =col.arrows[i], lty = NULL, lwd = par("lwd"), xpd = NULL) text(xcen,ycen,labels=lab[i],pos=locate[i],offset=offset,col = col.text[i],...) #puts in labels for all points } } #Sept 11, 2013 changed n to n-1 in call to qt (following a suggestion by Trevor Dodds) #modified Sept 15, 2016 with help from Arnaud Defaye psych/R/table2matrix.R0000644000176200001440000000305712253362274014335 0ustar liggesusers"table2matrix" <- function(x,labs = NULL) { n <- sum(x) nrows <- dim(x)[1] ncol <- dim(x)[2] rowval <- as.numeric(rownames(x)) colval <- as.numeric(colnames(x)) xm <- matrix(NaN,nrow=n,ncol=2) k <- 1 for (rows in 1:nrows) { for (cols in 1:ncol) { case <- x[rows,cols] if(case>0) { for (cases in 1:case) { xm[k,1] <- rowval[rows] xm[k,2] <- colval[cols] k <- k+1} #end cases } } #end cols } #end rows if(!is.null(labs)) colnames(xm)<- labs return(xm) } "table2df" <- function(x,count=NULL, labs = NULL) { if(!is.null(count)) {xm.df <- bigtable2matrix(x,count,labs) } else { n <- sum(x) nrows <- dim(x)[1] ncol <- dim(x)[2] rowval <- as.numeric(rownames(x)) colval <- as.numeric(colnames(x)) xm <- matrix(NaN,nrow=n,ncol=2) k <- 1 for (rows in 1:nrows) { for (cols in 1:ncol) { case <- x[rows,cols] if(case>0) { for (cases in 1:case) { xm[k,1] <- rowval[rows] xm[k,2] <- colval[cols] k <- k+1} #end cases } } #end cols } #end rows if(!is.null(labs)) colnames(xm)<- labs xm.df <- data.frame(xm) } return(xm.df) } "bigtable2matrix" <- function(x,count,labs=NULL) { n <- dim(x)[1] ncol <- dim(x)[2] nrows <- sum(count) xm <- matrix(NaN,nrow=nrows,ncol=ncol) k <- 1 for (i in 1 :n) { for (j in k:(k+count[i]-1)) { for (values in 1:ncol) { xm[j,values] <- x[i,values] } } k <- k+count[i] } if(!is.null(labs)) {colnames(xm) <- labs} return(xm) } psych/R/dia.cone.R0000644000176200001440000000223211764736465013426 0ustar liggesusers"dia.cone" <- function(x=0, y=-2, theta=45, arrow=TRUE,curves=TRUE,add=FALSE,labels=NULL,xlim = c(-1, 1), ylim=c(-1,1),... ) { segments = 51 extend = 1.1 xrange=2 #yrange=1 height= xrange xs <- tan(theta*pi/180) * height ys =.3 * xs angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) ellipse <- unit.circle ellipse[, 1] <- ellipse[, 1] * xs + x ellipse[, 2] <- ellipse[, 2] * ys + y + height if(!add) {plot.new() plot.window(xlim=xlim*2,ylim=ylim,...)} lines(ellipse, ...) if(arrow) { arrows(x,y,(x-xs),y+ height,lty="dashed") arrows(x,y,(x + xs),y+ height,lty="dashed") arrows(x,y,x,y + extend^2 * height)} else { #don't draw arrows, just the cone coords <- matrix(c(x,x-xs,y,y+height),2,2) lines(coords) coords <- matrix(c(x,x+xs,y,y+height),2,2) lines(coords)} if(curves) {dia.curve(c(x,y+height/3),c(x-xs/3,y+height/3),scale=.2,labels=labels[1]) dia.curve(c(x,y+height/3),c(x+xs/3,y+height/3),scale=.2,labels=labels[2]) dia.curve(c(x-xs/2,y+height/2),c(x+xs/2,y+height/2),scale=.3,labels=labels[3]) } } psych/R/irt.2p.R0000644000176200001440000000155112253362153013046 0ustar liggesusers"irt.2p" <- function(delta,beta,items) { #find the person parameters in a 2 parameter model we use deltas and betas from irt.discrim and irt.person.rasch #find the person parameter irt.2par <- function(x,delta,beta,scores) { fit <- -1*(log(scores/(1+exp(beta*(delta-x))) + (1-scores)/(1+exp(beta*(x-delta))))) mean(fit,na.rm=TRUE) } num <- dim(items)[1] fit <- matrix(NaN,num,2) total <- rowMeans(items,na.rm=TRUE) count <- rowSums(!is.na(items)) for (i in 1:num) { if (count[i]>0) {myfit <- optimize(irt.2par,c(-4,4),beta=beta,delta=delta,scores=items[i,]) #how to do an apply? fit[i,1] <- myfit$minimum fit[i,2] <- myfit$objective #fit of optimizing program } else { fit[i,1] <- NA fit[i,2] <- NA } #end if else } #end loop irt.2p <-data.frame(total,theta=fit[,1],fit=fit[,2],count)} psych/R/glb.R0000644000176200001440000000533111335554665012507 0ustar liggesusers# an attempt at finding the worst and best splits, beta is worst split (from ICLUST) "glb" <- function(r,key=NULL) { nvar <- dim(r)[2] if(dim(r)[1] != dim(r)[2]) {r <- cor(r,use="pairwise")} else {r <- cov2cor(r)} #make sure it is a correlation matrix not a covariance or data matrix if(is.null(colnames(r))) { rownames(r) <- colnames(r) <- paste("V",1:nvar,sep="") } m <- (1-r)/2 diag(m) <- 1 m.names <- colnames(m) if (!is.null(key)) { m <- diag(key) %*% m %*% diag(key) colnames(m) <- m.names #flip items if we choose to do so flip <- FALSE #we do this if we specify the key } else {key <- rep(1,nvar) } signkey <- strtrim(key,1) signkey[signkey=="1"] <- "" m.names <- paste(m.names,signkey,sep="") colnames(m) <- rownames(m) <- m.names worst <- ICLUST(r,2,plot=FALSE) keys <- worst$p.sorted$cluster best <- ICLUST(m,2,plot=FALSE,SMC=FALSE) keys <- matrix(rep(0,nvar*2),ncol=2) keys <- best$p.sorted$cluster m1 <- r diag(m1) <- 0 best.kmeans <- kmeans(m,2,nstart=10) keys.kmean <- matrix(rep(0,nvar*2),ncol=2) for(i in 1:nvar) { keys.kmean[i,best.kmeans$cluster[i]] <- 1 } f1 <- fa(r) #one factor solution load <- f1$loadings ord.load <- order(load) key.fa <- matrix(rep(0,nvar*2),ncol=2) for (i in 1:nvar) { key.fa[ord.load[i],1] <- i %% 2 key.fa[ord.load[i],2] <- 1 - key.fa[ord.load[i],1] } f2 <- fa(r,2,SMC=FALSE) #two factor solution load <- f2$loadings key.fa2 <- matrix(rep(0,nvar*2),ncol=2) key.fa2[,1] <- (load[,1] > load[,2]) + 0 key.fa2[,2 ] <- 1- key.fa2[,1] e <- eigen(r)$values[1] alpha.pc <- 1-1/e keys <- cbind(worst$p.sorted$cluster,keys,keys.kmean,key.fa,key.fa2) colnames(keys) <- c("IC1","IC2","ICr1","ICr2","K1","K2","F1","F2","f1","f2") covar <- t(keys) %*% r %*% keys #matrix algebra is our friend var <- diag(covar) sd.inv <- 1/sqrt(var) ident.sd <- diag(sd.inv,ncol = length(sd.inv)) cluster.correl <- ident.sd %*% covar %*% ident.sd beta <- cluster.correl[2,1] *2 /(1+cluster.correl[2,1]) glbIC <- cluster.correl[3,4] *2 /(1+cluster.correl[3,4]) glb2 <- cluster.correl[5,6] * 2/(1+ cluster.correl[5,6] ) glb3 <- cluster.correl[7,8] * 2/(1+cluster.correl[7,8]) beta.fa <- cluster.correl[9,10] * 2/(1+cluster.correl[9,10]) glb.max <- max(glbIC,glb2,glb3) sum.smc <- sum(smc(r)) sum.r <- sum(r) gamma <- (sum.r+sum.smc-sum(diag(r)))/sum.r tenberg <- tenberge(r) result <- list(beta = beta,beta.factor = beta.fa,alpha.pc = alpha.pc, glb.max = glb.max, glb.IC =glbIC,glb.Km = glb2, glb.Fa =glb3, r.smc = gamma,tenberge=tenberg, keys=keys) return(result) } psych/R/phi.R0000644000176200001440000000136012723127523012510 0ustar liggesusers# slight changes to combine phi and phi1 from W. Revelle # Leo Gurtler 07-09-06 (umlaut omitted by CRAN check) #modified 05/18/08 to correct bug in output detected by Dylan Arena "phi" <- function(t,digits=2) { # expects: t is a 2 x 2 matrix or a vector of length(4) stopifnot(prod(dim(t)) == 4 || length(t) == 4) if(is.vector(t)) t <- matrix(t, 2) r.sum <- rowSums(t) c.sum <- colSums(t) total <- sum(r.sum) r.sum <- r.sum/total c.sum <- c.sum/total v <- prod(r.sum, c.sum) phi <- (t[1,1]/total - c.sum[1]*r.sum[1]) /sqrt(v) names(phi) <- NULL return(round(phi,digits)) } #does not return chi square values phi2chi <- function(phi,n.obs) { chi <- phi^2 * (n.obs) p <- 1 - pchisq(chi,1) return(list(chi=chi,p=p))} psych/R/tenberge.R0000644000176200001440000000074411335353520013524 0ustar liggesusers"tenberge" <- function(r) {n <- dim(r)[2] if(dim(r)[1] > n) {r <- cor(r,use="pairwise")} vt <- sum(r) off <- r diag(off) <- 0 sum.off <- sum(off) sumsq.off <- sum(off^2) lambda1 <- n * sum(off)/((n-1)* vt) lambda2 <- (sum.off+ sqrt(sumsq.off*n/(n-1)))/vt lambda3 <- (sum.off +sqrt(sumsq.off+ sqrt((n * sum(off^4)/(n-1)))))/vt lambda4 <- (sum.off +sqrt(sumsq.off+ sqrt(sum(off^4)+ sqrt((n * sum(off^8)/(n-1))))))/vt return(list(mu0 = lambda1,mu1=lambda2,mu2 = lambda3,mu3=lambda4)) }psych/R/omega.diagram.R0000644000176200001440000001201613016421624014416 0ustar liggesusers#factor analysis and sem diagrams #based upon fa.graph with some ideas taken from the diagram and shape packages of Karline Soetaert #version of September 20, 2009 #developed to replace Rgraphviz which is too much of a pain to install #Rgraphviz uses a NEL (Node, Edge) represenation while diagram uses a complete linking matrix #thus, I am trying to combine these two approaches #modified 31/5/14 to allow for drawing factor extension derived omegas "omega.diagram" <- function(om.results,sl=TRUE,sort=TRUE,labels=NULL,flabels=NULL,cut=.2,gcut=.2,simple=TRUE,errors=FALSE, digits=1,e.size=.1,rsize=.15,side=3,main=NULL,cex=NULL,color.lines=TRUE ,marg=c(.5,.5,1.5,.5),adj=2, ...) { if(color.lines) { colors <- c("black","red")} else {colors <- c("black","black") } Phi <- NULL #the default case if(is.null(cex)) cex <- 1 old.par<- par(mar=marg) #give the window some narrower margins on.exit(par(old.par)) #set them back if((length(class(om.results)) > 1) && ( (class(om.results)[2] == "extend")) ) {extend <- TRUE class(om.results)[2] <- "omega"} else {extend <- FALSE} if((length(class(om.results)) > 1) && ( (class(om.results)[2] == "omegaSem")) ) { #did we do an omegaSem or just an omegaFromSem? if(is.null(om.results$omega.efa$cfa.loads)) {cfa.loads <- om.results$cfa.loads} else {cfa.loads <- om.results$omega.efa$cfa.loads} # factors <- as.matrix(om.results$omega.efa$cfa.loads[,2:ncol(om.results$omega.efa$cfa.loads)]) if(sort) cfa.loads <- fa.sort(cfa.loads) factors <- as.matrix(cfa.loads) gloading <- cfa.loads[,1,drop=FALSE] nvar <- num.var <- nrow(gloading) num.factors <- ncol(factors) -1 sl=TRUE main <- "Omega from SEM" } else { if(extend) class(om.results)[2] <- "omega" if(sort) om.results <- fa.sort(om.results) #usually sort, but sometimes it is better not to do so if (sl) {factors <- as.matrix(om.results$schmid$sl) if(is.null(main)) {main <- "Omega with Schmid Leiman Transformation" } } else {factors <- as.matrix(om.results$schmid$oblique) if(is.null(main)) {main <- "Hierarchical (multilevel) Structure" } } gloading <- om.results$schmid$gloading nvar <- num.var <- dim(factors)[1] #how many variables? if (sl ) {num.factors <- dim(factors)[2] - 1 - (!extend) *3 } else {num.factors <- dim(factors)[2] } } e.size <- e.size * 10/ nvar #this is an arbitrary setting that seems to work #first some basic setup parameters vars <- paste("V",1:num.var,sep="") if (!is.null(labels)) {vars <- paste(labels)} else{vars <- rownames(factors) } if(!is.null(flabels)) {fact <- flabels} else { if(sl) {fact <- c("g",paste("F",1:num.factors,"*",sep="")) } else {fact <- c(paste("F",1:num.factors,sep="")) } } # e.g. "g" "F'1" "F2" "F3" colnames(factors)[1:length(fact)] <- fact var.rect <- list() fact.rect <- list() max.len <- max(nchar(rownames(factors)))*rsize cex <- min(cex,40/nvar) xleft <- -max.len/2 #0# xright <- nvar + 1 # or hard code to 3? plot(0,type="n",xlim=c(xleft-max.len,xright+1),ylim=c(1,nvar+1),frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main) if (sl) {vloc <- (xright)/2 gloc <- xleft grouploc <-xright start <- 1 end <- num.factors+1} else { vloc <- xleft gloc <- xright grouploc <- (xright)/2 start <- 0 end <- num.factors } for (v in 1:nvar) { var.rect[[v]] <- dia.rect(vloc,nvar-v+1,rownames(factors)[v],xlim=c(0,nvar),ylim=c(0,nvar),cex=cex,...) } f.scale <- (nvar+ 1)/(num.factors+1) f.shift <- nvar/num.factors for (f in 1:num.factors) { fact.rect[[f]] <- dia.ellipse(grouploc,(num.factors+1-f)*f.scale,colnames(factors)[f+start],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...) for (v in 1:nvar) { if (abs(factors[v,f+start]) > cut) {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,col=colors[((sign(factors[v,f+start])<0) +1)],lty=((sign(factors[v,f+start])<0)+1),labels=round(factors[v,f+start],digits),adj=f %% adj +1) } } } g.ellipse <- dia.ellipse(gloc,(num.var+1)/2,"g",xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...) if(!sl) { for (f in 1:num.factors) { dia.arrow(from=g.ellipse,to=fact.rect[[f]],col=colors[((sign(gloading[f])<0) +1)],lty=((sign(gloading[f])<0) +1),labels=round(gloading[f],digits),adj=f %% adj +1) } } else { for (i in 1:nvar) { if(abs(factors[i,1]) > gcut) { dia.arrow(from=g.ellipse,to=var.rect[[i]]$left,col=colors[((sign(factors[i,1])<0) +1)],lty=((sign(factors[i,1])<0)+1),labels=round(factors[i,1],digits),adj=1)} } } if (errors) {for (v in 1:nvar) { dia.self(location=var.rect[[v]],scale=.5,side=side) } } } psych/R/spider.R0000644000176200001440000000544711621776542013237 0ustar liggesusers#radar and spider developed July 10, 2011 "radar" <- function(x,labels=NULL,center=FALSE,connect=FALSE,scale=1,ncolors=31,fill=FALSE,add=FALSE,linetyp="solid", main="Radar Plot",...) { nvar <- length(x) if(is.null(labels)) labels <- paste("V",1:nvar,sep="") SEGMENTS <- 48 if(ncolors < 2) {colors <- FALSE} else {colors <- TRUE} angles <- (0:SEGMENTS) * 2 * pi/SEGMENTS unit.circle <- cbind(cos(angles), sin(angles)) if(!add) { plot(unit.circle,typ="l",asp=1,axes=FALSE,xlab="",ylab="",main=main) lines(unit.circle*.25,typ="l",lty="dotted",col="red") lines(unit.circle*.5,typ="l",lty="dotted") lines(unit.circle*.75,typ="l",lty="dotted",col="blue") } if(colors) { gr <- colorRampPalette(c("red","white","blue")) #added June 20 colramp <- gr(ncolors) } else { colramp <- grey((ncolors:0)/ncolors)} for(c in 1:nvar) { nx <- (c-1)* SEGMENTS/nvar +1 if(center) {x0 <- unit.circle[nx,1] * .5 y0 <- unit.circle[nx,2] * .5 } else { x0 <- 0 y0 <- 0} scaler <- (x[c]*scale/2 + .5)#stats can go from -1 to 1, scale from 0 to 1 x1 <- unit.circle[nx,1] y1 <- unit.circle[nx,2] Lx <- c(x0,x1)*scaler Ly <- c(y0,y1) *scaler if(c==1) { Oldx <- unit.circle[(nvar-1)*SEGMENTS/nvar + 1,1]*(x[nvar]*scale/2 +.5) Oldy <- unit.circle[(nvar-1)*SEGMENTS/nvar + 1,2]*(x[nvar]*scale/2+.5)} if(colors) { if (scaler < .5) {col="red"} else {col="blue"} lines(Lx,Ly,col=col,...) } else { lines(Lx,Ly,...)} if(connect) {lines(c(Oldx,x1*scaler),c(Oldy,y1*scaler),lty=linetyp)} if(fill) {polygon(c(0,Oldx , x1*scaler,0),c(0,Oldy,y1*scaler,0),col=colramp[ceiling(scaler*ncolors)],...)} Oldx <- x1*scaler Oldy <- y1* scaler text(x1*1.05,y1*1.05,labels[c]) } } "spider" <- function(y,x,data,labels=NULL,rescale = FALSE,center=FALSE,connect=TRUE,overlay=FALSE,scale=1,ncolors=31,fill=FALSE,main=NULL,...) { if(is.null(labels)) labels <- colnames(data)[x] if(rescale) { data <- scale(data)/3 } #rescales to -1 to 1 if(length(y)==1) { if(!is.null(main)) {main=main} else {main <- colnames(data)[y]} radar(data[y,x],labels=labels,center=center,connect=connect,scale=scale,ncolors=ncolors,fill=fill,main=main,...) } else { nvar <- length(y) for (i in 1:nvar) { if(!is.null(main)) {title=main[y[i]]} else {title <- colnames(data)[y[i]]} if(overlay) { if (i==1) {radar(data[y[i],x],labels=labels,center=center,connect=connect,scale=scale,ncolors=ncolors,fill=fill,main=title,...) } else { radar(data[y[i],x],labels=labels,center=center,connect=connect,scale=scale,ncolors=ncolors,fill=fill,add=TRUE,linetyp=nvar %%6 + 2,main=title,...) } } else { radar(data[y[i],x],labels=labels,center=center,connect=connect,scale=scale,ncolors=ncolors,fill=fill,main=title,...) }} } } psych/R/omega.R0000644000176200001440000002473013024334735013026 0ustar liggesusers"omegah" <- function(m,nfactors=3,fm="minres",key=NULL,flip=TRUE, digits=2,title="Omega",sl=TRUE,labels=NULL, plot=TRUE,n.obs=NA,rotate="oblimin",Phi = NULL,option="equal",covar=FALSE,...) { #m is a correlation matrix, or if not, the correlation matrix is found #nfactors is the number of factors to extract #key allows items to be reversed scored if desired #if Phi is not null, this implies that we have been given a factor matrix -- added May 30, 2010 if(!requireNamespace('GPArotation') && (rotate !="cluster")) {stop("I am sorry, you need to have the GPArotation package installed")} cl <- match.call() nvar <- dim(m)[2] raw.data <- NULL if(is.null(Phi)) { #the normal case is to do the factor analysis of the raw data or the correlation matrix if(!isCorrelation(m)) { n.obs <- dim(m)[1] m <- as.matrix(m) raw.data <- m #added 9/1/14 if(covar) {m <- cov(m,use="pairwise") } else {m <- cor(m,use="pairwise")} } else { if(!covar) m <- cov2cor(as.matrix(m)) #make sure it is a correlation matrix not a covariance or data matrix (if we change this, we will need to change the calculation for omega later) } if(is.null(colnames(m))) { rownames(m) <- colnames(m) <- paste("V",1:nvar,sep="") } m.names <- colnames(m) if (!is.null(key)) { m <- diag(key) %*% m %*% diag(key) colnames(m) <- m.names #flip items if we choose to do so flip <- FALSE #we do this if we specify the key } else {key <- rep(1,nvar) } signkey <- strtrim(key,1) signkey[signkey=="1"] <- "" m.names <- paste(m.names,signkey,sep="") colnames(m) <- rownames(m) <- m.names if ((nvar < 6) && (fm =="mle") ) {message(paste("In omega, 3 factors are too many for ",nvar," variables using mle. Using minres instead",sep="")) fm <- "minres"} } else { m.names <- rownames(m) } #add the names if we have a factor input gf <-schmid(m,nfactors,fm,digits,rotate=rotate,n.obs=n.obs,Phi=Phi,option=option,covar=covar, ...) if(!is.null(Phi)) { model <- m nfactors <- dim(model)[2] m <- factor.model(model,Phi=Phi,U2=FALSE) #estimate the correlation matrix from the factor model nvar <- dim(m)[2] if(is.null(rownames(m))) {colnames(m) <- rownames(m) <- paste("V",1:nvar)} } gload <- gf$sl[,1] if (flip) { #should we think about flipping items ? key <- sign(gload) key[key==0] <- 1 # a rare and weird case where the gloading is 0 and thus needs not be flipped if (sum(key) < nvar) { #some items have negative g loadings and should be flipped m <- diag(key) %*% m %*% diag(key) #this is just flipping the correlation matrix so we can calculate alpha gf$sl[,1:(nfactors+1)] <- diag(key) %*% gf$sl[,1:(nfactors+1)] signkey <- strtrim(key,1) signkey[signkey=="1"] <- "" m.names <- paste(m.names,signkey,sep="") colnames(m) <- rownames(m) <- m.names rownames(gf$sl) <- m.names } } Vt <- sum(m) #find the total variance in the scale Vitem <- sum(diag(m)) gload <- gf$sl[,1] gsq <- (sum(gload))^2 uniq <- sum(gf$sl[,"u2"]) if((nfactors == 1) && (fm=="pc")) {gsq <- Vt - uniq warning("omega_h is not meaningful for a principal components analysis with one component")} #weird condition when using fm=pc and 1 factor om.tot <- (Vt-uniq)/Vt om.limit <- gsq/(Vt-uniq) alpha <- ((Vt-Vitem)/Vt)*(nvar/(nvar-1)) sum.smc <- sum(smc(m,covar=covar)) lambda.6 <- (Vt +sum.smc-sum(diag(m)))/Vt if (!is.null(digits)) {omega <-list(omega_h= gsq/Vt,alpha=alpha,lambda.6 = lambda.6,omega.tot =om.tot,schmid=gf ,key = key,title=title) dg <-max(digits-1,1)} else { omega <- list(omega_h= gsq/Vt,alpha=alpha,omega.tot=om.tot,schmid=gf,key=key,title=title) dg <- 1} ev <- colSums(gf$sl[,1:(nfactors+1)]^2) ECV <- ev[1]/sum(ev) omega.stats <- factor.stats(m,gf$sl[,1:(nfactors+1)],n.obs=n.obs) general.stats <- factor.stats(m,as.matrix(gf$sl[,1]),n.obs=n.obs) #just get fit for the general factor if (nfactors<2) plot <- FALSE # if(require(Rgraphviz) && plot) {omega.model <-omega.graph(omega,title=title,sl=sl,labels=labels,digits=dg) } else {omega.model <- omega.sem(omega,sl=sl)} omega.model <- omega.sem(omega,sl=sl) #find the subset omegas omg <- omgo <- omt<- rep(NA,nfactors+1) sub <- apply(gf$sl,1,function(x) which.max(abs(x[2:(nfactors+1)]))) grs <- 0 for(group in( 1:nfactors)) { groupi <- which(sub==group) if(length(groupi) > 0) { Vgr <- sum(m[groupi,groupi]) gr <- sum(gf$sl[groupi,(group+1)]) grs <- grs + gr^2 omg[group+1] <- gr^2/Vgr omgo[group+1] <- sum(gf$sl[groupi,1])^2/Vgr omt[group+1] <- (gr^2+ sum(gf$sl[groupi,1])^2)/Vgr } omgo[1] <- sum(gf$sl[,1])^2/sum(m) #omega h omg[1] <- grs/sum(m) #omega of subscales omt[1] <- om.tot om.group <- data.frame(total=omt,general=omgo,group=omg) rownames(om.group) <- colnames(gf$sl)[1:(nfactors+1)] #we should standardize the raw.data before doing the next step if(!is.null(raw.data)) {scores <- raw.data %*% omega.stats$weights} else {scores<- NULL} } omega <- list(omega_h= gsq/Vt,omega.lim = om.limit,alpha=alpha,omega.tot=om.tot,G6=lambda.6,schmid=gf,key=key,stats = omega.stats,ECV=ECV,gstats = general.stats,call=cl,title=title,R = m,model=omega.model,omega.group=om.group,scores=scores) class(omega) <- c("psych","omega") if(plot) omega.diagram(omega,main=title,sl=sl,labels=labels,digits=dg) return(omega) } #April 4, 2011 added a check for fm=pc and nfactors == 1 to solve problem of omega_h < omega_t -- probably not a good idea. removed #January 9, 2014 added omega scores if the raw data are given "omega" <- function(m,nfactors=3,fm="minres",n.iter=1,p=.05,poly=FALSE,key=NULL,flip=TRUE, digits=2,title="Omega",sl=TRUE,labels=NULL, plot=TRUE,n.obs=NA,rotate="oblimin",Phi = NULL,option="equal",covar=FALSE,...) { cl <- match.call() if(is.data.frame(m) || is.matrix(m)) {if(isCorrelation(m)) {if(is.na(n.obs) && (n.iter > 1)) stop("You must specify the number of subjects if giving a correlation matrix") # if(!require(MASS)) stop("You must have MASS installed to simulate data from a correlation matrix") } } if(!is.data.frame(m) && !is.matrix(m)) { n.obs=m$n.obs if(poly) { pol <- list(rho=m$rho,tau = m$tau,n.obs=m$n.obs) m <- m$rho } else { m <- m$R } } else { #new data if(poly) { pol <- polychoric(m) m <- pol$rho n.obs <- pol$n.obs} } om <- omegah(m=m,nfactors=nfactors,fm=fm,key=key,flip=flip, digits=digits,title=title,sl=sl,labels=labels, plot=plot,n.obs=n.obs,rotate=rotate,Phi = Phi,option=option,covar=covar,...) #call omega with the appropriate parameters if(is.na(n.obs) ) {n.obs <- om$stats$n.obs} replicates <- list() if(n.iter > 1) {for (trials in 1:n.iter) { if(dim(m)[1] == dim(m)[2]) {#create data sampled from multivariate normal with correlation nvar <- dim(m)[1] #mu <- rep(0, nvar) # m <- mvrnorm(n = n.obs, mu, Sigma = m, tol = 1e-06, empirical = FALSE) #the next 3 lines replaces mvrnorm (taken from mvrnorm, but without the checks) eX <- eigen(m) m <- matrix(rnorm(nvar * n.obs),n.obs) m <- t(eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(m)) } else {m <- m[sample(n.obs,n.obs,replace=TRUE),]} if(poly) {pol <- polychoric(m) oms <- omegah(m=pol$rho,nfactors=nfactors,fm=fm,key=key,flip=flip, digits=digits,title=title,sl=sl,labels=labels, plot=plot,n.obs=pol$n.obs,rotate=rotate,Phi = Phi,option=option,...) #call omega with the appropriate parameters } else { oms <- omegah(m=m,nfactors=nfactors,fm=fm,key=key,flip=flip, digits=digits,title=title,sl=sl,labels=labels, plot=plot,n.obs=n.obs,rotate=rotate,Phi = Phi,option=option,...) #call omega with the appropriate parameters } # oms <-omegah(m=m,nfactors=nfactors,fm=fm,key=key,flip=flip, digits=digits,title=title,sl=sl,labels=labels, plot=plot,n.obs=n.obs,rotate=rotate,Phi = Phi,option=option,...) #call fa with the appropriate parameters replicates[[trials]] <- list(omega=oms$omega_h,alpha=oms$alpha,omega.tot=oms$omega.tot,G6=oms$G6,omega.lim=oms$omega.lim) } replicates <- matrix(unlist(replicates),ncol=5,byrow=TRUE) z.replicates <- cbind(fisherz(replicates[,1:4]),replicates[,5]) #convert to z scores means <- colMeans(z.replicates,na.rm=TRUE) sds <- apply(z.replicates,2,sd,na.rm=TRUE) ci.lower <- means + qnorm(p/2) * sds ci.upper <- means + qnorm(1-p/2) * sds ci <- data.frame(lower = ci.lower,upper=ci.upper) ci <- rbind(fisherz2r(ci[1:4,]),ci[5,]) rownames(ci) <- c("omega_h","alpha","omega_tot","G6","omega_lim") colnames(replicates) <- names(means) <- names(sds) <- rownames(ci) conf <- list(means = means,sds = sds,ci = ci,Call= cl,replicates=replicates) om$Call=cl results <- list(om = om,ci=conf) } else {om$call=cl if(poly) {om$rho <- pol$rho om$tau <- pol$tau om$n.obs <- pol$n.obs } results <- om} class(results) <- c("psych","omega") return(results) } #written April 25, 2011 #adapted May 12, 2011 to be the primary version of omega psych/R/factor2cluster.R0000644000176200001440000000147411414771543014703 0ustar liggesusers"factor2cluster" <- function (loads,cut=.0) { if (!is.matrix(loads) ) {l <-loads$loadings} else {l <- loads} l <- as.matrix(l) nrows <- dim(l)[1] ncols <- dim(l)[2] if (ncols ==1) {m1 <- matrix(rep(1,nrows),ncol=1) } else { m1 <- matrix(apply(t(apply(l, 1, abs)), 1, which.max), ncol = 1)} id <- matrix(c(1:nrows, m1), ncol = 2) #index row and column factor2cluster <- matrix(rep(0, ncols * nrows), ncol = ncols) factor2cluster[id] <- sign(l[id])*( (abs(l[id]) >cut)+0) #only loadings > cut rownames(factor2cluster) <- rownames(l) colnames(factor2cluster) <- colnames(l) nitems <- colSums(abs(factor2cluster)) for (i in ncols:1) {if (nitems[i]<1) {factor2cluster <- factor2cluster[,-i,drop=FALSE]} }#remove columns with no variables return(factor2cluster) } psych/R/factor.pa.R0000644000176200001440000002226612456326542013622 0ustar liggesusers"factor.pa" <- function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA,scores=FALSE,SMC=TRUE,missing=FALSE,impute="median", min.err = .001,digits=2,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="pa") { cl <- match.call() .Deprecated("fa",msg="factor.pa is deprecated. Please use the fa function with fm=pa") ##first some functions that are internal to factor.minres #this does the ULS fitting "fit.residuals.ols" <- function(Psi,S,nf) { diag(S) <- 1- Psi eigens <- eigen(S) eigens$values[eigens$values < .Machine$double.eps] <- 100 * .Machine$double.eps #loadings <- eigen.loadings(eigens)[,1:nf] if(nf >1 ) { loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) residual <- (S - model)^2 diag(residual) <- 0 error <- sum(residual) } #this code is taken (with minor modification to make ULS) from factanal #it does the iterative calls to fit.residuals "min.res" <- function(S,nf) { S.smc <- smc(S) if(sum(S.smc) == nf) {start <- rep(.5,nf)} else {start <- 1- S.smc} res <- optim(start, fit.residuals.ols, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S ) Lambda <- FAout(res$par, S, nf) result <- list(loadings=Lambda,res=res) } #these were also taken from factanal FAout <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1L:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)), q) diag(sqrt(Psi)) %*% load } FAfn <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE) e <- E$values[-(1L:q)] e <- sum(log(e) - e) - q + nrow(S) -e } ## now start the main function if((fm !="pa") & (fm != "minres")) {message("factor method not specified correctly, principal axes used") fm <- "pa" } n <- dim(r)[2] if (n!=dim(r)[1]) { n.obs <- dim(r)[1] if(scores) {x.matrix <- r if(missing) { #impute values miss <- which(is.na(x.matrix),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x.matrix,na.rm=TRUE) #replace missing values with means x.matrix[miss]<- item.means[miss[,2]]} else { item.med <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians x.matrix[miss]<- item.med[miss[,2]]} }} r <- cor(r,use="pairwise") # if given a rectangular matrix, then find the correlations first } else { if(!is.matrix(r)) { r <- as.matrix(r)} sds <- sqrt(diag(r)) #convert covariance matrices to correlation matrices r <- r/(sds %o% sds) } #added June 9, 2008 if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0)} r.mat <- r Phi <- NULL colnames(r.mat) <- rownames(r.mat) <- colnames(r) if(SMC) { if(nfactors < n/2) {diag(r.mat) <- smc(r) } else {if (warnings) message("too many factors requested for this number of variables to use SMC, 1s used instead")} } orig <- diag(r) comm <- sum(diag(r.mat)) err <- comm i <- 1 comm.list <- list() if(fm=="pa") { while(err > min.err) #iteratively replace the diagonal with our revised communality estimate { eigens <- eigen(r.mat,symmetric=symmetric) eigens$values[ eigens$values < .Machine$double.eps] <- .Machine$double.eps #added May 14, 2009 to fix case of singular matrices #loadings <- eigen.loadings(eigens)[,1:nfactors] if(nfactors >1 ) {loadings <- eigens$vectors[,1:nfactors] %*% diag(sqrt(eigens$values[1:nfactors])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) new <- diag(model) comm1 <- sum(new) diag(r.mat) <- new err <- abs(comm-comm1) if(is.na(err)) {warning("imaginary eigen value condition encountered in factor.pa,\n Try again with SMC=FALSE \n exiting factor.pa") break} comm <- comm1 comm.list[[i]] <- comm1 i <- i + 1 if(i > max.iter) {if(warnings) {message("maximum iteration exceeded")} err <-0 } } } if(fm=="minres") { #added April 12, 2009 to do ULS fits uls <- min.res(r,nfactors) eigens <- eigen(r) #used for the summary stats result$par <- uls$res loadings <- uls$loadings } # a weird condition that happens with the Eysenck data #making the matrix symmetric solves this problem if(!is.double(loadings)) {warning('the matrix has produced imaginary results -- proceed with caution') loadings <- matrix(as.double(loadings),ncol=nfactors) } #make each vector signed so that the maximum loading is positive - probably should do after rotation #Alternatively, flip to make the colSums of loading positive if (FALSE) { if (nfactors >1) { maxabs <- apply(apply(loadings,2,abs),2,which.max) sign.max <- vector(mode="numeric",length=nfactors) for (i in 1: nfactors) {sign.max[i] <- sign(loadings[maxabs[i],i])} loadings <- loadings %*% diag(sign.max) } else { mini <- min(loadings) maxi <- max(loadings) if (abs(mini) > maxi) {loadings <- -loadings } loadings <- as.matrix(loadings) if(fm=="minres") {colnames(loadings) <- "mr1"} else {colnames(loadings) <- "PA1"} } #sign of largest loading is positive } #added January 5, 2009 to flip based upon colSums of loadings if (nfactors >1) {sign.tot <- vector(mode="numeric",length=nfactors) sign.tot <- sign(colSums(loadings)) loadings <- loadings %*% diag(sign.tot) } else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)} colnames(loadings) <- "PA1" } #end addition if(fm=="minres") {colnames(loadings) <- paste("MR",1:nfactors,sep='') } else {colnames(loadings) <- paste("PA",1:nfactors,sep='')} rownames(loadings) <- rownames(r) loadings[loadings==0.0] <- 10^-15 #added to stop a problem with varimax if loadings are exactly 0 model <- loadings %*% t(loadings) #f.loadings <- loadings #used to pass them to factor.stats Phi <- NULL if(rotate != "none") {if (nfactors > 1) { if (rotate=="varimax" | rotate=="quartimax") { rotated <- do.call(rotate,list(loadings)) loadings <- rotated$loadings Phi <- NULL} else { if ((rotate=="promax")|(rotate=="Promax")) {pro <- Promax(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate == "cluster") {loadings <- varimax(loadings)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax") { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- do.call(rotate,list(loadings) ) loadings <- ob$loadings Phi <- ob$Phi} } }}} }} if(nfactors >1) { ev.rotated <- diag(t(loadings) %*% loadings) ev.order <- order(ev.rotated,decreasing=TRUE) loadings <- loadings[,ev.order]} rownames(loadings) <- colnames(r) if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix! class(loadings) <- "loadings" if(nfactors < 1) nfactors <- n result <- factor.stats(r,loadings,Phi,n.obs) #do stats as a subroutine common to several functions result$rotate <- rotate result$loadings <- loadings result$values <- eigens$values result$communality <- round(diag(model),digits) result$uniquenesses <- round(diag(r-model),digits) if(!is.null(Phi)) {result$Phi <- Phi} if(fm=="pa") result$communality.iterations <- round(unlist(comm.list),digits) if(scores) {result$scores <- factor.scores(x.matrix,loadings) } result$factors <- nfactors result$fn <- "factor.pa" result$fm <- fm result$Call <- cl class(result) <- c("psych", "fa") return(result) } #modified October 30, 2008 to sort the rotated loadings matrix by the eigen values. psych/R/print.psych.stats.R0000644000176200001440000000170611207255200015340 0ustar liggesusers"print.psych.stats" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { cat("Call: ") print(x$Call) nfactors <- x$factors objective <- x$criteria[1] if(!is.null(objective)) { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.\n") cat("\nThe degrees of freedom for the model is",x$dof," and the fit was ",round(objective,digits),"\n") if(!is.na(x$n.obs)) {cat("The number of observations was ",x$n.obs, " with Chi Square = ",round(x$STATISTIC,digits), " with prob < ", signif(x$PVAL,digits),"\n")} } cat("\nMeasures of factor score adequacy ",colnames(x$loadings) ) cat("\n Correlation of scores with factors ",round(sqrt(x$R2),digits)) cat("\nMultiple R square of scores with factors " ,round(x$R2,digits)) cat("\nMinimum correlation of factor score estimates ", round(2*x$R2 -1,digits),"\n") } #end of print.psych.stats psych/R/glbs.R0000644000176200001440000000225211352752470012662 0ustar liggesusers"glb.fa" <- function(r,key= NULL){ cl <- match.call() #for eventual fancy printing with the call listed nvar <- dim(r)[2] #find a correlation matrix if using a data matrix if(dim(r)[1] != dim(r)[2]) {r <- cor(r,use="pairwise")} else { if(!is.matrix(r)) r <- as.matrix(r) r <- cov2cor(r)} #make sure it is a correlation matrix not a covariance or data matrix if(is.null(colnames(r))) { rownames(r) <- colnames(r) <- paste("V",1:nvar,sep="") } if (!is.null(key)) { key <- as.vector(key) r <- diag(key) %*% r %*% diag(key) flip <- FALSE #we do this if we specify the key } else {key <- rep(1,nvar) } nv <- dim(r)[1] #how many variables f1 <- fa(r) #factor it #first find the eigen values of the factor model nf <-length(which(f1$values > 0)) #how many are real df <- nv * (nv-1)/2 - nf*nv + nf*(nf-1)/2 #check for degrees of freedom if (df <0 ) nf <- nf-1 fn <- fa(r,nf,rotate="none") rr <- r diag(rr) <- fn$communality glb <- sum(rr)/sum(r) return(list(glb=glb,communality = fn$communality,numf = nf,Call=cl)) } psych/R/cortest.jennrich.R0000644000176200001440000000224011126167026015206 0ustar liggesusers"cortest.jennrich" <- function(R1,R2,n1=NULL, n2=NULL) { p <- dim(R1)[2] if(dim(R1)[1] != p) { n1 <- dim(R1)[1] R1 <- cor(R1,use="pairwise") warning ("R1 matrix was not square, correlations found") } if(dim(R2)[1] != dim(R2)[2] ) {n2 <- dim(R2)[1] R2 <- cor(R2,use="pairwise") warning ("R2 matrix was not square, correlations found") } if(!is.matrix(R1) ) R1 <- as.matrix(R1) #converts data.frames to matrices if needed if(!is.matrix(R2) ) R2 <- as.matrix(R2) if (dim(R1)[2] != dim(R2)[2]) stop("correlation matrices M and S must be of the same size!") if(is.null(n2)) n2 <- n1 if(!is.null(n1) & !is.null(n2)) c <- n1*n2/(n1+n2) else c <- 1 R <- (n1*R1+n2*R2)/(n1+n2) #matrix of average values S <- R * R #squared values of averaged correlations S.inv <- solve(S) R.inv <- solve(R) R.diff <- R1 - R2 Z <- sqrt(c) * R.inv %*% R.diff chi2 <- tr(Z%*%t(Z))/2 - t(diag(Z)) %*% S.inv %*% diag(Z) chi2 <- chi2[1,1] p <- dim(R1)[1] df <- p*(p-1)/2 results <- list(chi2 =chi2,prob =pchisq(chi2,df,lower.tail=FALSE)) return(results) } #Jennrich (1970) p 908 psych/R/plot.irt.R0000644000176200001440000004135713073204774013520 0ustar liggesusers"plot.irt" <- function(x,xlab,ylab,main,D,type=c("ICC","IIC","test"),cut=.3,labels=NULL,keys=NULL,xlim,ylim,y2lab,lncol="black",...) { if(class(x)[2] == "irt.poly") { if(missing(type)) type = "IIC" plot.poly(x=x,D=D,xlab=xlab,ylab=ylab,xlim=xlim,ylim=ylim,main=main,type=type,cut=cut,labels=labels,keys=keys,y2lab=y2lab,lncol=lncol,...)} else { item <- x temp <- list() sumtemp <- list() byKeys <- FALSE if((is.data.frame(x)) | (is.matrix(x))) {nf <- dim(x)[2] -1} else { nf <- length(x$irt$difficulty)} #if there was more than 1 factor, repeat the figure nf times #or, if there is one factor but multiple keys if(!is.null(keys)) { nkeys = ncol(keys) if (nf < nkeys) {byKeys <- TRUE nf <- nkeys} } for(f in 1:nf) {if((is.data.frame(item)) | (is.matrix(item))) {if(byKeys) {discrimination <- item[,1]} else {discrimination <- item[,f]} if(byKeys) {location <- item[,2]} else {location <- item[,f+1]} } else { if(byKeys) {discrimination=item$irt$discrimination[,1]} else {discrimination=item$irt$discrimination[,f]} if(!is.null(keys)) discrimination <- discrimination *abs( keys[,f]) if(byKeys) {location=item$irt$difficulty[[1]]} else {location=item$irt$difficulty[[f]] }} x <- NULL nvar <- length(discrimination) if(is.null(labels)) {if(!is.null(rownames(item$irt$discrimination))) {labels = rownames(item$irt$discrimination)} else {labels <- 1:nvar}} if(missing(type)) {type = "IIC"} if(missing(D)) {D <- 1.702 if(missing(xlab)) xlab <- "Latent Trait (normal scale)" x <- seq(-3,3,.1) summaryx <- seq(-3,3,1)} if(D==1) {if(missing(xlab)) xlab <- "Latent Trait (logistic scale)"} if(missing(xlab)) xlab <- "Latent Trait" if(is.null(x)) {x <- seq(-4,4,.1) summaryx <- seq(-3,3,1)} lenx <- length(x) sumInfo <- matrix(NA,ncol=nvar,nrow=length(summaryx)) summaryx <- as.matrix(summaryx,ncol=1) if(type=="ICC") { summtInfo <- NULL if(nf > 1) { if(missing(main)) {main1 <- paste("Item parameters from factor analysis for factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Item parameters from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} # if(missing(main)) main <- "Item parameters from factor analysis" if(missing(ylab)) ylab <- "Probability of Response" if(length(lncol) < 2) lncol <- rep(lncol,nvar) ii <- 1 while((abs(discrimination[ii]) < cut) && (ii < nvar)) {ii <- ii + 1} plot(x,logistic(x,a=discrimination[ii]*D,d=location[ii]),ylim=c(0,1),ylab=ylab,xlab=xlab,type="l",main=main1,col=lncol[1],...) text(location[ii],.53,labels[ii]) for(i in (ii+1):nvar) { if(abs(discrimination[i]) > cut) { lines(x,logistic(x,a=discrimination[i]*D,d=location[i]),lty=c(1:6)[(i %% 6) + 1 ],col=lncol[i],...) text(location[i],.53,labels[i])} } } else { #not ICC tInfo <- matrix(0,ncol=nvar,nrow=length(x)) for(i in 1:nvar) { if(abs(discrimination[i]) > cut) { tInfo[,i] <- logisticInfo(x,a=discrimination[i]*D,d=location[i]) sumInfo[,i] <- logisticInfo(summaryx,a=discrimination[i]*D,d=location[i]) } else {tInfo[,i] <- 0 sumInfo[,i] <- 0} } AUC <- colSums(tInfo) max.info <- apply(tInfo,2,which.max) if(type=="test") { if(nf > 1) { if(missing(main)) {main1 <- paste("Test information -- item parameters from factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Test information -- item parameters from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} # if(missing(main)) main <- "Test information -- item parameters from factor analysis" if(missing(y2lab)) y2lab <- "Reliability" testInfo <- rowSums(tInfo) if(missing(ylab)) ylab <- "Test Information" if(missing(xlab)) xlab <- "Latent Trait (normal scale)" if(length(lncol)< 2) lncol <- rep(lncol,nvar) op <- par(mar=c(5,4,4,4)) #set the margins a bit wider plot(x,testInfo,typ="l",ylim=c(0,max(testInfo)),ylab=ylab,xlab=xlab,main=main1,col=lncol[1],...) ax4 <- seq(0,max(testInfo),max(testInfo)/4) rel4 <- round(1-1/ax4,2) rel4[1] <- NA axis(4,at=ax4,rel4) mtext(y2lab,side=4,line=2) op <- par(op) #set them back to what we had before } else { if(missing(ylab)) ylab <- "Item Information" #if(missing(main)) main <- "Item information from factor analysis" if(nf > 1) { if(missing(main)) {main1 <- paste("Item information from factor analysis for factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Item information from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} if(length(lncol) <2) lncol <- rep(lncol,nvar) ii <- 1 while((abs(discrimination[ii]) < cut) && (ii < nvar)) {ii <- ii + 1} if(missing(ylim)) {ylimit=c(0,max(tInfo)+.03)} else {ylimit <- ylim} plot(x,logisticInfo(x,a=discrimination[ii]*D,d=location[ii]),ylim=ylimit,ylab=ylab,xlab=xlab,type="l",main=main1,col=lncol[1],...) text(location[ii],max(tInfo[,ii])+.03,labels[ii]) for(i in (ii+1):nvar) { if(abs(discrimination[i]) > cut) { lines(x,logisticInfo(x,a=discrimination[i]*D,d=location[i]),lty=c(1:6)[(i %% 6) + 1 ],col=lncol[i]) text(location[i],max(tInfo[,i])+.02,labels[i]) }}} if (type !="ICC") {temp[[f]] <- list(AUC=AUC,max.info=max.info) sumInfo <- t(sumInfo) colnames(sumInfo) <- summaryx rownames(sumInfo) <- rownames(item$rho) sumtemp[[f]] <- sumInfo} } devAskNewPage(ask = TRUE)} #end of f loop devAskNewPage(ask = FALSE) if(type!="ICC") { AUC <- matrix(NA,ncol=nf,nrow=nvar) max.info <- matrix(NA,ncol=nf,nrow=nvar) for(f in 1:nf) { AUC[,f] <- temp[[f]]$AUC max.info[,f] <- temp[[f]]$max.info} AUC <- AUC/lenx #quasi normalize it max.info <- (max.info - lenx/2)*6/(lenx-1) max.info[max.info < -2.9] <- NA if(byKeys) {colnames(AUC) <- colnames(max.info) <- colnames(keys)} else {colnames(AUC) <- colnames(max.info) <- colnames(item$irt$discrimination)} rownames(AUC) <- rownames(max.info) <- rownames(item$rho) result <- list(AUC=AUC,max.info=max.info,sumInfo =sumtemp) invisible(result) class(result) <- c("psych","polyinfo") invisible(result)} } } "logisticInfo" <- function(x,d=0, a=1,c=0,z=1) {c + (z-c)*exp(a*(d-x))*a^2/(1+exp(a*(d-x)))^2} "plot.poly" <- function(x,D,xlab,ylab,xlim,ylim,main,type=c("ICC","IIC","test"),cut=.3,labels=NULL,keys=NULL,y2lab,lncol="black",...) { if(missing(ylim)) {dynamic.ylim <- TRUE} else {dynamic.ylim <- FALSE} item <- x byKeys <- FALSE if((is.data.frame(x)) | (is.matrix(x))) {nf <- dim(x)[2] -1} else { nf <- length(x$irt$difficulty)} #if there was more than 1 factor, repeat the figure nf times #or, if there is one factor but multiple keys if(!is.null(keys)) { nkeys = ncol(keys) if (nf < nkeys) {byKeys <- TRUE nf <- nkeys} } temp <- list() sumtemp <- list() x <- NULL nvar <- length(item$irt$discrimination[,1]) ncat <- dim(item$irt$difficulty[[1]])[2] if(length(lncol) < 2) lncol <- rep(lncol,nvar) if(missing(type)) {type = "IIC"} if(missing(D)) {D <- 1.702 if(missing(xlab)) xlab <- "Latent Trait (normal scale)" if(missing(xlim)) {x <- seq(-3,3,.1) } else {x <- seq(xlim[1],xlim[2],.1)} #used for item summary table summaryx <- seq(-3,3,1) } if(D==1) {if(missing(xlab)) xlab <- "Latent Trait (logistic scale)"} if(missing(xlab)) xlab <- "Latent Trait" if(is.null(x)) {x <- seq(-4,4,.1) summaryx <- seq(-3,3,1)} #used for item summary table if(is.null(labels)) {if(!is.null(rownames(item$irt$discrimination))) {labels = rownames(item$irt$discrimination)} else {labels <- 1:nvar}} lenx <- length(x) sumInfo <- matrix(NA,ncol=nvar,nrow=length(summaryx)) #if there was more than 1 factor, repeat the figure nf times for(f in 1:nf) {if(byKeys) {discrimination <- item$irt$discrimination[,1]} else {discrimination <-item$irt$discrimination[,f]} if(!is.null(keys)) discrimination <- discrimination * abs(keys[,f]) if(any(is.nan(discrimination))) {bad <- which(is.nan(discrimination)) discrimination[is.nan(discrimination)] <- max(discrimination,na.rm=TRUE) warning("An discrimination with a NaN value was replaced with the maximum discrimination for factor = ",f, " and item ",labels[bad], "\nexamine the factor analysis object (fa) to identify the Heywood case") } if(byKeys) {location=item$irt$difficulty[[1]]} else { location=item$irt$difficulty[[f]]} difficulty <- location[,1:ncat] if(type=="ICC") { #this draws the item characteristic curves #summtInfo <- NULL if(nf > 1) { if(missing(main)) {main1 <- paste("Item parameters from factor analysis for factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Item parameters from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} # if(missing(main)) {main1 <- "Item parameters from factor analysis" # if(nf > 1) {main1 <- paste(main1,' for factor ',f)} else {if ( length(main) > 1) main1 <- main[f]}} else {if(nf > 1) {main1 <-paste( main,' for factor ',f)} else {main1 <- main}} if(missing(ylab)) ylab <- "Probability of Response" if(dynamic.ylim) ylim <- c(0,1) for(i in 1:nvar) { if (abs(discrimination[i]) > cut) { if(discrimination[i] > 0 ) { plot(x,logistic(x,a=-D*discrimination[i],d=location[i,1]),ylim=ylim,ylab=ylab,xlab=xlab,type="l",main=main1,col=lncol[1],...) text(0,.70,labels[i])} else { plot(x,logistic(x,a=D*discrimination[i],d=location[i,1]),ylim=ylim,ylab=ylab,xlab=xlab,type="l",main=main1,col=lncol[1],...) text(max(0),.7,paste("-",labels[i],sep="")) } for (j in 2:(ncat)) { if(discrimination[i] > 0 ) { lines(x,(-logistic(x,a=D*discrimination[i],d=location[i,j])+logistic(x,a=D*discrimination[i],d=location[i,j-1])),lty=c(1:6)[(j %% 6) + 1 ],col=lncol[i]) } else {lines(x,(-logistic(x,a=-D*discrimination[i],d= location[i,j])+logistic(x,a=-D*discrimination[i],d=location[i,j-1])),lty=c(1:6)[(j %% 6) + 1 ],col=lncol[i])} } if(discrimination[i] > 0 ) { lines(x,(logistic(x,a=D*discrimination[i],d=location[i,ncat])),col=lncol[i]) } else {lines(x,(logistic(x,a=-D*discrimination[i],d=location[i,ncat])),col=lncol[i]) } }} } #now do the summary stuff for all cases #summaryx <- as.matrix(summaryx,ncol=1) # summtInfo <- apply(summaryx,1,logisticInfo,a=discrimination,d=sign(discrimination) * difficulty) #notice that we just need to add the logistics, not the differences # summtInfo <- array(unlist(summtInfo),dim=c(nvar,ncat,length(summaryx))) #this is now an array with items levels and summaryx #item and test information x <- as.matrix(x,ncol=1) summaryx <- as.matrix(summaryx,ncol=1) tInfo <- apply(x,1,logisticInfo,a=discrimination,d=sign(discrimination) * difficulty) tInfo <- array(unlist(tInfo),dim=c(nvar,ncat,length(x))) #this is now an array with items levels and x summtInfo <- apply(summaryx,1,logisticInfo,a=discrimination,d=sign(discrimination) * difficulty) summtInfo <- array(unlist(summtInfo),dim=c(nvar,ncat,length(summaryx))) #this is now an array with items levels and summaryx tInfo[is.nan(tInfo)] <- 0 #this gets around the problem of no values summtInfo[is.nan(summtInfo)] <- 0 #this gets around the problem of no values testInfo <- matrix(NA,ncol=nvar,nrow=length(x)) sumInfo <- matrix(NA,ncol=nvar,nrow=length(summaryx)) for (xi in 1:length(x)) { for (i in 1:nvar) { if (abs(discrimination[i]) > cut) { testInfo[[xi,i]] <- sum(tInfo[i,,xi]) } else {testInfo[[xi,i]] <- 0 }} } for (xi in 1:length(summaryx)) { for (i in 1:nvar) { if (abs(discrimination[i]) > cut) { sumInfo[[xi,i]] <- sum(summtInfo[i,,xi]) } else {sumInfo[[xi,i]] <- 0}} } if(type=="test") { if(nf > 1) { if(missing(main)) {main1 <- paste("Test information from factor analysis for factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Test information from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} # if(missing(main)) {main1 <- "Test information from factor analysis " # if(nf > 1) { # main1 <- paste(main1,' for factor ',f)} else { # if (length(main) > 1) {main1 <- main[f] # } else {if(nf > 1) {main1 <- paste(main, ' for factor ',f)} else {main1 <- main}} # } if(missing(ylab)) ylab <- "Test Information" if(missing(y2lab)) y2lab <- "Reliability" rsInfo <- rowSums(testInfo) if(dynamic.ylim) ylim = c(0,max(rsInfo)) op <- par(mar=c(5,4,4,4)) #set the margins a bit wider plot(x,rsInfo,typ="l",ylim=ylim,ylab=ylab,xlab=xlab,main=main1,col=lncol[1],...) ax4 <- seq(0,ylim[2],ylim[2]/4) rel4 <- round(1-1/ax4,2) rel4[1] <- NA axis(4,at=ax4,rel4) mtext(y2lab,side=4,line=2) op <- par(op) } else { if(type != "ICC") { if(missing(ylab)) ylab <- "Item Information" if(nf > 1) { if(missing(main)) {main1 <- paste("Item information from factor analysis for factor" ,f)} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- paste( main,' for factor ', f)}} } else {if(missing(main)) {main1 <- paste("Item information from factor analysis")} else {if (length(main) > 1) {main1 <- main[f]} else {main1 <- main}}} if(dynamic.ylim) ylim <- c(0,1) ii <- 1 while((abs(discrimination[ii]) < cut) && (ii < nvar)) {ii <- ii + 1} plot(x,testInfo[,ii],ylim=c(0,max(testInfo,na.rm=TRUE)+.03),ylab=ylab,xlab=xlab,type="l",main=main1,col=lncol[1],...) if(discrimination[ii] > 0 ) {text(x[which.max(testInfo[,ii])],max(testInfo[,ii])+.03,labels[ii])} else {text(x[which.max(testInfo[,ii])],max(testInfo[,ii])+.03,paste("-",labels[ii],sep=""))} for(i in (ii+1):nvar) { if (abs(discrimination[i]) > cut) { lines(x,testInfo[,i],lty=c(1:6)[(i %% 6) + 1 ],col=lncol[i]) if(discrimination[i] > 0 ) { text(x[which.max(testInfo[,i])],max(testInfo[,i])+.03,labels[i]) } else {text(x[which.max(testInfo[,i])],max(testInfo[,i])+.03,paste("-",labels[i],sep=""))} }} } } #if (type !="ICC") { temp[[f]] <- testInfo sumInfo <- t(sumInfo) rownames(sumInfo) <- labels colnames(sumInfo) <- summaryx sumtemp[[f]] <- sumInfo #keep the summary information for each factor } #end of 1:nf loop AUC <- matrix(NaN,ncol=nf,nrow=nvar) max.info <- matrix(NaN,ncol=nf,nrow=nvar) for(f in 1:nf) { AUC[,f] <- colSums(temp[[f]]) max.info[,f] <- apply(temp[[f]],2,which.max) } AUC <- AUC/lenx #quasi normalize it #max.info[is.nan(AUC) ] <- NA max.info <- (max.info - lenx/2)*6/(lenx-1) max.info[max.info < -2.9] <- NA if(byKeys) {colnames(AUC) <- colnames(max.info) <- colnames(keys)} else {colnames(AUC) <- colnames(max.info) <- colnames(item$irt$discrimination)} rownames(AUC) <- rownames(max.info) <- rownames(item$rho) result <- list(AUC=AUC,max.info=max.info,sumInfo=sumtemp) invisible(result) class(result) <- c("psych","polyinfo") invisible(result) } "irt.select" <- function(x,y) { if(is.null(dim(x$tau))) {typ="tet"} else {typ="poly"} rho <- x$rho[y,y] tau <- x$tau[y] n.obs <- x$n.obs result <- list(rho=rho,tau=tau,n.obs=n.obs) class(result) <- c("psych",typ) return(result) } "irt.stats.like" <-function(items,stats=NULL,keys=NULL,cut=.3) { results <- list() tau <- irt.tau(items) if(!is.null(stats)) { nf <- dim(stats$loadings)[2] diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-stats$loadings[,i]^2) } discrim <- stats$loadings/sqrt(1-stats$loadings^2) } if(!is.null(keys)) { if(is.null(dim(keys))) { nf <- 1 } else {nf <- dim(keys)[2]} diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau } discrim <- keys } class(diffi) <- NULL class(discrim) <- NULL irt <- list(difficulty=diffi,discrimination=discrim) results$irt <- irt class(results) <- c("psych","irt.poly") return(results) } "irt.se" <- function( stats,scores=0, D=1.702) { if(missing(D)) D <- 1.702 nf <- length(stats$irt$difficulty) nscore <- length(scores) info <- matrix(NA,ncol=nf,nrow=nscore) for(i in 1:nscore) { for (f in 1:nf) { discrimination=stats$irt$discrimination[,f] * D location=stats$irt$difficulty[[f]] info[i,f] <- sum(logisticInfo(x=scores[i],d=location*sign(discrimination),a=discrimination))} } se <- sqrt(1/info) info.df <- data.frame(scores,info,se = se) return(info.df) } psych/R/error.dots.r0000644000176200001440000002006313130732122014060 0ustar liggesusers#adpated (taken) from dotchart with some minor addition of confidence intervals and to interface with statsBy and describeBy. #July 17, 2016 #input is the mean + standard errors, and (optionally, alpha) #August 12, added the ability to find (and save) the stats using describe or describeBy "error.dots" <- function (x,var=NULL, se=NULL, group=NULL,sd=FALSE, head = 12, tail = 12, sort=TRUE,decreasing=TRUE,main=NULL,alpha=.05,eyes=FALSE, min.n = NULL,max.labels =40, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pt.cex = cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlab = NULL, ylab = NULL,xlim=NULL, ...) { opar <- par("mai", "mar", "cex", "yaxs") on.exit(par(opar)) par(cex = cex, yaxs = "i") #first, see if the data come from a psych object with sd and n or se if(length(class(x)) > 1 ) {if (class(x)[1] == "psych") {obj <- class(x)[2] switch(obj, statsBy = {if(is.null(min.n)) {se <- x$sd[,var]/sqrt(x$n[,var]) x <- x$mean[,var] } else {se <- x$sd[,var] n.obs <- x$n[,var] x <- x$mean[,var] if(sd) {se <- x$sd[,var] } else {se <- se/sqrt(n.obs)} x <- subset(x,n.obs > min.n) se <- subset(se,n.obs > min.n) n.obs <- subset(n.obs, n.obs > min.n) }}, describe = {if(sd) {se <- x$sd} else {se <- x$se} labels <- rownames(x) x <- x$mean names(x) <- labels }, describeBy = {des <- x if(is.null(xlab)) xlab <- var var <- which(rownames(des[[1]]) == var) x <- se <- rep(NA,length(des)) for(grp in 1:length(x)) { x[grp] <- des[[grp]][["mean"]][var] if(sd) {se[grp] <- des[[grp]][["sd"]][var]} else {se[grp] <- des[[grp]][["se"]][var]} } names(x) <- names(des) if(is.null(xlab)) xlab <- var }, fa.ci ={se = x$cis$sds if(missing(labels)) labels <-rownames(x$cis$means) x <-x$cis$means } ) } #end switch } else { if(is.null(group)) { des <- describe(x) x <-des$mean if(sd) { se <- des$sd} else {se <- des$se} names(x) <- rownames(des)} else { if(is.null(xlab)) xlab <- var des <- describeBy(x,group=group) x <- se <- rep(NA,length(des)) names(x) <-names(des) var <- which(rownames(des[[1]]) == var) for(grp in 1:length(des)) { x[grp] <- des[[grp]][["mean"]][var] if(sd) { se[grp] <- des[[grp]][["sd"]][var]} else {se[grp] <- des[[grp]][["se"]][var]} }} } n.var <- length(x) # if(!is.null(se) && !sd) {ci <- qnorm((1-alpha/2))*se} else {ci <- NULL} if (sort) { ord <- order(x,decreasing=!decreasing) } else {ord <- n.var:1} x <- x[ord] se <- se[ord] temp <- temp.se <- rep(NA,min(head+tail,n.var)) if((head+tail) < n.var) { if (head > 0 ){ temp[1:head] <- x[1:head] temp.se[1:head] <- se[1:head] names(temp) <- names(x)[1:head] } if(tail > 0 ) {temp[(head + 1):(head + tail)] <- x[(length(x)-tail+1):length(x)] temp.se[(head + 1):(head + tail)] <- se[(length(x)-tail+1):length(x)] names(temp)[(head + 1):(head + tail)] <- names(x)[(length(x)-tail+1):length(x)] } x <- temp se <- temp.se } if(missing(main)) {if(sd) {main <- "means + standard deviation"} else {main="Confidence Intervals around the mean"}} labels <- names(x) if(sd) {ci <- se} else {ci <- qnorm((1-alpha/2))*se} # if(!is.null(se)) {ci <- qnorm((1-alpha/2))*se} else {ci <- NULL} if(!is.null(ci) && is.null(xlim)) xlim <- c(min(x - ci),max(x + ci)) labels <- substr(labels,1,max.labels) if(eyes) { #get ready to draw catseyes ln <- seq(-3,3,.1) rev <- (length(ln):1) } if (!is.numeric(x)) stop("'x' must be a numeric vector or matrix") n <- length(x) if (is.matrix(x)) { if (is.null(labels)) labels <- rownames(x) if (is.null(labels)) labels <- as.character(1L:nrow(x)) labels <- rep_len(labels, n) if (is.null(groups)) groups <- col(x, as.factor = TRUE) glabels <- levels(groups) } else { if (is.null(labels)) labels <- names(x) glabels <- if (!is.null(groups)) levels(groups) if (!is.vector(x)) { warning("'x' is neither a vector nor a matrix: using as.numeric(x)") x <- as.numeric(x) } } plot.new() linch <- if (!is.null(labels)) max(strwidth(labels, "inch"), na.rm = TRUE) else 0 if (is.null(glabels)) { ginch <- 0 goffset <- 0 } else { ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- 0.4 } if (!(is.null(labels) && is.null(glabels))) { nmai <- par("mai") nmai[2L] <- nmai[4L] + max(linch + goffset, ginch) + 0.1 par(mai = nmai) } if (is.null(groups)) { o <- 1L:n y <- o ylim <- c(0, n + 1) } else { o <- sort.list(as.numeric(groups), decreasing = TRUE) x <- x[o] groups <- groups[o] color <- rep_len(color, length(groups))[o] lcolor <- rep_len(lcolor, length(groups))[o] offset <- cumsum(c(0, diff(as.numeric(groups)) != 0)) y <- 1L:n + 2 * offset ylim <- range(0, y + 2) } plot.window(xlim = xlim, ylim = ylim, log = "") lheight <- par("csi") if (!is.null(labels)) { linch <- max(strwidth(labels, "inch"), na.rm = TRUE) loffset <- (linch + 0.1)/lheight labs <- labels[o] mtext(labs, side = 2, line = loffset, at = y, adj = 0, col = color, las = 2, cex = cex, ...) } abline(h = y, lty = "dotted", col = lcolor) points(x, y, pch = pch, col = color, bg = bg, cex = pt.cex/cex) if(!is.null(ci)) {if(!eyes) { segments(x - ci, y, x+ci, y, col = par("fg"), lty = par("lty"), lwd = par("lwd")) } } if (!is.null(groups)) { gpos <- rev(cumsum(rev(tapply(groups, groups, length)) + 2) - 1) ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- (max(linch + 0.2, ginch, na.rm = TRUE) + 0.1)/lheight mtext(glabels, side = 2, line = goffset, at = gpos, adj = 0, col = gcolor, las = 2, cex = cex, ...) if (!is.null(gdata)) { abline(h = gpos, lty = "dotted") points(gdata, gpos, pch = gpch, col = gcolor, bg = bg, cex = pt.cex/cex, ...) } } if(eyes) { for (e in 1:(min(head+tail,n.var))) {catseye(x[e],y[e],ci[e]/qnorm(1-alpha/2),alpha=alpha,density=density) }} axis(1) box() title(main = main, xlab = xlab, ylab = ylab, ...) invisible() if(!is.null(group)) result <- des } #modified from catseyes in error.bars "catseye" <- function(x,y,ci,alpha,density=density,col=col) { SCALE=.7 ln <- seq(-3,3,.1) rev <- (length(ln):1) norm <- dnorm(ln) # clim <- qnorm(alpha/2) #norm <- dt(ln,n-1) clim <- qnorm(alpha/2) #clim <- ci norm <- c(norm,-norm[rev]) ln <- seq(-3,3,.1) cln <- seq(clim,-clim,.1) cnorm <- dnorm(cln) cnorm <- c(0,cnorm,0,-cnorm,0) #this closes the probability interval # polygon(norm*SCALE*ci+x,c(ln,ln[rev])+y) polygon(c(ln,ln[rev])*ci+x, norm*SCALE+y) # polygon(cnorm*SCALE+x,c(clim,cln,-clim,-cln,clim)*ci+y,density=density,col=col) } psych/R/omegaSem.R0000644000176200001440000001222113060534647013467 0ustar liggesusers"omegaSem" <- function(m,nfactors=3,fm="minres",key=NULL,flip=TRUE, digits=2,title="Omega",sl=TRUE,labels=NULL, plot=TRUE,n.obs=NA,rotate="oblimin",Phi = NULL,option="equal",lavaan=TRUE,...) { #m is a correlation matrix, or if not, the correlation matrix is found #nfactors is the number of factors to extract #key allows items to be reversed scored if desired #if Phi is not null, this implies that we have been given a factor matrix -- added May 30, 2010 if(lavaan) {if(!requireNamespace('lavaan')) stop("You must have the lavaan package installed to use omegaSem")} else {if(!requireNamespace('sem')) stop("You must have the sem package installed to use omegaSem")} if (!sl) {warning("OmegaSem only works for Bifactor models, sl set to TRUE ") sl <- TRUE} cl <- match.call() om <- omega(m=m,nfactors=nfactors,fm=fm,key=key,flip=flip, digits=digits,title=title,sl=sl,labels=labels, plot=plot,n.obs=n.obs,rotate=rotate,Phi=Phi,option=option,...) #m is a correlation matrix, or if not, the correlation matrix is found #nfactors is the number of factors to extract #key allows items to be reversed scored if desired #if Phi is not null, this implies that we have been given a factor matrix -- added May 30, 2010 if(lavaan) {sem.model <- om$model$lavaan} else {sem.model <- om$model$sem} if(is.na(n.obs)) {n.obs <- om$gstats$n.obs} if(dim(m)[1] != dim(m)[2]) { n.obs <- dim(m)[1] m <- cor(m,use="pairwise")} else { m <- cov2cor(as.matrix(m)) #make sure it is a correlation matrix not a covariance or data matrix (if we change this, we will need to change the calculation for omega later) } nvar <- dim(m)[2] if(is.na(n.obs)) {message("Number of observations not specified. Arbitrarily set to 500") n.obs <- 500 } if(is.null(colnames(m))) { rownames(m) <- colnames(m) <- paste("V",1:nvar,sep="") } m.names <- colnames(m) if(lavaan) {if(!requireNamespace('lavaan')) stop("You must have the lavaan package installed to use omegaSem")} else {if(!requireNamespace('sem')) stop("You must have the sem package installed to use omegaSem")} #if(!requireNamespace('sem')) {stop("You must have the sem package installed to use omegaSem") if(lavaan) {sem.om <- lavaan::cfa(sem.model,sample.cov=m,sample.nobs=n.obs,orthogonal=TRUE,std.lv=TRUE) } else {sem.om <- sem::sem(sem.model,m, n.obs) } omega.efa <- omegaFromSem(sem.om,m,flip=flip) results <- list(omegaSem=om,omega.efa=omega.efa,sem=sem.om,Call=cl) class(results) <- c("psych", "omegaSem") return(results) } #modified Sept 1 to pass the number of observations to SEM #modified Jan 2, 2015 to call sem::sem which seems to be the preferred manner "omegaFromSem" <- function(fit,m=NULL,flip=TRUE,plot=TRUE) { # m is the correlation matrix # s is the sem solution from either sem or from lavaan if(class(fit)[1] =="lavaan") { #get the lavaan parameters fx <- fit@Model@GLIST$lambda m <- cov2cor(as.matrix(fit@SampleStats@cov[[1]])) Fit <- fit@Fit@test sem <- "lavaan" nvar <- nrow(fx) n.fact <- ncol(fx) g <- fx[,1] rn <- fit@Data@ov.names[[1]] cfa.loads <- fx} else { #get the sem parameters sem <- "sem" nvar <- dim(m)[1] n.fact <-dim(fit$A)[2]-nvar rn <- rownames(m) g <- fit$A[1:nvar,nvar+n.fact] Fit <- NULL #for now cfa.loads <- cbind(g,fit$A[1:nvar,(nvar+1):(nvar+n.fact-1)]) #this puts g first } if(flip) { flipper <- rep(1,nvar) flipper[g < 0] <- -1 signkey <- strtrim(flipper,1) signkey[signkey=="1"] <- "" rn <- paste(rn,signkey,sep="") flipper <- diag(flipper) m <- flipper %*% m %*% t(flipper) g <- flipper %*% g cfa.loads <- flipper %*% cfa.loads countneg <- colSums(cfa.loads < 0) for(i in 1:n.fact) { if(countneg[i]> 0 ) cfa.loads[,i] <- -cfa.loads[,i] } } w <- solve(m,cfa.loads) rownames(cfa.loads) <- rn rownames(w) <- rn gR2 <- diag(t(w) %*% cfa.loads) Vt <- sum(m) omh.sem <- sum(g)^2/Vt h2 <- sum(rowSums(cfa.loads^2)) uniq <- tr(m) - h2 omt.sem <- (Vt - uniq)/Vt #find the subset omegas omg <- omgo <- omt<- rep(NA,n.fact) sub <- apply(cfa.loads,1,function(x) which.max(abs(x[2:(n.fact)]))) grs <- 0 for(group in( 1:n.fact)) { groupi <- which(sub==group) if(length(groupi) > 0) { Vgr <- sum(m[groupi,groupi]) gr <- sum(cfa.loads[groupi,(group+1)]) grs <- grs + gr^2 omg[group+1] <- gr^2/Vgr omgo[group+1] <- sum(cfa.loads[groupi,1])^2/Vgr omt[group+1] <- (gr^2+ sum(cfa.loads[groupi,1])^2)/Vgr } } omgo[1] <- sum(cfa.loads[,1])^2/sum(m) #omega h omg[1] <- grs/sum(m) #omega of subscales omt[1] <- omt.sem om.group <- data.frame(total=omt,general=omgo,group=omg) # rownames(om.group) <- colnames(gf$sl)[1:(nfactors+1)] class(cfa.loads) <- "loadings" results <- list(omega=omh.sem,omega.tot = omt.sem,cfa.loads=cfa.loads,gR2=gR2,omega.group=om.group,Fit=Fit,sem=sem) class(results) <- c("psych","omegaSem") if(plot) {if(n.fact > 1) { omega.diagram(results,sort=FALSE)} else {if(sem == 'lavaan') lavaan.diagram(fit,cut=0) } } return(results) } psych/R/print.psych.R0000644000176200001440000007455113154323467014231 0ustar liggesusers#reorganized May 25, 2009 to call several print functions (psych.print.x where x = {fa, omega, stats, vss} #reorganized, January 18, 2009 to make some what clearer #added the switch capability, August 25, 2011 following suggestions by Joshua Wiley "print.psych" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,short=TRUE,lower=TRUE,signif=NULL,...) { if(length(class(x)) > 1) { value <- class(x)[2] } else { #these next test for non-psych functions that may be printed using print.psych.fa if((!is.null(x$communality.iterations)) | (!is.null(x$uniquenesses)) | (!is.null(x$rotmat)) | (!is.null(x$Th)) ) {value <- fa } } if(all) value <- "all" if(value == "score.items") value <- "scores" if(value =="set.cor") value <- "setCor" switch(value, ## the following functions have their own print function esem = {print.psych.esem(x,digits=digits,short=short,cut=cut,...)}, extension = { print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, extend = {print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, fa = {print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, fa.ci = { print.psych.fa.ci(x,digits=digits,all=all,... )}, iclust= { print.psych.iclust(x,digits=digits,all=all,cut=cut,sort=sort,...)}, omega = { print.psych.omega(x,digits=digits,all=all,cut=cut,sort=sort,...)}, omegaSem= {print.psych.omegaSem(x,digits=digits,all=all,cut=cut,sort=sort,...)}, principal ={print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, schmid = { print.psych.schmid(x,digits=digits,all=all,cut=cut,sort=sort,...)}, stats = { print.psych.stats(x,digits=digits,all=all,cut=cut,sort=sort,...)}, vss= { print.psych.vss(x,digits=digits,all=all,cut=cut,sort=sort,...)}, cta = {print.psych.cta(x,digits=digits,all=all,...)}, mediate = {print.psych.mediate(x,digits=digits,short=short,...)}, multilevel = {print.psych.multilevel(x,digits=digits,short=short,...)}, ##Now, for the smaller print jobs, just do it here. all= {class(x) <- "list" print(x) }, #find out which function created the data and then print accordingly alpha = { cat("\nReliability analysis ",x$title," \n") cat("Call: ") print(x$call) cat("\n ") print(x$total,digits=digits) if(!is.null(x$total$ase)){ cat("\n lower alpha upper 95% confidence boundaries\n") cat(round(c(x$total$raw_alpha - 1.96* x$total$ase, x$total$raw_alpha,x$total$raw_alpha +1.96* x$total$ase),digits=digits) ,"\n")} if(!is.null(x$boot.ci)) {cat("\n lower median upper bootstrapped confidence intervals\n",round(x$boot.ci,digits=digits))} cat("\n Reliability if an item is dropped:\n") print(x$alpha.drop,digits=digits) cat("\n Item statistics \n") print(x$item.stats,digits=digits) if(!is.null(x$response.freq)) { cat("\nNon missing response frequency for each item\n") print(round(x$response.freq,digits=digits))} }, autoR = {cat("\nAutocorrelations \n") if(!is.null(x$Call)) {cat("Call: ") print(x$Call)} print(round(x$autoR,digits=digits)) }, bestScales ={ df <- data.frame(correlation=x$r,n.items = x$n.items) cat("The items most correlated with the criteria yield r's of \n") print(round(df,digits=digits)) if(length(x$value) > 0) {cat("\nThe best items, their correlations and content are \n") print(x$value) } else {cat("\nThe best items and their correlations are \n") for(i in 1:length(x$short.key)) {print(round(x$short.key[[i]],digits=digits))} } }, bifactor = { cat("Call: ") print(x$Call) cat("Alpha: ",round(x$alpha,digits),"\n") cat("G.6: ",round(x$G6,digits),"\n") cat("Omega Hierarchical: " ,round(x$omega_h,digits),"\n") # cat("Omega H asymptotic: " ,round(x$omega.lim,digits),"\n") cat("Omega Total " ,round(x$omega.tot,digits),"\n") print(x$f,digits=digits,sort=sort) }, circ = {cat("Tests of circumplex structure \n") cat("Call:") print(x$Call) res <- data.frame(x[1:4]) print(res,digits=2) }, circadian = {if(!is.null(x$Call)) {cat("Call: ") print(x$Call)} cat("\nCircadian Statistics :\n") if(!is.null(x$F)) { cat("\nCircadian F test comparing groups :\n") print(round(x$F,digits)) if(short) cat("\n To see the pooled and group statistics, print with the short=FALSE option") } if(!is.null(x$pooled) && !short) { cat("\nThe pooled circadian statistics :\n") print( x$pooled)} if(!is.null(x$bygroup) && !short) {cat("\nThe circadian statistics by group:\n") print(x$bygroup)} #if(!is.null(x$result)) print(round(x$result,digits)) if(!is.null(x$phase.rel)) { cat("\nSplit half reliabilities are split half correlations adjusted for test length\n") x.df <- data.frame(phase=x$phase.rel,fits=x$fit.rel) print(round(x.df,digits)) } if(is.data.frame(x)) {class(x) <- "data.frame" print(round(x,digits=digits)) } }, cluster.cor = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nSignal to Noise ratio based upon average r and n \n") print(x$sn,digits=digits) # cat("\nScale intercorrelations:\n") # print(x$cor,digits=digits) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) }, cluster.loadings = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) cat("\nItem by scale intercorrelations\n corrected for item overlap and scale reliability\n") print(x$loadings,digits) #cat("\nItem by scale Pattern matrix\n") # print(x$pattern,digits) }, cohen.d = {cat("Call: ") print(x$Call) cat("Cohen d statistic of difference between two means\n") print(x$cohen.d,digits=digits) cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x$M.dist,digits=digits) cat("r equivalent of difference between two means\n") print(x$r,digits=digits) }, cohen.d.by = {cat("Call: ") print(x$Call) ncases <- length(x) for (i in (1:ncases)) {cat("\n Group levels = ",names(x[i]),"\n") cat("Cohen d statistic of difference between two means\n") print(x[[i]]$cohen.d,digits=digits) cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x[[i]]$M.dist,digits=digits) cat("r equivalent of difference between two means\n") print(x[[i]]$r,digits=digits) } cat("\nUse summary for more compact output") }, comorbid = {cat("Call: ") print(x$Call) cat("Comorbidity table \n") print(x$twobytwo,digits=digits) cat("\nimplies phi = ",round(x$phi,digits), " with Yule = ", round(x$Yule,digits), " and tetrachoric correlation of ", round(x$tetra$rho,digits)) cat("\nand normal thresholds of ",round(-x$tetra$tau,digits)) }, cor.ci = {cat("Call:") print(x$Call) cat("\n Coefficients and bootstrapped confidence intervals \n") lowerMat(x$rho) phis <- x$rho[lower.tri(x$rho)] cci <- data.frame(lower.emp =x$ci$low.e, lower.norm=x$ci$lower,estimate =phis ,upper.norm= x$ci$upper, upper.emp=x$ci$up.e,p = x$ci$p) rownames(cci) <- rownames(x$ci) cat("\n scale correlations and bootstrapped confidence intervals \n") print(round(cci,digits=digits)) }, cor.cip = {class(x) <- NULL cat("\n High and low confidence intervals \n") print(round(x,digits=digits)) }, corr.test = {cat("Call:") print(x$Call) cat("Correlation matrix \n") print(round(x$r,digits)) cat("Sample Size \n") print(x$n) if(x$sym) {cat("Probability values (Entries above the diagonal are adjusted for multiple tests.) \n")} else { if (x$adjust != "none" ) {cat("Probability values adjusted for multiple tests. \n")}} print(round(x$p,digits)) cat("\n To see confidence intervals of the correlations, print with the short=FALSE option\n") if(!short) {cat("\n Confidence intervals based upon normal theory. To get bootstrapped values, try cor.ci\n") if(is.null(x$ci.adj)) { ci.df <- data.frame(raw=x$ci) } else { ci.df <- data.frame(raw=x$ci,lower.adj = x$ci.adj$lower.adj,upper.adj=x$ci.adj$upper.adj)} print(round(ci.df,digits)) } }, corr.p = {cat("Call:") print(x$Call) cat("Correlation matrix \n") print(round(x$r,digits)) cat("Sample Size \n") print(x$n) if(x$sym) {cat("Probability values (Entries above the diagonal are adjusted for multiple tests.) \n")} else { if (x$adjust != "none" ) {cat("Probability values adjusted for multiple tests. \n")}} print(round(x$p,digits)) cat("\n To see confidence intervals of the correlations, print with the short=FALSE option\n") if(!short) {cat("\n Confidence intervals based upon normal theory. To get bootstrapped values, try cor.ci\n") print(round(x$ci,digits)) } }, cortest= {cat("Tests of correlation matrices \n") cat("Call:") print(x$Call) cat(" Chi Square value" ,round(x$chi,digits)," with df = ",x$df, " with probability <", signif(x$p,digits),"\n" ) if(!is.null(x$z)) cat("z of differences = ",round(x$z,digits),"\n") }, cor.wt = {cat("Weighted Correlations \n") cat("Call:") print(x$Call) lowerMat(x$r,digits=digits) }, describe= {if(!is.null(x$signif)) { if( missing(signif) ) signif <-x$signif x$signif <- NULL } if (length(dim(x))==1) {class(x) <- "list" attr(x,"call") <- NULL if(!missing(signif)) x <- signifNum(x,digits=signif) print(round(x,digits=digits)) } else {class(x) <- "data.frame" if(!missing(signif)) x <- signifNum(x,digits=signif) print(round(x,digits=digits)) } }, describeBy = {cat("\n Descriptive statistics by group \n") if(!is.null(x$Call)){ cat("Call: " ) print(x$Call) } class(x) <- "by" print(x,digits=digits) }, describeData = {if (length(dim(x))==1) {class(x) <- "list" attr(x,"call") <- NULL print(round(x,digits=digits)) } else { cat('n.obs = ', x$n.obs, "of which ", x$complete.cases," are complete cases. Number of variables = ",x$nvar," of which all are numeric ",x$all.numeric," \n") print(x$variables) } }, faBy = { cat("Call: ") print(x$Call) cat("\n Factor analysis by Groups\n") cat("\nAverage standardized loadings (pattern matrix) based upon correlation matrix for all cases as well as each group\n") cat("\nlow and high ", x$quant,"% quantiles\n") print(x$faby.sum,digits) if(!short) { print(x$mean.loading,digits=digits) cat("\n Average factor intercorrelations for all cases and each group\n") print(x$mean.Phi,digits=2) cat("\nStandardized loadings (pattern matrix) based upon correlation matrix for all cases as well as each group\n") print(x$loadings,digits=digits) cat("\n With factor intercorrelations for all cases and for each group\n") print(x$Phi,digits=2) if(!is.null(x$fa)) { cat("\nFactor analysis results for each group\n") print(x$faby.sum,digits) }} }, guttman = { cat("Call: ") print(x$Call) cat("\nAlternative estimates of reliability\n") # cat("Beta = ", round(x$beta,digits), " This is an estimate of the worst split half reliability") cat("\nGuttman bounds \nL1 = ",round(x$lambda.1,digits), "\nL2 = ", round(x$lambda.2,digits), "\nL3 (alpha) = ", round(x$lambda.3,digits),"\nL4 (max) = " ,round(x$lambda.4,digits), "\nL5 = ", round(x$lambda.5,digits), "\nL6 (smc) = " ,round(x$lambda.6,digits), "\n") cat("TenBerge bounds \nmu0 = ",round(x$tenberge$mu0,digits), "mu1 = ", round(x$tenberge$mu1,digits), "mu2 = " ,round(x$tenberge$mu2,digits), "mu3 = ",round(x$tenberge$mu3,digits) , "\n") cat("\nalpha of first PC = ",round( x$alpha.pc,digits), "\nestimated greatest lower bound based upon communalities= ", round(x$glb,digits),"\n") cat("\nbeta found by splitHalf = ", round(x$beta,digits),"\n") } , ICC = {cat("Call: ") print(x$Call) cat("\nIntraclass correlation coefficients \n") print(x$results,digits=digits) cat("\n Number of subjects =", x$n.obs, " Number of Judges = ",x$n.judge) }, iclust.sort = { nvar <- ncol(x$sort) x$sort[4:nvar] <- round(x$sort[4:nvar],digits) print(x$sort) }, irt.fa = { cat("Item Response Analysis using Factor Analysis \n") cat("\nCall: ") print(x$Call) if (!is.null(x$plot)) print(x$plot) if(!short) { nf <- length(x$irt$difficulty) for(i in 1:nf) {temp <- data.frame(discrimination=x$irt$discrimination[,i],location=x$irt$difficulty[[i]]) cat("\nItem discrimination and location for factor ",colnames(x$irt$discrimination)[i],"\n") print(round(temp,digits))} cat("\n These parameters were based on the following factor analysis\n") print(x$fa) } else {summary(x$fa)} }, irt.poly = { cat("Item Response Analysis using Factor Analysis \n") cat("\nCall: ") print(x$Call) if (!is.null(x$plot)) print(x$plot) #this calls the polyinfo print function below if(!short) { nf <- length(x$irt$difficulty) for(i in 1:nf) {temp <- data.frame(discrimination=x$irt$discrimination[,i],location=x$irt$difficulty[[i]]) cat("\nItem discrimination and location for factor ",colnames(x$irt$discrimination)[i],"\n") print(round(temp,digits))} cat("\n These parameters were based on the following factor analysis\n") print(x$fa) } else {summary(x$fa) } }, kappa = {if(is.null(x$cohen.kappa)) { cat("Call: ") print(x$Call) cat("\nCohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries \n") print(x$confid,digits=digits) cat("\n Number of subjects =", x$n.obs,"\n")} else { cat("\nCohen Kappa (below the diagonal) and Weighted Kappa (above the diagonal) \nFor confidence intervals and detail print with all=TRUE\n") print(x$cohen.kappa,digits) } }, mardia = { cat("Call: ") print(x$Call) cat("\nMardia tests of multivariate skew and kurtosis\n") cat("Use describe(x) the to get univariate tests") cat("\nn.obs =",x$n.obs," num.vars = ",x$n.var,"\n") cat("b1p = ",round(x$b1p,digits)," skew = ",round(x$skew,digits ), " with probability = ", signif(x$p.skew,digits)) cat("\n small sample skew = ",round(x$small.skew,digits ), " with probability = ", signif(x$p.small,digits)) cat("\nb2p = ", round(x$b2p,digits)," kurtosis = ",round(x$kurtosis,digits)," with probability = ",signif(x$p.kurt,digits )) }, mchoice = { cat("Call: ") print(x$Call) cat("\n(Unstandardized) Alpha:\n") print(x$alpha,digits=digits) cat("\nAverage item correlation:\n") print(x$av.r,digits=digits) if(!is.null(x$item.stats)) { cat("\nitem statistics \n") print(round(x$item.stats,digits=digits))} }, mixed= { cat("Call: ") print(x$Call) if(is.null(x$rho)) {if(lower) {lowerMat(x,digits=digits)} else {print(x,digits)} } else { if(lower) {if(length(x$rho)>1) { lowerMat (x$rho,digits=digits)} else {print(x$rho,digits)}} }}, paired.r = {cat("Call: ") print(x$Call) print(x$test) if(is.null(x$z)) {cat("t =",round(x$t,digits)) } else {cat("z =",round(x$z,digits)) } cat(" With probability = ",round(x$p,digits)) }, parallel= { cat("Call: ") print(x$Call) if(!is.null(x$fa.values) & !is.null(x$pc.values) ) { parallel.df <- data.frame(fa=x$fa.values,fa.sim =x$fa.sim,pc= x$pc.values,pc.sim =x$pc.sim) fa.test <- x$nfact pc.test <- x$ncomp cat("Parallel analysis suggests that ") cat("the number of factors = ",fa.test, " and the number of components = ",pc.test,"\n") cat("\n Eigen Values of \n") colnames(parallel.df) <- c("Original factors","Simulated data","Original components", "simulated data")} if(is.na(fa.test) ) fa.test <- 0 if(is.na(pc.test)) pc.test <- 0 if(!any(is.na(parallel.df))) {print(round(parallel.df[1:max(fa.test,pc.test),],digits))} else { if(!is.null(x$fa.values)) {cat("\n eigen values of factors\n") print(round(x$fa.values,digits))} if(!is.null(x$fa.sim)){cat("\n eigen values of simulated factors\n") print(round(x$fa.sim,digits))} if(!is.null(x$pc.values)){cat("\n eigen values of components \n") print(round(x$pc.values,digits))} if(!is.null(x$pc.sim)) {cat("\n eigen values of simulated components\n") print(round(x$pc.sim,digits=digits))} } }, partial.r = {cat("partial correlations \n") print(round(unclass(x),digits)) }, phi.demo = {print(x$tetrachoric) cat("\nPearson (phi) below the diagonal, phi2tetras above the diagonal\n") print(round(x$phis,digits)) cat("\nYule correlations") print(x$Yule) }, poly= {cat("Call: ") print(x$Call) cat("Polychoric correlations \n") if(!is.null(x$twobytwo)) { print(x$twobytwo,digits=digits) cat("\n implies tetrachoric correlation of ",round(-x$rho,digits))} else { if(lower) {lowerMat (x$rho,digits) } else {print(x$rho,digits)} cat("\n with tau of \n") print(x$tau,digits) } }, polydi= {cat("Call: ") print(x$Call) cat("Correlations of polytomous with dichotomous\n") print(x$rho,digits) cat("\n with tau of \n") print(x$tau,digits) }, polyinfo = {cat("Item Response Analysis using Factor Analysis \n") cat("\n Summary information by factor and item") names(x$sumInfo ) <- paste("Factor",1:length(x$sumInfo)) for (f in 1:length(x$sumInfo)) { cat("\n Factor = ",f,"\n") temp <- x$sumInfo[[f]] temps <- rowSums(temp) if(sort) {ord <- order(temps,decreasing=TRUE) temp <- temp[ord,] temps <- temps[ord]} temp <- temp[temps > 0,] summary <- matrix(c(colSums(temp),sqrt(1/colSums(temp)),1-1/colSums(temp)),nrow=3,byrow=TRUE) rownames(summary) <-c("Test Info","SEM", "Reliability") temp <- rbind(temp,summary) if(ncol(temp) == 61) {print(round(temp[,seq(1,61,10)],digits=digits)) } else {print(round(temp,digits=digits))} #this gives us info at each unit } if(!short) { cat("\n Average information (area under the curve) \n") AUC <-x$AUC max.info <-x$max.info if(dim(AUC)[2]==1) {item <- 1:length(AUC) } else {item <- 1:dim(AUC)[1]} if(sort) { #first sort them into clusters #first find the maximum for each row and assign it to that cluster cluster <- apply(AUC,1,which.max) ord <- sort(cluster,index.return=TRUE) AUC <- AUC[ord$ix,,drop=FALSE] max.info <- max.info[ord$ix,,drop=FALSE] #now sort column wise #now sort the AUC that have their highest AUC on each cluster items <- table(cluster) #how many items are in each cluster? first <- 1 for (i in 1:length(items)) {# i is the factor number if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(AUC[first:last,i]),decreasing=TRUE,index.return=TRUE) AUC[first:last,] <- AUC[item[ord$ix+first-1],] max.info[first:last,] <- max.info[item[ord$ix+first-1],] rownames(AUC)[first:last] <- rownames(max.info)[first:last] <- rownames(AUC)[ord$ix+first-1] first <- first + items[i] } } } #end of sort print(AUC,digits=digits) cat("\nMaximum value is at \n") print(max.info,digits=digits) } }, overlap = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nSignal to Noise ratio based upon average r and n \n") print(x$sn,digits=digits) cat("\nScale intercorrelations corrected for item overlap and attenuation \n adjusted for overlap correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) if(short) {cat("\n In order to see the item by scale loadings and frequency counts of the data\n print with the short option = FALSE") } else { if(!is.null(x$item.cor) ) { cat("\nItem by scale correlations:\n corrected for item overlap and scale reliability\n" ) print(round(x$item.cor,digits=digits)) } } }, r.test = {cat("Correlation tests \n") cat("Call:") print(x$Call) cat( x$Test,"\n") if(!is.null(x$t)) {cat(" t value" ,round(x$t,digits)," with probability <", signif(x$p,digits) )} if(!is.null(x$z)) {cat(" z value" ,round(x$z,digits)," with probability ", round(x$p,digits) )} if(!is.null(x$ci)) {cat("\n and confidence interval ",round(x$ci,digits) ) } }, residuals = { if (lower) {lowerMat (x,digits=digits)} else {print(x,digits)} }, scree = { cat("Scree of eigen values \nCall: ") print(x$Call) if(!is.null(x$fv)) {cat("Eigen values of factors ") print(round(x$fv,digits))} if (!is.null(x$pcv)) {cat("Eigen values of Principal Components") print(round(x$pcv,digits))} }, scores = { cat("Call: ") print(x$Call) if(x$raw) { cat("\n(Unstandardized) Alpha:\n") } else {cat("\n(Standardized) Alpha:\n") } print(x$alpha,digits=digits) if(!is.null(x$ase)) {cat("\nStandard errors of unstandardized Alpha:\n") rownames(x$ase) <- "ASE " print(x$ase,digit=digits) } if(!is.null(x$alpha.ob)) {cat("\nStandardized Alpha of observed scales:\n") print(x$alpha.ob,digits=digits)} cat("\nAverage item correlation:\n") print(x$av.r,digits=digits) cat("\n Guttman 6* reliability: \n") print(x$G6,digits=digits) cat("\nSignal/Noise based upon av.r : \n") print(x$sn,digits=digits) #if(iclust) {cat("\nOriginal Beta:\n") # print(x$beta,digits) } cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") if(!is.null(x$alpha.ob)) {cat("\nNote that these are the correlations of the complete scales based on the correlation matrix,\n not the observed scales based on the raw items.\n")} print(x$corrected,digits) if(short) {cat("\n In order to see the item by scale loadings and frequency counts of the data\n print with the short option = FALSE") } else { if(!is.null(x$item.cor) ) { cat("\nItem by scale correlations:\n corrected for item overlap and scale reliability\n" ) print(round(x$item.corrected,digits=digits)) } if(!is.null(x$response.freq)) { cat("\nNon missing response frequency for each item\n") print(round(x$response.freq,digits=digits))} } }, setCor= { cat("Call: ") print(x$Call) if(x$raw) {cat("\nMultiple Regression from raw data \n")} else { cat("\nMultiple Regression from matrix input \n")} cat("\nBeta weights \n") print(round(x$beta,digits)) cat("\nMultiple R \n") print(round(x$R,digits)) cat("multiple R2 \n") print(x$R2,digits) cat("\nMultiple Inflation Factor (VIF) = 1/(1-SMC) = \n") print(round(x$VIF,digits=digits)) cat("\n Unweighted multiple R \n") print(round(x$ruw,digits)) cat(" Unweighted multiple R2 \n") print(round(x$ruw^2,digits)) if(!is.null(x$se)) { cat("\n SE of Beta weights \n") print(round(x$se,digits)) cat("\n t of Beta Weights \n") print(round(x$t,digits)) cat("\nProbability of t < \n") print(signif(x$Probability,digits)) cat("\n Shrunken R2 \n") print(x$shrunkenR2,digits) cat("\nStandard Error of R2 \n") print(x$seR2,digits) cat("\nF \n") print(round(x$F,digits)) cat("\nProbability of F < \n") print(signif(x$probF,digits+1)) cat("\n degrees of freedom of regression \n") print(x$df) } if(!is.null(x$cancor)) { cat("\nVarious estimates of between set correlations\n") cat("Squared Canonical Correlations \n") print(x$cancor2,digits=digits) if(!is.null(x$Chisq)) {cat("Chisq of canonical correlations \n") print(x$Chisq,digits=digits)} cat("\n Average squared canonical correlation = ",round(x$T,digits=digits)) cat("\n Cohen's Set Correlation R2 = ",round(x$Rset,digits=digits)) #print(x$Rset,digits=digits) if(!is.null(x$Rset.shrunk)){ cat("\n Shrunken Set Correlation R2 = ",round(x$Rset.shrunk,digits=digits)) cat("\n F and df of Cohen's Set Correlation ",round(c(x$Rset.F,x$Rsetu,x$Rsetv), digits=digits))} cat("\nUnweighted correlation between the two sets = ",round(x$Ruw,digits)) } }, sim = { if(is.matrix(x)) {x <-unclass(x) round(x,digits) } else { cat("Call: ") print(x$Call) cat("\n $model (Population correlation matrix) \n") print(x$model,digits) if(!is.null(x$reliability)) { cat("\n$reliability (population reliability) \n") print(x$reliability,digits) } if(!is.null(x$N) && !is.null(x$r)) { cat("\n$r (Sample correlation matrix for sample size = ",x$N,")\n") print(x$r,digits)} } }, smoother = {x <- unclass(x) print(x) }, split ={ cat("Split half reliabilities ") cat("\nCall: ") print(x$Call) cat("\nMaximum split half reliability (lambda 4) = ",round(x$maxrb,digits=digits)) cat("\nGuttman lambda 6 = ",round(x$lambda6,digits=digits)) cat("\nAverage split half reliability = ",round(x$meanr,digits=digits)) cat("\nGuttman lambda 3 (alpha) = ",round(x$alpha,digits=digits)) cat("\nMinimum split half reliability (beta) = ",round(x$minrb,digits=digits)) }, statsBy ={ cat("Statistics within and between groups ") cat("\nCall: ") print(x$Call) cat("Intraclass Correlation 1 (Percentage of variance due to groups) \n") print(round(x$ICC1,digits)) cat("Intraclass Correlation 2 (Reliability of group differences) \n") print(round(x$ICC2,digits)) cat("eta^2 between groups \n") print(round(x$etabg^2,digits)) if(short) { cat("\nTo see the correlations between and within groups, use the short=FALSE option in your print statement.")} if(!short) {cat("Correlation between groups \n") lowerMat(x$rbg) cat("Correlation within groups \n") lowerMat(x$rwg) } cat("\nMany results are not shown directly. To see specific objects select from the following list:\n",names(x)) }, tau = {cat("Tau values from dichotomous or polytomous data \n") class(x) <- NULL print(x,digits) }, tetra = {cat("Call: ") print(x$Call) cat("tetrachoric correlation \n") if(!is.null(x$twobytwo)) { print(x$twobytwo,digits=digits) cat("\n implies tetrachoric correlation of ",round(x$rho,digits))} else { if(is.matrix(x$rho) && lower) {lowerMat (x$rho,digits)} else { print(x$rho,digits)} cat("\n with tau of \n") print(x$tau,digits) } }, thurstone = { cat("Thurstonian scale (case 5) scale values ") cat("\nCall: ") print(x$Call) print(x$scale) cat("\n Goodness of fit of model ", round(x$GF,digits)) }, KMO = {cat("Kaiser-Meyer-Olkin factor adequacy") cat("\nCall: ") print(x$Call) cat("Overall MSA = ",round(x$MSA,digits)) cat("\nMSA for each item = \n") print(round(x$MSAi,digits)) }, unidim = {cat("\nA measure of unidimensionality \n Call: ") print(x$Call) cat("\nUnidimensionality index = \n" ) print(round(x$uni,digits=digits)) cat("\nunidim adjusted index reverses negatively scored items.") cat("\nalpha "," Based upon reverse scoring some items.") cat ("\naverage correlations are based upon reversed scored items") }, yule = {cat("Yule and Generalized Yule coefficients") cat("\nCall: ") print(x$Call) cat("\nYule coefficient \n") print(round(x$rho,digits)) cat("\nUpper and Lower Confidence Intervals = \n") print(round(x$ci,digits)) }, Yule = {cat("Yule and Generalized Yule coefficients") cat("\nLower CI Yule coefficient Upper CI \n") print(round(c(x$lower,x$rho,x$upper),digits)) } ) #end of switch } #end function psych/R/partial.r.R0000644000176200001440000000167613103650254013631 0ustar liggesusers"partial.r" <- function(data,x,y,use="pairwise",method="pearson") { cl <- match.call() if(!isCorrelation(data)) {n.obs <- dim(data)[1] data <- cor(data,use=use,method=method) } m <- as.matrix(data) if(missing(x) & missing(y)) {X.resid <- -(solve(m)) #this is thus the image covariance matrix diag(X.resid) <- 1/(1- smc(m)) #adjust the diagonal to be 1/error X.resid <- cov2cor(X.resid)} else { xy <- c(x,y) X <- m[x,x] Y <- m[x,y] phi <- m[y,y] phi.inv <- solve(phi) X.resid <- X - Y %*% phi.inv %*% t(Y) X.resid <- cov2cor(X.resid) class(X.resid) <- c("psych","partial.r") } return(X.resid) } #modified March 23 to use cov2cor instead of the sd line. This makes the diagonal exactly 1. #05/08/17 Completely rewritten to be easier to use and follow for the case of complete partials psych/R/score.items.R0000644000176200001440000003031113154325261014157 0ustar liggesusers"score.items" <- function (keys,items,totals=FALSE,ilabels=NULL, missing=TRUE, impute="median",delete=TRUE, min=NULL,max=NULL,digits=2,select=TRUE) { message("score.items has been replaced by scoreItems, please change your call") scoreItems(keys=keys,items=items,totals=totals,ilabels=ilabels,missing=missing,impute=impute,delete=delete,min=min,max=max,digits=digits,select=select) } "scoreItems" <- function (keys,items,totals=FALSE,ilabels=NULL, missing=TRUE, impute="median",delete=TRUE, min=NULL,max=NULL,digits=2,n.obs=NULL,select=TRUE) { cl <- match.call() raw.data <- TRUE # if(is.list(keys) & !is.data.frame(keys)) keys <- make.keys(items,keys) #added 9/9/16 and then fixed March 4, following a suggestion by Jeromy Anglim if(is.null(colnames(items)) ) select <- FALSE #can not select items if they don't have colnames or if the keys don't have rownames if (select) {if(is.list(keys) & (!is.data.frame(keys))) { # select <- sub("-","",unlist(keys)) #then, replaced with select option, Apri 8, 2017 select <- selectFromKeyslist(colnames(items),keys) select <- select[!duplicated(select)] } else {keys <- keys2list(keys) select <- selectFromKeyslist(colnames(items),keys) select <- select[!duplicated(select)] } # if (!isCorrelation(r)) {r <- cor(r[select],use="pairwise")} else {r <- r[select,select]} keys <- make.keys(items[,select],keys)} else {select <- 1:ncol(items) } #modified once again April 6,2017 to allow for selecting items keys <- as.matrix(keys) #just in case they were not matrices to start with n.keys <- dim(keys)[2] n.items <- dim(keys)[1] abskeys <- abs(keys) keynames <- colnames(keys) num.item <- diag(t(abskeys) %*% abskeys) #how many items in each scale num.ob.item <- num.item #will be adjusted in case of impute = FALSE if (!missing) items <- na.omit(items) n.subjects <- dim(items)[1] if ((dim(items)[1] == dim(items)[2]) && !isCorrelation(items)) {warning("You have an equal number of rows and columns but do not seem to have a correlation matrix. I will treat this as a data matrix.")} # with the exception for the very unusual case of exactly as many items as cases reported by Jeromy Anglim if ((dim(items)[1] == dim(items)[2]) && isCorrelation(items)){ #this is the case of scoring correlation matrices instead of raw data (checking for rare case as well) raw.data <- FALSE totals <- FALSE #because we don't have the raw data, totals would be meaningless items <- items[select,select] #we have a correlation matrix, but we don't want all of it n.subjects <- 0 C <- as.matrix(items) cov.scales <- t(keys) %*% C %*% keys #fast, but does not handle the problem of NA correlations cov.scales2 <- diag(t(abskeys) %*% C^2 %*% abskeys) # this is sum(C^2) for finding ase response.freq <- NULL } else { items <- items[,select] #select just the items that we want to score. This is faster and robust to bad items #check to make sure all items are numeric -- if not, convert them to numeric if possible, flagging the item that we have done so if(!is.matrix(items)) { #does not work for matrices for(i in 1:n.items) { if(!is.numeric(items[[i]] )) { if(is.factor(unlist(items[[i]])) | is.character(unlist(items[[i]]))) { items[[i]] <- as.numeric(items[[i]]) colnames(items)[i] <- paste0(colnames(items)[i],"*") } else {items[[i]] <- NA} } } } items <- as.matrix(items) response.freq <- response.frequencies(items) item.var <- apply(items,2,sd,na.rm=TRUE) bad <- which((item.var==0)|is.na(item.var)) if((length(bad) > 0) && delete) { for (baddy in 1:length(bad)) {warning( "Item= ",colnames(items)[bad][baddy] , " had no variance and was deleted from the data and the keys.")} items <- items[,-bad] keys <- as.matrix(keys[-bad,]) n.items <- n.items - length(bad) abskeys <- abs(keys) colnames(keys) <- keynames } item.means <- colMeans(items,na.rm=TRUE) if (is.null(min)) {min <- min(items,na.rm=TRUE)} if (is.null(max)) {max <- max(items,na.rm=TRUE)} # miss.rep <- rowSums(is.na(items)) miss.rep <- (is.na(items) +0) %*% abs(keys) num.item <- diag(t(abskeys) %*% abskeys) #how many items in each scale num.ob.item <- num.item #will be adjusted in case of impute = FALSE if(impute !="none") { miss <- which(is.na(items),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(items,na.rm=TRUE) #replace missing values with means items[miss]<- item.means[miss[,2]]} else { item.med <- apply(items,2,median,na.rm=TRUE) #replace missing with medians items[miss]<- item.med[miss[,2]]} #this only works if items is a matrix scores <- items %*% keys #this actually does all the work but doesn't handle missing values C <- cov(items,use="pairwise") cov.scales <- cov(scores,use="pairwise") #and total scale variance cov.scales2 <- diag(t(abskeys) %*% C^2 %*% abskeys) # sum(C^2) for finding ase } else { #handle the case of missing data without imputation scores <- matrix(NaN,ncol=n.keys,nrow=n.subjects) if(raw.data && totals == TRUE) warning("Specifying totals = TRUE without imputation can lead to serious problems. Are you sure?") #just in case it was not already false #do we want to allow totals anyway? #we could try to parallelize this next loop for (scale in 1:n.keys) { pos.item <- items[,which(keys[,scale] > 0)] neg.item <- items[,which(keys[,scale] < 0)] neg.item <- max + min - neg.item sub.item <- cbind(pos.item,neg.item) if(!totals) {scores[,scale] <- rowMeans(sub.item,na.rm=TRUE)} else {scores[,scale] <- rowSums(sub.item,na.rm=TRUE)} rs <- rowSums(!is.na(sub.item)) num.ob.item[scale] <- mean(rs[rs>0]) #added Sept 15, 2011 # num.ob.item[scale] <- mean(rowSums(!is.na(sub.item))) # dropped } # end of scale loop # we now need to treat the data as if we had done correlations at input C <- cov(items,use="pairwise") cov.scales <- t(keys) %*% C %*% keys cov.scales2 <- diag(t(abskeys) %*% C^2 %*% abskeys) # sum(C^2) for finding ase raw.data <- FALSE } #end of treating missing without imputation } slabels <- colnames(keys) if (is.null(slabels)) { if (totals) {slabels<- paste("S",1:n.keys,sep="")} else { slabels <- paste("A",1:n.keys,sep="")} } item.var <- diag(C) #find the item variances var.scales <- diag(cov.scales) cor.scales <- cov2cor(cov.scales) sum.item.var <- item.var %*% abskeys sum.item.var2 <- item.var^2 %*% abskeys #av.r <- (var.scales - sum.item.var)/(num.item*(num.item-1)) #actually, this the average covar alpha.scale <- (var.scales - sum.item.var)*num.item/((num.item-1)*var.scales) av.r <- alpha.scale/(num.item - alpha.scale*(num.item-1)) #alpha 1 = average r alpha.ob <- av.r * num.ob.item/(1+(num.ob.item-1)* av.r) colnames(alpha.scale) <- slabels alpha.scale[is.nan(alpha.scale)] <- 1 #Find standard errors of alpha following Duhacheck and Iacobbci #Q = (2 * n^2/((n-1)^2*(sum(C)^3))) * (sum(C) * (tr(C^2) + (tr(C))^2) - 2*(tr(C) * sum(C^2))) #this works if we have the raw data Q = (2 * num.item^2/((num.item-1)^2*((var.scales)^3))) * (var.scales * (sum.item.var2 + sum.item.var^2) - 2* sum.item.var * cov.scales2) ase <- NULL #to have something if we don't have raw data #now find the Guttman 6 * reliability estimate as well as the corrected item-whole correlations if(raw.data) { item.cor <- cor(items,scores)} else {if (n.keys >1) { item.cor <- C %*% keys %*% diag(1/sqrt(var.scales))/sqrt(item.var)} else {item.cor <- C %*% keys /sqrt(var.scales * item.var)}} colnames(item.cor) <- slabels c.smc <- smc(C,TRUE) diag(C) <- c.smc sum.smc <- c.smc %*% abskeys G6 <- (var.scales - sum.item.var + sum.smc)/var.scales corrected.var <- diag(t(keys) %*% C %*% keys) if(n.keys>1) { item.rc <- (C %*% keys) %*% sqrt(diag(1/corrected.var))/sqrt(item.var)} else { item.rc <- C %*% keys /sqrt(corrected.var*item.var) } colnames(item.rc) <- slabels if(n.subjects > 0) {ase <- sqrt(Q/ n.subjects )} else {if(!is.null(n.obs)) {ase <- sqrt(Q/ n.obs )} else {ase=NULL}} #only meaningful if we have raw data if(is.null(ilabels)) {ilabels <- colnames(items) } if(is.null(ilabels)) {ilabels <- paste("I",1:n.items,sep="")} rownames(item.rc) <- ilabels if(raw.data) { correction <- (colSums(abs(keys)-(keys))/2)*(max+min) #correct for flipping scores <- scores + matrix(rep(correction,n.subjects),byrow=TRUE,nrow=n.subjects) if (!totals) { if(n.keys > 1) {scores <- scores %*% diag(1/num.item) #find averages } else {scores <- scores/num.item } } colnames(scores) <- slabels } else {if (impute !="none") scores <- NULL} scale.cor <- correct.cor(cor.scales,t(alpha.scale)) rownames(alpha.scale) <- "alpha" rownames(av.r) <- "average.r" rownames(G6) <- "Lambda.6" sn <- av.r * num.item/(1-av.r) rownames(sn) <- "Signal/Noise" if (!raw.data) { if(impute =="none") { #rownames(alpha.ob) <- "alpha.observed" if(!is.null(scores)) colnames(scores) <- slabels #added Sept 23, 2013 results <-list(scores=scores,missing = miss.rep,alpha=alpha.scale, av.r=av.r,sn=sn, n.items = num.item, item.cor = item.cor,cor = cor.scales, corrected = scale.cor,G6=G6,item.corrected = item.rc,response.freq=response.freq,raw=FALSE,alpha.ob = alpha.ob,num.ob.item =num.ob.item,ase=ase,Call=cl)} else { results <- list(alpha=alpha.scale, av.r=av.r,sn=sn, n.items = num.item, item.cor = item.cor,cor = cor.scales ,corrected = scale.cor,G6=G6,item.corrected = item.rc ,response.freq =response.freq,raw=FALSE, ase=ase,Call=cl)} } else { if(raw.data) {if (sum(miss.rep) > 0) {results <-list(scores=scores,missing = miss.rep,alpha=alpha.scale, av.r=av.r, sn=sn,n.items = num.item, item.cor = item.cor,cor = cor.scales ,corrected = scale.cor,G6=G6,item.corrected = item.rc,response.freq=response.freq,raw=TRUE,ase=ase,Call=cl)} else{ results <- list(scores=scores,alpha=alpha.scale, av.r=av.r,sn=sn, n.items = num.item, item.cor = item.cor, cor =cor.scales,corrected = scale.cor,G6=G6,item.corrected = item.rc ,response.freq=response.freq,raw=TRUE,ase=ase,Call=cl)} } } class(results) <- c("psych", "score.items") return(results) } #modified June 1 to add row names to items #modified June 22 to add median imputation #modified August 8 to add colnames to scores #modified Sept 23, 2007 to allow for short output #modified December 10, 2007 to default to ilabels as colnames(items) #modified March, 2009 to better use the print.psych function #modified March 22, 2009 to add G6 and corrected for item overlap correlation #also allow for correlation/covariance matrix input #modified Sept 3, 2010 to include response frequencies #modified November 11, 2010 to allow for data with lots of missingness to be scored without imputing means or medians #need to rethink the short option. Why bother since summary and print don't show scores anyway #added missing score to count missing responses for each scale instead of just the overall. #Modified November 22, 2013 to add confidence intervals for alpha #modified Sept 9, 2016 to add the keys.list option for the scoring keys "selectFromKeyslist" <- function(itemname,keys) {nkey <- length(keys) select <- NULL for (key in 1:nkey) { if(is.numeric(keys[[key]])) {select <- c(select,itemname[abs(unlist(keys[[key]]))]) } else {select <- c(select,sub("-", "", unlist(keys[[key]]))) } } return(select)} psych/R/print.psych.iclust.R0000644000176200001440000000475212764354072015531 0ustar liggesusers"print.psych.iclust" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { cat("ICLUST (Item Cluster Analysis)") cat("\nCall: ") print(x$call) if((!is.null(x$purify)) && x$purify) { cat("\nPurified Alpha:\n") print(x$purified$alpha,digits) cat("\nG6* reliability:\n") print(x$purified$G6,digits) cat("\nOriginal Beta:\n") print(x$beta,digits) cat("\nCluster size:\n") print(x$purified$size,digits) } else { cat("\noriginal Alpha:\n") print(x$alpha,digits) cat("\nG6* reliability:\n") print(x$G6,digits) cat("\nOriginal Beta:\n") print(x$beta,digits) cat("\nCluster size:\n") print(x$size,digits)} if(sort) { cat("\nItem by Cluster Structure matrix: Sorted by loading \n") load <- x$sorted$sorted if(is.null(cut)) cut <- .3 ncol <- dim(load)[2]-3 load[4:(ncol+3)] <- round(load[4:(ncol+3)],digits) fx <- as.matrix(format(load,digits=digits)) nc <- nchar(fx[1,4], type = "c") fx.1 <- fx[,1:3] fx.2 <- format(fx[,4:(3+ncol)],digits) load.2 <- load[,4:(ncol+3)] fx.2[abs(load.2)< cut] <- paste(rep(" ", nc), collapse = "") fx <- data.frame(fx.1,fx.2) print(fx,quote="FALSE") eigenvalues <- diag(t(x$pattern) %*% x$loadings) cat("\nWith eigenvalues of:\n") print(eigenvalues,digits=digits) } else {if(is.null(cut)) cut <- 0 #added 8/9/16 cat("\nItem by Cluster Structure matrix:\n") load <- unclass(x$loadings) load <- round(load,digits) fx <- format(load,digits=digits) nc <- nchar(fx[1,1], type = "c") fx[abs(load) < cut] <- paste(rep(" ", nc), collapse = "") if(is.matrix(x$clusters)) { clust <- colnames(x$clusters)[apply(abs(x$clusters),1,which.max)] pclust <- colnames(x$p.sorted$clusters)[apply(abs(x$p.sorted$clusters),1,which.max)] clust.fx <- data.frame(O=clust,P=pclust,fx)} else {clust.fx <- fx} print(clust.fx,quote="FALSE") #print(unclass(x$loadings)) eigenvalues <- diag(t(x$pattern) %*% x$loadings) cat("\nWith eigenvalues of:\n") print(eigenvalues,digits=digits) } if(!is.null(x$purified$cor)) {cat("\nPurified scale intercorrelations\n reliabilities on diagonal\n correlations corrected for attenuation above diagonal: \n") print(round(x$purified$corrected,digits=digits)) } cat("\nCluster fit = ",round(x$fit$clusterfit,digits), " Pattern fit = ",round(x$fit$patternfit,digits), " RMSR = ",round(x$fit$patternrmse,digits), "\n") }# end of print.psych.ICLUSTpsych/R/circ.sim.R0000644000176200001440000000255410626070133013437 0ustar liggesusers"circ.sim" <- function (nvar = 72 ,nsub = 500, circum = TRUE, xloading =.6, yloading = .6, gloading=0, xbias=0, ybias = 0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) { avloading <- (xloading+yloading)/2 errorweight <- sqrt(1-(avloading^2 + gloading^2)) #squared errors and true score weights add to 1 g <- rnorm(nsub) truex <- rnorm(nsub)* xloading +xbias #generate normal true scores for x + xbias truey <- rnorm(nsub) * yloading + ybias #generate normal true scores for y + ybias if (circum) #make a vector of radians (the whole way around the circle) if circumplex {radia <- seq(0,2*pi,len=nvar+1) rad <- radia[which(radia<2*pi)] #get rid of the last one } else rad <- c(rep(0,nvar/4),rep(pi/2,nvar/4),rep(pi,nvar/4),rep(3*pi/2,nvar/4)) #simple structure #simple structure error<- matrix(rnorm(nsub*(nvar)),nsub) #create normal error scores #true score matrix for each item reflects structure in radians trueitem <- outer(truex, cos(rad)) + outer(truey,sin(rad)) item<- gloading * g + trueitem + errorweight*error #observed item = true score + error score if (categorical) { item = round(item) #round all items to nearest integer value item[(item<= low)] <- low item[(item>high) ] <- high } if (truncate) {item[item < cutpoint] <- 0 } return (item) } psych/R/fix.dplyr.R0000644000176200001440000000033213060550346013643 0ustar liggesusers"fix.dplyr" <- function (object) { if(is.data.frame(object)) { cn <- class(object) df <- which(cn=="data.frame") cn.not <- cn[-df] cn <- c("data.frame",cn.not) class(object) <- cn } invisible(object) }psych/R/Promax.R0000644000176200001440000001577013011671556013211 0ustar liggesusers"Promax" <- function (x,m=4, normalize=FALSE, pro.m = 4) { if(missing(m)) m <- pro.m if(!is.matrix(x) & !is.data.frame(x) ) { if(!is.null(x$loadings)) x <- as.matrix(x$loadings) } else {x <- x} if (ncol(x) < 2) return(x) dn <- dimnames(x) xx <- stats::varimax(x) x <- xx$loadings Q <- x * abs(x)^(m - 1) U <- lm.fit(x, Q)$coefficients d <- try(diag(solve(t(U) %*% U)),silent=TRUE) if(class(d)=="try-error") {warning("Factors are exactly uncorrelated and the model produces a singular matrix. An approximation is used") ev <- eigen(t(U) %*% U) ev$values[ev$values < .Machine$double.eps] <- 100 * .Machine$double.eps UU <- ev$vectors %*% diag(ev$values) %*% t(ev$vectors) diag(UU) <- 1 d <- diag(solve(UU))} U <- U %*% diag(sqrt(d)) dimnames(U) <- NULL z <- x %*% U U <- xx$rotmat %*% U ui <- solve(U) Phi <- ui %*% t(ui) dimnames(z) <- dn class(z) <- "loadings" result <- list(loadings = z, rotmat = U,Phi = Phi) class(result) <- c("psych","fa") return(result) } #obviously a direct copy of the promax function, with the addition of returning the angles between factors #based upon a suggestion to the R-help news group by Ulrich Keller and John Fox. #added May 31st following suggestions to R-Help by Gunter Nickel "equamax" <- function(L, Tmat=diag(ncol(L)), eps=1e-5, maxit=1000) { kappa=ncol(L)/(2*nrow(L)) if(requireNamespace('GPArotation')) {GPArotation::cfT(L, Tmat=diag(ncol(L)), eps=eps, maxit=maxit)} else {stop("biquartimin requires GPArotation")}} #based completely on the GPArotation GPForth function #modified to call the varimin function which is derived from the varimax function varimin <- function(L, Tmat = diag(ncol(L)), normalize = FALSE, eps = 1e-05, maxit = 1000) { if(requireNamespace('GPArotation')) {GPArotation::GPForth(A=L,Tmat = diag(ncol(L)), normalize = normalize, eps = eps, maxit = maxit, method = "varimin") } else {stop("biquartimin requires GPArotation")}} vgQ.varimin <- function (L) { QL <- sweep(L^2, 2, colMeans(L^2), "-") list(Gq = L * QL, f = sqrt(sum(diag(crossprod(QL))))^2/4, Method = "varimin") } specialT <- specialQ <- function(L, Tmat = diag(ncol(L)), normalize = FALSE, eps = 1e-05, maxit = 1000) { write("A dummy function that can be replaced with either an orthogonal (specialT) or oblique (specialQ) call. You will need to supply it") list(NA) } #a general function to call a number of different rotation functions #meant to simplify code in fa, principal, faBy, but perhaps not ready for prime time #not yet included in the public package "faRotate" <- function(loadings,rotate="oblimin",...) { if (rotate=="varimax" |rotate=="Varimax" | rotate=="quartimax" | rotate =="bentlerT" | rotate =="geominT" | rotate =="targetT" | rotate =="bifactor" | rotate =="TargetT"| rotate =="equamax"| rotate =="varimin"|rotate =="specialT" | rotate =="Promax" | rotate =="promax"| rotate =="cluster" |rotate == "biquartimin" |rotate == "TargetQ" |rotate =="specialQ" ) { Phi <- NULL switch(rotate, #The orthogonal cases for GPArotation + ones developed for psych varimax = {rotated <- stats::varimax(loadings) #varimax is from stats, the others are from GPArotation loadings <- rotated$loadings}, Varimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #varimax is from the stats package, Varimax is from GPArotations #rotated <- do.call(rotate,list(loadings,...)) #rotated <- do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...)) rotated <- GPArotation::Varimax(loadings) loadings <- rotated$loadings} , quartimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings)) rotated <- GPArotation::quartimax(loadings) loadings <- rotated$loadings} , bentlerT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::bentlerT(loadings) loadings <- rotated$loadings} , geominT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::geominT(loadings) loadings <- rotated$loadings} , targetT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::targetT(loadings) loadings <- rotated$loadings} , bifactor = {loadings <- bifactor(loadings)$loadings}, #the next four solutions were not properly returning the values TargetT = {loadings <- TargetT(loadings,...)$loadings}, equamax = {loadings <- equamax(loadings)$loadings}, varimin = {loadings <- varimin(loadings)$loadings}, specialT = {loadings <- specialT(loadings)$loadings}, Promax = {pro <- Promax(loadings) loadings <- pro$loadings Phi <- pro$Phi }, promax = {pro <- Promax(loadings) loadings <- pro$loadings Phi <- pro$Phi }, cluster = {loadings <- varimax(loadings)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi}, biquartimin = {ob <- biquartimin(loadings,) loadings <- ob$loadings Phi <- ob$Phi}, TargetQ = {ob <- TargetQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi}, specialQ = {ob <- specialQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi}) } else { #The following oblique cases all use GPArotation if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax" | rotate =="geominQ" | rotate =="bentlerQ" |rotate == "targetQ" ) { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- try(do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...))) if(class(ob)== as.character("try-error")) {warning("The requested transformaton failed, Promax was used instead as an oblique transformation") ob <- Promax(loadings)} loadings <- ob$loadings Phi <- ob$Phi} } else {message("Specified rotation not found, rotate='none' used")} } return(list(loadings=loadings,Phi=Phi)) } psych/R/winsor.R0000644000176200001440000000463313124466454013264 0ustar liggesusers"winsor" <- function(x, trim=.2,na.rm=TRUE) { if(is.vector(x) ) { ans <- wins(x,trim=trim,na.rm=na.rm) } else { if (is.matrix(x) | is.data.frame(x)) {ans <- apply(x,2,wins,trim=trim,na.rm=na.rm) } } return(ans) } "winsor.means" <- function(x, trim=.2,na.rm=TRUE) { if(is.vector(x) ) { ans <- win.mean(x,trim=trim,na.rm=na.rm) } else { if (is.matrix(x) | is.data.frame(x)) {ans <- apply(x,2,win.mean,trim=trim,na.rm=na.rm) } } return(ans) } "winsor.mean" <- function(x, trim=.2,na.rm=TRUE) { if(is.vector(x) ) { ans <- win.mean(x,trim=trim,na.rm=na.rm) } else { if (is.matrix(x) | is.data.frame(x)) {ans <- apply(x,2,win.mean,trim=trim,na.rm=na.rm) } } return(ans) } "winsor.var" <- function(x, trim=.2,na.rm=TRUE) { if(is.vector(x) ) { ans <- win.var(x,trim=trim,na.rm=na.rm) } else { if (is.matrix(x) | is.data.frame(x)) {ans <- apply(x,2,win.var,trim=trim,na.rm=na.rm) } } return(ans) } "winsor.sd" <- function(x, trim=.2,na.rm=TRUE) { if(is.vector(x) ) { ans <- sqrt(win.var(x,trim=trim,na.rm=na.rm) )} else { if (is.matrix(x) | is.data.frame(x)) {ans <- apply(x,2,win.var,trim=trim,na.rm=na.rm) ans <- sqrt(ans) } } return(ans) } #added winsor.var and winsor.sd and winsor.mean (to supplement winsor.means) August 28, 2009 following a suggestion by Jim Lemon #corrected January 15, 2009 to use the quantile function rather than sorting. #suggested by Michael Conklin in correspondence with Karl Healey #this preserves the order of the data "wins" <- function(x,trim=.2, na.rm=TRUE) { if ((trim < 0) | (trim>0.5) ) stop("trimming must be reasonable") qtrim <- quantile(x,c(trim,.5, 1-trim),na.rm = na.rm) xbot <- qtrim[1] xtop <- qtrim[3] if(trim<.5) { x[x < xbot] <- xbot x[x > xtop] <- xtop} else {x[!is.na(x)] <- qtrim[2]} return(x) } "win.mean" <- function(x,trim=.2, na.rm=TRUE) { if ((trim < 0) | (trim>0.5) ) stop("trimming must be reasonable") if (trim < .5) { ans <- mean(wins(x,trim =trim,na.rm=na.rm),na.rm=na.rm) return(ans)} else {return(median(x,na.rm=TRUE))} } "win.var" <- function(x,trim=.2, na.rm=TRUE) { if ((trim < 0) | (trim > 0.5) ) {stop("trimming must be reasonable")} if (trim < .5) { ans <- var(wins(x,trim =trim,na.rm=na.rm),na.rm=na.rm) return(ans) } else {return(median(x,na.rm=TRUE)) } }psych/R/irt.0p.R0000644000176200001440000000056711351165222013046 0ustar liggesusers"irt.0p" <- function(items) { possible <- dim(items)[2] raw <- rowMeans(items,na.rm=TRUE) ave <- raw valid <- rowSums(!is.na(items)) ave[(!is.na(ave))&(ave<.0001)] <- .5/(possible) ave[(!is.na(ave))&(ave > .9999)] <- (possible-.5)/possible theta <- -log((1/ave) -1) irt.0p <- matrix(c(raw,theta,valid),ncol=3) colnames(irt.0p ) <- c("raw","theta0","valid") return(irt.0p) }psych/R/VSS.scree.R0000644000176200001440000000301212221314135013465 0ustar liggesusers"VSS.scree" <- function(rx,main="scree plot") { nvar <- dim(rx)[2] if (nvar != dim(rx)[1]) {rx <- cor(rx,use="pairwise")} values <- eigen(rx)$values plot(values,type="b", main = main,ylab="Eigen values of components",xlab=" component number") abline(h=1) } "scree" <- function(rx,factors=TRUE,pc=TRUE,main="Scree plot",hline=NULL,add=FALSE) { cl <- match.call() nvar <- dim(rx)[2] if (nvar != dim(rx)[1]) {rx <- cor(rx,use="pairwise")} if(pc) {values <- eigen(rx)$values if(factors) {ylab="Eigen values of factors and components" xlab="factor or component number"} else {ylab="Eigen values of components" xlab=" component number"} } else {values <- fa(rx)$values ylab="Eigen values of factors" xlab=" factor number" factors <- FALSE } max.value <- max(values) if(!add) {plot(values,type="b", main = main ,pch=16,ylim=c(0,max.value),ylab=ylab,xlab=xlab)} else { points(values,type="b", ,pch=16) } if(factors) { fv <- fa(rx)$values points(fv,type="b",pch=21,lty="dotted") } else {fv <- NULL} if(is.null(hline)) {abline(h=1)} else {abline(h=hline) } if(factors & pc) { legend("topright", c("PC ","FA"),pch=c(16,21), text.col = "green4", lty = c("solid","dotted"), merge = TRUE, bg = 'gray90')} if(pc) { results <- list(fv = fv, pcv=values,call=cl)} else { results <- list(fv=values, pcv=NULL,call=cl) } class(results) <- c("psych","scree") invisible(results) } psych/R/cluster.plot.R0000644000176200001440000001405412733236645014401 0ustar liggesusers#revised Sept 16, 2013 to give control over the positon (pos) and size (cex) of the labels #revised June 21, 2016 to allow naming of the points "cluster.plot" <- function(ic.results,cluster=NULL,cut = 0.0,labels=NULL, title="Cluster plot",pch=18,pos,show.points=TRUE,choose=NULL,...) { if (!is.matrix(ic.results) ) {if (!is.null(class(ic.results)) ) { if(class(ic.results)[1] == "kmeans") { load <- t(ic.results$centers) } else { load <-ic.results$loadings} }} else {load <- ic.results} if(!is.null(choose)) load <- load[,choose,drop=FALSE] nc <- dim(load)[2] nvar <- dim(load)[1] #defined locally, so as to be able to pass a parameter to it "panel.points" <- function (x, y, pch = par("pch"), ...) { ymin <- min(y) ymax <- max(y) xmin <- min(x) xmax <- max(x) ylim <- c(min(ymin,xmin),max(ymax,xmax)) xlim <- ylim if(show.points) points(x, y, pch = pch,ylim = ylim, xlim= xlim,...) text(x,y,vnames,...) } if(missing(pos)) pos <- rep(1,nvar) #this allows more control over plotting ch.col=c("black","blue","red","gray","black","blue","red","gray") if (is.null(cluster)) { cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 } if (nc > 2 ) { vnames <- labels #global variable pairs(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],main=title,lower.panel=panel.points,upper.panel=panel.points,...) } else { if(show.points) { plot(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],main=title,...) } else { plot(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],main=title,type="n",...) pos=NULL} abline(h=0) abline(v=0)} if(is.null(labels)) labels <- paste(1:nvar) if(nc < 3) text(load,labels,pos=pos,...) } "factor.plot" <- function(ic.results,cluster=NULL,cut = 0.0,labels=NULL, title,jiggle=FALSE,amount=.02,pch=18,pos,show.points=TRUE,...) { #deprecated fa.plot(ic.results,cluster=cluster,cut=cut,labels=labels,title=title,jiggle=jiggle,amount=amount,pch=pch,pos=pos,show.points=show.points,...) } "fa.plot" <- function(ic.results,cluster=NULL,cut = 0.0,labels=NULL, title,jiggle=FALSE,amount=.02,pch=18,pos,show.points=TRUE,choose=NULL,...) { if(missing(title) ) { title="Plot" if (length(class(ic.results)) >1 ) {if (class(ic.results)[2] == "fa") {title = "Factor Analysis"} else { if (class(ic.results)[2] == "principal") {title = "Principal Component Analysis"} } } } if (!is.matrix(ic.results)) { if (!is.null(class(ic.results))) { if(class(ic.results)[1] == "kmeans") { load <- t(ic.results$centers) } else { load <-ic.results$loadings} }} else {load <- ic.results} if(is.null(colnames(load))) colnames(load) <- paste("F",1:ncol(load),sep="") if(!is.null(choose)) load <- load[,choose,drop=FALSE] nc <- dim(load)[2] nvar <- dim(load)[1] if(missing(pos)) pos <- rep(1,nvar) #this allows more control over plotting ch.col=c("black","blue","red","gray","black","blue","red","gray") if (is.null(cluster)) { cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 } #define this function inside the bigger function so that vnames is globabl to it "panel.points" <- function (x, y, pch = par("pch"), ...) { ymin <- min(y) ymax <- max(y) xmin <- min(x) xmax <- max(x) ylim <- c(min(ymin,xmin),max(ymax,xmax)) xlim <- ylim if(show.points) points(x, y, pch = pch,ylim = ylim, xlim= xlim,...) text(x,y,vnames,...) } if(jiggle) load <- jitter(load,amount=amount) if (nc > 2 ) { vnames <- labels # pairs(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],lower.panel=panel.points,upper.panel = panel.points,main=title,...) } else { if(show.points) { plot(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],main=title,...) } else { plot(load,pch = cluster+pch,col=ch.col[cluster],bg=ch.col[cluster],main=title,type="n",...) pos=NULL} abline(h=0) abline(v=0) if(is.null(labels)) labels <- paste(1:nvar) text(load,labels,pos=pos,...)} } "plot.factor" <- function(ic.results,cluster=NULL,cut = 0.0,labels=NULL, title="Factor plot",show.points=TRUE,...) { #deprecated if (!is.matrix(ic.results) ) {if (!is.null(class(ic.results)) ) { if(class(ic.results)[1] == "kmeans") { load <- t(ic.results$centers) } else { load <-ic.results$loadings} }} else {load <- ic.results} if(is.null(colnames(load))) colnames(load) <- paste("F",1:ncol(load),sep="") nc <- dim(load)[2] nvar <- dim(load)[1] ch.col=c("black","blue","red","gray","black","blue","red","gray") if (is.null(cluster)) { cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 } if (nc > 2 ) { pairs(load,pch = cluster+19,col=ch.col[cluster],bg=ch.col[cluster],main=title) } else { if(show.points) { plot(load,pch = cluster+20,col=ch.col[cluster],bg=ch.col[cluster],main=title,...) } else {plot(load,pch = cluster+20,col=ch.col[cluster],bg=ch.col[cluster],main=title,type="n",...) } abline(h=0) abline(v=0)} if(is.null(labels)) labels <- paste(1:nvar) if(nc <3) text(load,labels,pos=1,...) } "plot.cluster" <- function(ic.results,cluster=NULL,cut = 0.0,labels=NULL, title="Cluster plot",show.points=TRUE,...) { #deprecated if (!is.matrix(ic.results) ) {if (!is.null(class(ic.results)) ) { if(class(ic.results)[1] == "kmeans") { load <- t(ic.results$centers) } else { load <-ic.results$loadings} }} else {load <- ic.results} nc <- dim(load)[2] nvar <- dim(load)[1] ch.col=c("black","blue","red","gray","black","blue","red","gray") if (is.null(cluster)) { cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 } if (nc > 2 ) { pairs(load,pch = cluster+19,cex=1.5,col=ch.col[cluster],bg=ch.col[cluster],main=title) } else { plot(load,pch = cluster+20,cex=1.5,col=ch.col[cluster],bg=ch.col[cluster],main=title,...) abline(h=0) abline(v=0)} if(is.null(labels)) labels <- paste(1:nvar) if(nc <3) text(load,labels,pos=1) }psych/R/fa.multi.R0000644000176200001440000000777612660207126013466 0ustar liggesusers"fa.multi" <- function(r,nfactors=3,nfact2=1,n.obs = NA,n.iter=1,rotate="oblimin",scores="regression", residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",...) { cl <- match.call() if(nfactors < 2) stop("number of lower level factors must be at least 2") f1 <- fa(r=r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,scores=scores,residuals=residuals,SMC = SMC,covar=covar,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor, ...=...) #call fa with the appropriate parameters f2 <- fa(f1$Phi,nfactors=nfact2,rotate=rotate) result <- list(f1=f1,f2=f2) return(result) } #based upon the omegaDiagram function "fa.multi.diagram" <- function(multi.results,sort=TRUE,labels=NULL,flabels=NULL,cut=.2,gcut=.2,simple=TRUE,errors=FALSE, digits=1,e.size=.1,rsize=.15,side=3,main=NULL,cex=NULL,color.lines=TRUE ,marg=c(.5,.5,1.5,.5),adj=2, ...) { if(color.lines) { colors <- c("black","red")} else {colors <- c("black","black") } Phi <- NULL #the default case if(is.null(cex)) cex <- 1 old.par<- par(mar=marg) #give the window some narrower margins on.exit(par(old.par)) #set them back if(sort) multi.results$f1 <- fa.sort(multi.results$f1) factors <- as.matrix(multi.results$f1$loadings) if(is.null(main)) {main <- "Hierarchical (multilevel) Structure" } gloading <- multi.results$f2$loading nvar <- num.var <- dim(factors)[1] #how many variables? num.factors <- dim(factors)[2] num.2level <- dim(gloading)[2] e.size <- e.size * 10/ nvar #this is an arbitrary setting that seems to work #first some basic setup parameters vars <- paste("V",1:num.var,sep="") if (!is.null(labels)) {vars <- paste(labels)} else{vars <- rownames(factors) } if(!is.null(flabels)) {fact <- flabels} else { fact <- c(paste("F",1:num.factors,sep="")) } # e.g. "g" "F'1" "F2" "F3" colnames(factors)[1:length(fact)] <- fact var.rect <- list() fact.rect <- list() max.len <- max(nchar(rownames(factors)))*rsize cex <- min(cex,40/nvar) xleft <- -max.len/2 #0# xright <- nvar + 1 # or hard code to 3? plot(0,type="n",xlim=c(xleft-max.len,xright+1),ylim=c(1,nvar+1),frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main) vloc <- xleft gloc <- xright grouploc <- (xright)/2 start <- 0 end <- num.factors for (v in 1:nvar) { var.rect[[v]] <- dia.rect(vloc,nvar-v+1,rownames(factors)[v],xlim=c(0,nvar),ylim=c(0,nvar),cex=cex,...) } f.scale <- (nvar+ 1)/(num.factors+1) f.shift <- nvar/num.factors for (f in 1:num.factors) { fact.rect[[f]] <- dia.ellipse(grouploc,(num.factors+1-f)*f.scale,colnames(factors)[f+start],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...) for (v in 1:nvar) { if (abs(factors[v,f+start]) > cut) {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,col=colors[((sign(factors[v,f+start])<0) +1)],lty=((sign(factors[v,f+start])<0)+1),labels=round(factors[v,f+start],digits),adj=f %% adj +1) } } } g.ellipse <- list() f.2scale <- (num.var+1)/(num.2level +1) for(g in 1:num.2level) { g.ellipse[[g] ]<- dia.ellipse(gloc,(num.2level+1-g)*f.2scale,colnames(gloading)[g],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...) for (f in 1:num.factors) { if (abs(gloading[f,g]) > cut) { dia.arrow(from=g.ellipse[[g]],to=fact.rect[[f]],col=colors[((sign(gloading[f,g])<0) +1)],lty=((sign(gloading[f,g])<0) +1),labels=round(gloading[f,g],digits),adj=f %% adj +1) }} } if (errors) {for (v in 1:nvar) { dia.self(location=var.rect[[v]],scale=.5,side=side) } } } psych/R/mat.regress.R0000644000176200001440000001112212471664424014165 0ustar liggesusers"mat.regress" <- function(y,x,data,z=NULL,n.obs=NULL,use="pairwise",square=FALSE) { #a function to extract subsets of variables (a and b) from a correlation matrix m or data set m #and find the multiple correlation beta weights + R2 of the a set predicting the b set #seriously rewritten, March 24, 2009 to make much simpler #minor additons, October, 20, 2009 to allow for print and summary function #major addition in April, 2011 to allow for set correlation message("mat.regress has been replaced by setCor, please change your call") setCor(y,x,data,z=NULL,n.obs=NULL,use="pairwise",square=FALSE)} # # cl <- match.call() # if(!is.matrix(data)) data <- as.matrix(data) # if((dim(data)[1]!=dim(data)[2]) |square) {n.obs=dim(data)[1] # C <- cov(data,use=use) # m <- cov2cor(C) # raw <- TRUE} else { # raw <- FALSE # C <-data # m <- cov2cor(C)} # # # nm <- dim(data)[1] # xy <- c(x,y) # numx <- length(x) # numy <- length(y) # nxy <- numx+numy # m.matrix <- m[c(x,y),c(x,y)] # a.matrix <- m[x,x] # ac.matrix <- C[x,x] # b.matrix <- m[x,y] # bc.matrix <- C[x,y] # y.matrix <- m[y,y] # if(numx == 1 ) {beta <- matrix(b.matrix,nrow=1) # } else #this is the case of a single x # { beta <- solve(a.matrix,b.matrix) #solve the equation bY~aX # beta <- as.matrix(beta) } # if (numy >1 ) { if(is.null(rownames(beta))) {rownames(beta) <- colnames(m)[x]} # if(is.null(colnames(beta))) {colnames(beta) <- colnames(m)[y]} # # R2 <- colSums(beta * b.matrix) } else { colnames(beta) <- colnames(data)[1] # R2 <- sum(beta * b.matrix) # names(beta) <- colnames(data)[x] # names(R2) <- colnames(data)[y]} # if(numy < 2) {Rset <- 1 - det(m.matrix)/(det(a.matrix) ) # } else {if (numx < 2) {Rset <- 1 - det(m.matrix)/(det(y.matrix) ) # } else {Rset <- 1 - det(m.matrix)/(det(a.matrix) * det(y.matrix))} # } # if(!is.null(n.obs)) {k<- length(x) # # uniq <- (1-smc(a.matrix)) # se.beta <- list() # for (i in 1:length(y)) { # df <- n.obs-k-1 # se.beta[[i]] <- (sqrt((1-R2[i])/(df))*sqrt(1/uniq))} # se <- matrix(unlist(se.beta),ncol=length(y)) # colnames(se) <- colnames(beta) # rownames(se) <- rownames(beta) # tvalue <- beta/se # se <- t(t(se) * sqrt(diag(C)[y]))/sqrt(diag(ac.matrix)) # # prob <- 2*(1- pt(abs(tvalue),df)) # SE2 <- 4*R2*(1-R2)^2*(df^2)/((n.obs^2-1)*(n.obs+3)) # SE =sqrt(SE2) # F <- R2*df/(k*(1-R2)) # pF <- 1 - pf(F,k,df) # shrunkenR2 <- 1-(1-R2)*(n.obs-1)/df # # #find the shrunken R2 for set cor (taken from CCAW p 615) # u <- numx * numy # m1 <- n.obs - numx * numy - (numx + numy +3)/2 # s <- sqrt((numx ^2 * numy^2 -4)/(numx^2 + numy^2)) # v <- m1 * s + 1 - u/2 # R2set.shrunk <- 1 - (1-Rset) * ((v+u)/v)^s # } # # if(numx == 1) {beta <- beta * sqrt(diag(C)[y]) # } else {beta <- t(t(beta) * sqrt(diag(C)[y]))/sqrt(diag(ac.matrix))} #this puts the betas into the raw units # # if(is.null(n.obs)) {mat.regress <- list(beta=beta,R=sqrt(R2),R2=R2,Rset=Rset,raw=raw,Call = cl)} else { # mat.regress <- list(beta=beta,se=se,t=tvalue,Probability = prob,R=sqrt(R2),R2=R2,shrunkenR2 = shrunkenR2,seR2 = SE,F=F,probF=pF,df=c(k,df),Rset=Rset,Rset.shrunk=R2set.shrunk,raw=raw,Call = cl)} # class(mat.regress) <- c("psych","set.cor") # return(mat.regress) # } #modified July 12,2007 to allow for NA in the overall matrix #modified July 9, 2008 to give statistical tests #modified yet again August 15 , 2008 to convert covariances to correlations #modified January 3, 2011 to work in the case of a single predictor #modified April 25, 2011 to add the set correlation (from Cohen) psych/R/outlier.R0000644000176200001440000000173112365465461013425 0ustar liggesusers#created 27/7/14 "outlier" <- function(x,plot=TRUE,bad=5,na.rm=TRUE,xlab,ylab,...) { if(missing(xlab)) xlab <- expression("Quantiles of " * ~chi ^2) if(missing(ylab)) ylab <- expression("Mahalanobis " * D^2) rn <- rownames(x) nvar <- ncol(x) n.obs <- nrow(x) if(!is.matrix(x)) x <- as.matrix(x) nvar <- ncol(x) Sx <- cov(x,use="pairwise") Sx.inv <- solve(Sx) # Mx <- colMeans(x,na.rm=na.rm) # x <- sweep(x,2,Mx) #x <- t(scale(t(x),scale=FALSE)) x <- scale(x,scale=FALSE) D2 <- t(apply(x,1,function(xx) colSums(xx * Sx.inv,na.rm=TRUE))) D2 <- rowSums(D2*x,na.rm=TRUE) names(D2) <- rn if(plot) { Chi2 <- qchisq(ppoints(n.obs), df = nvar) qqplot(Chi2, D2, main = expression("Q-Q plot of Mahalanobis" * ~D^2 * " vs. quantiles of" * ~ chi[nvar]^2),xlab=xlab,ylab=ylab,...) abline(0, 1, col = 'gray') worst <- order(D2,decreasing=TRUE) text(Chi2[n.obs:(n.obs-bad+1)],D2[worst[1:bad]],names(D2)[worst[1:bad]],pos=3,...) } return(D2) } psych/R/biplot.psych.R0000644000176200001440000001336513126263271014355 0ustar liggesusers#rewritten Sept 18,2013 to allow much more controll over the points in a two dimensional biplot #the three or more dimensional case remains the same as before #The code for the two dimensional case is adapted (heavily) from the stats:::biplot function #corrected April 9, 2015 to allow multiple biplots in the same window #Seriously modified June 25, 2016 to allow better control for labels, as well as just generally cleaner code "biplot.psych" <- function(x, labels=NULL,cex=c(.75,1),main="Biplot from fa",hist.col="cyan",xlim.s=c(-3,3),ylim.s=c(-3,3),xlim.f=c(-1,1),ylim.f=c(-1,1),maxpoints=100,adjust=1.2,col,pos, arrow.len = 0.1,pch=16,choose=NULL,cuts=1,cutl=.0,group=NULL,...) { if(is.null(x$scores)) stop("Biplot requires factor/component scores. \nYou need to r run fa/pca from the raw data") op <- par() old.par <- par(no.readonly = TRUE) on.exit(par(old.par)) MAR <- par("mar") MFROW <- par("mfrow") #fa.poly nests the fa and scores within a list if(is.list(x$scores)) x$scores <- x$scores$scores #the case of fa.poly output if(is.list(x$fa)) x$loadings <- x$fa$loadings #once again, the case of fa.poly if(!is.null(choose)) { #plot just a pair x$scores <- x$scores[,choose,drop=FALSE] x$loadings <- x$loadings[,choose,drop=FALSE] } colnames(x$scores) <- colnames(x$loadings) if((missing(group)) || (is.null(group))) group <- rep(1,nrow(x$scores)) #if(missing(pos)) pos <- NULL #if(is.null(labels)) {if(nrow(x$scores) > maxpoints ) {labels = rep(".",dim(x$scores)[1] )} else {labels = rep("o",dim(x$scores)[1] )}} n.dims <- dim(x$loadings)[2] #this is taken directly from biplot # if (missing(col)) { # col <- par("col") # if (!is.numeric(col)) # col <- match(col, palette(), nomatch = 1L) # col <- c(col, col + 1L) # } # else if (length(col) == 1L) # col <- c(col, col) if(missing(col)) {col <- c("black","red","blue","#FF0000FF", "#00FF00FF", "#00FFFFFF", "#0000FFFF" ,"#FF00FFFF")} #rainbow + black, red ch.col <- col #here is where we add some plotting controls that are missing from stats:::biplot if (n.dims == 2) { #just do a one panel graph op <- par(pty = "s") #if (!is.null(main)) op1 <- c(op, par("mar" = MAR + c(0, 0, 1, 0))) #give room for the title -- if (!is.null(main)) par("mar" = MAR + c(0, 0, 1, 0)) #give room for the title - #plotone does the work plotone(x$scores,x$loading,labels=labels,main=main,xlim.s=xlim.s,ylim.s=ylim.s,xlim.f=xlim.f,ylim.f=ylim.f,maxpoints=maxpoints,adjust=adjust,col=col,pos=pos, arrow.len = arrow.len,pch=pch,choose=choose,cuts=cuts,cutl=cutl,group=group,ch.col=ch.col,... ) } else { #the case of 3 or more factors -- we do the equivalent of a pairs plot op1 <- par(mfrow=c(n.dims,n.dims), mar=c(2,3,3,2)) if(nrow(x$scores) > maxpoints) {labels <- rep(".",nrow(x$scores))} else {labels <- rep("o",nrow(x$scores))} for (i in 1:n.dims) { for (j in 1:n.dims){ if(i==j) {h <- hist(x$scores[,i],freq=FALSE, main=colnames(x$loadings)[i],xlab="",ylab="",col=hist.col) breaks <- h$breaks; nB <- length(breaks) tryd <- try( d <- density(x$scores[,i],na.rm=TRUE,bw="nrd",adjust=adjust),silent=TRUE) if(class(tryd) != "try-error") { lines(d)} } else { # biplot(x$scores[,c(j,i)],x$loadings[,c(j,i)],xlabs=labels,xlab="",ylab="",cex=cex,xlim=xlim.s,ylim=ylim.s,pch=pch,...)} plotone(x$scores[,c(j,i)],x$loadings[,c(j,i)],main=NULL,xlim.s=xlim.s,ylim.s=ylim.s,xlim.f=xlim.f,ylim.f=ylim.f,maxpoints=maxpoints,adjust=adjust,col=col,pos=pos, arrow.len = arrow.len,pch=pch,choose=choose,cuts=cuts,cutl=cutl,group=group,ch.col=ch.col,... )} #work on this way of doing it } } } par("mar"=MAR) #this puts the margins back to what they were when we started. Important for multiple biplots par("mfrow"=MFROW) } plotone <- function( scores,loadings,labels=NULL,cex=c(.75,1),main="Biplot from fa",hist.col="cyan",xlim.s=c(-3,3),ylim.s=c(-3,3),xlim.f=c(-1,1),ylim.f=c(-1,1),maxpoints=100,adjust=1.2,col,pos, arrow.len = 0.1,pch=16,choose=NULL,cuts=1,cutl=.0,group=NULL,ch.col=c("black","blue"),...) { #There are three different conditions #1 just show the (unlabeled) points #2 don't show the points, but put in labels at their locations #3 show the points with labels near them according to pos choice <- "one" if(!is.null(labels)) { if(missing(pos)) {choice <- "two" } else {choice <- "three"} } switch(choice, #we plot the scores here for scores > abs(cut) on x and y "one" = {plot(scores, xlim = xlim.s, ylim = ylim.s, cex=cex[1],main=main,pch=pch+group,bg=ch.col[group],col=col[group],...) } , "two" = {plot(scores,typ='n', xlim = xlim.s, ylim = ylim.s,cex=cex[1],main=main,pch=pch+group,bg=ch.col[group],col=col[group],...) labels[sqrt((abs(scores[,1])^2 + abs(scores[,2])^2 ) ) < cuts] <- NA text(scores,labels=labels,col=ch.col[group],pos=NULL,cex=cex[1]) }, "three" = {plot(scores, xlim = xlim.s, ylim = ylim.s,cex=cex[1],main=main,pch=pch+group,bg=ch.col[group],col=col[group],...) labels[sqrt((abs(scores[,1])^2 + abs(scores[,2])^2)) < cuts] <- NA text(scores,labels=labels,pos=pos,cex=cex[1],col=ch.col[group]) }) par(new = TRUE) #this sets it up so that we can plot on top of a plot dev.hold() on.exit(dev.flush(), add = FALSE) plot(loadings, axes = FALSE, type = "n", xlim = xlim.f, ylim = ylim.f, xlab = "", ylab = "", col = col[1L], ...) labels <- rownames(loadings) labels[sqrt(loadings[,1]^2 + loadings[,2]^2) < cutl] <- NA text(loadings, labels = labels, cex = cex[2L], col = col[2L], ...) arrows(0, 0, loadings[, 1L] * 0.8, loadings[, 2L] * 0.8, col = col[2L], length = arrow.len) axis(3, col = col[2L], ...) axis(4, col = col[2L], ...) box(col = col[1L]) } psych/R/plot.psych.R0000644000176200001440000000665312215320047014035 0ustar liggesusers"plot.psych" <- function(x,labels=NULL,...) { result <- NULL vss <- iclust <- omega <- fa <- irt.fa <- irt.poly <- principal <- parallel <- set.cor <- residuals <- FALSE if(length(class(x)) > 1) { if(class(x)[2] =='irt.fa') irt.fa <- TRUE if(class(x)[2] =='irt.poly') irt.poly <- TRUE if(class(x)[2] =='vss') vss <- TRUE if(class(x)[2] =='iclust') iclust <- TRUE if(class(x)[2] =='fa') fa <- TRUE if(class(x)[2] =='principal') principal <- TRUE if(class(x)[2] =='vss') vss <- TRUE if(class(x)[2] =='omega') omega <- TRUE if(class(x)[2] =='parallel') parallel <- TRUE if(class(x)[2] =='set.cor') set.cor <- TRUE if(class(x)[2] =='residuals') residuals <- TRUE } switch(class(x)[2], vss = { n=dim(x) symb=c(49,50,51,52) #plotting sym plot(x$cfit.1,ylim=c(0,1),type="b",ylab="Very Simple Structure Fit",xlab="Number of Factors",pch=49) x$cfit.3<- x$vss.stats$cfit.3 x$cfit.4<- x$vss.stats$cfit.4 title <- x$title title(main=title) x$cfit.2[1]<-NA x$cfit.3[1]<-NA x$cfit.3[2]<-NA x$cfit.4[1]<-NA x$cfit.4[2]<-NA x$cfit.4[3]<-NA lines(x$cfit.2) points(x$cfit.2,pch=50) lines(x$cfit.3) points(x$cfit.3,pch=symb[3]) lines(x$cfit.4) points(x$cfit.4,pch=symb[4]) }, iclust = { op <- par(no.readonly = TRUE) # the whole list of settable par's. cut <- 0 if(iclust) { load <- x$loadings cat("Use ICLUST.diagram to see the hierarchical structure\n") } else {load <- x$schmid$orthog cat("Use omega.diagram to see the hierarchical structure\n") } nc <- dim(load)[2] nvar <- dim(load)[1] ch.col=c("black","blue","red","gray","black","blue","red","gray") cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 if (nc > 2 ) { pairs(load,pch = cluster+19,col=ch.col[cluster],bg=ch.col[cluster]) } else { plot(load,pch = cluster+20,col=ch.col[cluster],bg=ch.col[cluster],...) abline(h=0) abline(v=0)} if(is.null(labels)) labels <- paste(1:nvar) if(nc <3) text(load,labels,pos=1) par(op) }, omega = { op <- par(no.readonly = TRUE) # the whole list of settable par's. cut <- 0 if(iclust) { load <- x$loadings cat("Use ICLUST.diagram to see the hierarchical structure\n") } else {load <- x$schmid$orthog cat("Use omega.diagram to see the hierarchical structure\n") } nc <- dim(load)[2] nvar <- dim(load)[1] ch.col=c("black","blue","red","gray","black","blue","red","gray") cluster <- rep(nc+1,nvar) cluster <- apply( abs(load) ,1,which.max) cluster[(apply(abs(load),1,max) < cut)] <- nc+1 if (nc > 2 ) { pairs(load,pch = cluster+19,cex=1.5,col=ch.col[cluster],bg=ch.col[cluster]) } else { plot(load,pch = cluster+20,col=ch.col[cluster],bg=ch.col[cluster],...) abline(h=0) abline(v=0)} if(is.null(labels)) labels <- paste(1:nvar) if(nc <3) text(load,labels,pos=1) par(op) }, set.cor ={ plot(x$cancor2,typ="b",ylab="Squared Canonical Correlation",xlab="Canonical variate",main="Scree of canonical correlations" ,ylim=c(0,1),...)}, irt.fa = {result <- plot.irt(x,labels=labels,...)}, irt.poly = { result <- plot.poly(x,labels=labels,...)}, fa = {fa.plot(x,labels=labels,...)}, principal = {fa.plot(x,labels=labels,...)}, parallel = {plot.fa.parallel(x,...)}, residuals = {plot.residuals(x,...)} ) if(!is.null(result)) {class(result) <- c("psych","polyinfo") invisible(result)} }psych/R/fa.graph.R0000644000176200001440000000633511744537324013433 0ustar liggesusers#take the output from a factor analysis and create the dot code #Created April 20, 2012 to allow making dot code without using rgraphviz "fa.graph" <- function(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis", ...){ Phi <- NULL #the default case if(!missing(out.file)){ out <- file(out.file, "w") #set it to write permission on.exit(close(out)) } else out <- stdout() #use the normal console for output if((!is.matrix(fa.results)) && (!is.data.frame(fa.results))) {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) Phi <- fa.results$Phi} else {factors <- as.matrix(fa.results)} rank.direction <- match.arg(rank.direction) #first some basic setup parameters if (length(labels)==0) { labels <- rownames(fa.results$loadings)} else {labels=labels} num.var <- dim(factors)[1] #how many variables? if (is.null(num.var) ){num.var <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} vars <- paste("V",1:num.var,sep="") fact <- paste("F",1:num.factors,sep="") #first some basic setup parameters cat( file=out,paste('digraph Factor ', ' {\n', sep="")) cat(file=out, paste(' rankdir=', rank.direction, ';\n', sep="")) cat(file=out, paste(' size="',size[1],',',size[2],'";\n', sep="")) cat(file=out, paste(' node [fontname="', node.font[1], '" fontsize=', node.font[2], ' shape=box, width=2];\n', sep="")) cat(file=out, paste(' edge [fontname="', edge.font[1], '" fontsize=', edge.font[2], '];\n', sep="")) #cat(file=out, paste(' label = "' ,main,'";fontsize=20;\n', sep="")) if(simple) { # do simple structure if requested rowmax <- apply(abs(factors),1,max) factors[abs(factors) < rowmax] <- 0 } #create the items as boxes for (i in 1:num.var) { cat(file=out,paste('V',i,' [label = "',labels[i], '"];\n', sep="")) } #show the factors as ellipses cat(file=out,paste('node [shape=ellipse, width ="1"];\n', sep="")) #draw the loadings for( nf in 1:num.factors) { for (i in 1:num.var) {if(abs(factors[i,nf]) > cut ) { #avoid printing null results cat(file=out,paste(colnames(factors)[nf], '-> V', i, ' [ label = ',round(factors[i,nf],digits),' ];\n', sep="")) } } } #draw the interfactor correlations if(!is.null(Phi)) { for (f in 2:num.factors) { for (f1 in 1:(f-1)) { if(abs(Phi[f,f1]) > cut) { cat(file=out,paste(colnames(factors)[f], ' -> ', colnames(factors)[f1], ' [ label = ',round(Phi[f,f1],digits),' , dir="both" ];\n', sep="")) } } } } #keep the boxes all at the same rank (presumably the left side) cat(file=out, paste('{ rank=same;\n', sep="")) for (i in 1:num.var) { cat(file=out,paste('V',i,';', sep="")) } cat(file=out, paste('}', sep="")) cat(file=out, paste('{ rank=same;\n', sep="")) for (nf in 1:num.factors) { cat(file=out,paste(paste(colnames(factors)[nf],';', sep=""))) } cat(file=out, paste('}}', sep="")) # we are finished } psych/R/simulation.circ.R0000644000176200001440000000231212253363036015030 0ustar liggesusers"simulation.circ" <- function(samplesize=c(100,200,400,800), numberofvariables=c(16,32,48,72)) { ncases=length(samplesize) nvar <- length(numberofvariables) results <- matrix(NaN,ncol=ncases,nrow=nvar*ncases) results.ls <- list() case <- 1 for (ss in 1:ncases) { for (nv in 1:nvar) { circ.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss]) sim.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss],circum=FALSE) elipse.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss],yloading=.4) r.circ<- cor(circ.data) r.sim <- cor(sim.data) r.elipse <- cor(elipse.data) pc.circ <- principal(r.circ,2) pc.sim <- principal(r.sim,2) pc.elipse <- principal(r.elipse,2) case <- case + 1 results.ls[[case]] <- list(numberofvariables[nv],samplesize[ss],circ.tests(pc.circ)[1:4],circ.tests(pc.elipse)[1:4],circ.tests(pc.sim)[1:4]) } } results.mat <- matrix(unlist(results.ls),ncol=14,byrow=TRUE) colnames(results.mat) <- c("nvar","n","c-gap","c-fisher","c-RT","c-VT","e-gap","e-fisher","e-RT","e-VT","s-gap","s-fisher","s-RT","s-VT") results.df <- data.frame(results.mat) return(results.df) }psych/R/test.psych.r0000755000176200001440000002131312570101343014067 0ustar liggesusers#Quality control function to run through hard problems "test.psych" <- function(first=1,last=5,short=TRUE,all=FALSE,fapc=FALSE) { s1 <- datasets::USArrests # Violent Crime Rates by US State (4 variables) s2 <- datasets::attitude #The Chatterjee-Price Attitude Data s3 <- datasets::Harman23.cor$cov # Harman Example 2.3 8 physical measurements s4 <- datasets::Harman74.cor$cov # Harman Example 7.4 24 mental measurements s5 <- datasets::ability.cov$cov # 6 Ability and Intelligence Tests #convert covariance to correlation d5 <- diag(1/sqrt(diag(s5))) s5 <- d5 %*% s5 %*% d5 datasets <- list(s1,s2,s3,s4,s5) out <- list() for (i in first:last) { test.data <- datasets[[i]] pc <- principal(test.data) pc2 <- principal(test.data,2) if(i < 3) { fa2 <- fa(test.data,2) fp <- fa.parallel(test.data) vss2 <- VSS(test.data) vsspc <- VSS(test.data,fm="pc") } else { fa2 <- fa(test.data,2,n.obs=200) cluster.plot(fa2) fp <- fa.parallel(test.data,n.obs=200) vss2 <- VSS(test.data,n.obs=200) vsspc <- VSS(test.data,fm="pc",n.obs=200) } ic <- ICLUST(test.data,plot=FALSE) if(requireNamespace('GPArotation')) {om <- omega(test.data,plot=FALSE)} else {warning("Omega requires the GPArotation package to be loaded") om <- NULL} fc <- factor.congruence(pc2,fa2) d <- describe(test.data) keys <- matrix(rep(0,dim(test.data)[2]*2),ncol=2) keys[,1] <- 1 keys[1:3,2] <- 1 if( dim(test.data)[1] != dim(test.data)[2]) {test.score <- scoreItems(keys,test.data)} else {test.score <- cluster.cor(keys,test.data)} out <- list(out,paste("test",i),pc,pc2,fa2,fp,ic,om,fc,vss2,vsspc,d,test.score) } #end loop #a few more tests cat("\n Testing cor plot and sim.item\n") set.seed(42) #this way our simulaton will be consistent simple <- sim.item(nvar=24) circ <- sim.circ(nvar=24) cor.plot(cor(circ),colors=TRUE,zlim=c(-1,1),main="24 variables in a circumplex") simple.par <- fa.parallel(simple) fa.simple <- fa(simple,2) cor.plot(fa.simple,TRUE,n=4) #fa.simple.keys <- ICLUST.sort(fa.simple,keys=TRUE) #why this way # simple.scores <- scoreItems(fa.simple.keys$clusters,simple) fa.simple.keys <- factor2cluster(fa.simple) simple.scores <- scoreItems(fa.simple.keys,simple) pairs.panels(simple.scores$scores) cat("\n Test of sim.VSS\n") f4 <- sim.VSS() psych.d <- NULL #the next test, phi.demo, throws multiple warnings that are from the polycor package and can not be found #if (!require(polycor)) { warning("psycho.demo requires the polycor package") psych.d <- NULL } else {psych.d <- phi.demo() } cong <- sim.congeneric() if(all) { #test of factoring and scoring singular data -- fails on some platforms cat("\n Test of a singular matrix\n") #a test example of a singular matrix IRIS <- datasets::iris[,1:4] IRIS[,5] <- datasets::iris[,1]+datasets::iris[,2] f.iris <- fa(IRIS,5,scores=TRUE) #this is get around the failure of tenBerge for a singular matrix p.iris <- principal(IRIS,5,scores=TRUE) #this will fail if not using minres or pa } cluster.plot(fa(sim.circ(nvar=24),nfactors=2),title="two circumplex factors") pairs.panels(cong) #this section tests various functions that use Rgraphviz (if it is installed) if(FALSE) { #{if(require(Rgraphviz) && !FALSE) { fa.graph(fa(item.sim(16),2) ,title="Principal factor of a simple structure") ic.out <- ICLUST(s4,title="ICLUST of 24 Mental abilities") v9 <- omega(sim.hierarchical(),title="Omega with Schmid Leihman") omega.graph(v9,sl=FALSE,title="Omega with hierarchical factors") #set up the parameters for the structure graph X6 <- matrix(c("a","b","c",rep(0,6),"d","e","f"),nrow=6) colnames(X6) <- c("L1","L2") rownames(X6) <- c("x1","x2","x3","x4","x5","x6") Y3 <- matrix(c("u","w","z"),ncol=1) colnames(Y3) <- "Y" rownames(Y3) <- c("y1","y2","y3") phi21 <- matrix(c(1,0,"r1",0,1,"r2",0,0,1),ncol=3) colnames(phi21) <- rownames(phi21) <- c("L1","L2","Y") structure.graph(X6,phi21,Y3,title="Symbolic structural model") } else {warning("fa.graph, omega.graph, ICLUST.rgraph, structure.graph require Rgraphviz and were not tested") } fa.diagram(fa(item.sim(16),nfactors=2)) ic.out <- ICLUST(s4,title="ICLUST of 24 Mental abilities") v9 <- omega(sim.hierarchical(),title="Omega with Schmid Leihman") omega.diagram(v9,sl=FALSE,main="Omega with hierarchical factors") #set up the parameters for the structure graph X6 <- matrix(c("a","b","c",rep(0,6),"d","e","f"),nrow=6) colnames(X6) <- c("L1","L2") rownames(X6) <- c("x1","x2","x3","x4","x5","x6") Y3 <- matrix(c("u","w","z"),ncol=1) colnames(Y3) <- "Y" rownames(Y3) <- c("y1","y2","y3") phi21 <- matrix(c(1,0,"r1",0,1,"r2",0,0,1),ncol=3) colnames(phi21) <- rownames(phi21) <- c("L1","L2","Y") example.model <- structure.diagram(X6,phi21,Y3,main="Symbolic structural model") R <- cor(sim.item(16)) ss <- c(1,3,5,7,9,11,13,15) f <- fa(R[ss,ss],2) foe <- fa.extension(R[ss,-ss],f) fa.diagram(fa.results=f,fe.results=foe) #now test the iteration options and the rotation options in fa #not run by default for official testing if(fapc) { data1 <- psych::bfi f3 <- fa(data1[1:15],3,n.iter=5) f3 <- fa(data1[1:15],3,n.iter=5,rotate="Varimax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="varimax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="quartimax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="bentlerT") f3 <- fa(data1[1:15],3,n.iter=5,rotate="geominT") Target <- matrix(c(rep(1,5),rep(0,15),rep(1,5),rep(0,15),rep(1,5)),ncol=3) f3 <- fa(data1[1:15],3,n.iter=5,rotate="targetT",Target=Target) f3 <- fa(data1[1:15],3,n.iter=5,rotate="bifactor") f3 <- fa(data1[1:15],3,n.iter=5,rotate="TargetT",Target=Target) f3 <- fa(data1[1:15],3,n.iter=5,rotate="equamax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="varimin") #f3 <- fa(data1[1:15],3,n.iter=5,rotate="specialQ") f3 <- fa(data1[1:15],3,n.iter=5,rotate="Promax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="promax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="cluster") f3 <- fa(data1[1:15],3,n.iter=5,rotate="biquartimin") Targ <- make.keys(15,list(f1=1:5,f2=6:10,f3=11:15)) Targ <- scrub(Targ,isvalue=1) #fix the 0s, allow the NAs to be estimated Targ <- list(Targ) #input must be a list f3 <- fa(data1[1:15],3,n.iter=5,rotate="TargetQ",Target=Targ) #Michael Brown's #f3 <- fa(data1[1:15],3,n.iter=5,rotate="specialQ") f3 <- fa(data1[1:15],3,n.iter=5,rotate="oblimin") f3 <- fa(data1[1:15],3,n.iter=5,rotate="quartimin") f3 <- fa(data1[1:15],3,n.iter=5,rotate="simplimax") f3 <- fa(data1[1:15],3,n.iter=5,rotate="geominQ") f3 <- fa(data1[1:15],3,n.iter=5,rotate="targetQ",Target=Target) f3 <- fa(data1[1:15],3,n.iter=5,rotate="bentlerQ") data2 <- psych::ability f1 <- fa(data2) fpoly <- fa(data2[1:10],2,n.iter=5,cor="poly") f1 <- fa(data2,n.iter=4) f1p <- fa(data2,n.iter=4,cor="tet") p3 <- principal(data1[1:15],3,n.iter=1) p3 <- principal(data1[1:15],3,rotate="Varimax") p3 <- principal(data1[1:15],3,rotate="varimax") p3 <- principal(data1[1:15],3,rotate="quartimax") p3 <- principal(data1[1:15],3,rotate="bentlerT") p3 <- principal(data1[1:15],3,rotate="geominT") Target <- matrix(c(rep(1,5),rep(0,15),rep(1,5),rep(0,15),rep(1,5)),ncol=3) p3 <- principal(data1[1:15],3,rotate="targetT",Target=Target) p3 <- principal(data1[1:15],3,rotate="TargetT",Target=Target) p3 <- principal(data1[1:15],3,rotate="bifactor") p3 <- principal(data1[1:15],3,rotate="varimin") p3 <- principal(data1[1:15],3,rotate="bentlerT") p3 <- principal(data1[1:15],3,rotate="geominT") p3 <- principal(data1[1:15],3,rotate="equamax") p3 <- principal(data1[1:15],3,rotate="Promax") p3 <- principal(data1[1:15],3,rotate="promax") p3 <- principal(data1[1:15],3,rotate="cluster") p3 <- principal(data1[1:15],3,rotate="biquartimin") p3 <- principal(data1[1:15],3,rotate="equamax") Targ <- make.keys(15,list(f1=1:5,f2=6:10,f3=11:15)) Targ <- scrub(Targ,isvalue=1) #fix the 0s, allow the NAs to be estimated Targ <- list(Targ) #input must be a list p3 <- principal(data1[1:15],3,rotate="TargetQ",Target=Targ) p3 <- principal(data1[1:15],3,rotate="oblimin") p3 <- principal(data1[1:15],3,rotate="quartimin") p3 <- principal(data1[1:15],3,rotate="simplimax") p3 <- principal(data1[1:15],3,rotate="geominQ") p3 <- principal(data1[1:15],3,rotate="biquartimin") p3 <- principal(data1[1:15],3,rotate="targetQ",Target=Target) p3 <- principal(data1[1:15],3,rotate="bentlerQ") fpoly <- principal(data1[1:10],2,cor="poly") f1 <- principal(data2) f1p <- principal(data2,cor="tet") } out <- list(out,fa.simple,psych.d) if (!short) { return(out)} }#end function psych/R/ICLUST.R0000644000176200001440000001722212516524550012740 0ustar liggesusers#ICLUST - a function to form homogeneous item composites # originally based upon Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14, 57-74. # but much changed over the years # pseudo code # find similarity matrix # original is either covariance or correlation # corrected is disattenuated #find most similar pair #if size of pair > min size, apply beta criterion # if beta new > min(beta 1, beta 2) combine pair #update similarity matrix #repeat until finished #then report various summary statistics #ICLUST is the main function and calls other routines "ICLUST" <- function (r.mat,nclusters=0,alpha=3,beta=1,beta.size=4,alpha.size=3,correct=TRUE, correct.cluster=TRUE,reverse=TRUE,beta.min=.5,output=1,digits=2,labels=NULL,cut=0,n.iterations=0,title="ICLUST",plot=TRUE,weighted=TRUE,cor.gen =TRUE,SMC=TRUE,purify=TRUE,diagonal=FALSE ) { iclust(r.mat,nclusters,alpha,beta,beta.size,alpha.size,correct,correct.cluster,reverse,beta.min,output,digits,labels,cut,n.iterations,title,plot,weighted,cor.gen,SMC,purify,diagonal)} "iclust" <- function (r.mat,nclusters=0,alpha=3,beta=1,beta.size=4,alpha.size=3,correct=TRUE,correct.cluster=TRUE,reverse=TRUE,beta.min=.5,output=1,digits=2,labels=NULL,cut=0,n.iterations=0,title="ICLUST",plot=TRUE,weighted=TRUE,cor.gen =TRUE,SMC=TRUE,purify=TRUE,diagonal=FALSE ) {#should allow for raw data, correlation or covariances #ICLUST.options <- list(n.clus=1,alpha=3,beta=1,beta.size=4,alpha.size=3,correct=TRUE,correct.cluster=TRUE,reverse=TRUE,beta.min=.5,output=1,digits=2,cor.gen=TRUE) cl <- match.call() if(is.null(labels)) {labels <- colnames(r.mat)} else {if((length(labels)==1) && (!labels)) labels <- NULL} #modified October 11, 2011 ICLUST.debug <- FALSE ICLUST.options <- list(n.clus=nclusters,alpha=alpha,beta=beta,beta.size=beta.size,alpha.size=alpha.size,correct=correct,correct.cluster=correct.cluster,reverse=reverse,beta.min=beta.min,output=output,digits=digits,weighted=weighted,cor.gen=cor.gen,SMC=SMC) if(dim(r.mat)[1]!=dim(r.mat)[2]) {r.mat <- cor(r.mat,use="pairwise") } else {r.mat <- cov2cor(r.mat)} #cluster correlation matrices, find correlations if not square matrix -- added the conversion from covariances to correlations, March, 2012 if(!is.matrix(r.mat)) {r.mat <- as.matrix(r.mat)} # for the case where we read in a correlation matrix as a data.frame nvar <- dim(r.mat)[2] if(nvar < 3 ) {message("Cluster analysis of items is only meaningful for more than 2 variables. Otherwise, you will find one cluster that is just the composite of the two. Beta = Alpha = 2*r/(1+r). Have you made a mistake? \n Try calling the alpha function to give some trivial statistics.") stop() } if(is.null(colnames(r.mat))) {colnames(r.mat) <- paste("V",1:nvar,sep="")} if(is.null(rownames(r.mat))) {rownames(r.mat) <- paste("V",1:nvar,sep="")} #added 24/4/15 to check for bad data if(any(is.na(r.mat))) { bad <- TRUE tempr <-r.mat wcl <-NULL while(bad) { wc <- table(which(is.na(tempr), arr.ind=TRUE)) #find the correlations that are NA wcl <- c(wcl,as.numeric(names(which(wc==max(wc))))) tempr <- r.mat[-wcl,-wcl] if(any(is.na(tempr))) {bad <- TRUE} else {bad <- FALSE} } cat('\nLikely variables with missing values are ',colnames(r.mat)[wcl],' \n') stop("I am sorry: missing values (NAs) in the correlation matrix do not allow me to continue.\nPlease drop those variables and try again." ) } #added this 30/12/13 to improve speed if(ICLUST.options$SMC) {smc.items <- smc(r.mat)} else {smc.items <- rep(1,nvar)} iclust.results <- ICLUST.cluster(r.mat,ICLUST.options,smc.items) #ICLUST.cluster does all the work - the answers are in iclust.results loads <- cluster.loadings(iclust.results$clusters,r.mat,SMC=SMC) #summarize the results by using cluster.loadings -- these are the original values if(is.matrix(iclust.results$clusters) ) { eigenvalue <- diag(t(loads$pattern) %*% loads$loading) sorted.cluster.keys.ord <- order(eigenvalue,decreasing=TRUE) sorted.cluster.keys <- iclust.results$clusters[,sorted.cluster.keys.ord] loads <- cluster.loadings(sorted.cluster.keys,r.mat,SMC=SMC) #these are the original cluster loadings with clusters sorted by eigenvalues iclust.results$clusters <- sorted.cluster.keys cluster.beta <- iclust.results$results[colnames(sorted.cluster.keys),"beta"] names(cluster.beta) <- colnames(sorted.cluster.keys)} else {sorted.cluster.keys <- iclust.results$clusters} #these are fine fits <- cluster.fit(r.mat,as.matrix(loads$loadings),iclust.results$clusters,diagonal) #check this sorted <- ICLUST.sort(ic.load=loads,labels=labels,cut=cut) #sort the loadings (again?) This is done for sorted output if desired if(is.matrix(sorted.cluster.keys) ) {cluster.beta <- iclust.results$results[colnames(sorted.cluster.keys),"beta"] names(cluster.beta) <- colnames(sorted.cluster.keys) } else { number.of.clusters <- dim(iclust.results$results)[1] cluster.beta <- iclust.results$results[number.of.clusters,"beta"]} #now, iterate the cluster solution to clean it up (if desired) clusters <- as.matrix(iclust.results$clusters) #just in case there is only one cluster -- these are now sorted by eigen value if (dim(clusters)[2]==0 ) {warning('no items meet the specification time1')} old.clusters <- clusters old.fit <- fits$clusterfit if (ICLUST.debug) {print(paste('clusters ',clusters))} if(purify) {clusters <- factor2cluster(loads,cut=cut) #this will assign items to the clusters with the highest loadings -- might be different from original solution clusters <- as.matrix(clusters) } #in case only one cluster if (dim(clusters)[2]==0 ) {warning('no items meet the specification stage 2',immediate.=TRUE)} if (ICLUST.debug) {print(paste('clusters ',clusters)) print(paste('loads ',loads))} loads <- cluster.loadings(clusters,r.mat,SMC=SMC) if (n.iterations > 0) { #it is possible to iterate the solution to perhaps improve it for (steps in 1:n.iterations) { # loads <- cluster.loadings(clusters,r.mat,SMC=SMC) clusters <- factor2cluster(loads,cut=cut) if(dim(clusters)[2]!=dim(old.clusters)[2]) {change <- 999 loads <- cluster.loadings(clusters,r.mat,SMC=SMC) } else { change <- sum(abs(clusters)-abs(old.clusters)) } #how many items are changing? fit <- cluster.fit(r.mat,as.matrix(loads$loadings),clusters,diagonal) old.clusters <- clusters print(paste("iterations ",steps," change in clusters ", change, "current fit " , fit$clusterfit)) if ((abs(change) < 1) | (fit$clusterfit <= old.fit)) {break} #stop iterating if it gets worse or there is no change in cluster definitions old.fit <- fit$cluster.fit } } p.fit <- cluster.fit(r.mat,as.matrix(loads$loadings),clusters,diagonal) p.sorted <- ICLUST.sort(ic.load=loads,labels=labels,cut=cut,keys=TRUE) #at this point, the clusters have been cleaned up, but are not in a sorted order. Sort them purified <- cluster.cor(p.sorted$clusters,r.mat,SMC=SMC,item.smc=smc.items) class(loads$loadings) <- "loading" result <- list(title=title,clusters=iclust.results$clusters,corrected=loads$corrected,loadings=loads$loadings,pattern=loads$pattern,G6 = loads$G6,fit=fits,results=iclust.results$results,cor=loads$cor,Phi=loads$cor,alpha=loads$alpha,beta=cluster.beta,av.r = loads$av.r,size=loads$size, sorted=sorted, p.fit = p.fit,p.sorted = p.sorted,purified=purified,purify=purify,call=cl) #if(plot && requireNamespace('Rgraphviz')) {ICLUST.rgraph(result,labels=labels,title=title,digits=digits)} if(plot) iclust.diagram(result,labels=labels,main=title,digits=digits) class(result) <- c("psych","iclust") return(result) } psych/R/corr.test.R0000644000176200001440000001524213154323465013661 0ustar liggesusers"corr.test" <- function(x,y=NULL,use="pairwise",method="pearson",adjust="holm",alpha=.05,ci=TRUE){ cl <- match.call() if(is.null(y)) {r <- cor(x,use=use,method=method) sym <- TRUE n <- t(!is.na(x)) %*% (!is.na(x)) } else {r <- cor(x,y,use=use,method=method) sym=FALSE n <- t(!is.na(x)) %*% (!is.na(y))} if((use=="complete") | (min(n) == max(n))) n <- min(n) t <- (r*sqrt(n-2))/sqrt(1-r^2) p <- 2*(1 - pt(abs(t),(n-2))) se <- sqrt((1-r*r)/(n-2)) nvar <- ncol(r) p[p>1] <- 1 if (adjust !="none") { if (is.null(y)) {lp <- upper.tri(p) #the case of a symmetric matrix pa <- p[lp] pa <- p.adjust(pa,adjust) p[upper.tri(p,diag=FALSE)] <- pa } else { p[] <- p.adjust(p,adjust) #the case of an asymmetric matrix } } #find confidence intervals z <- fisherz(r[lower.tri(r)]) if(ci) { if (min(n) < 4) { warning("Number of subjects must be greater than 3 to find confidence intervals.") } if(adjust!="holm") {dif.corrected <- qnorm(1-alpha/(nvar*(nvar-1))) } else { # 1- alpha/2 /nvar *(nvar-1) /2) ord <- order(abs(z),decreasing=FALSE) #to find the HOlm correction, we need to order the size of the correlations dif.corrected <- qnorm(1-alpha/(2*order(ord))) } #holm alpha <- 1-alpha/2 #the raw alpha level for confidence intervals dif <- qnorm(alpha) if(sym) { if(is.matrix(n)) { sef <- 1/sqrt(n[lower.tri(n)] - 3) } else { sef <- 1/sqrt(n - 3)} lower <- fisherz2r(z - dif * sef) upper <- fisherz2r(z + dif * sef) lower.corrected <- fisherz2r(z - dif.corrected * sef) upper.corrected <- fisherz2r(z + dif.corrected * sef) ci <- data.frame(lower=lower,r=r[lower.tri(r)],upper=upper,p=p[lower.tri(p)]) ci.adj <- data.frame(lower.adj=lower.corrected,upper.adj=upper.corrected) cnR <- abbreviate(colnames(r),minlength=5) k <- 1 for(i in 1:(nvar-1)) {for (j in (i+1):nvar) { rownames(ci)[k] <- paste(cnR[i],cnR[j],sep="-") k<- k +1 }} } else { #non symmetric case n.x <- NCOL(x) n.y <- NCOL(y) z <- fisherz(r) if(adjust != "holm") {dif.corrected <- qnorm(1-(1-alpha)/(n.x * n.y)) #we have already adjust alpha by 2 } else {ord <- order(abs(z),decreasing=FALSE) #to find the HOlm correction, we need to order the size of the correlations dif.corrected <- qnorm(1-(1-alpha)/(order(ord))) } sef <- 1/sqrt(n - 3) lower <- as.vector(fisherz2r(z - dif * sef)) upper <- as.vector(fisherz2r(z + dif * sef)) lower.corrected <- fisherz2r(z - dif.corrected * sef) upper.corrected <- fisherz2r(z + dif.corrected * sef) ci <- data.frame(lower=lower,r=as.vector(r),upper=upper,p=as.vector(p)) ci.adj <- data.frame(lower.adj=as.vector(lower.corrected),r=as.vector(r),upper.adj= as.vector(upper.corrected)) cnR <- abbreviate(rownames(r),minlength=5) cnC <- abbreviate(colnames(r),minlength=5) k <- 1 for(i in 1:ncol(y)) {for (j in 1:ncol(x)) { rownames(ci)[k] <- paste(cnR[j],cnC[i],sep="-") k<- k +1 }} } } else {ci <- NULL} result <- list(r = r,n=n,t=t,p=p,se=se,sef=sef, adjust=adjust,sym =sym,ci=ci,ci.adj=ci.adj, Call=cl) class(result) <- c("psych", "corr.test") return(result) } #modified 1/4/14 to report sample size once if they are all equal #modified 3/12/14 to report confidence intervals (suggested by Alexander Weiss) #modified 3/27/14 to correct bug detected by Clemens Fell #modified 3/27/14 to correct bug reported by Louis-Charles Vannier #modified 2/21/15 to make confidence intervals an option (incredible decrease in speed if doing cis) #modified 8/24/17 to include Bonferoni adjusted confidence intervals "corr.p" <- function(r,n,adjust="holm",alpha=.05) { cl <- match.call() if(missing(n)) stop("The number of subjects must be specified") sym <- FALSE t <- (r*sqrt(n-2))/sqrt(1-r^2) p <- 2*(1 - pt(abs(t),(n-2))) p[p>1] <- 1 if (adjust !="none") { if(isSymmetric(unclass(p))) {sym <- TRUE lp <- upper.tri(p) #the case of a symmetric matrix pa <- p[lp] pa <- p.adjust(pa,adjust) p[upper.tri(p,diag=FALSE)] <- pa } else { p[] <- p.adjust(p ,adjust) #the case of an asymmetric matrix sym <- FALSE} } nvar <- ncol(r) if(sym) {z <- fisherz(r[lower.tri(r)])} else {z <- fisherz(r) n.x <- NCOL(r) n.y <- NROW(r) if(adjust != "holm") {dif.corrected <- qnorm((1-alpha/2)/(n.x * n.y)) # adjust alpha by 2 } else {ord <- order(abs(z),decreasing=FALSE) #to find the Holm correction, we need to order the size of the correlations dif.corrected <- qnorm(1-alpha/(2*(order(ord)))) }} if (min(n) < 4) { warning("Number of subjects must be greater than 3 to find confidence intervals.") } if(sym & is.matrix(n)) { se <- 1/sqrt(n[lower.tri(n)] - 3) } else { se <- 1/sqrt(n - 3)} if(sym) { dif.corrected <- qnorm(1-alpha/(nvar*(nvar-1))) } # 1- alpha/2 /nvar *(nvar-1) /2 alpha <- 1-alpha/2 dif <- qnorm(alpha) lower <- fisherz2r(z - dif * se) upper <- fisherz2r(z + dif * se) lower.corrected <- fisherz2r(z - dif.corrected * se) upper.corrected <- fisherz2r(z + dif.corrected * se) if(sym) {ci <- data.frame(lower=lower,r=r[lower.tri(r)],upper=upper,p=p[lower.tri(p)]) ci.adj <- data.frame(lower.adj = as.vector(lower.corrected),r=r[lower.tri(r)],upper.adj=as.vector(upper.corrected))} else { ci <- data.frame(lower=as.vector(lower),r=as.vector(r),upper=as.vector(upper),p=as.vector(p)) ci.adj <- data.frame(lower.adj =as.vector( lower.corrected),r=as.vector(r),upper.adj= as.vector(upper.corrected))} cnR <- abbreviate(colnames(r),minlength=5) rnR <- abbreviate(rownames(r),minlength=5) if(sym) {k <- 1 for(i in 2:nvar) {for (j in 1:(i-1)) { rownames(ci)[k] <- paste(cnR[j],cnR[i],sep="-") k<- k +1 } } } else {k <- 1 for(i in 1:ncol(r)) {for (j in 1:nrow(r)) { rownames(ci)[k] <- paste(rnR[j],cnR[i],sep="-") k<- k +1 }} } result <- list(r = r,n=n,t=t,p=p,sym=sym,adjust=adjust,ci=ci,ci.adj = ci.adj,Call=cl) class(result) <- c("psych", "corr.p") return(result) } #revised March 28, 2014 to be compatible with corr.test #revised August 28, 2017 to include holm and bonferroini adjusted confidence intervals #could be replaced with the following corr.test1 <- function(x,y=NULL,use="pairwise",method="pearson",adjust="holm",alpha=.05){ cl <- match.call() if(is.null(y)) {r <- cor(x,use=use,method=method) sym <- TRUE n <- t(!is.na(x)) %*% (!is.na(x)) } else {r <- cor(x,y,use=use,method=method) sym=FALSE n <- t(!is.na(x)) %*% (!is.na(y))} if((use=="complete") | (min(n) == max(n))) n <- min(n) result <- corr.p(r,n,adjust=adjust,alpha=alpha) result$Call<- cl class(result) <- c("psych", "corr.test") return(result) } psych/R/polychor.matrix.R0000644000176200001440000000111012154733570015066 0ustar liggesusers "Yule2poly.matrix" <- function(x,v) { .Deprecated("Yule2tetra", msg="This function has been replaced by Yule2tetra") } "phi2poly.matrix" <- function(x,v) { .Deprecated("phi2tetra",msg="This function has been replaced by phi2tetra") } "Yule2phi.matrix" <- function(x,v) { .Deprecated("Yule2phi",msg="This function has been replaced by Yule2phi") } #revised August 29, 2010 "poly.mat" <- function(x,short=TRUE,std.err=FALSE,ML=FALSE) { .Deprecated("polychoric",msg="poly.mat is deprecated. Please use the polychoric function instead.") return(polychoric(x)) } psych/R/multi.hist.R0000644000176200001440000000550413074475333014041 0ustar liggesusers"multi.hist" <- function(x,nrow=NULL,ncol=NULL,density=TRUE,freq=FALSE,bcol="white",dcol=c("black","black"),dlty=c("dashed","dotted"),main="Histogram, Density, and Normal Fit",breaks=21,...) { if((!is.matrix(x)) & (!is.data.frame(x))) {nvar <- 1 x <- as.matrix(x,ncol=1) } else { x <- as.data.frame(x) nvar <- dim(x)[2] } #number of variables if (length(dcol)<2) dcol <- c(dcol,dcol) if(!density & (main == "Histogram, Density, and Normal Fit")) main = "Histogram" nsize=ceiling(sqrt(nvar)) #size of graphic if(is.null(nrow) ) {nrow <- nsize} else {ncol <- nvar/nrow} if(is.null(ncol)) {ncol <- ceiling(nvar/nsize )} else {nrow <- nvar/ncol} old.par <- par(no.readonly = TRUE) # all par settings which can be changed par(mfrow=c(nrow,ncol)) #set new graphic parameters for (i in 1:nvar) { xlab=names(x)[i] #get the names for the variables if(density) {histo.density(x[,i],xlab=xlab,main=main,freq=freq,bcol,dcol=dcol,dlty=dlty,breaks=breaks,...)} else { hist(x[,i],main=main,xlab=xlab,freq=freq,bcol,dcol=dcol,dlty=dlty,breaks=breaks,...)} } #draw the histograms for each variable on.exit(par(old.par)) #set the graphic parameters back to the original } "histo.density" <- function(x,main="Histogram, Density, and Normal Fit",freq=FALSE,xlab=NULL,bcol="white",dcol=c("black","black"),dlty=c("dashed","dotted"),breaks=21,...) { h <- hist(x,plot=FALSE,breaks=breaks) m1 <- mean(x,na.rm=TRUE) s1 <- sd(x,na.rm=TRUE) d <- density(x,na.rm=TRUE) if(freq) {ymax <- max(h$count)} else {ymax <- max(h$density)} dmax <- max(d$y) ymax <- max(ymax,dmax) plot(h,freq=freq,ylim=c(0,ymax*1.2),main=main,xlab=xlab,col=bcol,...) if(!freq) {lines(d,lty=dlty[1],col=dcol[1],...) curve(dnorm(x,m1,s1),add=TRUE,lty=dlty[2],col=dcol[2],...)} else { lines(d$x,lty=dlty[1],col=dcol[1],...)} } "histBy" <- function(x,var,group,density=TRUE,alpha=.5,breaks=21,col,xlab,main="Histograms by group",...) { if(missing(xlab)) xlab = var if(missing(group)) { if(missing(col)) col12 <- col2rgb("blue",TRUE)/255 col <- rgb(col12[1],col12[2],col12[3],alpha) hist(x[,var],xlab=xlab,main=main,breaks=breaks,freq=FALSE,col=col,...) d <- density(x[,var],na.rm=TRUE) if(density) lines(d) } else { #the normal case gr <- x[group] grp<- table(gr) if(missing(col)) col <- rainbow(length(grp)) col12 <- col2rgb(col,TRUE)/255 col <- rgb(col12[1,],col12[2,],col12[3,],alpha) xlim=range(x[var],na.rm=TRUE) grp <- names(grp) d <- density(x[(gr==grp[1]),var],na.rm=TRUE) hist(x[(gr==grp[1]),var],xlim=xlim,col=col[1],breaks=breaks,freq=FALSE,xlab=xlab,main=main,...) if(density) lines(d) for(i in (2:length(grp))) { hist(x[(gr==grp[i]),var],col=col[i],freq=FALSE,breaks=breaks,add=TRUE,...) d <- density(x[(gr==grp[i]),var],na.rm=TRUE) if(density) lines(d) }} }psych/R/r.test.R0000644000176200001440000000532712436366710013162 0ustar liggesusers "r.test" <- function(n,r12, r34=NULL, r23=NULL,r13=NULL,r14=NULL,r24=NULL,n2=NULL,pooled=TRUE, twotailed=TRUE) { cl <- match.call() if(is.null(r34) & is.null(r13) & is.null(r23)) { #test for significance of r t <- r12*sqrt(n-2)/sqrt(1-r12^2) p <- 1-pt(abs(t),n-2) if(twotailed) p <- 2*p ci <- r.con(r12,n) result <- list(Call=cl,Test="Test of significance of a correlation",t=t,p=p,ci=ci) } else {if(is.null(r23)) { #compare two independent correlations xy.z <- 0.5*log((1+r12)/(1-r12)) xz.z <- 0.5*log((1+r34)/(1-r34)) if(is.null(n2)) n2 <- n se.diff.r <- sqrt(1/(n-3) + 1/(n2-3)) diff <- xy.z - xz.z z <- abs(diff/se.diff.r) p <- (1-pnorm(z )) if(twotailed) p <- 2*p result <- list(Call=cl,Test="Test of difference between two independent correlations",z=z,p=p) } else { if (is.null(r14)) {#compare two dependent correlations case 1 #here we do two tests of dependent correlations #figure out whether correlations are being specified by name or order if(!is.null(r34)) {if(is.null(r13)) {r13 <- r34} } diff <- r12-r13 determin=1-r12*r12 - r23*r23 - r13*r13 + 2*r12*r23*r13 av=(r12+r13)/2 cube= (1-r23)*(1-r23)*(1-r23) t2 = diff * sqrt((n-1)*(1+r23)/(((2*(n-1)/(n-3))*determin+av*av*cube))) p <- pt(abs(t2),n-3,lower.tail=FALSE) #changed to n-3 on 30/11/14 if(twotailed) p <- 2*p #the call is ambiguous, we need to clarify it cl <- paste("r.test(n = ",n, ", r12 = ",r12,", r23 = ",r23,", r13 = ",r13, ")") result <- list(Call=cl,Test="Test of difference between two correlated correlations",t=t2,p=p) } else { #compare two dependent correlations, case 2 z12 <- fisherz(r12) z34 <- fisherz(r34) pooledr <- (r12+r34)/2 if (pooled) { r1234= 1/2 * ((r13 - pooledr*r23)*(r24 - r23*pooledr) + (r14 - r13*pooledr)*(r23 - pooledr*r13) +(r13 - r14*pooledr)*(r24 - pooledr*r14) + (r14 - pooledr*r24)*(r23 - r24*pooledr)) z1234 <- r1234/((1-pooledr^2)*(1-pooledr^2))} else { r1234= 1/2 * ((r13 - r12*r23)*(r24 - r23*r34) + (r14 - r13*r34)*(r23 - r12*r13) +(r13 - r14*r34)*(r24 - r12*r14) + (r14 - r12*r24)*(r23 - r24*r34)) z1234 <- r1234/((1-r12^2)*(1-r34^2))} ztest <- (z12-z34)* sqrt(n-3) /sqrt(2*(1-z1234)) z <- ztest p <- (1-pnorm(abs(z) )) if(twotailed) p <- 2*p result <- list(Call=cl,Test="Test of difference between two dependent correlations",z=z,p=p) } } } class(result) <- c("psych", "r.test") return(result) }psych/R/fisherz.R0000644000176200001440000000116613101176317013402 0ustar liggesusers"fisherz" <- function(rho) {0.5*log((1+rho)/(1-rho)) } #converts r to z "fisherz2r" <- function(z) {(exp(2*z)-1)/(1+exp(2*z)) } #converts back again "r2d" <- function(rho) {2*rho/sqrt(1-rho^2)} "d2r" <- function(d) {d/sqrt(d^2+4)} "t2r" <- function(t,df) {sqrt(t^2/(t^2 + df))} #fixed April 27, 2017 "g2r" <- function(g,df,n) {g/sqrt(g^2 + 4*df/n)} "chi2r" <- function(chi2,n) {sqrt(chi2/n)} "r2chi" <- function(rho,n) { chi2 <-( rho^2 *n)} "cor2cov" <- "r2c" <- function(rho,sigma) { sigma <- diag(sigma) cov <- sigma %*% rho %*% sigma colnames(cov) <- rownames(cov) <- colnames(rho) return(cov)} psych/R/fiml.R0000644000176200001440000001442712252364431012665 0ustar liggesusers#December 12, 2013 #taken almost completely from the matching lavaan functions #which unfortunately, are not public functions #some of the functionality of lavaan has been dropped #The relevant functions from lavaan are #getMissingPatterns #getMissingPatternStats #estimate.moments.fiml #minimize.this.function #first.derivative.param # first.derivative.param.numerical #estimator.FIML #derivative.FIML #vech corFiml <- function (x, covar = FALSE,show=FALSE) { if (!is.matrix(x)) x <- as.matrix(x) Mp <- getMissingPatterns(x) if (length(Mp$empty.idx) > 0L) { x <- x[-Mp$empty.idx, , drop = FALSE] } mpat <- getMissingPatternStats(X = x, Mp = Mp) if(show) {return(Mp$pat) } else { moments <- estimate.moments.fiml(X = x, M = mpat) colnames(moments$sigma) <- rownames(moments$sigma) <- colnames(x) cor <- cov2cor(moments$sigma) if (covar) { return(list(mean = moments$mu, cor = cor, cov = moments$sigma, fx = moments$fx)) } else {return(cor)} } } getMissingPatterns <- function (X) { nobs <- nrow(X) nvar <- ncol(X) MISSING <- 1L * is.na(X) #convert to number coverage <- crossprod(1 - MISSING)/nobs #this next step looks for the missing cases and removes someone with all missing id <- apply(MISSING, MARGIN = 1, function(x) { if (sum(x) == length(x)) { out <- "empty" } else { paste(x, collapse = "") } }) empty.idx <- which(id == "empty") if (length(empty.idx) > 0) { MISSING <- MISSING[-empty.idx, ] X <- X[-empty.idx, ] id <- id[-empty.idx] nobs <- nobs - length(empty.idx) } TABLE <- sort(table(id), decreasing = TRUE) order <- names(TABLE) npatterns <- length(TABLE) pat <- 1L - MISSING[match(order, id), , drop = FALSE] storage.mode(pat) <- "logical" row.names(pat) <- as.character(TABLE) out <- list(nobs = nobs, nvar = nvar, coverage = coverage, id = id, npatterns = npatterns, order = order, pat = pat, empty.idx = empty.idx) out } getMissingPatternStats <- function (X = NULL, Mp = NULL) { npatterns <- Mp$npatterns id <- Mp$id order <- Mp$order pat <- Mp$pat data <- vector("list", length = npatterns) for (p in 1:npatterns) { row.idx <- which(id == order[p]) nobs <- length(row.idx) Xp <- X[row.idx, pat[p, ], drop = FALSE] if (nobs > 1) { M <- colMeans(Xp) S <- crossprod(Xp)/nobs - tcrossprod(M) } else { S <- 0 M <- as.numeric(Xp) } data[[p]] <- list(X = Xp, SX = S, MX = M, nobs = nobs, var.idx = pat[p, ]) } data } estimate.moments.fiml <- function (X = NULL, M = NULL) { nvar <- ncol(X) pstar <- nvar * (nvar + 1)/2 start.cov <- cov(X, use = "p") dimnames(start.cov) <- NULL start.mean <- apply(X, 2, mean, na.rm = TRUE) names(start.mean) <- NULL lower.idx <- which(lower.tri(start.cov, diag = TRUE)) upper.idx <- which(upper.tri(t(start.cov), diag = TRUE)) x2param <- function(x) { mu <- x[1:nvar] sigma.el <- x[-(1:nvar)] sigma <- matrix(0, nvar, nvar) sigma[lower.idx] <- sigma.el sigma[upper.idx] <- t(sigma)[upper.idx] list(mu = mu, sigma = sigma) } minimize.this.function <- function(x) { out <- x2param(x) ev <- eigen(out$sigma)$values if (any(ev < 0)) { return(Inf) } fx <- estimator.FIML(Sigma.hat = out$sigma, Mu.hat = out$mu, M = M) fx } first.derivative.param <- function(x) { out <- x2param(x) dx.out <- derivative.FIML(Sigma.hat = out$sigma, Mu.hat = out$mu, M = M) dx <- c(dx.out$dx.mu, vech(dx.out$dx.Sigma)) dx } start.x <- c(start.mean, vech(start.cov)) iter.max <- 500 optim.out <- nlminb(start = start.x, objective = minimize.this.function, gradient = first.derivative.param, control = list(iter.max = iter.max, eval.max = iter.max * 2, trace = 0)) x <- optim.out$par fx <- optim.out$objective out <- x2param(x) sigma <- out$sigma mu <- out$mu list(sigma = sigma, mu = mu, fx = fx) } estimator.FIML <- function (Sigma.hat = NULL, Mu.hat = NULL, M = NULL, h1 = NULL) { npatterns <- length(M) fx.p <- numeric(npatterns) w.p <- numeric(npatterns) for (p in 1:npatterns) { SX <- M[[p]][["SX"]] MX <- M[[p]][["MX"]] w.p[p] <- nobs <- M[[p]][["nobs"]] var.idx <- M[[p]][["var.idx"]] Sigma.inv <- inv.chol(Sigma.hat[var.idx, var.idx], logdet = TRUE) Sigma.log.det <- attr(Sigma.inv, "logdet") Mu <- Mu.hat[var.idx] TT <- SX + tcrossprod(MX - Mu) trace <- sum(Sigma.inv * TT) fx.p[p] <- Sigma.log.det + trace } fx <- weighted.mean(fx.p, w = w.p) if (!is.null(h1)) { fx <- fx - h1 if (fx < 0) fx <- 0 } fx } inv.chol <- function (S, logdet = FALSE) { cS <- chol(S) S.inv <- chol2inv(cS) if (logdet) { attr(S.inv, "logdet") <- sum(log(diag(cS)^2)) } S.inv } derivative.FIML <- function (Sigma.hat, Mu.hat, M) { ntotal <- sum(sapply(M, "[[", "nobs")) nvar <- length(Mu.hat) npatterns <- length(M) dx.Sigma <- matrix(0, nvar, nvar) dx.Mu <- matrix(0, nvar, 1) for (p in 1:npatterns) { SX <- M[[p]][["SX"]] MX <- M[[p]][["MX"]] nobs <- M[[p]][["nobs"]] var.idx <- M[[p]][["var.idx"]] Sigma.inv <- inv.chol(Sigma.hat[var.idx, var.idx], logdet = FALSE) Mu <- Mu.hat[var.idx] TT <- SX + tcrossprod(MX - Mu) dx.Mu[var.idx, 1] <- (dx.Mu[var.idx, 1] + nobs/ntotal * -2 * t(t(MX - Mu) %*% Sigma.inv)) dx.Sigma[var.idx, var.idx] <- (dx.Sigma[var.idx, var.idx] - nobs/ntotal * 2 * (Sigma.inv %*% (TT - Sigma.hat[var.idx, var.idx]) %*% Sigma.inv)) } diag(dx.Sigma) <- diag(dx.Sigma)/2 out <- list(dx.mu = dx.Mu, dx.Sigma = dx.Sigma) out } vech <- function (S, diagonal = TRUE) { ROW <- row(S) COL <- col(S) if (diagonal) S[ROW >= COL] else S[ROW > COL] } psych/R/fa.ci.R0000644000176200001440000000256512540124600012706 0ustar liggesusers#revised 11/5/14 to handle sorted fa data with bootstrapped confidence intervals "print.psych.fa.ci" <- function(x,digits=2,all=FALSE,...) { cat("Factor Analysis with confidence intervals using method = ",x$f$fm ) # cat("\nCall: ") print(x$Call) class(x) <- c("psych","fa") print(x) nfactors <-dim(x$loadings)[2] c("\n Confidence intervals\n") if(is.null(x[["ci"]])) { lc <- lci <- data.frame(unclass(x$loadings),x$cis$ci)} else { lc <- lci <- data.frame(unclass(x$loadings),x$ci)} for(i in 1:nfactors) { lci[,(i-1)*3 +2 ] <- lc[,i] lci[,(i-1)*3 +1 ] <- lc[,i+nfactors] lci[,(i-1)*3 +3 ] <- lc[,i+nfactors*2] } colnames(lci) <- paste(rep(c("low","coeff","upper"),nfactors),sep="") for(i in 1:nfactors) { colnames(lci)[(i-1)*3+2] <- colnames(x$loadings)[i] } cat("\n Coefficients and bootstrapped confidence intervals \n") print (round(lci,digits=digits)) if(!is.null(x$Phi)) { phis <- x$Phi[lower.tri(x$Phi)] cci <- data.frame(lower=x$cis$ci.rot$lower,estimate = phis,upper= x$cis$ci.rot$upper) cnR <- abbreviate(colnames(x$loadings),minlength=5) k <- 1 for(i in 1:(nfactors-1)) {for (j in (i+1):nfactors) { rownames(cci)[k] <- paste(cnR[i],cnR[j],sep="-") k<- k +1 }} #added 10/4/14 cat("\n Interfactor correlations and bootstrapped confidence intervals \n") print(cci,digits=digits)} } psych/R/mat.sqrt.R0000644000176200001440000000035011617742153013502 0ustar liggesusers"mat.sqrt" <- function(x) { e <- eigen(x) sqrt.ev <- sqrt(e$values) #need to put in a check here for postive semi definite inv.evec <- solve(e$vectors) result <- e$vectors %*% diag(sqrt.ev) %*% inv.evec result} psych/R/omega.bifactor.R0000644000176200001440000000415011631565315014612 0ustar liggesusers"omega.bifactor" <- function(r,nfactors=3,rotate="bifactor",n.obs = NA,flip=TRUE,key=NULL,title="Omega from bifactor",...) { cl <- match.call() if(dim(r)[2] != dim(r)[1]) {n.obs <- dim(r)[1] r <- cor(r,use="pairwise")} nvar <- dim(r)[2] if(is.null(colnames(r))) { rownames(r) <- colnames(r) <- paste("V",1:nvar,sep="") } r.names <- colnames(r) if (!is.null(key)) { r <- diag(key) %*% r %*% diag(key) colnames(r) <- r.names #flip items if we choose to do so flip <- FALSE #we do this if we specify the key } else {key <- rep(1,nvar) } f <- fa(r,nfactors=nfactors,rotate=rotate,n.obs = n.obs) if (flip) { #should we think about flipping items ? key <- sign(f$loadings[,1]) key[key==0] <- 1 # a rare and weird case where the gloading is 0 and thus needs not be flipped if (sum(key) < nvar) { #some items have negative g loadings and should be flipped r <- diag(key) %*% r %*% diag(key) #this is just flipping the correlation matrix so we can calculate alpha f$loadings <- diag(key) %*% f$loadings signkey <- strtrim(key,1) signkey[signkey=="1"] <- "" r.names <- paste(r.names,signkey,sep="") colnames(r) <- rownames(r) <- r.names rownames(f$loadings) <- r.names } } Vt <- sum(r) #find the total variance in the scale Vitem <- sum(diag(r)) gload <- f$loadings[,1] gsq <- (sum(gload))^2 uniq <- nvar - tr(f$loadings %*% t(f$loadings)) om.tot <- (Vt-uniq)/Vt om.limit <- gsq/(Vt-uniq) alpha <- ((Vt-Vitem)/Vt)*(nvar/(nvar-1)) sum.smc <- sum(smc(r)) lambda.6 <- (Vt +sum.smc-sum(diag(r)))/Vt omega_h= gsq/Vt omega <-list(omega_h= omega_h,alpha=alpha,G6 = lambda.6,omega.tot =om.tot ,key = key,title=title,f=f) class(omega) <- c("psych","bifactor") return(omega) } psych/R/cluster.loadings.R0000644000176200001440000000632611335560477015226 0ustar liggesuserscluster.loadings <- function (keys, r.mat, correct = TRUE,SMC=TRUE) { cl <- match.call() if (!is.matrix(keys)) { keys <- as.matrix(keys)} r.mat[is.na(r.mat)] <- -9999999 item.sd <- sqrt(diag(r.mat)) item.covar <- r.mat %*% keys #item by cluster covariances covar <- t(keys) %*% item.covar #variance/covariance of clusters var <- diag(covar) sd.inv <- 1/sqrt(var) #items corrected for communality lead to the Guttman G6 estimate if(SMC) {r.smc <- smc(r.mat) r.smc[r.smc < 0 ] <- 1 #for a very weird condition diag(r.mat) <- r.smc } else { diag(r.mat) <- 0 item.max <- apply(r.mat,1,max) diag(r.mat) <- item.max} c.item.covar <- r.mat %*% keys #this uses the communality estimate and thus corrects for item overlap c.covar <- t(keys) %*% c.item.covar c.var <- diag(c.covar) G6 <- c.var/var n.keys <- dim(keys)[2] if(n.keys >1) { c.item.cor <- c.item.covar %*% sqrt(diag(1/c.var))/item.sd } else {c.item.cor <- c.item.covar/sqrt(c.var*item.sd) } key.count <- diag(t(keys) %*% keys) #how many items in each cluster? if (correct) { cluster.correct <- diag((key.count/(key.count - 1))) for (i in 1:dim(keys)[2]) { if (key.count[i]<2 ) { #fix the case of 1 item keys cluster.correct[i,i] <- 1 } else { cluster.correct[i,i] <- key.count[i]/(key.count[i]-1) item.covar[,i] <- item.covar[,i] - keys[,i]} #subtract the variance of the item } #i loop correction.factor <- keys %*% cluster.correct #put back average correlation for the item if it loads on the key correction.factor[ correction.factor < 1] <- 1 item.covar <- item.covar * correction.factor } ident.sd <- diag(sd.inv, ncol = length(sd.inv)) c.correl <- ident.sd %*% covar %*% ident.sd p.loading <- try(c.item.cor %*% solve(c.correl)) if(class(p.loading)=="try-error") {message('the correlation matrix was singular, pattern loadings not found, proceed with caution') p.loading <- c.item.cor} c.item.cor[abs(c.item.cor) > 99999] <- NA c.correl[abs(c.correl) > 99999] <- NA key.alpha <- ((var - key.count)/var) * (key.count/(key.count - 1)) key.alpha[is.nan(key.alpha)] <- 1 key.alpha[!is.finite(key.alpha)] <- 1 key.av.r <- key.alpha/(key.count - key.alpha*(key.count-1)) #alpha 1 = average r colnames(c.item.cor) <- colnames(keys) colnames(p.loading) <- colnames(keys) colnames(c.correl) <- colnames(keys) rownames(c.correl) <- colnames(keys) rownames(c.item.cor) <- rownames(r.mat) if( ncol(keys) >1) {cluster.corrected <- correct.cor(c.correl, t(key.alpha))} else {cluster.corrected <- c.correl} results <- list(loadings=c.item.cor,pattern=p.loading, cor=c.correl,corrected=cluster.corrected, sd = sqrt(var), alpha = key.alpha,av.r = key.av.r, size = key.count,G6=G6,Call=cl) class(results) <- c("psych","cluster.loadings") return(results) } psych/R/alpha.scale.R0000644000176200001440000000051011162161010014060 0ustar liggesusers"alpha.scale" <- function (x,y) #find coefficient alpha given a scale and a data.frame of the items in the scale { n=length(y) #number of variables Vi=sum(diag(var(y,na.rm=TRUE))) #sum of item variance Vt=var(x,na.rm=TRUE) #total test variance ((Vt-Vi)/Vt)*(n/(n-1))} #alpha psych/R/sim.multilevel.R0000644000176200001440000001267613064052166014714 0ustar liggesuserssim.multilevel <- function(nvar=9,ngroups=4,ncases=16,rwg,rbg,eta) { e.wg <- eigen(rwg) v.wg <- pmax(e.wg$values,0) etabg <- sqrt(1-eta^2) e.bg <- eigen(rbg) v.bg <- pmax(e.bg$values,0) wg<- matrix(rnorm(nvar*ncases),ncases) wg <- scale(wg) wg <- t(e.wg$vectors %*% sqrt(diag(v.wg)) %*% t(wg)) bg <- matrix(rnorm(nvar*ngroups),ngroups) bg <- scale(bg) bg <- e.bg$vectors %*% sqrt(diag(v.bg)) %*% t(bg) bg <- matrix(rep(bg, (ncases/ngroups)),nrow=ncases,byrow=TRUE) gr <- rep((1:ngroups),(ncases/ngroups)) XY <- wg %*% diag(eta^2) + bg %*% diag(etabg^2) XY <- cbind(gr,XY) colnames(XY) <- c("Group",paste("V",1:nvar,sep="")) result <- list(wg=wg,bg=bg,xy=XY) } #Created January 28, 2017 #meant to simulate a number of within subject multilevel models #Created January 28, 2017 #meant to simulate a number of within subject multilevel models "sim.multi" <- function(n.obs=4,nvar = 2,nfact=2, ntrials=96,days=16,mu=0,sigma=1,fact=NULL,loading=.9,phi=0,phi.i = NULL,beta.i=0,mu.i=0,sigma.i = 1,sin.i=0,cos.i=0,AR1=0,f.i=NULL,plot=TRUE) { if(missing(n.obs)) n.obs=4 X <- list() Xjk <- matrix(NA,ncol=nvar +nfact,nrow=ntrials) if(missing(mu) ) mu <- rep(0,nvar) if(missing(sigma)) sigma <- rep(1,nvar) #if(missing(phi.i)) {phi.i <- phi} if(missing(beta.i)) { beta.i <- matrix(0,ncol=nvar,nrow=n.obs) } else { if(length(beta.i) < n.obs) {beta.i <- matrix(beta.i,ncol=nvar,nrow=n.obs,byrow=TRUE) } } if(missing(mu.i)) mu.i <- matrix(0,ncol=nvar,nrow=n.obs) if(missing(sigma.i)) {sigma.i <- matrix(1,ncol=nvar,nrow=n.obs)} else { if(length(sigma.i) < n.obs) {sigma.i <- matrix(sigma.i,ncol =nvar,nrow=n.obs,byrow=TRUE)} } if(missing(sin.i)) {sin.i <- matrix(0,ncol=nvar,nrow=n.obs)} else { if (length(sin.i) < n.obs) {sin.i <- matrix(sin.i,ncol=nvar,nrow=n.obs,byrow= TRUE) } } if(missing(cos.i)) {cos.i <- matrix(0,ncol=nvar,nrow=n.obs) } else { if (length(cos.i) < n.obs) {cos.i <- matrix(cos.i,ncol=nvar,nrow=n.obs,byrow= TRUE) } } if(missing(AR1)) {AR1 <- matrix(0,ncol=nvar,nrow=n.obs) } else { if (length(AR1) < n.obs) {AR1 <- matrix(AR1,ncol=nfact,nrow=n.obs,byrow= TRUE) } } if(is.null(phi)) {phi <-diag(1,nfact) } else {phi <- matrix(phi,ncol=nfact,nrow=nfact) diag(phi) <- 1} if(!is.null(phi.i)) {if(length(phi.i) < n.obs) {phi.i <- rep(phi.i,n.obs/length(phi.i))} } if(nfact > 1) { if(is.null(fact)) { #these are the group level factor loadings fact <- matrix(0,nrow=nvar,ncol=nfact) # fact[ ] =((( col(fact)+ row(fact)) %% nfact )) * loading fact[((round(row(fact)/nvar))+1) == col(fact)] <- loading #just works for two factors! #for(j in 1:nfact) { # fact[((j-1)*nvar/nfact +1):j*nvar/nfact,j] <- loading # } fact<- (fact %*% phi )}} else { fact <- matrix(loading,ncol=1,nrow=nvar) } if(is.null(f.i)) { f.i <- list() for (i in 1:n.obs) { f.i[[i]] <- fact } } trials.day <- ntrials/days hours <- 24/trials.day time <- seq(hours,days * trials.day*hours,hours) t.radian <- time * pi /12 for (i in 1:n.obs) { xij <- rnorm((nvar + nfact),mu,sigma) #between subjects for(j in 1:nfact) { #first generate the factor scores that have a within subject model error <- rnorm(ntrials,mu.i[i,j],sigma.i[i,j]) lagerror <- c(0, error[1:(ntrials-1)]) Xjk[,j] <- xij[j] + mu[j] +beta.i[i,j] *time/ntrials + sin(t.radian)*sin.i[i,j] + cos(t.radian)*cos.i[i,j] + error + AR1[i,j] * lagerror } #factor scores are the first nfact elemements of Xjk #now, generate item scores if(is.null(phi.i)) {phi.ind <- diag(1,nfact) } else {phi.ind <- matrix(phi.i[i],nfact,nfact) diag(phi.ind) <- 1} Xjk[,1:nfact] <- Xjk [,1:nfact] %*% phi.ind #these are the factor scores for the ith subject for(k in 1:nvar) { uniq <- sqrt(1 - sum(f.i[[i]][k,]^2)) #the uniqueness is 1-h2 uniq.err <- rnorm(ntrials,0,uniq) score <- 0 for (j in 1:nfact) { score <- score + Xjk[,j] * f.i[[i]][k,j] #these are orthogonal factor scores * loadings -- can add phi into this } Xjk[,nfact + k ] <- score + uniq.err #these are the variable scores } X[[i]] <- Xjk #save them for this subject } #now, lets summarize what we have done DV <- unlist(X) #This organizes the data with a separate column for each variable for analysis by statsBy dv.a <- array(DV,dim=c(ntrials,nvar+ nfact,n.obs)) dv.m <-NULL for(i in 1:(nvar+nfact)) { dv.m <- cbind(dv.m,as.vector(dv.a[,i,])) } dv.df <- data.frame(dv.m,time = rep(time,n.obs),id=rep(1:n.obs,each=ntrials)) colnames(dv.df)[1:(nfact+nvar)] <- c(paste0("F",1:nfact),paste0("V",1:nvar)) # #However, if we want to plot it, we need to rearrange a bit more if(plot) { IV <- NULL #to get around the problem that RCMD check thinks this is global vars <- c(paste0("F",1:nfact),paste0("V",1:nvar)) select <- rep(NA,nvar * ntrials * n.obs) #we use select to pick out the variables, but leave the factors kount <- ntrials*nfact for(i in 1:n.obs) { select[(1:(ntrials*nvar)+(i-1) * ntrials *nvar)] <- kount + 1:(ntrials*nvar) kount <- kount + ntrials *( nvar+nfact) } vars <- paste0("V",1:nvar) X.df <- data.frame(DV = DV[select], time=rep(time,(n.obs*(nvar))),id = rep(1:n.obs,each=(ntrials*(nvar))),IV = rep(rep(vars,each=ntrials),n.obs) ) plot1<- xyplot(DV ~ time | id, group=IV, data=X.df, type = "b",as.table=TRUE,strip=strip.custom(strip.names=TRUE,strip.levels=TRUE),col=c("blue","red","black","grey")) print(plot1) } invisible(dv.df) #this returns the scores if we want to do further processing } psych/R/sim.dichot.R0000644000176200001440000000177411127464626014007 0ustar liggesusers"sim.dichot" <- function (nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, low = 0, high = 0) { avloading <- (xloading + yloading)/2 errorweight <- sqrt(1 - (avloading^2 + gloading^2)) g <- rnorm(nsub) truex <- rnorm(nsub) * xloading + xbias truey <- rnorm(nsub) * yloading + ybias if (circum) { radia <- seq(0, 2 * pi, len = nvar + 1) rad <- radia[which(radia < 2 * pi)] } else rad <- c(rep(0, nvar/4), rep(pi/2, nvar/4), rep(pi, nvar/4), rep(3 * pi/2, nvar/4)) error <- matrix(rnorm(nsub * (nvar)), nsub) trueitem <- outer(truex, cos(rad)) + outer(truey, sin(rad)) item <- gloading * g + trueitem + errorweight * error nvar2 <- nvar/2 iteml <- (item[,(1:nvar2)*2 -1] >= low) itemh <- (item[,(1:nvar2)*2] >= high) item <- cbind(iteml,itemh)+0 return(item) } #revised October 2 to make difficulty and direction of factor loading unconfoundedpsych/R/cluster.cor.R0000644000176200001440000001736112266000607014176 0ustar liggesusers"cluster.cor" <- #added smc.items 30.12/13 to reduce the number of calls to SMC to once function(keys,r.mat,correct=TRUE,SMC=TRUE,item.smc=NULL,impute=TRUE) { #function to extract clusters according to the key vector #default is to correct for attenuation and show this above the diagonal #find the correlation matrix of scales made up of items defined in a keys matrix (e.g., extracted by factor2cluster) #takes as input the keys matrix as well as a correlation matrix of all the items tol=sqrt(.Machine$double.eps) #machine accuracy cl <- match.call() if(!is.matrix(keys)) keys <- as.matrix(keys) #keys are sometimes a data frame - must be a matrix if(any(is.na(r.mat))) {SMC=FALSE warning("Missing values in the correlation matrix do not allow for SMC's to be found")} r.mat[is.na(r.mat)] <- -9999999 #changes missing values to obviously incorrect values if(SMC && is.null(item.smc)) {item.smc <- smc(r.mat)} else {item.smc <- rep(1,dim(r.mat)[1])} #now done once in the main function covar <- t(keys) %*% r.mat %*% keys #matrix algebra is our friend but slow if we are doing this in iclust #probably better to just modify the matrix for those two rows and columns that are changing if doing an iclust var <- diag(covar) #these are the scale variances sd.inv <- 1/sqrt(var) ident.sd <- diag(sd.inv,ncol = length(sd.inv)) cluster.correl <- ident.sd %*% covar %*% ident.sd cluster.correl[abs(cluster.correl) > (1+tol)] <- NA #happens only if item correlations were missing -- we use 1+a little to avoid rounding problem key.var <- diag(t(keys) %*% keys) key.smc <- t(keys) %*% item.smc key.alpha <- ((var-key.var)/var)*(key.var/(key.var-1)) key.lambda6 <- (var - key.var + key.smc)/var key.alpha[is.nan(key.alpha)] <- 1 #if only 1 variable to the cluster, then alpha is undefined key.alpha[!is.finite(key.alpha)] <- 1 key.av.r <- key.alpha/(key.var - key.alpha*(key.var-1)) #alpha 1 = average r colnames(cluster.correl) <- colnames(keys) rownames(cluster.correl) <- colnames(keys) names(key.lambda6) <- colnames(keys) key.lambda6 <- drop(key.lambda6) # diag(r.mat) <- 0 # row.range <- apply(r.mat,1,range,na.rm=TRUE) # row.max <- pmax(abs(row.range[1,]),abs(row.range[2,])) #find the largest absolute similarity #now, try to figure out the imputed correlation for the case of NAs. if(any(is.na(cluster.correl)) && impute) { #find the missing values based upon average covariances rather than totals #first, change those bad values back to NA warning('Some of the correlations were NA and were imputed') r.mat[r.mat < -1] <- NA n.keys <- ncol(keys) keys[keys==0] <- NA #this will allow us to find average responses for (i in 1:n.keys) { #first find which variables are screwed up if(any(is.na(cluster.correl[i,]))) {#fix them for (j in 1:n.keys) {if(is.na(cluster.correl[i,j])) {#fix it temp <- mean(colMeans((keys[,i] * r.mat),na.rm=TRUE) * keys[,j],na.rm=TRUE)*key.var[i]*key.var[j] #this is the average covariance times the number of items scored adjusted.r <- temp * ident.sd[i,i]* ident.sd[j,j] cluster.correl[i,j] <- adjusted.r } } } } } sn <- key.av.r * key.var/(1-key.av.r) if (correct) {cluster.corrected <- correct.cor(cluster.correl,t(key.alpha)) result <- list(cor=cluster.correl,sd=sqrt(var),corrected= cluster.corrected,alpha=key.alpha,av.r = key.av.r,size=key.var,sn=sn,G6 =key.lambda6,Call=cl) } #correct for attenuation else { result <- list(cor=cluster.correl,sd=sqrt(var),alpha=key.alpha,av.r = key.av.r,size=key.var,sn=sn,G6 =key.lambda6,Call=cl)} class(result) <- c ("psych", "cluster.cor") return(result)} #revised August 21, 2007 to add a smidgen to 1.0 in the looking for NAs. #revised June 14, 2008 to add average.r #revised August 25, 2009 to add lambda6 #revised December 2011 to remove digits -- this is all handled in the print function #revised January 2012 to estimate values when we have missing values in the correlations #74% of the time is spent doing matrix multiplication 70 seconds for a 400 x 400 problem. "icluster.cor" <- #added to speed up iclust by just combining rows function(keys,r.mat,ivar,jvar,correct=TRUE,SMC=TRUE,item.smc=NULL,impute=TRUE) { #function to extract clusters according to the key vector #default is to correct for attenuation and show this above the diagonal #find the correlation matrix of scales made up of items defined in a keys matrix (e.g., extracted by factor2cluster) #takes as input the keys matrix as well as a correlation matrix of all the items tol=sqrt(.Machine$double.eps) #machine accuracy cl <- match.call() if(!is.matrix(keys)) keys <- as.matrix(keys) #keys are sometimes a data frame - must be a matrix #covar <- t(keys) %*% r.mat %*% keys #matrix algebra is our friend but slow if we are doing this in iclust covar <- r.mat[-jvar,-jvar] #drop the jth column and row covar[ivar,] <- covar[,ivar] <- r.mat[ivar,] + r.mat[jvar,] #probably better to just modify the matrix for those two rows and columns that are changing if doing an iclust var <- diag(covar) #these are the scale variances sd.inv <- 1/sqrt(var) ident.sd <- diag(sd.inv,ncol = length(sd.inv)) cluster.correl <- ident.sd %*% covar %*% ident.sd cluster.correl[abs(cluster.correl) > (1+tol)] <- NA #happens only if item correlations were missing -- we use 1+a little to avoid rounding problem key.var <- diag(t(keys) %*% keys) key.smc <- t(keys) %*% item.smc key.alpha <- ((var-key.var)/var)*(key.var/(key.var-1)) key.lambda6 <- (var - key.var + key.smc)/var key.alpha[is.nan(key.alpha)] <- 1 #if only 1 variable to the cluster, then alpha is undefined key.alpha[!is.finite(key.alpha)] <- 1 key.av.r <- key.alpha/(key.var - key.alpha*(key.var-1)) #alpha 1 = average r colnames(cluster.correl) <- colnames(keys) rownames(cluster.correl) <- colnames(keys) names(key.lambda6) <- colnames(keys) key.lambda6 <- drop(key.lambda6) # diag(r.mat) <- 0 # row.range <- apply(r.mat,1,range,na.rm=TRUE) # row.max <- pmax(abs(row.range[1,]),abs(row.range[2,])) #find the largest absolute similarity #now, try to figure out the imputed correlation for the case of NAs. if(any(is.na(cluster.correl)) && impute) { #find the missing values based upon average covariances rather than totals #first, change those bad values back to NA warning('Some of the correlations were NA and were imputed') r.mat[r.mat < -1] <- NA n.keys <- ncol(keys) keys[keys==0] <- NA #this will allow us to find average responses for (i in 1:n.keys) { #first find which variables are screwed up if(any(is.na(cluster.correl[i,]))) {#fix them for (j in 1:n.keys) {if(is.na(cluster.correl[i,j])) {#fix it temp <- mean(colMeans((keys[,i] * r.mat),na.rm=TRUE) * keys[,j],na.rm=TRUE)*key.var[i]*key.var[j] #this is the average covariance times the number of items scored adjusted.r <- temp * ident.sd[i,i]* ident.sd[j,j] cluster.correl[i,j] <- adjusted.r } } } } } if (correct) {cluster.corrected <- correct.cor(cluster.correl,t(key.alpha)) result <- list(cor=cluster.correl,sd=sqrt(var),corrected= cluster.corrected,alpha=key.alpha,av.r = key.av.r,size=key.var,G6 =key.lambda6,Call=cl) } #correct for attenuation else { result <- list(cor=cluster.correl,sd=sqrt(var),alpha=key.alpha,av.r = key.av.r,size=key.var,G6 =key.lambda6,Call=cl)} class(result) <- c ("psych", "cluster.cor") return(result)} #revised August 21, 2007 to add a smidgen to 1.0 in the looking for NAs. #revised June 14, 2008 to add average.r #revised August 25, 2009 to add lambda6 #revised December 2011 to remove digits -- this is all handled in the print function #revised January 2012 to estimate values when we have missing values in the correlationspsych/R/factor.model.R0000644000176200001440000000045311400623637014305 0ustar liggesusers"factor.model" <- function(f,Phi=NULL,U2=TRUE) { if(!is.matrix(f)) f <- as.matrix(f) if(is.null(Phi)) {Phi <- diag(1,dim(f)[2])} if(!is.matrix(Phi)) {Phi <- as.matrix(Phi)} if (!U2) diag(Phi) <- 1 result<- f %*% Phi %*% t(f) if (!U2) diag(result) <- 1 return (result)} psych/R/cor.plot.R0000644000176200001440000001412013114311251013452 0ustar liggesusers#developed April 24, 2009 #modifed November 14, 2009 to add legends #completely revised June 20, 2011 to do more reds for less than 0, blues for above 0 #also switched to using layout to make legend clearer #modified May 5, 2012 to add the keep.par option to allow more control of small graphics #Corrected feb 22, 2014 to not double plot text (reported by David Condon) #modified May 12 to allow for selection #modified March 28, 2016 to add the upper option #modified Feb 4, 2017 to label plots and to find correlations by default #modified April 15, 2017 to allow for non-symmetric matrices #modified April 15, 2017 to allow more plotting control on the x and y rotation options "cor.plot" <- "corPlot" <- function(r,numbers=FALSE,colors=TRUE, n=51,main=NULL,zlim=c(-1,1),show.legend=TRUE,labels=NULL,n.legend=10,keep.par=TRUE,select=NULL,pval=NULL,cuts=c(.001,.01),scale=TRUE,cex,MAR,upper=TRUE,diag=TRUE,symmetric=TRUE,stars=FALSE,adjust="holm",xaxis =1, xlas=0,ylas=2,gr=NULL,...){ if(keep.par) op <- par(no.readonly=TRUE) if(missing(MAR)) MAR <- 5 if(!is.matrix(r) & (!is.data.frame(r))) {if((length(class(r)) > 1) & (class(r)[1] =="psych")) { switch(class(r)[2], omega = {r <- r$schmid$sl nff <- ncol(r) r <- r[,1:(nff-3)] if(is.null(main)) {main <- "Omega plot" }}, cor.ci ={ pval <- 2*(1-r$ptci) r <- r$rho}, fa = {r <- r$loadings if(is.null(main)) {main <- "Factor Loadings plot" }}, pc = {r <- r$loadings if(is.null(main)) {main <- "PCA Loadings plot" } }, principal = {r <- r$loadings if(is.null(main)) {main <- "PCA Loadings plot" }} ) #end switch } } else { if(symmetric & !isCorrelation(r) & (nrow(r) !=ncol(r))) { cp <- corr.test(r,adjust=adjust) r <- cp$r pval <- cp$p if(is.null(main)) {main <- "Correlation plot" }} } r <- as.matrix(r) if(!is.null(select)) r <- r[select,select] if(min(dim(r)) < 2) {stop ("You need at least two dimensions to make a meaningful plot")} if(is.null(n)) {n <- dim(r)[2]} nf <- dim(r)[2] nvar <- dim(r)[1] if(!upper) r[col (r) > row(r) ] <- NA #blank out the upper diagonal if(!diag) r[col(r) == row(r)] <- NA #and the diagonal if(nf == nvar) r <- t(r) # flip the matrix because grid requires it but don't flip if a loadings matrix if(missing(pval)|is.null(pval)) {pval <- matrix(rep(1,nvar*nf),nvar)} else {if (length(pval) != nvar*nf) { pr = matrix(0,nvar,nf) pr [row(pr) > col(pr)] <- pval # pr[pval[pr]] <- pval pr <- pr + t(pr) diag(pr) <- 0 pval <- pr} if(!stars) {pval <- con2cat(pval,cuts=cuts) pval <- (length(cuts)+1-pval)/length(cuts)} pval <- t(pval) #flip these so that the lower off diagonal will be unadjusted } if(is.null(labels)) { if(is.null(rownames(r))) rownames(r) <- paste("V",1:nvar) if(is.null(colnames(r))) colnames(r) <- paste("V",1:nf) } else {rownames(r) <- colnames(r) <- labels} max.len <- max(nchar(rownames(r)))/6 #max.len <- max( strwidth(rownames(r))) if(is.null(zlim)) {zlim <- range(r)} if(colors) { if(missing(gr)) {gr <- colorRampPalette(c("red","white","blue"))} #added June 20 colramp <- gr(n) } else { colramp <- grey((n:0)/n)} if(nvar != nf) { r <- t(r) } #if(!is.null(select)) {r <- r[select,select] # pval <- pval[select,select] # nvar <- length(select) # } #reverse the order of the columns (if square) ord1 <- seq(nvar,1,-1) if(nf == nvar) {r <- r[,ord1] pval <- pval[,ord1]} else {r <- r[,ord1] pval <- t(pval[ord1,])} #reorder the columns to allow image to work #MAR <- 5 par(mar = c(MAR +max.len,MAR+max.len, 4, .5)) if(show.legend) { #set it up to do two plots layout(matrix(c(1,2),nrow=1),widths=c(.9,.1),heights=c(1,1)) } image(r,col=colramp,axes=FALSE,main=main,zlim=zlim) box() #if(nf < nvar) { at1 <- (0:(nf-1))/(nf-1) at2 <- (0:(nvar-1)) /(nvar-1) lab1 <- rownames(r) lab2 <- colnames(r) # } else { # at1 <- (0:(nf-1)) /(nf-1) # at2 <- (0:(nvar-1)) /(nvar-1) # lab1 <- rownames(r) # lab2 <- colnames(r) # } #if(nvar != nf) { r <- t(r) } if(xaxis == 3) {line <- -.5 tick <- FALSE} else {line <- NA tick <- TRUE} if(max.len >.5) {axis(2,at=at2,labels=lab2,las=ylas,...) axis(xaxis,at=at1,labels=lab1,las=xlas,line=line,tick=tick,...)} else { axis(2,at=at2,labels=lab2,las=ylas,...) axis(xaxis,at=at1,labels=lab1,las=xlas,line=line,tick=tick,...)} #at1 <- (0:(nf-1))/(nf-1) if(numbers) {rx <- rep(at1,ncol(r)) ry <-rep(at2,each=nrow(r)) # rv <- round(r*100) rv <- round(r,2) if(stars) {#pval <- corr.p1(r,npairs,"none") symp <- symnum(pval, corr = FALSE,cutpoints = c(0, .001,.01,.05, 1), symbols = c("***","**","*"," "),legend=FALSE) rv[!is.na(rv)] <- paste0(rv[!is.na(rv)],symp[!is.na(rv)]) if(missing(cex)) cex = 9/max(nrow(r),ncol(r)) text(rx,ry,rv,cex=cex,...) } else { if(missing(cex)) cex = 9/max(nrow(r),ncol(r)) if(scale) { text(rx,ry,rv,cex=pval*cex,...) } else { text(rx,ry,rv,cex=cex,...) }} } if(show.legend) { leg <- matrix(seq(from=zlim[1],to=zlim[2],by =(zlim[2] - zlim[1])/n),nrow=1) #screen(2) par(mar=c(MAR,0, 4,3)) image(leg,col=colramp,axes=FALSE,zlim=zlim) at2 <- seq(0,1,1/n.legend) labels =seq(zlim[1],zlim[2],(zlim[2]-zlim[1])/(length(at2)-1)) axis(4,at=at2,labels =labels,las=2,...) } if(keep.par) par(op) #return the parameters to where we started } #used to find p values for corPlot #just an internal function #notice that the matrix is flipped to do the plotting #we need to find the lowerright "corr.p1" <- function(r,n,adjust="holm") { t <- (r*sqrt(n-2))/sqrt(1-r^2) p <- 2*(1 - pt(abs(t),(n-2))) p[p>1] <- 1 if (adjust !="none") { p[] <- p.adjust(p ,adjust) #the case of an asymmetric matrix } result <- p return(result) } "reflect" <- function(m) { NR <- NROW(m) NC <- NCOL(m) m[NR+1 - row(m)] <- m[row(m)] m[NC +1 - col(m)] <- m[col(m)]}psych/R/print.psych.vss.R0000644000176200001440000000671013033210236015014 0ustar liggesusers"print.psych.vss" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { if(!is.null(x$cfit.1)) { if(x$title!="Very Simple Structure") { cat("\nVery Simple Structure of ", x$title,"\n") } else {cat("\nVery Simple Structure\n")} cat("Call: ") print(x$call) vss.max <- round(max(x$cfit.1) ,digits) wh.max <- which.max(x$cfit.1) if(wh.max !=first.max(x$vss.stats$cfit.1)) {cat("Although the VSS complexity 1 shows ",wh.max," factors, it is probably more reasonable to think about ",first.max(x$vss.stats$cfit.1), " factors\n")} else { cat("VSS complexity 1 achieves a maximimum of ") cat(vss.max," with " ,which.max(x$cfit.1), " factors\n") } cat("VSS complexity 2 achieves a maximimum of ") vss.max <- round(max(x$cfit.2) ,digits) cat(vss.max," with " ,which.max(x$cfit.2), " factors\n") cat("\nThe Velicer MAP achieves a minimum of ") vss.map <- round(min(x$map) ,digits) cat(vss.map," with " ,which.min(x$map), " factors ") bic.min <- round(min(x$vss.stats[,"BIC"]),digits) cat("\nBIC achieves a minimum of ", bic.min," with ", which.min(x$vss.stats[,"BIC"])," factors\n") sabic.min <- round(min(x$vss.stats[,"SABIC"]),digits) cat("Sample Size adjusted BIC achieves a minimum of ", sabic.min," with ", which.min(x$vss.stats[,"SABIC"])," factors\n") # cat("\nVelicer MAP\n") # print(round(x$map,digits)) # cat("\nVery Simple Structure Complexity 1\n") # print(round(x$cfit.1,digits)) # cat("\nVery Simple Structure Complexity 2\n") # print(round(x$cfit.2,digits)) temp <- data.frame(vss1=x$cfit.1,vss2=x$cfit.2,map=x$map,x$vss.stats[,1:13]) cat("\nStatistics by number of factors \n") print(temp,digits=digits) } else { if(x$title!="Number of Factors") { cat("\nNumber of factors of ", x$title,"\n") } else {cat("\nNumber of factors\n")} cat("Call: ") print(x$call) cat("VSS complexity 1 achieves a maximimum of ") vss.max <- round(max(x$vss.stats$cfit.1) ,digits) wh.max <- which.max(x$vss.stats$cfit.1) if(wh.max !=first.max(x$vss.stats$cfit.1)) {cat("Although the vss.max shows ",wh.max," factors, it is probably more reasonable to think about ",first.max(x$vss.stats$cfit.1), " factors\n")} else { cat(vss.max," with " ,wh.max, " factors\n") } cat("VSS complexity 2 achieves a maximimum of ") vss.max <- round(max(x$vss.stats$cfit.2) ,digits) cat(vss.max," with " ,which.max(x$vss.stats$cfit.2), " factors\n") cat("The Velicer MAP achieves a minimum of ") vss.map <- round(min(x$map,na.rm=TRUE) ,digits) cat(vss.map," with " ,which.min(x$map), " factors ") bic.min <- round(min(x$vss.stats[["eBIC"]],na.rm=TRUE),digits) cat("\nEmpirical BIC achieves a minimum of ", bic.min," with ", which.min(x$vss.stats[["eBIC"]])," factors\n") sabic.min <- round(min(x$vss.stats[["SABIC"]],na.rm=TRUE),digits) cat("Sample Size adjusted BIC achieves a minimum of ", sabic.min," with ", which.min(x$vss.stats[["SABIC"]])," factors\n") # cat("\nVelicer MAP\n") # print(round(x$map,digits)) # cat("\nVery Simple Structure Complexity 1\n") # print(round(x$cfit.1,digits)) # cat("\nVery Simple Structure Complexity 2\n") # print(round(x$cfit.2,digits)) temp <- data.frame(vss1=x$vss.stats$cfit.1,vss2=x$vss.stats$cfit.2,map=x$map,x$vss.stats[,1:13]) cat("\nStatistics by number of factors \n") print(temp,digits=digits)} } #end print.psych.vss "first.max" <- function(x) { nx <- length(x) -1 first <- which.max(x) for(i in 1:nx) {if(x[i] > x[i+1]){first <- i break } } return(first) }psych/R/cortest.bartlett.R0000644000176200001440000000143312660156245015237 0ustar liggesusers"cortest.bartlett" <- function(R,n=NULL,diag=TRUE) { #message("Bartlett's test that correlation matrix is an identity matrix") if (dim(R)[1] != dim(R)[2]) {n <- dim(R)[1] message("R was not square, finding R from data") R <- cor(R,use="pairwise")} p <- dim(R)[2] if(!is.matrix(R) ) R <- as.matrix(R) #converts data.frames to matrices if needed if(is.null(n)) {n <- 100 warning("n not specified, 100 used") } if(diag) diag(R) <- 1 #this will make tests of factor residuals correct detR <- det(R) statistic <- -log(detR) *(n -1 - (2*p + 5)/6) df <- p * (p-1)/2 pval <- pchisq(statistic,df,lower.tail=FALSE) bartlett <- list(chisq = statistic, p.value =pval, df =df) return(bartlett) } psych/R/fa.parallel.poly.R0000644000176200001440000001426412471134710015076 0ustar liggesusers #parallel analysis of polychoric factor analysis "fa.parallel.poly" <- function(x,n.iter=10,SMC=TRUE,fm="minres",correct=TRUE,sim=FALSE,fa="both",global=TRUE) { p <- .05 cl <- match.call() .Deprecated("fa.parallel.poly", msg = "fa.parallel.poly is deprecated. Please use the fa.parallel function with the cor='poly' option.") n.obs <- dim(x)[1] tx <- table(as.matrix(x)) nx <- dim(tx)[1] if(dim(tx)[1] ==2) {tet <- tetrachoric(x,correct=correct) typ = "tet" if(sim) { tx.item <- matrix(apply(x,2,table),ncol=ncol(x)) px <- matrix(tx.item/colSums(tx.item),ncol=2,byrow=TRUE) } } else {tet <- mixed.cor(x,global=global) typ = "poly"} cat("\n") #to try to clear the progress bar flush(stdout()) r <- tet$rho f <- fa(r,n.obs=n.obs,SMC = SMC,covar=FALSE,fm=fm) #call fa with the appropriate parameters f$Call <- cl fl <- f$loadings #this is the original nvar <- dim(fl)[1] e.values <- list(pc =list(),fa = list()) replicates <- list() rep.rots <- list() for (trials in 1:n.iter) { progressBar(trials,n.iter,"fa.parallel.poly") bad <- TRUE while(bad) { xs <- matrix(apply(x,2,function(y) sample(y,n.obs,replace=TRUE)),ncol=nvar) #do it column wise tets <- polychoric(xs,progress=FALSE,global=global) r <- tets$rho bad <- any(is.na(r)) } values.samp <- eigen(tets$rho)$values e.values[["pc"]][[trials]] <- values.samp fs <- fa(r,n.obs=n.obs,SMC = SMC,covar=FALSE,fm=fm) #call fa with the appropriate parameters e.values[["fa"]][[trials]] <- fs$values if(sim && (typ=="tet")) {xsim <- matrix(apply(px,1,function(x) sample(2,n.obs,TRUE,prob=x)),ncol=nvar) rho.sim <- tetrachoric(xsim,correct=correct) values.sim <- eigen(rho.sim$rho)$values e.values[["pc.sim"]][[trials]] <- values.sim fsim <- fa(rho.sim$rho,n.obs=n.obs,SMC = SMC,covar=FALSE,fm=fm) #call fa with the appropriate parameters e.values[["fa.sim"]][[trials]] <- fsim$values } } cat("\n") #to try to clear the progress bar ei.pc <-describe(matrix(unlist(e.values$pc),ncol=nvar,byrow=TRUE)) #eigen values of pcs ei.fa <- describe(matrix(unlist(e.values$fa),ncol=nvar,byrow=TRUE)) #eigen values of fa fa.test <- which(!(f$values > ei.fa$mean))[1]-1 pc.test <- which(!(f$e.values > ei.pc$mean))[1] -1 #e.stats <- list(fa.values=f$values,pc.values=f$e.values,pc.sim=ei.pc,fa=ei.fa,nfact=fa.test,ncomp = pc.test) if(sim && (typ=="tet")) {eis.pc <- describe(matrix(unlist(e.values$pc.sim),ncol=nvar,byrow=TRUE)) #eigen values of pcs eis.fa <- describe(matrix(unlist(e.values$fa.sim),ncol=nvar,byrow=TRUE)) #eigen values of fa } else {eis.pc <- NULL eis.fa <- NULL } #results <- list(fa = f,rho=tet$rho,tau=tet$tau,n.obs=n.obs,Call= cl,e.values=e.values,e.stats=e.stats) results <- list(rho=tet$rho,tau=tet$tau,n.obs=n.obs,Call= cl,fa.values=f$values,pc.values=f$e.values,pc.sim=ei.pc,fa.sim=ei.fa,pcs.sim=eis.pc,fas.sim=eis.fa,nfact=fa.test,ncomp = pc.test) class(results) <- c("psych","parallel") cat('\n See the graphic output for a description of the results\n') plot.poly.parallel(results,fa=fa) return(results) } #written May 8 2011 #corrected December 27, 2011 to pass the fm correctly (had always forced minres) #modified Sept 16, 2013 to use mixed.cor instead of polychoric (more robust) #modified Oct 2, 2013 to add the ability to do random data as well #modified Oct 22, 2013 to allow choice of what to plot #modified 1/15/14 to pass the global parameter #modified 3/24/14 to check for bad resamples "plot.poly.parallel" <- function(x,show.legend=TRUE,fa="both",...) { e.values <- x$pc.values values <- x$fa.values pcm <- x$pc.sim$mean fam <- x$fa.sim$mean switch(fa, both = { plot(e.values,type="b", main = "Eigen values of tetrachoric/polychoric matrix",ylab="Eigen values of original and simulated factors and components",ylim=c(0,max(e.values)) ,xlab="Factor Number",pch=4,col="blue") points(values,type ="b",pch=2,col="blue") points(pcm,type="l",lty="dotted",pch=2,col="red") points(fam,type="l",lty="dashed",pch=2,col="red") if(!is.null(x$pcs.sim)) points(x$pcs.sim$mean,type="l",lty="dashed",pch=2,col="red") if(!is.null(x$fas.sim)) points(x$fas.sim$mean,type="l",lty="dashed",pch=2,col="red") }, fa = {plot(values,type="b", main = "Eigen values of tetrachoric/polychoric matrix",ylab="Eigen values of original and simulated factors ",ylim=c(0,max(e.values)) ,xlab="Factor Number",pch=2,col="blue") points(fam,type="l",lty="dashed",pch=2,col="red")}, pc = {plot(e.values,type="b", main = "Eigen values of tetrachoric/polychoric matrix",ylab="Eigen values of original and simulated factors and components",ylim=c(0,max(e.values)) ,xlab="Factor Number",pch=4,col="blue") points(pcm,type="l",lty="dotted",pch=2,col="red")} ) if(show.legend) { switch(fa, both ={ if(!is.null(x$pcs.sim)) { legend("topright", c("PC Actual Data", " PC Resampled Data"," PC Simulated Data","FA Actual Data", " FA Resampled Data", " FA Simulated Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid","dotted","dashed","solid","dotted","dashed"), merge = TRUE, bg = 'gray90') } else {legend("topright", c("PC Actual Data", " PC Resampled Data","FA Actual Data", " FA Resampled Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA), text.col = "green4", lty = c("solid","dotted","solid","dotted"), merge = TRUE, bg = 'gray90') } }, fa ={ legend("topright", c("FA Actual Data", " FA Resampled Data"), col = c("blue","red"),pch=c(2,NA), text.col = "green4", lty = c("solid","dotted"), merge = TRUE, bg = 'gray90') }, pc = { legend("topright", c("PC Actual Data", " PC Resampled Data"), col = c("blue","red"),pch=c(4,NA), text.col = "green4", lty = c("solid","dotted"), merge = TRUE, bg = 'gray90') } ) } fa.test <- which(!(values > fam))[1]-1 pc.test <- which(!(e.values > pcm))[1] -1 cat("Parallel analysis suggests that ") cat("the number of factors = ",fa.test, " and the number of components = ",pc.test,"\n") } #modified Oct 2, 2013 to plot (if desired) the simulated as well as the resampled data #modified Oct 22, 2013 to allow the plot to choose beteween both, fa, and pc. psych/R/make.hierarchical.R0000644000176200001440000000255612436202746015274 0ustar liggesusers# A function to create a correlation matrix with a hierarchical structure "make.hierarchical" <- function (gload=NULL,fload=NULL,n=0,raw=FALSE) { # require(MASS) if(is.null(gload)) gload=matrix(c(.9,.8,.7),nrow=3) if(is.null(fload)) {fload <-matrix(c( .8,0,0, .7,0,.0, .6,0,.0, 0,.7,.0, 0,.6,.0, 0,.5,0, 0,0,.6, 0,0,.5, 0,0,.4), ncol=3,byrow=TRUE)} fcor <- gload %*% t(gload) #the factor correlation matrix diag(fcor) <-1 #put ones on the diagonal model <- fload %*% fcor %*% t(fload) #the model correlation matrix for oblique factors diag(model)<- 1 # put ones along the diagonal nvar <- dim(fload)[1] colnames(model) <- rownames(model) <- paste("V",1:nvar,sep="") if(n>0) { # mu <- rep(0,nvar) #model <- mvrnorm(n = n, mu, Sigma=model, tol = 1e-6, empirical = FALSE) #the next 3 lines replaces mvrnorm (adapted from mvrnorm, but without the checks) eX <- eigen(model) model <- matrix(rnorm(nvar * n),n) model <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(model)) if (!raw ) { model <- cor(model) } } make.hierarchical <- model } psych/R/irt.1p.R0000644000176200001440000000163410500621756013047 0ustar liggesusers#steps towards an IRT program #we find the difficulties using irt.item.diff.rasch #now estimate the thetas #Then, to find the person parameters, use optimize "irt.1p" <- function(delta,items) { # #the basic one parameter model (aka a Rasch model) irt <- function(x,delta,scores) { fit <- -1*(log(scores/(1+exp(delta-x)) + (1-scores)/(1+exp(x-delta)))) mean(fit,na.rm=TRUE) } # delta<- delta items <-items num <- dim(items)[1] fit <- matrix(NA,num,2) total <- rowMeans(items,na.rm=TRUE) count <- rowSums(!is.na(items)) for (i in 1:num) { if (count[i]>0) {myfit <- optimize(irt,c(-4,4),delta=delta,scores=items[i,]) #how to do an apply? fit[i,1] <- myfit$minimum fit[i,2] <- myfit$objective #fit of optimizing program } else { fit[i,1] <- NA fit[i,2] <- NA } #end if else } #end loop irt.1p <-data.frame(total,theta=fit[,1],fit=fit[,2],count)}psych/R/congeric.sim.R0000644000176200001440000000134111121644264014304 0ustar liggesusers"sim.congeneric" <- function(N = 1000, loads = c(0.8, 0.7, 0.6, 0.5), err=NULL, short=TRUE) { n <- length(loads) loading <- matrix(loads, nrow = n) error <- diag(1, nrow = n) if (!is.null(err)) {diag(error) <- err} else { diag(error) <- sqrt(1 - loading^2) } pattern <- cbind(loading, error) colnames(pattern) <- c("theta", paste("e", seq(1:n), sep = "")) rownames(pattern) <- c(paste("V", seq(1:n), sep = "")) model <- pattern %*% t(pattern) latent <- matrix(rnorm(N * (n + 1)), ncol = (n + 1)) observed <- latent %*% t(pattern) colnames(latent) <- c("theta", paste("e", seq(1:n), sep = "")) if (short) {return(model)} else {result <- list(model=model,pattern=pattern,observed=observed,latent=latent) return(result)} }psych/R/bi.bars.R0000644000176200001440000000372712754450224013262 0ustar liggesusersbi.bars <- function(x,grp,horiz,color,label=NULL,zero=FALSE,xlab,ylab,...) { if(missing(horiz)) horiz <- TRUE if(missing(color)) color <- c("blue","red") if(horiz) { if(missing(xlab)) xlab <- "Frequency" if(missing(ylab)) ylab <- paste0(levels(grp)) } else { if(missing(ylab)) ylab <- "Frequency" if(missing(xlab)) xlab <- paste0(levels(grp))} groups <- table(grp) max.val <- max(x,na.rm=TRUE) min.val <- min(x,na.rm=TRUE) #gr1 <- as.numeric(names(groups)[1]) #gr2 <- as.numeric(names(groups)[2]) gr1 <- (names(groups)[1]) gr2 <- (names(groups)[2]) g1 <- subset(x,grp==gr1) g2 <- subset(x,grp==gr2) t1 <- tabulate(g1-min.val*zero,nbins=(max.val-min.val+1)) t2 <- tabulate(g2-min.val*zero,nbins=(max.val-min.val+1)) #t1 <- table(g1-min.val*zero) #t2 <- table(g2-min.val*zero) m1 <- max(t1,t2) m2 <- max(t1,t2) xlim <- c(-m1,m2)*1.04 if(horiz) { #t1 <- t1[t1 > 0] xloc <- barplot(-t1,xlim=xlim,col=color[1],horiz=horiz,xlab=xlab,ylab=ylab,axes=FALSE,axisnames=FALSE,...) barplot(t2,add=TRUE,col=color[2],horiz=horiz,axes=FALSE,axisnames=FALSE,...) box() if((max.val - min.val) < 10) { if(is.null(label)) {axis(2,at=xloc+min.val*zero,labels=min.val:max.val,...)} else { axis(2,at=xloc+min.val*zero,labels=label,las=2,...)}} else { at <- axTicks(2,usr=c(min.val,max.val)) axis(2,at=at,labels=at + min.val*zero,las=2,...)} atv <- axTicks(1) axis(1,at=atv,labels=abs(atv),...)} else { #the vertical case ylim <- c(-m1,m2)*1.04 xloc <- barplot(-t1,ylim=ylim,col=color[1],horiz=horiz,xlab=xlab,ylab=ylab,axes=FALSE,...) barplot(t2 ,add=TRUE,col=color[2],horiz=horiz,axes=FALSE,...) box() atv <- axTicks(2) axis(2,at=atv,labels=abs(atv),las=2,...) if((max.val - min.val) < 10) { if(is.null(label)) {axis(1,at=xloc,labels=min.val:max.val,...)} else { axis(1,at=xloc,labels=label,...)} } else { at <- axTicks(1,usr=c(min.val,max.val)) axis(1,at=at,labels=at+min.val*zero,...) }} }psych/R/cosinor.R0000755000176200001440000005517312726336556013435 0ustar liggesusers#functions for doing diurnal rhythm analyses #Heavily adapted from the circular package # #a function to estimate diurnal phase of mood data #the input is a data frame or matrix with #time of measurement (in 24 hour clock) #and then the mood measures (1 or many) #Version of October 22, 2008 #seriously revised April 12, 2009 # #modified February 14, 2015 to adjust the call to mean(x[1]) #and to make the grouping function actually work #find the best fitting phase (in hours) #cleaned up March 9, 2015 to allow a more natural calling sequence #modifed Jan - April, 2016 to make cleaner code #Added cosinor.period April 21, 2016 to iteratively fit period as an option "cosinor.period" <- function(angle,x=NULL,code=NULL,data = NULL, hours=TRUE,period=seq(23,26,1),plot=FALSE,opti=FALSE,na.rm=TRUE) { #first, organize the data in terms of the input if(!is.null(data)) { if(is.matrix(data)) data <- data.frame(data) if(is.character(angle)) angle <- which(colnames(data) == angle) if(!is.null(code)) { if(is.character(code)) codeloc <- which(colnames(data) ==code) x <- data[,c(angle,x,codeloc)] } else {x <- data[,c(angle,x)]} angle <- x[1] x <- x[-1] } else { if (is.null(x) && is.null(code)) {angle <- data.frame(angle) x <- angle angle<- angle[,1] } else {x <- data.frame(x) x <- cbind(angle,x) angle <- x[1] x <- x[-1] } } xdata <- x #we need to save this to do iterative fits old.angle <- angle per <- period fit.period <- list() for (i in 1:length(per)) { period <- per[i] if(hours) { angle <- old.angle*2*pi/period x <- cbind(angle,xdata)} #convert to radians nvar <- dim(xdata)[2] -1 if(is.null(code)) { fit <- cosinor1(angle,x[-1],period=period,opti=opti,na.rm=na.rm) #if there is a code (i.e., subject id), then do the fits for each separate subject m.resp <- mean(x[,1]) s.resp <- sd(x[,1])} else { #x <- angle fit.list <- by(x,x[code],function(x) cosinor1(angle=x[1],x=x[-c(1,which(colnames(x)== code))],period=period,opti=opti,na.rm=na.rm)) #this is the case if code is specified ncases <- length(fit.list) fit <- matrix(unlist(fit.list),nrow=ncases,byrow=TRUE) colnames(fit) <- c(paste(colnames(x)[-c(1,which(colnames(x)== code))], "phase",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "fit",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "amp",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "sd",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "mean",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "intercept",sep=".")) rownames(fit) <- names(fit.list) } fit.period[[i]] <- list(fit) } x <- NA #just to avoid being told that x is a global #now, find for each variable and for each subject, that value of of fit which is maximized, and then what is the ncols <- 6 * length(x) fit.m <- matrix(unlist(fit.period),nrow=ncases,byrow=FALSE) #the fits are every nvar * 6 elements starting at nvar + 1 maxfit <- per np <- length(per) fits <- cbind(matrix(NA,nrow=ncases,ncol=nvar),fit) for (j in 1:ncases) { #do it for each subject for (i in 1:nvar) {#do it for each variable for (p in 1:np) {#find the fits for all periods #maxfit[p] <- fit.m[j,(p-1) * nvar * 6 + nvar+1] maxfit[p] <- fit.period[[p]][[1]][j,i+nvar] } max.period <- which.max(maxfit) fits[j,i] <- per[max.period] fits[j,i+nvar] <- fit.period[[max.period]][[1]][j,i] fits[j,i+2*nvar] <- fit.period[[max.period]][[1]][j,i+nvar] fits[j,i+3*nvar] <- fit.period[[max.period]][[1]][j,i + 2*nvar] fits[j,i+4*nvar] <- fit.period[[max.period]][[1]][j,i+3* nvar] fits[j,i+5*nvar] <- fit.period[[max.period]][[1]][j,i + 4*nvar] fits[j,i+6*nvar] <- fit.period[[max.period]][[1]][j,i+5* nvar] } } return(fits) } "circadian.phase" <- "cosinor" <- function(angle,x=NULL,code=NULL,data = NULL, hours=TRUE,period=24,plot=FALSE,opti=FALSE,na.rm=TRUE) { #first, organize the data in terms of the input if(!is.null(data)) { if(is.matrix(data)) data <- data.frame(data) if(is.character(angle)) angle <- which(colnames(data) == angle) if(!is.null(code)) { if(is.character(code)) codeloc <- which(colnames(data) ==code) x <- data[,c(angle,x,codeloc)] } else {x <- data[,c(angle,x)]} angle <- x[1] x <- x[-1] } else { if (is.null(x) && is.null(code)) {angle <- data.frame(angle) x <- angle angle<- angle[,1] } else {x <- data.frame(x) x <- cbind(angle,x) angle <- x[1] x <- x[-1] } } if(hours) { angle <- angle*2*pi/period x <- cbind(angle,x)} #convert to radians nvar <- dim(x)[2] if(is.null(code)) { fit <- cosinor1(angle,x[-1],period=period,opti=opti,na.rm=na.rm) #if there is a code (i.e., subject id), then do the fits for each separate subject m.resp <- mean(x[,1]) s.resp <- sd(x[,1]) if(plot) {#curve(cos((*x-fit[1,1])*s.resp+m.resp)*pi/12),add=TRUE) } #this draws the first fitted variable }} else {#x <- angle fit.list <- by(x,x[code],function(x) cosinor1(angle=x[1],x=x[-c(1,which(colnames(x)== code))],period=period,opti=opti,na.rm=na.rm)) #this is the case if code is specified ncases <- length(fit.list) fit<- matrix(unlist(fit.list),nrow=ncases,byrow=TRUE) colnames(fit) <- c(paste(colnames(x)[-c(1,which(colnames(x)== code))], "phase",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "fit",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "amp",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "sd",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "mean",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "intercept",sep=".")) rownames(fit) <- names(fit.list) } x <- NA #just to avoid being told that x is a global return(fit) } # cosinor1 actually does the work # it either uses a fitting function (optimize) from core R # or calls a linear regression fit "cosinor1" <- function(angle,x,period=24,opti=FALSE,na.rm=TRUE) { response <- x n.var <- dim(x)[2] if(is.null(n.var)) n.var <-1 fit <- matrix(NaN,nrow=n.var,ncol=6) for (i in 1:n.var) { if(opti) {fits <- optimize(f=phaser,c(0,24),time=angle,response=x[,i],period=period,maximum=TRUE) #iterative fit fit[i,1] <- fits$maximum fit[i,2] <- fits$objective } else {fits <- cosinor.lm2 (angle,x[,i],period=period,na.rm=na.rm) #simple linear regression based upon sine and cosine of time fit[i,1] <- fits[[1]] #this is the acrophase fit[i,2] <- fits[[2]] #this is the correlation of the fit with the data fit[i,3] <- fits[[3]] #this is the amplitude fit[i,4] <- fits[[4]] #The standard deviation of the observed scores fit[i,5] <- fits[[5]] #the mean of the observed scores fit[i,6] <- fits[[6]] #the predicted value of the observed score at the intercept } } colnames(fit) <- c("phase","fit","amplitude","sd","mean","intercept") rownames(fit) <- colnames(x) return(fit) } "phaser" <- function(phase,time,response,period) { #this is used in the iterative fit procedure phaser <- cor(cos(((time-phase)*2*pi)/period),response,use="pairwise")} #the alternative to the iterative procedure is simple linear regression of the cosine and sine "cosinor.lm2" <- function(angle,y,period=24,na.rm=na.rm) { p2 <- period/2 cos.t <- cos(angle) #angle is already in radians! sin.t <- sin(angle) dat.df <- data.frame(iv1=cos.t,iv2=sin.t,y) cor.dat <- cor(dat.df,use="pairwise") beta1 <- (cor.dat[3,1] - cor.dat[3,2] * cor.dat[1,2])/(cor.dat[1,1]-cor.dat[1,2]^2) beta2 <- (cor.dat[3,2] - cor.dat[3,1] * cor.dat[1,2])/(cor.dat[1,1]-cor.dat[1,2]^2) #note, these are standardized beta weights # phase <- ( sign(beta2) *acos( beta1/sqrt(beta1^2 + beta2^2)))*p2/pi #this is in hours phase <- atan2(beta2,beta1) #in radians intercept <- cos(phase) #the value at time 0 phase <- phase *p2/pi #convert to hours phase <- phase %% period r <- cor(cos(angle-phase*pi/p2),y,use="pairwise") sdy <- sd(y,na.rm=na.rm) meany <- mean(y,na.rm=na.rm) #amp <- r *sdy/.7223 amp <- sqrt(beta1^2 + beta2^2) #see Chow 2009 among others -- note we are finding the standardized amp intercept <- intercept * amp * sdy + meany #amp <- r * sd(y,na.rm=TRUE)/sd(cos(angle[,1]),na.rm=TRUE) #R <- sqrt(cor.dat[3,1]*beta1 + cor.dat[3,2]*beta2) #these are identical fit <- list(phase=phase,R=r,amp=amp,sd=sdy,mean=meany,intercept) return(fit) } "cosinor.plot" <- function(angle,x=NULL,data = NULL,IDloc=NULL,ID=NULL,hours=TRUE,period=24,na.rm=TRUE,ylim=NULL,ylab="observed",xlab="Time (double plotted)",main="Cosine fit",add=FALSE,multi=FALSE,typ="l",...) { if(!multi) {main <- paste("ID = ",ID," ",x)} if(!is.null(data)) { if(is.matrix(data)) data <- data.frame(data) # if(is.character(angle)) angle <- which(colnames(data) == angle) if(!is.null(IDloc)) { x <- data[data[,IDloc]==ID,c(angle,x)] angle <- x[,1,drop=FALSE] } else {x <- data[,c(angle,x)] angle <- x[,1,drop=FALSE] main <- c(main," ",IDloc)} } else { if (is.null(x) && is.null(data)) {x <- data.frame(x) x <- angle angle<- angle[1] } else {x <- data.frame(x) x <- cbind(angle,x) angle <- x[1] x <- x[-1] } } if(hours) { angle <- angle*2*pi/24 } xx <- 1:96 fit <- cosinor1(angle, x = x[2], period = period, na.rm = na.rm) m.resp <- mean(x[, 2], na.rm = TRUE) s.resp <- sd(x[, 2], na.rm = TRUE) sd.time <- sd(cos(angle[, 1]), na.rm = TRUE) if(missing(ylim)) ylim=c(min(x[,2],(m.resp - fit[1,3]),na.rm=na.rm),max(x[,2],(m.resp + fit[1,3]),na.rm=na.rm)) if(!multi | !missing(main)){main <- paste(main," ",round(fit[1,1],2)) } else {main=main} # plot(xx/2,cos((xx/2-fit[1,1])*pi/12)*s.resp*fit[1,2]/.707+ m.resp,typ=typ,ylim=ylim,...) # plot(xx/2,cos((xx/2-fit[1,1])*pi/12)*fit[1,3]*s.resp+ #m.resp,typ="l",ylim=ylim,ylab=ylab,xlab=xlab,main=main,...) #plot the lines first if(!add) {plot(xx/2,cos((xx/2-fit[1,1])*pi/12)*s.resp*fit[1,2]/.707+ m.resp,typ=typ,ylim=ylim,ylab=ylab,xlab=xlab,main=main,...) } else { points(xx/2,cos((xx/2-fit[1,1])*pi/12)*s.resp*fit[1,2]/.707+ m.resp,typ=typ,ylim=ylim,ylab=ylab,xlab=xlab,main=main,...) } if(!multi) { points(c(x[,1],x[,1] + 24),rep(x[,2],2),...)} else {points(xx/2,cos((xx/2-fit[1,1])*pi/12)*s.resp*fit[1,2]/.707+ m.resp,typ="l",...)} #this draws the first fitted variable } #Added March 26, 2015 to do split half (first/second) reliabilities "circadian.reliability" <- function(angle,x=NULL,code=NULL,data = NULL,min=16, oddeven=FALSE,hours=TRUE,period=24,plot=FALSE,opti=FALSE,na.rm=TRUE) { cl <- match.call() if(!is.null(data)) { if(is.character(angle)) angle <- which(colnames(data) == angle) if(!is.null(code)) { if(is.character(code)) codeloc <- which(colnames(data) ==code) x <- data[,c(angle,x,codeloc)] } else {x <- data[,c(angle,x)]} angle <- x[1] x <- x[-1] } else { if (is.null(x) && is.null(code)) {x <- angle angle<- angle[,1] } else {x <- cbind(angle,x) angle <- x[1] x <- x[-1] } } if(hours) { angle <- angle*2*pi/period x <- cbind(angle,x) } n.obs <- dim(x)[1] if(is.null(code)) { fit <- cosinor.rel(angle,x,period=period,na.rm=na.rm) #if there is a code (i.e., subject id), then do the fits for each separate subject m.resp <- mean(x[,1]) s.resp <- sd(x[,1]) } else { fit.list <- by(x,x[,code],function(x) cosinor.rel(angle=x[1],x=x[-c(1,which(colnames(x)== code))],min=min,oddeven=oddeven,na.rm=na.rm)) #this is the case if code is specified ncases <- length(fit.list) fit <- matrix(unlist(fit.list),nrow=ncases,byrow=TRUE) colnames(fit) <- c(paste(colnames(x)[-c(1,which(colnames(x)== code))], "phase1",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "phase2",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "fit1",sep="."),paste(colnames(x)[-c(1,which(colnames(x)== code))], "fit2",sep=".")) rownames(fit) <- names(fit.list) } nvar <-ncol(fit)/4 r <- circadian.cor(fit[,1:(nvar*2)]) r.fit <- cor(fit[,(nvar*2+1):ncol(fit)],use="pairwise") splithalf <- split.fit <- rep(NA,nvar) for (i in 1:nvar) {splithalf[i] <- r[i,(nvar+i)] split.fit[i] <- r.fit[i,(nvar+i)]} rel <- splithalf * 2/(1+splithalf) fit.rel <- split.fit * 2/(1+split.fit) names(rel) <- paste(colnames(x)[-c(1,which(colnames(x)== code))]) names(fit.rel) <- paste(colnames(x)[-c(1,which(colnames(x)== code))]) # x <- NA #just to avoid being told that x is a global #now do the F test between the two splits split.F <- circadian.split.F(fit) result <- list(phase.rel=rel,fit.rel=fit.rel,split.F = split.F, splits=fit,Call=cl) class(result) <- c("psych","circadian","reliability") return(result) } # cosinor.rel actually does the work # or calls a linear regression fit "cosinor.rel" <- function(angle,x,min=16,oddeven=FALSE,period=24,na.rm=TRUE) { response <- x n.var <- dim(x)[2] n.obs <- dim(x)[1] if(is.null(n.var)) n.var <-1 fit <- matrix(NaN,nrow=n.var,ncol=4) if(n.obs >= min) { for (i in 1:n.var) { if(oddeven) {fits1 <- cosinor.lm2 (angle[seq(1,n.obs,2),1],x[seq(1,n.obs,2),i],na.rm=na.rm) fits2 <- cosinor.lm2 (angle[seq(2,n.obs,2),1],x[seq(2,n.obs,2),i],na.rm=na.rm) } else { fits1 <- cosinor.lm2 (angle[1:n.obs/2,1],x[1:n.obs/2,i],na.rm=na.rm) fits2 <- cosinor.lm2 (angle[(n.obs/2+1):n.obs,1],x[(n.obs/2+1):n.obs,i],na.rm=na.rm) #simple linear regression based upon sine and cosine of time} #simple linear regression based upon sin and cosine of time } fit[i,1] <- fits1[[1]] #this is the acrophase fit[i,3] <- fits1[[2]] #this is the correlation of the fit with the data fit[i,2] <- fits2[[1]] #this is the acrophase fit[i,4] <- fits2[[2]] #this is the correlation of the fit with the data } } colnames(fit) <- c("phase","phase2","fit","fit2") rownames(fit) <- colnames(x) return(fit) } "circadian.split.F" <- function(angle,hours=TRUE,na.rm=TRUE) { nvar <- ncol(angle)/4 stats1 <- circadian.stats(angle[,1:nvar]) stats2 <- circadian.stats(angle[,(nvar+1):(nvar*2)]) pool <- rbind(angle[,1:nvar],angle[,(nvar+1):(nvar*2)]) all <- circadian.stats(pool) allR <- all$n * all$R within <- matrix(c(stats1$n*stats1$R,stats2$n*stats2$R),ncol=2) rownames(within) <- rownames(all) ngroups <- 2 SSb <- rowSums(within) - allR SSw <- all$n - rowSums(within) dfw <- all$n - ngroups MSw <- SSw/dfw dfb = ngroups -1 MSb <- SSb/dfb F <- MSb/MSw prob <- 1-pf(F,dfb,dfw) F.df <- data.frame(SSb= SSb,dfb=dfb,MSb=MSb,SSw=SSw,dfw=dfw,MSw=MSw,F=F,prob=prob) result<- list(pooled =all,group1 =stats1, group2=stats2 ,F=F.df) class(result) <- c("psych","circadian") return(result) } ## # #find the mean phase of output from cosiner or any other circular data set #can find the mean phase of data in radians or hours (default) # "circadian.mean" <- function(angle,data=NULL,hours=TRUE,na.rm=TRUE) { if(!is.null(data)) angle <- data[,angle] if(hours) { angle <- angle*2*pi/24 } x <- cos(angle) y <- sin(angle) if (is.vector(angle)) { mx <- mean(x,na.rm=na.rm) my <- mean(y,na.rm=na.rm) } else { mx <- colMeans(x,na.rm=na.rm) my <- colMeans(y,na.rm=na.rm) } mean.angle <- sign(my) * acos((mx)/sqrt(mx^2+my^2)) # mean.angle <- atan(my/mx) #according to circular stats, but the other form is clearer if (hours) {mean.angle <- mean.angle*24/(2*pi) mean.angle[mean.angle <= 0] <- mean.angle[mean.angle<=0] + 24} return(mean.angle) } "circadian.sd" <- function(angle,data=NULL,hours=TRUE,na.rm=TRUE) { if(!is.null(data)) angle <- data[,angle] if(hours) { angle <- angle*2*pi/24 } nvar <- dim(angle)[2] if(is.null(nvar)) nvar <- 1 x <- cos(angle) y <- sin(angle) if(nvar > 1) { mx <- colSums(x,na.rm=na.rm) my <- colSums(y,na.rm=na.rm) n.obs <- colSums(!is.na(angle))} else { mx <- sum(x,na.rm=na.rm) my <- sum(y,na.rm=na.rm) n.obs <- sum(!is.na(angle))} R <- sqrt(mx^2+my^2)/n.obs mean.angle <- sign(my) * acos((mx/n.obs)/R) Rvar <- 1 - R sd <- sqrt(-2 * log(R)) #for (i in 1:nvar) {#the logic is that larger deviations are weighted more, up to the sin(theta) # var[i] <- sum(sin(angle[,i] -mean.angle[i])^2 ,na.rm=na.rm) } #n.obs <- colSums(!is.na(angle)) ##but these are in radians! if(hours) {#sd <- sd * 24/(pi*2) Rvar <- Rvar * 24/(pi*2)} return(list(Rvar=Rvar,sd =sd,R= R)) } "circadian.stats" <- function(angle,data=NULL,hours=TRUE,na.rm=TRUE) { cl <- match.call() means <- circadian.mean(angle=angle,data=data,hours=hours,na.rm=na.rm) csd <- circadian.sd(angle=angle,hours=hours,na.rm=na.rm) if(!is.null(data)) angle <- data[,angle] if(length(means)>1 ) { n.obs <- colSums(!is.na(angle))} else {n.obs <- sum(!is.na(angle)) } R <- csd$R if(hours) {sd <- csd$sd*24/(2*pi)} else {sd <- csd$sd} z <- n.obs * R^2 p <- exp(-z) result<- data.frame(n=n.obs,mean=means,sd=sd,R,z=z,p=p) #result <- list(n=n.obs,mean=means,sd=sd,R,z=z,p=p,call=cl) class(result) <- c("psych","circadian","data.frame") return(result) } "circadian.F" <- function(angle,group,data=NULL,hours=TRUE,na.rm=TRUE) { if(!is.null(data)) {angle <- data[,angle] group <- data[,group]} stats <- by(angle,group,circadian.stats) all <- circadian.stats(angle) allR <- all$n * all$R nR <- lapply(stats,function(x) x$n * x$R) ngroups <- length(nR) within <- matrix(unlist(nR),ncol=ngroups) rownames(within) <- rownames(all) SSb <- rowSums(within) - allR SSw <- all$n - rowSums(within) dfw <- all$n - ngroups MSw <- SSw/dfw dfb = ngroups -1 MSb <- SSb/dfb F <- MSb/MSw prob <- 1-pf(F,dfb,dfw) F.df <- data.frame(SSb= SSb,dfb=dfb,MSb=MSb,SSw=SSw,dfw=dfw,MSw=MSw,F=F,prob=prob) result<- list(pooled =all,bygroup = stats,F=F.df) class(result) <- c("psych","circadian") return(result) } print.circadian <- function(x,short=TRUE,digits=2) { if(!is.null(x$Call)) {cat("Call: ") print(x$Call)} cat("\nCircadian Statistics :\n") if(!is.null(x$F)) { cat("\nCircadian F test comparing groups :\n") print(round(x$F,digits)) if(short) cat("\n To see the pooled and group statistics, print with the short=FALSE option") } if(!is.null(x$pooled) && !short) { cat("\nThe pooled circadian statistics :\n") print( x$pooled)} if(!is.null(x$bygroup) && !short) {cat("\nThe circadian statistics by group:\n") print(x$bygroup)} #if(!is.null(x$result)) print(round(x$result,digits)) if(!is.null(x$phase.rel)) { cat("\nSplit half reliabilities are split half correlations adjusted for test length\n") x.df <- data.frame(phase=x$phase.rel,fits=x$fit.rel) print(round(x.df,digits)) } if(is.data.frame(x)) {class(x) <- "data.frame" print(round(x,digits=digits)) } } ## The circular correlation matrix of phase data #adapted from the circStats package #with various modifications for the study of mood data #one change is not use atan but rather use cosine over length # "circadian.cor" <- function(angle,data=NULL,hours=TRUE,na.rm=TRUE) { if(!is.null(data)) angle <- data[,angle] if(hours) { angle <- angle*2*pi/24 } nvar <- dim(angle)[2] correl <- diag(nvar) x <- cos(angle) y <- sin(angle) mx <- colMeans(x,na.rm=na.rm) my <- colMeans(y,na.rm=na.rm) mean.angle <- sign(my) * acos((mx)/sqrt(mx^2+my^2)) for (i in 1:nvar) {#the logic is that larger deviations are weighted more, up to the sin(theta) for (j in 1:i) {covar <- sum(sin(angle[,i] -mean.angle[i]) *sin(angle[,j] -mean.angle[j]),na.rm=na.rm) correl[i,j] <- correl[j,i] <- covar} } var <- diag(correl)/colSums(!is.na(angle)) sd <- diag(sqrt(1/diag(correl))) correl <- sd %*% correl %*% sd colnames(correl) <- rownames(correl) <- colnames(angle) return(correl) } #to find the correlation of a linear variable (e.g., a personality trait) with a circular one (e.g., phase) "circadian.linear.cor" <- function(angle,x=NULL,data=NULL,hours=TRUE) { if(!is.null(data)) angle <- data[,angle] if(hours) { angle <- angle*2*pi/24 } if(is.null(x)) {x <- angle[2:dim(angle)[2]] angle <- angle[1]} cos.angle <- cos(angle) sin.angle <- sin(angle) cor.cos <- cor(cos.angle,x,use="pairwise") cor.sin <- cor(sin.angle,x,use="pairwise") if(!is.vector(angle)) {cor.cs <- diag(cor(cos.angle,sin.angle,use="pairwise"))} else {cor.cs <- cor(cos.angle,sin.angle,use="pairwise")} R <- sqrt((cor.cos^2 + cor.sin^2 - 2 * cor.cos * cor.sin * cor.cs)/(1-cor.cs^2))*sign(cor.cos) return(R) } "circadian.plot" <- function(angle,x=NULL,hours=TRUE,title="Polar plot") { if(hours) { angle <- angle*2*pi/24 } x1 <- cos(angle) * x y1 <- sin(angle) * x maxx <- max(x) plot(x1,y1,axes=FALSE,xlab="",ylab="",xlim=c(-maxx,maxx),ylim=c(-maxx,maxx),asp=1) segments <- 51 angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) points(unit.circle*maxx,typ="l") text(maxx,0,"24",pos=4) text(-maxx,0,"12",pos=2) text(0,maxx,"6",pos=3) text(0,-maxx,"18",pos=1) } "circular.mean" <- function(angle,na.rm=TRUE) { x <- cos(angle) y <- sin(angle) if (is.vector(angle)) { mx <- mean(x,na.rm=na.rm) my <- mean(y,na.rm=na.rm) } else { mx <- colMeans(x,na.rm=na.rm) my <- colMeans(y,na.rm=na.rm) } mean.angle <- sign(my) * acos((mx)/sqrt(mx^2+my^2)) #mean.angle <- atan(my/mx) #according to circular stats, but the other form is clearer return(mean.angle) } "circular.cor" <- function(angle,na.rm=TRUE) { nvar <- dim(angle)[2] correl <- diag(nvar) x <- cos(angle) y <- sin(angle) mx <- colMeans(x,na.rm=na.rm) my <- colMeans(y,na.rm=na.rm) mean.angle <- sign(my) * acos((mx)/sqrt(mx^2+my^2)) for (i in 1:nvar) {#the logic is that larger deviations are weighted more, up to the sin(theta) for (j in 1:i) {covar <- sum(sin(angle[,i] -mean.angle[i]) *sin(angle[,j] -mean.angle[j])) correl[i,j] <- correl[j,i] <- covar} } var <- diag(correl) sd <- diag(sqrt(1/diag(correl))) correl <- sd %*% correl %*% sd colnames(correl) <- rownames(correl) <- colnames(angle) return(list(correl,var)) } #deprecated "circadian.linear.cor.2" <- function(angle,x,hours=TRUE) { if(hours) { angle <- angle*2*pi/24 } cos.angle <- cos(angle) sin.angle <- sin(angle) cor.cos <- cor(cos.angle,x,use="pairwise") cor.sin <- cor(sin.angle,x,use="pairwise") if(!is.vector(angle)) {cor.cs <- diag(cor(cos.angle,sin.angle))} else {cor.cs <- cor(cos.angle,sin.angle)} R <- sqrt((cor.cos^2 + cor.sin^2 - 2 * cor.cos * cor.sin * cor.cs)/(1-cor.cs^2)) return(R) }psych/R/anova.psych.R0000644000176200001440000000407412733017247014170 0ustar liggesusers#A function to report the difference between two factor models #adapted from John Fox's sem anova anova.psych <- function(object,object2,...) { name.1 <- deparse(substitute(object)) name.2 <- deparse(substitute(object2)) object1 <- object #rather cluncky, but gets around the problem of generic anova #check if we have omega input if(class(object1)[2] =="omega") object1 <- object1$schmid if(class(object2)[2] =="omega") object2 <- object2$schmid chi.1 <- object1$STATISTIC dof.1 <- object1$dof BIC.1 <- object1$BIC echi.1 <- object1$chi chi.2 <- object2$STATISTIC dof.2 <- object2$dof BIC.2 <- object2$BIC echi.2 <- object2$chi if(is.null(echi.1)) echi.1 <- NA if(is.null(echi.2)) echi.2 <- NA if( is.null(chi.1)) {stop("You do not seem to have chi square values for ",name.1,"\nPerhaps you did not specify the sample size when you did the analysis?" )} if( is.null(chi.2)) {stop("You do not seem to have chi square values for ",name.2,"\nPerhaps you did not specify the sample size when you did the analysis?" )} delta.df <- abs(dof.1 - dof.2) delta.chi <-abs( chi.1 - chi.2) delta.echi <- abs(echi.1 - echi.2) test.chi <- delta.chi/delta.df test.echi <- delta.echi/delta.df delta.BIC <- (BIC.2 - BIC.1) table <- data.frame(c(dof.1,dof.2),c(chi.1,chi.2),c(NA,delta.df),c(NA,delta.chi),c(NA, pchisq(delta.chi, delta.df, lower.tail=FALSE)),c(echi.1,echi.2),c(NA,delta.echi),c(NA,pchisq(delta.echi, delta.df, lower.tail=FALSE)),c(BIC.1,BIC.2),c(NA,delta.BIC)) names(table) <- c("Model Df", "ML Chisq", "Delta Df", "Delta Chisq", "Pr(> Delta Chisq)","Emp Chisq"," Delta Emp Chisq" ,"Pr(> Emp.Delta Chisq)","BIC","Delta BIC") if(is.na(delta.echi)) { table <- data.frame(c(dof.1,dof.2),c(chi.1,chi.2),c(NA,delta.df),c(NA,delta.chi),c(NA, pchisq(delta.chi, delta.df, lower.tail=FALSE)),c(BIC.1,BIC.2),c(NA,delta.BIC)) names(table) <- c("Model Df", "ML Chisq", "Delta Df", "Delta Chisq", "Pr(> Delta Chisq)","BIC","Delta BIC") } rownames(table) <- c(name.1, name.2) structure(table,heading = c("ANOVA Test for Difference Between Models",""), class = c("anova", "data.frame")) } psych/R/omega.graph.R0000644000176200001440000001655112456461256014137 0ustar liggesusers#modified January 20, 2009 to create sem commands #modified May 30, 2008 to try to get arrows going both ways in the sl option. #this now works, but sometimes two lines don't have arrows. #Created May 20, 2007 #modified June 2 to clarify the Rgraphviz issue #modified July 12 to fix label problem #take the output from omega and graph it #fixed Sept 16 to draw sl solutions correctly "omega.graph" <- function(om.results,out.file=NULL,sl=TRUE,labels=NULL, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,title="Omega", ...){ if(!requireNamespace('Rgraphviz')) {stop("I am sorry, you need to have the Rgraphviz package installed") #create several dummy functions to get around the "no visible global function definition" problem nodes <- function() {} addEdge <- function() {} subGraph <- function(){} } # if(!requireNamespace(graph)) {stop("I am sorry, you need to have the graph package installed") } if (sl) {factors <- as.matrix(om.results$schmid$sl) } else{factors <- as.matrix(om.results$schmid$oblique)} rank.direction <- match.arg(rank.direction) #first some basic setup parameters num.var <- dim(factors)[1] #how many variables? if (sl) {num.factors <- dim(factors)[2] -4 } else {num.factors <- dim(factors)[2]} gloading <- om.results$schmid$gloading vars <- paste("V",1:num.var,sep="") if (!is.null(labels)) {vars <- paste(labels)} else{vars <- rownames(factors) } if(sl) {fact <- c("g",paste("F",1:num.factors,"*",sep="")) } else {fact <- c("g",paste("F",1:num.factors,sep="")) } # e.g. "g" "F'1" "F2" "F3" clust.graph <- new("graphNEL",nodes=c(vars,fact),edgemode="directed") graph.shape <- c(rep("box",num.var),rep("ellipse",num.factors+1)) graph.rank <- c("sink", rep("same",num.var),rep("source",num.factors)) #this doesn't seem to make a difference names(graph.shape) <- nodes(clust.graph) names(graph.rank) <- nodes(clust.graph) if (sl) {edge.label <- rep("",num.var*2) #this basically just sets up the vectors to be the right size edge.dir <-rep("forward",num.var*2) # edge.arrows <-rep("open",num.var+num.factors) edge.arrows <-rep("open",num.var*2) edge.name <- rep("",num.var*2) names(edge.label) <- seq(1:num.var*2) names(edge.dir) <-rep("",num.var*2) #names(edge.arrows) <-rep("",num.var+num.factors) names(edge.arrows) <-rep("",num.var*2) sem <- matrix(rep(NA,6*(2*num.var + num.factors)),ncol=3) #used for sem diagram } else { edge.label <- rep("",num.var+num.factors) edge.name <- rep("",num.var+num.factors) edge.arrows <-rep("open",num.var+num.factors) edge.dir <-rep("forward",num.var*2) names(edge.label) <- seq(1:num.var+num.factors) names(edge.dir) <- seq(1:num.var+num.factors) names(edge.arrows) <- seq(1:num.var+num.factors) sem <- matrix(rep(NA,6*(num.var + num.factors)+3),ncol=3) #used for sem diagram } #show the cluster structure with ellipses if (sl) { l <- matrix(factors[,2:(num.factors+1)],ncol=num.factors) } else { l <- factors } m1 <- matrix(apply(t(apply(l, 1, abs)), 1, which.max), ncol = 1) if (sl) { k <- num.var for (i in 1:num.var) { clust.graph <- addEdge( vars[i],fact[1], clust.graph,1) edge.label[i] <- round(factors[i,1],digits) edge.name[i] <- paste(vars[i],"~",fact[1],sep="") edge.arrows[i] <- paste("open") edge.dir[i] <- paste("back") sem[i,1] <- paste(fact[1],"->",vars[i],sep="") sem[i,2] <- vars[i] } } else { k <- num.factors for (j in 1:num.factors) {clust.graph <- addEdge(fact[1], fact[j+1], clust.graph,1) #hierarchical g edge.label[j] <- round(gloading[j],digits) edge.name[j] <- paste(fact[1],"~",fact[j+1],sep="") sem[j,1] <- paste(fact[1],"->",fact[1+j],sep="") sem[j,2] <- paste("g",fact[1+j],sep="") } } for (i in 1:num.var) { clust.graph <- addEdge(fact[1+m1[i]], vars[i], clust.graph,1) edge.label[i+k] <- round(l[i,m1[i]],digits) edge.name[i+k] <- paste(fact[1+m1[i]],"~",vars[i],sep="") edge.arrows[i+k] <- paste("open") sem[i+k,1] <- paste(fact[1+m1[i]],"->",vars[i],sep="") sem[i+k,2] <- paste(fact[1+m1[i]],vars[i],sep="") } # edge.label[(i-1)*2+1] <- results[i,"r1"] # edge.name [(i-1)*2+1] <- paste(row.names(results)[i],"~", results[i,1],sep="") if(sl) { k <- num.var*2 for (i in 1:num.var) { sem[i+k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[i+k,2] <- paste("e",i,sep="") } k <- k + num.var for (f in 1:num.factors) { sem[f+k,1] <- paste(fact[1+f],"<->",fact[1+f],sep="") sem[f+k,3] <- "1" } k <- k+ num.factors sem[k+1,1] <- paste("g <->g") sem[k+1,3] <- "1" k<- k+1 } else { k <- num.var + num.factors for (i in 1:num.var) { sem[i+k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[i+k,2] <- paste("e",i,sep="") } k <- 2*num.var + num.factors for (f in 1:num.factors) { sem[f+k,1] <- paste(fact[f+1],"<->",fact[f+1],sep="") sem[f+k,3] <- "1" } k <- 2*num.var + 2*num.factors sem[k+1,1] <- paste("g<->g") sem[k+1,3] <- "1" k <- k+1 } nAttrs <- list() #node attributes eAttrs <- list() #edge attributes if(FALSE) { if (!is.null(labels)) {var.labels <- c(labels,fact) names(var.labels) <- nodes(clust.graph) nAttrs$label <- var.labels names(edge.label) <- edge.name } } names(edge.label) <- edge.name names(edge.dir) <- edge.name names(edge.arrows) <- edge.name nAttrs$shape <- graph.shape nAttrs$rank <- graph.rank eAttrs$label <- edge.label if(sl) { eAttrs$dir<- edge.dir eAttrs$arrowhead <- edge.arrows eAttrs$arrowtail<- edge.arrows } attrs <- list(node = list(shape = "ellipse", fixedsize = FALSE),graph=list(rankdir=rank.direction, fontsize=10,bgcolor="white" )) # obs.var <- subGraph(vars,clust.graph) # cluster.vars <- subGraph(fact,clust.graph) # observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank=""))) # plot(clust.graph, nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed,main=title) plot(clust.graph,nodeAttrs = nAttrs,edgeAttrs = eAttrs,attrs = attrs,main=title) #not clear if the subGList makes any difference if(!is.null(out.file) ){toDotty(clust.graph,out.file,nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs) } colnames(sem) <- c("Path","Parameter","Initial Value") return(sem=sem[1:k,]) } psych/R/schmid.R0000644000176200001440000002732113016671371013205 0ustar liggesusers#corrected estimate of communality, May 21, 2007 #removed "x" from factanal call, June 14, 2007 #added ability to do 2 factors by treating them with equal loadings Jan 2008 #added use of simplimax rotation June 2008 #corrected the sign of group factors to match the original factors #modified November, 2014 to allow for covariances in addition to correlations. #also cleaned up the code to take advantage of switch "schmid" <- function (model, nfactors = 3, fm = "minres", digits=2,rotate="oblimin",n.obs=NA,option="equal",Phi=NULL,covar=FALSE,...) { cl <- match.call() #if Phi is not Null, then we have been given a factor matrix, otherwise #model is a correlation matrix, or if not, the correlation matrix is found #nfactors is the number of factors to extract if(!requireNamespace('GPArotation')) {stop("I am sorry, you need to have the GPArotation package installed")} #there are two types of input # 1: from a factor analysis and or rotation function with a matrix of loadings and a Phi matrix # 2: raw data or a correlation/covariance matrix (from e.g, omega) # 3 Input is the output of a factor analysis if(is.list(model)) {if((class(model)[1] == "psych") && (class(model)[2] == "fa")) {Phi <- model$Phi model <- model$loadings} else {stop("input is a list, but is not from of class 'fa' ")}} if(is.null(Phi)) { #the normal case normal.case <- TRUE nvar <-dim(model)[2] if(dim(model)[1] != dim(model)[2]) {n.obs <- dim(model)[1] if(covar) { model <- cov(model,use="pairwise")} else {model <- cor(model,use="pairwise") } } if (fm =="pc") { fact <- principal(model, nfactors,n.obs=n.obs,...) fm <- 'minres' #because we want to use factor analysis for the higher level factors message("The higher order factor is found using minres -- see the notes") } else {if ((fm == "pa") |(fm =="minres") | (fm =="wls") |(fm =="minres") |(fm =="ml")|(fm =="mle") |(fm =="gls") |(fm =="minchi") |(fm =="minrank")) {fact <- fa(model, nfactors,n.obs=n.obs,rotate="varimax",fm=fm,covar=covar) } else { stop("The method of factor extraction you specified is not available") }} orth.load <- loadings(fact) } else {model <- as.matrix(model) Phi <- as.matrix(Phi) fact <- model %*% Phi #find the orthogonal (structure) matrix from the oblique pattern and the Phi matrix orth.load <- fact #but this is not the correct factor solution ev <- eigen(Phi) orth.load <- model %*% ev$vector %*% sqrt(diag(ev$values)) colnames(orth.load) <- colnames(Phi) nfactors <- dim(fact)[2] normal.case <-FALSE} colnames(orth.load) <- paste("F",1:nfactors,sep="") if(nfactors == 1) { message("Omega_h for 1 factor is not meaningful, just omega_t") obminfact <-list(loadings= orth.load) factr <- 1 } else { #the normal case is nfactors > 2 switch(rotate, simplimax = {obminfact <- GPArotation::simplimax(orth.load)}, # promax = {obminfact <- Promax(orth.load) # rotmat <- obminfact$rotmat # Phi <- obminfact$Phi # }, promax = {#to match revised fa call pro <- kaiser(orth.load,rotate="Promax",...) #calling promax will now do the Kaiser normalization before doing Promax rotation obminfact <- pro rot.mat <- pro$rotmat Phi <- pro$Phi }, Promax = {obminfact <- Promax(orth.load) rotmat <- obminfact$rotmat Phi <- obminfact$Phi }, TargetQ = {obminfact <- do.call(rotate,list(orth.load,...)) loadings <- obminfact$loadings Phi <- obminfact$Phi }, cluster = {obminfact <- varimax(orth.load) obminfact <- target.rot(obminfact,...) loadings <- obminfact$loadings Phi <- obminfact$Phi }, target = {obminfact <- varimax(orth.load) obminfact <- target.rot(obminfact,...) loadings <- obminfact$loadings Phi <- obminfact$Phi }, oblimin = { obminfact <- try(GPArotation::oblimin(orth.load)) if(class(obminfact)== as.character("try-error")) {obminfact <- Promax(orth.load) #special case for examples with exactly 2 orthogonal factors message("\nThe oblimin solution failed, Promax used instead.\n") #perhaps no longer necessary with patch to GPForth and GPFoblq in GPArotation rotmat <- obminfact$rotmat Phi <- obminfact$Phi}}, geominQ = { obminfact <- try(GPArotation::geominQ(orth.load)) if(class(obminfact)== as.character("try-error")) {obminfact <- Promax(orth.load) #special case for examples with exactly 2 orthogonal factors message("\nThe geominQ solution failed, Promax used instead.\n") #perhaps no longer necessary with patch to GPForth and GPFoblq in GPArotation rotmat <- obminfact$rotmat Phi <- obminfact$Phi}}, bentlerQ = { obminfact <- try(GPArotation::bentlerQ(orth.load)) if(class(obminfact)== as.character("try-error")) {obminfact <- Promax(orth.load) #special case for examples with exactly 2 orthogonal factors message("\nThe bentlerQ solution failed, Promax used instead.\n") #perhaps no longer necessary with patch to GPForth and GPFoblq in GPArotation rotmat <- obminfact$rotmat Phi <- obminfact$Phi}}, targetQ = { obminfact <- try(GPArotation::targetQ(orth.load,...)) if(class(obminfact)== as.character("try-error")) {obminfact <- Promax(orth.load) #special case for examples with exactly 2 orthogonal factors message("\nThe targetQ solution failed, Promax used instead.\n") #perhaps no longer necessary with patch to GPForth and GPFoblq in GPArotation rotmat <- obminfact$rotmat Phi <- obminfact$Phi}}, biquartimin = {obminfact <- biquartimin(orth.load,...) loadings <- obminfact$loadings Phi <- obminfact$Phi rot.mat <- t(solve(obminfact$Th))} ) # # # if (rotate == "simplimax") {obminfact <- simplimax(orth.load)} else { # if((rotate == "promax") | (rotate == "Promax") ) {obminfact <- Promax(orth.load) # rotmat <- obminfact$rotmat # Phi <- obminfact$Phi # } else { # if(rotate=="TargetQ") {obminfact <- do.call(rotate,list(orth.load,...)) # loadings <- obminfact$loadings # Phi <- obminfact$Phi # } else { # # if ((rotate == "cluster") | (rotate == "target")) {obminfact <- varimax(orth.load) # obminfact <- target.rot(obminfact,...) # loadings <- obminfact$loadings # Phi <- obminfact$Phi # } else { # obminfact <- try(oblimin(orth.load)) # if(class(obminfact)== as.character("try-error")) {obminfact <- Promax(orth.load) #special case for examples with exactly 2 orthogonal factors # message("\nThe oblimin solution failed, Promax used instead.\n") #perhaps no longer necessary with patch to GPForth and GPFoblq in GPArotation # rotmat <- obminfact$rotmat # Phi <- obminfact$Phi} }} } # } } if(nfactors > 1) rownames(obminfact$loadings) <- attr(model,"dimnames")[[1]] if(!normal.case) { fload <- model factr <- Phi model <- fload %*% Phi %*% t(fload) diag(model) <- 1} else { fload <- obminfact$loadings #factr <- t(obminfact$Th) %*% (obminfact$Th) factr <- obminfact$Phi} if (nfactors ==1) {gload <- c(1) warning("Omega_h and Omega_asymptotic are not meaningful with one factor") } else { colnames(factr) <- rownames(factr) <- paste("F",1:nfactors,sep="") #make it a vector if (nfactors>2) { gfactor <- fa(factr,fm=fm) #The first factor of the factor intercorrelation matrix #added fm=fm March 5, 2011 gload <- loadings(gfactor) } else {gload<- c(NA,NA) #consider the case of two factors if(option=="equal") { gload[1] <- sqrt(abs(factr[1,2])) gload[2] <- sign(factr[1,2])*sqrt(abs(factr[1,2])) message("\nThree factors are required for identification -- general factor loadings set to be equal. \nProceed with caution. \nThink about redoing the analysis with alternative values of the 'option' setting.\n")} else { if(option=="first") { gload[1] <- 1 # gload[2] <- abs(factr[1,2]) gload[2] <- (factr[1,2]) message("\nThree factors are required for identification -- general factor loading set to be 1 for group factor 1. \nProceed with caution. \nThink about redoing the analysis with alternative values of the 'option' setting.\n")} else { gload[2] <- 1 # gload[1] <- abs(factr[1,2]) gload[1] <- (factr[1,2]) message("\nThree factors are required for identification -- general factor loadings are set to be 1 for group factor 2.\nProceed with caution. \nThink about redoing the analysis with alternative values of the 'option' setting.\n")} } } } gprimaryload <- fload %*% gload colnames(gprimaryload) <- "g" h2 <- diag(orth.load %*% t(orth.load)) # u2 <- 1 - h2 u2 <- diag(model) - h2 uniq <- diag(model)- fload^2 guniq <- diag(model) - gprimaryload^2 #Ig <- matrix(0, ncol = nfactors, nrow = nfactors) #diag(Ig) <- gload Ig <- diag(drop(gload)) #3/5/11 primeload <- fload %*% Ig g.percent <- gprimaryload^2/h2 colnames(g.percent) <- "p2" uniq2 <- diag(model) - uniq - primeload^2 uniq2[uniq2<0] <- 0 sm <- sign(fload) * sqrt(uniq2) #added June 1, 2010 to correctly identify sign of group factors colnames(sm) <- paste("F",1:nfactors,"*",sep="") if(!is.null(Phi)) { result <- list(sl = cbind(gprimaryload, sm,h2, u2,p =g.percent), orthog = orth.load, oblique=fload, phi =factr, gloading = gload,Call=cl)} else{ result <- list(sl = cbind(gprimaryload, sm,h2, u2,p=g.percent), orthog = orth.load, oblique=fload, phi =factr, gloading = gload,dof=fact$dof,objective=fact$criteria[1],STATISTIC=fact$STATISTIC,PVAL=fact$PVAL,RMSEA=fact$RMSEA,BIC=fact$BIC,rms = fact$rms,crms=fact$crms,n.obs=n.obs,scores=fact$scores,Call=cl )} class(result) <- c("psych" ,"schmid") return(result) } psych/R/predict.principal.R0000644000176200001440000000125511740114344015340 0ustar liggesusers#written November 22, 2010 #revised April 7, 2012 to treat single case problem "predict.psych" <- function(object,data,old.data,...) { data <- as.matrix(data) if(ncol(data) ==1) data <- t(data) if(missing(old.data)) {data <- scale(data)} else { stats <- describe(old.data) data <- scale(data,center=stats$mean,scale=stats$sd)} wt <- object$weights pred <- data %*% wt return(pred)} #these next two do not standardize the prediction "predict.principal" <- function(object,data) { wt <- object$weights data <- as.matrix(data) pred <- data %*% wt return(pred) } "predict.fa" <- function(object,data) { wt <- object$weights data <- as.matrix(data) pred <- data %*% wt return(pred) }psych/R/irt.fa.R0000644000176200001440000001001313032023013013065 0ustar liggesusers"irt.fa" <- function(x,nfactors=1,correct=TRUE,plot=TRUE,n.obs=NULL,rotate="oblimin",fm="minres",sort=FALSE,...) { cl <- match.call() if (is.matrix(x) | is.data.frame(x)) { if(is.null(n.obs)) n.obs <- dim(x)[1] nvar <- ncol(x) vname <- colnames(x) x <- as.matrix(x) if(!is.numeric(x)) {message("Converted non-numeric matrix input to numeric. \n Are you sure you wanted to do this?\n Please check your data") x <- matrix(as.numeric(x),ncol=nvar)} colnames(x) <- vname tx <- table(as.matrix(x)) if(dim(tx)[1] ==2) {tet <- tetrachoric(x,correct=correct) typ = "tet"} else {tet <- polychoric(x) typ = "poly"} r <- tet$rho tau <- tet$tau} else {if (!is.null(x$rho)) { r <- x$rho tau <- x$tau if(is.null(n.obs)) {n.obs <- x$n.obs} typ <- class(x)[2] if (typ == "irt.fa") typ <- "tet" } else {stop("x must be a data.frame or matrix or the result from tetra or polychoric")} } t <- fa(r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,fm=fm,...) if(sort) {t <- fa.sort(t) #added 04/06/16 if(typ !="tet" ) {tau <- tau[t$order,] } else {tau <- tau[t$order] } } nf <- dim(t$loadings)[2] diffi <- list() #flag <- which(abs(t$loadings) > 1,arr.ind=TRUE) #this throws an error if a Heywood case for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-t$loadings[,i]^2) } discrim <- t$loadings/sqrt(1-t$loadings^2) if(any(is.nan(discrim))) { for (i in 1:nf) { bad <- which(is.nan(discrim[,i])) if(length( bad) > 0) { warning("A discrimination with a NaN value was replaced with the maximum discrimination for factor ", i, " and item(s) ",bad, "\nexamine the factor analysis object (fa) to identify the Heywood case. \nThe item informations are probably suspect as well for this factor. \nYou might try a different factor extraction technique. ") discrim[is.nan(discrim[,i]),i] <- max(discrim[,i],na.rm=TRUE) diffi[[i]][bad,] <- tau[bad,] } }} class(diffi) <- NULL class(discrim) <- NULL tl <- t$loadings class(tl) <- NULL irt <- list(difficulty=diffi,discrimination=discrim) nlevels <- dim(diffi[[1]])[2] #if(!is.null(nlevels)) { #colnames(coeff) <- c(paste("Location",1:nlevels,sep=""),"Discrimination",paste("tau",1:nlevels,sep=""),"Loading") } else { #colnames(coeff) <- c("Location","Discrimination","tau","Loading")} result <- list(irt=irt,fa = t,rho=r,tau=tau,n.obs=n.obs,Call=cl) switch(typ, tet = { class(result) <- c("psych","irt.fa")}, tetra ={class(result) <- c("psych","irt.fa")}, poly = {class(result) <- c("psych","irt.poly")}, irt.poly = {class(result) <- c("psych","irt.poly")}) if(plot) {pr <- plot(result) result$plot <- pr} return(result) } #convert a factor analysis output to an IRT output #December 9, 2012 #modifed June 5, 2016 to allow sorted output to work "fa2irt" <- function(f,rho,plot=TRUE,n.obs=NULL) { cl <- match.call() tau <- rho$tau if(!is.null(f$order)) {if (!is.null(ncol(tau))) { tau <- tau[f$order,] } else {tau <- tau[f$order] }} #adjust for sorting r <- rho$rho nf <- ncol(f$loadings) diffi <- list() #flag <- which(abs(t$loadings) > 1,arr.ind=TRUE) #this throws an error if a Heywood case for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-f$loadings[,i]^2) } discrim <- f$loadings/sqrt(1-f$loadings^2) if(any(is.nan(discrim))) {bad <- which(is.nan(discrim),arr.ind=TRUE) if(length(bad) > 0) { warning("An discrimination with a NaN value was replaced with the maximum discrimination for item(s) ",bad, "\nexamine the factor analysis object (fa) to identify the Heywood case") } for (i in 1:nf) { discrimin[is.nan(discrim[,i])] <- max(discrimin[,i],na.rm=TRUE) }} irt <- list(difficulty=diffi,discrimination=discrim) result <- list(irt=irt,fa = f,rho=r,tau=tau,n.obs=n.obs,Call=cl) if(class(rho)[2] == "poly" ) {class(result) <- c("psych","irt.poly") } else {class(result) <- c("psych","irt.fa")} if(plot) {pr <- plot(result) result$plot <- pr} return(result) }psych/R/rescale.R0000644000176200001440000000030610775435113013347 0ustar liggesusers"rescale" <- function(x,mean=100,sd=15,df=TRUE) {if(df) {x <- data.frame(t(t(scale(x))*sd+mean)) } else {x <- t( t(scale(x))*sd +mean)} return(x) } #corrected April 3 to properly do matrix additionpsych/R/smc.R0000644000176200001440000000734612516767676012547 0ustar liggesusers#modified Dec 10, 2008 to return 1 on diagonal if non-invertible #modifed March 20, 2009 to return smcs * variance if covariance matrix is desired #modified April 8, 2009 to remove bug introduced March 10 when using covar from data #modified Jan 14, 2010 to test if matrix before cov2cor call. #modified October 2, 2010 to convert smcs < 0 to 0 -- this is situation encountered with extreme missingness in sapa matrices #modified April 23, 2015 to handle NAs in the correlation matrix #smcs are found for the non-NA variables, then, smcs for the remaining ones are found from the correlations for those with NAs "smc" <- function(R,covar =FALSE) { failed=FALSE wcc <- maxr <- NULL p <- dim(R)[2] if(is.null(colnames(R))) colnames(R) <- paste0("V",1:p) smc.all <- rep(NA,p) names(smc.all) <- colnames(R) if (dim(R)[1] != p) {if(covar) {C <- cov(R, use="pairwise") vari <- diag(C) R <- cov2cor(C) } else {R <- cor(R,use="pairwise")}} else {vari <- diag(R) if (!is.matrix(R)) R <- as.matrix(R) R <- cov2cor(R) } tempR <- NULL if(any(is.na(R))) { bad <- TRUE tempR <- R vr <- diag(tempR) diag(tempR) <- 0 maxr <- apply(tempR,2,function(x) max(abs(x),na.rm=TRUE)) diag(tempR) <- vr wcl <-NULL while(bad) { wc <- table(which(is.na(tempR), arr.ind=TRUE)) #find the correlations that are NA wcl <- c(wcl,as.numeric(names(which(wc==max(wc))))) tempR <- R[-wcl,-wcl] if(any(is.na(tempR))) {bad <- TRUE} else {bad <- FALSE} } warning("Missing values (NAs) in the correlation matrix do not allow for SMC's to be found for all variables. \nI will try to estimate SMCs for those variables by their non-NA correlations.") cat('\nSMC(s) for variables ',colnames(R)[wcl], 'were replaced (if possible) with smcs based upon their (its) non-NA correlations\n') #now, try to find the smcs for the other ones wc <-(which(is.na(R[,wcl]),arr.ind=TRUE)) if(is.null(dim(wc))) {wcc <- as.numeric(names(table(wc))) } else { wcc <- as.numeric(names(table(wc[,1])))} tempR <- R[-wcc,-wcc] R <- R[-wcl,-wcl] } if(!covar) { R <- cor.smooth(R) } R.inv <- try(solve(R),TRUE) if(class(R.inv)== as.character("try-error")) {smc <- rep(1,p) message("In smc, the correlation matrix was not invertible, smc's returned as 1s")} else {smc <- 1 -1/diag(R.inv)} names(smc) <- colnames(R) if(!is.null(tempR)) { R.na.inv <- try(solve(tempR),TRUE) if(class(R.na.inv) == as.character("try-error")) {smc.na <- rep(1,p) message("Oh bother, in smc, the correlation matrix of the adjusted part was not invertible, smc's returned as 1s")} else {smc.na <- 1 -1/diag(R.na.inv)} } else {smc.na <- smc} if(all(is.na(smc))) {message ("Something is seriously wrong the correlation matrix.\nIn smc, smcs were set to 1.0") smc[is.na(smc)] <- 1} if(max(smc,na.rm=TRUE) > 1.0) {message("In smc, smcs > 1 were set to 1.0") smc[smc >1 ] <- 1.0} if(min(smc,na.rm=TRUE) < 0.0) {message("In smc, smcs < 0 were set to .0") smc[smc < 0] <- 0} smc.all[names(smc.all) %in% names(smc)] <- smc if(!is.null(wcc)) {smc.all[wcl] <- smc.na[names(smc.all[wcl])] } smc <- smc.all if(!is.null(maxr)) { if(any(is.na(smc))) {warning("The SMCs with NA values were replaced by their maximum correlation.") cat('\nSMC(s) for variables ',names(smc)[is.na(smc)], 'were replaced with their maximum correlation \n')} smc[is.na(smc) ] <- maxr[is.na(smc)] #in case we could not fix everything } if(covar) {smc <- smc * vari} return(smc) }psych/R/pairs.panels.R0000755000176200001440000002230513144647235014341 0ustar liggesusers#Adapted from the help for pairs #modified December 15, 2011 to add the rug option #further modified March 30, 2012 to add the method of correlation option (suggested by Carsten Dormann). #Fixed a bug in show.points on March 18, 2017 (reported by Matthew Labrum) #August 11, 2017 Added confidence intervals and adjust the histogram so it lines up with wht data points (suggested by Julan Martin) #by moving all the little functions to be outside the main function, this allows method and rug to be passed to these lower order functions. #this should allow for somewhat cleaner code for the other functions #modified March 15, 2015 to add the ability to control the size of the correlation separately from the cex variable in the points #also added the ability to set the number of breaks in the histograms "pairs.panels" <- function (x, smooth = TRUE, scale = FALSE, density=TRUE,ellipses=TRUE,digits = 2, method="pearson",pch = 20,lm=FALSE,cor=TRUE,jiggle=FALSE,factor=2,hist.col="cyan",show.points=TRUE,rug=TRUE, breaks="Sturges", cex.cor = 1 ,wt=NULL,smoother=FALSE,stars=FALSE,ci=FALSE,alpha=.05,...) #combines a splom, histograms, and correlations { #First define all the "little functions" that are internal to pairs.panels. This allows easier coding later "panel.hist.density" <- function(x,...) { usr <- par("usr"); on.exit(par(usr)) # par(usr = c(usr[1]-abs(.05*usr[1]) ,usr[2]+ abs(.05*usr[2]) , 0, 1.5) ) par(usr = c(usr[1] ,usr[2] , 0, 1.5) ) tax <- table(x) if(length(tax) < 11) {breaks <- as.numeric(names(tax)) y <- tax/max(tax) interbreak <- min(diff(breaks))*(length(tax)-1)/41 rect(breaks-interbreak,0,breaks + interbreak,y,col=hist.col) } else { h <- hist(x,breaks=breaks, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y,col=hist.col) } if(density) { tryd <- try( d <- density(x,na.rm=TRUE,bw="nrd",adjust=1.2),silent=TRUE) if(class(tryd) != "try-error") { d$y <- d$y/max(d$y) lines(d)}} if(rug) rug(x) } "panel.cor" <- function(x, y, digits=2, prefix="",...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) if(is.null(wt)) { r <- cor(x, y,use="pairwise",method=method)} else { r <- cor.wt(data.frame(x,y),w=wt[,c(1:2)])$r[1,2]} txt <- format(c(round(r,digits), 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep="") if(stars) {pval <- r.test(sum(!is.na(x*y)),r)$p symp <- symnum(pval, corr = FALSE,cutpoints = c(0, .001,.01,.05, 1), symbols = c("***","**","*"," "),legend=FALSE) txt <- paste0(txt,symp)} cex <- cex.cor*0.8/(max(strwidth("0.12***"),strwidth(txt))) if(scale) {cex1 <- cex * abs(r) if(cex1 < .25) cex1 <- .25 #otherwise they just vanish text(0.5, 0.5, txt, cex = cex1) } else { text(0.5, 0.5, txt,cex=cex)} } "panel.smoother" <- function (x, y,pch = par("pch"), col.smooth = "red", span = 2/3, iter = 3, ...) { # usr <- par("usr"); on.exit(par(usr)) # par(usr = c(usr[1]-abs(.05*usr[1]) ,usr[2]+ abs(.05*usr[2]) , usr[3],usr[4]) ) #doensn't affect the axis correctly xm <- mean(x,na.rm=TRUE) ym <- mean(y,na.rm=TRUE) xs <- sd(x,na.rm=TRUE) ys <- sd(y,na.rm=TRUE) r = cor(x, y,use="pairwise",method=method) if(jiggle) { x <- jitter(x,factor=factor) y <- jitter(y,factor=factor)} if(smoother) {smoothScatter(x,y,add=TRUE, nrpoints=0)} else {if(show.points) points(x, y, pch = pch, ...)} ok <- is.finite(x) & is.finite(y) if (any(ok)) { if(smooth & ci) { lml <- loess(y~x ,degree=1,family="symmetric") tempx <- data.frame(x = seq(min(x,na.rm=TRUE),max(x,na.rm=TRUE),length.out=47)) pred <- predict(lml,newdata=tempx,se=TRUE ) if(ci) { upperci <- pred$fit + confid*pred$se.fit lowerci <- pred$fit - confid*pred$se.fit polygon(c(tempx$x,rev(tempx$x)),c(lowerci,rev(upperci)),col=adjustcolor("light grey", alpha.f=0.8), border=NA) } lines(tempx$x,pred$fit, col = col.smooth, ...) #this is the loess fit } else {if(smooth) lines(stats::lowess(x[ok],y[ok],f=span,iter=iter),col=col.smooth) }} if(ellipses) draw.ellipse(xm,ym,xs,ys,r,col.smooth=col.smooth,...) #this just draws the ellipse } "panel.lm" <- function (x, y, pch = par("pch"), col.lm = "red", ...) { ymin <- min(y) ymax <- max(y) xmin <- min(x) xmax <- max(x) ylim <- c(min(ymin,xmin),max(ymax,xmax)) xlim <- ylim if(jiggle) { x <- jitter(x,factor=factor) y <- jitter(y,factor=factor)} if(smoother) {smoothScatter(x,y,add=TRUE, nrpoints=0)} else {if(show.points) {points(x, y, pch = pch,ylim = ylim, xlim= xlim, ...)}}# if(show.points) points(x, y, pch = pch,ylim = ylim, xlim= xlim,...) ok <- is.finite(x) & is.finite(y) if (any(ok)) { lml <- lm(y ~ x) if(ci) { tempx <- data.frame(x = seq(min(x,na.rm=TRUE),max(x,na.rm=TRUE),length.out=47)) pred <- predict.lm(lml,newdata=tempx,se.fit=TRUE) #from Julian Martins upperci <- pred$fit + confid*pred$se.fit lowerci <- pred$fit - confid*pred$se.fit polygon(c(tempx$x,rev(tempx$x)),c(lowerci,rev(upperci)),col=adjustcolor("light grey", alpha.f=0.8), border=NA) } if(ellipses) { xm <- mean(x,na.rm=TRUE) ym <- mean(y,na.rm=TRUE) xs <- sd(x,na.rm=TRUE) ys <- sd(y,na.rm=TRUE) r = cor(x, y,use="pairwise",method=method) draw.ellipse(xm,ym,xs,ys,r,col.smooth=col.lm,...) #just draw the ellipse } abline(lml, col = col.lm, ...) } } "draw.ellipse" <- function(x=0,y=0,xs=1,ys=1,r=0,col.smooth,add=TRUE,segments=51,...) { #based upon John Fox's ellipse functions angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) if(!is.na(r)) { if (abs(r)>0 )theta <- sign(r)/sqrt(2) else theta=1/sqrt(2) shape <- diag(c(sqrt(1+r),sqrt(1-r))) %*% matrix(c(theta,theta,-theta,theta),ncol=2,byrow=TRUE) ellipse <- unit.circle %*% shape ellipse[,1] <- ellipse[,1]*xs + x ellipse[,2] <- ellipse[,2]*ys + y if(show.points) points(x,y,pch=19,col=col.smooth,cex=1.5 ) #draw the mean lines(ellipse, ...) } } "panel.ellipse" <- function (x, y, pch = par("pch"), col.smooth = "red", ...) { segments=51 usr <- par("usr"); on.exit(par(usr)) par(usr = c(usr[1]-abs(.05*usr[1]) ,usr[2]+ abs(.05*usr[2]) , 0, 1.5) ) xm <- mean(x,na.rm=TRUE) ym <- mean(y,na.rm=TRUE) xs <- sd(x,na.rm=TRUE) ys <- sd(y,na.rm=TRUE) r = cor(x, y,use="pairwise",method=method) if(jiggle) { x <- jitter(x,factor=factor) y <- jitter(y,factor=factor)} if(smoother) {smoothScatter(x,y,add=TRUE, nrpoints=0)} else {if(show.points) {points(x, y, pch = pch, ...)}} angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) if(!is.na(r)) { if (abs(r)>0 ) theta <- sign(r)/sqrt(2) else theta=1/sqrt(2) shape <- diag(c(sqrt(1+r),sqrt(1-r))) %*% matrix(c(theta,theta,-theta,theta),ncol=2,byrow=TRUE) ellipse <- unit.circle %*% shape ellipse[,1] <- ellipse[,1]*xs + xm ellipse[,2] <- ellipse[,2]*ys + ym points(xm,ym,pch=19,col=col.smooth,cex=1.5 ) #draw the mean if(ellipses) lines(ellipse, ...) } } ####### #Beginning of the main function ###### #The original organization was very clunky, but has finally been cleaned up with lots of extra comments removed (8/13/17) old.par <- par(no.readonly = TRUE) # save default, for resetting... on.exit(par(old.par)) #and when we quit the function, restore to original values if(missing(cex.cor)) cex.cor <- 1 #this allows us to scale the points separately from the correlations for(i in 1:ncol(x)) { #treat character data as numeric if(is.character(x[[i]] )) { x[[i]] <- as.numeric(as.factor(x[[i]]) ) colnames(x)[i] <- paste(colnames(x)[i],"*",sep="")} } n.obs <- nrow(x) confid <- qt(1-alpha/2,n.obs-2) #used in finding confidence intervals for regressions and loess if(!lm) { #the basic default is here if(cor) { pairs(x, diag.panel = panel.hist.density, upper.panel = panel.cor, lower.panel = panel.smoother, pch=pch, ...)} else { pairs(x, diag.panel = panel.hist.density, upper.panel = panel.smoother, lower.panel = panel.smoother, pch=pch, ...)} } else { #lm is TRUE if(!cor) { #this case does not show the correlations, but rather shows the regression lines above and below the diagonal pairs(x, diag.panel = panel.hist.density, upper.panel = panel.lm, lower.panel = panel.lm, pch=pch, ...) } else { #the normal case is to show the regressions below and the rs above pairs(x, diag.panel = panel.hist.density, upper.panel = panel.cor, lower.panel = panel.lm,pch=pch, ...) } } } #end of pairs.panels ### "histo" <- function(x,breaks="Sturges", ...) { tax <- table(x) if(length(tax) < 11) {breaks <- as.numeric(names(tax)) y <- tax/max(tax) interbreak <- min(diff(breaks))*(length(tax)-1)/21 rect(breaks-interbreak,0,breaks + interbreak,y) } else { h <- hist(x,breaks=breaks) }}psych/R/parcels.R0000644000176200001440000001251212454611122013354 0ustar liggesusers"sim.parcels" <- function(x,n.samp=100,reps=10,delta=.5,full=FALSE,congruence=FALSE,max=TRUE) { result <- matrix(NA,nrow=reps,ncol=8) n.obs <- nrow(x) nvar <- ncol(x) for (i in 1:reps){ samp <- sample(n.obs,n.samp) r <- cor(x[samp,]) #The normal factor case f2 <- fa(r,2,rotate="geominQ",delta=delta) clust <- factor2cluster(f2) count <- sum(clust[1:(nvar/2),1]) + sum(clust[(nvar/2+1):nvar,2]) #the pairwise parcel case if(full) { keys <- parcels(r,2,max=max,congruence=congruence) keys <- keysort(keys) } else { keys1 <- parcels(r[1:(nvar/2),1:(nvar/2)],2,max=max,congruence=congruence) keys2 <- parcels(r[(nvar/2+1):nvar,(nvar/2+1):nvar],2,max=max,congruence=congruence) keys <- super.matrix(keys1,keys2) } x.p <- score.items(keys,x[samp,]) r2 <- cor(x.p$scores) f2.p <- fa(r2,2,rotate="geominQ",delta=delta) clust <- factor2cluster(f2.p) nrclust <- nrow(clust) count2 <- sum(clust[1:(nrclust/2),1]) + sum(clust[(nrclust/2+1):nrclust,2]) Roe <- cor(x.p$scores,x[samp,]) fe2 <- fa.extension(Roe,f2.p) clustex <- factor2cluster(fe2) nrclustex <- nrow(clustex) count2e <- sum(clustex[1:(nrclustex/2),1]) + sum(clustex[(nrclustex/2+1):nrclustex,2]) #the tri parcel solution if(full) { keys <- parcels(r,3,max=max,congruence=congruence) keys <- keysort(keys) } else { keys3.1 <- parcels(r[1:(nvar/2),1:(nvar/2)],3,max=max,congruence=congruence) keys3.2 <- parcels(r[(nvar/2+1):nvar,(nvar/2+1):nvar],3,max=max,congruence=congruence) keys <- super.matrix(keys3.1,keys3.2) } x.p3 <- scoreItems(keys,x[samp,],) f2.p3 <- fa(x.p3$scores,2,rotate="geominQ",delta=delta) clust3 <- factor2cluster(f2.p3) nrclust3 <- nrow(clust3) count3 <- sum(clust3[1:(nrclust3/2),1]) + sum(clust3[(nrclust3/2+1):nrclust3,2]) Roe <- cor(x.p3$scores,x[samp,]) fe3 <- fa.extension(Roe,f2.p3) clustex3 <- factor2cluster(fe3) nrclustex3 <- nrow(clustex3) count3e <- sum(clustex3[1:(nrclustex3/2),1]) + sum(clustex3[(nrclustex3/2+1):nrclustex3,2]) result[i,1] <- f2$Phi[1,2] result[i,2] <- f2.p$Phi[1,2] result[i,3] <- f2.p3$Phi[1,2] result[i,4] <- min(count,24-count) result[i,5] <- min(count2,nrclust-count2) result[i,6] <- min(count3,nrclust3-count3) result[i,7] <- min(count2e,nrclustex-count2e) result[i,8] <- min(count3e,nrclustex3-count3e) } colnames(result) <- c("fa Phi","P2 Phi","P3 Phi","error","error2","error3","error2e","error3e") return(result) } "keysort" <- function(keys) { items <- 1:nrow(keys) weights <- items %*% abs(keys) ord <- order(weights) keys[] <- keys[,ord] } "parcels" <- function (x,size=3,max=TRUE,flip=TRUE,congruence = FALSE) { if(nrow(x) !=ncol(x)) {x <- cor(x,use="pairwise")} if(congruence) { x <- factor.congruence(x,x) } if(max) {diag(x) <- 0 nvar <- nrow(x) row.range <- apply(x,1,range,na.rm=TRUE) row.max <- pmax(abs(row.range[1,]),abs(row.range[2,])) #find the largest absolute similarity diag(x) <- row.max sd.inv <- diag(1/sqrt(row.max)) similar <- sd.inv %*% x %*% sd.inv } if (size==2) {key <- parcels2(x,flip=flip)} else {key <- parcels3(x,flip=flip)} rownames(key) <- colnames(x) colnames(key) <- paste("P",1:ncol(key),sep="") return(key)} #this just works for parcels of size 2 "parcels2" <- function(x,size=2,flip) { nvar <- nrow(x) key <- matrix(0,nvar,nvar/size) similar <- x similar <- similar * lower.tri(similar) for(i in 1:(nvar/size)) { max.cell <- which.max(abs(similar)) #global maximum max.col <- trunc(max.cell/nrow(similar))+1 #is in which row and column? max.row <- max.cell - (max.col-1)*nrow(similar) #need to fix the case of first column if (max.row < 1) {max.row <- nrow(similar) max.col <- max.col-1 } key[max.col,i] <- 1 if(flip && (similar[max.row,max.col] < 0)) {key[max.row,i] <- -1} else {key[max.row,i] <- 1} similar[max.row,] <- similar[,max.row] <- NA similar[,max.col] <- similar[max.col,] <- NA } return(key) } "parcels3" <- function(x,flip) { nvar <- nrow(x) nkeys <- floor(nvar/3) keys <- matrix(0,nvar,nkeys) pointers <- 1:nvar point <- pointers for(i in 1:nkeys) { best <- trimax(abs(x[point,point]))[1:3] items <- point[best] keys[items,i] <- 1 if(flip) {if(x[items[1],items[2]] < 0 ) keys[items[2],i] <- -1 if(x[items[1],items[ 3]] < 0 ) keys[items[3],i] <- -1 #if(x[items[2],items[ 3]] < 0 ) keys[items[3],i] <- -keys[items[3],i] } point <- point[-best] } keys } "trimax" <- function(x) { nvar <- nrow(x) cs1 <- cumsum(1:nvar) cs2 <- cumsum(cs1) simil <- rep(NA,length=nvar*(nvar-1)* (nvar-2)/6) ind=1 for(i in 3:nvar) { for (j in 2:(i-1)) { for (k in 1:(j-1)) {simil[ind] <- x[i,j] + x[i,k] + x[j,k] ind <- ind+1} } } maxi <- which.max(simil) if(maxi ==1) { m1 <- 3 m2 <- 2 m3 <- 1 } else { m1 <- min(which(cs2 >= maxi)) +2 maxi2 <- (maxi - cs2[m1-3]) if( maxi2 < 2) {m2 <- 2 m3 <- 1} else { m2 <- min(which(cs1 >= maxi2))+1 if((maxi2- cs1[m2-2]) > 0 ) { m3 <- maxi2 - cs1[m2-2] } else {m3 <- m2 -1} }} results <- c(m1,m2,m3,maxi) #maxi is included for debugging return(results) } #Testing parcels if(FALSE) { ind=1 nvar<- 24 cs <- cumsum(cumsum(1:nvar)) print(cs) for(i in 3:nvar) { for (j in 2:(i-1)) { for (k in 1:(j-1)) { m1 <- min(which(cs >= ind)) +2 newind <- ind - cs[m1-3] m2 <- min(which(cs > newind)) +1 cat(ind, i,j,k , "m1 = ",m1,"newind = ",newind, "m2=",m2,", \n") ind <- ind+1} } } } psych/R/sim.VSS.R0000644000176200001440000000151011124337677013176 0ustar liggesusers"sim.VSS" <- function(ncases=1000,nvariables=16,nfactors=4,meanloading=.5,dichot=FALSE,cut=0) #generates a simple structure factor matrix #with nfactors { weight=sqrt(1-meanloading*meanloading) #loadings are path coefficients theta=matrix(rnorm(ncases*nfactors),nrow=ncases,ncol=nvariables) #generates nfactor independent columns, repeated nvariable/nfactor times) error=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables) #errors for all variables items=meanloading*theta+weight*error #observed score = factor score + error score if(dichot) {items <- (items[,1:nvariables] >= cut) items <- items + 0} return(items) } psych/R/fa.random.R0000644000176200001440000000161213122520560013565 0ustar liggesusers"fa.random" <- function(data,nfactors=1,fix=TRUE,n.obs = NA,n.iter=1,rotate="oblimin",scores="regression", residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",weight=NULL,...) { subject <- rowMeans(data,na.rm=TRUE) r <- cor(data,subject,use="pairwise") colnames(r) <-"within" data <- data - subject+ fix * rnorm(NROW(data),0,.03) f <- fa(r=data,nfactors=nfactors,n.obs=n.obs,rotate=rotate,scores=scores,residuals=residuals,SMC = SMC,covar=covar,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor, weight=weight,...=...) #call fa with the appropriate parameters f$subject <- subject f$within.r <- r return(f) } psych/R/print.psych.omega.R0000644000176200001440000002205013060114444015270 0ustar liggesusers"print.psych.omega" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { xx <- x if(!is.null(x$ci)) { x <- x$om} if(is.null(cut)) cut <- .2 cat( x$title,"\n") cat("Call: ") print(x$call) cat("Alpha: ",round(x$alpha,digits),"\n") cat("G.6: ",round(x$G6,digits),"\n") cat("Omega Hierarchical: " ,round(x$omega_h,digits),"\n") cat("Omega H asymptotic: " ,round(x$omega.lim,digits),"\n") cat("Omega Total " ,round(x$omega.tot,digits),"\n") cat("\nSchmid Leiman Factor loadings greater than ",cut, "\n") loads <- x$schmid$sl nfactor <- ncol(loads)-3 if(sort) { ord <- sort(abs(loads[,1]),decreasing=TRUE,index.return=TRUE) loads[,] <- loads[ord$ix,] rownames(loads) <- rownames(loads)[ord$ix] loads <- cbind(v=ord$ix,loads) } #end sort tn <- colnames(loads) loads <- data.frame(loads) colnames(loads) <- tn #this seems weird, but otherwise we lose the F* name if(sort) {loads[,1] <- as.integer(loads[,1]) load.2 <- loads[,2:(nfactor+1)]} else {load.2 <- loads[,1:nfactor] } h2 <- round(loads[,"h2"],digits) u2 <- round(loads[,"u2"],digits) loads <-round(loads,digits) fx <- format(loads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx[abs(loads)< cut] <- paste(rep(" ", nc), collapse = "") p2 <- loads[,"p2"] mp2 <- mean(p2) vp2 <- var(p2) p2 <- round(p2,digits) print(cbind(fx[,1:(nfactor+sort)],h2,u2,p2),quote="FALSE") numfactors <- dim(x$schmid$sl)[2] -3 eigenvalues <- diag(t(x$schmid$sl[,1:numfactors]) %*% x$schmid$sl[,1:numfactors]) cat("\nWith eigenvalues of:\n") ev.rnd <- round(eigenvalues,digits) print(ev.rnd,digits=digits) maxmin <- max(eigenvalues[2:numfactors])/min(eigenvalues[2:numfactors]) gmax <- eigenvalues[1]/max(eigenvalues[2:numfactors]) cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits)) cat("\nmean percent general = ",round(mp2,digits), " with sd = ", round(sqrt(vp2),digits), "and cv of ",round(sqrt(vp2)/mp2,digits),"\n") if(!is.null(x$ECV)) cat("Explained Common Variance of the general factor = ", round(x$ECV,digits),"\n") if(!is.null(x$schmid$dof)) {cat("\nThe degrees of freedom are",x$schmid$dof," and the fit is ",round(x$schmid$objective,digits),"\n") if(!is.null(x$schmid$n.obs)&&!is.na(x$schmid$n.obs)) {cat("The number of observations was ",x$schmid$n.obs, " with Chi Square = ",round(x$schmid$STATISTIC,digits), " with prob < ", signif(x$schmid$PVAL,digits))} } if(!is.null(x$schmid$rms)) {cat("\nThe root mean square of the residuals is ", round(x$schmid$rms,digits),"\n") } if(!is.null(x$schmid$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$schmid$crms,digits)) } if(!is.null(x$schmid$RMSEA)) {cat("\nRMSEA index = ",round(x$schmid$RMSEA[1],digits+1), " and the", (1- x$schmid$RMSEA[4])*100,"% confidence intervals are ",round(x$schmid$RMSEA[2:3],digits+1)) } if(!is.null(x$schmid$BIC)) {cat("\nBIC = ",round(x$schmid$BIC,digits))} cat("\n\nCompare this with the adequacy of just a general factor and no group factors") if(!is.null(x$gstats$dof)) {cat("\nThe degrees of freedom for just the general factor are",x$gstats$dof," and the fit is ",round(x$gstats$objective,digits),"\n") if(!is.null(x$gstats$n.obs)&&!is.na(x$gstats$n.obs)) {cat("The number of observations was ",x$gstats$n.obs, " with Chi Square = ",round(x$gstats$STATISTIC,digits), " with prob < ", signif(x$gstats$PVAL,digits))} } if(!is.null(x$gstats$rms)) {cat("\nThe root mean square of the residuals is ", round(x$gstats$rms,digits),"\n") } if(!is.null(x$gstats$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$gstats$crms,digits),"\n") } if(!is.null(x$gstats$RMSEA)) {cat("\nRMSEA index = ",round(x$gstats$RMSEA[1],digits+1), " and the", (1- x$gstats$RMSEA[4])*100,"% confidence intervals are ",round(x$gstats$RMSEA[2:3],digits+1)) } if(!is.null(x$gstats$BIC)) {cat("\nBIC = ",round(x$gstats$BIC,digits),"\n")} stats.df <- t(data.frame(sqrt(x$stats$R2),x$stats$R2,2*x$stats$R2 -1)) cat("\nMeasures of factor score adequacy \n") rownames(stats.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of factor score estimates") print(round(stats.df,digits)) #cat("\nMeasures of factor score adequacy ",names(eigenvalues)) #cat("\nCorrelation of scores with factors ",round(sqrt(x$stats$R2),digits)) #cat("\nMultiple R square of scores with factors " ,round(x$stats$R2,digits)) #cat("\nMinimum correlation of factor score estimates ", round(2*x$stats$R2 -1,digits),"\n") cat("\n Total, General and Subset omega for each subset\n") colnames(x$omega.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") print(round(t(x$omega.group),digits)) #now, see if there are any confidence intervals to report if(!is.null(xx$ci)) { cat("\n Estimates and bootstrapped confidence intervals\n") li <- data.frame(lower=xx$ci$ci[,1],estimate=xx$ci$means,upper=xx$ci$ci[,2]) li[1,2] <- x$omega_h li[2,2] <- x$alpha li[3,2] <- x$omega.tot li[4,2] <- x$G6 li[5,2] <- x$omega.lim print(li,digits=digits)} } "print.psych.omegaSem" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,...) { if(is.null(cut)) cut <- .2 cat( x$title,"\n") if(!is.null(x$Call)) {# we have run this from omegaSem so we should print omega results first cat("Call: ") print(x$Call) print.psych.omega(x$omegaSem,digits=digits,all=all,cut=cut,sort=sort,...) x <- x$omega.efa } loads <- x$cfa.loads class(loads) <- NULL nfactor <- ncol(loads) cat("\n The following analyses were done using the ", x$sem," package \n") if(nfactor > 1) { cat("\n Omega Hierarchical from a confirmatory model using sem = ", round(x$omega,digits)) } else { cat("\n With only 1 factor specified in the sem model, we can only calculate omega Total.\n You should probably rerun the sem specifying either a bifactor or hierarchical model.\n") } cat("\n Omega Total from a confirmatory model using sem = ", round(x$omega.tot,digits),"\n") cat("With loadings of \n") loads <- data.frame(loads) if(nfactor > 1) { tn <- c("g", paste0("F",1:(nfactor-1),"*")) colnames(loads) <- tn } #this seems weird, but otherwise we lose the F* name } load.2 <- as.matrix(loads) h2 <- round(rowSums(load.2^2),digits) loads <- round(loads,digits) fx <- format(loads,digits=digits) if(nfactor > 1 ) { nc <- nchar(fx[1,3], type = "c") fx[abs(loads)< cut] <- paste(rep(" ", nc), collapse = "")} h2 <- round(rowSums(load.2^2),digits) u2 <- 1 - h2 p2 <- loads[,1]^2/h2 mp2 <- mean(p2) vp2 <- var(p2) p2 <- round(p2,digits) print(cbind(fx,h2,u2,p2),quote="FALSE") loads <- as.matrix(load.2) eigenvalues <- diag(t(loads) %*% loads) cat("\nWith eigenvalues of:\n") ev.rnd <- round(eigenvalues,digits) print(ev.rnd,digits=digits) maxmin <- max(eigenvalues[2:nfactor])/min(eigenvalues[2:nfactor]) gmax <- eigenvalues[1]/max(eigenvalues[2:nfactor]) ECV <- eigenvalues[1]/sum(eigenvalues) if(!is.null(x$Fit)) { cat("\nThe degrees of freedom of the confimatory model are ",x$Fit[[1]]$df, " and the fit is ", x$Fit[[1]]$stat, " with p = ",x$Fit[[1]]$pvalue) } cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits)) cat("\nmean percent general = ",round(mp2,digits), " with sd = ", round(sqrt(vp2),digits), "and cv of ",round(sqrt(vp2)/mp2,digits),"\n") cat("Explained Common Variance of the general factor = ", round(ECV,digits),"\n") if(nfactor > 1) { cat("\nMeasures of factor score adequacy \n") # rownames(stats.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of factor score estimates") fsa.df <- t(data.frame(sqrt(x$gR2),x$gR2,2*x$gR2 -1)) rownames(fsa.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of factor score estimates") colnames(fsa.df) <- tn print(round(fsa.df,digits)) cat("\n Total, General and Subset omega for each subset\n") colnames(x$omega.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") rownames(x$omega.group) <- tn print(round(t(x$omega.group),digits)) } cat("\nTo get the standard sem fit statistics, ask for summary on the fitted object") } psych/R/psych.R0000644000176200001440000000024111127462373013055 0ustar liggesusers"psych" <- function () {} # a dummy function to make it appear in the help menu "sim" <- function() {} #another dummy function to make the help easier to use psych/R/statsBy.r0000644000176200001440000002054013100664646013424 0ustar liggesusers#developed July 4, 2012 #modified July 9, 2014 to allow polychorics within groups #modified June 2, 2015 to include covariance, pearson, spearman, poly ,etc. in correlations #Fixed March 3, 2017 to not weight empty cells in finding ICCs #some ideas taken from Bliese multilevel package (specifically, the WABA results) "statsBy" <- function (data,group,cors=FALSE, cor="cor", method="pearson",use="pairwise", poly=FALSE,na.rm=TRUE,alpha=.05) { # cl <- match.call() valid <- function(x) { #count the number of valid cases sum(!is.na(x)) } #define a function to count pairwise observations pairwise <- function(x) {n <- t(!is.na(x)) %*% (!is.na(x)) n} #get the grouping information if(is.character(group)) { gr <- which(colnames(data) %in% group) } else {gr <- group} z1 <- data[,group] z <- z1 cnames <- colnames(data) for (i in 1:ncol(data)) {if(is.factor(data[,i]) || is.logical(data[,i])) { data[,i] <- as.numeric(data[,i]) # colnames(data)[i] <- paste(cnames[i],"*",sep="") }} xvals <- list() #find the statistics by group temp <- by(data,z,colMeans,na.rm=na.rm) rownn <- lapply(temp,is.null) if(sum(as.integer(rownn)) > 0) { rown <- names(temp)[-which(rownn==TRUE)] } else {rown <- names(temp) } xvals$mean <- t(matrix(unlist(temp),nrow=ncol(data))) xvals$sd <-t(matrix(unlist(by(data,z,function(x) sapply(x,sd,na.rm=na.rm))),nrow=ncol(data))) xvals$n <- t(matrix(unlist(by(data,z,function(x) sapply(x,valid))),nrow=ncol(data))) colnames(xvals$mean) <- colnames(xvals$sd) <- colnames(xvals$n) <- colnames(data) rownames(xvals$mean) <- rownames(xvals$sd) <- rownames(xvals$n) <- rown # nH <- harmonic.mean(xvals$n) #this will be 0 if any is zero -- but is not used anyway nG <- colSums(!is.na(xvals$mean)) #fixed this so it is just for the cells that are not NA GM <- colSums(xvals$mean*xvals$n,na.rm=na.rm)/colSums(xvals$n,na.rm=na.rm) MSb <- colSums(xvals$n*t((t(xvals$mean) - GM)^2),na.rm=na.rm)/(nG-1) #weight means by n MSw <- colSums(xvals$sd^2*(xvals$n-1*(xvals$n>0)),na.rm=na.rm)/(colSums(xvals$n-1*(xvals$n>0)))#find the pooled sd #fix this for 0 cell size xvals$F <- MSb/MSw N <- colSums(xvals$n) #overall N for each variable npr <- (colSums(xvals$n-1*(xvals$n > 0))+colSums(xvals$n >0))/(colSums(xvals$n >0)) xvals$ICC1 <- (MSb-MSw)/(MSb + MSw*(npr-1)) xvals$ICC2 <- (MSb-MSw)/(MSb) #now, figure out the cis for the ICCs #taken from the ICC function F11 <- MSb/MSw #df11n <- n.obs-1 #df11d <- n.obs*(nj-1) df11n <- nG - 1 df11d <- nG* (npr-1) p11 <- 1-pf(F11,df11n,df11d) #F21 <- MSB/MSE df21n <- N - 1 df21d <- N * (npr-1) # p21 <- 1-pf(F21,df21n,df21d) # F31 <- F21 F1L <- F11 / qf(1-alpha/2,df11n,df11d) F1U <- F11 * qf(1-alpha/2,df11d,df11n) L1 <- (F1L-1)/(F1L+(npr-1)) U1 <- (F1U -1)/(F1U+(npr-1)) L2 <- 1-1/F1L U2 <- 1 -1/F1U xvals$ci1 <-as.matrix(data.frame(L1 = L1,U1 = U1) ) xvals$ci2 <- as.matrix(data.frame(L2 = L2,U2 = U2) ) #if we want within group correlations, then find them # if(cors) {if(!poly) { r <- by(data,z,function(x) cor(x[-gr],use="pairwise",method=method)) } else { r <- by(data,z,function(x) polychoric(x[-gr])$rho)} #added 02/06/15 if(cors) {if (poly) {cor <- "poly"} switch(cor, cor = {r <- by(data,z,function(x) cor(x[-gr],use=use,method=method))}, cov = {r <- by(data,z,function(x) cov(x[-gr],use=use)) covar <- TRUE}, tet = {r <- by(data,z,function(x) tetrachoric(x[-gr])$rho)}, poly = {r <- by(data,z,function(x) polychoric(x[-gr])$rho)}, mixed = {r <- by(data,z,function(x) mixed.cor(x[-gr])$rho)} ) nvars <- ncol(r[[1]]) xvals$r <- r #store them as square matrices lower <- lapply(r,function(x) x[lower.tri(x)]) xvals$within <- t(matrix(unlist(lower),nrow=nvars*(nvars-1)/2)) #string them out as well cnR <- abbreviate(cnames[-gr],minlength=5) k <- 1 colnames(xvals$within) <- paste("V",1:ncol(xvals$within)) for(i in 1:(nvars-1)) {for (j in (i+1):nvars) { colnames(xvals$within)[k] <- paste(cnR[i],cnR[j],sep="-") k<- k +1 }} rownames(xvals$within) <- paste0("z",names(xvals$r)) wt <- by(data,z,function(x) count.pairwise(x[-gr])) lower.wt <- t(matrix(unlist(lapply(wt,function(x) x[lower.tri(x)]) ) ,nrow=nvars*(nvars-1)/2)) lower.wt <- t(t(lower.wt)/colSums(lower.wt,na.rm=TRUE)) pool <- colSums( lower.wt * xvals$within,na.rm=TRUE) pool.sd <- apply(xvals$within, 2,FUN=sd, na.rm=TRUE) xvals$pooled <- matrix(0,nvars,nvars) xvals$pooled[lower.tri(xvals$pooled)] <- pool xvals$pooled <- xvals$pooled + t(xvals$pooled) #changed, May 12 to properly reflect values diag(xvals$pooled) <- 1 xvals$sd.r <- matrix(NaN,nvars,nvars) xvals$sd.r[lower.tri(xvals$sd.r)] <- pool.sd xvals$sd.r[upper.tri(xvals$sd.r)] <- pool.sd colnames(xvals$pooled) <- rownames (xvals$pooled) <- cnames[-gr] } nvar <- ncol(data)-length(group) #we have dropped the grouping variable # if(!poly) {xvals$raw <- cor(data,use="pairwise",method=method)} else {xvals$raw <- polychoric(data)$rho} ##added 02/06/15 if (poly) cor <- "poly" switch(cor, cor = {xvals$raw <- cor(data,use=use,method=method)}, cov = {xvals$raw <- cov(data,use=use) covar <- TRUE}, poly= {xvals$raw <- polychoric(data)$rho}, tet = {xvals$raw <- tetrachoric(data)$rho}, mixed = {xvals$raw <- mixed.cor(data)$rho} ) new.data <- as.matrix( merge(xvals$mean,data,by=group,suffixes =c(".bg",""))) #drop the grouping variable(s) new.data <- new.data[,(length(group)+1):ncol(new.data)] diffs <- new.data[,(nvar+1):ncol(new.data)] - new.data[,1:nvar] colnames(diffs) <- paste(colnames(new.data)[(nvar + 1):ncol(new.data)], ".wg", sep = "") xvals$rbg <- cor(new.data[,1:nvar],use="pairwise",method=method) #the between group (means) #t <- rep(NA,(length(nG)-length(gr))) if(all(nG > 2)) { t <- (xvals$rbg*sqrt(nG[-gr]-2))/sqrt(1-xvals$rbg^2) # if(any(nG < 3) ) {#warning("Number of groups must be at least 2") xvals$pbg <- 2*(1 - pt(abs(t),(nG-2))) } else { t <- xvals$pbg <- NA } # xvals$rwg <- cor(diffs,use="pairwise",method=method) #the within group (differences) if(cor %in% c("tet","poly","mixed","mixed.cor") ) cor <- "cor" switch(cor, cor = {xvals$rwg <- cor(diffs,use=use,method=method)}, cov = {xvals$rwg <- cov(diffs,use=use) covar <- TRUE} ) xvals$nw <- pairwise(diffs) rwg <- cov2cor(xvals$rwg) t <- (rwg*sqrt(xvals$nw -2))/sqrt(1-rwg^2) if(all(nG > 2)) { xvals$pwg <- 2*(1 - pt(abs(t),(N[-gr] - nG[-gr] -2)))} else {xvals$pwg <- NA} # colnames(xvals$rwg) <- rownames(xvals$rwg) <- paste(colnames(xvals$rwg),".wg",sep="") xvals$etabg <- diag(cor(new.data[,1:(nvar)],new.data[,(nvar+1):ncol(new.data)],use="pairwise",method=method) )#the means with the data xvals$etawg <- diag(cor(new.data[,(nvar+1):ncol(new.data)],diffs,use="pairwise",method=method)) #the deviations and the data names(xvals$etabg) <- colnames(xvals$rbg) xvals$nwg <- N - nG xvals$nG <- nG xvals$Call <- cl statsBy <- xvals class(statsBy) <- c("psych","statsBy") return(statsBy) } psych/R/fa.extension.R0000644000176200001440000000725312763550622014344 0ustar liggesusers "fa.extension" <- function(Roe,fo,correct=TRUE) { cl <- match.call() omega <-FALSE if(!is.null(class(fo)[2])) {if(class(fo)[2]=="fa") { if(!is.null(fo$Phi)) {Phi <- fo$Phi} else {Phi <- NULL} fl <- fo$loadings fs <- fo$Structure } else {if (class(fo)[2] == "omega") { omega <- TRUE w <- fo$stats$weights fl <- fo$schmid$sl Phi <- NULL fl <- fl[,1:(dim(fl)[2]-3)] nfactors <- dim(fl)[2] fe <- t(t(w) %*% Roe) foblique <- fo$schmid$oblique feoblique <- t( Roe) %*% foblique %*% (solve(t(foblique)%*% (foblique))) feoblique <- feoblique %*% solve(fo$schmid$phi) } } } if(!omega) fe <- t( Roe) %*% fl %*% (solve(t(fl)%*% (fl))) if(!is.null(Phi)) fe <- fe %*% solve(Phi) if(!correct) {#the Gorsuch case d <-diag(t(fl) %*% fo$weight) fe <- (fe * d) } colnames(fe) <- colnames(fl) if(!is.null(Phi)) {resid <- Roe - fl %*% Phi %*% t(fe)} else {resid <- fl %*% t(fe)} result <- list(loadings = fe,Phi=Phi,resid=resid,Call=cl) if(!omega) {result <- list(loadings = fe,Phi=Phi,resid=resid,Call=cl)} else {result <- list(loadings = fe,oblique= feoblique,Phi=Phi,resid=resid,Call=cl)} class(result) <- c("psych","extension") return(result) } #written April 5, 2011 #revised August 15, 2011 to avoid using the weights matrix except in the omega case #created December 8, 2012 to allow for extension and goodness of fits of total model #modified 31/5/14 to allow for omega extension as well #modified 04-09/16 to pass the Structure matrix as well "fa.extend" <- function(r,nfactors=1,ov=NULL,ev=NULL,n.obs = NA, np.obs=NULL,correct=TRUE,rotate="oblimin",SMC=TRUE,warnings=TRUE, fm="minres",alpha=.1, omega=FALSE, ...) { cl <- match.call() nv <- c(ov,ev) if(nrow(r) > ncol(r)){ #the case of a data matrix if(omega) {fo <- omega(r[,ov],nfactors=nfactors,rotate=rotate,SMC=SMC,warnings=warnings,fm=fm,alpha=alpha,...)} else { fo <- fa(r[,ov],nfactors=nfactors,rotate=rotate,SMC=SMC,warnings=warnings,fm=fm,alpha=alpha,...)} n.obs <- nrow(r) np.obs.r <- count.pairwise(r)[nv,nv] np.obs <- np.obs.r[ov,ov] r <- cor(r,use='pairwise') } else { #the case of a correlation matrix R <- r[ov,ov] np.obs.r <- np.obs if(omega) {fo <- omega(R,nfactors=nfactors,n.obs=n.obs,rotate=rotate,SMC=SMC,warnings=warnings,fm=fm,alpha=alpha,np.obs=np.obs[ov,ov],...)} else { fo <- fa(R,nfactors=nfactors,n.obs=n.obs,rotate=rotate,SMC=SMC,warnings=warnings,fm=fm,alpha=alpha,np.obs=np.obs[ov,ov],...)} } Roe <- r[ov,ev,drop=FALSE] fe <- fa.extension(Roe,fo,correct=correct) if(omega) fo$loadings <- fo$schmid$sl[,1:(ncol(fo$schmid$sl)-3)] foe <- rbind(fo$loadings,fe$loadings) if(omega) oblique <- rbind(fo$schmid$oblique,fe$oblique) if(is.na(n.obs) && !is.null(np.obs)) n.obs <- max(as.vector(np.obs)) result <- factor.stats(r[nv,nv],foe,fo$Phi,n.obs,np.obs.r,alpha=alpha) if(omega) result$schmid$sl <- foe result$rotation <- rotate result$loadings <- foe if(nfactors > 1) {if(is.null(fo$Phi)) {h2 <- rowSums(foe^2)} else {h2 <- diag(foe %*% fo$Phi %*% t(foe)) }} else {h2 <-foe^2} result$communality <- h2 result$fm <- fm #remember what kind of analysis we did result$fo=fo if(omega) {result$schmid$sl <- foe result$schmid$gloading <- fo$schmid$gloading result$schmid$oblique <- oblique } if(is.null(fo$Phi)) {result$Structure <- foe } else { result$Structure <- foe %*% fo$Phi} result$fe=fe result$Phi=fo$Phi result$fn="fa" result$Call=cl class(result) <- c("psych","extend") return(result) } psych/R/make.congeneric.R0000644000176200001440000000134211133415545014756 0ustar liggesusers"make.congeneric" <- function(loads = c(0.8, 0.7, 0.6, 0.5),N = 1000, err=NULL, short=TRUE) { n <- length(loads) loading <- matrix(loads, nrow = n) error <- diag(1, nrow = n) if (!is.null(err)) {diag(error) <- err} else { diag(error) <- sqrt(1 - loading^2) } pattern <- cbind(loading, error) colnames(pattern) <- c("theta", paste("e", seq(1:n), sep = "")) rownames(pattern) <- c(paste("V", seq(1:n), sep = "")) model <- pattern %*% t(pattern) latent <- matrix(rnorm(N * (n + 1)), ncol = (n + 1)) observed <- latent %*% t(pattern) colnames(latent) <- c("theta", paste("e", seq(1:n), sep = "")) if (short) {return(model)} else {result <- list(model=model,pattern=pattern,observed=observed,latent=latent) return(result)} }psych/R/alpha.R0000644000176200001440000002536613121535703013025 0ustar liggesusers"alpha" <- function(x,keys=NULL,cumulative=FALSE,title=NULL,max=10,na.rm=TRUE,check.keys=FALSE,n.iter=1,delete=TRUE,use="pairwise",warnings=TRUE,n.obs=NULL) { #find coefficient alpha given a data frame or a matrix alpha.1 <- function(C,R) { n <- dim(C)[2] alpha.raw <- (1- tr(C)/sum(C))*(n/(n-1)) sumR <- sum(R) alpha.std <- (1- n/sumR)*(n/(n-1)) smc.R <- smc(R) G6 <- (1- (n-sum(smc.R))/sumR) av.r <- (sumR-n)/(n*(n-1)) mod1 <- matrix(av.r,n,n) Res1 <- R - mod1 GF1 = 1- sum(Res1^2)/sum(R^2) Rd <- R - diag(R) diag(Res1) <- 0 GF1.off <- 1 - sum(Res1^2)/sum(Rd^2) sn <- n*av.r/(1-av.r) # Q = (2 * n^2/((n-1)^2*(sum(C)^3))) * (sum(C) * (tr(C^2) + (tr(C))^2) - 2*(tr(C) * sum(C^2))) #corrected 1/15/16 Q = (2 * n^2/((n - 1)^2 * (sum(C)^3))) * (sum(C) * (tr(C%*%C) + (tr(C))^2) - 2 * (tr(C) * sum(C%*%C))) #correction from Tamaki Hattori result <- list(raw=alpha.raw,std=alpha.std,G6=G6,av.r=av.r,sn=sn,Q=Q,GF1,GF1.off) return(result) } #begin main function cl <- match.call() if(!is.matrix(x) && !is.data.frame(x)) stop('Data must either be a data frame or a matrix') if(class(x)[1] != "data.frame") x <- fix.dplyr(x) #to get around a problem created by dplyr if(!is.null(keys)){#two 3 cases 1 it is a list, 2 is a vector of character, 3 it is keys matrix 4 it is a list of items to reverse if( is.list(keys)) { select <- sub("-","",unlist(keys)) #added 9/26/16 to speed up scoring one scale from many x <- x[select] keys <- make.keys(x,keys)}} nvar <- dim(x)[2] nsub <- dim(x)[1] scores <- NULL response.freq <- NULL if (!isCorrelation(x)) { #find the correlations if we are given raw data item.var <- apply(x,2,sd,na.rm=na.rm) bad <- which((item.var <= 0)|is.na(item.var)) if((length(bad) > 0) && delete) { for (baddy in 1:length(bad)) {warning( "Item = ",colnames(x)[bad][baddy], " had no variance and was deleted")} x <- x[,-bad] nvar <- nvar - length(bad) } response.freq <- response.frequencies(x,max=max) C <- cov(x,use=use)} else {C <- x} if(is.null(colnames(x))) colnames(x) <- paste0("V",1:nvar) #if(check.keys && is.null(keys)) { p1 <- principal(x,scores=FALSE) if(any(p1$loadings < 0)) {if (check.keys) {if(warnings) warning("Some items were negatively correlated with total scale and were automatically reversed.\n This is indicated by a negative sign for the variable name.") keys <- 1- 2* (p1$loadings < 0 ) } else { if(is.null(keys) && warnings ) {warning("Some items were negatively correlated with the total scale and probably \nshould be reversed. \nTo do this, run the function again with the 'check.keys=TRUE' option") if(warnings) cat("Some items (",rownames(p1$loadings)[(p1$loadings < 0)],") were negatively correlated with the total scale and \nprobably should be reversed. \nTo do this, run the function again with the 'check.keys=TRUE' option") }} } #keys is now a vector of 1s and -1s # } if(is.null(keys)) {keys <- rep(1,nvar)} else { keys<- as.vector(keys) if(length(keys) < nvar) {temp <- keys #this is the option of keying just the reversals keys <- rep(1,nvar) names(keys) <- colnames(x) keys[temp] <- -1} } key.d <- diag(keys) C <- key.d %*% C %*% key.d signkey <- strtrim(keys,1) signkey[signkey=="1"] <- "" colnames(x) <- paste(colnames(x),signkey,sep="") if (nsub !=nvar) { #raw data if(any(keys < 0 )) { min.item <- min(x,na.rm=na.rm) max.item <- max(x,na.rm=na.rm) adjust <- max.item + min.item flip.these <- which(keys < 0 ) x[,flip.these] <- adjust - x[,flip.these] } if(cumulative) {total <- rowSums(x,na.rm=na.rm) } else {total <- rowMeans(x,na.rm=na.rm)} mean.t <- mean(total,na.rm=na.rm) sdev <- sd(total,na.rm=na.rm) raw.r <- cor(total,x,use=use) t.valid <- colSums(!is.na(x))} else { #we are working with a correlation matrix total <- NULL totals <- TRUE } R <- cov2cor(C) drop.item <- vector("list",nvar) alpha.total <- alpha.1(C,R) if(nvar > 2) { for (i in 1:nvar) { drop.item[[i]] <- alpha.1(C[-i,-i,drop=FALSE],R[-i,-i,drop=FALSE]) } } else {drop.item[[1]] <- drop.item[[2]] <- c(rep(R[1,2],2),smc(R)[1],R[1,2],NA,NA,NA,NA) #added the extra 2 NA June 18, 2017 } by.item <- data.frame(matrix(unlist(drop.item),ncol=8,byrow=TRUE)) #allows us to specify the number of subjects for correlation matrices if(max(nsub,n.obs) > nvar) {by.item[6] <- sqrt(by.item[6]/(max(nsub,n.obs)) ) by.item <- by.item[-c(7:8)] colnames(by.item) <- c("raw_alpha","std.alpha","G6(smc)","average_r","S/N","alpha se") } else { by.item <- by.item[-c(6:8)] colnames(by.item) <- c("raw_alpha","std.alpha","G6(smc)","average_r","S/N") } rownames(by.item) <- colnames(x) Vt <- sum(R) item.r <- colSums(R)/sqrt(Vt) #this is standardized r #correct for item overlap by using smc RC <-R diag(RC) <-smc(R) Vtc <- sum(RC) item.rc <-colSums(RC)/sqrt(Vtc) #yet one more way to correct is to correlate item with rest of scale if(nvar > 1) { r.drop <- rep(0,nvar) for (i in 1:nvar) { v.drop <- sum(C[-i,-i,drop=FALSE]) c.drop <- sum(C[,i]) - C[i,i] r.drop[i] <- c.drop/sqrt(C[i,i]*v.drop) } } # item.means <- colMeans(x, na.rm=na.rm ) item.sd <- apply(x,2,sd,na.rm=na.rm) if(nsub > nvar) { Unidim <- alpha.total[7] Fit.off <- alpha.total[8] ase = sqrt(alpha.total$Q/nsub) alpha.total <- data.frame(alpha.total[1:5],ase=ase,mean=mean.t,sd=sdev) colnames(alpha.total) <- c("raw_alpha","std.alpha","G6(smc)","average_r","S/N","ase","mean","sd") alpha.total <- data.frame(alpha.total[1:5],ase=ase,mean=mean.t,sd=sdev) colnames(alpha.total) <- c("raw_alpha","std.alpha","G6(smc)","average_r","S/N","ase","mean","sd") rownames(alpha.total) <- "" stats <- data.frame(n=t.valid,raw.r=t(raw.r),std.r =item.r,r.cor = item.rc,r.drop = r.drop,mean=item.means,sd=item.sd) } else { if(is.null(n.obs)) { Unidim <- alpha.total[7] Fit.off <- alpha.total[8] alpha.total <- data.frame(alpha.total[1:5]) #fixed 27/7/14 colnames(alpha.total) <- c("raw_alpha","std.alpha","G6(smc)" ,"average_r","S/N") } else { Unidim <- alpha.total[7] Fit.off <- alpha.total[8] alpha.total <- data.frame(alpha.total[1:5],ase=sqrt(alpha.total$Q/n.obs)) colnames(alpha.total) <- c("raw_alpha","std.alpha","G6(smc)" ,"average_r","S/N","ase")} rownames(alpha.total) <- "" stats <- data.frame(r =item.r,r.cor = item.rc,r.drop = r.drop) #added r.drop 10/12/13 } rownames(stats) <- colnames(x) #added measures of unidimensionality Feb 24, 2016 #found in alpha.1 # the basic idea is how big are the residuals given the model #we can compare them to the total R or the off diagonal R. #end of unidimensionality statistics if(n.iter > 1) {#do a bootstrap confidence interval for alpha # if(!require(parallel)) {message("The parallel package needs to be installed to run mclapply")} if(nsub == nvar) {message("bootstrapped confidence intervals require raw data") boot <- NULL boot.ci <- NULL } else { boot <- vector("list",n.iter) boot <- mclapply(1:n.iter,function(XX) { xi <- x[sample.int(nsub,replace=TRUE),] C <- cov(xi,use="pairwise") if(!is.null(keys)) {key.d <- diag(keys) xi <- key.d %*% C %*% key.d} R <- cov2cor(C) alpha.1(C,R) }) #end of mclapply boot <- matrix(unlist(boot),ncol=8,byrow=TRUE) colnames(boot) <- c("raw_alpha","std.alpha","G6(smc)","average_r","s/n","ase","Unidim","Goodfit") boot.ci <- quantile(boot[,1],c(.025,.5,.975)) }} else {boot=NULL boot.ci <- NULL} names(Unidim) <- "Unidim" names(Fit.off) <- "Fit.off" result <- list(total=alpha.total,alpha.drop=by.item,item.stats=stats,response.freq=response.freq,keys=keys,scores = total,nvar=nvar,boot.ci=boot.ci,boot=boot,Unidim=Unidim,Fit=Fit.off,call=cl,title=title) class(result) <- c("psych","alpha") return(result) } #modified Sept 8, 2010 to add r.drop feature #modified October 12, 2011 to add apply to the sd function #modified November 2, 2010 to use sd instead of SD #January 30, 2011 - added the max category parameter (max) #June 20, 2011 -- revised to add the check.keys option as suggested by Jeremy Miles #Oct 3, 2013 check for variables with no variance and drop them with a warning #November 22, 2013 Added the standard error as suggested by #modified December 6, 2013 to add empirical confidence estimates #modified January 9, 2014 to add multicore capabilities to the bootstrap #corrected December 18 to allow reverse keying for correlation matrices as well as raw data #modified 1/16/14 to add S/N to summary stats #added item.c (raw correlation) 1/10/15 #corrected 1/16/16 corrected the formula for Q following a suggestion by Tamaki Hattori #added the n.obs option to allow us to find standard errors even from correlation matrices #a kludge to get around a problem introduced by dplyr which changes the class structure of data frames. #created in response to a problem raised by Adam Liter (February, 2017) "fix.dplyr" <- function (object) { if(is.data.frame(object)) { cn <- class(object) df <- which(cn=="data.frame") cn.not <- cn[-df] cn <- c("data.frame",cn.not) class(object) <- cn } invisible(object) }psych/R/item.sim.R0000644000176200001440000000253410626070073013456 0ustar liggesusers"item.sim" <- function (nvar = 72 ,nsub = 500, circum = FALSE, xloading =.6, yloading = .6, gloading=0, xbias=0, ybias = 0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) { avloading <- (xloading+yloading)/2 errorweight <- sqrt(1-(avloading^2 + gloading^2)) #squared errors and true score weights add to 1 g <- rnorm(nsub) truex <- rnorm(nsub)* xloading +xbias #generate normal true scores for x + xbias truey <- rnorm(nsub) * yloading + ybias #generate normal true scores for y + ybias if (circum) #make a vector of radians (the whole way around the circle) if circumplex {radia <- seq(0,2*pi,len=nvar+1) rad <- radia[which(radia<2*pi)] #get rid of the last one } else rad <- c(rep(0,nvar/4),rep(pi/2,nvar/4),rep(pi,nvar/4),rep(3*pi/2,nvar/4)) #simple structure error<- matrix(rnorm(nsub*(nvar)),nsub) #create normal error scores #true score matrix for each item reflects structure in radians trueitem <- outer(truex, cos(rad)) + outer(truey,sin(rad)) item<- gloading * g + trueitem + errorweight*error #observed item = true score + error score if (categorical) { item = round(item) #round all items to nearest integer value item[(item<= low)] <- low item[(item>high) ] <- high } if (truncate) {item[item < cutpoint] <- 0 } return (item) } psych/R/cluster.fit.R0000644000176200001440000000473112020763603014172 0ustar liggesuserscluster.fit <- function(original,load,clusters,diagonal=FALSE) { Pattern <- TRUE df <- nrow(original) * (ncol(original)-1)/2 sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal load <- as.matrix(load) clusters <- as.matrix(clusters) model <- load %*% t(load) #reproduce the correlation matrix by the factor law R= FF' except these are not orthogonal residual <- original-model #find the residual R* = R - FF' sqresid <- residual*residual #square the residuals totalresid <- sum(sqresid)- diagonal * sum(diag(sqresid) ) #sum squared residuals - the main diagonal fit <- 1-totalresid/totaloriginal #fit is 1-sumsquared residuals/sumsquared original (of off diagonal elements) covar <- t(clusters) %*% original %*% clusters #matrix algebra is our friend phi <- cov2cor(covar) phi.inv <- try(solve(phi),TRUE) if(class(phi.inv) == as.character("try-error")) {Pattern <- FALSE message("Could not invert cluster intercorrelation matrix, pattern matrix not found") } #can not invert matrix if(Pattern) { pattern <- load %*% phi.inv model2 <- pattern %*% t(load) residual <- original - model2 sqresid <- residual*residual totalresid <- sum(sqresid) -(1-diagonal) * sum(diag(sqresid)) #changed Sept 2, 2012 to make more sense (i.e. don't count diagonal if diagonal is false) patternrmse <- sqrt(totalresid/(2*df)) fit2 <- 1-totalresid/totaloriginal } else {fit2 <- NULL patternrmse <- 0} clusters <- abs(clusters) #why do I do this? model.1 <- (load * clusters) %*% phi %*% t(load*clusters) #because the items are already signed residual <- original - model.1 sqresid <- residual*residual #square the residuals totalresid <- sum(sqresid)- diagonal * sum(diag(sqresid) ) #sum squared residuals - the main diagonal fit.1 <- 1-totalresid/totaloriginal #fit is 1-sumsquared residuals/sumsquared original (of off diagonal elements clusterrmse <- sqrt(totalresid/(2*df)) cluster.fit <- list(clusterfit=fit.1,structurefit=fit,patternfit=fit2,clusterrmse=clusterrmse,patternrmse=patternrmse) } psych/R/eigen.loadings.R0000644000176200001440000000064410771314614014622 0ustar liggesusers"eigen.loadings" <- function (x) { if(!is.null(x$vector)) { ans <- x$vectors %*% sqrt(diag(x$values)) colnames(ans) <- rownames(ans) <- rownames(x$vector) return(ans) } else if(!is.null(x$loadings)) { ans <- x$loadings %*% diag(x$sdev) rownames(ans) <- rownames(x$loadings) colnames(ans) <- colnames(x$loadings) return(ans) } } #convert eigen vectors to principal component loadings by unnormalizing them psych/R/VSS.simulate.R0000644000176200001440000000322611025622432014221 0ustar liggesusers"VSS.sim" <- function(ncases=1000,nvariables=16,nfactors=4,meanloading=.5,dichot=FALSE,cut=0) #generates a simple structure factor matrix #with nfactors { weight=sqrt(1-meanloading*meanloading) #loadings are path coefficients theta=matrix(rnorm(ncases*nfactors),nrow=ncases,ncol=nvariables) #generates nfactor independent columns, repeated nvariable/nfactor times) error=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables) #errors for all variables items=meanloading*theta+weight*error #observed score = factor score + error score if(dichot) {items <- (items[,1:nvariables] >= cut) items <- items + 0} return(items) } "VSS.simulate" <- function(ncases=1000,nvariables=16,nfactors=4,meanloading=.5,dichot=FALSE,cut=0) #generates a simple structure factor matrix #with nfactors { weight=sqrt(1-meanloading*meanloading) #loadings are path coefficients theta=matrix(rnorm(ncases*nfactors),nrow=ncases,ncol=nvariables) #generates nfactor independent columns, repeated nvariable/nfactor times) error=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables) #errors for all variables items=meanloading*theta+weight*error #observed score = factor score + error score if(dichot) {items <- (items[,1:nvariables] >= cut) items <- items + 0} return(items) } psych/R/fa.parallel.R0000644000176200001440000005234313152075460014117 0ustar liggesusers#1/2/14 switched the n.iter loop to a mclapply loop to allow for multicore parallel processing "fa.parallel" <- function(x,n.obs=NULL,fm="minres",fa="both",main="Parallel Analysis Scree Plots",n.iter=20,error.bars=FALSE,se.bars=FALSE,SMC=FALSE,ylabel=NULL,show.legend=TRUE,sim=TRUE,quant=.95,cor="cor",use="pairwise",plot=TRUE,correct=.5) { cl <- match.call() # if(!require(parallel)) {message("The parallel package needs to be installed to run mclapply")} ci <- 1.96 arrow.len <- .05 nsub <- dim(x)[1] nvariables <- dim(x)[2] resample <- TRUE #this is used as a flag for correlation matrices if((isCorrelation(x)) && !sim) {warning("You specified a correlation matrix, but asked to just resample (sim was set to FALSE). This is impossible, so sim is set to TRUE") sim <- TRUE resample <- FALSE} if (!is.null(n.obs)) { nsub <- n.obs rx <- x resample <- FALSE if(dim(x)[1] != dim(x)[2]) {warning("You specified the number of subjects, implying a correlation matrix, but do not have a correlation matrix, correlations found ") # rx <- cor(x,use="pairwise") #add the option to choose the type of correlation, this allows us to do fa.parallel.poly inside fa.parallel switch(cor, cor = {rx <- cor(x,use=use)}, cov = {rx <- cov(x,use=use) covar <- TRUE}, tet = {rx <- tetrachoric(x,correct=correct)$rho}, poly = {rx <- polychoric(x,correct=correct)$rho}, mixed = {rx <- mixedCor(x,use=use,correct=correct)$rho}, Yuleb = {rx <- YuleCor(x,,bonett=TRUE)$rho}, YuleQ = {rx <- YuleCor(x,1)$rho}, YuleY = {rx <- YuleCor(x,.5)$rho } ) if(!sim) {warning("You specified a correlation matrix, but asked to just resample (sim was set to FALSE). This is impossible, so sim is set to TRUE") sim <- TRUE resample <- FALSE} } } else { if (isCorrelation(x)) {warning("It seems as if you are using a correlation matrix, but have not specified the number of cases. The number of subjects is arbitrarily set to be 100 ") rx <- x nsub = 100 n.obs=100 resample <- FALSE } else { switch(cor, cor = {rx <- cor(x,use=use)}, cov = {rx <- cov(x,use=use) covar <- TRUE}, tet = {rx <- tetrachoric(x,correct=correct)$rho}, poly = {rx <- polychoric(x,correct=correct)$rho}, mixed = {rx <- mixedCor(x,use=use,correct=correct)$rho}, Yuleb = {rx <- YuleCor(x,,bonett=TRUE)$rho}, YuleQ = {rx <- YuleCor(x,1)$rho}, YuleY = {rx <- YuleCor(x,.5)$rho } ) } } valuesx <- eigen(rx)$values #these are the PC values if(SMC) {diag(rx) <- smc(rx) fa.valuesx <- eigen(rx)$values} else { fa.valuesx <- fa(rx,fm=fm,warnings=FALSE)$values} #these are the FA values temp <- list(samp =vector("list",n.iter),samp.fa = vector("list",n.iter),sim=vector("list",n.iter),sim.fa=vector("list",n.iter)) #parallel processing starts here - the more cores the better! #however, mixedCor seems to break this # templist <- lapply(1:n.iter,function(XX) { templist <- mclapply(1:n.iter,function(XX) { #at least for now, the errors from mixedCor prevent mclapply if(is.null(n.obs)) { #Sample the data, column wise (to keep the basic distributional properties, but making the correlations 0 (on average) bad <- TRUE while(bad) {sampledata <- matrix(apply(x,2,function(y) sample(y,nsub,replace=TRUE)),ncol=nvariables) #do it column wise colnames(sampledata) <- colnames(x) #this allows mixedCor to work switch(cor, #we can do a number of different types of correlations cor = {C <- cor(sampledata,use=use)}, cov = {C <- cov(sampledata,use=use) covar <- TRUE}, tet = {C <- tetrachoric(sampledata,correct=correct)$rho}, poly = {C <- polychoric(sampledata,correct=correct)$rho}, mixed = {C <- mixedCor(sampledata,use=use,correct=correct)$rho}, Yuleb = {C <- YuleCor(sampledata,,bonett=TRUE)$rho}, YuleQ = {C <- YuleCor(sampledata,1)$rho}, YuleY = {C <- YuleCor(sampledata,.5)$rho } ) bad <- any(is.na(C)) #some (not frequently) correlations will be improper, particularly if sampling from sparse matrices } #Try resampling until we get a correlation matrix that works values.samp <- eigen(C)$values temp[["samp"]] <- values.samp if (fa!= "pc") { if(SMC) {sampler <- C diag(sampler) <- smc(sampler) temp[["samp.fa"]]<- eigen(sampler)$values} else { temp[["samp.fa"]] <- fa(C,fm=fm,SMC=FALSE,warnings=FALSE)$values } } } if(sim) { simdata=matrix(rnorm(nsub*nvariables),nrow=nsub,ncol=nvariables) #create simulated data based upon normal theory sim.cor <- cor(simdata) #we must use correlations based upon Pearson here, because we are simulating the data temp[["sim"]] <- eigen(sim.cor)$values if (fa!="pc") { if(SMC) { diag(sim.cor) <- smc(sim.cor) temp[["sim.fa"]]<- eigen(sim.cor)$values} else {fa.values.sim <- fa(sim.cor,fm=fm,SMC=FALSE,warnings=FALSE)$values temp[["sim.fa"]] <- fa.values.sim }}} replicates <- list(samp=temp[["samp"]],samp.fa=temp[["samp.fa"]],sim=temp[["sim"]],sim.fa=temp[["sim.fa"]]) }) #parallelism stops here #now combine the results if(is.null(ylabel)) { ylabel <- switch(fa, #switch implementation suggested by Meik Michalke 3/20/17 pc = "eigen values of principal components", fa = "eigen values of principal factors", both = "eigenvalues of principal components and factor analysis") } values<- t(matrix(unlist(templist),ncol=n.iter)) values.sim.mean=colMeans(values,na.rm=TRUE) if(!missing(quant)) {values.ci = apply(values,2,function(x) quantile(x,quant))} else {values.ci <- values.sim.mean} if(se.bars) {values.sim.se <- apply(values,2,sd,na.rm=TRUE)/sqrt(n.iter)} else {values.sim.se <- apply(values,2,sd,na.rm=TRUE)} ymin <- min(valuesx,values.sim.mean) ymax <- max(valuesx,values.sim.mean) sim.pcr <- sim.far <- NA switch(fa, pc = { if (plot) { plot(valuesx,type="b", main = main,ylab=ylabel ,ylim=c(ymin,ymax),xlab="Component Number",pch=4,col="blue")} if(resample) { sim.pcr <- values.sim.mean[1:nvariables] sim.pcr.ci <- values.ci[1:nvariables] sim.se.pcr <- values.sim.se[1:nvariables] if (plot) { points(sim.pcr,type ="l",lty="dashed",pch=4,col="red")}} else {sim.pcr <- NA sim.se.pc <- NA} if(sim) { if(resample) {sim.pc <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.pc.ci <- values.ci[(nvariables+1):(2*nvariables)] sim.se.pc <- values.sim.se[(nvariables+1):(2*nvariables)] } else {sim.pc <- values.sim.mean[1:nvariables] sim.pc.ci <- values.ci[1:nvariables] sim.se.pc <- values.sim.se[1:nvariables]} if (plot) { points(sim.pc,type ="l",lty="dotted",pch=4,col="red")} pc.test <- which(!(valuesx > sim.pc.ci))[1]-1} else { sim.pc <- NA sim.pc.ci <- NA sim.se.pc <- NA pc.test <- which(!(valuesx > sim.pcr.ci))[1]-1 } fa.test <- NA sim.far <- NA sim.fa <- NA }, fa = { #ylabel <- "eigen values of principal factors" should not be changed if set (reported by Meik Michalke) if (plot) {plot(fa.valuesx,type="b", main = main,ylab=ylabel ,ylim=c(ymin,ymax),xlab="Factor Number",pch=2,col="blue")} sim.se.pc <- NA if(resample) {sim.far <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.far.ci <- values.ci[(nvariables+1):(2*nvariables)] sim.se.far <- values.sim.se[(nvariables+1):(2*nvariables)] if (plot) { points(sim.far,type ="l",lty="dashed",pch=2,col="red")}} if(sim) { if(resample) {sim.fa <- values.sim.mean[(3*nvariables+1):(4*nvariables)] sim.fa.ci <- values.ci[(3*nvariables+1):(4*nvariables)] sim.se.fa <- values.sim.se[(3*nvariables+1):(4*nvariables)] } else { sim.fa <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.fa.ci <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.se.fa <- values.sim.se[(nvariables+1):(2*nvariables)] sim.far <- NA #added May 1, 2016 sim.far.ci <- NA sim.se.far <- NA } if (plot) {points(sim.fa,type ="l",lty="dotted",pch=2,col="red")} fa.test <- which(!(fa.valuesx > sim.fa.ci))[1]-1 } else {sim.fa <- NA fa.test <- which(!(fa.valuesx > sim.far.ci))[1]-1 } sim.pc <- NA sim.pcr <- NA sim.se.pc <- NA pc.test <- NA }, both = { if (plot) {plot(valuesx,type="b", main = main,ylab=ylabel ,ylim=c(ymin,ymax),xlab="Factor/Component Number",pch=4,col="blue") points(fa.valuesx,type="b",pch=2,col="blue")} if(sim) { if(resample) { sim.pcr <- values.sim.mean[1:nvariables] sim.pcr.ci <- values.ci[1:nvariables] sim.se.pcr <- values.sim.se[1:nvariables] sim.far <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.se.far <- values.sim.se[(nvariables+1):(2*nvariables)] sim.far.ci <- values.ci[(nvariables+1):(2*nvariables)] sim.pc <- values.sim.mean[(2*nvariables+1):(3*nvariables)] sim.pc.ci <- values.ci[(2*nvariables+1):(3*nvariables)] sim.se.pc <- values.sim.se[(2*nvariables+1):(3*nvariables)] sim.fa <- values.sim.mean[(3*nvariables+1):(4*nvariables)] sim.fa.ci <- values.ci[(3*nvariables+1):(4*nvariables)] sim.se.fa <- values.sim.se[(3*nvariables+1):(4*nvariables)] pc.test <- which(!(valuesx > sim.pcr.ci))[1]-1 fa.test <- which(!(fa.valuesx > sim.far.ci))[1]-1 } else { #not resampling, just sim sim.pc <- values.sim.mean[1:nvariables] sim.pc.ci <- values.ci[1:nvariables] sim.se.pc <- values.sim.se[1:nvariables] sim.fa <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.fa.ci <- values.ci[(nvariables+1):(2*nvariables)] sim.se.fa <- values.sim.se[(nvariables+1):(2*nvariables)] pc.test <- which(!(valuesx > sim.pc.ci))[1]-1 fa.test <- which(!(fa.valuesx > sim.fa.ci))[1]-1 } if (plot) { points(sim.pc,type ="l",lty="dotted",pch=4,col="red") points(sim.fa,type ="l",lty="dotted",pch=4,col="red") # sim.pcr <- sim.far <- NA @#removed Dec 31, 2016 points(sim.pcr,type ="l",lty="dashed",pch=2,col="red") points(sim.far,type ="l",lty="dashed",pch=2,col="red")} pc.test <- which(!(valuesx > sim.pc.ci))[1]-1 fa.test <- which(!(fa.valuesx > sim.fa.ci))[1]-1 } else { #sim is false sim.pcr <- values.sim.mean[1:nvariables] sim.pcr.ci <- values.ci[1:nvariables] sim.se.pcr <- values.sim.se[1:nvariables] sim.far <- values.sim.mean[(nvariables+1):(2*nvariables)] sim.far.ci <- values.ci[(nvariables+1):(2*nvariables)] sim.se.far <- values.sim.se[(nvariables+1):(2*nvariables)] sim.fa <- NA sim.pc <- NA sim.se.fa <- NA sim.se.pc <- NA pc.test <- which(!(valuesx > sim.pcr.ci))[1]-1 fa.test <- which(!(fa.valuesx > sim.far.ci))[1]-1 } if(resample) { if (plot) {points(sim.pcr,type ="l",lty="dashed",pch=4,col="red") points(sim.far,type ="l",lty="dashed",pch=4,col="red") } } } ) if(error.bars) { if(!any(is.na(sim.pc))) { for (i in 1:length(sim.pc)) { ycen <- sim.pc[i] yse <- sim.se.pc[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } if(!any(is.na(sim.pcr))) { for (i in 1:length(sim.pcr)) { ycen <- sim.pcr[i] yse <- sim.se.pcr[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } if(!any(is.na(sim.fa))) { for (i in 1:length(sim.fa)) { ycen <- sim.fa[i] yse <- sim.se.fa[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } if(!any(is.na(sim.far))) { for (i in 1:length(sim.far)) { ycen <- sim.far[i] yse <- sim.se.far[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } } if(show.legend && plot) { if(is.null(n.obs)) { #that is, do we have real data or a correlation matrix switch(fa, both = {if(sim) {legend("topright", c(" PC Actual Data", " PC Simulated Data", " PC Resampled Data"," FA Actual Data", " FA Simulated Data", " FA Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid","dotted", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90') } else {legend("topright", c(" PC Actual Data", " PC Resampled Data"," FA Actual Data", " FA Resampled Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA,NA), text.col = "green4", lty = c("solid","dashed", "solid","dashed"), merge = TRUE, bg = 'gray90')}}, pc = {if(sim) {legend("topright", c(" PC Actual Data", " PC Simulated Data", " PC Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid","dotted", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90')} else { legend("topright", c(" PC Actual Data", " PC Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90') } } , fa = {if(sim) {legend("topright", c(" FA Actual Data", " FA Simulated Data", " FA Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid","dotted", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90')} else { legend("topright", c(" FA Actual Data", " FA Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90') } } ) } else { switch(fa, both= { legend("topright", c("PC Actual Data", " PC Simulated Data","FA Actual Data", " FA Simulated Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA), text.col = "green4", lty = c("solid","dotted","solid","dotted"), merge = TRUE, bg = 'gray90')}, pc= { legend("topright", c("PC Actual Data", " PC Simulated Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA), text.col = "green4", lty = c("solid","dotted","solid","dotted"), merge = TRUE, bg = 'gray90')}, fa = {legend("topright", c("FA Actual Data", " FA Simulated Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA), text.col = "green4", lty = c("solid","dotted","solid","dotted"), merge = TRUE, bg = 'gray90')})} } colnames(values) <- paste0("Sim",1:ncol(values)) if(fa!= "pc" && plot) abline(h=1) results <- list(fa.values = fa.valuesx,pc.values=valuesx,pc.sim=sim.pc,pc.simr = sim.pcr,fa.sim=sim.fa,fa.simr = sim.far,nfact=fa.test,ncomp=pc.test, Call=cl) if (fa == "pc" ) { colnames(values)[1:nvariables] <- paste0("C",1:nvariables) } else { colnames(values)[1:(2*nvariables)] <- c(paste0("C",1:nvariables),paste0("F",1:nvariables)) if(sim) { if(resample) colnames(values)[(2*nvariables +1):ncol(values)] <- c(paste0("CSim",1:nvariables),paste0("Fsim",1:nvariables)) } results$nfact <- fa.test} results$ncomp <- pc.test results$values <- values cat("Parallel analysis suggests that ") cat("the number of factors = ",fa.test, " and the number of components = ",pc.test,"\n") class(results) <- c("psych","parallel") return(invisible(results)) } #a cut down plotting function "plot.fa.parallel" <- function(x,n.obs,fa,show.legend,error.bars=FALSE,main="Parallel Analysis Scree Plots",...) { if(missing(n.obs)) n.obs <- NULL if(missing(fa)) fa <- "both" if(missing(show.legend)) show.legend <- TRUE if(missing(error.bars)) error.bars <- FALSE ci <- 1.96 arrow.len <- .05 fa.valuesx <- x$fa.values fa.values.sim <- x$fa.sim valuesx <- x$pc.values values.sim <- x$pc.sim if(!is.null(x$fa.simr)) {resample=TRUE } else {resample <- FALSE} #ymax <- max(valuesx,values.sim$mean) #ymin <- min(valuesx,values.sim$mean) ymax <- max(valuesx,values.sim) ymin <- min(valuesx,values.sim,fa.valuesx,fa.values.sim) ylabel <- "eigen values of principal factors" if (!is.null(valuesx)) { plot(valuesx,type="b", main = main,ylab=ylabel ,ylim=c(ymin,ymax),xlab="Factor Number",pch=4,col="blue") } points(values.sim,type ="l",lty="dotted",pch=2,col="red") if(error.bars) { for (i in 1:dim(values.sim)[1]) { ycen <- fa.values.sim$mean[i] yse <- fa.values.sim$se[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } points(fa.values.sim,type ="l",lty="dashed",pch=2,col="red") if(error.bars) { for (i in 1:dim(values.sim)[1]) { ycen <- fa.values.sim[i] yse <- fa.values.sim[i] arrows(i,ycen-ci*yse,i,ycen+ci* yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)} } if (fa !="fa") points(fa.valuesx,type ="b",lty="solid",pch=2,col="blue") points(fa.values.sim,type ="l",lty="dotted",pch=2,col="red") if(is.null(n.obs)) {points(fa.values.sim,type ="l",lty="dashed",pch=2,col="red")} if(resample) { points(x$pc.simr,type ="l",lty="dashed",pch=4,col="red") points(x$fa.simr,type ="l",lty="dashed",pch=4,col="red")} if(show.legend) {if(resample) { legend("topright", c(" PC Actual Data", " PC Simulated Data", " PC Resampled Data"," FA Actual Data", " FA Simulated Data", " FA Resampled Data"), col = c("blue","red","red","blue","red","red"),pch=c(4,NA,NA,2,NA,NA), text.col = "green4", lty = c("solid","dotted", "dashed","solid","dotted", "dashed"), merge = TRUE, bg = 'gray90') } else { legend("topright", c("PC Actual Data", " PC Simulated Data","FA Actual Data", " FA Simulated Data"), col = c("blue","red","blue","red"),pch=c(4,NA,2,NA), text.col = "green4", lty = c("solid","dotted","solid","dotted"), merge = TRUE, bg = 'gray90') } } abline(h=1) if (fa!="pc") {abline(h=0) } } #modified June 09, 2013 to fix the case for just PC tests #modified October 2, 2013 to sample each column of data separately. #modified March 23, 2014 to check for bad resamples in case of very sparse data #also modified to just resample if desired "test.fa.parallel" <- function(x,n.obs=NULL) { fp <- list() fp[[1]] <- fa.parallel(x,n.obs=n.obs) fp[[2]] <-fa.parallel(x,sim=FALSE,n.obs=n.obs) fp[[3]] <- fa.parallel(x,error.bars=TRUE,n.obs=n.obs) fp[[4]] <- fa.parallel(x,error.bars=TRUE,sim=FALSE,n.obs=n.obs) fp[[5]] <- fa.parallel(x,fa="fa",n.obs=n.obs) fp[[6]] <- fa.parallel(x,fa="fa",sim=FALSE,n.obs=n.obs) fp[[7]] <- fa.parallel(x,fa="fa",error.bars=TRUE,n.obs=n.obs) fp[[8]] <- fa.parallel(x,fa="fa",error.bars=TRUE,sim=FALSE,n.obs=n.obs) fp[[9]] <- fa.parallel(x,fa="pc",n.obs=n.obs) fp[[10]] <- fa.parallel(x,fa="pc",sim=FALSE,n.obs=n.obs) fp[[11]] <- fa.parallel(x,fa="pc",error.bars=TRUE,n.obs=n.obs) fp[[12]] <- fa.parallel(x,fa="pc",error.bars=TRUE,sim=FALSE,n.obs=n.obs) fp[[13]] <- fa.parallel(x,quant=.95,n.obs=n.obs) return(fp) } print.psych.parallel <- function(x,digits=2) { cat("Call: ") print(x$Call) if(!is.null(x$fa.values) & !is.null(x$pc.values) ) { parallel.df <- data.frame(fa=x$fa.values,fa.sim =x$fa.sim,pc= x$pc.values,pc.sim =x$pc.sim) fa.test <- x$nfact pc.test <- x$ncomp cat("Parallel analysis suggests that ") cat("the number of factors = ",fa.test, " and the number of components = ",pc.test,"\n") cat("\n Eigen Values of \n") colnames(parallel.df) <- c("Original factors","Simulated data","Original components", "simulated data")} if(is.na(fa.test) ) fa.test <- 0 if(is.na(pc.test)) pc.test <- 0 if(!any(is.na(parallel.df))) {print(round(parallel.df[1:max(fa.test,pc.test),],digits))} else { if(!is.null(x$fa.values)) {cat("\n eigen values of factors\n") print(round(x$fa.values,digits))} if(!is.null(x$fa.sim)){cat("\n eigen values of simulated factors\n") print(round(x$fa.sim,digits))} if(!is.null(x$pc.values)){cat("\n eigen values of components \n") print(round(x$pc.values,digits))} if(!is.null(x$pc.sim)) {cat("\n eigen values of simulated components\n") print(round(x$pc.sim,digits=digits))} } } psych/R/irt.discrim.R0000644000176200001440000000116012253362137014155 0ustar liggesusers"irt.discrim" <- function(item.diff,theta,items) { #find the item discrimination parameter (beta) #find the item discrimination parameter -- optimized by item.discrim irt.item.discrim <- function(x,diff,theta,scores) { fit <- -1*(log(scores/(1+exp(x*(diff-theta))) + (1-scores)/(1+exp(x*(theta-diff))))) mean(fit,na.rm=TRUE) } nitems <- length(item.diff) discrim <- matrix(NaN,nitems,2) for (i in 1:nitems) { item.fit <- optimize(irt.item.discrim,c(-5,5),diff=item.diff[i],theta=theta,scores = items[,i]) discrim[i,1] <- item.fit$minimum discrim[i,2] <- item.fit$objective} irt.discrim <- discrim } psych/R/df2latex.R0000644000176200001440000004420412765546107013456 0ustar liggesusers#modified April 6, 2015 to return the table invisibly as well so it can be embedded in a Sweave document #November 22, 2013 Modified with help from Davide Morselli to allow for "stars" #also allows for printing straight text (char=TRUE) #cor2latex was modified following Davide Morselli's suggestion to allow direct calculation of the correlations # "df2latex" <- function(x,digits=2,rowlabels=TRUE,apa=TRUE,short.names=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="df2latex",label="default",char=FALSE,stars=FALSE,silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0) { #first set up the table nvar <- dim(x)[2] rname<- rownames(x) tempx <- x comment <- paste("%", match.call()) header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") if(stars) {if(rowlabels) { header <- c(header,"{l",rep("S",(nvar)),"}\n")} else {header <- c(header,"{",rep("S",(nvar+1)),"}\n")} } else { if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n")} } if(apa) {header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline ")} else {footer <- NULL} if (stars){ footer <- paste(" \\hline \n \\multicolumn{7}{l}{\\scriptsize{\\emph{Note: }\\textsuperscript{***}$p<.001$; \\textsuperscript{**}$p<.01$; \\textsuperscript{*}$p<.05$",".}}" ,sep = "") }else{ footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) #now put the data into it if(!char) {if(!is.null(digits)) {if(is.numeric(x) ) {x <- round(x,digits=digits)} else {x <- try(round(x,digits=digits)) } if(cut > 0) x[abs(x) < cut] <- NA } } cname <- colnames(x) if (short.names) cname <- abbreviate(cname,minlength=digits+3) #cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x,drop0trailing=FALSE) if(big > 0) {x[tempx > big] <- paste0("\\bf{",x[tempx > big],"}") } } else #to keep the digits the same {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) #now put it all together if(!silent) {cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the data cat(footer) #close it up with a footer } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } cor2latex <- function (x, use = "pairwise", method="pearson", adjust="holm", stars = FALSE, digits=2, rowlabels = TRUE, lower = TRUE, apa = TRUE, short.names = TRUE, font.size = "scriptsize", heading = "A correlation table from the psych package in R.", caption = "cor2latex", label = "default",silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0) { if(stars) heading <- paste(heading, "Adjust for multiple tests = ",adjust ) if (!is.na(class(x)[2]) & class(x)[2]=="corr.test") { #we already did the analysis, just report it r <- x$r p <- x$p} else { if (nrow(x) > ncol(x)) { #find the correlations x <- corr.test(x, use=use,method=method,adjust=adjust) r <- x$r p <- x$p } else { #take the correlations as given r <- x p <- NULL } } r <- round(r, digits) r <- format(r, nsmall = digits,drop0trailing=FALSE) #this converts to character but keeps the right number of digits) if (lower) { r[upper.tri(r)] <- "~" } else { r[lower.tri(r)] <- "~" } if(stars && is.null(p)) stop("To print significance levels, x must be be either a data frame of observations or a correlation matrix created with the corr.test function of the package psych. If you are not interested in displaying signicance level set stars = FALSE") #p[upper.tri(p,diag=FALSE)] #the adjusted probability values mystars <- ifelse(p < .001, "{***}", ifelse(p < .01, "{**}", ifelse(p < .05, "{*}", ""))) mystars <- t(mystars) if(stars) { R <- matrix(paste(r,mystars,sep=""),ncol=ncol(r))} else {R <- r} diag(R) <- paste(diag(r), " ", sep="") rownames(R) <- colnames(r) colnames(R) <- colnames(r) if (lower) { R[upper.tri(R, diag = FALSE)] <- "" } else { R[lower.tri(R, diag = FALSE)] <- "" } if(stars) {char<- TRUE} else {char <- FALSE} return(df2latex(R, digits = digits, rowlabels = rowlabels, apa = apa, short.names = short.names, font.size = font.size, heading = heading, caption = caption, label = label, char=TRUE,stars = stars,silent=silent,file=file,append=append,cut=cut,big=big)) } "fa2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=0,big=.3,alpha=.05,font.size ="scriptsize", heading="A factor analysis table from the psych package in R",caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] == "fa.ci") { if(is.null(f$cip)) {px <- f$cis$p} else {px <- f$cip}} else {px <- NULL} #get the probabilities if we did fa.ci #if(class(f)[2] !="fa") f <- f$fa x <- unclass(f$loadings) if(!is.null(f$Phi)) {Phi <- f$Phi} else {Phi <- NULL} nfactors <- ncol(x) if(nfactors > 1) {if(is.null(Phi)) {h2 <- rowSums(x^2)} else {h2 <- diag(x %*% Phi %*% t(x)) }} else {h2 <-x^2} u2 <- 1- h2 vtotal <- sum(h2 + u2) if(cut > 0) x[abs(x) < cut] <- NA #modified May 13 following a suggestion from Daniel Zingaro if(!is.null(f$complexity)) {x <- data.frame(x,h2=h2,u2=u2,com=f$complexity) } else {x <- data.frame(x,h2=h2,u2=u2)} #first set up the table nvar <- dim(x)[2] comment <- paste("% Called in the psych package ", match.call()) header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) #now put the data into it x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} fx <- format(x,drop0trailing=FALSE) #to keep the digits the same {if(!is.null(px) && (cut == 0)) { temp <- fx[1:nfactors] temp[px < alpha] <- paste("\\bf{",temp[px < alpha],"}",sep="") fx[1:nfactors] <- temp } if(big > 0) {temp <- fx[1:nfactors] x <- x[1:nfactors] temp[!is.na(x) & (abs(x) > big)] <- paste("\\bf{",temp[!is.na(x) & (abs(x) > big)],"}",sep="") fx[1:nfactors] <- temp } value <- apply(fx,1,paste,collapse=" & ") #insert & between columns value <- gsub("NA", " ", value, fixed = TRUE) if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the factor loadings } #now find and show the variance accounted for x <- f$loadings #use the original values not the rounded ones nvar <- nrow(x) if(is.null(Phi)) {if(nfactors > 1) {vx <- colSums(x^2) } else { vx <- diag(t(x) %*% x) vx <- vx*nvar/vtotal }} else {vx <- diag(Phi %*% t(x) %*% x) vx <- vx*nvar/vtotal } #names(vx) <- colnames(x)[1:nvar] vx <- round(vx,digits) loads <- c("\\hline \\cr SS loadings &",paste(vx," & ",sep=""),"\\cr \n") if(!silent) { cat(loads)} summ <- NULL #varex <- rbind("SS loadings " = vx) if(cumvar) { provar <- round(vx/nvar,digits) summ <- c("Proportion Var &" ,paste( provar, " & ",sep=""),"\\cr \n") # cat("Proportion Var &" ,paste( provar, " & ",sep=""),"\\cr \n") if (nfactors > 1) {cumvar <- round(cumsum(vx/nvar),digits) cumfavar <- round(cumsum(vx/sum(vx)),digits=digits) summ <- c(summ, "Cumulative Var & ",paste( cumvar," & ", sep=""),"\\cr \n", "Cum. factor Var & ",paste(round(cumsum(vx/sum(vx)),digits=digits)," & ",sep=""),"\\cr \n") } if(!silent) {cat(summ) } } loads <- c(loads,summ) if(!is.null(Phi)) { summ <- c("\\cr \\hline \\cr \n") if(!silent) {cat(summ) } Phi <- round(Phi,digits) phi <- format(Phi,nsmall=digits) phi <-apply(phi,1,paste,collapse=" & ") phi <-paste(colnames(x)," &",phi) phi <- paste(phi, "\\cr", "\n") loads <- c(loads,summ,phi) if(!silent) { cat(phi)} } if(!silent) { cat(footer)} #close it up with a footer } values <- c(values,loads) result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } "irt2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,font.size ="scriptsize", heading="An IRT factor analysis table from R",caption="fa2latex" ,label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] != "polyinfo" ) {nf <- length(f$plot$sumInfo) } else {nf <- length(f$sumInfo) } #create nf tables for(i in (1:nf)) { if(class(f)[2] != "polyinfo" ) {x <- f$plot$sumInfo[[i]]} else {x <- f$sumInfo[[i]] } if(nf>1) { rowmax <- apply(x,1,max, na.rm=TRUE) rowmax <- which(rowmax <.001,arr.ind=TRUE) if(!is.null(rowmax)) x <- x[-rowmax,]} #first set up the table nvar <- ncol(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading," for factor " , i, " }", "\\cr \\hline \\cr", "\n & \\multicolumn{7}{c}{Item information at $\\theta$} \\cr \\cline{2-8} ") if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Item & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) #to keep the digits the same value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) value <- paste(sanitize.latex(names(value))," & ",value) values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together if(class(f)[2] != "polyinfo" ) {test.info <- colSums(f$plot$sumInfo[[i]])} else {test.info <- colSums(f$sumInfo[[i]])} sem <- sqrt(1/test.info) reliab <- 1 - 1/test.info summary <- rbind(test.info,sem,reliab) summary <- round(summary,digits) summary <- format(summary,nsmall=digits) summary <- cbind(c("Test.info","SEM","Reliability"),summary) summary <- apply(summary,1,paste,collapse=" & ") summary <- paste(summary,"\\cr \n") if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the item information cat("\\hline \n & \\multicolumn{7}{c}{Summary statistics at $\\theta$} \\cr \\cline{2-8}") cat(summary) cat(footer) #close it up with a footer' } } result <- c(header,allnames,values,summary,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } #adapted from various sources, including xtable "sanitize.latex" <- function(astring) { result <- astring result <- gsub("&", "\\&", result, fixed = TRUE) result <- gsub("_", "\\_", result, fixed = TRUE) result <- gsub("%", "\\%", result, fixed = TRUE) return(result) } #added December 28, 2013 "omega2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=.2,font.size ="scriptsize", heading="An omega analysis table from the psych package in R",caption="omega2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] == "omega" ) f$loadings <- f$schmid$sl x <- unclass(f$loadings) nfactors <- ncol(x) h2 <- rowSums(x^2) u2 <- 1- h2 vtotal <- sum(h2 + u2) #first set up the table nvar <- dim(x)[2] comment <- paste("% Called in the psych package ", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption," with cut = ",cut,"\n $\\omega_h = ",round(f$omega_h,digits), "\\;\\;\\;\\alpha (\\lambda_3) = ",round(f$alpha,digits), "\\;\\;\\;\\lambda_6^* = ",round(f$G6,digits),"\\;\\;\\; \\omega_t = ",round(f$omega.tot,digits),"$ } \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x[abs(x) < cut] <- NA x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) #to keep the digits the same value <- apply(x,1,paste,collapse=" & ") #insert & between columns value <- gsub("NA", " ", value, fixed = TRUE) if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together #now find and show the variance accounted for x <- f$loadings #use the original values nvar <- nrow(x) vx <- colSums(x^2)[1:(ncol(x)-3)] vx <- round(vx,digits) loads <- c("\\hline \\cr SS loadings &",paste(vx," & ",sep=""),"\\cr \n") if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the factor loadings cat(loads) cat(footer) #close it up with a footer } result <- c(header,allnames,values,loads,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } #added 1/6/14 "ICC2latex" <- function(icc,digits=2,rowlabels=TRUE,apa=TRUE,ci=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="ICC2latex",label="default",char=FALSE,silent=FALSE,file=NULL,append=FALSE) { if((length(class(icc)) < 2 ) | (class(icc)[2] !="ICC")) icc <- ICC(icc) #do the analysis in case we have not done it yet #first set up the table x <- icc$results nvar <- dim(x)[2] rname<- rownames(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[[htpb]", "\\caption{",caption,"} \\begin{tabular}",sep="") if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n") } if(apa) {header <- c(header, "\\multicolumn{",5,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline \\cr \\multicolumn{ 5 }{c}{ Number of subjects = ", icc$n.obs, "Number of raters = ",icc$n.judge,"}")} else {footer <- NULL} footer <- paste(footer," \\end{tabular} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x[2:nvar] <- try(round(x[2:nvar],digits=digits)) cname <- colnames(x) if(!ci) nvar <- nvar-2 names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x[1:nvar],drop0trailing=FALSE)} else #to keep the digits the same {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) #now put it all together if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the data cat(footer) #close it up with a footer } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } psych/R/slipHalf.R0000644000176200001440000000427412246476062013506 0ustar liggesusers#November 30, 2013 #parts adapted from combn "splitHalf"<- function(r,n.sample=10000,raw=FALSE,covar=FALSE) { cl <- match.call() split <- function(o,n) { A <- B <- rep(0,n) A [o] <- B[-o] <- 1 A[-o] <- B[o] <- 0 AB <- cbind(A,B) R <- t(AB) %*% r %*% AB Rab <- R[1,2]/sqrt(R[1,1]*R[2,2]) rab <- 2*Rab/(1+Rab) result <- list(rab=rab,AB=AB)} maxrb <- -9999 minrb <- 2 n <- ncol(r) n2 <- trunc(n/2) n.obs <- nrow(r) if(n.obs > n) r <- cov(r,use="pairwise") if(!covar) r <- cov2cor(r) e <- 0 m <- n2 h <- m alpha <- ((sum(r) - tr(r))/sum(r)) * n/(n-1) sumr <- 0 x <- seq_len(n) a <- seq_len(m) if(is.null(n.sample) ) { count <- as.integer(round(choose(n, m)))/2 result <- rep(NA,count) #first do the original order o <- a sp <- split(o,n) result[1] <- sp$rab maxrb <- sp$rab maxAB <- sp$AB minrb <- sp$rab minAB <- sp$AB i <- 2 #now, do the rest while (i < (count+1)) { if (e < n - h) { h <- 1L e <- a[m] j <- 1L } else { e <- a[m - h] h <- h + 1L j <- 1L:h } a[m - h + j] <- e + j o <- x[a] sp <- split(o,n) result[i] <- sp$rab sumr <- sumr+ sp$rab if(sp$rab > maxrb) {maxrb <- sp$rab maxAB <- sp$AB} if(sp$rab < minrb) {minrb <- sp$rab minAB <- sp$AB} i <- i + 1L }} else { result <- rep(NA,n.sample) for (i in 1:n.sample) { o <- sample(n,n2) sp <- split(o,n) result[i] <- sp$rab sumr <- sumr+ sp$rab if(sp$rab > maxrb) {maxrb <- sp$rab maxAB <- sp$AB} if(sp$rab < minrb) { minrb <- sp$rab minAB <- sp$AB} } } if(is.null(n.sample)) {meanr <- sumr/count } else {meanr <- sumr/n.sample } meansp <- 2 * meanr/(1+meanr) if(raw) {results <- list(maxrb=maxrb,minrb=minrb,maxAB=maxAB,minAB=minAB,meanr=meanr,alpha=alpha,raw = result,Call = cl) } else {results <- list(maxrb=maxrb,minrb=minrb,maxAB=maxAB,minAB=minAB,meanr=meanr,alpha=alpha,Call=cl)} class(results) <- c("psych","split") results } psych/R/factor.fit.R0000644000176200001440000000025211172270216013761 0ustar liggesusers"factor.fit" <- function (r,f) { r2 <-sum( r*r) rstar <- factor.residuals(r,f) rstar2 <- sum(rstar*rstar) fit<- 1- rstar2/r2 return(fit) } psych/R/factor.residuals.R0000644000176200001440000000025310771316043015176 0ustar liggesusers"factor.residuals" <- function(r, f) { if(is.matrix(f)) { rstar <- r - factor.model(f)} else { f <- f$loadings rstar <- r - factor.model(f)} return(rstar)} psych/R/cohen.d.R0000644000176200001440000001032513151615417013247 0ustar liggesusers"cohen.d" <- function(x,group,alpha=.05,std=TRUE) { cl <- match.call() if ((length(group) ==1) && ( group %in% colnames(x) )) {group <- which(colnames(x) %in% group) group.in <- TRUE} stats <- statsBy(x,group) S <- stats$rwg S.inv <- solve(S) d <- stats$mean[2,] - stats$mean[1,] sd.p <- sqrt((( (stats$n[1,]-1) * stats$sd[1,]^2) + (stats$n[2,]-1) * stats$sd[2,]^2)/(stats$n[1,]+stats$n[2,])) #if we subtract 2 from n, we get Hedges g sd.ph <- sqrt((((stats$n[1,]-1) * stats$sd[1,]^2) + (stats$n[2,]-1) * stats$sd[2,]^2)/(stats$n[1,]+stats$n[2,]-2)) #if we subtract 2 from n, we get Hedges g n <- stats$n[1,]+ stats$n[2,] cohen.d <- d/sd.p d <- cohen.d #basically use this in the Mahalanobis distance hedges.g <- d/sd.ph names(cohen.d) <- colnames(x) if(group.in) { n <- n[-group] d <- d[-group] n1 <- stats$n[1,-group] n2 <- stats$n[2,-group] p1 <- n1/n p2 <- n2/n cohen.d <- cohen.d[-group] hedges.g <- hedges.g[-group] r <- cohen.d/sqrt(cohen.d^2 + 1/( p1*p2)) } else {r <- cohen.d/sqrt(cohen.d^2 + 1/( p1*p2) )} #for unequal n otherwise this is just 4 t <- d2t(cohen.d,n) p <- ( 1-pt(abs(t),n-2)) * 2 D <- sqrt(t(d) %*% S.inv %*% d) D <- as.vector(D) cohen.d.conf <- cohen.d.ci(cohen.d,n1=n1,n2=n2,alpha=alpha) result <- list(cohen.d = cohen.d.conf,hedges.g = hedges.g,M.dist = D, r=r,t=t,n=n,p=p, descriptive=stats,Call=cl) class(result) <- c("psych","cohen.d") return(result) } "d2t" <- function(d,n=NULL,n2=NULL,n1=NULL) {if(is.null(n1)) {t <- d*sqrt(n)/2} else if(is.null(n2)) {t <- d*sqrt(n1) } else { t <- d /sqrt(1/n1 + 1/n2)} return(t)} "t2d" <- function(t,n=NULL,n2=NULL, n1=NULL) {if(is.null(n1)) { d <- 2*t/sqrt(n)} else { if(is.null(n2)) { d <- t/sqrt(n1)} else { d <- t * sqrt(1/n1 + 1/n2)}} return(d)} "d.ci" <- "cohen.d.ci" <- function(d,n=NULL,n2=NULL,n1=NULL,alpha=.05) { t <- d2t(d=d,n=n,n2=n2,n1=n1) tail <- 1- alpha/2 ci <- matrix(NA,ncol=3,nrow=length(d)) for(i in 1:length(d)) { nmax <- pmax(c(n,n1+1,n1+n2)) upper <- try(t2d( uniroot(function(x) {suppressWarnings(pt(q=t[i],df=nmax[i]-2,ncp=x)) - alpha/2}, c(min(-5,-abs(t[i])*10),max(5,abs(t[i])*10)))$root,n=n[i],n2=n2[i],n1=n1[i]),silent=TRUE) if(class( upper)=="try-error") {ci[i,3] <- NA} else {ci[i,3] <- upper} ci[i,2] <- d[i] lower.ci <- try(t2d(uniroot(function(x) {suppressWarnings(pt(q=t[i],df=nmax[i]-2,ncp=x)) - tail}, c(min(-5,-abs(t[i])*10),max(5,abs(t[i]) *10)))$root,n=n[i],n2=n2[i],n1=n1[i]),silent=TRUE) if(class( lower.ci)=="try-error") {ci[i,1] <- NA} else {ci[i,1] <- lower.ci} } colnames(ci) <- c("lower","effect","upper") rownames(ci) <- names(d) return(ci) } "cohen.d.by" <- function(x,group,group2,alpha=.05) { group1 <- group group1name <- group group2name <- group2 group2 <- which(colnames(x) %in% group2) group1 <- which(colnames(x) %in% group) categories <- names(table(x[group2])) result <- list() for(i in 1:length(categories)) { group <- subset(x,x[group2]==categories[i]) group <- group[-group2] result[[i]] <- cohen.d(group,group1name) } names(result) <- paste0(group1name,"for",group2name ,categories) class(result) <- class(result) <- c("psych","cohen.d.by") return(result) } "print.cohen.d" <- function(x,digits=2) {cat("Call: ") print(x$Call) cat("Cohen d statistic of difference between two means\n") print(x$cohen.d,digits=digits) cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x$M.dist,digits=digits) cat("r equivalent lof difference between two means\n") print(x$r,digits=digits) } "print.cohen.d.by" <- function(x,digits=2) {cat("Call: ") print(x$Call) ncases <- length(x) for (i in (1:ncases)) {cat("\n Group levels = ",names(x[i]),"\n") cat("Cohen d statistic of difference between two means\n") print(x[[i]]$cohen.d,digits=digits) cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x[[i]]$M.dist,digits=digits) cat("r equivalent dof difference between two means\n") print(x[[i]]$r,digits=digits) } } psych/R/VSS.plot.R0000644000176200001440000000112611043363746013363 0ustar liggesusers"VSS.plot" <- function(x,title="Very Simple Structure",line=FALSE) { op <- par(no.readonly = TRUE) # the whole list of settable par's. n=dim(x) symb=c(49,50,51,52) #plotting sym plot(x$cfit.1,ylim=c(0,1),type="b",ylab="Very Simple Structure Fit",xlab="Number of Factors",pch=49) if (line) lines(x$fit) title(main=title) x$cfit.2[1]<-NA x$cfit.3[1]<-NA x$cfit.3[2]<-NA x$cfit.4[1]<-NA x$cfit.4[2]<-NA x$cfit.4[3]<-NA lines(x$cfit.2) points(x$cfit.2,pch=50) lines(x$cfit.3) points(x$cfit.3,pch=symb[3]) lines(x$cfit.4) points(x$cfit.4,pch=symb[4]) par(op) } psych/R/reverse.code.R0000644000176200001440000000471512257574247014336 0ustar liggesusers"reverse.code" <- function(keys,items,mini=NULL,maxi=NULL) { if(is.vector(items)) {nvar <- 1} else {nvar <- dim(items)[2]} items <- as.matrix(items) if(is.null(maxi)) {colMax <- apply(items,2,max,na.rm=TRUE)} else {colMax <- maxi} if(is.null(mini)) {colMin <- apply(items,2,min,na.rm=TRUE) } else {colMin <-mini} colAdj <- colMax+colMin if(length(keys) < nvar) { temp <- keys if(is.character(temp)) temp <- match(temp,colnames(items)) keys <- rep(1,nvar) keys[temp] <- -1 } keys.d <- diag(keys,nvar,nvar) items[is.na(items)] <- -9999 #a way of using matrix operations even for missing data reversed <- items %*% keys.d adj <- abs(keys*colAdj) #now we need to add the adjustments to the ones we flipped adj[keys > 0] <- 0 #added December 26 new <- t(adj + t(reversed)) new[abs(new) > 999] <- NA colnames(new) <- colnames(items) colnames(new)[keys < 0] <- paste(colnames(new)[keys < 0],"-",sep="") return(new) } #corrected April 3, 2010 to properly do matrix addition #modified Sept 14, 2013 to allow symbolic names and to allow for just specifying the ones to reversed #suggested by David Stanley #fixed bug reported by Jian Jin (26/12/13) "rescale" <- function(x,mean=100,sd=15,df=TRUE) {if(df) {x <- data.frame(t(t(scale(x))*sd+mean)) } else {x <- t( t(scale(x))*sd +mean)} return(x) } "scrub" <- function (x, where, min, max, isvalue,newvalue) { if (missing(min)) min <- -Inf if (missing(max)) max <- Inf if (missing(isvalue)) isvalue <- Inf if (missing(where)) where <- 1:dim(x)[2] maxlength <- max(length(isvalue),length(min),length(max),length(where)) if(missing(newvalue)) newvalue <- rep(NA,maxlength) if (length(min) == 1) min <- rep(min, ncol(x)) if (length(max) == 1) max <- rep(max, ncol(x)) if(length(where) == 1) where <- rep(where,maxlength) if(length(isvalue) ==1) isvalue <- rep(isvalue,maxlength) if(length(newvalue) ==1) newvalue <- rep(newvalue,maxlength) # if (length(isvalue) == 1) isvalue <- rep(isvalue, (length(where))) for(k in 1: maxlength) { i <- where[k] x[(!is.na(x[, i]) & (x[, i] < min[k])), i] <- newvalue[k] x[(!is.na(x[, i]) & (x[, i] > max[k])), i] <- newvalue[k] x[(!is.na(x[, i]) & (x[, i] == isvalue[k])), i] <- newvalue[k] } return(x) } #added Sept 11, 2010 #modified December 6, 2010 to allow recoding #modified December 3, 2011 to be more general #modifed January 8, 2012 to be a bit more flexible psych/R/test.all.R0000644000176200001440000000177512517017256013472 0ustar liggesusers test.all <- function(pl,package="psych",dependencies = c("Depends", "Imports", "LinkingTo"),find=FALSE,skip=NULL) { if (find) { pl <-tools::dependsOnPkgs(package,dependencies=dependencies) if(!is.null(skip) && skip %in% pl) {pl <- pl[-which(skip ==pl)]} } np <- length(pl) if(np > 0 ) { for(i in 1:np) { p <- pl[i] test <- require(p,character.only=TRUE) if(!test) {cat("\nCould not find package ",p, "\n") next } cat(paste("\nNow testing package " ,p )) ob <- paste("package",p,sep=":") ol <- objects(ob) nf <- length(ol) options("example.ask"=FALSE) for(i in 1:nf) { fn <- as.character(ol[[i]]) example(topic=fn,package=p,character.only=TRUE) } detach(ob,character.only=TRUE) } } else {cat("\nNo dependencies for package ", package) } } #tools::package_dependencies(reverse = TRUE) #lists all the reverse dependencies #tools::check_packages_in_dir(dir,reverse = list()) #might check them, unclear #rd <-reverse_dependencies_with_maintainers("psych")psych/R/set.cor.R0000644000176200001440000002471313073455343013317 0ustar liggesusers"set.cor" <- function(y,x,data,z=NULL,n.obs=NULL,use="pairwise",std=TRUE,square=FALSE,main="Regression Models",plot=TRUE,show=FALSE) { setCor(y=y,x=x,data=data,z=z,n.obs=n.obs,use=use,std=std,square=square,main=main,plot=plot,show=show)} "setCor" <- function(y,x,data,z=NULL,n.obs=NULL,use="pairwise",std=TRUE,square=FALSE,main="Regression Models",plot=TRUE,show=FALSE) { #a function to extract subsets of variables (a and b) from a correlation matrix m or data set m #and find the multiple correlation beta weights + R2 of the a set predicting the b set #seriously rewritten, March 24, 2009 to make much simpler #minor additons, October, 20, 2009 to allow for print and summary function #major addition in April, 2011 to allow for set correlation #added calculation of residual matrix December 30, 2011 #added option to allow square data matrices #modified December, 2014 to allow for covariances as well as to fix a bug with single x variable #modified April, 2015 to handle data with non-numeric values in the data, which are not part of the analysis cl <- match.call() if(is.numeric(y )) y <- colnames(data)[y] if(is.numeric(x )) x <- colnames(data)[x] if(is.numeric(z )) z <- colnames(data)[z] if((dim(data)[1]!=dim(data)[2]) | square) {n.obs=dim(data)[1] #this does not take into account missing data if(!is.null(z)) {data <- data[,c(y,x,z)]} else {data <- data[,c(y,x)]} if(!is.matrix(data)) data <- as.matrix(data) if(!is.numeric(data)) stop("The data must be numeric to proceed") C <- cov(data,use=use) if(std) {m <- cov2cor(C) C <- m} else {m <- C} raw <- TRUE} else { raw <- FALSE if(!is.matrix(data)) data <- as.matrix(data) C <- data if(std) {m <- cov2cor(C)} else {m <- C}} #convert names to locations #if(is.character(x)) x <- which(colnames(data) == x) #if(is.character(y)) y <- which(colnames(data) == y) #if(!is.null(z) && is.character(z)) z <- which(colnames(data) == z) nm <- dim(data)[1] xy <- c(x,y) numx <- length(x) numy <- length(y) numz <- 0 nxy <- numx+numy m.matrix <- m[c(x,y),c(x,y)] x.matrix <- m[x,x,drop=FALSE] xc.matrix <- m[x,x,drop=FALSE] #fixed19/03/15 xy.matrix <- m[x,y,drop=FALSE] xyc.matrix <- m[x,y,drop=FALSE] #fixed 19/03/15 y.matrix <- m[y,y,drop=FALSE] if(!is.null(z)){numz <- length(z) #partial out the z variables zm <- m[z,z,drop=FALSE] za <- m[x,z,drop=FALSE] zb <- m[y,z,drop=FALSE] x.matrix <- x.matrix - za %*% solve(zm) %*% t(za) y.matrix <- y.matrix - zb %*% solve(zm) %*% t(zb) xy.matrix <- xy.matrix - za %*% solve(zm) %*% t(zb) m.matrix <- cbind(rbind(y.matrix,xy.matrix),rbind(t(xy.matrix),x.matrix)) } if(numx == 1 ) {beta <- matrix(xy.matrix,nrow=1)/x.matrix[1,1] } else #this is the case of a single x { beta <- solve(x.matrix,xy.matrix) #solve the equation bY~aX beta <- as.matrix(beta) } yhat <- t(xy.matrix) %*% solve(x.matrix) %*% (xy.matrix) resid <- y.matrix - yhat if (numy > 1 ) { if(is.null(rownames(beta))) {rownames(beta) <- x} if(is.null(colnames(beta))) {colnames(beta) <- y} R2 <- colSums(beta * xy.matrix)/diag(y.matrix) } else { colnames(beta) <- y R2 <- sum(beta * xy.matrix)/y.matrix R2 <- matrix(R2) rownames(beta) <- x rownames(R2) <- colnames(R2) <- y } VIF <- 1/(1-smc(x.matrix)) #now find the unit weighted correlations #reverse items in X and Y so that they are all positive signed px <- principal(x.matrix) keys.x <- diag(as.vector(1- 2* (px$loadings < 0 )) ) py <- principal(y.matrix) keys.y <- diag(as.vector(1- 2* (py$loadings < 0 ) )) Vx <- sum( keys.x %*% x.matrix %*% t(keys.x)) Vy <- sum( keys.y %*% y.matrix %*% t(keys.y)) ruw <- colSums(abs(xy.matrix))/sqrt(Vx) Ruw <- sum(diag(keys.x) %*% xy.matrix %*% t(keys.y))/sqrt(Vx * Vy) if(numy < 2) {Rset <- 1 - det(m.matrix)/(det(x.matrix) ) Myx <- solve(x.matrix) %*% xy.matrix %*% t(xy.matrix) cc2 <- cc <- T <- NULL} else {if (numx < 2) {Rset <- 1 - det(m.matrix)/(det(y.matrix) ) Myx <- xy.matrix %*% solve(y.matrix) %*% t(xy.matrix) cc2 <- cc <- T <- NULL} else {Rset <- 1 - det(m.matrix)/(det(x.matrix) * det(y.matrix)) if(numy > numx) { Myx <- solve(x.matrix) %*% xy.matrix %*% solve(y.matrix) %*% t(xy.matrix)} else { Myx <- solve(y.matrix) %*% t(xy.matrix )%*% solve(x.matrix) %*% (xy.matrix)} } cc2 <- eigen(Myx)$values cc <- sqrt(cc2) T <- sum(cc2)/length(cc2) } if(!is.null(n.obs)) {k<- length(x) # uniq <- (1-smc(x.matrix,covar=!std)) uniq <- (1-smc(x.matrix)) se.beta <- list() for (i in 1:length(y)) { df <- n.obs-k-1 se.beta[[i]] <- (sqrt((1-R2[i])/(df))*sqrt(1/uniq))} se <- matrix(unlist(se.beta),ncol=length(y)) colnames(se) <- colnames(beta) rownames(se) <- rownames(beta) se <- t(t(se) * sqrt(diag(C)[y]))/sqrt(diag(xc.matrix)) tvalue <- beta/se prob <- 2*(1- pt(abs(tvalue),df)) SE2 <- 4*R2*(1-R2)^2*(df^2)/((n.obs^2-1)*(n.obs+3)) SE =sqrt(SE2) F <- R2*df/(k*(1-R2)) pF <- 1 - pf(F,k,df) shrunkenR2 <- 1-(1-R2)*(n.obs-1)/df #find the shrunken R2 for set cor (taken from CCAW p 615) u <- numx * numy m1 <- n.obs - max(numy ,(numx+numz)) - (numx + numy +3)/2 s <- sqrt((numx ^2 * numy^2 -4)/(numx^2 + numy^2-5)) if(numx*numy ==4) s <- 1 v <- m1 * s + 1 - u/2 R2set.shrunk <- 1 - (1-Rset) * ((v+u)/v)^s L <- 1-Rset L1s <- L^(-1/s) Rset.F <- (L1s-1)*(v/u) df.m <- n.obs - max(numy ,(numx+numz)) -(numx + numy +3)/2 s1 <- sqrt((numx ^2 * numy^2 -4)/(numx^2 + numy^2-5)) #see cohen p 321 if(numx^2*numy^2 < 5) s1 <- 1 df.v <- df.m * s1 + 1 - numx * numy/2 #which is just v # df.v <- (u+v) #adjusted for bias to match the CCAW results #Rset.F <- Rset.F * (u+v)/v Chisq <- -(n.obs - 1 -(numx + numy +1)/2)*log((1-cc2)) } # if(numx == 1) {beta <- beta * sqrt(diag(C)[y]) # } else {beta <- t(t(beta) * sqrt(diag(C)[y]))/sqrt(diag(xc.matrix))} #this puts the betas into the raw units # coeff <- data.frame(beta=beta,se = se,t=tvalue, Probabilty=prob) # colnames(coeff) <- c("Estimate", "Std. Error" ,"t value", "Pr(>|t|)") if(is.null(n.obs)) {set.cor <- list(beta=beta,R=sqrt(R2),R2=R2,Rset=Rset,T=T,cancor = cc, cancor2=cc2,raw=raw,residual=resid,ruw=ruw,Ruw=Ruw,x.matrix=x.matrix,y.matrix=y.matrix,VIF=VIF,Call = cl)} else { set.cor <- list(beta=beta,se=se,t=tvalue,Probability = prob,R=sqrt(R2),R2=R2,shrunkenR2 = shrunkenR2,seR2 = SE,F=F,probF=pF,df=c(k,df),Rset=Rset,Rset.shrunk=R2set.shrunk,Rset.F=Rset.F,Rsetu=u,Rsetv=df.v,T=T,cancor=cc,cancor2 = cc2,Chisq = Chisq,raw=raw,residual=resid,ruw=ruw,Ruw=Ruw,x.matrix=x.matrix,y.matrix=y.matrix,VIF=VIF,Call = cl)} class(set.cor) <- c("psych","setCor") if(plot) setCor.diagram(set.cor,main=main,show=show) return(set.cor) } #modified July 12,2007 to allow for NA in the overall matrix #modified July 9, 2008 to give statistical tests #modified yet again August 15 , 2008 to convert covariances to correlations #modified January 3, 2011 to work in the case of a single predictor #modified April 25, 2011 to add the set correlation (from Cohen) #modified April 21, 2014 to allow for mixed names and locations in call #modified February 19, 2015 to just find the covariances of the data that are used in the regression #this gets around the problem that some users have large data sets, but only want a few variables in the regression setCor.diagram <- function(sc,main="Regression model",digits=2,show=FALSE,...) { beta <- round(sc$beta,digits) x.matrix <- round(sc$x.matrix,digits) y.matrix <- round(sc$y.matrix,digits) x.names <- rownames(sc$beta) y.names <- colnames(sc$beta) nx <- length(x.names) ny <- length(y.names) top <- max(nx,ny) xlim=c(-nx/3,10) ylim=c(0,top) top <- max(nx,ny) x <- list() y <- list() x.scale <- top/(nx+1) y.scale <- top/(ny+1) plot(NA,xlim=xlim,ylim=ylim,main=main,axes=FALSE,xlab="",ylab="") for(i in 1:nx) {x[[i]] <- dia.rect(3,top-i*x.scale,x.names[i]) } for (j in 1:ny) {y[[j]] <- dia.rect(7,top-j*y.scale,y.names[j]) } for(i in 1:nx) { for (j in 1:ny) { dia.arrow(x[[i]]$right,y[[j]]$left,labels = beta[i,j],adj=4-j) } } if(nx >1) { for (i in 2:nx) { for (k in 1:(i-1)) {dia.curved.arrow(x[[i]]$left,x[[k]]$left,x.matrix[i,k],scale=-(abs(i-k)),both=TRUE)} } } if(ny>1) {for (i in 2:ny) { for (k in 1:(i-1)) {dia.curved.arrow(y[[i]]$right,y[[k]]$right,y.matrix[i,k],scale=(abs(i-k)))} }} for(i in 1:ny) {dia.self(y[[i]],side=3,scale=.2) } if(show) {text((10-nx/3)/2,0,paste("Unweighted matrix correlation = ",round(sc$Ruw,digits)))} } psych/R/r.con.R0000644000176200001440000000062711446540667012765 0ustar liggesusers"r.con" <- function(rho,n,p=.95,twotailed=TRUE) { z <- fisherz(rho) if(n<4) {stop("number of subjects must be greater than 3")} se <- 1/sqrt(n-3) p <- 1-p if(twotailed) p<- p/2 dif <- qnorm(p) zlow <- z + dif*se zhigh <- z - dif*se ci <- c(zlow,zhigh) ci <- fisherz2r(ci) return(ci) } "r2t" <- function(rho,n) { return( rho*sqrt((n-2)/(1-rho^2))) } psych/R/polychoric.R0000644000176200001440000004142213152075452014106 0ustar liggesusers#Faster Polychoric uses tableF (a function to speed up 2 way tables of integers #first, we introduce a new function to find integer tables without error checking #if all data are integer then #tableF is the fast version of table #it does no error checking and works only for two dimensional integer data tableF <- function(x,y) { minx <- min(x,na.rm=TRUE) #these probably could be found just once maxx <- max(x,na.rm=TRUE) miny <- min(y,na.rm=TRUE) maxy <- max(y,na.rm=TRUE) maxxy <- (maxx+(minx==0))*(maxy+(miny==0)) dims=c(maxx + 1 - min(1,minx),maxy+1 - min(1,minx)) bin <- x - minx+ (y-miny)*(dims[1])+ max(1,minx) ans <- matrix(tabulate(bin,maxxy),dims) ans } #perhaps even faster, but more importantly does not drop categories - probably needs to be passed both x and y min and max tableFast <- #revised and preferred, but requires specifying the min and max function(x,y,minx,maxx,miny,maxy) { #y and x can have separate min and max in the case of polydi,normally they are the same maxxy <- (maxx+(minx==0))*(maxy+(minx==0)) bin <- x-minx + (y-minx) *maxx+ 1 dims=c(maxx + 1 - min(1,minx),maxy+1 - min(1,miny)) ans <- matrix(tabulate(bin,maxxy),dims) ans } #adapted from John Fox's Polychor #polyc does all the work but does not work in cases of incomplete tables #thus, the polychor function is used #moved these first two function out of the polyc function in the hope that they will be compiled just once and perhaps get a speed increase #doesn't seem to make a difference although it does make the code a bit easier to read #polychoric.mc is added while we test it versus polychoric # polyBinBvn.old <- function (rho,rc,cc) #adapted from John Fox's polychor # { if (min(rc) < -9999) rc <- rc[-1] # if (min(cc) < - 9999) cc <- cc[-1] # if (max(rc) > 9999) rc <- rc[-length(rc)] # if (max(cc) > 99999) cc <- cc[-length(cc)] # row.cuts <- c(-Inf,rc,Inf) # col.cuts <- c(-Inf,cc,Inf) # nr <- length(rc) + 1 # nc <- length(cc) + 1 # # # P <- matrix(0, nr,nc) # R <- matrix(c(1,rho,rho,1),2,2) # # diag(R) <- 1 # for (i in 1:nr) { # for (j in 1:nc) { # P[i, j] <- pmvnorm(lower = c(row.cuts[i], col.cuts[j]), # upper = c(row.cuts[i + 1], col.cuts[j + 1]), # corr = R) #should we specify the algorithm to TVPACK or Miwa # }} # P #the estimated n x n predicted by rho, rc, cc # } polyBinBvn<- function (rho,rc,cc) { #adapted from John Fox's polychor #but recognizes that we don't need to calculate all cells because of degrees of freedom # if ( min(rc,na.rm=TRUE) < -9999) rc <- rc[-1] # if ( min(cc,na.rm=TRUE) < - 9999) cc <- cc[-1] # if (max(rc,na.rm=TRUE) > 9999) rc <- rc[-length(rc)] # if (max(cc,na.rm=TRUE) > 9999) cc <- cc[-length(cc)] row.cuts <- c(-Inf,rc,Inf) col.cuts <- c(-Inf,cc,Inf) # nr <- length(rc) + 1 # nc <- length(cc) + 1 #replaced with next two lines 9/8/14 nr <- length(row.cuts) -1 nc <- length(col.cuts) -1 P <- matrix(0, nr,nc) R <- matrix(c(1,rho,rho,1),2,2) # diag(R) <- 1 for (i in 1:(nr-1)) { for (j in 1:(nc-1)) { P[i, j] <- mnormt::sadmvn(lower = c(row.cuts[i], col.cuts[j]), upper = c(row.cuts[i + 1], col.cuts[j + 1]), mean=rep(0,2), varcov = R) #should we specify the algorithm to TVPACK or Miwa }} P[1,nc] <- pnorm(rc[1]) - sum(P[1,1:(nc-1)] ) P[nr,1] <- pnorm(cc[1]) - sum(P[1:(nr-1),1] ) if(nr >2) {for (i in (2:(nr-1))) {P[i,nc] <- pnorm(rc[i]) -pnorm(rc[i-1])- sum(P[i,1:(nc-1)] ) }} if(nc >2) {for (j in (2:(nc-1))) {P[nr,j] <- pnorm(cc[j]) - pnorm(cc[j-1])-sum(P[1:(nr-1),j] ) }} if(nc > 1) P[nr,nc] <- 1- pnorm(rc[nr-1]) - sum(P[nr,1:(nc-1)]) P #the estimated n x n predicted by rho, rc, cc } # polyF <- function(rho,rc,cc,tab) { # P <- polyBinBvn(rho, rc, cc) # -sum(tab * log(P)) } #the criterion to be minimized # #revised 16/6/18 to cover the problem of 0 values in cells polyF <- function(rho,rc,cc,tab) { #doesn't blow up in the case of 0 cell entries added 16/6/18 P <- polyBinBvn(rho, rc, cc) lP <- log(P) lP[lP == -Inf] <- NA -sum(tab * lP,na.rm=TRUE) } #the criterion to be minimized "wtd.table" <- function(x,y,weight) { tab <- tapply(weight,list(x,y),sum,na.rm=TRUE,simplify=TRUE) #taken from questionr:wtd.table tab[is.na(tab)] <- 0 return(tab) } #modified 10/8/14 to create missing values when there are no cell entries #modified 3/6/14 to create missing values when the data are hopeless "polyc" <- #uses the tableFast function instead of tableF function(x,y=NULL,taux,tauy,global=TRUE,weight=NULL,correct=correct,gminx,gmaxx,gminy,gmaxy) { if(is.null(weight )) {tab <- tableFast(x,y,gminx,gmaxx,gminy,gmaxy) } else {tab <- wtd.table(x,y,weight)} #need to specify minx and maxx somehow fixed <- 0 tot <- sum(tab) tab <- tab/tot if(correct > 0) {if(any(tab[]==0)) {fixed <- 1 tab[tab==0] <- correct/tot }} #moved from below 16.6.22 if(global) { rho <- optimize(polyF,interval=c(-1,1),rc=taux, cc=tauy,tab)#this uses the global taux and tauy } else { #use item row and column information for this pair, rather than global values #this seems to match the polycor function #the next five lines are adapted directly from John Fox's polycor function if(!is.na(sum(tab)) ) { #this checks for completely missing data zerorows <- apply(tab, 1, function(x) all(x == 0)) zerocols <- apply(tab, 2, function(x) all(x == 0)) zr <- sum(zerorows) zc <- sum(zerocols) tab <- tab[!zerorows, ,drop=FALSE] tab <- tab[, !zerocols, drop=FALSE] csum <- colSums(tab) rsum <- rowSums(tab) #if(correct > 0) tab[tab==0] <- correct/tot if(min(dim(tab)) < 2) {rho <- list(objective = NA) } else { cc <- qnorm(cumsum(csum)[-length(csum)]) rc <- qnorm(cumsum(rsum)[-length(rsum)]) rho <- optimize(polyF,interval=c(-1,1),rc=rc, cc=cc,tab) } } else { rho <- list(objective = NA, rho= NA)}} if(is.na(rho$objective)) {result <- list(rho=NA,objective=NA,fixed=fixed) } else { result <- list(rho=rho$minimum,objective=rho$objective,fixed=fixed)} return(result) } #We have dropped option to use John Fox's polycor package, so we don't need the options #function(x,smooth=TRUE,global=TRUE,polycor=FALSE,ML = FALSE, std.err = FALSE,weight=NULL,correct=.5,progress=TRUE,na.rm=TRUE,delete=TRUE) { "polychoric" <- function(x,smooth=TRUE,global=TRUE,polycor=FALSE,ML = FALSE, std.err = FALSE,weight=NULL,correct=.5,progress=TRUE,na.rm=TRUE,delete=TRUE) { #function(x,smooth=TRUE,global=TRUE,polycor=FALSE,weight=NULL,correct=.5,progress=TRUE,na.rm=TRUE,delete=TRUE) { #if(!require(parallel)) {message("polychoric requires the parallel package.")} #declare these next two functions to be local inside of polychoric #The polycor paramater was dropped because it was not being used. But, several programs are using it. if(polycor) message("The polycor option has been removed from the polychoric function in the psych package. Please fix the call.") if(ML) message("The ML option has been removed from the polychoric function in the psych package. Please fix the call.") if(std.err) message("The std.error option has been removed from the polychoric function in the psych package. Please fix the call.") myfun <- function(x,i,j,gminx,gmaxx,gminy,gmaxy) {polyc(x[,i],x[,j],tau[,i],tau[,j],global=global,weight=weight,correct=correct,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy) } matpLower <- function(x,nvar,gminx,gmaxx,gminy,gmaxy) { k <- 1 il <- vector() jl <- vector() for(i in 2:nvar) {for (j in 1:(i-1)) { il[k] <- i jl [k] <- j k<- k+1} } poly <- mcmapply(function(i,j) myfun(x,i,j,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy) , il,jl) #debugging, we turn off the mcmapply function and do it by hand # browser() # ppl <- list() # for (i in 2:nvar) {for (j in 1:(i-1)) {ppl[[i+j]] <- myfun(x,i,j,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy) } } #now make it a matrix mat <- diag(nvar) if(length(dim(poly)) == 2) { mat[upper.tri(mat)] <- as.numeric(poly[1,]) #first row of poly is correlation, 2nd the fit mat <- t(mat) + mat fixed <- as.numeric(poly[3,]) diag(mat) <- 1 fixed <- sum(fixed) if((fixed > 0) && ( correct > 0)) { warning(fixed ," cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.")} return(mat)} else { warning("Something is wrong in polycor ") return(poly) stop("we need to quit because something was seriously wrong. Please look at the results")} } #if(!require(mnormt) ) {stop("I am sorry, you must have mnormt installed to use polychoric")} #if(polycor && (!require(polycor))) {warning ("I am sorry, you must have polycor installed to use polychoric with the polycor option") # polycor <- FALSE} if(!is.null(weight)) {if(length(weight) !=nrow(x)) {stop("length of the weight vector must match the number of cases")}} cl <- match.call() nvar <- dim(x)[2] nsub <- dim(x)[1] if((prod(dim(x)) == 4) | is.table(x)) {result <- polytab(x,correct=correct) print("You seem to have a table, I will return just one correlation.") } else { #the main function x <- as.matrix(x) if(!is.numeric(x)) {x <- matrix(as.numeric(x),ncol=nvar) message("Converted non-numeric input to numeric")} #xt <- table(x) #this is clearly not a good idea #nvalues <- length(xt) #find the number of response alternatives nvalues <- max(x,na.rm=TRUE) - min(x,na.rm=TRUE) + 1 if(nvalues > 8) stop("You have more than 8 categories for your items, polychoric is probably not needed") #first delete any bad cases item.var <- apply(x,2,sd,na.rm=na.rm) bad <- which((item.var <= 0)|is.na(item.var)) if((length(bad) > 0) & delete) { for (baddy in 1:length(bad)) {message( "Item = ",colnames(x)[bad][baddy], " had no variance and was deleted")} x <- x[,-bad] nvar <- nvar - length(bad) } xmin <- apply(x,2,function(x) min(x,na.rm=TRUE)) #if(global) { xmin <- min(xmin)} xmin <- min(xmin) x <- t(t(x) - xmin +1) #all numbers now go from 1 to nvalues gminx <- gminy <- 1 #allow for different minima if minmax is null xmax <- apply(x,2,function(x) max(x,na.rm=TRUE)) #if(global) xmax <- max(xmax) xmax <- max(xmax) #don't test for globality xmax gmaxx <- gmaxy <- xmax #check for different maxima if (min(xmax) != max(xmax)) {global <- FALSE warning("The items do not have an equal number of response alternatives, global set to FALSE.")} #xfreq <- apply(x- xmin + 1,2,tabulate,nbins=nvalues) xfreq <- apply(x,2,tabulate,nbins=nvalues) n.obs <- colSums(xfreq) xfreq <- t(t(xfreq)/n.obs) tau <- qnorm(apply(xfreq,2,cumsum))[1:(nvalues-1),] #these are the normal values of the cuts if(!is.matrix(tau)) tau <- matrix(tau,ncol=nvar) #rownames(tau) <- levels(as.factor(x))[1:(nvalues-1)] #doesn't work if one response is missing rownames(tau) <- 1:(nvalues -1) colnames(tau) <- colnames(x) mat <- matrix(0,nvar,nvar) colnames(mat) <- rownames(mat) <- colnames(x) #x <- x - min(x,na.rm=TRUE) +1 #this is essential to get the table function to order the data correctly -- but we have already done it mat <- matpLower(x,nvar,gminx,gmaxx,gminy,gmaxy) #the local copy has the extra paremeters #do the multicore version if(any(is.na(mat))) {message("some correlations are missing, smoothing turned off") smooth <- FALSE} if(smooth) {mat <- cor.smooth(mat) } colnames(mat) <- rownames(mat) <- colnames(x) tau <- t(tau) result <- list(rho = mat,tau = tau,n.obs=nsub,Call=cl) class(result) <- c("psych","poly") } return(result) } #use polychor from John Fox to do the same #matches polychor output perfectly if correct=FALSE "polytab" <- function(tab,correct=TRUE) { tot <- sum(tab) tab <- tab/tot if(correct > 0) tab[tab==0] <- correct/tot #use item row and column information for this pair, rather than global values csum <- colSums(tab) rsum <- rowSums(tab) cc <- qnorm(cumsum(csum[-length(csum)])) rc <- qnorm(cumsum(rsum[-length(rsum)])) rho <- optimize(polyF,interval=c(-1,1),rc=rc, cc=cc,tab) result <- list(rho=rho$minimum,objective=rho$objective,tau.row=rc,tau.col =cc) return(result) } ########################################################################################################## #9/6/14 to facilitate mixed cor we find polytomous by dichotomous correlations #4/08/17 fixed to not do table(p) or table(d) "polydi" <- function(p,d,taup,taud,global=TRUE,ML = FALSE, std.err = FALSE,weight=NULL,progress=TRUE,na.rm=TRUE,delete=TRUE,correct=.5) { #if(!require(parallel)) {message("polychoric requires the parallel package.")} #declare these next two functions to be local inside of polychoric myfun <- function(x,i,j,correct,taup,taud,gminx,gmaxx,gminy,gmaxy,np) {polyc(x[,i],x[,j],taup[,i],taud[1,(j-np)],global=global,weight=weight,correct=correct,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy) } #global changed to true 16/6/19 and set back again to global=global on 09/07/17 matpLower <- function(x,np,nd,taup,taud,gminx,gmaxx,gminy,gmaxy) { k <- 1 il <- vector() jl <- vector() for(i in 1:np) {for (j in 1:nd) { il[k] <- i jl [k] <- j k <- k+1} } poly <- mcmapply(function(i,j) myfun(x,i,j,correct=correct,taup=taup,taud=taud,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy,np=np) , il,jl+np) #the multicore version #poly <- mapply(function(i,j) myfun(x,i,j,correct=correct,taup=taup,taud=taud,gminx=gminx,gmaxx=gmaxx,gminy=gminy,gmaxy=gmaxy,np=np) , il,jl +np) #the normal version for debugging #now make it a matrix mat <- matrix(np,nd) mat <- as.numeric(poly[1,]) #first row of poly is correlation, 2nd the fit return(mat) } #if(!require(mnormt) ) {stop("I am sorry, you must have mnormt installed to use polychoric")} if(!is.null(weight)) {if(length(weight) !=nrow(x)) {stop("length of the weight vector must match the number of cases")}} cl <- match.call() np <- dim(p)[2] nd <- dim(d)[2] if(is.null(np)) np <- 1 if(is.null(nd)) nd <- 1 nsub <- dim(p)[1] p <- as.matrix(p) d <- as.matrix(d) #pt <- table(p) #why do we do this? #nvalues <- length(xt) #find the number of response alternatives nvalues <- max(p,na.rm=TRUE) - min(p,na.rm=TRUE) + 1 #dt <- table(d) dvalues <- max(d,na.rm=TRUE) - min(d,na.rm=TRUE) + 1 if(dvalues !=2) stop("You did not supply a dichotomous variable") if(nvalues > 8) stop("You have more than 8 categories for your items, polychoric is probably not needed") #first delete any bad cases item.var <- apply(p,2,sd,na.rm=na.rm) bad <- which((item.var <= 0)|is.na(item.var)) if((length(bad) > 0) & delete) { for (baddy in 1:length(bad)) {message( "Item = ",colnames(p)[bad][baddy], " had no variance and was deleted")} p <- p[,-bad] np <- np - length(bad) } pmin <- apply(p,2,function(x) min(x,na.rm=TRUE)) #allow for different minima #gminx <- min(pmin) minx <- min(pmin) p <- t(t(p) - pmin +1) #all numbers now go from 1 to nvalues #p <- t(t(p) - gminx +1) #all numbers now go from 1 to nvalues but we should use global minimima dmin <- apply(d,2,function(x) min(x,na.rm=TRUE)) #gminy <- min(dmin) miny <- min(dmin) #d <- t(t(d) - gminy +1) d <- t(t(d) - dmin +1) gminx <- gminy <- 1 #set the global minima to 1 pmax <- apply(p,2,function(x) max(x,na.rm=TRUE)) #check for different maxima gmaxx <- max(pmax) if (min(pmax) != max(pmax)) {#global <- FALSE warning("The items do not have an equal number of response alternatives, I am using the largest number of categories in the polytomous set")} gmaxy <- max(apply(d,2,function(x) max(x,na.rm=TRUE))) #xfreq <- apply(x- xmin + 1,2,tabulate,nbins=nvalues) pfreq <- apply(p,2,tabulate,nbins=nvalues) n.obs <- colSums(pfreq) pfreq <- t(t(pfreq)/n.obs) taup <- as.matrix(qnorm(apply(pfreq,2,cumsum))[1:(nvalues-1),],ncol=ncol(pfreq)) #these are the normal values of the cuts #if(!is.matrix(tau)) tau <- matrix(tau,ncol=nvar) #rownames(taup) <- names(pt)[1:(nvalues-1)] rownames(taup) <- paste(1:(nvalues-1)) colnames(taup) <- colnames(p) dfreq <- apply(d,2,tabulate,nbins=2) if(nd < 2) {n.obsd <- sum(dfreq) } else {n.obsd <- colSums(dfreq) } dfreq <- t(t(dfreq)/n.obsd) taud <- qnorm(apply(dfreq,2,cumsum)) mat <- matrix(0,np,nd) rownames(mat) <- colnames(p) colnames(mat) <- colnames(d) #x <- x - min(x,na.rm=TRUE) +1 #this is essential to get the table function to order the data correctly x <- cbind(p,d) mat <- matpLower(x,np,nd,taup,taud,gminx,gmaxx,gminy,gmaxy) #the local copy has the extra paremeters #do the multicore version mat <- matrix(mat,np,nd,byrow=TRUE) rownames(mat) <- colnames(p) colnames(mat) <- colnames(d) taud <- t(taud) result <- list(rho = mat,tau = taud,n.obs=nsub,Call=cl) class(result) <- c("psych","polydi") return(result) } psych/R/cta.R0000644000176200001440000001530511235401176012477 0ustar liggesusers"cta" <- function(n=3,t=5000, cues = NULL, act=NULL, inhibit=NULL,expect = NULL, consume = NULL,tendency = NULL,tstrength=NULL, type="both",fast=2 ,compare=FALSE,learn=TRUE,reward=NULL) { #simulation of the CTA reparamaterization of the dynamics of action #note, this is all for operation in a constant environment - what is needed is wrap the world around this. #That is, actions actually change cues #this should be a function to do all the work. the rest is just stats and graphics. #MODEL (dif equations from paper) ##here is the basic model tf <- function(tendency,cues,step,expect,act,consume) { tf <- tendency + cues %*% step %*% expect - act %*% step %*% consume } #tendencies at t-t af <- function(act,tendency,step,tstrength,inhibit) { af <- tendency %*% step %*% tstrength + act - act %*% step %*% inhibit} #actions at t-t #the learning function ef <- function(expect,act,step,consume,reward) {if(learn) { which.act <- which.max(act) #counting which act has won if(old.act!=which.act) { diag(temp) <- act %*% reward expect <- expect + temp #learn but only if a new action expect <- expect*1/tr(expect) #standardize expectancies old.act <- which.act}} ef <- expect } ## temp <- matrix(0,n,n) if(n > 4){ colours <- rainbow(n)} else {colours <- c("blue", "red", "black","green") } stepsize <- .05 tendency.start <- tendency act.start <- act expect.start <- expect if(is.null(cues)) {cues <- 2^(n-1:n)} #default cue str - cue vector represents inate strength of stim (cake vs peanut) if(is.null(inhibit)) {inhibit <- matrix(1,ncol=n,nrow=n) #loss matrix .05 on diag 1s off diag diag(inhibit) <- .05} if(is.null(tstrength)) tstrength <- diag(1,n) #if(is.null(tstrength)) tstrength <- diag(c(1,.5,.25)) if(n>1) {colnames(inhibit) <- rownames(inhibit) <- paste("A",1:n,sep="")} if(is.null(consume) ) {consume <- diag(.03,ncol=n,nrow=n) } step <- diag(stepsize,n) #this is the n CUES x k tendencyDENCIES matrix for Cue-tendency excitation weights if(is.null(expect)) expect <- diag(1,n) # a matrix of expectancies that cues lead to outcomes #first run for time= t to find the maximum values to make nice plots as well as to get the summary stats if (is.null(tendency.start)) {tendency <- rep(0,n)} else {tendency <- tendency.start} #default tendency = 0 if(is.null(act.start) ) {act <- cues} else {act <- act.start} #default actions = initial cues if(is.null(reward)) {reward <- matrix(0,n,n) diag(reward) <- c(rep(0,n-1),.05) } else {temp1 <- reward reward <- matrix(0,n,n) diag(reward) <- temp1 } #set up counters maxact <- minact <- mintendency <- maxtendency <- 0 counts <- rep(0,n) transitions <- matrix(0,ncol=n,nrow=n) frequency <- matrix(0,ncol=n,nrow=n) colnames(frequency) <- paste("T",1:n,sep="") rownames(frequency) <- paste("F",1:n,sep="") old.act <- which.max(act) #MODEL (dif equations from paper) for (i in 1:t) { tendency <- tf(tendency,cues,step,expect,act,consume) act <- af (act,tendency,step,tstrength,inhibit) act[act<0] <- 0 #add learning expect <- ef(expect,act,step,consume,reward) #END OF MODEL #STATS #calc max/min act/tendency maxact <- max(maxact,act) minact <- min(minact,act) maxtendency <- max(maxtendency,tendency) mintendency <- min(mintendency,tendency) #count which.act <- which.max(act) #counting which act has won counts[which.act] <- counts[which.act]+1 #time table transitions[old.act,which.act] <- transitions[old.act,which.act] + 1 #frequency table if(old.act!=which.act) { frequency[old.act,which.act] <- frequency[old.act,which.act] + 1 frequency[which.act,which.act] <- frequency[which.act,which.act] +1 } #learn but only if a new action old.act <- which.act } #PLOTS #now do various types of plots, depending upon the type of plot desired plots <- 1 action <- FALSE #state diagrams plot two tendencydencies agaist each other over time if (type!="none") {if (type=="state") { op <- par(mfrow=c(1,1)) if (is.null(tendency.start)) {tendency <- rep(0,n)} else {tendency <- tendency.start} if(is.null(act.start) ) {act <- cues} else {act <- act.start} plot(tendency[1],tendency[2],xlim=c(mintendency,maxtendency),ylim=c(mintendency,maxtendency),col="black", main="State diagram",xlab="tendency 1", ylab="tendency 2") for (i in 1:t) { tendency <- tf(tendency,cues,step,expect,act,consume) act <- af (act,tendency,step,tstrength,inhibit) #expect <- ef(expect,act,step,consume) act[act<0] <- 0 if(!(i %% fast)) points(tendency[1],tendency[2],col="black",pch=20,cex=.2) } } else { #the basic default is to plot action tendencydencies and actions in a two up graph if(type=="both") {if(compare) {op <- par(mfrow=c(2,2))} else {op <- par(mfrow=c(2,1))} plots <- 2 } else {op <- par(mfrow=c(1,1))} if (type=="action") {action <- TRUE} else {if(type=="tendencyd" ) action <- FALSE} for (k in 1:plots) { if (is.null(tendency.start)) {tendency <- rep(0,n)} else {tendency <- tendency.start} if(is.null(act.start) ) {act <- cues} else {act <- act.start} if(is.null(expect.start)) {expect <- diag(1,n)} else {expect <- expect.start} # a matrix of expectancies that cues lead to outcomes if(action ) plot(rep(1,n),act,xlim=c(0,t),ylim=c(minact,maxact),xlab="time",ylab="action", main="Actions over time") else plot(rep(1,n),tendency,xlim=c(0,t),ylim=c(mintendency,maxtendency),xlab="time",ylab="action tendency",main="Action tendencies over time") for (i in 1:t) { tendency <- tf(tendency,cues,step,expect,act,consume) act <- af (act,tendency,step,tstrength,inhibit) act[act<0] <- 0 ### maxact <- max(maxact,act) minact <- min(minact,act) maxtendency <- max(maxtendency,tendency) mintendency <- min(mintendency,tendency) #count which.act <- which.max(act) #counting which act has won counts[which.act] <- counts[which.act]+1 #time table transitions[old.act,which.act] <- transitions[old.act,which.act] + 1 #frequency table if(old.act!=which.act) { frequency[old.act,which.act] <- frequency[old.act,which.act] + 1 #frequency[which.act,which.act] <- frequency[which.act,which.act] +1 expect <- ef(expect,act,step,consume,reward) } #learn but only if a new action old.act <- which.act ## if(!(i %% fast) ) {if( action) points(rep(i,n),act,col=colours,cex=.2) else points(rep(i,n),tendency,col=colours,cex=.2) }} action <- TRUE} } } results <- list(cues=cues,expectancy=expect,strength=tstrength,inihibition=inhibit,consumation=consume,reinforcement=reward, time = counts,frequency=frequency, tendency=tendency, act=act) return(results) }psych/R/scatter.hist.R0000644000176200001440000000706513061363756014361 0ustar liggesusers"scatter.hist" <- "scatterHist" <- function(x,y=NULL,smooth=TRUE,ab=FALSE, correl=TRUE,density=TRUE,ellipse=TRUE,digits=2,method,cex.cor=1,title="Scatter plot + histograms", xlab=NULL,ylab=NULL,smoother=FALSE,nrpoints=0,xlab.hist=NULL,ylab.hist=NULL,grid=FALSE,xlim=NULL,ylim=NULL,x.breaks=11,y.breaks=11, x.space=0,y.space=0,freq=TRUE,x.axes=TRUE,y.axes=TRUE,...) { old.par <- par(no.readonly = TRUE) # save default n.obs <- sum(!is.na(x)) if(missing(xlab)) { if(!is.null(colnames(x))) {xlab=colnames(x)[1] ylab=colnames(x)[2]} else {xlab="V1" ylab="V2"} } if (is.null(y)) {y <- x[,2] x <- x[,1]} else {if(!is.null(dim(x))) {x <- x[,1,drop=TRUE] if(!is.null(colnames(y))) ylab <- colnames(y) if(!is.null(dim(y))) {y <- y[,1,drop=TRUE]} } } xrange <- range(x,na.rm=TRUE) yrange <- range(y,na.rm=TRUE) if(missing(xlim)) xlim <- xrange if(missing(ylim)) ylim <- yrange x.breaks <- seq(xlim[1],xlim[2],(xlim[2] - xlim[1])/x.breaks) y.breaks <- seq(ylim[1],ylim[2],(ylim[2] - ylim[1])/y.breaks) xhist <- hist(x,breaks=x.breaks,plot=FALSE) yhist <- hist(y,breaks=y.breaks,plot=FALSE) nf <- layout(matrix(c(2,4,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) #locations to plot par(mar=c(5,4,1,1)) #first plot is in location 1 if(smoother) {smoothScatter(x,y,nrpoints=nrpoints,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,)} else {plot(x,y,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,...)} if(grid) grid() if(ab) abline(lm(y~x)) if(smooth) { ok <- is.finite(x) & is.finite(y) if (any(ok)) # lines(stats::lowess(x[ok], y[ok], f = span, iter = iter), col = col.smooth, ...) lines(stats::lowess(x[ok],y[ok]),col="red")} if(ellipse) {ellipses(x,y,add=TRUE)} par(mar=c(.75,4,2,1)) #the left and right here should match the left and right from above if(freq) { mp <- barplot(xhist$counts, axes=x.axes, space=x.space,xlab=xlab.hist)} else { mp <- barplot(xhist$density, axes=x.axes, space=x.space,xlab=xlab.hist)} #xhist <- hist(x,breaks=11,plot=TRUE,freq=FALSE,axes=FALSE,col="grey",main="",ylab="") tryd <- try( d <- density(x,na.rm=TRUE,bw="nrd",adjust=1.2),silent=TRUE) if(class(tryd) != "try-error") { d$x <- (mp[length(mp)] - mp[1]+1) * (d$x - min(xhist$breaks))/(max(xhist$breaks)-min(xhist$breaks)) if(freq) d$y <- d$y * max(xhist$counts/xhist$density,na.rm=TRUE) if(density) lines(d)} title(title) par(mar=c(5,0.5,1,2)) if(freq) {mp <- barplot(yhist$counts, axes=y.axes, space=y.space, horiz=TRUE,ylab=ylab.hist) } else {mp <- barplot(yhist$density, axes=y.axes, space=y.space, horiz=TRUE,ylab=ylab.hist)} tryd <- try( d <- density(y,na.rm=TRUE,bw="nrd",adjust=1.2),silent=TRUE) if(class(tryd) != "try-error") { temp <- d$y d$y <- (mp[length(mp)] - mp[1]+1) * (d$x - min(yhist$breaks))/(max(yhist$breaks)-min(yhist$breaks)) d$x <- temp if(freq) d$x <- d$x * max(yhist$counts/yhist$density,na.rm=TRUE) if(density) lines(d) } par(mar=c(1,1,1,1)) if(correl) { plot(1,1,type="n",axes=FALSE) #plot(x,y) med.x <- median(x,na.rm=TRUE) med.y <- median(y,na.rm=TRUE) if(missing(method)) method <- "pearson" r = (cor(x, y,use="pairwise",method=method)) txt <- format(c(r, 0.123456789), digits=digits)[1] if(missing(cex.cor)) {cex <- 0.75/strwidth(txt)} else {cex <- cex.cor} text(1,1, txt,cex=cex)} par(old.par) } #version of March 7, 2011 #revised Sept 7, 2013 to include method option in corpsych/R/structure.diagram.R0000644000176200001440000004770513016671407015411 0ustar liggesusers#Created September 25, 2009 #modified November 28, 2009 to allow top down as well as left right (default) #based upon structure graph but not using Rgraphviz #creates a structural equation path diagram, draws it, and saves sem commands #modified again in December, 2009 to add Rx, Ry options "structure.diagram" <- function(fx=NULL,Phi=NULL,fy=NULL,labels=NULL,cut=.3,errors=FALSE,simple=TRUE,regression=FALSE,lr=TRUE,Rx=NULL,Ry=NULL, digits=1,e.size=.1,main="Structural model", ...){ #first some default values xmodel <- fx ymodel <- fy num.y <- num.x <- 0 #we assume there is nothing there if(!is.null(fx) ) { #this is the normal case #check if input is from a factor analysis or omega analysis if(!is.null(class(xmodel)) && (length(class(xmodel))>1)) { if(class(xmodel)[1] =="psych" && class(xmodel)[2] =="omega") { Phi <- xmodel$schmid$phi xmodel <- xmodel$schmid$oblique} else { if(class(xmodel)[1] =="psych" && ((class(xmodel)[2] =="fa") | (class(xmodel)[2] =="principal"))) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings)} }} else { if(!is.matrix(xmodel) & !is.data.frame(xmodel) &!is.vector(xmodel)) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings) } else {xmodel <- xmodel} } #first some basic setup parameters -- these just convert the various types of input if(!is.matrix(xmodel) ) {factors <- as.matrix(xmodel)} else {factors <- xmodel} num.var <- num.xvar <- dim(factors)[1] #how many x variables? if (is.null(num.xvar) ){num.xvar <- length(factors) num.xfactors <- 1} else { num.factors <- num.xfactors <- dim(factors)[2]} if(is.null(labels)) {vars <- xvars <- rownames(xmodel)} else { xvars <- vars <- labels} if(is.null(vars) ) {vars <- xvars <- paste("x",1:num.xvar,sep="") } fact <- colnames(xmodel) if (is.null(fact)) { fact <- paste("X",1:num.xfactors,sep="") } if(is.numeric(factors)) {factors <- round(factors,digits) } } else {#fx is NULL This is for the case where we want to do some fancy graphics of sems num.xvar <- dim(Rx)[1] num.xfactors <- 0 num.yfactors <- 0 num.factors <- 0 if(is.null(labels)) {vars <- xvars <- rownames(Rx)} else { xvars <- vars <- labels} } num.yfactors <- 0 num.yvar <- 0 if (!is.null(ymodel)) { if(is.list(ymodel) & !is.data.frame(ymodel) ) {ymodel <- as.matrix(ymodel$loadings)} else {ymodel <- ymodel} if(!is.matrix(ymodel) ) {y.factors <- as.matrix(ymodel)} else {y.factors <- ymodel} num.y <- dim(y.factors)[1] if (is.null(num.y)) { num.y <- length(ymodel) num.yfactors <- 1} else { num.yfactors <- dim(y.factors)[2] } num.yvar <- num.y yvars <- rownames(ymodel) if(is.null(yvars)) {yvars <- paste("y",1:num.y,sep="") } if(is.null(labels)) {vars <- c(xvars,yvars)} else {yvars <- labels[(num.xvar+1):(num.xvar+num.y)]} yfact <- colnames(ymodel) if(is.null(yfact)) {yfact <- paste("Y",1:num.yfactors,sep="") } fact <- c(fact,yfact) if(is.numeric(y.factors)) {y.factors <- round(y.factors,digits) } }#end of if(null(y.model)) if(!is.null(Ry)& is.null(ymodel)) {num.yvar <- num.y <- dim(Ry)[1] yvars <- colnames(Ry)} #do we want to draw the inter Y correlations? num.var <- num.xvar + num.y num.factors <- num.xfactors + num.yfactors sem <- matrix(rep(NA),6*(num.var*num.factors + num.factors),ncol=3) #this creates an output model for sem analysis lavaan <- vector("list",num.xfactors + num.yfactors) #create a list for lavaan colnames(sem) <- c("Path","Parameter","Value") var.rect <- list() fact.rect <- list() if(is.numeric(Phi) ) { Phi <- round(Phi,digits)} if(!is.null(Rx)) {x.curves <- 2 if(is.numeric(Rx) ) { Rx <- round(Rx,digits)}} else {x.curves <- 0 } if(!is.null(Ry)) {y.curves <- 3 if(is.numeric(Ry) ) { Ry <- round(Ry,digits)}} else {y.curves <- 0} ###create the basic figure length.labels <- 0 # a filler for now #plot.new() is necessary if we have not plotted before #strwd <- try(strwidth(xvars),silent=TRUE) strwd <- try(length.labels <- max(strwidth(xvars),strwidth("abc"))/1.8,silent=TRUE) #although this throws an error if the window is not already open, we don't show it #if (class(strwd) == "try-error" ) {plot.new() } if (class(strwd) == "try-error" ) {length.labels = max(nchar(xvars),3)/1.8 } #length.labels <- max(strwidth(xvars),strwidth("abc"))/1.8 if(lr) {limx <- c(-(length.labels+ x.curves),max(num.xvar,num.yvar)+2 + y.curves) limy <- c(0,max(num.xvar,num.yvar)+1) } else { limy <- c(-(length.labels+x.curves),max(num.xvar,num.yvar) +2 + y.curves) limx <- c(0,max(num.xvar,num.yvar)+1) if( errors) limy <- c(-1,max(num.xvar,num.yvar)+2)} scale.xaxis <- 3 if(lr) {plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main)} else {plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main) } #now draw the x part k <- num.factors for (v in 1:num.xvar) { if(lr) { var.rect[[v]] <- dia.rect(0,num.xvar-v+1,xvars[v],xlim=limx,ylim=limy,...) } else { var.rect[[v]] <- dia.rect(v,0,xvars[v],xlim=limy,ylim=limx,...) } } nvar <- num.xvar f.scale <- (num.xvar+ 1)/(num.xfactors+1) if (num.xfactors >0) { for (f in 1:num.xfactors) { if(!regression) {if(lr) {fact.rect[[f]] <- dia.ellipse(limx[2]/scale.xaxis,(num.xfactors+1-f)*f.scale,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...)} else {fact.rect[[f]] <- dia.ellipse(f*f.scale,limy[2]/scale.xaxis,fact[f],ylim=c(0,nvar),xlim=c(0,nvar),e.size=e.size,...) } } else {if(lr) {fact.rect[[f]] <- dia.rect(limx[2]/scale.xaxis,(num.xfactors+1-f)*f.scale,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),...)} else { fact.rect[[f]] <- dia.rect(f*f.scale,limy[2]/scale.xaxis,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),...)} } for (v in 1:num.xvar) { if(is.numeric(factors[v,f])) { if(simple && (abs(factors[v,f]) == max(abs(factors[v,])) ) && (abs(factors[v,f]) > cut) | (!simple && (abs(factors[v,f]) > cut))) { if (!regression) {if(lr){dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,labels =factors[v,f],col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0) +1)) } else {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$top,labels =factors[v,f],col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0) +1)) } } else {dia.arrow(to=fact.rect[[f]]$left,from=var.rect[[v]]$right,labels =factors[v,f],col=((sign(factors[v,f])<0) +1))} } } else { if (factors[v,f] !="0") { if (!regression) { if(lr) {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,labels =factors[v,f]) } else {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$top,labels =factors[v,f])} } else {if(lr) {dia.arrow(to=fact.rect[[f]],from=var.rect[[v]]$right,labels =factors[v,f])} else {dia.arrow(to=fact.rect[[f]],from=var.rect[[v]]$top,labels =factors[v,f])} } } } } } if (num.xfactors ==1) { lavaan[[1]] <- paste(fact[1],"=~ ") for(i in 1:num.xvar) { sem[i,1] <- paste(fact[1],"->",vars[i],sep="") lavaan[[1]] <- paste0(lavaan[[1]], ' + ', vars[i]) if(is.numeric(factors[i])) {sem[i,2] <- vars[i]} else {sem[i,2] <- factors[i] } }} #end of if num.xfactors ==1 k <- num.xvar+1 k <- 1 for (f in 1:num.xfactors) { #if (!is.numeric(factors[i,f]) || (abs(factors[i,f]) > cut)) lavaan[[f]] <- paste0(fact[f] ," =~ ") for (i in 1:num.xvar) { if((!is.numeric(factors[i,f] ) && (factors[i,f] !="0"))|| ((is.numeric(factors[i,f]) && abs(factors[i,f]) > cut ))) { sem[k,1] <- paste(fact[f],"->",vars[i],sep="") lavaan[[f]] <- paste0(lavaan[[f]], ' + ', vars[i]) if(is.numeric(factors[i,f])) {sem[k,2] <- paste("F",f,vars[i],sep="")} else {sem[k,2] <- factors[i,f]} k <- k+1 } #end of if } } } #end of if num.xfactors > 0 if(errors) { for (i in 1:num.xvar) {if(lr) { dia.self(var.rect[[i]],side=2) } else { dia.self(var.rect[[i]],side=1)} sem[k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[k,2] <- paste("x",i,"e",sep="") k <- k+1 } } #now, if there is a ymodel, do it for y model if(!is.null(ymodel)| !is.null(Ry)) { if(lr) { y.adj <- num.yvar/2 - num.xvar/2 f.yscale <- limy[2]/(num.yfactors+1) y.fadj <- 0} else { y.adj <- num.xvar/2 - num.yvar/2 f.yscale <- limx[2]/(num.yfactors+1) y.fadj <- 0} for (v in 1:num.yvar) { if(lr){ var.rect[[v+num.xvar]] <- dia.rect(limx[2]-y.curves,limy[2]-v + y.adj,yvars[v],xlim=limx,ylim=limy,...)} else { var.rect[[v+num.xvar]] <- dia.rect(v + y.adj,limx[2],yvars[v],xlim=limy,ylim=limx,...)} } } #we have drawn the y variables, now should we draw the Y factors if(!is.null(ymodel)){ for (f in 1:num.yfactors) {if(lr) { fact.rect[[f+num.xfactors]] <- dia.ellipse(2*limx[2]/scale.xaxis,(num.yfactors+1-f)*f.yscale +y.fadj,yfact[f],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...)} else { fact.rect[[f+num.xfactors]] <- dia.ellipse(f*f.yscale+ y.fadj,2*limx[2]/scale.xaxis,yfact[f],ylim=c(0,nvar),xlim=c(0,nvar),e.size=e.size,...)} for (v in 1:num.yvar) {if(is.numeric(y.factors[v,f])) { {if(simple && (abs(y.factors[v,f]) == max(abs(y.factors[v,])) ) && (abs(y.factors[v,f]) > cut) | (!simple && (abs(factors[v,f]) > cut))) { if(lr) { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$left,labels =y.factors[v,f],col=((sign(y.factors[v,f])<0) +1))} else { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$bottom,labels =y.factors[v,f],col=((sign(y.factors[v,f])<0) +1))} } } } else {if(factors[v,f] !="0") {if(lr) {dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$left,labels =y.factors[v,f]) } else { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$bottom,labels =y.factors[v,f]) } } }} } if (num.yfactors ==1) { for (i in 1:num.y) { sem[k,1] <- paste(fact[1+num.xfactors],"->",yvars[i],sep="") if(is.numeric(y.factors[i] ) ) {sem[k,2] <- paste("Fy",yvars[i],sep="")} else {sem[k,2] <- y.factors[i]} k <- k +1 } } else { #end of if num.yfactors ==1 for (i in 1:num.y) { for (f in 1:num.yfactors) { if( (y.factors[i,f] !="0") && (abs(y.factors[i,f]) > cut )) { sem[k,1] <- paste(fact[f+num.xfactors],"->",vars[i+num.xvar],sep="") if(is.numeric(y.factors[i,f])) { sem[k,2] <- paste("Fy",f,vars[i+num.xvar],sep="")} else {sem[k,2] <- y.factors[i,f]} k <- k+1 } #end of if } #end of factor } # end of variable loop } #end of else if # } if(errors) { for (i in 1:num.y) { if(lr) {dia.self(var.rect[[i+num.xvar]],side=3) } else {dia.self(var.rect[[i+num.xvar]],side=3)} sem[k,1] <- paste(vars[i+num.xvar],"<->",vars[i+num.xvar],sep="") sem[k,2] <- paste("y",i,"e",sep="") k <- k+1 }} } #end of if.null(ymodel) if(!is.null(Rx)) {#draw the correlations between the x variables for (i in 2:num.xvar) { for (j in 1:(i-1)) { if((!is.numeric(Rx[i,j] ) && ((Rx[i,j] !="0")||(Rx[j,i] !="0")))|| ((is.numeric(Rx[i,j]) && abs(Rx[i,j]) > cut ))) { if (lr) {if(abs(i-j) < 2) { dia.curve(from=var.rect[[j]]$left,to=var.rect[[i]]$left, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} else { dia.curve(from=var.rect[[j]]$left,to=var.rect[[i]]$left, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} } else { if(abs(i-j) < 2) { dia.curve(from=var.rect[[j]]$bottom,to=var.rect[[i]]$bottom, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j]]$bottom,to=var.rect[[i]]$bottom, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} } }} } } if(!is.null(Ry)) {#draw the correlations between the y variables for (i in 2:num.yvar) { for (j in 1:(i-1)) { if((!is.numeric(Ry[i,j] ) && ((Ry[i,j] !="0")||(Ry[j,i] !="0")))|| ((is.numeric(Ry[i,j]) && abs(Ry[i,j]) > cut ))) { if (lr) {if(abs(i-j) < 2) { dia.curve(from=var.rect[[j+num.xvar]]$right,to=var.rect[[i+num.xvar]]$right, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j+num.xvar]]$right,to=var.rect[[i+num.xvar]]$right, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} } else { if(abs(i-j) < 2) { dia.curve(from=var.rect[[j+num.xvar]]$bottom,to=var.rect[[i+num.xvar]]$bottom, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j+num.xvar]]$bottom,to=var.rect[[i+num.xvar]]$bottom, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} } }} } } if(!regression) { if(!is.null(Phi)) {if (!is.matrix(Phi)) { if(!is.null(fy)) {Phi <- matrix(c(1,0,Phi,1),ncol=2)} else {Phi <- matrix(c(1,Phi,Phi,1),ncol=2)}} if(num.xfactors>1) {for (i in 2:num.xfactors) { #first do the correlations within the f set for (j in 1:(i-1)) { {if((!is.numeric(Phi[i,j] ) && ((Phi[i,j] !="0")||(Phi[j,i] !="0")))|| ((is.numeric(Phi[i,j]) && abs(Phi[i,j]) > cut ))) { if(Phi[i,j] == Phi[j,i] ) { if(lr) {dia.curve(from=fact.rect[[i]]$right,to=fact.rect[[j]]$right, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curve(from=fact.rect[[i]]$top,to=fact.rect[[j]]$top, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} else {#directed arrows if(Phi[i,j] !="0") { if(lr) { if(abs(i-j) < 2) {dia.arrow(from=fact.rect[[j]],to=fact.rect[[i]], labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[j]]$right,to=fact.rect[[i]]$right, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} } else { if(abs(i-j) < 2) { dia.arrow(from=fact.rect[[j]],to=fact.rect[[i]], labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[j]]$top,to=fact.rect[[i]]$top, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} } sem[k,1] <- paste(fact[j]," ->",fact[i],sep="") sem[k,2] <- paste("rF",j,"F",i,sep="")} else { if(lr) { if(abs(i-j) < 2) {dia.arrow(from=fact.rect[[i]],to=fact.rect[[j]], labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[i]]$right,to=fact.rect[[j]]$right, labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} } else { if(abs(i-j) < 2) { dia.arrow(from=fact.rect[[i]],to=fact.rect[[j]], labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[i]]$top,to=fact.rect[[j]]$top, labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} } sem[k,1] <- paste(fact[i],"<-",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} } } else { sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") if (is.numeric(Phi[i,j])) {sem[k,2] <- paste("rF",i,"F",j,sep="")} else {sem[k,2] <- Phi[i,j] } } k <- k + 1} } } } #end of correlations within the fx set if(!is.null(ymodel)) { for (i in 1:num.xfactors) { for (j in 1:num.yfactors) { if((!is.numeric(Phi[j+num.xfactors,i] ) && (Phi[j+num.xfactors,i] !="0"))|| ((is.numeric(Phi[j+num.xfactors,i]) && abs(Phi[j+num.xfactors,i]) > cut ))) { dia.arrow(from=fact.rect[[i]],to=fact.rect[[j+num.xfactors]],Phi[j+num.xfactors,i]) sem[k,1] <- paste(fact[i],"->",fact[j+num.xfactors],sep="") } else { sem[k,1] <- paste(fact[i],"<->",fact[j+num.xfactors],sep="")} if (is.numeric(Phi[j+num.xfactors,i])) {sem[k,2] <- paste("rX",i,"Y",j,sep="")} else {sem[k,2] <- Phi[j+num.xfactors,i] } k <- k + 1 } } } } } if(num.factors > 0 ) { for(f in 1:num.factors) { sem[k,1] <- paste(fact[f],"<->",fact[f],sep="") sem[k,3] <- "1" k <- k+1 } model=sem[1:(k-1),] class(model) <- "mod" #suggested by John Fox to make the output cleaner lavaan <- unlist(lavaan) lavaan <- noquote(lavaan) result <- list(sem=model,lavaan=lavaan) return(invisible(result)) } } psych/R/thurstone.R0000644000176200001440000000605111345337335013770 0ustar liggesusers#thurstonian scaling #Thurstone case V (assumption of equal and uncorrelated error variances) #Version of March 22, 2005 #revised April 4, 2008 #Revised March 29, 2009 to be much cleaner code #Do a Thurstone scaling (Case 5) of either a square choice matrix or a rectangular rank order matrix #Need to add output options to allow users to see progress #data are either a set of rank orders or #a set of of choices (columns chosed over row) #output is a list of # scale scores #goodness of fit estimate (1 - sumsq(error)/sumsq(original) # the model choice matrix #the error (residual) matrix #the original choice matrix "thurstone" <- function(x, ranks = FALSE,digits=2) { #the main routine cl <- match.call() if (ranks) {choice <- choice.mat(x) #convert rank order information to choice matrix } else {if (is.matrix(x)) choice <- x choice <- as.matrix(x)} scale.values <- colMeans(qnorm(choice)) - min(colMeans(qnorm(choice))) #do the Thurstonian scaling model <- pnorm(-scale.values %+% t(scale.values)) error <- model - choice fit <- 1-(sum(error*error)/sum(choice*choice)) result <- list(scale=round(scale.values,digits), GF= fit, residual=error,Call=cl) class(result) <- c("psych","thurstone") return(result)} #the functions used by thurstone (local to thurstone) #if we have rank order data, then convert them to a choice matrix #convert a rank order matrix into a choice matrix orders.to.choice <- function(x,y) { #does one subject (row) at a time nvar <-dim(x)[2] for (i in 1:nvar) { for (j in 1:nvar) { if (x[j]< x[i] ) {y[i,j] <- y[i,j]+1 } else if (x[j] == x[i]) { y[j,i] <- y[j,i]+.5 #take ties into account y[i,j] <- y[i,j] + .5 } else y[j,i] <- y[j,i]+1 }} return(y)} # makes repeated calls to orders.to.choice -- can we vectorize this? choice.mat <-function(x) { nsubs<- dim(x)[1] nvar <- dim(x)[2] y <- matrix(0,ncol=nvar,nrow=nvar) for (k in 1:nsubs) { y <-orders.to.choice(x[k,],y) } #is there a way to vectorize this? d <- diag(y) y<- y/(2*d) lower <- 1/(4*nsubs) #in case of 0 or 1, we put limits upper <- 1- lower y[yupper] <- upper return(y) } #irt type data #subjects endorse or do not endorse an item item.to.choice <- function(x) { nsubs<- dim(x)[1] nvar <- dim(x)[2] count <- t(x) %*% x dx <- diag(count) y <- dx - count diag(y) <- dx y <- y/nsubs for (k in 1:nsubs) { temp <- x[k,] for (i in 1:nvar) { for (j in 1:nvar) { if(temp[j]>0) count [i,j] <- count[i,j]+ temp[i] } } } #is there a way to vectorize this? d <- diag(y) y<- y/(2*d) lower <- 1/(4*nsubs) #in case of 0 or 1, we put limits upper <- 1- lower y[yupper] <- upper return(y) } psych/R/error.bars.by.R0000644000176200001440000002344712723123563014432 0ustar liggesusers"error.bars.by" <- function (x,group,by.var=FALSE,x.cat=TRUE,ylab =NULL,xlab=NULL,main=NULL,ylim= NULL, xlim=NULL, eyes=TRUE,alpha=.05,sd=FALSE,labels=NULL, v.labels=NULL, pos=NULL, arrow.len=.05,add=FALSE,bars=FALSE,within=FALSE,colors=c("black","blue","red"), lty,lines=TRUE, legend=0,pch,density=-10,...) # x data frame with { if(!lines) {typ <- "p"} else {typ <- "b"} n.color <- length(colors) nvar <- ncol(x) if(is.null(nvar)) nvar <- 1 #added May 21, 2016 to handle the case of a single variable if(by.var & (nvar > n.color)) {colors <- rainbow(nvar)} if(!missing(density)) {col12 <- col2rgb(colors,TRUE)/255 colors <- rgb(col12[1,],col12[2,],col12[3,],.5) n.color <- nvar} #density = -10 if(missing(lty)) lty <- 1:8 legend.location <- c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center","none") all.stats <- describe(x) min.x <- min(all.stats$min,na.rm=TRUE) max.x <- max(all.stats$max,na.rm=TRUE) max.se <- max(all.stats$se,na.rm=TRUE) if(sd) max.se <- max(all.stats$sd,na.rm=TRUE) if(is.null(ylim)) {if(is.na(max.x) | is.na(max.se) | is.na(min.x) | is.infinite(max.x)| is.infinite(min.x) | is.infinite(max.se)) { ylim=c(0,1)} else { if(sd) { ylim <- c(min.x - max.se,max.x+max.se) } else { ylim=c(min.x - 2*max.se,max.x+2*max.se)}} } if(is.null(main)) {if(sd) {main <- paste("Means + Standard Deviations") } else {main <- paste(1-alpha,"% confidence limits",sep="")} } if (bars) { #draw a bar plot and add error bars -- this is ugly but some people like it group.stats <- describeBy(x,group,mat=TRUE) n.var <- dim(all.stats)[1] n.group <- length(group.stats[[1]])/n.var group.means <- matrix(group.stats$mean,ncol=n.group,byrow=TRUE) if(missing(pch)) pch <- seq(15,(15+n.group)) if(sd) {group.se <- matrix(group.stats$sd,ncol=n.group,byrow=TRUE)} else { group.se <- matrix(group.stats$se,ncol=n.group,byrow=TRUE)} group.n <- matrix(group.stats$n,ncol=n.group,byrow=TRUE) if(within) {group.smc <- matrix(unlist(by(x,group,smc)),nrow=n.group,byrow=TRUE) group.sd <- matrix(group.stats$sd,ncol=n.group,byrow=TRUE) if(sd) {group.se <- sqrt(group.se^2 * (1-group.smc))} else { group.se <- sqrt(group.sd^2 *(1-group.smc)/group.n) }} rownames(group.means) <- rownames(all.stats) if(is.null(labels)) {colnames(group.means) <- paste("Group",1:n.group)} else {colnames(group.means) <- labels } if (is.null(ylab)) ylab <- "Dependent Variable" if(missing(ylim)) ylim=c(0,max.x+2*max.se) if(by.var) { if (is.null(xlab)) xlab <- "Variables" mp <- barplot(t(group.means),beside=TRUE,ylab=ylab,xlab=xlab,ylim=ylim,main=main,col=colors,...) for(i in 1:n.var) { for (j in 1:n.group) { xcen <- group.means[i,j] xse <- group.se[i,j] if(sd) {ci <- 1} else {ci <- qt(1-alpha/2,group.n[i,j])} if(is.finite(xse) && xse>0) arrows(mp[j,i],xcen-ci*xse,mp[j,i],xcen+ci* xse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) }} } else { if (is.null(xlab)) xlab <- "Grouping Variable" mp <- barplot(group.means,beside=TRUE,ylab=ylab,xlab=xlab,ylim=ylim,main=main,col=colors,...) for(i in 1:n.var) { for (j in 1:n.group) { xcen <- group.means[i,j] xse <- group.se[i,j] if(sd) {ci <- 1} else {ci <- qt(1-alpha/2,group.n[i,j])} if(is.finite(xse) && xse>0) arrows(mp[i,j],xcen-ci*xse,mp[i,j],xcen+ci* xse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) }} } axis(2,...) box() if(legend >0 ){ if(!is.null(v.labels)) {lab <- v.labels} else {lab <- paste("V",1:n.var,sep="")} legend(legend.location[legend], lab, col = colors[(1: n.color)],pch=pch[1: n.var], text.col = "green4", lty = lty[1:n.var], merge = TRUE, bg = 'gray90')} } else { #the normal case is to not use bars group.stats <- describeBy(x,group) n.group <- length(group.stats) n.var <- ncol(x) if(is.null(n.var)) n.var <- 1 #first set up some defaults to allow the specification of colors, lty, and pch dynamically and with defaults if(missing(pch)) pch <- seq(15,(15+n.group)) if(missing(lty)) lty <- 1:8 if(within) {group.smc <- by(x,group,smc) } z <- dim(x)[2] if(is.null(z)) z <- 1 if (is.null(ylab)) ylab <- "Dependent Variable" if(!by.var) { if (is.null(xlab)) xlab <- "Independent Variable" for (g in 1:n.group) { x.stats <- group.stats[[g]] if (within) { x.smc <- group.smc[[g]] if(sd) {x.stats.$se <- sqrt(x.stats$sd^2* (1- x.smc))} else { x.stats$se <- sqrt((x.stats$sd^2* (1- x.smc))/x.stats$n)} } if (missing(xlim)) xlim <- c(.5,n.var+.5) if(!add) {plot(x.stats$mean,ylim=ylim,xlim=xlim, xlab=xlab,ylab=ylab,main=main,typ=typ,lty=(lty[((g-1) %% 8 +1)]),axes=FALSE,col = colors[(g-1) %% n.color +1], pch=pch[g],...) axis(1,1:z,colnames(x),...) axis(2,...) box() } else {points(x.stats$mean,typ = typ,lty=lty[((g-1) %% 8 +1)],col = colors[(g-1) %% n.color +1], pch=pch[g]) } if(!is.null(labels)) {lab <- labels} else {lab <- paste("V",1:z,sep="")} if (length(pos)==0) {locate <- rep(1,z)} else {locate <- pos} if (length(labels)==0) lab <- rep("",z) else lab <-labels for (i in 1:z) {xcen <- x.stats$mean[i] if(sd) {xse <- x.stats$sd[i] } else {xse <- x.stats$se[i]} if(sd) {ci <- 1} else { if(x.stats$n[i] >1) {ci <- qt(1-alpha/2,x.stats$n[i]-1)} else {ci <- 0}} #corrected Sept 11, 2013 if(is.finite(xse) & xse>0) { arrows(i,xcen-ci*xse,i,xcen+ci* xse,length=arrow.len, angle = 90, code=3,col = colors[(g-1) %% n.color +1], lty = NULL, lwd = par("lwd"), xpd = NULL) if (eyes) {catseyes(i,xcen,xse,x.stats$n[i],alpha=alpha,density=density,col=colors[(g-1) %% n.color +1] )} #text(xcen,i,labels=lab[i],pos=pos[i],cex=1,offset=arrow.len+1) #puts in labels for all points } } add <- TRUE # lty <- "dashed" } #end of g loop if(legend >0 ){ if(!is.null(labels)) {lab <- labels} else {lab <- paste("G",1:n.group,sep="")} legend(legend.location[legend], lab, col = colors[(1: n.color)],pch=pch[1: n.group], text.col = "green4", lty = lty[1:8], merge = TRUE, bg = 'gray90') } } else { # end of not by var loop #alternatively, do it by variables rather than by groups if (is.null(xlab)) xlab <- "Grouping Variable" n.vars <- dim(x)[2] if(is.null(n.vars)) n.vars <- 1 #if we just have one variable to plot var.means <- matrix(NaN,nrow=n.vars,ncol=n.group) var.se <- matrix(NA,nrow=n.vars,ncol=n.group) for (g in 1:n.group) { var.means[,g] <- group.stats[[g]]$mean if(sd) {var.se[,g] <- group.stats[[g]]$sd} else {var.se[,g] <- group.stats[[g]]$se } } if(x.cat) {x.values <- 1:n.group} else { x.values <- as.numeric(names(group.stats)) } for (i in 1:n.vars) { if(!add) { if(missing(xlim)) xlim <- c(.5,n.group + .5) plot(x.values,var.means[1,],ylim=ylim,xlim = xlim, xlab=xlab,ylab=ylab,main=main,typ = typ,axes=FALSE,lty=lty[1],pch=pch[1],col = colors[(i-1) %% n.color +1],...) if(x.cat) {axis(1,1:n.group,unlist(dimnames(group.stats)),...) } else {axis(1)} axis(2,...) box() add <- TRUE } else {points(x.values,var.means[i,],typ = typ,lty=lty[((i-1) %% 8 +1)],col = colors[(i-1) %% n.color + 1], pch=pch[i],...) # points(x.values,var.means[i,],typ = typ,lty=lty,...) } if(!is.null(labels)) {lab <- labels} else {lab <- paste("G",1:z,sep="")} if (length(pos)==0) {locate <- rep(1,z)} else {locate <- pos} if (length(labels)==0) lab <- rep("",z) else lab <-labels for (g in 1:n.group) { xcen <- var.means[i,g] xse <- var.se[i,g] if(sd) {ci <- rep(1,n.group)} else { ci <- qt(1-alpha/2,group.stats[[g]]$n-1)} if(x.cat) {arrows(g,xcen-ci[i]*xse,g,xcen+ci[i]* xse,length=arrow.len, angle = 90, code=3, col = colors[(i-1) %% n.color +1], lty = NULL, lwd = par("lwd"), xpd = NULL) if (eyes) { catseyes(g,xcen,xse,group.stats[[g]]$n[i],alpha=alpha,density=density,col=colors[(i-1) %% n.color +1] )}} else { arrows(x.values[g],xcen-ci[i]*xse,x.values[g],xcen+ci[i]* xse,length=arrow.len, angle = 90, code=3,col = colors[(i-1) %% n.color +1], lty = NULL, lwd = par("lwd"), xpd = NULL) if (eyes) {catseyes(x.values[g],xcen,xse,x.stats$n[i],alpha=alpha,density=density,col=colors[(i-1) %% n.color +1] )}} #text(xcen,i,labels=lab[i],pos=pos[i],cex=1,offset=arrow.len+1) #puts in labels for all points } #lty <- "dashed" } #end of i loop if(legend >0 ){ if(!is.null(labels)) {lab <- labels} else {lab <- paste("V",1:z,sep="")} legend(legend.location[legend], lab, col = colors[(1: n.color)],pch=pch[1: n.vars], text.col = "green4", lty = lty[1:8], merge = TRUE, bg = 'gray90') } } #end of by var is true loop } # end of if not bars condition } #corrected Feb 2, 2011 to plot alpha/2 rather than alpha #modifed Feb 2, 2011 to not plot lines if they are not desired. #modified May 21, 2016 to handle a case of a single vector having no columnspsych/R/cor.ci.R0000644000176200001440000001546713154327366013130 0ustar liggesusers #Pearson or polychoric correlations with confidence intervals "cor.ci" <- function(x, keys = NULL, n.iter = 100, p = 0.05, overlap=FALSE, poly = FALSE, method = "pearson",plot=TRUE,...) { corCi(x=x, keys = keys, n.iter = n.iter, p = p, overlap=overlap, poly = poly, method = method,plot=plot,...) } "corCi" <- function(x, keys = NULL, n.iter = 100, p = 0.05, overlap=FALSE, poly = FALSE, method = "pearson",plot=TRUE,...) { cl <- match.call() n.obs <- dim(x)[1] if(is.null(keys) && overlap) overlap <- FALSE #can not correct for overlap with just items if(poly) { #find polychoric or tetrachoric correlations if desired ncat <- 8 nvar <- dim(x)[2] tx <- table(as.matrix(x)) if(dim(tx)[1] ==2) {tet <- tetrachoric(x) typ = "tet"} else { #should we do mixed correlations? tab <- apply(x,2,function(x) table(x)) if(is.list(tab)) {len <- lapply(tab,function(x) length(x))} else {len <- dim(tab)[1] } dvars <- subset(1:nvar,len==2) #find the dichotomous variables pvars <- subset(1:nvar,((len > 2) & (len <= ncat))) #find the polytomous variables cvars <- subset(1:nvar,(len > ncat)) #find the continuous variables (more than ncat levels) if(length(pvars)==ncol(x)) {tet <- polychoric(x) typ = "poly"} else {tet <- mixed.cor(x) typ="mixed" } } Rho <- tet$rho #Rho is the big correlation of all of items } else { Rho <- cor(x,use="pairwise",method=method) #the normal Pearson correlations } #now, if there are keys, find the correlations of the scales if(!is.null(keys)) {bad <- FALSE if(any(is.na(Rho))) {warning(sum(is.na(Rho)), " of the item correlations are NA and thus finding scales that include those items will not work.\n We will try to do it for those scales which do not include those items. \n Proceed with caution. ") bad <- TRUE rho <- apply(keys,2,function(x) colMeans(apply(keys,2,function(x) colMeans(Rho*x,na.rm=TRUE))*x,na.rm=TRUE)) #matrix multiplication without matrices! #switched to using colMeans instead of colSums, recognizing the problem of different number of items being dropped. } else { rho <- t(keys) %*% Rho %*% keys} } else {rho <- Rho} #find the covariances between the scales # ##correct for overlap if necessary on the original data if(overlap) { key.var <- diag(t(keys) %*% keys) var <- diag(rho) #these are the scale variances n.keys <- ncol(keys) key.av.r <- (var - key.var)/(key.var * (key.var-1)) item.cov <- t(keys) %*% Rho #this will blow up if there are bad data raw.cov <- item.cov %*% keys adj.cov <- raw.cov for (i in 1:(n.keys)) { for (j in 1:i) { adj.cov[i,j] <- adj.cov[j,i]<- raw.cov[i,j] - sum(keys[,i] * keys[,j] ) + sum(keys[,i] * keys[,j] * sqrt(key.av.r[i] * key.av.r[j])) } } diag(adj.cov) <- diag(raw.cov) rho <- cov2cor(adj.cov) } rho <- cov2cor(rho) #scale covariances to correlations nvar <- dim(rho)[2] if(n.iter > 1) { replicates <- list() rep.rots <- list() ##now replicate it to get confidence intervals # if(!require(parallel)) {warning("parallel package needed for mclapply")} replicates <- mclapply(1:n.iter,function(XX) { xs <- x[sample(n.obs,n.obs,replace=TRUE),] {if(poly) { if(typ!= "tet") {tets <- mixed.cor(xs)} else {tets <- tetrachoric(xs)} R <- tets$rho} else {R <- cor(xs,use="pairwise",method=method)} #R is the big correlation matrix if(!is.null(keys)) { if (bad) {covariances <- apply(keys,2,function(x) colMeans(apply(keys,2,function(x) colMeans(R*x,na.rm=TRUE))*x,na.rm=TRUE)) #matrix multiplication without matrices! } else { covariances <- t(keys) %*% R %*% keys} r <- cov2cor(covariances) } else {r <- R} #correct for overlap if this is requested if(overlap) { var <- diag(covariances) item.cov <- t(keys) %*% R raw.cov <- item.cov %*% keys adj.cov <- raw.cov key.av.r <- (var - key.var)/(key.var * (key.var-1)) for (i in 1:(n.keys)) { for (j in 1:i) { adj.cov[i,j] <- adj.cov[j,i]<- raw.cov[i,j] - sum(keys[,i] * keys[,j] ) + sum(keys[,i] * keys[,j] * sqrt(key.av.r[i] * key.av.r[j])) } } diag(adj.cov) <- diag(raw.cov) r <- cov2cor(adj.cov) #fixed 03/12/14 } rep.rots <- r[lower.tri(r)] } } ) } replicates <- matrix(unlist(replicates),ncol=nvar*(nvar-1)/2,byrow=TRUE) z.rot <- fisherz(replicates) means.rot <- colMeans(z.rot,na.rm=TRUE) sds.rot <- apply(z.rot,2,sd, na.rm=TRUE) sds.rot <- fisherz2r(sds.rot) ci.rot.lower <- means.rot + qnorm(p/2) * sds.rot ci.rot.upper <- means.rot + qnorm(1-p/2) * sds.rot means.rot <- fisherz2r(means.rot) ci.rot.lower <- fisherz2r(ci.rot.lower) ci.rot.upper <- fisherz2r(ci.rot.upper) low.e <- apply(replicates,2,quantile, p/2,na.rm=TRUE) up.e <- apply(replicates, 2, quantile, 1-p/2,na.rm=TRUE) tci <- abs(means.rot)/sds.rot ptci <- pnorm(tci) ci.rot <- data.frame(lower=ci.rot.lower,low.e=low.e,upper=ci.rot.upper,up.e=up.e,p =2*(1-ptci)) cnR <- abbreviate(colnames(rho),minlength=5) k <- 1 for(i in 1:(nvar-1)) {for (j in (i+1):nvar) { rownames(ci.rot)[k] <- paste(cnR[i],cnR[j],sep="-") k<- k +1 }} results <- list(rho=rho, means=means.rot,sds=sds.rot,tci=tci,ptci=ptci,ci=ci.rot,Call= cl,replicates=replicates) #if(plot) {cor.plot.upperLowerCi(results,numbers=TRUE,cuts=c(.001,.01,.05),...) } #automatically plot the results if(plot) {cor.plot(rho,numbers=TRUE,cuts=c(.001,.01,.05),pval = 2*(1-ptci),...) } class(results) <- c("psych","cor.ci") return(results) } #written Sept 20, 2013 #adapted from fa.poly #modified May 1, 2014 to scale by pvals #modified August 24, 2017 to include Bonferoni corrections from cor.test "cor.plot.upperLowerCi" <- "corPlotUpperLowerCi" <- function(R,numbers=TRUE,cuts=c(.001,.01,.05),select=NULL,main="Upper and lower confidence intervals of correlations",adjust=FALSE,...) { if(adjust) {lower <- R$ci.adj$lower.adj upper <- R$ci.adj$upper.adj} else { lower <- R$ci$lower upper <- R$ci$upper} temp <- lower if(is.null(R$r)) {cn = colnames(R$rho) rl <- R$rho[lower.tri(R$rho)]} else { cn = colnames(R$r) rl <- R$r[lower.tri(R$r)]} #is input from cor.ci or corr.test lower[rl < 0 ] <- upper[rl < 0] upper[rl < 0] <- temp[rl < 0] m <- length(lower) n <- floor((sqrt(1 + 8 * m) +1)/2) X <- diag(n) X[lower.tri(X)] <- upper X <- t(X) X[lower.tri(X)] <- lower diag(X) <- 1 colnames(X) <- rownames(X) <- cn if(is.null(R$ptci)) {pval <- R$p} else {pval = 2*(1-R$ptci)} cor.plot(X,numbers=numbers,pval=pval,cuts=cuts,select=select,main=main,...) class(X) <- c("psych","cor.cip") colnames(X) <- abbreviate(rownames(X,4)) invisible(X) } psych/R/VSS.parallel.R0000644000176200001440000000046610625430047014201 0ustar liggesusers"VSS.parallel" <- function(ncases,nvariables,scree=FALSE,rotate="none") #function call { simdata=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables) #make up simulated data if(scree) {VSS.scree(simdata) testsim <- simdata} else {testsim <- VSS(simdata,8,rotate)} return(testsim) } psych/R/reverseKey.R0000644000176200001440000000064612205434363014060 0ustar liggesusers#written by David Stanley reverseKey=function(itemNames,itemNames2ReverseKey) { lengthItems=length(itemNames) lengthItemsUnique=length(unique(itemNames)) if (lengthItems!=lengthItemsUnique) { print("Item names are not unique: reverseKey will not work") return(NA) } keyValues=rep(1,lengthItems) matchKey=!is.na(match(itemNames,itemNames2ReverseKey)) keyValues[matchKey]=-1 return(keyValues) }psych/R/lavaan.diagram.R0000644000176200001440000000310613147622372014600 0ustar liggesusers"lavaan.diagram" <- function(fit,title,...) { if (is.null(fit@Model@GLIST$beta)) {model <- "cfa"} else {model <- "sem"} if(missing(title)) {if(model =="cfa") { title="Confirmatory structure" } else {title = "Structural model"} } fx=fit@Model@GLIST$lambda # colnames(fx) <- fit@Model@dimNames$lambda[[2]] colnames(fx) <- fit@Model@dimNames[[1]][[2]] rownames(fx) <- fit@Model@dimNames[[1]][[1]] Phi <- fit@Model@GLIST$psi Rx <- fit@Model@GLIST$theta v.labels <-fit@Model@dimNames[[1]][[1]] if(model=="cfa") { structure.diagram(fx=fx,Phi=Phi,Rx=Rx,labels=v.labels,main=title,...)} else {structure.diagram(fx=fx,Phi=t(fit@Model@GLIST$beta),Rx=Rx,labels=v.labels,main=title,...) } } #modified 11/6/14 to draw the regression paths #created August 17, 2017 to allow sem.diagrams and graphs from sem output "sem.diagram" <- function(fit,main="A SEM from the sem package",...) { nvar <- ncol(fit$S) var.names <- fit$var.names tot.var <- ncol(fit$A) num.factors <- length(var.names) - nvar fx <- fit$A[1:nvar,(nvar+1):ncol(fit$A)] Phi <- fit$P[(nvar+1):tot.var,(nvar+1):tot.var] structure.diagram(fx,Phi,main=main,...) } "sem.graph" <- function(fit,out.file=NULL,main="A SEM from the sem package",...) { nvar <- ncol(fit$S) var.names <- fit$var.names tot.var <- ncol(fit$A) num.factors <- length(var.names) - nvar fx <- fit$A[1:nvar,(nvar+1):ncol(fit$A)] Phi <- fit$P[(nvar+1):tot.var,(nvar+1):tot.var] structure.graph(fx,Phi,out.file=out.file,title=main,...) } psych/R/SD.R0000644000176200001440000000046311645327150012241 0ustar liggesusers"SD" <- function (x, na.rm = TRUE) { if (is.matrix(x)) apply(x, 2, SD, na.rm = na.rm) else if (is.vector(x)) sqrt(var(x, na.rm = na.rm,use="pair")) else if (is.data.frame(x)) apply(x,2, SD, na.rm = na.rm) else sqrt(var(as.vector(x), na.rm = na.rm,use="pair")) } psych/R/kappa.R0000644000176200001440000001131513122475254013026 0ustar liggesusers "wkappa" <- function(x,w=NULL) { p <- dim(x)[2] if (dim(x)[1]!= p) x <- table(x[,1],x[,2]) x <- as.matrix(x) tot <- sum(x) x <- x/tot #convert to probabilities rs <- rowSums(x) cs <- colSums(x) prob <- rs %*% t(cs) po <- tr(x) pc <- tr(prob) kappa <- (po-pc)/(1-pc) if(is.null(w)) { w <- matrix(0,ncol=p,nrow=p) for (i in 1:p) { for (j in 1:p) { w[i,j] <- 1- (abs(i-j))^2/9 } }} weighted.prob <- w*prob weighted.obser <- w*x #wkappa <- 1-sum(weighted.obser)/sum(weighted.prob) wpo <- sum(weighted.obser) wpc <- sum(weighted.prob) wkappa <- (wpo-wpc)/(1-wpc) return(list(kappa=kappa,weighted.kappa = wkappa)) } "cohen.kappa" <- function(x, w=NULL,n.obs=NULL,alpha=.05,levels=NULL) { cl <- match.call() p <- dim(x)[1] len <- p bad <- FALSE if ((dim(x)[2] == p) ||(dim(x)[2] < 3)) {result <- cohen.kappa1(x, w=w,n.obs=n.obs,alpha=alpha,levels=levels) } else { nvar <- dim(x)[2] ck <- matrix(NA,nvar,nvar) if(!is.null(colnames(x)) ){colnames(ck) <- rownames(ck) <- colnames(x)} else {colnames(ck) <- rownames(ck) <- paste("R",1:nvar,sep="") } diag(ck) <- 1 result <- list(cohen.kappa=ck) k <- 2 for (i in 2:nvar ) { for (j in 1:(i-1) ) { x1 <- data.frame(x[,i],x[,j]) x1 <- na.omit(x1) ck1 <- cohen.kappa1(x1, w=w,n.obs=n.obs,alpha=alpha,levels=levels) result[[paste(colnames(ck)[j],rownames(ck)[i])]] <- ck1 if(ck1$bad) {warning("No variance detected in cells " ,i," ",j) bad <- TRUE} ck[i,j] <- result[[k]]$kappa ck[j,i] <- result[[k]]$weighted.kappa k <- k + 1 } } result[[1]] <- ck } if(bad) message("At least one item had no variance. Try describe(your.data) to find the problem.") class(result) <- c("psych","kappa") return(result) } "cohen.kappa1" <- function(x, w=NULL,n.obs=NULL,alpha=.05,levels=NULL) { cl <- match.call() p <- dim(x)[1] len <- p bad <- FALSE if (dim(x)[2]!= p) { x1 <- x[,1] x2 <- x[,2] if(is.factor(x1) ) { #this gets around a problem of tabling numbers as characters (bad idea) vs. tabling characters (good idea) x1 <- as.character(x[,1]) x2 <- as.character(x[,2])} else { x1 <- x[,1] x2 <- x[,2]} if(!is.null(levels)) {labels <- levels} else { labels <- levels(as.factor(cbind(x1,x2)))} len <- length(labels) x <- matrix(0,ncol=len,nrow=len) colnames(x) <- rownames(x) <- labels x1f <- factor(x1,levels=labels) x2f <- factor(x2,levels=labels) x <- table(x1f,x2f) # #for (item in 1:p) {x[x1[item],x2[item]] <- x[x1[item],x2[item]] +1} } x <- as.matrix(x) tot <- sum(x) x <- x/tot #convert to probabilities rs <- rowSums(x) cs <- colSums(x) prob <- rs %*% t(cs) po <- tr(x) pc <- tr(prob) if(prod(dim(x))==1) {message("Your data seem to have no variance and in complete agreement across raters. Check your data.") kappa <- NA} else { kappa <- (po-pc)/(1-pc)} #(model - data)/(1-model) if(is.null(w)) { w <- matrix(0,ncol=len,nrow=len) w[] <- abs((col(w) - row(w)))^2 #squared weights w <- 1 - w/(len-1)^2} #1 - squared weights/k colnames(w) <- rownames(w) <- colnames(x) weighted.prob <- w * prob weighted.obser <- w * x wpo <- sum(weighted.obser) wpc <- sum(weighted.prob) colw <- colSums(w*cs) #roww <- colSums(w*rs) roww <- rowSums(w*rs) #corrected following a report by Lisa Avery if((!is.null(n.obs)) & (tot==1)) tot <- n.obs I <- diag(1,len,len) Vark <- (1/(tot*(1-pc)^4))* (tr(x * (I * (1-pc) - (rs %+% t(cs ))*(1-po))^2 ) + (1-po)^2 * (sum(x * (cs %+% t(rs ))^2) - tr(x * (cs %+% t(rs ))^2)) -(po*pc - 2*pc +po)^2 ) Varkw <- (1/(tot*(1-wpc)^4))* (sum(x * (w * (1-wpc)- (colw %+% t(roww ))*(1-wpo))^2 ) -(wpo*wpc - 2*wpc +wpo)^2 ) if(tr(w) > 0) {wkappa <- (wpo-wpc)/(1-wpc) } else { wkappa <- 1- wpo/wpc} if((!is.null(n.obs)) & (tot==1)) tot <- n.obs if(is.na(Vark) || (Vark < 0)) {bad <- TRUE Vark <- 0} if(is.na(Varkw) || (Varkw < 0)) {bad <- TRUE Varkw <- 0} bounds <- matrix(NA,2,3) colnames(bounds) <- c("lower","estimate","upper") rownames(bounds) <- c("unweighted kappa","weighted kappa") bounds[1,2] <- kappa bounds[2,2] <- wkappa bounds[1,1] <- kappa + qnorm(alpha/2) * sqrt(Vark) bounds[1,3] <- kappa - qnorm(alpha/2) * sqrt(Vark) bounds[2,1] <- wkappa + qnorm(alpha/2) * sqrt(Varkw) bounds[2,3] <- wkappa - qnorm(alpha/2) * sqrt(Varkw) if(!is.na(any(abs(bounds))) & (any(abs(bounds) > 1))) {bounds[bounds > 1] <- 1 bounds[bounds < -1] <- -1 warning("upper or lower confidence interval exceed abs(1) and set to +/- 1. ") } result <- list(kappa=kappa,weighted.kappa = wkappa,n.obs=tot,agree=x,weight=w,var.kappa =Vark, var.weighted = Varkw,confid=bounds,plevel=alpha,bad=bad,Call=cl) class(result) <- c("psych","kappa") return(result) }psych/R/diagram.R0000644000176200001440000003041312541635403013334 0ustar liggesusers#The diagram functions #The diagram function is the generic function (actually empty) that allows a clearer help file #the entire set of functions for diagramming are all prefixed as dia. "diagram" <- function(fit,...) { #first, figure out which psych function was called fa <- principal <- vss <- iclust <- omega <- lavaan <- FALSE if(length(class(fit)) == 1) {if (class(fit)=="lavaan") lavaan <- TRUE } if(length(class(fit)) > 1) { if(class(fit)[2] =='fa') fa <- TRUE if(class(fit)[2] =='vss') vss <- TRUE if(class(fit)[2] =='iclust') iclust <- TRUE if(class(fit)[2] =='omega') omega <- TRUE if(class(fit)[2] =='principal') principal <- TRUE } if(fa) {fa.diagram(fit,...) } if(principal) {fa.diagram(fit,...) } if(iclust) {iclust.diagram(fit,...)} if(omega) {omega.diagram(fit,...)} if(lavaan) {lavaan.diagram(fit,...)} } #modified April 19, 2012 to handle long names more gracefully "dia.rect" <- function(x, y = NULL, labels =NULL, cex = 1, xlim=c(0,1),ylim=c(0,1),...) { text(x=x, y = y, labels = labels, cex = cex, ...) xrange = (xlim[2] - xlim[1]) yrange = (ylim[2] - ylim[1]) xs <- .10 * xrange ys <- .10 * yrange #len <- max(nchar(labels)*cex*.2/2,cex*.25)*xs len <- max(strwidth(labels,units="user",cex=cex,...),strwidth("abc",units="user",cex=cex,...)) /1.8 vert <- max(strheight(labels,units="user",cex=cex,...),strheight("ABC",units="user",cex=cex,...))/1. # vert <- min(cex*.3 * ys,.3) rect(x-len,y-vert,x+len,y+vert) left <- c(x-len,y) right <- c(x+len,y) top <- c(x,y+vert) bottom <- c(x,y-vert) radius <- sqrt(len^2+vert^2) dia.rect <- list(left=left,right=right,top=top,bottom=bottom,center=c(x,y),radius=radius) } "dia.ellipse" <- function(x, y = NULL, labels = NULL, cex = 1,e.size=.05,xlim=c(0,1),ylim=c(0,1), ...) { text(x=x, y = y, labels = labels,cex = cex, ...) len <- max(strwidth(labels),strwidth("abc"))/1.6 #vert <- cex*.3 xs <- dia.ellipse1(x,y,xlim=xlim,ylim=ylim,e.size=e.size*len,...) left <- c(x-xs,y) right <- c(x+xs,y) top <- c(x,y+xs) bottom <- c(x,y-xs) center <- c(x,y) dia.ellipse <- list(left=left,right=right,top=top,bottom=bottom,center=center,radius=xs) } "dia.ellipse1" <- function (x,y,e.size=.05,xlim=c(0,1),ylim=c(0,1),...) { #code adapted from John Fox segments=51 angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) xrange = (xlim[2] - xlim[1]) yrange = (ylim[2] - ylim[1]) xs <- e.size * xrange #ys <- e.size * yrange ellipse <- unit.circle ellipse[,1] <- ellipse[,1]*xs + x ellipse[,2] <- ellipse[,2]*xs + y #ys? lines(ellipse, ...) return(xs) } "dia.triangle" <- function(x, y = NULL, labels =NULL, cex = 1, xlim=c(0,1),ylim=c(0,1),...) { text(x=x, y = y, labels = labels, cex = cex, ...) STRETCH=.25 xrange = (xlim[2] - xlim[1]) yrange = (ylim[2] - ylim[1]) xs <- .10 * xrange ys <- .10 * xrange #len <- max(nchar(labels)*cex*.2/2,cex*.25)*xs len <- max(strwidth(labels)*.7,strwidth("abc")) #vert <- min(cex*.3 * ys,.3) vert <- .7*len left <- c(x-len/2,y+vert/2-STRETCH/2) right <- c(x+len/2,y+vert/2-STRETCH/2) top <- c(x,y+vert) # bottom <- c(x,y-vert/2) bottom <- c(x,y-vert*STRETCH) xs <- c(x-len,x+len,x) ys <- c(y-vert*STRETCH,y-vert*STRETCH,y+vert) #ys <- c(y,y,y+vert) polygon(xs,ys) radius <- sqrt(len^2+vert^2) dia.rect <- list(left=left,right=right,top=top,bottom=bottom,center=c(x,y),radius=radius) } "dia.arrow" <- function(from,to,labels=NULL,scale=1,cex=1,adj=2, both=FALSE,pos=NULL,l.cex,gap.size=NULL,...) { if(missing(gap.size)) gap.size <- .2 if(missing(l.cex)) l.cex <- cex radius1 <- radius2 <- 0 if(is.list(from)) {if(!is.null(from$radius)) {radius1 <- from$radius radius2 <- 0 from <- from$center}} if(is.list(to)) {if(!is.null(to$radius)) {radius2 <- to$radius to <- to$center}} theta <- atan((from[2] - to[2])/(from[1] - to[1])) dist <- sqrt((to[1] - from[1])^2 + (to[2] - from[2])^2) if((adj > 3 ) || (adj < 1)) { x <- (to[1] + from[1])/2 y <- (to[2] + from[2])/2 } else { x <- from[1] - sign(from[1]-to[1]) *(4-adj) * cos(theta) * dist/4 y <- from[2] - sign(from[1]-to[1])* (4-adj) * sin (theta)* dist/4} #x <- from[1] - sign(from[1]-to[1]) *adj * cos(theta) * dist/6 #y <- from[2] - sign(from[1]-to[1])* adj * sin (theta)* dist/6} # if(is.null(labels)) {h.size <- 0 } else{ h.size <- nchar(labels)*cex*.15} # if(is.null(labels)) {v.size <- 0 } else{ v.size <- cex * .1} if(is.null(labels)) {h.size <- 0 } else{ h.size <- nchar(labels)*cex*gap.size} if(is.null(labels)) {v.size <- 0 } else{ v.size <- cex * .7 * gap.size} if(from[1] < to[1] ) {h.size <- -h.size radius1 <- -radius1 radius2 <- -radius2} x0 <- from[1] - cos(theta) * radius1 y0 <- from[2] - sin(theta) * radius1 xr <- x + h.size * cos(theta)* v.size xl <- x - h.size * cos(theta)* v.size yr <- y + v.size * sin(theta) * h.size yl <- y - v.size * sin(theta) *h.size xe <- to[1] + cos(theta) * radius2 ye <- to[2] + sin(theta) * radius2 if(!is.null(labels)) text(x,y,labels,cex=l.cex,pos=pos,...) arrows(x0,y0,xr,yr, length = (both+0) * .1*scale, angle = 30, code = 1, ...) arrows(xl,yl,xe,ye, length = 0.1*scale, angle = 30, code = 2,...) } "dia.curve" <- function(from,to,labels=NULL,scale=1,...) { #arrow at beginning and end of curve #first, figure out the boundaries of the curve radius1 <- radius2 <- 0 if(is.list(from)) {if(!is.null(from$radius)) {radius1 <- from$radius radius2 <- 0 from <- from$center}} if(is.list(to)) {if(!is.null(to$radius)) {radius2<- to$radius to <- to$center}} theta <- atan((from[2] - to[2])/(from[1] - to[1])) if((from[1] < to[1])) { radius1 <- -radius1 radius2 <- -radius2} from[1] <- from[1] - cos(theta) * radius1 from[2] <- from[2] - sin(theta) * radius1 to[1] <- to[1] + cos(theta) * radius2 to[2] <- to[2] + sin(theta) * radius2 n <- 40 scale <- .8 * scale if(is.null(labels)) {shift<- 0} else {shift <- 4} if(abs(from[1] - to[1]) < abs(from[2] - to[2])) { #is it primarily up and down or left to right? x <- c(from[1],(from[1]+to[1])/2+scale,to[1]) y <- c(from[2],(from[2]+to[2])/2,to[2]) sp <- spline(y,x,n) lines(sp$y[1:(n/2-shift)],sp$x[1:(n/2-shift)]) lines(sp$y[(n/2+shift):n],sp$x[(n/2+shift):n]) arrows(sp$y[3],sp$x[3],sp$y[1],sp$x[1],length = .5*abs(sp$x[2]-sp$x[1])) arrows(sp$y[n-3],sp$x[n-3],sp$y[n],sp$x[n],length = .5*abs(sp$x[2]-sp$x[1])) text(sp$y[n/2],sp$x[n/2],labels,...) } else { x <- c(from[1],(from[1]+to[1])/2,to[1]) y <- c(from[2],(from[2]+to[2])/2+ scale,to[2]) sp <- spline(x,y,n) lines(sp$x[1:(n/2-shift)],sp$y[1:(n/2-shift)]) lines(sp$x[(n/2+shift):n],sp$y[(n/2+shift):n]) arrows(sp$x[3],sp$y[3],sp$x[1],sp$y[1],length = 1*abs(sp$y[2]-sp$y[1])) arrows(sp$x[n-3],sp$y[n-3],sp$x[n],sp$y[n],length = 1*abs(sp$y[2]-sp$y[1])) text(sp$x[n/2],sp$y[n/2],labels,...) } } "dia.curved.arrow" <- function(from,to,labels=NULL,scale=1,both=FALSE,...) { #note that the splines seem to go from left to right no matter what! #first determine whether to add or subtract the radius radius1 <- radius2 <- 0 if(is.list(from)) {if(!is.null(from$radius)) {radius1 <- from$radius radius2 <- 0 from <- from$center}} if(is.list(to)) {if(!is.null(to$radius)) {radius2<- to$radius to <- to$center}} theta <- atan((from[2] - to[2])/(from[1] - to[1])) if( from[1] < to[1] ) { radius1 <- -radius1 radius2 <- -radius2} from[1] <- from[1] - cos(theta) * radius1 from[2] <- from[2] - sin(theta) * radius1 to[1] <- to[1] + cos(theta) * radius2 to[2] <- to[2] + sin(theta) * radius2 scale <- .8 * scale n <- 40 if(is.null(labels)) {shift<- 0} else {shift <- 4} if(abs(from[1] - to[1]) < abs(from[2] - to[2])) { #is it primarily up and down or left to right? x <- c(from[1],(from[1]+to[1])/2+scale,to[1]) y <- c(from[2],(from[2]+to[2])/2,to[2]) sp <- spline(y,x,n) lines(sp$y[1:(n/2-shift)],sp$x[1:(n/2-shift)]) lines(sp$y[(n/2+shift):n],sp$x[(n/2+shift):n]) arrows(sp$y[3],sp$x[3],sp$y[1],sp$x[1],length = .5*abs(sp$x[2]-sp$x[1])) if(both) arrows(sp$y[n-3],sp$x[n-3],sp$y[n],sp$x[n],length = .5*abs(sp$x[2]-sp$x[1])) text(sp$y[n/2],sp$x[n/2],labels,...) } else { x <- c(from[1],(from[1]+to[1])/2,to[1]) y <- c(from[2],(from[2]+to[2])/2+ scale,to[2]) sp <- spline(x,y,n) lines(sp$x[1:(n/2-shift)],sp$y[1:(n/2-shift)]) lines(sp$x[(n/2+shift):n],sp$y[(n/2+shift):n]) if(both) { arrows(sp$x[3],sp$y[3],sp$x[1],sp$y[1],length = 1*abs(sp$y[2]-sp$y[1])) arrows(sp$x[n-3],sp$y[n-3],sp$x[n],sp$y[n],length = 1*abs(sp$y[2]-sp$y[1])) } else {if((from[1] > to[1] ) ) {arrows(sp$x[3],sp$y[3],sp$x[1],sp$y[1],length = 1*abs(sp$y[2]-sp$y[1])) } else { arrows(sp$x[n-3],sp$y[n-3],sp$x[n],sp$y[n],length = 1*abs(sp$y[2]-sp$y[1]))} text(sp$x[n/2],sp$y[n/2],labels,...) } } } "dia.self" <- function(location,labels=NULL,scale=.8,side=2,...) { n <- 20 if(side %%2 > 0) {scale <- scale*(location$right[1] - location$left[1]) } else {scale <- scale*(location$top[2] - location$bottom[2]) } # scale <- scale *.8 if(side ==1) {x <- c(location$bottom[1]-scale/2,location$bottom[1],location$bottom[1]+scale/2) y <- c(location$bottom[2],location$bottom[2]-scale,location$bottom[2]) sp <- spline(x,y,n=20) lines(sp$x,sp$y) arrows(sp$x[3],sp$y[3],sp$x[1],sp$y[1],length = 2*abs(sp$x[3]-sp$x[1])) arrows(sp$x[n-3],sp$y[n-3],sp$x[n],sp$y[n],length = 2*abs(sp$x[3]-sp$x[1])) text(sp$x[n/2],sp$y[n/2]-scale,labels,...) } if(side == 2) {x <- c(location$left[1],location$left[1]-scale,location$left[1]) y <- c(location$left[2]-scale/2,location$left[2],location$left[2]+scale/2) sp <- spline(y,x,n=20) lines(sp$y,sp$x) arrows(sp$y[3],sp$x[3],sp$y[1],sp$x[1],length = 2*abs(sp$x[2]-sp$x[1])) arrows(sp$y[n-3],sp$x[n-3],sp$y[n],sp$x[n],length = 2*abs(sp$x[2]-sp$x[1])) text(sp$y[n/2]-scale,sp$x[n/2],labels,...) } if(side == 3) {x <- c(location$top[1]-scale/2,location$top[1],location$top[1]+scale/2) y <- c(location$top[2],location$top[2]+scale,location$top[2]) sp <- spline(x,y,n=20) lines(sp$x,sp$y) arrows(sp$x[3],sp$y[3],sp$x[1],sp$y[1],length = 2*abs(sp$x[3]-sp$x[1])) arrows(sp$x[n-3],sp$y[n-3],sp$x[n],sp$y[n],length = 2*abs(sp$x[3]-sp$x[1])) text(sp$x[n/2],sp$y[n/2]+scale,labels,...)} if(side == 4) {x <- c(location$right[1],location$right[1]+scale,location$right[1]) y <- c(location$right[2]-scale/2,location$right[2],location$right[2]+scale/2) sp <- spline(y,x,n=20) lines(sp$y,sp$x) arrows(sp$y[3],sp$x[3],sp$y[1],sp$x[1],length =2* abs(sp$x[3]-sp$x[1])) arrows(sp$y[n-3],sp$x[n-3],sp$y[n],sp$x[n],length = 2*abs(sp$x[3]-sp$x[1])) text(sp$y[n/2]+scale,sp$x[n/2],labels,...)} } "dia.shape" <- function(x, y = NULL, labels = NULL, cex = 1,e.size=.05,xlim=c(0,1),ylim=c(0,1),shape=1, ...) { if (shape==1) {dia.rect(x, y = NULL, labels =NULL, cex = 1, xlim=c(0,1),ylim=c(0,1),...) } if (shape==2) {dia.ellipse(x, y = NULL, labels = NULL, cex = 1,e.size=.05,xlim=c(0,1),ylim=c(0,1), ...)} if (shape==3) {dia.triangle(x, y = NULL, labels =NULL, cex = 1, xlim=c(0,1),ylim=c(0,1),...)} } psych/R/fa.sapa.R0000644000176200001440000001651113130465032013236 0ustar liggesusers"fa.sapa" <- function(r,nfactors=1,n.obs = NA,n.iter=1,rotate="oblimin",scores="regression", residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",correct=.5,weight=NULL,frac=.1,...) { cl <- match.call() if(isCorrelation(r)) {if(is.na(n.obs) && (n.iter >1)) stop("You must specify the number of subjects if giving a correlation matrix and doing confidence intervals") # if(!require(MASS)) stop("You must have MASS installed to simulate data from a correlation matrix") } f <- fac(r=r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,scores=scores,residuals=residuals,SMC = SMC,covar=covar,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor, correct=.5,weight=weight,...=...) #call fa with the appropriate parameters fl <- f$loadings #this is the original #f1 <- fa.sort(f1) #put them into echelon form But this does not work with target.rot # if(!require(parallel)) {message("Parallels is required to do confidence intervals")} nvar <- dim(fl)[1] if(n.iter > 1) { if(is.na(n.obs) ) {n.obs <- f$n.obs} replicates <- list() rep.rots <- list() #using cor="tet" seems to lead to an error being thrown in factoring, which in turn hangs mclapply if(cor!="tet") {replicateslist <- parallel::mclapply(1:n.iter,function(x) { #replicateslist <- lapply(1:n.iter,function(x) { if(isCorrelation(r)) {#create data sampled from multivariate normal with observed correlation mu <- rep(0, nvar) #X <- mvrnorm(n = n.obs, mu, Sigma = r, tol = 1e-06, empirical = FALSE) #the next 3 lines replaces mvrnorm (taken from mvrnorm, but without the checks) eX <- eigen(r) X <- matrix(rnorm(nvar * n.obs),n.obs) X <- t(eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(X)) } else { X <- r[sample(n.obs,n.obs*frac,replace=FALSE),]} fs <- fac(X,nfactors=nfactors,rotate=rotate,scores="none",SMC = SMC,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor,correct=correct,...=...) #call fa with the appropriate parameters if(nfactors == 1) { npairs <- count.pairwise(X,diagonal=FALSE) mean.npairs <- mean(npairs,na.rm=TRUE) replicates <- list(loadings=fs$loadings,npairs=mean.npairs) } else { t.rot <- target.rot(fs$loadings,fl) npairs <- count.pairwise(X,diagonal=FALSE) mean.npairs <- mean(npairs,na.rm=TRUE) if(!is.null(fs$Phi)) { phis <- fs$Phi # should we rotate the simulated factor correlations? #we should report the target rotated phis, not the untarget rotated phis replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(t.rot$Phi)],npairs=mean.npairs) #corrected 6/10/15 #replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(phis)]) } else {replicates <- list(loadings=t.rot$loadings)} }}) } else {replicateslist <- lapply(1:n.iter,function(x) { #avoiding parallel for this case if(isCorrelation(r)) {#create data sampled from multivariate normal with observed correlation mu <- rep(0, nvar) #X <- mvrnorm(n = n.obs, mu, Sigma = r, tol = 1e-06, empirical = FALSE) #the next 3 lines replaces mvrnorm (taken from mvrnorm, but without the checks) eX <- eigen(r) X <- matrix(rnorm(nvar * n.obs),n.obs) X <- t(eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(X)) } else {X <- r[sample(n.obs,n.obs*frac,replace=FALSE),]} fs <- fac(X,nfactors=nfactors,rotate=rotate,scores="none",SMC = SMC,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor,correct=correct,...=...) #call fa with the appropriate parameters if(nfactors == 1) {replicates <- list(loadings=fs$loadings)} else { t.rot <- target.rot(fs$loadings,fl) npairs <- count.pairwise(X,diagonal=FALSE) mean.npairs <- mean(npairs,na.rm=TRUE) if(!is.null(fs$Phi)) { phis <- fs$Phi # should we rotate the simulated factor correlations? #we should report the target rotated phis, not the untarget rotated phis replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(t.rot$Phi)],npairs=mean.npairs) #corrected 6/10/15 #replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(phis)]) } else {replicates <- list(loadings=t.rot$loadings)} }})} replicates <- matrix(unlist(replicateslist),nrow=n.iter,byrow=TRUE) mean.npairs <- mean(replicates[,NCOL(replicates)],na.rm=TRUE) sds.pairs <- sd(replicates[,NCOL(replicates)],na.rm=TRUE) replicates <- replicates[,-NCOL(replicates),drop=FALSE] #drop weird replications (loadings > 1) replicates[abs(replicates) > 1] <- NA means <- colMeans(replicates,na.rm=TRUE) sds <- apply(replicates,2,sd,na.rm=TRUE) if(length(means) > (nvar * nfactors ) ) { means.rot <- means[(nvar*nfactors +1):length(means)] sds.rot <- sds[(nvar*nfactors +1):length(means)] ci.rot.lower <- means.rot + qnorm(p/2) * sds.rot ci.rot.upper <- means.rot + qnorm(1-p/2) * sds.rot ci.rot <- data.frame(lower=ci.rot.lower,upper=ci.rot.upper) } else { rep.rots <- NULL means.rot <- NULL sds.rot <- NULL z.rot <- NULL ci.rot <- NULL } means <- matrix(means[1:(nvar*nfactors)],ncol=nfactors) sds <- matrix(sds[1:(nvar*nfactors)],ncol=nfactors) tci <- abs(means)/sds ptci <- 1-pnorm(tci) if(!is.null(rep.rots)) { tcirot <- abs(means.rot)/sds.rot ptcirot <- 1- pnorm(tcirot)} else {tcirot <- NULL ptcirot <- NULL} ci.lower <- means + qnorm(p/2) * sds ci.upper <- means + qnorm(1-p/2) * sds ci <- data.frame(lower = ci.lower,upper=ci.upper) class(means) <- "loadings" colnames(means) <- colnames(sds) <- colnames(fl) rownames(means) <- rownames(sds) <- rownames(fl) f$cis <- list(means = means,sds = sds,ci = ci,p =2*ptci, means.rot=means.rot,sds.rot=sds.rot,ci.rot=ci.rot,p.rot = ptcirot,Call= cl,replicates=replicates,rep.rots=rep.rots,mean.pair=mean.npairs,sds.pairs=sds.pairs) results <- f results$Call <- cl class(results) <- c("psych","fa.ci") } else {results <- f results$Call <- cl class(results) <- c("psych","fa") } return(results) } #written May 1 2011 #modified May 8, 2014 to make cis an object in f to make sorting easier psych/R/summary.psych.R0000755000176200001440000003053013122772767014570 0ustar liggesusers#Modified 1/10/14 to convert to switch "summary.psych" <- function(object,digits=2,items=FALSE,...) { #figure what we are trying to summarize #omega, ICLUST, score.clusters,cluster.cor #faBy, esem #if(!is.null(object$title)) { cat("\nSummary of an analysis of ",object$title)} #figure out which psych function called us if(length(class(object)) > 1) { value <- class(object)[2] } if(value=="principal") value <- "fa" if(value=="score.items") value <- "scores" if(value=="cluster.loadings") value <- "cluster.cor" if(value=="mat.regress") value <- "mat.reg" if(value=="set.cor") value <- "setCor" if(value=="mat.reg") value <- "setCor" switch(value, iclust = { cat("ICLUST (Item Cluster Analysis)") cat("Call: ") print(object$call) cat( object$title,"\n") cat("\nPurified Alpha:\n") print(object$purified$alpha,digits) cat("\n Guttman Lambda6* \n") print(object$G6,digits) cat("\nOriginal Beta:\n") print(object$beta,digits) cat("\nCluster size:\n") print(object$purified$size,digits) if(!is.null(object$purified$cor)) {cat("\nPurified scale intercorrelations\n reliabilities on diagonal\n correlations corrected for attenuation above diagonal: \n") print(object$purified$corrected,digits) } } , omega = { cat( object$title,"\n") cat("Alpha: ",round(object$alpha,digits),"\n") cat("G.6: ",round(object$G6,digits),"\n") cat("Omega Hierarchical: " ,round(object$omega_h,digits),"\n") cat("Omega H asymptotic: " ,round(object$omega.lim,digits),"\n") cat("Omega Total " ,round(object$omega.tot,digits),"\n") numfactors <- dim(object$schmid$sl)[2] -3 eigenvalues <- diag(t(object$schmid$sl[,1:numfactors]) %*% object$schmid$sl[,1:numfactors]) cat("\nWith eigenvalues of:\n") print(eigenvalues,digits=2) maxmin <- max(eigenvalues[2:numfactors])/min(eigenvalues[2:numfactors]) gmax <- eigenvalues[1]/max(eigenvalues[2:numfactors]) # cat("\ngeneral/max " ,round(gmax,digits)," max/min = ",round(maxmin,digits),"\n") cat("The degrees of freedom for the model is",object$schmid$dof," and the fit was ",round(object$schmid$objective,digits),"\n") if(!is.na(object$schmid$n.obs)) {cat("The number of observations was ",object$schmid$n.obs, " with Chi Square = ",round(object$schmid$STATISTIC,digits), " with prob < ", round(object$schmid$PVAL,digits),"\n")} if(!is.null(object$stats$rms)) {cat("\nThe root mean square of the residuals is ", round(object$stats$rms,digits),"\n") } if(!is.null(object$stats$crms)) {cat("The df corrected root mean square of the residuals is ", round(object$stats$crms,digits),"\n") } if(!is.null(object$schmid$RMSEA)) {cat("\nRMSEA and the ",object$schmid$RMSEA[4] ,"confidence intervals are ",round(object$schmid$RMSEA[1:3],digits+1)) } if(!is.null(object$schmid$BIC)) {cat("\nBIC = ",round(object$schmid$BIC,digits))} if(!is.null(object$ECV)) cat("Explained Common Variance of the general factor = ", round(object$ECV,digits),"\n") cat("\n Total, General and Subset omega for each subset\n") colnames(object$omega.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") print(round(t(object$omega.group),digits)) }, scores = { #also score.items cat("Call: ") print(object$Call) if(object$raw) { cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, (unstandardized) alpha on the diagonal \n corrected correlations above the diagonal:\n") } else { cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, (standardized) alpha on the diagonal \n corrected correlations above the diagonal:\n") } print(object$corrected,digits) result <- object$corrected }, overlap = { cat("Call: ") print(object$Call) cat("\nScale intercorrelations adjusted for item overlap") cat("\nScale intercorrelations corrected for attenuation \n raw correlations (corrected for overlap) below the diagonal, (standardized) alpha on the diagonal \n corrected (for overlap and reliability) correlations above the diagonal:\n") print(object$corrected,digits) result <- object$corrected }, vss = { if(object$title!="Very Simple Structure") { cat("\nVery Simple Structure of ", object$title,"\n") } else {cat("\nVery Simple Structure\n")} cat("VSS complexity 1 achieves a maximimum of ") vss.max <- round(max(object$cfit.1) ,digits) cat(vss.max," with " ,which.max(object$cfit.1), " factors\n") cat("VSS complexity 2 achieves a maximimum of ") vss.max <- round(max(object$cfit.2) ,digits) cat(vss.max," with " ,which.max(object$cfit.2), " factors\n") cat("\nThe Velicer MAP criterion achieves a minimum of ") vss.map <- round(max(object$map) ,digits) cat(vss.map," with " ,which.min(object$map), " factors\n ") }, cluster.cor = { cat("Call: ") print(object$Call) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, (standardized) alpha on the diagonal \n corrected correlations above the diagonal:\n") print(object$corrected,digits) result <- object$corrected }, esem = { cat("\nExploratory Structural Equation Modeling with Call: ") print(object$Call) nfactors <- dim(object$loadings)[2] objective <- object$criteria[1] if(!is.null(objective)) { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.") cat("\nThe degrees of freedom for the model is",object$dof," and the objective function was ",round(objective,digits),"\n") if(!is.na(object$n.obs)) {cat("The number of observations was ",object$n.obs, " with Chi Square = ",round(object$STATISTIC,digits), " with prob < ", signif(object$PVAL,digits),"\n")} } if(!is.null(object$rms)) {cat("\nThe root mean square of the residuals (RMSA) is ", round(object$rms,digits),"\n") } if(!is.null(object$crms)) {cat("The df corrected root mean square of the residuals is ", round(object$crms,digits),"\n") } if(!is.null(object$TLI)) {cat("\nTucker Lewis Index of factoring reliability = ",round(object$TLI,digits+1))} if(!is.null(object$RMSEA)) {cat("\nRMSEA index = ",round(object$RMSEA[1],digits+1), " and the", (1- object$RMSEA[4])*100,"% confidence intervals are ",round(object$RMSEA[2:3],digits+1)) } if(!is.null(object$BIC)) {cat("\nBIC = ",round(object$BIC,digits))} if(!is.null(object$Phi)) { colnames(object$Phi) <- rownames(object$Phi) <- colnames(object$loadings) print(round(object$Phi,digits))} }, fa = { cat("\nFactor analysis with Call: ") print(object$Call) nfactors <- dim(object$loadings)[2] objective <- object$criteria[1] if(!is.null(objective)) { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.") cat("\nThe degrees of freedom for the model is",object$dof," and the objective function was ",round(objective,digits),"\n") if(!is.na(object$n.obs)) {cat("The number of observations was ",object$n.obs, " with Chi Square = ",round(object$STATISTIC,digits), " with prob < ", signif(object$PVAL,digits),"\n")} } if(!is.null(object$rms)) {cat("\nThe root mean square of the residuals (RMSA) is ", round(object$rms,digits),"\n") } if(!is.null(object$crms)) {cat("The df corrected root mean square of the residuals is ", round(object$crms,digits),"\n") } if(!is.null(object$TLI)) {cat("\nTucker Lewis Index of factoring reliability = ",round(object$TLI,digits+1))} if(!is.null(object$RMSEA)) {cat("\nRMSEA index = ",round(object$RMSEA[1],digits+1), " and the", (1- object$RMSEA[4])*100,"% confidence intervals are ",round(object$RMSEA[2:3],digits+1)) } if(!is.null(object$BIC)) {cat("\nBIC = ",round(object$BIC,digits))} if(!is.null(object$Phi)) { if(object$fn == "principal") {cat ("\n With component correlations of \n" ) } else {cat ("\n With factor correlations of \n" )} colnames(object$Phi) <- rownames(object$Phi) <- colnames(object$loadings) print(round(object$Phi,digits))} }, faBy = {cat("\nFactor analysis within groups with Call: ") print(object$Call) print(object$mean.loading,digits=digits) print(object$mean.phi,digits = digits) }, items= { if(omega) { cat("\nSchmid Leiman Factor loadings:\n") print(object$schmid$sl) numfactors <- dim(object$schmid$sl)[2] -2 eigenvalues <- diag(t(object$schmid$sl[,1:numfactors]) %*% object$schmid$sl[,1:numfactors]) cat("\nWith eigenvalues of:\n") print(eigenvalues,digits=digits) } if(!is.null(object$item.cor) ) { cat("\nItem by scale correlations:\n") print(object$item.cor,digits) } if (!is.null(object$p.sorted$sorted)) { cat("\nItem by Cluster Structure matrix:\n") print(object$p.sorted$sorted,digits) } if (!is.null(object$purified$pattern)) { cat("\nItem by Cluster Pattern matrix:\n") print(object$purified$pattern,digits) } if(vss) { cat("\nVelicer MAP\n") print(object$map,digits) cat("\nVery Simple Structure Complexity 1\n") print(object$cfit.1,digits) cat("\nVery Simple Structure Complexity 2\n") print(object$cfit.2,digits) } }, #end if items alpha= { cat("\nReliability analysis ",object$title," \n") print(object$total,digits=digits) }, setCor = { if(object$raw) {cat("\nMultiple Regression from raw data \n")} else { cat("\nMultiple Regression from matrix input \n")} print(object$Call) cat("\nMultiple Regression from matrix input \n") cat("\nBeta weights \n") print(object$beta,digits) cat("\nMultiple R \n") print(object$R,digits) cat("\nMultiple R2 \n") print(object$R2,digits) cat("\nCohen's set correlation R2 \n") print(object$Rset,digits) cat("\nSquared Canonical Correlations\n") print(object$cancor2,digits) }, irt.fa = { cat("\nItem Response Theory using factor analysis with Call: ") print(object$Call) nfactors <- dim(object$fa$loadings)[2] objective <- object$fa$criteria[1] if(!is.null(objective)) { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.") cat("\nThe degrees of freedom for the model is",object$fa$dof," and the objective function was ",round(objective,digits),"\n") if(!is.na(object$fa$n.obs)) {cat("The number of observations was ",object$fa$n.obs, " with Chi Square = ",round(object$fa$STATISTIC,digits), " with prob < ", signif(object$fa$PVAL,digits),"\n")} if(!is.null(object$fa$rms)) {cat("\nThe root mean square of the residuals (RMSA) is ", round(object$fa$rms,digits),"\n") } if(!is.null(object$fa$crms)) {cat("The df corrected root mean square of the residuals is ", round(object$fa$crms,digits),"\n") } if(!is.null(object$fa$TLI)) cat("\nTucker Lewis Index of factoring reliability = ",round(object$fa$TLI,digits+1))} if(!is.null(object$fa$RMSEA)) {cat("\nRMSEA index = ",round(object$fa$RMSEA[1],digits+1), " and the", (1- object$fa$RMSEA[4])*100,"% confidence intervals are ",round(object$fa$RMSEA[2:3],digits+1)) } if(!is.null(object$fa$BIC)) {cat("\nBIC = ",round(object$fa$BIC,digits))} if(!is.null(object$fa$Phi)) { if(object$fa$fn == "principal") {cat ("\n With component correlations of \n" ) } else {cat ("\n With factor correlations of \n" )} colnames(object$fa$Phi) <- rownames(object$fa$Phi) <- colnames(object$fa$loadings) print(round(object$fa$Phi,digits))} }, cohen.d.by = {cat("Extract effect sizes by groups from cohen.d.by\n") ncases <- length(object) effects <- list() Md <- rep(NA,ncases) for (i in (1:ncases)) { effects[i] <- list(object[[i]]$cohen.d[,2])} effect.df <- data.frame(matrix(unlist(effects),nrow=ncases,byrow=TRUE)) for(i in(1:ncases)){Md[i] <- object[[i]]$M.dist} colnames(effect.df) <- rownames(object[[1]]$cohen.d) effect.df <- cbind(effect.df,Md) rownames(effect.df) <- names(object) print(effect.df,digits=digits) }, describeData = { cat('n.obs = ', object$n.obs, "of which ", object$complete.cases," are complete cases. Number of variables = ",object$nvar," of which all are numeric is ",object$all.numeric,"\n") } ) #end of switch #invisible(result) } psych/R/mixed.cor.R0000644000176200001440000002015313152075456013625 0ustar liggesusers #mixedCor was added April 28, 2017 to make mixed.cor easier to use "mixedCor" <- function(data=NULL,c=NULL,p=NULL,d=NULL,smooth=TRUE,correct=.5,global=TRUE,ncat=8,use="pairwise",method="pearson",weight=NULL) { cl <- match.call() original <- colnames(data) organize <- FALSE #the default is to specify the continuous, the polytomous and the dichotomous if(missing(c) && missing(p) && missing(d)) { #figure out which kinds of variables we are using organize <- TRUE nvar <- ncol(data) x <- as.matrix(data) tab <- apply(x,2,function(x) table(x)) if(is.list(tab)) {len <- lapply(tab,function(x) length(x))} else {len <- dim(tab)[1] } dvars <- subset(1:nvar,len==2) #find the dichotomous variables pvars <- subset(1:nvar,((len > 2) & (len <= ncat))) #find the polytomous variables cvars <- subset(1:nvar,(len > ncat)) #find the continuous variables (more than ncat levels) if(length(dvars) > 0) {d <- as.matrix(x[,dvars],ncol=length(dvars)) colnames(d) <- colnames(x)[dvars]} else {d <- NULL} if(length(pvars) > 0) {p <- as.matrix(x[,pvars],ncol=length(pvars)) colnames(p) <- colnames(x)[pvars] tab <- table(p) #now check to make sure that they are all on the same scale if(length(tab) > ncat) stop("I tried to figure out which where continuous and which were polytomous, but failed. Please try again by specifying x, p, and d.") ok <- apply(p, 2,function (x) {if (length(table(x)) != (max(x,na.rm=TRUE) - min(x,na.rm=TRUE)+1)) {FALSE} else {TRUE}}) if(any(!ok)) {bad <- which(!ok) cat("\n Some polytomous variables have fewer categories than they should. Please check your data. \nPotential bad items are ",colnames(p)[bad],"\n") stop("\nI am stopping because of the problem with polytomous data") } } else {p <- NULL} if(length(cvars) > 0) {cont <- matrix(x[,cvars],ncol=length(cvars)) colnames(cont) <- colnames(x)[cvars] } else {cont <- NULL} Rho <- mixed.cor1(cont,p, d,smooth=smooth,global=global,correct=correct,use=use,method=method,weight=weight) oldorder <- c(cvars,pvars,dvars) ord <- order(oldorder) Rho$rho <- Rho$rho[ord,ord] } else {# organization is specified #if ((p+ d) == nvar) if(!missing(c)) x <- data[c] if(!missing(p)) p <- data[p] if(!missing(d)) d <- data[d] Rho <- mixed.cor1(x=x,p=p,d=d,smooth=smooth,global=global,correct=correct,use=use,method=method,weight=weight)} orig <- original %in% colnames(Rho$rho) orig <- original[orig] Rho$rho <- Rho$rho[orig,orig] #organize them in the way they came in Rho$Call <- cl return(Rho) } #modified April 29th (2014) to get around the problem of missing rows or columns in the polychoric function. #modified 1/1/14 to add multicore capability "mixed.cor" <- function(x=NULL,p=NULL,d=NULL,smooth=TRUE,correct=.5,global=TRUE,ncat=8,use="pairwise",method="pearson",weight=NULL) { cl <- match.call() organize <- FALSE #the default is to specify the continuous, the polytomous and the dichotomous if(!is.null(x) && is.null(p) && is.null(d)) { #figure out which kinds of variables we are using organize <- TRUE nvar <- ncol(x) x <- as.matrix(x) tab <- apply(x,2,function(x) table(x)) if(is.list(tab)) {len <- lapply(tab,function(x) length(x))} else {len <- dim(tab)[1] } dvars <- subset(1:nvar,len==2) #find the dichotomous variables pvars <- subset(1:nvar,((len > 2) & (len <= ncat))) #find the polytomous variables cvars <- subset(1:nvar,(len > ncat)) #find the continuous variables (more than ncat levels) if(length(dvars) > 0) {d <- as.matrix(x[,dvars],ncol=length(dvars)) colnames(d) <- colnames(x)[dvars]} else {d <- NULL} if(length(pvars) > 0) {p <- as.matrix(x[,pvars],ncol=length(pvars)) colnames(p) <- colnames(x)[pvars] tab <- table(p) #now check to make sure that they are all on the same scale if(length(tab) > ncat) stop("I tried to figure out which where continuous and which were polytomous, but failed. Please try again by specifying x, p, and d.") ok <- apply(p, 2,function (x) {if (length(table(x)) != (max(x,na.rm=TRUE) - min(x,na.rm=TRUE)+1)) {FALSE} else {TRUE}}) if(any(!ok)) {bad <- which(!ok) cat("\n Some polytomous variables have fewer categories than they should. Please check your data. \nPotential bad items are ",colnames(p)[bad],"\n") stop("\nI am stopping because of the problem with polytomous data") } } else {p <- NULL} if(length(cvars) > 0) {cont <- matrix(x[,cvars],ncol=length(cvars)) colnames(cont) <- colnames(x)[cvars] } else {cont <- NULL} Rho <- mixed.cor1(cont,p, d,smooth=smooth,global=global,correct=correct,use=use,method=method,weight=weight) oldorder <- c(cvars,pvars,dvars) ord <- order(oldorder) Rho$rho <- Rho$rho[ord,ord] } else {# organization is specified #if ((p+ d) == nvar) Rho <- mixed.cor1(x=x,p=p,d=d,smooth=smooth,global=global,correct=correct,use=use,method=method,weight=weight)} Rho$Call <- cl return(Rho) } #December 22,2010 #revised July 15, 2011 to work for the various special cases #meant to combine continuous, polytomous and dichotomous correlations #revised October 12, 2011 to get around the sd of vectors problem #revised Sept 10, 2013 to allow for dichotomies with different minima "mixed.cor1" <- function(x=NULL,p=NULL,d=NULL,smooth=TRUE,global=TRUE,correct=correct,use=use,method=method,weight=NULL) { cl <- match.call() if(!is.null(x)) {nx <- dim(x)[2]} else {nx <- 0} if(!is.null(p)) {np <- dim(p)[2]} else {np <- 0} if(!is.null(d)) {nd <- dim(d)[2]} else {nd <- 0} if(is.null(nx)) nx <- 1 if(is.null(np)) np <- 1 if(is.null(nd)) nd <- 1 npd <- nx +np + nd rpd <- NULL #in case we don't have any #check to make sure all the data are ok for doing the appropriate analyses #first check for polychorics if(np > 0) { ptable <- table(as.matrix(p)) nvalues <- length(ptable) #find the number of response alternatives if(nvalues > 8) stop("You have more than 8 categories for your items, polychoric is probably not needed")} #now test for tetrachorics if(nd > 0) { dm <- apply(d,2,function(x) min(x,na.rm=TRUE)) d <- t(t(d) - dm) #d <- d -min(d,na.rm=TRUE) #in case the numbers are not 0,1 This requires them all to be the same if(max(d,na.rm=TRUE) > 1) {stop("Tetrachoric correlations require dichotomous data")}} if(nx > 0) {rx <- cor(x,use=use,method=method)} else {rx <- NULL rho <- NULL} if(np > 1) { #cat("\n Starting to find the polychoric correlations") rp <- polychoric(p,smooth=smooth,global=global,weight=weight,correct=correct)} else {if (np == 1) { rho <- 1 names(rho) <- colnames(p) rp <- list(rho=rho,tau=NULL)} else {rp <- list(rho= NULL,tau=NULL)}} if(nd > 1) { #cat("n Starting to find the tetrachoric correlations\n\n") rd <- tetrachoric(d,smooth=smooth,correct=correct,weight=weight)} else {if (nd == 1) {rd <- list(rho=1,tau=NULL)} else {rd <- list(rho=NULL,tau=NULL)}} if(nx > 0) {if(np > 0) {rxp <- polyserial(x,p) #the normal case is for all three to exist tmixed <- cbind(rx,t(rxp)) lmixed <- cbind(rxp,rp$rho) rho <- rbind(tmixed,lmixed)} else {rho <- rx} #we now have x and p if(nd > 0) { rxd <- biserial(x,d) if(np > 0) {rpd <- polydi(p,d,global=global,correct=correct)$rho #passing the global value (July 10, 2017) topright <- t(cbind(rxd,t(rpd))) } else { topright <- t(rxd)} tmixed <- cbind(rho,topright) lmixed <- cbind(t(topright),rd$rho) rho <- rbind(tmixed,lmixed) } } else { #the case of nx =0 if( np > 0) { if (nd > 0 ) {rpd <- polydi(p,d,global=global,correct=correct)$rho #added global (July 10, 2017) tmixed <- cbind(rp$rho,rpd) lmixed <- cbind(t(rpd),rd$rho) rho <- rbind(tmixed,lmixed) } else {rho <- rp$rho} } else { rho <- rd$rho} } colnames(rho) <- rownames(rho) class(rho) <- c("psych","mixed") if(!is.null(rx)) class(rx) <- c("psych","mixed") mixed <- list(rho=rho,rx=rx,poly=rp,tetra=rd,rpd=rpd,Call=cl) class(mixed) <- c("psych","mixed") return(mixed) } psych/R/correct.cor.R0000644000176200001440000000247613024764544014171 0ustar liggesusers"correct.cor" <- function(x,y) { n=dim(x)[1] { diag(x) <- y if (n> 1) { for (i in 2:n) { k=i-1 for (j in 1:k) { x[j,i] <- x[j,i]/sqrt(y[i]*y[j]) } #fix the upper triangular part of the matrix }} return(x) }} "rangeCorrection" <- function(r,sdu,sdr,sdxu=NULL,sdxr=NULL,case=2) { if (!is.null(sdxu)) case <- 4 # switch(case, { result <- sqrt(1-(sdr^2/sdu^2) *(1-r^2))}, { result <- ( r * sdu/(sdr* sqrt(1-r^2 + r^2*(sdu^2/sdr^2))))}, {result <- NULL}, {result <- r * (sdr/sdu)*(sdxr/sdxu) + sqrt((1-(sdr/sdu)^2) * (1- (sdxr/sdxu)^2 )) } ) return(result) } #Find the Kaiser - Meyer -Olkin criterion #note that the correct formula is in Kaiser 1974, not 1970 "KMO" <- function(r) { cl <- match.call() if(!isCorrelation(r)) r <- cor(r,use="pairwise") Q <- try(solve(r)) if(class(Q) == as.character("try-error")) {message("matrix is not invertible, image not found") Q <- r} S2 <- diag(1/diag(Q)) IC <- S2 %*% Q %*% S2 Q <- Image <- cov2cor(Q) diag(Q) <- 0 diag(r) <- 0 sumQ2 <- sum(Q^2) sumr2 <- sum(r^2) MSA <- sumr2/(sumr2 + sumQ2) MSAi <- colSums(r^2)/(colSums(r^2) + colSums(Q^2)) results <- list(MSA =MSA,MSAi = MSAi, Image=Image,ImCov = IC,Call=cl) class(results) <- c("psych","KMO") return(results) }psych/R/VSSem.R0000644000176200001440000001511712262100643012722 0ustar liggesusers"VSSem" <- function (x,n=8,rotate="varimax",diagonal=FALSE,pc="pa",n.obs=NULL,...) #apply the Very Simple Structure Criterion for up to n factors on data set x #find the maximum likelihood goodness of fit criterion #x is a data matrix #n is the maximum number of factors to extract (default is 8) #rotate is a string "none" or "varimax" for type of rotation (default is "none" #diagonal is a boolean value for whether or not we should count the diagonal (default=FALSE) # ... other parameters for factanal may be passed as well #e.g., to do VSS on a covariance/correlation matrix with up to 8 factors and 3000 cases: #VSS(covmat=msqcovar,n=8,rotate="none",n.obs=3000) { #start Function definition #first some preliminary functions #complexrow sweeps out all except the c largest loadings #complexmat applies complexrow to the loading matrix complexrow <- function(x,c) #sweep out all except c loadings { n=length(x) #how many columns in this row? temp <- x #make a temporary copy of the row x <- rep(0,n) #zero out x for (j in 1:c) { locmax <- which.max(abs(temp)) #where is the maximum (absolute) value x[locmax] <- sign(temp[locmax])*max(abs(temp)) #store it in x temp[locmax] <- 0 #remove this value from the temp copy } return(x) #return the simplified (of complexity c) row } complexmat <- function(x,c) #do it for every row (could tapply somehow?) { nrows <- dim(x)[1] ncols <- dim(x)[2] for (i in 1:nrows) {x[i,] <- complexrow(x[i,],c)} #simplify each row of the loading matrix return(x) } #now do the main Very Simple Structure routine complexfit <- array(0,dim=c(n,n)) #store these separately for complex fits complexchi <- array(0,dim=c(n,n)) complexchi2 <- array(0,dim=c(n,n)) complexdof <- array(0,dim=c(n,n)) complexresid <- array(0,dim=c(n,n)) vss.df <- data.frame(dof=rep(0,n),chisq=0,prob=0,sqresid=0,fit=0) #keep the basic results here if (dim(x)[1]!=dim(x)[2]) { n.obs <- dim(x)[1] x <- cor(x,use="pairwise") } else {if(!is.matrix(x)) x <- as.matrix(x)} # if given a rectangular if(is.null(n.obs)) {message("n.obs was not specified and was arbitrarily set to 1000. This only affects the chi square values.") n.obs <- 1000} if (n > dim(x)[2]) {n <- dim(x)[2]} #in cases where there are very few variables n.variables <- dim(x)[2] for (i in 1:n) #loop through 1 to the number of factors requested { if(!(pc=="pc")) { if ( pc=="pa") { f <- fa(x,i,fm="pa",rotate=rotate,n.obs=n.obs,...) #do a factor analysis with i factors and the rotations specified in the VSS call if (i==1) {original <- x #just find this stuff once sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal }} else { f <- fa(x,i,fm=pc,rotate=rotate,covmat=x,n.obs=n.obs,...) #do a factor analysis with i factors and the rotations specified in the VSS call if (i==1) {original <- x #just find this stuff once sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal }} } else {f <- principal(x,i) if (i==1) {original <- x #the input to pc is a correlation matrix, so we don't need to find it again sqoriginal <- original*original #squared correlations totaloriginal <- sum(sqoriginal) - diagonal*sum(diag(sqoriginal) ) #sum of squared correlations - the diagonal } if((rotate=="varimax") & (i>1)) {f <- varimax(f$loadings)} else { if((rotate=="promax") & (i>1)) {f <- promax(f$loadings)} }} load <- as.matrix(f$loadings ) #the loading matrix model <- load %*% t(load) #reproduce the correlation matrix by the factor law R= FF' residual <- original-model #find the residual R* = R - FF' sqresid <- residual*residual #square the residuals totalresid <- sum(sqresid)- diagonal * sum(diag(sqresid) ) #sum squared residuals - the main diagonal fit <- 1-totalresid/totaloriginal #fit is 1-sumsquared residuals/sumsquared original (of off diagonal elements if ((pc!="pc")) { #factor.pa reports the same statistics as mle, although the fits are not as good vss.df[i,1] <- f$dof #degrees of freedom from the factor analysis vss.df[i,2] <- f$STATISTIC #chi square from the factor analysis vss.df[i,3] <- f$PVAL #probability value of this complete solution } vss.df[i,4] <- totalresid #residual given complete model vss.df[i,5] <- fit #fit of complete model #now do complexities -- how many factors account for each item for (c in 1:i) { simpleload <- complexmat(load,c) #find the simple structure version of the loadings for complexity c model <- simpleload%*%t(simpleload) #the model is now a simple structure version R ? SS' residual <- original- model #R* = R - SS' sqresid <- residual*residual totalsimple <- sum(sqresid) -diagonal * sum(diag(sqresid)) #default is to not count the diagonal simplefit <- 1-totalsimple/totaloriginal complexresid[i,c] <-totalsimple complexfit[i,c] <- simplefit #find the chi square value for this level of complexity (see factor.pa for more details on code) diag(model) <- 1 model.inv <- solve(model) nfactors <- i m.inv.r <- model.inv %*% original dof <- n.variables * (n.variables-1)/2 - n.variables * c + (nfactors *(nfactors-1)/2) objective <- sum(diag((m.inv.r))) - log(det(m.inv.r)) -n.variables if (!is.null(n.obs)) {STATISTIC <- objective * (n.obs-1) -(2 * n.variables + 5)/6 -(2*nfactors)/3 if (dof > 0) {PVAL <- pchisq(STATISTIC, dof, lower.tail = FALSE)} else PVAL <- NA} complexchi[i,c] <- STATISTIC complexdof[i,c] <- dof res1 <- residual diag(res1) <- 1 complexchi2[i,c] <- -(n.obs - n.variables/3 -1.8) *log(det(res1)) } } #end of i loop for number of factors vss.stats <- data.frame(vss.df,cfit=complexfit,chisq=complexchi,complexchi2,complexdof,cresidual=complexresid) return(vss.stats) } #end of VSS function psych/R/residuals.psych.R0000644000176200001440000000552313152330246015050 0ustar liggesusers"residuals.psych" <- function(object,diag=TRUE,...) { result <- NULL if(length(class(object)) > 1) { value <- class(object)[2] } else {stop("No appropriate residual found")} switch(value, fa = {residual <- object$residual}, principal = {residual <- object$residual}, omega = {residual <- object$stats$residual}, irt.fa ={residual <- object$fa$residual}, esem = {residual <- object$residual}, extension = {residual <- object$resid}) if(!diag) diag(residual) <- NA class(residual) <- c("psych","residuals") return(residual) } #added January 30, 2012 "resid.psych" <- function(object,diag=TRUE,...) { residuals(object,diag=diag,...) } #added Feb 4, 2012 #modified April 15, 2016 to add chisquare and histograms as well as to identify variables #modified June 23, 2016 to make the names on the right hand side have pos=2 "plot.residuals" <- function(x,main,type=c("qq","chi","hist","cor"),std,bad=4,numbers=TRUE,upper=FALSE,diag=FALSE,...) { if(missing(type)) type <- "qq" nr <- nrow(x) nc <- ncol(x) if(!is.null(rownames(x))) {rname <- rownames(x)} else {rname <- paste0("V",1:nr)} diag(x) <- NA switch(type, hist = { if(missing(std)) std <- FALSE x <- x[lower.tri(x,diag=TRUE)] std.x <- x/sd(x,na.rm=TRUE) if(std) {if(missing(main)) main <- "Histogram of standardized residuals" hist(std.x,main=main,...)} else { if(missing(main)) main <- "Histogram of residuals" hist(x,main=main,...)}}, qq= { if(missing(std)) std <- TRUE x <- x[lower.tri(x,diag=TRUE)] if(std) { if(missing(main)) main <- "Plot of standardized residuals" std.x <- x/sd(x,na.rm=TRUE) xy <- qqnorm(std.x,main=main) qqline(std.x) worst <- order(abs(std.x), decreasing = TRUE) } else { if(missing(main)) main <- "Plot of raw residuals" xy <- qqnorm(x,main=main,...) qqline(x) worst <- order(abs(x), decreasing = TRUE)} worstItems <- arrayInd(worst[1:bad],c(nr,nc)) pos <- rep(4,bad) pos[x[worst[1:bad]]>0] <- 2 text(xy$x[worst[1:bad]],xy$y[worst[1:bad]],paste(rname[worstItems[,2]],rname[worstItems[,1]]),pos=pos,...) }, chi = {#note that xy reported for qqplot is already sorted if(missing(std)) std <- TRUE x <- x[lower.tri(x,diag=TRUE)] if(std) {x <- x/sd(x,na.rm=TRUE) if(missing(main)) main <- "Plot of squared standardized residuals"} else { if(missing(main)) main <- "Plot of squared residuals"} nx <- length(x) - nr xy <- qqplot(qchisq(ppoints(nx),df=1),y=x^2,main=main,ylab="Quantiles of Squared residuals",xlab="Expected value for quantile") qqline(x^2,distribution=function(p) qchisq(p,df=1)) worst <- order(abs(x^2), decreasing = TRUE) worstItems <- arrayInd(worst[1:5],c(nr,nc)) text(xy$x[nx:(nx-4)],xy$y[nx:(nx-4)],paste(rname[worstItems[,2]],rname[worstItems[,1]]),pos=2,...) }, cor= {if(missing(main)) main <- "Plot of residual correlations" cor.plot(x,main=main,numbers=numbers,upper=upper,diag=diag)}) } psych/R/fa.diagram.R0000644000176200001440000001716013127531446013730 0ustar liggesusers#factor analysis and sem diagrams #based upon fa.graph with some ideas taken from the diagram and shape packages of Karline Soetaert #version of September 30, 2009 #developed to replace Rgraphviz which is too much of a pain to install #Rgraphviz uses a NEL (Node, Edge, Label) representation while diagram uses a complete linking matrix #thus, I am trying to combine these two approaches #some small revisions, March 2015 to allow cex to be passed to dia.ellipse and dia.rect "fa.diagram" <- function(fa.results,Phi=NULL,fe.results=NULL,sort=TRUE,labels=NULL,cut=.3,simple=TRUE,errors=FALSE,g=FALSE, digits=1,e.size=.05,rsize=.15,side=2,main,cex=NULL,marg=c(.5,.5,1,.5),adj=1,ic=FALSE, ...) { if(length(class(fa.results)) > 1) {if(class(fa.results)[2] == 'principal') {pc <- TRUE} else {pc <- FALSE}} else { pc <- FALSE} if(ic) pc <- TRUE old.par<- par(mar=marg) #give the window some narrower margins on.exit(par(old.par)) #set them back col <- c("black","red") if(missing(main)) if(is.null(fe.results)) {if(pc) {main <- "Components Analysis" } else {main <- "Factor Analysis" }} else {main <- "Factor analysis and extension"} if(!is.matrix(fa.results) && !is.null(fa.results$fa) && is.list(fa.results$fa)) fa.results <- fa.results$fa if(is.null(cex)) cex <- 1 #Phi <- NULL #the default case if(sort) {fa.results <- fa.sort(fa.results) if(!is.null(fe.results)) { fe.results <- fa.sort(fe.results)} } if((!is.matrix(fa.results)) && (!is.data.frame(fa.results))) {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi} else { if(!is.null(fa.results$cor)) {Phi<- fa.results$cor} }} else {factors <- fa.results} nvar <- dim(factors)[1] #how many variables? if (is.null(nvar) ){nvar <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} #first some basic setup parameters nvar <- dim(factors)[1] #how many variables? e.size = e.size*16*cex/nvar if (is.null(nvar) ){nvar <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} if (is.null(rownames(factors))) {rownames(factors) <- paste("V",1:nvar,sep="") } if (is.null(colnames(factors))) {colnames(factors) <- paste("F",1:num.factors,sep="") } var.rect <- list() fact.rect <- list() max.len <- max(nchar(rownames(factors)))*rsize x.max <- max((nvar+1),6) limx=c(-max.len/2,x.max) n.evar <- 0 if(!is.null(fe.results)) {n.evar <- dim(fe.results$loadings)[1] limy <- c(0,max(nvar+1,n.evar+1))} else { limy=c(0,nvar+1) } top <- max(nvar,n.evar) + 1 # plot(0,type="n",xlim=limx,ylim=limy,asp=1,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main,...) plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main,...) max.len <- max(strwidth(rownames(factors)),strwidth("abc"))/1.8 #slightly more accurate, but needs to be called after plot is opened limx=c(-max.len/2,x.max) cex <- min(cex,20/x.max) if(g) {left <- .3*x.max #where should the variable boxes go? It depends upon g middle <- .6*x.max gf <- 2 } else {left <- 0 middle <- .5*x.max gf <- 1} for (v in 1:nvar) { var.rect[[v]] <- dia.rect(left,top -v - max(0,n.evar-nvar)/2 ,rownames(factors)[v],xlim=limx,ylim=limy,cex=cex,...) } f.scale <- (top)/(num.factors+1) f.shift <- max(nvar,n.evar)/num.factors if(g) {fact.rect[[1]] <- dia.ellipse(-max.len/2,top/2,colnames(factors)[1],xlim=limx,ylim=limy,e.size=e.size,cex=cex,...) for (v in 1:nvar) {if(simple && (abs(factors[v,1]) == max(abs(factors[v,])) ) && (abs(factors[v,1]) > cut) | (!simple && (abs(factors[v,1]) > cut))) { dia.arrow(from=fact.rect[[1]],to=var.rect[[v]]$left,labels =round(factors[v,1],digits),col=((sign(factors[v,1])<0) +1),lty=((sign(factors[v,1])<0)+1)) }}} for (f in gf:num.factors) { #body 34 if (pc) {fact.rect[[f]] <- dia.rect(left+middle,(num.factors+gf-f)*f.scale,colnames(factors)[f],xlim=limx,ylim=limy,cex=cex,...) } else {fact.rect[[f]] <- dia.ellipse(left+middle,(num.factors+gf-f)*f.scale,colnames(factors)[f],xlim=limx,ylim=limy,e.size=e.size,cex=cex,...)} for (v in 1:nvar) { if(simple && (abs(factors[v,f]) == max(abs(factors[v,])) ) && (abs(factors[v,f]) > cut) | (!simple && (abs(factors[v,f]) > cut))) { if(pc) {dia.arrow(to=fact.rect[[f]],from=var.rect[[v]]$right,labels =round(factors[v,f],digits),col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0)+1),adj=f %% adj ,cex=cex) } else {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,labels =round(factors[v,f],digits),col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0)+1),adj=f %% adj +1,cex=cex)} } } } if(!is.null(Phi) && (ncol(Phi) >1)) { for (i in 2:num.factors) { for (j in 1:(i-1)) { if(abs(Phi[i,j]) > cut) { # dia.curve(from=c(x.max-2+ e.size*nvar,(num.factors+1-i)*f.scale),to=c(x.max -2+ e.size*nvar,(num.factors+1-j)*f.scale),labels=round(Phi[i,j],digits),scale=(i-j),...)} dia.curve(from=fact.rect[[j]]$right,to=fact.rect[[i]]$right,labels=round(Phi[i,j],digits),scale=(i-j),cex=cex,...)} } } } if (errors) {for (v in 1:nvar) { dia.self(location=var.rect[[v]],scale=.5,side=side) } } if(!is.null(fe.results)) { e.loadings <- fe.results$loadings for (v in 1:n.evar) { var.rect[[v]] <- dia.rect(x.max,top-v-max(0,nvar-n.evar)/2,rownames(e.loadings)[v],xlim=limx,ylim=limy,cex=cex,...) for(f in 1:num.factors) { if(simple && (abs(e.loadings[v,f]) == max(abs(e.loadings[v,])) ) && (abs(e.loadings[v,f]) > cut) | (!simple && (abs(e.loadings[v,f]) > cut))) { dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$left,labels =round(e.loadings[v,f],digits),col=((sign(e.loadings[v,f])<0) +1),lty=((sign(e.loadings[v,f])<0)+1),adj=f %% adj +1)} } } } } #draw a heterarchy diagram "het.diagram" <- function(r,levels,cut=.3,digits=2,both=TRUE,main="Heterarchy diagram",l.cex ,gap.size,...) { col = c("black","red") nlevels <- length(levels) if(missing(gap.size)) gap.size <- .4/nlevels if(missing(l.cex)) l.cex <- 1 nvar <- max(unlist(lapply(levels,length))) lowest <- rownames(r)[levels[[1]]] xlim <- c(-.25,(nlevels-.75)) ylim <- c(.25,nvar) plot(0,type="n",frame.plot=FALSE,axes=FALSE,xlim=xlim,ylim=ylim,ylab="",xlab="",main=main,...) x <- 0 #first draw the left most layer if(!is.null(names(levels))) {text(x,nvar,names(levels)[x+1]) } nlevel.i <- length(levels[[1]]) lower <- list(nlevel.i) spacing <- (nvar)/(nlevel.i+1) for (y in 1:nlevel.i) { lower[[y]] <- dia.rect(x,y*spacing,lowest[y],xlim=xlim,ylim=ylim,...) } names.i <- lowest #now repeat for each higher layer for(i in 2:(nlevels)){ nlevel.i <- length(levels[[i]]) level.i <- list(nlevel.i) names.next <- rownames(r)[levels[[i]]] x <- i-1 if(!is.null(names(levels))) {text(x,nvar,names(levels)[i]) } spacing <- (nvar)/(nlevel.i+1) for(y in 1:nlevel.i) { level.i[[y]] <- dia.rect(x,y*spacing,rownames(r)[levels[[i]][y]],xlim=xlim,ylim=ylim,...) for(j in 1:length(levels[[i-1]])) { if(abs(r[names.i[j],names.next[y]]) > cut) { dia.arrow(from=level.i[[y]]$left, to=lower[[j]]$right, labels=round(r[names.i[j],names.next[y]],digits),both=both,adj= y %%3 + 1, col=(sign(r[names.i[j],names.next[y]] < 0) +1),lty=(sign(r[names.i[j],names.next[y]] < 0)+1),l.cex = l.cex,gap.size=gap.size,...) } } } #end of drawing the factors for this level names.i <- names.next lower <-level.i } #end of levels (i) loop } psych/R/structure.graph.R0000644000176200001440000004034513145431261015072 0ustar liggesusers#Created April 4, 2008 #seriously modified January, 2009 to generate sem code # January 12, 2009 - still can not get latent Xs to line up if correlated # January 19, 2009 Added the ability to draw structures from omega output # More importantly, added the ability to create sem model matrices for the sem package of John Fox # These models will not be completely identified for certain higher order structures and require hand tuning. # January 30, 2009 to allow for hierarchical factor structures "structure.graph" <- function(fx,Phi=NULL,fy=NULL, out.file=NULL,labels=NULL,cut=.3,errors=TRUE,simple=TRUE,regression=FALSE, size=c(8,6), node.font=c("Helvetica",14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,title="Structural model", ...){ if (!requireNamespace('Rgraphviz')) {stop("I am sorry, you need to have loaded the Rgraphviz package") #create several dummy functions to get around the "no visible global function definition" problem nodes <- function() {} addEdge <- function() {} subGraph <- function(){} } xmodel <- fx ymodel <- fy if(!is.null(class(xmodel)) && (length(class(xmodel))>1)) { if(class(xmodel)[1] =="psych" && class(xmodel)[2] =="omega") { Phi <- xmodel$schmid$phi xmodel <- xmodel$schmid$oblique} else { if(class(xmodel)[1] =="psych" && ((class(xmodel)[2] =="fa") | (class(xmodel)[2] =="principal"))) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings)} }} else { if(!is.matrix(xmodel) & !is.data.frame(xmodel) &!is.vector(xmodel)) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings) } else {xmodel <- xmodel} } if(!is.matrix(xmodel) ) {factors <- as.matrix(xmodel)} else {factors <- xmodel} rank.direction <- match.arg(rank.direction) #first some basic setup parameters num.y <- 0 #we assume there is nothing there num.var <- num.xvar <- dim(factors)[1] #how many x variables? if (is.null(num.xvar) ){num.xvar <- length(factors) num.xfactors <- 1} else { num.factors <- num.xfactors <- dim(factors)[2]} if(is.null(labels)) {vars <- xvars <- rownames(xmodel)} else { xvars <- vars <- labels} if(is.null(vars) ) {vars <- xvars <- paste("x",1:num.xvar,sep="") } fact <- colnames(xmodel) if (is.null(fact)) { fact <- paste("X",1:num.xfactors,sep="") } num.yfactors <- 0 if (!is.null(ymodel)) { if(is.list(ymodel) & !is.data.frame(ymodel) ) {ymodel <- as.matrix(ymodel$loadings)} else {ymodel <- ymodel} if(!is.matrix(ymodel) ) {y.factors <- as.matrix(ymodel)} else {y.factors <- ymodel} num.y <- dim(y.factors)[1] if (is.null(num.y)) { num.y <- length(ymodel) num.yfactors <- 1} else { num.yfactors <- dim(y.factors)[2] } yvars <- rownames(ymodel) if(is.null(yvars)) {yvars <- paste("y",1:num.y,sep="") } if(is.null(labels)) {vars <- c(xvars,yvars)} else {yvars <- labels[(num.xvar+1):(num.xvar+num.y)]} yfact <- colnames(ymodel) if(is.null(yfact)) {yfact <- paste("Y",1:num.yfactors,sep="") } fact <- c(fact,yfact) num.var <- num.xvar + num.y num.factors <- num.xfactors + num.yfactors } # sem <- matrix(rep(NA),6*(num.var*num.factors + num.factors),ncol=3) sem <- matrix(NA,nrow=6*(num.var*num.factors + num.factors),ncol=3) colnames(sem) <- c("Path","Parameter","Value") edge.weights <- rep(1,num.var*2*num.factors) #now draw the x part if(!regression) { #the normal condition is to draw a latent model k <- num.factors clust.graph <- new("graphNEL",nodes=c(vars,fact),edgemode="directed") graph.shape <- c(rep("box",num.var),rep("ellipse",num.factors)) #define the shapes if (num.y > 0) {graph.rank <- c(rep("min",num.xvar),rep("max",num.y),rep("same",num.xfactors),rep("",num.yfactors))} else { graph.rank <- c(rep("min",num.var*2),rep("",num.factors))} names(graph.shape) <- nodes(clust.graph) names(graph.rank) <- nodes(clust.graph) edge.label <- rep("",num.var*2*k) #makes too many, but in case of a fully saturated model, this might be necessary edge.name <- rep("",num.var*2*k) names(edge.label) <- seq(1:num.var*2*k) edge.dir <-rep("forward",num.var*2*k) edge.arrows <-rep("open",num.var*2*k) #edge.weights <- rep(1,num.var*2*k) if (num.xfactors ==1) { for (i in 1:num.xvar) { clust.graph <- addEdge(fact[1], vars[i], clust.graph,1) if(is.numeric(factors[i])) {edge.label[i] <- round(factors[i],digits)} else {edge.label[i] <- factors[i]} edge.name[i] <- paste(fact[1],"~",vars[i],sep="") sem[i,1] <- paste(fact[1],"->",vars[i],sep="") if(is.numeric(factors[i])) {sem[i,2] <- vars[i]} else {sem[i,2] <- factors[i] } } k <- num.xvar+1 } else { #end of if num.xfactors ==1 #all loadings > cut in absolute value k <- 1 for (i in 1:num.xvar) { for (f in 1:num.xfactors) { #if (!is.numeric(factors[i,f]) || (abs(factors[i,f]) > cut)) if((!is.numeric(factors[i,f] ) && (factors[i,f] !="0"))|| ((is.numeric(factors[i,f]) && abs(factors[i,f]) > cut ))) { clust.graph <- addEdge(fact[f], vars[i], clust.graph,1) if(is.numeric(factors[i,f])) {edge.label[k] <- round(factors[i,f],digits)} else {edge.label[k] <- factors[i,f]} edge.name[k] <- paste(fact[f],"~",vars[i],sep="") sem[k,1] <- paste(fact[f],"->",vars[i],sep="") if(is.numeric(factors[i,f])) {sem[k,2] <- paste("F",f,vars[i],sep="")} else {sem[k,2] <- factors[i,f]} k <- k+1 } #end of if } } } if(errors) { for (i in 1:num.xvar) { clust.graph <- addEdge(vars[i], vars[i], clust.graph,1) edge.name[k] <- paste(vars[i],"~",vars[i],sep="") edge.arrows[k] <- "closed" sem[k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[k,2] <- paste("x",i,"e",sep="") k <- k+1 } } } else { #the regression case if (title=="Structural model") title <- "Regression model" k <- num.var+1 yvars <- "Y1" clust.graph <- new("graphNEL",nodes=c(vars,yvars),edgemode="directed") graph.rank <- c(rep("min",num.var),rep("",1)) names(graph.rank) <- nodes(clust.graph) graph.shape <- rep("box",k) #define the shapes names(graph.shape) <- nodes(clust.graph) graph.rank <- c(rep("min",num.var),rep("",1)) names(graph.rank) <- nodes(clust.graph) edge.label <- rep("",k) #makes too many, but in case of a fully saturated model, this might be necessary edge.name <- rep("",k) names(edge.label) <- seq(1:k) edge.dir <-rep("back",k) names(edge.dir) <-rep("",k) edge.arrows <-rep("open",k) # names(edge.arrows) <-rep("",k) for (i in 1:num.xvar) { clust.graph <- addEdge(yvars,vars[i], clust.graph,1) if(is.numeric(vars[i])) {edge.label[i] <- round(factors[i],digits)} else {edge.label[i] <- factors[i]} edge.name[i] <- paste(yvars,"~",vars[i],sep="") } } #now, if there is a ymodel, do it for y model if(!is.null(ymodel)) { if (num.yfactors ==1) { for (i in 1:num.y) { clust.graph <- addEdge( yvars[i],fact[1+num.xfactors], clust.graph,1) if(is.numeric(y.factors[i] ) ) {edge.label[k] <- round(y.factors[i],digits) } else {edge.label[k] <- y.factors[i]} edge.name[k] <- paste(yvars[i],"~",fact[1+num.xfactors],sep="") edge.dir[k] <- paste("back") sem[k,1] <- paste(fact[1+num.xfactors],"->",yvars[i],sep="") if(is.numeric(y.factors[i] ) ) {sem[k,2] <- paste("Fy",yvars[i],sep="")} else {sem[k,2] <- y.factors[i]} k <- k +1 } } else { #end of if num.yfactors ==1 #all loadings > cut in absolute value for (i in 1:num.y) { for (f in 1:num.yfactors) { if((!is.numeric(y.factors[i,f] ) && (y.factors[i,f] !="0"))|| ((is.numeric(y.factors[i,f]) && abs(y.factors[i,f]) > cut ))) {clust.graph <- addEdge( vars[i+num.xvar],fact[f+num.xfactors], clust.graph,1) if(is.numeric(y.factors[i,f])) {edge.label[k] <- round(y.factors[i,f],digits)} else {edge.label[k] <-y.factors[i,f]} edge.name[k] <- paste(vars[i+num.xvar],"~",fact[f+num.xfactors],sep="") edge.dir[k] <- paste("back") sem[k,1] <- paste(fact[f+num.xfactors],"->",vars[i+num.xvar],sep="") if(is.numeric(y.factors[i,f])) { sem[k,2] <- paste("Fy",f,vars[i+num.xvar],sep="")} else {sem[k,2] <- y.factors[i,f]} k <- k+1 } #end of if } #end of factor } # end of variable loop } if(errors) { for (i in 1:num.y) { clust.graph <- addEdge(vars[i+num.xvar], vars[i+num.xvar], clust.graph,1) edge.name[k] <- paste(vars[i+num.xvar],"~",vars[i+num.xvar],sep="") edge.dir[k] <- paste("back") edge.arrows[k] <- "closed" sem[k,1] <- paste(vars[i+num.xvar],"<->",vars[i+num.xvar],sep="") sem[k,2] <- paste("y",i,"e",sep="") k <- k+1 }} } #end of if.null(ymodel) nAttrs <- list() #node attributes eAttrs <- list() #edge attributes if (!is.null(labels)) {var.labels <- c(labels,fact) names(var.labels) <- nodes(clust.graph) nAttrs$label <- var.labels names(edge.label) <- edge.name } if(!regression) { if(!is.null(Phi)) {if (!is.matrix(Phi)) { if(!is.null(fy)) {Phi <- matrix(c(1,0,Phi,1),ncol=2)} else {Phi <- matrix(c(1,Phi,Phi,1),ncol=2)}} if(num.xfactors>1) {for (i in 2:num.xfactors) { #first do the correlations within the f set for (j in 1:(i-1)) {if((!is.numeric(Phi[i,j] ) && ((Phi[i,j] !="0")||(Phi[j,i] !="0")))|| ((is.numeric(Phi[i,j]) && abs(Phi[i,j]) > cut ))) { clust.graph <- addEdge( fact[i],fact[j],clust.graph,1) if (is.numeric(Phi[i,j])) { edge.label[k] <- round(Phi[i,j],digits)} else {edge.label[k] <- Phi[i,j]} edge.name[k] <- paste(fact[i],"~",fact[j],sep="") if(!is.numeric(Phi[i,j] )) {if(Phi[i,j] == Phi[j,i] ) { edge.dir[k] <- "both" sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} else { if(Phi[i,j] !="0") { edge.dir[k] <- "forward" sem[k,1] <- paste(fact[i]," ->",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} else { edge.dir[k] <- "back" sem[k,1] <- paste(fact[i],"<-",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} } } else { #is.numeric sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") edge.dir[k] <- "both" if (is.numeric(Phi[i,j])) {sem[k,2] <- paste("rF",i,"F",j,sep="")} else {sem[k,2] <- Phi[i,j] } } edge.weights[k] <- 1 k <- k + 1} } } } #end of correlations within the fx set if(!is.null(ymodel)) { for (i in 1:num.xfactors) { for (j in 1:num.yfactors) { if((!is.numeric(Phi[j+num.xfactors,i] ) && (Phi[j+num.xfactors,i] !="0"))|| ((is.numeric(Phi[j+num.xfactors,i]) && abs(Phi[j+num.xfactors,i]) > cut ))) { clust.graph <- addEdge( fact[j+num.xfactors],fact[i],clust.graph,1) if (is.numeric(Phi[j+num.xfactors,i])) { edge.label[k] <- round(Phi[j+num.xfactors,i],digits)} else {edge.label[k] <- Phi[j+num.xfactors,i]} edge.name[k] <- paste(fact[j+num.xfactors],"~",fact[i],sep="") if(Phi[j+num.xfactors,i]!=Phi[i,j+num.xfactors]) {edge.dir[k] <- "back" sem[k,1] <- paste(fact[i],"->",fact[j+num.xfactors],sep="") } else { edge.dir[k] <- "both" sem[k,1] <- paste(fact[i],"<->",fact[j+num.xfactors],sep="")} if (is.numeric(Phi[j+num.xfactors,i])) {sem[k,2] <- paste("rX",i,"Y",j,sep="")} else {sem[k,2] <- Phi[j+num.xfactors,i] } k <- k + 1 } } } } } } else {if(!is.null(Phi)) {if (!is.matrix(Phi)) Phi <- matrix(c(1,Phi,0,1),ncol=2) for (i in 2:num.xvar) { for (j in 1:(i-1)) { clust.graph <- addEdge( vars[i],vars[j],clust.graph,1) if (is.numeric(Phi[i,j])) { edge.label[k] <- round(Phi[i,j],digits)} else {edge.label[k] <- Phi[i,j]} edge.name[k] <- paste(vars[i],"~",vars[j],sep="") if(Phi[i,j] != Phi[j,i]){edge.dir[k] <- "back"} else {edge.dir[k] <- "both"} k <- k + 1 }} } edge.arrows <- rep("open",k) } for(f in 1:num.factors) { sem[k,1] <- paste(fact[f],"<->",fact[f],sep="") sem[k,3] <- "1" k <- k+1 } obs.xvar <- subGraph(vars[1:num.xvar],clust.graph) if (!is.null(ymodel)) {obs.yvar <- subGraph(vars[(num.xvar+1):num.var],clust.graph)} obs.var <- subGraph(vars,clust.graph) if(!regression) {cluster.vars <- subGraph(fact,clust.graph) } else {cluster.vars <- subGraph(yvars,clust.graph) } observed <- list(list(graph=obs.xvar,cluster=TRUE,attrs=c(rank="min"))) names(edge.label) <- edge.name names(edge.dir) <- edge.name names(edge.arrows) <- edge.name names(edge.weights) <- edge.name nAttrs$shape <- graph.shape nAttrs$rank <- graph.rank eAttrs$label <- edge.label eAttrs$dir<- edge.dir eAttrs$arrowhead <- edge.arrows eAttrs$arrowtail<- edge.arrows eAttrs$weight <- edge.weights attrs <- list(node = list(shape = "ellipse", fixedsize = FALSE),graph=list(rankdir=rank.direction, fontsize=6,bgcolor="white" )) if (!is.null(ymodel)) {observed <- list(list(graph=obs.xvar,cluster=TRUE,attrs=c(rank="sink")),list(graph=obs.yvar,cluster=TRUE,attrs=c(rank="source"))) } else { observed <- list(list(graph=obs.xvar,cluster=TRUE,attrs=c(rank="max")))} plot(clust.graph, nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed,main=title) if(!is.null(out.file) ){toDotty(clust.graph,out.file,nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs) } #return(list(nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs)) #useful for debugging model=sem[1:(k-1),] class(model) <- "mod" #suggested by John Fox to make the output cleaner invisible(model) } psych/R/ICC.R0000644000176200001440000000743612273561156012344 0ustar liggesusers"ICC" <- function(x,missing=TRUE,alpha=.05) { cl <- match.call() if(is.matrix(x)) x <- data.frame(x) n.obs.original <- dim(x)[1] if(missing) { x1 <- try(na.fail(x)) if(class(x1) == as.character("try-error")) { x <- na.omit(x) n.obs <- dim(x)[1] stop("missing data were found for ",n.obs.original -n.obs, " cases \n Try again with na.omit or set missing= FALSE and proceed at your own risk.")}} n.obs <- dim(x)[1] if(n.obs < n.obs.original) message("Warning, missing data were found for ",n.obs.original -n.obs, " cases") nj <- dim(x)[2] x.s <- stack(x) x.df <- data.frame(x.s,subs=rep(paste("S",1:n.obs,sep=""),nj)) aov.x <- aov(values~subs+ind,data=x.df) s.aov <- summary(aov.x) stats <- matrix(unlist(s.aov),ncol=3,byrow=TRUE) MSB <- stats[3,1] MSW <- (stats[2,2] + stats[2,3])/(stats[1,2] + stats[1,3]) MSJ <- stats[3,2] MSE <- stats[3,3] ICC1 <- (MSB- MSW)/(MSB+ (nj-1)*MSW) ICC2 <- (MSB- MSE)/(MSB + (nj-1)*MSE + nj*(MSJ-MSE)/n.obs) ICC3 <- (MSB - MSE)/(MSB+ (nj-1)*MSE) ICC12 <- (MSB-MSW)/(MSB) ICC22 <- (MSB- MSE)/(MSB +(MSJ-MSE)/n.obs) ICC32 <- (MSB-MSE)/MSB #find the various F values from Shrout and Fleiss F11 <- MSB/MSW df11n <- n.obs-1 df11d <- n.obs*(nj-1) p11 <- 1-pf(F11,df11n,df11d) F21 <- MSB/MSE df21n <- n.obs-1 df21d <- (n.obs-1)*(nj-1) p21 <- 1-pf(F21,df21n,df21d) F31 <- F21 # results <- t(results) results <- data.frame(matrix(NA,ncol=8,nrow=6)) colnames(results ) <- c("type", "ICC","F","df1","df2","p","lower bound","upper bound") rownames(results) <- c("Single_raters_absolute","Single_random_raters","Single_fixed_raters", "Average_raters_absolute","Average_random_raters","Average_fixed_raters") results[1,1] = "ICC1" results[2,1] = "ICC2" results[3,1] = "ICC3" results[4,1] = "ICC1k" results[5,1] = "ICC2k" results[6,1] = "ICC3k" results[1,2] = ICC1 results[2,2] = ICC2 results[3,2] = ICC3 results[4,2] = ICC12 results[5,2] = ICC22 results[6,2] = ICC32 results[1,3] <- results[4,3] <- F11 results[2,3] <- F21 results[3,3] <- results[6,3] <- results[5,3] <- F31 <- F21 results[5,3] <- F21 results[1,4] <- results[4,4] <- df11n results[1,5] <- results[4,5] <-df11d results[1,6] <- results[4,6] <- p11 results[2,4] <- results[3,4] <- results[5,4] <- results[6,4] <- df21n results[2,5] <- results[3,5] <- results[5,5] <- results[6,5] <- df21d results[2,6] <- results[5,6] <- results[3,6] <-results[6,6] <- p21 #now find confidence limits #first, the easy ones #don't divide alpha level by 2 (changed on 2/1/14) F1L <- F11 / qf(1-alpha/2,df11n,df11d) F1U <- F11 * qf(1-alpha/2,df11d,df11n) L1 <- (F1L-1)/(F1L+(nj-1)) U1 <- (F1U -1)/(F1U+nj-1) F3L <- F31 /qf(1-alpha/2,df21n,df21d) F3U <- F31 * qf(1-alpha/2,df21d,df21n) results[1,7] <- L1 results[1,8] <- U1 results[3,7] <- (F3L-1)/(F3L+nj-1) results[3,8] <- (F3U-1)/(F3U+nj-1) results[4,7] <- 1- 1/F1L results[4,8] <- 1- 1/F1U results[6,7] <- 1- 1/F3L results[6,8] <- 1 - 1/F3U #the hard one is case 2 Fj <- MSJ/MSE vn <- (nj-1)*(n.obs-1)* ( (nj*ICC2*Fj+n.obs*(1+(nj-1)*ICC2) - nj*ICC2))^2 vd <- (n.obs-1)*nj^2 * ICC2^2 * Fj^2 + (n.obs *(1 + (nj-1)*ICC2) - nj*ICC2)^2 v <- vn/vd F3U <- qf(1-alpha/2,n.obs-1,v) F3L <- qf(1-alpha/2,v,n.obs-1) L3 <- n.obs *(MSB- F3U*MSE)/(F3U*(nj*MSJ+(nj*n.obs-nj-n.obs)*MSE)+ n.obs*MSB) results[2,7] <- L3 U3 <- n.obs *(F3L * MSB - MSE)/(nj * MSJ + (nj * n.obs - nj - n.obs)*MSE + n.obs * F3L * MSB) results[2,8] <- U3 L3k <- L3 * nj/(1+ L3*(nj-1)) U3k <- U3 * nj/(1+ U3*(nj-1)) results[5,7] <- L3k results[5,8] <- U3k #clean up the output results[,2:8] <- results[,2:8] result <- list(results=results,summary=s.aov,stats=stats,MSW=MSW,Call=cl,n.obs=n.obs,n.judge=nj) class(result) <- c("psych","ICC") return(result) }psych/R/errorCircles.r0000644000176200001440000001560512773230325014435 0ustar liggesusers"error.crosses.by" <- function (x,y,z,labels=NULL,main=NULL,xlim=NULL,ylim= NULL,xlab=NULL,ylab=NULL,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,...) # x and y are data frame or descriptive stats {if(is.null(x$mean)) {x <- describe.by(x,z,mat=TRUE) } xmin <- min(x$mean) xmax <- max(x$mean) if(sd) {max.sex <- max(x$sd,na.rm=TRUE) if(is.null(xlim)) {xlim=c(xmin - max.sex,xmax + max.sex) }} else {max.sex <- max(x$se,na.rm=TRUE)} if(is.null(y$mean)) {y <- describe(y)} ymin <- min(y$mean) ymax <- max(y$mean) if(sd) {max.sey <- max(y$sd,na.rm=TRUE) if(is.null(ylim)) {ylim=c(ymin - max.sey,ymax +max.sey)}} else { max.sey <- max(y$se,na.rm=TRUE) } if(is.null(xlim)) xlim=c(xmin - 2*max.sex,xmax +2*max.sex) if(is.null(ylim)) ylim=c(ymin - 2*max.sey,ymax +2*max.sey) if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } if(is.null(xlab)) xlab <- "Group 1" if(is.null(ylab)) ylab <- "Group 2" plot(x$mean,y$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,...) cix <- qt(1-alpha/2,x$n-1) #modified Sept 11, 2013 ciy <- qt(1-alpha/2,y$n-1) z <- dim(x)[1] if(sd) {x$se <- x$sd y$se <- y$sd cix <- ciy <- rep(1,z) } if (is.null(pos)) {locate <- rep(1,z)} else {locate <- pos} if (is.null(labels)) {labels <- rownames(x)} if (is.null(labels)) {lab <- paste("V",1:z,sep="")} else {lab <-labels} for (i in 1:z) {xcen <- x$mean[i] ycen <- y$mean[i] xse <- x$se[i] yse <- y$se[i] arrows(xcen-cix[i]* xse,ycen,xcen+ cix[i]* xse,ycen,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) arrows(xcen,ycen-ciy[i]* yse,xcen,ycen+ ciy[i]*yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) text(xcen,ycen,labels=lab[i],pos=locate[i],cex=1,offset=offset) #puts in labels for all points } } "ellipse" <- function (x,y,r1,r2,...) { #code adapted from John Fox segments=51 angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) xs <- r1 #ys <- e.size * yrange ellipse <- unit.circle ellipse[,1] <- ellipse[,1]*r1 + x ellipse[,2] <- ellipse[,2]*r2+ y #ys? lines(ellipse, ...) return(xs) } "errorCircles" <- function (x,y,data,ydata=NULL,group=NULL,paired=FALSE, labels=NULL,main=NULL,xlim=NULL,ylim= NULL,xlab=NULL,ylab=NULL,add=FALSE,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,bars=TRUE,circles=TRUE,colors=NULL,col.arrows=NULL,col.text=NULL,circle.size=1,...) { # x and y are data frame or descriptive stats xvar <- x yvar <- y if(is.null(colors)) colors <- "black" if(is.null(col.arrows)) col.arrows <- colors if(is.null(col.text)) col.text <- colors # if((length(xvar) ==1) && (length(yvar)==1) && !is.null(group)) {data <- statsBy(data[,c(group,xvar,yvar)],group=group)} else { if(!is.null(group)) {data <- statsBy(data,group=group)} # } x <- list() if(paired) { x$mean <- t(data$mean[,xvar]) x$sd <- t(data$sd[,xvar]) x$n <- t(data$n[,xvar]) } else { #the normal case x$mean <- data$mean[,xvar] x$sd <- data$sd[,xvar] x$n <- data$n[,xvar]} xmin <- min(x$mean,na.rm=TRUE) xmax <- max(x$mean,na.rm=TRUE) x$se <- x$sd/sqrt(x$n) if(sd) {max.sex <- max(x$sd,na.rm=TRUE) if(is.null(xlim)) {xlim=c(xmin - max.sex,xmax + max.sex) }} else {max.sex <- max(x$se,na.rm=TRUE)} y <- list() if(!is.null(ydata)) { y$mean <- ydata$mean[,yvar] y$sd <- ydata$sd[,yvar] y$n <- ydata$n[,yvar] } else { y$mean <- data$mean[,yvar] y$sd <- data$sd[,yvar] y$n <- data$n[,yvar]} ymin <- min(y$mean,na.rm=TRUE) ymax <- max(y$mean,na.rm=TRUE) y$se <- y$sd/sqrt(y$n) if(sd) {max.sey <- max(y$sd,na.rm=TRUE) if(is.null(ylim)) {ylim=c(ymin - max.sey,ymax +max.sey)}} else { max.sey <- max(y$se,na.rm=TRUE) } if(is.null(xlim)) xlim=c(xmin - 2*max.sex,xmax +2*max.sex) if(is.null(ylim)) ylim=c(ymin - 2*max.sey,ymax +2*max.sey) if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } if(paired) {if(is.null(xlab)) xlab <- "Group 1" if(is.null(ylab)) ylab <- "Group 2" } else { if(is.null(xlab)) xlab <- colnames(data$mean)[xvar] if(is.null(ylab)) ylab <- colnames(data$mean)[yvar] } if(add) { if(paired) {points(x$mean,typ="p",col=colors,...) } else {points(x$mean,y$mean,typ="p",col=colors,...)} } else { if(paired) {plot(x$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,typ="p",col=colors,...) } else {plot(x$mean,y$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,typ="p",col=colors,...)} } N <-x$n Nmax <- max(N) cix <- qt(1-alpha/2,x$n-1) ciy <- qt(1-alpha/2,y$n-1) if(paired) {z <- nrow(x$mean) } else {z <- length(x$mean)} if(sd) {x$se <- x$sd y$se <- y$sd cix <- ciy <- rep(1,z) } if (is.null(pos)) {locate <- rep(1,z)} else {locate <- pos} if (is.null(labels)) {labels <- rownames(x$mean)} if (is.null(labels)) {lab <- paste("V",1:z,sep="")} else {lab <-labels} if(length(colors) < z) colors <- rep(colors,z) if(length(col.text) < z) col.text <- rep(col.text,z) if(length(col.arrows) < z) col.arrows <- rep(col.arrows,z) for (i in 1:z) { if(paired) { xcen <- x$mean[i,1] ycen <- x$mean[i,2] xse <- x$se[i,1] yse <- x$se[i,2] } else { xcen <- x$mean[i] ycen <- y$mean[i] xse <- x$se[i] yse <- y$se[i]} if(bars) {if(max(x$se,na.rm=TRUE) > 0) arrows(xcen-cix[i]* xse,ycen,xcen+ cix[i]* xse,ycen,length=arrow.len, angle = 90, code=3,col = col.arrows[i], lty = NULL, lwd = par("lwd"), xpd = NULL) if(max(y$se,na.rm=TRUE) >0 ) arrows(xcen,ycen-ciy[i]* yse,xcen,ycen+ ciy[i]*yse,length=arrow.len, angle = 90, code=3,col =col.arrows[i], lty = NULL, lwd = par("lwd"), xpd = NULL) } text(xcen,ycen,labels=lab[i],pos=locate[i],col=col.text[i],offset=offset,...) #puts in labels for all points if(circles) { xrange <- xlim[2] - xlim[1] yrange <- ylim[2] - ylim[1] xscale <-max(x$se) *circle.size yscale <-max(y$se) *circle.size ellipse(xcen,ycen,sqrt(xscale*x$n[i]/Nmax),sqrt( yscale*x$n[i]/Nmax),col=col.arrows[i]) } } if(!is.null(group)) return(invisible(data)) } psych/R/score.alpha.r0000644000176200001440000000257512260123544014173 0ustar liggesusersscore.alpha <- function (keys,items,labels=NULL,totals=TRUE, digits=2) { .Deprecated("score.alpha", msg = "score.alpha is deprecated. Please use the scoreItems function") keys <- as.matrix(keys) #just in case they were not matrices to start with items <- as.matrix(items) scores <- items %*% keys #this actually does all the work if (length(labels)>0) {colnames(scores) <- labels} #add labels abskeys <- abs(keys) item.var <- diag(var(items,use="pairwise")) #find the item variances cov.scales <- cov(scores,use="pairwise") #and total scale variance var.scales <- diag(cov.scales) cor.scales <- cor(scores,use="pairwise") #could do this as matrix operation, but why bother sum.item.var <- item.var %*% abskeys num.item <- diag(t(abskeys) %*% abskeys) #how many items in each scale alpha.scale <- (var.scales - sum.item.var)*num.item/((num.item-1)*var.scales) if (length(labels)>0) {colnames(alpha.scale) <- labels} av.r <- alpha.scale/(num.item - alpha.scale*(num.item-1)) #alpha 1 = average r item.cor <- cor(items,scores,use="pairwise") if (!totals) scores <- scores/num.item #find averages results <- list(scores=scores,alpha=round(alpha.scale,digits), av.r=round(av.r,digits), n.items = num.item, cor = round(cor.scales,digits), item.cor = round(item.cor,digits)) class(results) <- "psych" return(results) } psych/R/cluster2keys.R0000644000176200001440000000043711305746664014403 0ustar liggesusers"cluster2keys" <- function(c) { if (class(c)[1] == "kmeans") {c <- c$cluster p <- max(c) v <- length(c) keys <- matrix(rep(0,p*v),ncol=p) for (i in 1:v) {keys[i,c[i]] <- 1} } else {if(length(class(c)) >1) {if (class(c)[2]=="iclust") {keys <- factor2cluster(c)} }} return(keys) } psych/R/scoreFast.r0000644000176200001440000001041313146204017013712 0ustar liggesusers#created 7/12/16 #just score items without a lot of stats #basically scoreItems with all the stats removed "scoreFast" <- function (keys,items,totals=FALSE,ilabels=NULL, missing=TRUE, impute="none",delete=TRUE, min=NULL,max=NULL,digits=2) { cl <- match.call() raw.data <- TRUE if(impute == FALSE) impute <- "none" if(is.list(keys)) {select <- sub("-","",unlist(keys)) select <- select[!duplicated(select)] } else { keys <- keys2list(keys) select <- selectFromKeyslist(colnames(items),keys) select <- select[!duplicated(select)]} items <- items[,select] keys <- make.keys(items,keys) #added 9/9/16 keys <- as.matrix(keys) #just in case they were not matrices to start with n.keys <- dim(keys)[2] n.items <- dim(keys)[1] abskeys <- abs(keys) keynames <- colnames(keys) num.item <- diag(t(abskeys) %*% abskeys) #how many items in each scale num.ob.item <- num.item #will be adjusted in case of impute = FALSE if (!missing) items <- na.omit(items) n.subjects <- dim(items)[1] items <- as.matrix(items) # response.freq <- response.frequencies(items) item.var <- apply(items,2,sd,na.rm=TRUE) bad <- which((item.var==0)|is.na(item.var)) if((length(bad) > 0) && delete) { for (baddy in 1:length(bad)) {warning( "Item= ",colnames(items)[bad][baddy] , " had no variance and was deleted from the data and the keys.")} items <- items[,-bad] keys <- as.matrix(keys[-bad,]) n.items <- n.items - length(bad) abskeys <- abs(keys) colnames(keys) <- keynames } item.means <- colMeans(items,na.rm=TRUE) if (is.null(min)) {min <- min(items,na.rm=TRUE)} if (is.null(max)) {max <- max(items,na.rm=TRUE)} # miss.rep <- rowSums(is.na(items)) miss.rep <- (is.na(items) +0) %*% abs(keys) num.item <- diag(t(abskeys) %*% abskeys) #how many items in each scale num.ob.item <- num.item #will be adjusted in case of impute = FALSE if(impute !="none") { miss <- which(is.na(items),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(items,na.rm=TRUE) #replace missing values with means items[miss]<- item.means[miss[,2]]} else { item.med <- apply(items,2,median,na.rm=TRUE) #replace missing with medians items[miss]<- item.med[miss[,2]]} #this only works if items is a matrix scores <- items %*% keys #this actually does all the work but doesn't handle missing values #C <- cov(items,use="pairwise") # cov.scales <- cov(scores,use="pairwise") #and total scale variance # cov.scales2 <- diag(t(abskeys) %*% C^2 %*% abskeys) # sum(C^2) for finding ase } else { #handle the case of missing data without imputation scores <- matrix(NaN,ncol=n.keys,nrow=n.subjects) # totals <- FALSE #just in case it was not already false #we could try to parallelize this next loop for (scale in 1:n.keys) { pos.item <- items[,which(keys[,scale] > 0)] neg.item <- items[,which(keys[,scale] < 0)] neg.item <- max + min - neg.item sub.item <- cbind(pos.item,neg.item) if(totals) { scores[,scale] <- rowSums(sub.item,na.rm=TRUE)} else {scores[,scale] <- rowMeans(sub.item,na.rm=TRUE) } #fixed August 17 reported by Joel Schneider rs <- rowSums(!is.na(sub.item)) num.ob.item[scale] <- mean(rs[rs>0]) #added Sept 15, 2011 # num.ob.item[scale] <- mean(rowSums(!is.na(sub.item))) # dropped } # end of scale loop # we now need to treat the data as if we had done correlations at input # C <- cov(items,use="pairwise") #cov.scales <- t(keys) %*% C %*% keys # cov.scales2 <- diag(t(abskeys) %*% C^2 %*% abskeys) # sum(C^2) for finding ase # raw.data <- FALSE } #end of treating missing without imputation slabels <- colnames(keys) if (is.null(slabels)) { if (totals) {slabels<- paste("S",1:n.keys,sep="")} else { slabels <- paste("A",1:n.keys,sep="")} } colnames(scores) <- slabels results <- scores #class(results) <- c("psych", "score.items") return(results) } psych/R/skew.R0000644000176200001440000000774413057621225012714 0ustar liggesusers#corrected May 7, 2007 #modified October ,2011 to use apply for mean and sd #modified April, 2012 to return 3 estimates, depending upon type #partly based upon e1071 skewness and kurtosis "skew" <- function (x, na.rm = TRUE,type=3) { if (length(dim(x)) == 0) { if (na.rm) { x <- x[!is.na(x)] } sdx <- sd(x,na.rm=na.rm) mx <- mean(x) n <- length(x[!is.na(x)]) switch(type, {skewer <- sqrt(n) *( sum((x - mx)^3, na.rm = na.rm)/( sum((x - mx)^2,na.rm = na.rm)^(3/2)))}, #case 1 {skewer <- n *sqrt(n-1) *( sum((x - mx)^3, na.rm = na.rm)/((n-2) * sum((x - mx)^2,na.rm = na.rm)^(3/2)))}, #case 2 {skewer <- sum((x - mx)^3)/(n * sd(x)^3) }) #case 3 } else { skewer <- rep(NA,dim(x)[2]) if (is.matrix(x)) {mx <- colMeans(x,na.rm=na.rm)} else {mx <- apply(x,2,mean,na.rm=na.rm)} sdx <- apply(x,2,sd,na.rm=na.rm) for (i in 1:dim(x)[2]) { n <- length(x[!is.na(x[,i]),i]) switch(type, {skewer[i] <-sqrt(n) *( sum((x[,i] - mx[i])^3, na.rm = na.rm)/( sum((x[,i] - mx[i])^2,na.rm = na.rm)^(3/2)))}, #type 1 {skewer[i] <- n *sqrt(n-1) *( sum((x[,i] - mx[i])^3, na.rm = na.rm)/((n-2) * sum((x[,i] - mx[i])^2,na.rm = na.rm)^(3/2)))},#type 2 {skewer[i] <- sum((x[,i] - mx[i])^3, na.rm = na.rm)/(n * sdx[i]^3)} #type 3 ) #end switch } #end loop } return(skewer) } #modified November 24, 2010 to use an unbiased estimator of kurtosis as the default #and again April 22, 2012 to include all three types "kurtosi" <- function (x, na.rm = TRUE,type=3) { if (length(dim(x)) == 0) { if (na.rm) { x <- x[!is.na(x)] } if (is.matrix(x) ) { mx <- colMeans(x,na.rm=na.rm)} else {mx <- mean(x,na.rm=na.rm)} sdx <- sd(x,na.rm=na.rm) n <- length(x[!is.na(x)]) switch(type, {kurt <- sum((x - mx)^4, na.rm = na.rm)*n /(sum((x - mx)^2,na.rm = na.rm)^2) -3}, #type 1 { kurt <- n*(n + 1)*sum((x - mx)^4, na.rm = na.rm)/( (n - 1)*(n - 2)*(n - 3)*(sum((x - mx)^2,na.rm = na.rm)/(n - 1))^2) -3 *(n- 1)^2 /((n - 2)*(n - 3)) }, # type 2 {kurt <- sum((x - mx)^4)/(n *sdx^4) -3} ) # type 3 } else { kurt <- rep(NA,dim(x)[2]) # mx <- mean(x,na.rm=na.rm) mx <-apply(x,2 ,mean,na.rm=na.rm) if(type==3) sdx <- apply(x,2,sd,na.rm=na.rm) for (i in 1:dim(x)[2]) { n <- length(x[!is.na(x[,i]),i]) switch(type, { kurt[i] <- sum((x[,i] - mx[i])^4, na.rm = na.rm)*length(x[,i]) /(sum((x[,i] - mx[i])^2,na.rm = na.rm)^2) -3}, #type 1 { xi <- x[,i]-mx[i] kurt[i] <- n*(n + 1)*sum((x[,i] - mx[i])^4, na.rm = na.rm)/( (n - 1)*(n - 2)*(n - 3)*(sum((x[,i] - mx[i])^2,na.rm = na.rm)/(n - 1))^2) -3 *(n- 1)^2 /((n - 2)*(n - 3)) } #type 2 , { kurt[i] <- sum((x[,i] - mx[i])^4, na.rm = na.rm)/((length(x[,i]) - sum(is.na(x[,i]))) * sdx[i]^4) -3}, #type 3 {NULL}) names(kurt) <- colnames(x) }} return(kurt) } #added November 15, 2010 #adapted from the mult.norm function of the QuantPsyc package "mardia" <- function(x,na.rm=TRUE,plot=TRUE) { cl <- match.call() x <- as.matrix(x) #in case it was a dataframe if(na.rm) x <- na.omit(x) if(nrow(x) > 0) { n <- dim(x)[1] p <- dim(x)[2] x <- scale(x,scale=FALSE) #zero center S <- cov(x) S.inv <- solve(S) D <- x %*% S.inv %*% t(x) b1p <- sum(D^3)/n^2 b2p <- tr(D^2)/n chi.df <- p*(p+1)*(p+2)/6 k <- (p+1)*(n+1)*(n+3)/(n*((n+1)*(p+1) -6)) small.skew <- n*k*b1p/6 M.skew <- n*b1p/6 M.kurt <- (b2p - p * (p+2))*sqrt(n/(8*p*(p+2))) p.skew <- 1-pchisq(M.skew,chi.df) p.small <- 1 - pchisq(small.skew,chi.df) p.kurt <- 2*(1- pnorm(abs(M.kurt))) d =sqrt(diag(D)) if(plot) {qqnorm(d) qqline(d)} results <- list(n.obs=n,n.var=p, b1p = b1p,b2p = b2p,skew=M.skew,small.skew=small.skew,p.skew=p.skew,p.small=p.small,kurtosis=M.kurt,p.kurt=p.kurt,d = d,Call=cl) class(results) <- c("psych","mardia") return(results) } else {warning("no cases with complete data, mardia quit.")} } psych/R/scoreOverlap.r0000644000176200001440000001106313071757473014447 0ustar liggesusers"scoreOverlap" <- function(keys,r,correct=TRUE,SMC=TRUE,av.r=TRUE,item.smc=NULL,impute=TRUE,select=TRUE) { #function to score clusters according to the key matrix, correcting for item overlap tol=sqrt(.Machine$double.eps) #machine accuracy cl <- match.call() bad <- FALSE if(is.list(keys) & (!is.data.frame(keys))) { if (select) { select <- selectFromKeyslist(colnames(r),keys) # select <- sub("-","",unlist(keys)) #added April 7, 2017 select <- select[!duplicated(select)] } else {select <- 1:ncol(r) } if (!isCorrelation(r)) {r <- cor(r[select],use="pairwise")} else {r <- r[select,select]} keys <- make.keys(r,keys)} #added 9/9/16 (and then modified March 4, 2017 if(!is.matrix(keys)) keys <- as.matrix(keys) #keys are sometimes a data frame - must be a matrix if ((dim(r)[1] != dim(r)[2]) ) {r <- cor(r,use="pairwise")} if(any(abs(r[!is.na(r)]) > 1)) warning("Something is seriously wrong with the correlation matrix, some correlations had absolute values > 1! Please check your data.") if(any(is.na(r))) { # SMC=FALSE # warning("Missing values in the correlation matrix do not allow for SMC's to be found") bad <- TRUE} if(SMC && is.null(item.smc)) {item.smc <- smc(r)} else { diag(r) <- NA item.smc <- apply(r,1,function(x) max(abs(x),na.rm=TRUE)) item.smc[is.infinite(item.smc) ] <- 1 diag(r) <- 1} if(all(item.smc ==1)) SMC <- FALSE if(!bad) {covar <- t(keys) %*% r %*% keys} else #matrix algebra is our friend {covar<- apply(keys,2,function(x) colSums(apply(keys,2,function(x) colSums(r*x,na.rm=TRUE))*x,na.rm=TRUE)) #matrix multiplication without matrices! } var <- diag(covar) #these are the scale variances n.keys <- ncol(keys) item.var <- item.smc raw.r <- cov2cor(covar) key.var <- diag(t(keys) %*% keys) key.smc <- t(keys) %*% item.smc key.alpha <- ((var-key.var)/var)*(key.var/(key.var-1)) key.lambda6 <- (var - key.var + key.smc)/var key.alpha[is.nan(key.alpha)] <- 1 #if only 1 variable to the cluster, then alpha is undefined key.alpha[!is.finite(key.alpha)] <- 1 key.av.r <- key.alpha/(key.var - key.alpha*(key.var-1)) #alpha 1 = average r colnames(raw.r) <- rownames(raw.r) <- colnames(keys) names(key.lambda6) <- colnames(keys) key.lambda6 <- drop(key.lambda6) n.keys <- ncol(keys) sn <- key.av.r * key.var/(1-key.av.r) if(!bad) { item.cov <- t(keys) %*% r #the normal case is to have all correlations raw.cov <- item.cov %*% keys} else { item.cov <- apply(keys,2,function(x) colSums(r*x,na.rm=TRUE)) #some correlations are NA raw.cov <- apply(keys,2,function(x) colSums(item.cov*x,na.rm=TRUE)) item.cov <- t(item.cov) } adj.cov <- raw.cov #now adjust them for (i in 1:(n.keys)) { for (j in 1:i) { if(av.r) { adj.cov[i,j] <- adj.cov[j,i]<- raw.cov[i,j] - sum(keys[,i] * keys[,j] ) + sum(keys[,i] * keys[,j] * sqrt(key.av.r[i] * key.av.r[j])) } else { adj.cov[i,j] <- adj.cov[j,i] <- raw.cov[i,j] - sum(keys[,i] * keys[,j] )+ sum( keys[,i] * keys[,j] * sqrt(item.smc[i]* abs(keys[,i])*item.smc[j]*abs(keys[,j]) )) } } } scale.var <- diag(raw.cov) diag(adj.cov) <- diag(raw.cov) adj.r <- cov2cor(adj.cov) #this is the overlap adjusted correlations #adjust the item.cov for item overlap #we do this by replacing the diagonal of the r matrix with the item.var (probably an smc, perhaps a maximum value) diag(r) <- item.var if(!bad) { item.cov <- t(keys) %*% r #the normal case is to have all correlations } else { item.cov <- t(apply(keys,2,function(x) colSums(r*x,na.rm=TRUE))) #some correlations are NA } if(n.keys > 1) { item.cor <- sqrt(diag(1/(key.lambda6*scale.var))) %*% (item.cov) # %*% diag(1/sqrt(item.var)) rownames(item.cor) <- colnames(keys) } else { item.cor <- r %*% keys /sqrt(key.lambda6*scale.var) } colnames(item.cor) <- colnames(r) item.cor <- t(item.cor) if (correct) {cluster.corrected <- correct.cor(adj.r,t(key.alpha)) result <- list(cor=adj.r,sd=sqrt(var),corrected= cluster.corrected,alpha=key.alpha,av.r = key.av.r,size=key.var,sn=sn,G6 =key.lambda6,item.cor=item.cor,Call=cl) } #correct for attenuation else { result <- list(cor=adj.r,sd=sqrt(var),alpha=key.alpha,av.r = key.av.r,size=key.var,sn=sn,G6 =key.lambda6,item.cor=item.cor,Call=cl)} class(result) <- c ("psych", "overlap") return(result)} #modified 01/11/15 to find r if not a square matrix #modifed 03/05/15 to do pseudo matrix multiplication in case of missing data psych/R/print.factor.pa.R0000644000176200001440000000604611127453753014752 0ustar liggesusers"print.factor.pa" <- function(x,digits=2,all=FALSE,cutoff=NULL,sort=FALSE,...) { if(is.null(cutoff)) cutoff <- .3 load <- x$loadings nitems <- dim(load)[1] nfactors <- dim(load)[2] loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems),unclass(load)) if(sort) { #first sort them into clusters #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(load),1,which.max) ord <- sort(loads$cluster,index.return=TRUE) loads[1:nitems,] <- loads[ord$ix,] rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] #now sort column wise items <- c(table(loads$cluster),1) #how many items are in each cluster? if(length(items) < (nfactors+1)) {items <- rep(0,(nfactors+1)) #this is a rare case where some clusters don't have anything in them for (i in 1:nfactors+1) {items[i] <- sum(loads$cluster==i) } } #now sort the loadings that have their highest loading on each cluster first <- 1 for (i in 1:nfactors) { if(items[i]>0 ) { last <- first + items[i]- 1 ord <- sort(abs(loads[first:last,i+2]),decreasing=TRUE,index.return=TRUE) loads[first:last,] <- loads[ord$ix+first-1,] rownames(loads)[first:last] <- rownames(loads)[ord$ix+first-1] first <- first + items[i] } } } #end of sort #they are now sorted, don't print the small loadings ncol <- dim(loads)[2]-2 fx <- format(loads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx.1 <- fx[,1] fx.2 <- fx[,3:(2+ncol)] load.2 <- loads[,3:(ncol+2)] fx.2[abs(load.2)< cutoff] <- paste(rep(" ", nc), collapse = "") fx <- data.frame(V=fx.1,fx.2) print(fx,quote="FALSE") #adapted from print.loadings vx <- colSums(load.2^2) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/nitems) if (nfactors > 1) varex <- rbind(varex, "Cumulative Var"= cumsum(vx/nitems)) cat("\n") print(round(varex, digits)) if(!is.null(x$phi)) { cat ("\n With factor correlations of \n" ) colnames(x$phi) <- rownames(x$phi) <- colnames(x$loadings) print(round(x$phi,digits))} else { if(!is.null(x$rotmat)) { U <- x$rotmat phi <- t(U) %*% U phi <- cov2cor(phi) cat ("\n With factor correlations of \n" ) colnames(phi) <- rownames(phi) <- colnames(x$loadings) print(round(phi,digits)) } } objective <- x$criteria[1] if(!is.null(objective)) { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.\n") cat("\nThe degrees of freedom for the model is",x$dof," and the fit was ",round(objective,digits),"\n") if(!is.na(x$n.obs)) {cat("The number of observations was ",x$n.obs, " with Chi Square = ",round(x$STATISTIC,digits), " with prob < ", signif(x$PVAL,digits),"\n")} } } psych/R/make.keys.R0000644000176200001440000000312113130710723013605 0ustar liggesusers"make.keys" <- function(nvars,keys.list,item.labels=NULL,key.labels=NULL) { if(!is.null(ncol(nvars))) {item.labels <- colnames(nvars) nvars <- ncol(nvars)} else { if(!is.numeric(nvars)) {item.labels <- nvars nvars <- length(item.labels)} } nkeys <- length(keys.list) keys <- matrix(rep(0,nvars*nkeys),ncol=nkeys) for (i in 1:nkeys) { list.i <- unlist(keys.list[[i]]) if((is.character(list.i)) && !is.null(item.labels)) { neg <- grep("-",list.i) list.i <- sub("-","",list.i) list.i <- match(list.i,item.labels) if(!any(is.na(neg))) list.i[neg] <- -list.i[neg]} keys[abs(list.i),i] <- sign(list.i ) } if(!is.null(key.labels)) {colnames(keys) <- key.labels} else {colnames(keys) <- names(keys.list)} if(!is.null(item.labels)) {rownames(keys) <- item.labels} return(keys)} #written June 11, 2008 #revised Sept 15, 2013 to allow for symbolic keys #Basically, the opposite of make.keys #Takes a keys matrix and converts it to a list structure (with negative signs appropriately placed) #9/10/16 "keys2list" <- function(keys,sign=TRUE) { keys.list <- list() nkeys <- ncol(keys) for (i in 1:nkeys) {temp <- rownames(keys)[which(keys[,i] < 0)] if(sign && (length(temp) >0)) temp <- paste0("-",temp) keys.list[[i]] <- c(rownames(keys)[which(keys[,i] > 0)],temp) } names(keys.list) <- colnames(keys) keys.list} #Added July 9, 2017 "selectFromKeys" <- function(keys.list) { select <- sub("-","",unlist(keys.list)) select <- select[!duplicated(select)] return(select) } psych/R/draw.tetra.R0000644000176200001440000001221512436646715014016 0ustar liggesusers"draw.tetra" <- function(r,t1,t2,shade=TRUE) { binBvn <- function(rho, rc, cc) { row.cuts <- c(-Inf, rc, Inf) col.cuts <- c(-Inf, cc, Inf) P <- matrix(0, 2, 2) R <- matrix(c(1, rho, rho, 1), 2, 2) for (i in 1:2) { for (j in 1:2) { # P[i, j] <- pmvnorm(lower = c(row.cuts[i], col.cuts[j]), upper = c(row.cuts[i + 1], col.cuts[j + 1]), corr = R) P[i, j] <- sadmvn(lower = c(row.cuts[i], col.cuts[j]), upper = c(row.cuts[i + 1], col.cuts[j + 1]), mean=rep(0,2), varcov = R) } } P } def.par <- par(no.readonly = TRUE) # save default, for resetting... if(missing(r)) r <- .5 if(missing(t1)) t1 <- 1 if(missing(t2)) t2 <- 1 segments = 101 nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) #layout.show(nf) par(mar=c(3,3,1,1)) #x amd y coordinates for an ellipse (code taken from John Fox) angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) if (abs(r) > 0) { theta <- sign(r)/sqrt(2)} else {theta = 1/sqrt(2)} shape <- diag(c(sqrt(1 + r), sqrt(1 - r))) %*% matrix(c(theta, theta, -theta, theta), ncol = 2, byrow = TRUE) ellipse <- unit.circle %*% shape x <- t1 y <- t2 xrange <- c(-3,3) yrange <- c(-3,3) xloc = x+(3-x)/2 yloc <- y+ (3-y)/2 plot(x, y, xlim=xrange, ylim=yrange, xlab="X", ylab="Y",type="n") lines(ellipse, type = "l") ellipse3 <- ellipse*3 lines(ellipse3,type="l") abline(v=x) abline(h=y) if(shade) { poly <- matrix(c(rep(t1,segments+1),rep(t2,segments+1)),ncol=2) poly[,1] <- pmax(ellipse3[,1],t1) poly[,2] <- pmax(ellipse3[,2],t2) polygon(poly ,density=10,angle=90) } text(0,0,paste("rho = ",r)) HR <- 1 - pnorm(t1) SR <- 1 - pnorm(t2) P <- binBvn(r,HR,SR) ph <- phi(P) text(0,-.3,paste("phi = " ,round(ph,2))) text(xloc,yloc+.1,expression(X > tau)) text(xloc,yloc-.1,expression(Y > Tau)) text(-xloc,yloc+.1,expression( X < tau)) text(-xloc,yloc-.1,expression(Y > Tau)) text(xloc, -yloc + .1,expression( X > tau)) text(xloc,-yloc-.1,expression(Y < Tau)) text(-xloc,-yloc+.1,expression( X < tau)) text(-xloc,-yloc-.1,expression(Y < Tau)) #now the x distribution par(mar=c(0,3,1,1)) curve(dnorm(x),-3,3,axes=FALSE) lines(c(x,x),c(0,dnorm(x))) text(xloc,dnorm(xloc)+.05,expression( X > tau)) text(t1,dnorm(t1) + .05,expression(tau)) if(shade) { xvals <- seq(t1,3,.1) yvals <- dnorm(xvals) polygon(c(xvals,rev(xvals)),c(rep(0,length(xvals)),dnorm(rev(xvals))),density=10,angle=-45) } #and the y distribution par(mar=c(3,0,1,1)) x1 <- seq(-3,3,6/segments) y1 <- dnorm(x1) plot(y1,x1,axes=FALSE,typ="l") lines(c(0,dnorm(y)),c(y,y)) text(.1,yloc,expression( Y > Tau)) text(dnorm(t2)+.05,t2,expression(Tau)) if(shade) { yvals <- seq(t2,3,.02) xvals <- dnorm(yvals) polygon(c(xvals,rev(xvals)),c(yvals,rep(t2,length(xvals))),density=10,angle=45) } #figure out the equivalent phi par(def.par) #reset to the original values } #show the density of a bivariate correlation #adapted from the examples of persp #meant to show how tetrachorics work #8/4/14 draw.cor <- function(r=.5,expand=10,theta=30,phi=30,N=101,nbcol=30,box=TRUE,main="Bivariate density rho = ",cuts=NULL,all=TRUE,ellipses=TRUE,ze=.15) { sigma <- matrix(c(1,r,r,1),2,2) #the covariance matrix x <- seq(-3, 3, length= N) y <- x #f <- function(x, y,sigma=sigma) { r <- dmvnorm(cbind(x,y),sigma=sigma)} f <- function(x, y,sigma=sigma) { r <- dmnorm(cbind(x,y),varcov=sigma)} z <- outer(x,y,f,sigma=sigma) nrz <- nrow(z) ncz <- ncol(z) jet.colors <- colorRampPalette( c("light blue", "red") ) # Generate the desired number of colors from this palette nbcol <- 100 color <- jet.colors(nbcol) color <- jet.colors(nbcol) nbcol <- length(color) #color <- terrain.colors(nbcol) #color <- rainbow(nbcol) # Compute the z-value at the facet centres zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] # Recode facet z-values into color indices facetcol <- cut(zfacet, nbcol) if(is.null(cuts)) { #the default is to show a correlation pmat <- persp(x, y, z, col = color[facetcol], phi = phi, theta = theta,scale=FALSE,expand=expand,box=box,main=paste(main,r)) } else { if(!all) {z[,y > cuts[2] ]<- NA #just show the lower quarter z[ x > cuts[1], ]<- NA} z[,abs(y - cuts[2]) < 6/(N)] <- 0 #show all four quarters, with a notch in the distributions z[abs(x -cuts[1]) < 6/(N),] <- 0 pmat <- persp(x, y, z, col = color[facetcol], phi = phi, theta = theta,scale=FALSE,expand=expand,box=box,main=paste(main,r)) } if(ellipses) { angles <- (0:N) * 2 * pi/N unit.circle <- cbind(cos(angles), sin(angles)) if (abs(r) > 0) theta1 <- sign(r)/sqrt(2) else theta1 = 1/sqrt(2) shape <- diag(c(sqrt(1 + r), sqrt(1 - r))) %*% matrix(c(theta1, theta1, -theta1, theta1), ncol = 2, byrow = TRUE) ellipse <- unit.circle %*% shape*2 lines (trans3d(ellipse[,1],ellipse[,2],z = ze, pmat = pmat),col = "red", lwd = 2) } #show it again, but without the ellipses pmat <- persp(x, y, z, col = color[facetcol], phi = phi, theta = theta,scale=FALSE,expand=expand,box=box,main=paste(main,r)) } psych/R/sim.anova.R0000644000176200001440000000425011170172760013622 0ustar liggesusers "sim.anova" <- function ( es1 = 0, es2 = 0, es3 = 0, es12 = 0, es13 = 0, es23 = 0, es123 = 0, es11=0,es22=0, es33=0,n = 2,n1 = 2, n2 = 2, n3 = 2, within=NULL,r=.8,factors=TRUE,center = TRUE,std=TRUE) { contrasts <- function(n) { if (n%%2) { seq(-floor(n/2), floor(n)/2) } else { seq(-(n - 1), (n - 1), 2) } } if(n1 * n2 * n3) { n <- n * n1 * n2 * n3 } if(n1) { cont1 <- contrasts(n1) IV1 <- rep(cont1, n/n1)} else {IV1 <- IV1<- rnorm(n)} if(n2) {cont2 <- contrasts(n2) if (n1) { IV2 <- rep(outer(rep(1, n1), contrasts(n2)), n/(n2 * n1)) } else { IV2 <- rep(cont2,n/n2)} } else {IV2 <- rnorm(n)} if (n3) {cont3 <- contrasts(n3) if (n1) { if(n2) { IV3 <- rep(outer(rep(1, n1 * n2), contrasts(n3)), n/(n1 * n2 * n3)) } else {IV3 <- rep(outer(rep(1, n1 ), contrasts(n3)), n/(n1 * n3)) } } else {if(n2) {IV3 <- rep(outer(rep(1, n2 ), contrasts(n3)), n/(n2 * n3)) } else { IV3 <- rep(contrasts(n3),n/n3)} } } else {IV3=rnorm(n)} if(factors) {if(n1) {iv1<- factor(IV1)} else{iv1<- IV1} if(n2) {iv2<- factor(IV2)} else{iv2<- IV2} if(n3) {iv3<- factor(IV3)} else{iv3<- IV3} } if(std) {IV1 <- IV1/sd(IV1) IV2 <- IV2/sd(IV2) IV3 <- IV3/sd(IV3)} y <- es1 * IV1 + es2 * IV2 + es3 * IV3 + es12 * IV1 * IV2 + es13 * IV1 * IV3 + es23 * IV2 * IV3 + es123 * IV1 * IV2 * IV3 + es11*IV1*IV1 + es22*IV2*IV2 + es33*IV3*IV3 + rnorm(n) if(!is.null(within)) {yw <- within ny <- length(yw) y<-t(r* t(matrix(rep(y,ny),ncol=ny)) + yw + sqrt(1-r^2) * rnorm(n)) } if (!center) { IV1 <- IV1 - min(IV1) + 1 IV2 <- IV2 - min(IV2) + 1 IV3 <- IV3 - min(IV3) + 1 } if(factors) {y.df <- data.frame(IV1=iv1,IV2=iv2,IV3=iv3,DV=y)} else { y.df <- data.frame(IV1, IV2, IV3,DV=y)} } psych/R/paired.r.R0000644000176200001440000000172212015461000013417 0ustar liggesusers"paired.r" <- function(xy,xz,yz=NULL,n,n2=NULL,twotailed=TRUE) { cl <- match.call() if (!is.null(yz)) { diff <- xy-xz determin=1-xy*xy - xz*xz - yz*yz + 2*xy*xz*yz av=(xy+xz)/2 cube= (1-yz)*(1-yz)*(1-yz) t2 = diff * sqrt((n-1)*(1+yz)/(((2*(n-1)/(n-3))*determin+av*av*cube))) p <- pt(abs(t2),n-2,lower.tail=FALSE) if(twotailed) p <- 2*p value <- list(test="test of difference between two correlated correlations",t=t2,p=p,Call=cl) } else { xy.z <- 0.5*log((1+xy)/(1-xy)) xz.z <- 0.5*log((1+xz)/(1-xz)) if(is.null(n2)) n2 <- n se.diff.r <- sqrt(1/(n-3) + 1/(n2-3)) diff <- xy.z - xz.z z <- abs(diff/se.diff.r) p <- (1-pnorm(z )) if(twotailed) p <- 2*p value <- list(test="test of difference between two independent correlations",z=z,p=p,Call=cl) } class(value) <- c("psych","paired.r") return(value) } psych/R/geometric.mean.R0000644000176200001440000000022411645326300014617 0ustar liggesusers"geometric.mean" <- function(x,na.rm=TRUE){ if (is.null(nrow(x))) {exp(mean(log(x),na.rm=TRUE)) } else { exp(apply(log(x),2,mean,na.rm=na.rm))} } psych/R/read.clipboard.R0000644000176200001440000002142313154323470014601 0ustar liggesusers# a number of functions to read data from the clipboard for both Macs and PCs "read.clipboard" <- function(header=TRUE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) return(read.table(file("clipboard"),header=TRUE,...)) else return(read.table(file("clipboard"),...)) } else { if (header) {return(read.table(pipe("pbpaste"),header=TRUE,...))} else { return(read.table(pipe("pbpaste"),...))}} } "read.clipboard.csv" <- function(header=TRUE,sep=',',...) { #same as read.clipboard(sep=',') MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.table(file("clipboard"),header=TRUE,sep,...) else read.clipboard<-read.table(file("clipboard"),sep=sep,...) } else { if (header) read.clipboard<- read.table(pipe("pbpaste"),header=TRUE,sep,...) else read.clipboard<- read.table(pipe("pbpaste") ,sep=sep,...)} } #corrected November 8, 2008 to work with header=FALSE "read.clipboard.tab" <- function(header=TRUE,sep='\t',...) { #same as read.clipboard(sep='\t') MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.table(file("clipboard"),header=TRUE,sep,...) else read.clipboard<-read.table(file("clipboard"),sep=sep,...) } else { if (header) read.clipboard<- read.table(pipe("pbpaste"),header=TRUE,sep,...) else read.clipboard<- read.table(pipe("pbpaste") ,sep=sep,...)} } #corrected November 8, 2008 to work with header=FALSE #adapted from John Fox's read.moments function #modified October 31, 2010 to be able to read row names as first column #corrected September 2, 2011 to be able to read row names as first column but without the diagonal "read.clipboard.lower" <- function( diag = TRUE,names=FALSE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) { con <- file("clipboard") } else { con <- pipe("pbpaste" )} xij <- scan(con,what="char") close(con) m <- length(xij) d <- if (diag |names) 1 else -1 n <- floor((sqrt(1 + 8 * m) - d)/2) if(names) {name <- xij[cumsum(1:n)] xij <- xij[-cumsum(seq(1:n))] d <- if (diag ) 1 else -1 n <- floor((sqrt(1 + 8 * (m-n)) - d)/2) } xij <- as.numeric(xij) X <- diag(n) X[upper.tri(X, diag = diag)] <- xij diagonal <- diag(X) X <- t(X) + X diag(X) <- diagonal if(!names) name <- paste("V",1:n,sep="") if(!names) name <- paste("V",1:n,sep="") if(names && !diag) {rownames(X) <- colnames(X) <- c(name,paste("V",n,sep="")) } else {rownames(X) <- colnames(X) <- name } return(X) } #fixed April 30, 2016 "read.clipboard.upper" <- function( diag = TRUE,names=FALSE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) { con <- file("clipboard") } else { con <- pipe("pbpaste" )} xij <- scan(con,what="char") close(con) m <- length(xij) d <- if (diag | names) 1 else -1 n <- floor((sqrt(1 + 8 * m) - d )/2) #solve the quadratic for n if(names) { name <- xij[1:n] xij <- xij[-c(1:n)] } xij <- as.numeric(xij) X <- diag(n) X[lower.tri(X, diag = diag)] <- xij diagonal <- diag(X) X <- t(X) + X diag(X) <- diagonal if(!names) name <- paste("V",1:n,sep="") rownames(X) <- colnames(X) <- name return(X) } #added March, 2010 to read fixed width input "read.clipboard.fwf" <- function(header=FALSE,widths=rep(1,10),...) { # MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.fwf(file("clipboard"),header=TRUE,widths=widths,...) else read.clipboard<-read.fwf(file("clipboard"),widths=widths,...) } else { if (header) read.clipboard<- read.fwf(pipe("pbpaste"),header=TRUE,widths=widths,...) else read.clipboard<- read.fwf(pipe("pbpaste"),widths=widths,...)} } #added May, 2014 to read from https files "read.https" <- function(filename,header=TRUE) { temp <- tempfile() #create a temporary file download.file(filename,destfile=temp,method="curl") #copy the https file to temp result <- read.table(temp,header=header) #now, do the normal read.table command unlink(temp) #get rid of the temporary file return(result)} #give us the result #two useful helper functions #August, 2016 #modified Jan/April 2017 to include SAS xpt "read.file" <- function(f=NULL,header=TRUE,use.value.labels=FALSE,to.data.frame=TRUE,sep=",",widths=NULL,...) { if(missing(f)) f <- file.choose() suffix <- file_ext(f) if(!missing(widths)) { result <- read.fwf(f,widths,...) message("The fixed width file ", f, "has been loaded.") } else { switch(suffix, sav = {result <- read.spss(f,use.value.labels=use.value.labels,to.data.frame=to.data.frame) message('Data from the SPSS sav file ', f ,' has been loaded.')}, csv = {result <- read.table(f,header=header,sep=sep,...) message('Data from the .csv file ', f ,' has been loaded.')}, txt = {result <- read.table(f,header=header,...) message('Data from the .txt file ', f , ' has been loaded.') }, TXT = {result <- read.table(f,header=header,...) message('Data from the .TXT file ', f , ' has been loaded.') }, text = {result <- read.table(f,header=header,...) message('Data from the .text file ', f , ' has been loaded.')}, data = {result <- read.table(f,header=header,...) message('Data from the .data file ', f , ' has been loaded.')}, dat = {result <- read.table(f,header=header,...) message('Data from the .data file ', f , ' has been loaded.')}, rds = {result <- readRDS(f,...) message('File ',f ,' has been loaded.')}, R = {result <- dget(f,...) message('File ',f ,' has been loaded.')}, r = {result <- dget(f,...) message('File ',f ,' has been loaded.')}, Rds = {result <- readRDS(f,...) message('File ',f ,' has been loaded.')}, XPT = { result <- read.xport(f,...) message('File ',f ,' has been loaded.')}, xpt = { result <- read.xport(f,...) message('File ',f ,' has been loaded.')}, #the next options use load rather than read Rda = {result <- f load(f, .GlobalEnv) message('The file(s) in ',f,' have been loaded into your environment.') }, rda = {result <- f load(f, .GlobalEnv) message('The file(s) in ',f,' have been loaded into your environment.') }, Rdata = {result <- f load(f, .GlobalEnv) message('The file(s) in ',f,' have been loaded into your environment.') }, RData = {result <- f load(f, .GlobalEnv) message('The file(s) in ',f,' have been loaded into your environment.') }, rdata = {result <- f load(f, .GlobalEnv) message('The file(s) in ',f,' have been loaded into your environment.') }, #this section handles (or complains) about jmp and SAS files. jmp = {result <- f message('I am sorrry. To read this .jmp file, it must first be saved as either a "txt" or "csv" file. If you insist on using SAS formats, try .xpt or .XPT')}, sas7bdat = {result <- f message('I am sorry. To read this .sas7bdat file, it must first be saved as either a xpt, or XPT file in SAS, or as a "txt" or "csv" file. ?read.ssd in foreign for help.')}, {message ("I am sorry. \nI can not tell from the suffix what file type is this. Rather than try to read it, I will let you specify a better format.") } ) } return (result) } "read.file.spss" <- function(f=NULL,use.value.labels=FALSE,to.data.frame=TRUE,...) { if(missing(f)) f <- file.choose() result <- read.spss(f,use.value.labels=use.value.labels,to.data.frame=to.data.frame,...) message('Data from the SPSS sav file ', f ,' has been loaded.') return(result) } "read.file.csv" <- function(f=NULL,header=TRUE,...) { if(missing(f)) f <- file.choose() read.table(f,header=header,sep=",",...) } "write.file" <- function(x,f=NULL,row.names=FALSE,...) { if(missing(f)) f <- file.choose(TRUE) suffix <- file_ext(f) switch(suffix, txt = {write.table(x,f, row.names=row.names, ...)}, text = {write.table(x,f,row.names=row.names,...)}, csv = {write.table(x,f,sep=",", row.names=row.names,...) }, R = {dput(x,f,...) }, r = {dput(x,f, ...) }, rda = {save(x,file=f,...)}, Rda ={save(x,file=f,...)}, Rds = {saveRDS(x,f)}, rds = {saveRDS(x,f)}) } "write.file.csv" <- function(x,f=NULL,row.names=FALSE,...) { if(missing(f)) f <- file.choose(TRUE) write.table(x,f,sep=",",row.names=row.names,...) } psych/R/bifactor.R0000644000176200001440000000421312456326542013526 0ustar liggesusers#added checks for GPArotation even though we are already testing somewhere else #the first function finds the first derivative, the second finds the fit "vgbQ.bimin" <- function(L) { k <- dim(L)[2] L2 <- L^2 N <- matrix(1,k,k) diag(N) <- 0 L2N <- L2 %*% N v <- sum(L2 * L2N) G = 4 * L * L2N return(list(f=v,Gq=G)) } "vgQ.bimin" <- function(L) { L2 <- L[,-1] lvg <- vgbQ.bimin(L2) v <- lvg$f G <- lvg$Gq G <-cbind(G[,1],G) G[,1] <- 0 return(list(f=v,Gq=G)) } #adapted from Jennrich and Bentler 2011 #requires GPArotation "bifactor" <- function(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000){ if(requireNamespace('GPArotation')) {GPArotation::GPForth(L, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, method="bimin")} else {stop("Bifactor requires GPArotation")} } #the oblique case #requires GPArotation "biquartimin" <- function(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000){ if(requireNamespace('GPArotation')) {GPArotation::GPFoblq(L, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, method="bimin") } else {stop("biquartimin requires GPArotation")} } #this is a minor patch to the target function to allow it to have missing elements in the target so it more closely approximates the Michael Brown function "vgQ.targetQ" <- function (L, Target = NULL) { if (is.null(Target)) stop("argument Target must be specified.") Gq <- 2 * (L - Target) Gq[is.na(Gq)] <- 0 list(Gq = Gq, f = sum((L - Target)^2,na.rm=TRUE), Method = "Target rotation") } "TargetQ" <- function(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000,Target=NULL) { if(requireNamespace('GPArotation')) {GPArotation::GPFoblq(L, Tmat=Tmat,normalize=normalize, eps=eps, maxit=maxit, method="targetQ",Target)} else {stop("TargetQ requires GPArotation")}} "TargetT" <- function(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000,Target=NULL) { if(requireNamespace('GPArotation')) {GPArotation::GPForth(L, Tmat=Tmat,normalize=normalize, eps=eps, maxit=maxit, method="targetQ",Target)} else {stop("TargetT requires GPArotation")}} psych/R/block.random.R0000644000176200001440000000224511364206714014304 0ustar liggesusers"block.random" <- function(n,ncond=NULL) { if(is.null(ncond)) {ncond <- 2 IVs <- 1 conditions <- c(ncond) } else { if (length(ncond) < 2) { IVs<- 1 conditions <- c(ncond)} else { IVs <- length(ncond) conditions <- ncond ncond <- prod(ncond)} } if(floor(n/ncond) * ncond != n) {stop("number of subjects much be a multiple of number of conditions")} blocks <- matrix(rep(NA,n*(1+IVs)),ncol=1+IVs) rcond <- rep(NA,n) if(is.null(names(conditions))) {colnames(blocks) <- c("blocks",paste("IV",1:IVs,sep=""))} else {colnames(blocks) <- c("blocks",names(conditions))} rownames(blocks) <- paste("S",1:n,sep="") for (block in 1:(n/ncond)) { blocks[((block-1)*ncond+1):(block*ncond),1] <- block rcond [((block-1)*ncond+1):(block*ncond)] <- sample(ncond,replace=FALSE) } for (i in 1:IVs) {if(i<2) { blocks[,i+1]<- ceiling( (rcond %% conditions[i] + 1))} else { blocks[,i+1]<- ceiling( (rcond %% prod(conditions[1:i]) +1 ) /prod(conditions[1:(i-1)])) }} return(blocks)}psych/R/structure.list.R0000644000176200001440000000161711141172325014740 0ustar liggesusers"structure.list" <- function(nvars,f.list,f=NULL,f.labels=NULL,item.labels=NULL) { nfactors <- length(f.list) fmodel <- matrix(rep(0,nvars*nfactors),ncol=nfactors) for (i in 1:nfactors) { if(!is.null(f.list[[i]])) { list.i <- unlist(f.list[[i]]) fmodel[abs(list.i),i] <- paste(f,letters[i],list.i,sep="") } } if(!is.null(f.labels)) {colnames(fmodel) <- f.labels} else {colnames(fmodel) <- names(f.list)} if(!is.null(item.labels)) {rownames(fmodel) <- item.labels} return(fmodel)} #written Jan 22, 2009 "phi.list" <- function(nf,f.list,f.labels=NULL) { nkeys <- length(f.list) phi <- diag(1,nf,nf) for (i in 1:nkeys) { list.i <- unlist(f.list[[i]]) phi[list.i,i] <- paste("r",letters[i],letters[list.i],sep="") } if(!is.null(f.labels)) {colnames(phi) <- f.labels} else {colnames(phi) <- paste("F",1:nf,sep="")} rownames(phi) <- colnames(phi) return(phi)} #written Jan 22, 2009psych/R/irt.person.rasch.R0000644000176200001440000000162310474443510015132 0ustar liggesusers#steps towards an IRT program #we find the difficulties using ir.item.diff.rasch #now estimate the thetas #Then, to find the person parameters, use optimize "irt.person.rasch" <- function(diff,items) { # #the basic one parameter model irt <- function(x,diff,scores) { fit <- -1*(log(scores/(1+exp(diff-x)) + (1-scores)/(1+exp(x-diff)))) mean(fit,na.rm=TRUE) } # diff<- diff items <-items num <- dim(items)[1] fit <- matrix(NA,num,2) total <- rowMeans(items,na.rm=TRUE) count <- rowSums(!is.na(items)) for (i in 1:num) { if (count[i]>0) {myfit <- optimize(irt,c(-4,4),diff=diff,scores=items[i,]) #how to do an apply? fit[i,1] <- myfit$minimum fit[i,2] <- myfit$objective #fit of optimizing program } else { fit[i,1] <- NA fit[i,2] <- NA } #end if else } #end loop irt.person.rasch <-data.frame(total,theta=fit[,1],fit=fit[,2],count)}psych/R/sim.hierarchical.R0000644000176200001440000000343312765365166015155 0ustar liggesusers# A function to create a correlation matrix with a hierarchical structure # The default values match those of Jensen and Weng #dropped the call to mvrnorm Nov 28, 2014 #and added back the mu parameter in Sept,2016 (thanks to Alan Robinson for noticing this) "sim.hierarchical" <- function (gload=NULL,fload=NULL,n=0,raw=FALSE,mu = NULL) { cl <- match.call() # require(MASS) if(is.null(gload)) gload=matrix(c(.9,.8,.7),nrow=3) if(is.null(fload)) {fload <-matrix(c(.8,.7,.6,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3)} fcor <- gload %*% t(gload) #the factor correlation matrix diag(fcor) <-1 #put ones on the diagonal model <- fload %*% fcor %*% t(fload) #the model correlation matrix for oblique factors diag(model)<- 1 # put ones along the diagonal nvar <- dim(fload)[1] colnames(model) <- rownames(model) <- paste("V",1:nvar,sep="") if(n>0) { if(is.null(mu)) mu <- rep(0,nvar) #observed <- mvrnorm(n = n, mu, Sigma=model, tol = 1e-6, empirical = FALSE) #the next 3 lines replaces mvrnorm (adapted from mvrnorm, but without the checks) eX <- eigen(model) observed <-matrix(rnorm(nvar * n),n) observed <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(observed)) observed <- t(t(observed) + mu) colnames(observed) <- paste("V",1:nvar,sep="") r <- cor(observed) if(!raw) { result <- list(model=model, r= r, N=n,Call=cl) } else { result <- list(model=model, r= r,observed=observed, N=n,Call=cl)} class(result) <- c("psych","sim") return(result) } else {return( model) } } psych/R/p.rep.R0000644000176200001440000000315310702323025012744 0ustar liggesusers"p.rep" <- function(p=.05,n=NULL,twotailed=FALSE) { df <- n - 2 if(twotailed) p <- 2*p p.rep <- pnorm(qnorm((1-p))/sqrt(2)) if (!is.null(n)) { t <- -qt(p/2,df) r.equiv <- sqrt(t^2/(t^2 + df)) dprime = 2*t*sqrt(1/df) return(list(p.rep=p.rep,d.prime=dprime,r.equiv=r.equiv)) } else { return(p.rep)} } "p.rep.f" <- function(F,df2,twotailed=FALSE) { p <- pf(F,1,df2,lower.tail=FALSE) dprime = sqrt(4*F/(df2)) if(twotailed) p <- 2*p p.rep <- pnorm(qnorm(1-p)/sqrt(2)) if(twotailed) p <- 2*p r.equiv <- sqrt(F/(F+df2)) return(list(p.rep=p.rep,dprime=dprime,prob=p,r.equiv=r.equiv))} "p.rep.r" <- function(r,n,twotailed=TRUE) { dprime <- 2*r/sqrt(1-r^2) sigmad <- sqrt(4/(n-4)) z <- dprime/sigmad p <- 1- pnorm(z) p.rep <- pnorm(qnorm((1-p))/sqrt(2)) if(twotailed) p <- 2*p return(list(p.rep=p.rep,dprime=dprime,prob=p))} "p.rep.t" <- function(t,df,df2=NULL,twotailed=TRUE) { if (is.null(df2)) { dprime = 2*t/sqrt(df) nc <- 1 } else { n1 <- df+1 n2 <- df2+1 df <- df + df2 nc <- ((n1+n2)/2) / ((2*n1 * n2)/(n1+n2)) #average n /n harmonic dprime <- (2* t /sqrt(df)) * sqrt(nc) } p <- pt(t,df,lower.tail=FALSE) r.equiv <- sqrt(t^2/(t^2 + df)) if(twotailed) p <- 2*p p.rep <- pnorm(qnorm((1-p))/sqrt(2)) return(list(p.rep=p.rep,dprime=dprime,prob=p,r.equiv=r.equiv))} "p.rep.z" <- function(z,n,twotailed=TRUE) { dprime = 2*z*sqrt(1/n) p <- (1-pnorm(z )) r.equiv <- sqrt(z^2/(z^2 + n)) if(twotailed) p <- 2*p p.rep <- pnorm(qnorm((1-p))/sqrt(2)) return(list(p.rep=p.rep,dprime=dprime,prob=p,r.equiv=r.equiv))} psych/R/ICLUST.sort.R0000644000176200001440000000566012213116103013712 0ustar liggesusers"iclust.sort"<- function (ic.load,cut=0,labels=NULL,keys=FALSE, clustsort=TRUE) {ICLUST.sort(ic.load,labels,keys,clustsort)} "ICLUST.sort"<- function (ic.load,cut=0,labels=NULL,keys=FALSE, clustsort=TRUE) { if(is.matrix(ic.load)) {loadings <- ic.load pattern <- as.matrix(loadings)} else { loadings <- ic.load$loadings pattern <- as.matrix(ic.load$pattern)} nclust <- dim(loadings)[2] nitems <- dim(loadings)[1] loadings <- as.matrix(loadings) #just in case there is just one cluster loadings <- unclass(loadings) #to get around the problem of a real loading matrix if(nclust > 1) {eigenvalue <- diag(t(pattern)%*% loadings) #put the clusters into descending order by eigenvalue evorder <- order(eigenvalue,decreasing=TRUE) if(clustsort) loadings <- loadings[,evorder] #added the clustsort option 2011.12.22 until now had always sorted } if (length(labels)==0) { var.labels <- rownames(loadings)} else {var.labels=labels} if (length(var.labels)==0) {var.labels =paste('V',seq(1:nitems),sep='')} #unlabled variables loads <- data.frame(item=seq(1:nitems),content=var.labels,cluster=rep(0,nitems),loadings) #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(loadings),1,which.max) for (i in 1:nitems) {if (abs(loadings[i,loads$cluster[i]]) < cut) {loads$cluster[i] <- nclust+1}} #assign the ones that missed the cut a location ord <- sort(loads$cluster,index.return=TRUE) loads[1:nitems,] <- loads[ord$ix,] rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] items <- c(table(loads$cluster),1) #how many items are in each cluster? if(length(items) < (nclust+1)) {items <- rep(0,(nclust+1)) #this is a rare case where some clusters don't have anything in them for (i in 1:nclust+1) {items[i] <- sum(loads$cluster==i) } } #now sort the loadings that have their highest loading on each cluster first <- 1 for (i in 1:nclust) { if(items[i]>0 ) { last <- first + items[i]- 1 ord <- sort(abs(loads[first:last,i+3]),decreasing=TRUE,index.return=TRUE) loads[first:last,] <- loads[ord$ix+first-1,] rownames(loads)[first:last] <- rownames(loads)[ord$ix+first-1] first <- first + items[i]} } if (first < nitems) loads[first:nitems,"cluster"] <- 0 #assign items less than cut to 0 if(keys) {result <- list(sorted=loads,clusters=factor2cluster(loadings))} else result <- list(sorted=loads) class(result) <- c("psych","iclust.sort") #need to clean up print to make this work return(result) } #revised August 8, 2007 to add cluster keying option and to allow us to work with factor analysis output #revised Sept 15, 2007 to remove the "loadings" parameter #revised Ausgust 30, 2008 to make class psych #revised August 28, 2012 to meet a request from Gundmundur Arnkelsson to be able to print from principal output. psych/R/cortest.R0000644000176200001440000000437113077675174013435 0ustar liggesusers"cortest" <- function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE,cor=TRUE) { cl <- match.call() if ((dim(R1)[1] != dim(R1)[2]) & cor) {n1 <- dim(R1)[1] # message("R1 was not square, finding R from data") R1 <- cor(R1,use="pairwise")} if(!is.matrix(R1) ) R1 <- as.matrix(R1) #converts data.frames to matrices if needed p <- dim(R1)[2] if(is.null(n1)) {n1 <- 100 warning("n not specified, 100 used") } if(is.null(R2)) { if(fisher) {R <- 0.5*log((1+R1)/(1-R1)) R2 <- R*R} else {R2 <- R1*R1} if(cor) {diag(R2) <- 0 E <- (sum(R2*lower.tri(R2))) z <- sum(R*lower.tri(R)) df <- p*(p-1)/2} else { E <- sum(R2) z <- sum(R1) df <- ncol(R1) * nrow(R1)} chisq <- E *(n1-3) z <- z /sqrt(n1-3) p.val <- pchisq(chisq,df,lower.tail=FALSE) } else { #end of 1 matrix test if ((dim(R2)[1] != dim(R2)[2]) & cor) {n2 <- dim(R2)[1] message("R2 was not square, finding R from data") R2 <- cor(R2,use="pairwise")} if(!is.matrix(R2) ) R2 <- as.matrix(R2) if(fisher) { R1 <- 0.5*log((1+R1)/(1-R1)) R2 <- 0.5*log((1+R2)/(1-R2)) if(cor) {diag(R1) <- 0 diag(R2) <- 0} } R <- R1 -R2 #direct difference R2 <- R*R if(is.null(n2)) n2 <- n1 n <- (n1*n2)/(n1+n2) if(cor) { E <- (sum(R2*lower.tri(R2))) chisq <- E *(n-3) df <- p*(p-1)/2 z <- sum(R2*lower.tri(R2)) / sqrt(n-3)} else {E <- sum(R2) chisq <- E * (n-3) df <- ncol(R2) * nrow(R2) z <- sum(R2) / sqrt(n-3)} p.val <- pchisq(chisq,df,lower.tail=FALSE) } if (is.null(n2) ) z <- NULL result <- list(chi2=chisq,prob=p.val,df=df,z=z,Call=cl) class(result) <- c("psych","cortest") return(result) } #version of June 25, 2008 #revised October 12, 2011 to allow non-square matrices psych/R/ellipses.R0000644000176200001440000000507711345023576013563 0ustar liggesusers"ellipses" <- function(x,y=NULL,add=FALSE,smooth=TRUE, lm=FALSE,data=TRUE,n=2,span=2/3, iter=3,col="red", xlab =NULL,ylab= NULL,...) { #based upon John Fox's ellipse functions done=FALSE #this is a kludge! segments=51 if((is.matrix(x)) | (is.data.frame(x))) { if (dim(x)[2] >2 ) { pairs.panels(x) done=TRUE } else { if(is.null(xlab)) xlab=colnames(x)[1] if(is.null(ylab)) ylab=colnames(x)[2] y <- x[,2] x <- x[,1] } #dim ==2 } else { if((!is.vector(x)) | (!is.vector(y))) {stop("x and y must be vectors") } } if(!done){ xm <- mean(x,na.rm=TRUE) ym <- mean(y,na.rm=TRUE) xs <- sd(x,na.rm=TRUE) ys <- sd(y,na.rm=TRUE) r = (cor(x, y,use="pairwise")) if(is.null(xlab)) xlab=colnames(x) if(is.null(ylab)) ylab=colnames(y) angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) if (abs(r)>0 )theta <- sign(r)/sqrt(2) else theta=1/sqrt(2) shape <- diag(c(sqrt(1+r),sqrt(1-r))) %*% matrix(c(theta,theta,-theta,theta),ncol=2,byrow=TRUE) ellipse <- unit.circle %*% shape ellipse[,1] <- ellipse[,1]*xs + xm ellipse[,2] <- ellipse[,2]*ys + ym if (add) { lines(ellipse,col=col, ...) if(data) { points(xm,ym,pch=20,cex=1.5,col=col)} } else {plot(x,y,xlab=xlab,ylab=ylab,...) points(xm,ym,pch=20,cex=1.5,col=col) lines(ellipse, type = "l",col=col,...)} if(smooth) { ok <- is.finite(x) & is.finite(y) if (any(ok)) lines(stats::lowess(x[ok], y[ok], f = span, iter = iter), col = col, ...)} if(lm) { ok <- is.finite(x) & is.finite(y) if (any(ok)) abline(lm(y[ok]~ x[ok]), col = col,lty="dashed", ...)} if(n>1) { ellipse <- unit.circle %*% shape #draw another one ellipse[,1] <- ellipse[,1]*2*xs + xm ellipse[,2] <- ellipse[,2]*2*ys + ym lines(ellipse,col=col, ...) }} } #then, just a fun function to draw Minkowski "circles" "minkowski"<- function(r=2,add=FALSE,main=NULL,xl=1,yl=1) { segments=51 x <- cos((0:segments) * pi/(2* segments)) #this spaces the points out to make a cleaner drawing min.circle <- cbind(x*xl, yl*((1-x^r)/(x^r+(1-x^r)))^(1/r)) if(add) {points(min.circle,type="l") } else plot(min.circle,ylim=c(-1,1),xlim=c(-1,1),typ="l", xlab="",ylab="",main=main) points(-min.circle,typ="l") points(-min.circle[,1],min.circle[,2],typ="l") points(min.circle[,1],-min.circle[,2],typ="l") } psych/R/phi.demo.R0000644000176200001440000000331212451110615013422 0ustar liggesusers"phi.demo" <- function(n=1000,r=.6 ,cuts =c(-2,-1,0,1,2) ) { #simulate correlation matrix with variable cut points -- psychometric demo #make up some correlations with different cut points latent <-rnorm(n) #make up some random normal theta scores err <- rnorm(n) #random normal error scores observed <- latent*(r) + err*sqrt(1-r*r) #observed = T + E #convert to 0/1 with different values of cuts trunc<- matrix(rep(observed,length(cuts)),ncol=length(cuts)) # for (i in 1:length(cuts)) { # trunc[observed > cuts[i],i] <- 1 # trunc[observed < cuts[i],i] <- 0} # for(i in 1:n) {for (j in 1:length(cuts)) {trunc[i,j] <- rbinom(1,1,trunc[i,j] > cuts[j])}} # for(i in 1:n) {for (j in 1:length(cuts)) {trunc[i,j] <-logistic(observed] > cuts[j])}} for (j in 1:length(cuts)) {trunc[,j] <- (trunc[,j] > cuts[j]) } d.mat<- data.frame(latent,observed,trunc) #combine into a data frame pairs.panels(d.mat,main="Phi coefficients for extreme cut point normal data") trunc.cor<- cor(d.mat) #find the Pearson correlations freq <- apply(d.mat,2,mean) #find the frequencies of scores #first demonstrate the tetrachoric function tetra <- tetrachoric(d.mat[,3:7],correct=FALSE) yule <- YuleCor(trunc) for (i in 4:length(d.mat)) { for (j in 3:i) { trunc.cor[j,i]<- phi2tetra(trunc.cor[i,j],c(freq[i],freq[j])) }} result <- list(tetrachoric=tetra, phis=trunc.cor, Yule = yule,data = d.mat) class(result) <- c('psych','phi.demo') return(result) } print.psych.phi <- function(x,digits=2) { print(x$tetrachoric) cat("\nPearson (phi) below the diagonal, phi2tetras above the diagonal\n") print(round(x$phis,digits)) cat("\nYule correlations") print(x$Yule) }psych/R/glb.algebraic.R0000644000176200001440000000337212456461207014414 0ustar liggesusers#Written by Andreas Moltner with some revisions by William Revelle #March, 2010 "glb.algebraic"<- function(Cov,LoBounds=NULL, UpBounds=NULL) { if(!requireNamespace('Rcsdp')) {stop("Rcsdp must be installed to find the glb.algebraic") } cl<-match.call() # check input p<-dim(Cov)[2] if (dim(Cov)[1] != p) Cov <- cov(Cov) #find the covariances if (any(t(Cov)!=Cov)) stop("'Cov' is not symmetric") if(is.null(LoBounds)) LoBounds <-rep(0,ncol(Cov)) if(is.null(UpBounds)) UpBounds <- diag(Cov) if (any(LoBounds>UpBounds)) { stop("'LoBounds'<='UpBounds' violated") } # if (min(eigen(Cov,symmetric=TRUE,only.values=TRUE)$values)<0) # stop("'Cov' is not positive semidefinite") if (length(LoBounds) != p) stop("length(LoBounds) != dim(Cov)") if (length(UpBounds) != p) stop("length(UpBounds)!=dim(Cov)") Var<-diag(Cov) # objective function opt --> min opt=rep(1,p) # set up csdp input C<-list(diag(Var)-Cov, -UpBounds,LoBounds) A<-vector("list",p) for (i in 1:p) { b<-rep(0,p) b[i]<-1 A[[i]]<-list(diag(b),-b,b) } K<-list(type=c("s","l","l"),size=rep(p,3)) # call csdp result<- Rcsdp::csdp(C,A,opt,K) if (result$status>=4||result$status==2) { warning("Failure of csdp, status of solution=",result$status) lb<-list(glb=NA,solution=NA,status=result$status,Call=cl) } else { if (result$status!=0) { warning("status of solution=",result$status) } # greatest lower bound to reliability item.diag <- result$y names(item.diag) <- colnames(Cov) lb<-list(glb=(sum(Cov)-sum(Var)+sum(result$y))/sum(Cov), solution = item.diag, status=result$status, Call=cl) } return(lb) } psych/R/sim.congeneric.R0000644000176200001440000000446612257600777014656 0ustar liggesusers "congeneric.sim" <- function(loads = c(0.8, 0.7, 0.6, 0.5),N = NULL, err=NULL, short=TRUE) { n <- length(loads) loading <- matrix(loads, nrow = n) error <- diag(1, nrow = n) if (!is.null(err)) {diag(error) <- err} else { diag(error) <- sqrt(1 - loading^2) } pattern <- cbind(loading, error) colnames(pattern) <- c("theta", paste("e", seq(1:n), sep = "")) rownames(pattern) <- c(paste("V", seq(1:n), sep = "")) model <- pattern %*% t(pattern) if(!is.null(N)) {latent <- matrix(rnorm(N * (n + 1)), ncol = (n + 1)) observed <- latent %*% t(pattern) colnames(latent) <- c("theta", paste("e", seq(1:n), sep = "")) if(short) model <- cor(observed) } if (short) {return(model)} else {result <- list(model=model,pattern=pattern,r=cor(observed),latent=latent,observed=observed,N=N) class(result) <- c("psych","sim") return(result)} } "sim.congeneric" <- function(loads = c(0.8, 0.7, 0.6, 0.5),N = NULL, err=NULL, short=TRUE,categorical=FALSE, low=-3,high=3,cuts=NULL) { n <- length(loads) loading <- matrix(loads, nrow = n) error <- diag(1, nrow = n) if (!is.null(err)) {diag(error) <- err} else { diag(error) <- sqrt(1 - loading^2) } pattern <- cbind(loading, error) colnames(pattern) <- c("theta", paste("e", seq(1:n), sep = "")) rownames(pattern) <- c(paste("V", seq(1:n), sep = "")) model <- pattern %*% t(pattern) if(!is.null(N)) {latent <- matrix(rnorm(N * (n + 1)), ncol = (n + 1)) observed <- latent %*% t(pattern) if(is.null(cuts)) { if (categorical) { observed = round(observed) #round all items to nearest integer value observed[(observed<= low)] <- low observed[(observed>high) ] <- high } } else { temp <- observed ncuts <- length(cuts) temp[(observed<= cuts[1])] <- 1 if(ncuts > 1) {for (nc in 2:ncuts) {temp[(observed > cuts[nc-1]) & (observed <= cuts[nc])] <- nc}} temp[(observed > cuts[ncuts])] <- ncuts+1 observed <- temp-1 } colnames(latent) <- c("theta", paste("e", seq(1:n), sep = "")) if(short) model <- cor(observed) } if (short) {return(model)} else { if(!is.null(N)) { result <- list(model=model,pattern=pattern,r=cor(observed),latent=latent,observed=observed,N=N) } else { result<- model} class(result) <- c("psych","sim") return(result)} } psych/R/ICLUST.diagram.R0000644000176200001440000001730512260136526014343 0ustar liggesusers"iclust.diagram" <- function(ic,labels=NULL,short=FALSE,digits=2,cex=NULL,min.size=NULL,e.size=1,colors=c("black","blue"), main="ICLUST diagram",cluster.names = NULL,marg=c(.5,.5,1.5,.5)) { old.par<- par(mar=marg) #give the window some narrower margins on.exit(par(old.par)) #set them back clusters <- ic$results #the main table from ICLUST num <- nrow(clusters) num.var <- num+1 if(is.null(cex)) cex <- min(16/num.var,1) if (is.null(labels)) { var.labels <- rownames(ic$loadings)} else {var.labels=labels} if (short) {var.labels <- paste("V",1:num.var,sep="")} if(is.null(var.labels)) {var.labels <- paste("V",1:num.var,sep="")} fixed <- fix.names(ic,var.labels) clusters <- fixed$ic$results max.len <- max(nchar((var.labels))) if(is.null(cluster.names)) cluster.names <- rownames(clusters) #added Sept 2, 2012 names(cluster.names) <- rownames(clusters) length.labels <- max(max.len* .15 * cex,.25*cex) ## nc <- length(ic$size) nvar <- sum(ic$size) last <- dim(clusters)[1] max.size <- max(ic$size) limx <- c(-length.labels,nvar+2) limy <- c(0,nvar+1) if(nvar < 12) e.size <- e.size * .7 #this is a kludge to make small problems look better if(is.null(min.size)) min.size <- .1 * nvar plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main) new.max.len <- max(strwidth(var.labels,units="user")) if (new.max.len > max.len) {limx <- c(-new.max.len/2,nvar+2) plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main)} top <- num.var done <- 0 if (nc==1) {head <- num size <- num.var y.loc <- clusters[head,"size2"] down(clusters,head,size,y.loc,old.head= NULL,old.loc=NULL,min.size=min.size,e.size=e.size,digits=digits,cex=cex,limx=limx,limy=limy,colors=colors,cluster.names=cluster.names) } else { #the multiple cluster case for(clust in 1:nc) { #size <- ic$size[clust] size <- sum(abs(ic$clusters[,clust])) if (substr(colnames(ic$clusters)[clust],1,1)=="C") { #head <- which(rownames(clusters)==names(ic$size[clust])) head <- which(rownames(clusters)==colnames(ic$clusters)[clust]) cluster <- clusters[head,] y.loc <- clusters[head,"size2"] + done down(clusters,head,size,y.loc,old.head= NULL,old.loc=NULL,min.size=min.size,e.size=e.size,digits=digits,cex=cex,limx=limx,limy=limy,colors=colors,cluster.names = cluster.names) } else {v.name <-names(which(ic$clusters[,clust] ==1)) dia.rect(0,done+.5,v.name,xlim=limx,ylim=limy,cex=cex) #done <- done + 1 } done <- done + size } }} fix.names <- function(ic,var.labels) { var.names <- ic$results[,c(1:2)] max.len <- 0 vn <- dim(var.names)[1] for(i in 1:vn) { vname <- sub("V","",var.names[i,1]) suppressWarnings(vname <- as.numeric(vname) ) if(!is.na(vname) & (vname < 1)) vname <- NA if(!is.na(vname)) {var.names[i,1] <- var.labels[vname] if(max.len < nchar(var.labels[vname])) max.len <- nchar(var.labels[vname]) } vname <- sub("V","",var.names[i,2]) suppressWarnings(vname <- as.numeric(vname) ) if(!is.na(vname) & (vname < 1)) vname <- NA if(!is.na(vname)) {var.names[i,2] <- var.labels[vname] if(max.len < nchar(var.labels[vname])) max.len <- nchar(var.labels[vname]) } } ic$results[,c(1:2)] <- var.names return(list(ic=ic,max.len=max.len)) } "dia.cluster" <- function(x, y = NULL, cluster, link=NULL, digits=2,cex = cex,e.size=.6,xlim=c(0,1),ylim=c(0,1),small=FALSE,cluster.names) { if(!small) { #text(x,y, rownames(cluster),pos=3,cex=cex) text(x,y, (cluster.names[rownames(cluster)]),pos=3,cex=cex) text(x,y, substitute(list(alpha) == list(a),list(a=round(cluster[1,"alpha"],digits))),cex=cex) text(x,y, substitute(list(beta) == list(b), list(b=round(cluster[1,"beta"],digits))),cex=cex,pos=1) xs <- dia.ellipse1(x,y,xlim=xlim,ylim=ylim,e.size=e.size )} else { text(x,y, (cluster.names[rownames(cluster)]),cex=cex) xs <- dia.ellipse1(x,y,xlim=xlim,ylim=ylim,e.size=e.size *.75) } vert <- cex*.3 left <- c(x-xs,y) right <- c(x+xs,y) top <- c(x,y+xs) bottom <- c(x,y-xs) center <- c(x,y) dia.cluster <- list(left=left,right=right,top=top,bottom=bottom,center=center,link=link,radius=xs) } #down is a recursive function that draws the complete cluster structure "down" <- function(clusters,head,x,y,sign.clust=1,old.head = NULL,old.loc=NULL,digits,cex,limx,limy,min.size=1,e.size=.6,color.lines=TRUE,colors=c("black","blue"),cluster.names ) { shift <-2 size <- clusters[head,"size"] cluster <- clusters[head,] if(is.null(old.loc)) {link <- NULL} else {link <- old.head} #remember the cluster that spawned this cluster if(size > min.size) {c.loc <- dia.cluster(head+shift,y,cluster,link=link,digits=digits,cex=cex,e.size=e.size,cluster.names=cluster.names) } else {c.loc <- dia.cluster(head+2,y,cluster,link=link,digits=digits,cex=cex,e.size=e.size*.6,small=TRUE,cluster.names=cluster.names)} if(!is.null(old.loc)) { if(old.loc$top[2] < c.loc$top[2]) {labels <- round(clusters[c.loc$link,"r1"],digits) } else { labels <- round(clusters[c.loc$link,"r2"],digits)} sign.clust <- sign(labels) if(old.loc$left[1] < c.loc$right[1]) { if(old.loc$left[2] < c.loc$right[2]) { sign.clust <- sign(labels) dia.arrow(old.loc,c.loc,labels=labels,cex=cex,col=colors[((sign.clust < 0)+1)],lty=(sign.clust < 0)+1)} else { dia.arrow(old.loc,c.loc,labels=labels,cex=cex,col=colors[((sign.clust <0)+1)],lty=((sign.clust)<0)+1)}} else { dia.arrow(old.loc,c.loc,labels=labels,cex=cex,col=colors[((sign(labels)<0)+1)],lty=((sign(labels)<0)+1))}} size1 <- clusters[head,"size1"] size2 <- clusters[head,"size2"] if(size1==1) { v.loc <- dia.rect(0,y+.5,clusters[head,1],xlim=limx,ylim=limy,cex=cex) #sign.clust <- sign.clust *sign(cluster["r1"]) sign.clust <- sign(cluster["r1"]) dia.arrow(c.loc,v.loc$right,round(cluster["r1"],digits),cex=cex,col=colors[((sign.clust)<0) +1],lty=((sign.clust) <0)+ 1) } else { head1 <- which(rownames(clusters)== clusters[head,1]) cluster <- clusters[head1,] #get ready to go down the tree y.shift <- clusters[head1,"size2"] down(clusters,head1,x,y+y.shift,sign.clust,old.head=head,old.loc = c.loc,min.size=min.size,e.size=e.size,digits=digits,cex=cex,limx=limx,limy=limy,colors=colors,cluster.names=cluster.names) } if(size2==1) { v.loc <- dia.rect(0,y-.5,clusters[head,2],xlim=limx,ylim=limy,cex=cex) sign.clust <- sign(clusters[head,"r2"]) #sign.clust <- sign(clusters[head,"r2"]) dia.arrow(c.loc,v.loc$right,labels = round(clusters[head,"r2"],digits),cex=cex,col=colors[((sign.clust)<0) +1],lty=((sign.clust)<0) + 1) } else { old.head <- head head <- which(rownames(clusters)== clusters[head,2]) cluster <- clusters[head,] y.shift <- clusters[head,"size1"] down(clusters,head,x,y-y.shift,sign.clust,old.head=old.head,old.loc = c.loc,min.size=min.size,e.size=e.size,digits=digits,cex=cex,limx=limx,limy=limy,colors=colors,cluster.names=cluster.names) } } psych/R/ICLUST.rgraph.R0000644000176200001440000000707512456461256014235 0ustar liggesusers#create Rgraphviz commands #create dot file for graphviz from ICLUST output #modified from ICLUST.graph to produce Rgraphviz output "ICLUST.rgraph" <- function(ic.results,out.file = NULL, min.size=1,short=FALSE,labels=NULL, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=2,title="ICLUST",label.font=2, ...){ if(!requireNamespace('Rgraphviz')) {stop("I am sorry, you need to have the Rgraphviz package installed") #create several dummy functions to get around the "no visible global function definition" problem nodes <- function() {} addEdge <- function() {} subGraph <- function(){} } clusters <- as.matrix(ic.results$clusters) results <- ic.results$results rank.direction <- match.arg(rank.direction) #first some basic setup parameters #create the items as boxes #add the sign from the clusters num.var <- dim(clusters)[1] #how many variables? num.clust <- num.var - dim(clusters)[2] vars <- paste("V",1:num.var,sep="") clust <- paste("C",1:num.clust,sep="") clust.graph <- new("graphNEL",nodes=c(vars,clust),edgemode="directed") graph.shape <- c(rep("box",num.var),rep("ellipse",num.clust)) graph.rank <- c(rep("sink",num.var),rep("",num.clust)) names(graph.shape) <- nodes(clust.graph) names(graph.rank) <- nodes(clust.graph) edge.label <- rep("",num.clust*2) edge.name <- rep("",num.clust*2) names(edge.label) <- seq(1:num.clust*2) #show the cluster structure with ellipses for (i in 1:num.clust) {if(results[i,1]>0) { #avoid printing null results clust.graph <- addEdge(row.names(results)[i], results[i,1], clust.graph,1) edge.label[(i-1)*2+1] <- round(results[i,"r1"],digits) edge.name [(i-1)*2+1] <- paste(row.names(results)[i],"~", results[i,1],sep="") clust.graph <- addEdge(row.names(results)[i], results[i,2], clust.graph,1) edge.label[i*2] <- round(results[i,"r2"],digits) edge.name [i*2] <- paste(row.names(results)[i],"~", results[i,2],sep="") }} nAttrs <- list() #node attributes eAttrs <- list() #edge attributes if (!is.null(labels)) {var.labels <- c(labels,row.names(results)) #note how this combines variable labels with the cluster variables names(var.labels) <- nodes(clust.graph) nAttrs$label <- var.labels names(edge.label) <- edge.name node.font.size <- as.numeric(node.font[2]) n.font.size <- c(rep(label.font*node.font.size,length(labels)),rep(node.font.size,(length(var.labels)-length(labels)))) names(n.font.size) <- nodes(clust.graph) nAttrs$fontsize <- n.font.size } names(edge.label) <- edge.name e.font.size <- rep(6,num.clust*2) names(e.font.size) <- edge.name nAttrs$shape <- graph.shape eAttrs$fontsize <- e.font.size nAttrs$rank <- graph.rank eAttrs$label <- edge.label attrs <- list(node = list(shape = "ellipse", fixedsize = FALSE),graph=list(rankdir=rank.direction, fontsize=8,bgcolor="white" )) obs.var <- subGraph(vars,clust.graph) cluster.vars <- subGraph(clust,clust.graph) observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank="sink"))) plot(clust.graph, nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed,main=title) if (!is.null(out.file)) { toDotty(clust.graph,out.file,nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed) } } #test with Harman data sets #ic1 <- ICLUST(Harman74.cor$cov) #ic4 <- ICLUST(Harman74.cor$cov,nclusters=4) #ic8 <- ICLUST(Harman23.cor$cov) #ICLUST.rgraph(ic1) #ICLUST.rgraph(ic4) #ICLUST.rgraph(ic8,labels=colnames(Harman23.cor$cov)) psych/R/circ.tests.R0000644000176200001440000000323611544651161014015 0ustar liggesusers"circ.tests" <- function(loads,loading=TRUE,sorting=TRUE) { cl <- match.call() circ.gap <- function(loads,loading=TRUE,sorting=TRUE) { if (loading) {l <- loads$loadings} else { l <- loads} l<- l[,1:2] commun=rowSums(l*l) theta=sign(l[,2])*acos(l[,1]/sqrt(commun)) #vector angle in radians if(sorting) {theta<- sort(theta)} gaps <- diff(theta) test <- var(gaps) return(test) } circ.fisher <- function(loads,loading=TRUE) { if (loading) {l <- loads$loadings} else { l <- loads} l<- l[,1:2] radius <- rowSums(l * l) test <- sd(radius)/mean(radius) return (test) } circ.rt <- function(loads,loading=TRUE) { if (loading) {l <- loads$loadings} else { l <- loads} l<- l[,1:2] qmc <- rep(0,10) for (i in 0:9) {theta <- 5*i rl <- factor.rotate(l,theta,1,2) l2 <- rl*rl qmc[i] <- sum(apply(l2,1,var)) } test <- sd(qmc)/mean(qmc) } circ.v2 <- function(loads,loading=TRUE) { if (loading) {l <- loads$loadings} else { l <- loads} l<- l[,1:2] crit <- rep(0,10) for (i in 0:9) { theta <- 5*i rl <- factor.rotate(l,theta,1,2) l2 <- rl*rl suml2 <- sum(l2) crit[i] <- var(l2[,1]/suml2) } test <- sd(crit)/mean(crit) return (test) } gap.test <- circ.gap(loads,loading,sorting) fisher.test <- circ.fisher(loads,loading) rotation.test <- circ.rt(loads,loading) variance.test <- circ.v2(loads,loading) circ.tests <- list(gaps=gap.test,fisher=fisher.test,RT=rotation.test,VT=variance.test,Call=cl) class(circ.tests) <- c("psych","circ") return(circ.tests) }psych/R/target.rot.R0000644000176200001440000000234612475366660014041 0ustar liggesusers"target.rot" <- function (x,keys=NULL) { if(!is.matrix(x) & !is.data.frame(x) ) { if(!is.null(x$loadings)) x <- as.matrix(x$loadings) } else {x <- x} if (ncol(x) < 2) return(x) dn <- dimnames(x) if(is.null(keys)) {Q <- factor2cluster(x)} else {Q <- keys} Q <- as.matrix(Q) if(dim(Q)[2] < 2) {stop("Cluster structure produces 1 cluster. Rotation is not meaningful with less than 2 factors")} U <- lm.fit(x, Q)$coefficients d <- diag(solve(t(U) %*% U)) U <- U %*% diag(sqrt(d)) dimnames(U) <- NULL z <- x %*% U ui <- solve(U) Phi <- ui %*% t(ui) dimnames(z) <- dn class(z) <- "loadings" result <- list(loadings = z, rotmat = U,Phi = Phi) class(result) <- c("psych","fa") return(result) } #Based upon Promax which was taken from the promax function with the addition of returning the angles between factors #based upon a suggestion to the R-help news group by Ulrich Keller and John Fox. #if keys is null, this is the Promax function #if keys are not null, this becomes a targeted rotation function similar to that suggested by Michael Brown #created April 6, 2009 with the assistance of Pat Shrout and Steve Miller #a better model is to call TargetQ psych/R/score.multiple.choice.R0000644000176200001440000001016212664625301016127 0ustar liggesusers "score.multiple.choice" <- function(key,data,score=TRUE,totals=FALSE,ilabels=NULL, missing=TRUE,impute="median", digits=2,short=TRUE,skew=FALSE) { #convert a data matrix or data with multiple choice responses to correct/incorrect cl <- match.call() if(!is.matrix(data)) {if(!is.data.frame(data)) {stop("data must be either a data frame or matrix!")} else data <- as.matrix(data)} nvar <- dim(data)[2] response.freq <- response.frequencies(data) alternatives <- dim(response.freq)[2] if(length(key)==nvar) { items <- t(t(data)==key[]) #scores as t/f items <- items + 0 #converts t/f to 1/0 } } else {stop("key must have as many elements as columns of 'data' ")} if (score) { if(skew) {item.stats <- describe(items,ranges=FALSE,skew=skew,fast=FALSE)[,2:7] } else { #added the fast=FALSE on 2/25/16 in response to problem with large data sets reported by Rodrigo Travitzki item.stats <- describe(items,ranges=FALSE,skew=skew,fast=TRUE)[,2:4] } miss.rep <- rowSums(is.na(items)) if(missing) { miss <- which(is.na(items),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(items,na.rm=TRUE) #replace missing with means items[miss]<- item.means[miss[,2]]} else { item.med <- apply(items,2,median,na.rm=TRUE) #or medians items[miss]<- item.med[miss[,2]]} } keys <- rep(1,nvar) #now, score the items as the sum of correct scores <- rowSums(items,na.rm=TRUE) slabels <- colnames(keys) if (is.null(slabels)) { if (totals) {slabels<- paste("Totals") } else { slabels <- paste("Averages")} } names(scores) <- slabels r.items <- cov(items,use="pairwise") sum.item.var <- tr(r.items) var.scales <- sum(r.items) alpha.scale <- (var.scales - sum.item.var)*nvar/((nvar-1)*var.scales) av.r <- alpha.scale/(nvar - alpha.scale*(nvar-1)) #alpha 1 = average r item.cor <- cor(items,scores,use="pairwise") #this does not correct for item overlap if(is.null(ilabels)) {ilabels <- paste("I",1:nvar,sep="")} rownames(item.cor) <- ilabels if (!totals) {scores <- scores/nvar } item.stats <- cbind(key,response.freq,item.cor,item.stats) colnames(item.stats)[alternatives+2] <- "r" if(short) {results <- list(item.stats=round(item.stats,digits),alpha=round(alpha.scale,digits), av.r=round(av.r,digits),Call=cl)} else if (sum(miss.rep) >0) {results <-list(scores=scores,missing = miss.rep,item.stats=round(item.stats,digits),alpha=round(alpha.scale,digits), av.r=round(av.r,digits))} else{ results <- list(scores=scores,item.stats=item.stats,alpha=round(alpha.scale,digits), av.r=round(av.r,digits),Call=cl)} class(results) <- c("psych","mchoice") return(results) } else {return (items)} } #introduce a function to get cell frequencies and compensate for possible different number of response alternatives response.frequencies <- function (items, max = 10,uniqueitems=NULL) { min.item <- min(items, na.rm = TRUE) max.item <- max(items, na.rm = TRUE) if(is.null(uniqueitems)) uniqueitems <- unique(as.vector(unlist(items))) if ((max.item - min.item > max) || (nlevels(factor(items[, 1])) > max) || length(uniqueitems) > max) { frequency <- NULL } else { n.var <- dim(items)[2] n.cases <- dim(items)[1] dummy <- matrix(rep(uniqueitems, n.var), ncol = n.var) colnames(dummy) <- names(items) xdum <- rbind(items, dummy) frequency <- apply(xdum, 2, table) frequency <- t(frequency - 1) responses <- rowSums(frequency) frequency <- frequency/responses miss <- 1 - responses/n.cases frequency <- cbind(frequency, miss) } return(frequency) } #version of Sept 19, 2007 #revised Sept 3, 2010 to count missing responses #revised Sept 7, 2010 to correctly handle missing data in terms of finding alpha and correlation #revised April 3, 2011 to incorporate very nice suggestion by Joshua Wiley to handle unique categories #revised August 4, 2012 to allow the specification of unique items-- useful for irt.responsespsych/R/multilevel.reliability.R0000644000176200001440000004442513066551723016437 0ustar liggesusers#Developed February, 2017 #closely follows chapters by Pat Shrout and Sean Lane in terms of the statistics "multilevel.reliability" <- "mlr" <- function(x,grp="id",Time="time",items=c(3:5),alpha=TRUE,icc=FALSE,aov=TRUE,lmer=FALSE, lme = TRUE,long=FALSE,values=NA,na.action="na.omit",plot=FALSE, main="Lattice Plot by subjects over time") { cl <- match.call() s.lmer <- lmer.MS <- MS_id <- s.aov <-NULL MS.df <- data.frame( matrix(NA,nrow=8,ncol=2)) #a filler in case we don't have it colnames(MS.df) <- c("Variance","Percent") if(!long) {#the normal case is wide data which we analyze and then convert to long #first check if we should reverse any items and convert location numbers (if specified) to location names n.items <- length(items) if(is.character(items)) { temp <- rep(1,n.items) temp [strtrim(items,1)=="-"] <- -1 if(any(temp < 0) ) {items <- sub("-","",items) } } else {temp <- sign(items) items <- colnames(x)[abs(items)] } if(any(temp < 0)) { min.item <- min(x[items],na.rm=TRUE) max.item <- max(x[items],na.rm=TRUE) x[items[temp <0]] <- max.item- x[items[temp <0]] + min.item } wide <- x[items] rwname <- unique(x[grp]) n.obs <- nrow(rwname) n.time <- length(table(x[Time])) n.items <- ncol(wide) if(alpha) { alpha.by.person <- by(x,x[grp],function(x) alphaBy(x[items])) rnames <- paste0("ID",names(alpha.by.person)) alpha.by.person <- matrix(unlist(alpha.by.person),ncol=4,byrow=TRUE) colnames(alpha.by.person) <- c("Raw alpha","Std. alpha","av.r","signal/noise") rownames(alpha.by.person) <- rnames } else {alpha.by.person <- NA} if(icc) { #this takes a long time, and can be skipped icc.by.person <- by(x,x[grp],function(x) ICC(x[items])) icc.by.time <- by(x,x[Time],function(x) ICC(x[items])) icc.person.sum <- matrix(NA,nrow=n.obs,ncol=6) #add more columns when we think about what to put there icc.time.sum <- matrix(NA,nrow=n.time,ncol=6) for(person in 1:n.obs) {icc.person.sum[person,] <- c(icc.by.person[[person]][["results"]][["ICC"]][c(3,6)], icc.by.person[[person]][["results"]][["lower bound"]][3],icc.by.person[[person]][["results"]][["upper bound"]][3], icc.by.person[[person]][["results"]][["lower bound"]][6],icc.by.person[[person]][["results"]][["upper bound"]][6]) } rownames(icc.person.sum) <- paste0("ID",names(icc.by.person)) colnames(icc.person.sum) <- c("ICC single" ,"ICC summed","Lower Bound ICC13","Upper Bound ICC13", "Lower Bound ICC23","Upper Bound ICC23") for(time in 1:n.time) {icc.time.sum[time,] <- c(icc.by.time[[time]][["results"]][["ICC"]][c(3,6)], icc.by.time[[time]][["results"]][["lower bound"]][3],icc.by.time[[time]][["results"]][["upper bound"]][3], icc.by.time[[time]][["results"]][["lower bound"]][6],icc.by.time[[time]][["results"]][["upper bound"]][6]) } rownames(icc.time.sum) <- paste0("time",1:n.time) colnames(icc.time.sum) <- c("ICC single" ,"ICC summed","Lower Bound ICC13","Upper Bound ICC13", "Lower Bound ICC23","Upper Bound ICC23") } else {icc.by.person <- icc.by.time <- icc.time.sum <- icc.person.sum <- NA} #this next part treats the possibility of missing times long <- NULL long.list <- by(x,x[grp],function(xx) {xx y.df <- data.frame(id = as.factor(xx[,grp]), time=as.factor(xx[,Time]),stack(xx[items])) }) for (i in 1:n.obs) {long <- rbind(long,long.list[[i]]) } colnames(long)[4] <- "items" } else {#we have long data already, but need to add a few values to make it work long <- x n.items <- length(table(long[items])) #this does not n.obs <- length(table(long[grp])) n.time <- length(table(long[Time])) long <- long[c(grp,Time,items,values)] colnames(long) <- c("id","time","items","values") alpha.by.person <- icc.person.sum <- icc.time.sum <- icc.by.person <- icc.by.time <- NULL } if(lmer) { if (!requireNamespace('lme4')) {stop("I am sorry, to do a NREML requires the lme4 package to be installed")} mod.lmer <- lme4::lmer(values ~ 1 + (1 | id) + (1 | time) + (1 | items) + (1 | id:time)+ (1 | id:items)+ (1 | items :time), data=long,na.action=na.action) #might want to add control option, but probably not needed vc <- lme4::VarCorr(mod.lmer) MS_id <- vc$id[1,1] MS_time <- vc$time[1,1] MS_items <- vc$items[1,1] MS_pxt <- vc[[1]][[1]] MS_pxitem <- vc[[2]][[1]] MS_txitem <- vc[[3]][[1]] error <- MS_resid <- (attributes(vc)$sc)^2 s.lmer <- s.aov <- summary(mod.lmer) MS.df <- data.frame(variance= c(MS_id, MS_time ,MS_items, MS_pxt, MS_pxitem, MS_txitem, MS_resid,NA)) rownames(MS.df) <- c("ID","Time","Items","ID x time", "ID x items", "time x items", "Residual","Total") MS.df["Total",] <- sum(MS.df[1:7,1],na.rm=TRUE) MS.df["Percent"] <- MS.df/MS.df["Total",1] lmer.MS <- MS.df #save these } if(aov) { aov.x <- aov(values ~ id + time + items + time * id + time * items + items * id , data = long) s.aov <- summary(aov.x) stats <- matrix(unlist(s.aov),ncol=5, byrow=FALSE) colnames(stats) <- c("df","SS", "MS", "F", "p") rownames(stats) <- c("id","time","items", "id x time","time x items","id x items","residuals") MS_id <- (stats["id","MS"] - stats["id x time","MS"] - stats["id x items","MS"] + stats["residuals","MS"]) /( n.time * n.items) MS_time <- (stats["time","MS"] - stats["id x time","MS"] - stats["time x items","MS"] + stats["residuals","MS"])/(n.obs*n.items) MS_items <- (stats["items","MS"] - stats["id x items","MS"] - stats["time x items","MS"] + stats["residuals","MS"])/(n.obs*n.time) MS_pxt <- (stats["id x time", "MS"] - stats["residuals","MS"])/( n.items) MS_pxitem <- (stats["id x items", "MS"] - stats["residuals","MS"])/( n.time) MS_txitem <- (stats["time x items", "MS"] - stats["residuals","MS"])/(n.obs) MS.df <- data.frame(variance= c(MS_id, MS_time ,MS_items, MS_pxt, MS_pxitem, MS_txitem, stats["residuals","MS"],NA)) error <- stats["residuals","MS"] if(any(MS.df[1:7,1] < 0) & is.null(lmer.MS)){ warning("Some of the variance estimates from ANOVA are negative. This is probably due to missing values and an unbalanced design. You should consider using the lme option") } else {if(!is.null(lmer.MS)) { MS_id <- lmer.MS[1,1] MS_time <- lmer.MS[2,1] MS_items <- lmer.MS[3,1] MS_pxt <- lmer.MS[4,1] MS_pxitem <- lmer.MS[5,1] MS_txitem <- lmer.MS[6,1] error <- MS_resid <- lmer.MS[7,1] MS.df[1] <- lmer.MS[1] }} rownames(MS.df) <- c("ID","Time","Items","ID x time", "ID x items", "time x items", "Residual","Total") MS.df["Total",] <- sum(MS.df[1:7,1],na.rm=TRUE) MS.df["Percent"] <- MS.df/MS.df["Total",1] } if(!is.null(MS_id)) { #now find the reliabilities -- note the typo in equation 7 in Lane and Shrout Rkf <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + error/(n.time * n.items))) R1r <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + MS_time + MS_pxt + error/( n.items))) #per Sean Lane Rkr <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + MS_time/n.time + MS_pxt/n.time + error/( n.time * n.items))) Rc <- (MS_pxt)/(MS_pxt + error/n.items) } else { Rkf <- R1r <- Rkr <-Rc <- NULL} if(lme | lmer) { #we find these using a nested structure from lme or lmer (if available) if(!lme & lmer) {#use lmer to do the nested test mod.lmer <- lme4::lmer(values ~ 1 + (1 | id/time),data=long,na.action=na.action) s.lme <- summary(mod.lmer) vc <-lme4::VarCorr(mod.lmer) vid <- vc$id[1,1] vtime_id <- vc$time[1,1] vres <- (attributes(vc)$sc)^2 } else {#use lme to do the nested test mod.lme <- nlme::lme(values ~ 1 , random = list(id =~ 1 ,time =~ 1 | id:items), data=long,na.action=na.action) s.lme <- summary(mod.lme) vc <- suppressWarnings(matrix(as.numeric(nlme::VarCorr(mod.lme)),ncol=2)) vid <- vc[2,1] vtime_id <- vc[4,1] vres <- vc[5,1]} Rkrn <- vid/(vid + vtime_id/(n.time) + vres/(n.time * n.items)) #this are the nested terms Rcn <- vtime_id/ (vtime_id + vres/n.items) MS.df ["id",1] <- vid MS.df ["id(time)",1] <- vtime_id MS.df["residual",1] <- vres MS.df["total",1] <- vid + vtime_id + vres MS.df ["id",2] <- vid/ MS.df["total",1] MS.df ["id(time)",2] <- vtime_id/MS.df["total",1] MS.df["residual",2] <- vres/MS.df["total",1] MS.df["total",2] <- MS.df["total",1]/MS.df["total",1] } else {MS.df ["id",1] <- MS.df ["id(time)",1] <- MS.df["residual",1] <- MS.df["total",1] <- MS.df ["id",2] <- MS.df ["id(time)",2] <- MS.df["residual",2] <- NA MS.df["total",2] <- MS.df["total",1]/MS.df["total",1] s.lme <- Rkrn <- Rcn <- NULL} # if(aov || lmer ||lme) {result <- list(n.obs = n.obs, n.time = n.time, n.items=n.items, components = MS.df,RkF =Rkf,R1R = R1r,RkR = Rkr,Rc=Rc,RkRn=Rkrn,Rcn = Rcn, ANOVA=s.aov,s.lmer =s.lmer,s.lme= s.lme,alpha=alpha.by.person, summary.by.person = icc.person.sum,summary.by.time=icc.time.sum, ICC.by.person = icc.by.person,ICC.by.time=icc.by.time,lmer=lmer,long = long,Call=cl) } else {result <- list(n.obs = n.obs, n.time = n.time, n.items=n.items,alpha=alpha.by.person,lmer=lmer,long=long,Call=cl) } if(plot) { plot1<- xyplot(values ~ time | id, group=items, data=long, type = "b",as.table=TRUE,strip=strip.custom(strip.names=TRUE,strip.levels=TRUE),col=c("blue","red","black","grey")) print(plot1)} class(result) <- c("psych","multilevel") return(result) } "print.psych.multilevel" <- function(x,digits=2,all=FALSE,short=TRUE) { cat("\nMultilevel Generalizability analysis ",x$title," \n") cat("Call: ") print(x$Call) cat("\nThe data had ",x$n.obs, " observations taken over ", x$n.time ," time intervals for ", x$n.items, "items.\n") mat <- list(n.obs = x$n.obs,n.time = x$n.time,n.items = x$n.items) #save these cat("\n Alternative estimates of reliabilty based upon Generalizability theory\n") if(!is.null(x$RkF)){ cat("\nRkF = ",round(x$RkF,digits) , "Reliability of average of all ratings across all items and times (Fixed time effects)") mat["RkF"] <- x$RkF} if(!is.null(x$R1R)) {cat("\nR1R = ",round(x$R1R,digits),"Generalizability of a single time point across all items (Random time effects)") mat["R1R"] <- x$R1R} if(!is.null(x$RkR)) {cat("\nRkR = ",round(x$RkR,digits),"Generalizability of average time points across all items (Random time effects)") mat["RkR"] <- x$RkR} if(!is.null(x$Rc)) {cat("\nRc = ",round(x$Rc,digits),"Generalizability of change (fixed time points, fixed items) ") mat["Rc"] <- x$Rc} if(!is.null(x$RkRn) ) {cat("\nRkRn = ",round(x$RkRn,digits),"Generalizability of between person differences averaged over time (time nested within people)") mat["RkRn"] <- x$RkRn} if(!is.null(x$Rcn)) {cat("\nRcn = ",round(x$Rcn,digits),"Generalizability of within person variations averaged over items (time nested within people)") mat["Rcn"] <- x$Rcn} if(!x$lmer && !is.null(x$RkF) ) {cat("\n\n These reliabilities are derived from the components of variance estimated by ANOVA \n") if(!is.null(x$components)) { if(!any(is.na(x$components[1:8,1])) & any(x$components[1:8,1] < 0)) { warning("The ANOVA based estimates are suspect, probably due to missing data, try using lmer")} }} else { if(x$lmer ) { cat("\n\n These reliabilities are derived from the components of variance estimated by lmer \n")}} if(!is.null(x$components) && !is.na(x$components[1,1])) { print(round(x$components[1:8,],digits=digits)) mat["components"] <- list( x$components[1:8,1])} if(!is.null(x$components) && !is.na(x$components[9,1] )) { if(!x$lmer) {cat("\n The nested components of variance estimated from lme are:\n")} else {cat("\n The nested components of variance estimated from lmer are:\n")} print(x$components[9:12,],digits=digits) mat["lmer"] = list(x$components[9:12,1])} else {cat("\nNested components were not found because lme was not used\n")} if(!short) {cat("\n\n Three way ANOVA or lmer analysis \n") print(x$ANOVA,digits=digits) cat("\nvariance components from lme(r)\n") print(x$s.lme,digits=digits) cat("\n Alpha reliability by subjects)\n") print(x$alpha,digits) } if(all) { cat("\n Intraclass Correlations by subjects (over time and items) \n") print(x$summary.by.person,digits) cat("\n Intraclass Correlations by time (over subjects and items) \n") print(x$summary.by.time,digits) } if(short) { cat("\nTo see the ANOVA and alpha by subject, use the short = FALSE option.")} if(!all) {cat("\n To see the summaries of the ICCs by subject and time, use all=TRUE")} cat("\n To see specific objects select from the following list:\n",names(x)[-c(1:10)]) invisible(mat) } "alphaBy" <- function(x) { n <- dim(x)[2] C <- cov(x,use="pairwise") R <- cov2cor(C) alpha.raw <- (1- tr(C)/sum(C))*(n/(n-1)) sumR <- sum(R) alpha.std <- (1- n/sum(R))*(n/(n-1)) # smc.R <- smc(R) # G6 <- (1- (n-sum(smc.R))/sumR) av.r <- (sumR-n)/(n*(n-1)) # mod1 <- matrix(av.r,n,n) # Res1 <- R - mod1 # GF1 = 1- sum(Res1^2)/sum(R^2) # Rd <- R - diag(R) # diag(Res1) <- 0 # GF1.off <- 1 - sum(Res1^2)/sum(Rd^2) sn <- n*av.r/(1-av.r) # Q = (2 * n^2/((n-1)^2*(sum(C)^3))) * (sum(C) * (tr(C^2) + (tr(C))^2) - 2*(tr(C) * sum(C^2))) #corrected 1/15/16 # Q = (2 * n^2/((n - 1)^2 * (sum(C)^3))) * (sum(C) * (tr(C%*%C) + (tr(C))^2) - 2 * (tr(C) * sum(C%*%C))) #correction from Tamaki Hattori result <- list(raw=alpha.raw,std=alpha.std,av.r=av.r,sn =sn) return(result) } "mlArrange" <- function(x,grp="id",Time="time",items=c(3:5),extra=NULL) { n.items <- length(items) if(is.character(items)) { temp <- rep(1,n.items) temp [strtrim(items,1)=="-"] <- -1 if(any(temp < 0) ) {items <- sub("-","",items) } } else {temp <- sign(items) items <- colnames(x)[abs(items)] } if(any(temp < 0)) { min.item <- min(x[items],na.rm=TRUE) max.item <- max(x[items],na.rm=TRUE) x[items[temp <0]] <- max.item- x[items[temp <0]] + min.item } wide <- x[items] rwname <- unique(x[grp]) n.obs <- nrow(rwname) n.time <- nrow(unique(x[Time])) n.items <- ncol(wide) long <- NULL if(is.null(extra)) { long.list <- by(x,x[grp],function(xx) {xx y.df <- data.frame(id = (xx[,grp]), time=(xx[,Time]),stack(xx[items])) }) for (i in 1:n.obs) {long <- rbind(long,long.list[[i]]) } colnames(long)[4] <- "items" } else { long.list <- by(x,x[grp],function(xx) {xx y.df <- cbind((xx[,grp]), (xx[,Time]),stack(xx[items]), (xx[,extra]),row.names=NULL) }) for (i in 1:n.obs) {long <- rbind(long,long.list[[i]]) } colnames(long)[1:4] <- c("id","time","values", "items") colnames(long)[5:(4+length(extra))] <- colnames(x)[extra] } results <- long return(long) } "mlPlot" <- function(x,grp="id",Time="time",items=c(3:5),extra=NULL,col=c("blue","red","black","grey"), main="Lattice Plot by subjects over time",...) { long <- mlArrange(x =x,grp=grp,Time=Time,items=items,extra=extra) plot1<- xyplot(values ~ time | id, group=items, data=long, type = "b",as.table=TRUE,strip=strip.custom(strip.names=TRUE,strip.levels=TRUE),col=col,main=main,...) print(plot1) invisible(long) } "print.psych.multilevel.mat" <- function(x,digits=2,all=FALSE,short=TRUE) { cat("\nMultilevel Generalizability analysis ",x$title," \n") if(length(x) < 21 ) items <- length(x) temp <- matrix(unlist(x),ncol=items,byrow=FALSE) rownames(temp) <- c("n.obs","n.time","n,items","RkF","R1R","RkR","Rc","RkRn","Rcn","ID","Time","Items","ID x Time","ID x items","Time x items","residual","Total","Id","ID (time)","residual","total") cat("\nThe data had ",x$n.obs, " observations taken over ", x$n.time ," time intervals for ", x$n.items, "items.\n") mat <- list(n.obs = x$n.obs,n.time = x$n.time,n.items = x$n.items) #save these cat("\n Alternative estimates of reliabilty based upon Generalizability theory\n") if(!is.null(x$RkF)){ cat("\nRkF = ",round(x$RkF,digits) , "Reliability of average of all ratings across all items and times (Fixed time effects)") mat["RkF"] <- x$RkF} if(!is.null(x$R1R)) {cat("\nR1R = ",round(x$R1R,digits),"Generalizability of a single time point across all items (Random time effects)") mat["R1R"] <- x$R1R} if(!is.null(x$RkR)) {cat("\nRkR = ",round(x$RkR,digits),"Generalizability of average time points across all items (Random time effects)") mat["RkR"] <- x$RkR} if(!is.null(x$Rc)) {cat("\nRc = ",round(x$Rc,digits),"Generalizability of change (fixed time points, fixed items) ") mat["Rc"] <- x$Rc} if(!is.null(x$RkRn) ) {cat("\nRkRn = ",round(x$RkRn,digits),"Generalizability of between person differences averaged over time (time nested within people)") mat["RkRn"] <- x$RkRn} if(!is.null(x$Rcn)) {cat("\nRcn = ",round(x$Rcn,digits),"Generalizability of within person variations averaged over items (time nested within people)") mat["Rcn"] <- x$Rcn} if(!x$lmer && !is.null(x$RkF) ) {cat("\n\n These reliabilities are derived from the components of variance estimated by ANOVA \n") if(!is.null(x$components)) { if(!any(is.na(x$components[1:8,1])) & any(x$components[1:8,1] < 0)) { warning("The ANOVA based estimates are suspect, probably due to missing data, try using lmer")} }} else { if(x$lmer ) { cat("\n\n These reliabilities are derived from the components of variance estimated by lmer \n")}} if(!is.null(x$components) && !is.na(x$components[1,1])) { print(round(x$components[1:8,],digits=digits)) mat["components"] <- list( x$components[1:8,])} if(!is.null(x$components) && !is.na(x$components[9,1] )) { if(!x$lmer) {cat("\n The nested components of variance estimated from lme are:\n")} else {cat("\n The nested components of variance estimated from lmer are:\n")} print(x$components[9:12,],digits=digits) mat["lmer"] = list(x$components[9:12,])} else {cat("\nNested components were not found because lme was not used\n")} if(!short) {cat("\n\n Three way ANOVA or lmer analysis \n") print(x$ANOVA,digits=digits) cat("\nvariance components from lme(r)\n") print(x$s.lme,digits=digits) cat("\n Alpha reliability by subjects)\n") print(x$alpha,digits) } if(all) { cat("\n Intraclass Correlations by subjects (over time and items) \n") print(x$summary.by.person,digits) cat("\n Intraclass Correlations by time (over subjects and items) \n") print(x$summary.by.time,digits) } if(short) { cat("\nTo see the ANOVA and alpha by subject, use the short = FALSE option.")} if(!all) {cat("\n To see the summaries of the ICCs by subject and time, use all=TRUE")} cat("\n To see specific objects select from the following list:\n",names(x)[-c(1:10)]) invisible(mat) } psych/R/esem.diagram.R0000644000176200001440000004416212766540446014305 0ustar liggesusers#adapted from my structure.diagram function to draw the output from esem #August 4, 2016 "esem.diagram" <- function(esem=NULL,labels=NULL,cut=.3,errors=FALSE,simple=TRUE,regression=FALSE,lr=TRUE, digits=1,e.size=.1,adj=2,main="Exploratory Structural Model", ...){ #a helper function sort.f <- function(x) { nvar <- ncol(x) if(is.null(nvar)) {return(x)} else { nitem <- nrow(x) cluster <- data.frame(item <- seq(1:nitem),clust = rep(0,nitem)) cluster$clust <- apply(abs(x),1,which.max) ord <- sort(cluster$clust,index.return=TRUE) x[1:nitem,] <- x[ord$ix,] rownames(x) <- rownames(x)[ord$ix] return(x)}} #first some default values xmodel <- sort.f(esem$loadsX) ymodel <- sort.f(esem$loadsY) Phi <- esem$Phi num.y <- num.x <- 0 #we assume there is nothing there vars<- NULL num.xvar <- dim(xmodel)[1] #how many x variables? num.yvar <- dim(ymodel)[1] num.xfactors <- dim(xmodel)[2] num.yfactors <- dim(ymodel)[2] if(is.null(num.xvar)) num.xvar <- length(xmodel) if(is.null(num.yvar)) num.yvar <- length(ymodel) if(is.null(num.xfactors)) num.xfactors <- 1 if(is.null(num.yfactors)) num.yfactors <- 1 # if(max(num.xvar,num.yvar) < 10) e.size <- e.size* 2 #make the ellipses bigger for small problems e.size <- e.size * 10/ max(num.xvar,num.yvar) if(is.null(labels)) { xvars <- rownames(xmodel)} else { xvars <- vars <- labels} if(is.null(ncol(xmodel))) xvars <- names(xmodel) # if(is.null(vars) ) {xvars <- paste0("x",1:num.xvar) } fact <- colnames(xmodel) if (is.null(fact)) { fact <- paste0("X",1:num.xfactors) } if(is.null(ncol(ymodel))) {yvars <-names(ymodel) } else {yvars <- rownames(ymodel)} if(is.null(yvars)) {yvars <- paste0("y",1:num.y) } if(is.null(labels)) {vars <- c(xvars,yvars)} else {yvars <- labels[(num.xvar+1):(num.xvar+num.y)]} yfact <- colnames(ymodel) if(is.null(yfact)) {yfact <- paste0("Y",1:num.yfactors) } fact <- c(fact,yfact) num.var <- num.xvar + num.y num.factors <- num.xfactors + num.yfactors sem <- matrix(rep(NA),6*(num.var*num.factors + num.factors),ncol=3) #this creates an output model for sem analysis colnames(sem) <- c("Path","Parameter","Value") var.rect <- list() fact.rect <- list() # length.labels <- 0 # a filler for now #plot.new() is necessary if we have not plotted before #strwd <- try(strwidth(xvars),silent=TRUE) strwd <- try(length.labels <- max(strwidth(xvars),strwidth(yvars),strwidth("abc"))/1.8,silent=TRUE) #although this throws an error if the window is not already open, we don't show it #if (class(strwd) == "try-error" ) {plot.new() } if (class(strwd) == "try-error" ) {length.labels = max(nchar(xvars),3)/1.8 } #length.labels <- max(strwidth(xvars),strwidth("abc"))/1.8 if(lr) {limx <- c(-(length.labels),max(num.xvar,num.yvar)+3 ) limy <- c(0,max(num.xvar,num.yvar)+1) } else { limy <- c(-(length.labels),max(num.xvar,num.yvar) +3 ) limx <- c(0,max(num.xvar,num.yvar)+1) if( errors) limy <- c(-1,max(num.xvar,num.yvar)+2)} scale.xaxis <- 3 if(lr) {plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main)} else {plot(0,type="n",xlim=limx,ylim=limy,frame.plot=FALSE,axes=FALSE,ylab="",xlab="",main=main) } #now draw the x part k <- num.factors x.adjust <- num.xvar/ max(num.xvar,num.yvar) for (v in 1:num.xvar) { if(lr) { var.rect[[v]] <- dia.rect(0,(num.xvar-v+1)/x.adjust,xvars[v],xlim=limx,ylim=limy,...) } else { var.rect[[v]] <- dia.rect(v,0,xvars[v],xlim=limy,ylim=limx,...) } } nvar <- num.xvar f.scale <- (num.xvar+ 1)/(num.xfactors+1)/x.adjust factors <- round(xmodel,digits) if(is.null(ncol(factors))) factors <- matrix(factors) if (num.xfactors >0) { for (f in 1:num.xfactors) { if(!regression) {if(lr) {fact.rect[[f]] <- dia.ellipse(limx[2]/scale.xaxis,(num.xfactors+1-f)*f.scale,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...)} else {fact.rect[[f]] <- dia.ellipse(f*f.scale,limy[2]/scale.xaxis,fact[f],ylim=c(0,nvar),xlim=c(0,nvar),e.size=e.size,...) } } else {if(lr) {fact.rect[[f]] <- dia.rect(limx[2]/scale.xaxis,(num.xfactors+1-f)*f.scale,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),...)} else { fact.rect[[f]] <- dia.rect(f*f.scale,limy[2]/scale.xaxis,fact[f],xlim=c(0,nvar),ylim=c(0,nvar),...)} } for (v in 1:num.xvar) { if(is.numeric(factors[v,f])) { if(simple && (abs(factors[v,f]) == max(abs(factors[v,])) ) && (abs(factors[v,f]) > cut) | (!simple && (abs(factors[v,f]) > cut))) { if (!regression) {if(lr){dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,labels =factors[v,f],col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0) +1),adj=f %% adj +1) } else {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$top,labels =factors[v,f],col=((sign(factors[v,f])<0) +1),lty=((sign(factors[v,f])<0) +1)) } } else {dia.arrow(to=fact.rect[[f]]$left,from=var.rect[[v]]$right,labels =factors[v,f],col=((sign(factors[v,f])<0) +1))} } } else { if (factors[v,f] !="0") { if (!regression) { if(lr) {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$right,labels =factors[v,f]) } else {dia.arrow(from=fact.rect[[f]],to=var.rect[[v]]$top,labels =factors[v,f])} } else {if(lr) {dia.arrow(to=fact.rect[[f]],from=var.rect[[v]]$right,labels =factors[v,f])} else {dia.arrow(to=fact.rect[[f]],from=var.rect[[v]]$top,labels =factors[v,f])} } } } } } if (num.xfactors ==1) { for(i in 1:num.xvar) { sem[i,1] <- paste(fact[1],"->",vars[i],sep="") if(is.numeric(factors[i])) {sem[i,2] <- vars[i]} else {sem[i,2] <- factors[i] } }} #end of if num.xfactors ==1 k <- num.xvar+1 k <- 1 for (i in 1:num.xvar) { for (f in 1:num.xfactors) { #if (!is.numeric(factors[i,f]) || (abs(factors[i,f]) > cut)) if((!is.numeric(factors[i,f] ) && (factors[i,f] !="0"))|| ((is.numeric(factors[i,f]) && abs(factors[i,f]) > cut ))) { sem[k,1] <- paste(fact[f],"->",vars[i],sep="") if(is.numeric(factors[i,f])) {sem[k,2] <- paste("F",f,vars[i],sep="")} else {sem[k,2] <- factors[i,f]} k <- k+1 } #end of if } } } #end of if num.xfactors >0 if(errors) { for (i in 1:num.xvar) {if(lr) { dia.self(var.rect[[i]],side=2) } else { dia.self(var.rect[[i]],side=1)} sem[k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[k,2] <- paste("x",i,"e",sep="") k <- k+1 } } #do it for y model if(!is.null(ymodel)) { if(lr) { y.adj <- num.yvar/ max(num.xvar,num.yvar) #y.adj <- num.yvar/2 - num.xvar/2 f.yscale <- limy[2]/(num.yfactors+1) y.fadj <- 0} else { # y.adj <- num.xvar/2 - num.yvar/2 y.adj <- num.yvar/2 f.yscale <- limx[2]/(num.yfactors+1) y.fadj <- 0} for (v in 1:num.yvar) { if(lr){ var.rect[[v+num.xvar]] <- dia.rect(limx[2]-.35,limy[2]-v /y.adj,yvars[v],xlim=limx,ylim=limy,...)} else { var.rect[[v+num.xvar]] <- dia.rect(v / y.adj,limx[2],yvars[v],xlim=limy,ylim=limx,...)} } } #we have drawn the y variables, now should we draw the Y factors if(!is.null(ymodel)){ y.factors <- round(ymodel,digits) if(is.null(ncol(y.factors))) { y.factors <- matrix(y.factors) } num.y <- nrow(y.factors) for (f in 1:num.yfactors) {if(lr) { fact.rect[[f+num.xfactors]] <- dia.ellipse(2*limx[2]/scale.xaxis,(num.yfactors+1-f)*f.yscale +y.fadj,yfact[f],xlim=c(0,nvar),ylim=c(0,nvar),e.size=e.size,...)} else { fact.rect[[f+num.xfactors]] <- dia.ellipse(f*f.yscale+ y.fadj,2*limx[2]/scale.xaxis,yfact[f],ylim=c(0,nvar),xlim=c(0,nvar),e.size=e.size,...)} for (v in 1:num.yvar) {if(is.numeric(y.factors[v,f])) { {if(simple && (abs(y.factors[v,f]) == max(abs(y.factors[v,])) ) && (abs(y.factors[v,f]) > cut) | (!simple && (abs(factors[v,f]) > cut))) { if(lr) { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$left,labels =y.factors[v,f],col=((sign(y.factors[v,f])<0) +1),adj = f %% adj +1)} else { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$bottom,labels =y.factors[v,f],col=((sign(y.factors[v,f])<0) +1))} } } } else {if(factors[v,f] !="0") {if(lr) {dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$left,labels =y.factors[v,f]) } else { dia.arrow(from=fact.rect[[f+num.xfactors]],to=var.rect[[v+num.xvar]]$bottom,labels =y.factors[v,f]) } } }} } if (num.yfactors ==1) { for (i in 1:num.y) { sem[k,1] <- paste(fact[1+num.xfactors],"->",yvars[i],sep="") if(is.numeric(y.factors[i] ) ) {sem[k,2] <- paste("Fy",yvars[i],sep="")} else {sem[k,2] <- y.factors[i]} k <- k +1 } } else { #end of if num.yfactors ==1 for (i in 1:num.y) { for (f in 1:num.yfactors) { if( abs(y.factors[i,f]) > cut ) { sem[k,1] <- paste(fact[f+num.xfactors],"->",vars[i+num.xvar],sep="") if(is.numeric(y.factors[i,f])) { sem[k,2] <- paste("Fy",f,vars[i+num.xvar],sep="")} else {sem[k,2] <- y.factors[i,f]} k <- k+1 } #end of if } #end of factor } # end of variable loop } #end of else if # } if(errors) { for (i in 1:num.y) { if(lr) {dia.self(var.rect[[i+num.xvar]],side=3) } else {dia.self(var.rect[[i+num.xvar]],side=3)} sem[k,1] <- paste(vars[i+num.xvar],"<->",vars[i+num.xvar],sep="") sem[k,2] <- paste("y",i,"e",sep="") k <- k+1 }} } #end of if.null(ymodel) # if(!is.null(Rx)) {#draw the correlations between the x variables # for (i in 2:num.xvar) { # for (j in 1:(i-1)) { # if((!is.numeric(Rx[i,j] ) && ((Rx[i,j] !="0")||(Rx[j,i] !="0")))|| ((is.numeric(Rx[i,j]) && abs(Rx[i,j]) > cut ))) { # if (lr) {if(abs(i-j) < 2) { dia.curve(from=var.rect[[j]]$left,to=var.rect[[i]]$left, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} else { dia.curve(from=var.rect[[j]]$left,to=var.rect[[i]]$left, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} # } else { # if(abs(i-j) < 2) { dia.curve(from=var.rect[[j]]$bottom,to=var.rect[[i]]$bottom, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j]]$bottom,to=var.rect[[i]]$bottom, labels = Rx[i,j],scale=-3*(i-j)/num.xvar)} # } # }} # } # # } # if(!is.null(Ry)) {#draw the correlations between the y variables # for (i in 2:num.yvar) { # for (j in 1:(i-1)) { # if((!is.numeric(Ry[i,j] ) && ((Ry[i,j] !="0")||(Ry[j,i] !="0")))|| ((is.numeric(Ry[i,j]) && abs(Ry[i,j]) > cut ))) { # if (lr) {if(abs(i-j) < 2) { dia.curve(from=var.rect[[j+num.xvar]]$right,to=var.rect[[i+num.xvar]]$right, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j+num.xvar]]$right,to=var.rect[[i+num.xvar]]$right, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} # } else { # if(abs(i-j) < 2) { dia.curve(from=var.rect[[j+num.xvar]]$bottom,to=var.rect[[i+num.xvar]]$bottom, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} else {dia.curve(from=var.rect[[j+num.xvar]]$bottom,to=var.rect[[i+num.xvar]]$bottom, labels = Ry[i,j],scale=3*(i-j)/num.xvar)} # } # }} # } # # } Phi <- round(Phi,digits) if(!regression) { if(!is.null(Phi)) {if (!is.matrix(Phi)) { if(!is.null(FALSE)) {Phi <- matrix(c(1,0,Phi,1),ncol=2)} else {Phi <- matrix(c(1,Phi,Phi,1),ncol=2)}} if(num.xfactors>1) {for (i in 2:num.xfactors) { #first do the correlations within the f set for (j in 1:(i-1)) { {if((!is.numeric(Phi[i,j] ) && ((Phi[i,j] !="0")||(Phi[j,i] !="0")))|| ((is.numeric(Phi[i,j]) && abs(Phi[i,j]) > cut ))) { if(Phi[i,j] == Phi[j,i] ) { if(lr) {dia.curve(from=fact.rect[[i]]$right,to=fact.rect[[j]]$right, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curve(from=fact.rect[[i]]$top,to=fact.rect[[j]]$top, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} else {#directed arrows if(Phi[i,j] !="0") { if(lr) { if(abs(i-j) < 2) {dia.arrow(from=fact.rect[[j]],to=fact.rect[[i]], labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[j]]$right,to=fact.rect[[i]]$right, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} } else { if(abs(i-j) < 2) { dia.arrow(from=fact.rect[[j]],to=fact.rect[[i]], labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[j]]$top,to=fact.rect[[i]]$top, labels = Phi[i,j],scale=2*(i-j)/num.xfactors)} } sem[k,1] <- paste(fact[j]," ->",fact[i],sep="") sem[k,2] <- paste("rF",j,"F",i,sep="")} else { if(lr) { if(abs(i-j) < 2) {dia.arrow(from=fact.rect[[i]],to=fact.rect[[j]], labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[i]]$right,to=fact.rect[[j]]$right, labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} } else { if(abs(i-j) < 2) { dia.arrow(from=fact.rect[[i]],to=fact.rect[[j]], labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} else { dia.curved.arrow(from=fact.rect[[i]]$top,to=fact.rect[[j]]$top, labels = Phi[j,i],scale=2*(i-j)/num.xfactors)} } sem[k,1] <- paste(fact[i],"<-",fact[j],sep="") sem[k,2] <- paste("rF",i,"F",j,sep="")} } } else { sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") if (is.numeric(Phi[i,j])) {sem[k,2] <- paste("rF",i,"F",j,sep="")} else {sem[k,2] <- Phi[i,j] } } k <- k + 1} } } } #end of correlations within the fx set if(!is.null(ymodel)) { for (i in 1:num.xfactors) { for (j in 1:num.yfactors) { if((!is.numeric(Phi[j+num.xfactors,i] ) && (Phi[j+num.xfactors,i] !="0"))|| ((is.numeric(Phi[j+num.xfactors,i]) && abs(Phi[j+num.xfactors,i]) > cut ))) { dia.arrow(from=fact.rect[[i]],to=fact.rect[[j+num.xfactors]],Phi[j+num.xfactors,i],adj=i %% adj +1) sem[k,1] <- paste(fact[i],"->",fact[j+num.xfactors],sep="") } else { sem[k,1] <- paste(fact[i],"<->",fact[j+num.xfactors],sep="")} if (is.numeric(Phi[j+num.xfactors,i])) {sem[k,2] <- paste("rX",i,"Y",j,sep="")} else {sem[k,2] <- Phi[j+num.xfactors,i] } k <- k + 1 } } } } } if(num.factors > 0 ) { for(f in 1:num.factors) { sem[k,1] <- paste(fact[f],"<->",fact[f],sep="") sem[k,3] <- "1" k <- k+1 } model=sem[1:(k-1),] class(model) <- "mod" #suggested by John Fox to make the output cleaner return(invisible(model)) } } psych/R/parallel.irt.r0000644000176200001440000004202712741062556014372 0ustar liggesusers#revised August 31, 2012 to allow for estimation of all 0s or all 1s #modified March 10, 2016 to allow for quasi Bayesian estimates using normal theory #which doesn't seem to do what I want to do, so we are not doing it #June 30-July 7 , 2016 Trying to make it faster by parallelizing the code and #reducing the number of items to score when using keys. #uses local minima -- problematic for small number of items #corrected various problems with finding total (sum) scores 7/4/16 #starting to make parallel for speed #seems to result in at least a factor of 2 improvement #the function to do 2 parameter dichotomous IRT "score.irt.2" <- function(stats,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { #find the person parameters in a 2 parameter model we use deltas and betas from irt.discrim and irt.person.rasch #find the person parameter #This does the normal fit #has several internal functions irt.2par.norm <- function(x,delta,beta,scores) { fit <- -1*(log(scores*(1-pnorm(beta*(delta-x))) + (1-scores)*(1-pnorm(beta*(x-delta))))) mean(fit,na.rm=TRUE) } #This does the logistic fit irt.2par <- function(x,delta,beta,scores) { fit <- -1*(log(scores/(1+exp(beta*(delta-x))) + (1-scores)/(1+exp(beta*(x-delta))))) mean(fit,na.rm=TRUE) } ### #this is the the one to use when parallelized bigFunction <- function(f,n.obs,stats,items,keys=NULL,cut=.3,bounds=c(-5,5),mod="logistic") { nf <- length(stats$difficulty) diff <- stats$difficulty[[f]] cat <- dim(diff)[2] if(nf < 2) {#discrim <- drop(stats$discrimination) discrim <- stats$discrimination # although I need to check this with keys if(!is.null(keys)) {discrim <- discrim * abs(keys)} } else {discrim <- stats$discrimination[,f] if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) }} ### fit <- rep(NA,n.obs) theta <- rep(NA,n.obs) if(is.null(keys)) {#drop the items with discrim < cut items.f <- items[,(abs(discrim[,f]) > cut) ,drop=FALSE] #get rid of the those items that are not being processed for this factor diffi.f <- diff[(abs(discrim[,f]) > 0)] #and the redundant diffi discrim.f <- discrim[(abs(discrim[,f]) > cut),drop=FALSE ] #and get rid of the unnecessary discrim values } else { #the case of scoring with a keys vector items.f <- items[,(abs(keys[,f]) > 0) ,drop=FALSE] #get rid of the those items that are not being processed for this factor discrim.f <- discrim[(abs(keys[,f]) > 0),drop=FALSE ] #and get rid of the unnecessary discrim values diffi.f <- diff[(abs(keys[,f]) > 0)] #and the redundant diffi } diffi.vect <- as.vector(t(diffi.f)) #discrim.F.vect <- rep(discrim.f,each=cat) #discrim.f <- discrim[(abs(discrim > cut)),drop=FALSE] discrim.F.vect <- as.vector(t(discrim.f)) if(is.matrix(discrim)) discrim.F.vect <- drop(discrim.F.vect) total <- rowMeans(t(t(items.f)*sign(discrim.F.vect)),na.rm=TRUE) count <- rowSums(!is.na(items.f)) #We can speed this up somewhat if we don't try to fit items with 0 discrim (i.e., items that do not load on the factor or are not keyed) #do it for all subject for this factor #now, lets parallelize this one as well for (i in 1:n.obs) { #First we consider the case of all right or all wrong if (count[i] > 0) {if((sum(items.f[i,],na.rm=TRUE) ==0 ) | (prod(items.f[i,],na.rm=TRUE) == 1 )) { if(sum(items.f[i,],na.rm=TRUE) ==0 ) { if(mod=="logistic") {p <- log(1-(1-items.f[i,])/(1+exp(discrim.f*(diffi.f))) )} else { #logistic p <- log(1-(pnorm(items.f[i,]*discrim.f*diffi.f))) } #normals pall <- exp(sum(p,na.rm=TRUE)) # theta[i] <- qnorm(pnorm(qnorm(pall))/2) #the z value of 1/2 the quantile value of pall theta[i] <- qnorm(pnorm(qnorm(pall))) #the z value of the quantile value of pall fit[i] <- 0 # cat ("\nThe case of all wrong",i,theta[i]) } else { #the case of all right if(mod == "logistic") { p <- log((items.f[i,])/(1+exp(discrim.f*(diffi.f))) )} else { p <- log((items.f[i,])*(1 - pnorm(1- discrim.f*(diffi.f)) )) } pall <- exp(sum(p,na.rm=TRUE)) # theta[i] <- qnorm(1-pnorm(qnorm(pall))/2) #the z value of 1/2 the quantile value of pall theta[i] <- qnorm(1-pnorm(qnorm(pall))) #or, perhaps just hte z value of the quantile value of pall fit[i] <- 0 } } else { #cat("the normal case",i ) if(mod=="logistic") { myfit <- optimize(irt.2par,bounds,beta=discrim.f,delta=diffi.f,scores=items.f[i,]) #how to do an apply? } else {myfit <- optimize(irt.2par.norm,bounds,beta=discrim.f,delta=diffi.f,scores=items.f[i,])} #do a normal fit function theta[i] <- myfit$minimum fit[i] <- myfit$objective #fit of optimizing program }} else {#cat("\nno items",i) theta[i] <- NA fit[i] <- NA } #end if count ... else } #end subject loop theta [theta < bounds[1]] <- bounds[1] theta[theta > bounds[2]] <- bounds[2] # if((!is.null(keys)) & (all(keys[,f] == -1) || (sign(cor(discrim,keys[,f],use="pairwise")) < 0) )) {theta <- -theta #if((!is.null(keys)) & (all(keys[,f] == -1) )) {theta <- -theta # total <- -total} nf <- length(stats$difficulty) n.obs <- dim(items)[1] nvar <- dim(items)[2] # scores <- matrix(NaN,nrow=n.obs,ncol=nf*3) scores <- list(nf*3) scores <- list(theta,total,fit) return(scores) } # end of bigFunction #we now start score.irt.2 proper #this finds scores using multiple cores if they are available nf <- length(stats$difficulty) n.obs <- dim(items)[1] #nvar <- dim(items)[2] # if(nf < 2) {#discrim <- drop(stats$discrimination) # discrim <- stats$discrimination # if(!is.null(keys)) {discrim <- discrim * abs(keys) } # } else {discrim <- stats$discrimination[,f] # if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) # }} #{for (f in 1:nf) { #note that only items that load on this factor need to be considered #discrim <- stats$discrimination[,f] # if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) # } #use mapply for debugging, mcmapply for parallel processing scores <- mapply(bigFunction,c(1:nf),MoreArgs=list(n.obs=n.obs,items=items,stats=stats,keys=keys, cut=cut, bounds=bounds, mod=mod)) nf <- length(stats$difficulty) scores <- matrix(unlist(scores),ncol=nf*3) scores <- scores[,c(seq(1,nf*3,3),seq(2,nf*3+1,3),seq(3,nf*3 +2,3))] colnames(scores) <- paste(rep(c("theta","total","fit"),each=nf),1:nf,sep="") return(scores) }#end of score.irt.2 ############# "score.irt.poly" <- function(stats,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { #find the person parameters in a 2 parameter model we use deltas and betas from irt.discrim and irt.person.rasch #find the person parameter #created July 4, 2011 irt.2par.poly <- function(x,delta,beta,scores) { fit <- -1*(log(scores/(1+exp(beta*(delta-x))) + (1-scores)/(1+exp(beta*(x-delta))))) mean(fit,na.rm=TRUE) } ####The function that is parallelized big.poly <- function(f,n.obs,stats,items,keys=NULL,cut=.3,bounds=c(-5,5),mod="logistic") { nf <- ncol(stats$discrimination) #for (f in 1:nf) { #do it for every factor/scale diff <- stats$difficulty[[f]] if(nf < 2) {discrim <- stats$discrimination if(!is.null(keys)) {discrim <- discrim * abs(keys) } } else {discrim <- stats$discrimination[,f] if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) } } cat <- dim(diff)[2] fit <- rep(NA,n.obs) theta <- rep(NA,n.obs) item.f <- t(items) item.f[abs(discrim) < cut] <- NA #this does not change the item, just the temp version of the item item.f <- t(item.f) ### item.f <- item.f[,(abs(keys[,f])>0) ,drop=FALSE] #get rid of the those items that are not being processed for this factor discrim.f <- discrim[(abs(keys[,f]) >0),drop=FALSE ] #and get rid of the unnecessary discrim values #diffi.f <- diff[(abs(keys[,f]) > 0),drop=FALSE] #and the redundant diffi diffi.f <- diff[(abs(keys[,f])>0),byrows=TRUE] #diffi.vect <- as.vector(t(diffi.f)) #diffi.vect <- as.vector(diffi.f) diffi.vect <- as.vector(t(diff[(abs(keys[,f])>0),byrows=TRUE])) discrim.F.vect <- rep(discrim.f,each=cat) ## notice that this is vectorized and does it all subjects #seem to have solved the problem of missing items which are reversed. total <- rowMeans(t(t(item.f )* as.vector(sign(discrim.f))),na.rm=TRUE) #fixed 11/11/11 to be as.vector # total.positive <- rowMeans(t(t(item.f)* as.vector(sign(discrim.f) > 0)),na.rm=TRUE) # total.negative <- rowMeans(t(t(item.f)* as.vector(sign(discrim.f) < 0)),na.rm=TRUE) ## num.keyed <- rowSums(!is.na(item.f)) num.reversed <- rowSums(!is.na(item.f[,discrim.f <0,drop=FALSE])) total <- total + num.reversed * (max.item- min.item+1)/num.keyed + min.item count <- rowSums(!is.na(item.f)) #but now, we need to the next step one at a time (I think) for (subj in 1:n.obs) { if (count[subj]>0) { newscore <- NULL score <- item.f[subj,] #just the items to be scored for (i in 1:ncol(item.f)) { #Treat the items as a series of 1 or 0 responses if(is.na(score[i])) {newscore <- c(newscore,rep(NA,cat)) } else { if(score[i] == cat) {newscore <- c(newscore,rep(1,score[i])) } else { newscore <- c(newscore,rep(1,score[i]),rep(0,cat-score[i])) }} } #check for all lowest responses or all highest responses if((sum(newscore,na.rm=TRUE) ==0 ) | (prod(newscore,na.rm=TRUE) == 1) | (total[subj]==min.item) | (total [subj]== (max.item+min.item)) ) { if((sum(newscore,na.rm=TRUE) ==0) | (total[subj]== min.item)) { if(mod=="logistic") {p <- log(1-(1-newscore)/(1+exp(abs(discrim.f)*(diffi.f))) )} else { #logistic p <- log(1-(pnorm(newscore*abs(discrim.f)*diffi.f))) } #normals pall <- exp(sum(p,na.rm=TRUE)) # theta[i] <- qnorm(pnorm(qnorm(pall))/2) #the z value of 1/2 the quantile value of pall theta[i] <- qnorm(pnorm(qnorm(pall))) #just the z value of the quantile of pall fit[i] <- 0 # cat ("\nThe case of all wrong",i,theta[i]) } else { #the case of all right if(mod == "logistic") { p <- log(1/(1+exp(abs(discrim.f)*(diffi.f))) )} else { p <- log((1)*(1 - pnorm(1- abs(discrim.f)*(diffi.f)) )) } pall <- exp(sum(p,na.rm=TRUE)) theta[subj] <- qnorm(1-pnorm(qnorm(pall))) #the z value of the quantile value of pall fit[subj] <- 0 } } else { myfit <- optimize(irt.2par.poly,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore) theta[subj] <- myfit$minimum fit[subj] <- myfit$objective #fit of optimizing program } } else { fit[subj] <- NA theta[subj] <- NA } #end if else } if((!is.null(keys)) & (all(keys[,f] == -1) )) {theta <- -theta total <- -total} theta[theta bounds[2]] <- bounds[2] scores <- list(theta,total, fit) return(scores) } #end of big function ##the start of the irt.poly.function after setting up the various subfunctions min.item <- min(items,na.rm=TRUE) #uses local minima --probably problematic for small number of items items <- items - min.item #this converts scores to positive values from 0 up max.item <- max(items,na.rm=TRUE) #we use this when reverse score -- but note that this is not the original max value. We will adjust this in total nf <- length(stats$difficulty) n.obs <- dim(items)[1] nvar <- dim(items)[2] #mcmapply for parallel, mappy for debugging scores <- mcmapply(big.poly,1:nf,MoreArgs=list(n.obs=n.obs,stats=stats,items=items,keys=keys,cut=.3,bounds=bounds,mod=mod)) scores <- matrix(unlist(scores),ncol=nf*3) scores <- scores[,c(seq(1,nf*3,3),seq(2,nf*3+1,3),seq(3,nf*3 +2,3))] colnames(scores) <- paste(rep(c("theta","total","fit"),each=nf),1:nf,sep="") return(scores) } #end of score.irt.poly #added the tau option in switch in case we have already done irt.tau 6/29/16 "score.irt" <- function(stats=NULL,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { if(!is.null(keys) && (is.vector(keys))) keys <- matrix(keys) if (length(class(stats)) > 1) { if(!is.null(keys) && is.vector(keys)) keys <- as.matrix(keys) switch(class(stats)[2], irt.poly = {scores <- score.irt.poly(stats$irt,items,keys,cut,bounds=bounds,mod=mod) }, irt.fa = {scores <- score.irt.2(stats$irt,items,keys,cut,bounds=bounds,mod=mod)}, fa = {tau <- irt.tau(items) #this is the case of a factor analysis to be applied to irt nf <- dim(stats$loadings)[2] diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-stats$loadings[,i]^2) } discrim <- stats$loadings/sqrt(1-stats$loadings^2) class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) scores <- score.irt.poly(new.stats,items,keys,cut,bounds=bounds)}, tau = {tau <- stats #get the tau stats from a prior run if(is.matrix(keys)) {nf <- dim(keys)[2]} else {nf <-1} diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau } discrim <- keys class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) if(dim(tau)[2] ==1) {scores <- score.irt.2(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} else { scores <- score.irt.poly(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} } ) #we should have a null case } else {#input is a keys matrix tau <- irt.tau(items) #this is the case of a using a scoring matrix to be applied to irt if(is.matrix(keys)) {nf <- dim(keys)[2]} else {nf <-1} diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau } if(!is.null(keys)) {discrim <- keys} else {stop("I am sorry, you specified tau but not keys.")} class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) if(dim(tau)[2] ==1) {scores <- score.irt.2(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} else { scores <- score.irt.poly(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} } scores <- data.frame(scores) return(scores) } #find tau from dichotomous or polytomous data without bothering to find the correlations #useful for score.irt "irt.tau" <- function(x) { x <-as.matrix(x) nvar <- dim(x)[2] xt <- table(x) nvalues <- length(xt) #find the number of response alternatives if(nvalues ==2) {tau <- -qnorm(colMeans(x,na.rm=TRUE)) tau <- as.matrix(tau) rownames(tau) <- colnames(x)} else { if(nvalues > 10) stop("You have more than 10 categories for your items, polychoric is probably not needed") xmin <- min(x,na.rm=TRUE) xfreq <- apply(x- xmin+ 1,2,tabulate,nbins=nvalues) n.obs <- colSums(xfreq) xfreq <- t(t(xfreq)/n.obs) tau <- qnorm(apply(xfreq,2,cumsum))[1:(nvalues-1),] #these are the normal values of the cuts if(!is.matrix(tau)) tau <- matrix(tau,ncol=nvar) rownames(tau) <- names(xt)[1:(nvalues-1)] colnames(tau) <- colnames(x) if(dim(tau)[1] < dim(tau)[2]) tau <- t(tau) #rows are variables, columns are subjects } class(tau) <- c("psych","tau") #added the tau class so score.irt can use the tau values return(tau) } #added August 6, 2012 "irt.responses" <- function(theta,items, breaks = 11,show.missing=FALSE,show.legend=TRUE,legend.location="topleft",colors=NULL,...) { #if(is.null(colors)) colors =c("gray0", "blue3", "red3", "darkgreen", "gold2", "gray50", "cornflowerblue", "mediumorchid2") if(is.null(colors)) colors =c("black", "blue", "red", "darkgreen", "gold2", "gray50", "cornflowerblue", "mediumorchid2") #legend.location <- c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center","none") #uniqueitems <- unique(as.vector(unlist(items))) item.counts <- names(table(as.vector(unlist(items)))) uniqueitems <- as.numeric(item.counts) nalt <- length(uniqueitems) + 1 #include the missing value from response.frequencies nvar <- ncol(items) theta.min <- min(theta,na.rm=TRUE) theta.max <- max(theta,na.rm=TRUE) binrange <- cut(theta, breaks = breaks) binnums <- as.numeric(binrange) items <- as.matrix(items) stats <- by(items,binnums,function(x) response.frequencies(x,uniqueitems=uniqueitems)) stats.m <- unlist(stats) stats.m <- matrix(stats.m,ncol=nvar*nalt,byrow=TRUE) theta <- seq(theta.min,theta.max,length.out=breaks) for (i in 1:nvar) { plot(theta,stats.m[,i],ylim=c(0,1),typ="l",xlab="theta",ylab="P(response)",main=paste(colnames(items)[i]),col=colors[1],...) for(j in 1:(nalt-2+show.missing)) { points(theta,stats.m[,i+nvar*j],typ="l",lty=(j+1),col=colors[j+1 ],...) } if(show.legend) { legend(legend.location, paste(item.counts[1:(nalt-1 + show.missing)]), text.col = colors[1:(nalt-1+show.missing)], lty = 1:(nalt-1+show.missing), ncol=4,bty="n")} }} psych/R/describe.by.R0000644000176200001440000000524613075765257014145 0ustar liggesusers#modified March 4, 2009 for matrix output #and yet again August 1 to make it actually work! #modified May 26, 2014 to add the ability to specify group by name or location "describe.by" <- function (x,group=NULL,mat=FALSE,type=3,...) { #data are x, grouping variable is group .Deprecated("describeBy", msg = "describe.by is deprecated. Please use the describeBy function") answer <- describeBy(x=x,group=group,mat=mat,type=type,...) return(answer)} "describeBy" <- function (x,group=NULL,mat=FALSE,type=3,digits=15,...) { #data are x, grouping variable is group cl <- match.call() if(is.null(group)) {answer <- describe(x,type=type) warning("no grouping variable requested")} else { if(!is.data.frame(group) && !is.list(group) && (length(group) < NROW(x))) group <- x[,group] answer <- by(x,group,describe,type=type,...) class(answer) <- c("psych","describeBy") #probably better not to make of class psych (at least not yet) } if (mat) { ncol <- length(answer[[1]]) #the more complicated case. How to reorder a list of data.frames #the interesting problem is treating the case of multiple grouping variables. n.var <- NROW(answer[[1]]) n.col <- NCOL(answer[[1]]) n.grouping <- length(dim(answer)) #this is the case of multiple grouping variables n.groups <- prod(dim(answer)) names <- names(answer[[1]]) row.names <-attr(answer[[1]],"row.names") dim.names <- attr(answer,"dimnames") mat.ans <- matrix(NaN,ncol=ncol,nrow=n.var*n.groups) labels.ans <- matrix(NaN,ncol = n.grouping+1,nrow= n.var*n.groups) colnames(labels.ans) <- c("item",paste("group",1:n.grouping,sep="")) colnames(mat.ans) <- colnames(answer[[1]]) rn <- 1:(n.var*n.groups) k <- 1 labels.ans[,1] <- seq(1,(n.var*n.groups)) # for (grouping in 1:n.grouping) { labels.ans[,grouping+1] <- attr(answer,"dimnames")[[grouping]] }#no group.scale <- cumprod(c(1,dim(answer))) for (var in 1:(n.var*n.groups)) { for (group in 1:n.grouping) { groupi <- ((trunc((var-1)/group.scale[group]) ) %% dim(answer)[group] ) +1 labels.ans[var,group+1] <- dim.names[[group]][[groupi]]} } k <- 1 for (var in 1:n.var) { for (group in 1:n.groups) { rn[k] <- paste(row.names[var],group,sep="") #mat.ans[k,1] <- group for (stat in 1:n.col) {if(!is.null(answer[[group]][[stat]][var])) { mat.ans[k,stat] <- round(answer[[group]][[stat]][var],digits)} else { mat.ans[k,stat] <- NA } } k <- k + 1} } answer <- data.frame( labels.ans,mat.ans) rownames(answer) <- rn } #class(answer) <- c("psych","describe","list") #answer$Call <- cl return(answer)}psych/R/circ.simulation.R0000644000176200001440000000227312253362016015033 0ustar liggesusers"circ.simulation" <- function(samplesize=c(100,200,400,800), numberofvariables=c(16,32,48,72)) { ncases=length(samplesize) nvar <- length(numberofvariables) results <- matrix(NaN,ncol=ncases,nrow=nvar*ncases) results.ls <- list() case <- 1 for (ss in 1:ncases) { for (nv in 1:nvar) { circ.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss]) sim.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss],circum=FALSE) elipse.data <- circ.sim(nvar=numberofvariables[nv],nsub=samplesize[ss],yloading=.4) r.circ<- cor(circ.data) r.sim <- cor(sim.data) r.elipse <- cor(elipse.data) pc.circ <- principal(r.circ,2) pc.sim <- principal(r.sim,2) pc.elipse <- principal(r.elipse,2) case <- case + 1 results.ls[[case]] <- list(numberofvariables[nv],samplesize[ss],circ.tests(pc.circ),circ.tests(pc.elipse),circ.tests(pc.sim)) } } results.mat <- matrix(unlist(results.ls),ncol=14,byrow=TRUE) colnames(results.mat) <- c("nvar","n","c-gap","c-fisher","c-RT","c-VT","e-gap","e-fisher","e-RT","e-VT","s-gap","s-fisher","s-RT","s-VT") results.df <- data.frame(results.mat) return(results.df) }psych/R/esem.R0000644000176200001440000002534713061020725012664 0ustar liggesusers#created Sept 4 to try to do exploratory sem by factoring sets 1 and 2 #and then linking the two sets "esem" <- function(r,varsX,varsY,nfX=1,nfY=1,n.obs=NULL,fm="minres",rotate="oblimin",plot=TRUE,cor="cor",use="pairwise",weight=NULL,...) { #vars <- order(c(vars1,vars2)) cl <- match.call() if(is.numeric(varsX)) varsX <- colnames(r)[varsX] if(is.numeric(varsY)) varsY <- colnames(r)[varsY] vars <- c(varsX,varsY) if(is.null(n.obs)) n.obs <- NA if(ncol(r) < nrow(r)) {#find the correlations n.obs <- nrow(r) switch(cor, cor = {r <- cor(r,use=use)}, cov = {r <- cov(r,use=use) covar <- TRUE}, wtd = { r <- cor.wt(r,w=weight)$r}, tet = {r <- tetrachoric(r)$rho}, poly = {r <- polychoric(r)$rho}, mixed = {r <- mixed.cor(r,use=use)$rho}, Yuleb = {r <- YuleCor(r,,bonett=TRUE)$rho}, YuleQ = {r <- YuleCor(r,1)$rho}, YuleY = {r <- YuleCor(r,.5)$rho } ) } #varnames <- colnames(r)[vars] varnames <- vars rownames(r) <- colnames(r) R <- r[varnames,varnames] #This reorganizes R so that it is the order of the selected variables nX <- length(varsX) nY <-length(varsY) df1 <- nX *(nX-1)/2 - nfX * nX + nfX * (nfX-1)/2 df2 <- nY *( nY-1)/2 - nfY * nY + nfY * (nfY-1)/2 f1 <- fa.extend(R,nfX,ov=varsX,ev=varsY,fm=fm,rotate=rotate,...) loads1 <- f1$loadings[varnames,,drop=FALSE] S1 <- f1$Structure[varnames,,drop=FALSE] if(!is.null(ncol(S1))) colnames(loads1) <- colnames(S1) <- paste0("X",1:ncol(loads1)) Phi1 <- f1$Phi f2 <- fa.extend(R,nfY,ov=varsY,ev=varsX,fm=fm,rotate=rotate,...) loads2 <- f2$loadings[varnames,,drop=FALSE] S2 <- f2$Structure[varnames,,drop=FALSE] if(!is.null(ncol(S2))) {colnames(loads2) <- colnames(S2) <- paste0("Y",1:ncol(loads2))} Phi2 <- f2$Phi f12 <- cbind(loads1,loads2) S12 <- cbind(S1,S2) S12 <- as.matrix(S12) Phi <- t(S12) %*% solve(R) %*% S12 loadsX <- f1$loadings[varsX,,drop=FALSE] loadsY <- f2$loadings[varsY,,drop=FALSE] # loadsX <- f1$loadings[colnames(R)[varsX],,drop=FALSE] # loadsY <- f2$loadings[colnames(R)[varsY],,drop=FALSE] diag(Phi) <- 1 #now, a kludge to make it better -- but not actually, so dropped if(FALSE) {if(!is.null(Phi1)) Phi[1:nfX,1:nfX] <- Phi1 if(!is.null(Phi2)) Phi[(nfX+1):(nfX+nfY),(nfX+1):(nfX+nfY)] <- Phi2 } result <- esem.stats(R,f12,S12,Phi,n.obs=n.obs) result$n.obs <- n.obs result$loadings <- f12 result$Structure <- S12 result$loadsX <- loadsX result$loadsY <- loadsY result$PhiX <- Phi1 result$PhiY <- Phi2 result$esem.dof <- df1 + df2 result$fm <- fm result$fx <- f1$fo result$fy <- f2$fo result$Phi <- Phi result$Call <- cl class(result) <- c("psych","esem") if(plot) esem.diagram(result) return(result)} "esem.stats" <- function(r,f,s,phi,n.obs=NA) { r <- as.matrix(r) n <- ncol(r) nfactors <- ncol(f) if(is.null(nfactors)) nfactors <- 1 Sp <- s %*% solve(phi) #this is not quite f, but is better model <- Sp %*% t(s) #this works better than model <- f %*% t(s) residual <- r - model result <- list() result$communality <- diag(model) result$sumsq <- diag(t(s) %*% (Sp)) r2 <- sum(r*r) rstar2 <- sum(residual*residual) #Alternatively, we can recognize that we are not estimating all of these #this is results$esem.dof result$dof <- dof <- n * (n-1)/2 - n * nfactors + (nfactors *(nfactors-1)/2) r2.off <- r2 - tr(r) diag(residual) <- 0 rstar.off <- sum(residual^2) # # m.inv.r <- try(solve(model,r),silent=TRUE) #modified Oct 30, 2009 to perhaps increase precision -- #modified 2015/1/2 to use try # # if(class(m.inv.r)=="try-error") {warning("the model inverse times the r matrix is singular, replaced with Identity matrix which means fits are wrong") # sum} # if(is.na(n.obs)) {result$n.obs=NA # result$PVAL=NA} else {result$n.obs=n.obs} m.inv.r <- diag(1,n,n) #this is because the m.inv.r is not estimated # result$dof <- n * (n-1)/2 - n * nfactors + (nfactors *(nfactors-1)/2) result$objective <- sum(diag((m.inv.r))) - log(det(m.inv.r)) -n #this is what Tucker Lewis call F result$objective <- rstar2 #because the normal way doesn't work # if(is.infinite(result$objective)) {result$objective <- rstar2 # message("The determinant of the smoothed correlation was zero.\nThis means the objective function is not defined.\nChi square is based upon observed residuals.")} result$criteria <- c("objective"=result$objective,NA,NA) if (!is.na(n.obs)) {result$STATISTIC <- chisq <- result$objective * ((n.obs-1) -(2 * n + 5)/6 -(2*nfactors)/3) #from Tucker and from factanal # if (!is.na(n.obs)) {result$STATISTIC <- chisq <- result$objective * ((n.obs-1)) #from Fox and sem if(!is.nan(result$STATISTIC)) if (result$STATISTIC <0) {result$STATISTIC <- 0} if (result$dof > 0) {result$PVAL <- pchisq(result$STATISTIC, result$dof, lower.tail = FALSE)} else {result$PVAL <- NA} } result$ENull <- r2.off * n.obs #the empirical null model result$null.dof <- n * (n-1) result$chi <- rstar.off * n.obs #this is the empirical chi square result$rms <- sqrt(rstar.off/(n*(n-1))) #this is the empirical rmsea result$nh <- n.obs if (result$dof > 0) {result$EPVAL <- pchisq(result$chi, result$dof, lower.tail = FALSE) result$crms <- sqrt(rstar.off/(2*result$dof) ) result$EBIC <- result$chi - result$dof * log(n.obs) result$ESABIC <- result$chi - result$dof * log((n.obs+2)/24) } else {result$EPVAL <- NA result$crms <- NA result$EBIC <- NA result$ESABIC <- NA} result$fit <-1-rstar2/r2 result$fit.off <- 1-rstar.off/r2.off result$sd <- sd(as.vector(residual)) #this is the non-sample size weighted root mean square residual result$factors <- nfactors result$complexity <- (apply(f,1,function(x) sum(x^2)))^2/apply(f,1,function(x)sum(x^4)) result$residual <- residual diag(model) <- diag(r) return(result) } "print.psych.esem" <-function(x,digits=2,short=TRUE,cut=NULL, suppress.warnings=TRUE,...) { cat("Exploratory Structural Equation Modeling Analysis using method = ",x$fm ) cat("\nCall: ") print(x$Call) nitems <- nrow(x$loadings) nfactors <- ncol(x$loadings) cat("\nFor the 'X' set:\n") x$loadsX <- as.matrix(x$loadsX) print(round(x$loadsX,digits=digits)) if(!short) { if(!is.null(ncol(x$PhiX))){ cat("\nWith factor intercorrelations of \n") print(round(x$PhiX,digits=digits)) } } cat("\nFor the 'Y' set:\n") x$loadsY <- as.matrix(x$loadsY) print(round(x$loadsY,digits=digits)) if(!short) { if(!is.null(ncol(x$PhiY))) { cat("\nWith factor intercorrelations of \n") print(round(x$PhiY,digits=digits)) } } if(!short) { cat('\nStandardized pattern coefficients on the X and Y sets using Factor Extension\n') L <- cbind(x$loadings,x$communality,1-x$communality) colnames(L)[(ncol(L)-1):ncol(L)] <- c("h2","u2") # print(round(x$loadings,digits=digits),round(x$communality,digits=digits)) print(round(L,digits=digits)) varex <- rbind("SS loadings" = x$sumsq) varex <- rbind(varex, "Proportion Var" = x$sumsq/nitems) varex <- rbind(varex, "Cumulative Var"= cumsum( x$sumsq/nitems)) varex <- rbind(varex, "Cum. factor Var"= cumsum( x$sumsq/sum( x$sumsq))) cat("\n") print(round(varex, digits)) } # if(!is.null(x$complexity)) cat("\nMean item complexity = ",round(mean(x$complexity),1)) # objective <- x$criteria[1] # cat("\nCorrelations between the X and Y sets.\n") print(round(x$Phi,digits=digits)) if(!is.null(x$null.dof)) {cat("\nThe degrees of freedom for the null model are ",x$null.dof, " and the empirical chi square function was ",round(x$ENull,digits),...)} cat("\nThe degrees of freedom for the model are",x$dof," and the empirical chi square function was ",round(x$chi,digits),"\n"," with prob < ", signif(x$EPVAL,digits),"\n" ,...) if(!is.null(x$rms)) {cat("\nThe root mean square of the residuals (RMSR) is ", round(x$rms,digits),"\n") } if(!is.null(x$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$crms,digits),"\n",...) } if((!is.null(x$chi)) && (!is.na(x$chi))) {cat(" with the empirical chi square ", round(x$chi,digits), " with prob < ", signif(x$EPVAL,digits),"\n" ,...) } if(!is.na(x$n.obs)) {cat("The total number of observations was ",x$n.obs, " with fitted Chi Square = ",round(x$STATISTIC,digits), " with prob < ", signif(x$PVAL,digits),"\n",...)} if(!is.null(x$TLI)) cat("\nTucker Lewis Index of factoring reliability = ",round(x$TLI,digits+1)) if(!is.null(x$RMSEA)) {cat("\nRMSEA index = ",round(x$RMSEA[1],digits+1), " and the", (1- x$RMSEA[4])*100,"% confidence intervals are ",round(x$RMSEA[2:3],digits+1),...) } if(!is.null(x$EBIC)) {cat("\nEmpirical BIC = ",round(x$EBIC,digits))} if(!is.null(x$ESABIC)) {cat("\nESABIC = ",round(x$ESABIC,digits))} if(!is.null(x$fit)) cat("\nFit based upon off diagonal values =", round(x$fit.off,digits)) if(short) cat("\nTo see the item loadings for the X and Y sets combined, and the associated fa output, print with short=FALSE.\n") # cat("\nTo report the factor analysis of the X and Y sets with their associated statistics, run fa on the X and Y sets separately.") } "interbattery" <- function(r, varsX, varsY, nfX = 1, nfY = 1, n.obs = NULL,cor = "cor", use = "pairwise",weight=NULL) { cl <- match.call() vars <- c(varsX,varsY) if(is.null(n.obs)) n.obs <- NA if(ncol(r) < nrow(r)) {#find the correlations n.obs <- nrow(r) switch(cor, cor = {r <- cor(r,use=use)}, cov = {r <- cov(r,use=use) covar <- TRUE}, tet = {r <- tetrachoric(r)$rho}, poly = {r <- polychoric(r)$rho}, mixed = {r <- mixed.cor(r,use=use)$rho}, Yuleb = {r <- YuleCor(r,,bonett=TRUE)$rho}, YuleQ = {r <- YuleCor(r,1)$rho}, YuleY = {r <- YuleCor(r,.5)$rho } ) } varnames <- colnames(r)[vars] R <- r[varnames,varnames] #This reorganizes R so that it is the order of the selected r12 <- r[varsX,varsY] H1 <- r12 %*% t(r12) E1 <- eigen(H1) W1 <- E1$vectors[,1:nfX,drop=FALSE] gamma1 <- sqrt(E1$values[1:nfX,drop=FALSE]) A1 <- W1 %*% diag(sqrt(gamma1),ncol=nfX) W2 <- t(r12) %*% W1 %*% diag(1/gamma1,ncol=nfX) A2 <- W2 %*% diag(sqrt(gamma1)) As <- colSums(sign(A1)) flip <- diag(sign(As),ncol=nfX) A1 <- A1 %*% flip As <- colSums(sign(A2)) flip <- diag(sign(As),ncol=nfX) A2 <- A2 %*% flip colnames(A1) <- colnames(A2) <- paste0("IB",1:ncol(A1)) rownames(A1) <- rownames(r12) return(list(A1=A1,A2 = A2,loadings=rbind(A1,A2),Call=cl)) } psych/R/factor.stats.R0000644000176200001440000004041013152620551014336 0ustar liggesusers "factor.stats" <- function(r=NULL,f,phi=NULL,n.obs=NA,np.obs=NULL,alpha=.1,fm=NULL) { fa.stats(r=r,f=f,phi=phi,n.obs=n.obs,np.obs=np.obs,alpha=alpha,fm=fm)} "fa.stats" <- function(r=NULL,f,phi=NULL,n.obs=NA,np.obs=NULL,alpha=.05,fm=NULL) { #revised June 21, 2010 to add RMSEA etc. #revised August 25, 2011 to add cor.smooth for smoothing #revised November 10, 2012 to add stats for the minchi option of factoring #revised February 28, 2014 to emphasize empirical chi 2 and report empirical BIC #revised March 9, 2015 to report NA if RMSEA values are not in the confidence intervals cl <- match.call() conf.level <- alpha if((!is.matrix(f)) && (!is.data.frame(f))) {#do a number of things that use f as list if(is.null(r) && (!is.null(f$r)) ) r <- f$r #we found the correlation while factoring #if(is.na(n.obs) && (!is.null(f$np.obs))) {np.obs <- f$np.obs} f <- as.matrix(f$loadings)} else {f <- as.matrix(f)} n <- dim(r)[2] #number of variables if(dim(r)[1] !=n ) {n.obs = dim(r)[1] r <- cor(r,use="pairwise") } if(is.data.frame(r)) r <- as.matrix(r) nfactors <- dim(f)[2] # number of factors if(is.null(phi)) {model <- f %*% t(f)} else {model <- f %*% phi %*% t(f)} residual<- r - model r2 <- sum(r*r) rstar2 <- sum(residual*residual) result <- list(residual = residual) result$dof <- dof <- n * (n-1)/2 - n * nfactors + (nfactors *(nfactors-1)/2) #r2.off <- r #diag(r2.off) <- 0 # r2.off <- sum(r2.off^2) r2.off <- r2 - tr(r) diag(residual) <- 0 if(is.null(np.obs)) {rstar.off <- sum(residual^2) result$ENull <- r2.off * n.obs #the empirical null model result$chi <- rstar.off * n.obs #this is the empirical chi square result$rms <- sqrt(rstar.off/(n*(n-1))) #this is the empirical rmsea result$nh <- n.obs if (result$dof > 0) {result$EPVAL <- pchisq(result$chi, result$dof, lower.tail = FALSE) result$crms <- sqrt(rstar.off/(2*result$dof) ) result$EBIC <- result$chi - result$dof * log(n.obs) result$ESABIC <- result$chi - result$dof * log((n.obs+2)/24) } else {result$EPVAL <- NA result$crms <- NA result$EBIC <- NA result$ESABIC <- NA} } else { rstar.off <- sum(residual^2 * np.obs) #weight the residuals by their sample size r2.off <-(r*r * np.obs) #weight the original by sample size r2.off <- sum(r2.off) -tr(r2.off) result$chi <- rstar.off #this is the sample size weighted chi square result$nh <- harmonic.mean(as.vector(np.obs)) #this is the sample weighted cell size result$rms <- sqrt(rstar.off/(result$nh*n*(n-1))) #this is the sample size weighted square root average squared residual if (result$dof > 0) {result$EPVAL <- pchisq(result$chi, result$dof, lower.tail = FALSE) result$crms <- sqrt(rstar.off/(2*result$nh*result$dof) ) result$EBIC <- result$chi - result$dof * log(result$nh) result$ESABIC <- result$chi - result$dof * log((result$nh+2)/24) } else { #added 2/28/2014 result$EPVAL <- NA result$crms <- NA result$EBIC <- NA result$ESABIC <- NA } } result$fit <-1-rstar2/r2 result$fit.off <- 1-rstar.off/r2.off result$sd <- sd(as.vector(residual)) #this is the none sample size weighted root mean square residual result$factors <- nfactors result$complexity <- (apply(f,1,function(x) sum(x^2)))^2/apply(f,1,function(x)sum(x^4)) diag(model) <- diag(r) model <- cor.smooth(model) #this replaces the next few lines with a slightly cleaner approach r <- cor.smooth(r) #this makes sure that the correlation is positive semi-definite #although it would seem that the model should always be positive semidefinite so this is probably not necessary #cor.smooth approach added August 25,2011 # model.inv <- try(solve(model),silent=TRUE) # if(class(model.inv)=="try-error") {warning("The correlation matrix is singular, an approximation is used") # ev.mod <- eigen(model) # ev.mod$values[ev.mod$values < .Machine$double.eps] <- 100 * .Machine$double.eps # model <- ev.mod$vectors %*% diag(ev.mod$values) %*% t(ev.mod$vectors) # diag(model) <- 1 # #model.inv <- solve(model) # } m.inv.r <- try(solve(model,r),silent=TRUE) #modified Oct 30, 2009 to perhaps increase precision -- #modified 2015/1/2 to use try if(class(m.inv.r)=="try-error") {warning("the model inverse times the r matrix is singular, replaced with Identity matrix which means fits are wrong") m.inv.r <- diag(1,n,n)} if(is.na(n.obs)) {result$n.obs=NA result$PVAL=NA} else {result$n.obs=n.obs} result$dof <- n * (n-1)/2 - n * nfactors + (nfactors *(nfactors-1)/2) result$objective <- sum(diag((m.inv.r))) - log(det(m.inv.r)) -n #this is what Tucker Lewis call F if(is.infinite(result$objective)) {result$objective <- rstar2 message("The determinant of the smoothed correlation was zero.\nThis means the objective function is not defined.\nChi square is based upon observed residuals.")} result$criteria <- c("objective"=result$objective,NA,NA) if (!is.na(n.obs)) {result$STATISTIC <- chisq <- result$objective * ((n.obs-1) -(2 * n + 5)/6 -(2*nfactors)/3) #from Tucker and from factanal # if (!is.na(n.obs)) {result$STATISTIC <- chisq <- result$objective * ((n.obs-1)) #from Fox and sem if(!is.nan(result$STATISTIC)) if (result$STATISTIC <0) {result$STATISTIC <- 0} if (result$dof > 0) {result$PVAL <- pchisq(result$STATISTIC, result$dof, lower.tail = FALSE)} else {result$PVAL <- NA} } result$Call <- cl #find the Tucker Lewis Index of reliability #Also known as the NNFI which is expressed in terms of Chisq #NNFI <- (chisqNull/dfNull - chisq/df)/(chisqNull/dfNull - 1) #first find the null model F0 <- sum(diag((r))) - log(det(r)) -n if(is.infinite(F0)) {F0 <- r2 message("The determinant of the smoothed correlation was zero.\nThis means the objective function is not defined for the null model either.\nThe Chi square is thus based upon observed correlations.")} Fm <- result$objective #objective function of model Mm <- Fm/( n * (n-1)/2 - n * nfactors + (nfactors *(nfactors-1)/2)) M0 <- F0* 2 /(n*(n-1)) nm <- ((n.obs-1) -(2 * n + 5)/6 -(2*nfactors)/3) # result$null.model <- F0 result$null.dof <- n * (n-1) /2 if (!is.na(n.obs)) {result$null.chisq <- F0 * ((n.obs-1) -(2 * n + 5)/6 ) result$TLI <- (M0 - Mm)/(M0 - 1/nm) #NNFI in Fox's sem if(is.numeric(result$TLI) & !is.nan(result$TLI) & (result$TLI >1)) result$F0 <-1 #The estimatation of RMSEA and the upper and lower bounds are taken from John Fox's summary.sem with minor modifications if(!is.null(result$objective) && (result$dof >0) &&(!is.na(result$objective))) { RMSEA <- sqrt(max(result$objective/result$dof - 1/(n.obs-1), 0)) #this is x2/(df*N ) - 1/(N-1) #put back 4/21/17 #note that the result$objective is not actually the chi square unless we adjust it ala Tucker #thus, the RMSEA was slightly off. This was fixed October 29, 2016 to be # RMSEA <- sqrt(max( (chisq/(result$dof * (n.obs))-1/(n.obs)),0)) #changed to this from above October 29, 2016 and then changed to N February 28, 2017 #Seem to have dropped the sqrt part of this at some point tail <- conf.level/2 #this had been incorrectly listed as (1-conf.level)/2 which gave extraordinarily narrow confidence boundaries, fixed August 25, 2011 N <- max <- n.obs df <- result$dof #chi.sq.statistic <- RMSEA^2 * df * (N - 1) + df #why isn't this just chi.sq? chi.sq.statistic <- chisq max <- max(n.obs,chi.sq.statistic) +2* n.obs #the alternative to this is to use the uniroot technique of Yves Rosseel in lavaan #### from Hao Wu # LB<-function(T){ # + if (pchisq(df=df,q=T)<=0.95) return(0) else # + sqrt(uniroot(function(x) {pchisq(df=df,ncp=x,q=T)-0.95},c(0,10000))$root/nstar/df) # + } # # > UB<-function(T){ # + if (pchisq(df=df,q=T)<=0.05) return(0) else # + sqrt(uniroot(function(x) {pchisq(df=df,ncp=x,q=T)-0.05},c(0,10000))$root/nstar/df) # + } ## #Finally implement February 2017 # upperlambda <- function(lam) {tail - pchisq(chi.sq.statistic, df, ncp=lam)^2 } RMSEA.U <- 0 #in case we can not find it if(pchisq(df=result$dof,q=result$STATISTIC) > tail){ RMSEA.U <- try( sqrt(uniroot(function(x) {pchisq(df=result$dof,ncp=x,q=result$STATISTIC)- tail},c(0,max))$root/(n.obs-1)/result$dof),silent=TRUE) if(class( RMSEA.U)=="try-error") {if(RMSEA <= 0 ) {RMSEA.U <- 0} else {message("In factor.stats, I could not find the RMSEA upper bound . Sorry about that") #if the fit is super good, then the chisq is too small to get an upper bound. Report it as 0. RMSEA.U <- NA}} } # lam.U <- NA} else {lam.U <- res} # # if (is.null(res) || is.na(res$objective) || res$objective < 0){ # # max <- 0 # # warning("cannot find upper bound of RMSEA") # # break # # } # # lowerlambda <- function(lam) {1- tail - pchisq(chi.sq.statistic, df, ncp=lam)^2 } RMSEA.L <- 0 #in case we can not find it if(pchisq(df=result$dof,q=result$STATISTIC) > (1-tail)) { RMSEA.L <- try( sqrt(uniroot(function(x) {pchisq(df=result$dof,ncp=x,q=result$STATISTIC)-1 + tail},c(0,max))$root/(n.obs-1)/result$dof) ,silent=TRUE) if(class(RMSEA.L)=="try-error") {#message("In factor.stats, I could not find the RMSEA lower bound . Sorry about that") RMSEA.L <- NA} } else {RMSEA.L <- 0} # lam.L <- 0} else {lam.L <- res} # # if (is.null(res) || is.na(res$objective) || res$objective < 0){ # # max <- 0 # # warning("cannot find lower bound of RMSEA") # # break # # } #However, this was giving the wrong results and so I implemented the following #suggested by Hao Wu April, 2017 #RMSEA.U <- sqrt(uniroot(function(x) {pchisq(df=result$dof,ncp=x,q=result$STATISTIC)- alpha},c(0,10000))$root/(n.obs-1)/result$dof) #RMSEA.L <- sqrt(uniroot(function(x) {pchisq(df=result$dof,ncp=x,q=result$STATISTIC)-1 + alpha},c(0,10000))$root/(n.obs-1)/result$dof) # while (max > 1){ # res <- try(optimize(function(lam) (tail - pchisq(chi.sq.statistic, df, ncp=lam))^2, interval=c(0, max)),silent=TRUE) # if(class(res)=="try-error") {message("In factor.stats, I could not find the RMSEA upper bound . Sorry about that") # res <- NULL} # if (is.null(res) || is.na(res$objective) || res$objective < 0){ # max <- 0 # warning("cannot find upper bound of RMSEA") # break # } # if (sqrt(res$objective) < tail/100) break # max <- max/2 # } # lam.U <- if (max <= 1) NA else res$minimum # # max <- max(max,lam.U) # max <- lam.U # if(is.na(max)) max <- N # while (max > 1){# this just iterates in to get a value # res <- try(optimize(function(lam) (1 - tail - pchisq(chi.sq.statistic, df, ncp=lam))^2, interval=c(0, max)),silent=TRUE) # if(class(res)=="try-error") {message("In factor.stats, I could not find the RMSEA lower bound. Sorry about that") # res <- NULL} # if (is.null(res)) {break} # if (sqrt(res$objective) < tail/100) break # max <- max/2 # if (is.na(res$objective) || res$objective < 0){ # max <- 0 # warning("cannot find lower bound of RMSEA") # break # } # } # # # lam.L <- if (max <= 1) NA else res$minimum #lam is the ncp # this RMSEA calculation is probably not right because it will sometimes (but rarely) give cis that don't include the estimate # RMSEA.U <- sqrt(lam.U/((N)*df) ) #lavaan uses sqrt(lam.U/((N)*df) ) sem uses sqrt(lam.U/((N-1)*df) ) # RMSEA.L <- min(sqrt(lam.L/((N)*df) ),RMSEA) if(!is.na(RMSEA.U) && RMSEA.U < RMSEA) RMSEA.U <- NA if(!is.na(RMSEA.L) && RMSEA.L > RMSEA) RMSEA.L <- NA result$RMSEA <- c(RMSEA, RMSEA.L, RMSEA.U, 1-conf.level) names(result$RMSEA) <- c("RMSEA","lower","upper","confidence") result$BIC <- chisq - df * log(N) result$SABIC <- chisq - df * log((N+2)/24) # added 1/27/2014 } } #now, find the correlations of the factor scores, even if not estimated, with the factors #this repeats what was done in factor.scores and does not take into account the options in factor.scores if(!is.null(phi)) f <- f %*% phi #convert the pattern to structure coefficients r <- cor.smooth(r) w <- try(solve(r,f) ,silent=TRUE) #these are the regression factor weights if(class(w)=="try-error") {message("In factor.stats, the correlation matrix is singular, an approximation is used") ev <- eigen(r) if(is.complex(ev$values)) {warning("complex eigen values detected by factor stats, results are suspect") } else { ev$values[ev$values < .Machine$double.eps] <- 100 * .Machine$double.eps r <- ev$vectors %*% diag(ev$values) %*% t(ev$vectors) diag(r) <- 1 w <- try(solve(r,f) ,silent=TRUE) #these are the factor weights if(class(w)=="try-error") {warning("In factor.stats, the correlation matrix is singular, and we could not calculate the beta weights for factor score estimates") w <- diag(1,dim(r)[1]) } #these are the beta weights }} R2 <- diag(t(w) %*% f) #but, we actually already found this in factor scores -- these are the Thurstone values if(is.null(fm)) { if(prod(R2) < 0 ) {message("In factor.stats: The factor scoring weights matrix is probably singular -- Factor score estimate results are likely incorrect.\n Try a different factor extraction method\n") R2[abs(R2) > 1] <- NA R2[R2 <= 0] <- NA } if ((max(R2,na.rm=TRUE) > (1 + .Machine$double.eps)) ) {message("The estimated weights for the factor scores are probably incorrect. Try a different factor extraction method.")} } r.scores <- cov2cor(t(w) %*% r %*% w) result$r.scores <- r.scores result$R2 <- R2 #this is the multiple R2 of the scores with the factors # result$R2.corrected <- factor.indeterm(r,f) # result$R2.total <- R2.cor$R2 # result$beta.total <- R2.cor$beta.total #course coding keys <- factor2cluster(f) covar <- t(keys) %*% r %*% keys if((nfactors >1) && (dim(covar)[2] >1 )) { sd.inv <- diag(1/sqrt(diag(covar))) cluster.correl <- sd.inv %*% covar %*% sd.inv valid <- t(f) %*% keys %*% sd.inv result$valid <- diag(valid) result$score.cor <- cluster.correl} else {sd.inv <- 1/sqrt(covar) if(dim(sd.inv)[1] == 1) sd.inv <- diag(sd.inv) valid <- try(t(f) %*% keys * sd.inv) result$valid <- valid} result$weights <- w #the beta weights for factor scores class(result) <- c("psych","stats") return(result) } psych/R/splitHalf.R0000644000176200001440000000746212605331270013662 0ustar liggesusers#November 30, 2013 #parts adapted from combn "splitHalf"<- function(r,raw=FALSE,brute=FALSE,n.sample=10000,covar=FALSE,check.keys=TRUE,key=NULL,use="pairwise") { cl <- match.call() split <- function(o,n) { A <- B <- rep(0,n) A [o] <- B[-o] <- 1 A[-o] <- B[o] <- 0 AB <- cbind(A,B) R <- t(AB) %*% r %*% AB Rab <- R[1,2]/sqrt(R[1,1]*R[2,2]) #rab <- 2*Rab/(1+Rab) rab <- 4*R[1,2]/sum(R) result <- list(rab=rab,AB=AB)} keys <- key maxrb <- -9999 minrb <- 2 n <- ncol(r) n2 <- trunc(n/2) n.obs <- nrow(r) if(n.obs > n) { r <- cov(r,use=use)} if(!covar) r <- cov2cor(r) if(check.keys && is.null(keys)) { p1 <- principal(r) if(any(p1$loadings < 0)) warning("Some items were negatively correlated with total scale and were automatically reversed.") keys <- 1- 2* (p1$loadings < 0 ) } #keys is now a vector of 1s and -1s if(is.null(keys)) {keys <- rep(1,n)} else { keys<- as.vector(keys) if(length(keys) < n) {temp <- keys #this is the option of keying just the reversals keys <- rep(1,n) names(keys) <- colnames(r) keys[temp] <- -1} } key.d <- diag(keys) r <- key.d %*% r %*% key.d signkey <- strtrim(keys,1) signkey[signkey=="1"] <- "" colnames(r) <- paste(colnames(r),signkey,sep="") e <- 0 m <- n2 h <- m sumr <- sum(r) alpha <- ((sumr - tr(r))/sumr) * n/(n-1) tsmc <- sum(smc(r)) lambda6 <- (sumr - tr(r) + tsmc)/sumr sumr <- 0 x <- seq_len(n) a <- seq_len(m) #count <- as.integer(round(choose(n, m)))/2 #doesn't work for very large values of n. count <- round(choose(n, m))/2 if(brute || ((count <= n.sample) && !raw)) { #brute force -- try all combinations brute <- TRUE if(raw) result <- rep(NA,count) #keep the results if raw #first do the original order o <- a sp <- split(o,n) if(raw) result[1] <- sp$rab maxrb <- sp$rab maxAB <- sp$AB minrb <- sp$rab minAB <- sp$AB i <- 2 #now, do the rest while (i < (count+1)) { #adapted (taken) from combn if (e < n - h) { h <- 1L e <- a[m] j <- 1L } else { e <- a[m - h] h <- h + 1L j <- 1L:h } a[m - h + j] <- e + j o <- x[a] sp <- split(o,n) if(raw) result[i] <- sp$rab sumr <- sumr+ sp$rab if(sp$rab > maxrb) {maxrb <- sp$rab maxAB <- sp$AB} if(sp$rab < minrb) {minrb <- sp$rab minAB <- sp$AB} i <- i + 1L }} else { #sample the alternatives result <- rep(NA,n.sample) sumr <- 0 for (i in 1:n.sample) { #result <- mclapply(1:n.sample,{ #use mclapply to allow for parallelism o <- sample(n,n2) sp <- split(o,n) if(raw) result[i] <- sp$rab #if(raw) result <- sp$rab #if mclapply sumr <- sumr+ sp$rab if(sp$rab > maxrb) {maxrb <- sp$rab maxAB <- sp$AB} if(sp$rab < minrb) { minrb <- sp$rab minAB <- sp$AB} } #) #if using mclapply } #now if(brute) {meanr <- sumr/count } else {meanr <- sumr/n.sample } meansp <- 2 * meanr/(1+meanr) kd <- diag(key.d) #reverse them so we can use the keys maxAB = maxAB * kd minAB = minAB * kd if(raw) {results <- list(maxrb=maxrb,minrb=minrb,maxAB=maxAB,minAB=minAB,meanr=meanr,alpha=alpha,lambda6=lambda6,raw = result,Call = cl) } else {results <- list(maxrb=maxrb,minrb=minrb,maxAB=maxAB,minAB=minAB,meanr=meanr,alpha=alpha,lambda6=lambda6,Call=cl)} class(results) <- c("psych","split") return(results) } psych/R/interp.median.R0000644000176200001440000000611110756045473014473 0ustar liggesusers"interp.median" <- function(x,w=1,na.rm=TRUE) { im <- interp.quantiles(x,q=.5,w,na.rm=na.rm) return(im)} "interp.quantiles" <- function(x,q=.5,w=1,na.rm=TRUE) { if (!(q>0) | !(q<1) ) {stop("quantiles most be greater than 0 and less than 1 q = ",q)} if(is.vector(x)) {im <- interp.q(x,q,w,na.rm=na.rm) } else { if((is.matrix(x) | is.data.frame(x)) ){ n <- dim(x)[2] im <- matrix(NA,ncol=n) for (i in 1:n) {im[i] <- interp.q(x[,i],q,w=w,na.rm=na.rm)} colnames(im) <- colnames(x) } else {stop('The data must be either a vector, a matrix, or a data.frame')} return(im) }} "interp.q" <- function(x,q=.5,w=1,na.rm=TRUE) { if(na.rm) { x <- x[!is.na(x)]} n <- length(x) n2 <- (n+1)*q o <- order(x) x <- x[o] ml <- x[floor(n2)] mh <- x[ceiling(n2)] m <- (mh+ml)/2 xb <- sum(xm) am <- n - xa - xb if(am >1) { im <- m -.5 *w + w*(n*q - xb )/am #even number at median } else {im <- m } #no ties return(im) } "interp.quart" <- function(x,w=1,na.rm=TRUE) { q <- c(.25,.5,.75) if(na.rm) { x <- x[!is.na(x)]} n <- length(x) n2 <- (n+1)*q N<- n*q o <- order(x) x <- x[o] ml <- x[floor(n2)] mh <- x[ceiling(n2)] m <- (mh+ml)/2 im<- xa <- xb <- rep(NA,3) for (i in 1:3) {xb[i] <- sum(x m[i]) } am <- n - xa - xb for (i in 1:3) {if(am[i] >1) { im[i] <- m[i] - .5*w + w*(N[i]-xb[i])/am[i]} else im[i] <- m[i]} return(im)} "interp.quartiles" <- function(x,w=1,na.rm=TRUE) { q <- c(.25,.5,.75) if(is.vector(x)) {im <- interp.quart(x,w,na.rm=na.rm) names(im) <- c("Q1","Median","Q3") } else { nvar <- dim(x)[2] im <- matrix(NA,ncol=3,nrow=nvar) for (i in 1:nvar ) { im[i,] <- interp.quart(x[,i],w,na.rm=na.rm)} rownames(im) <- colnames(x) colnames(im) <- c("Q1","Median","Q3")} return(im)} "interp.values" <- function(x,w=1,na.rm=TRUE) { n <- length(x) tabx <- table(x) cv <- as.numeric(names(tabx)) k <- 1 v <- x[order(x)] for (i in 1:length(tabx)) { for (j in 1:tabx[i]) { v[k] <- i - .5* w + j/(tabx[i]+1) k <- k+1 } } return(v) } "interp.boxplot" <- function(x,w=1,na.rm=TRUE) { stats <- interp.quartiles(x,w,na.rm=na.rm) return(stats) } "interp.qplot.by" <- function(y,x,w=1,na.rm=TRUE,xlab="group",ylab="dependent",ylim=NULL,arrow.len=.05,typ="b",add=FALSE,...) { z <- by(y,x,interp.quartiles) zname <- names(z) z <- matrix(unlist(z),ncol=3,byrow=TRUE) rownames(z) <- zname colnames(z) <- c("Q1","Median","Q3") xv <- as.numeric(zname) ymin <- min(y) ymax <- max(y) if(is.null(ylim)) {ylim <- c(ymin,ymax)} if(add) { points(xv,z[,2],typ=typ,...)} else { plot(xv,z[,2],ylim = ylim,xlab=xlab,ylab=ylab,typ=typ,...)} lenx <- length(xv) for (i in 1:lenx) { xlow <- z[i,1] xcen <- z[i,2] xup <- z[i,3] arrows(xv[i],xlow,xv[i],xup,length=arrow.len, angle = 90, code=3, lty = NULL, lwd = par("lwd"), xpd = NULL,...) } } psych/R/sim.parallel.r0000644000176200001440000000224212516535223014353 0ustar liggesusers"sim.parallel" <- function(ntrials=10,nvar = c(12,24,36,48),nfact = c(1,2,3,4,6), n = c(200,400)) { nvariables = nvar factors = nfact subjects = n result <- matrix(NaN,ncol=7,nrow=ntrials*length(nvariables) * length(subjects) * length(factors)) k <- 1 for (nfact in factors) { for (nvar in nvariables) { for (nsub in subjects) { for (trials in 1:ntrials) { x <- sim.minor(nvar=nvar,nfact=nfact,n=nsub)$observed fp <- fa.parallel(x) fps <- fa.parallel(x,SMC=TRUE) result[k,1] <- nfact result[k,2] <- nvar result[k,3] <- trials result[k,4] <- fp$nfact result[k,5] <- fps$nfact result[k,6] <- fp$ncomp result[k,7] <- nsub k <- k + 1 } #trials } #subjects }#variables }#factors colnames(result) <- c("factors","nvar","trials","nfact","smc.fact","ncomp","nsub") return(result) } "sim.correlation" <- function(R,n=1000,data=FALSE) { eX <- eigen(R) nvar <- ncol(R) observed <- matrix(rnorm(nvar * n),n,nvar) observed <- t( eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(observed)) colnames(observed) <- colnames(R) if(data) {result <- observed} else { result <- cor(observed)} return(result)} psych/R/ICLUST.graph.R0000644000176200001440000000625211020353750014030 0ustar liggesusers#created August 4, 2006 #last revised September 5, 2006 #create dot file for graphviz from ICLUST output #inspired by sem.path.diagram by J. Fox "ICLUST.graph" <- function(ic.results, out.file,min.size=1,short=FALSE,labels=NULL, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 12), rank.direction=c("RL","TB","LR","BT"), digits=2,title="ICLUST", ...){ if(!missing(out.file)){ out <- file(out.file, "w") on.exit(close(out)) } else out <- stdout() results <- ic.results$results if (length(labels)==0) { var.labels <- rownames(ic.results$loadings)} else {var.labels=labels} # if(dim(var.labels)[1] < dim(var.labels)[2]) {var.labels <- t(var.labels)} clusters <- as.matrix(ic.results$clusters) #if(length(clusters)==length(var.labels) ) {clusters <- as.matrix(clusters)} num <- nrow(results) if (short) {var.labels <- paste("V",1:nrow,(var.labels),sep="")} rank.direction <- match.arg(rank.direction) #first some basic setup parameters cat( file=out,paste('digraph ICLUST', ' {\n', sep="")) cat(file=out, paste(' rankdir=', rank.direction, ';\n', sep="")) cat(file=out, paste(' size="',size[1],',',size[2],'";\n', sep="")) cat(file=out, paste(' node [fontname="', node.font[1], '" fontsize=', node.font[2], ' shape=box, width=2];\n', sep="")) cat(file=out, paste(' edge [fontname="', edge.font[1], '" fontsize=', edge.font[2], '];\n', sep="")) cat(file=out, paste(' label = "' ,title,'"; fontsize=20;\n', sep="")) #create the items as boxes #add the sign from the clusters num.var <- nrow(results)+1 #how many variables? if (num.var > dim(clusters)[1]) {num.var <- dim(clusters)[1]} for (i in 1:num.var) { if (max(clusters[i,]) > 0 ) { cat(file=out,paste('V',i,' [label = "',var.labels[i], '"];\n', sep="")) } else { cat(file=out,paste('V',i,' [label = "-',var.labels[i], '"];\n', sep="")) } } #show the cluster structure with ellipses cat(file=out,paste('node [shape=ellipse, width ="1"];\n', sep="")) #draw the edges for (i in 1:num) {if(results[i,1]>0) { #avoid printing null results cat(file=out,paste(row.names(results)[i], '-> ', results[i,1], ' [ label = ',round(results[i,"r1"],digits),' ];\n', sep="")) cat(file=out,paste(row.names(results)[i], '-> ', results[i,2], ' [ label = ',round(results[i,"r2"],digits),' ];\n', sep="")) }} #label the clusters with alpha and beta for (i in 1:num) {if(results[i,1]>0) { #don't print blank results if (results[i,"size"] > min.size) { cat(file=out,paste(row.names(results)[i], ' [label = "',row.names(results)[i],'\\n alpha= ',round(results[i,"alpha"],digits),'\\n beta= ' ,round(results[i,"beta"],digits),'\\nN= ',results[i,"size"], '"] ;\n', sep="")) } else {cat(file=out,paste(row.names(results)[i],' ;\n', sep="")) } #short names for small clusters }} #keep the boxes all at the same rank (presumably the left side) cat(file=out, paste('{ rank=same;\n', sep="")) for (i in 1:num.var) { cat(file=out,paste('V',i,';', sep="")) } cat(file=out, paste('}}', sep="")) # we are finished } # end of ICLUST.graph psych/R/headtail.R0000644000176200001440000000650713104753744013517 0ustar liggesusers"headtail" <- function(x, hlength=4,tlength=4,digits=2,ellipsis=TRUE,from=1,to=NULL) { .Deprecated("headTail", msg = "headtail is deprecated. Please use the headTail function") if(is.data.frame(x) | is.matrix(x) ) { if (is.matrix(x)) x <- data.frame(unclass(x)) nvar <- dim(x)[2] if(is.null(to)) to <- nvar dots <- rep("...",nvar) h <- data.frame(head(x[from:to],hlength)) t <- data.frame(tail(x[from:to],tlength)) for (i in 1:nvar) { if(is.numeric(h[1,i])) {h[i] <- round(h[i],digits) t[i] <- round(t[i],digits) } else {dots[i] <- NA} } if(ellipsis) { head.tail <- rbind(h,... = dots,t)} else {head.tail <- rbind(h,t) } } else {h <- head(x,hlength) t <- tail(x,tlength) if(ellipsis) { head.tail <- rbind(h,"... ...",t) } else { head.tail <- rbind(h,t) head.tail <- as.matrix(head.tail)}} return(head.tail)} #revised Feb 1, 2010 #revised August 10, 2011 to work with mixed numeric and non-numeric data #changing the name of headtail to be camelcase. "headTail" <- function(x, top=4,bottom=4,from=1,to=NULL,digits=2, hlength=4,tlength=4,ellipsis=TRUE) { if(is.data.frame(x) | is.matrix(x) ) { if (is.matrix(x)) x <- data.frame(unclass(x)) nvar <- dim(x)[2] hlength <- top tlength <- bottom if(is.null(to)) to <- nvar dots <- rep("...",nvar) h <- data.frame(head(x[from:to],hlength)) t <- data.frame(tail(x[from:to],tlength)) for (i in 1:nvar) { if(is.numeric(h[1,i])) {h[i] <- round(h[i],digits) t[i] <- round(t[i],digits) } else {dots[i] <- NA} } if(ellipsis) { head.tail <- rbind(h,... = dots,t)} else {head.tail <- rbind(h,t) } } else {h <- head(x,hlength) t <- tail(x,tlength) if(ellipsis) { head.tail <- rbind(h,"... ...",t) } else { head.tail <- rbind(h,t) head.tail <- as.matrix(head.tail)}} return(head.tail)} #revised Feb 1, 2010 #revised August 10, 2011 to work with mixed numeric and non-numeric data topBottom <- function (x, top=4,bottom=4,from=1,to=NULL, digits=2, hlength = 4, tlength = 4) { if (is.data.frame(x) | is.matrix(x)) { if (is.matrix(x)) x <- data.frame(unclass(x)) nvar <- dim(x)[2] hlength <- top tlength <- bottom if(is.null(to)) to <- nvar ellipsis <- rep("...", nvar) h <- data.frame(head(x[from:to], hlength)) t <- data.frame(tail(x[from:to], tlength)) for (i in 1:nvar) { if (is.numeric(h[1, i])) { h[i] <- round(h[i], digits) t[i] <- round(t[i], digits) } else { ellipsis[i] <- NA } } head.tail <- rbind(h, t) head.tail <- as.matrix(head.tail) } else { h <- head(x, hlength) t <- tail(x, tlength) head.tail <-as.matrix( rbind(h, t)) } return(head.tail) } #added June, 2012 #added April 20, 2017 "quickView" <- function(x,top=8,bottom=8,from=1,to=NULL) { if(is.null(to)) to <- NCOL(x) if(NROW(x) < (top + bottom)) {bottom <- NROW(x) - top} if(NCOL(x) > 1) { View(x[c(1:top,(NROW(x)+1 - bottom):NROW(x)),from:to])} else { View(x[c(1:top,(NROW(x)+1 - bottom):NROW(x))]) } #the case of a vector }psych/R/cortest.normal.R0000644000176200001440000000512711627146056014713 0ustar liggesusers"cortest.normal" <- function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE) { cl <- match.call() if (dim(R1)[1] != dim(R1)[2]) {n1 <- dim(R1)[1] message("R1 was not square, finding R from data") R1 <- cor(R1,use="pairwise")} if(!is.matrix(R1) ) R1 <- as.matrix(R1) #converts data.frames to matrices if needed p <- dim(R1)[2] if(is.null(n1)) {n1 <- 100 warning("n not specified, 100 used") } if(is.null(R2)) { if(fisher) {R <- 0.5*log((1+R1)/(1-R1)) R <- R*R} else {R <- R1*R1} diag(R) <- 0 E <- (sum(R*lower.tri(R))) chisq <- E *(n1-3) df <- p*(p-1)/2 p.val <- pchisq(chisq,df,lower.tail=FALSE) } else { #end of 1 matrix test if (dim(R2)[1] != dim(R2)[2]) {n2 <- dim(R2)[1] message("R2 was not square, finding R from data") R2 <- cor(R2,use="pairwise")} if(!is.matrix(R2) ) R2 <- as.matrix(R2) if(fisher) { R1 <- 0.5*log((1+R1)/(1-R1)) R2 <- 0.5*log((1+R2)/(1-R2)) diag(R1) <- 0 diag(R2) <- 0 } R <- R1 -R2 #direct difference R <- R*R if(is.null(n2)) n2 <- n1 n <- (n1*n2)/(n1+n2) E <- (sum(R*lower.tri(R))) chisq <- E *(n-3) df <- p*(p-1)/2 p.val <- pchisq(chisq,df,lower.tail=FALSE) } result <- list(chi2=chisq,prob=p.val,df=df,Call=cl) class(result) <- c("psych", "cortest") return(result) } #version of 2008 #the following is done for non symmetric matrices with the same logic #version of August 28,2011 #not yet ready for prime time "cortest.normal1" <- function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE) { cl <- match.call() if(!is.matrix(R1) ) R1 <- as.matrix(R1) #converts data.frames to matrices if needed if(!is.matrix(R2) ) R2 <- as.matrix(R2) #converts data.frames to matrices if needed r <- dim(R1)[1] c <- dim(R1)[2] R1 <- 0.5*log((1+R1)/(1-R1)) R2 <- 0.5*log((1+R2)/(1-R2)) R <- R1 -R2 #direct difference R <- R*R if(is.null(n2)) n2 <- n1 n <- (n1*n2)/(n1+n2) E <- sum(R) chisq <- E *(n-3) df <- r*c p.val <- pchisq(chisq,df,lower.tail=FALSE) result <- list(chi2=chisq,prob=p.val,df=df,Call=cl) class(result) <- c("psych", "cortest") return(result) } psych/R/matrix.addition.R0000644000176200001440000000145412767251554015044 0ustar liggesusers#matrix.addition "%+%" <- function(x,y) { if(!is.matrix(x)) { if(is.vector(x)) {x <- as.matrix(x)} else stop("x must be either a vector or a matrix")} if(!is.matrix(y)) { if(is.vector(y)) {y <- as.matrix(y)} else stop("y must be either a vector or a matrix")} n.x <- dim(x)[1] n.y <- dim(y)[2] n.k <- dim(x)[2] if (n.k != dim(y)[1]) {warning("Matrices should be comparable")} #first find sum vectors x <- rowSums(x,na.rm=FALSE) y <- colSums(y,na.rm=FALSE) one <- as.vector(rep(1,n.y)) #to duplicate x n.y times one.y <- as.vector(rep(1,n.x)) #to duplicate y n.x times xy <- x %*% t(one) + t(y %*% t(one.y) ) #sum the vectors in a rectangular array return(xy) } "tr" <- function(m) { if (!is.matrix(m) |(dim(m)[1] != dim(m)[2]) ) stop ("m must be a square matrix") return(sum(diag(m),na.rm=TRUE)) }psych/R/densityBy.r0000644000176200001440000000533613031757167013757 0ustar liggesusers"violinBy" <- "densityBy" <- function(x,grp=NULL,grp.name=NULL,ylab="Observed",xlab="",main="Density plot",density=20,restrict=TRUE,xlim=NULL,add=FALSE,col=NULL,pch=20,scale=NULL, ...) { SCALE=.3 #how wide are the plots? count.valid <- function(x) {sum(!is.na(x)) } if(missing(col)) {col <- c("blue","red")} nvar <- nvarg <- ncol(x) if(!is.null(grp)) { if(!is.data.frame(grp) && !is.list(grp) && (length(grp) < NROW(x))) grp <- x[,grp] Qnt <- apply(x,2,function(xx) by(xx,grp,quantile,prob=c(0,1,.5,.25,.75),na.rm=TRUE)) meanX <- apply(x,2,function(xx) by(xx,grp,mean,na.rm=TRUE)) nX <- apply(x,2,function(xx) by(xx,grp,count.valid)) meanX <- matrix(unlist(meanX)) Qnt <- matrix(unlist(Qnt),nrow=5) ngrp <- ncol(Qnt)/nvar nvarg <- ncol(Qnt) } else {Qnt <- apply(x,2,quantile,prob=c(0,1,.5,.25,.75),na.rm=TRUE) meanX <- apply(x,2,mean,na.rm=TRUE)} minx <- Qnt[1,] maxx <- Qnt[2,] medx <- Qnt[3,] Q25 <- Qnt[4,] Q75 <- Qnt[5,] rangex <- apply(x,2,range,na.rm=TRUE) names <- colnames(x) tot.n.obs <- nrow(x) if(!is.null(grp)) { if(missing(grp.name)) grp.name <- 1:ngrp names <- paste(rep(names,each=ngrp),grp.name[1:ngrp],sep=" ") col <- rep(col,nvar* ngrp)} d <- list(nvar) if(missing(xlim)) xlim <- c(.5,nvarg+.5) for (i in 1:nvar) { if(!is.null(grp)) { if(restrict) {d[[i]] <- by(x[,i], grp ,function(xx) density(xx,na.rm=TRUE,from=rangex[1,i],to=rangex[2,i]))} else { d[[i]] <- by(x[,i], grp ,function(xx) density(xx,na.rm=TRUE)) }} else { if(restrict) {d[[i]] <- density(x[,i],na.rm=TRUE,from=minx[i],to=maxx[i])} else { d[[i]] <- density(x[,i],na.rm=TRUE)} } } if(!add) {plot(meanX,ylim=c(min(minx),max(maxx)),xlim=xlim,axes=FALSE,xlab=xlab,ylab=ylab,main=main,pch=pch,...) axis(1,1:nvarg,names) axis(2) box()} if(!is.null(grp)) d <- unlist(d,recursive=FALSE) rev <- (length(d[[1]]$y):1) #this prevents a line down the middle for(i in 1:nvarg) { if(!is.null(scale)) {width <- scale*sqrt(nX[[i]]/tot.n.obs)/max(d[[i]]$y)} else {width <- SCALE/max(d[[i]]$y)} polygon(width*c(-d[[i]]$y,d[[i]]$y[rev])+i,c(d[[i]]$x,d[[i]]$x[rev]),density=density,col=col[i],...) dmd <- max(which(d[[i]]$x",vars[i],sep="") sem[i,2] <- vars[i] lavaan[[1]] <- paste0(lavaan[[1]], '+', vars[i]) } } else { k <- num.factors for (j in 1:num.factors) { sem[j,1] <- paste(fact[1],"->",fact[1+j],sep="") sem[j,2] <- paste("g",fact[1+j],sep="") lavaan[[1]] <- paste0(lavaan[[1]], ' + ', fact[1+j]) } } if(num.factors > 1) for(j in 1:num.factors) { lavaan[[1+j]] <- paste0('F',j ,"=~ ")} for (i in 1:num.var) { sem[i+k,1] <- paste(fact[1+m1[i]],"->",vars[i],sep="") sem[i+k,2] <- paste(fact[1+m1[i]],vars[i],sep="") if(num.factors > 1) lavaan[[1+ m1[i ]]] <- paste0(lavaan[[1 + m1[i] ]] ,' + ', vars[i]) } if(sl) { k <- num.var*2 for (i in 1:num.var) { sem[i+k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[i+k,2] <- paste("e",i,sep="") } k <- k + num.var for (f in 1:num.factors) { sem[f+k,1] <- paste(fact[1+f],"<->",fact[1+f],sep="") sem[f+k,3] <- "1" } k <- k+ num.factors sem[k+1,1] <- paste("g <->g") sem[k+1,3] <- "1" k<- k+1 } else { k <- num.var + num.factors for (i in 1:num.var) { sem[i+k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[i+k,2] <- paste("e",i,sep="") } k <- 2*num.var + num.factors for (f in 1:num.factors) { sem[f+k,1] <- paste(fact[f+1],"<->",fact[f+1],sep="") sem[f+k,3] <- "1" } k <- 2*num.var + 2*num.factors sem[k+1,1] <- paste("g<->g") sem[k+1,3] <- "1" k <- k+1 } colnames(sem) <- c("Path","Parameter","Initial Value") lavaan <- unlist(lavaan) lavaan <- noquote(lavaan) return(list(sem=sem[1:k,],lavaan=lavaan)) #return(list(sem=sem[1:k,],) } psych/R/structure.sem.R0000644000176200001440000002053611146102366014555 0ustar liggesusers#just structure.graph, without the graphics (graphics commented out) "structure.sem" <- function(fx,Phi=NULL,fy=NULL, out.file=NULL,labels=NULL,cut=.3,errors=TRUE,simple=TRUE,regression=FALSE) { xmodel <- fx ymodel <- fy if(!is.null(class(xmodel)) && (length(class(xmodel))>1)) { if(class(xmodel)[1] =="psych" && class(xmodel)[2] =="omega") { Phi <- xmodel$schmid$phi xmodel <- xmodel$schmid$oblique} else { if(class(xmodel)[1] =="psych" && ((class(xmodel)[2] =="fa") | (class(xmodel)[2] =="principal"))) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings)} }} else { if(!is.matrix(xmodel) & !is.data.frame(xmodel) &!is.vector(xmodel)) { if(!is.null(xmodel$Phi)) Phi <- xmodel$Phi xmodel <- as.matrix(xmodel$loadings) } else {xmodel <- xmodel} } digits <- 2 if(!is.matrix(xmodel) ) {factors <- as.matrix(xmodel)} else {factors <- xmodel} #first some basic setup parameters num.y <- 0 #we assume there is nothing there num.var <- num.xvar <- dim(factors)[1] #how many x variables? if (is.null(num.var) ){num.var <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} num.xfactors <- num.factors if(is.null(labels)) {vars <- xvars <- rownames(xmodel)} else { xvars <- vars <- labels} if(is.null(vars) ) {vars <-xvars <- paste("x",1:num.var,sep="") } fact <- colnames(xmodel) if (is.null(fact)) { fact <- paste("X",1:num.factors,sep="") } num.yfactors <- 0 if (!is.null(ymodel)) { if(is.list(ymodel) & !is.data.frame(ymodel) ) {ymodel <- as.matrix(ymodel$loadings)} else {ymodel <- ymodel} if(!is.matrix(ymodel) ) {y.factors <- as.matrix(ymodel)} else {y.factors <- ymodel} num.y <- dim(y.factors)[1] if (is.null(num.y)) { num.y <- length(ymodel) num.yfactors <- 1} else { num.yfactors <- dim(y.factors)[2] } yvars <- rownames(ymodel) if(is.null(yvars)) {yvars <- paste("y",1:num.y,sep="") } if(is.null(labels)) {vars <- c(xvars,yvars)} else {yvars <- labels[(num.xvar+1):(num.xvar+num.y)]} vars <- c(vars,yvars) yfact <- colnames(ymodel) if(is.null(yfact)) {yfact <- paste("Y",1:num.yfactors,sep="") } fact <- c(fact,yfact) num.var <- num.xvar + num.y num.factors <- num.xfactors + num.yfactors } sem <- matrix(rep(NA),6*(num.var*num.factors + num.factors),ncol=3) colnames(sem) <- c("Path","Parameter","Value") if(!regression) { #the normal condition is to draw a latent model k <- num.factors if (num.xfactors ==1) { for (i in 1:num.xvar) { sem[i,1] <- paste(fact[1],"->",vars[i],sep="") if(is.numeric(factors[i])) {sem[i,2] <- vars[i]} else {sem[i,2] <- factors[i] } } k <- num.xvar+1 } else { #end of if num.xfactors ==1 #all loadings > cut in absolute value k <- 1 for (i in 1:num.xvar) { for (f in 1:num.xfactors) { if((!is.numeric(factors[i,f] ) && (factors[i,f] !="0"))|| ((is.numeric(factors[i,f]) && abs(factors[i,f]) > cut ))) { sem[k,1] <- paste(fact[f],"->",vars[i],sep="") if(is.numeric(factors[i,f])) {sem[k,2] <- paste("F",f,vars[i],sep="")} else {sem[k,2] <- factors[i,f]} k <- k+1 } #end of if } } } if(errors) { for (i in 1:num.xvar) { sem[k,1] <- paste(vars[i],"<->",vars[i],sep="") sem[k,2] <- paste("x",i,"e",sep="") k <- k+1 } } } else { #the regression case if (title=="Structural model") title <- "Regression model" k <- num.var+1 yvars <- "Y1" } #now, if there is a ymodel, do it for y model if(!is.null(ymodel)) { if (num.yfactors ==1) { for (i in 1:num.y) { sem[k,1] <- paste(fact[1+num.xfactors],"->",yvars[i],sep="") if(is.numeric(y.factors[i] ) ) {sem[k,2] <- paste("Fy",yvars[i],sep="")} else {sem[k,2] <- y.factors[i]} k <- k +1 } } else { #end of if num.yfactors ==1 #all loadings > cut in absolute value for (i in 1:num.y) { for (f in 1:num.yfactors) { #if (!is.numeric(y.factors[i,f]) || (abs(y.factors[i,f]) > cut)) if((!is.numeric(y.factors[i,f] ) && (y.factors[i,f] !="0"))|| ((is.numeric(y.factors[i,f]) && abs(y.factors[i,f]) > cut ))) { sem[k,1] <- paste(fact[f+num.xfactors],"->",vars[i+num.xvar],sep="") if(is.numeric(y.factors[i,f])) { sem[k,2] <- paste("Fy",f,vars[i+num.xvar],sep="")} else {sem[k,2] <- y.factors[i,f]} k <- k+1 } #end of if } #end of factor } # end of variable loop } if(errors) { for (i in 1:num.y) { sem[k,1] <- paste(vars[i+num.xvar],"<->",vars[i+num.xvar],sep="") sem[k,2] <- paste("y",i,"e",sep="") k <- k+1 }} } #end of !is.null(ymodel) if (!is.null(labels)) {var.labels <- c(labels,fact) } if(!regression) { if(!is.null(Phi)) {if (!is.matrix(Phi)) Phi <- matrix(c(1,Phi,0,1),ncol=2) if(num.xfactors>1) {for (i in 2:num.xfactors) { for (j in 1:(i-1)) {if((!is.numeric(Phi[i,j] ) && (Phi[i,j] !="0"))|| ((is.numeric(Phi[i,j]) && abs(Phi[i,j]) > cut ))) { if(Phi[i,j] != Phi[j,i]){ sem[k,1] <- paste(fact[j],"->",fact[i],sep="") if (is.numeric(Phi[i,j])) {sem[k,2] <- paste("rF",j,"F",i,sep="")} else {sem[k,2] <- Phi[i,j] } } else { sem[k,1] <- paste(fact[i],"<->",fact[j],sep="") if (is.numeric(Phi[i,j])) {sem[k,2] <- paste("rF",i,"F",j,sep="")} else {sem[k,2] <- Phi[i,j] } } k <- k + 1 } } } } } #end of correlations within x set if(!is.null(ymodel)) { for (i in 1:num.xfactors) { for (j in 1:num.yfactors) { if((!is.numeric(Phi[i,j+num.xfactors] ) && (Phi[i,j+num.xfactors] !="0"))|| ((is.numeric(Phi[i,j+num.xfactors]) && abs(Phi[i,j+num.xfactors]) > cut ))) { # clust.graph <- addEdge( fact[j+num.xfactors],fact[i],clust.graph,1) # if (is.numeric(Phi[i,j+num.xfactors])) { edge.label[k] <- round(Phi[i,j+num.xfactors],digits)} else {edge.label[k] <- Phi[i,j+num.xfactors]} # edge.dir[k] <- "back" # edge.name[k] <- paste(fact[j+num.xfactors],"~",fact[i],sep="") sem[k,1] <- paste(fact[i],"->",fact[j+num.xfactors],sep="") if (is.numeric(Phi[i,j+num.xfactors])) {sem[k,2] <- paste("rX",i,"Y",j,sep="")} else {sem[k,2] <- Phi[i,j+num.xfactors] } k <- k + 1 } } } } } else {if(!is.null(Phi)) {if (!is.matrix(Phi)) Phi <- matrix(c(1,Phi,0,1),ncol=2) for (i in 2:num.xvar) { for (j in 1:(i-1)) { if(Phi[i,j] != Phi[j,i]){edge.dir[k] <- "back"} else {edge.dir[k] <- "both"} k <- k + 1 }} } } for(f in 1:num.factors) { sem[k,1] <- paste(fact[f],"<->",fact[f],sep="") sem[k,3] <- "1" k <- k+1 } model=sem[1:(k-1),] class(model) <- "mod" #to make for pretty output when using sem package -- suggested by John Fox return(model) } psych/R/print.psych.fa.R0000644000176200001440000002521713152637531014607 0ustar liggesusers"print.psych.fa" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,suppress.warnings=TRUE,...) { if(!is.matrix(x) && !is.null(x$fa) && is.list(x$fa)) x <-x$fa #handles the output from fa.poly if(!is.null(x$fn) ) {if(x$fn == "principal") {cat("Principal Components Analysis") } else { cat("Factor Analysis using method = ",x$fm )}} cat("\nCall: ") print(x$Call) load <- x$loadings if(is.null(cut)) cut <- 0 #caving into recommendations to print all loadings #but, if we are print factors of covariance matrices, they might be very small # cut <- min(cut,max(abs(load))/2) #removed following a request by Reinhold Hatzinger nitems <- dim(load)[1] nfactors <- dim(load)[2] if(sum(x$uniqueness) + sum(x$communality) > nitems) {covar <- TRUE} else {covar <- FALSE} loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems),unclass(load)) u2.order <- 1:nitems #used if items are sorted if(sort) { #first sort them into clusters #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(load),1,which.max) ord <- sort(loads$cluster,index.return=TRUE) loads[1:nitems,] <- loads[ord$ix,] rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] #now sort column wise #now sort the loadings that have their highest loading on each cluster items <- table(loads$cluster) #how many items are in each cluster? first <- 1 item <- loads$item for (i in 1:length(items)) {# i is the factor number if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(loads[first:last,i+2]),decreasing=TRUE,index.return=TRUE) u2.order[first:last] <- item[ord$ix+first-1] loads[first:last,3:(nfactors+2)] <- load[item[ord$ix+first-1],] loads[first:last,1] <- item[ord$ix+first-1] rownames(loads)[first:last] <- rownames(loads)[ord$ix+first-1] first <- first + items[i] } } } #end of sort #they are now sorted, don't print the small loadings if cut > 0 if(max(abs(load) > 1.0) && !covar) cat('\n Warning: A Heywood case was detected. \n') ncol <- dim(loads)[2]-2 rloads <- round(loads,digits) fx <- format(rloads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx.1 <- fx[,1,drop=FALSE] #drop = FALSE preserves the rownames for single factors fx.2 <- fx[,3:(2+ncol)] load.2 <- as.matrix(loads[,3:(ncol+2)]) fx.2[abs(load.2) < cut] <- paste(rep(" ", nc), collapse = "") if(sort) { fx <- data.frame(V=fx.1,fx.2) if(dim(fx)[2] <3) colnames(fx) <- c("V",colnames(x$loadings)) #for the case of one factor } else {fx <- data.frame(fx.2) colnames(fx) <- colnames(x$loadings)} if(nfactors > 1) {if(is.null(x$Phi)) {h2 <- rowSums(load.2^2)} else {h2 <- diag(load.2 %*% x$Phi %*% t(load.2)) }} else {h2 <-load.2^2} if(!is.null(x$uniquenesses)) {u2 <- x$uniquenesses[u2.order]} else {u2 <- (1 - h2)} #h2 <- round(h2,digits) vtotal <- sum(h2 + u2) if(isTRUE(all.equal(vtotal,nitems))) { cat("Standardized loadings (pattern matrix) based upon correlation matrix\n") com <- x$complexity[u2.order] # u2.order added 9/4/14 if(!is.null(com)) { print(cbind(fx,h2,u2,com),quote="FALSE",digits=digits)} else { print(cbind(fx,h2,u2),quote="FALSE",digits=digits) } } else { cat("Unstandardized loadings (pattern matrix) based upon covariance matrix\n") print(cbind(fx,h2,u2,H2=h2/(h2+u2),U2=u2/(h2+u2)),quote="FALSE",digits=digits)} #adapted from print.loadings if(is.null(x$Phi)) {if(nfactors > 1) {vx <- colSums(load.2^2) } else {vx <- sum(load.2^2) }} else {vx <- diag(x$Phi %*% t(load) %*% load) } names(vx) <- colnames(x$loadings) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/vtotal) if (nfactors > 1) { varex <- rbind(varex, "Cumulative Var"= cumsum(vx/vtotal)) varex <- rbind(varex, "Proportion Explained"= vx/sum(vx)) varex <- rbind(varex, "Cumulative Proportion"= cumsum(vx/sum(vx))) } cat("\n") print(round(varex, digits)) #now, if we did covariances show the standardized coefficients as well if(!isTRUE(all.equal(vtotal,nitems))) { #total variance accounted for is not just the number of items in the matrix cat('\n Standardized loadings (pattern matrix)\n') fx <- format(loads,digits=digits) nc <- nchar(fx[1,3], type = "c") fx.1 <- fx[,1,drop=FALSE] #drop = FALSE preserves the rownames for single factors fx.2 <- round(loads[,3:(2+ncol)]/sqrt(h2+u2),digits) load.2 <- loads[,3:(ncol+2)]/sqrt(h2+u2) fx.2[abs(load.2) < cut] <- paste(rep(" ", nc), collapse = "") fx <- data.frame(V=fx.1,fx.2) if(dim(fx)[2] <3) colnames(fx) <- c("V",colnames(x$loadings)) #for the case of one factor if(nfactors > 1) { h2 <-h2/(h2+u2)} else {h2 <-h2/(h2+u2)} u2 <- (1 - h2) print(cbind(fx,h2,u2),quote="FALSE",digits=digits) if(is.null(x$Phi)) {if(nfactors > 1) {vx <- colSums(load.2^2) } else {vx <- diag(t(load) %*% load) vx <- vx*nitems/vtotal }} else {vx <- diag(x$Phi %*% t(load) %*% load) vx <- vx*nitems/vtotal } names(vx) <- colnames(x$loadings) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/nitems) if (nfactors > 1) {varex <- rbind(varex, "Cumulative Var"= cumsum(vx/nitems)) varex <- rbind(varex, "Cum. factor Var"= cumsum(vx/sum(vx)))} cat("\n") print(round(varex, digits)) } if(!is.null(x$Phi)) { if(!is.null(x$fn) ) { if(x$fn == "principal") {cat ("\n With component correlations of \n" ) } else {cat ("\n With factor correlations of \n" )}} colnames(x$Phi) <- rownames(x$Phi) <- colnames(x$loadings) print(round(x$Phi,digits))} else { if(!is.null(x$rotmat)) { U <- x$rotmat ui <- solve(U) Phi <- t(ui) %*% ui Phi <- cov2cor(Phi) if(!is.null(x$fn) ) { if(x$fn == "principal") {cat ("\n With component correlations of \n" ) } else {cat ("\n With factor correlations of \n" )}} colnames(Phi) <- rownames(Phi) <- colnames(x$loadings) print(round(Phi,digits)) } } if(!is.null(x$complexity)) cat("\nMean item complexity = ",round(mean(x$complexity),1)) objective <- x$criteria[1] if(!is.null(objective)) { if(!is.null(x$fn) ) { if(x$fn == "principal") { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "component is" else "components are", "sufficient.\n")} else { cat("\nTest of the hypothesis that", nfactors, if (nfactors == 1) "factor is" else "factors are", "sufficient.\n")}} if(x$fn != "principal") { if(!is.null(x$null.dof)) {cat("\nThe degrees of freedom for the null model are ",x$null.dof, " and the objective function was ",round(x$null.model,digits),...)} if(!is.null(x$null.chisq)) {cat(" with Chi Square of " ,round(x$null.chisq,digits)) } cat("\nThe degrees of freedom for the model are",x$dof," and the objective function was ",round(objective,digits),"\n",...) } if(!is.null(x$rms)) {cat("\nThe root mean square of the residuals (RMSR) is ", round(x$rms,digits),"\n") } if(!is.null(x$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$crms,digits),"\n",...) } if((!is.null(x$nh)) && (!is.na(x$nh))) {cat("\nThe harmonic number of observations is " ,round(x$nh)) } if((!is.null(x$chi)) && (!is.na(x$chi))) {cat(" with the empirical chi square ", round(x$chi,digits), " with prob < ", signif(x$EPVAL,digits),"\n" ,...) } if(x$fn != "principal") { if(!is.na(x$n.obs)) {cat("The total number of observations was ",x$n.obs, " with Likelihood Chi Square = ",round(x$STATISTIC,digits), " with prob < ", signif(x$PVAL,digits),"\n",...)} if(!is.null(x$TLI)) cat("\nTucker Lewis Index of factoring reliability = ",round(x$TLI,digits+1))} if(!is.null(x$RMSEA)) {cat("\nRMSEA index = ",round(x$RMSEA[1],digits+1), " and the", (x$RMSEA[4])*100,"% confidence intervals are ",round(x$RMSEA[2:3],digits+1),...) } if(!is.null(x$BIC)) {cat("\nBIC = ",round(x$BIC,digits))} } if(!is.null(x$fit)) cat("\nFit based upon off diagonal values =", round(x$fit.off,digits)) if ((!is.null(x$fn)) && (x$fn != "principal")) { if(!is.null(x$R2)) { stats.df <- t(data.frame(sqrt(x$R2),x$R2,2*x$R2 -1)) rownames(stats.df) <- c("Correlation of (regression) scores with factors ","Multiple R square of scores with factors ","Minimum correlation of possible factor scores ") colnames(stats.df) <- colnames(x$loadings) } else {stats.df <- NULL} badFlag <- FALSE #however, if the solution is degenerate, don't print them if( (is.null(x$R2)) || (any(max(x$R2,na.rm=TRUE) > (1 + .Machine$double.eps)) )) {badFlag <- TRUE if (!suppress.warnings) { cat("\n WARNING, the factor score fit indices suggest that the solution is degenerate. Try a different method of factor extraction.\n") warning("the factor score fit indices suggest that the solution is degenerate\n")} } else { if(!is.null(stats.df)) { cat("\nMeasures of factor score adequacy \n") print(round(stats.df,digits))} if(is.null(x$method)) x$method <- "" if(any(x$R2 != x$R2.scores)) {stats.df <- t(data.frame(sqrt(x$R2.scores),x$R2.scores,2* x$R2.scores -1)) cat("\n Factor scores estimated using the ", x$method, " method have correlations of \n") rownames(stats.df) <- c("Correlation of scores with factors ","Multiple R square of scores with factors ","Minimum correlation of possible factor scores ") colnames(stats.df) <- colnames(x$loadings) print(round(stats.df,digits)) } } } result <- list(Vaccounted=varex) invisible(result) } #end of print.psych.fa #modified November 22, 2010 to get the communalities correct for sorted loadings, but does this work for covariances? #modified November 18, 2012 to print the empirical chi squares #modified October 13, 2013 to add the invisibile return of varex.psych/R/factor.wls.R0000644000176200001440000002326012456326542014022 0ustar liggesusers"factor.wls" <- function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA,scores=FALSE,SMC=TRUE,missing=FALSE,impute="median", min.err = .001,digits=2,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="wls") { cl <- match.call() .Deprecated("fa",msg="factor.wls is deprecated. Please use the fa function with fm=wls.") #this does the WLS or ULS fitting depending upon fm "fit.residuals" <- function(Psi,S,nf,S.inv,fm) { diag(S) <- 1- Psi if(fm=="wls") {if(!is.null(S.inv)) sd.inv <- diag(1/diag(S.inv)) } else {if(!is.null(S.inv)) sd.inv <- ((S.inv))} #gls eigens <- eigen(S) eigens$values[eigens$values < .Machine$double.eps] <- 100 * .Machine$double.eps if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) #weighted least squares weights by the importance of each variable if(fm=="wls" ) {residual <- sd.inv %*% (S- model)^2 %*% sd.inv} else {if(fm=="gls") {residual <- (sd.inv %*% (S- model))^2 } else {residual <- (S-model)^2 } } # the uls solution usually seems better? diag(residual) <- 0 error <- sum(residual) } #this code is taken (with minor modification to make ULS or WLS) from factanal #it does the iterative calls to fit.residuals "fit" <- function(S,nf,fm) { S.smc <- smc(S) if((fm=="wls") | (fm =="gls") ) {S.inv <- solve(S)} else {S.inv <- NULL} if(sum(S.smc) == nf) {start <- rep(.5,nf)} else {start <- 1- S.smc} res <- optim(start, fit.residuals, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S, S.inv=S.inv,fm=fm ) if((fm=="wls") | (fm=="gls")) {Lambda <- FAout.wls(res$par, S, nf)} else { Lambda <- FAout(res$par, S, nf)} result <- list(loadings=Lambda,res=res) } #these were also taken from factanal FAout <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1L:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)), q) diag(sqrt(Psi)) %*% load } FAout.wls <- function(Psi, S, q) { diag(S) <- 1- Psi E <- eigen(S,symmetric = TRUE) L <- E$vectors[,1:q,drop=FALSE] %*% diag(sqrt(E$values[1:q,drop=FALSE]),q) return(L) } ## now start the main function ## now start the main function if((fm !="pa") & (fm !="minres" )& (fm != "gls") & (fm != "wls")) {message("factor method not specified correctly, weighted least squares used") fm <- "wls" } n <- dim(r)[2] if (n!=dim(r)[1]) { n.obs <- dim(r)[1] if(scores) {x.matrix <- r if(missing) { #impute values miss <- which(is.na(x.matrix),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x.matrix,na.rm=TRUE) #replace missing values with means x.matrix[miss]<- item.means[miss[,2]]} else { item.med <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians x.matrix[miss]<- item.med[miss[,2]]} }} r <- cor(r,use="pairwise") # if given a rectangular matrix, then find the correlations first } else { if(!is.matrix(r)) { r <- as.matrix(r)} sds <- sqrt(diag(r)) #convert covariance matrices to correlation matrices r <- r/(sds %o% sds) } #added June 9, 2008 if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0)} r.mat <- r Phi <- NULL colnames(r.mat) <- rownames(r.mat) <- colnames(r) if(SMC) { if(nfactors < n/2) {diag(r.mat) <- smc(r) } else {if (warnings) message("too many factors requested for this number of variables to use SMC, 1s used instead")} } orig <- diag(r) comm <- sum(diag(r.mat)) err <- comm i <- 1 comm.list <- list() if(fm=="pa") { while(err > min.err) #iteratively replace the diagonal with our revised communality estimate { eigens <- eigen(r.mat,symmetric=symmetric) #loadings <- eigen.loadings(eigens)[,1:nfactors] if(nfactors >1 ) {loadings <- eigens$vectors[,1:nfactors] %*% diag(sqrt(eigens$values[1:nfactors])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) new <- diag(model) comm1 <- sum(new) diag(r.mat) <- new err <- abs(comm-comm1) if(is.na(err)) {warning("imaginary eigen value condition encountered in fa,\n Try again with SMC=FALSE \n exiting fa") break} comm <- comm1 comm.list[[i]] <- comm1 i <- i + 1 if(i > max.iter) {if(warnings) {message("maximum iteration exceeded")} err <-0 } } } if((fm == "wls")| (fm=="gls")) { #added May 25, 2009 to do WLS fits uls <- fit(r,nfactors,fm) eigens <- eigen(r) #used for the summary stats result$par <- uls$res loadings <- uls$loadings } # a weird condition that happens with the Eysenck data #making the matrix symmetric solves this problem if(!is.double(loadings)) {warning('the matrix has produced imaginary results -- proceed with caution') loadings <- matrix(as.double(loadings),ncol=nfactors) } #make each vector signed so that the maximum loading is positive - probably should do after rotation #Alternatively, flip to make the colSums of loading positive if (FALSE) { if (nfactors >1) { maxabs <- apply(apply(loadings,2,abs),2,which.max) sign.max <- vector(mode="numeric",length=nfactors) for (i in 1: nfactors) {sign.max[i] <- sign(loadings[maxabs[i],i])} loadings <- loadings %*% diag(sign.max) } else { mini <- min(loadings) maxi <- max(loadings) if (abs(mini) > maxi) {loadings <- -loadings } loadings <- as.matrix(loadings) if(fm == "minres") {colnames(loadings) <- "MR1"} else {colnames(loadings) <- "PA1"} } #sign of largest loading is positive } #added January 5, 2009 to flip based upon colSums of loadings if (nfactors >1) {sign.tot <- vector(mode="numeric",length=nfactors) sign.tot <- sign(colSums(loadings)) loadings <- loadings %*% diag(sign.tot) } else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)} colnames(loadings) <- "MR1" } #end addition if(fm == "wls") {colnames(loadings) <- paste("WLS",1:nfactors,sep='') } else {if(fm == "gls") {colnames(loadings) <- paste("GLS",1:nfactors,sep='')} else {colnames(loadings) <- paste("MR",1:nfactors,sep='')}} rownames(loadings) <- rownames(r) loadings[loadings==0.0] <- 10^-15 #added to stop a problem with varimax if loadings are exactly 0 model <- loadings %*% t(loadings) f.loadings <- loadings #used to pass them to factor.stats if(rotate != "none") {if (nfactors > 1) { if (rotate=="varimax" | rotate=="quartimax") { rotated <- do.call(rotate,list(loadings)) loadings <- rotated$loadings Phi <- NULL} else { if ((rotate=="promax")|(rotate=="Promax")) {pro <- Promax(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate == "cluster") {loadings <- varimax(loadings)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax") { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- do.call(rotate,list(loadings) ) loadings <- ob$loadings Phi <- ob$Phi} } }}} }} #just in case the rotation changes the order of the factors, sort them #added October 30, 2008 if(nfactors >1) { ev.rotated <- diag(t(loadings) %*% loadings) ev.order <- order(ev.rotated,decreasing=TRUE) loadings <- loadings[,ev.order]} rownames(loadings) <- colnames(r) if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix! class(loadings) <- "loadings" if(nfactors < 1) nfactors <- n result <- factor.stats(r,loadings,Phi,n.obs) #do stats as a subroutine common to several functions result$communality <- round(diag(model),digits) result$uniquenesses <- round(diag(r-model),digits) result$values <- round(eigens$values,digits) result$loadings <- loadings if(!is.null(Phi)) {result$Phi <- Phi} if(fm == "pa") result$communality.iterations <- round(unlist(comm.list),digits) if(scores) {result$scores <- factor.scores(x.matrix,loadings) } result$factors <- nfactors result$fn <- "factor.wls" result$Call <- cl class(result) <- c("psych", "fa") return(result) } #modified October 30, 2008 to sort the rotated loadings matrix by the eigen values. psych/R/sdt.R0000644000176200001440000000507211515347322012525 0ustar liggesusers "sdt" <- function(x) { # if(!is.matrix(x)) {stop("x must be a matrix")} stopifnot(prod(dim(x)) == 4 || length(x) == 4) if (is.vector(x)) { x <- matrix(x, 2)} a <- x[1,1] b <- x[1,2] c <- x[2,1] d <- x[2,2] colnames(x) <- c("signal","noise") rownames(x) <- c("Signal","Noise") T <- sum(x) signals <- a+b H <- a/signals noise <- c+d F <- c/noise dprime <- qnorm(H) - qnorm(F) beta <- exp(((qnorm(F)^2 - qnorm(H))^2/2)) Beta <- dnorm(qnorm(H))/dnorm(qnorm(F)) Aprime <- .5 + sign((H-F) *((H-F)^2 + abs(H-F))/(4*max(H,F)-4 * H*F)) aprime <- .5 +(H-F)*(1-H-F)/(4*H*(1-F)) C <- -(qnorm(H)+qnorm(F))/2 Bprime <- sign(H-F) * ((H*(1-H) - F*(1-F))/((H*(1-H) + F*(1-F)) )) sdt <- list(x=x,dprime=dprime,Beta=Beta,lnBeta=log(Beta),beta=beta,lnbeta =log(beta),Aprime=Aprime,C=C,Bprime=Bprime,aprime=aprime) return(sdt) } beta.w <- function(hit,fa) { zhr <- qnorm(hit) zfar <- qnorm(fa) exp(-zhr*zhr/2+zfar*zfar/2) } aprime <-function(hit,fa) { a<-1/2+((hit-fa)*(1+hit-fa) / (4*hit*(1-fa))) b<-1/2-((fa-hit)*(1+fa-hit) / (4*fa*(1-hit))) a[fa>hit] <-b[fa>hit] a[fa==hit]<-.5 a } test.sdt <- function(n) { hits <- 1:n misses <- (n-1):0 fa <- sample(n,n,replace=TRUE) # fa <- n/4 cr <- n-fa test.sdt <- data.frame(hits,misses,fa,cr) } "sdt" <- function(x) { if(is.null(dim(x))) {# the case of a single problem if (length(x) == 2) {x <- matrix(x,nrow=1) H <- x[1] F <- x[2] colnames(x) <- c("Hit Rate","False Alarmes")} else { x <- matrix(x,nrow=1) # H <- x[,1]/(x[,1] + x[,2]) F <- x[,3]/(x[,3] + x[,4]) x[(x[,2] < 1)] <- .5 H <- x[,1]/(x[,1] + x[,2]) if (x[,3] < 1) {F <- x[,3]/(x[,3] + x[,4] + .5)} colnames(x) <- c("signal","noise","Signal","Noise")}} else { if(dim(x)[2] ==2) { H <- x[,1] F <- x[,2] colnames(x) <- c("Hit Rate","False Alarmes")} else { #the vector case x[(x[,2] < 1),2] <- .5 x[(x[,3] < 1),3] <- .5 H <- x[,1]/(x[,1] + x[,2]) F <- x[,3]/(x[,3] + x[,4]) colnames(x) <- c("signal","noise","Signal","Noise")} } dprime <- qnorm(H) - qnorm(F) beta <- dnorm(qnorm(H))/dnorm(qnorm(F)) #definitional cprime <- -.5*(qnorm(H) + qnorm(F))/dprime #macmillan beta.w <- exp(-qnorm(H)^2/2+qnorm(F)/2 ) #pallier = beta Aprime <- .5 +(H-F)*(1+H-F)/(4*H*(1-F)) #Grier Bprime <- sign(H-F) * ((H*(1-H) - F*(1-F))/((H*(1-H) + F*(1-F)) )) bprime <- ((1-H)*(1-F)-H*F)/((1-H)*(1-F)+H*F) sdt <- data.frame(x=x,dprime=dprime,beta=beta,cprime=cprime,lnBeta=log(beta),Aprime=Aprime,Bprime=Bprime,brime=bprime,beta.w = beta.w) return(sdt) }psych/R/sim.circ.R0000644000176200001440000000255411124030611013426 0ustar liggesusers"sim.circ" <- function (nvar = 72 ,nsub = 500, circum = TRUE, xloading =.6, yloading = .6, gloading=0, xbias=0, ybias = 0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) { avloading <- (xloading+yloading)/2 errorweight <- sqrt(1-(avloading^2 + gloading^2)) #squared errors and true score weights add to 1 g <- rnorm(nsub) truex <- rnorm(nsub)* xloading +xbias #generate normal true scores for x + xbias truey <- rnorm(nsub) * yloading + ybias #generate normal true scores for y + ybias if (circum) #make a vector of radians (the whole way around the circle) if circumplex {radia <- seq(0,2*pi,len=nvar+1) rad <- radia[which(radia<2*pi)] #get rid of the last one } else rad <- c(rep(0,nvar/4),rep(pi/2,nvar/4),rep(pi,nvar/4),rep(3*pi/2,nvar/4)) #simple structure #simple structure error<- matrix(rnorm(nsub*(nvar)),nsub) #create normal error scores #true score matrix for each item reflects structure in radians trueitem <- outer(truex, cos(rad)) + outer(truey,sin(rad)) item<- gloading * g + trueitem + errorweight*error #observed item = true score + error score if (categorical) { item = round(item) #round all items to nearest integer value item[(item<= low)] <- low item[(item>high) ] <- high } if (truncate) {item[item < cutpoint] <- 0 } return (item) } psych/R/factor.minres.R0000644000176200001440000002303612456326542014513 0ustar liggesusers"factor.minres" <- function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA,scores=FALSE,SMC=TRUE,missing=FALSE,impute="median", min.err = .001,digits=2,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres") { cl <- match.call() .Deprecated("fa",msg="factor.minres is deprecated. Please use the fa function.") ##first some functions that are internal to factor.minres #this does the ULS fitting "fit.residuals.ols" <- function(Psi,S,nf) { diag(S) <- 1- Psi eigens <- eigen(S) eigens$values[eigens$values < .Machine$double.eps] <- 100 * .Machine$double.eps if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) residual <- (S - model)^2 diag(residual) <- 0 error <- sum(residual) } "fit.residuals.min.res" <- function(Psi,S,nf) { diag(S) <-1- Psi eigens <- eigen(S) #loadings <- eigen.loadings(eigens)[,1:nf] if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) residual <- (S - model) diag(residual) <- 0 error <- det(residual) } #this code is taken (with minor modification to make ULS) from factanal #it does the iterative calls to fit.residuals "min.res" <- function(S,nf) { S.smc <- smc(S) if(sum(S.smc) == nf) {start <- rep(.5,nf)} else {start <- 1- S.smc} res <- optim(start, fit.residuals.ols, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S ) Lambda <- FAout(res$par, S, nf) result <- list(loadings=Lambda,res=res) } #these were also taken from factanal FAout <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1L:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)), q) diag(sqrt(Psi)) %*% load } FAfn <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE) e <- E$values[-(1L:q)] e <- sum(log(e) - e) - q + nrow(S) -e } ## now start the main function if((fm !="pa") & (fm != "minres")) {message("factor method not specified correctly, minimum residual used used") fm <- "minres" } n <- dim(r)[2] if (n!=dim(r)[1]) { n.obs <- dim(r)[1] if(scores) {x.matrix <- r if(missing) { #impute values miss <- which(is.na(x.matrix),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x.matrix,na.rm=TRUE) #replace missing values with means x.matrix[miss]<- item.means[miss[,2]]} else { item.med <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians x.matrix[miss]<- item.med[miss[,2]]} }} r <- cor(r,use="pairwise") # if given a rectangular matrix, then find the correlations first } else { if(!is.matrix(r)) { r <- as.matrix(r)} sds <- sqrt(diag(r)) #convert covariance matrices to correlation matrices r <- r/(sds %o% sds) } #added June 9, 2008 if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0)} r.mat <- r Phi <- NULL colnames(r.mat) <- rownames(r.mat) <- colnames(r) if(SMC) { if(nfactors < n/2) {diag(r.mat) <- smc(r) } else {if (warnings) message("too many factors requested for this number of variables to use SMC, 1s used instead")} } orig <- diag(r) comm <- sum(diag(r.mat)) err <- comm i <- 1 comm.list <- list() if(fm=="pa") { while(err > min.err) #iteratively replace the diagonal with our revised communality estimate { eigens <- eigen(r.mat,symmetric=symmetric) #loadings <- eigen.loadings(eigens)[,1:nfactors] if(nfactors >1 ) {loadings <- eigens$vectors[,1:nfactors] %*% diag(sqrt(eigens$values[1:nfactors])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) new <- diag(model) comm1 <- sum(new) diag(r.mat) <- new err <- abs(comm-comm1) if(is.na(err)) {warning("imaginary eigen value condition encountered in fa,\n Try again with SMC=FALSE \n exiting fa") break} comm <- comm1 comm.list[[i]] <- comm1 i <- i + 1 if(i > max.iter) {if(warnings) {message("maximum iteration exceeded")} err <-0 } } } if(fm == "minres") { #added April 12, 2009 to do ULS fits uls <- min.res(r,nfactors) eigens <- eigen(r) #used for the summary stats result$par <- uls$res loadings <- uls$loadings } # a weird condition that happens with the Eysenck data #making the matrix symmetric solves this problem if(!is.double(loadings)) {warning('the matrix has produced imaginary results -- proceed with caution') loadings <- matrix(as.double(loadings),ncol=nfactors) } #make each vector signed so that the maximum loading is positive - probably should do after rotation #Alternatively, flip to make the colSums of loading positive if (FALSE) { if (nfactors >1) { maxabs <- apply(apply(loadings,2,abs),2,which.max) sign.max <- vector(mode="numeric",length=nfactors) for (i in 1: nfactors) {sign.max[i] <- sign(loadings[maxabs[i],i])} loadings <- loadings %*% diag(sign.max) } else { mini <- min(loadings) maxi <- max(loadings) if (abs(mini) > maxi) {loadings <- -loadings } loadings <- as.matrix(loadings) if(fm == "minres") {colnames(loadings) <- "MR1"} else {colnames(loadings) <- "PA1"} } #sign of largest loading is positive } #added January 5, 2009 to flip based upon colSums of loadings if (nfactors >1) {sign.tot <- vector(mode="numeric",length=nfactors) sign.tot <- sign(colSums(loadings)) loadings <- loadings %*% diag(sign.tot) } else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)} colnames(loadings) <- "MR1" } #end addition if(fm == "minres") {colnames(loadings) <- paste("MR",1:nfactors,sep='') } else {colnames(loadings) <- paste("PA",1:nfactors,sep='')} rownames(loadings) <- rownames(r) loadings[loadings==0.0] <- 10^-15 #added to stop a problem with varimax if loadings are exactly 0 model <- loadings %*% t(loadings) f.loadings <- loadings #used to pass them to factor.stats if(rotate != "none") {if (nfactors > 1) { if (rotate=="varimax" | rotate=="quartimax") { rotated <- do.call(rotate,list(loadings)) loadings <- rotated$loadings Phi <- NULL} else { if ((rotate=="promax")|(rotate=="Promax")) {pro <- Promax(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate == "cluster") {loadings <- varimax(loadings)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi} else { if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax") { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- do.call(rotate,list(loadings) ) loadings <- ob$loadings Phi <- ob$Phi} } }}} }} #just in case the rotation changes the order of the factors, sort them #added October 30, 2008 if(nfactors >1) { ev.rotated <- diag(t(loadings) %*% loadings) ev.order <- order(ev.rotated,decreasing=TRUE) loadings <- loadings[,ev.order]} rownames(loadings) <- colnames(r) if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix! class(loadings) <- "loadings" if(nfactors < 1) nfactors <- n result <- factor.stats(r,loadings,Phi,n.obs) #do stats as a subroutine common to several functions result$communality <- round(diag(model),digits) result$uniquenesses <- round(diag(r-model),digits) result$values <- round(eigens$values,digits) result$loadings <- loadings if(!is.null(Phi)) {result$Phi <- Phi} if(fm == "pa") result$communality.iterations <- round(unlist(comm.list),digits) if(scores) {result$scores <- factor.scores(x.matrix,loadings) } result$factors <- nfactors result$fn <- "factor.minres" result$fm <- fm result$Call <- cl class(result) <- c("psych", "fa") return(result) } #modified October 30, 2008 to sort the rotated loadings matrix by the eigen values. psych/R/harmonic.mean.R0000644000176200001440000000026113056556601014451 0ustar liggesusers"harmonic.mean" <- function(x,na.rm=TRUE,zero=TRUE) {if(!zero) {x[x==0] <- NA} if (is.null(nrow(x))) {1/mean(1/x,na.rm=na.rm) } else { 1/(apply(1/x,2,mean,na.rm=na.rm))} } psych/R/scaling.fits.R0000644000176200001440000000144710775760763014340 0ustar liggesusers"scaling.fits" <- function(model, data, test="logit", digits = 2,rowwise=TRUE) { model <- as.matrix(model) data <- as.matrix(data) if (test=="choice") { model <- as.vector(model) if (min(model) <= 0 ) model <- model -min(model) prob = model/(model %+% t(model)) } else { pdif <- model %+%-t(model) if (test=="logit") { prob <- 1/(1 + exp(-pdif)) } else {if (test=="normal") { prob <- pnorm(pdif) }} } if (rowwise) {prob= 1- prob} error <- data - prob sum.error2 <- sum(error^2, na.rm = TRUE) sum.data2 <- sum(data^2, na.rm = TRUE) gof <- 1 - sum.error2/sum.data2 fit <- list(GF = gof, original = sum.data2, resid = sum.error2, residual = round(error, digits)) return(fit) }psych/R/ICLUST.cluster.R0000644000176200001440000003173612260564364014431 0ustar liggesusersICLUST.cluster <- function (r.mat,ICLUST.options,smc.items) {#should allow for raw data, correlation or covariances #options: alpha =1 (minimum alpha) 2 (average alpha) 3 (maximum alpha) # beta =1 (minimum beta) 2 (average beta) 3 (maximum beta) # correct for reliability # reverse score items if negative correlations # stop clustering if beta for new clusters < beta.min # output =1 (short) 2 (show steps) 3 show rejects as we go # #initialize various arrays and get ready for the first pass output <- ICLUST.options$output num.var <- nrow(r.mat) keep.clustering <- TRUE #used to determine when we are finished clustering results <- data.frame(matrix(rep(0,18*(num.var-1)),ncol=18)) #create the data frame for the results #results <- matrix(rep(0,18*(num.var-1)),ncol=18) #use a matrix for speed but we can not address it by name names(results) <- c("Item/Cluster", "Item/Clust","similarity","correlation","alpha1","alpha2", "beta1","beta2","size1","size2","rbar1","rbar2","r1","r2","alpha","beta","rbar","size") rownames(results) <- paste("C",1:(num.var-1),sep="") digits <- ICLUST.options$digits clusters <- diag(1,nrow =nrow(r.mat)) #original cluster structure is 1 item clusters if(is.null(rownames(r.mat))) {rownames(r.mat) <- paste("V",1:num.var,sep="") } rownames(clusters) <- rownames(r.mat) colnames(clusters) <- paste("V",1:num.var,sep="") diag(r.mat) <- 0 row.range <- apply(r.mat,1,range,na.rm=TRUE) item.max<- pmax(abs(row.range[1,]),abs(row.range[2,])) #find the largest absolute similarity diag(r.mat) <- 1 count=1 #master loop while (keep.clustering) { #loop until we figure out we should stop #find similiarities #we will do most of the work on a copy of the r.mat #cluster.stats <- cluster.cor(clusters,r.mat,FALSE,SMC=ICLUST.options$SMC) #deleted 30/12/13 cluster.stats <- cluster.cor(clusters,r.mat,FALSE,SMC=ICLUST.options$SMC,item.smc=smc.items) sim.mat <- cluster.stats$cor #the correlation matrix diag(sim.mat) <- 0 #we don't want 1's on the diagonal to mess up the maximum #two ways to estimate reliability -- for 1 item clusters, max correlation, for >1, alpha #this use of initial max should be an option if (ICLUST.options$correct) { #find the largest and smallest similarities for each variable row.range <- apply(sim.mat,1,range,na.rm=TRUE) row.max <- pmax(abs(row.range[1,]),abs(row.range[2,])) #find the largest absolute similarity } else {row.max <- rep(1, nrow(sim.mat)) } #don't correct for largest similarity item.rel <- cluster.stats$alpha for (i in 1: length(item.rel)) { if (cluster.stats$size[i]<2) { item.rel[i] <- row.max[i] #figure out item betas here? }} if(output>3) print(sim.mat,digits=digits) #this is the corrected for maximum r similarities if (ICLUST.options$correct) { sq.max <- diag(1/sqrt(item.rel)) #used to correct for reliabilities sim <- sq.max %*% sim.mat %*% sq.max #this corrects for reliabilities but messes up the correlations of two item clusters with items } else {sim <- sim.mat} diag(sim) <- NA #we need to not consider the diagonal when looking for maxima #find the most similar pair and apply tests if we should combine test.alpha <- FALSE test.beta <- FALSE while(!(test.alpha&test.beta)){ max.cell <- which.max(sim) #global maximum if (length(max.cell) < 1) { keep.clustering <- FALSE break} #there are no non-NA values left sign.max <- 1 if ( ICLUST.options$reverse ) { #normal case is to reflect if necessary min.cell <- which.min(sim) #location of global minimum if (sim[max.cell] < abs(sim[min.cell] )) { sign.max <- -1 max.cell <- min.cell } if (sim[max.cell] < 0.0) {sign.max <- -1 }} #this is a weird case where all the similarities are negative -- happens towards the end of clustering max.col <- trunc(max.cell/nrow(sim))+1 #is in which row and column? max.row <- max.cell - (max.col-1)*nrow(sim) #need to fix the case of first column if (max.row < 1) {max.row <- nrow(sim) max.col <- max.col-1 } size1 <- cluster.stats$size[max.row] if(size1 < 2) {V1 <- 1 beta1 <- item.rel[max.row] alpha1 <- item.rel[max.row] rbar1 <- item.rel[max.row] } else { rbar1 <- results[cluster.names[max.row],"rbar"] beta1 <- results[cluster.names[max.row],"beta"] alpha1 <- results[cluster.names[max.row],"alpha"] V1 <- size1 + size1*(size1-1) * rbar1 } size2 <- cluster.stats$size[max.col] if(size2 < 2) {V2 <- 1 beta2 <- item.rel[max.col] alpha2 <- item.rel[max.col] rbar2 <- item.rel[max.col] } else { rbar2 <- results[cluster.names[max.col],"rbar"] beta2 <- results[cluster.names[max.col],"beta"] alpha2 <- results[cluster.names[max.col],"alpha"] V2 <- size2 + size2 * (size2-1) * rbar2} Cov12 <- sign.max * sim.mat[max.cell] * sqrt(V1*V2) #this flips the sign of the correlation for negative correlations r12 <- Cov12/(size1*size2) #average between cluster r V12 <- V1 + V2 + 2 * Cov12 #the variance of the new cluster size12 <- size1 + size2 V12c <- (V12 - size12)*(size12/(size12-1)) #true variance (using the average r on the diagonal) rbar <- V12c/(size12^2) alpha <- V12c/V12 #combine these two rows if the various criterion are passed #beta.weighted <- size12^2 * sign.max *r12/V12 #this was added June, 2009 but can produce negative betas beta.weighted <- size12^2 *r12/V12 #corrected July 28, 2009 beta.unweighted <- 2* sign.max*sim.mat[max.cell]/(1+sign.max* sim.mat[max.cell]) if(ICLUST.options$weighted) {beta.combined <- beta.weighted} else {beta.combined <- beta.unweighted} #what is the correlation of this new cluster with the two subclusters? #this considers item overlap problems #There are actually two alternative solutions #a) (cor.gen=TRUE) finds the correlation due to a shared general factor #b) (cor.gen=FALSE) finds the correlation for the general + group but remove the item overlap problem #neither seems optimal, in that a) will correctly identify non-correlated clusters, but b) is less affected by small clusters. if(ICLUST.options$cor.gen) { c1 <- r12 * size1 * size1 + Cov12 #corrected covariance c2 <- sign.max*(r12 * size2 * size2 + Cov12) } else { c1 <- size1^2* rbar1 + Cov12 c2 <- sign.max*(size2^2 *rbar2 + Cov12) } if((size1 < 2) && (size2 < 2)) { #r2 should be flipped if necessary -- r2 is always flipped (if necessary) when forming clusters r1 <- sqrt(abs(rbar1)) #this corrects for reliability in a two item cluster r2 <- sign.max* r1 #flips the sign if two are negatively correlated -- in the case of two items } else { #this next part corrects for item overlap as well as reliability of the subcluster if (ICLUST.options$correct.cluster) { #correct is the default option if(TRUE) {r1 <- c1/sqrt((V1 - size1 +size1 * rbar1) * V12) if (size2 < 2) { r2 <- c2/sqrt(abs(rbar2)*V12)} else { # r2 <- sign.max * c2/sqrt((V2-size2 + size2 * rbar2)*V12c)} #changed yet again on 6/10/10 r2 <- c2/sqrt((V2-size2 + size2 * rbar2)*V12c)} } else { if(size1 < 2 ) { r1 <- c1/sqrt(abs(rbar1)*V12)} else { r1 <- c1/sqrt((V1-size1 + size1 * rbar1)*V12c) } #flip the smaller of the two clusters -- no, flip r2 if (size2 < 2) {r2 <- c2/sqrt(abs(rbar2)*V12)} else { r2 <- c2/sqrt((V2-size2 + size2*rbar2)*V12c)} # r2 <- c2/sqrt((V2-size2+size2*rbar2)*V12c) } } else {if(TRUE) {r1 <- c1/sqrt(V1*V12) #do not correct r2 <- sign.max* c2/sqrt(V2*V12) } else { r1 <-sign.max* c1/sqrt(V1*V12) } #flip the smaller of the two clusters - flip r2 r2 <- c2/sqrt(V2*V12) } } #test if we should combine these two clusters #first, does alpha increase? test.alpha <- TRUE if (ICLUST.options$alpha>0) { #should we apply the alpha test? if (ICLUST.options$alpha.size < min(size1,size2)) { switch(ICLUST.options$alpha, {if (alpha < min(alpha1,alpha2)) {if (output>2) {print( paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col], 'new alpha =', alpha,'old alpha1 =', alpha1,"old alpha2 =",alpha2))} test.alpha <- FALSE }}, {if (alpha < mean(alpha1,alpha2)) {if (output>2) {print(paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col],'new alpha =',alpha, 'old alpha1 =',alpha1,"old alpha2 =",alpha2))} test.alpha <- FALSE }}, {if (alpha < max(alpha1,alpha2)) {if (output>2) {print(paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col],'new alpha =', alpha, 'old alpha1 =',alpha1,"old alpha2 =",alpha2))} test.alpha <- FALSE }}) #end switch } #end if options$alpha.size } #second, does beta increase ? test.beta <- TRUE if (ICLUST.options$beta>0) { #should we apply the beta test? if (ICLUST.options$beta.size < min(size1,size2)) { switch(ICLUST.options$beta, {if (beta.combined < min(beta1,beta2)) {if (output>2) {print( paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col],'new beta =', round (beta.combined,digits),'old beta1 =',round( beta1,digits),"old beta2 =",round(beta2,digits)))} test.beta <- FALSE }}, {if (beta.combined < mean(beta1,beta2)) {if (output>2) {print(paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col],'new beta =', round (beta.combined,digits), 'old beta1 =',round( beta1,digits),"old beta2 =",round(beta2,digits)))} test.beta <- FALSE }}, {if (beta.combined < max(beta1,beta2)) {if (output>2) {print(paste ('do not combine ', cluster.names[max.row],"with", cluster.names[max.col],'new beta =', round (beta.combined,digits), 'old beta1 =',round( beta1,digits),"old beta2 =",round(beta2,digits)))} test.beta <- FALSE }}) #end switch } #end if options$beta.size } if(test.beta & test.alpha) { break} else { #we have failed the combining criteria if((ICLUST.options$n.clus > 0) & ((num.var - count ) >= ICLUST.options$n.clus) ) {warning ("Clusters formed as requested do not meet the alpha and beta criteria. Perhaps you should rethink the number of cluster settings.") break } else { if (beta.combined < ICLUST.options$beta.min) { keep.clustering <- FALSE #the most similiar pair is not very similar, we should quit break} else { sim[max.row,max.col] <- NA sim[max.col,max.row] <- NA }} } #end of test.beta & test.alpha } #end of while test.alpha & test.beta.loop #combine and summarize if (keep.clustering) { # we have passed the alpha and beta tests, now combine these two variables clusters[,max.row] <- clusters[,max.row] + sign.max * clusters[,max.col] cluster.names <- colnames(clusters) #summarize the results results[count,1] <- cluster.names[max.row] results[count,2] <- cluster.names[max.col] results[count,"similarity"] <- sim[max.cell] results[count,"correlation"] <- sim.mat[max.cell] results[count,"alpha1"] <- item.rel[max.row] results[count,"alpha2"] <- item.rel[max.col] size1 <- cluster.stats$size[max.row] size2 <- cluster.stats$size[max.col] results[count,"size1"] <- size1 results[count,"size2"] <- size2 results[count,"beta1"] <- beta1 results[count,"beta2"] <- beta2 results[count,"rbar1"] <- rbar1 results[count,"rbar2"] <- rbar2 results[count,"r1"] <- r1 results[count,"r2"] <- r2 results[count,"beta"] <- beta.combined results[count,'alpha'] <- alpha results[count,'rbar'] <- rbar results[count,"size"] <- size12 #update cluster.names[max.row] <- paste("C",count,sep="") colnames(clusters) <- cluster.names clusters <- clusters[,-max.col] cluster.names <- colnames(clusters) #row.max <- row.max[-max.col] } #end of combine section if(output > 1) print(results[count,],digits=digits) count=count+1 if ((num.var - count) < ICLUST.options$n.clus) {keep.clustering <- FALSE} if(num.var - count < 1) {keep.clustering <- FALSE} #only one cluster left } #end of keep clustering loop #make clusters in the direction of the majority of the items #direct <- -(colSums(clusters) < 0 ) #clusters <- t(diag(direct) %*% t(clusters)) #colnames(clusters) <- cluster.names ICLUST.cluster <- list(results=results,clusters=clusters,number <- num.var - count) } # end ICLUST.cluster #modified June 12, 2008 to calculate the item-cluster correlation for cluster of size 2 #modified June 14, 2009 to find weighted or unweighted beta #unweighted had been the default option before but it would seem that weighted makes more sense #modified June 5, 2010 to correct the graphic tree pathspsych/R/misc.R0000644000176200001440000003634613127170071012672 0ustar liggesusers#A number of useful helper functions #added January, 2012 #a dummy function to allow the help to find misc "psych.misc" <- function() {} "lowerMat" <- function(R,digits=2) { lowleft <- lower.tri(R,diag=TRUE) nvar <- ncol(R) nc <- digits+3 width <- getOption("width") k1 <- width/(nc+2) if(is.null(colnames(R))) {colnames(R) <- paste("C",1:nvar,sep="")} if(is.null(rownames(R))) {rownames(R) <- paste("R",1:nvar,sep="")} colnames(R) <- abbreviate(colnames(R),minlength=digits+3) nvar <- ncol(R) nc <- digits+3 #k1 <- width/(nc+2) if(k1 * nvar < width) {k1 <- nvar} k1 <- floor(k1) fx <- format(round(R,digits=digits)) if(nrow(R) == ncol(R) ) {fx[!lowleft] <- ""} for(k in seq(0,nvar,k1)) { if(k 0) { rown <- names(temp)[-which(rownn==TRUE)] } else {rown <- names(temp) } result <- t(matrix(unlist(temp),nrow=nvar)) colnames(result) <- cname rownames(result) <- rown } return(result)} "rmssd" <- function(x,group=NULL,lag=1,na.rm=TRUE) { return(sqrt(mssd(x,group=group,lag=lag,na.rm=na.rm))) } ##### Added March 1, 2017 "autoR" <- function(x,group=NULL,lag=1,na.rm=TRUE,use="pairwise") { if(is.null(group)) { n.obs <- NROW(x) if(is.vector(x)) { x <- as.vector(scale(x,scale=FALSE)) mssd <- sum(diff(x,lag=lag,na.rm=na.rm)^2,na.rm=na.rm)/(sum(!is.na(x))-lag) v1 <- sd(x[1:(n.obs-lag)],na.rm=na.rm)^2 v2 <- sd(x[(lag+1):n.obs],na.rm=na.rm)^2 # r <- -(mssd - v1 - v2)/(2*sqrt(v1*v2)) r <- cor(x[1:(n.obs-lag)],x[(lag+1):n.obs],use=use) result <- list(autoR = r,rssd=sqrt(mssd)) #fixed May 10 ,2017 to correct autorR- } else { x <- as.matrix(x) n <- colSums(!is.na(x)) mssd <- colSums(diff(x,lag=lag,na.rm=na.rm)^2,na.rm=na.rm)/(n-lag) v1 <- apply(x[1:(n.obs-lag),],2,sd, na.rm=na.rm)^2 v2 <- apply(x[(lag+1):n.obs,],2, sd,na.rm=na.rm)^2 # r <- -(mssd - v1 - v2)/(2*sqrt(v1*v2)) r <- diag(cor(x[1:(n.obs-lag),],x[(lag+1):n.obs,],use=use)) result <- list(autoR = r,rssd=sqrt(mssd)) } } else { cl <- match.call() x <- as.matrix(x) #added 26/5/14 if(NROW(group) != NROW(x)) group <- x[,group] #added 26/5/14 nvar <- ncol(x) cname <- colnames(x) temp <- by(x,group, autoR,na.rm=na.rm,lag=lag) rownn <- lapply(temp,is.null) if(sum(as.integer(rownn)) > 0) { rown <- names(temp)[-which(rownn==TRUE)] } else {rown <- names(temp) } tm <- t(matrix(unlist(temp),nrow=nvar*2)) autoR <- tm[,1:nvar] rmssd <- tm[,(nvar+1):(nvar*2)] colnames(autoR) <- colnames(rmssd) <- cname rownames(autoR) <- rownames(rmssd) <- rown result <- list(autoR = autoR,rmssd=rmssd,Call=cl) } class(result) <- c("psych","autoR") return(result)} ##### sim.mssd <- function(n,r,g=.1) { rw <- rnorm(n,sqrt(1/(1-r^2))) x <- xg <- rep(0,n) for(i in 2:n) {x[i] <- r*x[i-1] + rw[i] xg[i] <- x[i] + g*i } rx <- sample(x,n,replace=FALSE) x2 <- x*2 rx2 <- rx*2 x.df <- data.frame(x,rx,x2,rx2,xg) return(x.df)} "build.html.help" <- function(p="psych",fn = "/Volumes/Test/psych/man",out="/Volumes/Test/help/") { db <- list.files(fn) for (f in db) {tools::Rd2HTML(paste(fn,db[f]),out=paste(out,db[f]),package=p) } } #shannon complexity index "shannon" <- function(x,correct=FALSE,base=2) {if(is.null(dim(x))) { t <- table(x) s <- sum(t) p <- t/s H <- -sum(p * log(p,base)) if(correct) { Hmax <- -log(1/length(p),base) H <- H/Hmax} } else { H <- apply(x,2,function(x) shannon(x, correct=correct, base=base))} return(H) } test.all <- function(p) { library(p,character.only=TRUE) ob <- paste("package",p,sep=":") ol <- objects(ob) nf <- length(ol) for(i in 1:nf) { fn <- as.character(ol[[i]]) example(topic=fn,package=p,character.only=TRUE) } detach(ob,character.only=TRUE) } #lookup which x's are found in y[c1],return matches for y[] "lookup" <- function(x,y,criteria=NULL) { if (is.null(criteria)) {temp <- match(x,rownames(y))} else { temp <- match(x,y[,criteria])} y <- (y[temp[!is.na(temp)],,drop=FALSE]) return(y)} #use lookup to take fa/ic output and show the results #modified July 4, 2017 to allow for omega output as well "fa.lookup" <- function(f,dictionary,digits=2) { f <- fa.sort(f) if(length(class(f)) > 1){ value <- class(f)[2] } else {value <- "none"} switch(value, omega = {f <- f$schmid$sl h2 <- NULL}, fa = { h2 <- f$communality com <- f$complexity f <- f$loading }, principal= { h2 <- f$communality com <- f$complexity f <- f$loading}, iclust = {f <- f$loadings h2 <- NULL}, none = {f <- f h2 <- NULL}) ord <- rownames(f) contents <- lookup(rownames(f),dictionary) if(!is.null(h2)) {results <- data.frame(round(unclass(f),digits=digits),com=round(com,digits=digits),h2=round(h2,digits=digits))} else { results <- data.frame(round(unclass(f),digits=digits))} results <- merge(results,contents,by="row.names",all.x=TRUE,sort=FALSE) rownames(results) <- results[,"Row.names"] results <- results[ord,-1] #now put it back into the correct order return(results)} "fa.organize" <- function(fa.results,o=NULL,i=NULL,cn=NULL) { if(!is.null(o)) {fa.results$loadings <- fa.results$loadings[,o] fa.results$Structure <- fa.results$Structure[,o] fa.results$weights <- fa.results$weights[,o] fa.results$valid <- fa.results$valid[o] fa.results$score.cor <- fa.results$score.cor[o,o] fa.results$r.scores <- fa.results$r.scores[o,o] fa.results$R2 <- fa.results$R2[o] if(!is.null(cn)) {colnames(fa.results$loadings) <- cn} fa.results$Phi <- fa.results$Phi[o,o]} if(!is.null(i)) {fa.results$loadings <- fa.results$loadings[i,] fa.results$Structure <- fa.results$Structure[i,] fa.results$weights <- fa.results$weights[i,] fa.results$complexity=fa.results$complexity[i] fa.results$uniquenesses <- fa.results$uniquenesses[i]} return(fa.results) } #fixed 13/6/14 to solve the missing data problem "con2cat" <- function(old,cuts=c(0,1,2,3),where) { new <- old nc <- length(cuts) if(missing(where)) where <- 1:ncol(old) lw <- length(where) if(is.matrix(cuts)) {mcuts <- cuts} else {mcuts <- matrix(rep(cuts,lw),nrow=lw,byrow=TRUE)} vwhere <- as.vector(where) for (w in 1:lw) {where <- vwhere[w] cuts <- mcuts[w,] nc <- length(cuts) if(nc < 2 ) {new[(!is.na(new[,where]) & ( old[,where] <= cuts)),where] <- 0 new[(!is.na(new[,where]) & ( old[,where] > cuts)),where] <- 1} else { new[(!is.na(new[,where]) & ( old[,where] <= cuts[1])),where] <- 0 for(i in(2:nc)) { new[(!is.na(new[,where]) & ( old[,where] > cuts[i-1] )),where] <- i-1 # & (new[(!is.na(new[,where]) & ( old[,where] > cuts[i-1] )),where]),where] <- i-1 } new[(!is.na(new[,where]) & ( old[,where] > cuts[nc])),where] <- nc } } new} "keys.lookup" <- function(keys.list,dictionary) { if(is.list(keys.list)) { items <- sub("-","",unlist(keys.list)) f <- make.keys(items,keys.list)} keys.list <- fa.sort(f) contents <- lookup(rownames(f), y=dictionary) rownames(contents)[rowSums(f) <0 ] <- paste0(rownames(contents)[rowSums(f)<0],"-") return(contents) } "item.lookup" <- function (f,m, dictionary,cut=.3, digits = 2) { f <- fa.sort(f) if (!(is.matrix(f) || is.data.frame(f))) { h2 <- f$communality com <- f$complexity ord <- rownames(f$loadings) nfact <- ncol(f$loadings) f <- f$loadings } else { h2 <- NULL com <- NULL ord <- rownames(f) nfact <- ncol(f) } means <- m[ord] f <- data.frame(unclass(f),means=means) contents <- lookup(rownames(f), y=dictionary) if (!is.null(h2)) { results <- data.frame(round(f, digits = digits), com = round(com, digits = digits), h2 = round(h2, digits = digits)) } else { results <- data.frame(round(f, digits = digits)) } results <- merge(results, contents, by = "row.names", all.x = TRUE, sort = FALSE) rownames(results) <- results[, "Row.names"] results <- results[ord, -1] res <- results[0,] #make an empty data frame of the structure of results for (i in 1:nfact) { temp <-results[abs(results[,i]) > cut,] ord <- order(temp[,"means"]) res <- rbind(res,temp[ord,]) } return(res) } "falsePositive" <- function(sexy=.1,alpha=.05,power=.8) { pf <- alpha * (sexy) vp <- power * (1-sexy) pf/(pf+vp)} "bullseye" <- function(x,y,n) { for(i in 1:n) {dia.ellipse(x,y,e.size=i)}} "rel.val" <- function(n,sdx=.2,bars=TRUE,arrow.len=.05) { if(n>20) {pc <- "."} else {pc <- 16} plot(NA,xlim=c(0,10),ylim=c(0,10),axes=FALSE,xlab="",ylab="",main="Reliability and Validity as target shooting") #Reliable and valid x=3 y=2 bullseye(x,y,4) x1 <- x + rnorm(n,0,sdx) y1 <- y + rnorm(n,0,sdx) xm <- mean(x1) ym <- mean(y1) points(x1,y1,pch=pc) points(xm,ym,pch=20,col="red") if(bars) error.crosses(x1,y1,add=TRUE,arrow.len=arrow.len,labels="") text(x,y-2,"Reliable and valid") #unReliable and invalid x=7 y=7 bullseye(x,y,4) x1 <- x + rnorm(n,1,1) y1 <- y + rnorm(n,1,1) xm <- mean(x1) ym <- mean(y1) points(x1,y1,pch=pc) points(xm,ym,pch=20,col="red") if(bars) error.crosses(x1,y1,add=TRUE,arrow.len=arrow.len,labels="") text(x,y-2,"Unreliable and Invalid") #reliable and invalid x=7 y=2 bullseye(x,y,4) x1 <- x + rnorm(n,1,sdx) y1 <- y + rnorm(n,1,sdx) xm <- mean(x1) ym <- mean(y1) points(x1,y1,pch=pc) points(xm,ym,pch=20,col="red") if(bars)error.crosses(x1,y1,add=TRUE,arrow.len=arrow.len,labels="") text(x,y-2,"Reliable and Invalid") #unreliable, but valid x=3 y=7 bullseye(x,y,4) x1 <- x + rnorm(n,0,1) y1 <- y + rnorm(n,0,1) xm <- mean(x1) ym <- mean(y1) points(x1,y1,pch=pc) points(xm,ym,pch=20,col="red") if(bars) error.crosses(x1,y1,add=TRUE,arrow.len=arrow.len,labels="") text(x,y-2,"Unreliable but Valid") } #rel.val(10,.5) # "cor2" <- function(x,y,digits=2,use="pairwise",method="pearson") { # R <- cor(x,y,use=use,method=method) # print(round(R,digits)) # invisible(R)} "cor2" <- function(x,y=NULL,digits=2,use="pairwise",method="pearson") { multi <- FALSE if(is.list(x) && is.null(y)) {multi <- TRUE n <- length(x) xi <- x[[1]] for (i in 2:n) {xi <- cbind(xi,x[[i]])} R <- cor(xi,use=use,method=method) }else { R <- cor(x,y,use=use,method=method)} if(multi) {lowerMat(R,digits) } else {print(round(R,digits))} invisible(R)} levels2numeric <- function(x) { n.var <- ncol(x) for(item in 1:n.var) { if (is.factor(x[,item])) x[,item] <- as.numeric(x[,item])} invisible(x) } signifNum <- function(x,digits=2) { if(!is.null(ncol(x))) {sign <- rep(1,prod(dim(x)))} else { sign <- rep(1,length(x))} sign[which(x < 0)] <- -1 base <- trunc(log10(sign*x)) mantissa <- x/10^base pretty <- round(mantissa,digits=digits-1) * 10^base pretty[which ((sign * x) == 0,arr.ind=TRUE)] <- 0 #fix the ones that are -Inf pretty} #October 25, 2016 "char2numeric" <- function(x) { nvar <- ncol(x) for(i in 1:nvar) { if(!is.numeric(x[[i]] )) { if(is.factor(unlist(x[[i]])) | is.character(unlist(x[[i]]))) { x[[i]] <- as.numeric(x[[i]]) } else {x[[i]] <- NA} } } invisible(x)} #this just shows if it is a matrix "isCorrelation" <- function(x) {value <- FALSE if(NROW(x) == NCOL(x)) { if( is.data.frame(x)) {if(isSymmetric(unname(as.matrix(x)))) { value <- TRUE}} else {if(isSymmetric(unname(x))) {value <- TRUE}}} return(value)} #will only work for data.frames (not matrices) dfOrder <- function(object,columns=NULL) {if(is.null(columns)) columns <- 1:ncol(object) nc <- length(columns) cn <-colnames(object) temp <- rep(1,nc) if(is.character(columns)) { #treat character strings temp [strtrim(columns,1)=="-"] <- -1 if(any(temp < 0) ) {columns <- sub("-","",columns) } columns <- which(colnames(object) %in% columns) } else {temp <- sign(columns) columns <- abs(columns) } if(any(temp < 0)) {object [temp <0] <- -object[temp < 0 ] } bad <- FALSE if(!is.data.frame(object)) stop("I am sorry, I can only sort data.frames.") #temp <- colnames(object) templist <- list() increase <- sign(temp) for (i in 1:nc) {if(!is.numeric(object[[(columns[i])]])) bad<- TRUE} if(bad) {if(any(increase < 0)) {stop("I am sorry, I can not sort data.frames with characters in decreasing order") } else { for(i in 1:nc) { templist[[i]] <- columns[[i]] } ord <- with(object,do.call(order,templist)) object <- object[ord,] } } else { for (i in 1:nc) { templist[[i]] <- as.name(cn[columns[i]]) object[,(columns[i])] <- increase[i] *object[,(columns[i])] } ord <- with(object,do.call(order,templist)) object <- object[ord,] for(i in 1:nc) {object[,(columns[i])] <- increase[i] *object[,(columns[i])]} } return(object) } psych/R/factor.rotate.R0000644000176200001440000000136411764663336014522 0ustar liggesusers"factor.rotate" <- function(f,angle,col1=1,col2=2,plot=FALSE,...) { #hand rotate two factors from a loading matrix #see the GPArotation package for much more elegant procedures if (!is.matrix(f) ) {f <-f$loadings} nvar<- dim(f)[2] if(!is.matrix(f)) {if(!is.data.frame(f)) {stop("f must be either a data frame or a matrix")} else {f <- as.matrix(f)} } rot<- diag(1,nvar,nvar) theta<- pi*angle/180 rot[col1,col1]<- cos(theta) rot[col2,col2]<- cos(theta) rot[col1,col2]<- -sin(theta) rot[col2,col1]<- sin(theta) result <- f %*% rot if(plot) {fa.plot(result,...) abline(a=0,b=tan(-theta),lty="dashed") abline(a=0,b=tan(-theta+ pi/2),lty="dashed") } return(result) } psych/R/fa.R0000755000176200001440000011513213152646107012325 0ustar liggesusers#a function to do principal axis, minres, weighted least squares and maximimum likelihood factor analysis #basically, just combining the three separate functions #the code for wls and minres is adapted from the factanal function #the optimization function in ml is taken almost directly from the factanal function #created May 28, 2009 #modified June 7, 2009 to add gls fitting #modified June 24, 2009 to add ml fitting #modified March 4, 2010 to allow for factoring of covariance matrices rather than correlation matrices #this itself is straight foward, but the summary stats need to be worked on #modified April 4, 2011 to allow for factor scores of oblique or orthogonal solution #In May, 2011, fa was added as a wrapper to do iterations, and the original fa function was changed to fac. The functionality of fa has not changed. #Revised November, 2012 to add the minchi option for factoring. This minimizes the sample size weighted residual matrix #Revised 1/2/14 to add mclapply (multicore) feature. Increase in speed is 50\% for two cores, but only 63\% for 4 cores or 76\% for 8 cores #dropped the fisherz transform on loadings and phis #6/12/14 Added the ability to find tetrachorics, polychorics, or mixed cors. #15/1/15 Fixed the way we handle missing and imputation to actually work. #19/1/15 modified calls to rotation functions to meet CRAN specs using nameSpace "fa" <- function(r,nfactors=1,n.obs = NA,n.iter=1,rotate="oblimin",scores="regression", residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",correct=.5,weight=NULL,...) { cl <- match.call() if(isCorrelation(r)) {if(is.na(n.obs) && (n.iter >1)) stop("You must specify the number of subjects if giving a correlation matrix and doing confidence intervals") # if(!require(MASS)) stop("You must have MASS installed to simulate data from a correlation matrix") } f <- fac(r=r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,scores=scores,residuals=residuals,SMC = SMC,covar=covar,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor, correct=.5,weight=weight,...=...) #call fa with the appropriate parameters fl <- f$loadings #this is the original # if(!require(parallel)) {message("Parallels is required to do confidence intervals")} nvar <- dim(fl)[1] if(n.iter > 1) { if(is.na(n.obs) ) {n.obs <- f$n.obs} replicates <- list() rep.rots <- list() replicateslist <- parallel::mclapply(1:n.iter,function(x) { #replicateslist <- lapply(1:n.iter,function(x) { if(isCorrelation(r)) {#create data sampled from multivariate normal with observed correlation mu <- rep(0, nvar) #X <- mvrnorm(n = n.obs, mu, Sigma = r, tol = 1e-06, empirical = FALSE) #the next 3 lines replaces mvrnorm (taken from mvrnorm, but without the checks) eX <- eigen(r) X <- matrix(rnorm(nvar * n.obs),n.obs) X <- t(eX$vectors %*% diag(sqrt(pmax(eX$values, 0)), nvar) %*% t(X)) } else {X <- r[sample(n.obs,n.obs,replace=TRUE),]} fs <- fac(X,nfactors=nfactors,rotate=rotate,scores="none",SMC = SMC,missing=missing,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,oblique.scores=oblique.scores,np.obs=np.obs,use=use,cor=cor,correct=correct,...=...) #call fa with the appropriate parameters if(nfactors == 1) {replicates <- list(loadings=fs$loadings)} else { t.rot <- target.rot(fs$loadings,fl) if(!is.null(fs$Phi)) { phis <- fs$Phi # should we rotate the simulated factor correlations? #we should report the target rotated phis, not the untarget rotated phis replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(t.rot$Phi)]) #corrected 6/10/15 #replicates <- list(loadings=t.rot$loadings,phis=phis[lower.tri(phis)]) } else {replicates <- list(loadings=t.rot$loadings)} }}) replicates <- matrix(unlist(replicateslist),nrow=n.iter,byrow=TRUE) means <- colMeans(replicates,na.rm=TRUE) sds <- apply(replicates,2,sd,na.rm=TRUE) if(length(means) > (nvar * nfactors) ) { means.rot <- means[(nvar*nfactors +1):length(means)] sds.rot <- sds[(nvar*nfactors +1):length(means)] ci.rot.lower <- means.rot + qnorm(p/2) * sds.rot ci.rot.upper <- means.rot + qnorm(1-p/2) * sds.rot ci.rot <- data.frame(lower=ci.rot.lower,upper=ci.rot.upper) } else { rep.rots <- NULL means.rot <- NULL sds.rot <- NULL z.rot <- NULL ci.rot <- NULL } means <- matrix(means[1:(nvar*nfactors)],ncol=nfactors) sds <- matrix(sds[1:(nvar*nfactors)],ncol=nfactors) tci <- abs(means)/sds ptci <- 1-pnorm(tci) if(!is.null(rep.rots)) { tcirot <- abs(means.rot)/sds.rot ptcirot <- 1- pnorm(tcirot)} else {tcirot <- NULL ptcirot <- NULL} ci.lower <- means + qnorm(p/2) * sds ci.upper <- means + qnorm(1-p/2) * sds ci <- data.frame(lower = ci.lower,upper=ci.upper) class(means) <- "loadings" colnames(means) <- colnames(sds) <- colnames(fl) rownames(means) <- rownames(sds) <- rownames(fl) f$cis <- list(means = means,sds = sds,ci = ci,p =2*ptci, means.rot=means.rot,sds.rot=sds.rot,ci.rot=ci.rot,p.rot = ptcirot,Call= cl,replicates=replicates,rep.rots=rep.rots) results <- f results$Call <- cl class(results) <- c("psych","fa.ci") } else {results <- f results$Call <- cl class(results) <- c("psych","fa") } return(results) } #written May 1 2011 #modified May 8, 2014 to make cis an object in f to make sorting easier ######################################################## #the main function "fac" <- function(r,nfactors=1,n.obs = NA,rotate="oblimin",scores="tenBerge",residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",correct=.5,weight=NULL,...) { cl <- match.call() control <- NULL #if you want all the options of mle, then use factanal ##first some functions that are internal to fa #this does the WLS or ULS fitting depending upon fm "fit.residuals" <- function(Psi,S,nf,S.inv=NULL,fm) { diag(S) <- 1- Psi if(!is.null(S.inv)) sd.inv <- diag(1/diag(S.inv)) eigens <- eigen(S) eigens$values[eigens$values < .Machine$double.eps] <- 100 * .Machine$double.eps if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) #use switch to clean up the code switch(fm, wls = {residual <- sd.inv %*% (S- model)^2 %*% sd.inv}, gls = {residual <- (S.inv %*%(S - model))^2 } , uls = {residual <- (S - model)^2}, # minres = {residual <- (S - model)^2 # diag(residual) <- 0}, ols = {residual <- (S-model) residual <- residual[lower.tri(residual)] residual <- residual^2}, minres = {residual <- (S-model) residual <- residual[lower.tri(residual)] residual <- residual^2}, old.min = {residual <- (S-model) residual <- residual[lower.tri(residual)] residual <- residual^2}, minchi = {residual <- (S - model)^2 #min chi does a minimum residual analysis, but weights the residuals by their pairwise sample size residual <- residual * np.obs diag(residual) <- 0 }) # #weighted least squares weights by the importance of each variable # if(fm == "wls" ) {residual <- sd.inv %*% (S- model)^2 %*% sd.inv} else {if (fm=="gls") {residual <- (S.inv %*%(S - model))^2 } else {residual <- (S - model)^2 #this last is the uls case # if(fm == "minres") {diag(residual) <- 0} #this is minimum residual factor analysis, ignore the diagonal # if(fm=="minchi") {residual <- residual * np.obs # diag(residual) <- 0 } #min chi does a minimum residual analysis, but weights the residuals by their pairwise sample size # }} # the uls solution usually seems better than wls or gls? # # error <- sum(residual) } #this next section is taken (with minor modification to make ULS, WLS or GLS) from factanal #it has been further modified with suggestions by Hao Wu to improve the ols/minres solution (Apri, 2017) #it does the iterative calls to fit.residuals #modified June 7, 2009 to add gls fits #Modified December 11, 2009 to use first derivatives from formula rather than empirical. This seriously improves the speed. #but does not seem to improve the accuracy of the minres/ols solution (note added April, 2017) "fit" <- function(S,nf,fm,covar) { if(is.logical(SMC)) {S.smc <- smc(S,covar)} else{ S.smc <-SMC } #added this option, August 31, 2017 if((fm=="wls") | (fm =="gls") ) {S.inv <- solve(S)} else {S.inv <- NULL} if(!covar &&(sum(S.smc) == nf) && (nf > 1)) {start <- rep(.5,nf)} else {start <- diag(S)- S.smc} #initial communality estimates are variance - smc unless smc = 1 if(fm=="ml" || fm=="mle" ) {res <- optim(start, FAfn, FAgr, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale=1, parscale = rep(0.01, length(start))), control), nf = nf, S = S) } else { if(fm=="ols" ) { #don't use a gradient if(is.logical(SMC)) {start <- diag(S)- smc(S)} else {start <- SMC} res <- optim(start, FA.OLS, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S ) } else { if((fm=="minres")| (fm=="uls")) { #which is actually the same as OLS but we use the gradient start <- diag(S)- smc(S) res <- optim(start, fit.residuals,gr=FAgr.minres, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S,fm=fm) } else { #this is the case of old.min start <- diag(S)- smc(S) res <- optim(start, fit.residuals,gr=FAgr.minres2, method = "L-BFGS-B", lower = .005, upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, length(start)))), nf= nf, S=S, S.inv=S.inv,fm=fm ) } } } if((fm=="wls") | (fm=="gls") | (fm =="ols") | (fm =="uls")| (fm=="minres") | (fm=="old.min")) {Lambda <- FAout.wls(res$par, S, nf)} else { Lambda <- FAout(res$par, S, nf)} result <- list(loadings=Lambda,res=res,S=S) } ## the next two functions are taken directly from the factanal function in order to include maximum likelihood as one of the estimation procedures FAfn <- function(Psi, S, nf) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE) e <- E$values[-(1:nf)] e <- sum(log(e) - e) - nf + nrow(S) -e } FAgr <- function(Psi, S, nf) #the first derivatives { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1:nf, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1:nf] - 1, 0)), nf) load <- diag(sqrt(Psi)) %*% load g <- load %*% t(load) + diag(Psi) - S # g <- model - data diag(g)/Psi^2 #normalized } # FAgr.minres.old <- function(Psi, S, nf,S.inv,fm) #the first derivatives -- no longer used # { sc <- diag(1/sqrt(Psi)) # Sstar <- sc %*% S %*% sc # E <- eigen(Sstar, symmetric = TRUE) # L <- E$vectors[, 1:nf, drop = FALSE] # load <- L %*% diag(sqrt(pmax(E$values[1:nf] - 1, 0)), nf) # load <- diag(sqrt(Psi)) %*% load # model <- load %*% t(load) # g <- diag(Psi) - diag(S -model) # g <- model - data # if(fm=="minchi") {g <- g*np.obs} # diag(g)/Psi^2 #normalized # } FAgr.minres2 <- function(Psi, S, nf,S.inv,fm) #the first derivatives used by old.min { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1:nf, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1:nf]-1 , 0)), nf) load <- diag(sqrt(Psi)) %*% load g <- load %*% t(load) + diag(Psi) - S # g <- model - data if(fm=="minchi") {g <- g*np.obs} #normalized diag(g)/Psi^2 } FAgr.minres <- function(Psi, S, nf,fm) #the first derivatives used by minres { Sstar <- S - diag(Psi) E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1:nf, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1:nf] , 0)), nf) # load <- diag(sqrt(Psi)) %*% load g <- load %*% t(load) + diag(Psi) - S # g <- model - data #if(fm=="minchi") {g <- g*np.obs} #normalized diag(g) } #this was also taken from factanal FAout <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1L:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)), q) diag(sqrt(Psi)) %*% load } #This is modified from factanal -- the difference in the loadings is that these produce orthogonal loadings, but slightly worse fit FAout.wls <- function(Psi, S, q) { diag(S) <- 1- Psi E <- eigen(S,symmetric = TRUE) # L <- E$vectors[,1L:q,drop=FALSE] %*% diag(sqrt(E$values[1L:q,drop=FALSE]),q) L <- E$vectors[,1L:q,drop=FALSE] %*% diag(sqrt(pmax(E$values[1L:q,drop=FALSE],0)),q) #added the > 0 test August 30, 2017 return(L) } #this takes advantage of the glb.algebraic function to do min.rank factor analysis "MRFA" <- function(S,nf) { com.glb <- glb.algebraic(S) L <- FAout.wls(1-com.glb$solution,S,nf) h2 <- com.glb$solution result <- list(loadings =L, communality = h2) } #The next function was adapted by WR from a suggestion by Hao Wu (April 12, 2017) FA.OLS <- function(Psi,S,nf) { E <- eigen(S-diag(Psi),symmetric=T) U <-E$vectors[,1:nf,drop=FALSE] D <- E$values[1:nf,drop=FALSE] D [D < 0] <- 0 if(length(D) < 2) {L <- U * sqrt(D)} else { L <- U %*% diag(sqrt(D))} #gets around a weird problem for nf=1 model <- L %*% t(L) diag(model) <- diag(S) return(sum((S-model)^2)/2) } ##The gradient function speeds up the function drastically but is incorrect and is not used FAgr.OLS <- function(Psi, S, nf) #the first derivatives -- seems bad { E <- eigen(S-diag(Psi), symmetric = TRUE) U <- E$vectors[, 1:nf, drop = FALSE] D <- E$values[1:nf] D [D < 0] <-0 L <- U %*% diag(sqrt(D)) model <- L %*% t(L) g <- diag(Psi) - diag(S -model) # g <- model - data diag(g)/Psi^2 #(diag(g) - Psi)/Psi } ############################### ############################## # These functions are now commented out, used to test fa # #now test this # test.ols <- function(R,nf) { #this does not agree with Hao Wu -- something is wrong with the gradient # start <- diag(R)- smc(R) # res <- optim(start, FA.OLS,gr=FAgr.OLS, method = "L-BFGS-B", lower = .005, # upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, # length(start)))), nf= nf, S=R) # Lambda <- FAout.wls(res$par, R, nf) # } # # test.ols <- function(R,nf) { #this agrees with the Hao solution-- not using a gradient # start <- diag(R)- smc(R) # res <- optim(start, FA.OLS, method = "L-BFGS-B", lower = .005, # upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, # length(start)))), nf= nf, S=R ) # Lambda1 <- FAout.wls(res$par, R, nf) # # } ########## #the following two functions, sent by Hao Wu have been used for benchmarking, but are not used in fa. ##Now I define a function to minimize the FOLS function above w.r.t the unique variances. It returns the standardized loadings, raw loadings, unique variances, OLS function value and convergence status (0= convergence). #the Hao Wu functions (although not used, they are included here for completeness # FOLS<-function(Psi,S,fac){ # eig<-eigen(S-diag(Psi),symmetric=T); # U<-eig$vectors[,1:fac]; # D<-eig$values[1:fac]; # D[D<0]<-0; # L<-U%*%diag(sqrt(D),fac,fac); # Omega<-L%*%t(L); # diag(Omega)<-diag(S); # return(sum((S-Omega)^2)/2); # } # # EFAOLS2 <- function(S,Psi0=1/diag(chol2inv(chol(S))),fac) { # efa <- nlminb(Psi0,FOLS,lower=0,S=S,fac=fac) # fit.OLS<-efa$objective # fit.Psi<-efa$par # eig<-eigen(S-diag(fit.Psi),symmetric=T) # U<-eig$vectors[,1:fac] # D<-eig$values[1:fac] # D [D<0] <-0 # fit.L<-U%*%diag(sqrt(D),fac,fac) # return(list(st.L=diag(1/diag(S))%*%fit.L,L=fit.L,Psi=fit.Psi,F=fit.OLS,convergence=efa$convergence)) # } # ############################## ## now start the main function #np.obs <- NULL #only returned with a value in case of fm="minchi" if (fm == "mle" || fm =="MLE" || fm == "ML" ) fm <- "ml" #to correct any confusion if (!any(fm %in%(c("pa","alpha", "minrank","wls","gls","minres","minchi", "uls","ml","mle","ols" ,"old.min") ))) {message("factor method not specified correctly, minimum residual (unweighted least squares used") fm <- "minres" } x.matrix <- r n <- dim(r)[2] if (!isCorrelation(r)) { matrix.input <- FALSE #return the correlation matrix in this case n.obs <- dim(r)[1] if(missing) { #impute values x.matrix <- as.matrix(x.matrix) #the trick for replacing missing works only on matrices miss <- which(is.na(x.matrix),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x.matrix,na.rm=TRUE) #replace missing values with means x.matrix[miss]<- item.means[miss[,2]]} else { item.med <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians x.matrix[miss]<- item.med[miss[,2]]} } #if(fm=="minchi") np.obs <- count.pairwise(r) #used if we want to do sample size weighting if(covar) {cor <- "cov"} if(!is.null(weight) ) cor <-"wtd" # if given a rectangular matrix, then find the correlation or covariance #multiple ways of find correlations or covariances switch(cor, cor = {r <- cor(r,use=use)}, cov = {r <- cov(r,use=use) covar <- TRUE}, wtd = { r <- cor.wt(r,w=weight)$r}, tet = {r <- tetrachoric(r,correct=correct)$rho}, poly = {r <- polychoric(r,correct=correct)$rho}, tetrachoric = {r <- tetrachoric(r,correct=correct)$rho}, polyvchoric = {r <- polychoric(r,correct=correct)$rho}, mixed = {r <- mixed.cor(r,use=use,correct=correct)$rho}, Yuleb = {r <- YuleCor(r,,bonett=TRUE)$rho}, YuleQ = {r <- YuleCor(r,1)$rho}, YuleY = {r <- YuleCor(r,.5)$rho } ) } else { matrix.input <- TRUE #don't return the correlation matrix if(fm=="minchi") { if(is.null(np.obs)) {fm <- "minres" message("factor method minchi does not make sense unless we know the sample size, minres used instead") } } if(is.na(n.obs) && !is.null(np.obs)) n.obs <- max(as.vector(np.obs)) if(!is.matrix(r)) { r <- as.matrix(r)} if(!covar) { r <- cov2cor(r) #probably better to do it this way (11/22/2010) #sds <- sqrt(diag(r)) #convert covariance matrices to correlation matrices # r <- r/(sds %o% sds) #if we remove this, then we need to fix the communality estimates } } #added June 9, 2008 #does this next line actually do anything? if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,np.obs=np.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,np.obs=np.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0,r=r)} if(is.null(SMC)) SMC=TRUE #if we don't specify it, make it true r.mat <- r Phi <- NULL colnames(r.mat) <- rownames(r.mat) <- colnames(r) if(any(is.na(r))) { bad <- TRUE tempr <-r wcl <-NULL while(bad) { wc <- table(which(is.na(tempr), arr.ind=TRUE)) #find the correlations that are NA wcl <- c(wcl,as.numeric(names(which(wc==max(wc))))) tempr <- r[-wcl,-wcl] if(any(is.na(tempr))) {bad <- TRUE} else {bad <- FALSE} } cat('\nLikely variables with missing values are ',colnames(r)[wcl],' \n') stop("I am sorry: missing values (NAs) in the correlation matrix do not allow me to continue.\nPlease drop those variables and try again." ) } if(is.logical(SMC) ) { if(SMC) {if(nfactors <= n) {#changed to <= n instead of < n/2 This warning seems to confuse people unnecessarily diag(r.mat) <- smc(r,covar=covar) } else {if (warnings) { message("In fa, too many factors requested for this number of variables to use SMC for communality estimates, 1s are used instead")} } } else { diag(r.mat) <- 1 } } else { diag(r.mat) <- SMC} orig <- diag(r) comm <- sum(diag(r.mat)) err <- comm i <- 1 comm.list <- list() #principal axis is an iterative eigen value fitting if(fm =="alpha") { #alpha factor analysis iteratively replaces the diagonal with revised communalities, and then rescales the matrix i <- 1 #count the iterations e.values <- eigen(r,symmetric=symmetric)$values #store the original solution H2 <- diag(r.mat) #the original communality estimate while(err > min.err) { #iteratively replace the diagonal with our revised communality estimate r.mat <- cov2cor(r.mat) #this has rescaled the correlations based upon the communalities eigens <- eigen(r.mat,symmetric=symmetric) loadings <- eigens$vectors[,1:nfactors,drop=FALSE] %*% diag(sqrt(eigens$values[1:nfactors,drop=FALSE])) model <- loadings %*% t(loadings) newH2 <- H2 * diag(model) err <- sum(abs(H2 - newH2)) r.mat <- r diag(r.mat) <- newH2 H2 <- newH2 i <- i + 1 if(i > max.iter) { if(warnings) {message("maximum iteration exceeded")} err <-0 } } #end of while loop loadings <- sqrt(H2) * loadings eigens <- sqrt(H2) * eigens$vaues comm1 <- sum(H2) } #end alpha factor analysis if(fm=="pa") { e.values <- eigen(r,symmetric=symmetric)$values #store the original solution while(err > min.err) #iteratively replace the diagonal with our revised communality estimate { eigens <- eigen(r.mat,symmetric=symmetric) if(nfactors >1 ) {loadings <- eigens$vectors[,1:nfactors] %*% diag(sqrt(eigens$values[1:nfactors])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) } model <- loadings %*% t(loadings) new <- diag(model) comm1 <- sum(new) diag(r.mat) <- new err <- abs(comm-comm1) if(is.na(err)) {warning("imaginary eigen value condition encountered in fa\n Try again with SMC=FALSE \n exiting fa") break} comm <- comm1 comm.list[[i]] <- comm1 i <- i + 1 if(i > max.iter) { if(warnings) {message("maximum iteration exceeded")} err <-0 } } #end of while loop eigens <- eigens$values } if (fm=="minrank") {mrfa <- MRFA(r,nfactors) loadings <- mrfa$loadings model <- loadings %*% t(loadings) e.values <- eigen(r)$values S <- r diag(S) <- diag(model) eigens <- eigen(S)$values } if((fm == "wls") | (fm=="minres") |(fm=="minchi") | (fm=="gls") | (fm=="uls")|(fm== "ml")|(fm== "mle") | (fm=="ols") | (fm=="old.min")) { uls <- fit(r,nfactors,fm,covar=covar) e.values <- eigen(r)$values #eigen values of pc: used for the summary stats -- result.res <- uls$res loadings <- uls$loadings model <- loadings %*% t(loadings) S <- r diag(S) <- diag(model) #communalities from the factor model eigens <- eigen(S)$values } # a weird condition that happens with poor data #making the matrix symmetric solves this problem if(!is.double(loadings)) {warning('the matrix has produced imaginary results -- proceed with caution') loadings <- matrix(as.double(loadings),ncol=nfactors) } #make each vector signed so that the maximum loading is positive - should do after rotation #Alternatively, flip to make the colSums of loading positive if (nfactors >1) {sign.tot <- vector(mode="numeric",length=nfactors) sign.tot <- sign(colSums(loadings)) sign.tot[sign.tot==0] <- 1 loadings <- loadings %*% diag(sign.tot) } else { if (sum(loadings) < 0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)} colnames(loadings) <- "MR1" } switch(fm, alpha = {colnames(loadings) <- paste("alpha",1:nfactors,sep='')}, wls={colnames(loadings) <- paste("WLS",1:nfactors,sep='') }, pa= {colnames(loadings) <- paste("PA",1:nfactors,sep='')} , gls = {colnames(loadings) <- paste("GLS",1:nfactors,sep='')}, ml = {colnames(loadings) <- paste("ML",1:nfactors,sep='')}, minres = {colnames(loadings) <- paste("MR",1:nfactors,sep='')}, minrank = {colnames(loadings) <- paste("MRFA",1:nfactors,sep='')}, minchi = {colnames(loadings) <- paste("MC",1:nfactors,sep='')} ) rownames(loadings) <- rownames(r) loadings[loadings==0.0] <- 10^-15 #added to stop a problem with varimax if loadings are exactly 0 model <- loadings %*% t(loadings) f.loadings <- loadings #used to pass them to factor.stats rot.mat <- NULL if(rotate != "none") {if (nfactors > 1) { if (rotate=="varimax" |rotate=="Varimax" | rotate=="quartimax" | rotate =="bentlerT" | rotate =="geominT" | rotate =="targetT" | rotate =="bifactor" | rotate =="TargetT"| rotate =="equamax"| rotate =="varimin"|rotate =="specialT" | rotate =="Promax" | rotate =="promax"| rotate =="cluster" |rotate == "biquartimin" |rotate == "TargetQ" |rotate =="specialQ" ) { Phi <- NULL switch(rotate, #The orthogonal cases for GPArotation + ones developed for psych varimax = {rotated <- stats::varimax(loadings) #varimax is from stats, the others are from GPArotation loadings <- rotated$loadings rot.mat <- rotated$rotmat}, Varimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #varimax is from the stats package, Varimax is from GPArotations #rotated <- do.call(rotate,list(loadings,...)) #rotated <- do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...)) rotated <- GPArotation::Varimax(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , quartimax = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings)) rotated <- GPArotation::quartimax(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , bentlerT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::bentlerT(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , geominT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} #rotated <- do.call(rotate,list(loadings,...)) rotated <- GPArotation::geominT(loadings,...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , targetT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} rotated <- GPArotation::targetT(loadings,Tmat=diag(ncol(loadings)),...) loadings <- rotated$loadings rot.mat <- t(solve(rotated$Th))} , bifactor = {rot <- bifactor(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, TargetT = {if (!requireNamespace('GPArotation')) {stop("I am sorry, to do this rotation requires the GPArotation package to be installed")} rot <- GPArotation::targetT(loadings,Tmat=diag(ncol(loadings)),...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, equamax = {rot <- equamax(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, varimin = {rot <- varimin(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, specialT = {rot <- specialT(loadings,...) loadings <- rot$loadings rot.mat <- t(solve(rot$Th))}, Promax = {pro <- Promax(loadings,...) #Promax without Kaiser normalization loadings <- pro$loadings Phi <- pro$Phi rot.mat <- pro$rotmat}, promax = {#pro <- stats::promax(loadings,...) #from stats pro <- kaiser(loadings,rotate="Promax",...) #calling promax will now do the Kaiser normalization before doing Promax rotation loadings <- pro$loadings rot.mat <- pro$rotmat # ui <- solve(rot.mat) # Phi <- cov2cor(ui %*% t(ui)) Phi <- pro$Phi }, cluster = {loadings <- varimax(loadings,...)$loadings pro <- target.rot(loadings) loadings <- pro$loadings Phi <- pro$Phi rot.mat <- pro$rotmat}, biquartimin = {ob <- biquartimin(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))}, TargetQ = {ob <- TargetQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))}, specialQ = {ob <- specialQ(loadings,...) loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(pro$Th))}) } else { #The following oblique cases all use GPArotation if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax" | rotate =="geominQ" | rotate =="bentlerQ" |rotate == "targetQ" ) { if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed") Phi <- NULL} else { ob <- try(do.call(getFromNamespace(rotate,'GPArotation'),list(loadings,...))) if(class(ob)== as.character("try-error")) {warning("The requested transformaton failed, Promax was used instead as an oblique transformation") ob <- Promax(loadings)} loadings <- ob$loadings Phi <- ob$Phi rot.mat <- t(solve(ob$Th))} } else {message("Specified rotation not found, rotate='none' used")} } } } signed <- sign(colSums(loadings)) signed[signed==0] <- 1 loadings <- loadings %*% diag(signed) #flips factors to be in positive direction but loses the colnames if(!is.null(Phi)) {Phi <- diag(signed) %*% Phi %*% diag(signed) } #added October 20, 2009 to correct bug found by Erich Studerus switch(fm, alpha = {colnames(loadings) <- paste("alpha",1:nfactors,sep='')}, wls={colnames(loadings) <- paste("WLS",1:nfactors,sep='') }, pa= {colnames(loadings) <- paste("PA",1:nfactors,sep='')} , gls = {colnames(loadings) <- paste("GLS",1:nfactors,sep='')}, ml = {colnames(loadings) <- paste("ML",1:nfactors,sep='')}, minres = {colnames(loadings) <- paste("MR",1:nfactors,sep='')}, minrank = {colnames(loadings) <- paste("MRFA",1:nfactors,sep='')}, uls = {colnames(loadings) <- paste("ULS",1:nfactors,sep='')}, old.min = {colnames(loadings) <- paste0("oldmin",1:nfactors)}, minchi = {colnames(loadings) <- paste("MC",1:nfactors,sep='')}) #just in case the rotation changes the order of the factors, sort them #added October 30, 2008 if(nfactors >1) { ev.rotated <- diag(t(loadings) %*% loadings) ev.order <- order(ev.rotated,decreasing=TRUE) loadings <- loadings[,ev.order]} rownames(loadings) <- colnames(r) if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix! class(loadings) <- "loadings" if(nfactors < 1) nfactors <- n if(max(abs(loadings) > 1.0) && !covar) warning(' A loading greater than abs(1) was detected. Examine the loadings carefully.') result <- factor.stats(r,loadings,Phi,n.obs=n.obs,np.obs=np.obs,alpha=alpha) #do stats as a subroutine common to several functions result$rotation <- rotate result$communality <- diag(model) if(max(result$communality > 1.0) && !covar) warning("An ultra-Heywood case was detected. Examine the results carefully") if(fm == "minrank") {result$communalities <- mrfa$communality} else {if(fm=="pa" | fm == "alpha") {result$communalities <- comm1} else {result$communalities <- 1- result.res$par}} result$uniquenesses <- diag(r-model) result$values <- eigens result$e.values <- e.values result$loadings <- loadings result$model <- model #diag(result$model) <- diag(r) result$fm <- fm #remember what kind of analysis we did result$rot.mat <- rot.mat if(!is.null(Phi) ) {colnames(Phi) <- rownames(Phi) <- colnames(loadings) #added 2/14/16 to help with fa.multi result$Phi <- Phi #the if statement was incorrectly including oblique.scores. Fixed Feb, 2012 following a report by Jessica Jaynes Structure <- loadings %*% Phi} else {Structure <- loadings} class(Structure) <- "loadings" result$Structure <- Structure #added December 12, 2011 if(fm == "pa") result$communality.iterations <- unlist(comm.list) #Some of the Grice equations use the pattern matrix, but some use the structure matrix #we are now dropping this oblique score option (9/2/17) result$method=scores #this is the chosen method for factor scores if(oblique.scores) {result$scores <- factor.scores(x.matrix,f=loadings,Phi=NULL,method=scores) } else {result$scores <- factor.scores(x.matrix,f=loadings,Phi=Phi,method=scores)} result$R2.scores <- result$scores$R2 result$weights <- result$scores$weights #these are the weights found in factor scores and will be different from the ones reported by factor.stats result$scores <- result$scores$scores if(!is.null(result$scores)) colnames(result$scores) <- colnames(loadings) #added Sept 27, 2013 result$factors <- nfactors result$r <- r #save the correlation matrix result$np.obs <- np.obs result$fn <- "fa" result$fm <- fm #Find the summary statistics of Variance accounted for #normally just found in the print function (added 4/22/17) #from the print function if(is.null(Phi)) {if(nfactors > 1) {vx <- colSums(loadings^2) } else {vx <- sum(loadings^2) }} else {vx <- diag(Phi %*% t(loadings) %*% loadings) } vtotal <- sum(result$communality + result$uniquenesses) names(vx) <- colnames(loadings) varex <- rbind("SS loadings" = vx) varex <- rbind(varex, "Proportion Var" = vx/vtotal) if (nfactors > 1) { varex <- rbind(varex, "Cumulative Var"= cumsum(vx/vtotal)) varex <- rbind(varex, "Proportion Explained"= vx/sum(vx)) varex <- rbind(varex, "Cumulative Proportion"= cumsum(vx/sum(vx))) } result$Vaccounted <- varex result$Call <- cl class(result) <- c("psych", "fa") return(result) } #modified October 30, 2008 to sort the rotated loadings matrix by the eigen values. #modified Spring, 2009 to add multiple ways of doing factor analysis #corrected, August, 2009 to count the diagonal when doing GLS or WLS - this mainly affects (improves) the chi square #modified April 4, 2011 to find the factor scores of the oblique factors #modified December 12, 2011 to report structure coefficients as well as pattern (loadings) #modified February 11, 2013 to correctly treat SMC=FALSE as 1s instead of 0s. #modified spring, 2015 to use switch in the rotation options #modified August 25, 2015 to add rot.mat as output #modified February 22, 2016 to keep the diagonal of the model as it should be -- e.g., the communalitiespsych/R/fa.poly.R0000644000176200001440000001212412265637560013310 0ustar liggesusers #polychoric factor analysis with confidence intervals "fa.poly" <- function(x,nfactors=1,n.obs = NA,n.iter=1,rotate="oblimin",SMC=TRUE,missing=FALSE,impute="median", min.err = .001,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05,scores="regression",oblique.scores=TRUE,weight=NULL,global =TRUE, ...) { cl <- match.call() ncat <- 8 n.obs <- dim(x)[1] tx <- table(as.matrix(x)) if(dim(tx)[1] ==2) {tet <- tetrachoric(x) typ = "tet"} else { tab <- apply(x,2,function(x) table(x)) if(is.list(tab)) {len <- lapply(tab,function(x) length(x))} else {len <- dim(tab)[1] } nvar <- ncol(x) dvars <- subset(1:nvar,len==2) #find the dichotomous variables pvars <- subset(1:nvar,((len > 2) & (len <= ncat))) #find the polytomous variables cvars <- subset(1:nvar,(len > ncat)) #find the continuous variables (more than ncat levels) if(length(pvars)==ncol(x)) {tet <- polychoric(x,weight=weight,global=global) typ = "poly"} else {tet <- mixed.cor(x,weight=weight,global=global) typ="mixed" }} r <- tet$rho #call fa with the polychoric/tetrachoric matrix #fa will not return scores, we still need to find them f <- fa(r,nfactors=nfactors,n.obs=n.obs,rotate=rotate,SMC = SMC,missing=FALSE,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,scores=scores,oblique.scores=oblique.scores,...) #call fa with the appropriate parameters f$Call <- cl fl <- f$loadings #this is the original nvar <- dim(fl)[1] if(n.iter > 1) { e.values <- list(pc =vector("list",n.iter),fa =vector("list",n.iter)) replicates <- vector("list",n.iter) rep.rots <- vector("list",n.iter) for (trials in 1:n.iter) { xs <- x[sample(n.obs,n.obs,replace=TRUE),] if(typ!= "tet") {tets <- mixed.cor(xs,weight=weight,global=global)} else {tets <- tetrachoric(xs,weight=weight)} r <- tets$rho values.samp <- eigen(tets$rho)$values e.values[["pc"]][[trials]] <- values.samp fs <- fa(r,nfactors=nfactors,rotate=rotate,SMC = SMC,missing=FALSE,impute=impute,min.err=min.err,max.iter=max.iter,symmetric=symmetric,warnings=warnings,fm=fm,alpha=alpha,...) #call fa with the appropriate parameters e.values[["fa"]][[trials]] <- fs$values if(nfactors > 1) {t.rot <- target.rot(fs$loadings,fl) replicates[[trials]] <- t.rot$loadings if(!is.null(fs$Phi)) { phis <- fs$Phi # should we rotate the simulated factor correlations? rep.rots[[trials]] <- phis[lower.tri(phis)]}} else { replicates[[trials]] <- fs$loadings} } replicates <- matrix(unlist(replicates),ncol=nfactors*nvar,byrow=TRUE) if(!is.null( f$Phi) ) {rep.rots <- matrix(unlist(rep.rots),ncol=nfactors*(nfactors-1)/2,byrow=TRUE) z.rot <- fisherz(rep.rots) means.rot <- colMeans(z.rot,na.rm=TRUE) sds.rot <- apply(z.rot,2,sd, na.rm=TRUE) sds.rot <- fisherz2r(sds.rot) ci.rot.lower <- means.rot + qnorm(p/2) * sds.rot ci.rot.upper <- means.rot + qnorm(1-p/2) * sds.rot means.rot <- fisherz2r(means.rot) ci.rot.lower <- fisherz2r(ci.rot.lower) ci.rot.upper <- fisherz2r(ci.rot.upper) ci.rot <- data.frame(lower=ci.rot.lower,upper=ci.rot.upper) } else {rep.rots <- NULL means.rot <- NULL sds.rot <- NULL z.rot <- NULL ci.rot <- NULL } z.replicates <- fisherz(replicates) #convert to z scores means <- matrix(colMeans(z.replicates,na.rm=TRUE),ncol=nfactors) sds <- matrix(apply(z.replicates,2,sd,na.rm=TRUE),ncol=nfactors) ci.lower <- means + qnorm(p/2) * sds ci.upper <- means + qnorm(1-p/2) * sds means <- fisherz2r(means) sds <- fisherz2r(sds) ci.lower <- fisherz2r(ci.lower) ci.upper <- fisherz2r(ci.upper) #ci.low.e <- apply(replicates,2, quantile, p/2) #ci.up.e <- apply(replicates,2,quantile, (1-p/2)) #ci <- data.frame(lower = ci.lower, upper=ci.upper, low.e=ci.low.e, up.e=ci.up.e) ci <- data.frame(lower = ci.lower,upper=ci.upper) class(means) <- "loadings" #class(sds) <- "loadings" colnames(means) <- colnames(sds) <- colnames(fl) rownames(means) <- rownames(sds) <- rownames(fl) ei.pc <-describe(matrix(unlist(e.values$pc),ncol=nvar,byrow=TRUE)) #eigen values of pcs ei.fa <- describe(matrix(unlist(e.values$fa),ncol=nvar,byrow=TRUE)) #eigen values of fa e.stats <- list(ob.fa=f$values,ob.pc=f$e.values,pc=ei.pc,fa=ei.fa) results <- list(fa = f,rho=tet$rho,tau=tet$tau,n.obs=n.obs,means = means,sds = sds,ci = ci, means.rot=means.rot,sds.rot=sds.rot,ci.rot=ci.rot,Call= cl,replicates=replicates,rep.rots=rep.rots,e.values=e.values,e.stats=e.stats) class(results) <- c("psych","fa.ci") } else {results <- list(fa = f,rho=r,tau=tet$tau,n.obs=n.obs,Call=cl) if(oblique.scores) {results$scores <- factor.scores(x,f=f$loadings,Phi=f$Phi,method=scores,rho=r) } else {results$scores <- factor.scores(x,f=f$Structure,method=scores,rho=r)} class(results) <- c("psych","fa") } return(results) } #written May 3 2011 #revised Sept 13, 2013 to allow for mixed cor input #and to find factor scores if data are given #corrected Sept 20, 2013 to do the ci on the fisher zs and then convert back to r psych/R/missing.cor.R0000644000176200001440000000054012240203033014143 0ustar liggesusers"missing.cor" <- function(x) { nvar <- ncol(x) Mux <- apply(x,2,mean,na.rm=TRUE) Varx <- apply(x,2,var,na.rm=TRUE) X <- scale(x,scale=FALSE) Covx <- diag(Varx,ncol=nvar) N <- t(!is.na(x)) %*% (!is.na(x)) for(i in 2:nvar) { for (j in 1:(i-1)) { Covx[i,j] <- sum(X[i]*X[j],na.rm=TRUE) } } Covx <- Covx/(N-1) }psych/R/irt.item.diff.rasch.R0000644000176200001440000000044210474443236015474 0ustar liggesusers#steps towards a Rasch modeling program for IRT #first, estimate the item difficulties "irt.item.diff.rasch" <- function(items) { ncases <- nrow(items) item.mean <- colMeans(items,na.rm=TRUE) item.mean[item.mean<(1/ncases)] <- 1/ncases irt.item.diff.rasch <- log((1/item.mean)- 1) } psych/R/cta.15.R0000644000176200001440000001177312514541470012733 0ustar liggesusers"cta.15" <- function(n=3,t=5000, cues = NULL, act=NULL, inhibit=NULL, consume = NULL,ten = NULL, type="both",fast=2 ) { #simulation of the CTA reparamaterization of the dynamics of action compare <- FALSE if(n > 4){ colours <- rainbow(n)} else {colours <- c("black","blue", "red", "green") } step <- .05 ten.start <- ten act.start <- act tendencies.m <- matrix(NA,ncol=t,nrow=n) actions.m <- matrix(NA,ncol=t,nrow=n) if(is.null(cues)) {cues <- 2^(n-1:n)} if(is.null(inhibit)) {inhibit <- matrix(1,ncol=n,nrow=n) diag(inhibit) <- .05} if(n>1) {colnames(inhibit) <- rownames(inhibit) <- paste("A",1:n,sep="")} if(is.null(consume) ) {consume <- diag(.05,ncol=n,nrow=n) } excite <- diag(step,n) #first run for time= t to find the maximum values to make nice plots as well as to get the summary stats if (is.null(ten.start)) {ten <- rep(0,n)} else {ten <- ten.start} if(is.null(act.start) ) {act <- cues} else {act <- act.start} maxact <- minact <- minten <- maxten <- 0 counts <- rep(0,n) transitions <- matrix(0,ncol=n,nrow=n) frequency <- matrix(0,ncol=n,nrow=n) actions <- tendencies <- rep(0,n) acts <- tends <- rep(0,n) colnames(frequency) <- paste("T",1:n,sep="") rownames(frequency) <- paste("F",1:n,sep="") names(tendencies) <- paste("T",1:n,sep="") names(actions) <- paste("A",1:n,sep="") old.act <- which.max(act) for (i in 1:t) { ten <- cues %*% excite + ten - act %*% excite %*% consume act <- ten %*% excite + act - act %*% excite %*% inhibit act[act<0] <- 0 tendencies <- tendencies + ten actions <- actions + act maxact <- max(maxact,act) minact <- min(minact,act) maxten <- max(maxten,ten) minten <- min(minten,ten) which.act <- which.max(act) counts[which.act] <- counts[which.act]+1 acts[which.act] <- acts[which.act] + act[which.act] tends[which.act] <- tends[which.act] + ten[which.act] transitions[old.act,which.act] <- transitions[old.act,which.act] + 1 if(old.act!=which.act) { frequency[old.act,which.act] <- frequency[old.act,which.act] + 1 frequency[which.act,which.act] <- frequency[which.act,which.act] +1} old.act <- which.act tendencies.m[,i] <- ten actions.m[,i] <- act } yl <- range(tendencies.m) plot(tendencies.m[1,],ylim=yl,xlab="time",ylab="Tendency",col="black",typ="l",main="Action tendencies over time",lwd=2) for (j in 2:n) {points(tendencies.m[j,],lty=j,col=colours[j],typ="l",lwd=2)} yl <- range(actions.m) plot(actions.m[1,],ylim=yl,xlab="time",ylab="Actions",col="black",typ="l",main="Actions over time",lwd=2) for (j in 2:n) {points(actions.m[j,],lty=j,col=colours[j],typ="l",lwd=2)} if(FALSE) { #now do various types of plots, depending upon the type of plot desired plots <- 1 action <- FALSE #state diagrams plot two tendencies agaist each other over time if (type!="none") {if (type=="state") { op <- par(mfrow=c(1,1)) if (is.null(ten.start)) {ten <- rep(0,n)} else {ten <- ten.start} if(is.null(act.start) ) {act <- cues} else {act <- act.start} plot(ten[1],ten[2],xlim=c(minten,maxten),ylim=c(minten,maxten),col="black", main="State diagram",xlab="Tendency 1", ylab="Tendency 2") for (i in 1:t) { ten <- cues %*% excite + ten - act %*% excite %*% consume act <- ten %*% excite + act - act %*% excite %*% inhibit act[act<0] <- 0 if(!(i %% fast)) points(ten[1],ten[2],col="black",pch=20,cex=.2) } } else { #the basic default is to plot action tendencies and actions in a two up graph if(type=="both") {if(compare) {op <- par(mfrow=c(2,2))} else {op <- par(mfrow=c(2,1))} plots <- 2 } else {op <- par(mfrow=c(1,1))} if (type=="action") {action <- TRUE} else {if(type=="tend" ) action <- FALSE} for (k in 1:plots) { if (is.null(ten.start)) {ten <- rep(0,n)} else {ten <- ten.start} if(is.null(act.start) ) {act <- cues} else {act <- act.start} if(action ) plot(rep(1,n),act,xlim=c(0,t),ylim=c(minact,maxact),xlab="time",ylab="action", main="Actions over time") else plot(rep(1,n),ten,xlim=c(0,t),ylim=c(minten,maxten),xlab="time",ylab="action tendency",main="Action Tendencies over time") for (i in 1:t) { ten <- cues %*% excite + ten - act %*% excite %*% consume act <- ten %*% excite + act - act %*% excite %*% inhibit act[act<0] <- 0 if(!(i %% fast) ) {if( action) points(rep(i,n),act,col=colours,cex=.2) else points(rep(i,n),ten,col=colours,cex=.2) }} action <- TRUE} } } } # end of if FALSE acts <- acts/counts tends <- tends/counts cta.df <- data.frame(cues=cues,time=round(counts/t,2),frequency = rowSums(frequency),tendencies = round(t(tendencies/t)),actions = round(acts)) results <- list(cues=cues,cta=cta.df,inihibition=inhibit,time = counts/t,frequency=frequency,tendencies = tendencies/t,actions = actions/t) class(results) <- c("psych","cta") return(results) } "print.psych.cta" <- function(x,digits=2,all=NULL) { if(all) {unclass(x) print(x)} else { cat("\n Cues Tendency Action model\n") cat("Cue strength = ",x$cues) cat("\nTime spent = ",round(x$time,digits)) cat("\nAverage Tendency = ",round(x$tendencies)) cat("\nAverage Action strength = ",round(x$actions)) }} psych/R/fa.rgraph.R0000644000176200001440000001163413144646265013614 0ustar liggesusers#Created May 24, 2007 #modifed April 12, 2008 to allow figures from matrices that are not loadings #take the output from a factor analysis and graph it using rgraphviz #Except for the ability to write a dot file, this has been replaced by fa.diagram to avoid using Rgraphviz (September, 2009) "fa.rgraph" <- function(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis",graphviz=TRUE, ...){ if (!requireNamespace('Rgraphviz')) {stop("I am sorry, you need to have loaded the Rgraphviz package") #create several dummy functions to get around the "no visible global function definition" problem nodes <- function() {} addEdge <- function() {} subGraph <- function(){} } Phi <- NULL #the default case if((!is.matrix(fa.results)) && (!is.data.frame(fa.results))) {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) Phi <- fa.results$Phi} else {factors <- fa.results} rank.direction <- match.arg(rank.direction) #first some basic setup parameters num.var <- dim(factors)[1] #how many variables? if (is.null(num.var) ){num.var <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} if (simple) {k=1} else {k <- num.factors} vars <- paste("V",1:num.var,sep="") fact <- paste("F",1:num.factors,sep="") clust.graph <- new("graphNEL",nodes=c(vars,fact),edgemode="directed") graph.shape <- c(rep("box",num.var),rep("ellipse",num.factors)) graph.rank <- c(rep("sink",num.var),rep("min",num.factors)) names(graph.shape) <- nodes(clust.graph) names(graph.rank) <- nodes(clust.graph) edge.label <- rep("",num.var*k) edge.name <- rep("",num.var*k) names(edge.label) <- seq(1:num.var*k) edge.dir <- rep("forward",num.var*k) #show the cluster structure with ellipses l <- factors if (num.factors ==1) { for (i in 1:num.var) { clust.graph <- addEdge(fact[1], vars[i], clust.graph,1) edge.label[i] <- round(factors[i],digits) edge.name[i] <- paste(fact[1],"~",vars[i],sep="") } } else { if(simple){ #very simple structure is one loading per variable m1 <- matrix(apply(t(apply(l, 1, abs)), 1, which.max), ncol = 1) for (i in 1:num.var) {clust.graph <- addEdge(fact[m1[i]], vars[i], clust.graph,1) edge.label[i] <- round(factors[i,m1[i]],digits) edge.name[i] <- paste(fact[m1[i]],"~",vars[i],sep="") } } else { #all loadings > cut in absolute value k <- 1 for (i in 1:num.var) { for (f in 1:num.factors) { if (abs(factors[i,f]) > cut) {clust.graph <- addEdge(fact[f], vars[i], clust.graph,1) edge.label[k] <- round(factors[i,f],digits) edge.name[k] <- paste(fact[f],"~",vars[i],sep="") k <- k+1 } #end of if } #end of factor } # end of variable loop } #end of if simple else } #end of if num.factors ==1 if(!is.null(Phi)) { k <- num.var +1 for (f in 2:num.factors) { for (f1 in 1:(f-1)) { if(Phi[f,f1] > cut) { clust.graph <- addEdge(fact[f1], fact[f], clust.graph,1) edge.label[k] <- round(Phi[f,f1],digits) edge.name[k] <- paste(fact[f1],"~",fact[f],sep="") edge.dir[k] <- paste("both") k <- k+1} } } } nAttrs <- list() #node attributes eAttrs <- list() #edge attributes if (!is.null(labels)) {var.labels <- c(labels,fact) names(var.labels) <- nodes(clust.graph) nAttrs$label <- var.labels names(edge.label) <- edge.name } names(edge.label) <- edge.name names(edge.dir) <- edge.name nAttrs$shape <- graph.shape nAttrs$rank <- graph.rank eAttrs$label <- edge.label eAttrs$dir <- edge.dir #eAttrs$font <- edge.font attrs <- list(node = list(shape = "ellipse", fixedsize = FALSE),graph=list(rankdir=rank.direction, fontsize=edge.font[2],bgcolor="white" )) obs.var <- subGraph(vars,clust.graph) cluster.vars <- subGraph(fact,clust.graph) observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank="sink")),list(graph=cluster.vars,cluster=FALSE ,attrs=c(rank = "source"))) #this crashes for correlated factors solution observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank="sink"))) #this does not lead to a crash if(!is.null(out.file) ){toDotty(clust.graph,out.file,nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs) } plot(clust.graph, nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed,main=main) return(clust.graph) } psych/R/score.irt.r0000644000176200001440000007414113150420276013703 0ustar liggesusers#revised August 31, 2012 to allow for estimation of all 0s or all 1s #modified March 10, 2016 to allow for quasi Bayesian estimates using normal theory #which doesn't seem to do what I want to do, so we are not doing it #June 30-July 7 , 2016 Trying to make it faster by parallelizing the code and #reducing the number of items to score when using keys. #uses local minima -- problematic for small number of items #corrected various problems with finding total (sum) scores 7/4/16 #starting to make parallel for speed #seems to result in at least a factor of 2 improvement #when using stats from fa, the discrim parameter are not necessarily in the order from a keyslist #this is only a problem if selecting items from a larger set of items #fixed this August 21, 2016 #the irt.2 function (dichotomous items) iis much slower than the polytomous solution #probably because we took parallelization one step too far #I have not removed that extra level #### The scoring of dichotomous data #the function to do 2 parameter dichotomous IRT\ #these should be put into the score.irt.2 function for speed #taken out for debugging purposes irt.2par.norm <- function(x,delta,beta,scores) { fit <- -1*(log(scores*(1-pnorm(beta*(delta-x))) + (1-scores)*(1-pnorm(beta*(x-delta))))) mean(fit,na.rm=TRUE) } #This does the logistic fit irt.2par <- function(x,delta,beta,scores) { fit <- -1*(log(scores/(1+exp(beta*(delta-x))) + (1-scores)/(1+exp(beta*(x-delta))) )) mean(fit,na.rm=TRUE) } #These next two functions were added to add limits to the fitting functions for the cases of all wrong and all right irtLimit.2par <- function(x,delta,beta,scores) { minItem <- which.min(delta*beta) maxItem <- which.max(delta*beta) fit <- -scores*log(1/(1+exp(beta*(delta-x)))) - (1-scores)*log(1/(1+exp(beta*(x-delta)))) - log(1/(1+exp(beta[minItem] *(delta[minItem]-x-1)))) - log(1/(1+exp(beta[maxItem] *(x-delta[maxItem]-1 ))) ) mean(fit,na.rm=TRUE) } irtLimit.2par.norm <- function(x,delta,beta,scores) { minItem <- which.min(delta*beta) maxItem <- which.max(delta*beta) fit <- -( scores*log(1-pnorm(beta*(delta-x))) +(1-scores)*log(1-pnorm(beta*(x-delta))) +log(1-pnorm(beta[minItem]*(delta[minItem]-x -1 ))) + log( 1-pnorm(beta[maxItem]*(x- delta[maxItem] -1 )) ) ) mean(fit,na.rm=TRUE) } "score.irt.2" <- function(stats,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { #find the person parameters in a 2 parameter model we use deltas and betas from irt.discrim and irt.person.rasch #find the person parameter #This does the normal fit #has several internal functions ##the next two are the parallelized functions #parallelize by subject seems most helpful?ms bySubject <- function(i,count.f,total.f,items.f,discrim.f,diffi.f) { #First we consider the case of all right or all wrong #but we also need to consider the person with no data! if (count.f[i] > 0) { beta=discrim.f[!is.na(items.f[i,])] delta=diffi.f[!is.na(items.f[i,])] if((sum(items.f[i,],na.rm=TRUE) ==0 ) || (prod(items.f[i,],na.rm=TRUE) == 1 )) { if(sum(items.f[i,],na.rm=TRUE) ==0 ) { #the case of all wrong # we model this as #although probably we don't need to do this anymore if(mod =="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=beta,delta=delta,scores = rep(0,sum(!is.na(items.f[i,] )))) } else { myfit <- optimize(irtLimit.2par.norm,bounds,beta=beta,delta=delta, scores = rep(0,sum(!is.na(items.f[i,])))) } theta <- myfit$minimum fit <- myfit$objective } else { if(prod(items.f[i,],na.rm=TRUE) == 1 ) { if (mod=="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=beta,delta=delta,scores = rep(1,sum(!is.na(items.f[i,])))) #do the logistic fit } else { myfit <- optimize(irtLimit.2par.norm,bounds,beta=beta,delta=delta,scores = rep(1,sum(!is.na(items.f[i,])))) } #do a normal fit function theta <- myfit$minimum fit <- myfit$objective } }} else { scores=t(items.f[i,!is.na(items.f[i,])]) #make this numeric in the case of weird (highly missing) data if(mod=="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=beta,delta=delta,scores=scores) #do the logistic fit } else { myfit <- optimize(irtLimit.2par.norm,bounds,beta=beta,delta=delta,scores=scores)} #do a normal fit function theta <- myfit$minimum fit <- myfit$objective #fit of optimizing program }} else {#cat("\nno items for subject",i) total.f[i] <- NA theta <- NA fit <- NA } #end if count ... else return(list(theta,total.f[i],fit) ) } #end bySubject #parallelize by factor #this is the the one to use when parallelized bigFunction <- function(f,n.obs,stats,items,keys=NULL,cut=.3,bounds=c(-5,5),mod="logistic") { nf <- length(stats$difficulty) diff <- stats$difficulty[[f]] cat <- dim(diff)[2] if(nf < 2) {#discrim <- drop(stats$discrimination) discrim <- stats$discrimination # although I need to check this with keys if(!is.null(keys)) {discrim <- discrim * abs(keys)} } else {discrim <- stats$discrimination[,f] if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) }} ### fit <- rep(NA,n.obs) theta <- rep(NA,n.obs) if(is.null(keys)) {#drop the items with discrim < cut items.f <- items[,(abs(discrim[,f]) > cut) ,drop=FALSE] #get rid of the those items that are not being processed for this factor diffi.f <- diff[(abs(discrim[,f]) > cut)] #and the redundant diffi discrim.f <- discrim[(abs(discrim[,f]) > cut),drop=FALSE ] #and get rid of the unnecessary discrim values } else { #the case of scoring with a keys vector items.f <- items[,(abs(keys[,f]) > 0) ,drop=FALSE] #get rid of the those items that are not being processed for this factor discrim.f <- discrim[(abs(keys[,f]) > 0),drop=FALSE ] #and get rid of the unnecessary discrim values diffi.f <- diff[(abs(keys[,f]) > 0)] #and the redundant diffi } diffi.vect <- as.vector(t(diffi.f)) #discrim.F.vect <- rep(discrim.f,each=cat) #discrim.f <- discrim[(abs(discrim > cut)),drop=FALSE] discrim.F.vect <- as.vector(t(discrim.f)) if(is.matrix(discrim)) discrim.F.vect <- drop(discrim.F.vect) total <- rowMeans(t(t(items.f)*sign(discrim.F.vect)),na.rm=TRUE) count <- rowSums(!is.na(items.f)) #We can speed this up somewhat if we don't try to fit items with 0 discrim (i.e., items that do not load on the factor or are not keyed) #do it for all subject for this factor #now, lets parallelize this for each subject as well #this is probably a bad idea, for it leads to an amazing amount of overhead in terms of memory and processes #mapply for debugging, mcmapply for parallel #lets just try mapply to see if it gets around the problem #actually, making this mcmapply and the call to bigFunction mapply seems to be the solution #especially when we are doing scoreIrt.1pl or scoreIrt.2pl which is already doing the parallelsim there subjecttheta <-mcmapply(bySubject,c(1:n.obs),MoreArgs = list(count,total,items.f,discrim.f,diffi.f)) #returns a list of theta and fit subjecttheta <- matrix(unlist(subjecttheta),ncol=3,byrow=TRUE) theta <- subjecttheta[,1] total <- subjecttheta[,2] fit <- subjecttheta[,3] theta [theta < bounds[1]] <- bounds[1] theta[theta > bounds[2]] <- bounds[2] # if((!is.null(keys)) & (all(keys[,f] == -1) || (sign(cor(discrim,keys[,f],use="pairwise")) < 0) )) {theta <- -theta #if((!is.null(keys)) & (all(keys[,f] == -1) )) {theta <- -theta # total <- -total} nf <- length(stats$difficulty) n.obs <- dim(items)[1] nvar <- dim(items)[2] # scores <- matrix(NaN,nrow=n.obs,ncol=nf*3) #scores <- list(nf*3) scores <- list(theta,total,fit) return(scores) } # end of bigFunction #now do the scoring one factor at a time but allowing multiple cores #we now start score.irt.2 proper #this finds scores using multiple cores if they are available nf <- length(stats$difficulty) n.obs <- dim(items)[1] min.item <- min(items,na.rm=TRUE) #uses local minima --probably problematic for small number of items items <- items - min.item #this converts scores to positive values from 0 up (needed to do the fitting function) #this parallels by factor which in turn is parallelized by subject in bySubject #use mapply for debugging, mcmapply for parallel processing #since we are already parallelizing by scale when we call scoreIrt.1pl or .2pl, this is not necessary to parallelize scores <- mcmapply(bigFunction,c(1:nf),MoreArgs=list(n.obs=n.obs,items=items,stats=stats,keys=keys, cut=cut, bounds=bounds, mod=mod)) nf <- length(stats$difficulty) scores <- matrix(unlist(scores),ncol=nf*3) scores <- scores[,c(seq(1,nf*3,3),seq(2,nf*3+1,3),seq(3,nf*3 +2,3))] colnames(scores) <- paste(rep(c("theta","total","fit"),each=nf),1:nf,sep="") return(scores) }#end of score.irt.2 ################### ##################### "score.irt.poly" <- function(stats,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { #find the person parameters in a 2 parameter model we use deltas and betas from irt.discrim and irt.person.rasch #find the person parameter #created July 4, 2011 #revised Dec 31, 2016 to match irt.2 # this optimizes the logistic function, # irt.2par.poly <- function(x,delta,beta,scores) { # fit <- -(scores*log(1/(1+exp(beta*(delta-x)))) + (1-scores)*log(1/(1+exp(beta*(x-delta))))) # mean(fit,na.rm=TRUE) # } # # irt.2par.poly.norm <- function(x,delta,beta,scores) { # fit <- -1*(log(scores*(1-pnorm(beta*(delta-x))) + (1-scores)*(1-pnorm(beta*(x-delta))))) # mean(fit,na.rm=TRUE) # } ####The function that is parallelized big.poly <- function(f,n.obs,stats,items,keys=NULL,cut=.3,bounds=c(-5,5),mod="logistic") { nf <- ncol(stats$discrimination) #for (f in 1:nf) { #do it for every factor/scale diff <- stats$difficulty[[f]] if(nf < 2) {discrim <- stats$discrimination if(!is.null(keys)) {discrim <- discrim * abs(keys) } } else {discrim <- stats$discrimination[,f] if(!is.null(keys)) {discrim <- discrim * abs(keys[,f]) } } cat <- dim(diff)[2] total <- rep(NA,n.obs) fit <- rep(NA,n.obs) theta <- rep(NA,n.obs) item.f <- t(items) item.f[abs(discrim) < cut] <- NA #this does not change the item, just the temp version of the item item.f <- t(item.f) ### if(!is.null(keys)) {item.f <- item.f[,(abs(keys[,f] )> 0) ,drop=FALSE] #get rid of the those items that are not being processed for this factor discrim.f <- discrim[(abs(keys[,f]) > 0),drop=FALSE ] #and get rid of the unnecessary discrim values diffi.f <- diff[(abs(keys[,f]) > 0),byrows=TRUE] #and the redundant diffi diffi.vect <- as.vector(t(diff[(abs(keys[,f]) > 0),byrows=TRUE])) discrim.F.vect <- rep(discrim.f,each=cat) } else { discrim.f <- discrim diffi.f <- diff diffi.vect <- as.vector(t(diff) ) discrim.F.vect <- rep(discrim.f,each=cat) } ## notice that this is vectorized and does it for all subjects #seem to have solved the problem of missing items which are reversed. total <- rowMeans(t(t(item.f )* as.vector(sign(discrim.f))),na.rm=TRUE) #fixed 11/11/11 to be as.vector # total.positive <- rowMeans(t(t(item.f)* as.vector(sign(discrim.f) > 0)),na.rm=TRUE) # total.negative <- rowMeans(t(t(item.f)* as.vector(sign(discrim.f) < 0)),na.rm=TRUE) ## num.keyed <- rowSums(!is.na(item.f)) num.reversed <- rowSums(!is.na(item.f[,discrim.f < 0,drop=FALSE])) total <- total + num.reversed * (max.item- min.item+1)/num.keyed + min.item total[is.nan(total)] <- NA count <- rowSums(!is.na(item.f)) #but now, we need to do the next step one at a time (I think) for (subj in 1:n.obs) { if (count[subj]> 0) { #just do cases where we actually have data newscore <- NULL score <- item.f[subj,] #just the items to be scored for (i in 1:ncol(item.f)) { #Treat the items as a series of 1 or 0 responses - but note that cat = max - min if(is.na(score[i])) {newscore <- c(newscore,rep(NA,cat)) } else { if(very.close(score[i],( cat))) {newscore <- c(newscore,rep(1,cat)) } else { newscore <- c(newscore,rep(1,score[i]),rep(0,cat-score[i])) } }} beta=discrim.F.vect[!is.na(score)] #does this handle missing values -- need to fix? delta=diffi.vect[!is.na(score)] if((very.close(total[subj],min.item)) | (very.close(total [subj],(max.item+min.item)) )){ # first check for all lowest responses or all highest responses if(very.close(total[subj],min.item)) { # The case of all wrong #we need to make sure that this value is less than any value for non=minimal responses #do the same thing that we do for the score.irt.2 if(mod =="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore)} else {myfit <- suppressWarnings(optimize(irtLimit.2par.norm,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore)) } theta[subj] <- myfit$minimum fit[subj] <- myfit$objective } else { if(very.close(total [subj],(max.item+min.item))) {#all right if(mod=="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore) } else { myfit <- suppressWarnings(optimize(irtLimit.2par.norm,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore)) } theta[subj] <- myfit$minimum fit[subj] <- myfit$objective }} } else { #just process those items where we have some responses that are neither max nor min if(mod=="logistic") { myfit <- optimize(irtLimit.2par,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore) } else {myfit <- suppressWarnings(optimize(irtLimit.2par.norm,bounds,beta=discrim.F.vect,delta=diffi.vect,scores=newscore)) } theta[subj] <- myfit$minimum fit[subj] <- myfit$objective #fit of optimizing program } } else { fit[subj] <- NA theta[subj] <- NA } #end if else } if((!is.null(keys)) & (all(keys[,f] == -1) )) {theta <- -theta total <- -total} theta[theta < bounds[1]] <- bounds[1] theta[theta > bounds[2]] <- bounds[2] scores <- list(theta,total, fit) return(scores) } #end of big function ##the start of the irt.poly.function after setting up the various subfunctions min.item <- min(items,na.rm=TRUE) #uses local minima --probably problematic for small number of items items <- items - min.item #this converts scores to positive values from 0 up max.item <- max(items,na.rm=TRUE) #we use this when reverse score -- but note that this is not the original max value. We will adjust this in total nf <- length(stats$difficulty) n.obs <- dim(items)[1] nvar <- dim(items)[2] #mcmapply for parallel, mapply for debugging scores <- mcmapply(big.poly,1:nf,MoreArgs=list(n.obs=n.obs,stats=stats,items=items,keys=keys,cut=cut,bounds=bounds,mod=mod)) scores <- matrix(unlist(scores),ncol=nf*3) scores <- scores[,c(seq(1,nf*3,3),seq(2,nf*3+1,3),seq(3,nf*3 +2,3))] colnames(scores) <- paste(rep(c("theta","total","fit"),each=nf),1:nf,sep="") return(scores) } #end of score.irt.poly ################################################# # # The main function # # which in turn calls either the dichotomous scoring (score.irt.2) # or the polytomous version (scoreIrt.poly #operates either as score.irt (deprecated) or scoreIrt (preferred) ############################################################ "score.irt" <- function(stats=NULL,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { message("score.irt is deprecated and has been replaced by scoreIrt, please change your call") scoreIrt(stats=stats,items=items,keys=keys,cut=cut,bounds=bounds,mod=mod) } "scoreIrt" <- function(stats=NULL,items,keys=NULL,cut=.3,bounds=c(-4,4),mod="logistic") { #depending upon what has already been done (in the stats object), we fire off different scoring functions #added the tau option in switch in case we have already done irt.tau 6/29/16 #we need to adjust the discrimination order from irt.fa to match the order of the items if(!is.null(keys) && is.list(keys)){ select <- sub("-","",unlist(keys)) items <- items[select] keys <- make.keys(items,keys)} if(!is.null(keys) && (is.vector(keys))) keys <- matrix(keys) if (length(class(stats)) > 1) { if(!is.null(keys) && is.vector(keys)) keys <- as.matrix(keys) switch(class(stats)[2], irt.poly = {scores <- score.irt.poly(stats$irt,items,keys,cut,bounds=bounds,mod=mod) }, irt.fa = {scores <- score.irt.2(stats$irt,items,keys,cut,bounds=bounds,mod=mod)}, fa = {tau <- irt.tau(items) #this is the case of a factor analysis to be applied to irt nf <- dim(stats$loadings)[2] diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau/sqrt(1-stats$loadings[,i]^2) } discrim <- stats$loadings/sqrt(1-stats$loadings^2) class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) scores <- score.irt.poly(new.stats,items,keys,cut,bounds=bounds)}, tau = {tau <- stats #get the tau stats from a prior run if(is.matrix(keys)) {nf <- dim(keys)[2]} else {nf <-1} diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau } discrim <- keys class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) if(dim(tau)[2] ==1) {scores <- score.irt.2(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} else { scores <- score.irt.poly(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} } ) #we should have a null case } else {#input is probably a keys matrix but not in the case of a single item being scored #the normal case tau <- irt.tau(items) #this is the case of a using a scoring matrix to be applied to irt if(is.matrix(keys)) {nf <- dim(keys)[2]} else {nf <-1} diffi <- list() for (i in 1:nf) {diffi[[i]] <- tau } if(!is.null(keys)) {discrim <- keys} else { # stop("I am sorry, you specified tau but not keys.") #or you are scoring a single item diffi[[1]] <- stats$irt$difficulty discrim <- matrix(1,1,1) #as strange as this seems, this needs to be a 1 x 1 matrix } class(diffi) <- NULL class(discrim) <- NULL new.stats <- list(difficulty=diffi,discrimination=discrim) if(dim(tau)[2] ==1) {scores <- score.irt.2(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} else { scores <- score.irt.poly(stats=new.stats,items=items,keys=keys,cut=cut,bounds=bounds)} } scores <- data.frame(scores) if(!is.null(keys)) {colnames(scores) <-c( paste(colnames(keys),"theta",sep="-"),paste(colnames(keys),"total",sep="-"),paste(colnames(keys),"fit",sep="-"))} return(scores) } ############ END of scoreIrt ################## #### #Various helper functions very.close <- function(x,y,tolerance = .Machine$double.eps) { abs(x-y) < tolerance} ##### #find tau from dichotomous or polytomous data without bothering to find the correlations #useful for score.irt #modified July 14, 2016 to speed up significantly by dropping the xt <- table(x) line "irt.tau" <- function(x) { x <-as.matrix(x) nvar <- dim(x)[2] xmin <- min(x,na.rm=TRUE) xmax <- max(x,na.rm=TRUE) nvalues <- xmax-xmin +1 if(nvalues > 10) stop("You have more than 10 categories for your items, polychoric is probably not needed") #xt <- table(x) #this can take a long time for sapa data #nvalues <- length(xt) #find the number of response alternatives if(nvalues ==2) {tau <- -qnorm(colMeans(x,na.rm=TRUE)) tau <- as.matrix(tau) rownames(tau) <- colnames(x)} else { if(nvalues > 10) stop("You have more than 10 categories for your items, polychoric is probably not needed") #xmin <- min(x,na.rm=TRUE) xfreq <- apply(x- xmin+ 1,2,tabulate,nbins=nvalues) n.obs <- colSums(xfreq) xfreq <- t(t(xfreq)/n.obs) tau <- qnorm(apply(xfreq,2,cumsum))[1:(nvalues-1),] #these are the normal values of the cuts if(!is.matrix(tau)) tau <- matrix(tau,ncol=nvar) rownames(tau) <- paste0(xmin:(xmax-1)) colnames(tau) <- colnames(x) if(dim(tau)[1] < dim(tau)[2]) tau <- t(tau) #rows are variables, columns are subjects } class(tau) <- c("psych","tau") #added the tau class so score.irt can use the tau values return(tau) } #added August 6, 2012 "irt.responses" <- function(theta,items, breaks = 11,show.missing=FALSE,show.legend=TRUE,legend.location="topleft",colors=NULL,...) { #if(is.null(colors)) colors =c("gray0", "blue3", "red3", "darkgreen", "gold2", "gray50", "cornflowerblue", "mediumorchid2") if(is.null(colors)) colors =c("black", "blue", "red", "darkgreen", "gold2", "gray50", "cornflowerblue", "mediumorchid2") #legend.location <- c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center","none") #uniqueitems <- unique(as.vector(unlist(items))) item.counts <- names(table(as.vector(unlist(items)))) uniqueitems <- as.numeric(item.counts) nalt <- length(uniqueitems) + 1 #include the missing value from response.frequencies nvar <- ncol(items) theta.min <- min(theta,na.rm=TRUE) theta.max <- max(theta,na.rm=TRUE) binrange <- cut(theta, breaks = breaks) binnums <- as.numeric(binrange) items <- as.matrix(items) stats <- by(items,binnums,function(x) response.frequencies(x,uniqueitems=uniqueitems)) stats.m <- unlist(stats) stats.m <- matrix(stats.m,ncol=nvar*nalt,byrow=TRUE) theta <- seq(theta.min,theta.max,length.out=breaks) for (i in 1:nvar) { plot(theta,stats.m[,i],ylim=c(0,1),typ="l",xlab="theta",ylab="P(response)",main=paste(colnames(items)[i]),col=colors[1],...) for(j in 1:(nalt-2+show.missing)) { points(theta,stats.m[,i+nvar*j],typ="l",lty=(j+1),col=colors[j+1 ],...) } if(show.legend) { legend(legend.location, paste(item.counts[1:(nalt-1 + show.missing)]), text.col = colors[1:(nalt-1+show.missing)], lty = 1:(nalt-1+show.missing), ncol=4,bty="n")} }} #developed based on suggestions and code by David Condon #scores multiple scales with full 2pl parameters #gets around the problem of tau differences for 0/1 and 1/6 scales. #Requires finding the correlation matrix for each scale, rather than taking advantage of a prior correlation matrix #modifed Jan 3, 2017 to reverse key scales where the keys and the factor solution are backwards (e.g., stability vs. neuroticism) #modified August, 2017 to handle the case of single item scales scoreIrt.2pl <- function(itemLists,items,correct=.5,messages=FALSE,cut=.3,bounds=c(-4,4),mod="logistic") { nvar <- length(itemLists) select <- sub("-","",unlist(itemLists)) #select just the items that will be scored select <- select[!duplicated(select)] items <- items[,select] #this should reduce memory load #we turn off the sorting option in irt.fa so that the item discriminations match the scoring order #small function is called using parallel processing smallFunction <- function(i,selection,correct,cut=cut,bounds=bounds,mod=mod) { direction <- rep(1,length(selection[[i]])) neg <- grep("-", selection[[i]]) direction[neg] <- -1 select <- sub("-","",selection[[i]]) selectedItems <- as.matrix(items[,select,drop=FALSE]) if(NCOL(selectedItems) > 1 ) { #The normal case is to have at least 2 items in a scale if(!messages) {suppressMessages(stats <- irt.fa(selectedItems,correct=correct,plot=FALSE,sort=FALSE))} else { stats <- irt.fa(selectedItems,correct=correct,plot=FALSE,sort=FALSE)} flip <- sum(sign(stats$irt$discrimination * direction)) if(flip < 0 ) stats$irt$discrimination <- -stats$irt$discrimination scores <- scoreIrt(stats,selectedItems,cut=cut,bounds=bounds,mod=mod) } else {stats <- list() #the case of a single item to score stats$irt$difficulty <- irt.tau(selectedItems) stats$irt$discrimination <- 1 scores <- scoreIrt(stats,selectedItems,keys=NULL,cut=cut,bounds=bounds,mod=mod) } scores <- scores$theta } #use mapply for debugging, mcmapply for parallel processing #items is global and not passed to save memory scoresList <- mcmapply(smallFunction,c(1:nvar),MoreArgs=list(selection=itemLists,correct=correct,cut=cut,bounds=bounds,mod=mod)) colnames(scoresList) <- names(itemLists) return(scoresList) } #A perhaps more robust way of calling scoreIrt is to find tau just for a few items at a time and then scoring one scale at a time. #the alternative is use scoreIrt for all of them at once with a keys function. scoreIrt.1pl <- function(keys.list,items,correct=.5,messages=FALSE,cut=.3,bounds=c(-4,4),mod="logistic") { select <- sub("-","",unlist(keys.list)) select <- select[!duplicated(select)] items <- items[,select] nf <- length(keys.list) fix <- is.numeric(keys.list[[1]]) #what does this do? smallFunction <- function(i,keys.list,correct,cut=cut,bounds=bounds,mod=mod) { list.i <- keys.list[[i]] keys <- rep(1,length(list.i)) neg <- grep("-", list.i) keys[neg] <- -1 select <- sub("-", "", list.i) # select <- colnames(items)[select] selectedItems <- as.matrix(items[,select]) #if items is a matrix, we need to specify all rows stats <- irt.tau(selectedItems) scores <- scoreIrt(stats,selectedItems,keys,cut=cut,bounds=bounds,mod=mod) # stats <- irt.tau(items[select]) # scores <- scoreIrt(stats,items[select],keys,cut=cut,bounds=bounds,mod=mod) scores <- scores[,1] } #use mapply for debugging, mcmapply for parallel processing #items are global and not passed scoresList <- mcmapply(smallFunction,c(1:nf),MoreArgs=list(keys.list=keys.list,correct=correct,cut=cut,bounds=bounds,mod=mod)) colnames(scoresList) <- names(keys.list) return(scoresList) } ################################# #The following are useful demonstration functions for examining how fitting works # # Might make public if we document them # ############################################# #show how the fitting function works for the case without limits on the fits #demonstrates the problem of all wrong or all right #Also shows the difference between normal and logistic fits ############### testIrt <- function(score,delta,beta,mod="logistic",limits=TRUE,lower=-4) {x <- seq(lower,-lower,.1) y <- x if(limits) { for(j in 1:nrow(score)) {scores <- score[j,] for (i in 1:length(x)) {if(mod=="logistic") {y[i] <- irtLimit.2par(x[i],delta,beta,scores) } else {y[i] <- irtLimit.2par.norm(x[i],delta,beta,scores)} } plot(y ~ x) for(k in 1:length(scores)) { text( -1 + .5*k,(max(y) + min(y) )*1/3,(scores[k]))} text(0,(max(y) + min(y))/2,round(x[which(y == min(y))],2)) }} else { for(j in 1:nrow(score)) {scores <- score[j,] for (i in 1:length(x)) {if(mod=="logistic") {y[i] <- irt.2par(x[i],delta,beta,scores) } else {y[i] <- irt.2par.norm(x[i],delta,beta,scores)} } plot(y ~ x) for(k in 1:length(scores)) { text( -1 + .5*k,(max(y) + min(y) )*2/3,(scores[k]))} text(0,(max(y) + min(y))/2,round(x[which(y == min(y))],2)) } } } #an alternative, and much simpler model (but that does not handle missing data) simpleScore <- function(scores,delta,beta,mod="logistic") { if (mod=="logistic") {estimate <- (-(scores %*%log(1/(1 + exp(-beta*delta))) - (1-scores)%*%log(1-1/(1+exp(-delta*beta))))) plog <- rowMeans(estimate) } else { estimate <- -1*(((scores)%*%log(beta*(1-pnorm((delta)))) - (1-(scores))%*%log(beta *pnorm(delta)))) plog <- (rowMeans(estimate))} return(plog) } #removed links to ltm since ltm does not work for polytomous data test.irt <- function(nvar = 9, n.obs=1000,mod="logistic",type="tetra", low=-3, high=3,seed=NULL) { if(!is.null(seed)) set.seed(seed) if(type =="tetra" ) { x.sim <- sim.irt(nvar=nvar,n=n.obs,low=low,high=high,mod=mod)} else { x.sim <- sim.poly(nvar=nvar,n=n.obs,low=low,high=high,mod=mod)} x.irt <- irt.fa(x.sim$items[,1:nvar],sort=FALSE,plot=FALSE) #if(!requireNamespace("ltm")) {stop("The ltm package is required when running test.irt")} # x.ltm <- ltm::ltm(x.sim$items~z1) # x.ltm.sc <- ltm::factor.scores(x.ltm) # ltm.responses <- table2df(x.ltm.sc$score.dat,x.ltm.sc$score.dat[,nvar+1]) # ltm.responses <- data.frame(ltm.responses[,c(1:nvar,nvar+3)]) # colnames(ltm.responses) <- c(colnames(x.sim$items),"ltm") # ltm.responses <- dfOrder(ltm.responses,c(1:nvar)) xnvart <- data.frame(x.sim$items,theta = x.sim$theta) xnvart <- dfOrder(xnvart,c(1:nvar)) x.fsall <- psych::factor.scores(xnvart[1:nvar],x.irt$fa,method="regression")$scores x.df <- data.frame(xnvart, fs=x.fsall) #cor2(x.df,ltm.responses) xdelta <- x.irt$irt$difficulty[[1]] xbeta <- x.irt$irt$discrimination x.scores <- data.matrix(x.df[1:nvar]) irt.sc <- scoreIrt(x.irt,x.scores) irt.scn <- scoreIrt(x.irt,x.scores,mod="normal") ras <- 1 x.tot <- rowSums(x.scores[,1:nvar]) if(type=="tetra") { pl2<- simpleScore(x.scores,xdelta,xbeta) pl1<- simpleScore(x.scores,xdelta,rep(ras,nvar)) pn2 <- simpleScore(x.scores,xdelta,xbeta,mod="normal") pn1<- simpleScore(x.scores,xdelta,rep(ras,nvar),mod="normal") x.df.sc <- data.frame(logist2pl=pl2,pl1,pn2, pn1 ,x.tot, fs =x.df$MR1,irt.sc[,1],irt.scn[,1],theta=x.df$theta) colnames(x.df.sc) <- c("PL2", "PL1", "PN2", "PN1","total", "factor","irt","irt-N","theta") } else {x.df.sc <- data.frame(x.tot, fs =x.df$MR1,irt.sc[,1],irt.scn[,1],theta=x.df$theta) colnames(x.df.sc) <- c("total", "factor","irt","irt-N","theta")} pairs.panels(x.df.sc) invisible(x.df.sc) } psych/R/tetrachor.R0000644000176200001440000004012413072671044013724 0ustar liggesusers#adapted from John Fox's Polychor #this does all the work #the following two functions are called repeatedly by tetrac and are put here to speed up the process # "tetraBinBvn.old" <- # function (rho,rc,cc) #adapted from John Fox's polychor # { row.cuts <- c(-Inf, rc, Inf) # col.cuts <- c(-Inf, cc, Inf) # P <- matrix(0, 2,2) # R <- matrix(c(1, rho, rho, 1), 2, 2) # for (i in 1:2) { # for (j in 1:2) { # P[i, j] <- pmvnorm(lower = c(row.cuts[i], col.cuts[j]), # upper = c(row.cuts[i + 1], col.cuts[j + 1]), # corr = R) # }} # P #the estimated 2 x 2 predicted by rho, rc, cc # } #modified 5/8/14 to be consistent with call from tetraF #no change in functionality, just more esthetic #changed 10/16/14 to use sadmvn instead of mvtnorm "tetraBinBvn" <- function (rho,rc,cc) #adapted from John Fox's polychor { row.cuts <- c(-Inf, rc, Inf) col.cuts <- c(-Inf, cc, Inf) P <- matrix(0, 2,2) R <- matrix(c(1, rho, rho, 1), 2, 2) P[1,1] <- sadmvn(lower = c(row.cuts[1], col.cuts[1]), upper = c(row.cuts[2], col.cuts[2]), mean=c(0,0), varcov = R) P[2,1] <- pnorm(rc) - P[1,1] P[1,2] <- pnorm(cc) - P[1,1] P[2,2] <- 1- pnorm(rc) - P[1,2] P #the estimated 2 x 2 predicted by rho, rc, cc } "tetraF" <- function(rho,cc,rc,tab) { P <- tetraBinBvn(rho, rc, cc) -sum(tab * log(P)) } #the ML criterion to be minimized "tetrac" <- function(x,y=NULL,taux,tauy,i,j,correct=.5,global=TRUE,weight=NULL) { if(is.null(y)) {tab <- x} else { if(is.null(weight)) {tab <- tableF(x,y) } else {tab <- wtd.table(x,y,weight)} #switched to tableF for speed } #changed 9/8/14 #if((length(tab) < 4) | (is.na(sum(tab)) | ((tab[1,1] + tab[1,2]) < 1) | ((tab[2,1] + tab[2,2]) < 1) | ((tab[1,1] + tab[2,1]) < 1) | ((tab[2,1] + tab[2,2]) < 1))) {warning("For i = ", i," j = ",j, " No variance for either i or j rho set to NA") if((length(tab) < 4) | (is.na(sum(tab)) )) {warning("For i = ", i," j = ",j, " No variance for either i or j rho set to NA") result <- list(rho=NA,tau=c(NA,NA),objective=NA) } else { if((sum(tab) > 1) && (min(tab) == 0) && (correct > 0)) { message("For i = ", i," j = ",j, " A cell entry of 0 was replaced with correct = ", correct, ". Check your data!") tab[tab==0] <- correct #correction for continuity } ###### put in the weights here if(global) {cc <- taux rc <- tauy } else { tot <- sum(tab) tab <- tab/tot rc <- qnorm(colSums(tab))[1] cc <- qnorm(rowSums(tab))[1] } rho <- optimize(tetraF,interval=c(-1,1),rc=rc,cc=cc,tab=tab) result <- list(rho=rho$minimum,tau=c(cc,rc),objective=rho$objective) } return(result) } "wtd.table" <- function(x,y,weight) { tab <- tapply(weight,list(x,y),sum,na.rm=TRUE,simplify=TRUE) #taken from questionr:wtd.table tab[is.na(tab)] <- 0 return(tab) } #repeatedly do the analysis to form a matrix of output #added the pmin instead of min on Sept 10, 2013 "tetra.mat" <- function(x,y=NULL,correct=.5,smooth=TRUE,global=TRUE,weight=NULL) { #the functions to do parallelism myfun <- function(x,i,j) {if(t(!is.na(x[,i]))%*% (!is.na(x[,j])) > 2 ) { tetra <- tetrac(x[,i],x[,j],tau[i],tau[j],i,j,correct=correct,global=global,weight=weight)} else { tetra <- NA}} matpLower <- function(x,nvar) { k <- 1 il <- vector() jl <- vector() for(i in 2:nvar) {for (j in 1:(i-1)) { il[k] <- i jl [k] <- j k<- k+1} } tet <- mcmapply(function(i,j) myfun(x,i,j) , il,jl) #tet <- mapply(function(i,j) myfun(x,i,j) , il,jl) #for debugging, we do not do parallel cores #now make it a matrix mat <- diag(nvar) mat[upper.tri(mat)] <- as.numeric(tet[1,]) #first row of poly is correlation, 2nd the fit mat <- t(mat) + mat diag(mat) <- 1 return(mat) } nvar <- dim(x)[2] mx <- apply(x,2,function(x) min(x,na.rm=TRUE)) x <- t(t(x) - mx) #x <- x -min(x,na.rm=TRUE) #in case the numbers are not 0,1 -- using pmin allows different minima for different variables n.obs <- dim(x)[1] if(is.null(y)) { if(max(x,na.rm=TRUE) > 1) {stop("Tetrachoric correlations require dictomous data")} if(is.null(weight)) {tau <- -qnorm(colMeans(x,na.rm=TRUE))} else {tau <- -qnorm(apply(x,2,function(y) weighted.mean(y,weight,na.rm=TRUE)))} #weighted tau mat <- matrix(0,nvar,nvar) colnames(mat) <- rownames(mat) <- colnames(x) names(tau) <- colnames(x) #cat("\nFinding the tetrachoric correlations\n") #for (i in 2:nvar) { #progressBar(i^2/2,nvar^2/2,"Tetrachoric") # for (j in 1:(i-1)) { # if(t(!is.na(x[,i]))%*% (!is.na(x[,j])) > 2 ) { # tetra <- tetrac(x[,i],x[,j],tau[i],tau[j],i,j,correct=correct,global=global,weight=weight) # mat[i,j] <- mat[j,i] <- tetra$rho} else {mat[i,j] <- mat[j,i] <- NA} # } # } # diag(mat) <- 1 mat <- matpLower(x,nvar) if(any(is.na(mat))) {warning("some correlations are missing, smoothing turned off") smooth <- FALSE} if(smooth) {mat <- cor.smooth(mat) } #makes it positive semidefinite colnames(mat) <- rownames(mat) <- colnames(x) result <- list(rho = mat,tau = tau,n.obs=n.obs) } else { # the case of having a y variable my <- apply(x,2,function(x) min(x,na.rm=TRUE)) y <- t(t(y) - my) #y <- y -min(y,na.rm=TRUE) #in case the numbers are not 0,1 if(is.matrix(y)) {ny <- dim(y)[2] tauy <- -qnorm(colMeans(y,na.rm=TRUE)) n.obs.y <- dim(y)[1] } else { ny <- 1 n.obs.y <- length(y)} tauy <- -qnorm(mean(y,na.rm=TRUE)) y <- as.matrix(y) if(dim(x)[1] != n.obs.y) {stop("x and y must have the same number of observations")} taux <- -qnorm(colMeans(x,na.rm=TRUE)) nx <- dim(x)[2] mat <- matrix(0,nx,ny) colnames(mat) <- colnames(y) rownames(mat) <- colnames(x) for (i in 1:nx) { for (j in 1:ny) {tetra <- tetrac(x[,i],y[,j],taux[i],tauy[j],correct=correct) mat[i,j] <- tetra$rho } } colnames(mat) <- rownames(mat) <- colnames(x) result <- list(rho = mat,tau = taux,tauy= tauy,n.obs=n.obs) } flush(stdout()) cat("\n" ) #put in to clear the progress bar return(result) } #convert comorbidity type numbers to a table pqr <- function(q1,q2=NULL,p=NULL) { if(length(q1) > 1) { q2 <- q1[2] p <- q1[3] q1 <- q1[1]} tab <- matrix(0,2,2) tab[1,1] <- p tab[2,1] <- q1-p tab[1,2] <- q2-p tab[2,2] <- 1-q1 - tab[1,2] return(tab)} #repeatedly do the analysis to form a matrix of output #added the pmin instead of min on Sept 10, 2013 "tetra.mat.sc" <- function(x,y=NULL,correct=.5,smooth=TRUE,global=TRUE,weight=NULL) { nvar <- dim(x)[2] mx <- apply(x,2,function(x) min(x,na.rm=TRUE)) x <- t(t(x) - mx) #x <- x -min(x,na.rm=TRUE) #in case the numbers are not 0,1 -- using pmin allows different minima for different variables n.obs <- dim(x)[1] if(is.null(y)) { if(max(x,na.rm=TRUE) > 1) {stop("Tetrachoric correlations require dictomous data")} if(is.null(weight)) {tau <- -qnorm(colMeans(x,na.rm=TRUE))} else {tau <- -qnorm(apply(x,2,function(y) weighted.mean(y,weight,na.rm=TRUE)))} #weighted tau mat <- matrix(0,nvar,nvar) names(tau) <- colnames(x) #cat("\nFinding the tetrachoric correlations\n") for (i in 2:nvar) { progressBar(i^2/2,nvar^2/2,"Tetrachoric") for (j in 1:(i-1)) { if(t(!is.na(x[,i]))%*% (!is.na(x[,j])) > 2 ) { tetra <- tetrac(x[,i],x[,j],tau[i],tau[j],i,j,correct=correct,global=global,weight=weight) mat[i,j] <- mat[j,i] <- tetra$rho} else {mat[i,j] <- mat[j,i] <- NA} } } diag(mat) <- 1 if(any(is.na(mat))) {warning("some correlations are missing, smoothing turned off") smooth <- FALSE} if(smooth) {mat <- cor.smooth(mat) } #makes it positive semidefinite colnames(mat) <- rownames(mat) <- colnames(x) result <- list(rho = mat,tau = tau,n.obs=n.obs) } else { # the case of having a y variable my <- apply(x,2,function(x) min(x,na.rm=TRUE)) y <- t(t(y) - my) #y <- y -min(y,na.rm=TRUE) #in case the numbers are not 0,1 if(is.matrix(y)) {ny <- dim(y)[2] tauy <- -qnorm(colMeans(y,na.rm=TRUE)) n.obs.y <- dim(y)[1] } else { ny <- 1 n.obs.y <- length(y)} tauy <- -qnorm(mean(y,na.rm=TRUE)) y <- as.matrix(y) if(dim(x)[1] != n.obs.y) {stop("x and y must have the same number of observations")} taux <- -qnorm(colMeans(x,na.rm=TRUE)) nx <- dim(x)[2] mat <- matrix(0,nx,ny) colnames(mat) <- colnames(y) rownames(mat) <- colnames(x) for (i in 1:nx) { for (j in 1:ny) {tetra <- tetrac(x[,i],y[,j],taux[i],tauy[j],correct=correct) mat[i,j] <- tetra$rho } } result <- list(rho = mat,tau = taux,tauy= tauy,n.obs=n.obs) } flush(stdout()) cat("\n" ) #put in to clear the progress bar return(result) } #convert comorbidity type numbers to a table pqr <- function(q1,q2=NULL,p=NULL) { if(length(q1) > 1) { q2 <- q1[2] p <- q1[3] q1 <- q1[1]} tab <- matrix(0,2,2) tab[1,1] <- p tab[2,1] <- q1-p tab[1,2] <- q2-p tab[2,2] <- 1 - q1 - q2 + p return(tab)} #the public function "tetrachoric" <- function(x,y=NULL,correct=.5,smooth=TRUE,global=TRUE,weight=NULL,na.rm=TRUE,delete=TRUE) { # if(!require(mnormt)) {stop("I am sorry, you must have mnormt installed to use tetrachoric")} cl <- match.call() if (!is.matrix(x) && !is.data.frame(x)) { if (length(x) ==4) {x <- matrix(x,2,2) } else { if(length(x) ==3 ) {x <- pqr(x) } else { stop("Data must be either a 1 x 4 vector, a 2 x 2 matrix, a comorbidity table, or a data.frame/matrix of data")} }} nvar <- dim(x)[2] n.obs <- dim(x)[1] # if(!is.numeric(x)) {x <- matrix(as.numeric(x),ncol=nvar) # message("Converted non-numeric input to numeric")} if(!is.null(weight)) {if (length(weight)!= n.obs) stop("The number of weights must match the number of observations") } if (n.obs == nvar) {result <- tetrac(x,correct=correct,i=1,j=1,global=FALSE)} else { #first delete any bad cases item.var <- apply(x,2,sd,na.rm=na.rm) bad <- which((item.var <= 0)|is.na(item.var)) if((length(bad) > 0) & delete) { for (baddy in 1:length(bad)) {warning( "Item = ",colnames(x)[bad][baddy], " had no variance and was deleted")} x <- x[,-bad] nvar <- nvar - length(bad) } # parallel is now built into the system, so we don't need this. # if(!require(parallel)) {warning("need parallel installed to take advantage of multiple cores. Using single core version instead") # result <- tetra.mat.sc(x,y=y,correct=correct,smooth=smooth,global=global,weight=weight)} else { result <- tetra.mat(x,y=y,correct=correct,smooth=smooth,global=global,weight=weight)} result$Call <- cl class(result) <- c("psych","tetra") return(result) } #modified 1/14/14 to include the tableF function to double the speed for large problems "tetrachor" <- function(x,correct=.5) { #if(!require(mnormt)) {stop("I am sorry, you must have mnormt installed to use tetrachor")} cl <- match.call() if (!is.matrix(x) && !is.data.frame(x)) { if (length(x) ==4) {x <- matrix(x,2,2) } else { if(length(x) ==3 ) {x <- pqr(x) } else { stop("Data must be either a 1 x 4 vector, a 2 x 2 matrix, a comorbidity table, or a data.frame/matrix of data")} }} nvar <- dim(x)[2] if (dim(x)[1] == nvar) {result <- tetrac(x,correct=correct)} else { result <- tetra.mat(x,correct=correct)} result$Call <- cl class(result) <- c("psych","tetra") return(result) } #does the work "biserialc" <- function(x,y,i,j) { cc <- complete.cases(x,y) x <- x[cc] y <- y[cc] yf <- as.factor(y) lev <- levels(yf) if(length(lev)!=2) {#stop("y is not a dichotomous variable") warning("For x = ",i, " y = ", j, " y is not dichotomous") r <- NA} else { ty <- table(y) tot <- sum(ty) tab <- ty/tot if(length(tab) < 2) {r <- NA warning("For x = ",i, " y = ", j, " no variance for y r set to NA")} else { #this treats the case of no variance in the dichotmous variable zp <- dnorm(qnorm(tab[2])) hi <- mean(x[y==lev[2]],na.rm=TRUE) lo <- mean(x[y==lev[1]],na.ram=TRUE) # r <- (hi - lo)*sqrt(prod(tab))/(sd(x,na.rm=TRUE)) #point biserial r <- (hi - lo)*(prod(tab))/(zp * sd(x,na.rm=TRUE)) if(!is.na(r) && abs(r) >1 ) { if (r > 1) {r <- 1 } else {r <- -1} #in case we are correlating a dichotomous variable with itself warning("For x = ",i, " y = ", j, " x seems to be dichotomous, not continuous") }}} return(r) } "biserial" <- function(x,y) { x <- as.matrix(x,drop=FALSE) y <- as.matrix(y,drop=FALSE) nx <- dim(x)[2] ny <- dim(y)[2] if(is.null(nx)) nx <- 1 if(is.null(ny)) ny <- 1 mat <- matrix(NaN,nrow=ny,ncol=nx) colnames(mat) <- colnames(x) rownames(mat) <- colnames(y) #cat("\n Finding the biserial correlations\n") for(i in 1:ny) { progressBar(i*(i-1)/2,ny^2/2,"Biserial") for (j in 1:nx) { mat[i,j] <- biserialc(x[,j],y[,i],j,i) }} flush(stdout()) cat("\n" ) #put in to clear the progress bar return(mat) } "polyserial" <- function(x,y) { # y <- matrix(y) min.item <- min(y, na.rm = TRUE) max.item <- max(y, na.rm = TRUE) if(is.null(ncol(y))) {n.var <- 1 n.cases <- length(y) } else {n.var <- ncol(y) n.cases <- dim(y)[1]} dummy <- matrix(rep(min.item:max.item, n.var), ncol = n.var) colnames(dummy) <- names(y) xdum <- rbind(y, dummy) frequency <- apply(xdum, 2, table) frequency <- t(frequency - 1) responses <- rowSums(frequency) frequency <- frequency/responses frequency <- t(apply(frequency,1,cumsum)) len <- dim(frequency)[2] tau <- dnorm(qnorm(frequency[,-len,drop=FALSE])) stau <- rowSums(tau) rxy <- cor(x,y,use="pairwise") sdy <- apply(y,2,sd,na.rm=TRUE) rps <- t(rxy) * sqrt((n.cases-1)/n.cases) * sdy/stau rps[rps > 1.0] <- 1.0 rps[rps < -1.0] <- -1.0 return(rps) } #modified November 28, 2014 to be slightly more aggressive about smoothing #this is more similar to cov2cor(nearPD$mat) "cor.smooth" <- function(x,eig.tol=10^-12) { eigens <- try(eigen(x),TRUE) if(class(eigens)== as.character("try-error")) {warning('I am sorry, there is something seriously wrong with the correlation matrix,\ncor.smooth failed to smooth it because some of the eigen values are NA. \nAre you sure you specified the data correctly?') } else { if(min(eigens$values) < .Machine$double.eps) {warning("Matrix was not positive definite, smoothing was done") #eigens$values[eigens$values < .Machine$double.eps] <- 100 * .Machine$double.eps eigens$values[eigens$values < eig.tol] <- 100 * eig.tol nvar <- dim(x)[1] tot <- sum(eigens$values) eigens$values <- eigens$values * nvar/tot cnames <- colnames(x) rnames <- rownames(x) x <- eigens$vectors %*% diag(eigens$values) %*% t(eigens$vectors) x <- cov2cor(x) colnames(x) <- cnames rownames(x) <- rnames} } return(x)} #modified January 9, 2012 to add the try so we don't fail (just complain) if the data are bad. #identify the most likely candidates for a bad item "cor.smoother" <- function(x,cut=.01) { nvar <- ncol(x) result <- list() if(nrow(x) != nvar) x <- cor(x,use="pairwise") bad <- rep(NA,nvar) good <- rep(TRUE,nvar) names(good) <- names(bad) <- colnames(x) for (i in 1:nvar) { ev <- eigen(x[-i,-i])$values if(any(ev < 0) ) {bad[i] <- TRUE good[i] <- FALSE} bad[i] <- sum((ev < 0),na.rm=TRUE) } if(sum(bad+0) > 0 ) {result$good <- bad[(bad > 0)] result$bad <- good[good] s <- cor.smooth(x) possible <- arrayInd(which.max(abs(s-x)),dim(x),.dimnames=colnames(x)) result$likely <- colnames(x)[possible] result$possible <- arrayInd(which(abs(s-x) > cut),dim(x),.dimnames=colnames(x)) result$possible <- sort(table(colnames(x)[result$possible]),decreasing=TRUE) } else {result$bad <- c("all ok")} class(result) <- c("psych","smoother") return(result) } psych/R/fa.sort.R0000644000176200001440000001267412763550647013331 0ustar liggesusers#modified Sept 5, 2016 to sort Structure as well as loadings "fa.sort" <- function(fa.results,polar=FALSE) { omega <- FALSE con.i <- FALSE Structure <- NULL #in case we are not doing fa if(length(class(fa.results)) > 1) { value <- class(fa.results)[2] } else {value="other"} switch(value, omega = { omega <- TRUE factors <- as.matrix(fa.results$schmid$oblique) sl <- fa.results$schmid$sl}, fa.ci = {factors <- fa.results$loadings if(!is.null(fa.results$Phi)) {Phi <-fa.results$Phi } con.i <- TRUE ci <- fa.results$cis$ci cip <- fa.results$cis$p }, iclust = {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi}}, fa = {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi} Structure <- fa.results$Structure}, principal = {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi}}, extension = {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi}}, extend = {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Structure)) Structure <- fa.results$Structure if(!is.null(fa.results$Phi)) {Phi <- fa.results$Phi}}, other = {factors <- fa.results}) nitems <- dim(factors)[1] nfactors <- dim(factors)[2] total.ord <- rep(NA,nitems) if(polar) { pol.ord <- polar(factors)[,1] factors[1:nitems,] <- factors[pol.ord,] rownames(factors)[1:nitems] <- rownames(factors)[pol.ord ] } else { if(is.null(rownames(factors))) {rownames(factors) <- paste("V",1:nitems)} loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems)) #first sort them into clusters #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(factors),1,which.max) ord <- sort(loads$cluster,index.return=TRUE) factors[1:nitems,] <- factors[ord$ix,] if(!is.null(Structure)) {Structure[1:nitems,] <- Structure[ord$ix,] rownames(Structure)[1:nitems] <- rownames(Structure)[ord$ix] } rownames(factors)[1:nitems] <- rownames(factors)[ord$ix] total.ord <- ord$ix if(con.i) { ci[1:nitems,] <- ci[ord$ix,] #if we are doing confidence intervals cip[1:nitems,] <- cip[ord$ix,] } #now sort column wise #now sort the loadings that have their highest loading on each cluster items <- table(loads$cluster) #how many items are in each cluster? first <- 1 item <- loads$item for (i in 1:length(items)) { if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(factors[first:last,i]),decreasing=TRUE,index.return=TRUE) factors[first:last,] <- factors[item[ord$ix+first-1],] loads[first:last,1] <- item[ord$ix+first-1] if(!is.null(Structure) ) {Structure[first:last,] <- Structure[item[ord$ix+first-1],] rownames(Structure)[first:last] <- rownames(Structure)[ord$ix+first-1] } rownames(factors)[first:last] <- rownames(factors)[ord$ix+first-1] if(con.i) { ci[first:last,] <- ci[item[ord$ix+first-1],] #if we are doing confidence intervals cip[first:last,] <- cip[item[ord$ix+first-1],] } total.ord[first:last] <- total.ord[ord$ix+first-1 ] first <- first + items[i] } } } if(omega) {fa.results$schmid$oblique <- factors #if the input was from omega, then sort the schmid leiman solution as well loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems)) nfactors <- dim(sl)[2]-4 #g, h2, u2, p2 if(nfactors > 1) { loads$cluster <- apply(abs(sl[,2:(nfactors+1)]),1,which.max) +1} else {loads$cluster <- rep(1,nitems) } ord <- sort(loads$cluster,index.return=TRUE) sl[1:nitems,] <- sl[ord$ix,] rownames(sl)[1:nitems] <- rownames(sl)[ord$ix] items <- table(loads$cluster) #how many items are in each cluster? first <- 1 item <- loads$item for (i in 1:length(items)) { if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(sl[first:last,i+1]),decreasing=TRUE,index.return=TRUE) sl[first:last,] <- sl[item[ord$ix+first-1],] loads[first:last,1] <- item[ord$ix+first-1] rownames(sl)[first:last] <- rownames(sl)[ord$ix+first-1] first <- first + items[i] } } fa.results$schmid$sl <- sl } else { if((!is.matrix(fa.results)) && (!is.data.frame(fa.results))) {fa.results$loadings <- factors if(con.i) { rownames(ci) <- rownames(factors) fa.results$ci <- ci rownames(cip) <- rownames(factors) colnames(cip) <- colnames(factors) fa.results$cip <- cip} } else { fa.results <- factors} } #note that h2 and complexities were not sorted, we need to do this now if(is.list(fa.results)) {fa.results$order <- total.ord fa.results$complexity <- fa.results$complexity[total.ord] fa.results$communality <- fa.results$communality[total.ord] fa.results$uniquenesses <- fa.results$uniquenesses[total.ord] if(!is.null(Structure)) { fa.results$Structure <- Structure} } return(fa.results) } psych/R/polar.R0000644000176200001440000000214611233074040013036 0ustar liggesusers#polar a function to convert a factor loadings matrix to polar coordinates #Version of Sept 9, 2007 #Slightly revised July 25, 2009 "polar" <- function(f,sort=TRUE) #return all pairwise polar coordinates { if (!is.matrix(f) && !is.data.frame(f) ) {fload <-f$loadings} else {fload <- f} nf <- dim(fload)[2] n.var <- dim(fload)[1] polar <- matrix(0,nrow=n.var,ncol = nf * (nf-1)+1) if (!is.null(rownames(fload))) {rownames(polar) <- rownames(fload)} else {rownames(polar) <- paste("v",1:n.var,sep="") } colnames(polar) <- rep(NA,nf*(nf-1)+1) #just give it something to play with polar[,1] <- seq(1:n.var) colnames(polar)[1] <- "Var" k <- 2 kk <- nf*(nf-1)/2 for (i in 2:nf) { for (j in 1:(i-1)) { vector.length <- fload[,i]^2 + fload[,j]^2 theta=sign(fload[,i])*180*acos(fload[,j]/sqrt(vector.length))/pi #vector angle (-180: 180) polar[,k] <- theta %% 360 polar[,k+kk] <- vector.length colnames(polar)[k] <- paste("theta",i,j,sep="") colnames(polar)[k+kk] <- paste("vecl",i ,j,sep="") k <- k + 1 } } if (sort) {polar <- polar[order(polar[,2]),] } return(polar) } psych/R/sim.item.R0000644000176200001440000002245412271313664013465 0ustar liggesusers"sim.item" <- function (nvar = 72 ,nsub = 500, circum = FALSE, xloading =.6, yloading = .6, gloading=0, xbias=0, ybias = 0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) { avloading <- (xloading+yloading)/2 errorweight <- sqrt(1-(avloading^2 + gloading^2)) #squared errors and true score weights add to 1 g <- rnorm(nsub) truex <- rnorm(nsub)* xloading +xbias #generate normal true scores for x + xbias truey <- rnorm(nsub) * yloading + ybias #generate normal true scores for y + ybias if (circum) #make a vector of radians (the whole way around the circle) if circumplex {radia <- seq(0,2*pi,len=nvar+1) rad <- radia[which(radia<2*pi)] #get rid of the last one } else rad <- c(rep(0,nvar/4),rep(pi/2,nvar/4),rep(pi,nvar/4),rep(3*pi/2,nvar/4)) #simple structure error<- matrix(rnorm(nsub*(nvar)),nsub) #create normal error scores #true score matrix for each item reflects structure in radians trueitem <- outer(truex, cos(rad)) + outer(truey,sin(rad)) item<- gloading * g + trueitem + errorweight*error #observed item = true score + error score if (categorical) { item = round(item) #round all items to nearest integer value item[(item<= low)] <- low item[(item>high) ] <- high } if (truncate) {item[item < cutpoint] <- 0 } colnames(item) <- paste("V",1:nvar,sep="") return (item) } "sim.spherical" <- function (simple=FALSE, nx=7,ny=12 ,nsub = 500, xloading =.55, yloading = .55, zloading=.55, gloading=0, xbias=0, ybias = 0, zbias=0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) { nvar <- nx * (ny-1) errorweight <- sqrt(1-(xloading^2 + yloading^2 + zloading^2+ gloading^2)) #squared errors and true score weights add to 1 g <- rnorm(nsub) truex <- rnorm(nsub) +xbias #generate normal true scores for x + xbias truey <- rnorm(nsub) + ybias #generate normal true scores for y + ybias truez <- rnorm(nsub) + zbias #generate normal true scores for y + ybias true <- matrix(c(g,truex,truey,truez),nsub) #make a vector of radians (the whole way around the circle) if circumplex if(!simple) {f1 <- rep(cos(seq(0,pi,length.out = nx)),each=ny-1)*xloading f2 <- rep(cos(seq(0,2*pi*(ny-1)/ny,length.out=ny-1)),nx)*yloading f3 <- rep(sin(seq(0,2*pi*(ny-1)/ny,length.out=ny-1)),nx)*zloading f2 <- f2 * (1-f1^2) #added to make the cylinder a sphere f3 <- f3 * (1-f1^2) f <- matrix(c(rep(gloading,(ny-1)*nx),f1,f2,f3),(ny-1)*nx) } else { #simple structure -- nvar <- 4*ny f1 <- rep(c(1,0,-1,0),each=ny) f2 <- rep(c(1,0,-1,0),ny) f3 <- rep(c(0,1,0,-1),ny) f <- matrix(c(rep(gloading,ny*4),f1,f2,f3),4*ny) } error<- matrix(rnorm(nsub*(nvar)),nsub) #create normal error scores #true score matrix for each item reflects structure in radians item <- true %*% t(f) + errorweight*error #observed item = true score + error score if (categorical) { item = round(item) #round all items to nearest integer value item[(item<= low)] <- low item[(item>high) ] <- high } if (truncate) {item[item < cutpoint] <- 0 } colnames(item) <- paste("V",1:nvar,sep="") return (item) } "sim.rasch" <- function (nvar = 5 , n = 500, low=-3,high=3,d=NULL, a=1,mu=0,sd=1) { if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} theta <- rnorm(n,mu,sd) item <- matrix(t(1/(1+exp(a*t(-theta %+% t( d))))),n,nvar) #now convert these probabilities to outcomes item[] <- rbinom(n*nvar, 1, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,tau=d,theta=theta) return (result) } "sim.irt" <- function (nvar = 5 ,n = 500,low=-3,high=3,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,mod="logistic") { if(mod=="logistic") {result <- sim.npl(nvar,n,low,high,a,c,z,d,mu,sd)} else {result <- sim.npn(nvar,n,low,high,a,c,z,d,mu,sd)} return (result) } "sim.npn" <- function (nvar = 5 ,n = 500, low=-3,high=3,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1) { if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) # the latent variable item <- matrix(t(c+(z-c)*pnorm(a*t(theta %+% t(- d)))),n,nvar) #need to transpose and retranpose to get it right #now convert these probabilities to outcomes item[] <- rbinom(n*nvar, 1, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.npl" <- function (nvar = 5 ,n = 500, low=-3,high=3,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1) { if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) item <- matrix(t(c+(z-c)/(1+exp(a*t((-theta %+% t( d)))))),n,nvar) item[] <- rbinom(n*nvar, 1, item) #now convert these probabilities to outcomes colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.poly" <- function (nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5,mod="logistic") { if(mod=="normal") {result <- sim.poly.npn(nvar,n,low,high,a,c,z,d,mu,sd,cat)} else {result <- sim.poly.npl(nvar,n,low,high,a,c,z,d,mu,sd,cat)} return (result) } "sim.poly.npn" <- function (nvar = 5 ,n = 500, low=-2,high=2,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,cat=5) { cat <- cat - 1 if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) # the latent variable item <- matrix(t(c+(z-c)*pnorm(a*t(theta %+% t(- d)))),n,nvar) #need to transpose and retranpose to get it right #now convert these probabilities to outcomes item[] <- rbinom(n*nvar, cat, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.poly.npl" <- function (nvar = 5 ,n = 500, low=-2,high=2,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,cat=5) { cat <- cat - 1 if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) item <- matrix(t(c+(z-c)/(1+exp(a*t((-theta %+% t( d)))))),n,nvar) item[] <- rbinom(n*nvar, cat, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.poly.ideal" <- function (nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5,mod="logistic") { if(mod=="normal") {result <- sim.poly.ideal.npn(nvar,n,low,high,a,c,z,d,mu,sd,cat)} else {result <- sim.poly.ideal.npl(nvar,n,low,high,a,c,z,d,mu,sd,cat)} return (result) } "sim.poly.ideal.npl.absolute" <- function (nvar = 5 ,n = 500, low=-2,high=2,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,cat=5) { cat <- cat -1 #binomial is based upon one fewer than categories if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) item <- matrix(t(c+(z-c)/(1+exp(a*t(abs(-theta %+% t( d)))))),n,nvar) item[] <- rbinom(n*nvar, cat, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.poly.ideal.npl" <- function (nvar = 5 ,n = 500, low=-2,high=2,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,cat=5,theta=NULL) { cat <- cat -1 #binomial is based upon one fewer than categories if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} if(is.null(theta)) {theta <- rnorm(n,mu,sd)} item <- 2*matrix((c+(z-c)*exp(a*t(-theta %+% t( d)))/(1+2*exp(a*t(-theta %+% t( d))) + exp(a*t(2*(-theta %+% t( d)))))),n,nvar,byrow=TRUE) p <- item item[] <- rbinom(n*nvar, cat, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(p=p,items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } "sim.poly.ideal.npn" <- function (nvar = 5 ,n = 500, low=-2,high=2,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,cat=5) { warning("Not ready for prime time") cat <- cat -1 #binomial is based upon one fewer than categories if(is.null(d)) {d <- seq(low,high,(high-low)/(nvar-1))} else {if(length(d)==1) d <- rep(d,nvar)} if(is.null(a)) {a <- rep(1,nvar)} theta <- rnorm(n,mu,sd) # the latent variable item <- matrix(t(c+(z-c)*pnorm(abs(a*t(theta %+% t(- d))))),n,nvar) #need to transpose and retranpose to get it right #now convert these probabilities to outcomes item[] <- rbinom(n*nvar, cat, item) colnames(item) <- paste("V",1:nvar,sep="") result <- list(items=item,discrimination=a,difficulty=d,gamma=c,zeta=z,theta=theta) return (result) } #simulate a particular polychoric structure R with specified marginals (m) #Modified December 17,2013 to actually work "sim.poly.mat" <- function(R,m,n) { e <- eigen(R) v <- pmax(e$values,0) nvar <- ncol(R) ncat <- ncol(m) X <- matrix(rnorm(nvar*n),n) X <- t(e$vectors %*% sqrt(diag(v)) %*% t(X)) marg <- m Y <- matrix(0,ncol=n,nrow=nvar) for(i in 1:(ncat)) { Y[t(X) > marg[,i]] <- i } return(t(Y)) }psych/R/meta.schmid.R0000644000176200001440000000022511422752643014125 0ustar liggesusers"meta.schmid" <- function(L = NULL,L2=NULL,g3 =NULL,m=NULL) { Vt = sum(m) g <- L %*% L2 omega <- sum(g)^2/Vt result <- list(g,omega) return(result) }psych/R/factor.congruence.R0000755000176200001440000000415012763102675015345 0ustar liggesusers #modified October 9, 2015 to add the NA option #January 27, 2014 added fa.congruence to clean up calls #modified March 12 to allow for a list of factor solutions "factor.congruence" <- function (x,y=NULL,digits=2,use=NULL,structure=FALSE) { fa.congruence(x=x,y=y,digits=digits,use=use,structure=structure) } "fa.congruence" <- function (x,y=NULL,digits=2,use=NULL,structure=FALSE) { if(is.null(y)&& is.list(x)) { n <- length(x) for (i in 1:n) { xi <- x[[i]] if(length(class(xi)) > 1) { if(class(xi)[2] =='omega') {xi <- xi$schmid$sl xi<- as.matrix(xi[,1:(ncol(xi)-2)])}} if (!(is.matrix(xi) )) {if(!is.null(xi$loadings)) {if(structure) {xi <- xi$Structure} else {xi <- xi$loadings}} else {xi <- as.matrix(xi)}} if(i==1) {xg <- xi} else {xg <- cbind(xg,xi)} } x <- xg if(is.null(y)) y <- xg } else { if(length(class(x)) > 1) { if(class(x)[2] =='omega') {x <- x$schmid$sl x <- as.matrix(x[,1:(ncol(x)-2)])}} if(length(class(y)) > 1) { if(class(y)[2] =='omega') {y <- y$schmid$sl y <- as.matrix(y[,1:(ncol(y)-2)])}} if (!is.matrix(x)) {if(!is.null(x$loadings)) {if(structure) {x <- x$Structure} else {x <- x$loadings}} else {x <- as.matrix(x)} } if (!is.matrix(y)) {if(!is.null(y$loadings)) {if(structure) {y <- y$Structure} else { y <- y$loadings }} else {y <- as.matrix(y)}} } if(any(is.na(x) | any(is.na(y) ))) {warning("Some loadings were missing.") if(!is.null(use)) {message("Analysis is done on complete cases") if(any(is.na(x))) { xc <- x[complete.cases(x),] y <- y[complete.cases(x),] x <- xc } if (any(is.na(y))) { yc <- y[complete.cases(y),] x <- x[complete.cases(y),] y <- yc} } else {warning("Check your data or rerun with the use = complete option")} } nx <- dim(x)[2] ny <- dim(y)[2] cross<- t(y) %*% x #inner product will have dim of ny * nx sumsx<- sqrt(1/diag(t(x)%*%x)) sumsy<- sqrt(1/diag(t(y)%*%y)) result<- matrix(rep(0,nx*ny),ncol=nx) result<- round(sumsy * (cross * rep(sumsx, each = ny)),digits) return(t(result)) } psych/R/factor.scores.R0000644000176200001440000001463213152645451014513 0ustar liggesusers"factor.scores" <- function(x,f,Phi=NULL,method=c("Thurstone","tenBerge","Anderson","Bartlett","Harman","components"),rho=NULL,impute="none") { #the normal case is f is the structure matrix and Phi is not specified #Note that the Grice formulas distinguish between Pattern and Structure matrices #I need to confirm that I am doing this if(length(method) > 1) method <- "tenBerge" #the default if(method=="regression") method <- "Thurstone" if(method=="tenberge") method <- "tenBerge" if(length(class(f)) > 1) { if(class(f)[2] =="irt.fa" ) f <- f$fa } if(!is.matrix(f)) {Phi <- f$Phi f <- loadings(f) if(ncol(f)==1) {method <- "Thurstone"} } nf <- dim(f)[2] if(is.null(Phi)) Phi <- diag(1,nf,nf) if(dim(x)[1] == dim(f)[1]) {r <- as.matrix(x) square <- TRUE} else { square <- FALSE if(!is.null(rho)) {r <- rho } else { r <- cor(x,use="pairwise") #find the correlation matrix from the data }} S <- f %*% Phi #the Structure matrix switch(method, "Thurstone" = { w <- try(solve(r,S),silent=TRUE ) #these are the factor weights (see Grice eq. 5) if(class(w)=="try-error") {message("In factor.scores, the correlation matrix is singular, an approximation is used") r <- cor.smooth(r)} w <- try(solve(r,S),silent=TRUE) if(class(w)=="try-error") {message("I was unable to calculate the factor score weights, factor loadings used instead") w <- f} colnames(w) <- colnames(f) rownames(w) <- rownames(f) }, "tenBerge" = { #Following Grice equation 8 to estimate scores for oblique solutions (with a correction to the second line where r should r.inv L <- f %*% matSqrt(Phi) r.5 <- invMatSqrt(r) r <- cor.smooth(r) inv.r <- try(solve(r),silent=TRUE) if(class(inv.r)== as.character("try-error")) {warning("The tenBerge based scoring could not invert the correlation matrix, regression scores found instead") ev <- eigen(r) ev$values[ev$values < .Machine$double.eps] <- 100 * .Machine$double.eps r <- ev$vectors %*% diag(ev$values) %*% t(ev$vectors) diag(r) <- 1 w <- solve(r,f)} else { C <- r.5 %*% L %*% invMatSqrt(t(L) %*% inv.r %*% L) #note that this is the correct formula, per Grice personal communication w <- r.5 %*% C %*% matSqrt(Phi)} colnames(w) <- colnames(f) rownames(w) <- rownames(f) }, "Harman" = { #Grice equation 10 -- # m <- t(f) %*% f #factor intercorrelations m <- f %*% t(S) #should be this (the model matrix) Revised August 31, 2017 diag(m) <- 1 #Grice does not say this, but it is necessary to make it work! inv.m <- solve(m) # w <- f %*%inv.m w <- inv.m %*% f }, "Anderson" = { #scores for orthogonal factor solution will be orthogonal Grice Eq 7 and 8 I <- diag(1,nf,nf) h2 <- diag( f %*% Phi %*% t(f)) U2 <- 1 - h2 inv.U2 <- diag(1/U2) w <- inv.U2 %*% f %*% invMatSqrt(t(f) %*% inv.U2 %*% r %*% inv.U2 %*% f) colnames(w) <- colnames(f) rownames(w) <- rownames(f) }, "Bartlett" = { #Grice eq 9 # f should be the pattern, not the structure I <- diag(1,nf,nf) h2 <- diag( f %*% Phi %*% t(f)) U2 <- 1 - h2 inv.U2 <- diag(1/U2) w <- inv.U2 %*% f %*% (solve(t(f) %*% inv.U2 %*% f)) colnames(w) <- colnames(f) rownames(w) <- rownames(f) }, "none" = {w <- NULL}, "components" = {w <- try(solve(r,f),silent=TRUE ) #basically, just do the regression/Thurstone approach for components w <- f } ) #now find a few fit statistics if(is.null(w)) {results <- list(scores=NULL,weights=NULL)} else { R2 <- diag(t(w) %*% S) #this had been R2 <- diag(t(w) %*% f) Corrected Sept 1, 2017 if(any(R2 > 1) || (prod(!is.nan(R2)) <1) || (prod(R2) < 0) ) {#message("The matrix is probably singular -- Factor score estimate results are likely incorrect") R2[abs(R2) > 1] <- NA R2[R2 <= 0] <- NA } #if ((max(R2,na.rm=TRUE) > (1 + .Machine$double.eps)) ) {message("The estimated weights for the factor scores are probably incorrect. Try a different factor extraction method.")} r.scores <- cov2cor(t(w) %*% r %*% w) #what actually is this? if(square) { #that is, if given the correlation matrix class(w) <- NULL results <- list(scores=NULL,weights=w) results$r.scores <- r.scores results$R2 <- R2 #this is the multiple R2 of the scores with the factors } else { missing <- rowSums(is.na(x)) if(impute !="none") { x <- data.matrix(x) miss <- which(is.na(x),arr.ind=TRUE) if(impute=="mean") { item.means <- colMeans(x,na.rm=TRUE) #replace missing values with means x[miss]<- item.means[miss[,2]]} else { item.med <- apply(x,2,median,na.rm=TRUE) #replace missing with medians x[miss]<- item.med[miss[,2]]} #this only works if items is a matrix } if(method !="components") {scores <- scale(x) %*% w } else { #standardize the data before doing the regression if using factors, scores <- x %*% w} # for components, the data have already been zero centered and, if appropriate, scaled results <- list(scores=scores,weights=w) results$r.scores <- r.scores results$missing <- missing results$R2 <- R2 #this is the multiple R2 of the scores with the factors } } return(results) } #how to treat missing data? see score.item "matSqrt" <- function(x) { e <- eigen(x) e$values[e$values < 0] <- .Machine$double.eps sqrt.ev <- sqrt(e$values) #need to put in a check here for postive semi definite result <- e$vectors %*% diag(sqrt.ev) %*% t(e$vectors) result} "invMatSqrt" <- function(x) { e <- eigen(x) if(is.complex(e$values)) {warning("complex eigen values detected by invMatSqrt, results are suspect") result <- x } else { e$values[e$values < .Machine$double.eps] <- 100 * .Machine$double.eps inv.sqrt.ev <- 1/sqrt(e$values) #need to put in a check here for postive semi definite result <- e$vectors %*% diag(inv.sqrt.ev) %*% t(e$vectors) } result} psych/R/stats.by.r0000644000176200001440000002745012766524400013551 0ustar liggesusers"error.crosses.by" <- function (x,y,z,labels=NULL,main=NULL,xlim=NULL,ylim= NULL,xlab=NULL,ylab=NULL,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,...) # x and y are data frame or descriptive stats {if(is.null(x$mean)) {x <- describe.by(x,z,mat=TRUE) } xmin <- min(x$mean) xmax <- max(x$mean) if(sd) {max.sex <- max(x$sd,na.rm=TRUE) if(is.null(xlim)) {xlim=c(xmin - max.sex,xmax + max.sex) }} else {max.sex <- max(x$se,na.rm=TRUE)} if(is.null(y$mean)) {y <- describe(y)} ymin <- min(y$mean) ymax <- max(y$mean) if(sd) {max.sey <- max(y$sd,na.rm=TRUE) if(is.null(ylim)) {ylim=c(ymin - max.sey,ymax +max.sey)}} else { max.sey <- max(y$se,na.rm=TRUE) } if(is.null(xlim)) xlim=c(xmin - 2*max.sex,xmax +2*max.sex) if(is.null(ylim)) ylim=c(ymin - 2*max.sey,ymax +2*max.sey) if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } if(is.null(xlab)) xlab <- "Group 1" if(is.null(ylab)) ylab <- "Group 2" plot(x$mean,y$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,...) cix <- qt(1-alpha/2,x$n) ciy <- qt(1-alpha/2,y$n) z <- dim(x)[1] if(sd) {x$se <- x$sd y$se <- y$sd cix <- ciy <- rep(1,z) } if (is.null(pos)) {locate <- rep(1,z)} else {locate <- pos} if (is.null(labels)) {labels <- rownames(x)} if (is.null(labels)) {lab <- paste("V",1:z,sep="")} else {lab <-labels} for (i in 1:z) {xcen <- x$mean[i] ycen <- y$mean[i] xse <- x$se[i] yse <- y$se[i] arrows(xcen-cix[i]* xse,ycen,xcen+ cix[i]* xse,ycen,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) arrows(xcen,ycen-ciy[i]* yse,xcen,ycen+ ciy[i]*yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) text(xcen,ycen,labels=lab[i],pos=locate[i],cex=1,offset=offset) #puts in labels for all points } } "ellipse" <- function (x,y,r1,r2,...) { #code adapted from John Fox segments=51 angles <- (0:segments) * 2 * pi/segments unit.circle <- cbind(cos(angles), sin(angles)) xs <- r1 #ys <- e.size * yrange ellipse <- unit.circle ellipse[,1] <- ellipse[,1]*r1 + x ellipse[,2] <- ellipse[,2]*r2+ y #ys? lines(ellipse, ...) return(xs) } # modified 18/1/15 to pass just the xvar and yvar to statsBy # "errorCircles" <- # function (x,y,data,ydata=NULL,group=NULL,paired=FALSE, labels=NULL,main=NULL,xlim=NULL,ylim= NULL,xlab=NULL,ylab=NULL,add=FALSE,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,bars=TRUE,circles=TRUE,...) { # x and y are data frame or descriptive stats # # xvar <- x # yvar <- y # if(!is.null(group)) {data <- statsBy(data[,c(xvar,yvar,group)],group)} # x <- list() # if(paired) { # x$mean <- t(data$mean[,xvar]) # x$sd <- t(data$sd[,xvar]) # x$n <- t(data$n[,xvar]) # } else { #the normal case # x$mean <- data$mean[,xvar] # x$sd <- data$sd[,xvar] # x$n <- data$n[,xvar]} # # xmin <- min(x$mean,na.rm=TRUE) # xmax <- max(x$mean,na.rm=TRUE) # x$se <- x$sd/sqrt(x$n) # # if(sd) {max.sex <- max(x$sd,na.rm=TRUE) # if(is.null(xlim)) {xlim=c(xmin - max.sex,xmax + max.sex) }} else {max.sex <- max(x$se,na.rm=TRUE)} # # y <- list() # if(!is.null(ydata)) { # y$mean <- ydata$mean[,yvar] # y$sd <- ydata$sd[,yvar] # y$n <- ydata$n[,yvar] # } else { # y$mean <- data$mean[,yvar] # y$sd <- data$sd[,yvar] # y$n <- data$n[,yvar]} # # ymin <- min(y$mean,na.rm=TRUE) # ymax <- max(y$mean,na.rm=TRUE) # y$se <- y$sd/sqrt(y$n) # if(sd) {max.sey <- max(y$sd,na.rm=TRUE) # if(is.null(ylim)) {ylim=c(ymin - max.sey,ymax +max.sey)}} else { max.sey <- max(y$se,na.rm=TRUE) } # # if(is.null(xlim)) xlim=c(xmin - 2*max.sex,xmax +2*max.sex) # if(is.null(ylim)) ylim=c(ymin - 2*max.sey,ymax +2*max.sey) # # if(is.null(main)) {if(!sd) { main = paste((1-alpha)*100,"% confidence limits",sep="") } else {main= paste("Means and standard deviations")} } # if(paired) {if(is.null(xlab)) xlab <- "Group 1" # if(is.null(ylab)) ylab <- "Group 2" # } else { # if(is.null(xlab)) xlab <- colnames(data$mean)[xvar] # if(is.null(ylab)) ylab <- colnames(data$mean)[yvar] # } # if(add) { # if(paired) {points(x$mean,typ="p",...) } else {points(x$mean,y$mean,typ="p",...)} # } else { # if(paired) {plot(x$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,typ="p",...) } else {plot(x$mean,y$mean,xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,main=main,typ="p",...)} # } # N <-x$n # Nmax <- max(N) # cix <- qt(1-alpha/2,x$n) # ciy <- qt(1-alpha/2,y$n) # if(paired) {z <- nrow(x$mean) } else {z <- length(x$mean)} # if(sd) {x$se <- x$sd # y$se <- y$sd # cix <- ciy <- rep(1,z) # } # # if (is.null(pos)) {locate <- rep(1,z)} else {locate <- pos} # if (is.null(labels)) {labels <- rownames(x$mean)} # if (is.null(labels)) {lab <- paste("V",1:z,sep="")} else {lab <-labels} # # for (i in 1:z) # { if(paired) { xcen <- x$mean[i,1] # ycen <- x$mean[i,2] # xse <- x$se[i,1] # yse <- x$se[i,2] # } else { # xcen <- x$mean[i] # ycen <- y$mean[i] # xse <- x$se[i] # yse <- y$se[i]} # if(bars) {if(max(x$se,na.rm=TRUE) > 0) arrows(xcen-cix[i]* xse,ycen,xcen+ cix[i]* xse,ycen,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) # if(max(y$se,na.rm=TRUE) >0 ) arrows(xcen,ycen-ciy[i]* yse,xcen,ycen+ ciy[i]*yse,length=arrow.len, angle = 90, code=3,col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL) # } # # text(xcen,ycen,labels=lab[i],pos=locate[i],cex=1,offset=offset) #puts in labels for all points # if(circles) { xrange <- xlim[2] - xlim[1] # yrange <- ylim[2] - ylim[1] # xscale <-max(x$se) # yscale <-max(y$se) # ellipse(xcen,ycen,sqrt(xscale*x$n[i]/Nmax),sqrt( yscale*x$n[i]/Nmax)) # } # } # if(!is.null(group)) return(invisible(data)) # } # # # "statsBy.old" <- # function (data,group,cors=FALSE) { # # valid <- function(x) { #count the number of valid cases # sum(!is.na(x)) # } # gr <- which(colnames(data) == group) # # z1 <- data[,group] # z <- z1 # cnames <- colnames(data) # for (i in 1:ncol(data)) {if(is.factor(data[,i]) || is.logical(data[,i])) { # data[,i] <- as.numeric(data[,i]) # # colnames(data)[i] <- paste(cnames[i],"*",sep="") # }} # xvals <- list() # # xvals$mean <- t(matrix(unlist(by(data,z,colMeans,na.rm=TRUE)),nrow=ncol(data))) # xvals$sd <-t(matrix(unlist(by(data,z,function(x) sapply(x,sd,na.rm=TRUE))),nrow=ncol(data))) # xvals$n <- t(matrix(unlist(by(data,z,function(x) sapply(x,valid))),nrow=ncol(data))) # colnames(xvals$mean) <- colnames(xvals$sd) <- colnames(xvals$n) <- colnames(data) # rownames(xvals$mean) <- rownames(xvals$sd) <- rownames(xvals$n) <- levels(z) # nH <- harmonic.mean(xvals$n) # GM <- colSums(xvals$mean*xvals$n)/colSums(xvals$n) # MSb <- colSums(xvals$n*t((t(xvals$mean) - GM)^2))/(nrow(xvals$mean)-1) #weight means by n # MSw <- colSums(xvals$sd^2*(xvals$n-1))/(colSums(xvals$n-1)) #find the pooled sd # xvals$F <- MSb/MSw # N <- colSums(xvals$n) # # npr <-(N^2 - colSums(xvals$n))/(N *(nrow(xvals$n) -1)) # # npr <- harmonic.mean(xvals$n-1) # npr <- (colSums(xvals$n-1)+nrow(xvals$n))/(nrow(xvals$n)) # xvals$ICC1 <- (MSb-MSw)/(MSb + MSw*(npr-1)) # xvals$ICC2 <- (MSb-MSw)/(MSb) # if(cors) { r <- by(data,z,function(x) cor(x[-1],use="pairwise")) # nvars <- ncol(r[[1]]) # xvals$r <- r # lower <- lapply(r,function(x) x[lower.tri(x)]) # xvals$within <- t(matrix(unlist(lower),nrow=nvars*(nvars-1)/2)) # wt <- by(data,z,function(x) count.pairwise(x[-1])) # lower.wt <- t(matrix(unlist(lapply(wt,function(x) x[lower.tri(x)]) ) ,nrow=nvars*(nvars-1)/2)) # lower.wt <- t(t(lower.wt)/colSums(lower.wt,na.rm=TRUE)) # pool <- colSums( lower.wt * xvals$within,na.rm=TRUE) # pool.sd <- apply(xvals$within, 2,FUN=sd, na.rm=TRUE) # xvals$pooled <- matrix(NaN,nvars,nvars) # xvals$pooled[lower.tri(xvals$pooled)] <- pool # xvals$pooled[upper.tri(xvals$pooled)] <- pool # diag(xvals$pooled) <- 1 # xvals$sd.r <- matrix(NaN,nvars,nvars) # xvals$sd.r[lower.tri(xvals$sd.r)] <- pool.sd # xvals$sd.r[upper.tri(xvals$sd.r)] <- pool.sd # colnames(xvals$pooled) <- rownames (xvals$pooled) <- cnames[-1] # } # # nvar <- ncol(data)-1 # xvals$raw <- cor(data,use="pairwise") # new.data <- as.matrix( merge(xvals$mean,data,by=group,suffixes =c(".bg",""))[-1]) # # diffs <- new.data[,(nvar+1):ncol(new.data)] - new.data[,1:nvar] # colnames(diff) <- rownames(diff) <- paste(colnames(diff),".wg",sep="") # xvals$rbg <- cor(new.data[,1:nvar],use="pairwise") #the between group (means) # xvals$rwg <- cor(diffs,use="pairwise") #the within group (differences) # colnames(xvals$rwg) <- rownames(xvals$rwg) <- paste(colnames(xvals$rwg),".wg",sep="") # xvals$etabg <- cor(new.data[,1:nvar],new.data[,(nvar+1):ncol(new.data)],use="pairwise") #the means with the data # xvals$etawg <- cor(new.data[,(nvar+1):ncol(new.data)],diffs,use="pairwise") #the deviations and the data # rownames(xvals$etawg) <- paste(rownames(xvals$etawg),".wg",sep="") # # return(xvals) # } # "cor.wt" <- function(data,vars=NULL, w=NULL,sds=NULL, cor=TRUE) { cl <- match.call() if(is.list(data) && !is.data.frame(data)) {w <- data$n #use the output from statsBy sds <- data$sd x <- data$mean} else {x <- data} if(!is.null(vars)) {x <- x[,vars] w <- w[,vars] sds <- sds[,vars] } if(is.null(w)) w <- matrix(rep(rep(1/nrow(x),nrow(x)),ncol(x)),nrow=nrow(x),ncol=ncol(x)) if(is.null(ncol(w))) {wt <- w/sum(w) } else { wt <- t(t(w)/colSums(w))} cnames <- colnames(x) for (i in 1:ncol(x)) {if(is.factor(x[,i]) || is.logical(x[,i])) { x[,i] <- as.numeric(x[,i]) colnames(x)[i] <- paste(cnames[i],"*",sep="") }} means <- colSums(x * wt,na.rm=TRUE) xc <- scale(x,center=means,scale=FALSE) #these are the weighted centered data if(is.null(sds)) {xs <- xc /sqrt(w) } else {xs <- xc * sds/sqrt(w)} xwt <- sqrt(wt) * xc # added February 20, 2016 to consider missing values if(any(is.na(xwt))) { cov <- apply(xwt,2, function(x) colSums(xwt * x,na.rm=TRUE)) } else {#matrix algebra without matrices cov <- crossprod(xwt) } #/(1-colSums(wt^2,na.rm=TRUE)) if(cor) {r <- cov2cor(cov)} else {r <- cov} xw <- wt * xc result <-list(r=r,xwt = xwt,wt=wt,mean=means,xc=xc,xs=xs) result$Call <- cl class(result) <- c("psych","cor.wt") return(result)} psych/R/mat.sort.R0000644000176200001440000000245311214501147013473 0ustar liggesusers"mat.sort" <- function(m,f=NULL) { if (is.null(f) ) {f <- fa(m) } if(is.list(f) && (!is.null(loadings(f)))) {load <- loadings(f)} else {load <- f} load <- as.matrix(load) nitems <- NROW(load) nfactors <-NCOL(load) loads <- data.frame(item=seq(1:nitems),cluster=rep(0,nitems),unclass(load)) #first sort them into clusters #first find the maximum for each row and assign it to that cluster loads$cluster <- apply(abs(load),1,which.max) ord <- sort(loads$cluster,index.return=TRUE) loads[1:nitems,] <- loads[ord$ix,] rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] #now sort column wise #now sort the loadings that have their highest loading on each cluster items <- table(loads$cluster) #how many items are in each cluster? first <- 1 item <- loads$item for (i in 1:length(items)) { if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(loads[first:last,i+2]),decreasing=TRUE,index.return=TRUE) loads[first:last,3:(nfactors+2)] <- load[item[ord$ix+first-1],] loads[first:last,1] <- item[ord$ix+first-1] rownames(loads)[first:last] <- rownames(loads)[ord$ix+first-1] first <- first + items[i] } } item.order <- loads[,1] m <- m[item.order,item.order] return(m) } psych/R/describe.R0000755000176200001440000002360513144152225013514 0ustar liggesusers"describeFast" <- function(x) { nvar <- NCOL(x) nobs <- NROW(x) } #added 1/11/14 #modified 12/29/14 to handle cases with non-numeric data #for fast descriptions describeData <- function (x, head = 4, tail = 4) { valid <- function(x) { sum(!is.na(x)) } nvar <- ncol(x) all.numeric <- nvar ans <- matrix(NA,nrow=nvar,ncol=2) nobs <- nrow(x) cc <- 0 cc <- try(complete.cases(x),silent=TRUE) if(class(cc) == "try-error") cc <- NA cc <- sum(cc,na.rm=TRUE) for (i in 1:nvar) { if (is.numeric(x[,i])) {ans[i,2] <- 1 } else { if ((is.factor(x[,i])) || (is.logical(x[,i]))) { ans[i,2] <- 2 } else { if (is.character(x[,i])) { ans[i,2] <- 3 } else {ans[i,2] <- 4} } } ans[i,1] <- valid(x[,i]) } if (is.numeric(unlist(x))) { all.numeric <- TRUE } else { all.numeric <- FALSE } H1 <- t(x[1:head,1:nvar]) T1 <- t(x[(nobs-tail+1):nobs,1:nvar]) temp <- data.frame(V=1:nvar,ans,H1,T1) colnames(temp) <- c("variable #", "n.obs", "type", paste("H", 1:head, sep = ""), paste("T", 1:tail, sep = "")) rownames(temp)[temp[,"type"]!=1] <- paste(rownames(temp)[temp[,"type"]!=1],"*",sep="") result <- (list(n.obs = nobs, nvar = nvar, all.numeric = all.numeric, complete.cases = cc, variables = temp)) class(result) <- c("psych", "describeData") return(result) } #changed October 12, 2011 to use apply because mean and sd are deprecated for data.frames #modified January 10, 2014 to add the check option to improve speed. A few other improvements #modified December 2014 to add the fast option for large data sets #modified May 21, 2015 to allow non-numeric data to be described (but with a warning) #further modified June 21, 2016 to allow for character input as well as well reporting quantiles #tried to improve the speed by using multicores, but this requires using s or lapply which don't do what I need. "describe" <- function (x,na.rm=TRUE,interp=FALSE,skew=TRUE,ranges=TRUE,trim=.1,type=3,check=TRUE,fast=NULL,quant=NULL,IQR=FALSE) #basic stats after dropping non-numeric data #slightly faster if we don't do skews { cl <- match.call() #first, define a local function valid <- function(x) {sum(!is.na(x))} if(!na.rm) x <- na.omit(x) #just complete cases if(is.null(fast)) { if (prod(dim(x)) > 10^7) {fast <- TRUE } else {fast <- FALSE}} #the default is to use fast for large data sets if(fast) {skew <- FALSE } numstats <- 10 + length(quant) + IQR if ( is.null(dim(x)[2])) { #do it for vectors or len <- 1 nvar <- 1 stats = matrix(rep(NA,numstats),ncol=numstats) #create a temporary array stats[1, 1] <- valid(x ) stats[1, 2] <- mean(x, na.rm=na.rm ) stats[1,10] <- sd(x,na.rm=na.rm) if(interp) {stats[1, 3] <- interp.median(x,na.rm=na.rm ) } else {stats[1,3] <- median(x,na.rm=na.rm) } stats[1,9] <- mean(x,na.rm=na.rm, trim=trim) stats[1, 4] <- min(x, na.rm=na.rm ) stats[1, 5] <- max(x, na.rm=na.rm ) stats[1, 6] <- skew(x,na.rm=na.rm,type=type ) stats[1,7] <- mad(x,na.rm=na.rm) stats[1,8] <- kurtosi(x,na.rm=na.rm,type=type) vars <- 1 if(!is.null(quant)) { Qnt <- quantile(x,prob=quant,na.rm=TRUE) stats[1,(IQR+11):numstats] <- t(Qnt)} if(IQR) {Quart <- t(quantile(x,prob=c(.25,.75),na.rm=TRUE)) Iqr <- Quart[,2] -Quart[,1] stats[1,11] <- Iqr } rownames(stats) <- "X1" } else { nvar <- ncol(x) stats = matrix(rep(NA,nvar*numstats),ncol=numstats) #create a temporary array if(is.null(colnames(x))) colnames(x) <- paste0("X",1:ncol(x)) rownames(stats) <- colnames(x) stats[,1] <- apply(x,2,valid) vars <- c(1:nvar) ##adapted from the pairs function to convert logical or categorical to numeric if(!is.matrix(x) && check) { #does not work for matrices for(i in 1:nvar) { if(!is.numeric(x[[i]] )) { if(fast) {x[[i]] <- NA} else { if(is.factor(unlist(x[[i]])) | is.character(unlist(x[[i]]))) { x[[i]] <- as.numeric(x[[i]]) # if(is.factor(unlist(x[[i]]))) { #fixed 5/21/15 # x[[i]] <- as.numeric(x[[i]])} } else {x[[i]] <- NA} } rownames(stats)[i] <- paste(rownames(stats)[i],"*",sep="")} } } x <- as.matrix(x) if(!is.numeric(x)) {message("Converted non-numeric matrix input to numeric. Are you sure you wanted to do this. Please check your data") x <- matrix(as.numeric(x),ncol=nvar) rownames(stats) <- paste0(rownames(stats),"*")} stats[,2] <- apply(x, 2,mean,na.rm=na.rm ) stats[,10] <- apply(x,2,sd,na.rm=na.rm) if (skew) {stats[, 6] <- skew(x,na.rm=na.rm,type=type ) stats[,8] <- kurtosi(x,na.rm=na.rm,type=type)} if(ranges) { if(fast) { stats[,4] <- apply(x,2,min,na.rm=na.rm) stats[,5] <- apply(x,2,max,na.rm = na.rm) } else { stats[, 4] <- apply(x,2,min, na.rm=na.rm ) stats[, 5] <- apply(x,2,max, na.rm=na.rm ) stats[,7] <- apply(x,2,mad, na.rm=na.rm) stats[,9] <- apply(x,2, mean,na.rm=na.rm,trim=trim) if(interp) {stats[, 3] <- apply(x,2,interp.median,na.rm=na.rm ) } else {stats[,3] <- apply(x,2,median,na.rm=na.rm) } }} if(!is.null(quant)) { Qnt <- apply(x,2,quantile,prob=quant,na.rm=TRUE) stats[,(IQR+11):numstats] <- t(Qnt)} if(IQR) {Quart <- t(apply(x,2,quantile,prob=c(.25,.75),na.rm=TRUE)) Iqr <- Quart[,2] - Quart[,1] stats[,11] <- Iqr } } #end of maxtrix input #now summarize the results if (numstats > (10 + IQR)) { colnames(stats)[(11+IQR):numstats] <- paste0("Q",quant[1:length(quant)])} #the following output was cleaned up on June 22, 2016 added the quantile information. #the various options are ranges, skew, fast, numstats > 10 if(fast) { answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],se=stats[,10]/sqrt(stats[,1])) } #minimal case #if((!skew) && ranges) {answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],min= stats[,4],max=stats[,5], range=stats[,5]-stats[,4],se=stats[,10]/sqrt(stats[,1])) } if(skew) { if(ranges) { answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10], median = stats[, 3],trimmed =stats[,9], mad = stats[,7], min= stats[,4],max=stats[,5], range=stats[,5]-stats[,4],skew = stats[, 6], kurtosis = stats[,8],se=stats[,10]/sqrt(stats[,1])) } else { answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],skew = stats[, 6], kurtosis = stats[,8],se=stats[,10]/sqrt(stats[,1])) } } else {if(ranges) {answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],min= stats[,4],max=stats[,5], range=stats[,5]-stats[,4],se=stats[,10]/sqrt(stats[,1])) } else { answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],se=stats[,10]/sqrt(stats[,1])) } } if(IQR) answer <- data.frame(answer,IQR=stats[,11]) if (numstats > (10+ IQR)) {if(nvar > 1 ) {answer <- data.frame(answer, stats[,(IQR+11):numstats]) #add the quantile information } else { answer <- data.frame(answer, t(stats[,(IQR+11):numstats])) } } # {if (ranges) { # if(skew){ # # # if(numstats > 10) { answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10], median = stats[, 3],trimmed =stats[,9], mad = stats[,7], min= stats[,4],max=stats[,5], # range=stats[,5]-stats[,4],skew = stats[, 6], kurtosis = stats[,8], se=stats[,10]/sqrt(stats[,1]), stats[,(11:numstats)])} else { # answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10], median = stats[, 3],trimmed =stats[,9], mad = stats[,7], min= stats[,4],max=stats[,5], # range=stats[,5]-stats[,4],skew = stats[, 6], kurtosis = stats[,8],se=stats[,10]/sqrt(stats[,1]))} #the typical (maximum) case # } else { # if(!fast) { # if(numstats > 10) { # answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10], median = stats[,3],trimmed =stats[,9], # mad = stats[,7],min= stats[,4],max=stats[,5], range=stats[,5]-stats[,4],se=stats[,10]/sqrt(stats[,1])) #somewhat shorter # } else {answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],min= stats[,4],max=stats[,5], range=stats[,5]-stats[,4],se=stats[,10]/sqrt(stats[,1])) #even shorter # } # }} else { # if(skew){answer <- data.frame(vars,n = stats[,1],mean=stats[,2], sd =stats[,10],skew = stats[, 6], kurtosis = stats[,8],se=stats[,10]/sqrt(stats[,1]))} else { # answer <- data.frame(vars=vars,n = stats[,1],mean=stats[,2], sd = stats[,10],se=stats[,10]/sqrt(stats[,1]))}} #the minimal case -- fixed 1/2/2014 # } # answer <-data.frame(var=vars,temp, se = temp$sd/sqrt(temp$n)) #replaced with forming the answer in the if statements 10/1/2014 to improve memory management class(answer) <- c("psych","describe","data.frame") return(answer) } psych/R/item.dichot.R0000644000176200001440000000177510700462364014147 0ustar liggesusers"item.dichot" <- function (nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, low = 0, high = 0) { avloading <- (xloading + yloading)/2 errorweight <- sqrt(1 - (avloading^2 + gloading^2)) g <- rnorm(nsub) truex <- rnorm(nsub) * xloading + xbias truey <- rnorm(nsub) * yloading + ybias if (circum) { radia <- seq(0, 2 * pi, len = nvar + 1) rad <- radia[which(radia < 2 * pi)] } else rad <- c(rep(0, nvar/4), rep(pi/2, nvar/4), rep(pi, nvar/4), rep(3 * pi/2, nvar/4)) error <- matrix(rnorm(nsub * (nvar)), nsub) trueitem <- outer(truex, cos(rad)) + outer(truey, sin(rad)) item <- gloading * g + trueitem + errorweight * error nvar2 <- nvar/2 iteml <- (item[,(1:nvar2)*2 -1] >= low) itemh <- (item[,(1:nvar2)*2] >= high) item <- cbind(iteml,itemh)+0 return(item) } #revised October 2 to make difficulty and direction of factor loading unconfoundedpsych/R/dotchart.psych.r0000644000176200001440000001474213130455033014726 0ustar liggesusers#completely taken from dotchart with some minor addition of confidence intervals #July 17, 2016 #input is the mean + standard errors, and (optionally, alpha) "error.dots" <- function (x,var=NULL, se=NULL, head = 12, tail = 12, sort=TRUE,decreasing=FALSE,alpha=.05,eyes=FALSE, min.n = NULL,max.labels =40, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pt.cex = cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlim = range(x[is.finite(x)]), main = NULL, xlab = NULL, ylab = NULL, ...) { opar <- par("mai", "mar", "cex", "yaxs") on.exit(par(opar)) par(cex = cex, yaxs = "i") #first, see if the data come from a psych object with sd and n or se if(length(class(x)) > 1 ) {if (class(x)[1] == "psych") {obj <- class(x)[2] switch(obj, statsBy = {if(is.null(min.n)) {se <- x$sd[,var]/sqrt(x$n[,var]) x <- x$mean[,var] } else {se <- x$sd[,var] n.obs <- x$n[,var] x <- x$mean[,var] x <- subset(x,n.obs > min.n) se <- subset(se,n.obs > min.n) n.obs <- subset(n.obs, n.obs > min.n) se <- se/sqrt(n.obs) }}, describe = {se <- x$se labels <- rownames(x) x <- x$mean names(x) <- labels }, fa.ci ={se = x$cis$sds if(missing(labels)) labels <-rownames(x$cis$means) x <-x$cis$means } ) } #end switch } n.var <- length(x) if(!is.null(se)) {ci <- qnorm((1-alpha/2))*se} else {ci <- NULL} if (sort) { ord <- order(x,decreasing=decreasing) } else {ord <- n.var:1} x <- x[ord] se <- se[ord] temp <- temp.se <- rep(NA,min(head+tail,n.var)) if((head+tail) < n.var) { if (head > 0 ){ temp[1:head] <- x[1:head] temp.se[1:head] <- se[1:head] names(temp) <- names(x)[1:head] } if(tail > 0 ) {temp[(head + 1):(head + tail)] <- x[(length(x)-tail+1):length(x)] temp.se[(head + 1):(head + tail)] <- se[(length(x)-tail+1):length(x)] names(temp)[(head + 1):(head + tail)] <- names(x)[(length(x)-tail+1):length(x)] } x <- temp se <- temp.se } if(missing(labels)) labels <- names(x) if(!is.null(se)) {ci <- qnorm((1-alpha/2))*se} else {ci <- NULL} if(!is.null(ci)&& is.null(xlim)) xlim <- c(min(x - ci),max(x + ci)) labels <- substr(labels,1,max.labels) if(eyes) { #get ready to draw catseyes ln <- seq(-3,3,.1) rev <- (length(ln):1) } if (!is.numeric(x)) stop("'x' must be a numeric vector or matrix") n <- length(x) if (is.matrix(x)) { if (is.null(labels)) labels <- rownames(x) if (is.null(labels)) labels <- as.character(1L:nrow(x)) labels <- rep_len(labels, n) if (is.null(groups)) groups <- col(x, as.factor = TRUE) glabels <- levels(groups) } else { if (is.null(labels)) labels <- names(x) glabels <- if (!is.null(groups)) levels(groups) if (!is.vector(x)) { warning("'x' is neither a vector nor a matrix: using as.numeric(x)") x <- as.numeric(x) } } plot.new() linch <- if (!is.null(labels)) max(strwidth(labels, "inch"), na.rm = TRUE) else 0 if (is.null(glabels)) { ginch <- 0 goffset <- 0 } else { ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- 0.4 } if (!(is.null(labels) && is.null(glabels))) { nmai <- par("mai") nmai[2L] <- nmai[4L] + max(linch + goffset, ginch) + 0.1 par(mai = nmai) } if (is.null(groups)) { o <- 1L:n y <- o ylim <- c(0, n + 1) } else { o <- sort.list(as.numeric(groups), decreasing = TRUE) x <- x[o] groups <- groups[o] color <- rep_len(color, length(groups))[o] lcolor <- rep_len(lcolor, length(groups))[o] offset <- cumsum(c(0, diff(as.numeric(groups)) != 0)) y <- 1L:n + 2 * offset ylim <- range(0, y + 2) } plot.window(xlim = xlim, ylim = ylim, log = "") lheight <- par("csi") if (!is.null(labels)) { linch <- max(strwidth(labels, "inch"), na.rm = TRUE) loffset <- (linch + 0.1)/lheight labs <- labels[o] mtext(labs, side = 2, line = loffset, at = y, adj = 0, col = color, las = 2, cex = cex, ...) } abline(h = y, lty = "dotted", col = lcolor) points(x, y, pch = pch, col = color, bg = bg, cex = pt.cex/cex) if(!is.null(ci)) {if(!eyes) { segments(x - ci, y, x+ci, y, col = par("fg"), lty = par("lty"), lwd = par("lwd")) } else {catseyes(x,y,se=se,n=NULL,alpha=alpha,density=-10)}} if (!is.null(groups)) { gpos <- rev(cumsum(rev(tapply(groups, groups, length)) + 2) - 1) ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- (max(linch + 0.2, ginch, na.rm = TRUE) + 0.1)/lheight mtext(glabels, side = 2, line = goffset, at = gpos, adj = 0, col = gcolor, las = 2, cex = cex, ...) if (!is.null(gdata)) { abline(h = gpos, lty = "dotted") points(gdata, gpos, pch = gpch, col = gcolor, bg = bg, cex = pt.cex/cex, ...) } } axis(1) box() title(main = main, xlab = xlab, ylab = ylab, ...) invisible() } #not used here -- "catseyes" <- function(x,y,ci,density=density,col=col) { SCALE=.7 ln <- seq(-3,3,.1) rev <- (length(ln):1) norm <- dnorm(ln) clim <- qnorm(alpha/2) norm <- dt(ln,n-1) clim <- qt(alpha/2,n-1) norm <- c(norm,-norm[rev]) ln <- seq(-3,3,.1) cln <- seq(clim,-clim,.01) cnorm <- dnorm(cln) cnorm <- c(0,cnorm,0,-cnorm,0) #this closes the probability interval polygon(norm*SCALE+x,c(ln,ln[rev])*se+y) polygon(cnorm*SCALE+x,c(clim,cln,-clim,-cln,clim)*se+y,density=density,col=col)} psych/R/BASS.R0000644000176200001440000000327311061633617012465 0ustar liggesusersBASS<-function(R, maxP=5, Print = "ON"){ #--------------------------------------------------------- # Program to compute Goldberg's Bass Ackwards Procedure # from a correlation matrix (R). PC with Varimax Rotation # Niels Waller, May 10, 2006 # # Program arguments: # R = input correlation matrix # maxP = maximum number of components to rotate # Print = ON/OFF to print summarzed findings to screen #---------------------------------------------------------- varNames <- rownames(R, do.NULL = FALSE, prefix = "var") ULU <- eigen(R) U <- ULU$vectors L <- ULU$values key <- sign(apply(U, 2, sum)) key[key < 0] <- -1 U <- U %*% diag(key) P <- U %*% diag(sqrt(L)) p <- ncol(R) CrossLevelCors <- list(rep(0, p - 1)) T <- list(rep(0, p - 1)) PCloadings <- list(rep(0, p - 1)) for (i in 2:maxP) { vout <- varimax(P[, 1:i], normalize = TRUE, eps = 1e-15) T[[i - 1]] <- vout$rotmat PCloadings[[i - 1]] <- vout$loadings[1:p, ] rownames(PCloadings[[i - 1]]) <- varNames } Z <- paste("Z", 1:maxP, sep = "") V <- paste("V", 1:maxP, sep = "") if (Print == "ON") { cat("nCorrelation of", Z[1], " with ", V[2], "n") } out <- T[[1]][1, ] dim(out) <- c(1, 2) rownames(out) <- Z[1] colnames(out) <- paste(V[2], ".", 1:2, sep = "") CrossLevelCors[[1]] <- out if (Print == "ON") { print(round(out, 3)) } for (i in 2:(maxP - 1)) { if (Print == "ON") { cat("nnnCorrelation of", V[i], " with ", V[i + 1], "nn") } S <- cbind(diag(i), matrix(0, i, 1)) out <- t(T[[i - 1]]) %*% S %*% T[[i]] rownames(out) <- paste(V[i], ".", 1:i, sep = "") colnames(out) <- paste(V[i + 1], ".", 1:(i + 1), sep = "") CrossLevelCors[[i]] <- out if (Print == "ON") { print(round(out, 3)) } } invisible(list(T = T, cors = CrossLevelCors, loadings = PCloadings)) }psych/R/head.tail.R0000644000176200001440000000071111126446706013563 0ustar liggesusers"head.tail" <- function(x, hlength=4,tlength=4,digits=2) { if(is.data.frame(x) | is.matrix(x) ) { if (is.matrix(x)) x <- data.frame(x) ellipsis <- rep("...",dim(x)[2]) h <- data.frame(head(x,hlength)) t <- data.frame(tail(x,tlength)) headtail <- rbind(round(h,digits),'...' = ellipsis,round(t,digits)) } else {h <- head(x,hlength) t <- tail(x,tlength) head.tail <- rbind(h,"... ...",t)} return(head.tail)} psych/R/kaiser.R0000644000176200001440000000123413015672526013211 0ustar liggesusers#added Promax option (11/5/16) "kaiser" <- function(f,rotate="oblimin", m=4,pro.m=4) { if((!is.matrix(f)) && (!is.data.frame(f))) {f <- as.matrix(f$loadings)} else {f <- as.matrix(f)} if(!requireNamespace('GPArotation')) stop('GPArotation is required for the Kaiser normalization') h2 <- diag(f %*% t(f)) weighted <- f/sqrt(h2) #rotated <- call(paste('GPArotation',rotate,sep="::"),list(weighted)) if(rotate == "Promax") {rotated <- Promax(weighted,m=pro.m)} else { rotated <- do.call(getFromNamespace(rotate,'GPArotation'),list(weighted))} normalized <- rotated$loadings * sqrt(h2) rotated$loadings <- normalized class(rotated) <- c("psych","fa") return(rotated)} psych/R/biplot.R0000644000176200001440000000733512216627766013244 0ustar liggesusers#rewritten Sept 18,2013 to allow much more controll over the points in a two dimensional biplot #the three or more dimensional case remains the same as before #The code for the two dimensional case is adapted (heavily) from the stats:::biplot function "biplot.psych" <- function(x, labels=NULL,cex=c(.75,1),main="Biplot from fa",hist.col="cyan",xlim.s=c(-3,3),ylim.s=c(-3,3),xlim.f=c(-1,1),ylim.f=c(-1,1),maxpoints=100,adjust=1.2,col,pos, arrow.len = 0.1,pch=16,...) { if(is.null(x$scores)) stop("Biplot requires factor/component scores:") op <- par() old.par <-par(no.readonly = TRUE) on.exit(par(old.par)) #fa.poly nests the fa and scores within a list if(is.list(x$scores)) x$scores <- x$scores$scores #the case of fa.poly output if(is.list(x$fa)) x$loadings <- x$fa$loadings #once again, the case of fa.poly colnames(x$scores) <- colnames(x$loadings) #if(missing(pos)) pos <- NULL #if(is.null(labels)) {if(nrow(x$scores) > maxpoints ) {labels = rep(".",dim(x$scores)[1] )} else {labels = rep("o",dim(x$scores)[1] )}} n.dims <- dim(x$loadings)[2] #this is taken directly from biplot if (missing(col)) { col <- par("col") if (!is.numeric(col)) col <- match(col, palette(), nomatch = 1L) col <- c(col, col + 1L) } else if (length(col) == 1L) col <- c(col, col) #here is where we add some plotting controls that are missing from stats:::biplot if (n.dims == 2) { # biplot(x$scores[,1:2],x$loadings[,1:2],xlabs=labels, cex=cex,main=main,xlim=xlim.s,ylim=ylim.s,...) op <- par(pty = "s") if (!is.null(main)) op <- c(op, par(mar = par("mar") + c(0, 0, 1, 0))) #give room for the title #There are three different conditions #1 just show the (unlabeled) points #2 don't show the points, but put in labels at their locations #3 show the points with labels near them according to pos choice <- "one" if(!is.null(labels)) { if(missing(pos)) {choice <- "two" } else {choice <- "three"} } switch(choice, "one" = {plot(x$scores, xlim = xlim.s, ylim = ylim.s, col=col[1],cex=cex[1],main=main,pch=pch, ...) } , "two" = {plot(x$scores,typ='n', xlim = xlim.s, ylim = ylim.s, col=col[1],cex=cex[1],main=main,pch=pch, ...) text(x$scores,labels=labels,col=col[1],pos=NULL,cex=cex[1]) }, "three" = {plot(x$scores, xlim = xlim.s, ylim = ylim.s, col=col[1],cex=cex[1],main=main,pch=pch, ...) text(x$scores,labels=labels,col=col[1],pos=pos,cex=cex[1]) }) par(new = TRUE) #this sets it up so that we can plot on top of a plot dev.hold() on.exit(dev.flush(), add = TRUE) plot(x$loadings, axes = FALSE, type = "n", xlim = xlim.f, ylim = ylim.f, xlab = "", ylab = "", col = col[1L], ...) text(x$loadings, labels = rownames(x$loadings), cex = cex[2L], col = col[2L], ...) arrows(0, 0, x$loadings[, 1L] * 0.8, x$loadings[, 2L] * 0.8, col = col[2L], length = arrow.len) axis(3, col = col[2L], ...) axis(4, col = col[2L], ...) box(col = col[1L]) } else { #the case of 3 or more factors -- we do the equivalent of a pairs plot op1 <- par(mfrow=c(n.dims,n.dims), mar=c(2,3,3,2)) if(nrow(x$scores) > maxpoints) {labels <- rep(".",nrow(x$scores))} else {labels <- rep("o",nrow(x$scores))} for (i in 1:n.dims) { for (j in 1:n.dims){ if(i==j) {h <- hist(x$scores[,i],freq=FALSE, main=colnames(x$loadings)[i],xlab="",ylab="",col=hist.col) breaks <- h$breaks; nB <- length(breaks) tryd <- try( d <- density(x$scores[,i],na.rm=TRUE,bw="nrd",adjust=adjust),silent=TRUE) if(class(tryd) != "try-error") { lines(d)} } else { biplot(x$scores[,c(j,i)],x$loadings[,c(j,i)],xlabs=labels,xlab="",ylab="",cex=cex,xlim=xlim.s,ylim=ylim.s,pch=pch,...)} } } } } psych/R/lowerUpper.R0000644000176200001440000000167112224366731014103 0ustar liggesusers#written June 6, 2012 #note that lower.tri and upper.tri return the matrix in a different order "lowerUpper" <- function(lower,upper=NULL,diff=FALSE) { if(is.null(upper)) {upper <- lower #return two from one upper[lower.tri(upper)] <- t(upper)[lower.tri(t(upper))] lower <- t(lower) lower[lower.tri(lower)] <- t(lower)[lower.tri(lower)] result <- list(lower=lower,upper=upper) } else { if(nrow(lower) !=ncol(lower)) {stop("lower matrix must be square")} if(nrow(upper) !=ncol(upper)) {stop("upper matrix must be square")} if(nrow(lower) !=ncol(upper)) {stop("lower and upper matrices must have the same dimensions")} result <- lower colnames(result) <- colnames(upper) rownames(result) <-rownames(lower) if(diff) upper <- lower - upper result [lower.tri(result)] <- upper[lower.tri(upper)] result <- t(result) diag(result) <- NA} return(result)} #revised Oct 6, 2013 to pick up row names and column names from the two matrices psych/R/grouplag.R0000644000176200001440000000044711274424431013553 0ustar liggesusersgrouplag <- function(x,gr,varnum=NULL) { result <- by(x,gr,lag,varnum) return(result) } lag <- function(x,varnum) {if(!is.null(varnum)) x <- x[-varnum] cname <- colnames(x) results <- cbind(x, x[row(x[,1,drop=FALSE])+1,]) colnames(results) <- c(cname,paste(cname,2,sep="")) return(results) } psych/R/bestScale.R0000644000176200001440000002043413154374664013651 0ustar liggesusers#added just correlate with criteria to speed it up (June 23, 2017) "bestItems" <- function(x,criteria=1,cut=.3, abs=TRUE, dictionary=NULL,digits=2) { if(!isCorrelation(x)) x <- cor(x,x[criteria],use="pairwise") #convert to correlation if necessary if(abs) {ord <- order(abs(x[,criteria]),decreasing=TRUE) value <- x[ord,criteria,drop=FALSE] count <- sum(abs(value) > cut,na.rm=TRUE) value <- value[1:count,,drop=FALSE] } else {ord <- order(x[,criteria],decreasing=TRUE) value <- x[ord,criteria] value <- value[value,criteria > cut] } value <- round(data.frame(value),digits) if((!is.null(dictionary)) && !is.factor(dictionary)) {temp <- lookup(rownames(value),dictionary) value <- merge(value,temp,by="row.names",all.x=TRUE,sort=FALSE) rownames(value) <- value[,"Row.names"] value <- value[-1] if(abs) {ord <- order(abs(value[,criteria]),decreasing=TRUE) } else {ord <- order(value[,criteria],decreasing=TRUE)} value <- value[ord,] } return(value) } #lookup which x's are found in y[c1],return matches for y[] "lookup" <- function(x,y,criteria=NULL) { if (is.null(criteria)) {temp <- match(x,rownames(y))} else { temp <- match(x,y[,criteria])} y <- (y[temp[!is.na(temp)],,drop=FALSE]) return(y)} "bestScales" <- function(x,criteria,cut=.1,n.item =10,overlap=FALSE,dictionary=NULL,impute="none", n.iter =1,frac=.9,digits=2) { #first, define function to be parallelized #mcmapply for parallel, mapply for debugging short <- function(i,x,n.obs,criteria,cut,n.item,impute,digits,dictionary,frac) { if(n.iter > 1) { if(!isCorrelation(x)) { ss <- (1:n.obs) ss <- sample(ss,n.obs,FALSE) ss <- ss[1:(n.obs*frac)] scores <- bScales(x[ss,],criteria=criteria,cut=cut, n.item =n.item,overlap=overlap,dictionary=dictionary,impute=impute,digits=digits) } else {message("iterative solutions not possible for correlation matrices") n.iter <- 1 }} else { # a correlation matrix or n.iter = 1 scores <- bScales(x,criteria=criteria,cut=cut, n.item =n.item,overlap=overlap,dictionary=dictionary,impute=impute,digits=digits) } key.list <- keys2list(scores$key) if(n.iter > 1) { cross <- scoreFast(key.list,x[-ss,],impute=impute,min=1,max=6) validity <- diag(cor(cross,x[-ss,criteria],use="pairwise")) result <- list(validity=c(scores$r,validity),keys=key.list) } else {result <- scores result$key.list <- key.list} return(result) } n.obs <- nrow(x) if(n.iter ==1) {frac <- 1 #don't bother to parallelize, just do one trial result <- short(1,x,n.obs=n.obs,criteria=criteria,cut=cut,n.item=n.item,impute=impute,digits=digits,dictionary=dictionary,frac=frac) } else { #the case for n.iter > 1. We want to parallelize this because we are working pretty hard result <- list() result <- mcmapply(short,c(1:n.iter),MoreArgs=list(x,n.obs=n.obs,criteria=criteria,cut=cut,n.item=n.item,impute=impute,digits=digits,dictionary=dictionary,frac=frac)) #save the keys and the summary validity <- list() keys <- list() for(i in (1:n.iter)) { validity[[i]] <- result[[i*2 -1]] keys[[i]] <- result[[i*2]]} result.df <- data.frame(matrix(unlist(validity),ncol=2*length(criteria),byrow=TRUE)) colnames(result.df) <-c(paste("derivation",criteria),paste("validation",criteria)) result <- list(validity = result.df,keys = keys)} return(result) } "bScales" <- function(x,criteria,cut=.1,n.item =10, overlap=FALSE,dictionary=NULL,impute="median",digits=2) { #created 20/2/14 #find the scales based upon the items that most correlate with a criteria #pure dust bowl empiricism #modified 13/3/15 to handle the problem of missing item labels #Completely redone June 2017 to allow for raw data ## #first, declare a function to identify the bad items and drop them from the keys findBad <- function(key,r) { ss <- abs(key) > 0 rss <- r[ss,ss] if(any(is.na(rss))){ #some of these are bad n.bad <- apply(rss,1,function(x) sum(is.na(x))) key[names(which.max(n.bad))] <- 0 findBad(key,r)} return(key) } short <- function(key,r) { kn <- names(key[abs(key[,1]) > 0,1]) if(is.null(kn)) kn <- names(which(abs(key[,1]) > 0)) cn <- colnames(key) ord <- order(abs(r[kn,cn]),decreasing=TRUE) kn <- kn[ord] result <- r[kn,cn,drop=FALSE] return(result) } #begin the main function ##Basically two cases: #a correlation matrix is provided and we do basic matrix algebra #raw data is provided (getting ready to do bootstrapping) and we find just the necessary correlations nvar <- ncol(x) if(isCorrelation(x)) {r <- x # case 1 raw <- FALSE} else { #case 2 y <- x[,criteria] r <- cor(x,y,use="pairwise") colnames(r) <- criteria x <- as.matrix(x) raw <- TRUE n.obs <- NROW(x)} #don't actually need to have a square matrix ny <- length(criteria) nc <- length(cut) ni <- length(n.item) #number of items per scale to find ord.name <- NULL if(length(cut) == 1) cut <- rep(cut,ny) if(length(n.item) == 1) n.item <- rep(n.item,ny) #this next part just finds the cut values to use if(ny > 1 ) {ord <- apply(abs(r[,criteria]),2,order,decreasing=TRUE) for (i in 1:ny) {cut[i] <- max(cut[i],abs(r[ord[n.item[i]+1,i],criteria[i]])) # ord.name <- c(ord.name, rownames(r)[ord[1:n.item[i],i]] ) #this is wrong and not needed } } else { ord <- order(abs(r[,criteria]),decreasing=TRUE) for (i in 1:ny) {cut[i] <- max(cut[i],abs(r[ord[n.item[i]+1],criteria])) } } # cut has been adjusted key <- matrix(0,ncol=ny,nrow=nvar) key[t(t(r[,criteria]) >= cut)] <- 1 key[t(t(r[,criteria]) <= -cut)]<- -1 rownames(key) <- rownames(r) colnames(key) <- criteria k <- key #this just gets it to be a matrix of the right size and names if(!overlap) {key[criteria,criteria] <- 0} else {for(i in 1:ny) key[criteria[i],criteria[i]] <- 0} #colnames(key) <- paste(criteria,"S",sep=".") colnames(key) <- criteria #now, drop those items from the keys that are not used used <- rowSums(abs(key)) key <- key[used >0,,drop=FALSE] x <- x[,used >0,drop=FALSE] #now, if we have raw data, find the correlation of the composite scale with the criteria #if we have raw data, then we find the scales from the data if(raw) { #case 2 #score <- matrix(NA,ncol=ny,nrow=nrow(x)) #for (i in (1:ny)) { # score[,i] <- rowSums(t((key[,i])* t(x)),na.rm=TRUE) # } score <- scoreFast(key,x,impute=impute,min=1,max=6) R <- diag(cor(score,y,use="pairwise")) #the validities re <- r[,criteria] ni <- colSums(abs(key)) } else { #case 1 (from a correlation matrix) score <-NULL r <- r[,used > 0,drop=FALSE] if(any(is.na(r))) {#Are there any bad values for(i in 1:ny) {#key[,i] <- findBad(key[,i],r) #Drop the bad items from any scoring key k[,i] <- colSums(t((key[,i]) * t(r)),na.rm=TRUE)} #replace matrix addition with a colSums k <- t(k) } else {#otherwise, don't bother C <- t(t(key) %*% t(r[criteria,,drop=FALSE])) #criterion covariance V <- t(key) %*% r[ used > 0,] %*% key #predictor variance # k <- t(t(key) %*% t(r[criteria,,drop=FALSE])) #we can do the matrix multiply because there are no bad data } # V <- t(k) %*% key #this is the covariance of the criteria with criteria # C <- k[criteria,] if(ny < 2) {re <- r[criteria,] R <- C/sqrt(V)} else { R <- diag(C/sqrt(V)) #re <- diag(k[criteria,])/sqrt(diag(C)) } ni <- colSums(abs(key)) #R <- cov2cor(C) r <- t(r) re <- r[,criteria] } short.key <- list() value <- list() #R is the correlation with the criterion #re is the correlations of each item with the criteria for(i in 1:ny) {short.key[[criteria[i]]] <- round(short(key[,i,drop=FALSE],r),digits=digits) if(!is.null(dictionary)) {if(!is.factor(dictionary)) {temp <- lookup(rownames(short.key[[criteria[i]]]),dictionary) value[[criteria[[i]]]] <- merge(short.key[[i]],temp,by="row.names",all.x=TRUE,sort=FALSE) rownames( value[[criteria[[i]]]]) <- value[[criteria[[i]]]][,1] value[[criteria[[i]]]] <- value[[criteria[[i]]]][-1] ord <- order(abs(value[[criteria[[i]]]][[criteria[[i]]]]),decreasing=TRUE) value[[criteria[[i]]]] <- value[[criteria[[i]]]][ord,] } }} results <- list(r=R,n.items=ni,R=re,cut=cut,short.key=short.key,value=value,key=key,ordered=ord.name,scores=score) class(results) <- c("psych","bestScales") return(results) } psych/vignettes/0000755000176200001440000000000013154621324013411 5ustar liggesuserspsych/vignettes/overview.Rnw0000644000176200001440000042203513145320511015747 0ustar liggesusers% \VignetteIndexEntry{Overview of the psych package for psychometrics} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} \usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \makeindex % used for the subject index \title{An introduction to the psych package: Part II\\Scale construction and psychometrics} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \newpage \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package: @ \begin{scriptsize} \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} \end{scriptsize} \item Input your data (section \ref{sect:read}). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .csv, .data, .sav, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, or .RData, then the file will be opened and the data will be read in. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using your normal operating system \end{Sinput} \end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} \end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} \begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or descrbeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} \end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} (section~\ref{sect:pairs}) Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} \begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data (section \ref{sect:scrub}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} \end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable (section \ref{sect:errorbars}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} \end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} \begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} \end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. \begin{itemize} \item \pfun{setCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") setCor(y = c( "y1", "y2"), x = c("x1","x2"), data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", mod = "mod1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in this vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in this Vignette. A brief review of the functions available is included here. For basic data entry and descriptive statistics, see the Vignette Intro to Psych \url{http://personality-project.org/r}. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{http://personality-project.org/r}. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}, section \ref{sect:fa.parallel}) or Very Simple Structure (\pfun{vss}, \ref{sect:vss}) . \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Factor analyze (see section \ref{sect:fa}) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities (see sections \ref{sect:minres}-\ref{sect:wls}). Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section \ref{sect:iclust}). Also consider a hierarchical factor solution to find coefficient $\omega$ (see \ref{sect:omega}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} \end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} \begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function (see \ref{sect:alpha}). Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function (see \ref{sect:score}) and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} \begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage\newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{http://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes five methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51}(\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} \pfun{mlr} will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \url{psych_manual.pdf} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{http://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \url{psych_for_sem.pdf}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"http://personality-project.org/r/book/psych_for_sem.pdf"}{\url{http://personality-project.org/r/book/psych_for_sem.pdf}}). For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{http://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{http://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in this overview require other packages. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. \begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} \end{Schunk} The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: \begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt") \end{Sinput} \end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. These are described in more detail in the companion vignette: An introduction to the psych package: Part I which is also available from the personality-project site. \url{http://personality-project.org/r/psych/vignettes/intro.pdf}. Please consult that vignette first for information on how to read data (particularly using the \pfun{read.file} and \pfun{read.clipboard} commands), Also, the \pfun{describe} and \pfun{describeBy} functions are described in more detail in the introductory vignette. For even though you probably want to jump immediately to factor analyze your data, this is a mistake. It is very important to first describe them and look for weird responses. It is also useful to \pfun{scrub} your data when removing outliers, to graphically display them using \pfun{pairs.panesl} and \pfun{corPlot}. Basic multiple regression and moderated or mediated regressions may be done from either the raw data or from correlation matrices using \pfun{setCor}, or \pfun{mediation}. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., \begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych)} \end{Sinput} \end{Schunk} \section{Item and scale analysis} The main functions in the \Rpkg{psych} package are for analyzing the structure of items and of scales and for finding various estimates of scale reliability. These may be considered as problems of dimension reduction (e.g., factor analysis, cluster analysis, principal components analysis) and of forming and estimating the reliability of the resulting composite scales. \subsection{Dimension reduction through factor analysis and cluster analysis} \label{sect:fa} Parsimony of description has been a goal of science since at least the famous dictum commonly attributed to William of Ockham to not multiply entities beyond necessity\footnote{Although probably neither original with Ockham nor directly stated by him \citep{thornburn:1918}, Ockham's razor remains a fundamental principal of science.}. The goal for parsimony is seen in psychometrics as an attempt either to describe (components) or to explain (factors) the relationships between many observed variables in terms of a more limited set of components or latent factors. The typical data matrix represents multiple items or scales usually thought to reflect fewer underlying constructs\footnote{\cite{cattell:fa78} as well as \cite{maccallum:07} argue that the data are the result of many more factors than observed variables, but are willing to estimate the major underlying factors.}. At the most simple, a set of items can be be thought to represent a random sample from one underlying domain or perhaps a small set of domains. The question for the psychometrician is how many domains are represented and how well does each item represent the domains. Solutions to this problem are examples of \iemph{factor analysis} (\iemph{FA}), \iemph{principal components analysis} (\iemph{PCA}), and \iemph{cluster analysis} (\emph{CA}). All of these procedures aim to reduce the complexity of the observed data. In the case of FA, the goal is to identify fewer underlying constructs to explain the observed data. In the case of PCA, the goal can be mere data reduction, but the interpretation of components is frequently done in terms similar to those used when describing the latent variables estimated by FA. Cluster analytic techniques, although usually used to partition the subject space rather than the variable space, can also be used to group variables to reduce the complexity of the data by forming fewer and more homogeneous sets of tests or items. At the data level the data reduction problem may be solved as a \iemph{Singular Value Decomposition} of the original matrix, although the more typical solution is to find either the \iemph{principal components} or \iemph{factors} of the covariance or correlation matrices. Given the pattern of regression weights from the variables to the components or from the factors to the variables, it is then possible to find (for components) individual \index{component scores} \emph{component} or \iemph{cluster scores} or estimate (for factors) \iemph{factor scores}. Several of the functions in \Rpkg{psych} address the problem of data reduction. \begin{description} \item[\pfun{fa}] incorporates six alternative algorithms: \iemph{minres factor analysis}, \iemph{principal axis factor analysis}, \iemph{alpha factor analysis}, \iemph{weighted least squares factor analysis}, \iemph{generalized least squares factor analysis} and \iemph{maximum likelihood factor analysis}. That is, it includes the functionality of three other functions that will be eventually phased out. \item[\pfun{fa.poly} (deprecated) ] is useful when finding the factor structure of categorical items. \pfun{fa.poly} first finds the tetrachoric or polychoric correlations between the categorical variables and then proceeds to do a normal factor analysis. By setting the n.iter option to be greater than 1, it will also find confidence intervals for the factor solution. Warning. Finding polychoric correlations is very slow, so think carefully before doing so. These options are now part of the \iemph{fa} function and can be controlled by setting the cor parameter to `tet' or `poly'. \item [\pfun{factor.minres} (deprecated)] Minimum residual factor analysis is a least squares, iterative solution to the factor problem. minres attempts to minimize the residual (off-diagonal) correlation matrix. It produces solutions similar to maximum likelihood solutions, but will work even if the matrix is singular. \item [\pfun{factor.pa} (deprecated)] Principal Axis factor analysis is a least squares, iterative solution to the factor problem. PA will work for cases where maximum likelihood techniques (\fun{factanal}) will not work. The original communality estimates are either the squared multiple correlations (\pfun{smc}) for each item or 1. \item [\pfun{factor.wls} (deprecated)] Weighted least squares factor analysis is a least squares, iterative solution to the factor problem. It minimizes the (weighted) squared residual matrix. The weights are based upon the independent contribution of each variable. \item [\pfun{principal}] Principal Components Analysis reports the largest n eigen vectors rescaled by the square root of their eigen values. Note that PCA is not the same as factor analysis and the two should not be confused. \item [\pfun{factor.congruence}] The congruence between two factors is the cosine of the angle between them. This is just the cross products of the loadings divided by the sum of the squared loadings. This differs from the correlation coefficient in that the mean loading is not subtracted before taking the products. \pfun{factor.congruence} will find the cosines between two (or more) sets of factor loadings. \item [\pfun{vss}] Very Simple Structure \cite{revelle:vss} applies a goodness of fit test to determine the optimal number of factors to extract. It can be thought of as a quasi-confirmatory model, in that it fits the very simple structure (all except the biggest c loadings per item are set to zero where c is the level of complexity of the item) of a factor pattern matrix to the original correlation matrix. For items where the model is usually of complexity one, this is equivalent to making all except the largest loading for each item 0. This is typically the solution that the user wants to interpret. The analysis includes the \pfun{MAP} criterion of \cite{velicer:76} and a $\chi^2$ estimate. \item [\pfun{nfactors}] combines VSS, MAP, and a number of other fit statistics. The depressing reality is that frequently these conventional fit estimates of the number of factors do not agree. \item [\pfun{fa.parallel}] The parallel factors technique compares the observed eigen values of a correlation matrix with those from random data. \item [\pfun{fa.plot}] will plot the loadings from a factor, principal components, or cluster analysis (just a call to plot will suffice). If there are more than two factors, then a SPLOM of the loadings is generated. \item[\pfun{fa.diagram}] replaces \pfun{fa.graph} and will draw a path diagram representing the factor structure. It does not require Rgraphviz and thus is probably preferred. \item[\pfun{fa.graph}] requires \fun{Rgraphviz} and will draw a graphic representation of the factor structure. If factors are correlated, this will be represented as well. \item[\pfun{iclust} ] is meant to do item cluster analysis using a hierarchical clustering algorithm specifically asking questions about the reliability of the clusters \citep{revelle:iclust}. Clusters are formed until either coefficient $\alpha$ \cite{cronbach:51} or $\beta$ \cite{revelle:iclust} fail to increase. \end{description} \subsubsection{Minimum Residual Factor Analysis} \label{sect:minres} The factor model is an approximation of a correlation matrix by a matrix of lower rank. That is, can the correlation matrix, $\vec{_nR_n}$ be approximated by the product of a factor matrix, $\vec{_nF_k}$ and its transpose plus a diagonal matrix of uniqueness. \begin{equation} R = FF' + U^2 \end{equation} The maximum likelihood solution to this equation is found by \fun{factanal} in the \Rpkg{stats} package. Six alternatives are provided in \Rpkg{psych}, all of them are included in the \pfun{fa} function and are called by specifying the factor method (e.g., fm=``minres", fm=``pa", fm=11alpha" fm=`wls", fm=``gls" and fm=``ml"). In the discussion of the other algorithms, the calls shown are to the \pfun{fa} function specifying the appropriate method. \pfun{factor.minres} attempts to minimize the off diagonal residual correlation matrix by adjusting the eigen values of the original correlation matrix. This is similar to what is done in \fun{factanal}, but uses an ordinary least squares instead of a maximum likelihood fit function. The solutions tend to be more similar to the MLE solutions than are the \pfun{factor.pa} solutions. \iemph{min.res} is the default for the \pfun{fa} function. A classic data set, collected by \cite{thurstone:41} and then reanalyzed by \cite{bechtoldt:61} and discussed by \cite{mcdonald:tt}, is a set of 9 cognitive variables with a clear bi-factor structure \cite{holzinger:37}. The minimum residual solution was transformed into an oblique solution using the default option on rotate which uses an oblimin transformation (Table~\ref{tab:factor.minres}). Alternative rotations and transformations include ``none", ``varimax", ``quartimax", ``bentlerT", ``varimin'' and ``geominT" (all of which are orthogonal rotations). as well as ``promax", ``oblimin", ``simplimax", ``bentlerQ, and ``geominQ" and ``cluster" which are possible oblique transformations of the solution. The default is to do a oblimin transformation. The measures of factor adequacy reflect the multiple correlations of the factors with the best fitting linear regression estimates of the factor scores \citep{grice:01}. Note that if extracting more than one factor, and doing any oblique rotation, it is necessary to have the \Rpkg{GPArotation} installed. This is checked for in the appropriate functions. <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} @ \begin{table}[htpb] \caption{Three correlated factors from the Thurstone 9 variable problem. By default, the solution is transformed obliquely using oblimin. The extraction method is (by default) minimum residual.} \begin{scriptsize} \begin{center} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3t <- fa(Thurstone,3,n.obs=213) f3t } @ \end{center} \end{scriptsize} \label{tab:factor.minres} \end{table}% \subsubsection{Principal Axis Factor Analysis} An alternative, least squares algorithm (included in \pfun{fa} with the fm=pa option or as a standalone function (\pfun{factor.pa}), does a Principal Axis factor analysis by iteratively doing an eigen value decomposition of the correlation matrix with the diagonal replaced by the values estimated by the factors of the previous iteration. This OLS solution is not as sensitive to improper matrices as is the maximum likelihood method, and will sometimes produce more interpretable results. It seems as if the SAS example for PA uses only one iteration. Setting the max.iter parameter to 1 produces the SAS solution. The solutions from the \pfun{fa}, the \pfun{factor.minres} and \pfun{factor.pa} as well as the \pfun{principal} functions can be rotated or transformed with a number of options. Some of these call the \Rpkg{GPArotation} package. Orthogonal rotations include \fun{varimax}, \fun{quartimax}, \pfun{varimin}, \pfun{bifactor} . Oblique transformations include \fun{oblimin}, \fun{quartimin}, \pfun{biquartimin} and then two targeted rotation functions \pfun{Promax} and \pfun{target.rot}. The latter of these will transform a loadings matrix towards an arbitrary target matrix. The default is to transform towards an independent cluster solution. Using the Thurstone data set, three factors were requested and then transformed into an independent clusters solution using \pfun{target.rot} (Table~\ref{tab:Thurstone}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The extraction method was principal axis. The transformation was a targeted transformation to a simple cluster solution.} \begin{center} \begin{scriptsize} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} @ \end{scriptsize} \end{center} \label{tab:Thurstone} \end{table} \subsubsection{Alpha Factor Analysis} Introduced by \cite{kaiser:65} and discussed by \cite{loehlin:17 }, \emph{alpha factor analysis} factors the correlation matrix of correlations or covariances corrected for their communalities. This has the effect of making all correlations corrected for reliabiity to reflect their true, latent correlations. \emph{alpha factor analysis} was added in August, 2017 to increase the range of EFA options available. This is added more completeness rather than an endorsement of the procedure. It is worth comparing solutions from minres, alpha, and MLE, for they are not the same. \subsubsection{Weighted Least Squares Factor Analysis} \label{sect:wls} Similar to the minres approach of minimizing the squared residuals, factor method ``wls" weights the squared residuals by their uniquenesses. This tends to produce slightly smaller overall residuals. In the example of weighted least squares, the output is shown by using the \pfun{print} function with the cut option set to 0. That is, all loadings are shown (Table~\ref{tab:Thurstone.wls}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The factors were extracted using a weighted least squares algorithm. All loadings are shown by using the cut=0 option in the \pfun{print.psych} function.} \begin{scriptsize} <>= f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) @ \end{scriptsize} \label{tab:Thurstone.wls} \end{table} subsection{Displaying factor solutions} The unweighted least squares solution may be shown graphically using the \pfun{fa.plot} function which is called by the generic \fun{plot} function (Figure~\ref{fig:thurstone}). Factors were transformed obliquely using a oblimin. These solutions may be shown as item by factor plots (Figure~\ref{fig:thurstone}) or by a structure diagram (Figure~\ref{fig:thurstone.diagram}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= plot(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{plot}. Factors were transformed to an oblique solution using the oblimin function from the GPArotation package.} \label{fig:thurstone} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= fa.diagram(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{fa.diagram}. Factors were transformed to an oblique solution using oblimin.} \label{fig:thurstone.diagram} \end{center} \end{figure} A comparison of these three approaches suggests that the minres solution is more similar to a maximum likelihood solution and fits slightly better than the pa or wls solutions. Comparisons with SPSS suggest that the pa solution matches the SPSS OLS solution, but that the minres solution is slightly better. At least in one test data set, the weighted least squares solutions, although fitting equally well, had slightly different structure loadings. Note that the rotations used by SPSS will sometimes use the ``Kaiser Normalization''. By default, the rotations used in psych do not normalize, but this can be specified as an option in \pfun{fa}. \subsubsection{Principal Components analysis (PCA)} An alternative to factor analysis, which is unfortunately frequently confused with \iemph{factor analysis}, is \iemph{principal components analysis}. Although the goals of \iemph{PCA} and \iemph{FA} are similar, PCA is a descriptive model of the data, while FA is a structural model. Some psychologists use PCA in a manner similar to factor analysis and thus the \pfun{principal} function produces output that is perhaps more understandable than that produced by \fun{princomp} in the \Rpkg{stats} package. Table~\ref{tab:pca} shows a PCA of the Thurstone 9 variable problem rotated using the \pfun{Promax} function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the \iemph{common variance}. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the \pfun{fa} solution. \begin{table}[htpb] \caption{The Thurstone problem can also be analyzed using Principal Components Analysis. Compare this to Table~\ref{tab:Thurstone}. The loadings are higher for the PCA because the model accounts for the unique as well as the common variance.The fit of the off diagonal elements, however, is much worse than the \pfun{fa} results.} \begin{center} \begin{scriptsize} <>= p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p @ \end{scriptsize} \end{center} \label{tab:pca} \end{table} \subsubsection{Hierarchical and bi-factor solutions} \label{sect:omega} For a long time structural analysis of the ability domain have considered the problem of factors that are themselves correlated. These correlations may themselves be factored to produce a higher order, general factor. An alternative \citep{holzinger:37,jensen:weng} is to consider the general factor affecting each item, and then to have group factors account for the residual variance. Exploratory factor solutions to produce a hierarchical or a bifactor solution are found using the \pfun{omega} function. This technique has more recently been applied to the personality domain to consider such things as the structure of neuroticism (treated as a general factor, with lower order factors of anxiety, depression, and aggression). Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations between the factors (as shown in Figure~\ref{fig:thurstone.diagram} can themselves be factored. This results in a higher order factor model (Figure~\ref{fig:omega}). An an alternative solution is to take this higher order model and then solve for the general factor loadings as well as the loadings on the residualized lower order factors using the \iemph{Schmid-Leiman} procedure. (Figure ~\ref{fig:omega.2}). Yet another solution is to use structural equation modeling to directly solve for the general and group factors. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A higher order factor solution to the Thurstone 9 variable problem} \label{fig:omega} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om <- omega(Thurstone,n.obs=213) @ \end{scriptsize} \caption{A bifactor factor solution to the Thurstone 9 variable problem} \label{fig:omega.2} \end{center} \end{figure} Yet another approach to the bifactor structure is do use the \pfun{bifactor} rotation function in either \Rpkg{psych} or in \Rpkg{GPArotation}. This does the rotation discussed in \cite{jennrich:11}. \subsubsection{Item Cluster Analysis: iclust} \label{sect:iclust} An alternative to factor or components analysis is \iemph{cluster analysis}. The goal of cluster analysis is the same as factor or components analysis (reduce the complexity of the data and attempt to identify homogeneous subgroupings). Mainly used for clustering people or objects (e.g., projectile points if an anthropologist, DNA if a biologist, galaxies if an astronomer), clustering may be used for clustering items or tests as well. Introduced to psychologists by \cite{tryon:39} in the 1930's, the cluster analytic literature exploded in the 1970s and 1980s \citep{blashfield:80,blashfield:88,everitt:74,hartigan:75}. Much of the research is in taxonmetric applications in biology \citep{sneath:73,sokal:63} and marketing \citep{cooksey:06} where clustering remains very popular. It is also used for taxonomic work in forming clusters of people in family \citep{henry:05} and clinical psychology \citep{martinent:07,mun:08}. Interestingly enough it has has had limited applications to psychometrics. This is unfortunate, for as has been pointed out by e.g. \citep{tryon:35,loevinger:53}, the theory of factors, while mathematically compelling, offers little that the geneticist or behaviorist or perhaps even non-specialist finds compelling. \cite{cooksey:06} reviews why the \pfun{iclust} algorithm is particularly appropriate for scale construction in marketing. \emph{Hierarchical cluster analysis} \index{hierarchical cluster analysis} forms clusters that are nested within clusters. The resulting \iemph{tree diagram} (also known somewhat pretentiously as a \iemph{rooted dendritic structure}) shows the nesting structure. Although there are many hierarchical clustering algorithms in \R{} (e.g., \fun{agnes}, \fun{hclust}, and \pfun{iclust}), the one most applicable to the problems of scale construction is \pfun{iclust} \citep{revelle:iclust}. \begin{enumerate} \item Find the proximity (e.g. correlation) matrix, \item Identify the most similar pair of items \item Combine this most similar pair of items to form a new variable (cluster), \item Find the similarity of this cluster to all other items and clusters, \item Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster remains or in \pfun{iclust} if there is a failure to increase reliability coefficients $\alpha$ or $\beta$). \item Purify the solution by reassigning items to the most similar cluster center. \end{enumerate} \pfun{iclust} forms clusters of items using a hierarchical clustering algorithm until one of two measures of internal consistency fails to increase \citep{revelle:iclust}. The number of clusters may be specified a priori, or found empirically. The resulting statistics include the average split half reliability, $\alpha$ \citep{cronbach:51}, as well as the worst split half reliability, $\beta$ \citep{revelle:iclust}, which is an estimate of the general factor saturation of the resulting scale (Figure~\ref{fig:iclust}). Cluster loadings (corresponding to the structure matrix of factor analysis) are reported when printing (Table~\ref{tab:iclust}). The pattern matrix is available as an object in the results. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(bfi) ic <- iclust(bfi[1:25]) @ \end{scriptsize} \caption{Using the \pfun{iclust} function to find the cluster structure of 25 personality items (the three demographic variables were excluded from this analysis). When analyzing many variables, the tree structure may be seen more clearly if the graphic output is saved as a pdf and then enlarged using a pdf viewer.} \label{fig:iclust} \end{center} \end{figure} \begin{table}[htpb] \caption{The summary statistics from an iclust analysis shows three large clusters and smaller cluster.} \begin{center} \begin{scriptsize} <>= summary(ic) #show the results @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% The previous analysis (Figure~\ref{fig:iclust}) was done using the Pearson correlation. A somewhat cleaner structure is obtained when using the \pfun{polychoric} function to find polychoric correlations (Figure~\ref{fig:iclust.poly}). Note that the first time finding the polychoric correlations some time, but the next three analyses were done using that correlation matrix (r.poly\$rho). When using the console for input, \pfun{polychoric} will report on its progress while working using \pfun{progressBar}. \begin{table}[htpb] \caption{The \pfun{polychoric} and the \pfun{tetrachoric} functions can take a long time to finish and report their progress by a series of dots as they work. The dots are suppressed when creating a Sweave document.} \begin{center} \begin{tiny} <>= data(bfi) r.poly <- polychoric(bfi[1:25]) #the ... indicate the progress of the function @ \end{tiny} \end{center} \label{tab:bad} \end{table}% \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations. Compare this solution to the previous one (Figure~\ref{fig:iclust}) which was done using Pearson correlations. } \label{fig:iclust.poly} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the solution set to 5 clusters. Compare this solution to the previous one (Figure~\ref{fig:iclust.poly}) which was done without specifying the number of clusters and to the next one (Figure~\ref{fig:iclust.3}) which was done by changing the beta criterion. } \label{fig:iclust.5} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the beta criterion set to 3. Compare this solution to the previous three (Figure~\ref{fig:iclust},~\ref{fig:iclust.poly}, \ref{fig:iclust.5}).} \label{fig:iclust.3} \end{center} \end{figure} \begin{table}[htpb] \caption{The output from \pfun{iclust} includes the loadings of each item on each cluster. These are equivalent to factor structure loadings. By specifying the value of cut, small loadings are suppressed. The default is for cut=0.su } \begin{center} \begin{scriptsize} <>= print(ic,cut=.3) @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% A comparison of these four cluster solutions suggests both a problem and an advantage of clustering techniques. The problem is that the solutions differ. The advantage is that the structure of the items may be seen more clearly when examining the clusters rather than a simple factor solution. \subsection{Estimates of fit} Exploratory factoring techniques are sometimes criticized because of the lack of statistical information on the solutions. There are perhaps as many fit statistics as there are psychometricians. When using Maximum Likelihood extraction, many of these various fit statistics are based upon the $\chi^{2}$ which is minimized using ML. If not using ML, these same statistics can be found, but they are no longer maximum likelihood estimates. They are, however, still useful. Overall estimates of goodness of fit including $\chi^{2}$ and RMSEA are found in the \pfun{fa} and \pfun{omega} functions. \subsection{Confidence intervals using bootstrapping techniques} Confidence intervals for the factor loadings may be found by doing multiple bootstrapped iterations of the original analysis. This is done by setting the n.iter parameter to the desired number of iterations. This can be done for factoring of Pearson correlation matrices as well as polychoric/tetrachoric matrices (See Table~\ref{tab:bootstrap}). Although the example value for the number of iterations is set to 20, more conventional analyses might use 1000 bootstraps. This will take much longer. Bootstrapped confidence intervals can also be found for the loadings of a factoring of a polychoric matrix. \pfun{fa.poly} will find the polychoric correlation matrix and if the n.iter option is greater than 1, will then randomly resample the data (case wise) to give bootstrapped samples. This will take a long time for large number of items or interations. \begin{table}[htpb] \caption{An example of bootstrapped confidence intervals on 10 items from the Big 5 inventory. The number of bootstrapped samples was set to 20. More conventional bootstrapping would use 100 or 1000 replications. } \begin{tiny} \begin{center} <>= fa(bfi[1:10],2,n.iter=20) @ \end{center} \end{tiny} \label{tab:bootstrap} \end{table}% \subsection{Comparing factor/component/cluster solutions} Cluster analysis, factor analysis, and principal components analysis all produce structure matrices (matrices of correlations between the dimensions and the variables) that can in turn be compared in terms of Burt's \iemph{congruence coefficient} (also known as Tucker's coefficient) which is just the cosine of the angle between the dimensions $$c_{f_{i}f_{j}} = \frac{\sum_{k=1}^{n}{f_{ik}f_{jk}}} {\sum{f_{ik}^{2}}\sum{f_{jk}^{2}}}.$$ Consider the case of a four factor solution and four cluster solution to the Big Five problem. \begin{scriptsize} <>= f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) @ \end{scriptsize} A more complete comparison of oblique factor solutions (both minres and principal axis), bifactor and component solutions to the Thurstone data set is done using the \pfun{factor.congruence} function. (See table~\ref{tab:congruence}). \begin{table}[htpb] \caption{Congruence coefficients for oblique factor, bifactor and component solutions for the Thurstone problem.} \begin{scriptsize} <>= factor.congruence(list(f3t,f3o,om,p3p)) @ \end{scriptsize} \label{tab:congruence} \end{table}% \subsection{Determining the number of dimensions to extract.} How many dimensions to use to represent a correlation matrix is an unsolved problem in psychometrics. There are many solutions to this problem, none of which is uniformly the best. Henry Kaiser once said that ``a solution to the number-of factors problem in factor analysis is easy, that he used to make up one every morning before breakfast. But the problem, of course is to find \emph{the} solution, or at least a solution that others will regard quite highly not as the best" \cite{horn:79}. Techniques most commonly used include 1) Extracting factors until the chi square of the residual matrix is not significant. 2) Extracting factors until the change in chi square from factor n to factor n+1 is not significant. 3) Extracting factors until the eigen values of the real data are less than the corresponding eigen values of a random data set of the same size (parallel analysis) \pfun{fa.parallel} \citep{horn:65}. 4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop in eigen values analogous to the change in slope seen when scrambling up the talus slope of a mountain and approaching the rock face \citep{cattell:scree}. 5) Extracting factors as long as they are interpretable. 6) Using the Very Structure Criterion (\pfun{vss}) \citep{revelle:vss}. 7) Using Wayne Velicer's Minimum Average Partial (\pfun{MAP}) criterion \citep{velicer:76}. 8) Extracting principal components until the eigen value < 1. Each of the procedures has its advantages and disadvantages. Using either the chi square test or the change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is partially sensitive to sample size in that for large samples the eigen values of random factors will all tend towards 1. The scree test is quite appealing but can lead to differences of interpretation as to when the scree ``breaks". Extracting interpretable factors means that the number of factors reflects the investigators creativity more than the data. vss, while very simple to understand, will not work very well if the data are very factorially complex. (Simulations suggests it will work fine if the complexities of some of the items are no more than 2). The eigen value of 1 rule, although the default for many programs, seems to be a rough way of dividing the number of variables by 3 and is probably the worst of all criteria. An additional problem in determining the number of factors is what is considered a factor. Many treatments of factor analysis assume that the residual correlation matrix after the factors of interest are extracted is composed of just random error. An alternative concept is that the matrix is formed from major factors of interest but that there are also numerous minor factors of no substantive interest but that account for some of the shared covariance between variables. The presence of such minor factors can lead one to extract too many factors and to reject solutions on statistical grounds of misfit that are actually very good fits to the data. This problem is partially addressed later in the discussion of simulating complex structures using \pfun{sim.structure} and of small extraneous factors using the \pfun{sim.minor} function. \subsubsection{Very Simple Structure} \label{sect:vss} The \pfun{vss} function compares the fit of a number of factor analyses with the loading matrix ``simplified" by deleting all except the c greatest loadings per item, where c is a measure of factor complexity \cite{revelle:vss}. Included in \pfun{vss} is the MAP criterion (Minimum Absolute Partial correlation) of \cite{velicer:76}. Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal (Figure~\ref{fig:vss}). However, the MAP criterion suggests that 5 is optimal. \begin{figure}[htbp] \begin{center} <>= vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") @ \caption{The Very Simple Structure criterion for the number of factors compares solutions for various levels of item complexity and various numbers of factors. For the Big 5 Inventory, the complexity 1 and 2 solutions both achieve their maxima at four factors. This is in contrast to parallel analysis which suggests 6 and the MAP criterion which suggests 5. } \label{fig:vss} \end{center} \end{figure} \begin{scriptsize} <>= vss @ \end{scriptsize} \subsubsection{Parallel Analysis} \label{sect:fa.parallel} An alternative way to determine the number of factors is to compare the solution to random data with the same properties as the real data set. If the input is a data matrix, the comparison includes random samples from the real data, as well as normally distributed random data with the same number of subjects and variables. For the BFI data, parallel analysis suggests that 6 factors might be most appropriate (Figure~\ref{fig:parallel}). It is interesting to compare \pfun{fa.parallel} with the \fun{paran} from the \Rpkg{paran} package. This latter uses smcs to estimate communalities. Simulations of known structures with a particular number of major factors but with the presence of trivial, minor (but not zero) factors, show that using smcs will tend to lead to too many factors. \begin{figure}[htbp] \begin{scriptsize} \begin{center} <>= fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") @ \caption{Parallel analysis compares factor and principal components solutions to the real data as well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis suggests 6. One more demonstration of Kaiser's dictum.} \label{fig:parallel} \end{center} \end{scriptsize} \end{figure} Experience with problems of various sizes suggests that parallel analysis is useful for less than about 1,000 subjects, and that using the number of components greater than a random solution is more robust than using the number of factors greater than random factors. A more tedious problem in terms of computation is to do parallel analysis of \iemph{polychoric} correlation matrices. This is done by \pfun{fa.parallel.poly}. By default the number of replications is 20. This is appropriate when choosing the number of factors from dicthotomous or polytomous data matrices. \subsection{Factor extension} Sometimes we are interested in the relationship of the factors in one space with the variables in a different space. One solution is to find factors in both spaces separately and then find the structural relationships between them. This is the technique of structural equation modeling in packages such as \Rpkg{sem} or \Rpkg{lavaan}. An alternative is to use the concept of \iemph{factor extension} developed by \citep{dwyer:37}. Consider the case of 16 variables created to represent one two dimensional space. If factors are found from eight of these variables, they may then be extended to the additional eight variables (See Figure~\ref{fig:fa.extension}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) @ \end{scriptsize} \caption{Factor extension applies factors from one set (those on the left) to another set of variables (those on the right). \pfun{fa.extension} is particularly useful when one wants to define the factors with one set of variables and then apply those factors to another set. \pfun{fa.diagram} is used to show the structure. } \label{fig:fa.extension} \end{center} \end{figure} Another way to examine the overlap between two sets is the use of \iemph{set correlation} found by \pfun{setCor} (discussed later). \subsection{Exploratory Structural Equation Modeling (ESEM)} Generaizing the procedures of factor extension, we can do Exploratory Structural Equation Modeling (ESEM). Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Classical Test Theory and Reliability} Surprisingly, 113 years after \cite{spearman:rho} introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's $\alpha$ \citep{cronbach:51} underestimates the reliability of a test and over estimates the first factor saturation \citep{rz:09}. $\alpha$ \citep{cronbach:51} is the same as Guttman's $\lambda3$ \citep{guttman:45} and may be found by $$ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha $$ Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients $\beta$ \citep{revelle:iclust} (see \pfun{iclust}) and $\omega_h$ (see \pfun{omega}) are more appropriate estimates of the general factor saturation. $\omega_t$is a better estimate of the reliability of the total test. Guttman's $\lambda _6$ (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, $e_j^2$, and is $$ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x}. $$ The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpiness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. G6 estimates item reliability by the squared multiple correlation of the other items in a scale. A modification of G6, G6*, takes as an estimate of an item reliability the smc with all the items in an inventory, including those not keyed for a particular scale. This will lead to a better estimate of the reliable variance of a particular item. Alpha, G6 and G6* are positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. More complete reliability analyses of a single scale can be done using the \pfun{omega} function which finds $\omega_h$ and $\omega_t$ based upon a hierarchical factor analysis. Alternative functions \pfun{scoreItems} and \pfun{cluster.cor} will also score multiple scales and report more useful statistics. ``Standardized" alpha is calculated from the inter-item correlations and will differ from raw alpha. Functions for examining the reliability of a single scale or a set of scales include: \begin{description} \item [alpha] Internal consistency measures of reliability range from $\omega_h$ to $\alpha$ to $\omega_t$. The \pfun{alpha} function reports two estimates: Cronbach's coefficient $\alpha$ and Guttman's $\lambda_6$. Also reported are item - whole correlations, $\alpha$ if an item is omitted, and item means and standard deviations. \item [guttman] Eight alternative estimates of test reliability include the six discussed by \cite{guttman:45}, four discussed by ten Berge and Zergers (1978) ($\mu_0 \dots \mu_3$) as well as $\beta$ \citep[the worst split half,][]{revelle:iclust}, the glb (greatest lowest bound) discussed by Bentler and Woodward (1980), and $\omega_h$ and$\omega_t$ (\citep{mcdonald:tt,zinbarg:pm:05}. \item [omega] Calculate McDonald's omega estimates of general and total factor saturation. (\cite{rz:09} compare these coefficients with real and artificial data sets.) \item [cluster.cor] Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n correlation matrix, find the correlations of the composite clusters. \item [scoreItems] Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame of items scores for m items and n people, find the sum scores or average scores for each person and each scale. If the input is a square matrix, then it is assumed that correlations or covariances were used, and the raw scores are not available. In addition, report Cronbach's alpha, coefficient G6*, the average r, the scale intercorrelations, and the item by scale correlations (both raw and corrected for item overlap and scale reliability). Replace missing values with the item median or mean if desired. Will adjust scores for reverse scored items. \item [score.multiple.choice] Ability tests are typically multiple choice with one right answer. score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds total or average number right for each participant. Basic test statistics (alpha, average r, item means, item-whole correlations) are also reported. \item [splitHalf] Given a set of items, consider all (if n.items < 17) or 10,000 random splits of the item into two sets. The correlation between these two split halfs is then adjusted by the Spearman-Brown prophecy formula to show the range of split half reliablities. \end{description} \subsection{Reliability of a single scale} \label{sect:alpha} A conventional (but non-optimal) estimate of the internal consistency reliability of a test is coefficient $\alpha$ \citep{cronbach:51}. Alternative estimates are Guttman's $\lambda_6$, Revelle's $\beta$, McDonald's $\omega_h$ and $\omega_t$. Consider a simulated data set, representing 9 items with a hierarchical structure and the following correlation matrix. Then using the \pfun{alpha} function, the $\alpha$ and $\lambda_6$ estimates of reliability may be found for all 9 items, as well as the if one item is dropped at a time. \begin{scriptsize} <>= set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) @ \end{scriptsize} Some scales have items that need to be reversed before being scored. Rather than reversing the items in the raw data, it is more convenient to just specify which items need to be reversed scored. This may be done in \pfun{alpha} by specifying a \iemph{keys} vector of 1s and -1s. (This concept of keys vector is more useful when scoring multiple scale inventories, see below.) As an example, consider scoring the 7 attitude items in the attitude data set. Assume a conceptual mistake in that items 2 and 6 (complaints and critical) are to be scored (incorrectly) negatively. \begin{scriptsize} <>= alpha(attitude,keys=c("complaints","critical")) @ \end{scriptsize} Note how the reliability of the 7 item scales with an incorrectly reversed item is very poor, but if items 2 and 6 is dropped then the reliability is improved substantially. This suggests that items 2 and 6 were incorrectly scored. Doing the analysis again with the items positively scored produces much more favorable results. \begin{scriptsize} <>= alpha(attitude) @ \end{scriptsize} It is useful when considering items for a potential scale to examine the item distribution. This is done in \pfun{scoreItems} as well as in \pfun{alpha}. \begin{scriptsize} <>= items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures @ \end{scriptsize} \subsection{Using \pfun{omega} to find the reliability of a single scale} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} based upon the exploratory solution from \pfun{omega}. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} \url{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} \url{http://personality-project.org/revelle/publications/revelle.zinbarg.08.pdf} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Four options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), fm=``mle" uses the factanal function, and fm=``pc" does a principal components analysis (\pfun{principal}). For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{scoreItems} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). $\beta$, an alternative to $\omega$, is defined as the worst split half reliability. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ \begin{figure}[htbp] \begin{center} <>= om.9 <- omega(r9,title="9 simulated variables") @ \caption{A bifactor solution for 9 simulated variables with a hierarchical structure. } \label{fig:omega.9} \end{center} \end{figure} In the case of these simulated 9 variables, the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of 9 items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \begin{scriptsize} <>= om.9 @ \end{scriptsize} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{sem} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. \begin{scriptsize} <>= omegaSem(r9,n.obs=500,lavaan=FALSE) @ \end{scriptsize} \subsubsection{Other estimates of reliability} Other estimates of reliability are found by the \pfun{splitHalf} and \pfun{guttman} functions. These are described in more detail in \cite{rz:09} and in \cite{rc:reliability}. They include the 6 estimates from Guttman, four from TenBerge, and an estimate of the greatest lower bound. \begin{scriptsize} <>= splitHalf(r9) @ \end{scriptsize} \subsection{Reliability and correlations of multiple scales within an inventory} \label{sect:score} A typical research question in personality involves an inventory of multiple items purporting to measure multiple constructs. For example, the data set \pfun{bfi} includes 25 items thought to measure five dimensions of personality (Extraversion, Emotional Stability, Conscientiousness, Agreeableness, and Openness). The data may either be the raw data or a correlation matrix (\pfun{scoreItems}) or just a correlation matrix of the items ( \pfun{cluster.cor} and \pfun{cluster.loadings}). When finding reliabilities for multiple scales, item reliabilities can be estimated using the squared multiple correlation of an item with all other items, not just those that are keyed for a particular scale. This leads to an estimate of G6*. \subsubsection{Scoring from raw data} To score these five scales from the 25 items, use the \pfun{scoreItems} function and a list of items to be scored on each scale (a keys.list). Items may be listed by location (convenient but dangerous), or name (probably safer). Make a keys.list by by specifying the items for each scale, preceding items to be negatively keyed with a - sign: \begin{scriptsize} <>= #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list @ \end{scriptsize} \begin{tiny}In the past (prior to version 1.6.9, the keys.list was then converted a keys matrix using the helper function \pfun{make.keys}. This is no longer necessary. Logically, scales are merely the weighted composites of a set of items. The weights used are -1, 0, and 1. 0 implies do not use that item in the scale, 1 implies a positive weight (add the item to the total score), -1 a negative weight (subtract the item from the total score, i.e., reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the maximum + minimum possible value for that item. The minima and maxima can be estimated from all the items, or can be specified by the user. There are two different ways that scale scores tend to be reported. Social psychologists and educational psychologists tend to report the scale score as the \emph{average item score} while many personality psychologists tend to report the \emph{total item score}. The default option for \pfun{scoreItems} is to report item averages (which thus allows interpretation in the same metric as the items) but totals can be found as well. Personality researchers should be encouraged to report scores based upon item means and avoid using the total score although some reviewers are adamant about the following the tradition of total scores. The printed output includes coefficients $\alpha$ and G6*, the average correlation of the items within the scale (corrected for item ovelap and scale relliability), as well as the correlations between the scales (below the diagonal, the correlations above the diagonal are corrected for attenuation. As is the case for most of the \Rpkg{psych} functions, additional information is returned as part of the object. First, create keys matrix using the \pfun{make.keys} function. (The keys matrix could also be prepared externally using a spreadsheet and then copying it into \R{}). Although not normally necessary, show the keys to understand what is happening. There are two ways to make up the keys. You can specify the items by \emph{location} (the old way) or by \emph{name} (the newer and probably preferred way). To use the newer way you must specify the file on which you will use the keys. The example below shows how to construct keys either way. Note that the number of items to specify in the \pfun{make.keys} function is the total number of items in the inventory. This is done automatically in the new way of forming keys, but if using the older way, the number must be specified. That is, if scoring just 5 items from a 25 item inventory, \pfun{make.keys} should be told that there are 25 items. \pfun{make.keys} just changes a list of items on each scale to make up a scoring matrix. Because the \pfun{bfi} data set has 25 items as well as 3 demographic items, the number of variables is specified as 28. \end{tiny} Then, use this keys list to score the items. \begin{scriptsize} <>= scores <- scoreItems(keys.list,bfi) scores @ \end{scriptsize} To see the additional information (the raw correlations, the individual scores, etc.), they may be specified by name. Then, to visualize the correlations between the raw scores, use the \pfun{pairs.panels} function on the scores values of scores. (See figure~\ref{fig:scores} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() @ \end{scriptsize} \includegraphics{scores} \caption{A graphic analysis of the Big Five scales found by using the scoreItems function. The pair.wise plot allows us to see that some participants have reached the ceiling of the scale for these 5 items scales. Using the pch='.' option in pairs.panels is recommended when plotting many cases. The data points were ``jittered'' by setting jiggle=TRUE. Jiggling this way shows the density more clearly. To save space, the figure was done as a png. For a clearer figure, save as a pdf.} \label{fig:scores} \end{center} \end{figure} \subsubsection{Forming scales from a correlation matrix} There are some situations when the raw data are not available, but the correlation matrix between the items is available. In this case, it is not possible to find individual scores, but it is possible to find the reliability and intercorrelations of the scales. This may be done using the \pfun{cluster.cor} function or the \pfun{scoreItems} function. The use of a keys matrix is the same as in the raw data case. Consider the same \pfun{bfi} data set, but first find the correlations, and then use \pfun{scoreItems}. \begin{scriptsize} <>= r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) @ \end{scriptsize} To find the correlations of the items with each of the scales (the ``structure" matrix) or the correlations of the items controlling for the other scales (the ``pattern" matrix), use the \pfun{cluster.loadings} function. To do both at once (e.g., the correlations of the scales as well as the item by scale correlations), it is also possible to just use \pfun{scoreItems}. \subsection{Scoring Multiple Choice Items} Some items (typically associated with ability tests) are not themselves mini-scales ranging from low to high levels of expression of the item of interest, but are rather multiple choice where one response is the correct response. Two analyses are useful for this kind of item: examining the response patterns to all the alternatives (looking for good or bad distractors) and scoring the items as correct or incorrect. Both of these operations may be done using the \pfun{score.multiple.choice} function. Consider the 16 example items taken from an online ability test at the Personality Project: \url{http://test.personality-project.org}. This is part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) study discussed in \cite{rcw:methods,rwr:sapa}. \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results @ \end{scriptsize} Once the items have been scored as true or false (assigned scores of 1 or 0), they made then be scored into multiple scales using the normal \pfun{scoreItems} function. \subsection{Item analysis} Basic item analysis starts with describing the data (\pfun{describe}, finding the number of dimensions using factor analysis (\pfun{fa}) and cluster analysis \pfun{iclust} perhaps using the Very Simple Structure criterion (\pfun{vss}), or perhaps parallel analysis \pfun{fa.parallel}. Item whole correlations may then be found for scales scored on one dimension (\pfun{alpha} or many scales simultaneously (\pfun{scoreItems}). Scales can be modified by changing the keys matrix (i.e., dropping particular items, changing the scale on which an item is to be scored). This analysis can be done on the normal Pearson correlation matrix or by using polychoric correlations. Validities of the scales can be found using multiple correlation of the raw data or based upon correlation matrices using the \pfun{setCor} function. However, more powerful item analysis tools are now available by using Item Response Theory approaches. Although the \pfun{response.frequencies} output from \pfun{score.multiple.choice} is useful to examine in terms of the probability of various alternatives being endorsed, it is even better to examine the pattern of these responses as a function of the underlying latent trait or just the total score. This may be done by using \pfun{irt.responses} (Figure~\ref{fig:irt.response}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) @ \end{scriptsize} \caption{ The pattern of responses to multiple choice ability items can show that some items have poor distractors. This may be done by using the the \pfun{irt.responses} function. A good distractor is one that is negatively related to ability.} \label{fig:irt.response} \end{center} \end{figure} \subsubsection{Exploring the item structure of scales} The Big Five scales found above can be understood in terms of the item - whole correlations, but it is also useful to think of the endorsement frequency of the items. The \pfun{item.lookup} function will sort items by their factor loading/item-whole correlation, and then resort those above a certain threshold in terms of the item means. Item content is shown by using the dictionary developed for those items. This allows one to see the structure of each scale in terms of its endorsement range. This is a simple way of thinking of items that is also possible to do using the various IRT approaches discussed later. \begin{tiny} <>= m <- colMeans(bfi,na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) @ \end{tiny} \subsubsection{Empirical scale construction} There are some situations where one wants to identify those items that most relate to a particular criterion. Although this will capitalize on chance and the results should interpreted cautiously, it does give a feel for what is being measured. Consider the following example from the \pfun{bfi} data set. The items that best predicted gender, education, and age may be found using the \pfun{bestScales} function. This also shows the use of a dictionary that has the item content. \begin{scriptsize} <>= data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) @ \end{scriptsize} \section{Item Response Theory analysis} The use of Item Response Theory has become is said to be the ``new psychometrics". The emphasis is upon item properties, particularly those of item difficulty or location and item discrimination. These two parameters are easily found from classic techniques when using factor analyses of correlation matrices formed by \pfun{polychoric} or \pfun{tetrachoric} correlations. The \pfun{irt.fa} function does this and then graphically displays item discrimination and item location as well as item and test information (see Figure~\ref{fig:irt}). \subsection{Factor analysis and Item Response Theory} If the correlations of all of the items reflect one underlying latent variable, then factor analysis of the matrix of tetrachoric correlations should allow for the identification of the regression slopes ($\alpha$) of the items on the latent variable. These regressions are, of course just the factor loadings. Item difficulty, $\delta_j$ and item discrimination, $\alpha_j$ may be found from factor analysis of the tetrachoric correlations where $\lambda_j$ is just the factor loading on the first factor and $\tau_j$ is the normal threshold reported by the \pfun{tetrachoric} function. \begin{equation} \delta_j = \frac{D\tau}{\sqrt{1-\lambda_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\; \alpha_j = \frac{\lambda_j}{\sqrt{1-\lambda_j^2}} \label{eq:irt:diff} \end{equation} where D is a scaling factor used when converting to the parameterization of \iemph{logistic} model and is 1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of the normal model, factor loadings ($\lambda_j$) and item thresholds ($\tau$) are just \begin{equation*} \lambda_j = \frac{\alpha_j}{\sqrt{1+\alpha_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\;\tau_j = \frac{\delta_j}{\sqrt{1+\alpha_j^2}}. \end{equation*} Consider 9 dichotomous items representing one factor but differing in their levels of difficulty \begin{scriptsize} <>= set.seed(17) d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items test <- irt.fa(d9$items) test @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A graphic analysis of 9 dichotomous (simulated) items. The top panel shows the probability of item endorsement as the value of the latent trait increases. Items differ in their location (difficulty) and discrimination (slope). The middle panel shows the information in each item as a function of latent trait level. An item is most informative when the probability of endorsement is 50\%. The lower panel shows the total test information. These items form a test that is most informative (most accurate) at the middle range of the latent trait.} \label{fig:irt} \end{center} \end{figure} Similar analyses can be done for polytomous items such as those of the bfi extraversion scale: \begin{scriptsize} <>= data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt @ \end{scriptsize} The item information functions show that not all of items are equally good (Figure~\ref{fig:e.irt}): \begin{figure}[htbp] \begin{center} <>= e.info <- plot(e.irt,type="IIC") @ \caption{A graphic analysis of 5 extraversion items from the bfi. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print e.info to see the average information for each item.} \label{fig:e.irt} \end{center} \end{figure} These procedures can be generalized to more than one factor by specifying the number of factors in \pfun{irt.fa}. The plots can be limited to those items with discriminations greater than some value of cut. An invisible object is returned when plotting the output from \pfun{irt.fa} that includes the average information for each item that has loadings greater than cut. \begin{scriptsize} <>= print(e.info,sort=TRUE) @ \end{scriptsize} More extensive IRT packages include the \Rpkg{ltm} and \Rpkg{eRm} and should be used for serious Item Response Theory analysis. \subsection{Speeding up analyses} Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed up the process of analysis, the original correlation matrix is saved as part of the output of both \pfun{irt.fa} and \pfun{omega}. Subsequent analyses may be done by using this correlation matrix. This is done by doing the analysis not on the original data, but rather on the output of the previous analysis. In addition, recent releases of the \Rpkg{psych} take advantage of the \Rpkg{parallels} package and use multi-cores. The default for Macs and Unix machines is to use two cores, but this can be increased using the options command. The biggest step up in improvement is from 1 to 2 cores, but for large problems using polychoric correlations, the more cores available, the better. For example of taking the output from the 16 ability items from the \iemph{SAPA} project when scored for True/False using \pfun{score.multiple.choice} we can first do a simple IRT analysis of one factor (Figure~\ref{fig:iq.irt}) and then use that correlation matrix to do an \pfun{omega} analysis to show the sub-structure of the ability items . We can also show the total test information (merely the sum of the item information. This shows that even with just 16 items, the test is very reliable for most of the range of ability. The \pfun{fa.irt} function saves the correlation matrix and item statistics so that they can be redrawn with other options. \begin{scriptsize} \begin{Schunk} \begin{Sinput} detectCores() #how many are available options("mc.cores") #how many have been set to be used options("mc.cores"=4) #set to use 4 cores \end{Sinput} \end{Schunk} \end{scriptsize} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= iq.irt <- irt.fa(ability) @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print iq.irt to see the average information for each item. Partly because this is a power test (it is given on the web) and partly because the items have not been carefully chosen, the items are not very discriminating at the high end of the ability dimension. } \label{fig:iq.irt} \end{figure} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= plot(iq.irt,type='test') @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The total test information at all levels of difficulty may be shown by specifying the type='test' option in the plot function. } \label{fig:iq.irt.test} \end{figure} \begin{scriptsize} <>= iq.irt @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= om <- omega(iq.irt$rho,4) @ \caption{An Omega analysis of 16 ability items sampled from the SAPA project. The items represent a general factor as well as four lower level factors. The analysis is done using the tetrachoric correlations found in the previous \pfun{irt.fa} analysis. The four matrix items have some serious problems, which may be seen later when examine the item response functions.} \label{fig:iq.irt} \end{center} \end{figure} \subsection{IRT based scoring} The primary advantage of IRT analyses is examining the item properties (both difficulty and discrimination). With complete data, the scores based upon simple total scores and based upon IRT are practically identical (this may be seen in the examples for \pfun{scoreIrt}). However, when working with data such as those found in the Synthetic Aperture Personality Assessment (\iemph{SAPA}) project, it is advantageous to use IRT based scoring. \iemph{SAPA} data might have 2-3 items/person sampled from scales with 10-20 items. Simply finding the average of the three (classical test theory) fails to consider that the items might differ in either discrimination or in difficulty. The \pfun{scoreIrt} function applies basic IRT to this problem. Consider 1000 randomly generated subjects with scores on 9 true/false items differing in difficulty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest items for the 1/3 top subjects (this is a crude example of what tailored testing would do). Then score these subjects: \begin{scriptsize} <>= v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") @ \end{scriptsize} These results are seen in Figure~\ref{fig:score.irt.pdf}. \begin{figure}[htbp] \begin{center} \caption{IRT based scoring and total test scores for 1000 simulated subjects. True theta values are reported and then the IRT and total scoring systems. } <>= pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) @ \label{fig:score.irt.pdf} \end{center} \end{figure} \subsubsection{1 versus 2 parameter IRT scoring} In Item Response Theory, items can be assumed to be equally discriminating but to differ in their difficulty (the Rasch model) or to vary in their discriminability. Two functions (\pfun{scoreIrt.1pl} and \pfun{scoreIrt.2pl}) are meant to find multiple IRT based scales using the Rasch model or the 2 parameter model. Both allow for negatively keyed as well as positively keyed items. Consider the \pfun{bfi} data set with scoring keys key.list and items listed as an item.list. (This is the same as the key.list, but with the negative signs removed.) \begin{scriptsize} <>= keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function @ \end{scriptsize} We can compare these three ways of doing the analysis using the \pfun{cor2} function which correlates two separate data frames. All three models produce vey simillar results for the case of almost complete data. It is when we have massively missing completely at random data (MMCAR) that the results show the superiority of the irt scoring. \begin{scriptsize} <>= #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) @ \end{scriptsize} \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \ \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \subsection{Multilevel reliability} The \pfun{mlr} and \pfun{multilevelReliablity} functions follow the advice of \cite{shrout:12a} for estimating multievel reliablilty. A detailed discussion of this procedure is given in \cite{rw:paid:17} which is available at \url{https://personality-project.org/revelle/publications/rw.paid.17.final.pdf}. \section{Set Correlation and Multiple Regression from the correlation matrix} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{setCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{setCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{setCor}. Two things to notice. \pfun{setCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{setCor}. <>= #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{setCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Simulation functions} It is particularly helpful, when trying to understand psychometric concepts, to be able to generate sample data sets that meet certain specifications. By knowing ``truth" it is possible to see how well various algorithms can capture it. Several of the \pfun{sim} functions create artificial data sets with known structures. A number of functions in the psych package will generate simulated data. These functions include \pfun{sim} for a factor simplex, and \pfun{sim.simplex} for a data simplex, \pfun{sim.circ} for a circumplex structure, \pfun{sim.congeneric} for a one factor factor congeneric model, \pfun{sim.dichot} to simulate dichotomous items, \pfun{sim.hierarchical} to create a hierarchical factor model, \pfun{sim.item} is a more general item simulation, \pfun{sim.minor} to simulate major and minor factors, \pfun{sim.omega} to test various examples of omega, \pfun{sim.parallel} to compare the efficiency of various ways of determining the number of factors, \pfun{sim.rasch} to create simulated rasch data, \pfun{sim.irt} to create general 1 to 4 parameter IRT data by calling \pfun{sim.npl} 1 to 4 parameter logistic IRT or \pfun{sim.npn} 1 to 4 paramater normal IRT, \pfun{sim.structural} a general simulation of structural models, and \pfun{sim.anova} for ANOVA and lm simulations, and \pfun{sim.vss}. Some of these functions are separately documented and are listed here for ease of the help function. See each function for more detailed help. \begin{description} \item [\pfun{sim}] The default version is to generate a four factor simplex structure over three occasions, although more general models are possible. \item [\pfun{sim.simple}] Create major and minor factors. The default is for 12 variables with 3 major factors and 6 minor factors. \item [\pfun{sim.structure}] To combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. \item [\pfun{sim.hierarchical}] To create data with a hierarchical (bifactor) structure. \item [\pfun{sim.congeneric}] To create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item [\pfun{sim.circ}] To create data with a circumplex structure. \item [\pfun{sim.item}]To create items that either have a simple structure or a circumplex structure. \item [\pfun{sim.dichot}] Create dichotomous item data with a simple or circumplex structure. \item[\pfun{sim.rasch}] Simulate a 1 parameter logistic (Rasch) model. \item[\pfun{sim.irt}] Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also do 3 and 4 PL and PN models. \item[\pfun{sim.multilevel}] Simulate data with different within group and between group correlational structures. \end{description} Some of these functions are described in more detail in the companion vignette: \href{"psych_for_sem.pdf"}{psych for sem}. The default values for \pfun{sim.structure} is to generate a 4 factor, 12 variable data set with a simplex structure between the factors. Two data structures that are particular challenges to exploratory factor analysis are the simplex structure and the presence of minor factors. Simplex structures \pfun{sim.simplex} will typically occur in developmental or learning contexts and have a correlation structure of r between adjacent variables and $r^n$ for variables n apart. Although just one latent variable (r) needs to be estimated, the structure will have nvar-1 factors. Many simulations of factor structures assume that except for the major factors, all residuals are normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the major factors. \pfun{sim.minor} generates such structures. The structures generated can be thought of as having a a major factor structure with some small correlated residuals. Although coefficient $\omega_h$ is a very useful indicator of the general factor saturation of a unifactorial test (one with perhaps several sub factors), it has problems with the case of multiple, independent factors. In this situation, one of the factors is labelled as ``general'' and the omega estimate is too large. This situation may be explored using the \pfun{sim.omega} function. The four irt simulations, \pfun{sim.rasch}, \pfun{sim.irt}, \pfun{sim.npl} and \pfun{sim.npn}, simulate dichotomous items following the Item Response model. \pfun{sim.irt} just calls either \pfun{sim.npl} (for logistic models) or \pfun{sim.npn} (for normal models) depending upon the specification of the model. The logistic model is \begin{equation} P(x | \theta_i, \delta_j, \gamma_j, \zeta_j )= \gamma_j + \frac{\zeta_j - \gamma_j}{1+e^{\alpha_j(\delta_j - \theta_i}}. \end{equation} where $\gamma$ is the lower asymptote or guessing parameter, $\zeta$ is the upper asymptote (normally 1), $\alpha_j$ is item discrimination and $\delta_j$ is item difficulty. For the 1 Paramater Logistic (Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify. (Graphics of these may be seen in the demonstrations for the logistic function.) The normal model (\pfun{irt.npn} calculates the probability using \fun{pnorm} instead of the logistic function used in \pfun{irt.npl}, but the meaning of the parameters are otherwise the same. With the a = $\alpha$ parameter = 1.702 in the logiistic model the two models are practically identical. \section{Graphical Displays} Many of the functions in the \Rpkg{psych} package include graphic output and examples have been shown in the previous figures. After running \pfun{fa}, \pfun{iclust}, \pfun{omega}, \pfun{irt.fa}, plotting the resulting object is done by the \pfun{plot.psych} function as well as specific diagram functions. e.g., (but not shown) \begin{scriptsize} \begin{Schunk} \begin{Sinput} f3 <- fa(Thurstone,3) plot(f3) fa.diagram(f3) c <- iclust(Thurstone) plot(c) #a pretty boring plot iclust.diagram(c) #a better diagram c3 <- iclust(Thurstone,3) plot(c3) #a more interesting plot data(bfi) e.irt <- irt.fa(bfi[11:15]) plot(e.irt) ot <- omega(Thurstone) plot(ot) omega.diagram(ot) \end{Sinput} \end{Schunk} \end{scriptsize} The ability to show path diagrams to represent factor analytic and structural models is discussed in somewhat more detail in the accompanying vignette, \href{"psych_for_sem.pdf"}{psych for sem}. Basic routines to draw path diagrams are included in the \pfun{dia.rect} and accompanying functions. These are used by the \pfun{fa.diagram}, \pfun{structure.diagram} and \pfun{iclust.diagram} functions. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demontration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim) ur <- dia.ellipse(9,9,"upper right",xlim=xlim,ylim=ylim) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) @ \end{scriptsize} \caption{The basic graphic capabilities of the dia functions are shown in this figure.} \label{fig:dia} \end{center} \end{figure} \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{setCor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For a Mac, this version can be installed directly using the ``other repository" option in the package installer. For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version > "1.5.0",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2015}]{psych} Revelle, W. (2015). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.5.8 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2014]{rc:reliability} Revelle, W. and Condon, D.~M. (2014). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell (in press). \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Wilt}{2017}]{rw:paid:17} Revelle, W. and Wilt, J. (2017). \newblock Analyzing dynamic data: a tutoria.l \newblock {\em Personality and Individual Differences}, in press. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[{Shrout and Lane(2012)}]{shrout:12a} Shrout, P., Lane, S.~P., 2012. Psychometrics. In: Handbook of research methods for studying daily life. Guilford Press. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psych/vignettes/psych_for_sem.Rnw0000644000176200001440000012201713016157640016746 0ustar liggesusers% \VignetteIndexEntry{input for sem} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} \usepackage{longtable} %\usepackage{geometry} \usepackage{Sweave} %\usepackage{/Library/Frameworks/R.framework/Versions/2.7/Resources/share/texmf/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \newcommand{\vect}[1]{\boldsymbol{#1}} \def\vec#1{\ensuremath{\mathchoice {\mbox{\boldmath$\displaystyle\mathbf{#1}$}} {\mbox{\boldmath$\textstyle\mathbf{#1}$}} {\mbox{\boldmath$\scriptstyle\mathbf{#1}$}} {\mbox{\boldmath$\scriptscriptstyle\mathbf{#1}$}}}}% \makeindex % used for the subject index \title{Using the psych package to generate and test structural models} \author{William Revelle} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle %\section{} %\subsection{} \tableofcontents \newpage \section{The psych package} \subsection{Preface} The \Rpkg{psych} package \citep{psych} has been developed to include those functions most useful for teaching and learning basic psychometrics and personality theory. Functions have been developed for many parts of the analysis of test data, including basic descriptive statistics (\pfun{describe} and \pfun{pairs.panels}), dimensionality analysis (\pfun{ICLUST}, \pfun{VSS}, \pfun{principal}, \pfun{factor.pa}), reliability analysis (\pfun{omega}, \pfun{guttman}) and eventual scale construction (\pfun{cluster.cor}, \pfun{score.items}). The use of these and other functions is described in more detail in the accompanying vignette (\href{"An overview of the psych package"}{overview.pdf}) as well as in the complete user's manual and the relevant help pages. (These vignettes are also available at \href{"http://personality-project.org/r/overview.pdf"}{\url{http://personality-project.org/r/overview.pdf}}) and \href{"http://personality-project.org/r/psych_for_sem.pdf"}{\url{http://personality-project.org/r/psych_for_sem.pdf}}) . This vignette is concerned with the problem of modeling structural data and using the \Rpkg{psych} package as a front end for the much more powerful \Rpkg{sem} package of John Fox \citep{fox:06,sem:09,sem}. Future releases of this vignette will include examples for using the \Rpkg{lavaan} package of Yves Rosseel \citep{lavaan}. The first section discusses how to simulate particular latent variable structures. The second considers several Exploratory Factor Analysis (EFA) solutions to these problems. The third section considers how to do confirmatory factor analysis and structural equation modeling using the \Rpkg{sem} package but with the input prepared using functions in the \Rpkg{psych} package. \subsection{Creating and modeling structural relations} One common application of \pfun{psych} is the creation of simulated data matrices with particular structures to use as examples for principal components analysis, factor analysis, cluster analysis, and structural equation modeling. This vignette describes some of the functions used for creating, analyzing, and displaying such data sets. The examples use two other packages: \Rpkg{Rgraphviz} and \Rpkg{sem}. Although not required to use the \Rpkg{psych} package, sem is required for these examples. Although \Rpkg{Rgraphviz} had been used for the graphical displays, it has now been replaced with graphical functions within psych. The analyses themselves require only the \Rpkg{sem} package to do the structural modeling. <>= if(!require(sem)) stop('The package sem is required to do these analyses') if(!require('GPArotation')) stop('The package GPArotation is required to do these analyses') @ \section{Functions for generating correlational matrices with a particular structure} The \pfun{sim} family of functions create data sets with particular structure. Most of these functions have default values that will produce useful examples. Although graphical summaries of these structures will be shown here, some of the options of the graphical displays will be discussed in a later section. The \pfun{sim} functions include: \begin{description} \item[sim.structure ]A function to combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. Combined with structure.diagram to see the proposed structure. \item[sim.congeneric] A function to create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item[sim.hierarchical ]A function to create data with a hierarchical (bifactor) structure. \item[sim.general] A function to simulate a general factor and multiple group factors. This is done in a somewhat more obvious, although less general, method than \pfun{sim.hierarcical}. \item[sim.item] A function to create items that either have a simple structure or a circumplex structure. \item[sim.circ] Create data with a circumplex structure. \item[sim.dichot ]Create dichotomous item data with a simple or circumplex structure. \item[sim.minor] Create a factor structure for nvar variables defined by nfact major factors and $\frac{nvar}{2} $``minor" factors for n observations. \item[sim.parallel] Create a number of simulated data sets using sim.minor to show how parallel analysis works. \item[sim.rasch] Create IRT data following a Rasch model. \item[sim.irt] Create a two parameter IRT logistic (2PL) model. \item[sim.anova] Simulate a 3 way balanced ANOVA or linear model, with or without repeated measures. Useful for teaching courses in research methods. \end{description} To make these examples replicable for readers, all simulations are prefaced by setting the random seed to a fixed (and for some, memorable) number \citep{adams:80}. For normal use of the simulations, this is not necessary. \subsection{\pfun{sim.congeneric}} Classical test theory considers tests to be \iemph{tau} equivalent if they have the same covariance with a vector of latent true scores, but perhaps different error variances. Tests are considered \iemph{congeneric} if they each have the same true score component (perhaps to a different degree) and independent error components. The \pfun{sim.congeneric} function may be used to generate either structure. The first example considers four tests with equal loadings on a latent factor (that is, a $\tau$ equivalent model). If the number of subjects is not specified, a population correlation matrix will be generated. If N is specified, then the sample correlation matrix is returned. If the ``short'' option is FALSE, then the population matrix, sample matrix, and sample data are all returned as elements of a list. \begin{scriptsize} <>= library(psych) set.seed(42) tau <- sim.congeneric(loads=c(.8,.8,.8,.8)) #population values tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100) # sample correlation matrix for 100 cases round(tau.samp,2) tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100, short=FALSE) tau.samp dim(tau.samp$observed) @ \end{scriptsize} In this last case, the generated data are retrieved from tau.samp\$observed. \label{congeneric} Congeneric data are created by specifying unequal loading values. The default values are loadings of c(.8,.7,.6,.5). As seen in Figure~\ref{fig:tau}, tau equivalence is the special case where all paths are equal. \begin{scriptsize} <>= cong <- sim.congeneric(N=100) round(cong,2) @ \end{scriptsize} \begin{figure}[htpb] \begin{center} <>= #plot.new() m1 <- structure.diagram(c("a","b","c","d")) @ \caption{Tau equivalent tests are special cases of congeneric tests. Tau equivalence assumes a=b=c=d} \label{fig:tau} \end{center} \end{figure} \subsection{\pfun{sim.hierarchical}} The previous function, \pfun{sim.congeneric}, is used when one factor accounts for the pattern of correlations. A slightly more complicated model is when one broad factor and several narrower factors are observed. An example of this structure might be the structure of mental abilities, where there is a broad factor of general ability and several narrower factors (e.g., spatial ability, verbal ability, working memory capacity). Another example is in the measure of psychopathology where a broad general factor of neuroticism is seen along with more specific anxiety, depression, and aggression factors. This kind of structure may be simulated with \pfun{sim.hierarchical} specifying the loadings of each sub factor on a general factor (the g-loadings) as well as the loadings of individual items on the lower order factors (the f-loadings). An early paper describing a \iemph{bifactor} structure was by \cite{holzinger:37}. A helpful description of what makes a good general factor is that of \cite{jensen:weng}. For those who prefer real data to simulated data, six data sets are included in the \pfun{bifactor} data set. One is the original 14 variable problem of \cite{holzinger:37} (holzinger), a second is a nine variable problem adapted by \cite{bechtoldt:61} from \cite{thurstone:41} (the data set is used as an example in the SAS manual and discussed in great detail by \cite{mcdonald:tt}), a third is from a recent paper by \cite{reise:07} with 16 measures of patient reports of interactions with their health care provider. \begin{scriptsize} <>= set.seed(42) gload=matrix(c(.9,.8,.7),nrow=3) fload <- matrix(c(.8,.7,.6,rep(0,9),.7,.6,.5, rep(0,9),.7,.6,.4), ncol=3) fload #echo it to see the structureSw bifact <- sim.hierarchical(gload=gload,fload=fload) round(bifact,2) @ \end{scriptsize} These data can be represented as either a \iemph{bifactor} (Figure~\ref{fig:bifact} panel A) or \iemph{hierarchical} (Figure~\ref{fig:bifact} Panel B) factor solution. The analysis was done with the \pfun{omega} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) m.bi <- omega(bifact,title="A bifactor model") m.hi <- omega(bifact,sl=FALSE,title="A hierarchical model") op <- par(mfrow = c(1,1)) @ \end{scriptsize} \caption{(Left panel) A bifactor solution represents each test in terms of a general factor and a residualized group factor. (Right Panel) A hierarchical factor solution has g as a second order factor accounting for the correlations between the first order factors} \label{fig:bifact} \end{center} \end{figure} \subsection{\pfun{sim.item} and \pfun{sim.circ}} Many personality questionnaires are thought to represent multiple, independent factors. A particularly interesting case is when there are two factors and the items either have \iemph{simple structure} or \iemph{circumplex structure}. Examples of such items with a circumplex structure are measures of emotion \citep{rafaeli:revelle:06} where many different emotion terms can be arranged in a two dimensional space, but where there is no obvious clustering of items. Typical personality scales are constructed to have simple structure, where items load on one and only one factor. An additional challenge to measurement with emotion or personality items is that the items can be highly skewed and are assessed with a small number of discrete categories (do not agree, somewhat agree, strongly agree). The more general \pfun{sim.item} function, and the more specific, \pfun{sim.circ} functions simulate items with a two dimensional structure, with or without skew, and varying the number of categories for the items. An example of a circumplex structure is shown in Figure~\ref{fig:circ} \begin{figure}[htbp] \begin{center} <>= circ <- sim.circ(16) f2 <- fa(circ,2) plot(f2,title="16 simulated variables in a circumplex pattern") @ \caption{Emotion items or interpersonal items frequently show a circumplex structure. Data generated by sim.circ and factor loadings found by the principal axis algorithm using factor.pa.} \label{fig:circ} \end{center} \end{figure} \subsection{\pfun{sim.structure}} A more general case is to consider three matrices, $\vec{f}_x,\vec{\phi_{xy}}, \vec{f}_y $ which describe, in turn, a measurement model of x variables, $\vec{f}_x$, a measurement model of y variables, $\vec{f}_x$, and a covariance matrix between and within the two sets of factors. If $\vec{f}_x$ is a vector and $\vec{f}_y$ and $\vec{phi}_{xy}$ are NULL, then this is just the congeneric model. If $\vec{f}_x$ is a matrix of loadings with n rows and c columns, then this is a measurement model for n variables across c factors. If $\vec{phi}_{xy}$ is not null, but $\vec{f}_y$ is NULL, then the factors in $\vec{f}_x$ are correlated. Finally, if all three matrices are not NULL, then the data show the standard linear structural relations (LISREL) structure. Consider the following examples: \subsubsection{ $\vec{f}_x$ is a vector implies a congeneric model} \begin{scriptsize} <>= set.seed(42) fx <- c(.9,.8,.7,.6) cong1 <- sim.structure(fx) cong1 @ \end{scriptsize} \subsubsection{$\vec{f}_x$ is a matrix implies an independent factors model:} \begin{scriptsize} <>= set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) three.fact <- sim.structure(fx) three.fact @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= #plot.new() three.fact.mod <-structure.diagram(fx) @ \caption{Three uncorrelated factors generated using the sim.structure function and drawn using structure.diagram.} \label{fig:3f} \end{center} \end{figure} \subsubsection{$\vec{f}_x$ is a matrix and Phi $\neq I$ is a correlated factors model} \begin{scriptsize} <>= Phi = matrix(c(1,.5,.3,.5,1,.2,.3,.2,1), ncol=3) cor.f3 <- sim.structure(fx,Phi) fx Phi cor.f3 @ \end{scriptsize} \paragraph{Using symbolic loadings and path coefficients} For some purposes, it is helpful not to specify particular values for the paths, but rather to think of them symbolically. This can be shown with symbolic loadings and path coefficients by using the \pfun{structure.list} and \pfun{phi.list} functions to create the fx and Phi matrices (Figure~\ref{fig:symb3}). <>= fxs <- structure.list(9,list(F1=c(1,2,3),F2=c(4,5,6),F3=c(7,8,9))) Phis <- phi.list(3,list(F1=c(2,3),F2=c(1,3),F3=c(1,2))) fxs #show the matrix Phis #show this one as well @ The \pfun{structure.list} and \pfun{phi.list} functions allow for creation of fx, Phi, and fy matrices in a very compact form, just by specifying the relevant variables. \begin{figure}[htbp] \begin{center} <>= #plot.new() corf3.mod <- structure.diagram(fxs,Phis) @ \caption{Three correlated factors with symbolic paths. Created using structure.diagram and structure.list and phi.list for ease of input.} \label{fig:symb3} \end{center} \end{figure} \paragraph{Drawing path models from Exploratory Factor Analysis solutions} Alternatively, this result can represent the estimated factor loadings and oblique correlations found using \fun{factanal} (Maximum Likelihood factoring) or \pfun{fa} (Principal axis or minimum residual (minres) factoring) followed by a promax rotation using the \pfun{Promax} function (Figure~\ref{fig:f3:emp}. Comparing this figure with the previous one (Figure~\ref{fig:symb3}), it will be seen that one path was dropped because it was less than the arbitrary ``cut" value of .2. <>= f3.p <- Promax(fa(cor.f3$model,3)) @ \begin{figure}[htbp] \begin{center} <>= #plot.new() mod.f3p <- structure.diagram(f3.p,cut=.2) @ \caption{The empirically fitted structural model. Paths less than cut (.2 in this case, the default is .3) are not shown.} \label{fig:f3:emp} \end{center} \end{figure} \subsubsection{ $\vec{f}_x$ and $\vec{f}_y$ are matrices, and Phi $\neq I$ represents their correlations} A more complicated model is when there is a $\vec{f}_y$ vector or matrix representing a set of Y latent variables that are associated with the a set of y variables. In this case, the Phi matrix is a set of correlations within the X set and between the X and Y set. \begin{scriptsize} <>= set.seed(42) fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3) fy <- c(.6,.5,.4) Phi <- matrix(c(1,.48,.32,.4,.48,1,.32,.3,.32,.32,1,.2,.4,.3,.2,1), ncol=4) twelveV <- sim.structure(fx,Phi, fy)$model colnames(twelveV) <-rownames(twelveV) <- c(paste("x",1:9,sep=""),paste("y",1:3,sep="")) round(twelveV,2) @ \end{scriptsize} Data with this structure may be created using the \pfun{sim.structure} function, and shown either with the numeric values or symbolically using the \pfun{structure.diagram} function (Figure~\ref{fig:symbxy}). \begin{scriptsize} <>= fxs <- structure.list(9,list(X1=c(1,2,3), X2 =c(4,5,6),X3 = c(7,8,9))) phi <- phi.list(4,list(F1=c(4),F2=c(4),F3=c(4),F4=c(1,2,3))) fyx <- structure.list(3,list(Y=c(1,2,3)),"Y") @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= #plot.new() sg3 <- structure.diagram(fxs,phi,fyx) @ \caption{A symbolic structural model. Three independent latent variables are regressed on a latent Y.} \label{fig:symbxy} \end{center} \end{figure} \subsubsection{A hierarchical structure among the latent predictors.} Measures of intelligence and psychopathology frequently have a general factor as well as multiple group factors. The general factor then is thought to predict some dependent latent variable. Compare this with the previous model (see Figure~\ref{fig:symbxy}). \begin{figure}[htpb] \begin{center} <>= fxh <- structure.list(9,list(X1=c(1:3),X2=c(4:6),X3=c(7:9),g=NULL)) fy <- structure.list(3,list(Y=c(1,2,3))) Phi <- diag(1,5,5) Phi[4,c(1:3)] <- letters[1:3] Phi[5,4] <- "r" #plot.new() hi.mod <-structure.diagram(fxh,Phi, fy) @ \caption{A symbolic structural model with a general factor and three group factors. The general factor is regressed on the latent Y variable.} \label{fig:symb:gy} \end{center} \end{figure} These two models can be compared using structural modeling procedures (see below). \section{Exploratory functions for analyzing structure} Given correlation matrices such as those seen above for congeneric or bifactor models, the question becomes how best to estimate the underlying structure. Because these data sets were generated from a known model, the question becomes how well does a particular model recover the underlying structure. \subsection{Exploratory simple structure models} The technique of \iemph{principal components} provides a set of weighted linear composites that best approximates a particular correlation or covariance matrix. If these are then \iemph{rotated} to provide a more interpretable solution, the components are no longer the \iemph{principal} components. The \pfun{principal} function will extract the first n principal components (default value is 1) and if n>1, rotate to \iemph{simple structure} using a \fun{varimax}, \fun{quartimin}, or \pfun{Promax} criterion. \begin{scriptsize} <>= principal(cong1$model) fa(cong1$model) @ \end{scriptsize} It is important to note that although the \pfun{principal} components function does not exactly reproduce the model parameters, the \pfun{factor.pa} function, implementing principal axes or minimum residual (minres) factor analysis, does. Consider the case of three underlying factors as seen in the bifact example above. Because the number of observations is not specified, there is no associated $\chi^2$ value. The \pfun{factor.congruence} function reports the cosine of the angle between the factors. \begin{scriptsize} <>= pc3 <- principal(bifact,3) pa3 <- fa(bifact,3,fm="pa") ml3 <- fa(bifact,3,fm="ml") pc3 pa3 ml3 factor.congruence(list(pc3,pa3,ml3)) @ \end{scriptsize} By default, all three of these procedures use the varimax rotation criterion. Perhaps it is useful to apply an oblique transformation such as \pfun{Promax} or \fun{oblimin} to the results. The \pfun{Promax} function in \Rpkg{psych} differs slightly from the standard \fun{promax} in that it reports the factor intercorrelations. \begin{scriptsize} <>= ml3p <- Promax(ml3) ml3p @ \end{scriptsize} \subsection{Exploratory hierarchical models} In addition to the conventional oblique factor model, an alternative model is to consider the correlations between the factors to represent a higher order factor. This can be shown either as a \iemph{bifactor} solution \cite{holzinger:37,schmid:57} with a general factor for all variables and a set of residualized group factors, or as a hierarchical structure. An exploratory hierarchical model can be applied to this kind of data structure using the \pfun{omega} function. Graphic options include drawing a Schmid - Leiman bifactor solution (Figure~\ref{fig:om:bi}) or drawing a hierarchical factor solution f(Figure~\ref{fig:om:hi}). \subsubsection{A bifactor solution} \begin{figure}[htpb] \begin{center} <>= om.bi <- omega(bifact) @ \caption{An exploratory bifactor solution to the nine variable problem} \label{fig:om:bi} \end{center} \end{figure} The \iemph{bifactor} solution has a general factor loading for each variable as well as a set of residual group factors. This approach has been used extensively in the measurement of ability and has more recently been used in the measure of psychopathology \citep{reise:07}. Data sets included in the \pfun{bifactor} data include the original \citep{holzinger:37} data set (\pfun{holzinger}) as well as a set from \cite{reise:07} (\pfun{reise}) and a nine variable problem from Thurstone. \subsubsection{A hierarchical solution} \begin{figure}[htpb] \begin{center} <>= om.hi <- omega(bifact,sl=FALSE) @ \caption{An exploratory hierarchical solution to the nine variable problem.} \label{fig:om:hi} \end{center} \end{figure} Both of these graphical representations are reflected in the output of the \pfun{omega} function. The first was done using a Schmid-Leiman transformation, the second was not. As will be seen later, the objects returned from these two analyses may be used as models for a \fun{sem} analysis. It is also useful to examine the estimates of reliability reported by \pfun{omega}. <>= om.bi @ Yet one more way to treat the hierarchical structure of a data set is to consider hierarchical cluster analysis using the \pfun{ICLUST} algorithm (Figure~\ref{fig:iclust}). ICLUST is most appropriate for forming item composites. \begin{figure}[htpb] \begin{center} <>= ic <- ICLUST(bifact,title="Hierarchical cluster analysis of bifact data") @ \caption{A hierarchical cluster analysis of the bifact data set using ICLUST} \label{fig:iclust} \end{center} \end{figure} \section{Exploratory Structural Equation Modeling (ESEM)} Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Confirmatory models} Although the exploratory models shown above do estimate the goodness of fit of the model and compare the residual matrix to a zero matrix using a $\chi^2$ statistic, they estimate more parameters than are necessary if there is indeed a simple structure, and they do not allow for tests of competing models. The \fun{sem} function in the \Rpkg{sem} package by John Fox allows for confirmatory tests. The interested reader is referred to the \Rpkg{sem} manual for more detail \citep{sem}. \subsection{Using psych as a front end for the sem package} Because preparation of the \fun{sem} commands is a bit tedious, several of the \Rpkg{psych} package functions have been designed to provide the appropriate commands. That is, the functions \pfun{structure.list}, \pfun{phi.list}, \pfun{structure.diagram}, \pfun{structure.sem}, and \pfun{omega.graph} may be used as a front end to \fun{sem}. Usually with no modification, but sometimes with just slight modification, the model output from the \pfun{structure.diagram}, \pfun{structure.sem}, and \pfun{omega.graph} functions is meant to provide the appropriate commands for \fun{sem}. \subsection{Testing a congeneric model versus a tau equivalent model} The congeneric model is a one factor model with possibly unequal factor loadings. The tau equivalent model model is one with equal factor loadings. Tests for these may be done by creating the appropriate structures. The \pfun{structure.graph} function which requires \fun{Rgraphviz}, or \pfun{structure.diagram} or the \pfun{structure.sem} functions which do not may be used. The following example tests the hypothesis (which is actually false) that the correlations found in the cong data set (see \ref{congeneric}) are tau equivalent. Because the variable labels in that data set were V1 ... V4, we specify the labels to match those. \begin{scriptsize} <>= library(sem) mod.tau <- structure.sem(c("a","a","a","a"),labels=paste("V",1:4,sep="")) mod.tau #show it sem.tau <- sem(mod.tau,cong,100) summary(sem.tau,digits=2) @ \end{scriptsize} Test whether the data are congeneric. That is, whether a one factor model fits. Compare this to the prior model using the \fun{anova} function. \begin{scriptsize} <>= mod.cong <- structure.sem(c("a","b","c","d"),labels=paste("V",1:4,sep="")) mod.cong #show the model sem.cong <- sem(mod.cong,cong,100) summary(sem.cong,digits=2) anova(sem.cong,sem.tau) #test the difference between the two models @ \end{scriptsize} The \fun{anova} comparison of the congeneric versus tau equivalent model shows that the change in $\chi^2$ is significant given the change in degrees of freedom. \subsection{Testing the dimensionality of a hierarchical data set by creating the model} The bifact correlation matrix was created to represent a hierarchical structure. Various confirmatory models can be applied to this matrix. The first example creates the model directly, the next several create models based upon exploratory factor analyses. mod.one is a congeneric model of one factor accounting for the relationships between the nine variables. Although not correct, with 100 subjects, this model can not be rejected. However, an examination of the residuals suggests serious problems with the model. \begin{scriptsize} <>= mod.one <- structure.sem(letters[1:9],labels=paste("V",1:9,sep="")) mod.one #show the model sem.one <- sem(mod.one,bifact,100) summary(sem.one,digits=2) round(residuals(sem.one),2) @ \end{scriptsize} \subsection{Testing the dimensionality based upon an exploratory analysis} Alternatively, the output from an exploratory factor analysis can be used as input to the structure.sem function. \begin{scriptsize} <>= f1 <- fa(bifact) mod.f1 <- structure.sem(f1) sem.f1 <- sem(mod.f1,bifact,100) sem.f1 @ \end{scriptsize} The answers are, of course, identical. \subsection{Specifying a three factor model} An alternative model is to extract three factors and try this solution. The \pfun{fa} factor analysis function (using the \iemph{minimum residual} algorithm) is used to detect the structure. Alternatively, the \fun{factanal} could have been used. Rather than use the default rotation of \pfun{oblimin}, we force an orthogonal solution (even though we know it will be a poor solution). \begin{scriptsize} <>= f3 <-fa(bifact,3,rotate="varimax") mod.f3 <- structure.sem(f3) sem.f3 <- sem(mod.f3,bifact,100) summary(sem.f3,digits=2) round(residuals(sem.f3),2) @ \end{scriptsize} The residuals show serious problems with this model. Although the residuals within each of the three factors are zero, the residuals between groups are much too large. \subsection{Allowing for an oblique solution} The previous solution is clearly very bad. What would happen if the exploratory solution were allowed to have correlated (oblique) factors? \begin{scriptsize} <>= f3 <-fa(bifact,3) #extract three factors and do an oblique rotation mod.f3 <- structure.sem(f3) #create the sem model mod.f3 #show it @ \end{scriptsize} The structure being tested may be seen using \pfun{structure.graph} \begin{figure}[htpb] \begin{center} <>= #plot.new() mod.f3 <- structure.diagram(f3) @ \caption{A three factor, oblique solution.} \label{default} \end{center} \end{figure} This makes much better sense, and in fact (as hoped) recovers the original structure. \subsection{Extract a bifactor solution using \pfun{omega} and then test that model using \fun{sem}} A bifactor solution has previously been shown (Figure~\ref{fig:om:bi}). The output from the \pfun{omega} function includes the sem commands for the analysis. As an example of doing this with real rather than simulated data, consider 9 variables from Thurstone. For completeness, the \fun{stdCoef} from \Rpkg{sem} is used as well as the \fun{summary} function. \subsubsection{sem of Thurstone 9 variable problem} The \Rpkg{sem} manual includes an example of a hierarchical solution to 9 mental abilities originally reported by Thurstone and used in the SAS manual for PROC CALIS and discussed in detail by \cite{mcdonald:tt}. The data matrix, as reported by Fox may be found in the \pfun{Thurstone} data set (which is ``lazy loaded''). Using the commands just shown, it is possible to analyze this data set using a bifactor solution (Figure~\ref{fig:thurstone:bi}). \begin{figure}[htbp] \begin{center} <>= om.th.bi <- omega(Thurstone,digits=3) @ \caption{A bifactor solution to the Thurstone 9 variable problem. All items load on a general factor of ability, the residual factors account for the correlations between items within groups. } \label{fig:thurstone:bi} \end{center} \end{figure} \begin{scriptsize} <>= sem.bi <- sem(om.th.bi$model$sem,Thurstone,213) #use the model created by omega summary(sem.bi,digits=2) stdCoef(sem.bi,digits=2) @ \end{scriptsize} Compare this solution to the one reported below, and to the \Rpkg{sem} manual. \subsection{Examining a hierarchical solution} A hierarchical solution to this data set was previously found by the \pfun{omega} function (Figure~\ref{fig:om:hi}). The output of that analysis can be used as a model for a \fun{sem} analysis. Once again, the \fun{stdCoef} function helps see the structure. Alternatively, using the \pfun{omega} function on the \pfun{Thurstone} data will create the model for this particular data set. \begin{figure}[htpb] \begin{center} <>= om.hi <- omega(Thurstone,digits=3,sl=FALSE) @ \caption{Hierarchical analysis of the Thurstone 9 variable problem using an exploratory algorithm can provide the appropriate sem code for analysis using the sem package.} \label{fig:thurstone:hi} \end{center} \end{figure} \begin{scriptsize} <>= sem.hi <- sem(om.hi$model$sem,Thurstone,213) summary(sem.hi,digits=2) stdCoef(sem.hi,digits=2) anova(sem.hi,sem.bi) @ \end{scriptsize} Using the Thurstone data set, we see what happens when a hierarchical model is applied to real data. The exploratory structure derived from the \pfun{omega} function (Figure~\ref{fig:thurstone:hi}) provides estimates in close approximation to those found using \fun{sem}. The model definition created by using \pfun{omega} is the same hierarchical model discussed in the \fun{sem} help page. The \iemph{bifactor} model, with 6 more parameters does provide a better fit to the data than the hierarchical model. Similar analyses can be done with other data that are organized hierarchically. Examples of these analyses are analyzing the 14 variables of \pfun{holzinger} and the 16 variables of \pfun{reise}. The output from the following analyses has been limited to just the comparison between the bifactor and hierarchical solutions. \begin{scriptsize} <>= om.holz.bi <- omega(Holzinger,4) sem.holz.bi <- sem(om.holz.bi$model$sem,Holzinger,355) om.holz.hi <- omega(Holzinger,4,sl=FALSE) sem.holz.hi <- sem(om.holz.hi$model$sem,Holzinger,355) anova(sem.holz.bi,sem.holz.hi) @ \end{scriptsize} \subsection{Estimating Omega using EFA followed by CFA} The function \pfun{omegaSem} combines both an exploratory factor analysis using \pfun{omega}, then calls the appropriate \fun{sem} functions and organizes the results as in a standard \pfun{omega} analysis. An example is found from the Thurstone data set of 9 cognitive variables: \begin{scriptsize} <>= om.sem <- omegaSem(Thurstone,n.obs=213) @ \end{scriptsize} Comparing the two models graphically (Figure~\ref{fig:omega:cfa} with Figure~\ref{fig:thurstone:bi} shows that while not identical, they are very similar. The sem version is basically a forced simple structure. Notice that the values of $\omega_h$ are not identical from the EFA and CFA models. The CFA solution yields higher values of $\omega_{h}$ because, by forcing a pure cluster solution (no cross loadings), the correlations between the factors is forced to be through the \emph{g} factor. \begin{figure}[htpb] \begin{center} <>= omega.diagram(om.sem,sort=FALSE) @ \caption{Confirmatory Omega structure using \pfun{omegaSem} } \label{fig:omega:cfa} \end{center} \end{figure} \section{Summary and conclusion} The use of exploratory and confirmatory models for understanding real data structures is an important advance in psychological research. To understand these approaches it is helpful to try them first on ``baby" data sets. To the extent that the models we use can be tested on simple, artificial examples, it is perhaps easier to practice their application. The \Rpkg{psych} tools for simulating structural models and for specifying models are a useful supplement to the power of packages such as \Rpkg{sem}. The techniques that can be used on simulated data set can also be applied to real data sets. \clearpage \begin{scriptsize} <>= sessionInfo() @ \end{scriptsize} %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Adams}{1980}]{adams:80} Adams, D. (1980). \newblock {\em The hitchhiker's guide to the galaxy}. \newblock Harmony Books, New York, 1st {American} edition. \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Fox}{2006}]{fox:06} Fox, J. (2006). \newblock Structural equation modeling with the sem package in {R}. \newblock {\em Structural Equation Modeling}, 13:465--486. \bibitem[\protect\astroncite{Fox}{2009}]{sem:09} Fox, J. (2009). \newblock {\em sem: Structural Equation Models}. \newblock R package version 0.9-15. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem}. Fox, J. Nie, Zhenghua and Byrnes, J. (2013) \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Rafaeli and Revelle}{2006}]{rafaeli:revelle:06} Rafaeli, E. and Revelle, W. (2006). \newblock A premature consensus: Are happiness and sadness truly opposite affects? \newblock {\em Motivation and Emotion}, 30(1):1--12. \bibitem[\protect\astroncite{Reise et~al.}{2007}]{reise:07} Reise, S., Morizot, J., and Hays, R. (2007). \newblock The role of the bifactor model in resolving dimensionality issues in health outcomes measures. \newblock {\em Quality of Life Research}, 16(0):19--31. \bibitem[\protect\astroncite{Revelle}{2014}]{psych} Revelle, W. (2014). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.4.1 \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {\em llavaan: An R Package for Structural Equation Modeling}. \newblock {\em Journal of Statistical Software}, 48(2):1-36. \newblock R package version 0.5-14. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \end{thebibliography} \printindex \end{document} psych/vignettes/intro.Rnw0000644000176200001440000025623713153072116015251 0ustar liggesusers% \VignetteIndexEntry{Introduction to the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} %\usepackage{gensymb} \usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{siunitx} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \makeindex % used for the subject index \title{An introduction to the psych package: Part I: \\ data entry and data description} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \newpage \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package: \begin{scriptsize} \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} \end{scriptsize} \item Input your data (section \ref{sect:read}). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, then the file will be opened and the data will be read in (or loaded in the case of Rda files) \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using your normal operating system \end{Sinput} \end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} \end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} \begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or describeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} \end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} (section~\ref{sect:pairs}) Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} \begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data (section \ref{sect:scrub}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} \end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable (section \ref{sect:errorbars}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} \end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} \begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} \end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. \begin{itemize} \item \pfun{setCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") setCor(y = c( "y1", "y2"), x = c("x1","x2"), data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "y1", "y2"), x = c("x1","x2"), m= "med1", mod = "mod1", data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in the second vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in the \emph{Overview Vignette}, which may be downloaded from \url{http://personality-project.org/r/psych/vignettes/overview.pdf} . A brief review of the functions available is included here. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{http://personality-project.org/r}. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}, section \ref{sect:fa.parallel}) or Very Simple Structure (\pfun{vss}, \ref{sect:vss}) . \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Factor analyze (see section 4.1) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities such as minres (section 4.1.1), alpha factoring, and wls. Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section 4.1.6). Also consider a hierarchical factor solution to find coefficient $\omega$ (see \ref{sect:omega}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} \end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} \begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function (see \ref{sect:alpha}). Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function (see \ref{sect:score}) and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} \begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{http://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes six methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{alpha factoring}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51}(\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} \pfun{mlr} will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \url{psych_manual.pdf} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{http://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \url{http://personalty-project.org/r/psych_for_sem.pdf}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"http://personality-project.org/r/book/psych_for_sem.pdf"}{\url{http://personality-project.org/r/psych/vignettes/psych_for_sem.pdf}}). For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{http://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{http://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in the Overview Vignette require other packages. This is not the case for the functions listed in this Introduction. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: \begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt") \end{Sinput} \end{Schunk} Alternatively, many packages for psychometric can be downloaded at once using the ``Psychometrics" task view: \begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} \end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., \begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych)} \end{Sinput} \end{Schunk} \subsection{Getting the data by using read.file} \label{sect:read} Although many find copying the data to the clipboard and then using the \pfun{read.clipboard} functions (see below), a helpful alternative is to read the data in directly. This can be done using the \pfun{read.file} function which calls \fun{file.choose} to find the file and then based upon the suffix of the file, chooses the appropriate way to read it. For files with suffixes of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, the file will be read correctly. \begin{Schunk} \begin{Sinput} my.data <- read.file() \end{Sinput} \end{Schunk} If the file contains Fixed Width Format (fwf) data, the column information can be specified with the widths command. \begin{Schunk} \begin{Sinput} my.data <- read.file(widths = c(4,rep(1,35)) #will read in a file without a header row # and 36 fields, the first of which is 4 colums, the rest of which are 1 column each. \end{Sinput} \end{Schunk} If the file is a .RData file (with suffix of .RData, .Rda, .rda, .Rdata, or .rdata) the object will be loaded. Depending what was stored, this might be several objects. If the file is a .sav file from SPSS, it will be read with the most useful default options (converting the file to a data.frame and converting character fields to numeric). Alternative options may be specified. If it is an export file from SAS (.xpt or .XPT) it will be read. .csv files (comma separated files), normal .txt or .text files, .data, or .dat files will be read as well. These are assumed to have a header row of variable labels (header=TRUE). If the data do not have a header row, you must specify read.file(header=FALSE). To read SPSS files and to keep the value labels, specify use.value.labels=TRUE. \begin{Schunk} \begin{Sinput} #this will keep the value labels for .sav files my.spss <- read.file(use.value.labels=TRUE) \end{Sinput} \end{Schunk} \subsection{Data input from the clipboard} There are of course many ways to enter data into \R. Reading from a local file using \fun{read.table} is perhaps the most preferred. However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using \fun{read.table} and specifying the input file as ``clipboard" (PCs) or ``pipe(pbpaste)" (Macs). Alternatively, the \pfun{read.clipboard} set of functions are perhaps more user friendly: \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command \begin{Schunk} \begin{Sinput} my.data <- read.clipboard() \end{Sinput} \end{Schunk} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. \begin{Schunk} \begin{Sinput} > my.data <- read.clipboard(sep="\t") #define the tab option, or > my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Sinput} \end{Schunk} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). \begin{Schunk} \begin{Sinput} > my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Sinput} \end{Schunk} \subsection{Basic descriptive statistics} \label{sect:describe} Once the data are read in, then \pfun{describe} or \pfun{describeBy} will provide basic descriptive statistics arranged in a data frame format. Consider the data set \pfun{sat.act} which includes data from 700 web based participants on 3 demographic variables and 3 ability measures. \begin{description} \item[\pfun{describe}] reports means, standard deviations, medians, min, max, range, skew, kurtosis and standard errors for integer or real data. Non-numeric data, although the statistics are meaningless, will be treated as if numeric (based upon the categorical coding of the data), and will be flagged with an *. \item[\pfun{describeBy}] reports descriptive statistics broken down by some categorizing variable (e.g., gender, age, etc.) \end{description} \begin{scriptsize} <>= library(psych) data(sat.act) describe(sat.act) #basic descriptive statistics @ \end{scriptsize} These data may then be analyzed by groups defined in a logical statement or by some other variable. E.g., break down the descriptive data for males or females. These descriptive data can also be seen graphically using the \pfun{error.bars.by} function (Figure~\ref{fig:error.bars}). By setting skew=FALSE and ranges=FALSE, the output is limited to the most basic statistics. \begin{scriptsize} <>= #basic descriptive statistics by a grouping variable. describeBy(sat.act,sat.act$gender,skew=FALSE,ranges=FALSE) @ \end{scriptsize} The output from the \pfun{describeBy} function can be forced into a matrix form for easy analysis by other programs. In addition, describeBy can group by several grouping variables at the same time. \begin{scriptsize} <>= sa.mat <- describeBy(sat.act,list(sat.act$gender,sat.act$education), skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) @ \end{scriptsize} \subsubsection{Outlier detection using \pfun{outlier}} One way to detect unusual data is to consider how far each data point is from the multivariate centroid of the data. That is, find the squared Mahalanobis distance for each data point and then compare these to the expected values of $\chi^{2}$. This produces a Q-Q (quantle-quantile) plot with the n most extreme data points labeled (Figure~\ref{fig:outlier}). The outlier values are in the vector d2. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() @ \end{scriptsize} \includegraphics{outlier} \caption{Using the \pfun{outlier} function to graphically show outliers. The y axis is the Mahalanobis $D^{2}$, the X axis is the distribution of $\chi^{2}$ for the same number of degrees of freedom. The outliers detected here may be shown graphically using \pfun{pairs.panels} (see \ref{fig:pairs.panels}, and may be found by sorting d2. } \label{fig:outlier} \end{center} \end{figure} \subsubsection{Basic data cleaning using \pfun{scrub}} \label{sect:scrub} If, after describing the data it is apparent that there were data entry errors that need to be globally replaced with NA, or only certain ranges of data will be analyzed, the data can be ``cleaned" using the \pfun{scrub} function. Consider a data set of 10 rows of 12 columns with values from 1 - 120. All values of columns 3 - 5 that are less than 30, 40, or 50 respectively, or greater than 70 in any of the three columns will be replaced with NA. In addition, any value exactly equal to 45 will be set to NA. (max and isvalue are set to one value here, but they could be a different value for every column). \begin{scriptsize} <>= x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x @ \end{scriptsize} Note that the number of subjects for those columns has decreased, and the minimums have gone up but the maximums down. Data cleaning and examination for outliers should be a routine part of any data analysis. \subsubsection{Recoding categorical variables into dummy coded variables} Sometimes categorical variables (e.g., college major, occupation, ethnicity) are to be analyzed using correlation or regression. To do this, one can form ``dummy codes'' which are merely binary variables for each category. This may be done using \pfun{dummy.code}. Subsequent analyses using these dummy coded variables may be using \pfun{biserial} or point biserial (regular Pearson r) to show effect sizes and may be plotted in e.g., \pfun{spider} plots. Alternatively, sometimes data were coded originally as categorical (Male/Female, High School, some College, in college, etc.) and you want to convert these columns of data to numeric. This is done by \pfun{char2numeric}. \subsection{Simple descriptive graphics} Graphic descriptions of data are very helpful both for understanding the data as well as communicating important results. Scatter Plot Matrices (SPLOMS) using the \pfun{pairs.panels} function are useful ways to look for strange effects involving outliers and non-linearities. \pfun{error.bars.by} will show group means with 95\% confidence boundaries. By default, \pfun{error.bars.by} and \pfun{error.bars} will show ``cats eyes'' to graphically show the confidence limits (Figure~\ref{fig:error.bars}) This may be turned off by specifying eyes=FALSE. \pfun{densityBy} or \pfun{violinBy} may be used to show the distribution of the data in ``violin'' plots (Figure~\ref{fig:violin}). (These are sometimes called ``lava-lamp" plots.) \subsubsection{Scatter Plot Matrices} Scatter Plot Matrices (SPLOMS) are very useful for describing the data. The \pfun{pairs.panels} function, adapted from the help menu for the \fun{pairs} function produces xy scatter plots of each pair of variables below the diagonal, shows the histogram of each variable on the diagonal, and shows the \iemph{lowess} locally fit regression line as well. An ellipse around the mean with the axis length reflecting one standard deviation of the x and y variables is also drawn. The x axis in each scatter plot represents the column variable, the y axis the row variable (Figure~\ref{fig:pairs.panels}). When plotting many subjects, it is both faster and cleaner to set the plot character (pch) to be '.'. (See Figure~\ref{fig:pairs.panels} for an example.) \begin{description} \label{sect:pairs} \item[\pfun{pairs.panels} ] will show the pairwise scatter plots of all the variables as well as histograms, locally smoothed regressions, and the Pearson correlation. When plotting many data points (as in the case of the sat.act data, it is possible to specify that the plot character is a period to get a somewhat cleaner graphic. However, in this figure, to show the outliers, we use colors and a larger plot character. If we want to indicate 'significance' of the correlations by the conventional use of 'magic astricks' we can set the \pfun{stars}=TRUE option. \end{description} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() @ \end{scriptsize} \includegraphics{pairspanels} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. Note the extreme outlier for the ACT. If the plot character were set to a period (pch='.') it would make a cleaner graphic, but in to show the outliers in color we use the plot characters 21 and 22. } \label{fig:pairs.panels} \end{center} \end{figure} Another example of \pfun{pairs.panels} is to show differences between experimental groups. Consider the data in the \pfun{affect} data set. The scores reflect post test scores on positive and negative affect and energetic and tense arousal. The colors show the results for four movie conditions: depressing, frightening movie, neutral, and a comedy. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() @ \end{scriptsize} \includegraphics{affect} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. The coloring represent four different movie conditions. } \label{fig:pairs.panels2} \end{center} \end{figure} Yet another demonstration of \pfun{pairs.panels} is useful when you have many subjects and want to show the density of the distributions. To do this we will use the \pfun{make.keys} and \pfun{scoreItems} functions (discussed in the second vignette) to create scales measuring Energetic Arousal, Tense Arousal, Positive Affect, and Negative Affect (see the \pfun{msq} help file). We then show a \pfun{pairs.panels} scatter plot matrix where we smooth the data points and show the density of the distribution by color. %\begin{figure}[htbp] %\begin{center} \begin{scriptsize} <>= keys <- make.keys(msq[1:75],list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) ) scores <- scoreItems(keys,msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() @ \end{scriptsize} %\includegraphics{msq} Using the \pfun{pairs.panels} function to graphically show relationships. (Not shown in the interests of space.) The x axis in each scatter plot represents the column variable, the y axis the row variable. The variables are four measures of motivational state for 3896 participants. Each scale is the average score of 10 items measuring motivational state. Compare this a plot with smoother set to FALSE. %\label{fig:pairs.panels3} %\end{center} %\end{figure} \subsubsection{Density or violin plots} Graphical presentation of data may be shown using box plots to show the median and 25th and 75th percentiles. A powerful alternative is to show the density distribution using the \pfun{violinBy} function (Figure~\ref{fig:violin}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('violin.png') data(sat.act) violinBy(sat.act[5:6],sat.act$gender,grp.name=c("M", "F"),main="Density Plot by gender for SAT V and Q") dev.off() @ \end{scriptsize} \includegraphics{violin} \caption{Using the \pfun{violinBy} function to show the distribution of SAT V and Q for males and females. The plot shows the medians, and 25th and 75th percentiles, as well as the entire range and the density distribution. } \label{fig:violin} \end{center} \end{figure} \clearpage \subsubsection{Means and error bars} \label{sect:errorbars} Additional descriptive graphics include the ability to draw \iemph{error bars} on sets of data, as well as to draw error bars in both the x and y directions for paired data. These are the functions \pfun{error.bars}, \pfun{error.bars.by}, \pfun{error.bars.tab}, and \pfun{error.crosses}. \begin{description} \item [\pfun{error.bars}] show the 95 \% confidence intervals for each variable in a data frame or matrix. These errors are based upon normal theory and the standard errors of the mean. Alternative options include +/- one standard deviation or 1 standard error. If the data are repeated measures, the error bars will be reflect the between variable correlations. By default, the confidence intervals are displayed using a ``cats eyes'' plot which emphasizes the distribution of confidence within the confidence interval. \item [\pfun{error.bars.by}] does the same, but grouping the data by some condition. \item [\pfun{error.bars.tab}] draws bar graphs from tabular data with error bars based upon the standard error of proportion ($\sigma_{p} = \sqrt{pq/N} $) \item [\pfun{error.crosses}] draw the confidence intervals for an x set and a y set of the same size. \end{description} The use of the \pfun{error.bars.by} function allows for graphic comparisons of different groups (see Figure~\ref{fig:error.bars}). Five personality measures are shown as a function of high versus low scores on a ``lie" scale. People with higher lie scores tend to report being more agreeable, conscientious and less neurotic than people with lower lie scores. The error bars are based upon normal theory and thus are symmetric rather than reflect any skewing in the data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) @ \end{scriptsize} \caption{Using the \pfun{error.bars.by} function shows that self reported personality scales on the Big Five Inventory vary as a function of the Lie scale on the EPI. The ``cats eyes'' show the distribution of the confidence. } \label{fig:error.bars} \end{center} \end{figure} Although not recommended, it is possible to use the \pfun{error.bars} function to draw bar graphs with associated error bars. (This kind of \iemph{dynamite plot} (Figure~\ref{fig:dynamite}) can be very misleading in that the scale is arbitrary. Go to a discussion of the problems in presenting data this way at \url{http://emdbolker.wikidot.com/blog:dynamite}. In the example shown, note that the graph starts at 0, although is out of the range. This is a function of using bars, which always are assumed to start at zero. Consider other ways of showing your data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") @ \end{scriptsize} \caption{A ``Dynamite plot" of SAT scores as a function of gender is one way of misleading the reader. By using a bar graph, the range of scores is ignored. Bar graphs start from 0. } \label{fig:dynamite} \end{center} \end{figure} \subsubsection{Error bars for tabular data} However, it is sometimes useful to show error bars for tabular data, either found by the \fun{table} function or just directly input. These may be found using the \pfun{error.bars.tab} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") @ \end{scriptsize} \caption{The proportion of each education level that is Male or Female. By using the way="both" option, the percentages and errors are based upon the grand total. Alternatively, way="columns" finds column wise percentages, way="rows" finds rowwise percentages. The data can be converted to percentages (as shown) or by total count (raw=TRUE). The function invisibly returns the probabilities and standard errors. See the help menu for an example of entering the data as a data.frame. } \label{fig:dynamite} \end{center} \end{figure} \clearpage \subsubsection{Two dimensional displays of means and errors} Yet another way to display data for different conditions is to use the \pfun{errorCrosses} function. For instance, the effect of various movies on both ``Energetic Arousal'' and ``Tense Arousal'' can be seen in one graph and compared to the same movie manipulations on ``Positive Affect'' and ``Negative Affect''. Note how Energetic Arousal is increased by three of the movie manipulations, but that Positive Affect increases following the Happy movie only. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{The use of the \pfun{errorCircles} function allows for two dimensional displays of means and error bars. The first call to \pfun{errorCircles} finds descriptive statistics for the \iemph{affect} data.frame based upon the grouping variable of Film. These data are returned and then used by the second call which examines the effect of the same grouping variable upon different measures. The size of the circles represent the relative sample sizes for each group. The data are from the PMC lab and reported in \cite{smillie:jpsp}.} \label{fig:errorCircles} \end{center} \end{figure} \clearpage \subsubsection{Back to back histograms} The \pfun{bi.bars} function summarize the characteristics of two groups (e.g., males and females) on a second variable (e.g., age) by drawing back to back histograms (see Figure~\ref{fig:bibars}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} % <>= data(bfi) <>= png( 'bibars.png' ) with(bfi,{bi.bars(age,gender,ylab="Age",main="Age by males and females")}) dev.off() @ \end{scriptsize} \includegraphics{bibars.png} \caption{A bar plot of the age distribution for males and females shows the use of \pfun{bi.bars}. The data are males and females from 2800 cases collected using the \iemph{SAPA} procedure and are available as part of the \pfun{bfi} data set. } \label{fig:bibars} \end{center} \end{figure} \clearpage \subsubsection{Correlational structure} \label{sect:lowerCor} There are many ways to display correlations. Tabular displays are probably the most common. The output from the \fun{cor} function in core R is a rectangular matrix. \pfun{lowerMat} will round this to (2) digits and then display as a lower off diagonal matrix. \pfun{lowerCor} calls \fun{cor} with \emph{use=`pairwise', method=`pearson'} as default values and returns (invisibly) the full correlation matrix and displays the lower off diagonal matrix. \begin{scriptsize} <>= lowerCor(sat.act) @ \end{scriptsize} When comparing results from two different groups, it is convenient to display them as one matrix, with the results from one group below the diagonal, and the other group above the diagonal. Use \pfun{lowerUpper} to do this: \begin{scriptsize} <>= female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) @ \end{scriptsize} It is also possible to compare two matrices by taking their differences and displaying one (below the diagonal) and the difference of the second from the first above the diagonal: \begin{scriptsize} <>= diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) @ \end{scriptsize} \subsubsection{Heatmap displays of correlational structure} \label{sect:corplot} Perhaps a better way to see the structure in a correlation matrix is to display a \emph{heat map} of the correlations. This is just a matrix color coded to represent the magnitude of the correlation. This is useful when considering the number of factors in a data set. Consider the \pfun{Thurstone} data set which has a clear 3 factor solution (Figure~\ref{fig:cor.plot}) or a simulated data set of 24 variables with a circumplex structure (Figure~\ref{fig:cor.plot.circ}). The color coding represents a ``heat map'' of the correlations, with darker shades of red representing stronger negative and darker shades of blue stronger positive correlations. As an option, the value of the correlation can be shown. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,main="9 cognitive variables from Thurstone") dev.off() @ \end{scriptsize} \includegraphics{corplot.png} \caption{The structure of correlation matrix can be seen more clearly if the variables are grouped by factor and then the correlations are shown by color. By using the 'numbers' option, the values are displayed as well. By default, the complete matrix is shown. Setting upper=FALSE and diag=FALSE shows a cleaner figure. } \label{fig:cor.plot} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() @ \end{scriptsize} \includegraphics{circplot.png} \caption{Using the corPlot function to show the correlations in a circumplex. Correlations are highest near the diagonal, diminish to zero further from the diagonal, and the increase again towards the corners of the matrix. Circumplex structures are common in the study of affect. For circumplex structures, it is perhaps useful to show the complete matrix.} \label{fig:cor.plot.circ} \end{center} \end{figure} Yet another way to show structure is to use ``spider'' plots. Particularly if variables are ordered in some meaningful way (e.g., in a circumplex), a spider plot will show this structure easily. This is just a plot of the magnitude of the correlation as a radial line, with length ranging from 0 (for a correlation of -1) to 1 (for a correlation of 1). (See Figure~\ref{fig:cor.plot.spider}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() @ \end{scriptsize} \includegraphics{spider.png} \caption{A spider plot can show circumplex structure very clearly. Circumplex structures are common in the study of affect.} \label{fig:cor.plot.spider} \end{center} \end{figure} \subsection{Testing correlations} \label{sect:corr.test} Correlations are wonderful descriptive statistics of the data but some people like to test whether these correlations differ from zero, or differ from each other. The \fun{cor.test} function (in the \Rpkg{stats} package) will test the significance of a single correlation, and the \fun{rcorr} function in the \Rpkg{Hmisc} package will do this for many correlations. In the \Rpkg{psych} package, the \pfun{corr.test} function reports the correlation (Pearson, Spearman, or Kendall) between all variables in either one or two data frames or matrices, as well as the number of observations for each case, and the (two-tailed) probability for each correlation. Unfortunately, these probability values have not been corrected for multiple comparisons and so should be taken with a great deal of salt. Thus, in \pfun{corr.test} and \pfun{corr.p} the raw probabilities are reported below the diagonal and the probabilities adjusted for multiple comparisons using (by default) the Holm correction are reported above the diagonal (Table~\ref{tab:corr.test}). (See the \fun{p.adjust} function for a discussion of \cite{holm:79} and other corrections.) \begin{table}[htpb] \caption{The \pfun{corr.test} function reports correlations, cell sizes, and raw and adjusted probability values. \pfun{corr.p} reports the probability values for a correlation matrix. By default, the adjustment used is that of \cite{holm:79}.} \begin{scriptsize} <>= corr.test(sat.act) @ \end{scriptsize} \label{tab:corr.test} \end{table}% Testing the difference between any two correlations can be done using the \pfun{r.test} function. The function actually does four different tests (based upon an article by \cite{steiger:80b}, depending upon the input: 1) For a sample size n, find the t and p value for a single correlation as well as the confidence interval. \begin{scriptsize} <>= r.test(50,.3) @ \end{scriptsize} 2) For sample sizes of n and n2 (n2 = n if not specified) find the z of the difference between the z transformed correlations divided by the standard error of the difference of two z scores. \begin{scriptsize} <>= r.test(30,.4,.6) @ \end{scriptsize} 3) For sample size n, and correlations ra= r12, rb= r23 and r13 specified, test for the difference of two dependent correlations (Steiger case A). \begin{scriptsize} <>= r.test(103,.4,.5,.1) @ \end{scriptsize} 4) For sample size n, test for the difference between two dependent correlations involving different variables. (Steiger case B). \begin{scriptsize} <>= r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B @ \end{scriptsize} To test whether a matrix of correlations differs from what would be expected if the population correlations were all zero, the function \pfun{cortest} follows \cite{steiger:80b} who pointed out that the sum of the squared elements of a correlation matrix, or the Fisher z score equivalents, is distributed as chi square under the null hypothesis that the values are zero (i.e., elements of the identity matrix). This is particularly useful for examining whether correlations in a single matrix differ from zero or for comparing two matrices. Although obvious, \pfun{cortest} can be used to test whether the \pfun{sat.act} data matrix produces non-zero correlations (it does). This is a much more appropriate test when testing whether a residual matrix differs from zero. \begin{scriptsize} <>= cortest(sat.act) @ \end{scriptsize} \subsection{Polychoric, tetrachoric, polyserial, and biserial correlations} The Pearson correlation of dichotomous data is also known as the $\phi$ coefficient. If the data, e.g., ability items, are thought to represent an underlying continuous although latent variable, the $\phi$ will underestimate the value of the Pearson applied to these latent variables. One solution to this problem is to use the \pfun{tetrachoric} correlation which is based upon the assumption of a bivariate normal distribution that has been cut at certain points. The \pfun{draw.tetra} function demonstrates the process (Figure~\ref{fig:tetra}). This is also shown in terms of dichotomizing the bivariate normal density function using the \pfun{draw.cor} function (Figure~\ref{fig:draw.cor}). A simple generalization of this to the case of the multiple cuts is the \pfun{polychoric} correlation. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= draw.tetra() @ \end{scriptsize} \caption{The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values.} \label{fig:tetra} \end{center} \end{figure} The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values. It is found (laboriously) by optimizing the fit of the bivariate normal for various values of the correlation to the observed cell frequencies. In the interests of space, we do not show the next figure but it can be created by draw.cor(expand=20,cuts=c(0,0) Other estimated correlations based upon the assumption of bivariate normality with cut points include the \pfun{biserial} and \pfun{polyserial} correlation. If the data are a mix of continuous, polytomous and dichotomous variables, the \pfun{mixed.cor} function will calculate the appropriate mixture of Pearson, polychoric, tetrachoric, biserial, and polyserial correlations. The correlation matrix resulting from a number of tetrachoric or polychoric correlation matrix sometimes will not be positive semi-definite. This will sometimes happen if the correlation matrix is formed by using pair-wise deletion of cases. The \pfun{cor.smooth} function will adjust the smallest eigen values of the correlation matrix to make them positive, rescale all of them to sum to the number of variables, and produce a ``smoothed'' correlation matrix. An example of this problem is a data set of \pfun{burt} which probably had a typo in the original correlation matrix. Smoothing the matrix corrects this problem. \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \section{ Multiple Regression, mediation, moderation, and set correlations} The typical application of the \fun{lm} function is to do a linear model of one Y variable as a function of multiple X variables. Because \fun{lm} is designed to analyze complex interactions, it requires raw data as input. It is, however, sometimes convenient to do \iemph{multiple regression} from a correlation or covariance matrix. This is done using the \pfun{setCor} which will work with either raw data, covariance matrices, or correlation matrices. \subsection{Multiple regression from data or correlation matrices} The \pfun{setCor} function will take a set of y variables predicted from a set of x variables, perhaps with a set of z covariates removed from both x and y. Consider the \iemph{Thurstone} correlation matrix and find the multiple correlation of the last five variables as a function of the first 4. \begin{scriptsize} <>= setCor(y = 5:9,x=1:4,data=Thurstone) @ \end{scriptsize} By specifying the number of subjects in correlation matrix, appropriate estimates of standard errors, t-values, and probabilities are also found. The next example finds the regressions with variables 1 and 2 used as covariates. The $\hat{\beta}$ weights for variables 3 and 4 do not change, but the multiple correlation is much less. It also shows how to find the residual correlations between variables 5-9 with variables 1-4 removed. \begin{scriptsize} <>= sc <- setCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) @ \end{scriptsize} \subsection{Mediation and Moderation analysis} Although multiple regression is a straightforward method for determining the effect of multiple predictors ($x_{1, 2, ... i}$) on a criterion variable, y, some prefer to think of the effect of one predictor, x, as mediated by another variable, m \citep{preacher:04}. Thus, we we may find the indirect path from x to m, and then from m to y as well as the direct path from x to y. Call these paths a, b, and c, respectively. Then the indirect effect of x on y through m is just ab and the direct effect is c. Statistical tests of the ab effect are best done by bootstrapping. Consider the example from \cite{preacher:04} as analyzed using the \pfun{mediate} function and the subsequent graphic from \pfun{mediate.diagram}. The data are found in the example for \pfun{mediate}. \begin{scriptsize} <>= #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) @ <>= preacher <- mediate(y="SATIS",x="THERAPY",m="ATTRIB",data=sobel) #The example in Preacher and Hayes @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= mediate.diagram(preacher) @ \end{scriptsize} \caption{A mediated model taken from Preacher and Hayes, 2004 and solved using the \pfun{mediate} function. The direct path from Therapy to Satisfaction has a an effect of .76, while the indirect path through Attribution has an effect of .33. Compare this to the normal regression graphic created by setCor.diagram.} \label{fig:mediate} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= preacher <- setCor(1,c(2,3),sobel,std=FALSE) setCor.diagram(preacher) @ \end{scriptsize} \caption{The conventional regression model for the Preacher and Hayes, 2004 data set solved using the \pfun{sector} function. Compare this to the previous figure.} \label{fig:mediate} \end{center} \end{figure} \begin{itemize} \item \pfun{setCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} setCor(y = c( "SATV" , "SATQ"), x = c("education" ,"age" ), data = sat.act, std=TRUE) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y = c( "SATV" ), x = c("education" ,"age" ), m= "ACT", data =sat.act,std=TRUE,n.iter=50) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. The particular example is for demonstration purposes only and shows neither moderation nor mediation. The number of iterations for the boot strap was set to 50 for speed. The default number of boot straps is 5000. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= mediate(y = c( "SATQ" ), x = c("ACT" ), m="education", mod="gender", data =sat.act,std=TRUE,n.iter=50) @ \end{scriptsize} \caption{Moderated multiple regression requires the raw data.} \label{default} \end{center} \end{figure} \end{itemize} \subsection{Set Correlation} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{setCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{setCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{setCor}. Two things to notice. \pfun{setCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{setCor}. <>= #compare with sector setCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{setCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{set.cor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For a Mac, this version can be installed directly using the ``other repository" option in the package installer. For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version >= "1.7.8",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2015}]{psych} Revelle, W. (2015). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 1.5.8 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2014]{rc:reliability} Revelle, W. and Condon, D.~M. (2014). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell (in press). \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psych/MD50000644000176200001440000005632013154773345011732 0ustar liggesusers90dcd543e8e42cdabdd5a3cb826274c6 *DESCRIPTION a3bbf1e9ee2d921e6b78ad2942480681 *NAMESPACE 13d9ab3fbb68605e336eaf29f98bd80a *R/BASS.R 9baf9900489e40fc5418eeba089d85db *R/ICC.R 2be8858641d57ffc0dfaed864091c512 *R/ICLUST.R ecaf6a79e563895c5b3859626c9adb86 *R/ICLUST.cluster.R eabaa6a1c82086eb5a0626f304f4ce93 *R/ICLUST.diagram.R 4e7420bb6217b6c46af5e2b341829664 *R/ICLUST.graph.R 47707adf3dd0a492c8381d87edfc2f25 *R/ICLUST.rgraph.R 43304e73cf7661a6cbfcb4f93f85729f *R/ICLUST.sort.R f84717acc89faca76baeb6e84eb7ff48 *R/Promax.R 29b1741482dfa3214d2653e3470b3521 *R/SD.R bb41e609736f8dd5b728e146010da6c9 *R/VSS.R 809456b6ac0ee3a8dfcc465dca04666f *R/VSS.parallel.R f8d7090c374a6f5d7f3e9bb093ffcd0d *R/VSS.plot.R 10a47c557cfd7c4080d260b9ff0a17e0 *R/VSS.scree.R ed75be842790e7dfa77a1c535522273e *R/VSS.simulate.R de88fdb63bc08e5bfd4fe85ae4336ee6 *R/VSSem.R bd000d60c462cd306f7baf4baaa06950 *R/Yule.R cc2ba43cf9c3d4320e1d4c2eddbe57ce *R/alpha.R 829a79ef9b5afa968036507b0acc9f1d *R/alpha.scale.R 88fc59dc7726b687387d422730c5d02e *R/anova.psych.R bcac6b5f5c68919ea1755f1c8a58c3ec *R/bestScale.R e8b8853ef0f3c440160702b5f1118a3c *R/bi.bars.R 6a92791c879c6edf81b130112421be09 *R/bifactor.R 41fe5fa96c5f1c281ee18e37e224241d *R/biplot.R a81dc92b15fac84a03a7d1d406d2e7cb *R/biplot.psych.R 0db3102d1d2a94f3ca64b47b65d0460f *R/block.random.R 1692ff58bc2e3a8fe7f0a31194d6ca1d *R/circ.sim.R ae8431c26cfba1e7680f174f215ddb3f *R/circ.sim.plot.R 1cda4a1ca1bc9b6e9a1965ec006e7169 *R/circ.simulation.R e1a2d9df995d658148776e6523c89fb0 *R/circ.tests.R 34543cb45a3daee1c90291b4dcfaec37 *R/cluster.cor.R b33d112581cdfd84197fbf1d5616f2be *R/cluster.fit.R f90b3f75b4e0143f342ed4e785260f1a *R/cluster.loadings.R 7c2de8540047d5f8320efdf072769184 *R/cluster.plot.R 7e69422d35d34b51da2818a09ce4a3b2 *R/cluster2keys.R 53acf2a7379ab72becee8118d48999cc *R/cohen.d.R 727ee779cba4b35601c0f67761ccf256 *R/comorbidity.R 02f5c23520d04eeff50459773faba599 *R/congeneric.sim.R 02f5c23520d04eeff50459773faba599 *R/congeric.sim.R 5f3c211dc857234790d7cafa452fada4 *R/cor.ci.R 90e6abce51ef1f27f8f57a213c8686bf *R/cor.plot.R fd74b129ae2efec3e186e5d597bfbdea *R/cor2dist.R 142a80490857bacc0a743ca171ab987b *R/corr.test.R a471350b95156c5e71744584f02c9e68 *R/correct.cor.R d788167fcd29ed5e7209f6f78a12e05c *R/cortest.R fe8acb2f96feda0a660696a39ccd4447 *R/cortest.bartlett.R 895a69392b4f32bea94ab692126c83a4 *R/cortest.jennrich.R 6f10daea428ad8d9cd9457cd7ff8ca6c *R/cortest.mat.R 00874f125070d37a621a2983914cacda *R/cortest.normal.R db01aa93731e3ec5268d25c21007d495 *R/cosinor.R 72a29fdbf4760064b65ca9502daa5a64 *R/count.pairwise.R 2a5af21bf77ebe0d56841240e7855d56 *R/cta.15.R 55da70d9c9bec31f46ff865582d29dc6 *R/cta.R a7055281543e11a3566aba3512bd7993 *R/densityBy.r 03f23de428ba29b8111a3f17171ec5b3 *R/describe.R f6fbc1b8088da0aa2ff5e6440f60eb2e *R/describe.by.R cef59adb23afd839d446769980cfbf3d *R/df2latex.R fd3fc64eaafbfb3771f597a51647b779 *R/dia.cone.R fe9becccb8f7bd5fe31dedf31c0086a4 *R/diagram.R 123f78d7afd740d145ebc1731d05c491 *R/dotchart.psych.r 01322be438148a3d555f5fe8f9e4bbf8 *R/draw.tetra.R 3965697a595cbd5e3a018506fc97479d *R/dummy.code.R e7df2e7682994996c551c62ed0ffef97 *R/eigen.loadings.R bccde892e9e38b1be2397375f4d7e0b6 *R/ellipses.R f8e7f354ff337655c763413ebb8a18a7 *R/error.bars.R 2e1bab39a0eca42024b25d45eb725a13 *R/error.bars.by.R cb63d95b6898016dd1867dc6e1bfb19e *R/error.crosses.R 5a4161602ea3a55b2efa71190feb96c5 *R/error.dots.r 911330458f4e8be20389e91463de8d80 *R/errorCircles.r 7d5e1ad850b66cfb4a7063a10cf2e759 *R/esem.R f251e4e69fd38e32d8058dc1f723997b *R/esem.diagram.R 0e3db957037ddd2785156ce4f61258e1 *R/fa.R 7eaf85a3006599af30ae68cd66e376cb *R/fa.ci.R 0ffbbd92836c8ebdaa66a3ebb7b7f775 *R/fa.diagram.R dbc4ae598b0e8314ce5e54439ecf8cf2 *R/fa.extension.R b2f045a51110e376b73a021035d02033 *R/fa.graph.R bc0aca961a372a69cb00114a403c85eb *R/fa.multi.R d7ab8631174469958d331f90fe3ed13d *R/fa.parallel.R 2c4cd0b4690985388565cf6603068f99 *R/fa.parallel.poly.R c894ac8b58ab7f65ce2e4840261e5c14 *R/fa.poly.R 5ac4f5a2056cec2e4d15cdcfb17e3973 *R/fa.random.R 4af9392ce59f97081bea4daffdeeb924 *R/fa.rgraph.R bcea893a1cdf4d7734da662a1fcb2952 *R/fa.sapa.R adad885272d83acf3a85662ba0fddb00 *R/fa.sort.R 0da60862e25663e02d24b9d9597d3337 *R/faBy.R e5c85e0f6a42cf94e46980836c263f34 *R/factor.congruence.R c851365f569d8fc0194bd0f6840529ff *R/factor.fit.R fc8fc1ecb18a85b3d810cbbdc7f69b38 *R/factor.minres.R 963be9f7f5143a09871c23b9a5044811 *R/factor.model.R 1930bb013a3d24a79719943f4733bcd5 *R/factor.pa.R 5a07e267d2e957b5061cb96b77354d31 *R/factor.residuals.R fd8664c63e1e9c9c88fb504729a3bb32 *R/factor.rotate.R 3362c7464ec6d0de35918f0f472e1a8d *R/factor.scores.R b7bcec3141b9e4d32b127ce6f5fe0bc5 *R/factor.stats.R 07305db6788f548ddfd81cef02f33b96 *R/factor.wls.R 0d1019a4b6a5a7e8b824999cf51d0714 *R/factor2cluster.R e10754196a212278bb50b3f669a3705e *R/fiml.R daab45b0de7817c651387ae8094b14c2 *R/fisherz.R 59a411c575963c65934529a2db1c589f *R/fix.dplyr.R f89c037c1fa27c410e6c2b136292e6db *R/geometric.mean.R e972d7d599d676e916eef1d9f9bab773 *R/glb.R f76e70456f15440d8fc10e864c54e7da *R/glb.algebraic.R 117e706ca382944f87b94ed5bd496c58 *R/glbs.R 974fd71977dcdce0d542d24341ba7a3f *R/grouplag.R 1278e672ea0a5e11fa4e271030ff07d8 *R/guttman.R 2aec632103446472fa8c1c2f64149ae6 *R/harmonic.mean.R 91b3968663de9e99c333fa37db40fb0e *R/head.tail.R 046736cf35c2d21ece69e06872beae5c *R/headtail.R 11b91d0af2fb0086bc125713c1cc44f9 *R/interp.median.R ec5fbe362760a0d33e9e6cd837d2b3fd *R/irt.0p.R 1db07f94eb04b7e5f3b5e792a943b7b9 *R/irt.1p.R c3b63762311bb7ccf7851794ce4677ec *R/irt.2p.R 074d8e8fb33b28f1e4907b9aa6571468 *R/irt.discrim.R ed5eba5ad51b801059fd02c63c00ffd5 *R/irt.fa.R 7a5fed074edc954eb4f9b70abfc56a23 *R/irt.item.diff.rasch.R 88d04add3789ee69a16312fed996cb63 *R/irt.person.rasch.R 3c2b15eae84f7e8c49515174ef5a1ce7 *R/item.dichot.R b8c0b2d89d5c89e4b32839e8b08fb61c *R/item.sim.R fd2b59d29361b2207859bf27a685e678 *R/kaiser.R 0cec151c9f39d1283a45ac0201905b9c *R/kappa.R 61ae7515a77757b325120d7018994320 *R/lavaan.diagram.R c8946903e3e54166eaade7ec8455d0dd *R/logistic.R 306cccdbe1d672af4080d8de59a18cbe *R/lowerUpper.R 6789c9df042a9a5c8a5eea23307dbe5f *R/make.congeneric.R 9fe4e9d266eda349572ebcef3b0a87c4 *R/make.hierarchical.R a6ca9be8423474c953b146236ae3195c *R/make.keys.R ebe29780b42957ae93a64f3ffd91517c *R/mat.plot.R b7cdaed76eb2ee7ce1861e5a514fa5e4 *R/mat.regress.R 4d0b4e1d319d46c76884b90eedc65914 *R/mat.sort.R ebfb848141f2e063822863870429a8eb *R/mat.sqrt.R 2cef0a7e4980b9f150a88ad4089cc4fd *R/matrix.addition.R 52ef9fcc3bf5145454f25b961a000457 *R/mediate.r 7efd423b076037ac3ef6b4fa9e984f55 *R/meta.schmid.R 213fdf737faf6f7d7c8fa00f569d6cb5 *R/misc.R ece308ca3ee5ea3232d20c93e81875ad *R/missing.cor.R 70165f5127009a0d39ad68241b8f305b *R/mixed.cor.R 67f25e6fef60a902941d69b8f199b97a *R/multi.hist.R 95974b487b9461d1d7aa253d48c57f09 *R/multilevel.reliability.R 89cbd61649746718e9d83be095408a2c *R/omega.R 16cd06a657e0d115dc7b031cf4440ef3 *R/omega.bifactor.R e243dad6b12f18a3529ec7a4947b2f5d *R/omega.diagram.R 78f13db07b78bef2ed6e956faab716d1 *R/omega.graph.R a002b05218568fa2dba2a82d872af08d *R/omega.sem.R d664870d3d181e0ca45c5f0d3be21ced *R/omegaSem.R f8e38cba148b68289dc2327e65d95e19 *R/outlier.R 9b8b3f061113bd944d5719d2e1dead2d *R/p.rep.R a8bd74baf42cc94acd041536208ebf2c *R/paired.r.R f54bcce9790c37300d1fb14028887e7b *R/pairs.panels.R bb479325babd4ee107f320b4d99fe665 *R/parallel.irt.r 1f3d22b0be091a98cae6e0111f893839 *R/parcels.R c86e625c011dc4c584425b5293d0364a *R/partial.r.R 611567470605e74b7842bfe152de6b38 *R/phi.R 092a70a5f47d469fafcb2785dd988938 *R/phi.demo.R 0bdb825c5c742af73fcb1326c0854368 *R/phi2poly.R 72a1687a25c912ef0c034eefd0116f72 *R/plot.irt.R 4fe1507d08a4c1f1a16202db33890f56 *R/plot.psych.R ff658a0e5e3abdec684cb8eb47bb16a6 *R/polar.R 8b7c8a676b41c656c541740af079b707 *R/polychor.matrix.R 228039b8dd61e0e0602dc6d18511070d *R/polychoric.R 7172664481e5ef4c1685ec9da9178d68 *R/predict.principal.R 7a539d6eb8e61758d739fdd113183527 *R/principal.R 8e9470ebadc491c5643b76789d2feb1f *R/print.factor.pa.R cbfed4461bfd93153b825b86dece283a *R/print.psych.R 40547727d5e72b7eb88c41698da8ce94 *R/print.psych.fa.R 005aac833f8d1ea8b85a63dbba1a6383 *R/print.psych.iclust.R b12e39828137818ea215cbe31a2415b8 *R/print.psych.omega.R 0e13618dc4e6754ce551fbaf34d93bc8 *R/print.psych.schmid.R d21ce91776967e14decafeb24fdfc1aa *R/print.psych.stats.R 79902b132dab0059e5ce71d77e91dee4 *R/print.psych.vss.R bb2e02fdc68b7c6f37e058d40bdca022 *R/psych.R 6fc6dd6ef45ec8e243af07e42e82ae38 *R/r.con.R 780f8c8a7896fb30cb25a7d58ade61cb *R/r.test.R df8620180261cc0a1034d4ff031c6522 *R/read.clipboard.R 7db59751de495a88cf82ab885b864cbc *R/rescale.R 56877703ac422843b253633c482c4964 *R/residuals.psych.R 662bddf5c3289be86bea50ba4664da25 *R/reverse.code.R d4be2ecb1314c8994b3b161cea8268c1 *R/reverseKey.R 87fd7c4266c93d1588d37183964e0ce1 *R/scaling.fits.R 0aa7504ca9a452cc4c8bc25e0f139828 *R/scatter.hist.R 1b0390c5941513cb8f11776f8ebb0309 *R/schmid.R a8e68675f21774507cf9526bc25fc454 *R/score.alpha.r 6ccb09144d9cd8ffef23af3d2652f12c *R/score.irt.r 17acaf2ee23a3650f589d86ebb43f582 *R/score.items.R 9cf12b6049b2ffe1ae5dd85cd3522d5e *R/score.multiple.choice.R f1d6f342bd294af14d699ea387240328 *R/scoreFast.r c022ad217a37468f75ae6dfa4242f540 *R/scoreOverlap.r 9679b2fbe80d61f6fd6907574bdff868 *R/sdt.R cd0889041b80fc5a75e3dfafc1509112 *R/set.cor.R 7cf7707da2889f9c82df83ecc0986fa2 *R/sim.VSS.R 27fac5d60d9340425b20ad27e3a5f604 *R/sim.anova.R a010402da6c59b4470523239653cf2a0 *R/sim.circ.R 01c09033883b5110aea78e9c27e04d52 *R/sim.congeneric.R 44e7a2f31b5364cd74e8f454ed8ee658 *R/sim.dichot.R a76b2ca1f7a2feaf07c17130a3184ae6 *R/sim.hierarchical.R 6e8183f1bc947ca76397e6e1546378eb *R/sim.item.R 98ebf689623f85ba5cadf781b9df63b5 *R/sim.multilevel.R 98b468ce8630d5df4896363990478bec *R/sim.parallel.r 26d3a2e7b4981f6b55ec3f9a446f84bb *R/sim.structural.R 1304546b938c055e8d73e20892a8b1a1 *R/simGene.R eecef57c490d4e5c7493b41c46f1874b *R/simulation.circ.R 5b2cf860c18443679413ab195ddcf9fe *R/skew.R b175b9f540ef2e25336ba5d51b5df91c *R/slipHalf.R 7358dbbf0db6b32af7f2fc1dea6cc7e0 *R/smc.R fbc6975daa05709991c9ef74f10c5338 *R/spider.R 238ae63ed719215e8e76cb9ae9b3ac69 *R/splitHalf.R e042abbce86be5f922f118de40884d0a *R/stats.by.r 83ea3a47f741244a0b83f0ba773e0996 *R/statsBy.boot.R 1f7a610605610cc26e0c7f718a65d8e6 *R/statsBy.r 13e344d174540344ff51dc37fa9c303b *R/structure.diagram.R 298c6531c0936b1f48564a87023913fb *R/structure.graph.R 8a9cccb7dac465fb4e574aac613eb413 *R/structure.list.R ab4b6518e5051af6e87575867e0cb757 *R/structure.sem.R 252f809d360659b4593c428a1fa836ac *R/summary.psych.R 3f8cc4e6050c355ef6b6c9893773cfff *R/superMatrix.R 12e0ae0408553ceb747326d10541d6de *R/table2matrix.R 567997e82f78f065cf0e41820cd1200a *R/target.rot.R d749df7eb65ddfd8050bd0b676665366 *R/tenberge.R 06f9cd09c1bdb715cce295e7ef89a88d *R/test.all.R 844d5913dff8822c4ddf22d92d39a81f *R/test.psych.r 5c1ff61df55afd72185f32254337e722 *R/tetrachor.R 78c92616b47e4883cf7bc609591e1740 *R/thurstone.R e70757153ddccbd41bb360dc33db8c52 *R/toDotty.R 5ed66cddfb97c149d7cf423b28a7838b *R/unidim.r d49d4eb35da9e11010df63cb6b0aacb8 *R/winsor.R 7f2a93c00124c71326f64bb504d30948 *build/vignette.rds 6c596490b84774764d4828642e530160 *data/Bechtoldt.1.rda c9e690e75f9ac4095a092167f26b063e *data/Bechtoldt.2.rda 97514e4ab9422ca65f7eeb81ad591ac2 *data/Bechtoldt.rda c58768cec98564a245e8365f682633ec *data/Dwyer.rda 6fb568b090978a0e2ac4c259d1e2060a *data/Gleser.rda 8adbe7b1e4b23b6de3663c85912eb299 *data/Gorsuch.rda 9ca4de0468bb4bfc18f55f3470123704 *data/Harman.5.rda 032bba5f9e9158c5fffd26ea8ccbb6de *data/Harman.8.rda 11e9ee9b24708396d738880590e3a670 *data/Harman.political.rda 45b57cef16cfb5c3e574c9d35006cea2 *data/Harman.rda fd7f05e0ef7d99741a8b8af87f438938 *data/Holzinger.9.rda a2b633e1bec2527d50a4579df68d1bb1 *data/Holzinger.rda 09a09345287052f5e80cd1b4b345daba *data/Reise.rda 2036f6d43e06cb70c0a5aed9ce9b83af *data/Schmid.rda 2d87001efb21981901b9d8201402e293 *data/Schutz.rda 2a7df41298b03681b026675d9d361813 *data/Thurstone.33.rda 0a6a19525c8048f3b75c569bd8282069 *data/Thurstone.rda 16862e2d7990e777cd9e13734daf1698 *data/Tucker.rda 0f431b3869a19d3f8b9fb2014b59a39e *data/ability.rda 3c8c5d78be908814f395407468067568 *data/affect.rda 063e17b6ddad9641c516068c2596bece *data/bfi.dictionary.rda 8a12de0fd7790407d8c3cff84d8d58cd *data/bfi.rda b8f3d12be6900cefdfbdfad897ecc02a *data/blant.rda 8a0d309874e9d2effd4dd8cc7f586ad0 *data/blot.rda 7f4942172e80c2158e0ca94025eaa15a *data/bock.rda 02c57d08fa5b22a9989bb1fd6acef7af *data/burt.rda 1d8547568dc69ad07490000b2b08798c *data/cattell.rda 3351721613e65b2fe521a4bcb520400d *data/cities.rda bc6c2b890db5a6408487798fdd529fcb *data/cubits.rda 55c48e3bc281b9e0789ef09ff86d8932 *data/cushny.rda 00322026b67f09d0ff420016715520d4 *data/epi.bfi.rda f62dda8d4959d6624c37446cc3eda01e *data/epi.dictionary.rda 748e89ca421f602e8b2c13050cc055dc *data/epi.rda dac1c854fc32d78f10bb17673f9f3ab3 *data/galton.rda 0fcbccb9396394babd37b05507aaa3c0 *data/heights.rda b1fd2a2eab47e4676837fe0ff00136b9 *data/income.rda 83499f3d487801d7a5f52fb98dcfb46f *data/iqitems.rda fee5dd61a4265829ee8bae59e877fc9c *data/msq.rda 1e25a112fcec6a6d540101f63c5f341a *data/neo.rda 22db57f37103138cd79ffeebe09f91c1 *data/peas.rda 8e5410fb0bd35b914b34383aae1b0e95 *data/sat.act.rda ec2d1da922c5afef3eb1d2f6c8348adc *data/spi.dictionary.rda 112fd220fdb5e32ba09fc78a699f96e4 *data/spi.keys.rda 6ad52abcabc8929559bb983d19a231ea *data/spi.rda ac53f9bd91675af2f2f2d3f4594d4e4b *data/vegetables.rda 757bb4743ab393d35a457a821d4674b8 *data/withinBetween.rda 146d89edd85e5f6c104033a612aed4df *inst/CITATION dd8cf8ea2ee216ecf066389a0c39e6f8 *inst/NEWS.Rd 5ed4087b6abddac6da603fd85c9f778b *inst/doc/intro.R f801bcbc071e30b90194c513a19fb627 *inst/doc/intro.Rnw 4101a3d51a49f35557c3fba023cefc32 *inst/doc/intro.pdf 1d8392a70aaaf7068f135450682de693 *inst/doc/overview.R e103e3abe5d11c6cf674cee238573a49 *inst/doc/overview.Rnw 7671dfffb8a49ea661e9fe2d8b840a61 *inst/doc/overview.pdf 82a6d9d6e929ac39be57bb37df1b2075 *inst/doc/psych_for_sem.R 3022662baadfb554ed10823465f64137 *inst/doc/psych_for_sem.Rnw bb5d05c6bb79e9d55d8087a9634077dd *inst/doc/psych_for_sem.pdf b6b7cc3a00feb626bbb3c46f91b5b666 *man/00.psych-package.Rd d17cc6e8c6a59208a5af65de5fa47ab7 *man/Gleser.Rd d1c648092201e2fd2185c5aa2bdd2d9b *man/Gorsuch.Rd a1d9db157e7eef67812e4b034781daeb *man/Harman.Rd c151c49dcd3f4216e9eed471a4a94150 *man/ICC.Rd 24529ea6ef623af9862506c176f27f6f *man/ICLUST.Rd f5371d775db7c9129f6cc406339f9bac *man/ICLUST.cluster.Rd 7594c70d932e025bee07a706d6668ef5 *man/ICLUST.graph.Rd b98cc8a89af01abd63e28a3d84796acf *man/ICLUST.rgraph.Rd c6e6eda7dddc11337403d84251b330d3 *man/ICLUST.sort.Rd 2f6a6487ee3dba1602f0d1500966e4be *man/KMO.Rd 938ff8ade02a9663b63326f2dd5e6b39 *man/Promax.Rd b0247086c74b2cd4f5a1abf93eb3cf28 *man/SD.Rd 6ed5ee33a84ddd70ba74973fd791e1ca *man/Schmid.Leiman.Rd f0cf929d49995270b0c3af0ebcce0710 *man/Schutz.Rd 15027d277a0450ca0d5424e5d088961f *man/Tucker.Rd a3edf92e331c408be920af4802d9aa38 *man/VSS.Rd d79dd6358a3840e4e06171581e0cff76 *man/VSS.parallel.Rd 5e80bb345979cab071b0010eb9f9f6cb *man/VSS.plot.Rd ad52d30ac70c64c43661c34a674df5ff *man/VSS.scree.Rd 1495648db00bbad1d13cad88ff36acc7 *man/Yule.Rd ecc1f822712c7c1d867a35c794ded64a *man/ability.Rd 7cb60b5d30286f996f6d73237dd3d3be *man/affect.Rd 35ab5276526604869a8958b797c9ff32 *man/alpha.Rd 4353337cb1e832b94c7d649624f19e39 *man/best.scales.Rd 90c8ac9b07344408595621522180f609 *man/bfi.Rd a2f6b1b432781a4f3b8b8054911a2a7d *man/bi.bars.Rd d5190b2e9a080b5282bcc1b76f38a941 *man/bifactor.Rd b732abb69a1d293bc89e4b0463d0dadc *man/biplot.psych.Rd 4b9e5056644c3123534ce32548bff03b *man/blant.Rd ec08a6f05feabc17ad9a29dc50a31d30 *man/block.random.Rd 6a3c39583e364cb855cf09514adc575a *man/blot.Rd 7df897b13c377a54584eb551881587ba *man/bock.table.Rd 61060365d3d6d9aa8cd08567e7f52dee *man/burt.Rd fb3fc4e3c87dad75a8e887850ed2c1ae *man/cattell.Rd 68785b6468cc788cd214657b13a35408 *man/circ.tests.Rd 775acbb0f894a8bbe8deae246e914263 *man/cities.Rd 029bd962a644581938ef5a21e73dd30b *man/cluster.cor.Rd 1b09e5fd86b92e698596feae058f37bc *man/cluster.fit.Rd 7aefcb891ef9c3965b994d4b09015d7e *man/cluster.loadings.Rd 6a97534fe08d7bc5679f19cba86a6916 *man/cluster.plot.Rd 8a2b12d771d57672b7abe446e68b058c *man/cluster2keys.Rd 1a1790bb5e9ccd8bf6100621781d0691 *man/cohen.d.Rd 08e903f052431a4bde3432f026189991 *man/comorbidity.Rd ae0e1e919f453781df3c4c4aaa145344 *man/cor.ci.Rd b8e446acd15cc8f0dee45e42d5c9a34b *man/cor.plot.Rd 1b57108ca9a7271038ad6dc869e9edcd *man/cor.smooth.Rd 695bb5f5976eec427b24dc2e5cef1067 *man/cor.wt.Rd ec23aaa2b3a72fc49d99706294849a72 *man/cor2dist.Rd 215b8c53b0be448abe526ee4aca5c5c4 *man/corFiml.Rd 910485ef385110352db0967cdb914792 *man/corr.test.Rd 4d1d687561b8d4f7c3010bf789748648 *man/correct.cor.Rd 850de80aec083b43da98cbcbe0c0be88 *man/cortest.bartlett.Rd 5bfa469b8195e07955ba2eb89860a840 *man/cortest.mat.Rd ab32be387f7c3dc25dfc04b48d4b06a7 *man/cosinor.Rd ca615d619152cd5a696487767f2f297d *man/count.pairwise.Rd 907c3ed6ff582727d8e3f2117e505637 *man/cta.Rd a7069100d1b70684cbb4dfa31ddcf818 *man/cubits.Rd 2ae68fb49d3d052ab859d603577ee7ee *man/cushny.Rd e8dba2ba0be6cb4f50da740cc5a5e679 *man/densityBy.Rd 32d8413ef0ed645d41842ce74f03e075 *man/deprecated.Rd 1bfad69ff337ee6f3afc6bbccd4f5ea7 *man/describe.Rd 7bf2be7606bf8a161d4f801b88af4ce3 *man/describe.by.Rd 5d48c0be52014a6e9c51d4d1a67b5a12 *man/df2latex.Rd b20a17112fc733f56f2427042946b272 *man/dfOrder.Rd 02f5b8ffacb5681b7f43f0c89eca8212 *man/diagram.Rd c3ccc2c163b6b0f5f7ae4ab58227d048 *man/draw.tetra.Rd 5d07a27b7176286042fdb51ffe85b41f *man/dummy.code.Rd 4f2ffa5d5cf2e40d2b3f8b57448d5673 *man/dwyer.Rd 5fbd6f176a5341b20c181e62f42dd2f4 *man/eigen.loadings.Rd 6b4ab62cd9db420f1520b152c20ee446 *man/ellipses.Rd 080ad9e68016902016e4ab78e760275b *man/epi.Rd b778936359a7d9fc1426f26093823005 *man/epi.bfi.Rd 7948321c5afb719d8106be7d7d088cdb *man/error.bars.Rd 2523cea0c87cffb41f396c09e2a1f256 *man/error.bars.by.Rd ff9ad7e2ce1a41aa7bb56a35c1556a9e *man/error.circles.Rd 2f5f3bbf61d0b6cf206353a848045f7f *man/error.crosses.Rd 1303e8ba845081d240cdbc0bbac6dc14 *man/error.dots.Rd 68c146e926798c90adf2f51d83bfee80 *man/esem.Rd c53b2d3df594f8f415c0af88c1a15fb3 *man/fa.Rd a15e2613f00f6f4c75aad7626fec3903 *man/fa.diagram.Rd 834d5b2d105751e561b4441d6c61d6e4 *man/fa.extension.Rd d5a87f25da22275a852e902fc9afce16 *man/fa.parallel.Rd 7721fefe68266e009b9aaa61a6b0b2dd *man/fa.random.Rd 89ea7cc3ee549d71b6d42086ec2c7967 *man/fa.sort.Rd 1ffc3ef7a259e7380a3881f232cf3aab *man/faMulti.Rd d067deb8962e273efd4afeb89f4f839f *man/factor.congruence.Rd b70af33e70ef263acdba49a6f70db2cb *man/factor.fit.Rd 6bb40304fd803062dec8f084b9bf2664 *man/factor.model.Rd 3047cade6281ca00132ff92bd3ee2dba *man/factor.residuals.Rd f7203dd70f90938175ffbfc5f67bb101 *man/factor.rotate.Rd 21a5c9a5c7f48a5715a1d8b169f7cee5 *man/factor.scores.Rd c00b62c9f77f1bb9e01a0ee471a4a88e *man/factor.stats.Rd 1a69658321d1d6a567d8accc00335714 *man/factor2cluster.Rd bc73c0a5b52f89e486834f0376f53575 *man/fisherz.Rd 1b04edf25ac25ee61552850ecf70d8f1 *man/galton.Rd f29e3fb2b2794c45b46eb188808b71d2 *man/geometric.mean.Rd 65e60028a6576a95835d8c8ede4fe85d *man/glb.algebraic.Rd 30ac6332b9a3244c40b812bf23c3d052 *man/guttman.Rd 25fb1b56f8b6a902c0753a739d9e9894 *man/harmonic.mean.Rd a2cb27943a706cf0305f83575fe4c20f *man/headtail.Rd 406ab92b2644f0f23bccb4ecbb8fc9ff *man/heights.Rd f5f6816440755ae357569abdd35cb4e1 *man/iclust.diagram.Rd 8e993921ab4270c979f2356fd83f9d70 *man/income.Rd de1bb53d64a2e8554aac7ad3f3d55cb8 *man/interp.median.Rd 65314d3107183e3a8d962ed9aa18b508 *man/iqitems.Rd 6ad3d5ba5f080b30c510d9ba42e1278a *man/irt.fa.Rd 83eb4be3f0da80d9791b1d5c8409b709 *man/irt.item.diff.rasch.Rd 15a268ecfd40c5b1dfb1233781582006 *man/irt.person.rasch.Rd 1733d00719b9f161f9ae8b8e8346277a *man/irt.responses.Rd 6e11d348cc8231d23c918531d9e155c4 *man/kaiser.Rd e238fc45a708a50b10d2abff44f713ee *man/kappa.Rd 0597e0e81ea96be08cfaa9c9201a5a86 *man/logistic.Rd 3bb36bb6a0484fb1c1154da0e44960db *man/lowerUpper.Rd 839cb15ee89c006eb72fad62bbe7c804 *man/make.keys.Rd 03fd8f4c257508cfec6332c9cad872f3 *man/mat.sort.Rd 42bd24ab4c5723382fbd3e5715edcc06 *man/matrix.addition.Rd 3b2f478806b10f4b2a73a19879efa04a *man/mediate.Rd 60ba3f8f527ef126097a5b5e24f2bd69 *man/misc.Rd e656cd46222e498c24c874a7a6c13b42 *man/mixed.cor.Rd 2a0c8060a151f2e919fb825fcb2eff20 *man/msq.Rd ba26769b3573648ad52cdbdfe91b6719 *man/mssd.Rd 659aad6c208915e8156a9af210f445d9 *man/multi.hist.Rd 47de5dd96f25fa4dd98a11c86dc7dc1c *man/multilevel.reliability.Rd 04b8c25fe848521052691d72456f98db *man/neo.Rd 833807f43135fc5c844ec4936dc5eba6 *man/omega.Rd 3afb058bfefd002ff2f1381a5619cc19 *man/omega.graph.Rd 2c7abbd08f95ab81caabe590ee75cd8b *man/outlier.Rd 95585a45807d1e081ba500dbcd93b8c4 *man/p.rep.Rd 26f882b454a5292aa1daed00aae36576 *man/paired.r.Rd 3af39fe88b3d0d1e53c179e8f4cdf9f9 *man/pairs.panels.Rd c73acc17e6b6397ac03fad8b91500b5b *man/parcels.Rd 0eb63541a67a1622be7dc9510f71fc1d *man/partial.r.Rd 124f27aba06f234842c01f57602e7543 *man/peas.Rd 1eb72d524fc7f27c9ad65462e8685c8f *man/phi.Rd 1334225ebf6906a142a0f940b0f74604 *man/phi.demo.Rd dbcfd2f0fcb58bf03cdf17f3a07cd92d *man/phi2poly.Rd 0066ebf48b834bc243c5460f5a3cfeb4 *man/plot.psych.Rd ff777922a14dda0f9dd64eb48de0990a *man/polar.Rd 639699b328f2703b12b1daa6c608652f *man/polychor.matrix.Rd 359903fe098aa25ef37c389fc9f4c217 *man/predict.psych.Rd f59176cf2e11d8d447ddb545810db477 *man/principal.Rd 12b155de692ad266e89eae8723cbb936 *man/print.psych.Rd 110d8e3c9cc992f60fb66b3e2969d618 *man/r.test.Rd d3602eae26322ef8f7c68e05504f15d5 *man/range.correction.Rd d5893c406cd5693266400b6e2ef01dc7 *man/read.clipboard.Rd f99ff7d11e369be1804bb523c32bfacf *man/rescale.Rd 6a26c7d9a5395b3b88432968a0e2e060 *man/residuals.psych.Rd be47add74e88900e4b798fff0c0752c7 *man/reverse.code.Rd cb9746b221c3898ef3be266d226ccfd3 *man/sat.act.Rd 0125ab4c9937aba11cbb50e44987e9af *man/scaling.fits.Rd 0f47a4fb8bdeee7508db756cef102ee3 *man/scatter.hist.Rd bc1816b562a0aa90654a0f2026475286 *man/schmid.Rd 763d95eb805011af219b1a0484097238 *man/score.alpha.Rd 51561b798bdced1738e8cae3062fb2c4 *man/score.irt.Rd 72321bfc8dc353c5fb2996e2d666dab7 *man/score.items.Rd 5c180c8c94e9a57f4c69d847929aabc5 *man/score.multiple.choice.Rd e58df3e609bfe7735089098358770262 *man/scrub.Rd e0d11600f66c4db02f3cc88178083d65 *man/set.cor.Rd e8efa1a785bc90968f3ae6e8c213b37b *man/sim.Rd 10b09f0486026c35c86d3eb4414d4b7f *man/sim.VSS.Rd 0c44f47363728e82473fb171f6518c3c *man/sim.anova.Rd c097eb5303f64cbdc306dff205df2fc4 *man/sim.congeneric.Rd 82ec75e58525d1a05aed9b3089f5201c *man/sim.hierarchical.Rd 13862c14ad59ca476cae208d820868d3 *man/sim.item.Rd 788cbfc611a069a637fb84ea6f62d0d8 *man/sim.multilevel.Rd b385f026afa703ccac74d7e2dce1bd5f *man/sim.structural.Rd ce0e7f06eeffb8e75f7e0a438546f61f *man/simulation.circ.Rd dd16dd94c60aeca30689372040653e0f *man/skew.Rd b88a06f4cb7afb01bc5eeac26865490f *man/smc.Rd 81804f79d8c5266e9f35b02df1d830b5 *man/spi.Rd 1d3f10c6a24f9fe20098954dec4ff5e9 *man/spider.Rd da5d6fb4ec2004fddd2895a39781909d *man/statsBy.Rd 9adf0d852227ccb207863855d3123e30 *man/structure.diagram.Rd 4d3c9ec5c90c85dec16ef57fd26acdcc *man/structure.list.Rd db5d2576f6df59ba356da131c119425e *man/super.matrix.Rd a0b470042d5a8fbeb2fe3993670d6509 *man/table2matrix.Rd d2880cbebca047c3f4af52c02e83af57 *man/test.irt.Rd 655757cd3497b7747c460207fb51804e *man/test.psych.Rd ef1de1328cfaa7ec8616e4e64e3cfd5d *man/tetrachor.Rd a89bd2c5a93b3940761d0b5c6dfc515c *man/thurstone.Rd 9eec50d1cd2208bce401da2c58c29d35 *man/tr.Rd 19ca53618375b075971d2e7b32ce2217 *man/unidim.Rd 8e7698beb925751bf5b8e1289497dba2 *man/vegetables.Rd a97beb62973191f13316725510371abc *man/winsor.Rd 67473f311f751ec5d2dd7cc1a600dbfa *man/withinBetween.Rd f801bcbc071e30b90194c513a19fb627 *vignettes/intro.Rnw e103e3abe5d11c6cf674cee238573a49 *vignettes/overview.Rnw 3022662baadfb554ed10823465f64137 *vignettes/psych_for_sem.Rnw psych/build/0000755000176200001440000000000013154621324012500 5ustar liggesuserspsych/build/vignette.rds0000644000176200001440000000045513154621324015043 0ustar liggesusers‹RÁNĂ0 ÍÖv£Ơ&@ûđå'¦Iˆqà6EmÊ"Ú$J̉V»ñăPÜÎek· âÄÏ~ϱ“·ˆ2%^Öƒ£·3ƒuÓ:Ä'!́¡Î¨øEÖ,TÅM%x}‚Ưj»OvÛL™­åEªÜ=´*i™8¡$uº§‰j–|°w‰÷O¨NUvD¡ÂQwF$iK!uéº0\àr :ÍÎZ8b£ÚÀPeƒ@7:‘ëÑZuüƒÎÓ‚.íOà%™EQæNT̀æøÿc₫ô´ d·H˜!èoD̃¿Nđ*ܯă=¯7xœô3˜¯¹æ2íŸåê‘ïkeÀ ªă¾Ø²ư…Ÿ`¦ùß(É™µ£¢”9gøà}ÿ÷ Çpsych/DESCRIPTION0000755000176200001440000000330613154773344013126 0ustar liggesusersPackage: psych Version: 1.7.8 Date: 2017-08-17 Title: Procedures for Psychological, Psychometric, and Personality Research Author: William Revelle Maintainer: William Revelle Description: A general purpose toolbox for personality, psychometric theory and experimental psychology. Functions are primarily for multivariate analysis and scale construction using factor analysis, principal component analysis, cluster analysis and reliability analysis, although others provide basic descriptive statistics. Item Response Theory is done using factor analysis of tetrachoric and polychoric correlations. Functions for analyzing data at multiple levels include within and between group statistics, including correlations and factor analysis. Functions for simulating and testing particular item and test structures are included. Several functions serve as a useful front end for structural equation modeling. Graphical displays of path diagrams, factor analysis and structural equation models are created using basic graphics. Some of the functions are written to support a book on psychometric theory as well as publications in personality research. For more information, see the web page. License: GPL (>= 2) Imports: mnormt,parallel,stats,graphics,grDevices,methods,foreign,lattice,nlme Suggests: GPArotation, lavaan, sem, lme4,Rcsdp, graph, Rgraphviz LazyData: true ByteCompile: TRUE URL: http://personality-project.org/r/psych http://personality-project.org/r/psych-manual.pdf NeedsCompilation: no Packaged: 2017-09-08 23:08:04 UTC; WR Depends: R (>= 2.10) Repository: CRAN Date/Publication: 2017-09-09 14:12:52 UTC psych/man/0000755000176200001440000000000013154374147012164 5ustar liggesuserspsych/man/irt.item.diff.rasch.Rd0000644000176200001440000000407711672536515016226 0ustar liggesusers\name{irt.item.diff.rasch} \alias{irt.item.diff.rasch} \alias{irt.discrim} \title{Simple function to estimate item difficulties using IRT concepts} \description{Steps toward a very crude and preliminary IRT program. These two functions estimate item difficulty and discrimination parameters. A better procedure is to use \code{\link{irt.fa}} or the ltm package. } \usage{ irt.item.diff.rasch(items) irt.discrim(item.diff,theta,items) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{items}{ a matrix of items } \item{item.diff}{a vector of item difficulties (found by irt.item.diff)} \item{theta}{ability estimate from irt.person.theta} } \details{Item Response Theory (aka "The new psychometrics") models individual responses to items with a logistic function and an individual (theta) and item difficulty (diff) parameter. irt.item.diff.rasch finds item difficulties with the assumption of theta=0 for all subjects and that all items are equally discriminating. irt.discrim takes those difficulties and theta estimates from \code{\link{irt.person.rasch}} to find item discrimination (beta) parameters. A far better package with these features is the ltm package. The IRT functions in the psych-package are for pedagogical rather than production purposes. They are believed to be accurate, but are not guaranteed. They do seem to be slightly more robust to missing data structures associated with SAPA data sets than the ltm package. The \code{\link{irt.fa}} function is also an alternative. This will find \code{\link{tetrachoric}} or \code{\link{polychoric}} correlations and then convert to IRT parameters using factor analysis (\code{\link{fa}}). } \value{a vector of item difficulties or item discriminations. } \author{William Revelle } \note{ Under development. Not recommended for public consumption. See \code{\link{irt.fa}} and \code{\link{score.irt}} for far better options. } \seealso{ \code{\link{irt.fa}}, \code{\link{irt.person.rasch}} } \keyword{ multivariate}% at least one, from doc/KEYWORDS \keyword{ models}% __ONLY ONE__ keyword per line psych/man/cta.Rd0000644000176200001440000001505112514542602013214 0ustar liggesusers\name{cta} \alias{cta} \alias{cta.15} \title{Simulate the C(ues) T(endency) A(ction) model of motivation} \description{Dynamic motivational models such as the Dynamics of Action (Atkinson and Birch, 1970, Revelle, 1986) may be reparameterized as a simple pair of differential (matrix) equations (Revelle, 1986, 2008). This function simulates the dynamic aspects of the CTA. The CTA model is discussed in detail in Revelle and Condon (2015). } \usage{ cta (n=3,t=5000, cues = NULL, act=NULL, inhibit=NULL,expect = NULL, consume = NULL, tendency = NULL,tstrength=NULL, type="both", fast=2,compare=FALSE,learn=TRUE,reward=NULL) cta.15(n = 3, t = 5000, cues = NULL, act = NULL, inhibit = NULL, consume = NULL, ten = NULL, type = "both", fast = 2) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{n}{number of actions to simuate } \item{t}{length of time to simulate} \item{cues}{a vector of cue strengths} \item{act}{matrix of associations between cues and action tendencies} \item{inhibit}{inhibition matrix } \item{consume}{ Consummation matrix } \item{ten}{Initial values of action tendencies } \item{type}{show actions, tendencies, both, or state diagrams } \item{fast}{display every fast time (skips } \item{expect}{A matrix of expectations} \item{tendency}{starting values of tendencies} \item{tstrength}{a vector of starting value of tendencies} \item{compare}{Allows a two x two graph to compare two plots} \item{learn}{Allow the system to learn (self reinforce) over time} \item{reward}{The strength of the reward for doing an action} } \details{A very thorough discussion of the CTA model is available from Revelle (2008). An application of the model is discussed in Revelle and Condon (2015). \code{\link{cta.15}} is the version used to produce the figures and analysis in Revelle and Condon (2015). \code{\link{cta}} is the most recent version and includes a learning function developed in collaboration with Luke Smillie at the University of Melbourne. The dynamics of action (Atkinson and Birch, 1970) was a model of how instigating forces elicited action tendencies which in turn elicited actions. The basic concept was that action tendencies had inertia. That is, a wish (action tendency) would persist until satisfied and would not change without an instigating force. The consummatory strength of doing an action was thought in turn to reduce the action tendency. Forces could either be instigating or inhibitory (leading to "negaction"). Perhaps the simplest example is the action tendency (T) to eat a pizza. The instigating forces (F) to eat the pizza include the smell and look of the pizza, and once eating it, the flavor and texture. However, if eating the pizza, there is also a consummatory force (C) which was thought to reflect both the strength (gusto) of eating the pizza as well as some constant consummatory value of the activity (c). If not eating the pizza, but in a pizza parlor, the smells and visual cues combine to increase the tendency to eat the pizza. Once eating it, however, the consummatory effect is no longer zero, and the change in action tendency will be a function of both the instigating forces and the consummatory forces. These will achieve a balance when instigating forces are equal to the consummatory forces. The asymptotic strength of eating the pizza reflects this balance and does not require a ``set point" or ``comparator". To avoid the problems of instigating and consummatory lags and the need for a decision mechanism, it is possible to reparameterize the original DOA model in terms of action tendencies and actions (Revelle, 1986). Rather than specifying inertia for action tendencies and a choice rule of always expressing the dominant action tendency, it is useful to distinguish between action tendencies (t) and the actions (a) themselves and to have actions as well as tendencies having inertial properties. By separating tendencies from actions, and giving them both inertial properties, we avoid the necessity of a lag parameter, and by making the decision rule one of mutual inhibition, the process is perhaps easier to understand. In an environment which affords cues for action (c), cues enhance action tendencies (t) which in turn strengthen actions (a). This leads to two differential equations, one describing the growth and decay of action tendencies (t), the other of the actions themselves (a). \deqn{d{t} = {Sc} - { Ca} }{dt = Sc - Ca} and \deqn{d{a} = {Et} - {Ia}}{da = Et - Ia}. (See Revelle and Condon (2015) for an extensive discussion of this model.) \code{\link{cta}} simulates this model, with the addition of a learning parameter such that activities strengthen the connection between cues and tendencies. The learning part of the cta model is still under development. \code{\link{cta.15}} represents the state of the cta model as described in the Revelle and Condon (2015) article. } \value{ graphical output unless type="none" \item{cues}{echo back the cue input} \item{inhibition}{echo back the inhibitory matrix} \item{time}{time spent in each activity} \item{frequency}{Frequency of each activity} \item{tendencies}{average tendency strengths} \item{actions}{average action strength} } \references{ Atkinson, John W. and Birch, David (1970) The dynamics of action. John Wiley, New York, N.Y. Revelle, William (1986) Motivation and efficiency of cognitive performance in Brown, Donald R. and Veroff, Joe (ed). Frontiers of Motivational Psychology: Essays in honor of J. W. Atkinson. Springer. (Available as a pdf at \url{http://personality-project.org/revelle/publications/dynamicsofmotivation.pdf}.) Revelle, W. (2008) Cues, Tendencies and Actions. The Dynamics of Action revisted. \url{http://personality-project.org/revelle/publications/cta.pdf} Revelle, W. and Condon, D. (2015) A model for personality at three levels. Journal of Research in Personality \url{http://www.sciencedirect.com/science/article/pii/S0092656615000318} } \author{ William Revelle } \examples{ #not run #cta() #default values, running over time #cta(type="state") #default values, in a state space of tendency 1 versus tendency 2 #these next are examples without graphic output #not run #two introverts #c2i <- c(.95,1.05) #cta(n=2,t=10000,cues=c2i,type="none") #two extraverts #c2e <- c(3.95,4.05) #cta(n=2,t=10000,cues=c2e,type="none") #three introverts #c3i <- c(.95,1,1.05) #cta(3,t=10000,cues=c3i,type="none") #three extraverts #c3i <- c(3.95,4, 4.05) #cta(3,10000,c3i,type="none") #mixed #c3 <- c(1,2.5,4) #cta(3,10000,c3,type="none") } \keyword{ models } psych/man/cluster.plot.Rd0000644000176200001440000000671112733237714015116 0ustar liggesusers\name{cluster.plot} \alias{cluster.plot} \alias{fa.plot} \alias{factor.plot} \title{Plot factor/cluster loadings and assign items to clusters by their highest loading.} \description{Cluster analysis and factor analysis are procedures for grouping items in terms of a smaller number of (latent) factors or (observed) clusters. Graphical presentations of clusters typically show tree structures, although they can be represented in terms of item by cluster correlations. Cluster.plot plots items by their cluster loadings (taken, e.g., from \code{\link{ICLUST}}) or factor loadings (taken, eg., from \code{\link{fa}}). Cluster membership may be assigned apriori or may be determined in terms of the highest (absolute) cluster loading for each item. If the input is an object of class "kmeans", then the cluster centers are plotted. } \usage{ cluster.plot(ic.results, cluster = NULL, cut = 0, labels=NULL, title = "Cluster plot",pch=18,pos,show.points=TRUE,choose=NULL,...) fa.plot(ic.results, cluster = NULL, cut = 0, labels=NULL,title, jiggle=FALSE,amount=.02,pch=18,pos,show.points=TRUE,choose=NULL,...) factor.plot(ic.results, cluster = NULL, cut = 0, labels=NULL,title,jiggle=FALSE, amount=.02,pch=18,pos,show.points=TRUE,...) #deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ic.results}{A factor analysis or cluster analysis output including the loadings, or a matrix of item by cluster correlations. Or the output from a kmeans cluster analysis. } \item{cluster}{ A vector of cluster membership } \item{cut}{ Assign items to clusters if the absolute loadings are > cut } \item{labels}{If row.names exist they will be added to the plot, or, if they don't, labels can be specified. If labels =NULL, and there are no row names, then variables are labeled by row number.)} \item{title}{ Any title} \item{jiggle}{When plotting with factor loadings that are almost identical, it is sometimes useful to "jiggle" the points by jittering them. The default is to not jiggle.} \item{amount}{if jiggle=TRUE, then how much should the points be jittered?} \item{pch}{factor and clusters are shown with different pch values, starting at pch+1} \item{pos}{Position of the text for labels for two dimensional plots. 1=below, 2 = left, 3 = above, 4= right} \item{show.points}{When adding labels to the points, should we show the points as well as the labels. For many points, better to not show them, just the labels.} \item{choose}{Specify the factor/clusters to plot} \item{...}{Further options to plot} } \details{Results of either a factor analysis or cluster analysis are plotted. Each item is assigned to its highest loading factor, and then identified by variable name as well as cluster (by color). The cluster assignments can be specified to override the automatic clustering by loading. Both of these functions may be called directly or by calling the generic plot function. (see example). } \value{ Graphical output is presented. } \author{William Revelle} \seealso{ \code{\link{ICLUST}}, \code{\link{ICLUST.graph}}, \code{\link{fa.graph}}, \code{\link{plot.psych}}} \examples{ circ.data <- circ.sim(24,500) circ.fa <- fa(circ.data,2) plot(circ.fa,cut=.5) f5 <- fa(bfi[1:25],5) plot(f5,labels=colnames(bfi)[1:25],show.points=FALSE) plot(f5,labels=colnames(bfi)[1:25],show.points=FALSE,choose=c(1,2,4)) } \keyword{multivariate } \keyword{hplot }% __ONLY ONE__ keyword per line \keyword{cluster} psych/man/score.irt.Rd0000644000176200001440000003045313072750576014373 0ustar liggesusers\name{scoreIrt} \alias{scoreIrt} \alias{scoreIrt.1pl} \alias{scoreIrt.2pl} \alias{score.irt} \alias{score.irt.poly} \alias{score.irt.2} \alias{irt.stats.like} \alias{irt.tau} \alias{irt.se} \title{Find Item Response Theory (IRT) based scores for dichotomous or polytomous items} \description{\code{\link{irt.fa}} finds Item Response Theory (IRT) parameters through factor analysis of the tetrachoric or polychoric correlations of dichtomous or polytomous items. \code{\link{scoreIrt}} uses these parameter estimates of discrimination and location to find IRT based scores for the responses. As many factors as found for the correlation matrix will be scored. \code{\link{scoreIrt.2pl}} will score lists of scales. } \usage{ scoreIrt(stats=NULL, items, keys=NULL,cut = 0.3,bounds=c(-4,4),mod="logistic") scoreIrt.1pl(keys.list,items,correct=.5,messages=FALSE,cut=.3,bounds=c(-4,4), mod="logistic") #Rasch like scaling scoreIrt.2pl(itemLists,items,correct=.5,messages=FALSE,cut=.3,bounds=c(-4,4), mod="logistic") #2 pl scoring #the next is an alias for scoreIrt both of which are wrappers for # score.irt.2 and score.irt.poly score.irt(stats=NULL, items, keys=NULL,cut = 0.3,bounds=c(-4,4),mod="logistic") #the higher order call just calls one of the next two #for dichotomous items score.irt.2(stats, items,keys=NULL,cut = 0.3,bounds=c(-4,4),mod="logistic") #for polytomous items score.irt.poly(stats, items, keys=NULL, cut = 0.3,bounds=c(-4,4),mod="logistic") #to create irt like statistics for plotting irt.stats.like(items,stats,keys=NULL,cut=.3) irt.tau(x) #find the tau values for the x object irt.se(stats,scores=0,D=1.702) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{stats}{Output from irt.fa is used for parameter estimates of location and discrimination. Stats may also be the output from a normal factor analysis (fa) } \item{items}{The raw data, may be either dichotomous or polytomous.} \item{itemLists}{a list of items to be factored and scored for each scale, can be a keys.list as used in scoreItems or scoreIrt.1pl} \item{keys.list}{A list of items to be scored with keying direction (see example)} \item{keys}{A keys matrix of which items should be scored for each factor} \item{cut}{Only items with discrimination values > cut will be used for scoring.} \item{x}{The raw data to be used to find the tau parameter in irt.tau} \item{bounds}{The lower and upper estimates for the fitting function} \item{mod}{Should a logistic or normal model be used in estimating the scores?} \item{correct}{What value should be used for continuity correction when finding the tetrachoric or polychoric correlations when using irt.fa} \item{messages}{Should messages be suppressed when running multiple scales?} \item{scores}{A single score or a vector of scores to find standard errors} \item{D}{The scaling function for the test information statistic used in irt.se} } \details{Although there are more elegant ways of finding subject scores given a set of item locations (difficulties) and discriminations, simply finding that value of theta \eqn{\theta} that best fits the equation \eqn{P(x|\theta) = 1/(1+exp(\beta(\delta - \theta) )} for a score vector X, and location \eqn{\delta} and discrimination \eqn{\beta} provides more information than just total scores. With complete data, total scores and irt estimates are almost perfectly correlated. However, the irt estimates provide much more information in the case of missing data. The bounds parameter sets the lower and upper limits to the estimate. This is relevant for the case of a subject who gives just the lowest score on every item, or just the top score on every item. Formerly (prior to 1.6.12) this was done by estimating these taial scores by finding the probability of missing every item taken, converting this to a quantile score based upon the normal distribution, and then assigning a z value equivalent to 1/2 of that quantile. Similarly, if a person gets all the items they take correct, their score is defined as the quantile of the z equivalent to the probability of getting all of the items correct, and then moving up the distribution half way. If these estimates exceed either the upper or lower bounds, they are adjusted to those boundaries. As of 1.6.9, the procedure is very different. We now assume that all items are bounded with one passed item that is easier than all items given, and one failed item that is harder than any item given. This produces much cleaner results. There are several more elegant packages in R that provide Full Information Maximum Likeliood IRT based estimates. In particular, the MIRT package seems especially good. The ltm package give equivalent estimates to MIRT for dichotomous data but produces unstable estimates for polytomous data and should be avoided. Although the scoreIrt estimates are are not FIML based they seem to correlated with the MIRT estiamtes with values exceeding .99. Indeed, based upon very limited simulations there are some small hints that the solutions match the true score estimates slightly better than do the MIRT estimates. \code{\link{scoreIrt}} seems to do a good job of recovering the basic structure. The two wrapper functions \code{\link{scoreIrt.1pl}} and \code{\link{scoreIrt.2pl}} are very fast and are meant for scoring one or many scales at a time with a one factor model (\code{\link{scoreIrt.2pl}}) or just Rasch like scoring. Just specify the scoring direction for a number of scales (\code{\link{scoreIrt.1pl}}) or just items to score for a number of scales \code{\link{scoreIrt.2pl}}. \code{\link{scoreIrt.2pl}} will then apply \code{\link{irt.fa}} to the items for each scale separately, and then find the 2pl scores. The keys.list is a list of items to score for each scale. Preceding the item name with a negative sign will reverse score that item (relevant for \code{\link{scoreIrt.1pl}}. Alternatively, a keys matrix can be created using \code{\link{make.keys}}. The keys matrix is a matrix of 1s, 0s, and -1s reflecting whether an item should be scored or not scored for a particular factor. See \code{\link{scoreItems}} or \code{\link{make.keys}} for details. The default case is to score all items with absolute discriminations > cut. If one wants to score scales taking advantage of differences in item location but not do a full IRT analysis, then find the item difficulties from the raw data using \code{\link{irt.tau}} or combine this information with a scoring keys matrix (see \code{\link{scoreItems}} and \code{\link{make.keys}} and create quasi-IRT statistics using \code{\link{irt.stats.like}}. This is the equivalent of doing a quasi-Rasch model, in that all items are assumed to be equally discriminating. In this case, tau values may be found first (using \code{\link{irt.tau}} or just found before doing the scoring. This is all done for you inside of \code{\link{scoreIrt.1pl}}. Such irt based scores are particularly useful if finding scales based upon massively missing data (e.g., the SAPA data sets). Even without doing the full irt analysis, we can take into account different item difficulties. David Condon has added a very nice function to do 2PL analysis for a number of scales at one time. \code{\link{scoreIrt.2pl}} takes the raw data file and a list of items to score for each of multiple scales. These are then factored (currently just one factor for each scale) and the loadings and difficulties are used for scoring. There are conventionally two different metrics and models that are used. The logistic metric and model and the normal metric and model. These are chosen using the mod parameter. \code{\link{irt.se}} finds the standard errors for scores with a particular value. These are based upon the information curves calculated by \code{\link{irt.fa}} and are not based upon the particular score of a particular subject. } \value{ \item{scores}{A data frame of theta estimates, total scores based upon raw sums, and estimates of fit.} \item{tau}{Returned by irt.tau: A data frame of the tau values for an object of dichotomous or polytomous items. Found without bothering to find the correlations.} } \references{ Kamata, Akihito and Bauer, Daniel J. (2008) A Note on the Relation Between Factor Analytic and Item Response Theory Models Structural Equation Modeling, 15 (1) 136-153. McDonald, Roderick P. (1999) Test theory: A unified treatment. L. Erlbaum Associates. Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} } \author{William Revelle, David Condon } \note{ It is very important to note that when using \code{\link{irt.fa}} to find the discriminations, to set the sort option to be FALSE. This is now the default. Otherwise, the discriminations will not match the item order. Always under development. Suggestions for improvement are most appreciated. scoreIrt is just a wrapper to score.irt.poly and score.irt.2. The previous version had score.irt which is now deprecated as I try to move to camelCase. scoreIrt.2pl is a wrapper for irt.fa and scoreIrt. It was originally developed by David Condon. } \seealso{ \code{\link{irt.fa}} for finding the parameters. For more conventional scoring algorithms see \code{\link{scoreItems}}. \code{\link{irt.responses}} will plot the empirical response patterns for the alternative response choices for multiple choice items. For more conventional IRT estimations, see the ltm package. } \examples{ if(FALSE) { #not run in the interest of time, but worth doing d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items test <- irt.fa(d9$items) scores <- scoreIrt(test,d9$items) scores.df <- data.frame(scores,true=d9$theta) #combine the estimates with the true thetas. pairs.panels(scores.df,pch=".", main="Comparing IRT and classical with complete data") #now show how to do this with a quasi-Rasch model tau <- irt.tau(d9$items) scores.rasch <- scoreIrt(tau,d9$items,key=rep(1,9)) scores.dfr<- data.frame(scores.df,scores.rasch) #almost identical to 2PL model! pairs.panels(scores.dfr) #with all the data, why bother ? #now delete some of the data d9$items[1:333,1:3] <- NA d9$items[334:666,4:6] <- NA d9$items[667:1000,7:9] <- NA scores <- scoreIrt(test,d9$items) scores.df <- data.frame(scores,true=d9$theta) #combine the estimates with the true thetas. pairs.panels(scores.df, pch=".", main="Comparing IRT and classical with random missing data") #with missing data, the theta estimates are noticably better. #now show how to do this with a quasi-Rasch model tau <- irt.tau(d9$items) scores.rasch <- scoreIrt(tau,d9$items,key=rep(1,9)) scores.dfr <- data.frame(scores.df,rasch = scores.rasch) pairs.panels(scores.dfr) #rasch is actually better! v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA items[990:995,1:9] <- NA #the case of terrible data items[996:998,] <- 0 #all wrong items[999:1000] <- 1 #all right scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) #each item has a discrimination of 1 #combine the estimates with the true thetas. scores.df <- data.frame(v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") pairs.panels(scores.df,pch=".",main="Comparing IRT and classical with missing data") #with missing data, the theta estimates are noticably better estimates #of the generating theta than using the empirically derived factor loading weights #now show the ability to score multiple scales using keys ab.tau <- irt.tau(ability) #first find the tau values ab.keys <- make.keys(ability,list(g=1:16,reason=1:4,letter=5:8,matrix=9:12,rotate=13:16)) ab.scores <- scoreIrt(stats=ab.tau, items = ability, keys = ab.keys) #and now do it for polytomous items bfi.tau <- irt.tau(bfi[1:25]) bfi.keys <- make.keys(bfi[1:25],list(agree=c(-1,2:5),conscientious=c(6:8,-9,-10), extra=c(11:12,-13,-14,-15),neur = 16:20,open =c(21,-22,23,24,-25))) bfi.scores <- scoreIrt(bfi.tau,bfi[1:25],bfi.keys) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models} psych/man/galton.Rd0000644000176200001440000000352212213121044013716 0ustar liggesusers\name{galton} \alias{galton} \docType{data} \title{Galton's Mid parent child height data} \description{Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. This is the data set for the Galton height. } \usage{data(galton)} \format{ A data frame with 928 observations on the following 2 variables. \describe{ \item{\code{parent}}{Mid Parent heights (in inches) } \item{\code{child}}{Child Height} } } \details{Female heights were adjusted by 1.08 to compensate for sex differences. (This was done in the original data set) } \source{This is just the galton data set from UsingR, slightly rearranged. } \references{Stigler, S. M. (1999). Statistics on the Table: The History of Statistical Concepts and Methods. Harvard University Press. Galton, F. (1886). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute of Great Britain and Ireland, 15:246-263. Galton, F. (1869). Hereditary Genius: An Inquiry into its Laws and Consequences. London: Macmillan. Wachsmuth, A.W., Wilkinson L., Dallal G.E. (2003). Galton's bend: A previously undiscovered nonlinearity in Galton's family stature regression data. The American Statistician, 57, 190-192. } \seealso{The other Galton data sets: \code{\link{heights}}, \code{\link{peas}},\code{\link{cubits}}} \examples{ data(galton) describe(galton) #show the scatter plot and the lowess fit pairs.panels(galton,main="Galton's Parent child heights") #but this makes the regression lines look the same pairs.panels(galton,lm=TRUE,main="Galton's Parent child heights") #better is to scale them pairs.panels(galton,lm=TRUE,xlim=c(62,74),ylim=c(62,74),main="Galton's Parent child heights") } \keyword{datasets} psych/man/score.items.Rd0000644000176200001440000005037613154542526014717 0ustar liggesusers\name{scoreItems} \alias{scoreItems} \alias{scoreFast} \alias{score.items} \alias{response.frequencies} \title{ Score item composite scales and find Cronbach's alpha, Guttman lambda 6 and item whole correlations } \description{Given a data.frame or matrix of n items and N observations and a list of the direction to score them (a keys.list with k keys) find the sum scores or average scores for each person and each scale. In addition, report Cronbach's alpha, Guttman's Lambda 6, the average r, the scale intercorrelations, and the item by scale correlations (raw and corrected for item overlap). Replace missing values with the item median or mean if desired. Items may be keyed 1 (score it), -1 ) (reverse score it), or 0 (do not score it). Negatively keyed items will be reverse scored. Although prior versions used a keys matrix, it is now recommended to just use a list of scoring keys. See \code{\link{make.keys}} for a convenient way to make the keys file. If the input is a square matrix, then it is assumed that the input is a covariance or correlation matix and scores are not found, but the item statistics are reported. (Similar functionality to \code{\link{cluster.cor}}). \code{\link{response.frequencies}} reports the frequency of item endorsements fore each response category for polytomous or multiple choice items. } \usage{ scoreItems(keys, items, totals = FALSE, ilabels = NULL,missing=TRUE, impute="median", delete=TRUE, min = NULL, max = NULL, digits = 2,n.obs=NULL,select=TRUE) score.items(keys, items, totals = FALSE, ilabels = NULL,missing=TRUE, impute="median", delete=TRUE, min = NULL, max = NULL, digits = 2,select=TRUE) scoreFast(keys, items, totals = FALSE, ilabels = NULL,missing=TRUE, impute="none", delete=TRUE, min = NULL, max = NULL, digits = 2) response.frequencies(items,max=10,uniqueitems=NULL) } \arguments{ \item{keys}{A list of scoring keys or a matrix or dataframe of -1, 0, or 1 weights for each item on each scale which may be created by hand, or by using \code{\link{make.keys}}. Just using a list of scoring keys (see example) is probably more convenient.} \item{items}{ Matrix or dataframe of raw item scores} \item{totals}{ if TRUE find total scores, if FALSE (default), find average scores } \item{ilabels}{ a vector of item labels. } \item{missing}{missing = TRUE is the normal case and data are imputed according to the impute option. missing=FALSE, only complete cases are scored.} \item{impute}{impute="median" replaces missing values with the item medians, impute = "mean" replaces values with the mean response. impute="none" the subject's scores are based upon the average of the keyed, but non missing scores. impute = "none" is probably more appropriate for a large number of missing cases (e.g., SAPA data). } \item{delete}{if delete=TRUE, automatically delete items with no variance (and issue a warning)} \item{min}{May be specified as minimum item score allowed, else will be calculated from data. min and max should be specified if items differ in their possible minima or maxima. See notes for details.} \item{max}{May be specified as maximum item score allowed, else will be calculated from data. Alternatively, in response frequencies, it is maximum number of alternative responses to count. } \item{uniqueitems}{If specified, the set of possible unique response categories} \item{digits}{ Number of digits to report for mean scores } \item{n.obs}{If scoring from a correlation matrix, specify the number of subjects allows for the calculation of the confidence intervals for alpha.} \item{select}{By default, just find the statistics of those items that are included in scoring keys. This allows scoring of data sets that have bad data for some items that are not included in the scoring keys. This also speeds up the scoring of small subsets of item from larger data sets.} } \details{The process of finding sum or average scores for a set of scales given a larger set of items is a typical problem in applied psychometrics and in psychometric research. Although the structure of scales can be determined from the item intercorrelations, to find scale means, variances, and do further analyses, it is typical to find scores based upon the sum or the average item score. For some strange reason, personality scale scores are typically given as totals, but attitude scores as averages. The default for scoreItems is the average as it would seem to make more sense to report scale scores in the metric of the item. When scoring more than one scale, it is convenient to have a list of the items on each scale and the direction to score the items. This may be converted to a keys.matrix using \code{\link{make.keys}} or may be entered as a keys.list directly. Various estimates of scale reliability include ``Cronbach's alpha", Guttman's Lambda 6, and the average interitem correlation. For k = number of items in a scale, and av.r = average correlation between items in the scale, alpha = k * av.r/(1+ (k-1)*av.r). Thus, alpha is an increasing function of test length as well as the test homeogeneity. Surprisingly, more than a century after Spearman (1904) introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's \eqn{\alpha} (1951) underestimates the reliability of a test and over estimates the first factor saturation. \eqn{\alpha}{alpha} (Cronbach, 1951) is the same as Guttman's \eqn{\lambda_3}{lambda3} (Guttman, 1945) and may be found by \deqn{ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha }{Lambda 3 = (n)/(n-1)(1-tr(Vx)/(Vx) = (n)/(n-1)(Vx-tr(Vx)/Vx = alpha} Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients \eqn{\beta}{beta} (Revelle, 1979; see \code{\link{ICLUST}}) and \eqn{\omega_h}{omega_hierchical} (see \code{\link{omega}}) (McDonald, 1999; Revelle and Zinbarg, 2009) are more appropriate estimates of the general factor saturation. \eqn{\omega_t}{omega_total} (see \code{\link{omega}}) is a better estimate of the reliability of the total test. Guttman's Lambda 6 (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, \eqn{e_j^2}, and is \deqn{ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x} .}{lamada 6 = 1 - sum(e^2)/Vx = 1-sum(1-r^2(smc))/Vx.} The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpyness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. Although it is normal when scoring just a single scale to calculate G6 from just those items within the scale, logically it is appropriate to estimate an item reliability from all items available. This is done here and is labeled as G6* to identify the subtle difference. Alpha and G6* are both positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. alpha is a generalization of an earlier estimate of reliability for tests with dichotomous items developed by Kuder and Richardson, known as KR20, and a shortcut approximation, KR21. (See Revelle, in prep; Revelle and Condon, in press.). A useful index is the ratio of reliable variance to unreliable variance and is known as the Signal/Noise ratio. This is just \deqn{s/n = \frac{n \bar{r}}{1-n \bar{r}}}{s/n = n r/(1-nr)} (Cronbach and Gleser, 1964; Revelle and Condon (in press)). Standard errors for unstandardized alpha are reported using the formula from Duhachek and Iacobucci (2005). More complete reliability analyses of a single scale can be done using the \code{\link{omega}} function which finds \eqn{\omega_h}{omega_hierchical} and \eqn{\omega_t}{omega_total} based upon a hierarchical factor analysis. Alternative estimates of the Greatest Lower Bound for the reliability are found in the \code{\link{guttman}} function. Alpha is a poor estimate of the general factor saturation of a test (see Revelle and Zinbarg, 2009; Zinbarg et al., 2005) for it can seriously overestimate the size of a general factor, and a better but not perfect estimate of total test reliability because it underestimates total reliability. None the less, it is a common statistic to report. In general, the use of alpha should be discouraged and the use of more appropriate estimates (\eqn{\omega_h}{omega_hierchical} and \eqn{\omega_t}{omega_total}) should be encouraged. Correlations between scales are attenuated by a lack of reliability. Correcting correlations for reliability (by dividing by the square roots of the reliabilities of each scale) sometimes help show structure. This is done in the scale intercorrelation matrix with raw correlations below the diagonal and unattenuated correlation above the diagonal. There are several alternative ways to treat missing values. By default, missing values are replaced with the corresponding median value for that item. Means can be used instead (impute="mean"), or subjects with missing data can just be dropped (missing = FALSE). For data with a great deal of missingness, yet another option is to just find the average of the available responses (impute="none"). This is useful for findings means for scales for the SAPA project (see \url{https://sapa-project.org}) where most scales are estimated from random sub samples of the items from the scale. In this case, the alpha reliabilities are seriously overinflated because they are based upon the total number of items in each scale. The "alpha observed" values are based upon the average number of items answered in each scale using the standard form for alpha a function of inter-item correlation and number of items. Using the impute="none" option as well as asking for totals (totals="TRUE") will be done, although a warning will be issued because scores will now reflect the number of items responded to much more than the actual pattern of responses. The number of missing responses for each person for each scale is reported in the missing object. One possibility is to drop scores just for those scales with missing responses. This may be done adding the code: scores$scores[scores$missing >0] <- NA This is shown in the last example. Note that the default for scoreItems is to impute missing items with their median, but the default for scoreFAst is to not impute but must return the scale scores based upon the mean or total value for the items scored. \code{\link{scoreItems}} can be applied to correlation matrices to find just the reliability statistics. This will be done automatically if the items matrix is symmetric. \code{\link{scoreFast}} just finds the scores (with or without imputation) and does not report other statistics. It is much faster! } \value{ \item{scores }{Sum or average scores for each subject on the k scales} \item{alpha }{Cronbach's coefficient alpha. A simple (but non-optimal) measure of the internal consistency of a test. See also beta and omega. Set to 1 for scales of length 1. } \item{av.r}{The average correlation within a scale, also known as alpha 1, is a useful index of the internal consistency of a domain. Set to 1 for scales with 1 item.} \item{G6}{Guttman's Lambda 6 measure of reliability} \item{G6*}{A generalization of Guttman's Lambda 6 measure of reliability using all the items to find the smc.} \item{n.items}{Number of items on each scale} \item{item.cor}{The correlation of each item with each scale. Because this is not corrected for item overlap, it will overestimate the amount that an item correlates with the other items in a scale.} \item{cor}{The intercorrelation of all the scales based upon the interitem correlations (see note for why these differ from the correlations of the observed scales themselves).} \item{corrected}{The correlations of all scales (below the diagonal), alpha on the diagonal, and the unattenuated correlations (above the diagonal)} \item{item.corrected}{The item by scale correlations for each item, corrected for item overlap by replacing the item variance with the smc for that item} \item{response.freq}{The response frequency (based upon number of non-missing responses) for each alternative.} \item{missing}{How many items were not answered for each scale } \item{num.ob.item}{The average number of items with responses on a scale. Used in calculating the alpha.observed-- relevant for SAPA type data structures.} } \note{It is important to recognize in the case of massively missing data (e.g., data from a Synthetic Aperture Personality Assessment (\url{https://sapa-project.org}) or the International Cognitive Ability Resources (\url{https://icar-project.com})) study where perhaps only 10-50\% of the items per scale are given to any one subject)) that the number of items per scale, and hence standardized alpha, is not the nominal value and hence alpha of the observed scales will be overestimated. For this case (impute="none"), an additional alpha (alpha.ob) is reported. More importantly in this case of massively missing data, there is a difference between the correlations of the composite scales based upon the correlations of the items and the correlations of the scored scales based upon the observed data. That is, the cor object will have correlations as if all items had been given, while the correlation of the scores object will reflect the actual correlation of the scores. For SAPA data, it is recommended to use the cor object. Confidence of these correlations may be found using the \code{\link{cor.ci}} function. Further note that the inter-scale correlations are based upon the correlations of scales formed from the covariance matrix of the items. This will differ from the correlation of scales based upon the correlation of the items. Thus, although \code{\link{scoreItems}} will produce reliabilities and intercorrelations from either the raw data or from a correlation matrix, these values will differ slightly. In addition, with a great deal of missing data, the scale intercorrelations will differ from the correlations of the scores produced, for the latter will be attenuated. An alternative to classical test theory scoring is to use \code{\link{scoreIrt}} to find score estimates based upon Item Response Theory. This is particularly useful in the case of SAPA data which tend to be massively missing. It is also useful to find scores based upon polytomous items following a factor analysis of the polychoric correlation matrix (see \code{\link{irt.fa}}). When reverse scoring items from a set where items differ in their possible minima or maxima, it is important to specify the min and max values. Items are reversed by subtracting them from max + min. Thus, if items range from 1 to 6, items are reversed by subtracting them from 7. But, if the data set includes other variables, (say an id field) that far exceeds the item min or max, then the max id will incorrectly be used to reverse key. min and max can either be single values, or vectors for all items. Compare two examples of scoring the \code{\link{bfi}} data set. If scales are formed with overlapping items, then the correlations of the scales will be seriously inflated. \code{link{scoreOverlap}} will adjust the correlations for this overlap. } \references{ Cronbach, L.J. and Gleser G.C. (1964)The signal/noise ratio in the comparison of reliability coefficients. Educational and Psychological Measurement, 24 (3) 467-480. Duhachek, A. and Iacobucci, D. (2004). Alpha's standard error (ase): An accurate and precise confidence interval estimate. Journal of Applied Psychology, 89(5):792-808. McDonald, R. P. (1999). Test theory: A unified treatment. L. Erlbaum Associates, Mahwah, N.J. Revelle, W. (in preparation) An introduction to psychometric theory with applications in R. \url{http://personality-project.org/r/book} Revelle, W. and Condon, D.C. Reliability. In Irwing, P., Booth, T. and Hughes, D. (Eds). the Wiley-Blackwell Handbook of Psychometric Testing (in press). Revelle W. and R.E. Zinbarg. (2009) Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 74(1):145-154. Zinbarg, R. E., Revelle, W., Yovel, I. and Li, W. (2005) Cronbach's alpha, Revelle's beta, and McDonald's omega h, Their relations with each other and two alternative conceptualizations of reliability, Psychometrika, 70, 123-133. } \author{ William Revelle } \seealso{\code{\link{make.keys}} for a convenient way to create the keys file, \code{\link{score.multiple.choice}} for multiple choice items, \cr \code{\link{alpha}}, \code{\link{correct.cor}}, \code{\link{cluster.cor}} , \code{\link{cluster.loadings}}, \code{\link{omega}}, \code{\link{guttman}} for item/scale analysis. If scales are formed from overlapping sets of items, their correlations will be inflated. This is corrected for when using the \code{\link{scoreOverlap}} function which, although it will not produce scores, will report scale intercorrelations corrected for item overlap. In addition, the \code{\link{irt.fa}} function provides an alternative way of examining the structure of a test and emphasizes item response theory approaches to the information returned by each item and the total test. Associated with these IRT parameters is the \code{\link{scoreIrt}} function for finding IRT based scores as well as \code{\link{irt.responses}} to show response curves for the alternatives in a multiple choice test. \code{\link{scoreIrt}} will find both IRT based estimates as well as average item response scores. These latter correlate perfectly with those found by scoreItems. If using a keys matrix, the score.irt results are based upon the item difficulties with the assumption that all items are equally discriminating (effectively a Rasch model). These scores are probably most useful in the case of massively missing data because they can take into account the item difficulties. } \examples{ #see the example including the bfi data set data(bfi) keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"),extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) keys <- make.keys(bfi,keys.list) #no longer necessary scores <- scoreItems(keys,bfi,min=1,max=6) #using a keys matrix scores <- scoreItems(keys.list,bfi,min=1,max=6) # or just use the keys.list summary(scores) #to get the response frequencies, we need to not use the age variable scores <- scoreItems(keys[1:25,],bfi[1:25]) #we do not need to specify min or max if #there are no values (such as age) outside the normal item range. scores #The scores themselves are available in the scores$scores object. I.e., describe(scores$scores) #compare this output to that for the impute="none" option for SAPA type data #first make many of the items missing in a missing pattern way missing.bfi <- bfi missing.bfi[1:1000,3:8] <- NA missing.bfi[1001:2000,c(1:2,9:10)] <- NA scores <- scoreItems(keys.list,missing.bfi,impute="none",min=1,max=6) scores describe(scores$scores) #the actual scores themselves #If we want to delete scales scores for people who did not answer some items for one #(or more) scales, we can do the following: scores <- scoreItems(keys.list,missing.bfi,totals=TRUE,min=1,max=6) #find total scores describe(scores$scores) #note that missing data were replaced with median for the item scores$scores[scores$missing > 0] <- NA #get rid of cases with missing data describe(scores$scores) } \keyword{ multivariate } \keyword{models} psych/man/blot.Rd0000644000176200001440000000421513077207505013412 0ustar liggesusers\name{blot} \alias{blot} \docType{data} \title{Bond's Logical Operations Test -- BLOT } \description{35 items for 150 subjects from Bond's Logical Operations Test. A good example of Item Response Theory analysis using the Rasch model. One parameter (Rasch) analysis and two parameter IRT analyses produce somewhat different results. } \usage{data(blot)} \format{ A data frame with 150 observations on 35 variables. The BLOT was developed as a paper and pencil test for children to measure Logical Thinking as discussed by Piaget and Inhelder. } \details{Bond and Fox apply Rasch modeling to a variety of data sets. This one, Bond's Logical Operations Test, is used as an example of Rasch modeling for dichotomous items. In their text (p 56), Bond and Fox report the results using WINSTEPS. Those results are consistent (up to a scaling parameter) with those found by the rasch function in the ltm package. The WINSTEPS seem to produce difficulty estimates with a mean item difficulty of 0, whereas rasch from ltm has a mean difficulty of -1.52. In addition, rasch seems to reverse the signs of the difficulty estimates when reporting the coefficients and is effectively reporting "easiness". However, when using a two parameter model, one of the items (V12) behaves very differently. This data set is useful when comparing 1PL, 2PL and 2PN IRT models. } \source{The data are taken (with kind permission from Trevor Bond) from the webpage http://www.winsteps.com/BF3/bondfox3.htm and read using read.fwf. } \references{ T.G. Bond. BLOT:Bond's Logical Operations Test. Townsville, Australia: James Cook Univer- sity. (Original work published 1976), 1995. T. Bond and C. Fox. (2007) Applying the Rasch model: Fundamental measurement in the human sciences. Lawrence Erlbaum, Mahwah, NJ, US, 2 edition. } \seealso{ See also the \code{\link{irt.fa}} and associated plot functions. } \examples{ data(blot) #not run #library(ltm) #bblot.rasch <- rasch(blot, constraint = cbind(ncol(blot) + 1, 1)) #a 1PL model #blot.2pl <- ltm(blot~z1) #a 2PL model #do the same thing with functions in psych #blot.fa <- irt.fa(blot) # a 2PN model #plot(blot.fa) } \keyword{datasets} psych/man/describe.Rd0000755000176200001440000001724413121606346014237 0ustar liggesusers\name{describe} \alias{describe} \alias{describeData} \title{ Basic descriptive statistics useful for psychometrics } \description{ There are many summary statistics available in R; this function provides the ones most useful for scale construction and item analysis in classic psychometrics. Range is most useful for the first pass in a data set, to check for coding errors. } \usage{ describe(x, na.rm = TRUE, interp=FALSE,skew = TRUE, ranges = TRUE,trim=.1, type=3,check=TRUE,fast=NULL,quant=NULL,IQR=FALSE) describeData(x,head=4,tail=4) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A data frame or matrix} \item{na.rm}{The default is to delete missing data. na.rm=FALSE will delete the case. } \item{interp}{Should the median be standard or interpolated} \item{skew}{ Should the skew and kurtosis be calculated? } \item{ranges}{ Should the range be calculated? } \item{trim}{trim=.1 -- trim means by dropping the top and bottom trim fraction} \item{type}{Which estimate of skew and kurtosis should be used? (See details.) } \item{check}{Should we check for non-numeric variables? Slower but helpful.} \item{fast}{if TRUE, will do n, means, sds, ranges for an improvement in speed. If NULL, will switch to fast mode for large (ncol * nrow > 10^7) problems, otherwise defaults to fast = FALSE} \item{quant}{if not NULL, will find the specified quantiles (e.g. quant=c(.25,.75) will find the 25th and 75th percentiles)} \item{IQR}{If TRUE, show the interquartile range} \item{head}{show the first 1:head cases for each variable in describeData} \item{tail}{Show the last nobs-tail cases for each variable in describeData} } \details{In basic data analysis it is vital to get basic descriptive statistics. Procedures such as \code{\link{summary}} and hmisc::describe do so. The describe function in the \code{\link{psych}} package is meant to produce the most frequently requested stats in psychometric and psychology studies, and to produce them in an easy to read data.frame. The results from describe can be used in graphics functions (e.g., \code{\link{error.crosses}}). The range statistics (min, max, range) are most useful for data checking to detect coding errors, and should be found in early analyses of the data. Although describe will work on data frames as well as matrices, it is important to realize that for data frames, descriptive statistics will be reported only for those variables where this makes sense (i.e., not for alphanumeric data). If the check option is TRUE, variables that are categorical or logical are converted to numeric and then described. These variables are marked with an * in the row name. This is somewhat slower. Note that in the case of categories or factors, the numerical ordering is not necessarily the one expected. For instance, if education is coded "high school", "some college" , "finished college", then the default coding will lead to these as values of 2, 3, 1. Thus, statistics for those variables marked with * should be interpreted cautiously (if at all). In a typical study, one might read the data in from the clipboard (\code{\link{read.clipboard}}), show the splom plot of the correlations (\code{\link{pairs.panels}}), and then describe the data. na.rm=FALSE is equivalent to describe(na.omit(x)) When finding the skew and the kurtosis, there are three different options available. These match the choices available in skewness and kurtosis found in the e1071 package (see Joanes and Gill (1998) for the advantages of each one). If we define \eqn{m_r = [\sum(X- mx)^r]/n}{m_r = [sum(X- mx)^r]/n} then Type 1 finds skewness and kurtosis by \eqn{g_1 = m_3/(m_2)^{3/2} } and \eqn{g_2 = m_4/(m_2)^2 -3}. Type 2 is \eqn{G1 = g1 * \sqrt{n *(n-1)}/(n-2)} and \eqn{G2 = (n-1)*[(n+1)g2 +6]/((n-2)(n-3))}. Type 3 is \eqn{b1 = [(n-1)/n]^{3/2} m_3/m_2^{3/2}} and \eqn{b2 = [(n-1)/n]^{3/2} m_4/m_2^2)}. The additional helper function \code{\link{describeData}} just scans the data array and reports on whether the data are all numerical, logical/factorial, or categorical. This is a useful check to run if trying to get descriptive statistics on very large data sets where to improve the speed, the check option is FALSE. The fast=TRUE option will lead to a speed up of about 50\% for larger problems by not finding all of the statistics (see NOTE) To describe the data for different groups, see \code{\link{describeBy}}. } \value{ A data.frame of the relevant statistics: \cr item name \cr item number \cr number of valid cases\cr mean\cr standard deviation\cr trimmed mean (with trim defaulting to .1) \cr median (standard or interpolated\cr mad: median absolute deviation (from the median) \cr minimum\cr maximum\cr skew\cr kurtosis\cr standard error\cr } \note{For very large data sets that are data.frames, describe can be rather slow. Converting the data to a matrix first is recommended. However, if the data are of different types, (factors or logical), this is not possible. If the data set includes columns of character data, it is also not possible. Thus, a quick pass with \code{\link{describeData}} is recommended. For the greatest speed, at the cost of losing information, do not ask for ranges or for skew and turn off check. This is done automatically if the fast option is TRUE or for large data sets. Note that by default, fast=NULL. But if the number of cases x number of variables exceeds (ncol * nrow > 10^7), fast will be set to TRUE. This will provide just n, mean, sd, min, max, range, and standard errors. To get all of the statistics (but at a cost of greater time) set fast=FALSE. The problem seems to be a memory limitation in that the time taken is an accelerating function of nvars * nobs. Thus, for a largish problem (72,000 cases with 1680 variables) which might take 330 seconds, doing it as two sets of 840 variable cuts the time down to 80 seconds. } \author{ \url{http://personality-project.org/revelle.html} \cr Maintainer: William Revelle \email{revelle@northwestern.edu} \cr } \note{The object returned is a data frame with the normal precision of R. However, to control the number of digits displayed, you can set digits in a print command, rather than losing precision at the descriptive stats level. See the last two examples. One just sets the number of digits, one gives uses signif to make 'prettier' output where all numbers are displayed to the same number of digits. } \references{Joanes, D.N. and Gill, C.A (1998). Comparing measures of sample skewness and kurtosis. The Statistician, 47, 183-189.} \seealso{ \code{\link{describeBy}}, \code{\link{skew}}, \code{\link{kurtosi}} \code{\link{interp.median}}, \code{\link{read.clipboard}}. Then, for graphic output, see \code{\link{error.crosses}}, \code{\link{pairs.panels}}, \code{\link{error.bars}}, \code{\link{error.bars.by}} and \code{\link{densityBy}}, or \code{\link{violinBy}}} \examples{ data(sat.act) describe(sat.act) describe(sat.act,skew=FALSE) describe(sat.act,IQR=TRUE) #show the interquartile Range describe(sat.act,quant=c(.1,.25,.5,.75,.90) ) #find the 10th, 25th, 50th, #75th and 90th percentiles describeData(sat.act) #the fast version #now show how to adjust the displayed number of digits des <- describe(sat.act) #find the descriptive statistics. Keep the original accuracy des #show the normal output, which is rounded to 2 decimals print(des,digits=3) #show the output, but round to 3 (trailing) digits print(des, signif=3) #round all numbers to the 3 significant digits } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line \keyword{univar} psych/man/VSS.Rd0000644000176200001440000002076212765553241013136 0ustar liggesusers\name{VSS} \alias{vss} \alias{VSS} \alias{MAP} \alias{nfactors} \title{ Apply the Very Simple Structure, MAP, and other criteria to determine the appropriate number of factors.} \description{There are multiple ways to determine the appropriate number of factors in exploratory factor analysis. Routines for the Very Simple Structure (VSS) criterion allow one to compare solutions of varying complexity and for different number of factors. Graphic output indicates the "optimal" number of factors for different levels of complexity. The Velicer MAP criterion is another good choice. \code{\link{nfactors}} finds and plots several of these alternative estimates. } \usage{ vss(x, n = 8, rotate = "varimax", diagonal = FALSE, fm = "minres", n.obs=NULL,plot=TRUE,title="Very Simple Structure",use="pairwise",cor="cor",...) VSS(x, n = 8, rotate = "varimax", diagonal = FALSE, fm = "minres", n.obs=NULL,plot=TRUE,title="Very Simple Structure",use="pairwise",cor="cor",...) nfactors(x,n=20,rotate="varimax",diagonal=FALSE,fm="minres",n.obs=NULL, title="Number of Factors",pch=16,use="pairwise", cor="cor",...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ a correlation matrix or a data matrix} \item{n}{Number of factors to extract -- should be more than hypothesized! } \item{rotate}{ what rotation to use c("none", "varimax", "oblimin","promax")} \item{diagonal}{Should we fit the diagonal as well } \item{fm}{factoring method -- fm="pa" Principal Axis Factor Analysis, fm = "minres" minimum residual (OLS) factoring fm="mle" Maximum Likelihood FA, fm="pc" Principal Components" } \item{n.obs}{Number of observations if doing a factor analysis of correlation matrix. This value is ignored by VSS but is necessary for the ML factor analysis package.} \item{plot}{plot=TRUE Automatically call VSS.plot with the VSS output, otherwise don't plot} \item{title}{a title to be passed on to VSS.plot} \item{pch}{the plot character for the nfactors plots} \item{use}{If doing covariances or Pearson R, should we use "pairwise" or "complete cases"} \item{cor}{What kind of correlation to find, defaults to Pearson but see fa for the choices} \item{\dots}{parameters to pass to the factor analysis program The most important of these is if using a correlation matrix is covmat= xx} } \details{Determining the most interpretable number of factors from a factor analysis is perhaps one of the greatest challenges in factor analysis. There are many solutions to this problem, none of which is uniformly the best. "Solving the number of factors problem is easy, I do it everyday before breakfast." But knowing the right solution is harder. (Horn and Engstrom, 1979) (Henry Kaiser in personal communication with J.L. Horn, as cited by Horn and Engstrom, 1979, MBR p 283). Techniques most commonly used include 1) Extracting factors until the chi square of the residual matrix is not significant. 2) Extracting factors until the change in chi square from factor n to factor n+1 is not significant. 3) Extracting factors until the eigen values of the real data are less than the corresponding eigen values of a random data set of the same size (parallel analysis) \code{\link{fa.parallel}}. 4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop in eigen values analogous to the change in slope seen when scrambling up the talus slope of a mountain and approaching the rock face. 5) Extracting principal components until the eigen value < 1. 6) Extracting factors as long as they are interpetable. 7) Using the Very Simple Structure Criterion (VSS). 8) Using Wayne Velicer's Minimum Average Partial (MAP) criterion. Each of the procedures has its advantages and disadvantages. Using either the chi square test or the change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is partially sensitive to sample size in that for large samples the eigen values of random factors will be very small. The scree test is quite appealling but can lead to differences of interpretation as to when the scree "breaks". The eigen value of 1 rule, although the default for many programs, seems to be a rough way of dividing the number of variables by 3. Extracting interpretable factors means that the number of factors reflects the investigators creativity more than the data. VSS, while very simple to understand, will not work very well if the data are very factorially complex. (Simulations suggests it will work fine if the complexities of some of the items are no more than 2). Most users of factor analysis tend to interpret factor output by focusing their attention on the largest loadings for every variable and ignoring the smaller ones. Very Simple Structure operationalizes this tendency by comparing the original correlation matrix to that reproduced by a simplified version (S) of the original factor matrix (F). R = SS' + U2. S is composed of just the c greatest (in absolute value) loadings for each variable. C (or complexity) is a parameter of the model and may vary from 1 to the number of factors. The VSS criterion compares the fit of the simplified model to the original correlations: VSS = 1 -sumsquares(r*)/sumsquares(r) where R* is the residual matrix R* = R - SS' and r* and r are the elements of R* and R respectively. VSS for a given complexity will tend to peak at the optimal (most interpretable) number of factors (Revelle and Rocklin, 1979). Although originally written in Fortran for main frame computers, VSS has been adapted to micro computers (e.g., Macintosh OS 6-9) using Pascal. We now release R code for calculating VSS. Note that if using a correlation matrix (e.g., my.matrix) and doing a factor analysis, the parameters n.obs should be specified for the factor analysis: e.g., the call is VSS(my.matrix,n.obs=500). Otherwise it defaults to 1000. Wayne Velicer's MAP criterion has been added as an additional test for the optimal number of components to extract. Note that VSS and MAP will not always agree as to the optimal number. The nfactors function will do a VSS, find MAP, and report a number of other criteria (e.g., BIC, complexity, chi square, ...) A variety of rotation options are available. These include varimax, promax, and oblimin. Others can be added. Suggestions are welcome. } \value{ A data.frame with entries: map: Velicer's MAP values (lower values are better) \cr dof: degrees of freedom (if using FA) \cr chisq: chi square (from the factor analysis output (if using FA) \cr prob: probability of residual matrix > 0 (if using FA) \cr sqresid: squared residual correlations\cr RMSEA: the RMSEA for each number of factors \cr BIC: the BIC for each number of factors \cr eChiSq: the empirically found chi square \cr eRMS: Empirically found mean residual \cr eCRMS: Empirically found mean residual corrected for df \cr eBIC: The empirically found BIC based upon the eChiSq \cr fit: factor fit of the complete model\cr cfit.1: VSS fit of complexity 1\cr cfit.2: VSS fit of complexity 2 \cr ... \cr cfit.8: VSS fit of complexity 8\cr cresidiual.1: sum squared residual correlations for complexity 1\cr ...: sum squared residual correlations for complexity 2 ..8\cr } \references{ \url{http://personality-project.org/r/vss.html}, Revelle, W. An introduction to psychometric theory with applications in R (in prep) Springer. Draft chapters available at \url{http://personality-project.org/r/book/} Revelle, W. and Rocklin, T. 1979, Very Simple Structure: an Alternative Procedure for Estimating the Optimal Number of Interpretable Factors, Multivariate Behavioral Research, 14, 403-414. \url{http://personality-project.org/revelle/publications/vss.pdf} Velicer, W. (1976) Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327. } \author{William Revelle} \seealso{ \code{\link{VSS.plot}}, \code{\link{ICLUST}}, \code{\link{omega}}, \code{\link{fa.parallel}}} \examples{ #test.data <- Harman74.cor$cov #my.vss <- VSS(test.data,title="VSS of 24 mental tests") #print(my.vss[,1:12],digits =2) #VSS.plot(my.vss, title="VSS of 24 mental tests") #now, some simulated data with two factors #VSS(sim.circ(nvar=24),fm="minres" ,title="VSS of 24 circumplex variables") VSS(sim.item(nvar=24),fm="minres" ,title="VSS of 24 simple structure variables") } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/irt.responses.Rd0000644000176200001440000000620312216167734015272 0ustar liggesusers\name{irt.responses} \alias{irt.responses} \title{Plot probability of multiple choice responses as a function of a latent trait } \description{When analyzing ability tests, it is important to consider how the distractor alternatives vary as a function of the latent trait. The simple graphical solution is to plot response endorsement frequencies against the values of the latent trait found from multiple items. A good item is one in which the probability of the distractors decrease and the keyed answer increases as the latent trait increases. } \usage{ irt.responses(theta,items, breaks = 11,show.missing=FALSE, show.legend=TRUE, legend.location="topleft", colors=NULL,...) } \arguments{ \item{theta}{The estimated latent trait (found, for example by using \code{\link{score.irt}}). } \item{items}{ A matrix or data frame of the multiple choice item responses.} \item{breaks}{The number of levels of the theta to use to form the probability estimates. May be increased if there are enough cases. } \item{show.legend}{Show the legend} \item{show.missing}{For some SAPA data sets, there are a very large number of missing responses. In general, we do not want to show their frequency.} \item{legend.location}{Choose among c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center","none"). The default is "topleft".} \item{colors}{if NULL, then use the default colors, otherwise, specify the color choices. The basic color palette is c("black", "blue", "red", "darkgreen", "gold2", "gray50", "cornflowerblue", "mediumorchid2").} \item{...}{Other parameters for plots and points} } \details{This function is a convenient way to analyze the quality of item alternatives in a multiple choice ability test. The typical use is to first score the test (using, e.g., \code{\link{score.multiple.choice}} according to some scoring key and to then find the \code{\link{score.irt}} based scores. Response frequencies for each alternative are then plotted against total score. An ideal item is one in which just one alternative (the correct one) has a monotonically increasing response probability. Because of the similar pattern of results for IRT based or simple sum based item scoring, the function can be run on scores calculated either by \code{\link{score.irt}} or by \code{\link{score.multiple.choice}}. In the latter case, the number of breaks should not exceed the number of possible score alternatives. } \value{Graphic output} \references{ Revelle, W. An introduction to psychometric theory with applications in R (in prep) Springer. Draft chapters available at \url{http://personality-project.org/r/book/} } \author{William Revelle } \seealso{ \code{\link{score.multiple.choice}}, \code{\link{score.irt}} } \examples{ data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather # than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) op <- par(op) } \keyword{multivariate } \keyword{models}psych/man/Schutz.Rd0000644000176200001440000000343213152642742013732 0ustar liggesusers\name{Schutz} \alias{Schutz} \docType{data} \title{ The Schutz correlation matrix example from Shapiro and ten Berge} \description{Shapiro and ten Berge use the Schutz correlation matrix as an example for Minimum Rank Factor Analysis. The Schutz data set is also a nice example of how normal minres or maximum likelihood will lead to a Heywood case, but minrank factoring will not. } \usage{data("Schutz")} \format{ The format is: num [1:9, 1:9] 1 0.8 0.28 0.29 0.41 0.38 0.44 0.4 0.41 0.8 ... - attr(*, "dimnames")=List of 2 ..$ :1] "Word meaning" "Odd Words" "Boots" "Hatchets" ... ..$ : chr [1:9] "V1" "V2" "V3" "V4" ... } \details{ These are 9 cognitive variables of importance mainly because they are used as an example by Shapiro and ten Berge for their paper on Minimum Rank Factor Analysis. The solution from the \code{\link{fa}} function with the fm='minrank' option is very close (but not exactly equal) to their solution. This example is used to show problems with different methods of factoring. Of the various factoring methods, fm = "minres", "uls", or "mle" produce a Heywood case. Minrank, alpha, and pa do not. See the blant data set for another example of differences across methods. } \source{ Richard E. Schutz,(1958) Factorial Validity of the Holzinger-Crowdeer Uni-factor tests. Educational and Psychological Measurement, 48, 873-875. } \references{ Alexander Shapiro and Jos M.F. ten Berge (2002) Statistical inference of minimum rank factor analysis. Psychometrika, 67. 70-94 } \examples{ data(Schutz) corPlot(Schutz,numbers=TRUE,upper=FALSE) #f4min <- fa(Schutz,4,fm="minrank") #for an example of minimum rank factor Analysis #compare to #f4 <- fa(Schutz,4,fm="mle") #for the maximum likelihood solution which has a Heywood case } \keyword{datasets} psych/man/KMO.Rd0000644000176200001440000000462713036775151013111 0ustar liggesusers\name{KMO} \alias{KMO} \title{Find the Kaiser, Meyer, Olkin Measure of Sampling Adequacy} \description{Henry Kaiser (1970) introduced an Measure of Sampling Adequacy (MSA) of factor analytic data matrices. Kaiser and Rice (1974) then modified it. This is just a function of the squared elements of the `image' matrix compared to the squares of the original correlations. The overall MSA as well as estimates for each item are found. The index is known as the Kaiser-Meyer-Olkin (KMO) index.} \usage{ KMO(r) } \arguments{ \item{r}{A correlation matrix or a data matrix (correlations will be found)} } \details{Let \eqn{S^2 = diag(R^{-1})^{-1} } and \eqn{Q = SR^{-1}S}. Then Q is said to be the anti-image intercorrelation matrix. Let \eqn{sumr2 = \sum{R^2}} and \eqn{sumq2 = \sum{Q^2}} for all off diagonal elements of R and Q, then \eqn{SMA=sumr2/(sumr2 + sumq2)}. Although originally MSA was 1 - sumq2/sumr2 (Kaiser, 1970), this was modified in Kaiser and Rice, (1974) to be \eqn{SMA=sumr2/(sumr2 + sumq2)}. This is the formula used by Dziuban and Shirkey (1974) and by SPSS. In his delightfully flamboyant style, Kaiser (1975) suggested that KMO > .9 were marvelous, in the .80s, mertitourious, in the .70s, middling, in the .60s, medicore, in the 50s, miserable, and less than .5, unacceptable. An alternative measure of whether the matrix is factorable is the Bartlett test \code{\link{cortest.bartlett}} which tests the degree that the matrix deviates from an identity matrix. } \value{ \itemize{ \item{MSA}{ The overall Measure of Sampling Adequacy} \item{MSAi}{ The measure of sampling adequacy for each item} item{Image}{ The Image correlation matrix (Q)} } } \references{ H.~F. Kaiser. (1970) A second generation little jiffy. Psychometrika, 35(4):401--415. H.~F. Kaiser and J.~Rice. (1974) Little jiffy, mark iv. Educational and Psychological Measurement, 34(1):111--117. H.F. Kaiser. 1974) An index of factor simplicity. Psychometrika, 39 (1) 31-36. Dziuban, Charles D. and Shirkey, Edwin C. (1974) When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychological Bulletin, 81 (6) 358 - 361. } \author{ William Revelle } \seealso{ See Also as \code{\link{fa}}, \code{\link{cortest.bartlett}}, \code{\link{Harman.political}}. } \examples{ KMO(Thurstone) KMO(Harman.political) #compare to the results in Dziuban and Shirkey (1974) } \keyword{ multivariate } \keyword{ models} psych/man/df2latex.Rd0000644000176200001440000001324412765546227014177 0ustar liggesusers\name{df2latex} \alias{df2latex} \alias{cor2latex} \alias{fa2latex} \alias{omega2latex} \alias{irt2latex} \alias{ICC2latex} \title{Convert a data frame, correlation matrix, or factor analysis output to a LaTeX table} \description{A set of handy helper functions to convert data frames or matrices to LaTeX tables. Although Sweave is the preferred means of converting R output to LaTeX, it is sometimes useful to go directly from a data.frame or matrix to a LaTeX table. cor2latex will find the correlations and then create a lower (or upper) triangular matrix for latex output. fa2latex will create the latex commands for showing the loadings and factor intercorrelations. As the default option, tables are prepared in an approximation of APA format. } \usage{ df2latex(x,digits=2,rowlabels=TRUE,apa=TRUE,short.names=TRUE,font.size ="scriptsize", big.mark=NULL,drop.na=TRUE, heading="A table from the psych package in R", caption="df2latex",label="default", char=FALSE, stars=FALSE,silent=FALSE,file=NULL,append=FALSE,cut=0,big=0) cor2latex(x,use = "pairwise", method="pearson", adjust="holm",stars=FALSE, digits=2,rowlabels=TRUE,lower=TRUE,apa=TRUE,short.names=TRUE, font.size ="scriptsize", heading="A correlation table from the psych package in R.", caption="cor2latex",label="default",silent=FALSE,file=NULL,append=FALSE,cut=0,big=0) fa2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE, cut=0,big=.3,alpha=.05,font.size ="scriptsize", heading="A factor analysis table from the psych package in R", caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) omega2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=.2, font.size ="scriptsize", heading="An omega analysis table from the psych package in R", caption="omega2latex",label="default",silent=FALSE,file=NULL,append=FALSE) irt2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE, font.size ="scriptsize", heading="An IRT factor analysis table from R", caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) ICC2latex(icc,digits=2,rowlabels=TRUE,apa=TRUE,ci=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="ICC2latex",label="default",char=FALSE,silent=FALSE,file=NULL,append=FALSE) } \arguments{ \item{x}{A data frame or matrix to convert to LaTeX. If non-square, then correlations will be found prior to printing in cor2latex} \item{digits}{Round the output to digits of accuracy. NULL for formatting character data} \item{rowlabels}{If TRUE, use the row names from the matrix or data.frame} \item{short.names}{Name the columns with abbreviated rownames to save space} \item{apa}{If TRUE formats table in APA style} \item{cumvar}{For factor analyses, should we show the cumulative variance accounted for?} \item{font.size}{e.g., "scriptsize", "tiny" or anyother acceptable LaTeX font size.} \item{heading}{The label appearing at the top of the table} \item{caption}{The table caption} \item{lower}{in cor2latex, just show the lower triangular matrix} \item{f}{The object returned from a factor analysis using \code{\link{fa}} or \code{\link{irt.fa}}. } \item{label}{The label for the table} \item{big.mark}{Comma separate numbers large numbers (big.mark=",")} \item{drop.na}{Do not print NA values} \item{method}{When finding correlations, which method should be used (pearson)} \item{use}{use="pairwise" is the default when finding correlations in cor2latex} \item{adjust}{If showing probabilities, which adjustment should be used (holm)} \item{stars}{Should probability asterixs be displayed in cor2latex (FALSE)} \item{char}{char=TRUE allows printing tables with character information, but does not allow for putting in commas into numbers} \item{cut}{In omega2latex, df2latex and fa2latex, do not print abs(values) < cut } \item{big}{In fa2latex and df2latex boldface those abs(values) > big} \item{alpha}{If fa has returned confidence intervals, then what values of loadings should be boldfaced?} \item{icc}{Either the output of an ICC, or the data to be analyzed.} \item{ci}{Should confidence intervals of the ICC be displayed} \item{silent}{If TRUE, do not print any output, just return silently -- useful if using Sweave} \item{file}{If specified, write the output to this file} \item{append}{If file is specified, then should we append (append=TRUE) or just write to the file} } \value{A LaTeX table. Note that if showing "stars" for correlations, then one needs to use the siunitx package in LaTex. The entire LaTeX output is also returned invisibly. If using Sweave to create tables, then the silent option should be set to TRUE and the returned object saved as a file. See the last example.} \author{William Revelle with suggestions from Jason French and David Condon and Davide Morselli} \seealso{ The many LaTeX conversion routines in Hmisc. } \examples{ df2latex(Thurstone,rowlabels=FALSE,apa=FALSE,short.names=FALSE, caption="Thurstone Correlation matrix") df2latex(Thurstone,heading="Thurstone Correlation matrix in APA style") df2latex(describe(sat.act)[2:10],short.names=FALSE) cor2latex(Thurstone) cor2latex(sat.act,short.names=FALSE) fa2latex(fa(Thurstone,3),heading="Factor analysis from R in quasi APA style") #If using Sweave to create a LateX table as a separate file then set silent=TRUE #e.g., #LaTex preamble #.... #<>= #f3 <- fa(Thurstone,3) #fa2latex(f3,silent=TRUE,file='testoutput.tex') #@ # #\input{testoutput.tex} } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ utilities } psych/man/scaling.fits.Rd0000644000176200001440000000315211121313537015024 0ustar liggesusers\name{scaling.fits} \alias{scaling.fits} \title{ Test the adequacy of simple choice, logistic, or Thurstonian scaling. } \description{Given a matrix of choices and a vector of scale values, how well do the scale values capture the choices? That is, what is size of the squared residuals given the model versus the size of the squared choice values? } \usage{ scaling.fits(model, data, test = "logit", digits = 2, rowwise = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{model}{A vector of scale values } \item{data}{ A matrix or dataframe of choice frequencies } \item{test}{ "choice", "logistic", "normal" } \item{digits}{ Precision of answer } \item{rowwise}{Are the choices ordered by column over row (TRUE) or row over column False)} } \details{How well does a model fit the data is the classic problem of all of statistics. One fit statistic for scaling is the just the size of the residual matrix compared to the original estimates. } \value{ \item{GF }{Goodness of fit of the model} \item{original }{Sum of squares for original data} \item{resid }{Sum of squares for residuals given the data and the model} \item{residual }{Residual matrix} } \references{Revelle, W. (in preparation) Introduction to psychometric theory with applications in R, Springer. \url{http://personality-project.org/r/book}} \author{ William Revelle } \note{ Mainly for demonstration purposes for a course on psychometrics } \seealso{ \code{\link{thurstone}}, \code{\link{vegetables}}} % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ models} psych/man/mssd.Rd0000644000176200001440000000700713110341723013407 0ustar liggesusers\name{mssd} \alias{mssd} \alias{rmssd} \alias{autoR} \title{Find von Neuman's Mean Square of Successive Differences} \description{ Von Neuman et al. (1941) discussed the Mean Square of Successive Differences as a measure of variability that takes into account gradual shifts in mean. This is appropriate when studying errors in ballistics or variability and stability in mood when studying affect. For random data, this will be twice the variance, but for data with a sequential order and a positive autocorrelation, this will be much smaller. Since the mssd is just twice the variance - the autocorrelation, it is thus possible to also find the autocorrelation for a particular lag. } \usage{ mssd(x,group=NULL, lag = 1,na.rm=TRUE) rmssd(x,group=NULL, lag=1, na.rm=TRUE) autoR(x,group=NULL,lag=1,na.rm=TRUE,use="pairwise") } \arguments{ \item{x}{a vector, data.frame or matrix} \item{lag}{the lag to use when finding \code{\link{diff}} } \item{group}{A column of the x data.frame to be used for grouping} \item{na.rm}{Should missing data be removed?} \item{use}{How to handle missing data in autoR}. } \details{When examining multiple measures within subjects, it is sometimes useful to consider the variability of trial by trial observations in addition to the over all between trial variation. The Mean Square of Successive Differences (mssd) and root mean square of successive differences (rmssd) find the variance or standard deviation of the trial to trial differences. \eqn{\sigma^2 = \Sigma(x_i - x_{i+1})^2 /(n-1) } In the case of multiple subjects (groups) with multiple observations per subject (group), specify the grouping variable will produce output for each group. Similar functions are available in the matrixStats package. This is just the variance and standard deviation applied to the result from the \code{\link{diff}} function. Perhaps useful when studying mood, the \code{\link{autoR}} function finds the autocorrelation for each item for the specified lag. It also returns the rmssd (root means square successive difference). This is done by finding the correlation of the lag data. } \value{ The average squared successive difference (mssd) and the square root of the average squared successive difference (rmssd). Note that this is not the same as the standard deviation of the lagged differences. } \references{ Jahng, Seungmin and Wood, Phillip K and Trull, Timothy J. Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling. Psychological methods (2008) 13, 354-375. Von Neumann, J., Kent, R., Bellinson, H., and Hart, B. (1941). The mean square successive difference. The Annals of Mathematical Statistics, pages 153-162. } \author{William Revelle} \seealso{See Also \code{\link{rmssd}} for the standard deviation or \code{\link{describe}} for more conventional statistics. \code{\link{describeBy}} and \code{\link{statsBy}} give group level statistics. See also \code{link{mlr}}, \code{link{mlreliability}}, \code{link{mlPlot}} for other ways of examining within person variability over time. } \examples{ t <- seq(-pi, pi, .1) trial <- 1: length(t) gr <- trial \%\% 8 c <- cos(t) ts <- sample(t,length(t)) cs <- cos(ts) x.df <- data.frame(trial,gr,t,c,ts,cs) rmssd(x.df) rmssd(x.df,gr) autoR(x.df,gr) describe(x.df) #pairs.panels(x.df) #mlPlot(x.df,grp="gr",Time="t",items=c(4:6)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{models} psych/man/geometric.mean.Rd0000644000176200001440000000206511243410641015336 0ustar liggesusers\name{geometric.mean} \alias{geometric.mean} \title{ Find the geometric mean of a vector or columns of a data.frame. } \description{The geometric mean is the nth root of n products or e to the mean log of x. Useful for describing non-normal, i.e., geometric distributions. } \usage{ geometric.mean(x,na.rm=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ a vector or data.frame} \item{na.rm}{remove NA values before processing} } \details{Useful for teaching how to write functions, also useful for showing the different ways of estimating central tendency. } \value{geometric mean(s) of x or x.df. } \author{ William Revelle} \note{ Not particularly useful if there are elements that are <= 0. } \seealso{ \code{\link{harmonic.mean}}, \code{\link{mean}} } \examples{ x <- seq(1,5) x2 <- x^2 x2[2] <- NA X <- data.frame(x,x2) geometric.mean(x) geometric.mean(x2) geometric.mean(X) geometric.mean(X,na.rm=FALSE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/cluster.cor.Rd0000644000176200001440000001613213071737402014714 0ustar liggesusers\name{scoreOverlap} \alias{cluster.cor} \alias{scoreOverlap} \title{Find correlations of composite variables (corrected for overlap) from a larger matrix.} \description{ Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n correlation matrix, or an N x n data matrix, find the correlations of the composite clusters. The keys matrix can be entered by hand, copied from the clipboard (\code{\link{read.clipboard}}), or taken as output from the \code{\link{factor2cluster}} or \code{\link{make.keys}} functions. Similar functionality to \code{\link{scoreItems}} which also gives item by cluster correlations. } \usage{ scoreOverlap(keys, r, correct = TRUE, SMC = TRUE, av.r = TRUE, item.smc = NULL, impute = TRUE,select=TRUE) cluster.cor(keys, r.mat, correct = TRUE,SMC=TRUE,item.smc=NULL,impute=TRUE) } \arguments{ \item{keys}{A list of scale/cluster keys, or a matrix of cluster keys } \item{r.mat}{A correlation matrix } \item{r}{Either a correlation matrix or a raw data matrix} \item{correct}{ TRUE shows both raw and corrected for attenuation correlations} \item{SMC}{Should squared multiple correlations be used as communality estimates for the correlation matrix? } \item{item.smc}{the smcs of the items may be passed into the function for speed, or calculated if SMC=TRUE } \item{impute}{if TRUE, impute missing scale correlations based upon the average interitem correlation, otherwise return NA.} \item{av.r}{Should the average r be used in correcting for overlap? smcs otherwise.} \item{select}{By default, just find statistics for items included in the scoring keys. This allows for finding scores from matrices with bad items if they are not included in the set of scoring keys.} } \details{This are two of the functions used in the SAPA (\url{http://sapa-project.org}) procedures to form synthetic correlation matrices. Given any correlation matrix of items, it is easy to find the correlation matrix of scales made up of those items. This can also be done from the original data matrix or from the correlation matrix using \code{\link{scoreItems}} which is probably preferred unless the keys are overlapping. In the case of overlapping keys, (items being scored on multiple scales), \code{\link{scoreOverlap}} will adjust for this overlap by replacing the overlapping covariances (which are variances when overlapping) with the corresponding best estimate of an item's ``true" variance using either the average correlation or the smc estimate for that item. This parallels the operation done when finding alpha reliability. This is similar to ideas suggested by Cureton (1966) and Bashaw and Anderson (1966) but uses the smc or the average interitem correlation (default). A typical use in the SAPA project is to form item composites by clustering or factoring (see \code{\link{fa}}, \code{\link{ICLUST}}, \code{\link{principal}}), extract the clusters from these results (\code{\link{factor2cluster}}), and then form the composite correlation matrix using \code{\link{cluster.cor}}. The variables in this reduced matrix may then be used in multiple correlatin procedures using \code{\link{mat.regress}}. The original correlation is pre and post multiplied by the (transpose) of the keys matrix. If some correlations are missing from the original matrix this will lead to missing values (NA) for scale intercorrelations based upon those lower level correlations. If impute=TRUE (the default), a warning is issued and the correlations are imputed based upon the average correlations of the non-missing elements of each scale. Because the alpha estimate of reliability is based upon the correlations of the items rather than upon the covariances, this estimate of alpha is sometimes called ``standardized alpha". If the raw items are available, it is useful to compare standardized alpha with the raw alpha found using \code{\link{scoreItems}}. They will differ substantially only if the items differ a great deal in their variances. \code{\link{scoreOverlap}} answers an important question when developing scales and related subscales, or when comparing alternative versions of scales. For by removing the effect of item overlap, it gives a better estimate the relationship between the latent variables estimated by the observed sum (mean) scores. } \value{ \item{cor }{the (raw) correlation matrix of the clusters} \item{sd }{standard deviation of the cluster scores} \item{corrected }{raw correlations below the diagonal, alphas on diagonal, disattenuated above diagonal} \item{alpha}{The (standardized) alpha reliability of each scale.} \item{G6}{Guttman's Lambda 6 reliability estimate is based upon the smcs for each item in a scale. G6 uses the smc based upon the entire item domain.} \item{av.r}{The average inter item correlation within a scale} \item{size}{How many items are in each cluster?} } \references{ Bashaw, W. and Anderson Jr, H. E. (1967). A correction for replicated error in correlation coefficients. Psychometrika, 32(4):435-441. Cureton, E. (1966). Corrected item-test correlations. Psychometrika, 31(1):93-96. } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu} } \note{ See SAPA Revelle, W., Wilt, J., and Rosenthal, A. (2010) Personality and Cognition: The Personality-Cognition Link. In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. The second example uses the \code{\link{msq}} data set of 72 measures of motivational state to examine the overlap between four lower level scales and two higher level scales. } \seealso{ \code{\link{factor2cluster}}, \code{\link{mat.regress}}, \code{\link{alpha}}, and most importantly, \code{\link{scoreItems}}, which will do all of what cluster.cor does for most users. cluster.cor is an important helper function for \code{\link{iclust}} } \examples{ #use the msq data set that shows the structure of energetic and tense arousal small.msq <- msq[ c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "sleepy", "tired", "drowsy","intense", "jittery", "fearful", "tense", "clutched.up", "quiet", "still", "placid", "calm", "at.rest") ] small.R <- cor(small.msq,use="pairwise") keys.list <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , high.EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively"), low.EA =c("sleepy", "tired", "drowsy"), lowTA= c("quiet", "still", "placid", "calm", "at.rest"), highTA = c("intense", "jittery", "fearful", "tense", "clutched.up") ) keys <- make.keys(small.R,keys.list) adjusted.scales <- scoreOverlap(keys.list,small.R) #compare with unadjusted confounded.scales <- cluster.cor(keys,small.R) summary(adjusted.scales) #note that the EA and high and low EA and TA and high and low TA # scale correlations are confounded summary(confounded.scales) } \keyword{ multivariate } \keyword{ models } psych/man/correct.cor.Rd0000644000176200001440000000472513125523547014704 0ustar liggesusers\name{correct.cor} \alias{correct.cor} \title{ Find dis-attenuated correlations given correlations and reliabilities } \description{Given a raw correlation matrix and a vector of reliabilities, report the disattenuated correlations above the diagonal. } \usage{ correct.cor(x, y) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A raw correlation matrix } \item{y}{ Vector of reliabilities } } \details{Disattenuated correlations may be thought of as correlations between the latent variables measured by a set of observed variables. That is, what would the correlation be between two (unreliable) variables be if both variables were measured perfectly reliably. This function is mainly used if importing correlations and reliabilities from somewhere else. If the raw data are available, use \code{\link{score.items}}, or \code{\link{cluster.loadings}} or \code{\link{cluster.cor}}. Examples of the output of this function are seen in \code{\link{cluster.loadings}} and \code{\link{cluster.cor}} } \value{Raw correlations below the diagonal, reliabilities on the diagonal, disattenuated above the diagonal. } \references{ Revelle, W. (in preparation) An Introduction to Psychometric Theory with applications in R. Springer. at \url{http://personality-project.org/r/book/} } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu} } \seealso{ \code{\link{cluster.loadings}} and \code{\link{cluster.cor}}} \examples{ # attitude from the datasets package #example 1 is a rather clunky way of doing things a1 <- attitude[,c(1:3)] a2 <- attitude[,c(4:7)] x1 <- rowSums(a1) #find the sum of the first 3 attitudes x2 <- rowSums(a2) #find the sum of the last 4 attitudes alpha1 <- alpha(a1) alpha2 <- alpha(a2) x <- matrix(c(x1,x2),ncol=2) x.cor <- cor(x) alpha <- c(alpha1$total$raw_alpha,alpha2$total$raw_alpha) round(correct.cor(x.cor,alpha),2) # #much better - although uses standardized alpha clusters <- matrix(c(rep(1,3),rep(0,7),rep(1,4)),ncol=2) cluster.loadings(clusters,cor(attitude)) # or clusters <- matrix(c(rep(1,3),rep(0,7),rep(1,4)),ncol=2) cluster.cor(clusters,cor(attitude)) # #best keys <- make.keys(attitude,list(first=1:3,second=4:7)) scores <- scoreItems(keys,attitude) scores$corrected #However, to do the more general case of correcting correlations for reliabilty #corrected <- cor2cov(x.cor,1/alpha) #diag(corrected) <- 1 } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ multivariate }% __ONLY ONE__ keyword per line psych/man/scatter.hist.Rd0000644000176200001440000000753013062257660015071 0ustar liggesusers\name{scatterHist} \alias{scatter.hist} \alias{scatterHist} \title{Draw a scatter plot with associated X and Y histograms, densities and correlation} \description{Draw a X Y scatter plot with associated X and Y histograms with estimated densities. Partly a demonstration of the use of layout. Also includes lowess smooth or linear model slope, as well as correlation. Adapted from addicted to R example 78 with further modifications suggested by Jared Smith. } \usage{scatterHist(x,y=NULL,smooth=TRUE,ab=FALSE,correl=TRUE,density=TRUE,ellipse=TRUE, digits=2,method,cex.cor=1, title="Scatter plot + histograms", xlab=NULL,ylab=NULL, smoother=FALSE,nrpoints=0, xlab.hist=NULL,ylab.hist=NULL,grid=FALSE, xlim=NULL, ylim=NULL, x.breaks=11,y.breaks=11, x.space=0, y.space=0 ,freq=TRUE, x.axes=TRUE, y.axes=TRUE,...) scatter.hist(x,y=NULL,smooth=TRUE,ab=FALSE, correl=TRUE, density=TRUE, ellipse=TRUE, digits=2, method,cex.cor=1, title="Scatter plot + histograms", xlab=NULL,ylab=NULL,smoother=FALSE, nrpoints=0, xlab.hist=NULL, ylab.hist=NULL, grid=FALSE, xlim=NULL,ylim=NULL,x.breaks=11,y.breaks=11, x.space=0,y.space=0,freq=TRUE,x.axes=TRUE,y.axes=TRUE,...) } \arguments{ \item{x}{The X vector, or the first column of a data.frame or matrix. } \item{y}{The Y vector, of if X is a data.frame or matrix, the second column of X} \item{smooth}{if TRUE, then add a loess smooth to the plot} \item{ab}{if TRUE, then show the best fitting linear fit} \item{correl}{TRUE: Show the correlation} \item{density}{TRUE: Show the estimated densities} \item{ellipse}{TRUE: draw 1 and 2 sigma ellipses and smooth} \item{digits}{How many digits to use if showing the correlation} \item{method}{Which method to use for correlation ("pearson","spearman","kendall") defaults to "pearson"} \item{smoother}{if TRUE, use smoothScatter instead of plot. Nice for large N.} \item{nrpoints}{If using smoothScatter, show nrpoints as dots. Defaults to 0} \item{grid}{If TRUE, show a grid for the scatter plot.} \item{cex.cor}{Adjustment for the size of the correlation} \item{xlab}{Label for the x axis} \item{ylab}{Label for the y axis} \item{xlim}{Allow specification for limits of x axis, although this seems to just work for the scatter plots.} \item{ylim}{Allow specification for limits of y axis} \item{x.breaks}{Number of breaks to suggest to the x axis histogram.} \item{y.breaks}{Number of breaks to suggest to the y axis histogram.} \item{x.space}{space between bars} \item{y.space}{Space between y bars} \item{freq}{Show frequency counts, otherwise show density counts} \item{x.axes}{Show the x axis for the x histogram} \item{y.axes}{Show the y axis for the y histogram} \item{xlab.hist}{Not currently available} \item{ylab.hist}{Label for y axis histogram. Not currently available.} \item{title}{An optional title} \item{\dots}{Other parameters for graphics} } \details{Just a straightforward application of layout and barplot, with some tricks taken from \code{\link{pairs.panels}}. The various options allow for correlation ellipses (1 and 2 sigma from the mean), lowess smooths, linear fits, density curves on the histograms, and the value of the correlation. ellipse = TRUE implies smooth = TRUE. The grid option provides a background grid to the scatterplot. ) } \author{William Revelle} \note{ Adapted from Addicted to R example 78. Modified following some nice suggestions from Jared Smith. } \seealso{\code{\link{pairs.panels}} for multiple plots, \code{\link{multi.hist}} for multiple histograms. } \examples{ data(sat.act) with(sat.act,scatter.hist(SATV,SATQ)) #or for something a bit more splashy scatter.hist(sat.act[5:6],pch=(19+sat.act$gender),col=c("blue","red")[sat.act$gender],grid=TRUE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ hplot } psych/man/phi.demo.Rd0000644000176200001440000000345212216171055014151 0ustar liggesusers\name{phi.demo} \alias{phi.demo} \title{ A simple demonstration of the Pearson, phi, and polychoric corelation} \description{A not very interesting demo of what happens if bivariate continuous data are dichotomized. Bascially a demo of r, phi, and polychor. } \usage{ phi.demo(n=1000,r=.6, cuts=c(-2,-1,0,1,2)) } \arguments{ \item{n}{number of cases to simulate} \item{r}{ correlation between latent and observed } \item{cuts}{form dichotomized variables at the value of cuts} } %- maybe also 'usage' for other objects documented here. \details{A demonstration of the problem of different base rates on the phi correlation, and how these are partially solved by using the polychoric correlation. Not one of my more interesting demonstrations. See \url{http://personality-project.org/r/simulating-personality.html} and \url{http://personality-project.org/r/r.datageneration.html} for better demonstrations of data generation. } \value{a matrix of correlations and a graphic plot. The items above the diagonal are the tetrachoric correlations, below the diagonal are raw correlations. } \references{\url{http://personality-project.org/r/simulating-personality.html} and \url{http://personality-project.org/r/r.datageneration.html} for better demonstrations of data generation. } \author{ William Revelle} \seealso{\code{\link{VSS.simulate}},\code{\link{item.sim}}} \examples{ #demo <- phi.demo() #compare the phi (lower off diagonal and polychoric correlations # (upper off diagonal) #show the result from tetrachoric which corrects for zero entries by default #round(demo$tetrachoric$rho,2) #show the result from phi2poly #tetrachorics above the diagonal, phi below the diagonal #round(demo$phis,2) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/Tucker.Rd0000644000176200001440000000305611312472367013711 0ustar liggesusers\name{Tucker} \alias{Tucker} \docType{data} \title{ 9 Cognitive variables discussed by Tucker and Lewis (1973) } \description{Tucker and Lewis (1973) introduced a reliability coefficient for ML factor analysis. Their example data set was previously reported by Tucker (1958) and taken from Thurstone and Thurstone (1941). The correlation matrix is a 9 x 9 for 710 subjects and has two correlated factors of ability: Word Fluency and Verbal. } \usage{data(Tucker)} \format{ A data frame with 9 observations on the following 9 variables. \describe{ \item{\code{t42}}{Prefixes} \item{\code{t54}}{Suffixes} \item{\code{t45}}{Chicago Reading Test: Vocabulary} \item{\code{t46}}{Chicago Reading Test: Sentences} \item{\code{t23}}{First and last letters} \item{\code{t24}}{First letters} \item{\code{t27}}{Four letter words} \item{\code{t10}}{Completion} \item{\code{t51}}{Same or Opposite} } } \details{The correlation matrix from Tucker (1958) was used in Tucker and Lewis (1973) for the Tucker-Lewis Index of factoring reliability. } \source{ Tucker, Ledyard (1958) An inter-battery method of factor analysis, Psychometrika, 23, 111-136. } \references{ L.~Tucker and C.~Lewis. (1973) A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1):1--10. F.~J. Floyd and K.~F. Widaman. (1995) Factor analysis in the development and refinement of clinical assessment instruments., Psychological Assessment, 7(3):286 -- 299. } \examples{ data(Tucker) fa(Tucker,2,n.obs=710) omega(Tucker,2) } \keyword{datasets} psych/man/factor.congruence.Rd0000755000176200001440000001170312763104371016060 0ustar liggesusers\name{factor.congruence} \alias{factor.congruence} \alias{fa.congruence} \title{Coefficient of factor congruence } \description{Given two sets of factor loadings, report their degree of congruence (vector cosine). Although first reported by Burt (1948), this is frequently known as the Tucker index of factor congruence. } \usage{ factor.congruence(x, y=NULL,digits=2,use=NULL,structure=FALSE) fa.congruence(x, y=NULL,digits=2,use=NULL,structure=FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A matrix of factor loadings or a list of matrices of factor loadings} \item{y}{ A second matrix of factor loadings (if x is a list, then y may be empty)} \item{digits}{Round off to digits} \item{use}{If NULL, then no loading matrices may contain missing values. If use="complete" then variables with any missing loadings are dropped (with a warning)} \item{structure}{If TRUE, find the factor congruences based upon the Structure matrix (if available), otherwise based upon the pattern matrix.} } \details{Find the coefficient of factor congruence between two sets of factor loadings. Factor congruences are the cosines of pairs of vectors defined by the loadings matrix and based at the origin. Thus, for loadings that differ only by a scaler (e.g. the size of the eigen value), the factor congruences will be 1. For factor loading vectors of F1 and F2 the measure of factor congruence, phi, is \deqn{ \phi = \frac{\sum F_1 F_2}{\sqrt{\sum(F_1^2)\sum(F_2^2)}} .}{phi = sum(F1 F2)/sqrt(sum(F1^2) sum(F2^2)) } It is an interesting exercise to compare factor congruences with the correlations of factor loadings. Factor congruences are based upon the raw cross products, while correlations are based upon centered cross products. That is, correlations of factor loadings are cosines of the vectors based at the mean loading for each factor. \deqn{ \phi = \frac{\sum (F_1-a) (F_2 - b)}{\sqrt{\sum((F_1-a)^2)\sum((F_2-b)^2)}} .}{phi = sum((F1-a)(F2-b))/sqrt(sum((F1-a)^2) sum((F2-b)^2)) }. For congruence coefficients, a = b= 0. For correlations a=mean F1, b= mean F2. Input may either be matrices or factor analysis or principal components analyis output (which includes a loadings object), or a mixture of the two. To compare more than two solutions, x may be a list of matrices, all of which will be compared. Normally, all factor loading matrices should be complete (have no missing loadings). In the case where some loadings are missing, if the use option is specified, then variables with missing loadings are dropped. } \value{A matrix of factor congruences. } \references{ Burt, Cyril (1948) The factorial study of temperamental traits. British Journal of Statistical Psychology, 1(3) 178-203. Lorenzo-Seva, U. and ten Berge, J. M. F. (2006). Tucker's congruence coefficient as a meaningful index of factor similarity. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 2(2):57-64. Gorsuch, Richard, (1983) Factor Analysis. Lawrence Erlebaum Associates. Revelle, W. (In preparation) An Introduction to Psychometric Theory with applications in R (\url{http://personality-project.org/r/book/}) } \author{ \email{revelle@northwestern.edu} \cr \url{http://personality-project.org/revelle.html}} \seealso{ \code{\link{principal}}, \code{\link{fa}}} \examples{ #factor congruence of factors and components, both rotated #fa <- fa(Harman74.cor$cov,4) #pc <- principal(Harman74.cor$cov,4) #factor.congruence(fa,pc) # RC1 RC3 RC2 RC4 #MR1 0.98 0.41 0.28 0.32 #MR3 0.35 0.96 0.41 0.31 #MR2 0.23 0.16 0.95 0.28 #MR4 0.28 0.38 0.36 0.98 #factor congruence without rotation #fa <- fa(Harman74.cor$cov,4,rotate="none") #pc <- principal(Harman74.cor$cov,4,rotate="none") #factor.congruence(fa,pc) #just show the beween method congruences # PC1 PC2 PC3 PC4 #MR1 1.00 -0.04 -0.06 -0.01 #MR2 0.15 0.97 -0.01 -0.15 #MR3 0.31 0.05 0.94 0.11 #MR4 0.07 0.21 -0.12 0.96 #factor.congruence(list(fa,pc)) #this shows the within method congruence as well # MR1 MR2 MR3 MR4 PC1 PC2 PC3 PC4 #MR1 1.00 0.11 0.25 0.06 1.00 -0.04 -0.06 -0.01 #MR2 0.11 1.00 0.06 0.07 0.15 0.97 -0.01 -0.15 #MR3 0.25 0.06 1.00 0.01 0.31 0.05 0.94 0.11 #MR4 0.06 0.07 0.01 1.00 0.07 0.21 -0.12 0.96 #PC1 1.00 0.15 0.31 0.07 1.00 0.00 0.00 0.00 #PC2 -0.04 0.97 0.05 0.21 0.00 1.00 0.00 0.00 #PC3 -0.06 -0.01 0.94 -0.12 0.00 0.00 1.00 0.00 #PC4 -0.01 -0.15 0.11 0.96 0.00 0.00 0.00 1.00 #pa <- fa(Harman74.cor$cov,4,fm="pa") # factor.congruence(fa,pa) # PA1 PA3 PA2 PA4 #Factor1 1.00 0.61 0.46 0.55 #Factor2 0.61 1.00 0.50 0.60 #Factor3 0.46 0.50 1.00 0.57 #Factor4 0.56 0.62 0.58 1.00 #compare with #round(cor(fa$loading,pc$loading),2) # RC1 RC3 RC2 RC4 #MR1 0.99 -0.18 -0.33 -0.34 #MR3 -0.33 0.96 -0.16 -0.43 #MR2 -0.29 -0.46 0.98 -0.21 #MR4 -0.44 -0.30 -0.22 0.98 } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/factor.stats.Rd0000644000176200001440000001375213100667452015071 0ustar liggesusers\name{factor.stats} \Rdversion{1.1} \alias{factor.stats} \alias{fa.stats} \title{Find various goodness of fit statistics for factor analysis and principal components } \description{Chi square and other goodness of fit statistics are found based upon the fit of a factor or components model to a correlation matrix. Although these statistics are normally associated with a maximum likelihood solution, they can be found for minimal residual (OLS), principal axis, or principal component solutions as well. Primarily called from within these functions, factor.stats can be used by itself. Measures of factorial adequacy and validity follow the paper by Grice, 2001. } \usage{ fa.stats(r=NULL,f,phi=NULL,n.obs=NA,np.obs=NULL,alpha=.05,fm=NULL) factor.stats(r=NULL,f,phi=NULL,n.obs=NA,np.obs=NULL,alpha=.1,fm=NULL) } \arguments{ \item{r}{A correlation matrix or a data frame of raw data} \item{f}{A factor analysis loadings matrix or the output from a factor or principal components analysis. In which case the r matrix need not be specified.} \item{phi}{A factor intercorrelation matrix if the factor solution was oblique.} \item{n.obs}{The number of observations for the correlation matrix. If not specified, and a correlation matrix is used, chi square will not be reported. Not needed if the input is a data matrix.} \item{np.obs}{The pairwise number of subjects for each pair in the correlation matrix. This is used for finding observed chi square.} \item{alpha}{alpha level of confidence intervals for RMSEA (twice the confidence at each tail)} \item{fm}{flag if components are being given statistics} } \details{Combines the goodness of fit tests used in \code{\link{fa}} and principal into one function. If the matrix is singular, will smooth the correlation matrix before finding the fit functions. Now will find the RMSEA (root mean square error of approximation) and the alpha confidence intervals similar to a SEM function. Also reports the root mean square residual. Chi square is found two ways. The first (STATISTIC) applies the goodness of fit test from Maximum Likelihood objective function (see below). This assumes multivariate normality. The second is the empirical chi square based upon the observed residual correlation matrix and the observed sample size for each correlation. This is found by summing the squared residual correlations time the sample size. } \value{ \item{fit}{How well does the factor model reproduce the correlation matrix. (See \code{\link{VSS}}, \code{\link{ICLUST}}, and \code{\link{principal}} for this fit statistic.} \item{fit.off}{how well are the off diagonal elements reproduced? This is just 1 - the relative magnitude of the squared off diagonal residuals to the squared off diagonal original values.} \item{dof}{Degrees of Freedom for this model. This is the number of observed correlations minus the number of independent parameters. Let n=Number of items, nf = number of factors then \cr \eqn{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}} \item{objective}{value of the function that is minimized by maximum likelihood procedures. This is reported for comparison purposes and as a way to estimate chi square goodness of fit. The objective function is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. } \item{STATISTIC}{If the number of observations is specified or found, this is a chi square based upon the objective function, f. Using the formula from \code{\link{factanal}}(which seems to be Bartlett's test) : \cr \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{ chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } Note that this is different from the chi square reported by the sem package which seems to use \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 )* f } } \item{PVAL}{If n.obs > 0, then what is the probability of observing a chisquare this large or larger?} \item{Phi}{If oblique rotations (using oblimin from the GPArotation package or promax) are requested, what is the interfactor correlation.} \item{R2}{The multiple R square between the factors and factor score estimates, if they were to be found. (From Grice, 2001)} \item{r.scores}{The correlations of the factor score estimates, if they were to be found.} \item{weights}{The beta weights to find the factor score estimates} \item{valid}{The validity coffiecient of course coded (unit weighted) factor score estimates (From Grice, 2001)} \item{score.cor}{The correlation matrix of course coded (unit weighted) factor score estimates, if they were to be found, based upon the loadings matrix.} \item{RMSEA}{The Root Mean Square Error of Approximation and the alpha confidence intervals. Based upon the chi square non-centrality parameter. This is found as \eqn{\sqrt{f/dof - 1(/-1)}}{sqrt((f/df - 1(N-1))} } \item{rms}{The empirically found square root of the squared residuals. This does not require sample size to be specified nor does it make assumptions about normality.} \item{crms}{While the rms uses the number of correlations to find the average, the crms uses the number of degrees of freedom. Thus, there is a penalty for having too complex a model.} } \author{William Revelle} \references{ Grice, James W.,2001, Computing and evaluating factor scores, Psychological Methods, 6,4, 430-450. } \seealso{ \code{\link{fa}} with fm="pa" for principal axis factor analysis, \code{\link{fa}} with fm="minres" for minimum residual factor analysis (default). \code{\link{factor.pa}} also does principal axis factor analysis, but is deprecated, as is \code{\link{factor.minres}} for minimum residual factor analysis. See \code{\link{principal}} for principal components. } \examples{ v9 <- sim.hierarchical() f3 <- fa(v9,3) factor.stats(v9,f3,n.obs=500) f3o <- fa(v9,3,fm="pa",rotate="Promax") factor.stats(v9,f3o,n.obs=500) } \keyword{ multivariate } \keyword{ models}% __ONLY ONE__ keyword per line psych/man/unidim.Rd0000644000176200001440000000656713127450026013745 0ustar liggesusers\name{unidim} \alias{unidim} \title{Several indices of the unidimensionality of a set of variables.} \description{There are a variety of ways of assessing whether a set of items measures one latent trait. \code{\link{unidim}} is just one more way. If a one factor model holds in the data, then the factor analytic decomposition F implies that FF' should reproduce the correlations with communalities along the diagonal. In this case, the fit FF' should be identical to the correlation matrix minus the uniquenesses. unidim is just the ratio of these two estimates. The higher it is, the more the evidence for unidimensionality. } \usage{ unidim(x, keys.list = NULL, flip = FALSE) } \arguments{ \item{x}{An input matrix or data frame. If x is not a correlation matrix, then the correlations are found.} \item{keys.list}{If specified, then a number of scales can be tested at once. (See \code{\link{scoreItems}} for a similar procedure.)} \item{flip}{If TRUE, then items will be keyed based upon their loadings on the first factor. Automatically done if key.list is NULL.} } \details{ This is an exploratory index that is still under development. A number of test cases suggest that it provides high values when the data are in fact unidimensional, low values when they are not. The logic is deceptively simple: Unidimensionality implies that a one factor model of the data fits the covariances of the data. If this is the case, then factor model implies R = FF' + U2 will have residuals of 0. Similarly, this also implies that the observed correlations will equal the model. Thus, the sum of the observed corelations (with the diagonal replaced by the communalities) should match the factor model. Compare these two models: R - U2 versus FF'. } \value{ \item{uni.orig }{The raw value of the unidimensional criterion} \item{uni.adj }{The unidimensional criterion when items are keyed in positive direction.} \item{fit1}{The off diagonal fit from \code{\link{fa}} } \item{alpha}{Standardized alpha of the keyed items (after appropriate reversals)} \item{av.r}{The average interitem correlation of the keyed items.} \item{raw.model}{The ratio of the FF' model to the sum(R)} \item{adj.model}{The ratio of the FF' model to the sum(R) when items are flipped.} item{raw.total}{The ratio of the sum(R - uniqueness)/sum(R)} item{adj.total}{Same ratio with flipped items} } \author{William Revelle} \note{A perhaps interesting idea but still an exploratory statistic. Treat with appropriate caution. } \seealso{ \code{\link{fa}} for factor analysis, \code{\link{omega}} for reliability. } \examples{ #test the unidimensionality of the five factors of the bfi data set. keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"),neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5"), all = c("-A1","A2","A3","A4","A5","C1","C2","C3","-C4","-C5","-E1","-E2","E3","E4","E5","N1" ,"N2","N3","N4","N5","O1","-O2","O3","O4","-O5") ) unidim(bfi,keys.list) #Try a known 3 factor structure x <- sim.minor(nfact=3,bipolar=FALSE) unidim(x$model) keys.list <- list(first =c(1:4),second = 5:8,third=9:12,all=1:12) unidim(x$model,keys.list) x <- sim.minor(nfact=3) unidim(x$model,keys.list,flip=TRUE) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{multivariate }% __ONLY ONE__ keyword per linepsych/man/thurstone.Rd0000644000176200001440000000575711222301404014500 0ustar liggesusers\name{thurstone} \alias{thurstone} \title{Thurstone Case V scaling} \description{Thurstone Case V scaling allows for a scaling of objects compared to other objects. As one of the cases considered by Thurstone, Case V makes the assumption of equal variances and uncorrelated distributions. } \usage{ thurstone(x, ranks = FALSE, digits = 2) } \arguments{ \item{x}{ A square matrix or data frame of preferences, or a rectangular data frame or matrix rank order choices. } \item{ranks}{TRUE if rank orders are presented} \item{digits}{number of digits in the goodness of fit} } \details{Louis L. Thurstone was a pioneer in psychometric theory and measurement of attitudes, interests, and abilities. Among his many contributions was a systematic analysis of the process of comparative judgment (thurstone, 1927). He considered the case of asking subjects to successively compare pairs of objects. If the same subject does this repeatedly, or if subjects act as random replicates of each other, their judgments can be thought of as sampled from a normal distribution of underlying (latent) scale scores for each object, Thurstone proposed that the comparison between the value of two objects could be represented as representing the differences of the average value for each object compared to the standard deviation of the differences between objects. The basic model is that each item has a normal distribution of response strength and that choice represents the stronger of the two response strengths. A justification for the normality assumption is that each decision represents the sum of many independent inputs and thus, through the central limit theorem, is normally distributed. Thurstone considered five different sets of assumptions about the equality and independence of the variances for each item (Thurston, 1927). Torgerson expanded this analysis slightly by considering three classes of data collection (with individuals, between individuals and mixes of within and between) crossed with three sets of assumptions (equal covariance of decision process, equal correlations and small differences in variance, equal variances). The data may be either a square matrix of dataframe of preferences (as proportions with the probability of the column variable being chosen over the row variable) or a matrix or dataframe of rank orders ( 1 being prefered to 2, etc.) } \value{ \item{GF }{Goodness of fit 1 = 1 - sum(squared residuals/squared original) for lower off diagonal. \cr Goodness of fit 2 = 1 - sum(squared residuals/squared original) for full matrix.} \item{residual }{square matrix of residuals (of class dist)} \item{data}{The original choice data} ... } \references{ Thurstone, L. L. (1927) A law of comparative judgments. Psychological Review, 34, 273-286. Revelle, W. An introduction to psychometric theory with applications in R. (in preparation), Springer. \url{http://personality-project.org/r/book} } \author{William Revelle} \examples{ data(vegetables) thurstone(veg) } \keyword{ models } psych/man/factor.rotate.Rd0000644000176200001440000000430511764663236015235 0ustar liggesusers\name{factor.rotate} \alias{factor.rotate} \title{``Hand" rotate a factor loading matrix } \description{Given a factor or components matrix, it is sometimes useful to do arbitrary rotations of particular pairs of variables. This supplements the much more powerful rotation package GPArotation and is meant for specific requirements to do unusual rotations. } \usage{ factor.rotate(f, angle, col1=1, col2=2,plot=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{f}{original loading matrix or a data frame (can be output from a factor analysis function} \item{angle}{ angle (in degrees!) to rotate } \item{col1}{ column in factor matrix defining the first variable} \item{col2}{ column in factor matrix defining the second variable } \item{plot}{plot the original (unrotated) and rotated factors} \item{...}{parameters to pass to fa.plot} } \details{Partly meant as a demonstration of how rotation works, factor.rotate is useful for those cases that require specific rotations that are not available in more advanced packages such as GPArotation. If the plot option is set to TRUE, then the original axes are shown as dashed lines. The rotation is in degrees counter clockwise. } \value{the resulting rotated matrix of loadings. } \references{ \url{http://personality-project.org/r/book} \cr } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu } } \note{For a complete rotation package, see GPArotation } \examples{ #using the Harman 24 mental tests, rotate the 2nd and 3rd factors 45 degrees f4<- fa(Harman74.cor$cov,4,rotate="TRUE") f4r45 <- factor.rotate(f4,45,2,3) f4r90 <- factor.rotate(f4r45,45,2,3) print(factor.congruence(f4,f4r45),digits=3) #poor congruence with original print(factor.congruence(f4,f4r90),digits=3) #factor 2 and 3 have been exchanged and 3 flipped #a graphic example data(Harman23.cor) f2 <- fa(Harman23.cor$cov,2,rotate="none") op <- par(mfrow=c(1,2)) cluster.plot(f2,xlim=c(-1,1),ylim=c(-1,1),title="Unrotated ") f2r <- factor.rotate(f2,-33,plot=TRUE,xlim=c(-1,1),ylim=c(-1,1),title="rotated -33 degrees") op <- par(mfrow=c(1,1)) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/cortest.mat.Rd0000644000176200001440000001112412456773046014722 0ustar liggesusers\name{cortest.mat} \alias{cortest.normal} \alias{cortest.mat} \alias{cortest.jennrich} \alias{cortest} \title{Chi square tests of whether a single matrix is an identity matrix, or a pair of matrices are equal. } \description{Steiger (1980) pointed out that the sum of the squared elements of a correlation matrix, or the Fisher z score equivalents, is distributed as chi square under the null hypothesis that the values are zero (i.e., elements of the identity matrix). This is particularly useful for examining whether correlations in a single matrix differ from zero or for comparing two matrices. Jennrich (1970) also examined tests of differences between matrices. } \usage{ cortest.normal(R1, R2 = NULL, n1 = NULL, n2 = NULL, fisher = TRUE) #the steiger test cortest(R1,R2=NULL,n1=NULL,n2 = NULL, fisher = TRUE,cor=TRUE) #same as cortest.normal cortest.jennrich(R1,R2,n1=NULL, n2=NULL) #the Jennrich test cortest.mat(R1,R2=NULL,n1=NULL,n2 = NULL) #an alternative test } \arguments{ \item{R1}{A correlation matrix. (If R1 is not rectangular, and cor=TRUE, the correlations are found). } \item{R2}{A correlation matrix. If R2 is not rectangular, and cor=TRUE, the correlations are found. If R2 is NULL, then the test is just whether R1 is an identity matrix. } \item{n1}{Sample size of R1 } \item{n2}{Sample size of R2 } \item{fisher}{Fisher z transform the correlations? } \item{cor}{By default, if the input matrices are not symmetric, they are converted to correlation matrices. That is, they are treated as if they were the raw data. If cor=FALSE, then the input matrices are taken to be correlation matrices.} } \details{There are several ways to test if a matrix is the identity matrix. The most well known is the chi square test of Bartlett (1951) and Box (1949). A very straightforward test, discussed by Steiger (1980) is to find the sum of the squared correlations or the sum of the squared Fisher transformed correlations. Under the null hypothesis that all the correlations are equal, this sum is distributed as chi square. This is implemented in \code{\link{cortest}} and \code{\link{cortest.normal}} Yet another test, is the Jennrich(1970) test of the equality of two matrices. This compares the differences between two matrices to the averages of two matrices using a chi square test. This is implemented in \code{\link{cortest.jennrich}}. Yet another option \code{\link{cortest.mat}} is to compare the two matrices using an approach analogous to that used in evaluating the adequacy of a factor model. In factor analysis, the maximum likelihood fit statistic is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. This in turn is converted to a chi square \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } (see \code{\link{fa}}.) That is, the model (M = FF' + U2) is compared to the original correlation matrix (R) by a function of \eqn{M^{-1} R}. By analogy, in the case of two matrices, A and B, \code{\link{cortest.mat}} finds the chi squares associated with \eqn{A^{-1}B} and \eqn{A B^{-1}}. The sum of these two \eqn{\chi^2} will also be a \eqn{\chi^2} but with twice the degrees of freedom. } \value{ \item{chi2}{The chi square statistic} \item{df}{Degrees of freedom for the Chi Square} \item{prob}{The probability of observing the Chi Square under the null hypothesis.} } \references{ Steiger, James H. (1980) Testing pattern hypotheses on correlation matrices: alternative statistics and some empirical results. Multivariate Behavioral Research, 15, 335-352. Jennrich, Robert I. (1970) An Asymptotic \eqn{\chi^2} Test for the Equality of Two Correlation Matrices. Journal of the American Statistical Association, 65, 904-912. } \author{ William Revelle } \note{ Both the cortest.jennrich and cortest.normal are probably overly stringent. The ChiSquare values for pairs of random samples from the same population are larger than would be expected. This is a good test for rejecting the null of no differences. } \seealso{\code{\link{cortest.bartlett}} } \examples{ x <- matrix(rnorm(1000),ncol=10) cortest.normal(x) #just test if this matrix is an identity x <- sim.congeneric(loads =c(.9,.8,.7,.6,.5),N=1000,short=FALSE) y <- sim.congeneric(loads =c(.9,.8,.7,.6,.5),N=1000,short=FALSE) cortest.normal(x$r,y$r,n1=1000,n2=1000) #The Steiger test cortest.jennrich(x$r,y$r,n1=100,n2=1000) # The Jennrich test cortest.mat(x$r,y$r,n1=1000,n2=1000) #twice the degrees of freedom as the Jennrich } \keyword{ multivariate } psych/man/harmonic.mean.Rd0000644000176200001440000000247313056557227015203 0ustar liggesusers\name{harmonic.mean} \alias{harmonic.mean} \title{ Find the harmonic mean of a vector, matrix, or columns of a data.frame} \description{The harmonic mean is merely the reciprocal of the arithmetic mean of the reciprocals. } \usage{ harmonic.mean(x,na.rm=TRUE,zero=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ a vector, matrix, or data.frame } \item{na.rm}{na.rm=TRUE remove NA values before processing} \item{zero}{If TRUE, then if there are any zeros, return 0, else, return the harmonic mean of the non-zero elements} } \details{Included as an example for teaching about functions. As well as for a discussion of how to estimate central tendencies. Also used in \code{\link{statsBy}} to weight by the harmonic mean. Values of 0 can be included (in which case the harmonic.mean = 0) or converted to NA according to the zero option. Added the zero option, March, 2017. } \value{ The harmonic mean(s) } \note{Included as a simple demonstration of how to write a function} \examples{ x <- seq(1,5) x2 <- x^2 x2[2] <- NA y <- x - 1 X <- data.frame(x,x2,y) harmonic.mean(x) harmonic.mean(x2) harmonic.mean(X) harmonic.mean(X,na.rm=FALSE) harmonic.mean(X,zero=FALSE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/sim.hierarchical.Rd0000644000176200001440000000724413016077554015666 0ustar liggesusers\name{sim.hierarchical} \alias{sim.hierarchical} \alias{make.hierarchical} \title{Create a population or sample correlation matrix, perhaps with hierarchical structure. } \description{Create a population orthogonal or hierarchical correlation matrix from a set of factor loadings and factor intercorrelations. Samples of size n may be then be drawn from this population. Return either the sample data, sample correlations, or population correlations. This is used to create sample data sets for instruction and demonstration. } \usage{ sim.hierarchical(gload=NULL, fload=NULL, n = 0, raw = FALSE,mu = NULL) make.hierarchical(gload=NULL, fload=NULL, n = 0, raw = FALSE) #deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{gload}{ Loadings of group factors on a general factor } \item{fload}{ Loadings of items on the group factors } \item{n}{ Number of subjects to generate: N=0 => population values } \item{raw}{ raw=TRUE, report the raw data, raw=FALSE, report the sample correlation matrix. } \item{mu}{means for the individual variables} } \details{Many personality and cognitive tests have a hierarchical factor structure. For demonstration purposes, it is useful to be able to create such matrices, either with population values, or sample values. Given a matrix of item factor loadings (fload) and of loadings of these factors on a general factor (gload), we create a population correlation matrix by using the general factor law (R = F' theta F where theta = g'g). To create sample values, we use code adapted from the \code{\link{mvrnorm}} function in MASS. The default is to return population correlation matrices. Sample correlation matrices are generated if n >0. Raw data are returned if raw = TRUE. The default values for gload and fload create a data matrix discussed by Jensen and Weng, 1994. Although written to create hierarchical structures, if the gload matrix is all 0, then a non-hierarchical structure will be generated. } \value{ a matrix of correlations or a data matrix } \references{ \url{http://personality-project.org/r/r.omega.html } \cr Jensen, A.R., Weng, L.J. (1994) What is a Good g? Intelligence, 18, 231-258.} \author{ William Revelle } \seealso{ \code{\link{omega}}, \code{\link{schmid}}, \code{\link{ICLUST}}, \code{\link{VSS}} for ways of analyzing these data. Also see \code{\link{sim.structure}} to simulate a variety of structural models (e.g., multiple correlated factor models). The simulation uses the \code{\link{mvrnorm}} function from the MASS package.} \examples{ gload <- gload<-matrix(c(.9,.8,.7),nrow=3) # a higher order factor matrix fload <-matrix(c( #a lower order (oblique) factor matrix .8,0,0, .7,0,.0, .6,0,.0, 0,.7,.0, 0,.6,.0, 0,.5,0, 0,0,.6, 0,0,.5, 0,0,.4), ncol=3,byrow=TRUE) jensen <- sim.hierarchical(gload,fload) #the test set used by omega round(jensen,2) #simulate a non-hierarchical structure fload <- matrix(c(c(c(.9,.8,.7,.6),rep(0,20)),c(c(.9,.8,.7,.6),rep(0,20)), c(c(.9,.8,.7,.6),rep(0,20)),c(c(c(.9,.8,.7,.6),rep(0,20)),c(.9,.8,.7,.6))),ncol=5) gload <- matrix(rep(0,5)) five.factor <- sim.hierarchical(gload,fload,500,TRUE) #create sample data set #do it again with a hierachical structure gload <- matrix(rep(.7,5) ) five.factor.g <- sim.hierarchical(gload,fload,500,TRUE) #create sample data set #compare these two with omega #not run #om.5 <- omega(five.factor$observed,5) #om.5g <- omega(five.factor.g$observed,5) } \keyword{ multivariate}% at least one, from doc/KEYWORDS \keyword{models }% __ONLY ONE__ keyword per line \keyword{datagen} psych/man/cities.Rd0000644000176200001440000000367012216166151013731 0ustar liggesusers\name{cities} \alias{cities} \alias{city.location} \docType{data} \title{Distances between 11 US cities} \description{Airline distances between 11 US cities may be used as an example for multidimensional scaling or cluster analysis. } \usage{data(cities)} \format{ A data frame with 11 observations on the following 11 variables. \describe{ \item{\code{ATL}}{Atlana, Georgia} \item{\code{BOS}}{Boston, Massachusetts} \item{\code{ORD}}{Chicago, Illinois} \item{\code{DCA}}{Washington, District of Columbia} \item{\code{DEN}}{Denver, Colorado} \item{\code{LAX}}{Los Angeles, California} \item{\code{MIA}}{Miami, Florida} \item{\code{JFK}}{New York, New York} \item{\code{SEA}}{Seattle, Washington} \item{\code{SFO}}{San Francisco, California} \item{\code{MSY}}{New Orleans, Lousianna} } } \details{An 11 x11 matrix of distances between major US airports. This is a useful demonstration of multiple dimensional scaling. city.location is a dataframe of longitude and latitude for those cities. Note that the 2 dimensional MDS solution does not perfectly capture the data from these city distances. Boston, New York and Washington, D.C. are located slightly too far west, and Seattle and LA are slightly too far south. } \source{ \url{http://www.timeanddate.com/worldclock/distance.html} } \examples{ data(cities) city.location[,1] <- -city.location[,1] #not run #an overlay map can be added if the package maps is available # # #libary(maps) #map("usa") #title("MultiDimensional Scaling of US cities") #points(city.location) plot(city.location, xlab="Dimension 1", ylab="Dimension 2", main ="Multidimensional scaling of US cities") city.loc <- cmdscale(cities, k=2) #ask for a 2 dimensional solution round(city.loc,0) city.loc <- -city.loc city.loc <- rescale(city.loc,apply(city.location,2,mean),apply(city.location,2,sd)) points(city.loc,type="n") text(city.loc,labels=names(cities)) } \keyword{datasets} psych/man/deprecated.Rd0000644000176200001440000004023513016156611014546 0ustar liggesusers\name{fa.poly} \alias{factor.pa} \alias{factor.minres} \alias{factor.wls} \alias{fa.poly} \title{Deprecated Exploratory Factor analysis functions. Please use fa} \description{After 4 years, it is time to stop using these deprecated functions! Please see \code{\link{fa}} which includes all of the functionality of these older functions. } \usage{ fa.poly(x,nfactors=1,n.obs = NA, n.iter=1, rotate="oblimin", SMC=TRUE, missing=FALSE, impute="median", min.err = .001, max.iter=50, symmetric=TRUE, warnings=TRUE, fm="minres",alpha=.1, p =.05,scores="regression", oblique.scores=TRUE, weight=NULL,global=TRUE,...) #deprecated factor.minres(r, nfactors=1, residuals = FALSE, rotate = "varimax",n.obs = NA, scores = FALSE,SMC=TRUE, missing=FALSE,impute="median",min.err = 0.001, digits = 2, max.iter = 50,symmetric=TRUE,warnings=TRUE,fm="minres") #deprecated factor.wls(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA, scores=FALSE,SMC=TRUE,missing=FALSE,impute="median", min.err = .001, digits=2,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="wls") #deprecated } \arguments{ \item{r}{deprecated.} \item{x}{deprecated} \item{nfactors}{ deprecated } \item{n.obs}{deprecated } \item{rotate}{deprecated} \item{n.iter}{deprecated} \item{residuals}{deprecated } \item{scores}{deprecated} \item{SMC}{deprecated } \item{missing}{deprecated} \item{impute}{deprecated} \item{max.iter}{deprecated} \item{symmetric}{deprecated} \item{warnings}{deprecated} \item{fm}{deprecated} \item{alpha}{deprecated} \item{p}{deprecated} \item{oblique.scores}{deprecated} \item{weight}{deprecated} \item{global}{deprecated} \item{digits}{deprecated} \item{min.err}{deprecated} \item{...}{deprecated} } \details{Please see the writeup for \code{\link{fa}} for all of the functionality in these older functions. } \value{ \item{values }{Eigen values of the common factor solution} \item{e.values}{Eigen values of the original matrix} \item{communality}{Communality estimates for each item. These are merely the sum of squared factor loadings for that item.} \item{communalities}{If using minrank factor analysis, these are the communalities reflecting the total amount of common variance. They will exceed the communality (above) which is the model estimated common variance. } \item{rotation}{which rotation was requested?} \item{loadings}{An item by factor (pattern) loading matrix of class ``loadings" Suitable for use in other programs (e.g., GPA rotation or factor2cluster. To show these by sorted order, use \code{\link{print.psych}} with sort=TRUE} \item{complexity}{Hoffman's index of complexity for each item. This is just \eqn{\frac{(\Sigma a_i^2)^2}{\Sigma a_i^4}}{{(\Sigma a_i^2)^2}/{\Sigma a_i^4}} where a_i is the factor loading on the ith factor. From Hofmann (1978), MBR. See also Pettersson and Turkheimer (2010).} \item{Structure}{An item by factor structure matrix of class ``loadings". This is just the loadings (pattern) matrix times the factor intercorrelation matrix.} \item{fit}{How well does the factor model reproduce the correlation matrix. This is just \eqn{\frac{\Sigma r_{ij}^2 - \Sigma r^{*2}_{ij} }{\Sigma r_{ij}^2} }{(sum(r^2ij - sum(r*^2ij))/sum(r^2ij} (See \code{\link{VSS}}, \code{\link{ICLUST}}, and \code{\link{principal}} for this fit statistic.} \item{fit.off}{how well are the off diagonal elements reproduced?} \item{dof}{Degrees of Freedom for this model. This is the number of observed correlations minus the number of independent parameters. Let n=Number of items, nf = number of factors then \cr \eqn{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}} \item{objective}{Value of the function that is minimized by a maximum likelihood procedures. This is reported for comparison purposes and as a way to estimate chi square goodness of fit. The objective function is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. When using MLE, this function is minimized. When using OLS (minres), although we are not minimizing this function directly, we can still calculate it in order to compare the solution to a MLE fit. } \item{STATISTIC}{If the number of observations is specified or found, this is a chi square based upon the objective function, f (see above). Using the formula from \code{\link{factanal}}(which seems to be Bartlett's test) : \cr \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } } \item{PVAL}{If n.obs > 0, then what is the probability of observing a chisquare this large or larger?} \item{Phi}{If oblique rotations (using oblimin from the GPArotation package or promax) are requested, what is the interfactor correlation.} \item{communality.iterations}{The history of the communality estimates (For principal axis only.) Probably only useful for teaching what happens in the process of iterative fitting.} \item{residual}{The matrix of residual correlations after the factor model is applied. To display it conveniently, use the \code{\link{residuals}} command. } \item{chi}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived \eqn{\chi^2}{chi^2} based upon the sum of the squared residuals * N. This will differ slightly from the MLE estimate which is based upon the fitting function rather than the actual residuals.} \item{rms}{This is the sum of the squared (off diagonal residuals) divided by the degrees of freedom. Comparable to an RMSEA which, because it is based upon \eqn{\chi^2}{chi^2}, requires the number of observations to be specified. The rms is an empirical value while the RMSEA is based upon normal theory and the non-central \eqn{\chi^2}{chi^2} distribution. That is to say, if the residuals are particularly non-normal, the rms value and the associated \eqn{\chi^2}{chi^2} and RMSEA can differ substantially. } \item{crms}{rms adjusted for degrees of freedom} \item{RMSEA}{The Root Mean Square Error of Approximation is based upon the non-central \eqn{\chi^2}{chi^2} distribution and the \eqn{\chi^2}{chi^2} estimate found from the MLE fitting function. With normal theory data, this is fine. But when the residuals are not distributed according to a noncentral \eqn{\chi^2}{chi^2}, this can give very strange values. (And thus the confidence intervals can not be calculated.) The RMSEA is a conventional index of goodness (badness) of fit but it is also useful to examine the actual rms values. } \item{TLI}{The Tucker Lewis Index of factoring reliability which is also known as the non-normed fit index. } \item{BIC}{Based upon \eqn{\chi^2}{chi^2} with the assumption of normal theory and using the \eqn{\chi^2}{chi^2} found using the objective function defined above. This is just \eqn{\chi^2 - 2 df}{chi^2 - 2 df}} \item{eBIC}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived eBIC based upon the empirical \eqn{\chi^2}{chi^2} - 2 df. } \item{R2}{The multiple R square between the factors and factor score estimates, if they were to be found. (From Grice, 2001). Derived from R2 is is the minimum correlation between any two factor estimates = 2R2-1. } \item{r.scores}{The correlations of the factor score estimates using the specified model, if they were to be found. Comparing these correlations with that of the scores themselves will show, if an alternative estimate of factor scores is used (e.g., the tenBerge method), the problem of factor indeterminacy. For these correlations will not necessarily be the same. } \item{weights}{The beta weights to find the factor score estimates. These are also used by the \code{\link{predict.psych}} function to find predicted factor scores for new cases. } \item{scores}{The factor scores as requested. Note that these scores reflect the choice of the way scores should be estimated (see scores in the input). That is, simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms (see \code{\link{factor.scores}}). The correlation between factor score estimates (r.scores) is based upon using the regression/Thurstone approach. The actual correlation between scores will reflect the rotation algorithm chosen and may be found by correlating those scores.} \item{valid}{The validity coffiecient of course coded (unit weighted) factor score estimates (From Grice, 2001)} \item{score.cor}{The correlation matrix of course coded (unit weighted) factor score estimates, if they were to be found, based upon the loadings matrix rather than the weights matrix. } \item{rot.mat}{The rotation matrix as returned from GPArotation.} } \references{Gorsuch, Richard, (1983) Factor Analysis. Lawrence Erlebaum Associates. Grice, James W. (2001), Computing and evaluating factor scores. Psychological Methods, 6, 430-450 Harman, Harry and Jones, Wayne (1966) Factor analysis by minimizing residuals (minres), Psychometrika, 31, 3, 351-368. Hofmann, R. J. ( 1978 ) . Complexity and simplicity as objective indices descriptive of factor solutions. Multivariate Behavioral Research, 13, 247-250. Pettersson E, Turkheimer E. (2010) Item selection, evaluation, and simple structure in personality data. Journal of research in personality, 44(4), 407-420. Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} Shapiro, A. and ten Berge, Jos M. F, (2002) Statistical inference of minimum rank factor analysis. Psychometika, (67) 79-84. ten Berge, Jos M. F. and Kiers, Henk A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, (56) 309-315. } \author{ William Revelle } \note{Thanks to Erich Studerus for some very helpful suggestions about various rotation and factor scoring algorithms, and to Gumundur Arnkelsson for suggestions about factor scores for singular matrices. The fac function is the original fa function which is now called by fa repeatedly to get confidence intervals. SPSS will sometimes use a Kaiser normalization before rotating. This will lead to different solutions than reported here. To get the Kaiser normalized loadings, use \code{\link{kaiser}}. The communality for a variable is the amount of variance accounted for by all of the factors. That is to say, for orthogonal factors, it is the sum of the squared factor loadings (rowwise). The communality is insensitive to rotation. However, if an oblique solution is found, then the communality is not the sum of squared pattern coefficients. In both cases (oblique or orthogonal) the communality is the diagonal of the reproduced correlation matrix where \eqn{_nR_n = _{n}P_{k k}\Phi_{k k}P_n'}{nRn = nPk k\Phi k kPn' } where P is the pattern matrix and \eqn{\Phi} is the factor intercorrelation matrix. This is the same, of course to multiplying the pattern by the structure: \eqn{R = P S'} {R = PS'} where the Structure matrix is \eqn{S = \Phi P}{S = Phi P}. Similarly, the eigen values are the diagonal of the product \eqn{ _k\Phi_{kk}P'_{nn}P_{k} }{\Phi_{k k}P'_nnP_k}. A frequently asked question is why are the factor names of the rotated solution not in ascending order? That is, for example, if factoring the 25 items of the bfi, the factor names are MR2 MR3 MR5 MR1 MR4, rather than the seemingly more logical "MR1" "MR2" "MR3" "MR4" "MR5". This is for pedagogical reasons, in that factors as extracted are orthogonal and are in order of amount of variance accounted for. But when rotated (orthogonally) or transformed (obliquely) the simple structure solution does not preserve that order. The factor names are, of course, arbitrary, and are kept with the original names to show the effect of rotation/transformation. To give them names associated with their ordinal position, simply paste("F", 1:nf, sep="") where nf is the number of factors. See the last example. Correction to documentation: as of September, 2014, the oblique.scores option is correctly explained. (It had been backwards.) The default (oblique.scores=FALSE) finds scores based upon the Structure matrix, while oblique.scores=TRUE finds them based upon the pattern matrix. The latter case matches factanal. This error was detected by Mark Seeto. } \seealso{ \code{\link{principal}} for principal components analysis (PCA). PCA will give very similar solutions to factor analysis when there are many variables. The differences become more salient as the number variables decrease. The PCA and FA models are actually very different and should not be confused. One is a model of the observed variables, the other is a model of latent variables. \code{\link{irt.fa}} for Item Response Theory analyses using factor analysis, using the two parameter IRT equivalent of loadings and difficulties. \code{\link{VSS}} will produce the Very Simple Structure (VSS) and MAP criteria for the number of factors, \code{\link{nfactors}} to compare many different factor criteria. \code{\link{ICLUST}} will do a hierarchical cluster analysis alternative to factor analysis or principal components analysis. \code{\link{predict.psych}} to find predicted scores based upon new data, \code{\link{fa.extension}} to extend the factor solution to new variables, \code{\link{omega}} for hierarchical factor analysis with one general factor. code{\link{fa.multi}} for hierarchical factor analysis with an arbitrary number of higher order factors. \code{\link{fa.sort}} will sort the factor loadings into echelon form. \code{\link{fa.organize}} will reorganize the factor pattern matrix into any arbitrary order of factors and items. \code{\link{KMO}} and \code{\link{cortest.bartlett}} for various tests that some people like. \code{\link{factor2cluster}} will prepare unit weighted scoring keys of the factors that can be used with \code{\link{scoreItems}}. \code{\link{fa.lookup}} will print the factor analysis loadings matrix along with the item ``content" taken from a dictionary of items. This is useful when examining the meaning of the factors. \code{\link{anova.psych}} allows for testing the difference between two (presumably nested) factor models . } \examples{ #using the Harman 24 mental tests, compare a principal factor with a principal components solution pc <- principal(Harman74.cor$cov,4,rotate="varimax") #principal components pa <- fa(Harman74.cor$cov,4,fm="pa" ,rotate="varimax") #principal axis uls <- fa(Harman74.cor$cov,4,rotate="varimax") #unweighted least squares is minres wls <- fa(Harman74.cor$cov,4,fm="wls") #weighted least squares #to show the loadings sorted by absolute value print(uls,sort=TRUE) #then compare with a maximum likelihood solution using factanal mle <- factanal(covmat=Harman74.cor$cov,factors=4) factor.congruence(list(mle,pa,pc,uls,wls)) #note that the order of factors and the sign of some of factors may differ #finally, compare the unrotated factor, ml, uls, and wls solutions wls <- fa(Harman74.cor$cov,4,rotate="none",fm="wls") pa <- fa(Harman74.cor$cov,4,rotate="none",fm="pa") minres <- factanal(factors=4,covmat=Harman74.cor$cov,rotation="none") mle <- fa(Harman74.cor$cov,4,rotate="none",fm="mle") uls <- fa(Harman74.cor$cov,4,rotate="none",fm="uls") factor.congruence(list(minres,mle,pa,wls,uls)) #in particular, note the similarity of the mle and min res solutions #note that the order of factors and the sign of some of factors may differ #an example of where the ML and PA and MR models differ is found in Thurstone.33. #compare the first two factors with the 3 factor solution Thurstone.33 <- as.matrix(Thurstone.33) mle2 <- fa(Thurstone.33,2,rotate="none",fm="mle") mle3 <- fa(Thurstone.33,3 ,rotate="none",fm="mle") pa2 <- fa(Thurstone.33,2,rotate="none",fm="pa") pa3 <- fa(Thurstone.33,3,rotate="none",fm="pa") mr2 <- fa(Thurstone.33,2,rotate="none") mr3 <- fa(Thurstone.33,3,rotate="none") factor.congruence(list(mle2,mr2,pa2,mle3,pa3,mr3)) #f5 <- fa(bfi[1:25],5) #f5 #names are not in ascending numerical order (see note) #colnames(f5$loadings) <- paste("F",1:5,sep="") #f5 } \keyword{ multivariate } \keyword{ models}psych/man/Promax.Rd0000644000176200001440000001652613015627216013725 0ustar liggesusers\name{Promax} \alias{Promax} \alias{TargetQ} \alias{target.rot} \alias{bifactor} \alias{biquartimin} \alias{varimin} \alias{vgQ.bimin} \alias{vgQ.targetQ} \alias{vgQ.varimin} \alias{equamax} \title{ Perform bifactor, promax or targeted rotations and return the inter factor angles.} \description{The bifactor rotation implements the rotation introduced by Jennrich and Bentler (2011) by calling GPForth in the GPArotation package. promax is an oblique rotation function introduced by Hendrickson and White (1964) and implemented in the promax function in the stats package. Unfortunately, promax does not report the inter factor correlations. Promax does. TargetQ does a target rotation with elements that can be missing (NA), or numeric (e.g., 0, 1). It uses the GPArotation package. target.rot does general target rotations to an arbitrary target matrix. The default target rotation is for an independent cluster solution. equamax facilitates the call to GPArotation to do an equamax rotation. Equamax, although available as a specific option within GPArotation is easier to call by name if using equamax. The varimin rotation suggested by Ertl (2013) is implemented by appropriate calls to GPArotation. } \usage{ bifactor(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) biquartimin(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) TargetQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000,Target=NULL) Promax(x,m=4, normalize=FALSE, pro.m = 4) target.rot(x,keys=NULL) varimin(L, Tmat = diag(ncol(L)), normalize = FALSE, eps = 1e-05, maxit = 1000) vgQ.bimin(L) #called by bifactor vgQ.targetQ(L,Target=NULL) #called by TargetQ vgQ.varimin(L) #called by varimin equamax(L, Tmat=diag(ncol(L)), eps=1e-5, maxit=1000) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A loadings matrix} \item{m}{the power to which to raise the varimax loadings (for Promax)} \item{pro.m}{the power to which to raise the various loadings in Promax.} \item{keys}{An arbitrary target matrix, can be composed of any weights, but probably -1,0, 1 weights. If missing, the target is the independent cluster structure determined by assigning every item to it's highest loaded factor.} \item{L}{A loadings matrix} \item{Target}{A matrix of values (mainly 0s, some 1s, some NAs) to which the matrix is transformed.} \item{Tmat}{An initial rotation matrix} \item{normalize}{parameter passed to optimization routine (GPForth in the GPArotation package and Promax)} \item{eps}{parameter passed to optimization routine (GPForth in the GPArotation package) } \item{maxit}{parameter passed to optimization routine (GPForth in the GPArotation package)} } \details{The two most useful of these six functions is probably biquartimin which implements the oblique bifactor rotation introduced by Jennrich and Bentler (2011). The second is TargetQ which allows for missing NA values in the target. Next best is the orthogonal case, bifactor. None of these seem to be implemented in GPArotation (yet). The difference between biquartimin and bifactor is just that the latter is the orthogonal case which is documented in Jennrich and Bentler (2011). It seems as if these two functions are sensitive to the starting values and random restarts (modifying T) might be called for. bifactor output for the 24 cognitive variable of Holzinger matches that of Jennrich and Bentler as does output for the Chen et al. problem when fm="mle" is used and the Jennrich and Bentler solution is rescaled from covariances to correlations. Promax is a very direct adaptation of the stats::promax function. The addition is that it will return the interfactor correlations as well as the loadings and rotation matrix. varimin implements the varimin criterion proposed by Suitbert Ertl (2013). Rather than maximize the varimax criterion, it minimizes it. For a discussion of the benefits of this procedure, consult Ertel (2013). In addition, these functions will take output from either the factanal, \code{\link{fa}} or earlier (\code{\link{factor.pa}}, \code{\link{factor.minres}} or \code{\link{principal}}) functions and select just the loadings matrix for analysis. equamax is just a call to GPArotation's cFT function (for the Crawford Ferguson family of rotations. TargetQ implements Michael Browne's algorithm and allows specification of NA values. The Target input is a list (see examples). It is interesting to note how powerful specifying what a factor isn't works in defining a factor. That is, by specifying the pattern of 0s and letting most other elements be NA, the factor structure is still clearly defined. The target.rot function is an adaptation of a function of Michael Browne's to do rotations to arbitrary target matrices. Suggested by Pat Shrout. The default for target.rot is to rotate to an independent cluster structure (every items is assigned to a group with its highest loading.) target.rot will not handle targets that have linear dependencies (e.g., a pure bifactor model where there is a g loading and a group factor for all variables). } \value{ \item{loadings }{Oblique factor loadings} \item{rotmat}{The rotation matrix applied to the original loadings to produce the promax solution or the targeted matrix} \item{Phi}{The interfactor correlation matrix} } \references{ Ertel, S. (2013). Factor analysis: healing an ailing model. Universitatsverlag Gottingen. Hendrickson, A. E. and White, P. O, 1964, British Journal of Statistical Psychology, 17, 65-70. Jennrich, Robert and Bentler, Peter (2011) Exploratory Bi-Factor Analysis. Psychometrika, 1-13 } \author{William Revelle } \note{A direct adaptation of the stats:promax function following suggestions to the R-help list by Ulrich Keller and John Fox. Further modified to do targeted rotation similar to a function of Michael Browne. varimin is a direct application of the GPArotation GPForth function modified to do varimin. } \seealso{ \code{\link{promax}}, \code{\link{fa}}, or \code{\link{principal}} for examples of data analysis and \code{\link{Holzinger}} or \code{\link{Bechtoldt}} for examples of bifactor data. \code{\link{factor.rotate}} for 'hand rotation'. } \examples{ jen <- sim.hierarchical() f3 <- fa(jen,3,rotate="varimax") f3 #not a very clean solution Promax(f3) target.rot(f3) m3 <- fa(jen,nfactors=3) Promax(m3) #example of taking the output from factanal #compare this rotation with the solution from a targeted rotation aimed for #an independent cluster solution target.rot(m3) #now try a bifactor solution fb <-fa(jen,3,rotate="bifactor") fq <- fa(jen,3,rotate="biquartimin") #Suitbert Ertel has suggested varimin fm <- fa(jen,3,rotate="varimin") #the Ertel varimin fn <- fa(jen,3,rotate="none") #just the unrotated factors #compare them factor.congruence(list(f3,fb,fq,fm,fn)) # compare an oblimin with a target rotation using the Browne algorithm #note that we are changing the factor #order (this is for demonstration only) Targ <- make.keys(9,list(f1=1:3,f2=7:9,f3=4:6)) Targ <- scrub(Targ,isvalue=1) #fix the 0s, allow the NAs to be estimated Targ <- list(Targ) #input must be a list #show the target Targ fa(Thurstone,3,rotate="TargetQ",Target=Targ) #targeted rotation #compare with oblimin fa(Thurstone,3) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models }% __ONLY ONE__ keyword per line psych/man/cushny.Rd0000644000176200001440000000411712325004342013751 0ustar liggesusers\name{cushny} \alias{cushny} \docType{data} \title{ A data set from Cushny and Peebles (1905) on the effect of three drugs on hours of sleep, used by Student (1908) } \description{The classic data set used by Gossett (publishing as Student) for the introduction of the t-test. The design was a within subjects study with hours of sleep in a control condition compared to those in 3 drug conditions. Drug1 was 06mg of L Hscyamine, Drug 2L and Drug2R were said to be .6 mg of Left and Right isomers of Hyoscine. As discussed by Zabell (2008) these were not optical isomers. The detal1, delta2L and delta2R are changes from the baseline control. } \usage{data(cushny)} \format{ A data frame with 10 observations on the following 7 variables. \describe{ \item{\code{Control}}{Hours of sleep in a control condition} \item{\code{drug1}}{Hours of sleep in Drug condition 1} \item{\code{drug2L}}{Hours of sleep in Drug condition 2} \item{\code{drug2R}}{Hours of sleep in Drug condition 3 (an isomer of the drug in condition 2} \item{\code{delta1}}{Change from control, drug 1} \item{\code{delta2L}}{Change from control, drug 2L} \item{\code{delta2R}}{Change from control, drug 2R} } } \details{The original analysis by Student is used as an example for the t-test function, both as a paired t-test and a two group t-test. The data are also useful for a repeated measures analysis of variance. } \source{Cushny, A.R. and Peebles, A.R. (1905) The action of optical isomers: II hyoscines. The Journal of Physiology 32, 501-510. Student (1908) The probable error of the mean. Biometrika, 6 (1) , 1-25. } \references{See also the data set sleep and the examples for the t.test S. L. Zabell. On Student's 1908 Article "The Probable Error of a Mean" Journal of the American Statistical Association, Vol. 103, No. 481 (Mar., 2008), pp. 1- 20} \examples{ data(cushny) with(cushny, t.test(drug1,drug2L,paired=TRUE)) #within subjects error.bars(cushny[1:4],within=TRUE,ylab="Hours of sleep",xlab="Drug condition", main="95\% confidence of within subject effects") } \keyword{datasets} psych/man/winsor.Rd0000644000176200001440000000366512334454040013774 0ustar liggesusers\name{winsor} \alias{winsor} \alias{winsor.mean} \alias{winsor.means} \alias{winsor.sd} \alias{winsor.var} \title{Find the Winsorized scores, means, sds or variances for a vector, matrix, or data.frame } \description{Among the robust estimates of central tendency are trimmed means and Winsorized means. This function finds the Winsorized scores. The top and bottom trim values are given values of the trimmed and 1- trimmed quantiles. Then means, sds, and variances are found. } \usage{ winsor(x, trim = 0.2, na.rm = TRUE) winsor.mean(x, trim = 0.2, na.rm = TRUE) winsor.means(x, trim = 0.2, na.rm = TRUE) winsor.sd(x, trim = 0.2, na.rm = TRUE) winsor.var(x, trim = 0.2, na.rm = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A data vector, matrix or data frame} \item{trim}{Percentage of data to move from the top and bottom of the distributions} \item{na.rm}{Missing data are removed } } \details{Among the many robust estimates of central tendency, some recommend the Winsorized mean. Rather than just dropping the top and bottom trim percent, these extreme values are replaced with values at the trim and 1- trim quantiles. } \value{A scalar or vector of winsorized scores or winsorized means, sds, or variances (depending upon the call). } \references{Wilcox, Rand R. (2005) Introduction to robust estimation and hypothesis testing. Elsevier/Academic Press. Amsterdam ; Boston. } \author{William Revelle with modifications suggested by Joe Paxton and a further correction added (January, 2009) to preserve the original order for the winsor case.} \seealso{ \code{\link{interp.median}} } \examples{ data(sat.act) winsor.means(sat.act) #compare with the means of the winsorized scores y <- winsor(sat.act) describe(y) xy <- data.frame(sat.act,y) #pairs.panels(xy) #to see the effect of winsorizing x <- matrix(1:100,ncol=5) winsor(x) winsor.means(x) y <- 1:11 winsor(y,trim=.5) } \keyword{univar} psych/man/bfi.Rd0000644000176200001440000001300013147336472013206 0ustar liggesusers\name{bfi} \alias{bfi} \alias{bfi.dictionary} \docType{data} \title{25 Personality items representing 5 factors} \description{25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis, and Item Response Theory analysis. Three additional demographic variables (sex, education, and age) are also included. } \usage{data(bfi) data(bfi.dictionary) } \format{ A data frame with 2800 observations on the following 28 variables. (The q numbers are the SAPA item numbers). \describe{ \item{\code{A1}}{Am indifferent to the feelings of others. (q_146)} \item{\code{A2}}{Inquire about others' well-being. (q_1162)} \item{\code{A3}}{Know how to comfort others. (q_1206) } \item{\code{A4}}{Love children. (q_1364)} \item{\code{A5}}{Make people feel at ease. (q_1419)} \item{\code{C1}}{Am exacting in my work. (q_124)} \item{\code{C2}}{Continue until everything is perfect. (q_530)} \item{\code{C3}}{Do things according to a plan. (q_619)} \item{\code{C4}}{Do things in a half-way manner. (q_626)} \item{\code{C5}}{Waste my time. (q_1949)} \item{\code{E1}}{Don't talk a lot. (q_712)} \item{\code{E2}}{Find it difficult to approach others. (q_901)} \item{\code{E3}}{Know how to captivate people. (q_1205)} \item{\code{E4}}{Make friends easily. (q_1410)} \item{\code{E5}}{Take charge. (q_1768)} \item{\code{N1}}{Get angry easily. (q_952)} \item{\code{N2}}{Get irritated easily. (q_974)} \item{\code{N3}}{Have frequent mood swings. (q_1099} \item{\code{N4}}{Often feel blue. (q_1479)} \item{\code{N5}}{Panic easily. (q_1505)} \item{\code{O1}}{Am full of ideas. (q_128)} \item{\code{O2}}{Avoid difficult reading material.(q_316)} \item{\code{O3}}{Carry the conversation to a higher level. (q_492)} \item{\code{O4}}{Spend time reflecting on things. (q_1738)} \item{\code{O5}}{Will not probe deeply into a subject. (q_1964)} \item{\code{gender}}{Males = 1, Females =2} \item{\code{education}}{1 = HS, 2 = finished HS, 3 = some college, 4 = college graduate 5 = graduate degree} \item{\code{age}}{age in years} } } \details{The first 25 items are organized by five putative factors: Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Opennness. The scoring key is created using \code{\link{make.keys}}, the scores are found using \code{\link{score.items}}. These five factors are a useful example of using \code{\link{irt.fa}} to do Item Response Theory based latent factor analysis of the \code{\link{polychoric}} correlation matrix. The endorsement plots for each item, as well as the item information functions reveal that the items differ in their quality. The item data were collected using a 6 point response scale: 1 Very Inaccurate 2 Moderately Inaccurate 3 Slightly Inaccurate 4 Slightly Accurate 5 Moderately Accurate 6 Very Accurate as part of the Synthetic Apeture Personality Assessment (SAPA \url{http://sapa-project.org}) project. To see an example of the data collection technique, visit \url{http://SAPA-project.org} or the International Cognitive Ability Resource at \url{http://icar-project.com}. The items given were sampled from the International Personality Item Pool of Lewis Goldberg using the sampling technique of SAPA. This is a sample data set taken from the much larger SAPA data bank. } \source{The items are from the ipip (Goldberg, 1999). The data are from the SAPA project (Revelle, Wilt and Rosenthal, 2010) , collected Spring, 2010 ( \url{http://sapa-project.org}). } \references{Goldberg, L.R. (1999) A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. In Mervielde, I. and Deary, I. and De Fruyt, F. and Ostendorf, F. (eds) Personality psychology in Europe. 7. Tilburg University Press. Tilburg, The Netherlands. Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations. } \seealso{\code{\link{bi.bars}} to show the data by age and gender, \code{\link{irt.fa}} for item factor analysis applying the irt model.} \note{The bfi data set and items should not be confused with the BFI (Big Five Inventory) of Oliver John and colleagues (John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory--Versions 4a and 54. Berkeley, CA: University of California,Berkeley, Institute of Personality and Social Research.) } \examples{ data(bfi) describe(bfi) keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"),neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) scores <- scoreItems(keys.list,bfi,min=1,max=6) #specify the minimum and maximum values scores #show the use of the fa.lookup with a dictionary keys.lookup(keys.list,bfi.dictionary[,1:4]) } \keyword{datasets} psych/man/comorbidity.Rd0000644000176200001440000000302411446677054015003 0ustar liggesusers\name{comorbidity} \alias{comorbidity} \title{ Convert base rates of two diagnoses and their comorbidity into phi, Yule, and tetrachorics } \description{In medicine and clinical psychology, diagnoses tend to be categorical (someone is depressed or not, someone has an anxiety disorder or not). Cooccurrence of both of these symptoms is called comorbidity. Diagnostic categories vary in their degree of comorbidity with other diagnostic categories. From the point of view of correlation, comorbidity is just a name applied to one cell in a four fold table. It is thus possible to analyze comorbidity rates by considering the probability of the separate diagnoses and the probability of the joint diagnosis. This gives the two by two table needed for a phi, Yule, or tetrachoric correlation. } \usage{ comorbidity(d1, d2, com, labels = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{d1}{Proportion of diagnostic category 1} \item{d2}{Proportion of diganostic category 2 } \item{com}{Proportion of comorbidity (diagnostic category 1 and 2) } \item{labels}{Names of categories 1 and 2} } \value{ \item{twobytwo }{The two by two table implied by the input } \item{phi }{Phi coefficient of the two by two table} \item{Yule}{Yule coefficient of the two by two table} \item{tetra}{Tetrachoric coefficient of the two by two table} } \author{William Revelle } \seealso{ \code{\link{phi}}, \code{\link{Yule}} } \examples{ comorbidity(.2,.15,.1,c("Anxiety","Depression")) } \keyword{multivariate } psych/man/dfOrder.Rd0000644000176200001440000000276213043763174014046 0ustar liggesusers\name{dfOrder} \alias{dfOrder} \title{Sort (order) a dataframe or matrix by multiple columns } \description{Although \code{\link{order}} will order a vector, and it is possible to order several columns of a data.frame by specifying each column individually in the call to order, \code{\link{dfOrder}} will order a dataframe by as many columns as desired. } \usage{ dfOrder(object, columns) } \arguments{ \item{object}{The data.frame to be sorted} \item{columns}{Column numbers to use for sorting. If positive, then they will be sorted in increasing order. If negative, then in decreasing order} } \details{ This is just a simple helper function to reorder data.frames. Originally developed to organize IRT output from the ltm package. It is a basic add on to the order function. } \value{ The original data frame is now in sorted order. } \author{William Revelle } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ This code is used in the \code{\link{test.irt}} function to combine ltm and \code{\link{sim.irt}} output. } \examples{ x <- data.frame(matrix(sample(1:4,64,replace=TRUE),ncol=4)) dfOrder(x) # sort by all columns dfOrder(x,c(1,4)) #sort by the first and 4th column dfOrder(x,c(1,-2)) #sort by the first in increaseing order, #the second in decreasing order } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{manip }% use one of RShowDoc("KEYWORDS") \keyword{utilities }% __ONLY ONE__ keyword per line psych/man/factor2cluster.Rd0000644000176200001440000000711112262077664015420 0ustar liggesusers\name{factor2cluster} \alias{factor2cluster} \title{ Extract cluster definitions from factor loadings } \description{Given a factor or principal components loading matrix, assign each item to a cluster corresponding to the largest (signed) factor loading for that item. Essentially, this is a Very Simple Structure approach to cluster definition that corresponds to what most people actually do: highlight the largest loading for each item and ignore the rest. } \usage{ factor2cluster(loads, cut = 0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{loads}{either a matrix of loadings, or the result of a factor analysis/principal components analyis with a loading component } \item{cut}{Extract items with absolute loadings > cut} } \details{A factor/principal components analysis loading matrix is converted to a cluster (-1,0,1) definition matrix where each item is assigned to one and only one cluster. This is a fast way to extract items that will be unit weighted to form cluster composites. Use this function in combination with cluster.cor to find the corrleations of these composite scores. A typical use in the SAPA project is to form item composites by clustering or factoring (see \code{\link{ICLUST}}, \code{\link{principal}}), extract the clusters from these results (\code{\link{factor2cluster}}), and then form the composite correlation matrix using \code{\link{cluster.cor}}. The variables in this reduced matrix may then be used in multiple R procedures using mat.regress. The input may be a matrix of item loadings, or the output from a factor analysis which includes a loadings matrix. } \value{a matrix of -1,0,1 cluster definitions for each item. } \references{ \url{http://personality-project.org/r/r.vss.html} } \author{ \url{http://personality-project.org/revelle.html} \cr Maintainer: William Revelle \email{ revelle@northwestern.edu } } \seealso{\code{\link{cluster.cor}}, \code{\link{factor2cluster}}, \code{\link{fa}}, \code{\link{principal}}, \code{\link{ICLUST}} } \examples{ \dontrun{ f <- factanal(x,4,covmat=Harman74.cor$cov) factor2cluster(f) } # Factor1 Factor2 Factor3 Factor4 #VisualPerception 0 1 0 0 #Cubes 0 1 0 0 #PaperFormBoard 0 1 0 0 #Flags 0 1 0 0 #GeneralInformation 1 0 0 0 #PargraphComprehension 1 0 0 0 #SentenceCompletion 1 0 0 0 #WordClassification 1 0 0 0 #WordMeaning 1 0 0 0 #Addition 0 0 1 0 #Code 0 0 1 0 #CountingDots 0 0 1 0 #StraightCurvedCapitals 0 0 1 0 #WordRecognition 0 0 0 1 #NumberRecognition 0 0 0 1 #FigureRecognition 0 0 0 1 #ObjectNumber 0 0 0 1 #NumberFigure 0 0 0 1 #FigureWord 0 0 0 1 #Deduction 0 1 0 0 #NumericalPuzzles 0 0 1 0 #ProblemReasoning 0 1 0 0 #SeriesCompletion 0 1 0 0 #ArithmeticProblems 0 0 1 0 } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/cor.wt.Rd0000644000176200001440000000501011767411175013664 0ustar liggesusers\name{cor.wt} \alias{cor.wt} \title{The sample size weighted correlation may be used in correlating aggregated data} \description{If using aggregated data, the correlation of the means does not reflect the sample size used for each mean. cov.wt in RCore does this and returns a covariance matrix or the correlation matrix. The cor.wt function weights by sample size or by standard errors and by default return correlations. } \usage{ cor.wt(data,vars=NULL, w=NULL,sds=NULL, cor=TRUE) } \arguments{ \item{data}{A matrix or data frame} \item{vars}{Variables to analyze} \item{w}{A set of weights (e.g., the sample sizes)} \item{sds}{Standard deviations of the samples (used if weighting by standard errors)} \item{cor}{Report correlations (the default) or covariances} } \details{A weighted correlation is just \eqn{ r_{ij} = \frac{\sum(wt_{k} (x_{ik} - x_{jk})}{\sqrt{wt_{ik} \sum(x_{ik}^2) wt_jk \sum(x_{jk}^2)}} }{\sum (wt_k * (x_ik - x_jk)) /sqrt[wt_k \sum(x^2_ik) wt_k \sum(x^2_jk)]} where \eqn{x_{ik}}{x_ik} is a deviation from the weighted mean. The weighted correlation is appropriate for correlating aggregated data, where individual data points might reflect the means of a number of observations. In this case, each point is weighted by its sample size (or alternatively, by the standard error). If the weights are all equal, the correlation is just a normal Pearson correlation. Used when finding correlations of group means found using \code{\link{statsBy}}. } \value{ \item{cor }{The weighted correlation} \item{xwt}{The data as weighted deviations from the weighted mean } \item{wt}{The weights used (calculated from the sample sizes).} \item{mean}{The weighted means} \item{xc}{Unweighted, centered deviation scores from the weighted mean} \item{xs}{Deviation scores weighted by the standard error of each sample mean} } \author{William Revelle } \note{A generalization of \code{\link{cov.wt}} in core R} \seealso{ See Also as \code{\link{cov.wt}}, \code{\link{statsBy}} } \examples{ means.by.age <- statsBy(sat.act,"age") wt.cors <- cor.wt(means.by.age) lowerMat(wt.cors$r) #show the weighted correlations unwt <- lowerCor(means.by.age$mean) mixed <- lowerUpper(unwt,wt.cors$r) #combine both results cor.plot(mixed,TRUE,main="weighted versus unweighted correlations") diff <- lowerUpper(unwt,wt.cors$r,TRUE) cor.plot(diff,TRUE,main="differences of weighted versus unweighted correlations") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/cubits.Rd0000644000176200001440000000443112260352632013736 0ustar liggesusers\name{cubits} \alias{cubits} \docType{data} \title{Galton's example of the relationship between height and 'cubit' or forearm length} \description{Francis Galton introduced the 'co-relation' in 1888 with a paper discussing how to measure the relationship between two variables. His primary example was the relationship between height and forearm length. The data table (cubits) is taken from Galton (1888). Unfortunately, there seem to be some errors in the original data table in that the marginal totals do not match the table. The data frame, \code{\link{heights}}, is converted from this table. } \usage{data(cubits)} \format{ A data frame with 9 observations on the following 8 variables. \describe{ \item{\code{16.5}}{Cubit length < 16.5} \item{\code{16.75}}{16.5 <= Cubit length < 17.0} \item{\code{17.25}}{17.0 <= Cubit length < 17.5} \item{\code{17.75}}{17.5 <= Cubit length < 18.0} \item{\code{18.25}}{18.0 <= Cubit length < 18.5} \item{\code{18.75}}{18.5 <= Cubit length < 19.0} \item{\code{19.25}}{19.0 <= Cubit length < 19.5} \item{\code{19.75}}{19.5 <= Cubit length } } } \details{Sir Francis Galton (1888) published the first demonstration of the correlation coefficient. The regression (or reversion to mediocrity) of the height to the length of the left forearm (a cubit) was found to .8. There seem to be some errors in the table as published in that the row sums do not agree with the actual row sums. These data are used to create a matrix using \code{\link{table2matrix}} for demonstrations of analysis and displays of the data. } \seealso{ \code{\link{table2matrix}}, \code{\link{table2df}}, \code{\link{ellipses}}, \code{\link{heights}}, \code{\link{peas}},\code{\link{galton}}} \source{Galton (1888) } \references{Galton, Francis (1888) Co-relations and their measurement. Proceedings of the Royal Society. London Series,45,135-145, } \examples{ data(cubits) cubits heights <- table2df(cubits,labs = c("height","cubit")) ellipses(heights,n=1,main="Galton's co-relation data set") ellipses(jitter(heights$height,3),jitter(heights$cubit,3),pch=".", main="Galton's co-relation data set",xlab="height", ylab="Forearm (cubit)") #add in some noise to see the points pairs.panels(heights,jiggle=TRUE,main="Galton's cubits data set") } \keyword{datasets} psych/man/statsBy.Rd0000644000176200001440000002703713100661526014104 0ustar liggesusers\name{statsBy} \alias{statsBy} \alias{statsBy.boot} \alias{statsBy.boot.summary} \alias{faBy} \title{Find statistics (including correlations) within and between groups for basic multilevel analyses} \description{When examining data at two levels (e.g., the individual and by some set of grouping variables), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. } \usage{ statsBy(data, group, cors = FALSE, cor="cor", method="pearson", use="pairwise", poly=FALSE, na.rm=TRUE,alpha=.05) statsBy.boot(data,group,ntrials=10,cors=FALSE,replace=TRUE,method="pearson") statsBy.boot.summary(res.list,var="ICC2") faBy(stats, nfactors = 1, rotate = "oblimin", fm = "minres", free = TRUE, all=FALSE, min.n = 12,quant=.1, ...) } \arguments{ \item{data}{A matrix or dataframe with rows for subjects, columns for variables. One of these columns should be the values of a grouping variable.} \item{group}{The names or numbers of the variable in data to use as the grouping variables.} \item{cors}{Should the results include the correlation matrix within each group? Default is FALSE.} \item{cor}{Type of correlation/covariance to find within groups and between groups. The default is Pearson correlation. To find within and between covariances, set cor="cov". Although polychoric, tetrachoric, and mixed correlations can be found within groups, this does not make sense for the between groups or the pooled within groups. In this case, correlations for each group will be as specified, but the between groups and pooled within will be Pearson. See the discussion below.} \item{method}{What kind of correlations should be found (default is Pearson product moment)} \item{use}{How to treat missing data. use="pairwise" is the default} \item{poly}{Find polychoric.tetrachoric correlations within groups if requested.} \item{na.rm}{Should missing values be deleted (na.rm=TRUE) or should we assume the data clean?} \item{alpha}{The alpha level for the confidence intervals for the ICC1 and ICC2} \item{ntrials}{The number of trials to run when bootstrapping statistics} \item{replace}{Should the bootstrap be done by permuting the data (replace=FALSE) or sampling with replacement (replace=TRUE)} \item{res.list}{The results from statsBy.boot may be summarized using boot.stats} \item{var}{Name of the variable to be summarized from statsBy.boot} \item{stats}{The output of statsBy} \item{nfactors}{The number of factors to extract in each subgroup} \item{rotate}{The factor rotation/transformation} \item{fm}{The factor method (see \code{\link{fa}} for details)} \item{free}{Allow the factor solution to be freely estimated for each individual (see note).} \item{all}{Report individual factor analyses for each group as well as the summary table} \item{min.n}{The minimum number of within subject cases before we factor analyze it.} \item{quant}{Show the upper and lower quant quantile of the factor loadings in faBy} \item{...}{Other parameters to pass to the fa function} } \details{Multilevel data are endemic in psychological research. In multilevel data, observations are taken on subjects who are nested within some higher level grouping variable. The data might be experimental (participants are nested within experimental conditions) or observational (students are nested within classrooms, students are nested within college majors.) To analyze this type of data, one uses random effects models or mixed effect models, or more generally, multilevel models. There are at least two very powerful packages (nlme and multilevel) which allow for complex analysis of hierarchical (multilevel) data structures. \code{\link{statsBy}} is a much simpler function to give some of the basic descriptive statistics for two level models. It is meant to supplement true multilevel modeling. For a group variable (group) for a data.frame or matrix (data), basic descriptive statistics (mean, sd, n) as well as within group correlations (cors=TRUE) are found for each group. The amount of variance associated with the grouping variable compared to the total variance is the type 1 IntraClass Correlation (ICC1): \eqn{ICC1 = (MSb-MSw)/(MSb + MSw*(npr-1))} where npr is the average number of cases within each group. The reliability of the group differences may be found by the ICC2 which reflects how different the means are with respect to the within group variability. \eqn{ICC2 = (MSb-MSw)/MSb}. Because the mean square between is sensitive to sample size, this estimate will also reflect sample size. Perhaps the most useful part of \code{\link{statsBy}} is that it decomposes the observed correlations between variables into two parts: the within group and the between group correlation. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups discussed by Pedazur (1997) and by Bliese in the multilevel package. \eqn{r_{xy} = eta_{x_{wg}} * eta_{y_{wg}} * r_{xy_{wg}} + eta_{x_{bg}} * eta_{y_{bg}} * r_{xy_{bg}} } where \eqn{r_{xy}} is the normal correlation which may be decomposed into a within group and between group correlations \eqn{r_{xy_{wg}}} and \eqn{r_{xy_{bg}}} and eta is the correlation of the data with the within group values, or the group means. It is important to realize that the within group and between group correlations are independent of each other. That is to say, inferring from the 'ecological correlation' (between groups) to the lower level (within group) correlation is inappropriate. However, these between group correlations are still very meaningful, if inferences are made at the higher level. There are actually two ways of finding the within group correlations pooled across groups. We can find the correlations within every group, weight these by the sample size and then report this pooled value (pooled). This is found if the cors option is set to TRUE. It is logically equivalent to doing a sample size weighted meta-analytic correlation. The other way, rwg, considers the covariances, variances, and thus correlations when each subject's scores are given as deviation score from the group mean. If finding tetrachoric, polychoric, or mixed correlations, these two estimates will differ, for the pooled value is the weighted polychoric correlation, but the rwg is the Pearson correlation. Confidence values and significance of \eqn{r_{xy_{wg}}}, pwg, reflect the pooled number of cases within groups, while \eqn{r_{xy_{bg}} }, pbg, the number of groups. These are not corrected for multiple comparisons. \code{\link{withinBetween}} is an example data set of the mixture of within and between group correlations. \code{\link{sim.multilevel}} will generate simulated data with a multilevel structure. The \code{\link{statsBy.boot}} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \code{\link{statsBy.boot.summary}} function specifying the variable of interest. These two functions are useful in order to find if the mere act of grouping leads to large between group correlations. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act,"education")) or when affect data are analyzed within and between an affect manipulation (statsBy(flat,group="Film") ). Note in this latter example, that because subjects were randomly assigned to Film condition for the pretest, that the pretest ICC1s cluster around 0. \code{\link{faBy}} uses the output of \code{\link{statsBy}} to perform a factor analysis on the correlation matrix within each group. If the free parameter is FALSE, then each solution is rotated towards the group solution (as much as possible). The output is a list of each factor solution, as well as a summary matrix of loadings and interfactor correlations for all groups. } \value{ \item{means}{The means for each group for each variable. } \item{sd}{The standard deviations for each group for each variable.} \item{n}{The number of cases for each group and for each variable.} \item{ICC1}{The intraclass correlation reflects the amount of total variance associated with the grouping variable.} \item{ICC2}{The intraclass correlation (2) reflecting how much the groups means differ.} \item{ci1}{The confidence intervals for the ICC1} \item{ci2}{The confidence intervals for the ICC2} \item{F}{The F from a one-way anova of group means.} \item{rwg}{The pooled within group correlations.} \item{rbg}{The sample size weighted between group correlations. } \item{etawg}{The correlation of the data with the within group values.} \item{etabg}{The correlation of the data with the group means.} \item{pbg}{The probability of the between group correlation} \item{pwg}{The probability of the within group correlation} \item{r}{In the case that we want the correlations in each group, r is a list of the within group correlations for every group. Set cors=TRUE} \item{within}{is just another way of displaying these correlations. within is a matrix which reports the lower off diagonal correlations as one row for each group.} \item{pooled}{The sample size weighted correlations. This is just within weighted by the sample sizes. The cors option must be set to TRUE to get this. See the note. } } \references{ Pedhazur, E.J. (1997) Multiple regression in behavioral research: explanation and prediction. Harcourt Brace. } \author{William Revelle } \note{If finding polychoric correlations, the two estimates of the pooled within group correlations will differ, for the pooled value is the weighted polychoric correlation, but the rwg is the Pearson correlation. The statsBy.boot function will sometimes fail if sampling with replacement because if the group sizes differ drastically, some groups will be empty. In this case, sample without replacement. The statsBy.boot function can take a long time. (As I am writing this, I am running 1000 replications of a problem with 64,000 cases and 84 groups. It is taking about 3 seconds per replication on a MacBook Pro.) The \code{\link{faBy}} function takes the output of statsBy (with the cors=TRUE option) and then factors each individual subject. By default, the solutions are organized so that the factors "match" the group solution in terms of their order. It is also possible to attempt to force the solutions to match by order and also by using the TargetQ rotation function. (free=FALSE) } \seealso{\code{\link{describeBy}} and the functions within the multilevel package. } \examples{ #Taken from Pedhazur, 1997 pedhazur <- structure(list(Group = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L), X = c(5L, 2L, 4L, 6L, 3L, 8L, 5L, 7L, 9L, 6L), Y = 1:10), .Names = c("Group", "X", "Y"), class = "data.frame", row.names = c(NA, -10L)) pedhazur ped.stats <- statsBy(pedhazur,"Group") ped.stats #Now do this for the sat.act data set sat.stats <- statsBy(sat.act,c("education","gender"),cor=TRUE) #group by two grouping variables print(sat.stats,short=FALSE) lowerMat(sat.stats$pbg) #get the probability values #show means by groups round(sat.stats$mean) #Do separate factor analyses for each group #faBy(sat.stats,1) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{ models } psych/man/fa.sort.Rd0000644000176200001440000000347112311604746014027 0ustar liggesusers\name{fa.sort} \Rdversion{1.1} \alias{fa.sort} \alias{fa.organize} \title{Sort factor analysis or principal components analysis loadings} \description{Although the print.psych function will sort factor analysis loadings, sometimes it is useful to do this outside of the print function. fa.sort takes the output from the fa or principal functions and sorts the loadings for each factor. Items are located in terms of their greatest loading. The new order is returned as an element in the fa list. } \usage{ fa.sort(fa.results,polar=FALSE) fa.organize(fa.results,o=NULL,i=NULL,cn=NULL) } \arguments{ \item{fa.results}{The output from a factor analysis or principal components analysis using \code{\link{fa}} or \code{\link{principal}}. } \item{polar}{Sort by polar coordinates of first two factors (FALSE)} \item{o}{The order in which to order the factors} \item{i}{The order in which to order the items} \item{cn}{new factor names} } \details{ The fa.results$loadings are replaced with sorted loadings. fa.organize takes a factor analysis or components output and reorganizes the factors in the o order. Items are organized in the i order. This is useful when comparing alternative factor solutions. } \value{ A sorted factor analysis, principal components analysis, or omega loadings matrix. These sorted values are used internally by the various diagram functions. The values returned are the same as \code{\link{fa}}, except in sorted order. In addition, the order is returned as an additional element in the fa list. } \author{William Revelle } \seealso{ See Also as \code{\link{fa}},\code{\link{print.psych}}, \code{\link{fa.diagram}}, } \examples{ test.simple <- fa(sim.item(16),2) fa.sort(test.simple) fa.organize(test.simple,c(2,1)) #the factors but not the items have been rearranged } \keyword{ multivariate } psych/man/Schmid.Leiman.Rd0000644000176200001440000000540011310346435015054 0ustar liggesusers\name{Schmid} \Rdversion{1.1} \alias{Schmid} \alias{schmid.leiman} \alias{West} \alias{Chen} \docType{data} \title{12 variables created by Schmid and Leiman to show the Schmid-Leiman Transformation} \description{ John Schmid and John M. Leiman (1957) discuss how to transform a hierarchical factor structure to a bifactor structure. Schmid contains the example 12 x 12 correlation matrix. schmid.leiman is a 12 x 12 correlation matrix with communalities on the diagonal. This can be used to show the effect of correcting for attenuation. Two additional data sets are taken from Chen et al. (2006). } \usage{data(Schmid)} \details{ Two artificial correlation matrices from Schmid and Leiman (1957). One real and one artificial covariance matrices from Chen et al. (2006). \itemize{ \item Schmid: a 12 x 12 artificial correlation matrix created to show the Schmid-Leiman transformation. \item schmid.leiman: A 12 x 12 matrix with communalities on the diagonal. Treating this as a covariance matrix shows the 6 x 6 factor solution \item Chen: An 18 x 18 covariance matrix of health related quality of life items from Chen et al. (2006). Number of observations = 403. The first item is a measure of the quality of life. The remaining 17 items form four subfactors: The items are (a) Cognition subscale: ``Have difficulty reasoning and solving problems?" ``React slowly to things that were said or done?"; ``Become confused and start several actions at a time?" ``Forget where you put things or appointments?"; ``Have difficulty concentrating?" (b) Vitality subscale: ``Feel tired?" ``Have enough energy to do the things you want?" (R) ``Feel worn out?" ; ``Feel full of pep?" (R). (c) Mental health subscale: ``Feel calm and peaceful?"(R) ``Feel downhearted and blue?"; ``Feel very happy"(R) ; ``Feel very nervous?" ; ``Feel so down in the dumps nothing could cheer you up? (d) Disease worry subscale: ``Were you afraid because of your health?"; ``Were you frustrated about your health?"; ``Was your health a worry in your life?" . \item West: A 16 x 16 artificial covariance matrix from Chen et al. (2006). } } \source{ John Schmid Jr. and John. M. Leiman (1957), The development of hierarchical factor solutions.Psychometrika, 22, 83-90. F.F. Chen, S.G. West, and K.H. Sousa.(2006) A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41(2):189-225, 2006. } \references{ Y.-F. Yung, D.Thissen, and L.D. McLeod. (1999) On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64(2):113-128, 1999. } \examples{ data(Schmid) cor.plot(Schmid,TRUE) print(fa(Schmid,6,rotate="oblimin"),cut=0) #shows an oblique solution round(cov2cor(schmid.leiman),2) cor.plot(cov2cor(West),TRUE) } \keyword{datasets} psych/man/skew.Rd0000644000176200001440000001003711745102744013421 0ustar liggesusers\name{mardia} \alias{mardia} \alias{skew} \alias{kurtosi} \title{ Calculate univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame} \description{Find the skew and kurtosis for each variable in a data.frame or matrix. Unlike skew and kurtosis in e1071, this calculates a different skew for each variable or column of a data.frame/matrix. mardia applies Mardia's tests for multivariate skew and kurtosis } \usage{ skew(x, na.rm = TRUE,type=3) kurtosi(x, na.rm = TRUE,type=3) mardia(x,na.rm = TRUE,plot=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A data.frame or matrix } \item{na.rm}{ how to treat missing data } \item{type}{See the discussion in describe}. \item{plot}{Plot the expected normal distribution values versus the Mahalanobis distance of the subjects.} } \details{given a matrix or data.frame x, find the skew or kurtosis for each column (for skew and kurtosis) or the multivariate skew and kurtosis in the case of mardia. As of version 1.2.3,when finding the skew and the kurtosis, there are three different options available. These match the choices available in skewness and kurtosis found in the e1071 package (see Joanes and Gill (1998) for the advantages of each one). If we define \eqn{m_r = [\sum(X- mx)^r]/n}{m_r = [sum(X- mx)^r]/n} then Type 1 finds skewness and kurtosis by \eqn{g_1 = m_3/(m_2)^{3/2} } and \eqn{g_2 = m_4/(m_2)^2 -3}. Type 2 is \eqn{G1 = g1 * \sqrt{n *(n-1)}/(n-2)} and \eqn{G2 = (n-1)*[(n+1)g2 +6]/((n-2)(n-3))}. Type 3 is \eqn{b1 = [(n-1)/n]^{3/2} m_3/m_2^{3/2}} and \eqn{b2 = [(n-1)/n]^{3/2} m_4/m_2^2)}. For consistency with e1071 and with the Joanes and Gill, the types are now defined as above. However, from revision 1.0.93 to 1.2.3, kurtosi by default gives an unbiased estimate of the kurtosis (DeCarlo, 1997). Prior versions used a different equation which produced a biased estimate. (See the kurtosis function in the e1071 package for the distinction between these two formulae. The default, type 1 gave what is called type 2 in e1071. The other is their type 3.) For comparison with previous releases, specifying type = 2 will give the old estimate. These type numbers are now changed. } \value{ \item{skew}{if input is a matrix or data.frame, skew is a vector of skews} \item{kurtosi}{if input is a matrix or data.frame, kurtosi is a vector of kurtosi} \item{bp1}{Mardia's bp1 estimate of multivariate skew} \item{bp2}{Mardia's bp2 estimate of multivariate kurtosis} \item{skew}{Mardia's skew statistic} \item{small.skew}{Mardia's small sample skew statistic} \item{p.skew}{Probability of skew} \item{p.small}{Probability of small.skew} \item{kurtosis}{Mardia's multivariate kurtosis statistic} \item{p.kurtosis}{Probability of kurtosis statistic} \item{D}{Mahalanobis distance of cases from centroid} } \references{ Joanes, D.N. and Gill, C.A (1998). Comparing measures of sample skewness and kurtosis. The Statistician, 47, 183-189. L.DeCarlo. 1997) On the meaning and use of kurtosis, Psychological Methods, 2(3):292-307, K.V. Mardia (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):pp. 519-30, 1970.} \author{William Revelle } \note{The mean function supplies means for the columns of a data.frame, but the overall mean for a matrix. Mean will throw a warning for non-numeric data, but colMeans stops with non-numeric data. Thus, the function uses either mean (for data frames) or colMeans (for matrices). This is true for skew and kurtosi as well. } \seealso{\code{\link{describe}}, \code{\link{describe.by}}, mult.norm in QuantPsyc, Kurt in QuantPsyc} \examples{ round(skew(attitude),2) #type 3 (default) round(kurtosi(attitude),2) #type 3 (default) #for the differences between the three types of skew and kurtosis: round(skew(attitude,type=1),2) #type 1 round(skew(attitude,type=2),2) #type 2 mardia(attitude) x <- matrix(rnorm(1000),ncol=10) describe(x) mardia(x) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/sim.multilevel.Rd0000644000176200001440000001461713064053257015431 0ustar liggesusers\name{sim.multilevel} \alias{sim.multilevel} \alias{sim.multi} \title{Simulate multilevel data with specified within group and between group correlations} \description{Multilevel data occur when observations are nested within groups. This can produce correlational structures that are sometimes difficult to understand. These two simulations allow for demonstrations that correlations within groups do not imply, nor are implied by, correlations between group means. The correlations of aggregated data is sometimes called an 'ecological correlation'. That group level and individual level correlations are independent makes such inferences problematic. Within individual data are simulated in sim.multi with a variety of possible within person structures. } \usage{ sim.multi(n.obs=4,nvar = 2, nfact=2, ntrials=96, days=16, mu=0,sigma=1, fact=NULL, loading=.9, phi=0,phi.i=NULL,beta.i=0,mu.i=0, sigma.i = 1,sin.i=0, cos.i=0, AR1=0, f.i=NULL, plot=TRUE) sim.multilevel(nvar = 9, ngroups = 4, ncases = 16, rwg, rbg, eta) } \arguments{ \item{n.obs}{How many subjects should be simulated. Four allows for nice graphics, use more to examine structural properties.} \item{nvar}{How many variables are to be simulated?} \item{nfact}{How many factors are simulated,defaults to 2} \item{ntrials}{How many observations per subject (across time)} \item{days}{How many days do these observations reflect? This is relevant if we are adding sine and cosines to the model to model diurnal rhythms.} \item{mu}{The grand mean for each variable across subjects} \item{sigma}{The between person standard deviation} \item{fact}{if NULL, a two factor model is created with loadings of loading or zero in a simple structure form} \item{loading}{If fact is NULL, then we create a factor model with loading or zeros} \item{phi}{The between person factor intercorrelation } \item{phi.i}{The within person factor intercorrelations} \item{beta.i}{Within subject rate of change over trials} \item{mu.i}{The within subject mean for each subject} \item{sigma.i}{the within subject standard deviation} \item{sin.i}{To what extent should we diurnally vary by subject?} \item{cos.i}{This will specify the within subject diurnal phase (lag)} \item{AR1}{Auto regressive value implies error at time t +1 is partly a function of error at time t. } \item{f.i}{Factor loadings for each subject} \item{plot}{If TRUE, create a lattice plot for each subject} \item{ngroups}{The number of groups to simulate} \item{ncases}{The number of simulated cases} \item{rwg}{The within group correlational structure} \item{rbg}{The between group correlational structure} \item{eta}{The correlation of the data with the within data} } \details{The basic concepts of the independence of within group and between group correlations is discussed very clearly by Pedhazur (1997) as well as by Bliese (2009). \code{\link{sim.multi}} generates within subject data to model the traditional two level structure of multilevel data. This is meant to show how within subject data measured over ntrials can vary independently within and between subjects. Furthermore, several variables can correlate within subjects show a person by person factor structure. Factor scores for n.obs subjects are created for nfact factors with loadings on nvar variables. A simple structure model is assumed, so that the loadings on nvar/fact are set to loading for each factor, the others are set to 0. Factors are allowed to correlate phi between subjects and phi.i for each subject. (Which can be different for each subject). Scores can change over time with a slope of beta.i and can vary diurnally as a function of sine and cosine of time (24 hours/day converted to radians). Error is added to every trial and can be related across trials with a lag of 1. Thus, if we set AR1=1, then the errors at time t = error + error at t -1. This will lead to auto correlations of about .5. (See \code{\link{autoR}} ). \code{\link{sim.multilevel}} merely simulates pooled correlations (mixtures of between group and within group correlations) to allow for a better understanding of the problems inherent in multi-level modeling. Data (wg) are created with a particular within group structure (rwg). Independent data (bg) are also created with a between group structure (rbg). Note that although there are ncases rows to this data matrix, there are only ngroups independent cases. That is, every ngroups case is a repeat. The resulting data frame (xy) is a weighted sum of the wg and bg. This is the inverse procedure for estimating estimating rwg and rbg from an observed rxy which is done by the \code{\link{statsBy}} function. \eqn{r_{xy} = \eta_{x_{within}} * \eta_{y_{within}} * r_{xy_{within}} + \eta_{x_{between}} * \eta_{y_{between}} * r_{xy_{between}} } } \value{ \item{x.df}{A data frame for further analysis using \code{\link{statsBy}} including nvar variable values for each of n.obs subjects (id) for ntrials. } \item{wg }{A matrix (ncases * nvar) of simulated within group scores} \item{bg}{A matrix (ncases * nvar) of simulated between group scores} \item{xy}{A matrix ncases * (nvar +1) of pooled data} } \references{ P. D. Bliese. Multilevel modeling in R (2.3) a brief introduction to R, the multilevel package and the nlme package, 2009. Pedhazur, E.J. (1997) Multiple regression in behavioral research: explanation and prediction. Harcourt Brace. Revelle, W. An introduction to psychometric theory with applications in R (in prep) Springer. Draft chapters available at \url{http://personality-project.org/r/book/} } \author{William Revelle} \seealso{\code{\link{statsBy}} for the decomposition of multi level data and \code{\link{withinBetween}} for an example data set. } \examples{ #First, show a few results from sim.multi x.df <- sim.multi() #the default is 4 subjects for two variables # over 16 days measured 6 times/day #sb <- statsBy(x.df,group ="id",cors=TRUE) #round(sb$within,2) #show the within subject correlations #get some parameters to simulate data(withinBetween) wb.stats <- statsBy(withinBetween,"Group") rwg <- wb.stats$rwg rbg <- wb.stats$rbg eta <- rep(.5,9) #simulate them. Try this again to see how it changes XY <- sim.multilevel(ncases=100,ngroups=10,rwg=rwg,rbg=rbg,eta=eta) lowerCor(XY$wg) #based upon 89 df lowerCor(XY$bg) #based upon 9 df -- } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{models} psych/man/fa.Rd0000644000176200001440000012016513153022620013027 0ustar liggesusers\name{fa} \alias{fa} \alias{fac} \alias{fa.sapa} \title{Exploratory Factor analysis using MinRes (minimum residual) as well as EFA by Principal Axis, Weighted Least Squares or Maximum Likelihood } \description{Among the many ways to do latent variable exploratory factor analysis (EFA), one of the better is to use Ordinary Least Squares (OLS) to find the minimum residual (minres) solution. This produces solutions very similar to maximum likelihood even for badly behaved matrices. A variation on minres is to do weighted least squares (WLS). Perhaps the most conventional technique is principal axes (PAF). An eigen value decomposition of a correlation matrix is done and then the communalities for each variable are estimated by the first n factors. These communalities are entered onto the diagonal and the procedure is repeated until the sum(diag(r)) does not vary. Yet another estimate procedure is maximum likelihood. For well behaved matrices, maximum likelihood factor analysis (either in the fa or in the factanal function) is probably preferred. Bootstrapped confidence intervals of the loadings and interfactor correlations are found by fa with n.iter > 1. } \usage{ fa(r,nfactors=1,n.obs = NA,n.iter=1, rotate="oblimin", scores="regression", residuals=FALSE, SMC=TRUE, covar=FALSE,missing=FALSE,impute="median", min.err = 0.001, max.iter = 50,symmetric=TRUE, warnings=TRUE, fm="minres", alpha=.1,p=.05,oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor", correct=.5,weight=NULL,...) fac(r,nfactors=1,n.obs = NA, rotate="oblimin", scores="tenBerge", residuals=FALSE, SMC=TRUE, covar=FALSE,missing=FALSE,impute="median",min.err = 0.001, max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",correct=.5, weight=NULL,...) fa.sapa(r,nfactors=1,n.obs = NA,n.iter=1,rotate="oblimin",scores="regression", residuals=FALSE,SMC=TRUE,covar=FALSE,missing=FALSE,impute="median", min.err = .001, max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres",alpha=.1, p =.05, oblique.scores=FALSE,np.obs=NULL,use="pairwise",cor="cor",correct=.5,weight=NULL, frac=.1,...) } \arguments{ \item{r}{A correlation or covariance matrix or a raw data matrix. If raw data, the correlation matrix will be found using pairwise deletion. If covariances are supplied, they will be converted to correlations unless the covar option is TRUE.} \item{nfactors}{ Number of factors to extract, default is 1 } \item{n.obs}{Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics. Must be specified if using a correlaton matrix and finding confidence intervals.} \item{np.obs}{The pairwise number of observations. Used if using a correlation matrix and asking for a minchi solution.} \item{rotate}{"none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" are orthogonal rotations. "Promax", "promax", "oblimin", "simplimax", "bentlerQ, "geominQ" and "biquartimin" and "cluster" are possible oblique transformations of the solution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax. SPSS seems to do a Kaiser normalization before doing Promax, this is done here by the call to "promax" which does the normalization before calling Promax in GPArotation.} \item{n.iter}{Number of bootstrap interations to do in fa or fa.poly} \item{residuals}{Should the residual matrix be shown } \item{scores}{the default="regression" finds factor scores using regression. Alternatives for estimating factor scores include simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms ( \code{\link{factor.scores}}). Although scores="tenBerge" is probably preferred for most solutions, it will lead to problems with some improper correlation matrices. } \item{SMC}{Use squared multiple correlations (SMC=TRUE) or use 1 as initial communality estimate. Try using 1 if imaginary eigen values are reported. If SMC is a vector of length the number of variables, then these values are used as starting values in the case of fm='pa'. } \item{covar}{if covar is TRUE, factor the covariance matrix, otherwise factor the correlation matrix} \item{missing}{if scores are TRUE, and missing=TRUE, then impute missing values using either the median or the mean} \item{impute}{"median" or "mean" values are used to replace missing values} \item{min.err}{Iterate until the change in communalities is less than min.err} \item{max.iter}{Maximum number of iterations for convergence } \item{symmetric}{symmetric=TRUE forces symmetry by just looking at the lower off diagonal values} \item{warnings}{warnings=TRUE => warn if number of factors is too many } \item{fm}{Factoring method fm="minres" will do a minimum residual as will fm="uls". Both of these use a first derivative. fm="ols" differs very slightly from "minres" in that it minimizes the entire residual matrix using an OLS procedure but uses the empirical first derivative. This will be slower. fm="wls" will do a weighted least squares (WLS) solution, fm="gls" does a generalized weighted least squares (GLS), fm="pa" will do the principal factor solution, fm="ml" will do a maximum likelihood factor analysis. fm="minchi" will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair. fm ="minrank" will do a minimum rank factor analysis. "old.min" will do minimal residual the way it was done prior to April, 2017 (see discussion below). fm="alpha" will do alpha factor analysis as described in Kaiser and Coffey (1965)} \item{alpha}{alpha level for the confidence intervals for RMSEA} \item{p}{if doing iterations to find confidence intervals, what probability values should be found for the confidence intervals} \item{oblique.scores}{When factor scores are found, should they be based on the structure matrix (default) or the pattern matrix (oblique.scores=TRUE). Now it is always false. If you want oblique factor scores, use tenBerge. } \item{weight}{If not NULL, a vector of length n.obs that contains weights for each observation. The NULL case is equivalent to all cases being weighted 1.} \item{use}{How to treat missing data, use="pairwise" is the default". See cor for other options.} \item{cor}{How to find the correlations: "cor" is Pearson", "cov" is covariance, "tet" is tetrachoric, "poly" is polychoric, "mixed" uses mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, Yuleb is Yulebonett, Yuleq and YuleY are the obvious Yule coefficients as appropriate} \item{correct}{When doing tetrachoric, polycoric, or mixed cor, how should we treat empty cells. (See the discussion in the help for tetrachoric.)} \item{frac}{The fraction of data to sample n.iter times if showing stability across sample sizes} \item{...}{additional parameters, specifically, keys may be passed if using the target rotation, or delta if using geominQ, or whether to normalize if using Varimax} } \details{Factor analysis is an attempt to approximate a correlation or covariance matrix with one of lesser rank. The basic model is that \eqn{_nR_n \approx _{n}F_{kk}F_n'+ U^2}{nRn = nFk kFn' + U2} where k is much less than n. There are many ways to do factor analysis, and maximum likelihood procedures are probably the most commonly preferred (see \code{\link{factanal}} ). The existence of uniquenesses is what distinguishes factor analysis from principal components analysis (e.g., \code{\link{principal}}). If variables are thought to represent a ``true" or latent part then factor analysis provides an estimate of the correlations with the latent factor(s) representing the data. If variables are thought to be measured without error, then principal components provides the most parsimonious description of the data. Factor loadings will be smaller than component loadings for the later reflect unique error in each variable. The off diagonal residuals for a factor solution will be superior (smaller) that of a component model. Factor loadings can be thought of as the asymptotic component loadings as the number of variables loading on each factor increases. The fa function will do factor analyses using one of six different algorithms: minimum residual (minres, aka ols, uls), principal axes, alpha factoring, weighted least squares, minimum rank, or maximum likelihood. Principal axes factor analysis has a long history in exploratory analysis and is a straightforward procedure. Successive eigen value decompositions are done on a correlation matrix with the diagonal replaced with diag (FF') until \eqn{\sum(diag(FF'))} does not change (very much). The current limit of max.iter =50 seems to work for most problems, but the Holzinger-Harmon 24 variable problem needs about 203 iterations to converge for a 5 factor solution. Not all factor programs that do principal axes do iterative solutions. The example from the SAS manual (Chapter 33) is such a case. To achieve that solution, it is necessary to specify that the max.iter = 1. Comparing that solution to an iterated one (the default) shows that iterations improve the solution. In addition, fm="mle" produces even better solutions for this example. Both the RMSEA and the root mean square of the residuals are smaller than the fm="pa" solution. However, simulations of multiple problem sets suggest that fm="pa" tends to produce slightly smaller residuals while having slightly larger RMSEAs than does fm="minres" or fm="mle". That is, the sum of squared residuals for fm="pa" seem to be slightly smaller than those found using fm="minres" but the RMSEAs are slightly worse when using fm="pa". That is to say, the "true" minimal residual is probably found by fm="pa". Following extensive correspondence with Hao Wu and Mikko Ronkko, in April, 2017 the derivative of the minres and uls) fitting was modified. This leads to slightly smaller residuals (appropriately enough for a method claiming to minimize them) than the prior procedure. For consistency with prior analyses, "old.min" was added to give these slightly larger residuals. The differences between old.min and the newer "minres" and "ols" solutions are at the third to fourth decimal, but none the less, are worth noting. For comparison purposes, the fm="ols" uses empirical first derivatives, while uls and minres use equation based first derivatives. The results seem to be identical, but the minres and uls solutions require fewer iterations for larger problems and are faster. Thanks to Hao Wu for some very thoughtful help. Although usually these various algorithms produce equivalent results, there are several data sets included that show large differences between the methods. \code{\link{Schutz}} produces Heywood and super Heywood cases, \code{\link{blant}} leads to very different solutions. Principal axes may be used in cases when maximum likelihood solutions fail to converge, although fm="minres" will also do that and tends to produce better (smaller RMSEA) solutions. The fm="minchi" option is a variation on the "minres" (ols) solution and minimizes the sample size weighted residuals rather than just the residuals. This was developed to handle the problem of data that Massively Missing Completely at Random (MMCAR) which a condition that happens in the SAPA project. A problem in factor analysis is to find the best estimate of the original communalities. Using the Squared Multiple Correlation (SMC) for each variable will underestimate the communalities, using 1s will over estimate. By default, the SMC estimate is used. In either case, iterative techniques will tend to converge on a stable solution. If, however, a solution fails to be achieved, it is useful to try again using ones (SMC =FALSE). Alternatively, a vector of starting values for the communalities may be specified by the SMC option. The iterated principal axes algorithm does not attempt to find the best (as defined by a maximum likelihood criterion) solution, but rather one that converges rapidly using successive eigen value decompositions. The maximum likelihood criterion of fit and the associated chi square value are reported, and will be (slightly) worse than that found using maximum likelihood procedures. The minimum residual (minres) solution is an unweighted least squares solution that takes a slightly different approach. It uses the \code{\link{optim}} function and adjusts the diagonal elements of the correlation matrix to mimimize the squared residual when the factor model is the eigen value decomposition of the reduced matrix. MINRES and PA will both work when ML will not, for they can be used when the matrix is singular. Although before the change in the derivative, the MINRES solution was slightly more similar to the ML solution than is the PA solution. With the change in the derivative of the minres fit, the minres, pa and uls solutions are practically identical. To a great extent, the minres and wls solutions follow ideas in the \code{\link{factanal}} function with the change in the derivative. The weighted least squares (wls) solution weights the residual matrix by 1/ diagonal of the inverse of the correlation matrix. This has the effect of weighting items with low communalities more than those with high communalities. The generalized least squares (gls) solution weights the residual matrix by the inverse of the correlation matrix. This has the effect of weighting those variables with low communalities even more than those with high communalities. The maximum likelihood solution takes yet another approach and finds those communality values that minimize the chi square goodness of fit test. The fm="ml" option provides a maximum likelihood solution following the procedures used in \code{\link{factanal}} but does not provide all the extra features of that function. It does, however, produce more expansive output. The minimum rank factor model (MRFA) roughly follows ideas by Shapiro and Ten Berge (2002) and Ten Berge and Kiers (1991). It makes use of the glb.algebraic procedure contributed by Andreas Moltner. MRFA attempts to extract factors such that the residual matrix is still positive semi-definite. This version is still being tested and feedback is most welcome. Alpha factor analysis finds solutions based upon a correlation matrix corrected for communalities and then rescales these to the original correlation matrix. This procedure is described by Kaiser and Coffey, 1965. Test cases comparing the output to SPSS suggest that the PA algorithm matches what SPSS calls uls, and that the wls solutions are equivalent in their fits. The wls and gls solutions have slightly larger eigen values, but slightly worse fits of the off diagonal residuals than do the minres or maximum likelihood solutions. Comparing the results to the examples in Harman (1976), the PA solution with no iterations matches what Harman calls Principal Axes (as does SAS), while the iterated PA solution matches his minres solution. The minres solution found in psych tends to have slightly smaller off diagonal residuals (as it should) than does the iterated PA solution. Although for items, it is typical to find factor scores by scoring the salient items (using, e.g., \code{\link{scoreItems}}) factor scores can be estimated by regression as well as several other means. There are multiple approaches that are possible (see Grice, 2001) and one taken here was developed by tenBerge et al. (see \code{\link{factor.scores}}). The alternative, which will match factanal is to find the scores using regression -- Thurstone's least squares regression where the weights are found by \eqn{W = R^(-1)S}{W = inverse(R)S} where R is the correlation matrix of the variables ans S is the structure matrix. Then, factor scores are just \eqn{Fs = X W}{Fs = X W}. In the oblique case, the factor loadings are referred to as Pattern coefficients and are related to the Structure coefficients by \eqn{S = P \Phi}{S = P Phi} and thus \eqn{P = S \Phi^{-1}}{P = S Phi^-1}. When estimating factor scores, \code{\link{fa}} and \code{\link{factanal}} differ in that \code{\link{fa}} finds the factors from the Structure matrix while \code{\link{factanal}} seems to do it from the Pattern matrix. Thus, although in the orthogonal case, fa and factanal agree perfectly in their factor score estimates, they do not agree in the case of oblique factors. Setting oblique.scores = TRUE will produce factor score estimate that match those of \code{\link{factanal}}. It is sometimes useful to extend the factor solution to variables that were not factored. This may be done using \code{\link{fa.extension}}. Factor extension is typically done in the case where some variables were not appropriate to factor, but factor loadings on the original factors are still desired. For dichotomous items or polytomous items, it is recommended to analyze the \code{\link{tetrachoric}} or \code{\link{polychoric}} correlations rather than the Pearson correlations. This may be done by specifying cor="poly" or cor="tet" or cor="mixed" if the data have a mixture of dichotomous, polytomous, and continous variables. Analysis of dichotomous or polytomous data may also be done by using \code{\link{irt.fa}} or simply setting the cor="poly" option. In the first case, the factor analysis results are reported in Item Response Theory (IRT) terms, although the original factor solution is returned in the results. In the later case, a typical factor loadings matrix is returned, but the tetrachoric/polychoric correlation matrix and item statistics are saved for reanalysis by \code{\link{irt.fa}}. (See also the \code{\link{mixed.cor}} function to find correlations from a mixture of continuous, dichotomous, and polytomous items.) Of the various rotation/transformation options, varimax, Varimax, quartimax, bentlerT, geominT, and bifactor do orthogonal rotations. Promax transforms obliquely with a target matix equal to the varimax solution. oblimin, quartimin, simplimax, bentlerQ, geominQ and biquartimin are oblique transformations. Most of these are just calls to the GPArotation package. The ``cluster'' option does a targeted rotation to a structure defined by the cluster representation of a varimax solution. With the optional "keys" parameter, the "target" option will rotate to a target supplied as a keys matrix. (See \code{\link{target.rot}}.) Two additional target rotation options are available through calls to GPArotation. These are the targetQ (oblique) and targetT (orthogonal) target rotations of Michael Browne. See \code{\link{target.rot}} for more documentation. The "bifactor" rotation implements the Jennrich and Bentler (2011) bifactor rotation by calling the GPForth function in the GPArotation package and using two functions adapted from the MatLab code of Jennrich and Bentler. This seems to have a problem with local minima and multiple starting values should be used. There are two varimax rotation functions. One, Varimax, in the GPArotation package does not by default apply Kaiser normalization. The other, varimax, in the stats package, does. It appears that the two rotation functions produce slightly different results even when normalization is set. For consistency with the other rotation functions, Varimax is probably preferred. The rotation matrix (rot.mat) is returned from all of these options. This is the inverse of the Th (theta?) object returned by the GPArotation package. The correlations of the factors may be found by \eqn{\Phi = \theta' \theta}{Phi = Th' Th} There are two ways to handle dichotomous or polytomous responses: \code{\link{fa}} with the cor="poly" option which will return the tetrachoric or polychoric correlation matrix, as well as the normal factor analysis output, and \code{\link{irt.fa}} which returns a two parameter irt analysis as well as the normal fa output. When factor analyzing items with dichotomous or polytomous responses, the \code{\link{irt.fa}} function provides an Item Response Theory representation of the factor output. The factor analysis results are available, however, as an object in the irt.fa output. \code{\link{fa.poly}} is deprecated, for its functioning is matched by setting cor="poly". It will produce normal factor analysis output but also will save the polychoric matrix (rho) and items difficulties (tau) for subsequent irt analyses. \code{\link{fa.poly}} will, by default, find factor scores if the data are available. The correlations are found using either \code{\link{tetrachoric}} or \code{\link{polychoric}} and then this matrix is factored. Weights from the factors are then applied to the original data to estimate factor scores. The function \code{\link{fa}} will repeat the analysis n.iter times on a bootstrapped sample of the data (if they exist) or of a simulated data set based upon the observed correlation matrix. The mean estimate and standard deviation of the estimate are returned and will print the original factor analysis as well as the alpha level confidence intervals for the estimated coefficients. The bootstrapped solutions are rotated towards the original solution using target.rot. The factor loadings are z-transformed, averaged and then back transformed. This leads to an error in the case of Heywood cases. The probably better alternative is to just find the mean bootstrapped value and find the confidence intervals based upon the observed range of values. The default is to have n.iter =1 and thus not do bootstrapping. If using polytomous or dichotomous items, it is perhaps more useful to find the Item Response Theory parameters equivalent to the factor loadings reported in fa.poly by using the \code{\link{irt.fa}} function. Some correlation matrices that arise from using pairwise deletion or from tetrachoric or polychoric matrices will not be proper. That is, they will not be positive semi-definite (all eigen values >= 0). The \code{\link{cor.smooth}} function will adjust correlation matrices (smooth them) by making all negative eigen values slightly greater than 0, rescaling the other eigen values to sum to the number of variables, and then recreating the correlation matrix. See \code{\link{cor.smooth}} for an example of this problem using the \code{\link{burt}} data set. One reason for this problem when using tetrachorics or polychorics seems to be the adjustment for continuity. Setting correct=0 turns this off and seems to produce more proper matrices. For those who like SPSS type output, the measure of factoring adequacy known as the Kaiser-Meyer-Olkin \code{\link{KMO}} test may be found from the correlation matrix or data matrix using the \code{\link{KMO}} function. Similarly, the Bartlett's test of Sphericity may be found using the \code{\link{cortest.bartlett}} function. For those who want to have an object of the variances accounted for, this is returned invisibly by the print function. (e.g., p <- print(fa(ability))$Vaccounted ). This is now returned by the fa function as well (e.g. p <- fa(ability)$Vaccounted ). The output from the print.psych.fa function displays the factor loadings (from the pattern matrix, the h2 (communalities) the u2 (the uniquenesses), com (the complexity of the factor loadings for that variable (see below). In the case of an orthogonal solution, h2 is merely the row sum of the squared factor loadings. But for an oblique solution, it is the row sum of the orthogonal factor loadings (remember, that rotations or transformations do not change the communality). \code{\link{fa.sapa}} will do iterative solutions for successive random samples of fractions (frac) of the data set. This allows us to find the stability of solutions for various sample sizes. } \value{ \item{values }{Eigen values of the common factor solution} \item{e.values}{Eigen values of the original matrix} \item{communality}{Communality estimates for each item. These are merely the sum of squared factor loadings for that item.} \item{communalities}{If using minrank factor analysis, these are the communalities reflecting the total amount of common variance. They will exceed the communality (above) which is the model estimated common variance. } \item{rotation}{which rotation was requested?} \item{n.obs}{number of observations specified or found} \item{loadings}{An item by factor (pattern) loading matrix of class ``loadings" Suitable for use in other programs (e.g., GPA rotation or factor2cluster. To show these by sorted order, use \code{\link{print.psych}} with sort=TRUE} \item{complexity}{Hoffman's index of complexity for each item. This is just \eqn{\frac{(\Sigma a_i^2)^2}{\Sigma a_i^4}}{{(\Sigma a_i^2)^2}/{\Sigma a_i^4}} where a_i is the factor loading on the ith factor. From Hofmann (1978), MBR. See also Pettersson and Turkheimer (2010).} \item{Structure}{An item by factor structure matrix of class ``loadings". This is just the loadings (pattern) matrix times the factor intercorrelation matrix.} \item{fit}{How well does the factor model reproduce the correlation matrix. This is just \eqn{\frac{\Sigma r_{ij}^2 - \Sigma r^{*2}_{ij} }{\Sigma r_{ij}^2} }{(sum(r^2ij - sum(r*^2ij))/sum(r^2ij} (See \code{\link{VSS}}, \code{\link{ICLUST}}, and \code{\link{principal}} for this fit statistic.} \item{fit.off}{how well are the off diagonal elements reproduced?} \item{dof}{Degrees of Freedom for this model. This is the number of observed correlations minus the number of independent parameters. Let n=Number of items, nf = number of factors then \cr \eqn{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}} \item{objective}{Value of the function that is minimized by a maximum likelihood procedures. This is reported for comparison purposes and as a way to estimate chi square goodness of fit. The objective function is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. When using MLE, this function is minimized. When using OLS (minres), although we are not minimizing this function directly, we can still calculate it in order to compare the solution to a MLE fit. } \item{STATISTIC}{If the number of observations is specified or found, this is a chi square based upon the objective function, f (see above). Using the formula from \code{\link{factanal}}(which seems to be Bartlett's test) : \cr \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } } \item{PVAL}{If n.obs > 0, then what is the probability of observing a chisquare this large or larger?} \item{Phi}{If oblique rotations (e.g,m using oblimin from the GPArotation package or promax) are requested, what is the interfactor correlation?} \item{communality.iterations}{The history of the communality estimates (For principal axis only.) Probably only useful for teaching what happens in the process of iterative fitting.} \item{residual}{The matrix of residual correlations after the factor model is applied. To display it conveniently, use the \code{\link{residuals}} command. } \item{chi}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived \eqn{\chi^2}{chi^2} based upon the sum of the squared residuals * N. This will differ slightly from the MLE estimate which is based upon the fitting function rather than the actual residuals.} \item{rms}{This is the sum of the squared (off diagonal residuals) divided by the degrees of freedom. Comparable to an RMSEA which, because it is based upon \eqn{\chi^2}{chi^2}, requires the number of observations to be specified. The rms is an empirical value while the RMSEA is based upon normal theory and the non-central \eqn{\chi^2}{chi^2} distribution. That is to say, if the residuals are particularly non-normal, the rms value and the associated \eqn{\chi^2}{chi^2} and RMSEA can differ substantially. } \item{crms}{rms adjusted for degrees of freedom} \item{RMSEA}{The Root Mean Square Error of Approximation is based upon the non-central \eqn{\chi^2}{chi^2} distribution and the \eqn{\chi^2}{chi^2} estimate found from the MLE fitting function. With normal theory data, this is fine. But when the residuals are not distributed according to a noncentral \eqn{\chi^2}{chi^2}, this can give very strange values. (And thus the confidence intervals can not be calculated.) The RMSEA is a conventional index of goodness (badness) of fit but it is also useful to examine the actual rms values. } \item{TLI}{The Tucker Lewis Index of factoring reliability which is also known as the non-normed fit index. } \item{BIC}{Based upon \eqn{\chi^2}{chi^2} with the assumption of normal theory and using the \eqn{\chi^2}{chi^2} found using the objective function defined above. This is just \eqn{\chi^2 - 2 df}{chi^2 - 2 df}} \item{eBIC}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived eBIC based upon the empirical \eqn{\chi^2}{chi^2} - 2 df. } \item{R2}{The multiple R square between the factors and factor score estimates, if they were to be found. (From Grice, 2001). Derived from R2 is is the minimum correlation between any two factor estimates = 2R2-1. } \item{r.scores}{The correlations of the factor score estimates using the specified model, if they were to be found. Comparing these correlations with that of the scores themselves will show, if an alternative estimate of factor scores is used (e.g., the tenBerge method), the problem of factor indeterminacy. For these correlations will not necessarily be the same. } \item{weights}{The beta weights to find the factor score estimates. These are also used by the \code{\link{predict.psych}} function to find predicted factor scores for new cases. These weights will depend upon the scoring method requested. } \item{scores}{The factor scores as requested. Note that these scores reflect the choice of the way scores should be estimated (see scores in the input). That is, simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms (see \code{\link{factor.scores}}). The correlation between factor score estimates (r.scores) is based upon using the regression/Thurstone approach. The actual correlation between scores will reflect the rotation algorithm chosen and may be found by correlating those scores. Although the scores are found by multiplying the standarized data by the weights matrix, this will not result in standard scores if using regression. } \item{valid}{The validity coffiecient of course coded (unit weighted) factor score estimates (From Grice, 2001)} \item{score.cor}{The correlation matrix of course coded (unit weighted) factor score estimates, if they were to be found, based upon the loadings matrix rather than the weights matrix. } \item{rot.mat}{The rotation matrix as returned from GPArotation.} } \references{Gorsuch, Richard, (1983) Factor Analysis. Lawrence Erlebaum Associates. Grice, James W. (2001), Computing and evaluating factor scores. Psychological Methods, 6, 430-450 Harman, Harry and Jones, Wayne (1966) Factor analysis by minimizing residuals (minres), Psychometrika, 31, 3, 351-368. Hofmann, R. J. ( 1978 ) . Complexity and simplicity as objective indices descriptive of factor solutions. Multivariate Behavioral Research, 13, 247-250. Kaiser, Henry F. and Caffrey, John. Alpha factor analysis, Psychometrika, (30) 1-14. Pettersson E, Turkheimer E. (2010) Item selection, evaluation, and simple structure in personality data. Journal of research in personality, 44(4), 407-420. Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} Shapiro, A. and ten Berge, Jos M. F, (2002) Statistical inference of minimum rank factor analysis. Psychometika, (67) 79-84. ten Berge, Jos M. F. and Kiers, Henk A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, (56) 309-315. } \author{ William Revelle } \note{Thanks to Erich Studerus for some very helpful suggestions about various rotation and factor scoring algorithms, and to Gumundur Arnkelsson for suggestions about factor scores for singular matrices. The fac function is the original fa function which is now called by fa repeatedly to get confidence intervals. SPSS will sometimes use a Kaiser normalization before rotating. This will lead to different solutions than reported here. To get the Kaiser normalized loadings, use \code{\link{kaiser}}. The communality for a variable is the amount of variance accounted for by all of the factors. That is to say, for orthogonal factors, it is the sum of the squared factor loadings (rowwise). The communality is insensitive to rotation. However, if an oblique solution is found, then the communality is not the sum of squared pattern coefficients. In both cases (oblique or orthogonal) the communality is the diagonal of the reproduced correlation matrix where \eqn{_nR_n = _{n}P_{k k}\Phi_{k k}P_n'}{nRn = nPk k\Phi k kPn' } where P is the pattern matrix and \eqn{\Phi} is the factor intercorrelation matrix. This is the same, of course to multiplying the pattern by the structure: \eqn{R = P S'} {R = PS'} where the Structure matrix is \eqn{S = \Phi P}{S = Phi P}. Similarly, the eigen values are the diagonal of the product \eqn{ _k\Phi_{kk}P'_{nn}P_{k} }{\Phi_{k k}P'_nnP_k}. A frequently asked question is why are the factor names of the rotated solution not in ascending order? That is, for example, if factoring the 25 items of the bfi, the factor names are MR2 MR3 MR5 MR1 MR4, rather than the seemingly more logical "MR1" "MR2" "MR3" "MR4" "MR5". This is for pedagogical reasons, in that factors as extracted are orthogonal and are in order of amount of variance accounted for. But when rotated (orthogonally) or transformed (obliquely) the simple structure solution does not preserve that order. The factors are still ordered according to variance accounted for, but because rotation changes how much variance each factor explains, the order may not the be the same as the original order. The factor names are, of course, arbitrary, and are kept with the original names to show the effect of rotation/transformation. To give them names associated with their ordinal position, simply paste("F", 1:nf, sep="") where nf is the number of factors. See the last example. The print function for the fa output will return (invisibly) an object (Vaccounted) that matches the printed output for the variance accounted for by each factor, as well as the cumulative variance, and the percentage of variance accounted for by each factor. Correction to documentation: as of September, 2014, the oblique.scores option is correctly explained. (It had been backwards.) The default (oblique.scores=FALSE) finds scores based upon the Structure matrix, while oblique.scores=TRUE finds them based upon the pattern matrix. The latter case matches factanal. This error was detected by Mark Seeto. If the raw data are factored, factors scores are found. By default this will be done using 'regression' but alternatives are available. Although the scores are found by multiplying the standardized data by the weights, if using regression, the resulting factor scores will not necessarily have unit variance. The minimum residual solution is done by finding those communalities that will minimize the off diagonal residual. The uls solution finds those communalities that minimize the total residuals. The minres solution has been modified (April, 2107) following suggestions by Hao Wu. Although the fitting function was the minimal residual, the first derivative of the fitting function was incorrect. This has now been modified so that the results match those of SPSS and CEFA. The prior solutions are still available using fm="old.min". Alpha factoring was added in August, 2017 to add to the numerous alternative models of factoring. A few more lines of output were added in August 2017 to show the measures of factor adequacy for different rotations. This had been available in the results from \code{\link{factor.scores}} but now is added to the fa output. } \seealso{ \code{\link{principal}} for principal components analysis (PCA). PCA will give very similar solutions to factor analysis when there are many variables. The differences become more salient as the number variables decrease. The PCA and FA models are actually very different and should not be confused. One is a model of the observed variables, the other is a model of latent variables. Although some commercial packages (e.g., SPSS and SAS) refer to both as factor models, they are not. It is incorrect to report doing a factor analysis using principal components. \code{\link{irt.fa}} for Item Response Theory analyses using factor analysis, using the two parameter IRT equivalent of loadings and difficulties. \code{\link{VSS}} will produce the Very Simple Structure (VSS) and MAP criteria for the number of factors, \code{\link{nfactors}} to compare many different factor criteria. \code{\link{ICLUST}} will do a hierarchical cluster analysis alternative to factor analysis or principal components analysis. \code{\link{factor.scores}} to find factor scores with alternative options. \code{\link{predict.psych}} to find predicted scores based upon new data, \code{\link{fa.extension}} to extend the factor solution to new variables, \code{\link{omega}} for hierarchical factor analysis with one general factor. code{\link{fa.multi}} for hierarchical factor analysis with an arbitrary number of 2nd order factors. \code{\link{fa.sort}} will sort the factor loadings into echelon form. \code{\link{fa.organize}} will reorganize the factor pattern matrix into any arbitrary order of factors and items. \code{\link{KMO}} and \code{\link{cortest.bartlett}} for various tests that some people like. \code{\link{factor2cluster}} will prepare unit weighted scoring keys of the factors that can be used with \code{\link{scoreItems}}. \code{\link{fa.lookup}} will print the factor analysis loadings matrix along with the item ``content" taken from a dictionary of items. This is useful when examining the meaning of the factors. \code{\link{anova.psych}} allows for testing the difference between two (presumably nested) factor models . } \examples{ #using the Harman 24 mental tests, compare a principal factor with a principal components solution pc <- principal(Harman74.cor$cov,4,rotate="varimax") #principal components pa <- fa(Harman74.cor$cov,4,fm="pa" ,rotate="varimax") #principal axis uls <- fa(Harman74.cor$cov,4,rotate="varimax") #unweighted least squares is minres wls <- fa(Harman74.cor$cov,4,fm="wls") #weighted least squares #to show the loadings sorted by absolute value print(uls,sort=TRUE) #then compare with a maximum likelihood solution using factanal mle <- factanal(covmat=Harman74.cor$cov,factors=4) factor.congruence(list(mle,pa,pc,uls,wls)) #note that the order of factors and the sign of some of factors may differ #finally, compare the unrotated factor, ml, uls, and wls solutions wls <- fa(Harman74.cor$cov,4,rotate="none",fm="wls") pa <- fa(Harman74.cor$cov,4,rotate="none",fm="pa") minres <- factanal(factors=4,covmat=Harman74.cor$cov,rotation="none") mle <- fa(Harman74.cor$cov,4,rotate="none",fm="mle") uls <- fa(Harman74.cor$cov,4,rotate="none",fm="uls") factor.congruence(list(minres,mle,pa,wls,uls)) #in particular, note the similarity of the mle and min res solutions #note that the order of factors and the sign of some of factors may differ #an example of where the ML and PA and MR models differ is found in Thurstone.33. #compare the first two factors with the 3 factor solution Thurstone.33 <- as.matrix(Thurstone.33) mle2 <- fa(Thurstone.33,2,rotate="none",fm="mle") mle3 <- fa(Thurstone.33,3 ,rotate="none",fm="mle") pa2 <- fa(Thurstone.33,2,rotate="none",fm="pa") pa3 <- fa(Thurstone.33,3,rotate="none",fm="pa") mr2 <- fa(Thurstone.33,2,rotate="none") mr3 <- fa(Thurstone.33,3,rotate="none") factor.congruence(list(mle2,mr2,pa2,mle3,pa3,mr3)) #f5 <- fa(bfi[1:25],5) #f5 #names are not in ascending numerical order (see note) #colnames(f5$loadings) <- paste("F",1:5,sep="") #f5 #Get the variance accounted for object from the print function p <- print(mr3) round(p$Vaccounted,2) } \keyword{ multivariate } \keyword{ models}psych/man/count.pairwise.Rd0000644000176200001440000000235712752640101015421 0ustar liggesusers\name{count.pairwise} \alias{count.pairwise} \alias{pairwiseDescribe} \title{ Count number of pairwise cases for a data set with missing (NA) data. } \description{ When doing cor(x, use= "pairwise"), it is nice to know the number of cases for each pairwise correlation. This is particularly useful when doing SAPA type analyses. } \usage{ count.pairwise(x, y = NULL,diagonal=TRUE) pairwiseDescribe(x,diagonal=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ An input matrix, typically a data matrix ready to be correlated. } \item{y}{ An optional second input matrix } \item{diagonal}{if TRUE, then report the diagonal, else fill the diagonals with NA} \item{...}{Other parameters to pass to describe} } \value{result = matrix of counts of pairwise observations } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu}} \examples{ \dontrun{ x <- matrix(rnorm(1000),ncol=6) y <- matrix(rnorm(500),ncol=3) x[x < 0] <- NA y[y > 1] <- NA count.pairwise(x) count.pairwise(y) count.pairwise(x,y) count.pairwise(x,diagonal=FALSE) pairwiseDescribe(x,quant=c(.1,.25,.5,.75,.9)) } } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ multivariate }% __ONLY ONE__ keyword per line psych/man/partial.r.Rd0000644000176200001440000000535013151623656014351 0ustar liggesusers\name{partial.r} \alias{partial.r} \title{ Find the partial correlations for a set (x) of variables with set (y) removed. } \description{A straightforward application of matrix algebra to remove the effect of the variables in the y set from the x set. Input may be either a data matrix or a correlation matrix. Variables in x and y are specified by location. If x and y are not specified, then the effect of all variables are partialled from all the other correlations. } \usage{ partial.r(data, x, y,use="pairwise",method="pearson") } %- maybe also 'usage' for other objects documented here. \arguments{ \item{data}{A data or correlation matrix} \item{x}{The variable names or locations associated with the X set. } \item{y}{The variable names or locations associated with the Y set} \item{use}{How should we treat missing data? The default is pairwise complete.} \item{method}{Which method of correlation should we use, the default is pearson.} } \details{There are two ways to use \code{\link{partial.r}}. One is to find the complete partial correlation matrix (that is, partial all the other variables out of each variable). This may be done by simply specify the raw data or correlation matrix. (In the case of raw data, correlations will be found according to use and method.) In this case, just specify the data matrix. . The second usage is to partial a set of variables(y) out of another set (x). It is sometimes convenient to partial the effect of a number of variables (e.g., sex, age, education) out of the correlations of another set of variables. This could be done laboriously by finding the residuals of various multiple correlations, and then correlating these residuals. The matrix algebra alternative is to do it directly. To find the confidence intervals and "significance" of the correlations, use the \code{\link{corr.p}} function with n = n - s where s is the numer of covariates. } \value{The matrix of partial correlations.} \references{ Revelle, W. (in prep) An introduction to psychometric theory with applications in R. To be published by Springer. (working draft available at \url{http://personality-project.org/r/book/} } \author{ William Revelle } \seealso{ \code{\link{setCor}} for a similar application for regression. \code{\link{lowerMat}} to neatly show a correlation matrix, and \code{\link{corr.p}} to find the confidence intervals of a correlation. } \examples{ jen <- make.hierarchical() #make up a correlation matrix lowerMat(jen[1:5,1:5]) par.r <- partial.r(jen,c(1,3,5),c(2,4)) lowerMat(par.r) cp <- corr.p(par.r,n=98) #assumes the jen data based upon n =100. print(cp,short=FALSE) #show the confidence intervals as well #partial all from all correlations. lowerMat(partial.r(jen)) } \keyword{multivariate} psych/man/matrix.addition.Rd0000644000176200001440000000250011222300457015531 0ustar liggesusers\name{matrix.addition} \alias{matrix.addition} \alias{\%+\%} \title{A function to add two vectors or matrices } \description{It is sometimes convenient to add two vectors or matrices in an operation analogous to matrix multiplication. For matrices nXm and mYp, the matrix sum of the i,jth element of nSp = sum(over m) of iXm + mYj. } \usage{ x \%+\% y } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ a n by m matrix (or vector if m= 1)} \item{y}{ a m by p matrix (or vector if m = 1)} } \details{Used in such problems as Thurstonian scaling. Although not technically matrix addition, as pointed out by Krus, there are many applications where the sum or difference of two vectors or matrices is a useful operation. An alternative operation for vectors is outer(x ,y , FUN="+") but this does not work for matrices. } \value{a n by p matix of sums } \references{Krus, D. J. (2001) Matrix addition. Journal of Visual Statistics, 1, (February, 2001).} \author{William Revelle} \examples{ x <- seq(1,4) z <- x \%+\% -t(x) x z #compare with outer(x,-x,FUN="+") x <- matrix(seq(1,6),ncol=2) y <- matrix(seq(1,10),nrow=2) z <- x \%+\% y x y z #but compare this with outer(x ,y,FUN="+") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } psych/man/super.matrix.Rd0000644000176200001440000000375312604061510015106 0ustar liggesusers\name{superMatrix} \alias{superMatrix} \alias{super.matrix} \title{Form a super matrix from two sub matrices. } \description{Given the matrices nXm, and jYk, form the super matrix of dimensions (n+j) and (m+k) with with elements x and y along the super diagonal. Useful when considering structural equations. The measurement models x and y can be combined into a larger measurement model of all of the variables. If either x or y is a list of matrices, then recursively form a super matrix of all of those elements. } \usage{ superMatrix(x,y) super.matrix(x, y) #Deprecated } \arguments{ \item{x}{A n x m matrix or a list of such matrices } \item{y}{A j x k matrix or a list of such matrices} } \details{Several functions, e.g., \code{\link{sim.structural}},\code{\link{structure.graph}}, \code{\link{make.keys}} use matrices that can be thought of as formed from a set of submatrices. In particular, when using \code{\link{make.keys}} in order to score a set of items (\code{\link{scoreItems}} or \code{\link{scoreOverlap}}) or to form specified clusters (\code{\link{cluster.cor}}), it is convenient to define different sets of scoring keys for different sets of items and to combine these scoring keys into one super key. } \value{ A (n+j) x (m +k) matrix with appropriate row and column names } \author{William Revelle} \seealso{ \code{\link{sim.structural}},\code{\link{structure.graph}}, \code{\link{make.keys}}} \examples{ mx <- matrix(c(.9,.8,.7,rep(0,4),.8,.7,.6),ncol=2) my <- matrix(c(.6,.5,.4)) colnames(mx) <- paste("X",1:dim(mx)[2],sep="") rownames(mx) <- paste("Xv",1:dim(mx)[1],sep="") colnames(my) <- "Y" rownames(my) <- paste("Yv",1:3,sep="") mxy <- superMatrix(mx,my) #show the use of a list to do this as well key1 <- make.keys(6,list(first=c(1,-2,3),second=4:6,all=1:6)) #make a scoring key key2 <- make.keys(4,list(EA=c(1,2),TA=c(3,4))) superMatrix(list(key1,key2)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } psych/man/polychor.matrix.Rd0000644000176200001440000000352112216212621015600 0ustar liggesusers\name{polychor.matrix} \alias{polychor.matrix} \alias{Yule2poly.matrix} \alias{phi2poly.matrix} \alias{Yule2phi.matrix} \title{Phi or Yule coefficient matrix to polychoric coefficient matrix} \description{A set of deprecated functions that have replaced by \code{\link{Yule2tetra}} and \code{\link{Yule2phi}}. Some older correlation matrices were reported as matrices of Phi or of Yule correlations. That is, correlations were found from the two by two table of counts: \cr \tabular{lll}{ \tab a \tab b \cr \tab c \tab d \cr } Yule Q is (ad - bc)/(ad+bc). \cr With marginal frequencies of a+b, c+d, a+c, b+d. Given a square matrix of such correlations, and the proportions for each variable that are in the a + b cells, it is possible to reconvert each correlation into a two by two table and then estimate the corresponding polychoric correlation (using John Fox's polychor function. } \usage{ Yule2poly.matrix(x, v) #deprectated phi2poly.matrix(x, v) #deprectated Yule2phi.matrix(x, v) #deprectated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{a matrix of phi or Yule coefficients } \item{v}{A vector of marginal frequencies } } \details{These functions call \code{\link{Yule2poly}}, \code{\link{Yule2phi}} or \code{\link{phi2poly}} for each cell of the matrix. See those functions for more details. See \code{\link{phi.demo}} for an example. } \value{A matrix of correlations } \author{ William Revelle} \examples{ #demo <- phi.demo() #compare the phi (lower off diagonal and polychoric correlations (upper off diagonal) #show the result from poly.mat #round(demo$tetrachoric$rho,2) #show the result from phi2poly #tetrachorics above the diagonal, phi below the diagonal #round(demo$phis,2) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ multivariate }% __ONLY ONE__ keyword per line psych/man/print.psych.Rd0000644000176200001440000000676712764315637014761 0ustar liggesusers\name{print.psych} \alias{print.psych} \alias{summary.psych} \alias{anova.psych} \title{ Print and summary functions for the psych class } \description{Give limited output (print) or somewhat more detailed (summary) for most of the functions in psych. } \usage{ \method{print}{psych}(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,short=TRUE,lower=TRUE,signif=NULL,...) \method{summary}{psych}(object,digits=2,items=FALSE,...) \method{anova}{psych}(object,object2,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ Output from a psych function (e.g., factor.pa, omega,ICLUST, score.items, cluster.cor} \item{object}{Output from a psych function} \item{items}{items=TRUE (default) does not print the item whole correlations} \item{digits}{Number of digits to use in printing} \item{all}{if all=TRUE, then the object is declassed and all output from the function is printed} \item{cut}{Cluster loadings < cut will not be printed. For the factor analysis functions (fa and factor.pa etc.), cut defaults to 0, for ICLUST to .3, for omega to .2.} \item{sort}{Cluster loadings are in sorted order} \item{short}{Controls how much to print} \item{lower}{For square matrices, just print the lower half of the matrix} \item{object2}{Another object from fa or omega}) \item{signif}{If not NULL, a numeric value, show just signif number of leading digits for describe output} \item{...}{More options to pass to summary and print} } \details{Most of the psych functions produce too much output. print.psych and summary.psych use generic methods for printing just the highlights. To see what else is available, ask for the structure of the particular object: (str(theobject) ). Alternatively, to get complete output, unclass(theobject) and then print it. This may be done by using the all=TRUE option. As an added feature, if the promax function is applied to a factanal loadings matrix, the normal output just provides the rotation matrix. print.psych will provide the factor correlations. (Following a suggestion by John Fox and Uli Keller to the R-help list). The alternative is to just use the Promax function directly on the factanal object. } \value{ Various psych functions produce copious output. This is a way to summarize the most important parts of the output of the score.items, cluster.scores, and ICLUST functions. See those ( \code{\link{score.items}}, \code{\link{cluster.cor}}, \code{\link{cluster.loadings}}, or \code{\link{ICLUST}}) for details on what is produced. The signf option is available for the output from \code{\link{describe}} to adjust the number of digits shown for all columns. This is slightly different from what happens if you specify digits, which rounds all output to the number of digits. print(x,signif=3) will print just the 3 largest digits of x, which will frequently result in scientific notation for any column where that would be appropriate for at least one row. } \author{ William Revelle} \note{ See \code{\link{score.items}}, \code{\link{cluster.cor}}, \code{\link{cluster.loadings}}, or \code{\link{ICLUST}}for details on what is printed. } \examples{ data(bfi) keys.list <- list(agree=c(-1,2:5),conscientious=c(6:8,-9,-10), extraversion=c(-11,-12,13:15),neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys <- make.keys(25,keys.list,item.labels=colnames(bfi[1:25])) scores <- score.items(keys,bfi[1:25]) scores summary(scores) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/dummy.code.Rd0000644000176200001440000000210411606347350014510 0ustar liggesusers\name{dummy.code} \alias{dummy.code} \title{Create dummy coded variables} \description{Given a variable x with n distinct values, create n new dummy coded variables coded 0/1 for presence (1) or absence (0) of each variable. A typical application would be to create dummy coded college majors from a vector of college majors. } \usage{ dummy.code(x) } \arguments{ \item{x}{A vector to be transformed into dummy codes} } \details{When coding demographic information, it is typical to create one variable with multiple categorical values (e.g., ethnicity, college major, occupation). \code{\link{dummy.code}} will convert these categories into n distinct dummy coded variables. If using dummy coded variables as predictors, remember to use n-1 variables.} \value{A matrix of dummy coded variables} \author{William Revelle} \examples{ new <- dummy.code(sat.act$education) new.sat <- data.frame(new,sat.act) round(cor(new.sat,use="pairwise"),2) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models} psych/man/cortest.bartlett.Rd0000644000176200001440000000411513007727702015753 0ustar liggesusers\name{cortest.bartlett} \alias{cortest.bartlett} \title{Bartlett's test that a correlation matrix is an identity matrix } \description{Bartlett (1951) proposed that -ln(det(R)*(N-1 - (2p+5)/6) was distributed as chi square if R were an identity matrix. A useful test that residuals correlations are all zero. Contrast to the Kaiser-Meyer-Olkin test. } \usage{ cortest.bartlett(R, n = NULL,diag=TRUE) } \arguments{ \item{R}{A correlation matrix. (If R is not square, correlations are found and a warning is issued. } \item{n}{Sample size (if not specified, 100 is assumed).} \item{diag}{Will replace the diagonal of the matrix with 1s to make it a correlation matrix.} } \details{More useful for pedagogical purposes than actual applications. The Bartlett test is asymptotically chi square distributed. Note that if applied to residuals from factor analysis (\code{\link{fa}}) or principal components analysis (\code{\link{principal}}) that the diagonal must be replaced with 1s. This is done automatically if diag=TRUE. (See examples.) An Alternative way of testing whether a correlation matrix is factorable (i.e., the correlations differ from 0) is the Kaiser-Meyer-Olkin \code{\link{KMO}} test of factorial adequacy. } \value{ \item{chisq}{Assymptotically chisquare} \item{p.value }{Of chi square} \item{df}{The degrees of freedom} } \references{ Bartlett, M. S., (1951), The Effect of Standardization on a chi square Approximation in Factor Analysis, Biometrika, 38, 337-344. } \author{William Revelle} \seealso{ \code{\link{cortest.mat}}, \code{\link{cortest.normal}}, \code{\link{cortest.jennrich}}} \examples{ set.seed(42) x <- matrix(rnorm(1000),ncol=10) r <- cor(x) cortest.bartlett(r) #random data don't differ from an identity matrix data(bfi) cortest.bartlett(bfi[1:200,1:10]) #not an identity matrix f3 <- fa(Thurstone,3) f3r <- f3$resid cortest.bartlett(f3r,n=213,diag=FALSE) #incorrect cortest.bartlett(f3r,n=213,diag=TRUE) #correct (by default) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/ICLUST.sort.Rd0000644000176200001440000000406112200021660014421 0ustar liggesusers\name{ICLUST.sort} \alias{ICLUST.sort} \alias{iclust.sort} \title{Sort items by absolute size of cluster loadings} \description{Given a cluster analysis or factor analysis loadings matrix, sort the items by the (absolute) size of each column of loadings. Used as part of ICLUST and SAPA analyses. The columns are rearranged by the } \usage{ ICLUST.sort(ic.load, cut = 0, labels = NULL,keys=FALSE,clustsort=TRUE) } \arguments{ \item{ic.load}{ The output from a factor or principal components analysis, or from ICLUST, or a matrix of loadings.} \item{cut}{Do not include items in clusters with absolute loadings less than cut} \item{labels}{labels for each item.} \item{keys}{should cluster keys be returned? Useful if clusters scales are to be scored.} \item{clustsort}{TRUE will will sort the clusters by their eigenvalues} } \details{When interpreting cluster or factor analysis outputs, is is useful to group the items in terms of which items have their biggest loading on each factor/cluster and then to sort the items by size of the absolute factor loading. A stable cluster solution will be one in which the output of these cluster definitions does not vary when clusters are formed from the clusters so defined. With the keys=TRUE option, the resulting cluster keys may be used to score the original data or the correlation matrix to form clusters from the factors. } \value{ \item{sorted }{A data.frame of item numbers, item contents, and item x factor loadings.} \item{cluster}{A matrix of -1, 0, 1s defining each item by the factor/cluster with the row wise largest absolute loading. } ... } \references{ \url{http://personality-project.org/r/r.ICLUST.html} } \author{William Revelle } \note{ Although part of the ICLUST set of programs, this is also more useful for factor or principal components analysis. } \seealso{ \code{\link{ICLUST.graph}},\code{\link{ICLUST.cluster}}, \code{\link{cluster.fit} }, \code{\link{VSS}}, \code{\link{factor2cluster} }} \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/polar.Rd0000644000176200001440000000461012262077744013573 0ustar liggesusers\name{polar} \alias{polar} \title{Convert Cartesian factor loadings into polar coordinates } \description{Factor and cluster analysis output typically presents item by factor correlations (loadings). Tables of factor loadings are frequently sorted by the size of loadings. This style of presentation tends to make it difficult to notice the pattern of loadings on other, secondary, dimensions. By converting to polar coordinates, it is easier to see the pattern of the secondary loadings. } \usage{ polar(f, sort = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{f}{A matrix of loadings or the output from a factor or cluster analysis program} \item{sort}{ sort=TRUE: sort items by the angle of the items on the first pair of factors.} } \details{Although many uses of factor analysis/cluster analysis assume a simple structure where items have one and only one large loading, some domains such as personality or affect items have a more complex structure and some items have high loadings on two factors. (These items are said to have complexity 2, see \code{\link{VSS}}). By expressing the factor loadings in polar coordinates, this structure is more readily perceived. For each pair of factors, item loadings are converted to an angle with the first factor, and a vector length corresponding to the amount of variance in the item shared with the two factors. For a two dimensional structure, this will lead to a column of angles and a column of vector lengths. For n factors, this leads to n* (n-1)/2 columns of angles and an equivalent number of vector lengths. } \value{ \item{polar }{A data frame of polar coordinates } } \references{Rafaeli, E. & Revelle, W. (2006). A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion. \\ Hofstee, W. K. B., de Raad, B., & Goldberg, L. R. (1992). Integration of the big five and circumplex approaches to trait structure. Journal of Personality and Social Psychology, 63, 146-163.} \author{William Revelle} \seealso{ \code{\link{ICLUST}}, \code{\link{cluster.plot}}, \code{\link{circ.tests}}, \code{\link{fa}} } \examples{ circ.data <- circ.sim(24,500) circ.fa <- fa(circ.data,2) circ.polar <- round(polar(circ.fa),2) circ.polar #compare to the graphic cluster.plot(circ.fa) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/simulation.circ.Rd0000644000176200001440000001150512512602407015546 0ustar liggesusers\name{simulation.circ} \alias{simulation.circ} \alias{circ.simulation} \alias{simulation.circ} \alias{circ.sim.plot} \title{ Simulations of circumplex and simple structure} \description{Rotations of factor analysis and principal components analysis solutions typically try to represent correlation matrices as simple structured. An alternative structure, appealing to some, is a circumplex structure where the variables are uniformly spaced on the perimeter of a circle in a two dimensional space. Generating these data is straightforward, and is useful for exploring alternative solutions to affect and personality structure. } \usage{ simulation.circ(samplesize=c(100,200,400,800), numberofvariables=c(16,32,48,72)) circ.sim.plot(x.df) } \arguments{ \item{samplesize}{a vector of sample sizes to simulate } \item{numberofvariables}{vector of the number of variables to simulate } \item{x.df}{A data frame resulting from \code{\link{simulation.circ}} } } \details{``A common model for representing psychological data is simple structure (Thurstone, 1947). According to one common interpretation, data are simple structured when items or scales have non-zero factor loadings on one and only one factor (Revelle & Rocklin, 1979). Despite the commonplace application of simple structure, some psychological models are defined by a lack of simple structure. Circumplexes (Guttman, 1954) are one kind of model in which simple structure is lacking. ``A number of elementary requirements can be teased out of the idea of circumplex structure. First, circumplex structure implies minimally that variables are interrelated; random noise does not a circumplex make. Second, circumplex structure implies that the domain in question is optimally represented by two and only two dimensions. Third, circumplex structure implies that variables do not group or clump along the two axes, as in simple structure, but rather that there are always interstitial variables between any orthogonal pair of axes (Saucier, 1992). In the ideal case, this quality will be reflected in equal spacing of variables along the circumference of the circle (Gurtman, 1994; Wiggins, Steiger, & Gaelick, 1981). Fourth, circumplex structure implies that variables have a constant radius from the center of the circle, which implies that all variables have equal communality on the two circumplex dimensions (Fisher, 1997; Gurtman, 1994). Fifth, circumplex structure implies that all rotations are equally good representations of the domain (Conte & Plutchik, 1981; Larsen & Diener, 1992)." (Acton and Revelle, 2004) Acton and Revelle reviewed the effectiveness of 10 tests of circumplex structure and found that four did a particularly good job of discriminating circumplex structure from simple structure, or circumplexes from ellipsoidal structures. Unfortunately, their work was done in Pascal and is not easily available. Here we release R code to do the four most useful tests: The Gap test of equal spacing Fisher's test of equality of axes A test of indifference to Rotation A test of equal Variance of squared factor loadings across arbitrary rotations. Included in this set of functions are simple procedure to generate circumplex structured or simple structured data, the four test statistics, and a simple simulation showing the effectiveness of the four procedures. \code{\link{circ.sim.plot}} compares the four tests for circumplex, ellipsoid and simple structure data as function of the number of variables and the sample size. What one can see from this plot is that although no one test is sufficient to discriminate these alternative structures, the set of four tests does a very good job of doing so. When testing a particular data set for structure, comparing the results of all four tests to the simulated data will give a good indication of the structural properties of the data. } \value{A data.frame with simulation results for circumplex, ellipsoid, and simple structure data sets for each of the four tests.} \references{ Acton, G. S. and Revelle, W. (2004) Evaluation of Ten Psychometric Criteria for Circumplex Structure. Methods of Psychological Research Online, Vol. 9, No. 1 (formerly at http://www.dgps.de/fachgruppen/methoden/mpr-online/issue22/mpr110_10.pdf and now at \url{http://personality-project.org/revelle/publications/acton.revelle.mpr110_10.pdf}. } \author{ William Revelle} \note{The simulations default values are for sample sizes of 100, 200, 400, and 800 cases, with 16, 32, 48 and 72 items. } \seealso{See also \code{\link{circ.tests}}, \code{\link{sim.circ}}, \code{\link{sim.structural}}, \code{\link{sim.hierarchical}} } \examples{ #not run demo <- simulation.circ() boxplot(demo[3:14]) title("4 tests of Circumplex Structure",sub="Circumplex, Ellipsoid, Simple Structure") circ.sim.plot(demo[3:14]) #compare these results to real data } \keyword{multivariate} \keyword{datagen} psych/man/msq.Rd0000644000176200001440000003255212567215761013265 0ustar liggesusers\name{msq} \Rdversion{1.1} \alias{msq} \docType{data} \title{75 mood items from the Motivational State Questionnaire for 3896 participants} \description{Emotions may be described either as discrete emotions or in dimensional terms. The Motivational State Questionnaire (MSQ) was developed to study emotions in laboratory and field settings. The data can be well described in terms of a two dimensional solution of energy vs tiredness and tension versus calmness. Additional items include what time of day the data were collected and a few personality questionnaire scores. } \usage{data(msq)} \format{ A data frame with 3896 observations on the following 92 variables. \describe{ \item{\code{active}}{a numeric vector} \item{\code{afraid}}{a numeric vector} \item{\code{alert}}{a numeric vector} \item{\code{angry}}{a numeric vector} \item{\code{anxious}}{a numeric vector} \item{\code{aroused}}{a numeric vector} \item{\code{ashamed}}{a numeric vector} \item{\code{astonished}}{a numeric vector} \item{\code{at.ease}}{a numeric vector} \item{\code{at.rest}}{a numeric vector} \item{\code{attentive}}{a numeric vector} \item{\code{blue}}{a numeric vector} \item{\code{bored}}{a numeric vector} \item{\code{calm}}{a numeric vector} \item{\code{cheerful}}{a numeric vector} \item{\code{clutched.up}}{a numeric vector} \item{\code{confident}}{a numeric vector} \item{\code{content}}{a numeric vector} \item{\code{delighted}}{a numeric vector} \item{\code{depressed}}{a numeric vector} \item{\code{determined}}{a numeric vector} \item{\code{distressed}}{a numeric vector} \item{\code{drowsy}}{a numeric vector} \item{\code{dull}}{a numeric vector} \item{\code{elated}}{a numeric vector} \item{\code{energetic}}{a numeric vector} \item{\code{enthusiastic}}{a numeric vector} \item{\code{excited}}{a numeric vector} \item{\code{fearful}}{a numeric vector} \item{\code{frustrated}}{a numeric vector} \item{\code{full.of.pep}}{a numeric vector} \item{\code{gloomy}}{a numeric vector} \item{\code{grouchy}}{a numeric vector} \item{\code{guilty}}{a numeric vector} \item{\code{happy}}{a numeric vector} \item{\code{hostile}}{a numeric vector} \item{\code{idle}}{a numeric vector} \item{\code{inactive}}{a numeric vector} \item{\code{inspired}}{a numeric vector} \item{\code{intense}}{a numeric vector} \item{\code{interested}}{a numeric vector} \item{\code{irritable}}{a numeric vector} \item{\code{jittery}}{a numeric vector} \item{\code{lively}}{a numeric vector} \item{\code{lonely}}{a numeric vector} \item{\code{nervous}}{a numeric vector} \item{\code{placid}}{a numeric vector} \item{\code{pleased}}{a numeric vector} \item{\code{proud}}{a numeric vector} \item{\code{quiescent}}{a numeric vector} \item{\code{quiet}}{a numeric vector} \item{\code{relaxed}}{a numeric vector} \item{\code{sad}}{a numeric vector} \item{\code{satisfied}}{a numeric vector} \item{\code{scared}}{a numeric vector} \item{\code{serene}}{a numeric vector} \item{\code{sleepy}}{a numeric vector} \item{\code{sluggish}}{a numeric vector} \item{\code{sociable}}{a numeric vector} \item{\code{sorry}}{a numeric vector} \item{\code{still}}{a numeric vector} \item{\code{strong}}{a numeric vector} \item{\code{surprised}}{a numeric vector} \item{\code{tense}}{a numeric vector} \item{\code{tired}}{a numeric vector} \item{\code{tranquil}}{a numeric vector} \item{\code{unhappy}}{a numeric vector} \item{\code{upset}}{a numeric vector} \item{\code{vigorous}}{a numeric vector} \item{\code{wakeful}}{a numeric vector} \item{\code{warmhearted}}{a numeric vector} \item{\code{wide.awake}}{a numeric vector} \item{\code{alone}}{a numeric vector} \item{\code{kindly}}{a numeric vector} \item{\code{scornful}}{a numeric vector} \item{\code{EA}}{Thayer's Energetic Arousal Scale} \item{\code{TA}}{Thayer's Tense Arousal Scale} \item{\code{PA}}{Positive Affect scale} \item{\code{NegAff}}{Negative Affect scale} \item{\code{Extraversion}}{Extraversion from the Eysenck Personality Inventory} \item{\code{Neuroticism}}{Neuroticism from the Eysenck Personality Inventory} \item{\code{Lie}}{Lie from the EPI} \item{\code{Sociability}}{The sociability subset of the Extraversion Scale} \item{\code{Impulsivity}}{The impulsivity subset of the Extraversions Scale} \item{\code{MSQ_Time}}{Time of day the data were collected} \item{\code{MSQ_Round}}{Rounded time of day} \item{\code{TOD}}{a numeric vector} \item{\code{TOD24}}{a numeric vector} \item{\code{ID}}{subject ID} \item{\code{condition}}{What was the experimental condition after the msq was given} \item{\code{scale}}{a factor with levels \code{msq} \code{r} original or revised msq} \item{\code{exper}}{Which study were the data collected: a factor with levels \code{AGES} \code{BING} \code{BORN} \code{CART} \code{CITY} \code{COPE} \code{EMIT} \code{FAST} \code{Fern} \code{FILM} \code{FLAT} \code{Gray} \code{imps} \code{item} \code{knob} \code{MAPS} \code{mite} \code{pat-1} \code{pat-2} \code{PATS} \code{post} \code{RAFT} \code{Rim.1} \code{Rim.2} \code{rob-1} \code{rob-2} \code{ROG1} \code{ROG2} \code{SALT} \code{sam-1} \code{sam-2} \code{SAVE/PATS} \code{sett} \code{swam} \code{swam-2} \code{TIME} \code{VALE-1} \code{VALE-2} \code{VIEW}} } } \details{The Motivational States Questionnaire (MSQ) is composed of 72 items, which represent the full affective range (Revelle & Anderson, 1998). The MSQ consists of 20 items taken from the Activation-Deactivation Adjective Check List (Thayer, 1986), 18 from the Positive and Negative Affect Schedule (PANAS, Watson, Clark, & Tellegen, 1988) along with the items used by Larsen and Diener (1992). The response format was a four-point scale that corresponds to Russell and Carroll's (1999) "ambiguous--likely-unipolar format" and that asks the respondents to indicate their current standing (``at this moment") with the following rating scale:\cr 0----------------1----------------2----------------3 \cr Not at all A little Moderately Very much \cr The original version of the MSQ included 72 items. Intermediate analyses (done with 1840 subjects) demonstrated a concentration of items in some sections of the two dimensional space, and a paucity of items in others. To begin correcting this, 3 items from redundantly measured sections (alone, kindly, scornful) were removed, and 5 new ones (anxious, cheerful, idle, inactive, and tranquil) were added. Thus, the correlation matrix is missing the correlations between items anxious, cheerful, idle, inactive, and tranquil with alone, kindly, and scornful. Procedure. The data were collected over nine years, as part of a series of studies examining the effects of personality and situational factors on motivational state and subsequent cognitive performance. In each of 38 studies, prior to any manipulation of motivational state, participants signed a consent form and filled out the MSQ. (The procedures of the individual studies are irrelevant to this data set and could not affect the responses to the MSQ, since this instrument was completed before any further instructions or tasks). Some MSQ post test (after manipulations) is available in \code{\link{affect}}. The EA and TA scales are from Thayer, the PA and NA scales are from Watson et al. (1988). Scales and items: Energetic Arousal: active, energetic, vigorous, wakeful, wide.awake, full.of.pep, lively, -sleepy, -tired, - drowsy (ADACL) Tense Arousal: Intense, Jittery, fearful, tense, clutched up, -quiet, -still, - placid, - calm, -at rest (ADACL) Positive Affect: active, alert, attentive, determined, enthusiastic, excited, inspired, interested, proud, strong (PANAS) Negative Affect: afraid, ashamed, distressed, guilty, hostile, irritable , jittery, nervous, scared, upset (PANAS) The PA and NA scales can in turn can be thought of as having subscales: (See the PANAS-X) Fear: afraid, scared, nervous, jittery (not included frightened, shaky) Hostility: angry, hostile, irritable, (not included: scornful, disgusted, loathing guilt: ashamed, guilty, (not included: blameworthy, angry at self, disgusted with self, dissatisfied with self) sadness: alone, blue, lonely, sad, (not included: downhearted) joviality: cheerful, delighted, energetic, enthusiastic, excited, happy, lively, (not included: joyful) self-assurance: proud, strong, confident, (not included: bold, daring, fearless ) attentiveness: alert, attentive, determined (not included: concentrating) The next set of circumplex scales were taken (I think) from Larsen and Diener (1992). High activation: active, aroused, surprised, intense, astonished Activated PA: elated, excited, enthusiastic, lively Unactivated NA : calm, serene, relaxed, at rest, content, at ease PA: happy, warmhearted, pleased, cheerful, delighted Low Activation: quiet, inactive, idle, still, tranquil Unactivated PA: dull, bored, sluggish, tired, drowsy NA: sad, blue, unhappy, gloomy, grouchy Activated NA: jittery, anxious, nervous, fearful, distressed. Keys for these separate scales are shown in the examples. In addition to the MSQ, there are 5 scales from the Eysenck Personality Inventory (Extraversion, Impulsivity, Sociability, Neuroticism, Lie). The Imp and Soc are subsets of the the total extraversion scale. } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University. } \references{ Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Revelle, W. and Anderson, K.J. (1998) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008. (\url{http://www.personality-project.org/revelle/publications/ra.ari.98.pdf}). Thayer, R.E. (1989) The biopsychology of mood and arousal. Oxford University Press. New York, NY. Watson,D., Clark, L.A. and Tellegen, A. (1988) Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6):1063-1070. } \seealso{\code{\link{affect}} for an example of the use of some of these adjectives in a mood manipulation study. \code{\link{make.keys}}, \code{\link{scoreItems}} and \code{\link{scoreOverlap}} for instructions on how to score multiple scales with and without item overlap. Also see \code{\link{fa}} and \code{\link{fa.extension}} for instructions on how to do factor analyses or factor extension. } \examples{ data(msq) if(FALSE){ #not run in the interests of time #basic descriptive statistics describe(msq) } #score them for 20 short scales -- note that these have item overlap #The first 2 are from Thayer #The next 2 are classic positive and negative affect #The next 9 are circumplex scales #the last 7 are msq estimates of PANASX scales (missing some items) keys <- make.keys(msq[1:75],list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" ), HAct = c("active", "aroused", "surprised", "intense", "astonished"), aPA = c("elated", "excited", "enthusiastic", "lively"), uNA = c("calm", "serene", "relaxed", "at.rest", "content", "at.ease"), pa = c("happy", "warmhearted", "pleased", "cheerful", "delighted" ), LAct = c("quiet", "inactive", "idle", "still", "tranquil"), uPA =c( "dull", "bored", "sluggish", "tired", "drowsy"), naf = c( "sad", "blue", "unhappy", "gloomy", "grouchy"), aNA = c("jittery", "anxious", "nervous", "fearful", "distressed"), Fear = c("afraid" , "scared" , "nervous" , "jittery" ) , Hostility = c("angry" , "hostile", "irritable", "scornful" ), Guilt = c("guilty" , "ashamed" ), Sadness = c( "sad" , "blue" , "lonely", "alone" ), Joviality =c("happy","delighted", "cheerful", "excited", "enthusiastic", "lively", "energetic"), Self.Assurance=c( "proud","strong" , "confident" , "-fearful" ), Attentiveness = c("alert" , "determined" , "attentive" ) #acquiscence = c("sleepy" , "wakeful" , "relaxed","tense") )) msq.scores <- scoreItems(keys,msq[1:75]) #show a circumplex structure for the non-overlapping items fcirc <- fa(msq.scores$scores[,5:12],2) fa.plot(fcirc,labels=colnames(msq.scores$scores)[5:12]) #now, find the correlations corrected for item overlap msq.overlap <- scoreOverlap(keys,msq[1:75]) f2 <- fa(msq.overlap$cor,2) fa.plot(f2,labels=colnames(msq.overlap$cor),title="2 dimensions of affect, corrected for overlap") if(FALSE) { #extend this solution to EA/TA NA/PA space fe <- fa.extension(cor(msq.scores$scores[,5:12],msq.scores$scores[,1:4]),fcirc) fa.diagram(fcirc,fe=fe,main="Extending the circumplex structure to EA/TA and PA/NA ") #show the 2 dimensional structure f2 <- fa(msq[1:72],2) fa.plot(f2,labels=colnames(msq)[1:72],title="2 dimensions of affect at the item level") #sort them by polar coordinates round(polar(f2),2) } } \keyword{datasets} psych/man/structure.diagram.Rd0000644000176200001440000001710513147622342016115 0ustar liggesusers\name{structure.diagram} \alias{structure.diagram} \alias{structure.graph} \alias{structure.sem} \alias{lavaan.diagram} \alias{sem.diagram} \alias{sem.graph} \title{Draw a structural equation model specified by two measurement models and a structural model} \description{Graphic presentations of structural equation models are a very useful way to conceptualize sem and confirmatory factor models. Given a measurement model on x (xmodel) and on y (ymodel) as well as a path model connecting x and y (phi), draw the graph. If ymodel is not specified, just draw the measurement model (xmodel + phi). If the Rx or Ry matrices are specified, show the correlations between the x variables, or y variables. Perhaps even more usefully, the function returns a model appropriate for running directly in the \emph{sem package} written by John Fox. For this option to work directly, it is necessary to specfy that errrors=TRUE. Input can be specified as matrices or the output from \code{\link{fa}}, factanal, or a rotation package such as \emph{GPArotation}. For symbolic graphs, the input matrices can be character strings or mixtures of character strings and numeric vectors. As an option, for those without Rgraphviz installed, structure.sem will just create the sem model and skip the graph. (This functionality is now included in structure.diagram.) structure.diagram will draw the diagram without using Rgraphviz and is probably the preferred option. structure.graph will be removed eventually. lavaan.diagram will draw either cfa or sem results from the lavaan package (> .4.0) } \usage{ structure.diagram(fx, Phi=NULL,fy=NULL,labels=NULL,cut=.3,errors=FALSE,simple=TRUE, regression=FALSE,lr=TRUE,Rx=NULL,Ry=NULL,digits=1,e.size=.1, main="Structural model", ...) structure.graph(fx, Phi = NULL,fy = NULL, out.file = NULL, labels = NULL, cut = 0.3, errors=TRUE, simple=TRUE,regression=FALSE, size = c(8, 6), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 10), rank.direction = c("RL", "TB", "LR", "BT"), digits = 1, title = "Structural model", ...) structure.sem(fx, Phi = NULL, fy = NULL,out.file = NULL, labels = NULL, cut = 0.3, errors=TRUE, simple=TRUE,regression=FALSE) lavaan.diagram(fit,title,...) sem.diagram(fit,main="A SEM from the sem package",...) sem.graph(fit,out.file=NULL,main= "A SEM from the sem package",...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fx}{a factor model on the x variables. } \item{Phi}{A matrix of directed relationships. Lower diagonal values are drawn. If the upper diagonal values match the lower diagonal, two headed arrows are drawn. For a single, directed path, just the value may be specified. } \item{fy}{a factor model on the y variables (can be empty) } \item{Rx}{The correlation matrix among the x variables} \item{Ry}{The correlation matrix among the y variables} \item{out.file}{name a file to send dot language instructions. } \item{labels}{variable labels if not specified as colnames for the matrices} \item{cut}{Draw paths for values > cut } \item{fit}{The output from a lavaan cfa or sem} \item{errors}{draw an error term for observerd variables } \item{simple}{Just draw one path per x or y variable } \item{regression}{Draw a regression diagram (observed variables cause Y)} \item{lr}{Direction of diagram is from left to right (lr=TRUE, default) or from bottom to top (lr=FALSE) } \item{e.size}{size of the ellipses in structure.diagram} \item{main}{main title of diagram} \item{size}{page size of graphic } \item{node.font}{ font type for graph } \item{edge.font}{font type for graph } \item{rank.direction}{ Which direction should the graph be oriented } \item{digits}{Number of digits to draw} \item{title}{ Title of graphic } \item{\dots}{ other options to pass to Rgraphviz } } \details{ The recommended function is structure.diagram which does not use Rgraphviz but which does not produce dot code either. All three structure function return a matrix of commands suitable for using in the sem or lavaan packages. (Specify errors=TRUE to get code that will run directly in the sem package.) The structure.graph output can be directed to an output file for post processing using the dot graphic language but requires that Rgraphviz is installed. sem.diagram and sem.graph convert the output from a simple CFA done with the sem package and draw them using structure.diagram or structure.graph. lavaan.diagram converts the output (fit) from a simple CFA done with the lavaan package and draws them using structure.diagram. The figure is organized to show the appropriate paths between: The correlations between the X variables (if Rx is specified) \cr The X variables and their latent factors (if fx is specified) \cr The latent X and the latent Y (if Phi is specified) \cr The latent Y and the observed Y (if fy is specified) \cr The correlations between the Y variables (if Ry is specified)\cr A confirmatory factor model would specify just fx and Phi, a structural model would include fx, Phi, and fy. The raw correlations could be shown by just including Rx and Ry. \code{\link{lavaan.diagram}} may be called from the \code{\link{diagram}} function which also will call \code{\link{fa.diagram}}, \code{\link{omega.diagram}} or \code{\link{iclust.diagram}}, depending upon the class of the fit. Other diagram functions include \code{\link{fa.diagram}}, \code{\link{omega.diagram}}. All of these functions use the various dia functions such as \code{\link{dia.rect}}, \code{\link{dia.ellipse}}, \code{\link{dia.arrow}}, \code{\link{dia.curve}}, \code{\link{dia.curved.arrow}}, and \code{\link{dia.shape}}. } \value{ \item{sem}{(invisible) a model matrix (partially) ready for input to John Fox's sem package. It is of class ``mod" for prettier output. } \item{lavaan}{(invisible) A model specification for the lavaan package.} \item{dotfile}{If out.file is specified, a dot language file suitable for using in a dot graphics program such as graphviz or Omnigraffle.} A graphic structural diagram in the graphics window } \author{William Revelle} \seealso{ \code{\link{fa.graph}}, \code{\link{omega.graph}}, \code{\link{sim.structural}} to create artificial data sets with particular structural properties.} \examples{ fx <- matrix(c(.9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) Phi <- matrix(c(1,0,0,0,1,0,.7,.7,1),ncol=3,byrow=TRUE) f1 <- structure.diagram(fx,Phi,fy,main="A structural path diagram") #symbolic input X2 <- matrix(c("a",0,0,"b","e1",0,0,"e2"),ncol=4) colnames(X2) <- c("X1","X2","E1","E2") phi2 <- diag(1,4,4) phi2[2,1] <- phi2[1,2] <- "r" f2 <- structure.diagram(X2,Phi=phi2,errors=FALSE,main="A symbolic model") #symbolic input with error X2 <- matrix(c("a",0,0,"b"),ncol=2) colnames(X2) <- c("X1","X2") phi2 <- diag(1,2,2) phi2[2,1] <- phi2[1,2] <- "r" f3 <- structure.diagram(X2,Phi=phi2,main="an alternative representation") #and yet another one X6 <- matrix(c("a","b","c",rep(0,6),"d","e","f"),nrow=6) colnames(X6) <- c("L1","L2") rownames(X6) <- c("x1","x2","x3","x4","x5","x6") Y3 <- matrix(c("u","w","z"),ncol=1) colnames(Y3) <- "Y" rownames(Y3) <- c("y1","y2","y3") phi21 <- matrix(c(1,0,"r1",0,1,"r2",0,0,1),ncol=3) colnames(phi21) <- rownames(phi21) <- c("L1","L2","Y") f4 <- structure.diagram(X6,phi21,Y3) # and finally, a regression model X7 <- matrix(c("a","b","c","d","e","f"),nrow=6) f5 <- structure.diagram(X7,regression=TRUE) #and a really messy regession model x8 <- c("b1","b2","b3") r8 <- matrix(c(1,"r12","r13","r12",1,"r23","r13","r23",1),ncol=3) f6<- structure.diagram(x8,Phi=r8,regression=TRUE) } \keyword{multivariate } \keyword{hplot } psych/man/logistic.Rd0000644000176200001440000000570412216170023014257 0ustar liggesusers\name{logistic} \alias{logistic} \alias{logit} \alias{logistic.grm} \title{Logistic transform from x to p and logit transform from p to x} \description{The logistic function (1/(1+exp(-x)) and logit function (log(p/(1-p)) are fundamental to Item Response Theory. Although just one line functions, they are included here for ease of demonstrations and in drawing IRT models. Also included is the logistic.grm for a graded response model.} \usage{ logistic(x,d=0, a=1,c=0, z=1) logit(p) logistic.grm( x,d=0,a=1.5,c=0,z=1,r=2,s=c(-1.5,-.5,.5,1.5)) } \arguments{ \item{x}{Any integer or real value } \item{d}{Item difficulty or delta parameter } \item{a}{The slope of the curve at x=0 is equivalent to the discrimination parameter in 2PL models or alpha parameter. Is either 1 in 1PL or 1.702 in 1PN approximations. } \item{c}{Lower asymptote = guessing parameter in 3PL models or gamma } \item{z}{The upper asymptote --- in 4PL models} \item{p}{Probability to be converted to logit value} \item{r}{The response category for the graded response model} \item{s}{The response thresholds} } \details{These three functions are provided as simple helper functions for demonstrations of Item Response Theory. The one parameter logistic (1PL) model is also known as the Rasch model. It assumes items differ only in difficulty. 1PL, 2PL, 3PL and 4PL curves may be drawn by choosing the appropriate d (delta or item difficulty), a (discrimination or slope), c (gamma or guessing) and z (zeta or upper asymptote). logit is just the inverse of logistic. logistic.grm will create the responses for a graded response model for the rth category where cutpoints are in s. } \value{ \item{p}{logistic returns the probability associated with x} \item{x}{logit returns the real number associated with p} } \author{ William Revelle} \examples{ curve(logistic(x,a=1.702),-3,3,ylab="Probability of x", main="Logistic transform of x",xlab="z score units") #logistic with a=1.702 is almost the same as pnorm curve(pnorm(x),add=TRUE,lty="dashed") curve(logistic(x),add=TRUE) text(2,.8, expression(alpha ==1)) text(2,1.0,expression(alpha==1.7)) curve(logistic(x),-4,4,ylab="Probability of x", main = "Logistic transform of x in logit units",xlab="logits") curve(logistic(x,d=-1),add=TRUE) curve(logistic(x,d=1),add=TRUE) curve(logistic(x,c=.2),add=TRUE,lty="dashed") text(1.3,.5,"d=1") text(.3,.5,"d=0") text(-1.5,.5,"d=-1") text(-3,.3,"c=.2") #demo of graded response model curve(logistic.grm(x,r=1),-4,4,ylim=c(0,1),main="Five level response scale", ylab="Probability of endorsement",xlab="Latent attribute on logit scale") curve(logistic.grm(x,r=2),add=TRUE) curve(logistic.grm(x,r=3),add=TRUE) curve(logistic.grm(x,r=4),add=TRUE) curve(logistic.grm(x,r=5),add=TRUE) text(-2.,.5,1) text(-1.,.4,2) text(0,.4,3) text(1.,.4,4) text(2.,.4,5) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/cor2dist.Rd0000644000176200001440000000162511764206440014203 0ustar liggesusers\name{cor2dist} \alias{cor2dist} \title{Convert correlations to distances (necessary to do multidimensional scaling of correlation data)} \description{A minor helper function to convert correlations (ranging from -1 to 1) to distances (ranging from 0 to 2). \eqn{d = \sqrt{(2(1-r))}}. } \usage{ cor2dist(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{If square, then assumed to be a correlation matrix, otherwise the correlations are found first. } } \value{dist: a square matrix of distances. } \references{ Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} } \author{William Revelle} \note{ For an example of doing multidimensional scaling on data that are normally factored, see Revelle (in prep) } \keyword{ multivariate } \keyword{ models} psych/man/cluster.fit.Rd0000644000176200001440000000535411222300160014676 0ustar liggesusers\name{cluster.fit} \alias{cluster.fit} \title{ cluster Fit: fit of the cluster model to a correlation matrix } \description{ How well does the cluster model found by \code{\link{ICLUST}} fit the original correlation matrix? A similar algorithm \code{\link{factor.fit}} is found in \code{\link{VSS}}. This function is internal to ICLUST but has more general use as well. In general, the cluster model is a Very Simple Structure model of complexity one. That is, every item is assumed to represent only one factor/cluster. Cluster fit is an analysis of how well this model reproduces a correlation matrix. Two measures of fit are given: cluster fit and factor fit. Cluster fit assumes that variables that define different clusters are orthogonal. Factor fit takes the loadings generated by a cluster model, finds the cluster loadings on all clusters, and measures the degree of fit of this somewhat more complicated model. Because the cluster loadings are similar to, but not identical to factor loadings, the factor fits found here and by \code{\link{factor.fit}} will be similar. } \usage{ cluster.fit(original, load, clusters, diagonal = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{original}{The original correlation matrix being fit } \item{load}{ Cluster loadings -- that is, the correlation of individual items with the clusters, corrected for item overlap } \item{clusters}{The cluster structure } \item{diagonal}{ Should we fit the diagonal as well? } } \details{The cluster model is similar to the factor model: R is fitted by C'C. Where C <- Cluster definition matrix x the loading matrix. How well does this model approximate the original correlation matrix and how does this compare to a factor model? The fit statistic is a comparison of the original (squared) correlations to the residual correlations. Fit = 1 - r*2/r2 where r* is the residual correlation of data - model and model = C'C. } \value{ \item{clusterfit }{The cluster model is a reduced form of the factor loading matrix. That is, it is the product of the elements of the cluster matrix * the loading matrix. } \item{factorfit }{How well does the complete loading matrix reproduce the correlation matrix?} } \references{ \url{http://personality-project.org/r/r.ICLUST.html} } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu} } \seealso{ \code{\link{VSS}}, \code{\link{ICLUST}}, \code{\link{factor2cluster}}, \code{\link{cluster.cor}}, \code{\link{factor.fit}}} \examples{ r.mat<- Harman74.cor$cov iq.clus <- ICLUST(r.mat,nclusters =2) fit <- cluster.fit(r.mat,iq.clus$loadings,iq.clus$clusters) fit } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ cluster }% __ONLY ONE__ keyword per line psych/man/omega.graph.Rd0000755000176200001440000001210012576113664014642 0ustar liggesusers\name{omega.graph} \alias{omega.diagram} \alias{omega.graph} \title{Graph hierarchical factor structures } \description{Hierarchical factor structures represent the correlations between variables in terms of a smaller set of correlated factors which themselves can be represented by a higher order factor. Two alternative solutions to such structures are found by the \code{\link{omega}} function. The correlated factors solutions represents the effect of the higher level, general factor, through its effect on the correlated factors. The other representation makes use of the Schmid Leiman transformation to find the direct effect of the general factor upon the original variables as well as the effect of orthogonal residual group factors upon the items. Graphic presentations of these two alternatives are helpful in understanding the structure. omega.graph and omega.diagram draw both such structures. Graphs are drawn directly onto the graphics window or expressed in ``dot" commands for conversion to graphics using implementations of Graphviz (if using omega.graph). Using Graphviz allows the user to clean up the Rgraphviz output. However, if Graphviz and Rgraphviz are not available, use omega.diagram. See the other structural diagramming functions, \code{\link{fa.diagram}} and \code{\link{structure.diagram}}. In addition } \usage{ omega.diagram(om.results,sl=TRUE,sort=TRUE,labels=NULL,flabels=NULL,cut=.2, gcut=.2,simple=TRUE, errors=FALSE, digits=1,e.size=.1,rsize=.15,side=3, main=NULL,cex=NULL,color.lines=TRUE,marg=c(.5,.5,1.5,.5),adj=2, ...) omega.graph(om.results, out.file = NULL, sl = TRUE, labels = NULL, size = c(8, 6), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits = 1, title = "Omega", ...) } \arguments{ \item{om.results}{The output from the omega function } \item{out.file}{ Optional output file for off line analysis using Graphviz } \item{sl}{ Orthogonal clusters using the Schmid-Leiman transform (sl=TRUE) or oblique clusters } \item{labels}{ variable labels } \item{flabels}{Labels for the factors (not counting g)} \item{size}{size of graphics window } \item{node.font}{ What font to use for the items} \item{edge.font}{What font to use for the edge labels } \item{rank.direction}{ Defaults to left to right } \item{digits}{ Precision of labels } \item{cex}{control font size} \item{color.lines}{Use black for positive, red for negative} \item{marg}{The margins for the figure are set to be wider than normal by default} \item{adj}{Adjust the location of the factor loadings to vary as factor mod 4 + 1} \item{title}{ Figure title } \item{main}{ main figure caption } \item{\dots}{Other options to pass into the graphics packages } \item{e.size}{the size to draw the ellipses for the factors. This is scaled by the number of variables.} \item{cut}{Minimum path coefficient to draw} \item{gcut}{Minimum general factor path to draw} \item{simple}{draw just one path per item} \item{sort}{sort the solution before making the diagram} \item{side}{on which side should errors be drawn?} \item{errors}{show the error estimates} \item{rsize}{size of the rectangles} } \details{While omega.graph requires the Rgraphviz package, omega.diagram does not. code{\link{omega}} requires the GPArotation package. } \value{ \item{clust.graph }{A graph object} \item{sem}{A matrix suitable to be run throughe the sem function in the sem package.} } \references{ \url{http://personality-project.org/r/r.omega.html} \cr Revelle, W. (in preparation) An Introduction to Psychometric Theory with applications in R. \url{http://personality-project.org/r/book} Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14, 57-74. (\url{http://personality-project.org/revelle/publications/iclust.pdf}) Zinbarg, R.E., Revelle, W., Yovel, I., & Li. W. (2005). Cronbach's Alpha, Revelle's Beta, McDonald's Omega: Their relations with each and two alternative conceptualizations of reliability. Psychometrika. 70, 123-133. \url{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} Zinbarg, R., Yovel, I., Revelle, W. & McDonald, R. (2006). Estimating generalizability to a universe of indicators that all have one attribute in common: A comparison of estimators for omega. Applied Psychological Measurement, 30, 121-144. DOI: 10.1177/0146621605278814 \url{http://apm.sagepub.com/cgi/reprint/30/2/121} } \author{ \url{http://personality-project.org/revelle.html} \cr Maintainer: William Revelle \email{ revelle@northwestern.edu } } \note{ omega.graph requires rgraphviz. -- omega requires GPArotation } \seealso{ \code{\link{omega}}, \code{\link{make.hierarchical}}, \code{\link{ICLUST.rgraph}} } \examples{ #24 mental tests from Holzinger-Swineford-Harman if(require(GPArotation) ) {om24 <- omega(Harman74.cor$cov,4) } #run omega # #example hierarchical structure from Jensen and Weng if(require(GPArotation) ) {jen.omega <- omega(make.hierarchical())} } \keyword{ multivariate } psych/man/vegetables.Rd0000644000176200001440000000562711127464141014576 0ustar liggesusers\name{vegetables} \alias{vegetables} \alias{veg} \docType{data} \title{ Paired comparison of preferences for 9 vegetables} \description{A classic data set for demonstrating Thurstonian scaling is the preference matrix of 9 vegetables from Guilford (1954). Used by Guiford, Nunnally, and Nunally and Bernstein, this data set allows for examples of basic scaling techniques. } \usage{data(vegetables)} \format{ A data frame with 9 choices on the following 9 vegetables. The values reflect the perecentage of times where the column entry was preferred over the row entry. \describe{ \item{\code{Turn}}{Turnips} \item{\code{Cab}}{Cabbage} \item{\code{Beet}}{Beets} \item{\code{Asp}}{Asparagus} \item{\code{Car}}{Carrots} \item{\code{Spin}}{Spinach} \item{\code{S.Beans}}{String Beans} \item{\code{Peas}}{Peas} \item{\code{Corn}}{Corn} } } \details{Louis L. Thurstone was a pioneer in psychometric theory and measurement of attitudes, interests, and abilities. Among his many contributions was a systematic analysis of the process of comparative judgment (thurstone, 1927). He considered the case of asking subjects to successively compare pairs of objects. If the same subject does this repeatedly, or if subjects act as random replicates of each other, their judgments can be thought of as sampled from a normal distribution of underlying (latent) scale scores for each object, Thurstone proposed that the comparison between the value of two objects could be represented as representing the differences of the average value for each object compared to the standard deviation of the differences between objects. The basic model is that each item has a normal distribution of response strength and that choice represents the stronger of the two response strengths. A justification for the normality assumption is that each decision represents the sum of many independent inputs and thus, through the central limit theorem, is normally distributed. Thurstone considered five different sets of assumptions about the equality and independence of the variances for each item (Thurston, 1927). Torgerson expanded this analysis slightly by considering three classes of data collection (with individuals, between individuals and mixes of within and between) crossed with three sets of assumptions (equal covariance of decision process, equal correlations and small differences in variance, equal variances). This vegetable data set is used by Guilford and by Nunnally to demonstrate Thurstonian scaling. } \source{ Guilford, J.P. (1954) Psychometric Methods. McGraw-Hill, New York. } \references{ Nunnally, J. C. (1967). Psychometric theory., McGraw-Hill, New York.\cr Revelle, W. An introduction to psychometric theory with applications in R. (in preparation), Springer. \url{http://personality-project.org/r/book} } \seealso{ \code{\link{thurstone}}} \examples{ data(vegetables) thurstone(veg) } \keyword{datasets} psych/man/fa.diagram.Rd0000644000176200001440000001737213127531703014447 0ustar liggesusers\name{fa.diagram} \alias{fa.graph} \alias{fa.rgraph} \alias{fa.diagram} \alias{het.diagram} \title{ Graph factor loading matrices} \description{Factor analysis or principal components analysis results are typically interpreted in terms of the major loadings on each factor. These structures may be represented as a table of loadings or graphically, where all loadings with an absolute value > some cut point are represented as an edge (path). \code{\link{fa.diagram}} uses the various \code{\link{diagram}} functions to draw the diagram. \code{\link{fa.graph}} generates dot code for external plotting. \code{\link{fa.rgraph}} uses the Rgraphviz package (if available) to draw the graph. \code{\link{het.diagram}} will draw "heterarchy" diagrams of factor/scale solutions at different levels. } \usage{ fa.diagram(fa.results,Phi=NULL,fe.results=NULL,sort=TRUE,labels=NULL,cut=.3, simple=TRUE, errors=FALSE,g=FALSE,digits=1,e.size=.05,rsize=.15,side=2, main,cex=NULL,marg=c(.5,.5,1,.5),adj=1,ic=FALSE, ...) het.diagram(r,levels,cut=.3,digits=2,both=TRUE, main="Heterarchy diagram",l.cex,gap.size,...) fa.graph(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis", ...) fa.rgraph(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis",graphviz=TRUE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fa.results}{The output of factor analysis, principal components analysis, or ICLUST analysis. May also be a factor loading matrix from anywhere.} \item{Phi}{Normally not specified (it is is found in the FA, pc, or ICLUST, solution), this may be given if the input is a loadings matrix.} \item{fe.results}{the results of a factor extension analysis (if any)} \item{out.file}{ If it exists, a dot representation of the graph will be stored here (fa.graph)} \item{labels}{ Variable labels } \item{cut}{ Loadings with abs(loading) > cut will be shown } \item{simple}{Only the biggest loading per item is shown} \item{g}{Does the factor matrix reflect a g (first) factor. If so, then draw this to the left of the variables, with the remaining factors to the right of the variables. It is useful to turn off the simple parameter in this case.} \item{ic}{If drawing a cluster analysis result, should we treat it as latent variable model (ic=FALSE) or as an observed variable model (ic=TRUE) } \item{r}{A correlation matrix for the het.diagram function} \item{levels}{A list of the elements in each level} \item{both}{Should arrows have double heads (in het.diagram)} \item{size}{graph size } \item{sort}{sort the factor loadings before showing the diagram} \item{errors}{include error estimates (as arrows)} \item{e.size}{size of ellipses} \item{rsize}{size of rectangles} \item{side}{on which side should error arrows go?} \item{cex}{modify font size} \item{l.cex}{modify the font size in arrows, defaults to cex} \item{gap.size}{The gap in the arrow for the label. Can be adjusted to compensate for variations in cex or l.cex} \item{marg}{sets the margins to be wider than normal, returns them to the normal size upon exit} \item{adj}{how many different positions (1-3) should be used for the numeric labels. Useful if they overlap each other.} \item{node.font}{what font should be used for nodes in fa.graph } \item{edge.font}{what font should be used for edges in fa.graph } \item{rank.direction}{ parameter passed to Rgraphviz-- which way to draw the graph } \item{digits}{ Number of digits to show as an edgelable } \item{main}{ Graphic title, defaults to "factor analyis" or "factor analysis and extension" } \item{graphviz}{Should we try to use Rgraphviz for output?} \item{\dots}{ other parameters } } \details{Path diagram representations have become standard in confirmatory factor analysis, but are not yet common in exploratory factor analysis. Representing factor structures graphically helps some people understand the structure. By default the arrows come from the latent variables to the observed variables. This is, of course, the factor model. However, if the class of the object to be drawn is 'principal', then reverse the direction of the arrows, and the 'latent' variables are no longer latent, and are shown as boxes. For cluster models, the default is to treat them as factors, but if ic =TRUE, then we treat it as a components model. fa.diagram does not use Rgraphviz and is the preferred function. fa.graph generates dot code to be used by an external graphics program. It does not have all the bells and whistles of fa.diagram, but these may be done in the external editor. Hierarchical (bifactor) models may be drawn by specifying the g parameter as TRUE. This allows for an graphical displays of various factor transformations with a bifactor structure (e.g., \code{\link{bifactor}} and \code{\link{biquartimin}}. See \code{\link{omega}} for an alternative way to find these structures. The \code{\link{het.diagram}} function will show the case of a hetarchical structure at multiple levels. It can also be used to show the patterns of correlations between sets of scales (e.g., EPI, NEO, BFI). The example is for showing the relationship between 3 sets of 4 variables from the Thurstone data set. The parameters l.cex and gap.size are used to adjust the font size of the labels and the gap in the lines. In fa.rgraph although a nice graph is drawn for the orthogonal factor case, the oblique factor drawing is acceptable, but is better if cleaned up outside of R or done using fa.diagram. The normal input is taken from the output of either \code{\link{fa}} or \code{\link{ICLUST}}. This latter case displays the ICLUST results in terms of the cluster loadings, not in terms of the cluster structure. Actually an interesting option. It is also possible to just give a factor loading matrix as input. In this case, supplying a Phi matrix of factor correlations is also possible. It is possible, using fa.graph, to export dot code for an omega solution. fa.graph should be applied to the schmid$sl object with labels specified as the rownames of schmid$sl. The results will need editing to make fully compatible with dot language plotting. To specify the model for a structural equation confirmatory analysis of the results, use \code{\link{structure.diagram}} instead. } \value{fa.diagram: A path diagram is drawn without using Rgraphviz. This is probably the more useful function. fa.rgraph: A graph is drawn using rgraphviz. If an output file is specified, the graph instructions are also saved in the dot language. fa.graph: the graph instructions are saved in the dot language. } \author{William Revelle } \note{ fa.rgraph requires Rgraphviz. Because there are occasional difficulties installing Rgraphviz from Bioconductor in that some libraries are misplaced and need to be relinked, it is probably better to use fa.diagram or fa.graph. } \seealso{ \code{\link{omega.graph}}, \code{\link{ICLUST.graph}}, \code{\link{structure.diagram}} to convert the factor diagram to sem modeling code. } \examples{ test.simple <- fa(item.sim(16),2,rotate="oblimin") #if(require(Rgraphviz)) {fa.graph(test.simple) } fa.diagram(test.simple) f3 <- fa(Thurstone,3,rotate="cluster") fa.diagram(f3,cut=.4,digits=2) f3l <- f3$loadings fa.diagram(f3l,main="input from a matrix") Phi <- f3$Phi fa.diagram(f3l,Phi=Phi,main="Input from a matrix") fa.diagram(ICLUST(Thurstone,2,title="Two cluster solution of Thurstone"),main="Input from ICLUST") het.diagram(Thurstone,levels=list(1:4,5:8,3:7)) } \keyword{ multivariate } \keyword{hplot} psych/man/bi.bars.Rd0000644000176200001440000000251712754450174014000 0ustar liggesusers\name{bi.bars} \alias{bi.bars} %- Also NEED an '\alias' for EACH other topic documented here. \title{Draw pairs of bargraphs based on two groups} \description{When showing e.g., age or education distributions for two groups, it is convenient to plot them back to back. bi.bars will do so.} \usage{bi.bars(x,grp,horiz,color,label=NULL,zero=FALSE,xlab,ylab,...) } \arguments{ \item{x}{The data to be drawn} \item{grp}{a grouping variable.} \item{horiz}{horizontal (default) or vertical bars} \item{color}{colors for the two groups -- defaults to blue and red} \item{label}{If specified, labels for the dependent axis } \item{zero}{If TRUE, subtract the minimum value to make the numbers range from 0 to max -min. This is useful if showing heights} \item{xlab}{xaxis label if appropriate} \item{ylab}{y axis label otherwise} \item{\dots}{Further parameters to pass to the graphing program} } \details{A trivial, if useful, function to draw back to back histograms/barplots. One for each group.} \value{a graphic} \author{William Revelle} \examples{ data(bfi) with(bfi,{bi.bars(age,gender,ylab="Age",main="Age by males and females") bi.bars(education,gender,xlab="Education",main="Education by gender",horiz=FALSE)}) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ hplot } psych/man/esem.Rd0000644000176200001440000002416413005452274013404 0ustar liggesusers\name{esem} \alias{esem} \alias{esem.diagram} \alias{interbattery} \title{Perform and Exploratory Structural Equation Model (ESEM) by using factor extension techniques} \description{Structural Equation Modeling (SEM) is a powerful tool for confirming multivariate structures and is well done by the lavaan, sem, or OpenMx packages. Because they are confirmatory, SEM models test specific models. Exploratory Structural Equation Modeling (ESEM), on the other hand, takes a more exploratory approach. By using factor extension, it is possible to extend the factors of one set of variables (X) into the variable space of another set (Y). Using this technique, it is then possible to estimate the correlations between the two sets of latent variables, much the way normal SEM would do. Based upon exploratory factor analysis (EFA) this approach provides a quick and easy approach to do exploratory structural equation modeling. } \usage{ esem(r, varsX, varsY, nfX = 1, nfY = 1, n.obs = NULL, fm = "minres", rotate = "oblimin", plot = TRUE, cor = "cor", use = "pairwise",weight=NULL, ...) esem.diagram(esem=NULL,labels=NULL,cut=.3,errors=FALSE,simple=TRUE, regression=FALSE,lr=TRUE, digits=1,e.size=.1,adj=2, main="Exploratory Structural Model", ...) interbattery(r, varsX, varsY, nfX = 1, nfY = 1, n.obs = NULL,cor = "cor", use = "pairwise",weight=NULL) } \arguments{ \item{r}{A correlation matrix or a raw data matrix suitable for factor analysis} \item{varsX}{The variables defining set X} \item{varsY}{The variables defining set Y} \item{nfX}{The number of factors to extract for the X variables} \item{nfY}{The number of factors to extract for the Y variables} \item{n.obs}{Number of observations (needed for eBIC and chi square), can be ignored.} \item{fm}{The factor method to use, e.g., "minres", "mle" etc. (see fa for details)} \item{rotate}{Which rotation to use. (see fa for details)} \item{plot}{If TRUE, draw the esem.diagram} \item{cor}{What options for to use for correlations (see fa for details)} \item{use}{"pairwise" for pairwise complete data, for other options see cor} \item{weight}{Weights to apply to cases when finding wt.cov} \item{\dots}{other parameters to pass to fa or to esem.diagram functions.} \item{esem}{The object returned from esem and passed to esem.diagram} \item{labels}{ Variable labels } \item{cut}{ Loadings with abs(loading) > cut will be shown } \item{simple}{Only the biggest loading per item is shown} \item{errors}{include error estimates (as arrows)} \item{e.size}{size of ellipses (adjusted by the number of variables)} \item{digits}{Round coefficient to digits} \item{adj}{loadings are adjusted by factor number mod adj to decrease likelihood of overlap} \item{main}{ Graphic title, defaults to "Exploratory Structural Model" } \item{lr}{draw the graphic left to right (TRUE) or top to bottom (FALSE)} \item{regression}{Not yet implemented} } \details{ Factor analysis as implemented in \code{\link{fa}} attempts to summarize the covariance (correlational) structure of a set of variables with a small set of latent variables or ``factors". This solution may be `extended' into a larger space with more variables without changing the original solution (see \code{\link{fa.extension}}. Similarly, the factors of a second set of variables (the Y set) may be extended into the original (X ) set. Doing so allows two independent measurement models, a measurement model for X and a measurement model for Y. These two sets of latent variables may then be correlated too for an Exploratory Structural Equation Model. (This is exploratory because it is based upon exploratory factor analysis (EFA) rather than a confirmatory factor model (CFA) using more traditional Structural Equation Modeling packages such as sem, lavaan, or Mx.) Although the output seems very similar to that of a normal EFA using \code{\link{fa}}, it is actually two independent factor analyses (of the X and the Y sets) that are then mutually extended into each other. That is, the loadings and structure matrices from sets X and Y are merely combined, and the correlations between the two sets of factors are found. Interbattery factor analysis was developed by Tucker (1958) as a way of comparing the factors in common to two batteries of tests. (Currently under development). Using some straight forward linear algebra It is straight forward to find the factors of the intercorrelations between the two sets of variables. This does not require estimating communalities and is highly related to the procedures of canonical correlation. The difference between the esem and the interbattery approach is that the first factors the X set and then relates those factors to factors of the Y set. Interbattery factor analysis, on the other hand, tries to find one set of factors that links both sets but is still distinct from factorinh both sets together. } \value{ \item{communality}{The amount of variance in each of the X and Y variables accounted for by the total model.} \item{sumsq}{The amount of variance accounted for by each factor -- independent of the other factors.} \item{dof}{Degrees of freedom of the model} \item{null.dof}{Degrees of freedom of the null model (the correlation matrix)} \item{ENull}{chi square of the null model} \item{chi}{chi square of the model. This is found by examining the size of the residuals compared to their standard error.} \item{rms}{The root mean square of the residuals.} \item{nh}{Harmonic sample size if using min.chi for factor extraction.} \item{EPVAL}{Probability of the Emprical Chi Square given the hypothesis of an identity matrix.} \item{crms}{Adjusted root mean square residual} \item{EBIC}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived EBIC based upon the empirical \eqn{\chi^2}{chi^2} - 2 df. } \item{ESABIC}{Sample size adjusted empirical BIC} \item{fit}{sum of squared residuals versus sum of squared original values} \item{fit.off}{fit applied to the off diagonal elements} \item{sd}{standard deviation of the residuals} \item{factors}{Number of factors extracted} \item{complexity}{Item complexity} \item{n.obs}{Number of total observations} \item{loadings}{The factor pattern matrix for the combined X and Y factors} \item{Structure}{The factor structure matrix for the combined X and Y factors} \item{loadsX}{Just the X set of loadings (pattern) without the extension variables.} \item{loadsY}{Just the Y set of loadings (pattern) without the extension variables.} \item{PhiX}{The correlations of the X factors} \item{PhiY}{the correlations of the Y factors} \item{Phi}{the correlations of the X and Y factors within the selves and across sets.} \item{fm}{The factor method used} \item{fx}{The complete factor analysis output for the X set} \item{fy}{The complete factor analysis output for the Y set} \item{residual}{The residual correlation matrix (R - model). May be examined by a call to residual().} \item{Call}{Echo back the original call to the function.} } \references{ Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} Tucker, Ledyard (1958) An inter-battery method of factor analysis, Psychometrika, 23, 111-136. } \author{William Revelle} \note{As of September, 2016, this is the first edition of the \code{\link{esem}} and \code{\link{esem.diagram}} functions. Suggestions or comments are most welcome. } \seealso{ \code{\link{principal}} for principal components analysis (PCA). PCA will give very similar solutions to factor analysis when there are many variables. The differences become more salient as the number variables decrease. The PCA and FA models are actually very different and should not be confused. One is a model of the observed variables, the other is a model of latent variables. \code{\link{irt.fa}} for Item Response Theory analyses using factor analysis, using the two parameter IRT equivalent of loadings and difficulties. \code{\link{VSS}} will produce the Very Simple Structure (VSS) and MAP criteria for the number of factors, \code{\link{nfactors}} to compare many different factor criteria. \code{\link{ICLUST}} will do a hierarchical cluster analysis alternative to factor analysis or principal components analysis. \code{\link{predict.psych}} to find predicted scores based upon new data, \code{\link{fa.extension}} to extend the factor solution to new variables, \code{\link{omega}} for hierarchical factor analysis with one general factor. code{\link{fa.multi}} for hierarchical factor analysis with an arbitrary number of higher order factors. \code{\link{fa.sort}} will sort the factor loadings into echelon form. \code{\link{fa.organize}} will reorganize the factor pattern matrix into any arbitrary order of factors and items. \code{\link{KMO}} and \code{\link{cortest.bartlett}} for various tests that some people like. \code{\link{factor2cluster}} will prepare unit weighted scoring keys of the factors that can be used with \code{\link{scoreItems}}. \code{\link{fa.lookup}} will print the factor analysis loadings matrix along with the item ``content" taken from a dictionary of items. This is useful when examining the meaning of the factors. \code{\link{anova.psych}} allows for testing the difference between two (presumably nested) factor models . } \examples{ #make up a sem like problem using sim.structure fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) #now esem it: example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) example esem.diagram(example,simple=FALSE) #compare two alternative solutions to the first 2 factors of the neo. #solution 1 is the normal 2 factor solution. #solution 2 is an esem with 1 factor for the first 6 variables, and 1 for the second 6. f2 <- fa(neo[1:12,1:12],2) es2 <- esem(neo,1:6,7:12,1,1) summary(f2) summary(es2) fa.congruence(f2,es2) } \keyword{ multivariate } \keyword{ models}psych/man/residuals.psych.Rd0000644000176200001440000000211013152330500015544 0ustar liggesusers\name{residuals.psych} \alias{residuals.psych} \alias{resid.psych} \title{Extract residuals from various psych objects} \description{Residuals in the various psych functions are extracted and then may be "pretty" printed.} \usage{ \method{residuals}{psych}(object,diag=TRUE,...) \method{resid}{psych}(object,diag=TRUE,...) } \arguments{ \item{object}{The object returned by a psych function.} \item{diag}{if FALSE, then convert the diagonal of the residuals to NA} \item{...}{Other parameters to be passed to residual (ignored but required by the generic function)} } \details{ Currently implemented for \code{\link{fa}}, \code{\link{principal}}, \code{\link{omega}}, \code{\link{irt.fa}}, and \code{\link{fa.extension}}. } \value{ residuals: a matrix of residual estimates} \author{William Revelle } \examples{ f3 <- fa(Thurstone,3) residuals(f3) sum(residuals(f3)^2) #include diagonal sum(residuals(f3,diag=FALSE)^2,na.rm=TRUE) #drop diagonal } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models}psych/man/error.circles.Rd0000644000176200001440000001131112777574214015233 0ustar liggesusers\name{errorCircles} \alias{errorCircles} %- Also NEED an '\alias' for EACH other topic documented here. \title{Two way plots of means, error bars, and sample sizes} \description{Given a matrix or data frame, data, find statistics based upon a grouping variable and then plot x and y means with error bars for each value of the grouping variable. If the data are paired (e.g. by gender), then plot means and error bars for the two groups on all variables. } \usage{ errorCircles(x, y, data, ydata = NULL, group=NULL, paired = FALSE, labels = NULL, main = NULL, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,add=FALSE, pos = NULL, offset = 1, arrow.len = 0.2, alpha = 0.05, sd = FALSE, bars = TRUE, circles = TRUE, colors=NULL,col.arrows=NULL,col.text=NULL,circle.size=1, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{The x variable (by name or number) to plot} \item{y}{The y variable (name or number) to plot} \item{data}{The matrix or data.frame to use for the x data} \item{ydata}{If plotting data from two data.frames, then the y variable of the ydata frame will be used.} \item{group}{If specified, then \code{\link{statsBy}} is called first to find the statistics by group} \item{paired}{If TRUE, plot all x and y variables for the two values of the grouping variable.} \item{labels}{Variable names} \item{main}{Main title for plot} \item{xlim}{xlim values if desired-- defaults to min and max mean(x) +/- 2 se} \item{ylim}{ylim values if desired -- defaults to min and max mean(y) +/- 2 se} \item{xlab}{label for x axis -- grouping variable 1} \item{ylab}{label for y axis -- grouping variable 2} \item{add}{If TRUE, add to the prior plot} \item{pos}{Labels are located where with respect to the mean? } \item{offset}{Labels are then offset from this location} \item{arrow.len}{ Arrow length } \item{alpha}{alpha level of error bars } \item{sd}{if sd is TRUE, then draw means +/- 1 sd)} \item{bars}{Should error.bars be drawn for both x and y } \item{circles}{Should circles representing the relative sample sizes be drawn?} \item{colors}{Plot the points using colors -- default is black} \item{col.text}{What color for the text labels (defaults to colors)} \item{col.arrows}{What color should the arrows and circles be? Defaults to colors} \item{circle.size}{A scaling parameter for the error.circles. Defaults to 1, but can be adjusted downwards to make them less instrusive.} \item{\dots}{ Other parameters for plot } } \details{ When visualizing the effect of an experimental manipulation or the relationship of multiple groups, it is convenient to plot their means as well as their confidence regions in a two dimensional space. The diameter of the enclosing circle (ellipse) scales as 1/sqrt(N) * the maximum standard error of all variables. That is to say, the area of the ellipse reflects sample size. } \value{If the group variable is specified, then the statistics from \code{\link{statsBy}} are (invisibly) returned. } \author{William Revelle} \note{Basically this is a combination (and improvement) of \code{\link{statsBy}} with \code{\link{error.crosses}}. Can also serve some of the functionality of \code{\link{error.bars.by}} (see the last example). } \seealso{\code{\link{statsBy}}, \code{\link{describeBy}}, \code{\link{error.crosses}}} \examples{ #BFI scores for males and females errorCircles(1:25,1:25,data=bfi,group="gender",paired=TRUE,ylab="female scores", xlab="male scores",main="BFI scores by gender") abline(a=0,b=1) #drop the circles since all samples are the same sizes errorCircles(1:25,1:25,data=bfi,group="gender",paired=TRUE,circles=FALSE, ylab="female scores",xlab="male scores",main="BFI scores by gender") abline(a=0,b=1) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal",ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20), pch=16,cex=2,colors=colors, main ="EA and TA pre and post affective movies") #now, use the stats from the prior run errorCircles("EA1","TA1",data=affect.stats,labels=films,pch=16,cex=2,colors=colors,add=TRUE) #show sample size with the size of the circles errorCircles("SATV","SATQ",sat.act,group="education") #Can also provide error.bars.by functionality errorCircles(2,5,group=2,data=sat.act,circles=FALSE,pch=16,colors="blue", ylim= c(200,800),main="SATV by education",labels="") #just do the breakdown and then show the points # errorCircles(3,5,group=3,data=sat.act,circles=FALSE,pch=16,colors="blue", # ylim= c(200,800),main="SATV by age",labels="",bars=FALSE) } \keyword{ multivariate } \keyword{ hplot } psych/man/r.test.Rd0000644000176200001440000001302113147666755013702 0ustar liggesusers\name{r.test} \alias{r.test} \title{Tests of significance for correlations} \description{Tests the significance of a single correlation, the difference between two independent correlations, the difference between two dependent correlations sharing one variable (Williams's Test), or the difference between two dependent correlations with different variables (Steiger Tests). } \usage{ r.test(n, r12, r34 = NULL, r23 = NULL, r13 = NULL, r14 = NULL, r24 = NULL, n2 = NULL,pooled=TRUE, twotailed = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{n}{Sample size of first group } \item{r12}{Correlation to be tested} \item{r34}{Test if this correlation is different from r12, if r23 is specified, but r13 is not, then r34 becomes r13 } \item{r23}{if ra = r(12) and rb = r(13) then test for differences of dependent correlations given r23} \item{r13}{implies ra =r(12) and rb =r(34) test for difference of dependent correlations } \item{r14}{implies ra =r(12) and rb =r(34) } \item{r24}{ ra =r(12) and rb =r(34)} \item{n2}{n2 is specified in the case of two independent correlations. n2 defaults to n if if not specified } \item{pooled}{use pooled estimates of correlations} \item{twotailed}{ should a twotailed or one tailed test be used } } \details{Depending upon the input, one of four different tests of correlations is done. 1) For a sample size n, find the t value for a single correlation where \deqn{t = \frac{r * \sqrt(n-2)}{\sqrt(1-r^2)} }{t = r* sqrt(n-2)/sqrt(1-r^2) } and \deqn{se = \sqrt{\frac{1-r^2}{n-2}}) }{se = sqrt((1-r^2)/(n-2))}. 2) For sample sizes of n and n2 (n2 = n if not specified) find the z of the difference between the z transformed correlations divided by the standard error of the difference of two z scores: \deqn{z = \frac{z_1 - z_2}{\sqrt{\frac{1}{(n_1 - 3) + (n_2 - 3)}}}}{t = (z_1 - z_2) * sqrt(1/((n_1)-3 + (n_2-3)))}. 3) For sample size n, and correlations r12, r13 and r23 test for the difference of two dependent correlations (r12 vs r13). 4) For sample size n, test for the difference between two dependent correlations involving different variables. For clarity, correlations may be specified by value. If specified by location and if doing the test of dependent correlations, if three correlations are specified, they are assumed to be in the order r12, r13, r23. Consider the example the example from Steiger: where Masculinity at time 1 (M1) correlates with Verbal Ability .5 (r12), femininity at time 1 (F1) correlates with Verbal ability r13 =.4, and M1 correlates with F1 (r23= .1). Then, given the correlations: r12 = .4, r13 = .5, and r23 = .1, t = -.89 for n =103, i.e., r.test(n=103, r12=.4, r13=.5,r23=.1) } \value{ \item{test}{Label of test done} \item{z}{z value for tests 2 or 4} \item{t}{t value for tests 1 and 3} \item{p}{probability value of z or t} } \references{ Cohen, J. and Cohen, P. and West, S.G. and Aiken, L.S. (2003) Applied multiple regression/correlation analysis for the behavioral sciences, L.Erlbaum Associates, Mahwah, N.J. Olkin, I. and Finn, J. D. (1995). Correlations redux. Psychological Bulletin, 118(1):155-164. Steiger, J.H. (1980), Tests for comparing elements of a correlation matrix, Psychological Bulletin, 87, 245-251. Williams, E.J. (1959) Regression analysis. Wiley, New York, 1959. } \author{William Revelle } \note{Steiger specifically rejects using the Hotelling T test to test the difference between correlated correlations. Instead, he recommends Williams' test. (See also Dunn and Clark, 1971). These tests follow Steiger's advice. The test of two independent correlations is just a z test of the difference of the Fisher's z transformed correlations divided by the standard error of the difference. (See Cohen et al, p 49). By default, the probabilities are reported to 2 decimal places. This will, of course, sometimes lead to statements such as p < .1 when in fact p < .1001 or even more precisely p < .1000759. To achieve the higher precision, use a print statement with the preferred number of digits. See the last set of examples (courtesy of Julia Rohrer). } \seealso{ See also \ code{\link{corr.test}} which tests all the elements of a correlation matrix, and \code{\link{cortest.mat}} to compare two matrices of correlations. r.test extends the tests in \code{\link{paired.r}},\code{\link{r.con}}} \examples{ n <- 30 r <- seq(0,.9,.1) rc <- matrix(r.con(r,n),ncol=2) test <- r.test(n,r) r.rc <- data.frame(r=r,z=fisherz(r),lower=rc[,1],upper=rc[,2],t=test$t,p=test$p) round(r.rc,2) r.test(50,r) r.test(30,.4,.6) #test the difference between two independent correlations r.test(103,.4,.5,.1) #Steiger case A of dependent correlations r.test(n=103, r12=.4, r13=.5,r23=.1) #for complicated tests, it is probably better to specify correlations by name r.test(n=103,r12=.5,r34=.6,r13=.7,r23=.5,r14=.5,r24=.8) #steiger Case B ##By default, the precision of p values is 2 decimals #Consider three different precisions shown by varying the requested number of digits r12 = 0.693458895410494 r23 = 0.988475791500198 r13 = 0.695966022434845 print(r.test(n = 5105 , r12 = r12 , r23 = r23 , r13 = r13 )) #probability < 0.1 print(r.test(n = 5105 , r12 = r12, r23 = r23 , r13 = r13 ),digits=4) #p < 0.1001 print(r.test(n = 5105 , r12 = r12, r23 = r23 , r13 = r13 ),digits=8) #p< <0.1000759 } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/mixed.cor.Rd0000644000176200001440000001523013100743440014327 0ustar liggesusers\name{mixedCor} \alias{mixedCor} \alias{mixed.cor} \title{Find correlations for mixtures of continuous, polytomous, and dichotomous variables} \description{For data sets with continuous, polytomous and dichotmous variables, the absolute Pearson correlation is downward biased from the underlying latent correlation. mixedCor finds Pearson correlations for the continous variables, \code{\link{polychoric}}s for the polytomous items, \code{\link{tetrachoric}}s for the dichotomous items, and the \code{\link{polyserial}} or \code{\link{biserial}} correlations for the various mixed variables. Results include the complete correlation matrix, as well as the separate correlation matrices and difficulties for the polychoric and tetrachoric correlations. } \usage{ mixedCor(data=NULL,c=NULL,p=NULL,d=NULL,smooth=TRUE,correct=.5,global=TRUE,ncat=8, use="pairwise",method="pearson",weight=NULL) mixed.cor(x = NULL, p = NULL, d=NULL,smooth=TRUE, correct=.5,global=TRUE, ncat=8,use="pairwise",method="pearson",weight=NULL) } \arguments{ \item{data}{The data set to be analyzed (either a matrix or dataframe)} \item{c}{The names (or locations) of the continuous variables) (may be missing)} \item{x}{A set of continuous variables (may be missing) or, if p and d are missing, the variables to be analyzed.} \item{p}{A set of polytomous items (may be missing)} \item{d}{A set of dichotomous items (may be missing)} \item{smooth}{If TRUE, then smooth the correlation matix if it is non-positive definite} \item{correct}{When finding tetrachoric correlations, what value should be used to correct for continuity?} \item{global}{For polychorics, should the global values of the tau parameters be used, or should the pairwise values be used. Set to local if errors are occurring.} \item{ncat}{The number of categories beyond which a variable is considered "continuous".} \item{use}{The various options to the \code{\link{cor}} function include "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs". The default here is "pairwise"} \item{method}{The correlation method to use for the continuous variables. "pearson" (default), "kendall", or "spearman"} \item{weight}{If specified, this is a vector of weights (one per participant) to differentially weight participants. The NULL case is equivalent of weights of 1 for all cases. } } \details{ This function is particularly useful as part of the Synthetic Apeture Personality Assessment (SAPA) (\url{http://sapa-project.org}) data sets where continuous variables (age, SAT V, SAT Q, etc) and mixed with polytomous personality items taken from the International Personality Item Pool (IPIP) and the dichotomous experimental IQ items that have been developed as part of SAPA (see, e.g., Revelle, Wilt and Rosenthal, 2010). This is a very computationally intensive function which can be speeded up considerably by using multiple cores and using the parallel package. The number of cores to use when doing polychoric or tetrachoric. The greatest step in speed is going from 1 core to 2. This is about a 50\% savings. Going to 4 cores seems to have about at 66\% savings, and 8 a 75\% savings. The number of parallel processes defaults to 2 but can be modified by using the \code{\link{options}} command: options("mc.cores"=4) will set the number of cores to 4. Item response analyses using \code{\link{irt.fa}} may be done separately on the polytomous and dichotomous items in order to develop internally consistent scales. These scale may, in turn, be correlated with each other using the complete correlation matrix found by mixed.cor and using the \code{\link{score.items}} function. This function is not quite as flexible as the hetcor function in John Fox's polychor package. Note that the variables may be organized by type of data: continuous, polytomous, and dichotomous. This is done by simply specifying c, (or x in mixed.cor), p, and d. This is advantageous in the case of some continuous variables having a limited number of categories because of subsetting. } \value{ \item{rho}{The complete matrix} \item{rx}{The Pearson correlation matrix for the continuous items} \item{poly}{the polychoric correlation (poly$rho) and the item difficulties (poly$tau)} \item{tetra}{the tetrachoric correlation (tetra$rho) and the item difficulties (tetra$tau)} } \author{William Revelle} \note{mixed.cor was designed for the SAPA project (\url{http://sapa-project.org}) with large data sets with a mixture of continuous, dichotomous, and polytomous data. For smaller data sets, it is sometimes the case that the global estimate of the tau parameter will lead to unstable solutions. This may be corrected by setting the global parameter = FALSE. \code{\link{mixedCor}} was added in April, 2017 to be slightly more user friendly. When finding correlations between dummy coded SAPA data (e.g., of occupations), the real correlations are all slightly less than zero because of the ipsatized nature of the data. This leads to a non-positive definite correlation matrix because the matrix is no longer of full rank. Smoothing will correct this, even though this might not be desired. Turn off smoothing in this case. Note that the variables no longer need to be organized by type of data: first continuous, then polytomous, then dichotomous. However, this automatic detection will lead to problems if the variables such as age are limited to less than 8 categories but those category values differ from the polytomous items. The fall back is to specify x, p, and d. } \references{ W.Revelle, J.Wilt, and A.Rosenthal. Personality and cognition: The personality-cognition link. In A.Gruszka, G. Matthews, and B. Szymura, editors, Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, chapter 2, pages 27-49. Springer, 2010. W Revelle, D. M. Condon, J. Wilt, J.A. French, A. Brown, and L G. Elleman(2016) Web and phone based data collection using planned missing designs in Nigel G. Fielding and Raymond M. Lee and Grant Blank (eds) SAGE Handbook of Online Research Methods, Sage Publications, Inc. } \seealso{ \code{\link{polychoric}}, \code{\link{tetrachoric}}, \code{\link{scoreItems}}, \code{\link{scoreOverlap}} \code{\link{scoreIrt}} } \examples{ data(bfi) r <- mixedCor(data=bfi[,c(1:5,26,28)]) r #this is the same as r <- mixedCor(data=bfi,p=1:5,c=28,d=26) r #note how the variable order reflects the original order in the data #compare to raw Pearson #note that the biserials and polychorics are not attenuated rp <- cor(bfi[c(1:5,26,28)],use="pairwise") lowerMat(rp) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{models}psych/man/scrub.Rd0000644000176200001440000000500612216172257013566 0ustar liggesusers\name{scrub} \alias{scrub} \title{A utility for basic data cleaning and recoding. Changes values outside of minimum and maximum limits to NA.} \description{A tedious part of data analysis is addressing the problem of miscoded data that need to be converted to NA or some other value. For a given data.frame or matrix, scrub will set all values of columns from=from to to=to that are less than a set (vector) of min values or more than a vector of max values to NA. Can also be used to do basic recoding of data for all values=isvalue to newvalue. The length of the where, isvalue, and newvalues must either match, or be 1. } \usage{ scrub(x, where, min, max,isvalue,newvalue) } \arguments{ \item{x}{a data frame or matrix} \item{where}{The variables to examine. (Can be by name or by column number)} \item{min}{a vector of minimum values that are acceptable} \item{max}{a vector of maximum values that are acceptable} \item{isvalue}{a vector of values to be converted to newvalue (one per variable)} \item{newvalue}{a vector of values to replace those that match isvalue}} \details{Solves a tedious problem that can be done directly but that is sometimes awkward. Will either replace specified values with NA or } \value{ The corrected data frame.} \author{William Revelle } \note{Probably could be optimized to avoid one loop } \seealso{ \code{\link{reverse.code}}, \code{\link{rescale}} for other simple utilities. } \examples{ data(attitude) x <- scrub(attitude,isvalue=55) #make all occurrences of 55 NA x1 <- scrub(attitude, where=c(4,5,6), isvalue =c(30,40,50), newvalue = c(930,940,950)) #will do this for the 4th, 5th, and 6th variables x2 <- scrub(attitude, where=c(4,4,4), isvalue =c(30,40,50), newvalue = c(930,940,950)) #will just do it for the 4th column #get rid of a complicated set of cases and replace with missing values y <- scrub(attitude,where=2:4,min=c(20,30,40),max= c(120,110,100),isvalue= c(32,43,54)) y1 <- scrub(attitude,where="learning",isvalue=55,newvalue=999) #change a column by name y2 <- scrub(attitude,where="learning",min=45,newvalue=999) #change a column by name y3 <- scrub(attitude,where="learning",isvalue=c(45,48), newvalue=999) #change a column by name look for multiple values in that column y4 <- scrub(attitude,where="learning",isvalue=c(45,48), newvalue= c(999,-999)) #change values in one column to one of two different things } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } %code is in reverse.code psych/man/corFiml.Rd0000644000176200001440000000440612266006401014036 0ustar liggesusers\name{corFiml} \alias{corFiml} \title{Find a Full Information Maximum Likelihood (FIML) correlation or covariance matrix from a data matrix with missing data } \description{Makes use of functions adapted from the lavaan package to find FIML covariance/correlation matrices. FIML can be much slower than the normal pairwise deletion option of cor, but provides slightly more precise estimates. } \usage{ corFiml(x, covar = FALSE,show=FALSE) } \arguments{ \item{x}{A data.frame or data matrix} \item{covar}{By default, just return the correlation matrix. If covar is TRUE, return a list containing the covariance matrix and the ML fit function.} \item{show}{If show=TRUE, then just show the patterns of missingness, but don't do the FIML. Useful for understanding the process of fiml.} } \details{In the presence of missing data, Full Information Maximum Likelihood (FIML) is an alternative to simply using the pairwise correlations. The implementation in the lavaan package for structural equation modeling has been adapted for the simpler case of just finding the correlations or covariances. The pairwise solution for any pair of variables is insensitive to other variables included in the matrix. On the other hand, the ML solution depends upon the entire set of items being correlated. This will lead to slightly different solutions for different subsets of variables. The basic FIML algorithm is to find the pairwise ML solution for covariances and means for every pattern of missingness and then to weight the solution by the size of every unique pattern of missingness. } \value{ \item{cor}{The correlation matrix found using FIML} \item{cov}{The covariance matrix found using FIML} \item{fx}{The ML fit function} } \author{Wiliam Revelle} \note{ The functions used in lavaan are not exported and so have been copied (and simplified) to the psych package. } \seealso{ To use the resulting correlations, see \code{\link{fa}}. To see the pairwise pattern of missingness, see \code{\link{count.pairwise}}. } \examples{ rML <- corFiml(bfi[20:27]) rpw <- cor(bfi[20:27],use="pairwise") round(rML - rpw,3) mp <- corFiml(bfi[20:27],show=TRUE) mp } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{models} psych/man/error.bars.by.Rd0000644000176200001440000001520712471665377015161 0ustar liggesusers\name{error.bars.by} \alias{error.bars.by} \title{ Plot means and confidence intervals for multiple groups} \description{One of the many functions in R to plot means and confidence intervals. Meant mainly for demonstration purposes for showing the probabilty of replication from multiple samples. Can also be combined with such functions as boxplot to summarize distributions. Means and standard errors for each group are calculated using \code{\link{describe.by}}. } \usage{ error.bars.by(x,group,by.var=FALSE,x.cat=TRUE,ylab =NULL,xlab=NULL,main=NULL,ylim= NULL, xlim=NULL, eyes=TRUE,alpha=.05,sd=FALSE,labels=NULL, v.labels=NULL, pos=NULL, arrow.len=.05,add=FALSE,bars=FALSE,within=FALSE,colors=c("black","blue","red"), lty,lines=TRUE, legend=0,pch,density=-10,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A data frame or matrix } \item{group}{A grouping variable} \item{by.var}{A different line for each group (default) or each variable} \item{x.cat}{Is the grouping variable categorical (TRUE) or continuous (FALSE} \item{ylab}{y label} \item{xlab}{x label} \item{main}{title for figure} \item{ylim}{if specified, the y limits for the plot, otherwise based upon the data} \item{xlim}{if specified, the x limits for the plot, otherwise based upon the data} \item{eyes}{Should 'cats eyes' be drawn'} \item{alpha}{alpha level of confidence interval. Default is 1- alpha =95\% confidence interval} \item{sd}{sd=TRUE will plot Standard Deviations instead of standard errors} \item{labels}{ X axis label } \item{v.labels}{For a bar plot legend, these are the variable labels} \item{pos}{where to place text: below, left, above, right} \item{arrow.len}{ How long should the top of the error bars be?} \item{add}{ add=FALSE, new plot, add=TRUE, just points and error bars} \item{bars}{Draw a barplot with error bars rather than a simple plot of the means} \item{within}{Should the s.e. be corrected by the correlation with the other variables?} \item{colors}{groups will be plotted in different colors (mod n.groups). See the note for how to make them transparent.} \item{lty}{line type may be specified in the case of not plotting by variables} \item{lines}{By default, when plotting different groups, connect the groups with a line of type = lty. If lines is FALSE, then do not connect the groups} \item{legend}{Where should the legend be drawn: 0 (do not draw it), 1= lower right corner, 2 = bottom, 3 ... 8 continue clockwise, 9 is the center} \item{pch}{The first plot symbol to use. Subsequent groups are pch + group} \item{density}{How many lines/inch should fill the cats eyes. If missing, non-transparent colors are used. If negative, transparent colors are used.} \item{\dots}{other parameters to pass to the plot function e.g., lty="dashed" to draw dashed lines} } \details{Drawing the mean +/- a confidence interval is a frequently used function when reporting experimental results. By default, the confidence interval is 1.96 standard errors (adjusted for the t-distribution). This function was originally just a wrapper for \code{\link{error.bars}} but has been written to allow groups to be organized either as the x axis or as separate lines. If desired, a barplot with error bars can be shown. Many find this type of plot to be uninformative (e.g., http://biostat.mc.vanderbilt.edu/DynamitePlots ) and recommend the more standard dot plot. Note in particular, if choosing to draw barplots, the starting value is 0.0 and setting the ylim parameter can lead to some awkward results if 0 is not included in the ylim range. Did you really mean to draw a bar plot in this case? For up to three groups, the colors are by default "black", "blue" and "red". For more than 3 groups, they are by default rainbow colors with an alpha factor (transparency) of .5. To make colors semitransparent, set the density to a negative number. See the last example. } \value{Graphic output showing the means + x\% confidence intervals for each group. For ci=1.96, and normal data, this will be the 95\% confidence region. For ci=1, the 68\% confidence region. These confidence regions are based upon normal theory and do not take into account any skew in the variables. More accurate confidence intervals could be found by resampling. } \seealso{ See Also as \code{\link{error.crosses}}, \code{\link{error.bars}} } \examples{ data(sat.act) #The generic plot of variables by group error.bars.by(sat.act[1:4],sat.act$gender,legend=7) #a bar plot error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE,labels=c("male","female"), main="SAT V and SAT Q by gender",ylim=c(0,800),colors=c("red","blue"), legend=5,v.labels=c("SATV","SATQ")) #draw a barplot #a bar plot of SAT by age -- not recommended, see the next plot error.bars.by(sat.act[5:6],sat.act$education,bars=TRUE,xlab="Education", main="95 percent confidence limits of Sat V and Sat Q", ylim=c(0,800), v.labels=c("SATV","SATQ"),legend=5,colors=c("red","blue") ) #a better graph uses points not bars #plot SAT V and SAT Q by education error.bars.by(sat.act[5:6],sat.act$education,TRUE, xlab="Education", legend=5,labels=colnames(sat.act[5:6]),ylim=c(525,700), main="self reported SAT scores by education") #make the cats eyes semi-transparent by specifying a negative density error.bars.by(sat.act[5:6],sat.act$education,TRUE, xlab="Education", legend=5,labels=colnames(sat.act[5:6]),ylim=c(525,700), main="self reported SAT scores by education",density=-10) #now for a more complicated examples using 25 big 5 items scored into 5 scales #and showing age trends by decade #this shows how to convert many levels of a grouping variable (age) into more manageable levels. data(bfi) #The Big 5 data #first create the keys keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20),Openness = c(21,-22,23,24,-25)) keys <- make.keys(bfi,keys.list) #then create the scores for those older than 10 and less than 80 bfis <- subset(bfi,((bfi$age > 10) & (bfi$age < 80))) scores <- scoreItems(keys,bfis,min=1,max=6) #set the right limits for item reversals #now draw the results by age error.bars.by(scores$scores,round(bfis$age/10)*10,by.var=TRUE, main="BFI age trends",legend=3,labels=colnames(scores$scores), xlab="Age",ylab="Mean item score") error.bars.by(scores$scores,round(bfis$age/10)*10,by.var=TRUE, main="BFI age trends",legend=3,labels=colnames(scores$scores), xlab="Age",ylab="Mean item score",density=-10) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/factor.model.Rd0000644000176200001440000000260611402773431015025 0ustar liggesusers\name{factor.model} \alias{factor.model} \title{ Find R = F F' + U2 is the basic factor model } \description{The basic factor or principal components model is that a correlation or covariance matrix may be reproduced by the product of a factor loading matrix times its transpose. Find this reproduced matrix. Used by \code{\link{factor.fit}}, \code{\link{VSS}}, \code{\link{ICLUST}}, etc. } \usage{ factor.model(f,Phi=NULL,U2=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{f}{ A matrix of loadings. } \item{Phi}{A matrix of factor correlations} \item{U2}{Should the diagonal be model by ff' (U2 = TRUE) or replaced with 1's (U2 = FALSE)} } \value{ A correlation or covariance matrix. } \references{Gorsuch, Richard, (1983) Factor Analysis. Lawrence Erlebaum Associates. \cr Revelle, W. In preparation) An Introduction to Psychometric Theory with applications in R (\url{http://personality-project.org/r/book/}) } \author{ \email{revelle@northwestern.edu } \cr \url{http://personality-project.org/revelle.html} \cr } \seealso{ \code{\link{ICLUST.graph}},\code{\link{ICLUST.cluster}}, \code{\link{cluster.fit} }, \code{\link{VSS}}, \code{\link{omega} }} \examples{ f2 <- matrix(c(.9,.8,.7,rep(0,6),.6,.7,.8),ncol=2) mod <- factor.model(f2) round(mod,2) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/eigen.loadings.Rd0000644000176200001440000000266611222300226015330 0ustar liggesusers\name{eigen.loadings} \alias{eigen.loadings} \title{Convert eigen vectors and eigen values to the more normal (for psychologists) component loadings} \description{ The default procedures for principal component returns values not immediately equivalent to the loadings from a factor analysis. eigen.loadings translates them into the more typical metric of eigen vectors multiplied by the squareroot of the eigenvalues. This lets us find pseudo factor loadings if we have used princomp or eigen. \cr If we use \code{\link{principal}} to do our principal components analysis, then we do not need this routine.} \usage{ eigen.loadings(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{the output from eigen or a list of class princomp derived from princomp} } \value{ A matrix of Principal Component loadings more typical for what is expected in psychometrics. That is, they are scaled by the square root of the eigenvalues. } \author{ \email{ revelle@northwestern.edu } \cr \url{http://personality-project.org/revelle.html}} \note{Useful for SAPA analyses} \examples{ x <- eigen(Harman74.cor$cov) x$vectors[1:8,1:4] #as they appear from eigen y <- princomp(covmat=Harman74.cor$cov) y$loadings[1:8,1:4] #as they appear from princomp eigen.loadings(x)[1:8,1:4] # rescaled by the eigen values } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ multivariate }% __ONLY ONE__ keyword per line psych/man/fisherz.Rd0000644000176200001440000000475513122760703014130 0ustar liggesusers\name{fisherz} \alias{fisherz} \alias{fisherz2r} \alias{r.con}\alias{r2c} \alias{r2t} \alias{t2r} \alias{g2r} \alias{chi2r} \alias{r2chi} \alias{cor2cov} \title{Transformations of r, d, and t including Fisher r to z and z to r and confidence intervals} \description{Convert a correlation to a z or t, or d, or chi or covariance matrix or z to r using the Fisher transformation or find the confidence intervals for a specified correlation. r2d converts a correlation to an effect size (Cohen's d) and d2r converts a d into an r. g2r converts Hedge's g to a correlation. t2r converts a t test to r, r2t converts a correlation to a t-test value. chi2r converts a chi square to r, r2chi converts it back. r2c and cor2cov convert a correlation matrix to a covariance matrix. d2t and t2d convert cohen's d into a t and a t into a cohen d. See \code{\link{cohen.d}} for other conversions. } \usage{ fisherz(rho) fisherz2r(z) r.con(rho,n,p=.95,twotailed=TRUE) r2t(rho,n) t2r(t,df) g2r(g,df,n) chi2r(chi2,n) r2chi(rho,n) r2c(rho,sigma) cor2cov(rho,sigma) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{rho}{ a Pearson r } \item{z}{A Fisher z} \item{n}{Sample size for confidence intervals} \item{df}{degrees of freedom for t, or g} \item{p}{Confidence interval} \item{twotailed}{Treat p as twotailed p} \item{g}{An effect size (Hedge's g)} \item{t}{A student's t value} \item{chi2}{A chi square} \item{sigma}{a vector of standard deviations to be used to convert a correlation matrix to a covariance matrix} } \value{ \item{z}{ value corresponding to r (fisherz)} \item{r}{r corresponding to z (fisherz2r)} \item{r.con}{lower and upper p confidence intervals (r.con)} \item{t}{t with n-2 df (r2t)} \item{r}{r corresponding to effect size d or d corresponding to r.} \item{r2c}{r2c is the reverse of the cor2con function of base R. It just converts a correlation matrix to the corresponding covariance matrix given a vector of standard deviations.} } \author{ Maintainer: William Revelle \email{revelle@northwestern.edu } } \examples{ n <- 30 r <- seq(0,.9,.1) d <- r2d(r) rc <- matrix(r.con(r,n),ncol=2) t <- r*sqrt(n-2)/sqrt(1-r^2) p <- (1-pt(t,n-2))*2 r1 <- t2r(t,(n-2)) r2 <- d2r(d) chi <- r2chi(r,n) r3 <- chi2r(chi,n) r.rc <- data.frame(r=r,z=fisherz(r),lower=rc[,1],upper=rc[,2],t=t,p=p,d=d, chi2=chi,d2r=r2,t2r=r1,chi2r=r3) round(r.rc,2) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/read.clipboard.Rd0000644000176200001440000002210013116015207015302 0ustar liggesusers\name{read.file} \alias{read.clipboard} \alias{read.clipboard.csv} \alias{read.clipboard.tab} \alias{read.clipboard.lower} \alias{read.clipboard.upper} \alias{read.clipboard.fwf} \alias{read.file} \alias{read.file.csv} \alias{write.file} \alias{write.file.csv} \alias{read.https} \title{Shortcuts for reading from the clipboard or a file} \description{Input from a variety of sources may be read. data.frames may be read from files with suffixes of .txt, .text, .TXT, .dat, .data, .csv, .rds, rda, .xpt, or .sav (i.e., data from SPSS sav files may be easily read.) Data exported by JMP or EXCEL in the csv format are also able to be read. Fixed Width Files saved in .txt mode may be read if widths is specified. Files saved with writeRDS have suffixes of .rds or Rds, and are read using readRDS. Files associated with objects with suffixes .rda and .Rda are loaded. The default values for read.spss are adjusted for more standard input from SPSS files. Input from the clipboard is easy but a bit obscure, particularly for Mac users. This is just an easier way to do so. Data may be copied to the clipboard from Excel spreadsheets, csv files, or fixed width formatted files and then into a data.frame. Data may also be read from lower (or upper) triangular matrices and filled out to square matrices. } \usage{ read.file(f=NULL,header=TRUE,use.value.labels=FALSE,to.data.frame=TRUE,sep=",", widths=NULL, ...) #for .txt, .text, TXT, .csv, .sav, .xpt, XPT, R, r, Rds, .rds, or .rda, # Rda, RData, Rdata, files read.clipboard(header = TRUE, ...) #assumes headers and tab or space delimited read.clipboard.csv(header=TRUE,sep=',',...) #assumes headers and comma delimited read.clipboard.tab(header=TRUE,sep='\t',...) #assumes headers and tab delimited #read in a matrix given the lower off diagonal read.clipboard.lower(diag=TRUE,names=FALSE,...) read.clipboard.upper(diag=TRUE,names=FALSE,...) #read in data using a fixed format width (see read.fwf for instructions) read.clipboard.fwf(header=FALSE,widths=rep(1,10),...) read.https(filename,header=TRUE) read.file.csv(f=NULL,header=TRUE,...) write.file(x,f=NULL,row.names=FALSE,...) write.file.csv(x,f=NULL,row.names=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{header}{Does the first row have variable labels (generally assumed to be TRUE). } \item{sep}{What is the designated separater between data fields? For typical csv files, this will be a comma, but if commas designate decimals, then a ; can be used to designate different records. } \item{diag}{for upper or lower triangular matrices, is the diagonal specified or not} \item{names}{for read.clipboard.lower or upper, are colnames in the the first column} \item{widths}{how wide are the columns in fixed width input. The default is to read 10 columns of size 1. } \item{filename}{Name or address of remote https file to read.} \item{\dots}{ Other parameters to pass to read } \item{f}{A file name to read. If omitted, \code{\link{file.choose}} is called to dynamically get the file name.} \item{x}{The data frame or matrix to write to f} \item{row.names}{Should the output file include the rownames?} \item{to.data.frame}{Should the spss input be converted to a data frame?} \item{use.value.labels}{Should the SPSS input values be converted to numeric?} } \details{A typical session of R might involve data stored in text files, generated online, etc. Although it is easy to just read from a file (particularly if using \code{\link{file.choose}}, copying from the file to the clipboard and then reading from the clipboard is also very convenient (and somewhat more intuitive to the naive user). This is particularly convenient when copying from a text book or article and just moving a section of text into R.) The \code{\link{read.file}} function combines the \code{\link{file.choose}} and either \code{\link{read.table}}, \code{\link{read.fwf}}, \code{\link{read.spss}} or \code{\link{read.xport}}(from foreign) or \code{\link{load}} or \code{\link{readRDS}} commands. By examining the file suffix, it chooses the appropriate way to read. For more complicated file structures, see the foreign package. For even more complicated file structures, see the rio package. Note that \code{\link{read.file}} assumes by default that the first row has column labels (header =TRUE). If this is not true, then make sure to specify header = FALSE. If the file is fixed width, the assumption is that it does not have a header field. In the unlikely case that a fwf file does have a header, then you probably should try fn <- file.choose() and then my.data <- read.fwf(fn,header=TRUE,widths= widths) Currently supported input formats are \tabular{ll}{ .sav \tab SPSS.sav files\cr .csv \tab A comma separated file (e.g. from Excel or Qualtrics)\cr .txt \tab A typical text file \cr .TXT \tab A typical text file \cr .text \tab A typical text file \cr .data \tab A data file \cr .dat \tab A data file \cr .rds \tab A R data file \cr .Rds \tab A R data file (created by a write) \cr .Rda \tab A R data structure (created using save) \cr .rda \tab A R data structure (created using save) \cr .RData \tab A R data structure (created using save) \cr .rdata \tab A R data structure (created using save) \cr .R \tab A R data structure created using dput \cr .r \tab A R data structure created using dput \cr .xpt \tab A SAS data file in xport format \cr .XPT \tab A SAS data file in XPORT format \cr } The foreign function \code{\link{read.spss}} is used to read SPSS .sav files using the most common options. Just as \code{\link{read.spss}} issues various warnings, so does \code{\link{read.file}}. In general, these can be ignored. For more detailed information about using \code{\link{read.spss}}, see the help pages in the foreign package. If you have a file written by JMP, you must first export to a csv or text file. The \code{\link{write.file}} function combines the \code{\link{file.choose}} and either \code{\link{write.table}} or \code{\link{saveRDS}}. By examining the file suffix, it chooses the appropriate way to write. For more complicated file structures, see the foreign package, or the save function in R Base. Currently supported output formats are \tabular{ll}{ .csv \tab A comma separated file (e.g. for reading into Excel)\cr .txt \tab A typical text file \cr .text \tab A typical text file \cr .rds \tab A R data file \cr .Rds \tab A R data file (created by a write) \cr .Rda \tab A R data structure (created using save) \cr .rda \tab A R data structure (created using save) \cr .R \tab A R data structure created using dput \cr .r \tab A R data structure created using dput \cr } \code{\link{read.clipboard}} was based upon a suggestion by Ken Knoblauch to the R-help listserve. If the input file that was copied into the clipboard was an Excel file with blanks for missing data, then read.clipboard.tab() will correctly replace the blanks with NAs. Similarly for a csv file with blank entries, read.clipboard.csv will replace empty fields with NA. read.clipboard.lower and read.clipboard.upper are adapted from John Fox's read.moments function in the sem package. They will read a lower (or upper) triangular matrix from the clipboard and return a full, symmetric matrix for use by factanal, \code{\link{factor.pa}} , \code{\link{ICLUST}} , etc. If the diagonal is false, it will be replaced by 1.0s. These two function were added to allow easy reading of examples from various texts and manuscripts with just triangular output. Many articles will report lower triangular matrices with variable labels in the first column. read.clipboard.lower will handle this case. Names must be in the first column if names=TRUE is specified. Other articles will report upper triangular matrices with variable labels in the first row. read.clipboard.upper will handle this. Note that labels in the first column will not work for read.clipboard.upper. The names, if present, must be in the first row. read.clipboard.fwf will read fixed format files from the clipboard. It includes a patch to read.fwf which will not read from the clipboard or from remote file. See read.fwf for documentation of how to specify the widths. } \value{the contents of the file to be read or of the clipboard. } \author{ William Revelle} \examples{ #Because these are dynamic functions, they need to be run interactively and # can not be shown as examples. #my.data <- read.file() #search the directory for a file and then read it. #the example data set from read.delim in the readr package to read a remote csv file #my.data <-read.file("https://github.com/tidyverse/readr/raw/master/inst/extdata/mtcars.csv") #my.data <- read.clipboad() #my.data <- read.clipboard.csv() #my.data <- read.clipboad(header=FALSE) #my.matrix <- read.clipboard.lower() } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ IO }% __ONLY ONE__ keyword per line psych/man/bock.table.Rd0000644000176200001440000000422312456772073014464 0ustar liggesusers\name{bock} \alias{bock} \alias{bock.table} \alias{lsat6} \alias{lsat7} \alias{bock.lsat} \docType{data} \title{Bock and Liberman (1970) data set of 1000 observations of the LSAT } \description{An example data set used by McDonald (1999) as well as other discussions of Item Response Theory makes use of a data table on 10 items (two sets of 5) from the Law School Admissions Test (LSAT). Included in this data set is the original table as well as the reponses for 1000 subjects on the first set (Figure Classification) and second set (Debate). } \usage{data(bock)} \format{ A data frame with 32 observations on the following 8 variables. \describe{ \item{\code{index}}{32 response patterns} \item{\code{Q1}}{Responses to item 1} \item{\code{Q2}}{Responses to item 2} \item{\code{Q3}}{Responses to item 3} \item{\code{Q4}}{Responses to item 4} \item{\code{Q5}}{Responses to item 5} \item{\code{Ob6}}{count of observations for the section 6 test} \item{\code{Ob7}}{count of observations for the section 7 test} } Two other data sets are derived from the bock dataset. These are converted using the \code{\link{table2df}} function. \describe{ \item{lsat6}{reponses to 5 items for 1000 subjects on section 6} \item{lsat7}{reponses to 5 items for 1000 subjects on section 7} } } \details{The lsat6 data set is analyzed in the ltm package as well as by McDonald (1999). lsat7 is another 1000 subjects on part 7 of the LSAT. Both sets are described by Bock and Lieberman (1970). Both sets are useful examples of testing out IRT procedures and showing the use of \code{\link{tetrachoric}} correlations and item factor analysis using the \code{\link{irt.fa}} function. } \source{ R. Darrell Bock and M. Lieberman (1970). Fitting a response model for dichotomously scored items. Psychometrika, 35(2):179-197. } \references{ R.P. McDonald. Test theory: A unified treatment. L. Erlbaum Associates, Mahwah, N.J., 1999. } \examples{ data(bock) responses <- table2df(bock.table[,2:6],count=bock.table[,7], labs= paste("lsat6.",1:5,sep="")) describe(responses) ## maybe str(bock.table) ; plot(bock.table) ... } \keyword{datasets} psych/man/error.bars.Rd0000644000176200001440000001625012754454577014551 0ustar liggesusers\name{error.bars} \alias{error.bars} \alias{error.bars.tab} \title{Plot means and confidence intervals} \description{One of the many functions in R to plot means and confidence intervals. Can be done using barplots if desired. Can also be combined with such functions as boxplot to summarize distributions. Means and standard errors are calculated from the raw data using \code{\link{describe}}. Alternatively, plots of means +/- one standard deviation may be drawn. } \usage{ error.bars(x,stats=NULL, ylab = "Dependent Variable",xlab="Independent Variable", main=NULL,eyes=TRUE, ylim = NULL, xlim=NULL,alpha=.05,sd=FALSE, labels = NULL, pos = NULL, arrow.len = 0.05,arrow.col="black", add = FALSE,bars=FALSE,within=FALSE, col="blue",...) error.bars.tab(t,way="columns",raw=FALSE,col=c('blue','red'),...) } \arguments{ \item{x}{ A data frame or matrix of raw data } \item{t}{A table of frequencies} \item{stats}{Alternatively, a data.frame of descriptive stats from (e.g., describe)} \item{ylab}{y label} \item{xlab}{x label} \item{main}{title for figure} \item{ylim}{if specified, the limits for the plot, otherwise based upon the data} \item{xlim}{if specified, the x limits for the plot, otherwise c(.5,nvar + .5)} \item{eyes}{should 'cats eyes' plots be drawn} \item{alpha}{alpha level of confidence interval -- defaults to 95\% confidence interval} \item{sd}{if TRUE, draw one standard deviation instead of standard errors at the alpha level} \item{labels}{ X axis label } \item{pos}{where to place text: below, left, above, right} \item{arrow.len}{ How long should the top of the error bars be?} \item{arrow.col}{What color should the error bars be?} \item{add}{ add=FALSE, new plot, add=TRUE, just points and error bars} \item{bars}{bars=TRUE will draw a bar graph if you really want to do that} \item{within}{should the error variance of a variable be corrected by 1-SMC?} \item{col}{color(s) of the catseyes. Defaults to blue.} \item{way}{Percentages are based upon the row totals (default) column totals, or grand total of the data Table} \item{raw}{If raw is FALSE, display the graphs in terms of probability, raw TRUE displays the data in terms of raw counts} \item{\dots}{other parameters to pass to the plot function, e.g., typ="b" to draw lines, lty="dashed" to draw dashed lines} } \details{Drawing the mean +/- a confidence interval is a frequently used function when reporting experimental results. By default, the confidence interval is 1.96 standard errors of the t-distribution. If within=TRUE, the error bars are corrected for the correlation with the other variables by reducing the variance by a factor of (1-smc). This allows for comparisons between variables. The error bars are normally calculated from the data using the describe function. If, alternatively, a matrix of statistics is provided with column headings of values, means, and se, then those values will be used for the plot (using the stats option). If n is included in the matrix of statistics, then the distribution is drawn for a t distribution for n-1 df. If n is omitted (NULL) or is NA, then the distribution will be a normal distribution. If sd is TRUE, then the error bars will represent one standard deviation from the mean rather than be a function of alpha and the standard errors. See the last two examples for the case of plotting data with statistics from another function. Alternatively, \code{\link{error.bars.tab}} will take tabulated data and convert to either row, column or overall percentages, and then plot these as percentages with the equivalent standard error (based upon sqrt(pq/N)). } \value{Graphic output showing the means + x% confidence intervals. For ci=1.96 and normal data, this will be the 95\% confidence region. For ci=1, the 68\% confidence region. These confidence regions are based upon normal theory and do not take into account any skew in the variables. More accurate confidence intervals could be found by resampling. The error.bars.tab function will return (invisibly) the cell means and standard errors. } \author{William Revelle} \seealso{ \code{\link{error.crosses}} for two way error bars, \code{\link{error.bars.by}} for error bars for different groups as well as \code{\link{error.dots}} In addition, as pointed out by Jim Lemon on the R-help news group, error bars or confidence intervals may be drawn using \tabular{ll}{ function \tab package \cr bar.err \tab (agricolae) \cr plotCI \tab (gplots) \cr xYplot \tab(Hmisc) \cr dispersion \tab(plotrix) \cr plotCI \tab(plotrix) \cr } For advice why not to draw bar graphs with error bars, see \url{http://biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots} } \examples{ x <- replicate(20,rnorm(50)) boxplot(x,notch=TRUE,main="Notched boxplot with error bars") error.bars(x,add=TRUE) abline(h=0) #show 50% confidence regions and color each variable separately error.bars(attitude,alpha=.5, main="50 percent confidence limits",col=rainbow(ncol(attitude)) ) error.bars(attitude,bar=TRUE) #show the use of bar graphs #combine with a strip chart and boxplot stripchart(attitude,vertical=TRUE,method="jitter",jitter=.1,pch=19, main="Stripchart with 95 percent confidence limits") boxplot(attitude,add=TRUE) error.bars(attitude,add=TRUE,arrow.len=.2) #use statistics from somewhere else #by specifying n, we are using the t distribution for confidences #The first example allows the variables to be spaced along the x axis my.stats <- data.frame(values=c(1,2,8),mean=c(10,12,18),se=c(2,3,5),n=c(5,10,20)) error.bars(stats=my.stats,type="b",main="data with confidence intervals") #don't connect the groups my.stats <- data.frame(values=c(1,2,8),mean=c(10,12,18),se=c(2,3,5),n=c(5,10,20)) error.bars(stats=my.stats,main="data with confidence intervals") #by not specifying value, the groups are equally spaced my.stats <- data.frame(mean=c(10,12,18),se=c(2,3,5),n=c(5,10,20)) rownames(my.stats) <- c("First", "Second","Third") error.bars(stats=my.stats,xlab="Condition",ylab="Score") #Consider the case where we get stats from describe temp <- describe(attitude) error.bars(stats=temp) #show these do not differ from the other way by overlaying the two error.bars(attitude,add=TRUE,col="red") #n is omitted #the error distribution is a normal distribution my.stats <- data.frame(mean=c(2,4,8),se=c(2,1,2)) rownames(my.stats) <- c("First", "Second","Third") error.bars(stats=my.stats,xlab="Condition",ylab="Score") #n is specified #compare this with small n which shows larger confidence regions my.stats <- data.frame(mean=c(2,4,8),se=c(2,1,2),n=c(10,10,3)) rownames(my.stats) <- c("First", "Second","Third") error.bars(stats=my.stats,xlab="Condition",ylab="Score") #example of arrest rates (as percentage of condition) arrest <- data.frame(Control=c(14,21),Treated =c(3,23)) rownames(arrest) <- c("Arrested","Not Arrested") error.bars.tab(arrest,ylab="Probability of Arrest",xlab="Control vs Treatment", main="Probability of Arrest varies by treatment") #Show the raw rates error.bars.tab(arrest,raw=TRUE,ylab="Number Arrested",xlab="Control vs Treatment", main="Count of Arrest varies by treatment") } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/pairs.panels.Rd0000644000176200001440000001556213144646470015063 0ustar liggesusers\name{pairs.panels} \alias{pairs.panels} \alias{panel.cor} \alias{panel.cor.scale} \alias{panel.hist} \alias{panel.lm} \alias{panel.lm.ellipse} \alias{panel.hist.density} \alias{panel.ellipse} \alias{panel.smoother} \title{SPLOM, histograms and correlations for a data matrix} \description{Adapted from the help page for pairs, pairs.panels shows a scatter plot of matrices (SPLOM), with bivariate scatter plots below the diagonal, histograms on the diagonal, and the Pearson correlation above the diagonal. Useful for descriptive statistics of small data sets. If lm=TRUE, linear regression fits are shown for both y by x and x by y. Correlation ellipses are also shown. Points may be given different colors depending upon some grouping variable. Robust fitting is done using lowess or loess regression. Confidence intervals of either the lm or loess are drawn if requested. } \usage{ \method{pairs}{panels}(x, smooth = TRUE, scale = FALSE, density=TRUE,ellipses=TRUE, digits = 2,method="pearson", pch = 20, lm=FALSE,cor=TRUE,jiggle=FALSE,factor=2, hist.col="cyan",show.points=TRUE,rug=TRUE, breaks = "Sturges",cex.cor=1,wt=NULL, smoother=FALSE,stars=FALSE,ci=FALSE,alpha=.05, ...) } \arguments{ \item{x}{a data.frame or matrix} \item{smooth}{TRUE draws loess smooths } \item{scale}{ TRUE scales the correlation font by the size of the absolute correlation. } \item{density}{TRUE shows the density plots as well as histograms} \item{ellipses}{TRUE draws correlation ellipses} \item{lm}{Plot the linear fit rather than the LOESS smoothed fits.} \item{digits}{ the number of digits to show} \item{method}{method parameter for the correlation ("pearson","spearman","kendall")} \item{pch}{The plot character (defaults to 20 which is a '.').} \item{cor}{If plotting regressions, should correlations be reported?} \item{jiggle}{Should the points be jittered before plotting?} \item{factor}{factor for jittering (1-5)} \item{hist.col}{What color should the histogram on the diagonal be?} \item{show.points}{If FALSE, do not show the data points, just the data ellipses and smoothed functions} \item{rug}{if TRUE (default) draw a rug under the histogram, if FALSE, don't draw the rug} \item{breaks}{If specified, allows control for the number of breaks in the histogram (see the hist function)} \item{cex.cor}{If this is specified, this will change the size of the text in the correlations. this allows one to also change the size of the points in the plot by specifying the normal cex values. If just specifying cex, it will change the character size, if cex.cor is specified, then cex will function to change the point size.} \item{wt}{If specified, then weight the correlations by a weights matrix (see note for some comments)} \item{smoother}{If TRUE, then smooth.scatter the data points -- slow but pretty with lots of subjects } \item{stars}{For those people who like to show the significance of correlations by using magic astricks, set stars=TRUE} \item{ci}{Draw confidence intervals for the linear model or for the loess fit, defaults to ci=FALSE. If confidence intervals are not drawn, the fitting function is lowess.} \item{alpha}{The alpha level for the confidence regions, defaults to .05} \item{\dots}{other options for pairs } } \details{Shamelessly adapted from the pairs help page. Uses panel.cor, panel.cor.scale, and panel.hist, all taken from the help pages for pairs. Also adapts the ellipse function from John Fox's car package. \code{\link{pairs.panels}} is most useful when the number of variables to plot is less than about 6-10. It is particularly useful for an initial overview of the data. To show different groups with different colors, use a plot character (pch) between 21 and 25 and then set the background color to vary by group. (See the second example). When plotting more than about 10 variables, it is useful to set the gap parameter to something less than 1 (e.g., 0). Alternatively, consider using \code{\link{cor.plot}} In addition, when plotting more than about 100-200 cases, it is useful to set the plotting character to be a point. (pch=".") Sometimes it useful to draw the correlation ellipses and best fitting loess without the points. (points.false=TRUE). } \value{A scatter plot matrix (SPLOM) is drawn in the graphic window. The lower off diagonal draws scatter plots, the diagonal histograms, the upper off diagonal reports the Pearson correlation (with pairwise deletion). If lm=TRUE, then the scatter plots are drawn above and below the diagonal, each with a linear regression fit. Useful to show the difference between regression lines. } \seealso{ \code{\link{pairs}} which is the base from which pairs.panels is derived, \code{\link{cor.plot}} to do a heat map of correlations, and \code{\link{scatter.hist}} to draw a single correlation plot with histograms and best fitted lines. To find the probability "significance" of the correlations using normal theory, use \code{\link{corr.test}}. To find confidence intervals using boot strapping procedures, use \code{\link{cor.ci}}. To graphically show confidence intervals, see \code{\link{cor.plot.upperLowerCi}}. } \note{If the data are either categorical or character, this is flagged with an astrix for the variable name. If character, they are changed to factors before plotting. The wt parameter allows for scatter plots of the raw data while showing the weighted correlation matrix (found by using \code{\link{cor.wt}}). The current implementation uses the first two columns of the weights matrix for all analyses. This is useful, but not perfect. The use of this option would be to plot the means from a \code{\link{statsBy}} analysis and then display the weighted correlations by specifying the means and ns from the statsBy run. See the final (not run) example.} \examples{ pairs.panels(attitude) #see the graphics window data(iris) pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species], pch=21,main="Fisher Iris data by Species") #to show color grouping pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species], pch=21+as.numeric(iris$Species),main="Fisher Iris data by Species",hist.col="red") #to show changing the diagonal #to show 'significance' pairs.panels(iris[1:4],bg=c("red","yellow","blue")[iris$Species], pch=21+as.numeric(iris$Species),main="Fisher Iris data by Species",hist.col="red",stars=TRUE) #demonstrate not showing the data points data(sat.act) pairs.panels(sat.act,show.points=FALSE) #better yet is to show the points as a period pairs.panels(sat.act,pch=".") #show many variables with 0 gap between scatterplots # data(bfi) # pairs.panels(bfi,show.points=FALSE,gap=0) #plot raw data points and then the weighted correlations. #output from statsBy sb <- statsBy(sat.act,"education") pairs.panels(sb$mean,wt=sb$n) #report the weighted correlations #compare with pairs.panels(sb$mean) #unweighed correlations } \keyword{multivariate} \keyword{ hplot } psych/man/spider.Rd0000644000176200001440000000616112216173206013734 0ustar liggesusers\name{spider} \alias{spider} \alias{radar} \title{Make "radar" or "spider" plots.} \description{ Radar plots and spider plots are just two of the many ways to show multivariate data. \code{\link{radar}} plots correlations as vectors ranging in length from 0 (corresponding to r=-1) to 1 (corresponding to an r=1). The vectors are arranged radially around a circle. Spider plots connect the end points of each vector. The plots are most appropriate if the variables are organized in some meaningful manner. } \usage{ spider(y,x,data,labels=NULL,rescale=FALSE,center=FALSE,connect=TRUE,overlay=FALSE, scale=1,ncolors=31,fill=FALSE,main=NULL,...) radar(x,labels=NULL,center=FALSE,connect=FALSE,scale=1,ncolors=31,fill=FALSE, add=FALSE,linetyp="solid", main="Radar Plot",...) } \arguments{ \item{y}{The y variables to plot. Each y is plotted against all the x variables} \item{x}{The x variables defining each line. Each y is plotted against all the x variables} \item{data}{A correlation matrix from which the x and y variables are selected} \item{labels}{Labels (assumed to be colnames of the data matrix) for each x variable} \item{rescale}{If TRUE, then rescale the data to have mean 0 and sd = 1. This is used if plotting raw data rather than correlations.} \item{center}{if TRUE, then lines originate at the center of the plot, otherwise they start at the mid point.} \item{connect}{if TRUE, a spider plot is drawn, if FALSE, just a radar plot} \item{scale}{can be used to magnify the plot, to make small values appear larger.} \item{ncolors}{if ncolors > 2, then positive correlations are plotted with shades of blue and negative correlations shades of red. This is particularly useful if fill is TRUE. ncolors should be an odd number, so that neutral values are coded as white. } \item{fill}{if TRUE, fill the polygons with colors scaled to size of correlation} \item{overlay}{If TRUE, plot multiple spiders on one plot, otherwise plot them as separate plots} \item{add}{If TRUE, add a new spider diagram to the previous one.} \item{linetyp}{see lty in the par options} \item{main}{A label or set of labels for the plots} \item{\dots}{Additional parameters can be passed to the underlying graphics call} } \details{Displaying multivariate profiles may be done by a series of lines (see, e.g., matplot), by colors (see, e.g., \code{\link{cor.plot}}, or by radar or spider plots. To show just one variable as a function of several others, use \code{\link{radar}}. To make multiple plots, use \code{\link{spider}}. An additional option when comparing just a few y values is to do overlay plots. Alternatively, set the plotting options to do several on one page. } \value{Either a spider or radar plot} \author{William Revelle} \seealso{\code{\link{cor.plot}} } \examples{ op <- par(mfrow=c(3,2)) spider(y=1,x=2:9,data=Thurstone,connect=FALSE) #a radar plot spider(y=1,x=2:9,data=Thurstone) #same plot as a spider plot spider(y=1:3,x=4:9,data=Thurstone,overlay=TRUE) #make a somewhat oversized plot spider(y=26:28,x=1:25,data=cor(bfi,use="pairwise"),fill=TRUE,scale=2) par(op) } \keyword{ multivariate } \keyword{ hplot } psych/man/cattell.Rd0000644000176200001440000000327513005450256014101 0ustar liggesusers\name{cattell} \alias{cattell} \docType{data} \title{12 cognitive variables from Cattell (1963) } \description{ Rindskopf and Rose (1988) use this data set to demonstrate confirmatory second order factor models. It is a nice example data set to explore hierarchical structure and alternative factor solutions. It contains measures of fluid and crystallized intelligence. } \usage{data("cattell")} \format{ The format is: num [1:12, 1:12] 1 0.86 0.3 0.32 0.41 0.42 0.34 0.32 0.29 0.21 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:12] "Verbal" "Verbal2" "Space1" "Space2" ... ..$ : chr [1:12] "Verbal" "Verbal2" "Space1" "Space2" ... } \details{ Cattell (1963) reported on 8 cognitive variables from Thurstone and four from the Institute for Personality Assessment Test (IPAT). Rindskopf and Rose (1988) use this data set as an example of second order factor analysis. It is thus a nice set for examining alternative solutions such as bifactor rotation, \code{\link{omega}} hierarchical, as well as \code{\link{esem}} and \code{\link{interbattery}} factor analysis. } \source{ David Rindskopf and Tedd Rose, (1988) Some Theory and Applications of Confirmatory Second- Order Factor Analysis, Multivariate Behavioral Research, 23, 51-67.} \references{ Cattell, R. B. (1963).Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22. David Rindskopf and Tedd Rose, (1988) Some Theory and Applications of Confirmatory Second- Order Factor Analysis, Multivariate Behavioral Research, 23, 51-67. } \examples{ data(cattell) corPlot(cattell,numbers=TRUE,upper=FALSE,diag=FALSE, main="12 cognitive variables from Cattell (1963)") } \keyword{datasets} psych/man/VSS.parallel.Rd0000644000176200001440000000207211431543251014710 0ustar liggesusers\name{VSS.parallel} \alias{VSS.parallel} \title{Compare real and random VSS solutions} \description{Another useful test for the number of factors is when the eigen values of a random matrix are greater than the eigen values of a a real matrix. Here we show VSS solutions to random data. A better test is probably \code{\link{fa.parallel}}. } \usage{ VSS.parallel(ncases, nvariables,scree=FALSE,rotate="none") } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ncases}{Number of simulated cases } \item{nvariables}{ number of simulated variables } \item{scree}{Show a scree plot for random data -- see \code{\link{omega}}} \item{rotate}{rotate="none" or rotate="varimax"} } \value{VSS like output to be plotted by VSS.plot } \references{Very Simple Structure (VSS)} \author{ William Revelle} \seealso{ \code{\link{fa.parallel}}, \code{\link{VSS.plot}}, \code{\link{ICLUST}}, \code{\link{omega}} } \examples{ #VSS.plot(VSS.parallel(200,24)) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/diagram.Rd0000644000176200001440000001470312541635376014067 0ustar liggesusers\name{diagram} \Rdversion{1.1} \alias{diagram} \alias{dia.rect} \alias{dia.ellipse} \alias{dia.ellipse1} \alias{dia.arrow} \alias{dia.curve} \alias{dia.curved.arrow} \alias{dia.self} \alias{dia.shape} \alias{dia.triangle} \alias{dia.cone} \title{Helper functions for drawing path model diagrams} \description{Path models are used to describe structural equation models or cluster analytic output. These functions provide the primitives for drawing path models. Used as a substitute for some of the functionality of Rgraphviz.} \usage{ diagram(fit,...) dia.rect(x, y = NULL, labels = NULL, cex = 1, xlim = c(0, 1), ylim = c(0, 1), ...) dia.ellipse(x, y = NULL, labels = NULL, cex=1,e.size=.05, xlim=c(0,1), ylim=c(0,1), ...) dia.triangle(x, y = NULL, labels =NULL, cex = 1, xlim=c(0,1),ylim=c(0,1),...) dia.ellipse1(x,y,e.size=.05,xlim=c(0,1),ylim=c(0,1),...) dia.shape(x, y = NULL, labels = NULL, cex = 1, e.size=.05, xlim=c(0,1), ylim=c(0,1), shape=1, ...) dia.arrow(from,to,labels=NULL,scale=1,cex=1,adj=2,both=FALSE,pos=NULL,l.cex,gap.size,...) dia.curve(from,to,labels=NULL,scale=1,...) dia.curved.arrow(from,to,labels=NULL,scale=1,both=FALSE,...) dia.self(location,labels=NULL,scale=.8,side=2,...) dia.cone(x=0, y=-2, theta=45, arrow=TRUE,curves=TRUE,add=FALSE,labels=NULL, xlim = c(-1, 1), ylim=c(-1,1),... ) } \arguments{ \item{fit}{The results from a factor analysis \code{\link{fa}}, components analysis \code{\link{principal}}, omega reliability analysis, \code{\link{omega}}, cluster analysis \code{\link{iclust}} or confirmatory factor analysis, cfa, or structural equation model,sem, using the lavaan package.} \item{x}{x coordinate of a rectangle or ellipse} \item{y}{y coordinate of a rectangle or ellipse} \item{e.size}{The size of the ellipse (scaled by the number of variables} \item{labels}{Text to insert in rectangle, ellipse, or arrow} \item{cex}{adjust the text size} \item{l.cex}{Adjust the text size in arrows, defaults to cex which in turn defaults to 1} \item{gap.size}{Tweak the gap in an arrow to be allow the label to be in a gap} \item{adj}{Where to put the label along the arrows (values are then divided by 4)} \item{both}{Should the arrows have arrow heads on both ends?} \item{scale}{modifies size of rectangle and ellipse as well as the curvature of curves. (For curvature, positive numbers are concave down and to the left} \item{from}{arrows and curves go from } \item{to}{arrows and curves go to} \item{location}{where is the rectangle?} \item{shape}{Which shape to draw} \item{xlim}{default ranges} \item{ylim}{default ranges} \item{side}{Which side of boxes should errors appear} \item{theta}{Angle in degrees of vectors} \item{arrow}{draw arrows for edges in dia.cone} \item{add}{if TRUE, plot on previous plot} \item{curves}{if TRUE, draw curves between arrows in dia.cone} \item{pos}{The position of the text in dia.arrow. Follows the text positions of 1, 2, 3, 4 or NULL} \item{\dots}{Most graphic parameters may be passed here} } \details{The diagram function calls \code{\link{fa.diagram}}, \code{\link{omega.diagram}}, \code{\link{ICLUST.diagram}} or \code{\link{lavaan.diagram}} depending upon the class of the fit input. See those functions for particular parameter values. The remaining functions are the graphic primitives used by \code{\link{fa.diagram}}, \code{\link{structure.diagram}}, \code{\link{omega.diagram}}, \code{\link{ICLUST.diagram}} and \code{\link{het.diagram}} They create rectangles, ellipses or triangles surrounding text, connect them to straight or curved arrows, and can draw an arrow from and to the same rectangle. Each shape (ellipse, rectangle or triangle) has a left, right, top and bottom and center coordinate that may be used to connect the arrows. Curves are double-headed arrows. The helper functions were developed to get around the infelicities associated with trying to install Rgraphviz and graphviz. These functions form the core of \code{\link{fa.diagram}},\code{\link{het.diagram}}. Better documentation will be added as these functions get improved. Currently the helper functions are just a work around for Rgraphviz. dia.cone draws a cone with (optionally) arrows as sides and centers to show the problem of factor indeterminacy. } \value{Graphic output} \author{William Revelle } \seealso{The diagram functions that use the dia functions: \code{\link{fa.diagram}}, \code{\link{structure.diagram}}, \code{\link{omega.diagram}}, and \code{\link{ICLUST.diagram}}. } \examples{ #first, show the primitives xlim=c(-2,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demonstration of diagram functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ml <- dia.rect(1,6,"middle left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) bl <- dia.rect(1,1,"bottom left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(7,3,"lower right",xlim=xlim,ylim=ylim,e.size=.07) ur <- dia.ellipse(7,9,"upper right",xlim=xlim,ylim=ylim,e.size=.07) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim,e.size=.07) lm <- dia.triangle(4,1,"Lower Middle",xlim=xlim,ylim=ylim) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.curve(from=ul$left,to=bl$left,"double headed",scale=-1) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll,labels ="right to left") dia.curved.arrow(to=ur,from=ul,labels ="left to right") dia.curve(ll$top,ul$bottom,"right") #for rectangles, specify where to point dia.curve(ll$top,ul$bottom,"left",scale=-1) #for rectangles, specify where to point dia.curve(mr,ur,"up") #but for ellipses, you may just point to it. dia.curve(mr,lr,"down") dia.curve(mr,ur,"up") dia.curved.arrow(mr,ur,"up") #but for ellipses, you may just point to it. dia.curved.arrow(mr,lr,"down") #but for ellipses, you may just point to it. dia.curved.arrow(ur$right,mr$right,"3") dia.curve(ml,mr,"across") dia.curve(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.curved.arrow(br,bl,"right to left",scale=-1) dia.arrow(bl,ll$bottom) dia.curved.arrow(ml,ll$right) dia.curved.arrow(mr,lr$top) #now, put them together in a factor analysis diagram v9 <- sim.hierarchical() f3 <- fa(v9,3,rotate="cluster") fa.diagram(f3,error=TRUE,side=3) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{hplot }% __ONLY ONE__ keyword per line psych/man/bifactor.Rd0000644000176200001440000001546213076435560014254 0ustar liggesusers\name{Bechtoldt} \alias{Bechtoldt.1} \alias{Bechtoldt.2} \alias{Bechtoldt} \alias{Holzinger} \alias{Holzinger.9} \alias{Reise} \alias{Thurstone} \alias{Thurstone.33} \docType{data} \title{Seven data sets showing a bifactor solution.} \description{Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger data sets are original 14 * 14 matrix from their paper as well as a 9 *9 matrix used as an example by Joreskog. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. } \usage{ data(Thurstone) data(Thurstone.33) data(Holzinger) data(Holzinger.9) data(Bechtoldt) data(Bechtoldt.1) data(Bechtoldt.2) data(Reise) } \details{Holzinger and Swineford (1937) introduced the bifactor model (one general factor and several group factors) for mental abilities. This is a nice demonstration data set of a hierarchical factor structure that can be analyzed using the \code{\link{omega}} function or using sem. The bifactor model is typically used in measures of cognitive ability. There are several ways to analyze such data. One is to use the \code{\link{omega}} function to do a hierarchical factoring using the Schmid-Leiman transformation. This can then be done as an exploratory and then as a confirmatory model using \code{\link{omegaSem}}. Another way is to do a regular factor analysis and use either a \code{\link{bifactor}} or \code{\link{biquartimin}} rotation. These latter two functions implement the Jennrich and Bentler (2011) bifactor and biquartimin transformations. The \code{\link{bifactor}} rotation suffers from the problem of local minima (Mansolf and Reise, 2016) and thus a mixture of exploratory and confirmatory analysis might be preferred. The 14 variables are ordered to reflect 3 spatial tests, 3 mental speed tests, 4 motor speed tests, and 4 verbal tests. The sample size is 355. Another data set from Holzinger (Holzinger.9) represents 9 cognitive abilities (Holzinger, 1939) and is used as an example by Karl Joreskog (2003) for factor analysis by the MINRES algorithm and also appears in the LISREL manual as example NPV.KM. Another classic data set is the 9 variable Thurstone problem which is discussed in detail by R. P. McDonald (1985, 1999) and and is used as example in the sem package as well as in the PROC CALIS manual for SAS. These nine tests were grouped by Thurstone and Thurstone, 1941 (based on other data) into three factors: Verbal Comprehension, Word Fluency, and Reasoning. The original data came from Thurstone and Thurstone (1941) but were reanalyzed by Bechthold (1961) who broke the data set into two. McDonald, in turn, selected these nine variables from the larger set of 17 found in Bechtoldt.2. The sample size is 213. Another set of 9 cognitive variables attributed to Thurstone (1933) is the data set of 4,175 students reported by Professor Brigham of Princeton to the College Entrance Examination Board. This set does not show a clear bifactor solution but is included as a demonstration of the differences between a maximimum likelihood factor analysis solution versus a principal axis factor solution. More recent applications of the bifactor model are to the measurement of psychological status. The Reise data set is a correlation matrix based upon >35,000 observations to the Consumer Assessment of Health Care Provideers and Systems survey instrument. Reise, Morizot, and Hays (2007) describe a bifactor solution based upon 1,000 cases. The five factors from Reise et al. reflect Getting care quickly (1-3), Doctor communicates well (4-7), Courteous and helpful staff (8,9), Getting needed care (10-13), and Health plan customer service (14-16). The two Bechtoldt data sets are two samples from Thurstone and Thurstone (1941). They include 17 variables, 9 of which were used by McDonald to form the Thurstone data set. The sample sizes are 212 and 213 respectively. The six proposed factors reflect memory, verbal, words, space, number and reasoning with three markers for all expect the rote memory factor. 9 variables from this set appear in the Thurstone data set. Two more data sets with similar structures are found in the \code{\link{Harman}} data set. This includes the another 9 variables (with 696 subjects) from Holzinger used by Harman \code{link{Harman.Holzinger}} as well as 8 affective variables from \code{link{burt}}. \itemize{ \item Bechtoldt.1: 17 x 17 correlation matrix of ability tests, N = 212. \item Bechtoldt.2: 17 x 17 correlation matrix of ability tests, N = 213. \item Holzinger: 14 x 14 correlation matrix of ability tests, N = 355 \item Holzinger.9: 9 x 9 correlation matrix of ability tests, N = 145 \item Reise: 16 x 16 correlation matrix of health satisfaction items. N = 35,000 \item Thurstone: 9 x 9 correlation matrix of ability tests, N = 213 \item Thurstone.33: Another 9 x 9 correlation matrix of ability items, N=4175 } } \source{Holzinger: Holzinger and Swineford (1937) \cr Reise: Steve Reise (personal communication) \cr sem help page (for Thurstone) } \references{ Bechtoldt, Harold, (1961). An empirical study of the factor analysis stability hypothesis. Psychometrika, 26, 405-432. Holzinger, Karl and Swineford, Frances (1937) The Bi-factor method. Psychometrika, 2, 41-54 Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press. McDonald, Roderick P. (1999) Test theory: A unified treatment. L. Erlbaum Associates. Mahwah, N.J. Mansolf, Maxwell and Reise, Steven P. (2016) Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations, Multivariate Behavioral Research, 51:5, 698-717, DOI: 10.1080/00273171.2016.1215898 Reise, Steven and Morizot, Julien and Hays, Ron (2007) The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research. 16, 19-31. Thurstone, Louis Leon (1933) The theory of multiple factors. Edwards Brothers, Inc. Ann Arbor Thurstone, Louis Leon and Thurstone, Thelma (Gwinn). (1941) Factorial studies of intelligence. The University of Chicago Press. Chicago, Il. } \examples{ if(!require(GPArotation)) {message("I am sorry, to run omega requires GPArotation") } else { #holz <- omega(Holzinger,4, title = "14 ability tests from Holzinger-Swineford") #bf <- omega(Reise,5,title="16 health items from Reise") #omega(Reise,5,labels=colnames(Reise),title="16 health items from Reise") thur.om <- omega(Thurstone,title="9 variables from Thurstone") #compare with thur.bf <- fa(Thurstone,3,rotate="biquartimin") factor.congruence(thur.om,thur.bf) } } \keyword{datasets} psych/man/sim.item.Rd0000644000176200001440000001622412512511006014165 0ustar liggesusers\name{sim.item} \alias{sim.spherical} \alias{item.sim} \alias{sim.item} \alias{sim.dichot} \alias{item.dichot} \alias{sim.circ} \alias{circ.sim} \alias{con2cat} \title{Generate simulated data structures for circumplex, spherical, or simple structure } \description{Rotations of factor analysis and principal components analysis solutions typically try to represent correlation matrices as simple structured. An alternative structure, appealing to some, is a circumplex structure where the variables are uniformly spaced on the perimeter of a circle in a two dimensional space. Generating simple structure and circumplex data is straightforward, and is useful for exploring alternative solutions to affect and personality structure. A generalization to 3 dimensional (spherical) data is straightforward. } \usage{ sim.item(nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, categorical = FALSE, low = -3, high = 3, truncate = FALSE, cutpoint = 0) sim.circ(nvar = 72, nsub = 500, circum = TRUE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, categorical = FALSE, low = -3, high = 3, truncate = FALSE, cutpoint = 0) sim.dichot(nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, low = 0, high = 0) item.dichot(nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6, yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, low = 0, high = 0) sim.spherical(simple=FALSE, nx=7,ny=12 ,nsub = 500, xloading =.55, yloading = .55, zloading=.55, gloading=0, xbias=0, ybias = 0, zbias=0,categorical=FALSE, low=-3,high=3,truncate=FALSE,cutpoint=0) con2cat(old,cuts=c(0,1,2,3),where) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{nvar}{ Number of variables to simulate } \item{nsub}{Number of subjects to simulate } \item{circum}{ circum=TRUE is circumplex structure, FALSE is simple structure} \item{simple}{simple structure or spherical structure in sim.spherical} \item{xloading}{the average loading on the first dimension } \item{yloading}{Average loading on the second dimension } \item{zloading}{the average loading on the third dimension in sim.spherical} \item{gloading}{Average loading on a general factor (default=0)} \item{xbias}{To introduce skew, how far off center is the first dimension } \item{ybias}{To introduce skew on the second dimension} \item{zbias}{To introduce skew on the third dimension -- if using sim.spherical} \item{categorical}{ continuous or categorical variables. } \item{low}{ values less than low are forced to low (or 0 in item.dichot)} \item{high}{ values greater than high are forced to high (or 1 in item.dichot) } \item{truncate}{Change all values less than cutpoint to cutpoint. } \item{cutpoint}{What is the cutpoint } \item{nx}{number of variables for the first factor in sim.spherical} \item{ny}{number of variables for the second and third factors in sim.spherical} \item{old}{a matrix or data frame} \item{cuts}{Values of old to be used as cut points when converting continuous values to categorical values} \item{where}{Which columns of old should be converted to categorical variables. If missing, then all columns are converted.} } \details{This simulation was originally developed to compare the effect of skew on the measurement of affect (see Rafaeli and Revelle, 2005). It has been extended to allow for a general simulation of affect or personality items with either a simple structure or a circumplex structure. Items can be continuous normally distributed, or broken down into n categories (e.g, -2, -1, 0, 1, 2). Items can be distorted by limiting them to these ranges, even though the items have a mean of (e.g., 1). The addition of item.dichot allows for testing structures with dichotomous items of different difficulty (endorsement) levels. Two factor data with either simple structure or circumplex structure are generated for two sets of items, one giving a score of 1 for all items greater than the low (easy) value, one giving a 1 for all items greater than the high (hard) value. The default values for low and high are 0. That is, all items are assumed to have a 50 percent endorsement rate. To examine the effect of item difficulty, low could be -1, high 1. This will lead to item endorsements of .84 for the easy and .16 for the hard. Within each set of difficulties, the first 1/4 are assigned to the first factor factor, the second to the second factor, the third to the first factor (but with negative loadings) and the fourth to the second factor (but with negative loadings). It is useful to compare the results of sim.item with sim.hierarchical. sim.item will produce a general factor that runs through all the items as well as two orthogonal factors. This produces a data set that is hard to represent with standard rotation techniques. Extracting 3 factors without rotation and then rotating the 2nd and 3rd factors reproduces the correct solution. But simple oblique rotation of 3 factors, or an \code{\link{omega}} analysis do not capture the underlying structure. See the last example. Yet another structure that might be appealing is fully complex data in three dimensions. That is, rather than having items representing the circumference of a circle, items can be structured to represent equally spaced three dimensional points on a sphere. \code{\link{sim.spherical}} produces such data. } \value{ A data matrix of (nsub) subjects by (nvar) variables. } \references{ Variations of a routine used in Rafaeli and Revelle, 2006; Rafaeli, E. & Revelle, W. (2006). A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion. \url{http://personality-project.org/revelle/publications/rafaeli.revelle.06.pdf} Acton, G. S. and Revelle, W. (2004) Evaluation of Ten Psychometric Criteria for Circumplex Structure. Methods of Psychological Research Online, Vol. 9, No. 1 (formerly (http://www.dgps.de/fachgruppen/methoden/mpr-online/issue22/mpr110_10.pdf) also at \url{http://personality-project.org/revelle/publications/acton.revelle.mpr110_10.pdf} } \author{ William Revelle } \seealso{ See Also the implementation in this to generate numerous simulations. \code{\link{simulation.circ}}, \code{\link{circ.tests}} as well as other simulations ( \code{\link{sim.structural}} \code{\link{sim.hierarchical}})} \examples{ round(cor(circ.sim(nvar=8,nsub=200)),2) plot(fa(circ.sim(16,500),2)$loadings,main="Circumplex Structure") #circumplex structure # # plot(fa(item.sim(16,500),2)$loadings,main="Simple Structure") #simple structure # cluster.plot(fa(item.dichot(16,low=0,high=1),2)) set.seed(42) data <- mnormt::rmnorm(1000, c(0, 0), matrix(c(1, .5, .5, 1), 2, 2)) #continuous data new <- con2cat(data,c(-1.5,-.5,.5,1.5)) #discreet data polychoric(new) #not run #x12 <- sim.item(12,gloading=.6) #f3 <- fa(x12,3,rotate="none") #f3 #observe the general factor #oblimin(f3$loadings[,2:3]) #show the 2nd and 3 factors. #f3 <- fa(x12,3) #now do it with oblimin rotation #f3 # not what one naively expect. } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate} \keyword{datagen} psych/man/p.rep.Rd0000644000176200001440000000766011222300515013466 0ustar liggesusers\name{p.rep} \alias{p.rep} \alias{p.rep.f} \alias{p.rep.t} \alias{p.rep.r} \title{Find the probability of replication for an F, t, or r and estimate effect size } \description{The probability of replication of an experimental or correlational finding as discussed by Peter Killeen (2005) is the probability of finding an effect in the same direction upon an exact replication. For articles submitted to Psychological Science, p.rep needs to be reported. F, t, p and r are all estimates of the size of an effect. But F, t, and p also are also a function of the sample size. Effect size, d prime, may be expressed as differences between means compared to within cell standard deviations, or as a correlation coefficient. These functions convert p, F, and t to d prime and the r equivalent. } \usage{ p.rep(p = 0.05, n=NULL,twotailed = FALSE) p.rep.f(F,df2,twotailed=FALSE) p.rep.r(r,n,twotailed=TRUE) p.rep.t(t,df,df2=NULL,twotailed=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{p}{conventional probability of statistic (e.g., of F, t, or r)} \item{F}{The F statistic} \item{df}{Degrees of freedom of the t-test, or of the first group if unequal sizes} \item{df2}{Degrees of freedom of the denominator of F or the second group in an unequal sizes t test} \item{r}{Correlation coefficient} \item{n}{Total sample size if using r } \item{t}{t-statistic if doing a t-test or testing significance of a regression slope} \item{twotailed}{Should a one or two tailed test be used? } } \details{The conventional Null Hypothesis Significance Test (NHST) is the likelihood of observing the data given the null hypothesis of no effect. But this tells us nothing about the probability of the null hypothesis. Peter Killeen (2005) introduced the probability of replication as a more useful measure. The probability of replication is the probability that an exact replication study will find a result in the \emph{same direction} as the original result. p.rep is based upon a 1 tailed probability value of the observed statistic. Other frequently called for statistics are estimates of the effect size, expressed either as Cohen's d, Hedges g, or the equivalent value of the correlation, r. For p.rep.t, if the cell sizes are unequal, the effect size estimates are adjusted by the ratio of the mean cell size to the harmonic mean cell size (see Rownow et al., 2000). } \value{ \item{p.rep }{Probability of replication} \item{dprime }{Effect size (Cohen`s d) if more than just p is specified} \item{prob}{Probability of F, t, or r. Note that this can be either the one-tailed or two tailed probability value.} \item{r.equivalent}{For t-tests, the r equivalent to the t (see Rosenthal and Rubin(2003), Rosnow, Rosenthal, and Rubin, 2000))}. } \references{ Cummings, Geoff (2005) Understanding the average probability of replication: comment on Killeen 2005). Psychological Science, 16, 12, 1002-1004). \cr Killeen, Peter H. (2005) An alternative to Null-Hypothesis Significance Tests. Psychological Science, 16, 345-353 \cr Rosenthal, R. and Rubin, Donald B.(2003), r-sub(equivalent): A Simple Effect Size Indicator. Psychological Methods, 8, 492-496. Rosnow, Ralph L., Rosenthal, Robert and Rubin, Donald B. (2000) Contrasts and correlations in effect-size estimation, Psychological Science, 11. 446-453. } \note{ The p.rep value is the one tailed probability value of obtaining a result in the same direction. } \examples{ p.rep(.05) #probability of replicating a result if the original study had a p = .05 p.rep.f(9.0,98) #probability of replicating a result with F = 9.0 with 98 df p.rep.r(.4,50) #probability of replicating a result if r =.4 with n = 50 p.rep.t(3,98) #probability of replicating a result if t = 3 with df =98 p.rep.t(2.14,84,14) #effect of equal sample sizes (see Rosnow et al.) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{models} \keyword{univar} psych/man/epi.bfi.Rd0000644000176200001440000000346210776556351014002 0ustar liggesusers\name{epi.bfi} \alias{epi.bfi} \docType{data} \title{13 personality scales from the Eysenck Personality Inventory and Big 5 inventory} \description{A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. } \usage{data(epi.bfi)} \format{ A data frame with 231 observations on the following 13 variables. \describe{ \item{\code{epiE}}{EPI Extraversion } \item{\code{epiS}}{EPI Sociability (a subset of Extraversion items} \item{\code{epiImp}}{EPI Impulsivity (a subset of Extraversion items} \item{\code{epilie}}{EPI Lie scale} \item{\code{epiNeur}}{EPI neuroticism} \item{\code{bfagree}}{Big 5 inventory (from the IPIP) measure of Agreeableness} \item{\code{bfcon}}{Big 5 Conscientiousness} \item{\code{bfext}}{Big 5 Extraversion} \item{\code{bfneur}}{Big 5 Neuroticism} \item{\code{bfopen}}{Big 5 Openness} \item{\code{bdi}}{Beck Depression scale} \item{\code{traitanx}}{Trait Anxiety} \item{\code{stateanx}}{State Anxiety} } } \details{Self report personality scales tend to measure the ``Giant 2" of Extraversion and Neuroticism or the ``Big 5" of Extraversion, Neuroticism, Agreeableness, Conscientiousness, and Openness. Here is a small data set from Northwestern University undergraduates with scores on the Eysenck Personality Inventory (EPI) and a Big 5 inventory taken from the International Personality Item Pool. } \source{Data were collected at the Personality, Motivation, and Cognition Lab (PMCLab) at Northwestern by William Revelle) } \references{\url{http://personality-project.org/pmc.html} } \examples{ data(epi.bfi) pairs.panels(epi.bfi[,1:5]) describe(epi.bfi) } \keyword{datasets} psych/man/iqitems.Rd0000644000176200001440000001123113147336461014123 0ustar liggesusers\name{iqitems} \alias{iqitems} \docType{data} \title{16 multiple choice IQ items} \description{16 multiple choice ability items taken from the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. The data from 1525 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. For more information on the development of an open source measure of cognitive ability, consult the readings available at the \url{personality-project.org}. } \usage{data(iqitems)} \format{ A data frame with 1525 observations on the following 16 variables. The number following the name is the item number from SAPA. \describe{ \item{\code{reason.4}}{Basic reasoning questions } \item{\code{reason.16}}{Basic reasoning question} \item{\code{reason.17}}{Basic reasoning question} \item{\code{reason.19}}{Basic reasoning question } \item{\code{letter.7}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.33}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.34}}{In the following alphanumeric series, what letter comes next} \item{\code{letter.58}}{In the following alphanumeric series, what letter comes next?} \item{\code{matrix.45}}{A matrix reasoning task} \item{\code{matrix.46}}{A matrix reasoning task} \item{\code{matrix.47}}{A matrix reasoning task} \item{\code{matrix.55}}{A matrix reasoning task} \item{\code{rotate.3}}{Spatial Rotation of type 1.2} \item{\code{rotate.4}}{Spatial Rotation of type 1.2} \item{\code{rotate.6}}{Spatial Rotation of type 1.1} \item{\code{rotate.8}}{Spatial Rotation of type 2.3} } } \details{16 items were sampled from 80 items given as part of the SAPA (\url{http://sapa-project.org}) project (Revelle, Wilt and Rosenthal, 2009; Condon and Revelle, 2014) to develop online measures of ability. These 16 items reflect four lower order factors (verbal reasoning, letter series, matrix reasoning, and spatial rotations. These lower level factors all share a higher level factor ('g'). Similar data are available from the International Cognitive Abiity Resource at \url{http://icar-project.com} . This data set and the associated data set (\code{\link{ability}} based upon scoring these multiple choice items and converting them to correct/incorrect may be used to demonstrate item response functions, \code{\link{tetrachoric}} correlations, or \code{\link{irt.fa}} as well as \code{\link{omega}} estimates of of reliability and hierarchical structure. In addition, the data set is a good example of doing item analysis to examine the empirical response probabilities of each item alternative as a function of the underlying latent trait. When doing this, it appears that two of the matrix reasoning problems do not have monotonically increasing trace lines for the probability correct. At moderately high ability (theta = 1) there is a decrease in the probability correct from theta = 0 and theta = 2. } \source{ The example data set is taken from the Synthetic Aperture Personality Assessment personality and ability test at \url{http://sapa-project.org}. The data were collected with David Condon from 8/08/12 to 8/31/12. } \references{ Condon, David and Revelle, William, (2014) The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. Intelligence, 43, 52-64. Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations. } \examples{ \dontrun{ data(iqitems) iq.keys <- c(4,4,4, 6, 6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #this just gives summary statisics #convert them to true false iq.scrub <- scrub(iqitems,isvalue=0) #first get rid of the zero responses iq.tf <- score.multiple.choice(iq.keys,iq.scrub,score=FALSE) #convert to wrong (0) and correct (1) for analysis describe(iq.tf) #see the ability data set for these analyses #now, for some item analysis #iq.irt <- irt.fa(iq.tf) #do a basic irt #iq.sc <-score.irt(iq.irt,iq.tf) #find the scores #op <- par(mfrow=c(4,4)) #irt.responses(iq.sc[,1], iq.tf) #op <- par(mfrow=c(1,1)) } } \keyword{datasets} psych/man/iclust.diagram.Rd0000644000176200001440000000634612260324137015361 0ustar liggesusers\name{iclust.diagram} \Rdversion{1.1} \alias{iclust.diagram} \alias{ICLUST.diagram} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Draw an ICLUST hierarchical cluster structure diagram } \description{Given a cluster structure determined by \code{\link{ICLUST}}, create a graphic structural diagram using graphic functions in the psych package To create dot code to describe the \code{\link{ICLUST}} output with more precision, use \code{\link{ICLUST.graph}}. If Rgraphviz has been successfully installed, the alternative is to use \code{\link{ICLUST.rgraph}}. } \usage{ iclust.diagram(ic, labels = NULL, short = FALSE, digits = 2, cex = NULL, min.size = NULL, e.size =1,colors=c("black","blue"), main = "ICLUST diagram",cluster.names=NULL,marg=c(.5,.5,1.5,.5)) } \arguments{ \item{ic}{Output from ICLUST} \item{labels}{labels for variables (if not specified as rownames in the ICLUST output} \item{short}{if short=TRUE, variable names are replaced with Vn} \item{digits}{Round the path coefficients to digits accuracy} \item{cex}{The standard graphic control parameter for font size modifications. This can be used to make the labels bigger or smaller than the default values.} \item{min.size}{Don't provide statistics for clusters less than min.size} \item{e.size}{size of the ellipses with the cluster statistics.} \item{colors}{postive and negative } \item{main}{The main graphic title} \item{cluster.names}{Normally, clusters are named sequentially C1 ... Cn. If cluster.names are specified, then these values will be used instead.} \item{marg}{Sets the margins to be narrower than the default values. Resets them upon return} } \details{iclust.diagram provides most of the power of \code{\link{ICLUST.rgraph}} without the difficulties involved in installing Rgraphviz. It is called automatically from ICLUST. Following a request by Michael Kubovy, cluster.names may be specified to replace the normal C1 ... Cn names. If access to a dot language graphics program is available, it is probably better to use the iclust.graph function to get dot output for offline editing. } \value{ Graphical output summarizing the hierarchical cluster structure. The graph is drawn using the diagram functions (e.g., \code{\link{dia.curve}}, \code{\link{dia.arrow}}, \code{\link{dia.rect}}, \code{\link{dia.ellipse}} ) created as a work around to Rgraphviz. } \references{Revelle, W. Hierarchical Cluster Analysis and the Internal Structure of Tests. Multivariate Behavioral Research, 1979, 14, 57-74. } \author{William Revelle } \note{Suggestions for improving the graphic output are welcome. } \seealso{ \code{\link{ICLUST}} } \examples{ v9 <- sim.hierarchical() v9c <- ICLUST(v9) test.data <- Harman74.cor$cov ic.out <- ICLUST(test.data) #now show how to relabel clusters ic.bfi <- iclust(bfi[1:25],beta=3) #find the clusters cluster.names <- rownames(ic.bfi$results) #get the old names #change the names to the desired ones cluster.names[c(16,19,18,15,20)] <- c("Neuroticism","Extra-Open","Agreeableness", "Conscientiousness","Open") #now show the new names iclust.diagram(ic.bfi,cluster.names=cluster.names,min.size=4,e.size=1.75) } \keyword{ multivariate} \keyword{ cluster}% __ONLY ONE__ keyword per line \keyword{hplot} psych/man/irt.person.rasch.Rd0000644000176200001440000000550411672536615015664 0ustar liggesusers\name{irt.1p} \alias{irt.0p} \alias{irt.1p} \alias{irt.2p} \alias{irt.person.rasch} \title{Item Response Theory estimate of theta (ability) using a Rasch (like) model} \description{Item Response Theory models individual responses to items by estimating individual ability (theta) and item difficulty (diff) parameters. This is an early and crude attempt to capture this modeling procedure. A better procedure is to use \code{\link{irt.fa}}. } \usage{ irt.person.rasch(diff, items) irt.0p(items) irt.1p(delta,items) irt.2p(delta,beta,items) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{diff}{ A vector of item difficulties --probably taken from irt.item.diff.rasch} \item{items}{A matrix of 0,1 items nrows = number of subjects, ncols = number of items} \item{delta}{delta is the same as diff and is the item difficulty parameter} \item{beta}{beta is the item discrimination parameter found in \code{\link{irt.discrim}} } } \details{A very preliminary IRT estimation procedure. Given scores xij for ith individual on jth item \cr Classical Test Theory ignores item difficulty and defines ability as expected score : abilityi = theta(i) = x(i.) A zero parameter model rescales these mean scores from 0 to 1 to a quasi logistic scale ranging from - 4 to 4 This is merely a non-linear transform of the raw data to reflect a logistic mapping. Basic 1 parameter (Rasch) model considers item difficulties (delta j): p(correct on item j for the ith subject |theta i, deltaj) = 1/(1+exp(deltaj - thetai)) If we have estimates of item difficulty (delta), then we can find theta i by optimization Two parameter model adds item sensitivity (beta j): p(correct on item j for subject i |thetai, deltaj, betaj) = 1/(1+exp(betaj *(deltaj- theta i))) Estimate delta, beta, and theta to maximize fit of model to data. The procedure used here is to first find the item difficulties assuming theta = 0 Then find theta given those deltas Then find beta given delta and theta. This is not an "official" way to do IRT, but is useful for basic item development. See \code{\link{irt.fa}} and \code{\link{score.irt}} for far better options. } \value{ a data.frame with estimated ability (theta) and quality of fit. (for irt.person.rasch) \cr a data.frame with the raw means, theta0, and the number of items completed} \author{ William Revelle} \note{ Not recommended for serious use. This code is under development. Much better functions are in the ltm and eRm packages. Similar analyses can be done using \code{\link{irt.fa}} and \code{\link{score.irt}}. } \seealso{ \code{\link{sim.irt}}, \code{\link{sim.rasch}}, \code{\link{logistic}}, \code{\link{irt.fa}}, \code{\link{tetrachoric}}, \code{\link{irt.item.diff.rasch}} } \keyword{multivariate}% at least one, from doc/KEYWORDS \keyword{models}% __ONLY ONE__ keyword per line psych/man/sim.VSS.Rd0000644000176200001440000000252111222300725013676 0ustar liggesusers\name{sim.VSS} \alias{sim.VSS} \alias{VSS.simulate} \alias{VSS.sim} \title{ create VSS like data} \description{Simulation is one of most useful techniques in statistics and psychometrics. Here we simulate a correlation matrix with a simple structure composed of a specified number of factors. Each item is assumed to have complexity one. See \code{\link{circ.sim}} and \code{\link{item.sim}} for alternative simulations. } \usage{ sim.VSS(ncases=1000, nvariables=16, nfactors=4, meanloading=.5,dichot=FALSE,cut=0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ncases}{ number of simulated subjects } \item{nvariables}{ Number of variables } \item{nfactors}{ Number of factors to generate } \item{meanloading}{with a mean loading } \item{dichot}{dichot=FALSE give continuous variables, dichot=TRUE gives dichotomous variables} \item{cut}{if dichotomous = TRUE, then items with values > cut are assigned 1, otherwise 0.} } \value{a ncases x nvariables matrix } \author{ William Revelle} \seealso{ \code{\link{VSS}}, \code{\link{ICLUST}} } \examples{ \dontrun{ simulated <- sim.VSS(1000,20,4,.6) vss <- VSS(simulated,rotate="varimax") VSS.plot(vss) } } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line \keyword{ datagen }% __ONLY ONE__ keyword per line psych/man/parcels.Rd0000644000176200001440000000550611637740227014112 0ustar liggesusers\name{parcels} \alias{parcels} \alias{keysort} \title{Find miniscales (parcels) of size 2 or 3 from a set of items} \description{Given a set of n items, form n/2 or n/3 mini scales or parcels of the most similar pairs or triplets of items. These may be used as the basis for subsequent scale construction or multivariate (e.g., factor) analysis. } \usage{ parcels(x, size = 3, max = TRUE, flip=TRUE,congruence = FALSE) keysort(keys) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A matrix/dataframe of items or a correlation/covariance matrix of items} \item{size}{Form parcels of size 2 or size 3} \item{flip}{if flip=TRUE, negative correlations lead to at least one item being negatively scored} \item{max}{Should item correlation/covariance be adjusted for their maximum correlation} \item{congruence}{Should the correlations be converted to congruence coefficients?} \item{keys}{Sort a matrix of keys to reflect item order as much as possible} } \details{Items used in measuring ability or other aspects of personality are typically not very reliable. One suggestion has been to form items into homogeneous item composites (HICs), Factorially Homogeneous Item Dimensions (FHIDs) or mini scales (parcels). Parcelling may be done rationally, factorially, or empirically based upon the structure of the correlation/covariance matrix. \code{link{parcels}} facilitates the finding of parcels by forming a keys matrix suitable for using in \code{\link{score.items}}. These keys represent the n/2 most similar pairs or the n/3 most similar triplets. The algorithm is straightforward: For size = 2, the correlation matrix is searched for the highest correlation. These two items form the first parcel and are dropped from the matrix. The procedure is repeated until there are no more pairs to form. For size=3, the three items with the greatest sum of variances and covariances with each other is found. This triplet is the first parcel. All three items are removed and the procedure then identifies the next most similar triplet. The procedure repeats until n/3 parcels are identified. } \value{ \item{keys}{A matrix of scoring keys to be used to form mini scales (parcels) These will be in order of importance, that is, the first parcel (P1) will reflect the most similar pair or triplet. The keys may also be sorted by average item order by using the keysort function.} } \references{ Cattell, R. B. (1956). Validation and intensification of the sixteen personality factor questionnaire. Journal of Clinical Psychology , 12 (3), 205 -214. } \author{William Revelle} \seealso{ \code{\link{score.items}} to score the parcels or \code{\link{iclust}} for an alternative way of forming item clusters. } \examples{ parcels(Thurstone) keys <- parcels(bfi) keys <- keysort(keys) score.items(keys,bfi) } \keyword{ multivariate }psych/man/ICLUST.Rd0000644000176200001440000004046412501641504013453 0ustar liggesusers\name{iclust} \alias{ICLUST} \alias{iclust} \title{iclust: Item Cluster Analysis -- Hierarchical cluster analysis using psychometric principles } \description{A common data reduction technique is to cluster cases (subjects). Less common, but particularly useful in psychological research, is to cluster items (variables). This may be thought of as an alternative to factor analysis, based upon a much simpler model. The cluster model is that the correlations between variables reflect that each item loads on at most one cluster, and that items that load on those clusters correlate as a function of their respective loadings on that cluster and items that define different clusters correlate as a function of their respective cluster loadings and the intercluster correlations. Essentially, the cluster model is a Very Simple Structure factor model of complexity one (see \code{\link{VSS}}). This function applies the iclust algorithm to hierarchically cluster items to form composite scales. Clusters are combined if coefficients alpha and beta will increase in the new cluster. Alpha, the mean split half correlation, and beta, the worst split half correlation, are estimates of the reliability and general factor saturation of the test. (See also the \code{\link{omega}} function to estimate McDonald's coeffients \eqn{\omega_h}{omega hierarchical} and \eqn{\omega_t}{omega total}) } \usage{ iclust(r.mat, nclusters=0, alpha=3, beta=1, beta.size=4, alpha.size=3, correct=TRUE,correct.cluster=TRUE, reverse=TRUE, beta.min=.5, output=1, digits=2,labels=NULL,cut=0, n.iterations =0, title="ICLUST", plot=TRUE, weighted=TRUE,cor.gen=TRUE,SMC=TRUE,purify=TRUE,diagonal=FALSE) ICLUST(r.mat, nclusters=0, alpha=3, beta=1, beta.size=4, alpha.size=3, correct=TRUE,correct.cluster=TRUE, reverse=TRUE, beta.min=.5, output=1, digits=2,labels=NULL,cut=0,n.iterations = 0,title="ICLUST",plot=TRUE, weighted=TRUE,cor.gen=TRUE,SMC=TRUE,purify=TRUE,diagonal=FALSE) #iclust(r.mat) #use all defaults #iclust(r.mat,nclusters =3) #use all defaults and if possible stop at 3 clusters #ICLUST(r.mat, output =3) #long output shows clustering history #ICLUST(r.mat, n.iterations =3) #clean up solution by item reassignment } %- maybe also 'usage' for other objects documented here. \arguments{ \item{r.mat}{ A correlation matrix or data matrix/data.frame. (If r.mat is not square i.e, a correlation matrix, the data are correlated using pairwise deletion. } \item{nclusters}{Extract clusters until nclusters remain (default will extract until the other criteria are met or 1 cluster, whichever happens first). See the discussion below for alternative techniques for specifying the number of clusters. } \item{alpha}{ Apply the increase in alpha criterion (0) never or for (1) the smaller, 2) the average, or 3) the greater of the separate alphas. (default = 3) } \item{beta}{ Apply the increase in beta criterion (0) never or for (1) the smaller, 2) the average, or 3) the greater of the separate betas. (default =1) } \item{beta.size}{ Apply the beta criterion after clusters are of beta.size (default = 4)} \item{alpha.size}{ Apply the alpha criterion after clusters are of size alpha.size (default =3) } \item{correct}{ Correct correlations for reliability (default = TRUE) } \item{correct.cluster}{Correct cluster -sub cluster correlations for reliability of the sub cluster , default is TRUE))} \item{reverse}{Reverse negative keyed items (default = TRUE} \item{beta.min}{ Stop clustering if the beta is not greater than beta.min (default = .5) } \item{output}{ 1) short, 2) medium, 3 ) long output (default =1)} \item{labels}{vector of item content or labels. If NULL, then the colnames are used. If FALSE, then labels are V1 .. Vn} \item{cut}{sort cluster loadings > absolute(cut) (default = 0) } \item{n.iterations}{iterate the solution n.iterations times to "purify" the clusters (default = 0)} \item{digits}{ Precision of digits of output (default = 2) } \item{title}{ Title for this run } \item{plot}{Should ICLUST.rgraph be called automatically for plotting (requires Rgraphviz default=TRUE)} \item{weighted}{Weight the intercluster correlation by the size of the two clusters (TRUE) or do not weight them (FALSE)} \item{cor.gen}{When correlating clusters with subclusters, base the correlations on the general factor (default) or general + group (cor.gen=FALSE)} \item{SMC}{When estimating cluster-item correlations, use the smcs as the estimate of an item communality (SMC=TRUE) or use the maximum correlation (SMC=FALSE).} \item{purify}{Should clusters be defined as the original groupings (purify = FAlSE) or by the items with the highest loadings on those original clusters? (purify = TRUE) } \item{diagonal}{Should the diagonal be included in the fit statistics. The default is not to include it. Prior to 1.2.8, the diagonal was included.} } \details{ Extensive documentation and justification of the algorithm is available in the original MBR 1979 \url{http://personality-project.org/revelle/publications/iclust.pdf} paper. Further discussion of the algorithm and sample output is available on the personality-project.org web page: \url{http://personality-project.org/r/r.ICLUST.html} The results are best visualized using \code{\link{ICLUST.graph}}, the results of which can be saved as a dot file for the Graphviz program. http://www.graphviz.org/. The \code{\link{iclust.diagram}} is called automatically to produce cluster diagrams. The resulting diagram is not quite as pretty as what can be achieved in dot code but is quite adequate if you don't want to use an external graphics program. With the installation of Rgraphviz, ICLUST can also provide cluster graphs. A common problem in the social sciences is to construct scales or composites of items to measure constructs of theoretical interest and practical importance. This process frequently involves administering a battery of items from which those that meet certain criteria are selected. These criteria might be rational, empirical,or factorial. A similar problem is to analyze the adequacy of scales that already have been formed and to decide whether the putative constructs are measured properly. Both of these problems have been discussed in numerous texts, as well as in myriad articles. Proponents of various methods have argued for the importance of face validity, discriminant validity, construct validity, factorial homogeneity, and theoretical importance. Revelle (1979) proposed that hierachical cluster analysis could be used to estimate a new coefficient (beta) that was an estimate of the general factor saturation of a test. More recently, Zinbarg, Revelle, Yovel and Li (2005) compared McDonald's Omega to Chronbach's alpha and Revelle's beta. They conclude that \eqn{\omega_h}{omega} hierarchical is the best estimate. An algorithm for estimating \code{\link{omega} } is available as part of this package. Revelle and Zinbarg (2009) discuss alpha, beta, and omega, as well as other estimates of reliability. The original ICLUST program was written in FORTRAN to run on CDC and IBM mainframes and was then modified to run in PC-DOS. The R version of iclust is a completely new version written for the psych package. Please email me if you want help with this version of iclust or if you desire more features. A requested feature (not yet available) is to specify certain items as forming a cluster. That is, to do confirmatory cluster analysis. The program currently has three primary functions: cluster, loadings, and graphics. In June, 2009, the option of weighted versus unweighted beta was introduced. Unweighted beta calculates beta based upon the correlation between two clusters, corrected for test length using the Spearman-Brown prophecy formala, while weighted beta finds the average interitem correlation between the items within two clusters and then finds beta from this. That is, for two clusters A and B of size N and M with between average correlation rb, weighted beta is (N+M)^2 rb/(Va +Vb + 2Cab). Raw (unweighted) beta is 2rab/(1+rab) where rab = Cab/sqrt(VaVb). Weighted beta seems a more appropriate estimate and is now the default. Unweighted beta is still available for consistency with prior versions. Also modified in June, 2009 was the way of correcting for item overlap when calculating the cluster-subcluster correlations for the graphic output. This does not affect the final cluster solution, but does produce slightly different path values. In addition, there are two ways to solve for the cluster - subcluster correlation. Given the covariance between two clusters, Cab with average rab = Cab/(N*M), and cluster variances Va and Vb with Va = N + N*(N-1)*ra then the correlation of cluster A with the combined cluster AB is either a) ((N^2)ra + Cab)/sqrt(Vab*Va) (option cor.gen=TRUE) or b) (Va - N + Nra + Cab)/sqrt(Vab*Va) (option cor.gen=FALSE) The default is to use cor.gen=TRUE. Although iclust will give what it thinks is the best solution in terms of the number of clusters to extract, the user will sometimes disagree. To get more clusters than the default solution, just set the nclusters parameter to the number desired. However, to get fewer than meet the alpha and beta criteria, it is sometimes necessary to set alpha=0 and beta=0 and then set the nclusters to the desired number. Clustering 24 tests of mental ability A sample output using the 24 variable problem by Harman can be represented both graphically and in terms of the cluster order. The default is to produce graphics using the \code{\link{diagram}} functions. An alternative is to use the Rgraphviz package (from BioConductor). Because this package is sometimes hard to install, there is an alternative option (\code{\link{ICLUST.graph}} to write dot language instructions for subsequent processing. This will create a graphic instructions suitable for any viewing program that uses the dot language. \code{\link{ICLUST.rgraph}} produces the dot code for Graphviz. Somewhat lower resolution graphs with fewer options are available in the \code{\link{ICLUST.rgraph}} function which requires Rgraphviz. Dot code can be viewed directly in Graphviz or can be tweaked using commercial software packages (e.g., OmniGraffle) Note that for the Harman 24 variable problem, with the default parameters, the data form one large cluster. (This is consistent with the Very Simple Structure (\code{\link{VSS}}) output as well, which shows a clear one factor solution for complexity 1 data.) An alternative solution is to ask for a somewhat more stringent set of criteria and require an increase in the size of beta for all clusters greater than 3 variables. This produces a 4 cluster solution. It is also possible to use the original parameter settings, but ask for a 4 cluster solution. At least for the Harman 24 mental ability measures, it is interesting to compare the cluster pattern matrix with the oblique rotation solution from a factor analysis. The factor congruence of a four factor oblique pattern solution with the four cluster solution is > .99 for three of the four clusters and > .97 for the fourth cluster. The cluster pattern matrix (returned as an invisible object in the output) In September, 2012, the fit statistics (pattern fit and cluster fit) were slightly modified to (by default) not consider the diagonal (diagonal=FALSE). Until then, the diagonal was included in the cluster fit statistics. The pattern fit is analogous to factor analysis and is based upon the model = P x Structure where Structure is Pattern * Phi. Then R* = R - model and fit is the ratio of sum(r*^2)/sum(r^2) for the off diagonal elements. } \value{ \item{title }{Name of this analysis} \item{results}{A list containing the step by step cluster history, including which pair was grouped, what were the alpha and betas of the two groups and of the combined group. Note that the alpha values are ``standardized alphas'' based upon the correlation matrix, rather than the raw alphas that will come from \code{\link{scoreItems}} The print.psych and summary.psych functions will print out just the must important results.} \item{corrected}{The raw and corrected for alpha reliability cluster intercorrelations.} \item{clusters}{a matrix of -1,0, and 1 values to define cluster membership.} \item{purified}{A list of the cluster definitions and cluster loadings of the purified solution. These are sorted by importance (the eigenvalues of the clusters). The cluster membership from the original (O) and purified (P) clusters are indicated along with the cluster structure matrix. These item loadings are the same as those found by the \code{\link{scoreItems}} function and are found by correcting the item-cluster correlation for item overlap by summing the item-cluster covariances with all except that item and then adding in the smc for that item. These resulting correlations are then corrected for scale reliability. To show just the most salient items, use the cutoff option in \code{\link{print.psych}} } \item{cluster.fit, structure.fit, pattern.fit}{There are a number of ways to evaluate how well any factor or cluster matrix reproduces the original matrix. Cluster fit considers how well the clusters fit if only correlations with clusters are considered. Structure fit evaluates R = CC' while pattern fit evaluate R = C inverse (phi) C' where C is the cluster loading matrix, and phi is the intercluster correlation matrix.} \item{pattern}{The pattern matrix loadings. Pattern is just C inverse (Phi). The pattern matrix is conceptually equivalent to that of a factor analysis, in that the pattern coefficients are b weights of the cluster to the variables, while the normal cluster loadings are correlations of the items with the cluster. The four cluster and four factor pattern matrices for the Harman problem are very similar.} } \references{Revelle, W. Hierarchical Cluster Analysis and the Internal Structure of Tests. Multivariate Behavioral Research, 1979, 14, 57-74. Revelle, W. and Zinbarg, R. E. (2009) Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 2009. \url{http://personality-project.org/revelle/publications/iclust.pdf} \cr See also more extensive documentation at \url{http://personality-project.org/r/r.ICLUST.html} and \cr Revelle, W. (in prep) An introduction to psychometric theory with applications in R. To be published by Springer. (working draft available at \url{http://personality-project.org/r/book/} } \author{William Revelle } \note{iclust draws graphical displays with or without using Rgraphiviz. Because of difficulties installing Rgraphviz on many systems, the default it not even try using it. With the introduction of the \code{\link{diagram}} functions, iclust now draws using iclust.diagram which is not as pretty as using Rgraphviz, but more stable. However, Rgraphviz can be used by using \code{\link{ICLUST.rgraph}} to produces slightly better graphics. It is also possible to export dot code in the dot language for further massaging of the graphic. This may be done using \code{\link{ICLUST.graph}}. This last option is probably preferred for nice graphics which can be massaged in any dot code program (e.g., graphviz (http://graphviz.org) or a commercial program such as OmniGraffle. To view the cluster structure more closely, it is possible to save the graphic output as a pdf and then magnify this using a pdf viewer. This is useful when clustering a large number of variables. In order to sort the clusters by cluster loadings, use \code{\link{iclust.sort}}. } \seealso{ \code{\link{iclust.sort}}, \code{\link{ICLUST.graph}}, \code{\link{ICLUST.cluster}}, \code{\link{cluster.fit} }, \code{\link{VSS}}, \code{\link{omega}} } \examples{ test.data <- Harman74.cor$cov ic.out <- iclust(test.data,title="ICLUST of the Harman data") summary(ic.out) #use all defaults and stop at 4 clusters ic.out4 <- iclust(test.data,nclusters =4,title="Force 4 clusters") summary(ic.out4) ic.out1 <- iclust(test.data,beta=3,beta.size=3) #use more stringent criteria ic.out #more complete output plot(ic.out4) #this shows the spatial representation #use a dot graphics viewer on the out.file dot.graph <- ICLUST.graph(ic.out,out.file="test.ICLUST.graph.dot") #show the equivalent of a factor solution fa.diagram(ic.out4$pattern,Phi=ic.out4$Phi,main="Pattern taken from iclust") } \keyword{multivariate}% at least one, from doc/KEYWORDS \keyword{cluster}% __ONLY ONE__ keyword per line psych/man/00.psych-package.Rd0000644000176200001440000010015313060534652015403 0ustar liggesusers\name{00.psych} \alias{psych} \alias{psych-package} \alias{00.psych-package} \docType{package} \title{A package for personality, psychometric, and psychological research } \description{Overview of the psych package. The psych package has been developed at Northwestern University to include functions most useful for personality and psychological research. Some of the functions (e.g., \code{\link{read.file}}, \code{\link{read.clipboard}}, \code{\link{describe}}, \code{\link{pairs.panels}}, \code{\link{error.bars}} and \code{\link{error.dots}}) are useful for basic data entry and descriptive analyses. Use help(package="psych") or objects("package:psych") for a list of all functions Two vignettes are included as part of the package. The overview vignette provides examples of using psych in many applications. Psychometric applications include routines (\code{\link{fa}} for maximum likelihood (fm="mle"), minimum residual (fm="minres"), minimum rank (fm=minrank) principal axes (fm="pa") and weighted least squares (fm="wls") factor analysis as well as functions to do Schmid Leiman transformations (\code{\link{schmid}}) to transform a hierarchical factor structure into a bifactor solution. Principal Components Analysis (\code{\link{pca}} is also available. Rotations may be done using Factor or components transformations to a target matrix include the standard Promax transformation (\code{\link{Promax}}), a transformation to a cluster target, or to any simple target matrix (\code{\link{target.rot}}) as well as the ability to call many of the GPArotation functions. Functions for determining the number of factors in a data matrix include Very Simple Structure (\code{\link{VSS}}) and Minimum Average Partial correlation (\code{\link{MAP}}). An alternative approach to factor analysis is Item Cluster Analysis (\code{\link{ICLUST}}). Reliability coefficients alpha (\code{\link{scoreItems}}, \code{\link{score.multiple.choice}}), beta (\code{\link{ICLUST}}) and McDonald's omega (\code{\link{omega}} and \code{\link{omega.graph}}) as well as Guttman's six estimates of internal consistency reliability (\code{\link{guttman}}) and the six measures of Intraclass correlation coefficients (\code{\link{ICC}}) discussed by Shrout and Fleiss are also available. The \code{\link{scoreItems}}, and \code{\link{score.multiple.choice}} functions may be used to form single or multiple scales from sets of dichotomous, multilevel, or multiple choice items by specifying scoring keys. Additional functions make for more convenient descriptions of item characteristics include 1 and 2 parameter Item Response measures. The \code{\link{tetrachoric}}, \code{\link{polychoric}} and \code{\link{irt.fa}} functions are used to find 2 parameter descriptions of item functioning. \code{\link{scoreIrt}}, \code{\link{scoreIrt.1pl}} and \code{\link{scoreIrt.2pl}} do basic IRT based scoring. A number of procedures have been developed as part of the Synthetic Aperture Personality Assessment (SAPA) project. These routines facilitate forming and analyzing composite scales equivalent to using the raw data but doing so by adding within and between cluster/scale item correlations. These functions include extracting clusters from factor loading matrices (\code{\link{factor2cluster}}), synthetically forming clusters from correlation matrices (\code{\link{cluster.cor}}), and finding multiple ((\code{\link{setCor}}) and partial ((\code{\link{partial.r}}) correlations from correlation matrices. Functions to generate simulated data with particular structures include \code{\link{sim.circ}} (for circumplex structures), \code{\link{sim.item}} (for general structures) and \code{\link{sim.congeneric}} (for a specific demonstration of congeneric measurement). The functions \code{\link{sim.congeneric}} and \code{\link{sim.hierarchical}} can be used to create data sets with particular structural properties. A more general form for all of these is \code{\link{sim.structural}} for generating general structural models. These are discussed in more detail in the vignette (psych_for_sem). Functions to apply various standard statistical tests include \code{\link{p.rep}} and its variants for testing the probability of replication, \code{\link{r.con}} for the confidence intervals of a correlation, and \code{\link{r.test}} to test single, paired, or sets of correlations. In order to study diurnal or circadian variations in mood, it is helpful to use circular statistics. Functions to find the circular mean (\code{\link{circadian.mean}}), circular (phasic) correlations (\code{\link{circadian.cor}}) and the correlation between linear variables and circular variables (\code{\link{circadian.linear.cor}}) supplement a function to find the best fitting phase angle (\code{\link{cosinor}}) for measures taken with a fixed period (e.g., 24 hours). A dynamic model of personality and motivation (the Cues-Tendency-Actions model) is include as (\code{\link{cta}}. The most recent development version of the package is always available for download as a \emph{source} file from the repository at \url{http://personality-project.org/r/src/contrib/}. } \details{Two vignettes (overview.pdf and psych_for_sem.pdf) are useful introductions to the package. They may be found as vignettes in R or may be downloaded from \url{http://personality-project.org/r/book/overview.pdf} and \url{http://personality-project.org/r/book/psych_for_sem.pdf}. The more important functions in the package are for the analysis of multivariate data, with an emphasis upon those functions useful in scale construction of item composites. However, there are a number of very useful functions for basic data manipulation including \code{\link{read.file}}, \code{\link{read.clipboard}}, \code{\link{describe}}, \code{\link{pairs.panels}}, \code{\link{error.bars}} and \code{\link{error.dots}}) which are useful for basic data entry and descriptive analyses. When given a set of items from a personality inventory, one goal is to combine these into higher level item composites. This leads to several questions: 1) What are the basic properties of the data? \code{\link{describe}} reports basic summary statistics (mean, sd, median, mad, range, minimum, maximum, skew, kurtosis, standard error) for vectors, columns of matrices, or data.frames. \code{\link{describeBy}} provides descriptive statistics, organized by one or more grouping variables. \code{\link{statsBy}} provides even more detail for data structured by groups including within and between correlation matrices, ICCs for group differences, as well as basic descriptive statistics organized by group. \code{\link{pairs.panels}} shows scatter plot matrices (SPLOMs) as well as histograms and the Pearson correlation for scales or items. \code{\link{error.bars}} will plot variable means with associated confidence intervals. \code{\link{errorCircles}} will plot confidence intervals for both the x and y coordinates. \code{\link{corr.test}} will find the significance values for a matrix of correlations. \code{\link{error.dots}} creates a dot chart with confidence intervals. 2) What is the most appropriate number of item composites to form? After finding either standard Pearson correlations, or finding tetrachoric or polychoric correlations, the dimensionality of the correlation matrix may be examined. The number of factors/components problem is a standard question of factor analysis, cluster analysis, or principal components analysis. Unfortunately, there is no agreed upon answer. The Very Simple Structure (\code{\link{VSS}}) set of procedures has been proposed as on answer to the question of the optimal number of factors. Other procedures (\code{\link{VSS.scree}}, \code{\link{VSS.parallel}}, \code{\link{fa.parallel}}, and \code{\link{MAP}}) also address this question. \code{\link{nfactors}} combine several of these approaches into one convenient function. 3) What are the best composites to form? Although this may be answered using principal components (\code{\link{principal}}), principal axis (\code{\link{factor.pa}}) or minimum residual (\code{\link{factor.minres}}) factor analysis (all part of the \code{\link{fa}} function) and to show the results graphically (\code{\link{fa.diagram})}, it is sometimes more useful to address this question using cluster analytic techniques. Previous versions of \code{\link{ICLUST}} (e.g., Revelle, 1979) have been shown to be particularly successful at forming maximally consistent and independent item composites. Graphical output from \code{\link{ICLUST.graph}} uses the Graphviz dot language and allows one to write files suitable for Graphviz. If Rgraphviz is available, these graphs can be done in R. Graphical organizations of cluster and factor analysis output can be done using \code{\link{cluster.plot}} which plots items by cluster/factor loadings and assigns items to that dimension with the highest loading. 4) How well does a particular item composite reflect a single construct? This is a question of reliability and general factor saturation. Multiple solutions for this problem result in (Cronbach's) alpha (\code{\link{alpha}}, \code{\link{scoreItems}}), (Revelle's) Beta (\code{\link{ICLUST}}), and (McDonald's) \code{\link{omega}} (both omega hierarchical and omega total). Additional reliability estimates may be found in the \code{\link{guttman}} function. This can also be examined by applying \code{\link{irt.fa}} Item Response Theory techniques using factor analysis of the \code{\link{tetrachoric}} or \code{\link{polychoric}} correlation matrices and converting the results into the standard two parameter parameterization of item difficulty and item discrimination. Information functions for the items suggest where they are most effective. 5) For some applications, data matrices are synthetically combined from sampling different items for different people. So called Synthetic Aperture Personality Assessement (SAPA) techniques allow the formation of large correlation or covariance matrices even though no one person has taken all of the items. To analyze such data sets, it is easy to form item composites based upon the covariance matrix of the items, rather than original data set. These matrices may then be analyzed using a number of functions (e.g., \code{\link{cluster.cor}}, \code{\link{fa}}, \code{\link{ICLUST}}, \code{\link{principal}}, \code{\link{mat.regress}}, and \code{\link{factor2cluster}}. 6) More typically, one has a raw data set to analyze. \code{\link{alpha}} will report several reliablity estimates as well as item-whole correlations for items forming a single scale, \code{\link{score.items}} will score data sets on multiple scales, reporting the scale scores, item-scale and scale-scale correlations, as well as coefficient alpha, alpha-1 and G6+. Using a `keys' matrix (created by \code{\link{make.keys}} or by hand), scales can have overlapping or independent items. \code{\link{score.multiple.choice}} scores multiple choice items or converts multiple choice items to dichtomous (0/1) format for other functions. 7) In addition to classical test theory (CTT) based scores of either totals or averages, 1 and 2 parameter IRT based scores may be found with \code{\link{scoreIrt.1pl}}, \code{\link{scoreIrt.2pl}} or more generally \code{\link{scoreIrt}}. Although highly correlated with CTT estimates, these scores take advantage of different item difficulties and are particularly appropriate for the problem of missing data. 8) If the data has a multilevel structure (e.g, items nested within time nested within subjects) the \code{\link{multilevel.reliability}} aka \code{\link{mlr}} function will estimate generalizability coefficients for data over subjects, subjects over time, etc. \code{\link{mlPlot}} will provide plots for each subject of items over time. \code{\link{mlArrange}} takes the conventional wide output format and converts it to the long format necessary for some multilevel functions. Other functions useful for multilevel data include \code{\link{statsBy}} and \code{\link{faBy}}. An additional set of functions generate simulated data to meet certain structural properties. \code{\link{sim.anova}} produces data simulating a 3 way analysis of variance (ANOVA) or linear model with or with out repeated measures. \code{\link{sim.item}} creates simple structure data, \code{\link{sim.circ}} will produce circumplex structured data, \code{\link{sim.dichot}} produces circumplex or simple structured data for dichotomous items. These item structures are useful for understanding the effects of skew, differential item endorsement on factor and cluster analytic soutions. \code{\link{sim.structural}} will produce correlation matrices and data matrices to match general structural models. (See the vignette). When examining personality items, some people like to discuss them as representing items in a two dimensional space with a circumplex structure. Tests of circumplex fit \code{\link{circ.tests}} have been developed. When representing items in a circumplex, it is convenient to view them in \code{\link{polar}} coordinates. Additional functions for testing the difference between two independent or dependent correlation \code{\link{r.test}}, to find the \code{\link{phi}} or \code{\link{Yule}} coefficients from a two by table, or to find the confidence interval of a correlation coefficient. Many data sets are included: \code{\link{bfi}} represents 25 personality items thought to represent five factors of personality, \code{\link{ability}} has 14 multiple choice iq items. \code{\link{sat.act}} has data on self reported test scores by age and gender. \code{\link{galton} } Galton's data set of the heights of parents and their children. \code{\link{peas}} recreates the original Galton data set of the genetics of sweet peas. \code{\link{heights}} and \code{\link{cubits}} provide even more Galton data, \code{\link{vegetables}} provides the Guilford preference matrix of vegetables. \code{\link{cities}} provides airline miles between 11 US cities (demo data for multidimensional scaling). \tabular{ll}{ Package: \tab psych\cr Type: \tab Package\cr Version: \tab 1.7.2 \cr Date: \tab 2017--February--28\cr License: \tab GPL version 2 or newer\cr } Index: \link{psych} A package for personality, psychometric, and psychological research.\cr Useful data entry and descriptive statistics\cr \tabular{ll}{ \link{read.file} \tab search for, find, and read from file\cr \link{read.clipboard} \tab shortcut for reading from the clipboard\cr \link{read.clipboard.csv} \tab shortcut for reading comma delimited files from clipboard \cr \link{read.clipboard.lower} \tab shortcut for reading lower triangular matrices from the clipboard\cr \link{read.clipboard.upper} \tab shortcut for reading upper triangular matrices from the clipboard\cr \link{describe} \tab Basic descriptive statistics useful for psychometrics\cr \link{describe.by} \tab Find summary statistics by groups\cr \link{statsBy} \tab Find summary statistics by a grouping variable, including within and between correlation matrices. \cr \link{mlArrange} \tab Change multilevel data from wide to long format\cr \link{headtail} \tab combines the head and tail functions for showing data sets\cr \link{pairs.panels} \tab SPLOM and correlations for a data matrix\cr \link{corr.test} \tab Correlations, sample sizes, and p values for a data matrix\cr \link{cor.plot} \tab graphically show the size of correlations in a correlation matrix\cr \link{multi.hist} \tab Histograms and densities of multiple variables arranged in matrix form\cr \link{skew} \tab Calculate skew for a vector, each column of a matrix, or data.frame\cr \link{kurtosi} \tab Calculate kurtosis for a vector, each column of a matrix or dataframe\cr \link{geometric.mean} \tab Find the geometric mean of a vector or columns of a data.frame \cr \link{harmonic.mean} \tab Find the harmonic mean of a vector or columns of a data.frame \cr \link{error.bars} \tab Plot means and error bars \cr \link{error.bars.by} \tab Plot means and error bars for separate groups\cr \link{error.crosses} \tab Two way error bars \cr \link{interp.median} \tab Find the interpolated median, quartiles, or general quantiles. \cr \link{rescale} \tab Rescale data to specified mean and standard deviation \cr \link{table2df} \tab Convert a two dimensional table of counts to a matrix or data frame \cr } Data reduction through cluster and factor analysis\cr \tabular{ll}{ \link{fa} \tab Combined function for principal axis, minimum residual, weighted least squares, \cr \tab and maximum likelihood factor analysis\cr \link{factor.pa} \tab Do a principal Axis factor analysis (deprecated)\cr \link{factor.minres} \tab Do a minimum residual factor analysis (deprecated)\cr \link{factor.wls} \tab Do a weighted least squares factor analysis (deprecated)\cr \link{fa.graph} \tab Show the results of a factor analysis or principal components analysis graphically\cr \link{fa.diagram} \tab Show the results of a factor analysis without using Rgraphviz \cr \link{fa.sort} \tab Sort a factor or principal components output \cr \link{fa.extension} \tab Apply the Dwyer extension for factor loadingss \cr \link{principal} \tab Do an eigen value decomposition to find the principal components of a matrix\cr \link{fa.parallel} \tab Scree test and Parallel analysis \cr \link{fa.parallel.poly} \tab Scree test and Parallel analysis for polychoric matrices \cr \link{factor.scores} \tab Estimate factor scores given a data matrix and factor loadings \cr \link{guttman} \tab 8 different measures of reliability (6 from Guttman (1945) \cr \code{\link{irt.fa}} \tab Apply factor analysis to dichotomous items to get IRT parameters \cr \code{\link{iclust}} \tab Apply the ICLUST algorithm\cr \link{ICLUST.graph} \tab Graph the output from ICLUST using the dot language\cr \link{ICLUST.rgraph} \tab Graph the output from ICLUST using rgraphviz \cr \link{kaiser} \tab Apply kaiser normalization before rotating \cr \link{polychoric} \tab Find the polychoric correlations for items and find item thresholds\cr \link{poly.mat} \tab Find the polychoric correlations for items (uses J. Fox's hetcor) \cr \link{omega} \tab Calculate the omega estimate of factor saturation (requires the GPArotation package)\cr \link{omega.graph} \tab Draw a hierarchical or Schmid Leiman orthogonalized solution (uses Rgraphviz) \cr \link{partial.r} \tab Partial variables from a correlation matrix \cr \link{predict} \tab Predict factor/component scores for new data \cr \link{schmid} \tab Apply the Schmid Leiman transformation to a correlation matrix\cr \link{score.items} \tab Combine items into multiple scales and find alpha\cr \link{score.multiple.choice} \tab Combine items into multiple scales and find alpha and basic scale statistics\cr \link{set.cor} \tab Find Cohen's set correlation between two sets of variables \cr \link{smc} \tab Find the Squared Multiple Correlation (used for initial communality estimates)\cr \link{tetrachoric} \tab Find tetrachoric correlations and item thresholds \cr \link{polyserial} \tab Find polyserial and biserial correlations for item validity studies \cr \link{mixed.cor} \tab Form a correlation matrix from continuous, polytomous, and dichotomous items \cr \link{VSS} \tab Apply the Very Simple Structure criterion to determine the appropriate number of factors.\cr \link{VSS.parallel} \tab Do a parallel analysis to determine the number of factors for a random matrix\cr \link{VSS.plot} \tab Plot VSS output\cr \link{VSS.scree} \tab Show the scree plot of the factor/principal components\cr \link{MAP} \tab Apply the Velicer Minimum Absolute Partial criterion for number of factors \cr } Functions for reliability analysis (some are listed above as well). \tabular{ll}{ \link{alpha} \tab Find coefficient alpha and Guttman Lambda 6 for a scale (see also \link{score.items})\cr \link{guttman} \tab 8 different measures of reliability (6 from Guttman (1945) \cr \link{omega} \tab Calculate the omega estimates of reliability (requires the GPArotation package)\cr \link{omegaSem} \tab Calculate the omega estimates of reliability using a Confirmatory model (requires the sem package)\cr \link{ICC} \tab Intraclass correlation coefficients \cr \link{score.items} \tab Combine items into multiple scales and find alpha\cr \link{glb.algebraic} \tab The greates lower bound found by an algebraic solution (requires Rcsdp). Written by Andreas Moeltner \cr } Procedures particularly useful for Synthetic Aperture Personality Assessment\cr \tabular{ll}{ \link{alpha} \tab Find coefficient alpha and Guttman Lambda 6 for a scale (see also \link{score.items})\cr \link{make.keys} \tab Create the keys file for score.items or cluster.cor \cr \link{correct.cor} \tab Correct a correlation matrix for unreliability\cr \link{count.pairwise} \tab Count the number of complete cases when doing pair wise correlations\cr \link{cluster.cor} \tab find correlations of composite variables from larger matrix\cr \link{cluster.loadings} \tab find correlations of items with composite variables from a larger matrix\cr \link{eigen.loadings} \tab Find the loadings when doing an eigen value decomposition\cr \link{fa} \tab Do a minimal residual or principal axis factor analysis and estimate factor scores\cr \link{fa.extension} \tab Extend a factor analysis to a set of new variables\cr \link{factor.pa} \tab Do a Principal Axis factor analysis and estimate factor scores\cr \link{factor2cluster} \tab extract cluster definitions from factor loadings\cr \link{factor.congruence} \tab Factor congruence coefficient\cr \link{factor.fit} \tab How well does a factor model fit a correlation matrix\cr \link{factor.model} \tab Reproduce a correlation matrix based upon the factor model\cr \link{factor.residuals} \tab Fit = data - model\cr \link{factor.rotate} \tab ``hand rotate" factors\cr \link{guttman} \tab 8 different measures of reliability\cr \link{mat.regress} \tab standardized multiple regression from raw or correlation matrix input\cr \link{polyserial} \tab polyserial and biserial correlations with massive missing data\cr \link{tetrachoric} \tab Find tetrachoric correlations and item thresholds \cr } Functions for generating simulated data sets \cr \tabular{ll}{ \link{sim} \tab The basic simulation functions \cr \link{sim.anova} \tab Generate 3 independent variables and 1 or more dependent variables for demonstrating ANOVA \cr \tab and lm designs \cr \link{sim.circ} \tab Generate a two dimensional circumplex item structure \cr \link{sim.item} \tab Generate a two dimensional simple structure with particular item characteristics \cr \link{sim.congeneric} \tab Generate a one factor congeneric reliability structure \cr \link{sim.minor} \tab Simulate nfact major and nvar/2 minor factors \cr \link{sim.structural} \tab Generate a multifactorial structural model \cr \link{sim.irt} \tab Generate data for a 1, 2, 3 or 4 parameter logistic model\cr \link{sim.VSS} \tab Generate simulated data for the factor model\cr \link{phi.demo} \tab Create artificial data matrices for teaching purposes\cr \link{sim.hierarchical} \tab Generate simulated correlation matrices with hierarchical or any structure\cr \link{sim.spherical} \tab Generate three dimensional spherical data (generalization of circumplex to 3 space)\cr } Graphical functions (require Rgraphviz) -- deprecated \cr \tabular{ll}{ \link{structure.graph} \tab Draw a sem or regression graph \cr \link{fa.graph} \tab Draw the factor structure from a factor or principal components analysis \cr \link{omega.graph} \tab Draw the factor structure from an omega analysis(either with or without the Schmid Leiman transformation) \cr \link{ICLUST.graph} \tab Draw the tree diagram from ICLUST \cr } Graphical functions that do not require Rgraphviz \cr \tabular{ll}{ \link{diagram} \tab A general set of diagram functions. \cr \link{structure.diagram} \tab Draw a sem or regression graph \cr \link{fa.diagram} \tab Draw the factor structure from a factor or principal components analysis \cr \link{omega.diagram} \tab Draw the factor structure from an omega analysis(either with or without the Schmid Leiman transformation) \cr \link{ICLUST.diagram} \tab Draw the tree diagram from ICLUST \cr \link{plot.psych} \tab A call to plot various types of output (e.g. from irt.fa, fa, omega, iclust \cr \link{cor.plot} \tab A heat map display of correlations \cr \link{spider} \tab Spider and radar plots (circular displays of correlations) } Circular statistics (for circadian data analysis) \cr \tabular{ll}{ \link{circadian.cor} \tab Find the correlation with e.g., mood and time of day \cr \link{circadian.linear.cor} \tab Correlate a circular value with a linear value \cr \link{circadian.mean} \tab Find the circular mean of each column of a a data set \cr \link{cosinor} \tab Find the best fitting phase angle for a circular data set \cr } Miscellaneous functions\cr \cr \tabular{ll}{ \link{comorbidity} \tab Convert base rate and comorbity to phi, Yule and tetrachoric\cr \link{df2latex} \tab Convert a data.frame or matrix to a LaTeX table \cr \link{dummy.code} \tab Convert categorical data to dummy codes \cr \link{fisherz} \tab Apply the Fisher r to z transform\cr \link{fisherz2r} \tab Apply the Fisher z to r transform\cr \link{ICC} \tab Intraclass correlation coefficients \cr \link{cortest.mat} \tab Test for equality of two matrices (see also cortest.normal, cortest.jennrich ) \cr \link{cortest.bartlett} \tab Test whether a matrix is an identity matrix \cr \link{paired.r} \tab Test for the difference of two paired or two independent correlations\cr \link{r.con} \tab Confidence intervals for correlation coefficients \cr \link{r.test} \tab Test of significance of r, differences between rs. \cr \link{p.rep} \tab The probability of replication given a p, r, t, or F \cr \link{phi} \tab Find the phi coefficient of correlation from a 2 x 2 table \cr \link{phi.demo} \tab Demonstrate the problem of phi coefficients with varying cut points \cr \link{phi2poly} \tab Given a phi coefficient, what is the polychoric correlation\cr \link{phi2poly.matrix} \tab Given a phi coefficient, what is the polychoric correlation (works on matrices)\cr \link{polar} \tab Convert 2 dimensional factor loadings to polar coordinates.\cr \link{scaling.fits} \tab Compares alternative scaling solutions and gives goodness of fits \cr \link{scrub} \tab Basic data cleaning \cr \link{tetrachor} \tab Finds tetrachoric correlations \cr \link{thurstone} \tab Thurstone Case V scaling \cr \link{tr} \tab Find the trace of a square matrix \cr \link{wkappa} \tab weighted and unweighted versions of Cohen's kappa \cr \link{Yule} \tab Find the Yule Q coefficient of correlation \cr \link{Yule.inv} \tab What is the two by two table that produces a Yule Q with set marginals? \cr \link{Yule2phi} \tab What is the phi coefficient corresponding to a Yule Q with set marginals? \cr \link{Yule2tetra} \tab Convert one or a matrix of Yule coefficients to tetrachoric coefficients. \cr } Functions that are under development and not recommended for casual use \cr \tabular{ll}{ \link{irt.item.diff.rasch} \tab IRT estimate of item difficulty with assumption that theta = 0\cr \link{irt.person.rasch} \tab Item Response Theory estimates of theta (ability) using a Rasch like model\cr\cr } Data sets included in the psych package \cr \tabular{ll}{ \link{bfi} \tab represents 25 personality items thought to represent five factors of personality \cr \link{Thurstone} \tab 8 different data sets with a bifactor structure \cr \link{cities} \tab The airline distances between 11 cities (used to demonstrate MDS) \cr \link{epi.bfi} \tab 13 personality scales \cr \link{iqitems} \tab 14 multiple choice iq items \cr \link{msq} \tab 75 mood items \cr \link{sat.act} \tab Self reported ACT and SAT Verbal and Quantitative scores by age and gender\cr \link{Tucker} \tab Correlation matrix from Tucker \cr \link{galton} \tab Galton's data set of the heights of parents and their children \cr \link{heights} \tab Galton's data set of the relationship between height and forearm (cubit) length \cr \link{cubits} \tab Galton's data table of height and forearm length \cr \link{peas} \tab Galton`s data set of the diameters of 700 parent and offspring sweet peas \cr \link{vegetables} \tab Guilford`s preference matrix of vegetables (used for thurstone) \cr } A debugging function that may also be used as a demonstration of psych. \tabular{ll}{ \link{test.psych} \tab Run a test of the major functions on 5 different data sets. Primarily for development purposes.\cr \tab Although the output can be used as a demo of the various functions. } } \note{Development versions (source code) of this package are maintained at the repository \url{http://personality-project.org/r} along with further documentation. Specify that you are downloading a source package. \cr Some functions require other packages. Specifically, omega and schmid require the GPArotation package, ICLUST.rgraph and fa.graph require Rgraphviz but have alternatives using the diagram functions. i.e.: \cr \tabular{ll}{ function \tab requires\cr \link{omega} \tab GPArotation \cr \link{schmid} \tab GPArotation\cr \link{poly.mat} \tab polychor\cr \link{phi2poly} \tab polychor\cr \link{polychor.matrix}\tab polychor \cr \link{ICLUST.rgraph} \tab Rgraphviz \cr \link{fa.graph} \tab Rgraphviz \cr \link{structure.graph} \tab Rgraphviz \cr \link{glb.algebraic} \tab Rcsdp \cr } } \author{William Revelle \cr Department of Psychology \cr Northwestern University \cr Evanston, Illiniois \cr \url{http://personality-project.org/revelle.html}\cr Maintainer: William Revelle } \references{A general guide to personality theory and research may be found at the personality-project \url{http://personality-project.org}. See also the short guide to R at \url{http://personality-project.org/r}. In addition, see Revelle, W. (in preparation) An Introduction to Psychometric Theory with applications in R. Springer. at \url{http://personality-project.org/r/book/} } \keyword{package}% __ONLY ONE__ keyword per line \keyword{multivariate}% at least one, from doc/KEYWORDS \keyword{models}% __ONLY ONE__ keyword per line \keyword{cluster}% __ONLY ONE__ keyword per line \examples{ #See the separate man pages #to test most of the psych package run the following #test.psych() } psych/man/blant.Rd0000644000176200001440000000426313152637554013562 0ustar liggesusers\name{blant} \alias{blant} \docType{data} \title{A 29 x 29 matrix that produces weird factor analytic results} \description{Normally, min.res factor analysis and maximum likelihood produce very similar results. This data set (from Alexandra Blant) does not. Warnings are given for the min.res solution, the pa solution, but not the old.min nor the mle solution. Included as a test case for the factor analysis function. } \usage{data("blant")} \format{ The format is: num [1:29, 1:29] 1 0.77 0.813 0.68 0.717 ... - attr(*, "dimnames")=List of 2 ..$ : NULL ..$ : chr [1:29] "V1" "V2" "V3" "V4" ... } \details{ This data matrix was sent by Alexandra Blant as an example of a problem with the minres solution in the \code{\link{fa}} function. The default solution, using fm="minres" issues a warning that the solution has improper factor score weights. This is not the case for the fm="old.min" and fm="mle" options, but is for fm="pa", fm="ols". The residuals are indeed smaller for fm="minres" than for fm="old.min" or fm="mle". "old.min" attempts to find the minimum residual but uses the gradient for mle. This was the approach until version 1.7.5 but was changed (see the help page for fa) following extensive communication with Hao Wu. The problem with this matrix is probably that it is almost singular, with some smcs approaching 1 and the smallest three eigenvalues of .006, .004 and .001. This problem matrix was provided by Alexandra Blant. } \source{Alexandra Blant, personal communication} \examples{ data(blant) #compare f5 <- fa(blant,5,rotate="none") #the default minres f5.old <-fa(blant,5, fm="old.min",rotate="none") #old version of minres f5.mle <- fa(blant,5,fm="mle",rotate= "none") #maximum likelihood #compare solutions factor.congruence(list(f5,f5.old,f5.mle)) #compare sums of squared residuals sum(residuals(f5,diag=FALSE)^2,na.rm=TRUE) # 1.355489 sum(residuals(f5.old,diag=FALSE)^2,na.rm=TRUE) # 1.539757 sum(residuals(f5.mle,diag=FALSE)^2,na.rm=TRUE) # 2.402092 #but, when we divide the squared residuals by the original (squared) correlations, we find #a different ordering of fit f5$fit # 0.9748177 f5.old$fit # 0.9752774 f5.mle$fit # 0.9603324 } \keyword{datasets} psych/man/kappa.Rd0000644000176200001440000002006713045731651013550 0ustar liggesusers\name{cohen.kappa} \alias{wkappa} \alias{cohen.kappa} \title{Find Cohen's kappa and weighted kappa coefficients for correlation of two raters} \description{Cohen's kappa (Cohen, 1960) and weighted kappa (Cohen, 1968) may be used to find the agreement of two raters when using nominal scores. weighted.kappa is (probability of observed matches - probability of expected matches)/(1 - probability of expected matches). Kappa just considers the matches on the main diagonal. Weighted kappa considers off diagonal elements as well. } \usage{ cohen.kappa(x, w=NULL,n.obs=NULL,alpha=.05,levels=NULL) wkappa(x, w = NULL) #deprectated } \arguments{ \item{x}{Either a two by n data with categorical values from 1 to p or a p x p table. If a data array, a table will be found.} \item{w}{A p x p matrix of weights. If not specified, they are set to be 0 (on the diagonal) and (distance from diagonal) off the diagonal)^2. } \item{n.obs}{Number of observations (if input is a square matrix.} \item{alpha}{Probability level for confidence intervals} \item{levels}{Specify the number of levels if some levels of x or y are completely missing} } \details{When cateogorical judgments are made with two cateories, a measure of relationship is the phi coefficient. However, some categorical judgments are made using more than two outcomes. For example, two diagnosticians might be asked to categorize patients three ways (e.g., Personality disorder, Neurosis, Psychosis) or to categorize the stages of a disease. Just as base rates affect observed cell frequencies in a two by two table, they need to be considered in the n-way table (Cohen, 1960). Kappa considers the matches on the main diagonal. A penalty function (weight) may be applied to the off diagonal matches. If the weights increase by the square of the distance from the diagonal, weighted kappa is similar to an Intra Class Correlation (\code{\link{ICC}}). Derivations of weighted kappa are sometimes expressed in terms of similarities, and sometimes in terms of dissimilarities. In the latter case, the weights on the diagonal are 1 and the weights off the diagonal are less than one. In this, if the weights are 1 - squared distance from the diagonal / k, then the result is similar to the ICC (for any positive k). cohen.kappa may use either similarity weighting (diagonal = 0) or dissimilarity weighting (diagonal = 1) in order to match various published examples. The input may be a two column data.frame or matrix with columns representing the two judges and rows the subjects being rated. Alternatively, the input may be a square n x n matrix of counts or proportion of matches. If proportions are used, it is necessary to specify the number of observations (n.obs) in order to correctly find the confidence intervals. The confidence intervals are based upon the variance estimates discussed by Fleiss, Cohen, and Everitt who corrected the formulae of Cohen (1968) and Blashfield. Some data sets will include data with numeric categories with some category values missing completely. In the sense that kappa is a measure of category relationship, this should not matter. But when finding weighted kappa, the number of categories weighted will be less than the number of categories potentially in the data. This can be remedied by specifying the levels parameter. } \value{ \item{kappa }{Unweighted kappa} \item{weighted.kappa }{The default weights are quadratric.} \item{var.kappa}{Variance of kappa} \item{var.weighted}{Variance of weighted kappa} \item{n.obs}{number of observations} \item{weight}{The weights used in the estimation of weighted kappa} \item{confid}{The alpha/2 confidence intervals for unweighted and weighted kappa} \item{plevel}{The alpha level used in determining the confidence limits} } \references{ Banerjee, M., Capozzoli, M., McSweeney, L and Sinha, D. (1999) Beyond Kappa: A review of interrater agreement measures The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 27, 3-23 Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 37-46 Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70, 213-220. Fleiss, J. L., Cohen, J. and Everitt, B.S. (1969) Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72, 332-327. Zwick, R. (1988) Another look at interrater agreement. Psychological Bulletin, 103, 374 - 378. } \author{William Revelle } \note{As is true of many R functions, there are alternatives in other packages. The Kappa function in the vcd package estimates unweighted and weighted kappa and reports the variance of the estimate. The input is a square matrix. The ckappa and wkappa functions in the psy package take raw data matrices. To avoid confusion with Kappa (from vcd) or the kappa function from base, the function was originally named wkappa. With additional features modified from psy::ckappa to allow input with a different number of categories, the function has been renamed cohen.kappa. Unfortunately, to make it more confusing, the weights described by Cohen are a function of the reciprocals of those discucssed by Fleiss and Cohen. The cohen.kappa function uses the appropriate formula for Cohen or Fleiss-Cohen weights. There are some cases where the large sample size approximation of Fleiss et al. will produce confidence intervals exceeding +/- 1. Clearly, for these cases, the upper (or lower for negative values) should be set to 1. Boot strap resampling shows the problem is that the values are not symmetric. See the last (unrun) example. } \examples{ #rating data (with thanks to Tim Bates) rater1 = c(1,2,3,4,5,6,7,8,9) # rater one's ratings rater2 = c(1,3,1,6,1,5,5,6,7) # rater one's ratings cohen.kappa(x=cbind(rater1,rater2)) #data matrix taken from Cohen cohen <- matrix(c( 0.44, 0.07, 0.09, 0.05, 0.20, 0.05, 0.01, 0.03, 0.06),ncol=3,byrow=TRUE) #cohen.weights weight differences cohen.weights <- matrix(c( 0,1,3, 1,0,6, 3,6,0),ncol=3) cohen.kappa(cohen,cohen.weights,n.obs=200) #cohen reports .492 and .348 #another set of weights #what if the weights are non-symmetric wc <- matrix(c( 0,1,4, 1,0,6, 2,2,0),ncol=3,byrow=TRUE) cohen.kappa(cohen,wc) #Cohen reports kw = .353 cohen.kappa(cohen,n.obs=200) #this uses the squared weights fleiss.cohen <- 1 - cohen.weights/9 cohen.kappa(cohen,fleiss.cohen,n.obs=200) #however, Fleiss, Cohen and Everitt weight similarities fleiss <- matrix(c( 106, 10,4, 22,28, 10, 2, 12, 6),ncol=3,byrow=TRUE) #Fleiss weights the similarities weights <- matrix(c( 1.0000, 0.0000, 0.4444, 0.0000, 1.0000, 0.6667, 0.4444, 0.6667, 1.0000),ncol=3) cohen.kappa(fleiss,weights,n.obs=200) #another example is comparing the scores of two sets of twins #data may be a 2 column matrix #compare weighted and unweighted #also look at the ICC for this data set. twins <- matrix(c( 1, 2, 2, 3, 3, 4, 5, 6, 6, 7), ncol=2,byrow=TRUE) cohen.kappa(twins) #data may be explicitly categorical x <- c("red","yellow","blue","red") y <- c("red", "blue", "blue" ,"red") xy.df <- data.frame(x,y) ck <- cohen.kappa(xy.df) ck ck$agree #The problem of missing categories (from Amy Finnegan) numbers <- data.frame(rater1=c(6,3,7,8,7), rater2=c(6,1,8,5,10)) cohen.kappa(numbers) #compare with the next analysis cohen.kappa(numbers,levels=1:10) #specify the number of levels # these leads to slightly higher weighted kappa #finally, input can be a data.frame of ratings from more than two raters ratings <- matrix(rep(1:5,4),ncol=4) ratings[1,2] <- ratings[2,3] <- ratings[3,4] <- NA ratings[2,1] <- ratings[3,2] <- ratings[4,3] <- 1 cohen.kappa(ratings) #In the case of confidence intervals being artificially truncated to +/- 1, it is #helpful to compare the results of a boot strap resample #ck.boot <-function(x,s=1:nrow(x)) {cohen.kappa(x[s,])$kappa} #library(boot) #ckb <- boot(x,ck.boot,R=1000) #hist(ckb$t) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/describe.by.Rd0000644000176200001440000000560213122534774014646 0ustar liggesusers\name{describeBy} \alias{describeBy} \alias{describe.by} \title{ Basic summary statistics by group} \description{Report basic summary statistics by a grouping variable. Useful if the grouping variable is some experimental variable and data are to be aggregated for plotting. Partly a wrapper for by and \code{\link{describe}} } \usage{ describeBy(x, group=NULL,mat=FALSE,type=3,digits=15,...) describe.by(x, group=NULL,mat=FALSE,type=3,...) # deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{a data.frame or matrix. See note for statsBy. } \item{group}{a grouping variable or a list of grouping variables} \item{mat}{provide a matrix output rather than a list} \item{type}{Which type of skew and kurtosis should be found} \item{digits}{When giving matrix output, how many digits should be reported?} \item{...}{parameters to be passed to describe} } \details{To get descriptive statistics for several different grouping variables, make sure that group is a list. In the case of matrix output with multiple grouping variables, the grouping variable values are added to the output. The type parameter specifies which version of skew and kurtosis should be found. See \code{\link{describe}} for more details. An alternative function (\code{\link{statsBy}}) returns a list of means, n, and standard deviations for each group. This is particularly useful if finding weighted correlations of group means using \code{\link{cor.wt}}. More importantly, it does a proper within and between group decomposition of the correlation. \code{\link{cohen.d}} will work for two groups. It converts the data into mean differences and pools the within group standard deviations. Returns cohen.d statistic as well as the multivariate generalization (Mahalanobis D). } \value{ A data.frame of the relevant statistics broken down by group: \cr item name \cr item number \cr number of valid cases\cr mean\cr standard deviation\cr median\cr mad: median absolute deviation (from the median) \cr minimum\cr maximum\cr skew\cr standard error\cr } \author{ William Revelle} \seealso{ \code{\link{describe}}, \code{\link{statsBy}}, \code{\link{densityBy}} and \code{\link{violinBy}}, \code{\link{cohen.d}}, \code{\link{cohen.d.by}}, and \code{\link{cohen.d.ci}} as well as \code{\link{error.bars}} and \code{\link{error.bars.by}} for other graphical displays. } \examples{ data(sat.act) describeBy(sat.act,sat.act$gender) #just one grouping variable #describeBy(sat.act,list(sat.act$gender,sat.act$education)) #two grouping variables des.mat <- describeBy(sat.act$age,sat.act$education,mat=TRUE) #matrix (data.frame) output des.mat <- describeBy(sat.act$age,list(sat.act$education,sat.act$gender), mat=TRUE,digits=2) #matrix output } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ univar }% __ONLY ONE__ keyword per line psych/man/VSS.plot.Rd0000644000176200001440000000427411222301005014063 0ustar liggesusers\name{VSS.plot} \alias{VSS.plot} \title{Plot VSS fits} \description{The Very Simple Structure criterion ( \code{\link{VSS}}) for estimating the optimal number of factors is plotted as a function of the increasing complexity and increasing number of factors. } \usage{ VSS.plot(x, title = "Very Simple Structure", line = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{output from VSS } \item{title}{any title } \item{line}{ connect different complexities } } \details{Item-factor models differ in their "complexity". Complexity 1 means that all except the greatest (absolute) loading for an item are ignored. Basically a cluster model (e.g., \code{\link{ICLUST}}). Complexity 2 implies all except the greatest two, etc. Different complexities can suggest different number of optimal number of factors to extract. For personality items, complexity 1 and 2 are probably the most meaningful. The Very Simple Structure criterion will tend to peak at the number of factors that are most interpretable for a given level of complexity. Note that some problems, the most interpretable number of factors will differ as a function of complexity. For instance, when doing the Harman 24 psychological variable problems, an unrotated solution of complexity one suggests one factor (g), while a complexity two solution suggests that a four factor solution is most appropriate. This latter probably reflects a bi-factor structure. For examples of VSS.plot output, see \url{http://personality-project.org/r/r.vss.html} } \value{A plot window showing the VSS criterion varying as the number of factors and the complexity of the items. } \references{ \url{http://personality-project.org/r/r.vss.html}} \author{ Maintainer: William Revelle \email{revelle@northwestern.edu} } \seealso{ \code{\link{VSS}}, \code{\link{ICLUST}}, \code{\link{omega}}} \examples{ test.data <- Harman74.cor$cov my.vss <- VSS(test.data) #suggests that 4 factor complexity two solution is optimal VSS.plot(my.vss,title="VSS of Holzinger-Harmon problem") #see the graphics window } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/Yule.Rd0000644000176200001440000001231012441670601013356 0ustar liggesusers\name{Yule} \alias{Yule} \alias{Yule.inv} \alias{Yule2phi} \alias{Yule2tetra} \alias{Yule2poly} \alias{YuleBonett} \alias{YuleCor} \title{From a two by two table, find the Yule coefficients of association, convert to phi, or tetrachoric, recreate table the table to create the Yule coefficient.} \description{One of the many measures of association is the Yule coefficient. Given a two x two table of counts \cr \tabular{llll}{ \tab a \tab b \tab R1 \cr \tab c \tab d \tab R2 \cr \tab C1 \tab C2 \tab n \cr } Yule Q is (ad - bc)/(ad+bc). \cr Conceptually, this is the number of pairs in agreement (ad) - the number in disagreement (bc) over the total number of paired observations. Warren (2008) has shown that Yule's Q is one of the ``coefficients that have zero value under statistical independence, maximum value unity, and minimum value minus unity independent of the marginal distributions" (p 787). \cr ad/bc is the odds ratio and Q = (OR-1)/(OR+1) \cr Yule's coefficient of colligation is Y = (sqrt(OR) - 1)/(sqrt(OR)+1) Yule.inv finds the cell entries for a particular Q and the marginals (a+b,c+d,a+c, b+d). This is useful for converting old tables of correlations into more conventional \code{\link{phi}} or tetrachoric correlations \code{\link{tetrachoric}} \cr Yule2phi and Yule2tetra convert the Yule Q with set marginals to the correponding phi or tetrachoric correlation. Bonett and Price show that the Q and Y coefficients are both part of a general family of coefficients raising the OR to a power (c). If c=1, then this is Yule's Q. If .5, then Yule's Y, if c = .75, then this is Digby's H. They propose that c = .5 - (.5 * min(cell probabilty)^2 is a more general coefficient. YuleBonett implements this for the 2 x 2 case, YuleCor for the data matrix case. } \usage{ YuleBonett(x,c=1,bonett=FALSE,alpha=.05) #find the generalized Yule cofficients YuleCor(x,c=1,bonett=FALSE,alpha=.05) #do this for a matrix Yule(x,Y=FALSE) #find Yule given a two by two table of frequencies #find the frequencies that produce a Yule Q given the Q and marginals Yule.inv(Q,m,n=NULL) #find the phi coefficient that matches the Yule Q given the marginals Yule2phi(Q,m,n=NULL) Yule2tetra(Q,m,n=NULL,correct=TRUE) #Find the tetrachoric correlation given the Yule Q and the marginals #(deprecated) Find the tetrachoric correlation given the Yule Q and the marginals Yule2poly(Q,m,n=NULL,correct=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A vector of four elements or a two by two matrix, or, in the case of YuleBonett or YuleCor, this can also be a data matrix } \item{c}{1 returns Yule Q, .5, Yule's Y, .75 Digby's H} \item{bonett}{If FALSE, then find Q, Y, or H, if TRUE, then find the generalized Bonett cofficient} \item{alpha}{The two tailed probability for confidence intervals} \item{Y}{Y=TRUE return Yule's Y coefficient of colligation} \item{Q}{Either a single Yule coefficient or a matrix of Yule coefficients} \item{m}{The vector c(R1,C2) or a two x two matrix of marginals or a four element vector of marginals. The preferred form is c(R1,C1)} \item{n}{The number of subjects (if the marginals are given as frequencies} \item{correct}{When finding a tetrachoric correlation, should small cell sizes be corrected for continuity. See \code{\{link{tetrachoric}} for a discussion.} } \details{Yule developed two measures of association for two by two tables. Both are functions of the odds ratio } \value{ \item{Q}{The Yule Q coefficient} \item{R}{A two by two matrix of counts} \item{result}{If given matrix input, then a matrix of phis or tetrachorics} \item{rho}{From YuleBonett and YuleCor} \item{ci}{The upper and lower confidence intervals in matrix form (From YuleBonett and YuleCor).} } \references{Yule, G. Uday (1912) On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, LXXV, 579-652 Bonett, D.G. and Price, R.M, (2007) Statistical Inference for Generalized Yule Coefficients in 2 x 2 Contingency Tables. Sociological Methods and Research, 35, 429-446. Warrens, Matthijs (2008), On Association Coefficients for 2x2 Tables and Properties That Do Not Depend on the Marginal Distributions. Psychometrika, 73, 777-789. } \author{ William Revelle } \note{Yule.inv is currently done by using the optimize function, but presumably could be redone by solving a quadratic equation. } \seealso{ See Also as \code{\link{phi}}, \code{\link{tetrachoric}}, \code{\link{Yule2poly.matrix}}, \code{\link{Yule2phi.matrix}} } \examples{ Nach <- matrix(c(40,10,20,50),ncol=2,byrow=TRUE) Yule(Nach) Yule.inv(.81818,c(50,60),n=120) Yule2phi(.81818,c(50,60),n=120) Yule2tetra(.81818,c(50,60),n=120) phi(Nach) #much less #or express as percents and do not specify n Nach <- matrix(c(40,10,20,50),ncol=2,byrow=TRUE) Nach/120 Yule(Nach) Yule.inv(.81818,c(.41667,.5)) Yule2phi(.81818,c(.41667,.5)) Yule2tetra(.81818,c(.41667,.5)) phi(Nach) #much less YuleCor(ability[,1:4],,TRUE) YuleBonett(Nach,1) #Yule Q YuleBonett(Nach,.5) #Yule Y YuleBonett(Nach,.75) #Digby H YuleBonett(Nach,,TRUE) #Yule* is a generalized Yule } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{models} psych/man/fa.extension.Rd0000644000176200001440000001715712342435757015072 0ustar liggesusers\name{fa.extension} \alias{fa.extension} \alias{fa.extend} \title{Apply Dwyer's factor extension to find factor loadings for extended variables} \description{Dwyer (1937) introduced a method for finding factor loadings for variables not included in the original analysis. This is basically finding the unattenuated correlation of the extension variables with the factor scores. An alternative, which does not correct for factor reliability was proposed by Gorsuch (1997). Both options are an application of exploratory factor analysis with extensions to new variables. } \usage{ fa.extension(Roe,fo,correct=TRUE) fa.extend(r,nfactors=1,ov=NULL,ev=NULL,n.obs = NA, np.obs=NULL, correct=TRUE,rotate="oblimin",SMC=TRUE, warnings=TRUE, fm="minres",alpha=.1,omega=FALSE, ...) } \arguments{ \item{Roe}{The correlations of the original variables with the extended variables} \item{fo}{The output from the \code{\link{fa}} or \code{\link{omega}} functions applied to the original variables.} \item{correct}{correct=TRUE produces Dwyer's solution, correct=FALSE produces Gorsuch's solution} \item{r}{A correlation or data matrix with all of the variables to be analyzed by fa.extend} \item{ov}{The original variables to factor} \item{ev}{The extension variables} \item{nfactors}{ Number of factors to extract, default is 1 } \item{n.obs}{Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics. Must be specified if using a correlaton matrix and finding confidence intervals.} \item{np.obs}{Pairwise number of observations. Required if using fm="minchi", suggested in other cases to estimate the empirical goodness of fit.} \item{rotate}{"none", "varimax", "quartimax", "bentlerT", "geominT" and "bifactor" are orthogonal rotations. "promax", "oblimin", "simplimax", "bentlerQ, "geominQ" and "biquartimin" and "cluster" are possible rotations or transformations of the solution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax.} \item{SMC}{Use squared multiple correlations (SMC=TRUE) or use 1 as initial communality estimate. Try using 1 if imaginary eigen values are reported. If SMC is a vector of length the number of variables, then these values are used as starting values in the case of fm='pa'. } \item{warnings}{warnings=TRUE => warn if number of factors is too many } \item{fm}{factoring method fm="minres" will do a minimum residual (OLS), fm="wls" will do a weighted least squares (WLS) solution, fm="gls" does a generalized weighted least squares (GLS), fm="pa" will do the principal factor solution, fm="ml" will do a maximum likelihood factor analysis. fm="minchi" will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair.} \item{alpha}{alpha level for the confidence intervals for RMSEA} \item{omega}{Do the extension analysis for an omega type analysis} \item{...}{additional parameters, specifically, keys may be passed if using the target rotation, or delta if using geominQ, or whether to normalize if using Varimax} } \details{It is sometimes the case that factors are derived from a set of variables (the Fo factor loadings) and we want to see what the loadings of an extended set of variables (Fe) would be. Given the original correlation matrix Ro and the correlation of these original variables with the extension variables of Roe, it is a straight forward calculation to find the loadings Fe of the extended variables on the original factors. This technique was developed by Dwyer (1937) for the case of adding new variables to a factor analysis without doing all the work over again. But, as discussed by Horn (1973) factor extension is also appropriate when one does not want to include the extension variables in the original factor analysis, but does want to see what the loadings would be anyway. This could be done by estimating the factor scores and then finding the covariances of the extension variables with the factor scores. But if the original data are not available, but just the covariance or correlation matrix is, then the use of \code{\link{fa.extension}} is most appropriate. The factor analysis results from either \code{\link{fa}} or \code{\link{omega}} functions applied to the original correlation matrix is extended to the extended variables given the correlations (Roe) of the extended variables with the original variables. \code{\link{fa.extension}} assumes that the original factor solution was found by the \code{\link{fa}} function. For a very nice discussion of the relationship between factor scores, correlation matrices, and the factor loadings in a factor extension, see Horn (1973). The \code{\link{fa.extend}} function may be thought of as a "seeded" factor analysis. That is, the variables in the original set are factored, this solution is then extended to the extension set, and the resulting output is presented as if both the original and extended variables were factored together. This may also be done for an omega analysis. The example of code{\link{fa.extend}} compares the extended solution to a direct solution of all of the variables using \code{\link{factor.congruence}}. } \value{Factor Loadings of the exended variables on the original factors} \references{Paul S. Dwyer (1937) The determination of the factor loadings of a given test from the known factor loadings of other tests. Psychometrika, 3, 173-178 Gorsuch, Richard L. (1997) New procedure for extension analysis in exploratory factor analysis, Educational and Psychological Measurement, 57, 725-740 Horn, John L. (1973) On extension analysis and its relation to correlations between variables and factor scores. Multivariate Behavioral Research, 8, (4), 477-489. } \author{William Revelle } \seealso{ See Also as \code{\link{fa}}, \code{\link{principal}}, \code{\link{Dwyer}} } \examples{ #The Dwyer Example Ro <- Dwyer[1:7,1:7] Roe <- Dwyer[1:7,8] fo <- fa(Ro,2,rotate="none") fe <- fa.extension(Roe,fo) #an example from simulated data set.seed(42) d <- sim.item(12) #two orthogonal factors R <- cor(d) Ro <- R[c(1,2,4,5,7,8,10,11),c(1,2,4,5,7,8,10,11)] Roe <- R[c(1,2,4,5,7,8,10,11),c(3,6,9,12)] fo <- fa(Ro,2) fe <- fa.extension(Roe,fo) fa.diagram(fo,fe=fe) #create two correlated factors fx <- matrix(c(.9,.8,.7,.85,.75,.65,rep(0,12),.9,.8,.7,.85,.75,.65),ncol=2) Phi <- matrix(c(1,.6,.6,1),2) sim.data <- sim.structure(fx,Phi,n=1000,raw=TRUE) R <- cor(sim.data$observed) Ro <- R[c(1,2,4,5,7,8,10,11),c(1,2,4,5,7,8,10,11)] Roe <- R[c(1,2,4,5,7,8,10,11),c(3,6,9,12)] fo <- fa(Ro,2) fe <- fa.extension(Roe,fo) fa.diagram(fo,fe=fe) #now show how fa.extend works with the same data set #note that we have to make sure that the variables are in the order to do the factor congruence fe2 <- fa.extend(R,2,ov=c(1,2,4,5,7,8,10,11),ev=c(3,6,9,12),n.obs=1000) fa.diagram(fe2,main="factor analysis with extension variables") fa2 <- fa(sim.data$observed[,c(1,2,4,5,7,8,10,11,3,6,9,12)],2) factor.congruence(fe2,fa2) summary(fe2) #an example of extending an omega analysis fload <- matrix(c(c(c(.9,.8,.7,.6),rep(0,20)),c(c(.9,.8,.7,.6),rep(0,20)),c(c(.9,.8,.7,.6), rep(0,20)),c(c(c(.9,.8,.7,.6),rep(0,20)),c(.9,.8,.7,.6))),ncol=5) gload <- matrix(rep(.7,5)) five.factor <- sim.hierarchical(gload,fload,500,TRUE) #create sample data set ss <- c(1,2,3,5,6,7,9,10,11,13,14,15,17,18,19) Ro <- cor(five.factor$observed[,ss]) Re <- cor(five.factor$observed[,ss],five.factor$observed[,-ss]) om5 <-omega(Ro,5) #the omega analysis fa.extension(Re,om5) #the extension analysis } \keyword{ multivariate }% at least one, from doc/KEYWORDSpsych/man/omega.Rd0000755000176200001440000006403713060107145013544 0ustar liggesusers\name{omega} \alias{omega} \alias{omegaSem} \alias{omegaFromSem} \alias{omegah} \title{ Calculate McDonald's omega estimates of general and total factor saturation } \description{McDonald has proposed coefficient omega as an estimate of the general factor saturation of a test. One way to find omega is to do a factor analysis of the original data set, rotate the factors obliquely, do a Schmid Leiman transformation, and then find omega. This function estimates omega as suggested by McDonald by using hierarchical factor analysis (following Jensen). A related option is to define the model using omega and then perform a confirmatory factor analysis using the sem or lavaan packages. This is done by omegaSem and omegaFromSem. omegaFromSem will convert appropriate sem/lavaan objects to find omega } \usage{ omega(m,nfactors=3,fm="minres",n.iter=1,p=.05,poly=FALSE,key=NULL, flip=TRUE,digits=2, title="Omega",sl=TRUE,labels=NULL, plot=TRUE,n.obs=NA,rotate="oblimin",Phi=NULL,option="equal",covar=FALSE, ...) omegaSem(m,nfactors=3,fm="minres",key=NULL,flip=TRUE,digits=2,title="Omega", sl=TRUE,labels=NULL, plot=TRUE,n.obs=NA,rotate="oblimin", Phi = NULL, option="equal",lavaan=TRUE,...) omegah(m,nfactors=3,fm="minres",key=NULL,flip=TRUE, digits=2,title="Omega",sl=TRUE,labels=NULL, plot=TRUE, n.obs=NA,rotate="oblimin",Phi = NULL,option="equal",covar=FALSE,...) omegaFromSem(fit,m=NULL,flip=TRUE,plot=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{m}{A correlation matrix, or a data.frame/matrix of data, or (if Phi) is specified, an oblique factor pattern matrix } \item{nfactors}{Number of factors believed to be group factors} \item{n.iter}{How many replications to do in omega for bootstrapped estimates} \item{fm}{factor method (the default is minres) fm="pa" for principal axes, fm="minres" for a minimum residual (OLS) solution, fm="pc" for principal components (see note), or fm="ml" for maximum likelihood.} \item{poly}{should the correlation matrix be found using polychoric/tetrachoric or normal Pearson correlations} \item{key}{a vector of +/- 1s to specify the direction of scoring of items. The default is to assume all items are positively keyed, but if some items are reversed scored, then key should be specified.} \item{flip}{If flip is TRUE, then items are automatically flipped to have positive correlations on the general factor. Items that have been reversed are shown with a - sign.} \item{p}{probability of two tailed conference boundaries} \item{digits}{if specified, round the output to digits} \item{title}{Title for this analysis} \item{sl}{If plotting the results, should the Schmid Leiman solution be shown or should the hierarchical solution be shown? (default sl=TRUE)} \item{labels}{If plotting, what labels should be applied to the variables? If not specified, will default to the column names.} \item{plot}{plot=TRUE (default) calls omega.diagram, plot =FALSE does not. If Rgraphviz is available, then \code{\link{omega.graph}} may be used separately.} \item{n.obs}{Number of observations - used for goodness of fit statistic} \item{rotate}{What rotation to apply? The default is oblimin, the alternatives include simplimax, Promax, cluster and target. target will rotate to an optional keys matrix (See \code{\link{target.rot}})} \item{Phi}{If specified, then omega is found from the pattern matrix (m) and the factor intercorrelation matrix (Phi).} \item{option}{In the two factor case (not recommended), should the loadings be equal, emphasize the first factor, or emphasize the second factor. See in particular the option parameter in \code{\link{schmid}} for treating the case of two group factors.} \item{covar}{defaults to FALSE and the correlation matrix is found (standardized variables.) If TRUE, the do the calculations on the unstandardized variables and use covariances.} \item{lavaan}{if FALSE, will use John Fox's sem package to do the omegaSem. If TRUE, will use Yves Rosseel's lavaan package. } \item{fit}{The fitted object from lavaan or sem. For lavaan, this includes the correlation matrix and the variable names and thus m needs not be specified.} \item{...}{Allows additional parameters to be passed through to the factor routines. } } \details{``Many scales are assumed by their developers and users to be primarily a measure of one latent variable. When it is also assumed that the scale conforms to the effect indicator model of measurement (as is almost always the case in psychological assessment), it is important to support such an interpretation with evidence regarding the internal structure of that scale. In particular, it is important to examine two related properties pertaining to the internal structure of such a scale. The first property relates to whether all the indicators forming the scale measure a latent variable in common. The second internal structural property pertains to the proportion of variance in the scale scores (derived from summing or averaging the indicators) accounted for by this latent variable that is common to all the indicators (Cronbach, 1951; McDonald, 1999; Revelle, 1979). That is, if an effect indicator scale is primarily a measure of one latent variable common to all the indicators forming the scale, then that latent variable should account for the majority of the variance in the scale scores. Put differently, this variance ratio provides important information about the sampling fluctuations when estimating individuals' standing on a latent variable common to all the indicators arising from the sampling of indicators (i.e., when dealing with either Type 2 or Type 12 sampling, to use the terminology of Lord, 1956). That is, this variance proportion can be interpreted as the square of the correlation between the scale score and the latent variable common to all the indicators in the infinite universe of indicators of which the scale indicators are a subset. Put yet another way, this variance ratio is important both as reliability and a validity coefficient. This is a reliability issue as the larger this variance ratio is, the more accurately one can predict an individual's relative standing on the latent variable common to all the scale's indicators based on his or her observed scale score. At the same time, this variance ratio also bears on the construct validity of the scale given that construct validity encompasses the internal structure of a scale." (Zinbarg, Yovel, Revelle, and McDonald, 2006). McDonald has proposed coefficient omega_hierarchical (\eqn{\omega_h}) as an estimate of the general factor saturation of a test. Zinbarg, Revelle, Yovel and Li (2005) \url{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} compare McDonald's \eqn{\omega_h} to Cronbach's \eqn{\alpha} and Revelle's \eqn{\beta}. They conclude that \eqn{\omega_h} is the best estimate. (See also Zinbarg et al., 2006 and Revelle and Zinbarg (2009)). One way to find \eqn{\omega_h}{omega_h} is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\link{schmid}) transformation to find general factor loadings, and then find \eqn{\omega_h}{omega_h}. Here we present code to do that. \eqn{\omega_h}{omega_h} differs as a function of how the factors are estimated. Four options are available, three use the \code{\link{fa}} function but with different factoring methods: the default does a minres factor solution, fm="pa" does a principle axes factor analysis fm="mle" does a maximum likelihood solution; fm="pc" does a principal components analysis using (\link{principal}). For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \code{\link{scoreItems}} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). \eqn{\beta}{beta}, an alternative to \eqn{\omega_h}, is defined as the worst split half reliability (Revelle, 1979). It can be estimated by using \link{ICLUST} (a hierarchical clustering algorithm originally developed for main frames and written in Fortran and that is now part of the psych package. (For a very complimentary review of why the ICLUST algorithm is useful in scale construction, see Cooksey and Soutar, 2005). The \code{\link{omega}} function uses exploratory factor analysis to estimate the \eqn{\omega_h} coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate \eqn{\omega_h}, is to always examine the pattern of the estimated general factor loadings prior to estimating \eqn{\omega_h}. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading \eqn{\omega_h} estimates occasionally produced in the simulations reported here." (Zinbarg et al., 2006, p 137). A simple demonstration of the problem of an omega estimate reflecting just one of two group factors can be found in the last example. Diagnostic statistics that reflect the quality of the omega solution include a comparison of the relative size of the g factor eigen value to the other eigen values, the percent of the common variance for each item that is general factor variance (p2), the mean of p2, and the standard deviation of p2. Further diagnostics can be done by describing (\link{describe}) the $schmid$sl results. Although omega_h is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the schmid extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be "equal" which will be the sqrt(oblique correlations between the factors) or to "first" or "second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option="first" or option="second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to \eqn{\omega_h}, another of McDonald's coefficients is \eqn{\omega_t}. This is an estimate of the total reliability of a test. McDonald's \eqn{\omega_t}, which is similar to Guttman's \eqn{\lambda_6}, \code{\link{guttman}} but uses the estimates of uniqueness (\eqn{u^2}) from factor analysis to find \eqn{e_j^2}. This is based on a decomposition of the variance of a test score, \eqn{V_x} into four parts: that due to a general factor, \eqn{\vec{g}}, that due to a set of group factors, \eqn{\vec{f}}, (factors common to some but not all of the items), specific factors, \eqn{\vec{s}} unique to each item, and \eqn{\vec{e}}, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting \eqn{\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e}}{x = cg + Af + Ds + e} then the communality of item\eqn{_j}, based upon general as well as group factors, \eqn{h_j^2 = c_j^2 + \sum{f_{ij}^2}}{h_j^2 = c_j^2 + sum(f_ij^2)} and the unique variance for the item \eqn{u_j^2 = \sigma_j^2 (1-h_j^2)} may be used to estimate the test reliability. That is, if \eqn{h_j^2} is the communality of item\eqn{_j}, based upon general as well as group factors, then for standardized items, \eqn{e_j^2 = 1 - h_j^2} and \deqn{ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x}}{\omega_t = (1 cc' 1 + 1 AA' 1')/(V_x)} Because \eqn{h_j^2 \geq r_{smc}^2}, \eqn{\omega_t \geq \lambda_6}. It is important to distinguish here between the two \eqn{\omega} coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, \eqn{\omega_t} and \eqn{\omega_h}. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. \deqn{\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}}{\omega_h = (1 cc' 1')/Vx} Another estimate reported is the omega for an infinite length test with a structure similar to the observed test (omega H asymptotic). This is found by \deqn{\omega_{limit} = \frac{\vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}}{\omega_{limit} = (1 cc' 1')/(1 cc' 1' + 1 AA' 1')}. Following suggestions by Steve Reise, the Explained Common Variance (ECV) is also reported. This is the ratio of the general factor eigen value to the sum of all of the eigen values. As such, it is a better indicator of unidimensionality than of the amount of test variance accounted for by a general factor. The input to omega may be a correlation matrix or a raw data matrix, or a factor pattern matrix with the factor intercorrelations (Phi) matrix. \code{\link{omega}} is an exploratory factor analysis function that uses a Schmid-Leiman transformation. \code{\link{omegaSem}} first calls \code{\link{omega}} and then takes the Schmid-Leiman solution, converts this to a confirmatory sem model and then calls the sem package to conduct a confirmatory model. \eqn{\omega_h} is then calculated from the CFA output. Although for well behaved problems, the efa and cfa solutions will be practically identical, the CFA solution will not always agree with the EFA solution. In particular, the estimated \eqn{R^2} will sometimes exceed 1. (An example of this is the Harman 24 cognitive abilities problem.) In addition, not all EFA solutions will produce workable CFA solutions. Model misspecifications will lead to very strange CFA estimates. It is also possible to give \code{\link{omega}} a factor pattern matrix and the associated factor intercorrelation. In this case, the analysis will be done on these matrices. This is particularly useful if one is not satisfied with the exploratory EFA solutions and rotation options and somehow comes up with an alternative. (For instance, one might want to do a EFA using fm='pa' with a Kaiser normalized Promax solution with a specified m value.) \code{\link{omegaFromSem}} takes the output from a sem model and uses it to find \eqn{\omega_h}. The estimate of factor indeterminacy, found by the multiple \eqn{R^2} of the variables with the factors, will not match that found by the EFA model. In particular, the estimated \eqn{R^2} will sometimes exceed 1. (An example of this is the Harman 24 cognitive abilities problem.) The notion of omega may be applied to the individual factors as well as the overall test. A typical use of omega is to identify subscales of a total inventory. Some of that variability is due to the general factor of the inventory, some to the specific variance of each subscale. Thus, we can find a number of different omega estimates: what percentage of the variance of the items identified with each subfactor is actually due to the general factor. What variance is common but unique to the subfactor, and what is the total reliable variance of each subfactor. These results are reported in omega.group object and in the last few lines of the normal output. The summary of the omega object is a reduced set of the most useful output. The various objects returned from omega include: } \value{ \item{omega hierarchical}{The \eqn{\omega_h} coefficient} \item{omega.lim}{The limit of \eqn{\omega_h} as the test becomes infinitly large} \item{omega total}{The \eqn{omega_t} coefficient} \item{alpha}{Cronbach's \eqn{\alpha}} \item{schmid}{The Schmid Leiman transformed factor matrix and associated matrices} \item{schmid$sl}{The g factor loadings as well as the residualized factors} \item{schmid$orthog}{Varimax rotated solution of the original factors} \item{schmid$oblique}{The oblimin or promax transformed factors} \item{schmid$phi}{the correlation matrix of the oblique factors} \item{schmid$gloading}{The loadings on the higher order, g, factor of the oblimin factors} \item{key}{A vector of -1 or 1 showing which direction the items were scored.} \item{model}{a list of two elements, one suitable to give to the sem function for structure equation models, the other, to give to the lavaan package. } \item{sem}{The output from a sem analysis} \item{omega.group}{The summary statistics for the omega total, omega hierarchical (general) and omega within each group.} \item{scores}{Factor score estimates are found for the Schmid-Leiman solution. To get scores for the hierarchical model see the note.} \item{various fit statistics}{various fit statistics, see output} \item{OmegaSem}{ is an object that contains the fits for the OmegaSem output.} } \references{ \url{http://personality-project.org/r/r.omega.html} \cr Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14, 57-74. (\url{http://personality-project.org/revelle/publications/iclust.pdf}) Revelle, W. and Zinbarg, R. E. (2009) Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 74, 1, 145-154. (\url{http://personality-project.org/revelle/publications/rz09.pdf} Zinbarg, R.E., Revelle, W., Yovel, I., & Li. W. (2005). Cronbach's Alpha, Revelle's Beta, McDonald's Omega: Their relations with each and two alternative conceptualizations of reliability. Psychometrika. 70, 123-133. \url{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} Zinbarg, R., Yovel, I. & Revelle, W. (2007). Estimating omega for structures containing two group factors: Perils and prospects. Applied Psychological Measurement. 31 (2), 135-157. Zinbarg, R., Yovel, I., Revelle, W. & McDonald, R. (2006). Estimating generalizability to a universe of indicators that all have one attribute in common: A comparison of estimators for omega. Applied Psychological Measurement, 30, 121-144. DOI: 10.1177/0146621605278814 \url{http://apm.sagepub.com/cgi/reprint/30/2/121} } \author{ \url{http://personality-project.org/revelle.html} \cr Maintainer: William Revelle \email{ revelle@northwestern.edu } } \note{Requires the GPArotation package. The default rotation uses oblimin from the GPArotation package. Alternatives include the simplimax function, as well as \code{\link{Promax}} or the \code{\link{promax}} rotations. promax will do a Kaiser normalization before applying Promax rotation. If the factor solution leads to an exactly orthogonal solution (probably only for demonstration data sets), then use the rotate="Promax" option to get a solution. \code{\link{omegaSem}} requires the sem or lavaan packages. \code{\link{omegaFromSem}} uses the output from the sem or lavaan package. \code{\link{omega}} may be run on raw data (finding either Pearson or tetrachoric/polychoric corrlations, depending upon the poly option) a correlation matrix, a polychoric correlation matrix (found by e.g., \code{\link{polychoric}}), or the output of a previous omega run. This last case is particularly useful when working with categorical data using the poly=TRUE option. For in this case, most of the time is spent in finding the correlation matrix. The matrix is saved as part of the omega output and may be used as input for subsequent runs. A similar feature is found in \code{\link{irt.fa}} where the output of one analysis can be taken as the input to the subsequent analyses. However, simulations based upon tetrachoric and polychoric correlations suggest that although the structure is better defined, that the estimates of omega are inflated over the true general factor saturation. Omega returns factor scores based upon the Schmid-Leiman transformation. To get the hierarchical factor scores, it is necessary to do this outside of omega. See the example (not run). Consider the case of the raw data in an object data. Then f3 <- fa(data,3,scores="tenBerge", oblique.rotation=TRUE f1 <- fa(f3$scores) hier.scores <- data.frame(f1$scores,f3$scores) When doing fm="pc", principal components are done for the original correlation matrix, but minres is used when examining the intercomponent correlations. A warning is issued that the method was changed to minres for the higher order solution. omega is a factor model, and finding loadings using principal components will overestimate the resulting solution. This is particularly problematic for the amount of group saturation, and thus the omega.group statistics are overestimates. The last three lines of omega report "Total, General and Subset omega for each subset". These are available as the omega.group object in the output. The last of these (omega group) is effectively what Steve Reise calls omegaS for the subset omega. The omega general is the amount of variance in the group that is accounted for by the general factor, the omega total is the amount of variance in the group accounted for by general + group. This is based upon a cluster solution (that is to say, every item is assigned to one group) and this is why for first column the omega general and group do not add up to omega total. Some of the variance is found in the cross loadings between groups. Reise and others like to report the ratio of the second line to the first line (what portion of the reliable variance is general factor) and the third row to the first (what portion of the reliable variance is within group but not general. This may be found by using the omega.group object that is returned by omega. (See the last example.) If using the lavaan=TRUE option in \code{\link{omegaSem}} please note that variable names can not start with a digit (e.g. 4.Letter.Words in the \code{\link{Thurstone}} data set. The leading digit needs to be removed. \code{\link{omegaSem}} will do an exploratory efa and omega, create (and return) the commands for doing either a sem or lavaan analysis. The commands are returned as the model object. This can be used for further sem/lavaan analyses. Omega can also be found from an analysis done using lavaan or sem directly by calling \code{\link{omegaFromSem}} with the original correlation matrix and the fit of the sem/lavaan model. See the last (not run) example) } \seealso{ \code{\link{omega.graph}} \code{\link{ICLUST}}, \code{\link{ICLUST.graph}}, \code{\link{VSS}}, \code{\link{schmid} }, \code{\link{make.hierarchical} }} \examples{ \dontrun{ test.data <- Harman74.cor$cov # if(!require(GPArotation)) {message("Omega requires GPA rotation" )} else { my.omega <- omega(test.data) print(my.omega,digits=2) #} #create 9 variables with a hierarchical structure v9 <- sim.hierarchical() #with correlations of round(v9,2) #find omega v9.omega <- omega(v9,digits=2) v9.omega #create 8 items with a two factor solution, showing the use of the flip option sim2 <- item.sim(8) omega(sim2) #an example of misidentification-- remember to look at the loadings matrices. omega(sim2,2) #this shows that in fact there is no general factor omega(sim2,2,option="first") #but, if we define one of the two group factors #as a general factor, we get a falsely high omega #apply omega to analyze 6 mental ability tests data(ability.cov) #has a covariance matrix omega(ability.cov$cov) #om <- omega(Thurstone) #round(om$omega.group,2) #round(om$omega.group[2]/om$omega.group[1],2) #fraction of reliable that is general variance # round(om$omega.group[3]/om$omega.group[1],2) #fraction of reliable that is group variance #To find factor score estimates for the hierarchical model it is necessary to #do two extra steps. #Consider the case of the raw data in an object data. (An example from simulation) # set.seed(42) # gload <- matrix(c(.9,.8,.7),nrow=3) # fload <- matrix(c(.8,.7,.6,rep(0,9),.7,.6,.5,rep(0,9),.7,.6,.4), ncol=3) # data <- sim.hierarchical(gload=gload,fload=fload, n=100000, raw=TRUE) # # f3 <- fa(data$observed,3,scores="tenBerge", oblique.scores=TRUE) # f1 <- fa(f3$scores) # om <- omega(data$observed,sl=FALSE) #draw the hierarchical figure # The scores from om are based upon the Schmid-Leiman factors and although the g factor # is identical, the group factors are not. # This is seen in the following correlation matrix # hier.scores <- cbind(om$scores,f1$scores,f3$scores) # lowerCor(hier.scores) # #jensen <- sim.hierarchical() #create a hierarchical structure #om.jen <- omegaSem(jensen,lavaan=TRUE) #do the exploratory omega with confirmatory as well #lav.mod <- om.jen$omegaSem$model$lavaan #get the lavaan code or create it yourself # lav.mod <- 'g =~ +V1+V2+V3+V4+V5+V6+V7+V8+V9 # F1=~ + V1 + V2 + V3 # F2=~ + V4 + V5 + V6 # F3=~ + V7 + V8 + V9 ' #lav.jen <- cfa(lav.mod,sample.cov=jensen,sample.nobs=500,orthogonal=TRUE,std.lv=TRUE) # omegaFromSem(lav.jen,jensen) #try a one factor solution -- this is not recommended, but sometimes done #it will just give omega_total # lav.mod.1 <- 'g =~ +V1+V2+V3+V4+V5+V6+V7+V8+V9 ' #lav.jen.1<- cfa(lav.mod.1,sample.cov=jensen,sample.nobs=500,orthogonal=TRUE,std.lv=TRUE) # omegaFromSem(lav.jen.1,jensen) } } \keyword{ multivariate } \keyword{ models } psych/man/structure.list.Rd0000644000176200001440000000314611213100046015444 0ustar liggesusers\name{structure.list} \alias{structure.list} \alias{phi.list} \title{Create factor model matrices from an input list} \description{When creating a structural diagram or a structural model, it is convenient to not have to specify all of the zero loadings in a structural matrix. structure.list converts list input into a design matrix. phi.list does the same for a correlation matrix. Factors with NULL values are filled with 0s. } \usage{ structure.list(nvars, f.list,f=NULL, f.labels = NULL, item.labels = NULL) phi.list(nf,f.list, f.labels = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{nvars}{Number of variables in the design matrix } \item{f.list}{A list of items included in each factor (for structure.list, or the factors that correlate with the specified factor for phi.list} \item{f}{prefix for parameters -- needed in case of creating an X set and a Y set} \item{f.labels}{Names for the factors } \item{item.labels}{Item labels } \item{nf}{Number of factors in the phi matrix} } \details{This is almost self explanatory. See the examples. } \value{ \item{factor.matrix}{a matrix of factor loadings to model} } \seealso{ \code{\link{structure.graph}} for drawing it, or \code{\link{sim.structure}} for creating this data structure. } \examples{ fx <- structure.list(9,list(F1=c(1,2,3),F2=c(4,5,6),F3=c(7,8,9))) fy <- structure.list(3,list(Y=c(1,2,3)),"Y") phi <- phi.list(4,list(F1=c(4),F2=c(1,4),F3=c(2),F4=c(1,2,3))) fx phi fy } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{models }psych/man/fa.parallel.Rd0000644000176200001440000003123713150420365014630 0ustar liggesusers\name{fa.parallel} \alias{fa.parallel} \alias{fa.parallel.poly} \alias{plot.poly.parallel} \title{Scree plots of data or correlation matrix compared to random ``parallel" matrices } \description{One way to determine the number of factors or components in a data matrix or a correlation matrix is to examine the ``scree" plot of the successive eigenvalues. Sharp breaks in the plot suggest the appropriate number of components or factors to extract. ``Parallel" analyis is an alternative technique that compares the scree of factors of the observed data with that of a random data matrix of the same size as the original. fa.parallel.poly does this for tetrachoric or polychoric analyses. } \usage{ fa.parallel(x,n.obs=NULL,fm="minres",fa="both",main="Parallel Analysis Scree Plots", n.iter=20,error.bars=FALSE,se.bars=FALSE,SMC=FALSE,ylabel=NULL,show.legend=TRUE, sim=TRUE,quant=.95,cor="cor",use="pairwise",plot=TRUE,correct=.5) fa.parallel.poly(x ,n.iter=10,SMC=TRUE, fm = "minres",correct=TRUE,sim=FALSE, fa="both",global=TRUE) #deprecated \method{plot}{poly.parallel}(x,show.legend=TRUE,fa="both",...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A data.frame or data matrix of scores. If the matrix is square, it is assumed to be a correlation matrix. Otherwise, correlations (with pairwise deletion) will be found } \item{n.obs}{n.obs=0 implies a data matrix/data.frame. Otherwise, how many cases were used to find the correlations. } \item{fm}{What factor method to use. (minres, ml, uls, wls, gls, pa) See \code{\link{fa}} for details.} \item{fa}{show the eigen values for a principal components (fa="pc") or a principal axis factor analysis (fa="fa") or both principal components and principal factors (fa="both")} \item{main}{ a title for the analysis } \item{n.iter}{Number of simulated analyses to perform} \item{use}{How to treat missing data, use="pairwise" is the default". See cor for other options.} \item{cor}{How to find the correlations: "cor" is Pearson", "cov" is covariance, "tet" is tetrachoric, "poly" is polychoric, "mixed" uses mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, Yuleb is Yulebonett, Yuleq and YuleY are the obvious Yule coefficients as appropriate. This matches the call to fa} \item{correct}{For tetrachoric correlations, should a correction for continuity be applied. (See tetrachoric) If set to 0, then no correction is applied, otherwise, the default is to add .5 observations to the cell.} \item{sim}{For continuous data, the default is to resample as well as to generate random normal data. If sim=FALSE, then just show the resampled results. These two results are very similar. This does not make sense in the case of correlation matrix, in which case resampling is impossible. In the case of polychoric or tetrachoric data, in addition to randomizing the real data, should we compare the solution to random simulated data. This will double the processing time, but will yiedl basically show the same result.} \item{error.bars}{Should error.bars be plotted (default = FALSE)} \item{se.bars}{Should the error bars be standard errors (se.bars=TRUE) or 1 standard deviation (se.bars=FALSE, the default). With many iterations, the standard errors are very small and some prefer to see the broader range. The default has been changed in 1.7.8 to be se.bars=FALSE to more properly show the range.} \item{SMC}{SMC=TRUE finds eigen values after estimating communalities by using SMCs. smc = FALSE finds eigen values after estimating communalities with the first factor.} \item{ylabel}{Label for the y axis -- defaults to ``eigen values of factors and components", can be made empty to show many graphs} \item{show.legend}{the default is to have a legend. For multiple panel graphs, it is better to not show the legend} \item{quant}{if nothing is specified, the empirical eigen values are compared to the mean of the resampled or simulated eigen values. If a value (e.g., quant=.95) is specified, then the eigen values are compared against the matching quantile of the simulated data. Clearly the larger the value of quant, the few factors/components that will be identified.} \item{global}{If doing polychoric analyses (fa.parallel.poly) and the number of alternatives differ across items, it is necessary to turn off the global option} \item{...}{additional plotting parameters, for plot.poly.parallel} \item{plot}{By default, fa.parallel draws the eigen value plots. If FALSE, suppresses the graphic output} } \details{Cattell's ``scree" test is one of most simple tests for the number of factors problem. Horn's (1965) ``parallel" analysis is an equally compelling procedure. Other procedures for determining the most optimal number of factors include finding the Very Simple Structure (VSS) criterion (\code{\link{VSS}}) and Velicer's \code{\link{MAP}} procedure (included in \code{\link{VSS}}). Both the VSS and the MAP criteria are included in the \code{link{nfactors}} function which also reports the mean item complexity and the BIC for each of multiple solutions. fa.parallel plots the eigen values for a principal components and the factor solution (minres by default) and does the same for random matrices of the same size as the original data matrix. For raw data, the random matrices are 1) a matrix of univariate normal data and 2) random samples (randomized across rows) of the original data. \code{\link{fa.parallel.poly}} will do parallel analysis for polychoric and tetrachoric factors. If the data are dichotomous, \code{\link{fa.parallel.poly}} will find tetrachoric correlations for the real and simulated data, otherwise, if the number of categories is less than 10, it will find polychoric correlations. Note that fa.parallel.poly is slower than fa.parallel because of the complexity of calculating the tetrachoric/polychoric correlations. The functionality of \code{\link{fa.parallel.poly}} is now included in \code{\link{fa.parallel}} with cor=poly option (etc.) option. \code{\link{fa.parallel}} now will do tetrachorics or polychorics directly if the cor option is set to "tet" or "poly". As with \code{\link{fa.parallel.poly}} this will take longer. The means of (ntrials) random solutions are shown. Error bars are usually very small and are suppressed by default but can be shown if requested. If the sim option is set to TRUE (default), then parallel analyses are done on resampled data as well as random normal data. In the interests of speed, the parallel analyses are done just on resampled data if sim=FALSE. Both procedures tend to agree. As of version 1.5.4, I added the ability to specify the quantile of the simulated/resampled data, and to plot standard deviations or standard errors. Alternative ways to estimate the number of factors problem are discussed in the Very Simple Structure (Revelle and Rocklin, 1979) documentation (\code{\link{VSS}}) and include Wayne Velicer's \code{\link{MAP}} algorithm (Veicer, 1976). Parallel analysis for factors is actually harder than it seems, for the question is what are the appropriate communalities to use. If communalities are estimated by the Squared Multiple Correlation (SMC) \code{\link{smc}}, then the eigen values of the original data will reflect major as well as minor factors (see \code{\link{sim.minor}} to simulate such data). Random data will not, of course, have any structure and thus the number of factors will tend to be biased upwards by the presence of the minor factors. By default, fa.parallel estimates the communalities based upon a one factor minres solution. Although this will underestimate the communalities, it does seem to lead to better solutions on simulated or real (e.g., the \code{\link{bfi}} or Harman74) data sets. For comparability with other algorithms (e.g, the paran function in the paran package), setting smc=TRUE will use smcs as estimates of communalities. This will tend towards identifying more factors than the default option. Printing the results will show the eigen values of the original data that are greater than simulated values. A sad observation about parallel analysis is that it is sensitive to sample size. That is, for large data sets, the eigen values of random data are very close to 1. This will lead to different estimates of the number of factors as a function of sample size. Consider factor structure of the bfi data set (the first 25 items are meant to represent a five factor model). For samples of 200 or less, parallel analysis suggests 5 factors, but for 1000 or more, six factors and components are indicated. This is not due to an instability of the eigen values of the real data, but rather the closer approximation to 1 of the random data as n increases. When simulating dichotomous data in fa.parallel.poly, the simulated data have the same difficulties as the original data. This functionally means that the simulated and the resampled results will be very similar. Note that fa.parallel.poly has functionally been replaced with fa.parallel with the cor="poly" option. As with many psych functions, fa.parallel has been changed to allow for multicore processing. For running a large number of iterations, it is obviously faster to increase the number of cores to the maximum possible (using the options("mc.cores=n) command where n is determined from detectCores(). } \value{ A plot of the eigen values for the original data, ntrials of resampling of the original data, and of a equivalent size matrix of random normal deviates. If the data are a correlation matrix, specify the number of observations. Also returned (invisibly) are: \item{fa.values}{The eigen values of the factor model for the real data.} \item{fa.sim}{The descriptive statistics of the simulated factor models.} \item{pc.values}{The eigen values of a principal components of the real data.} \item{pc.sim}{The descriptive statistics of the simulated principal components analysis.} \item{nfact}{Number of factors with eigen values > eigen values of random data} \item{ncomp}{Number of components with eigen values > eigen values of random data} \item{values}{The simulated values for all simulated trials} } \note{Although by default the test is applied to the 95th percentile eigen values, this can be modified by setting the quant parameter to any particular quantile. The actual simulated data are also returned (invisibly) in the value object. Thus, it is possible to do descriptive statistics on those to choose a preferred comparison. See the last example (not run) The simulated and resampled data tend to be very similar, so for a slightly cleaner figure, set sim=FALSE. } \references{ Floyd, Frank J. and Widaman, Keith. F (1995) Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3):286-299, 1995. Horn, John (1965) A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185. Humphreys, Lloyd G. and Montanelli, Richard G. (1975), An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research, 10, 193-205. Revelle, William and Rocklin, Tom (1979) Very simple structure - alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research, 14(4):403-414. Velicer, Wayne. (1976) Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3):321-327, 1976. } \author{ William Revelle } \seealso{ \code{\link{fa}}, \code{\link{nfactors}}, \code{\link{VSS}}, \code{\link{VSS.plot}}, \code{\link{VSS.parallel}}, \code{\link{sim.minor}}} \examples{ #test.data <- Harman74.cor$cov #The 24 variable Holzinger - Harman problem #fa.parallel(test.data,n.obs=145) fa.parallel(Thurstone,n.obs=213) #the 9 variable Thurstone problem #set.seed(123) #minor <- sim.minor(24,4,400) #4 large and 12 minor factors #ffa.parallel(minor$observed) #shows 5 factors and 4 components -- compare with #fa.parallel(minor$observed,SMC=FALSE) #which shows 6 and 4 components factors #a demonstration of parallel analysis of a dichotomous variable #fp <- fa.parallel(ability) #use the default Pearson correlation #fpt <- fa.parallel(ability,cor="tet") #do a tetrachoric correlation #fpt <- fa.parallel(ability,cor="tet",quant=.95) #do a tetrachoric correlation and #use the 95th percentile of the simulated results #apply(fp$values,2,function(x) quantile(x,.95)) #look at the 95th percentile of values #apply(fpt$values,2,function(x) quantile(x,.95)) #look at the 95th percentile of values #describe(fpt$values) #look at all the statistics of the simulated values } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/block.random.Rd0000644000176200001440000000233211364207643015021 0ustar liggesusers\name{block.random} \alias{block.random} \title{Create a block randomized structure for n independent variables} \description{Random assignment of n subjects with an equal number in all of N conditions may done by block randomization, where the block size is the number of experimental conditions. The number of Independent Variables and the number of levels in each IV are specified as input. The output is a the block randomized design. } \usage{ block.random(n, ncond = NULL) } \arguments{ \item{n}{The number of subjects to randomize. Must be a multiple of the number of experimental conditions} \item{ncond}{The number of conditions for each IV. Defaults to 2 levels for one IV. If more than one IV, specify as a vector. If names are provided, they are used, otherwise the IVs are labeled as IV1 ... IVn} } \value{ \item{blocks }{A matrix of subject numbers, block number, and randomized levels for each IV} } \author{William Revelle } \note{Prepared for a course on Research Methods in Psychology \url{http://personality-project.org/revelle/syllabi/205/205.syllabus.html} } \examples{ br <- block.random(n=24,c(2,3)) pairs.panels(br) br <- block.random(96,c(time=4,drug=3,sex=2)) pairs.panels(br) } \keyword{multivariate } psych/man/predict.psych.Rd0000644000176200001440000000463612216171121015224 0ustar liggesusers\name{predict.psych} \alias{predict.psych} \title{Prediction function for factor analysis or principal components } \description{Finds predicted factor/component scores from a factor analysis or components analysis of data set A predicted to data set B. Predicted factor scores use the weights matrix used to find estimated factor scores, predicted components use the loadings matrix. Scores are either standardized with respect to the prediction sample or based upon the original data. } \usage{ \method{predict}{psych}(object, data,old.data,...) } \arguments{ \item{object}{the result of a factor analysis or principal components analysis of data set A} \item{data}{Data set B, of the same number of variables as data set A.} \item{old.data}{if specified, the data set B will be standardized in terms of values from the old data. This is probably the preferred option. } \item{...}{More options to pass to predictions } } \value{ Predicted factor/components scores. The scores are based upon standardized items where the standardization is either that of the original data (old.data) or of the prediction set. This latter case can lead to confusion if just a small number of predicted scores are found. } \author{William Revelle } \note{Thanks to Reinhold Hatzinger for the suggestion and request} \seealso{ \code{\link{fa}}, \code{\link{principal}} } \examples{ set.seed(42) x <- sim.item(12,500) f2 <- fa(x[1:250,],2,scores="regression") # a two factor solution p2 <- principal(x[1:250,],2,scores=TRUE) # a two component solution round(cor(f2$scores,p2$scores),2) #correlate the components and factors from the A set #find the predicted scores (The B set) pf2 <- predict(f2,x[251:500,],x[1:250,]) #use the original data for standardization values pp2 <- predict(p2,x[251:500,],x[1:250,]) #standardized based upon the first set round(cor(pf2,pp2),2) #find the correlations in the B set #test how well these predicted scores match the factor scores from the second set fp2 <- fa(x[251:500,],2,scores=TRUE) round(cor(fp2$scores,pf2),2) pf2.n <- predict(f2,x[251:500,]) #Standardized based upon the new data set round(cor(fp2$scores,pf2.n)) #predict factors of set two from factors of set 1, factor order is arbitrary #note that the signs of the factors in the second set are arbitrary } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{ models } psych/man/interp.median.Rd0000644000176200001440000000626312216167602015211 0ustar liggesusers\name{interp.median} \alias{interp.median} \alias{interp.quantiles} \alias{interp.quartiles} \alias{interp.boxplot} \alias{interp.values} \alias{interp.qplot.by} \alias{interp.q} \alias{interp.quart} \title{Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame} \description{For data with a limited number of response categories (e.g., attitude items), it is useful treat each response category as range with width, w and linearly interpolate the median, quartiles, or any quantile value within the median response. } \usage{ interp.median(x, w = 1,na.rm=TRUE) interp.quantiles(x, q = .5, w = 1,na.rm=TRUE) interp.quartiles(x,w=1,na.rm=TRUE) interp.boxplot(x,w=1,na.rm=TRUE) interp.values(x,w=1,na.rm=TRUE) interp.qplot.by(y,x,w=1,na.rm=TRUE,xlab="group",ylab="dependent", ylim=NULL,arrow.len=.05,typ="b",add=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{input vector } \item{q}{quantile to estimate ( 0 < q < 1} \item{w}{category width} \item{y}{input vector for interp.qplot.by} \item{na.rm}{should missing values be removed} \item{xlab}{x label} \item{ylab}{Y label} \item{ylim}{limits for the y axis} \item{arrow.len}{length of arrow in interp.qplot.by} \item{typ}{plot type in interp.qplot.by} \item{add}{add the plot or not} \item{...}{additional parameters to plotting function} } \details{If the total number of responses is N, with median, M, and the number of responses at the median value, Nm >1, and Nb= the number of responses less than the median, then with the assumption that the responses are distributed uniformly within the category, the interpolated median is M - .5w + w*(N/2 - Nb)/Nm. The generalization to 1st, 2nd and 3rd quartiles as well as the general quantiles is straightforward. A somewhat different generalization allows for graphic presentation of the difference between interpolated and non-interpolated points. This uses the interp.values function. If the input is a matrix or data frame, quantiles are reported for each variable. } \value{ \item{im}{interpolated median(quantile)} \item{v}{interpolated values for all data points} } \seealso{ \code{\link{median}}} \examples{ interp.median(c(1,2,3,3,3)) # compare with median = 3 interp.median(c(1,2,2,5)) interp.quantiles(c(1,2,2,5),.25) x <- sample(10,100,TRUE) interp.quartiles(x) # x <- c(1,1,2,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,2) y <- c(1,2,3,3,3,3,4,4,4,4,4,1,2,3,3,3,3,4,4,4,4,5,1,5,3,3,3,3,4,4,4,4,4) x <- x[order(x)] #sort the data by ascending order to make it clearer y <- y[order(y)] xv <- interp.values(x) yv <- interp.values(y) barplot(x,space=0,xlab="ordinal position",ylab="value") lines(1:length(x)-.5,xv) points(c(length(x)/4,length(x)/2,3*length(x)/4),interp.quartiles(x)) barplot(y,space=0,xlab="ordinal position",ylab="value") lines(1:length(y)-.5,yv) points(c(length(y)/4,length(y)/2,3*length(y)/4),interp.quartiles(y)) data(galton) interp.median(galton) interp.qplot.by(galton$child,galton$parent,ylab="child height" ,xlab="Mid parent height") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{univar} psych/man/Gleser.Rd0000644000176200001440000000426512262552335013677 0ustar liggesusers\name{Gleser} \alias{Gleser} \docType{data} \title{ Example data from Gleser, Cronbach and Rajaratnam (1965) to show basic principles of generalizability theory. } \description{ Gleser, Cronbach and Rajaratnam (1965) discuss the estimation of variance components and their ratios as part of their introduction to generalizability theory. This is a adaptation of their "illustrative data for a completely matched G study" (Table 3). 12 patients are rated on 6 symptoms by two judges. Components of variance are derived from the ANOVA. } \usage{data(Gleser)} \format{ A data frame with 12 observations on the following 12 variables. J item by judge: \describe{ \item{\code{J11}}{a numeric vector} \item{\code{J12}}{a numeric vector} \item{\code{J21}}{a numeric vector} \item{\code{J22}}{a numeric vector} \item{\code{J31}}{a numeric vector} \item{\code{J32}}{a numeric vector} \item{\code{J41}}{a numeric vector} \item{\code{J42}}{a numeric vector} \item{\code{J51}}{a numeric vector} \item{\code{J52}}{a numeric vector} \item{\code{J61}}{a numeric vector} \item{\code{J62}}{a numeric vector} } } \details{ Generalizability theory is the application of a components of variance approach to the analysis of reliability. Given a G study (generalizability) the components are estimated and then may be used in a D study (Decision). Different ratios are formed as appropriate for the particular D study. } \source{ Gleser, G., Cronbach, L., and Rajaratnam, N. (1965). Generalizability of scores influenced by multiple sources of variance. Psychometrika, 30(4):395-418. (Table 3, rearranged to show increasing patient severity and increasing item severity. } \references{ Gleser, G., Cronbach, L., and Rajaratnam, N. (1965). Generalizability of scores influenced by multiple sources of variance. Psychometrika, 30(4):395-418. } \examples{ #Find the MS for each component: #First, stack the data data(Gleser) stack.g <- stack(Gleser) st.gc.df <- data.frame(stack.g,Persons=rep(letters[1:12],12), Items=rep(letters[1:6],each=24),Judges=rep(letters[1:2],each=12)) #now do the ANOVA anov <- aov(values ~ (Persons*Judges*Items),data=st.gc.df) summary(anov) } \keyword{datasets} psych/man/test.irt.Rd0000644000176200001440000000432613032566146014231 0ustar liggesusers\name{test.irt} \alias{test.irt} %- Also NEED an '\alias' for EACH other topic documented here. \title{A simple demonstration (and test) of various IRT scoring algorthims. } \description{ Item Response Theory provides a number of alternative ways of estimating latent scores. Here we compare 6 different ways to estimate the latent variable associated with a pattern of responses. Originally developed as a test for scoreIrt, but perhaps useful for demonstration purposes. Items are simulated using \code{\link{sim.irt}} and then scored using factor scores from \code{\link{factor.scores}} using statistics found using \code{\link{irt.fa}}, simple weighted models for 1 and 2 PL and 2 PN. Results show almost perfect agreement with estimates from MIRT and ltm for the dichotomous case and with MIRT for the polytomous case. (Results from ltm are unstable for the polytomous case, sometimes agreeing with \code{\link{scoreIrt}} and MIRT, sometimes being much worse.) } \usage{ test.irt(nvar = 9, n.obs = 1000, mod = "logistic",type="tetra", low = -3, high = 3, seed = NULL) } \arguments{ \item{nvar}{Number of variables to create (simulate) and score} \item{n.obs}{Number of simulated subjects} \item{mod}{"logistic" or "normal" theory data are generated} \item{type}{"tetra" for dichotomous, "poly" for polytomous} \item{low}{items range from low to high} \item{high}{items range from low to high} \item{seed}{Set the random number seed using some non-nul value. Otherwise, use the existing sequence of random numbers} } \details{n.obs observations (0/1) on nvar variables are simulated using either a logistic or normal theory model. Then, a number of different scoring algorithms are applied and shown graphically. Requires the ltm package to be installed to compare ltm scores. } \value{ A dataframe of scores as well as the generating theta true score. A graphic display of the correlations is also shown.} \author{William Revelle} \seealso{ \code{\link{scoreIrt}},\code{\link{irt.fa}} } \examples{ #not run #test.irt(9,1000) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate }% use one of RShowDoc("KEYWORDS") \keyword{models }% __ONLY ONE__ keyword per line psych/man/smc.Rd0000644000176200001440000000271412516213133013225 0ustar liggesusers\name{smc} \alias{smc} \title{Find the Squared Multiple Correlation (SMC) of each variable with the remaining variables in a matrix} \description{The squared multiple correlation of a variable with the remaining variables in a matrix is sometimes used as initial estimates of the communality of a variable. SMCs are also used when estimating reliability using Guttman's lambda 6 \code{\link{guttman}} coefficient. The SMC is just 1 - 1/diag(R.inv) where R.inv is the inverse of R. } \usage{ smc(R,covar=FALSE) } \arguments{ \item{R}{ A correlation matrix or a dataframe. In the latter case, correlations are found.} \item{covar}{if covar = TRUE and R is either a covariance matrix or data frame, then return the smc * variance for each item} } \value{a vector of squared multiple correlations. Or, if covar=TRUE, a vector of squared multiple correlations * the item variances If the matrix is not invertible, then a vector of 1s is returned. In the case of correlation or covariance matrices with some NAs, those variables with NAs are dropped and the SMC for the remaining variables are found. The missing SMCs are then estimated by finding the maximum correlation for that column (with a warning). } \author{ William Revelle } \seealso{ \code{\link{mat.regress}}, \code{\link{fa}} } \examples{ R <- make.hierarchical() round(smc(R),2) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/irt.fa.Rd0000644000176200001440000002563413032023164013631 0ustar liggesusers\name{irt.fa} \alias{irt.fa} \alias{irt.select} \alias{fa2irt} \title{Item Response Analysis by Exploratory Factor Analysis of tetrachoric/polychoric correlations} \description{ Although exploratory factor analysis and Item Response Theory seem to be very different models of binary data, they can provide equivalent parameter estimates of item difficulty and item discrimination. Tetrachoric or polychoric correlations of a data set of dichotomous or polytomous items may be factor analysed using a minimum residual or maximum likelihood factor analysis and the result loadings transformed to item discrimination parameters. The tau parameter from the tetrachoric/polychoric correlations combined with the item factor loading may be used to estimate item difficulties. } \usage{ irt.fa(x,nfactors=1,correct=TRUE,plot=TRUE,n.obs=NULL,rotate="oblimin",fm="minres", sort=FALSE,...) irt.select(x,y) fa2irt(f,rho,plot=TRUE,n.obs=NULL) } \arguments{ \item{x}{A data matrix of dichotomous or discrete items, or the result of \code{\link{tetrachoric}} or \code{\link{polychoric}} } \item{nfactors}{Defaults to 1 factor} \item{correct}{If true, then correct the tetrachoric correlations for continuity. (See \code{\link{tetrachoric}}). } \item{plot}{If TRUE, automatically call the \code{\link{plot.irt}} or \code{\link{plot.poly}} functions.} \item{y}{the subset of variables to pick from the rho and tau output of a previous irt.fa analysis to allow for further analysis.} \item{n.obs}{The number of subjects used in the initial analysis if doing a second analysis of a correlation matrix. In particular, if using the fm="minchi" option, this should be the matrix returned by \code{\link{count.pairwise}}.} \item{rotate}{The default rotation is oblimin. See \code{\link{fa}} for the other options.} \item{fm}{The default factor extraction is minres. See \code{\link{fa}} for the other options.} \item{f}{The object returned from \code{\link{fa}} } \item{rho}{The object returned from \code{\link{polychoric}} or \code{\link{tetrachoric}}. This will include both a correlation matrix and the item difficulty levels.} \item{sort}{Should the factor loadings be sorted before preparing the item information tables. Defaults to FALSE as this is more useful for scoring items. For tabular output it is better to have sort=TRUE.} \item{...}{Additional parameters to pass to the factor analysis function} } \details{ \code{\link{irt.fa}} combines several functions into one to make the process of item response analysis easier. Correlations are found using either \code{\link{tetrachoric}} or \code{\link{polychoric}}. Exploratory factor analyeses with all the normal options are then done using \code{\link{fa}}. The results are then organized to be reported in terms of IRT parameters (difficulties and discriminations) as well as the more conventional factor analysis output. In addition, because the correlation step is somewhat slow, reanalyses may be done using the correlation matrix found in the first step. In this case, if it is desired to use the fm="minchi" factoring method, the number of observations needs to be specified as the matrix resulting from \code{\link{count.pairwise}}. The tetrachoric correlation matrix of dichotomous items may be factored using a (e.g.) minimum residual factor analysis function \code{\link{fa}} and the resulting loadings, \eqn{\lambda_i} are transformed to discriminations by \eqn{\alpha = \frac{\lambda_i}{\sqrt{1-\lambda_i^2}} }{a = \lambda / (sqrt(1-\lambda^2)}. The difficulty parameter, \eqn{\delta} is found from the \eqn{\tau} parameter of the \code{\link{tetrachoric}} or \code{\link{polychoric}} function. \eqn{\delta_i = \frac{\tau_i}{\sqrt{1-\lambda_i^2}}}{\delta = \tau / (sqrt(1-\lambda^2)} Similar analyses may be done with discrete item responses using polychoric correlations and distinct estimates of item difficulty (location) for each item response. The results may be shown graphically using \code{link{plot.irt}} for dichotomous items or \code{link{plot.poly}} for polytomous items. These called by plotting the irt.fa output, see the examples). For plotting there are three options: type = "ICC" will plot the item characteristic response function. type = "IIC" will plot the item information function, and type= "test" will plot the test information function. Invisible output from the plot function will return tables of item information as a function of several levels of the trait, as well as the standard error of measurement and the reliability at each of those levels. The normal input is just the raw data. If, however, the correlation matrix has already been found using \code{\link{tetrachoric}}, \code{\link{polychoric}}, or a previous analysis using \code{\link{irt.fa}} then that result can be processed directly. Because \code{\link{irt.fa}} saves the rho and tau matrices from the analysis, subsequent analyses of the same data set are much faster if the input is the object returned on the first run. A similar feature is available in \code{\link{omega}}. The output is best seen in terms of graphic displays. Plot the output from irt.fa to see item and test information functions. The print function will print the item location and discriminations. The additional factor analysis output is available as an object in the output and may be printed directly by specifying the $fa object. The \code{\link{irt.select}} function is a helper function to allow for selecting a subset of a prior analysis for further analysis. First run irt.fa, then select a subset of variables to be analyzed in a subsequent irt.fa analysis. Perhaps a better approach is to just plot and find the information for selected items. The plot function for an irt.fa object will plot ICC (item characteristic curves), IIC (item information curves), or test information curves. In addition, by using the "keys" option, these three kinds of plots can be done for selected items. This is particularly useful when trying to see the information characteristics of short forms of tests based upon the longer form factor analysis. The plot function will also return (invisibly) the informaton at multiple levels of the trait, the average information (area under the curve) as well as the location of the peak information for each item. These may be then printed or printed in sorted order using the sort option in print. } \value{ \item{irt }{A list of Item location (difficulty) and discrimination} \item{fa }{A list of statistics for the factor analyis} \item{rho}{The tetrachoric/polychoric correlation matrix} \item{tau}{The tetrachoric/polychoric cut points} } \references{ Kamata, Akihito and Bauer, Daniel J. (2008) A Note on the Relation Between Factor Analytic and Item Response Theory Models Structural Equation Modeling, 15 (1) 136-153. McDonald, Roderick P. (1999) Test theory: A unified treatment. L. Erlbaum Associates. Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} } \author{William Revelle} \note{ In comparing irt.fa to the ltm function in the ltm package or to the analysis reported in Kamata and Bauer (2008) the discrimination parameters are not identical, because the irt.fa reports them in units of the normal curve while ltm and Kamata and Bauer report them in logistic units. In addition, Kamata and Bauer do their factor analysis using a logistic error model. Their results match the irt.fa results (to the 2nd or 3rd decimal) when examining their analyses using a normal model. (With thanks to Akihito Kamata for sharing that analysis.) \code{\link{irt.fa}} reports parameters in normal units. To convert them to conventional IRT parameters, multiply by 1.702. In addition, the location parameter is expressed in terms of difficulty (high positive scores imply lower frequency of response.) The results of \code{\link{irt.fa}} can be used by \code{\link{score.irt}} for irt based scoring. First run \code{\link{irt.fa}} and then score the results using a two parameter model using \code{\link{score.irt}}. } \seealso{\code{\link{fa}}, \code{\link{sim.irt}}, \code{\link{tetrachoric}}, \code{\link{polychoric}} as well as \code{\link{plot.psych}} for plotting the IRT item curves. See also \code{\link{score.irt}} for scoring items based upon these parameter estimates. \code{\link{irt.responses}} will plot the empirical response curves for the alternative response choices for multiple choice items. } \examples{ \dontrun{ set.seed(17) d9 <- sim.irt(9,1000,-2.5,2.5,mod="normal") #dichotomous items test <- irt.fa(d9$items) test op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") par(op) set.seed(17) items <- sim.congeneric(N=500,short=FALSE,categorical=TRUE) #500 responses to 4 discrete items d4 <- irt.fa(items$observed) #item response analysis of congeneric measures d4 #show just the irt output d4$fa #show just the factor analysis output op <- par(mfrow=c(2,2)) plot(d4,type="ICC") par(op) #using the iq data set for an example of real items #first need to convert the responses to tf data(iqitems) iq.keys <- c(4,4,4, 6, 6,3,4,4, 5,2,2,4, 3,2,6,7) iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) #just the responses iq.irt <- irt.fa(iq.tf) print(iq.irt,short=FALSE) #show the IRT as well as factor analysis output p.iq <- plot(iq.irt) #save the invisible summary table p.iq #show the summary table of information by ability level #select a subset of these variables small.iq.irt <- irt.select(iq.irt,c(1,5,9,10,11,13)) small.irt <- irt.fa(small.iq.irt) plot(small.irt) #find the information for three subset of iq items keys <- make.keys(16,list(all=1:16,some=c(1,5,9,10,11,13),others=c(1:5))) plot(iq.irt,keys=keys) } #compare output to the ltm package or Kamata and Bauer -- these are in logistic units ls <- irt.fa(lsat6) #library(ltm) # lsat.ltm <- ltm(lsat6~z1) # round(coefficients(lsat.ltm)/1.702,3) #convert to normal (approximation) # # Dffclt Dscrmn #Q1 -1.974 0.485 #Q2 -0.805 0.425 #Q3 -0.164 0.523 #Q4 -1.096 0.405 #Q5 -1.835 0.386 #Normal results ("Standardized and Marginal")(from Akihito Kamata ) #Item discrim tau # 1 0.4169 -1.5520 # 2 0.4333 -0.5999 # 3 0.5373 -0.1512 # 4 0.4044 -0.7723 # 5 0.3587 -1.1966 #compare to ls #Normal results ("Standardized and conditional") (from Akihito Kamata ) #item discrim tau # 1 0.3848 -1.4325 # 2 0.3976 -0.5505 # 3 0.4733 -0.1332 # 4 0.3749 -0.7159 # 5 0.3377 -1.1264 #compare to ls$fa and ls$tau #Kamata and Bauer (2008) logistic estimates #1 0.826 2.773 #2 0.723 0.990 #3 0.891 0.249 #4 0.688 1.285 #5 0.657 2.053 } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models} psych/man/error.crosses.Rd0000755000176200001440000000756712766545252015313 0ustar liggesusers\name{error.crosses} \alias{error.crosses} \title{ Plot x and y error bars } \description{Given two vectors of data (X and Y), plot the means and show standard errors in both X and Y directions. } \usage{ error.crosses(x,y,labels=NULL,main=NULL,xlim=NULL,ylim= NULL, xlab=NULL,ylab=NULL,pos=NULL,offset=1,arrow.len=.2,alpha=.05,sd=FALSE,add=FALSE, colors=NULL,col.arrows=NULL,col.text=NULL,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A vector of data or summary statistics (from Describe) } \item{y}{ A second vector of data or summary statistics (also from Describe)} \item{labels}{the names of each pair -- defaults to rownames of x } \item{main}{The title for the graph} \item{xlim}{xlim values if desired-- defaults to min and max mean(x) +/- 2 se} \item{ylim}{ylim values if desired -- defaults to min and max mean(y) +/- 2 se} \item{xlab}{label for x axis -- grouping variable 1} \item{ylab}{label for y axis -- grouping variable 2} \item{pos}{Labels are located where with respect to the mean? } \item{offset}{Labels are then offset from this location} \item{arrow.len}{ Arrow length } \item{alpha}{alpha level of error bars } \item{sd}{if sd is TRUE, then draw means +/- 1 sd)} \item{add}{if TRUE, overlay the values with a prior plot} \item{colors}{What color(s) should be used for the plot character? Defaults to black} \item{col.arrows}{What color(s) should be used for the arrows -- defaults to colors} \item{col.text}{What color(s) should be used for the text -- defaults to colors} \item{\dots}{ Other parameters for plot } } \details{For an example of two way error bars describing the effects of mood manipulations upon positive and negative affect, see \url{http://personality-project.org/revelle/publications/happy-sad-appendix/FIG.A-6.pdf} The second example shows how error crosses can be done for multiple variables where the grouping variable is found dynamically. The \code{\link{errorCircles}} example shows how to do this in one step. } \author{ William Revelle \cr \email{revelle@northwestern.edu} } \seealso{To draw error bars for single variables \code{\link{error.bars}}, or by groups \code{\link{error.bars.by}}, or to find descriptive statistics \code{\link{describe}} or descriptive statistics by a grouping variable \code{\link{describeBy}} and \code{\link{statsBy}}. A much improved version is now called \code{\link{errorCircles}}. } \examples{ #just draw one pair of variables desc <- describe(attitude) x <- desc[1,] y <- desc[2,] error.crosses(x,y,xlab=rownames(x),ylab=rownames(y)) #now for a bit more complicated plotting data(bfi) desc <- describeBy(bfi[1:25],bfi$gender) #select a high and low group error.crosses(desc$'1',desc$'2',ylab="female scores",xlab="male scores",main="BFI scores by gender") abline(a=0,b=1) #do it from summary statistics (using standard errors) g1.stats <- data.frame(n=c(10,20,30),mean=c(10,12,18),se=c(2,3,5)) g2.stats <- data.frame(n=c(15,20,25),mean=c(6,14,15),se =c(1,2,3)) error.crosses(g1.stats,g2.stats) #Or, if you prefer to draw +/- 1 sd. instead of 95% confidence g1.stats <- data.frame(n=c(10,20,30),mean=c(10,12,18),sd=c(2,3,5)) g2.stats <- data.frame(n=c(15,20,25),mean=c(6,14,15),sd =c(1,2,3)) error.crosses(g1.stats,g2.stats,sd=TRUE) #and seem even fancy plotting: This is taken from a study of mood #four films were given (sad, horror, neutral, happy) #with a pre and post test data(affect) colors <- c("black","red","green","blue") films <- c("Sad","Horror","Neutral","Happy") affect.mat <- describeBy(affect[10:17],affect$Film,mat=TRUE) error.crosses(affect.mat[c(1:4,17:20),],affect.mat[c(5:8,21:24),], labels=films[affect.mat$group1],xlab="Energetic Arousal", ylab="Tense Arousal",colors = colors[affect.mat$group1],pch=16,cex=2) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/guttman.Rd0000644000176200001440000002742512605563544014145 0ustar liggesusers\name{splitHalf} \alias{splitHalf} \alias{guttman} \alias{tenberge} \alias{glb} \alias{glb.fa} \title{Alternative estimates of test reliabiity } \description{Eight alternative estimates of test reliability include the six discussed by Guttman (1945), four discussed by ten Berge and Zergers (1978) (\eqn{\mu_0 \dots \mu_3)} as well as \eqn{\beta} (the worst split half, Revelle, 1979), the glb (greatest lowest bound) discussed by Bentler and Woodward (1980), and \eqn{\omega_h} and \eqn{\omega_t} (McDonald, 1999; Zinbarg et al., 2005). Greatest and lowest split-half values are found by brute force or sampling. } \usage{ splitHalf(r,raw=FALSE,brute=FALSE,n.sample=10000,covar=FALSE,check.keys=TRUE, key=NULL,use="pairwise") guttman(r,key=NULL) tenberge(r) glb(r,key=NULL) glb.fa(r,key=NULL) } \arguments{ \item{r}{A correlation or covariance matrix or raw data matrix.} \item{raw}{return a vector of split half reliabilities} \item{brute}{Use brute force to try all combinations of n take n/2. } \item{n.sample}{if brute is false, how many samples of split halves should be tried?} \item{covar}{Should the covariances or correlations be used for reliability calculations} \item{check.keys}{If TRUE, any item with a negative loading on the first factor will be flipped in sign} \item{key}{a vector of -1, 0, 1 to select or reverse key items. See if the key vector is less than the number of variables, then item numbers to be reverse can be specified.} \item{use}{Should we find the correlations using "pairwise" or "complete" (see ?cor)} } \details{Surprisingly, more than a century after Spearman (1904) introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's \eqn{\alpha} (1951) underestimates the reliability of a test and over estimates the first factor saturation. Using \code{\link{splitHalf}} for tests with 16 or fewer items, all possible splits may be found fairly easily. For tests with 17 or more items, n.sample splits are randomly found. Thus, for 16 or fewer items, the upper and lower bounds are precise. For 17 or more items, they are close but will probably slightly underestimate the highest and overestimate the lowest reliabilities. The guttman function includes the six estimates discussed by Guttman (1945), four of ten Berge and Zergers (1978), as well as Revelle's \eqn{\beta} (1979) using \code{\link{splitHalf}}. The companion function, \code{\link{omega}} calculates omega hierarchical (\eqn{\omega_h}) and omega total (\eqn{\omega_t}). Guttman's first estimate \eqn{\lambda_1} assumes that all the variance of an item is error: \deqn{ \lambda_1 = 1 - \frac{tr(\vec{V_x})}{V_x} = \frac{V_x - tr(\vec{V}_x)}{V_x} }{lambda 1= 1-tr(Vx)/Vx} This is a clear underestimate. The second bound, \eqn{\lambda_2}{\lambda_2}, replaces the diagonal with a function of the square root of the sums of squares of the off diagonal elements. Let \eqn{C_2 = \vec{1}( \vec{V}-diag(\vec{V})^2 \vec{1}' }, then \deqn{ \lambda_2 = \lambda_1 + \frac{\sqrt{\frac{n}{n-1}C_2}}{V_x} = \frac{V_x - tr(\vec{V}_x) + \sqrt{\frac{n}{n-1}C_2} }{V_x}}{\lambda_2= \lambda_1 + sqrt(n *(n-1)C_2)/V_x)} Effectively, this is replacing the diagonal with n * the square root of the average squared off diagonal element. Guttman's 3rd lower bound, \eqn{\lambda_3}, also modifies \eqn{\lambda_1} and estimates the true variance of each item as the average covariance between items and is, of course, the same as Cronbach's \eqn{\alpha}. \deqn{ \lambda_3 = \lambda_1 + \frac{\frac{V_X - tr(\vec{V}_X)}{n (n-1)}}{V_X} = \frac{n \lambda_1}{n-1} = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha }{\lambda 3 = ((n)/(n-1))(1-tr(Vx)/(Vx) = ((n)/(n-1))(Vx-tr(Vx)/Vx = \alpha} This is just replacing the diagonal elements with the average off diagonal elements. \eqn{\lambda_2 \geq \lambda_3}{\lambda_2 \ge \lambda_3} with \eqn{\lambda_2 > \lambda_3} if the covariances are not identical. \eqn{\lambda_3} and \eqn{\lambda_2} are both corrections to \eqn{\lambda_1} and this correction may be generalized as an infinite set of successive improvements. (Ten Berge and Zegers, 1978) \deqn{ \mu_r = \frac{1}{V_x} \bigl( p_o + (p_1 + (p_2 + \dots (p_{r-1} +( p_r)^{1/2})^{1/2} \dots )^{1/2})^{1/2} \bigr), r = 0, 1, 2, \dots }{(1/(Vx))(po + p1 = (p2 + ... (pr1) + pr^.5 )^.5^ ... .5)} where \deqn{ p_h = \sum_{i\ne j}\sigma_{ij}^{2h}, h = 0, 1, 2, \dots r-1 }{p_h = sum(\sigma^2h, h = 0, 1, 2, ... r-1 } and \deqn{ p_h = \frac{n}{n-1}\sigma_{ij}^{2h}, h = r }{p_h = n/((n-1) \sigma^2h) } tenberge and Zegers (1978). Clearly \eqn{\mu_0 = \lambda_3 = \alpha} and \eqn{ \mu_1 = \lambda_2}. \eqn{\mu_r \geq \mu_{r-1} \geq \dots \mu_1 \geq \mu_0}{\mu_r \ge \mu_{r-1} \ge \dots \mu_1 \ge \mu_0}, although the series does not improve much after the first two steps. Guttman's fourth lower bound, \eqn{\lambda_4} was originally proposed as any spit half reliability but has been interpreted as the greatest split half reliability. If \eqn{\vec{X}} is split into two parts, \eqn{\vec{X}_a} and \eqn{\vec{X}_b}, with correlation \eqn{r_{ab}} then \deqn{ \lambda_4 = 2\Bigl(1 - \frac{V_{X_a} + V_{X_b}}{V_X} \Bigr) = \frac{4 r_{ab}}{V_x} = \frac{4 r_{ab}}{V_{X_a} + V_{X_b}+ 2r_{ab}V_{X_a} V_{X_b}} }{\lambda 4 = 4rab/(Va + Vb + 2rabVaVb)} which is just the normal split half reliability, but in this case, of the most similar splits. For 16 or fewer items, this is found by trying all possible splits. For 17 or more items, this is estimated by taking n.sample random splits. \eqn{\lambda_5}, Guttman's fifth lower bound, replaces the diagonal values with twice the square root of the maximum (across items) of the sums of squared interitem covariances \deqn{ \lambda_5 = \lambda_1 + \frac{2 \sqrt{\bar{C_2}}}{V_X}. }{\lambda_5 = \lambda_1 +2/sqrt(average(C_2)/V_X.) } Although superior to \eqn{\lambda_1}, \eqn{\lambda_5} underestimates the correction to the diagonal. A better estimate would be analogous to the correction used in \eqn{\lambda_3}: \deqn{ \lambda_{5+} = \lambda_1 + \frac{n}{n-1}\frac{2 \sqrt{\bar{C_2}}}{V_X}. }{\lambda 5+ = \lambda 1 + ((n/(n-1))2/sqrt(av covariance 12)/Vx} \eqn{\lambda_6},Guttman's final bound considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, \eqn{e_j^2}, and is \deqn{\lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x} }{\lambda 6 = 1 - sum(e^2)/Vx = 1-sum(1-r^2(smc))/Vx}. The smc is found from all the items. A modification to Guttman \eqn{\lambda_6}, \eqn{\lambda_6*} reported by the \code{\link{score.items}} function is to find the smc from the entire pool of items given, not just the items on the selected scale. Guttman's \eqn{\lambda_4} is the greatest split half reliability. Although originally found here by combining the output from three different approaches,this has now been replaced by using \code{\link{splitHalf}} to find the maximum value by brute force (for 16 or fewer items) or by taking a substantial number of random splits. The algorithms that had been tried before included: a) Do an ICLUST of the reversed correlation matrix. ICLUST normally forms the most distinct clusters. By reversing the correlations, it will tend to find the most related clusters. Truly a weird approach but tends to work. b) Alternatively, a kmeans clustering of the correlations (with the diagonal replaced with 0 to make pseudo distances) can produce 2 similar clusters. c) Clusters identified by assigning items to two clusters based upon their order on the first principal factor. (Highest to cluster 1, next 2 to cluster 2, etc.) These three procedures will produce keys vectors for assigning items to the two splits. The maximum split half reliability is found by taking the maximum of these three approaches. This is not elegant but is fast. The brute force and the sampling procedures seem to provide more stable and larger estimates. Yet another procedure, implemented in \code{\link{splitHalf}} is actually form all possible (for n items <= 16) or sample 10,000 (or more) split halfs corrected for test length. This function returns the best and worst splits as item keys that can be used for scoring purposes, if desired. There are three greatest lower bound functions. One, glb finds the greatest split half reliability, \eqn{\lambda_4}. This considers the test as set of items and examines how best to partition the items into splits. The other two, \code{\link{glb.fa}} and \code{\link{glb.algebraic}}, are alternative ways of weighting the diagonal of the matrix. \code{\link{glb.fa}} estimates the communalities of the variables from a factor model where the number of factors is the number with positive eigen values. Then reliability is found by \deqn{ glb = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1- h^2)}{V_x} }{glb = 1 - sum(e^2)/Vx = 1-sum(1-h^2)/Vx} This estimate will differ slightly from that found by \code{\link{glb.algebraic}}, written by Andreas Moeltner which uses calls to csdp in the Rcsdp package. His algorithm, which more closely matches the description of the glb by Jackson and Woodhouse, seems to have a positive bias (i.e., will over estimate the reliability of some items; they are said to be = 1) for small sample sizes. More exploration of these two algorithms is underway. Compared to \code{\link{glb.algebraic}}, \code{\link{glb.fa}} seems to have less (positive) bias for smallish sample sizes (n < 500) but larger for large (> 1000) sample sizes. This interacts with the number of variables so that equal bias sample size differs as a function of the number of variables. The differences are, however small. As samples sizes grow, \code{\link{glb.algebraic}} seems to converge on the population value while glb.fa has a positive bias. } \value{ \item{beta}{The worst split half reliability. This is an estimate of the general factor saturation.} \item{tenberge$mu1}{tenBerge mu 1 is functionally alpha} \item{tenberge$mu2}{one of the sequence of estimates mu1 ... mu3} \item{glb}{glb found from factor analysis} \item{keys}{scoring keys from each of the alternative methods of forming best splits} } \references{ Cronbach, L.J. (1951) Coefficient alpha and the internal strucuture of tests. Psychometrika, 16, 297-334. Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10 (4), 255-282. Revelle, W. (1979). Hierarchical cluster-analysis and the internal structure of tests. Multivariate Behavioral Research, 14 (1), 57-74. Revelle, W. and Zinbarg, R. E. (2009) Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 2009. Ten Berge, J. M. F., & Zegers, F. E. (1978). A series of lower bounds to the reliability of a test. Psychometrika, 43 (4), 575-579. Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's \eqn{\alpha} , Revelle's \eqn{\beta} , and McDonald's \eqn{\omega_h} ): Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70 (1), 123-133. } \author{ William Revelle } \seealso{ \code{\link{alpha}}, \code{\link{omega}}, \code{\link{ICLUST}}, \code{\link{glb.algebraic}} } \examples{ data(attitude) splitHalf(attitude) splitHalf(attitude,covar=TRUE) #do it on the covariances glb(attitude) glb.fa(attitude) if(require(Rcsdp)) {glb.algebraic(cor(attitude)) } guttman(attitude) #to show the histogram of all possible splits for the ability test #sp <- splitHalf(ability,raw=TRUE) #this saves the results #hist(sp$raw,breaks=101,ylab="SplitHalf reliability",main="SplitHalf # reliabilities of a test with 16 ability items") sp <- splitHalf(bfi[1:10],key=c(1,9,10)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } psych/man/mat.sort.Rd0000644000176200001440000000243112010504544014204 0ustar liggesusers\name{mat.sort} \Rdversion{1.1} \alias{mat.sort} \title{Sort the elements of a correlation matrix to reflect factor loadings} \description{To see the structure of a correlation matrix, it is helpful to organize the items so that the similar items are grouped together. One such grouping technique is factor analysis. mat.sort will sort the items by a factor model (if specified), or any other order, or by the loadings on the first factor (if unspecified) } \usage{ mat.sort(m, f = NULL) } \arguments{ \item{m}{A correlation matrix } \item{f}{A factor analysis output (i.e., one with a loadings matrix) or a matrix of weights } } \details{The factor analysis output is sorted by size of the largest factor loading for each variable and then the matrix items are organized by those loadings. The default is to sort by the loadings on the first factor. Alternatives allow for ordering based upon any vector or matrix. } \value{ A sorted correlation matrix, suitable for showing with \code{\link{cor.plot}}. } \author{William Revelle} \seealso{ \code{\link{fa}}, \code{\link{cor.plot}} } \examples{data(Bechtoldt.1) sorted <- mat.sort(Bechtoldt.1,fa(Bechtoldt.1,5)) cor.plot(sorted) } \keyword{ multivariate}% at least one, from doc/KEYWORDS \keyword{models }% __ONLY ONE__ keyword per line psych/man/headtail.Rd0000644000176200001440000000464113076240334014224 0ustar liggesusers\name{headTail} \alias{headtail} \alias{headTail} \alias{topBottom} \alias{quickView} \title{Combine calls to head and tail} \description{A quick way to show the first and last n lines of a data.frame, matrix, or a text object. Just a pretty call to \code{\link{head}} and \code{\link{tail}} or \code{\link{View}} } \usage{ headTail(x, top=4,bottom=4,from=1,to=NULL, digits=2, hlength = 4, tlength =4, ellipsis=TRUE) headtail(x,hlength=4,tlength=4,digits=2,ellipsis=TRUE,from=1,to=NULL) topBottom(x, top=4,bottom=4,from=1,to=NULL, digits=2, hlength = 4, tlength = 4) quickView(x,top=8,bottom=8,from=1,to=NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A matrix or data frame or free text} \item{top}{The number of lines at the beginning to show} \item{bottom}{The number of lines at the end to show} \item{digits}{Round off the data to digits} \item{ellipsis}{Separate the head and tail with dots (ellipsis)} \item{from}{The first column to show (defaults to 1)} \item{to}{The last column to show (defaults to the number of columns} \item{hlength}{The number of lines at the beginning to show (an alias for top)} \item{tlength}{The number of lines at the end to show (an alias for bottom)} } \value{The first top and last bottom lines of a matrix or data frame with an ellipsis in between. If the input is neither a matrix nor data frame, the output will be the first top and last bottom lines. For each line, just columns starting at from and going to to will be displayed. Bt default, from = 1 and to = the last column. topBottom is just a call to headTail with ellipsis = FALSE and returning a matrix output. quickView is a call to \code{\link{View}} which opens a viewing window which is scrollable (if needed because the number of lines listed is more than a screen's worth). View (and therefore quickView) is slower than \code{\link{headTail}} or \code{\link{topBottom}}. } \seealso{ \code{\link{head}} and \code{\link{tail}}} \examples{ headTail(iqitems,4,8,to=6) #the first 4 and last 6 items from 1 to 6 topBottom(ability,from =2, to = 6) #the first and last 4 items from 2 to 6 headTail(bfi,top=4, bottom=4,from =6, to=10) #the first and last 4 from 6 to 10 #not shown #quickView(ability,hlength=10,tlength=10) #this loads a spreadsheet like table } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/cor.smooth.Rd0000644000176200001440000000777112456773050014562 0ustar liggesusers\name{cor.smooth} \alias{cor.smooth} \alias{cor.smoother} \title{Smooth a non-positive definite correlation matrix to make it positive definite} \description{Factor analysis requires positive definite correlation matrices. Unfortunately, with pairwise deletion of missing data or if using \code{\link{tetrachoric}} or \code{\link{polychoric}} correlations, not all correlation matrices are positive definite. cor.smooth does a eigenvector (principal components) smoothing. Negative eigen values are replaced with 100 * eig.tol, the matrix is reproduced and forced to a correlation matrix using cov2cor. } \usage{ cor.smooth(x,eig.tol=10^-12) cor.smoother(x,cut=.01) } \arguments{ \item{x}{A correlation matrix or a raw data matrix.} \item{eig.tol}{the minimum acceptable eigenvalue}. \item{cut}{Report all abs(residuals) > cut} } \details{The smoothing is done by eigen value decomposition. eigen values < eig.tol are changed to 100 * eig.tol. The positive eigen values are rescaled to sum to the number of items. The matrix is recomputed (eigen.vectors \%*\% diag(eigen.values) \%*\% t(eigen.vectors) and forced to a correlation matrix using cov2cor. (See Bock, Gibbons and Muraki, 1988 and Wothke, 1993). This does not implement the Knol and ten Berge (1989) solution, nor do nearcor and posdefify in sfmsmisc, not does nearPD in Matrix. As Martin Maechler puts it in the posdedify function, "there are more sophisticated algorithms to solve this and related problems." cor.smoother examines all of nvar minors of rank nvar-1 by systematically dropping one variable at a time and finding the eigen value decomposition. It reports those variables, which, when dropped, produce a positive definite matrix. It also reports the number of negative eigenvalues when each variable is dropped. Finally, it compares the original correlation matrix to the smoothed correlation matrix and reports those items with absolute deviations great than cut. These are all hints as to what might be wrong with a correlation matrix. } \value{The smoothed matrix with a warning reporting that smoothing was necessary (if smoothing was in fact necessary). } \references{ R. Darrell Bock, Robert Gibbons and Eiji Muraki (1988) Full-Information Item Factor Analysis. Applied Psychological Measurement, 12 (3), 261-280. Werner Wothke (1993), Nonpositive definite matrices in structural modeling. In Kenneth A. Bollen and J. Scott Long (Editors),Testing structural equation models, Sage Publications, Newbury Park. D.L. Knol and JMF ten Berge (1989) Least squares approximation of an improper correlation matrix by a proper one. Psychometrika, 54, 53-61. } \author{William Revelle} \seealso{ \code{\link{tetrachoric}}, \code{\link{polychoric}}, \code{\link{fa}} and \code{\link{irt.fa}}, and the \code{\link{burt}} data set. See also nearcor and posdefify in the sfsmisc package and \code{\link{nearPD}} in the Matrix package. } \examples{ bs <- cor.smooth(burt) #burt data set is not positive definite plot(burt[lower.tri(burt)],bs[lower.tri(bs)],ylab="smoothed values",xlab="original values") abline(0,1,lty="dashed") round(burt - bs,3) fa(burt,2) #this throws a warning that the matrix yields an improper solution #Smoothing first throws a warning that the matrix was improper, #but produces a better solution fa(cor.smooth(burt),2) #this next example is a correlation matrix from DeLeuw used as an example #in Knol and ten Berge. #the example is also used in the nearcor documentation cat("pr is the example matrix used in Knol DL, ten Berge (1989)\n") pr <- matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826, 0.477, 1, 0.516, 0.233, 0.682, 0.75, 0.644, 0.516, 1, 0.599, 0.581, 0.742, 0.478, 0.233, 0.599, 1, 0.741, 0.8, 0.651, 0.682, 0.581, 0.741, 1, 0.798, 0.826, 0.75, 0.742, 0.8, 0.798, 1), nrow = 6, ncol = 6) sm <- cor.smooth(pr) resid <- pr - sm # several goodness of fit tests # from Knol and ten Berge tr(resid \%*\% t(resid)) /2 # from nearPD sum(resid^2)/2 } \keyword{ multivariate } \keyword{ models} psych/man/VSS.scree.Rd0000644000176200001440000000266511544211620014222 0ustar liggesusers\name{VSS.scree} \alias{VSS.scree} \alias{scree} \title{Plot the successive eigen values for a scree test} \description{Cattell's scree test is one of most simple ways of testing the number of components or factors in a correlation matrix. Here we plot the eigen values of a correlation matrix as well as the eigen values of a factor analysis. } \usage{ scree(rx,factors=TRUE,pc=TRUE,main="Scree plot",hline=NULL,add=FALSE) VSS.scree(rx, main = "scree plot") } \details{Among the many ways to choose the optimal number of factors is the scree test. A better function to show the scree as well as compare it to randomly parallel solutions is found found in \code{\link{fa.parallel}} } \arguments{ \item{rx}{ a correlation matrix or a data matrix. If data, then correlations are found using pairwise deletions. } \item{factors}{If true, draw the scree for factors } \item{pc}{If true, draw the scree for components} \item{hline}{if null, draw a horizontal line at 1, otherwise draw it at hline (make negative to not draw it)} \item{main}{ Title } \item{add}{Should multiple plots be drawn?} } \references{ \url{http://personality-project.org/r/vss.html}} \author{William Revelle } \seealso{ \code{\link{fa.parallel}} \code{\link{VSS.plot}}, \code{\link{ICLUST}}, \code{\link{omega}}} \examples{ scree(attitude) #VSS.scree(cor(attitude) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/burt.Rd0000644000176200001440000000435412456772260013437 0ustar liggesusers\name{burt} \alias{burt} \docType{data} \title{11 emotional variables from Burt (1915)} \description{Cyril Burt reported an early factor analysis with a circumplex structure of 11 emotional variables in 1915. 8 of these were subsequently used by Harman in his text on factor analysis. Unfortunately, it seems as if Burt made a mistake for the matrix is not positive definite. With one change from .87 to .81 the matrix is positive definite. } \usage{data(burt)} \format{ A correlation matrix based upon 172 "normal school age children aged 9-12". \describe{ \item{Sociality}{Sociality} \item{Sorrow}{Sorrow} \item{Tenderness}{Tenderness} \item{Joy}{Joy} \item{Wonder}{Wonder} \item{Elation}{Elation} \item{Disgust}{Disgust} \item{Anger}{Anger} \item{Sex}{Sex} \item{Fear}{Fear} \item{Subjection}{Subjection} } } \details{ The Burt data set is interesting for several reasons. It seems to be an early example of the organizaton of emotions into an affective circumplex, a subset of it has been used for factor analysis examples (see \code{\link{Harman.Burt}}, and it is an example of how typos affect data. The original data matrix has one negative eigenvalue. With the replacement of the correlation between Sorrow and Tenderness from .87 to .81, the matrix is positive definite. Alternatively, using \code{\link{cor.smooth}}, the matrix can be made positive definite as well, although cor.smooth makes more (but smaller) changes. } \source{ (retrieved from the web at http://www.biodiversitylibrary.org/item/95822#790) Following a suggestion by Jan DeLeeuw. } \references{ Burt, C.General and Specific Factors underlying the Primary Emotions. Reports of the British Association for the Advancement of Science, 85th meeting, held in Manchester, September 7-11, 1915. London, John Murray, 1916, p. 694-696 (retrieved from the web at http://www.biodiversitylibrary.org/item/95822#790) } \seealso{ \code{\link{Harman.Burt}} in the \code{\link{Harman}} dataset and \code{\link{cor.smooth}} } \examples{ data(burt) eigen(burt)$values #one is negative! burt.new <- burt burt.new[2,3] <- burt.new[3,2] <- .81 eigen(burt.new)$values #all are positive bs <- cor.smooth(burt) round(burt.new - bs,3) } \keyword{datasets} psych/man/plot.psych.Rd0000755000176200001440000001337112705721644014565 0ustar liggesusers\name{plot.psych} \alias{plot.psych} \alias{plot.poly} \alias{plot.irt} \alias{plot.residuals} \title{Plotting functions for the psych package of class ``psych"} \description{Combines several plotting functions into one for objects of class ``psych". This can be used to plot the results of \code{\link{fa}}, \code{\link{irt.fa}}, \code{\link{VSS}}, \code{\link{ICLUST}}, \code{\link{omega}}, \code{\link{factor.pa}}, or \code{\link{principal}}. } \usage{ \method{plot}{psych}(x,labels=NULL,...) \method{plot}{irt}(x,xlab,ylab,main,D,type=c("ICC","IIC","test"),cut=.3,labels=NULL, keys=NULL, xlim,ylim,y2lab,lncol="black",...) \method{plot}{poly}(x,D,xlab,ylab,xlim,ylim,main,type=c("ICC","IIC","test"),cut=.3,labels, keys=NULL,y2lab,lncol="black",...) \method{plot}{residuals}(x,main,type=c("qq","chi","hist","cor"),std, bad=4, numbers=TRUE, upper=FALSE,diag=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{The object to plot } \item{labels}{Variable labels} \item{xlab}{Label for the x axis -- defaults to Latent Trait} \item{ylab}{Label for the y axis} \item{xlim}{The limits for the x axis} \item{ylim}{Specify the limits for the y axis} \item{main}{Main title for graph} \item{type}{"ICC" plots items, "IIC" plots item information, "test" plots test information, defaults to IIC.,"qq" does a quantile plot,"chi" plots chi square distributions,"hist" shows the histogram,"cor" does a corPlot of the residuals. } \item{D}{The discrimination parameter} \item{cut}{Only plot item responses with discrimiantion greater than cut} \item{keys}{Used in plotting irt results from irt.fa.} \item{y2lab}{ylab for test reliability, defaults to "reliability"} \item{bad}{label the most 1.. bad items in residuals} \item{numbers}{if using the cor option in plot residuals, show the numeric values} \item{upper}{if using the cor option in plot residuals, show the upper off diagonal values} \item{diag}{if using the cor option in plot residuals, show the diagonal values} \item{std}{Standardize the resduals?} \item{lncol}{The color of the lines in the IRT plots. Defaults to all being black, but it is possible to specify lncol as a vector of colors to be used.} \item{...}{other calls to plot} } \details{Passes the appropriate values to plot. For plotting the results of \code{\link{irt.fa}}, there are three options: type = "IIC" (default) will plot the item characteristic respone function. type = "IIC" will plot the item information function, and type= "test" will plot the test information function. Note that plotting an irt result will call either plot.irt or plot.poly depending upon the type of data that were used in the original \code{\link{irt.fa}} call. These are calls to the generic plot function that are intercepted for objects of type "psych". More precise plotting control is available in the separate plot functions. plot may be used for psych objects returned from \code{\link{fa}}, \code{\link{irt.fa}}, \code{\link{ICLUST}}, \code{\link{omega}}, as well as \code{\link{principal}} A "jiggle" parameter is available in the fa.plot function (called from plot.psych when the type is a factor or cluster. If jiggle=TRUE, then the points are jittered slightly (controlled by amount) before plotting. This option is useful when plotting items with identical factor loadings (e.g., when comparing hypothetical models). Objects from \code{\link{irt.fa}} are plotted according to "type" (Item informations, item characteristics, or test information). In addition, plots for selected items may be done if using the keys matrix. Plots of irt information return three invisible objects, a summary of information for each item at levels of the trait, the average area under the curve (the average information) for each item as well as where the item is most informative. If plotting multiple factor solutions in plot.poly, then main can be a vector of names, one for each factor. The default is to give main + the factor number. It is also possible to create irt like plots based upon just a scoring key and item difficulties, or from a factor analysis and item difficulties. These are not true IRT type analyses, in that the parameters are not estimated from the data, but are rather indications of item location and discrimination for arbitrary sets of items. To do this, find \code{\link{irt.stats.like}} and then plot the results. \code{\link{plot.residuals}} allows the user to graphically examine the residuals of models formed by \code{\link{fa}}, \code{\link{irt.fa}}, \code{\link{omega}}, as well as \code{\link{principal}} and display them in a number of ways. "qq" will show quantiles of standardized or unstandardized residuals, "chi" will show quantiles of the squared standardized or unstandardized residuals plotted against the expected chi square values, "hist" will draw the histogram of the raw or standardized residuals, and "cor" will show a corPlot of the residual correlations. } \value{Graphic output for factor analysis, cluster analysis and item response analysis. } \author{William Revelle } \note{ More precise plotting control is available in the separate plot functions. } \seealso{ \code{\link{VSS.plot}} and \code{\link{fa.plot}}, \code{\link{cluster.plot}}, \code{\link{fa}}, \code{\link{irt.fa}}, \code{\link{VSS}}, \code{\link{ICLUST}}, \code{\link{omega}}, or \code{\link{principal}} } \examples{ test.data <- Harman74.cor$cov f4 <- fa(test.data,4) plot(f4) plot(resid(f4)) plot(resid(f4),main="Residuals from a 4 factor solution",qq=FALSE) #not run #data(bfi) #e.irt <- irt.fa(bfi[11:15]) #just the extraversion items #plot(e.irt) #the information curves # ic <- iclust(test.data,3) #shows hierarchical structure plot(ic) #plots loadings # } \keyword{ multivariate } psych/man/alpha.Rd0000644000176200001440000003115113056604774013544 0ustar liggesusers\name{alpha} \alias{alpha} \alias{alpha.scale} \title{Find two estimates of reliability: Cronbach's alpha and Guttman's Lambda 6. } \description{ Internal consistency measures of reliability range from \eqn{\omega_h}{omega_hierchical} to \eqn{\alpha}{alpha} to \eqn{\omega_t}{omega_total}. This function reports two estimates: Cronbach's coefficient \eqn{\alpha}{alpha} and Guttman's \eqn{\lambda_6}{lambda_6}. Also reported are item - whole correlations, \eqn{\alpha}{alpha} if an item is omitted, and item means and standard deviations. } \usage{ alpha(x, keys=NULL,cumulative=FALSE, title=NULL, max=10,na.rm = TRUE, check.keys=FALSE,n.iter=1,delete=TRUE,use="pairwise",warnings=TRUE,n.obs=NULL) } \arguments{ \item{x}{A data.frame or matrix of data, or a covariance or correlation matrix } \item{keys}{If some items are to be reversed keyed, then either specify the direction of all items or just a vector of which items to reverse } \item{title}{Any text string to identify this run} \item{cumulative}{should means reflect the sum of items or the mean of the items. The default value is means.} \item{max}{the number of categories/item to consider if reporting category frequencies. Defaults to 10, passed to \code{link{response.frequencies}} } \item{na.rm}{The default is to remove missing values and find pairwise correlations} \item{check.keys}{if TRUE, then find the first principal component and reverse key items with negative loadings. Give a warning if this happens. } \item{n.iter}{Number of iterations if bootstrapped confidence intervals are desired} \item{delete}{Delete items with no variance and issue a warning} \item{use}{Options to pass to the cor function: "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs". The default is "pairwise"} \item{warnings}{By default print a warning and a message that items were reversed. Suppress the message if warnings = FALSE} \item{n.obs}{If using correlation matrices as input, by specify the number of observations, we can find confidence intervals} } \details{Alpha is one of several estimates of the internal consistency reliability of a test. Surprisingly, more than a century after Spearman (1904) introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's \eqn{\alpha} (1951) underestimates the reliability of a test and over estimates the first factor saturation. \eqn{\alpha}{alpha} (Cronbach, 1951) is the same as Guttman's \eqn{\lambda}{lambda}3 (Guttman, 1945) and may be found by \deqn{ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha }{Lambda 3 = (n)/(n-1)(1-tr(Vx)/(Vx) = (n)/(n-1)(Vx-tr(Vx)/Vx = alpha} Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients \eqn{\beta}{beta} (Revelle, 1979; see \code{\link{ICLUST}}) and \eqn{\omega_h}{omega_hierchical} (see \code{\link{omega}}) are more appropriate estimates of the general factor saturation. \eqn{\omega_t}{omega_total} (see \code{\link{omega}}) is a better estimate of the reliability of the total test. Guttman's Lambda 6 (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, \eqn{e_j^2}, and is \deqn{ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x} .}{lambda 6 = 1 - sum(e^2)/Vx = 1-sum(1-r^2(smc))/Vx.} The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpyness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. alpha is a generalization of an earlier estimate of reliability for tests with dichotomous items developed by Kuder and Richardson, known as KR20, and a shortcut approximation, KR21. (See Revelle, in prep). Alpha and G6 are both positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. A useful index of the quality of the test that is linear with the number of items and the average correlation is the Signal/Noise ratio where \deqn{s/n = \frac{n \bar{r}}{1-n \bar{r}}}{s/n = n r/(1-nr)} (Cronbach and Gleser, 1964; Revelle and Condon (in press)). More complete reliability analyses of a single scale can be done using the \code{\link{omega}} function which finds \eqn{\omega_h}{omega_hierchical} and \eqn{\omega_t}{omega_total} based upon a hierarchical factor analysis. Alternative functions \code{\link{score.items}} and \code{\link{cluster.cor}} will also score multiple scales and report more useful statistics. ``Standardized" alpha is calculated from the inter-item correlations and will differ from raw alpha. Four alternative item-whole correlations are reported, three are conventional, one unique. raw.r is the correlation of the item with the entire scale, not correcting for item overlap. std.r is the correlation of the item with the entire scale, if each item were standardized. r.drop is the correlation of the item with the scale composed of the remaining items. Although each of these are conventional statistics, they have the disadvantage that a) item overlap inflates the first and b) the scale is different for each item when an item is dropped. Thus, the fourth alternative, r.cor, corrects for the item overlap by subtracting the item variance but then replaces this with the best estimate of common variance, the smc. This is similar to a suggestion by Cureton (1966). If some items are to be reversed keyed then they can be specified by either item name or by item location. (Look at the 3rd and 4th examples.) Automatic reversal can also be done, and this is based upon the sign of the loadings on the first principal component (Example 5). This requires the check.keys option to be TRUE. Previous versions defaulted to have check.keys=TRUE, but some users complained that this made it too easy to find alpha without realizing that some items had been reversed (even though a warning was issued!). Thus, I have set the default to be check.keys=FALSE with a warning that some items need to be reversed (if this is the case). To suppress these warnings, set warnings=FALSE. Scores are based upon the simple averages (or totals) of the items scored. Reversed items are subtracted from the maximum + minimum item response for all the items. When using raw data, standard errors for the raw alpha are calculated using equation 2 and 3 from Duhhachek and Iacobucci (2004). This is problematic because some simulations suggest these values are too small. It is probably better to use bootstrapped value Bootstrapped resamples are found if n.iter > 1. These are returned as the boot object. They may be plotted or described. } \value{ \item{total }{a list containing} \item{raw_alpha}{alpha based upon the covariances} \item{std.alpha}{The standarized alpha based upon the correlations} \item{G6(smc)}{Guttman's Lambda 6 reliability} \item{average_r}{The average interitem correlation} \item{mean}{For data matrices, the mean of the scale formed by summing the items} \item{sd}{For data matrices, the standard deviation of the total score} \item{alpha.drop }{A data frame with all of the above for the case of each item being removed one by one.} \item{item.stats}{A data frame including} \item{n}{number of complete cases for the item} \item{raw.r}{The correlation of each item with the total score, not corrected for item overlap.} \item{std.r}{The correlation of each item with the total score (not corrected for item overlap) if the items were all standardized} \item{r.cor}{Item whole correlation corrected for item overlap and scale reliability} \item{r.drop}{Item whole correlation for this item against the scale without this item} \item{mean}{for data matrices, the mean of each item} \item{sd}{For data matrices, the standard deviation of each item} \item{response.freq}{For data matrices, the frequency of each item response (if less than 20)} \item{boot}{a 6 column by n.iter matrix of boot strapped resampled values} \item{Unidim}{An index of unidimensionality} \item{Fit}{The fit of the off diagonal matrix} } \references{ Cronbach, L.J. (1951) Coefficient alpha and the internal strucuture of tests. Psychometrika, 16, 297-334. Cureton, E. (1966). Corrected item-test correlations. Psychometrika, 31(1):93-96. Cronbach, L.J. and Gleser G.C. (1964)The signal/noise ratio in the comparison of reliability coefficients. Educational and Psychological Measurement, 24 (3) 467-480. Duhachek, A. and Iacobucci, D. (2004). Alpha's standard error (ase): An accurate and precise confidence interval estimate. Journal of Applied Psychology, 89(5):792-808. Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10 (4), 255-282. Revelle, W. (in preparation) An introduction to psychometric theory with applications in {R}. Springer. (Available online at \url{http://personality-project.org/r/book}). Revelle, W. Hierarchical Cluster Analysis and the Internal Structure of Tests. Multivariate Behavioral Research, 1979, 14, 57-74. Revelle, W. and Condon, D.C. Reliability. In Irwing, P., Booth, T. and Hughes, D. (Eds). the Wiley-Blackwell Handbook of Psychometric Testing (in press). Revelle, W. and Zinbarg, R. E. (2009) Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 74 (1) 1145-154. } \author{William Revelle } \note{By default, items that correlate negatively with the overall scale will be reverse coded. This option may be turned off by setting check.keys = FALSE. If items are reversed, then each item is subtracted from the minimum item response + maximum item response where min and max are taken over all items. Thus, if the items intentionally differ in range, the scores will be off by a constant. See \code{\link{scoreItems}} for a solution. If the data have been preprocessed by the dplyr package, a strange error can occur. alpha expects either data.frames or matrix input. data.frames returned by dplyr have had three extra classes added to them which causes alpha to break. The solution is merely to change the class of the input to "data.frame". Two experimental measures of Goodness of Fit are returned in the output: Unidim and Fit. They are not printed or displayed, but are available for analysis. The first is an index of how well the modeled average correlations actually reproduce the original correlation matrix. The second is how well the modeled correlations reproduce the off diagonal elements of the matrix. Both are indices of squared residuals compared to the squared original correlations. These two measures are under development and might well be modified or dropped in subsequent versions.} \seealso{ \code{\link{omega}}, \code{\link{ICLUST}}, \code{\link{guttman}}, \code{\link{scoreItems}}, \code{\link{cluster.cor}}} \examples{ set.seed(42) #keep the same starting values #four congeneric measures r4 <- sim.congeneric() alpha(r4) #nine hierarchical measures -- should actually use omega r9 <- sim.hierarchical() alpha(r9) # examples of two independent factors that produce reasonable alphas #this is a case where alpha is a poor indicator of unidimensionality two.f <- sim.item(8) #specify which items to reverse key by name alpha(two.f,keys=c("V1","V2","V7","V8")) #by location alpha(two.f,keys=c(1,2,7,8)) #automatic reversal base upon first component alpha(two.f) #an example with discrete item responses -- show the frequencies items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2, categorical=TRUE) #500 responses to 4 discrete items with 5 categories a4 <- alpha(items$observed) #item response analysis of congeneric measures a4 #summary just gives Alpha summary(a4) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{multivariate }% __ONLY ONE__ keyword per line psych/man/outlier.Rd0000644000176200001440000000300512365750063014132 0ustar liggesusers\name{outlier} \alias{outlier} \title{Find and graph Mahalanobis squared distances to detect outliers} \description{ The Mahalanobis distance is \eqn{D^2 = (x-\mu)' \Sigma^-1 (x-\mu)} where \eqn{\Sigma} is the covariance of the x matrix. D2 may be used as a way of detecting outliers in distribution. Large D2 values, compared to the expected Chi Square values indicate an unusual response pattern. The mahalanobis function in stats does not handle missing data. } \usage{ outlier(x, plot = TRUE, bad = 5,na.rm = TRUE, xlab, ylab, ...) } \arguments{ \item{x}{A data matrix or data.frame} \item{plot}{Plot the resulting QQ graph} \item{bad}{Label the bad worst values} \item{na.rm}{Should missing data be deleted} \item{xlab}{Label for x axis} \item{ylab}{Label for y axis} \item{\dots}{More graphic parameters, e.g., cex=.8} } \details{ Adapted from the mahalanobis function and help page from stats. } \value{The D2 values for each case} \references{ Yuan, Ke-Hai and Zhong, Xiaoling, (2008) Outliers, Leverage Observations, and Influential Cases in Factor Analysis: Using Robust Procedures to Minimize Their Effect, Sociological Methodology, 38, 329-368. } \author{William Revelle} \seealso{ \code{\link{mahalanobis}} } \examples{ #first, just find and graph the outliers d2 <- outlier(sat.act) #combine with the data frame and plot it with the outliers highlighted in blue sat.d2 <- data.frame(sat.act,d2) pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21) } \keyword{multivariate } \keyword{ models } psych/man/draw.tetra.Rd0000644000176200001440000000425412436644265014536 0ustar liggesusers\name{draw.tetra} \alias{draw.tetra} \alias{draw.cor} \title{Draw a correlation ellipse and two normal curves to demonstrate tetrachoric correlation} \description{A graphic of a correlation ellipse divided into 4 regions based upon x and y cutpoints on two normal distributions. This is also an example of using the layout function. Draw a bivariate density plot to show how tetrachorics work. } \usage{ draw.tetra(r, t1, t2,shade=TRUE) draw.cor(r=.5,expand=10,theta=30,phi=30,N=101,nbcol=30,box=TRUE, main="Bivariate density rho = ",cuts=NULL,all=TRUE,ellipses=TRUE,ze=.15) } \arguments{ \item{r}{the underlying Pearson correlation defines the shape of the ellipse} \item{t1}{X is cut at tau} \item{t2}{Y is cut at Tau} \item{shade}{shade the diagram (default is TRUE)} \item{expand}{The relative height of the z axis} \item{theta}{The angle to rotate the x-y plane} \item{phi}{The angle above the plane to view the graph} \item{N}{The grid resolution} \item{nbcol}{The color resolution} \item{box}{Draw the axes} \item{main}{The main title} \item{cuts}{Should the graphic show cuts (e.g., cuts=c(0,0))} \item{all}{Show all four parts of the tetrachoric} \item{ellipses}{Draw a correlation ellipse} \item{ze}{height of the ellipse if requested} } \details{ A graphic demonstration of the \code{\link{tetrachoric}} correlation. Used for teaching purposes. The default values are for a correlation of .5 with cuts at 1 and 1. Any other values are possible. The code is also a demonstration of how to use the \code{\link{layout}} function for complex graphics using base graphics. } \author{ William Revelle } \seealso{\code{\link{tetrachoric}} to find tetrachoric correlations, \code{\link{irt.fa}} and \code{\link{fa.poly}} to use them in factor analyses, \code{\link{scatter.hist}} to show correlations and histograms. } \examples{ #if(require(mvtnorm)) { #draw.tetra(.5,1,1) #draw.tetra(.8,2,1)} else {print("draw.tetra requires the mvtnorm package") #draw.cor(.5,cuts=c(0,0))} draw.tetra(.5,1,1) draw.tetra(.8,2,1) draw.cor(.5,cuts=c(0,0)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{hplot}psych/man/range.correction.Rd0000644000176200001440000000457412077300624015717 0ustar liggesusers\name{rangeCorrection} \alias{rangeCorrection} \title{Correct correlations for restriction of range. (Thorndike Case 2) } \description{In applied settings, it is typical to find a correlation between a predictor and some criterion. Unfortunately, if the predictor is used to choose the subjects, the range of the predictor is seriously reduced. This restricts the observed correlation to be less than would be observed in the full range of the predictor. A correction for this problem is well known as Thorndike Case 2: Let R the unrestricted correlaton, r the restricted correlation, S the unrestricted standard deviation, s the restricted standard deviation, then R = (rS/s)/ sqrt(1-r^2 + r^2(S^2/s^2)). Several other cases of restriction were also considered by Thorndike and are implemented in \code{\link{rangeCorrection}}. } \usage{ rangeCorrection(r,sdu,sdr,sdxu=NULL,sdxr=NULL,case=2) } \arguments{ \item{r}{The observed correlation} \item{sdu}{The unrestricted standard deviation)} \item{sdr}{The restricted standard deviation} \item{sdxu}{Unrestricted standard deviation for case 4} \item{sdxr}{Restricted standard deviation for case 4} \item{case}{Which of the four Thurstone/Stauffer cases to use} } \details{ When participants in a study are selected on one variable, that will reduce the variance of that variable and the resulting correlation. Thorndike (1949) considered four cases of range restriction. Others have continued this discussion but have changed the case numbers. Can be used to find correlations in a restricted sample as well as the unrestricted sample. Not the same as the correction to reliability for restriction of range. } \value{The corrected correlation. } \references{ Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} Stauffer, Joseph and Mendoza, Jorge. (2001) The proper sequence for correcting correlation coefficients for range restriction and unreliability. Psychometrika, 66, 63-68. } \author{ William Revelle } \seealso{ cRRr in the psychometric package. } \examples{ rangeCorrection(.33,100.32,48.19) #example from Revelle (in prep) Chapter 4. } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models}% __ONLY ONE__ keyword per line psych/man/dwyer.Rd0000644000176200001440000000154311546641045013605 0ustar liggesusers\name{Dwyer} \alias{Dwyer} \docType{data} \title{8 cognitive variables used by Dwyer for an example. } \description{Dwyer (1937) introduced a technique for factor extension and used 8 cognitive variables from Thurstone. This is the example data set used in his paper. } \usage{data(Dwyer)} \format{ The format is: num [1:8, 1:8] 1 0.58 -0.28 0.01 0.36 0.38 0.61 0.15 0.58 1 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:8] "V1" "V2" "V3" "V4" ... ..$ : chr [1:8] "V1" "V2" "V3" "V4" ... } \source{Data matrix retyped from the original publication. } \references{Dwyer, Paul S. (1937), The determination of the factor loadings of a given test from the known factor loadings of other tests. Psychometrika, 3, 173-178 } \examples{ data(Dwyer) Ro <- Dwyer[1:7,1:7] Roe <- Dwyer[1:7,8] fo <- fa(Ro,2,rotate="none") fa.extension(Roe,fo) } \keyword{datasets} psych/man/sim.structural.Rd0000644000176200001440000001055112516534403015446 0ustar liggesusers\name{sim.structure} \alias{sim.structure} \alias{sim.structural} \alias{sim.correlation} \title{Create correlation matrices or data matrices with a particular measurement and structural model } \description{Structural Equation Models decompose correlation or correlation matrices into a measurement (factor) model and a structural (regression) model. sim.structural creates data sets with known measurement and structural properties. Population or sample correlation matrices with known properties are generated. Optionally raw data are produced. It is also possible to specify a measurement model for a set of x variables separately from a set of y variables. They are then combined into one model with the correlation structure between the two sets. Finally, the general case is given a population correlation matrix, generate data that will reproduce (with sampling variability) that correlation matrix. \code{\link{sim.correlation}}. } \usage{ sim.structure(fx=NULL,Phi=NULL, fy=NULL, f=NULL, n=0, uniq=NULL, raw=TRUE, items = FALSE, low=-2,high=2,d=NULL,cat=5, mu=0) sim.structural(fx=NULL, Phi=NULL, fy=NULL, f=NULL, n=0, uniq=NULL, raw=TRUE, items = FALSE, low=-2,high=2,d=NULL,cat=5, mu=0) #deprecated sim.correlation(R,n=1000,data=FALSE) } \arguments{ \item{fx}{The measurement model for x} \item{Phi}{The structure matrix of the latent variables} \item{fy}{The measurement model for y} \item{f}{ The measurement model} \item{n}{ Number of cases to simulate. If n=0, the population matrix is returned.} \item{uniq}{The uniquenesses if creating a covariance matrix} \item{raw}{if raw=TRUE, raw data are returned as well for n > 0.} \item{items}{TRUE if simulating items, FALSE if simulating scales} \item{low}{Restrict the item difficulties to range from low to high} \item{high}{Restrict the item difficulties to range from low to high} \item{d}{A vector of item difficulties, if NULL will range uniformly from low to high} \item{cat}{Number of categories when creating binary (2) or polytomous items} \item{mu}{A vector of means, defaults to 0} \item{R}{The correlation matrix to reproduce} \item{data}{if TRUE, return the raw data, otherwise return the sample correlation matrix.} } \details{Given the measurement model, fx and the structure model Phi, the model is f \%*\% Phi \%*\% t(f). Reliability is f \%*\% t(f). \eqn{f \phi f'} and the reliability for each test is the items communality or just the diag of the model. If creating a correlation matrix, (uniq=NULL) then the diagonal is set to 1, otherwise the diagonal is diag(model) + uniq and the resulting structure is a covariance matrix. Given the model, raw data are generated using the mvnorm function. A special case of a structural model are one factor models such as parallel tests, tau equivalent tests, and congeneric tests. These may be created by letting the structure matrix = 1 and then defining a vector of factor loadings. Alternatively, make.congeneric will do the same. \code{\link{sim.correlation}} will create data sampled from a specified correlation matrix for a particular sample size. If desired, it will just return the sample correlation matrix. With data=TRUE, it will return the sample data as well. } \value{ \item{model }{The implied population correlation or covariance matrix} \item{reliability }{The population reliability values} \item{r}{The sample correlation or covariance matrix} \item{observed}{If raw=TRUE, a sample data matrix} } \references{Revelle, W. (in preparation) An Introduction to Psychometric Theory with applications in R. Springer. at \url{http://personality-project.org/r/book/} } \author{ William Revelle } \seealso{ \code{\link{make.hierarchical}} for another structural model and \code{\link{make.congeneric}} for the one factor case. \code{\link{structure.list}} and \code{\link{structure.list}} for making symbolic structures. } \examples{ fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa,2) #correct for attenuation to see structure round(correct.cor(gre.gpa$model,gre.gpa$reliability),2) congeneric <- sim.structure(f=c(.9,.8,.7,.6)) # a congeneric model congeneric } \keyword{multivariate } \keyword{datagen} psych/man/withinBetween.Rd0000644000176200001440000000626113144450041015257 0ustar liggesusers\name{withinBetween} \alias{withinBetween} \docType{data} \title{An example of the distinction between within group and between group correlations} \description{A demonstration that a correlation may be decomposed to a within group correlation and a between group correlations and these two correlations are independent. Between group correlations are sometimes called ecological correlations, the decomposition into within and between group correlations is a basic concept in multilevel modeling. This data set shows the composite correlations between 9 variables, representing 16 cases with four groups. } \usage{data(withinBetween)} \format{ A data frame with 16 observations on the following 10 variables. \describe{ \item{\code{Group}}{An example grouping factor.} \item{\code{V1}}{A column of 16 observations } \item{\code{V2}}{A column of 16 observations } \item{\code{V3}}{A column of 16 observations } \item{\code{V4}}{A column of 16 observations } \item{\code{V5}}{A column of 16 observations } \item{\code{V6}}{A column of 16 observations } \item{\code{V7}}{A column of 16 observations } \item{\code{V8}}{A column of 16 observations } \item{\code{V9}}{A column of 16 observations } } } \details{Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major,or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). This data set shows this independence. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. \code{\link{statsBy}} can decompose the observed correlation in the between and within correlations. \code{\link{sim.multilevel}} can produce similar data. } \source{The data were created for this example} \references{ P. D. Bliese. Multilevel modeling in R (2.3) a brief introduction to R, the multilevel package and the nlme package, 2009. Pedhazur, E.J. (1997) Multiple regression in behavioral research: explanation and prediction. Harcourt Brace. Revelle, W. An introduction to psychometric theory with applications in R (in prep) Springer. Draft chapters available at \url{http://personality-project.org/r/book/} } \seealso{ \code{\link{statsBy}}, \code{\link{describeBy}}, and \code{\link{sim.multilevel}} } \examples{ data(withinBetween) pairs.panels(withinBetween,bg=c("red","blue","white","black")[withinBetween[,1]], pch=21,ellipses=FALSE,lm=TRUE) stats <- statsBy(withinBetween,'Group') print(stats,short=FALSE) } \keyword{datasets} psych/man/densityBy.Rd0000644000176200001440000000464413031760061014421 0ustar liggesusers\name{densityBy} \alias{densityBy} \alias{violinBy} \title{Create a 'violin plot' or density plot of the distribution of a set of variables} \description{Among the many ways to describe a data set, one is density plot or violin plot of the data. This is similar to a box plot but shows the actual distribution. Median and 25th and 75th percentile lines are added to the display. If a grouping variable is specified, densityBy will draw violin plots for each variable and for each group. } \usage{ densityBy(x,grp=NULL,grp.name=NULL,ylab="Observed",xlab="",main="Density plot",density=20, restrict=TRUE,xlim=NULL,add=FALSE,col=NULL,pch=20,scale=NULL, ...) violinBy(x,grp=NULL,grp.name=NULL,ylab="Observed",xlab="",main="Density plot",density=20, restrict=TRUE,xlim=NULL,add=FALSE,col=NULL,pch=20,scale=NULL,...) } \arguments{ \item{x}{A matrix or data.frame} \item{grp}{A grouping variable} \item{grp.name}{If the grouping variable is specified, the what names should be give to the group? Defaults to 1:ngrp} \item{ylab}{The y label} \item{xlab}{The x label} \item{main}{Figure title} \item{density}{How many lines per inch to draw} \item{restrict}{Restrict the density to the observed max and min of the data} \item{xlim}{if not specified, will be .5 beyond the number of variables} \item{add}{Allows overplotting} \item{col}{Allows for specification of colours. The default for 2 groups is blue and red, for more group levels, rainbows.} \item{pch}{The plot character for the mean is by default a small filled circle. To not show the mean, use pch=NA } \item{scale}{If NULL, scale the widths by the square root of sample size, otherwise scale by the value supplied.} \item{\dots}{Other graphic parameters} } \details{ Describe the data using a violin plot. Change density to modify the shading. density=NULL will fill with col. The grp variable may be used to draw separate violin plots for each of multiple groups. } \value{ The density plot of the data. } \author{William Revelle } \note{Nothing yet} \seealso{ \code{\link{describe}}, \code{\link{describeBy}} and \code{\link{statsBy}} for descriptive statistics and \code{\link{error.bars}} and \code{\link{error.bars.by}} for graphic displays } \examples{ densityBy(bfi[1:5]) #not run #violinBy(bfi[1:5],grp=bfi$gender,grp.name=c("M","F")) #densityBy(sat.act[5:6],sat.act$education,col=rainbow(6)) } \keyword{ multivariate } \keyword{ hplot } psych/man/multi.hist.Rd0000644000176200001440000000433113075436564014560 0ustar liggesusers\name{multi.hist} \alias{multi.hist} \alias{histo.density} \alias{histBy} \title{ Multiple histograms with density and normal fits on one page} \description{Given a matrix or data.frame, produce histograms for each variable in a "matrix" form. Include normal fits and density distributions for each plot. The number of rows and columns may be specified, or calculated. May be used for single variables. } \usage{multi.hist(x,nrow=NULL,ncol=NULL,density=TRUE,freq=FALSE,bcol="white", dcol=c("black","black"),dlty=c("dashed","dotted"), main="Histogram, Density, and Normal Fit",breaks=21,...) histBy(x,var,group,density=TRUE,alpha=.5,breaks=21,col,xlab, main="Histograms by group",...) } \arguments{ \item{x}{ matrix or data.frame} \item{var}{The variable in x to plot in histBy} \item{group}{The name of the variable in x to use as the grouping variable} \item{nrow}{number of rows in the plot} \item{ncol}{number of columns in the plot} \item{density}{density=TRUE, show the normal fits and density distributions} \item{freq}{freq=FALSE shows probability densities and density distribution, freq=TRUE shows frequencies} \item{bcol}{Color for the bars} \item{dcol}{The color(s) for the normal and the density fits. Defaults to black. } \item{dlty}{The line type (lty) of the normal and density fits. (specify the optional graphic parameter lwd to change the line size)} \item{main}{title for each panel} \item{xlab}{Label for the x variable} \item{breaks}{The number of breaks in histBy (see hist)} \item{alpha}{The degree of transparency of the overlapping bars in histBy} \item{col}{A vector of colors in histBy (defaults to the rainbow)} \item{...}{additional graphic parameters (e.g., col)} } \author{ William Revelle } \seealso{ \code{\link{bi.bars}} for drawing pairwise histograms} \examples{ multi.hist(sat.act) multi.hist(sat.act,bcol="red") multi.hist(sat.act,dcol="blue") #make both lines blue multi.hist(sat.act,dcol= c("blue","red"),dlty=c("dotted", "solid")) multi.hist(sat.act,freq=TRUE) #show the frequency plot multi.hist(sat.act,nrow=2) histBy(sat.act,"SATQ","gender") } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/score.alpha.Rd0000644000176200001440000000654412260124162014646 0ustar liggesusers\name{score.alpha} \alias{score.alpha} \title{ Score scales and find Cronbach's alpha as well as associated statistics} \description{Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame of items scores for m items and n people, find the sum scores or average scores for each person and each scale. In addition, report Cronbach's alpha, the average r, the scale intercorrelations, and the item by scale correlations. (Superseded by \code{\link{score.items}}). } \usage{ score.alpha(keys, items, labels = NULL, totals=TRUE,digits = 2) #deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{keys}{ A matrix or dataframe of -1, 0, or 1 weights for each item on each scale } \item{items}{Data frame or matrix of raw item scores } \item{labels}{column names for the resulting scales} \item{totals}{Find sum scores (default) or average score} \item{digits}{Number of digits for answer (default =2) } } \details{This function has been replaced with \code{\link{score.items}} (for multiple scales) and \code{\link{alpha}} for single scales. The process of finding sum or average scores for a set of scales given a larger set of items is a typical problem in psychometric research. Although the structure of scales can be determined from the item intercorrelations, to find scale means, variances, and do further analyses, it is typical to find the sum or the average scale score. Various estimates of scale reliability include ``Cronbach's alpha", and the average interitem correlation. For k = number of items in a scale, and av.r = average correlation between items in the scale, alpha = k * av.r/(1+ (k-1)*av.r). Thus, alpha is an increasing function of test length as well as the test homeogeneity. Alpha is a poor estimate of the general factor saturation of a test (see Zinbarg et al., 2005) for it can seriously overestimate the size of a general factor, and a better but not perfect estimate of total test reliability because it underestimates total reliability. None the less, it is a useful statistic to report. } \value{ \item{scores }{Sum or average scores for each subject on the k scales} \item{alpha }{Cronbach's coefficient alpha. A simple (but non-optimal) measure of the internal consistency of a test. See also beta and omega.} \item{av.r}{The average correlation within a scale, also known as alpha 1 is a useful index of the internal consistency of a domain.} \item{n.items}{Number of items on each scale} \item{cor}{The intercorrelation of all the scales} \item{item.cor}{The correlation of each item with each scale. Because this is not corrected for item overlap, it will overestimate the amount that an item correlates with the other items in a scale.} } \references{An introduction to psychometric theory with applications in R (in preparation). \url{http://personality-project.org/r/book}} \author{ William Revelle } \seealso{ \code{\link{score.items}}, \code{\link{alpha}}, \code{\link{correct.cor}}, \code{\link{cluster.loadings}}, \code{\link{omega}} } \examples{ y <- attitude #from the datasets package keys <- matrix(c(rep(1,7),rep(1,4),rep(0,7),rep(-1,3)),ncol=3) labels <- c("first","second","third") x <- score.alpha(keys,y,labels) #deprecated } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{models} psych/man/reverse.code.Rd0000644000176200001440000000263012006776270015036 0ustar liggesusers\name{reverse.code} \alias{reverse.code} \title{Reverse the coding of selected items prior to scale analysis} \description{Some IRT functions require all items to be coded in the same direction. Some data sets have items that need to be reverse coded (e.g., 6 -> 1, 1 -> 6). reverse.code will flip items based upon a keys vector of 1s and -1s. Reversed items are subtracted from the item max + item min. These may be specified or may be calculated. } \usage{ reverse.code(keys, items, mini = NULL, maxi = NULL)} \arguments{ \item{keys}{A vector of 1s and -1s. -1 implies reverse the item} \item{items}{A data set of items} \item{mini}{if NULL, the empirical minimum for each item. Otherwise, a vector of minima} \item{maxi}{f NULL, the empirical maximum for each item. Otherwise, a vector of maxima} } \details{Not a very complicated function, but useful in the case that items need to be reversed prior to using IRT functions from the ltm or eRM packages. Most psych functions do not require reversing prior to analysis, but will do so within the function. } \value{ The corrected items. } \examples{ original <- matrix(sample(6,50,replace=TRUE),10,5) keys <- c(1,1,-1,-1,1) #reverse the 3rd and 4th items new <- reverse.code(keys,original,mini=rep(1,5),maxi=rep(6,5)) original[1:3,] new[1:3,] } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate}psych/man/test.psych.Rd0000755000176200001440000000633712567623423014574 0ustar liggesusers\name{test.psych} \alias{test.psych} \title{ Testing of functions in the psych package } \description{Test to make sure the psych functions run on basic test data sets } \usage{ test.psych(first=1,last=5,short=TRUE,all=FALSE,fapc=FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{first}{first=1: start with dataset first} \item{last}{last=5: test for datasets until last} \item{short}{short=TRUE - don't return any analyses} \item{all}{To get around a failure on certain Solaris 32 bit systems, all=FALSE is the default} \item{fapc}{if fapc=TRUE, then do a whole series of tests of factor and principal component extraction and rotations.} } \details{When modifying the psych package, it is useful to make sure that adding some code does not break something else. The test.psych function tests the major functions on various standard data sets. It also shows off a number of the capabilities of the psych package. Uses 5 standard data sets: \cr USArrests Violent Crime Rates by US State (4 variables) \cr attitude The Chatterjee-Price Attitude Data \cr Harman23.cor$cov Harman Example 2.3 8 physical measurements \cr Harman74.cor$cov Harman Example 7.4 24 mental measurements \cr ability.cov$cov 8 Ability and Intelligence Tests \cr It also uses the bfi and ability data sets from psych } \value{ \item{out }{if short=FALSE, then list of the output from all functions tested} } \author{ William Revelle} \note{ Although test.psych may be used as a quick demo of the various functions in the psych packge, in general, it is better to try the specific functions themselves. The main purpose of test.psych is to make sure functions throw error messages or correct for weird conditions. The datasets tested are part of the standard R data sets and represent some of the basic problems encountered. When version 1.1.10 was released, it caused errors when compiling and testing on some Solaris 32 bit systems. The all option was added to avoid this problem (since I can't replicate the problem on Macs or PCs). all=TRUE adds one more test, for a non-positive definite matrix.} \section{Warning }{Warning messages will be thrown by fa.parallel and sometimes by fa for random datasets.} \examples{ #test <- test.psych() #not run #test.psych(all=TRUE) # f3 <- fa(bfi[1:15],3,n.iter=5) # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="Varimax") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="varimax") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="bifactor") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="varimin") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="bentlerT") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="geominT") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="equamax") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="Promax") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="cluster") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="biquartimin") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="equamax") # f3 <- fa(bfi[1:15],3,n.iter=5,rotate="Promax") # # fpoly <- fa(bfi[1:10],2,n.iter=5,cor="poly") # f1 <- fa(ability,n.iter=4) # f1p <- fa(ability,n.iter=4,cor="tet") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/rescale.Rd0000644000176200001440000000234510775754240014077 0ustar liggesusers\name{rescale} \alias{rescale} \title{Function to convert scores to ``conventional " metrics} \description{Psychologists frequently report data in terms of transformed scales such as ``IQ" (mean=100, sd=15, ``SAT/GRE" (mean=500, sd=100), ``ACT" (mean=18, sd=6), ``T-scores" (mean=50, sd=10), or ``Stanines" (mean=5, sd=2). The \code{\link{rescale}} function converts the data to standard scores and then rescales to the specified mean(s) and standard deviation(s). } \usage{ rescale(x, mean = 100, sd = 15,df=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A matrix or data frame } \item{mean}{Desired mean of the rescaled scores- may be a vector} \item{sd}{Desired standard deviation of the rescaled scores} \item{df}{if TRUE, returns a data frame, otherwise a matrix} } \value{A data.frame (default) or matrix of rescaled scores. } \author{ William Revelle } \seealso{ See Also \code{\link{scale}} } \examples{ T <- rescale(attitude,50,10) #all put on same scale describe(T) T1 <- rescale(attitude,seq(0,300,50),seq(10,70,10)) #different means and sigmas describe(T1) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line \keyword{univar} psych/man/corr.test.Rd0000644000176200001440000001257413151610704014374 0ustar liggesusers\name{corr.test} \alias{corr.test} \alias{corr.p} \title{Find the correlations, sample sizes, and probability values between elements of a matrix or data.frame. } \description{Although the cor function finds the correlations for a matrix, it does not report probability values. cor.test does, but for only one pair of variables at a time. corr.test uses cor to find the correlations for either complete or pairwise data and reports the sample sizes and probability values as well. For symmetric matrices, raw probabilites are reported below the diagonal and correlations adjusted for multiple comparisons above the diagonal. In the case of different x and ys, the default is to adjust the probabilities for multiple tests. Both corr.test and corr.p return raw and adjusted confidence intervals for each correlation. } \usage{ corr.test(x, y = NULL, use = "pairwise",method="pearson",adjust="holm", alpha=.05,ci=TRUE) corr.p(r,n,adjust="holm",alpha=.05) } \arguments{ \item{x}{A matrix or dataframe } \item{y}{A second matrix or dataframe with the same number of rows as x } \item{use}{use="pairwise" is the default value and will do pairwise deletion of cases. use="complete" will select just complete cases. } \item{method}{method="pearson" is the default value. The alternatives to be passed to cor are "spearman" and "kendall"} \item{adjust}{What adjustment for multiple tests should be used? ("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"). See \code{\link{p.adjust}} for details about why to use "holm" rather than "bonferroni"). } \item{alpha}{alpha level of confidence intervals} \item{r}{A correlation matrix} \item{n}{Number of observations if using corr.p. May be either a matrix (as returned from corr.test, or a scaler. Set to n - np if finding the significance of partial correlations. (See below). } \item{ci}{By default, confidence intervals are found. However, this leads to a slight slowdown of speed. So, for just the rs, ts and ps, set ci=FALSE} } \details{corr.test uses the \code{\link{cor}} function to find the correlations, and then applies a t-test to the individual correlations using the formula \deqn{t = \frac{r * \sqrt(n-2)}{\sqrt(1-r^2)} }{t = r* sqrt(n-2)/sqrt(1-r^2) } \deqn{se = \sqrt(\frac{1-r^2}{n-2}) }{se = sqrt((1-r^2)/(n-2))} The t and Standard Errors are returned as objects in the result, but are not normally displayed. Confidence intervals are found and printed if using the print(short=FALSE) option. These are found by using the fisher z transform of the correlation and then taking the range r +/- qnorm(alpha/2) * se and the standard error of the z transforms is \deqn{se = \sqrt(\frac {1}{n-3}) }{se = sqrt(1/(n-3))}. These values are then back transformed to be in correlation units. They are returned in the ci object. The probability values may be adjusted using the Holm (or other) correction. If the matrix is symmetric (no y data), then the original p values are reported below the diagonal and the adjusted above the diagonal. Otherwise, all probabilities are adjusted (unless adjust="none"). This is made explicit in the output. Confidence intervals are shown for raw and adjusted probabilities in the ci object. \code{\link{corr.p}} may be applied to the results of \code{\link{partial.r}} if n is set to n - s (where s is the number of variables partialed out) Fisher, 1924. } \value{ \item{r}{The matrix of correlations} \item{n}{Number of cases per correlation} \item{t}{value of t-test for each correlation} \item{p}{two tailed probability of t for each correlation. For symmetric matrices, p values adjusted for multiple tests are reported above the diagonal. } \item{se}{standard error of the correlation} \item{ci}{the alpha/2 lower and upper values, as well as the (Holm or Bonferroni) adjusted confidence intervals. } } \note{For very large matrices (> 200 x 200), there is a noticeable speed improvement if confidence intervals are not found.} \seealso{ \code{\link{cor.test}} for tests of a single correlation, Hmisc::rcorr for an equivalant function, \code{\link{r.test}} to test the difference between correlations, and \code{\link{cortest.mat}} to test for equality of two correlation matrices. Also see \code{\link{cor.ci}} for bootstrapped confidence intervals of Pearson, Spearman, Kendall, tetrachoric or polychoric correlations. In addition \code{\link{cor.ci}} will find bootstrapped estimates of composite scales based upon a set of correlations (ala \code{\link{cluster.cor}}). In particular, see \code{\link{p.adjust}} for a discussion of p values associated with multiple tests. Other useful functions related to finding and displaying correlations include \code{\link{lowerCor}} for finding the correlations and then displaying the lower off diagonal using the \code{\link{lowerMat}} function. \code{\link{lowerUpper}} to compare two correlation matrices. } \examples{ ct <- corr.test(attitude) #find the correlations and give the probabilities ct #show the results cts <- corr.test(attitude[1:3],attitude[4:6]) #reports all values corrected for multiple tests #corr.test(sat.act[1:3],sat.act[4:6],adjust="none") #don't adjust the probabilities #take correlations and show the probabilities as well as the confidence intervals print(corr.p(cts$r,n=30),short=FALSE) #don't adjust the probabilities print(corr.test(sat.act[1:3],sat.act[4:6],adjust="none"),short=FALSE) } \keyword{multivariate } \keyword{ models } psych/man/Harman.Rd0000644000176200001440000001220013137470327013652 0ustar liggesusers\name{Harman} \alias{Harman} \alias{Harman.Burt} \alias{Harman.Holzinger} \alias{Harman.political} \alias{Harman.5} \alias{Harman.8} \docType{data} \title{Five data sets from Harman (1967). 9 cognitive variables from Holzinger and 8 emotional variables from Burt} \description{Five classic data sets reported by Harman (1967) are 9 psychological (cognitive) variables taken from Holzinger and 8 emotional variables taken from Burt. Two others are socioeconomic and political data sets. Additionally, 8 physical variables. All five of these are used for tests and demonstrations of various factoring algortithms. } \usage{data(Harman) data(Harman.5) data(Harman.political) data(Harman.8) } \details{ \itemize{ \item Harman.Holzinger: 9 x 9 correlation matrix of ability tests, N = 696. \item Harman.Burt: a 8 x 8 correlation matrix of ``emotional" items. N = 172 \item Harman.5: 12 census tracts for 5 socioeconomic data (Harman p 14) \item Harman.political: p 166. \item Harman.8 8 physical measures } Harman.Holzinger. The nine psychological variables from Harman (1967, p 244) are taken from unpublished class notes of K.J. Holzinger with 696 participants. This is a subset of 12 tests with 4 factors. It is yet another nice example of a bifactor solution. Bentler (2007) uses this data set to discuss reliablity analysis. The data show a clear bifactor structure and are a nice example of the various estimates of reliability included in the \code{\link{omega}} function. Should not be confused with the \code{\link{Holzinger}} or \code{\link{Holzinger.9}} data sets in \code{\link{bifactor}}. Harman.Burt. Eight ``emotional" variables are taken from Harman (1967, p 164) who in turn adapted them from Burt (1939). They are said be from 172 normal children aged nine to twelve. As pointed out by Harman, this correlation matrix is singular and has squared multiple correlations > 1. Because of this problem, it is a nice test case for various factoring algorithms. (For instance, omega will issue warning messages for fm="minres" or fm="pa" but will fail for fm="ml".) The Eight Physical Variables problem is taken from Harman (1976) and represents the correlations between eight physical variables for 305 girls. The two correlated clusters represent four measures of "lankiness" and then four measures of "stockiness". The original data were selected from 17 variables reported in an unpublished dissertation by Mullen (1939). Variable 6 ("Bitrochanteric diamter") is the distance between the outer points of the hips. The row names match the original Harman paper, the column names have been abbreviated. The \code{\link{fa}} solution for principal axes (fm="pa") matches the reported minres solution, as does the fm="minres". For those interested in teaching examples using various body measurements, see the body data set in the gclus package. The Burt data set probably has a typo in the original correlation matrix. Changing the Sorrow- Tenderness correlation from .87 to .81 makes the correlation positive definite. As pointed out by Jan DeLeeuw, the Burt data set is a subset of 8 variables from the original 11 reported by Burt in 1915. That matrix has the same problem. See \code{\link{burt}}. Other example data sets that are useful demonstrations of factor analysis are the seven bifactor examples in \code{\link{Bechtoldt}} and the 24 ability measures in \code{\link{Harman74.cor}} There are several other Harman examples in the psych package (i.e., \link{Harman.8}) as well as in the dataseta and GPArotation packages. The Harman 24 mental tests problem is in the basic datasets package at \link{Harman74.cor}. Other Harman data sets are 5 socioeconomic variables for 12 census tracts \link{Harman.5} used by John Loehlin as an example for EFA. Another one of the many Harman (1967) data sets is \link{Harman.political}. This contains 8 political variables taken over 147 election areas. The principal factor method with SMCs as communalities match those of table 8.18. The data are used by Dziubian and Shirkey as an example of the Kaiser-Meyer-Olkin test of factor adequacy. } \source{Harman (1967 p 164 and p 244.) H. Harman and W.Jones. (1966) Factor analysis by minimizing residuals (minres). Psychometrika, 31(3):351-368. } \references{Harman, Harry Horace (1967), Modern factor analysis. Chicago, University of Chicago Press. P.Bentler. Covariance structure models for maximal reliability of unit-weighted composites. In Handbook of latent variable and related models, pages 1--17. North Holland, 2007. Burt, C.General and Specific Factors underlying the Primary Emotions. Reports of the British Association for the Advancement of Science, 85th meeting, held in Manchester, September 7-11, 1915. London, John Murray, 1916, p. 694-696 (retrieved from the web at http://www.biodiversitylibrary.org/item/95822#790 } \seealso{ See also the original \code{\link{burt}} data set, the \link{Harman.5} and \link{Harman.political} data sets.} \examples{ data(Harman) cor.plot(Harman.Holzinger) cor.plot(Harman.Burt) smc(Harman.Burt) #note how this produces impossible results f2 <- fa(Harman.8,2, rotate="none") #minres matches Harman and Jones } \keyword{datasets} psych/man/set.cor.Rd0000644000176200001440000002467013073455412014034 0ustar liggesusers\name{setCor} \alias{setCor} \alias{setCor.diagram} \alias{set.cor} \alias{mat.regress} \alias{matReg} \title{Set Correlation and Multiple Regression from matrix or raw input} \description{ Finds Cohen's Set Correlation between a predictor set of variables (x) and a criterion set (y). Also finds multiple correlations between x variables and each of the y variables. Will work with either raw data or a correlation matrix. A set of covariates (z) can be partialled from the x and y sets. Regression diagrams are automatically included. } \usage{ setCor(y,x,data,z=NULL,n.obs=NULL,use="pairwise",std=TRUE,square=FALSE, main="Regression Models",plot=TRUE,show=FALSE) setCor.diagram(sc,main="Regression model",digits=2,show=FALSE,...) set.cor(y,x,data,z=NULL,n.obs=NULL,use="pairwise",std=TRUE,square=FALSE, main="Regression Models",plot=TRUE,show=FALSE) #an alias to setCor mat.regress(y, x,data, z=NULL,n.obs=NULL,use="pairwise",square=FALSE) matReg(x,y,C,n.obs=0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{y}{ either the column numbers of the y set (e.g., c(2,4,6) or the column names of the y set (e.g., c("Flags","Addition")} \item{x}{ either the column numbers of the x set (e.g., c(1,3,5) or the column names of the x set (e.g. c("Cubes","PaperFormBoard") } \item{data}{a matrix or data.frame of correlations or, if not square, of raw data} \item{C}{A variance/covariance matrix, or a correlation matrix} \item{z}{the column names or numbers of the set of covariates} \item{n.obs}{If specified, then confidence intervals, etc. are calculated, not needed if raw data are given} \item{use}{find the correlations "pairwise" (default) or just use "complete" cases (to match the lm function)} \item{std}{Report standardized betas (based upon the correlations) or raw (based upon covariances)} \item{main}{The title for setCor.diagram} \item{square}{if FALSE, then square matrices are treated as correlation matrices not as data matrices. In the rare case that one has as many cases as variables, then set square=TRUE.} \item{sc}{The output of setCor may be used for drawing diagrams} \item{digits}{How many digits should be displayed in the setCor.diagram?} \item{show}{Show the unweighted matrix correlation between the x and y sets?} \item{plot}{By default, setCor makes a plot of the results, set to FALSE to suppress the plot} \item{...}{Additional graphical parameters for setCor.diagram} } \details{ Although it is more common to calculate multiple regression and canonical correlations from the raw data, it is, of course, possible to do so from a matrix of correlations or covariances. In this case, the input to the function is a square covariance or correlation matrix, as well as the column numbers (or names) of the x (predictor), y (criterion) variables, and if desired z (covariates). The function will find the correlations if given raw data. The output is a set of multiple correlations, one for each dependent variable in the y set, as well as the set of canonical correlations. An additional output is the R2 found using Cohen's set correlation (Cohen, 1982). This is a measure of how much variance and the x and y set share. Cohen (1982) introduced the set correlation, a multivariate generalization of the multiple correlation to measure the overall relationship between two sets of variables. It is an application of canoncial correlation (Hotelling, 1936) and \eqn{1 - \prod(1-\rho_i^2)} where \eqn{\rho_i^2} is the squared canonical correlation. Set correlation is the amount of shared variance (R2) between two sets of variables. With the addition of a third, covariate set, set correlation will find multivariate R2, as well as partial and semi partial R2. (The semi and bipartial options are not yet implemented.) Details on set correlation may be found in Cohen (1982), Cohen (1988) and Cohen, Cohen, Aiken and West (2003). R2 between two sets is just \deqn{R^2 = 1- \frac{\left | R_{yx} \right |}{\left | R_y \right | \left |R_x\right |} = 1 - \prod(1-\rho_i^2) }{R2 = 1- |R| /(|Ry| * |Rx|)} where R is the complete correlation matrix of the x and y variables and Rx and Ry are the two sets involved. Unfortunately, the R2 is sensitive to one of the canonical correlations being very high. An alternative, T2, is the proportion of additive variance and is the average of the squared canonicals. (Cohen et al., 2003), see also Cramer and Nicewander (1979). This average, because it includes some very small canonical correlations, will tend to be too small. Cohen et al. admonition is appropriate: "In the final analysis, however, analysts must be guided by their substantive and methodological conceptions of the problem at hand in their choice of a measure of association." ( p613). Yet another measure of the association between two sets is just the simple, unweighted correlation between the two sets. That is, \deqn{R_{uw} =\frac{ 1 R_{xy} 1' }{(1R_{yy}1')^{.5} (1R_{xx}1')^{.5}} }{Ruw=1Rxy1' / (sqrt(1Ryy1'* 1Rxx1'))} where Rxy is the matrix of correlations between the two sets. This is just the simple (unweighted) sums of the correlations in each matrix. This technique exemplifies the robust beauty of linear models and is particularly appropriate in the case of one dimension in both x and y, and will be a drastic underestimate in the case of items where the betas differ in sign. When finding the unweighted correlations, as is done in \code{\link{alpha}}, items are flipped so that they all are positively signed. A typical use in the SAPA project is to form item composites by clustering or factoring (see \code{\link{fa}},\code{\link{ICLUST}}, \code{\link{principal}}), extract the clusters from these results (\code{\link{factor2cluster}}), and then form the composite correlation matrix using \code{\link{cluster.cor}}. The variables in this reduced matrix may then be used in multiple R procedures using \code{\link{set.cor}}. Although the overall matrix can have missing correlations, the correlations in the subset of the matrix used for prediction must exist. If the number of observations is entered, then the conventional confidence intervals, statistical significance, and shrinkage estimates are reported. If the input is rectangular (not square), correlations or covariances are found from the data. The print function reports t and p values for the beta weights, the summary function just reports the beta weights. The Variance Inflation Factor is reported but should be taken with the normal cautions of interpretation discussed by Guide and Ketokivm. That is to say, VIF > 10 is not a magic cuttoff to define colinearity. It is merely 1/(1-smc(R(x)). \code{\link{matReg}} is primarily a helper function for \code{\link{mediate}} but is a general multiple regression function given a covariance matrix and the specified x, and y variables. Its output includes betas, se, t, p and R2. It does not work on data matrices, nor does it take formula input. } \value{ \item{beta }{the beta weights for each variable in X for each variable in Y} \item{R}{The multiple R for each equation (the amount of change a unit in the predictor set leads to in the criterion set). } \item{R2 }{The multiple R2 (\% variance acounted for) for each equation} \item{VIF}{The Variance Inflation Factor which is just 1/(1-smc(x))} \item{se}{Standard errors of beta weights (if n.obs is specified)} \item{t}{t value of beta weights (if n.obs is specified)} \item{Probability}{Probability of beta = 0 (if n.obs is specified)} \item{shrunkenR2}{Estimated shrunken R2 (if n.obs is specified)} \item{setR2}{The multiple R2 of the set correlation between the x and y sets} item{residual}{The residual correlation matrix of Y with x and z removed} \item{ruw}{The unit weighted multiple correlation} \item{Ruw}{The unit weighted set correlation} } \author{William Revelle \cr Maintainer: William Revelle } \references{ J. Cohen (1982) Set correlation as a general multivariate data-analytic method. Multivariate Behavioral Research, 17(3):301-341. J. Cohen, P. Cohen, S.G. West, and L.S. Aiken. (2003) Applied multiple regression/correlation analysis for the behavioral sciences. L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. H. Hotelling. (1936) Relations between two sets of variates. Biometrika 28(3/4):321-377. E.Cramer and W. A. Nicewander (1979) Some symmetric, invariant measures of multivariate association. Psychometrika, 44:43-54. V. D. R. Guide Jr. and M. Ketokivim (2015) Notes from the Editors: Redefining some methodological criteria for the journal. Journal of Operations Management. 37. v-viii. } \note{As of April 30, 2011, the order of x and y was swapped in the call to be consistent with the general y ~ x syntax of the lm and aov functions. In addition, the primary name of the function was switched to setCor from mat.regress to reflect the estimation of the set correlation. The denominator degrees of freedom for the set correlation does not match that reported by Cohen et al., 2003 in the example on page 621 but does match the formula on page 615, except for the typo in the estimation of F (see Cohen 1982). The difference seems to be that they are adding in a correction factor of df 2 = df2 + df1. } \seealso{\code{\link{cluster.cor}}, \code{\link{factor2cluster}},\code{\link{principal}},\code{\link{ICLUST}}, \code{link{cancor}} and cca in the yacca package. } \examples{ #the Kelly data from Hoteling kelly <- structure(list(speed = c(1, 0.4248, 0.042, 0.0215, 0.0573), power = c(0.4248, 1, 0.1487, 0.2489, 0.2843), words = c(0.042, 0.1487, 1, 0.6693, 0.4662), symbols = c(0.0215, 0.2489, 0.6693, 1, 0.6915), meaningless = c(0.0573, 0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words", "symbols", "meaningless"), class = "data.frame", row.names = c("speed", "power", "words", "symbols", "meaningless")) kelly setCor(1:2,3:5,kelly) #Hotelling reports canonical correlations of .3073 and .0583 or squared correlations of # 0.09443329 and 0.00339889 vs. our values of 0.0946 0.0035, setCor(y=c(7:9),x=c(1:6),data=Thurstone,n.obs=213) #now try partialling out some variables set.cor(y=c(7:9),x=c(1:3),z=c(4:6),data=Thurstone) #compare with the previous #compare complete print out with summary printing sc <- setCor(x=c("gender","education"),y=c("SATV","SATQ"),data=sat.act) # regression from raw data sc summary(sc) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{multivariate }% __ONLY ONE__ keyword per line psych/man/ICLUST.rgraph.Rd0000644000176200001440000000656312501641401014733 0ustar liggesusers\name{ICLUST.rgraph} \alias{ICLUST.rgraph} \title{ Draw an ICLUST graph using the Rgraphviz package } \description{Given a cluster structure determined by \code{\link{ICLUST}}, create a rgraphic directly using Rgraphviz. To create dot code to describe the \code{\link{ICLUST}} output with more precision, use \code{\link{ICLUST.graph}}. As an option, dot code is also generated and saved in a file. To use the dot code, use either http://www.graphviz.org/ Graphviz or a commercial viewer (e.g., OmniGraffle). } \usage{ ICLUST.rgraph(ic.results, out.file = NULL, min.size = 1, short = FALSE, labels = NULL, size = c(8, 6), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits = 2, title = "ICLUST",label.font=2, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ic.results}{output list from ICLUST } \item{out.file}{ File name to save optional dot code. } \item{min.size}{draw a smaller node (without all the information) for clusters < min.size -- useful for large problems} \item{short}{if short==TRUE, don't use variable names} \item{labels}{vector of text labels (contents) for the variables} \item{size}{size of output } \item{node.font}{ Font to use for nodes in the graph } \item{edge.font}{ Font to use for the labels of the arrows (edges)} \item{rank.direction}{LR or TB or RL } \item{digits}{ number of digits to show } \item{title}{ any title } \item{label.font}{The variable labels can be a different size than the other nodes. This is particularly helpful if the number of variables is large or the labels are long.} \item{\dots}{ other options to pass } } \details{ Will create (or overwrite) an output file and print out the dot code to show a cluster structure. This dot file may be imported directly into a dot viewer (e.g., http://www.graphviz.org/). The "dot" language is a powerful graphic description language that is particulary appropriate for viewing cluster output. Commercial graphics programs (e.g., OmniGraffle) can also read (and clean up) dot files. ICLUST.rgraph takes the output from \code{\link{ICLUST}} results and processes it to provide a pretty picture of the results. Original variables shown as rectangles and ordered on the left hand side (if rank direction is RL) of the graph. Clusters are drawn as ellipses and include the alpha, beta, and size of the cluster. Edges show the cluster intercorrelations. It is possible to trim the output to not show all cluster information. Clusters < min.size are shown as small ovals without alpha, beta, and size information. } \value{Output is a set of dot commands written either to console or to the output file. These commands may then be used as input to any "dot" viewer, e.g., Graphviz. ICLUST.rgraph is a version of \code{\link{ICLUST.graph}} that uses Rgraphviz to draw on the screen as well. Additional output is drawn to main graphics screen. } \references{ ICLUST: http://personality-project.org/r/r.ICLUST.html} \author{ \email{revelle@northwestern.edu } \cr \url{http://personality-project.org/revelle.html}} \seealso{ \code{\link{VSS.plot}}, \code{\link{ICLUST}}} \note{ Requires Rgraphviz} \examples{ test.data <- Harman74.cor$cov ic.out <- ICLUST(test.data) #uses iclust.diagram instead } \keyword{ multivariate} \keyword{ cluster}% __ONLY ONE__ keyword per line \keyword{hplot} psych/man/SD.Rd0000644000176200001440000000305111645327156012761 0ustar liggesusers\name{SD} \alias{SD} \title{ Find the Standard deviation for a vector, matrix, or data.frame - do not return error if there are no cases } \description{Find the standard deviation of a vector, matrix, or data.frame. In the latter two cases, return the sd of each column. Unlike the sd function, return NA if there are no observations rather than throw an error. } \usage{ SD(x, na.rm = TRUE) #deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{a vector, data.frame, or matrix } \item{na.rm}{na.rm is assumed to be TRUE} } \details{Finds the standard deviation of a vector, matrix, or data.frame. Returns NA if no cases. Just an adaptation of the stats:sd function to return the functionality found in R < 2.7.0 or R >= 2.8.0 Because this problem seems to have been fixed, SD will be removed eventually.} \value{The standard deviation } \author{ William Revelle } \note{ Until R 2.7.0, sd would return a NA rather than an error if no cases were observed. SD brings back that functionality. Although unusual, this condition will arise when analyzing data with high rates of missing values. This function will probably be removed as 2.7.0 becomes outdated.} \seealso{ These functions use SD rather than sd: \code{\link{describe.by}}, \code{\link{skew}}, \code{\link{kurtosi}} } \examples{ data(attitude) apply(attitude,2,sd) #all complete attitude[,1] <- NA SD(attitude) #missing a column describe(attitude) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ models } psych/man/mediate.Rd0000644000176200001440000002264513055313107014061 0ustar liggesusers\name{mediate} \alias{mediate} \alias{mediate.diagram} \alias{moderate.diagram} \title{Estimate and display direct and indirect effects of mediators and moderator in path models} \description{ Find the direct and indirect effects of a predictor in path models of mediation and moderation. Bootstrap confidence intervals for the indirect effects. Mediation models are just extended regression models making explicit the effect of particular covariates in the model. Moderation is done by multiplication of the predictor variables. This function supplies basic mediation/moderation analyses for some of the classic problem types. } \usage{ mediate(y, x, m, data, mod = NULL, n.obs = NULL, use = "pairwise", n.iter = 5000, alpha = 0.05, std = FALSE,plot=TRUE) mediate.diagram(medi,digits=2,ylim=c(3,7),xlim=c(-1,10),show.c=TRUE, main="Mediation model",...) moderate.diagram(medi,digits=2,ylim=c(2,8),main="Moderation model",...) } \arguments{ \item{y}{The dependent variable (or a formula suitable for a linear model)} \item{x}{One or more predictor variables} \item{m}{One (or more) mediating variables} \item{data}{A data frame holding the data or a correlation or covariance matrix. } \item{mod}{A moderating variable, if desired} \item{n.obs}{If the data are from a correlation or covariance matrix, how many observations were used. This will lead to simulated data for the bootstrap.} \item{use}{use="pairwise" is the default when finding correlations or covariances} \item{n.iter}{Number of bootstrap resamplings to conduct} \item{alpha}{Set the width of the confidence interval to be 1 - alpha} \item{std}{standardize the covariances to find the standardized betas} \item{plot}{Plot the resulting paths} \item{digits}{The number of digits to report in the mediate.diagram.} \item{medi}{The output from mediate may be imported into mediate.diagram} \item{ylim}{The limits for the y axis in the mediate and moderate diagram functions} \item{xlim}{The limits for the x axis. Make the minimum more negative if the x by x correlations do not fit.} \item{show.c}{If FALSE, do not draw the c lines, just the partialed (c') lines} \item{main}{The title for the mediate and moderate functions} \item{...}{Additional graphical parameters to pass to mediate.diagram} } \details{ When doing linear modeling, it is frequently convenient to estimate the direct effect of a predictor controlling for the indirect effect of a mediator. See Preacher and Hayes (2004) for a very thorough discussion of mediation. The mediate function will do some basic mediation and moderation models, with bootstrapped confidence intervals for the mediation/moderation effects. Functionally, this is just regular linear regression and partial correlation with some different output. In the case of two predictor variables, X and M, and a criterion variable Y, then the direct effect of X on Y, labeled with the path c, is said to be mediated by the effect of x on M (path a) and the effect of M on Y (path b). This partial effect (a b) is said to mediate the direct effect of X --c--> Y: X --a -> M --b--> Y with X --c'--> Y where c' = c - ab. Testing the significance of the ab mediation effect is done through bootstrapping many random resamples (with replacement) of the data. For moderation, the moderation effect of Z on the relationship between X -> Y is found by taking the (centered) product of X and Z and then adding this XZ term into the regression. In the case of being provided just a correlation matrix, the bootstrapped values are based upon bootstrapping from data matching the original covariance/correlation matrix with the addition of normal errors. This allows us to test the mediation/moderation effect even if not given raw data. The function has been tested against some of the basic cases and examples in Hayes (2013) and the associated data sets. Unless there is a temporal component that allows one to directly distinguish causal paths (time does not reverse direction), interpreting mediation models is problematic. Some people find it useful to compare the differences between mediation models where the causal paths (arrows) are reversed. This is a mistake and should not be done (Thoemmes, 2015). For fine tuning the size of the graphic output, xlim and ylim can be specified in the mediate.diagram function. Otherwise, the graphics produced by mediate and moderate use the default xlim and ylim values. } \value{ \item{total}{The total direct effect of x on y (c)} \item{direct}{The beta effects of x (c') and m (b) on y } \item{indirect}{The indirect effect of x through m on y (c-ab)} \item{mean.boot}{mean bootstrapped value of indirect effect} \item{sd.boot}{Standard deviation of bootstrapped values} \item{ci.quant}{The upper and lower confidence intervals based upon the quantiles of the bootstrapped distribution.} \item{boot}{The bootstrapped values themselves.} \item{a}{The effect of x on m} \item{b}{The effect of m on y} \item{b.int}{The interaction of x and mod (if specified)} } \references{ Hayes, Andrew F. (2013) Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press. Preacher, Kristopher J and Hayes, Andrew F (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, \& Computers 36, (4) 717-731. Thoemmes, Felix (2015) Reversing arrows in mediation models does not distinguish plausible models. Basic and applied social psychology, 27: 226-234. Data from Hayes (2013), Preacher and Hayes (2004), and from Kerchoff (1974) } \author{William Revelle } \note{ There are a number of other packages that do mediation analysis (e.g., sem and lavaan) and they are probably preferred. This function is supplied for the more basic cases, with 1..k y variables, 1..n x variables, and 1 ..j mediators. It will not do two step mediation. } \seealso{\code{\link{setCor}} and \code{\link{setCor.diagram}} } \examples{ #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) #n.iter set to 50 (instead of default of 5000) for speed of example mediate(1,2,3,sobel,n.iter=50) #The example in Preacher and Hayes #the pmi covariance matrix from Hayes. 2013. #data set from Hayes, 2013 has 123 cases instead of the covariance matrix used here C.pmi <- structure(c(0.251232840197254, 0.119718779155005, 0.157470345195255, 0.124533519925363, 0.03052112488338, 0.0734039717446355, 0.119718779155005, 1.74573503931761, 0.647207783553245, 0.914575836332134, 0.0133613221378115, -0.0379181660669066, 0.157470345195255, 0.647207783553245, 3.01572704251633, 1.25128282020525, -0.0224576835932294, 0.73973743835799, 0.124533519925363, 0.914575836332134, 1.25128282020525, 2.40342196454751, -0.0106624017059843, -0.752990470478475, 0.03052112488338, 0.0133613221378115, -0.0224576835932294, -0.0106624017059843, 0.229241636678662, 0.884479541516727, 0.0734039717446355, -0.0379181660669066, 0.73973743835799, -0.752990470478475, 0.884479541516727, 33.6509729441557), .Dim = c(6L, 6L), .Dimnames = list(c("cond", "pmi", "import", "reaction", "gender", "age"), c("cond", "pmi", "import", "reaction", "gender", "age"))) #n.iter set to 50 (instead of default of 5000) for speed of example mediate(y="reaction",x = "cond",m=c("pmi","import"),data=C.pmi,n.obs=123,n.iter=50) #Data from sem package taken from Kerckhoff (and in turn, from Lisrel manual) R.kerch <- structure(list(Intelligence = c(1, -0.1, 0.277, 0.25, 0.572, 0.489, 0.335), Siblings = c(-0.1, 1, -0.152, -0.108, -0.105, -0.213, -0.153), FatherEd = c(0.277, -0.152, 1, 0.611, 0.294, 0.446, 0.303), FatherOcc = c(0.25, -0.108, 0.611, 1, 0.248, 0.41, 0.331), Grades = c(0.572, -0.105, 0.294, 0.248, 1, 0.597, 0.478 ), EducExp = c(0.489, -0.213, 0.446, 0.41, 0.597, 1, 0.651), OccupAsp = c(0.335, -0.153, 0.303, 0.331, 0.478, 0.651, 1 )), .Names = c("Intelligence", "Siblings", "FatherEd", "FatherOcc", "Grades", "EducExp", "OccupAsp"), class = "data.frame", row.names = c("Intelligence", "Siblings", "FatherEd", "FatherOcc", "Grades", "EducExp", "OccupAsp" )) #n.iter set to 50 (instead of default of 5000) for speed of demo mod.k <- mediate("OccupAsp","Intelligence",m= c(2:5),data=R.kerch,n.obs=767,n.iter=50) mediate.diagram(mod.k) #print the path values mod.k #Compare the following solution to the path coefficients found by the sem package mod.k2 <- mediate(y="OccupAsp",x=c("Intelligence","Siblings","FatherEd","FatherOcc"), m= c(5:6),data=R.kerch,n.obs=767,n.iter=50) mediate.diagram(mod.k2,show.c=FALSE) #simpler output #print the path values mod.k2 } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/paired.r.Rd0000644000176200001440000000457112015460354014155 0ustar liggesusers\name{paired.r} \alias{paired.r} \title{ Test the difference between (un)paired correlations } \description{ Test the difference between two (paired or unpaired) correlations. Given 3 variables, x, y, z, is the correlation between xy different than that between xz? If y and z are independent, this is a simple t-test of the z transformed rs. But, if they are dependent, it is a bit more complicated. } \usage{ paired.r(xy, xz, yz=NULL, n, n2=NULL,twotailed=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{xy}{r(xy) } \item{xz}{r(xz) } \item{yz}{r(yz) } \item{n}{Number of subjects for first group} \item{n2}{Number of subjects in second group (if not equal to n)} \item{twotailed}{Calculate two or one tailed probability values} } \details{To find the z of the difference between two independent correlations, first convert them to z scores using the Fisher r-z transform and then find the z of the difference between the two correlations. The default assumption is that the group sizes are the same, but the test can be done for different size groups by specifying n2. If the correlations are not independent (i.e., they are from the same sample) then the correlation with the third variable r(yz) must be specified. Find a t statistic for the difference of thee two dependent correlations. } \value{a list containing the calculated t or z values and the associated two (or one) tailed probability. \item{t}{t test of the difference between two dependent correlations} \item{p}{probability of the t or of the z} \item{z}{z test of the difference between two independent correlations} } \seealso{\code{\link{r.test}} for more tests of independent as well as dependent (paired) tests. \code{\link{p.rep.r}} for the probability of replicating a particular correlation. \code{\link{cor.test}} from stats for testing a single correlation and \code{\link{corr.test}} for finding the values and probabilities of multiple correlations. See also \code{\link{set.cor}} to do multiple correlations from matrix input.} \author{ William Revelle} \examples{ paired.r(.5,.3, .4, 100) #dependent correlations paired.r(.5,.3,NULL,100) #independent correlations same sample size paired.r(.5,.3,NULL, 100, 64) # independent correlations, different sample sizes } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/cohen.d.Rd0000644000176200001440000000771713122761437014002 0ustar liggesusers\name{cohen.d} \alias{cohen.d} \alias{cohen.d.ci} \alias{d.ci} \alias{cohen.d.by} \alias{d2r} \alias{r2d} \alias{d2t} \alias{t2d} \title{Find Cohen d and confidence intervals} \description{ Given a data.frame or matrix, find the standardized mean difference (Cohen's d) and confidence intervals for each variable depending upon a grouping variable. Convert the d statistic to the r equivalent, report the student's t statistic and associated p values, and return statistics for both values of the grouping variable. The Mahalanobis distance between the centroids of the two groups in the space defined by all the variables ia also found. Confidence intervals for Cohen d for one group (difference from 0) may also be found. } \usage{ cohen.d(x, group,alpha=.05,std=TRUE) cohen.d.ci(d,n=NULL,n2=NULL,n1=NULL,alpha=.05) d.ci(d,n=NULL,n2=NULL,n1=NULL,alpha=.05) cohen.d.by(x,group,group2,alpha=.05) d2r(d) r2d(rho) d2t(d,n=NULL,n2=NULL,n1=NULL) t2d(t,n=NULL,n2=NULL,n1=NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A data frame or matrix} \item{group}{Some dichotomous grouping variable} \item{group2}{Apply cohen.d for each of the subgroups defined by group2} \item{d}{An effect size} \item{n}{Total sample size (of groups 1 and 2)} \item{n1}{Sample size of group 1 (if only one group)} \item{n2}{Sample size of group 2 } \item{t}{Student's t statistic} \item{alpha}{1-alpha is the width of the confidence interval} \item{std}{Find the correlation rather covariance matrix} \item{rho}{A correlation to be converted to an effect size} } \details{ There are many ways of reporting how two groups differ. Cohen's d statistic is just the differences of means expressed in terms of the pooled within group standard deviation. This is insensitive to sample size. r is the a universal measure of effect size that is a simple function of d, but is bounded -1 to 1. The t statistic is merely d * sqrt(n)/2 and thus reflects sample size. Confidence intervals for Cohen's d may be found by converting the d to a t, finding the confidence intervals for t, and then converting those back to ds. This take advantage of the uniroot function and the non-centrality parameter of the t distribution. In the case of finding the confidence interval for a comparison against 0 (the one sample case), specify n1. This will yield a d = t/sqrt(n1) whereas in the case of the differnece between two samples, d = 2*t/sqrt(n) (for equal sample sizes n = n1+ n2) or d = t/sqrt(1/n1 + 1/n2) for the case of unequal sample sizes. \code{\link{cohen.d.by}} will find Cohen's d for groups for each subset of the data defined by group2. The summary of the output produces a simplified listing of the d values for each variable for each group. } \value{ \item{d}{Cohen's d statistic, including the upper and lower confidence levels} \item{hedges.g}{Hedge's g statistic} \item{M.dist}{Mahalanobis distance between the two groups} \item{t}{Student's t statistic} \item{r}{The point biserial r equivalent of d} \item{n}{sample size used for each analysis} \item{p}{The probability of abs(t)>0} \item{descriptive}{The descriptive statistics for each group} } \references{Cohen, Jackob (1988) Statistical Power Analysis for the Behavioral Sciences. 2nd Edition, Lawrence Erlbaum Associates. } \author{ William Revelle } \seealso{ \code{\link{describeBy}}, \code{\link{describe}} } \examples{ cohen.d(sat.act,"gender") cd <- cohen.d.by(sat.act,"gender","education") summary(cd) #summarize the output #now show several examples of confidence intervals #one group (d vs 0) #consider the t from the cushny data set t2d( -4.0621,n1=10) d.ci(-1.284549,n1=10) #the confidence interval of the effect of drug on sleep #two groups d.ci(.62,n=64) #equal group size d.ci(.62,n1=35,n2=29) #unequal group size } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ multivariate }% __ONLY ONE__ keyword per line psych/man/epi.Rd0000644000176200001440000001113312472664172013231 0ustar liggesusers\name{epi} \alias{epi} \alias{epi.dictionary} \docType{data} \title{Eysenck Personality Inventory (EPI) data for 3570 participants} \description{The EPI is and has been a very frequently administered personality test with 57 measuring two broad dimensions, Extraversion-Introversion and Stability-Neuroticism, with an additional Lie scale. Developed by Eysenck and Eysenck, 1964. Eventually replaced with the EPQ which measures three broad dimensions. This data set represents 3570 observations collected in the early 1990s at the Personality, Motivation and Cognition lab at Northwestern. The data are included here as demonstration of scale construction. } \usage{data(epi) data(epi.dictionary)} \format{ A data frame with 3570 observations on the following 57 variables. \describe{ \item{\code{V1}}{a numeric vector} \item{\code{V2}}{a numeric vector} \item{\code{V3}}{a numeric vector} \item{\code{V4}}{a numeric vector} \item{\code{V5}}{a numeric vector} \item{\code{V6}}{a numeric vector} \item{\code{V7}}{a numeric vector} \item{\code{V8}}{a numeric vector} \item{\code{V9}}{a numeric vector} \item{\code{V10}}{a numeric vector} \item{\code{V11}}{a numeric vector} \item{\code{V12}}{a numeric vector} \item{\code{V13}}{a numeric vector} \item{\code{V14}}{a numeric vector} \item{\code{V15}}{a numeric vector} \item{\code{V16}}{a numeric vector} \item{\code{V17}}{a numeric vector} \item{\code{V18}}{a numeric vector} \item{\code{V19}}{a numeric vector} \item{\code{V20}}{a numeric vector} \item{\code{V21}}{a numeric vector} \item{\code{V22}}{a numeric vector} \item{\code{V23}}{a numeric vector} \item{\code{V24}}{a numeric vector} \item{\code{V25}}{a numeric vector} \item{\code{V26}}{a numeric vector} \item{\code{V27}}{a numeric vector} \item{\code{V28}}{a numeric vector} \item{\code{V29}}{a numeric vector} \item{\code{V30}}{a numeric vector} \item{\code{V31}}{a numeric vector} \item{\code{V32}}{a numeric vector} \item{\code{V33}}{a numeric vector} \item{\code{V34}}{a numeric vector} \item{\code{V35}}{a numeric vector} \item{\code{V36}}{a numeric vector} \item{\code{V37}}{a numeric vector} \item{\code{V38}}{a numeric vector} \item{\code{V39}}{a numeric vector} \item{\code{V40}}{a numeric vector} \item{\code{V41}}{a numeric vector} \item{\code{V42}}{a numeric vector} \item{\code{V43}}{a numeric vector} \item{\code{V44}}{a numeric vector} \item{\code{V45}}{a numeric vector} \item{\code{V46}}{a numeric vector} \item{\code{V47}}{a numeric vector} \item{\code{V48}}{a numeric vector} \item{\code{V49}}{a numeric vector} \item{\code{V50}}{a numeric vector} \item{\code{V51}}{a numeric vector} \item{\code{V52}}{a numeric vector} \item{\code{V53}}{a numeric vector} \item{\code{V54}}{a numeric vector} \item{\code{V55}}{a numeric vector} \item{\code{V56}}{a numeric vector} \item{\code{V57}}{a numeric vector} } } \details{ The original data were collected in a group testing framework for screening participants for subsequent studies. The participants were enrolled in an introductory psychology class between Fall, 1991 and Spring, 1995. The structure of the E scale has been shown by Rocklin and Revelle (1981) to have two subcomponents, Impulsivity and Sociability. These were subsequently used by Revelle, Humphreys, Simon and Gilliland to examine the relationship between personality, caffeine induced arousal, and cognitive performance. } \source{Data from the PMC laboratory at Northwestern. } \references{ Eysenck, H.J. and Eysenck, S. B.G. (1968). Manual for the Eysenck Personality Inventory.Educational and Industrial Testing Service, San Diego, CA. Rocklin, T. and Revelle, W. (1981). The measurement of extraversion: A comparison of the Eysenck Personality Inventory and the Eysenck Personality Questionnaire. British Journal of Social Psychology, 20(4):279-284. } \examples{ data(epi) epi.keys <- make.keys(epi,list(E = c(1, 3, -5, 8, 10, 13, -15, 17, -20, 22, 25, 27, -29, -32, -34, -37, 39, -41, 44, 46, 49, -51, 53, 56), N=c(2, 4, 7, 9, 11, 14, 16, 19, 21, 23, 26, 28, 31, 33, 35, 38, 40, 43, 45, 47, 50, 52, 55, 57), L = c(6, -12, -18, 24, -30, 36, -42, -48, -54), I =c(1, 3, -5, 8, 10, 13, 22, 39, -41), S = c(-11, -15, 17, -20, 25, 27, -29, -32, -37, 44, 46, -51, 53))) scores <- scoreItems(epi.keys,epi) N <- epi[abs(epi.keys[,"N"]) >0] E <- epi[abs(epi.keys[,"E"]) >0] fa.lookup(epi.keys[,1:3],epi.dictionary) #show the items and keying information } \keyword{datasets} psych/man/circ.tests.Rd0000644000176200001440000001112712262077350014531 0ustar liggesusers\name{circ.tests} \alias{circ.tests} \title{ Apply four tests of circumplex versus simple structure } \description{Rotations of factor analysis and principal components analysis solutions typically try to represent correlation matrices as simple structured. An alternative structure, appealing to some, is a circumplex structure where the variables are uniformly spaced on the perimeter of a circle in a two dimensional space. Generating these data is straightforward, and is useful for exploring alternative solutions to affect and personality structure. } \usage{ circ.tests(loads, loading = TRUE, sorting = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{loads}{ A matrix of loadings \code{loads} here } \item{loading}{ Are these loadings or a correlation matrix \code{loading} } \item{sorting}{ Should the variables be sorted \code{sorting} } } \details{``A common model for representing psychological data is simple structure (Thurstone, 1947). According to one common interpretation, data are simple structured when items or scales have non-zero factor loadings on one and only one factor (Revelle & Rocklin, 1979). Despite the commonplace application of simple structure, some psychological models are defined by a lack of simple structure. Circumplexes (Guttman, 1954) are one kind of model in which simple structure is lacking. ``A number of elementary requirements can be teased out of the idea of circumplex structure. First, circumplex structure implies minimally that variables are interrelated; random noise does not a circumplex make. Second, circumplex structure implies that the domain in question is optimally represented by two and only two dimensions. Third, circumplex structure implies that variables do not group or clump along the two axes, as in simple structure, but rather that there are always interstitial variables between any orthogonal pair of axes (Saucier, 1992). In the ideal case, this quality will be reflected in equal spacing of variables along the circumference of the circle (Gurtman, 1994; Wiggins, Steiger, & Gaelick, 1981). Fourth, circumplex structure implies that variables have a constant radius from the center of the circle, which implies that all variables have equal communality on the two circumplex dimensions (Fisher, 1997; Gurtman, 1994). Fifth, circumplex structure implies that all rotations are equally good representations of the domain (Conte & Plutchik, 1981; Larsen & Diener, 1992). (Acton and Revelle, 2004) Acton and Revelle reviewed the effectiveness of 10 tests of circumplex structure and found that four did a particularly good job of discriminating circumplex structure from simple structure, or circumplexes from ellipsoidal structures. Unfortunately, their work was done in Pascal and is not easily available. Here we release R code to do the four most useful tests: 1 The Gap test of equal spacing 2 Fisher's test of equality of axes 3 A test of indifference to Rotation 4 A test of equal Variance of squared factor loadings across arbitrary rotations. To interpret the values of these various tests, it is useful to compare the particular solution to simulated solutions representing pure cases of circumplex and simple structure. See the example output from \code{\link{circ.simulation}} and compare these plots with the results of the circ.test. } \value{A list of four items is returned. These are the gap, fisher, rotation and variance test results. \item{gaps}{gap.test} \item{fisher}{fisher.test} \item{RT}{rotation.test} \item{VT}{variance.test} } \references{ Acton, G. S. and Revelle, W. (2004) Evaluation of Ten Psychometric Criteria for Circumplex Structure. Methods of Psychological Research Online, Vol. 9, No. 1 \url{http://personality-project.org/revelle/publications/acton.revelle.mpr110_10.pdf} } \author{ William Revelle} \note{ Of the 10 criterion discussed in Acton and Revelle (2004), these tests operationalize the four most useful. } \seealso{To understand the results of the circ.tests it it best to compare it to simulated values. Thus, see \code{\link{circ.simulation}}, \code{\link{sim.circ}} } \examples{ circ.data <- circ.sim(24,500) circ.fa <- fa(circ.data,2) plot(circ.fa,title="Circumplex Structure") ct <- circ.tests(circ.fa) #compare with non-circumplex data simp.data <- item.sim(24,500) simp.fa <- fa(simp.data,2) plot(simp.fa,title="Simple Structure") st <- circ.tests(simp.fa) res <- rbind(ct[1:4],st[1:4]) rownames(res) <- c("circumplex","Simple") print(res,digits=2) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{models} psych/man/make.keys.Rd0000755000176200001440000001235513154351176014350 0ustar liggesusers\name{make.keys} \alias{make.keys} \alias{keys2list} \alias{selectFromKeys} \title{ Create a keys matrix for use by score.items or cluster.cor} \description{ When scoring items by forming composite scales either from the raw data using \code{\link{score.items}} or from the correlation matrix using \code{\link{cluster.cor}}, it is necessary to create a keys matrix. This is just a short cut for doing so. The keys matrix is a nvar x nscales matrix of -1,0, 1 and defines the membership for each scale. Items can be specified by location or by name. } \usage{ make.keys(nvars, keys.list, item.labels = NULL, key.labels = NULL) keys2list(keys,sign=TRUE) selectFromKeys(keys.list) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{nvars}{Number of variables items to be scored} \item{keys.list}{ A list of the scoring keys,one element for each scale} \item{item.labels}{ Typically, just the colnames of the items data matrix. } \item{key.labels}{ Labels for the scales can be specified here, or in the key.list } \item{keys}{A keys matrix returned from make.keys} \item{sign}{if TRUE, prefix negatively keyed items with - (e.g., ``-E2")} } \details{The easiest way to prepare keys for \code{\link{scoreItems}}, \code{\link{scoreOverlap}}, \code{\link{scoreIrt.1pl}}, or \code{\link{scoreIrt.2pl}} is to specify a keys.list. This is just a list specifying the name of the scales to be scores and the direction of the items to be used. In earlier versions (prior to 1.6.9) keys were formed as a matrix of -1, 0, and 1s for al the items using make.keys. This is no longer necessary, but make.keys is kept for compatibility with earlier versions. There are three ways to create keys for the \code{\link{scoreItems}}, \code{\link{scoreOverlap}}, \code{\link{scoreIrt.1pl}}, or \code{\link{scoreIrt.2pl}} functions. One is to laboriously do it in a spreadsheet and then copy them into R. The other is to just specify them by item number in a list. \code{\link{make.keys}} allows one to specify items by name or by location or a mixture of both. \code{\link{keys2list}} reverses the \code{\link{make.keys}} process and returns a list of scoring keys with the item names for each item to be keyed. If sign=FALSE, this is just a list of the items to be scored. (Useful for \code{\link{scoreIrt.2pl}} \code{\link{selectFromKeys}} will strip the signs from a keys.list and create a vector of item names (deleting duplicates) associated with those keys. This is useful if using a keys.list to define scales and then just selecting those items that are in subset of the keys.list. This is now done in the scoring functions in the interest of speed. Since these scoring functions \code{\link{scoreItems}}, \code{\link{scoreOverlap}}, \code{\link{scoreIrt.1pl}}, or \code{\link{scoreIrt.2pl}} can now (> version 1.6.9) just take a keys.list as input, make.keys is not as important, but is kept for documentation purposes. To address items by name it is necessary to specify item names, either by using the item.labels value, or by putting the name of the data file or the colnames of the data file to be scored into the first (nvars) position. If specifying by number (location), then nvars is the total number of items in the object to be scored, not just the number of items used. See the examples for the various options. Note that make.keys was revised in Sept, 2013 to allow for keying by name. It is also possible to do several make.keys operations and then combine them using \code{\link{superMatrix}}. } \value{ \item{keys }{a nvars x nkeys matrix of -1, 0, or 1s describing how to score each scale. nkeys is the length of the keys.list} } \seealso{ \code{\link{scoreItems}}, \code{\link{scoreOverlap}}, \code{\link{cluster.cor}} \code{\link{superMatrix}} } \examples{ data(attitude) #specify the items by location key.list <- list(all=c(1,2,3,4,-5,6,7), first=c(1,2,3), last=c(4,5,6,7)) keys <- make.keys(7,key.list,item.labels = colnames(attitude)) keys #now, undo this new.keys.list <- keys2list(keys) #note, these are now given the variable names select <- selectFromKeys(key.list) #scores <- score.items(keys,attitude) #scores data(bfi) #first create the keys by location (the conventional way) keys.list <- list(agree=c(-1,2:5),conscientious=c(6:8,-9,-10), extraversion=c(-11,-12,13:15),neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys <- make.keys(25,keys.list,item.labels=colnames(bfi)[1:25]) new.keys.list <- keys2list(keys) #these will be in the form of variable names #alternatively, create by a mixture of names and locations keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"),extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys <- make.keys(bfi,keys.list) #specify the data file to be scored (bfi) #or keys <- make.keys(colnames(bfi),keys.list) #specify the names of the variables to be used #or #specify the number of variables to be scored and their names in all cases keys <- make.keys(28,keys.list,colnames(bfi)) scores <- scoreItems(keys,bfi) summary(scores) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{models}psych/man/factor.scores.Rd0000644000176200001440000001224613033220545015217 0ustar liggesusers\name{factor.scores} \alias{factor.scores} \title{Various ways to estimate factor scores for the factor analysis model} \description{A fundamental problem with factor analysis is that although the model is defined at the structural level, it is indeterminate at the data level. This problem of factor indeterminancy leads to alternative ways of estimating factor scores, none of which is ideal. Following Grice (2001) four different methods are available here. } \usage{ factor.scores(x, f, Phi = NULL, method = c("Thurstone", "tenBerge", "Anderson", "Bartlett", "Harman","components"),rho=NULL,impute="none")} \arguments{ \item{x}{Either a matrix of data if scores are to be found, or a correlation matrix if just the factor weights are to be found.} \item{f}{The output from the \code{\link{fa}} or \code{\link{irt.fa}} functions, or a factor loading matrix.} \item{Phi}{If a pattern matrix is provided, then what were the factor intercorrelations. Does not need to be specified if f is the output from the \code{\link{fa}} or \code{\link{irt.fa}} functions.} \item{method}{Which of four factor score estimation procedures should be used. Defaults to "Thurstone" or regression based weights. See details below for the other four methods.} \item{rho}{If x is a set of data and rho is specified, then find scores based upon the fa results and the correlations reported in rho. Used when scoring fa.poly results.} \item{impute}{By default, only complete cases are scored. But, missing data can be imputed using "median" or "mean". The number of missing by subject is reported. } } \details{Although the factor analysis model is defined at the structural level, it is undefined at the data level. This is a well known but little discussed problem with factor analysis. Factor scores represent estimates of common part of the variables and should not be thought of as identical to the factors themselves. If a factor is thought of as a chop stick stuck into the center of an ice cream cone and factor score estimates are represented by straws anywhere along the edge of the cone the problem of factor indeterminacy becomes clear, for depending on the shape of the cone, two straws can be negatively correlated with each other. (The imagery is taken from Niels Waller, adapted from Stanley Mulaik). In a very clear discussion of the problem of factor score indeterminacy, Grice (2001) reviews several alternative ways of estimating factor scores and considers weighting schemes that will produce uncorrelated factor score estimates as well as the effect of using course coded (unit weighted) factor weights. \code{\link{factor.scores}} uses four different ways of estimate factor scores. In all cases, the factor score estimates are based upon the data matrix, X, times a weighting matrix, W, which weights the observed variables. For polytomous or dichotmous data, factor scores can be estimated using Item Response Theory techniques (e.g., using \code{link{irt.fa}} and then \code{link{scoreIrt}}. Such scores are still just factor score estimates, for the IRT model is a latent variable model equivalent to factor analysis. \itemize{ \item method="Thurstone" finds the regression based weights: \eqn{W = R^{-1} F} where R is the correlation matrix and F is the factor loading matrix. \item method="tenBerge" finds weights such that the correlation between factors for an oblique solution is preserved. Note that formula 8 in Grice has a typo in the formula for C and should be: \eqn{L = F \Phi^(1/2) } \eqn{C = R^(-1/2) L (L' R^(-1) L)^(-1/2) } \eqn{W = R ^(-1/2) C \Phi^(1/2) } \item method="Anderson" finds weights such that the factor scores will be uncorrelated: \eqn{W = U^{-2}F (F' U^{-2} R U^{-2} F)^{-1/2}} where U is the diagonal matrix of uniquenesses. The Anderson method works for orthogonal factors only, while the tenBerge method works for orthogonal or oblique solutions. \item method = "Bartlett" finds weights given \eqn{W = U^{-2}F (F' U^{-2}F)^{-1}} \item method="Harman" finds weights based upon socalled "idealized" variables: \eqn{W = F (t(F) F)^{-1}}. \item method="components" uses weights that are just component loadings. } } \value{ \itemize{ \item scores (the factor scores if the raw data is given) \item weights (the factor weights) \item r.scores (The correlations of the factor score estimates.) \item missing A vector of the number of missing observations per subject } } \references{ Grice, James W.,2001, Computing and evaluating factor scores, Psychological Methods, 6,4, 430-450. (note the typo in equation 8) ten Berge, Jos M.F., Wim P. Krijnen, Tom Wansbeek and Alexander Shapiro (1999) Some new results on correlation-preserving factor scores prediction methods. Linear Algebra and its Applications, 289, 311-318. Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} } \author{ William Revelle } \seealso{ \code{\link{fa}}, \code{\link{factor.stats}} } \examples{ f3 <- fa(Thurstone) f3$weights #just the scoring weights f5 <- fa(bfi,5) round(cor(f5$scores,use="pairwise"),2) #compare to the f5 solution } \keyword{ multivariate } \keyword{ models} psych/man/best.scales.Rd0000644000176200001440000001556413127215634014667 0ustar liggesusers\name{bestScales} \alias{bestItems} \alias{bestScales} \alias{lookup} \alias{fa.lookup} \alias{item.lookup} \alias{keys.lookup} \title{A set of functions for factorial and empirical scale construction} \description{When constructing scales through rational, factorial, or empirical means, it is useful to examine the content of the items that relate most highly to each other (e.g., the factor loadings of \code{\link{fa.lookup}} of a set of items) , or to some specific set of criteria (e.g., \code{\link{bestScales}}). Given a dictionary of item content, these routines will sort by factor loading or criteria correlations and display the item content. } \usage{ bestScales(x,criteria,cut=.1,n.item =10,overlap=FALSE,dictionary=NULL,impute="none", n.iter =1,frac=.9,digits=2) bestItems(x,criteria=1,cut=.3, abs=TRUE, dictionary=NULL,digits=2) lookup(x,y,criteria=NULL) fa.lookup(f,dictionary,digits=2) item.lookup(f,m, dictionary,cut=.3, digits = 2) keys.lookup(keys.list,dictionary) } \arguments{ \item{x}{A data matrix or data frame depending upon the function.} \item{y}{A data matrix or data frame or a vector} \item{criteria}{Which variables (by name or location) should be the empirical target for bestScales and bestItems} \item{f}{The object returned from either a factor analysis (fa) or a principal components analysis (principal) } \item{keys.list}{A list of scoring keys suitable to use for make.keys} \item{cut}{Return all values in abs(x[,c1]) > cut.} \item{abs}{if TRUE, sort by absolute value in bestItems} \item{dictionary}{a data.frame with rownames corresponding to rownames in the f$loadings matrix or colnames of the data matrix or correlation matrix, and entries (may be multiple columns) of item content.} \item{m}{A data frame of item means} \item{n.item}{How many items make up an empirical scale} \item{overlap}{Are the correlations with other criteria fair game for bestScales} \item{impute}{When finding the best scales, and thus the correlations with the criteria, how should we handle missing data? The default is drop missing items.} \item{n.iter}{Replicate the best item function n.iter times, sampling frac of the cases each time, and validating on 1 - frac of the cases.} \item{frac}{What fraction of the subjects should be used for the derivation sample. frac is set to one if n.iter = 1} \item{digits}{round to digits} } \details{ \code{\link{bestItems}} and \code{\link{lookup}} are simple helper functions to summarize correlation matrices or factor loading matrices. \code{\link{bestItems}} will sort the specified column (criteria) of x on the basis of the (absolute) value of the column. The return as a default is just the rowname of the variable with those absolute values > cut. If there is a dictionary of item content and item names, then include the contents as a two column matrix with rownames corresponding to the item name and then as many fields as desired for item content. (See the example dictionary \code{\link{bfi.dictionary}}). \code{\link{lookup}} is used by \code{\link{bestItems}} and will find values in c1 of y that match those in x. It returns those rows of y of that match x. Suppose that you have a "dictionary" of the many variables in a study but you want to consider a small subset of them in a data set x. Then, you can find the entries in the dictionary corresponding to x by lookup(rownames(x),y) If the column is not specified, then it will match by rownames(y). \code{\link{fa.lookup}} is used when examining the output of a factor analysis and one wants the corresponding variable names and contents. The returned object may then be printed in LaTex by using the \code{\link{df2latex}} function with the char option set to TRUE. Similarly, given a correlation matrix, r, of the x variables, if you want to find the items that most correlate with another item or scale, and then show the contents of that item from the dictionary, bestItems(r,c1=column number or name of x, contents = y) \code{\link{bestScales}} will find up to n.items that have absolute correlations with a criterion greater than cut. If the overlap option is FALSE (default) the other criteria are not used. This is an example of ``dust bowl empiricism" in that there is not latent construct being measured, just those items that most correlate with a set of criteria. The empirically identified items are then formed into scales (ignoring concepts of internal consistency) which are then correlated with the criteria. Clearly, \code{\link{bestScales}} is capitalizing on chance associations. Thus, we can validate the empirical scales by deriving them on a fraction of the total number of subjects, and cross validating on the remaining subjects. This is done n.iter times to show the variability of these empirically derived scale validities. For very large data sets (e.g., those from SAPA) these scales seem very stable. \code{\link{item.lookup}} combines the output from a factor analysis \code{\link{fa}} with simple descriptive statistics (a data frame of means) with a dictionary. Items are grouped by factor loadings > cut, and then sorted by item mean. This allows a better understanding of how a scale works, in terms of the meaning of the item endorsements. } \value{ \code{\link{bestScales}} returns the correlation of the empirically constructed scale with each criteria and the items used in the scale. If a dictionary is specified, it also returns a list (value) that shows the item content. Also returns the keys list so that scales can be found using \code{\link{cluster.cor}} or \code{\link{scoreItems}}. \code{\link{bestItems}} returns a sorted list of factor loadings or correlations with the labels as provided in the dictionary. \code{\link{lookup}} is a very simple implementation of the match function. \code{\link{fa.lookup}} takes a factor/cluster analysis object (or just a keys like matrix), sorts it using \code{\link{fa.sort}} and then matches by row.name to the corresponding dictionary entries. } \note{ To create a dictionary, create an object with row names as the item numbers, and the columns as the item content. See the \code{link{bfi.dictionary}} as an example. } \references{ Revelle, W. (in preparation) An introduction to psychometric theory with applications in {R}. Springer. (Available online at \url{http://personality-project.org/r/book}). } \author{William Revelle} \note{Although empirical scale construction is appealing, it has the basic problem of capitalizing on chance. Thus, be careful of over interpreting the results unless working with large samples. } \seealso{ \code{\link{fa}}, \code{\link{iclust}},\code{\link{principal}} } \examples{ bs <- bestScales(bfi,criteria=c("gender","education","age"),dictionary=bfi.dictionary) bs f5 <- fa(bfi,5) m <- colMeans(bfi,na.rm=TRUE) item.lookup(f5,m,dictionary=bfi.dictionary[2]) fa.lookup(f5,dictionary=bfi.dictionary[2]) #just show the item content, not the source of the items } \keyword{ models } \keyword{multivariate } psych/man/error.dots.Rd0000644000176200001440000000633613130732325014552 0ustar liggesusers\name{error.dots} \alias{error.dots} \title{Show a dot.chart with error bars for different groups or variables} \description{Yet one more of the graphical ways of showing data with error bars for different groups. A dot.chart with error bars for different groups or variables is found using from \code{\link{describe}}, \code{\link{describeBy}}, or \code{\link{statsBy}}. } \usage{ error.dots(x, var = NULL, se = NULL, group = NULL, sd = FALSE, head = 12, tail = 12, sort = TRUE, decreasing = TRUE, main = NULL, alpha = 0.05, eyes = FALSE, min.n = NULL, max.labels = 40, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pt.cex = cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlab = NULL, ylab = NULL, xlim = NULL, ...) } \arguments{ \item{x}{A data frame or matrix of raw data, or the resulting object from \code{\link{describe}}, \code{\link{describeBy}}, or \code{\link{statsBy}} } \item{var}{The variable to show} \item{se}{Source of a standard error} \item{group}{A grouping variable, if desired. Not implemented.} \item{sd}{if FALSE, confidence intervals in terms of standard errors, otherwise draw one standard deviation} \item{head}{The number of largest values to report} \item{tail}{The number of smallest values to report} \item{sort}{Sort the groups/variables by value} \item{decreasing}{Should they be sorted in increasing or decreasing order (from top to bottom)} \item{main}{The caption for the figure} \item{alpha}{p value for confidence intervals} \item{eyes}{Draw catseyes for error limits} \item{min.n}{If using describeBy or statsBy, what should be the minimum sample size to draw} \item{max.labels}{Length of labels (truncate after this value)} \item{labels}{Specify the labels versus find them from the row names} \item{groups}{ignored} \item{gdata}{ignored} \item{cex}{The standard meaning of cex for graphics} \item{pt.cex}{ignored} \item{pch}{Plot character} \item{gpch}{ignored} \item{bg}{background color} \item{color}{Color} \item{gcolor}{ignored} \item{lcolor}{ignored?} \item{xlab}{Label the x axis, if NULL, the variable name is used} \item{ylab}{If NULL, then the group rownames are used} \item{xlim}{If NULL, then calculated to show nice values} \item{\dots}{And any other graphic parameters we have forgotten} } \details{ Adapted from the dot.chart function to include error bars and to use the output of\code{\link{describe}}, \code{\link{describeBy}}, and \code{\link{statsBy}} To speed up multiple plots, the function can work from the output of a previous run. Thus describeBy will be done and the results can be show for multiple variables} \value{ Returns (invisibily) either a describeBy or describe object } \references{Used in particular for showing http:\\sapa-project.org output.} \author{William Revelle} \seealso{ \code{\link{describe}}, \code{\link{describeBy}}, or \code{\link{statsBy}} as well as \code{\link{error.bars}}, \code{\link{error.bars.by}}, or \code{\link{statsBy}} } \examples{ error.dots(bfi[1:25]) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/kaiser.Rd0000644000176200001440000000323313016076552013726 0ustar liggesusers\name{kaiser} \alias{kaiser} \title{Apply the Kaiser normalization when rotating factors} \description{ Kaiser (1958) suggested normalizing factor loadings before rotating them, and then denormalizing them after rotation. The GPArotation package does not (by default) normalize, nor does the \code{\link{fa}} function. Then, to make it more confusing, varimax in stats does,Varimax in GPArotation does not. \code{\link{kaiser}} will take the output of a non-normalized solution and report the normalized solution. } \usage{ kaiser(f, rotate = "oblimin",m=4,pro.m=4) } \arguments{ \item{f}{A factor analysis output from \code{\link{fa}} or a factor loading matrix. } \item{rotate}{Any of the standard rotations avaialable in the GPArotation package. } \item{m}{a parameter to pass to \code{\link{Promax}} } \item{pro.m}{A redundant parameter, which is used to replace m in calls to Promax} } \details{Best results if called from an unrotated solution. Repeated calls using a rotated solution will produce incorrect estimates of the correlations between the factors. } \value{See the values returned by GPArotation functions} \references{ Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187-200. } \author{ William Revelle } \note{ Prepared in response to a question about why \code{\link{fa}} oblimin results are different from SPSS. } \seealso{ \code{\link{fa}}, \code{\link{Promax}} } \examples{ f3 <- fa(Thurstone,3) f3n <- kaiser(fa(Thurstone,3,rotate="none")) f3p <- kaiser(fa(Thurstone,3,rotate="none"),rotate="Promax",m=3) factor.congruence(list(f3,f3n,f3p)) } \keyword{ multivariate } \keyword{ models}psych/man/cor.ci.Rd0000644000176200001440000001325412657675052013643 0ustar liggesusers\name{cor.ci} \alias{cor.ci} \alias{corCi} \title{Bootstrapped confidence intervals for raw and composite correlations} \description{Although normal theory provides confidence intervals for correlations, this is particularly problematic with Synthetic Aperture Personality Assessment (SAPA) data where the individual items are Massively Missing at Random. Bootstrapped confidence intervals are found for Pearson, Spearman, Kendall, tetrachoric, or polychoric correlations and for scales made from those correlations. } \usage{ cor.ci(x, keys = NULL, n.iter = 100, p = 0.05,overlap = FALSE, poly = FALSE, method = "pearson", plot=TRUE,...) corCi(x, keys = NULL, n.iter = 100, p = 0.05,overlap = FALSE, poly = FALSE, method = "pearson", plot=TRUE,...) } \arguments{ \item{x}{The raw data} \item{keys}{If NULL, then the confidence intervals of the raw correlations are found. Otherwise, composite scales are formed from the keys applied to the correlation matrix (in a logic similar to \code{\link{cluster.cor}} but without the bells and whistles) and the confidence of those composite scales intercorrelations. } \item{n.iter}{The number of iterations to bootstrap over. This will be very slow if using tetrachoric/or polychoric correlations. } \item{p}{The upper and lower confidence region will include 1-p of the distribution.} \item{overlap}{If true, the correlation between overlapping scales is corrected for item overlap.} \item{poly}{if FALSE, then find the correlations using the method specified (defaults to Pearson). If TRUE, the polychoric correlations will be found (slowly). Because the polychoric function uses multicores (if available), and cor.ci does as well, the number of cores used is options("mc.cores")^2. } \item{method}{"pearson","spearman", "kendall"} \item{plot}{Show the correlation plot with correlations scaled by the probability values. To show the matrix in terms of the confidence intervals, use \code{\link{cor.plot.upperLowerCi}}.} \item{...}{Other parameters for axis (e.g., cex.axis to change the font size, srt to rotate the numbers in the plot)} } \details{ The original data are and correlations are found. If keys are specified (the normal case), then composite scales based upon the correlations are found and reported. This is the same procedure as done using \code{\link{cluster.cor}} or \code{\link{scoreItems}}. Then, n.iter times, the data are recreated by sampling subjects (rows) with replacement and the correlations (and composite scales) are found again (and again and again). Mean and standard deviations of these values are calculated based upon the Fisher Z transform of the correlations. Summary statistics include the original correlations and their confidence intervals. For those who want the complete set of replications, those are available as an object in the resulting output. Although particularly useful for SAPA (\url{http://sapa-project.org}) type data, this will work for any normal data set as well. Although the correlations are shown automatically as a \code{\link{cor.plot}}, it is possible to show the upper and lower confidence intervals by using \code{\link{cor.plot.upperLowerCi}}. This will also return, invisibly, a matrix for printing with the lower and upper bounds of the correlations shown below and above the diagonal. } \value{ \item{rho }{The original (composite) correlation matrix. } \item{means }{Mean (Fisher transformed) correlation} \item{sds}{Standard deviation of Fisher transformed correlations} \item{ci}{Mean +/- alpha/2 of the z scores as well as the alpha/2 and 1-alpha/2 quantiles. These are labeled as lower.emp(ircal), lower.norm(al), upper.norm and upper.emp.} \item{replicates}{The observed replication values so one can do one's own estimates} } \references{For SAPA type data, see Revelle, W., Wilt, J., and Rosenthal, A. (2010) Personality and Cognition: The Personality-Cognition Link. In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. } \author{William Revelle} \seealso{\code{\link{make.keys}}, \code{\link{cluster.cor}}, and \code{\link{scoreItems}} for forming synthetic correlation matrices from composites of item correlations. See \code{\link{scoreOverlap}} for correcting for item overlap in scales. See also \code{\link{corr.test}} for standard significance testing of correlation matrices. See also \code{\link{lowerCor}} for finding and printing correlation matrices, as well as \code{\link{lowerMat}} for displaying them. Also see \code{\link{cor.plot.upperLowerCi}} for displaying the confidence intervals graphically. } \examples{ cor.ci(bfi[1:200,1:10]) # just the first 10 variables #The keys have overlapping scales keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious= c("C1", "C2","C3","-C4","-C5"),extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism= c("N1", "N2", "N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5"), alpha=c("-A1","A2","A3","A4","A5","C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"), beta = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5") ) keys <- make.keys(bfi,keys.list) #do not correct for item overlap rci <- cor.ci(bfi[1:200,],keys,n.iter=10,main="correlation with overlapping scales") #also shows the graphic -note the overlap #correct for overlap rci <- cor.ci(bfi[1:200,],keys,overlap=TRUE, n.iter=10,main="Correct for overlap") #show the confidence intervals ci <- cor.plot.upperLowerCi(rci) #to show the upper and lower confidence intervals ci #print the confidence intervals in matrix form } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{ models }psych/man/phi.Rd0000644000176200001440000000527412437721210013231 0ustar liggesusers\name{phi} \alias{phi} \title{ Find the phi coefficient of correlation between two dichotomous variables } \description{Given a 1 x 4 vector or a 2 x 2 matrix of frequencies, find the phi coefficient of correlation. Typical use is in the case of predicting a dichotomous criterion from a dichotomous predictor. } \usage{ phi(t, digits = 2) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{t}{a 1 x 4 vector or a 2 x 2 matrix } \item{digits}{ round the result to digits } } \details{In many prediction situations, a dichotomous predictor (accept/reject) is validated against a dichotomous criterion (success/failure). Although a polychoric correlation estimates the underlying Pearson correlation as if the predictor and criteria were continuous and bivariate normal variables, and the tetrachoric correlation if both x and y are assumed to dichotomized normal distributions, the phi coefficient is the Pearson applied to a matrix of 0's and 1s. The phi coefficient was first reported by Yule (1912), but should not be confused with the \code{\link{Yule}} Q coefficient. For a very useful discussion of various measures of association given a 2 x 2 table, and why one should probably prefer the \code{\link{Yule}} Q coefficient, see Warren (2008). Given a two x two table of counts \cr \tabular{llll}{ \tab a \tab b \tab a+b (R1)\cr \tab c \tab d \tab c+d (R2)\cr \tab a+c(C1) \tab b+d (C2) \tab a+b+c+d (N) } convert all counts to fractions of the total and then \\ Phi = [a- (a+b)*(a+c)]/sqrt((a+b)(c+d)(a+c)(b+d) ) =\\ (a - R1 * C1)/sqrt(R1 * R2 * C1 * C2) This is in contrast to the Yule coefficient, Q, where \\ Q = (ad - bc)/(ad+bc) which is the same as \\ [a- (a+b)*(a+c)]/(ad+bc) Since the phi coefficient is just a Pearson correlation applied to dichotomous data, to find a matrix of phis from a data set involves just finding the correlations using cor or \code{\link{lowerCor}} or \code{\link{corr.test}}. } \value{phi coefficient of correlation } \author{William Revelle with modifications by Leo Gurtler } \references{Warrens, Matthijs (2008), On Association Coefficients for 2x2 Tables and Properties That Do Not Depend on the Marginal Distributions. Psychometrika, 73, 777-789. Yule, G.U. (1912). On the methods of measuring the association between two attributes. Journal of the Royal Statistical Society, 75, 579-652.} \seealso{ \code{\link{phi2tetra}} ,\code{\link{Yule}}, \code{\link{Yule.inv}} \code{\link{Yule2phi}}, \code{\link{tetrachoric}} and \code{\link{polychoric}}} \examples{ phi(c(30,20,20,30)) phi(c(40,10,10,40)) x <- matrix(c(40,5,20,20),ncol=2) phi(x) } \keyword{multivariate }% at least one, from doc/KEYWORDS \keyword{models }% __ONLY ONE__ keyword per line psych/man/neo.Rd0000644000176200001440000000660111645407416013236 0ustar liggesusers\name{neo} \Rdversion{1.1} \alias{neo} \docType{data} \title{NEO correlation matrix from the NEO_PI_R manual} \description{The NEO.PI.R is a widely used personality test to assess 5 broad factors (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness) with six facet scales for each factor. The correlation matrix of the facets is reported in the NEO.PI.R manual for 1000 subjects. } \usage{data(neo)} \format{ A data frame of a 30 x 30 correlation matrix with the following 30 variables. \describe{ \item{N1}{Anxiety} \item{N2}{AngryHostility} \item{ N3}{Depression } \item{ N4}{Self-Consciousness } \item{ N5}{Impulsiveness } \item{ N6}{Vulnerability } \item{ E1}{Warmth } \item{ E2}{Gregariousness } \item{ E3}{Assertiveness } \item{ E4}{Activity } \item{ E5}{Excitement-Seeking } \item{ E6}{PositiveEmotions } \item{ O1}{Fantasy } \item{ O2}{Aesthetics } \item{ O3}{Feelings } \item{ O4}{Ideas } \item{ O5}{Actions } \item{ O6}{Values } \item{ A1}{Trust } \item{ A2}{Straightforwardness } \item{ A3}{Altruism } \item{ A4}{Compliance } \item{ A5}{Modesty } \item{ A6}{Tender-Mindedness } \item{ C1}{Competence } \item{ C2}{Order } \item{ C3}{Dutifulness } \item{ C4}{AchievementStriving } \item{ C5}{Self-Discipline } \item{ C6}{Deliberation } } } \details{The past thirty years of personality research has led to a general consensus on the identification of major dimensions of personality. Variously known as the ``Big 5" or the ``Five Factor Model", the general solution represents 5 broad domains of personal and interpersonal experience. Neuroticism and Extraversion are thought to reflect sensitivity to negative and positive cues from the environment and the tendency to withdraw or approach. Openness is sometimes labeled as Intellect and reflects an interest in new ideas and experiences. Agreeableness and Conscientiousness reflect tendencies to get along with others and to want to get ahead. The factor structure of the NEO suggests five correlated factors as well as two higher level factors. The NEO was constructed with 6 ``facets" for each of the five broad factors. } \source{Costa, Paul T. and McCrae, Robert R. (1992) (NEO PI-R) professional manual. Psychological Assessment Resources, Inc. Odessa, FL. (with permission of the author and the publisher) } \references{ Digman, John M. (1990) Personality structure: Emergence of the five-factor model. Annual Review of Psychology. 41, 417-440. John M. Digman (1997) Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 1246-1256. McCrae, Robert R. and Costa, Paul T., Jr. (1999) A Five-Factor theory of personality. In Pervin, Lawrence A. and John, Oliver P. (eds) Handbook of personality: Theory and research (2nd ed.) 139-153. Guilford Press, New York. N.Y. Revelle, William (1995), Personality processes, Annual Review of Psychology, 46, 295-328. Joshua Wilt and William Revelle (2009) Extraversion and Emotional Reactivity. In Mark Leary and Rick H. Hoyle (eds). Handbook of Individual Differences in Social Behavior. Guilford Press, New York, N.Y. } \examples{ data(neo) n5 <- fa(neo,5) neo.keys <- make.keys(30,list(N=c(1:6),E=c(7:12),O=c(13:18),A=c(19:24),C=c(25:30))) n5p <- target.rot(n5,neo.keys) #show a targeted rotation for simple structure n5p } \keyword{datasets} psych/man/cor.plot.Rd0000644000176200001440000002235413151016505014205 0ustar liggesusers\name{cor.plot} \Rdversion{1.1} \alias{cor.plot} \alias{corPlot} \alias{cor.plot.upperLowerCi} \alias{corPlotUpperLowerCi} \title{Create an image plot for a correlation or factor matrix} \description{Correlation matrices may be shown graphically by using the image function to emphasize structure. This is a particularly useful tool for showing the structure of correlation matrices with a clear structure. Partially meant for the pedagogical value of the graphic for teaching or discussing factor analysis and other multivariate techniques. } \usage{ corPlot(r,numbers=FALSE,colors=TRUE,n=51,main=NULL,zlim=c(-1,1), show.legend=TRUE, labels=NULL,n.legend=10,keep.par=TRUE,select=NULL, pval=NULL, cuts=c(.001,.01),scale=TRUE,cex,MAR,upper=TRUE,diag=TRUE, symmetric=TRUE,stars=FALSE, adjust="holm",xaxis=1, xlas=0,ylas=2,gr=NULL,...) corPlotUpperLowerCi(R,numbers=TRUE,cuts=c(.001,.01,.05),select=NULL, main="Upper and lower confidence intervals of correlations",adjust=FALSE,...) cor.plot(r,numbers=FALSE,colors=TRUE,n=51,main=NULL,zlim=c(-1,1), show.legend=TRUE, labels=NULL,n.legend=10,keep.par=TRUE,select=NULL, pval=NULL, cuts=c(.001,.01),scale=TRUE,cex,MAR,upper=TRUE,diag=TRUE, symmetric=TRUE,stars=FALSE,adjust="holm",xaxis=1,xlas=0,ylas=2,gr=NULL,...) #deprecated cor.plot.upperLowerCi(R,numbers=TRUE,cuts=c(.001,.01,.05),select=NULL, main="Upper and lower confidence intervals of correlations",adjust=FALSE,...) #deprecated } \arguments{ \item{r}{A correlation matrix or the output of \code{\link{fa}}, \code{\link{principal}} or \code{\link{omega}}. } \item{R}{The object returned from \code{\link{cor.ci}} } \item{numbers}{Display the numeric value of the correlations. Defaults to FALSE.} \item{colors}{Defaults to TRUE and colors use colors from the colorRampPalette from red through white to blue, but colors=FALSE will use a grey scale} \item{n}{The number of levels of shading to use. Defaults to 51} \item{main}{A title. Defaults to "correlation plot"} \item{zlim}{The range of values to color -- defaults to -1 to 1} \item{show.legend}{A legend (key) to the colors is shown on the right hand side} \item{labels}{if NULL, use column and row names, otherwise use labels} \item{n.legend}{How many categories should be labelled in the legend?} \item{keep.par}{restore the graphic parameters when exiting} \item{pval}{scale the numbers by their pvals, categorizing them based upon the values of cuts} \item{cuts}{Scale the numbers by the categories defined by pval < cuts} \item{scale}{Should the size of the numbers be scaled by the significance level?} \item{select}{Select the subset of variables to plot} \item{cex}{Character size. Should be reduced a bit for large numbers of variables.} \item{MAR}{Allows for adjustment of the margins if using really long labels or big fonts} \item{upper}{Should the upper off diagonal matrix be drawn, or left blank?} \item{diag}{Should we show the diagonal?} \item{symmetric}{By default, if given a non-symmetric matrix, we find the correlations using pair.wise complete and then show them. If wanting to display a non-symmetric matrix, then specify that symmetric is FALSE} \item{stars}{For those people who like to show the 'significance' of correlations by using magic astricks, set stars=TRUE} \item{adjust}{If showing significance, should we adjust for multiple tests? The default is to show zero order probabilities below the diagonal and adjust these using the 'holm' correction above the diagonal. Use adjust = "none" if no adjustment is desired. adjust is also used in corPlotUpperLowerCI to show the nominal alpha confidence intervals (adjust =FALSE) or the Bonferonni adjusted confidence intervals (adjust=TRUE).} \item{xlas}{Orientation of the x axis labels (1 = horizontal, 0, parallel to axis, 2 perpendicular to axis)} \item{ylas}{Orientation of the y axis labels (1 = horizontal, 0, parallel to axis, 2 perpendicular to axis)} \item{xaxis}{By default, draw this below the figure. If xaxis=3, then it wil be drawn above the figure} \item{gr}{A color gradient: e.g., gr <- colorRampPalette(c("#B52127", "white", "#2171B5")) will produce slightly more pleasing (to some) colors. See next to last example.} \item{...}{Other parameters for axis (e.g., cex.axis to change the font size, srt to rotate the numbers in the plot)} } \details{When summarizing the correlations of large data bases or when teaching about factor analysis or cluster analysis, it is useful to graphically display the structure of correlation matrices. This is a simple graphical display using the image function. The difference between mat.plot with a regular image plot is that the primary diagonal goes from the top left to the lower right. zlim defines how to treat the range of possible values. -1 to 1 and the color choice is more reasonable. Setting it as c(0,1) will lead to negative correlations treated as zero. This is advantageous when showing general factor structures, because it makes the 0 white. The default shows a legend for the color coding on the right hand side of the figure. Inspired, in part, by a paper by S. Dray (2008) on the number of components problem. Modified following suggestions by David Condon and Josh Wilt to use a more meaningful color choice ranging from dark red (-1) through white (0) to dark blue (1). Further modified to allow for color choices using the gr option (suggested by Lorien Elleman). Further modified to include the numerical value of the correlation. (Inspired by the corrplot package). These values may be scaled according the the probability values found in \code{\link{cor.ci}} or \code{\link{corr.test}}. Unless specified, the font size is dynamically scaled to have a cex = 10/max(nrow(r),ncol(r). This can produce fairly small fonts for large problems. The font size of the labels may be adjusted using cex.axis which defaults to one. By default \code{\link{cor.ci}} calls corPlotUpperLowerCi and scales the correlations based upon "significance" values. The correlations plotted are the upper and lower confidence boundaries. To show the correlations themselves, call corPlot directly. If using the output of \code{\link{corr.test}}, the upper off diagonal will be scaled by the corrected probability, the lower off diagonal the scaling is the uncorrected probabilities. If using the output of \code{\link{corr.test}} or \code{\link{cor.ci}} as input to \code{\link{corPlotUpperLowerCi}}, the upper off diagonal will be the upper bounds and the lower off diagonal the lower bounds of the confidence intervals. If adjust=TRUE, these will use the Holm or Bonferroni adjusted values (depending upon corr.test). To do multiple \code{\link{corPlot}} on the same plot, specify that show.legend=FALSE and keep.par=FALSE. See the last examples. Care should be takend when selecting rows and columns from a non-symmetric matrix (e.g., the corrected correlations from \code{\link{scoreItems}} or \code{\link{scoreOverlap}}). } \author{William Revelle } \references{ Dray, Stephane (2008) On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. Computational Statistics \& Data Analysis. 52, 4, 2228-2237. } \seealso{ \code{\link{fa}}, \code{\link{mat.sort}}, \code{\link{cor.ci}}, \code{\link{corr.test}}. } \examples{ corPlot(Thurstone,main="9 cognitive variables from Thurstone") #just blue implies positive manifold #select just some variables to plot corPlot(Thurstone, zlim=c(0,1),main="9 cognitive variables from Thurstone",select=c(1:3,7:9)) #now show a non-symmetric plot corPlot(Thurstone[4:9,1:3], zlim=c(0,1),main="9 cognitive variables from Thurstone",numbers=TRUE,symmetric=FALSE) #Two ways of including stars to show significance #From the raw data corPlot(sat.act,numbers=TRUE,stars=TRUE) #from a correlation matrix with pvals cp <- corr.test(sat.act) #find the correlations and pvals r<- cp$r p <- cp$p corPlot(r,numbers=TRUE,diag=FALSE,stars=TRUE, pval = p,main="Correlation plot with Holm corrected 'significance'") #now red means less than .5 corPlot(mat.sort(Thurstone),TRUE,zlim=c(0,1), main="9 cognitive variables from Thurstone (sorted by factor loading) ") simp <- sim.circ(24) corPlot(cor(simp),main="24 variables in a circumplex") #scale by raw and adjusted probabilities rs <- corr.test(sat.act[1:200,] ) #find the probabilities of the correlations corPlot(r=rs$r,numbers=TRUE,pval=rs$p,main="Correlations scaled by probability values") #Show the upper and lower confidence intervals cor.plot.upperLowerCi(R=rs,numbers=TRUE) #now do this again, but with lighter colors gr <- colorRampPalette(c("#B52127", "white", "#2171B5")) corPlot(r=rs$r,numbers=TRUE,pval=rs$p,main="Correlations scaled by probability values",gr=gr) cor.plot.upperLowerCi(R=rs,numbers=TRUE,gr=gr) #do multiple plots #Also show the xaxis option op <- par(mfrow=c(2,2)) corPlot(ability,show.legend=FALSE,keep.par=FALSE,upper=FALSE) f4 <- fa(ability,4) corPlot(f4,show.legend=FALSE,keep.par=FALSE,numbers=TRUE,xlas=3) om <- omega(ability,4) corPlot(om,show.legend=FALSE,keep.par=FALSE,numbers=TRUE,xaxis=3) par(op) corPlotUpperLowerCi(rs,adjust=TRUE,main="Holm adjusted confidence intervals",gr=gr) } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/factor.residuals.Rd0000644000176200001440000000323512262077524015724 0ustar liggesusers\name{factor.residuals} \alias{factor.residuals} \title{ R* = R- F F' } \description{The basic factor or principal components model is that a correlation or covariance matrix may be reproduced by the product of a factor loading matrix times its transpose. Find the residuals of the original minus the reproduced matrix. Used by \code{\link{factor.fit}}, \code{\link{VSS}}, \code{\link{ICLUST}}, etc. } \usage{ factor.residuals(r, f) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{r}{ A correlation matrix } \item{f}{ A factor model matrix or a list of class loadings} } \details{The basic factor equation is \eqn{_nR_n \approx _{n}F_{kk}F_n'+ U^2}{nRn = nFk kFn' + U2}. Residuals are just R* = R - F'F. The residuals should be (but in practice probably rarely are) examined to understand the adequacy of the factor analysis. When doing Factor analysis or Principal Components analysis, one usually continues to extract factors/components until the residuals do not differ from those expected from a random matrix. } \value{ rstar is the residual correlation matrix. } \author{ Maintainer: William Revelle } \seealso{\code{\link{fa}}, \code{\link{principal}}, \code{\link{VSS}}, \code{\link{ICLUST}}} \examples{ fa2 <- fa(Harman74.cor$cov,2,rotate=TRUE) fa2resid <- factor.residuals(Harman74.cor$cov,fa2) fa2resid[1:4,1:4] #residuals with two factors extracted fa4 <- fa(Harman74.cor$cov,4,rotate=TRUE) fa4resid <- factor.residuals(Harman74.cor$cov,fa4) fa4resid[1:4,1:4] #residuals with 4 factors extracted } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/ability.Rd0000644000176200001440000000737313147336475014126 0ustar liggesusers\name{ability} \alias{ability} \docType{data} \title{16 ability items scored as correct or incorrect.} \description{ 16 multiple choice ability items 1525 subjects taken from the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project are saved as \code{\link{iqitems}}. Those data are shown as examples of how to score multiple choice tests and analyses of response alternatives. When scored correct or incorrect, the data are useful for demonstrations of tetrachoric based factor analysis \code{\link{irt.fa}} and finding tetrachoric correlations. } \usage{data(iqitems)} \format{ A data frame with 1525 observations on the following 16 variables. The number following the name is the item number from SAPA. \describe{ \item{\code{reason.4}}{Basic reasoning questions } \item{\code{reason.16}}{Basic reasoning question} \item{\code{reason.17}}{Basic reasoning question} \item{\code{reason.19}}{Basic reasoning question } \item{\code{letter.7}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.33}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.34}}{In the following alphanumeric series, what letter comes next} \item{\code{letter.58}}{In the following alphanumeric series, what letter comes next?} \item{\code{matrix.45}}{A matrix reasoning task} \item{\code{matrix.46}}{A matrix reasoning task} \item{\code{matrix.47}}{A matrix reasoning task} \item{\code{matrix.55}}{A matrix reasoning task} \item{\code{rotate.3}}{Spatial Rotation of type 1.2} \item{\code{rotate.4}}{Spatial Rotation of type 1.2} \item{\code{rotate.6}}{Spatial Rotation of type 1.1} \item{\code{rotate.8}}{Spatial Rotation of type 2.3} } } \details{16 items were sampled from 80 items given as part of the SAPA (\url{http://sapa-project.org}) project (Revelle, Wilt and Rosenthal, 2009; Condon and Revelle, 2014) to develop online measures of ability. These 16 items reflect four lower order factors (verbal reasoning, letter series, matrix reasoning, and spatial rotations. These lower level factors all share a higher level factor ('g'). This data set may be used to demonstrate item response functions, \code{\link{tetrachoric}} correlations, or \code{\link{irt.fa}} as well as \code{\link{omega}} estimates of of reliability and hierarchical structure. In addition, the data set is a good example of doing item analysis to examine the empirical response probabilities of each item alternative as a function of the underlying latent trait. When doing this, it appears that two of the matrix reasoning problems do not have monotonically increasing trace lines for the probability correct. At moderately high ability (theta = 1) there is a decrease in the probability correct from theta = 0 and theta = 2. } \source{ The example data set is taken from the Synthetic Aperture Personality Assessment personality and ability test at \url{http://sapa-project.org}. The data were collected with David Condon from 8/08/12 to 8/31/12. Similar data are available from the International Cognitive Ability Resource at \url{http://icar-project.com}. } \references{Revelle, William, Wilt, Joshua, and Rosenthal, Allen (2010) Personality and Cognition: The Personality-Cognition Link. In Gruszka, Alexandra and Matthews, Gerald and Szymura, Blazej (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Condon, David and Revelle, William, (2014) The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. Intelligence, 43, 52-64. } \examples{ data(ability) #not run # ability.irt <- irt.fa(ability) # ability.scores <- score.irt(ability.irt,ability) } \keyword{datasets} psych/man/tetrachor.Rd0000644000176200001440000003603413147336456014457 0ustar liggesusers\name{tetrachoric} \alias{tetrachoric} \alias{tetrachor} \alias{polychoric} \alias{biserial} \alias{polydi} \alias{polyserial} \alias{poly.mat} \title{Tetrachoric, polychoric, biserial and polyserial correlations from various types of input} \description{The tetrachoric correlation is the inferred Pearson Correlation from a two x two table with the assumption of bivariate normality. The polychoric correlation generalizes this to the n x m table. Particularly important when doing Item Response Theory or converting comorbidity statistics using normal theory to correlations. Input may be a 2 x 2 table of cell frequencies, a vector of cell frequencies, or a data.frame or matrix of dichotomous data (for tetrachoric) or of numeric data (for polychoric). The biserial correlation is between a continuous y variable and a dichotmous x variable, which is assumed to have resulted from a dichotomized normal variable. Biserial is a special case of the polyserial correlation, which is the inferred latent correlation between a continuous variable (X) and a ordered categorical variable (e.g., an item response). Input for these later two are data frames or matrices. Requires the mnormt package. } \usage{ tetrachoric(x,y=NULL,correct=.5,smooth=TRUE,global=TRUE,weight=NULL,na.rm=TRUE, delete=TRUE) polychoric(x,smooth=TRUE,global=TRUE,polycor=FALSE,ML=FALSE, std.err=FALSE, weight=NULL,correct=.5,progress=TRUE,na.rm=TRUE, delete=TRUE) biserial(x,y) polyserial(x,y) polydi(p,d,taup,taud,global=TRUE,ML = FALSE, std.err = FALSE, weight=NULL,progress=TRUE,na.rm=TRUE,delete=TRUE,correct=.5) #deprecated use polychoric instead poly.mat(x, short = TRUE, std.err = FALSE, ML = FALSE) } \arguments{ \item{x}{The input may be in one of four forms: a) a data frame or matrix of dichotmous data (e.g., the lsat6 from the bock data set) or discrete numerical (i.e., not too many levels, e.g., the big 5 data set, bfi) for polychoric, or continuous for the case of biserial and polyserial. b) a 2 x 2 table of cell counts or cell frequencies (for tetrachoric) or an n x m table of cell counts (for both tetrachoric and polychoric). c) a vector with elements corresponding to the four cell frequencies (for tetrachoric) d) a vector with elements of the two marginal frequencies (row and column) and the comorbidity (for tetrachoric) } \item{y}{A (matrix or dataframe) of discrete scores. In the case of tetrachoric, these should be dichotomous, for polychoric not too many levels, for biserial they should be discrete (e.g., item responses) with not too many (<10?) categories.} \item{correct}{Correction value to use to correct for continuity in the case of zero entry cell for tetrachoric, polychoric, polybi, and mixed.cor. See the examples for the effect of correcting versus not correcting for continuity.} \item{smooth}{if TRUE and if the tetrachoric/polychoric matrix is not positive definite, then apply a simple smoothing algorithm using cor.smooth} \item{global}{When finding pairwise correlations, should we use the global values of the tau parameter (which is somewhat faster), or the local values (global=FALSE)? The local option is equivalent to the polycor solution, or to doing one correlation at a time. global=TRUE borrows information for one item pair from the other pairs using those item's frequencies. This will make a difference in the presence of lots of missing data. With very small sample sizes with global=FALSE and correct=TRUE, the function will fail (for as yet underdetermined reasons. } \item{polycor}{A no longer used option, kept to stop other packages from breaking.} \item{weight}{A vector of length of the number of observations that specifies the weights to apply to each case. The NULL case is equivalent of weights of 1 for all cases. } \item{short}{ short=TRUE, just show the correlations, short=FALSE give the full hetcor output from John Fox's hetcor function if installed and if doing polychoric Deprecated} \item{std.err}{std.err=FALSE does not report the standard errors (faster) deprecated} \item{progress}{Show the progress bar (if not doing multicores)} \item{ML}{ ML=FALSE do a quick two step procedure, ML=TRUE, do longer maximum likelihood --- very slow! Deprecated} \item{na.rm}{Should missing data be deleted} \item{delete}{Cases with no variance are deleted with a warning before proceeding.} \item{p}{The polytomous input to polydi} \item{d}{The dichotomous input to polydi} \item{taup}{The tau values for the polytomous variables -- if global=TRUE} \item{taud}{The tau values for the dichotomous variables -- if globabl = TRUE} } \details{ Tetrachoric correlations infer a latent Pearson correlation from a two x two table of frequencies with the assumption of bivariate normality. The estimation procedure is two stage ML. Cell frequencies for each pair of items are found. In the case of tetrachorics, cells with zero counts are replaced with .5 as a correction for continuity (correct=TRUE). The data typically will be a raw data matrix of responses to a questionnaire scored either true/false (tetrachoric) or with a limited number of responses (polychoric). In both cases, the marginal frequencies are converted to normal theory thresholds and the resulting table for each item pair is converted to the (inferred) latent Pearson correlation that would produce the observed cell frequencies with the observed marginals. (See \code{\link{draw.tetra}} and \code{\link{draw.cor}} for illustrations.) This is a very computationally intensive function which can be speeded up considerably by using multiple cores and using the parallel package. The number of cores to use when doing polychoric or tetrachoric may be specified using the options command. The greatest step in speed is going from 1 core to 2. This is about a 50\% savings. Going to 4 cores seems to have about at 66\% savings, and 8 a 75\% savings. The number of parallel processes defaults to 2 but can be modified by using the \code{\link{options}} command: options("mc.cores"=4) will set the number of cores to 4. The tetrachoric correlation is used in a variety of contexts, one important one being in Item Response Theory (IRT) analyses of test scores, a second in the conversion of comorbity statistics to correlation coefficients. It is in this second context that examples of the sensitivity of the coefficient to the cell frequencies becomes apparent: Consider the test data set from Kirk (1973) who reports the effectiveness of a ML algorithm for the tetrachoric correlation (see examples). Examples include the lsat6 and lsat7 data sets in the \code{\link{bock}} data. The polychoric function forms matrices of polychoric correlations by an local function (polyc) and will also report the tau values for each alternatives. Earlier versions used John Fox's polychor function which has now been replaced by the polyc function. For finding one polychoric correlation from a table, see the Olsson example (below). \code{\link{polychoric}} replaces \code{\link{poly.mat}} and is recommended. \code{\link{poly.mat}} was an alternative wrapper to the polycor function. biserial and polyserial correlations are the inferred latent correlations equivalent to the observed point-biserial and point-polyserial correlations (which are themselves just Pearson correlations). The polyserial function is meant to work with matrix or dataframe input and treats missing data by finding the pairwise Pearson r corrected by the overall (all observed cases) probability of response frequency. This is particularly useful for SAPA procedures (\url{http://sapa-project.org}) (Revelle et al. 2010, 2016) with large amounts of missing data and no complete cases. See also the International Cognitive Ability Resource (\url{http://icar-project.com}) for simiilar data. Ability tests and personality test matrices will typically have a cleaner structure when using tetrachoric or polychoric correlations than when using the normal Pearson correlation. However, if either alpha or omega is used to find the reliability, this will be an overestimate of the squared correlation of a latent variable the observed variable. A biserial correlation (not to be confused with the point-biserial correlation which is just a Pearson correlation) is the latent correlation between x and y where y is continuous and x is dichotomous but assumed to represent an (unobserved) continuous normal variable. Let p = probability of x level 1, and q = 1 - p. Let zp = the normal ordinate of the z score associated with p. Then, \eqn{rbi = r s* \sqrt(pq)/zp }. The 'ad hoc' polyserial correlation, rps is just \eqn{r = r * sqrt(n-1)/n) \sigma y /\sum(zpi) } where zpi are the ordinates of the normal curve at the normal equivalent of the cut point boundaries between the item responses. (Olsson, 1982) All of these were inspired by (and adapted from) John Fox's polychor package which should be used for precise ML estimates of the correlations. See, in particular, the hetcor function in the polychor package. The results from polychoric match the polychor answers to at least 5 decimals when using correct=FALSE, and global = FALSE. Particularly for tetrachoric correlations from sets of data with missing data, the matrix will sometimes not be positive definite. Various smoothing alternatives are possible, the one done here is to do an eigen value decomposition of the correlation matrix, set all negative eigen values to 10 * .Machine$double.eps, normalize the positive eigen values to sum to the number of variables, and then reconstitute the correlation matrix. A warning is issued when this is done. For very small data sets, the correction for continuity for the polychoric correlations can lead to difficulties, particularly if using the global=FALSE option, or if doing just one correlation at a time. Setting a smaller correction value (i.e., correct =.1) seems to help. John Uebersax (2015) makes the interesting point that both polychoric and tetrachoric correlations should be called latent correlations or latent continuous correlations because of the way they are found and not tetrachoric or polychoric which is the way they were found in the past. That is, what is the correlation between two latent variables that when artificially broken into two (tetrachoric) or more (polychoric) values produces the n x n table of observed frequencies. For combinations of continous, categorical, and dichotomous variables, see \code{\link{mixed.cor}}. If using data with a variable number of response alternatives, it is necessary to use the global=FALSE option in polychoric. } \value{ \item{rho}{The (matrix) of tetrachoric/polychoric/biserial correlations} \item{tau}{The normal equivalent of the cutpoints} \item{fixed}{If any correlations were adjusted for continuity, the total number of adjustments will be reported. } } \references{ A. Gunther and M. Hofler. Different results on tetrachorical correlations in mplus and stata-stata announces modified procedure. Int J Methods Psychiatr Res, 15(3):157-66, 2006. David Kirk (1973) On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika, 38, 259-268. U. Olsson, Maximum Likelihood Estimation of the Polychoric Correlation Coefficient, Psychometrika, 44:443-460. U.Olsson, F.Drasgow, and N.Dorans (1982). The polyserial correlation coefficient. Psychometrika, 47:337-347. Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations } \author{ William Revelle } \note{For tetrachoric, in the degenerate case of a cell entry with zero observations, a correction for continuity is applied and .5 is added to the cell entry. A warning is issued. If correct=FALSE the correction is not applied. This correction is, by default, on. It can be adjusted by specifying a smaller value. See the examples. For correct=FALSE, the results agree perfectly with John Fox's polycor function. Switched to using sadmvn from the mnormt package to speed up by 50\%. } \seealso{\code{\link{mixed.cor}} to find the correlations between mixtures of continuous, polytomous, and dichtomous variables. See also the polychor function in the polycor package. \code{\link{irt.fa}} uses the tetrachoric function to do item analysis with the \code{\link{fa}} factor analysis function. \code{\link{draw.tetra}} shows the logic behind a tetrachoric correlation (for teaching purpuses.) } \examples{ #if(require(mnormt)) { data(bock) tetrachoric(lsat6) polychoric(lsat6) #values should be the same tetrachoric(matrix(c(44268,193,14,0),2,2)) #MPLUS reports.24 #Do not apply continuity correction -- compare with previous analysis! tetrachoric(matrix(c(44268,193,14,0),2,2),correct=0) #the default is to add correct=.5 to 0 cells tetrachoric(matrix(c(61661,1610,85,20),2,2)) #Mplus reports .35 tetrachoric(matrix(c(62503,105,768,0),2,2)) #Mplus reports -.10 tetrachoric(matrix(c(24875,265,47,0),2,2)) #Mplus reports 0 polychoric(matrix(c(61661,1610,85,20),2,2)) #Mplus reports .35 polychoric(matrix(c(62503,105,768,0),2,2)) #Mplus reports -.10 polychoric(matrix(c(24875,265,47,0),2,2)) #Mplus reports 0 #Do not apply continuity correction- compare with previous analysis tetrachoric(matrix(c(24875,265,47,0),2,2), correct=0) polychoric(matrix(c(24875,265,47,0),2,2), correct=0) #the same result #examples from Kirk 1973 #note that Kirk's tables have joint probability followed by marginals, but #tetrachoric needs marginals followed by joint probability tetrachoric(c(.5,.5,.333333)) #should be .5 tetrachoric(c(.5,.5,.1150267)) #should be -.75 tetrachoric(c(.5,.5,.397584)) #should e .8 tetrachoric(c(.158655254,.158655254,.145003)) #should be .99 #the example from Olsson, 1979 x <- as.table(matrix(c(13,69,41,6,113,132,0,22,104),3,3)) polychoric(x,correct=FALSE) #Olsson reports rho = .49, tau row = -1.77, -.14 and tau col = -.69, .67 #give a vector of two marginals and the comorbidity tetrachoric(c(.2, .15, .1)) tetrachoric(c(.2, .1001, .1)) #} else { # message("Sorry, you must have mnormt installed")} # 4 plots comparing biserial to point biserial and latent Pearson correlation set.seed(42) x.4 <- sim.congeneric(loads =c(.9,.6,.3,0),N=1000,short=FALSE) y <- x.4$latent[,1] for(i in 1:4) { x <- x.4$observed[,i] r <- round(cor(x,y),1) ylow <- y[x<= 0] yhigh <- y[x > 0] yc <- c(ylow,yhigh) rpb <- round(cor((x>=0),y),2) rbis <- round(biserial(y,(x>=0)),2) ellipses(x,y,ylim=c(-3,3),xlim=c(-4,3),pch=21 - (x>0), main =paste("r = ",r,"rpb = ",rpb,"rbis =",rbis)) dlow <- density(ylow) dhigh <- density(yhigh) points(dlow$y*5-4,dlow$x,typ="l",lty="dashed") lines(dhigh$y*5-4,dhigh$x,typ="l") } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/ellipses.Rd0000644000176200001440000000530412216167033014265 0ustar liggesusers\name{ellipses} \alias{ellipses} \alias{minkowski} \title{Plot data and 1 and 2 sigma correlation ellipses} \description{For teaching correlation, it is useful to draw ellipses around the mean to reflect the correlation. This variation of the ellipse function from John Fox's car package does so. Input may be either two vectors or a matrix or data.frame. In the latter cases, if the number of variables >2, then the ellipses are done in the \code{\link{pairs.panels}} function. Ellipses may be added to existing plots. The minkowski function is included as a generalized ellipse. } \usage{ ellipses(x, y = NULL, add = FALSE, smooth=TRUE, lm=FALSE,data=TRUE, n = 2, span=2/3, iter=3, col = "red", xlab =NULL,ylab= NULL, ...) minkowski(r=2,add=FALSE,main=NULL,xl=1,yl=1) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{a vector,matrix, or data.frame } \item{y}{Optional second vector } \item{add}{Should a new plot be created, or should it be added to?} \item{smooth}{smooth = TRUE -> draw a loess fit} \item{lm}{lm=TRUE -> draw the linear fit} \item{data}{data=TRUE implies draw the data points} \item{n}{Should 1 or 2 ellipses be drawn } \item{span}{averaging window parameter for the lowess fit} \item{iter}{iteration parameter for lowess} \item{col}{color of ellipses (default is red} \item{xlab}{label for the x axis} \item{ylab}{label for the y axis} \item{\dots}{Other parameters for plotting} \item{r}{r=1 draws a city block, r=2 is a Euclidean circle, r > 2 tends towards a square} \item{main}{title to use when drawing Minkowski circles} \item{xl}{stretch the x axis} \item{yl}{stretch the y axis} } \details{Ellipse dimensions are calculated from the correlation between the x and y variables and are scaled as sqrt(1+r) and sqrt(1-r). } \value{ A single plot (for 2 vectors or data frames with fewer than 3 variables. Otherwise a call is made to \code{\link{pairs.panels}}. } \references{ Galton, Francis (1888), Co-relations and their measurement. Proceedings of the Royal Society. London Series, 45, 135-145. } \author{William Revelle } \note{Adapted from John Fox's ellipse and data.ellipse functions. } \seealso{ \code{\link{pairs.panels}} } \examples{ data(galton) ellipses(galton,lm=TRUE) ellipses(galton$parent,galton$child,xlab="Mid Parent Height", ylab="Child Height") #input are two vectors data(sat.act) ellipses(sat.act) #shows the pairs.panels ellipses minkowski(2,main="Minkowski circles") minkowski(1,TRUE) minkowski(4,TRUE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate }% at least one, from doc/KEYWORDS \keyword{ hplot }% __ONLY ONE__ keyword per line psych/man/Gorsuch.Rd0000644000176200001440000000210011546641041014047 0ustar liggesusers\name{Gorsuch} \alias{Gorsuch} \docType{data} \title{Example data set from Gorsuch (1997) for an example factor extension. } \description{ Gorsuch (1997) suggests an alternative to the classic Dwyer (1937) factor extension technique. This data set is taken from that article. Useful for comparing \code{link{fa.extension}} with and without the correct=TRUE option. } \usage{data(Gorsuch)} \details{Gorsuc (1997) suggested an alternative model for factor extension. His method is appropriate for the case of repeated variables. This is handled in \code{link{fa.extension}} with correct=FALSE } \source{Richard L. Gorsuch (1997) New Procedure for Extension Analysis in Exploratory Factor Analysis. Educational and Psychological Measurement, 57, 725-740. } \references{ Dwyer, Paul S. (1937), The determination of the factor loadings of a given test from the known factor loadings of other tests. Psychometrika, 3, 173-178 } \examples{ data(Gorsuch) Ro <- Gorsuch[1:6,1:6] Roe <- Gorsuch[1:6,7:10] fo <- fa(Ro,2,rotate="none") fa.extension(Roe,fo,correct=FALSE) } \keyword{datasets} psych/man/multilevel.reliability.Rd0000644000176200001440000003232713147352322017145 0ustar liggesusers\name{multilevel.reliability} \alias{mlr} \alias{multilevel.reliability} \alias{mlArrange} \alias{mlPlot} \title{Find and plot various reliability/gneralizability coefficients for multilevel data } \description{ Various indicators of reliability of multilevel data (e.g., items over time nested within subjects) may be found using generalizability theory. A basic three way anova is applied to the data from which variance components are extracted. Random effects for a nested design are found by lme. These are, in turn, converted to several reliability/generalizability coefficients. An optional call to lme4 to use lmer may be used for unbalanced designs with missing data. mlArrange is a helper function to convert wide to long format. Data can be rearranged from wide to long format, and multiple lattice plots of observations overtime for multiple variables and multiple subjects are created. } \usage{ mlr(x, grp = "id", Time = "time", items = c(3:5),alpha=TRUE,icc=FALSE, aov=TRUE, lmer=FALSE,lme = TRUE,long=FALSE,values=NA,na.action="na.omit",plot=FALSE, main="Lattice Plot by subjects over time") mlArrange(x, grp = "id", Time = "time", items = c(3:5),extra=NULL) mlPlot(x, grp = "id", Time = "time", items = c(3:5),extra=NULL, col=c("blue","red","black","grey"), main="Lattice Plot by subjects over time",...) multilevel.reliability(x, grp = "id", Time = "time", items = c(3:5),alpha=TRUE,icc=FALSE, aov=TRUE,lmer=FALSE,lme = TRUE,long=FALSE,values=NA,na.action="na.omit", plot=FALSE,main="Lattice Plot by subjects over time") #alias for mlr } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A data frame with persons, time, and items.} \item{grp}{Which variable specifies people (groups)} \item{Time}{Which variable specifies the temporal sequence?} \item{items}{Which items should be scored? Note that if there are multiple scales, just specify the items on one scale at a time. An item to be reversed scored can be specified by a minus sign. If long format, this is the column specifying item number. } \item{alpha}{If TRUE, report alphas for every subject (default)} \item{icc}{If TRUE, find ICCs for each person -- can take a while} \item{aov}{if FALSE, and if icc is FALSE, then just draw the within subject plots} \item{lmer}{Should we use the lme4 package and lmer or just do the ANOVA? Requires the lme4 package to be installed. Necessary to do crossed designs with missing data but takes a very long time.} \item{lme}{If TRUE, will find the nested components of variance. Relatively fast.} \item{long}{Are the data in wide (default) or long format.} \item{values}{If the data are in long format, which column name (number) has the values to be analyzed?} \item{na.action}{How to handle missing data. Passed to the lme function. } \item{plot}{If TRUE, show a lattice plot of the data by subject} \item{extra}{Names or locations of extra columns to include in the long output. These will be carried over from the wide form and duplicated for all items. See example.} \item{col}{Color for the lines in mlPlot. Note that items are categorical and thus drawn in alphabetical order. Order the colors appropriately.} \item{main}{The main title for the plot (if drawn)} \item{...}{Other parameters to pass to xyplot} } \details{ Classical reliabiiity theory estimates the amount of variance in a set of observations due to a true score that varies over subjects. Generalizability theory extends this model to include other sources of variance, specifically, time. The classic studies using this approach are people measured over multiple time points with multiple items. Then the question is, how stable are various individual differences. Intraclass correlations (ICC) are found for each subject over items, and for each subject over time. Alpha reliabilities are found for each subject for the items across time. More importantly, components of variance for people, items, time, and their interactions are found either by classical analysis of variance (aov) or by multilevel mixed effect modeling (lme). These are then used to form several different estimates of generalizability. Very thoughtful discussions of these procedure may be found in chapters by Shrout and Lane. The variance components are the Between Person Variance \eqn{\sigma^2_P}, the variance between items \eqn{\sigma^2_I}, over time \eqn{\sigma^2_T}, and their interactions. Then, \eqn{RKF} is the reliability of average of all ratings across all items and times (Fixed time effects). (Shrout and Lane, Equation 6): \deqn{R_{kF} = \frac{\sigma^2_P + \sigma^2_{PI}/n.I}{\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_e/(n.I n.P}}{Rkf = (\sigma^2_P + \sigma^2_{PI}/n.I)/(\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_e/(n.I n.P))} The generalizability of a single time point across all items (Random time effects) is just \deqn{R_{1R} = \frac{\sigma^2_P + \sigma^2_{PI}/n.I}{\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_T + \sigma^2_{PT}+ \sigma^2_e/(n.I)}}{R1R = (\sigma^2_P + \sigma^2_{PI}/n.I)/(\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_T + \sigma^2_{PT} \sigma^2_e/n.I)} (Shrout and Lane equation 7 with a correction per Sean Lane.) Generalizability of average time points across all items (Random effects). (Shrout and Lane, equation 8) \deqn{R_{kR} = \frac{\sigma^2_P + \sigma^2_{PI}/n.I}{\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_T/n.T + \sigma^2_{PT}+ \sigma^2_e/n.I}}{RkR = (\sigma^2_P + \sigma^2_{PI}/n.I)/(\sigma^2_P + \sigma^2_{PI}/n.I + \sigma^2_T/n.T + \sigma^2_{PT} \sigma^2_e/(n.I n.T))} Generalizability of change scores (Shrout and Lane, equation 9) \deqn{R_{C} = \frac{\sigma^2_{PT}}{\sigma^2_{PT} + \sigma^2_e/n.I}}{RC = (\sigma^2_PT)/(\sigma^2_PT + \sigma^2_e/(n.I))}. If the design may be thought of as fully crossed, then either aov or lmer can be used to estimate the components of variance. With no missing data and a balanced design, these will give identical answers. However aov breaks down with missing data and seems to be very slow and very memory intensive for large problems ( 5,919 seconds for 209 cases with with 88 time points and three items on a Mac Powerbook with a 2.8 GHZ Intel Core I7). The slowdown probably is memory related, as the memory demands increased to 22.62 GB of compressed memory. lmer will handle this design but is not nearly as slow (242 seconds for the 209 cases with 88 time points and three items) as the aov approach. If the design is thought of as nested, rather than crossed, the components of variance are found using the \code{\link{lme}} function from nlme. This is very fast (114 cases with 88 time points and three items took 3.5 seconds). The nested design leads to the generalizability of K random effects Nested (Shrout and Lane, equation 10): \deqn{R_{KRN} = \frac{\sigma^2_P }{\sigma^2_P + \sigma^2_{T(P)}/n.I + \sigma^2_e/(n.I n.P}}{RKkRN = (\sigma^2_P)/(\sigma^2_P + \sigma^2_{T(P)}/n.p + \sigma^2_e/(n.I n.T))} And, finally, to the reliability of between person differences, averaged over items. (Shrout and Lane, equation 11). \deqn{R_{CN} = \frac{\sigma^2_{T(P)} }{\sigma^2_{T(P)} + \sigma^2_e/(n.I}}{RCN = (\sigma^2_T(P)/(\sigma^2_T(P) + \sigma^2_e/(n.I))} Unfortunately, when doing the nested analysis, \code{\link{lme}} will sometimes issue an obnoxious error about failing to converge. To fix this, turning off \code{\link{lme}} and just using lmer seems to solve the problem (i.e., set lme=FALSE and lmer=TRUE). (\code{\link{lme}} is part of core R and its namespace is automatically attached when loading \code{\link{psych}}). For many problems, lmer is not necessary and is thus not loaded. However sometimes it is useful. To use lmer it is necessary to have the lme4 package installed. It will be automatically loaded if it is installed and requested. In the interests of making a 'thin' package, lmer is suggested,not required. The input can either be in 'wide' or 'long' form. If in wide form, then specify the grouping variable, the 'time' variable, and the the column numbers or names of the items. (See the first example). If in long format, then what is the column (name or number) of the dependent variable. (See the second example.) \code{\link{mlArrange}} takes a wide data.frame and organizes it into a `long' data.frame suitable for a lattice \code{\link{xyplot}}. This is a convenient alternative to \code{\link{stack}}, particularly for unbalanced designs. The wide data frame is reorganized into a long data frame organized by grp (typically a subject id), by Time (typically a time varying variable, but can be anything, and then stacks the items within each person and time. Extra variables are carried over and matched to the appropriate grp and Time. Thus, if we have N subjects over t time points for k items, in wide format for N * t rows where each row has k items and e extra pieces of information, we get a N x t * k row by 4 + e column dataframe. The first four columns in the long output are id, time, values, and item names, the remaining columns are the extra values. These could be something such as a trait measure for each subject, or the situation in which the items are given. \code{\link{mlArrange}} plots k items over the t time dimensions for each subject. } \value{ \item{n.obs}{Number of individuals} \item{n.time}{Maximum number of time intervals} \item{n.items}{Number of items} \item{components}{Components of variance associated with individuals, Time, Items, and their interactions.} \item{RkF }{Reliability of average of all ratings across all items and times (fixed effects).} \item{R1R}{Generalizability of a single time point across all items (Random effects)} \item{RkR}{Generalizability of average time points across all items (Random effects)} \item{Rc}{Generalizability of change scores over time.} \item{RkRn}{ Generalizability of between person differences averaged over time and items} \item{Rcn}{Generalizability of within person variations averaged over items (nested structure)} \item{ANOVA}{The summary anova table from which the components are found (if done),} \item{s.lmer}{The summary of the lmer analysis (if done),} \item{s.lme}{The summary of the lme analysis (if done),} \item{alpha}{Within subject alpha over items and time.} \item{summary.by.person}{Summary table of ICCs organized by person,} \item{summary.by.time}{Summary table of ICCs organized by time.} \item{ICC.by.person}{A rather long list of ICCs by person.} \item{ICC.by.time}{Another long list of ICCs, this time for each time period,} \item{long}{The data (x) have been rearranged into long form for graphics or for further analyses using lme, lmer, or aov that require long form.} } \references{ Bolger, Niall and Laurenceau, Jean-Phillippe, (2013) Intensive longitudinal models. New York. Guilford Press. Revelle, W. and Wilt, J. (2017) Analyzing dynamic data: a tutorial. Personality and Individual Differences. (in press) Shrout, Patrick and Lane, Sean P (2012), Psychometrics. In M.R. Mehl and T.S. Conner (eds) Handbook of research methods for studying daily life, (p 302-320) New York. Guilford Press } \author{William Revelle} \seealso{\code{\link{sim.multi}} and \code{\link{sim.multilevel}} to generate multilevel data, \code{\link{statsBy}} a for statistics for multi level analysis. } \examples{ #data from Shrout and Lane, 2012. shrout <- structure(list(Person = c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L), Time = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L), Item1 = c(2L, 3L, 6L, 3L, 7L, 3L, 5L, 6L, 3L, 8L, 4L, 4L, 7L, 5L, 6L, 1L, 5L, 8L, 8L, 6L), Item2 = c(3L, 4L, 6L, 4L, 8L, 3L, 7L, 7L, 5L, 8L, 2L, 6L, 8L, 6L, 7L, 3L, 9L, 9L, 7L, 8L ), Item3 = c(6L, 4L, 5L, 3L, 7L, 4L, 7L, 8L, 9L, 9L, 5L, 7L, 9L, 7L, 8L, 4L, 7L, 9L, 9L, 6L)), .Names = c("Person", "Time", "Item1", "Item2", "Item3"), class = "data.frame", row.names = c(NA, -20L)) #make shrout super wide #Xwide <- reshape(shrout,v.names=c("Item1","Item2","Item3"),timevar="Time", #direction="wide",idvar="Person") #add more helpful Names #colnames(Xwide ) <- c("Person",c(paste0("Item",1:3,".T",1),paste0("Item",1:3,".T",2), #paste0("Item",1:3,".T",3),paste0("Item",1:3,".T",4))) #make superwide into normal form (i.e., just return it to the original shrout data #Xlong <-Xlong <- reshape(Xwide,idvar="Person",2:13) #Now use these data for a multilevel repliability study, use the normal wide form output mg <- mlr(shrout,grp="Person",Time="Time",items=3:5) #which is the same as #mg <- multilevel.reliability(shrout,grp="Person",Time="Time",items= # c("Item1","Item2","Item3"),plot=TRUE) #to show the lattice plot by subjects, set plot = TRUE #Alternatively for long input (returned in this case from the prior run) mlr(mg$long,grp="id",Time ="time",items="items", values="values",long=TRUE) #example of mlArrange #First, add two new columns to shrout and #then convert to long output using mlArrange total <- rowSums(shrout[3:5]) caseid <- rep(paste0("ID",1:5),4) new.shrout <- cbind(shrout,total=total,case=caseid) #now convert to long new.long <- mlArrange(new.shrout,grp="Person",Time="Time",items =3:5,extra=6:7) headTail(new.long,6,6) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate }% use one of RShowDoc("KEYWORDS") \keyword{ models }% __ONLY ONE__ keyword per line psych/man/tr.Rd0000644000176200001440000000125111027440031013056 0ustar liggesusers\name{tr} \alias{tr} \title{Find the trace of a square matrix} \description{Hardly worth coding, if it didn't appear in so many formulae in psychometrics, the trace of a (square) matrix is just the sum of the diagonal elements. } \usage{ tr(m) } \arguments{ \item{m}{A square matrix } } \details{The tr function is used in various matrix operations and is the sum of the diagonal elements of a matrix. } \value{ The sum of the diagonal elements of a square matrix. \cr i.e. tr(m) <- sum(diag(m)). } \examples{ m <- matrix(1:16,ncol=4) m tr(m) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/cluster2keys.Rd0000644000176200001440000000254711311321734015105 0ustar liggesusers\name{cluster2keys} \alias{cluster2keys} \title{Convert a cluster vector (from e.g., kmeans) to a keys matrix suitable for scoring item clusters. } \description{The output of the kmeans clustering function produces a vector of cluster membership. The \code{\link{score.items}} and \code{\link{cluster.cor}} functions require a matrix of keys. cluster2keys does this. May also be used to take the output of an \code{\link{ICLUST}} analysis and find a keys matrix. (By doing a call to the \code{\link{factor2cluster}} function. } \usage{ cluster2keys(c) } \arguments{ \item{c}{A vector of cluster assignments or an object of class ``kmeans" that contains a vector of clusters. } } \details{Note that because kmeans will not reverse score items, the clusters defined by kmeans will not necessarily match those of ICLUST with the same number of clusters extracted. } \value{ \item{keys}{A matrix of keys suitable for score.items or cluster.cor} } \author{William Revelle} \seealso{ \code{\link{cluster.cor}},\code{\link{score.items}}, \code{\link{factor2cluster}}, \code{\link{make.keys}}} \examples{ test.data <- Harman74.cor$cov kc <- kmeans(test.data,4) keys <- cluster2keys(kc) keys #these match those found by ICLUST cluster.cor(keys,test.data) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } psych/man/affect.Rd0000644000176200001440000000555112457303015013700 0ustar liggesusers\name{affect} \alias{affect} \alias{maps} \alias{flat} \docType{data} \title{Two data sets of affect and arousal scores as a function of personality and movie conditions } \description{A recurring question in the study of affect is the proper dimensionality and the relationship to various personality dimensions. Here is a data set taken from two studies of mood and arousal using movies to induce affective states. } \usage{data(affect)} \details{These are data from two studies conducted in the Personality, Motivation and Cognition Laboratory at Northwestern University. Both studies used a similar methodology: Collection of pretest data using 5 scales from the Eysenck Personality Inventory and items taken from the Motivational State Questionnaire (see \code{\link{msq}}. In addition, state and trait anxiety measures were given. In the ``maps" study, the Beck Depression Inventory was given also. Then subjects were randomly assigned to one of four movie conditions: 1: Frontline. A documentary about the liberation of the Bergen-Belsen concentration camp. 2: Halloween. A horror film. 3: National Geographic, a nature film about the Serengeti plain. 4: Parenthood. A comedy. Each film clip was shown for 9 minutes. Following this the MSQ was given again. Data from the MSQ were scored for Energetic and Tense Arousal (EA and TA) as well as Positive and Negative Affect (PA and NA). Study flat had 170 participants, study maps had 160. These studies are described in more detail in various publications from the PMC lab. In particular, Revelle and Anderson, 1997 and Rafaeli and Revelle (2006). An analysis of these data has also appeared in Smillie et al. (2012). } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University. } \references{ Revelle, William and Anderson, Kristen Joan (1997) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008 Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Smillie, Luke D. and Cooper, Andrew and Wilt, Joshua and Revelle, William (2012) Do Extraverts Get More Bang for the Buck? Refining the Affective-Reactivity Hypothesis of Extraversion. Journal of Personality and Social Psychology, 103 (2), 206-326. } \examples{ data(affect) describeBy(affect[-1],group="Film") pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") errorCircles("EA2","TA2",data=affect,group="Film",labels=c("Sad","Fear","Neutral","Humor") , main="Enegetic and Tense Arousal by Movie condition") errorCircles(x="PA2",y="NA2",data=affect,group="Film",labels=c("Sad","Fear","Neutral"," Humor"), main="Positive and Negative Affect by Movie condition") } \keyword{datasets} psych/man/glb.algebraic.Rd0000644000176200001440000001353412437624310015126 0ustar liggesusers\name{glb.algebraic} \alias{glb.algebraic} %- Also NEED an '\alias' for EACH other topic documented here. \title{Find the greatest lower bound to reliability. } \description{ The greatest lower bound solves the ``educational testing problem". That is, what is the reliability of a test? (See \code{\link{guttman}} for a discussion of the problem). Although there are many estimates of a test reliability (Guttman, 1945) most underestimate the true reliability of a test. For a given covariance matrix of items, C, the function finds the greatest lower bound to reliability of the total score using the csdp function from the Rcsdp package.} \usage{ glb.algebraic(Cov, LoBounds = NULL, UpBounds = NULL) } \arguments{ \item{Cov}{A p * p covariance matrix. Positive definiteness is not checked.} \item{LoBounds}{A vector \eqn{l =(l_1, \dots, l_p)}{L = (l1 ... lp)} of length p with lower bounds to the diagonal elements \eqn{x_i}. The default l=(0, . . . , 0) does not imply any constraint, because positive semidefiniteness of the matrix \eqn{\tilde{ C} + Diag(x)}{C0 + Diag(x)} implies \eqn{0 \leq x_i}{0 \le xi.}} \item{UpBounds}{A vector u =(u1, . . . , up) of length p with upper bounds to the diagonal elements xi. The default is u = v.} } \details{ If C is a p * p-covariance matrix, v = diag(C) its diagonal (i. e. the vector of variances \eqn{v_i = c_{ii}}), \eqn{\tilde { C} = C - Diag(v)}{C0 = C - Diag(v)} is the covariance matrix with 0s substituted in the diagonal and x = the vector \eqn{x_1, \dots ,x_n}{(x1, . . . , xp)} the educational testing problem is (see e. g., Al-Homidan 2008) \deqn{\sum_{i=1}^p x_i \rightarrow \min}{(Sum i = 1 to p xi) -> min } s.t. \deqn{\tilde{ C} + Diag(x) \geq 0}{C0 + Diag(x) >= 0}(i.e. positive semidefinite) and \eqn{x_i \leq v_i, i=1,\dots,p}{xi \le vi, i = 1 ..., p}. This is the same as minimizing the trace of the symmetric matrix \deqn{\tilde{ C}+diag(x)=\left(\begin{array}{llll} x_1 & c_{12} & \ldots & c_{1p} \\ c_{12} & x_2 & \ldots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1p} & c_{2p} & \ldots & x_p\\ \end{array}\right)}{C0 + Diag(x)} s. t. \eqn{\tilde{ C} + Diag(x)}{C0 + Diag(x)} is positive semidefinite and \eqn{x_i \leq v_i}{xi \le vi}. The greatest lower bound to reliability is \deqn{\frac{\sum_{ij} \bar{c_{ij}} + \sum_i x_i}{\sum_{ij}c_{ij}}}{ (sum cij (i \ne j) + sum xi )/ sum cij} Additionally, function glb.algebraic allows the user to change the upper bounds \eqn{x_i \leq v_i}{xi \le vi} to \eqn{x_i \leq u_i}{xi \le ui} and add lower bounds \eqn{l_i \leq x_i}{li \le xi}. The greatest lower bound to reliability is applicable for tests with non-homogeneous items. It gives a sharp lower bound to the reliability of the total test score. Caution: Though glb.algebraic gives exact lower bounds for exact covariance matrices, the estimates from empirical matrices may be strongly biased upwards for small and medium sample sizes. glb.algebraic is wrapper for a call to function csdp of package Rcsdp (see its documentation). If Cov is the covariance matrix of subtests/items with known lower bounds, rel, to their reliabilities (e. g. Cronbachs \eqn{\alpha}), LoBounds can be used to improve the lower bound to reliability by setting LoBounds <- rel*diag(Cov). Changing UpBounds can be used to relax constraints \eqn{x_i \leq v_i}{xi \le vi} or to fix \eqn{x_i}{xi}-values by setting LoBounds[i] < -z; UpBounds[i] <- z. } \value{ \item{glb }{The algebraic greatest lower bound} \item{solution}{The vector x of the solution of the semidefinite program. These are the elements on the diagonal of C.} \item{status}{Status of the solution. See documentation of csdp in package Rcsdp. If status is 2 or greater or equal than 4, no glb and solution is returned. If status is not 0, a warning message is generated.} \item{Call}{The calling string} } \references{Al-Homidan S (2008). Semidefinite programming for the educational testing problem. Central European Journal of Operations Research, 16:239-249. Bentler PM (1972) A lower-bound method for the dimension-free measurement of internal consistency. Soc Sci Res 1:343-357. Fletcher R (1981) A nonlinear programming problem in statistics (educational testing). SIAM J Sci Stat Comput 2:257-267. Shapiro A, ten Berge JMF (2000). The asymptotic bias of minimum trace factor analysis, with applications to the greatest lower bound to reliability. Psychometrika, 65:413-425. ten Berge, Socan G (2004). The greatest bound to reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69:613-625. } \author{Andreas Moltner \cr Center of Excellence for Assessment in Medicine/Baden-Wurttemberg\cr University of Heidelberg\cr William Revelle\cr Department of Psychology \cr Northwestern University Evanston, Illiniois \cr http://personality-project.org/revelle.html } \seealso{ For an alternative estimate of the greatest lower bound, see \code{\link{glb.fa}}. For multiple estimates of reliablity, see \code{\link{guttman}} } \examples{ Cv<-matrix(c(215, 64, 33, 22, 64, 97, 57, 25, 33, 57,103, 36, 22, 25, 36, 77),ncol=4) Cv # covariance matrix of a test with 4 subtests Cr<-cov2cor(Cv) # Correlation matrix of tests if(!require(Rcsdp)) {print("Rcsdp must be installed to find the glb.algebraic")} else { glb.algebraic(Cv) # glb of total score glb.algebraic(Cr) # glb of sum of standardized scores w<-c(1,2,2,1) # glb of weighted total score glb.algebraic(diag(w) \%*\% Cv \%*\% diag(w)) alphas <- c(0.8,0,0,0) # Internal consistency of first test is known glb.algebraic(Cv,LoBounds=alphas*diag(Cv)) # Fix all diagonal elements to 1 but the first: lb <- glb.algebraic(Cr,LoBounds=c(0,1,1,1),UpBounds=c(1,1,1,1)) lb$solution[1] # should be the same as the squared mult. corr. smc(Cr)[1] } } \keyword{multivariate} psych/man/sat.act.Rd0000644000176200001440000000340512251155577014013 0ustar liggesusers\name{sat.act} \alias{sat.act} \docType{data} \title{3 Measures of ability: SATV, SATQ, ACT} \description{Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. } \usage{data(sat.act)} \format{ A data frame with 700 observations on the following 6 variables. \describe{ \item{\code{gender}}{males = 1, females = 2} \item{\code{education}}{self reported education 1 = high school ... 5 = graduate work} \item{\code{age}}{age} \item{\code{ACT}}{ACT composite scores may range from 1 - 36. National norms have a mean of 20. } \item{\code{SATV}}{SAT Verbal scores may range from 200 - 800. } \item{\code{SATQ}}{SAT Quantitative scores may range from 200 - 800} } } \details{hese items were collected as part of the SAPA project (\url{http://sapa-project.org})to develop online measures of ability (Revelle, Wilt and Rosenthal, 2009). The score means are higher than national norms suggesting both self selection for people taking on line personality and ability tests and a self reporting bias in scores. See also the iq.items data set. } \source{\url{http://personality-project.org} } \references{Revelle, William, Wilt, Joshua, and Rosenthal, Allen (2009) Personality and Cognition: The Personality-Cognition Link. In Gruszka, Alexandra and Matthews, Gerald and Szymura, Blazej (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. } \examples{ data(sat.act) describe(sat.act) pairs.panels(sat.act) } \keyword{datasets} psych/man/fa.random.Rd0000644000176200001440000003530113151612571014313 0ustar liggesusers\name{fa.random} \alias{fa.random} \title{A first approximation to Random Effects Exploratory Factor Analysis} \description{Inspired, in part, by the wprifm function in the profileR package, fa.random removes between subject differences in mean level and then does a normal exploratory factor analysis of the ipsatized data. Functionally, this removes a general factor of the data before factoring. To prevent non-positive definiteness of the residual data matrix, a very small amount of random noise is added to each variable. This is just a call to fa after removing the between subjects effect. Read the help file for \code{\link{fa}} for a detailed explanation of all of the input parameters and the output objects. } \usage{ fa.random(data, nfactors = 1, fix = TRUE, n.obs = NA, n.iter = 1, rotate = "oblimin", scores = "regression", residuals = FALSE, SMC = TRUE, covar = FALSE, missing = FALSE, impute = "median", min.err = 0.001, max.iter = 50, symmetric = TRUE, warnings = TRUE, fm = "minres", alpha = 0.1, p = 0.05, oblique.scores = FALSE, np.obs = NULL, use = "pairwise", cor = "cor", weight = NULL, ...) } \arguments{ \item{data}{A raw data matrix (or data.frame)} \item{nfactors}{ Number of factors to extract, default is 1 } \item{fix}{If TRUE, then a small amount of random error is added to each observed variable to keep the matrix positive semi-definite. If FALSE, then this is not done but because the matrix is non-positive semi-definite it will need to be smoothed when finding the scores and the various statistics.} \item{n.obs}{Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics. Must be specified if using a correlaton matrix and finding confidence intervals. Ignored.} \item{np.obs}{The pairwise number of observations. Used if using a correlation matrix and asking for a minchi solution.} \item{rotate}{"none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" are orthogonal rotations. "Promax", "promax", "oblimin", "simplimax", "bentlerQ, "geominQ" and "biquartimin" and "cluster" are possible oblique transformations of the solution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax. SPSS seems to do a Kaiser normalization before doing Promax, this is done here by the call to "promax" which does the normalization before calling Promax in GPArotation.} \item{n.iter}{Number of bootstrap interations to do in fa or fa.poly} \item{residuals}{Should the residual matrix be shown } \item{scores}{the default="regression" finds factor scores using regression. Alternatives for estimating factor scores include simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms ( \code{\link{factor.scores}}). Although scores="tenBerge" is probably preferred for most solutions, it will lead to problems with some improper correlation matrices. } \item{SMC}{Use squared multiple correlations (SMC=TRUE) or use 1 as initial communality estimate. Try using 1 if imaginary eigen values are reported. If SMC is a vector of length the number of variables, then these values are used as starting values in the case of fm='pa'. } \item{covar}{if covar is TRUE, factor the covariance matrix, otherwise factor the correlation matrix} \item{missing}{if scores are TRUE, and missing=TRUE, then impute missing values using either the median or the mean} \item{impute}{"median" or "mean" values are used to replace missing values} \item{min.err}{Iterate until the change in communalities is less than min.err} \item{max.iter}{Maximum number of iterations for convergence } \item{symmetric}{symmetric=TRUE forces symmetry by just looking at the lower off diagonal values} \item{warnings}{warnings=TRUE => warn if number of factors is too many } \item{fm}{Factoring method fm="minres" will do a minimum residual as will fm="uls". Both of these use a first derivative. fm="ols" differs very slightly from "minres" in that it minimizes the entire residual matrix using an OLS procedure but uses the empirical first derivative. This will be slower. fm="wls" will do a weighted least squares (WLS) solution, fm="gls" does a generalized weighted least squares (GLS), fm="pa" will do the principal factor solution, fm="ml" will do a maximum likelihood factor analysis. fm="minchi" will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair. fm ="minrank" will do a minimum rank factor analysis. "old.min" will do minimal residual the way it was done prior to April, 2017 (see discussion below).} \item{alpha}{alpha level for the confidence intervals for RMSEA} \item{p}{if doing iterations to find confidence intervals, what probability values should be found for the confidence intervals} \item{oblique.scores}{When factor scores are found, should they be based on the structure matrix (default) or the pattern matrix (oblique.scores=TRUE). } \item{weight}{If not NULL, a vector of length n.obs that contains weights for each observation. The NULL case is equivalent to all cases being weighted 1.} \item{use}{How to treat missing data, use="pairwise" is the default". See cor for other options.} \item{cor}{How to find the correlations: "cor" is Pearson", "cov" is covariance, "tet" is tetrachoric, "poly" is polychoric, "mixed" uses mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, Yuleb is Yulebonett, Yuleq and YuleY are the obvious Yule coefficients as appropriate} \item{...}{additional parameters, specifically, keys may be passed if using the target rotation, or delta if using geominQ, or whether to normalize if using Varimax} } \details{This function is inspired by the wprifm function in the profileR package and the citation there to a paper by Davison, Kim and Close (2009). The basic logic is to extract a means vector from each subject and then to analyze the resulting ipsatized data matrix. This can be seen as removing acquiecence in the case of personality items, or the general factor, in the case of ability items. Factors composed of items that are all keyed the same way (e.g., Neuroticism in the \code{\link{bfi}} data set) will be most affected by this technique. The output is identical to the normal \code{link{fa}} output with the addition of two objects: subject and within.r. The subject object is just the vector of the mean score for each subject on all the items. within.r is just the correlation of each item with those scores. } \value{ \item{subject}{A vector of the mean score on all items for each subject} \item{within.r}{The correlation of each item with the subject vector} \item{values }{Eigen values of the common factor solution} \item{e.values}{Eigen values of the original matrix} \item{communality}{Communality estimates for each item. These are merely the sum of squared factor loadings for that item.} \item{communalities}{If using minrank factor analysis, these are the communalities reflecting the total amount of common variance. They will exceed the communality (above) which is the model estimated common variance. } \item{rotation}{which rotation was requested?} \item{n.obs}{number of observations specified or found} \item{loadings}{An item by factor (pattern) loading matrix of class ``loadings" Suitable for use in other programs (e.g., GPA rotation or factor2cluster. To show these by sorted order, use \code{\link{print.psych}} with sort=TRUE} \item{complexity}{Hoffman's index of complexity for each item. This is just \eqn{\frac{(\Sigma a_i^2)^2}{\Sigma a_i^4}}{{(\Sigma a_i^2)^2}/{\Sigma a_i^4}} where a_i is the factor loading on the ith factor. From Hofmann (1978), MBR. See also Pettersson and Turkheimer (2010).} \item{Structure}{An item by factor structure matrix of class ``loadings". This is just the loadings (pattern) matrix times the factor intercorrelation matrix.} \item{fit}{How well does the factor model reproduce the correlation matrix. This is just \eqn{\frac{\Sigma r_{ij}^2 - \Sigma r^{*2}_{ij} }{\Sigma r_{ij}^2} }{(sum(r^2ij - sum(r*^2ij))/sum(r^2ij} (See \code{\link{VSS}}, \code{\link{ICLUST}}, and \code{\link{principal}} for this fit statistic.} \item{fit.off}{how well are the off diagonal elements reproduced?} \item{dof}{Degrees of Freedom for this model. This is the number of observed correlations minus the number of independent parameters. Let n=Number of items, nf = number of factors then \cr \eqn{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}{dof = n * (n-1)/2 - n * nf + nf*(nf-1)/2}} \item{objective}{Value of the function that is minimized by a maximum likelihood procedures. This is reported for comparison purposes and as a way to estimate chi square goodness of fit. The objective function is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. When using MLE, this function is minimized. When using OLS (minres), although we are not minimizing this function directly, we can still calculate it in order to compare the solution to a MLE fit. } \item{STATISTIC}{If the number of observations is specified or found, this is a chi square based upon the objective function, f (see above). Using the formula from \code{\link{factanal}}(which seems to be Bartlett's test) : \cr \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } } \item{PVAL}{If n.obs > 0, then what is the probability of observing a chisquare this large or larger?} \item{Phi}{If oblique rotations (e.g,m using oblimin from the GPArotation package or promax) are requested, what is the interfactor correlation?} \item{communality.iterations}{The history of the communality estimates (For principal axis only.) Probably only useful for teaching what happens in the process of iterative fitting.} \item{residual}{The matrix of residual correlations after the factor model is applied. To display it conveniently, use the \code{\link{residuals}} command. } \item{chi}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived \eqn{\chi^2}{chi^2} based upon the sum of the squared residuals * N. This will differ slightly from the MLE estimate which is based upon the fitting function rather than the actual residuals.} \item{rms}{This is the sum of the squared (off diagonal residuals) divided by the degrees of freedom. Comparable to an RMSEA which, because it is based upon \eqn{\chi^2}{chi^2}, requires the number of observations to be specified. The rms is an empirical value while the RMSEA is based upon normal theory and the non-central \eqn{\chi^2}{chi^2} distribution. That is to say, if the residuals are particularly non-normal, the rms value and the associated \eqn{\chi^2}{chi^2} and RMSEA can differ substantially. } \item{crms}{rms adjusted for degrees of freedom} \item{RMSEA}{The Root Mean Square Error of Approximation is based upon the non-central \eqn{\chi^2}{chi^2} distribution and the \eqn{\chi^2}{chi^2} estimate found from the MLE fitting function. With normal theory data, this is fine. But when the residuals are not distributed according to a noncentral \eqn{\chi^2}{chi^2}, this can give very strange values. (And thus the confidence intervals can not be calculated.) The RMSEA is a conventional index of goodness (badness) of fit but it is also useful to examine the actual rms values. } \item{TLI}{The Tucker Lewis Index of factoring reliability which is also known as the non-normed fit index. } \item{BIC}{Based upon \eqn{\chi^2}{chi^2} with the assumption of normal theory and using the \eqn{\chi^2}{chi^2} found using the objective function defined above. This is just \eqn{\chi^2 - 2 df}{chi^2 - 2 df}} \item{eBIC}{When normal theory fails (e.g., in the case of non-positive definite matrices), it useful to examine the empirically derived eBIC based upon the empirical \eqn{\chi^2}{chi^2} - 2 df. } \item{R2}{The multiple R square between the factors and factor score estimates, if they were to be found. (From Grice, 2001). Derived from R2 is is the minimum correlation between any two factor estimates = 2R2-1. } \item{r.scores}{The correlations of the factor score estimates using the specified model, if they were to be found. Comparing these correlations with that of the scores themselves will show, if an alternative estimate of factor scores is used (e.g., the tenBerge method), the problem of factor indeterminacy. For these correlations will not necessarily be the same. } \item{weights}{The beta weights to find the factor score estimates. These are also used by the \code{\link{predict.psych}} function to find predicted factor scores for new cases. These weights will depend upon the scoring method requested. } \item{scores}{The factor scores as requested. Note that these scores reflect the choice of the way scores should be estimated (see scores in the input). That is, simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms (see \code{\link{factor.scores}}). The correlation between factor score estimates (r.scores) is based upon using the regression/Thurstone approach. The actual correlation between scores will reflect the rotation algorithm chosen and may be found by correlating those scores. Although the scores are found by multiplying the standarized data by the weights matrix, this will not result in standard scores if using regression. } \item{valid}{The validity coffiecient of course coded (unit weighted) factor score estimates (From Grice, 2001)} \item{score.cor}{The correlation matrix of course coded (unit weighted) factor score estimates, if they were to be found, based upon the loadings matrix rather than the weights matrix. } \item{rot.mat}{The rotation matrix as returned from GPArotation.} } \references{ Davison, Mark L. and Kim, Se-Kang and Close, Catherine (2009) Factor Analytic Modeling of Within Person Variation in Score Profiles. Multivariate Behavioral Research (44(5) 668-687. } \author{ William Revelle } \note{An interesting, but not necessarily good, idea. To see what this does if there is a general factor, consider the unrotated solutions to the ability data set. In particular, compare the first factor loading with its congruence to the ipsatized solution means vector correlated with the items (the within.r object). } \seealso{ \code{\link{fa}} } \examples{ fa.ab <- fa(ability,4,rotate="none") #normal factor analysis fa.ab.ip <- fa.random(ability,3,rotate="none") fa.congruence(list(fa.ab,fa.ab.ip,fa.ab.ip$within.r)) } \keyword{ multivariate } \keyword{ models}psych/man/biplot.psych.Rd0000644000176200001440000001225612733606663015102 0ustar liggesusers\name{biplot.psych} \alias{biplot.psych} \title{Draw biplots of factor or component scores by factor or component loadings} \description{Extends the biplot function to the output of \code{\link{fa}}, \code{\link{fa.poly}} or \code{\link{principal}}. Will plot factor scores and factor loadings in the same graph. If the number of factors > 2, then all pairs of factors are plotted. Factor score histograms are plotted on the diagonal. The input is the resulting object from \code{\link{fa}}, \code{\link{principal}}, or \}{code\{link{fa.poly}} with the scores=TRUE option. Points may be colored according to other criteria. } \usage{ \method{biplot}{psych}(x, labels=NULL,cex=c(.75,1),main="Biplot from fa", hist.col="cyan",xlim.s=c(-3,3),ylim.s=c(-3,3),xlim.f=c(-1,1),ylim.f=c(-1,1), maxpoints=100,adjust=1.2,col,pos, arrow.len = 0.1,pch=16,choose=NULL, cuts=1,cutl=.0,group=NULL,...) } \arguments{ \item{x}{The output from \code{\link{fa}}, \code{\link{fa.poly}} or \code{\link{principal}} with the scores=TRUE option} \item{labels}{if NULL, draw the points with the plot character (pch) specified. To identify the data points, specify labels= 1:n where n is the number of observations, or labels =rownames(data) where data was the data set analyzed by the factor analysis.} \item{cex}{A vector of plot sizes of the data labels and of the factor labels} \item{main}{A main title for a two factor biplot} \item{hist.col}{If plotting more than two factors, the color of the histogram of the factor scores} \item{xlim.s}{x limits of the scores. Defaults to plus/minus three sigma} \item{ylim.s}{y limits of the scores.Defaults to plus/minus three sigma} \item{xlim.f}{x limits of the factor loadings.Defaults to plus/minus 1.0} \item{ylim.f}{y limits of the factor loadings.Defaults to plus/minus 1.0} \item{maxpoints}{When plotting 3 (or more) dimensions, at what size should we switch from plotting "o" to plotting "."} \item{adjust}{an adjustment factor in the histogram} \item{col}{a vector of colors for the data points and for the factor loading labels} \item{pos}{If plotting labels, what position should they be in? 1=below, 2=left, 3 top, 4 right. If missing, then the assumption is that labels should be printed instead of data points.} \item{arrow.len}{ the length of the arrow head} \item{pch}{The plotting character to use. pch=16 gives reasonable size dots. pch="." gives tiny points. If adding colors, use pch between 21 and 25. (see examples).} \item{choose}{Plot just the specified factors} \item{cuts}{Do not label cases with abs(factor scores) < cuts) (Actually, the distance of the x and y scores from 0) } \item{cutl}{Do not label variables with communalities in the two space < cutl} \item{group}{A vector of a grouping variable for the scores. Show a different color and symbol for each group.} \item{\dots}{more options for graphics} } \details{ Uses the generic biplot function to take the output of a factor analysis \code{\link{fa}}, \code{\link{fa.poly}} or principal components analysis \code{\link{principal}} and plot the factor/component scores along with the factor/component loadings. This is an extension of the generic biplot function to allow more control over plotting points in a two space and also to plot three or more factors (two at time). This will work for objects produced by \code{\link{fa}}, \code{\link{fa.poly}} or \code{\link{principal}} if they applied to the original data matrix. If however, one has a correlation matrix based upon the output from \code{\link{tetrachoric}} or \code{\link{polychoric}}, and has done either \code{\link{fa}} or \code{\link{principal}} on the correlations, then obviously, we can not do a biplot. However, both of those functions produce a weights matrix, which, in combination with the original data can be used to find the scores by using \code{\link{factor.scores}}. Since biplot.psych is looking for two elements of the x object: x$loadings and x$scores, you can create the appropriate object to plot. See the third example. } \author{William Revelle} \seealso{\code{\link{fa}}, \code{\link{fa.poly}}, \code{\link{principal}}, \code{\link{fa.plot}}, \code{\link{pairs.panels}} } \examples{ #the standard example data(USArrests) fa2 <- fa(USArrests,2,scores=TRUE) biplot(fa2,labels=rownames(USArrests)) # plot the 3 factor solution data(bfi) fa3 <- fa(bfi[1:200,1:15],3,scores=TRUE) biplot(fa3) #just plot factors 1 and 3 from that solution biplot(fa3,choose=c(1,3)) # fa2 <- fa(bfi[16:25],2) #factor analysis fa2$scores <- fa2$scores[1:100,] #just take the first 100 #now plot with different colors and shapes for males and females biplot(fa2,pch=c(24,21)[bfi[1:100,"gender"]],group =bfi[1:100,"gender"], main="Biplot of Conscientiousness and Neuroticism by gender") r <- cor(bfi[1:200,1:10], use="pairwise") #find the correlations f2 <- fa(r,2) x <- list() x$scores <- factor.scores(bfi[1:200,1:10],f2) x$loadings <- f2$loadings class(x) <- c('psych','fa') biplot(x,main="biplot from correlation matrix and factor scores") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{hplot }% __ONLY ONE__ keyword per line psych/man/factor.fit.Rd0000644000176200001440000000322412244450165014505 0ustar liggesusers\name{factor.fit} \alias{factor.fit} \title{ How well does the factor model fit a correlation matrix. Part of the VSS package } \description{The basic factor or principal components model is that a correlation or covariance matrix may be reproduced by the product of a factor loading matrix times its transpose: F'F or P'P. One simple index of fit is the 1 - sum squared residuals/sum squared original correlations. This fit index is used by \code{\link{VSS}}, \code{\link{ICLUST}}, etc. } \usage{ factor.fit(r, f) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{r}{a correlation matrix } \item{f}{A factor matrix of loadings.} } \details{There are probably as many fit indices as there are psychometricians. This fit is a plausible estimate of the amount of reduction in a correlation matrix given a factor model. Note that it is sensitive to the size of the original correlations. That is, if the residuals are small but the original correlations are small, that is a bad fit. Let \deqn{R* = R - FF'}{R*= R - FF'} \deqn{fit = 1 - \frac{ \sum(R*^2)}{\sum(R^2)}}{fit = 1 - sum(R*^2)/sum(R^2)}. The sums are taken for the off diagonal elements.} \value{fit } \author{ William Revelle} \seealso{ \code{\link{VSS}}, \code{\link{ICLUST}} } \examples{ \dontrun{ #compare the fit of 4 to 3 factors for the Harman 24 variables fa4 <- factanal(x,4,covmat=Harman74.cor$cov) round(factor.fit(Harman74.cor$cov,fa4$loading),2) #[1] 0.9 fa3 <- factanal(x,3,covmat=Harman74.cor$cov) round(factor.fit(Harman74.cor$cov,fa3$loading),2) #[1] 0.88 } } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/faMulti.Rd0000644000176200001440000001560612660211557014060 0ustar liggesusers\name{fa.multi} \alias{fa.multi} \alias{fa.multi.diagram} %- Also NEED an '\alias' for EACH other topic documented here. \title{Multi level (hierarchical) factor analysis } \description{Some factor analytic solutions produce correlated factors which may in turn be factored. If the solution has one higher order, the omega function is most appropriate. But, in the case of multi higher order factors, then the faMulti function will do a lower level factoring and then factor the resulting correlation matrix. Multi level factor diagrams are also shown. } \usage{ fa.multi(r, nfactors = 3, nfact2 = 1, n.obs = NA, n.iter = 1, rotate = "oblimin", scores = "regression", residuals = FALSE, SMC = TRUE, covar = FALSE, missing = FALSE,impute = "median", min.err = 0.001, max.iter = 50, symmetric = TRUE, warnings =TRUE, fm = "minres", alpha = 0.1, p = 0.05, oblique.scores = FALSE, np.obs = NULL, use ="pairwise", cor = "cor", ...) fa.multi.diagram(multi.results,sort=TRUE,labels=NULL,flabels=NULL,cut=.2,gcut=.2, simple=TRUE,errors=FALSE, digits=1,e.size=.1,rsize=.15,side=3,main=NULL,cex=NULL,color.lines=TRUE ,marg=c(.5,.5,1.5,.5),adj=2, ...) } \arguments{The arguments match those of the fa function. \item{r}{ A correlation matrix or raw data matrix } \item{nfactors}{The desired number of factors for the lower level } \item{nfact2}{The desired number of factors for the higher level } \item{n.obs}{Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics. Must be specified if using a correlaton matrix and finding confidence intervals.} \item{np.obs}{The pairwise number of observations. Used if using a correlation matrix and asking for a minchi solution.} \item{rotate}{"none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" are orthogonal rotations. "promax", "oblimin", "simplimax", "bentlerQ, "geominQ" and "biquartimin" and "cluster" are possible oblique transformations of the solution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax.} \item{n.iter}{Number of bootstrap interations to do in fa or fa.poly} \item{residuals}{Should the residual matrix be shown } \item{scores}{the default="regression" finds factor scores using regression. Alternatives for estimating factor scores include simple regression ("Thurstone"), correlaton preserving ("tenBerge") as well as "Anderson" and "Bartlett" using the appropriate algorithms (see factor.scores). Although scores="tenBerge" is probably preferred for most solutions, it will lead to problems with some improper correlation matrices. } \item{SMC}{Use squared multiple correlations (SMC=TRUE) or use 1 as initial communality estimate. Try using 1 if imaginary eigen values are reported. If SMC is a vector of length the number of variables, then these values are used as starting values in the case of fm='pa'. } \item{covar}{if covar is TRUE, factor the covariance matrix, otherwise factor the correlation matrix} \item{missing}{if scores are TRUE, and missing=TRUE, then impute missing values using either the median or the mean} \item{impute}{"median" or "mean" values are used to replace missing values} \item{min.err}{Iterate until the change in communalities is less than min.err} \item{max.iter}{Maximum number of iterations for convergence } \item{symmetric}{symmetric=TRUE forces symmetry by just looking at the lower off diagonal values} \item{warnings}{warnings=TRUE => warn if number of factors is too many } \item{fm}{factoring method fm="minres" will do a minimum residual (OLS), fm="wls" will do a weighted least squares (WLS) solution, fm="gls" does a generalized weighted least squares (GLS), fm="pa" will do the principal factor solution, fm="ml" will do a maximum likelihood factor analysis. fm="minchi" will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair.} \item{alpha}{alpha level for the confidence intervals for RMSEA} \item{p}{if doing iterations to find confidence intervals, what probability values should be found for the confidence intervals} \item{oblique.scores}{When factor scores are found, should they be based on the structure matrix (default) or the pattern matrix (oblique.scores=TRUE). } \item{use}{How to treat missing data, use="pairwise" is the default". See cor for other options.} \item{cor}{How to find the correlations: "cor" is Pearson", "cov" is covariance, "tet" is tetrachoric, "poly" is polychoric, "mixed" uses mixed cor for a mixture of tetrachorics, polychorics, Pearsons, biserials, and polyserials, Yuleb is Yulebonett, Yuleq and YuleY are the obvious Yule coefficients as appropriate} \item{multi.results}{The results from fa.multi} \item{labels}{ variable labels } \item{flabels}{Labels for the factors (not counting g)} \item{size}{size of graphics window } \item{digits}{ Precision of labels } \item{cex}{control font size} \item{color.lines}{Use black for positive, red for negative} \item{marg}{The margins for the figure are set to be wider than normal by default} \item{adj}{Adjust the location of the factor loadings to vary as factor mod 4 + 1} \item{main}{ main figure caption } \item{\dots}{additional parameters, specifically, keys may be passed if using the target rotation, or delta if using geominQ, or whether to normalize if using Varimax. In addition, for fa.multi.diagram, other options to pass into the graphics packages } \item{e.size}{the size to draw the ellipses for the factors. This is scaled by the number of variables.} \item{cut}{Minimum path coefficient to draw} \item{gcut}{Minimum general factor path to draw} \item{simple}{draw just one path per item} \item{sort}{sort the solution before making the diagram} \item{side}{on which side should errors be drawn?} \item{errors}{show the error estimates} \item{rsize}{size of the rectangles} } \details{ See \code{\link{fa}} and \code{\link{omega}} for a discussion of factor analysis and of the case of one higher order factor. } \value{ \item{f1}{The standard output from a factor analysis from \code{\link{fa}} for the raw variables} \item{f2}{The standard output from a factor analysis from \code{\link{fa}} for the correlation matrix of the level 1 solution. } } \references{ Revelle, William. (in prep) An introduction to psychometric theory with applications in R. Springer. Working draft available at \url{http://personality-project.org/r/book/} } \author{ William Revelle } \note{ This is clearly an early implementation (Feb 14 2016) which might be improved. } \seealso{ \code{\link{fa}}, \code{\link{omega}} } \examples{ f31 <- fa.multi(Thurstone,3,1) #compare with \code{\link{omega}} f31 fa.multi.diagram(f31) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } \keyword{ models} psych/man/ICLUST.cluster.Rd0000644000176200001440000000257612260322211015126 0ustar liggesusers\name{ICLUST.cluster} \alias{ICLUST.cluster} \title{Function to form hierarchical cluster analysis of items } \description{ The guts of the \code{\link{ICLUST}} algorithm. Called by \code{\link{ICLUST}} See ICLUST for description. } \usage{ ICLUST.cluster(r.mat, ICLUST.options,smc.items) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{r.mat}{ A correlation matrix} \item{ICLUST.options}{ A list of options (see \code{\link{ICLUST}}) } \item{smc.items}{passed from the main program to speed up processing} } \details{ See \code{\link{ICLUST}} } \value{ A list of cluster statistics, described more fully in \code{\link{ICLUST}} \item{comp1 }{Description of 'comp1'} \item{comp2 }{Description of 'comp2'} ... } \references{Revelle, W. 1979, Hierarchical Cluster Analysis and the Internal Structure of Tests. Multivariate Behavioral Research, 14, 57-74. \url{http://personality-project.org/revelle/publications/iclust.pdf} \cr See also more extensive documentation at \url{http://personality-project.org/r/r.ICLUST.html} } \author{William Revelle } \note{ Although the main code for ICLUST is here in ICLUST.cluster, the more extensive documentation is for \code{\link{ICLUST}}. } \seealso{ \code{\link{ICLUST.graph}},\code{\link{ICLUST}}, \code{\link{cluster.fit} }, \code{\link{VSS}}, \code{\link{omega} }} \keyword{multivariate } \keyword{cluster } psych/man/misc.Rd0000644000176200001440000001651713015402775013413 0ustar liggesusers\name{psych.misc} \alias{psych.misc} \alias{misc} \alias{tableF} \alias{lowerCor} \alias{lowerMat} \alias{progressBar} \alias{reflect} \alias{shannon} \alias{test.all} \alias{cor2} \alias{levels2numeric} \alias{char2numeric} \alias{isCorrelation} \title{Miscellaneous helper functions for the psych package} \description{This is a set of minor, if not trivial, helper functions. lowerCor finds the correlation of x variables and then prints them using lowerMat which is a trivial, but useful, function to round off and print the lower triangle of a matrix. reflect reflects the output of a factor analysis or principal components analysis so that one or more factors is reflected. (Requested by Alexander Weiss.) progressBar prints out ... as a calling routine (e.g., \code{\link{tetrachoric}}) works through a tedious calculation. shannon finds the Shannon index (H) of diversity or of information. test.all tests all the examples in a package. best.items sorts a factor matrix for absolute values and displays the expanded items names. fa.lookup returns sorted factor analysis output with item labels. \code{\link{cor2}} correlates two data.frames (of equal length). levels2numeric and char2numeric convert dataframe columns that are categorical/levels to numeric values. } \usage{ psych.misc() lowerCor(x,digits=2,use="pairwise",method="pearson") cor2(x,y,digits=2,use="pairwise",method="pearson") lowerMat(R, digits = 2) tableF(x,y) reflect(f,flip=NULL) progressBar(value,max,label=NULL) shannon(x,correct=FALSE,base=2) test.all(pl,package="psych",dependencies = c("Depends", "Imports", "LinkingTo"),find=FALSE,skip=NULL) levels2numeric(x) char2numeric(x) isCorrelation(x) #test if an object is a symmetric matrix } \arguments{ \item{R}{A rectangular matrix or data frame (probably a correlation matrix)} \item{x}{A data matrix or data frame or a vector depending upon the function.} \item{y}{A data matrix or data frame or a vector} \item{f}{The object returned from either a factor analysis (fa) or a principal components analysis (principal) } \item{digits}{round to digits} \item{use}{Should pairwise deletion be done, or one of the other options to cor} \item{method}{"pearson", "kendall", "spearman"} \item{value}{the current value of some looping variable} \item{max}{The maximum value the loop will achieve} \item{label}{what function is looping} \item{flip}{The factor or components to be reversed keyed (by factor number)} \item{correct}{Correct for the maximum possible information in this item} \item{base}{What is the base for the log function (default=2, e implies base = exp(1))} \item{pl}{The name of a package (or list of packages) to be activated and then have all the examples tested.} \item{package}{Find the dependencies for this package, e.g., psych} \item{dependencies}{Which type of dependency to examine?} \item{find}{Look up the dependencies, and then test all of their examples} \item{skip}{Do not test these dependencies} } \value{ \code{\link{tableF}} is fast alternative to the table function for creating two way tables of numeric variables. It does not have any of the elegant checks of the table function and thus is much faster. Used in the \code{\link{tetrachoric}} and \code{\link{polychoric}} functions to maximize speed. \code{\link{lowerCor}} Finds and prints (using \code{\link{lowerMat}}) the lower diagonal correlation matrix but returns (invisibly) the full correlation matrix found with the use and method parameters. The default values are for pairwise deletion of variables, and to print to 2 decimal places. \code{\link{lowerMat}}Shows the lower triangle of a matrix, rounded to digits with titles abbreviated to digits + 3 \code{\link{progressBar}} Display a series of dots as we progress through a slow loop (removed from anything using multicores). \code{\link{tableF}} (for tableFast) is a cut down version of table that does no error checking, nor returns pretty output, but is significantly faster than table. It will just work on two integer vectors. This is used in polychoric an tetrachoric for about a 50\% speed improvement for large problems. \code{\link{shannon}} finds Shannon's H index of information. Used for estimating the complexity or diversity of the distribution of responses in a vector or matrix. \deqn{H = -\sum{p_i log(p_i) }} \code{\link{test.all}} allows one to test all the examples in specified package. This allows us to make sure that those examples work when other packages (e.g., psych) are also loaded. This is used when developing revisions to the psych package to make sure the the other packages work. Some packages will not work and/or crash the system (e.g., DeducerPlugInScaling requires Java and even with Java, crashes when loaded, even if psych is not there!). Alternatively, if testing a long list of dependencies, you can skip the first part by specifying them by name. \code{\link{cor2}} will find and display the correlations between two sets of variables, rounded to digits, using the other options. If x is a list of multiple sets (two or more), then all sets are correlated. \code{\link{levels2numeric}}converts character data with levels to numeric data. Used in the SAPA analyses where we code some variables, (e.g., gender, education) with character codes to help in the documentation of files, but want to do analyses of correlations with other categorical variables. \code{\link{char2numeric}}converts character data with levels to numeric data. Used for cases when data from questionnaires include the response categories rathere than numeric data. Unless the levels of the data are in meaningful order, the numeric results are not useful. Most useful if doing polychoric analyses. } \details{ \code{\link{lowerCor}} prints out the lower off diagonal matrix rounded to digits with column names abbreviated to digits + 3 characters, but also returns the full and unrounded matrix. By default, it uses pairwise deletion of variables. It in turn calls \code{\link{lowerMat}} which does the pretty printing. It is important to remember to not call \code{\link{lowerCor}} when all you need is \code{\link{lowerMat}}! } \seealso{\code{\link{corr.test}} to find correlations, count the pairwise occurrences, and to give significance tests for each correlation. \code{\link{r.test}} for a number of tests of correlations, including tests of the difference between correlations. \code{\link{lowerUpper}} will display the differences between two matrices.} \examples{ lowerMat(Thurstone) lb <- lowerCor(bfi[1:10]) #finds and prints the lower correlation matrix, # returns the square matrix. #fiml <- corFiml(bfi[1:10]) #FIML correlations require lavaan package #lowerMat(fiml) #to get pretty output f3 <- fa(Thurstone,3) f3r <- reflect(f3,2) #reflect the second factor #find the complexity of the response patterns of the iqitems. round(shannon(iqitems),2) #test.all('BinNor') #Does the BinNor package work when we are using other packages bestItems(lb,3,cut=.1) #to make this a latex table #df2latex(bestItems(lb,2,cut=.2)) # data(bfi.dictionary) f2 <- fa(bfi[1:10],2) fa.lookup(f2,bfi.dictionary) sa1 <-sat.act[1:2] sa2 <- sat.act[3:4] sa3 <- sat.act[5:6] cor2(sa1,sa2) cor2(list(sa1,sa2)) #show within set and between set cors cor2(list(sa1,sa2,sa3)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} psych/man/principal.Rd0000755000176200001440000003062213117524216014433 0ustar liggesusers\name{principal} \alias{principal} \alias{pca} \title{ Principal components analysis (PCA)} \description{Does an eigen value decomposition and returns eigen values, loadings, and degree of fit for a specified number of components. Basically it is just doing a principal components analysis (PCA) for n principal components of either a correlation or covariance matrix. Can show the residual correlations as well. The quality of reduction in the squared correlations is reported by comparing residual correlations to original correlations. Unlike princomp, this returns a subset of just the best nfactors. The eigen vectors are rescaled by the sqrt of the eigen values to produce the component loadings more typical in factor analysis. } \usage{ principal(r, nfactors = 1, residuals = FALSE,rotate="varimax",n.obs=NA, covar=FALSE, scores=TRUE,missing=FALSE,impute="median",oblique.scores=TRUE,method="regression",...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{r}{a correlation matrix. If a raw data matrix is used, the correlations will be found using pairwise deletions for missing values.} \item{nfactors}{Number of components to extract } \item{residuals}{ FALSE, do not show residuals, TRUE, report residuals } \item{rotate}{"none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. See \code{\link{fa}} for all rotations avaiable.} \item{n.obs}{Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics.} \item{covar}{If false, find the correlation matrix from the raw data or convert to a correlation matrix if given a square matrix as input.} \item{scores}{If TRUE, find component scores} \item{missing}{if scores are TRUE, and missing=TRUE, then impute missing values using either the median or the mean} \item{impute}{"median" or "mean" values are used to replace missing values} \item{oblique.scores}{If TRUE (default), then the component scores are based upon the structure matrix. If FALSE, upon the pattern matrix.} \item{method}{Which way of finding component scores should be used. The default is "regression"} \item{...}{other parameters to pass to functions such as factor.scores or the various rotation functions. } } \details{Useful for those cases where the correlation matrix is improper (perhaps because of SAPA techniques). There are a number of data reduction techniques including principal components analysis (PCA) and factor analysis (EFA). Both PC and FA attempt to approximate a given correlation or covariance matrix of rank n with matrix of lower rank (p). \eqn{_nR_n \approx _{n}F_{kk}F_n'+ U^2}{nRn = nFk kFn' + U2} where k is much less than n. For principal components, the item uniqueness is assumed to be zero and all elements of the correlation or covariance matrix are fitted. That is, \eqn{_nR_n \approx _{n}F_{kk}F_n'}{nRn = nFk kFn' } The primary empirical difference between a components versus a factor model is the treatment of the variances for each item. Philosophically, components are weighted composites of observed variables while in the factor model, variables are weighted composites of the factors. For a n x n correlation matrix, the n principal components completely reproduce the correlation matrix. However, if just the first k principal components are extracted, this is the best k dimensional approximation of the matrix. It is important to recognize that rotated principal components are not principal components (the axes associated with the eigen value decomposition) but are merely components. To point this out, unrotated principal components are labelled as PCi, while rotated PCs are now labeled as RCi (for rotated components) and obliquely transformed components as TCi (for transformed components). (Thanks to Ulrike Gromping for this suggestion.) Rotations and transformations are either part of psych (Promax and cluster), of base R (varimax), or of GPArotation (simplimax, quartimax, oblimin, etc.). Of the various rotation/transformation options, varimax, Varimax, quartimax, bentlerT, geominT, and bifactor do orthogonal rotations. Promax transforms obliquely with a target matix equal to the varimax solution. oblimin, quartimin, simplimax, bentlerQ, geominQ and biquartimin are oblique transformations. Most of these are just calls to the GPArotation package. The ``cluster'' option does a targeted rotation to a structure defined by the cluster representation of a varimax solution. With the optional "keys" parameter, the "target" option will rotate to a target supplied as a keys matrix. (See \code{\link{target.rot}}.) The rotation matrix (rot.mat) is returned from all of these options. This is the inverse of the Th (theta?) object returned by the GPArotation package. The correlations of the factors may be found by \eqn{\Phi = \theta' \theta}{Phi = Th' Th} Some of the statistics reported are more appropriate for (maximum likelihood) factor analysis rather than principal components analysis, and are reported to allow comparisons with these other models. Although for items, it is typical to find component scores by scoring the salient items (using, e.g., \code{\link{scoreItems}}) component scores are found by regression where the regression weights are \eqn{R^{-1} \lambda}{R^(-1) lambda} where \eqn{\lambda}{lambda} is the matrix of component loadings. The regression approach is done to be parallel with the factor analysis function \code{\link{fa}}. The regression weights are found from the inverse of the correlation matrix times the component loadings. This has the result that the component scores are standard scores (mean=0, sd = 1) of the standardized input. A comparison to the scores from \code{\link{princomp}} shows this difference. princomp does not, by default, standardize the data matrix, nor are the components themselves standardized. The regression weights are found from the Structure matrix, not the Pattern matrix. If the scores are found with the covar option = TRUE, then the scores are not standardized but are just mean centered. Jolliffe (2002) discusses why the interpretation of rotated components is complicated. Rencher (1992) discourages the use of rotated components. The approach used here is consistent with the factor analytic tradition. The correlations of the items with the component scores closely matches (as it should) the component loadings (as reported in the structure matrix). The output from the print.psych function displays the component loadings (from the pattern matrix), the h2 (communalities) the u2 (the uniquenesses), com (the complexity of the component loadings for that variable (see below). In the case of an orthogonal solution, h2 is merely the row sum of the squared component loadings. But for an oblique solution, it is the row sum of the (squared) orthogonal component loadings (remember, that rotations or transformations do not change the communality). This information is returned (invisibly) from the print function as the object Vaccounted. } \value{ \item{values}{Eigen Values of all components -- useful for a scree plot} \item{rotation}{which rotation was requested?} \item{n.obs}{number of observations specified or found} \item{communality}{Communality estimates for each item. These are merely the sum of squared factor loadings for that item.} \item{complexity}{Hoffman's index of complexity for each item. This is just \eqn{\frac{(\Sigma a_i^2)^2}{\Sigma a_i^4}}{{(\Sigma a_i^2)^2}/{\Sigma a_i^4}} where a_i is the factor loading on the ith factor. From Hofmann (1978), MBR. See also Pettersson and Turkheimer (2010).} \item{loadings }{A standard loading matrix of class ``loadings"} \item{fit }{Fit of the model to the correlation matrix } \item{fit.off}{how well are the off diagonal elements reproduced?} \item{residual }{Residual matrix -- if requested} \item{dof}{Degrees of Freedom for this model. This is the number of observed correlations minus the number of independent parameters (number of items * number of factors - nf*(nf-1)/2. That is, dof = niI * (ni-1)/2 - ni * nf + nf*(nf-1)/2.} \item{objective}{value of the function that is minimized by maximum likelihood procedures. This is reported for comparison purposes and as a way to estimate chi square goodness of fit. The objective function is \cr \eqn{f = log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^{-1} R|) - n.items}{log(trace ((FF'+U2)^{-1} R) - log(|(FF'+U2)^-1 R|) - n.items}. Because components do not minimize the off diagonal, this fit will be not as good as for factor analysis. } \item{STATISTIC}{If the number of observations is specified or found, this is a chi square based upon the objective function, f. Using the formula from \code{\link{factanal}}: \cr \eqn{\chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f }{chi^2 = (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3)) * f } } \item{PVAL}{If n.obs > 0, then what is the probability of observing a chisquare this large or larger?} \item{phi}{If oblique rotations (using oblimin from the GPArotation package) are requested, what is the interfactor correlation.} \item{scores}{If scores=TRUE, then estimates of the factor scores are reported } \item{weights}{The beta weights to find the principal components from the data} \item{R2}{The multiple R square between the factors and factor score estimates, if they were to be found. (From Grice, 2001) For components, these are of course 1.0.} \item{valid}{The correlations of the component score estimates with the components, if they were to be found and unit weights were used. (So called course coding).} \item{rot.mat}{The rotation matrix used to produce the rotated component loadings. } } \note{By default, the accuracy of the varimax rotation function seems to be less than the Varimax function. This can be enhanced by specifying eps=1e-14 in the call to principal if using varimax rotation. Furthermore, note that Varimax by default does not apply the Kaiser normalization, but varimax does. Gottfried Helms compared these two rotations with those produced by SPSS and found identical values if using the appropriate options. (See the last two examples.) } \author{ William Revelle} \references{ Grice, James W. (2001), Computing and evaluating factor scores. Psychological Methods, 6, 430-450 Jolliffe, I. (2002) Principal Component Analysis (2nd ed). Springer. Rencher, A. C. (1992) Interpretation of Canonical Discriminant Functions, Canonical Variates, and Principal Components, the American Statistician, (46) 217-225. Revelle, W. An introduction to psychometric theory with applications in R (in prep) Springer. Draft chapters available at \url{http://personality-project.org/r/book/} } \seealso{\code{\link{VSS}} (to test for the number of components or factors to extract), \code{\link{VSS.scree}} and \code{\link{fa.parallel}} to show a scree plot and compare it with random resamplings of the data), \code{\link{factor2cluster}} (for course coding keys), \code{\link{fa}} (for factor analysis), \code{\link{factor.congruence}} (to compare solutions), \code{\link{predict.psych}} to find factor/component scores for a new data set based upon the weights from an original data set. } \examples{ #Four principal components of the Harman 24 variable problem #compare to a four factor principal axes solution using factor.congruence pc <- principal(Harman74.cor$cov,4,rotate="varimax") mr <- fa(Harman74.cor$cov,4,rotate="varimax") #minres factor analysis pa <- fa(Harman74.cor$cov,4,rotate="varimax",fm="pa") # principal axis factor analysis round(factor.congruence(list(pc,mr,pa)),2) pc2 <- principal(Harman.5,2,rotate="varimax") pc2 round(cor(Harman.5,pc2$scores),2) #compare these correlations to the loadings #now do it for unstandardized scores, and transform obliquely pc2o <- principal(Harman.5,2,rotate="promax",covar=TRUE) pc2o round(cov(Harman.5,pc2o$scores),2) pc2o$Structure #this matches the covariances with the scores biplot(pc2,main="Biplot of the Harman.5 socio-economic variables",labels=paste0(1:12)) #For comparison with SPSS (contributed by Gottfried Helms) pc2v <- principal(iris[1:4],2,rotate="varimax",normalize=FALSE,eps=1e-14) print(pc2v,digits=7) pc2V <- principal(iris[1:4],2,rotate="Varimax",eps=1e-7) p <- print(pc2V,digits=7) round(p$Vaccounted,2) # the amount of variance accounted for is returned as an object of print } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/peas.Rd0000644000176200001440000000335611303546262013403 0ustar liggesusers\name{peas} \alias{peas} \docType{data} \title{Galton`s Peas} \description{Francis Galton introduced the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. } \usage{data(peas)} \format{ A data frame with 700 observations on the following 2 variables. \describe{ \item{\code{parent}}{The mean diameter of the mother pea for 700 peas} \item{\code{child}}{The mean diameter of the daughter pea for 700 sweet peas} } } \details{Galton's introduction of the correlation coefficient was perhaps the most important contribution to the study of individual differences. This data set allows a graphical analysis of the data set. There are two different graphic examples. One shows the regression lines for both relationships, the other finds the correlation as well. } \source{Stanton, Jeffrey M. (2001) Galton, Pearson, and the Peas: A brief history of linear regression for statistics intstructors, Journal of Statistics Education, 9. (retrieved from the web from http://www.amstat.org/publications/jse/v9n3/stanton.html) reproduces the table from Galton, 1894, Table 2. The data were generated from this table. } \references{Galton, Francis (1877) Typical laws of heredity. paper presented to the weekly evening meeting of the Royal Institution, London. Volume VIII (66) is the first reference to this data set. The data appear in Galton, Francis (1894) Natural Inheritance (5th Edition), New York: MacMillan). } \seealso{The other Galton data sets: \code{\link{heights}}, \code{\link{galton}},\code{\link{cubits}}} \examples{ data(peas) pairs.panels(peas,lm=TRUE,xlim=c(14,22),ylim=c(14,22),main="Galton's Peas") describe(peas) pairs.panels(peas,main="Galton's Peas") } \keyword{datasets} psych/man/cluster.loadings.Rd0000644000176200001440000000650513147336463015742 0ustar liggesusers\name{cluster.loadings} \alias{cluster.loadings} \title{ Find item by cluster correlations, corrected for overlap and reliability } \description{ Given a n x n correlation matrix and a n x c matrix of -1,0,1 cluster weights for those n items on c clusters, find the correlation of each item with each cluster. If the item is part of the cluster, correct for item overlap. Part of the \code{\link{ICLUST}} set of functions, but useful for many item analysis problems. } \usage{ cluster.loadings(keys, r.mat, correct = TRUE,SMC=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{keys}{ Cluster keys: a matrix of -1,0,1 cluster weights} \item{r.mat}{ A correlation matrix } \item{correct}{Correct for reliability} \item{SMC}{Use the squared multiple correlation as a communality estimate, otherwise use the greatest correlation for each variable} } \details{Given a set of items to be scored as (perhaps overlapping) clusters and the intercorrelation matrix of the items, find the clusters and then the correlations of each item with each cluster. Correct for item overlap by replacing the item variance with its average within cluster inter-item correlation. Although part of ICLUST, this may be used in any SAPA (\url{http://sapa-project.org}) application where we are interested in item-whole correlations of items and composite scales. For information about SAPA see Revelle et al, 2010, 2016. For information about SAPA based measures of ability, see \url{http://icar-project.com}. These loadings are particularly interpretable when sorted by absolute magnitude for each cluster (see \code{\link{ICLUST.sort}}). } \value{ \item{loadings }{A matrix of item-cluster correlations (loadings)} \item{cor }{Correlation matrix of the clusters} \item{corrected }{Correlation matrix of the clusters, raw correlations below the diagonal, alpha on diagonal, corrected for reliability above the diagonal} \item{sd }{Cluster standard deviations} \item{alpha }{alpha reliabilities of the clusters} \item{G6}{G6* Modified estimated of Guttman Lambda 6} \item{count}{Number of items in the cluster} } \references{ ICLUST: \url{http://personality-project.org/r/r.ICLUST.html} Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations. } \author{Maintainer: William Revelle \email{revelle@northwestern.edu} } \note{ Although part of ICLUST, this may be used in any SAPA application where we are interested in item- whole correlations of items and composite scales.} \seealso{ \code{\link{ICLUST}}, \code{\link{factor2cluster}}, \code{\link{cluster.cor}} } \examples{ r.mat<- Harman74.cor$cov clusters <- matrix(c(1,1,1,rep(0,24),1,1,1,1,rep(0,17)),ncol=2) cluster.loadings(clusters,r.mat) } \keyword{multivariate }% at least one, from doc/KEYWORDS \keyword{ cluster }% __ONLY ONE__ keyword per line psych/man/lowerUpper.Rd0000644000176200001440000000353711764267750014635 0ustar liggesusers\name{lowerUpper} \alias{lowerUpper} \title{Combine two square matrices to have a lower off diagonal for one, upper off diagonal for the other} \description{ When reporting correlation matrices for two samples (e.g., males and females), it is convenient to show them as one matrix, with entries below the diagonal representing one matrix, and entries above the diagonal the other matrix. It is also useful to compare a correlation matrix with the residuals from a fitted (e.g., factor) model. } \usage{ lowerUpper(lower, upper=NULL, diff=FALSE) } \arguments{ \item{lower}{A square matrix} \item{upper}{A square matrix of the same size as the first (if omitted, then the matrix is converted to two symmetric matrices).} \item{diff}{Find the difference between the first and second matrix and put the results in the above the diagonal entries. } } \details{If just one matrix is provided (i.e., upper is missing), it is decomposed into two square matrices, one equal to the lower off diagonal entries, the other to the upper off diagonal entries. In the normal case two symmetric matrices are provided and combined into one non-symmetric matrix with the lower off diagonals representing the lower matrix and the upper off diagonals representing the upper matrix. If diff is true, the upper off diagonal matrix reflects the differences between the two matrices. } \value{Either one matrix or a list of two} \author{William Revelle} \seealso{\code{\link{read.clipboard.lower}}, \code{\link{cor.plot}} } \examples{ b1 <- Bechtoldt.1 b2 <- Bechtoldt.2 b12 <- lowerUpper(b1,b2) cor.plot(b12) diff12 <- lowerUpper(b1,b2,diff=TRUE) cor.plot(t(diff12),numbers=TRUE,main="Bechtoldt1 and the differences from Bechtoldt2") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate }% at least one, from doc/KEYWORDS psych/man/sim.anova.Rd0000644000176200001440000001054712216172445014350 0ustar liggesusers\name{sim.anova} \Rdversion{1.1} \alias{sim.anova} \title{Simulate a 3 way balanced ANOVA or linear model, with or without repeated measures. } \description{For teaching basic statistics, it is useful to be able to generate examples suitable for analysis of variance or simple linear models. sim.anova will generate the design matrix of three independent variables (IV1, IV2, IV3) with an arbitrary number of levels and effect sizes for each main effect and interaction. IVs can be either continuous or categorical and can have linear or quadratic effects. Either a single dependent variable or multiple (within subject) dependent variables are generated according to the specified model. The repeated measures are assumed to be tau equivalent with a specified reliability. } \usage{ sim.anova(es1 = 0, es2 = 0, es3 = 0, es12 = 0, es13 = 0, es23 = 0, es123 = 0, es11=0,es22=0, es33=0,n = 2,n1 = 2, n2 = 2, n3 = 2, within=NULL,r=.8,factors=TRUE,center = TRUE,std=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{es1}{Effect size of IV1} \item{es2}{Effect size of IV2} \item{es3}{Effect size of IV3} \item{es12}{Effect size of the IV1 x IV2 interaction} \item{es13}{Effect size of the IV1 x IV3 interaction} \item{es23}{Effect size of the IV2 x IV3 interaction} \item{es123}{Effect size of the IV1 x IV2 * IV3 interaction} \item{es11}{Effect size of the quadratric term of IV1} \item{es22}{Effect size of the quadratric term of IV2} \item{es33}{Effect size of the quadratric term of IV3} \item{n}{Sample size per cell (if all variables are categorical) or (if at least one variable is continuous), the total sample size} \item{n1}{Number of levels of IV1 (0) if continuous} \item{n2}{Number of levels of IV2} \item{n3}{Number of levels of IV3} \item{within}{if not NULL, then within should be a vector of the means of any repeated measures.} \item{r}{the correlation between the repeated measures (if they exist). This can be thought of as the reliablility of the measures.} \item{factors}{report the IVs as factors rather than numeric} \item{center}{center=TRUE provides orthogonal contrasts, center=FALSE adds the minimum value + 1 to all contrasts} \item{std}{Standardize the effect sizes by standardizing the IVs} } \details{A simple simulation for teaching about ANOVA, regression and reliability. A variety of demonstrations of the relation between anova and lm can be shown. The default is to produce categorical IVs (factors). For more than two levels of an IV, this will show the difference between the linear model and anova in terms of the comparisons made. The within vector can be used to add congenerically equivalent dependent variables. These will have intercorrelations (reliabilities) of r and means as specified as values of within. To demonstrate the effect of centered versus non-centering, make factors = center=FALSE. The default is to center the IVs. By not centering them, the lower order effects will be incorrect given the higher order interaction terms. } \value{y.df is a data.frame of the 3 IV values as well as the DV values. \item{IV1 ... IV3}{Independent variables 1 ... 3} \item{DV}{If there is a single dependent variable} \item{DV.1 ... DV.n}{If within is specified, then the n within subject dependent variables} } \author{William Revelle} \seealso{ The general set of simulation functions in the psych package \code{\link{sim}} } \examples{ set.seed(42) data.df <- sim.anova(es1=1,es2=.5,es13=1) # one main effect and one interaction describe(data.df) pairs.panels(data.df) #show how the design variables are orthogonal # summary(lm(DV~IV1*IV2*IV3,data=data.df)) summary(aov(DV~IV1*IV2*IV3,data=data.df)) set.seed(42) #demonstrate the effect of not centering the data on the regression data.df <- sim.anova(es1=1,es2=.5,es13=1,center=FALSE) # describe(data.df) # #this one is incorrect, because the IVs are not centered summary(lm(DV~IV1*IV2*IV3,data=data.df)) summary(aov(DV~IV1*IV2*IV3,data=data.df)) #compare with the lm model #now examine multiple levels and quadratic terms set.seed(42) data.df <- sim.anova(es1=1,es13=1,n2=3,n3=4,es22=1) summary(lm(DV~IV1*IV2*IV3,data=data.df)) summary(aov(DV~IV1*IV2*IV3,data=data.df)) pairs.panels(data.df) # data.df <- sim.anova(es1=1,es2=-.5,within=c(-1,0,1),n=10) pairs.panels(data.df) } \keyword{models} \keyword{multivariate}% __ONLY ONE__ keyword per line psych/man/table2matrix.Rd0000644000176200001440000000351111434537506015050 0ustar liggesusers\name{table2matrix} \alias{table2matrix} \alias{table2df} \title{ Convert a table with counts to a matrix or data.frame representing those counts.} \description{Some historical sets are reported as summary tables of counts in a limited number of bins. Transforming these tables to data.frames representing the original values is useful for pedagogical purposes. (E.g., transforming the original Galton table of height x cubits in order to demonstrate regression.) The column and row names must be able to be converted to numeric values. } \usage{ table2matrix(x, labs = NULL) table2df(x, count=NULL,labs = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A two dimensional table of counts with row and column names that can be converted to numeric values. } \item{count}{if present, then duplicate each row count times} \item{labs}{Labels for the rows and columns. These will be used for the names of the two columns of the resulting matrix } } \details{The original Galton (1888) of heights by cubits (arm length) is in tabular form. To show this as a correlation or as a scatter plot, it is useful to convert the table to a matrix or data frame of two columns. This function may also be used to convert an item response pattern table into a data table. e.g., the Bock data set \code{\link{bock}}. } \value{A matrix (or data.frame) of sum(x) rows and two columns. } \author{William Revelle} \seealso{ \code{\link{cubits}} and \code{\link{bock}} data sets} \examples{ data(cubits) cubit <- table2matrix(cubits,labs=c("height","cubit")) describe(cubit) ellipses(cubit,n=1) data(bock) responses <- table2df(bock.table[,2:6],count=bock.table[,7],labs= paste("lsat6.",1:5,sep="")) describe(responses) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{models} psych/man/income.Rd0000644000176200001440000000311312216167531013716 0ustar liggesusers\name{income} \alias{income} \alias{all.income} \docType{data} \title{US family income from US census 2008 } \description{US census data on family income from 2008 } \usage{data(income)} \format{ A data frame with 44 observations on the following 4 variables. \describe{ \item{\code{value}}{lower boundary of the income group} \item{\code{count}}{Number of families within that income group} \item{\code{mean}}{Mean of the category} \item{\code{prop}}{proportion of families} } } \details{The distribution of income is a nice example of a log normal distribution. It is also an interesting example of the power of graphics. It is quite clear when graphing the data that income statistics are bunched to the nearest 5K. That is, there is a clear sawtooth pattern in the data. The all.income set is interpolates intervening values for 100-150K, 150-200K and 200-250K} \source{US Census: Table HINC-06. Income Distribution to $250,000 or More for Households: 2008 http://www.census.gov/hhes/www/cpstables/032009/hhinc/new06_000.htm } \examples{ data(income) with(income[1:40,], plot(mean,prop, main="US family income for 2008",xlab="income", ylab="Proportion of families",xlim=c(0,100000))) with (income[1:40,], points(lowess(mean,prop,f=.3),typ="l")) describe(income) with(all.income, plot(mean,prop, main="US family income for 2008",xlab="income", ylab="Proportion of families",xlim=c(0,250000))) with (all.income[1:50,], points(lowess(mean,prop,f=.25),typ="l")) #curve(100000* dlnorm(x, 10.8, .8), x = c(0,250000),ylab="Proportion") } \keyword{datasets} psych/man/schmid.Rd0000644000176200001440000001035513015700723013713 0ustar liggesusers\name{schmid} \alias{schmid} \title{Apply the Schmid Leiman transformation to a correlation matrix} \description{One way to find omega is to do a factor analysis of the original data set, rotate the factors obliquely, do a Schmid Leiman transformation, and then find omega. Here is the code for Schmid Leiman. The S-L transform takes a factor or PC solution, transforms it to an oblique solution, factors the oblique solution to find a higher order (g ) factor, and then residualizes g out of the the group factors. } \usage{ schmid(model, nfactors = 3, fm = "minres",digits=2,rotate="oblimin", n.obs=NA,option="equal",Phi=NULL,covar=FALSE,...) } \arguments{ \item{model}{ A correlation matrix } \item{nfactors}{ Number of factors to extract } \item{fm}{the default is to do minres. fm="pa" for principal axes, fm="pc" for principal components, fm = "minres" for minimum residual (OLS), pc="ml" for maximum likelihood } \item{digits}{if digits not equal NULL, rounds to digits} \item{rotate}{The default, oblimin, produces somewhat more correlated factors than the alternative, simplimax. Other options include Promax (not Kaiser normalized) or promax (Promax with Kaiser normalization). See \code{\link{fa}} for possible oblique rotations.} \item{n.obs}{Number of observations, used to find fit statistics if specified. Will be calculated if input is raw data} \item{option}{When asking for just two group factors, option can be for "equal", "first" or "second"} \item{Phi}{If Phi is specified, then the analysis is done on a pattern matrix with the associated factor intercorrelation (Phi) matrix. This allows for reanalysess of published results} \item{covar}{Defaults to FALSE and finds correlations. If set to TRUE, then do the calculations on the unstandardized variables.} \item{...}{Allows additional parameters to be passed to the factoring routines} } \details{Schmid Leiman orthogonalizations are typical in the ability domain, but are not seen as often in the non-cognitive personality domain. S-L is one way of finding the loadings of items on the general factor for estimating omega. A typical example would be in the study of anxiety and depression. A general neuroticism factor (g) accounts for much of the variance, but smaller group factors of tense anxiety, panic disorder, depression, etc. also need to be considerd. An alternative model is to consider hierarchical cluster analysis techniques such as \code{\link{ICLUST}}. Requires the GPArotation package. Although 3 factors are the minimum number necessary to define the solution uniquely, it is occasionally useful to allow for a two factor solution. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be "equal" which will be the sqrt(oblique correlations between the factors) or to "first" or "second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. A diagnostic tool for testing the appropriateness of a hierarchical model is p2 which is the percent of the common variance for each variable that is general factor variance. In general, p2 should not have much variance. } \value{ \item{sl }{loadings on g + nfactors group factors, communalities, uniqueness, percent of g2 of h2} \item{orthog }{original orthogonal factor loadings} \item{oblique}{oblique factor loadings} \item{phi }{correlations among the transformed factors} \item{gload }{loadings of the lower order factors on g} ... } \references{\url{http://personality-project.org/r/r.omega.html} gives an example taken from Jensen and Weng, 1994 of a S-L transformation.} \author{ William Revelle} \seealso{ \code{\link{omega}}, \code{\link{omega.graph}}, \code{\link{fa.graph}}, \code{\link{ICLUST}},\code{\link{VSS}}} \examples{ jen <- sim.hierarchical() #create a hierarchical demo if(!require(GPArotation)) { message("I am sorry, you must have GPArotation installed to use schmid.")} else { p.jen <- schmid(jen,digits=2) #use the oblimin rotation p.jen <- schmid(jen,rotate="promax") #use the promax rotation } } \keyword{ multivariate }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line psych/man/heights.Rd0000644000176200001440000000335411002670662014102 0ustar liggesusers\name{heights} \alias{heights} \docType{data} \title{A data.frame of the Galton (1888) height and cubit data set.} \description{Francis Galton introduced the 'co-relation' in 1888 with a paper discussing how to measure the relationship between two variables. His primary example was the relationship between height and forearm length. The data table (\code{\link{cubits}}) is taken from Galton (1888). Unfortunately, there seem to be some errors in the original data table in that the marginal totals do not match the table. The data frame, \code{\link{heights}}, is converted from this table using \code{\link{table2df}}. } \usage{data(heights)} \format{ A data frame with 348 observations on the following 2 variables. \describe{ \item{\code{height}}{Height in inches} \item{\code{cubit}}{Forearm length in inches} } } \details{Sir Francis Galton (1888) published the first demonstration of the correlation coefficient. The regression (or reversion to mediocrity) of the height to the length of the left forearm (a cubit) was found to .8. The original table \code{\link{cubits}} is taken from Galton (1888). There seem to be some errors in the table as published in that the row sums do not agree with the actual row sums. These data are used to create a matrix using \code{\link{table2matrix}} for demonstrations of analysis and displays of the data. } \seealso{ \code{\link{table2matrix}}, \code{\link{table2df}}, \code{\link{cubits}}, \code{\link{ellipses}}, \code{\link{galton}} } \source{Galton (1888) } \references{Galton, Francis (1888) Co-relations and their measurement. Proceedings of the Royal Society. London Series,45,135-145, } \examples{ data(heights) ellipses(heights,n=1,main="Galton's co-relation data set") } \keyword{datasets} psych/man/sim.congeneric.Rd0000644000176200001440000000645712260131660015356 0ustar liggesusers\name{sim.congeneric} \alias{congeneric.sim} \alias{sim.congeneric} \alias{make.congeneric} \title{ Simulate a congeneric data set } \description{Classical Test Theory (CTT) considers four or more tests to be congenerically equivalent if all tests may be expressed in terms of one factor and a residual error. Parallel tests are the special case where (usually two) tests have equal factor loadings. Tau equivalent tests have equal factor loadings but may have unequal errors. Congeneric tests may differ in both factor loading and error variances. } \usage{ sim.congeneric(loads = c(0.8, 0.7, 0.6, 0.5),N = NULL, err=NULL, short = TRUE, categorical=FALSE, low=-3,high=3,cuts=NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{N}{How many subjects to simulate. If NULL, return the population model } \item{loads}{ A vector of factor loadings for the tests } \item{err}{A vector of error variances -- if NULL then error = 1 - loading 2} \item{short}{short=TRUE: Just give the test correlations, short=FALSE, report observed test scores as well as the implied pattern matrix} \item{categorical}{ continuous or categorical (discrete) variables. } \item{low}{ values less than low are forced to low } \item{high}{ values greater than high are forced to high } \item{cuts}{If specified, and categorical = TRUE, will cut the resulting continuous output at the value of cuts} } \details{When constructing examples for reliability analysis, it is convenient to simulate congeneric data structures. These are the most simple of item structures, having just one factor. Mainly used for a discussion of reliability theory as well as factor score estimates. The implied covariance matrix is just pattern \%*\% t(pattern). } \value{ \item{model}{The implied population correlation matrix if N=NULL or short=FALSE, otherwise the sample correlation matrix} \item{pattern }{The pattern matrix implied by the loadings and error variances} \item{r}{The sample correlation matrix for long output} \item{observed}{a matrix of test scores for n tests} \item{latent}{The latent trait and error scores } } \references{Revelle, W. (in prep) An introduction to psychometric theory with applications in R. To be published by Springer. (working draft available at \url{http://personality-project.org/r/book/} } \author{ William Revelle } \seealso{ \code{\link{item.sim}} for other simulations, \code{\link{fa}} for an example of factor scores, \code{\link{irt.fa}} and \code{\link{polychoric}} for the treatment of item data with discrete values.} \examples{ test <- sim.congeneric(c(.9,.8,.7,.6)) #just the population matrix test <- sim.congeneric(c(.9,.8,.7,.6),N=100) # a sample correlation matrix test <- sim.congeneric(short=FALSE, N=100) round(cor(test$observed),2) # show a congeneric correlation matrix f1=fa(test$observed,scores=TRUE) round(cor(f1$scores,test$latent),2) #factor score estimates are correlated with but not equal to the factor scores set.seed(42) #500 responses to 4 discrete items items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) d4 <- irt.fa(items$observed) #item response analysis of congeneric measures } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate} \keyword{datagen} psych/man/ICC.Rd0000644000176200001440000000773312273552274013063 0ustar liggesusers\name{ICC} \alias{ICC} \title{ Intraclass Correlations (ICC1, ICC2, ICC3 from Shrout and Fleiss) } \description{The Intraclass correlation is used as a measure of association when studying the reliability of raters. Shrout and Fleiss (1979) outline 6 different estimates, that depend upon the particular experimental design. All are implemented and given confidence limits. } \usage{ ICC(x,missing=TRUE,alpha=.05) } \arguments{ \item{x}{a matrix or dataframe of ratings} \item{missing}{if TRUE, remove missing data -- work on complete cases only} \item{alpha}{The alpha level for significance for finding the confidence intervals} } \details{Shrout and Fleiss (1979) consider six cases of reliability of ratings done by k raters on n targets. ICC1: Each target is rated by a different judge and the judges are selected at random. (This is a one-way ANOVA fixed effects model and is found by (MSB- MSW)/(MSB+ (nr-1)*MSW)) ICC2: A random sample of k judges rate each target. The measure is one of absolute agreement in the ratings. Found as (MSB- MSE)/(MSB + (nr-1)*MSE + nr*(MSJ-MSE)/nc) ICC3: A fixed set of k judges rate each target. There is no generalization to a larger population of judges. (MSB - MSE)/(MSB+ (nr-1)*MSE) Then, for each of these cases, is reliability to be estimated for a single rating or for the average of k ratings? (The 1 rating case is equivalent to the average intercorrelation, the k rating case to the Spearman Brown adjusted reliability.) ICC1 is sensitive to differences in means between raters and is a measure of absolute agreement. ICC2 and ICC3 remove mean differences between judges, but are sensitive to interactions of raters by judges. The difference between ICC2 and ICC3 is whether raters are seen as fixed or random effects. ICC1k, ICC2k, ICC3K reflect the means of k raters. The intraclass correlation is used if raters are all of the same ``class". That is, there is no logical way of distinguishing them. Examples include correlations between pairs of twins, correlations between raters. If the variables are logically distinguishable (e.g., different items on a test), then the more typical coefficient is based upon the inter-class correlation (e.g., a Pearson r) and a statistic such as \code{\link{alpha}} or \code{\link{omega}} might be used. } \value{ \item{results}{A matrix of 6 rows and 8 columns, including the ICCs, F test, p values, and confidence limits} \item{summary}{The anova summary table} \item{stats}{The anova statistics} \item{MSW}{Mean Square Within based upon the anova} } \references{ Shrout, Patrick E. and Fleiss, Joseph L. Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin, 1979, 86, 420-3428. McGraw, Kenneth O. and Wong, S. P. (1996), Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1, 30-46. + errata on page 390. Revelle, W. (in prep) An introduction to psychometric theory with applications in R. Springer. (working draft available at \url{http://personality-project.org/r/book/}} \author{William Revelle } \note{The results for the Lower and Upper Bounds for ICC(2,k) do not match those of SPSS 9 or 10, but do match the definitions of Shrout and Fleiss. SPSS seems to have been using the formula in McGraw and Wong, but not the errata on p 390. They seem to have fixed it in more recent releases (15). Starting with psych 1.4.2, the confidence intervals are based upon (1-alpha)\% at both tails of the confidence interval. This is in agreement with Shrout and Fleiss. Prior to 1.4.2 the confidence intervals were (1-alpha/2)\%. } \examples{ sf <- matrix(c(9, 2, 5, 8, 6, 1, 3, 2, 8, 4, 6, 8, 7, 1, 2, 6, 10, 5, 6, 9, 6, 2, 4, 7),ncol=4,byrow=TRUE) colnames(sf) <- paste("J",1:4,sep="") rownames(sf) <- paste("S",1:6,sep="") sf #example from Shrout and Fleiss (1979) ICC(sf) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ multivariate } psych/man/sim.Rd0000644000176200001440000003775012216172603013246 0ustar liggesusers\name{sim} \alias{sim} \alias{sim.simplex} \alias{sim.minor} \alias{sim.omega} \alias{sim.general} \alias{sim.parallel} \alias{sim.rasch} \alias{sim.irt} \alias{sim.npl} \alias{sim.npn} \alias{sim.poly} \alias{sim.poly.npl} \alias{sim.poly.npn} \alias{sim.poly.ideal} \alias{sim.poly.ideal.npl} \alias{sim.poly.ideal.npn} \alias{sim.poly.mat} \title{Functions to simulate psychological/psychometric data.} \description{A number of functions in the psych package will generate simulated data with particular structures. These functions include \code{\link{sim}} for a factor simplex, and \code{\link{sim.simplex}} for a data simplex, \code{\link{sim.circ}} for a circumplex structure, \code{\link{sim.congeneric}} for a one factor factor congeneric model, \code{\link{sim.dichot}} to simulate dichotomous items, \code{\link{sim.hierarchical}} to create a hierarchical factor model, \code{\link{sim.item}} a more general item simulation, \code{\link{sim.minor}} to simulate major and minor factors, \code{\link{sim.omega}} to test various examples of omega, \code{\link{sim.parallel}} to compare the efficiency of various ways of deterimining the number of factors, \code{\link{sim.rasch}} to create simulated rasch data, \code{\link{sim.irt}} to create general 1 to 4 parameter IRT data by calling \code{\link{sim.npl}} 1 to 4 parameter logistic IRT or \code{\link{sim.npn}} 1 to 4 paramater normal IRT, \code{\link{sim.poly}} to create polytomous ideas by calling \code{\link{sim.poly.npn}} 1-4 parameter polytomous normal theory items or \code{\link{sim.poly.npl}} 1-4 parameter polytomous logistic items, and \code{\link{sim.poly.ideal}} which creates data following an ideal point or unfolding model by calling \code{\link{sim.poly.ideal.npn}} 1-4 parameter polytomous normal theory ideal point model or \code{\link{sim.poly.ideal.npl}} 1-4 parameter polytomous logistic ideal point model. \code{\link{sim.structural}} a general simulation of structural models, and \code{\link{sim.anova}} for ANOVA and lm simulations, and \code{\link{sim.VSS}}. Some of these functions are separately documented and are listed here for ease of the help function. See each function for more detailed help. } \usage{ sim(fx=NULL,Phi=NULL,fy=NULL,alpha=.8,lambda = 0,n=0,mu=NULL,raw=TRUE) sim.simplex(nvar =12, alpha=.8,lambda=0,beta=1,mu=NULL, n=0) sim.general(nvar=9,nfact =3, g=.3,r=.3,n=0) sim.minor(nvar=12,nfact=3,n=0,g=NULL,fbig=NULL,fsmall = c(-.2,.2),bipolar=TRUE) sim.omega(nvar=12,nfact=3,n=500,g=NULL,sem=FALSE,fbig=NULL,fsmall = c(-.2,.2),bipolar=TRUE,om.fact=3,flip=TRUE,option="equal",ntrials=10) sim.parallel(ntrials=10,nvar = c(12,24,36,48),nfact = c(1,2,3,4,6), n = c(200,400)) sim.rasch(nvar = 5,n = 500, low=-3,high=3,d=NULL, a=1,mu=0,sd=1) sim.irt(nvar = 5, n = 500, low=-3, high=3,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1,mod="logistic") sim.npl(nvar = 5, n = 500, low=-3,high=3,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1) sim.npn(nvar = 5, n = 500, low=-3,high=3,a=NULL,c=0,z=1,d=NULL,mu=0,sd=1) sim.poly(nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5,mod="logistic") sim.poly.npn(nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5) sim.poly.npl(nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5) sim.poly.ideal(nvar = 5 ,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5,mod="logistic") sim.poly.ideal.npn(nvar = 5,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5) sim.poly.ideal.npl(nvar = 5,n = 500,low=-2,high=2,a=NULL,c=0,z=1,d=NULL, mu=0,sd=1,cat=5,theta=NULL) sim.poly.mat(R,m,n) } \arguments{ \item{fx}{The measurement model for x. If NULL, a 4 factor model is generated} \item{Phi}{The structure matrix of the latent variables} \item{fy}{The measurement model for y} \item{mu}{The means structure for the fx factors} \item{n}{ Number of cases to simulate. If n=0 or NULL, the population matrix is returned.} \item{raw}{if raw=TRUE, raw data are returned as well.} \item{nvar}{Number of variables for a simplex structure} \item{nfact}{Number of large factors to simulate in sim.minor,number of group factors in sim.general,sim.omega} \item{g}{General factor correlations in sim.general and general factor loadings in sim.omega and sim.minor} \item{sem}{Should the sim.omega function do both an EFA omega as well as a CFA omega using the sem package?} \item{r}{group factor correlations in sim.general} \item{alpha}{the base correlation for an autoregressive simplex} \item{lambda}{the trait component of a State Trait Autoregressive Simplex} \item{beta}{Test reliability of a STARS simplex} \item{fbig}{Factor loadings for the main factors. Default is a simple structure with loadings sampled from (.8,.6) for nvar/nfact variables and 0 for the remaining. If fbig is specified, then each factor has loadings sampled from it.} \item{bipolar}{if TRUE, then positive and negative loadings are generated from fbig} \item{om.fact}{Number of factors to extract in omega} \item{flip}{In omega, should item signs be flipped if negative} \item{option}{In omega, for the case of two factors, how to weight them?} \item{fsmall}{nvar/2 small factors are generated with loadings sampled from (-.2,0,.2)} \item{ntrials}{Number of replications per level} \item{low}{lower difficulty for sim.rasch or sim.irt} \item{high}{higher difficulty for sim.rasch or sim.irt} \item{a}{if not specified as a vector, the descrimination parameter a = \eqn{\alpha} will be set to 1.0 for all items} \item{d}{ if not specified as a vector, item difficulties (d = \eqn{\delta}) will range from low to high} \item{c}{the gamma parameter: if not specified as a vector, the guessing asymptote is set to 0} \item{z}{the zeta parameter: if not specified as a vector, set to 1} \item{sd}{the standard deviation for the underlying latent variable in the irt simulations} \item{mod}{which IRT model to use, mod="logistic" simulates a logistic function, otherwise, a normal function} \item{cat}{Number of categories to simulate in sim.poly. If cat=2, then this is the same as simulating t/f items and sim.poly is functionally equivalent to sim.irt} \item{theta}{The underlying latent trait value for each simulated subject} \item{R}{A correlation matrix to be simulated using the sim.poly.mat function} \item{m}{The matrix of marginals for all the items} } \details{Simulation of data structures is a very useful tool in psychometric research and teaching. By knowing ``truth" it is possible to see how well various algorithms can capture it. For a much longer discussion of the use of simulation in psychometrics, see the accompany vignettes. The simulations documented here are a miscellaneous set of functions that will be documented in other help files eventually. The default values for \code{\link{sim.structure}} is to generate a 4 factor, 12 variable data set with a simplex structure between the factors. This, and the simplex of items (\code{\link{sim.simplex}}) can also be converted in a STARS model with an autoregressive component (alpha) and a stable trait component (lambda). Two data structures that are particular challenges to exploratory factor analysis are the simplex structure and the presence of minor factors. Simplex structures \code{\link{sim.simplex}} will typically occur in developmental or learning contexts and have a correlation structure of r between adjacent variables and r^n for variables n apart. Although just one latent variable (r) needs to be estimated, the structure will have nvar-1 factors. An alternative version of the simplex is the State-Trait-Auto Regressive Structure (STARS) which has both a simplex state structure, with autoregressive path alpha and a trait structure with path lambda. This simulated in \code{\link{sim.simplex}} by specifying a non-zero lambda value. Many simulations of factor structures assume that except for the major factors, all residuals are normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the major factors. \code{\link{sim.minor}} generates such structures. The structures generated can be thought of as havinga a major factor structure with some small correlated residuals. To make these simulations complete, the possibility of a general factor is considered. For simplicity, sim.minor allows one to specify a set of loadings to be sampled from for g, fmajor and fminor. Alternatively, it is possible to specify the complete factor matrix. Another structure worth considering is direct modeling of a general factor with several group factors. This is done using \code{\link{sim.general}}. Although coefficient \eqn{\omega}{\omega} is a very useful indicator of the general factor saturation of a unifactorial test (one with perhaps several sub factors), it has problems with the case of multiple, independent factors. In this situation, one of the factors is labelled as ``general'' and the omega estimate is too large. This situation may be explored using the \code{\link{sim.omega}} function with general left as NULL. If there is a general factor, then results from \code{\link{sim.omega}} suggests that omega estimated either from EFA or from SEM does a pretty good job of identifying it but that the EFA approach using Schmid-Leiman transformation is somewhat more robust than the SEM approach. The four irt simulations, sim.rasch, sim.irt, sim.npl and sim.npn, simulate dichotomous items following the Item Response model. sim.irt just calls either sim.npl (for logistic models) or sim.npn (for normal models) depending upon the specification of the model. The logistic model is \deqn{P(i,j) = \gamma + \frac{\zeta-\gamma}{1+ e^{\alpha(\delta-\theta)}}}{P(i,j) = \gamma + (\zeta-\gamma)/(1+ exp(\alpha(\delta-\theta)))} where \eqn{\gamma} is the lower asymptote or guesssing parameter, \eqn{\zeta} is the upper asymptote (normally 1), \eqn{\alpha} is item discrimination and \eqn{\delta} is item difficulty. For the 1 Paramater Logistic (Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify. For the 2PL and 2PN models, a = \eqn{\alpha} and d = \eqn{\delta} are specified. \cr For the 3PL or 3PN models, items also differ in their guessing parameter c =\eqn{\gamma}. \cr For the 4PL and 4PN models, the upper asymptote, z= \eqn{\zeta} is also specified. \cr (Graphics of these may be seen in the demonstrations for the \code{\link{logistic}} function.) The normal model (irt.npn calculates the probability using pnorm instead of the logistic function used in irt.npl, but the meaning of the parameters are otherwise the same. With the a = \eqn{\alpha} parameter = 1.702 in the logistic model the two models are practically identical. In parallel to the dichotomous IRT simulations are the poly versions which simulate polytomous item models. They have the additional parameter of how many categories to simulate. In addition, the \code{\link{sim.poly.ideal}} functions will simulate an ideal point or unfolding model in which the response probability varies by the distance from each subject's ideal point. Some have claimed that this is a more appropriate model of the responses to personality questionnaires. It will lead to simplex like structures which may be fit by a two factor model. The middle items form one factor, the extreme a bipolar factor. The previous functions all assume one latent trait. Alternatively, we can simulate dichotomous or polytomous items with a particular structure using the sim.poly.mat function. This takes as input the population correlation matrix, the population marginals, and the sample size. It returns categorical items with the specified structure. Other simulation functions in psych are: \code{\link{sim.structure}} A function to combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. Combined with \code{\link{structure.diagram}} to see the proposed structure. \code{\link{sim.congeneric}} A function to create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \code{\link{sim.hierarchical}} A function to create data with a hierarchical (bifactor) structure. \code{\link{sim.item}} A function to create items that either have a simple structure or a circumplex structure. \code{\link{sim.circ}} Create data with a circumplex structure. \code{\link{sim.dichot}} Create dichotomous item data with a simple or circumplex structure. \code{\link{sim.minor}} Create a factor structure for nvar variables defined by nfact major factors and nvar/2 ``minor" factors for n observations. Although the standard factor model assumes that K major factors (K << nvar) will account for the correlations among the variables \deqn{R = FF' + U^2} where R is of rank P and F is a P x K matrix of factor coefficients and U is a diagonal matrix of uniquenesses. However, in many cases, particularly when working with items, there are many small factors (sometimes referred to as correlated residuals) that need to be considered as well. This leads to a data structure such that \deqn{R = FF' + MM' + U^2} where R is a P x P matrix of correlations, F is a P x K factor loading matrix, M is a P x P/2 matrix of minor factor loadings, and U is a diagonal matrix (P x P) of uniquenesses. Such a correlation matrix will have a poor \eqn{\chi^2} value in terms of goodness of fit if just the K factors are extracted, even though for all intents and purposes, it is well fit. sim.minor will generate such data sets with big factors with loadings of .6 to .8 and small factors with loadings of -.2 to .2. These may both be adjusted. \code{\link{sim.parallel}} Create a number of simulated data sets using sim.minor to show how parallel analysis works. The general observation is that with the presence of minor factors, parallel analysis is probably best done with component eigen values rather than factor eigen values, even when using the factor model. \code{\link{sim.anova}} Simulate a 3 way balanced ANOVA or linear model, with or without repeated measures. Useful for teaching research methods and generating teaching examples. \code{\link{sim.multilevel}} To understand some of the basic concepts of multilevel modeling, it is useful to create multilevel structures. The correlations of aggregated data is sometimes called an 'ecological correlation'. That group level and individual level correlations are independent makes such inferences problematic. This simulation allows for demonstrations that correlations within groups do not imply, nor are implied by, correlations between group means. } \references{Revelle, W. (in preparation) An Introduction to Psychometric Theory with applications in R. Springer. at \url{http://personality-project.org/r/book/} } \author{William Revelle} \seealso{ See above} \examples{ simplex <- sim.simplex() #create the default simplex structure lowerMat(simplex) #the correlation matrix #create a congeneric matrix congeneric <- sim.congeneric() lowerMat(congeneric) R <- sim.hierarchical() lowerMat(R) #now simulate categorical items with the hierarchical factor structure. #Let the items be dichotomous with varying item difficulties. marginals = matrix(c(seq(.1,.9,.1),seq(.9,.1,-.1)),byrow=TRUE,nrow=2) X <- sim.poly.mat(R=R,m=marginals,n=1000) lowerCor(X) #show the raw correlations #lowerMat(tetrachoric(X)$rho) # show the tetrachoric correlations (not run) #generate a structure fx <- matrix(c(.9,.8,.7,rep(0,6),c(.8,.7,.6)),ncol=2) fy <- c(.6,.5,.4) Phi <- matrix(c(1,0,.5,0,1,.4,0,0,0),ncol=3) R <- sim.structure(fx,Phi,fy) cor.plot(R$model) #show it graphically simp <- sim.simplex() #show the simplex structure using cor.plot cor.plot(simp,colors=TRUE,main="A simplex structure") #Show a STARS model simp <- sim.simplex(alpha=.8,lambda=.4) #show the simplex structure using cor.plot cor.plot(simp,colors=TRUE,main="State Trait Auto Regressive Simplex" ) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate} \keyword{datagen} psych/man/score.multiple.choice.Rd0000644000176200001440000000555312664625342016662 0ustar liggesusers\name{score.multiple.choice} \alias{score.multiple.choice} \title{Score multiple choice items and provide basic test statistics } \description{Ability tests are typically multiple choice with one right answer. score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds total or average number right for each participant. Basic test statistics (alpha, average r, item means, item-whole correlations) are also reported. } \usage{ score.multiple.choice(key, data, score = TRUE, totals = FALSE, ilabels = NULL, missing = TRUE, impute = "median", digits = 2,short=TRUE,skew=FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{key}{ A vector of the correct item alternatives} \item{data}{a matrix or data frame of items to be scored.} \item{score}{score=FALSE, just convert to right (1) or wrong (0).\cr score=TRUE, find the totals or average scores and do item analysis} \item{totals}{total=FALSE: find the average number correct \cr total=TRUE: find the total number correct} \item{ilabels}{item labels } \item{missing}{missing=TRUE: missing values are replaced with means or medians \cr missing=FALSE missing values are not scored } \item{impute}{impute="median", replace missing items with the median score \cr impute="mean": replace missing values with the item mean} \item{digits}{ How many digits of output } \item{short}{short=TRUE, just report the item statistics, \cr short=FALSE, report item statistics and subject scores as well} \item{skew}{Should the skews and kurtosi of the raw data be reported? Defaults to FALSE because what is the meaning of skew for a multiple choice item?} } \details{Basically combines \code{\link{score.items}} with a conversion from multiple choice to right/wrong. The item-whole correlation is inflated because of item overlap. The example data set is taken from the Synthetic Aperture Personality Assessment personality and ability test at \url{http://test.personality-project.org}. } \value{ \item{scores }{Subject scores on one scale} \item{missing }{Number of missing items for each subject} \item{item.stats}{scoring key, response frequencies, item whole correlations, n subjects scored, mean, sd, skew, kurtosis and se for each item} \item{alpha}{Cronbach's coefficient alpha} \item{av.r}{Average interitem correlation} } \author{William Revelle} \seealso{ \code{\link{score.items}}, \code{\link{omega}}} \examples{ data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{multivariate } \keyword{models} psych/man/cosinor.Rd0000644000176200001440000002721312726336772014142 0ustar liggesusers\name{cosinor} \alias{cosinor} \alias{circadian.phase} \alias{cosinor.plot} \alias{cosinor.period} \alias{circadian.mean} \alias{circadian.sd} \alias{circadian.cor} \alias{circadian.linear.cor} \alias{circadian.stats} \alias{circadian.F} \alias{circadian.reliability} \alias{circular.mean} \alias{circular.cor} \title{Functions for analysis of circadian or diurnal data} \description{Circadian data are periodic with a phase of 24 hours. These functions find the best fitting phase angle (cosinor), the circular mean, circular correlation with circadian data, and the linear by circular correlation} \usage{ cosinor(angle,x=NULL,code=NULL,data=NULL,hours=TRUE,period=24, plot=FALSE,opti=FALSE,na.rm=TRUE) cosinor.plot(angle,x=NULL,data = NULL, IDloc=NULL, ID=NULL,hours=TRUE, period=24, na.rm=TRUE,ylim=NULL,ylab="observed",xlab="Time (double plotted)", main="Cosine fit",add=FALSE,multi=FALSE,typ="l",...) cosinor.period(angle,x=NULL,code=NULL,data=NULL,hours=TRUE,period=seq(23,26,1), plot=FALSE,opti=FALSE,na.rm=TRUE) circadian.phase(angle,x=NULL,code=NULL,data=NULL,hours=TRUE,period=24, plot=FALSE,opti=FALSE,na.rm=TRUE) circadian.mean(angle,data=NULL, hours=TRUE,na.rm=TRUE) circadian.sd(angle,data=NULL,hours=TRUE,na.rm=TRUE) circadian.stats(angle,data=NULL,hours=TRUE,na.rm=TRUE) circadian.F(angle,group,data=NULL,hours=TRUE,na.rm=TRUE) circadian.reliability(angle,x=NULL,code=NULL,data = NULL,min=16, oddeven=FALSE, hours=TRUE,period=24,plot=FALSE,opti=FALSE,na.rm=TRUE) circular.mean(angle,na.rm=TRUE) #angles in radians circadian.cor(angle,data=NULL,hours=TRUE,na.rm=TRUE) #angles in radians circular.cor(angle,na.rm=TRUE) #angles in radians circadian.linear.cor(angle,x=NULL,data=NULL,hours=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{angle}{A data frame or matrix of observed values with the time of day as the first value (unless specified in code) angle can be specified either as hours or as radians)} \item{code}{A subject identification variable} \item{data}{A matrix or data frame of data. If specified, then angle and code are variable names (or locations). See examples.} \item{group}{If doing comparisons by groups, specify the group code}. \item{min}{The minimum number of observations per subject to use when finding split half reliabilities.} \item{oddeven}{Reliabilities are based upon odd and even items (TRUE) or first vs. last half (FALSE). Default is first and last half.} \item{period}{Although time of day is assumed to have a 24 hour rhythm, other rhythms may be fit. If calling cosinor.period, a range may be specified.} \item{IDloc}{Which column number is the ID field} \item{ID}{What specific subject number should be plotted for one variable} \item{plot}{if TRUE, then plot the first variable (angle)} \item{opti}{opti=TRUE: iterative optimization (slow) or opti=FALSE: linear fitting (fast)} \item{hours}{If TRUE, measures are in 24 hours to the day, otherwise, radians} \item{x}{A set of external variables to correlate with the phase angles} \item{na.rm}{Should missing data be removed?} \item{ylim}{Specify the range of the y axis if the defaults don't work} \item{ylab}{The label of the yaxis} \item{xlab}{Labels for the x axis} \item{main}{the title of the graphic} \item{add}{If doing multiple (spagetti) plots, set add = TRUE for the second and beyond plots} \item{multi}{If doing multiple (spagetti) plots, set multi=TRUE for the first and subsequent plots} \item{typ}{Pass the line type to graphics} \item{...}{any other graphic parameters to pass} } \details{ When data represent angles (such as the hours of peak alertness or peak tension during the day), we need to apply circular statistics rather than the more normal linear statistics (see Jammalamadaka (2006) for a very clear set of examples of circular statistics). The generalization of the mean to circular data is to convert each angle into a vector, average the x and y coordinates, and convert the result back to an angle. A statistic that represents the compactness of the observations is R which is the (normalized) vector length found by adding all of the observations together. This will achieve a maximum value (1) when all the phase angles are the same and a minimum (0) if the phase angles are distributed uniformly around the clock. The generalization of Pearson correlation to circular statistics is straight forward and is implemented in cor.circular in the circular package and in \code{\link{circadian.cor}} here. Just as the Pearson r is a ratio of covariance to the square root of the product of two variances, so is the circular correlation. The circular covariance of two circular vectors is defined as the average product of the sines of the deviations from the circular mean. The variance is thus the average squared sine of the angular deviations from the circular mean. Circular statistics are used for data that vary over a period (e.g., one day) or over directions (e.g., wind direction or bird flight). Jammalamadaka and Lund (2006) give a very good example of the use of circular statistics in calculating wind speed and direction. The code from CircStats and circular was adapted to allow for analysis of data from various studies of mood over the day. Those two packages do not seem to handle missing data, nor do they take matrix input, but rather emphasize single vectors. The cosinor function will either iteratively fit cosines of the angle to the observed data (opti=TRUE) or use the circular by linear regression to estimate the best fitting phase angle. If cos.t <- cos(time) and sin.t = sin(time) (expressed in hours), then beta.c and beta.s may be found by regression and the phase is \eqn{sign(beta.c) * acos(beta.c/\sqrt(beta.c^2 + beta.s^2)) * 12/pi} Simulations (see examples) suggest that with incomplete times, perhaps the optimization procedure yields slightly better fits with the correct phase than does the linear model, but the differences are very small. In the presence of noisey data, these advantages seem to reverse. The recommendation thus seems to be to use the linear model approach (the default). The fit statistic reported for cosinor is the correlation of the data with the model [ cos(time - acrophase) ]. The \code{\link{circadian.reliability}} function splits the data for each subject into a first and second half (by default, or into odd and even items) and then finds the best fitting phase for each half. These are then correlated (using \code{\link{circadian.cor}}) and this correlation is then adjusted for test length using the conventional Spearman-Brown formula. Returned as object in the output are the statistics for the first and second part, as well as an ANOVA to compare the two halves. \code{\link{circular.mean}} and \code{\link{circular.cor}} are just \code{\link{circadian.mean}} and \code{\link{circadian.cor}} but with input given in radians rather than hours. The \code{\link{circadian.linear.cor}} function will correlate a set of circular variables with a set of linear variables. The first (angle) variables are circular, the second (x) set of variables are linear. The \code{\link{circadian.F}} will compare 2 or more groups in terms of their mean position. This is adapted from the equivalent function in the circular pacakge. This is clearly a more powerful test the more each group is compact around its mean (large values of R). } \value{ \item{phase }{The phase angle that best fits the data (expressed in hours if hours=TRUE).} \item{fit}{Value of the correlation of the fit. This is just the correlation of the data with the phase adjusted cosine.} \item{mean.angle}{A vector of mean angles} \item{n,mean,sd}{The appropriate circular statistic.} \item{correl}{A matrix of circular correlations or linear by circular correlations} \item{R}{R is the vector length (0-1) of the mean vector when finding circadian statistics using \code{\link{circadian.stats}} } \item{z,p}{z is the number of observations x R^2. p is the probability of a z.} \item{phase.rel}{The reliability of the phase measures. This is the circular correlation between the two halves adjusted using the Spearman-Brown correction.} \item{fit.rel}{The split half reliability of the fit statistic.} \item{split.F}{Do the two halves differ from each other? One would hope not.} \item{group1,group2}{The statistics from each half} \item{splits}{The individual data from each half.} } \references{ See circular statistics Jammalamadaka, Sreenivasa and Lund, Ulric (2006),The effect of wind direction on ozone levels: a case study, Environmental and Ecological Statistics, 13, 287-298. } \author{William Revelle } \note{These functions have been adapted from the circular package to allow for ease of use with circadian data, particularly for data sets with missing data and multiple variables of interest.} \seealso{See the circular and CircStats packages. } \examples{ time <- seq(1:24) #create a 24 hour time pure <- matrix(time,24,18) colnames(pure) <- paste0("H",1:18) pure <- data.frame(time,cos((pure - col(pure))*pi/12)*3 + 3) #18 different phases but scaled to 0-6 match mood data matplot(pure[-1],type="l",main="Pure circadian arousal rhythms", xlab="time of day",ylab="Arousal") op <- par(mfrow=c(2,2)) cosinor.plot(1,3,pure) cosinor.plot(1,5,pure) cosinor.plot(1,8,pure) cosinor.plot(1,12,pure) p <- cosinor(pure) #find the acrophases (should match the input) #now, test finding the acrophases for different subjects on 3 variables #They should be the first 3, second 3, etc. acrophases of pure pp <- matrix(NA,nrow=6*24,ncol=4) pure <- as.matrix(pure) pp[,1] <- rep(pure[,1],6) pp[1:24,2:4] <- pure[1:24,2:4] pp[25:48,2:4] <- pure[1:24,5:7] *2 #to test different variances pp[49:72,2:4] <- pure[1:24,8:10] *3 pp[73:96,2:4] <- pure[1:24,11:13] pp[97:120,2:4] <- pure[1:24,14:16] pp[121:144,2:4] <- pure[1:24,17:19] pure.df <- data.frame(ID = rep(1:6,each=24),pp) colnames(pure.df) <- c("ID","Time",paste0("V",1:3)) cosinor("Time",3:5,"ID",pure.df) op <- par(mfrow=c(2,2)) cosinor.plot(2,3,pure.df,IDloc=1,ID="1") cosinor.plot(2,3,pure.df,IDloc=1,ID="2") cosinor.plot(2,3,pure.df,IDloc=1,ID="3") cosinor.plot(2,3,pure.df,IDloc=1,ID="4") #now, show those in one panel as spagetti plots op <- par(mfrow=c(1,1)) cosinor.plot(2,3,pure.df,IDloc=1,ID="1",multi=TRUE,ylim=c(0,20),ylab="Modeled") cosinor.plot(2,3,pure.df,IDloc=1,ID="2",multi=TRUE,add=TRUE,lty="dotdash") cosinor.plot(2,3,pure.df,IDloc=1,ID="3",multi=TRUE,add=TRUE,lty="dashed") cosinor.plot(2,3,pure.df,IDloc=1,ID="4",multi=TRUE,add=TRUE,lty="dotted") set.seed(42) #what else? noisy <- pure noisy[,2:19]<- noisy[,2:19] + rnorm(24*18,0,.2) n <- cosinor(time,noisy) #add a bit of noise small.pure <- pure[c(8,11,14,17,20,23),] small.noisy <- noisy[c(8,11,14,17,20,23),] small.time <- c(8,11,14,17,20,23) cosinor.plot(1,3,small.pure,multi=TRUE) cosinor.plot(1,3,small.noisy,multi=TRUE,add=TRUE,lty="dashed") # sp <- cosinor(small.pure) # spo <- cosinor(small.pure,opti=TRUE) #iterative fit # sn <- cosinor(small.noisy) #linear # sno <- cosinor(small.noisy,opti=TRUE) #iterative # sum.df <- data.frame(pure=p,noisy = n, small=sp,small.noise = sn, # small.opt=spo,small.noise.opt=sno) # round(sum.df,2) # round(circadian.cor(sum.df[,c(1,3,5,7,9,11)]),2) #compare alternatives # # #now, lets form three "subjects" and show how the grouping variable works # mixed.df <- rbind(small.pure,small.noisy,noisy) # mixed.df <- data.frame(ID=c(rep(1,6),rep(2,6),rep(3,24)), # time=c(rep(c(8,11,14,17,20,23),2),1:24),mixed.df) # group.df <- cosinor(angle="time",x=2:20,code="ID",data=mixed.df) # round(group.df,2) #compare these values to the sp,sn,and n values done separately } \keyword{ multivariate } psych/man/spi.Rd0000644000176200001440000000447413154375073013256 0ustar liggesusers\name{spi} \alias{spi} \alias{spi.dictionary} \alias{spi.keys} \docType{data} \title{A sample from the SAPA Personality Inventory including an item dictionary and scoring keys.} \description{The SPI (SAPA Personality Inventory) is a set of 135 items primarily selected from International Personality Item Pool (ipip.ori.org). This is an example data set collected using SAPA procedures the sapa-project.org web site. This data set includes 10 demographic variables as well. The data set with 4000 observations on 145 variables may be used for examples in scale construction and validation, as well as empirical scale construction to predict multiple criteria. } \usage{data("spi") data(spi.dictionary) data(spi.keys) } \details{Using the data contributed by about 125,000 visitors to the SAPA-project.org website, David Condon has developed a hierarchical framework for assessing personality at two levels. The higher level has the familiar five factors that have been studied extensively in personality research since the 1980s -- Conscientiousness, Agreeableness, Neuroticism, Openness, and Extraversion. The lower level has 27 factors that are considerably more narrow. These were derived based on administrations of about 700 public-domain IPIP items to 3 large samples. Condon describes these scales as being "empirically-derived" because relatively little theory was used to select the number of factors in the hierarchy and the items in the scale for each factor (to be clear, he means relatively little personality theory though he relied on quite a lot of sampling and statistical theory). You can read all about the procedures used to develop this framework in his book/manual. If you would like to reproduce these analyses, you can download the data files from Dataverse (links are also provided in the manual) and compile this script in R (he used knitR). Instructions are provided in the Preface to the manual. } \source{ https://sapa-project.org/research/SPI/SPIdevelopment.pdf. } \references{Condon, D. (2017) The SAPA Personality Inventory:An empirically-derived, hierarchically-organized self-report personality assessment model } \examples{ data(spi) data(sapa.dictionary) bestScales(spi, criteria="health",dictionary=spi.dictionary) sc <- scoreItems(spi.keys,spi) corPlot(sc$corrected,numbers=TRUE,cex=.8,xlas=2) } \keyword{datasets} psych/man/ICLUST.graph.Rd0000644000176200001440000001611712501641342014551 0ustar liggesusers\name{ICLUST.graph} \alias{ICLUST.graph} \alias{iclust.graph} \title{ create control code for ICLUST graphical output} \description{Given a cluster structure determined by \code{\link{ICLUST}}, create dot code to describe the \code{\link{ICLUST}} output. To use the dot code, use either http://www.graphviz.org/ Graphviz or a commercial viewer (e.g., OmniGraffle). This function parallels \code{\link{ICLUST.rgraph}} which uses Rgraphviz. } \usage{ ICLUST.graph(ic.results, out.file,min.size=1, short = FALSE,labels=NULL, size = c(8, 6), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 12), rank.direction=c("RL","TB","LR","BT"), digits = 2, title = "ICLUST", ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ic.results}{output list from ICLUST } \item{out.file}{ name of output file (defaults to console) } \item{min.size}{draw a smaller node (without all the information) for clusters < min.size -- useful for large problems} \item{short}{if short==TRUE, don't use variable names} \item{labels}{vector of text labels (contents) for the variables} \item{size}{size of output } \item{node.font}{ Font to use for nodes in the graph } \item{edge.font}{ Font to use for the labels of the arrows (edges)} \item{rank.direction}{LR or RL } \item{digits}{ number of digits to show } \item{title}{ any title } \item{\dots}{ other options to pass } } \details{ Will create (or overwrite) an output file and print out the dot code to show a cluster structure. This dot file may be imported directly into a dot viewer (e.g., http://www.graphviz.org/). The "dot" language is a powerful graphic description language that is particulary appropriate for viewing cluster output. Commercial graphics programs (e.g., OmniGraffle) can also read (and clean up) dot files. ICLUST.graph takes the output from \code{\link{ICLUST}} results and processes it to provide a pretty picture of the results. Original variables shown as rectangles and ordered on the left hand side (if rank direction is RL) of the graph. Clusters are drawn as ellipses and include the alpha, beta, and size of the cluster. Edges show the cluster intercorrelations. It is possible to trim the output to not show all cluster information. Clusters < min.size are shown as small ovals without alpha, beta, and size information. Although it would be nice to process the dot code directly in R, the Rgraphviz package is difficult to use on all platforms and thus the dot code is written directly. } \value{ Output is a set of dot commands written either to console or to the output file. These commands may then be used as input to any "dot" viewer, e.g., Graphviz. } \references{ ICLUST: \url{http://personality-project.org/r/r.ICLUST.html}} \author{ \email{revelle@northwestern.edu } \cr \url{http://personality-project.org/revelle.html}} \seealso{ \code{\link{VSS.plot}}, \code{\link{ICLUST}}} \examples{ \dontrun{ test.data <- Harman74.cor$cov ic.out <- ICLUST(test.data) out.file <- file.choose(new=TRUE) #create a new file to write the plot commands to ICLUST.graph(ic.out,out.file) now go to graphviz (outside of R) and open the out.file you created print(ic.out,digits=2) } #test.data <- Harman74.cor$cov #my.iclust <- ICLUST(test.data) #ICLUST.graph(my.iclust) # # #digraph ICLUST { # rankdir=RL; # size="8,8"; # node [fontname="Helvetica" fontsize=14 shape=box, width=2]; # edge [fontname="Helvetica" fontsize=12]; # label = "ICLUST"; # fontsize=20; #V1 [label = VisualPerception]; #V2 [label = Cubes]; #V3 [label = PaperFormBoard]; #V4 [label = Flags]; #V5 [label = GeneralInformation]; #V6 [label = PargraphComprehension]; #V7 [label = SentenceCompletion]; #V8 [label = WordClassification]; #V9 [label = WordMeaning]; #V10 [label = Addition]; #V11 [label = Code]; #V12 [label = CountingDots]; #V13 [label = StraightCurvedCapitals]; #V14 [label = WordRecognition]; #V15 [label = NumberRecognition]; #V16 [label = FigureRecognition]; #V17 [label = ObjectNumber]; #V18 [label = NumberFigure]; #V19 [label = FigureWord]; #V20 [label = Deduction]; #V21 [label = NumericalPuzzles]; #V22 [label = ProblemReasoning]; #V23 [label = SeriesCompletion]; #V24 [label = ArithmeticProblems]; #node [shape=ellipse, width ="1"]; #C1-> V9 [ label = 0.78 ]; #C1-> V5 [ label = 0.78 ]; #C2-> V12 [ label = 0.66 ]; #C2-> V10 [ label = 0.66 ]; #C3-> V18 [ label = 0.53 ]; #C3-> V17 [ label = 0.53 ]; #C4-> V23 [ label = 0.59 ]; #C4-> V20 [ label = 0.59 ]; #C5-> V13 [ label = 0.61 ]; #C5-> V11 [ label = 0.61 ]; #C6-> V7 [ label = 0.78 ]; #C6-> V6 [ label = 0.78 ]; #C7-> V4 [ label = 0.55 ]; #C7-> V1 [ label = 0.55 ]; #C8-> V16 [ label = 0.5 ]; #C8-> V14 [ label = 0.49 ]; #C9-> C1 [ label = 0.86 ]; #C9-> C6 [ label = 0.86 ]; #C10-> C4 [ label = 0.71 ]; #C10-> V22 [ label = 0.62 ]; #C11-> V21 [ label = 0.56 ]; #C11-> V24 [ label = 0.58 ]; #C12-> C10 [ label = 0.76 ]; #C12-> C11 [ label = 0.67 ]; #C13-> C8 [ label = 0.61 ]; #C13-> V15 [ label = 0.49 ]; #C14-> C2 [ label = 0.74 ]; #C14-> C5 [ label = 0.72 ]; #C15-> V3 [ label = 0.48 ]; #C15-> C7 [ label = 0.65 ]; #C16-> V19 [ label = 0.48 ]; #C16-> C3 [ label = 0.64 ]; #C17-> V8 [ label = 0.62 ]; #C17-> C12 [ label = 0.8 ]; #C18-> C17 [ label = 0.82 ]; #C18-> C15 [ label = 0.68 ]; #C19-> C16 [ label = 0.66 ]; #C19-> C13 [ label = 0.65 ]; #C20-> C19 [ label = 0.72 ]; #C20-> C18 [ label = 0.83 ]; #C21-> C20 [ label = 0.87 ]; #C21-> C9 [ label = 0.76 ]; #C22-> 0 [ label = 0 ]; #C22-> 0 [ label = 0 ]; #C23-> 0 [ label = 0 ]; #C23-> 0 [ label = 0 ]; #C1 [label = "C1\n alpha= 0.84\n beta= 0.84\nN= 2"] ; #C2 [label = "C2\n alpha= 0.74\n beta= 0.74\nN= 2"] ; #C3 [label = "C3\n alpha= 0.62\n beta= 0.62\nN= 2"] ; #C4 [label = "C4\n alpha= 0.67\n beta= 0.67\nN= 2"] ; #C5 [label = "C5\n alpha= 0.7\n beta= 0.7\nN= 2"] ; #C6 [label = "C6\n alpha= 0.84\n beta= 0.84\nN= 2"] ; #C7 [label = "C7\n alpha= 0.64\n beta= 0.64\nN= 2"] ; #C8 [label = "C8\n alpha= 0.58\n beta= 0.58\nN= 2"] ; #C9 [label = "C9\n alpha= 0.9\n beta= 0.87\nN= 4"] ; #C10 [label = "C10\n alpha= 0.74\n beta= 0.71\nN= 3"] ; #C11 [label = "C11\n alpha= 0.62\n beta= 0.62\nN= 2"] ; #C12 [label = "C12\n alpha= 0.79\n beta= 0.74\nN= 5"] ; #C13 [label = "C13\n alpha= 0.64\n beta= 0.59\nN= 3"] ; #C14 [label = "C14\n alpha= 0.79\n beta= 0.74\nN= 4"] ; #C15 [label = "C15\n alpha= 0.66\n beta= 0.58\nN= 3"] ; #C16 [label = "C16\n alpha= 0.65\n beta= 0.57\nN= 3"] ; #C17 [label = "C17\n alpha= 0.81\n beta= 0.71\nN= 6"] ; #C18 [label = "C18\n alpha= 0.84\n beta= 0.75\nN= 9"] ; #C19 [label = "C19\n alpha= 0.74\n beta= 0.65\nN= 6"] ; #C20 [label = "C20\n alpha= 0.87\n beta= 0.74\nN= 15"] ; #C21 [label = "C21\n alpha= 0.9\n beta= 0.77\nN= 19"] ; #C22 [label = "C22\n alpha= 0\n beta= 0\nN= 0"] ; #C23 [label = "C23\n alpha= 0\n beta= 0\nN= 0"] ; #{ rank=same; #V1;V2;V3;V4;V5;V6;V7;V8;V9;V10;V11;V12;V13;V14;V15;V16;V17;V18;V19;V20;V21;V22;V23;V24;}} # #copy the above output to Graphviz and draw it #see \url{http://personality-project.org/r/r.ICLUST.html} for an example. } \keyword{multivariate }% \keyword{cluster}% \keyword{hplot} psych/man/phi2poly.Rd0000644000176200001440000000352312436644351014223 0ustar liggesusers\name{phi2tetra} \alias{phi2tetra} \alias{phi2poly} \title{ Convert a phi coefficient to a tetrachoric correlation } \description{Given a phi coefficient (a Pearson r calculated on two dichotomous variables), and the marginal frequencies (in percentages), what is the corresponding estimate of the tetrachoric correlation? Given a two x two table of counts \cr \tabular{lll}{ \tab a \tab b \cr \tab c \tab d \cr } The phi coefficient is (a - (a+b)*(a+c))/sqrt((a+b)(a+c)(b+d)(c+c)). This function reproduces the cell entries for specified marginals and then calls the tetrachoric function. (Which was originally based upon John Fox's polychor function.) The phi2poly name will become deprecated in the future. } \usage{ phi2tetra(ph,m,n=NULL,correct=TRUE) phi2poly(ph,cp,cc,n=NULL,correct=TRUE) #deprecated } %- maybe also 'usage' for other objects documented here. \arguments{ \item{ph}{phi } \item{m}{a vector of the selection ratio and probability of criterion. In the case where ph is a matrix, m is a vector of the frequencies of the selected cases} \item{correct}{When finding tetrachoric correlations, should we correct for continuity for small marginals. See \code{\link{tetrachoric}} for a discussion.} \item{n}{If the marginals are given as frequencies, what was the total number of cases?} \item{cp}{ probability of the predictor -- the so called selection ratio } \item{cc}{probability of the criterion -- the so called success rate. } } \details{used to require the mvtnorm package but this has been replaced with mnormt } \value{a tetrachoric correlation } \author{ William Revelle} \seealso{ \code{\link{tetrachoric}}, \code{\link{Yule2phi.matrix}}, \code{\link{phi2poly.matrix}} } \examples{ phi2tetra(.3,c(.5,.5)) #phi2poly(.3,.3,.7) } \keyword{ models }% at least one, from doc/KEYWORDS \keyword{ models }% __ONLY ONE__ keyword per line