psychTools/0000755000176200001440000000000014552067263012433 5ustar liggesuserspsychTools/NAMESPACE0000744000176200001440000000345514551332000013641 0ustar liggesusers#last modified December, 2024 by William Revelle #added the various imports from stats, graphics, etc. #importFrom(mnormt,rmnorm,sadmvn,dmnorm) #importFrom(parallel,mclapply,mcmapply) #importFrom(lattice,xyplot,strip.custom) #importFrom(nlme,lme,VarCorr) importFrom(graphics,plot,pairs,points,abline,arrows,axis,barplot,box,curve,hist,image,layout,legend, lines,mtext,par,persp,plot.new,plot.window, polygon,rect,segments,strheight,strwidth,text,axTicks,title,smoothScatter) importFrom(stats,aov,cov,cor,var,sd,median,mad,cov2cor,biplot,loess,predict,predict.lm,rnorm,dnorm,rbinom,density, kmeans, lm,lm.fit,loadings,complete.cases, na.omit,na.fail,nlminb,optim, quantile,qnorm, pnorm,qqnorm,qqline,qqplot,pchisq,qchisq,qt,pt,dt,pf,qf,ppoints,p.adjust,optimize,residuals,spline,symnum,terms,weighted.mean,promax,varimax,uniroot) #importFrom(datasets,USArrests,attitude,Harman23.cor,Harman74.cov,ability.cov,iris) importFrom(utils,head,tail,read.table,write.table,read.fwf,stack,example,download.file,getFromNamespace,untar,unzip,View) importFrom(grDevices,colorRampPalette,topo.colors,devAskNewPage,dev.flush,dev.hold, palette, grey,rainbow,rgb,col2rgb,trans3d,adjustcolor) #importFrom(methods,new) importFrom(tools,file_ext,Rd2HTML) importFrom(foreign,read.spss,read.xport,read.systat) #importFrom(psych,statsBy,cs,setCor, mediate,corPlot, omega, scatterHist,dia.ellipse) #S3method(print,psych) export( combineMatrices, cor2latex, df2latex, dfOrder, fa2latex, fileCreate, filesInfo, filesList, fileScan, ICC2latex, irt2latex, omega2latex, rd2html, read.clipboard, read.clipboard.csv, read.clipboard.fwf, read.clipboard.tab, read.clipboard.lower, read.clipboard.upper, read.file, read.file.csv, read.https, recode, rearrange, vJoin, selectBy, splitBy, write.file, write.file.csv, wide2long ) psychTools/data/0000755000176200001440000000000014552047405013340 5ustar liggesuserspsychTools/data/spi.rda0000644000176200001440000061714013605124116014625 0ustar liggesusers7zXZi"6!Xs])TW"nRʟxq5(БhҰd)!e#m^#YCXE/NF՚9͈S=Se xa_#bY?G,#xnwtY'Mc|3 qȃ?Xp dQi;i]{ptb{%4oo n/du]fcXVyޭkg|YO:@gvc/i"/ Ȕ,[zD) &Am2SndJ},7ͼC:6z6i&,9=LF}g*]0"%X`jB5t3ͪiͦ=Jchl@܁I:> JI}m@6ֺ./}ļx*2: 앶rua t5V3iUtPP{b]fAAgߧ>38"b5!Gko`/ r=ł{wlu/R' ;K>Gw }C=b.ʜ}3$ʩmԾ\Gn)̓S~c΁S6Ojv?893s&J7yN/P(UxXZv&׫F5XB$bkzԒmG3IʳXŝ4W(l I[\v@!wM- \s_-97%SC5>>R0SD/Ah j35@&~Û! K^do{<|:oxY޻>X.ZPRr5 Y zDj.O3͹@MWfuy|=Ob /a[U*`t.Нu aKs%˼ú{Hb<.5ɀ*/W_];0mpb|ꠐkTaI cvY܄iוZTӡ%!qWr@n%-Afw.*AN?r~@#Uy>Q8=4eoFE[Gs$nMx3Ӆ{wv.0M(+lx6bRo4\\DDAރQ|6%uu:T؋A@9jǟp8$}BEkAJJ{[i2?J#E<1SS #.x|Xtsl=L',+1?4%{LCV-^d)'/ke-L2A d*FPY$V|@+<=סh,Yެ4s IyiZQoSޟw5Oc49rOǡ]ԅF΀qMBKrXʄT4y;jSb](,ꖍl5P]QZ鴹ˠ6g]|gM;gi򩶙 p,$a&ԵfZ|љN sn Ef# ^4+5CZB, \Uj.]bdpwZ`mZ߿z'@pii'PXw Lvu\9vyhzXM_ئw Ǭe-Yz Y}b]7OZG( r6&DBc5q{^G2n7cQXJ8"=( u1Fh5p7+$nģ?$~H`%DN@`!@z߅vg`؉QKsT H>}Veĵ +칖_]+Eb-K&,}฿' V:=0Ⱦ!R,;Sg.`<Cg 粅ٛ|t%ىd5%7bbOh.=QH=<$&2/5yQtpQo*okN^LZvNsgP+EH|gCJU|A7T ѩ?_tnK WD)Ƌ/vuDQ;Δf^ji &J e}#9+FL=RxIht?EfqVP);b3tl ŌO4|D 3"Ek-}*{q7VJnqgY,:%p' B]ސ\]iѸASԙD F3V &7V3J/q񰣟K -(2qlt7)cCW&}++-/i,q+2=uG c[.X2D0V@aF`ͳрI?pJeMr,@5a]Ӵ*h cC%xY)s7c!_^3+\ފ{6هUVCڌ_&F4Ḃ;p &pyb& ֤ KV>A4VRO-0󼬍 Nu=:h8w@ЁCC'Z!v6!7;YLjl%LVv m^;-3TTEFB,iަ736|IF$)l&_pҠ+K:JGhUtvh9>ah~׌z~HmYYp'h7ӱxL I]:".΅+yދ5P*'fgYO^Dg>Ep *xWCwf-xcЏh8}0W#C/0+ hƽޭKpS^yK]eS{Gϒ؍1JNQ0ŷȮ͋3MuOU#5k4yot~n|^oB/,p %3Fɻ!+w}J72 >nyװ>!3tob QoLTgM[v%_X[S6L 82wcಌ:6T[5Kg9[Ԉt>4M*]/-M_s޽:-Ggq*h bջxRWmDZR#0UO; 2a(Ài&1.%SPY{9 0^#9A.mݲ9s=҄Jqkacd%;  U8$U_~S7A²=>s'`W%+7EOlec΄q`[ t{O %js+;IL&ÀGI}p]pKޣp GWpn&uF%T:cK[чViwCs$e?y*YQ=<*͓/`+pTҿXIϠDR2J.+b} Rp}>V7"|]}75U8F/isZXsCGs"0 13v+>?z+ vj"b{28ig,:>$v4OOǞw̔ Fw 6vE ft8`҆N*J1BE5!'QhU0-)My%oc~a|M^r6O0W0s⽧7]bLtRll*{5V#$|]׉1E+P<ݗ 8M:N&>  96Z9[uګ%f88<]@r٦(ui793.B$mfw1`nӐ^}x!%VCOVƚ7}[XVDz`Cy3 `ŇzirGXuCF}b[AR2*~IqfWGOb^AT0?V̳z+N(4el(vV#T$b`xisҀ9""( LN? C<4te^a{{6K̛m ބvnДm1qT~CvV>mRo+^1jwoO_ ïO*--ADPMCHlYoYYOM뵞ϟfHOD&s:QQ?PPM6W`F|+ ӗw>;+(i Tf_Rɵ3×m#LT\dWh-Y#FH'/LsFT<)-|79,lT?wrTDv^a|ٰ-+QtS6Bq*ˆg[;ħ0emVo&EJ"@DLOSi{AӁ0K0J@j8_sMYlYh5w y18S쫡n\PXv<8հ^.86 <6|]ӬFv VU,*- #ƈ_/}% NXޚuN| ,|B3Bn4ΠOS  n㑟q@[cT^S@H"`޴XTb˧g.L?tX-1-mQ4cu]L<'8N`7a1PG)n{.֩ﰎ䋭K1cbl%Y}*Ssb1Q4av\mz%9>yPكg{˕?, nRRo$SXиa#+ NkJ~|_ +Ѝj*&cI6|6ҎL{qtC 4^$}q.q7f/\Hl̼uKڡ3[RV09.tގޤC2xR!\L 0$*z;/s*֜ӄ;x;ա(uV6}6i4x"69걻sXu _'{#4VOJ1cɬ3yvtoRM3ͧ*t.γ_ǗHKyhu(}3dDww .,[Xjn`EεG &!3;qsUsy$ <, ۬ y1\#rVψ52Uuf47BiLT/d>dc\)%jewKԡ=! ?.(3iTb P ޯRkd Tv+[b'ۏĆ*|] m~a^ `w rN )?~ڵ{Otۆڶ^qfvʄ;u1ЪC꿨}!ÝǏS(I¸ #  "fy-5 JްM {0=:ݿҡ$΃RLpU\m`9yH9'L,*>(<)?XXЉks W$5`R&loفYîgד$T|W ] %WNEFAqBAw|U|Y& TtHwf=,|.t-:.ѽ^$S^2؛RVW3 Ska@c$ wu*{oR];4?e]V5DRV+0VϿx\CIU; p)zO[!IK{`"1X>T_C{b1.UG,z18}Dhܦ/uj!$iU`%W-+CɓEcE*tI~F~P00Mӊ 4a8T4{;B@Mc O,ƞ͕}``P읱?C$+uz}?u L.l0SbXtLB^BUf<]R}B.5B7B5.[5 &r޽%tCsKCvLFdsJGOVʉaU})/y&#f5e9KV+g=ϥꋏN IAbribrsl n|^>[uҸqNCh=Iz:!MИNcH_ FG^ryjx:_]eu $U1 @G Hm٤ŏc0C`9eC~I?jkkK {^mlP^1Or/[ >2l8<' ,"&Z0Yi<_[6?t6O6fJMɬ{}U`JU7$AOh2M7 @Vj0 h݀2m;(/x"xPX#4˟P]79t VnG|rjBa VY2~N)а@ܗ؄+cB!ꔧ,b';3o9f]4%)3Upӻ Ҋ6SF& 9C9X}&b#r=e;lF:-žNE%(u9{kʓr{HjKoĞBa$2dDO*)y!G#|1"؝Ԇqb"DVj?Y]$lQwaʹk%(tq4$qs rD-IX6cFv?$S$KA6 "C+C>G$b ۼN*YjҒȭХkp'15{*ԄEX3[.uqOjNWbu_~3__\Gտgt;aqs~!XeAL64= bq T+Ȇ`ͧ@b${r;( Ee)w1Ipse{8 [&z*[8cj O^ɸHϰBbl$OqZĮ*pEpR`cCr8X;K8(h `WC(M4p9s`5n_w2l~@L$?F&F bG5T+_r^Z4^`݄w\{όUW++2b(~#3B0(.09~ 68)FmXƓ<FIAI'kSLS+ѧqЄP"o}~G}@.LOEu ad&5E}V@RŒš_.Bu) Gstr3o ,K@N2Ul311ߒюii  eɘ)PI LFkQZļ̠(RVƒT]Kn wHehtWjIi#j4^“)iP$B ] ;w@W$jccY@oՋE7|p\f}8hQxKbiKi7H1e8yh {VjҀJ&}wtHՌdtm'Ɣ>A#Hk?cEgO |~?rՕqWbid7fZp+MK/ iAIp|b?po2 s|ߥ(|3=.pXJo0~~ !L;}rlfMO 'oINɀ&1kQ}Mv5ύ̍PFȗd̀sVӮMУm׹؎vWFts _~4Q\+T'PֲKXD&>Hfc,~fbg\4I}!S[dHDU۔ޤ.̡={WV5V.TJI)>rPqRdwn<W& `rlљ]~R:Cغhx~r'[KU9n]@'5}#<0V UoZW/k Y?2:T?dZ-VIy3~e"Z_v뼑YPuWXdn.=;ܰPH$Z~:^`ɡirbe._spL zytk =\c #4ŜUbͳ?>EƗ|qY,F%ι nKr>Vs`nF ֿ;¤o3_|V Qt\¡~S;>gdv?,acGCќ0]Oh.gIlbV\ !.){RKNu L\+k;Y-:Y77e8`Ire3f Ucs}n ~EtHY”&Ii-GqȢ:Z q6|bŸL|@J"Ge؅v$2J rу1mm!owCEb夫{SA(+:qgen-r4<DZ~lBLv[^( !{U&Rv]Ywd5E/2iA(R]6=E# B 5ex'pJ|`=gt1Y R%@lA}fJt(V~BZZinx4ɽG[1Ngm :θ m0Ǩ oGg e0 Oh%Pdb ¦lzA*Z?)b  ~'Cg3w>^ĺ"xO17qE)f5rʀ8SQ<4R$C޶!wd^=Q@"vK2td&FOčh z{eր /PGk/w$kYN! =Qy 8ns6t8N[%5*Sp땘{eO}:BR8-RC3K WMCUkl!HB($ w0u`۽&im\I9y ,a{}ސ/ HoɚF YR.EwtFDG)if㾣ՍkO:jsk;O6CIQpeڋס%TDX9@d2vr4+%fW{`Q͸΍@$yVxzeˠ|81e-NZGQ3d0ߖVsAOƘ|S~KɈhinU.#S.s[*hyP/0MuFj q F$]l< ;w<8+>LݮN\LD^$@Ԑ֎W R>i;XeuySk^3Pԡ0m/ 沢X ǾOj ^l[YSuy.Y\AO4=FRg m=639|_sEsQDb[ZS^~!`{ m2}і/hתԸ%99A =F Dxl#;' ! 78emG_BQiDB(T>*oAP_cn-"KP;]Q &DUxgI 5x*IS=+7i4~3 iswE4 "n6M i.-),ɻ J;DLF{P!Sd$ܒ*o|Ѭ; U5XWe{V(|Uc:Rˆ/|otF>+пG1:MC"̙`p*G׽ NYӶ*v6]ޯ8Hn*YF ޴AG; 6`}Q-_&aO -d%ndP\PQYcS~ҪKqJu(t]Ѭ.@ŸMyqH=)Û 8DGbexoTwg"*zjil.WVO pqeݑͣ e9X!m>mv<֠JY`#[Jaciz-13C&zEG 7ݛg0%qc.xY2r'^Ϧ.U1Bq(LC&Vu:ѥ{5V{ifU ZVFy 2Z=UsE"rO㻽&\= `EEN`Z1cv ]G?s/Kmklwk˦sA 2V3A-PBvB$Wy'IcPY*uezfޡ5S۞-@|87Bޞ@5LVsfccfC? J<"*>V B P֘>'"Wϰ{}=0x"wnԗ6r8\k5A^>[(,*!N_]a&N#)iro[D 6X0MW$b dE2E]ݑ3Q30g ˼64׿ 0Qf {^.(O%Y@ N>gC]_Ho渒LJv #FުBX}w3ja!e~hslN54-'{a@A FK2?GeD@w"g ^ K5of{5z> ?ΐi8VW޴6dz" ^:zeLکJ3ʃ z`n}&܏v0 "OF9ny#կ؛0T(S\ru>+0+q8+'ӁG:\>d)vS-I0 :$HV \4\HY6]KݩAc5tбk7%,Z=}Ddkp#uXP*n 6RO/|d ʄ`DӠR.CXDixPmC=&o,@^+ZQR?%r%0&$Q59G2Diڣ'C/)kaȎ ӯU !UΠ+;)<^#ȨoMa$E'W_XNݐo&9c]ψ>Udׁ}M:+So2=?k_,Gcg6丞Աy<VϤ"U M}Uh| >MCN/ad:;kܖ+ B=]GևZh)m\-?OwvpIG*.,'rQpL$i@E͈[ x[yM#[ n X{I_]ϏGrI#<3V Uy3V)_wY##M,#Aߥٽ$\QC [ hjIeX/;;=M/ L=?:_!FFA-NnoQ-*`Ip4Caq0Du@8Qt.4@j0J8$I}(,)7Еd%2yb#x&Hg9sf6>Y BK{(dz?e|kY1GOя2cH7p {%~v&Y*u"+%ż;/G'[1&z5:4F;/j]x7f։|{@%jFA*z#^;;$=%LŖ{n7; ~mS 4 |J7 vt19XdnfZ u[OȻV/ J[%P}Uץ KWDN$nv,Rx]k{ۨ wQZ7[Bz_XJrڽΝߺC5TVNl IZ_M܍˪Vyqz^~;)e|ryqՇ{P_Ȃm|`֏ɼcWs@r} ιA;R28/p .Zm#o2_ܟfBпBȳȀx^=ۛj#;bBm]2T˭5N},Vֳ3AxAS5|f,+ Hָ5z4^*NcBHi%A =ybǒ(7;0g`jB3V-vf;K vCϕD@n p :|~9Ky'=BV1OaUUd4>$dO HZYa#pef$2UM'\W֗rr=!! MQnހ=!NnLw- ]͂WxVw6Cڔg쑠W.GrgeZO:I nihY2R]](4*[lJtǣw,ۚ|7M>P ߬@eRͨm%iXřÿ9qG.φ)6ad[ wӅr.++Ѽ,Tas_48e\PB!]~VcuE/U)uYe6rM棆,ka} {u( )Jß<$qD(ѓzx(%+ Ïu=u8d=2xfBCVmPB)),O$7+!-,6%4,V6[ >8zо9)[ۚ(?-͸z+Ԍ,ZF3Elo-^pP--mNO2MPlJkax*%V$dڬ2kjTˣ?sOjIϛJQ: F:3!=}$&֫[&.  4^0qM^2YTX&hcϪ_Hs1I Jo@gFRrFQi֝'EmMSMUvDF;5Ғ%\>/U[S /0.>Csu UFȩ aS}V_m|1t ğ%zwƪIܢs'Q GFӒ4߾"?a(gGYmd=2@JBsuO'کtҜ|Kn-j?VChףfټFX܏p_\Kߠ|GY2UQwNY\s|崁|c;Χi+8a(!sg\+cZ&~P9 0v{औkX* T#fBh3mQ30cE{7ӯA]yjUπqߓw4 oăfe4vWv eYuj4lީujLh-KtӬsd] 9 K:trs 5h]Va_6: v{2W֗oݴ/5TIydV?2IPM}@v^W|ԀA]@D1;Mmε+TB,(ցphzÕoǐAj83 ۪lTboBrfkb/!)R֦A7B Њ. CvX2[rFQ|er(DǞKA75 Ye]rju5֩~X +>{cU2e2>;QNw%avj.ɣ"t'$ɢ#ևZ#H1'O#dAKׁ̦kMY!<\UW"u&hQ'jVɓ. &[O`|\h[OzK"' e:3+n[0Tp3w "/s3^@ͽ |CV<\[Bs#Rglu:cX`']>}itgrౢp$ƽ\8XZ)&фϢG2sBpz;)$:Gz(;a* ֡`?!6]/_nE.Uِt5uQsJq56,C~*]IwߒMZzGR 3 [=*'IqR{mta='bq6f6%'u"l5|^č(ucKb!"ja$ʇڮ-JgYiVϙfO|NRs~ŞP1}O.`ܵ޹C]v\G-6fMfRݞi퇍q+{<%v^GQ[2n7 dc᜚ dP˘%OPx](x:5}🀞lȁg9L@5t6ҞePqCGiJg X;jÄ%mD9ҕE="NH\yUZ9TRQsZ͍R%. tƦqklsad6EW0'O=!")Φ*F[@C VbCi\ /H54q$adЂ /rJh-K>`7Fн bgL h{qٻݚԬ n~3"䶔^D,)!#ڎtN,~VnfIc{\/"{;U(#~G0b򓯹3u>mK>=Y-R+Hi j[*px<{[zpievHZ52<ݜwF*,1 |N>P4.|@|f"Gq,;~*D?x8V6Y'E/9H\=Ak-M5%M(9Al>ۀO UK!^=SMR.+z)5nv"@օ% *? 피rdmPCKP~'WœaTkx)η!;5ellKThZ H?w0YS t7 +J~0ǡ0 D0"fTrAc]dK^6_F"|EbV{+be;b;|a$䝿͉btOc5J<$n| H|X,Ӂ+:hSi>#+Rk&>Jeq |U2waI&|aՉbOEb.gW A p \V) ^0ˀTg mBQS]Wxew9*dcԐ"}mv cfq-լΎI!cous2.` V_!7x]yˮKIx:.^]qzs,0Sd }`tqD̖zr讻uG?#G,KF>fՙ%R׮}%C-,mpzf7qE%"Wd$t^%y b}rq\jϟu..su7B^8:8(Pat69 GI e g[H]KyGfm-9dvyl([h<ѧH)81" DLȉ9Nz؈&!q [CF֕RIX !o_GcA?lcF8x5<=T:fHs`U@VR^X`W@e0vʸjdr:!XΤVڷ[EWסe\t^fצHmP/LvS_)|)PUaQ\$tI#"VTpࢤ(9%3Run̍б%oU aǂ58;tT..L/,bK;akJ9mj8,PяJY-ƅx&HVmh6sG!0y9ų%ĭ]J#Lᥤ`uTHd%J-ƣ%&&Jpҝǣ F`8`}Hve OXT)Z!t?pmRgt_j[:KI2$!x_;D)] xĚC,I`'Bqa롟UNkq& ~~QbRy> eobBLgtp3Ȩ*Bt_(C<,ԧD)E͜B{QtZo8iGc#/nWE9 i(pRj4◽ -*sC>h%H >HCtG\+oLjpsEl!GT:GJv$o-&3]ew3:&^2?"8t[mIJS\8n[STZC3༏AJQK?ΝOg;g͖bUIyJi>p_*uZ U ַAXE甹$z^C"$ϳ\m&7Po-XP:/dE=|O]f{h_P[IF0r&jc{KS!ɇޱgkhrՁn,4Oe'#dQCY&}a񲝐6M3=q29Y%Pƥ)Jǻ(,Mc̰6-l]>*.T\ okȻkN/" CIIn֊V$-~1<*ƴ" zh%xܜH^$=H13iiwNם.a :M_qplQ(Tabܘ 3:0Ӻ𻜟O#.or[qʏ)ŷǗhdHPM{EOhLBRn¢x?ɡSSjRV41Pt ,D\NɎ-GZEf 8=Ű"v;H9g|b@4rHGzj"R D:t+Dp2DRnT6r[y5#kz{Xo(.6*BܸB gE7ڡ7|.`sg1&/=e [+i`3m88b CܵmmdJJ(6:~iJbӤJ1Uu&L2H)8āϧ} 2 *zi >#Wuɼ\b}*_D[Ono|6.t*{4,b-̙B$%獘 ӣq 樓B?KА^. dh~BfIV:dH&"ewtwHuLqd%/-Je]"%Hhlw3 >II6o_0RRd"R#Uu_aeԴ'@6/|mdkM䡳*eMOU_Lo.y a :iLj-#gtlA"  x<[c9E2vLuݺѽo=:}燳{\D%5+m'rygEs3[j7d0SS9E0yԠd>z?Mҥh^`"7@T|R#yr(O+t7Z519<565rS *ʤ vig(fo/9Bm 9YvpTC19D_"xso&J0z\yPV7zإ+ T #7Ha/u㡉{ݝGi<)YbXl”$75&5 w)rFܼEj<ӳ[={nݬ`U]JН47Ѓ@j)oi3沸C Pk4VyՀRL*w UTƧ,i\Cs2yPZ+Uy(yԩTn , |kۊDǁ , @bY^ zzMA-Sf0Er4Q0/_EI%g8 ׷"NE&(&' ?HZcC꼧DGyO;g|+ NN`,ܚ]{W61rp@ b7&=*]'benP>ѻ&('FOQbD1ZPSK#FmݏOX yo#1E8ptNۊcЋ#u$Ie|Y0,zsYw7y.nML`ne DTRm͟{w>}7@8ə]P7b¼‟W[c߸2DsO TױE=<$ʭ=5[T1,%G DN651+XtYdouZ<̭PԈ }%0ɷ ^+[ miφ_%CV@: 8ڌv&!`+_#YzQɮokJ?rI.'(+,z Hw @SUu!ɐA:<ͿR\ty\ANes蒦'"q2![:ldI!jOtIj"YY4ϹĻOdƀ$M`k$p^';dad`RԢ7d2/KF_Po{;w\qeUY^5S`FsxXD ǰK`"eqHg2iknac.-8XyhI PBB䣔[AMΟyoEx3/[y!w1=z5~O 6QE=WKGy{Zo‰%zU0H(UQ5Ցajvj&L=.i7_=\uAtZGt0x@dh]FuĔ{N%=-7#k_%ѱ%7*RBH=s RݍEO+Kɠq9ef+|"bXg`jqsa,R*ҍk py2 6Pk222< ~Ee&L`,}Qo/\@8MT v: W\3FE O~mYGu[Q,;:~u<3zJg w2 7"y\t/e+ %w5XX \NhZ4Cqī^x7yuKh.6 GehZok d օ8o5oKZ\09"`I,wKGb ~=@ bACvhHy CTB^P'7k#NJl*_4V{wTʒ@.Z7e+糎_]M¾ nYzq7d_{7^bZ:=HZ-qCJϋ>3@o]æHS_ﱦ${˚՜TKU0@ [}1|Wݓy͌+1 K5@Q 3rص<䫚}D7 jugI??_e)9U~[A=75גUilӕ/ X$`Tw0Kb-PuˮĘdA, L<ϡjPby@[Ok>]|F\r|Kn%A]M-=8Ԛ&z4up0" !A¡ ~Nh) ʬ<8 J|J;pvϩ)-JtW'4lq/>|˪p:zi᤿e>G9MySùxe5.3`~oy5UFHm€0bG !c:]g؆ )q 3 hgO}M8T a2pFXZcjEcfܘ7ˍ'\ ۳^~"\T{/Ìl%UW M!gin Pq9^.JrNUO0$սM^~ Z#yE 4Ɛ)4X}v ʖ_Tٲ9`K.JlKƮZ(t)M6w4(m$j>[ ? D޶%t sb|REPeTC+M(ZT9.W""I1'G.Ms}(襁xK^lӋ3gjj͢9ۄ}p\<5NNjS;jP,Ҝ ?GPΙ9FdR{K\8p"f+ 0x!CR|uC9 p9P\^_(,ET'1{D,F>yϖite&*^|%ٸĔE&qٽE\J2)jjPSacE8SYc Y7v3=8 !`  cL6Ĝļs՟f5p͸&Ӊ`oK+XK43$ jw^؞rÏQ4(*⹸DVm=6J}bםXiHp'+8i8^Bop?wYOEH4w>2[(UT"qxAg@gB_rAm ,-7q:\b+G$O:.뮳%XHiߺE†:D@9p3 !D?jcYꞨ"0s*lMu?@25lٿ|SK 46Jq@OEBd1s$kQ:ZIyP\~l:R\8d^l܏.?8/">[Zx8}sXxYyv"81pעZƆ9-ѐH=ێ"dE:;-gd\s*M[Ǟsstqq'sp/}7gg'°2[D`w-"8;P](8 u;`f'貼@V:Ŭ!mL-VairR_E&us{YI}-6f\W##xUhj}f`aTq#sbR#E{fCDZ4 _|6  8c xs8inH1E_]0}[%w>oQNS7I֗Qp"!)D+^Vw([ gS@ߙIMaL BR1VEީ+nY|7=|$]17i>xf_CAC3bk>B'G N凖WJOMhQeNaM!Hh"砀J1Aߝ>5*kbXgx4W ҲDv=WOd)B^84r9%t{2YL5ڕv%:'F5}w^w'Yog:adE; >N&F9UH* `$FJHyy|2:c軚5?`u7wy! .sp.+em#eK+z)?v(7% 3%@$kqd<>&԰Q#WHtyGgb9+&F!dԾNo}<_&;Xl.ДRzrbY>7_E R΢P n>={>g/b1sj0:Ӣ?E*bR) t:)_:Voy>XU߁#3H6=*dU6K d_U`ʊ}sR6yP!z&PeN5A$ R20^nIeSF0MW$ϡ~HF@ӏ{-] 1H4s/Báa8eLZ$@Dl6˝y.{nnzMzĠeSi}bD}^Ǜt6u|蔈TWO@%Z..{Q5;գUG^1^0T{ ,ڤPvģΗ볍GbҔ]`-rO4 0=b?G (Yg ŗMhXrGk~  _SSxE![,d:' ),ET.y!=܏os >ƹVڿ'dz uK&%Bv C4)ȵfOU긁rA ]??sNbaHn߲A 5Du*wa!|FN_RЪk⊱Jx7eVvr0;' z fAa3Sa׬s.y-罩M֞Oʓn=tNW|%M*X 3ٙEǺ+7jJt|wA2); F\ S쿸r rY1>Sl!y~.]h7\5œYUp#_0Tbk?]W*3d |s 9Mi` 5nhäoSw_&kr*elkK)$PdիL7\B%%=T0370?g7]Q2X&DZ+e/[AaMd[;\Nf٨>53GM+ K*`]uP4e  _ P~ȒW<"$HmMH8yIuG|IgtԨ/Uz<|Ckbꕱyŗm/,'^CSYqo]'ODb; JNۻK:*yBHHS!!vW*/ fgP*h.RwXN(U%a'-!4#*{i׼1^FgӒEWa\edY5EgEZdH_N-tQv7 _mג{_LX;4&(qeLix.-v,4F?,[=4J<++`cW0&!-ȞTP6̏=="W#g-,$cw5u[VUGvc1+:T@bqu0 ׅ)+urtpN_+0v",_)#&=tVl+-摈{#1Rje›w $TM̝yNW֟ VgWhY4ECW݆o3ЩL;wZfJ)ՓHJj3rb('EhO!6?RfFN@y='в6nUb:nv3 .Y_zIUja|9i2E-&ʢ| wtG~Ў/?+jl!xDaSd?OŞ":;=:lp7[{0'y\HR*%' C &qWFb(sg &C$C7Vڬ ;:DvǺ;7Og萳=Lrluulۚy(m^vfQY٬H1,X?|CItp9F~VLѶ9aI,?S/6?Ii;y6cf0PP`4 B`Vo)4)#$V~?؂e?un෮˹ ?z\>4gwZU;u `bvк˧dB_ 5{A` f6?Gw¥ G{7-9RVeoKB.%})ߓ_t 3nvxվ*I q{-gFuL,SJӍ7av,'x7QWThΐ.Uo04o(1%VC퓛xNl5L51  5+%\7z D●(;׊"kLu'#զxDK,ε%FZ,XЩ!+5o'fBU<}?Ե*eeI5A![,qj}TqxRn376 op"}WV)!I kU7O]dNrH- MZX(4$--Gn >]8X S1R4v菡$!ׯs3!%Zk6<5Znl2wrZhzPE^f D^t`9v1Ѡudr(4[`FW `YOC ]YT&jDFT+h2g~yLO': aVL'pLS]Ȗ+1BgDjo6Q xe'9,7a䯵HURt Ҁ1W 50~" "s ptKf >\ E˵Qap+\b>.2c=Y u'Knߢɵ`q[7!%Σ:Mt`El?>}eLfn%Faշ;,qTź]hүrg%v숇5A~vA:~ពxt3F9u ×׋b拗`֨{~&]Ӯ ΑϜxvK>a>9gtuj tM?m8:s$ƃ!UǞቕ~D\1zGME ^SQ*#bO9>^[<,-"ghJ:Tyv~ݩ(odW3]ruƋ'ؒo3r*qc5]FKF+g%JsT8y .Kq'j$V+,;pm#-YD1xO1̢cpxa~:hK)N&I0n( 4Hs`vbZY>6c%ՠ+ƟNvyNLFbC5޵*Q,8K$94 o 5,,W}6X((iJ؊ q"Q 6/+ S&vu@MA(hN,Ƅgo}D1}[ _?b4F1ḧ́"boj稵z";f&ÍF/g;ESWFFOT-["ZcYƽiT3+4#ja{hXb\Y3B%'G>_;P~]Xq nLm8=x]2B_Q  ӖyEܸcɨSvk/.8#vZ)6EA;!;  Q,NI9ZupW9-r_j1fHX祖 ­V]AK J-K'jJP%y@*`Q 6\M: TQ }oWII"i)EjL&~ڋZ-2h8D=GED5PɭP7j7Քd-;J*I;ԎH%J9[ę_ωdÝatI<)\ q[AZ>GzD7E$/XxOΓG+*{Qjd}g/c} mFd'Fɠ#@}@PkJ8\~O5BMx$$_.OXyp"Jelr&M{=#P:sN=Zl9e?A$PSL z)8[JObf(h_#p|PIeEmqv%dis> DX2ktZb87*amp@B%A,JĠ+%PbjגS"{Ǐ #t^S;$0Z jWg%SOW0>-sgr|HI8Cw+*f}bu8ϓ#˖t39y7ӭZ<)xEG a ~ 1UԩMQ#LqH4e0@g "Ƴi]7{i*cwO(w7ђPx+R."Ug^<~26"%měSp\\lYC qiQM Z*G9:p$>  dgrP:-3) y ֓!"vd9LPGpos` @厬Sa] -e&?nXF.Zoz`@2ҔK5^!&mUU( (:?"$WF+:843[83_]Hn!rc4F 8JCx9i@@>,\A6O-ϸʫ5ʵwƁO[qِ].ڢE׆̰3.c 7:#74n/ 4aU+m\[Ɋ8Mx\GL$>7aY6iT/\&ag"֣N$pA~ȝzq j~qGQ(Eh/6 i L2bۺᅣlD`@wIG٬i6b˸_iQF=2aR`E2ՠ!|2leovgy7T#]:@5lݐ?ٹ)wȑnjAȁ730<0gu&ڸykSccKO+Ufѭ"}zwd_q-$ wK\ˏQYJ?_wˁZ3 3.ϗr}|Rajy=[ȏeԳ}5('3B` 7獧EO.eq׬]zWӭ ;Ȇ꽞>},VV_GS1XdZP)#'CCw聂AUJ*.;A!-Dy=Brm [rc_kbemXEdJ\O|1@)JX( N#v |4h d?ͧF3)%/= 1B\(}0Ye2eJoxCc~Zjmzy,41Ǽ?C2+HFG(jnq#8v|Y[-Ki./rLYuLBD:^ ]b0AoSzo㬾夈ȼ!^-A鴹<_J*!Y=N@w/S87J{ZkYJ ky`aN8M 25X=ϕ?0iUhZB7}ML vl;9oh_Uʌ@>6#(: 'T$f%81_ybp g.NODQu?9L<|G:>_˂6b?I쵭Ɩv#_L|xvNXഌA uҁ IW TK ILzvo5nrI(I|/J4$8\7fhZ˻ MCY]{5Ա1v3h_f^[lEWR2x;3&U^NgȀ dQR/.T΍*}E_OB]Aȣl!7<:Ǿ,2Fós9){.Eċ ,iǼp><ږ, K-XUj >'磀mMek~YN 9\r.^xDп$;\tMYqK&!̷*( "T۪0pK@[5l.$z_FyʹIV G}Ed_r^cB14ߢѽ5׻L `ȍnu_?+']^LzZQ6X[Bfs[,7ͭYozWAn$!HeDŲ xIq˙,ſ`NӝDꗤ]N.[pRlER,T8> ruߤoog M\]qΏl %*.)aJ܈]S 0?êP֍UG,M;Z#hHbBP:,6צh"GZz2 Ia0d]c@uR +dL |aI)- ǒQ@J*UuFKot籥ߐaY0=" FCF_˼ G"-P%em OS)CyJ"ةI)-߽kghZd&csrs!Z݋W5 (4#t KSC9Jz'Pbv>Ul 4xq!,,n=̗℗ rLZjS+΃ FYYvSH2]lE'6 _rhSH)c 5bWijG?OyT9L69*u۸{LT]) .Ȥ<*f2;Wޓ,y֌ծg{,[ms}ihfrK4FӪ[DztHԡ%[H>$&6c?N ݶe֪Щ>0@+ض^W&OK ?L-"kp v46$@Ws$ƽ8 c#P-&I(+݅i !E4QCu[G{lsk=vhBMKz2b0R Eăh wS gߖ㟀2g$ BӼ^&q[s +Lc }ppVknuk;X^I(y^K?[FAQXR֚!(e`?K}} dilv8[T5?7L]2*노?F%ݫ`h7W )(U=^KL]Ԃ3}>]-lzD4 fe8'a2- 9gܴAӅ=N2`K,^G$Iޖ&sgR] +}iʧp˻w# c4&d/է+~4T mX"W{ 1е]H@5n9΄T1piHN"Zb씡yhdxRB6KRТƯ.W% K c{a c:4)IX~V0Nm2wb)o:R 7&0;֩*>!b|s=h%hv+.H+ UR(Ddqt6nƪJJゞZ1+3TɞnMD%%eJ NNpjle?4Z2mkP&.Z|,gx"V#0PpLHX1j^R@ vvgp> g+\"%4|(G.BY Lx;i T:':CYli-%CgB5tݒ*1o2&iuM8 y^%Y﫢Ix,;R=qtvI-*5M7b6o%~apʻgfbلƶ .43: |O!uR?OvƩX( ^@Vw:H\i(~NGj^F4A'QK6fc1G#ra`A3kAJ@ba54l%HC8er߼Е4v۠FQ)v05(2 qRH_LC6QnP$q5VS؛2j mnDmzr+ď~)V҇WʈOze4loY'F  $^L="f}eYopcPmU4YDx豟<AF#*Mƃ .ǧ8&\@atxV0ߵ'נ%F$Г?m~W7QH*Oʞ>UboAoO%:O fʝ $`NdӡMj:vÒ7N|ݟԷ5OK_xtcS^[DŽH3Y.)a&ÄZ\s֎AM&lqL,Q5SNէɯr<)2ĸ5;jN{ 9oȞ24(<]yPl@jP˦$bc_*CݚWt v!BM.VVp~yuDZu 6D6!$% !ʥa%箜D0Ā[bx&)Jڅv01 +aW9m5sH7)r\\3A|vn;BR U*VvctEDuO*ַ+M!Pxl.7`AȲm;z9&A@EPX 1gB]V$ .BJO:7t:Ĩ3Ϥn \,.l$_PڤF8W[w̹^uHarU$ `V޽7nQ)۞2o>{;GDS}"czY{6Y+y #eA$6jȧʾ~I62C0N_uaQR`y;_}Z}:8Z}p|b L҈E uvwL. P%$:d+}?B⽫Z{tzp\Ԋz;kC TH庨˪H,bP_om $Z*^:c.|s=?( E~!$ڝ6{V!vbgщhWEDƣPdO~sRϹk&;l"(fWkptvwfcGShl%3f(oF? l:`yX\E6:G-'UTK-`?.cЪjxS_!EvPzZαBR  pznrv-h* n+ʊO< Q1ě9-}jظr:qgE%&P`U ۇA'RH=wWBY1e+{R%bE'B?eoŤgB@ TF:jf!&OFcd6xVRt/S?gJLO!THξOZqAat?IBov& VڝR)ݴ]_h[`zگQrE d_im!Qz3"r:ꅄsC:ŔK`dB?X'47)tjiXiwUWvyBKscEuYLhe{ 9I~~InnTHs5AP=nH`F wV b\-1ƪT(Ûꀰґ&녊F*2n̂G`7o6<-A_T]'2KVng?h>\ucҟVSUg*Szn]x]9XGɌ/Wl}hm c('֓2|[3 4J^iX=o@ 3R#'0T]o7F*|Y \C)+K8t!ؘo(BPyw f1BCT^M9(ާ*I`Z j.,$!F+o *;r6g|K0lt\ yZkktڎ﮹'JJ/AQѬ%ˀ#p4N 2i;E-p/[<J(Sׂfp6 YipYIWO%',&ՙK4m=(6g&@ϽOW)F3roY)~؄Ƶ2R' oREY4f&#lDA34 n v@~XIr.Ĺe)3B(Qx2nF8́Ks/}*b]nc'wbP~WmϹeUcw86=2o P~w 3T[-nGs[,| wRB}3,TCGw8$τ9G5Qi N\Kpkwݹ/p,ǫدoN޶]9Z`̹T7A_Ux9tV8vn~).̎3/FV5C}ULЖ8b&$xvԝ UCד7I(-% LKeݯh|Rpxw$`Ȩfc o죌&Og`8뼷}v) =:}2`Uc c$'Y-s,vwWVZ|8Ci\M|*r,rs"M4d"u9!!^;M &)Ti]LiuF弳O/kFmN 16fo$~O-8X!`i`@$u?&SżqB-$oT|#=M$g>Qr+Ofkv4WLuNT.Bg&4ST,3vX 3(IyZV"\0M[qі1tX/]/B쬨x-23,Zl{:V{&{-&Ș᥯/VrpW]=EE!XOYmµie_wB)2 ˟p*8,kD\j1'iQ_Zi)O l-_Y,މƄmT ĆtvoWErcp>ufeOĦZݺz04rńK+8Z.-=9Lb o CtKDXc46>׆(IJZbVOIe/p)]G)j#ܟkNb8ιAkwBէo$$n_}J*hPi-פ[%,J5Lϟ +yhZ=u@1m N66ymuh't y!FЅ%PX0ៀoYQ6Evk,:sg]L+tQF 4`=NW+ۂgnQBSA`4rz(A|}YV`Eq\]dǕ(\zuse0Ghh~*b6]'9 ReN~wSH #"8~|-ؐ`fQkؐuRnS+ՙ$03+V雷 4bzTo(dPWG`6!?<86k߳T آZ4p" (Sl:tמN8;}(W. &VK"ٔ3)sc}`(\ݥkR0QTN755b xT6L<϶#p 8w&kl;MJ}LoH͠1f ]=4H'(lvrO8Gv%"JaԨc99&s9# ΩhRA$0VGfSU/W#0,'񶛊߽a{ӹ|öʥoKtj|.ݴl#Z"sF3`#3+z(7nXN@d>jle$,5:&]يobcQkv^ 3e  imޝ>a]asPIz^lsW?/U~sXů,Oyp= 8J5xQ4Oo blwizȏ?pmR3ě0YCĮ"~c.O zM*PVdlLm:3DAS$OL^G" 2"2BKr$j>Z>ç>0>ދsk$qnğY$6. .ne.k2kYݲUSsJ,/s?=蹕R-f$(C<3 R24BW't9`A qb3=֗qN$0~x0eI 6=A`q)B#i/lkmCݦPx\?LwWe+B>j:i =UAe!v%_g\W`:c $}O.oDTgphT:Y\Օm1*Ugc]k/ V`H h;LYe0Qs&8xQU<`):9p?x$z%4]1>+Na&\hC,.F|R7i*k%d;9~KWVJ@v &'ZdesϬ͜D{.!y%w7kFr6^nu*IυYx2KuY2c& ӷP c䵴#nHξ)?^lcw ;|m݀> 2G!M o(k3%8xr)߈yx!aGgIq Rrԧ/!U,4l6˩3Yw!ree6^fKJj`h0 BS 8B>IwP콕N0%/n5VxEg6L3w8 @/bg2N}&1=Bkha7˵^P'`,"N6{ӭw?,Vo]c8UG#az*DKaܙO;byMX1 <-`h8Tp/f,YAgi3WQ_!ɩrؖx KWycG,Bz*jZRG?KPP-BS@1h̤-6 > Cd#^R]D#+ [h#\jhy--/ǴQ-3@'\تg*˅\rN(G6+ựVŵUŘjFܤo1/O[S/r x E͑8X}#bϬZz\b/viMN7WifG :\UxNk=X[&d)r{;1眀l܏1KN&>H; S* {lT}]TA(fĸฉW[y犱k-q 楘}\2Exzsk!aʏ.=8X>1%̏o*_ܫ{lbКR)_@_dcB8%Mq-:Pjb,ǥpTz 8 a:m,tpǺ.v?bP uv$-E5zé(=忆Z܀NDLMn.Lmko%Sv7;YJj8>i[TҏT~XEBWWYSf_+qC t*ᑁtY1sC~b%H<J|&-B8s6wîGrQl%C ƴ}yFxb ̕Z`ٔJpj8AFJ" }o󝇍A*HQ{o)L̩p ݑs} Se_G 69 )\qUiW*CH 捏|) b w;[>YpފTWÏ$K~CS^RwlYo` W55wQ}?9ͫYù.  [D 6MD4EG_pZ=_cE/E"RXFms"qf .%\$1Z9n[(qd ] A`A l,"@i9X3V(>U6=ћ2>X;Ah3> ݡhHIESk[a0W,ԤRET"e^ʐ  V_"`OƢ2]a6(O /(t@$$nْy(؞.t9$CRv*2'գx F⮨M<", $99 *QAjvDe,leo?\'&b'wMݴA8I&6vT]jd%䬙Ǯ2uʈg'SM<\BUz;xd-T UU<{!n=/5e\?%LQ'v|ao\E^_ 4Тas㥛yrƲWr =V2FO:î'a_1!&+%bmP!;;'mRh,g.X@;.[&] L8JbiF^ʛ`~gkX8[yw8#mmo?\95WEY撪ھ aF{} AvplHaYB:RSd$V}(mrA)ϙklN\4͇ g/N]]s V m3?1#/ ̩ ΄Ẹa2Ô. E*ÿ۾OwA!7,Ϧ{]5)H)6׿"ssȪ9su/2~x/>0@ePx+4ByI_g. Mf(Ezՠ{스1йkY`9$ut#h_i[VPaKr,ñŋ=\ ST "'u@.2` LYolhF6"cGVD 5Zs¼${XVG Yf彠 4җii9pᙱ`U,fV%J qtb燨l1keZЎg\K'] *P=Bw[X2|• %.?#ۤ&|3c԰j&3%U%2.qHrEvD]QyCpyo%C[u_Y  , )L̬4`gy zf= W:5](Ռ@N73_jzDJ"<^iBjheRD[t HdLH$Z-UܟP^ML3Gw&kz3]*Fk*BͿϢ.b}Trt(V(tY8"%  {oޔ̌daXd,Fn/D7ˉ H%h^ L8!sL$':eeb!Eso(R1)vPV_F٪P|Y0_Y/× JGCizYԎ:.\Bzd>zf+&*Vxfv|sy`0#{,!_2GVQ (: erP<7 @4(Ќ6{&}y0Fy]UU0@JDz5ڍa @?+J9 ~`yOk"{0ft#Ѷ7d+kvsK'Dba] e7dK@LJd k::=m~{Tۂ ~vD)̣RFBͧJډ/E~=?&=f]PbG ;ɊR߭8 dDzVg $9 VQ6KvJNq Fq@|SIC{Dr\N.IKOpCb|$-_Χܑ<`[rIF(OFRJ,7ʡ^(F39{Bɣ; x8Wge7} 1K+N o=7GXjBWzH(ɵ.C*9#p1uLԄJr`v:oBdFG#,/=y`ȍ;+x% +ieyEgQ=pV+15|U `樕KӬ#pFuL^ub{ (=mWqx6#_Y 3]=et8E49Ki=C P!Yj+UGw0ȥiIfTS*9#2䡹c!r("ida%1lexbUe^5Uz[!tA B[wɜ n+cId`[:".w4Q7{+Zg8;3V͗Iڹޞ^-t$%I1aQ v_Ġ&K'/bPyLWsݩQI"w-k3$4w Q\1㉟dǪFHlo%N&ua\7fadlOT.~l:PVe#uTN]UߨRoqchjζtဖjmb L1T94Bk_c4 sx'DA8e8NϨTJ/Et`B0:d`k:a + 5U!JBA(i+fP&Z2ƊVDdOG+¡1ːfuV}NJ8xÕ13RAUJAs%_ ^]<K߶'\0f:d\p A-F cj*C&ESXvSkj`jE+$](,uq&\U֣yAѯڹ8+Fo4Rߏw2x0LxRdsڸ Lnl0E؆i_fVg ?||]|04CeoXΟ2MOm@pT/HGt3l={T&+l!^Wґ/K܂U= ETkQ7lX))ю]S.  $ngk ~zS~lZMgRAD"I#3!mߟ1˖ O>5v@w.2VgLM- m:J5/1(|k3*WFO>X%}* 8nԤh.~!n*BQF&:盶:w1ThE '1C8\ח{)DWF,:&~|ye5 `t^7lr}ԇۨؽ b(FW3T:&>|"?>z,6'z[L]zw ,k,SR!A4 y,F+Kqt|K)@ "k ZE4( WPz@@XEu-fB?92D>CH_j`z5ڪc?W%D8 *nt`0\^1߸א@cשq7m>p (X6UTL6 @c7 wi&kiH%s)ͻ:xj]\ekdA`=Xl2BL.hIHN_/:PJٺ`8ʹyUѨxPϵ!鮬^x<v C0R. iOքPp~.2\f-t&uN0H3g22[~S]UQF]>_bxVMo$e,Mlr[`aџeiz j=<n~Xƪ4xQvȄ#M=@#2!7$vm.P ]O >hbB G -nm%'4. W(]>@Rw C&m`NZ p>2d^B vOܣzgdI{ fHUc3&o$-!ͫsдs3N-)26=:Z4f}li!{8Fg2&*c[rQl(ʲW{l_ZSpwL|35K W ?uD]y9οw(gSb'<ڧf* yyzT՝z#]Ri|Gs6\{!vmW#hn>`erXg~aֵryw.{Eh^J4.iO83* ?*zBzSqsc?oi6&H^/ل#se /3fCb݊V(:]U3hn.z T@>J k} fvKπ0I@T?P5bŠգR5 o>:sZ*bnpM^Yg zlM6Rl󦧼,,J9JW,/e#Ƅksrqi爖` D73j(t{mƌ \WoA.g3%RƓL hyq8|(dy 9 Pc '֑!7q)pPPY6 (f.*&b;0&C8ff/J=1ӏHN]oj8ٳH\M2ު#؂rMQ5zǾjSSp*?C_̊F RzA2I1g6b։0V&cT>x n2Z6P>|i0 Fawyr PU7>nVF'9 [?*?n;u⃦0Jl}ϪTRgﭻWr8Z)ߑj̖e4bW*uX膥׉ 3N)jo{ ޡc/< SdOX{!lez98g[1d8,]gF7 bgFְ;%[?2A"t6^Wi gQ>VuobY!p?X,Bf>U1RE}ڬ> ǏQH(*y-Nrs!7NBa "HydDHcwjN5%;N弱 1i ^Ek f:w@1U5${-Jc7))I}:gXf;Md^=l3Cj ^cjXbru6[yaBҙ<uhG58g+ewNV#nnZ%7-iV .R57- %dFܶ+_1h {6H{wC-n<֣ RA삳keNԆ5_[ NA3ۆfu{ '=A$ #FG[+N@BLsZSzb>!I]KQx (I057FB(_u4F S:.TeJuN]zׇ_':]I7iWxaB 3xOjj-]2D{9lY(*A|X*WTj h9loc: ߤg:1RU&Ӹ-<^-9bzZm%`1!a\rq;F'}܌:"c˰lC\-F o4'E)hva$ѩ)|9GK]Y%ұ>e4=헖7 <UCۇOw֭~V&M2pDH)rJ!~%! &^3РG c >QR| h>$1 VHSV"3Ǽ~_EY<,v ow•;>MKİ{!dk!M"1pꃊ ۬%X6/7Lv Fg ?~\-~jS]CN S|7\ xZBYeS4f%T:˝0@(QAQ 3I3+ ?KM{][+-:Ur 6!G7zU|FM9Mݣ,qK!Xmt6񂷴h*cYyN=a?DUq@g郫?:)xd`lltb#mq^Z+]io, (m*4K^:|atcͿPc7;![ϺOGvɯ^ :v},GQQ0K?4ɾT|]4Ϥ + X/.*o}skRp*'cz-]ThU!g#5e[] Ufuߒ6nnk(YC;sxq?IKpJ[$ic)cAUb=%Ljzp4:g<,g\L?hf7=OZ` OH׫[~Ph*+)ގZ3Ve H W 6H&W=v]նUȳ64N7r{4!k"?~2)Ӵq-9]L L>xK$EqHvs|jw%[\Lҧǖ=WWi\EpP<» ^A~ʙ\-PR3BIn6xKTaqx-QÕSJ^P1n)IP%/\t=o3\#G/<Ƽ89`N]x/-p*)>@?sdaX ̍8F8Z+ {XmdbTPXvzowF/1[\ H2?wW9LoSuF8 =uyk}qjxz,xwgKKCc 2|dHkMD2[@1< hQ'XOC/=M\^=AEKg iŹ왶+pB[IyY3.z:= =Y4X>Fk=l"$c"sjFxEY8$*Olx9-)h\1e8ak0M̮RoҿLYI. ]TIpR(w4kI8},T8[0FA%~`L Gu4u?Gau.|'Jt} f" CZ}AL>czWq xԡ4jSǂSB*nU5-SYЅ1+_64Co5ؠ^HGafq/8Ϧ,"CT Z'H5nokjírX WOy%&4G,#9U+V3d-W2":p@ţY57}F#چؾe JZ@3X] != ,?u/Ӿq s)[ICtZ÷Ȇՙ{qyPːnLE^ǧȷńp^ۯX+&Xw 칰;lpW֍F> 63 X+ ƖFJhS":rޅ=H!~2۶2l?)Pm <<]5^PeՋ>xVʐɝb:q7sƜ[)sJйdFKUq; U.qԿ0{@09_Tt: -\e ڄxI4^ֱu%Í ;c>rd>j [L3bU:y zƽ'@2YsG8q "cm'M3#*CbxSAnU(ϹԞOhu(zRL.m) }Mwk!0MDax?WsPtSVydLU`xlk\k6嬚{h7X@ f، B Q} dv}K$‟oNfK$5, "h~6KēZc,XC,"]ae0vD鱟Ǹ5c ̣|N%#Ћ!=v.9_Qy蘳EӸ)nQ;ꂛ$;CS-'oMOGҋAQ.Szd3CQx"zLgϸgzz7bVcGsāԭ ϙ1{c0ی @1.XڟKyRåܚqdX4kN{!?ax="O}AXi(#c8TZ(TAgj*Ng{*J D/=Ԏ:y)`" rnU0^eFqfҞ/*ɲ<]kXS7:ftp_"9enPK*(.%Ԝ83AY(@a$xԛ-E.|!͖z_smGf+:G&8*weykuf]ʨo{N%4 㟊6yEޭcWREi:okTq}N drXypj>收1.xW\ַ'v`%*+F<)jvV*UaW[%xۖYvOw9~ob+%qk̸-!X3)]Aʜ,K; QH4F"RhOOo^I 'sB3VOEMkBwM 4y Tt㝶x{w|Z[# UlY/&5&$ِ0em#S:fS{q9>$,ih&o߆nruKV#1]CWM"ynp%HoKfasۆ UVwLhqsP^ P {:ݝ7LұTVu\^㠀r{鳢班鉦9zqʷ1^M(7>L¾}:^#2CF6MB[-oeDAuM;i MOf  R+CK|lŃJeP.R/-Ѕ*uf1fj{,oYPd{Re3dYX߿21NUځ号3 + ..6rdOZkx_q3!ۧV*1( jؼ۠A1XU!UCMMM?#r5V[ؐ-9Qr~btsGWUڮK+0Ѩο99Cܪm|n#£t4>E;gK),9u\uWtUIV_Ǭ,EdCX/bK,bY9AEKj#hU1X)9@z+6`*ਐֱ2w){p՛*)Q+ӀXi77𜎁&4(`ŸW|\Li20Vj:Nb KG7RC|Br -Ԡ_Zg28N+OAG?Ir >Ҽ.DfƒW$N>Mεm*12Xk_V]Nb>K~&kcqt5p[z1m;’55X+E %07Xqr^5Ax{y"ƸoA(pblj,w@"oLd7Sg+ 9\კSG`6LƦ/w*C! #cNE-hy%P[LT9\-p0|_b/uhHtsj*R {.rmF\ʳxcB'etOǯG5f'MӅ,҉_% $O,h"7.>p릜yF Vz{Vl+OKS}ڏڤ{7c"}կ.S]qhrS`7bOXesgBs^^ЂMS};8"4|; Yn!~x;w(.>PeuLBFyL dkJ G]ԛ!'Sbg~??y OLKhI*F~ q=X3WG3T%$TǧLvqVB994gS Lp'IYp ≺(JℸGX*͚i,:םMM =gS6q?6[w,D6H5)fl&'ǚOZ󖭒naAESIw:lԎ[_/Fr:yp+],7(X/,ظss8⿺EO[GyQ 2${|sk]EhG#,᪲1<4\F= saQ[(ΰb!:(vKN ·Y>P^ WXVeG؅(~ٝ, Aw{8+7N\ cun\n,yB@4GG !!ЗO.;5uՈ1Q7 i=^*F12bVT۾V %Ipd J۷Iw=j_sɜ,9&;B}K7;]/I>xt>]](,A^Ҳ}w`hXza*L-i&AWkao'6z *7N4vc}(!y!Q7ݲsP1{2FMzݬc=U1ũCvMO%2Jb?뵢u^޾VXW15e=~%'藙pg%XA &W_M!![-噭 s4WJ _mUBWԏ?M7J0$TGGMƫ05*RRH8f &%ҥ5ҿK]4<%Z(2+hV{7 fH4"xNIO34rP{qM6d \n-!\l[H> T&9_ 8vP߭od1P{*CkX+8 jx@&'=gXLs -:֕踫x|FIUppҿ/2uHسS-8U;Rwz1j ڕ ISN Spfy]H˘l9cJ/#;}'ipH rI>M,܎8^cKέbG @\4MؤBa>jN7 cb_KCw'#o\*&Дp ^[GhJdJ߭֫f́cs;xsd,"SWQVUm̩tm0/O>7Gk ] /j艤8B*_=vMQxa/|ю}muJ1dW7Wq#*QSLqei$|b D".tv3<ѵPe,\9MqHDjcş܂wH)b >F#[|p mCghA #"}{Q@F`YK]j{Y%ۧ8 7+ۏO!`4.r5(a(خ$E-B`fO ypS" G.=VH?MʰN@-29ŒGؖ3${9)Mnf3lQ~a1,R@`1-WXZl )5ge4sRé5zҊeO^-b2 @B_ i8ZMGD Js\8,,S.K&4>\/խ2Xnk(ݴ!Q?T񟭑/.%Fq`HW&Un'Ţ Ɛ63z-'VSVTwi4(n%6zpD4_WSP#6T*Lf2w OR,ND}3AJ|U~A9w 3Gp6~%e>0{O y9`cS/gOnL >NXFa8@rlw ApH-3_y姑PL8"lFKzx`5˾OvH9b)U_rsixNlW@h;&]>Ǿ$&W<cPKǒ:Y Eu~c 2L,5GFȚ=vveeL1akkTsoTMk.4kx@gl)1UxOHfX_3rp<'UJu-C*|ϠD%U-dp(Eͽ$l˸_H> Lw[0 oE.d`<ﭾa((Oj@/հ D"yBG\eLs뽯,?[HT(Gw _NV~6nYsW{tAtjB<~ Xt|iv,xu">>3IRлHfX!ܻ 4\xr몚f;SdNG=ZMA*/z=iVBLbCHDsyY+~Iz@}IL1[ҙY?pݓP*+]x0i[[9[ E?)paZ}Jγ6J߇ ؞u'U1M1sFΐbWX+:<*7QOj,Ya.pl:fyĝ9޴J A,9=i „umLpXԁ%zT2L( &,]4"lTB!{PZ 't 2C<_NWv2p!RkHvO   @tBLsϟ͋yo$uZFѪXu\kP֟WT̾Y!D/@}yV6` 8W(=_܆I"B H-ߺdwe<zYyt(sCg,Wσy"~C.t\MNo v$TQe|?b5i"?n-eFOBL=@˾n+m޴iѭ*]w!͝ ZKMUM`%Z! Yv4b]΢,PkK 967yfغIr=M {E^þnd)hnLT,"@z~ 1-t5XG UZfl9% 5PΩ+9̠R7 Q/_ݠz I;`gy[ mweS|Psa56:i2FaE}5vhӚH{k/AWAxnE@.)afIrx=\LC !?Ve(8OM% ɖaog_s=🯫 =LC?L?'3^ x?Rvt\*я`Z~~OA^LHuF"8 xJ (p4 zr𙁧q>f(CJiW?7HqĒjo|+awr}:"lc|4̑L>TʰK[Ֆ,VZ7ns~4BJ@َa͢TWiKT/◖5Np&zǏ ur3)T^Wި 4_D9m`0) o UX R#⍟3*yYH(H񕛥-]ϋ_0vy.Ňsn2Ga`t3sdp|Q3BI_<5~r)+Me-[ڇ(+F ~x&V Ы%YhlSh l3x!ܲ]Y!)?QPSk{u_Ηk8ŒYSFPcBs9-sٶ@ҬRxؔӽw罷#!Aco3.0dYlqsgܙ:Z(I֤vI3uh7>SVC9Q|-;'Y-So>{CCntwhyqxEh<=)(z6e,>psӥIy8c;sMة|3cPg ['3M IEvӉՓIN ՘,}#wqy<A'3ƱyI i1AFLl:'%*-,ٽt(ޟ42Ky.c`:q0M11< 刾7=ɲ}mB4T1ќ+qδ#>u F?˥BMPXfV R]9[)|Yׅ=n M6MS-_/ kǶſ[{eЏrNI9L CHر2m4N5袥fu^RbW qo@p|C 6@NnC}ZE) : %ܝ (TpZ3{`LiҭPTڢe\ժ"|E4@.7k(|Ra%I-u8=rDâb]:.)o0!x]n25pu>U>R(`H}r kSakWj>Q2 GS^[P/oܟ.Y#xA O ,^%vaХ 0N4:VI[&pzp Ɠj H4"ϑ'!eJ(5jZ^NPP ~NU3,zX2r( @*$`_59*H#*-iOHׄRZ'9coQvY.X'%zƌ  >%m[)z{Z6#Ch[$}Eb*O-(Wi~~ Ca׎ ԤMqL)`ɟK{}{[~hLzx5CaLKŧm&Rxu4y}Y`Yhr~Ul2ΰe[I()I$A)_֯&ЄOXT_ಐRJBm,ڼYC‚_hH7WŞqP;p;= 6 NԈY/]c 44c/@gp^EsN`n'ktF[l܊Ó`N7FG_>U8;dpĆ"8B,t[{?gJ+M40gˠ!jTJaśk8ek0w+@ 6c]{iwu/&wkJӦƘE{Y bxOb~Gw=2gybiڤ[ڹb(D2< ՜~Nr:=B5sF3EOdLw U>$T]PO݀ =Xr_]D{ylBGJdѵ[o3ܼh$.?K@y)0<wXRrEd-sLdd{W&nւNڞcŸҙMl @ޔInaA$3Z?LPc&ӿ?o=-/G}@ ,AQBM 5WVa>:ZT`EJV AXPsr;x=4{n7 hM{7GRꍝW׀BnuM8Y[j#DhA7aOO(R J FjfTCTؙD۷90)NݱjwO}n "TU [}>;cn6.5vΩkdn^2 i?7'߽KfOm πD[ukՄAzR5׏ofc$ OI}yq|VyJ=$]M pΗsOWhJwH4S;E+Mm'ʼn~i~˦&G #+-T~UL C2A^.VkUG71,o>ek֭v>zI%q$hShl)șck:^in;$Z7%muo|3~r ԚsV2xFԉ1]ނI8oeظiZ&MSC%]qGLm0_E%[s%½^cĬKJK I-Cg.s8[V&˫_+QIXkqi ^Ocݪ  W%0Q"%Z[ڊ"5Zwxg h! Qi [f4W9H3N7N9Hnu"KX] ) e1n4+L`؀j1baY E&i;Uvf2@fbn}/12}> CL뤾3U|Yߗ p8_NAְnok3eGw= &ѭZ|i3'd? tV?VszR]=B_2*>$f2l]g(Td8b 5s޷! oX-徚 5^t/ꁩF}il# z=@x9IeBt1/v1f/x^3˻-)o)y_\DkCdmZy&_xA6߅R |FՖP52Iy D 8j|b n K))ʴOĵTG_cS.Ҡw[HOy Ny+p!`*sIn)eXaYarqO2af;ON3;bm?=T>qe|y#v3󴰘qUPn~v*SBH ]bE!̭opc6h&r?0_^̓ОL%d uDlDl5$)"f䓐Hn~c4 s,SoLS1EjN(Qиr%n/nh/^\)x+ֲy0ZulMjF/LLt.S0T]I!5Ys(90wtEJk 4[*۰ifqs0_j/wmY ?9]Wzn49D!;-g^i(|/otó `'D˓ѽh5D~{GLIJb2SKQn-wvz;5K[^g^_{|]xk.f^'~>`¢^r '5;C P#1 D׈NUtBH|'VmR42Y`Y-L8yڸ$N]NJH^akGJ7̑[/J}ldT?p)cG~wP&qˊ'z'&,ffaK<̦B[=ӑ;M3YB,Cb9g \ e*F(P IS4-wI*K> B٣jt.N}O&w4N[OLnخtcRu2Աՙ9o6.H!? W\ 8t8ZiyZa[0 *\A(|IhXp^ G3pѳ UI1 !!^]l6]`z㦨dk{@ Q7GX XFKec775Gb֧bSn0¹)hѪ7=lfnme# ܻe3j#"gʧtDaK-Yn<ȯysZFSƆx Vq.q$kH1ȵL[[Wbț&W$?A 3CCӡL)$l#B %"U!0_[tLwte,k]T$LxE(-\1Sڍ+Zf[SnD*Wڢ=[Ǹn $۶ܘCdXQ|9!f.nZN m=epN3/.^̱A~kzƉ;cg߫z.|n`Tly\i_X z'AsIsШ!6`{hS`sZDtYXQ탠;bc}PD%6a2eb"RxӒfcPxp8>#qvhǖȔ:<7 /kQд _ V-rp!6%d!:nAY|z=,[-_2*; Eo60@B֧mWj eрy6_]jc#íjAzV5SMU{}VoZưMs_j䷞uR޺s:HDXCq {Jn@+⒣)aD2L.9ctEL=,|tN%P>gn療ڴyFSHloifWM1| ? 9B'A'l4}c?ӪyAe-@xo`8R2s̴Qi߇R %% =opav*V-hHJ j%̲yvWn6N>Ս"꽵YMx =ìv 7ϯM(FNĀk~EZf/**BG;3ʹ* v=|sxBюQ"9j#;EU^#1kݿsǃq (9m5l%eB\pkw7CGWYZvL`༗zZ>z9o>{ZGJ`S J$N'1t1<)~6TAz\M6cY%с`]hCq߬cvYK-MRHŭ=ĀZl5Rқ"舟&J'H^h5hGP\Mm㜑īq%;G>Bpb;~f\8IPŤnkJ%Us yN[[C VZQ|K%,1lhk̵%ǝa>xaC2J=Y<}3_Ӵn E+W1J4k!2 H>@k$=x=`3\ Or1ΎNΉ:yî&'(W1]Cny䜝ȏfڡt2؈PtGME,gPDUX̫o dD<7byRKXm^yF$:J~qiʻNBW7[<~Aán`ޱb{j%H+Rϕf٩FpFw Cp 3"egWx:NCANG tF }}X^:ԴÆk ILj{䆀zDŽvdE c!gkw:Euv 5/ ek$F pl)ly[ĸ4drQeֳ@T(+|dXf siYD[tfÏe+7`MO*#0f?*n'Ɛ྾y=f?UϘgϡ }t%|1hL͠2tp1^[br97Gsj:Sk/qCkF8^'-Mv/)s'E" lc XǷlPPT^+mc֛*BM2IESCс*7M/pbM;`{4RN \d0 u(=QMQO-k{ts 2:+};Ϣ@_'w$)%;HQ т2E\B^Ka<(~Ԙז^{ؔ9[H-},S2o>%|1U 't>GͲ?s:/Y8\#T֣e<;-'Vsٲ]}͜ZӒʜsCDpyj%Fbό!ѬS,ܗ9Z54<(X Uu%+A0N25׳:믹h MiH=٩Mhsc.*BqDը.M)HdlłOA3?]Nn1E upڣ7^R`*e /ϙnO^92u!}'&PvIHa+u~vk)?ǯӄLR]wkt{@xzGCy4MGL:aSaf P_w lNUޮRWdΔ̘?s$}~6-V-W?\c% [PfXQ)G6vJvzө Fh$oA@eJ78\t1~uaS#"q ^|8Ye1akDyk :o\@('đ@[6_иReso Is_K [~`O7"V~XIGC~@!}h.ћ? 1E$¡I*0'I*dZQB{v$>~dU%NR8 |4 ^ wKz.furbz#]bX~Ԫ1O<ghy!=@y҈Oe" +b-snp#U ꎙ<ٽNcFe.ÚZ$pZ&fs dqxqv-=-)G ^8>>&vH yQX(+͢.xh8XP&'LtW҇'?D,Ap$LܪAVp@ g%k-O 4 ,3|KLYM]+xFI0T|+/!YJaΕ/pWSLPfoiO]\Kc1iO}G WB*Y:8 gX _xõ?(S'k|MzsSbUg%n*]h[1*(DYm+XJ%Z MCs+ʝـ斜|2'mGU2z $ n MAŅ?&;qλ;Xty7]=IJ nHz3@SQ`$?}s?r_K-?>\n}[07?NA2?/ܣ~! xIvWҳtHB/>;\7)T# Ɨ{0-<) =p]b 70>o7M-"y#;<$3ޡv]ŐQJDy'rLV`k=nHfq2:C3b}?,X2G?a|2rVw\@f:?Z x-'geupK-D+ ?l9h$_oFSdAKe۸T ƺG4;:ܛݴȚrjQ7s&p'\F:D,ݗy䀔lw%5!)SHE튉W[gE]r Lږҩ#w⍫5B$ x[_Q6ϗDN Ӓ6lQMGmrTf6ο  CXgpgd*~/ߦzv Lhzu BATroT8FD?d! {pGS#?hX5Lyf֍NO\sB- mnHA6?#Q"Sj6wx]"*⶜Х|ZmFU 'S9+ R*&h+|#C~7J0*&Uo_I^ QcĈ@w|!92W Ҁ喠@$y~KĢuN(71[ǜћ-#L(-bA834V&[(,e ^[cNR¼( j6|h{g\䈨B)厳G xDLoh4J?-Sq&܏eY.,Ȼ*Tl&sÄU<6ۂy`bVd:ʖF3l3>2%2pn &`Xp_ȔfBYoO+[\^ﴧIˋԟOJkg:7=˜Y G@wӁsdYeVfK%BAy:8Y7[[dž@Y;Z+ED7?1p#u=Noqxvme\ϙ{o/vK'a \LrtoX} ΂x\6dwCϴ}T$1t:Pe1n|EJղ[ j5z#hsR+!8I>fnMLK[5r cW<{N5ڔRTMko((=ޗٮ.ނuQ.]rƹ+:CMU3YX:(D3{:;^:\΃m~*R 5gT/Hu#{ˍ88*H"F-p $`ѭKB!|0R2q&O$٦ny.KgQ N0IvG _#hXw颓$?ǧJ"Cϱ̆Z܊lw2hs-QX F= FQ=UoH&=f6wPǵt}DŽA>:Y _AD?>pS嵨$~~< b l U5Lr\9*D=\4 %BcZZ[-&rQ^rFtX|B)]l-i2NEnD^sh !A5-y'lzJ#z9nLU'*S>P+~& 1G/Ťkɜjb??}ԙƑ(IivHc=l"dDX 6nWuolBo BHt[ O]W%&d:LTߧ--to7]jz-E naBií-.T{tsc~e& oJd rԌ\a@39YnSqNIm5>lS" UaXIpavɀ,( 8nԛzٶܖܓ̥`b ٟc‰`yR@D$|[ ExtGO{pEg[3$_9ѮQ;gh["WL]sw{q :r9K+ ';I`*Exy. E4[(X1x#XaMơN"5bj0{AXae G~[W<7s:,&烤"o"MjS0+V]#<(Ej|&WXg)UX?><7/D^)f,o:Be ۠&6"]UNwW 5'`Do[71wJzxŲ{ '̋:]?I:\ 5H؍PN?(wW\EhhG8 (HtkHBSfWºv$ɿ'1ZBsRn"j+ɃQUGB%9|Q"CpŒޘ P,B6.5&"ori54s=uKTG$؃ y[?҄,Pr }sX4FNeE)mWe#!pQ7KLtIYHYc9_AL/,zU8k߻$ª/WDT$mԥ)á1  VeyR6X)\U9hU K-/@%MD1Z2xAKɭWL@ kG t!ܠ}~ 6H4@PN 1_}u0'bD7.!tܣu2`ϣ#;ԬI&jQwNakijl;ko_pZ+g'+OJ[˱Rإed`¨%ǎ^sީ׼ k4,'!w)ˆљ)l+z1ފUrWmx}II Ia/fbazgHk*i,Io`Pyjg)^nO NU8bݏ$ߺJc)S?#4D 8H11]pOhm^>"9Kɭa3;aB _$lQw7g`hm6GLv j&b'DF 5UzBBs8BV?E$+TF_6{oqH@x]I:7)MػLڣur^f&C6.hdpoo @(G߳[>*b}}+u/בs+g!2NU:k{ raOr'|WQeyNuLY@LfqJ r4;JKJ\S㡆,t;xzZ06R/V>NdѸdc# C!jOf\aܔ!rYJZIQk6im s_k^Ǭ ۃ)|#,AFc5!7Ӓ62D_cQ|ce&ʠVpVȊT֒p%a𔟛lf60*< m }Lh7L!swlq34l ceKWu,6|}Rwf[95^˭'$_]#;inĬ)D}q(aDj7 l:HSdoQ*<$ZqПLK|dݛc`zp#'੷j 4N6-SQ%&$ ~̮, O,ƂsY4jt_NIo%AשYtANJ'EI?v e"}N H@NE-Ű}ya H'o[#B}~lSA+]j. [!:VqJhi_'RP yIT(lH]*3AJwx`wZz^ޚ,O$K"pEgs_µoE-L|} :KES݈ 'Sy5(YPP`xbCsc&3hTe 4tk ֩y7Sg0T'}8[=R-10NuΜk *z>ժgQIjb\a 6|D#"CX :{vxuWԲx%>19'YX1`ePf>ò,8>؅YC+IԼCijYGoG%! ^Y;A 3 YRJ_a[URak!iQL%ykʜK+#cચT]U*ae::+e9s/f8 ÿ`> EyW2EV 4yϸWvPsAza}i2H;\gtWÞ`Fb8_@q Q!a)>"#o($o(o,SV.b<? _Vpro& MЌ~"[brO~˟)h=DN`E,qD벌E,ޗY},?{,j{ʼ;*fWneq;SqFWhuT/X'kg(]j$ߨvn^1g̤XjNad6/6 C,Nyx!Q8N̹CL\QqJD>Sda MxdTI#=‚-9 `:Y >GCkaNJӧf嗋{h[Uz\uL=OŶTomeUy _7kkbnq@GQ+ ĩEkx\F,  HZ<ށ6y>ḁ^Up<#r,mɲrxN.9а-Yp 6'Y^ xTǼVZǿ6O.ltL:0#xFV[Oʍ wth&JC73e 8OuL S#v`Z!JS 5u*|ySƉngkns\>NT-"%A!oqgر\g$I?'e3(n>ޞomwR(MQե#5]f@WkjYL"m'Z6*Kf^ˍ} IHאm %FגQAvh{jfKsQHgҢ(~4BSzGnrAxDa#Z]tg׏]90HYn<'FU-d֩pǽMI*wz%̌2׌JG+ӬANj7{rxn[7"99t!0a &P@s[EHX cľ7  @ËjL^#1tV`fŻ߉>jN,d 8Eet0Z)P31 '|f!rFTBЎ;$x='»jZXyk"pcmgDAє7/r~x`>skJ*q=Ki`oA5IzzᵳھM+IBoeG~ /Ui1 a*\`CBC f kb*ro?|Wnm0r/ƢpZF-Oe 7 \*yM/ș_kUP^  $ ikE` E/ :N!Co]L=I/iɆ֨o dHVU1Fr36 o _\XMaSXk2jq#C``|;VU%KE1,器bNw_lTRaWu,OCȳIS4Zrc?N2#4j޽fU#ici%/ AQHQ$2N'4LBU?Tٙ.Ni)eMY;>(bյnDc-$p#ZI>&uti.zm !wÃAZ |&h@Z$ Hr/~?=?.y~H7n .6 "W9ըj%~*s);X (uԮdlG F>: Uqpy=H\BRѩsJ2V0&c#R*+Fk´q$.<<*\ӄI6"mѨ'Ki즘jJ!ڽ 6qx1eyϩdwzrFxXYx\L )v'np񚃄l[L~XA]HN*wە&|tF~egr,::&kDX4Vn!\6崼-IZR|qyYsB6p6lTmxANhO Ljg(' aKLՉ&nT?"=lZD"DS%Co(SOS K?sqST/FEv%?o.9  T D4p8/1~bfKZӈGRa9K:$فgFՂ#@ nѹ-+ˡ9onFM~]~_jl1UݔS{C9-'+IG+~:PcY-ń=4Lb!F7]52ȣ4Y&_-j믘I”cm8 tAS1tT%)q,/1nElHgbGoycAlO$! G7ÔkWX*iOvr$kdC jZ?HS8&l~tTgJH'bTWr3@f~{eɈKɘ{.M4MqŞVw Ղݣ+5xw]D&f ;=;K0,6 ]q}=C>sLevTKQ,oTģ_f"'m-ڳ5V޲ &hv}P6 9C8ۇV$Glo#8KUbScƏ;x^L4Ēy=LwLd;Q3eR8?zF'kNᾢe"3鸹LF_%ΉCmҒwS6DE'M3L"( 6)$r~]~AÌuubuOG whŒ!܍1G2|6L?oGOH< j[gb Nٓ҂UnfRەt| (0v?$ ,BL. 8Ys+:|Bs~d Jnyf֪OS[?2=W9Pi RrZ|>{VrŒ]ºH\b7m+{nIzwtE;8(:z1Zγ1yO}l)v  e/odj#'XThG~U 7~T9PQ: X( 9_IL+$G| hF*`6T< qt!9hNDwQ0y_|V]4:rPkM -|_Dtcٿ#H*lqx)R'GjlKᐂj"av)IzV? Tϻ+1Є۳ZyU><]P3:YIWFͼ'q]sJ<sbɋ4W[ե(] @E)Pv-k"NZtƆuИ:ڪwI|ˆ>wB/9w'aS~mLGYf,(<1m 페)o'Z@Sc\V4雴*Y\R`0[[Q+!ƟzVG|22\ ^b;Xy!, 7N[ar7wO\! auw*(JR)X,]<| LA?e^}ws޼ ^RSFE`[ ߁-'/!x|M<<޸^A:=gTٴW[Uk%Sh#|9iMf?&􌦂b|Bx CŪd96"sW?fg5:o'@|EXo/; ' 4V(Q;^"^?uUf|}!YB^cg)w!'d|X8ܪE-l@Y:ߨk_)ZF՜PȂp!㪸L^' !Ўݑ-Dw$o :85Ud!Hv*QF$`*CdN5lflI %hƗGlvO㈬~/ ́Bp*s>[Y/99@x&쏂דޔ0Jl1r9 F0cRPH-Fks=g Pu1/=I$@.T3UrcLDr6[Z/-ZK=~*uTKS͹{LJ_u6nP!]ѧ=ߪ,a7mCtB(H-?^: ػ)9VEǔ p[zoł?M[rl)"RLi V[(xwh{鲡:NIR,~db fh+S6Ɋx1n@)UU"ݽ,r}e t>jo;ĦB, |)myuɲW=(HV1}A{³s}{2M).!í5&6tQ;K} 3N!`t\WϟWTjeS]a}}.ZK5Yx 8$>EIR 1u1 8ȫI[P R㲪 >w^uCec(*; I}l IK]+eYHiA+<ٲ¹MvMŨΗQ%<}lxvmPM5n-h\0f%%MVkZ%?[12MÅH\}Z4l>mc5xzn~ 4hNBxe M$b =5h4pɅ7U cBEgv@]8uj2Mo r^dm;>$hϐnSmdveS~L޽#{̾ {ME_ak⺸s_s  vV>٢8B1MO;չBBf<^~rnͨlRFD"{txS'h*)oK\U# OWLJ7|N ԨZSS??[̊E1l>>?& 0RӷJwvz^H}pF!R^*بhF殞ՠ:@L%WD ) |vGsddMuLܛikBK9ƍ8ݿ?9t 4A\%p/)f6s2ͲY=1)lA/:#.xbi{z ][dL}H:ЂO{wbɝٙ F64H;7` mt}vNt@Fۡ/+[}(XC%6/ujH6`װwƖ.þxKk A٭tam (hBn{910%Wbf5q>EKn̻'q!7zK<ZSTyZm gۉNF{jt'bn`Ԫ V"Yu [ʼd2N@f[9٧^<e)ʪիe)Ё%8g$2X:3{o άK/j~7v-_:}ZpUZ,*L^F5h'^ +J`O]os H#?'&z}ף~GK潖(6 Jj1z͜d\DZXЗVPѹ>vc){DIe$g^!CL}vd,qg~H%ɤL+)0sc*$aAoT)Kc&WJW0>`.2(zhkVZ&XsA {CWy,ZX02v O/=Zk5*`9<;G(;IYD񉓾簮wH4`je;"I*l3[6ǹ23eݤ 2>4m|L{A֌T$6yBH:k-eujt8~N?VC± xVU233 7~uTmDXRv7j| [|<\r|_w{DE6/sȢ qP,3h `ԚT:xl5+%h(^VAL#C76>lpw$!t]`:& mnxƢ-"_y0`Nk*M>"o 2fLL"Y 8#!?G5ۄ7ka]p#Ħ P\Aay4 O&G8KX#*ьFi=g% |4BлT 4;4)E)!R`u4P1~LL&8ȑe %`A44%>]\ M"i鮖uVv>Ov'T.Yd#\/فL-}?gX(pٖoYҊ"hN AZ94av^Ah/(,gمʮf2ѳKHbb3_( Xa0~ؚQ/4cO]bq7H`J*PDV~SmM xwּ.ܦ]nQqc%IFښI|9Msq>a,R ۣ~爳<**\p^,EX[J:wjՂĬ覺T?1v <9{ S{OOK!q aB$ۼ"Lo_ݮbCJkLǴ1*Sb}7xKb|fOeo{+cۢM%TwWf>.#ϨTI!#8MkngM߿ksr4gOd !NY$('f[% f AE? FH&84h;\É?w_"x]^3*J\1 MaU?HSy`~I:psu\.ZnYGUϠ, ӏ+^9'$1o, F VNCT_/Xؑ|ȭ\"2= ӝqEdLy{ xv Er_gԮ~` r!mFyveVMg}b^ Y_l;/lOτt,' ?ܱʼb>RyFuij"(J`'G*e\RxIO/+:|,u*{8*\1By'<Ze썙X6`cO3bG~ό  #PLL'wIΟ /7`f#H1[!NY"ͫuv`ʩE x܆ydr d`}e}ܷ7cކ%=klJ=v @Nu]άJP]^i?g&׼g]@\+: $TIj{bC݄_tZGY@:QlF']rP !$OYIjt֨*5B:DdTT:yO[U w*UP,}%=֝dE(5=|N"+LA54'>jero4~K;$6mđbZ\ZC ]:k2|WǖUxAv1bde%[k,v\$[ф۲vGdn~1*a٨,J\;p¿s NN+'6\56 EӜ ͑p,9wsW% 50xlw`RpYr6 | tھ VH3?`7Ut{ϼ w!+ <o9ɫXK[ nS OI,"/6^/"@U{?W=1"a~Hg#:~7]<61)04Ǎ<,?m7凭':n!˾]ǜ,L-Z 'Tg|R1}KFlR )+"2 ڬ(`6Oq:#yӘ lK/:sB1 d!#>yfiC?/ 6"wk!cR1~7˯=j- VcxzUe*"'E8KsY\̑@ı}`@9UyPDy,1TO0=/s`Z:Yi;;w'\n u]9S^r+AM3d;_uۥes~}CJ;ȯzIoM Ȼ9EeߺC '?xJéM up6߄p¿Ƭxn֒1V?[&+ ReҜV;rC%2J!ʟ~}02f]u$f:Qݝ!K6!'k0x; ٗaB'_trfu&:SUGmGYH{I0*YnKiKw]Hyޫn>|#PC'K%|{o )qZ௮ M,'!ZzM Jmec(QoQ0Nj>[z`Z +QU -:Ar 湓>XI* `ݾވIx. [ Xd޿'IQ1wCλ348F" 1\^xlgGhi)NLJlcHES3D0%1%Eڜko!Ҕs1}\?b 'ΐoU,ca!;sEgy7>!|f+uBdd-|/=3?pOD]Gbx,:zj |y0=vBEM"*3le.xYX?RzuTŤ x\]Sѭi׼FN软-i<4N s w~xqӶگjSx@:Z[dHp{fM.p8$VM|\ҕ1P6B_o/ ,ɹ-8Iμ4 [@0n#\փ^>$6Q|NȎS_Nqƒl{Ih:|mcdTޞޥ.6dKٶR͔$S-eǦ~9V }k I`ۼ7C, {h3Ըv'fku}of+=\ t Uɮ\8 o*89# `d?c1GYj/(g?{Ki3pe[l`O}Y+NDֻd/S?$=A?M@b `zLKD5C*@{m8Z6G(j^pmƾq*[9~(wIlRW8:Fy ,)&kP5^,Õc#cIFjSf*j`K)3tz"E3zKuجD GiHPT6E `ƵA^!CnxKǂ뙝/4wz6=G^.$n|[@`yOF:3mC)j䈎U-4RƁ>N c(bfU(IvgG|~$`A5L71scChd6ee|֊d\X50[9 +L'\]a}:ӧÝD˿%gx6-J Z/5"M) MZ~ݷƫ(, X-2#`r,"KCdشciz%}xf%%˥'AwәxW֛=V7NjD,3JTe8pز+SGBng`4{ۊANӔ@"G*IjחMvJX%"tI# m5 N1NI_pDV3}V&?ϩ7P_ӫhn/[ qf5Qzb,?la&e[?1uBG,%ʢ)QC N)D}5ؓ쩴@d0hRQ, t)6ڣ Mp'=aa A2aT%yPWs7~zKB7o<>ڪKp,>J=؁ɰI#7vu` (w$B74Z}ыۛWƲrN Hmz{ޜ[ۺCzJO?9y^6<2cSs}k)?PB.@U,0,Lr؅u?;,5S5;< |Vֲ Jjxt]&HAT[m~f7>$5-#"p21D8?rݻSbP叵Xϋ:(/\"G w&<.Z"]$ulڵč;/]U!jIom{!"R'hjlP-ւi7"Եh _M0?/lX c력YM`.ґ%OOGRQ_5nD'ܴz VupN:w8[JT=JvX {́ο-ֵag.9|;6TgJs"f74&?y LGZ0߼TܟYTxۗ.d3ơ`wa;v+cJ{>P>,/[_C4[z8(WWza}swĚU}$ EcOvDնjP8_! 疯l]hck jS8kcf!?:ߋ::s&d^``vHOFn<^ F.2<5 xT_8UCuWF*x~BqŶH cQƱڮZ^[a@*D{ n< IƘt25sH6'YJ@2V`\-.HVjN\N`m){qmY G'HmoU+^@[cO=,98O/  Uma\{]Uj7V+q&Gqk#͂Xtl|;-AR.&Pfdr`MMfP2 ziu]XVn:ilFs*J\-9 ReC(Knj=8`2YO >@ǟ嫇&Ou?%PNO]sB zHxuِC 219x1+ PcdKB]8啳f@#>Ӵj/J#5M^/aJA[2KemV$5CSpڦ5jR6ԾЍs3;[iW+ڛ7S:|i*?ʪq!>ǣٔc0E]G 5M OBSlЭ6єɩӛ"4\A琉*XyϵO܆|TKPRFBH:*]bIUШ{ҫ|{oƖF]LWϥwMjʗ)Hn\iDxnY= _P\T! Pچ^=аA>"-X|% !g%tyosHFK3?ved0X 2|E0*9N)R.@;vQq ;&lؿpi0b !ļ̮JsuXnQO6&.LN!8M_/#00(;s/0n$3Lbz2 }ӱPtb;dq["ɔF|T)7g>7@L{PEO K ;gV rp3j~3Q//*V4/ccƩ{e|Ovw,T[j3QwO` DqOуY:Nˀ0A$[h!3 ~tc;˞[}]a[ ǡqGRc:fc6Bݵuvyec<,!a]Ym<-9 c4H+ c#1trܵM`dByt;Oi%h_/6PBS۠3%*  MIW ;A`:+m^3Ay6N/?OzBl>QX82~7?]*v\TPC/n&MRC}U38_7G7c.OwU_w?)kDm|_3Cķǁht2{UId߁*E/dHL20>лjAHz0 > g1=ml">v 1JSNhUz'a׹-c+< J,$SD}1jbg9HZ*T}AQSK+i17x\.A,;,=lZG}hF _+mf8j5$*o&I icB6c!VTwxnXDm,xH\ \</x~&][Jzk̀q u!v=g!ӓ0^2q[ f_y~=ood=?6[0>%4IPKongR``\;CtuSVjbPP^,ֺOYVE֝wv^5{ΩGWrnO+_%)]K<->ڦ!1)7 W'`0`- ,RVH@22gp&bi[ʕ:BhǸ+tRpoքXMz4o1TGH 2|%.g!5"A)\8}9>6BaZ^8VNQ s3ZOR/ǤN~"^Oh2M{!E' lM4' 2IjVsPlY9N{MoݭE. 6Cܸlͪ e#<ǝt ЌpIA?BvV^lt)9~E Z&+2.Pu f2;.1>Q]C0&".+᪐pz8-VyK @i"@J+u}D+Qd!3mC  oYU'@|yA%>͞@W`qVw5M\.eύ{=KN!GV"LӒ_yqeӺ 6yɐSo9E+Q˺~iÍN t7"5?S 4Gu%6bS =2l!8 TZp$}&R#sNDz]G?*@iF*@Η}ZR1h@4 6o7(ʞR[ 0DY> TMY uy㶰"7j^JF$rM0#áCs^upLeBalL;/2k( j"b n8qI/g)O,S/kr pj n<>x((mr[a^~O-Mlfנ$U}L9-8L3Yn:R, dj '{1bڷ'{wn9d,KlĆ<LG jB?t ۝LbXYTQ;sh$ !@!Ijw2 7+Pt·(˒yTUmLh~Ph'E*oF͔nD#ŘX8+;*f4(Xᗣ4y`b`65t3O%Jz =YR{DWhk09_d͚LvsD{]c8V ⹢=W2h ۪#eg*p5$̮VxYbz F zyKsXaؠ,?3pGN4'jĩs*0g'iDj' .S VAN1Lt2Vov6>„7mn0Ex#o\U>p\]I͡t2}aS̫'B=>55$w1sfi R|3+P]ύ"\'\`Sѩ\1Igz(odh>dMg_*CEˍK KTruZ4r u-ay^T"ث CUTzK*[SH\U`n%m9YGћ9`а!j&+]_Dldz'v fLvs}.`~s^~uD"|^ͥ!@'v<'OdMsDtKED&<3"PP@ރ}N'@N*4&E~Uv3bXpm4bxw#C4E`'zQ="^gj]0]O2FkL$qcJ!ٲ3}!y}uNׅX૗7 &Ra#S\g<=SZ}9tcS&8i-{MCjӟ6E6SPRړȿbȜ76J2Rɹպ~V yz0ߟ*91NJ+=}5ESF.YU%)o>Y^iNB)tKvE } DH>R}ouz@% +]ZZ?='PV'$5z^@ J@{b̛@iT( +@֟lO Rv0+}/ٶT8v}KTl,HrN+fъQ5Ѩkzz #O1tC=V'b зS\8RZ|Ew~?}bN gs*6Ÿ<Qi.:VKgf\^GK#w<2¢N+0=Jgpo&rfMN MzɟF$99y磳B)[oX!c*IA\ϼclGsyrʬU) k`yȈj_?r$ƻPvT~l88X|w/m@%c>8[A1ξw}G$ i" Zr:V1C1:SaIFѡ52y 5QP&)l\_ym;nO9*eB,?o>ۻ\_MW*4n({P]Ed0 S+.oӇ~Gֺc/LVɈXnb>34ub-WW)qʭKXD!FCL7;xK&w,b ? ԁC52g_(<񪩓thFu I]{ԙ &ZtO6fRTgqPN,tl9$϶̵ڮ\n9mtEKxµЉʈ yZ`=jn?R$-e}H) u<>Cr+q do2^Tу{*M~܇0&Tsk5 ;3 p'8A`MnY$| 5QAN-Z2$Tkk(O}Ȗ'VX|S'JaO Ѓ~$B7]Am~\4d9ݚiãލ68v^eIQNuc;IgI.FunG#1'^7"nZw֭Mf0`E+wh٤fW@+:;}Xn<'$p$gu>Hh1Ȍ&q#y6&dǜd*!d~ Ǿ7 >$>K0t@ .b{csm; FW azxb 8S5r<~iL(b/WG&3V.PT9/LH4't`s 2 K`-+qAr"IE$J@SX%P/Bu1}C}U &ùW@O!ZNqGLx 29Qޠ/!-ґѤhM 6:y2^q#;|YQkiTBI# #vPpbB]_  .%XV6a]c2D3rFlVΫm̹VϦXHr_h]e\5{wbڥL>Α2xژ0iȪjS!zj 9dr8jhnM5,;. g:pUAIJ|,Pʸ#. e/+ \z0/vdX9\񣎎&sn`Ml8~PB?'}_w|@eU6(K|!8Ļʿѝ60\ BUTg=ZKI|uS6K)1 T[uF겗^D؇ۂ/r![6I\V ,ki?*9?:]=c+ KO}s2J{sL*=L~Ǟ̒xV{1MomⲖ4wɩ.O(E)la\[H4e ̶e_ޗyJޢ}xDjr^: E-Kg“ݖZ#LeN8VKvW/ c;}Z^ePrm@~_aLZI? Ǔ]TJU8!fVk[mfr©;T 0_YI@nPq˹ 0G >O6iA j @} eZ`]ٟ^Z"3BgK;>O$nCd53hԺ5)Ure}_Ly+欃#:FOlrWnˤvR7K4JXL^H[72џ-mIc0e.>{s,Guk= khc7sK'p;xǸBGN_ya4*}M&N::N_`Γ#@}<6E dm`E'ִ;nд M'+Cx*ϧpSi~~!u@f*bF-.y 銾1ұ6b>R̍VʷpVS[p7+\ E7}{&Q\IC_{&欃iK#e0GVGn'Θ,h8[tm҃0Ǻ!q 2zubui&v΄1 y?>t뇨e٪NtЩ3 2FȬsǠ?rҵwbdwܯ4Zw&;\X(@]m({V#J8\q=AWX͂l6Y(0Y}qqeonGeUˆN-Z`\A-A7;pftw&x,Gv_AkG5uRx dl:0DwoLԀt鵛 H臰-u¢jY E9,IM˛4^rI 6ơPl%M;ҳ)?3{XL$?z:'*y[e<ݏtP-3PX\Ce߸7'P@{S6x ]p ' pC_w-ImNo!nb F?UUns`4aT󹳉+5ӺT.X1Yc47H;U%x(ի{cs=5 /B@hg} Vg%G/_?]NU" gas>+4kKyuxYii1O>X i#b:̻BvYXK&v,J4}BR3 Ѝ &yiilG =7†Yeܠ|`9=SW!h5 JXuV_Dޱ3[d(rv_SےQdz-<7th^`݉SxFJJkQ58HT,w}YtwDT+O0&G2Dk f^ V_}:֨_ֻ h.VKt(v+BLlp̒U>l CoT.}_Cc!{ZwoWC)Qm$f<7 +O8׋7# Եu?қU`<(&Si`>[ ѳ80Y[qLqMdeڮf D*@ϸv"mKB;|4.I੣\5Ȭ_=y_@SgM%m }DODnwgqIo˧C{)1.UXC4yѼߤ2t&%nm/󲣠ni1"!(J6В:ͦ$D%R #sGpT?JCۖ/*l-+x-E0-U*rtu8;9M^8䆑p}o("ڐ@o=nSo(FP8&2 BD(Rvlѩ{ʫ-nDZc ч1Au)3 >uͤ76i4<}Ж!u'.//:WWT cc&i͒ŵ+8WD8J<"?ʇIa SUĐp[\u3.BZ}' nZ:8r:F4)>OGbXF:EY/ 4̫bUS%AAА Sy.흸;(54f4X]Y1+qdE$7T(RI\t0⠧5j8s/Ԅyl|CCgAa,O "ļ*)lZS3uOx-sPCdUlnW٣6-IoF$DžzəivY؂yX" ˦ѝŐ)XK +fU'GC)fTs<^_Q;|_Q:V|1Duk$-ܻ'^pf9l%F1A!<  jʢ5+U`dOigPptۯc(ufblK ͆d>9R< ݼSᶘh1KmlnߵGoχ8&)V`, >K3@ {2iV =~ ( rʉ$aDk5"kC.Wzg7?\YOu6)1w~ F;/G/Oa?j)6pv\c>`qun{1V1z h/^,#NwË[ܼnOPˍcb`8VPL낪or& bg݀BE5ob>~&äk905.6"eA >7G=䧇O]u#?Fk<\txc̵?6c.8ꖭEirahYjġj6kße$SXNi;0l'<*BR0 P :h0-xgqLm<4g:)KnJmVY;24ejNe˰=9BlVƈ$ R+SD-;FxR :@ BلN8 >tF%)T5B*E&Mcɑ< gմv.eDȇt×1/pҁH=zIk^31;q ?ܘ X73g"&q6+tT8_LSk] '& '1t w S% [O`~^nuy*OwXۿ,@ s~C#굇 @<J@Iۨxĭ7Ɗrt+}*6.-oVX \YIˆ`Vj$R:/a"lt pE#I&2[fcx{ni+ byD&zɝ2~~sc f%_lHj/^ ˗P}tUWCyVz*aN#(~ֽ_}ukۜhzZ˶ؙ`HqI}< 3Sǫ7Q3d$W7S\C[Dhf,QY!k|pVאVD8'2T$ T?4)MuT fru Sd_{qE9'I_lo z|B *㬈T#y4N)yyH {hUzBm6D*PtZU3ʨ;B~zn|ytWYS5T5]oX;w8ץhHw2`G{8eI_vktSyvug>66 =e A 'p놤sRwȧ:Y*d~$șsS@k,!u?$2@@4wA5Ö*36Vwۡ㒗WGU@vhx9e3ǩC~"|!*LTFҠUi2|hQ1<*rd\ TMoceÝKJfV'>a*5!ކJdvKt2|u,c9a~k Ν3o5M65Ωgt'n|G02"G_O@gLH[~0b;4 Rl##pѥNXi4Fr2rk PBpK?.绝 juLDiBp = ;O>[<{4Hp;0Ld9~23ݑ˧itH{6$!$IiN%S+l8[sܥK<Tp (GLJ/#?&GK^$/c(`_`z;G)ܢ Ƈ#&??0֎*6|skV̳;TcONM4$ehH03hWN5W)H|fwHF"+Vl]kT:s C5a-u)kSG@}u"N\lTQ/%&uU.=Ҟ3 +QS''|b~cH 5ۍ{9ox vei)4۝]DmGw5r`0щb&E1'7((1>,K6| LC24ýAE2sw ON#^2E)POh2xfyV${I̺ht4N4Q[2$pǓ-&ĝTBecyAAX Al;ZEAomG [8tO\j讚1cd5VE}Θ3`9lml5{fAZOFD:,9ѳHdj>_ ]>Nh&N%23ҺepR?uI-!O+bTu޿A~7'xB)!4d*d l{dMquj#0N3eqE*41"䴩EL"l4Nvy+v Z'X طw٨%HT h `XXjFG}ޚ&;r?nffR&i$e0+I/6zQĦBOɮiND<&Tƿй},s򘌇XLM^K:vm9PxP+uJ%diF@?'SW`ZT|?{ی e)9pO# m *Si|m,)P[wubSkYlh yEZcf_ʭ+C31Yi`ʛxؿ (@)fIK1~)w,5T&{<5L<^n;֓7ew)y:GOYڌ/rK bi H80t<دϏE+?ޑI:Ą2?ޠ^Ac($*j& z+A7զ%^^* RuO^1v>ǻzJ7lz jΔK~7x.wR`S8[GV&(϶tSĦ XȖx1>tڢئMe)**'i l[ wbr_KM$4}}FKTKnuQiLY09sm˕2( x&AZvvًSd]Cg# | wu<_W>=9A3|1/?L餾wZZ]1nr&1N%~rhZI Qt1j=^f~ @GZZmވͧmdXN JXr|mP^ZH#~Tr1Ct:5E/,18NʪVH!|f^M҃mQJ{ap"!k[̛}7=,+Yw~ƱZ1€x,[3 X^MdAT…u M 5#jg|"; _)c][8خ=# ZQ4m+,Uis.sHnN@٩d rɘiHb,oh")6hY/Ϭed=;JਹEV;N #\ xK.5i,*̰ [BP"_#QDg=e `x3AqH_'"4'cyewrNǫ~$(LbiD3*Keo֗ٚo60K "cj跕D6SgFԹ'x)%ms.uIe( h j)MD.:D&@[:r[,Z E 0 1>gxkIצIņ<9^[ qk&t0ilGN*#ew{IE\n&LmF!O*!7;|80K^qCTv9DZ/G}ίE:+& c3&d%`>5(?c" R'5zy[tҔV^r6.6{ENAk@@j\sߗ_#޶?.M( o#ﻱ1/'*[s,I'.{Eq.;ɯ!P59*b(RxR% AFH^1e &$%}X^/.ݑ'>@_evD \N$>I-3S֯ y~eǟ> BDcfy| AP.w`ÈM) ,0+OMϱi`.yםܛ)zw-~6gsuF?ar,m'Ӄb4I@Qmpʉq2qZ* FwAsWW(jZ&$Ƨw2XJp&_F=g5\Gőѭ wXF63Ub-Foyw JqNʄ!B.)'sкmQV2]A5p\$C f$gB"O!;.%;x *[U8!hTYԕg50ϳi>{Ʌ?g _ bjPO|IK羶dUs܄+*$5)ϰKVvMM,vfBB5Uxp&IēI?LA ?/-AM~-XCv6Gyh8fbʣ 4rw|pcuZw{[pi**;' E(F(c}3ڢƙ{24­ʓmCa6 K2O3P^GHp鈜E~&Dd#ӅR֝wov շ9v^n)"WsWSQ `kT7yN&\l4~S.Uh;ctrM2v5!kk#Π Y݆gR~yM(p&FXfP>e),KjDn9&G> VcI+p@\IRޯѝkNv;g$s.u\$NV9[ÌHeW%$}x.?N۴\ r9]J(z`jKStP$%Դ*O =TOH|@7nE'tѡa?rպ2s[!}~8BWZ-[ smM"eKw)wᐇ %% p NX Ҍ+ulQØ[k0Ȍ ZPm5var7 ėR6J.U3]Fˉ s*̎rxJ[ Kb^E uVWnb[7zQ"DQT̢߉HG&+0&^/Zso=A@çŦeX%沉 ,D?z]PQ醢PI JV|K]uN ̹NtwDz7ߍn,yjBR4hB'sĕd]W+ R(C,c)~rA]]!>3xj:߰2`**ZAWy/Sb* ?I GsLx=S/9[,/\wI|^4N]}O,`03x$ (89Vx:RnPѭ|'`sP2FI=GhY%ޙ c?B ,ɉqsU'* rn@rprD ;hbbSFul9S , ƪ`2[_&8Eso=EY P/GTǢNA@ܕ67F486T orm@1# V+G@9w}3ZQ1WlYT^]-Xntn,Tv@`2̳u[>ɲ1],{jgv#K֩u`ux}2ږq}MG /9fFL,.ZĂ&ꎗ }r% ԪӬbIyمǐkRAfʺZ| E! {i_NPC=#!hJaPqW#h;EW1ЊJ_N+y!>x:0|ͥR*xwi pjڐ;xBJ{%\FóAD6f>쨚qF(ي H3SjbKrt|C[L/;5ucM]aumw{`B.3ʮnfE@a=22٬ ~/:_'vFB9~ٟV;@nǽ>TE.,oFH+-tqXId;R$G=~#/ᾮYH i<`U˦`e[{@I8hUs,5>v%+Qp7wF7%M#3g)ܽIis_CJ}ZuPZHuADv~ wdgFsH#lBD_m3i\]jk_^GHX+=_WuW 1#?>G6@ѹa3K,7f;،$qa= -F"g:m.< W^gc,Shc9ʤA2K# c T]U&TOL+\$:V f]w_乛l7-%YU2A{{xI$E*sZq)s. $tE܀8xEaY|s?-oe퓐MWJ9SB_B/+oV.#W7(1g'@TYI]RlC}y[?^+䨖yDfjsPrAg`@#gdNk7mo K3ɘD^& T;ձȸۓ98<]*n~prYnc &٦GcrU(xAjse7,s^[L >ypwpA: T-mP!76F 'hQac:Aq@P(m/" ⷽmUobSJ7WKě Ry;lЫ= $XT`Zk7`jqFǒ-23 wF'JəVX51{m]Di*wW5"s ǾqD/ Rn'ʅ&s %Sb^C5ei\ŏEO0F-x'oJ_`Xѕ^E3=T/ u&V\&ӄ!Li`S> NPW03b?[3i޶,4Q\Ȕ"=pAځufb-%(>^Q]ͩQ[CQgSȺhYALIoj%6/t7BQ,rz`-hcݨ!oQhzk%D  vJ[gt oNc~R(rT1&۰߱WLͼE#H|q<Zѓy9TT"_CgH+ocǀ *k|]㕉It; 9GK&B=#~)M09e݀;9BJkיĤ#+m'Tm&c3IjJT^€ ht o)fP7䯣T&ji4%I@*DݷthwݽLC:kRJ8@x%d:Ǡ-`_fϤ55-a"y4ɤh>VQ;|KT{۪k55`(t5,Jf4ɺ/H,#@ihuA(GB0 )ߏE;wmbldMwDY;k54t=+}KXя8ze>,?I:-|B`†3pI fG0nfR'Φ ."1e. Eջ_$;69 ->#`Vv >u"B{+8}tr}|A?|MpM3^5m\4X^.oglx29|﮾J{zb:8w#ֱA7TS` ӧf5Ha4ݔ45̐G4v_:a.i'o!Mh]7-ǀNEɄv:p {8eM8:aFEfrepώ[*XR,F,#10:\c&?M^$BvHM%:)~fv3;kormWf=b.ejhbZ7`\ B0JP+ i2__ߍ=)7#l jy!ۭ%H ӎo/iRNJO??zSy.HG 4rm8=%2VbqXkS߱2C'L'~_s_`/N.1cg$>bdԺY_ mu&Ɋ?qV/A_76|.c'aё>MC *I_&'Q6;=ؼGd^lY'3)QAϯbx Myy?_~Gu3GLjDyq5+:nJ݄Gm;HL NYJ]v%DcSٹ2.w;]sp:9+vg` ۼb^Us 7j Y3y8/K)s-),3gI[]MAY1pHIw|,uNU(AFOк sڈ L%0zeiPV A ,gyk0)xܥsΫ-cbW>: 9$OT.AufH!z2Z;ZJAՊ)BkfReSD$%0,G$fQ|L6=o 8PJ@x* v:-2mZ3 \Rg&ȧwg%Ub1q۳5=;e V dM*2f34Χ~{3ջ׃{ˍͼ{ 0S%QMv^ҒL[K3$15_u\oM>]sFB~dl0qi{X@V" ׼9̖u}1t59`Ah PLdnP1.k}e87R &,t/w}NOhDr5ؔvr?߆nJދ$r,zwJ0gdjE:YB~xg q}<mm 2$dCcx4sԋb.W򞍱b*5*˅1b4_YS`Nym*JƿA5yy6 mŒWEU3m4 GZ(pU2oʨI4V~ֻF0^g6gWéo> xXlk>"1vX,`+@tIZȪ2'^Xz I!H'AOYpĪV$SM6&Z̒9q /:D2R^8!##[TDh{=i\kݒ64MB;ˑv! VLZ,Ε TRs_u'gG!͝O\S O?~)o e.BBeI]g*zTLo2Cc TAbHf* GM ڄw I~FkF>ٵ:+N4ΞvA B:S>4s'qn̻n*g:Ld%V`Ekan'-yb~>։|`\IJbWyX S46G}=Ϭ5q{yUxxJuWd%`LB(P% G>\ Wۏ`H^NU6Hb/pAw=Dh3G/Mp9ZДJ61k3嫆6MQvR,z/ҷ$rsw\ͩ'[,?XoBEe?]MZՂCZz~ sP_?Nu=3ͥړ>^oɾGϙKH:B,\+f2&C3'65 2YD+ywH٤qN_mFcm&PyӵeFl4 Dk&GWi?/ LoAAfd_Ku(w KQRY\o`kdap9_4KhM; `gh`گKXW<ל3$u5cvΧfy-XJ ¹&`En=ZŶ+Ü7JsPݻ-Y E٢vq%hc;|چUQiP'aF&Rq!ll*5Kњfw~ 4Ć9+ZrP Kme,0E*pO铃1vVM9\٣H 4RNjr+d,]mJi`$G9k*XBZK$, x5%B-F%[czP8/#Go\b5m=biڞK͏O.phv >ܴ 'N9*g51]@K)3G&yW.k}AuqҞFQY.g.3BTIb~&䧓OƇ.2BzB7l1l8 7qIL\IxH*+tJ} ^I$}6[m) WDf!*yKMG"v@Sa`>CX:$; Cduk%XϼnfF-Tfo HldN:R+pmQxG!\|5׋qn n9͇Nͷ㇅^{^/5-vߞn4l]^P=1Bnt`KI'κWУy|h 4N4]5x=CsD%/稡C^J$H 61j;ևt׿,µ(%}1޼ǰ$ ='Dfs DeY0(}@pL?UfB\L; &KLQ's9o^JBC:RJdUdG9*9r z;rGWNOUѭiO;bHHiuLB=| ^t Ŭ:1#x5|t4b+/eXiSom۲Vt܋DvIlR܂efWM=WU$K7-ibf_Ge~&J5$v'Zw8T@ RkR9F ]zm g4'xv$ZE-u*Jp,SyX9AAfyZqr_A[ @e¿V/0ę$)_Z~4~$5~h]fEn|{<1;RiZ>lP'c;ǙD?/?Duh[Ke64 'kz~!7{NOȚF)|Zg]Hyg"` RD$vVNOVS>q@@r[Q-!+_ /PF vi>eoz$U o}vu[Wku1$c;[`|AI/&I1;r˗~yqLBShmJh{_`xnL57{oT[#>CdS #yS@1>]`.7 0> lxdde?mxUWfӛf@̸`tUdT_7iGK"5[U&-Dۜ[jgQȈ[nc~B芷dOn/$#[Rn&>f9lhΣL\7 zZo=-'Y_{1;+1 *XQ+e!_5ڜ Z>kRF% n|MŸjюJE]aR1H-TW ~<{ikkSkwx<3TI 6]=F✄eJ$CuP;.8+x@5)`昶SX S%N.ϣM΀J,|z֬ǒM[m kQ!* н[P*;;BF(`XkHʇئί`p/wFd E?ƥ=< -0eX1Ts)q3Ƞ9 ib\ ơYM}5޿x &ߠI=aZ_JPJ>c<_ф A/F*@`@eær`Gdf48uD nh q̭mG8/_ݧ[[hLWCM EEQH8d]91Cߵgd8^w=l-Z#Ot1#>]o ܇0{L3t‹*7ծ~F+K'g,08Y[>`8+Iڮ؝c 2^H%Z=SXۺW'>驶B?_..8;̺`,!܎GuT.b\}E]0 oL6^][<6=.}o񰐺.G#_*\ 1h\6,1fIJVv/ψpPg[` u̿N"Z)%[+,+hvil#KYjoz L^KI+ZCass Q T_Cr HpVbE5)܈| [l*+|Epjw0F^4zt[+if]Ѐ9p!T:{j|!LG,Sq`W?%v_i{@Egok>>9SY}!vR蹜MლgAYXX|jsi6>KDHiv[5 |Z"eO(0!=cCLty}?,F:.\q ڥnߘODtd%8wXh2stqKR6p yIf4قJ`#xO'OAMH"xFѴʾce/6[x4Qeկ%ؚV. U;|0+h9m;:+mq vg/qH~i\hBlN._>ʹ}-zh Cuig͵wtj~7yK1_N왩 a]^p`!CE?;zU Cd"o6܀7/7G^7*OUn!JzxUƞ2'{r̮ HTv$2 ChRͶmiQR3•oXCp=i.Za5V^rҊ\RڎU$33G42w 0?T;$kIb _&P8T~U+%u.=…}2ErxF{K^+:EZ3!H$vG 6y(D̟~o%@&Oh t25>֦h{L t  +e;[~=z:gOK,=F$fQ.P820x)gn} °ԿWNMD67`FVQ6_g8S:eMJ޶Oe CF{7t|˯~ #<_<)4=C]5]x9wڱ alc9561mܿf hP7"~ _mLX v9c*R+S&Ŕb*^2$TF}>Y k{&]Ń3]ϕcdyNOm-QenH'oNWOUV7s( qZ:1-x88V^Y6b*r1P$}@fBI LR{Ya8Gb=51ڦ$nÀ  HgR3F6Nfo+=Ʒe#;um= |T ` -^hˆVe+O_JzF1^A@w:9Ex(tہ5GӟHǯF˗Joݮ{G ZIa:` Ǐvcۏbip=m_4apckIxӳA%~k3Dטry 0G5Owp0elbI&Ęp zG>bmi@NFޯb|'D;Zz. FlTwW )g 4'c߆sm+7X`X,ćFļK'-D|.4B=?ʑN/M&f1ڬP^h{Ș#h|% /jOyk5=FtFX]B5rafV&LRc`="Dr0z> v- G<0;ST69Hxy#;[| 9iHN^ _+4oca2H&/| $h˷skG?]?C٤Rq_4t[< ~ Ik:baӏl$ę:—BJDpNZ ǀYIT|X*^gbbLgv`o+͒RACt;8,*uc} 6 xۙDstI*|68YHL?hxDeuFsY?JTͺ%$|ʾ@ruC2kNXнr C>Q)RXqU] 1h .\HӌMP\ɡN4⚥鳤iZ뫙eoĒ]F:R?.wdzC'X.WSlY\.[qkL Z-YvHxg`0~sփn9Uf|ƞEӏ4uD n 2ׁo; Oq\>3%u&J ̡Y_MnXM9~OPkw=qgok {,bobUϭ ] s/=G^"R9r"G{H`|NbK 't$p=L2׫F vΊt"9gfo>m܁`6Ma@;\pNjU@~3lP!zC3f#(oF-$d(4Ohpi@:÷<V>R_lԽjzYg[ 1y`:S c!V«`N -sU)vk`<3b8g-'e%3?:i 2/!e(* QENu;I{8#Ѣ7\ZN PgCh-;ps|rs zkMk@Rz_q:T` #~ 8Z*U,}r} "Ϲ K~q$ 9.(ZG>T]ō0~мp f`  8¼LoaَtP+@,Q|ٸ1k%?HE{@ohm(E>(FS,Ĩ!FO<9S^au 恔ډMtԇh݃ {OU72Y5raQEiA y}VvCdWBhGi p]P ΛTFib3ӆ=]$zo1}歐OB0#J $ N,3Jm'́gCj*\KX,X%F6z1|b> #ЛgKy\MEZ> ];pNgSA-6raƅ9O6 ࿗p _#DB3x#&IfmDcQۤZ,M84,ggyd%#"2ԱEmp+TMX$.9mND}X"w֏HQUwىT=AcpϧgB!-u?,^k; =}"'ԋ4:/tt]؊rNIؖ#':L#<|rPYTL}b^ G8moݟ~~7Q$iw)sbnN־0@pP4g5Z2y]G{Z k1"nqoZEvp;+A%N6!"ðZ ߸^8_9-" V:h'|m*<LG:dh6 o>C )7o Hthn5ٷcq(ʞ^%k*d4pe."t1lG}be"x͞iauťj ͥrLWI2pQmPFgw½xǕ$y^v%\ƑcIvw-N\*AҋaG1L=5qHM=ٌܛ [ggÍ/P?(țhNu{M1#'6(m7n{춉ը#6I)]Ţ#}dj/`$'ROUN@?Ҝ1?2Tc`8gaSL)nGi_!k[v:IY2vߔ%y|¬`x ;5tHsD@{*H3KL Wby+aupOP뼒L5"5ܗ3{VZIftNPrmQ9Jl%Ա2|7'3lRT\ͱ@X jCM-;;gd~hˎWq@p"R J7H>,vП\,m1UX0]̵bb0A~JeÊ[:rZO@+ _k6J,Ox5OҲrQa.> %iTw ,7ڮ೉ VY᪹SG^ ?8vWEpm3+`Aut/g\4+! b!a3ˢ^Xk8:\vZ@'EDe8C8OIBE2o饯`nYx#sNW{"=)%F֥m5lC )弳߳ ༯^PQ/"w-`}`io@El`qA6 ¢E^EN2ǰ_ UWj0䓳C JlK1BQNH02ښK4WzۍQ8'/\&<61okBdXWS& 8Fj繖zf~coV k˙@u_9xppfu%gmٮ+cNh2?`s^_ EUip/@Hw؜! Q*4CվkNІ̔'&ۉg1_m.Mdx]Hg1zt߿38f蟿gPyưECw?줯~,䡢Q&lM^dC賧wBZ_QǛS3?Q^H[XYÂhdml\UK54%k&^%Ad%n(@*yJ^}TF㏟l;% uoX5.iV1Zur3׭|Us:_KR<]Ƌ>,m@gk6aFGUѨlP:}Erx$zYP㑪c?z0MyMD86NhNH:3&xJ)B|26Kr:@# K yBLgVwfE}xX.'b/'û鉔mky1Br.;_\:зS;.gF뗿b=o<@IQ/;g_gݝRYH4ʹ]#^)XXPdΣYE )PUB0(enj?q~/*[n0Jr%d2XZOKT2MG-KLլ2^)otElCzp|[v9 5a޶)g®!\[]I Y~DC֢~=蚇j@6u8BVόc9=XkK (:gJcc9%#t_qX]beg ݌SZig( uufP>oQ" ȲP] zej,±0/Ha=~u<;DwxT1-) 拾j+w~aYwּtn+^iKL8G']@( αr4 >GB8l4U@̡GУ1; ǜAu#:*o|"|O|r3댝%U-E=@;*y#M32H~r>'ZBl kkh LV܆GU8Li>S `QXY  n^f!IVz9/V'7GD#{0y* C1nc SE=G*MdvvtUM Զ{NqoW(ǘWVapϤuY_E_(4*~cX[{+gIQd/ 2ˁxoIHls܃>:ˊnY6&)nwu}'1l쾥-^:bnh+=u^ ےRuZe"/1a;darJs_7璘R->>,ˆwUC7t#,k[Uxs!BΠ u^qbA8o3[`QKOU c ǎ7R܊q*=+OM  9H' "aƚkA#M2 GѳfKXyFhQYv9H$ G} 3􉂔'7Ό\Mc:Pm]s uV1?bD几.ݼ͌`gY!ߏ8~Iyh^^JzJ>E$Uf+JӉ$ވOW"VĞpd캲%QMIB2:G~a]I͊|e)#Gfo {.Jg9/!Uw,8&lbY砚8 p7 v `w'3ΉDp(+q 'GeEJ֭i] 5q(ێJFKۃEJA_rNn icʇtV03gZ9;aO,KiC>5&)n&6$Wㅯx^ZTDn cb{-yD~Ν=Ki_=(6UJ i~e%`jOI|v_>jzi;5jnVuӮa*YRmr.?\F9ؾTܩ o#GĆmN*\oҒT<զ{c@/$dMi7ς' +sӢ>|mltJe+H8L8#OVvxNEq\z eknA ,Isބ1s; d`+Ŭejs>˯m{av-k9)^ @ :UΌsQo+cWP :QZ gH/#6fm4lNax'v]p_AUPaOےn<7㚾l0l>- g `܅u+f(*(`j7錔FY7XN {Nג3y v7t`q6`_1Գ} |+_2H؍\(M%?NNL=>4!j1+񧎰C6EmZ+)*^(`¥EOpl:WiXI}ľaLF(n6} Y,-©2@E];6->pQ,:9ș!=.@;H J3*+WHQ[smcUKnBW}U(rrmzoq#hc^H4/ODa7Kl}=hXTj'(v s.;y"%=İJǙwc:n% #cn6͕o|8EmlN.#Aʬ} ,}&f$Q}j8߸oR@{#S`!"Iv zSD8̋%Cb.urqkw$;e갹쿃i[5GnXv>aّSC[9u $͢vl[}B@7@,j޷zlpT5Y\eKS/σn N>ODx1[l%̒'mv4d԰S7RM}|4DY| dVTR(|J/6P}Y&!c)>72+G <2fo14 eo*d i-&7`=n 9ʝE^dR*܂v&FJC=k++l%7^e+Af, "`^V4Τ?=0i.^N46 3`|Vv™k&1Wx"ox1Ve:;&R~9%T_rk@cs7>vszZZ5ɉd< )K \z<189fM'/ˏ11ةW.m" yw΂*tfگz/O/H\ [s`Y4OUIEU"rm5BXW 0 KòSo;Urb۲.R?fɓFhZQtv9f]] 6].dgbAzw#bk̳,j#(*cfqNՕf&Zwsh1+^ ߟҙSrC6y'հ8s*~}0 uY龅;wiHGa'E}8^kNGybxBKNNQ P_rO'bb@!(_0Зdzh_ËE A#7Ey5I[+plc*q3]p@IjB@B@SdXz~9-ɴC[+- D;=uC꜌V̈́HoC<`ijzD7z ꜠X" V IiNH* B*0UKvsN#i K(p ۠Pn3v⧕TqD?,~c S#G_99$üU>Ƭa%o(3Mciy+^pDN.9)G*`\mCed?{DaLB3Ww;ZGhy= ,++t4qKuB mZrae=!y\ @jrh䛬jmeƲSЄ%:$l_960kxR,#<`hl3'u^rb՘Av]Ak{K8VFyԮ)0DEI*?YLBB'6sBϩ 'bݤoB ĝ҄M׌1 0lɚ)5*뺒%~D'9O:o]UT\U9aVv=b1tRxC0E3f&G ~2kyD> Yn瓨h4d>wly:o ˢqI$Z,nhĿYS ?|/Mg'y'bXCk@ȏx ͸Ӕ̯[s)JQ-g ?  qi35Gc4)>nnKCu6~θ=kT-5$Nޱ׊Gs4bZ4 ljy8٭qF{#&#lu <Ev}Eg$ʠJF%C5S܅6o5kBm=[Ik&'[*?4ɲS9=h=Cڴ1uȣ>9˙p W5ҕ`( Exyd\M|e4Gݯy6D\ eQ|omw8Ж_ qkv`TQlE RYͧY= ϋGyRDŞҕuaA~~aSp[FlTF+rT1_<ݳ+.Oxpc|+ŢqO.I,8v?¨+,\K$SD .yob„͌]xnU*KjH͒}}_1yU}٣Mi%`/o/>֤u6OG)S $fWʠ+84R=N86ƀ oV7CT2?nP9G\ed8,10308&LLOHLs;N]]j0p 0竦[1ֱֻj7T-.}n6vA^djdEzGzJk:Eu<@5 ǐlH/poGaƃ_֪1Ҩ4j%n% )?hy׮ yvm؏2PU&օRҽw 5vqw4X |xk{2p`R (R7$ 묶ȳf[T1*;Ϫjj꘹. 7J0R9z>'>a0QWi=ɯ\E9qD7?;왴N+6 Px"C/N/8WUx Y1j.J>(JV ՁhlBSձ>0)up)n8́\wϼ\ 'S9TQ=䘏A%uzjߊXvK~=XB䲃f _`sIDWæ dž>s3(R` iwD꺭GA ;_H@7^<DOv[(+uWC  M?MºbJư{bZ|#GSl 4$ig""^d!1 0eg.Qӿ,O)Т3Ћt p6bJ%&xN&FܿmwM].#Jkx!:פ"{B0L/c8P tP ;i_{Kpfus):`C`#-8RO *O i!uiCĄSK=u _v>'3H'6eL}#(݄s/УR̎^;aFJTxONLLwU oo<-e#8!Y$h-"֡pWeݻ|W>Z8 EUY{ &DmS."}<(r&nf|!$OG{yEaku_8?v?8awd+'1BlŽC-r էF5C`ZG9x/`Ytg$2slJaž5'3981V\m,ҡPb/(uV(P̊g4xf mSʟ)JA/k$VM? 6~>ed 9hfUޢ 9ރ[K]DSo"}LKȡYi}v%]G0~|RL^m:yz)8[x7P.`ԹapG7S` p*.q=azĸQPyO~9sdN?ہдy wY Mwa3g2f83Y d* r8 PU8ia=V-YK*0Ddu|!d⋉sz`NPEտq4b̩̕pt2535+9xø32r B!bJrx[V3'kż*4 KmGG\)>'ɇ d&ZևzE+ |}0q6> S-(J sQ|Z$[,!m֟ԠmIuEݒ[@/p0 e\o%Y@7jY# :YwNq."E׮JT:XBN Ì0\{oS;|8id"y?_5y@@yXv+&$!CյĐ^??nd2=M&0b]-JS.? zuwӅ";zG]3libߙqe2k=EXB;NcSH~l&,p@ ko8# iU ;REXϕߐS\Ȝ !L̩dz/S.G{G&41"q%d!˰F0g>"x^rޑs۵X uŏ=kNV,$wIEFP ܆AWb^@iR1i~G6p:}D/+nJG-e}]QjYQXonL Z#Qe;bu0ct')^UI<փIfa9SkmTM{)A֦-9D 5I>`K5/zs6lϣUU`,7v *q"mWQ DGM|bTeC JD( >7 ҺM,Z.򢲩FKvO4yG(vu1A4Hz-O#_!y6|æ%dVL Sr tE׽_U*.ˎo|BnIo5F`0e!T5Ҷ$5okR;Up|!P^Xv\<7PfdžT̳ADj0E7x*U1iɳV\'ĵV@*}SLo:ZgJ޼lK5r-sZ4E}QXΔN6o20T4Kqo7 Z+0|ܶZ\M μlǾ!(c(ʵ?};+D ޤCuۂܑ 3q0nDwl v$X`Vx52 0ѨIL}W3m S LMpDzQ"g+K~k;y֑Cl]N6X;]V|Fgbi&qT8ıd|pIRAKY~gVҕi}wvcEϫ.J2OU9J[hLb<5~5ʷx >*l2)/::am?&o4o_ZDCeҴt-(AUS!Շd6"|Զ4d t\1hȺg=fo7BjK?)U*TO֞DG F<+Wrwg]tI<񎈷y8_j# 7|bZǷE>e'B6(dX9s$[ȶ1ia|uyU.|R7>*8cnGŨLRQVp.W4?Vˊa?37Nq=*4^o՗@5U@V/!XWo:V8)ۼ/tXQ+Ȑ?'T\R05ɐ?^\ـkدs2Ii7J*B ᔣ rEqO_9 -5$?CKjHˍ#n[Ys2G8]$F;ϥuB~X,ujX(Ku Hw<%GA2/O?W$Iz 0y[n-"?bTnAum!~2ٴ@}+C #wńo-lNA?űl:zC c)toe]p7Kq񎦑£Dc~-b3P(1S CDEn v l٘>˸ 1J2<16@J7)E7VzCx7vy`h~Wod.}?n X\|oSOcL u__ww֖l SE iL~eeJFC8Y \Ƙ_{m}]p̎6F!s5%AÌ~iE< ldr>hqgq, {jR-ʍ?}=\Xy$hY^&bvh|ZнMsO_e.fX+ds-`ku@4PziG2+%l 쌬Ή1re6M|®q/Ѷ,ml2Ѩ!ZWQyx\BA/fE ڼ|/" ƫ.ݝw'PaL#='1T7t)AZnΗ=p]u44l<"5H@-Ώ?-;e\5\٩bJ"k PfQ?Yf.& 熖[ԯ~it#Dp@m'ř%Ә3-Sn(s8om{XS6:n!ghoaڥx#Js jh9w~UexG\{wCqPLēc"[٭ bѭ~qz`$ ̹x-c60B 4ӦGS'K%K@who3l9 }m|t*zwD14Ldյ)jEr,D]A>Q辖Y6k`w^Azb(II=0[zaaK@uN"U;%ApwN~ h-e,j@܃Zե CU@ʩk-h.'BFՒXT>}d;+[?fr"`_ 7!6#B;}+;N*?/:kq"- )lc!SISuPV5- LyRZD@黶0ȇrB$0O:)53X ٷ n`~? wdi*m?&1;;@,!qT ++\ #_;2l_ r+C}% M?YOD$a@Kبю}X1@UetFBn#E"s̕P͕4H .[t./sfif=c&ͨ:Y '/oEvx!LHnP3xq7! Dyo>5@Rm]r鑒Է䝺ʡѰa%C}:fo̖7oghixzfBK'3;)Qw=g%=[5rV!rޒdcb|$HEO)y%mvSaEMye'Zl}.`I{8.ј$LVM~+",0+na)P7x&Lp5sG{c2p\ay8&κupi-`k7vҊz>y!>DۑY_x]__ܫ3Yi$˾qd3!EF ~~E@H̬N.f7\*oi\Wa~Jh娮?o'9.Gp㈜k"Gatp=[w'Ʉ\vTDR;V" ne]X:~kTC+X"LnVlnEɉ -H@+ܦ_regQ(= Ag9*ɰK0@aDtL"ﰇ#z0v%trls xl qWl!CT0%(bo@*pa~ڌYI;뒃ŬyLL>>!c+' C?&ˢsGF}TI~xzC9)_5j#UҲVEМ)ʌdҺɳJU[X4!vs3$THi@1 "zHV4DJЗ[LW8WTrK7t31VT$UdaХuXY!תtx~!j&fª^tP QKh`BZ*uHoe)iXzԌ375YOXD9КƤxyr燍@C,#A}<:Vh6 3fť Jcsnx5%j3[K1?Wf ~_8l(W!-|p]Kـ3sq$ZEy Zu^t+%ȉ G뎼+FeSd0:Rz'e "Nj't\K̲BJWtl5<:Bk4K jMq;x"MϛN-8P掃s܀g4+_~e> jP*B<\9 DmR!I5 ɌiZܟ[,;)}(> &x>;C>,%)bOʁ]ڠノ4ֽ/.gm_)Yc`g5D },]AN2FLMJᆖpי;13#'6ZXt@5B=S߫*kQ39lt%"O,[0D ?.SW$WP}F"W8EA?'e7_c(% m&*`y)Wdyr Q?̖p8$\ -kȠ?}_|ASdRYRGYo葽&.H?8l~!xU75QqG Uu@5NW÷ TNAlU)w@e$'w [n<EӃP6T3m/$vcKnHˤoYw( {u>X?&z[ ͮp=u!&̲jǥ~t` ̲)$Wпsp)dB\( R] Jn:N}yv>4B HùmBцs`h \v"z(urOf=UJ3QJwyo}K\9fɊLJ2JT.wk~K#*hK\.u ſfO0ƻS,\/f/` !re/u|MIUT_c0ڞb1{R\j%Tʭb_-S+D+L2%Ի ;Ex[,V@™/- FGcH WQ[A&i-[( Yv!a]?C zƵ}xx+K^̙2EbIGUCQ :%}Ur-.cP޶IQ4T#7 ҳ5@D8`*,g݁Hf l u^N3?}N :ĚN:[(+R ~bUUkwW՜H-2R+D|V 6ӯɈ; q~86$ Nǐ1#?ϋ*HM&aw}|J(@7%0׷ Gro(AA`x?-峁!PS͈G$7۞7nCd^OR(pN:W,5bԯK6߰6 U2t!_ȧ5M_z8o wjލ/<-Hp#U"rgzCOqW't[3W_!"P Ouw+L6E?WuOW:Ţb -W\0r[y~TFDƾuZ&?1)>-8'4ި‹ܦ*š[F]ބfCUlWACk0RG,_9QZYzbiwUYw~Xcw L5,51*Gs7E}ՏHW!T{.GW@v+T+X`Tykkr[XOK"`qZdlޜ0?$U6칤+}[A_v#{>7 K!O15G- j VQ^b|8K@mml[: =S%o)r|,C_L Ao4tqኳ!VDzXOV !I[,ǐbU7.H|]NAn8Nms+t-OՀ (>dM|eкQ<\i칵v>z_c)M}{#$@n6 SOitZ[ $QLø>eɏרysrhiRty&Wc`C[*qQhI{9،F>X;d9b9`mٔ;͚kO^~ Q4. Ӓ??VQ(!@m>nMJZ˴xϜ渀%2/Jp[fK]ۊ'*V;4#k *?]scv{i0n1|OS:+d63{/B/5gZaܼRox=.=k\qJT$aU&Jqy{н~y>Nظj SQ<_Ec{GF4(S0iABTwZG񲜜+WMփ0쫱sZMme a$PS zEիSlI)p 1T2:4C쀼2Y2hwjAgc5`y3kO0b|imFYyYxzSԤkmژlI0xZe\ZfIWIRO'{!nهrORk: egTokHl(QkkȹT|)M vkAHK?3R7dN8A[8n[0}c҆0"]ݾ_k1" kWI@s*su! ZQXuA/)Bę~IQ3a %E ~uc@Mx5*=ّDB6(< wjb)Q8h*Q9>؈u ƴ\M==h96 cQT=$.3YBuwΐ" <3W"vnnm纴a-rnJuWxA'9 lqM"uL|U\ോN[U-$-3a4eeR@a(E{B['it0oc6MCwGŤ>8Rӊ"W'gp9qnR f!k`lHe*_ ʙuyw@zwЏefϽ_ݷg!n=LnC fT7Qk~(2@)nT?3]=)ĘّÉY V;['/ԚQ T趹klgǵLu]4cn4yɟoEx^๕tۏlP%n(cz,T1. Tǂ T旕1 ߌhʝ9 F@bгbfxDuԇi1n%y9C}44IH ѹuXPœ;b sRf joAd: ^;N@Ɣ@6mZgVx&3;'69+t⹼|̘V:2:\_!^\cU[f &Ae&bO7tGcndKq(/LKsY rB74AHrI"2b_:X@_=tٔeWc;+@闎݀tG1Ѱ~ڬLBRtl!U] $3Í8)H-cZ~˼h熟Jٔ' !2%s~fer.D9U9tȞ$"j-Kk:W6ur lYK圈Ξt֕--E2< ˏV'Ϟe/ 80y-JG*^ئR5a ZAAU6;l^_q+p-8˺@3FA:Z*:YaJWK!sL%>d˗G |UHQNZadbK%mZGىW^Gu_B(w_|Qz6J!Zs5J1p /PR1] b;^\zmGG[߽hD#2;$"c ڨ/޹Z9ʔ,KQrLkS~j߭ @c Ë́H UGXA}v_ ÉwQ`&<4 _(h=6'sE[ڜ^MO[{B>  lYѼgU5^_ .g_̷R^Q܁aW- )inEh,M=#B= DXd|@ҹ, PARo pT͍#M6Jx,'pO˿'8RX_`JWFķ<N84f 1-[þ eMs浘ݮ;n%^TWmvY8/aWYՏ'_`2a4JaO\DT|~.]0`&nbP7A7z)QԔpš:yDJ ;iD(mcx v45lGrW48X, 6Anٴ]+EEDx>b/v4xj), =:&z@Q]'!1˗D5v}U3~rHJ]|M "!i_Ę$bg:B`w1Afov7M Ω#nHAJ\ (N6a^W#.,f/JÈ2id{`O0//ދ+sS+t$lrF*1;#;`ޢ%5->^nNNfn;Ըc%*?{(+g~?q]JYh{H:=ZW<2+Lڍ×(EޏlaZy"W+7g"?z˭Mn:iHǶz4: iؒ'?>#&zMa9)0fN2 ʿ?$1S;;앬GEZ8 vY& a^B;8*(;ՈxV}8U+g԰i 5_dOB@J8 uiFb?N]6"rm,kG D6 2T@cOe 3aخ-("Xz;JzCko0hқzGg [® VTl(c@cm]vxsl3GG׼W'-#WMr"{&l;*36)komr.urvZD,nW;S,tc'|m)nZ";/0GQ3;>۠vI,N[f.ӡY vg &q$!JB_Ccx G:pIN_I|,{mgPHrT޻W=~R_1]@Yr?UJ E~FTsmI\j;J/\x|kU2j. tm/S<67ȝ |PyW5+iM~zAD|뷤YhtkDLnhUaP]*0kǣN\T U"ĮxǢIE/S8edr[F ?yIZڪcl xh0[(@,od?htx0Gv;/Z8U~e[c9|݈b1&G%j*u١^W-Yp*f\hVd|#+$9G唆 dc械ր7- T%} C/7&p*!H&{SQE~# wZ.ܴ,;! ǣ8iHз[˯sܨT*|-XRI )-QDGwxo=8<`|G/UTvϻ'L?su9Z;qjcV*lxCRc2]6d6g_aa3۬Ԯp~p%;M#B@fFuj,4q، ީUVSAPdXƴf\u؁T"K"GB=qO eW  6jmwbwo"ñTJ@I |M ~3pʃZ32{Ro),F0*B_1?r'^Th>=g]C`Xz7Q= '8KQ4jA܉ֆ ݥ={l=ʵq rU[! {kïENV j}oR@ w];q{c6eBʔa 5cl1=ҋG>]JY6vt z%V0#!u,ai)f-5ْdژ4aIM3h3g3@lp~64)}^7j)t5,GZSci,3aةQ ,kJyۏr=Wy~^t{n&a)#<0 >-]Db? ZEWLTvC}"9m& dxۯ[[bAL>\(IIb)|{L!)`E7)%s`Rf+b?H]> 4.n< "vsut&yqMesB|CVYqT,du;@JE$I LS0WtO*MΰǺn6Ґ驉 ן\_Bɧ1R|=5G$ }.Ia LhFқMX}=ܧ/7XjyGo}KY԰C ϲ}n:b~D_`xY\iCIjN8^{+5lyJQ0 ~0AbD> t/Nܟ^ԅ$s*Pᰑǩz5[ `{ړ|妦Yǥԣ3NS 1 :Vgjed#*ex^B^YY.[i9:q8$o\ Z/ @&ʚK;hXܠb9%S\tdc*9 9jZu >,УWK x8AR QN>7W|3&rb#t TǪ_f]zWĘy )B̥}o 6V0&rMmoh Mfje&j\C{ /E$OўU)RNB NV4?p|@MJ!Oe9%/;JoO0LS/4$j3:RstS4Z4!ybFa⦳lx)tw!V-}r7ɔ90 lPaf+aNZf~5:kŁI:*Ol1=弣ӷ@Ցuumш# :3lY ]3(/XPO]?= ֐x5"M#*C$Z#2LZӒ`]^w#'=d`E(mq L{Jxʣo5L<[T=<&xٖ6CIԉiKkLudƓoDU M‡@la译-­^mY n( Rį8r}aSjW0oV j(78ZsEBq #0* +6|{l C1 MFu Rd&|(J;myWB`(SŊ.)'sWkNB6dp4؁(~Hk)l.rUXZ3|Ԧ& /;"[&xPv1cx13?n,v30Nikn>=S2Kp.v: r_:mf8yvlъ&9aYړ\ 漘=n-;>.rRqraM8 F_ Y]TkΔ$|e^%f| K!DNձ]t_INA,o+pԹ' vc  Cl11lÓ}9bE ك'P)94t;MmҡzhE%}e~A<|SqJզO!C!{9i'&-J;ԘеYr ih'e4$\ $y<&$ U4xtؙ:'~*?XB +R(ÀVRacf5XLK -P:Rk-6;4+Ss?uU!2> 2!s5G jQmZ%8Kk琇!x@KZ':bpoB).˲P֏׻Ճj?cW qŵ^CL)YE{wJuJFޕUm{^:aB+:aB_MA2Paq%-MD`{u79^üyqfdGy)EA4FGOGd( ib_\ CY@ϥx9pT y]T=)߇ 07W/޺6[?y,ox K^WhD"A>nm7?W+zEmTxU|Ux%w:y k-q"3U]>Wȥ[3ٮkص ʹ=`e[nH ^P $O!mPT՞eD Wkl"H:0(DHZcjV/qrJDdP?r㷵mlܗ L l9YFzݰRZ`6k P^R/6[nOm0HƆ@'>(/ge8SSY@Z?R!uJ|tuAhCZd^JT%XTQU}Gz L.&X>t>klgTq{HsL9o8+=ԺM0iY%m/]Y QG}]3Z ;21N-bD},mʭ\PyqiRX1$g(H"F~4Nyl;U[czG@dZ̶3ۃȊ15x]&AfM '9wӸέ^XTȘ9Do kG,+TD=ڠymEfſ 7]. aU=ƻ֠#gjCKDBiu}e9jԾ\Uг'BIza6" $ L^,~Èm2pS0;c<i/Iŭh{י?)>zټN@x9DCd'yH9O:7{>mi#tugW<7..)5*a Qj; fº`09ȴuenNVT1[hITC'R ).*VehKa>?oXԇ0+o2;֖~,w`դtK5{mOŶ*;~pF51n\'Xo 'MO뀬w䖝 aLIl3V}.eZ[(tTyީX5 mRZ`e]By=0jԱ Ùh!H*"(Vg(*8|*{M9Mr !2>Y$ƻLq^~XErIsϪmeJ5y"&v qeC#Yeڕ̿E 9$*z^~sӶ$cqcO۳@ƤY^Aœ !fֹGPuiΦE(^ G$Z'^?PGZ^),%kE3O{$~ T/h..)P=Ƽ)P'PeE@ݐ侨"@h|ghaPGi/ooFgt\*;+17)B5z+ l|L:3d{*8$PV/.3 9!"(^"+= smk0VvLy^b3 %<޵ 8oi 7"D2y\]@YZ0bWYY $U%^^,'yqnBMXa,/, rƦqWTjs% $d=1_a4ܛ7;mڌ5'g w/3/%j,h#[zEB[UPr9Z&QYܾ}NƕKj8Eq\WD8ވ ?D#a޷񙠗s%y*xta{ hs1 y@6;A/1)iS;"KC'F`Kɯ^ca-֏K3~CAB3fn%I)v8 cS'ajIڷV0gĨ8h$mz8 I_gr~j:K v1-ʹg%:<(+j<)澘'JO=n f[Giش!r9.NiOD7X 䙿u[+ V [2<ԭ-lkt'MQ49p0I}m;&["{:;C^)kܯudSUJȏ=͝Pd^.{*y!fEݼwEvI1"?`_T7Bgjn6aύ#,܆ ,// Pd+A郵!;jWuUDYw5|oB<uq>$qz )E?e+"|nbӽ5Rv2wnU\x>޵(PL|_<}M\84 P(, 3?h6wQ%4NS+8(z>5z^˷^|򁆩8} GYPkɍɌD!6E--y.K%>љSsbDžy$TT JUmEJna|ꛈ]3,ff5Uy轘(O7!C膞xY DimXkӡ]"49(X+moWː|^TfXRLұ?#;Gm t< = @wI_fQ~ ,ky<1|%{b_"գ>Gڄj%#醟 +dDMM Xm]M3m`]n%e'dJ$5'Wwiv?kD"&_{+VO[@ tqV 09^f/xBa'z:A²WMNHX]0RK1e4)B=:hPBLKe'̖S]f9mO$TZy<|_Rm36KgD'9#=EC[/u+be5eg{R@;#^}qT)AwrjaqK>eUGQ^bWs9i2گKV[/JNu"8ȧaʾQUpñԳ,hp i11;L_~N 5X H5%?%gdnyyDVKq;l0SJ2L$87eH nryUZAiF#FJ{1ߟAקD|g4c g7sn~f 9e]T2)V9Z>]lE0tzx)gy^!IBXpATkrV\S4ojgK*Q.1t|5ƿe&' xZ<"O3}4ayE4٣?c#ef%mKv,p]b7wȘ7Y#r %_, . 2[sNbT?F2fCbjG߿NnOnM=[t^S%<6D{^yw400dd~־]|;M KܒUեY6{4J_h]>Yifo8 RCitmim%VCpG`s4(m%WLjnU_&V[~Kt^ͮoȴށ>O1Lo NjJ0rX GjG3Sb6|[Q^EIhEcQ93*%"1 N>S*fftM*&>3[砧}a_ҥ+U UqWi9RV^D̕.ƀ Zfc8Oɼ$W=N FdF"byG:A3h胃*zvw[A0Ws`##%+1t%QQa.gi R磟yTi~fo*_F ㊧,Ř\Old)>rGܸ@[8gz#&]Zr>]3K5 /3HK$Z?1޽kKmCWj6_2dU S\L[ɍ9Eמ"܊]Z;K?R`ҷ9(2=WU8 "[E*PJSl&˳A_HmF),jh6+r&ˈbv(BL<`NMƧB*1 ZJiρ2 &KlFƸ ŔFK}PYe 9󕢠Y (}Sߩ~}M;+[su檶ʸ$j)^JߣjWʈ+Z$1q0 i ,QGX ]guyWS?FCV㒚H+>sl |닎i9fTtͦ{[lZ Y f/1R~j!xO WJSa5锫k*=`X%*zq٭>?|kWP_r{0" m '׆?^/Z|_jobf1 νْIt r-_(ݱ_S#'3^ƁۼCpv. Ap<,\6cN}Qv#)y\ T_?Q{Zrdއ!E( .'*˄h oG3Oz,3 >YlX+W3<3۔]Nf`Æ4bpEbO MK&]e"bb+`};M/"_ iWx2 ^*qJZ>a4̺Q3ȎR`f]8XbP5,gJ^T|%Z ؝AOP&9ة!ZE@I&\-jW.]C g:9N9/2~fh5qf\J&##8~6<& ➘2s7[ҧ¡q"4fHVp ^TF#g;aV4E5oDjidh&ՑzPW$l^R{3%y5y0r"YdW0tܟ?Ï&RcȦv2 rwSul&2O G" ~(#hmSӻ-[y6[+M%zRf_:o!ӆzW-S)Mu2 A!|+6{5qѿu@`ь 9HE?۪ے4haܟ"qev~xbuvk3V)Ń=NGwG3E&uze ѿ Ta9OE Y- /S y]KE[^j?#fb#}ȾF G F #~C vBo~R@El~c'3/:UfX{bwkf ̾l}Bvtм!ًn)=r|p ]2Jl .dÃ|bӨBwGol!恓Tf)'S&Q sG_v&/գbx6Q-vCt;l^n:cgz,ٰa-g:DX;'CǮK^@bbB]PO ಘa@L m ndPήGό\|OUak(\ n8OAKu;t4܇#9~zz5VM̳r=/Om`~:1r@{x4i}$|j(ݒ]jY^C:gFi8eO*~cȭՏ2`(V`Z'P [x yiT)qPΜx.4;zʓᚐRUe1BGaZ D0>1ܡĪ>(| o4ɏK؞X7Ɛs $/ֺP¹:kLwM#ՕTd!e'{rg4jE.cNîjBD¸?Ga1 6nPKIqGlu''Q]K|6\ݺ8*i-*ZLI2&i GʭŢWәp)3^Hf)m <1SbpNUҾkhfs87t j0(]⃁H5+m%;wg*+=&FFK 'd9_੢F;V(Z8aa X)ꙷt].%!˵xr9sF#"y %_Izxmk4*wD#|, 1#w傹 :bFT(eAO&)%YOCYS,:dF_βħx$=aof6 T4Ys6HdCkgU^!?<9]FJwtV C5L(n[nuUN6%Jk~~+[gqw\D)ʗyR2ם²8dzN/ae;8D/4OzWYJ3a' ];׼2 u3|í+Ώu ]eԊ-aD7^ڴQ`Tcx۵ '}5H NƸ~% hx&X3k6TuJs?%kk9jMO l8/{Gĩ!.}ȥc8AWlM.) S "6?M/3T]c4 ǀf[rHx+U A@Nu{jATMV4QSLD!j,WSwַ]յҏ7eWvi舲 ,Q~"`N]s̃@7îqu^&鴺AZ~ѭQ@n}=O%-(fj~3U5W$-I.S*qIMt]9F `#a_{5UzԳ_qYR;u ~i\(m,nh Do1+Fx7 Q/G>7b#\XZ)PSea3E&3 G>u7[nU ",K8'ðtζzn[\AV7X CFZ *$c(BS ^M&ݏu"c%gN#.q0N#yt!T`i.^Ci@WnX's8%2\\(}ETh [#E(^Sp³:Oڌ *?aOk_5gUcHquADdԴ=b+F 1Bp=Pf S`,mY<߷Zbss˄?.[}B <LcfYt@053 p$l@=n.Ao; uij ?o9OgLաQPǷlp$BKAߦnІ9 O/, wfox߮( Lv+1 1tpVV4in9Wy RMvGyLd#VGuH\ETIy_qTގpM\hZv Lgo.5>Dl39IR~tN3\n"8=m0)W$3K'5R`:I|7y`S=ugInTAhu76Ɔas}7+ aJ|z-Hh;"OtaYNX) ;^U[qt]N( WT;Wm Q^ jŵZS'[g$gxIX]$wfȞj:,S6/4j :e3Bŧ# "UAR*?Yj㘥*HCqBhgQ7m=SnL^ڂ\Jhil7w0r%Q^ɩqk$Ǥ J -0 -J#/Sw*'vQo]EY6F2oa_AƂDJ [^m)d&`"=ZM*o2)#rv9e>K#XN ٕIN8HodÕ0/3ej^I#]tӥn9?۬X,eLz"6 _Sk_rӡ"xӣ %ťE;O"X d[@VŲ@}vr&')^g mD V(h&y Xb L40XՖ{1L/r/5ۣ2u(>]̰Cb:2 ǝXUal[)&8NH_Ƈu \ߛw?}VۅiL]مA+H#M@eA_ȶהI2HO7aax#=ѩ$BqHth3׷f"ʒ(ѪcnVxAKb;°3g {.h|c<[A"Wzcb2˘9ԟ|P.f Fd86tǥS+MĒ|fD~2㛲8ԫ]#r*,@$$"bߴgK/"G i֚ܶ2/Wu0幷eZx$-ʝ4xt4&ȬMa[b*>'?#:ZjO?s"fۏlkHv"ɃE]DaUfu lo1eRic1Zd\^Ƹ&\H1A'V4Qk0w"ݩRԳ"/%7{i8|Qmu& .4~*KĻ}u鷠M+|w4طPNjL/#rok"޲q#[+ԝ:OPY2nJky~ؔKhΔA·0![Px;3x檛7/Q!Μdxi{ܘK]ZXxܛ ko{ʖ2sņ.TBF#ȱ< X<  ç>xj-O2Й*nX9wcHfݯ8"l%$|lխV sxhb _OlDf'·DCٽL׈џrOa'JzL9&Z >c ۑ~Slooq7V1F=smd8U~ 9\/%ZoI]!iޡQ1| ku~Gr=3-􀺟z ,\ (I4C r&=/?=X ۩KM ne:&n;M&m[4#pN]txX1ˢQTo&Aohn 4lcna( 43?Z[Ϡ~2GS-t2I(ſkDLjv\0Ka"ԿoS@W!~ZN]yPy^?@w'M}&;D*qO98#&1GCЂw)Lz'䋸~w'J*VcyaBKgDJ Mq(76'Oa^;}# ]im\"q3㪱sпf;K%˨QjrA.i6b"%%7/2=v֔2$_iL1儱1>>@-Oٺ! &d}rI VDZ Dsi) Jvzp\DbVHڹӀ}=a7?bz^e$PC/d'Q]f\_R5#xdu.J IVT-'{yeu}MH>ϊYIx6o~Nne}z 9$P;ČiDLL ?$ߟrlJi`urNX)K\*i݈4DZB5Zc=|X?G%bK6]];j뿶iVJ&d}7[;Ys 0Y9LچmV8]-~<֪cPFKZ,"s5wĻLeuϔ82fBc [񹪳ԨiXiSbCSY \1BTmYK67L(p Z zT@Y>Pf3{22uuG ~Zdt]\Dr@+r\`\5I਩u׍'^MoFl/%z\}w8.#q#QA;0oB>_Y^ܼ~u:[:%MӒe{*yl*AUk-~r&{1Qf@ƙVp*1yS `X+ؖfy)@ш5iI:^Aq:=E;|(hu)~>/yk'>2\Csj 1ʿ~ _ Y8x;Q/sEKc Ʇn á9@ ]$4/F_Т 'y׉Lwx1Ψ:>ey`b"G/Ā@08vGm15n`qWX^" h(P2p'dVŞl g t?ा{N$qؖME438D9<ο'Frء,`Q5@V(yoYşupub|O ba'XP/dBt/oSL8:KH{"6xQLtQ[\N 8T4[q,kUűS7=FnͳDjꊦF93:(n ZtD+UŅnǃSI?oa%R' '^ݬĦaJew(qpCY]iUQOf'1'yuF;\h-|}v& gˑ8*BO 5I?ٵWQT=8 xyŰ5hG%L;t$M5> Pc9l.J_]ΥgD]wzM Zqås6PκV1Dzb=GN5Q n1ʴ(o[}6Ǽ?'ysQ~`tQUk|}9U- t +a6 ]H13c؞ozhfh#DEF7u"ZN;rtǺ4no-> Dyǫ;(zwN7 ގ57-%7o ^mXP{dmٻGS F3A>5"[bUu\t%$t\i'*mϓuF49xeRsC~4 pi.Ͼ^qT,Yi9NS{:J+ -36& 8`pE3=狣hXP]ضki ԣG2k#>?jF~&1U:5}I5fֈJ.|D<\bC(Ҍh-^%;*mK^F\ے|rOJFTuJSLpT 2k,+xs^[*#TzV}[P%,s=>Fl XKG )>i4$Lx?(Ὶ:$k3"Y$ˆuN]=N?B_wc1F+oIA!0e;S+ZP;fg%9i߃v-$/(R)E>o6_>8 Tϋz;jS+֕C&ZIƸkї\!;CfxW7yoG WCjmVE5B3h ߕ.:=-EKT``.AB}!LWw!$5=l{q6-K},A҃5t&j9 K%CF[{ )Sm a<,h7 =qxum&Y%j)0@4ftֱ[SaR/dc$fn6H87)Yp}{wׅz5'VW'hن&opR2؅sz"d4ԭWo,%`!i o=3"%*x?J=Ũxda*XU9?mʧŶYMN{ ,A+A^xPF)JYt@<"i_᱾ń[Oj{$~E`N `$O(q{W<5Я7UQ*2^DIq6TZ5^J0Iש9~sޟ"KbhF%{byuizsMqE ŰY~}*3 ľRPxqEƒRhuLJy<-N(\@@Խ)Yf%+~ %xV=܏QNSA "Um?R`ZNXoKgߔ{y= TRX4X6hV"IG 9T/@X&"K2<+Ey*pAk dNY‹.| K` z%şL=03_WkCеK0.;C_fcJz9Ր>ӢmF- ֔]R}B<>{Q1y;Zt۠v= esW]-`S˜\i\ a=o5tbwO&xY%`T~F_'h nS|Qcje"Uw'A;1B{Jor.Zgnr{ UAgG\2cT_"-(0=3P*igW GD"0`8+ ߄ܖ#G móm^# l9G$[>^4S%NGOsg9r8ڠPШ}Hb *0 *,Zx } k2UI풜*EVpw}<[H&=8+w|}}"H i nFU#\G9PjNй}@ Xl$8iJtn1H)*Xw}%VTf Ja/da͠:l]Xbe3)F;ǔm[\(c:pmKY^(mzo%5P*M7y zm o4"8^ގ hLh&$y@PlXF8 Fbټ6/ ^j'KOk ﵟعt^VQ# F@![?V$,t:KPMҞ7 DpYPEVZQI8ybiV*SEӨzwjT nx*<󜐿D w&ehn76޳7;T7Rj~eĊ e_?7?qőP؋ Ig ʉΖT;?*!c$m M\o zŤC}m zNVݞi=rTZq?ﶔQ ^bҠ1hS #.OxEJ hǺOE`>TYdYP1MV*^|ne= _Mh9Au\P@@d&ҝg,ݎf:/U;B#t"ȷ͝Л3xe| Sԙ<楖ud3uc*ZNyI"odP ;9x0K.No^.˟*xKbMOwїx+,W՞ \w cT7jt 8~gv6sT#Fs{Ww#w KV=|&TU:c׍5ɊSS$_|M+)PCh8.}Q9ph1_[5|ZIƳZ^I{+d@D-vΖe6fpFN|~[fc2'>gHPГR ?feNp%F"ۃ 28f;TBٷFꦈ+Հ:!80zߟ= 8%oo4C~6wLQlt޵1Iq=!I\mHz+[qÏ~vv_0`uV9Ua6Z}}$'jsj/"+[,n|-7|-6@eK얷1 5w{^#gke"HvS&\S{kRMTxBZ ,Q_&uiU{Q[g߽Oʋ_ /I" Hg Opam+F:RGsSи!{;9kQ= 8AAM:wp~) 'ЍDbtEIȀzMPZB(YI[EH"F.[Kv \5E$ CD* Rv-˪֔S4YEE b'Eb.gZDf_p:H˞\d6;BS?=2Hxb MrllT'\G; ܼ B y7\ou!ސ]1#h!S{/@LlڄUmG!>(WWg, < >xvc"XgrDzͥc-tݠ*&/ļy_=`zJ1HV>WZ#캢>hm ^)u=ZZhx 6߭%:[C6<m^8VhE@ф4c[`{E\U״(B`X?%\fX|A)n!E$[J9C$&$O!.{lẄ́¨|-rDdW ^]U5"\U@ e 8,gh$FŹuc{?T:0%undTBI:CWuQR~pɖf\'NbM2@$~ ۖVNv(/l@$NVXmyQ0=-pDMl7"chko|> nN9 &ELDWɐ{RmƠYZPa׆VV -{0{O'6g wz)PJ iO%UDJjEv=<$d/p/r%%ez˲6Q|\5X(:ou7 4_OKM6*_)}n"RȫVGDp1Grp[GLlpk(K̥;"D1 X5fhG:'w0Q $a{sc׹Oռ}:́u_𭀼Ѽ^?2U&{?0-C6d`0 eЊS=4`ѡҩ{Ր,kԒcJXH ?3©}7`|Qǐ̸*FaH8az} ~[l|qd]HcLEqm~Py}DdƄO`azB*ih 3S \vjFi0hvR=tu E~gK,wd W4ʚƉ镎[7Ow vuKB ry䴂m`zL"o۵O!&m M,{^'Y/ν )nq UQg+~PEP P%}w[j-]ԈZLHsЊJO3Z\{ X1iPH~\aMY&߭]_82_Z9K}o[bI`֣\DpBhsﭨG'9 5XM j){>Ʀ3pQ;C ~1!ެ/>3gveNAzo}:[\}Q -]sCNQڏ1!+9CNdE:p1qx8m i*@I$piW`9.+x6MOҋ/}hj"6_s> fF puݓa;Rq}sg84bV .*HU1Z2'(diGQ'fQ$+ E/J1{M鐡 Sd &6DmS/fRa>nΆԎzeJFǓbmNF C٪Bf4z@\-OUNG ^ނM9 z1q>;9z[W"$m7B uF{H4NgDtm 0krPX4&MkS=z<ֺXMăaĩo_\)R1{gEd& LbhN 5!gǩ&ln^qFA;_z<:PtM볤.`0d+ ${nh,k> ʰy>&Jczr{ ly%p$웨>ɯ?;IMN:H"_xyfe}[e d'1?g!V8`jCSI gX(=yT#0wRˎ,=lF?Q7%s&fKR؁ß7ݢ}/[:+ GBP<'S!:_Do;o [,U0栁pAFK=]dB-`/WhIzvwwob og{Ua8- /̸/ЫбTFut/A(Z劌3Q7i~sݎYN1 $ -H@sʛ4t؋0A}P(4@"܃tS%Nlr.8+-s* I~x}]#Цkay7^e,?K 9zU&61z ]sh2_G C QK S"+oX)oI1SRE^;O /J'E#M\&hrn [\>*vJb) j[Fwܿ@}Mc@ v a"m}u+ ڬ8!M]=do';*<|_DQ'IC[v s.݈ȼ6_ɼ@OcchIic3*sO`5*^u;4A1R%?5>-J\Ey-3M }>:ԑ 1]Rk:G07;ޭSzIzۤ~*loFPGuR3pd'ů1 !s~~3?:c{BRLx1VZz"r2Οk1H١B8x<=^BVB$Y W%Q3:Up+t(Ma}k v_Y$|*HQQp STWZs=ωv~YQyW6e]w4l6ru+^'&C- 8Y2+'IZp{#R?i7~ok7A' k(dhdz -Dр*'4@ld\d4(aH=I}.GqO+L-x?/;ȃ R8DͶEܘL0eH_=@s v| RM) SЈ:F?P|/,A'XDO `dͶ&Tm_MZo3p KI[ cd<o[23>X.Cđb0Tn_ڏHfMr]mzU0mxĶ$>O Y& L6/nou>mUWɤ6%-+TGq:8GS_m޳<[A$UNc%]w} # A^KRN&b62k\_@ o\0RH]qӔ|Fg(dPLpDHoQtױ:E,0kD~z?'=Se4 7ku(p27:LA{Bwݡ"ce';5 -T03JƏV L):$*0n.-^sO^HLZ}DStXuq?ړ0ns/$.P`)1h /2ofdw&l؇xnj />ϧ(]HXLIΖV#oә&f.cfþLݻ >POPF>/VW2I\r%Dۺr&NXi"h!O~ t2|bv)tS 8|n9FtC+7%- K%ŏ`.;T<]0„o_ ܽN!mOۂ9 ZK2IB-Px}$Jv$u9So@hTY/ iMXEC&wZ6UJɰie9JHͱs~]m{}P.w̹\Wo'+A?X\LCSH-\C|xxΪeR;Tz3$ }-VXÕ&) gXWñ)@DY/lRV;GY `y/^sT&ZzT)wJ# Ȃ@hR<\hZ |/.2,Tg]܎C {oY`܀\X"sN#lpN*>wrM>zs3xc[dJ42suOSwM8m+E-yikݷ\8ތ)T6aaLo(ucAklrL%jK+"o f_My1-٩F,fa^ 3oA_/+hz1[g)W:)h#Uk3"|>pp[qHG=MgGۣ sL-vM<4\Aa[M|%:J̎ Jf&* IJ+ۙD 1R\L?ùl9=C&FF`#A[^-|8 '[q|E\h9@ɠG^Ep ϵN >[߈9pԉN9&6>C [lu|X'yڃi)OqK‡SmDkq2;[&x+JNylW0uXrCq g XR>^FyL1xb$OQ| Vr_ I lAz۠>\W\ʒ&!yIJXfC&B w,) n^:+Ku>3L@[dDuCb.99N؄bYw(l8~]^4(_vT,YGfh^JÒN̈l9:G:Ccמ-Is\Zus.]LzuZl/bV~3Έ*mLxgo?RV&juM;A_ZC&BaX+tr*OO(nv"^d&!89@R?_1t!z>B:'׺(`uF DRZQsp.gN%}6qG^.R ܚ^hGX'$C: iŨF3'i 8Vo2-8PQPh"RDpVȨM<Y9 T笌c98;XOB^=XօezBhᖶ/`G+Fseȏ4J{$4"p$_AE=KюKVl$ӄ[꿦땬 kKZW}|i]OyQZ,MLc3 iǹ5)'7W[Xjuu[E!kT' i23rm Y u3M7.ڸ ,"cAvl`>)&'C6B~(i*#$2':qctMg߿g:IK#(pNoAO,c!ؔ<&8f&ت gؖg687 ܜ 1F&X$+'̫ .LMSBdK"z%v/HlY3>,'ICqWH.d8I\(d?~*`YQ1psychTools/data/globalWarm.rda0000644000176200001440000001245513771223240016121 0ustar liggesusersMl\uǟIIiI,B1pI6I&[_VlK"#HZm:Kvu(R єFx|ߛ&qY~?8BUUsՑj瑹~i._pAU͟yqg+;|Kt_w?ی~g3xgpv?_Njji̷<&yv1^棟`ǐpai2p$m8NmOm\?|_>z'~?]XBWeGE+ya% n1;q g~/;/i+G.::K/(煓GwqǸ|iN:mϞaCy9ײ3uxOc|r~9d_E_'zu4? !}7;o{>~s<.8S.=G}>>GaƉ;y<7]+%=Uuuy)n[OnKO뙷F(|p瞆ݥ CcAqϷOz|N=ͷ}Ods\8x]]''7׋ ߑ؏ﯾ//KvnQKD>/亦g}e?->#+(uB/WP\m:Ǖ% - p?y<}uCo|H:ນǩ:C'd/hWu~v~!Wt]Nwpg]Mg;a4/OO/ Z}>;߉z%;i< NJo3z8>kg>QN ׈km(xk~mq6>-~Y_ v%z{M`*OJ#s=3x?k@>_(N']\]w/ݾ_ѣVxxVxwkmP^ޙ`M;ro_[]|>|ןn}۱7XUD-ϗs?s σ?}?|z&zD r}-YSӯ,iՖy gzi}~8}h~ Ό'| yل1Csj'Ou9>q=uQd/|iyqF~FΜg.7S#|lgg|Azʿ O8\r{A^K9^ M{/ us<ǵNu"g%7ُ:%ϼ>,98.ǁ7ǝ y7v<:~ʓF~Fv8+XQՍɃh^a{[?q.{ GloT_"}w,?Vz^.m7>9.{cq ߏslUѾQ^Syz)K㜥iW|KE3s&gq^gbz39e~Otϳhr>\ƹu@y`{yݯ{a[|umďrgQ|y|v}]#N{qGv/Q}Pr=qN ?./6R^eyg9<9Tq}}[|?8sϯ=罍/ߐzU]wInQO?= 猷Uw-?dw5賗5s/rqʕn޾п5\Z{<w_mwƟnﮯ=nw?>?zfl{tdwlW?+CA)_aR!}!ݤ~}H^CzHi ~_uү^mC:G_uZx9_ ?;z{C?O?@W?7\{_-ک֕h9/zݭ4/g=gۍ 7[9Wo_qȸd?ٯ=o)8q"c^n׼㚷VHa\;Ku&'g?Z~ՁPs<-b}pDzA'_gF,ķm|祺,c_0#h?ைú_iҶ|IN3go-ճ-h<,q_:vw%n-{Gk۸j{N M8hԧnEǤZ-ϊQ5J7ҫk]ȯoMGxM+GK}yTHNe\sqi~%Si~Q~EUjGyz\סvߣ/KJx5R~Dmǣsqo <>SG$4/[eO/ -ij~Q]r.Y9i:VJ#}EKK~!~+7?y'_Y_Z;\ﯭOo?m<nm>>}WAՋo_Hz{1uhIõ;z{쭌>di?4F>>4L^{)S{%kwE>SRѴf} wEۮxa,D'яq Ge_ۮ+Um06~߯Rj/(?n@|vDC\ _:9>Rvlgv'>s)[^!.s#^ /Yw%z'RzяG?R?Ї/7qG = Ա\G'y˚=Ǟ! G}}D+Q"Q!49Տ7~&.۲{Wuট|@oD??Ї~A.z^U}?cW!>E_jREҗe\]_/%sp.þ@;/J?|V8uNYOz#m@\Rv7g>r2l~ 7Q?g+׳FOP9v'#c5‹?O]O/ +]/w]a99Ŏٿ‹6G/zd9Ŀsܮiz_!nRYO>d>p~σDWR4|cΟ|oD#5׍ԟA^ +~(1{lԟ|F:؝/^Q'D{]?r/YIz,qoƑG֣?z[󨯶8 {0G nE|F-|y|,Y|o|n%}7zQw}>Ǯ؏8}4GZO14H"b{bZ7Hy8??C{kUGJcg''Ӹ =oI>>~B&yָKPȓkZO='u%‡^c{`'E݆r&Jݪ4J2x">sJo{x&Ji>G<<]{ʅh?7w6>Y>>5$ofߞvymqM;gVvi$'3}>;)I?ݿ9h<7-Yͤr}ݿ_~ָ+g*juixPY;QUMgW{DmEi}Wy]]oJ8&ߵL?/Ϊutջ$ܮC[mgR{EӶUϴ3AױY']mutCWN;R.OkIU޴rK'eV۶Ϭ[;mJC?~UiϾ{^[уo~?[~ל暀vǏo/G= +BiM_T/3D0Иi JӖoԞt^[>m5-1/{Oħd&+gIj+<.ƣ43IR;O\YsCnAN[?L'-l`KqٺG׼xįk]/եYˤqB1i/m[o7E=vscKy λ!m>4i_mUSO%]quK 4?^ a\ߌ⬈ksAwgm\Ns]^vjmpN]aޤuh<ϛ6[+_k^h*kY5^۞']o%{ьth|xY.9?mS yݹ.y? ;mgj-ͼtџzwO_~ 77GtmkCkvw?Jݿ*T{4ž&'/n RWGF{_eJ] ˣGYM5fޱû{xsEst`jNk~s7ǮVS~/m?{5ߖ&Gpkֽ(^ŸpsychTools/data/Schutz.rda0000644000176200001440000000071513605124107015304 0ustar liggesuserseR=O0u[@4* f#0  Bm0tfH iPa~P``a~,%{~ꀵj1,c cM,)\V%]fo{j?~5o3 wsCB_ITlxG=^~Yumecԋ?FTZuءX]oѿ?z^}^8z9?z/c|cG^/M8'6#3 %#VImOTdix8O' wVxSru %Ayǂ%d%OnVVx;"3`D `nq3 m^WX/S4@ EC S4B(Ecz~W:avpsychTools/data/colom.rda0000644000176200001440000000167414316141206015141 0ustar liggesusersUkWUb1"RH rZQ6 AdLFwfى*"EHi)EDHh~PEulZjK^yj~pa?>޲ύr|N~8= K/ot/l~ oo&%r%˿aBmzTm*z}oK.g|[7kWKP6[s}N7) )퓙gnp+&?[STe=D>*$ 8Se$QiQH3HlЉHg_#_^_LɹG>1'bDmg]ѩYRh@>BU>WSawQzvbD>rRPlt7zoO/+A+ǔ,\y髻)e/$,R%A{>Lٷ9vĜ\~V c>.x$2i+fTt)mЀMk>@k5M5Xz&1M멯7n8*KRߥG٧B8'g| t3|mtYi}it{S'Gd#|5xDS](<0qk >@7p .v_ kt1o:ct sS?ׇ Jem{h(;>1ft>pwct'|s!u2$},O&7б=%;坆6ڋ=yeƞVӋ n;+Ma۱bk.7(?ʍc7*=~эxsһDn'J39. ;ŽU -u"nGc\vAAlŰTv⽉k]'.K/z@ 2psychTools/data/BFI.adjectives.dictionary.rda0000644000176200001440000000242113770015246020712 0ustar liggesuserse[S6S$h;ӧev#-ir9"N ˟.Gw{5:zh4vncgׇ>}|2'jfAj{m4vYwl4~[O!B Q/D B4 (DhGOaG' G"hZ-AE"h..........>>>>>>>>>>!!!!!!!!!!111111111qEkq.?]:oӹZ=&Uuj_LߚSW0|kW{AL2giHgz\9̓5:OY_ޚͧFۢ6N43TIY`ts 匝W jbz/.L滮-y\>=Bbos5kغL._ V~UY+oW*w{WqJ';W~O>3Ljnl}& Sr\tr}3|EM|&vZM^(4y4Lpbmؽt-teKL׫Nn,9S waLkŵ%z9h]k_[s|$,-P&*W 8^:Q/[*YX;<}LJQʜ6b$susլLyC+I t^*Z޽_ڵqo=e5_K>N}]ϫݛ }7Uٲv04V&}r ,A%}Y>Kg ,\gA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgA}YgAeϛW4QyuTÙ*Ss[RpsychTools/data/big5.adjectives.keys.rda0000644000176200001440000000064413767765412017770 0ustar liggesuserseT]O@Rho>{4&>4}mA-Fj(3`:.}_b$('i2J[8I^3]uS|8} ߱ jeubGs١\s Ex`hId롡|VV}=-"rGJa4@,3(T $kP9ajIkCH4&Mԫ=:8z}פG ɷc 0z_$0fwʂ ;-m*cqUK0 $f[Q&bM1P [@XQbuNP;_HNbd7a!2Yv6R:VCU +n1ggnt:Ra\l!C]o-% rVÆ@J@|x :Z>4גdØx]8Rc]si G-w5wVbJ0klP|Nz i.7Z6*b`Z䵼}-S;T ' Bk"U^}뱉GW޿wq"xTZ dhq$FqtYZ]k8[^l;sD,HiM!Ҩ|Rcl+C6 ׄǪG-xNJkI5(9t8 bBԡ 1DQa0uRڥdP6# *P/,oN1HjLd07F")4 9F?1 KcSX2H9B+>c:Gh|@!\ 04CN66Hd!4-bmbEΊOdOШ9)F8dCDj3jj= )ȕw|蛥($.(,N@Q=\u'@BPH@VqFYb˥DB$/BTnn*{1MvcR{V`M^np9ٕws%ʣTXjS`)hE8<д'_מ6 cŴu$;UH(YQoy9WϣqZΉezW~"Rue%׹J37? "Ci) V؈1$!=p7aPFdfvC|V3sZ]%s٭ eцVB[mW};E粋 7K'KkceL` d#Тth˳D}EbQ %@d͛U)Ѫ*ķ{}poFs}g2bC$h!iTbȯ|kJ,SJ4I5=(T!|]Y)%"Ĕ88BhL_@Sm>K Z4 k>}I}Hp18Ivd*]v{1 2?SD;rF'簍٠PR 󉆶v YŪ*"[A7ţt8O ff~4*jak\7iaҐ[dߍ2vۏ4iw[i4!k96*sa;WL[feHD\ٞݭת5&ǫBbg.9,Q 5]7ތ3HA)@Q:TQ֪]X]ʋx FcഌR)" HH " " HH " H(F 4(\R+ ub'Yvu ۀ |1, p"/#{E>--w9xEjvܻ^Z_r!pp(.UZd".Ƣzerd} bR[FڲVfȖW*Ȁ O]BBS;|psychTools/data/epi.rda0000644000176200001440000010123313605124110014570 0ustar liggesusersBZh91AY&SY̿P)G2H@/'܀@a<>r>+a $Fc6Rь(jQ  UPHX6 SSfl I*S 6P Oh4Jm@ 4US#hɠhzJj2d 5*h4dba0)*T !#mk^`P<4AIO==Sѣjz46ҞAJ@H4F914L2da0M46I`&LL&` QD!D"Mߧ ٢I$ljs<89҃o̓9@ݷ@]ۧsN7P|l=XNpBb4NQjh{kdSt..$ {xPmcm'4DSl|B6\ȬQmX"#f]b>APTd /U$l@] I!#{&4AeІ14V"w/t0MAZ LE(o3MHQ"D)ֆhL` v΢[L J s`*F3:R]#BKc@ ʉ1jС$>JaVDe0٥:Q$(:ASBmeБA$X Mp02T[$!F TVRBA6($!݌DLk,#$r`nb|ӌFơlZΣ {6s&"S)N:E'A03F+3k'nxЗY_3=C7 ?q[Nb<& x̛!&>K* ocˈ nȏi'6.8^hq#]^&@u\DU)ͫTLM8{, 2C2"JH #$2'!bj%$RI@$o[Fg]!4!f&Cje2<1AMZpdzgYE@HPPG]BALopsychTools/data/income.rda0000644000176200001440000000555613605124110015300 0ustar liggesusersy<׻7;@)N- ӳvL![ Gl IJIJRr4A%n* RpW{s?w?}{<}׻^%B1%_8PQ#BM>vR^f7()P6N=7]K6Ynfɥv MlۨvQ.v,c7nw+cD=l=χ={>#gBgLټ?Q@3u !ZM˦u Pu OS:ƅ+dR=-R=/R@NLrT/O"?J?1hT?K0,Ѿ R@*~ TH*PLzE_OTD,PBʴe!+Ӿ ^_U n #>ydiOoeAj.e?19N3)T) (zPբFSf} 9my(3)6e$k倫&:x/RLSABNxcZtq]zWFWXw c2p &30|m/!wܭ8[3mxg3˲ $J+r"kH~8ڏe.~+t1Ϥ51tǯ6/4S՞rd ߡA;yfeC,q:n ze7~sRsX>w: ?O 5~4|v,6u#;XAǕq^Y{!dEC@rYmbo-d,JUC֑!^|H},= ٶ?r+\ 5Ĥ|D8p/X9}f'PyrsmH;!JH>t.G2G|OmV ҫ%?@:ʶs }un8 l3im[fVI )KRqcw&]>yC~'hMkAQ/)k v6Ĺ; 1tbZ߯al2 "lܔA gD 9߽=jD>5ԒMjƒZX~欇;==>X!'GZK!Ao ?6u.H&o<}9-tus:CԷS^ՎAy¨"b?o~_CGBMou|]S@Xu ~#ۋ֗JIv ms}# !saؑ…mF(h&B=m/C(9d#'ȉLB-INj$LBh1Î!f?bA̤>C< b-Abln 9 1^zd#I'`ĽgފH-Ia)/%i#!_GDN'6Y[ԣH:B4)\#c䤬@h9򇑘dl-G;a!y7$sIO9rj] kn'@q0j:;ϛ:j>D[wb3'KaW ؓveSp۽;[}:.5-?spsychTools/data/colom.ed0.rda0000644000176200001440000000177114403737026015616 0ustar liggesusersUkhWjJ6jQl)Ac[D֔$gg'< )"m"*} QB(ҊD>꣔ݙMRjQx?>q_V#iZBK$D.!&hud9li135m QhċhكIŽf6P??wW^yGG_sxm(ӦQ8=(\}oPxx+ oX2ϭSTc{i sOP~noc>=iiB/\0oPS6B lXrU ~~iY?(7RY X P(;^F嶯QYtz^ص(1uW(\ ~~q`pw:io$eRu$)˳QzD7_9|f EBjB(<* }"K"/zS۷7>awJ\R_''O_ÛU߲G*'ϱׅ"G>??dvQ)f?{J41E[ogߧ:Pϟy|ś\۴PI4/b9̃'AO[xƤMjj| ~" ||@RYT8p_uAOǪRw-W'g8_y@>e~SRHmx^>9?5xk;fV|.힡l6˱ĽXi~jq2PYiu[AsWw2eXJ/zNon3L?9ibӇf'o2ۍV؞9cfn<ѰV|P^nn~'٩FKo2 g--ϥ{&XaPLf@oQz Om psychTools/data/Damian.rda0000644000176200001440000000411613605124107015214 0ustar liggesusersBZh91AY&SY cz?F1 !$Q %xI1aUr 1aL M` @ iF SMTS@h@ 1aL M` @ iF 4*= d414Ad`dh2ɦM<"< 444 Fhd $("z2&'T<h&L&CCFL a4a1@hf4z's Ʋ "JeP7p[͚Bb  " Ppy[xÑBpDt@M!As kQ8Ax2qmֵWVe[[3w~}qfPCLw{qmw0 *5ku dsUyG}d])! QܴCF%i U 2 & bڍ~)@M O2jѥd`Q#""²*J$U)i(T `sH `CBU`(Ӽ7%OUE('gr B?fh!d`Z:F$hH{ 8Q Ds$kmiU[ b*LH $ $H%sp-&VY_ ^ }{|)Wx}I7X3;+ҵ0 NHeV BS H#sޣԞ < Txo( - BYM"IQX1K:&R ((r7;Si&$c0T3ΐH…4jܒ0kP<PD`Ȥ.LZG6GG& y \+`l==B1h yq`2PH,m I JZQM gӨ#3uk,ilmhij<TV+8 $ey_frb䪔RCdb IȬ6 Y,u :sT{lU1<hY g$O&!(rYA=t2%31\fОI-Z S4xlW*Iu<$'lGC؛ xWƤz`F햰8PkTZ c_9%ǫaT1xAdX@VAITDDTX88=[\R%eZPE[ZQR_%O1 łQ h 0 3Z{ 2>49Ba䪠CLbp* UDyъg9l7=½Ijn<^R "5 " "O|"aE)fA%PPDE"bEP#24D OEɔI,!XEXD HH 0XiI8z/(HfRC \&2IEULF2- ^||"m 67ZʲT$*K"DGIv1b> G%_)„30psychTools/data/msq.rda0000644000176200001440000026321013605124111014620 0ustar liggesusers7zXZi"6!X_])TW"nRʟxq5(БS֡/޵_//Q'v0[V f))_Ќ5μN?Jfp2Ӿz>SJ\m9@)f Ϡ_Ee,ۅi.&Nb;oNd6(J7~,†4D?hblU& K&zE)dM^WUPKͬi&ٳrHS<0_rk`$+@Rrr+vRxT-!Ѳ6}F5}SrGdB7B$>~=zxi'f |* Q UH؈qM/0v쵨/+L?h5/~HJOV1vf?kW|ɨI6B:BBN1QΗUQِ'^t#>kS`dJcgv%lO/Oy c/ԑQD4B5pu|{ xKسPF ߢۃҲߪ&"70x=5(68ާ#fQ^d>nylEDҦb RL$,ҥ"!e- g S7x۷`c0::NA)`8C :.`̀z\qO6=Owc05ChN@ߠϴ(]I?|DSp/h Ie&酫_TN.LƵB!% {+bbL"17lBk^_7J޲gӏq?qE ,5;tfFUxUq3"=ZQ j5R%̾S e4e/#?meGk@=A(ipnZƺi^flh`+νb|5(p⚁Lj1$H86/ FO6%mN'kzbL¼ 6[(cdVP2P(ãy. aY6(d닃#7sW @pa 0"+#4}ZfsR_0E+6ߖp _YR|t#užwJ;8MSKǙzc4Z1}p?Kv$]bC.f ݔE *~`¢Rq;]NQ9fYGrx^=Ÿ0póWYTm?4Q^fIQB*ӻ;y#yȲop-uB'gЕ?Ь#G}$ PzOѵSJTlӗ6m$ =m^ lܒhq d6?P'z{YPw6f-qߦzu2F3n hp4Tee %`n3*jUw;>2! ^+qGEXj6+ٍqmx㝅"21jyK'F) rH#҆0VG|5OtxT3G}ȁp+f^a$7;21n\FpjJ:,.ZF)(FWAQ=oFcrCz%.kwcL'$i3 m {'mit5ڝڥGx84cAH# PuU3 iNi 5!%O?mEcɻ v;X0L/cMuP(R"P%tAӲÆ^ZwInhv}Dvs܆.z7m˂X; j(ȎŸ}qύ Da!KDg"ז'*=6~O푥ʲz LRm^g,K($3'gԋ>ۧbq~}` :/0Wqiq 1^n[LDh 32M6K$ȩa*ųGFAELEZUdGݖ 4:r\If߳5W 92Nki_'%.hHZ*ry#Fyzy6-Zlt\w>e?; gsgلl*bU4WD X6кn:؆=h}G26K@5#p2PO̖➦arSkUhՎ֜}9걼+[YI`lLK'^[D;{ I`DUHH % :%+]A/d=?G@ pb$*Qtr) ğ/t/FHqDOb/7G< p} .u#l6~7@[&|jNN/T])SVt1Ly(FCB  d:aSOw `|)â.7勏8o3~cpt@`5f_rwsT}OQg|W`*_L!Q2ى0\nKq!ePu'di 3w:]e-TE!|[53f>u/k,Uմ z\EbRs~m0>D9s>wM-`K'|' IuN1|U!NdBqB@Nчx S'%ݡՍ,֜Y:=~gmՆ)R|ΕDgʛΝ'0N\⨏ڔ?|dt2".3SSK*V L}^iLv6?'3ZZb!xͷK0g/>"#|$Y Cx`n#Vw6q PF|(̳P wJ|u{L)d^0+ty_ןw@,w7v~ùvNy9ڂ XGuZ)&zȿP7mW kZo+1v~d'X4 䔼 OXgGOCuy S.<}崘RpWĭ`^?/->?^  W8i78&̊OË,iPF&*Y.i/7SP7%*!敶򽘁h:|=z0h@rw{R8Eu"Yo;߱uԆc+OaOhJgAgxt#]㟈;M>njGo_҉QbҰd#:'$✮wճD84 v!#dhϟl͐frg@l#t~ÁAHDyr!:V5ĩ [gGAz1LcNc/En[%귿*- ?K*c 43J+\B%iHTM1q;/OL!=7Tje@iPEH<Ր!NdB+@L.& "/V_Z3zƢYlpSJMcS6 ۑCJ^3$LDŽݖ1`3?4cp.ϕ?L9Szc"],~RPe$[ } $,_IؼD:RkGm_ [e&B/n<_|=mm"eY>r"^2 ӻE70IFu%P* 0w__5<-dRzXҐ) |tSwL=0A1YJ"zm4}nE B!  &b`_;yÀɗwt2N7Y+wrx8AХǧ\)Ƥ&k'BTq7;f.!.v.?\&gק@؛R_ʘ=+,_]btz'Hd*A݋i[w& U}d1TxϠҍ 9KO{TJ3J,9j2^Z`Tá^hLIm qO![+!'d+Vc)O5Ĩ_!)605RvK~#JCjNA ]SpfWպOCVW%CӖ-xJp@_@cϢ Gok!콇NpFUwD:a oaZYg9B>Õ0/WI.g^4q:ڀ~ڥs#꺆>mV+'aɵv 1~j&!,mQ֜(p%PϠJu-۰3Zb☸-,9R^\RL1zV*_{(y*\ΆpUG&F -+ȪlGՎ|~ 5OG%\G Iï *! x-B!?P]8иv+9lZaYW͵"ySպ^h0+7?>!WM$m*X̞^ Y(-[ņol\ib93t,No\ٺ瘮e+j+m!L[ݺ4=O!Zg*џX0@>p[נ\01j2ž׹QPQع우_c!3JNFhXD~gv grB j}ʐ.G9YT:I&Z1^F D`ʐd*W]{4 > <53h6B^wru9]J5;}~!iOKͳq=ylq.r%A9+Sܛ} >@efDL.ѝ$s|Ӟ^sWYxF^{^ƪ(AQo4G3jN7fˬ_Cό߿cgq? "ѱ}Y7&H3 Q F`H5FdȸJh˯ õqK$oݡgjW_IiS+*v3<oU4?,`1G!zSMYFzЧGNDa,;UC4}|ve;-n"\|d^촋0F\Ũ2uap%׸"`H1qM4T=eja_gGjتc= ҒPy#!* h}K:ѿhd8:!Z!5aa6-8G4(B5͞Ư4_fr欐O CS&Y:E38yAeܰU0~t X%Rhܖ*<1;< ! 3?j-q>Hh/^!dL-elȨ;"up.qPo Ŏt}Ѽ pAQ Y@d}6cL9/u Hb]TLf x~";F#YDMԁKU ?0HR# D(hF|n!BeF0Kq+ZUoCgy(AAhN?+\@Q8E-$we[-e=ܙƮtʽ$=lTr],p[G(Yv8@~`I)tE;a:c#6e 2@=lKp/) Jl2n~;1f1'ۭ,KwHO '[j>YTQv_>OSo( BGx1XоHu4WvEFgZ!-btFðb5KiS+0hF_=Ny`kG :FT]4 S̪S@sŲB$ ?Fh2Sh 7Xy?9E"k>SnEfyX7;Nj(s,Hzۈ7an:omFr4i6jqCC+1?}x3?{p: юVh5J VxG]$(fķ6@yn7,('?Ȼ(jClbi3 f*iڠ[ǂgQL9Ta&GO T]c*hKWRzU(?jٰ!W_Ì8^BB&[E:9q ].ܗJI'˜KHŭog(>RŠc?;|+|Bnn%ٿw#;Y6p IO .@T`x^)+ O a8.eK29Bf"W\zS ݨ I6roqVŊ i$4%'lIFׁzR͝Iܭ^ZC AR 6ty+^!$RF@)-kzM`SD>cwYS^,wrb͟8ĽK}TKFL}X˽2~ Maدg})uw;^qWjy>A<| .UƗPUfFLfۿC 1= xT<"7RW@' '&"A 3^lJHH Kiv1gS;p*KzH+JCWxE|6Et ~ O8@iYIƲ{_+ /AEsARsۼSgj5m[S̼FȨ؇Oȿۥt@ko1'2{P!ދ#,Pqlε﹚I RVfe*!Ri,p# "}}l쭇y-2z˖i8v 5#|OGe ?/vu2aC95*'@ ?cqaY /ލ͆ư?+3P߾[!3Dފӟ @sSwj1dIIK^T18zx:o=0C ߅^А*Q,* "̃Y nU9" L/1)aھ~hSQzr yuh.e;˒LZ8B0[Z*&]@$ j z65%Y"cbꑯZU1%u8i4YIHڟk@}F*JᔘMRq ௧UHeml gUè Ǩ­ATpl?8x!o4:#$b,$ wLcd2K†TӁvr,ZЕ%|UYA7#c5QazSDsv+]8XJtɶJ8 ے+9zBM*Y|%ފ?c;¥vUi!^xzX:hZC#XO9NG7FjTa^'ajQX#*pD9$.1]33i!o9::'amLPm#"bm /LCNV?`+}i]9bF!fE z7ɹo ]fJnaq,!>cAq2'uig܀v=2idp%vTSr :owQk>gc/>^Vs2{Pf|_hxo@yD;O2'8ڏ@[Tߘ$=Smf(̮XR$ ,l`1Šp?A[ ;xwmF^eGll|eFI!EER dC0v{h%g#hm{,Ωغg齦"r/3l9ґNVO_В0So9inrÿ>,bh&*Ђi-J%ҁ .nܨDSy;Xorsuf::TGܴ)uyCaC~,OΤfJ^)![[sk]t4:e1.i4WRPx_%qBfwM]dȘݳo| o H/νl{RnZ]v, e}(L ?Y0MJӶbv&C8uCb2Y?xKwLf`jbE'[ΙN?g:{goz^&aPkd$F}(/xf3I,_rC]*,g!ZynɏԒUJix]*JӒ+ ^AYZ0Lߜ䥬:#c4 sO fdE_zW+)b|Ub.`Jf \v}l*ϻ>߃7VxU|{{+"in|z -?%>(r"}w?A}dB?+M I|A8xt+b*M]cKw~~Xq LI1YmON`I`| YĆ͜=xƖE8SH`N|vy}Ӈ3)dn!8傍53}ElG:6jNKQ?dfZq޹|׋s7)hulIX$98K,/jy9w)uǯN=n!;U``"9gAָEwBHOv/nKODFٳOzb%ݲHj]ƀX~~qG>hmFNuR]%I3, S+[$Kn&bh7׫s0xtƷ![r\B([P!r/~$pff)}aPD4)v9m C,lr&Rd @JM3q7}5{TDVvMon1 #E%Z+cT0DjE>cϩrsf.^MڷoWy0Jo,9X,nvRsG0hq L:35bsVD 0Vʹ W-JDj l\e)@-H|8ZgS9$A1,竧lFxn7CN5*DSIG!>';- d'!Hϰ5\qua]ӈ)~:MܽU{HvPa/R䢔OL?Rҩ窽WW pq+^g E.Su~ 5] @kt"|8$ Hų5.1b-,V肱ZJ fJ''D'Dg0O ZsdxD~Q4ҹ+EYSW{X '3Sj0jܤywj=- IW@[K.vMq]_d[S٭Gړޗ񳈹7YI᝸t.q g fF ݜkٶtw! PE$'rSD羬RxY<}&`usSXqyג"~#d.ZQa>T׮A{;ܑXȂsQ+ŵj?r_eʉDF$LY#KKFyۑù8ad,S\[`407/),!| i{+ྋR$ǧb()R~T#plqiX 4рrZ`P9k~ɊaEmp=;+K-i< *p$EBA$IZ )dL jH3!ݿXk!bo@V[#Y(9bP#~*o!͈"DT@we&·F*qE>'[Tbttߥ]KȄR : (b'(2z'n>Z\ φ u*>ʏrT,x5ɅAT)fcDӄ*ڷvEtEhHùDŽ,Nӕ{V￝'Jߎס\8-B:"/rUJ]Zw*\"-?%/R4OuL+S^,^=*e{rn/y6?5;GO7 >U3aDv2Z{qXd&W쑍6ZpsvyG PD$o_|XN[95&at7#DL B$h1a+vXkI78M9Poj@sOK {lՈaG_VGh4vd骉qF%&Եu)D62~kSdN-ܘpGA;#|=T$B4ї!3H ol4D1d!zF1펍>75E$LHXY4;ȭȘUHcUt4V\bBۻ$ngAX̅!5g+2jG `=h5ʚƒ\Ӓ' Y>lQK+-i~7ȫDO4oo\ Ǧr%DtRX+oΚz"հai tkOP+ת` U@{G[?gCjbؼ#jydazr*?k%@kKPXef_5W2#a~[ae~Hh_RסבWdEX0acrPAFZ)Ҕ Q/#ׄ,וTY }r&adX @\ cְNa&4@\;dZ"e/ [-2Ƹ5[a[`VVE F !CƑ{$牼ᱺ!8ԉK\5iHѱ 𼣾"$7#y4|{uYXLs~_K9߄#{=/3T_ QؓDp NGvas/c Jԕ1)Y hcH< ih׵AM 1H)II-,9U[XgSs;ZSF2ˎ"TWvꕱese>/iב^ҏ7rkrHty= 2 @͑L<Pj*c0_X`K-P{1tbS{C;ߩ@}Φ_ SvBs^X}}%Ey,Bc[.*#-a tb]=3ܒa W橸[m;@PS귎*7 ,h.tJOLՉb3̢y_] Ҁ P(Tcc˦6羅7Ꞧ1!t($~Mė)5e' !#~߬v]CG&s#52awCk3 k.2x ͑ 8tET`??u5{Qr&(UQl!foZ5c9JMo+=PuD.Hփ V<a٠S4(5L9K:j,-Omݺ0{xbwXˍ9'3\m_/F+z\NhZ p#8 ?1{{qf#meoNh[:0^):ޗL8㴴~.lĶZ>ar#WjSO;랁%-z|>'o98.~eKl9E~Md㤘:U5.()#Fjdaf@ϴ0ڂ[h>Q>k^olָ}+[/@ k,͋0*Մyl$8NE Dy)14wuW`1Yc}nh7sG~cQ(Xt9T 8Iָ`|;##K-@%#: {եɺqJ2^K> 8n rZ-KB;iɖGMR<,Ԯ[r4E"4MTPx=Z.eCYw;Ok4+fRS4=*#Y[å<= \/Ӑ41YyW~acshws›kxSo3VrJH8#V|(}ոH7n+ޞts68ٛ{OPTh] ldXօvk~s-8Pus^闾iY䳫BPP7]NgK]mw+륐U͋JZN80_ZkS ׅkcF }\ٮq $ZKu-Y"%=!Ѓ/ѫ(q!njqAOK+ӇqjV&),Xͮ!!B|qD$$+\ۮ|O {o읲 jo77oAAvSpf:n𚯁I6DtZTUioޘ <_kKCfj(B # e?tqXؘ#]3lmf/V' Ι4I '5ϬR8\կ99_7d>~  47 dJN!^b0ɆQ̧q8(ARM*HaD# 6!ў jӭkj]TmA48tս8# QNx O pVͱ+nnZ]b.<'  H#HmDJ( ;]1H!=jpsj^G딖IwũT>3jJI JXC$gS4-W ܎}6m .UYD~dŭ [4 3uadQɠoBl>aUa0SNClj0gD 7 Iڝ3;xBd q9F}hTs쭏?wHMѯ=Oqc+drO-ZKv:m/3dAM<` J P2s+Z"'X؈Ng`ދ '*W6Ki:3()͓{U\ np!#g97 '+YjOMۤҰ8\h0I.7ƻ:+o[*$QKʋ:~,ڥMLvc@#V;z S,4̶#|FҨo'i,.f\lK΢o!XQ{iT=W1M,yMhJe !{N'>gjmΥcUĻF kjI Υ#hx|3ܺF-IQZ.ծEq C=W8P(m}˕a5Z5@۴^4I (2z0ԋR1 `]t!D6i -2_KG/o;3bO9H>YE1V)3'ݺ=ViS@,F:ZOqcQ igֳVY |"z3 HڍAϢzW+X1P ,eMRGAn][DM l/ϧGf>=^|.@~dHKݡjPME&Mǻ)4-*hr7]OjQRQG/>i1 PS!jx.Ƀ1 >Q7/;Y@@C7f:bH##Uedf q7{< I(ay G%r9蚧 2аʫ|ԑH:BkCyDrvNCAy+XHRחk](ڍgև?_Y:|&S"eF+dyrAĄ[ W {ƬmIFm-;Ԉe,j8qM=[LacİHR/4gYxKӟ.%t~/ǪPUXq8Zza./ͧg嚮 93W%k8cp1&w ׿R/o@Y;!S_Z*yE5DŠWeB.`c<ۖN502(ܼf7E?<V$,Otq?[EY`3PH"H^$eX/86zXB{#^IB `awR֑c $Ѝom yBWw_8XCg@:ٵ~ 93Y+?ɽ^d=+_VJ~fUMNqab3׋3~6`xfQ'/e4'LJبib a?8cQեp f1E%dkS@AkPid6l Q })E☰gaD#Ƀ%-k{de`1y%r9{X${AgAI'=;߀-c܎=uOM^m;x}ս[9O[gj~N.!g|̓@?'u]a: cV*B<T{+S|^ZxuA0Gkv)651fG krH |,8. Kv8Sbe  1i,ۅ!bԫ:ԇw8_s'􌧂D |tq// &Gm6):Y)XY=snL%I@Ea %mI,k'ARS^\CTdJl6%guLD,?<5\ g˧3}h-1f1Ѷe93gZVO4q./?/({`\ zm ;g0ƾ;ƺ[ntfC( "H<= (u|iDQ/{t{ro/!Cb#1{ёjto9s'S0 4olZu2m\bYmHPaʡ_wA.m!넓3[G_(NG-Q̊%%I_Dիhߥ>I0gh1unEeS> ¢1G7WKپ3hyg9koG{-a*7 ִ 6.";l| r~[+d{>냼L\=3,)'DIƃgt4HVTВπ%&؀u2Htu@I !򿎁$I|s2J}+*Eh n f#& pAfLsYjoc9D1Ll-ϲXn'Xm ס\zvY"Hz.P1jB=6+(WDzF_Puyj"qzdS mщ+&a.!4gT?'>TG߄esxfiMQ{PvLݙ:F;۫ydYH2h$<-BzN#6Y3YU_l{Gh<}TX㓅% %M~,D"{`o#"!(XNd=:ij4*>F\Xii}F }џY2`]tmFP R[8'F޸H gwuӆGii Lf9j&e} :{='Wސ29 `Kq_Ԡ牜*8G!g)|,0:Ax :ݲ1':ltb qOGC_vuea0(TO4bP"e0B{|E7g%vT]6ԈaR:DO5eYFD%E7|gERkUedU_[Qi.hj},e ȱsQxtFt<Ccl(֞#TP~r6&;]7X]<QβuŒWdXtϟTha|%zq<Rm4QO3~:fq.[a1p}k@G*~dqa+/1pWq$?Y_iF+B$Â$HHr39ѯ-\t/~O" 8`]J'm{>砶9IiICace?&&E`;ԏų+Izv}^a♉7 ]9c-0#;fJa)ヲu}h^+ Nɟ@n$)IuŖ5g^Z]>J<RƧU^I-Nah,ыh~qcΣ9qN?g!J?oa#?J.A>R6o^3J۠2udX0 cm`Vå-%aKhD uZCW/v @ ܞ0)AvoXIQ f\XN!_艾'St;ݞH]N`z", 1il#7%GėH-:S%Z-rQ;ZVs 8\>N HE'D(kD6x|!NBzUZB6< U& XpJs,7+XE?v@=:#33c )@FZE20(gcqjBaSFί_q3=[t {}&BVw+4q#qsDW\(%wu,$q5%,wc?߲7ڣJot x s*2@+?e]Vl8-v'zA ~_RLh3L0AOfNq렋5z$έMMP.EwџpmE08<&N`Е>>a򶂝"g8Fe)pxWV#qK~pg ZDD [guhezXh@w:y4`2Fj~8:R·*ˎy$P{dYt+iVnx_bbfOueNC :wql3n)g1F'%`Lctaf> ~qEǃas7VjnKզuV^z_ёD?Rk{װGhJ4,4=%3G?sHkڽ"H T57m U{8^x_Hc!Iݛr4Fz:B2+ Ya#koAkd{gĕр* TvFN#KO6t3.Us{ZwA )/I(܍jq;H~l{ 36 fTqLh!EZlX(507qЈ/:9?tI:yd` |l7]W~K܎jGJSg=`6\Wdy噘K}intB%j/wHÆr ~twl)f+uP׌_w:bԎE\ГJnGǷ$($' /Ǝ>v%϶k{:l(w"zgW7PN,@1sJ%]d7]AδfM6"WrW8=,T6(qkߕ<|>Y/5uj^ff@=y`Nשٙ2[JƺU1fu wQH2.꣐%f6T \$]n=:p|eU?UOV }X1tpEQRUƒ{c@+?{|@b5%&6 Dž|`1w-u~~\YE"=jޭVx19b}_k\~F"Bx1x;2_Š15e J~pInJY+޷!=us:y%\vV_2!ryO79BI93zNWʞc?3,/ '.zW$fA1t r~ͦy (C11 J'MLZoD m:n''tc&aefr*97U6^p4XJ<< '4ѽQi41MY{>zFY3^5if40*g2SDVV Z$uTwp8 (6]Z&L.I(؈_KIu&S~*ql+/K6VvK¤ނ5%6{en2eCK:݌j|`]99pdQ.Bd1ph/B)ؽ]OC/ ![m6UegM[J6R/*GEj{E\Tѓ^ M}ɷu<ȍH>;,9:bv>[R hZ{j"Xҿˍ{E<)^s#ZJ+{?ݹs{#6`͗O#=#_j9ѩ {e8®pV,}`yM)]5f:qr1 YzJDBTw,z f=.|_l;4}fJVPd, îe< 3,KH "Qλ q#>n^ϕjue޼.nv/2,/!]@Qs;,iHpld~EX OIaZ ֡5&1 p&k$g߶zeuxX<;}sL񜓜_eiHnQa$+IqV˂͝V0 >8d+)V!RN+.5ҙ}Zc{| W u+EHQ{)C,rW^{& -uh\ HxK%zQ}Hnb;& ;V8XZӼd:O8OlVzh R*m 7SH-2X/ 7Odx(e%tHYWDы  8*1([쑢]"lљ')He u`UoqG|@\oBSY)k7T,6{+a3l>O|oJ/k y-_4= c>eΑމL:]o ^6%^Mxב*2X[f]Ew)4,s*Y7cx2<j)Tnjf rU%'1PbG-Oߝw.<P53\ Ŀ82c~Z5|51aa Y~.Z*څXUI WaG9b W^8 *_86 )tG쟄C3DY.4x)-Lg&oo}"_oxDtۗ[b+ Lu4꿈s0J?vuc0N.f@ A! M[1ā]R{O^=kj ioY1aqK.9,'h -uHr둾y撜ږ B?&1>/Z4:gCDbxhz-U 7g ؅1]Cp nH(Y{DR9xu4i)6@\>Y>:'PU;A'dmw5q9WocDT0UD1LyN0NzQTfa h˦KKnclIo} T4;g3F @;[cMs=IP\ @l)XBx]bePIa%I261dK'ۂ ~Yb0SC*dX M8[; }LkLP $sd n[:Q {P.BTL6%4VkԧgEau 21>.D?7$ۘ{k .g7FH^0uÈXl  Fny<$6²Y~2+2(*"r7$$] ECWƱ3A-t΁xw*IpwDžY.c|BkE1"UV؀Zj7UTK}Ftp@^Р8A[syXJ6N<_p,U*FjQLI(O/0!1J ;͸.v yavPI[хnHosoG3Y0R(ʞZ eulRoY t$7ؤIꈼfMyrI36e T]eu@˿{:NڶBHik*H*; жv6=k1ۼL+V806I.}t9Nᕫi8C<7zUC- T_#,>vMŒ@qI絼 }ts!y.P\^8Lؕgs7c̈́U3A\o3ly.E[,^NNObV-a#r)NXL% =.95 V.)HVRfݱ|= >v9=ǮAz6ɘw%]u-RވY!iη6tb{|sKC U#ggD(}\Y؂hVR&+S'7i`Tbd `ȇdYL!b0^ZqWFa6ixs{֡IP84iCY3jW'jvsXn~kVLqob62 ? ]d,nHY Nsfa3l"s ٺЛUyrYW㪁5d$B.P:+yb 씆LK|`WmFIm`w姶kUjVOqOư@MXC[Wtz\6<<vcF_$rV<$s$# { *"*ߔ3&"=VLu{LW]㖴pfWЩ10ybGRN@YثӲz OѓV.RlɏLrWT7e|',D|&ȵ\Sݰ;xSz4mN (.NzŻlu|a#jܓ/Kgg$j}teш.!B =%=WeN5@U㌔]dpD|} 6k'6 D;N H#Y"Xπٚ\Fİfwm::0 C,V8]/VaFjtjks9f;"'PN_~/H̹1ʭvu!=:'D!T||B>uXiTtq@F7*(^ކ++{ꡫc3 *4dFuu2mٍ0 77m*B:;̑?֚.Iczc"Gp@cgLqSab!CY{+RTg YI˰dAE ؖMÕ!CzQ|c0a g't6 rqQN1 =;#RZ |Sb=z`F2(жHF'lTL70Ώ ĬlV_xMv.e/~ֿDrC9U坧<3xsn}Lg0z :G,s dk> _:^J=9tbhd$A `xr V(Oi]@< ;g"u0^Ӻ0p1v\^${[*n{@2@cP5$pn`P%W%I| (u&ܡb=N)!.iabQ%jIݣ<|s5p[9ѤgQvR 5gQі|PC*V$&k;SfcB _'W|xzU G*_g.7f^Brm"r]@0ZJeqp^˃Rz >km7dM8?no4h ! ҕ; [⽕lII﮷߬SKlY9"`$gĊڐ~Rc6QPz˛z|Z&>dW%xwҳ&TTmv"dgі6 }"FlAF,A1p#Ĕu2Eɧ|fΫ6/PW2rL L>Jih[[OyYH-U%PycۇuF,)rpq|U S2~nUba39xXGMAlXRsTUVGf\Z)^ , ]Mczx#XΫӈ{;E-WlPQkFOW&4u08% 3e(a Ɓiv㫽Hj|a ~Qc0!zR][؛(‘<Ⓡ~Bol2],4^Z*W=g$NU0UZBN IE)[gE:8GݕAeu {}S.]ԁoѱ ? ٽCO try뉳)p:e3[U^Z|Ԟ^z*evTj54B(Kp{3{'޼X 3c$SPxX&Ecӓ!,IfڄȾ_c.0E9yMrfҔz]8v㍼vgtD]K3Fdewgϛ]&rE<8[>C4;%ۑʞi`pO{N2lu^]0m"1j&q f_7=]9T4u!a+&ˮ}$ky`MnΧApt\NJhT` .q෧)NT3CQVmɪ1͛ŵqhK|;8R3"[(kcp-5pu&b){Wʶ맂Nyͥ7_+eYaWw2Fsblu{#ե,)$0"c»$"j8O8wV]kqŎ,qBKm;4@[4## yj6y'%;\qy~'Z 9#>jJu|s:fw0{w2bUsdq'{A7ZSW?ß[ 1@Z wykS\6 :F-EQCu?s.6aQ[|!f)Npǽ<]3٥KJ>n~K鶒y]v>@CjS،Y-4oD{@fGާPg jVb_&C"q{߼=fsv`$ymzl@m+k+p [|ꭉ2܉pu2aTؠ5h\H_ffbTƠ)w-WPK;!ͭl8c ]Τ aZ(Iҗ2LNN eb|0\A80JtͿUwk5?$%#cmPfv@f/TP񛦏"sD GQlWDX/Rdy$;_mOżq\2C#:e<ǁ qRX^,u1ue%ȃFBwҡ3Io-܂^Ƴ5=P|<(x~VL=N:+54+5O z Se$`hάoS~dؙw"K*4qy=0#6k=ұMy7 fo(% #Q7]hSji+ 2}ܭ<e Rp(AJn#t.Q,Q2ɘW.闓t \$%(iʤXz&kIt!B7v6|rg/p"& W#!SsěpQ 6#%+/(*i`|j+Ձ |r! 3b>"s׏&0JZP/Ag;/ޟbp6*%H?ZYiEyCzz5d4!u)䁂"%3[5?mi}`(U.~Brd%4rŀqUDl^m7a3,tmaO4j 1rv|,х$4hBBvu~Sjv@zRM׾ftW[J/PaMg=ǀPLD28;ё~7g6q@k"LOyHt(S2} 8Ɗ25zRz<״a.t&gLebJwB;<I;)9KCʪ4JW&@u:y`ɽ6Q ̑GZkEt XQOxCi!ڱؚ=MZdF1xn._73 gY, <}n* $l#ZF{ mF$q~~1^OzuM"VRS 6H7ua-awP `M W|4yKb"ǭ_҅޷@3}l]cղSk-c@+itB)ítΛN`U|_ܚ`3Z% :Wʙ3yTr41aU21x^㶊0]N7^8yE5|-,"g[g hMsY`t\6Bޗ_v` %tz|b{M(g5rt4ƌ(rX|'Rv"ۋ9y3h:yҕ'&r@G}K3Avov(N =*SK3ld z?SxuEm²!bZ*ͬ$1BfⴑfKA[D`m8陏e8n&ɭ&#OU63=^+%^b:lU NegF (%I)/XIcp\%uDg)QWV6A=uk+o*z]Y.XRΡ܇?Aƫ XovHp$hn^}~ 9 LpT,@F 'KxS}Z ,A۷ގ ge-n 5.iT)Q7'e**ZZcѶS e҈&E CyՓh16畏IT?na% (i4r7{wѺwL?Yu:„/s.p4?,H{`AotY.mƂ Hkjew~6YhFw{|C p6XDŽ8t2ޑ5  +ZĺHGX ЛC!m9 [h>@K<XgHҺ5a}/mL1 TvhC F)ߞx_bGeD{1eG4=8~o _GӰ&G )d f($SCL7@7ѦJ^,Ѵ_U{h~׭L.f˪w1LwD_)8 ֎7cLf1) 8_(Ձ W^)a"EjIUn dǑ>4˞Dk|N׬nTbp': rB5"S:p(2^vTwi{< s*@rƜiG6.>p?6>QQܫ*Z)bԹF$0[0d I Sɓl/RZkk;P9|9v0p'H&+?`q3( Qnb)I E5>|BsCv"̦l<`? 3Mert|p^hi1 5Qϻ^ȌWeOFWA^7flnf ̈8 vJyǗ=~4}g5F̀]?sWPYD6?8X.SqݍWS2g0+ Bpn3D.Io-7^B|eb'7UjɔT0d"TItqt.WyfH?_H@tds򡯺FI>,4˿]eyC( {uXIN6 כF.?LB0ɯp9~wHD]#nl%6S<>mվH&2Vv&̍Ѹw鉏BhR/$¨M a^ 5nb܌r5tov袠9,䦭:fDŽo.0lm*\8 o4l=ڵ^veW^դ,Ɛ`V gtx'Hww:ï6PmRQxHƜ"3sl*:}+92pWvB Lf׈dK|[⡩xWe&9 j*ee JY^&CA$g.luX:]S䍀7i,bJ|y2A"QUIl'\;s L1Y6߻0ipOYtUNc2@e MG 66mGlLVR2ְ6'kFljJ[n}bP,{7C5֮8E *?^,'~C~Am8.::+?S]5VR)cW~*{+K/Ƚ\hCKl茅8\pT)fWOoF_K{Vi() (ж$^>0"1e=}[5z%l胅j !k3k(3VA$l1n.&bk3'˪iD[N\򟹽EjTH J:l!s4W>t0 vSjEOU' uogus_{(څLd8ѨR)cmt$ oIYx8Cz0{Y4ED91mj ]YB&3 K٫!@3 cKTKu0u|nMs"9;ҳ-dRyb3]yA{M!> tJS?\=J6pFP\ #H}X챥(l^}drKpM QIF{uƥH qN<>ў&r71='Y<#Ԫ)=to٣ĜI`Նa-$oa/;9'jL*nސ[}6MA`I{I;W94wzS( +fŘق;x\I{ʭep/ d:prB;SyW_Yʯr"gm6yL@8jh}vm GIlޠgl"r1IIvX3xuYCѝEȝ>QÀ3d Z|:j4zoķv :ɴg!Q^L1I̾E[7J\ ,WL elr&Ut­:qرEw怫x,̌FfoN C譯qH\rpھ h zSpl6f UϩJ~^KlF\kY./e"u2g^8AuX$w}f $M=h+U]U3,\ S=6[;[u~{8XUMg깳%9P\M7}uN ]D\ފr/f 8gg/`S')j8\ʪKPd U>1 wq%hM,^)V%. Hf< vWt*rzN`i[I>#ߜ"J X -ő]f=4R /./l]R rrrҋ~gm_ YF}̴;Ďex893[}/%m@L1Ѿ l~΄4?_ɚETRoK>z5kGNncHM%5M សS</f(H̕&LNA)mui@4j*9"upwgzTjj( -Y^ K38qBNKB\iཀྵU0fVM{*׳ӌ-r [c/7d+DһY+X1Edl͘;Oev:^yV9g nLtϊQk .YhcߡO -Mc}Eh~̊+ F({!w^w&1ǽOpfJ{/j*V|}y3Ifg ;{ $F iPR}&nBwveX Bÿwu_y^d1"А"8\\jwZP!6H)8cdr][^Mv乡vR]aIJ%-\O;pRxANMs߁%6A7})ᒖ~a V7(ݼK-Kc2Xkt n!i:\HnAS 80fx@v,%" Qu)9ǀF0JݾC0~2l5eKL4ϭ;ch(vM7o\e?/~Ӈ;˕ [ KA_6<Ƭ\Fh̞6F2Q OSD$i#8H0 +DCt1($~N򣑰)~c=Mg9 pAWmzUϩ&])VQD颷&f 6\)Pɱw} ܓ<*Pei&1yLS%bHU I+- εr:-)U0)lhGl5,Nm{UjFK ,l.;8aiT/MrGhHNJϋ}!Uz}Pjir}OI0[Lcc7sf[dOiIK 8~WB$27*)+G3̿F\ uD@di[[Jwڡےb ^lhW8[ 3R(__[.ddr8H cUhIi 5c@h)4X3mB!־zt*)8J3|XBC׫ xZw1'CAxî6*l7k ϯOUs/PG9e&_dMe:s"ϲ3Q!?U?ß*%Ub7 eM|ANiy9}O =PU|Z.J_ ʉ(r[7^v+5nUky'}NgCH` 7+L t7X_ue?~t竿3{ :#T ZI΄,NzƆ޶ jUP>;CN7; 0}e W%I9ms,Xt%w?@M/ -R_EOb`ʛ_S搽efQ<^Pu@2*g : Eѿ8}1 smD |u&joJ̺GC?.eQ?Y]nfl7D%?(ˣc"塠lW성]gt&B[^ZG eI[#y#E$!VZM^oC"$]ݼ-üS$L} :X2G.g{!,U7yPu? ;j.9W&'`F 5oBӘnƾ~q|7s*8 I#b5r$1L ﭤߋ#@Q9!zoHW1NL eV@66n0GOi0YMYZ"rS. 0IC}mQneH^-}ԵRNſ/!&<u&QdQ]<QcuH 2gAr\0c{b|̠ꯚC@AE}e JI"TAoP, 'tAX*tgs j6k2[2xiLdwFc8 H&*`ݥ=V\FMD OGbH&Z2~99NӪl㥉j+0^gՔ'ta,`=Qbg j%N AP,pt/C\=֏ɔ:Kr>q3&s CVrƜG]ƨz3yTnś?g'| pŨg=a`fb@eS o$wwE^U>V6y aVһ> %?DsܸF3ED,S>&1K%vIhG/H5b@ETט"m)1QG-Wm`G]ū:W - fxD8`tw@n/Iqdh9t) YŒ?O[(I_heg,!g!>Rp27t 죊pE\-,R}oװ g*C?ݔ1l mޠy餀P &XktgXbuUrVε1t|nې}= jewPs0EY=?.с/ 146s=Qceu9TpfKD*$/ SvM7M߳Bq/jCLkogB BťaYmUȭ>vٮdepRPGT6ߕV;_*y >@OX]bN1%z5(vyL$G_f$0x;\,~mSOR?-)X\Wc6Y Ǻ޾d>@}? 蹪 z;~VZFf=ugFKGF8}XPADɽR~fJ A)^n^ZP_M(v]mi?1w`^/aZ}F8ں֭"!r4/t{\y(PsmJK)FMǐ~;PSƙھv dhÙ꠰"(ZRo%6Ϩchz#[,?1+ Ro|B87[sRj j1&^lhy4zbUg?S^녣T5Ȕ⻕!6šMŕ:\WqhAsV1U'Oĉ]ECl}9Ͳf|wnL-F,fsQU6))QkXBY Q].&, @i^۰nZ#Iˋ>_[ E{=Rhk#PV"NJڒֲ ߭>MlôoʎE 0+D)20jߚ'/J{(\_6~Nb1q}m$4ѧmI7!Ho#/ 68 0٪hx nKS|Hy<p`5Α1铬-= e"HcHܿDSh^0~VPxqۊ=uo];gc/(d{} ɴ෻1\%Ĺ;VefdQG;S횺TRdf[btY|:>ʯ!,PL'[_[< ,mCs4%7k AȆ&8~`JVX>eОCz2AcMal`;\ܜk"{hũcM8ukHb]8u]~56NhD %˓p@B7DdNK9?Gp%8aˤC M%e `AW"$H&6yR $Gyxy'#Mu2BX8A .$yW <*6{h +&@ƌmDx?gOa? ?jjm ;R+ۆDOS%{xٞu7XxI4Ԓ?F$C*ڰFj{:I$Eߠԡ(8,gXFP"'8խpAz9l@ys4_eu)wΆ2債ÆBȭ :jD:א"6Uk@rH~ꦮN l7X h:H|m$G+gS`w!&*`T01/&yF|UXZ]߆y^s n_|K*EsCFZk`t1rC@?f8.s'`y} xڇ<zPvHZ1"Js͢ >Y2>6~C:tS1i\>nEqy^HJ++0r~ hdt40}0D7K}b!\ܵw[oUY4}J>ߍt*MGW)N sUܓ$ 2M6Rݑ!k;stɔf9o yi:pӒ|- n1;lۀJ8 ;H)$T9G Qi~h3'#{Ho7$/eڧ}'GdDWcR3*C6C2w.?*)r7J MOmwiI{$4#7f Dgm C-ܟ#?Hآ:oO3[/R9EJ$s8A4cw4BDA, vVPȩDr$_a[x3K"Xp)[g2R܃f\u/qzgjK^@|;ŗaP 9 hI`Wk:IEWf2ta#OlO't2HfoQ[1ivfUa`U=VZ a"\޻<@{jS1Ivl@dshB(MgfwNXBD~IUܨAUIu8v*Gn@zDD"JyGhD GPM1O@~ET'm`Xz=<λL|$iv;rzdrsO0&%_m~ 1"ٜƑ3Vk̛n ])g LjiSDFݙI*瑒OƮy+dd0 4a-3#Z-Frjtv'LԃجGŕ_'pD>nYS4x+gAa?8V2xq|g?-ůśTv_to(|ƭڍ3ad2֘.f4Zyb^PF8}2 KШED3P\! e M5Akq"Qn?: RŶif1w3۳0)$b'K~q n@|p=e೅CLNt\hmtźVU" @H!ceQ6E.Y7U5%=4y~/c(kǧ34Te"`ʚ6cus5?`h{;L}elfK( B,tVhLaFQ}@]£K2l)cMK:?0P>Y'Ċ(YF90I7k4F%mxFIU&asfHE)h/r֢q!puŔf7w'oOE 6Ivͬv뭸{Ab(ӞEIeeτ #i:y2 ѩID$roc7rх(p4ѭ;}&ON#'ӛkR̃k mze_-]LVm3wKƕURse]YNƀG˜Js ; pΒ};֢v8&'m/᭧-+J5A*Kd.5eJA2[-u_f86V_T!Eq]RxVwȖ aϜ%!*=?L,Q-W)@.eMD٨ "'RhJv8{mEbw&?_˶\+^ͼ,V((K EU.PUhZTv-o煢/zzj)O񻑇QGqW](?L>(Ps-Yk{6˒j-Ը {&L,[.~b%x$>>^4y3c{TïZ<#(ɸ? -*j$r^?^HI$C،Tl@P 2hH#QSת3%iKc |hHk;'jA~Uރ.ח-vTyn/ўvwf.1 0kǽ+~UhzPx\ .D)X$3aEY( #-BYk߫aWa(ݿxc,aw )bv:$KCGVPJYZ{M{gQMQ5{,V?,\O1PCY'\.Z^^i?tܔnԮxP%6SbnF ?Bʕ%:ML:t02 /3 7D; cTNnX H}wxiϰTO!H=p-fL[`iUlH )AuР* (7=Y"c>4~ 5+<9lt+ =aB sw7DyZcrSSLr& buO1| * MWQ7:rvrꅛd0›htsb w2GܭEK)k]OPҲж.#r ]RS_<(139>fؽBm89<:5{9.1? ;c2HS\olCͮ8Q=yrr-[rܪ"'6OX7cדߞ]Aml ?le?auFXsxШHSǥo|ʲZ:=xH(V 0K$@Ar('8Rn=$`E56:Ľ8WƊ"e#YkoNsYcԙ?NΆa1~X m |.s1غM ߳p|\YȕuEq Š YP rdn֝wV)xВ̨.v؃u+v~G RHE,FAz| m]l,E`uL-i?IR笨5>I?17՞.KF{Z;P,p9?d*FxEK5h(Nv5 @ŇϞ}M7WQ{m+rmr:'|4%M7@S׺PiȲE,Xŝj/~.,v#oT`lwK_ncQB_ l7zeGЗZ{Me#]x'g_]#gߣO J7 g虽hVQYG̞sdQSw"C L "UUœ+ؔ!3Dv/-k2)W_J| mӆ&uԅ8[3qEz qc)֨~wMJ˾ /> +}\; f+ZR, *s葃]6PX + ȣpUߊR/Kڟ.J?6 ] +>BZuN?`s:uc[G=/s3ɶ\ĥ%Մ,}RKW<ލ8%&Í:MCm{cKwr1@d"v0U$oVb_tWjĮPTvg a㑿k~H^Db{{1i  ^b#7(^)$PCh{(<^w@vH[quB ڴ15K A/{' KF2;Ĥ "uVw+M,2CUJͱ49m1+s*O'`va3RzC;R$d a#].K)!aG,QDĕs6#8tzHd-:|el T3D dY"HX:~mt p|1!UDf)Ƣ> PL]D !&:xEA;_&ŸAU3& }"T (?,b //%7-?;ݭ07% ?tA"yys (OEj7y[ Q@g6&Z<%Njn C8cW܋fPoG%&]͝@JcM.d[bI1\ĒMW"yn4~81̹w;+*SQmEh7ӎ봓֔y 9]Pf:uj#,fI 6iH!i;Znt95qE^{4HÊٽ?S j=6VJN3>@A,kK:1s1Mꥈh+]n70\ʪL#}[*vd,ϙy`dJ|;cʛ?dr-sz݌ AS=E~~¶G0S=-~CT((w eo%` 0KzG6f~e7nz{0kLwYbKsLؿ$ЏJ;)vd͕"$8Y]XNj aZͿ0#g~҂3aG3elem ׄ|7VQo@$:ԖcbN̑r*J>wzT9?&Rg4ܵ>hKqlxI8.RB" HzWS2!&Nߩ ~= H4JѳH8 'Ds_uk䚷ݮa#A̛a˲t'PJ́~CcslHx^)VF1hU}OB^FAݞ_;|} "OdnP>I*刜ZiӶ``Gx\fhwA}l8a _H߀1*_I'g,f y]|vfTثv{b8+]i&{eZ[tNRv:҈ gۨ,Pʖ'TZf_Z+Xm^'gpX`Ge͓ n.`fT^%Ѣ\ոۦqNtZs#cA6dfN>gH*jM& }製:TXN7ɾݲ ^P8*y B!K,ڼJ ,e>r2;`#'KfڦaO{9UmaJ=p'(Ux裾:S(>>嫮͕v{k01%Nq;셜,+X$wCV@? ~q-^%.nEVM隿%^kpNuH. 5ʼ΃ƴLD)jX ] :fc1s1LE6t~ZoR~E_aR@Ȭ5Y0(HӐACe,-@b$azAQ; 0khNaksGMK¢!Vzkܬ9,|[W}Fe۟*+k}1b6BxotfՠNU6oBՎcvYۀŭ{ϿE#DT 6qŮX%B[ܼUbRCM34.Tأh[mCE0+,f)  JJ]qZyN$U7%0qΫo`7/s_ m4lg[//Tǂ`Ƒ\DIO7JL6&#Ra康ghXVh G$'ij$2 TހTEa$Eѻ=+YC2=]y: PkgDW |39Ѹ(_jfL=Bփb֧)H5^X z"2Mg;{UXt7WۧV ʠj&[kg U iڜJjk/\ dEv]"LW.=(5&Y.iqca`VZN`*)9Jk֔ExpnQIjA]6V^L {.sc v Q_JP$K}a@AIO?SQq/HϷћ<Ѫ,Z1Rad5q5Q Fh3_^ y.8X6Qa&D;YKjg똃/"VI?ѩ dym$ yv_I{j2IbF,3..C@F}cH_N}نz2쌺8פK>~\ȭNl $qN5eg{0[wNAUҼ 娒$!wwkF7ĨH b׆PĢ]b$ds"rAQ鎨FF.c1bYp dDbv)MK$u˭ (3޾hX.T; )ɬK=sv'jymb@ .Ԗ,}Fە x[A }s3],Rd"{^m>Lwh$jγ;wtRdXLI 5?[^o!gbNYBT@TSHuNѱ6CYOm!:;6 P>`'fz E1f 6тYS #W0RJ͇3`itzRe_ TBH-#9 bThngi,=.qo-puni1GH)9~WqDMi )m:tk3dlɓ+KSr)g0]Npv03ɸg!8DDaGdpWn7pC2^ DZC%؇!_*t I_?-]4ٗr[CA+?22=D"2 *oj )/sb-4%ǩɢi_47dHQ4J~FCeqLt3eHzlN #F .i6,}Hm mhlbZ28v7Ʊd3]d7&.g[G׀"u8Ďcr.ۧUFcR6՚rO=r CmRi0);-DL ~iKA$fǚÑBRJR,~T@gDQ2VU{Dc#)4<3w:(;"S*1YZD踶eݱZB2.Ǐ; ~j^Wb-2`ǔc([BBrAe9߅m rEJLvqT1hKʍToJbGWӼ GSku2rߊY]jl2yW0(UL5pe]ٔ}HxH2# a%1"hڷ#uFDA+`0}Ke<qk9qs|p gÿdBۃBB⇧鲇|y,EB;>CNv<7!'yɎ#,`/`mE{VB^u΄lD>wm=m]_?ޑe2W|5+"&shUᣡLߝds`LVQF$keT Vm pEf 2.d*N;R ,]qgv]cC&+epa5Ñօ\檶iz]zJD1#FYWq!{T-~jz>?$:M#rE ٯ njq1lt1hCb}hb2<#^c8@K~m B=h t{j#mHAVU婳0SfBA<ӃM_vwkt<؟ud 7Y@hq9?ww2#mr2T©)dAXxPK"}Ui{&y'n#_w:EpWY>aecg3wFv=9-NulȕĒ|y1*9PD@L`;\քA6T-H}-’~Jr`ov~~l dJTWM{ 0rLx 0H3-dX쫗ZMYHl7w@5 m Bͼ|zI0 L!=F;d|B;6\Ya{?}D! 8s6sWHK,/G>ȭ^IĂ7G#`󖁮qΦF (D6-||\ \T* un%3_~D.wR[k%EH1jmQ<_(dU*/Qb/ Y53 #wseUģ@~Mu$z G՞Z6VR}_ANOoAԆRHثYyUI yKY> )թ̋B~&1Ɵms ڼg6fuCw))t@hA`7GӖI븩-wKeD$>mՊ tT3ywr- NTuLd 5Nr l)TU5CB4c?I9I6W'Wמ0 @&V(1zD{ŹB˨tx\` Y9]+4[d$ܗ2{aZrcҰB)2f)F AIBuPJTf7Z4]Y. ~ 5D]3'|/ FɎ ,my f 8eˈa`c 7(ߚߠZc=mpg (XVB!kt%sx>wDaRu*/gmdqO=ÄG}yF NJ2<XeBeW#xS6~V3P{XݯK.Xb?:Wֵ~4^uO^}G -i{*3-y*Ǔ5Y!oVNpg#bPGRb[>ϵڮeW 643!-n궜$A Oq%kzh|_=N 3:@?8 P:aLptɻEIV򟷤-S~t_h¯i텐ś r0Ȧm:hf~MȸK3:E5X ,G^&oy6^uDc1&jQ_X~#E+q*}({:̕H~!\ x8X7=cL9HY1N r9TmTx[fcn#6 0y~f EO-(%㙆,Kс)9w6C9a;V -c*_p~k'Td7"gjHvsΞCڡ և!"vI7fkPڔ{v$UztbАEcxnϢO/}^&C 6/,fnKP{ÂSRGf}zZn0Yjgۿ̵o(莱{ DҴ z39xZ^na,}bl,{1‚Fah 7BnNj֔z x&tI}$m|is*ҿ4F8<|UKds yj~\^k?qQjKHS'! M9}sYGBѫ(yKN\.QpS"9`̋~0<-YZ ,51nƛkCZM%7 l" D/OUȏȮ䥧W0mawBlR ny#j4)ɑ~w&P|ӵ䉈Z*<>e ji\VHI.^ueTt"DO͋Sn%25Rƭ'1*?7tȓs7T 7)5;a:S+A=>曜qS0v!nrAdeJ%]6!d.iEQ!i^"D9{ {@5Ђpg cTso(T]iږOPbUMsónITWE>OSY"Me-^ Kd[(Qa:ɏRN6m%_`[dMV{oǏU pmJcAŤgՉٮ1^iUʭWaOw=!>8X9W)w d[нgd) rj^%`rL;2s('z- b|t84 3/7#ؚF(w:ҸڑH4.r 6[. _4t.Yߝ#Ge^fUe1Ϣn6];.%쮕SJQb0xá!֚$SݒM zN|s+2|X:?1Z*oc)Z\piڕYD#cj9dx/VdNnDWR1(e@? 1[,?,o JD /=Mh\@J5gE|VfNGTgo"nQbE->Nhb>k'p&b>7S; G,.Uuj['P{xcS;ȡ{bf7$` "#I88,g^o{q<JjPaȪo*l[.ޙ`Yfb,7tM_7"im&I)yyy?in:^tV*C$]AU`|||Kf~skǕ M-R a&$ G͗s[Ze!tM,(^;^Us)XYUQgk?Zu +῱ر f":Ҹ_+Ͱo R~6d e5F @)O <ڕJ[[Ma8 }!5WÅpϹDeNE흉Vs-y!o >NOMXOIV钵} 0+!J/w'2k X&r OT|L*ggcRm!q+{\eM>xgSPD Oz@6B3fx&Sp"l(X{X .y@]1~iXb L`>ѢvP*j:UY0d`4`'},V\ɘq}XZVW8ɤrδ%ZMbOoiY;#õFplAu9R%}4kj`d\ҷ.@k0 (t'$ͫΠ9Jr9}jR]$_<ӍB`<;aʫ'hYN1k ' ;*sڎw§mTi,#T=<$,9!$8Mܻa+iFJ!0b(0e/m )@2l"Od5vn'عc߹Eo|JiiX LB\ p[ vSl}tlG $wj!U2lZ؏9%xY9O;wwm^"-:O%A\(vD 8`F `aUl]*!:v]j}gQϪ;Œ1*֑ឺ$,ت!*F &HMg,Fؐz6`-;-;GgܖQncQۯkO9QX[' c$ iFRSU xrm1ĂiknŹuL:y28%D> tV(affgTZ$ kdj(TVt A![&hVu2?!XQvYc2!!3֡hy^'QQn#>Tɉ!7+Y"9N32S;C2_ΘbDEcٸ6u=DL`qW'n+&̷>V2BMeL*\hƼϧ1%c`席_l/Ȣv>P *~GknŒ`@SHlt] {HN78H.WrdMyH PgD0LDG]$z"Q00 V-H]dhO%x$}8%.Ôq9MVl YV=D UPP-^>ٱ0.ceTt˜Ţ֍nUP`y^.`kcVC:HK,[i" wibKiޯYd%T!FK|H3W ()\7^rڢ) }/&P7" Y܂(ʟK?=D)XaY22.-6 8fI8 -tb%P& 8_œ _G4~‰44b^$VA(R }EiD‘#=;^CB <}ڷ;QH[tU%mc3$nsK4㗻Ԁ\C\b)fb~tCb ,Th%")7,|Aּns&ydIQF'' xJwRE!05h#qHzy= 3} ((ӼrnX;j\o@e?Oj`DI6%rҞwiԄ D:x5c1t! yMף pD[Qp3g+"H_Ӳ2> ͼb@wJ&H'qo mTxe' @8^0E!!o [\P.v#&D"[B݇|@r5 >OM)+33 Z5!~ 3BF dL3 }ſ~`ZqJ@ hR֧l[o:75L^ Ҝ.X1 }z2z;vL&›}E:THvnPf07aWhϱ\*Úh֭U'\*2b (9oРԕm _<jwA #\}Ea Jnw%3:_Ԡ;k@%S/w Cal:_)0Ec7eu3a4T@5X\h ~5>GD ^FÙSzDI4_k6so#AIّ,S BfnkQG{w)AmPJzImuj~[ƍ<`7}HU04JY/rWl(rqEs/|0j1b|T+O_ҋ GEJ3;Fd'@YtDFؾF0xD!-@ 7?Yyew 7n|T2?FʴchմtVi;9I _n(w'j 7D84Pe{Bv!;d =[-m^@rt\1o"zˈD}cz+I^Mdo}Eb%oұAWu97 NUApuIKG0@=Ugtp!*O֚U5f}ɢi0q&Ef|vJ?ˎ}5&8}1,2"e!-9}N7ӹ2ۋh +9ӫ,M[0UըlFՍ(>+$ku鹊Y|ᣵ1WZHTP$0A:[^Ն,D۴Gk:NTC}VMʦz<:Kw@t2I $+ZC /&ISqY|ЅݗiG&ץP̢c<*9kz6-6$^k%qyW<@⇞Ed:qNd@0Rc\۹m 7_X+S,J+2럌{a(df(Ќ50fy:iY2&:j D`3"" 4g{LJEb!9(QcQeoF{xxn Aմ:gj,_J?܉Xu4X%VHkf}kb0Nd)W 6jLd-hjDp"2sc{h}nYiBfj+A҆1v`gҕ`8%h`&<&S~}_@~ѿ{(׵?uIzM5'_D~4?;6}=\V_l n Ϟ8V#xqk120v_V"@zjCe ԗqj@O8Ts"f4v_ո3VQ\\QaM^hcgrZuvFt ir2],২WuVUh_PBqh`(),@v>ȲNSrOAdб.fS48NbL taW]8u"%qsd( 48|S "q" &4h Q>)^ļP+ s'pb l4?ZA=*}lw5eHOK:ѵÂvP ڋ/<_DKJ]v#2g(% :HW_.0V"]`}tл" .~^$Lw:mB v89sP+GNyZ;\hc)=Qn>4l,R}m3–vM>=< 14l)MaFBNB+~iTZ2. ĹFR_.&u\I;$#Dž &i!S% sq^#Aẋ m79w}X=} 9HWMވ{bk$51D!VfEp5C^3.:蟠us_-7: :)ƢfusU"zd1dL䶚OskκPjqf >|ͳ[xfCtCO*d;:96$[6;HȺ5PQ4/[ZpOwOiXQbό,V7 hC:d~_3"'Lv],(?c5 rE>Z)w3T*'@4)^7d_ˆwh~KN"4m%Ziq >"vrFe>Xd+NGHVT0ҭ7/x% I&hR]w=0~=m̰g[Y:\+[µĿr> A7iȠN hUnќ*l'ʯE:B )AJ:=j%7pSjBמ=>LdL:>jKB^][~ZSқ+kXRIca m>N _ ^(zgc :}>X(D3ڙE)tїl%4[Jnӂ4?g;例3v-m@j'^,ݤdC/sFFnP 9ڿY005HϊQ$)S4PxOpٌ F#ݛO3jHD2x:bKԍ1C&DhM)< 86C {jg܍AvFf39'K-b«;."Fg%`>RץIqh$zSS{Uz)G\/lVMMc"r[ou"6 Qli"aGr5O[}?C <$PT@4"Cz6 m{r %P,P69Τ,$:g洝 y ~ЫO4$/3`۸>! J*`6BySD:ލ^v 74<mOYF;k5C+oJ#RiI+6D\|f8\[f/DOʋ'LbEN˖~omFqR LA[w5/ ̣-RO0i Q~({dzdQO$vR ;"'~q0@Xs<)br/ΚH%q#hckIZl˭2=@#`20_y"ZwL=ea:)f ScW;)$$! ,#& f14 ?EghezOԖbWedi!z<f7m#ᑶKktzV25m2/?J1K&&xtAkt`&jQe RzmLod2W:ߍ&$ 0 5珙-Z5=\-ҙ )xh8#Tk8AdM ÁET}i! ]#^Je7ܹMDQI%q"%_uL0Nt7[E  ' QY]i>SƈB#83kB!qO`|^+{܌[6g_C.@Y.Co7 Čz!bl +cc Ldv0Gl/La>|R-GE$4˻-PX5XS@ HM ±BR '46(He\6?#|C[Pvq-75 Mr4)vŌ}r:-/CM]{Sr\Z5ݣ&D.S{֬ҬM> 8n* gUBO9vlPFn\BX:6ܛ۲<}j:-ƶ`O _)Bk Эx3]I8=ϒ T5/fi&BIqh\;"wlVE3ُ8|v"RxӸ30(} KΌ)?BS P i3iZIEhp"፻K+쌓U ]_5qJ}V='.7>'8VHDފʵPh%F:H vN#z:8O2#|hLhFwOSbw󺼟%r<<%j*jG߃uFOXڡc|^7nb&/YnCo~+Ȭ=,{\J G&v)%@鼷tA&lNXAS׃2J k^qjGX#2t7[^󪾔JK1GE"dfhGu$G^M"落T\ ]+:dyWog$-qhbI!6rC<؛y05#=}$K oViXWN1yK)72r&"ރiXE]H%(yH:FzqqYurH@*5"br" DUy{ViO?F2z\T bbVm5RĕC[>z<Y]Fzia/3yOP:yW9'#\K0qv\ʢwŃtzP&:]~orqhF;j8.$C1 ؐP8lPdmr='mfS5 sH6 䃬{,c Pj~ێ*/ sMsm "׺YT7 5_Ժ-itCb![Y?c ;$* u dۼv LEq҇\6WzSǾWܧ}Y8I<J޻ وc<0e?Վm5Zt\"ME*_ w\P_5D6 X P[F.K~ZEqe )y\qupSE5=e"(inkƒxo'5RS,6.w@c+ѯxxBk{MRfMyU~?76m6?8[|oS%r)$@wa`r{_. +Mp(W}? g0po';owV=jCra֣aYv xygڥ3to:ACCʼnءQP fU]85}E!._( qX~ӘQsgά<8Ck`u]#9v.$y} YWoG29BJ+P CC&X׍1|#5kYQGP}$B\(cu RM.Xcݪe<ՈN}xEmR"(h&oEEԜq ML]QV.(k> xOW,Q H0N?!(5p@>78o O"*Ew27o Y`@k;T[ѳDm-pX=2*GvӇGsQ zm-^ BBGl;pBܐh8[Z5mWe7;}4i(%M{{:]B$cÆr&u $e7)YZR֭iHd%/!?D"+ԯ)jTtR᯳[Q!HةHt̮6 )&{@( ^>Yvu-6@o2+O ΙZ VCwsV Xbi]- ,t?SBu-ˑ$}GB?vgO x 9R]_GPڌMX掔b9j\>: VUEfsEv1)jly. fF4DR?Kym=* N'^)chE|onKYR: 4Xen^pB>b5:jYv}Dlj-=|GyOt乪W2q?nX9/w]7%"[(c%qۗJOG`Cw %Mw`>͸%yYԤr>JכE|PbA#ueW"n?n`|Kw[;2_wc3RZf1G޿ikI8 qⲉhey?˝RﲞM+`ˆ1-+8_,;`[?aOzjL;V(wzf06pBR fuL6: $#c4#Y@$U ZJ3c~TMR:|3>O"?17]ZK_lb':'Hpy+F8P Ș?8)V٘((A[ȡ{c[^#nG)P3H^pnz5\@ԻcB΅h~Xm+(8#z NCqv]Za:n[M-cvD9*1< I,vV`I=p#h;ae6C_~I}LwбD,E(M-pqtDA J^6`<M5}r-8uy>3|Γװר㝠ogumr K`Mƞ>$D#,GhI.Sz($fFR*"d T[|[†:>NE#髑X'ʹ4Zk!sm?Gi*5E]Qo%էLMH`x-^jjV~1(vyP@b12 6㝠TQ$M/ X|A%K:s1`Hq2[EU~0d"Xghp(ը._!װ$36|_z;5~sĞQrcӆZiiѬj=\ 42;vxcd8JB(%&ѡ 1wj-;QT~Upø’5}endX]2ns.IL\KQ&~Y MVa+l@Yv‡ug!>K{$NA +f~RYhϸFkfʇT35c3F> YJ1P/nR<͠O46!_67D9]h(y}r (붑_91NGmDt3ÖEPM&sat#q`Dx~M0ނ>G9:{#ǷO\!g 6t 7L偪Hj|1p*X+JKC~u<ʶP|}]O$d-hF{F>aI>YCDZBpcbBhmj_exP0]5ZTDWӵx'^I@8?ÖCp kw UXfJ|K}8ӈmMB"$-1[,95M47F0S2 FeA; gcDf1/KO0=U9? /E<eGHSs+kY6^0S(!;i6 N5{OM&4]zhmֺiHsh r`r7$S6,W]aunW|C[]z9NW5ga:Q/#!dcr.+)`ARD|_C@PyQu(j[k\|2ÏJځnnE'X0`Hѣjza .mc\MH]KңJI j։RU:̘0U)@Զ(\b6U@O=*k6 H@Z cq+q/**T Q>25߀^c,VA)!V6,UHnUdU&z~y@̞: `~DlYu*_š˃weMx4#g== eXJ3߲d|v]x ;'/QTHݑDBY->tYFS뀁:#sւ%:=hz_{;y9PL%-\]dG9C9η?X ?:Mr/k\إ`;xa%jq*:(쥏 02@];s/ɝ~Ҩ4IDUNtؒh|SJ<`m&<2,Qª"g)'{"an4Z;G2awRH"O Uo?= %G(M4EZ?rV=VMNl;'JQe4l48~M5ͪxlYkK| VPKxz}dSТ`vvc ժRp@+>̖p,rZz dx\+aj_0\@MQb1߿ِ{ Nr O4^Ԥ]$ͤ $2&fI\?-{t̲e>=SWR8져2a 130?2qiERB^0(l+F}Rk tav~^uHBӰλ]3F }vt@ 0gjUxj+xu }}:v4:jz-l[*@H -?83:-#E<{Ň$ E2qU4\wQK awbddI ]bLcx-;VbI3_;}f G՛]N!{=<=%p9_f5?hռm_/XLK>f(Zp;`rmqO4AxMr P<\ϓR⟣h$T7+78a`F5jL[nY"dz#K{&%jҭ3@6z#(c36Er(5}kawIo &.@Kc>2b59]6{|t>okGn/x7ä[Qڀ45#Ej&u;fhӘ ,׿>'wKZl( .Uӽ{q}ȧq8pQR=]H|\>.laՒ%7 ѩUV{gG0߃rsJ3?4 awpt vUT.^ɒ/5ovrvTTJ:*&-]tS[Xu"a[˷p B~c/zӢ #R|B]~;A 13B'#jNkVoZr_W A)_QΦӚ79I֕:,Z ٕ,p12n) s?h #U̯dArSgUM*z_qT슰52 vVC[l`7E.\ZC *e߂ir&Z rifFzh+cO& kg;\ lZً͍g\͎0|KK3(/H)Ȅ75"pt 'CvRc^JUjr']NV mQnZ! "~hbڅ+Ҙ@r)>nNqY :?5qxD 92qy$&3{0Ќǁ~]Mbu5Z^j?frAE>,zw= _?Z22$Zz4נG"5}rtk´: @dXl S8ΰ=R`okoFT wH,=U""+i&@B[df(1Zu_yAH67r)6эO'?_Noh3Dw4 E]\u^W.lc譒K|f>hYث(s9Lвa]ZlolNψ5!PMͦ[{fltR@GO-~2Jdw^:F!_DT[ׇY7QZqYYŮ(+8CVocu}9`9bxW?'C0n3ى`pmAo% jMĎvu|BRe_/sSs`^yuD;÷e6Sdǝξ^: )Yߒ/ћd- f1[2$/-qAfp:  60R@}x}Q%c) ;&BLyCt*ڴ!f ؋?z "Kw.OƣQ6P)@qԥ`(̍%r vX=(z4 IpFg@O> ?H8oXŸ8hPlP["4oթaZ!Ύi1aMLe~?|N0AYOv8 v#{/P nco{ \TKT`Q`[-WY3!=S 6~8x))`x_PtsT:^ui6B>MG9ۓld͞*m `n@DM{|b.}&í [Xp9U"JK}~μy NC$^-|*(\՗W2K?n98|nRr-]d&V~Xᘨl!sR]#2mwȋ[v`$4+t%ƙ4 YšU-k_2fuuE |,U šb~fZM2|0@Wm6.D;3u&Wh%grʇ;j75o%`ۃ)Ҭb(M~죁1[JVbdNӛO ܐC* [ǨjܢV-nL#Ts*<{by<8e<21j{x-8YD怾v2+GU]{DŝuW!\5PԎUym(<+r+:5zڳpMW?aX  W\Bb5kG)pU!Hs*+6:pĈK<Ï-@Wwuv0~|]?}n#'C,wϫsPT8vt0YݲSiutJ(bXX<MەJ%o^978%9A͇VX.!1r6S l|ؼ ]?mFM7a:ԔP?P orI2sUoEq{{XR?>h67"2z !N/FYA$:,IZdM4}T?jL310λxI]?".mfHOJRo֍)2hu2d9`=[1i<QĪU=l|dUrmdH1ԯ/YrpNWߟwWFdcSA#;@mlOPsSF7ҽ7:qD@#]{ ϻH)a_%3%+j} p@56yh!¬^G~uԇZ*#Cz"'޴K_ q<n ,QԐ' Ϗv;y{.lPƄIKn8ÝɈ/az Tmm*&f"Utf<<6Phj"VjJ1@OwCN| Zf_$2 ڇE壸Lg@?NHԶ1"35,+fsjD:A"٥A5JFg|"NQxCq{Y pzѳlEQn YBgbJ:蕲ꃽ7v nne }N<bHzm䂹A<64iVG+X]Í<ʀ _i @ GqtY?]A&2~gKPܖl\)g/ycťI m7c<K>%>7eGU[c8)b)~.Bc q PvP.܇>L_ݻ.љ<ۚ&d-!pg-IV3={ՀeKCi`qDZ&9Lܨ%8ﴤ3∾.j-+Zhfޟ@iPZ;Z~+j1X@=PۧEϥj.*d^Z|!6goj4Vg]%ّTC*QnMi7mC'=߃8a#I/##4]uB0$&i5j5Cwu_ڭL!k0]0"Ok6۴ m g W0> ;`0ak}J…}֍S}Nc?BC| `DLŌ9 ĒodRB,ǀSv:O&eU|n-Jxʷ3#U%E̠q# #wR"}Q! G:ƾ%[Y<)KE(6hZ re 6st-YgTg: A_3CTt)ah#p%sk|d~ fzM$s[͎Ԯշi` \^()<] XXlSr;p<ȵG5,˾(ѹTNVƤP!~/~#yljjxu Bk}MF`wY aLJw-Ba%bBZ֭Nu27ޠ}h3I,l7poEUz. ;Gָ=;iQ'&d)r*Rj6* Pn70 YetW&:ѕ{)ܲ1EL>=s+gxEO٣}!F VW9`"$Mdc8'!LKK/t za_z9d#@#LS/T ; qcs;6ap*b\Xcl UŒNwf(;.{(9?n[\̥czvM2`sqJ~)'^9cTG6I9WǿlwYFhӮw\zfX03.|y^x.vt8vv!vɋ3pp,^bwehgޤWvk(%OZE畘F^At+!owJ+VϏ\uKao]CNZ+!&rʪǼi?N[TQNmpL3iRQ8y)_Y0_y /|ϤK,]L8){Vs߉Sѿd k{j U`Db'C.b!]st6 VČ\*[h'Ã,Kw :_wςc ʰK֝$^6/'yo`/( NhWR ,p-UOAף%6 s!Nvv#.iX6% 4 m־Ol^b'Ti=|hH5W&:D%W H쉊3}a /<56H$'Ze=DT};{lCoɳfw1֪c\gpY'[@֠-4Q^â/?omGC˸cUG;z;~Ul4ۢBז~܋zù#@(^8|m% =xRɿCjO6lR0;Swi{:o՝tPޣU[#ۅְT1;A)z -fgOnܨ~?PnV>rf]jn^@SV-e7[+>H.`i VHuYKȎ\#&cN ֎c⧜Ć~͆dG~/Hl4@Y/P:πg%IL#")_-.$T/>S>Ḿ2 ^ږv]lʊݩ)ɺߟ莎#X2+9厜qg3\n廈Ң *FƽErfCFY@(^ͨQ&_7+%$ yքNˤؘ7L@N,Cbhc];8u>&pOZ:)عw\)|9B2ā&H&"JF.6j)l7P <e D=kYWFv؈<>(S. B)F?w I"zpNiopȡSA!Rh%+[)'ս f[^[Of"Eo0H(TZw; "د>@Si4V|: A~ˤ#kgsnX7yuya܏bgVd>$,~qkLgÜ~ UԼ^ 6 P%N@eݎ8> YR47&ͭF[|ђ,?:ZyT(%S.R+ wSAUYRK»(]u#O?̓:@y1*"]}fZ~|Ic7|݊+v׫mms.Wѯۺ; <3k`uikץlD}@q\P'Jp71>4Ȓ8:Yb Gɑ{*; PkեȷJ +A^n_B G}O3(rQ6`8~a8qYʯYs*]nEw`?/&?.~h yB&ߴVݰENoˀ'D6yR7ATM V+ntEWb /-A@Bρӳ8K/YWiJu.I=& h69m\ED b-QzXrF~hHk_s"v$:~sW[X'ApqN[o[ž>[Ov SJaWV}FKRْO~!.=1%j*7e"ʓ!n]w'͒a:yp=~BWȝ7KY;\ٓ˨NU@lyDu' /wMG{ax58/ob#S$;)RuqIԓY-UfoZ۬ .R 襑KϜ6̀èN0{qepXZ:?'7lS#~52+9-^0K*F]dzFof6+,π`n~ǴJB1Kg+Q`!= Mzlhp.L7Lx rwA}:1*X`ן'cy8rq>(R jyW3P1B/n˫sa,X-:F;|̬P2$Ga}:5nd&J[u!q*ѸK1 ut~#2tR'-#RL0.a/p uAfT.27mv39ς}hkP$RI7F*U\FL(*!/hƕ3l$tє^Pî~WۄęMi& 8cl8d&jucpFG&wB{,$aXAʮ]EP潩;kW҉ƣ"x]qjBX\`SR$tAR,IfGN ,D jMKK|>| `zPǏq^,3 {L1+-MZ|)~8 )aX QvV$ A M, 梹 U|r7g84v5+ƛ+#k#e4AH/npXgUcf?'<޲`d#$ҵ :2?'GzC SMaäAŚxƅ-O|xQ99L^ݵ I#pۂ$)7,Ot`}nAV='{TEBZbCF sٷ1f@yqu7 *'\F{e{c@mdмF> >Y-DŽT"O͕[*-se5[_s jgk2mc)٪=fJ|@u>l@YDkp40q&+Tr5E rB{7UWh9:A\'ol:yaaM 8"4ƨs=_ E K&i膖fM`6=2>0 YZpsychTools/data/zola.rda0000644000176200001440000061030714277535313015010 0ustar liggesusersD}w\ ?)*!3)%"T(ii'E{k{N0(~}=ޞy=QV=YuuhҬa`u_º [in  YaK549w`|t6jtC#u`@߰y@0Lwncbvn~lGh9dn-vOhn@‘bRyx?~/Pgw bnKƃ PHyalnJ%eCř"ЖuZo1J08x 94Ѝ!O6@6F>̔@njZ7i1FD1 Aᓟ͂4/4nߛ li m]\DW`0_OC'+yCӘ/xtlL̖QZ4VElHwqon910PO u!ėaGRh2qac]#zyFfT MzM|tAF.7 }{44:' o6sr S !ku><5W:sV ӱˉ2BN /*^756ʽ1~Ɯ'/tBUW^{sP&G+^铵xt1\_v,cio素^3z@ꥣ6ވ68\[XA5,5>At=.$e+$>?KJ699~ mDw}|Ge6GjX83@nphG.#2p,1ۗX cMw:ǂMG^C+#fw=$to5i1C#I?W'_L>y!E`!CLq0~ήg>~mSgk'04kPЮP噜L4/ӈMC )㪻0cOH|)Q&&!%y7%c 9fBk Z{4P*chmUۛѴA޷ o O5~Mm(]JU?6UBjy;G4Ǧ?,ɾ"$Df<8 Qt !| Nz=3"&hIk9% ٹ-6>X[1 N`>5`^~w*6l1  w;׵f}S4om~RY" oA]FJ̌Ԓ> -ܠc"lU!=eퟓSw?p68lt{YhrL[6o.uD?ބֆE 1?~՗aiLsM :/̧nD*3 IbmLO%҄|R+gG6{n㇖o/M!Yckv68LJo߁D(/Nh-2jFRQ_^Vhi5(S[;(7+tMyh~W1f֊zckJ U{.V!enڈ %>lsu'r]8Ws"tR~Z~~9X:aR[`AxOT w @Q߭ۀYzrR\㱀q"D!|@b>*1[mtQ=u-yӵ>-%ݑʋ!+ f/1g|׾GB8Pe3&tX߽*;3ӱ0L+y$ɹ GL&:a uC{J^=>O,C1AÔ61lK:6=up7 = eB. Ϟ<>VU$pTwFDv儳omX~ؤh{QpPFjKya#Ph3C+kCՙ\l_;ihq|N|__ r:;B:ȶ,{zn=F b4VRuUt.۸% nhdelb^ʔ2m9M?ݝdbIc!M$f$a%OGİû&_A6,go8tnIMb®+GL[g0K^O=D s/BUϿXU_;1+ϚL*;7V?x :{?ICLc?5߇%$wsdI=N1,+7{& r+3$1Yd|K,.+Hֻ !#fVie(#uM*ʮqAקAUM Tu`APrfmڍASď}3!;zlPǥ 9FA(EWݱ~E7w!7~|Ljr ?$\ ;g 7YQhtݲMXb|;! Ӕ{T\W"1|bhT&$_΄& k]LOzl jb3W'ՠƆa<(H/( ݰͭUlx HR,X_Rb!V_8mz:휄۝~@6RzQ]l숤C'S~fۏAgs'+x3qKM',P9#[ItL;$TIqe-_% S?]n6#7"msA IC{1?:Ks 6}@oӲ'3 jLPļKObmYUz$dG_76-havX ahnZL ;7Y*BTЗ<~mkGG!>m.1I//H#h[b#pt&&rlD ޕbI];H|-G7|Ja&3bP9$%oFw9{)y'Bj>0ȐebO1FHb j4Bh+*"bh^{c|ړHL ȞvA(Dž5 ۴ B!>I1$ Uv*N†'Au؜K>(PG f+|\zt5TqJ:u nߍ <[Fw2&MX#l;Ltΰ}u5JG: S EiCfC̸2=Vr_c/C(><ܕ1Յʛ16zP_ k+,Y!#%7{- b ͊1Q%\=14!};>r P̌&@ -%!V1#,ԏls3a?ӍS (:D>B}f#eg (@Yq<>~wekM1Ok{+Avj%FWJmumj '3 #?&ڮldDD XXUN~Ȧ O E0]f{\!t؆'*:h] |Dz2BDS (Kj(+;qfG4LaS,fVhufͥ'a,}ħO(֙oPPNż!5z{j-_Cms?P)S̵-CfÂũx*̲h=KK7=#(@8ޭX%gWO] UBב}F?y='7 0M6(rS(լ@0R@h{:~r~N*1@wR5,.-G(Lb7O5He]_h)%)uT H1a]PZőXu|Fv b|[eG[psud&\yգZrWszq W+d|}n oؾ݀] ^؀9?w@Q[g F Gxzu݆  hSHÛ#]!c yCb[xˡuD2-vMq|B@r4m M {{9i0xXH~>TJIGL+;WՆ0sw$r-[1ƫex̜ ]6KHLQ9- ]}K\ք,2ʂE#[ j˙;fVh.闋}{I kVZ+u&@|7G/б2R8Y/By 6 pOnҷkmd5/>㗿4`<${-} 4iIoXN`Ny0Թ0-6 m99k2A_(اt^(. ǘ_fGE?K}%x;g4/{Mw^CF{ qcTP~'$bV+@d>K̐grHAkZNO`>הcP%?zҏw1 ߛWXEWNjK) m*J~=]{gವڇNŶ`77)jn(Hj=yd[#^vD0tߒ!Dd{!RC,HࣨxlD&A9ThH_㓭LIY~ fUvmdm *q6#z9{^*C[ r?wHA9j|W||C uN/V)\hxP;Y'C j={ /r`6Ejn錙Yf_ZSUܾC,}q1 <6LYB rpKź}k+~54ը%OC7bZk4vbQGBX'pAL6Np)tx{xrzVg?R*<o߈`}_3)y߬Pdm5e ed{c!7)=]7*^y7uy?@o󻮱B\|ѿA(sww_zMd\{77zϩ\"GC$s0G*-ui7Gd.#;}_jaASf JN6*j 8ȼ9ek6<5bA| 9Uޫ^Y Yۣhh<=$IW"tgҵ[z5EliJ?ь;zv K4TqF1V1j# sLBj1X70viehrs0 e~7!WX`[T0@녂e%(LqK/z+Bc(r[| J!i9j?o$buǗ c6_ks슙>-S|jCg֔ʹ奷΄DĀMz~>(E%C=;{{8oxR( jB{8pcN=>|ۤ(ñtScv84Us30}B?W2l7FXR:XDfU,c5uPp Piͮ4$n<3fRޖ*#ݫ`lco>͒>ưX+H6V33T]`OA{/,]86.Ss=cKLQ4Y;mI0s.E|q6Ȧ =AG wqd8T[\*! C9^  J]]g๛D?z^ "7%r_1`Ͷ݁<,mթ>""}Dzn2_Gȥ99K(}81ȉ S#UnAw`+$ͰL7%O?2Z4>cv`WcXV!r;#Ș[}ډ5Wi/o' RQ/iLˮp9OK=#Pu?7T ̎c|̜ ֑J 2=9rݶo{G P=\ݏ_}zx:_GQc?|tcg^{Z) ǡcדCб'F>n|zMLj`C]2ΰN*9ʗM¼)̼Eݙbe~G ~3([N7 B<6BC@C# 3$Xc!;39Y0VxcGT͟l>cju]$:(k?C~& /$=2=J_M￾<{,RIhѠʃu_8B\?9p% @33);zsfY"dӊT,/.Pw*Q/Sk7Ջsx] }ۂ\K0=&8j3O>V"mʡ0(gW҃ʲ1wC`;/65|a rRR-)GUvo3W6os!ECX5&x䲮 b+N)ׇ>zFe.1hu e&|͙&+Lpsd |=d6n۵sdgCp z%H:' }5ԒtY)]$?|ҧ8'!Գ]%;YO 썱^cXw;DFL9 [~n,|-Y쭗meLiN} =Oe x(Џy*?+q,$<\9EژU_~r˃rfG%c-$O~ZgaaXal| \J6o9b&ks 6-kG?o& (?*(E ܲ XďqQ >u5P7!k>wLձF1jswC'=EbȴcjVN 佝Lݧ=zmXfn `]!'>ccIu03AF}0#|#,.zAdiڌ/XA(ŏKj=w.WT r_>x$2~hgބK uP6[WAӍgպ7]>2JheD*G#>YŘ?~ lhc,\SyJY>m;̶aGW/kCFmZ.(%w}̰?~PVR4:A[ @ur1=5RM+[)C3ePP> [kmV. Y@MI$xMza PZ$ۊ=칱sA!uߎ_ eC‘|>;t0.)BǙ¢XH\><|5ѓo}!̘;@GV7m1ҋt/P#Gx`5L b%z5"SBEѫjk"ֹ'/r7N,(B\OV^1z`~řnP's,[-3|\%rUnaɝ/5R"y>?$QԯoMlg ; | PXh]-_AYLG'4pnZ}hG s$|RǏ6Rّ.k(UGo䵀GOyÑ}ga.r+V.߹ GoT_jFG@1YDX~9o..jZSgwbwʲ'B]_K 2'c^ʑP8$ ܣt1VP2ĶmC1,3#|),atn],;ц!=[L)PW:rZ>6jr2GF48U0ob@I/@ 6laʂBǿ~=FgQSu}jTldX,aqE*5^i @7U 7wҹjaT'>lpsVu^~oy7=ci,2`sOPХvj5:0]y,<9(spr\L/yhu~H\ZRc>9W&(p}k kwXOF0`D^Na7NB\ȕT5l+)nǬG;d7@Gchb<;XJڧodwczc_&БS:~ixEn yWo#<)qX8Ntl9j%X'{4чO<Ʊ-YILSv߰v ^o:T|,2*NJ%ozĎL[;!V2v.{y㻵1`Sҹ=TzϴS>_.-O!`Ծm|{-PMۓSZ P^`:|{4 E=j 3U>P!Q 96\B@ʈK_]I1qV Cƺ+P? $5Yj(U"hb`A_oraЩnƔw26`γ G܈)Bj1>M2V>W8 ?8iݫ6U;/U\U3#y@ʟ3z 0^?R[emBt,5|a E:,!Ļ(cU'As;v1]}GfON.}Ҏfв/܇g" XgG?~ᦞ2ĂM<?7t$-O]̺#jou *Fϟ綦|Yg ~>z&[;jr՘($;ZXB.EPv69o C5]#]0Mm3]U:^NZ o&Ӹ"KOBSUa"1Rap To;@͹z|P;[]ߙ,?*fGYz+1p0|k^lߊ-@ӝ[|\iύ=)!t9k O;k )1 1S/aӖS4M bWCKBؒ^=%| q$w/aP0 RnYG&2D)mq1 RW:5V\ ˗8ĶjC@ ߫A -!UI$qqJ1]F~3VBK«XuKDR_$F߭^Ѻe].1̌u4-XyAяl3?R=T}F?8AljxٽZĴAq"֘dΈMaȍ=7$ OmSU8+^R|MP%댄؏ a.;hQoڜA_*o2r *PxÀ_q%펃gw8D7STK*dL5МwZ3~haLk߈si9P*&ME%!Ey }>:.XMy\P']5w~ RmĮB@IyX삃jO:rpi/&}LpĈLvVP;[&Io_!3o6A˕ Vn*)v"h ZO k&YBrTF]PRP|\g#4/#{W}7K!~}3Iܸj@5*5?]ۗSrLnRaE|0FpJVFZzWc$<㟛j7沱la|^jD(Ē:56!ljȿwbK-Κ񲗺QOA) J܌cT*V)] <~ yU F8ba :F¾ 2pBS7sa?z2#=yV 7VKŸ;g[!0}`MZq)-z=nk'FiQR>Ksc.bPaf?pyōQO#Ѫye G]WP/ F(?:~}l)2h0&Oע0 D9-FUP. `xS_o~?:EXPk>SL4;_S?| /ã?eʝCR='ʑ@ 6+Y{?F sV9-l4K\VOÌ4 PֻIcوqBm$SyJߵ ^#QˀnǶn`"YGzBV"ur=.VGS=1_GGD_AHX4g' 95q 2 2XmtL^Đ_#~=!cTb4bb2 (!scluW y1u$ȳ, =?'d楟o<}v~ s~Lr51+.c w#v[2bvqQӋ6:j[8;JHAeB >^ZGm1?{HX>@1783w4 hڦGE 'Fv?rDuɩsg<`{1cg[wVi 8RlwKr[} ze6WO{㳦CÖ玻}R:T c6',-D+ndch(q^! zǬ釙3iukWF}^XwLBd3g.=ڏ`fү<ۑh 'IM=r <+xqkݏ.bՀ l~uyCh +ݬ\orަ\+nٜOqj-IE;e}En(,di6=s#kd37\B&]O#v + (Xu?'Aa<˱׻ lA=F= }@ !C@fBd|B[r6E9>VH4kv]©-H<#7w"( r0mFמmN/`:/U" }=b=+?O/%KbM]zCЈ( 0j%W5_7?Cկ/R?|L ®;^4 nܔE (zWd7 :'duP5x9%u%bOa:7bt3YIrAMc_v%H#ƻlXTsJ=7!Ic9 e걦^#LMN;pB0 w~;zrd1Pxbfx?`Z\q;mt.B]ʠj7c-U~3d>4CET׫|,f8y $ŷbLk8bP RNZ̠NUs: /$q0gc  kECMA=B1Kij5m5}Lk1ϧc0ʖceq0EW49eDeub&US_8y`ҭ\{ΡD?E18Ec.@"ZW_*3^i5_ݗrEn~R sWa|m쳯P|D=Vq{kc𜦢>,`@TvZbt01v"/ozi~4ŝ߃w4 왬`a0~ z^R|:&Lqdr]{R7OLXKdό2߃;J!޳s PI Co_k[ 8/[*чqazfP֒%0|u-XD 莏Y".@*`RNJy?:5@>Sx|HsҏQ)߾ ґ/3f-0>ta7K(Ls09*Wpau-3G{0m+CNBnp$Th a{M6(].Agboܡ6gdN8(G4l&Mεі16y~C_TT+Cy$Fƚ -ɭPa3Lbۙw4x-enD]9͠)=VmJ*}-Dy퀆>3\P|V6,==z6_󫎢k\*sst%j)N^nA Tpp%\2bѝ$CvΙǣȤg4L)m^4dr!XS" Mr6CD]Rp2p]]&ivUM5mB t(ǃ+11Kyz_]VW۽i[",>v/7q"M‹>NK]t 1p?L!M`egovv7>G,ź o1ՑtѰ2_i'n)H;^p'GX ic: /]-=ߝ f7Ґ"](Fu_r}"+ 5%ȚY d$H2uq~yXGO5Ƭ(zE5ntϯ1M!HuڰaUG^WAlw1^r{,Z(9y;zI*zyw1OX)|l,zT"sR>$/aAu@i0bV S[?FVWdsFd2d#4`P:=P-},|n~~ρ /c[,nWA@j ÍPwmR攔 jAѭ=SrH#z_3A׵?_"yKUmrm/ !RJܿ"瓪#nK7bR:1{~&qڧFnx[\zN%Ttm^IprWzEƥ[)jS'Vh^=|﬇6dL|R\HRd,=a6TmQK,~iw2({D[$<\ݛ# *ι&~^ɖrS7!eI6v)l4J mu<Xm8J Ĝ)JGEs%y ]OƆc%9)_96~lr)ɾ\XVWsuU 4>;ñY/jBDrc.,<k7M{wb;̜JT4 PH\pZ &qq'bt؁~ >y/د=F?o,zwVfidKcTփEV B&Hlʬ>k|._|X/*jE%Tku3[bq̀3,f)4Ž3,ZR=h}\ /=QxR{rF\B:pP8{6 qۿOB/+L{} _4p>軛WY 0@(s3UlmRHʷdƶiS> Аn1`~pyKt9@#ʌ)pAC ?;(95v{_-bGֹ/X^.;f4`qu][ -1A3v \CC[Gf(l|?V-\:w5 [K݉-VTArӜ4ϰ I˿\%c3٨?:ŰJk,^6΍z j,0ՖmFZv~H!ׅʩhhog75CD˵ŋhlN(N qcΑ-O!e`x$$9 4!q,h8N-6I 2c (3?[dV(Xmw=`hhjJ-\A[h 'eQzߝ~M~ ]j:_ ~Og"?Rk+*٭ݼ77*J$wX! 9 }`9(;KShaxsw{v 6U?bތX'w$^+|ȎeF|Y{?ANXQYnyA^ۼ1'n1P%-s2[sb擂 PR$gbkL#uk|= Fj)k示6}u4K( eNC~ ʐeHp.M빓@jN$sh23sO#PPeAa Pm=tYzh^DAK[X~n{i%fnGM[bQ NS>pK-L@5Wwtp8wkzOCӜO_tL+;F-΋CCa(X c~Ο\IΦPg~h>!nSv*-k'Mn2]\G7.=ElPC=o-jo烹߀И>E۟q@4NJ%eZ27c(K6smqc 止L!2Q@ٍvH<0 (#dثڴ>_~9NOan.^+g .\aZdY{bۅ6֨/@uwZ|^ CX 0 Pp+Zw^aa=;MY/'BږQra]Hf^l 3 b3ň0FH]=mh-^e U米ʙ\u.v1Egq7aʫ8km{{m$iGу݂PsA z?oLS_N?Q=wuUI{HReXó,H޵فbАG߃YQ#Θ1 MGc.ф`e5=J/C)=Oo=1%gy^ u,c #qG\4rPx|ޫըXXUViOi4bu5 ,;[W @2{0KLn״ S^b\E!䜾^2 a+큔m1N\\9{2ȳtW6@:h0!eظ${l -5;%;d&IkFW(I\h|ϭO&YkNe9fٴS gL|e~^.`bZCEII?\üq Bd'~4S@4)|o'FL;~6Qke=_ǠY[Tuixz|-z!^+PZ|frw|e)xɫzTŕ?07dk+?;yz'8lgc~GPþ : g.9 e*i^NH-awb X;;F5bzPX \Iu2${kr CöH^Bݯ:;<JzBZo:6`z21?MThU+iuŗv:#HȹbmN7O~kѭd,.ƚ2C.4jB w^< gȂ J 1!en~NEjA(,cy8~ 2MlrA֫?g u'"ͩRXglxuF=@۷ @X| I@\z ÒLbCrAO4Vr=5jMw`S?Fx)e'tt; +cw+I z}݃!gh¦_EBIH;S*2{ .:=VUbY9]'4orFC5ՄSZZ]2VD3_@SFX1~~qىߘ=)^9"(G~97˨> %BccP?#3P)]f }vX!y8v}w }Ė1hxxH)\tTBkk nzykȉ%M}m UAE$~|R/wF(5YZzQn { .aBid@vwƔnat~ :OOK.1k|\6{4>#2njG Vz#Ncz݃KвAAH1H ◱Fs9kmB 䮆ĥ.an!7Y(NqV˩~\jc߬߳o?ſ>?ܜHQ;T}F#uG/SL`L~L_}Z+{R-]9<֦~ŋGsZw7/4aOyCv#hQrS$.-#$R,KEyjoL$=3t+郻oA*6kӹ1Owd ^Rec0g0S|$׋Is疾Cx$Tk7o@`@C?|os( i%YIW}"$e{n:xWޜPü+w@w.A*ԅ!V7ڳ53.K7I9HXq_VVܧ|`gG~uL~ =XC= ˏqqgPcExk>=V F̳.H ?+y]'$@Mŧ{\Vvcp4$œn b}KR?Roz^aѯ*6MLGg@K'\YDҭ[d RϚ1V`ͩw0۫^gگsX-8hte\ #/AouX-4Y9_e3|}P3]qk\[xweYS[a~/F%$X]8fޏ>#Z~X%_TցdԻZ[g2ք ` XC"=iX}@cfqiFɳdd!倜^GH7%).^9(~ %Z+^ۀO+ځ͞K|YwRz[xSw(,&bIļ$f-ռCQy|sC1bkS?@2=_D+-Ԓ3=KIeX=<-\ܰ~죈 ѝK+CSȥs*w% LOjn6TL>ߘo.Y3}& uJo]0eկiܛA6`, mXy>\9e鹣\w mDJ:nOx0=S!BFgm!43da}(?;V0Ғ=ǔYB<52ȃ:kX~f (e $@%cB!$ qh3BߐVӏ 5;]@~!GP轳0 |01ebB!Hd8_*> VOo譻xARTx+$@\)|߄rE|r3 _&WAP,HNsR_MǥP-fIj?5OPTc)s~Mgz??=CFp/Uww Mf}7zٴW;v*]b&tbLfiQ,pcix ^NFC V6)AIYew㖖xPx; jî z y ²g* A}Y3k|",5bԨ{_eġs`ck#/a͓RYptwĬF)_ y1IaT^?>baȯћ0 GGD>cuH|/U1Ө i=6? ^o2({w#Zq+K=+5?&xպC9К 5|2֏a:nu/M _6NOw&V'Yp B}+@n% &O!*?P]+IVovHܡ.l;LX=^ift&Sz}:%!)_|1_$Añ>ICжn!24.;3Ž闲xmXܪ}FI} uI-N=s13vU>R/ޣOE[nY];F B]@;ȓ%iy=h#-w ?Kly )O SvsYL}:bi ɩaqTQYl㼼7g > zI e3p_~=~ Yf/yU*P;^kO= ,"$`SWw fۚ.mB hC40 zsVԡg wùG\HzȓwT*lAcfѢPmU{^f+eg=\ 1/ps=NyK@ #aG%$/ad:FZLZ1h u> \I]g8}4<=s,;0'*WUwC#3XK/UL<)Iix\fֱ6,'~/eŁ,y^9VBÛ'?OA Dži#tS'<#Nb~esX~`9(Vb cwB$qr4Z! h;)~o%giGr_T{ XiHh]//$@5ӘIG9L†oryB\ [Zbg$_bV%`x~ /r ^^->j&SsؒdϹ;fUae'{g'$KZn(NbzK nήgw7?șN0(8)ZŰ3;}FR׃sX_>}9g ` kG,>uΎ`މ_JXzqR)nmlD7*qvl MB1'AQ$ϼPZnնtUD tҁjiH:hc9rf\¢77 g}i)aV~rrJ5.#N)se3 A/q$F(?x6 %61OG1ԹMlֳ7Տe!گ4z^bMo~yՖp(p_~) P6ĦCML?q <;`n(O<^FŻݖ)80,5?|ngR%1=Оvj04 CˆM{"4_4nONo.H݀O84ҡ5R`uK ^};q.jlrtWžx@zej9WyǑL.4nx*Pe#' xo *샆fg]Cڶ*T4C[mVN&!moD{w4qcQlwe[ k+>B1qe &!C =I[* 7?<-REAzQ ҥW s6026mgC.i' Vn붣_K$5*yGv<ۮ~Sq)MzK\mմ+GM:CΛc ڱV-AZC `B,\-Lo@,^ ֔s}@h;~CB P~ H;~GrY¬1F]miV~-COw}_k'b7QWJ-?YPJZ W@{ϠDs/o+zsŚuORaYUɏuGna K"[aD_WK&qZ0q9HGgr5 Qy1i .ot۞{XΩX=x0G|47CSA'I+=jפ45"x&7>,~ ,EQ;c΅I5Y y1ov0 [3z$鹏V f\<)V WT_0s(C} PΈV$QtiZ"$u] y7y)k(BP%/0h3ZoN lА<~V6$28 c@ӵOXد8VoHͭB[2(S|orfZmϥc̶<[KA7WҠu g to65ct+m(?e&X3-\ IC"C˱Ƚ-X5w=+ N BbI')W J< DA|E(`dm>B#/kta؛BI©s#6i;xC@ Fw((z! W˭9P+sC $i(}q?r:䆒#@P5 )zR#@wTtr۩ gB,~eP{P)x|~j~?I_g?|t_]i8_H"p<}&y8gz;P%UA ^5&`(;S~g΃=9p2*?lz'r!:芊VTF>:gv|qӏCnbj$A+󪷂$|%*ٹD@nIMfCedqIe,tQ6o!nYȶ1}l{27 u`nkM,Pbö}z">ݐ9^r=m H^!{,Ҿe+\ǂrA8򃊉ħL=_уŊԐyw| 'ƚْ;xsz,;X~")V $-A-GɵO[M'_x;WsHoL},r{+>bb]Pn7t1V8 6E Ū(&H U-tGQ&ۏCSc[d ki칌 rط4C C:3TKC^B9;ʙm5)9BUyvP#OԠ;HhMhq- uStoPcV/j>&ɲV"TrǴe=~~a|}PԧIϬ`pkvX#V3Y<7N1 57C=_\NSpݱZAP8?n wj|.Bu@3]k.~x~k3 %~jc!lߓOpQ3{NS=T}\#_V7wQlYMa)A@8ErjQh{2BXy{}{<3ꍌB}ffHZr%\ĥBgK '2nY*vwVsַ+BkVR7ܪow˫r@u$D8?yъ233Kgd,IXkJӕ0&c,.>e+=|*~W \+'K.eG<P{o*(%EF>f4?=@by7e&Tժ*C ㅍi}/7MnÚ΂Btƈo\חl1plQyG9SIV( 檨}Eez'4]-ۺv^L"Ys!N>g0zhu?{B+5]XôaC,&yF;Wt4R艤dm᫘f͙͌b0 'oZ㳸S{oXT(vy,s Cϒ^xI9ff.AJppuǧ]`T5$ 9f""%PPx9<0ik50#`;E qg>6rTN A^ }J|bU)o7 [Cۣ}ܲS{#(8+Ca&H{/wMD>y|ASOg SlsxfWgևԈ(5޼_ [W?c"gX~3k:e`+F2o]`\H0m&0!p` Ǝ9\dnb;|=1]YU%(,Kjס*t3ؾ|CCGs[C[ :y7 [,iCYV(c,~Hw~/W !C?^wBt)ƐZHo]٨ Qs?CݯE>_ 'OASj~??_>|?R?l:]Roi4>bf< =yBҜB`W"Vu`뛕##͸\tWPm9v}Ն{i%9`RfG,!:~lĂP=)CS[X7exeoFU@ Y=(Y**2mJ!6lK0򺬲-]Pw׋'#P=[ l. jū!e=Jbi$=m ~7P9UʦO!ajJS v1M:M=+!ZdT=6 Z*eXj}i r+vTHN3ݾlM] /ƒ Fs8,k4,?erh8Zʏ@s%>k7\w_@ZhK#+O An`<e{,>%dOi2 -+h[8"#q +%o0n`hxiB܍X}R=4Jrl|'^pQASYAIn}1 k9s?"}"W1guEaUf J[5$,fހlH 5u!*X'(/Waq[.!+@uX' QQTD)ҤRZ,{}eTVh|{n|.'[1YS޶/$3~Ƚ߳>o>CE?JZ(B~^ +Ѿq (mE1<)MF+u!an_iLp]^# uF}WHH@ X㪤nudA2-'d?0إG{rB!v7̈whKy.]ځ>_ |k({w$G]|@]Q\qqH>ad/UISwMܥv4.E~lŚÝNPb{H>h|??ZAUjTtȋK: QGke_AT럶CPU}^l*z)E*h&ynL)>߇g(Dq IC1-E (|u_cHh.~,9 rK`ɏXT] Dq4jqx^I*7E> ʂ"͆Ⱦo}[=ڄo ϡÝ(c7"QCnAzL"`(N!UZ&usצ5'vcNKx>e|moc  sc|hwLnޝRBovDBp17j| Kw0꧝cc٣u w&a?Ch ~:?c:?~O'7|z~fm?Gib'_ _ |_tq|5փOÂ})֥{h3ӽ&6ui_1Os{XY1izOtBVYX[Vs`v?5XJo$?v6vjZ ͖u/`3^լnW3X_^u+oRC\AN,o=qZdK;yq9-~]%b)3(?y6%Zۻ |:Õ`,Xγz̿Aޭ5[bbٱU08!V}Zi 5@7fŖ@l2شFWFo8舣#w>%x,Z07_8٪gvrr앱q>wfd[vsî;%ufP{)D,eGBe_c.C;lC-)>ݏIP0ó( i$a _;|l Ŧ ;l 5J^.5F :ϱӷ# )l꼙9. bwG eB|  3-7iD;cmZVۉ o6g/ ߷6 a*NTp`g8,W}/!6[u-jNiNWTqa-^~)U%P,$[4, M~Z0֭4;&XqVc$hQ31CZƊI}h$2^Ĉhư|h'O~RklZصPDkz߶Vbڏ03nW0*r"V4y{ ecOǾPE*f\,x{ _LH_}nN܁8G'aԏW _d)1$edPtg:cD݋;XIi{~#u/)fcc(;l^(5v.U p&{aylejg oaXꛘPV׬OdrhI~>QzӴ῎$Z~?\jk|3SB)u"/Znb_W$U+Q?:#z}ٺ5U.=҅QMa8 찘3/ʒތ'+`6 c#Ѥ}} #Ųu\vV^trc< 0{uX`VKEXŔZQA('&-jm[ѳC=1o9Z 2)P{UO_L<݋i(a;d`ń&L|?ݲk tdl$9+P!},*uv؂ٹۗǨ;C8/K冋=;!z.L[e?Gϥ'itBMA3a[MNm;uWɓR/cIJz+f551օ7Sd055W^NIw<˪˷tnr&N?$ G< qyH ܰ u@pN,Z#I`^ PYjK D/(އ%_u`E!(sg13i)u6\f P8HJST%f©Y*FZh`L*h$TG 1.?DيVT%F .BXo!|_{m.. =pԹbF/ ,b"DRvx~XIZ7\B2EPZ Ak(ghj)Tj.ZR.١dTyd1&%rY3i#}Rx{21 {^lWQF7[MXŭ.IgtI2?ƒ-)ŷ]g},AaJٱ_@v6\\s86GC1!*1b|B}¡iHJfT̈́>JL8neŶ .):aBldޅH(+1K0t@qHN5FnգiAg?xDIo~NHj6o߰q^v(38w J˘}VVi -wY0=:i\Ԏ5{"2= S6 +7@uHiu3QR\_w5%! ?|rNo6O{|kk"_ϸcs___&Gq1| ]I?S,*t]q&ccbq_ 3=vڒ;uqW۠5I۴O& u&`ty P:\$;t~q{®t+itZt!H.ìтX"hQv6agS0-2c@Ww΂3){V(?E= afW$iEb߈*đyA=^ vnaPvgs|QT8Kt?i`aRUG;̮ywTwa{վMdrYq4WyKv mG1Έ@[s%_(:/Լ~lH AّtQw}, > %be7Cv>Nޏ^Bke=-lfK}~,ڻGJ>PPCs*υOz]^BҶl洼( O AQܐhhP4[)@5zr=MowQ䟷a,uM!|a<"ݐ/2Z$)N', ۻ2(u\4dHg45@쩇á`OG[cvd>@? M ?>?bu/e![33LZ=&P·7 㽃`3qN9V~9XV%@73}S+L2ʧ|W0L@W.nfYc%c= cΞ7XKآZW^0BrPSxt[JUY!廙p3pɠ /=8HJtá0_9v;t7ǙKs?W-𾦃T ;s4wh:K˚9{b۵Mj|'f3ƿY J5wݽ/$\k5:?qovC)DЈD#ϯu?Q?ꭝx@^P@1S]܋_X9E]Rʣ~ʼn?u#Їw=C*c_$ZT? 69E6`zվ[YdsJSqfV %sAwӜ@H45SQd_Q_pC\-t#DeK* 'AhH}hK٥Cn;_Y,)ӑ@ lAhb)3Yeu,Teo1muf#{b1hC.T|^fs (c~Z`)g)̌7wq:=,Q m9ú}M‡] օʅw{M@)<1 ןjGe+ʻh|'fٓPy=ղ[g S ~z0I=5bp\ftVd*c<l tUSƬޣMa^U!ȧX?qòsĦC] -"?Lعds[xaLJ!]磯53셔&HhItRȍ50ؤwIz|tO38TېO$߶9wX]ng_5/LGl0&uS\щ|zyѤӯʒ{M/;Z4B)c污KXyJ=&}Wy {X![d6O*Qpc=_*xLQ4Y{Ŀc͟?B {bZKÀ[^`n@i۔$lTV~ ;uZYqכ3aOȖ͛x4`Ǧpu&/[r"I_h!"\?[ӎeb,r=M;];Wẟ~?ܞ{~OH q3~{>k1H?_>ϧ۴#M l5>)r2_ ԯo_ c7.CsŰyL&wFc:K964{,ewc\ʼ0,3JT" -'ٟ]_ٖ^)S7T5y}-Q$"mpIs [`y0ecx=58Tg#^\ fhghmbP'jKKSo{f& ,>㺛B DA,![&&182Zڐ MzGGU_vŊ{ 2[A&Sxx! n-C;0:xϖt~뎮憿ڬٽZ9;$g4<ʙQw@f?C] b&3_|\ex&=>;"ͺ/$3׈b ^_7v_!|\/YǤrbۧ=y-8(] (+|"ޛ@ ѻ u;{cEަNpKv Φ[.]T vZ]34s/1Sj"s'v[c0`% r/]|~>V̢PX hXaoCدb{Ӎվ/bk?nNdwZFT}>>EV;xEP'@ r)?w$CȢL|bq0ǒB0[A[Hv<9ɳZ^~cleϿ6z5/|&e pkoc̆bU,2:TQct ~꽭,^ )z gBVVܻ'nBs/$9>¥W&__?i=пh?fJ8G0{:[O/LqO 8 j~ͅ?B>[x=#t.nI3{Ã5g._w #e\2om>.$[r{utCK)P>=) iʉgG=G]@3X~Rʿع۬@>%uH~|rZ˰\;"?G‘BCҤ%!,NQ{<& bџg7~+ >.AqsZYHAߓ1bW|c1DO,ܔ%طs[zX"q!׹6K~ɯ[nLᇂm[Hsu4##i +FJNewՅR 6q( RvrrU(--5 ށzQ́`}3Bz2dXYN'zgR h:CfʏӪP{g>:>Vi& ^ ֚ϼ% ?| 'L| "=A L"^J?=ͯ?Q1e|\/ۯw^tKt率 `޸Y;] bC&!Mv Tz[>$HB:Vɏ/Ykş 65Y4&7ݮl5Hj礛ыKsR׾}t쯎 S }~%' h9(!C3ӵ7ޖ[IO0M(I! wMb ( .c^Bym1CRCދGD/Maǭzb}7 pѿ6?Vٷ~jq}y^ß{Ee-x2雞5~ \vBڡ U:3.d>&W3:}Ny~rtbY_:XQZ{LE1dBjJ6fW}u^+ô ~?W䫞p3 +0>+drxuv7M P~ ע [U:qRM2f>qTO2l`h=3Vq<+[7;3!/X {pQJ0J]% 0ۦDBQ(m]ٲ,T+IR4[ZBvź} T{f{UТukV{*T#X;D}1Hfh|@)} Bnʳ_s=71!;VsUS[=81 w7j:z~Y΍fI:/˫I{c̐syu'zH)enydvPOB7 b~e~x dBx]+q \#Z

}B ~_XyG:SVܸ`/YgLm+ӭMY͌TuwW 扞x i_h2s2&Vy8a Ҳ,ן~$ڷDn$fLUmycM#}s.X1awAƝw1[_16gΔ:,TX('~5~=f+3|5|eߣD)u/Zq}Ϥskz^_=|-Znn<=l aQo|*1Yzõ2,R5[t/ zpjI>;qˬGTi|RUyU|y;WᅱcV lyXYڪ^aO1:-|CJ!K̮!s^6MHmw>aݟ?cǀBmݶx(G^ՉN2zb}_QK؃M%Ĥc>_(?S`^)0U tiMwF1UiZZ_*X{گ[7@rF sҙ+!i\+;|y1-zHHCwϻ9\0A}>뽡v"lٯX=znL qS^#v`ңnPa&??*iorPpc*x@;Op.I0臽T2be,ڔs6bwN/H |#aU5 sγ0SA~3ΧPv1C}wX.^ u媅Pw=Ĵ1]ya %Cߟʁt:;/wp6+%#~ sC@t#]u~u᚟?W$7?ή~%$iDPk=k3aD^?/Om1{R3 ò;`$(dƝw| ky<;i/c|$ jM9"_Vu[c4biwj=f4,N2q wzlrq Oλc+%$~HJ]C}okUSbίm CNA]<5zm̽%Jѻu~digh |j d:+=1ZC:9B)c/N}wN_;B.$3+01h۽ 26s>˳*i6Be@ X2Y͞/]nܤ? _dPrgː6OF1J'Ēy{e#˭U6cC f*3=(EY-CQLti)͜: 6P쮿s5&}VeEG٣tlq( ~Rh' D#zL};Q,蛿_ARy;bZg`awwIlPȐ#0tI`XeYܻ̌.\ 2ɾJT""= }I } :FΚh0Fծk[.|yo# J.0ϛ/*&!XB!*{`Бf5%,iw8Akv1'7dp$аҵv.sSŢ!Nzv d^@6`e|,Y<ʪ4ѩ.!^J/Iޯ#>?K8@F 5=^; v2om=bo'1@>p@< 8^MBow MXamжEI Dv+aDd7+I(%8{|e03s(*:VUYj7W`zV~>-&& ;t0\`M![#8+oD3C=h2FE~mxzc7I6#Yd>oR&i.5mTYM#r0UR3)Qf /ՂV&lm ,kͻEƣQZ+;M\)| ӳ=APx36PObfF\$35x;I] Eߛ<7)PywOAvUL{07bO nKн\cD(dV{, spT:L{ EOsggCIgGıU_tc1E$tӂ8$8 PuzJ ~cƁ+(k|\Nb ~:b-_Pv=?C쇯? qHD8W/ Z?;oUPǐ'Ibgw5ߏt[PG3_[ Ųԡi^`h3щ<dC Ic I(zDBΑ ).|Ɋ"0,'uXզ>6f)rf7T]LϕcL/ ܠ1֬q6^Q`jQ'KoH!+h4nN눡m^вC!{~tPG6:W64se/vc[5#,Q_\^cј竟[w驀:,%~*M[ÿ|W4ǕEHۭmUe6+Rm$eC[wd܄VǕ*6X-bl؞-cb9PDuDž2J-ۋS.N뤹t$z *> | |27%XƿZ+ܖwk탲>k " -{"—1qRvO+B 09܂W~4apNG:ߟĊ3(1t1G\6*^=8FƸnޙQ}Mo s):v`ީ*:6¿IάZ+HD}4xx3Mo` I[ PDXl2wd>GH5}dX1zǮ&@pqH:s: uȂaKPT1эI3eRi=o=0ZnRV9BfVrB/~[KB] w}M ~(?s+'k|\H͞-O_3 Z!{<$V]UYi ة[\ͷj!_a^)JOG7YUu)۶8'מP!MA óXZf5nC'cʱsqFpIxTe8oR2n J,ײ#~ꐐФVf`2u"D(t[͡'Ti 3oYT8:%eh6]{ =<2>xGܥ5" Ǯt@4>8y0wu{ &-zY9To}YҶo @NSï޹<ɡT8vRd21`hK @*;bߥL-gнztb.0ui"Y'LWB7mꇛ1gR%Knv+'d. !^t3+2'{'59M 4h)V4+w@~9KXoVUZ$a1bdwx4%:,9Yq,ƒ #&RUk?+; rhLiȊbJiK2wLJ肧79X{'k^/ΆΝ*U!%1Y*ҕ8̫.]X(pOh_yqn-jҤx.k03CV^& p1U҈ʹ:tGW UnH@w|Z}G<ԕMǷ@s{+XrrB{>4(2$y uQ.7, +C]אɯ9}Zz=_o?=_7!|~\?/fmJsaKF(ݽOnTռI2u c7+D w*ئnG)62Y7u[žzgW?a ;h܂%b=Z}#ҏSAщ$MVw٧rqM)m>0~qh/ NS27F9#y?Ыd꩛;M-msq\)ɒ\~heBŷ|wAk/g7v /"{!Ѷ8YRZoveJ֨XMo][{Zb&z*6ow@<8RyZ. 7]`CL`}C>Oc\&t}ywH*C?_hc9UH0?߉w :%fbyVno iRG01'7guE<ŴY=Y:Ph Tȿ wz?_f8C]TQo)Nc◃F5es`Eϝk.= [zf=ZMvDdOEgj.o;"!Qy!6`&!,JC55vfe-`ql_N,ɱtmB12XL \,`3Ɠ) V~le_[~._("3R_r?f~OQ^Hۮ?=u1ٲ~_V?keV\̈́՟IcklT<&$eSO2b }f\56L%;eyoB`Iv=_bѢNnew3Uߋ;{)B ݞ\K=mXvh>,u~\!È^S;S bvP>Qgؿod:#?c޵A(a%OShCHFCko#f]Lbɾ9X۟,]} sc>ջF&i&z74p ^OAH`Qv.otp#wtk*Ŵ=,B!}WiXY!Cÿl(BٞI/Lκ z=&+ǚ#3.8>}8b*Ґ֎}YO͡5;!lhJ)gKAo6j5(N譞cM!ovXiV=# ^)v4og[ bf<{( Ԉ@2.dqn^B6?:u15;FAh8=Kz5<5.:6'Fߺ=E?ÄSsPjW$K1 `ɃRuқg_q־NN$׏ ksY5!"7;O{\Dc=_Hg#SB̯#_ q>Z_?m[xzw,芫nV^Noigݠe⩃xpT].7(F׸(#CحtuhO}/5dוpG/WH8mzC޻Bv :&T (}zcV[ sDo?aPt NSxϊL]Nb9q'Vm;n:$вC%pǷ@`P,{7n5o=sH m\&I@6zsiAU)/vPsИH q ޡ&P nNSSٍWm]0<T-£zK$tj7S}7 wF l5fBf }ޖvhQUE"oa0hX1\l?^wKqZ6& ^(SehÖ@J CPF[zk\g@ /.5c5yJ>h fw$a_0ٟ1&\I E;5J@Bqm &4Jq7J(4NChz}a>%72V,bxV1 铇jz84]ޞ,Ը;M9Ѕ pz6>u6lszuK)zPӼ(&r˧t}€6RӊfSo˿S-;o*7e}W?W+(ICRMQzIt릿cg@T\]V&VVotC}%ifzΙI#2eF>>zX2c;|@&V/̻)Fme/;u3W<}DQnq4MKyغv>HO?==d}c P??|9&a|Yw2N2Ub VMЦ%=*wbӐk|gND!eHduf0\,r Z9wknKC![]P_0da[ȗ_̗7}@}=us]!3=_>"fw ~^_/Hgebzm>C?v~\??n@K|fl _6k ]¶; e4;ەxi`#,m0WȄEU SJQ8??vn6ePgb"9v(~Bc V+uɿo},\b3ZR2[ Edl:~fܤp7^L5K:J}MP*(|r&Ǒo*xY2o*%E|fں϶Y`iٹm;̜;| ӯUڒz$[$۠MS)qxם Zc]Xw#_lEw)'(P͐ϡq7$3_Pԁl J¨t(|(\SF:g>>h1ٔ˷=:|Xc"ڰRF\bŖ.Kr|aH,jt|2tJ< .f铏!2[H %:L0I1)g^Gr{=qLm:ͱ),$cJ=pwy >j?׵_}n(qdK\䟑g|*[T+7}+kZ7M/#0=n1a6·%D}rF5,VH{5pS?n"ߌW]S[1yj (aI8 U{XwۏGfE"CSP]F'1Rːb= > r`6YS;+a;;ctTL-kг(.q㌰h">2:(C¦o_|FGӜՃ|pm!w' 3?g¬35qsd|"RNec<:@h"M }܈n; kvC1C2~G} )hR|)(dhDwo#󤐘|b̜'TjxU:(n*T0Ml,bاyVXc7>T{fvK3VeѸ~ڳYRF>&׵ϵBg/"GoYS vD~Ɩ/"{Mb>SG?j|g:6 ;RΘǘYF}j{iQܚ=ɁףؑM5;(A[j1phe2NsuB+J*yzwdKqjfȐ\yl?ޱ9Z/MzB{no@D~Mw$e1~6̽U:&)ؑut;R}3=ׇ͎{!ύ]"`4U+};-+&Rt(R}iReEaū}@sjLo{v ~E@g)t_"eZ} bAM"2]/J9bapI:h?}CdwOH|GJhG[*=(8G]޿8ɘF%YM`M,sCUO .p{C]E]k26W("':?~O10$DZ~g =;b>H?Fk#q> _vT8Հ:ў~ت#eQ_#:qƼu=Ls6esrX>֏ ;"~y4*?Z{Ox}|I}aP$g65]!"_!⡖^-[I jz[\9ԔsqߋeO)9rR s*B]oPcpu Tc?Hz!tw@SC&#d&n/i+ŶB޽Y&Z2joߒa VD^j3,*N=%Bޔw<wUo7M8.(,V{ bR*fx!ѳ*T(Ma>q G(אr2i4wcֲw0ZEМdhhݠ͞5nҷPǪ>8bF8sqDAeZMLe]q5MAѯD/`v2nm(T~\xJq`V笃/F {BQg@ӐbiuΙɁ]ljlޅgೇtk$ 5􆓧'%/4dy|K u-Ֆ !+հv9Uv+cy0a`4^XR?ܽ=:,o]YeV#`}o>"4T\|:]Z#QZB=*{)䗏aW!5't[fN.[; \nC9/FF}/jļc-e7ykΟi,L#2+RreۜvbDw3}Lu=YXjoA|]?;3}r<e[G0czIF#g$4mY3?njrx0=Y`C^~1(W+c&"&lq k( _򺘌3u}=hp @>\5HN9jqP;,x *z]> M^oզ@7hQ u2Me/ ?w#:Q" 5~8^?~4X_D~f3~Ldͯqxc&[z~ܗ=ؼ0 ,>92PR2~ZRτqh;GiYt;4.ĜKO< l};B[gyH-1Ç :%&ԜD9w>d5y.v3G#w,LH | . (9vq)ȍHVJ߰sI -l:uCsD>wӸٷ.GcUum/1|- ?<.+}!=sCkF=}֎?Σ 8!וap}Xw!jtIhdԥY Kk#ybig oQVo#isGGl z.uit;6y[&)c?Φ5cL^2A˃<^QtI'V(V؊RZ{|WƷWv]h3 >+Ys / 2<^ _Cy-bz8dUau 2?߅ٔ/j~}_ϥ 7V(uN u/3e9FlsX` &@c6 7~6:} htQ ' oh."Vq21_ 42[!u;lXI&oq"GL'"Ű5i)ClDAnJﻜ%_Z|@fx; iT.׏|@1B!P}=ZqaFVqToy՜5|G=!`9+;51s0 DJɉτ\S\5Ө/8>)ӣ+lg-Ƨ>D@vqr `v1L9ƊŪ"BhI;ѣt}%*(3:+&?Wӑk3sl (- | )g)_\jsP;k[WkԌ)Ҳ;-4 'B2d'-sȹtM] 8Eo܂KlK6 , ߂-T_J=ǴC/^ E_3kG辌mu$f0o(h|DQGcL-ɟAMDHn_liZR?/a2YW-XȘΙ[RͻBl; *~ra|jjē?lOVצvbwav!IgM 9 e eS *v v чJΡ;*#ެhd#37|HNoC1LW@J2Xzg%jJ?*-9q+n}i=7} 1Vօ5TmP=Y}aܑ ώI>J V!;7AXhx<;@闡qU,IV6J ZIRIX"/+Pi6Li1-bjYfSw\r38^ULru~s,KY6<ڣTy-X"!Q?8|zbV UjW%r-dG9RH5^AT1or5>ƢJ@ q,.j" ^b8){0"n4%c;UrGd&J72`{2:{~DbE5῾F]g ϵY+!Y{>*n$׈'nHͯn~#Ǵ_2|+]IzA3M5Q͑e[Tv@oW}p[}M@*cIZ#M?}k-BJ/Nou,u˽"$>+Drn$iE 7o۬M\-6nchǽ/eu͂dgm }{vOZidcoH;*,V}c۟b-9uzyaj[mμrҤ2^׬=Xxwab3dYFXn|o xя}"`g&_ eSg\`8i$UXmoQː~z G]l|I(֪SZJ BaUPX0DC Ӟ<ٺ>K_yy_N+לlSB܊X-^we9rL[]G?atJ,~S,S.ώCmMPZ%$э\b [iţbZ+ZaPJh-;UǂEhW-ʘ`qah|汥wG2]ܺov:E=6aQ泫;#iQ%WE@4;EJ7mHvc[sf~Fӷa-\f=D T_р' 2i$=0~jMqjAbD. gqUO_nz>1R o`83.O(NI ="崟Cw%Ǩch6\Xz*o!O+_[Rg瞜,w"MS. @Iݡ:~H0XRJHr-k~.?s+Hp5>."fǟS#׃D}-?C쇋?=:um>C?5zv>UUwc&h~\*X~vnd@K] Aq]Ǝ@(ozj#k?&_M oHק;LPϊJ;n*gvki9'y6ewڿ_-I/$óǥ5xϿ'@{bs}$MH1eF?Z]y ݊V-BE$׵3@b QCej6Ӿ: $>5a ^T }i?1-^J3(Sw6bfo6{m"޿ZW({G*q>tL`=߶O@1M#rTgf۰>uK+it4bƃI]t&qi\*sn!֚w@XjYz³Q B` NXjU ]4$kdc}<&ab3f^FA 0t܆L<7Yz.6חga44]o|"9pTxl ωꭟfm+G\W>oJ R&ЋNh#K([&[Yz4JPb f_||@@~$qj a,2 &U5㐦QZt"IVFRʡr 0_۰;2S79,H)7,)<,bV 0lO_LU !izC qvKhzXg,wBHcA=P--ׯG -muHB2'bT7$:K J@rʤΙ`rK^0 ( Ui!aPN(QʒAɨ޷K/ {/{#w :!fL/kZg<-|z=lC _PF?t C``T=U~9:H,|Bs 6{Is y^#F[T$.:Nz=,wcK# Sb.H_#]BEg.~85Z?|SX[_og 1N#3d~\;=/P-Tnw^{^hbS9M_1~͖|Ⱥ ]OkBLZ (ur@%ɾGyRAfT5EKNnP4fgی:nAg<=!ꬠ<vS]?U]将Y., +rvZ)?d,{᎝:#nԷ&mڃMM{xcoo:\%X2^mbotX7h>*t6y}H!=TU\x6z#c s`ٯz#wצ^7%94^:ԩu +oꨱJ,dO}pKe:Ku$nizE;@UQtP\g~&WaW՗]Ay UޞroM/*@]Ooߝߜ)l{VIt] g 9ևEF#bFi+6>i_!A lm3yUgLԯ._?gR8޶k8GU]ڄ:/l \k¯ |\Wx'=‹_/#3e~x#ߓK̯݉ ]^?z}uߖ0貱>דDZ#dU0oTl7]ʟ 4 GGet2"JYַL62܉to?%w8a,=i/_s vnŢ>PxdHЕc7?FPA Xn`D v,c'0u{?9Ħi9wFlңeulXz&] qdK|o'!7{Nśu.sK~LK}9/%meۛ՜(A;m>f1$y,o=E!s;)ReCۖ\X%&b7=g[ldp] /$b?U3MH|H[cަYCH5,)[#@> MpT'>Ÿ&u|xdi,T@Ol|[ P72B:ڷ;%Bgc*Xm_Aws+Uz^֭Mʐ `ulo}=h/jYF .AAחwWAt8mʁ=S:u1"t+nƴb{Ew\H ̈ÏmM<Ũ@ rt@gMC s-ћP#Q0zRxwszZS:vH@9=5':[,}fAyJE `mwKр },ᚲ v7V_}~ g ([{ع^d(֯¬1]we̽U2/ ,qպ_33o@I@ fڿ8+ZA=CWϳl! M|˿X'XyXS"g!pt#j~ihKxX -{;{Uez4.} T-4 8'8:o8eԭū yvX?⡋ƚeJ [:pw}tU$y$\HEO1"f7 ,3wZ\eb@vDv2Ok)?D]JfӕנjOֿ U'nA}$^Up9/X&`6F={qMCK߬̽%4Bjn='2p H2X[`F{PJvL2_},6b1Ϟq9(t^6=t sGfwOY%}L#d VO]9U+>1鹽6,IrQ?!'aR#9ت.kKerAX}Ζy7>l+nyd`+?{sSl򶽛 'd=^7&2к~i;xHw\_vhBiهR0D-bNaq|_ث[w!?o5" a%o} Qjewll47{"/q>rKߌB9hI/[_~Wu!"3~ > 4"f ~_W 3k?~X!_ q8IKk#q>f7ֽ.lSxλkSK܀==~'dۈ1oXCZvE'_EE|Dzz1uUC"L1 >S 8UE'=oTʢB=G}BswwHwD`Mg2+n~چIg&a W:",9{ "KpO9,gJ#no'FKT,f W$c lb &ojXgza}= H3?߾;uH籪+hohxP?RGu.3i90@Gت5m(t^h[&+gyni6c.oyؔ /:{\>2FBQ"hԻ\  br=sF}4 ̉KUFܵb,w:~ sjŽLrCꦴ0#d|X3Lo._ >{BQ mm~KlѱU?LC12|HY#<8;>} KMzVyDE S2j";G `_Goa,vtꓴu6o;j LwHB 4lwX*޷w ?MH)C 3}`>N}xf}\ݳ Ǘe4p͍> YA)r9ǤdJjݏbCSs//:% R'CT4x߬LqX;8Nag췿0{۳@ko8rm`(V6d bó,SX#ߑynau}vưŻ;X1 f_vn̽ Ew*!3/"yB<&sm<cd$!a_}~q-6:%Sba?rlpջa?"9V>h-Xج'ɆCa7%k>jFUPC0/le,fA57r1yIES+Bo~:΋5wZ.4㹃ܒoo(+`۳hr OiɅIu5+uhRݝW׉:ŋ9!eaoCwL ࣪>Ф{._); e;^ou sfV9+,ޥMՎ*_}͙,a. whvퟀ痏>, _F@IYuPCOl8l;"WiRܖ`B3m`Ng}*{ SnE)Vl:uKmvh=V"I%̽MAL7&`6}?<ף!Hx(U ȏ.Di/$lBJ͘϶?Qh,'7:?z?М 3Y|f =E>qIHqxNegk9|7kW~afjL$(?Z'5m1m E"y;DeII4[\~|S4un] pb'\pt?u?7W@D{td[ߛ/St._`7Cwi(Sh SZXyru}rp(~UMYJs/1`{1XqleR3&/D/խ= fs-B{͍ 5Ud.h9*cb^A_!Ye'-~]fTLPH_Z~n''YûΧ/I #L.~^!?̗ǵuXHIJPB(*B2"3"%{-{キs ~^|ꟺuq^y<?FQ KP&:cz7~6<;IеuA  郯_QH.}?m@3%q=瑼'5h66޿:^s-? SzCObc+b ~ߥc6l``ڈ&&(7jZ~?4jCW71׉TI(: }])To]haJ/tPW!Zɧxz;ueo pT c{x{#D8qޅ17?s忝?S@cKPJ/0תZ!D 'Skr"_sL ‡1eQoa׻Bim5 C_UsE-3Ԍf |rNl[{>*ǮŠ7xAx& #-iM9<,O@O >+ؽ9[ p:mg_A_7) mSPd<LfaRנ\l{@V(dͼr]i9XnҌᑉ%-I2;7wnqH ֵn$tny X^f 0+ɀb`n?`?`&d 2UMV$ qSЀʇ?]X_Xth?>45br}b M!CǮͺ1 c~z5%ο y4 vlc>?T2zi 5Έ.ie.R볬bɣኴ@{Hr!B#gC$k8$x;j\rUs) u~iRŰ CߎeC2U%DW[+Ͽla Q_j]zB*Rȣ}oeovs-T~e^T_$̨Xx!iIɍЪ:/L>φJ]cgWM¼-y<\\9R1KtT8?jա19'4ط -zm m5a[u.m5ň[wŶTKHWRcvp~(Q=4"ߕ/'򹊈1"_|^Ob_(?s' }&3 1_cz}\mόN' O3)jẩggX92tH> 6ݧ;.J@$S]_+B^_71x Vm+{%UVGCJ-}ǑPR$Hfs+_yiǤK!I9 Wu7%eCr|ZlF'Wס+X~XPaʜF︡[}^;su@\v }S2`ڋM*P`c"4a),Uq~o)<60}0jwTw$=,Pjbftבx6 nʼnN-X75Rtpxތzﭱq􀓞SRߜ a֤G78w2Kd_ܳ/bC>I),]81Ar T0dsTI%6ZJAمߧUg\vzOY2E#OAȓө/ѹǦcsn|E (a5+|,?~yAs޺|x6E/8 P -$yz,Hϸh ?Dj<0R翝a}Mo1nx C³,1!)oN0F?~ZVVY+Q9]:jE%ޯwRU# 36J-_!׳\ZsaD?=l Hs}F3(m4^z=]W_vc2U5e߰aSc/L)J_H>$΁lcq8=iNAf_]XS,&O|LTօVʊyDO`q6RJx߯BCڳ1mt~AiTg';\WMPIv\F,z&+: ]i [F٠=#B|>gPqF).ӫO /̿Hv+0:T㱁3*!C~m^= mLV\k3 wh5"OCea#1%kyb?4$!|EGz9~Rh޺yFK'^DCZ( =(uW]chJ@eyZ>?{=#(I~OQItLɯ/[)ղgӻ mæڡdݮ=W ~ׯD嘃PzK&sjBe-x3Pw`"nwߟ/Vl[T6plҸ罗GrGOgPPP}FEE;,BB:OrTk5f\}na=]7- gBs%c. ~2<#u,Tgb.$^I3$"<#+6mSK̬ Xiy6~jj 4owmrK:~7FФ:?tOBiy)HHZjZ#1[6 =7LhԱF:")! ɟw-aMXu%"1E9rKA,=Am Ux7P;]HbB<1~\?m;kF[y&UEX@& ]4HnN1,>運' ,ҡo7m앸OJ\u mV/tΉ`y#{+ve-PfM^ٸ+gfm=J(]}3N;`~Qq^ }*&D7Y}_(Z_9{aNJO=Hp)<~F+E75b}Wsu0Sz$s7Rs-*'rFx]u6CcY?uX~mۡ^Y~x=- O9%w]  ^ݍtHN—}2aԽat1PkA+\˿&]Y"Km=_?܇51'{zf7{~ qA7qe^v^i!&N浠'#%"5${{@ ~WAW0~K-$È2 z0 v$>Eu<ÞReZhM!!nv)栏}%F=j/.E _icezv>P~q`K gIl9ze#oGo9?bnjhU1r=d>:$^̂|vsqM ˽00WC̡KM:󯎦L8ݛ*j0% 9}a֧1kcc/Σv̩2Ӯ9lNf 5$1Lb9(ۜmIG",m[qsxތG7cw{aƆ[rǮŞa [1q)QUc1ݑX|Vgf[ɻa/=l0@n6^QY*g?ȹ%/skf)RCf:]ɹ&xSPtRGݒ}l[h;:L^ݓwG|<ɖ9'c>f^䇐 W!69iR=HSOdWN B2of?N8YaޙjCd$qy6cXdx4aq8Cct@E"#dF xTC=cҀmG!S8|!7qErq,f+N&+>PrS $xrՅXqlk1zâ ±%6㭸)e'WmQ_hRmRyX.08jgdsrG}ruߡdhyL3l2GB}ЁI͑ ]h7Cb_3&tظ?5¢1y{2#ٲǨQ@AO:ĎkBbšX>Pjtb俘n悢sxħM\?O8g8!R+@gը#Xd'̪EWtXfQYY<07 h=v,+UoT9k/[ bAIm/>>DRCLy dOUvyaucyӵH%)O`ÂI8Hy^2`XH(ȿ%]e«D>W9?/_!qu~?>E_xwЇ B3J쯛3 Zqp^vVO?lQ0J7 T`xBS,0݂L4>nTI0OO17KI0}T#%T:?HS;4r<4KTФz#}Z8uӌ"Fk6v7>ӟ?]Zj+֏0mL{Y4=t>foxWY}E5[S(3'鰶$Mzt+ߎTMm55! z.-^}?vrAq :_$QhEBh:>(ل9ui1$Wl Ety*a]Q}[VhJz | 8A 1oZ%e3Yp3fHINs=cm~C/^Qyl2nĮ rʰG5l]Fc KxW&K~4ko}{~lԕG1`LF䕷#͒?8Vo7䆢NQsԘbn1gP*7GIsyN9G=N:; -cͷRqnv= PUEKE1S#Q=RC$4zQ;HYs?x_1D/Tq՘ě ҉?y3tl8 t#sgB[YB!?pZV#& yWdF)٪Pسq'_RTy,ǝ`ɡW0{DPE*~zW쁄* 'K]ypٷMmitdSZI(8uǾ|+Vwt2”6?V1A(u>[ N$CHnl$sJ`۱ЅTLPU aEP=zu1\ǥ J7 9̣ǘPc(cGPpgZqD+=d8b~a|E{J^d&)dgJYmex ,-蠸+;Cށqk "U/'򹢈n"_??:|S 3քQ(k qXATDIDŽue#!4Ud{tAOFB@ا^ X{&PJz G~|s5ѣPY_p >dԋ!όM)d=BGm`w/3%n[jZ?e) Eɕshkc! ^24_fd;%wb^q9,y<.[A;zƴ'cTVrnd3DƒF3N"-%Rw~? λN`3|[bu3 Sڿ \45 ΍1¤079jy6Qtb[=&ڻH}0dpd1{)9>x!% M #;9I" t_U`ǵA Pqr8tֳ*Q@zDK, (*"x0ZSPHỉ'c-m 3Ps+@}n(\)3 DZ1'1Ib0gCsoq}{C( Y+t?y4^jSb%FenBࡱUD Iڹ Y~TC}|-%; 5<Ǵ?JX$I6@$==)`K=gp=?烕s_ߞ W7eF;mP;:bvZ,IJ?Ui=܏Բ^bσ@B|3,B eveO^ZmTPx |̄䡸M*ԙ\`s " xv '?9:aڪ PŨ+^?j|7LjS|^_}kBCzb}ψ|]H􏏉(^/s7+M,`bXSlyQva~G"ofCTʼnِDʞ/7b_WtSd\4ÜXRHq^5X3t>;0(O}0mu}/U-a?h pP :^x҇E*6PpAM9cӪg.bS V߳MMl"_(Ìɇ45CnE7zbdڝ,Iw[~AR TO CS9XށhJ9g5yz>? ҁcH/iӧ5@N`ͥF?O#uйEhSrЏ߷Bb\ٓ%EG[G"1.cj?qSstӱѧIR1QWyr{}_9bP3Рj{yOhdYBa*@}?wcpT% A}uR .ht!)Kj+n'Ǡ::VM˦| ¿7_`| c{ӕ=zn{t| sϽTUwg3@*պhst,Vb g!k;JW Y646|A{B dΜv9|ܠ P~ՕR,jcZ֣$:PNB7ՂG,Hr \oCA{v^g1Oew 9L+h@tKӐ=VȲ{*m y:t,pQghBweTk=[FbIwJL& IбeTp,-6W oVaPufn[rJ'V|gګ[oqbfCz/bb"PZ?Kts^$)rشSN` +Nȥcs2K323\˿&]D>?L+, ˻$f ~O p#)ϼ#G 1_Q֓Zz0*Ò籼MD[?~dBěK4H*ԏnx4LOnv'޼loH2JN|j^k{W.)bfO? 11w2Mcs~znp}0Vya |CLLxmNT(QR#IWBF{'E1th]b|ؙrwBV.y^ڞ>Bfo];|- gH;oӯt *5YBAZW==cW{hJHzl}R V}TXqr[P/t,sclSM כA˛ޯ_jsD.4m6//XUTO,Onu#t!Wm"w+} h{ȍL,"H v4 0;s4 nڌXg%$6/n HѰI̭>p,yo= >Of^о‡u8IȨ]kTtm?=h- Hj2m[ Gaw$ I 6:JY*= ̹] "FDiyF> <<b= ]!:6dT!Ku=xj<ՄOO$ǰJ.40~*)jt/Š+7 !GOhׁD}E^̚+#@p^ȯ K$-KTPn: Sb1>~e@M, A 2 ࢔$K{`P[{Ae-/(xRAn28yc?jVKOڎnٍ2BǭVߣVZsճ-w0VJ>}|3,7Xפd3JXK`9`glP :nf߹պF_l~z-w#  ?ܞY?|5~ض/ 3r5?}~|?eܝ04gA 8%<͠v}OhH\誡5%(-UAG9S1<u Umߓ/wLh鏙ሸ$Y9$*}qu 6t/E6gjP;Q+4\2jeYqv^0{R闝 fݜ-u+1 6?6Lhe:[ĠL:]; KJ)=DL3l!=j]L_}+'lK;uA)_eLI@nxy6t-uAmѰyno֐h Vg>}g <ļB4X6a떮VD_Æل#oAn{TK`0ߋe茣g_:p&/ uf_sIqPAxd>fhrXM::djH $h*BJDQ?Ws g>]rf$}GrCd0Z's-ZX^1ŜNU Bs |;MuPC*! G`[ǛrYP"xwA;ejy뙛!֝XG9 Wf!#3L Mt:__plkm>HߺlrwnV)G *N0 d^% oTLQ¯6pΨqHuZ9BAgepP]*Hor/WRY D]e'9KCȝoF)x2'/(4-(kN ÊP1si~H~!ʁgml,#R5%4'L^TƐkU帖 6],TZtƺgC_\>e4}O|Ơ)ɇ{W<l[ !*#Q)Ք m.L?׋w׬D\k3D?|K|3M#I)듄3~>1_/>&OOObjY:<$DGN/äc2O)aWwyxZ6Yԥ-]q gz}< {۳^ޥp*E[ƯO>yXˣqdIc+&mY9'6]χlB׿hV~Cݏ=ǏR4CX_2/ȣ :x¦~p u+m1VҁN0BI 5ayf%vALgXyȏlJ9ϼR,߿C<0* ,Ñw.*[( z13} 4 s0>b .[;F]@i^a#},kr B3 &ܢMn4Cۮ ڝJ @6לM0{SŽ\X?{]97@R$;tUmN7_ޝz#?q-+4X]0z_k`W ޴;vn/ ܄HI܂opPH)j~" m?d O!w?"$٭v9lC$ niZa/wa)ZNLX}pzXX]?xYpeI(c}w -qiL~Vޡ0_QWAƲ1`׍kD~!3eCϼ ~8 ǽF^3F)k=B\_7gG{b~?YVLsCG0,~.?/ XQ}GhSj;prʄxDBga!yѺw`pvXB4M5KL70PoҢ*$̧_'dPwAxj.n?q=/y~L-5|7oD &Lߜ" hgC,<~/*0֑aWʻ۶9[!˫UPucEMҐKX~׏|@e5U0tʗ 1$%4DE=уTr^UD_:C~P5,QcGu/fu(.Ń'qZXYx]4s~4?꜏#>֞\rfһ:0AHu3gmgS~G|Xqs^\6¼꥝JC.P% Bl9K!HrdJ5>f}EK?t˔vRQZ9 bíOT\Lg?}Q$> ]E;.b%mV3/ a6NWmn=5@m#3ָlWf SO{j ֋L rZFl| W^ P#) R?|Nͥ !miNn9 yTe4 v(Ed%X5zj&n}ny]9$Hq :ibKfƠ9h=.kC5mZFR.[v}VE&ˆϑLY&t-H @{/0S/} 0묣zOt)]rhӆ"w,NN|w4l;ծe|ץ\D|5~8ǝ%Y9N)5/$3mkMb?"D(^ܶyAPyҕe:ݐpGRq֛3+R@zRJoL}lyu485mz;mB{sUXo8~z}l#IsKm\s ??,yh]\XߨU,O@c˻m@ gvhvkB#QP9ZIAH=ϊS?c$[2r BBwe^ċF .I2T'!RP0y=26 (_.R{E en cqRjߧ=@CC8Yc%t+{]cﳘJq};,kiV5ڥSsD=lvL[= TbSM Xѧo+tw^fmԔePCƚ@׾/u"בֿ$͇?; ?I0U߃'vːW]YNLNltJ8 hx*:8ͻ]-Qo4-aa ŚׯE\' s@c4B3ACyˮ^rӡ| YWPс?T3XT͓I`mMpO;Nf򽥷7Ḇ$Ju>}ѰvȻr K3Gv5c u^\+ P /YBC_~a~t3:۶-#Vhr!)>͒@K%e 5;5JrLոg|4ąTh19U/k-[X`1t8 Z 0AQ6L6@З9(s.AmX}aԭ dMW+XhdRwjڟyXzU<4߹WAu*6HCyX.^*A#o4 o i O$XhzKQ#i.P-0Ni\=*Ukϕoؤ{D|W"pU?NEq ]od߳ƧX_B ?sЇ/ׄG_gz??zǵrxVzTSkC/Ub"mݏ@\pGyVoš GB_ΌK9E Ugb5=jh}{}k'м܅u ] Ð zqVZ`3K*Jއv9.ĝ?>9нom'y4N nos:SEUa9]#^] `ƃwO.BwXrYv,DE_D~a.?C+ k|\HG ~;%O +?M- }BSLg?*?a(,;foգ8楿mYD@~=hv w7+$y"`~)jl{}99 ?ŶvB V:쿨Zl$>; O}@fT?S\cYG/D /ĝu^+AXR'+`cwa"SvѩX<&nPE&ox9!#-Ppro김B/,VNt:*YtHg摻e#QKnÚQg~,haS_$UcgXpE-N :~Q~I),AhP#t_ lmպ*ֳ XW*Dz<R)^jme U><ȿ.5AJo_xf^H~%> b>[ܒI-3Wʦ4U~-{DOnR[P ֋Ota{ϐ׵SFxLczlN umzN]X08mWJ_ҺIi)Hs~Eᄐ\`?2 =~%HPCsy.5= 6lz{`7NA#ϓwhCТdvJ!٘Hd}i9d+&߭12+赸9v|i_" T 0ګ޳0a{s}H-R ڴ7W,B yd4AOzn+/\O;ފŷ(l^>Dgwsdf pgNzD%x5md`K0tn1lvCeXU9(l+-tN̨)b'ڪ"hHQ%m,&s\vLQ&8e,շWฉ9\ ]&~m5@˒ʰwg2:E0Υ) eL?w0*Q֑>J| 9"_a:?1t!fkOO[9?L? }ub]KgG-bv'V>~X/Iѱ)ˣ&;]#>;}GK*' q{kwwR}@9ԞvRo:m5G2_>JcT`aӬG_oV@H]f?|iQy1ehfOܧ]0sq)GpycZ1,řַ+f{"/]ƂӮŭПZf K ˓e<ߺ /^)N4H5o84Q+U{X ׎E"ukK_oOuRY=oI 3OŲC5 yMEH^F l54ׯ5|KI|g$!3E!Uht8^D C 7tn"}J3iP)_xλN^ v_U 0 ~)Tuk۾ c[|dc7uxcu ~0voe2Uofl2g: !nK/\YszѾS`տ/wdB3/8w[ M^~f:h//a%M WYMy<'Mn_O; 4'mFKـPbt|CE68Y?|_2Mv0Dy],ۚ eWUΚʣHʖIHxR;g$&@u]d}xF\ًaկB% +^c]uvEQR|Bg 0&_䞌]UV;݂G rhVh 캴S`9l3R3ej~=%=Lb~U2{(EA_t[S .B;#lߡ{Ӆy?̻j^B馃$CyLgYyJ\ c!/x#Y','C×Bƺ5 ^O\4Vv҂j Ʀ=ڊmSxb>W8hJ  _\?K }~Exۖ0ۻͨyD xh]5PyP`10ps=ul*P joPXs7T9^ay^qDL=uγP$2^T3Y]܌XIN:a:uw8 adرGm4F5m}V+k?R۠~x '86Lkly? /ulWDӄϭC[>@/1pp09<{[CU;İf/Z4 P΋ecWٗ=*ܶ뫑~(/7}r4r2=/ȿZw_BsWxGg ZSk?O.\_Kǵ_8BGz9+`tJ>P}Mz]QB<s:, ڭdNh]ݪ J#/na4{pe)UB~Xz:{?qTf?S!.H~tk/* vqg)G S%ѐðwqn4$i JҋXϜsst~ x-=_;BYdmX&6Nkw`i7q߹:)=϶RJ&]_DЏBdO=suD yҪ2z=y8o]rZ`CSRwbr3=isN5Z`ɯ/~1 Nf'y/=hB?CWSh^tQ!v$OHʿ_+JBŅ󧽇1I>fT;dQcacʳ~A%&W|@V-h.,t:/<'t}F7SjXnLm!ӆh:UJ/zto{Fs)`X%;J@ϦEt:pfhkٸ:r t:ʁ od`0߈^ Ƣ}G%sז~7z:;~'O8AC#!mE$\!T7u5\dNg[]x;~ j327 QӇN"tD֣0P;~5bO^KV熘/i%=<7veoBg56ր=հ NdΤB s] Tڽ[}> DŽمI '/VU؇%P;(1:l&j/#(ݰk"ua9 Tld>SUt,d6ޮj'fisH߱A;عנ,RSM|}fOw?lwД FͯqVfj_DCgpɉ?S,mfoEm'kJCM+L,2ف]+?xډ qiE%vz|kD>!?㴞5!gC)ׄpn? =S}m?vH7ZgWZ㞭T\c&h{Ν2 ],~zyr:Nۅy֡]VePRcOQVm5!9{T=y8lcNi"_>װ%+vBE-~᪴ hm(d_=Sַ][<{z9A/Gd WJ)NwF;vL4cԺKo}gזL!V[δΘ5X΀ !o&Ɔ>CF_s`{NaySoAwPfGN z3etukBkNB=0٬G~{1ADClL80?E]^@ rJo%; ƿ0E+id]Lq\"J$-iLѯ•M%(\6OV£n@6FW9 ʔngx㫼 +a9Ah7c RgD ]PN=mA][oaЧCyUsq<9%]`ѭ% ;irmX,z0srcv[x0-qA_`(޿b_ #*zL0|;PaA=s<.^ +^knü JFY0r6Sa/mEvy{Tq#wyͪg;lpc/2ݡ+j]>(`|KM F|i/dbAtgWjl'I^˿^w% H"_#rkGov!}kk_8YӇ?.t}?Q#z}\SlXO؉W3r`Tyk$rY]H ?b֯ U_dW]-&*z_=3b?7'uB4M˱E] 3KgpOhI#G+!gX(8v馝y dk`I{ͅrܫ(YwtމVLpIZcZa[. v~ o-7#,7&jty{c#Zp7?HDٗ\YqXnV7os^sH0aoVé=EX?\nP/m/3Zdt97_r x[/C{_CJ֩H1*zT Ԕ?n,@?/ !j/D"DZl^0gc!Չ泥?,]) RC1LaEf 6n$C{'χ&`\/y=T׼g,4zkOr +Ux|琛 !iD1 j(A<_(wZx;T[4w'S\zî_EŖ>-c>ܕ. ѻT: ELVk7%iӠwF ,-JJVވ,^:jq0뙧bܶLXBT6lhγMGla|^]}݋">d!PX{V}]»+2bZ y ׌ݖêٮ77)ۻz'ߊZbM\?eq"gL[d}=d1_JdbqO.dºy9gyïS2>֎?k;7 N#yڝrjs>v6#+6?F\7hXa,b ?{t/t_͗J8gCgda.7vjbج,Sjl@7ڱVuUwlSZ5CGs3%D g!qqfoF{HB_?#5ƒЇG=׈8q6__#6>ђLa}y2LnȀ/v|ځ$s/BDڎ+W Z77)OjvFK _n">sX) kvYlIذa_6M ϲߘZ!^Kep?}N΋l|qVC-?1=gu:bup+wEsv 3V.Lkoi#QtQHuտ(cu@&MoshEhߏb_1wXz횹6 }Eܫĵ4ksY< ռ '6p͒4FY`;t:"!rVb@=y<ӏ5v`tPI"Ve8[@N[;?<JδݿG| [ʃ*nfd`t8EC#ȱ N{F~|".gvB4Ι{hY|7i;FGBX)Ƃ.`Q+D; ?ETYhzQ`y-/ CiBB;1y):L'ϧC#\cO/MY<&ZvY)N ٷ=hem$o@I= fY9r3MfP)=R?վnjߊBi]V_!o'U!((w[BZD!qJDB6bb/M]8ϟ {\\VuC55A~ΣIlұ9*<|{ =*LxƄC|'͐h?=]H4{sf^$ѳ/pzD#_X/W[|u?% p?On$=!zd|M?rQ O kL3+?pO9}@Kq7͜97^o3ڷzN?ϓ|4WrZ*QQhh _Xs)HEWۯR=:5h(ޅ@KQ{Xw.3uRoaV,-8K9=b k$&XƭKUhuN;2'Ycy_ ܄fY`P~n 2?4unPa `⧰iXSr,*|S{XN~ǖ-&djs:Cv CXGԽckLsD2ܳP5,:ym S{.+A]Qkf~toHzŒ9^N+HxoF8)2FWS~`F  -$;[ 3| U9&'C Ma0Ww@0z./KR;D%]{8f ;aKl}n5];?΂o}̀$Y˄) 7t f{B{OoF|fa?TOI}CsaX5ۀ68 .}ҩm;s]0ΊہvJ(q}痭-6q{ &>,;A+˒BT߂.HzD{Sr짜ʇ$ݻ_Xˏ04jsV]鰙r^-Hg;k8y[3Rù!߰z Hsx,ݳ$+W|C~`n!v4$>e/ŖYuS2޼uϞ=7ƒ68|366\uŮb&P7x߹e/vv[ O6އ5ߵ<`5Vk"$_x&g+u>?7%=q_$kBnG~f|?ǵz9Q~En3{vgK6,:dp+NGZ=wRC dzr.;c*bsK`V xх՟ÿTY<@5i}ugkh>],aS 1hy+0E\4fCYȩkbU[վ)uwM6Y47T ׾ qr_l`i7&c)\2yNki(_ŠW_05vZP6),! âV]DecR 4^M}Q$:qKnvc,^٬5yjrOE_C_y !7^49U1=r]<9o < Iw;9CACQ^_| <_'_,ʫ ClP+P@jcZRY @hS "e`͕VA#y%ƷX'uޤChaRW$4ckEIU|!sr~S*r>ITfQ)c[0|-raB?{QI\&f\#@ƭm@}_萿?ʆ^؉5W^ԃ2¿Y4EJeē d%Ih,$NÃi ݇t7^}qTǖԗ!*BB&]JQyuVq}Jj+0IKGA.V4ĖOq0O'P#Sp|N'CNvW9:L)NrAGANw r95vQ -rWn^փu.{cla-<5i7]%j=e hV?>O;)˾_w% +|ODLz?|O~'Fk5̚>?6̇Gb?q]Yu{N Q %lsǬ2EM4ڊ֏] y6! O t <]IiT6O#Jq NLce>ν_n>| 5Z*α,ϻoNJP7 e^1ݎt;РWGD 34oV W\[4AfCCJfisf``͵7XC͏l 1ߍ51oqcUr Xϙcn Kq36cPSt†&J.X{H0',k|@/=vki5{Gf- 5BV֏.#> n<kOM {AÑ`=757/CP?AcWZB܉!zZz@_DL=$_(Ytf#>x5=7Ƚv6Տ̠bAFn.f)= o O?+?oTiY ׉2c4O'1 Vq,K0[J |3/S?`ґ{db!3=oɡXr{87ꏤ_ )9 f' )Վ)Qn-H܆yC{LjMuO[;Jvd)h>׭z*i듡|͙s\lKtN8j;ө#YbSO(+gC@ehu{*/Z^oؽV"Z5A*]ag"mձ9꽬y+ \"p6B ԍuݡᨹ!l[pV[s~TW2m\'<+fP|-շۊa,n;b1µdH<91_m7{9:7\;Eaen3?;{ xy۵B ]gTܺkGNzwRՂc^lZA:=P{LG20Ǻ75ޫuñBW |ׯ af@%v ]dHzv6` :}i̚zqKZ5JONsWZ%|3C) #_FgJ}8?t%=~F`u沽+/W/:k!qFyQ6dZ|/ f&P~X@qV Qzwr?νC'Iuf8r4$tv8i7!7t!3xyA(ȹE094p:v}d0IGk;T56 w1Oxz XX-9\!45Mu!X[yleY=J JnbR0wS =T=HMAUqǡs6 -훗gA.{P$'{H{) @3:`EBoq/1T L-B^v3+Wɥ,rfoa ؚc{f^!^A{p€ mE+H#'T?uL=BݏOؔ9q-{A%Qrۛ5&aa0VS( JzCNO(Y =qm%En{ 2(ZaPBL|b"يj8j'V^ y O:˖a y,dmډomPs%6*qATđ?X?B#5/_<-& 9 rqP /  g>1(ycx7:J=s9Lqе%ݹFhaݝgm>RyKXt$ўQ~$:vZ6]؇#|A~uH&U^l >OZUA 0 8{~!<Ttr>]&=G?H;mZEP6>&xm9EIT})1gV>}_K5CQsƪH!0׺ Dk0|x @.gi;@Ieg|z!RMVoծ= eU^n0l(ЅH]U2vrnoJ",=rX};I eJ}CɎ!iG_] 'M:V"R~P7ji#-ha"~-ߕ/4$3D~ʮu>?5!yA+ )"s~a|-EH_x@L'JNI k7JBܯ Pu,ySϗ;6qhc!! 4XEb`&{WF΅/!'̵JOQ/)FWFUlu9=_j!Ӹ*MZ@승䪚S.l1U5EmFu!!O> j /uS@xUIb}uS%R4y(4=_u\6{}; ABTJvRdӽɞ%-H2cB0Y0WO'?`;Rx8G匙#m>g꫌)hJ^tsq-+R4EN{mZ7#cyN;s.] J۴ O g~j ̮ՄCX"Wsyyd,]< CZmKsz{eQ :Ŕv U%j@z;MBL] 21 )nGl@=N(R4: fx<~p<%ьbNW?o̳Gw EAmZs |xckq$}0Ǣ1\׎tPAprHiauxiH{*K$A]=1l45>paӭФda 7nt}a9[qmX;' [y{5J*2tHlw}MʱA~|&g\6CZbO}ζKXcV\~&3 #+_+L䇮jͱx*nltN J8]4!o7dr|+v({`ņk"5/!̉|%S_IgL1|!3#r|1{cP#]:-=Z6jݿib̤.?!dI?;'ߊU'!ѱz9lΈƖqK)%~WJǒrS%@݂τ\| 3rmpW#:; lç=X$..,Vt^6$~&&x="\LB[R(iNLaUj/-ze/V-[Xf*r-6Ѹ0:sZ\'+C Q٭imt.& )Ghyc{M[Ƌi*so E BgՖ:雌P#Q8r\J/2!`st#6+3OS6尭N6fWE^ kLk'hݍPi+c+wYBm˯3·'˫ sQn+3r\3~ VoUks;Ob H޸q<s9^ U\t+#_dYߓX/kc$>(z"% BpO,)a| q, XH9?_?!ʸ-NFKɺCWB$H⾬~s+w{|Otspu4,J}Pfw,s]ȑ_fK:7q, 5pA;f 'Geʗy\viR<5Xf/fg;w&zwA#e u*##|ןD~aG\"L~?&f=b6X5}*HgJ;|X#q -WꒃٛV uVJ},ICOBLJw{|vg4aҽ+AP)1juimF}q(d:R\t$U-sĆG6j5eNw?dĨT1΋s3t-[][荄7A]z`~.WXYdqYxЇE]|\XH(&Qnӂ?S-9L裾dлO:P)$!BJE[HR$$F{{s]W{O QJE!d_ߟw}U׹y|{UA9: l}u\*F-Okl/(f`@zgvǷ@"Xزya97/B- >l׃%`%O_"Ӊ2W?Oah k.TSc r{;fIuX'n7;ih /cL'S3Lr4\wʀdrl&x2+ke5I4{Fl4FC*Z&`n'7fX'doH3݃)<!c|w8|…k3 N?<+ o Lmlv@'2di'C4.!|xDnITT#hfBY%^픚s^y0 7Z7p G$l.NZo5X&l߰!vRѰ®cqx5T\$avlwVua<@oá%)|S>3Ovώ?3ycA:] h#N=ӌby M<ԑxLۨHb/FXכ` w[4 ~Ck?x@Qnv)_<75 t7˸%Xjn?c>S1q8E/B-u}R ޽w/$\&+:;D4"6Dz3/ 3kIk=OV3/›9BstIG ]"Q)0(ݿNdcXYwu]b~퀸WSK2'a<Բ=ؒ Ǎ5l!|&PeJKoGS0yp(=Xd?i{RA3wbَ~<瘡ظ|UFEy4´{_ib=ypcЖ`=8D6䅩DDŽ掞(BC=?zJZg#\B@mhk}Lԛ1l.m*PsԌP8?lRd~zcP&a,~0V ius7_f9ʔ0F$̘ҙaE{ raŢjobmn>|:{~<250`?&q/ "F: =cNaM!v 5!I }(_=)fZF[4j<21JF ,dר>P[K;q̿aa~}++:UAt,&i4{D *CAfwcy".~LaýLIQW;0BՋXv6yiqRzx@Y4tv~ y_?@[9DeWaKlAd R$S&B{w|il뀪w7Ԫr2u@aD,tYl6]Ĩ?y,9\kӘ`9Y'#CAxߜO;`hy9+p@L߲֌$OJTX;G1B ./t#\^+\$k|5?~OX_=}O$>@gtGb6 Njkq^Q9]Zc_0hkZCaA S1Ozw a/旛5`W~^:{  A+Htz9+Ł% ;GCdE쬁 iĬ_oLxPқ{PS DC~AKȗE^7|GP@y>Ύ!ibbұ{΢PmY}: %Du씫YV rdQRҪlt"3&2'r0[ZʴCxhlUm}Nl'z;~Lʏ]PSWn=˼9hNkwAQ`Dec虾b %L:@}ْD!ῖ&Yki39B ~xݷ7| jl!O?^_ |Akq^>{z6d~[dj7#!cRș;z~Qf#;HV]Z0O*( ilUI`̑}mn;0<ͳ/ջÏY#JYI '9ك%Nܿ&:LJO@{x zZň^R6ꃉP~n>fɽN+Zyq@iFX2}o G6}U1%&30gLً?B5_J["d!YF}5(yJ$ .=بMr+Hbe;8)l2]P^.ۓ>&Dx%q뿼6)6;dsz-,5TMSBj5߿2\ J2.'3v2b0ESGNm-~_/i!OX;G!Lb87OCr Qa$?^RwUG/~1 uJ R 䔦/o%H1Iߟ|`Bߧ[bB^jSWSX&h^'~})FNI[tݝ\vtwֳCR0RrS*#ojyCI쩃!Ѝ94f^uIOC-D4˻Yy{"=cM"y>n)?蓆|#SLH̺k 'G#F:cBXT_: v_C{QGf2P^ompS?Ȥ@;Ez R"fM;J0kؽ3@~aqK *]r-9ŀn̡:T^v~5???"fSW>M%/V3k5?1vmoݬm4|ʪѢ3J:&Fҭ hӒpzg,"˞E9v<$h;_z6VopEdǢ-yo\A~%hp kgCP)8 !ݧkBY+$y>vQP44B򶉃q6#}IA_./c}0Ue~X wZ27.l|yS(Y;V06.?{!ZTvHA儈@64yt; b ~;JzwnA_]Ī ꢒ[EN}T೎`_4r?nnb;qFm>cK7!3K;mvʼ35u HԾŊUKyA&:TKBhjh\dMUPrg=LFi_[nV3 LG|!jCsd;`7'|G1Ad SM.~6xCFr#6F,m_Onߎ=z0uR"O,uȇ&Lw{5?tR,$C9b<vceeA(@D tƪH/? MUNwwW-Xv?K-{Fcó|<_oюG QCxqP =nUBA7Rj-ņNI`)Sk>k Y4{e.4PgB[ٴF& {|>-;ղcmYY@9L cz<T6&bl΀vŤcx?`Gp^^bw_g~ǵ!lM V3}#qߣD%3Wkx{ {<=^R8/Vj-S9H}y Nq^EQ߰%eϱ:&< -#[䨝EQGyn߸%%z5R Ecc^}A ɜ Z-J!q_hUs#PuJQL&kh`dLUɘhf4 xIÔu*[[At-{;Eb<{шcy>cصU((k ĢڃB֐P3O5x6yOD{},!x%1&@ܭwؘaڍrp^=&SLֆbf>4pP.f(aA.Aʺ *˱`cxA7  26tqBR+/gX qPٳW?]\%]zjCӍgg4}x-bbz'J-d  ħyt</${0艗z & 9:ƍ#"X(|I\'-ŕqT~׵ __ BFe^ AO|Z[kg Dk7̉-}'ՎƮKAJ|_~۫5??!Wp%!k|G:oJ{ >ŏke"_Ϙ}bIgTGMb%GU>&dgo8mn)qޥ9 %ƌ<&2*ꦙUZq]!#[̹@ #2tr~qVCJX2B2}Π)ϊ:v\yϬCX~<$j-$Pow̷C=P cv@ùc5"01(ۺ>cQ{&bQ9x&u^Z@2!ē ZbW&}<23z.G! cʅ{iývׇidBw S{-#{>=8_)kar\XWl g:(#2ecs~ZmU;`Zj!y'C,?zp( `ٱ{ұ ȓ|q>j;36Qư^zua`A'% >7u  .._u̧!0k >9 ɥfG%J{WlSxk?ެ{cwc|LXnoRK^;Zh£xI<2O{s Mը&lCM#Ye3+sɎ An@oBݖ̰`մsJz>!P`)> ~r"U[@N*?X׳C gߋC{QH١& 1OY'̱bZ ӗ3ۉuGwOg@6lI-6Ѐwvf0(f.@JXX.pkʵ[a`ky6u(/ `^R4u;=yN-+ՓcONDn@ iyWiLYI; 1% ?oSO)B1"_l"5? \ 3Gֵ_xv>+x -NrB㕭`z4H%ONk-2AS| uDBæ`hH76w$@OCN<eWϸ>jMcɽ&Z1i!Iv~=j|:2XӝL"9zIRmb %Iz9xn{|Q"{K=(VCzEXQg0hm Y2椉sߺq༢KBo)1I?XݻK\?\cz Z3Q tJШ d mPd<_otK`~.Pw8HnPXیW\M~$R@` %G$]7/RŞ(EoVu-a9D9rѰ[tszbX=OZ'L~bcl| &.]XyK I2bgl?5o?orTZhNaPZYrsaO6n[|&Ⰶ<3<k/,Cb~S^,-y@\Yڏ6:%!)P|Oɇcxi[X\VxD$lҷ8 Z7}/@߮kPZ-oy} 2vj=&u\9ʛD1af+?oz5&niEQȽ>ʼ읽8߿cQ= FR&U f~khڎgSK/sCf3}8Y4O^BI2|;\nvRAU!HK|t> Nn[_~WO_hK_A|Ex&=vZ_Pq>L?}Ͽu/b?cM?j?ǵzVm&VS)s?bj97&v X>@2>i9- OiA*r΋[xs5r(2ҸʌS`E.P/.Y!֛J\V"4tmt*h6>F#ҵ\,S>&A FA[)ly%85|WlkJXlj#Iv9F1u]U{';$RsgapˆN bbNN{MБae=HYv>,U)cN1xk yĭ) wc5A ~\{b[Ly\5y2 }Ÿw?j0"k @h>_½mѩ?LtX[e8TOie+M5f躅=Za\?~hBǗ!MVPb{)v݋;CZS!Υ I]7lGnK;:{)P,&# *e7n ʉ`^(n2 ɢw{qܻ@y©Y iTG0\'mdڢ`mՑ"󳭋~m}ˠg^aE뾘SsmEh˒N r6i8v)!`GNj̞AQ(40aHw_!碯&a9x)3s#Hgɿx#*;8+8`n>Aal8d\$,kuφ/55Hf:"^ÀKtk$ۜHu)#1 }~*]OS~6krn#&sm壺eu:=dN'$1?Ӻ͋3nPtuu_?]$%^NS݃\w ١ ZhNAnoyLq[~ZG:N{[UJ>NeԽ"o!D~Wy_ȶZ+$\<'cDl5_wC?2k8?^!Zߔhuo},YajgKH.`)v9BϷ% nDlZ5qw}(9XzΘX4yc[+:Ccӧu/FH7s *xa&/X,澄E=ؚ.,F.v4+uJny;C`zyE2ӸuWrikٍȃFk` II| %4p!X߲}1뒕dnU|NK}FH*(}x?$3U1if>(`fi$_j[Q$rJ Fw?pēQ*~ ~O^/^oBNoY%hg}C/lAs/ge@uawN:{YqA"/C!4*>1H"ك+A-_m6Bir87?26Wv%K9O¬(|}v WX ^z5B!HȒyӒȦ4N/z39nǴ)G@^sgo}S8jp;g'cʈX.8\1Ħ Ycb*e/~80Y\XOg)5{=*O2s`CX4yq*uQ2j{=Ok(WAUq)(c[YWgݱI畦2@Q&스aؾ>mzYx@Wlubۿ@+K0A^l4>9v8|YVRe6-A '{:F1j[w-6[ǎe)ϓ;_<䲪ۻ`g HA-w=bPpo7 ĶEj;`9Jc }#]`hrZl14|컘jx=d:k>`bwezz0BR  񈄜.?csX_yua;Nε;8u1OY|zn^z FZEK|+#EݰPK;Y%ɵgyG5M@2+tU7d;[o+#&,Va8hA+wx'_za9Dg7]tA !%?37sn=ҧ~(bEER5?l=0qa1s!ذGo jiLsdžF7ZDZjC]$e]sL.@U ‡CXލ٪2T4cH=С4m5gjxg@T9lNH8azi>~9hM7*5ΪEﰭ뾨P$2op;><;oau3i$4uQu-m$|`{9 }l1zc/r& ֭uF|` TTo5Lx`ACXU4$̳)ΧƓ;^)b[̱vV '`籀Os3IĶ'.K&wvQ|rt*}ABb!OAUP^!inhWu|jqbWfOʴ9H azhUt6vy+LPzAr.x-{9 z_J\}2YEcv- 8{F `@7*U' uժpϵ! {V>d%fg+\_~$3pCQ =|M2kq^6cƾ`Zy 7{i͆z3a@ PCCBcث 7(ܿ,SSKGzypӇIpϬdtZb1,:ԖXC'x}y˗@ŷ1i$9\PxvDa~خ+n7i5dEdݖMέO"'I_ʊQD"4v b]YP.n8 )V-^t})ϩUog:[nk2h[J Ԏ }O]X}u_Aj=M`P5܄1*2^?tNjlb4}UUGApi.po~FE*OXAҍxF ~fp9x.~ou1)ec^ qqKs20i'4=+q53&Y;Tc8_] ~G>W#/޹sim,Nt;%j8G2L4t"~T}0FߤHa]i+Lw42 )>o4z a+ܕ?aXVsG?ҷ'^V*&ңk#_:DEOW&UGI+I>1")o }ե= +2yypnx+ʮe} !C2v`y/<ܤy;G`Pڥl\'k,AŅcy3!2t>Ā/]ړG[׳<| fzܪ03L_s:>0x^ٓ]J;\dF{oއ1':=+u9((4 mvht6`i `ac&l>z7tO;U"A>÷єKQ"<`I5]N#ƦG׺fH_'A8I.7rC~} \wf-*ڠFIְ w˃Eq2;3`ݠd \Hy/ Gt2JFRm,΋6Ӝ1gQ]F0)$J~mz!@-}@>0sw /?z|wB/O}YH̤=H >uZZpD%dCۗ=AБdz9&<ΉSRpd7÷mL˛*U3(Mhz0wM]gVk/& wW|\XA͢~*_{ g*WWb=Dgeb\y񞌛e!!1pIǘBQ6RN,Zh =CG"rh(L -X 6 E i'@S_9O;UEWE Bd _MYBO}¤ȦΦ X/M]ÂK|>E<[IoL:#E6tmSj|#vA}79X^Kωc?UE0XGI3S)il1%pc*p`j}bH",Brq]_/:xJ"x<,|>W`IPdHrc+/@PT%~,֥yU <{[eξ18׻cu_ob<H$6ma{ 3e ]߻sB O39 k׷sW2uTqGcUkƊ@Dt k¸RybYՑ ؘw0C[.n/w-O` 2^]R9&}h kwړ9wwߵ~;&+vGoK{ >V!t>qY ژ> rǏ(ir;oʑo3arF M؉nDۮPYzoĊ ًJ;auCtc[&͎·P`aO)djn1JYmA8m=d82>48Q eO3G@֕ J7C<;ehX?eqv+d*Cݏ}񧅠L.1i#: yV] ߆[e[R A#Nz~6>Iurg/WXO3:9dEiS]0#' ;nfaBusaiݰt@ vp0[! |ԊXBfY Qk.;BO6?έ\m/AGaIqIT?~k%wdu,DKdqvP@š~$2}XNwro>DW ͪC)&I:T0)PqtgnV%r ^x ÿ?%+=mȮx ^AlYl2? XgXgܻj(,(fI;ZݡFI+U{7YEB9S' 6\lurLz^:0r\oQTa'p :r_gơA 9mix<}]|d}U]^8` +XJ{5wCߡN_& BR9ه@jcQ=nI}fMǭ2_kebV~On C+uTv"7E@O2Ğ0s z6>ޙa#R^p~}n'n?C~8|\{If~O7$@ +g,}ϼ#DxzésQA0g[ԩI,;W,OV i; BɭOch1apႳHiI6#_o_zP9ps#{X,fW-m^l}ZY̏]%]~_Ŭleݙx0,i+w lӧH`3]L94LD7%Oa=_3Յ/6eͅ++7W<7`cCg雱Z@Wzf߲hh{> F#X̶VI LXrxֿ{ 12a㯿,sD ȵ1mLoNI3&PVzu:@v]jr-~HҰSn%3gedC87;z1:| B]5Og uG5?~ODKD~pǵk X6_q^ d /...nP&P'˨o]}pʺoxv~æz 2 {0jEXB긡hՂ _~ }"zX{k\mCK巌1Bf/<zf{2!5SRte\3km |]$Ts9hy;.2$Q]l;+thV(<,c '"x ʊu7݇8=PeFިS^3iWiA/J 4{D]=|F<!ε Q H rRP~a]djt>f^NJZ26B9(|(rv~h[sH2SꋅMum_qUS|o2ʁQF/LxR~QlTo ^Iͯ9*|d88qeYts_ӌ-"rϠ*ˉӡZ  eNg~w^OqWl' Z_~fqD?n&{W׫Q#e+O1ޔ( r ~0b֖-O:1:IT 08## 1Hoy"v-v!lֈ7}yGmˁ3 "@ţ֕)%*HCPL:r|V[K—K ;EaPe $&fiwx@9~-yǝ?g4)̗.4/BޫJ(4GzvK5rdFn/>< SLcC1^ [%?s:.ޣ*T?XŲAjۑ@{!7H+|h9E%i]GGlmڕs3^@Ρᜃ[ZH">arg+րɪ8,Mr۾ koi U|Z!5~xIi1nݛoiN2 N@fTVW!PVDZ i]:w\W*xq<8e; NVŎ˔$Kqpp,E?6/eKxA>BnX+SY> ?] mr(d c;}=ҹ>t_س-odb t|NO¶حRs>Oa^K0@JǪ&HbOƐ,;! N̶i?,vm>*~bDm;b'|vvt? &WLb.֋v rSwPk?n{]|scu70mC*%Ƀˬ6pja䒺Dp6BM ~U~8$l|'Dڬgp5!zj\k2 ÊC @h>lw@8~QGM.$[vPқoyVPj#JjCR\Ç/0_(&2Z玛xg 1|/0_X+mr k]><ps:j/q:]>)Ys?4.OT }V:cPzOW{) П43/jf/h~'O(vЈ.ebƙ߁}jojw9f__hk@j\"ft`fSfFs dlVIr6kt.Bփ{ǑtKDoZw&>ªlO@~Z4rKg"kyB}OZUi p->N>1B0$Q{a۟;6AߘWxD6yXmdv#S-> +wc#7Fz- Z7>N0W5 |qKrϽO: mɢznP}yQw۰ѧ@ ]xs]!mx]e _bAz lK{-T͟T;JZgy2zrWĜ PƂ1ىY;mdYLvS{`-/(x,KuEKxcǧt˓hR1nBE[Ni'-̪=nzv)f<]5Ձ:d[KwI`'ZS{o]r`-XTMH}[R1ر0: {w0l YTNa"[|N .Zzg.dW)Cn{<*>V\ ڬ̓疭5Yhksl=]QGTxMl.Qb|nZ<72k{nm~SQ|7F:ٿܥEX`Ɋ^J3-+sbXh~MߠB҃_Y FhC~{Pk"7]-m!ȿ.a۟*J>HÖ _Hy$god5!o㇡\X.ǁu O)W3/acM@p#V7ٍ_ ooTLaLvn !wTN1bY3<snkp zWŒ:gtye^\N1\~$w_Y? -ܯ4#\f0o90. zņUxщNnLj@W/!Ya cڝz硣jP~+ 0]W\j.%B* p>sO?@v B&pX.9NU&nw``̀L?a C R?ot??Awےq8K?2S|MNW6k;W|ogyx^Le8oR;<7r‚eKzlhjG g9kB2-E JJ"0Q ɗ=-!гkL ~.U W%W?]&u/&3k5cQ|m?z@*9nz[YgCh^}a_(ypn x3aINC|-~d7 ܇{Mlciܦ˕3<9g`(T$VKB2dz;h3y킮WyE_ C0nLO6:K}qA$^Èv[CdFqel\E:U Θc)WƘ,G8foaeƪhKGo~mm -@9_+)bMTĚ7~bIiD?Ta>m%B盧5~xfITV'27U R=rG&}23w1R +y\z fzt~ۦ @vR;+쎔o^R2s PmajFZ@ب`?vuX=TXj²#egi< ܰ 'l챀uwaƽKy+uSmm @R(vEr8~&BS~W`F۾o xhwk2N%'zx1 )i MzHac&i Y$X9n>ο9 Sڦٰ'b ۃ_-lɀdٴcYcW4uW]<|(NJi)$jR@&={BΕ 174SDen7aVQa%I2zc ce8&ew5Qk7 Nml Q˾+} #_G\`Ufx!&k}3q?FÆ3gɻhoMjs։[Ju{`?Mw=ɾ>,7:yL+2v WW*o: V؁a%>NcWн[90ɼ<7vP,o~7d͓0J}u>QYAV'eذS*) b{a:O{ 7GMD5 k3/Dr WHZ凯q #37L{>)C|K"?sG?=޵̿DZq>ˁӉ_XWVO1 , t¨X <ӼTb'OyV[h^HY@ʖw3;PbzExTXpn_|H95AX؏]>kM('N/:XTN*f{ϣU/>2VT6 #6n.Qw 5ńJLs V {(/ ԛ.R;\E tdnW S^Ԡ-0Ҥa\:9.yt)MujT$3zQ_"4C7Ÿ+3|ȕG~-3vW1#>ciL;& 3y3Ar9Z:ƕtY,T)8Lma&I9:Q2[ PzkM\oa_.*P)u]jg|^{n6U<_D_i\%u U,?tu$z,RڛST1[uA c5ɞ[!𴟩~(s9O A#w9/tTnÕd'^`O7YP9iIf Ƨ|Z`4#O߅[20Y $ŢIrEzpN jbJ4P %Nh6cM_XyvSgfL  fVh8T1}f#6(Pb*6xwS>CEC7Lc>y5}2F<. lI^s;+e&42.UpDYIS>³}JB/`>}6YO-`]5SWWY<Ҽyi,4BY (40 ܈)RS^&CTeeOk*yw/$\zW!7? Y…_t"?vQA쯟*5=ooˣY[u䡊J&@N.{YF>ɖhkc註Ի YiX+Z#͓|S=)3ykH3h*1´ N]cvҟ.Pxf8}{~W2?=c9/ D>jeULä|h-:wC|_aVTi/j\КğgY坝0'# <Y5˩{CYpضREL`r\[qcuP>@HNcuHe* ,rf/ yST_s24y7mQ Sʶ - mzZ[c9J-P̜?{]X I'wI/K>q'blcݟ\UV{K4KHQ뙁ݐ~nNh~"w} X4/ƈORxnBPË9;ѺzϦ= آ';~6;` t.`'{u&Z*HtgW294~^?I,R[&_*@̧o.6$rt>(%Uůg*|@ZԞkn_ 73-u\iZ錚{?ٿə53YvJzڻyhϊDݐx\W/? a*OvBUuh ,l82֤sŵLXHke^vkwHY7A6# /,%a}/8U/z:sv!;Z i1?*5ɯ//z2&FGG1{ P1|q_d8KbО!{1Q^N V_툁SZjP[=f#F}=ƒ"<]{xuhԬZCqXs9~Ps!X{^xقBo wOu2KĞQ)Q/J(uI,xv NJbʏ\RNQ-qE򥑡}&PjI: 6FS`IZo8 [%"lԄ>P;!W^m?uJW'aPp3{e,8$A1[S[A-ϡ08gE,at/%]g׾vS 4ۡsJmfs9V€۩\ ?zxC6+lbbV}bߪ߽dIhغVUmY %hT(X:(꜃Nel+;AN] "н!3 fEXdC. ? uoue͊~}Nɾ>~佅q }9_ )3W$Ok(V[~./Z¯ C|9(F ~,`!B"?s&7_gVZ/i-?^uf[!vCud5c=% }c",fgaX$6TQ8mVW,nlxJٔˎdcER-Zܟ0;6S@pRܬĜ<h;ì[SJ+yk*q rx:^s MOZ&n"$ַ߬]'& %~4 PץԏdsGru!g[{n kMRgO?k[E N{,Cz%#h\QI \ߓo@@~w R oqj*5k IH}Lg D}GT3"Gu3=֋5r\]%INc(})@N0Cۃ?|P=l(Tܹtl? B#&*~>W]qq- صxppc/$v%T^=y=dPO1s_ >v[6bhq*D%i2DdiwdtE`߯&q _2(IճRX#6 H>/Ug~l4ATͲ^FE u6w5_~.~?Hj ~0]$$D|)\'kob?Ӳo?ǵzUw\izk~&U˙- '[(NcT"9r!yd+faƽ,P!Sk/ÇL0iך@qRgw(Tm/?!}+o8j|nja6Xm:֜<\[̈1**ZStΈ72u!琠sxmN ?E` [, ⣃ZeI΃_~c]Ҟ+}Uݮ\l[h -Ud'axS C$1'z~7Y{_TzW^fFD }khkR$͗):"tG2 {[|k, Kjj`_Mo[sD5V!M um6+i=rÀO찣`b>^* Sݛyb-lV~O I{Ս~fhBsJݴi?-<ҍVUnYֆTZw+ Rlȉ> Ibݨ*@:̳}4: @#XN̂pȶ37goяiVd y H}1Jb\ϱnaK^X̽uTG_OB(\c~`a[:XiO݃4bDO95-$ r: I ΀bsccm=[T&XLqlNŌX<ֺ!W y$fgBI\?Dudw 7oކͣ6ek^W~__τ~P޺]?{Vk"_l!e,gzm?17m>Ѽ10iơ^ }_T'@°b/;Tzl%R~GyHy86"S, 1TL>_K~,/[?j1OXzS;&M?%bbMdN'<4AU#[+9}n9p^4 tzK_>Uj#駊08љb{?e"WhN$I3ֵ$w7NVЫn SX6WBJ\vRI5|4sҸAWtu3C!d,W &(k@I O:Islݾaի#1q۰0X1 ՜ \ &L}YF T{puL!wîI, O>&E8AUsҾ+}`wcMM̬^=ϲ[xw0N5_~Z~AmK _ }t RKʟ3XU-I͈ /?ic!-44y. })oc^T13­ⷶNcW_m }ݟ eETC3rcSW=e[ETW}~aB{8aM_]  ?+p=F4D)h/t&3sk1}Z|}V/9r=/xX冑r^8(_0T]۲ҟe֖|_ˆKY}otٓ!(Oyt;ʰ.q%"t}li1lLMa@:FlR(nԍrP^/ ԂN'A:1wcY1˞R@*);vAqrͧ,u.QmZks  Tؼ/$hjT-UcYz26q Bc<4|n.i۱/Ç_v+N|ȾYD7 Cr{S>G};bcO?;jju wEe©1(ٿeg )rDV7%NQZ}z?"JZD%ZFd{wO[NH"(~}~9rWvdrxBrJ獛PԒH:xȅ J{D``*gAirsbiaׁ*+>*Ƽ|][ qZѷ1@ir\λf|_ˇB>*ɾڼ[6LΞ*v'@ҵaVU|>`ƶ fKH.Xp~83*0=5~ND8^tu~ 'P]9>KP1)`vn{ {`ysa;2w"q8Hr1Ⱡo,Wb½69tU)TxZvKvo!M.NtYĺ<Ȇ0gtO@3a=|Q18P(ѿ)~*XqЗ k?oKxb+^0J*#JEԚ չ.]{6,]CyX}gVuc+:g5CP>)N&;]{{O8}۵vlT߽~9-QK] u?_¯EOq3C)u/&3׉pnѝ# 3Yo}^/;jtlO2]ї=^;لAd SЖO7;Pͅɜ!=GBٜށi`ltĜM4U.BKV(ISS⋃We#V勷993o*BaB51~tMs4!Kvf(^ D;+POaj)T 7X0E'M911= cOP(BzP"*+9l(- ګ~GV^3W.x;`N_ 3dlo6swMS7&*.Xkg'![ DopA]x5\Mv} МXځO"i~r!XBgtkK/~fWI*aqjo".K`$!GfgIu tS擆:9 KX峔loMF0%_r"]<뛈׺hǎ93֡CAzB.+ 9Ûf+- qO`b+M> ӃnOg|M&Tۉ]ic:ʽ;^SҞ2sڡqA(O ևW }gs<ö[ۙ^ӗaS^y|N[_`qPhz缡Vxwl+c[Vy+h\ŗX,B+UFJ 0ye 2.F7&v_n^3^k2毟)fG-s#ѤǍJUzӯ|?v.Hnj۷>sFqf ]$ @K^R$v{bo )Ϯ1Sv *Z!OP4YB1wZc8tиuEC,VˠJ+IA2,y^= 1sJe$;5'%>xy_.[vBAx-&s`Sp0ʇ^K\P6r> dH%KA^׻5r8PCO?}zDAdW|jNcei#S҄s)JaתD=U٬B{g+l2֡=Pm{ }3.;tBS̛Y’ӭr[Pr>+Lq9nfajrAjlkIHvM,ƾz8cٴM|Cx[?^Ϝ*bG{c}.^+fo_ϥOgn~JAqS築|!q!}vb=GgtǏq}?n˚n\'~:@NV?9`J9"E!筗ǰ8x9p7|vk7tB͹cs7ѧ|7SfbV' 8.dn C@|DZb*b"GNѫ_o`M0c=ZĢ@ mGk_ aZΠnSȕo'T+َlq#w[ ZCs*ǜ.d2j>ޥ-_+E`M/ê:Ap_zuDta)mx<2sSj.?P|eq\1퐵s`G8uA9Aa2vKڨ{yb '[u#ĉ8ޗjz[~* k:ʹdP |Kݬe,N9Bбn?Ps}@xq8Tq)Mhs="+֋lٔ' pr4zu$;PictR.9# .?@UG;Y&=HY $w2~%Wg~^GGPNÜK s. ?ϫq;MkfQxTbcFCxԡ9 Cķ2YAXmQYy( 5VU9FXpnq,O`W ^;U [OqH/v{ĹfcP?5j|էC ϮI!cрOU"`ٯ/?9X>SzڼoDU>OE2QJo2Hg$J A*9 &~+a zE$+:K[7޿*"?Yjkwx5?LQA,R#o]Cjhj#?Ծaؼ:œ m'k{`{eۏ=XX3 #/Zh -Rȇ{R?Ŵ}?nc|_`zֵ˘9=z-tdx͓)? Wͥk[>!tGGt._w(\d +;OH_Vf]|V0ۮŰqy87a f -U<7˃ƃ嵿n -OypÃ&orÌ " Ebԯv!E #Q+SNnrEޕ!i+"aޅ#C`SXD"-[aDxb| 6;֏U, ز[b l3+Ђ[l߼VMKI1:iIr+l(=!MK+ǫ~;%%:>b P0#]k<8ϩ Uk\?G];SIz''I]#3b6^͢E?I>K{vFe|b gzh0n F]46cJoU:r,66[dADoS,o^ȇCu/Űv2Ϯo4 Z-^Lz4 BQt0J]  ̭P(C l^gzΎ1;+u&wW˫D2r5sP|ngVӒpK셽V\0iBS2egMUV( $] BҊ iFy#iXH6,u1@>驧@5d{7CciY)a> ա'٠xP~WtPyR|:jֆĹI6K2øSYǠqҙCXվ\%)Zi| 7i?m0k8T[hAB~05@3D =gf1TnKsG],ɾZ:ٍ]@^|Hež(=$nM ׆dQJLo?Ḅ6᷐5t3(O示RzsD1$bpZ:T Cfاf`TcD 2Wr.+sx2A>e'o˝9)M Tr6NfqcesPHcSkw尹rag~o l6 sE,We܁:qc}%߬G^Ξ{ϵMwwK1PAMu4ob=yz\!MCT2;^Ͷ]zl 5O yѡ)೼qзFBx ** C2۞TQ7ߵ.B 6N&(lo|js:b&G Xlϣs@]+GMSCUƓHzq;&?ud oᅺeV.(x6>=(&)& Tuv[_ݽ^ vеjT?w8~vEܲ݅${Ұ*4#"4Z^2 --~crBE/uD`S'!X޳aߨt336|HH) # *|̟_d"m6Ǫ'^}FiU,,Sޏ̷6a-+u}dq-DhfǢH(Dhlx3j!uǃL"N(n^$q\yaz,+asPJzǶXŒD:\+l[&U߬SGD~%ixbl#p^eR&5C{ӧ^Xzs 4DG!bP~HZ0cͅ|PeCV"ǜ%.Dlb?{vGoS=ء]m2tZ31Zd#9DτlG= i[4wsv7Ex>׏C˰) Tr╉Me^)Cߑ7 v +~aiHk}ti;yRs{.OK:x :J|?莧)A"pihԍPRv >CFwlT]4C2ᆵQ95;Z&y5_g*xG̗=UP#r(:<zlaw<{#nYЀJ"YVSMn{4 n֙ xAVdl?0u 3 y)v0 Z.ya]:fm*{ӠA$^k7l݌Vaz|S"1geI)9m I5\wĚ{6Y]0aA^jPpb:UlHvA66ӏI[&:D^&¯Kû >7xEOIg|! q~MFb?3I?~%/DHM{r1@H 9C+1aS7obP{C§ZcsP?U238^/#a݇io& 2x3t *MxL,\~J0ϦL;Ὄq.:5NVsOt\5$3oI]N|㢌; vM/C^[M ŸƄ[o=BU0{R=NQcXk3H+y(4ֿhHSAʁ%-.R4Py]4xeJ&[!G2I5?Ds=9-_C u}U17Fp?~+d]`(ǯ蝡il>`VO 8v:F26^3w)ԎJJO5JbJ*}~rucRS߃J0u6(;e^f ٍx0竾 6H{KJRTgs'jo ޾Ϳu6LʞBWh}S@ۿZ:ii AB`fκ҅ul)GQD":,_Ŀ&~w4|3%$9z_ϬRN^3FcSO3+|GSȘd ua_xε;mv\ԙ h +ʏMTܠ%fsrzX*&|!<[lRI-n]V{r. jߔ9A._>#DlůA^*D?K7E4 'u44 X\2xn5X7'⢒5\N"zz34CpR{l="%=M"9ap:P$+bsm1;6& a^拯l0_FyS+j.:/n-(;[h^^v%#?@~4kԽХä*Emxy@ѥrO/^,\ ^jY7eu+:ykZ@ ?%yIX ~{?&f#ǖSk$D~O?r=~#1_!Gq1LV> 9"YO@4MW 6z>ܲ6 O5&wqVfG+NWZܳRvJ|+^tPc>Aӭo/BZ@~~iڮא<+k^[j'yْBmEJo ^^! K/gϖAv TVaw־799KP[vcO2OjmC2ߟ@SWAqѲp\Gv0;% |h@2^%~oBAKd}P$] )^|s?]`34iWO@j#RhZ ;}v,+rO^ܸ9ڸjVM1'~HO{n%5ghoTCn{ zWRa1Z{=cぜ߰of>}L۩i /x8sqjT 5㯐eKHL:E^l>^nĖ{`J_wf}tZb8Q/VMd-xjg] y09 $'.]lH>C[ꔀdUdž|0֙yZe{qeIaD$'qBͅIԿ HcwBeM)Pw`H$TC\Zۂkf4^4-쏡(9|/61)F:+ߠSAުPI{:au!f"ڿ7t~{R]rCF/{Z:&85N3!黔??XysgAM k6>Cʁ>v+fim\~h=9o~N ӂV3еr u?} ŝN G=s~րFv^6 P}L(b ЇFOf P7/*}j+w?מla{~а4lY5 IB6~Ā 5r~ b@@kh6(_~vuH~|\xߌt|sDڀ}8 &{s$zٹjDRv.l78`$GJ<9~_/A_d!{x|$ܱ 8)^bժnn K?aO/{$IY&yyRlZ v'sϐlFS|Mg,6u `ǂRP&#JI@bULP= #URWn%.\|]'v1'4O_ZtXVyauKR.. @ 蔶MĐѺ|аzv({@5x`Yg|p`&K;?QSʟ`ÏTll!%9t1e'`f g뱭P|wzU˟ =Ygap"…+_砣P++:yρWjCՙQ&s.qB~od8zi.[h'\ҟ Z+qqG4}F+fĜٜ6myg~ۡ2k3Zryr:lcSem$}wZ vhyv_{~?-zCg,~x;Oi :yE)/Ag6:cq߳@d}&^N) UQuBj™NQMuI:eB鎣N Cz,W>K,Is*R]W2]OF47Jt`m̈́_;myjj]b>ϩaMVƲW?;9b&Xvna-=<v˽.^9;Al=Gj`D`N&U]&zݬ]~iy dηlg=%&lH Âj6 I"o݆!&sX'ZԒr?mTLS4%= &JF7Xyū*(84o u)W)tՃCɏ:U: NJ+oKZ`VR f6;z`|i,+;zN ==$snW\hwYP>fے* I"WIP먄XQ422'Jj 3X06 G9\8#!>J,}(4^~f{wKSQR5xq=n\ d1sWn*Q̟o~3y{|?V-ٯwHoaVՖkۺ}]e::@KF_۟c ׼u?l}y-}Vhdrl#<8M;}Cͧ1Mk/ײo;Sv S_)N.YaX)KhԣH`}tV7@h Xq9t\lo:#UY1FMOk=4|TQ*eЫ13rmO˴VkNaZ 1 Am9V&Msh`8ջ9矆o_`ík0FH"g7_{L>Gs!,hhT.icߊ!6_e7y*!Xp :Ft:HgNc[KɁXZpRYV&cZ33:]\3_ '' 9#ΧF w QI$ ~<>_ y<>yp3N(FU{~bhs.o<NR`~ ሄc3E{0\{ñ OWլ3Bm>5C9NQ^,<+6闪B˯iJl>[=T%lR,1QXsJX b}Z%ڸ'BQ>IafOQbe,Xp68hH;l . Si VUؔ<Sm6q93F=Pm%5J5:8Z)#?s9ktyOIsam ^{5 A)1OwD!۱aljk׺>՝ cR0{ mЕ7E\t[ 3k_z}P }wL@L~k~ k:a)=(ު~{z='4ݤ;6{\SOxr>fR PUvjw{6a6j~2,_4VUO4]iT#̨O/9RhZ(Rt{;VskRakB(45qA9c/տ"i:7p=^>m0H2b` bJn>gv 80೴O%O{VR 4Kz!=^}Fel[r@3.Ua  ȫ-JآŻ46}2N 8Emm}F} ' V3)+13 oݐᒸ\B.L;S<cܖq.9:J`@nlCJ'%K WCFs%xA T;Fo+RCϲi.%}͕ڐ ʫ'HȈ/@1 pE sDR uFQ G B(9cq#l(y؎I%c6O]6ح>&Ig݅Ȃߋxҽ/.R^ĤT1+y:w*uK2BL^_T3,@ aWTPFCO>zWe)0*и/{7!UCLx>f:?=) Y3x4d-2'<LP.88oT{5Nmr zo`$-y;daJϖҁ(I^TuCg1dD{H ozo0Ϩ#3qwmEAgohKǻ{ >i-Q{a_ϴNm;Ábab9s-CNZm3Pޤ/qwna .}9>N69h Z.@;GTJKپ8 s2C _IM3!ArҰjfiig ņ4wBQ{r6-ŁgC3F[0?ȤW#wRbJ_M^ l|#o 1{@e%+[^?M@֞|L`oE;zMa9ZxB?u s-|* ͰdФ r$,¾4Sը{!\Cx>0Ww߾m[|c%ȧ$LzS5m.:k$].r YB'apw(Ƕ!g*nTBk U0<H;%2%C_ƽǣ1y&B-ns3/E7@ӁcOkvSu COSߟAJo[]`V6RVPA=pk"z)hiǡ+K v޳鍧06tKm]RNy|Lc衷KC2Y:Ű4D+xZy-i Hrwљ#_m/p_e`HSxA%gD,O" :7GgvoTܲ6pw9͌ ﱎ!1} V `,-h $AD@ehH C'C&֏Blۓ&.\+2/[-`ͩ$`UWS̰܋upX'a1 aO,W0GOȉy訤Pdz5!vb-<2_(kd̃;tU]b$(s \OLTzwfOX+s硳y ,vH ʧGe$QƟ|֤-NvN p(!p#$37:?͔ ~iOHx"?C܇v}~ǿQf^IK:Ղ&kbD069=q(t=4*rŪLm雑TW2^e`vL8?? Bh> U(aWIw=T >pKk}̋%L!(db%66b![ll%˟Y}Bb!p SmuQ6`^;CPSX'v*)Z rL\lhS0-}do+8ñ6}J UTqC<`u%bIm7zw7Ϙo)Xɢ|%8難Y1R^1ꤣ2u,{F _Oj&Xgby}GZ`k\X>[7CqCN`/I_yl*\ݵe# L̵{o6,6Œ?Ɔn^F!34ݻU%K݉Iw^*,5:`.'T\ᾰ >'Mkϼ' m|\ XC{>En/$3==w!G#>Nj󳻎c @a~MX[o2yB#M7Ffpth&1*Dy$F7Շ\ :l~H 6'{o*:]ųUX8#y7 OI k-ngc3=Oc, lQ,k)ec5MP}~N&,xё@NepfN<~ {z[^]@N#.,KHn8| v<9 }7PƢ_d,c5sR‰J1P"i4cߦ@Vt5dm+r35UA0TpI\lGeg1O/Q]cҥ~(mKHMLޛt(b+FaXM&7\5-2#- ?d q\^%XAgP}*ü6;˽mr[~Ñ)5Np&vYBNZM`WEgl>-n,MU2].{j nnOqoBKSzxjK냛9,>}Sr3j:̥.BJB`dh8RK([Oy^NY8mLCE[OUVZvX95 {Y=Qf_u/:<쾟CI5B'ՃgpG"NEݲ$ + y"߄@"CMΟ}pꍃYŲ/nuaŲquS.2,Y5brܶW#yoR,+6N !۷'^YJT+|c5w'f˴2_ZOǂZGSY"؋AP!*~΂#l?!ŚoOО)Q(psy0nO<_`L;|=6vj_]wiBO'4$^Ϫ^XҸ }qywi 7$ @QzUqIH|Ōf/"5؍}_oF 0YZՐg!:ސm =Kn=o c9^$ꋼ\w;m#kFkIPsΣPhA٘2)! Cn=fiW -KՂN8Teg"3}Wr~غn3Bȱl; [\3 ?ǵ_??oM䯫|i$Gec=QeqGJHNs ,i0v{/_S jI)1`]Kj>yuWmMMl9Їg2Sܦ$]&{.jKM`+GRZ=mb:ғ݁%3_~A;ݟ H~uk1.4^\\Մ[ڈ‡#_afv(^K⪒{Ľ~aٯ?#!盤=fHCNR}8 ǽWOwӕC h'|xW V`,nSUssXm7}ЬA޷g;|\V&3K1+{kA>$KxhNjy]!1-Tx)@} Itв@\<PjMCz~tzݶWzqfP֬ߘGK;[OE@șy̍cL*j e;1i{g-1&AV=V([b儒~PEŁߎ ˆ7۟-CڡuG1vsф]#d̚adʞc11Q<ށ4 q4㘣fl{Kt+,V!N,Λk@3ğ=S)xw^},Tt0U7tyޥ{%bkgJek!5aW{}u|Q&6W[~;Z_DzHvXmtGˮd& QCG%8#b# az uҷp JO%QŮ1?_BmɌƧÏ-}!!uoyw9(oqr\nkH@:~NLc1gێ$Yzr5v:\_Y2iNFv[.:Bxz ~=jSỶ̇w-bd+Mďp`$d1^B~0eiM0^Q =b?=v/'^:1~Ui6df8Ew_xsZ¯'J)5/"?3~ќ'q~X˂`TCt'jwQUC_>SWWy @cMsck09= /&`B wo{9S-x{~SwZΥ:Np0N!|NP < WLrӫP|sY:Or"ͽ485/ J8- mE1~ܴ@^9, w~cL? Sf;wR|͋@PNQ= ?.׶yO=-4G}%1%$㊊:!yi-+$SV`c+Y-/!PMl0P8'iG7+zaaEw ?rBGvՒ/X%_vm;S;nb"͚X@ͷyjRX9|_alT;$F{>9v&kc. jM@NΉE _'u ߦ bE?wF ~)U{=#5_ /4i>H>?Z;rbC3q?T{ٵ|$T|[%;tޖCo;etIc5XtЃ"!AezF'bq*X<40>!"ĺ٠\A` l|0.k]B2!_9b\\ _ _KgSczZ-'\UlWd{̌wdO4'i-ߵt_ϥIg& 5/7#=M Y3b~x4!D(^˙!L_cx|-|Z8Iy+d48#JtpCRaltkP|zϦvѐVB*u{rb][ypG6I*@&HFvDG׋7)p.Zļ|QKq(?HelƎMS1 9x1?t(+ Bha[\FXr| ,->UT}7XZfqG$ f. Ϋ.J8t9å1OM/k{Zy Tj懚aՑ:~4byۈ%Ŋy]z.9p;bnCJX_m:CG`] VjLT5/iKٙ2_hs1X*7R0;O Z3z ,a<=7^@⒍ǟHmz#Xpfʍ3e # >fGH'b+670Fp\f?ff-/ŝ?ӽ3S_c OߛL~hRJ1ԃ/CysF@7F~Yz[3Kj}m: n+]s1G-E fO >$.AmFYI]6jg0ן>a W-G,Ƴ>+Tn~ck Y@FbT>KَFEaz:s# hg=f&G ߸!TMGs F0ԉZ_Ihm5yj3x6`Hv5{n#B(JP4j䆒2Tzs޺He9Bd66՞0XeU+_Z5'{/Ao# H5UyjW[-`#ɍ9,=gAl1O $:d`zow"=ox ~.Hs mCBx˘DKaʊTa5: E '9w 狱@nq/L[2S>n!k>o}xʠKn}' [ PjB@օ˶Ԑ,# ټL<<!cV^"ݞ|nwFlU0- MTP>]Fg@;g Հ[SU[6)aK9¯'6M@~BFXަ_%w_d87Nz zٌ05"&U a|ԁrke]  \N`w~+xo2W C>c 3(xu I$ dxSkn)3S.BZ'xu":9ei-c̵ Qz##0`1'bd~fsw} o#9k_BQ&@'_p3V joD3 Фdp͎ep|~Cg9_Pg%%V}nFϜ794T$iU @K3ĠiC6ޭdy'#%!??1\=%Vmw'dHC{7Ww}oŜt{˰CXp՘:Kc }q|QP 7ye1/N{' [.vmBlr%̪t} %hFcPLgr+j/(9UH^ /i!RÞf {;6i]!a7:v-"k~add.|?ڡat$9TۧtĴߚ}92T9ܣ@„c#ؠҸ6Nr=p[]!VY6}6=w/"\af+p[LI|KDZ,>|${~&xYD}[]F CaMlom *yl5BR`彈!nAuk}g˕F t[yuE2%wX!X`[wOW?3s*#F!|G4,:I#9;ݮye<[/ >xNJ8 _#,b ;RQboڷvd d~_ӱk^`dx YCOsx/0Fe`ɛsGqB~mQ)XKF7KUCkl2̰_ qe;w_C0u#p9ՙY}BzN S+J1'fGp~+-=-dlE D I>܅K8~F||[ge]h/;]([>}ZL}qk^&QQh FѽStEk}OB 鼬PwuajyNs 7WþvXzn sXthQER5s$r$nX&P/i6b~EA hYYKPLu~T4 IiPV>?fJГ;z>9@+;Tl|tmle:{ p>LzOwѭn!f0pVZ ]%T{.ȶg;#6CЯ#HS">Yv:BﬤIzM2&0sA|.w؃z)ce[KϭEK.7Cމv 8>qj P(35Z.\Qzr+BؕA-X[h{oDU!W>}Rl 8 }Iy}W?@Lld9M"Aӕ.?{`(Ⱥ#bUX,@I?u_뾿»?& 3? Y'Dz~_$>f}?F?ryLޥ8zJ s(T?BYgIEf{^| B6TFD{׾N&/:õyO­1,KU~MCM[x:bܶt8Hn y9Ғ*jPNl?p-a6=duɾd%Sh |pYR @oG,ml.ڟO腱)}]RXtk[1,3|{- Gn=5Xx"FFO<#M*^А襹ѦLl>/Kcα'Rc[Zetg#ɖmfF,`~=̬T~e* m!iRRhԜ9FZ+ Wo#3HY6/>LROVa>ݪS 9/mMtKq{C KqyXx6n@+€P Y5'0iRf?$)\z< u2; s) _&uCў܀LȮ)@P <*4!R{Fl>$y'%Nc\~JXMIH}ٵ>QWTIҴڏ7Z& .{]X!ep2oDoba_Xyϧn,ub֎*_~|j>{,7;B~ C5g"~h7|?*Х{%2[Y84,F݇3#^@}aWta䷞gocνSnX=vL 24yxXZxV"~q-:;|[Ŋ_BU9r"n?UGri$<=&rg:c7]}L&+w bb3"X]7idEp၅ޔBo|yh| |uӎ<cł0KY_W~p7!3  R:/S&*3V-#ÿbͿwF##KaOCOhæ-(H e=5EXh>2 ejKbns[U;x 1c~' aLW2+nt|u`9fN8ldt lR-ʺF|1YQ~=Ѭƅد/o(p e Aɸ#+qC|zNӍ-&5#HU9M_Us{L k\K,h} wt^EPhjA_f9n 9( {XmqbZg"~@C݋[m6YpyUOH_?~.s i?X1H8ΥU }'1MIeLlݟuӦWzNܠKdή=) 1Hq<5N('`e=mțP QbYJFDSj%L*s^.x&V,>WeڸCũ!e >mz3oH‘4oTo>em2ܝJáV]21đOa;1yP6b}Pn :wwu"9E>tƬT/EnUAժ9_RDݣt.Ƿ`oy݃;TwE iOL@Cq"=j 0<ޕWmwŪsZrGc'= ?e ? SZWH/[ >G451Ϗ)/}|IQ,T4CmTt Ecz♋#Ěo-'\jsJNxn#Q2w#s1/NQ5.rkӯSv@ܲ5֗"w UM2 cDƛ0ɍKDI˪œ8 Yhge"ӂ_'] ' ?% ?Lq# ?_~O˟| "-@ gp ц ׻1$QEeFV$8tڡg|U l+/w~[G<7 #~Jt Ygrrf,.,~t Qwd*f,l@l 'rK=vz*~}Od L"r$/w#S}'J@R!Uu%e5&>9UWQ]:k|^~;bx. zP-ONSB;'#X]!^ޞʦ*;B]s PLB6 =yLfFnlCB2a~z$1w3 hU?U r 3"gfv|X=)k[KNʵ9JØR):lb.Ʊ ꪫ=_m^ү!t؆dv M8Fw7Guj֕á㊲l:I?NB_e2yyο&U]u 3 b J KSݯb5 E+|{Vj84^(Y䧗͞FMԂj2:~ErsDѿ2n)Bi؊!ƶϰ+Юe1ԦOԤEN\$@3 BU?C~8:/S 9qH?r=<o}Z{Z]dkJYnN *.X,v/5Cͫ` yHA{r /,wS[MDYUVTg-gWXV;#/)䱧_+Ů!)wz}.t׹خ.F2^:yVŴ6qNwjl}Y!)WB!Gv峠xO˯qBǓk [/5ˢ;>f}P*ֈBUa9?R1,`샋X_ID%t5$tx -oo 3yT_54Z**hȭ0X<İ#1Чc0W t]>]RwGJbwC˓` Q^kKD7V =h}KIX¸mJv,!a<|'|zbTn4 +dļf͇l< 6٧`Fv7H]̃t䠧pi BʱQWkć3-ؚx7?"]11s* ʶ j+4NCs陯0c1&@ =& R 3lW'M}nW]/w&p7 3B_AW|\*ߌǧ ׵DϜ% kyb Gi>үAD(%V 14;C}6l9E:CɍLY-ijbf=ؚZB .Q;V+IBs[}%6}(a$e`iKRJ)w[=ZviAC Xhà ;()aM2؄[-Tb6kQ 5:}G{3B0jEP8=D=.PZ?^rs4BcJ4ok}JjV~r OҷHvfz3na(ڦʵB#؛Sƅ:|4oCCP>l~cGWH&lSc$̲ѤaYW0lUͷ||8-V0ܨ~YNuuS6Y'EITO?\34HRIv)Zne}P\eڟzsXtMΟ\Q[k },Pm, L7rx?3JԖ2ӛv$.Z6lH49_NBnsm%ue,Ub&?9>XY~w^O~U: ::l7٬M\%۠m~Z.!#91;5 /L/c:w*DjƑ4[T 0'**t *HMwwwפA E<1}+7ZkPPzF|dhtbXB!rT#ֹuP6dl{v3& ,4򃽟Cc2/ ~Pj'rz%+G(zdR_5ĎQ&wr#1C{YD]ωZC|a\6sÊ&LV? <+3zuCIDޟ v^tbGpv" YlN9?6gA4+`,T[وG|v'욜BB'g jL/"sm!x:B7$|OA޿%2ߟ=M'Č_όId?yk]Hk{_0fז ?s YJ1f'w ^]q4!>^ 97˯eU t9gˇsg\ݙ&`cj-i'Vߩi9O?A@ :ozŽueܗC߹jDZ(ĞAsh\驰_{h EY|a'֗EH߅]Ot!jƈ3#iAUVj1ʡG '6<Sro'<? M?s"`K9Dޡݔe)g^|5)!歇tu0`-;0tgIm,E%EVC\/KD<>nne%~3$+i&j֙qxw(z- 2>%q_aYi1{|}9g%LW/v/F8 ^cVގ s20P=*c %mE?A XXby;\̩=n%YʯD&7ǰtMp,ƞOӗwbw!k|L7[Y) AN[JFgqVb٘Z_[PaFʹ{{,[.yZc!#rX%5} $`]9G{f |~:ޅc柘^ahYrUKpH4lzN }%lJ-wLdsg]\3DMg&qAQ!wOp ^.R I/wTr^P|h۳(s0˘vx'\ŊFvӯ?G=8 >=kCg1 L2v=7~|%;TG 8wc}NBq= բYQt#>_736Tt cяys B1A38t6p:ݐy`!,5| |>z4?Ż&֔*yva\3戰'aef'(lϋ X*ۼ(HYAUgvY3]$JI;~n+v]k[s%ƶR=of"y+lq) fM _ߖHAzZb;5BmPxSȍb_RU+Ez0i6)D osv&z( өd!2띱d|d cG. ?oFLxH޿ 'ԍ=<3ܿHϸXRvǏcqL^R.uѰL܎i"ɺY$7$F|t1ɟa g=8: کuz1'\(b~{Vr:Vl-_?`>1\ݿh02<&c{W.:y)d;xiC6D}Wʡ7kB#/9=߬a;I݅%MgZ7dcQw̘yےb-$N4k1>I%D=ݵgRØ:%AU⻡DY?vcFX2C/([8ly .O+?Y!ClʠhI8>{)څuLfbNjoCzN>Pwvɔ'Mf/A^}] -eƓZ~c7aPFOi*{ PHedu~r&9r/˟1T)˶@Bɵ Mc7xAmf34%s1h{e˲b̶ ?8g&D:3;b 0ߨЍS9aY b|tQ 38}z_CGv wCTr!x=ޟ <*cKBYLՌDZ%oePL|BY(Z-eZ|>7t?=pw) .w ˯BgOԽ ^h{0q䆍PCIrS|ՕUË?e˝f+kF 6GW«i5³Ac9(<_jUPbkJ[Τ%ౢx=e/3!Rl]HW3}z[_dxq1.c*0ӷ'lm3/z;lmB;jb}3+}dUĆw6V8%~ݎ |jWYyfAFSz5T7 _+w_H$L +'qO${HBG =:u%??.?;OCWs XV~ŭ~> 7 ,g)LBN.M\Eiv:""Z6押qt͹˄x "AFe˦+K'B! 3*aN·1"߭*˯WB=r a{05% +r'9ۿ-o6<X?{ж>"ئݽ3l n2L}{i԰NxsM`;*iйtF&l]XsSҍНfflWqe^ NZ,-gFϏ/x7n$0AuI-+憗Kd#q:z9-eN,\ AMFӡ9o1z>ԣlXlIƛ m}RC\,ϻ3MkR1m7$C-*EP޶ۘVQb:8`Q Wf4f,۲8SѶ}f k=}Ty]}z49C86z\A|b*U[! hsK 1SPƢ{\ϟ;4`4kH}sC}9x¥Ton@1wd|Jy`#{3vج7N9]bg{ `/NM\)s>M2ݨ6 " nCyS^Wm)mG[2wqPZ9cKZrj ˰x⏝OIC%n|N¹bUe[ zf4k@֊G \gn#+'ZH=C)F_o#'"χ_l?5 㘼(uz"B^͂eptng uϝ۝n߻v+|8+<2b7@Z4ٯ|6,PnәU­Ӳ﯃]c-gqز~guஓgQXpfGГcKλ6h=Yr~Uc9hɟ6o7Vtd5 IגQs a8UpU<^-X!xbPuW@uSa.=߷Zx3(goUm<ԥ0vxmddz7#y#fU]'n˜r +'~IM&啙ߍe2;?GodhcŃe5=K1S멪&L~yuUd:lcݻ S%""(a{ #9X8+frѡT&^җ1 $6.Nx3a]-\xJ9yK,:,&Ug'#^^snCVήzκjS_srݢSwf?yYy`j[Qxݦ yCNNJcc>Xѐ>mHl;!xgX܎;NɆ}1^/ϷdmҴ(޲#`0]N~ Yʎ|Sb²>Cхu;c#FlQm~w yա]..TKOV-m+sB}#Ntg޻Pf~ m 齀">.ϼm'1awq@u0-C=ܚh>.)dxyv}< GN(^KŢ7"q9tqnRÛdh?ns欮+R lr .F) oc8n",8ۡF9E:hʍ{iBS(@jQ(Ԉ̖ZT@TJrc|_.$g n>VKFĴ40>F5? Sz`Ct,5uXB2>3d|1G1f 6u&yPq y>G|=ܟ)?ף|uB;$Θ5bN+y3gEm'7f7J:9eHis؇Ϯ*Iy^{SCV߲+5t[xѣܤ&/F OwO6m^ASe,$qّ9'pQ,xb 3@D{? +|w@j LC}|m}^xnܲgT\&3: #|e vl"]|֩jogz{~ܵc*1WU+lޜ{ bCvb&0/qi0TQL4%9"rJά ;ṫJ\zP*h%/6De6adNO;0x&]d! wpTٞnc:uv;x7yFӂ/hq,T|պ TI:P;eJb]o], jۮNrs@l'G:UªaƷh} VUל{݁}{1aSON֚`}u٩^-آV;u̟S<% 0ADt,0dafcw3w`<:ʶ=X`ׇk6m{.6F؇bv0 .4tP- w{\f_ X p m[sW >ӒyX{ /$\Lmv(k]P']a{/>;yޭ iߪļ9{@''meyUSLȎ`V Jed9X~ ysFP!֓/b;s,9Bq DXMPtG P>'c(i m>Po|ʰ/L=YtWz6XB2>X2IcH=. g yА?3v>|I _[){Ml'hÉ ,vxk˽á+ [BfJ~1%)ʾ{JYc'*~(ә௳3W>.B s-;67ô~0o;G76j~^݋15[m ] ĺ# (Q0:3$J+0z(a{6q?SQ|f\7bP2(=sgJ5/M úYCRm>HBVRw!'mz'OQ! +ދZv`; *rn iINR-o 7D0S^']A%کS\EW?A݁/L9-1L!*YMf%wFAv~sȸܜJbMPa!3a ?Td꼉pLJl뇻jvoڶ ,[R#,]_N?_l GPWAmR}cQZhSxT&W\0 , AjPbf Rg:YC-i[|8VQZRP8\A,< ';ն"KϳA`i|oBRO0YDxۻP4o/B-g;ˠ:o~LuSt4A3䪔\ݪc>w7) ^ʵxkxbK ?qߵc^>%6n gA"tyW^_eK^۞kU.97eu&[tOf*B" Tɜ L|5-d_e7Z "$|3R a=2?󔌯4?L4~Lt|sL,XW׫.~%LgVWb~#VbjY]gwic#6'zl'v,>W[>~Ȍ gL -.}&^)- lŠtB,bۦo6._g]kޞUX"Xzn1uXh˿qR F2w_<81/]Һ3 Z/\K/5b|B>l? ^5 9Em| e[?P{ GD}OTWqcmlrI\ VX˶pݰl- ()LmCx14aP_5%Ykͼ܆{vjlWIJ>՘RBD Kn{ I3 X3oH2Vd|FaYfXAucLrPcar2+4'Q{<]n3T,z#;R^+9L!O){BL/-F!>y8&k(_*UJ`E kV]sm!8V-5%B=z!,&dkCb6[XEWȱ%47PĊA͡,%ܙVQ +YyyE 'b)]{2dd|.  ??|?dcq=#)Dו'Op y<ܿ^F?e$~{.Tڛd;=S8+4UqYn`gcgP ֚B dV)eߋR,>C!bd4mxa1r+43lo8Tid1; kA;oϔ ӡnJPl] ;Yۏ!|k%ö'Max@ m%Xz߁㘾mCUI3 uɇlJp)y"C|>aOB,3}F'"xUyol_\:Yn /9kh =ˎ2lz%,u}?όy u_K1/]IλW^Q+@uwSlqИ?sOrP!,Ob0lӹҷbF !T^`g R{sN-)!Ps^R~g~rY :R/0#٫)&y- j6(ɂK.SAeĠݐBR6fD%J s΍ 5 Jw^(|=Bknz2H]w1ߕ_XI:@ƟEW;?|?0,ߓLxE޿>F/BޟI!χǑ=kr&?Vףa\>ˌ# F'6QXg#dL*g]7 - h|UpH=j#{׮tbX{CRtr4?ɮPpϬ:eq{5!kG@6q<\YzmpJp͙3'j·I&$>/Wt݋+&QKVFw.b搉/av`_,^V wK RaF ^d0w"nG2I8蕧1fܹq6Zpi纩Ô#zyQ}І=ٽb|V9C]üldK6as5@+FUѬXPzQw.ôꃯ)>e6P_J9? j B聁1B&M~h9V}a_œB/_ B'Y˷0> dgbq-jl1b3Ll2uϦy[H:qg4x~`E!]Y͹b%L ?nV|X[;FwpO{Giln^kt{am sط{ @ªyfa `;Nvbirď02C|V9T ʚ1S}_e'c!I))X5Es$(asCsR6?kOb!k0Fٵ:'@ydoKlx$x^ LU"jfOZuL ɃǮGAhV'3!he/19a0Fpz#'f5 JBĚEG1\t]5/qj LW;%p1|*Ɖ!.1';I`rg} ˅wNk_ƻ5P}6Uv>|gFƿ:u4~b2> FL$㆒g7ߣC=vpLy><}Q?_QkYY$Ԝn}L?ə{ ?9\ W9̹?&yc([cnlgJa[bXp蝇cgt``U?h$ U?BSLk!t녵G1}QŠtEw\>d6?{&XLD\c C^㣢P# Zz%P&I, rd]3K:YaUo)VX%(7G\]i{goܧiB%tlﰢQ㱡fbp}8G OԩabOET#p+Cu&xEfky,_3_Ee.͞*Y%X@}!הxPLX]pK>*`u﫠eB`|oSJ)/'z+^f9j^'_GKŊZ?uM͠ឫ3c5,'@f%U!愈W(D^Uge dW; ʤ'׺S r_p+Ĝ] Mu &D?XX O&l}{n74, KojC52<HN 0  nP#~ֳsȽڦq=V@B×c3}D 2:ZeV| ^V-@+3bznя1O`f]wpE?~iWTCY^٭rĨm],C{$!qR'ZwL,Z=3*$?:Xfg_+9ڧ5TS9> RC2W@\gt)|~37A9%jhI|l , гi7ha5kШQ3 ܂/Sv̔_҇Jw `,?^U`>YG,aK/%pHo~+^9`8]6!6SVCT-BYݒ*Bؠj9}? I?3ܓ2 O&%4:@3'%l!Aa7sFNc}|4s.}gGkt۪'X՗n.>}&X¶c핍`GmG"pfLБkԗ?!cKqfjs,t栚[gR+\hp!.o] /q޳w|N6,K51zѱ}B}wEФJgmie ;8^jɩ[W)u cE\;l|&Y!]Eb'T]PO]0ۧϜmܵ)h˲WAGu|9ڦ!GvȊG4ga}?+.Vy{= om\|X9ecUj>.띻dŒXVV=JUR^V0[H[|+Yʊ2򂆵_jRmg0N2V hk,۵e0%8c,7Monpuoχj~å8ywXl6=PԻuY2- 8-/z5){[ }N5dn.΂s?g^ ֛eC#"5O!rƝ>!ڃNPD(Kis,zmCyci`&LųJlgIU6kmm=_^蘨V ]VXrЭBl=jB=}3x Ε,\wʡ]|Рdu#O_'Pu\b(0?<rV^8[/=3 {_[ckU;Nп 80b`aj.PãfPZV\֘|9/i.!+3@[)|UO1f 32fpnҰ0gZ)՗w+wfc i=ؼlBb,}詬=r0;^|V%46]ANZs 7[o7fvGLY^u>a?"'|vu)fu,8 sn4Im7xp]d]*!}jX2S$mS80+[឵&2uX|W2~72>x cG8߬SHxH޿O/\@ޟ$χǑ gHc~=J{-o$;n%t?h ۬\ l''EnFLi{~{Ӣ)W`ߣ*'QH_ARS;/ ƬIab]= gK !/B몱ftIW(~Z0 I=Vy3Fݠpw|<]:0z/*Iswn.x1lx:gwd]W <$;ڷ0o!¡5Y[^]U{ 砷čW2 87yli~VYօn5XѶ$M s^hVLbV /ٲ#_?N2 Y}!ZgXvmm G/%XWCap}G<&ByNqYޕ}soגV̍j}^;ti_R[>J,֌8xȉ>W}hB4}Et_y?_Լŭq({uuFt\nF]Pbt0/U \6fJ !s[;PM+Oo=#3]28AZ8yMT@ʼnwT$Ctv5ȸmv+nA>7!tD2d~r syCcEqEPZg kN ڿš{zV`f2ɼ"_N=?cE_$VGB}4B-0_i^{2p"|-f 1(kK}X/-Us̔'% wlXGA/H 쌢X|`ZUqо8i掞qXz%x1;QD֢bɁ~s;t^J26_.O2qԿrr?E$yo~=nrBIZď||=./ohO1LnHLes≻EƬ9̓v恹3be^'&cȸM,*+\x2ZBB޳B=pI_^ n4MiWw 5ڜiN)b`IdˏXvxye. ܄  !,l) 47~4yԵxy&kff "l5BM5l[u!OG qjqs~q׋ P w@Ǽ{C FC=T xO ^T>Ʊ`?NV 1:ž*%Z*>Mdӄ 2φ̮.lo@ݕXO,r9o6;p>g g|Vae!j%j8VU<%ú}T3<*W:m ᢙ XΟ;O+vXDm7CS>bOfG0髰s۞)y#\c⼝E(X_=gKg 9džV]MuF|<><^ّ`r$,it쇊 zuS+tRhz'6ŗt|زws,u0} Y&?s=N$| -ۺ_O2Ɯ17$V|ҹYK*}Iٱ ?L5~^Sq,͂Tݺ=P%[9Y/fNd;cU汉q%MyV-Z#5{9sc145Ǡl-9߱'ah{@4ʨ=uEVCCY(u*Ipγdž'Cj3Gt}T2i2kx\vgF+,N'?o6濇OH޿~B/T&ȓS zԯHcܣUKgmUA^vxx(vWzKPr{VE2E<[ K0h^>(Y y=7xMft50=m5D;`gv*z)G۞ցe.|xރZ{ڰL[l2x5XIHCx˘5`buG |xwIq*#NzfZ@z儒lysG_& R6 #k`LwZfXzU7 TUҊ+땬3X3_Y<Ǹ7=JXW@Y5û &F#``¡3֡`YL۷ sԥ1niO,o0j;r 3>53.Pp)GBjڀ9Zʶ򔸱ߌm6c893e?}O4~ЇE^A^1xA'̜4M1O; |5cmZ:ס&b_ֻ)wBµ!;E.sx}<ˀ}OwQP}W|4lydJ'ț7DzWt-*^B- #OOY)!ղ%b{|@Aaq1~/%'C'0hC't_wĘo:-fIBjecZ=GH\?4]~ۀɓ}q:.޷lYȾRciOPƃer¤ M&n幏te6bzp~ƙ10yڥr⻟1Olh(HsmiwւЬVzH'\ BW `Uwܯ5do[39XL?W}>8gvk4]zd($U.] -&@t K` `2/FƟ%+ qH[,~~̉G|{rܟ?V$~Hm;m{PuL_T1sT,=HrҌkS!BE8ݙiCnRMBJI3|癩ʼnV:s/YU*Dl-e:4zp[_݅: fbƙdGph)<-3zҧN>4XL16FksPuZU H^| |3z ړ -P"99]pfO}44ϷB/c+\Z9^*EΘ4?c;Fş+CF ?E,K=3۩b.[sI'O";/BbIYE%<9#=f? X^Kk̾ks }K qK[U}98H];<K^BugOϝXdTw]k=>iT*'>~W͝Nn󆸕'Ax8\`0 wxANDu\9r4sV3s7I@X9'11%iG~_m>g":<pH}/ 3Ug>'DިePêjET N4)5=yB6Cp^ ^ykPg*wJ-3{19H(>qe-=( X V#āY *̧< [;RzFd_ K.\[Æ<ʽq.@Yqf _!XѪ#>> \on*ґO@~75ro3[ʻ3 $qΙ' "r93Y0u yBi-%Ls|j0Lʜf XnJƷ͕Och_8|Jw֘yewVOds=.43"'㆜}oxpQ?ޠqA=jp UPQUXo.S 3kԾ\ndem{C~Ⲥ͟mT*Jȧˣ^s|zX;r"$AU 1Fy@r zz.Ħ_}" &Ce !TYt8|{ѩkF鐷>vwVV=QvLp SP7)!3c'P'@m-u|(uC^X\(rwg;}=[S]\ߗ3Ĝ["b jƏvxu$KQtu´>*r [!DV<_U̹Y=9g%O=Rj,_m*7J3 _Q}cCLz6W _>Z\[[lه0ȋfzmͅ9g_ABJbWP9ʢt J|)(0nt{\q غpŒSOU棏EyлJ*=H~:/2aŤ)`·u97ʋN̋Xጁ5mv5*iAю:(9 st u:;³&k"Y0VYw$Y :w,~!?s0H=@'%<&SM/ Ϭ&χ7=krF?>#8?&cH/LJXfB+)FЙrBQK Nd&Vjs;YB}_7H1 _E_x=r^3JZPt@B7^,捫(@W7Kbм%iBť*){+{89x=5OfuyV_ICo`sޢϮWc\ [rD޾H`x0 R|Ѐ9&Clpc$.r7&߃L!7 =6H! y_m(sܵi~y͖2|ܽ֕^8kd(bb{,ݕ[>oȷ ¶8d|w9@=ЯŦ=Xrm74.p`:wޝ7lbYG_]3JJSpƧ}^ 1K8,E_D?]~ܹc/mgjb:Jg`շ}vx1鑅o o+B̖گs]]*F$OJ,X8m[cH45tkg[ tMw@!qk8Sߴyw{ry O?X;@i_)OS,` *?eWoh]`gYsM&O{o#x>eA,o<LCY5^}, J_kK{{26$~&ݫ~Cn=%_J/L#sg ND?Cc'̄<柂-N/"&χǐ=q#_1Fo]!gs=x;`s#vf.? }I;O 9NEOzb,uWu>ToJnjaJXF(ޘ| Voȍ o(0816_)wA޲NP~({=wc_$CTCd/';&?*p37+nԻ S#geKWcٿm:\{.6 ^FȂ7v'AaoT;+8c1c ѿ&R`%v ?g◬ߡ6%}h`vgrⰃOۅ4ŬSFY1iJȺj*KXl%lށ[Pml6 HEsDu~pgٕ'/Im}fA~õP,cva^95M9VC:GSы!-(!*y//䁌Þ@vj5<.=Z[Iƴ9[J!;Ica|"<#dJ;fĊ_H&WRL'/3B/LP"׈sH@!Snty.M? %poZ; R[cS񹖒gnHGH?ͦ{.)7by'ܿ~OpI8~Kf,A`ql .p4 *i:2mˠyMPU{O r ~Oz.lj߷K6~<'ij_;)ANۘ 1?h hԧr~NaTc>X4ܜj? <%U R׭Ř&Ë톐ݔg*Wvp8L]~;*(fB %C&j0n $2+Q &CSkqt2eo}1[]壇EVmr>9qe?q𧤮fA 陡.MX!S̵퀟`+6kKoL|!teHsnZQ Q;!7-1PHƥP&)̗Y~uR1n]DȿmWw4JcnN޻K:}V<)KkUxN2X 퇫!g~?XOj2CNg zB_Yt\4ğ]ZH :^S-عxHBl)ص E6H6B~jwcj,>t>G'&D@!8eHN>rү0C\Z|,%^=3 Bi+Z&L)_{ uYm*g[f}1ZotrBKNQepi{:ogjЯOId-x9zM#5_y^\prߖaQAI,K$1X~RUzC*0 d]V*7d~<-df J VE_Ӈ&hYOUb=5"78d|82~K2><2'_aO!?#{ZHyk9~y&<.O?3I،Qn\>򒉉&VI_m! 1Đd"HÐbNL7u${6Ғ )52夥'VkɭK'+#+CIYY,$%~ 'K -Nx-F[A\.5bRtIg.)P?)Okĥ鞤%F\f w%5SR>ǻPV>G>K('.NRt="JCe&-&M#hcKW 12t8]B.gq j8WR^=H04R%k$$dkO. HIJ󇬤;fэ]Rm\C$'I4}dLR.5 *)M[9 z֔LFFቾY9%r*!G/N Z/!M$f}D'Ó,|k8ÔcI I%s )%+!dCBd19e>LFE$˒%qz*#N K~iQb>5 IF@HM@YIJ1z!}2,-C H]0=HJп`O1G~BIAFFI3To$$eѳ=$ED_$ÐRI<%dS!OI<%\P1'I1O;iʓb(O R mfh4c0EB @@@@@ @@@ A͏߬9l 4VSl̙ieLȇ~.a>?}F?A#y >Oh.BD]"ZBE#Kh$忄Fw`۸-CHCgD{ #߀VBI#IU42`;xi!lk8y ps:-L8߲aG"͕ n Py052~16.&X_q2*%$cK^bdy Dmj1a_ߣ!%*d<:R$;u俪ZFg-!N @)<bK7}K0`(C1(KUR8I wJh OotW쌾SI2"0I!dP{h r =c]M{݋a"@~:;*?P ƀ~*H3㍖%o47VD퍾F#s]c/WßuA[g|Z/WGs`a?}_( "ؾ?-e\t( Mܜqc#s-*ȂjliNb2؂E57$T8maaE13McB12ncC s$ffT Mf,ZTƟ&Q 6SFSS5zPα42cljFږf*YS,+hF!r9OS7YXoe1Ӧ'3͌a&n#~17HՌKC ih(61#:jE?8<,6/ա\ĎM6B1WM#L$75>F:fʹI[R0nL4:[rNQ̬Zۤdf6>#\GQ$}K> ^T3 NgȢMF Xhv&fILLG5w ѓ5#B}d21"*A*Y  BAidATLnZgt [2#Ve@$hA:I%t WJ664j:)t #Ai$O^ GA DY}%H }L ZA AGZN0A ii4 ger Ȋ -Y:4%ȑD[Ott I!HQ:NM!Ht 4 'vH$H\C~vI Ҷ ]tĴi<'hA ȓ / !ȗ ? ( !(0 ((FO~GPCMW'4Lh8a}Dh M_o34N4 M4mF9 p5 #06M74'4 ;(n74lMӹh؞>MaxalA=a4wцtL[04]70IQNqhz MߡEFAӫhrQ]9BMhM94f*ӨBLFLzM4]4G/>HhC#iM"4}wt=~Cӫh:E'F1c5BBBjD&_ro>ein!@0،I(!T#٘d(!`mlfF%i@026X%`D0ЦP(FTm2|7b02Ӱ"*7H،K50(fFm"?Z-(fL#RX0V@xklL|e!`A GOL\XŇsGHĒxK/ftW;Rm3--`ei5،2*iR ǿcI ,~2{tf\xqפMQK7(׆֍7ls ib9 8phQ~μ*#ʞ{Wco$f 1D4h FFHG*#Aüִ4]6̌}8 ԑ#tG-4Q4i˱H j>^_G1#)kA٤NE 짌sm  j@S'/휃6 f\@<:Sh#>e<;i߸.XfbLHkd֢Y,igTʭlfk;9C$ThcsQ1#\C̣Vi3rO7 1Qm }72',fl֏'>~\#&05i?noalK.3ԡMQ@ A`(ڒHT~_xH*Qx]K2<#FVM3~Ti1Lh5~Ê.[$4&Y5f413f!02j)&*o mĊgNQZtYJX+fl;#&\V6T#fhYjnF#G{7310d̥q>L4OPW)sIw͌WӻR +x  ; ~w'=cF ~1軞.swFψ7/0`3]?g={U]58go!G_5~ 葔go\5o}3:7at~c1ëߜ=3=wu*'/c/%_\0`ÁcL iV_|D'ogm n\"#<лew(Fdt7ScȄ_[i3gGȿB`e*8`T, ۖ_k\K)}20;+ ]~sz0- w.XBOG" pMC ѻ s3*[<11:ap\{M_'kkXh1#ӈ>tNpsychTools/data/cities.rda0000644000176200001440000000124313605124107015301 0ustar liggesusersSMhaIM$ЋxE% ŃKFCnH-)T%LB JO`O@TYsP*XP/҃xf7$3{o̷S\)cL`$$Ŀ#+.0&ڏpwq{ `=g4b}U$Xk<0w uƜ/P/0fZ'<!p|g M<7~ O 6`@~1! Sx,Kɏ/<'zU wb>/'?Ox:Gp]}?4/'?/˃AdqhOͫo]I}Om?CW8tt_'%5|e/dы5!)ǣF%4T4rH^141ᘉML33+Δ3+%;KŊ v{ܹl+:0S~72r+?UY|_ۣI^TVB|jmΛZR >dU17op>{8/U}AWv?Ӭnp9j}~:mPGJڼ);:Jb᪹LYw)ձb.ȏpsychTools/data/tai.rda0000644000176200001440000004367413605124116014614 0ustar liggesusersBZh91AY&SY(=gUUAteA@DDDTDDTEĿ|@RA (I*B*@RB"JJHQR((U%U%!I ((!UAJ$@ TDE$ whm=Gml<<U=54MTTTihh44ڀި2MG4hi  h~UT0`&L 10&a4dbh =R)d404=FC ɣM  5ITQfhgj7z=`=Dڌh hMRIz!44=LP!a=C@C#@ɣ@(|Kk.fn2Ujš35M&jL15퍋jji5FQj44FQFQq x7x 0 i4M&$ 0Ji1iiMI4M4 LiM10ii4iiii1f0pO-۷lg;]4SǷɮ;xϏ~~1`n1.4m谦[e}~f+~pYu<싻6_?CkTnj 5+G5ȓEcBb\nlb) ]δgusr5EcQsJMiMӶ],Ũt snlc IF *4\wUEd-U24,QDX5s\ۘs4jE5&!劮YwW#;U&;b@k+VHE&61spSq+i1$4ۘlAQj678 .F(1XldDZ)CQm;ۚJdюf940`&s2ajFsrnZ5-Qʹbɷ*h6tA%smʹFcQQ\ۓuurƮƝwFLa bnٳc9mn4fJcEwtN5l(ef`8U N˚wwuPh*wW7uHu#ss7v8iJIvgI4K@Zc8gt֭*lVQwClcqtMZӡaֻM]nll[-s\Wsƨ6b[4nnd1ƢŰW#s5%i1\m1nFr9.APlbŃDIrE%*1ciuV4DRRjbJ̵]Es qjQ3[+ sb),p2 HqIխ7Mcn:L*wXJ3D45NiVR2ifwMn'tЮgu]ŝ*1r\ vUVWtسm 18H ]9*刣cbARgw#FQ3Vf [XF].k]ܙFTDhwtE3NXFh"FXEj&Zrs3* fGqݓF$LD&ûdP]uEb;M"k9d n]lΨQ64jM3[365rXZhMceuZk9Zlvt5Ѕ-wsH0,wEwv($904AlI&Tէ6(NWUfauۗ8;e(1Q EaMm&*MZZ279uzo^MS4G1In'gf.Ժh63͋@]RbTc]lbj ؈FJIN9 sŕecfV5Fr֋qK7ptiVcFM`Ej'T\5ciTi%HWucf$uwPGTrEFK6pfsd㣬vcYvvsZEwTbevf,rձb.Lu\&,u61ц'uv30caV`[50Zuji̵9eY3 [k,º4G29elktnwq h`h-sF1ܮm)i (kwBIchMӺttfvWN ݕk6ʝ&"2c`#d`Ѣr6sVWm75\[&2mWcnlZg9ME4lAHQQN.[3#UXmiMf\TjH9iI,kMj.uݱQPl93VhsӬ2j+lV29vqdCcTVWm6ӺU;36;hgU8b-d9]7 DHNu@"+I\.W,npNUi66 0v3 ek2\5tl;]h1QN\d(L6CY1FjNTږ6T㙃qӺZir8V'3ITՍNlNil¦9ڵvUWi:c365]332v;k4bէiӶS0pLrlյɬ'TIrEe1qa][vqcfu[Ka[t;Uٚ+*M6Vv7jƨէfԎZRAj*m5ȷW:t.Nk4t2N2j@ ,FidqZ vmpAW:TQ.7-AwvH*[tsH"Ōs`ԗ6cvF$wm8WLq&lrZcUZͧ44 rܱnu\ƹw]db".nw["3SCW9IĄZ+upiٛ9@k\Z )"rckF ͘*:2mY\IRRB͹tW.b̹tFŹ]֖FF:a&,t]V2])R8f\ʍF sDEÕKhш+6k2-be ˤ5:M81)nś\tŃWvهNm$vf&9N- w*sK88]v00T5jM]6ʝ̝N] i'uܓsE]F IA(LIe7weLv8Q6QQvٜ;g;KrWm˛`ۑE١j6uJhY\C`LaẌ΁;(l3;j)'s:F;8]3j10;:Q3 +YMȉ*%$B.덃l괳 g,8wlΪZJ2caݝbBILfk3L\T;aզg0Sf9YڭKh͘jVÊeMii)ږsf`61U%G8r3)$Cd0Wk:ijVw44EM[Ys9ji;5QC\b[26$vrMqrNaWtM;F]W+FN6q5uv1ɢvwZ`3*̑L+hmYfBuW.Fr1ēHiJ@VckMnsv5bʦS;XJ k35kcNWf0Uf.*\l&6KS[b䄘g6ŬB:`0D&eXmc2u6t֔r84]99q 4jNa:N3Le˴º95#88Rkd:N 2NfՕ r- ;-)VK0g*f!)uh&Ntt0MV؛Zq6cgY0Hqr$F$;Ms\] "nD\+[] 5E)6WkTjFjұ8lҝIDIFbݲstH(efbV ftUNZfuGM ;J#F3k3m]t2j\2.tPnfvc %wb0wf[*fC3+CcLi\9u30i1sWAlթ3Z)pca:ɫ)IiISp'1;R뛙,u*;Ng+k;+G+6'],ëUqZ1ZÅk]0vsfieBѪ䴢t4BUp g]vEќ*:k93c+Qi8lM1wMѶJ &*cBMp`ns AD9VcUViK3e9YvuhvisI!4M Pr&i94J8r+@rPpFI68f3-UHWw&cD;7M3'96L2Ld۰ݍrdGNQխ6f 8bvf֪陶;1FCiL"]63 j1,(ˬU&sk;݇V3:b+,MZYCcZjjM8pۧfe`8u1QƝ5skY:4 fc\퍚fWNէm;Sh5InRd .4BSDA4 wnD` ekv\e\g ct3S1wrPV))#@`.j1E*.[X9)ι]r+把- INw6uܱq͕qM U!f;jpYʶN22X, ausiVTaN9vӒC2Ӄ16gj!ZέYpZ0l\3I fUܪUQr@ƫj³jVl1hk6 vf\cu:َp6ds3UK:XjY3 \7K\Dn;iMԸ Fwg8hLi7+EsȤ7wfpfk, UW h;6)VZ7+8TllZl1Zm*Clsuig-ZGT:\vkZέW\J&ͤe Z꘩٫`fcVbLLTcMbEF;6q.JJf4Q˦SYq\ijlΓ qn tH4V0Z1uYZZNs%ӱfiq9]`L9ծ9ٌTMq\&\ݍ9L ԶVW5mVsfX79%ؐmN4"w]\Bܚڧ U㥜;;wt7L5L) `iVٜfm;8ؒ60S͑CML݂PiHu悁95$REs;M6+Ll5ha!!Ajw] 2*J\nI3#b4ff-,Ԃ,Fn30e"P'\s$bw\F`I)BEF )'9n3 )%Tƫll,K놩f1 U3];6 2fj2QjdmK:իF]tH\ti5GulucVSm&1̹Mps;ADl)ݸh10W6YjeNNY)$v6K(R.nSIwq \jgga[AILGwDe4XNMpbcFHI$Ku5ˊP!L܌bbiщ2BD\uYjg1c1TՎdiTI1uc0pbκܓwq]d; d22D1Pw\nr# Fsh&5YSf:٘؄]ܹI2dRs$cHQsF,YˠDۆftFS0`:iXj1$RI(*s1S( %\hQ!1)1Df0N]'u4F%r;%Fgj3JhR""b1%,s@iBwriL`"ܙ`c+iJ鉚khI5!BE2.\bCD$FK#ٔ GZ*4ڋڭ&g* 90bhlD '54I.wHk .qIN9lXXB4R!2Ę1 T&RJb0)LDdbn\! 4˘p i&QJQ 2(˺2b0cD (ьFII7T1fv.Y1*tTWgkie.\HDCw]dbEݻL#%2 ZJRD Lrӵ\cf'Mnv1-S#̈́Eӕ7P3& v1DQr b !L9 I1JFdNuDk)g5$0TE!K$hdR`"@DIĚ2)B;JL(˻pFS4 .cstW.锓&hMs98)-mt`sQ9rfwq*JBbhX$JcfLwu2j wnl$LEuۛI*Wi6aVI-H3I3% )5$@YT".]H$$Qw$Cf**h'PRdW1]݊)[ˮmwTU1´Wk0ɴ&5rk2w&msV#YcԹJ6nki͙: *Ve[-X6 Lr:3(d5Չk6\LZ9te8ؚrAu3aѳ1,cMlt(+Lɬ3K33VMYU.lÜΫ71uZc;EXu&nR&;$&Q'vE,vqD 9ұ$7)rsVmpq4%D ;u˲sVgbqUelTHdLLJ1nt$9DMpvsj՜8l2sM.ҡ4nZթƈ.he#D;7\1櫓WsdJ@25̭ՍQdJl¥L!K&$@3 dwNʭCK˭qI14XdwSْIrF1ѐ,w]1lؖ5Z5p$LQ Ѱa#`TJKlhŮnRc1f0Ufs8P1!,AF‘M ܸRؤB(\nS,r&DFK.4bsXu79!DJ\+)6!) lun굘3u\*m:M[b-%%JlQ(Q;0(H6D2hup1 b…b X(ȓGb̓:c ]hJsPL`i& wtI0H!s!)%"RflDWsHh" "c\ݺnlD7üa ejUlWL$(LJwu A7I "3 ]7\LD)I9L$`Ujs0B"ۦJHԈjsHM3dswv@8s4&H吠ѹtS T !E#7BSD4ZUΫ 1\I !%123mr,F`P|轐U3=]]8mS))*rŞ ZTEf)" >/.,O5NUSz/@_p_/FZ.`$^^^/=ATlRSt-xʛ׍!k*6@kě.r p*lwY77 lA '3:Z%+^ Z}SsJ)q0yPܠIJ%:;*JRB_H./wY>ks)x3یG\N?C%0ûK#d*{AbK3##(yBʫ12H*}T|/ȥBVDTQ&E1k1fZ흷Kx j-PL".p i .;rrru|\ f( _-0-̙_hŨʝ^\NL̳&޹ 53 $dCdIŔPhA a4 Ʉ$6)(IM!;4Pc# FdIA @JXP#Jl HDe "%&HcI*f4&`S MɌQ lQhI2$ HI(CLd%IfeDLDQ%!&%ˬ#BAE"JNnC2%D Al!",hFIhd$bP@@$E-LMHbDci IDL(P(hfR & $i4d%#"0AfW-096:jUdܖ&$ˊL!A1RL"#3#dԒ4H #0(#!ša&PA0)Dɒ5 ABh]LLH)̈1$r钂 ,HM& Ld31"%˔PdS A Da)B$ȓ$P2XјFCI& L A& *@҉ 01E0JR]͐H631҉6R 61RH "RdH) I%L$S J(0H)# LiFe1,СHP2!C"F4P̙PcLDAL2aI"0)#0d"bQэ A(14ܻ@fb " dB Hœ0D EE(!` LShYJHLl Y)؉ l"#"laY1f&&h (BJ2,\bY%`42XBiPPPY$XB̤L e"!,ģ0 "C :FQ"0l% dP@bH@f0(HțlKԸa45/ M$t"̡1 0$Dbd2PFA)g.&M1l(eΑ$$ IbDQ"RI" 2R!H%L@ \LABHRlJ &EE`F]܄gvF$ AC H(d"! BbBC#%0F !( c&0!E30M (&2 $)Q4!&I#L&iM2 S `"Rb"l D$1)B6H"sIrbHF!MJS`2L13wDE&D b0 HCR1&0$IݠȆ&0#2$LiB0LB$ )H&6,&;A@'HHa$"0x+9c2swMWB[-y B0F9D7 me0Tkf+tPWȦpMWJA T8 z0-H_Ux}ͫ|-(!/";kɚ A9^$AF\'QX+huɨ`bHX`%Ciކ# =D ̝Zg4c0ƒu9ۼTaVU-12œVzjnT8kSx[n\\H䏬;ʎT rJ9c9crvcb5bl֩WX=a VW/u60ʑ)ӉP JLbS(P!k((FN -(v3'3xٳZ`7bsج T8䜇)ʪpLu0Rȇ I$b+ {2:x +Ϛ!^.^EƣIfG4ZW|'iu {ݻ^(sRUl6;xp9*ފ^='qz<.i?hBS)0n=TYoy\e:Qt^T?e!Bц)#H^IȥEp+FyPw,w[?j3՜](LD</BK3PI&ZVkyDHʖ]J֖"f[[Tǘ7+hYoa[*) +-> 'K62RNR3ZìpI\X5G{H lYUz5z=o~"G#L-hǵ8ІvٲhN|?dir>!;GĔqnz=I4;J4b7 E c+Y`yXvҢFN/'9ħk`3OtOok5p+xoQ;LȏWY!mɦ_%^7oP@HK'~b? C^ K8ch9)F+Me3>$@V52ZLx@RgKCO ]9î6,%ZR_n]芎i jU,ZoпĪ]'v&0lF6ZK IOjuҭ6=;.3 ;A 'Vn{p#NTى|n^.L&~!0?[*tY_^12IMFήMgg 1پfi}P a䎝/<Lٖx=. DLX=V~4k>8HG(wx$Y> &$Unj?S!LQV2".-PRlZoEǠ)wCՙ2Nr3 eR-}yl/jcd0nfiހqS6wIF F_!ټcP$~-Fx(fy&S AJh,>3!fC+ˆn¡]N`1նtg}uւ0Fz`N86ty0#3CP2*c'/TAMM`Qnx9tBKb1G"C8-nIYDC*9jS*(&,}{&tPs8$Xi'5z[T/qx1oK.PǗF'gGxC;ZDﴽYLy.Fe/bДJNxЮa-FiBhe&NSX4lB1qsub 3#u-+D< /X#},BmGh^_"ߒSkJ.YӇW Y )[I-tdDY,쉳hI}-74S'5DZTFIͦu\N;W:?-}.AO нDkLP)]M֋?͖ ԰PNGlW&tjϺl\UԃRvG. 8ϟGq d6e duפ8TN1{ NzUSczhmɖ5H+w "N=H\:_[ZmxkXQp+؃v[%gcy_bɵ@5T FPYBA&AÈ]Pؓپ*VN8|sVb6u^7T Ev+mQȗBS28Ҧ44Fae|LfPYzssCRǗ|Cz.W1 ië:kcGY΢CշҜ/-En /m)|U Z W`{# I|ࣉ1}Бsi#i#ՉyS[0O/),&gPC0m?nHvFI|4n_߳cGu*\Ҋq Pl_ߧ;+El]L9Vq'f!50X ҁ/8PJB= =dJ=gnФ 9J=6{BB,BsEX'DÉ.' @F=fA;Tfyh%qԦK6 m e-#R]O[sA$Ck dЀb~!bzq zDYwA0@eLM`zrK0r3V!Hh\G&e?l993J]57_p$h|U P [CҬklfFhWC(('j)vf'| ddZ9@xbV.XDb3h6b#ј&nhEM id@݇x<153.#$$`U$D(6Edm.稒*$R?d 2WZsz~.}|q]C0A?z7KL]` g@+^"="L߰+Cbnǀ?5Slp%bQRDo {k 3xF*7 4s(_e$V qo`(#Xet[(CPxwMg/fQs t]-@#?{'|%d6#9eM^O 1 L]Uy#%4:>ܨ9J IAE+}'%H@eNIe%RQQ 馭G e07\lޠu>F3H T$ 8N o4o:[k끙 bߵ`wyIw&u"Cc^/uH<<]gL*ta$H8 z6ϤM'`Ҫ G{seZD xu9ty!y;ъ;@i;}x=oeڸ%=\nkl` [=H2آ&,qr<78}M25<)MQE d$?DA5x$.\ڝ|yoP. 7!J`ܰ0Zo4|aW,*d7/Cu jDs o,ţd5 ȗ9lVQi+/ߔq(&eHGJJl`-?Vͼ;-Si5 #taٛV SFB8yֿ89pBP$qm$κj}e c$:JFB6w%2)֞Ч~%&KV,g b:vVMUW4ȡs,p &ԅ9i6e{V.<I|q\+~Zvu>oʖ~f)"<;L\=#NP!yo 2Ӏ'"eq?la n _B=FdU(1:z#FK/ ZI^<-VøxEf˒6Qk 'ph3 zi) XޕN}t_!BfGΡifno/5p]bR(zY.bwlGWrC/5 76tַ/RLUuʃvռ +$\ dAey:j_ɥ&&(3|Vqks$Zvy9c81Ulg_ Lek,t,wG9젳 &CTg/XpXM25 QzA]c8 H*.^l7Lإ JIOHlb =t^҄(Us>"ܾ(_%1C3?e~L݅%%?ײwmpۺW5[bt&?@;~u<ޠq!v)X6Np, ɣS^uge-KX Tg<HOH: :,&F >{(O[qzZ!=J>H%>I$plekÒٓ p4h5¢(P D0qG !#ǙUzv`~=gu5aH fo-y\?Iܘmb \ ⹶D/{o6 chճ!:1+44 Rן}d`^.kw^x̒ hmr$)6MϨ[$5S&b?јꔇMA{f ٘ys/%s3q+Q|[4]E"hɽKkzU \op(ti33D ՛ ["o%j{E;M\ z*@>tZG4lҏNg)~!j?AW>j3qy\*‹;*V7AF- )7^Nak tX&iI:i%s sg9@fJƃP!~D r&aӪhk gx*qe2l8_ '@ 1w`:ҭtP啶+A$&SQ[# V>oц9Sn s/-2-8~fف[ 9`gٸ])j"Vhucb?WWR1h8*W nVӰd$cM"8|SqkhC0XAn#bIRz-mbSPp" +);:z.ӟh7gXͫ%P=#XRE_@*(~KMh-8R>pn@{qg(_;}p+?)uVIF]N[r6߷6cP;c}#XQ9d"|kͶUONr\ < ũ΃idMN^XL›]?;<$VpY|l I N? b;78*8n(3|zRfc e\V2qP7W-ӵ`><[4< ;55~@#n&⫓>}VT 9wAlZ O~)xѮ4n!`vK]#en6pFnl {mM]{"Ǹ-[2WSAY4% RׯUu {̘Xo@a@N4_"WZWQS:ZHvRMDzN8_pP d9b(~k!\~oW~nLEk vd|2{>qq,00D,$1+`Z#SP0YSY^Fם4ekJ$⽎j5uYi#~sJ2:U"Ft?Z0 A"zihvH?3|שF߄GmՃW͵Ex ~ShPw>&;%"3攘Ľ$1`G_X:z%kUo=ZZ|!R!G\* 9_Y6lĽ+LեEWf;f`.bzC9Qج} }/Om h%y]-WT [~Ä=V'Jӱ% #$T6Рvp`7<|"@TQqyje'@Jƥ%Δco+KM+| ":>"@ Xg{ 8G=x}#y\oĜv^,͠\.s7?!lWf^7Vo 3@6Ni!b̳~Ɂainx{Ff"zT1OYKJ!oTOQk r뛀wrh]$mRi }\; ][ۡ.!u4&v@VD? s/>T_d HeG3ZnJ*'5yx"_$k7qo'>׈DeoH}D D#NUri ?r]M~k#e\0k%*6U+ %0`7SQvxD9F~, R&XDJGtOt 7!7JG 9te=h\ޕngMZ_UN!:J߅Ek, ,waKcNL/=ScNłˡWJ,d$ j ٳc& cFuDуLҠج1>N,ֿT0m: k!YB"[Y,*/J"6|; ө7G$ⲭzȻlͿD$5?n>nKosl3^4b|,zBP#:}eEZ9:]Fسi݋`LF~3 iqZ@nN#iuUD1PNÅMQ11B%/΢ط<Sw|8Ѧt G;PGW F"kU|⫓O# _Gӈ\Lv' 4pJmS =N6-۷v_Ɵ} O//v} +2+1F3T2ʌܧ{R›tzAi< Ow(S[ΞM b"c ]Gq/4 ^QSh֋V惚iZrTxԆAZWWk|2] C9_Zr!09β9#FmQM[K*M?zKIE -@DHwoC)I6ʣ_y8 W)0L'+wՎe;Hᙕ0@h4PdIu`cFk{Ieiy:4H[3L\~Hޣ0/e^RaҞ>NX ].< wk!#qglwRmlycHh$,*:F,\ZQ˺1_d_l7d BEI'y ŘpHzw ?Xׇs'N$<`0Aףn1X)evhH'D :CX 9D.I<[_7iϟ &\vJg#ea!k!B;qO5gтm촰+Ӳ~n_Ɏ5%<Ǡ=8'2ݵ.wIu貧G7Mpq} Vrw\$^mF_A-P%JmԎl)f֪`,tkݥRZ>ERj11R=p#gu=lZìA'"Ak"CVb)?fMߐʱDm6֐r<!]"@ tƧeN6iT;ʷS1B۷:68d)F1kX)r|]B2?l38o<1/(D2 G1nB*}Ia.IS0 &ԝ]F2(8,{Ncϣ?)ͪ厫/9o!BK=ؘpB q3 USQC) W y}Rƞ-d[^ٱ栊 tljYm%}b] *$%\[]'l)?$ٛ+juS>\FIv:=4Ȏu7#z )V]7[pjese?J{3?IxQ8]n!W+uʪ72!.,dvLrzDpi7~7 t+_-fz=Q)ww'F-C#SK?D eXH<>0 YZpsychTools/data/sai.dictionary.rda0000644000176200001440000000065313605124113016742 0ustar liggesusers͒r0 g@PKh;3 @ML&Mhn{AP Ǩj1K+Zso̽͝Zs9߷',x۱#wB/?kTT%\_|C'9BM?Y^ƺtK*'Z]Yvo9]dߗ;RʝQRwZWRxw:]a|TύRlčr8o_%݉r.toiJ9X |{!;BkFTR}9+MaQlT/.bޕܾJjg%goߍV/dm% JawćJ|rR~m58dk6虿d2k&_tfnsx]ݝ~dtz!۰ٽvfm+eg96gfmߜ9&{%t%␽-x,uMy.J?9Ry).;ŷ6YuWzTF6{9Kq1_Wrֿ2gWv?OBxn)%n ɞ̳l} S%ˁRsn2UE9?JP;4x-fkHNJRg]W|r=s4ͽw .d҄qk+҂gwښ9iDj#|m v}LtWM ӻl~;gamu^;?y~56;6֙n~yKCɰh2]{ϝQ8(u3UvMt=0hYvm0nW1o b|WJl C߲-!r~[^!|=!w'UUK᮳X0wn`U%ڡ% _lU-!-D|PvA1C8\?^R5Umk0}M.EҬL|[>"[W1;CqXz^5Qo6M8:{vjTz;tjQy{~w{؋?_'3krDKj~_*~ =.^חgVn-l?kZb?UU K{>͵3\ Id ϧ@n# k^jk$knOezU; =.<8]bg$kpnOaἪ9'Y=lknŘ(Q)/V \ؗOpNVn#O·jk"D:"oFksk0gznZܻ mέ˙ƞ6q49haoL4. /zC0|5=mۖs0c[jǕT kïs1|N,֪U n>${Z*o1'Reg^7]5]W]~VgKo9{k'c,ӸbHmkw\7?>k8/H^u@g?iD6&{g K P>ywŸ_5oau0]UΆ._ Z9#IWͷowjCSqhs̆+gT]yg&OH鶝y%|gtDS Φ[Rąi{qjWw 7k7{o]_(}v%!=OS{'kn.v;]ڒw8bn^s:[4ߨW㔼so*Il1cgk[T[m&J{'CYb\Y\|8jVͷa*ֻV#Sn; C[߄뵡83kM{<b;r|8bOk+܇ŜWa럆e?s*wOXgn.Zg:_.?[NX'Gc,ƣ#ĺoBNJ̽߇wMm3vBͽT㘫?b~PŹdv&oܸR%-O<2\3Gv}GuA8> %~t\/bIU;e⒋/l3rvk\>𖍉[̮V~}<|bj6q-q.o;wpWU=xfgur#37ɧu|.į-Wt~ӧ׍Sa] -1_ `l&.{鼮k\}'ةP/8^d_cۯ#w#D#ps<ȏ"B:1=D{;9"B> Iwrv"%BEĆ#v`~idvaK!u2B.Yv\΀љC/A3DL2|+~a8_g5nэ-+ oEL76uằ0ߺlnلlFdSaAMm{b{83z݃=zȰ/D=ې})!EggBA#qC>Y2!|lpj{^ҡ~­%z?C/}/swR~A{c žsgCH}T>b_}}P~O?ف~*5ȗ!t~T?_8s.x\ ^\ V8!`w4!\o3ȋna98=-t:6P#G@#pc[F~PFrfCD-D.%DD-~ KY=(>JYQ:(G(%Q%G{6J!ѿBQrqCu)Gϡ3GQws@9t'G~ȭ)785.9H;s)rP3x;Fs F16F|r~cԈ18|ɓq}6Nލw"O g<q4u|!`0_; ؃nkl@`^NУ&5rZ>!`rO6"tLR'I3~`r Akiix>IOMR&$a {i>)tNS߂)^MXO)|Ɩij4uuLÍi1Mmcps+86M=F4xM4B^Lc4ub|'4`v!3]6z 0g{3|7CΠoBY%g!f1K%VYj,5~RS.3\Ưebur\[|vn7P*'< W&&ۊ|~v\QK4,Ѕ깺u:?]2q3Ո0/s~a]3_pYd&. QNܣG >SchkLJsSx(%E\OMn;[%nJB@ lE@ "QjfIuݗu淌P#&c O06%T_n=9ݝ= ?} ׸o8}x3lal FKUv:ս9P|D0P$յ A^P\Lwx+7^]tsG}p|cGESt2r\ǿ<+]CoސpT}%/4 2~Qtٔqk :@}prFh JZQOy}'t7>}.R⚅ƳvJ] > GrlM>1w0Ч A!(=$ x<@kCxC>}瘣ojH?)ޠ!Hܿ@:F,-]e?d2GCBQݫ.mw˷)5ڦoLJ,?7V;ylݷ\vgN7lM/aӓ,/̐NDs#S&E]cynČY%Ȝe`{.tĴMvAv{F4v/3 ?bVgɟ_xz%psychTools/data/Athenstaedt.rda0000644000176200001440000015340414245224356016304 0ustar liggesusers ܧٕ_-Z|PؓAHJUKjIcԛTQS]-Yvl KHaj ''p0dV{ҌI{{OU==ow?O]Wy7_|jkozsw=Ŀܮoվվվվվվվվ՞=VVVoYh nwݝþwg=p~_ZWOnNWg|xgվվվվvվվ՞=jjֹvouFGothyyx[k}~\.j[qjυyڗ:of YΟo:W '9$99D3QtgyVu=sq'0NxODs+=t<__:':4Ƴ~|/?O}<=~W)'+V${RBԺ<$=$Z`\zG)V?3AKO78{ *|7Ձ \_}xWε[W6r%g|%B9@=ZGo%n럯pίOo犯nt۲O~wuZG). ͐ܒoqst;C {s&KYMp4OM ;ȏ^?LyVUet3пS ey-TBѡV)wҽC:KfTOKs,_}p'~xDuOT#sN-ߔ*q=ČuNGnVT P,gӡia>T/;Dwfh~~R~r.K0o4;WG!R|>#>? "kpM)3!o}3ᾇ +CA~4sa1 _Gu7SMl71tzi?RAߐwcݍ/(nAO Wbp>\Y7ĹxHv_T/M7PrlWp.:\۶y}} 'p/sK<1ס>WI^OM﫥?GqwS](!ﶄxs(~4㐗ɯP }:?k=*O<ś1O$_ofmUrO$*W}>y|HO>uŭ띞zo6IrIO~^tnڪvObmIoo_~N-M΅0Oy]soQNN%?"o_dwui֦<{kj|j'CH:Z[uMupgB=\׬1﴿gVvCnTgJm7R"}<&  ;nkKq%Eº_)_6nsD'`<݇|ߎgk^A1ޯH:'}K߱{?DWU:9}ϓI>o$#QKHR>F}_>K|i}ȯ'zt ٖݐÓ4ӾR|KvFųwyf[]GI J 3.O)*+Ə#{5&}|oyF5l6Ny: 54a)Nǒ>'y)ö}+wݠռ?tOq/}/Ӭ%y=gIߚ%KӿfuGoۏPsXz~ҖdzK@$#HVu=?9<;;'|GMq?Νxy[n/GKt[_e{~sr|_қz;{[_7UD}jl#nvk>øg_8|:vk~le?n?9MN/d7d?+~J^NE WYmj CߝNtj|8^/!~_;?\^5o GBGou6Ƌ(@*oP/E}+MoQ&>_^~gޗmBc}?W/ \?f?J?S)U:=^qoΗB615#/֛V}ާ:,K'um)q(USɱ_Gcŗ(7哷|.{~ow}7w)oK;v+czށ~XrIuzeEzlgS ws)xJ!o^ 7V1'r|Qi;YoW|Kz5Uz;T/t6}mok|7;o}F^=O~ޗ{K';~su(Ǻ 8~꣢4g?|:o;ק=O9nozJ ?Y}ppNm^ [K(.ߗpUr8ꞚO%C&;vڬKx'ƻ)sry~;?A=滮:s͇8׵%eFougq|?&;GAp;*ɕ/Pw{!vmu>R]cےS0^y=|t@Η!+f}қl6NQ'dϾq3BgCʟ~#} =qU{vq||/q*7Go:_w8}[}9yN/HY(q;d~4qӃ8oW(~Se?֓owй4'<;}_:׀ud$!궎'C(B=\W֖x!{<^Kf\N߬Oqדw)Qݧü#x/t;r<}>~=G;yǁӭ{GB] ڇvu=Cr<53P~__1~]}м;ॼ/h__';2h? .Uqk|u?OgQݢ[l>/;'š@?a'ձ(?nQ>>)i'پy?kNHn~% OzOsN3AmUO>OdG$y:t޴IO&}׋tU~S\LƋܨ$dʗNW>TKV=k)zE1q鞳>Ʌ{|xv'ROx^QKy7}}zkKyHD7]>5?UDU^U}ּvi t[<1[ϣϺ^ē~1g]?\XUѮ@9ůTG6rhGlUAIv֋pɏO:dw)L}VNzCv!↑zSo.kP^}?]޾fpT2Wq{oZ?kGkk?|M׭Źf Y!-8yg+h$j`.4't "߾oq3Ut:D~8|3>.=zU;()ς}8Oq1}K'~"'ts@ӭ#T o7!}1ΦQ^.OrunU靤>N )Y5| Ats[E:OU?Hϒt#ɡ/zΔQ~.ߧ?&FvAtv<$ݷ:y>\U_/ʍqC@yoVy${:ǔJv_~?~/+}8ɻ۸h''|Q~.Փ䗓^ Et|?y >ٝ4"} <[Qx_+3U$gvkNv~fm '[GuS+~<|]; 6@`̓;|<8~tQ| DgS\4>=0R8_sy?#3wXK pS^zb=Y?ҽ(= /KSo=yB_Ix|#}ŕ]ԫf~>7B|VxGZc`> ϧ-5wyjHǓts_SۭMPT)&>~z;}$#Nv }Ӕ[Kq1j>P{~^XSޤu)Ooyiy?{wu[v'䛛#)'OyGʏ3˓4Ry˴>ɫ&{ }ޕfVsUmN^kE~9tk}2~i}]$j) ׭MWt{l/TҭOZ/z)&CY%oE>~;OCEϟmxO.)>?iԞh/DZncZzTϧ"]ٻY:%ȑ=3/E].ѻ";=Q;kE>,⹝UV}}Qbo>,пSv]k1σ$sw︿nq^ve{|^F;ܖ>Vτv}iF֮a3q;_gB=2%F鸽i]U<[s^.'{RSyW>q1B}<_{9^I~ϑ9^z6_>>I^8v: Zzb~3s̛xK_wúԇIb|W_ j-}Q(?S6})I'}źo6ϵٸ;g(䇜?o } cxXwq:> x8Ht ~jAp޿pԖX"=!j ^~Ϊ?W5k\wGoK~d!_m}.Nr' vۙߡ7~8u UGR9jEmxx@zzf}|Dz}uߤ+9z([q5yU`%>|$dGw+wO'=[?>[.G3h93Pjw.sU}}I_Vx4/S[WuЎ?IGbwV?]]7@Tw XwZ:ec9xrTosKtp?_;_?Տ}ϋ?ճOcחvϕ!=T?LaRӻ1q8BڷG|ӼÑ>ӻG6MH-q> V=%K=- O[֒ޒ kқp}75%Jﵤ7ާx@zmȾ(PRUO)>6k;~)9)OHvDT7 >~+q^{ 笠ϔ>Hqtk+>K 7_{ғO֒8]k >uR<~8Kޭ%=HA-ul+9gt>8!^8oy8=.XոC6kSFAdR^Jdj"[d_׌TO.fIE4'[vP>;m6v~`}mm9|'n6ORtnt_~3n}d);)nP^/GZrpjU_GyQm}S\Oqۺ7WZSJߐX7IvB:wܗVৰ.޳nG?{@ݬ 8c4P~W%>sEϓH/Iw)'G:tXt>}>]dBKqoQoП_F=Ώ7CӖGݯ*P='7\7I_N</~>~@ȟ0o}C($)xN {롍 Ǘ(Qi<'=k^?Ց>0_:K~nF Wr#ɟ˳gOȓy6YK?$afd /_SO(vkaj?T7Y>~c>q9KC/ٗ-A5{ɻ-I9+H?j=FqxOt{R> 8'Fu sxxǗp;<ד=Pr9\?8etV]#%:A1?S)Gfx)r< 'f~I=zr-=~>O|V*{1jLq+0m:?'8fh})Jn76cKZ3Nr(?);Ss|5}G_/X_n/FD C|jB/x[ȧ0NyLIz>o|h6ѽ>OZHy /ɏvƼF5.}>lW~k< LtS>@9I>6r;Jr h{:GKSxHHGuV_vΥo\ߠ{֝>ķk>ɳ[[էt/V~@%Of'UV|_S^9kMzFjgU9&+I7?g)*=̓|%/x|*Kv|<%Jy;g'z/WO^~U}Op޻i}տtw~\;)|Ksѩ{9=7%||kOKGU$/?Ejy-$%x2ø/{+|'?z_}A}8<䥫s|%щ+#>>Y?&?Ikm6)tiQۋpwoUץx{ <-WKqNoVŤ:HWO~i]/Tݭv5Jʱ &}ߔ{m5/_#H>U;ӽgkCZ9ɓAr |`}/0Սկ 4!~ҽsH|lg=S=NgVF[u['[ߪꏷT'"9'9n~P7ПKܦjAnm5:ftn?*TIzF9Er>yVtw<}΅?t^='|}:TOW}V{ [)JW)>o6[/xtop~|}g{ ɱC?<_:Wtng;{|v?VͿ'8'w:I>ӛ}28O|zCv?E)v~c|U\}s/8x~3O\j?jM>~ KN~I~|!ҽtK 0ɹټIyZjsD-MGo'}nyǿo#ax1/jЦ|3cIWO*n5s`}?ƟS*>`O tӹżxxߏN_ʿH|O?/BCCl1.to91^CYoQ|{ZZw%jGc(O ȟ쨚m͛GolN99Чy:;{Bʫ{ASb{Xpuy=q'{|N?^6h"yO׻;}Rt[W}?HZ{Tj|^3xU:?wc yj}x8jEuG}cOl1~R~V Y'ɽYn19$?{@zygz/K~/cF׊_# ͻu[ Oюm6??(OKW |#>?U ,~U[Ϙ{u;O~M^w]I>}Gz}'D~;OG:oʫh߉u:~7yuJf+>_N?7c/}Z׬Oyw+Qɞo'zfkuA㽫\~^*t/߭.'}#{C(3uSw8WT_vx~ϐw@?ogwxߚ7ݛA] ~0 j+ϓ=p1K<Ϙg}EtΏ#MJ>T.|50עwXMuuᾍq!U!ʋnw1_ ;+@OO3ާ:s&xz8Ixv~SKu\?ı|(?/(_}S`+UL|)π8k_dO.7C=54}\!ùG;Lh;};X!_D.zJ|3WGU_3KpWrwpqٺg8 m%8Np<󺤯$A _PIRJrJ~ #䧺ͻ>~txN.8O{UMnV䧺Q^A~ۼۻ#S؀?'FrH~俺wkS>==0<ȉXvyޣUNVg&w>b)W`ri!N"WOtk t/j~(WZt_ÓIY?DZOy5g?I޻^`|kN'f_ |7y ٷՠu<)/$'H${:B|?{MxOߤGQ|{ŋguC~a~V4kyzIŁtoM~/4zFi|6D+OxKxZʋ4__t m̿ȟV߉'iw$?#ɽ[l>O=sD?x|}5֒}3ׄ'} ץ!'۲vź8IٸIS>@uD _̟k_*\\_)A_ NR>~top6ϙH':My 5÷c'MN^9`syj{7DEx(`+8)9}9v#`|k0O`y!}t7'ڭs M7Pr%y:OyUOvFT$ҽ) r%2'H|tCt/ z|GnOy}_G9$>0n<ݧ0ߴ;?Gy׃i%/_DO3:L8e ^G3x.c~5_/ߣλnHQN7zs1^6say:>AП8= 1Eןvk~_ u ^G|%HdwQ!B(p_ByvkӻE?P^AnxGZ|O~,w:uW(WNҽ)ޔ>0{>ϱR=d7,轏MzzlGM(J~$%E !h[[鼷“]TWT~QΥY?)ۃUE(ݷ?Iy.KO|:Huj\MB?n=:Ͽ]3oϤz[[H)'{IoRRK)Ur9Td/Ǹ(!';^]mԁ;l_'u2~kO5<ɍw?Kgy҅:h#a;p.[Fe}r{Lb*|Li~~g(o r{)6kA軎_?|lnGDm8)}9C(i<ѾC!Mn%OwQ~+rY%rO9b^)_ 5 Ɏ~>Ez](z5?s.ߝ;:x|tv*>-1JYkxF>)k!ՏWSuNQI_:Tu+y=ʗo5=z Zs5u>Nռ'_B~6=WT\-ݷHP@֒?:I}NEr[9do齂:]oO@}ýes ɯYOUKu hG?Q,}^ο oL-/f6:G?v p+xA=CM۾_p;y≭[:wzw98݇~Ro6^͟1|bFP9_VSܡ,b)}QIUO}ż4kh׎6~2c΅l~KxZn>ۡ|iRc/sțQ?E)8`]*ٚw=ٺ3$ɍG${H_!N' zc:ߚW~]0mj;)>sB}W"\߆7Y š2?{݊M]~黋=nջ;fgNOSoY?I ׇ3?W]}Dno߻};9Luso((5W靃8/zDH-W+;p]7;|U'?ʏm":|߾[{ב o̟v[WoS5'>>V}}z>><ߏ0WWyO3~)^v^W&n}_.?ӹ>Nz`|l: !VKpGc>NxGIq-[̃;]o>Yq' 7K%?W+QMs0}VzL߬OrKy,_ ^~~Wݎ('@;皵ob}8Oz^Z}O:'q/aOy ap'*ߏ!~Ώ~pI?y⳺>ǩP&+)&rh?D/; KE9}H3)~ܶ޻ Lkutd_I>\tnP[i_tOY'c~З8˔w9<恎ފ?:Oo)O^8_-Сw} Ii?.?G]ں':}gj !:O5O靈 }~}(<ǾhVHߑ_ P [\S棿-e _t-NgT6{QZGz+;qa8 DZzU?3<#K8)A6G=E5^mf9Bۊm )'yj.AvZ/_hW=ނ$Vr 41ϡ:Au3umάS?+i>)k>czg=~]GT/~ w$+xN0u?q~Rm'rj[B>X~Dž>)@ze>Oy_}@>FO½{;/= /G$}ia\Tϴ_o4ܧGvޭmPg<kk!Jq6ylx_HzHvۭ xHn]?_zkWr6}OvPgww-)lՋTTwxBCqORGw/ (N\)i{%꼩aqgW-K?+Խ1Ojž&Qk"$B| g>/<䏨p`7ѯQt|^Q|:I_KE|?O|8~tn)Tρ:'G~}|ZUnG)P<?T;Yw3OI/e˫q-]cW9I>np)$}<_TOv}yKHx}&j0_|=k_j~zj^CIoiQ+'t|l͛䇫vB_oa?gϝjKoW?{nRIG~7IOA=.?ߏ9<śTr:WSuW~hE_-u#xZSs |TMv!{fp~^Nl^}ߩ*<=#məkC;ZK>H.՚Kunp~ndo[ VOujkcދx}=كHE">(?Or>apw mȫw @+~v;璽ߌ}#?xp4O~[m_Χ߻{[<?x~|qZ?N?{T/:Axf}_~9)/nvS^>5(SxHwE/G';u>8Eۤ!/.fϑ{q©NM5Twr}o8qN>O>#߭k]"7[GrFCyEqo }X"rK~Z&')ސIRNy.I!ό3 窝8?߀~K#9%<78ғftΟʗºݯ/'.O/3G}'}q:_T:~v}сx7Ibg<|}S￈>&}9ПCN6n&ſU}sЏP}d?uX <=)Wp_!{jk֒}Pݕ@Bkg1_0NIYHȾ|#=Oܺ1~5w'%O~F|bx7٧h);touլOu.ՖVx/w'ߠi~tow [4w½3%~ Bϑ"ޤo'E6 1p -˧Eh?z;?t~?!Շ7'7k!9U=K[|~E.׏^}!:WvGZ?3>ҽ)н[m"|uW>0*yBD|[ts~?&INǚ#?ۖmUIP7\_>Na|VYGvox5vϑ/K%ݷG1σz Sn;#Ɏ:̋{K;-S9<{a{G+tS} }V|2|&?]} ߄G}ڋKu zϤs#8}ƩmHA}g'9#síƼ>/eKߩ!~Ў).&~\rIƋC=ic}~'uyG@|O/N\4'w?q;Tw8y?ŠOhFa^EnxVt(~|ŸGR;iowл :]̓}A$s#>WEJ'\O~WϑSà)^i$`>oTunGPqCe[s({Iy-!B ۚ=úr{=~ǩR${}8|#Ц_{/cNS}4'A|<ɾ]oG}9:t~I>LRo)4z+ɥٸ˕3RIzyͧW5KP|!g#>z'W(Ot 齤[8|LJ0>i$?X/hMy#KvNAsOW}q?/ҹ}<{ |<O'=ټӳúW9~CONxoӹjֺ^>;:9 'kȳp5S~!T/ݴh/kG$/?,ѻLe{V((p/5ZZG~x ݪrA)A=:A;XWп[|kfR<~ZّC$nP/AAz֬Ouڠ?xjnŗ u;K~_P_S6#^+9:Zqޝ: G䷠.X}A9XLY[[}LVʋ?RG~%!+3ɟ8ϧ<*W':%?E̯T~5gM)w'ηT 嫞RmAKo)>)Wiw _ﵔ=9pS~cO:;K@~3xo糇Cya_< t$' :)$=M~sz]v/j~~_Hgt2Rތſ(9!6ٱ5l+7c^hXouN+:O~z3Q\!nmf!?zSu ѡ*[ 4Q\ߓu8Xw ;|br~SGW:孩H;W[KzNu?E޽ctZ_2韏ý$IG:>|)?Ҿ<|E }=gqxn˖# /u7w~ayN΁.L~yl|-{R y{CXϥxP0vDu“-R'2s}UnѾ!?n8PO^D:)Q~F_$DŽE Q3`_8܋wbF{1qx7|?ٓtz?RvCQx)/<5={y1tOn"ǗC#9z{cpl^n}SBvL;/||tߥxwyg5?GcO>ȟnt/poQ]CSa\MX7dxcT׶}>rcBK[)vD6g>K<=/1YKb1iKr@>QE(Ѭ]'P7_:'ca}ٖҺfngՖ7A.ྍyӥ~_xJ T/8ȗ )i-ow'^ |S[?;o'^8̻jskXTo:qvxSMSZv@DD(_GzCr紕LC9tȻ6} ϠW3վ%E=jT_uITխ"> MZU\[ǘ}-[T2z\oZWoUns\Jq#O[rU{ULZ~Og%goҏP]sc|+^l쟫W 6}hzo33w?x}()}hݓ;3בܩLlOwo?/zw9:zKsf#q9NhT_v'z j=K:"SMΫdW=ûL&+O|޹;~IvM3ķE'-o?Óv6:WvZGTTc+>.z3(K$w:?mgx|s($q6&7Gvl|%}#y$c)iEUߓ^>\R^@qNZCo]:\_ҋ~]'yTtdd'֥ż:aWǻ#Ֆ. q_[!y:}?oV|4fn}ɟ6:Lo y1]G9s `]a]Sݫ>HD/8.zwf$;k}|:) E\ A}ҿpڗ/}s?9>J%i];7kߧZ?K'م<#=u4e~.3/ P?W߇mo|5Pd7{&;.x>qxS._|y}I/77k=A~_㽍-5# tOs&~hK~?݈t:1#@.?[O|^u_[M\ʣҽឃuSxzWp~|=ĭܪ>e5/vG|=-/۹5(vl6^%P7THvح%u[M=n-֬m?dWS_<:/Suz5]Ӕ5=sq )މ/#;OqMyCcGNvɏo=eϴ>š}8ׁmDUw&;05[ybzw~ř}wh+:ʇVBՖwt\ko ??yһONqQ_mkwys{!J';waqs0ϣ4>]M-G mo;5{`8=5uWޢ}=җ6ht߇>տS_0_Wu>Nq|#O8H ϒںog-dwUU@) y]C},x.=ݒ}ӻ1~etQR~ߔTutoJ`u \v@~ n}=޳~Ix)ަ:'審IgHK |C~;QJrK~ZWx/tsGIOAN/nzhև|һ͚IQS}QhONȞ{-߂>y{#+ } 1o_pn+Gg~K8/K7;^~8zz i30sySіZ_/A}þrx 8ʼn7}Ij_ `|wL7?+yaK0^SEu WPB7_aO8Ԇ8_ /< {ׅj&nO$In%9EO-l7gJcTt]tob=b~1# 06#}SK2˹p@t0> ʧo4kNnOף?R=n {ӣɧY꧔':{œb=vSй|StAyt㽥-=?G5 $gɑ >߭MvC1Oh)!OO8?G Mhdu<7ՁR~sƩ^}#nt:Wߧ@>_j]/|RN 乘'l]919o#t1J>s8稇?O?Q_(?:^j!s'>KyDqg7N<_zc>B0$mC>_u'?L<ɟywj}dW>֚Zۋw?F`߱.O-)5 IAw[7y;sE|tWp}{.7Q[-{ `'W;kc]X&_z?Y/[zЖWs_B=n-$}i[l/=,_:7ÓrCW㤗#:~n>mݗڔWlonOe7=8ֻ)aÐX:iXGS^0GǓ_UZ;4~ 4rDݯ:nOC<,ݖXwOuF#Ԧ4)cV֙?LEvMUe|pK:C}3 M _7`c<y'bT*xo~/%|uPޟݫ.Wy}Hql/QY~x t_<(ֿ</oӽBO> ;G?OX(8I~}zϣ{nzn6y: ఞKvWھ A|;PúyK:GGy$sɞFS $Q[ :P%)/|cW,W6gx7r2]xg@8+C}'T_/x߇a~:'Ts=+H_P|A[.O3K!gm=!?|D=я~a_+Zn>ICEy/oo)o/ݻݗu|DIv 6_szU|wJuŴ/8_|_t6||:*1t'c> dw!!K:E@^ȏ(H{.N#<{kOzE>Z_zxKr6gG[SFzM(~{7<>Z/| )nڭH;s*E< tȾmցR{(>ྒ%nЦ8STwɶ/}nbm>w/o龐e~:C@Vx'i6Ouu먮QսΪO2>ѯx0Ձl;1w'wR>FzJzF!;ha>4ކlה79٬_'A:4Nx4bEw9k _G[?gf<ɟe?Cg ˮo}95)?o\yCC] !}Aq/[Cd)Οb/>~;Om⽝ݡ%|nOy"t_O5ŏPGBKrjQ"];|ƛׁ`h7I=x.E}~"siCy>&~ZzI܊2/Q\J&f} xo;#s Mr=yC~n}UK)ʮix>oG<|ƛzՅR||?-_s¾(~o/MS=іm>~E8v t4qmފ_;Չ~z^CowzeRެO:cQJq]fDSB/ZX%=%|ݧÎMO43o;-_F5^7>"?gOBou'A+)FOp}>gϙEQ?ܯ=<ﳞ'>7U vο?wl\@I=[OSE|_.Ǩ^FqPNG 4^Q靥]cK~|w]i jmߨ=:hjOx[Տ_54SiI_O՞vB6SOdn5IΉb}~wOSRG)"~sh6>v!98?ަο+MȏAX{_O O-p^x_'JqA7|>qESG)]Wj>3k#wz>?YnxGu:U8Co{)M":ΏOy?IyF8}IUy$>Jt-@$7o]mg\vX=xgηϧ Q?ݿN|G~~K88KjIn׃0O cF)m0Nl?~ʿSޔxZ0O}h;w8/߫8\׶U(GiyޖMu ~:>a݊c{0C-}ǜ-/#}&~ԧEE֧}?ն'~]:*ݲy[;只߶0e$=}.\ߠ3=-7s .3_j'ZN8][WkE"^en=U? x+:EΏ?Rۡ)nE;yK7]j >U7ۘ U{y(?_?<CA_ܞ\ޅqo7QNGB޻ZaGu<p/HzBuչ-ޏ/“ǔ__'mzo;Z8h&G&k6N|yVˇަ$-IBp[j\I %TҧjuS\j>J(N}u~ڧq|wXZ/⋟xMbq=䥱iV)uz)J][l yVҋtqgyoŷ_n6~ָʯ#7@:?>~n֩XLjO__K |~oKrZqz'VŶP~5t tW0X[W} J ~l_W_}bpDh] 8#;w'xt~OϟmW3d'ѽ(#x5N$3\щr ;R<roj=Q4U_!mxN~_wO{};7Q/{֕i{}TS:abr_7$~c/:DOxakO!ۦ|qש:oO4%u9/ί<ɷYz~պ_tkIE[zޑ]d\H}?E]m6א~Uɮ:.bڪU}Exp.gz*/:c܈Nq l=ocgUUcN|yg w{uO_|;/ 5NI?v)w~g:G;~V45^UKY[{^;渹5s\œ:+gzU׭Ɠ<;-з}7aM%yK}GK.';oUm·I7[kxM;$_O38kKQӂo6>A5|dt^0_+6w"IzK61x:G~9VUh4Nq1!=h6H8Q]͟|}:fp{-+>$wӟxu4JUohU~R~@}}:PUI_I~'ٯgoS^εjoU .Oym7—U95;c/o_X s AN4~~s#=pƹf- ok6|9>Nqa<~WMvT3q[Go;K|Fy1~U|}78fp_|ܿQ{?=ߠߡuUew_nm(W\ʻ^kƯ4ɏ:Qs?6_9j^Imoke%x䧒.4>P>:|9u8`[\j7On^B|8?4Ω[?HjL&mzګ-*D'V)ϫ<gm_ܪW8>?NƓߥ6ȷ-|:~c=+X~'ޒs:D/!i!x7Wz5Nҹ8<ٯx{(`/q]WZH|_o{3k6\/=`oulEyIoy ~_ăB|UsLݞܜ/_mxMHZwb~z}s[S<1;~?8]I/I}[ku>4^j}x?/8xTr6=O)=#~-zOߡ8#9Nժ"+:t/ %;|C' w|N'SO|U?SwYW|qsƝ?T7u|FϹü77_>=sk('뉿|5Uzɥ|N<Yo՞}(3)7νzG}dMzQ]sΟPs ?\涪?| ~s\to5:+u)?Jj6x7}36NrLqgWt׸@vA?|gHt;7~Ѯ?:o@~AHJ_nCx$>~俇d!S[1߀ uXq/Ȟ >Kg1^;%ݓO 'NE[j_EMoyhc)G~υV|Nqk V8<>t?NKu]7Y[_%;~@}nyuU>ʹjiUInW>~Ct&=K}W3wMr_3[G.Uב]wkxcV?Vg)/{վq9wkiy^V'}Σ"V5m|VoM'[Y0W#y ?>\ KzuTgki}٦w(W+|*?cK83ﭭdҷ|HxInG5NvB}]+~xո|nէU^hgxSU oO~"=_R^9?0bG8OXcȋVi={Uq߭-<(qmٮ}pd{WooT20Z9-_DGaI(кu %-ɟ-6Ny~ڧq_Ou>Wk1Kn*>6kB[[#O ~νb@|8s|)#ANGzJٟ<;O{V_c&"~axSEgy]{}<5_GI.y%%9dIt}:ޔ8(>|.ONxs= ~<ڪk0m:< 9Q̣[teCR7|KzI w>r=8ه^WqS":r8U^5Ot<'ph9\/맟GU?L`RlGת}$e'9&#jܣ΅1]Ч9%jOIpdZ|>ɹ8v%ojH~1=:nVafm$=N#$:O_g+%!>nվ"}U:2YU>ou&xO$:O[$j<[b?j)nT*U__OS~I|V4\?/g<_U4ۭ|:Z%QͯIzN~:k~wRWW6zM|?whW~[}rfMyw}!RԚxt}3>V)=ex`aouI$~.:w{|6~'oVߧGpm 3ywq8MD|u|)7';MyF[iA<"'مmqZ;?οmOy }"|[1OX4k{k~%s~]Qx)O}ד6ޫާY?fwSyD\lm_S= o?m?j=| + g|k; 㽠Y?71|@-Oa<ٳӅsKߚy:#>OkשB__{OOq*]S~uV7q(pf𠧘x['SmkKzWz9pTKy;kޗu!_zH})N'=$6/Wsv諥SU?ۭ N{Jf-9|Qǚ@t_wf:3Ԓ7KR]=ܷ0>IaYCp$\c<['xO;㽊(y$ϭ~GcaJy&=sLOkxARC9ay?Zgyz \nA㻇IyLq6s֓<_l_'V*3owڗI{ Ro/WSn7NT_S_5ʱzG><~u);WsS+,q7֡o/C{ k${'ŹDGƃ"U { zTlc۸):f6tOF Sl++ukI_A;@G?_C㽐h)~9N]}w[}C|v7Wt"?3a*wZu{Uw#qlƧ6Z{ּ|TWtd}9vUw}*/~_F9(ې]ww|>O7Hxwծ$fㄧz_xn\=o_㾏tך98?wH;Z7z6OmK>ls+ɟڪ=:fG3xOxޓȏ-]#\|^t9x5ORZ}]'%uiWTG`AɟΉj<sӬm#ou X?)nT㊷x`W&5 xj$Wy!Kͪ"}yoX/6>I|eeiߔ<ѣqO6@wnze}~ݗ}|w~uúX'' 7|EC-79wy.ķE"S>=ILr]Wps[{G->%vg[D?5zɮ'P^e~ rAﵢ=n/YsC_Ou3}K&~ZG5Otr'8ď |5d+X' I.i_j~'} tyWW|.W+9\_GyAm^~;#_|o|(qy[}O7e3xӻ8Syxʫ .VϓĭuڻqTPzj8M O|'1_~m6z18|#oE<ں ~7I:k>{?8~=@;kvs ~U~5{ uYo{ CxpNA;Coz 'ט}srxUŻWtoY ?_i_ ?^{E5|OҋxLt+x{#Ι]/~}|Knk >1Ov}wfnj'gxo\OR|=E~<; ?q|;_m "ᾄ1'|OT/t!oL^֧<t =c i>5TTOt|=$Q}.pD8|%9q/;Vq3K|:o0Ωv|>\-MvpU}&z[eo}_IȏTtߪߨ~R [I}?Dv|Wҭʩ~%}:Iq ۡ_Σƿjr9~$Wwo餼0U>~DΉD~kk^Ir?Ij\ID(>WUrLdU'|E3jI_KGK.,oW&c;B5~R˪|m\\Έ\$G?&}uki]˔/=o>Wԁ8%C(wjI@WHz@+{m:Pȟ$?oʳ[Q3ZO{ţpg6u5?E5ߒT |>?g:w:]7-:ú魯s9Ѻ4o|bSV@|:G:/Z|y\s߱zK2o~:~>c3rߓ6k}>A3"~ǸmΣ/#7ە A=#ѡ[t:>>+O/o)UΛE֏ܖ's;7??:Ood'u>w|߉y-G{ <$IU@9.:d>JWu|5:lf"?tnaZiW@1J~5mG>nRehc^y|װMo|`\y/[p{E m.[ڇu'ב?&8 jֺѹǼCt>N ]D'OyBAwKzK|zϓ<)u?U8I'>B|9^V.q#;W3x›yV~*wg/8] /%'ɯx)o |UtJ%?|$Z̓o׭{JҟR~k^F|\|CUBrֆc4ހ?`Y+] vfGk^T?4߬{|:{ q߬OD5ҸIh>QoœO> ߋ_5>&Ώ`ߘX?G>zWxZhkgWУwn@?HD? 8젼?_:' _T_7_<{fm1nUn<=}/޳Op~_G|J껽N1㣾qsj>/ G~8ZG~έvkzxn/euW'ټ>aS^jb>@Ӌ|{=ZO1~@/ ntGKcc c?? ֍/ڵ%܋cZ7?/>~y7^ǣ}ih_pAG+9u:^[-8/ҟ/й4: ڿSzu-EKmɟŗ1ȞUp_|ua\e܀h-!~\1kK>?Iύ/(=Heߒӣ>Q_3ƿf$k֗iKr^tuYry<'>l^qfg;׼Gz"kй|^|yT~BĿyIdK>֏c^rҿ/sזV3/{=)H޿b}_38GSć䥾 Kk+Z'}_[+Ɏg}<y96۳/=٩p kX'>ݟzOtn[EW\%?}9.yEG#ژŷ8?3Z5::G_FK8_ 'dڟ9= K:ώV׹i+}~uc\߳[- %=oqC社C|k'l7?-|=</?$W%A_ϊx:?qKn㕗hɇ/vKc~>kK9/<3ڹ>2KW׀guז|IO>}moSCcch?lG OVt?:ڏ>OX+?ep?3ڏǵ/~>aOGrѕ\^x?=f~q{k}߷$~/|ğ?ip6x}?iptxԖs1['}^Gl^S6^Ϗ:?m\xl6>bp|ğ)yIGk?f>aɞ>jķ׼?bᕞ~/őkqkݯ=9Ŀcڗ躟pzw1y noD#.Ok'l?f}9;+x%Qh>jů/~uNO/Z';u9in?nׇGc'}=ou;e=O)w{v?ASyZep?k.ͻ}=/x~-|]ӿ[zh]_c{ͻ=r>l+>dp~1k?gvҼK)>~v?c͞QzGۏ>l}3?TT?:p:'uо?e׻Nuόqu^j'>uּ#=WX>k+>e_g?e?cWG_8=pO𲓙1,{l|h?ngU9w~\}VTߟ{]Wqy}?W3:?Z/y |~6?S[}Ooͻ<ů=];of?mչ)k q;>w}ŧGvվ\3ko|Y9N~s;ŗbۏA[׏'m*^[=^~WӾYݬ?W[^:VY?,'׸9ʷDڼ_?h\qELp߅8se Ϸf;0>%Ym^_Y-Oѓ/9tZIq@|ocگ]٥YϴOw:_||ėOھo~p;Bֹ}Q~Nyxx+ghJoćϫoim￞?'m )sHz7/O/}]?VwӾrkw?k}[?>N34?'>~@uazzP#6!x}wwG?w>ս/a'^y񯺻8_ŗ{C [f^ּK~}=ޡ?^/v=zߟ;׾į7qd= ϔUz&~^ {C^?\: #|nno}w9w N:=[?i}>كӑ#>߷|]ڇ}ƅGr0Z<~ ז=_ }w߽:˿}_υ׫=_piܿgt{_q˿v_2N[~ۯ ;uʟŗ;;aܾ]S#{a}/y<'j=Q>/܀]k=z_׿kGp4Z3~<wݏSGm!ρ|4Z_Q~\ϽzS?<߻@ϋϸ;(yH??n}߮_~p?_9Χ]͏snI߼>Fk1uOڸ=N w.W>&^_y}zZ{owq-Ӹ5.>%m6 [ڇf9 <;^X}ޑ?fo.' n^I'}|⌿y՟wqpzC1/HO5'ҟy._W\_=~^^?{sy0=rz'*Z/ݳgwۍ#~-[^=⽯Hӿ ^|);ۑG>=~y'}jѺ{%]򛞗QD~]p'Ǽ߃>nps_ف=?~:ۍ][s;0 Ǯ-yVz^y~ ů-{|!~\gzu$_ij1ud'Vq~췯-zmA.gjtė%<ϑsո`܏]Oz׍?z{I{/uί7UǼ)z/v{aGʋu~M_p[U['zjŏMJ.w,,g|8u_NDz+Kt~_\F+~Mx0 8+s#rg%oG'=.:c^tQ뿿[};-Ѿy /%,_?Ŝ 8كUqJ󳾎qm!:iw?_ďUPS|>V߃EW_=Sk܏3I:9}>;_'JG{Ǿd>~}ɿߎ툋MuY-/eC?%=ω՜^GKz:G|z;۫|}9}? n1/9 6~+*ѿSHx?ѾoF-[]į':?Ϝwic|\~Wb9>1?kK|Onտg 9Z~4ٕɾe/fKO_l}z%s~V}i^'ے^'=>ogF=Z١WOߤsh\N){P]K':O??}Vѓ>`_* ^! yvWF_upS|߉݋Ju:'g rs<We%o,ї}<6"9>/G}_o3Ǹ~ $:|ے N%/Q_9w1hd׳9{$_كO~gz{4??o)Hu>#9$|P;f;Z_|W;g9ZѾwtns7=gp:G!>;:G|tugArTn?VyuNIxG(_:/W@xq1'i\us8W]_[/yx]Al'GK8ٱQ 4;n΀Sݹ2^/߭pUޠ*_~_RѮcmN=-չyދįT<=F+?+ז|Knt.w:os}xÜόjѲ5/?)?")r# 83kW:C~h>ayqJʃUʯ{a^wm?_yŗ|^ħ<|-'{{/:gs mj_/5ǽ*j_}-dos8š_SKWGS¹vnOSG>Gн7k?2sO/KGNkOG}GǏ;g:ǎv:N_]7Ə:Kos{̿k';=cz^멣CN]׎'_ !w: j{7ۿ1?#C<4 y_?0郟>%1»=A?5CCԎs/݂|Kt%7˧޿g~:Go>J+z}9KNF{uӱo5;GOr??rzX97zC:wE~Ǽ3d?Cy<8~G~Av3ϬCun:9o>0e_^$}G~S|Ș#c\1 "}}uþ#={lײO˞W~[t!o 7ᡡ'r\!;{zcfñ__rحy+~忤+?0pv~OYxo7/9\IX9>*._ x{#}M{>W7'oޏ[#ps19?>S>8]H~JyܠVCނ9g{Jo'o넿d«E;O8,uگg%w{}HqOѕ|/dw{>>/tSeEV$/s1͠#ŗ"y;e'KpG#R!?!<^ }QrySO<ңGz$ʮGy=\?9؟x8#/y+5Fz>߳F_Hz'>ǝ1/9B R"?%)J_O&܅^o:_W𲛻LڽLȜ}t_mΟƾG|z=}cGo|;wB?yt؟}c_?^rkпwur=${M<_. y1v;o%;lA]c^|_>:t~]Cڧa7s<%O=c'}|د>}</iI~mf+!W*yJ򷒷y_h!yHeڧH]8w(SjsW7!WכY?dgCOo6^91o+HP~n3ſ!OV+=}Jtcc;4mp:G!J_4\eo+yq^qq'9Hڿks+x8'i| ?牣=CI/?|VjN~ɎWr8:7te <qџqу.tDOyC^\I~;{qN~wq{~L 81Z7\Meo xٱx~:_>^3:G٭"~ڿ7yл\|?;#he:o΢oůY+yɏ? W%1U1>ݢ;_#2vYnGkc/їDGj!N^۟s!#0WQ|2&=zC^~%{;4K|ߜ[G?Gљ+]ʟH+}=k{/}=H~/)k?7[,W4ǏAGy;:ki_/-3ո|ޭpIŇ(9sƷK}g{|ħ UyG <<[Žع/i|ۃoS3c|>wqU7=˿7n3\wiOKo彳}3}[#T_[6;cAŷ|QqOrn/zv?:}|XeyƟYO-T|僎X?[r[ov./"{}Qp_q3$Zq%Zk?ߵS׎}?NʛcϿO3}k\2z|dzdGzlzb_oG>|9χO|?;OR{ç>)O=|JSjR{ç9)GN=rJSjR{#9)GO=zJSjR{ڣ=)GO=zJSjR{c;)N=vJSjR{?)O=~JSjR{Ԟ8)'N=qJ Q{O_~^|j}|S7ʇ/'Y|x{dIr9r%G-'[.]>Xxl1iZ4O,&_N~tG<.>D닟}K3SI8SO<ԓ'2{S}]7^~՛O?Wߐ^9z_}w?$?N c'{~'eN~ᄆѠ$tRI9GߏN1wO?{x;g-䟟8"w" '?=q" ~'?pO#s't^NI䏀s'$_wO/?#'䏌?3NH>+N?Z}ǻOH/LZe8#/N5;O˓䯤}'nE'~ko\=r嫗.v|eNIӦa_}o]uno]o}~}?k,l._x{^ډ^z.q/_9~.M߼x׿~2/}\+Oq_׮^8~'_?r1/:/y[>y1㟻+>} _zk>.y3=ӗo^z%g~+}_rUpoMo^_c!Wuo^]7޸^x+~ҕK/_ʅ޼2+ʏ|ʥ\p|DjƷw̏~/|򆼿sK#WD'_꫋ry\W5 /oS<=p<-.z|o8^oh~|u!τ/}7/]\/\z_}Uv&qBK]ro7ONʱ‰&_xjo|~DM/|x:eΏߺ7nhߛ7nW9dǯ| څ/_Gt$zt99 _+W/}[N'7'%ʛNT_9㗾ƥ>&.zYqW/姯L64.3mwR.~|B+/'|%QxWXs^9ӗ^^O] O_ 7+f=x |ۯyl-}7n|{>ŗN4_t`]|tH2iB~4~7 /\}G ް'_},ϽYd|>w+{rv?yCЅ;1xu"wJCl'0'߼z30/,}݃,w.qi^tMFF--kRWmz˓N|`Oz}&}qv_ّ3).<̟xʅ.O&-a<+8~xv۫fFϟHy W&'_'yɱ0/M}w_:٥Nw(̱~§.O|7NF{]8׭}}co_?}f.?{=oN$&O񭛑<;̱_|er7̥uGhz=yj9Ob} %›o.צD;NMw>{lɋoLwחq7&?4dz]#_++|W.vj񛯽re[QˠO OcM~WO{o,i?`ՋKu^w ~v| ޺?ߺ.n*03%z&`1k#ʼ1@/Y'%Y; h\C"8$}C|;6'nґ2;>,uNaöƍtY07]{kGG* |H9l߻{_2Hh $"IboqԷ h8A'''#5'~ddw@y_YwxR~,M,Zvh[&ϿRy& 5o7%5jJ" R{CX(2I{+Yz)G/Mw,;`Q@l,KYQ ѭΫ~P"Qq G)tBhaw1/LE(cA2*8+0X2]ݢ -p^q/2y kI7YzïH!q?r IHvՑW.-A]mֶ,O־3hYc]kAR5FvnI h8ڋ0 rPPóv@yS0ݖ!iRniπASi(ǒ]:Bw.7V:c}ӫ-0+6 w%HKMW[j?eՉB- }A@~ ~"y±,T\/UNQSHJz-iREη?4/$ϏȽgY0 Q@MZ gW}xȩ=.B/U\",тCu|Gj0 f n5˯SK߻{ԟ%l+rng: 5܀Lӌy9$E$ʶBN[RyΗ)J/y˻90SsM P t"_q1\*ȝ{1Ɍ"s?%pe;?7''oH^$b(KDz8:qWXjښG}.A.y+? <4 aczۘi<ݑ@u~Q _ BVY6iF-:OiS{ vgf5/XV(h`X$Sx-1U^GrL}VD 0U8CJQV}" >nYXa.)w*mJp85cĻdRa.18|JPJ 4^t^R A@1cCl Hї2 F/wS1Ü$h@*,1i nJ M.;5GN6H M2 ; A~ji7Z^MsEKj9ߖ[ƫIc)iq |,EC*|B; >4ؾnSb-}vO +g1.65腨 ?FJTĥbXjF3QcU.JMl+GM |v4Pߐkn3H( U3+l`ôw ~lpp.,tB'['gNuNP2 LF n:^<´ jC1kS:9QԥuH}c[Q2E|}+d_O5FHO׊=SѻU)rTK[T!*5#- Gb;^,cngWvQ[Ϳ]@I$>g9n*uޡ0bGb> uQ>ƟJ-Mbެfjڕ 23*OɶTe͉wCg8LEKd ܷG3pE.=Rh>PS+錛$z/;G7e})?&;ӆ9)>XTߌr6/I ̈́'}'Ss=0/wjhP M"S~Liu#iv/ bV=䩤Գy[/۹ҤaLm[s_ Ǵ<V6mkl7|Dfl9x)SpxvKۺ{:^2f您\y$}DBfC{#j؁;Pj/PL΂͞+;.[LOvszGOW0o|t bq7r팉¸Eh* L`@>mkܻ0+ ӏxK.W;M Zu4}F*~^aI/?bOmN쌛jv-GB&662(c)HD{E`E;K%_wJ]q%vw'}Fp xuo)y 8du1ZUd12UhUcJS^FPNWCW.40gtzCo"-=B]u#3q&_Vx6ܭ(g ZxWY1q!OiF'" Ot޸~N(8`ZԌFVmyt ѡjH9b~π=h,PFϜ&hn+Att`Ǹ^|PY;&"Mj5Yʱ^BL-وCL=e wX۔ݢGWLe ԲZڝztoٛ$z')Ô CjUBWgeOє^{ґ gfj Xu"jϫ//wj痃`dqn vKiLP"MBp]Vh2Eݎ6KeV] -.mCNH/C"J7NQ|&r,7i4_52|dv3$ޙ^2 1:*oԝHE֝2-Wc1ږ\ruϯjdYp"N"Oj⚗3'"Y1jՅ}~0vC06+I2 xna;ljhMM킻߭.?*O,! 1ztI֓\wL>̟3u9 CK/H(tUռ$,:+t>BZnVKWjo3kӷmc?ex9hLZ D{~ERYۂH0u>Tf+I ڶT$]pn~c010h unޯQh1Pg𹊩c",T"'jG;й t*t %[xZz0[Btuzm2{ɛ( BCVR {0h?=0Cr\s4FlhS>=g[4u7Vzn?X43ܷXD5: ϗk&z؈=H>j)3h|*RN7V_4D\=VɅ cpuéY>$lϲB I-' uB # >qo_:[[hʟ[-bxBtH܍ƻe=|wJ̷:ƃXInP|c/G@}}f5'81f䍉ذ)D8X3VK>=Sir1eRY/)"{VuY0T:ʝQ[p\>4ʭ&flx.~,TUHE˦;XY=7Xb^vw=]7k*-Dci.%3޳9BPӞr瑳IY" RR% "&3LڛMSJ:wd2MA&PbeSbhs5#]ӵn 9K&yR`A)\I!5ITC4[)a(NReL G{4B&,'9#9UǞ1pp!/W_n{G5<>KP7w kK_F@BTp $rZ(@¼2XZ0_c!3Za: H?Eg$K^v8'smr@zK+@$FXJY0c52?NEQ%jWJoV(q:~fu 84=^쬊 , ю~DQ3|fg< $?V6bXG- n.X}'5Qל~b:+c(jb?b+K;CΎԃ478UpN8ް^6vi$OZq r XʊPee^re?GT3tobokܶ,bfxC,WN­kmrd c^L<X_ElGX<cixӜ%ed['KMF.o m=[R4NfAo yd.X$8ƀqoN*9"b[ǵ>qPoYNAچrmc0Aӕ\O   `XY`"-^4V^X̍q59_SW}Nu9LȾ^4̛*6TQ'K؎ & VpH6QNG+RmٱnG^7Q+jjѵB.4Rwr۴;q$Z&R_wcXeoд0.2r?nV\G طDž }"ۦM R4&sLT\-UA ߁ ߬Ҕ> hƲV%.X*ze 8, șrO&2TMn#S(]PZ]đU !(w]hUHxVq9v4k'u5r'+0B{5ʉidFZ yʀ/Ӈwۺ!_0Q5ND}qw_aQm*P FJ3'Q9):bwp(pZ&&r[ CU"Q_c$%Y ~`aЧUj "O~#cfS?Eg-xe0g|L/zƵ!a]Wj~SRܥ@S{V:n| bP@H w" ޻ YSmˈ,nsc T=2OuC QܥzLB1  T 1vJ{w#uI2hbB^~c%z )z]PtkL(ogC*/`ħTaALaNv0>pu18FĵjUT,FZ˦΄^V>8tUp6h&,q̘LcRxuitW_~~T} Ew^d]܀$\"  !z^Fa 6Ҁݺ& ˎ̳oЖ`:]j =.uq33n QoM;wARE-Qu_aϨƴ#unܾmr_z' xwCY'0/u\bc $6i^2k{Zܦ8Cd{ޥ/"5"fYV4"[t \{WD0[н=t>Ux`)an_uaȷ_?g*'bkS/!y=Wq,xÌ&4—o{̋m9v-‹]Vt|ftZ^>rȭWj4E[8I@ưwb0aYPb zoSV9hmj$fVc'986=w 2b47bg2A9M'XnP*"Ϯ0\uJ$!TSIX Mb$PjLՃYEڂ#Ez< aW0]H0َ!{r³E7Y|RO淟-MsBGSdu惬Z.X *u@#^#^O*䙬Hd>*z%|TT gj'M1=0rT2nCcr lV;8<%5͙#\8eV4~ F(e`|$]mM8[g4L럣2em\{!b99ΛgkNB!8:yɈE#)tWFM! uJKRiP?1 $xݯCnxy:m`a(th49M;Y#Čz(xdobxwVkin޾&l=Z'-ZƽuV174. ]| OGDZnؘK{I`+k/Q!%[w)jlH$Od; ['^ P S]_ 5A%/mDķ vll¾,?_޺jfmX<,@ 'JPi惲rk2*o{iljtΜz5'A˓eQzo2%#mdA_ů֘7EFҪs [I3R˺TrZ<%[0TYGzd`d ;|>-6>H$coAoIʓJ=#?2h;en*||g̈nSR؍}H:?KySX\TK01zcX?/RqE=_È3 cB>IZTiI\ߗPD?}KDG]u 0 YZpsychTools/data/salary.rda0000644000176200001440000000125214534126134015320 0ustar liggesusers}TKkQn2y)}Y>V1B]]XƘj I%.QWE]Tnj](jQ4`.ι8/s9ܙCс(,>? " gw"F 45(6LDd_O8? QC4>"h T؈Z_IWrԋֈJefY7 qpsychTools/data/cushny.rda0000644000176200001440000000057213605124107015336 0ustar liggesusers]SJ@&11m$]H`Х }6;CUւCA\Rq9w 09{f2]c̴k0eGYٞ̕c/#WK.\!Yǻ;SBݞQwU}|xcC9 2-B/ 3>ͅ^9ݲ_P'pO!ݲ_xNWO_WGSauCqyqi]ow?Wxn44>~NЏ>}n ,ƒex7KQq Uѹ8Zgo`x]B#fUHL@ 8,„ Pћp0 ݍynGȲl+>_T9zpsychTools/data/eminence.rda0000644000176200001440000000544514152716311015616 0ustar liggesuserseX XSKfcZT쫭 $ Y@V!nu*(b)UR*RAh[^UheQM0:3P̝3?gN\b cG}]K1aD\t|D|Xg B R?-W-/JГ/2ʔRa يe>"٪I[/T")Vߋ/g_A&ʉ!_I1W@ |XVH~@%1P#+Dx y>5eBA\bRA6r,:C |д@(U>$J)1Oby"̏=EDKP6A["z/6$6L9W(;8P—iD%D. $*ԏ/|Bcuq |h[2*RGJߏH~a>rM&OHj>ӟ4&bRF|^")`oS!hpm"l*eB!'L"I`w$ J> )it<51 SN4TJQ~$NK dʾEڵ@--lM}e{@F=hׯ]n:.Mz]z 2HRz n6rCA_o cTĹG@{~ѬI#k|2"h "n(XkC4ϫni]YMz8LW=tUoXr6 to2]B; n ,$)^gaQ?k,*znGʵ~땲 tR]qWրa\c@߾.䭣߯CэkwǚeYb3Z_ (aw豖|e=߉+T%MU:5A[\2b^.mOfJƕ@=ϲmxɑ!{IDC2}˃14!a5 b#B#@*I9m-Xt"[OB*$| dt&F*k5:FCQMj'A}PNM*bc ֡pgGHC,̮[!R 6!Q<[bf=߀reN[~ Fl@FQ8"ߧk "Q(g";Q?7"}(o̤|bC|YM_B| }Q| 2 JZb[C(By/g@uCB@yXy8Aw@(IʱE6!-i(W=2yp:)oS'8?{>:iN#swnxtcN_(t?םncN7Fk<~;Nr8x|nmw}ȟ{hu˓2ط;62vodu77vp}O=ڄuObEsj s#'N3Kq_P ϔ_}riR+W!WS"s_jIoڶL_̲̇n v vVpI=&dMaO-o3)_>CY\8횈t DjL֟,#:Rftpm5 <mZ!Y`GhXu/ӽy'Ci0-$[/Lg:|;t˘]'fZtNk`eǿ2Z7yQ9қ yfڼLzAMwm<(sIU]xwz$qY#4)"q&D-I(M!Il1 !!)&E8aHKLH:Q X'6hB"Xu7JJKc13kpsychTools/data/galton.rda0000644000176200001440000000075113605124110015302 0ustar liggesusersN0?@Иx'pH8y?$^}^O} |o>ču˶v5anYikH{W:r\rEdeq(AjϟNEVek;(U 5`=qoLI!ۖ,#-h(vەښ:]s/% Uٯ/qdS#bF2C!6N\#0E;"f$3IZ28kybBa8Ip ]O9 e!amT'bh=t<-37גd涎bFݚ>s ˂+ikAz9=қNc!oIHtId:v$I6I$I[.C S~v Dd`YTn!}ƃT|BjkS=Y}}o*PwkޏEyqK&U:psychTools/data/bfi.dictionary.rda0000644000176200001440000001407013605124107016727 0ustar liggesusersBZh91AY&SY/V7aH   @nPـowUϾHvRT%PMk xl!MѠITާ{T42LM5YqRfnf^"JXȧǪjt6re)!#.F:iywvh]cbVW9?94OV:VKݚ+B*i}A MX:Є BI#!O1 Nl2BмI$!`H@ PbBĐzﵘ:1${>]mHR: =2W+ryϏkcihAp+tu!<9M`F.X[}Cj[Ǟ(7+J쭯\;nWLHo; 8 !KT\B; :DB^/L$`*!uslG am{JӗLĽ/.KuŽ>Y6da;4>] -?ezlv"ŻэH} YwiL=X}v`]k9"'"䅽 > 2@iK->؁Yն SC$:(<vh zy]׋+%"PjϚ ZJ%HU 4Ndf'S.40\۷nݭD &#V M7+3SQPt~#f@$hMd-ahCi&Ŕ)k|U$/ &CkdRˏ=7IM4yfY1@!FЕֈFb5t4~Z8Dbb@sH00@hF1o\k4zyDC*AKD"ՒH7 Z8p! fgQ"P(1 eg#ɟ ;]S+ٙ}l.\-Ckv4ΰ)/Dz둽CAˢY<ǸڙM="amnƍ(x>Jz0آa)I<,ܶSJsZ"<^EI$㸏̅|A0mJIF"T}fbLF!cxPn8/TY1P8$ gځSIBfgt@b2avbZP3tAᱏT-c%jLIٸɧ;4XQsx i\$g Ja1x'k3#NAr6 %$Y2$)EwcdTRfx=󿞱^g$Rĉ>7̩?uxR.xym"pِ8=mNk(ސ&}[\uYs̻vm e.ػV'7b!gJZznL9*֯ ;Of2Y+HAxG,`nKLk3ïTd ,놭nm4f2ͩuJ h K46J NJHE@3BLHXʟJVIҠmbH`{"<X(ԅNΏnmhK4dz VTQv&]'ȔQAC–k2j7Wqi p2Տ&-!=_ Rm߇fw޸mp/읙`Em!cp!}{؎HaD=BOy|)!sse1aX)L-su;B9*ʱ*$dDE}KZrJ DOj3,(i7 eb'2&f.^fxZCX:H*niiy.:-fjGԶĎ |QGqcfhsL8( "4jȅO1PPi =mS8LZoY.I@ɫZ5 pt$V'c]N' üOD E)R"I6##{FP0>g=T-tfHg%;!ހgY[`xR& G{9T[K[6qLx{af^'Gs7P)AZ#);.Xb)"Z{}3] '꭪=4 x{RuTagjb0l_5+5<{:=b}vC;Y}H#>'CiXǑjMooVnܐg|4پ3YҤR&遍(c &yql`帊)7BElcZ]\q ]8':ȪKl#.9(! Yt-qf!0;^]=ޒN0zrGfGY*+H.lmN[r9@Iq쉰Y0fa4{SY]m]0"öI;" 1vLb`s8"~H6h46w|1y | |T[xh*,C齔ܴ%XeY @9 JP6m!hbH(^ ):.6+V1e6&\m5,ʁ3UtHc\[閎\ᒵC&\pI0li3~C1ԡBXWFM"XE $ㅆBC3Z6 `oD7P&zSO#TCZ  1plBu!؉f)f*shcZV5~?y(5G(HQ->{={֔-U;;(;dȊlm4c׾=2/UO@4IpiJ WIH*+ kCCw7#YN0Z?ٍSEn/;i4$Q]/5OF-"@dT2(a|T+(WDFN8<нH|l !c$rHWns'ŜCaqZUV4V}M$6ŐPUEX(X,YH*Y AB(J(AH)7d3xH(bF-3/~\+qW&_4":(sCh\^vvehW(>ǾNwhO5hoX @8ȷϠptePYe Fى,*ԑ:75d҂@+3Sn\ PiF^*RQ^6gKbb,C+'^2!]RyD'7}`v>%y%(^NR*Cv TS\N00hV(ɾJ-a*nQG^Z$V-_NbmڍĎlXF%MBC/xpHS6@d!Xxd/Lws([ q~a)L x~7dTH!ivPz>Cpt7Za[Ǭ |V`ѡJ4\E %GQg,[ jZ εH; 6BhϹ.D##`/Dq >T2s$ǐ/(-ވ&k:˵.Y"Ny\l݆+ 7n+pqĢz4aː0ÁB77t$uǻUvi}vgH)[컗cE ~b CbyBʄ ړtV|OÍ߁dd6P: )G@ݛ1 yh,AM0& X1j@_5D@Gf]B@[psychTools/data/epi.dictionary.rda0000644000176200001440000000353613605124107016751 0ustar liggesusersuW[ƀsp' ˚홱T(U<:cSWAO@G@^} h ᭂWymˠ@ Z3  =j :ow']}z}u°X/kAN-èʝsոc|O8LF8h*b>0{7HgVqհFXi 6ɼK2+&sXσ#uql >=g:ϫM0c.)Z%E~ uUPd&Y G*挞`)ѓK>eI1ä`P>F]fH²ʹ v %>6mvI߇I_{?I\*{%ǼJ #5uH2$NȀֈۑM{7ς5Wo%z e+4㬙i#7ňX2aZ#,?UPrkǸDxl`3E v1'#wbRe{!$_A~MmGN YOo> uCcvoy=c"XW:TgUE#4 ?HBN3qU L#>qG)s'O׽/DeDPuT.tPY8*coA\vz85\ C)N:v;"8h`* ޺"kEZK'W' 2 ,Q%㌟ $4̬h2`)&)9JF4u ʳbE-yLIRoG2Z9yx:v"z'P{ 5Rp#TE(7OSՇ1oRRZLUn5L [rTkB/c< |N}2ާ@GG2^`C bavރg0hbpeZ~G GFPS_L-qGL4~"l;i,I C&΄F.[*t}#'.\{ 3x̲|8"i58JUku)Go^m^L~/6ISuwCd_`ؤT{D;th#X}pT[Ý' `Tm0Nȿ8D4xJC,Nj!z+}_*)\z~T@pW ȥCTmi}| RCIj?-j$nHK=٣_wO=!ֈ *"F+MI='T9 }lh4ϑg-&M?GlN1hG/|#ޗӜOkʧe>iO~>]S|reI(OS)Se<P3 j0SD*0Kd3Q1D0>0e*9a/{roymʻ |}̌yH,2ª"J0YT3"J&b!&eIQL…aER̪"3(c)YdIcm`1Lf]& 9n[TsSvHzZI'4rLEsa2fØ=GTԦ!ZҪE+\.:h:pN dr9 v BE"F#z+h4d6_†̬lՂ`̦m96&6TmFV$bYl·1Z6M` lU˚ѭZ*#dZ#bb-6+;V6lkccQmfF؍EEF BQb,rMQQ ܮY6S+29 EE$H"ɰQ60hŠUwtQi1@PhXb(´EɢQ#l5Q*$ZZ*MQ7((#Xm*j4hō&177KsZK2*ch1Rh؍4h4lZۚ `Ũ@mBʢ[V0ŲmL&c-F#&(فAb%E,jIYelRAYGZVMHlj"!-YZXF#c h,5F51a 6(LBC VHV#cRcR`(-DEFƍMInq7[\[ رTkbF1vW6X@ F,Z 6H,b-spF9U2Z0ZJbƠ64[UE "4ch.TlF(QX*Mh4Tl5,cFbdMQE]uر6LQE(X,+2bĘTh65-b#dgvܡ(Š-sd:Fڌlm L2iHf66li -FlhU$lI&&$-+11s D\#-刣dcA\M 0cId6eb((P!D!1bMBεt:4AhѢ H1hFQEcbؠDb52LkجPb-ɴQ6mD663+mF Fl&lEr(9h6 $$dAQđ EF5i4\ۛ@Tk)KbHPHh4ZMuvwEF#P[Fˎv%XúRwtTZ,&1$F i2E%I#Q2[2.nT jL4kXbi*"AQPh(J;ғ%FH PF`KQY(ōF &bb@QG-śNCVjj0&L* F&mIFLPkI(m$mh5QhZ Z 21.FW5Ia,lPLLj$* ,$Y#ZHD#jLU%d*20RhbMIͷ$bLh,@Pb0l$&b5p6dBwl,@'vw3HE6VkLMQ\ؒ4ȣ 1hk$IA&HJPXFKF1墮j),dHcAb(5,6 \B[DFcb%(34i1 4$,X1RZIƔ AhѠȪ64G*i(W-(h"S#FL6H.PQRi#-5bk EbƋ+$nsci5$lh76jۢtŠnӦSɨ)[P4m,lu\ѱщ"X*dر3(0lFشR&"cs$hH*b,"l+lQZJ4sl]Eˡ9K52ɱF@1hƍ(",XXԚL[[hAEˈU F&DAhJQ`lR"FѮ\M+64h0h*a,mQAZ$5eIbۅDHb*"ŨR#si3-cQM L@2 a,h؅QQi-˄l4lDb"nWwrJELlba˶LdCX`Ԛ6 E &ƌK,h h04FfF5V LXDf( aH`ciBlD  tłRZELM5TV$+K9mE1JtS3**,Xh‘M#&,ĔL5Fu Hje5H &Mdɨkl-FFdJ6FkXIhsfXE F-m)hD0DZ $%Y6"$6&(,`4b (!Mw\I3bR))2b(,IF*9nIi(J1nX526CKdF mAE`hKw]b2h fX64˚-H`X#lFb $chѬcF-wv.b1Q LӺH(r66MbѢk(*[Bb#gw$1d,YX6kŃ\79D4JlFds"+*("ƍ&6rcTFӺ -$a !V@ڒ"-EIlEcch QHl$A\PQشbHĚ4i#F"R[\wW(ĘF M%QlITw[$1 c@vF#DI\BRIBLEFԉEd6lb1,lF!#a0]hCQHXm# I$b5&.hNn(B,`-ԄI$kf] ddi 9шq\Q14`K2mE̙I1&d1&.QQ 4"DV;J\&fb3M& u0!L `1b4H]ֺUs&dA0RlBQ&f352DF4EiIb.sI$ŴEs1 544Z%!S5,l` bdwwRF"6ѱ#%D h %Ŕh1!cwqd'u gurĘtӫ1sLKd4b,b6DU53!wv`]  wW  2&ر"dS9h튑4)9,;;@V 6L"M cH 1Ll˰PU JH@Z49HSRZhgX*1PA1$ZB*MD)2lPmƴlhS5,AEd eZ,bưQ&2b#AU%0"` lQ(1FEQc F\ $IwkV0F$J4gv鱰P`BXdXDɒ,b01˺wv@@B;͖BQAI"%@PQdeBh) %\ &5ɋJ6 'wd`!& s\ɠldB2@ZLEd]%cbhJfPCdL&4&ɱa0;cRLJ14De-FSȬJRwrlFhcFLō4XD6$b(&r%%cb010QRa0!N\$J4wWI# Ddn!sn'+c&$H$Et RHA&0&΄llj h8bsc]bYnaԎ:w$F:F79bƌݤ6b\664V5˛I\CTV&Pl͌h Z4Xlj$,TlTi36#R*4EM.r ,64Rs\lhƩLnN贖MX1X1Ɍ Fѩ(Z(-Dm4hY 0mI"4EhŤK\QlAwve\XѲhĕFQFFe&mY j#cklA` EXƂ hdF,DYFf("(31(Krň1;F#Kb6$0Td$DlQbF4TZ" c r0-Mh(ܦsW Q+rCD*$4I12Pc;EB`#4d@(E"$RCq) 2ĔDEF `5dhPJh hFf b$fPF`b(I&w\#;e˱,%((љcbdX EQCV"ƲRQAb $f@7DE(ɤc*I"**LS,F$P4cbD5& HFdfM] 6f4EH04CM10wt(@B9!(H9tTlEXƌAI"jDa %1 !bAW9G,pb*5a6MFdRQL;":Z$`6,D!0 Ds\" !W)!ΛF"DDQcX)d"Lō҈5͂965",%ݷ4hiݹbflH$fb *0͂IEFwnj")3rܨ*#bhXL6jFYKcHFQ% cXQ@lDdl$i4QPC& 7wb,b)H&Ca*"* @IcE'9&@4ʒe%iEcHQ4ɀhл0HwqcI0+.[sDXQ;5bDa# ۘtѤ.c4DDƙ9ud,X&2tHb P$BRbiFų e" &nIR &3̡2":"F3%  d&6L!C0!"И ,Le%4ibA4$ bJI$i%0)iDQ9ܺd1f Df؋s\2ewS';cL #2TfA.qQccDi\Y#R&(AA.PX$2v&6 IdCQ\ۖFT3dĔ!h H&QXi$FH--AFb1$bLlĴ`I0bL ѴFę ҍ16 fc`Ȗ")) lFi ̭3`vsMcpQ0R4fP"1b(" 0bإLM΀$L̄ɐWw(6)II2DM1"BCJQdh x:"!$Qě%r;`Ė1Q Fi,0#B0K2(d*0LˑPS-b&-$&fTI`QNۢCnkɔB(^ \ab 2`F& 106.s4FPlF +lFXAhXՒh hōh`F"""RC4k K(Q 5j i-˚"QH7hEX (0RB)DXtM5 CDm tb$Q", ۨ)TXDF-2، 6.&F'9r"6 220ȄKs2[9W*Q*4h3PL4lQ$hBf"hbƊfIB"tۺ*5].St lAjMAFIXh9 QAXV*4(ABY)E$ĎtZ!$ nAHD HBKƝ4j0h-wPXFS1iH, b2 2M"@M c$PRR1FI&I \I3I@%!AAI%Ab(e%)($\LL #0#c]Q!ˑ$RJ$d$F 2Xfɲ\b$Di)#@[$cJH6h 1]H"-h0Inp a وJ)SBdcT * ;5"H3$D)ј9,i&ApfJJƮpPH)$PV l#5Mb@4P4B3C$&1,$dEkE b1b !Hѷ64kQIE&9r d-5s]*H- E *-rS44Y0ͺlNsILZ4W61EtSJ!"hPAD(»9n;0FhI4HdR"4I56`cBA"p- "XID CfkBwBCchIRaDB;KAX+HZ,ARlnnl F@P"3ds) H5;6(,FC&LlXě(dQCQ(ThiI(!d"Eh`;Utjg6fWW! i#1!IDjdd+ZJ6Aݻ4Hx\)r Hwn*5Ҹ;ӻH'!bWdW \"LJG \*p]궫m--jmmxY < x +cEFEb`-cɍ&(H69EkFLh#`ѲQ cQF MmZ5FK`2[r`fnr D 橖-FƢ0LQclFB,hW.̘آlܱnkBX** Z,X""-!cE$شY[DZ-` c&*1AX5,lmBRQQF""H4QX6$@XB#Qb !%r1FQb E02K ,&n`1`JJS`,hƒ0 l#F77+0Ec`5G5rݸb5 QsXmkԘb(wktě$ Fٚ iPcQ2.\CbMcDa(Qhj"Cc-E&5rhhTY&J(0"tL#K1 &ZM&w)FQnR\Dh,Xd4A&5ΚD3u3WDӎ6M@cg:b" @Иi*+Y$lEM6#&I29hH$X FEc`C1" d6 QFJ$\.L0E4)`au9rأELL(&IEwv-d"Rf5$ RIM&ɒ%X Q79h Q`'w,X6PRHY4L5(6 Ԇ @ #wvV!X6(1Qi cY#E 1ƔbƦ@ZD$XэE A)";Fc,mfThIRTE- IF0XlT!I5d(@k&MAfV+n˻h0Ģ(lZ DdMHZJfD#n0ۘLK4D̔" 36 i#If$t˒Pm@hw]%4R"ɰd5DP"똓`% &$fs,XLɒJXE4I HP"2+1SbDDmB" M!RYRW t˗Y MřȐd ʑ&YfK KsY2f !N\#H%I4"ɐhH5F$hHeL(1逓&D+rlF4\bED M1 R)i9\dMۄbD L0dY"Y%Qd6LUhE%Ql!Je&1%\& &#)6JeDF(f2I,)b2XĕF,@jJ6A((2H4 J&hJJ"1LH 6`̈$`b$۝I"9 d 4IP&4F($FA6M)!h¹ԚD2JL0M4cFŊ "JDh"b,61&6hi5$a*6 DHT&FQ$4cc26!&*&LL TL2k2`i &2PDXc9ەĊ2bW8P)6 VfEb1c Ѵ-(E(d`)Nɭ0DHX1Jcd; #2FbѲ4 EguvF4 F"Cb%ێh&Hc'8ň6BJ#F,Bah0,v,lD1I6LPb$-&`$RF61`*(0#9u2#*H $F$I"7wݸBHD,X2dF1Ŏ\6" )5V*2XFe F4 (D"4lS# iˋ "HҖQQIbDĚ% )FI1BC)3 1A\F#PXufl02QnnDɆk J$w\d Q0IHaҘ h!JP!$LflcI%BdfrܢI@ɔ5@ $keJdH4 A ,Q4,%iFBD54a l+QA%A,j(4%ҙ10 ("IY(ĉ"Š,l a̍TP A"`1RJJKE;D1$ sBKr$! k)*0nmP"! 0(5l@\d!3R$Tk%`&L(1`7+!2Y11&FݫC&"$sf24,w9SbQZ&5FZLF REHa) n ,c Jm 6IL)H IED̨đĚJĄ`cPbؓ!cD‚Lm 2C 6\,bA3F"%)lƢp̢`lF15%L (DivD̚!f@!#B1(CNk%1LiΙ( 64HHiA0h(#&FPa4e;H@i#ENuA50Ia6+*c$i65$d"Q2CА1Ac#wqr5(h "P.nF0i$DE(dbIkEc 34M@LIF#wr) &1E CDd4XLʈ$PS(19 )6SM$H!DQFB5%Bb$3 &LaaQJ1R c˦˛rPlQQ1 ّ0э.b$&ƙ0jHIQĔK)I($b FPȒJ")43FS2ƝŐ0I$&d 41 #2#$%IFB#EA @CJbi&SPFѣHEH(l,)*F1M(Di29DI4DhfhAERg:2IFQH HD#J(CdHQh4A"HؠƒDaHAQ#$Adԉ"I %$d0Y h 1E#ll@Ąd,@QQrܔCQ$W#EӔFeL%bB$l&2& 6C,3B!B1b4S 4k #3&"#wb%H.nbIX2c PLdl0Y@$,F XHȥ!"#4b4RhҀRBXLnQ+q dLfc&XѴbƙwq)($P˸I4bB(ns&sq(:"MhRIdV1L],dFB(Y+ $ QE$"EE43awtC!%K\QfM!1qF1C #I&36d6 3feděE @`1aш"&0Bh@QA%F'wI2BQ&F$R$\wq PQIb4cdELZ  "HHل wt ۴0B[ Dn놮nhfA5Qi+(i.\ E)4!D.WaJ"6 5(DbadH,PHX1L 9ȱ APi 2I0Mw[#AQ$%Y)F$&(bI2&I1 4cE3 dP4QI1 Nqe6 Da$F)#LB2# BQIILC4LIaaFY1"IM"#2li(QDFc'932 "2JL0lfJwW*B PguY b$iPbЉf "A!.v&R d!DCtSsDQLP )9A&d2fF aD̉$) $hDE@$i,d&1(& 52Κ&XKDM #%%MF%L6Rs$Q$)uF, E1&L$" h6$$(1RLj5&1AX0L$RẌ`9D-i˲Ef1b1bR",i"1stR$4(P%AcHff I LĚH&F)aFdNv!bDM6@0KQILYJ "D!E0bDҙ "#9Ȃ(Sbv!a(DĉN]JE!JEI2h QL 4$SHXEI31I"6HČ24De"PY1$7HfM w!Q35 Rc)ܸ6ɲ% YL[h2S $hd4bh421 &T hQLLL00e 4CNv,h1 IJYbD" h2cXUvX%`L NndifHvk]۴2[c#H`CRX"6M%mwm͈w]& $&"&(!"XrbѣF԰)b#dfJc c(ɂwrDLM1b hd"HL$dd0E( (m)*L4$*7+f%MF&)"Hc *I"1FF&h%LIDBMdL$ 4) fGwJdhĩ& ""ɉ75rLL1F.Lh@)"DI5 b%)Z$nAdFQ(CDQL1`Ɉ(1IS&d!"D"b"P'.hdY"!k%&4I b & 4c!& & 4(XQH;d(ScٮvȋKP12AF@HQTE R"I0DH0LIEEIHP\&E\FjfL*11 QfP)d-Aƌ!d,$':LC,K IFńuL%rH4$0v1ZU( Fi jMsmTTC%&fhѢdZ1,N\&M1aF bQQ,TlspE$ḪnF0$A#XHC4F4f R`Ab`(9T3cDX0l`PX+)d4)1q:g1,m'Vۚ i$ۛ%0F4ˁ@nIS5h1QG5%h l±uq*$I2Mة6 jI 1d1$Dudb%.)HmqLIʒ44Li1 bMFRh(W**,XQF+I,ѱAōцWbu\ѫI%BM̰Nb R6Qu!DM#I&IdiݮĒL)4f$Ȣ+M I&DALi0R`20&"0$Ednd  Fra,b.wnhLU̓ QDDHQksL$d[(;ec 1hɠLh$af6B#I%sI-ĚݣQBFI61An2%B I&%.tYhbNRh;JFLF)FFwWQ*)4a#Dhe"1&,% Ti IW2PMcP,6I"b ńbJSQ1h&Ac`! bJ';b.;qƊ %`1i;L2(5cDQb$%"KE(FKL),1Yr1&F h-r%24d12K)ll&CRFCQXC IDV:L)ΓbcQ@1LE.pLmD̒2")lRhЇu)M&L0QLQ FI$.#,cRD0 $ł ,Hܒ  d lF• wvDCn S"M$maLCa(L،iMI Ei CA viˆPK3E$`˺ܢ13S 2d78m,C(1بlQAE(&$1 !$dM3 $Dh E&A$#c "'w6) 9JbnMDC i)&Y)2wv!H($ Q lM%.H3D&24@P2B(`(Nv6di`"uwWHrd1`I,b"BHI#D.dJJbebD\싻vhR(ƓMj$@ibE$PI șa`1\LѢMY4M0I`AȀ#Da2c4̌4 L$# B& cDFEe%Q2BDg5, f%#er;PLi6"Q@L%d$2EΘ)fTd2#"eA &FID"ȖQBH&M2Le3f؍w]$` 2`K%dJDh,d"!2F" hc lf; &AMMD2XlqF$`H2;fM!KQIBqH"cB`e1Xh)4YLiM(2(XF24I i i Hlb@ ,I*2Fp4hdIJIcQI`rfJ)[%SLHs14!) B`@2.[6Lbt& 1)2LLDl e%F1BARhicIE%ą;,fR$#LXF6 E(,i""]s\ٙˢ(#҈.Z#$CD "i4cCEcñVfgpUli*D4#,EȡLMʼn4f@Rlf̄b3bBɊ$X܍D%)"HȕFD2Q% !cE.D40dhHILИT-N !V&j1%FMuК\()2dL#$0cAH d&ɲDbI#@cwtXa6BA$]D`PRdR2#LbM#)  Di&\ Y\AI04+hS@d4!,%%]ݹF( m 110bƄch%؊a@HEIRb'.b$(! dC!";ƍ# 3HA$ qd(ғ"DΜD H\&ۜ1"FMbJ%2Pi$C@2 L4mB% QL MFѠ6BD CF,wv,FQęX ]"̬li QcAdLHS e&Ƃ)0.1nŠ JF!멁7uY$@X"Q5S$’@Q 1\M2*LTd0ldԔ2D%\D@f F!D0ܻ3 @AbHcs™L2& .3N!33F"-6mVZ[l&I24SDC1#`AfLitčJL$h,ba1l& åS&Br ccD4AnsrK"ba%4d]ݮvd ȥM#)2Eb6L"& (eH!#I0YSfXC "A̩M ĂJlXHdNn,bFɴu"&1LYݫ66(0d1%&"ۡFL @ 0b(Ν\ (TDÉq"34˚ $E6$1($ 4RZQő$KD' d1%h"R10Ps1\ I e"dԐ0! LM1[)k;cH(Jnta6.p)D#@2 E˒2*dDBcRZBX%QDA&@BE2@% sKAeĘHQ3$P3ba() )090DBc%̃DD@Md!bђ a"T Ed̢d&Lh&H(%(DW6a%hY1)b"4b1A$2Qe4hBdAe".MwFPScL#dD#Lh@ !M["H"f X"EP#`be&,4I3&IIDI"֔Pٜq2.g]&b;euu-wRd(T]ܙf1Ќۢj**5rѪ)2`$5QQ%q J%"5ȣE2̱DDZCYrF ,P3d2d)&aҔm4`ܡj1AJFLRl3ܹX64K iH6s#$11;*6g*4BR1FILћ"Q`dɳ5X09I2st"0(1cB79)]dQdR1ib`ѷ+L+ݨf%)@" Q$ cIM4rhhƨ5M)JB44$QQ4&0HFNْLh0 *qڭأb5&HĦL͓ mcLL Ia 4QF5&M\ݡdE"!Ę))X+J6L*(4]E dL7trwN)h;*M(.M6RR1.nXEbM %`.) AdE"hB"*#$PnQ!,"1XEFLjA)HšdIF,!HҚv˖2EF "3a#blHPdFE# #-E"J6H iə&IHh!bM!$AEAƜ4l c]3DEr݅,D4HPa4fIƢȄ3Ȥn]41%EBThW ̣I $lBDيIDl&D(1FLr蔦ɣ2sv$3rE"k-0h"*+]"3J$n\R&LUs4ݹ)LH)2%"NncHA@1UY4lC22hf#4ŠIS)$.ti(FD $戌A)͓̔ ė,\JNXDF I2dŊ$"aΐHA$( ah! Q%Ҍ r%H25ф0c  ƌ52ILĊHfQ(NuD9]HQdY64QF#riJ ΒdŦCR M3"r6IDR 1QQHDdɂ )4R$h6P,\bLC0آd# `!%2 1"dLQsL% b#e L0rIbf#,LѢAnmr3&$HD$͌4c(1p4! 3AdY#1b"VCF##wt*ƂRh$1PiFkdPRd;;(3"5ˠ&AIa5R6*,Bɍ($$$rJL!L )-Ȥ5 @IQ Q.k,c1DgwHE &S $ FfIF83Tf;aPdb,ݴiE.\XH2IIc bil&&D-usm&أ2DK&Ha"6(! EDDM']ƮъHII1;C)j5sŶ4\ƊF)uE) *rq(S%aLe#e#d2imf%YMF5c֛R[Ldm#Ləc,jm &ͥbXFT° Kff,Skl-͕ȭfٓ̕lIĘ,±XRe#Yb͵̚fY0ͬaef"M9!mV={:r)밧}N3%7ShSx:\BM^iZҎ#}Iϋ:RI&8myvXI$3p.!w 8TCEuWwNZώ"n|Hv~[<l\vl2.tGWh)$d4kz؜$vsu4$6]NEv˟1rZI~:_ի.K1]Ŵ i'ds]&$NQg <:rsn>c m3;U&6:Oe\Xᮻ[-ڰgϓc>+wMK[wrE8PL_psychTools/data/colom.ed2.rda0000644000176200001440000000176614403737045015625 0ustar liggesusersUmhW6M*Xd# ""r14d)"ΎMJ)RJ "E-"VDDZM $ƭF bF)$;s}aelQ84-BZh- g2m2N6ax_@L|pQOg=>G/~sjgQx7)ݏ^>Aᢿ8^**`P^̤;py`妸_~:e_ה^p_/omF/jy2#?<,끿PX$21PB?2_gQ8u.%(/;)FE)}DSK޺D;:.Kv:CuJ}rw^:8i!x WSO<^h7B=v >\@RO /|?u幬U;\%)\́C'%zb|S4ӌ< 1''oHM }v4wH*cP7 ($<_(-y*DWLvy< xR[kT_y~os)8fo6sn`$I }4klzNU]`Nw<u`WQ=Gg15ϻQ7NPn݀NL]HkWܣ!߆b`vكMn+#֔_Ĕ/qml5Wz8U͋{DyQO3pdwǧދY`cVH.3ǜU/:LZHv ` Gjev̆3 ;MH6)WأeLUpgz0iiYPwwwF]Q-ctL\R{J˼") [l_ 6+cubN^[1#G:u_q6>[Bp#8Mا9N2Sfm:Bu%Kh K5\7}[=Ps,`+v "ƖG%u:4F(j}ET:=q|dC~B>tN"w2db[Su!"o]_Q8e?J|1%|I+ϔl_bhv#]+KPNpgw)1(#߆q"Z!#5k`32kx/ j:yb7_0& rs #.xj+`3 Z8w CB1WD;>+EO(׹`#!63᳷Xo8,|eE]Ӣ8Ğ2wVB 1qCaߑV^A^JKTI[ {maLK]Y=3h,~;XE<&NqMSLqxύ@A־N$t؟rj2,}3nTɪO[G|wsq B2/2;!N\/5+K?#O4Sd"ysKH2 "ׂۘhF=A ί8_7eaNB:W#S1,*Reiʛ!u*7M,e֊A+(UJŘnm*MNzOc.-ϪTYu &yi ؙD:KZ%n6K5\D`XXLuNLgK{`F1!٧Ao9vS#zƾ0>MGvx(w(nn'!ׁvnGH!n]G~{ {+'8Ybw+0l?_0GD>4M?*;x~A[uVFrn K^(aV@l׾OgT .g+,.:LI6tf} XܤƮBfo sҭmHqگrJ,EԜK8cջ ԫ?|Ym.Vj< n-A X{[4VN3duuc:=)/ Q Gf3,1A)|xM}1kHRz8g,uwez؅H$xL}ްϸxPlEK9L~0'B<˫siG ''LiTcK|H=uL#\b+ c(bI?ǂl+M;8F<*[Wpw[uNe91G}-Þ{L#lvE5? ~F"p)ͦެQ !E_2f̰8 wג%8 Ꝋ啕A.U \o~b0'H(3ɗ"{n%XpA5۔!KΝ6 qMj5P=e4 ;/G;E ж DT{t X/";f+ls+Gҭѓm%*Rmv X+ 51[{ tTس KeE#^e6?wߴ=IҥI$APK$z6*",?}28WN[l>:|!޴Lyw[rM]Vī6_a&I5D"a|&ܱje]}X2j V3<,A6.fqTTe5TyC?!3A =p#U},u y= T$vę>ҳ<&5Iǽ$5~&Lb+9ލJ j5F}dl*K%QhhC'su$xMXO :ڧڮ,!T$Iv(ol4 pAX J{&!Ŝx2F=+YτUp17V& Q ˉb`S܊,;" )V| tۅPzΑ[+=W,Ƙq.%58V* hMC{uVZ;m`{`H!L|V 45wƳt?ITIp8 v01.п bD5_w-KԊ&Jgܮ"'?(LhZ9Lc_GN@s䒂R{'_Q>cQDYݝ&nEuDfЦaqP5Ř<#Iks㪰0R膺\]fpc& i~ 5(%;J:o!C}+);[d'Y'Q+X-C%ۦNF& +HὌ}aVگ&DD}xvPW}J.lh6e0t. #tir`B "t蛭S-lJZ 4f4*;TQA6Q21&ϛBJ7NDʥ,a;`}lw).򠨪C"= #Cz}iDڼA;3J Dlg_Z[>ۅ{$l{(%/_15NULع !޲qB"S %|mj.T&1WJHɺ{;$OGxӾ;iןF7b(jw$(ռ+XLԴޑ`c+9!}.h!@ND)Ƈ]24sєdBەc[]Nyzs(123-3=ݢs׆D4qRJnT^[luʒL kdNً0yo7O.|H<,ouj<,]_ĊVYi(9 >,"c3.#ƷO\aM@/2J#ҾJvf:I{\6?8 ! a<؋J$ ĿZ$3hؿ[Q*,Ge@Zhoyg2z&UKlMV1as;l|D/j -5"DAd kW G`GX(CE*7w]`cj:]Ynr^v0e DAZZ$~@.LgF-)`+t;mt8׋^Qu%I88ߣ9 ZlVdt!򧵍4q"77:M@,l +ZU~ |ٍMPNL-ݚ14ғ~}C?#U9e)(_hTK-vL乑@y,y;nLޔ1_oY-2C1tOR]CWny:UFyQrms8!ڸ|j ǒsm@\ *W7 (4}Fը8֟ .o?VtrlX˃!~iWD zҾʫмDGQ(y#^T )/0.]ѯVcs >7@gq) S"6+sN8ƭXyo#~krȦ8>䚟zQn U;yv'nּ7Z؝NDRl6i WrogG{4;R*㵹Ău7~ϖN,ⅿ4X2e%}BK#u̥^ޢ4*ܴJSZoh 5)h:dLs'j۱e t=+~}CcZruY0SoDD Qj|7 Y Lky/J?$Q5X@kKi7{:>3$ ac6'0MP;˶01n;\?)p[r[0ЁyȐvy} 6湋J)'Qm% (G <DVq'fpR!Ҳ)Ow R=:Z6~iSؖ,SKv{tinhCB(ill2Ճy+)7=:KSr(έ\T[R)aqf,yλՅO9;ј=%ehb£˦l9R&r1;iBNI ^"6}˪8i.k|\gBAp]jKT%/*:d Ӎso_B#,c39Y8#D㯨԰B'`^Ta3S__ *.^E-:<4 Z`3]$n 18֙;z;YaơG줦 `TbMTQd}$R{.fgaVZ \i!-߲Es@uݸ 8aS&>/ ɗB{ʑ ^E"F,U ^_ʸuR6sǹQW\ZK Q"M`WA2x&6 TJi^Ҫ|oj xl@Ky> ``GAqo"cQ XN[fL͐ѺxOaPkk>2D:(їsa֏^zJvURq<5*S/Us4 NO P죽gϹŸ V.Q7S6 qrE~EQ 0i bj$y^F^PX[[MjpZ f5ٙc6r%zgY)|w>ʾLĐkֹп0<#@PNRhS^0b{QHz٩b]$*؝`0&Rx΁ Ώ AП7xU#=Iu*RLavt6& 9J0|.K=Vc@!@f#Y YM ݥ\Oj9 xZܡH5Qcjͱ8"Ti?m(/>P57fjJ"+TQR\,5~PKPXŢql ~AlWŌw9XQp]z \/u!D3t$ӱOVGK ZkSgDz4Ox29Do! "Su6Td,8"A/wb@iIɔKdX^Zrnq YhRbKm -' Eժ)qԽTM)P4B.'ycl&FҰ,]NNcWx"d(6[eJꞷXHbcL@h%hcԱ;>Gϱ2tY.uJMS*wA:j.qŘ/^k4:?b_*!ER刜ɐ &2p5-t^uxO&IW*A! 4]5a-vi@2܋!tU9)g|[ /@ :le>b SAMd+aA-ٓu<+U?=m,eߓ#M3;[ӟX]hnolFfia~Hk1{Gі݅t][8@^ N+D #titi7àn1}D= 94%I]$b+@2<թJH*HAA-2ajxFt_"jzXNh&Yfޤo7@֪+pe@=fzeSY[9.Xǻ7۽DzHo.|bPHo62n}!Y8{r_bJ_I~o z2e#W`1 Xy.[v#ACLs(lʼLŒI ?3Pf1?*+@}eM%L*p܏'G֕\Έw?P#f`y XB;&&WV+!jlR:NxYxYgj<(B- :0 6A`H~cĨИE1{vm'!7'9O'Ћi,I9CSDHm82{Ƿ(zE^/*">LYtl1g, ^-">ԸU簄%<\)"U$U8{ufT9E!KHYaw3w:ē~^mZ*6b}../i(6tieu8y}]> /9LWF+Zԗ mjH䐇)ZՃ.R\IJPxQUc,C 2+``Z w5 I7lқ96О -4SPpaT9-gC HSϽBg"#WU̮E)3 EuP_״R:SS&C'/٪fW,2UI?ɷ}˒Bm{[y^p8֙g zb(8AZ6ـeJN4+XC$<ds'5a?IZEh] zR0{U*{,̈\4ݶ P]ϟ֔{ H%qe Q(F*i\'!.9A"9sur!1䇗!#d!nÈF:1ȝ?O[蕪O9$A鸆|T"AM{EۊSs$sq]gbQMHuZ%"K0*Z6}j9A $Q  RáyNC̴ XOvu`:djh0ה:Jp-Ax0Fִdp-ӠI$h&B KG $hpK,uq%fC r`PQ{ꉁr'tG%ppwxa^̼öUHdd d.jdMSrWwN3T{=}<(\iCҦ{IJl;8:0z S|̓njФ ޕJ o(3%lPπ\Dq[@=m)1]3 T%3NKs||;Zڧ/%!I_MAY06'[NhNe'$udrfӥ Hu1xkK JB_uнT,OFhmӥ$:m0@\^X<-^5Njh~u+ VXʕnuY_L##s!:\&ĭ\+ c֦!wzh=*2eWY]tx [Y(~!O9߈ G8"[,{eeRY;1 F2`Wq-A7 c}! SDrϕg5tЬ<`EEGWkiZ(JRpiYf-{r;h*a}QJ.2L||^ڧjLSYpFPFi<cF-gwX76V 0yK/~;0'T e!Mߠ}TJ6BFk?BKe1l.^K !4%׈AkS+g*X74!ծu'Sd ꏡ|"aB:ԉ.4)ӰfqN_ F/D>959(d_ qN>|G0=10~U\٬H-)ܴ?(׃J#Sk,խUQx͂sCI=؈(NtRXrs_`spcS/nBGg '6=Vq ¡ޫIȤogh'Xe fz`nbZB7 Aθ; U*a𪩒uTĤq*TrbHiDYˌ)oهذdXLX9:vTψ׷>-]k9 ȜZw 1=> 8Ɖzԉ¤WhI;m>d/ Ai"Sv'cZKQ rmm 8r(a % cjYFӒ)NB~ۛ[F?E?cw$XfnLS5O6`1kwX>Vpлv b I` UV{ӗ x7[gȌuҨ6;LBŲqlp#mғHJ0D]Y.>|+Dw*~CqZ Lc3rJ[>pV;G>u駧KSnvkϸfE4J>$HbX% hW:m5tW6>:f3D"2M4 ̄FXbor[!{k#lZ_VG3UIEM뻫jŃӁN!t~ٷ6eM\!I@Bȯu0ZTZЕU|򾶕_c&r701t 45oU=T :>$WL Z$w(sO|atF 754`LJp6dvMcÈGLhn|>k"I6AS~3M~F*x[?ۂ&d'XWzYP>2.9b>OrK,݆UAU21$X* sRL0G'i߁6Z,_X(Hg)rۡ8: a3_[$h=Zpov;okq]Bu䐱MgRrDË3uccyQIҷ;n4€8Iӫ39>Xc$XJeBLT"Q%u2\ \ A#ur&ڜMof۪V"ه(ļrkr*c1ZM<{ z$Mg>eۃ'>vc.Q _i*2 N .PJJזL@nj?OSH\ˆJٰǷat "IB.Ϫc_xG}:(O-ؓ7=RL 8q'DFz~bP4]7ۄFխܕ¦TmAlK½+ A0Ω7g]x CDiVֽ._d5APw`( v4/EhV,=bV)KnY0IH,Q4>#J'LNX3G]>)ʅ\FK0]Y*neճy:21paipצ&]ZOf᥇{MOA^f^Cd<@u0EC͚{e(=IZUčk /Pqw. ֗`.(K? Y(8XF)'}K {77xYDi>C{Snz#lc|& G.h8;ζL0y߯怓\4I ?Ī+F$O_<-j%ᅵPsi,\!?|vXWSk GkLZ[NwX5%H$8@a3˚Y8x U|%cW<+ ֍1&:ƈB/.h2Hb.phzB=ݴ!X&]q!u"s+hߩR hb82ԗ21tn Y7j_ӫ$}agH*v'ka ~f$=/UÖࡼܴݿ v#%xp\ל).fsFHnғ22V%I}b1pķsh x9wh'>P-i6sâVy`4.r[rEK [Z0LHQak2U, kmqz(/h)ۄm tn%}E N}Uo 8ʅIuH "ao27 >(O-OeJp2qr@ht1D=9l Qt`J̛HMgY RKC4%@E39b]nWt3&Lr@6D9r,<d1KmdžƥS4z ΏɩNXG-:sP\UI;7Cbe VPůJI;jfeŰMn;Y--i@">%{5Ѻ;<űm$5376>s;780G|Yǚp@ls/   )V**mX_!Kk{OɔyBȿ2>ۅY@ ^򬊪| ?]`tb4hF{q8y͘" f%$_94/V .&?ܯ.QSC`T.==$Zq2L JU+ogm50;4[j *Qp`1=L5/DJ\IiYV\IuwisDNwր8:|q>G[fmj"""0CEA,|^Ubi4lZ7XBdI}5H-X !>ӋYnsEXz"hMToGHPuǿn]2_$Y գV}qy?ڙAT() ㅢ+j,^\ҴloI.YGDl=8-9MLG+^O4CGW#'mkѣ68kKɵ+&+j&B`Tϓ}M#QqM^" UjJx88  ^$9SVȖ>pkj1'/Tyid [Ej(b(wrJ}9P:hJZ IA3b hPM!zQiu_ấonɄYye҂K &p$U{;}@<o ŁK^=O Pn#]?nZݑhL=&=v?iKp7=IhQ *1O9uh5ޟ(_`T m8|D_u7y4i9BwRvR]P~*a$ˎ&(tg)C̷0==D罵Óv2q~9כ r0 H[B/7|1f%Z ط> \"wօKhnڵDR4KP dObrgʯsĂ\R^*ABcW+1{")v_pB#4\PzsOa>;{b+ ,vekAvrC "`]MԴl; |KK"~%\H^h'.d /ZnvRڍ: bZ,<*dO{#ȟpD N}$T=RY2v6QgVkڋboQԙ1~mkuW+^W9(iqAݢ)z@(.:Z: &nn]XKqDH>i\ _~@aJ03M=a``Gr[:Elsn>3#)@5ۥ ;Zz|'hԵm\#lYfׄVeX8 'aS ^O|( b>L@ZbU_b)R#͜ LY?P!WE ժci"yy9d`MgZ􇒴3|8FXސA]qщRkls ۧY)4}j[5k}]]s?Α)jlj2iWv*jn+l-lN"N9quš)E$o ] +#JMt: $Ӗz.;nMۮqTϣt _ t}YeΏNLGIC·~W]N(ygH';b С]Z\gWKX*oiCiW)amSp9Ci&!RX仠~dF@&7[| R;ݸϗ`ox1z4:,mw#B@ojaCE#]|-ߞEֈv< B`gK[>ha8pt6@\Im/`@+5nZ 3+6񚸲1SHLޑ0~ܗ ]Tf)oxFqe=)\.tIQuSKqEv(KSp(t/[CB1\Hф^/1;6Tu% 7woXtĞhĕcdr5c$"*@г{K⊁|L+ӂT qC$B9\$R+kت+K*#Ulv'AJ:w [ >S7XLkcKʖ8qzttWZGCXX>r 5sʼ$ݪ'}m(GB @Td=Ա7Rv0%Ws+2 =Ĉ'd+2}aNZneݙ)ZbrsJY=r`uƻelRdJ}E8 RƊrg*泥F2M~3woFt?8n-@mOk8}FU`WB~0~F֘n* !losa(I?5>=ii&HMtB>15"~> Sa/ْHf/Sdp3>fy~8t!=KJr)b q5оU{|iuR%k4 p}kN';6֫~ɷ˳ \ѝN -5yaDW(l]"wHԉ\v/G kNh8CkQ 1]2UY->55xzI,ECR ֳyJ ݭLڂ*|u,hRigh`K~?lp묮x!qck9W:ȃ'œω)vfi+Xo@#hԮB}dD(8x18S1fxb#e&ǃx',ejXlT!66qwĴ5 2V͢yxd5!jyB#` kצ|*\Uc")|k9.ގk yFsvx > ,'ѲԜ}O'dXl~Vn e|(b*_,/˪Z(b]xsWd +FqwX> NMiŵ4v\ǙEuBpw}]Lp/ G%[oyxlc~V v*#%P$4xX}{:H]?-lΎ~B*c(CmSN6-]\!ː}H 1"W] nԐe шs87 pcKߗL'>C`~=)֜hIiy}/#r@q4 Lŗ-7b. mzK QtU؂3CE'ÞTaSǴ'ު! p Ar&O<+W!ӏyjn %{e5y@8.^.f3E2SeNsM5Dqdi7\$:-?$H"E^ݬxH$R|-u[NxUWFW`?@'l bÖ/FmXvB;ʙ" ײKTp0:HY7vV g I]UȣTDuhR$6N6 {~nAQi3Zۖ9W5%GTT#^͆y$hcpFGY"<|4 ҷkC?&r='PUB fq <B7P 82.g  IKh%Tu 9YNm]\Ǒ<ܼݟn8I#gv]"BNsapĮ R"Ċ_wpc]Z>HV/jisJUWM~s=tQ>> Jׂ&k-v&.HtL `R,( oA8(FЙ4T1֠CϢ}I#'gAf-(uV>c#ߞ+, M{}{(B.SiMS#.Y&ct=zd7*w426r+[wB|5_c#%m^7q#f5vg-5,)^}̓3ƈ&k[Q2Zxݵd.5%.q7OOuFUU</YP5KkB1`^|;W騡z@'m@(k7}Ȓou* 3s  |$,JdC㜥o5埩G2{ R"-ԗSov߂N.u'b!yF?\ZE lu*2`P{Yj}"ƇC%Gc}9+5 PijVOMK$s; f^iPt8lG}"rSak˺ Ś2*:'Q c.u14 m"c=eL΍^SV;6:[UzBthQy'Wv\EcdZL}+%m@ nӶ?@~ġ1zj)*4+ϧXM >Lʦ:ːem>~+2\_Agzɞv-Ngr;o&Vr(gOYjDzue^%kN ŢpA,8E/I,?MvW5VLeMU{30:\)tҔ2f}u/ߣakG sSݼL6嫼|+(Iycv*g UذC0?v1X Ϊ7olŠO G  ̻TJ_xg u;6lMՇoB0 s8)q)3nco՗9 Q#ͭ$l*4Tќ'.r1;6)?E;zHJR!XK;xkqJ6Υr) zF>m8א[1oK$G4l[ >@X׺ P}.Ԝ\dAj6]q=[c[xt}a4ru e߆Qgj?'bAg-p*9B]2ޏ,8;ݮ,?aC8QavcU׮7w8QKjP"y36/GcdρD; XV*`7N;'~#,"tf@Kr,ԏL\\qZqq m /3;([;zZq ұ~#*xOz8SM`olf+k0}(*CZ%gI[@h"?X@TV̍KU/3L=Vv?UVVjgЅWVɆ\n*)҂9l:[Y*|=Sk3,}b2u7IZ{XzV25* Jrj]6cNK6x s1PNlgw|NFIB2/0Xt%-Y)=r鵊(gbh0B7‘FxwDp֤@TF%^ { ͢TCJs ,nKu1|("60CraSwbsRĠc@7ˢ g֢ZVѾ_T΁aLmMYwZ-I*M}nEOcYޔ'u5M@d<õ6 r&PW1٘]s` dq^wZhAQwC.pzQk[`0^P=`9MH䫉 ڸ#@wMZ)փ@F;_ %9^KE cڅD Jw5{_GiTx(c%] zߵtJc!ɫrG0E%RijEsp-JG\䠑<RW/';Ht9D2XjP@Y6>~ tv4ɶӸ@s|]վd^]݌>NKeЌ @H@R'qq/Ui +W8Ժ3x=] ;fЌrCV!mے£T\vM0 /X,@7GX\SJ&<2/xnb26VS )o4%d M.`^kyvPg\ӌnH汥FS00mCwaGI kBb<\qWmL(ε)^*0m3 . Q7vrp\VGZL\_0"+! x[=h C: H(pl@^ a-OޕMݗñu͞ZޔE$T뜳V*;jaxt 0t` NMb@ԟ/&s.8,27D;L?9ekFҝ;,R?]UW'3:zla+nx@o2x$ s[T=dYmJD:؋n]o%xN t$ >` WcofOXpT\7(NDJO&Jw"G U @?IO!_i8SrԔn88oQ곦ю3"t۾lst j }~K9g*zIfv&E7y$]_ㆆ2_{j=7a70~qC'9&h ]z \԰Rk"IRTbZ~oWr (E_;K/IW(#Np=ѺfV;.pӯ^Zy Y"inMJCVMܕ87˧`Uy(Qۈ+EjT3_$]t6$xi+U%}tg28n!2Ο{LZx3rC02y&ZTwuF&" r`ʫ*L#5}L/w0Hr }^RY8HTN1m`h OV;{vfulE-f+TQQ` @]"R(ɘ߳ϋE9SK+ya&YTr YJr Эg&(nm0–y91@mI꼖yw+2`64%81(789%tAVy.%.~m`K4dc_C)N $y<|%rp 㒶}m J8O47kґ)<9z=MmJ>,E}{՚p"]  ؃A?`wtXکho _W4/KYgM*}O)mo㾎 8eDV|xXe ڇw2aMNCۡ$_Z`*27pskfdz*8(`ļ~1^]Z]Ǟpr d*ckR"d,3٥Su==ccpSEWloNƿ5@ӟ;Ԭ.F/wmj~+W]<@JИRߨ>*oh mӦPXw vv+VDny8}t'd_  ]e[@L^Vk0d2V~Ct!xD .<;`EV˪(bׅܖPPSS0Vnc.)f70=,:Q\##N T VLDu=>9`R. GR4vtc.Zuw?q4p0$-@,ͲǍ^r CDZduO2듵F_ r !bgfK唖Ԅ{l6v^@;l3GJI)Rv f<ba~9>?񡌕?{Fe(E} .)DCmzҽ^5)c,և۔;bKy9LWaSv'2]fW>beGU#"XkLum3L2ij.V$Q6O 081Xl[1WΐO^@D5?# (-4SLj/ UV-4H$`|ZWӔf̀]mbR3͗Aܳ4YM`@6<30hؖu 0 m}PsۆbwKq9r3Q1>Π2Z[U0I;/`Rٱ%rZkz t_E=Zp49ɥ|J`U% GlѴ\x&ng' sf:,L@F7ó)`$ ˔{Ȍ*'6kDꙑtӶYaSۈ.f dв/ZĐñV:d2GAĄ* A>xc&l3:Ⲹ?##rзmif_','T(PM$j MFxVQ_~־NOi6B _@-WBys*`P1?HNZ׽7B 3jUTr>x n@/9ՙ Fd(Ntj17UoUr^Z bSè3i)=:,D1Y^rgnCCJ ?hӨDðB"KVmU鼑]I֞B.y`Wv eHaӡ8ӢPb&[#E3k_$&Kj]{Q//&kOwn{N)ݲܿEMejNgf*ٙe}bivo­YC(FbΜiB k9^|(V/zvFg_~V bf)%z Fvo>s.lgrԎ4b֓AM9 PtχYaDCk˫H3̬MVTT[&2b5ʨTz&3+vR- 4>+u5#G<ۤ2a쐱޷fN;KPJSJS"t~r?FdްwCx1Y?uMzأ{~u*%9l3Gpj8grrR0n1$X2gIu#.Co:]x=*F`*^Ltk٘wLS*v?Fc| 9*U'mq$AM:;hxH`'-FєP9qM]1 & *SDuoQWB%^X~r WED|pJcU[bڼfXTK!#3J&x2ǗId߼SBxX'V'{ċnT 7.S( f{r#hXҷZz&ÃA%X 'YfN(ݪHZ$kA Jx@θ25d 9vCWxu/ 6_Spe5 ʬlчUK)Sǿ7c9E778Msb}H/--=Q!.Wg +b-IGD RU\ucVUGۥyHF Õ%,qU6-Iuc:\VgW%;`kh-O%fq^Br7; ,4t6I$rVqxP# ^53fYe]JБi0FFMK|JKqbQ*;Wr\AL@P']%7'߶b*t4:Fz 55Vۨ0B }.O|1w,*X({o_$GL.1"\Ay f]N=gqC B!Mli"bJ/$r-/l2wiZ+d xm!zeXI1g}Q-6`6ʠh3߸{ 'GjVh5t];C +A!()G>3$ wWi7k4_]f:/gkQFMғ>;AbR^ל1d>/6݄λXAs¥鍀졶2K;$L]:c{Q3ҕ]iΪ;lCޏ.ay5й>ˌ=οf%Ƈa!>ȫ7Zf P]޺uˤi^apKwuA LhU?VWi|55 ZW=WX+z\ΈOHKщ:8]D.ayF8]q5:^ $8}*G /uJ!S-fO%Q S@i7zGe X߷vX)]Aw]`dwCZjd۽߁T#Mȏb)NW)Zf5!GwZv-gtaa҆ЪU|sL»qӰRIY/"mQ& 3 Gkhd "Kor-A Bx}p8"@h\@LILJ&Mhe'ν7-Gx&aIK^C3Q,л1 o3Qu d++ R-tDhfRJC0O+"G5c1΃bRll2Q c''^yw^ K8Au鴨aqz,['-^}LYB~ǎO]')ړ| Φm d02D-)fhi##O݅Q(Z2ʚݔιpM5OMǻ{_Ĝ@ +⠧}YM#gԅ_j[#1Q\N>]p3@+#-P2\,ꉣR R <֎q><\/Br8fSqГF(NH5=\.OtυxU8P`}攛$,cwGs [b ЅKҤyrx\̛s -,SbûMmCk>0 YZpsychTools/data/holzinger.swineford.rda0000644000176200001440000003344413663341327020042 0ustar liggesusers eWYﭮtktBHǺ<mtB0I'8 BH"  I@ ha!DQlQ:!o}d-}v{{><~G@cЦO1.~igg1wڙ{NٻFctYx|=]e;ͥ tQ261QʶRZL2%UL)K+eRKY*eRrTpt)ͥ|K)ZʃKRRVʱWVʿrR>YʧJt))峥PJ|)_(R,勥*Rn.KRʭ|r[)_-R(R*j%%%%%%%%%\%%+,lRbYbYbYbYbYbYbYbYbYbYbYbYbYbYbOOOOo*TTTTTTTSSRJ<5K<5K<5K<5YJffffwR=jvJ)q,q,q,q,q,q,q,q,q,q,q,1,1,1|r)%%%O-UUUUUUUK)Uܵ ;Pc7.s:<7So7 3CgS~]yK\^GH8GS3֌5#սp[{qtG_`a> 7|ڛ{1܃g{yhf8`z56p>t<1&u?i4~~WہsE[U~G^}`^?'n{[{glS]Ctؒ 6[ʻ_nR^}4ֶ_ǜK{pum 7ru$v[㍥-p_Yʟ.vׇܗ]Y_syRzzKA1!ß5Q:>{YOث2_:":xkܟ=h^*]r:p]xSR8trm}[.:~q%W^ Bnᢐw0/]ܼqQ{i / /yhE=.ſyǞ|g❯Hx 8Ay9|;6HW?/=1%|:S{Л== pW[pmS+n֣{K: =N=(=kNl;8E I%9?qmgZrf=GoDy>O9?By1/:A8oTȼ > TV>&e>|!o%jqFymy |ߌjiugފ|*~ڲLW?i%ݜ~zIxvXwݶjd75:|3Gm>cZ'lV{Qx=Ԍ}rQO 8vPYּ(x3&CZ<_垿_?55>Krg:c1=ƁC#Ѕ/r{Rm~x9~'zLrMKۛvK)ֿky;_q?6}ϑg^|m;XoC̳Гw~::agbvdCӑ,9̿3E=ڞGK?|Ib~hr:@wLmQ:z\U|$ջVov\^ր[-u 7U}BG}KǮDUV*_g`s_E=xx>ΐjU`|h GgWCeJ7=%|?Y|צj;~JWu:/?X/ 5~wbg[gBpO@aKnVfo􈞩/_gL|Y ~m?Ǿ? yo8Ӂ|oȕx8~9txƉA~c~Ay<;5>UxY_)| Nr/C޴'ԳKw^s^ i׻ig^!yg>9o z/j/99qy:/>uяCыSR⧡[9Ays>r. 8vrk|X?;{[WDw5t\P߬{^~^m->||g/,?!l {?3p/iCϻe_SZ>N+?z~ź|O7O} s8 $ɹVg6jƞ`З_ykϟJ: xY\=3tT ]B>O'vG؆jL>ccڏq?g{w$^?|?so]:u? oK8C/%o|uK-OE7 Hao'e'ơo}yzNkp5pE~.}9l>d 3^Ϻqr꫿:?O=y^k+>ygxzq_ƽOtkot/->-/r܍ӵc:RإQ߇/{}~Ǽuki)9폍*>?l |ɏF:d7#ɯ}o ~Gf߭g[qG/K>;9puk@Ǥ =z~]In.9/a:ƫqmY~_G@MrY/x=s>K54_S8}t;? }]jO c%_WvOҷ\u~p=+Os}iBp~חwG?&ϾV QO^_?߶# ُ=\[ |= 7<~3+Cg~\_8~?~tlzXx|\o}r-቏܇~eQ#>̟ ~i[MI.8O` ⟶$t~%OuVxN^9N[H{j?#|x-uC|INˇO-g̗ȸ ^ |iom)3r/Ht9|w?6}JGoa4k1ަ ϔD.pa{[iC>sHOc>?]0?Mza}̈x'd7ip|#?t ?q\ڎ ?;e)>Ǭп$cWܗ8oڢsl'ҟW')~[΍g?qs%VpO)Ht >vSq㼧fr(Nzyd?ެc~xșE1s8$B>>'rW8+ՇsAIx.>dkĠg<|!]s A^y}:5z_%1!ʼ?Y=O/ /:W|nҞVs~8GvLb~sܞ>A-v?I |^ߨz?Uzq?v2_sO:8%W3&?.5zs|~d~}mWY~ ?uJ#̿U2~ݟʞ;i?/Q?sRgo7=i"M4?rkxٿ]`bΛ;9LiD7}`,;>@wY3K^<Й\w[h=??;ok G% %NE{:5?{ok = nx؍wGlL_|[޶hS#g:W; F{ Ǘ?=u?3gzu(ۣg2Ǯy;]́9F>(ӝvq,=qˡ3%e;n𳹐c}/ޙ_{bcUa1w<Ї?5_{%~ŞC)G_sO~WK! vDD>|"ɸ'CdȽ=~ 7}g/vuGk]j:I~؍x3vjC;?^ [BMf㛂Nӊ{=7`A.rGzC'~|p!-K-z@yEX7g]_oyԓo=҆O3iOꅰ/ƟgaoϺG<o<ry37Y8 Zaܷ!?Lx gZu'~yQskȍ>gZ[:8 q~l9G89ߕ\ uW~k;myUzw2<뀟/IyfEmpM1o}:>:żp[w>S? iaFd;~<-r~W?/qyѤ:yBK+;?g=EKo>ɻ?r^Wo3)}o'=X#eg[}\oO+N+/8o/ }W[O^\zd=K_ A8g!{:$֯˾=(>D~rA>jwN>1xG-9r ~ymE";%~3^Wۣ}WG%~ϥcO}G񊿃7|q9G&O̫݉)ɖVŁo}z7/Aބq _8~+s'y?S9#g^8//HgCr=~\ѿcA ^<~_W씷r_*z@/'g> 7ɼ^r$Wu='eZzk]9*Ӝz:碝ߕ~w\$ _|ć_NG^ڃlxcơtg.]sOF?r< {?Ho;L3OP/%~{ xjoES;'=)5ПN>υyjA:&B;Z;*{$71xE~6"qCs1s6 |3ujR|%/b|Xyb1SY n1g1NK%^^"?}\'$׊(;v 6/Bu{G |і'n/ߎ>#<1Zsh/D<<5q>^-8璁s8st> tț_ zTchsNx8nA紙m/J9Gp+G[r>#t2}>ϥNGw^jΫG-Oy7 VȉoGۥ_=?u9jɧGs^x%ߜ/OM. Og~v?ߌoMK~cI"vXӬtr:_sb/?AwN~]T7١8N+ϼ>WGwYђǜOR[!Xo%ɳ>a:8튿\_\'])lKyʣӺYVsɓ[~nXoxϭ[z>,~mW5_ċ\ޟ2V}/|_H\{ιym<ص%|sJ{#w)>|Η|O,CQܯ!'?K8|<&o9 8?ޢsv.z_jeٷ7+7r=93=nk{ƭYt>R=>?1;j?ְ ]Q Z?u9z ?IGy}] qe?}QyWWiC>?J3KkA?#-=_Ƒ"9cw;C3J:u{oEvEOȵ??KCKK<57v _j ^`w8^Nj#w|~eN!|yZve>|!/v_2j2|%]}Ś|ςwE|Wce ܜL-yˌ*gĥ׽/{u:|ږ,;?1~ ٿwdZ+O98xG^ߟwCC﬎<s}uƩΉ^j#oB.W]83B=Իu_y-jX2/^_s>g^^ />op.x>$?jj_rnߩ~֯[T[~󵾳;O{!?3}@? Nz/O__'B'F?~|]')~뾧S֖.{}}^u뀿3z m0}5k|uBK麸zⲏj_zBΠ_zj[C!O[W'VO#}yfԶ|xC߼~gCq ԏuyG?;"z+aACU׻dteGuvAϚ땾CU>>;ZycuS9:`/9{Xz=6>uIKݪ'WbǺȾC~>:] GXGӿ[Bo_Wwnpժ἟uqW^M9ηj_ٟ͓_!e:ο׾:їZs|npwF]'~R\q>N뇶]sG.Cwp.ﭾW6x=;zk~_]{2#EO~m~+ߕ_k{ګ8m׾J5/{;$={c~?ȵzS9\;/`#?up߇~C'1P-ѳ4C>Cw3ziT*zy_~o?W=I?)Wԩ>OV˓CQ/{^{-77,g#|+D." @8K^q~)ޓƾ=?', 8:vZ໫wOȗ~'=~5:ioa~z;C/v ;RK~a~{O'fO>FgO>WrrnO =wX ~O4'W9uog8 7:);q?:I~V;Ϋ@?}!h=qyߔ<)). g~N"/yƈ+D;O9.e#2ϑGwW; o=wPo澥'yXzo>_׺}Ϲ\\|> ͪm8wwwGIo~}agq?e-0~x})}zJVO'tVM~}~;GϺ}>pմѓ?8!_:_Kmӑ;Ń [/u7v}2ǽᰋ7|/ s8WԼvzQ<zj~*uߣϿg5ou|yo$S=[r~oy\r!P2Ͽ}38t@>wp[ =NdVuM~oUVwTS$}܄~ܯt9ˍ6Z=xoI:!WJ" E)@3vsRӟ rIy`=_eȓt3>CN^F'W;*W6 rnUЃ#Z䷺Uy߂EK+%ʋē0~I!`_}URɔ7q8ts[@=QK6D[ʯ}.y݊s%Q+zKy"mS5ox:B:F]o7{s=b:w>_xw:JO5oUS_^=SǨio_}vK5qW7|xN>Z+z[ig@u^>zǿg{S5_fp듞#eܠg@?A_~$?S3ޢ&?JC>o/Η/}GoQ8\W<9&ޜTs!Yyz28ɟ3VþZ_~z}/iuO_yf*)=?U^OMy>|3O)/g֮O\/;EA#uzv=ǯb}?yZo׹X⾣!/O<Ϥswh=oY^+R8yL̈́~i~{\5|wgQM<˂{MiQ{rxK:} kZ߿;/|߮/  Nj1+iqW~Nxu~㼑߿^J}2~wF^׼ڌ/ K+_PK=:Gԁ*$y[~l_j^xuoSC)wj^[@U?ЧFo>wOUc7rP /?Qk}k^o45.g>c9?]9xs9Y{vC9c6>usEc=q~sڳN:yS̽N>b{s橽`u3O;`u}O{Y}uΞ3WNu^AY{س;]O>ouA)='}#{sN:iY؏{=9G:3Y{ԮSN;u_Ok3]:ឩt;3[u=wԳ=woo$1"Þ}‡ߕa]H u:Pݧ#?޷c+tk_vȮQpH:GN޽1+Kybq-psychTools/data/msqR.rda0000644000176200001440000076401514302234343014757 0ustar liggesusersM,9[)r1m {y+X/`YqO*`7B/Çf?q/_?q_/}OhIopԮr!N=KW:gYu+w{b2ٓ)<*QJG^Q8h_1뎐)O|?uzO:NׅkkG׮kwy]8~ǧtju|v~P4s_ʧv7uX7'?@΄CU;?82TÐ2SJC*0uu'/Wm4489y?KYOxN= -7m'Z_Ϳ>J_O*W霟spdKO((1gI :_WjwzRI:]'Wk*;lD&y>jT}=:=JOh{&@5~7䟪&mwƫjET8/C7P#CJmab?y4ovv}ԯtJOyѥHשӫZ/ZG]{V [~'_KDuKR]vgSYjѥ8.w3הS9'=/d<q*\S*Bβy>Gv)e] Wn8~'˺|Yi~TpyR[8S^|N9}nמ!eVUj?͗:Pʟ=N4voeG4~NuRVգ?\m'~m+_N~Oƕ7Ǥ|~Xu<'ٗڛ!]_r74㶃OS8'ih?;?Gvz7Vzga^$u?T9{~j54^y?IJOH3s_a ׮)?wvtNkwC*g]>)Pjn?!Q7 S|9wwpBR߅xUg_WRV;9_6Nd8Di0Nt?;u=۝=}R͛ռ+UWQS}"8㓞T߻;R WRTwz|^'gHHY^ghvZqʅa:"z֫@~7A1]O)=;2~*/]ǫѝv4~'_(\{:o/^ſn>i7JMMxsWkVCqKBgɐ4L8ySFNs:zgGO(8z0NAƯ4u|iw%|@ 'ܺ~wH+ʻ~h4nX"B~s}ZEf?jÔ]wהP6;3vj5OtAwQDv)8Ưt~/vEnaDݻHN?W2ku[>:*ww§4o,tWW:=~;i/C84]ռm;9;.LJ)_v鼦Z:==}OL@ߤa=;qOz:)W^ҥy.tʇ-9=R=;TEG%rj]}brh?ijq7CyS;frR\Wy?TO΋sr㝮swv9yݸO9L~5ԧ/ηT.omOpk'ӽ2E5wtU.v50ۗ:{eONNj|NOu}jͧy^u=>Nߑ^A8ώwI!n㌑ j\{p7rzRYHW?zU9TvZߊj~<}H5OQyNK%;dKA<{Ξٮz~k)qԻ~I:=x=9}sz)U=Zwq)^;}MϝM5W婞4_ӺS uo#գriU_5u!euݥc~'TWJuZ'U| j{/v;;Bg}ߎqoQq\ uB7~ϲN^.#?Uzs\{?ElS;AEǷ4tNyw]@][rjܮx܌v)i_=ԞqWbߡ럇W|wNqծ tc\N@;|tunw?qWחYv˼W?}HU]=b~,~jsX?.]@Ϭ"}.?2ؽ={^w]Y?-R{ſ-1VuY}{ſ-v'teOj0=_T#;)vU={n? Q}#ߍW vCU.*'yﺮ{q*}gwu{]H?H:y}AW]'>qz^Y~??կ*u̻;Xc!}5}H^<>2SS.box!FJ}@~v*<~wǻF(]G|ozCx{w9{a7څwxgG齿{{zx廍ۻtVgaW^o{OrHˌS{.{T]mdz+Uz_iw8zvyyq{oU~J?r]ց}'}/6t9i{*c?kt0wO[Oȿ{Tӻtw+FFYKQ}wWw7Wzyչ7^J<_Ojtw^ڮ^"6]<'n<˿~K* ~ק Vѻ|Ǻсӽ{7xS'}w~j<<~-> #{7S9U.v4TC^ŪwWO;8~U}Ye}ͫ[{Dku;NW)?5?ixv^JxV^;gdz/ֿwou8F{쓮^_mj5Oɛ)Iz_<.x}ߥ}5mYOwyy?iqڀtJ{g}/z$w<#ջigU1vmw]=ëdY޻܏jݫ1B:>տ#ku~ʸ;7^j!xW.o|Ż~w>vKa~uT­7m{cŨ*ج+|?_ߥPw ZeU]ūسxỢ&wN8c^=:~|_W9V;9iݍ}d'tZvuMAz'z>9/ݯN[;7|C sJ EQꧺޔS@D:ոgҮ_Kɱtz:7Z?%Cj7Q3Z*ҼRZWKБשoiڮ)zR;/u)GuC;OrKY7j''wun`׆qq{);?Q;S}ίҏJ˓n֧7կ+gOؗz_?>)qZNS_y;U?G]_qxL7uv9v5>i)R=$7wOwO~4mwSN7t#ԛty !z)}g_ڮrT 'cHH3~q]E]9>t] I|UzqZmKwCA{7u:CډR_utNO>ҥ~us}5V3 :~GUqt4Ξ ?=[izu/tq뾯="US}Ng>NWrS(]6xO'V<^?G\NoKKү*g?LDŽey"(>goMsukS:گuғt__{zǭ\#W9O{8~v~{cg_oUڣNխOq{MZԜG\ꧪrR}YK?WS]U>+wu:q'ꏪUS~B~S]5nwwT~4~@?LG/'ϫ]|'/|Wۜ> ~7R~9S3 ==rgկU$*%-Ǘjwծnq\x9hȿ8;ouU筛V?3ut`=yL9?>߇e_g]9;LYfAyq4]ʪWdggQmwt]#Rڭ{Sɫz$zEUaHIqZ+M!~Wqkҡ./Niszv>E5^٣|2Gt=VAѩ^ZiwگzӸG1ѫ]d|Gy&~:ّғJS!e:_gn>.F?K CCIWOE>8zmW+n]B8֏:u UW_RE>wTkZo|U'0!:8O1SOSU[GֵqBI7]N>8r!wP'zWUKøN#7]OAvە?.K׺Ff}GRN;'/)"?$R:E.;Ҽ᩿aK~9H]/tౘJGUi晾s(>-G鴞Iǟ+th(䖟 ~Njw򜝸~aWS1z~7q3ͣH'<]I:j] S]S4/q|QTq~էH)u`@SIuP8|P:긄j:#?ç\W(acP꧔ϝiުyϴH֍9w;{SоH׭'gWww`GH;4a♳GZ*?\BW}ߕƙLX>̃h)vկފ$=ߡM_տz||U@+_j@`ƞH:Lҟi{dtyOsuݤLT:W;_(.ʋh>]tt;;?8=}SGG*G*'݇zя'wy޵;]kݺstV.)_wGq՝<˕U;IX89$?X!OIʭ|ҫaN]O[i^u{_GaW=OTss,;J-ξTz~%O-ɓU=HU?%9֞P~T؞~WOY5NWEn~q=g?)Po:N^5K?W}Ju|n=897}W>oH{+H}NUӫ)IޟPtiR=N_} g#}&8+BjI/vR?s͸R֗4>L]Mk !u'04ksv'W\NϦ}NB7MeꊡeL9 +]*BJ; )]yyܩi|tii]@*'!W*_W|97]pgQTtݥqSɎT0%mOOP^KĬ~ֵ_Z?:B_xr<9󒢛OP]_OG?CJiΏ֭zR{'?b~ŤyaW(w١TO /?Xj~S$:GU"]GN;>'=ҧWt쪾VTC7_~R;Pv*O`Ńj<'>KqpCګqO CK̼RgNZu9\;Ź}?>y?~6mwPꗴ0~ou*K~q^9AIiWy ߋT R:-SOCTG"7fIg qOV ]ÔJ7ZWzW/?mSmUy<<]3ϑ*߳!u=}ia \{u}kOLS9qu򜟦uO}Cy]Ǧ߇xܞ>!~wǫK_ؿo|h}cU{I$o#KtJb9v.zo5p<-HIͻ@&=*WW'wqHwy]{av_c bl{>|6F?uoz[Lwԝ_ϥxkr}NwɇWw&'o_W^w\nvwq{g]}w>K|uwߕwۻo<}D?\ٓc̗unR+_%Us_|v{/n:/w!sU]Xc{q~.W9G?Ws~j{d:Cpwݛ;]py#^&_Ů;w;WoH֫n9^^s>+?tyR~*|CW}g*o=x꼍Y|zٮ w~ݕh9]>/N]@z]HS>{ϺWڵVZLEN:?o[^ˆ0u0t@=|SDUzr0we0y{* M3* z>Vyv7)7}Ulc']x箾o~*/F7yWbw{V<>.w]?͏=ɳ0]}NʟǻƿzN1W]йUy]FAWЍ˿uuG\{3?\o<wWg7xv}Wq]zHX.ŎY~OU'*8;ZwxUuzU1LV8MzTӓ0q(/ˮ}ԟ<+_i{]g'm?؅aڟuM.kM9C.;漼k'{Yu=jn8ŻK9ôH}}糰ꗫO;Xiߞw{ݸr{V߫rgӯzg].}^XEz7ۑs{w)FQn~S7>}eڿww/_}^+^Ui{*?p~;) -M.>k_='=R׎W|xW쿷;waL^VE+xK;Yr;J/Hy{mrpzCv*_4ϔ{(ϳ~qnlh.0Gg}*_u\|*'OwY*[K_j]yZ^]]ur:??H}ܳqOzǷV'71,[:ߤtwۙs;{;&wuN.>իt'LNNޮuCʉUa@/;U;t8szth^ Gyۼ'HץS]ϭOߔ;]Gqӕ.;~}Go[h4QN=`_Us4?*,u9'n>z#pl59G_鹨zPV8;V慎.|.G;X臸9:;}կP\U#~:|^?SWh;=7})qj]qwHY(_JW'Z)M:;Giu)#;Vzu} hBuB:CN5/t}ҡ]7.P#{$N:Cڻ.U|?7L{:*gP^/m.Y^];TvگsK:jqq|׿t*Z-i{D7.ouu)&p.Z'9yIgxS~q*=h}/:i}] =NOWsr;>#O+H!u/U41B;0΄WMCЍ~wezns"GZUx1Jt|ѥ*rr籴{BׇХN~և9aNҫqT>_\O[;VS9N~ߋLٕڏ1]Ŕ.KNN=Mr5ޮFw=TvM(?xK_ܻ~Ƥ#(+;}n}|c7SMqU=nS6˟Vgʣ4vꊋ4NEzIjGq0:'JͣvT}7Rr ~H?_~ߐ!d;*ϡ=u@6j;1oqRW^rߛYrr]k=ڮPƉķ ;|OTR:?L:98i|?8SҼ8;=N~Sٯҹj=׎qHiGuN{r_ K_Ut"{y_|?̓uEɱîOZNEc1W}@R:Z3Ki\Hj_Tӳ\@>sSм"JߗӎC_hg ٗ>ڣr.[Ia9j^Z7|Z;S贬'&>> GqjxzsM])5qHt6Y;c?UW'gu];_k_~jCRb@ǫ׻jN/WGLVbz024!'y#'{TN'>~m5oQ;?=PI j@=v~C~?g?)ovHS5 yN?+?$?Cڝ>wuסL=C 0ôwר=N^uPNG~ۄS8UuUHV<Qy.WO|Gsdҫ|#Un׿(+>P']uUmWyNU{R@t?RuץCJ*?O]*74(}.%ﷅ?]x G׽j?:wWyꤷ'q|}ҐX;9*ρN&HH]}~ku^!:L |W'>Oë*i_HםTo7rt?||Bôk=9輡?|=!tNo~c׮zDTK'N{wuzN]ݏΎt~WnU ]bz/vuVԻܕ_8 Ko4W۝!==D͓KJWס7Szrr/εw]Ww9}+rHM<2){Bw~OO*o ` }7O׺p"#~nXgupvh=!ZwH>;g;}xDtz&\T$׵qׅ~C: ww^;~E }upg;CӮ}M;5oԠ_g$=}ȯ_vWj gca~p`.{.^7ޅw]7]Ezuƫ xvg??6ɹ+nr+]??e~<.Ov*ٝ'+vS|;}4n=﯆.w\낾S힯|?V{7ۅw]?Cg忋;'GmվS _~߭c ݅FSni߉V{W}OWCywU]ݫMWnxwǮO0~1=}!=ǟww~`H}Ry p]}!"W~KS{?]2&i+_9wSi4K-ߡHK7yW:$=Ϻ7O>.Bx U9]WblGˇϝ]dOwVw 0g;*=A.߻.Uv.K}I[߻`]]{?{O}vUqU[x_i_=$)ո۞aK mߍW=(Ϫ >wllq6}{ƻ{J_c{)3ѵU{{Wݯ=:cw]\QsRw|:Eq}7~{qmx9nyU^nx߭ ôWyw..zo..;'y+_ngWTw{;0޴Ƕgw}w%}Vg0U?Q]GnƑ.v}/ץk_~.<;n{z³SǿX=׬{W;9{_W}V7_7{Ŏ.5?zu]v UynUZ7x?׫~ײ~>ʟvuv8Pw=ky`u}ڝǦY=O>\)w]}]wMS&ߟ -v<#{ult*anU]/ֿz~Kod]U<;M}(I]]xu5j}ߺܾ|/ҥzzO?w!]5]˳"˿&_ϞW}^zUIэ&O(X?wz>g{6v=Uٽ^[:_<{_;w!iؤV;9үnUTt'^A? }GQsʀzܽϬ~N9=1&]o߱]u zk5/ܥg7_W]WA~ҝ6< _s]8qx2@γ0x|ߍ*}/W=qs[E~s(ߥ{%zod4y降o?GUO.0Η&9z_Ӱܜʿx|g\{zb/|Uww_{g3_o^.<\7wRMwcw>]^+Wܫυy{U>³ιô?k|u{*.]W FCz{,˥.rɟTK7hw˽F܀ڹgڀ"WɫUv`Ͼ'~}m/_{g.[k w?a@]Q?5U~GO6_~Oyu7v] zq7xu,{jzαGq?7饿G쨞sWka394}<^' O}ҮHgux\tvr8=7ݿ0ӧQ߿jk[߳tگuZoϻi0|w'U?j~?uO٥{_ w݅w?3IoK\~z]<:(_y"gM8\x~z>^'`j5^]!ͯA w I;;.b筮;M>gDBWO4bʪ=ͯpꇴNH}ncYҸ)~hڡqqTyv ;y 亂W:j'Gv2wi?Q>~HZ=_7q0mO'&KҟvK9y_.%_'8}!}\Ų9n^=w^ꧨ^s$g5Lb9G:4ڑ/̳;ߜ Ui7|7ݗ7?0s Gq߭q<1uV_Rݗo^gѧʣ{v~z]=jN{b|6Rn5ZyIS51$*~F"Gi?>jjO)N}p~ |#'T'ڟ*'gh?v5eGv|}?ޛ;y{ Wە.'}Pk/ܓaOJ+){Nzi^eگxҍ=+?ۋ֡']4>j,Qٞڧm|4UC`7̳)^9~o8/NWu:{TOZ~Q8;'i ;mii>g/ wb穄 ka^rb4O"]"iE'<kpNL|5SIյ9B:mO߀6t|V.~(ƳݧmW=q2B gOpגa^7xz v?ڏhW"͛ސ]}NtU}i>}quW:yYp_vMRPRyg]}Sy;wHOWP?1O`_ͱHGܾO?3AΤW ˭:%ZO4Hٝ/|N^-UEvh{ag[w}uV'~ =Nӧ|w@^eT?W"[ͻM>YWn<'+~:~_T~?O`\wI yKŏnI&xy"݄#ݯv=lzzqܫvp ? g'>ǻ{=~r|0|FCq<0%t_;j~_ү|g ʗ=,7837Oh_cʃ&0+:=7ҼKvGҺʻЅA +$wrh|$G+'ɥXNxgyhxotd!O O;ʱrcC=+;hIܼLо۩וpNJ4_Ri~[V}~QѺbHUuݥ*ޥR:aݼfQ=uw/Ɵ^~:W iԭ_ ngjbHɩg;F>ɥu1i&hsNq<MR}c{>K9Rt3l{xJ\džQvYAa^ ŷ?ҟ/uʋ}]D"7_2ڞ9,Cw3}3(}QKrƛ%c swރ8zYݠz/Ü&ߙoxkSf{qܴP}Yҟs4V9dWzNM S;i>f5r74/ ;"^w.yVKkn>.t y6&r~lLQߩNy8LE`w_rb|~vs7B~c!JG7NI <Z۫ţ?WXnxY_uHz_qz]oռ/SyJt/iO+dӓwa^ErNsͯS8^WX?KY/HoRsN9Cmݔ4=ڡNnjo7.!:\_Nu9yU ù>˴srR\(ߛft鿴O9nޜNHs)MKzN)Q;؟o}ԯ|J}V\OdWT\0?OHD>aNj+M _?{1O<GqCe {q>N~ՐoNzx_YS|4nA}3vA~11S]O}~;T?Aϫ>Eo䎯j_uק{,yusv)^x}=}?u6v{v-O= mOsrƻg?%k*8~Ox}q4?L~ӺnQ=>:{}S.鼧z/v qXC8>E:^Zj=uDw٣zS?5a uu_ CJCuSi;N Ue*OK+~+vV~;Fz$;cz_ GA~K8j^Nvмl79P;9#jM~|Hݍ>ﮗ>)ѻuNv %>OY˴nT{n'Bu{y-Zߨnjʙ~eJ'=*#{}e?6o~x_c5~P_Oz>-t:OO͟\]U\i[ʧtv[uj8S )W.>mP;n5!|;y =?O5OTLA!]?%{5jw!mWʿ]r>9TSzZwtHw0tNN~߁(_wNڷx%'S1 S#Kq\h?WDzykPt./^VvW?g'aYy֝vx/K]?v;>mq<+/~gLz^vQB{.'/eS;yU81۫J|#m':G9W)~P$'!%'O{tu!tCt<^$yvHA? EAՎWuCLV}#}!e>'4s~91_O99t}tϙ4nv<tߺt1KZC>#]uq+Eq|H{jiP͛fGߕ^\rumxJ!j=]#ҺB9?a Hiʧ;WNOY{倫ɩ{<89CJ¤8=oa!CNy]}HJO὆٧8_E{Uά+ݹZWv4S}U >E]ݵs.8~.w_wnh✣Su> (oq8z>Ew:=i\M0zh}u~'ͧ<[]ήC@|Kރ(I_i܉d5~;:sg㣣WcHy Ɓ5O-_O|Z\w}G8ԏ|O.YoE3\k~'Y^'w>Sgx4 /;;z/\J󵉎ƫ;)?UyJ|$GU vH7ߎirKE9yD)59{=7'0LIv:7S{4?UKVC0u?Wu~O^͋TS:}J7?i=w">ǧHǽP܎PŮ#~9}tVCiIh,)}:nZƛ4]ҧv+f;;nwvݱt_yG:Y~v7_NӎS=*W)i W:Z7Nn<Nݍ~ONOZzhݦRR^kq0?+zIoÔ>)灦z c_H.(Nv<'^}o}vw3V=e5nU3giIrԏ{v%|/:I^G8OjT"=5S3 {u=~'ki~hEZuP͗]n!tV^g>WռInO^hS5)#i]iRSqbO"; j<;'O#y_uGTo:}ZЯz>jw*j+?8;HT4^;zڧTqQRړGOIaifݡi_}|.ٯz^N)HDw=utFRU3 կUדkWy}ҫ~gϐRq}Iڗʧ]=էovPys@\O{Yuͣ׽VyJ/' mO)7||3Q箜a4*ջͿaA( t.~/n~{YwQ>ߎqz.'_dI{tMAQyC]NH1AA8!u Eud/VN~Jw/:9yɭ9U76;nN )V;bvzu x ]?T 9M5ƫjܘR}ZR{7A~L;Tؤ_rH N(1F.٩vY?~/z䓞U^<ǤqC;??N^h y.sR*ܾS Gە/-4.ރ(S ;{y%r.q<, r|NvQܤvsh?~Ar_)ɟ|ё'/N;K?*/]dGti_~"tN89g?3һ9y>S=ZR SԍcnSUE=3}2W)~$i<~Sgξ=O])ש+SWweҁBˋ~9^Oog uGX1=t 48.M'R:)U=pzxI8~MC˦Wkw.w'9<tYK=gO:N~'gTɧ;t+ow4|CB?yG0J?Lo9c^s(Kd82'#^W87r>>No:>j}ZqJ슧$/Ǵ.^U=JM wtJu+q+[ʟ>I=~3U|Z89zgĩkJWo>Y:Zd5q&ؑp=U~Ξ]yRzǟ'?{׎V8nܙU>Ő hڙ<kwr~fӯϩH:p.{CǏ84j,WÎ.RuvOҁ9 w(S:WW~9ӍW_TDƉ~IE~T]7~t?#Oγ ]^'ׯHϫsz\;UK:zKթx\2S4OS;f}͹bbzLz̛nBuZCytz(0ޥ)RO~bBi|~:OF~n8j|JӛiZ_qo\Ktw9:7C/si5ZoJ~)OrVO+gT~mO\_QAc |;i)ah|7_?R1Q}{b@YO)]y Kԝ8Io7~8  9g8;~\PS;|'Or8y1+U?[MǢtswO1|]})f|_OGR9rª!jqQn5]T9>񤇺_RI4rU~U.ߜw?skb/iO]Bן뽋]?T]]rG{ϭ@G9tW ԫ~&{!שwU~^*{ʓu/0o5Vڵn7UNQ'=wwg],wۉn5!څMaڻvʞToW~wGT^wlw[[ës^ gz蜻k_L{<=O )v_7vGU?"cw^_!eU'~hTV(#y).|U뼻;O%f{Oqa_Qw+?}X'/<3H/ռO!U;IS]oSz;gGWK!~ 74wnH㫂깝vz]۟\Gw0^.^w”+_}yl5#Iγj=Ti<"F^ןU=:K+?Oɟ|N*nTWVNNڿ+EƱd׮MKx.(ߵ}DjxW\~5..{,sb#<~\wާ8RS::o߭ٞ_] Sy87ze=)ҿ_]ӻU&Fȯt~5^ԎϭtJ5rkG_6˫摎UZwަJ?z.Ts?yh5LqO?vGE5.ݭocV!מeR k>f|0yqy5_8g=wSG>Ou|FhɡvGwhWt#GIrriUu |ƶuS;%Bu~xy}ݵ>Ϯ|7 مWxͳt7?\[v`>h7B|Rq?VjZ}n{\A2L;b)H_ww>{~W-W!Iqsv+{SPWjOFWC];#S53׷*J,⩞!]rw!w+SQԣX."vڏSoL#~3oi=~ܕC~H]+{uv||˺t&F(.2Tn*#/'w W}޻Ώ~a䌯Uuh}{ U﫪x@$g]0$ [E>u<9 )o]ݥW5ܪ!ڱU%GZt>[Oa#9/ZKS+?㞕r^u.L۫yY0vGw݅njO'՟{Sܟ?)_[y;8oqzΔ'w틻o]ȳ=y?ƹ!{H/!g_a8/ nu/~3/w:})~56+UNԗ?1>LQGw2vX ]ASnMw[毙q:~s||H9Tv_=TSכ[W#I)_#KK8[̓59ԕN'Kc}_KѽHwa4|Ͼp_WWŏ4WU;>/풳8#pv8~O@K3uycpyM}O{h7Y)}zP;O;O{.2FWכI'i~>}Ѹ9>LAn]gTW_IK4p~J (8GW-/u.黈JCvZ8#ieu?ڛ9PW͘]qVH8N~=Ɵôȋ0P:G$N>}ߋүijL9s.ȧ(~; ?z)[{8?ǥ_4r^IgtK?1zOuclja\{/ݨCKZ7Vlo1T_N)eIߤ~d}=G_c\6?yRT/ݯTdʷ~@?)O '7z4|P4*/=b> |FWN~}ڡHQ>UYsRR>_s|/9;nϛaU͓,)'RDvFuKg_ռ=bR^S/LUzuy JG9=4n)RiG:~*?h?S\Q_1L_iobHYg(-/(RS(N}pGa}h g#c(w*:JҥMl%OZU\NT/ӳ޿~FӼ$|C\>q3|OR͗}ѫv1i^~q4/SZ?8S7O~ E+h_߃r&~0^g"ig U )uξ!=XW׫3)>Nj{4ż$L{u^U)p`x<C?zBKן]_F#a7\Nn9?:;=oTU;ߜqHv3W~Ǧ~Ǘo^'JW(?搜z%}G9T^ήz!uLJOSj>Xŀ:wsux he7J=qK.znٓ? ?O ݬ-|z`1T{1qp@P7.'}xJɧv8FɡjqH94Τ-Y=g';/P~b=LϾ7G:GgTYڇJigߤSzCns.޷?Ukjҧ!j;翬>x|4>;P;jv]1~ȧqP>`.\T^i"KN~Z>Wv{~U=4~i>TsNo5OU9ξjswv:z&8IDj}-#*Gt#|QNq7 5Շq[4/Q`޻:֮=wӟutd33ώ=;ʻ\RW8u/JgK噒':utU? x:_t|:Q;~>wx~KW5ި=4+Yٯ|=s{]NkW?I׭9CW#ݺ4nkW= ڷ?i|+tjo:N'ӹ~AKo W)o4z(WQHߧPqC9+=#Z;t+W9y>#SkLiwy:i3sTo&$~EGWtMҵkIRkݵ+<$wEɎxU; +?qh.ۮ0R9j'3sWO<PP\']d~-O=!GuoދTU7_S )W^jgw? yi'Яܢ&0H٩]CzɎ!Otzljɣ84?yM若sui;tίQ}uCLj*}|;:a<t~5.}3KWO:4>]ym_Gx5[+}~Sb E=p8zn]iߣj~[<,)[ʫ?4?=T{t&)~>rQzNogjBjυc}kwל=گ8w;ܽK5GOˤ,OAr㹑N8~zWB'WVˋ>מȣ4?6ry}UҼ{_vM\Cϭ~vGqwvr'ת~Qy61rɮ9;=OrvNm5=}齿͸Lяq=ݿ^&C~ݵq=Cc?Nj^zO;IqihxYqO0uOBѹGNׯv_='߷vK)h=+ԣvpvoG塩*ѫ.XWi)ϴWכI_u|i\NkZ iuS?W_ʣ?2ejGw_TI8ӥC /|EOx/Q^R}/I{(]5.U1j\Utêt`i\_KY<$TS^xsukg*K}ss_Vڇ摞l7|q]An1^mp9jhﳈ[>i?_?$__S'h;W.򌾲?3V11r;=']}ȵy7p"7z +=,x[_=a{sPzr}Ô^H [7ʗ߃:4oHT^ڏb{:^vA_:ʧzqvs摔ή/z.Z~z9prezNѭDa]ҿRS|){ǜsz?UWSϥvTdzoRLj|~۝tL㧳ѻx]뇺#z՟q8m?7@}.:~z^XwZ~K/=s jO_5nBnu"U4oJG9Xivzyʿ&ү}KT_9\_Wi^5Lj&R8? ލdcx*W혠<"CAzͺ|qx\r(prWr|Ǽ O:[?!().]Z'9߫<5g7ޭ80rP:~~ZR+SKqX;ǽxwѯ}'?rz%{Hʣ}7w5Oȅ}zX9|-]W7GFGB1K]@ϑi~׺KPj>upHay_<7}j>g/we:JM?'GA(:;. w㛓ӮM ~>]N|_d_zr<.'sDzHSó_ݍ!*|]]QC';؟8th&v]4$pӬ3s|dW}/:ɡmtGrUWN[ռW]n*ߗu:LkQ?3Ů=DzȐt\i'~k؝W:0tN}MJQ:po@^'S~riݤzyqvrRq< ~!uwH:O*?-]ש]J?/ݎ5UWn<|n#G۫ϑ[UY.]E5.&-Ov$^W:QRt^S~׎nS4&}{]R,.j>vU4oM}qḫ|rP};[T!ةtO%٥*SѿI ƮC'qS`>Z^ї2|F8}Ip1S9vWո|'BiU\T~ߤ[}0/C$'=/P_:JyR|<,MDa?+_1|n.gDnKgz JT~>7ƅخqKvam`Bguzw|%{T~znvϥrϲ/G믺^wYA,}.'W9п< ÇWߛT+=gmG}I/Q8@-[/.|avw'>>==שTɉ9'8}?7Fo},G8N{Giwkb{xOczc?-W=%?Hkn]^~PPvӺ&zʳô?{+2HVU|T)?xw5%7YWyJ>jU{Czpg^Kq}EO/¸}䟏Hvug7<1ͣcvjY4NJVNoN;${(y/?C|4T{oH?V}5NR^pHrU<O0.nF.w|~KFO[_b'/k"GN@|!>ZZu?qW.eW|Z㳼0K]_n&h/]ϕ}SIYRuB[cxN$'/|&oj/SOgüej/*)(^ڍtT;h?8^nwH=͇=ה5m|~JkR}ia}JG?_}vh4: ׯR7qN)s[վK_Ʒ8﴿;zGj7\Ξt~ݕn}u~և}m5Om/%jAtga^žbvUߓTM_y;}$OW7彤;S4n)l_n~͇ΧL{ljO='NSTI㉢GO4*^>埥9)/Syǝ;5د4F?Kr΋]nR/OW(HszOAvj=4ŸFL g.q t׮\V1\;󔮺><@|7)Ci{UDz{MKO C*tkwKyֻ 9ήO1tN2" z~HW0q޻j7+;ybHPs^T.wߡru^n|Gbp~8n/N/Dwߍϯ] )Gz5Tuҙ_=op/iW8+)?yT_\zKո47+HƮ?+tqtzwyx:'rpߗwFH+~b׾I>A|q0L{uwOyOW]wv*fyw/-wHT>p4~~uRjî>@nSN8k{jou?;}UtnT}]>vj^_۵U߀=4j?_qzKJ~q|E7=ߍg"*7[=?ջ/D?quWB{C.4c+_uUtߌ]4ONW鞕ظαʷ w<O8ys\SjH^ץϒ~RWջczDz$SvkSPcf5]n߯//v'7vCJ}s ) )sY͵~wOW:UiGԯwgzʫ" -?3{N*y |x]ߙW1^w5ϩbHb5b5Kw {;Czҧzԗ!ƹTOy0{Uw:~]qn;{q'o=*/[;>Nō꿋j_s:>F]ԎIW4/]?Ccv+/VWTNH*7wg2kqN ەg{cwyqqP;ݿ>]4Eٯ51mbW<5?nVy7/SOSC_]ۯEu5*wU\UNyWWy'&'tUԯu+ =wW몾SFHWU"]!]ٕb_[O|9|U}'ȫuѝo=]MߑU'>շi}>tܺyuyMҿg;?SWt Gڟ7$ۅUxَy>q|-OJs]tN=;tr'UҪ=nߦ(GUqtZO Sub|uz޹.€:ߕǧGWf՞tΊ]CGwMLSy)@޻Na4_,QUU;.7 ]ҫP~:S{EǪScT;wGOKV?uwuXVwZwi^D]׿YW>vLz:/U=UUr\ӛʙHLr=u*7W۵;&ow&wQlwz&=gW'/VBu]]Ǧ~_'jGGi{߉umw$wYluۡZbs)<[8zj48=O#=jvMO/ށXRw>LI(PWL8~Kϧ>W?KzlKv:tM!tju=wܒsOXG9)>e!ypCii 3ה>+NTE>K׻IDO)NPԏ]+f@i,qcߝJ*GqJG~֭=i]Kڟn:9pr\^S?|iW:q8KLwK{rhxT/ Kq~H6|iK կJG|.m''uu?9{O.W.yy>ճ>wU㳼{m$G PT8}q+h;zK뫚|"vqGi?W>#|~_ğQ9?t s m.zgu-i>KΉǶNgBUn4umwnX>8Aџ^T}[e*]rn^7W{Tnxrh }8͟BaOҮ|owzmױCՏ9:w>iHnǧS*:W9/zsͿB4oNwuz~O{ v_?7/K'+op_"bIy ѫG@)>Ҹ\H'{ߜzdzh]8zOe1r 1H>99}6A]'}__N/~wbbz6O~qvͺK9=NmH?sIe$GT-@Wz\-ko8_UT﹔h?ޯ=i&{/uW9~c"wn0;ۯN{_)Ӽ$xD2]xW//r@I~қ/*ʻ?:ʧ$k3ҁ=LaγGiwRS^4|̇]p=KK;yո_:<jzriW:'t=4s2<4^),M5Wlj֫q~ֵ էtT}]kߥnyv8rzyq}S]O~>SRCK;НWz-jD)T'ҺKn^Jb' H T^FQ[NQ{.%q S_HIU[N)\mT}*CiU>#>CHxLwO9tǣG?|?Δo|nSVJAoa]BO%ݓqGԼHwi~.t1O:rq@;gޫ|_{'Wԟ]E?gڧz<|ii]OK7Qͳ:Aّ]^T3]z7U{o/y+8jtchJOϕc\:kE3ôry+M>6aJyu7/J7s+}ٿKҧЧ}^E%:G]ʟe6N,/Q{q;-=}pD5kx_/:;]`<>>q`Og/=Đд];NT$fx?H96eOX={u}?C.ΒTz]M볼7 N=g7=.};(zZb{-{_݇AQ/uFvy%N5U:bhTY>w?ZV8׵L'<,&w TZޭ'^mWyD)(oj~z]i<4j+򘳮t?mOE>#:9gyjvsqiCBu(aKyCۉN:PutϹ*wϼ9~nMi>l^u||7/jl? jCn*NLա_p>{7_~TB_npv=8δOOW^ Ӹu&;=|?a9?S??Ÿު?u$M[5NŮЅqS~q*,Ss98^ Oh]]S;8_|[|ꗲ;{|g=|I}0O~ct};;hk#;N 3z{}~6t\xY '5wfhOj|Qsx8hϡq}It% 㟳'գrs8:4ݸW\5s3vk];4=: (W'o;.7W~~S^V^Uwo]荾q|E5_MsI^Ruݜ7tVF۫~k0'!bEk *;hKտv~m?L{xO^T{N_ NXKs޹]9>9 CnN;\=V~i<#_aٍ}vT&4o~'GqߨT_/W;N;~: )Q=ոAjCͮ{Hwt{y>' a\ڥyU^5\e(뾚t#} 'gE?ė ?_>guGvu|oUsyWo1>d?C}7|Nqvg֝ޟq sgU.3=˭EO'TʟJّy!?ڡ$>O'Y7+xXg8 vg;=VGO9a~LTOqptJ|(\xMYZjŐ:s/گ%2|?%N\) '}=Ay7N@G~ё=N"K>/qG'vcj_phחqU;0_!'G(2w U}B?Y=q:OTnWw顮NGZOPq?tjCa7[.vUY'JxzH/rr(NrT{5uGBM4x_wV/wfve.E39S|?LzCON{q3j{GG8Ky!4ͺ-7:{;!xC7BR;#-8>r"qw=^̏E>\z>l4(поK? W'=jk{S#'RS}q;KWyi\svA~wӾw|}]H>R@%r=Rw\~C^ON,wP%ۋ#= ?|uNi7K;_8;:.쐞_TG;xERȯj>F"q%ܷkv(]j@_,_#O] ;իIf>[P]Rޡ>58P~l7T+w3[-U_={.LJ+G?9O/u߫c큒~S>7|T{>]yHj]|^{8<7|$˗WfCYSC ՃqJi|ArimWVu 5R`<ޛ]Ҹ}O|oj:L٧Py8{4n4b !4_NC8R;VH_'S?{+إ1>sBμ%+n?Ju/C*oUDNp=ۥ*4a^gr~)UW(k%򧥂8𞴛O+yFwj^x PUyJWôtn|Savgt*AN4 GgW]]V~>x m8~}jU׍N?W(](r7ٗߔɧ뾼D)Gnğw 9E>Nl?=qI_|3?Q;ipӏqNuz^_i#_8}8>Q+\)r"}|i)?}^J4~N:Q{yً}j+}kJw~WWX_yv'WK{>3wKh^z3!޷?ҫ Nh3n5h}ҥ էe}NtO:ph~/ǝn<왠R*'_N3yK|n\]ޡv*ֻᤇ9C8OL~vPz#'Ź!"m'Qnѯ=bzM\ ǥ|VkO~!w4Zv$KT4Pz+ߒ1Nϓ~G~Dg O9!O@#v8[g/͓ځ}K87J7SO\ֵ>IiWy ݏ?ڮd;7qSP;sI_dOU*7_gG4UBz:n _C.|oNy1<)_,W7uW=~4k;U?*oP=4GP&CNSv; oi'I=zqzRNyY7Oک|#|EU\g D!~^礇}O~ˍ#}R_y;& L7izyMHvOr Vo=o_ft:OAƁAUһuޕr:[!;~WwV9L =o:>7s.?~⒳H]R?8N-ޗ9&_7V|`_U1W8ֻ({s?\ccOCy+|ys!uicT1+j^SU\"xn^yZGrrҧz/ ZS~_?ӟʧum'~udڥtr5.+p7~KEn;|~S0{K&!~8H꺧Qt]UOG]wu?Wc\0Vw)^R%:ԎYwK zիHQw=Tݻ7ɫ7)mOPzCi{)|LǑ!/_'^͟\{u-Ϻ+))_ NnJdj_񻛿i;)?Օu]Qկ!bWY5X*K?wQE5_W{cXozW؟%>ǹhG.Ѳ:7N8O'=J?Ux^5ϿkӪtS\=(?~?S{rQWs WpUo:srIo ?tVڻ_~_ǯj|ttnc{rv_ʟ_O>Rvvu*Unσ_݅77]痪|Z3}wلj~Or^um|i;ۛ㛎S:H w[(.UK+ȏ8z0iWH|ANiTkOǃѺҫ}O}Y{cPl~u|5NOu~'w%]Z<_MA'W櫪?W?wNN~}5_S}5RWljg:7ZwλCWVM]Nq4+u;=jOT+?tjb cUzVuw󖪟NO㪽j]OơΝq|_=*d?yewWv8z#9j|9nZ'(~%+=#gStwxJG?]Ot]Ƿ:^?ZWNqMSQ>Ǩ~OqռH{)ӧ%kw34:%qwtv8>/u{?G,WW~oX9O\C'Wj*Ӿ78Lt+}ݎgw\v?V1@_u]rR6?k=j^ ]ԝ\7ˮv?RjIO9BcGrGHΐz&>8G{:לzҧVz.Үu뮷U\P=W?aHqW9o+Tǧp|3ռ[Al_Kk=Or~W/:>ho]WK'V߇9::I?N.PO$Gίe5ަ~:mOs ɭCړw7'9jqR_8븚Wwi? ?޷Sq|- ګ?w+!w#AfUKl)'|W4)7?n:t0N#:}UTu] Uou \*ߪ!W(:']bvCKzR?LNVz7AUͧO;ɮ힃O$a쮓x3Gw>@GGyKJP9r~Z n~^(Y|nkYq ܸ iw+o? 꿣ʧsbHNZiܾ\Ře]~:?=ƓU=u1q {V_'?KUTϓU~::՗3zS;8G}_Qz6L;m]֒|g0xjK"/UR W/\tyw|?;#utw\$E9.RqKuۼO}uݧ|wjWO;R\$ArҼ{0>gb#&Ý_S>!%unP}nwH]?/CzSj>+_v{Ĝh7:?SkǮMzgݏtm}ﻤ׍Cw9~իpn>WŁwou!W3qkuR$Z'8ޕgAOVDZw[^7WHqr)(ϻ]vWyc$sbw&9]Tnn{޿wStvC*?ŶstQ5)}>'H!h<+])|]Q#sy_ͳ w;q|-w!y(ɿwոҍ[#]=GؕoWiRHr~U=]GODG+^WS?b4=Ou(-L7;]uܫA#Z_=?vު\W~3mtHOw<7yr3sN7/X=?qUM>m_s}/]_E<4;}!?rO C׍qލ7/vW_nuw!vUt˷;wȦ=x]|;}cYj{vROIwZ>v^W')P;߭:b՞]ؕWOq3K7tv6?zW?nju_Pݩg>P{v9$8o:Gymا|Z1TI9kW;T;L{՞㱝_In1ƣKb+߬~I׳C:8:Gsи~}z? kt:yJ N+g礟I<R*$W3]'NޅT]c!鼺v)\ދeϲ|cKj| z_Vw ZjO O7ǟU|䷺o#gCWT_zv3NnݦygH;~K#MsztL>-^Q9A*>?O|>#]pW=OhiSq)#7zS:ի<<[/Qi>G봻F؟_./x]" >ÿ|Ü?Wr]z.H!x=ڮzU>!G>j^Nurρʟpv):^ʯzGSg.CuA ϳi~k|H;SyZ]Z7Nž~;JSϡr^'xB򌳰*(oPyr|ΞS_-.iCоTC7g^^:~Y;ߧ[.v4TzW+u֮?J|ZO,S}Gzg"{=®c_hs]^ Q/Nڣc=Uj>z}5Z??~?@; Ő2իOi^L| ]3t\I^.6՗=IԽ.JS!}.ު\4ϯiܣخr4V8z[;rOI ٕ1y!uϞ[.槄Qlw摩}uhSe[)zu)Y^yؕS}C|Gƕa+s|w>I7k,zOb5/i;=UCT(oU9~gj>׍gNӸpv{TϬ|֯J۝ɿ+?I,}oKց[確9;NĐl/4U R!t,atsPڧ>[giڣrT4 Oy_dM(!GR4u E:߅9}4>LIu>t_|R=N+~_+hݐ_HORJgxo,WLTzݸ5K'AvU &g{E g)Wʩk=zqPAtNyt<H1j:=>){䗮Ny&Ju/E"dzT]/{"}^՗泩^ǴӸ\"{]xܮH!v4>'o՞*WQ}^cKUwڮ|(݈WYWT_%}M֣;{TPzKKW8;.RSCΫb5rii+:~8t?VCJQyI{}+]Տ #&~|+hvSR)u#}Pq<T~5֎>oC~jIMվz~җڡ䍯~[}l { գ|?$_zHSM~H=ӪP|];) GvW~vIΥ? Yիxu!_Ki^Kq2OML=KNC5~(sHB ՛\9;!uX_*O |N0wr }CJ]7Ώ|$wуo<;K Uyj^<݋2ۇ |_PG3AWkwP犪{'y\c?iZWrzh~f{5OwڟŻۏO9{g_)~_sA5&9{y'==P|sEwR^@=*וΜmOr^[Ξ4vy9Tkhݑ|si(Ôd]i@zP>/ܳxA?67~gGjҍ#K_贝]?+_jWj;z޳\7QI@z" -mOuqceB;t_{7Ǖɓz5$VE?n_Wً^Cq?bTpu_qq .~|?r{n0?,cOn'|_gNQk.'g"=iq]7䌯dҧe޴^Ҹ`R_v׽[yPx=zwvXnm ( )> 4u\tr_1?VzP:}~uszz&K~|֯.#ǵWһ^;*U>m|HUc~ߏhASAaK멟s4p~itzyjzggʣm:WCS~_]ND](GGzt _8 Zt}صׯiTOwIһ~{~PFIͷ/]=ˊԧwU:#]=ɕ5rnHUG9-tγ}Hg){~RWǩz_ޛ-}hW]Ū*(j>V=D3]Х?[;໑آx߅9ѭLDWw=ܝ_pH^_'W4~*õ[9"9o]}OŻP׽<}7z^qHЪ=iJ׍W9 .HowwW04N]pyʐP1u'WhߓߌSd窜=se<[>nWUbtKk0|:կ~/0/?=ZOSJ_sU}}ZuX{HW}.V:G턻OGrIU)(ϷO8<_zԩt\V'!3U<<RuAVZuT7'4 ܽw]Nk'8;^S\/Ew~}q._$owxܞړwW**.T叛=+;_uz.W}i#ϮYr|&U}U>^PwxV~V咼j<+X9#5ߵ_Sy)z!MvTkwe"GVS'])ymw:ǿrWǭ;><0OSXOtq1TTήqЍ/tnv|i&Kzi"*7w7?KO渚wtH{Ǡ}Cyzb{P';w3NV]q1jZ"kww; _jsC5KkY!]9R}wr?aqzYŪ}k'\ޔs=M[8Gw oMsLחZ];T8N_u]uz=ӛr_{oޛ!]TKy!g$:O]?IaB8Nww pBg{S9]Wj4wW}*w:nAqۗ/]g UۭFY7hV.v 'g<"~/r>ڏ`\NԵX9iޭ\iO)f?uz.ܥ4j{tq7u'g$3XyΟq?}Uݯ^Һ]ƾ~@?k %:Y|Bv(f;S~\O?$ʯ8L~>;zwwyVȟ+w8yAyW)T:}:A|~+x\zυɵ6]ShRy%`_ XN+j0ΎW{~sF:R^\9Nvt(_Jzhh]Vg@/ѽ{> *yHOx/RO"_؏ʗvZ_L^A?RNڙ $~Aڛ( svXsNyB?+i}G*;W~/$y1}n]f)Sq3=? i9w_>D~>); =ͻUXc<@S4ڮ9Ut#Cj;ydǘeOmN/YTzu$ٗ ?swRTˉtTάWwzԾj|K5OZ]{rҝC?/ʟ *g}z]P )]NzUn<~im8;^H#ݐ⪶y[ӹiG(ݏ:p+Z4ߣ=mx\ײ81z]={4ռRLCzi=>I7O 9y[?an8OU5=ô_|GZj>?ןk*IoQԵG}޷qoSJ7 .NT~9L|XOz"iRVMʗC͓=|D~qrz [!4s|VYO!eoԎ|- ȫEg'[SwWN<)t{BOTp6"wsUW0 oT#OUn5S/]t=Ϻ̓>vjތx */Sx/Jq?OTEz:_KH"UZ}Cҹ==].0=>JGj~By)]u;{80Li+qg3U^5O =g1$Bn..7^w4:Gk;܏).=k=zURWqWRU$7EծI?PoyVh_5Kn>>1㱳3vR{@q|4?V*T?vx?Nyj~wQtW9)RiE&ON8xcʻTW|]]/uwl^z48y_uqjOgꝠoN8_sJ@~wr)rI߬{CM]O} ΞjgSvi _|hȡk;Mg}1?*ٙUNOꧫ4{ /OtA'To:O:{Yit&#o'~E5vW?i~ϭ;׵S~!T鉿dCJ|M-}.tiT캿>s/;g;u:WuԎTg)g;gzK'S{P!y=WO@31.ݧ Cʳ9g_ԏUu5\vzh>)_'{TO1]~H{^kqv&._'hׅ{O\qgap_.r¸c ;Tp<%?Zt:Tgy~"?HxoUɯ>}F/gU3oW9&qi)ROLJi;9>_?;MOy7}IOSzpړ~Op#r>|ߩ.HQc<8N>c`ׅxNO|rܾ}OtB'OO4v+'"tN!SC b NvvGڗ/#=yq||_ߋ(S/=OzNN~zvv?x2 {(w72o^Nz#⁣W{-ȭ!t*gR8By7^Ts^1Uw{!q<;}Q=56q7Ғ~ߦӼ!g_4 ^Un^2$? *y{q<9Gq;K?Nån$?[{üAQ^fhGuO< ~{C^KqNEa_ѹF9.O3z;~gB9wrC%I>:v;<ƃw^(nb`M);_QQ'W}g@=OݼB;Ypy"3i>O4?㳼cx_s _8wa|qj[/0S>hݍoUo ]n]9]⹔W*]D_+'<~Wͳ] uUK.4}j?h9NsgkrO'_p.l+0+!ҏC:՗կz^s*׍S.ߦqzEϥrNWRjs 'RQiY?YwqGՎ}7?PzʣEW gG~'}I]ƮԎ4nYj~|9,g'>;Ooء8~Oy >|i>S͋/p濔?szR?OjW9ל|'j@~EPǝpвO|CybvJA?{! ~jc:Ϭ~cW_8_1yӣutWO@œyV\0ߩ<_45NoUOjk|ߥ>OrT|׿VWܩW{hIh}$_lO;;Y)WqMyC5NwK'g_j&T+-RPƇ!bSqNqrS?7noU4i<ѺO;ϸ8;y)]֙g9^8E5r;~BГ4N]jGUC7~Zrok(Cu=o~ҥ ȃܕ͇ڝ⫶;}Ԏq|Nӎ؁+wUǯ~ɥu+]+g,1"C:~ >]*nʟ~G.53urhȟwS2n=HbHI}wZ<מ>ۍ?w6\W4rXgWvvvv|;|U^[R]Ү~'=>8׻$멘=/|Ai?<8~"EL;Sz>Wj7q[įgt^ AV9Jw1)]W)_NN~w?T9:{q|_uj|EkO޻%WȢQ_<3(کLkI%>PҒ7R{kW^<L`HWȧ[5X++w;^](S*gHǃɕ|/@k3fQf>,ev,3_o]y]~Ů?ͳ_Anw4Tt%|4_zS?oe(ݍGunGޕ=Y5zP{PW^޻T=g^OtKڍVߋT)(½ ەGx\M94cs%͏S?&i~F&_~Oşt2=:X];9HگzO cF%B@W|L/HS3>C;ߓ1l}=~c}~'cA=@دKsх;-grJ*/= o>>Ku7oC,o7+Rvw>\%LҩUyGCӺB_D&g1/vAx/1ar39ʾ/WzO|v6l_|ȟ+{]sS|lg)x|֯az_8{o>WrP~,(}/م V>8?כ'WdxxRۻ4KQ7pS/2ݝzM6'G{8|qfuw|J'`;w[w]0ڧ0J^A?w/۱07:~W'({P?]_eu_uJ;x$uWׅP벾vǕ1cA?һ@>Wc%}>OߤXyW~tL7%<ŏ傛b}wCzw|3fؾQ_R]w]=,>/vMS`rY{?R/EV/A~ѧ)~nN`gxΓUv>8py]}UsF{penӥTwS?H9Y.R#OAI}7ơn\YnT՟JZX/3!ӧUwKD^iasϮa0JWpg0t Um{Լ?Iۅuο]? i|K*H1,>(s!ҳ<č#~+\fߥG=&WHy Jwѳ:vSEտB`\a?YׁpH%w 7O􌟍Y>.uq:^~-o\~t'=[w.T]֯PPsW~,+FY>Ab.yEG*Ra`]ݔ-]t\vWT<.Ep7uwgQ\7dLgslw} e?IkwgQʃ<2T~wAiQ| G.&>=W|`n\޵QӮM|w~']EX88]*.]]tO`tnɝ]};]wu^% E~/|qI3uȧi>=wwgyyjkIƙ._t,(YׯHj~DaJoErxн-s|ލL{NG:o(OMo,ORxw^NB svw]>Ē>%o׹gT`ߩ^WpO#0_*~$^z~qӕPB҃}޵3z~_О~2Ez=]u5Qv4Odr[ue71{\=Jt,(;X|Vrg5+/{ X?Ʃn2sT(Oa.H綧ƣ w %u\캾"w#w}|L&GQPA~UߍSt|]NNŕ]ysC5\Wߍw^X^e,hG=H|Slʃ;>S{rwA;]7[G9>'L=E = ulS+;_zMv(7l ]}5Oi>K)}OCm;]q"]=uwuݿEW^FϮ;2c*BWSym Ou7\ԕiH]֍l]r.Tpv^Wq{|~sc{D{9bg]4Ít7OW+N7_qڵc;~Y鹮KߍE#y(E;Xۧ=?ůMy ng]?w~w~sωnkG:A:/h:!bw㿢KK\=/aޢsS=ԇ~٭ڣ)֎㗎]i_ҕ(5>n{~lgr]4BAy[_X2vNk:cw˟ֱAgqKωiWw]sn.%}Jn)v#^n`٢>?Lͣüfw<) ;Agw|Hz'M:ؿ+oeA>{>u֛Oc<#~+$m{n{7P.zy}zuNQU6+/yʥwwqf瀻{/yxcz]_Uv()p?8=pW˿ʤKl+3ŮUz>1~tOawޱz)8=~#ZͅҤuTe~lR;k슃]W~t>cw~=}7\nHQ!u^M'W&?իj7I\eϒw㭢9EMI_sþEOOe<,Q(q(Oؼ3:~ug}x7'u0=s_kLeG݄ ?~(zÒ7S*/zf7s #5GJ^w aϹv.>׏療Nޣv-"\^Pw"w㳼>A}>WXzهL; (a3i?(/2Nyӣo_+oЯ?_wwgn~ooqbKYPt~f]ݱP*p+:NʋPˍ~kI}ϙlt3]!˻Q޵ѧٗt<ʤC}nTk]~3=Z.碛 ¥sǥOqQXgv)n.ʐVR?PHCNsjX}wJg'+R S9q"ݏ%]n|Kǥt@~Kڙ<]P%<0j^LCz&);xX{XOܰ+]%v/wy}ϞαHғ]tK51JС\ŧ~\uR5"U@yh4^7]=/zz5|Z՝'UcG(gI;݂gy6+{:G/ ;Nn>]؎rUju|,خâG_V{'?ГQ@ i|=ۛdRI\7.2;/?'kH⃂ǩVqKkz=lqGQ?߮_p&:?+ڃv"]9P_2~l/)zswgt|bz #UrP?g2zUqѻ+P`r]Ơ9ӗ#ӝi?w|Xz7/B;Jt~];.OxKUwg1=nPO>{E}H_QrKHiGw|SarQڕ}ʏt3E|QPJ:>XGf8_֟G1S+Rյ ᎗/u͇tj?-`?_[G:Ϧ뮠Lˏ]Ayo%xy@=ȏ}~ƏtjUuNPhG_ua~?KUzG C"º w=bNU8ƙWEݘ+dNg7JsSEfkuk;<39i||jx4ELO:&׎_5ݯojGA;ƕnkW;Eڱ?իru@n~tϒ8Ƨx<|F}(t]M)=F"4ngz/*ύo,@{fX"t(ۙ~-o8 P(Q"l˯3d2wN)zx[(Rvw͛to w]uOߧ[p!w|_{isң>wt~>G\ϵP{ؾ=J71֩?yT<]o|hgv^qcrVL"]*o>7(7<7+o빠?L_Pw_j'GOѹGU*#`P y+q%cP몸^/#% 3}bs`_EM=n~OP'?߉Te=V]v"A]o7[(s4EX?Oe׫/h^Է~%"ߌEO?3} *FUvk/whҷ﬛-lgZ_@zfD;s.rܼµ˵C0Ut? ~ScHI!Їfϩ_1?NyqN~_Tc(/O<7/czG;فyKw~ ti^vn\u+?Ls2=>7C,7rCۮpSw\zPwpEX }NO:^~Nմ_/`w*ow:\:qsS O Jt{OwwtݻJ\wHȏte1wAIJ?LwfT.#_.FbID7,үXg6ޫ~at<2y/OGV.=iCLǷ< _74Ÿ}pQvo.1"j|T~@ݕqcC^7C{} j>tHS&}ƅnסg?!u_ˋ:C= 9<֙EƏŇvvƟ]c$z/`9.DCȏ|i|Ayj#}:OnKڧ _*+\g]MC=գ~͐AI\=.~J?(oG=t2SO=ge zIy G8.n^zO;(v|出\{gi]&O]{ =Cʿ5O(_?,q} Ȑ~Qg n^ړƽtԸE}X_z`Et=n>9ڡw}mWqMv7>WT2Moߣd}L_7V%WnqD9:`F JzXށR?pnѵ?Pl>oyE|I!J߇dzf4$ n|C)?+ǑO>E>?aq129\ד'*~>'ԼqmԾWѡ4}(Q}\ekwÅ;? u|_G~f/;G7H_Pg(\Bc=j]/~3;~ +z_}@HL/C7c{?=lzG\̮40tbg4S~ ͟Kŧb?wCjWA)= L]g}4O[P+E>5*L͇cvŏr}]hюwESWXv?,~]Տpu'W׍t_^فV]S*owSoyԿyJ~Vw_ON®gzҧYazxvf+3#/Ү^ӧҼHs.>MA?֙&G1()_sv~ W@n<.˩}ucticmLo؎uݓ+WcUv,|{$#\/Cݷr|_){]q[׏E7OO~Tv!?Qv?]qJ뷙zmϧ0y]nRƽwAkg{9)@" 6§ƽ\?^w`~"n ڛݕ SgY{u''i`h~%瑍w2|_s*ѧ~>,ӛycgyOA;G:vHz07EʣُzԑQ@WΠ)QN&ҋ#tߡujc%'wJӇ(K@lG,Q #ʃ>Mㄢv7N~uL>JWdrҸȠҟGY{z.ϐPb'|:Uwl׿br#xՍ[L?SЎtP+W]} ]|xɭZSEx nڥH/Cyu,>fu%ۑ3Byi\e nJ_]__hcSݘuO>\L_uF +9~IS=J7.'<14-fJ/*1;P.]9*ݼ8h0_~-Fo~4IuσӸYwtiQoىuw^vw%8#R?B:Sv(=q׏s{=4t[HGF= w=q3W丠߻<^.켘vݭϿN;otI>E:^GCwߺzX3>igu]HLYyM7e`Wb)?ڙ6^٩ƳL Ӄ|%p@{>ՎznHx\Ǎ'ȯ4Vg=zLwUO> NT_W~'ӏU;cn{O]~BgaPy3ҥ%4[eg#@1/Ob)w-Ϗ%u4E:~}"E0~ò{Py7U}Oܔtmx8~xlCW׿.~.ܸ>GP_wv{_-&s7aUvϞ۷w*t"%ׂrj믙=]i=#wA`}z\]*~]Lҳ zD5%kwy]g]wT|?19 n]LqJ_tb<+kW~"|M]ӯ~WI-XuS~kEP>+;`a&g| <0?|n\tuw<՟ϹrImGcݕx=H*<+du3,lS=EZS;X1,~\ⲙ1zE:i0~wPkO\?P!|+/W7OTvtN4_+w.+"/o Jjw~,o~С~J-{g<%͟C:VW"|/u~Pc߰0~Z'9Pn7^.:F\\7ިnN Ye:{}< =Pn7N*麙oq~_쀺wyvQoz~MaV9\{)9u3WyUzD){J{毎nەߒ&|_ș9F_k9&+<>Wu؍ݼ Ӎ)}Ex< ~wס*z_J&_;h͋((ǵ 8ԣ|~7 J<4LOj4n+:.8ۧv\"r<\S=q^WF^lW}PEݸ^fw@j>/z}XDs}s_l}*>Oס?"׵뢧[a|FW!юt#G J7vi.n;Z*y>>A&LN'Cjyu'ŚOEDܼ68L@lOC&v3ztbݍ&W)R)&ɯvaz9͍{3*wS~}Q].VP?ͣOR;\}eҹrx]~YT{._Ď84P_ntǍٵ ?`vTپetԎ 0.!^]i)NǭTwݨq.]ً|Txֽn#;;"Ow'/!h?<`XzV~kOv`Q]*^1){RנWgS? ݼ,JS}ogP*U\fׁϩ2ݸ+.M=ev)W&Wz~%Oѩu?kgg(f [uo2093{T?ߋJ߈BS eҹkOw+<0WE;̎.5o\]EO?wK|v~"]} u`ϵuq2+~zU߉"vqIw-u`ׁ:B`(rrW]9/r+oϺ/K5^i|,џ3> qL0R?̀Xx`B:1wi4<]~[ <`vwu*(~DA[)vͫ|zusםbx꩟B l?]Mnߠa~ǏAef|u><v Hw7uyoG}~:"'j]Zwt1OIկ]r^?hz:.qLm7_ n{d̓q:4TrݕT.w%=]i^>ezR~lW~P4oQLQolzl>,5ӫAؾg;n1z~uJ[$ׁ]ngp}s\?֓(O]zGc{n~#0yW]z{n~Ws[~ Jl?, |bqIH0Ϯ~G{V>>ﱱ!z>c@,C:wHJ?wT _~K\0Q| I{Qr L؎pEoIwѣ\~W_gK_PO׷z\y5*{~g|RvnG|j(3y OKu_7wSԿvn U4`W׼O捈4nsBODžҥ`g3r r_@y#Gߡ=h>aD+ij+WD}Bwo]О|DAǵK{!7g;ž%_O>g1hc= C5+K4et?&%W(|JN]tō*u*Ώ6~jg((^wSP1׆tQ?G[cj2ޮ(;Pw3%_C>7}gJn(|# nZk:dqancSm?|T묎nzK7_wrY{5P\;\NAڛﱺ9k/G<5kwvN|<}޷f_Sߍ߯~swB AFt9L}i{H+'JލGiDwM}{"wݤإߍDŎwԑN(|a/\s8ϱiZKQWn|UvU&ʷkyLS>~FISz<q> uu[_M1#Z/=BQb5뮷%,Py*歠=?y.:xovoHKןs[lEuT~>(A=켇rN~0ߓԺΕ_P=vүq+D}Dyj S/\7rKgJ=ʏ A9Nl~_=<, ?ӣUr?+uw 1z?(O_sup®8buܟ>/?zX_?{^'~˾܍^x~{?2Oٱ+瑱܅.ﲮw}5cODž#w&?e׹{\SP`潻.<}~ӋxoY_~yK~o~~:߹](Xٓ>Og@{Sޣ@.P.w=v*﷿_|˞󵉞)Wz*E*a ud5v?.Ov7}VH+OJO'Tz~M]sW]Qwoqw^p?`)ϧ]y+OS=HBŭԟTόxzP}΋w?eYϥ->n`nPC 0иܼ/껛.9.{W~ХkY?}? wմĽcL[[!W7+}Wnr zu=st{X] c`j1׼s»<~*>5y߻u_0}iw_cmk O=Whq9nSx|P{H}.ݮ}+Rz=]r?X1-JC;}iwwDyO|?mw?m7)Ԑ?z^Ɨ8߯ߍ]~nLvԸL{>S|n>]O-z׸{>-S%»S.zOnfnsϵwE=5i1o+V?>jw{=wurx_>n \G~7n=xu)ծ<]%.\̞߾z7}O1oyoBWJeҽ}ʻM}֮X~}]}X?m@g>nBm-w)ux̟Sߺ~ Yޮs| wퟟz.vʸtϻ'yW{㷝~؋^1ûaqXm3܍w_w}]-i#z? ԧ˥sw߷z5'=q׹qߔ?]bm2Ln>=,&S]ʾ=w+vw{_;~˸;'Q?m/ûҿu06{(®|[M#n5p:N~o}2QH0ђޓHE"ڀpk~-m4oңoZwwoT(K>O|١TqwOJ>Ot|gp %w^9#~(p_vO]eޥeC?~A"r ҧrؾy94Q.=qGVgHqZ %)իֵs~ƫB9]]eGs>0r xcfܾ~VA+;kޝ_A9J~vߏ۽wŏvF?Ê='Ջe| R+}-kW{H{ߩukjWPZK~wQMnt1Cywu~&Cԏ\w߯I㸌M;/Wu+~0q2THj?vqQP*.ŮTϒÞO*M7b|{n+ u[ TLW4T3lwvvD] mOSzL"O<`7NMן{K@qgZ U%]=<ŒBA=W"|m~a gȯgsw=wb;U/\ߗOǰݥ7ҳ^'T·{#[.s8삜BϮUg~ Aمt~Fyߍ<Oן2KRVnJ>ק~c*ߕ?~wj=j1ڍg5~2x(7W7`vḻ’X?P>7 x#yg82{}֍yDC'!0.0:jIwҧ\*81z&H;+=~7zx<ŕw̺S~\?P{n??3{Y~p=1Vl<2a\u9B7Kd^&c?(Lwc,-StǑ3},]T_y8t9ygrҿ? $7w!\}wPOAK"һ=7Qd< UބQ+ϸ)1\HW]H4ʟb{G|AzW]H==G3{~npxU)}ꞃ=OߌŒ]v*G=QszNr*]PΗw|OTJKpY_@w(94 qv?>kK)Ï㦼>}?֕UJ{qoJ>;nCzSiw׽O=wYnO=z? gy|_VsK_!nW#Ew+:?t}c\.yK]ǻ;wW@]e]yt߹zq+3u槎s7bz8{}D0y|. XWszAh+ջ;PPɹ7|< wF =!CtROϾOwֿ{l.&wʷ{_zTW~]]j6bM)~Wt.vOW_ ;G}W7kIǀMzwtnJ^ GO}~AAծ΃j=T}Gt#'/U+Cr0y"gXǴw=[Яک!}\u+S̿v=w"m(o>/rAL{rqU\&kӼ)9]ݼdvb9Fe]~hx4LŮ٦&>ψzw^.?P^;|{OǻփG9ҿӃѥ[ܬO~vG:/1/vxcr\KO7Ӽsy߳~Fz}en]'0zFzn톺n՟S簅I}+.#ʤe=)Ps]jGwϟn|TrSt.)]_B~uS57ލ]|:J.x}4'֋vTN%SC{~erR?];NG9+ֽ~s>.}7}Y]W]v]I~?7vţ);\=Ov4r/1.:ƉyyzW\cySwfp\W??9ya((=]jC3ӏp(.OBz.L\ǞvH;c|jD]w\0~w\b5?5#+.} uN*— H뼳뼗߅i<*ߝEWwi(:tR(]ΡGgA ׶/̓+l{̎8HE׋ZQ,7o.B;g?}.ԼrwTSyycGKJ:~tqp}^X'}pN~h{>,O(By{R)̿LjWrӼ;. %MΏ+ǝׂvm7[O(n׍ݼV)2ӻb~^fqG&q]7q]OrxM0K/72y ~e4D93)7+CwQOXW)[_:qMu@{~77'/ׇyS^=Y)ҡ=.w8}u}(&uυ.jY]_~w?aEgW~#3_cf3;sBww];\lOg^WkkO *ԕ?n;Qy-Obz]})vWn㾿PfkG͇R;|5>SP>sS~iSk2i7ӋPtRaSz{ݟls0݆Uv#wH w!=~iwq/Gii{%_'Ɵ1]zZGnߡaX<~_ .]ww QPKOQo{beb;+Sn5..۞aY+7>V24t#`t?ݵR ۻ`wԿ+ eL4~26ݓ?"GuW L;#>5JTkwz8x]2;0Byui@޷NU 2/PkWȏr֍鼱Ew2i]߭# IuaGS?c䠼 #ZS?ZPNfw:|? [HĮ+0w eJb;GL?>lggo=ȗBWlcci> JWX.%~Ը<ӽ/Q(QW.|++?Y~(7I2>sJ~CJ2Wy+MSr;?G̎NܿA~%M׿|݂{awn>Kno݁nA9KT~Ezl]uP!>' ڣ3p{vs 7:^(}$5?/3;3}jv4S`v1:fMu1~4*nrtթkC9u7OQE}UwLK>]<ӎaztc@(Wq=_GƱ"(w3.zIkw|5>uWpe)zR?Н_5j/_/`7=]ź7|R-WPqQKt ʞ՟G:֮+/|®ټ~M٣?{IO0K)T30.,0~_}ߡvFX <v]{gnUqE"j1ןE7+ک<(T^}rVeASrV֞,!|)TPZ_:Ϸ>ԣo>7\9HwPuR~Ƈ֯ ;XOnK=|7nPX6o_c[Y ~SHv5Xg|j]Q:ƭI|`7|o ֵּD?_ܻG2mZ~}iބp띮C3ڙ:w9{Bv]]}#W/O[|噿sO0{gi/{s_)g((]0zw߳ڃvl|`|>C/}/&GsY{z]]n^[>wFyb]W?L܏^Dn~wHP[t)CHWQP2y@UiN橨WA:&7=uʳ5XkGۿqPPߝEzۣrӸmW[[jǑ:b(I==g%]E*\S򓊯i_Hs:PWՏXvtkGwåC|wQgn*[U6iwe wŮT|<W.JyfHv~&W39<0r<|/ŵyD6nsºrt.@2LlTS;\z^_ԱE.p3v;#|t]PBB|~2~_frWS\3&gz]/Ezw2>}+3z댕ڱ.G랇>7qMcD_<+zqΪ1\֙{JƯLBߜb&]wߪ4.~><ە˰_wCO塮lz]j]}.s:ީt]2ܵYo3o+'v;_ Iw/z}횟ϮOK6>hO0duRPveA{I]Ct/~Oo4+׾Կ5e@{Nz~NR~fjWo^B9wkPB;3?ͻ3hԜt#f;.q uU]zi{!" SzuYK@~}u2.}7O6 O%ba:wnuM)׺@*q,(Rib`!׎]~IJuK/w%uQBq>.RWiቡrd: W}J 'ti7͹}d=]L.]j; %_e~zW("WU+~\e?ﲞpr0#s3"=oP]~{js}PB]ԛҭntAPy|bk}u H.LdPnA=w~x6LNR<t75)R{1SQP|̎ͣym:n /NouȮݝזЇ:Mq>ߏϺ~?í~'z|0G,N^u5H_@ǰ#}4p1D?k*o ;Ly42uvEw.Z]gE}7/]إ=wK:>Zٓϩ)IK5"|? qL<) ~bMjtt6y"K"ʮ4R|nKW!_A=7/ׅ-vF+`%#~t|\ySWվ:Wؕ::;]Ԏnܞl1.vGszl6Ҽyxz4?v)zws 'S>璯KQ_v7wTOq+m}^R{R?Hp*2;ds^ڿ=+;ʣ]Th6m~cyqA?îT׽{Y}7uz^W]?ptw3 yIω~>Knz?Q뮳 _x_wKKzޔҧLu]&}ǣB9y J۾KO꩷·ڵ+b8;gT]Mɟ~wK)yCStt VԿ.WmߍNn~Ry"ҕ)W:.Qߕ߅vܕu+oM1i/롚r=[g@wSJouM7U;ӧyV}oD7dVzxOٱk>~(aOAL.w5^XiD *(wz'&G|:_+/nǀ뺋4+Xw{#)RSY,SzTk~ ۟:2Xo*",2[WDv1_{_u.P>+—N'э#+3[ҕS?O׮ƿ;~s;..Z= _|1.!Oz&\w(uS ˣuQ%AsW5Ը?~Qz䛾?tRl}'u3SsKF)qrO\3s7yʙeaص.].}w~>u&.ЧyyDygtߵ{8~a:L%9Kѧt]9 zuPa~mW|7շ}CwH;T.w͒s+ ӷk{>۵n\qӵ:"=.#ݼi\z/o~[e>ty7=77ڻ+=ZOʗ\;ԟ)ҏt)\>EoN~ߡyAeCgqgj<;еkzv\JO?L4JKzTXtjL)>O=uSƷ>Otr wP\='(zuߣ?_n@̾TBMr}Xw|Ϝ乽73{.*r1j#}636_7^~J+Eߺבw*Q7~q~b{i_c(IӸڑS|J֙|v]S;p"WO;ezy'c^1e 8/}-p_)P<Օ]WyEwܶ R_ewܘAE㳼~ ە`r^[ vdY?7^r~oKS?~Oڧ׏r7vprYڍmP]U_\Aׇz}ǿWR뢠"Wwc>wS>xݟMT^וX|#k}OBəY_Pv{/Ht_q;|/LWNAٝoy;s5L>Neu'HG0V•SP.LKߍiT򔜂zjO_!~jm}gt>}y3u* y'PnNjJ[wz=ݕg!ʔ{שGR9+w)Sow+rӼLuW߮*:a(T؝'3TWəگOIS9)_ U~S;N}IНv^㖩g?_PP"{WS|^B>L st^WߠYRѦs?z6Cj}<ӧq|fCJc|.vǺ/vǛ:^וL+MMMi)E޻ΛS^7u3 a(˯继v߮sMߑ=}~K?ݸ=p7OI=];/4zb4TRk"葏atHw`6O+gWyWw+P~W< <7cŮT>/>E7n+5/w5]{\(G=}b{{.z $oz_(ieuQ˟W]$o'9n?ҍC}6#w":-Lcbߝ羚|<A9W>[o=bnS[?u!=wU+op)w\ݍ|/~.[Pu}WxܼwV*)>Dd_Pw?VGyhW?wݸٓQY'qL;:;E!򄂺ܷ>O}PP}Qv3&`zgպcz=!㮼J k_笃\u>l_@]ܟ~6<3;yu:"%|"r(O1ڥO2"tq(]L#.sGy^أ˳TJ׽9(9~5nn<`ze6~(G<~uw)Fy9L~o0zѩ}ոc{<ɕz֞޿5XT_|u}"/ՓSgr]y]cɯ֣]ϐyr !Oq)z_Pg_A5AHޕeQq-ҞBO{%Y;S{B."}UWEy={ȗ5^v<:=.y_|+(߄N9C3|;_t nޢ{KfXYMÚ91zSA-+WWټuWw_y%f\nގ N4/Pu?}ލ ؎E/ ZwQa{;\ E" ¼BVVub~lޔ<ͻ\'!]SyOu Cw *D~vԛ9̎"%B7_U~,E~=y0һN>Xo<z_1 g|j_/=PK`qNCR_J;\W/;o(锜S\э7\Sg3}SRTC!=ڙ~tzH.4>!\\zcu磫.?ڋu#!|n~扌 ,.*л)]]*/@:jnSk/FnQNG˸+>uQz=؏]U>>嗘>_&l.vA~EruQ;s5}R>(Nދ~/y3r'L2;g>WX~ո}/v7Ρ&?~ oUc4?wnǙU|Wj_S?`/@%_>.Ӄ(,x/z+),,L4OU~Lw6uQ/C%׵K>˪+E$+ױdt}_ƓsOW%ҩ+[@`?7cc|"ͣS>ᯔ?Gn_OcjWºĹS=lvOܼt׭c~l_R-(>%Y\wK$ 2zVy39n:O_4Ϻ)## >lG9(GS~5> {xscv=^)PNJ~]h[]kw~~6*tUEW-W~A~e!ݼkȿ+=u2810{ɳxgyCO8u7O` `rNooA4rxS=oWʧbxm?<%#_wG~rQ/bIu7?dؿ#Ruj"Wi|GS=u}s ?hocT+(Я-C:/v{{%4kپ7_PeXWXv&G4Nϧ'/I&~t~6S<-D:(w)Jйnw/|NŸn>Lͼ{[?O]7Ztg9Q|U'h3nnNκx#꼡1;e);չp7]uz^7S?<|+^QBӛ>F=N{㞟˸P>څ~f^ :^ױCZU.=Օ+/-JK*a~='aK+/Ӌn~UC~K-\0k]^2K(͓]f[GBނA?{?ك%Kŏngtد֡zn4jݨ,35oN4! J}∲Swߢiqי']UW|2{S;T8 ϕ&׃1yN%/G9t^yv"cZ' kؾaױT~Sc~f=nEw(h}ڕ?]ϫ鼲ux5_1u8FڥM壞zݭ}??8l<\>EWݍG׋P W_ ןy>sb>qمTv=Ը)}uQ]?vԐ;S9^LOw]wf;P]~O⩸SmHwwz:/({I]8w F7.q{vCOppR=nԧ~Oy?um]})ǧ<城Mg%6SlR?w:rHi.>UX=j=<טo.|m]yQW/H Pw!ow(xS{#w)_[Ꙟ?|կ0>, wEO]?Խ3{k(;~w;[Ўݸ C^WM!󞢠S`N/.zEAb}T/Zkg%[/n0Y~gvҫy߷3yw_Ws}~?MS~Y7KA}>">"i+bVS?p£~6?GRuUɼ/{﮽^q[|A9<ߥBJ.D?>Sq•+q+T_ut]}N5#%=n~i("z5*>uÅN|Ow;vw__n}w׻O ~w]vT?=7qNZWcoS!}Pc4>PJ﾿w.X>w]=,t}G7{s]VP>g΃]jvVOT#~IQD>صޙ\Vwsqy#S&۵^/n>۽vCUOust]a^u?J?wI/chJR܃8v}tJ,nD=~w3ӧgՍt̿3ۍ 弦yz_p}.veߕRrDOw wGA}XEK,)S=ST?Eqfr~A=z&WS8{^TKIEO].];uU.:^;E=&v)PzTWqvnҼm]xj֣svȿzvc r5߮)"_PBWvo?..i3E::]쾏C>*{B {zٽ^Y}6ՇzylA=]O 9#:-Ѯ⤒r\7wu72=EzW+:oGdƹg&}]t|v2T_a7|]=>_ "H⇫tM<ǻ0]n<ОܳkwOP_|wPvZ._ ?=/Nqzd|JNjOŻzEt_LΕSM}OOnktԯ0=Ny\Ϲn{ʷH^ehG:/%ο|\֭'?̞tbO]=.=?(:?7O>қOeStާr s4b~y:j]N^R]w]G)C}]]G+~!"uBK׭<{S.i'Oʮ]XzRR/WWnu_ϩ_(G|1La4_a~s&zv6yug(R2=,"X;nybCʽ{:ܸzNe_n׉'=tuLQx0[ ʻ%i\|.|fO=ΤS[\w]wʍ=/rv.־`r};^]J~7!J)(S tױ :c{ʿv 3~)J1R熩.λm׵{I׭;|]tϵ.>"/߅ޡ'V]&_Εkn^e5#_,"o׼0tzS]wL~^!'qυ]S}ܛ]4=74wV뮼V4ez+:ڽݸߕTcB9HOWt\2 ݪy%ڣ?E{[G}xb[t~+͋y+W:^#X)&v63ii]ɫu}zغPP~ѯCAڧ.c`tvOEJFt+/uuO˹)yOvK:/9򞆛)]/1:?)n?Ӈ*LױTt :^)?O3ռ*=%.IK^gy*> *OgLBv%M׈ro:p1=++,>^|ybhŏ7ɠaBgw<{<\=tQX'R(n(x)H|6O_ݼ`)ZG*_Q%+kv{~Ҹwg._Sz]<2}rw3W.CWT}1d׮~?;.H;wJ^eA٧[ןqazii\U~ueg|tί=r3;\y˔0Δ埞'i[~OZƟsQ+z/h:Bv2TN_͓]~D}/-WO{[>'.}]w}1<(~.*/Q^"(;ww'w+SiP L"?|O6ωlKeqޔHLB4~'O1E^q>ߖOv7*Ɵ)HFߣ{]7)ƙnAA٣8Zvn?4erS^:r->ytߨd Xg:%/e׍ޡKtn޻w_'x`;Qgr,n)t΋qt(9Q_:\J^PPvrgw.rROv0>QnRоϸr傺ʿ](9,GvuQPRx|_G:_ЎUfo#XI12e1߷fp_UnfQ{XYXB)(]qUڱ j\Oa꧘<.rnM׭ҥ\5]%ջP/՛3w=ޅO3D>= ӳ_]=Q Eu~>re˼ έ.?:gy-n>PWz\i>}NwŊɛY(S;>(zf,ytc(REyݨ[zq^kemվʮUBwW:c뇭[OHr^Ƈ`vLʋߵkz>sOڗ]S4os&u|>B{7_f _aR(uƶLL#zx>m=&/qWB~Sn;(oKW_P~AAx>u׍zc?+(]+6+B7]7(wPպev X>nެQRE\tQE^3Ca(]{s+~ԛ{.rMzVvмuسWW#=Qϑ#.F]@C2y_v_xۥ||-<C}%*,W%CҼ;_]]B{ڋXWnܪdK;P:=w2J71#YP*z7ux^瞯\?Y>\>QwoOƥ4NHD~1zwc|.Ƌi^뽶ϒ-S _RaSׇt_Nž4o0`'\YVpʛ]W._jz/'UC({}SwaOXqx]=^ɕj?EWSK<䤸+NYA=T8o~F?E׎BOO{sL}nOjO~_]!.>yX]o>InnTՇ8*J&GW~\'Xh^Oc^9π`rngx*κWs;{];دց3ݸ恌nPP_׵O]kQn:^g\؎z3qK3կZ=kwߋPyֱS StEJ7ӺKn:%םϮ,G/n\A{ TN: 5i~\9պ|L_ zskj~].tW׿cv0yk)>ֿ wZ)q|S=0]#`z(M^/w:/S}t=3?0 K6OD{l%/}A;_PwanUOӯtcݼQOvL/=|\gcC>yHn~/+p1S~ HzG!=`4IץX71L,0z֮z\x_RarP˧n=O!zM6+~&Oe_ޣC"Կ ?]wוXů_ 29ؾ3槰#x?}|_߇dv){'r;<;TJ/.[ %>5nt=)]SOs?@Jҙes˫K/tGw+._zNt\:wu(OY((<_qLܴPBnLZo.L{A;?)y v.X|vF1~L?>ì_%ޝGκy?pۿ(hG:z39Ofw~OQ>M]8[u Ӈ/OKEwyEu}+.}|֯{ѣ>]zAyxÃܒAy},&o+E3]|-]?uP KEb;nwt׳j_]?_s g:^R|jc~}L[IʞSbw߰ Ƀ_۽?wp]` jv OP?ƭ!>]En9ןP}f'ӣS "?azKUv>@;cv ťnޣ^LڳS~5} оxB;1wS?si>cj=17v"+(q#|hOѹ*ϼz"cWŽRu`ʫOy:D%[z] S|5ԇ \]?ry5SyBzWnTW7n~1W/XC&Ӹc;񞂻oSzPpT,Q_QcvtpS"}ҫ}uO_A]:q)=L۾N>~CsË^{<@P[WQQ~҇Y.uUKx͞?(}sUGu.x?grTtG:uJʳ}P^PQ)+ v\ ~|鮳2wL{H,pv0z}?72/30C:݅~_ ?gz\bA]]\_N&I#LW]'}?ͷ\?n^AK\Q=W7<e7kOѕ5kn~(_؞SԫֻX]EJnAѥzg{fĮ}>U߁.:y)ێ-e =qJ_zTwRA.ˊ)؟7]K%m?uES;W2|txr_|̮ BGFuM7ͳ =d`z\?A"UGyL.^fӃ׍3nTOa=<~&_̞ަU_kw Wg1u7o`']4>(9u1:G>w>^f?ºU?3zT]3}_7'w4O``tx_Y_^g1_URw Լ~_ー~Pףڕ;nGrңϙ~Js,lw`CWVйrU\* xEEvnNy~Ī|CE}j^\'gq;if|vC:Ywnv{߈{:{=sbul?sRѥLt]Kt_X"^u6:QrC+9Π"kOUѣ~c = x*QO'C\?#V2Ǡ΅HkW7Op⟖ n|w){.DASn 5_RKW֮I; +XHªd`NOS%1kr?|w^Te \{D{v딡̺_ݏn^Ư4~ 5߷pi踛`;O>9Ǎ{Y^U>9jОfgO]((Y׏b;qBwǝvu.BW]g0kLEx]OAr`9#֧GKPZj]|؎s$ԇLP>%Oǥ~y.|JK!7/`r\^IOJWOCu(ٹ oS7+~w0}hWNngzu}B?Wu@ѻ}G39Nu?}؍i>Jw}c;;7gSGv}Zu#_#f4/}]s_]JgGRKt>G>?S,>&Wº;_b uƏĺҽzE;v^ba/J҃r}UҕhQqxM\ڣY?+׽=*_hALG>寘\&O1?/wg~c/vO/{d\>&GGm]? Ə$i"|W|cr孺ғڳpOvnQSP*lrA͓O<~>u ]R':og^Oy~];.|Ec`0w.tb =]})Sv׭ uL>Ot>اLS+PR^IOeUiQޮ2Ϡ)tXw\疧wL/C:/n>zGykgާXWyopǛO(i`q1̎3{T>C|Ct񺞮发0]{N.=7cU,$ ;>O!kS>Fԟ"?B7@;P^72}APo7|wC]H eWPo>9+u5n4XG:w#ϼOu균dPrU|L729LOa][\esAq QVk3o~e|M# zn]~{¨@<ǝ4Kav a=ŽtqC.u#˧G9\ ~Uv!ԼuCyXG9.P\Yn2WzQ 5ϮC{8ꛮ]UvzK.[1(=')=C/:iPPo'\OKjn`v,@~w'ͳNﻥs:ԫp|-\<3ytd!K7OWevuM++R|wex^vƏ׷`{'5n|_%CU6׳a0HQtt+?豎v^򩝨كt=yw1WG&_+wY]'XG;]oҥvKϻ??@\w~`ѹ ~=U*NA߹<&Cخ\Wۯt"ulgS}0'mG?D[Pyt 4vYS}f;Ǻ_ JI'fR7_Ez}crw*>x"Ů8GW~/hWPy7wX73{lOn3ڑlo>Q~KO?%G]WslE;];.˔V{7:${ڏu/&mO]7[u,dr\ Po_O?cXj( JF`?S?JAs3~ׯL/îyu]2Hl?،g,?anOowr S#\;]Lފ޺i`뭆>bXi|׺zP>[Hvuwݫ[<{uw09iPjyG<e|J}"\U|sC{RƫS_ O}7SqH4NQ?M\RBXOQ_ɶ=gJ_W_ڞ"'ѱQN훮_TrXƟ4pS>>=yΗz tK,8vKDAٝgv!B_A~~5wHY(JOw/#î}:wұ:ӏJn Kʞr~{SVr"uo~;ǁݝLߔ4weh_PT6_ʟ*y|ڽ ]sԏu/A8ZQ:g͟ut]] Ik^?X;uVtu]u|_vy.هF0~w3z녽7Ie_M*X~G#] Jw`]xL˜r ]+Ptso'q~kgu!Z 7]4ns宼mO|@}2H3U*<\G;s=\wX=Eg7nociԣj`})uHw7SwlwQP_w]uPP2`b*]] InhgTxp<38vt7tXg((뼄.$=W3L_7>vxtMzz.7+-"=skGw+ wǑ{I[A9s׺^owL:DA}u}>&y&=eHܮs3+N~(S~),o{Z+o,߮~l;^O󧟒? c|_;qv .Lڧxuv˛o֟n<]u|߿PP*==w.~wK}O㳼~>HyDNN>B }!sO=Lg.*.F>?UUu(=ߕ;/ JƯ辿9 y`Aɮ?Fj|](.zHە|c;BC_,EUt߰~w~{un_ش?Ɨ4PB7]K&;Q=4`u1of`~mg]MOu?֫Qk*?>PnڟړՏtӝͧw㬒{ʃa4*fϺaL#Ը|Ow~O;{uxG]gw}o3{UO{W~TG{/#z!^;)}Q._}#P?Px]2~w~5 ʞ՟^+z:T(; Jw]|؝+tAnk~Hǫ7OfXG;Nj+ %oT{]?@t}]ap׏K{9.%oWSw[@U(dP(]]şi_&YڧJgv"P/w{g>+?T|O.Eox۵/v]=_w?ox*M3THKͧ_+_TCu=տk"J=XW`Ydr\:a磩_8q2]#\П#.{NJ  iS?#JP%,I[.uט]i|ngvtgwgv!{tK/4p KW^oH_~[^]~B:~ȇPno琔|.P>qy7.?W]u`rOB*O']9+~r=2<]ev1q/^*]azE(C4P>-Qypm?0g?vKoReұt(QP"Ժ~Ro K0LW_W=7}|c~w,͏~w&.S|ާRƟ>k;ޤrh޿Dt-8P^G];SF^IttQ&tpѝTBybbowRza~s+Wo"rwojb]z~^z?w׹_#L=pܖ_.z]JSW4M=ʎ,x+t|DOuS=Su<<8)B ;eWHصw_ww|+}ntӛ5}J)tO(=H7RͻP/G.R?3=8>wzMvgtLg~'Y_{H >~;׻J~]*z|s3^k:ԣpwZOQ}Wc(QOc.%a9y>@6ٮXm_@}^ _MgT;ʉe(gR,=iR;a?Cw=8ۯ ]o_K~7W`]4[%]LϽ+B{>IUH?OO`ߛ pWvLuRTPtn >sʧt,~7avk˟ڛL"=c]' Ov8%0ٯTڙ"^~wc7?nJ˯s&9)Po:Eua=Ջ((Y*KR~˕.IJJ#ʬc{NVy)n%}qSixAiZPO㚻ߦ$&vn^F/`uJ]&66Oq3&X~7\LNP'pw\D5 #Yݍ,"R{YcA;OŃVyTSƯP><sG= n^ok}t;Sæ|kqe|uWaw09/]:^ّΟ/O\4Ўte\;ܿ}h[̟>F}]'s09nk?4>+OTP.8GKڑʙBlWp w-o^7+`VWv(t4uct]53Su<^OK+~wgrt;ǻBE?]ww2|K1=חg>>{޵$'<\lWrw<.](zwwڟ wؿ[.S==WȧC:֮谔Ȼ c~crYޚұ|\٥$!B~&݇v(uR{ݼMaM$]yG }%E xv(}wW=`՟?VW~']W]~ݼ;Smw oH J7NSqd1yN/8lL ~45w.ݸrE;=L|_Q?!=ŹOgIY\F >FH׍[2h_SSX6ӆ(w\~K~|VC\#z/"y摫٫G=n@Wt+9/Ϋ=^w_PY;_W9AxoW~;.=^W_r|Sui~(:Cv%'Ftnw_[gR;yv߱BKWjGqȇ]=nGVG=֟)v|߽OC}\~!_ȏu7?A=;`*/}u<^a{=s1x)a?EyL?]ȷhϦ#)}};|^^ZWh19ݸ["v޺bt (R~Qw# ]?rW7SPyEnSen(|| v7~\~Q/o*~z}ꮗvBN(%+h]Ɵntԧ2GS_HㄲPW='Tɨe [)8v(:]ѥ]!^DwuT>"t (͇)B 9];=M?r)Y'7)Wص/ݸ#To%n юMӊ[½?(?EJ7s4'l^".5#̎nV\^_ Ogu潮_wGN~(>P/0R$bxs8kOdHvJ㳼ϽΐXvڗ!/ϥ0[us|~wE&ەB`;80>7?sQHcw\~a~(hOw_/9XvBn> nQ"Tv&WPy ӯ()ut}~cRO3'FOe&_ɑydtOMXgqSyQ>,^w? 5gD~^tu_~epq;wܻlA] i>|%jt墝J?]J+s'gr 7U خ}ҫ Q!v||Ayr\~7aHStuPPvAndu eHK/.jxS>tׯpc'}KGww>uf;Oȏua@i@~O󮂒3=}r\=S|%OaX\R?q~oCUוwQ.{%|'$G}?tߣ~ѹv!PiNTfՙ}tqտkx~lU`oߙw^ JGѹE9O;H~a/µz^sc<34dcv ?>&)?H,%/[z%CϤ_OnC/_=Jm71JhW\X(\]?nԛ%ʯyH 7vן\%]qiޡq]E!O̅u7<BOA}AWMOiWk ߵBA; r]onPDOUKzgv+{Ҽ^vf)~G".cn>HΏz~PП^wW#??n8Tz_+EIKϵv ?1rxޏaXtj1yȟ]=H Dv\DE?m/D1{>lw!^w"ҼXs;4uʳUW3y؏rhޘ =(HKA䠼y_Pg~&gzA~f>TuNX2)qҝ9w ~ԣ~'czXvJ/tj1{]yTOvW+C>t+FG)U]_ j^LN7.ﻩ~VWt7vcۻ=09nw}0G=.7u@}WJo7Cl~UO;]G =GL/(L+3yRY@9ҡTϕJ#Rˢ?M)B+>Щ>~ԧuWWH1|E'g|I4Ovt̓&w7vt>. J_PWrnrRGש%~ G{2_g>N]/~MYufWnO}})Q|}J}ek8O|XGzlwoѳ^ٸu;ޝ/w}ҍ^X;O.O~719دdnTQM h?^U^OT~ovݟC_dykk߽_MEZgwwJ]?tui|I@Ι=Lgw;8ʇRTtxF7q~E\2]㮜n>yt||K{ ]?;k?f&mPovtSw}n)SԎZC|H e&ߍ_㢛]owPX]o\`v**tB߮~ʾ]{~ MxS{NAWP OY{q~;X?s@6]+]=O!#&ͷR^:!K%e85{ ESjEWЎTo4u./&&Oջٍ_O)STSrwӼ[ۊ# Jow\؅灻Kw:Ca=oQf|JN vWuIϳ' Nrw_|5Sۥwוew_N%F'7H{i+9?Ow?r JOaw~ǔrD1ͫW<2]?Տ>#YϧdJ׽7/Sv(LYAs[wvF~﮳]ҥ((H']=_B7/fiG?/v؍ <{ѧϷvK`E'au3>7hQg9ڽ;ogU{AקJeg]_/guyzV]^W7E zVrܻ'y~[M~y/"u޻֕/,wi^uuƻ`焧P={]7|`zcr|e)Xr|:^{ANj ]}%unTk:t^P>ӛ?4OPVE׍ji^):Ow Fԋpw] yaw])(^_}7̓Oy9R_7>>A=.u S{{T{w9Bѧ?]:ҕ;qQf|ؾ/Z/ENHΏ}iU{]ʷ>w슟kOznA]뭈||hѫsY\O]rviVrqVҿuWj;]}OM;6&owrZe4|Ay:??|9=lc}ҼsWR| H/).w7+']2ۻ|җ՟SƮG4oSΕϋ\=#s*/?şbuŮu+_V qUqoRBG?܍<^+>7>'3ɿ{횟]6]U7TrJS>c~o.]&%շ.$Ś%wۺ#~Si욯B=]wgux}OӼ]ߊ4ĊlU6ݧK﮼)]T_˧нw7]u_cWK׻P ؏u>s_,8:rMKS螫jL~\1}brԱ=t'?Z/~T\Ow8wڳ.&rK]| nSMrUНjƑ)ߵOsWnDX^pw^sbԧCW^A}z_X7Gi{p讃4n=}\a O7x]G=.GfڱOc]{nUvB>D.C7o)~87Zޗnޡw7Gcov.]~A/=*/P+|ʿ7/lǤCy]Mzq?uu yxʮ1wW>R)\vT|go]y*_ݵߞn;f ~ss}ym ~B*D] US߽Kgص/<=+Οn<j߱t]7Wkןgߵ7"~D׻cW\x\A{YqW޵J΢W]Pߵ>+a]׿ʟ?E5:0O]+wZoeڑƣ4Ld\5һoA:,ORt2E_ߘ>5%w]iuWq;GWo_1ߔ?7g] a{]ytuڝ2zs"Uw#jPOEY^{*q:OjWx wO)/շPZEVom;/^nCA]Ng?NtW~ \ >}A}zgV=aʟ~d|]tkCSEq'#=C*LNֿ8PW"_A?֗]"]t-lg?wKtj]1z?EX(U;G:>GN]R6M q2w'w+)8C'}t?\tݱg GI=<}ȷJo׉%5NK>rLo,O~f2Nߤ+ra]?Qo8/{O`_}A7N( ig .>g*N~foՎz 's痍W_\,U\[Юcw3{Pn:KW>v`s7]\W(ߖ+q}7Jveƅ/h:sSr;2?j|^)؉r_U<0=Eڑ^27zd/eV?֏r]=nKP>'9(}}b~}AIeyD;^c֫Wi'[7(OkKЮO"i'~hWqgWU^`]W(_/}A{kϮ~5r\}Pr/3ݝŧՍ>L |D\W`)+?,l3`<]Xr]?O7~K<. ?ӯ9cڗLcv Q>?gzϩu;n*~){ż+ץsKʗG%|U_(i\QRSz_o? }+!u}_avbOSп3zҵy:{L^w߹ ^ ~&gѫcXw9ڡ )>vw~`T]'LN/t<8_bt(Ӯ?ct})?avwߧRPb{ Wvmfׂ'L+Sv,zY{ŬS?QGwA~,=!ׅx^½nJ J񱺫?\?tjܘ|V_(,,wͣ w}~Y9mIhӇ(Rw߇fJګeWzϺ]_C=w1hK "=kݠ<?\Bs%wݨyAdb{9l PMfGyi|W rxd):^^GzWbSw?2Վr%]NzbWKԯ/Ϯ壼n2n\YuڻqLw0zewb*,77.":b穇KمcC2}2/~72nE>&GbjPWR} ]?R?^B٣W]XO}DM'ܝQ+A=R,+?U]ҹ񅵣W_䊒٣2!qCP>'͸G-ԧ0c?Ѝ=i&r J>[s;ET<#g;J]3nC&尺kK9?qH35];~{ґ䯲뷕B:ee>ø=Jj?Hn@#rVڿJڑ#_٩ )׍4_cu1i)&]WP.#\|쎿".yE݁R/(/$Fy{qyJڧ{CEq^\85o.~5h`=|"g>Wm3;!w~w(*~~=K\zAqzX{:^]]BGgu';">Ӕ^i1{G]jd^`=ʞUgPԟ-XG{X;w,jP|/M_7YwN~,G.vQu/O"/u]wc].narW?+Bډz]}]#ڕnw'ћC~2= ({I9$w[JYxN<e:N%/xf 谿\;}j*t^ViH?7MAA(Ow?->'^=z*~lGyu".Nr_(_A/SzY?SP2оCu>./P/SC) cv1̎4D;.tKNL>YdC'z\7rC䫯t*uw\~%73y̾.A}P?wŗ>wW}kOӸ)޽?M噿;Yp2{}_N;m׋x?Q~XK{ Pw?3L>wZ?sgؼzDv}C:~D,{?uՎ`v(;ոp?';2<7ѻ'O_w"Wj+ރqץޚzc@4PQ;y묾~+OJo)'%?;X^'SchKwqˍHxn)R2*drߍ_03~gpǴ\2?crqQߝMY~Gc|Lғs3Sz]z=YE{R*ϒ|c;BW7>\Q/,el~}m'/EBzNGվuwydtjܐ~ՙ /+պ[(Fc#u;Nyم~@OnwN|0>&q3ڣ*~(~|.ӍLAs&t^ nu7({<7aនT}%v`Bz=]J?0MIwSݟx~lw 1ଛﭩ(P/aufOQԾr3lgr:UzY҇ru-бyVq zCG΋yv +eu6{P/ogȑ-$7hkwׇ+]%Qfu'2WLwv3]:{q_(:ŏQGg/ǭ~ҋrP^A=ݧg!"+*}qOM3Pw\<, ~ɱ;(3>ߤK/u]gԳQAFo_ȇP.O#eO>)C:z}+~rSy&+΍.cE{fΰ1)o0>f/B.c8?.8TPc(ROfF>cg%~WN>~ҿ Kgwt^j}/^H箿4RttTuxp/d= yQڃrtw1՛Ts`U_2?ֻ/+ᅂR;F]9ϣD݅<ܼL'\i=O&OѯԎn|sS7뢰[ i|5z7*L='z;Y:`! O/nfve?]'|&GsO ׏f<Տr?O&grA;3XvF_ VBWޘ?W٣(~IJ09{7v3Om7Kd5xLfzl8aoW9@FfnIx(I2"WUiu;sͺͺ;{\~s5?"nwqi'?-/o{q#jqviU9gǐT1?q},zϠ'9uԟu4?]od_v8._7?pS97L{՞|e~GP\W,e#O)ʟK3~*orrU!Cޥ4/sUʗ:zݮZWjIKQDU}iNp:)yc{K:.=yq~*74:1G;n|L0L?/yI{jv)?3rH;_"UR/vTO4vL;%պWK^7S[hh}7kJp7^../;>_5dӟ_g~CJO$Cǔ"w_gG*J]9:Ԟn"a_h*ߐoHj~/r*+M׭'8tUS5t< ½8pS~7qT[)#oH;9=~+կx^gpq*{$7~VGWI|΀ݼdҸ^𻿅iR-zƪo">~:ҿTt=>'?(^çjGUUL([N.yvrVywvJJ׍Sng%>SR>/'OZM|<(uz_KGq+N^*NWwUOIq8iv>pگz*#ΎԮ^o_&⻺]#UOZNJ^_uD߫惄ߍdO:~O}N+_gw U'yRu^?]DjWJox Sv)wxڟ{*W[Ss9r|m]j\)oߪ?bt_}=wLRR(_w^1ǎyF+m>wN_nMNS8NCj'ߥ8u⛥!R_S?RQ)]+k+-oW+jޮ{Hg~)_v~ǟQwaګkX׫#C-~;q4Tzob~ΟcbSc88{Q;G0~BHBr3w{zϭjӟcšk{WR^]뎜]\wH{uߝ!uK4wC±v@G#ym/|wL]N<_sl;Ry%ZOOb͏h-^JquJW:7M~Ƴo~/SNʯ}N_R7ƫtvhֵ~OTh8q6kR:{>MN~-S~Hr'}Wq*"Jח֫T/mO'?IO*ˣn}"?[vW"ƱV;Iݽ>7pM>_uxsx!4iy¿Gz^?W~#8"j6L;R>s:$S;ȮJPUKg/v'S8K]?CQ;;o.Krگ|*}y5I1L )SiO:;=CIO^Gzb. ;/Jhv-/_~wO|CJʯS{)o_DIg]ԟWuxyMwQ?z{~G<'vvr\KQ?D}Ps?1z5^)ڝ<:=\7?ޥHv_S?t|/^_"T{O&ʗ4T7߃P<} :v( #{K~p[/lOG?nǟ^3+o-*m컴=]ww]:Cs>㧇/C.'N^-z ^9|嫮g|w ~DIQUo!Λ>R5R:*Kf~UΗu%WQ*Ԟ8>]6kW|v@Jsbǡ")M|j^*G`?=zIϱEڞ)Wp>!j^hqxZwyH<1ԏX;)=U'N]">wU9z\5펯և?G\]giY*>);UCu`T}P߮C;JOiHY)Uԟ!u;ؾ~hiV*TWoy@yy{1i/~KIU$'ʿ{HK泛Ϩާj;/O5Ô~J?{ԞR:/C7_-/V;y=T#އ߯V+WHPCU?6E4i/{Q?ZWth_Ty[rr~_NNz]~j;΃svuQ]qSTyG_K#|)._ȥ3rwi~1N-w~FQu8TnV84!i=Wi]Q~4N*u;9mwv(kWtm ګjU[NdWJ&׺)U^i~w٣f}svzn|sO%Ss{jSrhv7jS;i~q]{v84Ty'?oRJn^2LyIϪ=U<%ŧU:tx}dsN[~mq8Q|#7mO}OPĥ }ɩwej'wwwUNiS~_d5q7/S.U8*WͿ|yzzwȯv#NS9p_qR>sn?>rGaӸaNWkjK4cWq?W<~צ/rv?y5oOE]?( ).'nO7ϵS/sG_\G'u-9Γ)S>]W㼳wJ{n=w}}ի {'+9r i_ҽ`zJ1_gW¢^C;o]{ԏUEfw?}D OhJWm w\I_%K#(n9<8ꎔ_Q}Wɾj~"}C:9]7!eS=ħDoOӣsW:dn~dOG)_*_t\pӸPU(/'ލCJ;eoZN4h';]5"^'=w5iOpMW$|J^]9}u]u8ea䈟yϥ??S~/6?T wT]< }3ү]n⹺(՟ZU!_zow^4^t|N?Q7p|UHvrU~+#RGiW#G/tVwuwOCW}i:]{?M}e:_?{nv_ykߵҴgH?=E_}twy_SԎq&7گx:?%ԟj )ѷ8Wf$g)>!.)K=U!u7˸eR?6Wz^!?N_ ?rZ?k:~Ǎn\Rr~a~OO~Q=U~Gj|U߭kuApS?O;h_:긪>GCjP9ʣ\z'q&Ξt]-Nэ_/xԎ:"2jϩ@ۻv 'M~ϵWO7=]gx8(CT܀j?箇LE:΄K_gao+W{J9lw]h^Lzz/~ZqT=A%>~/SvgZ~ѐ2ݼ߈0'z9^wx7{OqXwnK}=뺟Gɹ|Y?gWqvOFӎ!nH7N~Fa׿TմG$?Jjw깻[o0 :aSyQݼ0ŭwvP{j=uߥv~Np?B4u0in8"zN'=)9vwzP!}GpnZwkP>NJuJu0B(~OΔ'{nǯvP/F})_OTwޫ; kO|uVw0f{7ջJ84_yi?ֺ~@ӛ|Gh}H=ݿ9G溚u]Ag'U=y{TZ5>t祻& WpƗ>)w?qt\Re7(Lqu{u08|%}G4ݸä!eվ4n]/w@{cRr~QqvU}J6|i}x(u{]kDNT3]S8qS(;k{9{8R^pNMպ#ԣ|OšGJ(Kr?@NR;SDi]G7IG57vu񟎗7=ןWW׿SRǐ<~\]Jڮ8/~9VԵUJ vPW;|9jS}թJpHɥv:qwv}zw+LϮRJ*{'3hIgUJo7j~*ם'tztݞZw'i=íU0w%OCHKߪ~ʧz׃í;|?KtWS<7Io*Hqt~nU4_SGxv=:ݑ\sR.utO_PIIDq#|q=jK:_i~Dr)t8NO~#?w9i/S~qvE.)N4v3Nϩ}rԞړwW) wSqH])_}Nj|UF7|vn']7i)R"|j߸^MR~srswUu~uHu\R>w=K5N::\9K'ڙC#xk*}Kiv?֩MTqʉKڇWח;=}I4x8t}S쨺<,yOIw+#HRo)K4wt8kv8|jR^G|ѓ}0\>WN\K> ߵ;>KI9gTSv]Ot~N74H?#%gU.]U&MB\/S~Z*FkϬz?4Џ?7;g]{ߛدh 7=JuqyeS}Tt ~pa|W^w4LJnmqi8Lh,hLr8KS2DQ?|rI;ūe|2/\,57-|iHϓM#;hC}ŸK<k~U#yn4ݷT:UQ\򃄻p>DNK9nI INyMG!z) 7z䗕OR9w*Whܪ|v~`R;/ _d'Gӣvs{4oIMugw5?Qt*+_ g>y+MzMr݂8Ѝ[uUܗrQxδN@R>켤WJNIWG~'z)#.!|Nڥ>lgP.ߦ:!;wi\.;;~آ湚TJ뼸~/_w|i`}I߅{'{AG&1)4ϤBz.>~v[~[ҍӫ/͛rv,ݎ/Kwʛkwr|TN滎8^]A[qcNs~>'-xui?ا0|]q&s ~UvvUkO7 /=G֏SZw!D?lp&,+͇Ӈ}R9;>w3u9ٛΓvJվKn8>mwLgUWF٥DEّ'̫$]gduMo;K7NS{h0uaBy=ϤTO<7ez_Jw'̏?~iW;Gq̍Yvť}3jߔOU]ygکQt|)I4?K4Ώ5U}~8Z}Ot&Z_.Kcv3*g4s{(ڇ@7~j5zsG__>O8'/~ǯrY=RҾǕ|J|zMitz]}䷩3zI|9>34sRqǺ~7n:}kOyc#~g7Iwvuo0t7-O<jp{_卞Ş<祥uiWR4TrXwD>]oTrxjӯbϺ=Eo~PfW>ݯrJue})]>ԔiWWӞK?{S_J?оO;|/R;|&~5"u`C)[]jg>:=~:~Noh4 ߸^J?TIQI=$;~YNIzG3>ɧx8]wN޿On;_w#Zum?ggkn۝wM K/-uGna?~<֗kGJﳍ[@=K(mR{;ԟ=d$:i:OV.ݸ+Q<6KCjͻM_Y{y~B_ƑjU(>Ԟ/j/˴4Si|ȟ,ւw]j\ ٫H;KRj7rq^м':܇v@=_t1KG<*[1WILiRոc4VG7?ӫ|齖Gi\yK)|wHؓ_wJn9?|z_=㚞~7$vW>R=Iv{+SVE_jٍwJ9{H,/7"W箿ڞzD~H(^~PgJdע_~uzO9}u=]e qĭ/&n}٫z=ie2I=ӟmj};i+|?6)upFvq;_.gxLq5wj~ojʧ߱ <w\ZxxN<x|~^\ۿqW\' -˪8jmgq<(N"IDOiH~=I;KK {d,5 rv8\)%'׎yqqgѓʧy q)=9?WiJ?q~.yvj5?P[oxߡsv7U5o{^hH+z}YhGVrd=ڮe7/Cڮz\6i^QۍT|m˛B9{Υ(%_sewcЂޟJEu|%d w(몺}t]uN#E.`]J;]5N~#|݀U8M=C7o?<%ߍvI=}v5@a~%ռ6]Mns?š4/z/'9ݩR|Nxw2n~I_Ծ|ziszs[Ю&Q~l>|9ު׫ؕIt3V?ė_~!eiuC~٧z#D%Ł27c_S샲,_HNuv/vҝ!"q>i^N$x:ήjAyGi>ÕCUNU;i[6|jG>~+}Dy֫OE)xW/=׭/'uOQ8Ex~OegW')|W]^7̇_WJ]ןw=]O:P\NCh=*RzoqӸK!g<(W+L˴yxwKx@5v(SH~2?)(JR]uZoa9 no;e~O&)GNGov~j>$ׯ/b')#c4^hu)o~5_ub_?\/a~{Gi~yRyq|}+.?]k!|*kk?q^iC~>InsNO!zvP{t }j{.T+]o龡xIc Nu{I=2n:i7b?>궫^7h_r3?g{^GumL[w\Aw̄k ##[_}]Rן|/K)T]77ٌyO')-78] :SR>>kO\_7 eg7~ޝj'?X'U;R>O_]|S/,1o1MׇAOG2ߒt*yR}T#X^"~[]_/|k.Gv4v+ ypߝ)OM#1.ޛLZ^;>Om+Pu|n~8>S7šP})f~Bꓜ^'G7kKExNz%ug$bGJ}_>z Ύ̒Z{ .+gJ9Buκ%U5rrN+_' )I=)trfWܥ^eDy[_1Ou@3+]bI">򃦜D~=/;ř~]q)_NcMӽCwx5YaݝWi>c!W8X///7_IåaU%ikO6oJiUG)~_qAY+|_Dm%{_*2S4~ڞw?͈yRoƻtScR/ )#JCJwS;iݒ?>7c5O׹OyS_唪7,0JHsB꯮~G8|4jO7ipoҫ_N6r<.n'4Ng~xK螣x/E#V238׽)y+~Չ*wbYNN8N!?w ]G q~ow+_pmɾu8t{$Z"]k~oRiO~w%VI7J7Z;z랧UC|%y.Lr|({֟seW]׫8ߝDz2-xB'mw䞏SqtO-.ŭI| y[?~7E;iqw_v^ԫ\,?a.8Kzg]4h=G:|魞~ҧ_S'{QϣwbyNJ}㮞K*wI}{?żjoE/)퇴.y1kG0?r'9}Ky}h7->{EsAO^Sޝ>Oe'vu7CS}i}'#5u?-n1Oᾴ<ҺI^ʇG;odnTͫ) ÝD^ϭWNu<c?K-Ω\x N?g~Eܼy2οk=7c?wtgìsڟ4ުޡq|dO8;R<]*W|C?;{Y_]=Nn)ir|f[~١8cC`n'|UnOpW )Tj\QSK걝&.P^D8_(N:P;xn>q97ϝi59Ow]9n}UWUëZq0ky{V͟&uכʫ=Nj~Wp)P>*I%/ݯfB~mwv^/ZCjO;9;]g.**/BG9{' 8Ҭs~;;;ɭvS(.7փ;Eyk] G&\*iA̸SM=_f9K_]q_>Mǯv5_O=Co&i4-zʗN^)˴*xY?qxpIxߩsѧ}wT%pΎjCUR9~>?uo/*C_Jv.U ODzJy?GTFS.S8U{/Wq'ԟDCy%ʏ㸛>Sy]ʗgRzj9]?K[~4T4No[7iosjSwnz~/D~w<9ϵ~ڮ4dzz~K:/w Tx]q깿:O8xwti< ӻwq']Io= ޵cWPϭSCC&|*_w]VSp8kkw..t\{TOڿTis<~\Wip繼ݼ@q.'蔿;'$}JoԾzK$_'~`onK)wqj_J>S{JP#.Q4۫y˺5U"?)]rCgt3|R_rCu8JW~xr*TF!?5ܽW7~(WO)ު#'ݧծ?sz&}5okGW>Wu}w{;G0 10ߨEJSNjuHW}^7LRvcH]0URw*H5n;S*N璔uScxYߕ=u~Li GF9q?A-U:oF8O>\W_?!vʏ';I#:U1գNj>^]rp5/Vo|g8ԟ_p=~^K_7Uw+)~W>W^?:mIqNݛѥhOi}IJOУJZ'JAw7w);{٦|SoX)SUGU{KۉNFM/GC>4rg}E>T}.Otxw2?T*2^շKCߣeU~E;Iou})9}O{HS:}Wt{Nw{rNקKqO0z{Wg@=۵sCOӼ?~wϕov밫?T<~ʛS!}j];jV]O]b@S*NU?8?_S~wok}k=n^IxOIG옸{B«7٥4xWһ㩿)?u WR92:e<?w{kqs։_;hO;Qw;EOwIƦޔodl~JxXcK!S祧._JyOQww{j_:y}}cSݧnړtD{K.;;Pտk[[wQ?F)N,ٓÄ4\{$%&nv!8)GuOq:-ntj}9N]f78Mi>—_>.Vwvq_CJOqMיߥTI$G>)^ŭKNWz,}w]*Gt|>JgU>wF/Nҍ{z~ǧivvT#{&iϑSII~#^n3ÔߎY?k>Gip5_N㌖i~ywk{]HׇE߷:{J:#j1K)]h)q/ߋ>;^'XJ{I8y#K~gG7 9zm\: ^x^B>R1+'>I/T;ӸPz=dRj+I+5 _SK/]|TRô~+?KBڟSR3.)u]<Uv I/|gYkN7N8>WIx{YҺsrN/G7o$}|9|Nș8N*}Y|<4^:yɞjIj_/ݗtN~S7 Ti| F^z%umw3um_wxƯjJCJ[u,.Ji\u#sST?Y!z [טvg4&l|ٕN%JqfZo~+O4Ս{DrZ]/4^iUx-{'6v*wvWW"=3LW=3^ӛ񓭜W*]jOKI&eW#yG1])?}G9Ծ~zOKT\NqVOW商˾V#KqP]q/N;y(_xyN/C4>ξj>Irj^s~Mtw]*>ZgأJNϐ:?+m'\LI)$?A1SD<<9}N|cuGCtu_{)?%}N{\/݊/uFύ~ޗ@IW\W`"k\ǵ{Ԟ4yS;|$G:vTU|ǧEM8_mOtrZZG:WN?k~:ה~SNq%5i-~5>>ujj~Iux'uuX|%=U?ޯ(.YW5xq>)z'V*Gu-ڝ]N1S\GGE|j ϝNٙh8^GtU1n_ԞNKNFnUZxAIS|wNPne5P<'?qݹIiSzuŮJ;~vyR{]—r78~SjmSߵ*q i>BmOKǛ/;TYVV/IC齙0ڹ )ykƽ;GURݟ^+w>Zr)KKRO/qi-GIGk\n?]K;ySKsvTOv:N8|oR9ZJG]{,'#~\Isۍ6qKd?t7n^pug߭_f\WQFv_|OON?{QN>px?Sߩz&?cL? 2)Nb~Zg7~]wd:<ןq8)SDZOj]ﯔ0/:R~ӞiDfL]KmOO:N.ũڕռ(ռtxi{GsU>ʷl~v]?kxӒK\u+Aq~qWwNeHOrR5^C@v:p5~EuuY]N.}%DBI_aL8E.=+]džg}V;kO)w~Kߒ7_UnUg1OKs>#ojW:?ֻ%šUqݺR{΅ڞV&$}?x*oa~+']R-~gxJ$_vUD8N"J7NhӍôGv9?޽tvW*G:{]GWot|4fN/ T/w))۪~Gɻq~+pu_xѺȩ=>?+nZJXOwZ'?ڗM7S7;jY_\>?qjg>kp2#q(:??d:Zq7_xO_Ks)_Ϸ{v.wRwn] ѝipxTڟK¥sIu~v}4Oi\ /iR¹czuuo8gѺJM_bP|ߡsߵsq~a<㞶?b?iN|/޷~Lzx~m'{hwATv%snc8;xݼGqqejɧj84n>SZtQRu}:|WV=ɧj:xJUSvhY]JE_ [F>Wq&v:{~>WJn^H?S|RRɟi]S~'G*iݤTU0|i\t`J%O~gDYקּ~wе/N/_{/0NO~NR'ΐ8\Z'?p=:U.ҭSKqgRt]~p'vG߆Sqi>GxJݖU~m]ivi]ㇳ{ʥx]D[hqˆ/-zh}~;Mϻx6Ցƥ}ˮo{Ԟǣ*եSp4W]) Ӿq;瞊/g|o6)=oOQK>\HƩx);Ds|nNѧJʯ%nrҷ]}z?ޟ_{׾?\C!E~G7ɐ2~'wѷg>O?9MvOԝ_8Ow^N s$}7U<%;*?yEFhwZ/S8R]Mz{ (O=n9OSxԟڡ8U\ǟNѻ~Sy=ݿy6z*?}C8O3}_(CO6@)w>)MOljOWEo]MڟR{gicrLY߿{ z*sz_nq#FbFSv[tj|zp8G['a?M2OQ}_aS4~6L{׿(_-ΧcOM[?򽋆O'wʏѺV?=Dõӯv,q(=ԞQߥ~u2}]NOϧ詸F߮R[WnW}UOG>oғ⌚S#*qSv~}MZ/MMbǿ+U]ySyh ?M߶R{fw8)iMu=򝦮o_쾟z:.~4ٿvsTO!ZOwߗ5\8lGzi4~J[?zoK۷ӻwoWil9v4WwCϧCNh}k{4,KAv4>m@O0 v_s9%-B%wO}Ϲ1=)W: wy<6[1u}!sz={_}߿;Ngh~ODzm}ߞkө}T~zTO}P]W߶~u7jjzUzϼ;S.gn?lW~]x*UxpRJ;>tx*8u/Xk<*qKyW{h|ڀ"{o]ϟ~4SSDv SvOKi"^rĎ|~|ȞCsOKgQ*zFZz+N_o9Zw]ww[:EsuoCpϻMzpu*MNn7QIlȩ^mwJʧW&Nh kRqy[3뎬e}B\uf~p\ oJ r+|qIĂȭ|y?i\"Oi|Y&U͋s8Gq}vO۵;i@4OP~>Wq([jRVo5.V>%'݇U>Gg2L~Nc_f{7H˭WS~/M|UtRD7zb]ϹurԍZwMSZ8*v8y%sG8Qws=͗nd??vKC)< t׫syG5 =>]7'{yݨ=KIi^5H>s-q7̷>Z߮Tuuxj]{q,:L5_U!C齛'{Iumwɑ~tvqzRqk5qrôOv-q疧yXqp}Iu]RIT"{=T5_?",%=;ykgTD_V'ZqIc׿Ѻ~m4$K+SRuA~zUݍ3*WvR n{璒~C~Sҵp_qA<^;i_ϧZus[䔪z'ճtx8:)8ٓW=-pvO7^F㔶/v#?΋Ow/Nz_w1zCxVٯN )rvxTU?Cgw<δϪ>IGpEϯJI)^5_OIqKqZ:i\s)_OFu~x姩]-^GJi>*oLJ.r?uf#|zu晾 rxgJoWtګr{^K}JiZJ㈶DPu#}BxӼZm;)#9W}zүdkƙtx?jSNq]UR*?T{>N'T?)5ϔi8gҜ_wtVoH;_mCCi|U;&.S?JCx%CTI~u|n~ƩOO}Vv]N_)|UŻƥ)Wps^b!nܢu)MQܡ8IzݺLg| v󟰽{ ykyQ;>Gy)4~.ouYO^Z#;o;¼H^GAr>k{7:q24ozMu 8cqUR>ֵs>$VAiH+oS4diE^f3wQL8^]ZO9j>Fw N7pz&1]G O8]ş $5_gWtkݽW\L]< s|nN'OTJOv-U˪st}h:nܸUf4Tq>T/!eu~z0n^g#g#Q'{R5\Ӎڮt:m}uUQ~7|o1|S{w3Nk[vr7WœqsrUHt@'β^Us?Nqؑ'S}1T'zo;!eu+=GI?WK+݋]]{Gzuy Ѹ \xz}Uė/.2]?*K.t099|H{ ڿCJٕ;z]W{꼹Ft~4%]q=TO:O/yNoՏQ^ٯ:9꯮[{Qt3ߨ__E. ոYO]J=!gYpDS*'QM1K"= ENƙ==}<Qs&MN5eOG?^ẫwR~z^O灈%!<#ŪtU;||>3e3)ӌʫ]qJ1OΎ>vwEz?u-7Y\ϵ]1rW{ \Wx:]_iU=\,KWwC_zY?ZCJgO:.7n] 38RVm\){>g3Yr4I1~>Sڧ|i\_p{;w$q|O}'U_u+]dgտ8v<{=_/ͫy'qߍH{.CVס8>Oq>Kw>qt..]QqvͭWřjgy\믮jT8'SMSw qJ3P> C_S۫z]ݵ]Fzs~}rUnڥCi<9E^O;O|ϟIz?_N^GSIӼٓ3w~t^ү5OjiK_ZyjjW ߐI9E)M~ʿR:IxtPt>H=J$;U93_ #;=?]V_'?obynRNqC2Nu&_K;>!ng'DU9iڑ-gqq=jxhi>|_ n!s+JO4L=}n%+}ЍV}!>(NooM9j~>`3=]zMi@vzT}zGU:{{NTO^CEy*~1.uy]ݺ׺Kx+>qFQ,rT4&oqy;;?q>R4Mqv~MCH?wDBS?qJޣ7Jxii_UǏ$z|<6+\wc?W7))~N_#L!=~/f]ssL>SvWwnm_9<ר>m2nNv{t:=+IkǷЏ}s[񽥔ѝ¼|eL4jwu=LufmS|tw?uv/-?G۫yE*ڹؑƣ5q&8^;Oq)ƛn;`O>ŷ~璒 /;;NJͯ N?輠i^V+U{;M~q'ťz*DvM}Fq=]?;qx)~?4e\#Gyz~˔V}5_L5Կ*t~RTJ=ŧӒ!ap*8[; ż~sI~֏ꟴ_1xΎ4/[J:_ 꽤ݎcxA~S\;7)UCu).AäqkITT~^1n:veo>gw*tgy8G#Gq UGvexϔW;()Ş0r:=OZ:?B~,)%VğԟR姸o88^LQrP?g+9jqt)Ov=7vF^);xhI?ͧ_ӹ:S<7JCph=.͓E>c'q|S<Ǧzx;pþJ#;EO}R'JC=qy~._gy^zݯ UNur_ e=@Mb\&ŧ{+pϒ$w$ZGqSyZ/Ut|o=$|>,_s]jkӣ|i^7ozMdaO 鿤ޛ}Oz,8O9 r7h(~Q<[,5n~Ծts} 5몗)kw.턗e{?q|l3j; /{OR;S+%[7 /U9b '~Psy>:= Yߔ|$y'ӹ"[Ji^8?:T(Q|vŗ2D~@{O6$뺖wz^k+mKǸLOv:;~C>+oӣSǵ7K3G~& ?.3ήqr?{׸@_G7?ۇήt9;:] .gvٸ_\<1<-r"z$D=bj"g]t|{ЯƓ]ps$ONSO1űyY a+.Ww%~EU"oo=ogOo=_q->ёgHT=/^{-8?S9Wwv\4^1]~>җ1ןNk߭~ʳ<*~#)?>O^7/s6'jK&Sv^;Grv;nM) )\5n_tu[:-L-{h=i=ͻH_5/pzpj>rizYWRsJq7Q~RBIkW9>I_qUJ?;G\^:Oybv7GzXWt-OSӯtuK/<{K'yg /rޟQBA$?0ߢ/pnu;q$w=*>ߧ]pi"vUR|m׺Oky?n\n'isqwimf|N'3L{u84OOwgioq{[<(_pjI%'G~}kwo0]~M*|^@~.}~Ji~<#:ϐ=s|A 'gOׁ~GAv G8Non c k9\Zq<;(^*ֵ'ioʥyWƣ!%ŧt}-SBѮ\o)睲}pp%?Tw)P{,__p<{zr]KR~/kpLZ"(^qD s?!?9?*Ӹܸ߸8ѽoL?Q)_JڥuK)G G<|Nv]s1?6߭ K͵;\;S}ṽ?|W<ҴE]=gxU=IoquU}_իrKyOai?̺lv)ovj(OqݺV"?nןhtU3~>Wv׽jӛڛs-xepK:_bR;ݼu!ίjw+.?R?]gi\:Sj?]_Ou3ߐvK=<4?i\TW}t卿y՗:3L{GiYZr40<#C~w?G?FCy ?GjW\[/%Z]oG+ʥv*QRzYWw^dh}]^%|ɴ!:qUN'OgNJύN+8xz?s;?IWv]a)O]>D{sUnռٕƏ_:tu+ՇMx>vD88:4:b7h_M4.m{$c'ox #ԏ iOtsO~?IK򫪟Yݭ?87FmyfH)P^iҽO8O|I/.J#pi,`)Y;t8OvSb'Q'Uo58<[ʟSZDv|yOU/UUy{~*toQ_ /򓄯xv{v;CgWR0D_|1|kUJ>^89r^;Tn7׭'+|> `>~(?Oy\\0vvt=ắ##ͫ?'I_sֿHڑ3u(:9GֽTOr9Oż}IR5~?4Lsx599}a>ED$U\Ǘzޭ zwn|T9w0.i2"L7~?Rw$knSwvPthC ]i]{/x*L_ȯ9BkR5.v:>Ky$/GC qY9'`S^|ڑ[d|Gj~1?SqGd'{`WϪ$Ov~b2g!;.IåyZ R=[+~?`IOpyTioAiRu]M~S4Ii~z>?/Nq[Tb_KdWJâӾV]3KY) ҇2CەoԬO#|dg=F5pMi~BN~_ԎtTygzNv.u(^v{:PCqǪOt=̲]]׷Ri7gpvd+q'{x~9qrJ89_I*C%?wҼ4i7DiRY/կwgSuzb>0m_ܞ>GZNS|q5xqU̇o9)'~~g#z]jDq\"7)~8.U|5O!=U~˔QwVnK.q x=9 ſK~qK)OJ=w&iݟTMoyxx9u?/<=o~N5L?٧^× KA7.q͇ӟ+;tɫxr8I ףi'H.jE'7D;W&u.xQwݦyٙΞxF}OR{ C]8۾u=iW~ڝ^W㞒ق~*_5sT=*_u惻~/i^Hv8yN /CToNTޝ^sw㍣t]).O~w9v\'fSN4quũ;U=J/G4?K\o. וcLo򫜶+]{tWk]^'<ͮ=NwtG zOn͊Qpf{]ȝ*'~?LjM㥒#;uߝ+U9OaV=d}70WC5:}>U:!2um#Wwܛ^~x?J{Éw>[b;sjGT4j'Y{ooi'{!ݺ~=~F? 맺4Υq]zݞGF4JCxIf'ռhH]zNVnګIN^⇓#)Sz|:'_W(Nio'In_"nO y'UIOH.JdW:(Ki~/{q&mw89_S'k o]RWSAsԯ|vT٥~?[{~O~X_gҸ라MUF_87iyR*W͓h_{R%UbR?ƱIi~kϭ3«ឋpՎtޕ>š9Hz< w|gRzO/7C:CJ_өD8$inp?h}mq-_ri^P]~9?&9H,v: ޛ ç\a9T{-w#k(}8>ƗbgWgR7{/W城(>9t]͇i9P}d'8~*i;w_;mW9_i=Gk}Y7`ߍ/^8)U%ˀ]I-}7Nx/IW]OW7IKUEwssD3~R7Kkzp{r3ݸ:;O~+zRWqul9oQANW]?sߜTv?퓆<+~ҵ< +Ov{h?;$ȝ'IHM7s{+/̓~O7= /٣zUGy#q|ҺuSyZ/UqnU?]ٵ{ue-U}G/\YO>G4JC걿c뗤dהwv|''Zn%ylDȧv}6DwwNr=>%ʟL| k=Sh8E9;s8T|g|Gv )5N%v/%|0Ω_yp>xBh8<[d{j>r3v7r)Nu;svi⫞z)7 ߢJ4.zϮT{b{8ήt]Y;GxOZKJNʥyuzTޮwK!+*O3[/3phOzǪy=sn6WUO))K١|8;4> ӞKUg? ߻_0PT\:~W_ݽu>W7, ~/JOS2]ounvxگ?|O2^[<{UC1J>n'|wJv꧸EucW'9?|OW1Τq--kVo%W'_ڛR~s{"i=>5vzվt]$zزg;"\IikG,w7~/8z5OS7}:}_'tr9>NɧTn^b=/iO%; kxFmW'q?%җT8ӤyCUc}=z_)^tǕֽSOOOUR~i8N~UR;'Nx1ޛ*Q=3{ya:麹L~Ikͳx\ǺDamW~Gv)g]8)9*z~'zRiy}?tD >sW 2~RJjGU'%INލ^[/~sOyARѐz5^UKi>H_}P9mšuAiO\sbOxnK͛qP9I?]w*p~8*N7::i!uڷN>i{Vڑ>S9ٮ'<CjO>MbԾj^);叞t޻OጢKO.=ϞOwgӎS)GvJ'Eռ_!ww['x[קg?ޤ'=5Ο&=ݼg߻n~t<|[|$e{Wzz޻玧OKc|Τ?\yX1뜖?m:hRwtkޓjWj?wu}O82|wѴNտ9*z}y4s˿|jݿ~)mMǽO&}OqΎ~|H>Q5LqXsƾ}9^JyI'|7Z{7g";~y꣩呧WO>叫~w. ^{ʟNU/?-jhOqxt8E]y)M;=)o{]{FSO4~`-=E#䣼Թg`DFY;m4Y?]cn=wj?M=֩ߍ==n6!\|m[O7}?tju=-[s v/,OS %}G4p7?<*?3^#_.zv垛ΣCv?ߕu ;'=_8EJ{w(.vӸM{o4QqIiJO!|y rvuqo7sԉRt*?ۥwV:un/Sg`4=NSwhHjsw{iw);CڿE~osw.T=>qtlwϹk)t;y>o[Jhl!=FJW~OWw@}j=gѕ}@;gVivا3i?*{okҐR۫x'|MO?uWyROwu'_oom=}:}R?mwѷogS)>Ow}4^jnNѸM}U[&ߩ{ۧ?|i\)JFk>RT6e?uԾx=)zw)S-kާi|H塚[3u_$wӐ`N:t?|˾}{]}_V9Ժ$=7ۿe?L} w8Uyw 7)>GN_?Ἃ{O9]V_>}WOߍevK'?>~Crox )Tw3]z?cjŧYݹڝ$=W{ן˧(_,GSO~wH%wxU;jǔyO[X}F21'y٧|!TOs̛ӏe)1]cگf]N㲶u*u/iI]ݺ([+ )ݼ!OvWSr/SԎ-%: ρߧû1z];w'?S]vk'!U_}H._zէTէ:oj_׋cC4_PZ7Jɑ_K8<=bW1S\ )FGqq}:E=ä4pנ|ѺS/>UZ3N.UC婝❓wϕ[.ߩgu|h=?G7Ԯy+⏟?T>]4՞{{~J¸}RTƑc{5%K64jsi/q/Վj0|\1_snr+9?^mO/t٣x.g>-qTtx_xO5w yzKg Ώ+:Wt?B㦔.qL'^rvS+Kojw}}?AOSK7WKT#;.iQ vwezͧDʗҮ߼7'U}tqgڡ7Q_IڞU1$GH~.gJ4nJ?Eؓη͗ҭ⹓ۍSz ϛUJ&99W>_ttl*:ϓ&n:&6VJN~Gj\HmpƵ2틽qPвg\;kj_SR;p%ڡjLUZyu7ΎG_=N|yeWܺIH7/U _qt%|uµ}}ٕQڮyu9‰?/~hU\璺1v=޹>&ϣ'~8)Ku1.wvx:9mIS~BdWzn'\ׯCڗ}dw{xKYNqI>ٙщPw"O;e]$;=:<;Wwvi⺲gU7׉Iq{qMϳ4~|Jx(^%gq8}u/=Ӿ^K'.' zv=ک8]R4n_=ϵ;?}HItO-튟2ooN:ΎӼ{P]qvôռhW>KC\BMK=ӍcWDg7Hվjۍٗj~z~OUߤ8>sܸwT/N7mOS|yá}54oރa)^^պΎt}i7Jl\uJz.n>Xgק}{mAs3]?]_n9VS}h~Oi>efYgW>7:P{UnOGU~ ox]?i܋7ʿ_72hRLCKnz.#~ѹZiH}wk{6f]ן*qO.?++ŅJ='3uPVlW}yK~AvM>ImU8rr]WT>G][<ң>py;ԏ$6OӺU?G_4N^_ޫJz>ChI鸣CxBvҸ8)q|Tڥu'WC=p]ꧼT_nΪs]xKg3ו~)ݟ_w˼ø/N[_#$ϛk7Vwtz\l{_9+ߋN_:uq&\OlfW'wȫ|av0zxݾS~Ӟt^i?,q KY|_K5Vum~Im)ŷq,:">I8x7k:in~א整&9K~6ױRʷS^SS<wN_f]g:;ir^=JO* ӟ[O!믶+1\}9~+y[fU|8J7NV:OWz_;{kz.wzȾ4N)?%}>ّҮ(&ӀT||,T.ɧy+ g{:H'z:v~sC$;(;{JJKC|-Z8i'>\8n\ڞ};?.O9'N|/L~] ftg\˔h(˭t~w=+]ɏ9~U9sTOu\bz~HTi3)=/~GINI.򿪗Enfq_8;U.}${Ⱦ4nV*>+s;|Ӻg\Ipv~ױj^Ugu?.g#}^Wڗ{ԯηڧ;U9~'ߊ~e'~[}]]?q{onukIq?%i~JWK;,߱|);ݸ:T^۩T=_"D8T9XqR>u'G\zPsT=a|xYS*zewmm문]Sg-iޥ;ڏW>G4ԫ~GڮhHn5r|]_KM8p= I=Nʥ _Uʿ=}W'}S^q;wupӸVNn(OͳGp;Ujڇiwd])nMr8 J7JUss]Zwv iW<']{u],zAOrx~=Ҽc܁͏V }_sPM )R7R.:yw>>2n ^EyqVԯ;y_~7)]iSjOJgioCyTyDv~1eR_R{Q|Aq+*s// N3U"h Ithi!r8ڮ] ~OK%\'Z?s0cT+rg%=)^*<3W)K3}n&DvLN/~7HN)Ξ?eǺ\,_<*֎S?K~ӿcBNG4Irz/>n az'FD}\Õ7 Ӯ|{h;[p{5`hv4/zNkW"qvWWR{RStyvY>^R]:?T~n;tg,O{t}~=_:*T]*~(weu]'U/nWtW'D<=tܔ(/M8DU}%ZdxII);q]j]j=/(>s{`_et8W;^Y9ߒK㲓S.=Q|{4RK]ݮG_i'}50.AznyT{~Q/:Ѻ#Mpsh=gyڡ|]?OnܝxͿ8u;LSUe"vO|59yWwzQM*'-vwud~'GWJnp)ڡ|x|߱xuѿ+YgP$9C8:}4%_a_9\r>Gy_VvPrIQi>T::=J[ȟ٪?7Nywո76W"}~}o`89'4~*_q\0umr?ί#Wj㏑'{ta+.Zw/y17A8F;S9© c=CvҾq䷴E>\T\99Oo<88uKrjO])OOo¹MYJ n#JU63qV1:^jKY:mOQ%gDH;{pUc~*wW9GrʧGU.U>Gڟ+)Q;ʋj^|*Gv?9ȵiٷWU5_s4JvR9!%=gl?QYCK(_G,8=}ɹ4WN{ka).Io^=Oeuv~AϣUN%_SNWqkR>uGi~vOPF1vue84_׵?<WSn\Oǡ!i~MyD5/r%us7uw^_Lɫ=[kgո|Tw\}HY/M?]p:;nwNO7wC:\5~~:y'T8}7ה$z9JyqPvS:Ӹ~Ξ-{Ni|}sj=t<;=>OTNz:its=VqxNڟON^y)'Qe菺qDi)]/[;H^j?j> <{oHY{[On}TtGDg|Ң_@i:O)_&>g߸^STW͏ԞVP\_in]k})h?L?uUR{Ҽ+7g'og}v:-{?OzS0~\ۻp>%gߑvw5zg~#诎ëѲRy߯S|G|[hUTJǼ}].޻Ou},R}Uz v4ts#=|<-yyw!JFwt^;?iwޞ3qfOWqrNCN]z|П⸺⟎})=FבRjϮoWLSFq_^U]w⯲/*vҷOR5^x7?\yڮnޭô^­+~zս~RzW\]8.y[)?;R={q?㪑Wދ) sz~꽔^8z=xJ3jcJqٕR?t*WJ)=~}/U{O}:UvT.ҧGtiJIhʽ~U|y)AO?8w:o}.9?Bnx}K<z|q:_=w{9GW䫎çS{є#|bgSY·iߟ:W:>EG>>O;zWwWOJtЧw+>ѻ{f"9=F[RF(G|;!)'hK)LҢc<}TlҺ]ǦRz?Uo>"*Jo8ϼ^>)}O52U{|(}l{Mv<5|G>}|zХO=ϐƹ>>_B}}!R4qyCOѥqshAmyh}}Eos^D'{t'y|4xFOxS녨ʻSpܧ'z9[_ci}t;G~\U?֥wgOų׿-{I)4Y}#<]hcEھ:?>\4Z_ϱ. Ԏ*=K##i.}>u7o~T%751u{]~~"Qc㑾_9mG?]~Wo:.~:p_OFGy[7i~Ɓj>;Iqi)M9MJۧ^w0v۫N畩>sڏ+{Y<5PߌƯ>e|Wޥ|ZiqhW6avcR=^Nj]y.ﮇ4?{R?2xt~wQzͯuRH7=o^PKΟwZ|U*Qgګ+{P\ )UWGY#T6L]wk>(;ONS4zT;Or7Ӹ §D9"'|]S{&iGvU8@wד_%Ks:w˻LjG*sѐם\:"O#kô;}qq}ۼ`^)zݟCy0U4K#I.^O9i4( ?wEnjWJi:LR!e]q!})zuMޕ_9_)/ٱɥ~Q{j!T]]?YλT^WSq'dE+#ןZqU.SUZYgє3շ[^Eӻ~#< IįUqϳ{q8ؒ~U?]OWGN=iYm4S}ip*؃_ӵ_SN~x=,{zݞԮxDv]iݑ~ǯr=N^/.;p[l\)I]ǞZoq|<՗4~zN!x*ץE_Ii::?y)ОZO)ޤS=WyW0sQ~pIϐr7=ߩ_Gy;Sdע_ Sw]w{3Kg7sEG;~%8;ѹAOvIYۻyۿjw.:Ki^Wruws!/y(aU=|5]WOÿ?W\ZOJ}$]Ww~;un+ǕJS{ީ8b=E#S|J4^DGw/ߧAUFոs?ӿ:\w:O?MƯߴ]i_=m_*O~TSūWnGOV͎U~Wiy0?@}UyU;Z6oХ~?ZI^ r!Sv{=v>vZO_~izv 诒y0|)^S~j3]?qW^vpiq]T!rO_>j^߽]*WsH\W"*/k?Q*?c{AiVH^q(^Y'RnpU|vq ߍ7N<_0k=a\?i7/9NnޯxJ]?:RV?OQծS|i\t}サ^ϴ{ |գݿ=~j^W89TߥS{Gs%? ]?LU|twsOqS>BzNQ<n\ʧл䉯Gqr7_~GOT7I0wӎt>~Ε&i?%;^7qSog4qv/|\~Qi|uiwʹZ]|Ҹ_mywwrUwljj=gt7Zg=NUd~!\'yN=ˎf\8Ưvu]=ǧO紻R=ywzNCtpU7_}s?nT Z~+9;9<^G"/twIn|tLq_Pw'\z꿦j>cYμr='h{~ܭkOͿUNٓ긟dҐRfԏ)Oç!:?v-Wuu秛~ZK:o*woNGhA߯[W7tn=3?T< SooT}o9dsЕt^kt)x·=)4VxrzuK딧:t|nSG}`C}G&9gwh8{\?>x_B]?p% CvGOgIwNQu'9Gu|u<)^b{WݬI4OuWɹqT\:t.},XWB`K8Zwv9}O-7t]p ΢+U))qQu9D.kjOϕ0O7i^Uw:Z7^kWxH=džzi4|F/t)yz~|O<;No+3$wj_pO^圾;6=]UW4'g*~5trxv]ҿ~Z\]qX}l'U+^Я!xZs3͗Q:guv1KNwv+?Ii?վEYZ?o7=cډ1]Orz JvMJW^ڥ?_ >O?ヒ/8OiY;L;ә;}]<\M֛ӎ7̿)lc'WW ~wz8#oӸz9Q.@ϧ={د)>u֕(NxFp4Hס3jHe~SO8;I>! =/⫶G㬔ؿnM0||xV惿~3Kkr矔ge7̓gT @魯Ϊ:آwߦ|}O4i]!|nU_9o[^z.SyY^RO+S?j?gin;qC~V)]_~G9-;gsi;*nzj Z$7 voh=]Pwj^@v@AGIg=WHeέ_ '{R^IuٕԿ]rZ1Q'w_qݸ:T?˪^صNq.}#ULɻv?gy1U>oN^ە nO]ݦ_]7dqWލeoC;U/'O_wdg﷫t~\՞qx*?[#&|*zOjWaa=yM:Ʒb\8 o \̻L5N^sʧ/q?qRҽMg]*MZAG kJ}.OQ&? 4ƫ)zv8;WQJmwzqJCS)op,vyB:o=N_觔R]ӵy OrR?>/?PT^~OUA'u=k?&y?st_GvkuGԯv iwh.z<9Ņt\(n8䧈HĶy)>tE~X z>bѓq螇pf;@q)N?{\9Vc,UzzGP{ vRɪ龮'+0ޫ2n݇t?}XzYJ36Wpf>N8ŏxR>>wgB?4I(4~}sv8ɟkԎn=?L=%74i^vvzM\&eq(R4DoW9=zra\)yxwU˴O7^^0Nu~ouz'?gg׭?/S|OS7U4ԎO;"w;MܴͿSç]STUIt?EqLOxD!8{ԎosSHnRTOg{\K]w//FGKU onؔ~;o'ֻ_N0Oy1]N-^9_8f;~w{K8㰾9vUi&}O'=RSO5DO5 ]Oy-U9JJN]?ETs#=>=>]?B>Wv¡yS oOwWǷS{9=wR|PM)K4O|kSܮ_Ws*wih}'kڟOѩ|w]_ӸN|Cګv>mz[߅zwOJו׊[aߚ1UHɍ5n=[TYj>Uov~sϲ@*7.)ߤ~f@==vjG:/iO8};:uq0՟SÔ];|:.u3GQ=dg;N;^<:]=)Uq_T^2ݼmwN u9Ѯ?E=jSk7אַ jWω]7ާhݫ|SƟ(9ŗҘeuǑ[Z_u_87y08;Jz7m?_ܵcRן_jϩ~Ϳ,k/vɎu:>LCD ũ%ݼ8Gh_76OO?qR&7ϔ;|v$f{7r?yoԮM߇݊O,z]Q}OΑ>_}OΎGy%7깤8}b\])zj8O.sz 7vkZӧέ8:_=uy|nwWO;ioOtyz>u>RR?o@B?4 )S:GiOJݿCHS*s٦8ߖv݀ytүj{׵r|JwSS{~8BўT~M=qd񡺟t*?QyڷNU|'CZy{4tr %xv}aUe7:}*?O(|)jѮ_E~8]w凧S*0|O88:=W)ڍOw;Wun_IݿotS:ݿKt:[*<}|zq/h*ܷIqUt*8VNu)nz:Gh8Oﭞ{w(n~ Cuosqx꾤{O[zS=i;NvyD>u^|WpUDnQk_;RTOUi7.y¤hH_7WlV_;_9ԯΓS{GQznuz~ן!}[s/pfDkO\#=N_KG|'=|9=NwwJUW./O]IT}HW)]g5o!Oiwwǹv+_FS.=Gt ]n;w7d)J9RNQS-=uqD>λxo7ߢs0xڞAV%}]~S;Kןj)9eҸQ/T%ߵۑ]v4I7;Ϻy잃?wk==7t>}|#S>O)U?=u4=7Vx>N廜S]FSoU.]g|i]ޔK4!֭q+t7^ғRuˉ|ޝV]=;E:/v?{7!{vJy**?]~_楊晋ߪ?y>5iߏaOQ:Nwyn~O4TʧNZntc]Uy]dzַ#s?^'q4}\ǞM ")~j0y ==CNv+_h4N}OA744m/v=ޯ8S=S{>w֔}^K~7#=?tU9,S=BOvNvZ?OU_H_z:>5O=6Kq|Oƥ)={*_j#waCI׸~sϮ=:zjܳ{xWݸO*_s&oҧO_wicSMOݛ<{ڥn}7=wC{WקӴ׍T_HzVOM<Ɲ=ߥ&שs»pzwWuZ>㌶;=iGxx@.Oc?"׼M{rڎ>}/Cxt/8ݽ?&λseN!خO=N wKCJS-SwTG|׽t)s7.o߾{=?OΊNWlt^?{\O+O"?}/Խ߷>Svg`Ngw?u=B&wyŠͿGu\KOQ=gU_-?=~u?EOO?ؔOz?>oTqNǝaҩNw4B=}u:ƵSStjTqvS|>琲;?)>*(QFzNowOѩLN@\uoys*ٳ{ܝ]ZzOWST嵐%xU}_m*Ww7o2`J]Ql'ϣzODa\?١r7~g١,pnׯ_ykwp569az1<9O'ސ~ݼOxCH?N? ǧJ7Ot~JsJ_JfzNS}Wsz@J_wk{9]?uG ř4.vc54tT=Ϳgq~ON_pugשd}~gG~uv\zz9{xt~+깪?rS"w-]SyYJ'v:yݏ鸜]쯮OQu>'uJſ?W;UϪQs|[]izT~/|t~' )xڣgݸC8U;W|W;yO%plO*^^9!?d)G_g~|_ҿkSͷFCuwُv}LwI4ۻ:4Q~n_RV<WMշ+?{z>)_u~NU?[ʩ<>_Gv^_vnk,ΪK^GRH繲<3Nu ם7rZcN7xyno{ڞەRaT|e=7~~'U=]ctG|ziy?*hR'TwzuuS;>']VR;Q>n9wC.?4]?3\+nʿ~' G#nP/y>4>*G4KuQC괟1SqwS:oFQ@mOgvۯ-K|dW!ջFgOUoj4~';NQwݤ~hz\Dw.Cni%Ӹ0 _sF!uC'T>?xKwu>mqs8_=QIc?s]4g'|S?W;0S3"IϕF:7{HC59(힫R}D~!n~^^7kS=Ky|\n7L]{ ӹ]bU>]'C!ejOUpNG'ķGI-:Sϩ}T0rf}"~#\Giׯ)o!D ɥϷ;$yGjOwV)T'JC~*:$Sy1C˟ߝӿOǫqH9&AﴝNϤęr)^sIYu?ׯzΞs0e*GT]aJLg<Ϳ./E]}KT'~ w(>'Ur~ǧzM)wxn ]׿ʓ>H{7/ ׎juH,ZWUٟQN:rrODg4^7©p8No/v+TҞ3iH]>^8}Ԟ?*꾦鶧94NoW}O^5'{ )UrGSC+mסI}'4E=W^vGxrNCvx>qN5jWoK}ރ/g<=[wz )_U٫TS)=ߍ)Uwv_nUOiH0>#WCQԯv\}7/}.ҫ|uױw-_w/:OS7Ύ?wGzWS<?o}._u46ܩd7=E§OvÊOԐr7MwkW:U=Np96%]ʟU(K&wNQw|\]m>fJR=0Nw{uܫ9/StTN~VI~n?QyGn<ŁnzRrr/NqȞUiq]~ݧʗ Kt\n}<ջ箮^AU)[TJ#'_W噓|t\rr밻N󑮟*0|i]߯sK;ZB]U?:UIjO:iސ9Ltjv) S:JǓ>)#W~ȋi>֕W4ڮ]!NznWi]ViTkRq)jC9֌*Nuݟ۾/Xcm~ϟ'w4ԮNՏzwf43'S~WO:~>Tʑ}Z]:=U?mj<ݟn#򛊫'[p?!١My|?_͹hʑԿWwT]\*ߤ4~'<ߥ;xvGN*g3jP9SHq%]x؍OdǤ)Gyԛ%mwu'J}z^khU\ڥrGt]U>ON~t4JןszU*Ox?~6ۿ_ݢ/jʥP~tFv%lHU֫Q:ߡQ;MJ O4~Mx}X7Փ)DnCme1/\]u@Jg_w +E'z0C9rm{kW;>y=;PtqhqυDyt~ԫoc(g0yA=rCGzzz\%|Oq4ޓt== =8n8zO_9h<$jwQ?ڕ`~ԾZS/h`=z荃֡<:E>(^輇5{.Q.I<=yy{ﭔݧxqB_}Z{v_^oROFܩqw=GqVsQ|E/퀵DD3騇Ɨ\iG~L_zq3l_'ytL=W~s'E$?ŇlWyҮ+W̼ҫkG<J5Ͻ<=< /k׫GxrY_wz&jU%owM]b{yct;D:.짍#%?OEO9NQr}מr>ñK|WVjOE&eg%w~;2X>`F'UU?M=͛*K7STi ~?S;j|*:?qHպ-6(g;?ٮV?3EgL=^ r]{:' S咿k~h|Gy%)X[Rg#ͣˣW_ƕƑj"'7(~^3kg2yzLK}@:%T˟rjStRrNo/:oݖVyqtg)Ϸkc{FW/9^3OO<Wd{ωÉڻn0k穇ٝ(G=+ -o媿J.k{&zD6=ߺqo=QgF5s(~BtKQ9SA9޹ y^QvgE!K"{\W@cޗWS=>e{Og*Cy=.ʣC=; xD3_e{QvqY?֠y76DZq)'^A~:M**=F^it*H~s8\=1~$׫Ю\yO/NElqJհ<_G=kiO{Q=HO~?kG#*C.:n9'v|q;U;ãSgq5ۏ|k{?<q^bLt^j:3~XSvyexX;.zjT+}Y1yk+K*Q7WE?jw[Uۿ()۟#1_%)=)ߛ}8*o?}idz*;x h|5ɛO}Il/':_SC|=99[s<\a~"ڇ踲#Vh>\vDO2oV6x멷_9jG9L 9L޵So!W{_(9 S/3 􎟨Kˣvu&*ϋ\ҩvڅ+s_?SǏE㦷tjܮ=^{&%?2'NMk7M\'Sˁ.}k] ,+Q9WS_ѸUjóOE׷K!*{ȏ֎o_: ˇs޺A9 5F/n_mqmQ"&5\o8AyQc{O>#~oo|y;KbytcR#=6GR~ͳ{~ j?@z_M݇3Ω''xSvJ'tGGC>a;{Q?Rt=3n< 0s:5J+Gt=nD_(咎"}4^ymK;7Sk?!&8uo#0>8U3{sr.;޼)9G|On(nGE>o/FË^}'O}]+k O)g=)]jGk#?/O[{yZXOyKӈ|m{ʭNJ_O=;pdcu|=9qhT|->I_ʣ~Ւ_DnxS`<*-O_P8H_ǿF|nFjBg&%xD-WOs8ÍK"E^S~M?EUzY簽729ϷI'ہ+o?}}ڏʝzo裨x{GC>|ϣ+r%k v紏wreL~v|6(qM>&:L3Z'|s|/EM\S*N7J//Ψu*yzR/J{o|zD9Le<~#r/GQ>j}J#:>B/KЯv=(YKDzܣ+GU9uNSyzo?@]s\z=ף 0oV.79 A;* _h~}x} އx~V_QC:~$Ǘ Wλ?3~K} FճrשX:^WLoS8zR./e{5<>٩~x'Rz$b=%?OUz hWj$\d<*Fϗn/ >:~BgstGCOt=sϾ=^|,/)';U/1_[޺ٳGGzOk}j<:y*ԞGγ{߉rܳS%[džv>)os2yzOzDž|oP}\So vw Ž?x~~t\ҋy|>f$_~*%垽{IWy%/c}z?ܒ"#zg}ܩ%SEǏrkUJ'䳜rǧO]vQ(/缁zzo]Rz\_S:||1jLQ0_s8{q=c9Syz"oݮ/Oiy:UC۟_wD׍nw?7znD{&Oρ_sߌGzl׈yt}>ytJ+y/n,ځo=^=ҩZgy*闕}F: >l=oʉxXQO砪^c<U:Wt~rX@x[%yYvE Sбݨ>O|yGx<'+#s%ծ؎Z}jT͑߈z~'VSǗ~r*}9^FF^Lq_HnxN;>-o`yy${/-W|g>!.{q^%燊S=WvjγÁ_>Bw3=X*lx7^O޿9qM#('< \|(}\|n=کמ)ZvF}rˋw8.>x({-ɓ3;Z}:6\&g\(yokzRӳsN񭽟fP|.3Fz6۳C;S3u^7ϳ[o5H/g>KR%GQGRj^<=O01wy~҃rv}ctI/,]y7SEϹG|t={yޱg?~1?z6>MtGTq'/|k+=F>c{+K_:<7-;k{q58lɏUysk%=/{Y>#1Q91yLJC=*V4u8' n$7xP>qD^Rq!D7}sj*S}}nru9u>/IնWxrJ;g7gzyͣO+^܌93o0nFRT|y$?o}<>G<.gySuSg=~^s7#D^\ӂ񸚟5z[ۻy>`WyxmSSr8o<\tکyO:`T{q|^\qTŒ~qRt3ҫ^y-o]Uh~iS9A?urhc\G>(=DF템F{19q-j޾_3_Q}=qQG sFE*C{aH?S!]:Ĥ}V[(o8؁gP//Ey/t(S|gų!/0jw}+2EiOϡ9s-c<3~HU)j5wo)>(yDz赯=c~D}.(2HQo4.M'}'[tUsjKʞFUSM>QyKC|{饾]ُ1y묚gT?Rԓ/)w^25N-(?)y0/WtJS+Q`]ks_}ߩ.Ur_Dy8o\zTLJNvG qeJqN-R>o}ڼj0.^իjӵ'zN }4yqtLvRasAV ^vN}ot)^9ֶW.U\RyO^+9yϩ!/MשS%qskLSו}^+G]T|W}3JT)xGxP>A<:I|CE>D;Uxj#9_^vkSSs:E(<T*D+:_ോ#hC#y|*kg?U^4.3y^Rrj^ծCGY\G}jStJjvSөvV}-ȋu4ҡ뚺45n+>lc\>e/Ũ*jk{SmQzC~C9y\?*^h*kOtUWk7|ݗLM։rOGyr.Q^^Q~%G^{rU{oFtK Db]J*NU'֫Tɯkr;d#÷v޼r~17z{RG==L=/.k3?T{y.~0T9^{E'O*?|χO~ՓygoQ}n`R~C9ە<=(Kyӎz}+~'㊞rԸvSo|Uȉ~﫠w|U|\>)<9qM+:=#&/Qrj%>ckGMH_+~xK{J&{q=*'y21~C|]tsϼWD}}Co Eߊj_}8oʞJ\?z/Z?V)Rs>/W~!vNy~[׽o=~FʏKFzzv@獯:JNm|CIߓ&_ҝ˿kpi_Fj6vWy/x!tCytQuEG*D_PIɯ]~EٍJv?P.˧>b՗y7:Q>]s<wއ~}i^!dz[GO|t/9ǟ%ҩs{Q}:EQ;姾!#)7JQ;}fr}tA~ONI|?L^gRz|Kw=5w򝚏A׉DE==<;맳/O^yvR%ʯȯ}4*׳Ko\kJrcZQk_STv>k6v_Ϋ__rwP}ok{ 3y~vO}=8GŹ֡89L/Hj|X/ʙ|JVNWo{n^74驇7O* b\j1S?K΋GY/qמo9Nvڸ<=zQY^ROC;|kErKv~؞|kWͷ>뭯LJ\Suuy?#/_k'n}tU3⭋L|+>J/_tQjׁh}I~)z^3Q=w9]L}}QH_#={~[vN}ԎJV/dj7Eo?mGQ> |Fs ~^SIsũ >+FCC}p>ӓ+:u|*>qPɫS;QԶ>W>SNރ`T?lGQ>Dzz\־H]s<;$N~ =W|RC:}8o>>%?I~2ud}x랻_Q<=^JT;SxYҳ]'FJvT{^|=vͣ˧L*omܒvDL?əޡJ}Xt}gn ~{_Sڑ%'T֟jʥ:Ϲ9P={`օ8d}D2?kw!@2y|qQiWvSwJހSg{A+{Ry4}t-'Q{8WKutBxGljIe/:|4؎jD%EL%;'}44!\AA{jT_t/?uҩ(x}t8U'ӒTT=9]s<Tc?S)s׀NhWKo~2ޞϼvztcCJcu@ɫclD߻S%_Ux;W[O֦Aj咏ggLJڸU֧*=.R~q.Lu]O%.Gz/y䗤:>M+*Zuoj5S%TZNU@__UW"{/V ?>z7^]Jo)zDu0vP֗z_4ǯ3jkE:QvO<eJ{ 2y?##}/;A./UJhܣM܁P%gܟR=q5g:u\>JD^|m\U)7 ?7l??|FipYqAy9(jQ]SW<'ovG|jcGIօ*^{t=8u]OիsQQ'~wWEvã?>yt{۽dᝇShE0߁yEKGNӋܩ8?E_#]IّG4Qg/޸1CyW|orj;Q>5EՓwxM/e~_Ɠy||e>u]q=SK\^r/yɉlﺜ'5VR9*;5_U*Jq<:GAZILLLLLLL|ʰ铷=㠏գw~:g\6*ǻRםW}9&}y7ˣ^ZUi9wȳ޻/Wc?rU\|<=jD~O]o:wy:)Sk_ tq͟s6z5ܬFSGv\0WDS]Okܨ?yT}#ǹ/ϩٕZ8JS7:tPNtvMS?%'&&&&&dlj*_媽C:eG!OB5NJ+D>SɣW!WRԶ+~{gg7Otߒ;^%&&&&&&&>؈t;><a{UOET"+G'צQ?K~^Еyf5G}jS8F2JWytGG;^,SWZGiz%\kyUjOIk4y֦Ow(|SOSב 7 >uaRvlF4E㢒O~Cޭ'{^|W%w$ye{֟^=Q9]%'W~xR|;%&&&&&&)=){uN1E<~Sxtp\v^{3q:ڝ'W GQvs7[ =KsZQiP}My,#S+׾sxzyy媽w{V*E]svSN=a_:xUvC=0+{r~={nEg̫3[WߓwjJm|RyT:]F-j/r}pƇN-]4^+9J9^]xv0OwީG,GijQԾC=GnTyI;G峼Wq-f^I>S>^|w?[+{7DEݧLգv]~ߐtDZ{]OYѕ }}F=Tuϫڝ{Oz;|Ӽw ';z)=h9uaI{|/S~GANmE(~,g>/]v^zK~sQ|x뵏Ԯk)ŏWމO&6)ݹ$=Tqj.q_7yn) vg7uJTQv5F&Sʙ;mOQ>lʽrOe#ߩGd?NSt]DYs<mO]WKj-SSu?Dwd?Uy陔z)~^yz򛺏!{C|oCxq.PIɽTEץZILLLLLLL|ʰA/&?N9rȗC~=ޗE([ͫE޹jɭm_=O%_~|Gz~FDslmfHʿ)'z.r>T>Eu|*?sF:KLLLLLLLL<)>KQ=({E޾OQD*Sم'َ=W)L;9%y?x1'*u<^ayG~z =)eY1?5o>\GNէCy'=>*u"ﭯ>*7 $ޔw<9ߟ)~POh|>O Ο7=Rt~vTἃ&OzOهBW𫥿xxA_KsP^ph?|rSA#uz!zzqWvl_~ɍ;GwBQG9sB?ujO]c{=9W*#BǤ5|4u@U泌?x*U~V*g'=XW::>S/ʍk8R>Ge~ϑ|\'y1}[=ڧԫ9'I Tv|HQi꾅r^lG`x\Q>}U{|jjO>^\9!P^~ڵyzOzyNYb[xxj8F}xISó}>zTD9ʕ^/Pr?(O^a+75T5SQͣ,H?qU];`t_U{3o>jbWtJ/*_U{{|XtӉɯrʤ+I3|_GIS*ƕQ[_JEW?U_lcӝ{,LHz3QT}Tғ|~Pf꣒ҟ#yQDy^}+LlڍO'JNt\\΢|Ur~?_?QT߃\{NBY?ЅS)^M=O]ǽxL:]<:)sճ]4yRN'`u6"ݹ<ߩzՎOJ/wE~;=&O(dz((vA;SDF+Z{Q|y+T*uNv|ᯰ־=}~צxEth׉b/LB:Q_+Gf#a9ړ7RoܔQ;=Pxqb*SNȈz8J:%W׈|?|5>sx!]4Nv@E銞ǵ!;Jvw*ES<0O; SG{/_yO^Il_K[iS}׎rU>==>J9w]ۉzj{iGl_[Ms,/^ gߓ dzyz]O~J7zПjQ,k>T;&w Oյ:>85_AS6q:/}==d|pk!]j7H:֝_K,|UyFztFEidbӝW˿ZT䲼qn}w\O2[> 3,;ArE# VFSAn{_8xyH-T)Os=|yS0;O̳\ɡ>lUkǵNsUٻʓzz ꙏڑrO9oiiG3~о͊ZO=}S_>"J>cG8c*=U惿o2lFt}ئ9^퓽wDyjkAOxu.0ܗvyV)z_yѮ~$@Wt>OgTP!_f^C~:zE8:_Sϡ>* |8%Ϗv]sL+y'=W&/Nm8]TnIԃyo<|iαSӛ)'S)kGzR%oGxW-GtC<}je,CTt҇tO)Vwhq>v.8 vc:59ta\¦O;z)ڳ\%_q~폗R'ʫ{|j١y5oӳ[%[ ~ ғK%]wJLLLLLLL|ڱӝT;Qڑ$m(O^JoUO9JgɍjGP8Gy繛҃FfyKTG|O_)<~+:ϿU踝d}vA= >꿵xIY^׮otJusz%ۉzGUʣ~?Q~]s~*yvp11i¦2v) T܌m0E O)s:O#F)GqK4u+:URm}}^WQ| )zq;%&&&&&&<L]zO>^g8Sk<>X0xҫ6u(:jh'Y辖׽taǼ'X4u4/i~{ړ'OG u]=ׯYΏ'W>CPǨWYPKw~_$_j'yv.z>EyK:qT}_]s^{Վڷ_şǗ嬯Mݿuv_Ϳy'iG'jojk$s^/|*_{X\5@$H+M':ϝ(WZeݞ?/k𒧇'g<{8>KOz/NG陮{KLLLLLLLLLLLLLLLLLL=,ȟyGcW^OV?i^hF<'KR4G{ҫv#=~_f*~CޓGzOD)*WrO%5/r*6{~+,?UD:cN }|?EO<ﬕ絋)W/LLLL<;cϳ])\qSt7NJ:򨞅N~+;r*glh/꩏7S77xÓ!zOOUV|ٹ{j|!Z~*oG Լx^}G򕿋=˕<=StڍwkEq(E75.1 G8ŸzRn#O?5>3)<‡>|땞>%^}:Nh<<|k=Etf_35.+e|uaj5ruGZ{gbڏon}GW~s!e{S ٧QŋuIUSףΑ=4/=W_E(?{@ϯG|C-R{v# t(O(xr'JUvjOng5ы;uU={b(*>%Q~j^ ?WJ;NٷC}Իh)}G4|nͿyoKLltGK݉S]2ݣՑi~;UnI(gө|~>~w]s<_}77޹i)Ε=9JC0_#s#Y/5xrǯ;՞g~?rَ&?S|8lO#?e^\Pr<(ɳ#%_y JWN_Oʸʃȟy9[E[vfk^8qGTNj#|NG:yKt{`T|G2yC\ڇk>9P{N=E}SET%ծtW~?ҩ!/jQ~xݏFyC~W:䝯jU5^}tЈ|<>?St?q O]=T*E[֫]X_Q/^~0:t(SɏFhz!_F﫢iN[Rv鬟:Eٿ%&&&&&dltxb}ɫrn3So<#9l/_ջK=wϾW=\nU~(8;.S'Q"īFN;q4s+t~y{v䫒#׼]y=}#>˽fT{U?%rj|)+Q{4w&j)ߣS^~_4wڠ~*Ѥ):پzt8z~%`yTr=i]_Gu?oNQp]sxY+zŤs/ WxqӇ|jj'\LO}I{tv}.111111ᝇ_U}wj;x]_qSȋKŗyګ}'?~꺭NJ:7Q?66} gz/_+l<]s*]sSTn4.c];fZPԊv_Pzqkk=zUG'7\Ur(GGQWO:oQ}UYr>^-SйOQWx*kEJɗ{I۪م'W_߀j]^^?}OPɗYs>K~w(~~y r~H; ͗tDD"Q^i?;|F|}7?cjPyo^RF{ Wo\ZJ _:#yB~IJ~}&ە{7'&&&&&&&&N KwTqɣ\=έOw^vՓsn=Uk:Ϭ z}ݑOvqs٨o@!-;ZʉSMWzz羔~?yH~#=y?(#}E^a]s~]I̓>>:zQ>ל緵7B/]?t,ZILLLLLLL|PU>z_~,W|}qgs}ˣa˗zrR7/wkU}b8턟=}Zu)zw8DuM??qwғt3ʧvkgj>|.jvOco\)_ݸ(֭y=Wt~}]ƥ}W5ҏLQ?~o͛/nz{]L^=u^(rT?'QTWU'=ӽUFT9Ĩ]}o2yXYH(%)%~(O_)#~{J'A?x }=8xIQR=^~SW+9ĩx.Wу ۍ"n0՞:_ekvzXҩT(yQ*-11}N1y| zzxv%yqiޑO=zo_y^ܤ^JO/K>ٍʓy|nvDQ.y4;N(otwkS-_W|:{DzUM0NFׯ=jWߑ@Qs$yO]~Ƒw=R/(==u'2))zS7֞ܙtl-S~C}vQI>%yt]ytW#uzy cSEO:%_ѳ<OO)}Iοnq~|gUQ?⠷{Ћ8{} ~K׈*y/C q:z.C=w\+|ȯ䙢1jwD9)*wjauhVrȷv]:ANzSuGQrg;=T;%dzuw^9ΟʗTlcӧXҝX[t,g+|r?E}o9 $=ˣ4u=yCcG0J^>g#jX WST/|ȏvٕS7^ }XrG~D0%Jo%Qz]^aIQ;#ȫ8(*pį>'=}o+:GQn 7j>=?G-d\qV 8G4ol!ً믎\UN>8ߏSףv^a^Azo<ͣ1Iu_k˫%h\PO퀵<:_S[gڼGr=sIUuyL}I'5nռzg>ȏ;__wXorΥ:'#lzwD/%OمK`tFp0ys<\.w3Q]x,Qo+ӝ#mWSD8Y~n/'+zv|k|]_ShjIv~zǣsE/ݜU*7EQ7kˋyߝWy{xY5˙<(}5?g^yzF76Evsy#9x)S9T:'?G=>>whO4TjwrTyw>\v{x~lx!N}{ QzUѡ\{*E+@=G5/%EOP?+GSTv^;>jʞ>e#חaR*_UV7*U?U{G>xkg;^%վ]hr“35u׎ۨ(ɛ_#_O(~=,111}ԥHJ^zO/EEStʙS'wm=EǡgRi8(><9*zy_滉re}WG7u]yt^RJ~bbbbbbbbbbbbbbbbbbbbbbbbbbⓏ]OەrU/Rr&щr%u|F+}?zRJW!?cb!R7Q')q׾:;tswI׽%&&&&>x!TkT)w*E{8GKQ}jGt.v9F=ʷCS<})#ҩwU ҩytΩxދSL񏦨rN]_<~S㎧_abl&;|u|x߅R4~q[8y0:G\ݟLC\J]t]4n Q;3vzJ^2>j|@Gꯧ5N\ʏW#騇^Gy|?T{_ cOrVceQfss+|YͧgQ=}Fxq/WO=Xك?;q߱ܓ;zo>AٟKaJOOo'o_RjGp6u}Vr/XG?_zE_O[>ȋ#g;\ Tqx*T'&&&&&&&&&Fki@q.Pw|Aұ]>y;ۏ%Oҫs!9_sskK>4GJ^9^O}F>ya{Ag|XμC۳ߒ<=TR~P{%_ ETkE輳Gف׎zDJ;lczUGI{C;`T:?Q=%&&&&&&&&L{${kͣ#>@Ѡ^%)vJOEyz|ѡy5LZ^~oW]?&&&>;5T 1T;|KF<~$^ѹrQ~%u@ծkgR+lv=~hyԾӧ+~Q|X+>ڑCϨʳv^GTZj_F'==tyߊG}Qv#K>=.{K!7NQ?Qbr]ߟ'垟x(.3u돛wQ^ ǣOΒؾs]}~ɸ έɟyh_z%r3D=lI>QL%}t_Gc}W%W{vTR4^v^7S 羡$?8^ʎqerQR*q^ G>9'?~}x:_MSO o\k~%Csy%y1n^mh{=1/):ůC}ǣq޻VyGI㕫|-O"gD%O)踸WccbbbbbbbbbbbbbbbbbbbbMs׭GbbbbbbtO}#*6E[ןRO:׎^Om:Y37O]YŒӣj=TR#췛['5+N9|yn;ݔ:W>׾q˽q)sCWteN+.ՓOw7Uwuͮz|%D=;{<~݉ry}\IbbbbbbbbbbbbbbbbbbbbbbbbbbCɫ߫=J?՝(\svNjݤ?Qnb{.?ʻi]_;!ojO׽%&&&&>ӝu|oZi]>OO\Wߩq۵7cwRTϩ~sU|ΕN{sqqqTOէ;15uAWߺŲݹɓoO{=QSǭ;OPzZǽ9|uԸpUZ3s>LLLLLLLLL}_wMrO?ϹRxtqScbbbbbbbbbbbbbbbbbbbbMs݇x/")S=~Ǐ Գ{l{tB_(z~Ǘ=JhIѮ#Oُ¯8]`+rz/ OݧO8q/߁8_<߹/5za[ihW~珣p~ru |2./rK>ϳ2* ɧX]яqVSpk WK%qiOq,E׻\78"iob>)8tc']C?·ӠS"y+X+r9_EŸ/=^imϜB)~Wo?I?QPƹ=f;Gƹ|3{y,/]ѻdz )/Nq^y 9J]J.%ٿߏz/AN=~Esm~8>OQS礟B9)/,sOw\EuQ~ƗNy),w^g/_O{?l~}zޟ|ysP.$}oy>~qB?9:\ާ9O_u?^8pGd`<}ja^Yu~pz8iw=s>?:O18P^A{+]yaqz"eSy>w|Z~!{܁.3;a>!{܁_@9K>|ߊv//ĸעp\<|dzK zߑHWg?ZO=>k@ߛ$ʹ8>e*nr>vos]BO~rV.~uH~u\J}[ƙ~E?}y; c>C^}Ϭ] OG =Cp(YrHrHruVbMBfTɼwWqj_x[g>v4s"73njƿ&&$0?O<%?C{@_@rV\@Oqy8Μ_!߿`<,(p{=$F/~QE;ꥐsvCg7?eKzṁy>|e:󛢗:7}W"Yp Aa|M=7z?ۗuZcwC?3ыȗ`>h~߲A.O}|A39<ߡƑBxW\_Λ_/M?-rڢ}"CA'}" e>} Rte2E~Wܯq9_=K`W~/!'{K?kU΋zNHr{>nh神ٸNrxz?'/67e^5<uwW~JSӨ7wԋy}祽q~S;}gߩ~\\}(KQ}7܇lRvC~k+}S5_%sXsO{v|Cyg u^s5ҟbW|T%^7ϳ:,:q`\v\ ڇ6mzCR(MyZT.p|B:t)ڱqsvZҮ?>W`;+/Nrj=yy|Bܹov熜?-\ssxG=Pv?<<|sxHC9׽?l_#> z=׹NѮ A#+A2ΌWEd|__ػ@߂O'l>7 }?xs[p܂ܒrܟޣ:2e}ǦDz9a|esy%; )9 i<>yu_JzIϩ=w{KSOs߭;ۡjC?T_9%CFF:/hVERŨɨ͂OU|I/c⼨~{Kx^9U9,BWo~ib_]]O'K\ݤb_omgTq|ϵ)wyR=xEs|yu~|]ɗ>K`y8zD;}P-OG~->{z>#ڡ.\!ǧ?{%ߠe?y~\<@\ з|qczt >´b~<<׏|Z0!Ro=?E2ܯyzO31~}T_\o{-{A+PpQуqFJ§/vs\ao]^BNa?y(:ޏK8~|~@!? :[m3=邼*T@'QQyA?(yOG9VJ? (q6G7;S*N ) +s e?Sܟc#RѷS˸O{*sZ5sf;efMs//tK{WJ{ơҞCPsR:o}'z#q~/i/޷&P>\bIvƏ#*z=8OQi)luKQ(/rȇuoQN?as޿.9|\ vǴ='M{~Ee_+{yJxYܒü_?9!MP_;*߻+ix~/E>t4ǿJ=㫺(|i/ܟxnR|UƇQ?+Ҿ>R^W~|Jx~sA·E{3nve|?..2OIMX쩌['顼ǦKe<=ޮg<=ltOgFדکqm7>%34{\.z܎טKԷFS/ EyvW{Lc_}stx=="vv:}sǀ~|C~8μRveOOci{L8lB待Ӿ/_/~BG9\ 'ď@ۥ>~a.8? tEFssbp}7ҟ‡C]у6+19/r ?KbMByqn>K>/Cyy<7Vqcg;ܷq3>P߷*R}'Y蜞"{_1xB?Wy)Nqv\׹+;uy^Qq<+k UxzTn1氿n|ZzDKy!}"}:{-;3ޏ>r!e>e鏴%w紃C~itiC=;G|}'sxC<7ᾬoTƁz8>7o{܁_>ϕzi_{=[+)\S}ܞ/ܺ7ynZSyTX>KQ:9o}/ۡvt!KO}aSw8Z|w{y}^l}?\-Cpl< E_C\|nIs¯-ex}zrCoԿT -JQnOL7q?V ?ii?؁^|ozjxrɧ+3q v8o|Iȿ{\- ޼8>,,p13ǃ8Cz޿rۏ۰羝SЎtKӞ8NRN(匧\nϟo#ϸ֡ҎqqItyBGz[v(g=C˸3-z~ 3^?8?=';|:u3(չ:yWsz%_=gWOW1aܯP>O~Uac]70s\T,؟ } Tۊԃq>Uܷr>s؞zvBnz q+i |#uL/5o!|ϡ>OzxV~yIiG~e}V7OK9܇]K~Ө!9{e|yql A9[vh^ݺ۠܋^#e\y~Iԫ%8r^z=xB0~7зZoչ׷O y^>/i>4ߟyV/r:CW| y~{ݹ>ymWAGP伀z,oX6޿qU9_'O9 GчOO=kWh{Vc q?<Թ+oU7a)r8ywhWy9-q<}t/usƵ Ϡǟx^s@ [=2.p#|OSrr5^9BCR"s6)2_C,,x^#GIb} *;%i.R{3jռzi/u`"x\uz(W%n_3Wv1?َzޕ=+yˍSݶ8w_szAs/!cs[o݂2>n|b/w:W,ǵ9^7>*zvs<渼pls4FrQͿ]sz5_L9 {Gu֙~lqH}_<~iWԧ(%x}<1^a]3tzj=TruOu衏8}_)o4/N g& [۷ȧM#i#0v,mzā_+ү51=Ѥc}r%zzn֏SUuiWkWo#G A|G)Q=-CI}Ji7x2ȅC9?K(z/J!Grxz2 3B~G/iX3g<=޾9Lq3B:ims4A_ˏKlnt?urv|z;B/i 5#qG'պvJh~u> 5"_O=j?*qB=;~BRy I? zoO8wڅ?a^Kz+$D\zH =W<ٟHISsO}ueԮSǒXK:s*ڕsŧC/rG튼_=,Ӓx;ev% txg#|Dܸ\g>q~d==SUoOFՋs*G'bި\ȯ=Ot|r)t_;'}Uzqzdf;*/#/q~=])]31&bJN/+E:w{s*~*};i7A>Ϩ tCOU&y.y%=+(/ɻBI;PyE<{+)xyIi<ZK;87~B`̒%#F~sdὩW z){3{"GǏxȋ jOIvyqc_G(⏚&V%{MM}ֻs9^5wXIr}v!y qgg嫞3^Ma^!JgxKE3Q//_T}/=B߅WCO){S g:(~b>ҧԷ1S܇Tғ{mГcqx+Ac|iw[;qvY_}jP=U/kuS,"!whJ}AG9*^~U`W/v_=ίܯׯ7+|r~8qܯ>RF~sW핿>z)q_{riGy W=/kzy3P΍ȋ{|~{D6|5з~)qؑ's>>h'JiGFW{|G>N19H~1/KqRG(z y\j4NxvɻuŅf;\FCy8W8y,d=D/PX!ǫB/ssw?#Z!Gvbޔ^[y_ƏԸt5X'v!j;#?}7/Ctgw8CѮ9!?sx]!sxTN^C΂_o^%I>lW+~O]_^k'b=+ɋG9l罇ěoN^<̓I3EH=G' 釼k%w$U?Bun1Ab<8wί:W8Oȟ`~׿a{뇥!H?,~2Q_ҽbg_zGF;e?n;EqP/-QN=^D~,[s>#0CہAQ^S9/ O4Bxq`9say!Ўv dRs7q:kT3eԫ>e'(|Wy"\g깮zsI=0j{tΕ=ѯ^PٿWiV{WBe*zwx꾚yAW-Wp//I^gˡ>j1g#\Ogy?|8 e\9n/C.X>A ǍyM8<4|pG>ݟJ1P~!]ܴ<4/؂io=P>?x'uY-/ 5z.C{p|O9N(N}yr#p%Ga%uï?Hm#}Ag|c>WoGɫ*О8yQyO?GY=iW[Ux]nA_O2BOxzHPό{lGӌ- g?'Ɖ9|QGxXƍz_o~uTNѯSAHo ܟt/~#_$+[J9rozniiF}?'yT~U*n 4k_^҈Ol{:O;?qe?}Hysڹw_N,yF?QߧH9ȧ >ra$&qqQݗb7T\)rz}F듺e=U<*W*2rq.. վE;˨s7=CJ/ȓK^ߨj;8yN P~/I>w2zf;g{t ׽LLI8_*M/ZC|V7v\:af ګsyγ_9`o^Ry~j|)-9.:)t?{b%=/aӾԋ뙊*Ni޾sr\CiBϛ>{a2>j 'ELJ$Kt{ ~[gٿyq_(/1߹?V'y9ߔsi<]ϡ?SvTʞ8~]cu݇юxLP9sP/5WM?^%׹ڡ?E_5>|~tyhQ?u^!^C[s)>g˕G-ǑrxEt=RR*{PO?J:jv(ﱤQ\P벚}3~x돊</2 }AϜo$C㋺l~qݩ*Pح|NN,!B__kѠ})/jL*|܂rew깢*.S֗|~P?>?^8>-yǗA r>shu }m/}Aa>H9ܟ\v\u?C=Ǒ~?guxr)vDW-D;~)$ uzy_SʮZiG7%u.΃yS8>y+zn~s޹.> ~~o|s8ZK7K iѿ)lZ(G=iQ_pH߰ǜu'_/ C>/\ NI'g>H|I!| p?Q>XO=#ZľJ^zzݙ9ǿA׸BG_;Q/8Θ]Q^gO!Я }.SҮq=7uߎѸ P(9qodj|(g|a}ӯZ awYI}վ(~qҧ`ƹ|3Ϸ(8w\/;[j K=C78@ݗ2Qv O,z0 nۧK*+فُ}ZG:_&?8x*Iڳڇ(Eϼo[h?~rS?.t-ɷԫsrҥ?LO7]Gպو|O7‡ߥ^Gq=5.>I{sj^?~aJ{r K:%C3~ieW/?ӀNcJ{yCQ짚jv\NaK?[iv_h?ҳ ʣIEi Ծye4_%I?`p\|4gj'7m`+Q>GSqVĕ}Q0QЩy,9?/x(>ySwsb :ڟ\T\9q>?kA񴗗 C{@~I#}2ףtOlPr.!3_WJ/ӯ~uʯy8U]WBmj~//w~Sc}:%0 ]ҕg.Cz5>&%go#|Cz=}8njߢܟԣSnDO~}q/NS/ʹӒxP>hQޠqA^ǖR؟7%/2^;\%?9Kk$9ja}8h=V b?ғ6'׏~O/r|l⧞p~[ԃhNǪw蕋} Pܿ(G3 whRC9]31&a|V[ی}~?Zh7Z[Ыuzq{vYiFKy _}ti7vSLS}t TOyGsk_xL r<8lC=a#?T8 1^.`keD_S#o's<$Us?Z;UN:o鯹AGӍvC}Zjhߵ/9ϪߴGGYʃ#;!O,)zSO҃`x؀~v=^yIⳍ>Sӣ:QD{T58A ޺3z8zЫs oF,QEy/GBQ;硴 9;}br{hQ^ ʕuYK>;j?׊FCeg*%_ii}Y_>oAKhⱊjg}/咯HPISϫһЩoBį=?<ڃgs '_|aW#|ǮGOtdWvܯƿ`Wcz~~NAܯ }W_=_=ܯW9.jD}KZ?wvRsQr_Q}q d)`?n(?c}A!MsN7q>> oׂ#CF<5@vCR_D{dv%jw?>QxeGqzu~z*:O8 }#;Sw_?ej>U`J^ƅtʟSsJR x5j_&vrTf{!%ozwC>NR犤Wr8{ZQ_ʋ>O<{ޢr0?<.?G1G9.[%w%_ |3@ٛgo| |BOx3C|z}߂^^lע_ߡ?Usj_PkەyT|^z+ԃ9>b꾹Է"`^)T꼨򏾾ĥy {v _O=(k@ԛC?74q#^Q#)DzEWU뒺b{%OѼ~O){b;ު\y }9 wAs6zO9-5>ԫou߯v6*UF}=Uz>^yy86ȫx!~o>\??e뇥w%?GQW||y\[?*s]ͣ37U=uϥT>ywt<=YmwSSGm~={|2Ν7\Ysysj:ux\=fZnOLLLLLLL|J{DҫSxzϹ]8_UzUŷVs;w_OOjxzyO2NÌ瑛42u4111111G)111~o(1111111iǩ4>ҹ1Gǀ\ё{|>. :NSc|_>:څSM-J_>eiUǙ|ƿf;bWe׽LLIsa4.<`K^t\wyկGZߑ:SWvSG֏brQ;o.^KⳍJAE=ϳ^GQW!(~'ZO>j\Լ)gF8}@jسx9oOΩ;o|SF͋^^Uh=;7kه7y7OE[qދjx>vQ}r{ZԞexatvSOF_hZ??Gs,/yU?U'VNmT79/ur׼k>z~O}T9^xzZ=N?>)EE]]-;.:N=u\ӹ+?:sST-?jSkywvS_]{sǑ8uƁr|Msj_}yr֟ڿv9u~jùQi{Z%11111111111hy鹮ܹ,/yU=\?Uǝ?|(UqZCbbc'>1<˽zk35sn}O;w{EjW=W;>Dʩգƹ{Λmq4=ʹnz-?nMi70C|а>l<鈊(_ə*ߓ;{OyTzDi_bH?)C<()Dx|Y*T^>:? kSI;O;v0MNA]'=ߧ$&&&&&~/v>s.+r]ɋ':OQQ=k˽q{nZ=?FO/%ăvԖG~2Sy?w'Z/ҟ[>_?׶Y^G_+?:^sWOoSr*k7Z>Z>kWǩ|֟{]>G\~{S*ySvN[_kT>^;֟?__ɛjߩ~xJ7U?;t!ONE{nw:Q=~rڏǹSOs(_]TZ=jv:>{h1}sY^\Om*{nS3Uuě]Owb)gS*T/<4y?5ODk־j=U?ד_Z?_w8R0O?i~(~ik7U?ד_i~(~4V臔O SZQ=OSdW)כ\3_(As.x:QoGa:1AxhTјP>Q?4|511111111111111111111\C8ԷǑ|d}WQqZqu{]i7YwCܹ[CڍrGGrO4+}#)O;QW_Q~ P;ASw 85WUi_+oުH:ȕ"nU)|Ÿt~<sx>~\?wQzC~Xzi^zv\-D?>&>[5"^%&&&^5vMbbbӍgLČ7®IL|v-®IL(g&&>MxMbbbӂ]x!'{4b$&&ۯo&vMbbƋSkxǮI xvx]5&^wMc$n;H|2k3$NîILlmbKO+vM)x󗘘(sGuc$H!~`8^bⓌ]8o^yTbbbbbbbbޟ&&i붧ě]X111111:kސs'8^:db$&&&&&֣F g_??=~Ǐ/{DS=~3=Kk[{Ggwz ?@}?PC}?p>}G?H}???Xc}ϗw?=ĴǴ=v3f91}m9{|뱔wX? }/_b_žK}/_'ɾ'D_'?O}T_?O}L_g?}]=L=Zo+}W_ۿҷoJ}/ܷr}/ܷrվ}W_ۿoq=f{8c_qcƹ=f8=[{{j7^z|vrKnǛs?c_T{{L{c{O~w^cKc^>vc_v]i{LﱯOc}}>Ǿ>?'>^ۿڷJ+}ҷJ+}ҷoZ}1ic=3طx{{xwǾ>inj=O<7}weےx[bLqSS_WӯzL뱔wW=Qjz|Re=3vQ=]<'.zy:'۾=ͲNr_\_eگn_cKc/yk=v}ޖci{|{{|fX3cƿnj=z=>%۷۷۷۷/Oww?۷پo}lgo7o7_ۿ޷oz}r;7o;7oF}7oۿѷof;}C}k=:vwXk7mN:E+!`O;ccvcV {}e}}O?#ss}걯ק<طo^ۿַoZ}ڷj}ZrַZk}ַ/M~o_o_oݾo<=qϵvo۽ٷ{of[m.{{ocy{V/[orV/[orV/[oVorb;㿰_`Wo@`_rߟ_Ǟ/|~=Ǐط>/{zvvZkozz{=/~qc߿O/`O^ҏ_x{y_}o_{j}}W_o=~^z_cW{C>Dz?9/K;=֎{y3<{zq~zz|og/7O9}}طN>ەsvxOĞ'x.Koe=<;:/q8/Ͻc?|]={oz}v^wvxNcs_/Ǟ/|?e?c/;_;wѿӟ+?z}z=~Koq8aa}}{sc>=rc.=sc/'=!k=ys>|gd^X__yz'y}yطsxTuǟ{{3/{嚞'gn}v{f7}y^z{|=yc9W;O{~\?zs豯c=Ms]ILLLLLLLTX;]޿&&&&&&&&^vMbbbbbbbbbbbbbbӆ}ސILLLuǫħ&11111111Y&&$ǃovMbbbbbbbbbbbbbbbbbbbbbbbbbbӂ11111f`$&&&&&>~/111111111111111111b$&&&&&&&&>IxD]xR4/=,fb^u^u^+oyyO|:::::::o}Gyyy}S+;yyyyD_gyyy}?>G>+:::::::::::?t^u^u^u^u^?{?c?1::::K?tWz'::::::uS?yyy}C˜yyyyys/u^u^u^{_R^u^?׋/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2zc?yyyyy/u^u^u^u^sg?yyyyyyyyyyyyy7r?yy׏>yyyyog> |Ϟ_g::::::ɹ/|:::::::::ou/[7_{.ZT_xW߽s ݯ73x7k_|xλoqw^ۯSXW}7G_v^}ͷ>W_ysw_5[ѫoջ_1^E~}~-S|W^{y)λ4?NW_毽_{ݻ4߹k3}_xm>^y. oۤՏZk65~ ߾%+o5P~MS2з[w}0tÜ}߃I{w~|yk9ɭmF_?>`CsfB_yuc- [߾;?|m3 C; yݻ|Ϋ=9fܭw^an53!w۫w|{`s_To}{:z{o|L;Coݯco2+ofEO_y@78p}͍^[Amy +qo/X{wFQ4Nqŏ-áo߹sko|嵷K/2˯Bݻ,"-|??^_4/=x<Ãz0A@o>/_ba>/% AK;쳳C}e}~}^Ͽ>do{siO}>mgof>}NܱOgCCa}}}~>Ϗ}h/"45>>>>>>?cWej5|>_s>?kou|>oMeom`3_a}.=g}Ͽ>} {oϿ>f[og_wKeyoϿ>N}~>.wc}~>>>>?`}}}C>}?n}O>}3?g} /dl}G_> coe}~>>wg}'?>c矲>}ga߰>+c}wg>Gs?l}j>7 a}~>/Ͽh}f?3/.....޲ۅۅۅۅۅۅۅۅۅۅۅۅۅۅ{1{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{0{rњfo[k֚fo7777777771hmimimimimimimimimimimimimimimiw777777777777777mg[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[oZ[o֛֛֛֛֛֛֛֛֛֛֛֛֛֛֛gcMkMkMkMkMkMkMkMkMkMkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚkߚffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3nfv73ffw3K߷7ff3of73ff3of73f֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?3[fl3gf֟?m֟?s[---m6ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss?ŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁŁn?7sn?7sn?7sn?7sn?7sn?7sn?7sn?7sn?7sZZWkj_~֯ZZWkj_~֯ZZWkj_~֯ZZWkj_~֯ZZWkj_~֯ZZWkj_~֯ZZWkj_~Y\k-ZkŵZkqZ\k-ZkŵZkqZ\k-ZkŵZkqZ\k-ZkŵZkqZ\k-Zko`dmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmmqmm6_km6_km6_km6_|sn97ߜo7s͹|sn97ߜo7s͹|sn97ߜo7s͹|sn97ߜo7s͹|sn97ߜXua0\Xfa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ>8<|sa0\o.G|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7o?xcͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.7 ͅ|sa0\o.lm^ڼyak慭 [6/lm^ڼyak慭 [6/lm^ڼyak慭 [6/lm^/ a0_/ a0_/ a0_/ a0_/ o,g1K,Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/˟|}Ki4_/_yHڃe1_~B/Ki4_/y>KAi4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/Ki4_/k6k6k6k6k6k6k6k6k6k6k6--------------------------------------kucececececececececececececececececec6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6[6bli4_/fKli4_/fKli4_/fKli4_/fKli4_/Mae2_WV2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+le2_Wf+lez`llؚ5gck֜96llؚ5gck֜96llؚ5gck֜96llؚ5gck֜96llؚ5gck֜96llغuacօ [6.ll]غuacօ [6.ll]غuacօ [6.l76|cc1ؘol76|cc1ؘol76|cc1ؘol76|cc1ؘol76|cc8[|ck5ؚol7[|ck5ؚol7[֘m7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[|ck5ؚol7[󍭭 [[.lm]ںuakօ [[.lm]ںuakօ [[.lm]ںuakօ [[.lm]ںuakօ [[.lm]ںuakօ [[.lm]ںuakօ [[.lm]ںuakօ [k5ߚo[k5ߚo[k5ߚo[k5ߚo[k5ߚo[k5ߚlnV?fesYܬ SܬlnV67+7|l7M%=>x>67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬlnV67+fesYܬ̍o_e[oYleUܲ|b-ͷ,6߲|b-ͷ,6߲|b-ͷ,6߲|b-ͷ,6߲|b-ͷ,6߲|b-ͷ,6߲|b-ͷ,6߲|b-lG#=% cEP0C glk_͛zrzzIͪby<9 l9 l9 l9 l9 l9 l9 l9 l9 l9 l9 l9 l9 l9 l9~~/ÿzm}{}_?????lf؋c/^{1b؋c/^{1b؋c/^{1b؋c/^{1b؋c/^{1b؋c/^{1b؋c/^{1b_CM&cdl26M&cdl26M&cM&cdl26M&cdl26Mۘr8 r8 r8 r8 r8 r8 r8 r8 r8 r8`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G v$ؑ`G~=ڑhGv$ڑhGH#юD;H#юD;H#юD;H#юD;H#юD;H#юD;H#юD;H#юD;pQG9gӟM6|ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)ly)lyʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2aʄ)L2a~+K&,d’ K&,d’ K&,d’ K&,d’ K&,d’ ]2aɄ%LX2aɄ%LX2aɄ%LX2aɄ%LX2aɄޙ~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?~Wgw=z~~o ~G=z#o=w~<~~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#~d?ُG#OouK'~b?|Ab?O'~b?O'~b?O'~b?O'~b?O?O'?O'?O'?O'?O'$?O'?O'gszO'/oO'?}yznS?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'?O'g3?}Q?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3Q1O6x=g3?8ߨ?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?g3?z{_/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/?wcK<|_/ _/˯ߟ_/ _/ _/ _/ _/ _/ _/-s[m2enܖ-s[m2enܖ-s[m2enܖ-s[m2enܖ-s[m2enܖ-s[m2enܖ-s[>/>/>/>/>/>/>/>/>/>/>/>/>/;,;,;,;,;,;,;zX:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥X:`逥(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(fP̠A1b 3(,z,z,z,zyzzzꋫzzzzzzzzܨrʍ*7ܨrʍ*7ܨrʍ*7ܨrʍ*7ܨrʍ*7ܨrʍ*7ܨrʍ*7ꟾ?#7ܨryFUn?GnTQFUnTQFUnTQFUWy^0<|nGWy^yUWy^yUWy^yUWy^y<*ϫ<<;,β;,β;,β;,β;Oζ;lζ;lζ;lζ;lζ;lvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg۝mwvg{-^ lkZ`{-^ lkZ`{-^ l[n֟[n֟[n֟[n֟[n֟[n֟[n[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱu[wlݱuo7o7:???????????????????????????????>_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/~xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe2^W+xe~#@xc1o7x xc1o7xc1o7xc1o7xc1o7xc1o7xc1o7xc1o7ۿ.xc1o7xc1o7xc1o7xc1o_?xc1o7xc1o7㛎o:㛎o:o7o7o7o7o7o7o7:uٯ_g~:uٯ_g~:uٯ_g~:uٯ_g~:uٯ_g~:uٯ_g~:uٯ_g~:uٯ_g˾+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+컲ʾ+>F}#}Ⱦod7wi3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fL63mf̴i3fʹi7nLv3fI']tI']t}I']t}I']t>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮O>듮OL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2.SL2w;w;w;w;w;w;w;w;w;??|??????????????????????????????1GO~f÷ǿ)xwѻ~pcw }'~ᢜ;l=I_]+՝A_ᆜ)|?//߉~T菿 ~u7|.7GZ^c7B}Wp}5¯f]J/6p۠7]}w뢾|o H_2a~Z_9~^O?&|-xWwG}uGW7Bgp֏V_߻d_/SOʲ׫}}Շ;ΟWl}ykWX+W}Q_;/Jbwڛ>g~ | oW|}էeN[3C|V_]we|>?q1:|*o/O?Wg?~?ݷw|~o`d?O/X_/x/W?/@{?]@OGEpsychTools/data/neo.rda0000644000176200001440000000344013605124113014600 0ustar liggesusersBZh91AY&SYxmb??1 !$ C`\ ӌ0AHM= F54@S=#@ 4M=CHH4R@4Rdm=4jGz24 G6=M4FSڑޔz5`!` ɀ0 10L2`0##$T4 Qj~nFٮyP8}zx3>g*@3+%@E *OEitĒI$dI%yJVAR0 R8!FG83=@ruIe8Yc4Y4KcfdELG(svN(&*lŠ3 S]!@ Df5FeÚ:5dUUy';x\2::h\+ 46o//oiT)JM*rZB``w ۹ aQPI5!RAkXɯaAn\-"G*6vj m)麨'J[; Q*g[t'b&+g *+%5eb y]ZNN2պF[T_8"W wFZ(4kzUH qX9QB^tkŭ?{<1؟$gygs=S<*$uϗiɀD܀ٹ|]ѹvVժݹv c ̌ET=Y7y5 Т~TDDMbx= irM(qq Ύ6os_`H5D[O)GBJ[8)&/YK'ߕ5h~X9́{BeV Y[ ?Ijփ79e51vpjU{Y_\W s^m|7͛|TRASĽEU%Ib"jR"fM)TUDSȔLdQh|TԔJ TԐA$MQ,0$ahI8D0$AD 5M=w$S ^psychTools/data/vegetables.rda0000644000176200001440000000105313605124116016141 0ustar liggesusers r0b```b`fcd`b2Y# 'f.KM@&0qcd`u.Bj/+o%~ݴy['8Ǖt{"1nNs/3ygh‘쁆8v9 h!~y/@)Xbw$&ɪseOVpsN\< /y/?os]xs%NP>@};n.Dz{Ul^@b2B m積l*w/Wvb95A T<]x@P#GCa^?wS] (t a|yGfc߯Å0'P̽ V` ;?op̜ K(z>z 0r՗ݽpBԠ&:; 3b*L .qhciZ⊳ .V# 8hLܘupa5^./i{w-TK KTZ|<+=q,~$2-,YƠe^JquZ٧GdE{{߼f|)jk}a^篿⣿b|JhD|=HU7uݑ6~otᜠC8ŇGLkMpJ?Ǽ~tծ-,)e5ȢV]2^#j#@ prpjQT4WqۖSm6+^ le*8=VVrC? ?$GpsychTools/data/holzinger.dictionary.rda0000644000176200001440000000244513557611505020204 0ustar liggesusersV[sFHr)4ly)Nm'x!8LSTEJ/@}*{/bCL9(~h[0 C-  e3\C)Sh9*,XD 7Hs <:э8 V_JٗUHjV\Lݯ9}^SM@$'ys߫l_ĤRpUyDy.NnX'Y;[m(,D:./YݷJRNQ!ZCyJ$CQ)7 1L\u{ACUnS#Te\p1#Ǹ }brLeEyz@_j ]g̭ 0L:)/;)p3~VW10[?g% tᑜ+J6,PSvQJ폿yÑH$}a*.$[jTj+ >[`d[A>c{xz33^8AIE/G#ÓxOXɌ&RGJSQ3yhd71rZL#aV&Vc@‚<8ᥦT!Kp5\FlK bRg~=56GacMpp}G&Ҧ/r̕EN6cݟ Bx $0޲-cQFJd3~`2Eo+֢yQWuxɲ{]JþB4g90u{2v{ի0D!-k;V:?fÛ psychTools/data/big5.100.adjectives.rda0000644000176200001440000012155613767503635017320 0ustar liggesusersۮqזd@̃`DF HÙ!%۲-oEERv r( Wȱ/78#S= d]]U]]w__[k~O}_?g??s??oɏ?ɟˮr߸@[/ݏo+>ߍگo}/}wO/Z_XWru߸WUUGW_r*ӫ٫*u]WU~*s߽*/*UBUWߺ߹Uw߽߿|??UWW]_ׯ_7߸ͫ7߼ߺ߾{W߹w_߿ݫw߽߻߿?ë???OU^p'Wyv=_~Uk?k?k?k?k?k?W?ڿ?h/*(7UQn/*?ͫ?ͫ_ܟU^vz):|;OΏw!I(7 k !uI|m!'I+ 'B _{\G\ g] g|h TGK'e|PfvpO`O}]7fGm]v$+[|k/%g|?3qWW%}Yq37<[-N"޻8z].G\p7Nj<v4.qי;#_R?X\Ӹ}joe/?żJX/}/Oqw:*6~:ߩ?Ir8Λw,sO_fwjwG Iލ'{ۧ+t>/3_Cq8yO˴܍)u)nsɮs gq1yI7rn<@]OydߦbKLO;&iɏgzhwN~ty7?;Xt:W6vֻ>wtLi~"Mhi^O{9_d^{owعaWO%p/u>l>W-M~9?ΧKI)8?G^5侓 ԧ\J_orxt_I-?g~Hx{kO[~=7;3Υnv.z&~M<S{q~rsh4 _cGF|>Ot7p4~KOI9L8lyoƥ ㎴BP=Ѻok|9xp/8JMG>rp/p1n.h>mޔgQӿ.7ړ_I~)ř⇄`S^IץP͋oqɓŋK˅~[=?X%$.?%(5>ӽ{-Pjo;`GXΚ|L7 P$ Qwp旹. ?׍yl}-R']gyJzb~K7a(')O[=3A>xO~Wid:o<,bC &b"ӿOى$8W\WIU-yo[w揧v/š1}]9<7۹&PO'%_ 6Jk}2S ?gßs)Kya[g~ݪB;g owpkq铭ggm;v?_wt>3:,73[93|oO:YZ{@'osy %W^s<%1$_~&;w5n^M|5 ~ 7>(/8/~Kw, l]2oZzƲȫo?o9S&@8u_}eveNHu3_Bc='߅ƛrJNOk\4w]{n?{̸鞠5/n~RoA3 Tp])f)]ڻ3mi{rO u {;7j/g[:y~sMRo.FP_h>2~6Fz_e9H~|W#_o? DRO-9 w= tx6.y*=.Y35vYs]49-7^^OV;vi~Oç<{a~pަ?{|5;3to`QOvߵ1;uϔ{~v?ǧ|㧩^;#-8m{+c)iObgO(7J6ߛYބ|Ɠ챭Ņ; ˔owﳎ$ŏf9Fc' h[7qW/K->6`IS-^fhmӹBVқ;Sܥ3%OqqA㹍0-n~h+<=iln~wJmߒK&α?7þ?Mi~Ə}cNJM~tlL~q0|]<{@k~z];bEIKK7ّt~5^7?~ _rsk]?P&pWo>ӆ7'GoS=Hgj炄7=;7nXr.vj>Yܜ7^0v2١_7:7sTkƭi_ǥkÙ/֧m7$?F~9tﮯg{w}wW}%9#CXO`%NFFyLa Iߟ_m~ߦ&^.[Lz2/ox5im9>} qhߔ7Iv1љړBIy<_!J)>iܽ4}p?rW1~ ,`W_O(MNl,_mOWndRc8ϻ8Q$ݦpɞoz\O6{wVho|&G͎mWm}^zzRhoP/%JYQN*׷z S>>P};_x,^EKf~Pw\ύvH\yi{.i_P_߯y8Cx9iC:]{y/E %# Ļdyś rD3o߯jx˛7s:P/c|3^*/atLJ'0 #7I7ˍ>zq졜sRp? _GkF|%}Eʛ؍%>:vf߻s5}\iYoEzg|zg)o|K~Џuq9 o|7ق~7^#,.6t̯>:S2o?<_9pm:[ty+]ӫ@GJ3T?=Me^;bvӼ/׭d';|sK-۹ ^xѯ]3."PB?3ݟܮ~G8!v>q1Xq{ۃ^}994-t-Wi]szc}q~ߨhYs]Fyqn`Cz\ǯP8%;Kv-e\)ά3?sO6Ư{{2#/Lviv8 ggr(OzL:vS=Ow pȾ7^c]q?]!MvWk~'oN=}t;a7h=;C$ pw/)c݇q=d~{mwwgf.lwr/ິN0x-vʍ͏ۻd_{=fohWnt-KrH7oz`zl|Z&&}y$lzj|La2disԾ>%z6[_ڝtaaI烈f f BKiM>H_8oi%7}K wƟ8G [{6׻oeq'#_lfz.qniLn u?ںy9n6$7fww8|$|8k[nO+ߍwM=bt>qO)LWUpGf7usÒN|I-.IzeydW6JF_sT){['iPɎs럮FKN~S\8 tM?->O<ͻl)M=UKS w Y{ZKn|+A̫Z[i_MY8#ɗu<7[/ɫفkv%ZW &=0wX~\9=ϒݼ8S>5Nwϙ^$>ڝtH3ɗI8]?e47˩2SMx[DQ'9.-ޝOgJ|y?s^|\2t_H Y:V&k7=N1JӳF?!z=MiܒU.)oxK9D¼OZv+6[:W=_ٸl,.S{MϡS{Nqjr ӹ9gp/N5һeUN}Iyi_;oͮ|Snx/SzS}LJf=t<;)ݩ^U?goaƙS=o2Ul^sîW7r2/MO~xۓO9T~5w*7K~_b;ϳ=]:?zOax)q4ξ'Hd%|6nOkt+#vy$?ޛ瞞C vx_5\x%_^?'}S%x8M=mc$>oUR~^C8w4]oiܡ4;f(nCy[iGavSg_2cgN]'qk`9_M~eaG'opOŽf%!N~sۀ<$_9NTRO~&{S9hxO|-nxٻAڻ-/($'Þ6}#{γ˔1:n)O}U.}nKhx֋L_gΊx~7>~q?EK2N!}v~Mq .;1;=S;-[\`u8ux7auȫpvIMcxw}='comqBmɎ-)?`p"O]gp?ix o;H.y/ o;΃f$Qyu^D͗-3gN?Ḧy=槤cv|_X ;w|I,dv_h~Pϒx9cigq#KHuy;`]?y6#og}cvv~`]o;ţ x5}?Ň&/MRjc~JowlBZ˺D?DB;f#Xg?O߫-xFI=:S70ua|8+7t ea=ry^_tLhO)_ pG}'zŸtR>Wic(OǺ4i_ڙ zv|P?vSɿB?znW`Qegyx_W柸vueZ{|"]ް~/[2Td|viy`~ԋC.8òP!<+m$?wۺskɯ{w?㘿 uZ-oPR.\k0xKW<{G].yN OF7ϦRn vo<~Ư+q틭GF녒jvLzBQ}M>$ɗ)/W_OŎzht%wԞ9pG|.*TUZE;)%')ߵ,7Nqc\?&>i/1on﷌.ƥSP>-aWjX?g/[]s]Ϋ|Ү7Gӷ\z'v{˸9՛_{7>BBovive]wV"sl.7y1;e|;KMrD8gLa&$96G>h.|5Bz֑1oOׁ5I95?C>Mo,J~CcKO,>|8ݨ'y7(z6>c܍S}v쁝#7{HO oiG^2ξ3;\-΄79%Ҿd<%16grcN;j'/Z[h7}8cʛW;_I@óQ/igGҾ SB [궎ɯUҏ>4N.{ MOȯ:7E#|:]uͫ$}7yrgW<KKj?~x'd神s{ K֟JʷO{οO)y2{#ObqqCImF5c~[fwY\es!?A<=ɛŻWK+N;carC}N~ti8?\SrL~y/%]s0C[W1v7yo2iߧs "~G*[>^OL~=G}:xIО8t8ӛBGǽ1 O^(kŻ΃|>wBEO_f0>ś %Qfglg߽pW}-壀?}WХs>_\y\~} 7y='?ߕ>Yp^7j74?aOٿgvPqٟ+|/ӿ-~iTkIOqXi"KSvNg.';o~P79cW1g~t>N98gq:w+} Kי=2~[w-^;Ky6x{¸Na}͗`rc|%E>{VwLz~gKBmay=VZ'?]Z\)c:g8:(<~4į;x8z G~w.Wȓem]qv/ym4rgfGxwL,ʅF)ßt? %;er1='uK{[/uZay/3MЛ#av^([-Oy[gW?7liewо~^o7_vMBҧ}h^l?L+݋.{BQ:,Mwϙ+[:%viwlr稅vғy\:ޤO)/nɟ[(nO,/%=}0~%)bzgO9%]7^pU>9oG. \W~Atߗ<*ߥw˒z.]oq3fv0kxڡnOgt:}ZR/o';Co7␘nW)sBn]|=ҝcL_ջ_~`F;qI/~a4w ʫ{ z{K1a)ӥI7Mk[]ٝ3s=ȫpn_|c4<'9&d9?'yPү%?evVZ9'{2 ׸W1]{pЇ~}~uF;1W19 ?f7ϡ應FЍz›]xg__R6yGy# ͯ3{m.s}-}f_CO9<6M$o!~k(&C?%5%|oY|Xe|;lW5}.[IdzAgjEW/xJdG?ڽ^oa5^ҽ{Ù\.[=Gi4~#|GWe8s|β7 C?♾Kdz>^ 鋕s&_fzXJ_kfael=7ߵV~[a~ƧA~rޅ:z}&SIvasizhf-Lm^f/wp6xSR쩵΋Nr%ɷΉawCfG~'] .QL~O*mm] [M2c'|$_w=]7D8XyDq/Lr@: ppH?K?A7+JM m=Yk8;WZꟀO -w@MN6 <G>'_y/MUg B~;_zڻ$?w 8w?坒ܤsѥ6WΏf(?,198ޘݴtnux`ntM%6P?c͏cˋ|.)8B?gȧم.;ŏazȱ ߀uw?vn{co_wо/q>|uʩCwf/|dz}¯e|Bk:śY&']ofOnqc^73/ u‹^x^:>}_1:qS?f|^Oͳq;R‘[bxR^EUWYpiOIFӼũ\B[ɞPokLA ]O[w %Gz7ĝK¸t$nO8c^^vr>_?%mj~!&jE.be_8Whm}1{-(mٝ`BOi.?<'y?+{6ow7}d|.w?wj6u7|%0}b|ݥO<}uHwm|S4{WXtߦ=klII8w/hwH/>ݵ_kW/6$S{qO; x+6ut1 e;|ҵsA++#K{oƕ-{@1Xϥoӕx[}wfc H8ߏr)n-g)3y"=.{uin~7FW$)FPڹ%1K^L&hq&B|s~6౯~#=:_w.M;OcXwSE|8;F*-sW#][oڏ$BIz<=d jpHX4ѣ=M<y|ůz)I7!vMx/{&v87?[v`zo,FwW!??ݯo&-Yڼȗ!m%=LH/GiyPOhZ7VgI+O.OB<+S+^['i|G Z{Kek4nZiZ(9pj}eһg֧Hiq6_.{~3{LmHa\3[ƳО Gq~ΫPi )L pj> %"] rKs~|P ~Oh[ IN|U#}YlS\({I>7LAvO<\t߄]7+X(mWt/7~6YWǛ~Cn0O}b~{ ?{7q\'6ʅDCyȃKƫ~Kqz׸xIS,}}7lG> Z+/.C~ ~3y&_n%D;>76ˮ7']"_ױ]~ Oa8 xn p?~K7OyS=OWcƼgKw_d->$?)49O/i~x"7EiK@Ԏ3w:ߤ/9T g@cqLsS4%v勺rnbCz;Orỹ3~>6_vss V%s#9AOg8ع-%B;,Prieߧ;q(?`|/vh?i<,"|Zoy%~o/Svf48?1\;ovN %w;M^'ϛ%'y0mqřIަ%K11}wi~)Wy,ɷ3~B/TOͯub<'yóоP!'ǹ77/IGMockv]/Xc'ί-l]G3wߖG|Y\e.z<s_m}|w̾tJߤևrKz6a^}Suߕ19ڂP{`֛mc=xi/8ޙ||ɭɕ q!6og$O{uq&_ou^-CKfe1I#?h^{w#_vK~ޫļK>Kg]Mq/Ϳ= ;?8f?<$?S2:{[Guk^쇞8Ӻ7\E=hѼʒrcM'査O=fE$w+zx[oԉ_JGR~Punb^`|y58'u]g%ZN̒zLx_OdO|*O)^⹍#-]ߓ/u)Ģ!OO#qg~Sj:iK|mWxYC/Or>ޕ:"rs/-8˿Y#_fͯ_3p*-EMyՅ v"L]ť6;΁Ngt/,r9;3xmvC95${¤7Gu[Ƈ{_}~4N阼8ͫ'}_xg<Ǻ'^կmxgvv2+[>8}Oj786[Lh7k^AӾ\xm]8=s7?~)_nv8O/L7&rf4yM>Y<Gz*{#ݎ* Wm}_'Ox6gxaKtL;u;>>#<rN/cAOgԯ_ż q12;}fxNF* tBKt_.ܔ?ډ 8e{ۼ(/@823xs]mo;}l<Ko^FJB?7Ogpa?-ab{mf Kߣ;OӧA튏ʼ>yپ0)^] [2O->S'Oi).ޚ$~K]L|ON|GlO e xv6ƙv`r%~4/&kXR'Oe8g =>}1<d6"dg>ǖw8mJiqiy%YҟJƣ⟏3 /[hڗ}op[W^(IGs~빴wǿ #or>/,τ}L/˷8gǸmzo"nsAx/̓[i!^P&02= P &w OJOx,7JUg7ӳ mEg@Sq0*ۡPR6 8h$_Bd:,&N墟/Ɖ=›^$Um8/ǛtޣXHƄ?%~J9(]394:f"ԓuirjv*+C!߀3;iSYI^lOeuқ?F?ӧ|m>iojӾ<ޗ ]0sUh_Mol-k&J6 ru}ڥcSȧkN~̏xcaqH _qϻq [|lv|XrW_KOZ_!~}w81$2Kq[X}?ߤSN:$?iOzwW߈?C85Ӹ1W4qyį0C=xOڼɷa™J,NNcX+\wuvM)Ȓ qs}і~؉t.Hzn͒](AG[]u1\=+:։$^>.NpLϹO%d{G:}HW1Υ8 96}S_(y޷>Lei~wkiccXBWn //viIik)_c n' f?6J)n4y*LM/e(w+úO+Jw/?)2GE(t{;&wׯZ yw ɾrbMKq>3Ż},zlk|{(zOOFWȧ&f,k}1bOޞ߱aea5RӸuqrjW>O8ffg}zuɔx,nо~'_7ߨSN,ϹGzp/7Kmv|s t8]Ly^G|Aox<~42tT™_KS\(G;Noqoo .r>fL# OyJrOaAyf܀/[![gI?+‡3f{3^?$W}0~0B( 7?9O# ,R^Mϙi->Z{Ƕw=.HoI(?^G/7ʦcyz, Fc%Q3i;R|ꦏ^? [Χ)devLC-?abbz'[(4^57hj)_1Rhs/ܯoVߔg4~M~̯>s]†w8O͏]qbxgOX"*|ߵ׷g~Fp^NO?7'K>&|}'٦Eį{/x;)GĿgL׍~MNm6gX}'9[qӼ ^nOeǒ!=5;`6JcO{hGő2}ߑwXW2>0ߕ x?qqsr\A]Qļ ,mp}} y q0N[ߥuFy_%וJ7o' \?7x|=A~R]ڀw7)0=1UvoW_ǽ7߆y S7<{.Mn g|qG佔ɹ]]o>i7O5YuG>-0;Y(cZbbv8-EFyovDx9qǓ3;DK~R<8P6?G{`v4|_]۔}-}Z|-?3޿oow]elxGOv|>[;Ko~ OE_#;>݇\߫7~Z|D|ٿBOڕdO!OWI*ȷ ¥}<ͣKK]5=)8ijP'7rW\`q胾SOy<+ӼJ8sG}6ڛOQOOޝ(J/ԳzLo ."Gܶɣ=Z~M%fRY()ϛKNw~4?H;fzkFG̎<8߅~YOyc;Oq_bd\,Qvq+A}7#N$;sϱΒW_W]ux=\hda"};=}#S=| ?l}ȏ݇,'v^xҳvg}oAᖴ<#}2N%ۀRiu]t)/]^tޅ0Nܑ1?U Ǽ+v>3f.ʩ_k!s{GyEޥxAL3QOK-躝I͏q}9ړ-IG%pC֒|if dPbyGב169/cG;vv잽o=a~ɮx;;@ka2~e>ޥxgK: +MJ8 ֟뻄ͳTޭ(alͧ+h|#K`GvYOq?n-?gyGG/,n~U8M>;u,ntw@g3?+gnuM#队g&I?-88Ϙ=8^aܫ=ɹr~;3o8~md)Yr]g)~<>^x 6tnOEO[!#(ۢ|̮.O1N7휘콝1o7s6&D]e4eWa<|i^O.kA ]cb/ΏqC?BzxE͒?݀|6ӹSӯx7;>M6G> 'Cٺ[d4 _vPL#e?46? u;%{jz=e̫=X\g@xWS%;m`aڋB=d7FiN'W'?7݅ٗ%&ql.zǻ37vq&>7G_#~Iy[x >SQww umfnR)_݅~tm`oD[;8[ߔOe98Ws,>۾/[U^Ƹ/_k.Q#>7z%xgb^%ҹg;_7kKi'>Rs}?t9+)[WW65;f7>/S@Ns~F1;7;_g^%c 4^r˸~-J|>/oS.oWҵRqS'?<m>&_:O];LB{a\4Hq~Ky]s$':"wwޣ۹oNv[[+/gux#}u~0=q/ދ&>\=]ot v]qSH}I߳܍G%dǧƅ|ѾwL'ŷzxӾ=PZo$J2459~o^&; Ҥ )^`C¼X&y$On)__N'WuswMfu|$2^#oҽShgd|åw"~wKwO~b+I.'wq4;6d_(5B\krTƭf'}~ #5}5;Eb_"IΒ=Kmc-IߒvI~oޕq9w1ηa!{x3ހxߵ=ry%evvK-~'YRiwiz)vIMys:?sQ.o{h 诹gmz˘W>v~q76O;ɯC૷'퐏Wχu_1=QYHa~so-I/AB;w=>,'|Ws3OINrl}WQ7^r~{gn,nz3y1}0}1@>xN;byw3u{Hq(g3U75̞|xZhOW/ԧP#Oi?99K;?_y=˗#8R4hgN%)w߽ۨsHŏ&o]y{~otw(_B)ڹ$cr,cr_vhrnv|NeJPoK)!ݧ[ns$x^x&czKr /pc}g_z#"G@ O8K̿q[xm8ɋq잏~bW\M.=: ~Ôڥd O'8L/u+OO;N3>=齀B;罅>#.yܑ9?K:ـ3}| :_۹ao8~KpT㒅΁_!皝dܖ37J>_k| eKǶNړ:y9G)ԧ~"v-E]_h_(-jny@NI}};O^w?L`8wa^v]g;i\j?a=.Iv޽{CΌO'k|oy #ݾ&]Ivu4f'InIqa["Sy}Zӽ'y}?a p䯀Em^e ?O; |+}=-I?M9]qؼHPZcx) t!<5_{~^voev'}&X߀BB7{c9cwDēI_\wx8tβ/ʋA,yFK4?2?G(=4#6>.|/.\.g_w:FXNq'xtq3Biek6_ ogɸȋ`|+G\Who|z>(JO[|gq]K8&G83c^CxOG<+?8>~e[6vJ6\zgdrO~.9o ǹZ令J;Yi?G;}:j0n^ESm&?/%~hrQ/#doٟ1KaloqNqGɯ񟺯+ㆣ<mS* Wyȫb'{/.&]xOqC1O49Oqf/]|y4_|N﫴xm)?W]Rr]ly_;B0o8!yy&óQv2}`t;Vk|}:IPnwH=_a>֛3ʇSN!]-w,m]c:ÿ{x_=6miB>ס?y<ɾKg+H1mz3=*u~`qU;F:m:{CMϮ#1߇~WRbz.⸅2(vvn 1Yhz,^#^?y 3C7)0x[R_yؾBN4 񊝏8Nr=qO~'36O7 r?7cͧ٧v;YpS'fM_dv#. ݰG"ܯ=n2^iޓ%JBxz_q Cv^ޟ%f~?3)o ^7M9Cy ɘ_R>-s4Y<.:f-KED&9м v]/9`=՟YNƿkJU.ź3t=<~!8~zNX( ukz^(EoE#Wpr/W69oY(%fxT}jGƙyG}uýJ_ey1]~w%<_~=UYK?ݨ/-ḏ_'򫚟#J[(oØo<1{(/TK~w*]+]r=A_NKڱz^6`?K'&r;)_υ^*!oMoM̛+.'?HM8[v? B]#Nܮy`7| zޡ-3hvO MɯGŏ)αw{%p7zM|&*gbv։&ywH``@~)E*OںM ̗JO49ڨa|<}$ߖv[GƇ&?[lv/b^2ݨu\wϛ&7yqf6 .š)^멿* 8)gkϛ黵O](ӹi[-t[?]I?_0qɎz#~x8? ଴8i\ gMR\37>Mf:ع*לߖroz<|lZ~af_=:ߚOvwdtHHég?Ml1I.nX{c'j?;9x[vn>j_WJCz`p^zN>ȟ#)iIzbƛ6lK$9u5zS\G=X~5}Mt! WIv% M T7@O|ԮoKqH}}.va~dWI??P͎q~S }+7?crץ t&5=ۼI9B{ &vjǧux|$=O)5f|mv9%4.j>'+sG&gSa'q&f)]7%7-n8×\OCK_Ƽ,;6?{߭m~G>}~<(Ǧ7KO} v~39-|w oç?FAYm?ɞ%.7q|w{dߤ|Qzcy-hݶyiܛroz+rL=f_߫yļ}[χy2WZ3}_Ҿ=#ϊe'o[YI6ݾPN]O{%Vy.nSHI;k/%%M9оO>L,Nw {Qf79<=6{pdM|NGIO~o/sBũn%iS rui>|Կ~;Kl$sʡ|NSSOU߭mx c ov:^ztހv7?lr'_^6\=͏SloߔY^ͣumߥ+ dӺ [Fna\>G>XQ`3/ϰ^~>=jxyD?'/'x_M,?c΁o紤f>C|ht:$WRto8}k!ҵy')W1F5y~;BtnHg57J${)n$^1װ}n&7y8>o͗=ignЎMtW%|u8x͎عo~Ǜ?LՈ|1ɵSߙ*Gj\W_h}G@gKsp ugSNw:}KRݔ$~S u JI>-Lqq^xʧ> Uҹ8Mo-7Xގvn69ļt=o^I/l.}M琔I]Үu;q~Nb:>8Gsc+?ɕW5,z:&t((xg\Gic,:.s/Z-.^_()nv/~݋7|I{*ɗiZ/gnw&=1{*'hM^M_6Ov>84]Oj xqF{ʷ/7?Y.)vϵP"ަpic;E3O|r-y"< ev+zu1N>?gL]v]7ctzڻN&.'};;L:v~v4:?Xiq~oNͫp㨋=$Dn D{,멝K<ɗaC~Hovx7Hy;On5u݄o- _uxxL⻤&Wi~|Ev>RcI9.ۺޕGȇ}8}Uy5:KƥݷB3^_eG8[b"Qޮ ?<w߲N?}я<ۑJW|ٸ= gXdz{bYYϘ?gx;S\|U>ʽ7~ u_󾦿n[mMxn1}O&7}Ѝ 語Mۍ7WkvtD}0?+}Gfr$v<@/׷.=-zG>z]aпrJ3;U=xrqM;s'Gð_Ѯ=`nOr8ٷ#n|yJtm:[7&gkryS? 'qc;R_ o#}^{@S}5/Kv =6-byN .ōg7߂?+I?xa\2)^ ޅ~S1igy<Ҿލ #d*W}t.yu;e =1{wX^xyܱNn9O9/Ɇ~Pv&?2O`->y/ԇTjI~DaWf 턧Oݟ12ڽWz&=r\=.Qi<*Os7>qk;ݷ)x?>oxݱb}oH~1cS[3^"?;|'$'L\ƸO73Ksoq։_> Oӵ|\ tUUkOmgߕx7_Pc]%GG?H}|ӼGc)U^'/XOr>0 Ru[~AfHo z*?.d|Iݸ-~WBg&Uy!^;l'κ=cy5;{/)4ns l8iަ/j7 𔟔1>8BOC=]yjz  |lj^CJH/'x e#G5n oSoӣޤu/j}|{\?Ή{Ï_үПvXX{m;O/if)YyWŞxG:v5yq eM9Ͼ\w~vKBΗv9ߏ!} ٍo/sG9x8{p>vn//৞ѯΫH 4|uxÒ^,DWOvt񠳅:clKz(I/39POqoT({Ŀy5ً?K:,90BKgt:uƯoG~nHi/ pf%zeI~31ļoũFi,~"pw#>;YX?~39<=k"B>Y=!cxN~3|ףNퟝ ^2^1pw{u bǒŸ`zO |Mqܛ&ig>N[(>xN|sQ|-빌v,{rme_(} te=}ggw7vO38cpL^Py#! p)n rG~U ?jgOb<<_'0>2BzGH>Ffxړ u[\71|AxL|.Eծ د|AUz?n^e|^3oX:ټ<[ϥʻY?w5yvܗ&oq AzkB\8>zlԻqOO8Mkv2~x/z]krcs c5N8 Ӹ1~O~C|c^;3<,C8e@38XgH: W,<}Xxק;3aG|!!Il.~/aGs-Ю;/C\C9*؇_yo·g_y~֑t?ӼON_9~U5}>YþuV{6gv:30NBP -[kqa'OY<ևy_y>X.PM\G7,ͮ|u~Eʍű>'~gE< p"qY;w#.}?E: rhu6L=;7?זo{ e3%/0ۨN~|[bW^{ĕzݱ]Y ULT?w "R?s)L K5όu ~bWi|)iDzy{{7Kz]k;5'6dsT 7|/ϫ~5AF_&o%]gUx#Ud~-?5?C}1%u5qA_YGJ'mЛ1^Z|t)|Ƽk]V8[Xw]7G)h~.qP<ݸxMN[s?$81dy?O;E8{^(Wh23~^aX$6\#~}|\~:moq}w{WIPez~:ƱL~T%nVz{I'$wƽ7]ħZ}nMvsy#_ʯѮ')toq?7pN:Iq`^(<3yZ5Ws~gZg| ރۼ= ;y$Q.]y,O1ͫ$?ex>.~~8n~7+y9.ųėqE^]'VSB)~c=OvSvmxY |M?f~<֫qi?~yܣ?UM~$CoHG&{.Hc2%u;#C{hOYoד~ w{qS\Gn[ףXxzy..6?vo˻Q8⥴wμJ*w/xm}R3^iTN깞x2~l}y2Kvƕk|},~y:"vlߍQϪ3;B?1^צ#ѽQi<?1]7ßޤ~o MjhgMoMogz_X{ǖO(2]c~̫p<6 7{yn^K{z)Oq4"ݵ &C0oT'eӼOOev4~ߧrqz}}7!x*t^?1;pݕ+ӋH ixޛWqGEnh?Ʊ O#waɯ&=&jO~_S()Dz?%F({dRC{|O~BwS ~+Sm>#>xORNy_nzӋΤcSx~x]0까ruҾ"_C="G?rb.*g$ݯ.~Sğ.9>\7{gzr蟄gf'Y/] 8'ޤOsW5zyuH'5w-z1#2u0Cƿ?k5Sٱ:a\<~S߱ GYσ_{L=]=MzhLJ_ɾuߕӻ7tI(1h75?!b^Ů|hȷ39 wӼ~OW%a p)w(c|X:0.'Ǹ8x|Ʃ]S8˦awПk=JGi}z<_/K~NztDoWɮ&|?3|i tG83'GYR4ևӸ9ѝڽo%w|- k#cׅ߫$ަ#`/R=g8ş޻v?)&^{&| ~{a\hhggze"w)kkO~IA[AM3rinqRͿ;>J&'1Z_qExIs{GS=`iէޮ(=ƁnXWOޡAxO?HqFudž<ڱ~=πr>Ӎvͷ}/!zS/PטIfuWiߧpM-q_NΧ-k/Ymq:_Nxw=wTv:Q$Nּ /T{xz6~ͮ{'J蕌# ̱ߎ݁OGrIy[RJ\d{jK=`\ߦC$c!oGG<wx'W\N~O>OUx'~2#},[-9Oϐoyطob#A8QzmtM4;;p 8k~' eShG /vCa:O̒Yև~r.q!7L㊔_I4^_z5}ʱ*o[_OLx;_[5-~k|܇do8>O;-V%u8 jcrH7ɥ-g62mF連~q\-8erBxqUcrAk^p|Cykfy=nWc*_W!{,ޱӖyX^!My#v|B{׷M`֧4~;Ӽ4N8wn}4Nv1 ɮd]˫y ~o1OɯÇ#*ӽt1N>-7f|Mǒ6;=cyg$;kvƸkKO_g~x26$gܟ |N<&W`\O]UL^7IgnxqOf휙ʻ~]LyߧsMׅ*<1=O=mhLra+U߯^iyb 7ПH٩n#_<;O7ӗ?>SNk~!7S>I[ Փ]!S_;]=J<ǒ=?=^b 'q+!|se̫s%exŁ&)_=#Sj|dLR>/Ƨi}{ܔ?ݍS̮z5֓zIoO[1oHB|i^G_q{?K~~~R|sy,m-Π|V=;&{k'._~lv"n7{.`cc|sHP/O-Z(M;s>!?eMGg4.-^jxgv".#{E~&AyBB; Ṟ>wT=]=ݘ3FKN=6|5}+O_}JWjzWjzWjzWjzWjzWjRg>{+^}JWjR>+_}JWjR>+/^}JWj_RԾx+/^}ڷ_}ڷ_}ڷ_}ڷ_}ڷ_}w^}w^}w^}w^}w^}w_}w_}w_}w_}w|?W?l۞/_ ԏYnk_ <`R@psychTools/data/holzinger.raw.rda0000644000176200001440000002604313663340707016631 0ustar liggesusers} ^y{glgWiKI nobц#cBS6b!v[q:qԩu4m|$ MAs;w=sΉԮPre I&^yƉESW-p: U遵LP* I] 4&($hJМp&hKО#Ag z&KП`< '`fY f'`ny 'X\= F,N$%8<+G%8& Kp|/ NJpr'8% NKpz3g'8' OpA V%0%$ I0`mu 'H!lN%lO0`GL%ؙ`W H숫\J&.G|4 ~) ~9M nNO+ >W|2- nMp[O%tܑw%LܓMp_<O%x8$x4o'~?H&M.O q?I|7&K|?y "N%_&o8M'#L ~% )Y,Q(Kq8Re)GY ,Rb)KX R,e)KY,Rb)KXR,e)KY,Rb)K &HxRá*7{}Yv{|||]uV;ׇjzoޛP.?{~0>n7w]ު;߾UoW*owf`k%`^CNϩ[P`!Ћ9 ([8n@1?Z750/ f鵴k(q\{>`s0?)R<|{Aߣ.9?ځ?سji\pڥ1N22ۣNILmiĭV+I U[օpUk%iԲdc@<视iQ:Ҫ%~V[cK%gQߵX:If=.ʃ%jJt'*W꨽+C=ѨAqV< 覆u>Z>[˷k>^c_6~oG؏_Je&oi(կ nRG}Ȗ:Бf偮8 t䓥x-w݇|ۮm{m:&l/}/{CpY{𶯾mҰvg&s,x|p|1׉/Ra}OSOi{\{K|~uP=g(N7y}^"=|#S~iR稓W}^  n)m_ 縛zNoC<^YqJk}^bV>3>>gw.@z?0G9U<h}~" |x{H]?@ zux3ko,?A~`,{}A^ٵ&]Yך݋~bu ]/f"}po{of|1k7OOyurfY/kEMw 蝻^iq}oqvNhuz)C/qf^Y&fY/i m]z!>An䯣=Z'U o^%_}r|ߞ-e6(MhL/'qwOoୟJK;)pɞ何{& ~xmg ﴥD3bv6|m6E4zzߵ-MKk7^~$j%#v m>C~jOP~kw`k"o%ߑ|m+=ŁY !}5 eї{Jb(LI]oe $x>Q[t/yBYgQ@7̺_a+'v>fk%|I}pv /Yh~/=QX^꣺nVsW.hKʣ5y}3sM(Sp <Εmk&_*k8>HN)ʗ6s]#7_EԳLuc=歕M&\S48_ڌܹUT?,U24k p.E B(|%C 7->ԑLMsuWSGezA#u.< <P;~'}o[\!Q(pHQFѕ_WvڵW X_3kW(*I}Wyi_ *|pz;Yo(dr&|s 4Q^p qSoMC~ C'k^4)WW2v u4F6otzn3h}2HyߚshnmeĩH?N=!I^~^b&_;tH}Nic3ڮk_gw nӉ >\\.ظ4+P<'P,;4:Hj6u|&VTݝ(}}ʟ́I[1׳ZXDhnpu2u}$˗PweXNGE~ls5KI$xa6| `O}+O'vŤ|ƹAwByo%.2x~u^A)şy4x3#]zs)r(m LXvow7>|/g}- 8%Hwu8B& 5m~Q\m.kS{qt\RWڋX%( qO_Nm5Ǐ{}@G8[c]*5k%ۃWj7IkΠ_JZh 4O5hnPHVi8Q=7h~5MAs@:\6RiQpL=ϣ Ki ɗLe'_C]׼5n\oF Q⺶&^: DLz.Ծz <":RsuҽXG[+@*ϫ8ȋ|P}Q! g5Ldod6q!@GIwվa_T_"ʍ sEAu[g \e_hW> I7V c=+8>M2*&d_S %A5QeFzArhWoՙ_uOq8ĺ)HnjoO2`d;I:OI^w2z1܉_N7 uhl3눆녿4PŌ %Y;|Z*'LxlKs35wi34o8<׭^<焚C}i^LS4knIZMXrMkMZϝT_@KZ'&?n6醏3};Kx$Zh~YCxּ[tE6ҚUs:{@"{q`6|V_%͟?xޮP> zk=Cgԟkݤ֭ZH>h(Kt5֥U.ӭD~֞KG~6V>ۄ f]l{5,o"x zUg^v>̶'Wճ<#ϣF{ z&e99}h8 |"?;>gK& =e>>\)gJsk-u~3ua6אFiy:|4q.ǰQjֹypv7"Xz1^K4y?H{9q(VNaԝɸ;x. ^92I@FX[&Rfy?6\'Reo^T?2GK>OW/fɵLSA$-Vp2q^óh3_1g yx͠G0q8<NOHZV ~vjcKyfmz\DNFs9S$}ġR=i7 x 凜(7^WG:<< בsyYvw뾏mՇSf\ȲcI0WU}Z=)ėi<\F}Vi|78`rqmϙN&lف|L0ʃi z)2|r]FVvOS)OOGYWye6|w"Fzvm>_G\K\ 1?xLgѾLgXW˩ Y*_E|ȗ')d-q]B۝^a  -/Ǖ1rʶ>r[_2gFMRf{'-idL66M_wu1axm7R'Vg7_|>I>y|!Bv籠)%Nv׫Yn`~wƾ};_{6G6>î/'x7w_G~s:BNοW;Ig?NE ?|E' 7? ?Am7^Ey~ ~אo'φϐ˜jloGeye~/%-oiHs_G~ݏ)' <!})ߋ'o0R.mqc_#?ԃ1Xeg[l;z-90 w; ;mz:1=V_mc->5o,42^_ymi#a{h;qgB'Y~+,O}^a9~q1>yx_gυqi>BLޯ~6e/^e({ns}?u^N~Jx<|}yx!S*m$y27+Q_}u#P7M9ǔ {3 !{~*>gI㋔Ay(*lе]!}ȶׯ k\&k={c$He e~Bq( <U@G}rg!w|"699~[3y9l\>V>]MEb%]@Cq"x.KGkX_/j,%a]L\_K~lw  1Вm.$<wQw>ۙT~;ȏw |\D6_[)Ze >Bna=&|L+yۑ46IQnlʢ|l7o6Nկm$_j ^];8${W$|__ߓ#Ou!q\veM|fc[CۉwGYeYOm#>϶&(Gu9Ľ,y5i^N\(JD֣G/e[}EUz+ǫg;g'WNs[7:Ʋ%ĭp gJ5ݬJ{fwbD֡S/¿y@ ooPmR ;i}j9ZFD8dAovUU~M%2µ ,r },T? gԊZxLU^p+>guD@qQCޥ28(~D\~]?1Q4ǚSr jCt-_#򩚀[1-OϺPnj=)F[=7D/Z%υOFlG+ϙ}474S)ЖԏOB^4koD[ mHEOW*ྡ=O䟵t$Z5U7x鶠cxQ;C4N>~xdzpeV ([q̕+JpjOV+画1Jߨ*ǹԠnQW߰Pj21E2 G-1Z ujW=񩾫{ŏ( ߕ܍w壭XcQKN}eOò~:1=V)QOe7(n#qoЮg߁|[cwxH t1Fo!iɦ:A&Mh  \cLsh#[M/ѱҊ8g.PL:--Qo'5SzmCPWN:h (6hqM]X_c/۪*3?d!8]PY{r=#FfoUIoC<9¿)Qi-[H\/Lu^gyτҪ"FQrH7xWlO~v3fa:ד(_g(X$mp]?hN~ 82̀GQwi!5g̠C3: [ILLO;zS7SBC ʰs*;g8U\o4ώk^)f[Kp껆vٻP|@Kh'm̙[shVUon og}(^;ts3gW 7E#3z=\ƌ!n>f%~.|i M_i _7A3,y g ÿ52|E)v , 6섟0~B/sgm_?b |>qqf]t L>-U-o-mqilpUբ {r дS!̄5҇\[]_xf{кā~>CoOU+Ns8Bsz  h: #ύPӺFc0|iS~SZo53nx 𿫤~+|֍7MLŭxsgkbt~YjI( W׀V>_c('<qjӼ>ީ/b0:ʽ$]+ F3F:4nHOTQ3㤻>Ǔ2iN1o@{jLG.aAPP .)ʵ).9;vu.7zr:>w+h4܋G1/](>w1 ?4_ꂟҘ:[~F}A֠/k1<ל?Г>Fߕ$_肟]-5Y2\Z7HQ7=j>QypiޣyrcPo>^f_[?$;@{uQhn#>d7ŗ挒Afќ^>}sݺK) n1]9T%A~ =-ᄒzǺ»)ǽU)Z_i1#>q9fx~#ݕ;*c>+VM%5F ]{sAkKPcCU3{5dP:k\m['ūr17[Fi?SySK7+)W~KBhn.n~_5 V,;Y\wfC7ٔ |6b0+? S#l)_:h|wgGY|H.LF9M3]t*,"hϳ_H=-"fx H/3![Q[V&v"ԆXXn|W\irro_цm[uW9q)ޔm ov.bSXTktغk,0mz=ll57j6Nl߼}äW;|lm;lΉV]Я:ˎWmb|ţco޵yReջ/[7_Nbr]'wvc;׭ĺ^llmk۰yT(۵x-VՋVkzJ]KFO߽._k}Mw/[2cj2q_$&6Wxͮ%&2jWJl߸j&\$_۷w}R4!UX~| S}y~*psychTools/data/bfi.adjectives.keys.rda0000644000176200001440000000064413767764760017707 0ustar liggesuserseT]O@EM47$gWT5= 獇)< ӽݝ-Ow39 ,e,zy^8JOhRoa.!wLѣhE:Wmho*[Կ |*4,-Vv4 ª EDSI?!ƽ?K -E%TAZRP!| @SAoĊSD%(a$54?C-Xią&uO:&R$&$)TimE M hArΑ-gJÙA@~餜 h,k`eLhyZjG[%'6[-y~ڄ0_|*ؒueek̷e]C4\qRǏe? hbpsychTools/data/blot.rda0000644000176200001440000000201213605124107014754 0ustar liggesusersBZh91AY&SYM4#yȈH@?@x`w %PF4(CL   4 R$ @hMh@E! z@P@(*J4JB" 4%-)@- ()H- 4Ё( HCfƆ.E聶"%}Z&v@"B|x|2"H3$% wv84k؜hu,?4wRPtE u^OG"fnɪ)+Bhz:RwyƴnƆj+^ꁯP1VcRR4U JPSZ(4Dh:5֒AZŠ z~[}fӫW URSAּQ[mϗ_t8}=ޣv(5iq ":\Gt%cwc:R{bi譬)hNi<дД@@R.AZt墾ڒc8"iNfh}l1wgEoz]E+KA^COݢV*|yn!1Y{هl)s>?9PΌO>?{WWǥ78Bk࿛t:ڿtOz1u#7zo<9z5 ]|KHqyʟSǩy"q\H#F'?1F' <zWk~7o}gϤwwxy>^n=spS3t~W߯oOJwtW>)rBӍ'&#G'7~Ucx޺λ>ٕŵO>8:OOs^0KO͓?Q \w'<'rLoܾ#=IccousE:nrryٗ爏_xqsR,=参)`>>'/%y0CŌ^wD+NO]z͓ ޗ^;[7+I/_0O}O.̘Kw|;>+wΧOŜK25M],:@ ]~>$ ;K<(ϻz@Tyi- s~K춮Y;!\oO./޾j]=&s)9~z4+Wg;St&N[u|dd'_gC~<TψyNT^RS<;'O<ɟH^9I7MzvU4RO'g;=7s)){u`Lч_)N.?O#.\ꋒ=_iW.ʑ=գvK{Ly:!x(TJ%> Ϻpꇒ|^}˧G˃ΎC=Tȗ'!gOכܾ+~}._9|#w Qo$_1.= wW);=;zrOyrk~~&?7Tu>N3Iʣɾq7O.owAᅧ#op?\b@wW'ˑtS|;?!#RxHF/}Ox./7Ay_IN3}onLx_.忴ccRy/(fN~qrtpy'۷,= ;%OZ<řG|S/^bF'OSћꅋ[swě.?P>/Yu &Hx])g߀u͉g.>Y0N1cŃN S0w~ru.St83'qv#?.ޜ]~])[O'|:}9]^s;wWM@#^rx) fN5{._|ˇBR>t~/=p݂18ڇMe?䇔o={CEׂ};Ṯyoߜf=9tt4n}~/]KƔ$kY+wwz$|oM Oy.fLybȷ{ I>7C=ӿ?LsLN~(up]o1_CX'npOL|i7Ω~>7^>;d%wHt؛'_.%TLu3'Zw}i^I;\yuSq~NO's!޸$|&=|O]|:T'i7bSS魛wɯcj=N}q=YToR?A~R<~8'IvvNėRcoʳ_S=cCzb?zJG"N '#ɟbʷ+:Ngop>WGv؛_+7ʣ7+]q%ީ~;17o}Kvz18|C'\>4n ]_X~gPN⬷,'ԱOpߩ f?C}şٓ^=O姷'= zB|zr}|oqqO93OIz)_{MH䯗N1#T{%?v['=|9.A:fLtzk+<#Oނӝs|9<."]׋M~{8z/͋9GtO9i?S^K sWO{u|%9z?`ޛ?U}>S_t0 yןS纓z{j']שߛW)^ 7N#]=<=_ ^EH`t|{I/ }gn??{W) ss'O1|W~s7ON'}FG|I7? wckRGquwh0Sa|s^?gs\¼:?ϧsuxj]D?t'/wo>9NTWo~i^9z]0Q/4ϩy!bցuII^wns?y`/_>8_z^z;׍G75~{n]f= @9>?;Sn*| ?MIwŜwz0:?!䟃Y'x;&~[~`9:i_780u޺۔=?.Βp>Ͻy~c1z/fwS'SM/'?T_וG|.u;:MyjS0_;}VMz?vqv&K\HtzFJ;|zܼn{Y-}q/ޓҋ5ߦUwYwq]̺W:_}ȇ{Lc"Gou|:rktuȏ']vgj'OS8u|L+N}w>y\ϝ0d?Qwo'_'n9{t7ο\oR)ɯwN{|H~z>!'H|'楔o^I|zN:._^~9瞻%;|s^.o8vO;!ϝz}/םs.8z>O:.F׏C<4`Sߎ[a)~9u[߹nu)O_ϻIZ7\<髗8Lu˳7yBs͓.Oq}{zL)ߺr O:^=M^`s ¹vqHXGɎ)Ϲ{`)7օ$OM~s%S=\^n>Hzu}Y ;|N!Kt]>p#>W?yo<֛{0:{.~ G:po';uvt/ MJy#'g7`}do'WRH\o<qr5o['~?q_\Ŝ#ߎN9ީ~Nwy?>_#^G/յ$_{S Hr8=<=ʓ t|;qiԛW|{ܺqt1qjI)%%Iyd/WGR >mjuc 5/}M19T74x!\$W>(2C8\M|Xڿ<:.^ɯcwvܹd_EWf}H}p}]^AD<]ss?7>S=$S'_~T^?sut3UoonL~Ձޑy0ћ_<4NgH7{T5wp OoKxGg0w [_:~\rtqXo=O:{IOjK0&i~?'8؛{''W|shjuf?)zn:$s%~Og g=wy7=_qb0ϵSqsډ|{Ko<9C<}nIt< ~uݱ~J8Oo|R|^q[LO:8Sֳ`i=?|\| #]wz{E# ҝ<| 뻈scңGz{py׭!9G{?/^0~S0qRv?r?ik-Gg/py}d⡸|(7\\OM;5?/UsC>qc:[kuI?it~Ɠwu:>c0'o1շzz3s+ŧ3%= {<Ǽ5|Kޜy'Mn?S%%8Y/pΝO7j,Ou|}~'R|>7NND?}ܾ`C h‘ToG=7_0f=IWʓB~sf^tMu.>9!/yn\#S?FW]s37)0Ogj>tsk?\/;ZSuv䘞K:~zo*~wcs6̺_;\o~q3ҝ~'s~6`$7טxs['~^;}:9 %%]'=wLx ]Iή)RI5Wz3%K1I./G;{"Gꗝ8|;$H pΏxހѝK~=`ޛ]z-wzk#_Fgn.wvKrs]{ʧSO.To87S.SJxsr>y8&Zwvrgz1ɯ{T%qsoj\“ꚋԷ>~.S^K8{?c.\o'ɿ󃁧>,#ɗ}~qs?I|%O褾q]Ruř<ޱ05w%Q4:s3?G7Ot]05:?OONT':<呔ߝ9w:a玏xsc.N':Jyw}|'srqLi78ř\ XO  wG;sr~JOyK5 ɗboMoϹ%q|~؛/׭s>;z&s?Ň;ԟNO)zy7>5^?3>`Oy`(;GxG'H˗[O9!\|"z9S[\"~'JF|nG<7.9<>Iҝ/$CHyzr8v/v3ϻ1EǷq9sCR] 3zopҽ#.&~}2ɯ{됓+E=GLH1`Ly+S~r~|)7S\{GSA\x]'/dis.']^rR?1:U~לz(aLӺ>jH?I|9}'?K萟@҇ =^\ZW>޺'ԯ{Iuu$5c]z?_tv![:!GztOgI IW}ciO/7SިC~~(._s9}8||x9^8Iu{G󺣋z՘~y}0ԟ_=ѣ7`Lɳ/Oq}w-ğ;ՅT/\?'G$M/9Wdn?/~$~]Kx'KvZOS?ٛ{TO\svy9yu||9`= '>?S}q]9OxJ؟oo33=ZҟWc]׉^:9lSgnLҋW~jἓv>)Nn}s%'5uty뢳.?'8WG~Y&I:u^o\W)o;ͧn?ٿ77˺?n?Kwjw_SԼKYכua]~ sjS$߽cjHzZ^W<75}7jy7~Ou'md+_{ue0pyg>/>sRyٳW_S׺p\5:[7IvM{N)_:v쿏/揩Y7Ƨuĺu=&⟚;w.g'5'rRN?^y{FX|SZ%_7.֭+qnr#Ϲ7{YMu|OCW?٩~<{qZ{uʻn\Oӄ|i<՛˗SrM ]>\(:7UǽWLWǭ_/E֣uC77Sg޻wz|j7Su?_YOx7y^=~|w=N*߯w)/Owzl<:~/:ϭO]>>@o '֡^^N`֏ΗԾ`j^Zۗt^No*uud#u坺O:Os3J^';~\ywq8ɮT>&D/q{˭;${GGQ:%zC_1[g?/O~Vǒ/S<ց^*:ޛQ |%:^t|;}k˹xo׮֗T?Ky7stzvyWO Mz]{i!S=OyћZ{ I-yێS륫s>hS(fR>q))oI)ޜωG=˗)o:5տ{yb/ίR&`j^WN:Px%)_?Ź?u%?k^?NϕwEo]K~šGo=јIy8ObRL덓:=.|&ɀbFWՃ Cyz?GDe{Hޑ8(a7|J8pYO#vy$jW&?uSWT{oy{.ϗj}r0]_NG~?Ƈ8,Nit~8sS)ޜ<)gw<9)'zSoq?y98uvJz9/ŝwcsKG1W0O o.{ ϧ~Mq35Yw7o9J:'E?;+n]5zT*|nrL'>4Gs߂9T*8OynƔw~S^zO)zE> atupn8%W]^8N.Or*^»:"8v|9i <()&=g9:7Sܒt Spu~/{E'}gojzqSͷnM;> 7לzeǏ8)//]b=*J~qM[ɮN8KƳ_!CçKoci>5Ns?֓^S<;9ޫ\~x.to-f'>~I޺sroOͫzˏNͽu3 Oo>齿:>\uxS9z{ŬOy_o?L|IiWu\1׭S_'_ߥz|Ic NN7wOXt ޮM){?/f=IuO#_g%O>7gWަ?Un.?9=L&8:~$a3>oY> {6Uԇr{1JtzsIoR~7:{$~Su|C||'?-8S~I{?卄M?W |oIy7/{埊T~snj|:ZOSsM3՟ƃ35w,[WۛG4S^LyyMT{CEG'srҿ{(υ{DމyTHz.{gݩuO|I#18?*蓯^%|G:O'%gʓD/\zCoÝOyij~p~&z'I+;.8Nwy`!gt9Yvɑ䷄ӜR.Ky.O:ۛ3֡^M){CzLwY*_9QNSz@8Gn}HE7]Ir99}}!O>]\']>Jp.~9Usr8yx.R<ēΑW-]Ӕ`rx"\~8&OR|yfj(rago h=^PɯӓO!I??ɗ3E8ggGszI~!^w>œn o?{b{3Q I}~ūS'I{oG:N.gùƧ#\C:.xn0c8׷8 .?|N8Ro??Wo~W99w~WS.՝B}/\I)_ֵίRT:7S?˧ȯ:hSp_sݜx%7%~w\~}&.&\L)'Û{9Sywu\*;9ܺ3y<׸8u|ss5ě +ם>ӜR&^R?/H|p,'=N/#w']_BwΏRCo|.hs{njv~<9 ? fLϟ\S|sG/_tG1 FrS#).y8į˗8I]9'c. w}b֝_;7&{yN)G:z owӺ_:vzpSSSﯽɯsyƫ/g)1ŗtOIsG><ᴞg8w;_.O:AɯAݛ짺9c}JW??=w\߮~:}𼣓Jv*X}zꎫN/ŬMu-{;͉gc?7!]>{|\`1N>orwj#}s]N _3!=N;y;9s&wOy|( ? ]?S0O'8Orc1Է$%y?9~xq橞%<\}^fTg}ntR}:O޸KhjosPÂ뽷99SMqty^p_{Q;/Suzܛ_ݵ.O9ttq<;xIqF\oǤ^Jumj9ǎ;:8U?SG'~Oqu| ൞3M7埔_o^It=ÝOϑgt_ϝ>7p 7}ϧ~1^v睟4Oz+o{@ohN)4ODSfS$ԛW 8=nŸ,s.w'$~| q8a|sMu"Ƅw}F|u}^|3w/t~4Uȿ++#n]qg}sc;_00[n)O;K~<`/q'~z[7N7N9N)n8=uMr8M`*` K>ɇ;2ϻG+񡱷NQʻO/_sCgWǷ'ֿ^Zϧѝst{8r~~啩r{X`9yzp<Υ1a_8{89>gˇ{0':'=&~i F7~u?~W_?ՏRHyp cO|z'yT׆O^x}_§{h1sꖣ?~ٗy4|&i_'qƔ_D?>գ9>Yz>:~R$ZG>GKqOzFt0O 3Osy?TƛdT~=wRONW?fwnxyϳkՋ]z寗uOo~Rv nL|/?S֍gSu:T/'>I%ۂwb)/WkwݻyܼR~lmxq+>] wju'T3COr] wh uԃ֯EN|NfjːG#}兾WpuҹZᮂi}܀4otNtGp^s8/\Gu:HN> ;9tG?_K}IK;^X7 ::C{ig_:YW!p:8KtZ'#!(9>@4>GIS'+uSsveX<>ߥY|~@g~f_~zc|;\t.nID⽆㫐/V'9+oנ7w/iwg&?Ob?sDK:U'7@~yiuѿݼ/yyأ\4b.W|4jR~εOzӾjxs?=a[xD;OУbu.7*_~UQO Gxσ?I-\/ = N'WCݧ>Gv>o~Sms{ӏ/ːCNŵx@9my E:/oYp$(~hw-g/'8KWOT:|jϼl_[s*^^|x~)3/<_9R#q}:*/dg2ǯ2ͺskyqWsGc>`<|ˏ[Q'M.ȡ0oz>x WУ_̟ҟo~+hdzyݑ>uG\[0_#>FxZ~"?c&k #hx`7=ޱN_aϊ[8vXvr}>5_oZ޼h}?`c`ߨs'8_L7_֏Ty_e_ºoOEGJ8ƣca"g O7س~30^KS/üM;3_L;Dxx9y?KW /g̣_>CC?s3/K5c?|>ǾuDOC{3K=hWu>>}(=_gޅOߘyd>y!F[_R7a|Q7L^ރ骧kR>er:9GG%#r`}~Ό{')FϷ(Ϫ|~2gگEt0^Z3u<]ޓ( .:wcӓOWqW5 /AFy$׏C׾{$Geo#9WwK^~*O{o pҗr)eU^'4{u=WoG(NOօ_zW'<| {§+Gr0?^$5a.>W^p /DW߄K{9.OWėO§9(N1osơImg\g)_yQ}|3Z_Q<]=9+~o7 7Y<8Qv?g0^¾ԾT{.Gtuyz /shac:JGKƛ|wWڏ 8WyAXc|/iyKβ9d0Z}|/;xv`_en.48Gbc_ \{*Kh&OWt~sb/ !og? |/{UeW|:qu_iy[`}>8x}Gh_:79ձ}ﲎ/Nzl-9W9棋ؗ?u._/=]@֭Sa֑yMſs~E{S?4g=Ϫc@yq|ҿg3K/ud:_V~xhGty/(WZ{t ߤCyKn>v}+ROO?zK:Ϲ<ϺĒ} үJy!C¯pފ_(ŧ/ Yŧ9sozϽϿ$>|~}Y>}[w>6V8A.:o'W4:#>s}g.}'AW0e?鏿[,>΀φGSwB/pzNgz=>Ojck.1?_[@Srʏ_OzoE1Ty1"[܁ٛ~/Kvo>\GNZ)¿XOcq.<%!wzV9}凿~o#A#ey{~-y/DGvhq}5F%q߼/|S);{~uՑ%GHnu ffWI:򫦧:g<H^3Ut_#A_+ؗ]]]G|KeNʮ_xZݓsY :9IrC{5?9#sMăFwhO_H_wc ӟy>q{"ZG2OOfB>a󭿃|}8j-IȯMKuEy"<= y\VsO˯a˿+}_| k}Siϓ^5߉>ƙJ}oYKy>Y>ߐ|Kkuls|^r5g*n?5ʭ!n{./*|?y86<>C{K<"Kໍ#'r7:u_K 7{4yӾ*{rmH;M??/Г/z~T ه }1ow4J;'#HMrx|x^˿^ O~}F~}'}Fn MEߣ<ڷ!OSO +e&N;%?]xy8w>D,'m mq,x _HyyDd7A{ =ć8D nDŽѿ#$ ?x ga֩OyAk%9HyEuy#~FE quzn U^@?~LX_;G i} _\;{Lgt9^u}ss?_HI.zuuUw sƻFŇηI3GEH;Ӫ:^zj\xJWwf·q^pxK\Ǿo{ODrNKuE0ǹ`QviueH ˞cu_^{oU9\v$g.c^_:WV=w|?F=/}Kn߭w#?'xjx(7 9_y?7WBN{}z}_r 7`θ~K~Ǿ[=y?tߧ^dw$=]=>'%~ OWh%O+=nou_xNI7WM/{^W]ohזoInPV#y*o~|ouufϛcWG߻"}G2HGY;onUv/y >o){ⓟ{ ֛UZ9;Do_/{l߭5=WWKyz)|⧞oܼ~?g7]7?O7̡w~>Wowxt>y K`awk|?7/9߻y_qrWGzobွڜp{@z=/?jW^Oij{Uo^ߒOv85euŷ%jh]#r5Y^+ۛe捺~ʟ%Nῤzzyٵ鯞2*XUӐ4^;,jѕ_Ksz ^V{'oq e' ϩ_!٣=ǭzTO ~KWҧUvcw:\ox$O{kKqT]tZiuP%R?.U./d'7>!kUoBy*I?-((a'K։'UGwZ|)PυYKNJ=TW_j}7v/A~ycKI~ZBкT|/®gWT%mv#ڣCsyQxz,l2{Zg()>ԇ3i*}՝Vlqo Ŗh> e JY)=gS({*>_?s NuA~#WYu؝nɅGϟEYE<tk[+N| >52^Q=V~'[u)>gl獈yXճ鹞ںJ|ԸRT. W(RϭP>@|7.nBz?^_U?*Sl?PK|$3?O{VIoz@'nG˛wd'ˊ*luF{yy?nSҿ:+UJ7Z]$?{M//^_I|Omu~ %*ӥ??Cu<ݏPX9^nɧ?ۼYL^Ͽ ~0bxP{;C^W9G̾%zj~.Y⵷ڟX}o/[-|m {Ghw.п Ƃ7(-迹X}c*՗KKgB [ Izco-0#o/!]0[T,Y; Y텆yw[yw-|w˻ Q}S5z^]8w^y{ws7XӼzU#io/1ͧr9Uo-)%[%]):Q>h^('h{h;~_s|'jռz/np8lv; _2=SCݼ7ٍ_=W{o;y'/;+mql{dD7m~ܖ<ٽ}o'no'5ǻmoݾέ'Ëmѓ ÂͻifOnlvzvwG敶0>g[ԍ5ٽe/;;7PtlwPۛ=jw?Bý;wwgO41n,l]ߌʻhᨹ[޴"|ݭ;{l=ڿ3ԳfsѨ6vح;-4Fp Zovgwich-/mmϙk ,pZ:jع{w6wQj5*e\dvQV` Zd\k{so|4Ob1ƘYmos^wfϟ`ѓ1Q9qPwFݍ;*c͹KjDp~X4nVĹ%{5k;{y'(_>xoG ԍs?i5JGBrpכcZݑlcϷhUwb`swG;2#}(n|dt[۷Vwvٿrvb4Zӷv6>yί׿:`cgclclna-93f%>/Y9y䩇;_/4pN/x.lEXom186S#H<lcؙlܾ?)5MzL;>;cqڟtwLp_oOƨK;>b{;{|wy7ccx4Fo ۣqks젧9oLn|恃,}3є][n+W#|Ӎ͍~zա`CHt:j|3;#>zUc΃ٮ6/==ƨE[ae{̵$?x5k{;VN)Lm|y{s)1% 7[Gݝ%9,,;oF;̅ý7B]x޷7էEʽ5$w5sx^-b;۷GyW\As9Bf{ʝ|1.]o|={Jj·ǷyJd]<ۂWwZff˱=zYAڰ?=بώZuua;+7?p?ask<#qu`~|~z_ ?< aャY ?: pyg8w_.:ն}i[dOR ''x'|C5񳃖t͡t~٭*7˝2[stv_.wvNnɼo~}W4v_4v,5vyc;oժav Ƨ߮xP?[_s8duӕ֌^f,Z՚|њ * //u>8~җՍe_.}٧/r_Se_/j_㕾E_O}}?B_Oe,e_.W>\6g[҇mٽ^_js%7 ¾?yEsjsAgT~\]tsoL@$y*j^x6f߻8< .j;vdkcqJQ_,Ѝ G$~?1-ϷË5. .- ;̋ purW!t/FlU^_v5~>\ʣBqο[WVIU!WVw,x-eY'RgV>z˽~kT_mg7Vճ}-_gzzVZ{o}oW*8')鳮D[[f߿křt>W>e՟*^Bl]zv^oǒj}[Kϩ< _ZY'kz}^V5.^>oƽ~{V?ǥw|YAOy{V^Z7hm?U=ky{4dM:泪u`]o;o=kdVv՟uv\ūsI_xG57vݿQg7>$Ꟶ^xdIwϟ>Tݟk';O~^COk.펫]~fyzJywUţk+?RyOqn?C5^Uw[hzws ^?h׭^WTS<|}V[VI#eyA$ ?YZhvOv_V;UUGUDJu6rI 7:k}VzqEV[kWR=IƱ՟T[^TW֮ԾjGC6T*z]Ϫ8VnmOoWvrS>z}[+_Z>VoU'dżOz{~~4h׷빏?lz޸UzϾ7ٷUŷyWSI$Uڍ'ʟQZ{#o65~ב/3*\VƩ7V=?h^Ʃ$vu<}Z}ɟQ^Ux>ĬZ~ xAmgm_T%kxϭDo;nvqN5Q%gU<:#g׾W&~Z{Ht~I8ƍSǴ+xoDhyp7VI8FM;Ʃ*Ӯ[VZׯWQW^=Z|ycz>j:ͮMQWﵻֳ_4oyʽ?~qW}wR؋(/<Ż^o-U5hy'{QGGq][Y׽qJ~:]~4/~8?=0T'R|+}ϒ}oyU|Fqj U;ָ]G8{~>g^-UP44VDK*/ϚioxyNo-[]Dۣ+Xi]V4WJϪϫ_ӳJvdG~yIu{W.Ǭ" ɏj\IDyt-vTk;/'^cÊ'MN/rzz%U ~Sm~|{JzG偪Gף+VQWƩ7~|OzuULKjyt]v\5?? i%Ƌq',zzwڱJ5>|_kTi Vo++k=ʓ^?hx񾿨cw}/ۿRy5D]?Vwx7TS8>]zA:g{kߪyW* _L+(I zQ>Z#\Uϛg~xGo_R|{KGk4}O^oƭ\퇪}ӫh펓lEG-iy]5o[7v|u굶_Y4VާUI__q{k5{_^oIOhH5}VD~>P+iqn~Iz/&ҼIZϻnųT^O5פ5_vڸf5k~1$?K;w?l|eyS:}Syo=%A{{8ߍ]$ūUT]wEߟ3IN㍷l~ƓV=ݧ/Kzk>%{-K;˻Qj\;o?YewyYIQwTw4]/~&yW;{G._{Q}d]xZwn/+~p8X{׵`cWgc<]q*VZlX7yGí$Zo$OvOO[UxZ%ZS*򇦧ڎ׾(wm4qn_G"ާª~Y%_hZ+>fQ=^oק:/Il?Re*/Xj8Izl\kg]sMOs~zyگ|3͎UK~Xgk݇YE@o|XVr/zh^DZ/[˭R[:In{V?xۯMť׏vҸU}1OD{Hq/>Iog4~/N'IVXjsn{M_D߬V>}*fivwŷ>޷՞Xϫ%w%eFx%GV=뱦O˗EU[tcc-^w&~~Ě/}Zly׍%Uϒxǧ*S<ê}xο롫xkF*'Xq)O[Hv4]uhzb7OUyJ*cMUo}dwڒ5έ GqGȫ/[_g+Vƍ6?^$;V?4{Vռ+?a~fgKz|R~SεgU磪r͏doXyQ7qClkh$:xˣZ߫p鼖G%[{WSO]c-_jvv(zdJlEEh;[k[[YO|4./!S>4}ZY/Z{qViuީ{Y|yj'kSk*.~׎yhxy&@6V"~惨_UuT /ZJz=IUq[ˣk}ohT%{y?*uDCkgѼks^z[<%ʭu8E+V^iʫF?=|zfv5{U<罔%GxUחI!ٍtGUDoZkټ߬x^ś4=vY!˞w_o4}?.Ϋ7Y^]IvVUzO8ky)V~~tOayG5?dySgG}W5T}Jtt /%WIƫG$Ƌu%;k+QED oR}/ά%=h$=oz[Z_KzީKv^"~Zj7ze壨=Il}[^$],՗kxy@Gc$_9O]Dy[_7jӚWzxkܟRnO֯*hvI獓*D3}+UqhY6ұU4Uzv߉ov~gQ/${Q5R/xkz<śA߫x~Dݧz^-:UzzFVw|6gwuE,Nz^$duJwʫ*GTŃRqHqh*;k}M}xgvśOߒ_T'__I4}qvmk=/O+hh~yUYUkR>$Uqr+Ϋ3m/>NU~ᒝ*\GZEjo_u~=h?Y%<78eKXF_|=8ծc[yS~lދ֓{'կz_V_)h*:Th6k|o͞y[%}zUxڵo(T߫/~|ުIovO_/JQvYQw5?SWOIS3$g%~~Tӷgk?Ѹak*>Gw>$D]KKV}UY}y>}^6zUIJv㍋Q}]kZy;$zڕ7oծڿyeֿqԟjٕYywV}WX;Qxy.˛u5hd;VT;~/'kjU[ ;])nw4?$}vZIyj]R'ﺎwSFK}~V߮vevGk}.:EIw>|Owżޅ~UG55|ݧ_uwj*w]w[Eӧ·zUպ5hz$R{k;<.*Uw6z]C\ӯwga>h{\K˫y6P%x}zTɮuMvRdW[UӯG\6XŊhjڑj]|Wދ=o|U7.yt]]8^g٧]?UUCzDUݷxZ]U߇xםvwi?zg+?yEk_VOt~Ԟw{DyܻHv|[[y9|&ke;?Dy2~U>_c{CXgo=_=qվUgoHk-{yW[VUzVy:ͮ_-}>qm}PTIjugˎUCVa_5ΣUgV]4S(T}"_|T_>:UzL?JZyּ`j~DeĮqz?M>yZGV͏}Zכw/cT͗YWU(׮;D'S*rff|[]vf?ZxyZ6NwǷv\*z>;/Tw*߹wUyW~ʻzy>z_Q5^vSSO*V{U|Uzvݧ?_g{"%y/ꇗ7B]o;}_elzVQvR}Nt>ϮI4,l׼z^~`moS^||{&UPΐ[W>zmQ[}V1YӷG[ZG.ފӮ˪(?[o>ʻG{gGWHͣj}~[wvRi%z_džjUӗdyLh߫+Vyׯj~ⰺ??|uGzgYd[T?~g_~OwϿ?__R_ݯ׿X:_x'c><}z~_~ׯu~=M|s/}Kw/}K_{^K_{k/}5{^}_6F/ecZWj1^xy0^̗2_v|i/|;_gϗe|^q<^Zz^~_Wt~i_o~ω'~kX{=`kX;`퀵X;`퀵X;`퀵k 5Xk`Dz;vۡ*:\01`bĀz>`bĄ &&LL\ń k&MX;a턵NX;a턵NX;a킉 &.`₉ &.`"nXa통&na????[r`@@@h۠>8>=ޣK8>=c8>8>8>8><(<8 _T7rC(7rC(7rC6oCjPnY Q    ܐ!B!B!B!;FzqHT   Q Qݐ!!~!~!~!4$Ӑ|OC7zCiӐ|А|O;aɧ!4$Ӑ|OCiH3 i!4l6` lf ;ّ|:OL;Ob;ہv #tob;ۑ:v`d ;Ȏb6;ف ;1]dGf6;ّq:Ȏ4ӑf:`v0i6;فlv`f6;@vd ;1d ;P؁u@ziqox@6-){99 lYp4 5@6@603 g8lC0468 iC0445d iN@~'i3 g `hCImNpHj@! m"Mmox&@6 dM k"}Ml"}Mm>H/&@6 Md MmoxH_ЛH_(@ ' '9 @Nr '9 @Nr '9 @N@ozЛD&@ 'P8&<\6'9 lN`sn؜ '9 @Nr @ @x'yo'v^5!՝@ @  蝀 蝘ZZZ l l l l l ^?F'Du"NDԉ:Q'"DD] s!`.ܡ\ s}K.|~/ׅ\Bp] u!.Dԅ u!.u^\BD] u!.DԅFB] /^x_XSpr/^x_ ~auau/[ /@(_ ȋ @7(bo bo bo LoLLxoxoxoxod81?888$n@o@oFf辁辁辁1@辁辁辁辁辁辁1Io`ooooo~?A{IOͶn~}}}}=Av{݃d oF:lt-7FdluV'[w?HkA:?H O?Z&ٚt-N;$d$'=IvO{ݓd$ٽEv/{݋^d"ٽMvo{ݛd&7ٽ. ɃA y!xcoLI17&$4xcoLI\1+&q$a?LI0&$~a?LI0&7&$~a?LI0&$~a?LI0&q$N 8a'LI0&q$N 8a'LI0&q$N 8a'L⁓OIx? '$0~OI~O?4g8 '$'a$0~OG8 '$~$쟄OIx? '$tq$8N⁓OI? 'a$쟄~OIk 'a$쟄'I#i(i]윳HشkwdV4UԯHJ*z[^bm;b=*3M N rK'/z@z}7++I+tyx;M[gVNӞaxRf'*Fõ ێhmVj[x5OM҉qqZ^?naU /DU>d?#E]Q[nа]WoAR M['}FwʰT0 nqo5q—{ \^YE+,v x9'qz Д.{[G_Mc )QiGQOqg^Ytf?BQr5hՈWhtu:ȇIjHz{kA2ËӲ!_ZZ4 'ʼ"ɢKKMda~dVE^^?L$ JBq6(;j̔KH\v}UT (~6Ou?APO}ҹg!p,釻w>RWCO-I|9#Ⱥ>h/E봨Qh=1# =C>v2)\3B>4~~Wme q3rPb^6b#f5Dmoґvq 33zpHv,; oCO-I-:t`[ɷ-q}iah9y`Ȋ+c9B:/h=pS%b?F|cT>3`t`$ľxo1WTEDuW$GNPUr`S7H.RԂʖU˥!٥?K-oZPn~ݦhɻB%q?U8 bqޞ,j|vLG![fUk:~{g! gP9adV$_7:Ն{>g#kZnHUs ?z=o>rK4O↟/6C +[s~'q-JŨ=|HHd3?zp4k> ױ'u:} _f3^ zfM@2\nv<cp=rz;KddLdY^=sln{[wQ2{UvJڬ.ElQ L*z{DuiSץ;g\t~m]Pջ-*BQQ'~oR'$N⮛D4t>dr>7\~"jQ6 UWz;%oB@nȝ~>_!NvqxV;5EOe$q׶1d[aw^:l.,ॎN]!ߒ[8Z\ ѨUnBࣗy*vX}~ yG efO_je{gz?X8!S2(uڕ'ɵ6g$iok.vQWWo]QCܲIM;Olzi}WA%s{ ]#LssC_@eƺ(2*qMv{n* iL[݅'~o-wy:Y~:z:w|K~rnOpKAL(0OUی>1KƉ%[Чډ(C(_<~lwGNB'cg~P?Wox?yWȷ!'$N9oh͕wi|`LiQ5Cf>2뗐oOiGzgQa- (P qx\> iwgҗѯPSRQQ'~|!'$N!wڹտ0 :GNɊɃ#?u䏓!* yҾn[#? $~mZi7íA^ZP'TDO^ /SxA*tu' V!~rnOz^'d/!'$[ET!nGUˮp+Emp(PYw<&)3s e+Է}C +[s~'q+d|"U{(iW+J >2ס;bO34c 澿ѳ֖Do2bnMI_FBO}KG=DɻBU𐰟[8~'qd7'MD.={!7"rX w>T}B=X oX^P-/s0E>$&?Wox?wE[s~'q߭M7Ni\e.Ⱦjr=7T1l-SWh통IJR}17a@MI_FBO}KG=DɻB%q?U8_r`PYy<&gp4tط/V5QS'܄y}6'} u<-uu' <VO$֣-~h,<.5Y%ASE7!;∟ok2c| lO2x[>!O-yɹe?S%C'١w:|P\Uok2c| lO2x[>!~* <ܲI/qԆ=3!p皦/xok2c| lO2x[>!O-yɹe?S%7CD_WoNJ~_xok2c| lO2x[>!O-yɹe?S;~z}Wxok2c| lO2x[>!O-yɹe?a7U[;MT PMB5I̅jdob,M,͔e9QYNRR4SLO3U>T4SLO3U>T4SL'-]m+RQm--.hnƎ/~F@psychTools/data/USAF.rda0000644000176200001440000000401313545446323014567 0ustar liggesusers]V 8\ =ITH۸]ޤVѩ jk`жIsJhmbݓ-eEDΘa413sbenQe }?7 q1 1bX:,ݩSX:㥞),=/[6~4~x|I@Yo*-ԩu|Aѕ%쫵bIѴ;ab++Y=aTQ6̐d'}ݼP( 3しKFjۙ'G%_\J[)IlQ2%_zaw3_Kէ]_{P}Jgۼڍ/(_O?}̌vDxu+u~<#n'}K︔&g͚i4Qc ^oKN?Ckäjiϯq)o*4"emZ~anŹkIfg-?Cۥuҏk3H3\.k5=~J;W [SS׌Hjvf4{/НT8pz=)>뾷:@̋??AE-*}ihGs'3[eCmBRS9UCT'yQ`5.QHH]˱_ |0/x?cl?2I1%զҟ|)V5x_.5RRX¬%Kus.^$#2 ^|@RZޡ/2}TRc}~ˊlV+TE?9ڮG 5j7fPm[ϱ$Yuc>?9-C}WƬ(Us_~EZIG=Ի@^uøG֘gzzA좣|ގG$\Sw |0/x&Ǐ,MQӐfUuYn4#ͧ[+[䋎RR]JAԯ]3N$IO|C}ߍ *KKg-"|8w1H/{wxIݵn==J/~ޡ/>I}l7-&) k?6TIn0) yw |0/x]P]L96r>uNϗv|fyB^? fZ'ЉGnL($G1 ;??;>?=7yˉp ñ&sx;\/0 9a\3}Z8G4_n[ psychTools/data/affect.rda0000644000176200001440000001136513605124107015257 0ustar liggesusersBZh91AY&SY`M^@?' 3`)@Xgi[]?{4*Ѯt(URwOhL fL44@ T@#mG@U?*xH @h14I$j2Ad 4 @PHe4MzH44< @4zz@dzR=SF@rUNPr2 V)%JE!5v=fk4[\dO d2PD ,I&t *,xڢ V**$Dn:U.iN7<|=*{_uXk{5$y"fpبSq_"Jyn]L7ßWC%bP$%$Y;v98{Țhb2ZHjؾo,Q[ZWyG^ ^B禮)%̀͝l P'Z1کn  TQd;;)a`Tj#2jdHSmT\5LCEZey Q͑9mXcjoVUt&JP T=aj"˗H\U~$"_BsTA tm܉q I _ PBnͺ[9+9BTyMXgWBG<` vcQ½HNob_9wQ;& M`ECLE-mDu 0cHB}, 7X65o 1LM$4ZqS`X&FlaAb yO\S_[*A{21`nɇ .$hj$ EcPaZr1_\8y %Zޭzs}HHguwcڝw.gDS"sje^T{b{v D 0fĊ8C{DQ(WY<ڐ`v7HYfYju`FFtYmդK̞/*qYߢ'ux1hio4gz<"Q BLbP2%Q~tgrPI-?f35Nx-d= hv6V}W-OS68zk :uw>@P Xk LzFeհs@Li(+i:*fuT>%I]Hϣ@(k0a,bd$z# 7&˽vo`d\Ud^UK$rEhELizJb#[妺Hxui<6=55xwRVb-6Rt+fgG=dt|]f6kr^ӄ/"wT7r(UޏlQ Zf gt3E]&V xUKB)<#| ۪J+r$z<9Ϻ'z/$*WQ^^/nYEt ̒+Q(PyllUW5mj( 9&ܪ5'měim ŢKm B_njn jޓ񩋼1)EV$+sB&SYbIR)dգ}jx)zdm 3Np]eYjT<@C0 >6ZjÛ Ńjb.W,1%춢XW=vmSACqa{5bL"&[fTWl-6j ɩ2Ù>Ks& 6= [J :<זη%YxBu Sl=K"Y=XeaeX1|\2k%d.5QzUdnUN}V!.0|o-gGo2 YvOd@loRcH=uʳ`|^>)k3IvG^9< 29| QĺAeNg)#A0lX-%E )y=%zR(dY<촇+[yPMY8\wk;mGZ(WX3L0u#Ü1_GjheyB}JY`z3xtr:TCN¤$ M*$So_.Vh Z!|vjBUB#pqL-k^%&Hv@n5R!jq`\|6wEXƿz/qB'.=˶hWm.V$ Z l IB R> Um-r%8"&"lj|m1+~P#e~W>/m oZu۳gvI@B(z]E AXOkQ"1ehďgj iAovD|fCv}nW NK)i!5!R^e$'( jѺ@ :IxA`noݻv`amm*¡PeLU`S @κ=B@QvlAUXc\1B8 {.  Z-֋nfdLc f{lUĕ$1ĕ G)UcrMA! U>G. LJ_X]M̊q/&ao=œ&[N&[ Nw/g58dr[j<9=kJ“8ӹ3LhԓT?@!#: @m*I E0i "#(HЪ#@d &@䊣 (E\LUV[k;~D6%w7qu’փ4VESe 13q  bAUR*DNE1Gl`! ", $%1'y CU Mp@`R df0 !AH9NqѠ 8޷}nyrMnz.=WK5K/9IvbkY1u304E*Ml*tՆQ bL 2\iy}?Ƥt0pPyKOK}/;I$=-DNXjt!V+]00U2)`X"mSjZ=Юx@bZ%cuaTDmBi"8bnb0vFT,L44@a Cd,^+mlLHQ@d ֬PSO g.ZF%bЋ S٥LN- +PJ8tP++%`+*ʤұeV,+QD`V,1*JECNM2m'mRsCLQaChV '' ̡aPUBBc/+(I&9$$Xm$PC1 j i4 Qi+( AJM5Y$'=X(m Np96@d8Aa $YHJ8J@f QIJ%%Z2h)$41FIm4xAJ!t T0HpɷlT Hd)ACK&\( k$H(Eh(kAd@P]0YɄ4+"i bj5CJ1+JBhd*@$`TpP[,&e`Q b(:DEf`h`*bJh"" JbIj&"""j5‚bj|q"")bfh*jhj()jHYƊ("**(X(DXh (6  z;-34Ԡ*mCx~`"<r)7X"]=O%A30kwG~dpr @֯϶IU\ц%˒ۘ`׹z} B(%U[`gR'UbHTREgK6"'( fOG vs?傢AP8sGn#RY5NR^HBU]NA 3&8@'AZ,fsuq}%(/^R"RS|)ʁ29a SVYAvw95aVS%<SP:ާZhv9(H@ZM+O$z%nc~p^=u@Z28e`ATBe'[`" [l5O/@ 䧶懋% \N$aJ3@$KbAFݟ.p +psychTools/data/burt.rda0000644000176200001440000000102013605124107014766 0ustar liggesusersT;KA^'jv1)xNs j:Q T$ࣰRݛoA 7h5 x?5V4Ig2z׭~>Zums+N/rVXZT.v,UGǺ?3Fhv]Mq?Dst{")3'+Kp.O-e}Wrӥ3t>)y1?xYO]y[ }?xdY?zn)6@/x`hǃq>y9ݯ mDzE?P? }9uuż||_@/~O(7y0/a~W߃)+~A=Oog\M'aSVv#N&̳gM::KSp,7sI F|8HnrL([>?CpsychTools/data/spi.dictionary.rda0000644000176200001440000001051114025677271016772 0ustar liggesusers[{ŕX6 `Bhpl$o_L&B1eb2iWOQG/ْɬ8szےA|A[]Uu^߇~:qN8'%y O_ԏB/^8E<}ђ)~; k?@D?>"33& 2u࿀_| xx \%'ρ9?!Su+ րS; & t1t t0+>~ w L[ \F k 9 s?o<p!* cY3UWC+2Omg#?80I=S4/7Ѭ,3~l:ԷK]Di`Mlے~*d%!鈒_+$)!JRA~I)E.umݶ{vC[GfP_G,eG#kت6Vw%]ykJw JBѽ=tmUazto`' {լ/;Eu_Xؠiy :hSdV@(z h } ,zذ9lo9 Ɔ1=CPn.X=vPie]Ϯ -ozeӵ DYcmvah5=tZжKYڥhgN5 ;Ck2fnTZM]kv5=^Jٰ {=fб mk~hߞhh ;hX4 Zp]645>+`kMDϓYS U6SK}'(~gqHC>r$Er 2 ;r;co#r '%#g""W#\w "!'#g$g8GAɉ ɅY əsAI9#r:?ϑ',ȵȝȃȣ?#`=r:iKD^MFGNGLFGENI~p _#%撐7~GIHnH p3XrSrZr+wGɽC?_e[/8NII>;+czxV &o$$'͐ϓÒ;̘މ;52J=?FYS?'YK`Q<=P^Ϟ[űB[rE3fsݕ= ؟LThhq;] LЍb*zP>N0J*._$&YD&*RwQ#?lfn2Wj4U%O|a憁Dum<\PdRz$>OB:D(u1@\,AԈb,j FkKaPc[g\~T`+[4G;PbIʥ+oC*Qa^F  u-Wew aUS=I4xG)`ٲDqRnijs/,;L|yb4q϶Jѯ[B+;1‽8- t M;$Q pţJwD+3a 'x[4hwbnaF^>fQwAQ=?Kwu,NaϴKŬD3^`b.*V\[ґG/7J8. RA7W~7p1x F]Z~;PkXU벐PH0o/ϱ_;EzHT01}Yx*$Z`U"ZKkfJ[u~>T{]h,A6o\ho ôxFGŔ1`̈́X%>S,o.//۱79qj;VN.])ƨmK`w! Cfw4V|8@[]q+qV̇ݿS}2Rv4x`1=Mh h%&Š.z=l.M/,/b{#?M^EI"Hrqu+ #|?ͷ"d:]Geo #IXk}K!f%e\y-Y z7?ۼ?)cC'ў)s>HZΊK7U-=dD{*njŲ)[a^$!^@>C"Lo1*G7J`.-fWr]{ "2JuK79q𱱞\yv胈?ُٜ~P'q~ԼJqoS}ދς((yy ±lͽtC+xuZ3zOw(6{_EKH)M1 Cj[}@Ic jV/kP{bzgu sW#I84f!A;<ЕL+UCr ^&Cg2c`fR4#[&j"MVBD榄Mg $^}̳U#ҜāW_^ҲLaG{6#w6/[j[g_єȅxuF]}O c_t?Jߢ cy`]zٕ3ɜgZ 6Ղ>5EM@ ,(aE Ñ@EK&y([@-8TWrdAW-nۚ^@jVgtH͵XxlJTх1 l!zc92@S,`\{{!Z2 E ěIyL6ѱfro}G8BG %)؅M>63zP۴!oݱSNDSM:&} (Ig-fͫ{ rB3GJAMârG:2T#:vUz׌aO#=ݍLmT<\Ȩ0X"W9եGZiݝC}wo?5866xt' +|Y"%IyD YJ"8]0\2{9G( b8 ^K >$g[3IA-0ͫ 86Mm2ɘA5@o8G.i9j UU7`3#qfK}>OЉ~%aj9 ľN=͚8/CXï=G̗Tˡ&)ia1kї;_*(>RnpB~f?&Iurn]߈l8.gg7 xt1^)*L} o"\ y_Sܒg1Nnq'<zߵ>gAb?R\ɾO}R(b dV a%Kgɢp/Q5/\^+~:u_ӕ9*+u~/FjV޼>ϭy}MXyfMjycP}ldžpldžpldžpldž rT3Ţ}IdeZ438]̋')^;G{v$:Y\?m2Ӂܨ5!%⮾0g. E‹R@6O~񎖝a%FRvVD-JȄ-)R%)37z2MC*@f=oEA̍gwT)dWUf4'2W\zReUq"?Efɜ>!DiYK"Q`L?2 Gf4Y-"/E&Y><=Q}&SŪdA##"EdtE]-G;'HfA%2Qu+*G&t(WON 2娖زbDHiN,гUOd4xW䠃i [UzQ t"CO(̴rɞ9q2?O0+-R"ֳ˪R$f,D۶UK >$>[D.L!n='3c/'1vuH.:a?psychTools/data/colom.ed1.rda0000644000176200001440000000170614403737035015615 0ustar liggesusersULa>ƶMn!IKк6I{̱{s:sD$I5?$I$ !jΝv]5w{pj|<~zq,_QR)lYc_emC3YN ܧŻ(?_>ݠGꝫzʯg}>Xylu>}ZWF8K^r uW0(5fXpEwE3 ԪƷTJ2uN|ب}Ŕ 4Qj][Mxb̙((Y[PzlSlE=c|4<,') ʲͲGʍu(+(-9R7pB. Q~._}G2ⲵ$cuJ6ztHEQ?(@]\s\b\U:/Wz\ƲӜ.@xERhP7n_/wԽiw4)'|YW-|@7p3oE9W?d&ys_tn_'7 )㵫V)WQW')#|@Gy`Noӟp$[9I9z@ ݆x1R+XGz>55V&)^cm{Kd-d?M54Du[iP-\emSu !\F3;"8|aOJ;dXuܢm.E+T14:jn^dp V/Ct nM~XpsychTools/man/0000755000176200001440000000000014552047405013202 5ustar liggesuserspsychTools/man/Athenstaedt.Rd0000644000176200001440000001561014275501277015744 0ustar liggesusers\name{Athenstaedt} \alias{Athenstaedt} \docType{data} \alias{Athenstaedt.dictionary} \alias{Athenstaedt.keys} \title{Gender Role Self Concept data from Athenstaedt (2003)} \description{ Athenstaedt (2003) examined Gender Role Self-Concept. She reports two independent dimensions of Male and Female behaviors. While there are large gender/sex differences on both of these dimensions, the two represent independent factorsl Eagly and Revelle (2022) have used these data to explore the power of aggregation when examining sex differences. This data set is also useful to show various graphical display procedures. } \usage{data("Athenstaedt")} \format{ A data frame with 576 observations on the following 117 variables. \describe{ \item{\code{STUDIE}}{a numeric vector} \item{\code{gender}}{Male =1, Female= 2} \item{V1 - V74}{self report items (see Athenstaedt.dictionary)} \item{V1}{Gender (Male = 1, Female =2)} \item{V2}{To pay attention to ones appearance in the office} \item{V3}{Offer fire to somebody} \item{V4}{Paint an Apartment} \item{V5}{Mow the Lawn} \item{V6}{Make the Bed} \item{V7}{Hold the Door Open for your Partner} \item{V8}{Do the Dishes} \item{V9}{Do Extreme Sports} \item{V10}{Tinker with the Car} \item{V11}{Talk about Sports} \item{V12}{Assemble Prefabricated Furniture} \item{V13}{Drive a Car in a Risky Way} \item{V14}{Listen Attentively to Others} \item{V15}{Tell your Partner about Problems at Work} \item{V16}{Play on a Computer} \item{V17}{Set the Table} \item{V18}{Watch ones Weight} \item{V19}{Care for a Partner if he/she is Ill} \item{V20}{Play Chess} \item{V21}{Meet with friends at a Regulars Table} \item{V22}{Watch Soap Operas} \item{V23}{Take a Friends Arm} \item{V24}{Wrap Presents Beautifully} \item{V25}{In case of Vacation with Partner Packing the Luggage for Both} \item{V26}{To admit own Occupational Weekness} \item{V27}{Work Overtime} \item{V28}{Openly Show Vulnerability} \item{V29}{Babysit} \item{V30}{Change Fuses} \item{V31}{Clean a Drain} \item{V32}{Take Care of Somebody} \item{V33}{Do Repair Work} \item{V34}{Change Light Bulbs} \item{V35}{Wash the Car} \item{V36}{Ride a Motorcycle} \item{V37}{Cook Meat on the Grill} \item{V38}{Thump Carpets} \item{V39}{Dust the Furniture} \item{V40}{Buy Electric Appliances} \item{V41}{Go Dancing} \item{V42}{Go for a Walk through Town} \item{V43}{Go to the Ballet} \item{V44}{Hug a Friend} \item{V45}{Do Handiwork (e.g. Knitting)} \item{V46}{Change Bed Sheets} \item{V47}{Sew on a Button} \item{V48}{Do Aerobics} \item{V49}{Watch Sports on Television} \item{V50}{Talk about Problems} \item{V51}{Play Parlor Games} \item{V52}{Talk about Politics} \item{V53}{Take Care of Flowers} \item{V54}{Make Coffee in the Office} \item{V55}{Shovel Snow} \item{V56}{Read non-Fiction Books} \item{V57}{Organize Company Parties} \item{V58}{Do Home Improvement Jobs} \item{V59}{Plead for the Socially Disadvantaged} \item{V60}{Buy a Present for a Colleague} \item{V61}{To Talk with Colleagues about Family Matters} \item{V62}{Make Jam} \item{V63}{Frquently Ask Colleagues Questions} \item{V64}{Decorate the Office with Flowers} \item{V65}{Pick up the Dinner Bill} \item{V66}{Shop for the Family} \item{V67}{Have Problem using Technical Devices} \item{V68}{Care for Family Besides a Job} \item{V69}{Watch Action Movies} \item{V70}{Cook} \item{V71}{Help your Partner Put on His or Her Coat} \item{V72}{Wash Windows} \item{V73}{Do the Ironing} \item{V74}{Do the Laundry} \item{V75}{Put on Make-up} \item{V76}{Femininity Scale} \item{V77}{Masculinity Scale} \item{V78}{Femininity Scale} \item{V79}{Masculinity Scale} \item{V80}{Pooled Scale} \item{MMINUS1 - MPLUS}{see the original Athenstaedt paper} \item{\code{FBEHAV}}{a numeric vector} \item{\code{MBEHAV}}{a numeric vector} \item{\code{Femininity}}{a numeric vector} \item{\code{Masculinity}}{a numeric vector} \item{\code{MF}}{a numeric vector} } } \details{Ursala Athenstaedt (2003) reported several analyses of items and scales measuring Gender Role Self-Concept. Eagly and Revelle (2022) have used these data in an analysis of the power of aggregation. Here are the original items as well as the three scales Eagly and Revelle (2022). The accompanying Athenstaedt.dictionary may be used to see the items. See the \code{\link{GERAS}} data set for a related example. } \source{Ursala Athenstaedt, personal communication, 2022, provided a SPSS sav file with the original data from which the complete cases in this set were selected. } \references{ Ursula Athenstaedt (2003) On the Content and Structure of the Gender Role Self-Concept: Including Gender-Stereotypical Behaviors in Addition to Traits. Psychology of Women Quarterly, 27, 309-318. doi: 10.1111/1471-6402.00111. Alice Eagly and William Revelle (2022) Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees. Perspectives in Psychological Science doi:10.1177/17456916211046006. } \examples{ data(Athenstaedt) psych::scatterHist(Femininity ~ Masculinity + gender, data =Athenstaedt, cex.point=.4,smooth=FALSE, correl=FALSE,d.arrow=TRUE,col=c("red","blue"), lwd=4, cex.main=1.5,main="Scatter Plot and Density",cex.axis=2) psych::cohen.d(Athenstaedt[2:76], group="gender", dictionary=Athenstaedt.dictionary) #show the top 5 items for each scale select <- c(psych::selectFromKeys(Athenstaedt.keys$MF10),"gender") psych::corPlot(Athenstaedt[,select], main="F and M items from Athenstaedt") } \keyword{datasets} psychTools/man/msqR.rd0000644000176200001440000004535114302236103014447 0ustar liggesusers\name{msqR} \alias{msqR} \alias{msq.keys} \docType{data} \title{75 mood items from the Motivational State Questionnaire for 3032 unique participants} \description{Emotions may be described either as discrete emotions or in dimensional terms. The Motivational State Questionnaire (MSQ) was developed to study emotions in laboratory and field settings. The data can be well described in terms of a two dimensional solution of energy vs tiredness and tension versus calmness. Alternatively, this space can be organized by the two dimensions of Positive Affect and Negative Affect. Additional items include what time of day the data were collected and a few personality questionnaire scores. 3032 unique participants took the MSQ at least once, 2753 at least twice, 446 three times, and 181 four times. The 3032 participants also took the \code{\link{sai}} state anxiety inventory at the same time. Some studies manipulated arousal by caffeine, others manipulations included affect inducing movies. } \usage{data("msqR")} \format{ A data frame with 6411 observations on the following 88 variables. \describe{ \item{\code{active}}{a numeric vector} \item{\code{afraid}}{a numeric vector} \item{\code{alert}}{a numeric vector} \item{\code{alone}}{a numeric vector} \item{\code{angry}}{a numeric vector} \item{\code{aroused}}{a numeric vector} \item{\code{ashamed}}{a numeric vector} \item{\code{astonished}}{a numeric vector} \item{\code{at.ease}}{a numeric vector} \item{\code{at.rest}}{a numeric vector} \item{\code{attentive}}{a numeric vector} \item{\code{blue}}{a numeric vector} \item{\code{bored}}{a numeric vector} \item{\code{calm}}{a numeric vector} \item{\code{clutched.up}}{a numeric vector} \item{\code{confident}}{a numeric vector} \item{\code{content}}{a numeric vector} \item{\code{delighted}}{a numeric vector} \item{\code{depressed}}{a numeric vector} \item{\code{determined}}{a numeric vector} \item{\code{distressed}}{a numeric vector} \item{\code{drowsy}}{a numeric vector} \item{\code{dull}}{a numeric vector} \item{\code{elated}}{a numeric vector} \item{\code{energetic}}{a numeric vector} \item{\code{enthusiastic}}{a numeric vector} \item{\code{excited}}{a numeric vector} \item{\code{fearful}}{a numeric vector} \item{\code{frustrated}}{a numeric vector} \item{\code{full.of.pep}}{a numeric vector} \item{\code{gloomy}}{a numeric vector} \item{\code{grouchy}}{a numeric vector} \item{\code{guilty}}{a numeric vector} \item{\code{happy}}{a numeric vector} \item{\code{hostile}}{a numeric vector} \item{\code{inspired}}{a numeric vector} \item{\code{intense}}{a numeric vector} \item{\code{interested}}{a numeric vector} \item{\code{irritable}}{a numeric vector} \item{\code{jittery}}{a numeric vector} \item{\code{lively}}{a numeric vector} \item{\code{lonely}}{a numeric vector} \item{\code{nervous}}{a numeric vector} \item{\code{placid}}{a numeric vector} \item{\code{pleased}}{a numeric vector} \item{\code{proud}}{a numeric vector} \item{\code{quiescent}}{a numeric vector} \item{\code{quiet}}{a numeric vector} \item{\code{relaxed}}{a numeric vector} \item{\code{sad}}{a numeric vector} \item{\code{satisfied}}{a numeric vector} \item{\code{scared}}{a numeric vector} \item{\code{serene}}{a numeric vector} \item{\code{sleepy}}{a numeric vector} \item{\code{sluggish}}{a numeric vector} \item{\code{sociable}}{a numeric vector} \item{\code{sorry}}{a numeric vector} \item{\code{still}}{a numeric vector} \item{\code{strong}}{a numeric vector} \item{\code{surprised}}{a numeric vector} \item{\code{tense}}{a numeric vector} \item{\code{tired}}{a numeric vector} \item{\code{unhappy}}{a numeric vector} \item{\code{upset}}{a numeric vector} \item{\code{vigorous}}{a numeric vector} \item{\code{wakeful}}{a numeric vector} \item{\code{warmhearted}}{a numeric vector} \item{\code{wide.awake}}{a numeric vector} \item{\code{anxious}}{a numeric vector} \item{\code{cheerful}}{a numeric vector} \item{\code{idle}}{a numeric vector} \item{\code{inactive}}{a numeric vector} \item{\code{tranquil}}{a numeric vector} \item{\code{kindly}}{a numeric vector} \item{\code{scornful}}{a numeric vector} \item{\code{Extraversion}}{Extraversion from the EPI} \item{\code{Neuroticism}}{Neuroticism from the EPI} \item{\code{Lie}}{Lie from the EPI} \item{\code{Sociability}}{Sociability from the EPI} \item{\code{Impulsivity}}{Impulsivity from the EPI} \item{\code{gender}}{1= male, 2 = female (coded on presumed x chromosome). Slowly being added to the data set.} \item{\code{TOD}}{Time of day that the study was run} \item{\code{drug}}{1 if given placebo, 2 if given caffeine} \item{\code{film}}{1-4 if given a film: 1=Frontline, 2= Halloween, 3=Serengeti, 4 = Parenthood} \item{\code{time}}{Measurement occasion (1 and 2 are same session, 3 and 4 are the same, but a later session)} \item{\code{id}}{a numeric vector} \item{\code{form}}{msq versus msqR} \item{\code{study}}{a character vector of the experiment name} } } \details{The Motivational States Questionnaire (MSQ) is composed of 75 items, which represent the full affective space (Revelle & Anderson, 1998). The MSQ consists of 20 items taken from the Activation-Deactivation Adjective Check List (Thayer, 1986), 18 from the Positive and Negative Affect Schedule (PANAS, Watson, Clark, & Tellegen, 1988) along with the affective circumplex items used by Larsen and Diener (1992). The response format was a four-point scale that corresponds to Russell and Carroll's (1999) "ambiguous--likely-unipolar format" and that asks the respondents to indicate their current standing (``at this moment") with the following rating scale:\cr 0----------------1----------------2----------------3 \cr Not at all A little Moderately Very much \cr The original version of the MSQ included 70 items. Intermediate analyses (done with 1840 subjects) demonstrated a concentration of items in some sections of the two dimensional space, and a paucity of items in others. To begin correcting this, 3 items from redundantly measured sections (alone, kindly, scornful) were removed, and 5 new ones (anxious, cheerful, idle, inactive, and tranquil) were added. Thus, the correlation matrix is missing the correlations between items anxious, cheerful, idle, inactive, and tranquil with alone, kindly, and scornful. 2605 individuals took Form 1 version, 3806 the Form 2 version. 3032 people (1218 form 1, 1814 form 2) took the MSQ at least once. 2086 at least twice, 1112 three times, and 181 four times. To see the relative frequencies by time and form, see the first example. Procedure. The data were collected over nine years in the Personality, Motivation and Cognition laboratory at Northwestern, as part of a series of studies examining the effects of personality and situational factors on motivational state and subsequent cognitive performance. In each of 38 studies, prior to any manipulation of motivational state, participants signed a consent form and in some studies, consumed 0 or 4mg/kg of caffeine. In caffeine studies, they waited 30 minutes and then filled out the MSQ. (Normally, the procedures of the individual studies are irrelevant to this data set and could not affect the responses to the MSQ at time 1, since this instrument was completed before any further instructions or tasks. However, caffeine does have an effect.) The MSQ post test following a movie manipulation) is available in \code{\link{affect}} as well as here. The XRAY study crossed four movie conditions with caffeine. The first MSQ measures are showing the effects of the movies and caffeine, but after an additional 30 minutes, the second MSQ seems to mainly show the caffeine effects. The movies were 9 minute clips from 1) a BBC documentary on British troops arriving at the Bergen-Belsen concentration camp (sad); 2) an early scene from Halloween in which the heroine runs around shutting doors and windows (terror); 3) a documentary about lions on the Serengeti plain, and 4) the "birthday party" scene from Parenthood. The FLAT study measured affect before, immediately after, and then after 30 minutes following a movie manipulation. See the \code{\link{affect}} data set. To see which studies used which conditions, see the second and third examples. The EA and TA scales are from Thayer, the PA and NA scales are from Watson et al. (1988). Scales and items: Energetic Arousal: active, energetic, vigorous, wakeful, wide.awake, full.of.pep, lively, -sleepy, -tired, - drowsy (ADACL) Tense Arousal: Intense, Jittery, fearful, tense, clutched up, -quiet, -still, - placid, - calm, -at rest (ADACL) Positive Affect: active, alert, attentive, determined, enthusiastic, excited, inspired, interested, proud, strong (PANAS) Negative Affect: afraid, ashamed, distressed, guilty, hostile, irritable , jittery, nervous, scared, upset (PANAS) The PA and NA scales can in turn can be thought of as having subscales: (See the PANAS-X) Fear: afraid, scared, nervous, jittery (not included frightened, shaky) Hostility: angry, hostile, irritable, (not included: scornful, disgusted, loathing guilt: ashamed, guilty, (not included: blameworthy, angry at self, disgusted with self, dissatisfied with self) sadness: alone, blue, lonely, sad, (not included: downhearted) joviality: cheerful, delighted, energetic, enthusiastic, excited, happy, lively, (not included: joyful) self-assurance: proud, strong, confident, (not included: bold, daring, fearless ) attentiveness: alert, attentive, determined (not included: concentrating) The next set of circumplex scales were taken from Larsen and Diener (1992). High activation: active, aroused, surprised, intense, astonished Activated PA: elated, excited, enthusiastic, lively Unactivated NA : calm, serene, relaxed, at rest, content, at ease PA: happy, warmhearted, pleased, cheerful, delighted Low Activation: quiet, inactive, idle, still, tranquil Unactivated PA: dull, bored, sluggish, tired, drowsy NA: sad, blue, unhappy, gloomy, grouchy Activated NA: jittery, anxious, nervous, fearful, distressed. Keys for these separate scales are shown in the examples. In addition to the MSQ, there are 5 scales from the Eysenck Personality Inventory (Extraversion, Impulsivity, Sociability, Neuroticism, Lie). The Imp and Soc are subsets of the the total extraversion scale based upon a reanalysis of the EPI by Rocklin and Revelle (1983). This information is in the \code{\link{msq}} data set as well. } \note{In December, 2018 the caffeine, film and personality conditions were added. In the process of doing so, it was discovered that the EMIT data had been incorrectly entered. This has been fixed. } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University. } \references{ Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M. S. Clark (Ed.), Review of personality and social psychology, No. 13. Emotion (pp. 25-59). Thousand Oaks, CA, US: Sage Publications, Inc. Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Revelle, W. and Anderson, K.J. (1998) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008. (\url{https://www.personality-project.org/revelle/publications/ra.ari.98.pdf}). Smillie, Luke D. and Cooper, Andrew and Wilt, Joshua and Revelle, William (2012) Do Extraverts Get More Bang for the Buck? Refining the Affective-Reactivity Hypothesis of Extraversion. Journal of Personality and Social Psychology, 103 (2), 206-326. Thayer, R.E. (1989) The biopsychology of mood and arousal. Oxford University Press. New York, NY. Watson,D., Clark, L.A. and Tellegen, A. (1988) Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6):1063-1070. } \seealso{\code{\link{msq}} for 3896 participants with scores on five scales of the EPI. \code{\link{affect}} for an example of the use of some of these adjectives in a mood manipulation study. \code{\link{make.keys}}, \code{\link{scoreItems}} and \code{\link{scoreOverlap}} for instructions on how to score multiple scales with and without item overlap. Also see \code{\link{fa}} and \code{\link{fa.extension}} for instructions on how to do factor analyses or factor extension. Given the temporal ordering of the \code{\link{sai}} data and the \code{\link{msqR}} data, these data are useful for demonstrations of \code{\link{testRetest}} reliability. See the examples in \code{\link{testRetest}} for how to combine the \code{\link{sai}} \code{\link{tai}} and \code{\link{msqR}} datasets. } \examples{ data(msqR) table(msqR$form,msqR$time) #which forms? table(msqR$study,msqR$drug) #Drug studies table(msqR$study,msqR$film) #Film studies table(msqR$study,msqR$TOD) #To examine time of day #score them for 20 short scales -- note that these have item overlap #The first 2 are from Thayer #The next 2 are classic positive and negative affect #The next 9 are circumplex scales #the last 7 are msq estimates of PANASX scales (missing some items) keys.list <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" ), HAct = c("active", "aroused", "surprised", "intense", "astonished"), aPA = c("elated", "excited", "enthusiastic", "lively"), uNA = c("calm", "serene", "relaxed", "at.rest", "content", "at.ease"), pa = c("happy", "warmhearted", "pleased", "cheerful", "delighted" ), LAct = c("quiet", "inactive", "idle", "still", "tranquil"), uPA =c( "dull", "bored", "sluggish", "tired", "drowsy"), naf = c( "sad", "blue", "unhappy", "gloomy", "grouchy"), aNA = c("jittery", "anxious", "nervous", "fearful", "distressed"), Fear = c("afraid" , "scared" , "nervous" , "jittery" ) , Hostility = c("angry" , "hostile", "irritable", "scornful" ), Guilt = c("guilty" , "ashamed" ), Sadness = c( "sad" , "blue" , "lonely", "alone" ), Joviality =c("happy","delighted", "cheerful", "excited", "enthusiastic", "lively", "energetic"), Self.Assurance=c( "proud","strong" , "confident" , "-fearful" ), Attentiveness = c("alert" , "determined" , "attentive" )) #acquiscence = c("sleepy" , "wakeful" , "relaxed","tense")) #Yik Russell and Steiger list the following items Yik.keys <- list( pleasure =psych::cs(happy,content,satisfied, pleased), act.pleasure =psych::cs(proud,enthusiastic,euphoric), pleasant.activation = psych::cs(energetic,full.of.pep,excited,wakeful,attentive, wide.awake,active,alert,vigorous), activation = psych::cs(aroused,hyperactivated,intense), unpleasant.act = psych::cs(anxious,frenzied,jittery,nervous), activated.displeasure =psych::cs(scared,upset,shaky,fearful,clutched.up,tense, ashamed,guilty,agitated,hostile), displeaure =psych::cs(troubled,miserable,unhappy,dissatisfied), Ueactivated.Displeasure = psych::cs(sad,down,gloomy,blue,melancholy), Unpleasant.Deactivation = psych::cs(droopy,drowsy,dull,bored,sluggish,tired), Deactivation =psych::cs( quiet,still), pleasant.deactivation = psych::cs(placid,relaxed,tranquil, at.rest,calm), deactived.pleasure =psych::cs( serene,soothed,peaceful,at.ease,secure) ) #of these 60 items, 46 appear in the msqR Yik.msq.keys <- list( Pleasure =psych::cs(happy,content,satisfied, pleased), Activated.Pleasure =psych::cs(proud,enthusiastic), Pleasant.Activation = psych::cs(energetic,full.of.pep,excited,wakeful,attentive, wide.awake,active,alert,vigorous), Activation = psych::cs(aroused,intense), Unpleasant.Activation = psych::cs(anxious,jittery,nervous), Activated.Displeasure =psych::cs(scared,upset,fearful, clutched.up,tense,ashamed,guilty,hostile), Displeasure = psych::cs(unhappy), Deactivated.Displeasure = psych::cs(sad,gloomy,blue), Unpleasant.Deactivation = psych::cs(drowsy,dull,bored,sluggish,tired), Deactivation =psych::cs( quiet,still), Pleasant.Deactivation = psych::cs(placid,relaxed,tranquil, at.rest,calm), Deactivated.Pleasure =psych::cs( serene,at.ease) ) yik.scores <- psych::scoreItems(Yik.msq.keys,msqR) yik <- yik.scores$scores f2.yik <- psych::fa(yik,2) #factor the yik scores psych::fa.plot(f2.yik,labels=colnames(yik),title="Yik-Russell-Steiger circumplex",cex=.8, pos=(c(1,1,2,1,1,1,3,1,4,1,2,4))) msq.scores <- psych::scoreItems(keys.list,msqR) #show a circumplex structure for the non-overlapping items fcirc <- psych::fa(msq.scores$scores[,5:12],2) psych::fa.plot(fcirc,labels=colnames(msq.scores$scores)[5:12]) \donttest{ #now, find the correlations corrected for item overlap msq.overlap <- psych::scoreOverlap(keys.list,msqR) f2 <- psych::fa(msq.overlap$cor,2) psych::fa.plot(f2,labels=colnames(msq.overlap$cor), title="2 dimensions of affect, corrected for overlap") #extend this solution to EA/TA NA/PA space fe <- psych::fa.extension(cor(msq.scores$scores[,5:12],msq.scores$scores[,1:4]),fcirc) psych::fa.diagram(fcirc,fe=fe,main="Extending the circumplex structure to EA/TA and PA/NA ") #show the 2 dimensional structure f2 <- psych::fa(msqR[1:72],2) psych::fa.plot(f2,labels=colnames(msqR)[1:72],title="2 dimensions of affect at the item level") #sort them by polar coordinates round(psych::polar(f2),2) } #the msqR and sai data sets have 10 overlapping items which can be used for #testRetest analysis. We need to specify the keys, and then choose the appropriate #data sets sai.msq.keys <- list(pos =c( "at.ease" , "calm" , "confident", "content","relaxed"), neg = c("anxious", "jittery", "nervous" ,"tense" , "upset"), anx = c("anxious", "jittery", "nervous" ,"tense", "upset","-at.ease" , "-calm" , "-confident", "-content","-relaxed")) select <- psych::selectFromKeys(sai.msq.keys$anx) #The following is useful for examining test retest reliabilities msq.control <- subset(msqR,is.element( msqR$study , c("Cart", "Fast", "SHED", "SHOP"))) msq.film <- subset(msqR,(is.element( msqR$study , c("FIAT", "FILM","FLAT","MIXX","XRAY")) & (msqR$time < 3) )) msq.film[((msq.film$study == "FLAT") & (msq.film$time ==3)) ,] <- NA msq.drug <- subset(msqR,(is.element( msqR$study , c("AGES","SALT", "VALE", "XRAY"))) &(msqR$time < 3)) msq.day <- subset(msqR,is.element( msqR$study , c("SAM", "RIM"))) } \keyword{datasets} psychTools/man/big5.100.adjectives.Rd0000644000176200001440000000420513767767265016763 0ustar liggesusers\name{big5.100.adjectives} \alias{big5.100.adjectives} \alias{bfi.adjectives} \alias{big5.adjectives.keys} \alias{bfi.adjectives.keys} \docType{data} \title{100 adjectives describing the "big 5" for 502 subjects} \description{Lew Goldberg organized 100 adjectives to measure 5 factors of personality (The Big5). 500 hundred participants were given these adjectives along with other personality measures in the Personality, Motivation and Cognition (PMC) lab. This data set is for demonstrations of factor and cluster analysis. } \usage{data("big5.100.adjectives")} \format{ A data frame with 554 observations on the following 102 variables. \describe{ \item{\code{study}}{a character vector} \item{\code{id}}{a numeric vector} \item{\code{V1}}{numeric vector (see big5.adjectives.dictionary) } \item{\code{V100}}{A numeric vector. (see big5.adjectives.dictionary)} \item{bfi.adjectives.keys}{a key list} } } \details{ Procedure. The data were collected over nine years in the Personality, Motivation and Cognition laboratory at Northwestern, as part of a series of studies examining the effects of personality and situational factors on motivational state and subsequent cognitive performance. In each of 38 studies, prior to any manipulation of motivational state, participants signed a consent form and in some studies, consumed 0 or 4mg/kg of caffeine. In caffeine studies, they waited 30 minutes and then filled out the MSQ as well as other personality trait measures (e.g. the Big 5 adjectives) } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University.} \references{ Lewis R. Goldberg,(1992) The development of markers for the Big-Five factor structure, Psychological Assessment, 4 (1) 26-42. Revelle, W. and Anderson, K.J. (1998) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008. (\url{https://www.personality-project.org/revelle/publications/ra.ari.98.pdf}). } \examples{ data(big5.100.adjectives) five.scores <- psych::scoreItems(big5.adjectives.keys,big5.100.adjectives) summary(five.scores) } \keyword{datasets} psychTools/man/holzinger.swineford.Rd0000644000176200001440000002435414436177204017503 0ustar liggesusers\name{holzinger.swineford} \alias{holzinger.swineford} \alias{holzinger.raw} \alias{holzinger.dictionary} \docType{data} \title{ The raw and transformed data from Holzinger and Swineford, 1939 } \description{ A classic data set in psychometrics is that from Holzinger and Swineford (1939). A 4 and 5 factor solution to 24 of these variables problem is presented by Harman (1976), and 9 of these are used by the lavaan package. The two data sets were supplied by Keith Widaman. } \usage{data(holzinger.swineford) data(holzinger.raw) data(holzinger.dictionary) } \format{ A data frame with 301 observations on the following 33 variables. Longer descriptions taken from Thompson, (1998). \describe{ \item{\code{case}}{a numeric vector} \item{\code{school}}{School Pasteur or Grant-White} \item{\code{grade}}{Grade (7 or 8)} \item{\code{female}}{male = 1, female = 2} \item{\code{ageyr}}{age in years} \item{\code{mo}}{months over year} \item{\code{agemo}}{Age in months } \item{\code{t01_visperc}}{Visual perception test from Spearman VPT Part I} \item{\code{t02_cubes}}{Cubes, Simplification of Brighams Spatial Relations Test} \item{\code{t03_frmbord}}{Paper formboard-Shapes that can be combined to form a target} \item{\code{t04_lozenges}}{Lozenges from Thorndike-Shapes flipped over then identify target} \item{\code{t05_geninfo}}{General Information Verbal Test} \item{\code{t06_paracomp}}{Paragraph Comprehension Test} \item{\code{t07_sentcomp}}{Sentence Completion Test} \item{\code{t08_wordclas}}{Word clasification-Which word not belong in set} \item{\code{t09_wordmean}}{Word Meaning Test} \item{\code{t10_addition}}{Speeded addition test} \item{\code{t11_code}}{Speeded codetest-Transform shapes into alpha with code} \item{\code{t12_countdot}}{Speeded counting of dots in shap} \item{\code{t13_sccaps}}{Speeded discrimation of straight and curved caps} \item{\code{t14_wordrecg}}{Memory of Target Words} \item{\code{t15_numbrecg}}{Memory of Target Numbers} \item{\code{t16_figrrecg}}{Memory of Target Shapes} \item{\code{t17_objnumb}}{Memory of object-Number association targets} \item{\code{t18_numbfig}}{Memory of number-Object association targets} \item{\code{t19_figword}}{Memory of figure-Word association target} \item{\code{t20_deduction}}{Deductive Math Ability} \item{\code{t21_numbpuzz}}{Math number puzzles} \item{\code{t22_probreas}}{Math word problem reasoning} \item{\code{t23_series}}{Completion of a Math Number Series} \item{\code{t24_woody}}{Woody-McCall mixed math fundamentals test} \item{\code{t25_frmbord2}}{Revision of t3-Paper form board} \item{\code{t26_flags}}{Flags-possible substitute for t4 lozenges} } } \details{The following commentary was provided by Keith Widaman: ``The Holzinger and Swineford (1939) data have been used as a model data set by many investigators. For example, Harman (1976) used the ``24 Psychological Variables" example prominently in his authoritative text on multiple factor analysis, and the data presented under this rubric consisted of 24 of the variables from the Grant-White school (N = 145). Meredith (1964a, 1964b) used several variables from the Holzinger and Swineford study in his work on factorial invariance under selection. Joreskog (1971) based his work on multiple-group confirmatory factor analysis using the Holzinger and Swineford data, subsetting the data into four groups. Rosseel, who developed the `lavaan' package for R, included 9 of the manifest variables from Holzinger and Swineford (1939) as a ``resident" data set when one downloads the `lavaan' package. Several background variables are included in this ``resident" data set in addition to 9 of the psychological tests (which are named x1 -- x9 in the data set). When analyzing these data, I found the distributions of the variables (means, SDs) did not match the sample statistics from the original article. For example, in the ``resident" data set in `lavaan', scores on all manifest variables ranged between 0 and 10, sample means varied between 3 and 6, and sample SDs varied between 1.0 and 1.5. In the original data set, scores ranges were rather different across tests, with some variables having scores that ranged between 0 and 20, but other manifest variables having scores ranging from 50 to over 300 -- with obvious attendant differences in sample means and SDs. After a bit of snooping (i.e., data analysis), I discovered that the 9 variables in the ``resident" data set in `lavaan' had been rescored through ratio transformations. The ratio transformations involved dividing the raw score for each person on a given test by a particular constant for that test that transformed scores on the test to have the desired range. I decided to perform transformations of all 26 variables so that two data sets could be available to interested researchers:" holzinger.raw are the raws scores on all variables from Holzinger & Swineford (1939) holzinger.swineford are rescaled scores on all variables from Holzinger & Swineford. holzinger.dictionary is a list of the variable names in short and long form. ... Widaman continues: ``As several persons have noted, Harman (1976) used data only from the Grant-White school (N = 145) for his 24 Psychological Variables data set. In doing so, Harman replaced t03_frmbord and t04_lozenges with t25_frmbord2 and t26_flags, because the latter two tests were experimental tests that were designed to be more appropriate for this age level. This substitution is fine, as long as one analyzes data from only the Grant- White school. If one wishes to perform multiple-group analyses and uses school as a grouping variable (as Meredith, 1964a, 1964b, and Joreskog, 1971, did), then tests 25 and 26 should not be used." ``As have others, Gorsuch (1983) mentioned that analyses based on the raw data reported by Holzinger and Swineford (1939) will not produce statistics (means, SDs, correlations) that match precisely the values reported by Holzinger and Swineford or Harman (1976). Following Gorsuch, I have assumed that the raw data are correct. Applying factor analytic techniques to the raw data from the Grant-White school and to the summary data reported by Harman (1976) will produce slightly different results, but results that differ in only minor, unimportant details." These data are interesting not just for the historical completeness of having the original data, but also as an example of suppressor variables. Age and grade are positively correlated, and scores are higher in the 8th grade than in the 7th grade. But age (particularly in months) is negatively correlated with many of the cognitive tasks, and when grade and age are both entered into regression, this negative correlation is enhanced. That is, although increasing grade increases cognitive performance, younger children in both grades do better than the older children. } \source{ Keith Widaman (2019, personal communication). Original data from Holzinger and Swineford (1939). } \references{ Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum. Harman, Harry Horace (1967), Modern factor analysis. Chicago, University of Chicago Press. Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor solution. Supplementary Educational Monographs, no. 48. Chicago: University of Chicago, Department of Education. Joreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409-426. Meredith, W. (1964a). Notes on factorial invariance. Psychometrika, 29, 177-185. Meredith, W. (1964b). Rotation to achieve factorial invariance. Psychometrika, 29, 177-206. Meredith, W. (1977). On weighted Procrustes and hyperplane fitting in factor analytic rotation. Psychometrika, 42, 491-522. Thompson, Bruce. Five Methodology Errors in Educational Research:The Pantheon of Statistical Significance and Other Faux Pas. Paper presented at the Annual Meeting of the American Educational Research Association(San Diego, CA, April 13-17,1998) } \note{As discussed by Widaman, the descriptive values reported in Harman (1967) (p 124) do not quite match the descriptive statistics in \code{\link{holzinger.raw}}. Further note that the correlation matrix and factor loadings are trivially different from the Harman.24 factor loadings in the GPA rotation package. The purpose behind presenting both the raw and transformed data is to show that the fit statistics from factor analysis are identical for these two data sets. The variables v1 ... v9 in the lavaan package correspond to tests 1, 2, 4, 6, 7, 9, 10, 12 and 13. } \seealso{ psych::Holzinger } \examples{ data(holzinger.raw) psych::describe(holzinger.raw) data(holzinger.dictionary) holzinger.dictionary #to see the longer names for these data (taken from Thompson) #Compare these to the lavaan correlation matrix psych::lowerCor(holzinger.swineford[ 7+ c(1, 2, 4, 6, 7, 9, 10, 12, 13)]) psych::lmCor(t01_visperc + t05_geninfo + t08_wordclas ~ grade + agemo,data = holzinger.raw) psych::lmCor( t06_paracomp ~ grade + agemo, data=holzinger.swineford) psych::mediate(t06_paracomp ~ grade + (agemo),data = holzinger.raw,std=TRUE) #show the omega structure of the 24 variables om4 <- psych::omega(holzinger.swineford[8:31],4) psych::omega.diagram(om4,sl=FALSE,main="26 variables from Holzinger-Swineford") #these data also show an interesting suppression effect psych::lowerCor(holzinger.swineford[c(3,7,12:14)]) psych::lmCor( t06_paracomp ~ grade + agemo, data=holzinger.swineford) #or show as a mediation effect mod <- psych::mediate(t06_paracomp ~ grade + (agemo),data = holzinger.raw,std=TRUE,n.iter=50) summary(mod) #now, show a plot of these effets plot(t07_sentcomp ~ agemo, col=c("red","blue")[holzinger.swineford$grade -6], pch=26-holzinger.swineford$grade,data=holzinger.swineford, ylab="Sentence Comprehension",xlab="Age in Months", main="Sentence Comprehension varies by age and grade") #we use lmCor to figure out the lines #note that we need to not plot the default graph by(holzinger.swineford,holzinger.swineford$grade -6,function(x) abline( psych::lmCor(t07_sentcomp ~ agemo, data=x, std=FALSE, plot=FALSE), lty=c("dashed","solid")[x$grade-6])) text(190,3.3,"grade = 8") text(190,2,"grade = 7") } \keyword{datasets} psychTools/man/eminence.Rd0000644000176200001440000000452114311716206015251 0ustar liggesusers\name{eminence} \alias{eminence} \docType{data} \title{Eminence of 69 American Psychologists} \description{ Marco Del Giudice criticized an earlier study by Simonton for using partial regression weights to estimate the importance of various predictors of rated eminence. This is a nice example of the (mis)interpretation of beta weights of highly correlated predictors.} \usage{data("eminence")} \format{ A data frame with 69 observations on the following 9 variables. \describe{ \item{\code{name}}{a character vector} \item{\code{reputation}}{Log of rated reputation} \item{\code{birth.year}}{Year of birth} \item{\code{first.year}}{Year of first cited publicatin} \item{\code{last.year}}{Year of last cited publication} \item{\code{works}}{Log of number of publications} \item{\code{citations}}{Log of number of citations} \item{\code{composite}}{A composite index of publications} \item{\code{h}}{The 'h' index of citations} } } \details{Simonton (1997, 2014) discusses various estimates of eminence among 69 psychologists born between 1842 and 1912 and reports that the regression weights are small and interprets this as meaning number of publications and citations are not very important. Del Giudice (2020) points out that citations and the number of publications are highly collinear and thus while their independent contributions are small, their joint effect is quite large (R= .69 ). These data are given here as an example of multiple correlation and partial correlation } \source{ Del Giudice (2020) links to a web page with the data. } \references{ Marco Del Giudice (2020). How Well Do Bibliometric Indicators Correlate With Scientific Eminence? A Comment on Simonton (2016). Perspective in Psychological Science, 15, 202-203. Simonton, D. K. (1992). Leaders of American psychology, 1879-1967: Career development, creative output, and professional achievement. Journal of Personality and Social Psychology, 62, 5-17. Simonton, D. K. (2016). Giving credit where credit is due: Why it's so hard to do in psychological science. Perspectives on Psychological Science, 11, 888-892. } \examples{ data(eminence) psych::lowerCor(eminence) cs <- psych::cs psych::partial.r(eminence, x= cs(reputation, works, citations),y=cs(birth.year)) psych::setCor(reputation ~ works + h + first.year,data=eminence) } \keyword{datasets}psychTools/man/cubits.Rd0000644000176200001440000000451213464310220014751 0ustar liggesusers\name{cubits} \alias{cubits} \docType{data} \title{Galton's example of the relationship between height and 'cubit' or forearm length} \description{Francis Galton introduced the 'co-relation' in 1888 with a paper discussing how to measure the relationship between two variables. His primary example was the relationship between height and forearm length. The data table (cubits) is taken from Galton (1888). Unfortunately, there seem to be some errors in the original data table in that the marginal totals do not match the table. The data frame, \code{\link{heights}}, is converted from this table. } \usage{data(cubits)} \format{ A data frame with 9 observations on the following 8 variables. \describe{ \item{\code{16.5}}{Cubit length < 16.5} \item{\code{16.75}}{16.5 <= Cubit length < 17.0} \item{\code{17.25}}{17.0 <= Cubit length < 17.5} \item{\code{17.75}}{17.5 <= Cubit length < 18.0} \item{\code{18.25}}{18.0 <= Cubit length < 18.5} \item{\code{18.75}}{18.5 <= Cubit length < 19.0} \item{\code{19.25}}{19.0 <= Cubit length < 19.5} \item{\code{19.75}}{19.5 <= Cubit length } } } \details{Sir Francis Galton (1888) published the first demonstration of the correlation coefficient. The regression (or reversion to mediocrity) of the height to the length of the left forearm (a cubit) was found to .8. There seem to be some errors in the table as published in that the row sums do not agree with the actual row sums. These data are used to create a matrix using \code{\link{table2matrix}} for demonstrations of analysis and displays of the data. } \seealso{ \code{\link[psych]{table2matrix}}, \code{\link[psych]{table2df}}, \code{\link[psych]{ellipses}}, \code{\link{heights}}, \code{\link{peas}},\code{\link{galton}}} \source{Galton (1888) } \references{Galton, Francis (1888) Co-relations and their measurement. Proceedings of the Royal Society. London Series,45,135-145, } \examples{ data(cubits) cubits heights <- psych::table2df(cubits,labs = c("height","cubit")) psych::ellipses(heights,n=1,main="Galton's co-relation data set") psych::ellipses(jitter(heights$height,3),jitter(heights$cubit,3),pch=".", main="Galton's co-relation data set",xlab="height", ylab="Forearm (cubit)") #add in some noise to see the points psych::pairs.panels(heights,jiggle=TRUE,main="Galton's cubits data set") } \keyword{datasets} psychTools/man/spengler.Rd0000644000176200001440000000663313730223474015317 0ustar liggesusers\name{Spengler} \alias{Spengler} \alias{spengler} \alias{Damian} \alias{Spengler.stat} \docType{data} \title{Project Talent data set from Marion Spengler and Rodica Damian } \description{Project Talent gave 440,000 US high school students a number of personality and ability tests. Of these, the data fror 346,000 were available for followup. Subsequent followups were collected 11 and 50 years later. Marion Spengler and her colleagues Rodica Damian, and Brent Roberts reported on the stability and change across 50 years of personality and ability. Here is the correlation matrix of 25 of their variables (Spengler) as well as a slightly different set of 19 variables (Damian). This is a nice example of mediation and regression from a correlation matrix. } \usage{data("Damian")} \format{ A 25 x 25 correlation matrix of demographic, personality, and ability variables, based upon 346,660 participants. \describe{ \item{\code{Race/Ethnicity}}{1 = other, 2 = white/caucasian} \item{\code{Sex}}{1=Male, 2=Female} \item{\code{Age}}{Cohort =9th grade, 10th grade, 11th grade, 12th grade} \item{\code{Parental}}{Parental SES based upon 9 questions of home value, family income, etc.} \item{\code{IQ}}{Standardized composite of Verbal, Spatial and Mathematical} \item{\code{Sociability etc.}}{10 scales based upon prior work by Damian and Roberts} \item{\code{Maturity}}{A higher order factor from the prior 10 scales} \item{\code{Extraversion}}{The second higher order factor} \item{\code{Interest}}{Self reported interest in school} \item{\code{Reading}}{Self report reading skills} \item{\code{Writing}}{Self report writing skills } \item{\code{Responsible}}{Self reported responsibility scale} \item{\code{Ed.11}}{Education level at 11 year followup} \item{\code{Educ.50}}{Education level at 50 year followup} \item{\code{OccPres.11}}{Occupational Prestige at 11 year followup} \item{\code{OccPres.50}}{Occupational Prestige at 50 year followup} \item{\code{Income.11}}{Income at 11 year followup} \item{\code{Income.50}}{Income at 50 year followup} } } \details{ Data from Project Talent was collected in 1960 on a representative sample of American high school students. Subsequent follow up 11 and 50 years later are reported by Spengler et al (2018) and others. } \source{ Marion Spengler, supplementary material to Damian et al. and Spengler et al. } \references{ Rodica Ioana Damian and Marion Spengler and Andreea Sutu and Brent W. Roberts, 2019, Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years Journal of Personality and Social Psychology, 117, (3) 274-695. Marian Spengler and Rodica Ioana Damian and Brent W. Roberts (2018), How you behave in school predicts life success above and beyond family background, broad traits, and cognitive ability Journal of Personality and Social Psychology, 114 (4) 600-636 } \examples{ data(Damian) Spengler.stat #show the basic descriptives of the original data set psych::lowerMat(Spengler[psych::cs(IQ,Parental,Ed.11,OccPres.50), psych::cs(IQ,Parental,Ed.11,OccPres.50)]) psych::setCor(OccPres.50 ~ IQ + Parental + (Ed.11),data=Spengler) #we reduce the number of subjects for faster replication in this example mod <- psych::mediate(OccPres.50 ~ IQ + Parental + (Ed.11),data=Spengler, n.iter=50,n.obs=1000) #for speed summary(mod) } \keyword{datasets} psychTools/man/ability.Rd0000644000176200001440000001231014152204376015121 0ustar liggesusers\name{ability} \alias{ability} \alias{ability.keys} \docType{data} \title{16 ability items scored as correct or incorrect.} \description{ 16 multiple choice ability items 1525 subjects taken from the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project are saved as \code{\link{iqitems}}. Those data are shown as examples of how to score multiple choice tests and analyses of response alternatives. When scored correct or incorrect, the data are useful for demonstrations of tetrachoric based factor analysis \code{\link{irt.fa}} and finding tetrachoric correlations. } \usage{data(iqitems)} \format{ A data frame with 1525 observations on the following 16 variables. The number following the name is the item number from SAPA. \describe{ \item{\code{reason.4}}{Basic reasoning questions } \item{\code{reason.16}}{Basic reasoning question} \item{\code{reason.17}}{Basic reasoning question} \item{\code{reason.19}}{Basic reasoning question } \item{\code{letter.7}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.33}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.34}}{In the following alphanumeric series, what letter comes next} \item{\code{letter.58}}{In the following alphanumeric series, what letter comes next?} \item{\code{matrix.45}}{A matrix reasoning task} \item{\code{matrix.46}}{A matrix reasoning task} \item{\code{matrix.47}}{A matrix reasoning task} \item{\code{matrix.55}}{A matrix reasoning task} \item{\code{rotate.3}}{Spatial Rotation of type 1.2} \item{\code{rotate.4}}{Spatial Rotation of type 1.2} \item{\code{rotate.6}}{Spatial Rotation of type 1.1} \item{\code{rotate.8}}{Spatial Rotation of type 2.3} } } \details{16 items were sampled from 80 items given as part of the SAPA (\url{https://www.sapa-project.org/}) project (Revelle, Wilt and Rosenthal, 2009; Condon and Revelle, 2014) to develop online measures of ability. These 16 items reflect four lower order factors (verbal reasoning, letter series, matrix reasoning, and spatial rotations. These lower level factors all share a higher level factor ('g'). This data set may be used to demonstrate item response functions, \code{\link{tetrachoric}} correlations, or \code{\link{irt.fa}} as well as \code{\link{omega}} estimates of of reliability and hierarchical structure. In addition, the data set is a good example of doing item analysis to examine the empirical response probabilities of each item alternative as a function of the underlying latent trait. When doing this, it appears that two of the matrix reasoning problems do not have monotonically increasing trace lines for the probability correct. At moderately high ability (theta = 1) there is a decrease in the probability correct from theta = 0 and theta = 2. } \source{ The example data set is taken from the Synthetic Aperture Personality Assessment personality and ability test at \url{https://www.sapa-project.org/}. The data were collected with David Condon from 8/08/12 to 8/31/12. Similar data are available from the International Cognitive Ability Resource at \url{https://www.icar-project.org/}. } \references{ Condon, David and Revelle, William, (2014) The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. Intelligence, 43, 52-64. Revelle, William, Dworak, Elizabeth M. and Condon, David (2020) Cognitive ability in everyday life: the utility of open-source measures. Current Directions in Psychological Science, 29, (4) 358-363. Open access at \doi{10.1177/0963721420922178}. Dworak, Elizabeth M., Revelle, William, Doebler, Philip and Condon, David (2021) Using the International Cognitive Ability Resource as an open source tool to explore individual differences in cognitive ability. Personality and Individual Differences, 169. Open access at \doi{10.1016/j.paid.2020.109906}. Revelle, William, Wilt, Joshua, and Rosenthal, Allen (2010) Personality and Cognition: The Personality-Cognition Link. In Gruszka, Alexandra and Matthews, Gerald and Szymura, Blazej (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. } \examples{ data(ability) cs<- psych::cs keys <- list(ICAR16=colnames(ability),reasoning = cs(reason.4,reason.16,reason.17,reason.19), letters=cs(letter.7, letter.33,letter.34,letter.58), matrix=cs(matrix.45,matrix.46,matrix.47,matrix.55), rotate=cs(rotate.3,rotate.4,rotate.6,rotate.8)) psych::scoreOverlap(keys,ability) \donttest{ #this next step takes a few seconds to run and demonstrates IRT approaches ability.irt <- psych::irt.fa(ability) ability.scores <- psych::scoreIrt(ability.irt,ability) ability.sub.scores <- psych::scoreIrt.2pl(keys,ability) #demonstrate irt scoring } #It is sometimes asked how to handle missing data when finding scores #this next example compares 3 ways of scoring ability items from icar #Just sum the items #Sum the means for the items #IRT score the items total <- rowSums(ability, na.rm=TRUE) means <- rowMeans(ability, na.rm=TRUE) irt <- psych::scoreIrt(items=ability)[1] df <- data.frame(total, means,irt) psych:: pairs.panels(df) } \keyword{datasets} psychTools/man/iqitems.Rd0000644000176200001440000001241714101334701015135 0ustar liggesusers\name{iqitems} \alias{iqitems} \docType{data} \title{16 multiple choice IQ items} \description{16 multiple choice ability items taken from the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. The data from 1525 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. For more information on the development of an open source measure of cognitive ability, consult the readings available at the \url{https://personality-project.org/}. } \usage{data(iqitems)} \format{ A data frame with 1525 observations on the following 16 variables. The number following the name is the item number from SAPA. \describe{ \item{\code{reason.4}}{Basic reasoning questions } \item{\code{reason.16}}{Basic reasoning question} \item{\code{reason.17}}{Basic reasoning question} \item{\code{reason.19}}{Basic reasoning question } \item{\code{letter.7}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.33}}{In the following alphanumeric series, what letter comes next?} \item{\code{letter.34}}{In the following alphanumeric series, what letter comes next} \item{\code{letter.58}}{In the following alphanumeric series, what letter comes next?} \item{\code{matrix.45}}{A matrix reasoning task} \item{\code{matrix.46}}{A matrix reasoning task} \item{\code{matrix.47}}{A matrix reasoning task} \item{\code{matrix.55}}{A matrix reasoning task} \item{\code{rotate.3}}{Spatial Rotation of type 1.2} \item{\code{rotate.4}}{Spatial Rotation of type 1.2} \item{\code{rotate.6}}{Spatial Rotation of type 1.1} \item{\code{rotate.8}}{Spatial Rotation of type 2.3} } } \details{16 items were sampled from 80 items given as part of the SAPA (\url{https://www.sapa-project.org/}) project (Revelle, Wilt and Rosenthal, 2009; Condon and Revelle, 2014) to develop online measures of ability. These 16 items reflect four lower order factors (verbal reasoning, letter series, matrix reasoning, and spatial rotations. These lower level factors all share a higher level factor ('g'). Similar data are available from the International Cognitive Abiity Resource at \url{https://www.icar-project.org/} . This data set and the associated data set (\code{\link{ability}} based upon scoring these multiple choice items and converting them to correct/incorrect may be used to demonstrate item response functions, \code{\link{tetrachoric}} correlations, or \code{\link{irt.fa}} as well as \code{\link{omega}} estimates of of reliability and hierarchical structure. In addition, the data set is a good example of doing item analysis to examine the empirical response probabilities of each item alternative as a function of the underlying latent trait. When doing this, it appears that two of the matrix reasoning problems do not have monotonically increasing trace lines for the probability correct. At moderately high ability (theta = 1) there is a decrease in the probability correct from theta = 0 and theta = 2. } \source{ The example data set is taken from the Synthetic Aperture Personality Assessment personality and ability test at \url{https://www.sapa-project.org/}. The data were collected with David Condon from 8/08/12 to 8/31/12. } \references{ Condon, David and Revelle, William, (2014) The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. Intelligence, 43, 52-64. Revelle, William, Dworak, Elizabeth M. and Condon, David (2020) Cognitive ability in everyday life: the utility of open-source measures. Current Directions in Psychological Science, 29, (4) 358-363. Open access at \doi{10.1177/0963721420922178}. Dworak, Elizabeth M., Revelle, William, Doebler, Philip and Condon, David (2021) Using the International Cognitive Ability Resource as an open source tool to explore individual differences in cognitive ability. Personality and Individual Differences, 169. Open access at \doi{10.1016/j.paid.2020.109906}. Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations. } \examples{ \donttest{ data(iqitems) iq.keys <- c(4,4,4, 6, 6,3,4,4, 5,2,2,4, 3,2,6,7) psych::score.multiple.choice(iq.keys,iqitems) #this just gives summary statisics #convert them to true false iq.scrub <- psych::scrub(iqitems,isvalue=0) #first get rid of the zero responses iq.tf <- psych::score.multiple.choice(iq.keys,iq.scrub,score=FALSE) #convert to wrong (0) and correct (1) for analysis psych::describe(iq.tf) #see the ability data set for these analyses #now, for some item analysis iq.irt <- psych::irt.fa(iq.tf) #do a basic irt iq.sc <- psych::scoreIrt(iq.irt,iq.tf) #find the scores op <- par(mfrow=c(4,4)) psych::irt.responses(iq.sc[,1], iq.tf) op <- par(mfrow=c(1,1)) } } \keyword{datasets} psychTools/man/read.clipboard.Rd0000644000176200001440000003222114540613371016340 0ustar liggesusers\name{read.file} \alias{read.clipboard} \alias{read.clipboard.csv} \alias{read.clipboard.tab} \alias{read.clipboard.lower} \alias{read.clipboard.upper} \alias{read.clipboard.fwf} \alias{read.file} \alias{read.file.csv} \alias{write.file} \alias{write.file.csv} \alias{read.https} \title{Shortcuts for reading from the clipboard or a file} \description{Input from a variety of sources may be read. Matrices or data.frames may be read from files with suffixes of .txt, .text, .TXT, .dat, .DATA,.data, .csv, .rds, rda, .xpt, XPT, or .sav (i.e., data from SPSS sav files may be read as can files saved by SAS using the .xpt option). Data exported by JMP or EXCEL in the csv format are also able to be read. Fixed Width Files saved in .txt mode may be read if the widths parameter is specified. Files saved with writeRDS have suffixes of .rds or Rds, and are read using readRDS. Files associated with objects with suffixes .rda and .Rda are loaded (following a security prompt). The default values for read.spss are adjusted for more standard input from SPSS files. Input from the clipboard is easy but a bit obscure, particularly for Mac users. \code{\link{read.clipboard}} and its variations are just an easier way to do so. Data may be copied to the clipboard from Excel spreadsheets, csv files, or fixed width formatted files and then into a data.frame. Data may also be read from lower (or upper) triangular matrices and filled out to square matrices. Writing text files may be done using \code{\link{write.file}} which will prompt for a file name (if not given) and then write or save to that file depending upon the suffix (text, txt, or csv will call write.table, R, or r will dput, rda, Rda will save, Rds,rds will saveRDS). } \usage{ read.file(file=NULL,header=TRUE,use.value.labels=FALSE,to.data.frame=TRUE,sep=",", quote="\"", widths=NULL,f=NULL, filetype=NULL,...) #for .txt, .text, TXT, .csv, .sav, .xpt, XPT, R, r, Rds, .rds, or .rda, # .Rda, .RData, .Rdata, .dat and .DAT files read.clipboard(header = TRUE, ...) #assumes headers and tab or space delimited read.clipboard.csv(header=TRUE,sep=',',...) #assumes headers and comma delimited read.clipboard.tab(header=TRUE,sep='\t',...) #assumes headers and tab delimited #read in a matrix given the lower off diagonal read.clipboard.lower(diag=TRUE,names=FALSE,...) read.clipboard.upper(diag=TRUE,names=FALSE,...) #read in data using a fixed format width (see read.fwf for instructions) read.clipboard.fwf(header=FALSE,widths=rep(1,10),...) read.https(filename,header=TRUE) read.file.csv(file=NULL,header=TRUE,f=NULL,...) #For output: #be sure to specify the file type in name write.file(x,file=NULL,row.names=FALSE,f=NULL,...) write.file.csv(x,file=NULL,row.names=FALSE,f=NULL,...) } \arguments{ \item{header}{Does the first row have variable labels (generally assumed to be TRUE). } \item{sep}{What is the designated separater between data fields? For typical csv files, this will be a comma, but if commas designate decimals, then a ; can be used to designate different records. } \item{quote}{Specified to } \item{diag}{for upper or lower triangular matrices, is the diagonal specified or not} \item{names}{for read.clipboard.lower or upper, are colnames in the the first column} \item{widths}{how wide are the columns in fixed width input. The default is to read 10 columns of size 1. } \item{filename}{Name or address of remote https file to read.} \item{\dots}{ Other parameters to pass to read } \item{f}{A file name to read from or write to. If omitted, \code{\link{file.choose}} is called to dynamically get the file name.} \item{file}{A file name to read from or write to. (same as f, but perhaps more intuitive). If omitted and if f is omitted,then \code{\link{file.choose}} is called to dynamically get the file name.} \item{x}{The data frame or matrix to write to f} \item{row.names}{Should the output file include the rownames? By default, no.} \item{to.data.frame}{Should the spss input be converted to a data frame?} \item{use.value.labels}{Should the SPSS input values be converted to numeric?} \item{filetype}{If specified the reading will use this term rather than the suffix.} } \details{A typical session of R might involve data stored in text files, generated online, etc. Although it is easy to just read from a file (particularly if using \code{\link{read.file}}), an alternative is to use one's local system to copy from the file to the clipboard and then read from the clipboard using \code{\link{read.clipboard}}. This is very convenient (and somewhat more intuitive to the naive user). This is particularly useful when copying from a text book or article and just moving a section of text into R. However, copying from a file and then reading the clipboard is hard to automate in a script. Thus, \code{\link{read.file}} will read from a file. The \code{\link{read.file}} function combines the \code{\link{file.choose}} and either \code{\link{read.table}}, \code{\link{read.fwf}}, \code{\link{read.spss}} or \code{\link{read.xport}}(from foreign) or \code{\link{load}} or \code{\link{readRDS}} commands. By examining the file suffix, it chooses the appropriate way to read the file. For more complicated file structures, see the foreign package. For even more complicated file structures, see the rio or haven packages. Note that \code{\link{read.file}} assumes by default that the first row has column labels (header =TRUE). If this is not true, then make sure to specify header = FALSE. If the file is fixed width, the assumption is that it does not have a header field. In the unlikely case that a fwf file does have a header, then you probably should try fn <- file.choose() and then my.data <- read.fwf(fn,header=TRUE,widths= widths). Further note: If the file is a .Rda, .rda, etc. file, the read.file command will return the name and location of the file. It will prompt the user to load this file. In this case, it is necessary to either assign the output (the file name) to an object that has a different name than any of the objects in the file, or to call read.file() without any specification. Notice that loading an .Rda file can overwrite existing objects. Thus the warning and the need to do the second step. If the file has no suffix the default action is to quit with a warning. However, if the filetype is specified, it will use that type in the reading (e.g. filetype="txt" will read as text file, even if there is no suffix). If the file is specified and has a prefix of http:// or https:// it will be downloaded and then read. Currently supported input formats are \tabular{ll}{ .sav \tab SPSS.sav files\cr .csv \tab A comma separated file (e.g. from Excel or Qualtrics)\cr .txt \tab A typical text file \cr .TXT \tab A typical text file \cr .text \tab A typical text file \cr .data \tab A data file \cr .dat \tab A data file \cr .rds \tab A R data file \cr .Rds \tab A R data file (created by a write) \cr .Rda \tab A R data structure (created using save) \cr .rda \tab A R data structure (created using save) \cr .RData \tab A R data structure (created using save) \cr .rdata \tab A R data structure (created using save) \cr .R \tab A R data structure created using dput \cr .r \tab A R data structure created using dput \cr .xpt \tab A SAS data file in xport format \cr .XPT \tab A SAS data file in XPORT format \cr } Some data files have an extra ' in the data ( e.g. the NYT covid data base). These files can be read specifying quote "" The foreign function \code{\link{read.spss}} is used to read SPSS .sav files using the most common options. Just as \code{\link{read.spss}} issues various warnings, so does \code{\link{read.file}}. In general, these can be ignored. For more detailed information about using \code{\link{read.spss}}, see the help pages in the foreign package. If you have a file written by JMP, you must first export to a csv or text file. The \code{\link{write.file}} function combines the \code{\link{file.choose}} and either \code{\link{write.table}} or \code{\link{saveRDS}}. By examining the file suffix, it chooses the appropriate way to write. For more complicated file structures, see the foreign package, or the save function in R Base. If no suffix is added, it will write as a .txt file. \code{\link{write.file.csv}} will write in csv format to an arbitrary file name. Currently supported output formats are \tabular{ll}{ .csv \tab A comma separated file (e.g. for reading into Excel)\cr .txt \tab A typical text file \cr .text \tab A typical text file \cr .rds \tab A R data file \cr .Rds \tab A R data file (created by a write) \cr .Rda \tab A R data structure (created using save) \cr .rda \tab A R data structure (created using save) \cr .R \tab A R data structure created using dput \cr .r \tab A R data structure created using dput \cr } Many Excel based files specify missing values as a blank field. When reading from the clipboard, using \code{\link{read.clipboard.tab}} will change these blank fields to NA. Sometimes missing values are specified as "." or "999", or some other values. These can be converted by the read.file command specifying what values are missing (e.g., na ="."). See the example for the reading from the remote mtcars.csv file. \code{\link{read.clipboard}} was based upon a suggestion by Ken Knoblauch to the R-help listserve. If the input file that was copied into the clipboard was an Excel file with blanks for missing data, then read.clipboard.tab() will correctly replace the blanks with NAs. Similarly for a csv file with blank entries, read.clipboard.csv will replace empty fields with NA. \code{\link{read.clipboard.lower}} and \code{\link{read.clipboard.upper}} are adapted from John Fox's read.moments function in the sem package. They will read a lower (or upper) triangular matrix from the clipboard and return a full, symmetric matrix for use by factanal, \code{\link{fa}} , \code{\link{ICLUST}}, \code{\link{pca}}. \code{\link{omega}} , etc. If the diagonal is false, it will be replaced by 1.0s. These two function were added to allow easy reading of examples from various texts and manuscripts with just triangular output. Many articles will report lower triangular matrices with variable labels in the first column. read.clipboard.lower will handle this case. Names must be in the first column if names=TRUE is specified. Other articles will report upper triangular matrices with variable labels in the first row. read.clipboard.upper will handle this. Note that labels in the first column will not work for read.clipboard.upper. The names, if present, must be in the first row. Consider the following lower triangular matrix. To read it, copy it to the clipboard and read.clipboard.lower(names=TRUE) \tabular{lrrrrrr}{ A1 1.00 \cr A2 -0.34 1.00 \cr A3 -0.27 0.49 1.00 \cr A4 -0.15 0.34 0.36 1.00 \cr A5 -0.18 0.39 0.50 0.31 1.00 \cr C1 0.03 0.09 0.10 0.09 0.12 1.00\cr } However, if the data are strung out e.g., \tabular{r}{ -.34 \cr -.27 \cr -.15 \cr -.18 \cr .03\cr .49\cr .34 \cr .39 \cr .09 \cr .36\cr .50 \cr .10 \cr .31\cr .09 \cr .12\cr } Then one needs to read it using the read.clipboard.upper(names=FALSE,diag=FALSE) option. read.clipboard.fwf will read fixed format files from the clipboard. It includes a patch to read.fwf which will not read from the clipboard or from remote file. See read.fwf for documentation of how to specify the widths. } \value{The contents of the file to be read or of the clipboard. Saved as a data.frame. } \author{ William Revelle} \examples{ #All of these functions are meant for interactive Input #Because these are dynamic functions, they need to be run interactively and # can not be run as examples. #Thus they are not to be tested by CRAN \donttest{ if(interactive()) { my.data <- read.file() #search the directory for a file and then read it. #return the result into an object #or, if the file is a rda, etc. file my.data <- read.file() #return the path and instructions of how to load # without assigning a value. filesList() #search the system for a particular file and then list all the files in that directory fileCreate() #search for a particular directory and create a file there. write.file(Thurstone) #open the search window, choose a location and name the output file, # write the data file (e.g., Thurstone ) to the file chosen #the example data set from read.delim in the readr package to read a remote csv file my.data <-read.file( "https://github.com/tidyverse/readr/raw/master/inst/extdata/mtcars.csv", na=".") #the na option is used for an example, but is not needed for these data #These functions read from the local clipboard and thus are interactive my.data <- read.clipboard() #space delimited columns my.data <- read.clipboard.csv() # , delimited columns my.data <- read.clipboard.tab() #typical input if copied from a spreadsheet my.data <- read.clipboad(header=FALSE) #data start on line 1 my.matrix <- read.clipboard.lower() } } } \keyword{ multivariate } \keyword{ IO } psychTools/man/peas.Rd0000644000176200001440000000340413464307413014421 0ustar liggesusers\name{peas} \alias{peas} \docType{data} \title{Galton`s Peas} \description{Francis Galton introduced the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. } \usage{data(peas)} \format{ A data frame with 700 observations on the following 2 variables. \describe{ \item{\code{parent}}{The mean diameter of the mother pea for 700 peas} \item{\code{child}}{The mean diameter of the daughter pea for 700 sweet peas} } } \details{Galton's introduction of the correlation coefficient was perhaps the most important contribution to the study of individual differences. This data set allows a graphical analysis of the data set. There are two different graphic examples. One shows the regression lines for both relationships, the other finds the correlation as well. } \source{Stanton, Jeffrey M. (2001) Galton, Pearson, and the Peas: A brief history of linear regression for statistics intstructors, Journal of Statistics Education, 9. (retrieved from the web from https://www.amstat.org/publications/jse/v9n3/stanton.html) reproduces the table from Galton, 1894, Table 2. The data were generated from this table. } \references{Galton, Francis (1877) Typical laws of heredity. paper presented to the weekly evening meeting of the Royal Institution, London. Volume VIII (66) is the first reference to this data set. The data appear in Galton, Francis (1894) Natural Inheritance (5th Edition), New York: MacMillan). } \seealso{The other Galton data sets: \code{\link{heights}}, \code{\link{galton}},\code{\link{cubits}}} \examples{ data(peas) psych::pairs.panels(peas,lm=TRUE,xlim=c(14,22),ylim=c(14,22),main="Galton's Peas") psych::describe(peas) psych::pairs.panels(peas,main="Galton's Peas") } \keyword{datasets} psychTools/man/neo.Rd0000644000176200001440000000744313466571504014267 0ustar liggesusers\name{neo} \Rdversion{1.1} \alias{neo} \docType{data} \title{NEO correlation matrix from the NEO_PI_R manual} \description{The NEO.PI.R is a widely used personality test to assess 5 broad factors (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness) with six facet scales for each factor. The correlation matrix of the facets is reported in the NEO.PI.R manual for 1000 subjects. } \usage{data(neo)} \format{ A data frame of a 30 x 30 correlation matrix with the following 30 variables. \describe{ \item{N1}{Anxiety} \item{N2}{AngryHostility} \item{ N3}{Depression } \item{ N4}{Self-Consciousness } \item{ N5}{Impulsiveness } \item{ N6}{Vulnerability } \item{ E1}{Warmth } \item{ E2}{Gregariousness } \item{ E3}{Assertiveness } \item{ E4}{Activity } \item{ E5}{Excitement-Seeking } \item{ E6}{PositiveEmotions } \item{ O1}{Fantasy } \item{ O2}{Aesthetics } \item{ O3}{Feelings } \item{ O4}{Ideas } \item{ O5}{Actions } \item{ O6}{Values } \item{ A1}{Trust } \item{ A2}{Straightforwardness } \item{ A3}{Altruism } \item{ A4}{Compliance } \item{ A5}{Modesty } \item{ A6}{Tender-Mindedness } \item{ C1}{Competence } \item{ C2}{Order } \item{ C3}{Dutifulness } \item{ C4}{AchievementStriving } \item{ C5}{Self-Discipline } \item{ C6}{Deliberation } } } \details{The past thirty years of personality research has led to a general consensus on the identification of major dimensions of personality. Variously known as the ``Big 5" or the ``Five Factor Model", the general solution represents 5 broad domains of personal and interpersonal experience. Neuroticism and Extraversion are thought to reflect sensitivity to negative and positive cues from the environment and the tendency to withdraw or approach. Openness is sometimes labeled as Intellect and reflects an interest in new ideas and experiences. Agreeableness and Conscientiousness reflect tendencies to get along with others and to want to get ahead. The factor structure of the NEO suggests five correlated factors as well as two higher level factors. The NEO was constructed with 6 ``facets" for each of the five broad factors. For a contrasting structure, examine the items of the \code{link{spi}} data set (Condon, 2017). } \source{Costa, Paul T. and McCrae, Robert R. (1992) (NEO PI-R) professional manual. Psychological Assessment Resources, Inc. Odessa, FL. (with permission of the author and the publisher) } \references{ Condon, D. (2017) The SAPA Personality Inventory:An empirically-derived, hierarchically-organized self-report personality assessment model Digman, John M. (1990) Personality structure: Emergence of the five-factor model. Annual Review of Psychology. 41, 417-440. John M. Digman (1997) Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 1246-1256. McCrae, Robert R. and Costa, Paul T., Jr. (1999) A Five-Factor theory of personality. In Pervin, Lawrence A. and John, Oliver P. (eds) Handbook of personality: Theory and research (2nd ed.) 139-153. Guilford Press, New York. N.Y. Revelle, William (1995), Personality processes, Annual Review of Psychology, 46, 295-328. Joshua Wilt and William Revelle (2009) Extraversion and Emotional Reactivity. In Mark Leary and Rick H. Hoyle (eds). Handbook of Individual Differences in Social Behavior. Guilford Press, New York, N.Y. Joshua Wil and William Revelle (2016) Extraversion. In Thomas Widiger (ed) The Oxford Handbook of the Five Factor Model. Oxford University Press. } \examples{ data(neo) n5 <- psych::fa(neo,5) neo.keys <- psych::make.keys(30,list(N=c(1:6),E=c(7:12),O=c(13:18),A=c(19:24),C=c(25:30))) n5p <- psych::target.rot(n5,neo.keys) #show a targeted rotation for simple structure n5p } \keyword{datasets} psychTools/man/GERAS.Rd0000644000176200001440000001177414450400572014337 0ustar liggesusers\name{GERAS} \alias{GERAS} \alias{GERAS.items} \alias{GERAS.keys} \alias{GERAS.dictionary} \alias{GERAS.scales} \docType{data} \title{Data from Gruber et al, 2020, Study 2: Gender Related Attributes Survey} \description{ Gruber et al. (2020) report on the psychometric properties of a multifaceted Gender Related Attributes Survey. Here are the data from their 3 domains (Personality, Cognition and Activities and Interests from their study 2. Eagly and Revelle (2022) include these data in their review of the power of aggregation. The data are included here as demonstrations of the \code{\link{cohen.d}} and \code{\link{scatterHist}} functions in the psych package and may be used to show the power of aggregation. } \usage{data("GERAS") #These other objects are included in the file # data("GERAS.scales") # data("GERAS.dictionary") # data("GERAS.items") # data("GERAS.keys") } \format{ A data frame with 471 observations on the following 51 variables (selected from the original 93) The code numbers are item numbers from the bigger set. \describe{ \item{\code{V15}}{ reckless} \item{\code{V22}}{ willing to take risks} \item{\code{V11}}{ courageous} \item{\code{V6}}{a adventurous} \item{\code{V19}}{ dominant} \item{\code{V14}}{ controlling} \item{\code{V20}}{ boastful} \item{\code{V21}}{ rational} \item{\code{V23}}{ analytical} \item{\code{V9}}{ pragmatic} \item{\code{V44}}{ to find an address for the first time} \item{\code{V45}}{ to find a way again} \item{\code{V46}}{ to understand equations} \item{\code{V50}}{ to follow directions} \item{\code{V51}}{ to understand equations} \item{\code{V53}}{ day-to-day calculations} \item{\code{V48}}{ to write a computer program} \item{\code{V69}}{ paintball} \item{\code{V73}}{ driving go-cart} \item{\code{V71}}{ drinking beer} \item{\code{V68}}{ watching action movies} \item{\code{V75}}{ playing cards (poker)} \item{\code{V72}}{ watching sports on TV} \item{\code{V67}}{ doing certain sports (e.g. soccer, ...)} \item{\code{V74}}{ Gym (weightlifting)} \item{\code{V27}}{ warm-hearted} \item{\code{V28}}{ loving} \item{\code{V29}}{ caring} \item{\code{V26}}{ compassionate} \item{\code{V32}}{ delicate} \item{\code{V30}}{ tender} \item{\code{V24}}{ familiy-oriented} \item{\code{V40}}{ anxious} \item{\code{V39}}{ thin-skinned} \item{\code{V41}}{ careful} \item{\code{V55}}{ to explain foreign words} \item{\code{V58}}{to find the right words to express certain content} \item{\code{V59}}{ synonyms for a word in order to avoid repetitions} \item{\code{V60}}{ to phrase a text} \item{\code{V54}}{ remembering events from your own life} \item{\code{V63}}{ to notice small changes} \item{\code{V57}}{ to remember names and faces} \item{\code{V89}}{ shopping} \item{\code{V92}}{ gossiping} \item{\code{V81}}{ watching a romantic movie} \item{\code{V80}}{ talking on the phone with a friend} \item{\code{V90}}{ yoga} \item{\code{V83}}{ rhythmic gymnastics} \item{\code{V84}}{ going for a walk} \item{\code{V86}}{ dancing} \item{\code{gender}}{gender (M=1 F=2)} } } \details{These 50 items (+ gender) may be formed into scales using the GERAS.keys The first 10 items are Male Personality, the next 10 are Female Personality, then 7 and 7 M and F Cognition, then 8 and 8 M and F Activity items. The Pers, Cog and Act scales are formed from the M-F scales for the three domains. M and F are the composites of the Male and then the Female scales. MF.all is the composite of the M - F scales. See the GERAS.keys object for scoring directions. "M.pers" "F.pers" "M.cog" "F.cog" "M.act" "F.act" "Pers" "Cog" "Act" "M" "F" "MF.all" "gender" See the \code{\link{Athenstaedt}} data set for a related data set. } \source{Study 2 data downloaded from the Open Science Framework https://osf.io/42jhr/ Used by kind permission of Freya M. Gruber, Tullia Ortner, and Belinda A. Pletzer.} \references{ Alice H. Eagly and William Revelle (2022), Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Tree. Perspectives in Psychological Science doi:10.1177/17456916211046006 Gruber, Freya M. and Distlberger, Eva and Scherndl, Thomas and Ortner, Tuulia M. and Pletzer, Belinda (2020) Psychometric properties of the multifaceted Gender-Related Attributes Survey {(GERAS)} European Journal of Psychological Assessment, 36, (4) 612-623. } \examples{ data(GERAS) GERAS.keys #show the keys #show the items from the dictionary psych::lookupFromKeys(GERAS.keys, GERAS.dictionary[,4,drop=FALSE]) #now, use the GERAS.scales to show a scatterHist plot showing univariate d and bivariate # Mahalanobis D. psych::scatterHist(F ~ M + gender, data=GERAS.scales, cex.point=.3,smooth=FALSE, xlab="Masculine Scale",ylab="Feminine Scale",correl=FALSE, d.arrow=TRUE,col=c("red","blue"), bg=c("red","blue"), lwd=4, title="Combined M and F scales",cex.cor=2,cex.arrow=1.25, cex.main=2) } \keyword{datasets} psychTools/man/Schutz.Rd0000644000176200001440000000347213472246613014761 0ustar liggesusers\name{Schutz} \alias{Schutz} \docType{data} \title{ The Schutz correlation matrix example from Shapiro and ten Berge} \description{Shapiro and ten Berge use the Schutz correlation matrix as an example for Minimum Rank Factor Analysis. The Schutz data set is also a nice example of how normal minres or maximum likelihood will lead to a Heywood case, but minrank factoring will not. } \usage{data("Schutz")} \format{ The format is: num [1:9, 1:9] 1 0.8 0.28 0.29 0.41 0.38 0.44 0.4 0.41 0.8 ... - attr(*, "dimnames")=List of 2 ..$ :1] "Word meaning" "Odd Words" "Boots" "Hatchets" ... ..$ : chr [1:9] "V1" "V2" "V3" "V4" ... } \details{ These are 9 cognitive variables of importance mainly because they are used as an example by Shapiro and ten Berge for their paper on Minimum Rank Factor Analysis. The solution from the \code{\link{fa}} function with the fm='minrank' option is very close (but not exactly equal) to their solution. This example is used to show problems with different methods of factoring. Of the various factoring methods, fm = "minres", "uls", or "mle" produce a Heywood case. Minrank, alpha, and pa do not. See the blant data set for another example of differences across methods. } \source{ Richard E. Schutz,(1958) Factorial Validity of the Holzinger-Crowdeer Uni-factor tests. Educational and Psychological Measurement, 48, 873-875. } \references{ Alexander Shapiro and Jos M.F. ten Berge (2002) Statistical inference of minimum rank factor analysis. Psychometrika, 67. 70-94 } \examples{ data(Schutz) psych::corPlot(Schutz,numbers=TRUE,upper=FALSE) \donttest{ f4min <- psych::fa(Schutz,4,fm="minrank") #for an example of minimum rank factor Analysis #compare to f4 <- psych::fa(Schutz,4,fm="mle") #for the maximum likelihood solution which has a Heywood case } } \keyword{datasets} psychTools/man/BFI.adjectives.dictionary.Rd0000644000176200001440000000422114215120363020343 0ustar liggesusers\name{BFI.adjectives.dictionary} \alias{BFI.adjectives.dictionary} \alias{bfi.adjectives.dictionary} \alias{big5.adjectives.dictionary} \docType{data} \title{Dictionary for the 100 Big Five Adjectives} \description{Lew Goldberg organized 100 adjectives to measure 5 factors of personality (The Big5). 500 hundred participants were given these adjectives along with other personality measures. This dictionary allows for easy item labeling of the results. ~ } \usage{data("BFI.adjectives.dictionary") } \format{ A data frame with 100 observations on the following 2 variables. \describe{ \item{\code{numer}}{a character vector of the item label} \item{\code{Item}}{a character vector of the actual adjectives} } } \details{ Keying information for the 100 adjectives: } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University.} \references{Lewis R. Goldberg,(1992) The development of markers for the Big-Five factor structure, Psychological Assessment, 4 (1) 26-42. } \seealso{\code{\link{big5.100.adjectives}} for examples of the data. \code{\link{msqR}} for 3896 participants with scores on five scales of the EPI. \code{\link{affect}} for an example of the use of some of these adjectives in a mood manipulation study.} \examples{ data(BFI.adjectives.dictionary) #this includes the bfi.adjectives.keys bfi.adjectives.keys <- list( Agreeableness = psych::cs(V2, -V11, V14, V15, -V19, -V21, V29, -V31, V32, V48, V55,-V61, -V63, V69, V76, -V78, -V79, -V90, -V94, V99), Conscientiousness = psych::cs(V9, -V10, V13, -V20, V22, -V30, -V37, -V38, -V39, V50, -V51, V53, V56, V57, -V67, V68, V70, V73, -V82, -V95), Extraversion = psych::cs(V1,V5, -V6,V7, V17, V24, V26, -V40,-V45, -V58, -V60,-V65, V71, -V74, -V77, V92, -V96, V97, V98, -V100), Neuroticism= psych::cs(V3, V23, V25, V27,V28, V33,-V36, V42, V46,V47, V49, V52,-V59,V62, V72, V75, -V81,-V83,-V84, -V85), Openness = psych::cs(V4,V8,V12, V16, V18,V34, -V35,V41, V43, V44, V54, -V64,-V66, -V80, -V86, -V87, -V88, -V89, -V91, -V93) ) psych::lookupFromKeys(bfi.adjectives.keys,bfi.adjectives.dictionary,20) } \keyword{datasets} psychTools/man/income.Rd0000644000176200001440000000301513465312012014731 0ustar liggesusers\name{income} \alias{income} \alias{all.income} \docType{data} \title{US family income from US census 2008 } \description{US census data on family income from 2008 } \usage{data(income)} \format{ A data frame with 44 observations on the following 4 variables. \describe{ \item{\code{value}}{lower boundary of the income group} \item{\code{count}}{Number of families within that income group} \item{\code{mean}}{Mean of the category} \item{\code{prop}}{proportion of families} } } \details{The distribution of income is a nice example of a log normal distribution. It is also an interesting example of the power of graphics. It is quite clear when graphing the data that income statistics are bunched to the nearest 5K. That is, there is a clear sawtooth pattern in the data. The all.income set is interpolates intervening values for 100-150K, 150-200K and 200-250K} \source{US Census: Table HINC-06. Income Distribution to $250,000 or More for Households: 2008 https://www.census.gov/hhes/www/cpstables/032009/hhinc/new06_000.htm } \examples{ data(income) with(income[1:40,], plot(mean,prop, main="US family income for 2008",xlab="income", ylab="Proportion of families",xlim=c(0,100000))) with (income[1:40,], points(lowess(mean,prop,f=.3),typ="l")) psych::describe(income) with(all.income, plot(mean,prop, main="US family income for 2008",xlab="income", ylab="Proportion of families",xlim=c(0,250000))) with (all.income[1:50,], points(lowess(mean,prop,f=.25),typ="l")) } \keyword{datasets} psychTools/man/blot.Rd0000644000176200001440000000414313472313363014432 0ustar liggesusers\name{blot} \alias{blot} \docType{data} \title{Bond's Logical Operations Test -- BLOT } \description{35 items for 150 subjects from Bond's Logical Operations Test. A good example of Item Response Theory analysis using the Rasch model. One parameter (Rasch) analysis and two parameter IRT analyses produce somewhat different results. } \usage{data(blot)} \format{ A data frame with 150 observations on 35 variables. The BLOT was developed as a paper and pencil test for children to measure Logical Thinking as discussed by Piaget and Inhelder. } \details{Bond and Fox apply Rasch modeling to a variety of data sets. This one, Bond's Logical Operations Test, is used as an example of Rasch modeling for dichotomous items. In their text (p 56), Bond and Fox report the results using WINSTEPS. Those results are consistent (up to a scaling parameter) with those found by the rasch function in the ltm package. The WINSTEPS seem to produce difficulty estimates with a mean item difficulty of 0, whereas rasch from ltm has a mean difficulty of -1.52. In addition, rasch seems to reverse the signs of the difficulty estimates when reporting the coefficients and is effectively reporting "easiness". However, when using a two parameter model, one of the items (V12) behaves very differently. This data set is useful when comparing 1PL, 2PL and 2PN IRT models. } \source{The data are taken (with kind permission from Trevor Bond) from the webpage https://www.winsteps.com/BF3/bondfox3.htm and read using read.fwf. } \references{ T.G. Bond. BLOT:Bond's Logical Operations Test. Townsville, Australia: James Cook Univer- sity. (Original work published 1976), 1995. T. Bond and C. Fox. (2007) Applying the Rasch model: Fundamental measurement in the human sciences. Lawrence Erlbaum, Mahwah, NJ, US, 2 edition. } \seealso{ See also the \code{\link{irt.fa}} and associated plot functions. } \examples{ data(blot) #ltm is not required by psychTools, but if available, may be run to show a Rasch model #do the same thing with functions in psych blot.fa <- psych::irt.fa(blot) # a 2PN model plot(blot.fa) } \keyword{datasets} psychTools/man/zola.Rd0000644000176200001440000000304114301425612014424 0ustar liggesusers\name{zola} \alias{zola} \alias{zola.keys} \alias{zola.dictionary} \docType{data} \title{Correlation matrix of 135 self report and 30 peer report personality items} \description{ Zola et al., (2021) reported the validity of self report personality items from the SAPA personality inventory (SPI) (Condon, 2018) in terms of 30 peer reports on 8 dimensions. Here are the polychoric correlations of these items. spi items were collected using SAPA procedures for 158,631 participants (mean n/item = 18,180), 908 of whom received peer ratings. } \usage{data("zola")} \format{ The format is: num [1:165, 1:165] 1 -0.242 0.282 0.65 0.223 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:165] "q_253" "q_4296" "q_1855" "q_90" ... ..$ : chr [1:165] "q_253" "q_4296" "q_1855" "q_90" ... } \details{ The polychoric correlation matrix of the spi and peer report data. To see the item labels, use the \code{\link{lookupFromKeys}} . This data set is a nice example of a multi-trait, multi-method correlation matrix. (see the scoring example). Five dimensions of self report show high correlations with the corresonding peer report scales. } \source{ A. Zola, D.M. Condon, and W. Revelle, (2021) } \references{ A. Zola, D.M. Condon, and W. Revelle, (2021) The Convergence of Self and Informant Reports in a Large Online Sample, Collabra: Psychology, 7, 1. doi: 10.1525/collabra.25983 } \examples{ data(zola) psych::lookupFromKeys(zola.keys,zola.dictionary) scores <- psych::scoreOverlap(zola.keys[c(1:5,33:37)],zola) #MTMM of Big 5 scores } \keyword{datasets} psychTools/man/recode.Rd0000644000176200001440000000544614472446475014756 0ustar liggesusers\name{recode} \alias{recode} \alias{rearrange} \alias{wide2long} \title{Recode or rearrange or reshape variables or values to new values} \description{ Given a set of numeric codes, change their values to different values given a mapping function. Also included are the ability to reorder columns or to convert wide sets of columns to long form } \usage{ rearrange(x,pattern) #reorder the variables wide2long(x,width, cname=NULL, idname = NULL, idvalues=NULL ,pattern=NULL) recode(x, where, isvalue, newvalue) #recode text values to numeric values } \arguments{ \item{x}{A matrix or data frame of numeric values } \item{where}{The column numbers to fix} \item{isvalue}{A vector of values to change} \item{newvalue}{A vector of the new values} \item{pattern}{column order of repeating patterns} \item{width}{width of long format } \item{cname}{Variable names of long format } \item{idname}{Name of first column} \item{idvalues}{Values to fill first column } } \details{ Three functions for basic recoding are included. recode: Sometime, data are entered as levels in an incorrect order. Once converted to numeric values, this can lead to confusion. recoding of the data to the correct order is straightforward, if tedious. rearrange: Another tedious problem is when the output of one function needs to be arranged for better data handling in subsequent function. Specify a pattern of choosing the new columns. wide2long: And then, having rearranged the data, perhaps convert the file to long format. } \value{ The reordered data } \author{William Revelle } \note{ Although perhaps useful, the recode function is definitely ugly code. For smaller data sets, the results from char2numeric back to the original will not work. char2numeric works column wise and orders the data in each column. } \seealso{mlArrange in the psych package for a more general version of wide2long} \examples{ x <- matrix(1:120,ncol=12) new <- rearrange(x,pattern = c(1,4, 7,10)) new long <- wide2long(x,width=3,pattern=c(1,4, 7,10)) #rearrange and then make wide temp <- bfi[1:100,1:5] isvalue <- 1:6 newvalue <- psych::cs(one,two,three,four,five,six) newtemp <- recode(temp,1:5,isvalue,newvalue) newtemp #characters temp.num <- psych::char2numeric(newtemp) #convert to numeric temp.num #notice the numerical values have changed new.temp.num <- recode(temp.num, 1:5, isvalue=c(3,6,5,2,1,4), newvalue=1:6) #note that because char2numeric works column wise, this will fail for small sets } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory (show via RShowDoc("KEYWORDS")): \keyword{ multivariate } % \keyword{ ~kwd2 } % Use only one keyword per line. % For non-standard keywords, use \concept instead of \keyword: % \concept{ ~cpt1 } % \concept{ ~cpt2 } % Use only one concept per line. psychTools/man/epi.Rd0000644000176200001440000001341614153433055014250 0ustar liggesusers\name{epi} \alias{epi} \alias{epi.dictionary} \alias{epiR} \alias{epi.keys} \docType{data} \title{Eysenck Personality Inventory (EPI) data for 3570 participants} \description{The EPI is and has been a very frequently administered personality test with 57 measuring two broad dimensions, Extraversion-Introversion and Stability-Neuroticism, with an additional Lie scale. Developed by Eysenck and Eysenck, 1964. Eventually replaced with the EPQ which measures three broad dimensions. This data set represents 3570 observations collected in the early 1990s at the Personality, Motivation and Cognition lab at Northwestern. An additional data set (epiR) has test and retest information for 474 participants. The data are included here as demonstration of scale construction and test-retest reliability. } \usage{data(epi) data(epi.dictionary) data(epiR)} \format{ A data frame with 3570 observations on the following 57 variables. \describe{ \item{\code{id}}{The identification number within the study} \item{\code{time}}{First (group testing) or 2nd time (before a lab experiment) for the epiR data set.} \item{\code{study}}{Four lab based studies and their pretest data} \item{\code{V1}}{a numeric vector} \item{\code{V2}}{a numeric vector} \item{\code{V3}}{a numeric vector} \item{\code{V4}}{a numeric vector} \item{\code{V5}}{a numeric vector} \item{\code{V6}}{a numeric vector} \item{\code{V7}}{a numeric vector} \item{\code{V8}}{a numeric vector} \item{\code{V9}}{a numeric vector} \item{\code{V10}}{a numeric vector} \item{\code{V11}}{a numeric vector} \item{\code{V12}}{a numeric vector} \item{\code{V13}}{a numeric vector} \item{\code{V14}}{a numeric vector} \item{\code{V15}}{a numeric vector} \item{\code{V16}}{a numeric vector} \item{\code{V17}}{a numeric vector} \item{\code{V18}}{a numeric vector} \item{\code{V19}}{a numeric vector} \item{\code{V20}}{a numeric vector} \item{\code{V21}}{a numeric vector} \item{\code{V22}}{a numeric vector} \item{\code{V23}}{a numeric vector} \item{\code{V24}}{a numeric vector} \item{\code{V25}}{a numeric vector} \item{\code{V26}}{a numeric vector} \item{\code{V27}}{a numeric vector} \item{\code{V28}}{a numeric vector} \item{\code{V29}}{a numeric vector} \item{\code{V30}}{a numeric vector} \item{\code{V31}}{a numeric vector} \item{\code{V32}}{a numeric vector} \item{\code{V33}}{a numeric vector} \item{\code{V34}}{a numeric vector} \item{\code{V35}}{a numeric vector} \item{\code{V36}}{a numeric vector} \item{\code{V37}}{a numeric vector} \item{\code{V38}}{a numeric vector} \item{\code{V39}}{a numeric vector} \item{\code{V40}}{a numeric vector} \item{\code{V41}}{a numeric vector} \item{\code{V42}}{a numeric vector} \item{\code{V43}}{a numeric vector} \item{\code{V44}}{a numeric vector} \item{\code{V45}}{a numeric vector} \item{\code{V46}}{a numeric vector} \item{\code{V47}}{a numeric vector} \item{\code{V48}}{a numeric vector} \item{\code{V49}}{a numeric vector} \item{\code{V50}}{a numeric vector} \item{\code{V51}}{a numeric vector} \item{\code{V52}}{a numeric vector} \item{\code{V53}}{a numeric vector} \item{\code{V54}}{a numeric vector} \item{\code{V55}}{a numeric vector} \item{\code{V56}}{a numeric vector} \item{\code{V57}}{a numeric vector} } } \details{ The original data were collected in a group testing framework for screening participants for subsequent studies. The participants were enrolled in an introductory psychology class between Fall, 1991 and Spring, 1995. The actual items may be found in the \code{\link{epi.dictionary}}. The structure of the E scale has been shown by Rocklin and Revelle (1981) to have two subcomponents, Impulsivity and Sociability. These were subsequently used by Revelle, Humphreys, Simon and Gilliland (1980) to examine the relationship between personality, caffeine induced arousal, and cognitive performance. The epiR data include the original group testing data and matched data for 474 participants collected several weeks later. This is useful for showing that internal consistency estimates (e.g. \code{\link{alpha}} or \code{\link{omega}}) can be low even though the test is stable across time. For more demonstrations of the distinction between immediate internal consistency and delayed test-retest reliability see the \code{\link{msqR}} and \code{\link{sai}} data sets and \code{\link{testRetest}}. } \source{Data from the PMC laboratory at Northwestern. } \references{ Eysenck, H.J. and Eysenck, S. B.G. (1968). Manual for the Eysenck Personality Inventory.Educational and Industrial Testing Service, San Diego, CA. Revelle, W. and Humphreys, M. S. and Simon, L. and Gilliland, K. (1980) Interactive effect of personality, time of day, and caffeine: A test of the arousal model, Journal of Experimental Psychology General, 109, 1, 1-31, } \examples{ data(epi) epi.keys <- list(E = c("V1", "V3", "V8", "V10", "V13", "V17", "V22", "V25", "V27", "V39", "V44", "V46", "V49", "V53", "V56", "-V5", "-V15", "-V20", "-V29", "-V32", "-V34","-V37", "-V41", "-V51"), N = c( "V2", "V4", "V7", "V9", "V11", "V14", "V16", "V19", "V21", "V23", "V26", "V28", "V31", "V33", "V35", "V38", "V40","V43", "V45", "V47", "V50", "V52","V55", "V57"), L = c("V6", "V24", "V36", "-V12", "-V18", "-V30", "-V42", "-V48", "-V54"), Imp = c( "V1", "V3", "V8", "V10", "V13", "V22", "V39", "-V5", "-V41"), Soc = c( "V17", "V25", "V27", "V44", "V46", "V53", "-V11", "-V15", "-V20", "-V29", "-V32", "-V37", "-V51") ) scores <- psych::scoreItems(epi.keys,epi) psych::keys.lookup(epi.keys[1:3],epi.dictionary) #show the items and keying information #a variety of demonstrations (not run) of test retest reliability versus alpha versus omega E <- psych::selectFromKeys(epi.keys$E) #look at the testRetest help file for more examples } \keyword{datasets} psychTools/man/blant.Rd0000644000176200001440000000432013464173503014570 0ustar liggesusers\name{blant} \alias{blant} \docType{data} \title{A 29 x 29 matrix that produces weird factor analytic results} \description{Normally, min.res factor analysis and maximum likelihood produce very similar results. This data set (from Alexandra Blant) does not. Warnings are given for the min.res solution, the pa solution, but not the old.min nor the mle solution. Included as a test case for the factor analysis function. } \usage{data("blant")} \format{ The format is: num [1:29, 1:29] 1 0.77 0.813 0.68 0.717 ... - attr(*, "dimnames")=List of 2 ..$ : NULL ..$ : chr [1:29] "V1" "V2" "V3" "V4" ... } \details{ This data matrix was sent by Alexandra Blant as an example of a problem with the minres solution in the \code{\link{fa}} function. The default solution, using fm="minres" issues a warning that the solution has improper factor score weights. This is not the case for the fm="old.min" and fm="mle" options, but is for fm="pa", fm="ols". The residuals are indeed smaller for fm="minres" than for fm="old.min" or fm="mle". "old.min" attempts to find the minimum residual but uses the gradient for mle. This was the approach until version 1.7.5 but was changed (see the help page for fa) following extensive communication with Hao Wu. The problem with this matrix is probably that it is almost singular, with some smcs approaching 1 and the smallest three eigenvalues of .006, .004 and .001. This problem matrix was provided by Alexandra Blant. } \source{Alexandra Blant, personal communication} \examples{ data(blant) #compare f5 <- psych::fa(blant,5,rotate="none") #the default minres f5.old <- psych::fa(blant,5, fm="old.min",rotate="none") #old version of minres f5.mle <- psych::fa(blant,5,fm="mle",rotate= "none") #maximum likelihood #compare solutions psych::factor.congruence(list(f5,f5.old,f5.mle)) #compare sums of squared residuals sum(residuals(f5,diag=FALSE)^2,na.rm=TRUE) # 1.355489 sum(residuals(f5.old,diag=FALSE)^2,na.rm=TRUE) # 1.539757 sum(residuals(f5.mle,diag=FALSE)^2,na.rm=TRUE) # 2.402092 #but, when we divide the squared residuals by the original (squared) correlations, we find #a different ordering of fit f5$fit # 0.9748177 f5.old$fit # 0.9752774 f5.mle$fit # 0.9603324 } \keyword{datasets} psychTools/man/cities.Rd0000644000176200001440000000402213501546553014750 0ustar liggesusers\name{cities} \alias{cities} \alias{city.location} \docType{data} \title{Distances between 11 US cities} \description{Airline distances between 11 US cities may be used as an example for multidimensional scaling or cluster analysis. } \usage{data(cities)} \format{ A data frame with 11 observations on the following 11 variables. \describe{ \item{\code{ATL}}{Atlana, Georgia} \item{\code{BOS}}{Boston, Massachusetts} \item{\code{ORD}}{Chicago, Illinois} \item{\code{DCA}}{Washington, District of Columbia} \item{\code{DEN}}{Denver, Colorado} \item{\code{LAX}}{Los Angeles, California} \item{\code{MIA}}{Miami, Florida} \item{\code{JFK}}{New York, New York} \item{\code{SEA}}{Seattle, Washington} \item{\code{SFO}}{San Francisco, California} \item{\code{MSY}}{New Orleans, Lousianna} } } \details{An 11 x11 matrix of distances between major US airports. This is a useful demonstration of multiple dimensional scaling. city.location is a dataframe of longitude and latitude for those cities. Note that the 2 dimensional MDS solution does not perfectly capture the data from these city distances. Boston, New York and Washington, D.C. are located slightly too far west, and Seattle and LA are slightly too far south. } \source{ \url{https://www.timeanddate.com/worldclock/distance.html} } \examples{ data(cities) city.location[,1] <- -city.location[,1] #included in the cities data set plot(city.location, xlab="Dimension 1", ylab="Dimension 2", main ="Multidimensional scaling of US cities") #do the mds city.loc <- cmdscale(cities, k=2) #ask for a 2 dimensional solution round(city.loc,0) city.loc <- -city.loc #flip the axes city.loc <- psych::rescale(city.loc,apply(city.location,2,mean),apply(city.location,2,sd)) points(city.loc,type="n") #add the date point to the map text(city.loc,labels=names(cities)) \dontrun{ #we need the maps package to be available #an overlay map can be added if the package maps is available if(require(maps)) { map("usa",add=TRUE) } } } \keyword{datasets} psychTools/man/heights.Rd0000644000176200001440000000340113464307337015126 0ustar liggesusers\name{heights} \alias{heights} \docType{data} \title{A data.frame of the Galton (1888) height and cubit data set.} \description{Francis Galton introduced the 'co-relation' in 1888 with a paper discussing how to measure the relationship between two variables. His primary example was the relationship between height and forearm length. The data table (\code{\link{cubits}}) is taken from Galton (1888). Unfortunately, there seem to be some errors in the original data table in that the marginal totals do not match the table. The data frame, \code{\link{heights}}, is converted from this table using \code{\link{table2df}}. } \usage{data(heights)} \format{ A data frame with 348 observations on the following 2 variables. \describe{ \item{\code{height}}{Height in inches} \item{\code{cubit}}{Forearm length in inches} } } \details{Sir Francis Galton (1888) published the first demonstration of the correlation coefficient. The regression (or reversion to mediocrity) of the height to the length of the left forearm (a cubit) was found to .8. The original table \code{\link{cubits}} is taken from Galton (1888). There seem to be some errors in the table as published in that the row sums do not agree with the actual row sums. These data are used to create a matrix using \code{\link{table2matrix}} for demonstrations of analysis and displays of the data. } \seealso{ \code{\link[psych]{table2matrix}}, \code{\link[psych]{table2df}}, \code{\link{cubits}}, \code{\link{ellipses}}, \code{\link{galton}} } \source{Galton (1888) } \references{Galton, Francis (1888) Co-relations and their measurement. Proceedings of the Royal Society. London Series,45,135-145, } \examples{ data(heights) psych::ellipses(heights,n=1,main="Galton's co-relation data set") } \keyword{datasets} psychTools/man/colom.Rd0000644000176200001440000000327714403741163014610 0ustar liggesusers\name{colom} \alias{colom} \alias{colom.ed0} \alias{colom.ed1} \alias{colom.ed2} \alias{colom.ed3} \docType{data} \title{Correlations of 14 ability tests from the Spanish version of the WAIS (taken from Colom et al. 2002.) } \description{ Colom et al. analyze 14 tests from the Spanish version of the WAIS. This is a nice example of a hierarchical structure using the \link[psych]{omega} function. Here are the correlation matrices of the variables (colom), for 4 levels of education. } \usage{data("colom") data("colom.ed0") data("colom.ed1") data("colom.ed2") data("colom.ed3") } \format{ The format is: num [1:14, 1:14] 1 0.755 0.608 0.555 0.715 0.729 0.627 0.616 0.606 0.598 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "Vocabulary" "Similarities" "Arithmetic" "Digit_span" ... ..$ : chr [1:14] "Vocabulary" "Similarities" "Arithmetic" "Digit_span" ... } \details{The Wechsler Adult Intelligence Scale (WAIS) is the "gold standard" measure of intelligence. Here is an example of the correlational structure of 14 tests. It was used by Colom and his colleagues to find correlations of WAIS scores as a function of education. Here we show the complete standardization sample. The \link{colom} data set is the complete correlation matrix for all subjects (703 females, 666 males). The four subset data sets for four levels of education. Ns = 301, 432, 525, and 111. } \source{ Colom et al, 2002 } \references{Roberto Colom and Francisco J Abad and Luis F Garc and Manuel Juan-Espinosa, 2002, Education, Wechsler's Full Scale IQ, and g. Intelligence, 30, 449-462, } \examples{ data(colom) psych::lowerMat(colom) psych::omega(colom, 4) #do the omega analysis } \keyword{datasets}psychTools/man/selectBy.Rd0000644000176200001440000000327514472411716015253 0ustar liggesusers\name{selectBy} \alias{selectBy} \alias{splitBy} \title{Select a subset of rows (subjects) meeting one or more criteria for columns } \description{Select a subset of a data.frame or matrix for columns meeting specific criteria. Can do logical AND (default) or OR of the resulting search. Columns (variables) are specified by name and the conditions to meet include equality, less than, more than or inequality to a specified set of values. SplitBy creates new dichotomous variables based on the splitting criteria. } \usage{ selectBy(x, by) splitBy(x, by, new=FALSE) } \arguments{ \item{x}{A data frame or matrix } \item{by}{A quote delimited string of variables and criteria values. Multiple variables may be separated by commas (default to AND) } \item{new}{If true, return a new data frame with just the dichotomous variables otherwise concatenate the new variables to the right margin of x} } \details{Two relatively trivial functions to help those less familiar with the subset function or how to use [] to select variables. } \value{The subset of the original data.frame with just the cases that meet the criteria (selectBy) or new variables, recoded 0,1 \code{\link{selectBy}} is equivalent to subsetting x by an x value: small <- x[x[by=criterion]] or the subset function small <- subset(x, x$variable == value) } \author{William Revelle } \seealso{ \code{\link{vJoin}} for another data manipulation function. } \examples{ testand <- selectBy(attitude, 'rating < 70 & complaints > 60') #AND dim(testand) testor <- selectBy(attitude, 'rating < 60 | complaints > 60') #OR dim(testor) test <- splitBy(attitude, 'rating > 70 , complaints > 60') psych::headTail(test) } \keyword{multivariate}psychTools/man/spi.Rd0000644000176200001440000001065514214644517014275 0ustar liggesusers\name{spi} \alias{spi} \alias{spi.dictionary} \alias{spi.keys} \docType{data} \title{A sample from the SAPA Personality Inventory including an item dictionary and scoring keys.} \description{The SPI (SAPA Personality Inventory) is a set of 135 items primarily selected from International Personality Item Pool (ipip.ori.org). This is an example data set collected using SAPA procedures the sapa-project.org web site. This data set includes 10 demographic variables as well. The data set with 4000 observations on 145 variables may be used for examples in scale construction and validation, as well as empirical scale construction to predict multiple criteria. } \usage{data("spi") data(spi.dictionary) data(spi.keys) } \format{ A data frame with 4000 observations on the following 145 variables. (The q numbers are the SAPA item numbers). \describe{ \item{\code{age}}{Age in years from 11 -90} \item{\code{sex}}{Reported biological sex (coded by X chromosones => 1=Male, 2 = Female)} \item{\code{health}}{Self rated health 1-5: poor, fair, good, very good, excellent } \item{\code{p1edu}}{Parent 1 education} \item{\code{p2edu}}{Parent 2 education} \item{\code{education}}{Respondents education: less than 12, HS grad, current univ, some univ, associate degree, college degree, in grad/prof, grad/prof degree } \item{\code{wellness}}{Self rated "wellnes" 1-2} \item{\code{exer}}{Frequency of exercise: very rarely, < 1/month, < 1/wk, 1 or 2 times/week, 3-5/wk, > 5 times/week} \item{\code{smoke}}{never, not last year, < 1/month, <1/week, 1-3 days/week, most days, up to 5 x /day, up to 20 x /day, > 20x/day} \item{\code{ER}}{Emergency room visits none, 1x, 2x, 3 or more times} \item{\code{q_253}}{ see the spi.dictionary for these items (q_253} \item{\code{q_1328}}{see the dictionary for all items q_1328)} } } \details{Using the data contributed by about 125,000 visitors to the \url{https://www.SAPA-project.org/} website, David Condon has developed a hierarchical framework for assessing personality at two levels. The higher level has the familiar five factors that have been studied extensively in personality research since the 1980s -- Conscientiousness, Agreeableness, Neuroticism, Openness, and Extraversion. The lower level has 27 factors that are considerably more narrow. These were derived based on administrations of about 700 public-domain IPIP items to 3 large samples. Condon describes these scales as being "empirically-derived" because relatively little theory was used to select the number of factors in the hierarchy and the items in the scale for each factor (to be clear, he means relatively little personality theory though he relied on quite a lot of sampling and statistical theory). You can read all about the procedures used to develop this framework in his book/manual. If you would like to reproduce these analyses, you can download the data files from Dataverse (links are also provided in the manual) and compile this script in R (he used knitR). Instructions are provided in the Preface to the manual. The content of the spi items may be seen by examining the spi.dictionary. Included in the dictionary are the item_id number from the SAPA project, the wording of the item, the source of the item, which Big 5 scale the item marks, and which "Little 27" scale the item marks. This small subset of the data is provided for demonstration purposes. } \source{ https://sapa-project.org/research/SPI/SPIdevelopment.pdf. } \references{Condon, D. (2017) The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model (https://psyarxiv.com/sc4p9/) An analysis using the spi data set and various tools from the psych package may be found at Revelle, Dworak and Condon, (2021) Exploring the persome: the power of the item in understanding personality structure. Personality and Individual Differences, 169, 1. Doi: 10.1016/j.paid.2020.109905. } \examples{ data(spi) data(spi.dictionary) psych::bestScales(spi, criteria="health",dictionary=spi.dictionary) sc <- psych::scoreVeryFast(spi.keys,spi) #much faster scoring for just scores sc <- psych::scoreOverlap(spi.keys,spi) #gives the alpha reliabilities and various stats #these are corrected for overlap psych::corPlot(sc$corrected,numbers=TRUE,cex=.4,xlas=2,min.length=6, main="Structure of SPI (Corrected for overlap) disattenuated r above the diagonal)") } \keyword{datasets} psychTools/man/affect.Rd0000644000176200001440000000600413463645166014731 0ustar liggesusers\name{affect} \alias{affect} \alias{maps} \alias{flat} \docType{data} \title{Two data sets of affect and arousal scores as a function of personality and movie conditions } \description{A recurring question in the study of affect is the proper dimensionality and the relationship to various personality dimensions. Here is a data set taken from two studies of mood and arousal using movies to induce affective states. } \usage{data(affect)} \details{These are data from two studies conducted in the Personality, Motivation and Cognition Laboratory at Northwestern University. Both studies used a similar methodology: Collection of pretest data using 5 scales from the Eysenck Personality Inventory and items taken from the Motivational State Questionnaire (see \code{\link{msq}}. In addition, state and trait anxiety measures were given. In the ``maps" study, the Beck Depression Inventory was given also. Then subjects were randomly assigned to one of four movie conditions: 1: Frontline. A documentary about the liberation of the Bergen-Belsen concentration camp. 2: Halloween. A horror film. 3: National Geographic, a nature film about the Serengeti plain. 4: Parenthood. A comedy. Each film clip was shown for 9 minutes. Following this the MSQ was given again. Data from the MSQ were scored for Energetic and Tense Arousal (EA and TA) as well as Positive and Negative Affect (PA and NA). Study flat had 170 participants, study maps had 160. These studies are described in more detail in various publications from the PMC lab. In particular, Revelle and Anderson, 1997 and Rafaeli and Revelle (2006). An analysis of these data has also appeared in Smillie et al. (2012). For a much more complete data set involving film, caffeine, and time of day manipulations, see the \code{\link{msqR}} data set. } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University. } \references{ Revelle, William and Anderson, Kristen Joan (1997) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008 Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Smillie, Luke D. and Cooper, Andrew and Wilt, Joshua and Revelle, William (2012) Do Extraverts Get More Bang for the Buck? Refining the Affective-Reactivity Hypothesis of Extraversion. Journal of Personality and Social Psychology, 103 (2), 206-326. } \examples{ data(affect) psych::describeBy(affect[-1],group="Film") psych::pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") psych::errorCircles("EA2","TA2",data=affect,group="Film",labels=c("Sad","Fear","Neutral","Humor") , main="Enegetic and Tense Arousal by Movie condition") psych::errorCircles(x="PA2",y="NA2",data=affect,group="Film",labels=c("Sad","Fear","Neutral"," Humor"), main="Positive and Negative Affect by Movie condition") } \keyword{datasets} psychTools/man/usaf.Rd0000644000176200001440000000500314447321620014422 0ustar liggesusers\name{usaf} \alias{usaf} \alias{USAF} \docType{data} \title{17 anthropometric measures from the USAF showing a general factor} \description{The correlation matrix of 17 anthropometric measures from the United States Air Force survey of 2420 airmen. The data are taken from the Anthropometry package and included here as a demonstration of a hierarchical factor structure suitable for analysis by the \code{\link{omega}} or \code{\link{omegaSem}}. } \usage{data("USAF")} \format{ The format is: num [1:17, 1:17] 1 0.1148 -0.0309 -0.028 -0.0908 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:17] "age" "weight" "grip" "height" ... ..$ : chr [1:17] "age" "weight" "grip" "height" ... } \details{ The original data were collected by the USAF and reported in Churchill et al, 1977. They are included as a data file of 2420 participants and 202 variables (the first being an id) in the Anthropometry package. The list of variable names may be found in Churchill et al, on pages 99-103. The three (correlated) factor structure shows a clear height, bulk, and head size structure with an overall general factor (g) which may be interpreted as body size. The variables included (and their variable numbers in Anthropometry) are: \tabular{ll}{ age \tab V1\cr weight \tab V2 \cr grip strength \tab V12 \cr height (stature) \tab V13 \cr leg length \tab V26 \cr knee height \tab V37 \cr upper arm \tab V42 \cr thumb tip reach \tab V47 \cr in sleeve \tab V49 \cr chest breadth \tab V52\cr hip breadth \tab V55 \cr waist circumference \tab V71 \cr thigh circumference \tab V97 \cr scye circumference \tab V103\cr head circumference \tab V141 \cr bitragion coronal \tab V145 \cr head length \tab V150 \cr glabella to wall \tab V181 \cr external canthus to wall \tab V183 \cr } Note that these numbers are equivalant to the numbers in Churchill et al. The numbers in Anthropometry are these + 1. } \source{ Guillermo Vinue, Anthropometry: An R Package for Analysis of Anthropometric Data, Journal of Statistical Software, (2017), 77, 6. data set = USAFsurvey} \references{ Edmund Churchill, Thomas Churchill, Paul Kikta (1977) The AMRL anthropmetric data bank library, volumes I-V. (Technical report AMRL-TR-77-1) ) https://apps.dtic.mil/dtic/tr/fulltext/u2/a047314.pdf Guillermo Vinue, Anthropometry: An R Package for Analysis of Anthropometric Data, Journal of Statistical Software, (2017), 77, 6. } \examples{ data(USAF) psych::corPlot(USAF,xlas=3) psych::omega(USAF[c(4:8,10:19),c(4:8,10:19)]) #just the size variables } \keyword{datasets} psychTools/man/vJoin.Rd0000644000176200001440000000440414463556113014562 0ustar liggesusers\name{vJoin} \alias{vJoin} \alias{combineMatrices} \title{Combine two matrices or data frames into one based upon variable labels } \description{A typical problem in data analysis is to combine two data sets into one. vJoin will combine two matrices or data.frames into one data.frame. Unique column names from set 1 and set 2 are combined as are unique rows. Column names can differ, as can row names. Will match on rownames or a unique key vector. Basically an extension of rbind and cbind without the requirement of matching column and row names. combineMatrices solves a similar problem for correlation matrices. } \usage{ vJoin(x, y, rnames = TRUE, cnames=TRUE, key.name= NULL) combineMatrices(x,y, r=NULL) } \arguments{ \item{x}{a matrix or data frame with column and row names.} \item{y}{a matrix or data frame with column and row names} \item{rnames}{If TRUE, the default, match on row names, extend to new names. If FALSE then add the y data following the x data.} \item{cnames}{If TRUE colnames are NULL then create unique colnames for x and y} \item{key.name}{if NULL, match on rownames, otherwise, match on the values of the key.name column -- must be unique} \item{r}{shoule we add the diagonal of y?} } \details{ For an X and Y matrices/data.frames with column and row names, combine the two data sets. Match on column and row names if they exist, extend to unique names if they do not match. Can also match on a column in each set (key.name) Matrices by default do not have column or rownames. They will be created for x and for y (depending upon the rnames and cnames options). combineMatrices takes a square matrix (x) and combines with a rectangular matrix y to produce a larger xy matrix. } \value{xy: a data frame} \author{William Revelle } \note{Inspired by the functionality of full_join and the other related dplyr functions. } \examples{ X1 <- bfi[1:10,1:5] Y1 <- bfi[6:15,4:10] xy <- vJoin(X1,Y1) #match on rownames xy1 <- vJoin(X1,Y1,rnames=FALSE) #add Y1 items after X1 items x <- matrix(1:30, ncol=5) y <- matrix(1:40, ncol=8) vJoin(x,y) vJoin(x,y,cnames=FALSE) vJoin(x,y, rnames= FALSE, cnames=FALSE) R <- cor(sat.act,use="pairwise") r1 <- R[1:4,1:4] r2 <- R[1:4,5:6] newr <- combineMatrices(r1,r2) } \keyword{ multivariate } \keyword{ IO } psychTools/man/dfOrder.Rd0000644000176200001440000000502214165104436015053 0ustar liggesusers\name{dfOrder} \alias{dfOrder} \title{Sort (order) a dataframe or matrix by multiple columns } \description{Although \code{\link{order}} will order a vector, and it is possible to order several columns of a data.frame by specifying each column individually in the call to order, \code{\link{dfOrder}} will order a dataframe or matrix by as many columns as desired. The default is to sort by columns in lexicographic order. If the object is a correlation matrix, then the selected columns are sorted by the (abs) max value across the columns (similar to fa.lookup in psych). If object is a correlation matrix, rows and columns are sorted. } \usage{ dfOrder(object, columns,absolute=FALSE,ascending=TRUE) } \arguments{ \item{object}{The data.frame or matrix to be sorted} \item{columns}{Column numbers or names to use for sorting. If positive, then they will be sorted in increasing order. If negative, then in decreasing order} \item{absolute}{If TRUE, then sort the absolute values} \item{ascending}{By default, order from smallest to largest.} } \details{ This is just a simple helper function to reorder data.frames and correlation matrices. Originally developed to organize IRT output from the ltm package. It is a basic add on to the order function. (Completely rewritten for version 1.8.1. and then again for 2.2.1 to allow sorting correlation matrices by numeric values.) } \value{ The original data frame is now in sorted order. If the input is a correlation matrix, the output is sorted by rows and columns. } \author{William Revelle } \seealso{ Other useful file manipulation functions include \code{\link{read.file}} to read in data from a file or \code{\link{read.clipboard}} from the clipboard, \code{\link{fileScan}}, \code{\link{filesList}}, \code{\link{filesInfo}}, and \code{\link{fileCreate}} \code{\link{dfOrder}} code is used in the \code{\link{test.irt}} function to combine ltm and \code{\link{sim.irt}} output. } \examples{ #create a data frame and then sort it in lexicographic order set.seed(42) x <- matrix(sample(1:4,64,replace=TRUE),ncol=4) dfOrder(x) # sort by all columns dfOrder(x,c(1,4)) #sort by the first and 4th column x.df <- data.frame(x) dfOrder(x.df,c(1,-2)) #sort by the first in increasing order, #the second in decreasing order #now show sorting correlation matrices r <- cor(sat.act,use="pairwise") r.ord <- dfOrder(r,columns=c("education","ACT"),ascending=FALSE) psych::corPlot(r.ord) } \keyword{manip }% use one of RShowDoc("KEYWORDS") \keyword{utilities }% __ONLY ONE__ keyword per line psychTools/man/vegetables.Rd0000644000176200001440000000564713714653347015635 0ustar liggesusers\name{vegetables} \alias{vegetables} \alias{veg} \docType{data} \title{ Paired comparison of preferences for 9 vegetables} \description{A classic data set for demonstrating Thurstonian scaling is the preference matrix of 9 vegetables from Guilford (1954). Used by Guiford, Nunnally, and Nunally and Bernstein, this data set allows for examples of basic scaling techniques. } \usage{data(vegetables)} \format{ A data frame with 9 choices on the following 9 vegetables. The values reflect the perecentage of times where the column entry was preferred over the row entry. \describe{ \item{\code{Turn}}{Turnips} \item{\code{Cab}}{Cabbage} \item{\code{Beet}}{Beets} \item{\code{Asp}}{Asparagus} \item{\code{Car}}{Carrots} \item{\code{Spin}}{Spinach} \item{\code{S.Beans}}{String Beans} \item{\code{Peas}}{Peas} \item{\code{Corn}}{Corn} } } \details{Louis L. Thurstone was a pioneer in psychometric theory and measurement of attitudes, interests, and abilities. Among his many contributions was a systematic analysis of the process of comparative judgment (thurstone, 1927). He considered the case of asking subjects to successively compare pairs of objects. If the same subject does this repeatedly, or if subjects act as random replicates of each other, their judgments can be thought of as sampled from a normal distribution of underlying (latent) scale scores for each object, Thurstone proposed that the comparison between the value of two objects could be represented as representing the differences of the average value for each object compared to the standard deviation of the differences between objects. The basic model is that each item has a normal distribution of response strength and that choice represents the stronger of the two response strengths. A justification for the normality assumption is that each decision represents the sum of many independent inputs and thus, through the central limit theorem, is normally distributed. Thurstone considered five different sets of assumptions about the equality and independence of the variances for each item (Thurston, 1927). Torgerson expanded this analysis slightly by considering three classes of data collection (with individuals, between individuals and mixes of within and between) crossed with three sets of assumptions (equal covariance of decision process, equal correlations and small differences in variance, equal variances). This vegetable data set is used by Guilford and by Nunnally to demonstrate Thurstonian scaling. } \source{ Guilford, J.P. (1954) Psychometric Methods. McGraw-Hill, New York. } \references{ Nunnally, J. C. (1967). Psychometric theory., McGraw-Hill, New York.\cr Revelle, W. An introduction to psychometric theory with applications in R. (in preparation), Springer. \url{https://personality-project.org/r/book/} } \seealso{ \code{\link[psych]{thurstone}}} \examples{ data(vegetables) psych::thurstone(veg) } \keyword{datasets} psychTools/man/salary.Rd0000644000176200001440000000402314534632350014762 0ustar liggesusers\name{salary} \alias{salary} \docType{data} \title{Salary example from Cohen, Cohen, Aiken and West (2003)} \description{ Four predictors of academic salary are used as examples in Cohen, Cohen, Aiken, and West (2003) may be used for demonstration purposes of multiple regression and multiple correlation. } \usage{data("salary")} \format{ A data frame with 62 observations on the following 5 variables. \describe{ \item{\code{time}}{Time since Ph.D.} \item{\code{publications}}{Number of publications} \item{\code{female}}{gender Male=0, Female =1} \item{\code{citations}}{Number of citations} \item{\code{salary}}{Salary} } } \details{ Two extended examples multiple regression in CCAW are discussed in Chapter 3. These are nice examples of the use of the \code{link{psych::lmCor}} and \code{link{psych::partial.r}} functions. Note that example data set in Table 3.2.1 (p 67) is just the first 15 cases of the complete data set used in Table 3.5.1 (page 81) and included in this data set. } \source{ CD accompanying Cohen, Cohen, Aiken and West (2003) (used with the kind permission of Leona Aiken and Steven West) } \references{ Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Lawrence Erlbaum Associates Publishers. } \examples{ data(salary) psych::describe(salary) psych::pairs.panels(salary) #the standardized coefficients psych::lmCor(salary ~ time + publications, data=salary) #or the raw coefficients mod <- psych::lmCor(salary ~ time + publications, data=salary, std=FALSE) mod #show the part correlations psych::partial.r(salary ~ time - publications, data=salary, part=TRUE) psych::partial.r(salary ~ -time + publications, data=salary, part=TRUE) #show the predicted salaries based upon the model mod <- psych::lmCor(salary ~ time + publications+ citations + female, data=salary, std=FALSE) predicted.salary <- psych::predict.psych(mod,salary) head(predicted.salary)#compare to CCAW p 81 ## } \keyword{datasets} psychTools/man/galton.Rd0000644000176200001440000000357513464307747015000 0ustar liggesusers\name{galton} \alias{galton} \docType{data} \title{Galton's Mid parent child height data} \description{Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. This is the data set for the Galton height. } \usage{data(galton)} \format{ A data frame with 928 observations on the following 2 variables. \describe{ \item{\code{parent}}{Mid Parent heights (in inches) } \item{\code{child}}{Child Height} } } \details{Female heights were adjusted by 1.08 to compensate for sex differences. (This was done in the original data set) } \source{This is just the galton data set from UsingR, slightly rearranged. } \references{Stigler, S. M. (1999). Statistics on the Table: The History of Statistical Concepts and Methods. Harvard University Press. Galton, F. (1886). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute of Great Britain and Ireland, 15:246-263. Galton, F. (1869). Hereditary Genius: An Inquiry into its Laws and Consequences. London: Macmillan. Wachsmuth, A.W., Wilkinson L., Dallal G.E. (2003). Galton's bend: A previously undiscovered nonlinearity in Galton's family stature regression data. The American Statistician, 57, 190-192. } \seealso{The other Galton data sets: \code{\link{heights}}, \code{\link{peas}},\code{\link{cubits}}} \examples{ data(galton) psych::describe(galton) #show the scatter plot and the lowess fit psych::pairs.panels(galton,main="Galton's Parent child heights") #but this makes the regression lines look the same psych::pairs.panels(galton,lm=TRUE,main="Galton's Parent child heights") #better is to scale them psych::pairs.panels(galton,lm=TRUE,xlim=c(62,74),ylim=c(62,74), main="Galton's Parent child heights") } \keyword{datasets} psychTools/man/epi.bfi.Rd0000644000176200001440000000350113463322304014776 0ustar liggesusers\name{epi.bfi} \alias{epi.bfi} \docType{data} \title{13 personality scales from the Eysenck Personality Inventory and Big 5 inventory} \description{A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. } \usage{data(epi.bfi)} \format{ A data frame with 231 observations on the following 13 variables. \describe{ \item{\code{epiE}}{EPI Extraversion } \item{\code{epiS}}{EPI Sociability (a subset of Extraversion items} \item{\code{epiImp}}{EPI Impulsivity (a subset of Extraversion items} \item{\code{epilie}}{EPI Lie scale} \item{\code{epiNeur}}{EPI neuroticism} \item{\code{bfagree}}{Big 5 inventory (from the IPIP) measure of Agreeableness} \item{\code{bfcon}}{Big 5 Conscientiousness} \item{\code{bfext}}{Big 5 Extraversion} \item{\code{bfneur}}{Big 5 Neuroticism} \item{\code{bfopen}}{Big 5 Openness} \item{\code{bdi}}{Beck Depression scale} \item{\code{traitanx}}{Trait Anxiety} \item{\code{stateanx}}{State Anxiety} } } \details{Self report personality scales tend to measure the ``Giant 2" of Extraversion and Neuroticism or the ``Big 5" of Extraversion, Neuroticism, Agreeableness, Conscientiousness, and Openness. Here is a small data set from Northwestern University undergraduates with scores on the Eysenck Personality Inventory (EPI) and a Big 5 inventory taken from the International Personality Item Pool. } \source{Data were collected at the Personality, Motivation, and Cognition Lab (PMCLab) at Northwestern by William Revelle) } \references{\url{https://personality-project.org/pmc.html} } \examples{ data(epi.bfi) psych::pairs.panels(epi.bfi[,1:5]) psych::describe(epi.bfi) } \keyword{datasets} psychTools/man/fileUtilities.Rd0000644000176200001440000000614313470536352016312 0ustar liggesusers\name{Utility} \alias{fileScan} \alias{fileCreate} \alias{filesList} \alias{filesInfo} \alias{Utility} \title{Useful utility functions for file/directory exploration and manipulation.} \description{ Wrappers for dirname, file.choose, readLines. file.create, file.path to be called directly for listing directories, creating files, showing the files in a directory, and listing the content of files in a directory. \code{\link{fileCreate}} gives the functionality of \code{\link{file.choose}}(new=TRUE). \code{\link{filesList}} combines file.choose, dirname, and list.files to show the files in a directory, \code{\link{fileScan}} extends this and then returns the first few lines of each readable file } \usage{ fileScan(f = NULL, nlines = 3, max = NULL, from = 1, filter = NULL) filesList(f=NULL) filesInfo(f=NULL,max=NULL) fileCreate(newName="new.file") } \arguments{ \item{f}{File path to use as base path (will use file.choose() if missing. If f is a directory, will list the files in that directory, if f is a file, will find the directory for that file and then list all of those files.) } \item{nlines}{How many lines to display} \item{max}{maximum number of files to display} \item{from}{First file (number) to display} \item{filter}{Just display files with "filter" in the name} \item{newName}{The name of the file to be created.} } \details{ Just a collection of simple wrappers to powerful core R functions. Allows the user more direct control of what directory to list, to create a file, or to display the content of files. The functions called include \code{\link{file.choose}}, \code{\link{file.path}}, \code{\link{file.info}},\code{\link{file.create}}, \code{\link{dirname}}, and \code{\link{dir.exists}}. All of these are very powerful functions, but not easy to call interactively. \code{\link{fileCreate}} will ask to locate a file using file.choose, set the directory to that location, and then prompt to create a file with the new.name. This is a workaround for file.choose(new=TRUE) which only works for Macs not using R.studio. \code{\link{filesInfo}} will interactively search for a file and then list the information (size, date, ownership) of all the files in that directory. \code{\link{filesList}} will interactively search for a file and then list all the files in same directory. } \author{William Revelle} \note{Work arounds for core-R functions for interactive file manipulation } \seealso{\code{\link{read.file}} to read in data from a file or \code{\link{read.clipboard}} from the clipboard. \code{\link{dfOrder}} to sort data.frames. } \examples{ \donttest{ if(interactive()) { #all of these require interactive input and thus are not given as examples fileCreate("my.new.file.txt") filesList() #show the items in the directory where a file is displayed fileScan() #show the content of the files in a directory #or, if you have a file in mind f <- file.choose() #go find it filesList(f) fileScan(f) } } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{IO }% use one of RShowDoc("KEYWORDS") \keyword{file}% __ONLY ONE__ keyword per line psychTools/man/cushny.Rd0000644000176200001440000000412613464306355015010 0ustar liggesusers\name{cushny} \alias{cushny} \docType{data} \title{ A data set from Cushny and Peebles (1905) on the effect of three drugs on hours of sleep, used by Student (1908) } \description{The classic data set used by Gossett (publishing as Student) for the introduction of the t-test. The design was a within subjects study with hours of sleep in a control condition compared to those in 3 drug conditions. Drug1 was 06mg of L Hscyamine, Drug 2L and Drug2R were said to be .6 mg of Left and Right isomers of Hyoscine. As discussed by Zabell (2008) these were not optical isomers. The detal1, delta2L and delta2R are changes from the baseline control. } \usage{data(cushny)} \format{ A data frame with 10 observations on the following 7 variables. \describe{ \item{\code{Control}}{Hours of sleep in a control condition} \item{\code{drug1}}{Hours of sleep in Drug condition 1} \item{\code{drug2L}}{Hours of sleep in Drug condition 2} \item{\code{drug2R}}{Hours of sleep in Drug condition 3 (an isomer of the drug in condition 2} \item{\code{delta1}}{Change from control, drug 1} \item{\code{delta2L}}{Change from control, drug 2L} \item{\code{delta2R}}{Change from control, drug 2R} } } \details{The original analysis by Student is used as an example for the t-test function, both as a paired t-test and a two group t-test. The data are also useful for a repeated measures analysis of variance. } \source{Cushny, A.R. and Peebles, A.R. (1905) The action of optical isomers: II hyoscines. The Journal of Physiology 32, 501-510. Student (1908) The probable error of the mean. Biometrika, 6 (1) , 1-25. } \references{See also the data set sleep and the examples for the t.test S. L. Zabell. On Student's 1908 Article "The Probable Error of a Mean" Journal of the American Statistical Association, Vol. 103, No. 481 (Mar., 2008), pp. 1- 20} \examples{ data(cushny) with(cushny, t.test(drug1,drug2L,paired=TRUE)) #within subjects psych::error.bars(cushny[1:4],within=TRUE,ylab="Hours of sleep",xlab="Drug condition", main="95\% confidence of within subject effects") } \keyword{datasets} psychTools/man/msq.Rd0000644000176200001440000003374213501503155014272 0ustar liggesusers\name{msq} \Rdversion{1.1} \alias{msq} \docType{data} \title{75 mood items from the Motivational State Questionnaire for 3896 participants} \description{Emotions may be described either as discrete emotions or in dimensional terms. The Motivational State Questionnaire (MSQ) was developed to study emotions in laboratory and field settings. The data can be well described in terms of a two dimensional solution of energy vs tiredness and tension versus calmness. Additional items include what time of day the data were collected and a few personality questionnaire scores. } \usage{data(msq)} \format{ A data frame with 3896 observations on the following 92 variables. \describe{ \item{\code{active}}{a numeric vector} \item{\code{afraid}}{a numeric vector} \item{\code{alert}}{a numeric vector} \item{\code{angry}}{a numeric vector} \item{\code{anxious}}{a numeric vector} \item{\code{aroused}}{a numeric vector} \item{\code{ashamed}}{a numeric vector} \item{\code{astonished}}{a numeric vector} \item{\code{at.ease}}{a numeric vector} \item{\code{at.rest}}{a numeric vector} \item{\code{attentive}}{a numeric vector} \item{\code{blue}}{a numeric vector} \item{\code{bored}}{a numeric vector} \item{\code{calm}}{a numeric vector} \item{\code{cheerful}}{a numeric vector} \item{\code{clutched.up}}{a numeric vector} \item{\code{confident}}{a numeric vector} \item{\code{content}}{a numeric vector} \item{\code{delighted}}{a numeric vector} \item{\code{depressed}}{a numeric vector} \item{\code{determined}}{a numeric vector} \item{\code{distressed}}{a numeric vector} \item{\code{drowsy}}{a numeric vector} \item{\code{dull}}{a numeric vector} \item{\code{elated}}{a numeric vector} \item{\code{energetic}}{a numeric vector} \item{\code{enthusiastic}}{a numeric vector} \item{\code{excited}}{a numeric vector} \item{\code{fearful}}{a numeric vector} \item{\code{frustrated}}{a numeric vector} \item{\code{full.of.pep}}{a numeric vector} \item{\code{gloomy}}{a numeric vector} \item{\code{grouchy}}{a numeric vector} \item{\code{guilty}}{a numeric vector} \item{\code{happy}}{a numeric vector} \item{\code{hostile}}{a numeric vector} \item{\code{idle}}{a numeric vector} \item{\code{inactive}}{a numeric vector} \item{\code{inspired}}{a numeric vector} \item{\code{intense}}{a numeric vector} \item{\code{interested}}{a numeric vector} \item{\code{irritable}}{a numeric vector} \item{\code{jittery}}{a numeric vector} \item{\code{lively}}{a numeric vector} \item{\code{lonely}}{a numeric vector} \item{\code{nervous}}{a numeric vector} \item{\code{placid}}{a numeric vector} \item{\code{pleased}}{a numeric vector} \item{\code{proud}}{a numeric vector} \item{\code{quiescent}}{a numeric vector} \item{\code{quiet}}{a numeric vector} \item{\code{relaxed}}{a numeric vector} \item{\code{sad}}{a numeric vector} \item{\code{satisfied}}{a numeric vector} \item{\code{scared}}{a numeric vector} \item{\code{serene}}{a numeric vector} \item{\code{sleepy}}{a numeric vector} \item{\code{sluggish}}{a numeric vector} \item{\code{sociable}}{a numeric vector} \item{\code{sorry}}{a numeric vector} \item{\code{still}}{a numeric vector} \item{\code{strong}}{a numeric vector} \item{\code{surprised}}{a numeric vector} \item{\code{tense}}{a numeric vector} \item{\code{tired}}{a numeric vector} \item{\code{tranquil}}{a numeric vector} \item{\code{unhappy}}{a numeric vector} \item{\code{upset}}{a numeric vector} \item{\code{vigorous}}{a numeric vector} \item{\code{wakeful}}{a numeric vector} \item{\code{warmhearted}}{a numeric vector} \item{\code{wide.awake}}{a numeric vector} \item{\code{alone}}{a numeric vector} \item{\code{kindly}}{a numeric vector} \item{\code{scornful}}{a numeric vector} \item{\code{EA}}{Thayer's Energetic Arousal Scale} \item{\code{TA}}{Thayer's Tense Arousal Scale} \item{\code{PA}}{Positive Affect scale} \item{\code{NegAff}}{Negative Affect scale} \item{\code{Extraversion}}{Extraversion from the Eysenck Personality Inventory} \item{\code{Neuroticism}}{Neuroticism from the Eysenck Personality Inventory} \item{\code{Lie}}{Lie from the EPI} \item{\code{Sociability}}{The sociability subset of the Extraversion Scale} \item{\code{Impulsivity}}{The impulsivity subset of the Extraversions Scale} \item{\code{MSQ_Time}}{Time of day the data were collected} \item{\code{MSQ_Round}}{Rounded time of day} \item{\code{TOD}}{a numeric vector} \item{\code{TOD24}}{a numeric vector} \item{\code{ID}}{subject ID} \item{\code{condition}}{What was the experimental condition after the msq was given} \item{\code{scale}}{a factor with levels \code{msq} \code{r} original or revised msq} \item{\code{exper}}{Which study were the data collected: a factor with levels \code{AGES} \code{BING} \code{BORN} \code{CART} \code{CITY} \code{COPE} \code{EMIT} \code{FAST} \code{Fern} \code{FILM} \code{FLAT} \code{Gray} \code{imps} \code{item} \code{knob} \code{MAPS} \code{mite} \code{pat-1} \code{pat-2} \code{PATS} \code{post} \code{RAFT} \code{Rim.1} \code{Rim.2} \code{rob-1} \code{rob-2} \code{ROG1} \code{ROG2} \code{SALT} \code{sam-1} \code{sam-2} \code{SAVE/PATS} \code{sett} \code{swam} \code{swam-2} \code{TIME} \code{VALE-1} \code{VALE-2} \code{VIEW}} } } \details{The Motivational States Questionnaire (MSQ) is composed of 72 items, which represent the full affective space (Revelle & Anderson, 1998). The MSQ consists of 20 items taken from the Activation-Deactivation Adjective Check List (Thayer, 1986), 18 from the Positive and Negative Affect Schedule (PANAS, Watson, Clark, & Tellegen, 1988) along with the items used by Larsen and Diener (1992). The response format was a four-point scale that corresponds to Russell and Carroll's (1999) "ambiguous--likely-unipolar format" and that asks the respondents to indicate their current standing (``at this moment") with the following rating scale:\cr 0----------------1----------------2----------------3 \cr Not at all A little Moderately Very much \cr The original version of the MSQ included 70 items. Intermediate analyses (done with 1840 subjects) demonstrated a concentration of items in some sections of the two dimensional space, and a paucity of items in others. To begin correcting this, 3 items from redundantly measured sections (alone, kindly, scornful) were removed, and 5 new ones (anxious, cheerful, idle, inactive, and tranquil) were added. Thus, the correlation matrix is missing the correlations between items anxious, cheerful, idle, inactive, and tranquil with alone, kindly, and scornful. Procedure. The data were collected over nine years, as part of a series of studies examining the effects of personality and situational factors on motivational state and subsequent cognitive performance. In each of 38 studies, prior to any manipulation of motivational state, participants signed a consent form and filled out the MSQ. (The procedures of the individual studies are irrelevant to this data set and could not affect the responses to the MSQ, since this instrument was completed before any further instructions or tasks). Some MSQ post test (after manipulations) is available in \code{\link{affect}}. The EA and TA scales are from Thayer, the PA and NA scales are from Watson et al. (1988). Scales and items: Energetic Arousal: active, energetic, vigorous, wakeful, wide.awake, full.of.pep, lively, -sleepy, -tired, - drowsy (ADACL) Tense Arousal: Intense, Jittery, fearful, tense, clutched up, -quiet, -still, - placid, - calm, -at rest (ADACL) Positive Affect: active, alert, attentive, determined, enthusiastic, excited, inspired, interested, proud, strong (PANAS) Negative Affect: afraid, ashamed, distressed, guilty, hostile, irritable , jittery, nervous, scared, upset (PANAS) The PA and NA scales can in turn can be thought of as having subscales: (See the PANAS-X) Fear: afraid, scared, nervous, jittery (not included frightened, shaky) Hostility: angry, hostile, irritable, (not included: scornful, disgusted, loathing guilt: ashamed, guilty, (not included: blameworthy, angry at self, disgusted with self, dissatisfied with self) sadness: alone, blue, lonely, sad, (not included: downhearted) joviality: cheerful, delighted, energetic, enthusiastic, excited, happy, lively, (not included: joyful) self-assurance: proud, strong, confident, (not included: bold, daring, fearless ) attentiveness: alert, attentive, determined (not included: concentrating) The next set of circumplex scales were taken (I think) from Larsen and Diener (1992). High activation: active, aroused, surprised, intense, astonished Activated PA: elated, excited, enthusiastic, lively Unactivated NA : calm, serene, relaxed, at rest, content, at ease PA: happy, warmhearted, pleased, cheerful, delighted Low Activation: quiet, inactive, idle, still, tranquil Unactivated PA: dull, bored, sluggish, tired, drowsy NA: sad, blue, unhappy, gloomy, grouchy Activated NA: jittery, anxious, nervous, fearful, distressed. Keys for these separate scales are shown in the examples. In addition to the MSQ, there are 5 scales from the Eysenck Personality Inventory (Extraversion, Impulsivity, Sociability, Neuroticism, Lie). The Imp and Soc are subsets of the the total extraversion scale. } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University. } \references{ Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M. S. Clark (Ed.), Review of personality and social psychology, No. 13. Emotion (pp. 25-59). Thousand Oaks, CA, US: Sage Publications, Inc. Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Revelle, W. and Anderson, K.J. (1998) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008. (\url{https://www.personality-project.org/revelle/publications/ra.ari.98.pdf}). Thayer, R.E. (1989) The biopsychology of mood and arousal. Oxford University Press. New York, NY. Watson,D., Clark, L.A. and Tellegen, A. (1988) Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6):1063-1070. } \seealso{\code{\link{msqR}} for a larger data set with repeated measures for 3032 participants measured at least once, 2753 measured twice, 446 three times and 181 four times. \code{\link{affect}} for an example of the use of some of these adjectives in a mood manipulation study. \code{\link{make.keys}}, \code{\link{scoreItems}} and \code{\link{scoreOverlap}} for instructions on how to score multiple scales with and without item overlap. Also see \code{\link{fa}} and \code{\link{fa.extension}} for instructions on how to do factor analyses or factor extension. } \examples{ data(msq) \donttest{ #in in the interests of time #basic descriptive statistics psych::describe(msq) } #score them for 20 short scales -- note that these have item overlap #The first 2 are from Thayer #The next 2 are classic positive and negative affect #The next 9 are circumplex scales #the last 7 are msq estimates of PANASX scales (missing some items) keys.list <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" ), HAct = c("active", "aroused", "surprised", "intense", "astonished"), aPA = c("elated", "excited", "enthusiastic", "lively"), uNA = c("calm", "serene", "relaxed", "at.rest", "content", "at.ease"), pa = c("happy", "warmhearted", "pleased", "cheerful", "delighted" ), LAct = c("quiet", "inactive", "idle", "still", "tranquil"), uPA =c( "dull", "bored", "sluggish", "tired", "drowsy"), naf = c( "sad", "blue", "unhappy", "gloomy", "grouchy"), aNA = c("jittery", "anxious", "nervous", "fearful", "distressed"), Fear = c("afraid" , "scared" , "nervous" , "jittery" ) , Hostility = c("angry" , "hostile", "irritable", "scornful" ), Guilt = c("guilty" , "ashamed" ), Sadness = c( "sad" , "blue" , "lonely", "alone" ), Joviality =c("happy","delighted", "cheerful", "excited", "enthusiastic", "lively", "energetic"), Self.Assurance=c( "proud","strong" , "confident" , "-fearful" ), Attentiveness = c("alert" , "determined" , "attentive" ) #, acquiscence = c("sleepy" , "wakeful" , "relaxed","tense") #dropped because it has a negative alpha and throws warnings ) msq.scores <- psych::scoreItems(keys.list,msq) #show a circumplex structure for the non-overlapping items fcirc <- psych::fa(msq.scores$scores[,5:12],2) psych::fa.plot(fcirc,labels=colnames(msq.scores$scores)[5:12]) \donttest{#now, find the correlations corrected for item overlap msq.overlap <- psych::scoreOverlap(keys.list,msq) #a warning is thrown by smc because of some NAs in the matrix f2 <- psych::fa(msq.overlap$cor,2) psych::fa.plot(f2,labels=colnames(msq.overlap$cor), title="2 dimensions of affect, corrected for overlap") #extend this solution to EA/TA NA/PA space fe <- psych::fa.extension(cor(msq.scores$scores[,5:12],msq.scores$scores[,1:4]),fcirc) psych::fa.diagram(fcirc,fe=fe, main="Extending the circumplex structure to EA/TA and PA/NA ") #show the 2 dimensional structure f2 <- psych::fa(msq[1:72],2) psych::fa.plot(f2,labels=colnames(msq)[1:72], title="2 dimensions of affect at the item level",cex=.5) #sort them by polar coordinates round(psych::polar(f2),2) } } \keyword{datasets} psychTools/man/bfi.Rd0000644000176200001440000001316713714654277014253 0ustar liggesusers\name{bfi} \alias{bfi} \alias{bfi.dictionary} \alias{bfi.keys} \docType{data} \title{25 Personality items representing 5 factors} \description{25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis, and Item Response Theory analysis. Three additional demographic variables (sex, education, and age) are also included. } \usage{data(bfi) data(bfi.dictionary) } \format{ A data frame with 2800 observations on the following 28 variables. (The q numbers are the SAPA item numbers). \describe{ \item{\code{A1}}{Am indifferent to the feelings of others. (q_146)} \item{\code{A2}}{Inquire about others' well-being. (q_1162)} \item{\code{A3}}{Know how to comfort others. (q_1206) } \item{\code{A4}}{Love children. (q_1364)} \item{\code{A5}}{Make people feel at ease. (q_1419)} \item{\code{C1}}{Am exacting in my work. (q_124)} \item{\code{C2}}{Continue until everything is perfect. (q_530)} \item{\code{C3}}{Do things according to a plan. (q_619)} \item{\code{C4}}{Do things in a half-way manner. (q_626)} \item{\code{C5}}{Waste my time. (q_1949)} \item{\code{E1}}{Don't talk a lot. (q_712)} \item{\code{E2}}{Find it difficult to approach others. (q_901)} \item{\code{E3}}{Know how to captivate people. (q_1205)} \item{\code{E4}}{Make friends easily. (q_1410)} \item{\code{E5}}{Take charge. (q_1768)} \item{\code{N1}}{Get angry easily. (q_952)} \item{\code{N2}}{Get irritated easily. (q_974)} \item{\code{N3}}{Have frequent mood swings. (q_1099} \item{\code{N4}}{Often feel blue. (q_1479)} \item{\code{N5}}{Panic easily. (q_1505)} \item{\code{O1}}{Am full of ideas. (q_128)} \item{\code{O2}}{Avoid difficult reading material.(q_316)} \item{\code{O3}}{Carry the conversation to a higher level. (q_492)} \item{\code{O4}}{Spend time reflecting on things. (q_1738)} \item{\code{O5}}{Will not probe deeply into a subject. (q_1964)} \item{\code{gender}}{Males = 1, Females =2} \item{\code{education}}{1 = HS, 2 = finished HS, 3 = some college, 4 = college graduate 5 = graduate degree} \item{\code{age}}{age in years} } } \details{The first 25 items are organized by five putative factors: Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Opennness. The scoring key is created using \code{\link{make.keys}}, the scores are found using \code{\link{score.items}}. These five factors are a useful example of using \code{\link{irt.fa}} to do Item Response Theory based latent factor analysis of the \code{\link{polychoric}} correlation matrix. The endorsement plots for each item, as well as the item information functions reveal that the items differ in their quality. The item data were collected using a 6 point response scale: 1 Very Inaccurate 2 Moderately Inaccurate 3 Slightly Inaccurate 4 Slightly Accurate 5 Moderately Accurate 6 Very Accurate as part of the Synthetic Apeture Personality Assessment (SAPA \url{https://www.sapa-project.org/}) project. To see an example of the data collection technique, visit \url{https://www.SAPA-project.org/} or the International Cognitive Ability Resource at \url{https://icar-project.org}. The items given were sampled from the International Personality Item Pool of Lewis Goldberg using the sampling technique of SAPA. This is a sample data set taken from the much larger SAPA data bank. } \source{The items are from the ipip (Goldberg, 1999). The data are from the SAPA project (Revelle, Wilt and Rosenthal, 2010) , collected Spring, 2010 ( \url{https://www.sapa-project.org/}). } \references{Goldberg, L.R. (1999) A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. In Mervielde, I. and Deary, I. and De Fruyt, F. and Ostendorf, F. (eds) Personality psychology in Europe. 7. Tilburg University Press. Tilburg, The Netherlands. Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. Revelle, W, Condon, D.M., Wilt, J., French, J.A., Brown, A., and Elleman, L.G. (2016) Web and phone based data collection using planned missing designs. In Fielding, N.G., Lee, R.M. and Blank, G. (Eds). SAGE Handbook of Online Research Methods (2nd Ed), Sage Publcations. } \seealso{\code{\link{bi.bars}} to show the data by age and gender, \code{\link{irt.fa}} for item factor analysis applying the irt model.} \note{The bfi data set and items should not be confused with the BFI (Big Five Inventory) of Oliver John and colleagues (John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory--Versions 4a and 54. Berkeley, CA: University of California,Berkeley, Institute of Personality and Social Research.) } \examples{ data(bfi) psych::describe(bfi) # create the bfi.keys (actually already saved in the data file) bfi.keys <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"),neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) scores <- psych::scoreItems(bfi.keys,bfi,min=1,max=6) #specify the minimum and maximum values scores #show the use of the keys.lookup with a dictionary psych::keys.lookup(bfi.keys,bfi.dictionary[,1:4]) } \keyword{datasets} psychTools/man/burt.Rd0000644000176200001440000000436513464056134014455 0ustar liggesusers\name{burt} \alias{burt} \docType{data} \title{11 emotional variables from Burt (1915)} \description{Cyril Burt reported an early factor analysis with a circumplex structure of 11 emotional variables in 1915. 8 of these were subsequently used by Harman in his text on factor analysis. Unfortunately, it seems as if Burt made a mistake for the matrix is not positive definite. With one change from .87 to .81 the matrix is positive definite. } \usage{data(burt)} \format{ A correlation matrix based upon 172 "normal school age children aged 9-12". \describe{ \item{Sociality}{Sociality} \item{Sorrow}{Sorrow} \item{Tenderness}{Tenderness} \item{Joy}{Joy} \item{Wonder}{Wonder} \item{Elation}{Elation} \item{Disgust}{Disgust} \item{Anger}{Anger} \item{Sex}{Sex} \item{Fear}{Fear} \item{Subjection}{Subjection} } } \details{ The Burt data set is interesting for several reasons. It seems to be an early example of the organizaton of emotions into an affective circumplex, a subset of it has been used for factor analysis examples (see \code{\link{Harman.Burt}}, and it is an example of how typos affect data. The original data matrix has one negative eigenvalue. With the replacement of the correlation between Sorrow and Tenderness from .87 to .81, the matrix is positive definite. Alternatively, using \code{\link{cor.smooth}}, the matrix can be made positive definite as well, although cor.smooth makes more (but smaller) changes. } \source{ (retrieved from the web at https://www.biodiversitylibrary.org/item/95822#790) Following a suggestion by Jan DeLeeuw. } \references{ Burt, C.General and Specific Factors underlying the Primary Emotions. Reports of the British Association for the Advancement of Science, 85th meeting, held in Manchester, September 7-11, 1915. London, John Murray, 1916, p. 694-696 (retrieved from the web at https://www.biodiversitylibrary.org/item/95822#790) } \seealso{ \code{\link{Harman.Burt}} in the \code{\link{Harman}} dataset and \code{\link{cor.smooth}} } \examples{ data(burt) eigen(burt)$values #one is negative! burt.new <- burt burt.new[2,3] <- burt.new[3,2] <- .81 eigen(burt.new)$values #all are positive bs <- psych::cor.smooth(burt) round(burt.new - bs,3) } \keyword{datasets} psychTools/man/Pollack.Rd0000644000176200001440000000315513771230255015061 0ustar liggesusers\name{Pollack} \alias{Pollack} \alias{estress} \docType{data} \title{Pollack et al (2012) correlation matrix for mediation example } \description{A correlation matrix taken from Pollack (2012) with 9 variables. Primarily used as an example for setCor and mediation.} \usage{data("Pollack")} \format{A correlation matrix based upon 262 participants. \describe{ \item{\code{sex}}{Male = 1, Female = 0, 62\% male} \item{\code{age}}{mean =33} \item{\code{tenure}}{length of employent, mean = 5.9 years} \item{\code{self.efficacy}}{self ratings} \item{\code{competence}}{self rating of competence} \item{\code{social.ties}}{Contact with business-related social ties} \item{\code{economic.stress}}{mean of two items on economic stress} \item{\code{depression}}{6 items from MAACL measuring depression} \item{\code{withdrawal}}{Withdrawal intentions in domain of entrepreneurship} } } \details{This is the correlation matrix from Pollack et al. (2012) p 797. The raw data are available from the processR package (Keon-Woong Moon, 2020). The data set is used by Hayes in example p 179 in example 3. } \source{Pollack et al. 2012 } \references{Pollack, Jeffrey M. and Vanepps, Eric M. and Hayes, Andrew F. (2012). The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress, Journal of Organizational Behavior 33 (6) 789-810. Hayes, Andrew F. (2013) Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press. } \examples{ psych::lowerMat(Pollack) } \keyword{datasets} psychTools/man/rd2html.Rd0000644000176200001440000000226614545700123015046 0ustar liggesusers\name{rd2html} \alias{rd2html} \title{Convert all Rd files in a directory to HTML files in a new directory} \description{Just a wrapper for tools::RdHTML to find a directory (e.g., the Man directory of help files) and convert them to HTML files in a new directory. Useful for adding HTML help files to a local web page. } \usage{ rd2html(inDir =NULL,outDir=NULL, nfiles=NULL,package="psych",file=NULL) } \arguments{ \item{inDir}{The input directory. If NULL,then a file in a directory will be searched for using file.choose()} \item{outDir}{Where to write the output files} \item{nfiles}{If not NULL, then how many files should be written} \item{package}{name of package } \item{file}{If specified, just convert this one file to HTML} } \details{Just a wrapper for Rd2HTML calling some file tools. An interesting use of the function is to precheck whether all the help files are syntactically correct. } \author{William Revelle } \seealso{See Also as \code{\link{filesList}}, \code{\link{filesInfo}} } \examples{ if(interactive()) { #This is an interactive function whic require interactive input and thus is not given as examples rd2html() } } \keyword{utilities} \keyword{package} psychTools/man/sai.Rd0000644000176200001440000002077113501204371014242 0ustar liggesusers\name{sai} \alias{sai} \alias{tai} \alias{sai.dictionary} \docType{data} \title{State Anxiety data from the PMC lab over multiple occasions. } \description{ State Anxiety was measured two-three times in 11 studies at the Personality-Motivation-Cognition laboratory. Here are item responses for 11 studies (9 repeated twice, 2 repeated three times). In all studies, the first occasion was before a manipulation. In some studies, caffeine, or movies or incentives were then given to some of the participants before the second and third STAI was given. In addition, Trait measures are available and included in the tai data set (3032 subjects). } \usage{data(sai) data(tai) data(sai.dictionary) } \format{ A data frame with 3032 unique observations on the following 23 variables. \describe{ \item{\code{id}}{a numeric vector} \item{\code{study}}{a factor with levels \code{ages} \code{cart} \code{fast} \code{fiat} \code{film} \code{flat} \code{home} \code{pat} \code{rob} \code{salt} \code{shed}\code{shop} \code{xray}} \item{\code{time}}{1=First, 2 = Second, 3=third administration} \item{\code{TOD}}{TOD (time of day 1= 8:50-9:30 am,2 = 1=3 pm, 3= 7:-8pm} \item{\code{drug}}{drug (placebo (0) vs. caffeine (1))} \item{\code{film}}{film (1=Frontline (concentration camp), 2 = Halloween 3= National Geographic (control), 4- Parenthood (humor)} \item{\code{anxious}}{anxious} \item{\code{at.ease}}{at ease} \item{\code{calm}}{calm} \item{\code{comfortable}}{comfortable} \item{\code{confident}}{confident} \item{\code{content}}{content} \item{\code{high.strung}}{high.strung} \item{\code{jittery}}{jittery} \item{\code{joyful}}{joyful} \item{\code{nervous}}{nervous} \item{\code{pleasant}}{pleasant} \item{\code{rattled}}{over-excited and rattled} \item{\code{regretful}}{regretful} \item{\code{relaxed}}{relaxed} \item{\code{rested}}{rested} \item{\code{secure}}{secure} \item{\code{tense}}{tense} \item{\code{upset}}{upset} \item{\code{worried}}{worried} \item{\code{worrying}}{worrying} } } \details{The standard experimental study at the Personality, Motivation and Cognition (PMC) laboratory (Revelle and Anderson, 1997) was to administer a number of personality trait and state measures (e.g. the \code{\link{epi}}, \code{\link{msq}}, \code{\link{msqR}} and \code{\link{sai}}) to participants before some experimental manipulation of arousal/effort/anxiety. Following the manipulation (with a 30 minute delay if giving caffeine/placebo), some performance task was given, followed once again by measures of state arousal/effort/anxiety. Here are the item level data on the \code{\link{sai}} (state anxiety) and the \code{\link{tai}} (trait anxiety). Scores on these scales may be found using the scoring keys. The \code{\link{affect}} data set includes pre and post scores for two studies (flat and maps) which manipulated state by using four types of movies. In addition to being useful for studies of motivational state, these studies provide examples of test-retest and alternate form reliabilities. Given that 10 items overlap with the \code{\link{msqR}} data, they also allow for a comparison of immediate duplication of items with 30 minute delays. Studies CART, FAST, SHED, RAFT, and SHOP were either control groups, or did not experimentally vary arousal/effort/anxiety. AGES, CITY, EMIT, RIM, SALT, and XRAY were caffeine manipulations between time 1 and 2 (RIM and VALE were repeated day 1 and day 2) FIAT, FLAT, MAPS, MIXX, and THRU were 1 day studies with film manipulation between time 1 and time 2. SAM1 and SAM2 were the first and second day of a two day study. The STAI was given once per day. MSQ not MSQR was given. VALE and PAT were two day studies with the STAI given pre and post on both days RIM was a two day study with the STAI and MSQ given once per day. Usually, time of day 1 = 8:50-9am am, and 2 = 7:30 pm, however, in rob, with paid subjects, the times were 0530 and 22:30. } \source{Data collected at the Personality, Motivation, and Cognition Laboratory, Northwestern University, between 1991 and 1999. } \references{ Charles D. Spielberger and Richard L. Gorsuch and R. E. Lushene, (1970) Manual for the State-Trait Anxiety Inventory. Revelle, William and Anderson, Kristen Joan (1997) Personality, motivation and cognitive performance: Final report to the Army Research Institute on contract MDA 903-93-K-0008 Rafaeli, Eshkol and Revelle, William (2006), A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1, 1-12. Smillie, Luke D. and Cooper, Andrew and Wilt, Joshua and Revelle, William (2012) Do Extraverts Get More Bang for the Buck? Refining the Affective-Reactivity Hypothesis of Extraversion. Journal of Personality and Social Psychology, 103 (2), 206-326. } \examples{ data(sai) table(sai$study,sai$time) #show the counts for repeated measures #Here are the keys to score the sai total score, positive and negative items sai.keys <- list(sai = c("tense","regretful" , "upset", "worrying", "anxious", "nervous" , "jittery" , "high.strung", "worried" , "rattled","-calm", "-secure","-at.ease","-rested","-comfortable", "-confident" ,"-relaxed" , "-content" , "-joyful", "-pleasant" ) , sai.p = c("calm","at.ease","rested","comfortable", "confident", "secure" ,"relaxed" , "content" , "joyful", "pleasant" ), sai.n = c( "tense" , "anxious", "nervous" , "jittery" , "rattled", "high.strung", "upset", "worrying","worried","regretful" ) ) tai.keys <- list(tai=c("-pleasant" ,"nervous" , "not.satisfied", "wish.happy", "failure","-rested", "-calm", "difficulties" , "worry" , "-happy" , "disturbing.thoughts","lack.self.confidence", "-secure", "decisive" , "inadequate","-content","thoughts.bother","disappointments" , "-steady" , "tension" ), tai.pos = c("pleasant", "-wish.happy", "rested","calm","happy" ,"secure", "content","steady" ), tai.neg = c("nervous", "not.satisfied", "failure","difficulties", "worry", "disturbing.thoughts" ,"lack.self.confidence","decisive","inadequate" , "thoughts.bother","disappointments","tension" ) ) #using the is.element function instead of the \%in\% function #just get the control subjects control <- subset(sai,is.element(sai$study,c("Cart", "Fast", "SHED", "RAFT", "SHOP")) ) #pre and post drug studies drug <- subset(sai,is.element(sai$study, c("AGES","CITY","EMIT","SALT","VALE","XRAY"))) #pre and post film studies film <- subset(sai,is.element(sai$study, c("FIAT","FLAT", "MAPS", "MIXX") )) #this next set allows us to score those sai items that overlap with the msq item sets msq.items <- c("anxious", "at.ease" ,"calm", "confident","content", "jittery", "nervous" , "relaxed" , "tense" , "upset" ) #these overlap with the msq sai.msq.keys <- list(pos =c( "at.ease" , "calm" , "confident", "content","relaxed"), neg = c("anxious", "jittery", "nervous" ,"tense" , "upset"), anx = c("anxious", "jittery", "nervous" ,"tense", "upset","-at.ease" , "-calm" , "-confident", "-content","-relaxed")) sai.not.msq.keys <- list(pos=c( "secure","rested","comfortable" ,"joyful" , "pleasant" ), neg=c("regretful","worrying", "high.strung","worried", "rattled" ), anx = c("regretful","worrying", "high.strung","worried", "rattled", "-secure", "-rested", "-comfortable", "-joyful", "-pleasant" )) sai.alternate.forms <- list( pos1 =c( "at.ease","calm","confident","content","relaxed"), neg1 = c("anxious", "jittery", "nervous" ,"tense" , "upset"), anx1 = c("anxious", "jittery", "nervous" ,"tense", "upset","-at.ease" , "-calm" , "-confident", "-content","-relaxed"), pos2=c( "secure","rested","comfortable" ,"joyful" , "pleasant" ), neg2=c("regretful","worrying", "high.strung","worried", "rattled" ), anx2 = c("regretful","worrying", "high.strung","worried", "rattled", "-secure", "-rested", "-comfortable", "-joyful", "-pleasant" )) sai.repeated <- c("AGES","Cart","Fast","FIAT","FILM","FLAT","HOME","PAT","RIM","SALT", "SAM","SHED","SHOP","VALE","XRAY") sai12 <- subset(sai,is.element(sai$study, sai.repeated)) #the subset with repeated measures #Choose those studies with repeated measures by : sai.control <- subset(sai,is.element(sai$study, c("Cart", "Fast", "SHED", "SHOP"))) sai.film <- subset(sai,is.element(sai$study, c("FIAT","FLAT") ) ) sai.drug <- subset(sai,is.element(sai$study, c("AGES", "SALT", "VALE", "XRAY"))) sai.day <- subset(sai,is.element(sai$study, c("SAM", "RIM"))) } \keyword{datasets} psychTools/man/sat.act.Rd0000644000176200001440000000343314165105311015020 0ustar liggesusers\name{sat.act} \alias{sat.act} \docType{data} \title{3 Measures of ability: SATV, SATQ, ACT} \description{Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. } \usage{data(sat.act)} \format{ A data frame with 700 observations on the following 6 variables. \describe{ \item{\code{gender}}{males = 1, females = 2} \item{\code{education}}{self reported education 1 = high school ... 5 = graduate work} \item{\code{age}}{age} \item{\code{ACT}}{ACT composite scores may range from 1 - 36. National norms have a mean of 20. } \item{\code{SATV}}{SAT Verbal scores may range from 200 - 800. } \item{\code{SATQ}}{SAT Quantitative scores may range from 200 - 800} } } \details{hese items were collected as part of the SAPA project (\url{https://www.sapa-project.org/})to develop online measures of ability (Revelle, Wilt and Rosenthal, 2009). The score means are higher than national norms suggesting both self selection for people taking on line personality and ability tests and a self reporting bias in scores. See also the iq.items data set. } \source{\url{https://personality-project.org/} } \references{Revelle, William, Wilt, Joshua, and Rosenthal, Allen (2009) Personality and Cognition: The Personality-Cognition Link. In Gruszka, Alexandra and Matthews, Gerald and Szymura, Blazej (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer. } \examples{ data(sat.act) psych::describe(sat.act) psych::pairs.panels(sat.act) } \keyword{datasets} psychTools/man/df2latex.Rd0000644000176200001440000001464614312363507015213 0ustar liggesusers\name{df2latex} \alias{df2latex} \alias{cor2latex} \alias{fa2latex} \alias{omega2latex} \alias{irt2latex} \alias{ICC2latex} \title{Convert a data frame, correlation matrix, or factor analysis output to a LaTeX table} \description{A set of handy helper functions to convert data frames or matrices to LaTeX tables. Although Sweave is the preferred means of converting R output to LaTeX, it is sometimes useful to go directly from a data.frame or matrix to a LaTeX table. cor2latex will find the correlations and then create a lower (or upper) triangular matrix for latex output. fa2latex will create the latex commands for showing the loadings and factor intercorrelations. As the default option, tables are prepared in an approximation of APA format. } \usage{ df2latex(x,digits=2,rowlabels=TRUE,apa=TRUE,short.names=TRUE,font.size ="scriptsize", big.mark=NULL,drop.na=TRUE, heading="A table from the psych package in R", caption="df2latex",label="default", char=FALSE, stars=FALSE,silent=FALSE,file=NULL,append=FALSE,cut=0,big=0,abbrev=NULL,long=FALSE) cor2latex(x,use = "pairwise", method="pearson", adjust="holm",stars=FALSE, digits=2,rowlabels=TRUE,lower=TRUE,apa=TRUE,short.names=TRUE, font.size ="scriptsize", heading="A correlation table from the psych package in R.", caption="cor2latex",label="default",silent=FALSE,file=NULL,append=FALSE,cut=0,big=0) fa2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE, cut=0,big=.3,alpha=.05,font.size ="scriptsize",long=FALSE, heading="A factor analysis table from the psych package in R", caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) omega2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=.2, big=.3,font.size ="scriptsize", heading="An omega analysis table from the psych package in R", caption="omega2latex",label="default",silent=FALSE,file=NULL,append=FALSE) irt2latex(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE, font.size ="scriptsize", heading="An IRT factor analysis table from R", caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) ICC2latex(icc,digits=2,rowlabels=TRUE,apa=TRUE,ci=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="ICC2latex",label="default",char=FALSE,silent=FALSE,file=NULL,append=FALSE) } \arguments{ \item{x}{A data frame or matrix to convert to LaTeX. If non-square, then correlations will be found prior to printing in cor2latex} \item{digits}{Round the output to digits of accuracy. NULL for formatting character data} \item{abbrev}{How many characters should be used in column names --defaults to digits + 3} \item{rowlabels}{If TRUE, use the row names from the matrix or data.frame} \item{short.names}{Name the columns with abbreviated rownames to save space} \item{apa}{If TRUE formats table in APA style} \item{cumvar}{For factor analyses, should we show the cumulative variance accounted for?} \item{font.size}{e.g., "scriptsize", "tiny" or anyother acceptable LaTeX font size.} \item{heading}{The label appearing at the top of the table} \item{caption}{The table caption} \item{lower}{in cor2latex, just show the lower triangular matrix} \item{f}{The object returned from a factor analysis using \code{\link{fa}} or \code{\link{irt.fa}}. } \item{label}{The label for the table} \item{big.mark}{Comma separate numbers large numbers (big.mark=",")} \item{drop.na}{Do not print NA values} \item{method}{When finding correlations, which method should be used (pearson)} \item{use}{use="pairwise" is the default when finding correlations in cor2latex} \item{adjust}{If showing probabilities, which adjustment should be used (holm)} \item{stars}{Should probability 'magic astericks' be displayed in cor2latex (FALSE)} \item{char}{char=TRUE allows printing tables with character information, but does not allow for putting in commas into numbers} \item{cut}{In omega2latex, df2latex and fa2latex, do not print abs(values) < cut } \item{big}{In fa2latex and df2latex boldface those abs(values) > big} \item{alpha}{If fa has returned confidence intervals, then what values of loadings should be boldfaced?} \item{icc}{Either the output of an ICC, or the data to be analyzed.} \item{ci}{Should confidence intervals of the ICC be displayed} \item{silent}{If TRUE, do not print any output, just return silently -- useful if using Sweave} \item{file}{If specified, write the output to this file} \item{append}{If file is specified, then should we append (append=TRUE) or just write to the file} \item{long}{if TRUE, then do long tables. (requires the longtables package in latex)}} \value{A LaTeX table. Note that if showing "stars" for correlations, then one needs to use the siunitx package in LaTex. The entire LaTeX output is also returned invisibly. If using Sweave to create tables, then the silent option should be set to TRUE and the returned object saved as a file. See the last example. Finally, some users have asked for the ability to convert these output tables into HTML. This may be done using the tth package. } \author{William Revelle with suggestions from Jason French and David Condon and Davide Morselli} \seealso{ The many LaTeX conversion routines in Hmisc. To convert these LaTex objects to HTML, you should install the tth package. Consider the last example } \examples{ df2latex(psych::Thurstone,rowlabels=FALSE,apa=FALSE,short.names=FALSE, caption="Thurstone Correlation matrix") df2latex(psych::Thurstone,heading="Thurstone Correlation matrix in APA style") df2latex(psych::describe(psych::sat.act)[2:10],short.names=FALSE) cor2latex(psych::Thurstone) cor2latex(psych::sat.act,short.names=FALSE) fa2latex(psych::fa(psych::Thurstone,3),heading="Factor analysis from R in quasi APA style") #To convert these latex tables to HTML #f3.lat <- fa2latex(psych::fa(psych::Thurstone,3), # heading="Factor analysis from R in quasi APA style") #library(tth) #f3.ht <- tth(f3.lat) #print(as.data.frame(f3.ht),row.names=FALSE) ### #If using Sweave to create a LateX table as a separate file then set silent=TRUE #e.g., #LaTex preamble #.... #<>= #f3 <- fa(Thurstone,3) #fa2latex(f3,silent=TRUE,file='testoutput.tex') #@ # #\input{testoutput.tex} } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ utilities } psychTools/man/psychTools.Rd0000644000176200001440000001357514503354440015647 0ustar liggesusers\name{psychTools} \alias{psychTools} \docType{data} \title{psychTools: datasets and utility functions to accompany the psych package } \description{ PsychTools includes the larger data sets used by the \code{\link[psych]{psych}} package and also includes a few general utility functions such as the \code{\link{read.file}} and \code{\link{read.clipboard}} functions. The data sets ara made available for demonstrations of a variety of psychometric functions. } \details{ See the various helpfiles listed in the index or as links from here. Also see the main functions in the psych package \code{\link[psych]{00.psych-package}}. Data sets from the SAPA/ICAR project: \tabular{ll}{ \code{\link{ability}} \tab 16 ICAR ability items scored as correct or incorrect for 1525 participants. \cr \code{\link{iqitems}} \tab multiple choice IQ items (raw responses) \cr \code{\link{affect}} \tab Two data sets of affect and arousal scores as a function of personality and movie conditions \cr \code{\link{bfi}} \tab 25 Personality items representing 5 factors from the SAPA project for 2800 participants \cr bfi.dictionary \tab Dictionary of the bfi \cr \code{\link{big5.100.adjectives}} 100 adjectives describing the "big 5" for 502 subjects (from Goldberg) \code{\link{colom}} \tab Correlations from the Spanish WAIS (14 scales) \cr \code{\link{eminence}} \tab Eminence of 69 American Psychologists \cr \code{\link{epi}} \tab Eysenck Personality Inventory (EPI) data for 3570 participants \cr epi.dictionary \tab The items for the epi \cr \code{\link{epi.bfi}} \tab 13 personality scales from the Eysenck Personality Inventory and Big 5 inventory \cr \code{\link{epiR}} \tab 474 participants took the epi twice \cr \code{\link{msq}} \tab 75 mood items from the Motivational State Questionnaire for 3896 participants \cr \code{\link{msqR}} \tab 75 mood items from the Motivational State Questionnaire for 3032 unique participants \cr \code{\link{tai}} \tab Trait Anxiety data from the PMC lab matching the sai sample. 3032 unique subjects \cr \code{\link{sai}} \tab State Anxiety data from the PMC lab over multiple occasions. 3032 unique subjects. \cr sai.dictionary \tab items used in the sai \cr \code{\link{spi}} \tab 4000 cases from the SAPA Personality Inventory (135 items, 10 demographics) including an item dictionary and scoring keys. \cr spi.dictionary \tab The items for the spi \cr spi.keys \tab Scoring keys for the spi \cr } Historically interesting data sets \tabular{ll}{ \code{\link{burt}} \tab 11 emotional variables from Burt (1915) \cr \code{\link{galton}} \tab Galtons Mid parent child height data \cr \code{\link{heights}} \tab A data.frame of the Galton (1888) height and cubit data set \cr \code{\link{cubits}} \tab Galtons example of the relationship between height and cubit or forearm length \cr \code{\link{peas}} \tab Galtons Peas \cr \code{\link{cushny}} \tab The data set from Cushny and Peebles (1905) on the effect of three drugs on hours of sleep, used by Student (1908) \cr \code{\link{holzinger.swineford}} \tab 26 cognitive variables + 7 demographic variables for 301 cases from Holzinger and Swineford. } Miscellaneous example data sets \tabular{ll}{ \code{\link{blant}} \tab A 29 x 29 matrix that produces weird factor analytic results \cr \code{\link{blot}} \tab Bonds Logical Operations Test - BLOT \cr \code{\link{cities}} \tab Distances between 11 US cities \cr city.location \tab and their geograpical location \cr \code{\link{income}} \tab US family income from US census 2008 \cr all.income \tab US family income from US census 2008 \cr \code{\link{neo}} \tab NEO correlation matrix from the NEO_PI_R manual \cr \code{\link{Schutz}} \tab The Schutz correlation matrix example from Shapiro and ten Berge \cr \code{\link{Spengler}} \tab The Spengler and Damian correlation matrix example from Spengler, Damian and Roberts (2018) \cr \code{\link{Damian}} \tab Another correlation matrix from Spengler, Damian and Roberts (2018) \cr \code{\link{usaf}} \tab A correlation of 17 body size (anthropometric) measures from the US Air Force. Adapted from the Anthropometric package.\cr veg \tab Paired comparison of preferences for 9 vegetables (scaling example) \cr } Functions to convert various objects to latex \tabular{ll}{ \code{\link{fa2latex}} \tab Convert a data frame, correlation matrix, or factor analysis output to a LaTeX table \cr \code{\link{df2latex}} \tab Convert a data frame, correlation matrix, or factor analysis output to a LaTeX table \cr \code{\link{ICC2latex}} \tab Convert an ICC analyssis output to a LaTeX table \cr \code{\link{irt2latex}} \tab Convert an irt analysis output to a LaTeX table \cr \code{\link{cor2latex}} \tab Convert a correlation matrix output to a LaTeX table \cr \code{\link{omega2latex}} \tab Convert a data frame, correlation matrix, or factor analysis output to a LaTeX table \cr } File manipulation functions \tabular{ll}{ \code{\link{fileCreate}} \tab Create a file \cr fileScan \tab Show the first few lines of multitple files \cr filesInfo \tab Show the information for all files in a directory \cr filesList \tab Show the names of all files in a directory \cr } \code{\link{dfOrder}} Sorts a data frame \code{\link{vJoin}} Combine two matrices or data frames into one based upon variable labels \code{\link{combineMatrices}}Takes a square matrix (x) and combines with a rectangular matrix y to produce a larger xy matrix. File input/output functions \tabular{ll}{ \code{\link{read.clipboard}} \tab Shortcuts for reading from the clipboard or a file \cr read.clipboard.csv \tab \cr read.clipboard.fwf \tab \cr read.clipboard.lower \tab \cr read.clipboard.tab \tab \cr read.clipboard.upper \tab \cr \code{\link{read.file}} \tab Read a file according to its suffix \cr read.file.csv \tab \cr read.https \tab \cr \code{\link{write.file}} \tab Write data to a file \cr write.file.csv \tab \cr } } \examples{ psych::describe(ability) } \keyword{datasets} psychTools/man/globalWarm.Rd0000644000176200001440000000412014433755441015561 0ustar liggesusers\name{globalWarm} \alias{globalWarm} \alias{glbwarm} \docType{data} \title{7 attitude items about Global Warming policy from Erik Nisbet } \description{Erik Nisbet reported the relationship between emotions, ideology, and party affiliation as predictors of attitudes towards government action on climate change. The data were used by Hayes (2013) in a discussion of regression. They are available as the glbwarm data set in the processR package. They are copied here for examples of mediation. } \usage{data("globalWarm")} \format{ A data frame with 815 observations on the following 7 variables. \describe{ \item{\code{govact}}{Support for govermment action} \item{\code{posemot}}{Positive emotions about climate change} \item{\code{negemot}}{Negative emotions about climate change} \item{\code{ideology}}{Political ideology (Liberal to conservative)} \item{\code{age}}{age} \item{\code{sex}}{female =0, male =1} \item{\code{partyid}}{Democratic =1, Independent =2, Republican =3} } } \details{This data set is discussed as an example of regression in Hayes (2013) p 24 - 30 and elsewhere. It is a nice example of moderated regression. It was collected by Erik Nisbet (no citation) who studies communication and the media. E. Nisbet is currently on the faculty at Northwestern School of Communication. } \source{The raw data are available from the processR package (Keon-Woong Moon, 2020) as the glbwarm data set as well as from Hayes' website. The data set is used by Hayes in several examples. Used here by kind permission of Erik Nisbet. Although the processR package has been removed from CRAN, an earlier version had the data. } \references{ Hayes, Andrew F. (2013) Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press. Moon K (2023). processR: Implementation of the 'PROCESS' Macro_. R package version 0.2.8, } \examples{ data(globalWarm) psych::lowerCor(globalWarm) #compare to Hayes p 254-258 psych::lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,std=FALSE) } \keyword{datasets} psychTools/DESCRIPTION0000644000176200001440000000213014552067262014134 0ustar liggesusersPackage: psychTools Version: 2.4.2 Date: 2024-01-16 Title: Tools to Accompany the 'psych' Package for Psychological Research Authors@R: person("William", "Revelle", role =c("aut","cre"), email="revelle@northwestern.edu", comment=c(ORCID = "0000-0003-4880-9610") ) Description: Support functions, data sets, and vignettes for the 'psych' package. Contains several of the biggest data sets for the 'psych' package as well as four vignettes. A few helper functions for file manipulation are included as well. For more information, see the web page. License: GPL (>= 2) Imports: foreign,psych Suggests: parallel, GPArotation, lavaan,knitr Depends: R(>= 2.10) LazyData: yes ByteCompile: TRUE VignetteBuilder: knitr URL: https://personality-project.org/r/psych/ https://personality-project.org/r/psych-manual.pdf NeedsCompilation: no Packaged: 2024-01-17 22:04:53 UTC; WR Author: William Revelle [aut, cre] () Maintainer: William Revelle Repository: CRAN Date/Publication: 2024-01-18 00:20:02 UTC psychTools/build/0000755000176200001440000000000014552047402013523 5ustar liggesuserspsychTools/build/vignette.rds0000644000176200001440000000050114552047402016056 0ustar liggesusersS]O0e6-٤ˢakC-)dop#޲ 9}19=6} qs׃a -9h= yƙF( T7(jJKJ>XI1-'y$p YQɏA"mqi(}` uE\7D=PrDx 0hH$G1n,<=v%Ր$==NFҌ0A_}0+\-y%+^<}4EVU^6?N3SZ'BF  }~@HFpsychTools/build/partial.rdb0000644000176200001440000000007514552047321015652 0ustar liggesusersb```b`afb`b1 H020piּb C"%!7psychTools/vignettes/0000755000176200001440000000000014552047405014437 5ustar liggesuserspsychTools/vignettes/intro.Rnw0000644000176200001440000031407114545416053016271 0ustar liggesusers% \VignetteIndexEntry{Introduction to the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} %\VignetteEncoding{UTF-8} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} %\usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{siunitx} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} % (replaced with knirR ccde %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \usepackage{fancyvrb} %allows us to defineEnvironments \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \DefineVerbatimEnvironment{Sinput}{Verbatim} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=5mm} \DefineVerbatimEnvironment{Rinput}{Verbatim} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=5mm} \makeindex % used for the subject index \title{An introduction to the psych package: Part I: \\ data entry and data description} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} %\SweaveOpts{concordance=TRUE,(prompt=" ",continue=" "} %\SweaveOpts{(prompt=" ",continue=" ") \maketitle \tableofcontents \newpage \R{} is the lingua franca of statistics \R{} is an open source project guided by about 40 developers from around the world and is a framework for statistical analysis. In addition to core \R{} there are at least 20,000 contributed packages that are meant for specific tasks. The \Rpkg{psych} package is one of these packages. It may be seen as a Swiss Army knife: not the best tool for anything, but a useful tool for many things. \subsection{Installing R for the first time} (see details at \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{https://personality-project.org/r/psych/HowTo}) \begin{enumerate} \item Download from R Cran (\url{https://cran.r-project.org/}) \begin {itemize} \item Choose appropriate operating system and download compiled R \end{itemize} \item Install R (current version is 4.3.2) \item Start \R{}. Note that the \R{} prompt $>$ starts off every line. This is \R{}'s way of indicating that it wants input. In addition, note that almost all commands start and finish with parentheses. \item Add useful packages (just need to do this once) (see section~\ref{installing}) \begin{enumerate} \begin{Rinput} install.packages("psych",dependencies=TRUE) #the minimum requirement or install.packages(c("psych","GPArotation"),dependencies=TRUE) #required for factor analysis \end{Rinput} \end{enumerate} \end{enumerate} \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed the most recent version of \R{} from CRAN (the Comprehensive R Archive Network) and want to do some data analysis. You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package and the \Rpkg{psychTools} package: \begin{Rinput} library(psych) library(psychTools) \end{Rinput} \item Input your data (section \ref{sect:read}). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, then the file will be opened and the data will be read in (or loaded in the case of Rda files) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using # your normal operating system \end{Sinput} %%\end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} %\end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or describeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} %\end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} (section~\ref{sect:pairs}) Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data (section \ref{sect:scrub}). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} %\end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable (section \ref{sect:errorbars}). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} %\end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} %\end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. This is discussed in more detail in the ``How To use \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} tutorial. \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find the linear regression of Y on X (and graph the path diagram) for multiple y variables depending upon multiple x variables. For raw data, you can also find the interaction term (x1 * x2). Although you can find the regressions from just a correlation matrix, you can not find the interaction (moderation effect) unless given raw data. The regression equation may be specified as a formula or as a set of x and y variables. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") lmCor(y1 + y2 ~ x1 + x2 + x1*x2, data = myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. Specify the mediation variable by enclosing it in parentheses, and show the moderation by the standard multiplication. For the purpose of this demonstration, we do the boot strap with just 50 iterations. The default is 5,000. We use the data from \cite{talor:10} which was downloaded from the supplementary material for Hayes (2013) \href{"https://www.afhayes.com/public/hayes2013data.zip"}{https://www.afhayes.com/public/hayes2013data.zip}. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} mediate(reaction ~ cond + (import) + (pmi), data =Tal_Or,n.iter=50) \end{Sinput} %\end{Schunk} \end{scriptsize} We can also find the moderation effect by adding in a product term. With raw data, \item \pfun{mediate} can find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. By default, the raw regressions are mean centered. Specify zero=FALSE, to not mean center the data. Specify std=TRUE, to find the standardized regressions. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} mediate(respappr ~ prot * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50, main="Moderated mediation (not mean centered)") \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in the second vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in the \emph{Overview Vignette}, which is included in the \Rpkg{psychTools} package or may be downloaded from \url{https://personality-project.org/r/psych/vignettes/overview.pdf} . A brief review of the functions available is included here. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{https://personality-project.org/r} which are also included as vignettes. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}) or Very Simple Structure (\pfun{vss}). Perhaps even easier to use is the \pfun{nfactors} function. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) nfactors(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Factor analyze (see section 4.1) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities such as minres (section 4.1.1), alpha factoring, and wls. Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section 4.1.6). Also consider a hierarchical factor solution to find coefficient $\omega$). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function. Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10), second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. Although developed for personality research, many of the functions are useful for applications in other quantitative sciences. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{https://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes six methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{alpha factoring}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Rotations and transformations of these solutions are done by calling the many rotations available in the \Rpkg{GPArotation} package \citep{gpa.rotate}. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51} (\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09}, \citep{rc:pa} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} (\pfun{mlr}) will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \href{"https://personality-project.org/r/psych_manual.pdf"}{\url{psych.manual.pdf}} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{https://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \href{https://personalty-project.org/r/psych_for_sem.pdf}{\url{https://personalty-project.org/r/psych_for_sem.pdf}}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"https://personality-project.org/r/book/psych_for_sem.pdf"}{\url{https://personality-project.org/r/psych/vignettes/psych_for_sem.pdf}}). In addition, there are a growing number of ``HowTo"s at the personality project. Currently these include: \begin{enumerate} \item An \href{https://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{https://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{https://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{https://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{https://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \end{enumerate} For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{https://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{https://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in the Overview Vignette require other packages. This is not the case for the functions listed in this Introduction. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: %\begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt") \end{Sinput} %%\end{Schunk} Alternatively, many packages for psychometric can be downloaded at once using the ``Psychometrics" task view: %\begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} %\end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: %\begin{Schunk} \begin{Sinput} library(psych) library(psychTools) \end{Sinput} %\end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., %\begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych) library(psychTools)} \end{Sinput} %\end{Schunk} \subsection{Getting the data by using read.file} \label{sect:read} Although many find copying the data to the clipboard and then using the \pfun{read.clipboard} functions (see below), a helpful alternative is to read the data in directly. This can be done using the \pfun{read.file} function which calls \fun{file.choose} to find the file and then based upon the suffix of the file, chooses the appropriate way to read it. For files with suffixes of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, the file will be read correctly. %\begin{Schunk} \begin{Sinput} my.data <- read.file() \end{Sinput} %\end{Schunk} If the file contains Fixed Width Format (fwf) data, the column information can be specified with the widths command. %\begin{Schunk} \begin{Sinput} my.data <- read.file(widths = c(4,rep(1,35)) #will read in a file without a header row # and 36 fields, the first of which is 4 colums, the rest of which are 1 column each. \end{Sinput} %\end{Schunk} If the file is a .RData file (with suffix of .RData, .Rda, .rda, .Rdata, or .rdata) the object will be loaded. Depending what was stored, this might be several objects. If the file is a .sav file from SPSS, it will be read with the most useful default options (converting the file to a data.frame and converting character fields to numeric). Alternative options may be specified. If it is an export file from SAS (.xpt or .XPT) it will be read. .csv files (comma separated files), normal .txt or .text files, .data, or .dat files will be read as well. These are assumed to have a header row of variable labels (header=TRUE). If the data do not have a header row, you must specify read.file(header=FALSE). To read SPSS files and to keep the value labels, specify use.value.labels=TRUE. %\begin{Schunk} \begin{Sinput} #this will keep the value labels for .sav files my.spss <- read.file(use.value.labels=TRUE) \end{Sinput} %\end{Schunk} \subsection{Data input from the clipboard} There are of course many ways to enter data into \R. Reading from a local file using \fun{read.table} is perhaps the most preferred. However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using \fun{read.table} and specifying the input file as ``clipboard" (PCs) or ``pipe(pbpaste)" (Macs). Alternatively, the \pfun{read.clipboard} set of functions are perhaps more user friendly: \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command %\begin{Schunk} \begin{Sinput} my.data <- read.clipboard() \end{Sinput} %\end{Schunk} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. %\begin{Schunk} \begin{Sinput} > my.data <- read.clipboard(sep="\t") #define the tab option, or > my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Sinput} %\end{Schunk} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). %\begin{Schunk} \begin{Sinput} > my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Sinput} %\end{Schunk} \subsection{Basic descriptive statistics} \label{sect:describe} Once the data are read in, then \pfun{describe} or \pfun{describeBy} will provide basic descriptive statistics arranged in a data frame format. Consider the data set \pfun{sat.act} which includes data from 700 web based participants on 3 demographic variables and 3 ability measures. \begin{description} \item[\pfun{describe}] reports means, standard deviations, medians, min, max, range, skew, kurtosis and standard errors for integer or real data. Non-numeric data, although the statistics are meaningless, will be treated as if numeric (based upon the categorical coding of the data), and will be flagged with an *. \item[\pfun{describeBy}] reports descriptive statistics broken down by some categorizing variable (e.g., gender, age, etc.) \end{description} <>= options(width=100) @ \begin{scriptsize} <>= library(psych) #need to make psych active the first time you call it library(psychTools) #additional tools and data are here data(sat.act) describe(sat.act) #basic descriptive statistics @ \end{scriptsize} These data may then be analyzed by groups defined in a logical statement or by some other variable. E.g., break down the descriptive data for males or females. These descriptive data can also be seen graphically using the \pfun{error.bars.by} function (Figure~\ref{fig:error.bars}). By setting skew=FALSE and ranges=FALSE, the output is limited to the most basic statistics. Here we use formula mode. \begin{scriptsize} <>= #basic descriptive statistics by a grouping variable. describeBy(sat.act ~ gender,skew=FALSE,ranges=FALSE) @ \end{scriptsize} The output from the \pfun{describeBy} function can be forced into a matrix form for easy analysis by other programs. In addition, describeBy can group by several grouping variables at the same time. \begin{scriptsize} <>= sa.mat <- describeBy(sat.act ~ gender + education, skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) @ \end{scriptsize} If some of the data are in character mode, \pfun{describe} and \pfun{describeBy} will automatically call \pfun{char2numeric} which will convert all fields to numeric. Note that this will cause problems if the character order is not meaningful. In that case, the \pfun{recode} function should be used to make the \pfun{char2numeric} coding make sense. \subsubsection{Outlier detection using \pfun{outlier}} One way to detect unusual data is to consider how far each data point is from the multivariate centroid of the data. That is, find the squared Mahalanobis distance for each data point and then compare these to the expected values of $\chi^{2}$. This produces a Q-Q (quantle-quantile) plot with the n most extreme data points labeled (Figure~\ref{fig:outlier}). The outlier values are in the vector d2. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() @ \end{scriptsize} \includegraphics{outlier} \caption{Using the \pfun{outlier} function to graphically show outliers. The y axis is the Mahalanobis $D^{2}$, the X axis is the distribution of $\chi^{2}$ for the same number of degrees of freedom. The outliers detected here may be shown graphically using \pfun{pairs.panels} (see \ref{fig:pairs.panels}, and may be found by sorting d2. } \label{fig:outlier} \end{center} \end{figure} \subsubsection{Basic data cleaning using \pfun{scrub}} \label{sect:scrub} If, after describing the data it is apparent that there were data entry errors that need to be globally replaced with NA, or only certain ranges of data will be analyzed, the data can be ``cleaned" using the \pfun{scrub} function. Consider a data set of 10 rows of 12 columns with values from 1 - 120. All values of columns 3 - 5 that are less than 30, 40, or 50 respectively, or greater than 70 in any of the three columns will be replaced with NA. In addition, any value exactly equal to 45 will be set to NA. (max and isvalue are set to one value here, but they could be a different value for every column). \begin{scriptsize} <>= x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x @ \end{scriptsize} Note that the number of subjects for those columns has decreased, and the minimums have gone up but the maximums down. Data cleaning and examination for outliers should be a routine part of any data analysis. \subsubsection{Recoding categorical variables into dummy coded variables} Sometimes categorical variables (e.g., college major, occupation, ethnicity) are to be analyzed using correlation or regression. To do this, one can form ``dummy codes'' which are merely binary variables for each category. This may be done using \pfun{dummy.code}. Subsequent analyses using these dummy coded variables may be using \pfun{biserial} or point biserial (regular Pearson r) to show effect sizes and may be plotted in e.g., \pfun{spider} plots. Alternatively, sometimes data were coded originally as categorical (Male/Female, High School, some College, in college, etc.) and you want to convert these columns of data to numeric. This is done by \pfun{char2numeric}. Values can be recoded into a different order, or converted to character form by using the \pfun{recode} function, \subsubsection{Joining data sets using \pfun{vJoin}} The \pfun{vJoin} function can be used to combine sets that might or might not have overlapping subjects or overlapping items. Unlike \pfun{cbind} or \pfun{rbind} which require the same number of rows ( \pfun{cbind}) or columns (\pfun{rbind}), \pfun{vJoin} will work with any two matrices or data frames of arbitrary dimensions. Not matching cases are assigned values of NA. \begin{scriptsize} <>= x <- matrix(1:40,ncol=10,byrow=TRUE) y <- matrix(1:20,ncol=4) xy <- vJoin(x,y) xy XY <- vJoin(x,y,cnames=FALSE) XY #match on ids and columns x <- bfi[1:5,1:10] y <- bfi[3:8,2:6] xy <- vJoin(x,y) xy #the merged data @ \end{scriptsize} \subsection{Simple descriptive graphics} Graphic descriptions of data are very helpful both for understanding the data as well as communicating important results. Scatter Plot Matrices (SPLOMS) using the \pfun{pairs.panels} function are useful ways to look for strange effects involving outliers and non-linearities. \pfun{error.bars.by} will show group means with 95\% confidence boundaries. By default, \pfun{error.bars.by} and \pfun{error.bars} will show ``cats eyes'' to graphically show the confidence limits (Figure~\ref{fig:error.bars}) This may be turned off by specifying eyes=FALSE. \pfun{densityBy} or \pfun{violinBy} may be used to show the distribution of the data in ``violin'' plots (Figure~\ref{fig:violin}). (These are sometimes called ``lava-lamp" plots.) \subsubsection{Scatter Plot Matrices} Scatter Plot Matrices (SPLOMS) are very useful for describing the data. The \pfun{pairs.panels} function, adapted from the help menu for the \fun{pairs} function produces xy scatter plots of each pair of variables below the diagonal, shows the histogram of each variable on the diagonal, and shows the \iemph{lowess} locally fit regression line as well. An ellipse around the mean with the axis length reflecting one standard deviation of the x and y variables is also drawn. The x axis in each scatter plot represents the column variable, the y axis the row variable (Figure~\ref{fig:pairs.panels}). When plotting many subjects, it is both faster and cleaner to set the plot character (pch) to be '.'. (See Figure~\ref{fig:pairs.panels} for an example.) \begin{description} \label{sect:pairs} \item[\pfun{pairs.panels} ] will show the pairwise scatter plots of all the variables as well as histograms, locally smoothed regressions, and the Pearson correlation. When plotting many data points (as in the case of the sat.act data, it is possible to specify that the plot character is a period to get a somewhat cleaner graphic. However, in this figure, to show the outliers, we use colors and a larger plot character. If we want to indicate 'significance' of the correlations by the conventional use of 'magic astricks' we can set the \pfun{stars}=TRUE option. \end{description} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() @ \end{scriptsize} \includegraphics{pairspanels} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. Note the extreme outlier for the ACT. If the plot character were set to a period (pch='.') it would make a cleaner graphic, but in to show the outliers in color we use the plot characters 21 and 22. } \label{fig:pairs.panels} \end{center} \end{figure} Another example of \pfun{pairs.panels} is to show differences between experimental groups. Consider the data in the \pfun{affect} data set. The scores reflect post test scores on positive and negative affect and energetic and tense arousal. The colors show the results for four movie conditions: depressing, frightening movie, neutral, and a comedy. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() @ \end{scriptsize} \includegraphics{affect} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. The coloring represent four different movie conditions. } \label{fig:pairs.panels2} \end{center} \end{figure} Yet another demonstration of \pfun{pairs.panels} is useful when you have many subjects and want to show the density of the distributions. To do this we will use the \pfun{make.keys} and \pfun{scoreItems} functions (discussed in the second vignette) to create scales measuring Energetic Arousal, Tense Arousal, Positive Affect, and Negative Affect (see the \pfun{msq} help file). We then show a \pfun{pairs.panels} scatter plot matrix where we smooth the data points and show the density of the distribution by color. %\begin{figure}[htbp] %\begin{center} \begin{scriptsize} <>= keys <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) scores <- scoreItems(keys,psychTools::msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() @ \end{scriptsize} %\includegraphics{msq} Using the \pfun{pairs.panels} function to graphically show relationships. (Not shown in the interests of space.) The x axis in each scatter plot represents the column variable, the y axis the row variable. The variables are four measures of motivational state for 3896 participants. Each scale is the average score of 10 items measuring motivational state. Compare this a plot with smoother set to FALSE. %\label{fig:pairs.panels3} %\end{center} %\end{figure} \subsubsection{Density or violin plots} Graphical presentation of data may be shown using box plots to show the median and 25th and 75th percentiles. A powerful alternative is to show the density distribution using the \pfun{violinBy} function (Figure~\ref{fig:violin}) or the more conventional density plot for multiple groups (Figure~\ref{fig:histo} . \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('violin.png') data(sat.act) violinBy(SATV+SATQ ~ gender, data=sat.act,grp.name=cs(Verbal.M,Verbal.F, Quan.M,Quant.F), main="Density Plot by gender for SAT V and Q") dev.off() @ \end{scriptsize} \includegraphics{violin} \caption{Using the \pfun{violinBy} function to show the distribution of SAT V and Q for males and females. The plot shows the medians, and 25th and 75th percentiles, as well as the entire range and the density distribution. } \label{fig:violin} \end{center} \end{figure} \clearpage \subsubsection{Means and error bars} \label{sect:errorbars} Additional descriptive graphics include the ability to draw \iemph{error bars} on sets of data, as well as to draw error bars in both the x and y directions for paired data. These are the functions \pfun{error.bars}, \pfun{error.bars.by}, \pfun{error.bars.tab}, and \pfun{error.crosses}. \begin{description} \item [\pfun{error.bars}] show the 95 \% confidence intervals for each variable in a data frame or matrix. These errors are based upon normal theory and the standard errors of the mean. Alternative options include +/- one standard deviation or 1 standard error. If the data are repeated measures, the error bars will be reflect the between variable correlations. By default, the confidence intervals are displayed using a ``cats eyes'' plot which emphasizes the distribution of confidence within the confidence interval. \item [\pfun{error.bars.by}] does the same, but grouping the data by some condition. \item [\pfun{error.bars.tab}] draws bar graphs from tabular data with error bars based upon the standard error of proportion ($\sigma_{p} = \sqrt{pq/N} $) \item [\pfun{error.crosses}] draw the confidence intervals for an x set and a y set of the same size. \end{description} The use of the \pfun{error.bars.by} function allows for graphic comparisons of different groups (see Figure~\ref{fig:error.bars}). Five personality measures are shown as a function of high versus low scores on a ``lie" scale. People with higher lie scores tend to report being more agreeable, conscientious and less neurotic than people with lower lie scores. The error bars are based upon normal theory and thus are symmetric rather than reflect any skewing in the data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) @ \end{scriptsize} \caption{Using the \pfun{error.bars.by} function shows that self reported personality scales on the Big Five Inventory vary as a function of the Lie scale on the EPI. The ``cats eyes'' show the distribution of the confidence. } \label{fig:error.bars} \end{center} \end{figure} Although not recommended, it is possible to use the \pfun{error.bars} function to draw bar graphs with associated error bars. (This kind of \iemph{dynamite plot} (Figure~\ref{fig:dynamite}) can be very misleading in that the scale is arbitrary. Go to a discussion of the problems in presenting data this way at \url{https://emdbolker.wikidot.com/blog:dynamite}. In the example shown, note that the graph starts at 0, although is out of the range. This is a function of using bars, which always are assumed to start at zero. Consider other ways of showing your data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") @ \end{scriptsize} \caption{A ``Dynamite plot" of SAT scores as a function of gender is one way of misleading the reader. By using a bar graph, the range of scores is ignored. Bar graphs start from 0. } \label{fig:dynamite} \end{center} \end{figure} \subsubsection{Error bars for tabular data} However, it is sometimes useful to show error bars for tabular data, either found by the \fun{table} function or just directly input. These may be found using the \pfun{error.bars.tab} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") @ \end{scriptsize} \caption{The proportion of each education level that is Male or Female. By using the way="both" option, the percentages and errors are based upon the grand total. Alternatively, way="columns" finds column wise percentages, way="rows" finds rowwise percentages. The data can be converted to percentages (as shown) or by total count (raw=TRUE). The function invisibly returns the probabilities and standard errors. See the help menu for an example of entering the data as a data.frame. } \label{fig:dynamite} \end{center} \end{figure} \clearpage \subsubsection{Two dimensional displays of means and errors} Yet another way to display data for different conditions is to use the \pfun{errorCrosses} function. For instance, the effect of various movies on both ``Energetic Arousal'' and ``Tense Arousal'' can be seen in one graph and compared to the same movie manipulations on ``Positive Affect'' and ``Negative Affect''. Note how Energetic Arousal is increased by three of the movie manipulations, but that Positive Affect increases following the Happy movie only. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{The use of the \pfun{errorCircles} function allows for two dimensional displays of means and error bars. The first call to \pfun{errorCircles} finds descriptive statistics for the \iemph{affect} data.frame based upon the grouping variable of Film. These data are returned and then used by the second call which examines the effect of the same grouping variable upon different measures. The size of the circles represent the relative sample sizes for each group. The data are from the PMC lab and reported in \cite{smillie:jpsp}.} \label{fig:errorCircles} \end{center} \end{figure} \clearpage \subsubsection{Back to back histograms} The \pfun{bi.bars} function summarize the characteristics of two groups (e.g., males and females) on a second variable (e.g., age) by drawing back to back histograms (see Figure~\ref{fig:bibars}). \begin{figure}[!ht] \begin{center} \begin{scriptsize} % <>= <>= data(bfi) png( 'bibars.png' ) bi.bars(bfi,"age","gender",ylab="Age",main="Age by males and females") dev.off() @ \end{scriptsize} \includegraphics{bibars.png} \caption{A bar plot of the age distribution for males and females shows the use of \pfun{bi.bars}. The data are males and females from 2800 cases collected using the \iemph{SAPA} procedure and are available as part of the \pfun{bfi} data set. An alternative way of displaying these data is in the \pfun{densityBy} in the next figure.} \label{fig:bibars} \end{center} \end{figure} \begin{figure}[!ht] \begin{center} \begin{scriptsize} <>= png('histo.png') densityBy(bfi,"age",grp="gender") dev.off() @ \end{scriptsize} \includegraphics{histo} \caption{Using the \pfun{densitynBy} function to show the age distribution for males and females. The plot is a conventional density diagram for two two groups. Compare this to the \pfun{bi.bars} plot in the previous figure. By plotting densities, we can see that the males are slightly over represented in the younger ranges.} \label{fig:histo} \end{center} \end{figure} \clearpage \subsubsection{ScatterPlot Histograms} The \pfun{scatterHist} function shows scatter plots for two variables and includes histograms by a grouping variable (see Figure~\ref{fig:scatterHist}). The data shown in the figure are from \cite{gruber:20} and the results are discussed by \cite{eagly:revelle}. The data are in GERAS data set in the \Rpkg{psychTools} package. \begin{figure}[!ht] \begin{center} \begin{scriptsize} % <>= <>= data(GERAS) png( 'scatterHist.png' ) psych::scatterHist(F ~ M + gender, data=GERAS.scales, cex.point=.3,smooth=FALSE, xlab="Masculine Scale",ylab="Feminine Scale",correl=FALSE, d.arrow=TRUE,col=c("red","blue"), bg=c("red","blue"), lwd=4, title="Combined M and F scales",cex.cor=2,cex.arrow=1.25) dev.off() @ \end{scriptsize} \includegraphics{scatterHist} \caption{A scatter plot with histograms for males and females on a scale developed by \cite{gruber:20} and used in an article by \cite{eagly:revelle}. Two scales (Masculine and Feminine) show univariate sex differences as well as Mahalobinis distances. } \label{fig:scatterHist} \end{center} \end{figure} \clearpage \subsubsection{Correlational structure} \label{sect:lowerCor} There are many ways to display correlations. Tabular displays are probably the most common. The output from the \fun{cor} function in core R is a rectangular matrix. \pfun{lowerMat} will round this to (2) digits and then display as a lower off diagonal matrix. \pfun{lowerCor} calls \fun{cor} with \emph{use=`pairwise', method=`pearson'} as default values and returns (invisibly) the full correlation matrix and displays the lower off diagonal matrix. \begin{scriptsize} <>= lowerCor(sat.act) @ \end{scriptsize} When comparing results from two different groups, it is convenient to display them as one matrix, with the results from one group below the diagonal, and the other group above the diagonal. Use \pfun{lowerUpper} to do this: \begin{scriptsize} <>= female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) @ \end{scriptsize} It is also possible to compare two matrices by taking their differences and displaying one (below the diagonal) and the difference of the second from the first above the diagonal: \begin{scriptsize} <>= diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) @ \end{scriptsize} \subsubsection{Heatmap displays of correlational structure} \label{sect:corplot} Perhaps a better way to see the structure in a correlation matrix is to display a \emph{heat map} of the correlations. This is just a matrix color coded to represent the magnitude of the correlation. This is useful when considering the number of factors in a data set. Consider the \pfun{Thurstone} data set which has a clear 3 factor solution (Figure~\ref{fig:cor.plot}) or a simulated data set of 24 variables with a circumplex structure (Figure~\ref{fig:cor.plot.circ}). The color coding represents a ``heat map'' of the correlations, with darker shades of red representing stronger negative and darker shades of blue stronger positive correlations. As an option, the value of the correlation can be shown. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,cex=.7, main="9 cognitive variables from Thurstone") dev.off() @ \end{scriptsize} \includegraphics{corplot.png} \caption{The structure of correlation matrix can be seen more clearly if the variables are grouped by factor and then the correlations are shown by color. By using the 'numbers' option, the values are displayed as well. By default, the complete matrix is shown. Setting upper=FALSE and diag=FALSE shows a cleaner figure. The cex parameter specifies the character size. } \label{fig:cor.plot} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() @ \end{scriptsize} \includegraphics{circplot.png} \caption{Using the corPlot function to show the correlations in a circumplex. Correlations are highest near the diagonal, diminish to zero further from the diagonal, and the increase again towards the corners of the matrix. Circumplex structures are common in the study of affect. For circumplex structures, it is perhaps useful to show the complete matrix.} \label{fig:cor.plot.circ} \end{center} \end{figure} Yet another way to show structure is to use ``spider'' plots. Particularly if variables are ordered in some meaningful way (e.g., in a circumplex), a spider plot will show this structure easily. This is just a plot of the magnitude of the correlation as a radial line, with length ranging from 0 (for a correlation of -1) to 1 (for a correlation of 1). (See Figure~\ref{fig:cor.plot.spider}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() @ \end{scriptsize} \includegraphics{spider.png} \caption{A spider plot can show circumplex structure very clearly. Circumplex structures are common in the study of affect.} \label{fig:cor.plot.spider} \end{center} \end{figure} \subsection{Testing correlations} \label{sect:corr.test} Correlations are wonderful descriptive statistics of the data but some people like to test whether these correlations differ from zero, or differ from each other. The \fun{cor.test} function (in the \Rpkg{stats} package) will test the significance of a single correlation, and the \fun{rcorr} function in the \Rpkg{Hmisc} package will do this for many correlations. In the \Rpkg{psych} package, the \pfun{corTest} function reports the correlation (Pearson, Spearman, or Kendall) between all variables in either one or two data frames or matrices, as well as the number of observations for each case, and the (two-tailed) probability for each correlation. Unfortunately, these probability values have not been corrected for multiple comparisons and so should be taken with a great deal of salt. Thus, in \pfun{corTest} and \pfun{corr.p} the raw probabilities are reported below the diagonal and the probabilities adjusted for multiple comparisons using (by default) the Holm correction are reported above the diagonal (Table~\ref{tab:corr.test}). (See the \fun{p.adjust} function for a discussion of \cite{holm:79} and other corrections.) \begin{table}[htpb] \caption{The \pfun{corTest} function reports correlations, cell sizes, and raw and adjusted probability values. \pfun{corr.p} reports the probability values for a correlation matrix. By default, the adjustment used is that of \cite{holm:79}.} \begin{scriptsize} <>= corTest(sat.act) @ \end{scriptsize} \label{tab:corr.test} \end{table}% Testing the difference between any two correlations can be done using the \pfun{r.test} function. The function actually does four different tests (based upon an article by \cite{steiger:80b}, depending upon the input: 1) For a sample size n, find the t and p value for a single correlation as well as the confidence interval. \begin{scriptsize} <>= r.test(50,.3) @ \end{scriptsize} 2) For sample sizes of n and n2 (n2 = n if not specified) find the z of the difference between the z transformed correlations divided by the standard error of the difference of two z scores. \begin{scriptsize} <>= r.test(30,.4,.6) @ \end{scriptsize} 3) For sample size n, and correlations ra= r12, rb= r23 and r13 specified, test for the difference of two dependent correlations (Steiger case A). \begin{scriptsize} <>= r.test(103,.4,.5,.1) @ \end{scriptsize} 4) For sample size n, test for the difference between two dependent correlations involving different variables. (Steiger case B). \begin{scriptsize} <>= r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B @ \end{scriptsize} To test whether a matrix of correlations differs from what would be expected if the population correlations were all zero, the function \pfun{cortest} follows \cite{steiger:80b} who pointed out that the sum of the squared elements of a correlation matrix, or the Fisher z score equivalents, is distributed as chi square under the null hypothesis that the values are zero (i.e., elements of the identity matrix). This is particularly useful for examining whether correlations in a single matrix differ from zero or for comparing two matrices. Although obvious, \pfun{cortest} can be used to test whether the \pfun{sat.act} data matrix produces non-zero correlations (it does). This is a much more appropriate test when testing whether a residual matrix differs from zero. \begin{scriptsize} <>= cortest(sat.act) @ \end{scriptsize} \subsection{Polychoric, tetrachoric, polyserial, and biserial correlations} The Pearson correlation of dichotomous data is also known as the $\phi$ coefficient. If the data, e.g., ability items, are thought to represent an underlying continuous although latent variable, the $\phi$ will underestimate the value of the Pearson applied to these latent variables. One solution to this problem is to use the \pfun{tetrachoric} correlation which is based upon the assumption of a bivariate normal distribution that has been cut at certain points. The \pfun{draw.tetra} function demonstrates the process (Figure~\ref{fig:tetra}). This is also shown in terms of dichotomizing the bivariate normal density function using the \pfun{draw.cor} function. A simple generalization of this to the case of the multiple cuts is the \pfun{polychoric} correlation. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= <>= png('tetrar.png') draw.tetra() dev.off() @ \end{scriptsize} \includegraphics{tetrar.png} \caption{The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values.} \label{fig:tetra} \end{center} \end{figure} The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values. It is found (laboriously) by optimizing the fit of the bivariate normal for various values of the correlation to the observed cell frequencies. In the interests of space, we do not show the next figure but it can be created by \texttt{draw.cor(expand=20,cuts=c(0,0))} Other estimated correlations based upon the assumption of bivariate normality with cut points include the \pfun{biserial} and \pfun{polyserial} correlation. If the data are a mix of continuous, polytomous and dichotomous variables, the \pfun{mixed.cor} function will calculate the appropriate mixture of Pearson, polychoric, tetrachoric, biserial, and polyserial correlations. The correlation matrix resulting from a number of tetrachoric or polychoric correlation matrix sometimes will not be positive semi-definite. This will sometimes happen if the correlation matrix is formed by using pair-wise deletion of cases. The \pfun{cor.smooth} function will adjust the smallest eigen values of the correlation matrix to make them positive, rescale all of them to sum to the number of variables, and produce a ``smoothed'' correlation matrix. An example of this problem is a data set of \pfun{burt} which probably had a typo in the original correlation matrix. Smoothing the matrix corrects this problem. \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. (\Rpkg{nlme} and \Rpkg{multilevel} allow for statistical inference, but the descriptives of \pfun{statsBy} are useful.) This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} %\end{Schunk} \end{scriptsize} \section{ Multiple Regression, mediation, moderation, and set correlations} The typical application of the \fun{lm} function is to do a linear model of one Y variable as a function of multiple X variables. Because \fun{lm} is designed to analyze complex interactions, it requires raw data as input. It is, however, sometimes convenient to do \iemph{multiple regression} from a correlation or covariance matrix. This is done using the \pfun{lmCor} which will work with either raw data, covariance matrices, or correlation matrices. \subsection{Multiple regression from data or correlation matrices} The \pfun{lmCor} function will take a set of y variables predicted from a set of x variables, perhaps with a set of z covariates removed from both x and y. Consider the \iemph{Thurstone} correlation matrix and find the multiple correlation of the last five variables as a function of the first 4. \begin{scriptsize} <>= lmCor(y = 5:9,x=1:4,data=Thurstone) @ \end{scriptsize} By specifying the number of subjects in correlation matrix, appropriate estimates of standard errors, t-values, and probabilities are also found. The next example finds the regressions with variables 1 and 2 used as covariates. The $\hat{\beta}$ weights for variables 3 and 4 do not change, but the multiple correlation is much less. It also shows how to find the residual correlations between variables 5-9 with variables 1-4 removed. \begin{scriptsize} <>= sc <- lmCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) @ \end{scriptsize} \subsection{Mediation and Moderation analysis} Although multiple regression is a straightforward method for determining the effect of multiple predictors ($x_{1, 2, ... i}$) on a criterion variable, y, some prefer to think of the effect of one predictor, x, as mediated by another variable, m \citep{preacher:04}. Thus, we we may find the indirect path from x to m, and then from m to y as well as the direct path from x to y. Call these paths a, b, and c, respectively. Then the indirect effect of x on y through m is just ab and the direct effect is c. Statistical tests of the ab effect are best done by bootstrapping. This is discussed in detail in the ``How To use \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} tutorial. Consider the example from \cite{preacher:04} as analyzed using the \pfun{mediate} function and the subsequent graphic from \pfun{mediate.diagram}. The data are found in the example for \pfun{mediate}. \begin{scriptsize} <>= #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) @ <>= preacher <- mediate(SATIS ~ THERAPY + (ATTRIB),data=sobel) #The example in Preacher and Hayes @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('mediate.png') mediate.diagram(preacher) dev.off() @ \end{scriptsize} \includegraphics{mediate.png} \caption{A mediated model taken from Preacher and Hayes, 2004 and solved using the \pfun{mediate} function. The direct path from Therapy to Satisfaction has a an effect of .76, while the indirect path through Attribution has an effect of .33. Compare this to the normal regression graphic created by lmDiagram.} \label{fig:mediate} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= preacher.lm <- lmCor(SATIS ~ THERAPY + ATTRIB, data=sobel) #The example in Preacher and Hayes @ <>= png('preacherlm.png') diagram(preacher.lm) dev.off() @ \end{scriptsize} \includegraphics{preacherlm.png} \caption{The conventional regression model for the Preacher and Hayes, 2004 data set solved using the \pfun{lmCor} function. Compare this to the previous figure.} \label{fig:mediate} \end{center} \end{figure} \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} lmCor(SATV + SATQ ~ education + age, data = sat.act, std=TRUE) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} mediate( SATV ~ education+ age + (ACT), data =sat.act,std=TRUE,n.iter=50) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will also take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It will form the product term either from the mean centered data or from the raw data. It then tests the mediation effect using a boot strap. The data set is taken from \cite{garcia:10}. The number of iterations for the boot strap was set to 50 for speed. The default number of boot straps is 5000. See the help page for the \pfun{mediate} function for more details. For a much longer discussion of how to use the \pfun{mediate} function, see the ``HowTo" Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('garcia.png') model <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") summary(model) dev.off() @ \end{scriptsize} \includegraphics{garcia.png} \caption{Moderated multiple regression requires the raw data. By default, the data are mean centered before find the product term. } \label{default} \end{center} \end{figure} \end{itemize} \subsection{Canonical Correlation using \pfun{lmCor}} A generalization of multiple regression to multiple predictors and multiple criteria is \iemph{canonical correlation} \citep{hotelling:36}. Given a partitioning of a correlation matrix, R, into Rxx, Ryy and Rxy, canonical correlation finds orthogonal components of the correlations between the Rx and Ry sets (the Rxy correlations). Consider the Kelley data set discussed by \cite{hotelling:36} who introduced the canonical correlation. This analysis is shown in help menu for \pfun{lmCor}. Another data set is the ``Belly Dancer" data set discussed by \cite{Tabachnick:01} (Chapter 12). Here I show the data, the correlations, the regressions, and the canonical correlations. \begin{scriptsize} <>= dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics cancorDiagram(model) #and the associated canonical figure @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancerlm.png') model <- lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() @ \end{scriptsize} \includegraphics{dancerlm.png} \caption{Multiple regression of the Belly Dancer data set. Compare with the canonical correlation figure \ref{fig:cancor} } \label{fig:lm} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancer.png') cancorDiagram(model) dev.off() @ \end{scriptsize} \includegraphics{dancer.png} \caption{Canonical Correlation of the Belly Dancer data set. Compare with the linear regression figure \ref{fig:lm} } \label{fig:cancor} \end{center} \end{figure} \subsection{Set Correlation using \pfun{lmCor}} Another important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{lmCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{lmCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{lmCor}. Two things to notice. \pfun{lmCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{lmCor}. <>= #compare with lmCor lmCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{lmCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{set.cor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}), 135 items for 4,000 participants (\pfun{spi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 16 multiple choice iq items (\pfun{iqitems}, \pfun{ability}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [spi] 135 personality items and 10 demographic items for 4,000 subjects are taken from the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project \citep{sapa:16}. These 135 items form part of the SAPA Personality Inventory \citep{condon:spi}. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iqitems] 16 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1525 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [ability] The same 16 items, converted to 0,1 scores are used for examples of various IRT procedures. These data are from the \emph{International Cognitive Ability Resource} (ICAR) \cite{condon:icar:14} and were collected as part of the SAPA web based assessment \href{ https://sapa-project.org}{ https://sapa-project.org} project \cite{sapa:16}. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to introduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="https://personality-project.org/r"}{\url{https://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For both Macs and PC, this version can be installed directly using the ``other repository" option in the package installer. Make sure to specify type="source" %\begin{Schunk} \begin{Sinput} > install.packages("psych", repos="https://personality-project.org/r", type="source") \end{Sinput} %\end{Schunk} % For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{https://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, %\begin{Schunk} \begin{Sinput} news(Version >= "2.3.5",package="psych") \end{Sinput} %\end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{https://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{https://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\citeauthoryear{Bernaards \& Jennrich}{Bernaards \& Jennrich}{2005}]{gpa.rotate} Coen A. Bernaards \& Robert I. Jennrich (2005). \newblock Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis \newblock {\em Educational and Psychological Measurement}, {\em 65}, 676-696. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Condon}{2018}]{condon:spi} Condon, D. (2018) \newblock {\em The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model} \newblock {\em PsyArXiv}, \bibitem[\protect\citeauthoryear{Condon \& Revelle}{Condon \& Revelle}{2014}]{condon:icar:14} Condon, D.~M. \& Revelle, W. (2014). \newblock The {International Cognitive Ability Resource}: Development and initial validation of a public-domain measure. \newblock {\em Intelligence}, {\em 43}, 52--64. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Eagly and Revelle}{2022}]{eagly:revelle} Eagly and Revelle (2022). \newblock Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees (in press) \newblock {\em Perspectives in Psychological Science}) \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Gruber et al. }{2020}]{gruber:20} Gruber, Freya M. and Distlberger, Eva and Scherndl, Thomas and Ortner, Tuulia M. and Pletzer, Belinda (2020) \newblock Psychometric properties of the multifaceted Gender-Related Attributes Survey (GERAS) \newblock {\em European Journal of Psychological Assessment.}, 36, (4) 612-623 \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to Bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28, (3/4):321--377. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2024}]{psych} Revelle, W. (2024). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 2.4.1 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2018]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell 2018). \bibitem[Revelle and Condon, 2019]{rc:pa} Revelle, W. and Condon, D.~M. (2019). \newblock Reliability from alpha to omega: A tutorial. \newblock {\em Psychological Assessment} 31, 12, 1395-1411. https://doi.org/10.1037/pas0000754. \url{https://psyarxiv.com/2y3w9/} Preprint available from PsyArxiv \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\citeauthoryear{Revelle, Condon, Wilt, French, Brown \&? Elleman}{Revelle et~al.}{2016}]{sapa:16} Revelle, W., Condon, D.~M., Wilt, J., French, J.~A., Brown, A., \& Elleman, L.~G. (2016). \newblock Web and phone based data collection using planned missing designs. \newblock In N.~G. Fielding, R.~M. Lee, \& G.~Blank (Eds.), {\em SAGE Handbook of Online Research Methods\/} (2nd ed.). chapter~37, (pp.\ 578--595). Sage Publications, Inc. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tabachnick and Fidell}{2001}]{Tabachnick:01} Tabacnik, B.G and Fidell, L.S. (2001) \newblock Using multivariate statistics. \newblock Allyn and Bacon. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psychTools/vignettes/overview.Rnw0000644000176200001440000042507714551776323017023 0ustar liggesusers% \VignetteIndexEntry{Overview of the psych package for psychometrics} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \makeindex % used for the subject index \title{An introduction to the psych package: Part II\\Scale construction and psychometrics} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \newpage \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package: @ \begin{scriptsize} \begin{Schunk} \begin{Sinput} library(psych) library(psychTools) \end{Sinput} \end{Schunk} \end{scriptsize} \item Input your data (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.1). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .csv, .data, .sav, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, or .RData, then the file will be opened and the data will be read in. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using your normal operating system \end{Sinput} \end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} \end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.3) on how to \pfun{describe} data) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} \begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or descrbeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} \end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} ( (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.4 for a discussion of graphics)) . Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} \begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data). \begin{scriptsize} \begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} \end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable ( (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.1)). \begin{scriptsize} \begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} \end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} \begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} \end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") lmCor(y1 + y2 ~ x1 + x2 , data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y1 + y2 ~ x1 + x2 + (med1) , data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y1 + y2 ~ x1 + x2* mod1 +(med1), data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in this vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in this Vignette. A brief review of the functions available is included here. For basic data entry and descriptive statistics, see the Vignette Intro to Psych \url{https://personality-project.org/r}. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{https://personality-project.org/r}. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}, section \ref{sect:fa.parallel}) or Very Simple Structure (\pfun{vss}, \ref{sect:vss}) . \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Factor analyze (see section \ref{sect:fa}) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities (see sections \ref{sect:minres}-\ref{sect:wls}). Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section \ref{sect:iclust}). Also consider a hierarchical factor solution to find coefficient $\omega$ (see \ref{sect:omega}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} \end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} \begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function (see \ref{sect:alpha}). Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function (see \ref{sect:score}) and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} \begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage\newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{https://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes five methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51}(\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} \pfun{mlr} will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \url{psych_manual.pdf} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{https://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \url{psych_for_sem.pdf}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"https://personality-project.org/r/book/psych_for_sem.pdf"}{\url{https://personality-project.org/r/book/psych_for_sem.pdf}}). In addition, there are a growing number of ``HowTo"s at the personality project. Currently these include: \begin{enumerate} \item An \href{https://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{https://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{https://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{https://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{https://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \end{enumerate} For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{https://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{https://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in this overview require other packages. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. \begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} \end{Schunk} The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: \begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt","psychTools") \end{Sinput} \end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. These are described in more detail in the companion vignette: An introduction to the psych package: Part I which is also available from the personality-project site. \url{https://personality-project.org/r/psych/vignettes/intro.pdf}. Please consult that vignette first for information on how to read data (particularly using the \pfun{read.file} and \pfun{read.clipboard} commands), Also, the \pfun{describe} and \pfun{describeBy} functions are described in more detail in the introductory vignette. For even though you probably want to jump immediately to factor analyze your data, this is a mistake. It is very important to first describe them and look for weird responses. It is also useful to \pfun{scrub} your data when removing outliers, to graphically display them using \pfun{pairs.panesl} and \pfun{corPlot}. Basic multiple regression and moderated or mediated regressions may be done from either the raw data or from correlation matrices using \pfun{lmCor}, or \pfun{mediation}. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., \begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych)} \end{Sinput} \end{Schunk} \section{Item and scale analysis} The main functions in the \Rpkg{psych} package are for analyzing the structure of items and of scales and for finding various estimates of scale reliability. These may be considered as problems of dimension reduction (e.g., factor analysis, cluster analysis, principal components analysis) and of forming and estimating the reliability of the resulting composite scales. \subsection{Dimension reduction through factor analysis and cluster analysis} \label{sect:fa} Parsimony of description has been a goal of science since at least the famous dictum commonly attributed to William of Ockham to not multiply entities beyond necessity\footnote{Although probably neither original with Ockham nor directly stated by him \citep{thornburn:1918}, Ockham's razor remains a fundamental principal of science.}. The goal for parsimony is seen in psychometrics as an attempt either to describe (components) or to explain (factors) the relationships between many observed variables in terms of a more limited set of components or latent factors. The typical data matrix represents multiple items or scales usually thought to reflect fewer underlying constructs\footnote{\cite{cattell:fa78} as well as \cite{maccallum:07} argue that the data are the result of many more factors than observed variables, but are willing to estimate the major underlying factors.}. At the most simple, a set of items can be be thought to represent a random sample from one underlying domain or perhaps a small set of domains. The question for the psychometrician is how many domains are represented and how well does each item represent the domains. Solutions to this problem are examples of \iemph{factor analysis} (\iemph{FA}), \iemph{principal components analysis} (\iemph{PCA}), and \iemph{cluster analysis} (\emph{CA}). All of these procedures aim to reduce the complexity of the observed data. In the case of FA, the goal is to identify fewer underlying constructs to explain the observed data. In the case of PCA, the goal can be mere data reduction, but the interpretation of components is frequently done in terms similar to those used when describing the latent variables estimated by FA. Cluster analytic techniques, although usually used to partition the subject space rather than the variable space, can also be used to group variables to reduce the complexity of the data by forming fewer and more homogeneous sets of tests or items. At the data level the data reduction problem may be solved as a \iemph{Singular Value Decomposition} of the original matrix, although the more typical solution is to find either the \iemph{principal components} or \iemph{factors} of the covariance or correlation matrices. Given the pattern of regression weights from the variables to the components or from the factors to the variables, it is then possible to find (for components) individual \index{component scores} \emph{component} or \iemph{cluster scores} or estimate (for factors) \iemph{factor scores}. Several of the functions in \Rpkg{psych} address the problem of data reduction. \begin{description} \item[\pfun{fa}] incorporates six alternative algorithms: \iemph{minres factor analysis}, \iemph{principal axis factor analysis}, \iemph{alpha factor analysis}, \iemph{weighted least squares factor analysis}, \iemph{generalized least squares factor analysis} and \iemph{maximum likelihood factor analysis}. That is, it includes the functionality of three other functions that are deprecated and will be eventually phased out. \begin{tiny} \item[\pfun{fa.poly} (deprecated) ] is useful when finding the factor structure of categorical items. \pfun{fa.poly} first finds the tetrachoric or polychoric correlations between the categorical variables and then proceeds to do a normal factor analysis. By setting the n.iter option to be greater than 1, it will also find confidence intervals for the factor solution. Warning. Finding polychoric correlations is very slow, so think carefully before doing so. These options are now part of the \iemph{fa} function and can be controlled by setting the cor parameter to `tet' or `poly'. \item [\pfun{factor.minres} (deprecated)] Minimum residual factor analysis is a least squares, iterative solution to the factor problem. minres attempts to minimize the residual (off-diagonal) correlation matrix. It produces solutions similar to maximum likelihood solutions, but will work even if the matrix is singular. \item [\pfun{factor.pa} (deprecated)] Principal Axis factor analysis is a least squares, iterative solution to the factor problem. PA will work for cases where maximum likelihood techniques (\fun{factanal}) will not work. The original communality estimates are either the squared multiple correlations (\pfun{smc}) for each item or 1. \item [\pfun{factor.wls} (deprecated)] Weighted least squares factor analysis is a least squares, iterative solution to the factor problem. It minimizes the (weighted) squared residual matrix. The weights are based upon the independent contribution of each variable. \end{tiny} \item [\pfun{principal}] Principal Components Analysis reports the largest n eigen vectors rescaled by the square root of their eigen values. Note that PCA is not the same as factor analysis and the two should not be confused. \item [\pfun{factor.congruence}] The congruence between two factors is the cosine of the angle between them. This is just the cross products of the loadings divided by the sum of the squared loadings. This differs from the correlation coefficient in that the mean loading is not subtracted before taking the products. \pfun{factor.congruence} will find the cosines between two (or more) sets of factor loadings. \item [\pfun{vss}] Very Simple Structure \cite{revelle:vss} applies a goodness of fit test to determine the optimal number of factors to extract. It can be thought of as a quasi-confirmatory model, in that it fits the very simple structure (all except the biggest c loadings per item are set to zero where c is the level of complexity of the item) of a factor pattern matrix to the original correlation matrix. For items where the model is usually of complexity one, this is equivalent to making all except the largest loading for each item 0. This is typically the solution that the user wants to interpret. The analysis includes the \pfun{MAP} criterion of \cite{velicer:76} and a $\chi^2$ estimate. \item [\pfun{nfactors}] combines VSS, MAP, and a number of other fit statistics. The depressing reality is that frequently these conventional fit estimates of the number of factors do not agree. \item [\pfun{fa.parallel}] The parallel factors technique compares the observed eigen values of a correlation matrix with those from random data. \item [\pfun{fa.plot}] will plot the loadings from a factor, principal components, or cluster analysis (just a call to plot will suffice). If there are more than two factors, then a SPLOM of the loadings is generated. \item[\pfun{fa.diagram}] replaces \pfun{fa.graph} and will draw a path diagram representing the factor structure. It does not require Rgraphviz and thus is probably preferred. \item[\pfun{fa.graph}] requires \fun{Rgraphviz} and will draw a graphic representation of the factor structure. If factors are correlated, this will be represented as well. \item[\pfun{iclust} ] is meant to do item cluster analysis using a hierarchical clustering algorithm specifically asking questions about the reliability of the clusters \citep{revelle:iclust}. Clusters are formed until either coefficient $\alpha$ \cite{cronbach:51} or $\beta$ \cite{revelle:iclust} fail to increase. \end{description} \subsubsection{Minimum Residual Factor Analysis} \label{sect:minres} The factor model is an approximation of a correlation matrix by a matrix of lower rank. That is, can the correlation matrix, $\vec{_nR_n}$ be approximated by the product of a factor matrix, $\vec{_nF_k}$ and its transpose plus a diagonal matrix of uniqueness. \begin{equation} R = FF' + U^2 \end{equation} The maximum likelihood solution to this equation is found by \fun{factanal} in the \Rpkg{stats} package as well as the \pfun{fa} function in \Rpkg{psych}. Seven alternatives are provided in \Rpkg{psych}, all of them are included in the \pfun{fa} function and are called by specifying the factor method (e.g., fm=``minres", fm=``pa", fm=``alpha" fm=`wls", fm=``gls", fm = ``min.rank", and fm=``ml"). In the discussion of the other algorithms, the calls shown are to the \pfun{fa} function specifying the appropriate method. \pfun{factor.minres} attempts to minimize the off diagonal residual correlation matrix by adjusting the eigen values of the original correlation matrix. This is similar to what is done in \fun{factanal}, but uses an ordinary least squares instead of a maximum likelihood fit function. The solutions tend to be more similar to the MLE solutions than are the \pfun{factor.pa} solutions. \iemph{min.res} is the default for the \pfun{fa} function. A classic data set, collected by \cite{thurstone:41} and then reanalyzed by \cite{bechtoldt:61} and discussed by \cite{mcdonald:tt}, is a set of 9 cognitive variables with a clear bi-factor structure \citep{holzinger:37}. The minimum residual solution was transformed into an oblique solution using the default option on rotate which uses an oblimin transformation (Table~\ref{tab:factor.minres}). Alternative rotations and transformations include ``none", ``varimax", ``quartimax", ``bentlerT", ``varimin'' and ``geominT" (all of which are orthogonal rotations). as well as ``promax", ``oblimin", ``simplimax", ``bentlerQ, and ``geominQ" and ``cluster" which are possible oblique transformations of the solution. The default is to do a oblimin transformation. The measures of factor adequacy reflect the multiple correlations of the factors with the best fitting linear regression estimates of the factor scores \citep{grice:01}. Note that if extracting more than one factor, and doing any oblique rotation, it is necessary to have the \Rpkg{GPArotation} installed. This is checked for in the appropriate functions. <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} @ \begin{table}[htpb] \caption{Three correlated factors from the Thurstone 9 variable problem. By default, the solution is transformed obliquely using oblimin. The extraction method is (by default) minimum residual.} \begin{scriptsize} \begin{center} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { library(psych) library(psychTools) f3t <- fa(Thurstone,3,n.obs=213) f3t } @ \end{center} \end{scriptsize} \label{tab:factor.minres} \end{table}% \subsubsection{Principal Axis Factor Analysis} An alternative, least squares algorithm (included in \pfun{fa} with the fm=pa option or as a standalone function (\pfun{factor.pa}), does a Principal Axis factor analysis by iteratively doing an eigen value decomposition of the correlation matrix with the diagonal replaced by the values estimated by the factors of the previous iteration. This OLS solution is not as sensitive to improper matrices as is the maximum likelihood method, and will sometimes produce more interpretable results. It seems as if the SAS example for PA uses only one iteration. Setting the max.iter parameter to 1 produces the SAS solution. The solutions from the \pfun{fa}, the \pfun{factor.minres} and \pfun{factor.pa} as well as the \pfun{principal} functions can be rotated or transformed with a number of options. Some of these call the \Rpkg{GPArotation} package. Orthogonal rotations include \fun{varimax}, \fun{quartimax}, \pfun{varimin}, \pfun{bifactor} . Oblique transformations include \fun{oblimin}, \fun{quartimin}, \pfun{biquartimin} and then two targeted rotation functions \pfun{Promax} and \pfun{target.rot}. The latter of these will transform a loadings matrix towards an arbitrary target matrix. The default is to transform towards an independent cluster solution. Using the Thurstone data set, three factors were requested and then transformed into an independent clusters solution using \pfun{target.rot} (Table~\ref{tab:Thurstone}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The extraction method was principal axis. The transformation was a targeted transformation to a simple cluster solution.} \begin{center} \begin{scriptsize} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} @ \end{scriptsize} \end{center} \label{tab:Thurstone} \end{table} \subsubsection{Alpha Factor Analysis} Introduced by \cite{kaiser:65} and discussed by \cite{loehlin:17}, \emph{alpha factor analysis} factors the matrix of correlations or covariances corrected for their communalities. This has the effect of making all correlations corrected for relability to reflect their true, latent correlations. \emph{alpha factor analysis} was added in August, 2017 to increase the range of EFA options available. This is added more for completeness rather than an endorsement of the procedure. It is worth comparing solutions from minres, alpha, and MLE, for they are not the same. \subsubsection{Weighted Least Squares Factor Analysis} \label{sect:wls} Similar to the minres approach of minimizing the squared residuals, factor method ``wls" weights the squared residuals by their uniquenesses. This tends to produce slightly smaller overall residuals. In the example of weighted least squares, the output is shown by using the \pfun{print} function with the cut option set to 0. That is, all loadings are shown (Table~\ref{tab:Thurstone.wls}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The factors were extracted using a weighted least squares algorithm. All loadings are shown by using the cut=0 option in the \pfun{print.psych} function.} \begin{scriptsize} <>= f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) @ \end{scriptsize} \label{tab:Thurstone.wls} \end{table} subsection{Displaying factor solutions} The unweighted least squares solution may be shown graphically using the \pfun{fa.plot} function which is called by the generic \fun{plot} function (Figure~\ref{fig:thurstone}). Factors were transformed obliquely using a oblimin. These solutions may be shown as item by factor plots (Figure~\ref{fig:thurstone}) or by a structure diagram (Figure~\ref{fig:thurstone.diagram}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= plot(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{plot}. Factors were transformed to an oblique solution using the oblimin function from the GPArotation package.} \label{fig:thurstone} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= fa.diagram(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{fa.diagram}. Factors were transformed to an oblique solution using oblimin.} \label{fig:thurstone.diagram} \end{center} \end{figure} A comparison of these three approaches suggests that the minres solution is more similar to a maximum likelihood solution and fits slightly better than the pa or wls solutions. Comparisons with SPSS suggest that the pa solution matches the SPSS OLS solution, but that the minres solution is slightly better. At least in one test data set, the weighted least squares solutions, although fitting equally well, had slightly different structure loadings. Note that the rotations used by SPSS will sometimes use the ``Kaiser Normalization''. By default, the rotations used in psych do not normalize, but this can be specified as an option in \pfun{fa}. \subsubsection{Principal Components analysis (PCA)} An alternative to factor analysis, which is unfortunately frequently confused with \iemph{factor analysis}, is \iemph{principal components analysis}. Although the goals of \iemph{PCA} and \iemph{FA} are similar, PCA is a descriptive model of the data, while FA is a structural model. Some psychologists use PCA in a manner similar to factor analysis and thus the \pfun{principal} function produces output that is perhaps more understandable than that produced by \fun{princomp} in the \Rpkg{stats} package. Table~\ref{tab:pca} shows a PCA of the Thurstone 9 variable problem rotated using the \pfun{Promax} function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the \iemph{common variance}. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the \pfun{fa} solution. \begin{table}[htpb] \caption{The Thurstone problem can also be analyzed using Principal Components Analysis. Compare this to Table~\ref{tab:Thurstone}. The loadings are higher for the PCA because the model accounts for the unique as well as the common variance.The fit of the off diagonal elements, however, is much worse than the \pfun{fa} results.} \begin{center} \begin{scriptsize} <>= p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p @ \end{scriptsize} \end{center} \label{tab:pca} \end{table} \subsubsection{Hierarchical and bi-factor solutions} \label{sect:omega} For a long time structural analysis of the ability domain have considered the problem of factors that are themselves correlated. These correlations may themselves be factored to produce a higher order, general factor. An alternative \citep{holzinger:37,jensen:weng} is to consider the general factor affecting each item, and then to have group factors account for the residual variance. Exploratory factor solutions to produce a hierarchical or a bifactor solution are found using the \pfun{omega} function. This technique has more recently been applied to the personality domain to consider such things as the structure of neuroticism (treated as a general factor, with lower order factors of anxiety, depression, and aggression). Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations between the factors (as shown in Figure~\ref{fig:thurstone.diagram} can themselves be factored. This results in a higher order factor model (Figure~\ref{fig:omega}). An an alternative solution is to take this higher order model and then solve for the general factor loadings as well as the loadings on the residualized lower order factors using the \iemph{Schmid-Leiman} procedure. (Figure ~\ref{fig:omega.2}). Yet another solution is to use structural equation modeling to directly solve for the general and group factors. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A higher order factor solution to the Thurstone 9 variable problem} \label{fig:omega} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om <- omega(Thurstone,n.obs=213) @ \end{scriptsize} \caption{A bifactor factor solution to the Thurstone 9 variable problem} \label{fig:omega.2} \end{center} \end{figure} Yet another approach to the bifactor structure is do use the \pfun{bifactor} rotation function in either \Rpkg{psych} or in \Rpkg{GPArotation}. This does the rotation discussed in \cite{jennrich:11}. \subsubsection{Item Cluster Analysis: iclust} \label{sect:iclust} An alternative to factor or components analysis is \iemph{cluster analysis}. The goal of cluster analysis is the same as factor or components analysis (reduce the complexity of the data and attempt to identify homogeneous subgroupings). Mainly used for clustering people or objects (e.g., projectile points if an anthropologist, DNA if a biologist, galaxies if an astronomer), clustering may be used for clustering items or tests as well. Introduced to psychologists by \cite{tryon:39} in the 1930's, the cluster analytic literature exploded in the 1970s and 1980s \citep{blashfield:80,blashfield:88,everitt:74,hartigan:75}. Much of the research is in taxonmetric applications in biology \citep{sneath:73,sokal:63} and marketing \citep{cooksey:06} where clustering remains very popular. It is also used for taxonomic work in forming clusters of people in family \citep{henry:05} and clinical psychology \citep{martinent:07,mun:08}. Interestingly enough it has has had limited applications to psychometrics. This is unfortunate, for as has been pointed out by e.g. \citep{tryon:35,loevinger:53}, the theory of factors, while mathematically compelling, offers little that the geneticist or behaviorist or perhaps even non-specialist finds compelling. \cite{cooksey:06} reviews why the \pfun{iclust} algorithm is particularly appropriate for scale construction in marketing. \emph{Hierarchical cluster analysis} \index{hierarchical cluster analysis} forms clusters that are nested within clusters. The resulting \iemph{tree diagram} (also known somewhat pretentiously as a \iemph{rooted dendritic structure}) shows the nesting structure. Although there are many hierarchical clustering algorithms in \R{} (e.g., \fun{agnes}, \fun{hclust}, and \pfun{iclust}), the one most applicable to the problems of scale construction is \pfun{iclust} \citep{revelle:iclust}. \begin{enumerate} \item Find the proximity (e.g. correlation) matrix, \item Identify the most similar pair of items \item Combine this most similar pair of items to form a new variable (cluster), \item Find the similarity of this cluster to all other items and clusters, \item Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster remains or in \pfun{iclust} if there is a failure to increase reliability coefficients $\alpha$ or $\beta$). \item Purify the solution by reassigning items to the most similar cluster center. \end{enumerate} \pfun{iclust} forms clusters of items using a hierarchical clustering algorithm until one of two measures of internal consistency fails to increase \citep{revelle:iclust}. The number of clusters may be specified a priori, or found empirically. The resulting statistics include the average split half reliability, $\alpha$ \citep{cronbach:51}, as well as the worst split half reliability, $\beta$ \citep{revelle:iclust}, which is an estimate of the general factor saturation of the resulting scale (Figure~\ref{fig:iclust}). Cluster loadings (corresponding to the structure matrix of factor analysis) are reported when printing (Table~\ref{tab:iclust}). The pattern matrix is available as an object in the results. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(bfi) ic <- iclust(bfi[1:25]) @ \end{scriptsize} \caption{Using the \pfun{iclust} function to find the cluster structure of 25 personality items (the three demographic variables were excluded from this analysis). When analyzing many variables, the tree structure may be seen more clearly if the graphic output is saved as a pdf and then enlarged using a pdf viewer.} \label{fig:iclust} \end{center} \end{figure} \begin{table}[htpb] \caption{The summary statistics from an iclust analysis shows three large clusters and smaller cluster.} \begin{center} \begin{scriptsize} <>= summary(ic) #show the results @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% The previous analysis (Figure~\ref{fig:iclust}) was done using the Pearson correlation. A somewhat cleaner structure is obtained when using the \pfun{polychoric} function to find polychoric correlations (Figure~\ref{fig:iclust.poly}). Note that the first time finding the polychoric correlations some time, but the next three analyses were done using that correlation matrix (r.poly\$rho). When using the console for input, \pfun{polychoric} will report on its progress while working using \pfun{progressBar}. \begin{table}[htpb] \caption{The \pfun{polychoric} and the \pfun{tetrachoric} functions can take a long time to finish and report their progress by a series of dots as they work. The dots are suppressed when creating a Sweave document.} \begin{center} \begin{tiny} <>= data(bfi) r.poly <- polychoric(bfi[1:25],correct=0) #the ... indicate the progress of the function @ \end{tiny} \end{center} \label{tab:bad}1.7.1\end{table}% \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations. Compare this solution to the previous one (Figure~\ref{fig:iclust}) which was done using Pearson correlations. } \label{fig:iclust.poly} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the solution set to 5 clusters. Compare this solution to the previous one (Figure~\ref{fig:iclust.poly}) which was done without specifying the number of clusters and to the next one (Figure~\ref{fig:iclust.3}) which was done by changing the beta criterion. } \label{fig:iclust.5} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the beta criterion set to 3. Compare this solution to the previous three (Figure~\ref{fig:iclust},~\ref{fig:iclust.poly}, \ref{fig:iclust.5}).} \label{fig:iclust.3} \end{center} \end{figure} \begin{table}[htpb] \caption{The output from \pfun{iclust} includes the loadings of each item on each cluster. These are equivalent to factor structure loadings. By specifying the value of cut, small loadings are suppressed. The default is for cut=0.su } \begin{center} \begin{scriptsize} <>= print(ic,cut=.3) @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% A comparison of these four cluster solutions suggests both a problem and an advantage of clustering techniques. The problem is that the solutions differ. The advantage is that the structure of the items may be seen more clearly when examining the clusters rather than a simple factor solution. \subsection{Estimates of fit} Exploratory factoring techniques are sometimes criticized because of the lack of statistical information on the solutions. There are perhaps as many fit statistics as there are psychometricians. When using Maximum Likelihood extraction, many of these various fit statistics are based upon the $\chi^{2}$ which is minimized using ML. If not using ML, these same statistics can be found, but they are no longer maximum likelihood estimates. They are, however, still useful. Overall estimates of goodness of fit including $\chi^{2}$ and RMSEA are found in the \pfun{fa} and \pfun{omega} functions. \subsection{Confidence intervals using bootstrapping techniques} Confidence intervals for the factor loadings may be found by doing multiple bootstrapped iterations of the original analysis. This is done by setting the n.iter parameter to the desired number of iterations. This can be done for factoring of Pearson correlation matrices as well as polychoric/tetrachoric matrices (See Table~\ref{tab:bootstrap}). Although the example value for the number of iterations is set to 20, more conventional analyses might use 1000 bootstraps. This will take much longer. Bootstrapped confidence intervals can also be found for the loadings of a factoring of a polychoric matrix. \pfun{fa.poly} will find the polychoric correlation matrix and if the n.iter option is greater than 1, will then randomly resample the data (case wise) to give bootstrapped samples. This will take a long time for large number of items or interations. \begin{table}[htpb] \caption{An example of bootstrapped confidence intervals on 10 items from the Big 5 inventory. The number of bootstrapped samples was set to 20. More conventional bootstrapping would use 100 or 1000 replications. } \begin{tiny} \begin{center} <>= fa(bfi[1:10],2,n.iter=20) @ \end{center} \end{tiny} \label{tab:bootstrap} \end{table}% \subsection{Comparing factor/component/cluster solutions} Cluster analysis, factor analysis, and principal components analysis all produce structure matrices (matrices of correlations between the dimensions and the variables) that can in turn be compared in terms of Burt's \iemph{congruence coefficient} (also known as Tucker's coefficient) which is just the cosine of the angle between the dimensions $$c_{f_{i}f_{j}} = \frac{\sum_{k=1}^{n}{f_{ik}f_{jk}}} {\sum{f_{ik}^{2}}\sum{f_{jk}^{2}}}.$$ Consider the case of a four factor solution and four cluster solution to the Big Five problem. \begin{scriptsize} <>= f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) @ \end{scriptsize} A more complete comparison of oblique factor solutions (both minres and principal axis), bifactor and component solutions to the Thurstone data set is done using the \pfun{factor.congruence} function. (See table~\ref{tab:congruence}). \begin{table}[htpb] \caption{Congruence coefficients for oblique factor, bifactor and component solutions for the Thurstone problem.} \begin{scriptsize} <>= factor.congruence(list(f3t,f3o,om,p3p)) @ \end{scriptsize} \label{tab:congruence} \end{table}% \subsection{Determining the number of dimensions to extract.} How many dimensions to use to represent a correlation matrix is an unsolved problem in psychometrics. There are many solutions to this problem, none of which is uniformly the best. Henry Kaiser once said that ``a solution to the number-of factors problem in factor analysis is easy, that he used to make up one every morning before breakfast. But the problem, of course is to find \emph{the} solution, or at least a solution that others will regard quite highly not as the best" \cite{horn:79}. Techniques most commonly used include 1) Extracting factors until the chi square of the residual matrix is not significant. 2) Extracting factors until the change in chi square from factor n to factor n+1 is not significant. 3) Extracting factors until the eigen values of the real data are less than the corresponding eigen values of a random data set of the same size (parallel analysis) \pfun{fa.parallel} \citep{horn:65}. 4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop in eigen values analogous to the change in slope seen when scrambling up the talus slope of a mountain and approaching the rock face \citep{cattell:scree}. 5) Extracting factors as long as they are interpretable. 6) Using the Very Structure Criterion (\pfun{vss}) \citep{revelle:vss}. 7) Using Wayne Velicer's Minimum Average Partial (\pfun{MAP}) criterion \citep{velicer:76}. 8) Extracting principal components until the eigen value < 1. Each of the procedures has its advantages and disadvantages. Using either the chi square test or the change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is partially sensitive to sample size in that for large samples the eigen values of random factors will all tend towards 1. The scree test is quite appealing but can lead to differences of interpretation as to when the scree ``breaks". Extracting interpretable factors means that the number of factors reflects the investigators creativity more than the data. vss, while very simple to understand, will not work very well if the data are very factorially complex. (Simulations suggests it will work fine if the complexities of some of the items are no more than 2). The eigen value of 1 rule, although the default for many programs, seems to be a rough way of dividing the number of variables by 3 and is probably the worst of all criteria. An additional problem in determining the number of factors is what is considered a factor. Many treatments of factor analysis assume that the residual correlation matrix after the factors of interest are extracted is composed of just random error. An alternative concept is that the matrix is formed from major factors of interest but that there are also numerous minor factors of no substantive interest but that account for some of the shared covariance between variables. The presence of such minor factors can lead one to extract too many factors and to reject solutions on statistical grounds of misfit that are actually very good fits to the data. This problem is partially addressed later in the discussion of simulating complex structures using \pfun{sim.structure} and of small extraneous factors using the \pfun{sim.minor} function. \subsubsection{Very Simple Structure} \label{sect:vss} The \pfun{vss} function compares the fit of a number of factor analyses with the loading matrix ``simplified" by deleting all except the c greatest loadings per item, where c is a measure of factor complexity \cite{revelle:vss}. Included in \pfun{vss} is the MAP criterion (Minimum Absolute Partial correlation) of \cite{velicer:76}. Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal (Figure~\ref{fig:vss}). However, the MAP criterion suggests that 5 is optimal. \begin{figure}[htbp] \begin{center} <>= vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") @ \caption{The Very Simple Structure criterion for the number of factors compares solutions for various levels of item complexity and various numbers of factors. For the Big 5 Inventory, the complexity 1 and 2 solutions both achieve their maxima at four factors. This is in contrast to parallel analysis which suggests 6 and the MAP criterion which suggests 5. } \label{fig:vss} \end{center} \end{figure} \begin{scriptsize} <>= vss @ \end{scriptsize} \subsubsection{Parallel Analysis} \label{sect:fa.parallel} An alternative way to determine the number of factors is to compare the solution to random data with the same properties as the real data set. If the input is a data matrix, the comparison includes random samples from the real data, as well as normally distributed random data with the same number of subjects and variables. For the BFI data, parallel analysis suggests that 6 factors might be most appropriate (Figure~\ref{fig:parallel}). It is interesting to compare \pfun{fa.parallel} with the \fun{paran} from the \Rpkg{paran} package. This latter uses smcs to estimate communalities. Simulations of known structures with a particular number of major factors but with the presence of trivial, minor (but not zero) factors, show that using smcs will tend to lead to too many factors. \begin{figure}[htbp] \begin{scriptsize} \begin{center} <>= fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") @ \caption{Parallel analysis compares factor and principal components solutions to the real data as well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis suggests 6. One more demonstration of Kaiser's dictum.} \label{fig:parallel} \end{center} \end{scriptsize} \end{figure} Experience with problems of various sizes suggests that parallel analysis is useful for less than about 1,000 subjects, and that using the number of components greater than a random solution is more robust than using the number of factors greater than random factors. A more tedious problem in terms of computation is to do parallel analysis of \iemph{polychoric} correlation matrices. This is done by \pfun{fa.parallel.poly}. By default the number of replications is 20. This is appropriate when choosing the number of factors from dicthotomous or polytomous data matrices. \subsection{Factor extension} Sometimes we are interested in the relationship of the factors in one space with the variables in a different space. One solution is to find factors in both spaces separately and then find the structural relationships between them. This is the technique of structural equation modeling in packages such as \Rpkg{sem} or \Rpkg{lavaan}. An alternative is to use the concept of \iemph{factor extension} developed by \citep{dwyer:37}. Consider the case of 16 variables created to represent one two dimensional space. If factors are found from eight of these variables, they may then be extended to the additional eight variables (See Figure~\ref{fig:fa.extension}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) @ \end{scriptsize} \caption{Factor extension applies factors from one set (those on the left) to another set of variables (those on the right). \pfun{fa.extension} is particularly useful when one wants to define the factors with one set of variables and then apply those factors to another set. \pfun{fa.diagram} is used to show the structure. } \label{fig:fa.extension} \end{center} \end{figure} Another way to examine the overlap between two sets is the use of \iemph{set correlation} found by \pfun{lmCor} (discussed later). \subsection{Exploratory Structural Equation Modeling (ESEM)} Generaizing the procedures of factor extension, we can do Exploratory Structural Equation Modeling (ESEM). Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Classical Test Theory and Reliability} Surprisingly, 113 years after \cite{spearman:rho} introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's $\alpha$ \citep{cronbach:51} underestimates the reliability of a test and over estimates the first factor saturation \citep{rz:09}. $\alpha$ \citep{cronbach:51} is the same as Guttman's $\lambda3$ \citep{guttman:45} and may be found by $$ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha $$ Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients $\beta$ \citep{revelle:iclust} (see \pfun{iclust}) and $\omega_h$ (see \pfun{omega}) are more appropriate estimates of the general factor saturation. $\omega_t$is a better estimate of the reliability of the total test. Guttman's $\lambda _6$ (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, $e_j^2$, and is $$ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x}. $$ The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpiness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. G6 estimates item reliability by the squared multiple correlation of the other items in a scale. A modification of G6, G6*, takes as an estimate of an item reliability the smc with all the items in an inventory, including those not keyed for a particular scale. This will lead to a better estimate of the reliable variance of a particular item. Alpha, G6 and G6* are positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. More complete reliability analyses of a single scale can be done using the \pfun{omega} function which finds $\omega_h$ and $\omega_t$ based upon a hierarchical factor analysis. Alternative functions \pfun{scoreItems} and \pfun{cluster.cor} will also score multiple scales and report more useful statistics. ``Standardized" alpha is calculated from the inter-item correlations and will differ from raw alpha. Functions for examining the reliability of a single scale or a set of scales include: \begin{description} \item [alpha] Internal consistency measures of reliability range from $\omega_h$ to $\alpha$ to $\omega_t$. The \pfun{alpha} function reports two estimates: Cronbach's coefficient $\alpha$ and Guttman's $\lambda_6$. Also reported are item - whole correlations, $\alpha$ if an item is omitted, and item means and standard deviations. \item [guttman] Eight alternative estimates of test reliability include the six discussed by \cite{guttman:45}, four discussed by ten Berge and Zergers (1978) ($\mu_0 \dots \mu_3$) as well as $\beta$ \citep[the worst split half,][]{revelle:iclust}, the glb (greatest lowest bound) discussed by Bentler and Woodward (1980), and $\omega_h$ and$\omega_t$ (\citep{mcdonald:tt,zinbarg:pm:05}. \item [omega] Calculate McDonald's omega estimates of general and total factor saturation. (\cite{rz:09} compare these coefficients with real and artificial data sets.) \item [cluster.cor] Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n correlation matrix, find the correlations of the composite clusters. \item [scoreItems] Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame of items scores for m items and n people, find the sum scores or average scores for each person and each scale. If the input is a square matrix, then it is assumed that correlations or covariances were used, and the raw scores are not available. In addition, report Cronbach's alpha, coefficient G6*, the average r, the scale intercorrelations, and the item by scale correlations (both raw and corrected for item overlap and scale reliability). Replace missing values with the item median or mean if desired. Will adjust scores for reverse scored items. \item [score.multiple.choice] Ability tests are typically multiple choice with one right answer. score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds total or average number right for each participant. Basic test statistics (alpha, average r, item means, item-whole correlations) are also reported. \item [splitHalf] Given a set of items, consider all (if n.items < 17) or 10,000 random splits of the item into two sets. The correlation between these two split halfs is then adjusted by the Spearman-Brown prophecy formula to show the range of split half reliablities. \end{description} \subsection{Reliability of a single scale} \label{sect:alpha} A conventional (but non-optimal) estimate of the internal consistency reliability of a test is coefficient $\alpha$ \citep{cronbach:51}. Alternative estimates are Guttman's $\lambda_6$, Revelle's $\beta$, McDonald's $\omega_h$ and $\omega_t$. Consider a simulated data set, representing 9 items with a hierarchical structure and the following correlation matrix. Then using the \pfun{alpha} function, the $\alpha$ and $\lambda_6$ estimates of reliability may be found for all 9 items, as well as the if one item is dropped at a time. \begin{scriptsize} <>= set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) @ \end{scriptsize} Some scales have items that need to be reversed before being scored. Rather than reversing the items in the raw data, it is more convenient to just specify which items need to be reversed scored. This may be done in \pfun{alpha} by specifying a \iemph{keys} vector of 1s and -1s. (This concept of keys vector is more useful when scoring multiple scale inventories, see below.) As an example, consider scoring the 7 attitude items in the attitude data set. Assume a conceptual mistake in that items 2 and 6 (complaints and critical) are to be scored (incorrectly) negatively. \begin{scriptsize} <>= alpha(attitude,keys=c("complaints","critical")) @ \end{scriptsize} Note how the reliability of the 7 item scales with an incorrectly reversed item is very poor, but if items 2 and 6 is dropped then the reliability is improved substantially. This suggests that items 2 and 6 were incorrectly scored. Doing the analysis again with the items positively scored produces much more favorable results. \begin{scriptsize} <>= alpha(attitude) @ \end{scriptsize} It is useful when considering items for a potential scale to examine the item distribution. This is done in \pfun{scoreItems} as well as in \pfun{alpha}. \begin{scriptsize} <>= items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures @ \end{scriptsize} \subsection{Using \pfun{omega} to find the reliability of a single scale} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{lavaan} package based upon the exploratory solution from \pfun{omega}. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} \url{https://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} \url{https://personality-project.org/revelle/publications/revelle.zinbarg.08.pdf} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Four options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), fm=``mle" uses the factanal function, and fm=``pc" does a principal components analysis (\pfun{principal}). For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{scoreItems} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). $\beta$, an alternative to $\omega$, is defined as the worst split half reliability. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ \begin{figure}[htbp] \begin{center} <>= om.9 <- omega(r9,title="9 simulated variables") @ \caption{A bifactor solution for 9 simulated variables with a hierarchical structure. } \label{fig:omega.9} \end{center} \end{figure} In the case of these simulated 9 variables, the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of 9 items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \begin{scriptsize} <>= om.9 @ \end{scriptsize} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{sem} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. \begin{scriptsize} <>= omegaSem(r9,n.obs=500,lavaan=TRUE) @ \end{scriptsize} \subsubsection{Other estimates of reliability} Other estimates of reliability are found by the \pfun{splitHalf} and \pfun{guttman} functions. These are described in more detail in \cite{rz:09} and in \cite{rc:reliability}. They include the 6 estimates from Guttman, four from TenBerge, and an estimate of the greatest lower bound. \begin{scriptsize} <>= splitHalf(r9) @ \end{scriptsize} \subsection{Reliability and correlations of multiple scales within an inventory} \label{sect:score} A typical research question in personality involves an inventory of multiple items purporting to measure multiple constructs. For example, the data set \pfun{bfi} includes 25 items thought to measure five dimensions of personality (Extraversion, Emotional Stability, Conscientiousness, Agreeableness, and Openness). The data may either be the raw data or a correlation matrix (\pfun{scoreItems}) or just a correlation matrix of the items ( \pfun{cluster.cor} and \pfun{cluster.loadings}). When finding reliabilities for multiple scales, item reliabilities can be estimated using the squared multiple correlation of an item with all other items, not just those that are keyed for a particular scale. This leads to an estimate of G6*. \subsubsection{Scoring from raw data} To score these five scales from the 25 items, use the \pfun{scoreItems} function and a list of items to be scored on each scale (a keys.list). Items may be listed by location (convenient but dangerous), or name (probably safer). Make a keys.list by by specifying the items for each scale, preceding items to be negatively keyed with a - sign: \begin{scriptsize} <>= #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list @ \end{scriptsize} \begin{tiny}In the past (prior to version 1.6.9, the keys.list was then converted a keys matrix using the helper function \pfun{make.keys}. This is no longer necessary. Logically, scales are merely the weighted composites of a set of items. The weights used are -1, 0, and 1. 0 implies do not use that item in the scale, 1 implies a positive weight (add the item to the total score), -1 a negative weight (subtract the item from the total score, i.e., reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the maximum + minimum possible value for that item. The minima and maxima can be estimated from all the items, or can be specified by the user. There are two different ways that scale scores tend to be reported. Social psychologists and educational psychologists tend to report the scale score as the \emph{average item score} while many personality psychologists tend to report the \emph{total item score}. The default option for \pfun{scoreItems} is to report item averages (which thus allows interpretation in the same metric as the items) but totals can be found as well. Personality researchers should be encouraged to report scores based upon item means and avoid using the total score although some reviewers are adamant about the following the tradition of total scores. The printed output includes coefficients $\alpha$ and G6*, the average correlation of the items within the scale (corrected for item ovelap and scale relliability), as well as the correlations between the scales (below the diagonal, the correlations above the diagonal are corrected for attenuation. As is the case for most of the \Rpkg{psych} functions, additional information is returned as part of the object. First, create keys matrix using the \pfun{make.keys} function. (The keys matrix could also be prepared externally using a spreadsheet and then copying it into \R{}). Although not normally necessary, show the keys to understand what is happening. There are two ways to make up the keys. You can specify the items by \emph{location} (the old way) or by \emph{name} (the newer and probably preferred way). To use the newer way you must specify the file on which you will use the keys. The example below shows how to construct keys either way. Note that the number of items to specify in the \pfun{make.keys} function is the total number of items in the inventory. This is done automatically in the new way of forming keys, but if using the older way, the number must be specified. That is, if scoring just 5 items from a 25 item inventory, \pfun{make.keys} should be told that there are 25 items. \pfun{make.keys} just changes a list of items on each scale to make up a scoring matrix. Because the \pfun{bfi} data set has 25 items as well as 3 demographic items, the number of variables is specified as 28. \end{tiny} Then, use this keys list to score the items. \begin{scriptsize} <>= scores <- scoreItems(keys.list,bfi) scores @ \end{scriptsize} To see the additional information (the raw correlations, the individual scores, etc.), they may be specified by name. Then, to visualize the correlations between the raw scores, use the \pfun{pairs.panels} function on the scores values of scores. (See figure~\ref{fig:scores} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() @ \end{scriptsize} \includegraphics{scores} \caption{A graphic analysis of the Big Five scales found by using the scoreItems function. The pair.wise plot allows us to see that some participants have reached the ceiling of the scale for these 5 items scales. Using the pch='.' option in pairs.panels is recommended when plotting many cases. The data points were ``jittered'' by setting jiggle=TRUE. Jiggling this way shows the density more clearly. To save space, the figure was done as a png. For a clearer figure, save as a pdf.} \label{fig:scores} \end{center} \end{figure} \subsubsection{Forming scales from a correlation matrix} There are some situations when the raw data are not available, but the correlation matrix between the items is available. In this case, it is not possible to find individual scores, but it is possible to find the reliability and intercorrelations of the scales. This may be done using the \pfun{cluster.cor} function or the \pfun{scoreItems} function. The use of a keys matrix is the same as in the raw data case. Consider the same \pfun{bfi} data set, but first find the correlations, and then use \pfun{scoreItems}. \begin{scriptsize} <>= r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) @ \end{scriptsize} To find the correlations of the items with each of the scales (the ``structure" matrix) or the correlations of the items controlling for the other scales (the ``pattern" matrix), use the \pfun{cluster.loadings} function. To do both at once (e.g., the correlations of the scales as well as the item by scale correlations), it is also possible to just use \pfun{scoreItems}. \subsection{Scoring Multiple Choice Items} Some items (typically associated with ability tests) are not themselves mini-scales ranging from low to high levels of expression of the item of interest, but are rather multiple choice where one response is the correct response. Two analyses are useful for this kind of item: examining the response patterns to all the alternatives (looking for good or bad distractors) and scoring the items as correct or incorrect. Both of these operations may be done using the \pfun{score.multiple.choice} function. Consider the 16 example items taken from an online ability test at the Personality Project: \url{https://www.sapa-project.org/}. This is part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) study discussed in \cite{rcw:methods,rwr:sapa}. \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results @ \end{scriptsize} Once the items have been scored as true or false (assigned scores of 1 or 0), they made then be scored into multiple scales using the normal \pfun{scoreItems} function. \subsection{Item analysis} Basic item analysis starts with describing the data (\pfun{describe}, finding the number of dimensions using factor analysis (\pfun{fa}) and cluster analysis \pfun{iclust} perhaps using the Very Simple Structure criterion (\pfun{vss}), or perhaps parallel analysis \pfun{fa.parallel}. Item whole correlations may then be found for scales scored on one dimension (\pfun{alpha} or many scales simultaneously (\pfun{scoreItems}). Scales can be modified by changing the keys matrix (i.e., dropping particular items, changing the scale on which an item is to be scored). This analysis can be done on the normal Pearson correlation matrix or by using polychoric correlations. Validities of the scales can be found using multiple correlation of the raw data or based upon correlation matrices using the \pfun{lmCor} function. However, more powerful item analysis tools are now available by using Item Response Theory approaches. Although the \pfun{response.frequencies} output from \pfun{score.multiple.choice} is useful to examine in terms of the probability of various alternatives being endorsed, it is even better to examine the pattern of these responses as a function of the underlying latent trait or just the total score. This may be done by using \pfun{irt.responses} (Figure~\ref{fig:irt.response}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) @ \end{scriptsize} \caption{ The pattern of responses to multiple choice ability items can show that some items have poor distractors. This may be done by using the the \pfun{irt.responses} function. A good distractor is one that is negatively related to ability.} \label{fig:irt.response} \end{center} \end{figure} \subsubsection{Exploring the item structure of scales} The Big Five scales found above can be understood in terms of the item - whole correlations, but it is also useful to think of the endorsement frequency of the items. The \pfun{item.lookup} function will sort items by their factor loading/item-whole correlation, and then resort those above a certain threshold in terms of the item means. Item content is shown by using the dictionary developed for those items. This allows one to see the structure of each scale in terms of its endorsement range. This is a simple way of thinking of items that is also possible to do using the various IRT approaches discussed later. \begin{tiny} <>= m <- colMeans(bfi[,1:25],na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) @ \end{tiny} \subsubsection{Empirical scale construction} There are some situations where one wants to identify those items that most relate to a particular criterion. Although this will capitalize on chance and the results should interpreted cautiously, it does give a feel for what is being measured. Consider the following example from the \pfun{bfi} data set. The items that best predicted gender, education, and age may be found using the \pfun{bestScales} function. This also shows the use of a dictionary that has the item content. \begin{scriptsize} <>= data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) @ \end{scriptsize} \section{Item Response Theory analysis} The use of Item Response Theory has become is said to be the ``new psychometrics". The emphasis is upon item properties, particularly those of item difficulty or location and item discrimination. These two parameters are easily found from classic techniques when using factor analyses of correlation matrices formed by \pfun{polychoric} or \pfun{tetrachoric} correlations. The \pfun{irt.fa} function does this and then graphically displays item discrimination and item location as well as item and test information (see Figure~\ref{fig:irt}). \subsection{Factor analysis and Item Response Theory} If the correlations of all of the items reflect one underlying latent variable, then factor analysis of the matrix of tetrachoric correlations should allow for the identification of the regression slopes ($\alpha$) of the items on the latent variable. These regressions are, of course just the factor loadings. Item difficulty, $\delta_j$ and item discrimination, $\alpha_j$ may be found from factor analysis of the tetrachoric correlations where $\lambda_j$ is just the factor loading on the first factor and $\tau_j$ is the normal threshold reported by the \pfun{tetrachoric} function. \begin{equation} \delta_j = \frac{D\tau}{\sqrt{1-\lambda_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\; \alpha_j = \frac{\lambda_j}{\sqrt{1-\lambda_j^2}} \label{eq:irt:diff} \end{equation} where D is a scaling factor used when converting to the parameterization of \iemph{logistic} model and is 1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of the normal model, factor loadings ($\lambda_j$) and item thresholds ($\tau$) are just \begin{equation*} \lambda_j = \frac{\alpha_j}{\sqrt{1+\alpha_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\;\tau_j = \frac{\delta_j}{\sqrt{1+\alpha_j^2}}. \end{equation*} Consider 9 dichotomous items representing one factor but differing in their levels of difficulty \begin{scriptsize} <>= set.seed(17) d9 <- sim.irt(9,1000,-2.0,2.0,mod="normal") #dichotomous items test <- irt.fa(d9$items,correct=0) test @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A graphic analysis of 9 dichotomous (simulated) items. The top panel shows the probability of item endorsement as the value of the latent trait increases. Items differ in their location (difficulty) and discrimination (slope). The middle panel shows the information in each item as a function of latent trait level. An item is most informative when the probability of endorsement is 50\%. The lower panel shows the total test information. These items form a test that is most informative (most accurate) at the middle range of the latent trait.} \label{fig:irt} \end{center} \end{figure} Similar analyses can be done for polytomous items such as those of the bfi extraversion scale: \begin{scriptsize} <>= data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt @ \end{scriptsize} The item information functions show that not all of items are equally good (Figure~\ref{fig:e.irt}): \begin{figure}[htbp] \begin{center} <>= e.info <- plot(e.irt,type="IIC") @ \caption{A graphic analysis of 5 extraversion items from the bfi. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print e.info to see the average information for each item.} \label{fig:e.irt} \end{center} \end{figure} These procedures can be generalized to more than one factor by specifying the number of factors in \pfun{irt.fa}. The plots can be limited to those items with discriminations greater than some value of cut. An invisible object is returned when plotting the output from \pfun{irt.fa} that includes the average information for each item that has loadings greater than cut. \begin{scriptsize} <>= print(e.info,sort=TRUE) @ \end{scriptsize} More extensive IRT packages include the \Rpkg{ltm} and \Rpkg{eRm} and should be used for serious Item Response Theory analysis. \subsection{Speeding up analyses} Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed up the process of analysis, the original correlation matrix is saved as part of the output of both \pfun{irt.fa} and \pfun{omega}. Subsequent analyses may be done by using this correlation matrix. This is done by doing the analysis not on the original data, but rather on the output of the previous analysis. In addition, recent releases of the \Rpkg{psych} take advantage of the \Rpkg{parallels} package and use multi-cores. The default for Macs and Unix machines is to use two cores, but this can be increased using the options command. The biggest step up in improvement is from 1 to 2 cores, but for large problems using polychoric correlations, the more cores available, the better. For example of taking the output from the 16 ability items from the \iemph{SAPA} project when scored for True/False using \pfun{score.multiple.choice} we can first do a simple IRT analysis of one factor (Figure~\ref{fig:iq.irt}) and then use that correlation matrix to do an \pfun{omega} analysis to show the sub-structure of the ability items . We can also show the total test information (merely the sum of the item information. This shows that even with just 16 items, the test is very reliable for most of the range of ability. The \pfun{fa.irt} function saves the correlation matrix and item statistics so that they can be redrawn with other options. \begin{scriptsize} \begin{Schunk} \begin{Sinput} detectCores() #how many are available options("mc.cores") #how many have been set to be used options("mc.cores"=4) #set to use 4 cores \end{Sinput} \end{Schunk} \end{scriptsize} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= iq.irt <- irt.fa(ability) @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print iq.irt to see the average information for each item. Partly because this is a power test (it is given on the web) and partly because the items have not been carefully chosen, the items are not very discriminating at the high end of the ability dimension. } \label{fig:iq.irt} \end{figure} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= plot(iq.irt,type='test') @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The total test information at all levels of difficulty may be shown by specifying the type='test' option in the plot function. } \label{fig:iq.irt.test} \end{figure} \begin{scriptsize} <>= iq.irt @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= om <- omega(iq.irt$rho,4) @ \caption{An Omega analysis of 16 ability items sampled from the SAPA project. The items represent a general factor as well as four lower level factors. The analysis is done using the tetrachoric correlations found in the previous \pfun{irt.fa} analysis. The four matrix items have some serious problems, which may be seen later when examine the item response functions.} \label{fig:iq.irt} \end{center} \end{figure} \subsection{IRT based scoring} The primary advantage of IRT analyses is examining the item properties (both difficulty and discrimination). With complete data, the scores based upon simple total scores and based upon IRT are practically identical (this may be seen in the examples for \pfun{scoreIrt}). However, when working with data such as those found in the Synthetic Aperture Personality Assessment (\iemph{SAPA}) project, it is advantageous to use IRT based scoring. \iemph{SAPA} data might have 2-3 items/person sampled from scales with 10-20 items. Simply finding the average of the three (classical test theory) fails to consider that the items might differ in either discrimination or in difficulty. The \pfun{scoreIrt} function applies basic IRT to this problem. Consider 1000 randomly generated subjects with scores on 9 true/false items differing in difficulty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest items for the 1/3 top subjects (this is a crude example of what tailored testing would do). Then score these subjects: \begin{scriptsize} <>= v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") @ \end{scriptsize} These results are seen in Figure~\ref{fig:score.irt.pdf}. \begin{figure}[htbp] \begin{center} \caption{IRT based scoring and total test scores for 1000 simulated subjects. True theta values are reported and then the IRT and total scoring systems. } <>= pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) @ \label{fig:score.irt.pdf} \end{center} \end{figure} \subsubsection{1 versus 2 parameter IRT scoring} In Item Response Theory, items can be assumed to be equally discriminating but to differ in their difficulty (the Rasch model) or to vary in their discriminability. Two functions (\pfun{scoreIrt.1pl} and \pfun{scoreIrt.2pl}) are meant to find multiple IRT based scales using the Rasch model or the 2 parameter model. Both allow for negatively keyed as well as positively keyed items. Consider the \pfun{bfi} data set with scoring keys key.list and items listed as an item.list. (This is the same as the key.list, but with the negative signs removed.) \begin{scriptsize} <>= keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function @ \end{scriptsize} We can compare these three ways of doing the analysis using the \pfun{cor2} function which correlates two separate data frames. All three models produce vey simillar results for the case of almost complete data. It is when we have massively missing completely at random data (MMCAR) that the results show the superiority of the irt scoring. \begin{scriptsize} <>= #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) @ \end{scriptsize} \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \ \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \subsection{Multilevel reliability} The \pfun{mlr} and \pfun{multilevelReliablity} functions follow the advice of \cite{shrout:12a} for estimating multievel reliablilty. A detailed discussion of this procedure is given in \cite{rw:paid:17} which is available at \url{https://personality-project.org/revelle/publications/rw.paid.17.final.pdf}. \section{Set Correlation and Multiple Regression from the correlation matrix} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{lmCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{lmCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{lmCor}. Two things to notice. \pfun{lmCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{lmCor}. <>= #compare with lmCor lmCor(gender + education + age ~ ACT + SATV + SATQ, data = C, n.obs=700) @ \end{scriptsize} Note that the \pfun{lmCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Simulation functions} It is particularly helpful, when trying to understand psychometric concepts, to be able to generate sample data sets that meet certain specifications. By knowing ``truth" it is possible to see how well various algorithms can capture it. Several of the \pfun{sim} functions create artificial data sets with known structures. A number of functions in the psych package will generate simulated data. These functions include \pfun{sim} for a factor simplex, and \pfun{sim.simplex} for a data simplex, \pfun{sim.circ} for a circumplex structure, \pfun{sim.congeneric} for a one factor factor congeneric model, \pfun{sim.dichot} to simulate dichotomous items, \pfun{sim.hierarchical} to create a hierarchical factor model, \pfun{sim.item} is a more general item simulation, \pfun{sim.minor} to simulate major and minor factors, \pfun{sim.omega} to test various examples of omega, \pfun{sim.parallel} to compare the efficiency of various ways of determining the number of factors, \pfun{sim.rasch} to create simulated rasch data, \pfun{sim.irt} to create general 1 to 4 parameter IRT data by calling \pfun{sim.npl} 1 to 4 parameter logistic IRT or \pfun{sim.npn} 1 to 4 paramater normal IRT, \pfun{sim.structural} a general simulation of structural models, and \pfun{sim.anova} for ANOVA and lm simulations, and \pfun{sim.vss}. Some of these functions are separately documented and are listed here for ease of the help function. See each function for more detailed help. \begin{description} \item [\pfun{sim}] The default version is to generate a four factor simplex structure over three occasions, although more general models are possible. \item [\pfun{sim.simple}] Create major and minor factors. The default is for 12 variables with 3 major factors and 6 minor factors. \item [\pfun{sim.structure}] To combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. \item [\pfun{sim.hierarchical}] To create data with a hierarchical (bifactor) structure. \item [\pfun{sim.congeneric}] To create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item [\pfun{sim.circ}] To create data with a circumplex structure. \item [\pfun{sim.item}]To create items that either have a simple structure or a circumplex structure. \item [\pfun{sim.dichot}] Create dichotomous item data with a simple or circumplex structure. \item[\pfun{sim.rasch}] Simulate a 1 parameter logistic (Rasch) model. \item[\pfun{sim.irt}] Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also do 3 and 4 PL and PN models. \item[\pfun{sim.multilevel}] Simulate data with different within group and between group correlational structures. \end{description} Some of these functions are described in more detail in the companion vignette: \href{"psych_for_sem.pdf"}{psych for sem}. The default values for \pfun{sim.structure} is to generate a 4 factor, 12 variable data set with a simplex structure between the factors. Two data structures that are particular challenges to exploratory factor analysis are the simplex structure and the presence of minor factors. Simplex structures \pfun{sim.simplex} will typically occur in developmental or learning contexts and have a correlation structure of r between adjacent variables and $r^n$ for variables n apart. Although just one latent variable (r) needs to be estimated, the structure will have nvar-1 factors. Many simulations of factor structures assume that except for the major factors, all residuals are normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the major factors. \pfun{sim.minor} generates such structures. The structures generated can be thought of as having a a major factor structure with some small correlated residuals. Although coefficient $\omega_h$ is a very useful indicator of the general factor saturation of a unifactorial test (one with perhaps several sub factors), it has problems with the case of multiple, independent factors. In this situation, one of the factors is labelled as ``general'' and the omega estimate is too large. This situation may be explored using the \pfun{sim.omega} function. The four irt simulations, \pfun{sim.rasch}, \pfun{sim.irt}, \pfun{sim.npl} and \pfun{sim.npn}, simulate dichotomous items following the Item Response model. \pfun{sim.irt} just calls either \pfun{sim.npl} (for logistic models) or \pfun{sim.npn} (for normal models) depending upon the specification of the model. The logistic model is \begin{equation} P(x | \theta_i, \delta_j, \gamma_j, \zeta_j )= \gamma_j + \frac{\zeta_j - \gamma_j}{1+e^{\alpha_j(\delta_j - \theta_i}}. \end{equation} where $\gamma$ is the lower asymptote or guessing parameter, $\zeta$ is the upper asymptote (normally 1), $\alpha_j$ is item discrimination and $\delta_j$ is item difficulty. For the 1 Paramater Logistic (Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify. (Graphics of these may be seen in the demonstrations for the logistic function.) The normal model (\pfun{irt.npn} calculates the probability using \fun{pnorm} instead of the logistic function used in \pfun{irt.npl}, but the meaning of the parameters are otherwise the same. With the a = $\alpha$ parameter = 1.702 in the logiistic model the two models are practically identical. \section{Graphical Displays} Many of the functions in the \Rpkg{psych} package include graphic output and examples have been shown in the previous figures. After running \pfun{fa}, \pfun{iclust}, \pfun{omega}, \pfun{irt.fa}, plotting the resulting object is done by the \pfun{plot.psych} function as well as specific diagram functions. e.g., (but not shown) \begin{scriptsize} \begin{Schunk} \begin{Sinput} f3 <- fa(Thurstone,3) plot(f3) fa.diagram(f3) c <- iclust(Thurstone) plot(c) #a pretty boring plot iclust.diagram(c) #a better diagram c3 <- iclust(Thurstone,3) plot(c3) #a more interesting plot data(bfi) e.irt <- irt.fa(bfi[11:15]) plot(e.irt) ot <- omega(Thurstone) plot(ot) omega.diagram(ot) \end{Sinput} \end{Schunk} \end{scriptsize} The ability to show path diagrams to represent factor analytic and structural models is discussed in somewhat more detail in the accompanying vignette, \href{"psych_for_sem.pdf"}{psych for sem}. Basic routines to draw path diagrams are included in the \pfun{dia.rect} and accompanying functions. These are used by the \pfun{fa.diagram}, \pfun{structure.diagram} and \pfun{iclust.diagram} functions. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demonstration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim,e.size=.09) ur <- dia.ellipse(7,9,"upper right",xlim=xlim,ylim=ylim,e.size=.1) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim,e.size=.1) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim,e.size=.08) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim,e.size=.08) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.curved.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl$top,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) @ \end{scriptsize} \caption{The basic graphic capabilities of the dia functions are shown in this figure.} \label{fig:dia} \end{center} \end{figure} \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{lmCor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item[epiR] The EPI was given twice to 474 participants. This is a useful data set for exploring test-retest reliability, \item[sai, msqR] 20 anxiety items and 75 mood items were given at least twice to 3032 participants. These are useful for understanding reliability structures. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:94}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="https://personality-project.org/r"}{\url{https://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"https://personality-project.org/r/src/contrib/}{ \url{https://personality-project.org/r/src/contrib/} and wander around. For a Mac and PC this version can be installed directly using the ``other repository" option in the package installer. \begin{Schunk} \begin{Sinput} > install.packages("psych", repos="https://personality-project.org/r", type="source") \end{Sinput} \end{Schunk} Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{https://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version > "2.3.3", package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{https://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{https://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock {\em Multilevel Modeling in R (2.3) A Brief Introduction to {R}, the multilevel package and the nlme package}. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2013). \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to {Bartlett's} chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, 76(4):537--549. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Kaiser and Caffrey}{1965}]{kaiser:65} Kaiser, H.~F. and Caffrey, J. (1965). \newblock Alpha factor analysis. \newblock {\em Psychometrika}, 30(1):1--14. \bibitem[\protect\astroncite{Loehlin and Beaujean}{2017}]{loehlin:17} Loehlin, J.~C. and Beaujean, A. (2017). \newblock {\em Latent variable models: an introduction to factor, path, and structural equation analysis}. \newblock Routledge, Mahwah, N.J., 5th edition. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1994}]{nunnally:bernstein:94} Nunnally, J.~C. and Bernstein, I.~H. (1994). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://cran.r-project.org/web/packages=psych. \newblock R package version 2.3.5. \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Condon}{2018}]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Individual differences in cognition: New methods for examining the personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer, New York, N.Y. \bibitem[\protect\astroncite{Revelle and Wilt}{2017}]{rw:paid:17} Revelle, W. and Wilt, J.~A. (2017). \newblock Analyzing dynamic data: a tutorial. \newblock {\em Personality and Individual Differences}, (in press). \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Lane}{2012}]{shrout:12a} Shrout, P. and Lane, S.~P. (2012). \newblock Psychometrics. \newblock In {\em Handbook of research methods for studying daily life}. Guilford Press. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of {Occam's} razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}: Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psychTools/vignettes/omega.Rnw0000644000176200001440000015450614443423650016231 0ustar liggesusers% \VignetteIndexEntry{How to find Omega} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \usepackage{fancyvrb} %this allows fancy boxes \fvset{fontfamily=courier} \DefineVerbatimEnvironment{Routput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Binput}{Verbatim} {fontseries=b, fontsize=\scriptsize,frame=single, label=\fbox{lavaan model syntax}, framesep=2mm} %\DefineShortVerb{\!} %%% generates error! %change the definition of Sinput from Sweave \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Rinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Link}{Verbatim} {fontseries=b, fontsize=\small, formatcom=\color{darkgreen}, xleftmargin=1.0cm} \DefineVerbatimEnvironment{Toutput}{Verbatim} {fontseries=b,fontsize=\tiny, xleftmargin=0.1cm} \DefineVerbatimEnvironment{rinput}{Verbatim} {fontseries=b, fontsize=\tiny, frame=single, label=\fbox{R code}, framesep=1mm} \newcommand{\citeti}[1]{\begin{tiny}\citep{#1}\end{tiny}} \newcommand{\light}[1]{\textcolor{gray}{#1}} \newcommand{\vect}[1]{\boldsymbol{#1}} \let\vec\vect \makeindex % used for the subject index \title{Using \R{} and the \Rpkg{psych} package to find $\omega$} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \maketitle \tableofcontents \newpage \section{Overview of this and related documents} To do basic and advanced personality and psychological research using \R{} is not as complicated as some think. This is one of a set of ``How To'' to do various things using \R{} \citep{R}, particularly using the \Rpkg{psych} \citep{psych} package. The current list of How To's includes: \begin{enumerate} \item An \href{http://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{http://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{http://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{http://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$ (this document).. \item Using \R{} and the \Rpkg{psych} for \href{http://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{http://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} \end{enumerate} \subsection{$omega_h$ as an estimate of the general factor saturation of a test} Cronbach's coefficient $alpha$ \citep{cronbach:51} is pehaps the most used (and most misused) estimate of the internal consistency of a test. $\alpha$ may be found in the \Rpkg{psych} package using the \pfun{alpha} function. However, two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt}. These may be found in \R{} in one step using one of two functions in the \Rpkg{psych} package: the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} package solution based upon the exploratory solution from \pfun{omega}. This guide explains how to do it for the non or novice \R{} user. These set of instructions are adapted from three different sets of notes that the interested reader might find helpful: A set of slides developed for a \href{http://personality-project.org/r/aps/aps-short.pdf}{ two hour short course} in \R{} given for several years to the Association of Psychological Science as well as a \href{http://personality-project.org/r/}{short guide }to \R{} for psychologists and the \href{http://cran.r-project.org/web/packages/psych/vignettes/overview.pdf}{vignette} for the \Rpkg{psych} package. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} and \cite{rz:09} compare compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} as well as \cite{rc:reliability,rc:pa:19}. By following these simple guides, you soon will be able to do such things as find $\omega_{h}$ by issuing just three lines of code: \begin{Rinput} library(psych) my.data <- read.file() omega(my.data) \end{Rinput} The resulting output will be both graphical and textual. This guide helps the naive \R{} user to issue those three lines. Be careful, for once you start using \R, you will want to do more. One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. This is done using the \pfun{omega} function in the \Rpkg{psych} package in \R{}. This requires installing and using both \R{} as well as the \Rpkg{psych} package \citep{psych}. \subsubsection{But what about $\alpha$?} Several statistics were developed in the 1930s-1950s as short cut estimates of reliability \citep{rc:pa:19}. The approaches that consider just one test are collectively known as internal consistency procedures but also borrow from the concepts of domain sampling. Some of these techniques, e.g., \cite{cronbach:51,guttman:45,kuder:37} were developed before advances in computational speed made it trivial to find the factor structure of tests, and were based upon test and item variances. These procedures ($\alpha$, $\lambda_3$, KR20) were essentially short cuts for estimating reliability. To just find Guttman's $\lambda_3$ \citep{guttman:45} which is also known as \emph{coefficient} $\alpha$ \citep{cronbach:51}, you can use the \pfun{alpha} function or the \pfun{scoreItems} function. See the tutorial on how to use the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. But, with modern computers, we can find \emph{model based} estimates that consider the factor structure of the items. $\omega_h$ and $\omega_t$ are two such model based estimates and are easy to find in \R{}. ~\ <>= library(psych) #make the psych package active library(psychTools) #make psychTools active om <- omega(Thurstone) #do the analysis om #show it @ <>= png('Thurstone.png') omega.diagram(om) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{Thurstone.png} \caption{$\omega_h$ is a reliability estimate of the general factor of a set of variables. It is based upon the correlation of lower order factors. It may be found in \R{} by using the \pfun{omega} function which is part of the \Rpkg{psych} package. The figure shows a solution for the \pfun{Thurstone} 9 variable data set. Compare this to the solution using the \pfun{omegaDirect} function from \cite{waller:17} (Figure~\ref{fig:direct})} \label{fig:omega.9} \end{center} \end{figure} \newpage To use \R{} obviously requires installing \R{} on your computer. This is very easy to do (see section~\ref{install}) and needs to be done once. (The following sections are elaborated in the \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{``getting startedHow To" } . If you need more help in installing \R{} see the longer version.) The power of \R{} is in the supplemental \emph{packages}. There are at least 16,000 packages that have been contributed to the \R{} project. To do any of the analyses discussed in these ``How To's", you will need to install the package \Rpkg{psych} \citep{psych}. To do factor analyses or principal component analyses you will also need the \Rpkg{GPArotation} \citep{GPA} package. With these two packages, you will be be able to find $\omega_{h}$ using Exploratory Factor Analysis. If you want to find to estimate $\omega_h$ using Confirmatory Factor Analysis, you will also need to add the \Rpkg{lavaan} \citep{lavaan} package. To use \Rpkg{psych} to create simulated data sets, you also need the \Rpkg{mnormt} \citep{mnormt} package. For a more complete installation of a number of psychometric packages, you can install and activate a package (\Rpkg{ctv}) that installs a large set of psychometrically relevant packages. As is true for \R{}, you will need to install packages just once. \subsection{Install R for the first time} \begin{enumerate} \item Download from R Cran (\url{http://cran.r-project.org/}) \item Install R (current version is 4.0.2) \item Start \R{}. Note that the \R{} prompt $>$ starts off every line. This is \R{}'s way of indicating that it wants input. In addition, note that almost all commands start and finish with parentheses. \item Add useful packages (just need to do this once) (see section~\ref{installing}) \begin{enumerate} \begin{Rinput} install.packages("psych",dependencies=TRUE) #the minimum requirement or install.packages(c("psych","GPArotation"),dependencies=TRUE) #required for factor analysis \end{Rinput} \item or if you want to do CFA \begin{Rinput} install.packages(c("psych","lavaan"), dependencies=TRUE) \end{Rinput} \item or if you want to install the psychometric task views \begin{Rinput} install.packages("ctv") #this downloads the task view package library(ctv) #this activates the ctv package install.views("Psychometrics") #among others \end{Rinput} \end{enumerate} \item Take a 5 minute break while the packages are loaded. \item Activate the package(s) you want to use (e.g., \Rpkg{psych}) \begin{Rinput} library(psych) #Only need to make psych active once a session \end{Rinput} \Rpkg{psych} will automatically activate the other packages it needs, as long as they are installed. Note that \Rpkg{psych} is updated roughly quarterly, the current version is 2.0.8 Patches and improvements to \Rpkg{psych} (the bleeding edge version) are available from the repository at the personality-project web server and may be installed from there: ~\ \begin{Rinput} install.packages("psych", repos = "https://personality-project.org/r", type="source") \end{Rinput} %\item library(sem) \#will be used for a few examples \item Use \R{} \end{enumerate} \subsubsection{Install R } \label{install} Go to the \href{http://cran.r-project.org}{Comprehensive R Archive Network (CRAN)} at \url{http://cran.r-project.org}: %(Figure~\ref{fig:cran}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/rcran3.png} %\includegraphics[width=20cm]{../../../images/CRAN.png} %\caption{The basic \href{http://cran.r-project.org}{CRAN} window allows you choose your operating system. Comprehensive R Archive Network (CRAN) is found at \href{http://cran.r-project.org}{http://cran.r-project.org}:} %\label{fig:cran} %\end{center} %\end{figure} Choose your operating system and then download and install the appropriate version %For a PC: %(Figure~\ref{fig:pc}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/cranpc1.png} %\includegraphics[width=19cm]{../../../images/CRAN_pc.pdf} % %\caption{On a PC you want to choose the base system} %\label{fig:pc} %\end{center} %\end{figure} Download and install the appropriate version -- Mac, PC or Unix/Linux %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/cran-pc15.png} %\includegraphics[width=19cm]{../../../images/CRAN_pc_16.png} %\caption{Download the Windows version} %\label{default} %\end{center} %\end{figure} %Starting R on a PC. Once you have installed \R{} you probably, and particularly if you have a PC, will want to download and install the \href{https://www.rstudio.com} {R Studio} program. It is a very nice interface for PCs and Macs that combines four windows into one screen. %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio01.png} %\caption{Using R Studio on a PC. } %\label{fig:pcstartup} %\end{center} %\end{figure} % %When using a PC, RStudio is very helpful. (Many like it for Macs as well). % % %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio01.png} %\caption{Using R Studio on a PC. } %\label{fig:pcRstudio} %\end{center} %\end{figure} % %\clearpage % %%For a Mac: download and install the appropriate version -- Mac (Figure~\ref{fig:mac}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS/cran-mac.png} %\includegraphics[width=19cm]{../../../images/cran_mac.png} %\caption{For the Mac, you want to choose the latest version which includes the GUI as well as the 32 and 64 bit versions.} %\label{fig:mac} %\end{center} %\end{figure} % %\newpage %Start up R and get ready to play (Mac version). %\begin{scriptsize} %\begin{Schunk} %\begin{Soutput} %R version 3.3.0 (2016-05-03) -- "Supposedly Educational" %Copyright (C) 2016 The R Foundation for Statistical Computing %Platform: x86_64-apple-darwin13.4.0 (64-bit) % %R is free software and comes with ABSOLUTELY NO WARRANTY. %You are welcome to redistribute it under certain conditions. %Type 'license()' or 'licence()' for distribution details. % % Natural language support but running in an English locale % %R is a collaborative project with many contributors. %Type 'contributors()' for more information and %'citation()' on how to cite R or R packages in publications. % %Type 'demo()' for some demos, 'help()' for on-line help, or %'help.start()' for an HTML browser interface to help. %Type 'q()' to quit R. % %[R.app GUI 1.68 (7202) x86_64-apple-darwin13.4.0] % %[Workspace restored from /Users/revelle/.RData] %[History restored from /Users/revelle/.Rapp.history] % %> %\end{Soutput} %\end{Schunk} %\end{scriptsize} \subsubsection{Install relevant packages} \label{installing} Once \R{} is installed on your machine, you still need to install a few relevant ``packages''. Packages are what make \R{} so powerful, for they are special sets of functions that are designed for one particular application. In the case of the \Rpkg{psych} package, this is an application for doing the kind of basic data analysis and psychometric analysis that psychologists and many others find particularly useful. \Rpkg{psych} may be thought of a ``Swiss Army Knife" for psychological statistics. While not the best tool for a particular job, it is a useful tool for many jobs. You may either install the minimum set of packages necessary to do the analysis using an Exploratory Factor Analysis (EFA) approach (recommended) or a few more packages to do both an EFA and a CFA approach. It is also possible to add many psychometrically relevant packages all at once by using the ``task views'' approach. A particularly powerful package is the \Rpkg{lavaan} \citep{lavaan} package for doing structural equation modeling. Another useful one is the \Rpkg{sem} pacakge \citep{sem}. \paragraph{Install the minimum set} This may be done by typing into the console or using menu options (e.g., the Package Installer underneath the Packages and Data menu). \begin{Rinput} install.packages(c("psych", "psychTools"), dependencies = TRUE) \end{Rinput} % %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio02.PNG} %\caption{Installing packages using R studio on a PC. Use the install menu option.} %\label{fig:installPC} %\end{center} %\end{figure} \paragraph{Install a few more packages } If you want some more functionality for some of the more advanced statistical procedures (e.g., \pfun{omegaSem}) you will need to install a few more packages (e.g., \Rpkg{lavaan}. \begin{Rinput} install.packages(c("psych","GPArotation","lavaan"),dependencies=TRUE) \end{Rinput} \paragraph{Install a ``task view" to get lots of packages} If you know that there are a number of packages that you want to use, it is possible they are listed as a ``task view". For instance, about 50 packages will be installed at once if you install the ``psychometrics'' task view. You can Install all the psychometric packages from the ``psychometrics'' task view by first installing a package (``ctv") that in turn installs many different task views. To see the list of possible task views, go to \url{https://cran.r-project.org/web/views/}. ~\ \begin{Rinput} install.packages("ctv") } #this downloads the task view package library(ctv) #this activates the ctv package install.views("Psychometrics") #one of the many Taskviews \end{Rinput} Take a 5 minute break because you will be installing about 50 packages. \paragraph{For the more adventurous users} The \Rpkg{psych} pacakge is under (sporadic) development with a new release issued to CRAN roughly every 4-6 months. The experimental, development version (prerelease) is always available at the Personality-Project web site and may be installed for Macs or PCs directly: ~\ \begin{Rinput} install.packages("psych", repos= "https://personality-project.org/r", type ="source") \end{Rinput} This development version will have fixed any bugs reported since the last release and will have various new features that are being tested before release to CRAN. After installation, it is necessary to restart \R{} to make the new version active. \paragraph{Make the \Rpkg{psych} package active.} You are almost ready. But first, to use most of the following examples you need to make the \Rpkg{psych} and \Rpkg{psychTools} packages active. You only need to do this once per session. ~\ \begin{Rinput} library(psych) #to do the analyses described here library(psychTools) #for some useful additions such as read.file \end{Rinput} %(If you want to automate this last step, you can create a special command to be run every time you start \R{}. % %\begin{Rinput} %.First <- function() {library(psych)} %\end{Rinput} %Do this when you first start \R. Then quit with the save option. Then restart \R. You will now automatically have loaded the \Rpkg{psych} package every time you start \R{}.) % % \section{Reading in the data for analysis} \subsection{Find a file and read from it} There are of course many ways to enter data into \R. Reading from a local file using \pfun{read.file} is perhaps the most preferred. This will read in most of the standard file types (.csv, .sav, .txt, etc). \pfun{read.file} combines the \fun{file.choose} and \fun{read.table} functions: ~\ \begin{Rinput} my.data <- read.file() #note the open and closing parentheses \end{Rinput} \pfun{read.file} opens a search window on your system just like any open file command does. \pfun{read.file} assumes that the first row of your table has labels for each column. If this is not true, specify names=FALSE, e.g., ~\ \begin{Rinput} my.data <- read.file(names = FALSE) \end{Rinput} If you want to read a remote file, specify the file name and then \pfun{read.file} ~\ \begin{Rinput} datafilename <- "http://personality-project.org/r/datasets/finkel.sav" new.data <- read.file(datafilename) #the data has labels \end{Rinput} \subsection{Or: copy the data from another program using the copy and paste commands of your operating system} However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using one of the \pfun{read.clipboard} set of functions . \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command ~\ \begin{Rinput} my.data <- read.clipboard() \end{Rinput} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. ~\ \begin{Rinput} my.data <- read.clipboard(sep="\t") #define the tab option, or my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Rinput} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). ~\ \begin{Rinput} my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Rinput} \subsection{Or: import from an SPSS or SAS file} To read data from an SPSS, SAS, or Systat file, you can probably just use the \pfun{read.file} function. \pfun{read.file} examines the suffix of the data file and if it is .sav (from SPSS) or .xpt (from SAS) will attempt to read given various default options. However, if that does not work, use the \Rpkg{foreign} package. This should come with Base \R{} but still need to be loaded using the \Rfunction{library} command. \fun{read.spss} reads a file stored by the SPSS save or export commands. \begin{verbatim}read.spss(file, use.value.labels = TRUE, to.data.frame = FALSE, max.value.labels = Inf, trim.factor.names = FALSE, trim_values = TRUE, reencode = NA, use.missings = to.data.frame) \end{verbatim} The \Rfunction{read.spss} function has many parameters that need to be set. In the example, I have used the parameters that I think are most useful. \begin{description} \item [file] Character string: the name of the file or URL to read. \item [use.value.labels] Convert variables with value labels into R factors with those levels? \item [to.data.frame] return a data frame? Defaults to FALSE, probably should be TRUE in most cases. \item [max.value.labels] Only variables with value labels and at most this many unique values will be converted to factors if use.value.labels $= TRUE$. \item [trim.factor.names] Logical: trim trailing spaces from factor levels? \item [trim\_values] logical: should values and value labels have trailing spaces ignored when matching for use.value.labels $= TRUE $? \item [use.missings] logical: should information on user-defined missing values be used to set the corresponding values to NA? \end{description} The following is an example of reading from a remote SPSS file and then describing the data set to make sure that it looks ok (with thanks to Eli Finkel). ~\ \begin{Rinput} datafilename <- "http://personality-project.org/r/datasets/finkel.sav" eli <-read.file(datafilename) describe(eli,skew=FALSE) \end{Rinput} \begin{Routput} var n mean sd median trimmed mad min max range se USER* 1 69 35.00 20.06 35 35.00 25.20 1 69 68 2.42 HAPPY 2 69 5.71 1.04 6 5.82 0.00 2 7 5 0.13 SOULMATE 3 69 5.09 1.80 5 5.32 1.48 1 7 6 0.22 ENJOYDEX 4 68 6.47 1.01 7 6.70 0.00 2 7 5 0.12 UPSET 5 69 0.41 0.49 0 0.39 0.00 0 1 1 0.06 \end{Routput} \section{Some simple descriptive statistics before you start} Although you probably want to jump right in and find $\omega$, you should first make sure that your data are reasonable. Use the \pfun{describe} function to get some basic descriptive statistics. This next example takes advantage of a built in data set. ~\ \begin{Sinput} my.data <- sat.act #built in example -- replace with your data describe(my.data) \end{Sinput} \begin{Soutput} var n mean sd median trimmed mad min max range skew kurtosis se gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 -0.61 -1.62 0.02 education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.07 0.05 age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36 ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 -0.66 0.53 0.18 SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 -0.64 0.33 4.27 SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 -0.59 -0.02 4.41 \end{Soutput} There are, of course, all kinds of things you could do with your data at this point, but read about them in the \href{http://cran.r-project.org/web/packages/psych/vignettes/intro.pdf}{introductory vignette} and \href{http://cran.r-project.org/web/packages/psychTools/vignettes/overview.pdf}{more advanced vignette} for the \Rpkg{psych} package, \section{Using the \pfun{omega} function to find $\omega$} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt,rz:09}. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} based upon the exploratory solution from \pfun{omega}. \subsection{Background on the $\omega$ statistics} \cite{mcdonald:tt} has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \href{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf}{\cite{zinbarg:pm:05}} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Three options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), and fm=``mle" provides a maximum likelihood solution. For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{score.items} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ It can be shown In the case of simulated variables, that the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \subsection{Yet another alternative: Coefficient $\beta$} $\beta$, an alternative to $\omega_h$, is defined as the worst split half reliability \citep{revelle:iclust}. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. For a discussion of how use \pfun{iclust} see the \href{http://cran.r-project.org/web/packages/psychTools/vignettes/factor.pdf}{factor analysis vignette}. \subsection{Using the \pfun{omega} function} This is \R{}. Just call it. For the next example, we find $\omega$ for a data set from Thurstone. To find it for your data, replace Thurstone with my.data. ~\ <>== omega(Thurstone) @ %\begin{Routput} % %Omega %Call: omega(m = Thurstone) %Alpha: 0.89 %G.6: 0.91 %Omega Hierarchical: 0.74 %Omega H asymptotic: 0.79 %Omega Total 0.93 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %Sentences 0.71 0.57 0.82 0.18 0.61 %Vocabulary 0.73 0.55 0.84 0.16 0.63 %Sent.Completion 0.68 0.52 0.73 0.27 0.63 %First.Letters 0.65 0.56 0.73 0.27 0.57 %4.Letter.Words 0.62 0.49 0.63 0.37 0.61 %Suffixes 0.56 0.41 0.50 0.50 0.63 %Letter.Series 0.59 0.61 0.72 0.28 0.48 %Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66 %Letter.Group 0.54 0.46 0.53 0.47 0.56 % %With eigenvalues of: % g F1* F2* F3* %3.58 0.96 0.74 0.71 % %general/max 3.71 max/min = 1.35 %mean percent general = 0.6 with sd = 0.05 and cv of 0.09 % %The degrees of freedom are 12 and the fit is 0.01 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0.01 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 1.48 % %The root mean square of the residuals is 0.1 %The df corrected root mean square of the residuals is 0.16 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.86 0.73 0.72 0.75 %Multiple R square of scores with factors 0.74 0.54 0.52 0.56 %Minimum correlation of factor score estimates 0.49 0.08 0.03 0.11 %> % \end{Routput} \subsection{Find three measures of reliability: $\omega_h$, $\alpha$, and $\omega_t$} In a review of various measures of reliability, \cite{rc:pa:19} suggest that one should routinely report 3 estimates of internal consistency ($\omega_h$, $\alpha$, and $\omega_t$). As an example, they use 10 items to measure anxiety taken from the state anxiety data set (\pfun{sai} in the \Rpkg{psychTools} package. First examine the descriptive statistics and then find and summarize the omega for these data. By inspection of the correlation matrix, it seems as if there are two group factors (tension and calmness) as well as an overall general factor of anxiety. We use a two factor solution to better represent the results (Figure~\ref{fig.anxiety}). ~\ <>= anxiety <- sai[c("anxious", "jittery", "nervous" ,"tense", "upset","at.ease" , "calm" , "confident", "content","relaxed")] describe(anxiety) lowerCor(anxiety) om <- omega(anxiety,2) #specify a two factor solution summary(om) #summarize the output @ <>== png('anxiety.png') omega.diagram(om, main="Omega analysis of two factors of anxiety") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{anxiety} \caption{An \pfun{omega} solution for 10 anxiety items with two group factors. See \cite{rc:pa:19} for more measures of reliability for this data set.} \label{fig.anxiety} \end{center} \end{figure} \subsection{Estimating $\omega_h$ using a direct Schmid-Leiman transformation} The \pfun{omegaDirect} function uses Niels Waller's algorithm for finding a g factor directly without extracting a higher order model \citep{waller:17}. This has the advantage that it will work cleanly for data with just 2 group factors. Unfortunately, it will produce non-zero estimates for omega even if there is no general factor. ~\ <>= om <- omegaDirect(Thurstone) om @ <>== png('direct.png') omega.diagram(om, main="Direct Schmid Leihman solution") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{direct} \caption{The Direct Schmid Leiman solution is taken from an algorithm by \cite{waller:17}. Compare this solution to Figure~\ref{fig:omega.9}. } \label{fig:direct} \end{center} \end{figure} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{lavaan} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. We use a classic data set from Holzinger and Swineford, some of the tests of which are included in the \Rpkg{lavaan} package. This analysis allows us to examine the hierarchical structure of these ability tests. The data are taken from the \pfun{holzinger.swineford} data set in the \Rpkg{psychTools} package. ~\ <>= om <- omega(holzinger.swineford[8:31],4) #the exploratory solution omegaSem(holzinger.swineford[8:31],4) #the confirmatory solution @ %\begin{Routput} %Call: omegaSem(m = r9, n.obs = 500) %Omega %Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, % digits = digits, title = title, sl = sl, labels = labels, % plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option) %Alpha: 0.75 %G.6: 0.74 %Omega Hierarchical: 0.66 %Omega H asymptotic: 0.84 %Omega Total 0.78 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %V1 0.70 0.53 0.47 0.93 %V2 0.70 0.52 0.48 0.94 %V3 0.54 0.32 0.68 0.91 %V4 0.53 0.46 0.50 0.50 0.57 %V5 0.44 0.44 0.39 0.61 0.50 %V6 0.40 0.32 0.26 0.74 0.59 %V7 0.31 0.31 0.21 0.79 0.48 %V8 0.34 0.44 0.30 0.70 0.37 %V9 0.24 0.36 0.19 0.81 0.32 % %With eigenvalues of: % g F1* F2* F3* %2.18 0.52 0.08 0.44 % %general/max 4.21 max/min = 6.17 %mean percent general = 0.62 with sd = 0.24 and cv of 0.39 % %The degrees of freedom are 12 and the fit is 0.03 %The number of observations was 500 with Chi Square = 14.23 with prob < 0.29 %The root mean square of the residuals is 0.01 %The df corrected root mean square of the residuals is 0.03 %RMSEA index = 0.02 and the 90 % confidence intervals are NA 0.052 %BIC = -60.35 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 0.21 %The number of observations was 500 with Chi Square = 103.64 with prob < 6.4e-11 %The root mean square of the residuals is 0.05 %The df corrected root mean square of the residuals is 0.08 % %RMSEA index = 0.076 and the 90 % confidence intervals are 0.06 0.091 %BIC = -64.15 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.86 0.63 0.25 0.59 %Multiple R square of scores with factors 0.74 0.39 0.06 0.35 %Minimum correlation of factor score estimates 0.48 -0.21 -0.88 -0.30 % % Omega Hierarchical from a confirmatory model using sem = 0.68 % Omega Total from a confirmatory model using sem = 0.78 %With loadings of % g F1* F2* F3* h2 u2 %V1 0.73 0.54 0.46 %V2 0.68 0.29 0.54 0.46 %V3 0.51 0.22 0.31 0.69 %V4 0.54 0.47 0.51 0.49 %V5 0.45 0.42 0.38 0.62 %V6 0.39 0.31 0.25 0.75 %V7 0.34 0.34 0.23 0.77 %V8 0.36 0.39 0.28 0.72 %V9 0.26 0.33 0.18 0.82 % %With eigenvalues of: % g F1* F2* F3* %2.21 0.49 0.14 0.38 %\end{Routput} <>= @ \section{Simulating a hierarchical/higher order structure} There are several simulation functions in the \Rpkg{psych} package for creating structures with a general factor. One, \pfun{sim.hierarchical} creates lower level factors which are all correlated with a general factor. The default simulation has the parameters discussed by \cite{jensen:weng}. Another way to simulate a hierarchical structure is to simulate a bifactor model directly using the \pfun{sim.structure} function. The \cite{jensen:weng} model: <>= jen <- sim.hierarchical() #use the default values om <- omega(jen) om @ \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('jensen.png' ) omega.diagram(om) dev.off() @ \end{scriptsize} \includegraphics{jensen} \caption{An example of a hierarchical model from Jensen.} \label{fig:outlier} \end{center} \end{figure} %\begin{Routput} %jen <- sim.hierarchical() #use the default values %> om <- omega(jen) %> om %Omega %Call: omega(m = jen) %Alpha: 0.76 %G.6: 0.76 %Omega Hierarchical: 0.69 %Omega H asymptotic: 0.86 %Omega Total 0.8 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %V1 0.72 0.35 0.64 0.36 0.81 %V2 0.63 0.31 0.49 0.51 0.81 %V3 0.54 0.26 0.36 0.64 0.81 %V4 0.56 0.42 0.49 0.51 0.64 %V5 0.48 0.36 0.36 0.64 0.64 %V6 0.40 0.30 0.25 0.75 0.64 %V7 0.42 0.43 0.36 0.64 0.49 %V8 0.35 0.36 0.25 0.75 0.49 %V9 0.28 0.29 0.16 0.84 0.49 % %With eigenvalues of: % g F1* F2* F3* %2.29 0.28 0.40 0.39 % %general/max 5.78 max/min = 1.4 %mean percent general = 0.65 with sd = 0.14 and cv of 0.21 %Explained Common Variance of the general factor = 0.68 % %The degrees of freedom are 12 and the fit is 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 0.18 % %The root mean square of the residuals is 0.06 %The df corrected root mean square of the residuals is 0.07 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.85 0.46 0.57 0.57 %Multiple R square of scores with factors 0.73 0.21 0.32 0.32 %Minimum correlation of factor score estimates 0.46 -0.57 -0.35 -0.35 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.80 0.74 0.63 0.50 %Omega general for total scores and subscales 0.69 0.60 0.40 0.25 %Omega group for total scores and subscales 0.11 0.14 0.23 0.26 %> %\end{Routput} \subsubsection{Simulate a bifactor model} Simulate a bifactor model and then compare two ways of finding the solution (normal omega and directOmega). We compare the solutions using the \pfun{fa.congruence} function. \begin{Rinput} fx <- matrix(c(.7,.6,.5,.7,.6,.5,.8,.7,.6, .6,.6,.6,rep(0,9),c(.6,.5,.6),rep(0,9),.6,.6,.6),ncol=4) simx <-sim.structure(fx) lowerMat(simx$model) om <- omega(simx$model) dsl <- omegaDirect(simx$model) summary(om) summary(dsl) fa.congruence(list(om,dsl,fx)) \end{Rinput} <>== fx <- matrix(c(.7,.6,.5,.7,.6,.5,.8,.7,.6, .6,.6,.6,rep(0,9),c(.6,.5,.6),rep(0,9),.6,.6,.6),ncol=4) simx <-sim.structure(fx) om <- omega(simx$model) dsl <- omegaDirect(simx$model) @ \begin{scriptsize} <>= lowerMat(simx$model) summary(om) summary(dsl) fa.congruence(list(om,dsl,fx)) @ \end{scriptsize} %\begin{Routput} %summary(om) %Omega %Alpha: 0.9 %G.6: 0.93 %Omega Hierarchical: 0.74 %Omega H asymptotic: 0.78 %Omega Total 0.95 % %With eigenvalues of: % g F1* F2* F3* %3.67 1.08 1.08 0.97 %The degrees of freedom for the model is 12 and the fit was 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 %Explained Common Variance of the general factor = 0.54 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.95 0.95 0.89 0.87 %Omega general for total scores and subscales 0.74 0.55 0.45 0.46 %Omega group for total scores and subscales 0.21 0.40 0.44 0.41 %> summary(dsl) %Call: omegaDirect(m = simx$model) %Omega H direct: 0.71 % %With eigenvalues of: % g F1* F2* F3* %3.53 1.22 1.06 0.99 %The degrees of freedom for the model is 12 and the fit was 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.95 0.95 0.89 0.87 %Omega general for total scores and subscales 0.71 0.50 0.45 0.45 %Omega group for total scores and subscales 0.22 0.45 0.43 0.42 %> fa.congruence(list(om,dsl,fx)) % g F1* F2* F3* h2 g F1* F2* F3* %g 1.00 0.64 0.55 0.54 1.00 1.00 0.67 0.56 0.57 1.00 0.54 0.54 0.63 %F1* 0.64 1.00 0.00 0.00 0.65 0.62 1.00 0.02 0.04 0.64 0.00 0.00 1.00 %F2* 0.55 0.00 1.00 0.00 0.55 0.56 0.02 1.00 0.00 0.55 1.00 0.00 0.00 %F3* 0.54 0.00 0.00 1.00 0.52 0.55 0.03 0.00 1.00 0.54 0.00 1.00 0.00 %h2 1.00 0.65 0.55 0.52 1.00 1.00 0.68 0.57 0.55 1.00 0.55 0.52 0.64 %g 1.00 0.62 0.56 0.55 1.00 1.00 0.65 0.58 0.57 1.00 0.56 0.55 0.62 %F1* 0.67 1.00 0.02 0.03 0.68 0.65 1.00 0.04 0.07 0.67 0.02 0.03 1.00 %F2* 0.56 0.02 1.00 0.00 0.57 0.58 0.04 1.00 0.00 0.56 1.00 0.00 0.02 %F3* 0.57 0.04 0.00 1.00 0.55 0.57 0.07 0.00 1.00 0.57 0.00 1.00 0.03 % 1.00 0.64 0.55 0.54 1.00 1.00 0.67 0.56 0.57 1.00 0.54 0.54 0.63 % 0.54 0.00 1.00 0.00 0.55 0.56 0.02 1.00 0.00 0.54 1.00 0.00 0.00 % 0.54 0.00 0.00 1.00 0.52 0.55 0.03 0.00 1.00 0.54 0.00 1.00 0.00 % 0.63 1.00 0.00 0.00 0.64 0.62 1.00 0.02 0.03 0.63 0.00 0.00 1.00 %> %\end{Routput} \section{Summary} In the modern era of computation, there is little justification for continuing with procedures that were developed as \href{https://personality-project.org/revelle/publications/cup.18.final.pdf}{short-cuts 80 years ago} \citep{reh:20}, To find $\omega_h$, $\alpha$, and $\omega_t$ is very easy using the open source statistical system (\R{}) as well as the \pfun{omega} functions in the \Rpkg{psych} package. \section{System Info} When running any \R{} package, it is useful to find out the session information to see if you have the most recent releases. \begin{scriptsize} <>= sessionInfo() @ \end{scriptsize} \newpage \begin{thebibliography}{} \bibitem[\protect\astroncite{Azzalini and Genz}{2016}]{mnormt} Azzalini, A. and Genz, A. (2016). \newblock {\em The {R} package \texttt{mnormt}: The multivariate normal and $t$ distributions (version 1.5-5)}. \bibitem[\protect\astroncite{Bernaards and Jennrich}{2005}]{GPA} Bernaards, C. and Jennrich, R. (2005). \newblock {Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis}. \newblock {\em Educational and Psychological Measurement}, 65(5):676--696. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2013). \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Kuder and Richardson}{1937}]{kuder:37} Kuder, G. and Richardson, M. (1937). \newblock The theory of the estimation of test reliability. \newblock {\em Psychometrika}, 2(3):151--160. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3,6 \bibitem[\protect\astroncite{Revelle and Condon}{2018}]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D.~J., editors, {\em The {Wiley Handbook of Psychometric Testing:} A Multidisciplinary Reference on Survey, Scale and Test Development}. John Wily \& Sons, London. \bibitem[\protect\astroncite{Revelle and Condon}{2019}]{rc:pa:19} Revelle, W. and Condon, D.~M. (2019). \newblock Reliability from $\alpha$ to $\omega$: A tutorial. \newblock {\em Psychological Assessment} 31 (12) p 1395-1411. \bibitem[\protect\astroncite{Revelle et al.}{2020}]{reh:20} Revelle, W. and Elleman, L.G. and Hall, A. (2020). \newblock Statistical analyses and computer programming in personality. \newblock In Corr, P.J. editor, {\em The {Cambridge University Press Handbook of Personality}}. {Cambridge University Press}. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Waller}{2017}]{waller:17} Waller, N.~G. (2017). \newblock Direct {Schmid-Leiman} transformations and rank-deficient loadings matrices. \newblock {\em Psychometrika.} \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}: Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \end{document} psychTools/vignettes/mediation.rnw0000644000176200001440000024251714544655263017163 0ustar liggesusers% \VignetteIndexEntry{Overview of the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage[utf8]{inputenc} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \usepackage{fancyvrb} %this allows fancy boxes \newcommand{\vect}[1]{\boldsymbol{#1}} \let\vec\vect \fvset{fontfamily=courier} \DefineVerbatimEnvironment{Routput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Soutput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Binput}{Verbatim} {fontseries=b, fontsize=\scriptsize,frame=single, label=\fbox{lavaan model syntax}, framesep=2mm} %\DefineShortVerb{\!} %%% generates error! \DefineVerbatimEnvironment{Rinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Sinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Link}{Verbatim} {fontseries=b, fontsize=\small, formatcom=\color{darkgreen}, xleftmargin=1.0cm} \DefineVerbatimEnvironment{Toutput}{Verbatim} {fontseries=b,fontsize=\tiny, xleftmargin=0.1cm} \DefineVerbatimEnvironment{rinput}{Verbatim} {fontseries=b, fontsize=\tiny, frame=single, label=\fbox{R code}, framesep=1mm} \newcommand{\citeti}[1]{\begin{tiny}\citep{#1}\end{tiny}} \newcommand{\light}[1]{\textcolor{gray}{#1}} %\newcommand{\vect}[1]{\boldsymbol{#1}} %\let\vec\vect \makeindex % used for the subject index \title{How to use the psych package for regression and mediation analysis} \author{William Revelle} %the following works only with apaclass \begin{document} \maketitle %\bibliography{all} \tableofcontents \newpage \section{Overview of this and related documents} To do basic and advanced personality and psychological research using \R{} is not as complicated as some think. This is one of a set of ``How To'' to do various things using \R{} \citep{R}, particularly using the \Rpkg{psych} \citep{psych} package. The current list of How To's includes: \begin{enumerate} \item An \href{http://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{http://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{http://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{http://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{http://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{http://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} (this document) \end{enumerate} \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} and \Rpkg{psychTools} packages. <>== library(psych) library(psychTools) @ \item Input your data. If your file name ends in .sav, .text, .txt, .csv, .xpt, .rds, .Rds, .rda, or .RDATA, then just read it in directly using \pfun{read.file}. Or you can go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{Rinput} myData <- read.file() #this will open a search window on your machine # and read or load the file. #or #first copy your file to your clipboard and then myData <- read.clipboard.tab() #if you have an excel file \end{Rinput} \item Make sure that what you just read is right. Describe it and perhaps look at the first and last few lines. If you want to ``view" the first and last few lines using a spreadsheet like viewer, use \pfun{quickView}. \begin{Rinput} describe(myData) headTail(myData) #or quickView(myData) \end{Rinput} \item Look at the patterns in the data. If you have fewer than about 10 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels}. \begin{Rinput} pairs.panels(myData) \end{Rinput} \item Find the correlations of all of your data. \begin{itemize} \item Descriptively (just the values) \begin{Rinput} lowerCor(myData) \end{Rinput} \item Graphically \begin{Rinput} corPlot(myData) #show the numbers, #scales the character size by "significance" corPlot(myData,scale=FALSE) #show the numbers, # all characters the same size corPlot(lowerCor(myData), numbers =TRUE) #print the correlations # and show them graphically \end{Rinput} \end{itemize} \end{enumerate} \subsection{For the not impatient} The following pages are meant to lead you through the use of the \pfun{lmCor} and \pfun{mediate} functions. The assumption is that you have already made \Rpkg{psych} active and want some example code. \section{Multiple regression and mediation} Mediation and moderation are merely different uses of the linear model $\hat{\vec{Y}}= \mu + \beta_{y.x} \vec{X } + \vec{\epsilon} $ and are implemented in \Rpkg{psych} with two functions: \pfun{lmCor} and \pfun{mediate}. Given a set of predictor variables, $\vec{X}$ and a set of criteria variables, $\vec{Y}$, multiple regression solves the equation $\hat{\vec{Y}} = \mu + \beta_{y.x} \vec{X } $ by finding $\beta_{y.x} = \vec{C_{xx}}^{-1} C_{yx} $ where $\vec{C_{xx}}$ is the covariances of the $\vec{X}$ variables and $\vec{C_{yx}}$ is the covariances of predictors and the criteria. Although typically done using the raw data, clearly this can also be done by using the covariance or correlation matrices. \pfun{lmCor} was developed to handle the correlation matrix solution but has been generalized to the case of raw data. In the later case, it assumes a Missing Completely at Random (MCAR) structure, and thus uses all the data and finds pair.wise complete correlations. For complete data sets, the results are identical to using \pfun{lm}. By default, \pfun{lmCor} uses standardized variables, but to compare with \pfun{lm}, it can use unstandardized variables. \section{Regression using \pfun{lmCor}} Although typically done from a raw data matrix (using the \fun{lm} function), it is sometimes useful to do the regression from a correlation or covariance matrix. \pfun{lmCor} was developed for this purpose. From a correlation/covariance matrix, it will do normal regression as well as regression on partialled correlation matrices. With the raw data, it will also do moderated regression (centered or non-centered). In particular, for the raw data, it will work with missing data. An interesting option, if using categorical or dichotomous data is first find the appropriate polychoric, tetrachoric, or poly-serial correlations using \pfun{mixedCor} and then use the resulting correlation matrix for analysis. The resulting correlations and multiple correlations will not match those of the \pfun{lm} analysis. \subsection{Comparison with \pfun{lm} on complete data} Use the \pfun{attitude} data set for our first example. \subsubsection{It is important to know your data by describing it first} <>== psych::describe(attitude) @ \subsubsection{Now do the regressions} <>== #do not standardize mod1 <- lmCor(rating ~ complaints + privileges, data=attitude,std=FALSE) mod1 @ Compare this solution with the results of the \pfun{lm} function. <>== summary(lm(rating ~ complaints + privileges, data=attitude)) @ The graphic for the standardized regression is shown in (Figure~\ref{fig:attitude}). <>== png('attitude.png') # standardize by default mod2 <- lmCor(rating ~ complaints + privileges, data=attitude) mod2 diagram(mod2, main="A simple regression model") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{attitude.png} \caption{A simple multiple regression using the attitude data set (standardized solution is shown).} \label{fig:attitude} \end{center} \end{figure} \subsection{From a correlation matrix} Perhaps most usefully, \pfun{lmCor} will find the beta weights between a set of X variables, and a set of Y variables. Consider seven variables in the \pfun{atttitude} data set. We first find the correlation matrix (normally, this could just be supplied by the user). Then we find the regressions from the correlation matrix. Compare this regression to the (standardized) solution shown above. By specifying the number of observations (n.obs), we are able to apply various inferential tests. <>== R <- lowerCor(attitude) lmCor(rating ~ complaints + privileges, data=R, n.obs =30) @ Compare this solution (from the correlation matrix) with the \emph{standardized} solution for the raw data. \pfun{lmCor} does several things: \begin{itemize} \item Finds the regression weights (betas) between the predictor variables and each of the criterion variables. \item If the number of subjects is specified, or if the raw data are used, it also compares each of these betas to its standard error, finds a $t$ statistic, and reports the probability of the $|t| > 0$. \item It reports the Multiple R and $R^2$ based upon these beta weights. In addition, following the tradition of the robust beauty of the improper linear models \citep{dawes:79} it also reports the unit weighted multiple correlations. \item If there are more than 1 Y variables, the canonical correlations between the two sets (X and Y) \citep{hotelling:36} arereported. The canonical loadings are reported in the Xmat and Ymat objects. \item Cohen's set correlation \citep{cohen:82} as well as the unweighted correlation between the two sets of variables are reported. \end{itemize} \subsection{The Hotelling example} <>== #the second Kelley data from Hotelling kelley <- structure(list(speed = c(1, 0.4248, 0.042, 0.0215, 0.0573), power = c(0.4248, 1, 0.1487, 0.2489, 0.2843), words = c(0.042, 0.1487, 1, 0.6693, 0.4662), symbols = c(0.0215, 0.2489, 0.6693, 1, 0.6915), meaningless = c(0.0573, 0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words", "symbols", "meaningless"), class = "data.frame", row.names = c("speed", "power", "words", "symbols", "meaningless")) #first show the correlations lowerMat(kelley) #now find and draw the regression sc <- lmCor(power + speed ~ words + symbols + meaningless,data=kelley) #formula mode sc #show it @ %First show the correlation matrix. %\begin{Routput} % %lowerMat(kelley) % speed power words symbl mnngl %speed 1.00 %power 0.42 1.00 %words 0.04 0.15 1.00 %symbols 0.02 0.25 0.67 1.00 %meaningless 0.06 0.28 0.47 0.69 1.00 %\end{Routput} % %Now, use the \pfun{lmCor} function. % %\begin{Routput} %Call: lmCor(y = power + speed ~ words + symbols + meaningless, data = kelley) % %Multiple Regression from matrix input % % DV = power % slope VIF %words -0.03 1.81 %symbols 0.12 2.72 %meaningless 0.22 1.92 % % Multiple Regression % R R2 Ruw R2uw %power 0.29 0.09 0.26 0.07 % % DV = speed % slope VIF %words 0.05 1.81 %symbols -0.07 2.72 %meaningless 0.08 1.92 % % Multiple Regression % R R2 Ruw R2uw %speed 0.07 0.01 0.05 0 % %Various estimates of between set correlations %Squared Canonical Correlations %[1] 0.0946 0.0035 % % Average squared canonical correlation = 0.05 % Cohen's Set Correlation R2 = 0.1 %Unweighted correlation between the two sets = 0.18 % %\end{Routput} A plot of the regression model is shown as well (Figure~\ref{fig:hotelling}). <>== png('hotelling.png') lmDiagram(sc, main="The Kelley data set") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{hotelling.png} \caption{The relationship between three predictors and two criteria from \pfun{lmCor}. The data are from the Kelley data set reported by \cite{hotelling:36}.} \label{fig:hotelling} \end{center} \end{figure} \subsection{Canonical Correlation using \pfun{lmCor}} A generalization of multiple regression to multiple predictors and multiple criteria is \iemph{canonical correlation} \citep{hotelling:36}. Given a partitioning of a correlation matrix, R, into Rxx, Ryy and Rxy, canonical correlation finds orthogonal components of the correlations between the Rx and Ry sets (the Rxy correlations). Consider the Kelley data set discussed by \cite{hotelling:36} who introduced the canonical correlation. This analysis is shown in help menu for \pfun{lmCor}. Another data set is the ``Belly Dancer" data set discussed by \cite{Tabachnick:01} (Chapter 12). Here I show the data, the correlations, the regressions, and the canonical correlations. \begin{scriptsize} <>= dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics round(model$Xmat,2) #the X canonical loadings round(model$Ymat,2) #the Y canonical loadings cancorDiagram(model, main="Canonical correlations for the 'Belly Dancer' example") #and the associated canonical figure @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancerlm.png') model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() @ \end{scriptsize} \includegraphics{dancerlm.png} \caption{Multiple regression of the Belly Dancer data set. Compare with the canonical correlation figure \ref{fig:cancor} } \label{fig:lm} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancer.png') cancorDiagram(model) dev.off() @ \end{scriptsize} \includegraphics{dancer.png} \caption{Canonical Correlation of the Belly Dancer data set. Compare with the linear regression figure \ref{fig:lm} } \label{fig:cancor} \end{center} \end{figure} %\subsection{From the raw data} % % % %If the data are available, \pfun{setCor} will find the regressions between variables in an X set and those in a Y set. The first analysis (Figure~\ref{fig:2pred}) is perhaps the more typical (one criterion, two predictors), while the second example is more complicated, with three predictors of 3 dependent variables (Figure~\ref{fig:3x3}). % % %<>== %mod2 <- setCor(ACT ~ SATV + SATQ, data=sat.act) %mod2 %@ % %<>== %png('mod2.png') %setCor.diagram(mod2, main="Regressions for sat.act data") %dev.off() %@ % %\begin{Rinput} % %# a typical use of setCor %mod2 <- setCor(ACT ~ SATV + SATQ, data=sat.act) %mod2 %\end{Rinput} %\begin{Routput} %Call: setCor(y = ACT ~ SATV + SATQ, data = sat.act) % %Multiple Regression from raw data % % DV = ACT % slope se t p VIF %SATV 0.31 0.04 8.09 2.7e-15 1.72 %SATQ 0.39 0.04 10.08 0.0e+00 1.72 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %ACT 0.63 0.4 0.63 0.4 0.4 0.03 234.26 2 697 0 %\end{Routput} %\begin{figure}[htbp] %\begin{center} %\includegraphics{mod2.png} %\caption{The relationship between two predictors and one criterion from \pfun{setCor}. The data are from the \pfun{sat.act} data set } %\label{fig:2pred} %\end{center} %\end{figure} % But, we can also do multiple predictors \emph{and} multiple criteria in the same call: <>== png('satact.png') mod3 <- lmCor(SATV + SATQ + ACT ~ gender + education + age, data = sat.act) dev.off() @ %<>== %png('satact.png') %setCor.diagram(mod3, main="Three predictors, 3 criteria") %dev.off() @ %\begin{Rinput} %mod3 <- setCor(SATV + SATQ + ACT ~ gender + education + age, data = sat.act) % %\end{Rinput} % %\begin{Routput} %Multiple Regression from raw data % % DV = SATV % slope se t p VIF %gender -0.03 0.04 -0.79 0.430 1.01 %education 0.10 0.05 2.29 0.022 1.45 %age -0.10 0.05 -2.21 0.028 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATV 0.1 0.01 0.05 0 0.01 0.01 2.26 3 696 0.0808 % % DV = SATQ % slope se t p VIF %gender -0.18 0.04 -4.71 3.0e-06 1.01 %education 0.10 0.04 2.25 2.5e-02 1.45 %age -0.09 0.04 -2.08 3.8e-02 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.19 0.04 0.11 0.01 0.03 0.01 8.63 3 696 1.24e-05 % % DV = ACT % slope se t p VIF %gender -0.05 0.04 -1.28 0.2000 1.01 %education 0.14 0.05 3.14 0.0017 1.45 %age 0.03 0.04 0.71 0.4800 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %ACT 0.16 0.03 0.15 0.02 0.02 0.01 6.49 3 696 0.000248 % %Various estimates of between set correlations %Squared Canonical Correlations %[1] 0.050 0.033 0.008 %Chisq of canonical correlations %[1] 35.8 23.1 5.6 % % Average squared canonical correlation = 0.03 % Cohen's Set Correlation R2 = 0.09 % Shrunken Set Correlation R2 = 0.08 % F and df of Cohen's Set Correlation 7.26 9 1681.86 %Unweighted correlation between the two sets = 0.01 % %\end{Routput} % \begin{figure}[htbp] \begin{center} \includegraphics{satact.png} \caption{The relationship between three predictors and three criteria from \pfun{lmCor}. The data are from the \pfun{sat.act} data set.} \label{fig:3x3} \end{center} \end{figure} \subsection{Graphic displays} When considering the within group relationships for multiple groups, (e.g., gender or grade level) it is useful to draw separate regression lines for each group. Consider the case of the regression of age on paragraph comprehension as a function of class grade (6 or 7) in the \pfun{holzinger.swineford} data set in \Rpkg{psychTools}. <>== lowerCor(holzinger.swineford[c(3,7,12:14)]) @ It would seem as if both age and grade account for 4\% of the variance in paragraph comprehension. But combining these two in a multiple regression increases the variance explained from 8\% (the sum of the two) to 18\%, because age and grade suppress variance unrelated to cognitive performance. Show this finding in two different ways: as a plot of the separate regression lines Figure~\ref{fig:hs} for each grade or as a simple path model Figure~\ref{fig:hsp} . Note that because grade goes from 7 to 8, to index the colors in the plot we subtract 6 from both grades to get a 1, 2 variable. <>== png('hs.png') plot(t07_sentcomp ~ agemo, col=c("red","blue")[holzinger.swineford$grade -6], pch=26-holzinger.swineford$grade,data=holzinger.swineford, ylab="Sentence Comprehension",xlab="Age in Months", main="Sentence Comprehension varies by age and grade") by(holzinger.swineford, holzinger.swineford$grade -6,function(x) abline( lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ,lty=c("dashed","solid")[x$grade-6])) text(190,3.3,"grade = 8") text(190,2,"grade = 7") dev.off() @ To show just the coefficients of this model, do the regressions without the plot, turn off the plot option: <>== by(holzinger.swineford,holzinger.swineford$grade,function(x) lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ) @ \begin{figure}[htbp] \begin{center} \includegraphics{hs.png} \caption{Showing a multiple regression using \pfun{lmCor} with lines for each group. The data are from the \pfun{holzinger:swineford} data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect.} \label{fig:hs} \end{center} \end{figure} <>== png('hsp.png') lmCor(t07_sentcomp ~ agemo + grade,data=holzinger.swineford) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{hsp.png} \caption{The regression of age and grade on paragraph comprehension. The data are from the \pfun{holzinger:swineford} data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect. Here we show the standardized regressions. In the subsequent figure we show the raw (understanderized) slopes. } \label{fig:hsp} \end{center} \end{figure} \subsection{Moderated multiple regression} With the raw data, find interactions (known as moderated multiple regression). This is done by zero centering the data \citep{cohen:03} and then multiplying the two terms of the interaction. As an option, do not zero center the data \citep{hayes:13} which results in different ``main effects" but the same interaction term. To show the equivalence of the interaction terms, we also must not standardize the results. Use the \pfun{globalWarm} data set taken from \citep{hayes:13} <>== mod <-lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm, std=FALSE, zero=FALSE, plot=FALSE) mod mod0 <- lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,std=FALSE, plot=FALSE) mod0 @ <>== png('moderation.png') lmDiagram(mod, main="not zero centered") dev.off() @ <>== png('moderation0.png') diagram(mod0, main="zero centered") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{moderation.png} \caption{Showing a moderated multiple regression using \pfun{lmCor}. The data are from the \pfun{globalWarm} data set.} \label{fig:mod} \end{center} \end{figure} %\begin{Routput} %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = sat.act, std = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.47 0.03 14.47 0.0e+00 1.46 %gender -35.08 6.40 -5.48 6.0e-08 1.00 %ACT 7.72 0.77 10.05 0.0e+00 1.47 %SATV*gender -0.03 0.06 -0.47 6.4e-01 1.01 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.72 0.51 70.33 4946.43 0.51 0.03 183.23 4 695 0 % % %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = sat.act, std = FALSE, % zero = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.52 0.10 5.20 2.7e-07 13.52 %gender -18.71 35.31 -0.53 6.0e-01 30.44 %ACT 7.72 0.77 10.05 0.0e+00 1.47 %SATV*gender -0.03 0.06 -0.47 6.4e-01 41.50 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.72 0.51 40.02 1601.68 0.51 0.03 183.23 4 695 0 % %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics[width=7cm]{moderation.png} \includegraphics[width=7cm]{moderation0.png} \caption{The difference between 0 and not 0 centering \pfun{lmCor}. The data are from the \pfun{globalWarm} data set. In both cases, the data are not standarized.} \label{default} \end{center} \end{figure} \subsection{Plotting the interactions} To visualize the effect of zero (mean) centering, it is useful to plot the various elements that go into the linear model. \pfun{lmCor} returns the product terms as well as the original data. Combine the two datasets to make it clearer. Note that the correlations of the centered age, negemot with the uncentered are 1.0, but that the correlations with the product terms depend upon centering versus not. Drop some of the other variables from the figure for clarity (Figure~\ref{fig:splom}). <>== both <- cbind(mod$data[,-1],mod0$data[,-1]) png('splom.png') pairs.panels(both[,-c(4,5,6,8,11:13)]) #show the mean centered data dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{splom.png} \caption{The effect of not mean centering versus mean centering on the product terms. The first four variables were not zero centered, the second four were. } \label{fig:splom} \end{center} \end{figure} \subsection{Comparisons to \fun{lm}} The \pfun{lmCor} function duplicates the functionality of the \fun{lm} function for complete data, although \fun{lm} does not zero center and \pfun{lmCor} will (by default). In addition, \pfun{lmCor} finds correlations based upon pair.wise deletion of missing data, while \fun{lm} does case.wise deletion. We compare the \fun{lm} and \pfun{lmCor} results for complete data by setting the \texttt{ use = "complete"} option. Use the \pfun{sat.act} data set which has some missing values. <>== summary(lm(SATQ ~ SATV*gender + ACT, data=sat.act)) mod <- lmCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE,use="complete") print(mod,digits=5) @ % lm(SATQ ~ SATV*gender + ACT, data=sat.act) %Call: %lm(formula = SATQ ~ SATV * gender + ACT, data = sat.act) % %Coefficients: %(Intercept) SATV gender ACT SATV:gender % 138.52395 0.50280 -22.24995 7.71702 -0.01984 % %> mod <- setCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE,use="complete") % %print(mod,digits=5) %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = (sat.act), use = "complete", % std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.50280 0.09936 5.06050 5.3589e-07 13.43994 %gender -22.24995 35.25783 -0.63106 5.2821e-01 30.29663 %ACT 7.71702 0.76977 10.02511 0.0000e+00 1.46678 %SATV*gender -0.01984 0.05652 -0.35105 7.2566e-01 41.25607 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.71414 0.51 39.93879 1595.107 0.50718 0.02621 180.8401 4 695 0 %\end{Routput} \section{Mediation using the \pfun{mediate} function} Mediation analysis is just linear regression reorganized slightly to show the direct effects of an X variable upon Y, partialling out the effect of a ``mediator" (Figure~\ref{fig:mediation}). Although the statistical ``significance" of the (c) path and the (c') path are both available from standard regression, the mediation effect (ab) is best found by boot strapping the regression model and displaying the empirical confidence intervals. \begin{figure}[htbp] \begin{center} \begin{picture}(200,200) \put(10,50){\framebox(20,20){$X_{1}$}} \put(85,123){\framebox(20,20){$M_{1}$}} \put(160,50){\framebox(20,20){$Y_{1}$}} \put(30,70){\vector(1,1){54}} \put(105,123){\vector(1,-1){54}} \put(30,60){\vector(1,0){130}} \put(50,98){a} \put(134,98){b} \put(95,65){c} \put(78,51){c'= c - ab} \end{picture} \caption{The classic mediation model. The Direct Path from X -> Y (c) is said to be mediated by the indirect path (a) to the mediator (X -> M) and (b) from the mediator to Y (M -> Y). The mediation effect is (ab). } \label{fig:mediation} \end{center} \end{figure} A number of papers discuss how to test for the effect of mediation and there are some very popular `macros' for SPSS and SAS to do so \citep{hayes:13,preacher:04,preacher:07,preacher:15}. A useful discussion of mediation and moderation with sample data sets is found in \cite{hayes:13}. More recently, the \Rpkg{processR} package \citep{processR} has been released with these data sets. Although these data used to be be available from \href{"http://www.afhayes.com/public/hayes2018data.zip"}{http://www.afhayes.com/public/hayes2018data.zip} this now longer seems to be case.\footnote{The Hayes data sets (2018) do not correspond exactly with those from the 2013 book. Those data files were at \href{"http://www.afhayes.com/public/hayes2013data.zip"}{http://www.afhayes.com/public/hayes2013data.zip}.}. I use these for comparisons with the results in \cite{hayes:13}. Four of these data sets are now included in the \Rpkg{psych} package with the kind permission of their authors: \pfun{Garcia} is from \cite{garcia:10}, and \pfun{Tal\_Or} is from \cite{talor:10}, The \pfun{Pollack} correlation matrix is taken from an article by \cite{pollack:12}. The \pfun{globalWarm} data set is the \pfun{glbwarm} data set in the \Rpkg{processR} package and added to \Rpkg{psychTools} with the kind permission of the original author, Erik Nisbet. To find the confidence intervals of the effect of mediation (the reduction between the c and c' paths, where c' = c - ab), bootstrap the results by randomly sampling from the data with replacement (e.g n.iter = 5000) times. For these examples, the data files \pfun{Garcia} \citep{garcia:10} and \pfun{Tal\_Or} \citep{talor:10} are included in the \pfun{psych} package. The \pfun{estrss} data set and \pfun{globalWarm} were originally downloaded from the \cite{hayes:13} data sets. The correlation matrix for the \pfun{estress} data set is stored as \pfun{Pollack} in the \pfun{psychTools} package as is the \pfun{Globalwarm} data set. They are also available from the \Rpkg{processR} package \cite{processR}. The syntax is that $ y \sim x + (m) $ where m is the mediating variable. By default the output is to two decimals, as is the graphic output. This can be increased by returning the output to an object and then printing that object with the desired number of decimals. \subsection{Simple mediation} The first example \citep[mod.4.5]{hayes:13} is taken from \citep{talor:10} and examines the mediating effect of ``Presumed Media Influence'' (pmi) on the intention to act (reaction) based upon the importance of a message (import). The data are in the \pfun{Tal\_Or} data set in \Rpkg{psych} (with the kind permission of Nurit Tal-Or, Jonanathan Cohen, Yariv Tasfati, and Albert Gunther). In the \cite{hayes:13} book, this is the \pfun{pmi} data set. <>== data(Tal.Or) psych::describe(Tal_Or) #descriptive statistics mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) mod4.4 #print(mod4.4, digits = 4) # in order to get the precision of the Hayes (2013) p 99 example @ %\begin{Routput} %data(Tal_Or) %describe(Tal_Or) #descriptive statistics % vars n mean sd median trimmed mad min max range skew kurtosis se %cond 1 123 0.47 0.50 0.00 0.46 0.00 0 1 1 0.11 -2.00 0.05 %pmi 2 123 5.60 1.32 6.00 5.78 1.48 1 7 6 -1.17 1.30 0.12 %import 3 123 4.20 1.74 4.00 4.26 1.48 1 7 6 -0.26 -0.89 0.16 %reaction 4 123 3.48 1.55 3.25 3.44 1.85 1 7 6 0.21 -0.90 0.14 %gender 5 123 1.65 0.48 2.00 1.69 0.00 1 2 1 -0.62 -1.62 0.04 %age 6 123 24.63 5.80 24.00 23.76 1.48 18 61 43 4.71 24.76 0.52 % % % mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) %> mod4.4 %Mediation/Moderation Analysis %Call: mediate(y = reaction ~ cond + (pmi), data = Tal_Or) % %The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi . % %Total effect(c) of cond on reaction = 0.5 S.E. = 0.28 t = 1.79 df= 120 with p = 0.077 %Direct effect (c') of cond on reaction removing pmi = 0.25 S.E. = 0.26 % t = 0.99 df= 120 with p = 0.32 %Indirect effect (ab) of cond on reaction through pmi = 0.24 %Mean bootstrapped indirect effect = 0.24 with standard error = 0.13 Lower CI = 0 Upper CI = 0.52 %R = 0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF p-value: 9.83e-07 % % To see the longer output, specify short = FALSE in the print statement or ask for the summary % % Full output % Total effect estimates (c) % reaction se t df Prob %cond 0.5 0.28 1.79 120 0.0766 % %Direct effect estimates (c') % reaction se t df Prob %cond 0.25 0.26 0.99 120 3.22e-01 %pmi 0.51 0.10 5.22 120 7.66e-07 % %R = 0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF p-value: 9.83e-07 % % 'a' effect estimates % pmi se t df Prob %cond 0.48 0.24 2.02 121 0.0454 % % 'b' effect estimates % reaction se t df Prob %pmi 0.51 0.1 5.22 120 7.66e-07 % % 'ab' effect estimates % reaction boot sd lower upper %cond 0.24 0.24 0.13 0 0.52 % %\end{Routput} <>== png('mediate99.png') mediate.diagram(mod4.4) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mediate99.png} \caption{A simple mediation model \citep[p 99] {hayes:13} with data derived from \cite{talor:10}. The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi).} \label{default} \end{center} \end{figure} A second example from \citep{hayes:13} is an example of moderated mediated effect. The data are from \citep{garcia:10} and report on the effect of protest on reactions to a case of sexual discrimination. <>== data(GSBE) #alias to Garcia data set #compare two models (bootstrapping n.iter set to 50 for speed # 1) mean center the variables prior to taking product terms mod1 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") # 2) do not mean center mod2 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50, main="Moderated mediation (not centered") summary(mod1) summary(mod2) @ %A second example of simple mediation from \cite[p 118-121]{hayes:13} is the effect of economic stress. The original data are from a study by \cite{pollack:12} and are available from the \cite{hayes:13} website. Is the effect of economic stress (estress) on subsequent disengagement from entreprenuerial activities (withdraw) mediated through depressed affect (affect)? % %\begin{Rinput} %estress <- read.file() #read the external file %describe(estress) %mod4.5 <- mediate(withdraw ~ estress + (affect), data =estress) %mod4.5 #normal printing is to 2 decimals %# and show the graphic to 2 decimals %#print(mod4.5, digits=4) #print to four decimals to confirm output with Hayes %#mediate.diagram(mod4.5,digits=3) to show the graphic to 3 decimals % %\end{Rinput} % %\begin{Routput} %estress <- read.file() %re-encoding from CP1252 %Data from the SPSS sav file" % /Users/WR/Box Sync/pmc_folder/tutorials/HowTo/mediation/hayes2018data/estress/estress.sav has been loaded. %> describe(estress) % vars n mean sd median trimmed mad min max range skew kurtosis se %tenure 1 262 5.93 6.58 4.00 4.73 5.07 0.00 33 33.00 1.64 2.67 0.41 %estress 2 262 4.62 1.42 4.50 4.66 1.48 1.00 7 6.00 -0.27 -0.49 0.09 %affect 3 262 1.60 0.72 1.33 1.46 0.49 1.00 5 4.00 1.97 4.57 0.04 %withdraw 4 262 2.32 1.25 2.00 2.19 1.48 1.00 7 6.00 0.70 -0.17 0.08 %sex 5 262 0.62 0.49 1.00 0.65 0.00 0.00 1 1.00 -0.48 -1.77 0.03 %age 6 262 43.79 10.36 44.00 43.78 11.86 23.00 71 48.00 -0.01 -0.82 0.64 %ese 7 262 5.61 0.94 5.73 5.67 1.08 2.53 7 4.47 -0.55 -0.13 0.06 % %\end{Routput} %\begin{Toutput} %mod4.5 % %Mediation/Moderation Analysis %Call: mediate(y = withdraw ~ estress + (affect), data = estress) % %The DV (Y) was withdraw . The IV (X) was estress . The mediating variable(s) = affect . % %Total effect(c) of estress on withdraw = 0.06 S.E. = 0.05 t = 1.04 df= 259 with p = 0.3 %Direct effect (c') of estress on withdraw removing affect = -0.08 S.E. = 0.05 t = -1.47 df= 259 with p = 0.14 %Indirect effect (ab) of estress on withdraw through affect = 0.13 %Mean bootstrapped indirect effect = 0.13 with standard error = 0.03 Lower CI = 0.07 Upper CI = 0.2 %R = 0.42 R2 = 0.18 F = 28.49 on 2 and 259 DF p-value: 6.53e-12 %\end{Toutput} %\begin{Routput} % Full output % Total effect estimates (c) % withdraw se t df Prob %estress 0.06 0.05 1.04 259 0.302 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.08 0.05 -1.47 259 1.44e-01 %affect 0.77 0.10 7.46 259 1.29e-12 % %R = 0.42 R2 = 0.18 F = 28.49 on 2 and 259 DF p-value: 6.53e-12 % % 'a' effect estimates % affect se t df Prob %estress 0.17 0.03 5.83 260 1.63e-08 % % 'b' effect estimates % withdraw se t df Prob %affect 0.77 0.1 7.46 259 1.29e-12 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.13 0.13 0.03 0.07 0.2 %\end{Routput} % %\begin{figure}[htbp] %\begin{center} % %\includegraphics{mediate118.pdf} %\caption{A simple mediation model \citep[p 118] {hayes:13}. The data are from \cite{pollack:12} taken from the \cite{hayes:13} website. Is the effect of economic stress (estress) on subsequent disengagement from entreprenuerial activities (withdraw) mediated through depressed affect (affect)?} %\label{default} %\end{center} %\end{figure} \subsection{Multiple mediators} It is trivial to show the effect of multiple mediators. Do this by adding the second (or third) mediator into the equation. Use the \fun{Tal\_Or} data set \citep{talor:10} again. Show the graphical representation in Figure~\ref{fig:2m}. <>== mod5.4 <- mediate(reaction ~ cond + (import) + (pmi), data = Tal_Or) print(mod5.4, digits=4) #to compare with Hayes @ <>== png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() @ %\begin{Toutput} %Call: mediate(y = reaction ~ cond + (import) + (pmi), data = Tal_Or) % %The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = import pmi . Variable(s) partialled out were % %Total Direct effect(c) of cond on reaction = 0.4957 S.E. = 0.2775 t direct = 1.786 with probability = 0.07661 %Direct effect (c') of cond on reaction removing import pmi = 0.1034 S.E. = 0.2391 t direct = 0.4324 with probability = 0.6662 %Indirect effect (ab) of cond on reaction through import pmi = 0.3923 %Mean bootstrapped indirect effect = 0.3964 with standard error = 0.1658 Lower CI = 0.0895 Upper CI = 0.7317 %R2 of model = 0.3251 % To see the longer output, specify short = FALSE in the print statement % % %\end{Toutput} %\begin{Routput} % Full output % % Total effect estimates (c) % reaction se t Prob %cond 0.4957 0.2775 1.786 0.076608 % %Direct effect estimates (c') % reaction se t Prob %cond 0.1034 0.2391 0.4324 6.6622e-01 %import 0.3244 0.0707 4.5857 1.1267e-05 %pmi 0.3965 0.0930 4.2645 4.0383e-05 % % 'a' effect estimates % cond se t Prob %import 0.6268 0.3098 2.0234 0.045235 %pmi 0.4765 0.2357 2.0218 0.045401 % % 'b' effect estimates % reaction se t Prob %import 0.3244 0.0707 4.5857 1.1267e-05 %pmi 0.3965 0.0930 4.2645 4.0383e-05 % % 'ab' effect estimates % reaction boot sd lower upper %cond 0.3923 0.3965 0.1645 0.0896 0.7392 %> \end{Routput} % \begin{figure}[htbp] \begin{center} \includegraphics{mediate131.png} \caption{A mediation model with two mediators \citep[p 131] {hayes:13}. The data are data derived from \cite{talor:10}. The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi) and importance of the message (import).} \label{fig:2m} \end{center} \end{figure} \subsection{Serial mediators} The example from \cite{hayes:13} for two mediators, where one effects the second, is a bit more complicated and currently can be done by combining two separate analyses. The first is just model 5.4, the second is the effect of cond on pmi mediated by import. Combining the two results leads to the output found on \cite[page 153]{hayes:13}. <>== png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() @ <>== #model 5.4 + mod5.7 is the two chained mediator model mod5.7 <- mediate(pmi ~ cond + (import) , data = Tal_Or) summary(mod5.7, digits=4) @ % %\begin{Routput} %Call: mediate(y = pmi ~ cond + (import), data = Tal_Or) % % Total effect estimates (c) % pmi se t df Prob %cond 0.4765 0.2357 2.0218 120 0.045419 % %Direct effect estimates (c') % pmi se t df Prob %cond 0.3536 0.2325 1.5207 120 0.1309600 %import 0.1961 0.0671 2.9228 120 0.0041467 % %R = 0.3114 R2 = 0.097 F = 6.4428 on 2 and 120 DF p-value: 0.0021989 % % 'a' effect estimates % import se t df Prob %cond 0.6268 0.3098 2.0234 121 0.045235 % % 'b' effect estimates % pmi se t df Prob %import 0.1961 0.0671 2.9228 120 0.0041467 % % 'ab' effect estimates % pmi boot sd lower upper %cond 0.1229 0.1226 0.0825 -0.0017 0.3152 %> % %\end{Routput} % \subsection{Single mediators, multiple covariates} The \fun{Pollack} data set \citep{pollack:12} is used as an example of multiple covariates (included in \Rpkg{psychTools} as a correlation matrix). The raw data are available from the \Rpkg{processR} package as \pfun{estress}. Confidence in executive decision making (``Entrepeneurial self-effiicacy), gender (sex), and length of time in business (tenure) are used as covariates. There are two ways of doing this: enter them as predictors of the criterion or to partial them out. The first approach estimates their effects, the second just removes them. <>== lowerMat(Pollack) mod6.2 <- mediate(withdrawal ~ economic.stress + self.efficacy + sex + tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2) @ <>== png('mediate177.png') mediate.diagram(mod6.2, digits=3, main = "Simple mediation, 3 covariates") dev.off() @ The graphical output (Figure~\ref{fig:3cov}) looks a bit more complicated than the figure in \cite[p 177]{hayes:13} because I am showing the covariates as causal paths. %\begin{Toutput} %Call: mediate(y = withdraw ~ estress + ese + sex + tenure + (affect), % data = estress) % %The DV (Y) was withdraw . The IV (X) was estress ese sex tenure . The mediating variable(s) = affect . % %Total effect(c) of estress on withdraw = 0.02 S.E. = 0.05 t = 0.35 df= 256 with p = 0.72 %Direct effect (c') of estress on withdraw removing affect = -0.09 S.E. = 0.05 t = -1.78 df= 256 with p = 0.077 %Indirect effect (ab) of estress on withdraw through affect = 0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = 0.06 Upper CI = 0.17 % %Total effect(c) of ese on withdraw = -0.32 S.E. = 0.08 t = -3.98 df= 256 with p = 9e-05 %Direct effect (c') of ese on NA removing affect = -0.21 S.E. = 0.08 t = -2.78 df= 256 with p = 0.0059 %Indirect effect (ab) of ese on withdraw through affect = -0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.19 Upper CI = -0.03 % %Total effect(c) of sex on withdraw = 0.14 S.E. = 0.16 t = 0.88 df= 256 with p = 0.38 %Direct effect (c') of sex on NA removing affect = 0.13 S.E. = 0.14 t = 0.88 df= 256 with p = 0.38 %Indirect effect (ab) of sex on withdraw through affect = 0.01 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.09 Upper CI = 0.15 % %Total effect(c) of tenure on withdraw = -0.01 S.E. = 0.01 t = -0.85 df= 256 with p = 0.4 %Direct effect (c') of tenure on NA removing affect = 0 S.E. = 0.01 t = -0.19 df= 256 with p = 0.85 %Indirect effect (ab) of tenure on withdraw through affect = -0.01 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.02 Upper CI = 0 %R = 0.45 R2 = 0.21 F = 13.28 on 5 and 256 DF p-value: 1.63e-11 %\end{Toutput} % %\begin{Routput} % Full output % % % Total effect estimates (c) % withdraw se t df Prob %estress 0.02 0.05 0.35 256 7.24e-01 %ese -0.32 0.08 -3.98 256 9.02e-05 %sex 0.14 0.16 0.88 256 3.78e-01 %tenure -0.01 0.01 -0.85 256 3.97e-01 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.09 0.05 -1.78 256 0.07710 %ese -0.21 0.08 -2.78 256 0.00589 %sex 0.13 0.14 0.88 256 0.37800 %tenure 0.00 0.01 -0.19 256 0.84600 % %R = 0.45 R2 = 0.21 F = 13.28 on 5 and 256 DF p-value: 1.63e-11 % % 'a' effect estimates % affect se t df Prob %estress 0.16 0.03 5.36 257 1.84e-07 %ese -0.15 0.04 -3.49 257 5.70e-04 %sex 0.01 0.09 0.17 257 8.63e-01 %tenure -0.01 0.01 -1.72 257 8.61e-02 % % 'b' effect estimates % withdraw se t df Prob %affect 0.71 0.1 6.74 256 1.03e-10 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.11 0.11 0.03 0.06 0.17 %ese -0.11 -0.11 0.04 -0.19 -0.03 %sex 0.01 0.02 0.06 -0.09 0.15 %tenure -0.01 -0.01 0.00 -0.02 0.00 %> %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics{mediate177.png} \caption{A mediation model with three covariates \citep[p 177] {hayes:13}. Compare this to the solution in which they are partialled out. (Figure~\ref{fig:mod6.2a}).} \label{fig:3cov} \end{center} \end{figure} \subsection{Single predictor, single criterion, multiple covariates} An alternative way to display the previous results is to remove the three covariates from the mediation model. Do this by partialling out the covariates. This is represented in the \pfun{mediate} code by a negative sign (Figure~\ref{fig:mod6.2a}) <>== mod6.2a <- mediate(withdrawal ~ economic.stress -self.efficacy - sex - tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2a) @ %\begin{Rinput} %mod6.2a <- mediate(withdraw ~ estress - ese - sex - tenure + (affect), data=estress) %mod6.2a #give the output %\end{Rinput} %\begin{Toutput} % %The DV (Y) was withdraw . The IV (X) was estress . The mediating variable(s) = affect . Variable(s) partialled out were ese sex tenure % %Total effect(c) of estress on withdraw = 0.02 S.E. = 0.05 t = 0.36 df= 256 with p = 0.72 %Direct effect (c') of estress on withdraw removing affect = -0.09 S.E. = 0.05 t = -1.77 df= 256 with p = 0.078 %Indirect effect (ab) of estress on withdraw through affect = 0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = 0.06 Upper CI = 0.17 %R = 0.39 R2 = 0.15 F = 22.8 on 2 and 256 DF p-value: 7.71e-10 % %\end{Toutput} %\begin{Routput} % Full output %Total effect estimates (c) % withdraw se t df Prob %estress 0.02 0.05 0.36 256 0.722 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.09 0.05 -1.77 256 7.78e-02 %affect 0.71 0.11 6.72 256 1.14e-10 % %R = 0.39 R2 = 0.15 F = 22.8 on 2 and 256 DF p-value: 7.71e-10 % % 'a' effect estimates % affect se t df Prob %estress 0.16 0.03 5.39 257 1.58e-07 % % 'b' effect estimates % withdraw se t df Prob %affect 0.71 0.11 6.72 256 1.14e-10 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.11 0.11 0.03 0.06 0.17 % % %\end{Routput} % <>== png('mod62partial.png') mediate.diagram(mod6.2a, digits=3, main = "Simple mediation, 3 covariates (partialled out)") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mod62partial.png} \caption{Show the mediation model from Figure~\ref{fig:3cov} with the covariates (ese, sex, tenure) removed.} \label{fig:mod6.2a} \end{center} \end{figure} \subsection{Multiple predictors, single criterion} It is straightforward to use multiple predictors see \cite[p196]{hayes:13} and in fact did so in the previous example where the predictors were treated as \emph{covariates}. \pfun{mediate} also allows for multiple criteria. \section{Mediation and moderation} We already saw how to do moderation in the discussion of \pfun{lmCor}. Combining the concepts of mediation with moderation is done in \pfun{mediate}. That is, find the linear model of product terms as they are associated with dependent variables and regressed on the mediating variables. The \fun{Garcia} data set \citep{garcia:10} can be used for an example of moderation. (This was taken from \citep{hayes:13} but is used with kind permission of Donna M. Garcia, Michael T. Schmitt, Nyla R. Branscombe, and Naomi Ellemers.) Just as \pfun{setCor} and \fun{lm} will find the interaction term by forming a product, so will \pfun{mediate}. Notice that by default, \pfun{lmCor} reports zero centered and standardized regressions, \pfun{mediate} reports zero centered but not standardized regressions, and some of the examples from \cite{hayes:13} do not zero center the data. Thus, I specify zero=FALSE to get the \cite{hayes:13} results. It is important to note that the \fun{protest} data set discussed here is from the 2013 examples and not the more recent 2018 examples available from \href{http://afhayes.com}{afhayes.com}. The 2013 data have a dichotomous protest variable, while the 2018 data set has three levels for the protest variable. The \pfun{Garcia} data set is composed of the 2018 data set with the addition of a dichotomous variable (prot2) to match the 2013 examples. We consider how the interaction of sexism with protest affects the mediation effect of sexism \citep[p 362]{hayes:13}, I contrast the \fun{lm}, \pfun{lmCor} and \pfun{mediate} approaches. For reasons to be discussed in the next section, I do not zero center the variables. The graphic output is in Figure~\ref{fig:modmed} and the output is below. For comparison purposes, I show the results from the \fun{lm} as well as \pfun{lmCor} and \pfun{mediate}. <>== summary(lm(respappr ~ prot2 * sexism,data = Garcia)) #show the lm results for comparison #show the lmCor analysis lmCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE) #then show the mediate results modgarcia <-mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE,main="Moderated mediation") summary(modgarcia) @ <>== png('moderatedmediation.png') mediate.diagram(modgarcia, main= "An example of moderated mediation") dev.off() @ %lm(formula = respappr ~ prot2 * sexism, data = Garcia) % %Residuals: % Min 1Q Median 3Q Max %-3.4984 -0.7540 0.0801 0.8301 3.1853 % %Coefficients: % Estimate Std. Error t value Pr(>|t|) %(Intercept) 6.5667 1.2095 5.429 2.83e-07 *** %prot2 -2.6866 1.4515 -1.851 0.06654 . %sexism -0.5290 0.2359 -2.243 0.02668 * %prot2:sexism 0.8100 0.2819 2.873 0.00478 ** %--- %Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 % %Residual standard error: 1.144 on 125 degrees of freedom %Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793 %F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09 % %setCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE) %Call: setCor(y = respappr ~ prot2 * sexism, data = Garcia, std = FALSE, % main = "Moderation", zero = FALSE) % %Multiple Regression from raw data % % DV = respappr % slope se t p VIF %prot2 -2.69 1.45 -1.85 0.0670 44.99 %sexism -0.53 0.24 -2.24 0.0270 3.34 %prot2*sexism 0.81 0.28 2.87 0.0048 48.14 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %respappr 0.54 0.3 0.65 0.43 0.28 0.06 17.53 3 125 1.46e-09 % %> summary( mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE,main="Moderated mediation")) %Call: mediate(y = respappr ~ prot2 * sexism + (sexism), data = Garcia, % zero = FALSE, main = "Moderated mediation") % % Total effect estimates (c) % respappr se t df Prob %prot2 0.00 0.84 0.00 125 0.9960 %prot2*sexism 0.28 0.16 1.79 125 0.0756 % %Direct effect estimates (c') % respappr se t df Prob %prot2 -2.69 1.45 -1.85 125 0.06650 %prot2*sexism 0.81 0.28 2.87 125 0.00478 % %R = 0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF p-value: 1.46e-09 % % 'a' effect estimates % sexism se t df Prob %prot2 -5.07 0.31 -16.33 126 6.81e-33 %prot2*sexism 1.00 0.06 17.15 126 9.41e-35 % % 'b' effect estimates % respappr se t df Prob %sexism -0.53 0.24 -2.24 125 0.0267 % % 'ab' effect estimates % respappr boot sd lower upper %prot2 2.68 2.65 1.60 -0.69 5.60 %prot2*sexism -0.53 -0.52 0.32 -1.11 0.14 %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics{moderatedmediation.png} \caption{Moderated mediation from \citep[p 362]{hayes:13}. The data are from \cite{garcia:10}.} \label{fig:modmed} \end{center} \end{figure} \subsection{To center or not to center, that is the question} We have discussed the difference between zero centering and not zero centering. Although \cite{hayes:13} seems to prefer not centering, some of his examples are in fact centered. So, when we examine Table 8.2 and try to replicate the regression, we need to zero center the data. With the global warming data from \cite{hayes:13}, the default (uncentered) regression does not reproduce his Table, but zero centering does. To this in \fun{lm} requires two steps, but we can do this in \pfun{lmCor} with the zero=TRUE or zero=FALSE option. <>== lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) # but zero center and try again glbwarmc <-data.frame(scale(globalWarm,scale=FALSE)) lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,zero=FALSE,std=FALSE) print(mod.glb,digits=6) mod.glb0 <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb0,digits=6) @ %\begin{Routput} %> lm(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm) %Call: %lm(formula = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm) %Coefficients: %(Intercept) age negemot posemot ideology sex age:negemot % 5.173849 -0.023879 0.119583 -0.021419 -0.211515 -0.011191 0.006331 %> # but zero center and try again %> glbwarmc <-data.frame(scale(glbwarm,scale=FALSE)) %> lm(govact ~ age * negemot + posemot + ideology + sex, data=glbwarmc) % %Call: %lm(formula = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarmc) % %Coefficients: %(Intercept) age negemot posemot ideology sex age:negemot % 0.008979 -0.001354 0.433184 -0.021419 -0.211515 -0.011191 0.006331 % %> mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm,zero=FALSE,std=FALSE) %> print(mod.glb,digits=6) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.023879 0.005980 -3.992944 7.12038e-05 6.949401 %negemot 0.119583 0.082535 1.448881 1.47759e-01 11.594520 %posemot -0.021419 0.027904 -0.767597 4.42951e-01 1.028663 %ideology -0.211515 0.026833 -7.882678 1.02141e-14 1.198910 %sex -0.011191 0.076003 -0.147240 8.82979e-01 1.052907 %age*negemot 0.006331 0.001543 4.103542 4.48155e-05 16.455422 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633093 0.400806 0.571703 0.326844 0.396357 0.026299 90.07983 6 808 0 % %> mod.glb0 <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm,std=FALSE) %> print(mod.glb0,digits=6) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.001354 0.002348 -0.576864 5.64192e-01 1.071058 %negemot 0.433184 0.026243 16.506679 0.00000e+00 1.172207 %posemot -0.021419 0.027904 -0.767597 4.42951e-01 1.028663 %ideology -0.211515 0.026833 -7.882678 1.02141e-14 1.198910 %sex -0.011191 0.076003 -0.147240 8.82979e-01 1.052907 %age*negemot 0.006331 0.001543 4.103542 4.48155e-05 1.014744 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633093 0.400806 0.34298 0.117635 0.396357 0.026299 90.07983 6 808 0 % %\end{Routput} % So, when we do the mediated moderation model, we need to use the zero centered option to match the \cite{hayes:13} results from Figure 8.5. <>== #by default, mediate zero centers before finding the products mod.glb <- mediate(govact ~ age * negemot + posemot + ideology + sex + (age), data=globalWarm,zero=TRUE) summary(mod.glb,digits=4) @ Compare this output to that of Table 8.2 and Figure 8.5 (p 258 - 259). %\begin{Routput} %Call: mediate(y = govact ~ age * negemot + posemot + ideology + sex + % (age), data = glbwarm, zero = TRUE) % % Total effect estimates (c) % govact se t df Prob %negemot 0.4328 0.0262 16.5043 808 5.9317e-53 %posemot -0.0220 0.0279 -0.7890 808 4.3036e-01 %ideology -0.2145 0.0263 -8.1510 808 1.3712e-15 %sex -0.0173 0.0752 -0.2304 808 8.1783e-01 %age*negemot 0.0063 0.0015 4.1025 808 4.5004e-05 % %Direct effect estimates (c') % govact se t df Prob %negemot 0.4332 0.0262 16.5067 808 5.7578e-53 %posemot -0.0214 0.0279 -0.7676 808 4.4295e-01 %ideology -0.2115 0.0268 -7.8827 808 1.0360e-14 %sex -0.0112 0.0760 -0.1472 808 8.8298e-01 %age*negemot 0.0063 0.0015 4.1035 808 4.4816e-05 % %R = 0.6331 R2 = 0.4008 F = 90.0798 on 6 and 808 DF p-value: 1.8246e-86 % % 'a' effect estimates % age se t df Prob %negemot 0.2757 0.3929 0.7017 809 4.8305e-01 %posemot 0.4232 0.4176 1.0135 809 3.1112e-01 %ideology 2.2079 0.3943 5.6002 809 2.9334e-08 %sex 4.5345 1.1269 4.0238 809 6.2643e-05 %age*negemot 0.0031 0.0231 0.1346 809 8.9294e-01 % % 'b' effect estimates % govact se t df Prob %age -0.0014 0.0023 -0.5769 808 0.56419 % % 'ab' effect estimates % govact boot sd lower upper %negemot -0.0004 -0.0004 0.0012 -0.0033 0.0016 %posemot -0.0006 -0.0005 0.0014 -0.0038 0.0021 %ideology -0.0030 -0.0029 0.0051 -0.0136 0.0070 %sex -0.0061 -0.0057 0.0106 -0.0273 0.0150 %age*negemot 0.0000 0.0000 0.0001 -0.0002 0.0002 % \end{Routput} % \subsection{Another example of moderated mediation} The \pfun{Garcia} data set (\pfun{protest} in \cite{hayes:13}) is another example of a moderated analysis. Use either \pfun{lmCor} or \pfun{mediate} to examine this data set. The defaults for these two differ, in that \pfun{lmCor} assumes we want to zero center \emph{and} standardize, while \pfun{mediate} defaults to not standardizing but also defaults to zero (mean) centering. Note that in the next examples we specify we do not want to standardize nor to mean center. <>== psych::describe(Garcia) lm(liking ~ prot2* sexism + respappr, data=Garcia) lmCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE) mod7.4 <- mediate(liking ~ prot2 * sexism +respappr, data = Garcia, zero=FALSE) summary(mod7.4) @ %\begin{Routput} % describe(Garcia) % vars n mean sd median trimmed mad min max range skew kurtosis se %protest 1 129 1.03 0.82 1.00 1.04 1.48 0.00 2 2.00 -0.06 -1.52 0.07 %sexism 2 129 5.12 0.78 5.12 5.10 0.74 2.87 7 4.13 0.12 -0.32 0.07 %anger 3 129 2.12 1.66 1.00 1.84 0.00 1.00 7 6.00 1.29 0.26 0.15 %liking 4 129 5.64 1.05 5.83 5.73 0.99 1.00 7 6.00 -1.15 2.48 0.09 %respappr 5 129 4.87 1.35 5.25 4.98 1.11 1.50 7 5.50 -0.75 -0.18 0.12 %prot2 6 129 0.68 0.47 1.00 0.72 0.00 0.00 1 1.00 -0.77 -1.41 0.04 % % % %Call: %lm(formula = liking ~ prot2 * sexism + respappr, data = Garcia) % %Coefficients: % (Intercept) prot2 sexism respappr prot2:sexism % 5.3471 -2.8075 -0.2824 0.3593 0.5426 % %> setCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE) %Call: setCor(y = liking ~ prot2 * sexism + respappr, data = Garcia, % std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = liking % slope se t p VIF %prot2 -2.81 1.16 -2.42 1.7e-02 46.22 %sexism -0.28 0.19 -1.49 1.4e-01 3.47 %respappr 0.36 0.07 5.09 1.3e-06 1.42 %prot2*sexism 0.54 0.23 2.36 2.0e-02 51.32 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %liking 0.53 0.28 0.39 0.15 0.26 0.06 12.26 4 124 1.99e-08 %> mod7.4m <- mediate(liking ~ protest * sexism, data = protest, zero=FALSE) %> mod7.4m %Call: mediate(y = liking ~ prot2 * sexism + respappr, data = Garcia, % zero = FALSE) % %The DV (Y) was liking . The IV (X) was prot2 sexism respappr prot2*sexism . The mediating variable(s) = . % DV = liking % slope se t p %prot2 -2.81 1.16 -2.42 1.7e-02 %sexism -0.28 0.19 -1.49 1.4e-01 %respappr 0.36 0.07 5.09 1.3e-06 %prot2*sexism 0.54 0.23 2.36 2.0e-02 % %With R2 = 0.28 %R = 0.53 R2 = 0.28 F = 12.26 on 4 and 124 DF p-value: 1.99e-08 %\end{Routput} <>== png('mod74.png') mediate.diagram(mod7.4, main= "Another example of moderated mediation") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mod74.png} \caption{A simple moderated regression analysis of the \fun{protest} data set. The data were not zero centered. This shows the strength of the three regressions. Figure~\ref{fig:garcia} shows the actual data and the three regression lines. } \label{fig:moderation} \end{center} \end{figure} \subsection{Graphic Displays of Interactions} In order to graphically display interactions, particularly if one of the variable is categorical, pllot separate regression lines for each value of the categorical variable. Do this for the \pfun{Garcia} data set to show the interaction of protest with sexism. (see Figure~\ref{fig:garcia}). This is just an example of how to use Core-R to do graphics and is not a feature of \Rpkg{psych}. <>== png('garciainteraction.png') plot(respappr ~ sexism, pch = 23- protest, bg = c("black","red", "blue")[protest], data=Garcia, main = "Response to sexism varies as type of protest") by(Garcia,Garcia$protest, function(x) abline(lm(respappr ~ sexism, data =x),lty=c("solid","dashed","dotted")[x$protest+1])) text(6.5,3.5,"No protest") text(3,3.9,"Individual") text(3,5.2,"Collective") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{garciainteraction.png} \caption{Showing the interaction between type of protest and sexism from the \fun{Garcia} data set. The strength of the regression effects is shown in Fig~\ref{fig:moderation}.} \label{fig:garcia} \end{center} \end{figure} \section{Partial Correlations} Although not strickly speaking part of mediation or moderation, the use of \emph{partial correlations} can be addressed here. s\subsection{Partial some variables from the rest of the variables} Given a set of X variables and a set of Y variables, we can control for an additional set of Z variables when we find the correlations between X and Y. This is effectively what happens when we want to add covariates into a model. We see this when we compare the regression model for government action as a function of the iteraction of ideology and age with some covariates, or when we partial them out first. <>== #first, the more complicated model mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb,digits=3) # compare this to the partialled model mod.glb.partialled <- lmCor(govact ~ age * negemot - posemot - ideology - sex,data = globalWarm) @ % %\begin{Routput} % print(mod.glb,digits=3) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.001 0.002 -0.577 5.64e-01 1.071 %negemot 0.433 0.026 16.507 0.00e+00 1.172 %posemot -0.021 0.028 -0.768 4.43e-01 1.029 %ideology -0.212 0.027 -7.883 1.02e-14 1.199 %sex -0.011 0.076 -0.147 8.83e-01 1.053 %age*negemot 0.006 0.002 4.104 4.48e-05 1.015 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633 0.401 0.343 0.118 0.396 0.026 90.08 6 808 0 %> %mod.glb.partialled <- setCor(govact ~ age * negemot - posemot - ideology - sex, %+ data=glbwarm,std=FALSE) % %mod.glb.partialled %Call: setCor(y = govact ~ age * negemot - posemot - ideology - sex, % data = glbwarm) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.02 0.03 -0.54 0.59000 1.00 %negemot 0.49 0.03 16.19 0.00000 1.01 %age*negemot 0.11 0.03 3.75 0.00019 1.01 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.52 0.27 0.33 0.11 0.27 0.03 100.5 3 811 0 %> %\end{Routput} Note how the beta weights for the age, negemot and interaction terms are identical. \subsection{Partial everything from everything} Sometimes we want to examine just the independent effects of all our variables. That is to say, we want to partial all the variables from all the other variables. I do this with the \pfun{partial.r} function. To show the results, I compare the partialed rs to the original rs. I show the lower off diagonal matrix using \pfun{lowerMat}. Then to compare the partial matrix to the original matrix, I form the square matrix where the lower off diagonal is the original matrix and the upper off diagonal is the partial matrix. <>== upper <-partial.r(globalWarm) lowerMat(upper) #show it lower <- lowerCor(globalWarm) lowup <- lowerUpper(lower,upper) @ %\begin{Routput} %upper <-partial.r(glbwarm) %> lowerMat(upper) #show it % govct posmt negmt idlgy age sex prtyd %govact 1.00 %posemot -0.03 1.00 %negemot 0.50 0.13 1.00 %ideology -0.19 0.00 -0.07 1.00 %age -0.02 0.04 0.03 0.14 1.00 %sex 0.00 0.08 -0.07 0.04 0.14 1.00 %partyid -0.08 -0.01 -0.09 0.53 0.03 0.02 1.00 %> lower <- lowerCor(glbwarm) % govct posmt negmt idlgy age sex prtyd %govact 1.00 %posemot 0.04 1.00 %negemot 0.58 0.13 1.00 %ideology -0.42 -0.03 -0.35 1.00 %age -0.10 0.04 -0.06 0.21 1.00 %sex -0.10 0.07 -0.12 0.13 0.17 1.00 %partyid -0.36 -0.04 -0.32 0.62 0.15 0.11 1.00 % %\end{Routput} <>== png('partials.png') psych::corPlot(lowup,numbers = TRUE) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics[width=9cm]{partials.png} \caption{Correlations (below diagonal) and partial correlations (above the diagonal) } \label{default} \end{center} \end{figure} \section{Related packages} \pfun{mediate} and \pfun{lmCor} are just two functions in the \Rpkg{psych} package. There are several additional packages available in \R{} to do mediation. The \Rpkg{mediation} package \citep{mediation} seems the most powerful, in that is tailor made for mediation. \Rpkg{MBESS} \citep{MBESS} has a mediation function. Steven Short has a nice tutorial on mediation analysis available for download \href{http://docs.wixstatic.com/ugd/bb3887\_73181065d7c744c4a0925844302cf813.pdf}{that discusses how to use R for mediation.} And, of course, the \Rpkg{lavaan} package \citep{lavaan} is the recommended package to do SEM and path models. \newpage \section{Development version and a users guide} The \Rpkg{psych} package is available from the CRAN repository. However, the most recent development version of the \Rpkg{psych} package is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To install this development version, either for PCs or Macs, \begin{Rinput} install.packages("psych", repos = "http://personality-project.org/r", type = "source") \end{Rinput} After doing this, it is important to restart \R{} to get the new package. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version >= "2.3.12",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists (and other quantitative scientists) do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>== sessionInfo() @ \end{tiny} \ \newpage %\bibliography{../../../all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:82} Cohen, J. (1982). \newblock Set correlation as a general mulitivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3):301--341. \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Dawes}{1979}]{dawes:79} Dawes, R.~M. (1979). \newblock The robust beauty of improper linear models in decision making. \newblock {\em American Psychologist}, 34(7):571--582. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H. (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28(3/4):321--377. \bibitem[\protect\astroncite{Kelley}{2017}]{MBESS} Kelley, K. (2017). \newblock {\em {MBESS: The MBESS R} Package}. \newblock R package version 4.4.1. \bibitem[\protect\astroncite{Pollack et~al.}{2012}]{pollack:12} Pollack, J.~M., Vanepps, E.~M., and Hayes, A.~F. (2012). \newblock The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. \newblock {\em Journal of Organizational Behavior}, 33(6):789--810. \bibitem[\protect\astroncite{Preacher}{2015}]{preacher:15} Preacher, K.~J. (2015). \newblock Advances in mediation analysis: A survey and synthesis of new developments. \newblock {\em Annual Review of Psychology}, 66:825--852. \bibitem[\protect\astroncite{Preacher and Hayes}{2004}]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Preacher et~al.}{2007}]{preacher:07} Preacher, K.~J., Rucker, D.~D., and Hayes, A.~F. (2007). \newblock Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. \newblock {\em Multivariate behavioral research}, 42(1):185--227. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em \href{https://cran.r-project.org/web/packages/psych/index.html}{psych}: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3.6 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tingley et~al.}{2014}]{mediation} Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). \newblock {mediation}: {R} package for causal mediation analysis. \newblock {\em Journal of Statistical Software}, 59(5):1--38. \end{thebibliography} \begin{thebibliography}{} \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:82} Cohen, J. (1982). \newblock Set correlation as a general mulitivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3):301--341. \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Dawes}{1979}]{dawes:79} Dawes, R.~M. (1979). \newblock The robust beauty of improper linear models in decision making. \newblock {\em American Psychologist}, 34(7):571--582. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H. (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28(3/4):321--377. \bibitem[\protect\astroncite{Kelley}{2017}]{MBESS} Kelley, K. (2017). \newblock {\em {MBESS: The MBESS R} Package}. \newblock R package version 4.4.1. \bibitem[\protect\astroncite{Pollack et~al.}{2012}]{pollack:12} Pollack, J.~M., Vanepps, E.~M., and Hayes, A.~F. (2012). \newblock The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. \newblock {\em Journal of Organizational Behavior}, 33(6):789--810. \bibitem[\protect\astroncite{Preacher}{2015}]{preacher:15} Preacher, K.~J. (2015). \newblock Advances in mediation analysis: A survey and synthesis of new developments. \newblock {\em Annual Review of Psychology}, 66:825--852. \bibitem[\protect\astroncite{Preacher and Hayes}{2004}]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Preacher et~al.}{2007}]{preacher:07} Preacher, K.~J., Rucker, D.~D., and Hayes, A.~F. (2007). \newblock Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. \newblock {\em Multivariate behavioral research}, 42(1):185--227. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{{Moon}}{2020}]{processR} {Keon-Woong Moon} (2020). \newblock {\em processR: Implementation of the 'PROCESS' Macro}. \newblock https://CRAN.R-project.org/package=processR \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em \href{https://cran.r-project.org/web/packages/psych/index.html}{psych}: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3.5 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Tabachnick and Fidell}{2001}]{Tabachnick:01} Tabacnik, B.G and Fidell, L.S. (2001) \newblock Using multivariate statistics. \newblock Allyn and Bacon. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tingley et~al.}{2014}]{mediation} Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). \newblock {mediation}: {R} package for causal mediation analysis. \newblock {\em Journal of Statistical Software}, 59(5):1--38. \end{thebibliography} %\printindex \end{document} psychTools/R/0000755000176200001440000000000014552047405012630 5ustar liggesuserspsychTools/R/vJoin.R0000644000176200001440000000435714464245770014060 0ustar liggesusers#Created 05/04/23 to combine two data frames byrows and columns #slight modification 05/06/23 to create column names if missing #think about adding a key variable instead of using colnames #need to check for all unique x[key.variable,] and y[key.variable,] vJoin <- function(x,y, rnames=TRUE,cnames=TRUE,key.name=NULL) { n.x <- NCOL(x) n.y <- NCOL(y) n.obsx <- NROW(x) n.obsy <- NROW(y) if(!is.null(key.name)) { all.unique.x <- all.unique.y<- NA if(key.name %in% colnames(x)) all.unique.x <- sum(duplicated(x[,key.name])) if(key.name %in% colnames(y)) all.unique.y <- sum(duplicated(y[,key.name])) if (all.unique.x != 0 ) stop ("key.name values in x must be unique") if (all.unique.y != 0 ) stop ("key.name values in y must be unique") rnx <- rownames(x) rny <- rownames(y) # x.ord <- order(x[,key.name]) # x <- x[x.ord,] # y.ord <- order(y[,key.name]) # y <- y[y.ord,] rownames(x) <- x[,key.name] rownames(y) <- y[,key.name] x <- cbind(x,rnx) y <- cbind(y,rny) } if(is.null(colnames(x))) colnames(x) <- paste0("x",1:n.x) if(is.null(colnames(y))) if(cnames) {colnames(y) <- paste0("y",1:n.y) } else {colnames(y) <- paste0("x",1:n.y)} if(is.null(rownames(x))) rownames(x) <- paste0("Sx",1:n.obsx) if(is.null(rownames(y))) rownames(y) <- paste0("Sy",1:n.obsy) xy <- unique(c(colnames(x),colnames(y))) n.xy.col <- length(xy) if(!rnames) { new.names <- n.obsx + 1:n.obsy rownames(y) <- new.names} xy.rows <- unique(c(rownames(x),rownames(y))) n.xy.rows <- length(xy.rows) #now, put them together -- matching on row and column names new <- data.frame(matrix(NA, ncol=n.xy.col,nrow = n.xy.rows)) colnames(new) <- xy rownames(new) <- xy.rows new[rownames(x),colnames(x)] <- x[rownames(x),colnames(x)] new[rownames(y),colnames(y)] <- y[rownames(y),colnames(y)] return(new) } combineMatrices <- function(x,y, r=NULL) { #check dimensionality if(NROW(x) != NROW(y)) {stop( "y needs the same number of rows as x") } colnames(y) <- paste0("P.",colnames(y)) result <- cbind(x,y) ncy <- NCOL(y) if(is.null(r)) {y <- rbind(y,diag(ncy))} else {y <- rbind(y,r)} result <-rbind(result,t(y)) colnames(result) <- rownames(result) return(result)} psychTools/R/recode.r0000644000176200001440000000146714426177364014274 0ustar liggesusers#added 5/6/23 #code is truly ugly "recode" <- function(x,where,isvalue,newvalue) { if (missing(where)) where <-1:NCOL(x) all.values <- unique(unlist(x[,where])) if(!any(all.values %in% isvalue)) {stop ("data has more values than specified in isvalue") } maxv <- max(isvalue) minv <- min(isvalue) tempv <- isvalue + maxv + minv x[,where ]<- x[,where] + maxv + minv #make these larger to allow swaps in place for (k in 1:length(where)) {where1 <- where[k] #begin the where lop for(j in 1:NROW(x)) { #replace across all cases for (i in (1: length(isvalue)) ) {#search one column for each possible value if(!is.na(x[j,where1])) { if((x[j,where1] == tempv[i])) x[j,where1] <- newvalue[i]} } #end of values loop } #end of subjects loop } #end of where loop return(x) }psychTools/R/utlilites.r0000644000176200001440000001514314550614370015034 0ustar liggesusers#Various useful utility functions # list the files in a directory holding a particular file, or a particular directory "filesList" <- function(f=NULL) { if(is.null(f)) { f <- file.choose()} if(dir.exists(f)) {dir <- f } else {dir <- dirname(f)} #find a file in the directory you want files.list <- list.files(dir) message("\nFiles in the directory", dir, "\n") #although I prefer cat, CRAN seems to prefer message return(files.list) } "filesInfo" <- function(f=NULL,max=NULL) { if(is.null(f)) { f <- file.choose()} if(dir.exists(f)) {dir <- f } else {dir <- dirname(f)} files.list <- list.files(dir) if(is.null(max)) max <- length(files.list) info <- list(max) for(i in 1:max) { info[[i]] <- file.info(file.path(dir,files.list[i]))} info.df <- info[[1]] for (i in 2:max) { info.df <- rbind(info.df,info[[i]])} info.df <-cbind(file=1:max,info.df) return(info.df) } "fileScan" <- function(f=NULL,nlines=3,max=NULL,from=1,filter=NULL) { cat("\n Just the content of files will be shown (not directories)\n") if(is.null(f)) {f <- file.choose()} #find a file in the directory you want dir <- dirname(f) #the directory where the file was found files.list <- list.files(dir) dir.list <- list.dirs(dir,full.names=FALSE) files.list <- files.list[!files.list %in% dir.list] #get rid of directories if(!is.null(filter)) {select <- grep(filter,files.list,ignore.case=TRUE) #these are the ones that match filter files.list <- files.list[select]} n.files <- length(files.list) if(!is.null(max)) n.files <- max + from for (i in from:n.files) { file <- files.list[i] path <- file.path(dir,file) suffix <- file_ext(file) if(suffix %in% c("xls","xlsx","doc","sav","data","dat","rds","R","r","RDS", "XPT","xpt","Rda","rda","Rdata","RData","rdata","SYD","syd","sys","jmp","sas7bdat")) { cat("\nFile = ",i, "Name = ", file, "Was skipped") } else { # temp <- scan(path,what="raw",nlines=nlines) temp <- readLines(path,n=nlines) cat("\nFile = ",i, "Name = ", file, "\n",temp,"\n")} } return(dir) } #a work around the failure of file.choose(new=TRUE) to work in Rstudio "fileCreate" <- function(newName="new.file") { cat("Search for a file in the directory where you want to create a new file") fn <- file.choose() dir <- dirname(fn) new.path <- file.path(dir,newName) message("\nAre you sure you want to create a new file named ",new.path,"?\n") ok <- readline(prompt="Yes or No ") if(any(c("Y","y") %in% ok)) { if(!file.exists(new.path)) { file.create(new.path) return(new.path) } else {message('\nFile already exists, try a different name')} }else {message("fileCreate was cancelled")} } #Completely rewritten 1/20/18 to follow the help pages for order more closely #sort a data frame according to one or multiple columns #will only work for data.frames (not matrices) #needs to not quit if there is nothing to do #Then rewritten again 01/02/22 to allow sorting correlation matrices as well #Minor tweak 2/21/22 for the case of a single column #There are actually two cases; for data.frames (select=null) and for correlations (select = column names) dfOrder <- function(object,columns=NULL,absolute=FALSE,ascending=TRUE) { if(is.matrix(object)) {mat<- TRUE object <- as.data.frame(object)} else {mat<-FALSE} if(is.null(ncol(object))| NROW(object) ==1) {return(object)} else { if(is.null(columns)) columns <- colnames(object) if(psych::isCorrelation(object)) {select <- columns} else {select<- NULL} nc <- length(columns) cn <- colnames(object) if(is.null(select)) { #this allows us to sort columns independently of each other if(ascending) {temp <- rep(1,nc)} else {temp <- rep(-1,nc)} if(is.character(columns)) { #treat character strings temp [strtrim(columns,1)=="-"] <- -1 if(any(temp < 0 ) ) {columns <- sub("-","",columns) } } else {temp[columns < 0] <- -1 columns <- abs(columns) } if(is.character(columns) ) { for (i in 1:length(columns)) {columns[i] <- (which(colnames(object) == columns[i])) } columns <- as.numeric(columns) } if(absolute) { temp.object<- t(t(abs(psych::char2numeric(object[columns]))) * temp) } else { temp.object<- t(t(psych::char2numeric(object[columns])) * temp)} # if(absolute) {temp.object <- psych::char2numeric(object[columns])} else { # temp.object <- psych::char2numeric(object[columns])} temp.object <- data.frame(temp.object) } else { #the correlation case if(!is.numeric(select)) {if (!all(select %in% cn)) stop ('Variable names are incorrect')} # if(absolute) object <- abs(object) temp.ord <- apply(abs(object[,select,drop=FALSE]),1,which.max) if(!ascending) temp.ord <- length(select)- temp.ord if(absolute) { t.m <- apply(abs(object[,select,drop=FALSE]) ,1,max)} else { temp.max <- apply(object[,select,drop=FALSE] ,1,max) temp.min <- apply(object[,select,drop=FALSE],1,min) abs.max <- apply(abs(object[,select,drop=FALSE]),1,max) t.m <- abs.max t.m[abs.max > temp.max] <- temp.min[abs.max > temp.max]} temp.max <- t.m + 3*(length(select)-1+ temp.ord) # else {temp.ord <- apply(object[,select],1,which.min) # temp.max <- apply(object[,select],1,min)} # temp.max <- temp.max + 3 * (length(select) + 1 +temp.ord) #this takes into account the possibility of signed values ord <- order(temp.max,decreasing=!ascending) if(NCOL(object) == NROW(object)) {return(object[ord,ord])} else {return(object[ord,])} } ord <- do.call(order,temp.object) if(mat) object <- as.matrix(object) if(length(ord) > 1) { return(object[ord,]) } else {return(object)} #added length test 4/26/18 } } #two unpublished functions "bullseye" <- function(x,y,n) { for(i in 1:n) {psych::dia.ellipse(x,y,e.size=i)} } "dartBoard" <- function(n,sdx=.2,sdj=.3) { plot(NA,xlim=c(0,10),ylim=c(0,10),axes=FALSE,xlab="",ylab="",main="Reliability and Validity as dart throwing") if(n>20) {pc <- "."} else {pc <- 16} if(missing(sdj)) sdj=sdx*1.5 #Reliable and valid x=3 y=3 bullseye(x,y,4) points(x+rnorm(n,0,sdx),y+rnorm(n,0,sdx),pch=pc) text(x,y-2,"Reliable and Valid") #reliable and invalid x=7 y=8 bullseye(x,y,4) points(x+rnorm(n,1,sdx),y+rnorm(n,1,sdx),pch=pc) text(x,y-2,"Reliable and Invalid") #unreliable and invalid x=3 y=8 bullseye(x,y,4) points(x+rnorm(n,1,sdj),y+rnorm(n,1,sdj),pch=pc) text(x,y-2,"Unreliable and Invalid") #unreliable, but valid x=7 y=3 sdx=1 bullseye(x,y,4) points(x+rnorm(n,0,sdj),y+rnorm(n,0,sdj),pch=pc) text(x,y-2,"Unreliable but Valid") } #dartBoardl(6,.3,.5) psychTools/R/read.clipboard.R0000644000176200001440000002275614266116565015646 0ustar liggesusers# a number of functions to read data from the clipboard for both Macs and PCs "read.clipboard" <- function(header=TRUE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) return(read.table(file("clipboard"),header=TRUE,...)) else return(read.table(file("clipboard"),...)) } else { if (header) {return(read.table(pipe("pbpaste"),header=TRUE,...))} else { return(read.table(pipe("pbpaste"),...))}} } "read.clipboard.csv" <- function(header=TRUE,sep=',',...) { #same as read.clipboard(sep=',') MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.table(file("clipboard"),header=TRUE,sep,...) else read.clipboard<-read.table(file("clipboard"),sep=sep,...) } else { if (header) read.clipboard<- read.table(pipe("pbpaste"),header=TRUE,sep,...) else read.clipboard<- read.table(pipe("pbpaste") ,sep=sep,...)} } #corrected November 8, 2008 to work with header=FALSE "read.clipboard.tab" <- function(header=TRUE,sep='\t',...) { #same as read.clipboard(sep='\t') MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.table(file("clipboard"),header=TRUE,sep,...) else read.clipboard<-read.table(file("clipboard"),sep=sep,...) } else { if (header) read.clipboard<- read.table(pipe("pbpaste"),header=TRUE,sep,...) else read.clipboard<- read.table(pipe("pbpaste") ,sep=sep,...)} } #corrected November 8, 2008 to work with header=FALSE #adapted from John Fox's read.moments function #modified October 31, 2010 to be able to read row names as first column #corrected September 2, 2011 to be able to read row names as first column but without the diagonal "read.clipboard.lower" <- function( diag = TRUE,names=FALSE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) { con <- file("clipboard") } else { con <- pipe("pbpaste" )} xij <- scan(con,what="char") close(con) m <- length(xij) d <- if (diag |names) 1 else -1 n <- floor((sqrt(1 + 8 * m) - d)/2) if(names) {name <- xij[cumsum(1:n)] xij <- xij[-cumsum(seq(1:n))] d <- if (diag ) 1 else -1 n <- floor((sqrt(1 + 8 * (m-n)) - d)/2) } xij <- as.numeric(xij) X <- diag(n) X[upper.tri(X, diag = diag)] <- xij diagonal <- diag(X) X <- t(X) + X diag(X) <- diagonal if(!names) name <- paste("V",1:n,sep="") if(!names) name <- paste("V",1:n,sep="") if(names && !diag) {rownames(X) <- colnames(X) <- c(name,paste("V",n,sep="")) } else {rownames(X) <- colnames(X) <- name } return(X) } #fixed April 30, 2016 "read.clipboard.upper" <- function( diag = TRUE,names=FALSE,...) { MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) { con <- file("clipboard") } else { con <- pipe("pbpaste" )} xij <- scan(con,what="char") close(con) m <- length(xij) d <- if (diag | names) 1 else -1 n <- floor((sqrt(1 + 8 * m) - d )/2) #solve the quadratic for n if(names) { name <- xij[1:n] xij <- xij[-c(1:n)] } xij <- as.numeric(xij) X <- diag(n) X[lower.tri(X, diag = diag)] <- xij diagonal <- diag(X) X <- t(X) + X diag(X) <- diagonal if(!names) name <- paste("V",1:n,sep="") rownames(X) <- colnames(X) <- name return(X) } #added March, 2010 to read fixed width input "read.clipboard.fwf" <- function(header=FALSE,widths=rep(1,10),...) { # MAC<-Sys.info()[1]=="Darwin" #are we on a Mac using the Darwin system? if (!MAC ) {if (header) read.clipboard<-read.fwf(file("clipboard"),header=TRUE,widths=widths,...) else read.clipboard<-read.fwf(file("clipboard"),widths=widths,...) } else { if (header) read.clipboard<- read.fwf(pipe("pbpaste"),header=TRUE,widths=widths,...) else read.clipboard<- read.fwf(pipe("pbpaste"),widths=widths,...)} } #added May, 2014 to read from https files "read.https" <- function(filename,header=TRUE) { temp <- tempfile() #create a temporary file download.file(filename,destfile=temp,method="curl") #copy the https file to temp result <- read.table(temp,header=header) #now, do the normal read.table command unlink(temp) #get rid of the temporary file return(result)} #give us the result #Some useful helper functions #August, 2016 #modified Jan/April 2017 to include SAS xpt #modifed May, 2019 to not load files into the .environment, but give instructions of how to do. #modified August 2020 to be a little cleaner in code "read.file" <- function(file=NULL,header=TRUE,use.value.labels=FALSE,to.data.frame=TRUE,sep=",",quote="\"",widths=NULL,f=NULL,filetype=NULL,...) { if(missing(f) && missing(file)) f <- file.choose() if(missing(f) && !missing(file)) f <- file suffix <- file_ext(f) if(!missing(filetype)) suffix <- filetype #consider the various abbreviations possible if(suffix %in% c("txt","TXT","text","data","dat","DAT")) suffix <- "txt" if(suffix %in% c("R","r")) suffix <- "R" if (suffix %in% c("rds","RDS","Rds")) suffix <- "rds" if (suffix %in% c("Rda","rda","Rdata","RData","rdata")) suffix <- "Rda" if (suffix %in% c("SYD","syd","sys","SYS")) suffix <- "SYD" if(!missing(widths)) { result <- read.fwf(f,widths,...) message("The fixed width file ", f, "has been loaded.") } else { switch(suffix, sav = {result <- read.spss(f,use.value.labels=use.value.labels,to.data.frame=to.data.frame) message('Data from the SPSS sav file ', f ,' has been loaded.')}, csv = {result <- read.table(f,header=header,sep=sep,quote=quote,...) message('Data from the .csv file ', f ,' has been loaded.')}, tab = {result <- read.table(f,header=header,sep="\t",...) message('Data from the .tab file ', f , ' has been loaded.')}, txt = {result <- read.table(f,header=header,...) message('Data from the .txt file ', f , ' has been loaded.') }, rds = {result <- try(readRDS(f,...),silent=TRUE) if(inherits(result, "try-error")){ result <- f message("I had problems reading this file, \ntry load('",f,"') instead. \nCaution, this might replace an object currently in your environment.")} else { message('File ',f ,' has been loaded.')}}, R = {result <- dget(f,...) message('File ',f ,' has been loaded.')}, XPT = { result <- read.xport(f,...) message('File ',f ,' has been loaded.')}, xpt = { result <- read.xport(f,...) message('File ',f ,' has been loaded.')}, #the next options use load rather than read #if we return f and it has the same name as the file loaded, this wipes out the file Rda = {result <- f #not helpful if the # load(f, .GlobalEnv) # load(f) # message("To load this ",suffix," file (or these files) you need to load('",f,"') \nCaution, this might replace an object currently in your environment.") }, message("To load this file (or these files) you need to load('",f,"') \nCaution, this might replace an object currently in your environment.") }, SYD = {result <- read.systat(f,to.data.frame=to.data.frame ) message('Data from the systat SYD file ', f ,' has been loaded.')}, #this section handles (or complains) about jmp and SAS files. jmp = {result <- f message('I am sorrry. To read this .jmp file, it must first be saved as either a "txt" or "csv" file. If you insist on using SAS formats, try .xpt or .XPT')}, sas7bdat = {result <- f message('I am sorry. To read this .sas7bdat file, it must first be saved as either a xpt, or XPT file in SAS, or as a "txt" or "csv" file. ?read.ssd in foreign for help.')}, {message ("I am sorry. \nI can not tell from the suffix what file type is this. Rather than try to read it, I will let you specify a better format.\n You might try specifying the filetype") } ) } return (result) } "read.file.spss" <- function(file=NULL,use.value.labels=FALSE,to.data.frame=TRUE,...) { if(missing(f) && missing(file)) f <- file.choose() if(missing(f) &&!missing(file)) f <- file result <- read.spss(f,use.value.labels=use.value.labels,to.data.frame=to.data.frame,...) message('Data from the SPSS sav file ', f ,' has been loaded.') return(result) } "read.file.csv" <- function(file=NULL,header=TRUE,f=NULL,...) { if(missing(f) && missing(file)) f <- file.choose() if(missing(f) &&!missing(file)) f <- file read.table(f,header=header,sep=",",...) } "write.file" <- function(x,file=NULL,row.names=FALSE,f=NULL,...) { if(missing(f) && missing(file)) f <- file.choose(TRUE) if(missing(f) &&!missing(file)) f <- file suffix <- file_ext(f) switch(suffix, txt = {write.table(x,f, row.names=row.names, ...)}, text = {write.table(x,f,row.names=row.names,...)}, csv = {write.table(x,f,sep=",", row.names=row.names,...) }, R = {dput(x,f,...) }, r = {dput(x,f, ...) }, rda = {save(x,file=f,...)}, Rda ={save(x,file=f,...)}, Rds = {saveRDS(x,f)}, rds = {saveRDS(x,f)}, write.table(x,f,row.names=row.names) #the default for unspecified types ) } "write.file.csv" <- function(x,file=NULL,row.names=FALSE,f=NULL,...) { if(missing(f) && missing(file)) f <- file.choose(TRUE) if(missing(f) &&!missing(file)) f <- file write.table(x,f,sep=",",row.names=row.names,...) } psychTools/R/rd2html.R0000644000176200001440000000251314547537515014342 0ustar liggesusers "rd2html" <- function(inDir =NULL,outDir=NULL, nfiles=NULL,package="psych",file=NULL) { #two cases; 1 one input file # 2 multiple files if(!is.null(file)) { #case 1 inList<- file outList <- gsub("Rd","html",file) outList <- basename(outList) if(is.null(outDir)) {cat("select the output directory") outDir <- file.choose(TRUE) } outDir <- dirname(outDir) out.path <- file.path(outDir,outList) tools::Rd2HTML(inList,out.path,package=package) } else { #case 2 if(is.null(inDir)) { cat("select the input directory") fn <- file.choose() } else {fn<- inDir #check if this is directory or a file if(grep("Rd",fn)>0) {dir <- dirname(fn)} else {dir<- fn} } inDir <- filesList(dir) #find the input directory if(is.null(outDir)) {cat("select the output directory") outDir <- file.choose(TRUE) } else { outDir <- dirname(outDir)} if(is.null(nfiles)) nfiles <- length(inDir) outList <- gsub("Rd","html",inDir) for(i in 1:nfiles) { new.path <- file.path(dir,inDir[[i]]) out.path <- file.path(outDir,outList[[i]]) tools::Rd2HTML(new.path,out.path,package=package) } }# end of case 2 } psychTools/R/selectBy.R0000644000176200001440000001231414472736007014532 0ustar liggesusers #written May 20, 2023 "selectBy" <- function(x,by) {#use a quasi formula input by <- gsub(" ","", by) #this removes the spaces if(grepl("\\|",by)) { AND <- FALSE bb <- unlist(strsplit(by,"\\|"))} else { #note to search for a | we have to escape it! AND <- TRUE if(grepl(",",by)) { bb <- unlist(strsplit(by,","))} else { bb <- unlist(strsplit(by,"&"))} } n.by <- length(bb) by <- isvalue <- notvalue <- lessthan <- morethan <- matrix(NA,ncol= n.by) eq <- grep("=",bb) #find which operators were used lt <- grep("<",bb) #returns a vector gr <- grep(">",bb) ne <- grep("!=",bb) #prepare the relevant search parameters if(length(eq ) >0) {temp <- unlist(strsplit(bb[eq],"=")) by[eq] <- temp[1] isvalue[eq] <-as.numeric( temp[2]) } if( length(lt) >0) {temp <- unlist(strsplit(bb[lt],"<")) by[lt] <- temp[1] lessthan[lt] <- as.numeric( temp[2]) } if(length(gr) >0) {temp <- unlist(strsplit(bb[gr],">")) by[gr] <- temp[1] morethan[gr] <- as.numeric( temp[2]) } if(length(ne) >0) {temp <- unlist(strsplit(bb[eq],"!=")) by[ne] <- temp[1] notvalue[ne] <-as.numeric( temp[2]) } #make sure that the variable names are correct if(!all(by %in% colnames(x))) { cat("\n Offending variables are ",by[!by %in% colnames(x) ],"\n") stop("Variables specified do not match the variables in the data. \nFix the names and try again")} #do this on y which serves as pointers to x, rather than x #then combine the pointers for & (and) | (or) y <- matrix(TRUE,nrow=NROW(x), ncol=n.by) for(i in 1:length(by)) { if(!is.na(isvalue[,i])) y[,i] <- x[,by[i]]==isvalue[i] if(!is.na(notvalue[,i])) y[,i] <- (x[,by[i]]!= notvalue[i]) if(!is.na(lessthan[,i])) y[,i] <- (x[,by[i]]< lessthan[i]) if(!is.na(morethan[,i])) y[,i] <- (x[,by[i]] > morethan[i]) } if(AND ) {y <-apply(y,1,all)} else {y <- apply(y,1,any)} y[is.na(y) ] <- FALSE return(x[y,]) } #written May 20, 2023 "splitBy" <- function(x,by,new=FALSE) {#use a quasi formula input by <- gsub(" ","", by) #this removes the spaces bb <- unlist(strsplit(by,",")) n.by <- length(bb) by <- isvalue <- notvalue <- lessthan <- morethan <- matrix(NA,ncol= n.by) eq <- grep("=",bb) #find which operators were used lt <- grep("<",bb) #returns a vector gr <- grep(">",bb) ne <- grep("!=",bb) #prepare the relevant search parameters if(length(eq ) >0) {temp <- unlist(strsplit(bb[eq],"=")) by[eq] <- temp[1] isvalue[eq] <-as.numeric( temp[2]) } if( length(lt) >0) {temp <- unlist(strsplit(bb[lt],"<")) by[lt] <- temp[1] lessthan[lt] <- as.numeric( temp[2]) } if(length(gr) >0) {temp <- unlist(strsplit(bb[gr],">")) by[gr] <- temp[1] morethan[gr] <- as.numeric( temp[2]) } if(length(ne) >0) {temp <- unlist(strsplit(bb[eq],"!=")) by[ne] <- temp[1] notvalue[ne] <-as.numeric( temp[2]) } #do this on y which serves as pointers to x, rather than x #then combine the pointers for & (and) | (or) if(!all(by %in% colnames(x))) { cat("\n Offending variables are ",by[!by %in% colnames(x) ],"\n") stop("Variables specified do not match the variables in the data. \nFix the names and try again")} y <- matrix(TRUE,nrow=NROW(x), ncol=n.by) colnames(y) <- paste0(c(by),"2") for(i in 1:length(by)) { if(!is.na(isvalue[,i])) y[,i] <- x[,by[i]]==isvalue[i] if(!is.na(notvalue[,i])) y[,i] <- (x[,by[i]]!= notvalue[i]) if(!is.na(lessthan[,i])) y[,i] <- (x[,by[i]]< lessthan[i]) if(!is.na(morethan[,i])) y[,i] <- (x[,by[i]] > morethan[i]) } #convert to numeric y <- y +0 if(new){return(y)} else {return(cbind(x,y))} } #revised 8/26/23 "wide2long" <- function(x,width, cname=NULL, idname = NULL, idvalues=NULL ,pattern=NULL) { if(!is.null(pattern)) x <- rearrange(x,pattern) #this organizes the data before converting to long nvar <- NCOL(x) n.obs <- NROW(x) nrep <- nvar/width if(is.null(cname)){ cname <- paste0("V",1:width)} if(is.null(idname) ) idname="C" if(is.null(idvalues)) {idvalues <- 1:nrep} idvalues <- rep(idvalues,each=n.obs) if(round(nrep)!=nrep) stop("x must be an even multiple of width") new <- NULL for(i in 0:(nrep-1)){ #create long data set new <- rbind(new,x[,((width*i)+1):(width*(i+1))]) } new.df <-data.frame(idname=idvalues,new) colnames(new.df )<- c(idname, cname) return(new.df)} "rearrange" <- function(x, pattern ) { nvar <- ncol(x) y <- length(pattern) if(round(nvar/y)!=nvar/y) stop("length of pattern must be a multiple of the number of variables") ord <- NULL for (i in (0: (y-2))) { ord <- c(ord,pattern+i)} x[,] <- x[,ord] return(x)} psychTools/R/df2latex.R0000644000176200001440000005274714537110037014476 0ustar liggesusers#modified April 6, 2015 to return the table invisibly as well so it can be embedded in a Sweave document #November 22, 2013 Modified with help from Davide Morselli to allow for "stars" #also allows for printing straight text (char=TRUE) #cor2latex was modified following Davide Morselli's suggestion to allow direct calculation of the correlations #added { and } before and after each variable name to allow siunitx to work with stars #added the absolute value in the big comparison for cor2latex and df2latex #added the ability to round numbers even though other columns are character (01/24/20) #modified May 29, 2021 to addthe ability to do long tables #modified May 30, 2022 to add the ability to handle labels from fa.lookup # "df2latex" <- function(x,digits=2,rowlabels=TRUE,apa=TRUE,short.names=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="df2latex",label="default",char=FALSE,stars=FALSE,silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0,abbrev=NULL,long=FALSE) { #first set up the table if(is.null(abbrev)) abbrev<- digits + 3 nvar <- dim(x)[2] rname<- rownames(x) tempx <- x comment <- paste("%", match.call()) if(long) { header <- paste0("\\begin{center} \\begin{",font.size,"} \\begin{longtable}") header <- c(header,"{l",rep("r",(nvar)),"}\n") header <- c(header,paste0(" \\caption{",caption,"} \\label{",label,"} \\endfirsthead \\multicolumn{",nvar+1,"}{c} {{\\bfseries \\tablename\\ \\thetable{} -- continued from previous page}} \\\\ \\endhead \\hline \\multicolumn{",nvar+1,"}{|c|}{{Continued on next page}} \\\\ \\hline \\endfoot \\hline \\hline \\endlastfoot ")) #this wraps up the long table footer <- paste0(" \\end{longtable} \\end{",font.size,"} \\end{center}") # \\label{",label,"}") } else { header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") if(stars) {if(rowlabels) { header <- c(header,"{l",rep("S",(nvar)),"}\n")} else {header <- c(header,"{",rep("S",(nvar+1)),"}\n")} } else { if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n")} } if(apa) {header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline ")} else {footer <- NULL} if (stars){ footer <- paste(" \\hline \n \\multicolumn{7}{l}{\\scriptsize{\\emph{Note: }\\textsuperscript{***}$p<.001$; \\textsuperscript{**}$p<.01$; \\textsuperscript{*}$p<.05$",".}}" ,sep = "") }else{ footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) #end of not long } #now put the data into it if(big) all.x <- x #we need to keep the original format of the data to do the big operation if(!char) {if(!is.null(digits)) {if(is.numeric(x) ) {x <- round(x,digits=digits)} else {for(i in 1:ncol(x)) {if (is.numeric(x[,i])) x[,i] <- round(x[,i],digits)} } if(cut > 0) x[abs(x) < cut] <- NA } } cname <- colnames(x) if (short.names) cname <- abbreviate(cname,minlength=abbrev) #cname <- 1:nvar names1 <- paste0("{",cname[1:(nvar-1)], "} & ") lastname <- paste0("{",cname[nvar],"}\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x,drop0trailing=FALSE) if(big > 0) { #browser() for(i in 1:ncol(x)) {if (is.numeric(all.x[,i])) x[abs(all.x[,i] ) > big,i] <- paste0("\\bf{",x[abs(all.x[,i]) > big,i],"}") }} # {if (is.numeric(all.x[,i])) x[abs(all.x[,i] ) > big,i] <- paste0("\\bf{",x[abs(all.x[,i]) > big,i],"}") }} # if(is.numeric(tempx)) x[abs(tempx ) > big] <- paste0("\\bf{",x[abs(tempx) > big],"}") } } else #to keep the digits the same {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } else {if(big > 0) { x[!is.na(abs(as.numeric(all.x))>big) & abs(as.numeric(all.x))>big ] <- paste0("\\bf{", x[!is.na(abs(as.numeric(all.x))>big) & abs(as.numeric(all.x))>big ],"}") } } # x[!is.na(abs(as.numeric(x)) > big)]<- paste0("\\bf{", x[!is.na(abs(as.numeric(x)) > big)],"}") }} value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) #now put it all together if(!silent) {cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the data cat(footer) #close it up with a footer } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } #end df2latex cor2latex <- function (x, use = "pairwise", method="pearson", adjust="holm", stars = FALSE, digits=2, rowlabels = TRUE, lower = TRUE, apa = TRUE, short.names = TRUE, font.size = "scriptsize", heading = "A correlation table from the psych package in R.", caption = "cor2latex", label = "default",silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0) { if(stars) heading <- paste(heading, "Adjust for multiple tests = ",adjust ) if (!is.na(class(x)[2]) & class(x)[2]=="corr.test") { #we already did the analysis, just report it r <- x$r p <- x$p} else { if (nrow(x) > ncol(x)) { #find the correlations x <- psych::corr.test(x, use=use,method=method,adjust=adjust) #change to corTest r <- x$r p <- x$p } else { #take the correlations as given r <- x p <- NULL } } r <- round(r, digits) r <- format(r, nsmall = digits,drop0trailing=FALSE) #this converts to character but keeps the right number of digits) if (lower) { r[upper.tri(r)] <- "~" } else { r[lower.tri(r)] <- "~" } if(isTRUE(stars && is.null(p))) stop("To print significance levels, x must be be either a data frame of observations or a correlation matrix created with the corr.test function of the package psych. If you are not interested in displaying signicance level set stars = FALSE") #p[upper.tri(p,diag=FALSE)] #the adjusted probability values mystars <- ifelse(p < .001, "{***}", ifelse(p < .01, "{**}", ifelse(p < .05, "{*}", ""))) mystars <- t(mystars) if(stars) { R <- matrix(paste(r,mystars,sep=""),ncol=ncol(r))} else {R <- r} diag(R) <- paste(diag(r), " ", sep="") rownames(R) <- colnames(r) colnames(R) <- colnames(r) if (lower) { R[upper.tri(R, diag = FALSE)] <- "" } else { R[lower.tri(R, diag = FALSE)] <- "" } if(stars) {char<- TRUE} else {char <- FALSE} return(df2latex(R, digits = digits, rowlabels = rowlabels, apa = apa, short.names = short.names, font.size = font.size, heading = heading, caption = caption, label = label, char=TRUE,stars = stars,silent=silent,file=file,append=append,cut=cut,big=big)) } "fa2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=0,big=.3,alpha=.05,font.size ="scriptsize",long=FALSE, heading="A factor analysis table from the psych package in R",caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(inherits(f,"fa.ci")) { if(is.null(f$cip)) {px <- f$cis$p} else {px <- f$cip}} else {px <- NULL} #get the probabilities if we did fa.ci #if(class(f)[2] !="fa") f <- f$fa if(inherits(f,"fa")) {x <- unclass(f$loadings) if(!is.null(f$Phi)) {Phi <- f$Phi} else {Phi <- NULL} nfactors <- ncol(x) items <- NULL} else {#we are processing fa.lookup output nfactors <- which(names(f)=="h2") -1 Phi <- NULL items <- f[,"Item"] x <- f[,1:nfactors] } if(nfactors > 1) {if(is.null(Phi)) {h2 <- rowSums(x^2)} else {h2 <- diag(x %*% Phi %*% t(x)) }} else {h2 <- x^2} u2 <- 1- h2 vtotal <- sum(h2 + u2) if(cut > 0) x[abs(x) < cut] <- NA #modified May 13 following a suggestion from Daniel Zingaro if(!is.null(f$complexity)) {x <- data.frame(x,h2=h2,u2=u2,com=f$complexity) } else {x <- data.frame(x,h2=h2,u2=u2)} colnames(x)[which(colnames(x)=='h2')] <- '$h^2$' #added following a request from Alex Weiss 11/28/19 colnames(x)[which(colnames(x)=='u2')] <- '$u^2$' #first set up the table nvar <- dim(x)[2] comment <- paste("% Called in the psych package ", match.call()) if(long) { header <- paste0("\\begin{center} \\begin{",font.size,"} \\begin{longtable}") header <- c(header,"{l",rep("r",(nvar)),"}\n") header <- c(header,paste0(" \\caption{",caption,"} \\label{",label,"} \\endfirsthead \\multicolumn{",nvar+1,"}{c} {{\\bfseries \\tablename\\ \\thetable{} -- continued from previous page}} \\\\ \\endhead \\hline \\multicolumn{",nvar+1,"}{|c|}{{Continued on next page}} \\\\ \\hline \\endfoot \\hline \\hline \\endlastfoot ")) #this wraps up the long table footer <- paste0("\\end{longtable} \\end{",font.size,"} \\end{center} ") #\\label{",label,"}") } else { header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") if(!is.null(items)) {header <- c(header,"{l",rep("r",nvar+1),"}\n")} else { header <- c(header,"{l",rep("r",nvar),"}\n")} if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') footer<- NULL if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) } #end of not long #now put the data into it x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} fx <- format(x,drop0trailing=FALSE) #to keep the digits the same {if(!is.null(px) && (cut == 0)) { temp <- fx[1:nfactors] temp[px < alpha] <- paste("\\bf{",temp[px < alpha],"}",sep="") fx[1:nfactors] <- temp } if(big > 0) {temp <- fx[1:nfactors] x <- x[1:nfactors] temp[!is.na(x) & (abs(x) > big)] <- paste("\\bf{",temp[!is.na(x) & (abs(x) > big)],"}",sep="") fx[1:nfactors] <- temp } value <- apply(fx,1,paste,collapse=" & ") #insert & between columns value.names <- names(value) value <- gsub("NA", " ", value, fixed = TRUE) value <- paste0(value,"&",items) names(value) <- value.names #weird, but seemingly necessary if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the factor loadings } #now find and show the variance accounted for if(is.null(items)) {x <- f$loadings } else {x <- x[,1:nfactors]} #use the original values not the rounded ones nvar <- nrow(x) if(is.null(Phi)) {if(nfactors > 1) {vx <- colSums(x^2) } else { vx <- diag(t(x) %*% x) vx <- vx*nvar/vtotal }} else {vx <- diag(Phi %*% t(x) %*% x) vx <- vx*nvar/vtotal } # names(vx) <- colnames(x)[1:nvar] vx1 <- round(vx,digits) cn <- c("&",allnames[2:(NCOL(x)+1)],"\\cr \n") loads <- c("\\hline \\cr",cn,"SS loadings &",paste(vx1," & ",sep=""),"\\cr \n") if(!silent) { cat(loads)} summ <- NULL #varex <- rbind("SS loadings " = vx) if(cumvar) { provar <- round(vx/nvar,digits) summ <- c("Proportion Var &" ,paste( provar, " & ",sep=""),"\\cr \n") # cat("Proportion Var &" ,paste( provar, " & ",sep=""),"\\cr \n") if (nfactors > 1) {cumvar <- round(cumsum(vx/nvar),digits) cumfavar <- sprintf("%.2f",cumsum(vx/sum(vx))) summ <- c(summ, "Cumulative Var & ",paste( cumvar," & ", sep=""),"\\cr \n", "Cum. total Var & ",paste(sprintf("%.2f",round(cumsum(vx/sum(vx)),digits=digits))," & ",sep=""),"\\cr \n") } if(!silent) {cat(summ) } } loads <- c(loads,summ) if(!is.null(Phi)) { summ <- c("\\cr \\hline \\cr \n") if(!silent) {cat(summ) } Phi <- round(Phi,digits) phi <- format(Phi,nsmall=digits) phi <-apply(phi,1,paste,collapse=" & ") phi <-paste(colnames(x)," &",phi) phi <- paste(phi, "\\cr", "\n") cn <- c("&",allnames[2:(NCOL(x)+1)],"\\cr \n") loads <- c(loads,summ,cn,phi) if(!silent) { cat(cn,phi)} } if(!silent) { cat(footer)} #close it up with a footer } values <- c(values,loads) result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } "irt2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,font.size ="scriptsize", heading="An IRT factor analysis table from R",caption="fa2latex" ,label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] != "polyinfo" ) {nf <- length(f$plot$sumInfo) } else {nf <- length(f$sumInfo) } #create nf tables for(i in (1:nf)) { if(class(f)[2] != "polyinfo" ) {x <- f$plot$sumInfo[[i]]} else {x <- f$sumInfo[[i]] } if(nf>1) { rowmax <- apply(x,1,max, na.rm=TRUE) rowmax <- which(rowmax <.001,arr.ind=TRUE) if(!is.null(rowmax)) x <- x[-rowmax,]} #first set up the table nvar <- ncol(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading," for factor " , i, " }", "\\cr \\hline \\cr", "\n & \\multicolumn{7}{c}{Item information at $\\theta$} \\cr \\cline{2-8} ") if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Item & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) #to keep the digits the same value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) value <- paste(sanitize.latex(names(value))," & ",value) values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together if(class(f)[2] != "polyinfo" ) {test.info <- colSums(f$plot$sumInfo[[i]])} else {test.info <- colSums(f$sumInfo[[i]])} sem <- sqrt(1/test.info) reliab <- 1 - 1/test.info summary <- rbind(test.info,sem,reliab) summary <- round(summary,digits) summary <- format(summary,nsmall=digits) summary <- cbind(c("Test.info","SEM","Reliability"),summary) summary <- apply(summary,1,paste,collapse=" & ") summary <- paste(summary,"\\cr \n") if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the item information cat("\\hline \n & \\multicolumn{7}{c}{Summary statistics at $\\theta$} \\cr \\cline{2-8}") cat(summary) cat(footer) #close it up with a footer' } } result <- c(header,allnames,values,summary,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } #adapted from various sources, including xtable "sanitize.latex" <- function(astring) { result <- astring result <- gsub("&", "\\&", result, fixed = TRUE) result <- gsub("_", "\\_", result, fixed = TRUE) result <- gsub("%", "\\%", result, fixed = TRUE) return(result) } #added December 28, 2013 "omega2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=.2,big=.3,font.size ="scriptsize", heading="An omega analysis table from the psych package in R",caption="omega2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(inherits(f,"omega")) { f$loadings <- f$schmid$sl x <- unclass(f$loadings) nfactors <- ncol(x) h2 <- rowSums(x^2) u2 <- 1- h2 vtotal <- sum(h2 + u2) #first set up the table nvar <- dim(x)[2] items <- NULL} else {#we are processing fa.lookup output nfactors <- which(names(f)=="h2") -1 Phi <- NULL items <- f[,"Item"] x <- f[,1:nfactors] } comment <- paste("% Called in the psych package ", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption," with cut = ",cut,"\n $\\omega_h = ",round(f$omega_h,digits), "\\;\\;\\;\\alpha (\\lambda_3) = ",round(f$alpha,digits), "\\;\\;\\;\\lambda_6^* = ",round(f$G6,digits),"\\;\\;\\; \\omega_t = ",round(f$omega.tot,digits),"$ } \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x[abs(x) < cut] <- NA x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) #to keep the digits the same value <- apply(x,1,paste,collapse=" & ") #insert & between columns value <- gsub("NA", " ", value, fixed = TRUE) if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row #now put it all together #now find and show the variance accounted for x <- f$loadings #use the original values nvar <- nrow(x) vx <- colSums(x^2)[1:(ncol(x)-3)] vx <- round(vx,digits) loads <- c("\\hline \\cr SS loadings &",paste(vx," & ",sep=""),"\\cr \n") if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the factor loadings cat(loads) cat(footer) #close it up with a footer } result <- c(header,allnames,values,loads,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } #added 1/6/14 "ICC2latex" <- function(icc,digits=2,rowlabels=TRUE,apa=TRUE,ci=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="ICC2latex",label="default",char=FALSE,silent=FALSE,file=NULL,append=FALSE) { if((length(class(icc)) < 2 ) | (class(icc)[2] !="ICC")) icc <- psych::ICC(icc) #do the analysis in case we have not done it yet #first set up the table x <- icc$results nvar <- dim(x)[2] rname<- rownames(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[[htpb]", "\\caption{",caption,"} \\begin{tabular}",sep="") if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n") } if(apa) {header <- c(header, "\\multicolumn{",5,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline \\cr \\multicolumn{ 5 }{c}{ Number of subjects = ", icc$n.obs, "Number of raters = ",icc$n.judge,"}")} else {footer <- NULL} footer <- paste(footer," \\end{tabular} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) #now put the data into it x[2:nvar] <- try(round(x[2:nvar],digits=digits)) cname <- colnames(x) if(!ci) nvar <- nvar-2 names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x[1:nvar],drop0trailing=FALSE)} else #to keep the digits the same {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } value <- apply(x,1,paste,collapse=" & ") #insert & between columns if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") #add \\cr at the end of each row if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) #now put it all together if(!silent) { cat(comment,"\n") #a comment field saying where the data came from cat(header) #the header information cat(allnames) #the variable names cat(values) #the data cat(footer) #close it up with a footer } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } psychTools/MD50000644000176200001440000001452114552067263012746 0ustar liggesusers32b9c8ee9e0bba1dbf4ad5bdcfd6ae95 *DESCRIPTION 94284aec6d32abd3f2807f3daed5cdc0 *NAMESPACE bc6bb98a24a5d00c70b23dea9012cf32 *R/df2latex.R 4b5f0f6d29dd9318aff2f351dc7c3d95 *R/rd2html.R 3be31fd0dca220037feff141023e7cdd *R/read.clipboard.R 3b5315a41de3db0d292b3464770d42ce *R/recode.r 02dad78dd70571d66d8c34e878f9af0c *R/selectBy.R dc46127eb0d8f6b729a924599efaff94 *R/utlilites.r 10b85610b416774a8ada11fe060d37aa *R/vJoin.R 8faf250d78a120ba4c7ea2186efddd24 *build/partial.rdb bfc4f574876a4c6bf8015388ba0d3d87 *build/vignette.rds fbd2a156c67dedec9ebedb62f5f26527 *data/Athenstaedt.rda e61d318d6482579eeb60c952a9a04889 *data/BFI.adjectives.dictionary.rda a18d9a70d55979e13b5445deb8db305a *data/Damian.rda 2fc8b7332b9fd7c200195bef51e4c53e *data/GERAS.rda b8a2b6accd92af2c3a6e3e04cf0c556c *data/Pollack.rda 97a67f96b7f37339a9282e990a41ca06 *data/Schutz.rda 120ad3ebf4d160d35490993cb4f9cd6f *data/USAF.rda 30457c8d5652d78793d228f992867481 *data/ability.rda 87d780006641567b457a91b4300b6962 *data/affect.rda 7e981e4a129a02df734990c3a72245c7 *data/bfi.adjectives.keys.rda a06e46e70b7ecad12a233f6679e2bfbe *data/bfi.dictionary.rda 7c85dfba8e4e5328edde00fa03afd78d *data/bfi.rda 81c7254ee84db5a46f1b48186a36984f *data/big5.100.adjectives.rda 51276c4183e9d47bed61dc077943f71d *data/big5.adjectives.keys.rda ef855e9485a47d839d9bacb6726acfad *data/blant.rda 916c97fabe48902a0a81811114d726c6 *data/blot.rda 3698f2712f2ccff88eaebe782a2b1cfe *data/burt.rda 7680be9c8936f02befe4e1314e03a9b7 *data/cities.rda 67227d642c5a990fb30e9bbb689203bb *data/colom.ed0.rda 38e52f5a7d893318e51e7dda2faab5fb *data/colom.ed1.rda 61f022f40615601a8451f188bbda587f *data/colom.ed2.rda f9b2cb4482b922cfc4b5c031c67faaf5 *data/colom.ed3.rda 5f5a80b54079e3acd8ca6e87b04937b3 *data/colom.rda c5df1045f03c1a63f8e220eec878fc47 *data/cubits.rda 19c7e4fc7898869af271d3b1961db8be *data/cushny.rda 3a7c218ef11b7863108ffabbd38aa6db *data/eminence.rda e551cadd53c4bb10a13ec960c607ceae *data/epi.bfi.rda 39f3737142196840ee692d382eef8b12 *data/epi.dictionary.rda 6d5c47045b6fd42a35da55adc50e2fda *data/epi.rda 06d1cde3d452d80f169c0c9cf7296da5 *data/epiR.rda 2431d38b6460d74e196f5d0935bad697 *data/galton.rda f8d72f1588d094316edc8b1e7ec1bb18 *data/globalWarm.rda d072748bb65997a1f293575d2f62b9b8 *data/heights.rda cc9bdf34b142c70cbb4efd1bd2ad6506 *data/holzinger.dictionary.rda b029881e53b652aac83d0ae0b978ac36 *data/holzinger.raw.rda 7ca42f1abef778c689f8615cbc7e0435 *data/holzinger.swineford.rda 2e065b83dd85b6050c307b95c2a87bb2 *data/income.rda a686353fd849944b116ec46c48e082c8 *data/iqitems.rda b7e30c177a637e371b0d729583bfcf0a *data/msq.rda ad58e63c71555d9a92dda061112c38da *data/msqR.rda c4096f52fc206ad56bd74b2bd9c8d3a0 *data/neo.rda 6ce3e527115bdb2e23416764496c2244 *data/peas.rda 89bd7054138fda202526a58ac276faaf *data/sai.dictionary.rda f60ee725111557f91b3a82db7b87a6e6 *data/sai.rda 309c90c1262fa267aa932705bf02113d *data/salary.rda 750cfdfc8737a90915fd746403696f5d *data/sat.act.rda ae743384ca2243d2cba75e6567355431 *data/spi.dictionary.rda b09a458f9ea1e775e730462c33e53108 *data/spi.keys.rda 61cafad95743013127467aa39b42478d *data/spi.rda e22e26fe7bc28a23625407ba7c78dd3c *data/tai.rda ac322891ea06180ef37aae4d67d5398a *data/vegetables.rda b8bb39f108f5eb7d1a8c6e496810a31a *data/zola.rda b66b10358a66fa91f5439da46f857f45 *inst/CITATION d354a05dc13397cf7df898bb5e71e60a *inst/NEWS.Rd 640165647c0fa077f0b58f8326cd3108 *inst/doc/intro.R 6246f3fcc3461c7944656bff290fcd08 *inst/doc/intro.Rnw b88da84064bbe1e4791c67a1a65095a0 *inst/doc/intro.pdf 8d0467fa9ecb6eb303d85047d47c5623 *inst/doc/mediation.R 79482ceb4274f44c69bdc53523187a54 *inst/doc/mediation.pdf 2d0b534fe2434879dd7ddaa5cb642385 *inst/doc/mediation.rnw cb33dde7cb0cf19c5be9dcd2b13faad9 *inst/doc/omega.R 399d452e105734cd3aecdfc86556885a *inst/doc/omega.Rnw 2f931625d55c5ee4e9bcf69622814526 *inst/doc/omega.pdf 9cacf87aa8d0bd3d48f0c83ff683916e *inst/doc/overview.R 0d3f7175db4d57956c8ad177441d54c4 *inst/doc/overview.Rnw e860c9b63fe08de8b0ec59fbbf9f9c2a *inst/doc/overview.pdf 4a7c11a008426c14481edc76135eaf44 *man/Athenstaedt.Rd 11e5444385724463f885c59888e1fbe6 *man/BFI.adjectives.dictionary.Rd cf4ae5e3abe42576b05ed1cae656795d *man/GERAS.Rd 5da4e98fdfe3bdd41456d2a840d16938 *man/Pollack.Rd 0c1fc27bae2510a69d0271acf1a1064f *man/Schutz.Rd 510a6156850369e5fd1602206d68b58c *man/ability.Rd cc9c4a7f5f0bcc961f7acd0d035ab7b2 *man/affect.Rd c456730e02d678b5f4c95ab8729bc86d *man/bfi.Rd 44a2933d7d5514a878d192673dde96ce *man/big5.100.adjectives.Rd a7d0d7a7f65843e3426916cfc539b374 *man/blant.Rd 58c90b1432d72ae702a965a8f6e65b34 *man/blot.Rd a756b9a401cc2f92833c41345a39e4b8 *man/burt.Rd ea6859eb5be5bfbdf44edf3002c0283f *man/cities.Rd 37b7208ea25c7e75fef2e34b20906d2e *man/colom.Rd a7a30f5b8cb90893c2ae2b3e1e0504d2 *man/cubits.Rd 7d3022acd74160a762f978363e90510b *man/cushny.Rd b54919a259ba20ffcb8ba13efd5c2eb1 *man/df2latex.Rd 64225bf8306a99f004e41994bd9e3212 *man/dfOrder.Rd 5a8896249bac5cdeee0cbd90762e8739 *man/eminence.Rd dc2f8f0ebf05230b036456ca564d3e67 *man/epi.Rd 0154ca3101a97249f68e317e47a73291 *man/epi.bfi.Rd 7b1730303ba0529c41f7f77332c79f05 *man/fileUtilities.Rd a1e75d10329a06e3eac8680793dae5e2 *man/galton.Rd 4faf01fc0a3ea5bd13ca19d0c7df74f8 *man/globalWarm.Rd baa3f2d70b65d3ca3667d7c456745d23 *man/heights.Rd b36c81e7a809415a4c8cca91291ee831 *man/holzinger.swineford.Rd 63603ba112ebe007fdb48a98716db524 *man/income.Rd d00628ae1f57305f32167abea8aca5fb *man/iqitems.Rd c343e01413dc2ab88030bd8aaf9a0602 *man/msq.Rd a3592ad702e796018fb1250b0950e789 *man/msqR.rd 240adb18d9fe0e8e796ee5024839815e *man/neo.Rd 1a38304766baed404c48389555dae8fa *man/peas.Rd 3a462aa7cb22f49b8e8e19dfc2208e68 *man/psychTools.Rd 07ab80c5273444327ea7373714cfd0b5 *man/rd2html.Rd a6cbde37f58e59755f84ea0ca060604c *man/read.clipboard.Rd ca38de5e230da2d562be80afc7eb335b *man/recode.Rd 188937ea2212aa994b655be49cbfb2a1 *man/sai.Rd 9753f51498bbf250b0d2335c073aefde *man/salary.Rd 444e35a16854eaed220635cde1787148 *man/sat.act.Rd 9e5e64cc4d03c42e5235342b1005a6b0 *man/selectBy.Rd 56bc33ee73478c30b6f46714ada7bafe *man/spengler.Rd 643f0a4e92207339f638e54a25a290f4 *man/spi.Rd d49c94be108aa80d377717735d0b7976 *man/usaf.Rd 6a66f56913edcb4aaa84de7e7f18710a *man/vJoin.Rd faa4a68a642bf6999e9752f4d6ca69d8 *man/vegetables.Rd e4439f2f966860698590da13577f9e94 *man/zola.Rd 6246f3fcc3461c7944656bff290fcd08 *vignettes/intro.Rnw 2d0b534fe2434879dd7ddaa5cb642385 *vignettes/mediation.rnw 399d452e105734cd3aecdfc86556885a *vignettes/omega.Rnw 0d3f7175db4d57956c8ad177441d54c4 *vignettes/overview.Rnw psychTools/inst/0000755000176200001440000000000014552047402013401 5ustar liggesuserspsychTools/inst/doc/0000755000176200001440000000000014552047402014146 5ustar liggesuserspsychTools/inst/doc/omega.pdf0000644000176200001440000063654314552047404015754 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4136 /Filter /FlateDecode /N 90 /First 757 >> stream x\ks6߶Nm\vNzٝ#Ѷ6JrudKN#K 98@в*+t!(La.l-\.|!ÅB ?# ,U!b MVByi 5\h n.4%QB 9/*L00 VQ,-C!]^kC- zg$Q@"p' qhG9SCcQ&rFZEBe4ōGB!P@C Z$,4SMB( ]@+0F $ 5,)$2ڀd(ƒA2a/@h: BXC-%TpP+$kZ'@ mD-,$kLo  hAPL| hЭdV +"aP#"=$[SɎC?hp"( yHF?-%B2' ΢@ 40PAPۿ}}iկ\`79Nt:y.6ÇQģE3.9㺚jZ-GUo_Eqq}qe7mތu?\47\MK?9~7"ÚROє4@"? m⯏RٜC:9tH: IJHbNC\,,^{؞g&K1-m:_<ЩN~o lߚy4jcg$+CfmȬ\K~Y򲂥d'<嵺Yd'<,O6T<[m:'"*%7]9d- Ja'p bt=R+R-›N=Z_PL.k}Vq0ĭQts\e@1AcHe˶W22o{)/ct2q_N=\:Y>;Nө:{HjN}(;I*Ni&SGb즋]JݥC>sMm&&loSu6)%%$%)O:2{Ńfu1.5ƥƸSc|jWkZanw?1 ǒ-'e>tyǹVtvǷyݫIs GNkdzM0:0VE5.dCG Θ WX9A-T/e@&R?:>[+ط5 ,#ON_*̧ bX7abOiƚ`y>IwRrۜ0Lm!4#ձM5-l1u[tj-u{}$Nzq\sFF7{̞{~`/K#cfo ;eo;3*V]b"0F}X6#^^Vj+a_M.Xu5dgl?kv ;g z?K6b#Ea ~9ܰ>8E̓`\#XLfZgxK{g)9f6/ &Ol2$S65~l5}dg_z|Ꜧaы'x6)|0/.%fqޣ96x`2DgNϑ:ak6F7/{\i5Z!h2_ӎ_;wVf'ڡiNMN{1Y)܅x!IJ!6F+[+MVXQoo~8}TUG@aZ7|_l"yIi9gmvȜ/Py8еKE|F,Sx[ owyF.SYB0孒Z aH`"e]7nJ8!^"rhèK&mKp^=>wS`ոM-`Îe n?xng8Q]KW-o{E<”/0e$Gz?zyH4\Ne'7a5hgSٹӟczv d>]_wŮד84nr2K RGXbrO.CɁxb 95w?{]*J˓Ol7܅Jn/K|W&E a۲UwM]R8omN^2.X}&2e6i}or[}_}y1'N?L_/Q  %=AsU}D$  FZд eP|4])`mUA̚{;SJ}Pl~1o¦dI%Q4ڊ6([X46)_Zlu -rĖ)-S]h)T 474u)hJZ%k)JA; ޡU&'qrKSNF FyU{umg\h)@&kF ` eL:(6-MToV`X=M++K#98qU "CZ&WՒc̆h8-Ԏ42ߡ nQآRz[y^`<\DsRo2r/z&j2ؤwMn=z0nћ_)K z 5hE FK^A0F$`͠gmSx=fऐ(/VlA!p~0-8%hhU_ F #iwz fpz~%48P _Y)wAd\.ܴ z䯅yŦ_ $6ƕ"4XKkpА3pOzVh`N^ aVtzFkYfT  Q6s6fWϽ an5WocxbmSZvx&^D[{N6WlE~izoMBWV;=zuݓԻ-Pէ6C-P۝wU9j ŽqFw Q߸-/<1"Z![zHlA8D>ތMg([ۍyweۍp> stream GPL Ghostscript 10.00.0 2024-01-17T16:04:52-06:00 2024-01-17T16:04:52-06:00 LaTeX with hyperref endstream endobj 93 0 obj << /Type /ObjStm /Length 2721 /Filter /FlateDecode /N 90 /First 821 >> stream x[[}ϯGRnr p֦bj1!EIM~}ihҌ@;u mA8D"(r19 Fe\JE\q7O(9U1U%a,K0bA&{,|ֲspk†uu6sQlp1b \يpPA ܉rי ftw#|-kEP3X/+CԓorzQy vJDC1\=`j!A51g> "iGQ$("䱆NK!D:$QdKAyVP(3I EyDP:P*Tt0d%M<* 724u"Fr!Mhjz$\Hy (`)@!pєBb-@G-q4lLAJ@.?}hi턆dBBMH&ϐ1ˌ@'Cn. vpIOEiHO 3۱9- x%3C v{oCb HY%QtïDu4 Fx-!Al.lJI0{|$hX"2/(5X b;"y%NppS0N2 92cL•hHCjɛبkQ׾sb"{722;(YbփYK{p6#}N".Ա,B>2WtYՔԔLlk?,f^amX1xWPt$~xg/GOf 1e<}0]nգÅ/+G|5[guj+qw^lJTwᨗ/GM+PP_ ^'&͛jruapYÙg.#v[^rlpHE6'Ւ.ZpΠȟLr 鼒sPEr7rUk<Qt,eG`0Q' Q~n:R*eOVb^"w__9o1m\4ɤ/_! 9q9xjkVot/䱀bS%nxPk[mn_cp&rB%-a][cyx%ٶ|M\w`-NSRC Ӕ 'w?O7>t1lyZj.sRuwl\$G>Ȉ^ݱ0x0 ^z9@1ƣVk9]"q3;. 9n)WHdvwȍx.CTF<-z۸%XWr'ρoqi*x BraNZVqٛ;^a;Kjg/(f&a>ܕ; C Y^7S}@Q ڢ3Ѿ4acF% hp}Occ8y1Z2l 0doN\G_u(4tl6ؐ%;Rr-١sakF\ȩә2(ac9O&i8,R>z5bD{]ǂr-ȱ{Fus9ӿ4A~A*72˰ЉY̊{ӽ}'p¾cRmZ,=۱{*sΣK%Z/~O7ٳjx3CmxZ0p}cϞ"}\]Q!7cL8 dCi:DJ 6O> stream x[koFb>(B( Y٤] Emm+I>#!kHg}̽# Lx>;fdg |a"pR9Ʉq%(&QL*Ng VP2q]ǔL)C[9f6 i~%4Ӟt$ (FH433sI1.o\YpIHfB1khRuVa :[愧cN). M‰5IəPJ\#%0WsIͼZ4;I,JAxH2ǂH00RkIa 1e tTĂ@SUP8w4vZaH!h$E$ԘCO0y5搤(1^9 42搖3CzOb$hd9d~ЍPRI9 %"J9R4h<̡ G Z$9(TxxMдmUh~Qk7xg\=_U%u[9N7}Xe6XN3`i~)ZֻUHZI27#Բ\-hEd-VW6pj 0=tq0om׆I123Rn t=KNc\CA)ZAkJ8Bs]gGSĦ>G@-y-u%g{jeCYlE`s rAb Vn =xD"rtЮӁlMqwKIt ]Jp0n:q j3t7$O=~[#r0JI+4j\&{we&5Uko| Iz8PLkܛxF0leNR-}M6̳[Bl;;͍8wb'{ˑp$l!Qr %2KV;(i'ii]묎)t<y׬j26Kٌ)D&"%ںÒT?igQ'`o[GQ}Nhj=UNەǔ%J+-s vܨYWQ\n$]/Hncvڅ י[2ȎWSړȏKT[ЎY0{rKnnϧ_)V^[r}7^aN=x "w,TeoГ$GC=[}p\\Ol^.˓1.@4@4 N=䰒YNnWjyV}(lDI&P ){/Zg֓:9P. EL=T/y& Z\Tgä#zKzYpok>4zzIo⋻s'+hE-yB9C'C[ / G!zwO_KQL9\b>0\F|A;Y4\Ԑ%xlr} SZrnt9/r2}rV`yv6]h-$tD ҦePp= S U4P>О!K̈́M'&d t,|nHH^a |Nyd.eWl 82pu_f5G[sZ8K NRG}9gEʖa }7f{:zքE Mu<2UWiقfbz\' =P3F7 F=b2Ģ栵<ɪ=|^.>^b=9gtqꙕfլ=1<4Y{N6].׋ezۼzS+I$d$f'OuiӮͷ[Qj<ǓS:wT^qu;S Ƒ`6vy@ouKc}\6;K^O.?,M+YVPkTBT\1s-e.r0v L,wu{v(A |gtDhv iWڍV\ڷp؊{ۣ'?<~u+]azB#|q+H-5\oymNO:s}$<8&8-ɺZV*trnj`y27*ߋ6^bW|X!ݖ1t'GOz2?,O^츟Pc耮瀱^݉6VWYgpI65)4NOz1}S8BEpZ7G*d$mcD;BZnL= ϞCA`-7-]sH`Zl7hov ?K-Ux_\w6F=H*9"̅[Tu bמm?~u)j1:l ^ =& c&}x:S-ċ-[(\[,XuBK]j-ysYqސCb M?5I9˨r1 ;Û&Ť4͈LdC? ?endstream endobj 273 0 obj << /Filter /FlateDecode /Length 4183 >> stream x[Isȑ~o:2jݞ[s' & ~e-XHdwBUV_f(_?]mo_oxxHVůn~ TF,o'|9s% n{[=q o.C\?6P4#u0Gq|n|WTuyqXrTǺu:mݱ[Ri|9Q)sһSqt4EK(`0]kLkVK4w?.=W/V:&}}]i/cL7w/v>5j>8]]Vy5;ފ9߭owb4:TDV}صaͪaUo@Rd6ةV~qUW9v[csa"k[*!]+Y:Sډ}D3]1m7Ycw\ؼ/CӞƆM NI~ MӍ[J!.Flc})x[mN:P4:#rr=ٍdM!O  ?Hz̽kVf)Hn+ʒă ys+X,,Ȇ6^dtUb4ОVʭeNOWx^+yV1 Z6ܳrZ0k,~fCMl/NlL|i:)#=:cN]x HlJ(8];8)^E#J0*״TK߫+.8 {_EJIBwg6hؠnz $ KmdVӠZX~M|.XҪ c1"() TЦD8ZAZv]Z)Mĉ9IZOz7QY-a1$L`wOaH"*D/Ǽ1*րC9^ 0 +?aC$[ҕDr*X)xVM+ǎBi$LULGyÄy@vPcfUJ2+/^VmKD_J.Lh9LȠ> UbCOJI|;k4eJ׃E,"$/}JetmCVNA倱C(}06F&Sb֜=e )dVhxCE>]v4JGx%O'T Fg: 3AƠJf#켈zLM=*Lf:Qmv _q&Tӌ\ߐ67krkPSJlCv|#lL 2T,Ikl)z*!ਹ204l%/ `MPc M~(׿D4C !)cZDN_+{4-2V+8<x9t'Ry*Z@lti"H12Ld1}92p ^ `8 ʋ?~M5:Xo7 q's'kY1ac <7'tgD,Sr_|_H㿚'r}"NUaJƝg%i|?]`&IKG*LfE?pWnUU@G_U ὺҬiU=43 q2sJR8MѵSЕ(tD#|Ҕ'բB_`Ip5R%6xhWXϹ+ /PޠhpKluxtjuf'fG>}Cs|䄋4Z|#Eh4%DG"=_v̠' rߵ4sEEVEgr/Ԙ&`!b OʰeIiG<ɰsG`*B%ea@2S:R9G"v>uN'4=t"/R O8J, iy@TuCvWZׇ|o==)B7Qq|?kn  ԮVX'0m[TkOB3 Qˤes{qx }fu5 jLڨS C|M/&f4FYebo34:xա9 |Ni1U*?cT7 -zͪo>כLI:D>L/:1˓^dM>g]s>^8yI9z#e*!pntެ;O).7]>@K+Yq+W=d>N6jw8R~v\?:BEyQ:D,s1S[a1ibhm,I/k!jp#){Z'oKXSo,jpnx1;VLQgprM m*-IYF^}Lɸ4.ljE@#S]TjɉeSCQmNg?hCr늧>Dhas\2,G+D)^O~ 0 &,V۷AxΖ~.H_ mNaD.l<ͬJDcC8+m># 7pOyV?t뎨YT:d@t.6m_غ:V[CS◷I· :{l6=E^ƞ^# VX $F_8jO7 qendstream endobj 274 0 obj << /Filter /FlateDecode /Length 3578 >> stream xru& ˎܦ:Id&7+j%nLrݥ}9Bdt`qqpp73w[(~?.)r܅_^Lv /?/oYZ-˫E@-04`̗WEVʻ}{`7EW_~[pua$~dqdȊw 2-B"` Si_~ʙ`prwզ\]J>k|Dg;;6 ]ʫ6iewMqTbDVocr%4`7*;[3%[^3VEw&m!zu U/4':db'R9 YdoPY. c[6x&r=mO,lʴleVJ kٺh"!:lud1r,TvE k58dzM<dzeD Ұ܊Ph/8" ASӸ_ PvH\nM2yX@\t7`UO#Y.K1&9@K[Q]rHj6EaIuh#uSc.{t8_U):H!PU)Aձ$?zD褐!_ (ABcK5Qj4,Q_`F\*Py3)虉եg(,Bڠ5T/ {)( DiBi_Q4= 6 Ku|JF PJ4$f®jj݆o&%fLI'fTJV46[@%vScNٚ$@串ϩHh ]Wu ޤe Jnb~7]*hٌ8TECEu  _]>M* <$qrXhȹor9 cI 9R^T&*z%C~\m[mܦWAꦈ/nzknj$d]6Pwy0nfX8P$h3ՀmpCܕ+t*RY) ;Pi@&}S0[#M/Rcp(!4VBW=RwuҜAbR%'R B|򵥪П징!D#5geNAMYBP!L֛iKG[kAKTʞU%y$z< `vK16$7BN!VqP`sñyN9=X 86I!CU]ArC`b4y5\s\wǞ{!aElLvկ6w@+-`GXZJ$\TPXa Ц s!1 j/X츮~'slgm6fJI`[^=5N\a&#EAd?|DONn}D%LTK(pǣ RC s^ڏw `RlCarrTCqRYfȆI0f)Z*aiVv=9 ZA-˹ eokFq;;!tLpv" =3je.D S0s1S Q)n(xR E2uy,už[)nd$ Y,NFXB+/=ۚ$WL81AznKy"T&Np]⡽\a'GNB 傱a8r?FpuO&ӳrǬnPf;w :y4ƺD1x.rB 8oI&4\[l(%]cڲfJ@e-Gx3Rpo^R \>9Q3&)Bф9Q9&i$C.f\,ݤz#Jܒz9'ʢ}H"_2柸ڒKoi+G0sfrNKI_t` )!CК0/*kgBðhϡUNե5J*̍F_{F 8_ JqGBI/BFJCOsNsm ?,Ji\G}Ӷn=]m¨nowŇ2Z↉ sH4Zb$-yNMww|>w96mWKdWa|ёT:oɘO `5_(z|-ޞ@!s۾|9~yLN^HE8/ϲm窠:;AC~%\/|_lDDP}[ɾ vw MMOŋns<|~{Ig0ゅp+"sN/nK'xgX gd]mA$#0ZUYݎxeg.!Lu7#.\ Y}J+#Z;:RjV}la?,A$>Q?|k2Yُ,G ‹9qiWUB^ӳWCɖQnvN=8B ^+/X:\d` 8멂}?tHendstream endobj 275 0 obj << /Filter /FlateDecode /Length 3722 >> stream xZ_s>Gyδ3nt:N>@$$1&*_#_{w"K p?_g,3n~=4: .Ͼy4+/᳂q13.g˹c9g|!ٮؔT9gJIYs=uG2k_wuחͺ==^a}&{lvmef{v=|LsvyƙcshFIΪ{Q\dfd**.*e 10v29_ wg?k{2gƊ\i'\| | ]LiϮ WH^@-{*>_zYa( $hԋlTJEuY)쫁? 7y 4ٚWhj1U#à|T>3/W0i=B*M֜'>MQ̌vMKۛ% hFƏg޸˶ 6N6*}).r+> ),7LD'f˦oSo0r0Sr8T.l!X.t.Td€;GJQ2漺{ nwU )‚D\}(s& d&))Z ق$@)t́ҿ0򧲏xWqsUL}(oD/QT,󴮫G8eS mU Pn s`1NwPr@Jܢ$~`Y {#"Aq4n!Q azy(.TuuͅP9YU#><>сK!u0Ca{q@֍7+>'%i-m tUDk8h\@h2%Catvwn˹ "jsm48q<.<ZfSº\e'3TJi & ^2Po9ٽH\0|S!zjo/#Ma->z+A7kƷHbjaj7?iv(/)s;d؊qK+xv! @ [eٮ0ٲn˻SW&'۞n MPx*#*r0K0ԁQ3Wh͠u7σ+Y܏AW@ACx><( m,gCxo dބ77-ņuO@8!>V@4˞@8=!𣅅-*^w``D"@ç5 xwQ)QJL;=}[q﨡 [-%dBz i+8ygCmr@ $TTզͅ2jSChS JcmW6jScz@4yEɢiI , K>~#(W)<`mS~,+🎂Ѽk Y6'v y _M)ֻu)*N!3DkԤˑjiK/<%r8XMWϷh*k >:U2EG>Bڣ]DeHb(zϹw`Ș}j8||!U-P} QӁ.(Ay%{y@<F[:Mwdd{ldYm4 3b=MnJ:--ˎ2uY 5er8/vlrWݨs< ٫v`d e2l\BTyeǮ\Po2m c߶elD#^wWC %ÊX c]oe.e}8-joN 썌[a#@)ݷDEWr׶Uݏ蚎R\"w]O3l3_%L?wCwO}AZJ5x\&E6 }J)ADax'7l^ﳿ ٸsM[w}.~(|r r*jH ) h ZN<`KLZ<ĺ&aJx5/sE#qFBsJ)7({#$:t3l=tO_hPq$`z[@BYXf+0᩼l%?$(kY$JH`+V+!/RI2Na xL?LIݘEw}eÅvѬg<^?p077~^ûӘ>ҟu$P18T +iK0A\u[Wʌ ۗۨ˾:&9AP(G"*r DTB^'c6$- >QSYҶiDDmS¢)gx!q8L*igNJ\lh P?>걩nhE}[n 0'y9pZIFI;kǖu5;iIL"^ ;M sGp "]7;T?ifendstream endobj 276 0 obj << /Filter /FlateDecode /Length 3286 >> stream xY_oO!\J/I6M.EM6s#s9vfv\%o?-SƗ)B.y24pBYθl-dsʥɥfd R/rRtyx$)w˿]/^z^|RqH aTߜGD8l.Z+,CV3jzbR"mi/ˑ:Kl1Ifg\L l"gAM X!?813m}Mj-rf{7٤_Y mdWfUC^4QI۔#JI_}6ӕ;4FGhL#Ɍ p=q $343&mlQɇ.Ji>)d v7ȮF'~aOPo>.-+=J [+uCht2܏}鋾=te|r'MgkL$3q,;\~05볩PA%!k,shflVIֲRd.^%c2,7`P1bUJWki򥻶 !5)mRCGBS/j-K'0֦zrB]y]u_5}M!(y ke{O8T|] +voi3䈫ח_Ǧ~ ᚞2Œ!>.TvEú oJ!D~1`ɍY+XB1OJWmWS9IZpt(1".X$fIv4flW=Z7ԿId]MiQYK7''g䪒ŴzuN&(dr_'z$)EԽŊSUυ fX;A'֓2ζh7P!jW~j=uyXzђKy^n0|uuNP Mh'|lTqn!Kz)cEipa. XwaSxnY՜;\]W0_9|9nF=ǀIBvQޒ{^]0G=Ԧn}7A|s:JYi"(G!JG }LFҋ{FLh<[O `DY/_Pe`#X`MuM"p{*cA-RK 4VٍFKR1)i֜㨪mdT&g\/>VT(,ğXA3L<99q!8!e*3= 87 ݡeA!(ZUf"*&j cSlF":NY2 Cgzvg TdQAXuj:`WQ?n :I5ǞuSC\19C|޲pn)Ҍ )Sq2rLQ~) g,߬9p2>{tIwnLpŁ tl5/Q&1:E\y@J?pMR;6)4|8ѰNPEtMUPfƿa!qbq6ok[T/D:%Ѫ]endstream endobj 277 0 obj << /Filter /FlateDecode /Length 2540 >> stream xYK8r0fKbHvd`0{Pr2Hr:[|SnwOAZ$dU꫇?- LE_|Z;?7\K&r_-d VKrsX|@tZc4z_W_) QӅoEЮ*گ(34%ꇴ<6zv֜[v(Ǵze d&EQwM*^݅KVD(Ga^ @!P<3.4'C=D%nr۟1 t1 ݴ =UAyԤDSN6B@PyNS*/-a$VKOpȞIAKV9*~j+rN9?3( p7 Rh̔^I9q%X1L([8h9:z3xtzl648C#kb~m`a@('jعC͓Y$Ex;~^ 9ߥc"\ క <}2zޮu1L{wA(E,c=ֈyxQ`ՙǫ+TOl]0 [T]70Qо,~[\>k%W4@Â*F1f0(b5r T`7eTR)pnY~FSl_ɱ D`Ř5=;?Τ(HD3Rb3pZZ4-` PNJ܈SP ;e?L^RmƇ,z FLɱ̩p#EJ +>Z-]A Џ]?՞D*ŽXwaD\@ K۶9B `XmQL7*S]XZi2fGhX[9XK-B_FhQb!y!F]!(CXݮ_Qϡ !rT̷ EO{݈ce;|6WFf⬛1b=GH}8u%xBAf4 8knr5#lFbNkPltPᅋƣySޔ/6J2~"{xIdSSS) eJyxY`iyxd d Da(`GDcbM*Hy0,Hn-5VKʾ߹ugwvc=Bw?*_Y}1 RVi{K4 4<0 bJ&^h7PN:&r͹?{nN+m+:'PPx/{w>_ti Ue-nC3Iqb0zMWZ"Nrp!|ZMȵ|Es?N&)Aބ i744#9ccsa~Y;bfЀ*u4L25o/]"|Qm|M%Bg*}'yQ:S-A^}q9TڈUƴ})e.@KR6}Mc&Fלm%'ٮendstream endobj 278 0 obj << /Filter /FlateDecode /Length 2932 >> stream xYmQBH>dYX-N.?YE;&;3;;333~Vf8JHn .sb^|ge\妮9OB2/d-)fܵWBIr2eTaX{0k6dfl1KUlv&뚍c}׻x7?fSw )6Omv a􇀛W'"3.szaa}5{4 6?3ɐJ\~&j%򚇑j`3BR*8E2\)ɍh!KMULY+Z*F؇ߴtO{)!u.U?D"09Vr7RRTUMb- x31| { XfaE:>>]C-7'hu,{4-ܞ9xЈ6#)KHGZVO/>Ҫ|?\EOȏ|q35 uG9-8m?yud3gbbZ(ؗvڸɮWGDSvLRG+px`B'Fa਩!@a"g_Z! 55Bjf`yhC5x{j߉q5Js'*̦[\en^ASB\Kn ogLB>fw4یSaӧ)P ?`Ӈ%#XlY@ȝeB܉MshxoU/+ L<-$`a/ѓ(+˝v tV] vm=QGz'p0Z YLI6]9)q;V&6?宷!++NIdNFvq2knwnCLGw^Ytfbe V<@>QF \g+ğlkBza7t>"U~$%7ldBn~$i%+:i{=Q+ jYHrp-`2n$ehzaI pfu8m?y5$?Š3u}خl_WL_S{\1~觼RY?m䣅ODp4Nld'$O% ZL&:UwccoOH =6 UYĈ\,IW;OQOdh|T!boe/~t +$<ĕu06}E 6Q}Vm+㩿};ڔW6q_>SI:4꺬(&@ [Bc8-B) yxT]Du-iW$p Ȧ"k-1(@'E=))_م15~guSW8&M0jUZC,ԟ|Nѫ~!ȺLM wbLQQ 4㈵4-BNԺ}ֽ - ޟZ r" +<[(tBUZLT)Sh%fR$]$4Zn!>KT=BtgD$s8kA\=qMEn| 1W> FBn. ⼻!ނPHx?mS,V, Kt1D y/IeJO1JT͢kpevc-)8&i$'OcIQsǿ T@p5V`'_6~NHendstream endobj 279 0 obj << /Filter /FlateDecode /Length 2073 >> stream xZKF_c :~H$3,8%qCdR jĮݿ sϴfیv}y+j̨_BT +0SS9C4n[EBb_ЭcJVa͇WޠdZ,$mnH%vXZÂ&c&DX&l؈gaz'>&M.HHŊcJc\6npT@yQI9!m`N8#)ʊpq>_RмcRek;P2R~-m: @Zj20Uu}5mVN4e/S1/u=-j0a hq'C'aвBT1|&E:BuZR1@MPL4v^WjZ*C,Rl@sa@K ~|psi@uJ; {vϼL#R`9)6[Et_vR8;1HЕ+$@t8lOs6#J1pJKSltMUcItI%Uqn`ljEpMw2#i^zaON& nd:)׋,IVu $NڼE3l>A-l~>m6RXAOE*\H9ިВRj`ѻm'վ b˸Rx'8g4:]@Y& ㏎Ig(b*W=XcqdȜ}kڤ([hz֌NM<d/&Ɯ&F<S䈦س=srΧ;^^ gd.$ʰI .R4ٵ!̉9@gt3]W%YrP滐Gi.GMBpcA!q@NRX[Dɥ* >nVQ8dnH QA$uUY)|>aQ6)0tD+hG@EWf+)xbɹC9h%zYǺIƾkW؁*L`Ϊ24m~KߛaǮu ŹkHa|WP`-cJQ=,s%W}r"`-7'i|6xصO#Oww[E}sMq^MŔUzd)|dl,*k:lʻvS( 5Hۼi4j=d " u:q4ЪO Dz(TJ)a "'WqzFtG.B}vߥ9J<~)ڐ1,-Oы5XrDRiSWXrTE+Rxx\$R=Ya$$wrwP;\ I(vVgP66M%{QRi/fp:fCHr+" Yn Oî8"T)z8J~} d!K,j2bz@gdoA@ΟL>He &>ԌiuZfI(}uVC^S=muaQsSʜ1f?;qRx2Os @̈́sH> !h߶:IUڂ .S.*#Ԟ݅ ِ AhC2зO:zj8f=kةϾk?:KۨOeZ3i¢NvͺB9%F|0\h X;D]&i0! {0y]n܉WOVzz曏E|2n}L#xgj ;arh很 l43YkǧPӤroD^eHi}ծsR>bNN?(1MX.UV׶ ꤍ~;wan/%]uqu[endstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7601 >> stream xxiXSWsNŖ45tb3UTD'd&̄$L$ <8lyzi>so/?8ZZ9FKMm,{Ǹ3ӜZf+<|ug gu ^I7lL mS}l v'"7/?fGl@)ss_pwe-}l$Wmī1N,'^#| ?b6OA $D C눹D0I#B/b>X@l &b3&%KGz fSUe@ÅTgtfp -a⻔pGZ_&o淜5 шz.߮ Ai=2?MZzjrRL2ζZ*rn KGLCk;˙1z:OV.1CB ^TUٸߤ4Kg?/p qЋ$o+̋}o-3?uDtoG[ޮw_rE1Mu`<9`VCJ7?6rBEߎj82$FxX28T[)r wjj-sm4Z bA9Ӝv \(|kIpp|<| W%d"$W@:c! Ty'xеPB L݅ÜȦFt'q?+d.|yH[zxMBG)e) q[ 倮/ #t*L6: 34L6fkD2uʦ4G`Tva@jG*taN;<#d P8ЋgMw_^P !vje n0F} *jjTfCYz<\ x^j2//Kz)TӼJSjjQ? FwW&XaX$0*R#g*Йh4 1:N|a8[n-]`83 &Hidмj^r y4 t\ڲHOv,-IIƒ bKLN4v\3'QVv׈UJՕɺ.ըVumSKLp;l̗)Tr@Cbxv.ks{8k5EFq^i ƶE4/{(llgY\ށ|LYid$+ БAq.ċc.p|< @K^Ԕ8@䅖^tK{r%g[N`Mnꓞ Y $?vjg¼>W/U ,86l}X^;O4{cKE[Іɩ<(JWe(d Xbl)//Z@u׷hhY>.:W((RbYpW"} Cv>,O_\{?¹+م{ ]Ja9*)(F@fOTP?p |N_#EN; ne;w[X{hM!\˗+RHUt8 \Zc;Syʣ餎oG1<vVVdesuP3`ޚc6`!hjȩTdDTB O)S YbQV$=ݖ4pi8cXu!7fN]. \H6k ˩wYT*j쵧/ L' l P_Ek,gݡ! wATOb,O(r %NLKO-*Iޢ,CS,?l Mv8 ¸pw;?HTʄ YTV V. k7m'*Mu"KolW>&LqPLm4> >\Ae\@Gh13Ej6˄]'F 𶄲{<^A~N98!ތ t*:#=Iht ut1P'ғ?]IVB 5G~h&6s.Ap&| Ү1N`8+dp\>;dI))3@(]ٺs8gÀM? {GjN6q~eF=VM|"\S Z{UmWXö- 0mDrzY' ֪U5bJ.ixPOgM<ʮ?=: w!~C^e~Nεu`@ѓм蝦+*I^%&Y-jVL9X&ͩhlwz'Q銂$KpF=-n4}366qhF]I]0ݘj$[nwch4#CώWceH+W{L{aݾ0p\Zz]k _"(L*h*7=ϒ_A ZEtnvG@ծؾr^yh8*.6u6*DUmEO-Orn>[q->Z%FؠQn?9a֛5P=m"x6D~ߋ XAvx"#Z|^)O\0|* mh,\75a0Nlh`LIZOըVcւǬ[H4Q asKH^DTfύ7B* MԿǚeӶN|bO\Rwc~)/a$:z=ۗA~ R<&RR$ښ榔xPt:p*~f42'EaDڭb0Yt|dl^,N>7/UdzcPEާK(lA5$^Pn%2Ǯoi!_>ů'S= H#:E1 Q|Ǹd_Of >)J LB[kKe)*7I( :VQ5.CӗrN9{"8@"cع D.U=XQ:ukI &MH=\<1FJ:rj O\>n7+Ciؙo6*`!N!Kh!00א+4i zMgeU"0C}14_>?lڊL6GA`R(TE"`ߕ.Qa~ }ggd{ Q j9*P@cӼ]ed] 4Yr n@bړ߾|V)&Tx% G0s{ /p)0j>?.)16>5!N'Q}7(_띯y@øk{h=?+;/Q==uد;X(8+:GO@ghw|&6dI<O:r#.b XYT#fhmJfᠣaChj5ڇ+ wr0^}bjOFX _lM0X%_Gftm "V  7N>cD½ōm FP/u=xǷp1S&h-py;A>hvvj8O||L4z-(F8POt'F6.dm"np{ ݽݨ̗Y;"iMG?X30zXĻ;rh4bG_:W7\ @N.wqqfWqhHR)7+/4d8-_sϦȯwp|⣧ܑˍ qjhZ/94< ='K%I>3ĕf@vh ze"5L*Xv10ossO*Z9%ϗەw^g>ms}D;6¬4hUs,նʦZK'h}Ɇ KM1E/o Ks.˷E< #2AT :6tdðQ~p+]C֎ᎈ`=D;=kֺ:\^)VYKnn9w$`c?_$,  ͛q)15-m5--ICq{֑uS>ŏI٦|ٴnc*0H*XvIw0 [>|L =b*6-Ӧi\vendstream endobj 281 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 196 >> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 282 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6255 >> stream xmX tSպ>!69"6&AQD81#s)Bg:)MfwmMZ:tJ( ȠzEAqSw߰S]ᄋ^VVVCXc.+w(~_}̌O,ޝy/h(0 =Qsa3鉗&"[`Yaъ+KVIvY#MY+KM[q서͹[Ƽ>sV J/뉩Dx'Mt"xL bb+Il#2b9%>"VsU[jmb 1XKC#xb1&&';N "x Ide'*Q*Fs?dߓ9c<q5N:5^Mtjؽg`sB(ƪjV4$ -! ;|Q>: {nX}$'%yR Z @u]qUuק^3g%JoB{ [k=r'J^mGQ$ϥU} "0߷DkĖbxi'_.eI*^ 6W5|+ MDB9"F/ } 3_Vȁ&ST(-=2o*x;tWT Y=8vRU۳l{X-6śg 2[,q ^k 2䵻l>@'iN5^>{|ۑ> l8iy=n>nKC> zkkgICGhr8 zEWa: PNKМp9A6 $/GW4&=wfwɑg~4p`K|RQemXt@m+uoz 6ze{LGNڔsgZ'bkÉ3rH.B5PdhځW4/NH">u8\/ */:M5~xxITi] 0N<ywR}/t~@ęTmL6<,izhEW6 zE&ݚ)@,l59KPYc14BM6hIqn<½m M@{*}m]NdC^Xb {0 9guz-3 wy9O4Ԝs5'Z4cs_&B*zDJ!]*&PnudsVϨ}a~9 `q q&[ڝV_=-զZW7s[B(/olZN>߹ d6WpjrQ@»P z'>*vdDx/Ϙ yoW=x)L Xdk0YiE!fv(:x&~cR\7费9 ZÅjyuv:ɤڮ ',{ϧWçSM P1Wlꩯyp]w" ي._T%dfqSz"RX4k5FYT" 5=^(yӰTnԹ@,P1e9:]vYB1Ҭy4UD|$W"Uj­kY*K BtKk-{}t ~?:,F lvhLJج3,N1Gŷrkp\cnhٖ=hR w7 NVM#- SQq敉SRi%>+ε{:rXD4ON'GD߂➅+$%Ibal-@~Xip;;k7 0z~%V`/<WGOb\GRRZ]W*@e2qamigm.ÉMdKa}n1-=BTrk@HI.zAIF8_H#b1#X2TfEF'CY-BlT6@gMwCS-=ؿJ`P:Y4dlc8ptWz[iOm֛]i݈zB+i΀i Q&Qn1Y # g\%10TF8 ±2'#fħw6g 6lE/X4Xpjk}]u"tqNiFN.&}$⺥=b=b3yóؔwO&$<y0鰤B/w 5{w6D4mLj{kS򝝟@{WtW0s ֲ+1+;)9sF执ݴZn۝euKJhiqVG+\sH9" 8(Dpal5W}^d1 Qc҇NTv7mۖ*ޑ!M}ycyȆp8ҀL%]hz>^mpx vpT;OA||<:||LmIY9p+\nbޭ5H+rxgRA,Us֚'S Uўkމü_1Mʯ[Ŏ`3T\T£) ?I.7}{y^TQ~_ـ.,^@~W>D px[ߊb?v%lHݟw5"_ 8)ڑL*͢{rYL7pˋ?W`CwLi +*4:E'sxz4Wﴔ<hHXDⰈh0L: Ai8݊9nׇM_UVGq ?B7ذrE:Z%G.56iZm mZĔjܓxD@&Z/َ  !]-wψJc|IqnvMIsC]]SsqC~d*f=bg1L&n*攕h bTbɻg;s&O]޹ՔW+ VVmL.ܸa5~X=VHbBEQw]Ey:AsT֨otͽwF],>}wVEQXT[ɲ| uAO_fC oIoXt#kH4 F]!_ _R;\x0ieҢ݄szDw93ә?wGv3g7Um< iFEH?ʬr,&)v{RApy[F2*qA&&iy4Ga (iO'Pt[_SIn*S)2%^3NZ=fYK2]b̤2kHnpzI 3mkKAh;燘XvE};i3+zwP}(3JWSYkr0qϋ?v@+):WUhL_Jih  |kpװNr8W #zna)ר]T.ŲjpWe[V| hEoP/#p503]l446,K#9}j5({V2-8*)AOst6S=HPPadP1PYgaA-8{xf/R6eȰ%\NG{9aþ[YؘU*ɋD۲l_5dGq}ֺef4m8O. >\UFQMjE"ׁo ZКl4~ RP{#4pGYU fAJm@2MUtC'ENw6r(җ4甡B#(-T#ORi*pwʉTsνͻ\ߒkn`GFɫT9J+g­̶('g`d[T/O{+YKAԦ hgLԍCWcx?d?͹Ue,G-U)78n(8+>Vٜ Ig4ҒT2Y>Ty5Φ[C"kfpނ% 9Rms/`ۢyh呿'Z?ܼ~㦢L=9/oqtQ݉GSغ7O,ɗT52l4oĬ-t;qD|6^-,ɫ/ljkZАpc4g[IyQl+?8 889b'֬2 3:_ $B7 R$Q %t+e\cWPE 8uע3Eɹ+; [f["D5r7ތ"]#C!|9_|2ޑXԪl(Ocx+?qmB\$ʿŸ9EٹZ"/`v/!V/9h ?775×Bv۝~cWZF|>\X*ٟ`v3ĉO Rp~ZvNvY޹R @,4w딼U׭&'HBԍ7Ï_wendstream endobj 283 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 867 >> stream xXStandardSymL-Slant_167/rzx    g    alphabetalambdaomegasigmaablws;S ~e+N@q N0]ZxfkS\oC(3)̸xyrPS{qXxfrjjGtJh%cZYll{uʋӋәȥҋRrQeVMVFec|ŋ V״2 :D,ەѵʸQ;VoRq{|sx{xxa?9'_PAYYi~Ĩr^wje{>WDd`tvWtngmq{~}ptgsumjNkW B~\**@{wc<3KLxgtr|qYj}ܣΑwiiwaFZkH};jaYqrxɋ̋ܢװUhl~8gV%!ǺϭGjNj Z>keO~1w> stream xXyTSֿ1rU)U-Pmb;j+jš" 2! !LI0$$@(LkVmZ}m__{Ͼ}};o>X?9{5u %$;bRԻ;+>a4Զ!s>~i&%x3a2`CF-i~Qѻcľ?ŗ/Y+˖ڊg^gԳ:Z@R{w}?ZOP[bj#6DLmP˨rj;K(7qj5ESj6QOP'%P1-纠m,9a]/. ӱoTX5>$_:hRA+OTcq6W )tOuJAڜ|-.bU93^zG(gwp 2C2|(aX5LIWY3|nUG͌) :QSNPwv _ml rߏ`9,UX <$Vr:s!g5 ڟ[J*ŀL.C6Yu$΁Ϟu9t%_GS x=8~PƗL=^W+]oy?^(s x6˰P |<%ٟ~~@2qxq.wauxlWc3"hc;I 8QE_ɯE H b]!,!lgY٦:KYߪ΢=o8`(ՠ,bF[:,yViCb-2ҡy@)_ )]%)e!IINfIyz5:B6Z~'U阎^KkBFtIeM:H^ٝё Y 0,cQNiIaM.OA-+"ߪBlD|ҡACwRJI[Ȅ,EUGtg{D xm:tNrD$mLnp[ >(db8O*ںMş3[¯];~ʚ&NE^J}} !(:?zXY 9?X0HA8#R(R9aYweS3p&fوף]^ϴS.3ҳ呪d֚4hI/Fm7X'U|ߘE@'(d2^ (Cj/K߀z༆"32{ gi)XJX.S3ͅBdx- \i-2g gQ\tȸYԛiZQ%UzZ5[PRܰŬ܄ת/kYZIJʹlfK.4,ۺ-: ;?O"񗹜|"ny62Z{aׅ9T}Zc&5TV[Tr|Kzψ: O!1|R&i4l=KKөz_6 :*Ru4Y7h<fLe 5[( ed(c,MV\X{"iTv0x&D&* {Lˈ,"q0Qյ9YZValHW ͊* !]1N4N൝lrœf>5}Pi 1a3Gx{@g,>)=~n@ŶD [&z$cc% ذ=kC9>AjkM\-8~~[䱅8. 1@\d06὞7] VW:Km%24>gdeȵTҒ2YĄ٣j{LdbkɈ6kȈ O4ś4(UN8M+.ZRik=?űjJ~e b6&d- )2I3ai2diɩzT#w2hnX&,.@\z@ Ss; `Q{f ?3:~#\;ZQC%Τ)UgMǘg 6o|OmⰜoÉoXw!I:B"xɊL#!x f0K\!,L@SpM r6B|¤6TW>bʝƜk:ls=aZԝNgҔ0*;]d'uq:x9%ej}I[dH\7f86-Xr􂓾dVW* VϞ\_uG0IRu"-$LN;chsov5<0' ;ŧpg'43Vly1FѬ5iNJnPžu+oGҭiZdCi{ISC-gD}cVv>NrC^K"ho kkLokcCz ׵i+A Us;hj&bnUv`_d.鄙A@&mǂ\:Қsjpx^hpִ:!Kxۣn̯B&>'@tG@(-?3uefsD!lˊM%e-&^m݂%b A|Mھ =I+Dt o\Htt`g@LWPRB'4vAfxHV^A|]/3vˮ~HB^o8fW\؝ݑqM(mvZ*mȂMy#yzo. oޗD.:tBy\mKoe'z=:DI*!EE2m-*.+vZrz<7j6'(?"ߌYfOzUz #QYL"F x4zrc"/ n %]]"b`,>`=o]Rà>sS]muT) KW%E> >}97 t|MU0лtW-ENt% MI&Lzh1ZuР\44|0jXW9u;'FN&g2$7ՓHԩ&BC:j uZ𸓋ny6ihv%wNSc^瀫HKn eP^},?Yj8TاiHMS8c]Vqqaq,__G:6%爳ܦ.lWg4Hu5d+bN3mWD+|dDd^Ƴ{u\Pɾd=|R$sKva :谖WX+\];EDKendstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6880 >> stream xz \SgEͭZhV^YkZ/Zٗo HB@AqCE[ZmX;vlSN;j7~/}&E}?msysхrE</)a8gJq~gd:^X cNM3Ϻ1;~oŮ{;~ušw&{I Z7xCа["Fn/X(cK^^g̡iUj#zD͠6S3-,j+zNͦvPsJʏzKSyT65ZM-P wbʛzZG-|W/:4Gj5zN =&RR'JMܨzR")j45ZN|B1}z-+?}FmLo&<dK}f3g_.8:a܄==8qٳ=ǿ=Ş;]?"~ =]?儰LCbmlfVL& `?^aDYp @UjFu\/+B=7>i:F\!ѥMN,ufghE|+RY]>nʏsA'$|xG@I@3"M=:a S^Y'k0 @Tvqlы(*,)MU!ob-UMBUw 6Y]?i$"5•3N][)>ZxD֤Z{MF߃ÒaMwa;3QQY`0NVtj{k\WQQAip3DB {=@ϩxHtF?>[$O B bjRۡZڛj,Up+ʴN<І "NZr tPiL%$"U3UrĄ2cyB/5{]M_FrKy@~NWhUZ`"K4kt:yDGT% +A:Nrbh,rP6LCj3Fߺ:1M󐝼u}QEh-X?׵L6><<6P[X2$W,06 ݅#!<@FϨ/A^3B#xຝ|!Dg]pIx΢"(W\t5$-0ira:]RsTJU Wsdk/R U,2)Ybc9n]|S%&e%TיzV~W]q߭EW_SgI:1+kU4 |KpHBﰍZc;#"A$;ƺN߯ +odK5>t[[O.-N҇iUZE?j%$C\nT+K}Q+ fޮ_stob_͓V4d98PEk2V2Gk`!Sz"*8fq!Irs;}YQ{FxPuLcrmLQ $ȶC0K%T;dx MV-,)FhM@VUB 9:$DS4]n58*5` ~$E^\,dZpDW[rF 7ck|0ĵgDO:<"^iEh}+d<.Y)px10 sɉI:Guê S.e`>~ha}Cw[ 8VJv)UBṾho1/ڏփ\Ө(&լb1iw=~o{W~E\<& J~yM${{Zu],=e^j83@"vB#Ga^`B[iGx<ոT>GVE!݊)ެdLESvf(tGgJQ8(p~<BRŕi9uE:lX"g"edp9@4g,<ݷz{gLHf8j>Z]k!iYBNP"_=WxN@B¼Xq (@Uk5NM9 T;oMyh4>K#Wt MnS H6,Gx2B.d~^h&gArNv.QQ{gaX_QJ0ک]PEHǻ3pJV;)YzԶTMX`dpgmL ؒ&loX[kO׻LH{Lb#dl=  /7[2Z Zm\$ E!-l3#!|ƥ)<%B sd;w&{x"f`<Ao\i>)+-5HÚXE&7K8?!>g7,퍉W;lof8.V~`<^_GO49Ǩ}w{7Cxԫf{CnK'@; 9CtЭ ͧmBFW VZ["Ƭ<_{ގҠ!ՍY"GXhL+wgZU.. 8ck!5\ /6M8yK`jM;H38go O1 {bgI玗uwDlvKn4r_Ei8"EK/>[>xcn] [M}iupu@ZUO6bK 7bxp *""@3 06LnC m]׎=)%v{Hãg3_>i(/%x`2Cvy4|( Gh 7Ƚ~C/nb%$|O R&'Z#|x4$6s-xa3x44E#f5jȱ (wKwoƈZZedre5YTnX֧].T6J̢ 0:X\Ce-)䀹Bx&YGRꃍ/4fJ=ӱA:aI$@jopM^kG!h $kPȟͅ_väugEGX,h\ֽ-tEڻ5ކ gQ'7ovN5V# :՝a[YcN 󋪄z: AV_.u70\'rjx)A8dj EҖrw'Z ڳ/UBdf'uG7}pQ I W٬HBR!΋Ѥ$IiqM!Zʇb+WD+Tiw+oG$DMaF$*^ȇEu1bu:eqͱin&NJJoՈk4ՊSMatIlB|5 > qRxWh[O/%F!G,'ѴGvTf 7$6ˊu:Qˡ8+00! sZly}B~\bЄ?cղPGH`+zb[Cvߏ>gk{w~z#,o5wD;Ž-|5| g;:*E^7mgpن3ǁyMA>ޡJ9x6\\YQ3.RV^&DmbTYpZiuںo ~-EW:y:6)flo{%H(x.(bISD;~qn]P;i?{D5!ntlN?5k;vyN:_Nb϶amaN^fXQǧ)wއȋۅW7:&{e$qDSqձ>fʹƝ ķm)A!i;a3ypB9⳱~{ٶÝ^oy6hIAMAm\}xJ9mȍJy,cMW7&=iTyqӸAdGM%W*/^Đf/2$O*Njj9*4OTM\]|xeY7旗 D STZ+e)3{bə^ۂH%q~L/x<e6\#M2KEa8u:,{oϤdu ޺YZ68Twt }oJMJ0ؒQ9`+ G[8.=g 5/6z'T]qBaql%zcou6V'Tjd99yEBuAv d/:ZXdD> stream xX TW-.RKWwh(( K\@EAB((k+b4.ILqg,_<2,]f9QmQ&}(##A!> ݶ`Maw^-Oe!scdnrh(_a ]Oxl:g뎹;>q5/#|Dn \gӢ͋|,4d5DMU - Vɥw ƶǑbi}X]ݷsի$賲_K]~v>]\eQ! 彡ǣH26S* _NÙ;$)..)tlbMyO7k43tT|ؼ ?cxtI0^cwA;Ó!QY\\h4$uTcfZVH 52XmʘX7߶rY 1ti[ZiIXb⢺@0 v׽ob rEVcR<}wlNXFuSʷQs3B]m}I[ZPؽ 9kMR͉mz @v[*2.rO;_]7@S'''(vF"mZY"= 0H'@sYxw/D82/SR<,9 [Vr5$L³Yזs Xɼ~t_ϜKR7f >l3,x$섕%35Ŀp 2 gQ3 ;KBB9dG1;Ga +Y~D2mW0 O L)ư; &`;d eo G񗐎A:>T4vjI[s=;애!`vl] };y~ӓG%}HC>HB?$1aI_ʻzQ% 5V짮x o=iЈv|#gx:<]F=dgqWќ[OMsxni)Wj&OOLMKHP,[l2hf/AyvwR(A.K##҂8|đ*SwH촓0Ӗqoc۳{E S`qtQTr܈_6⋫/eo'xI&A8zEǜku_: ]9{J.E oׄdlg8:>M27&gNՒz!fȆUR:/:3,UjHt1mwo#a 0?[Obo:; a ͸ #xvԎOdR+W0(S:$A570`k 31Vx8i<Xq wݗ䗜 ObE-' $ٽ*}eCsIex /)wo5-71/{;zsN;'an[,@Vo4Grhl|A U~3!$=q zbgbrJJ٫Qge:邛UgCN}y@KIIOMwG%Xa#Cv Gi!Iy9?䂾aЅOEة]Xo=5_xLh⁈݅;_Bܬ ^UQ Y߽^*l`!-iGZˣ {DgoT&n-?c]o Ud%LsDY蕷Sȍ%1G\=U]!rO^,%.0h"8 Ahʕ { [{> qcն|}62@M\0EgS3THk ITXLO4w^(W^#U9p6Ƴ0D? W^zau:#U)uGr4?=dMXPP:iêC"o]j_9(:99 ők2ՙSB $jݢV<&Xs濁~%|ZwBx0jf^L}lj"(4)R)|Y 1nzG;pv,EWIKqK4\fFfFRQw ]fuvيExtL$Ѡ32 ϗ5!敞BE+S$۟x|4sD__|bvJfbcQгtZ}壣ݠ7P_IʘpZΒ@=+8sl!rZo'<DNOIW8HTA OǪٙ9SD̳/&7o"gVzʸE{\`` &OF}QeEdˡ',r.$s}H|Yy|ۣ%UوWk򵛊zz\wYy* <`^z6oÇ9~\}G1w.{8M]⾼v>U2R2L_8TOqxJg$jG]ibFgY.U*X `Mpw92?8<;A<?sz٣fSP=yK-w4=7ų\<pvOs!gOA)(ЏW:;"PdV|vBvJF2 L2.x7*>_`Mg}QxHj>8.rOM7"fG^nC|b$/6õ!5E<)5x&#fZB4n:`{o'-S ?Pm.h^m6$w5ehx f/GtOC;s|sv0˜/7}r&ElNR3"gǖ&#*wKrv.É/60*!{XO#}[WO[ﭖ~&jW X:suu > stream xYے~k aUR+YelKB$,XՇ{)"=,HεӍ_Ygbsojxr}JWTF,ߟp<3.&7|_ mzUvɿ/aaeDJ!g.>.vU]'Kaxq.Rx+I?8X-G1q.In'"g5z[5 kb`> L20 kKɧ*nrZ/_BTX8YJ-ϳ?cVE_ƣ -vq f k,[W]VKs^ޒT/d֙ΥRpzgX;?)ۺ(uhP˞z7 9D,뺭V8|5}idź*> l_UO7ݦi~^noκ}sVe?MշE{6!sXm"lN\[7[eG 'ZNpbwU7gz>p[ .-BUFImv [lS^EwhiXJr;L Gk "dJa=ӦЕt2]bw7{Nz9E(8!SO l"|Wv-'f$<콳~mo9pVC]oE&hʃu̫r}N!# fe7~mbJ:wrwwaopЩ8-mͦ0OTyYwt?nW%)fFe>`Feb˂m+nmه)cCJmSHL"a?㈶K|w;m.|h.Cgm I81êGTЮAK* Q'/!@Q81}q `ʉL)C{<@iLLσ֯<=~JqcOں¯>`/ J@~]y:ˈf!0aO_%YP( LW9A|(6>,@\d'dʗ2+ Ѹ*d燾y#gPUOж1rvS@MHA6 w}& _y-_j֖YfyZ%/Ęg $&+LQ@ste+.WH3$fXy9Hd†h9+?Z4VµM)8v9Q(<:F;h5g9-Pcl)H~Q& >5V9]oH ő#Hiih:}*Ӓdv5瀛 /WD gquD{ yT׉0I\H69aBEia9镛RNY)1_t]%S71b<+_X"9~ -9`@*5fIpx1P" 2EXFQoY3ZMMzD / ˚-[an$i0_s{A-gٺ]'B̜!E5zMQ(lm"iKÁ *%x Rj|DWEosDDyV i\ 6n~$2=#ΤcH+ , |U0\?rh!&MIFnb`*k(LjF 5"넒 DlK-X7SBQbXv1.IW=~|u:җaWMo?12ANϺJBL8mv=zzu*m%r c*m?UШ"XG ̩ xc) fp$ =k8mPEӍtu<s #G}_TX6dtz0OiAoxX *2IL :Vد{Q$HX0% .Bd3"ũv8W(#2z}3T$޲ ?gAܴ~u n-;0brr nġ=&@RqZ.S/K?PL*m~p-7mބl8 9;(,L1i"k1Y } \Tc:2_̣jF't/1Hp8\yK"f_a ;kOՀ mAce0ʳ ڌhVW\Ϻ xhZ$+ Azhj;'ZBf ~`ݍg9EqnB19󆄽~}>uY0( WP8Z u<]] endstream endobj 288 0 obj << /Filter /FlateDecode /Length 1207 >> stream xVnFWp!PNmAĚ"m~wʮșs=ûQ?V֋lJ lyH.<:EfɖşBXA G7¢;G.qI2"_ra͒lTY<>9r[V7:'MW'UNӓyZxRM ᦤ'-GQW@ C+N pM3O>0& gBH<9<y7Oi0#q8OfC5$D8?|XRd?'aTq@Ghg%B1Is'ѩEk+SSkQeW/Vp1oL[,cki4OlVS־f. uaZfAfˎJRQi8?:#RFj AKIû܄RBHBy\Ӓ$oJB Mqy%=sV6c뽂*܎y,(V(Xo]^M=~͍&*g%}8)FQc B>p)'jk'1y1xϡQOb7O%!jɡcIYB;U>H!:as1r}l4&j#h׳&ІK 8У麈 G =tC[EmL0y-8toɞqCF #Pu}̣DX`b.p u s1al/:ԐJeI85p`#h9*JMXyu rv{a`0(ők:n9YWR!G>r'FɄB)Y$W*UT{BI .KXW! endstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 164 >> stream xcd`ab`dddw441%z2@юA%GϹ) ~xw+DM<{z >SnRgwG7GCSSCӄ֙-?ĵ-mM SvO!'b>Gu;bendstream endobj 290 0 obj << /Filter /FlateDecode /Length 2802 >> stream xYkoH p4G P[EE(VJZkɕwW{3KEM>s;wYXLn Y|XP߻6גCzХʖʨfx'qe(T5nV f,95LmvšZs.a@WLbBEUTWm=1oLZ΄ c( m : B d@}7L-fJGG:͇3w! mtU@%L.הc) vw ]Eu? 1] _PaCᨹN+zjQqPXt(?25&MifE͠+K ܠ7Nd04Axy$ N̙`ao;#Ƈj_!4N`w7Ͷj!6;؃ID!}մ&9 նBuSY< .i8U]u=po 1ći_1Y]Lv4z6p6xq1\+oE]=l*n,]5NEj[GXO-{S}md]w7so?L5ϕdvml3SsGve /6W f K]~daJ3aCvq }@\ZJN$_p"Χ8KY1mN8V"ߒK+J Iz6nWnl)|^җfq5dY\,#K߯]LB 6`03,g_*rOi Y/Uؚ&k$KTWb4',dv 9A}`|/_yE>]%Ė e r0x>JM }ȋ_~~.A) rdIA&M$3H䛗YLNt-6/!!L%$#!-BgU)W,hݵXjcC‰xu.} fhh"%!1=}1M[>ؾzA#>,j£72uBB>U,EEDdrX{27=1&N:1pvBF>T? 0.QSU[cE=31`z64I* \\Բmn 2iΠgvBWl]y;rVLj|HD = rѧk O?/S N̬4  S@ʥru3O$cn? 3i'bRQE5̶PE8MbG)U!RO)@kx !\5Ӑ_@ 3%L=e].P)D݊86ȔLDnny84X [/SZ_?pљW} OB$J8q>ꔼiz=}[mIakMjM&-#8'LHPR cE m%dqr>ixf0%+YO&Tk3K ҈C&Q0Ue<'!&C&h4Aj$Mq+p|%MٹO`8)hēт{0ǔs2ӢfZR&Xڠ 6~W- wUH;9t6$o!3v9n Ы` kd3O҆MŒM Mt S d+ NzM2Gd$Z#d89H""XUFy*.r3T7[E>tYe|(-I!K(B3OfYS*GnQOqʸU Oj  GwL Sy~ ( (Zg#T]* endstream endobj 291 0 obj << /Filter /FlateDecode /Length 4514 >> stream x[KƑo+1 ^B8|wذԾ4n 5ӿ ͞s@=ef<7Io7q󧻛h,ʼ"7|.զxVު\jlou\a8KQmZ_n?.Ӊӡ7)3Y.?g I}5U"D+Fc|ũo-`[ʋwb}}q3kps_oaL ìh&|ww`$! >W6謐p*3V|C?~x$汫)UAiIDw"Q ֧9l2G;/q@] uMC?],=XLW2ҰƧV"FCSZ qvT`-h56ӦP8V<3RnnɊBIloR`1* t!2_*c~@rmnjY,+JkG`?>+܀3Kҝw+~'B4e=[ s%ʠ-_b誩!eڈXx8܈zc5#(gp!C6}6S=O/[⺹h}cDM3?94P Ce8 `a&ʐ^n_@p.jY=8黪F@%e&A.tЬYn:_vv–^?Xq9meA|IJ}*IFe2/$Wh?DR) KtNO,GNE)Qʟh\N|s-:EsZCLQ A%ߊBT{0ݺmCIMw_ [0\Z+ "F*/)L,C]!c@QTʱ)Uız M9jw(ZۣoR0X3&tU9VF.^%)T..퇊"0jF`?u|,#Y'/ET/4Oo3F 8/}q9p%nC@qٔ?Z}v pf/p6j`yܮU@KpqZJ2rǗ)3`jL49zfW}{N`?UDW)Fe Yg̘RH'XU`h NM;\N`j!$z5mK& (Մqj7^"ǺR`# Z@.\V^#eO$6*! PG4>'#R|kj1l"6\` PPrΈF\#q4xro0 iȲ0kn_8 ZO kZ+_ r-Jk5 @\s"ɡ KV ;zM>_snXB\9iRP(TEq]-!~kL_JZHZʜ-%ɒAZ "ҀȉuQ$>1+9ɾ;ukq&x SԻHHLrcljxb2v\B:U@P P+|Hu\.pvv[,cQ]5@1+ǚ=X`C?PLbrrLθpoO6i K vp!tt0,]? u ؒtoD;.K?fC n#TWREfcb/& t778HoRLCՍ=fZ=א>Ō ~:}0{Ys9fX닏c,,|HV +  b*:(E pPKaZ@ IožyC6E,N@P֤GD=gYa࡟Ż6 |sk4 rf [6{%2JrW Tu Xд}jU*Z#Mnam--Xunh!|P{{*+ez^93Q?c?WL{C9;>"Գ<_0|־8-44ݮ9FܥX"@78=;޹لim*:+i^偖N/fűDvmxc[MoXZ[^}z}m mjCϵ3=WB.QgGGf(&mreS4̌VZZzŮtTݣI^Lk`sDŽ@@8cQdaq1iew(WJWGtE[* !;*jm ğ?w/uÖxh jB 240]ƮO{)njX G뇡 ޱף-bi%O1`;,vZ6vkq1Up}t8xAIGh6P.15ZS?WtlTaYx Wv:F݃|7xbѾDr|dyX4n\j\n-4D]PiiGZ#aی%4g3sqM79 `!s,s<|)iJ,3s !!U,ǖ\"_9iQ=4US;)m0`hiiB. 3M'O }gh8UagG|/h3]\HG8?жį`PWڱưCō-zG|ZXb_ѐxiTyet#7"ޫn u*`='lvr.9FkKnCm~u Kqqp!B_p./>~R,K u~d )FK~Nхôyhb$+z>Cs 2/ PMׇx LùSDҿP.zhC屔^PfeLZvu\߆Z7CU3V ) Df1 > stream xX[oF_QaL.l-->2eqKIon8ș3~syF׹foWVԯ϶Yr;!nе)[+֗=y؜s.3k%2P2>vh"# 9niIUu]gؔ ŐX9J=E,#UjaN'ndh'K/YQIa<]QB 㐵.lX|'gI*JL ٵάaJg癦>tdq0@t7&V}֒jp~{.T&;7/m ҕ5Vy |4<҆*TPI:YZmU*}H o!]t wr~?׈z}#hY?d7쇪 ȄK A1l (VHS3TƸA!iş,XGI'RO'4"YTbifdTLj/E6:l g*-%w#yj'C r(jCsT (_ :ZJ^Ŷ*QS<&>a*O97X%ʨ7YQ̍(+rimZjL@c@R l9fFgF#rDO#LZh utܔ/ 8XvˡH~D"z6xg`r*}oK9Xeș0֐Ϥ} ×9s~gZSnJfRG6\}@il>5}\C+ʐ,3Rvw")596帞e ؔr*CyFCͲ r4W|QEW=C23(}~mwm`bc oۮc.ffG=& e0ȶmP ЬK H>VU:1gqJp2h}9KVN܏};8za:UevÙ[.jX[KLm}XxipEW؂8Eq{NYS=Fk@UM(3 >B >1s?Ԧglk+Зw>"#bUs)G@zIT.s`xXf)%{&hsi<5[ЫC9 ZeLYOTq6iJԿ=F]#s6hDǀ|[Mf$O;|% <573.MOxEpWy{DQ s<8~9P(5e OQ_W,]$"JUiiH"0J>dw 4On/,4q mg-S$GPJ MAvM1*\ծkDh#ƮPfj*F_diWôTHlf|c7u^.cUIDш&a| l87 QxoV6R]IY1#q^]` -FnD*4I*.TTK.O]dJ pӨ Z?oۛ@'q1fGS=й)qQq5@nr XCr. o*7=.s=dQ|B a.6ǣՔ'W[AQ“N8Y<7n/)0RʓS5> Zk㱌W48bE4 g>P4gRη>9aL/3"6煍385MY$T'l~.l d7n&Ψ-'}}ҢYTeOgfta+"qWI٤!k ];3 a+۾:vF}[ؚLٶ1R:Gi^틗n@M~L|m 'J\>>=]ֱۣͤoiCb~,nQvT7SR-q=L㘘|^ fYэ}ύpPʢ:hj8L!#mi" ~nF|5HG׏,'{$pb Zh .p-yg ;D*D7æ! ߚe !2B鞽r2T+;Z]'`|-,zGs&ԟkcQ@g$])6"(E-pLU>՞ӑj_NTr M͘Ij-O9Ho%KW.sR."\} vazl=3r5 s"=${|OKrC j*ǏY]Eendstream endobj 293 0 obj << /Filter /FlateDecode /Length 2090 >> stream xYݏܶ>j/Qd>4A\Y4qd-oOJZKܿ3(]h Kr8|aKr%gn7d{|PͫE ;&nwn5l+Oُt䄈K;U)ε.å Rjwn%/Jm`{BFHZ"%"-Qn.6>x #W@br?yP h.a% VṠ-J} +A_Nә:j#ZhSt#*o,w54UW*WL趪~s0zUoзNqFYxem3E3&Y0cm)(< G.i O}t1a0[Ořl{MwMRNUO]= t>;t7.z/>3oIܛ4ޟ5Tx7SaU>M]!JT>>r>ؖEVPǪ~69US*EcC>nʹ!J5_xU\s7ԜO&mk ֮(MVRe4]^ڐ5S/q#3NM[M&r] 'eJI&?+7KSu2>AyI~4Sm9VQV긝q7SSŞ?a <2rA $W@z] WgkKԊʩc3lbADJ%w+tǵ)|sS /H"ifx a CQ0%{"6((kC7)LAb1oG SSoN+HqtQl90[^)EY`XN$ė3ӈ05MUD,Ef帶Y)$g *x,4}$ pr. 8ڹŸ B1͎[L犐 /?гӘ1׆#;YP97oܳ?)z`,grx^ADBމ>T͓[HhKapU ehyW'\:RD_vp_GͿSCwǻrr~\!K" LH`(0]g%]'pT4k QK8$،Ecef8G凸[!;_1P,ӸI%IM!#TߐfgPKl@O4W#@5 "@MA1ГZ$6 .!/}4q4`˶=yƻ]Jةo4u76r}B bc-8tiA⑰EUs0 hGNl_9R+Sn8hD$31_Uku4mK1iWu3`ᖱ `α'ϊ`zhSQ|qHM==C?_ o!C7/m ? ñĢVv`J5OدG6M0.k]s"g 3q29j44FZx/:_sc2bcC ;U",qG1`hw}W n1le4,3jaE ZzN[I qۙqĂYi ) جʢ>y eRp!g("YMg )ԍ/.aa)W"Zk/2[zޙ5HK(Ч/L։wOM:~9qi\ xyFe.aU  z@a]ʅ,aB*g AY ~_4Pendstream endobj 294 0 obj << /Filter /FlateDecode /Length 1929 >> stream xX[4x_1oub;vlHP T@Cv M2¯؎c{vTnԎ/~sfxv7+lvvvkVN*3ʒ`S!ɚ ޶ktH6<,9N~~"<bVd T #H69pʩ=F$-fX p-%Ak=*RA10)S)%7C{8F~dSȣ+8*s <`Tv# hiPkS{uHt;m9}7+\GttrX{!WoN賙&Rhq7~C}$COUeW*'5թlFC)!aPIe;lQWϾ0洑~{wRNyMn 7Zԙd^^p1֗_?, 5eio۾N+(vPf.r70Jr󢆋m?Gt^8"^ :&rh)U-3TR1R\BJ `cP/!%xϐXI{[F5z7D>ҖF~R[ Ly$ `ECG$+7YDFʐheE&xzCЛǚ!1덻I@P ~&qSc$ !yAG(:B~ѽ5qGM`)9$Q@K@Зyb´'AU=$h8Z{b:sMCٍ0@5lo!E)K1Ƴy*ǍL [dZ??" )wub&%DJ#O005$,(JG Npk6A⃮֏=}:V6~එyIQDxT'%%7Y'pԝ `Bt*Asgolz5<޴wH( %PǡicG|GJsE)H{n4Ph3Gl t,9 =E mBtnp|c9onMCo`Za`@oen9mRC `qVdM]1iq:a<BQ{)ө+'Jqms^@l>hjU薸:Jj=8lA'%]a+ *0Tz۔ zk@+TKDQ|6>o.70_e C R_5v/V ֔+"rBkv r{%ܢ)|+7Jjޠң#,[C=b9p)Ԙ-%2ڛ+M;hnS42\e8ZhJ ,~Wޞr NLEb9`E#1 oڪi5ʆ/B9H̃SDB :?!ӗJ㨻E(?;V8LvXaF6"߻.I%endstream endobj 295 0 obj << /Filter /FlateDecode /Length 1827 >> stream xXKQ7C.!ހokשxTV\ S,;4Ih4&e{t41+r3}WM67w髺do԰l܄+447e2*_6v0.v~SE!ERksk[$]h W\oۆ\ cx<ֿ H)|+;3L="ʦ/fV5w,wOrƈD WtvlkG0MBhbL&T⩲ya!|@)$o)pk@Cj2<ṇ+WM_c `M \%bL%iP_Oma @M&C>P(Gn\4k4qnayoؔC}wəZe_^xb"S8N'ta]="WSٌ.1I{:X?j79U coSk/PP.:Đ5 `CKDpth/HMm\<.5KK# c=,V;aNvXLcʹ<1-߹>e3w;FDg=Lݸb]]Ek?XKNJȌue=wJ;K(Ze]nbQ%B?ی$m/%5~*O^1欇/nΩƟ3``9Fm( $h+tRjͭa8Iene⡦/ƱGH/D$8vd~zEJFȈV0P7P_]O(nmA+1áqK? W ੔X\`{zjjM"9^^Em@۶{$oL (RVRS͵l{(:.!o 0.`YtA$ @.2ٜp`k$|O C)-Ж4 naJR"ʻ-F1J`ih2Zn oD#3Ǭ䉧 [h44~mA!rȄzpӝS_0"mb<^aqc؇u.6-dyv4 8YϏ6I? pc F{#XW(InkzqL:ӊ`78p~Ք}_W~@ɡʉ*9pît-A6.Wd{x4eB6qs'Ǹ ^@&OGOkՌ:` BxA)䟥?І9$I54M;u FP|d6r\^j_}ܐ[џ: 0*p+}>tc5-TEt9Cs%Vhn7 lw\P M ,DRa /pRas{ @Y4EjQ CTZL!yh!moJNz `va.`Wi@5NJ7 CV7endstream endobj 296 0 obj << /Filter /FlateDecode /Length 1929 >> stream xXݏ_!"~<4Ң"&g\ne[w,K$E/Úo>8qV?WEvX}^aucW^N ~eL\dBlۯ>P7\\)p9~Qy%m< aN +  VT+R+V&b+R慒h;x9xl"3`Ɲ%>4t6Sb}5> 4h]pgcf Dy1[ 2zKQJtlXjIT[plFUa܅%kK=_±Ɓb<r xDuD pgׄ,H`uERgvTɋ=ڛJ|i )A*oRU:Xcld! c㝭AdqIf8МÆVJI4LJ{ց%TA5g:7!Q#$4I1WZٍۨ xNBv7,q{BFCQg 9)Vӹp3ck `^iBKBH}C_9عQkV+~eVNv9Mn8Sip&P`qƪof6 9N]qvT_Xp܇'cֿ_V*/h2 PjRcslA ~[ۑ/V-AJT{S R$/K%g/![$)u%nu _]Olf)%x\cSd!qܮ73Sn®(C9H^.c\_axepv/Nstlq,ap]M ߲%$znH>Aq牑2M~xlOK|,U. DW&>K=k&EWPHRc jA\v;ؓ$4h%pAtK8.f0`r;:ge" W4xt>i~~PvMdH_l-nGsQR9V_8)0(MHkHv}bW 1T82 i~Rj;a~?=cV(#YCqocCF@x}Ծ%Vڌ%źx(Ήfg_Cm t}6Ȍ4&s= $/-W Ȁ җ(1/ȉ0s`9rmj٫S'0! 3 -1;?*߅m"FO [>.ގƿOSXDLF}מ*cy=C;/3OZՁvPx9u7mȦzhhj,"^:ms77mԄMa467pX?f `?p idҦ0.߂h(o| =qA7R,Z2\ḫ9L-GG%cm >`WS؏-zЂOtvk㔦+z ˻ط?5m_;ǻAcݿ5GG}/*QIUNJhQ6΃f6ݷز8(@UЎQ𖸊 yzA `T)hWi{ )Aa\O-%䓙ķR=e DZlb7d4@DSx)X K =$e$Y?jy,X׫FcDvHKVJ~CX&IrS,T2Q*5@ $2HФr-,|\.V>>_*͗a<]l--%26Bendstream endobj 297 0 obj << /Filter /FlateDecode /Length 1665 >> stream xXK6zԯСX3| 4IAhq,; ,i#ͿER.֛h+?߲p|>GDӟDOvĒě}dXHLA)Ld'՚Pd淈Q<Xf%?6""Q2/>aHiː˲&$G8"l'QZg##*U `=fVm'Mq;QBP|$'Mj9SO9šh/v\HJiu9YJF_i 7ѱ;=b:M "oG  >!3TRʊ"y5Mg 4-Iȵ`dX9i2Tq&_Ю:U58*p=6BŁ[ztz:y> aw{zw*gP,zǓ\v}_dAHk-mXNuׁbWt<{ t vNܡNvI&9?<%Xm ߖ׈Fj#/L9 xry6X5RhcqV;m%9;ifYE6e ɱk#{o:'|-yfՙyu:ray} R鮕3 Sob`jlu[7UkKҨƺ)\3 {mfareCĵqMM7+算FYAyw0TwߚPx/UQcYNR<:D>`ew5,[C{G;_-S/prNYչ#l+[;,C=ى.m8~S~'E_~#G@{Դ'x1yD%I[p8)`;zu2sSCmo١IJ> uxr X]%\])egUGR$3͆s[+$J4kf#KƛQ ɴ)},Z 2ыd'S鬴m;%8o Uc@ʔ`93j5V|\i vjɟ+>2(PkSS\ du lPYrRO)e(8UC 2Do"xƿ$1eAs(b ޯ@(cDj**IqjP eB3"淃28EG,;%0ߘiGQ1"DzCc$Ű(̊D>xZsMOb1s%!O LO[;6׷ۤ&(BWCLέ3j6+$^nQ=SW5&J. Օnf,1|ew|nWs3P,/X51_ WRLe$P7s@hS9쿅hԅg0tH"썇=+.?v7U/{X'Ajpǁ;g3L=VsIPeUQ>*,&v]s*t0?WʉE)0QJX#glxZ񣡧pꟆaj_ܬ4xְ/Z 3%:AjTDkQendstream endobj 298 0 obj << /Filter /FlateDecode /Length 2372 >> stream xZm6ѿJk.Iлn~ڭ,m%9$ʖoZh䐜gfC9tN;aˌy_ήokhBA ņP6WFow].2I@֠X,!0UZBmڶNɪ:o:Yr ,-l;eV"5lI$A, Wq(2ALĜ}?P7kPᘋnƌ`о:ðRs )θƜ5AJ8)%8fҍj8q 0B  7WQVҪ<(D `LRiiF2BaґaF,9$|P#nšKily׏r+% FHNqV>/ۦCjW_w^^A/' 9G#]I,h9 |&(bV2u[1xJ,oW3IE omIt+>Õ`6xw+tBi AJ`K`%xGNVUUȁdKRJQ[܏`=b_5*Kz-$> -~un!m1/?<&:O;4F QJvx?|I*:"q0Ӿ=K>K]֮ٿ)y( m^Qz"텇6uCd+pw'nfӕ T>pH\viz NH8 {7bC&w0iv׮*P^@@ȪMmU^Ay虠m}jH۶~7aeWC e-!=mMAu嫽4H[rWKh1|`}\iʋ1_Y!  J!tPY,!7|.x >l6U.}8!sMH>TgngfFbM€VxI`R&I yQtV'PjO {Pqa0Q]^P\B~*F#DxHRw ^4va U8F/UѰ`J8a. mJdIF;MX9ȺŕFbkNЫ$̌3WBK,u- 8SP㮹P;(.&[)sO|(G(w lOd@A+OgKdx^Xka PhMcb9$uZ 稱 4;_-<7m Ba>G3νFnOnBZ-V{6QP\2{E3g[vJSSin9/8DcXf?9`!mXnF|1)k`IT]3oc]{rT{tZ.(-UcL:pf會N7xf5m[mw|/BhVFK^^K@P7}u$p]u4&zn׃rվ3AtAhA)ܩ2~KsW5m7Due>/`MeuܞDvo/m:83C :z܎.|k"z0L[Ǝc0Lw-^sw%z}1jw4Qwܷ{v=z ˶CG# T y4X"kQWⷍ a~MvOLph%ywEe*Aa/Hl2}|,*%BA~MGyJҒWk.;}?*]:4 0_?}0 #7m$}6|v ^Ij\otn{_CuNwSU\uW[.zMw7E`WPŻ߽~W-YRoUl(68w ӑ,*]E, HC[U0c_8o63Cis{#-[Hit휶mml罯=N!<&a:} P#7y8mY-LF}vyVMqk7y |1_B(7 vHendstream endobj 299 0 obj << /Filter /FlateDecode /Length 184 >> stream xO0 6!Y`!T(R@-0-NJ@ 2 ztM g1Ø`΄Ҫe(Ȅɭ qב tOǗitf,֦WxYYi??2Î`fKOykPz W9[Mendstream endobj 300 0 obj << /Filter /FlateDecode /Length 931 >> stream xVn6WhWja^첽-Т@q]v!˲ֶIn![JiDq8s̙rF!g?=c]AG}̿/Oꘃfesmu^G۱UJ9Gv}ҌQXn{C0m R67d hvĕ%Mؼ5#Ͷ6A=>t/ZʸWFg}I;$LʿJ,!}shu{hǗ$0jl&3Ktڐq%kɮ95WDl T HU^9\TC3m.GH#DE݉xhj] fZ:r9wPʤvI36%$@9GPŘjlH0lȡ+[ M?h_Z'cx๞`X<]|%;%%Ese('50䑬_&\$Ea N }` )o}-Z7k~+2w %¸+RO'q$hv;PU$&kMj=J{=O`'.|s|/,%2]/0v^QZGntKB3ySD~8Veǥ:THPͱ6"1tIcR1'M=pVhSmCpđٿ58.ZBʭzs{8`ς|ԿZWr#jWW]*X&k Q{xJx?+?ܫw?w:} %=$endstream endobj 301 0 obj << /Filter /FlateDecode /Length 394 >> stream xS=S0+T /wʄ`hHP\=e4{El`A0so]99Q]%i&Y=%zgq7:G*f2O㶌߻sJgH鉰N 7Bpɣͣ8]jϹ~ːendstream endobj 302 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /Subtype /Image /Width 480 /Length 1044 >> stream x  Z{Sl +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q?endstream endobj 303 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 302 0 R /Subtype /Image /Width 480 /Length 23057 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( JkOqVc'xD+3;pв+t±5בڄ6i7j^oC!um wǫ+g`L6*yݚ5K]Bka# ޮW֡,cG5wVz04s29\H8Kcv7+%G;NnSBI8'u+yr$]Ay܋&}[sr7əɛUgцwyhq=oy/}hѴVU#mR jVھ TpH<pky$Kf|;No/K5$!*89WNRā72T y]2 Ģ'fwPNUnciYYP_ [Osq}z화ăvU9-l/Rog!`0N?'5C=2msmDIs! a34UKVm~r%1 iOYF]n,5b\A^* ]ź^p 7Wqnןxu?ӣe08 J;m;@y.ꈳO=o(9\9F:PQ^Oqfj0ɶWV(';qcf[kmfc#1e;3j`R XNu槴[hDET("Լ )qHRI 9ǭ[ Agkڕ񮈑& R>n9=J[K_u-:hq\MJ L|}zV&lk5Ұq0(9Q4^OMw2`v'zyjr5̖kf2nQ~wǛeLJ5vVId+MXOu]m3r0j/Şw8lpj텰Ӥ-K`ZGPcniw,$ފ#PNT^6?AcϹ^^ m8e# Ѓ>ƀ'(((((((((((((((((((((((mJ!b->S{sĺԞbYFwc"ikC!W9,{{yHUF uPEPEPEPEPTd#4*0casW( Mdvjcg?z0H A5tl}-5mS};q@TU;MF9$V&8$z~r ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (.-]Co8 +ɠ ꮡx-"]O! @r{K}myw2Eo;=:j" #`XW'] }W.f;x@:V袀 *3SFpY$p[CB&EϗPm ^o^8C*!GqSg^uo-3W (dv8P2N~"ܲd~7@4VL0>x%wT?n4( 43Tyhucڀ4(( ȼè9Sq\յK+?K6g(l +Y49].+n0rqyC6y RGM3;$( cjsܒ[V└%6QǸ}OCR[kHrl TQy$'=|JCr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( n->P8ŵ{ UeO{_;V{hmc𭩹PZ\yRPzڴ<9hTO0j}F?`+L QEg]]N .Y%,YE9m81$d}+٫{]5c~ XlZKA=o/\.]E5FE٦ʫm*>Y xt[P[3՝>X\\6*U ?h/-"X o0֝d[xkFMJITl'}ZC}WkC-k}h?hY5h~춗#Ѣ?,?J5Z 5`]6e)"HpC@m; kȌ EaxXm0XDn*^0.qqhhWJ3dF0qEG+M`?n9JgCv20w"k/UDw!Hkr(i]5uW+VXdY#ar , m$1UVcvzZf]B- XvB:=FzSZ7]DOuV-4J_2 4yW g#kJ ( ( ( ( ( ( ( ( ( ( ( ( ( (z[*G.;av>:˩M0r0,XǷ{Uh#!F Gafpden1v @V\˩YNٮTǺm۠.e,b=g+ߠW-ma6$ӭƃ 8%QEQEQEQEQEQEQEhp_ܼ<ȱEP@l{Eg_i+{{T͊E٘JTg_"ޛinG 2L$rNI,$ֵ<] e_xnh= JѢ3>tEtVN5Jtϲ^>C)r`2y}vRmDz!aSY.Z1s^-J?6 XmoOجnM"*HAޭJe7)@@+KMwWkhl,r @WAW 4pm0 ~o>}e2L,s~eO+fX-,! ݾP!ZQEQEQEQEQEQEQEQEQEQEQEQEQE6I(I" ,NEyuM.HTeE&ӭdF{ȍ{ sTVq V5ba=5@szޣ{ [\yQV?Hᘆ$gP15ѳR@P2I<\RK2x4cXD }T3BFF 錀[@g$_Oko3p\p 'ޭhv6M7 .>r (NqNRyhx X(y<}.ETYKdb9v Ӵ!/d'_b 2::+tR$\4.zl 'hVQcNߎ}!(?FKm#5#;  8?uW?/#ݥv*N0I Wk ,IpYBrN.Gp2G^Q\ԗHѝs$i(#*8P}N)vnE.$ 3WzzOErhKxQ)inцB=sċ:n$rm;> ш$PEE`iɠjnfc"HSцqpy+o-bVw7[a6p<$FI'BMb,2&Mk @4Vwusdc[IM5'(_jF A"ηYRUo=$ 83ɭ?ϩklD34a6(֝u9cIm V9I 0GR8# ]i1H.ݠ Sv.i׉w+<A#j#W">.S\/V4(D*Ŝ噘f>@[YZ.kx_H/-c=T* X+i_lb6?_*b&y.E;DT!v{jѽlM'?q"_?@Nknn%8* hM:YBUig4vtEPEPEPEPEPEPEPEPEPEPEPEPYG';z?>OTgr^P ̪yE?9ĐDD#@T j}2YI]Qem ;AcV|PKȷcSfOfq轻7I:zx9HX`ӎVPQ4V4Hƃ,pWAHL2\zYVQue9H\_Ays^"K˻)MN&J1Bדk]2c$K*%&IW8$dw \C$R Q`%ҙTހοM`kcT͍SäyPU*_yV5ˈ .i%9Ǐ[9<}+C-%}}G[J_&3tm#PLei[6eexNAyg%ik^HeY&v Hq] _k +7vH%F"U(0 >XO cOm.k5ԍzJF8sj[J_&Mr撋m˦[;3 )qڮf-l29ܶI wFG V[J_&Mc]H6#oi~Vb$9z_6N֢C ߗa-%}}@Xi_[ȬV؅';ztݳeYc*MOcdK Y$}p$Ɂ#>^T`iI⥢(((*+SB5-gj##նhM"SRe9#>EQEQEQEQEQEQEQEQEQEQEQEQEKQ2֠5!woa lTkcZffσ+W'Iei2X䳻rǫsNwڋ{;Iyw>lv;KIK:7OKeod#'9vL = ƞ{U+ 8-,Cǰ (TQ0PEPEPEdF6 ;Tnn`͹8cp'&m{]a1jS哇7iՕ r鈱e #o_ZJh%g 5SneTxD劕=*cqõapYY\sdP/VGޗA+?O]NFX^c;vb7|cuu1o&( Bvx%g 4muKk01( ,.A.3@?Z.>x;ola$P YBMmY]K[yFJ*׃T4?!08N^][k=B@ } j* [kf9N #d~u=QEQEQEQMvTR@U$BoffsUѬYZ@Df xQ(_5@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@U BS"Y./S~w>WlڝHL=mv .\b(W}z]>8:1% Dž~'Đ3#5Ĝ=ccvy:QHQGQj 5b{؜GӭGu,iG?h[+ qEQ(7d`E?&EQEm~On|z⣺Ԭ$Ӡ~g?EʸoLY%-&BAsoǗHvwWA 6d A83Ow;E.&%s.H@r}~\8HTKy5.1A'SOV3H;I7S%캅|ވWd@Vˢg}2fat22%rt"Рm^903&r;VʹqyW04yddt_M+_@l[5x=`O {{s5(n ƛ-GȮp 3ch۝M+_G&@/O s50ٙl7eOnߊ:7kz@='%[r*[?ؚW,?M+_@2Wf̂[i+.LAAS0U+s x y;gHA#9xҿebi_ t 顴F XVgx&HkZZ™ිH>m#$dtڴ4Y:MmY{[Kx G#Ӂ@#QZ @& /?Z5hUwR'+g)g>աL2!A [eeDI>tKXce"iv DM彖 TɕMpc;I-B[$, Tn'ly<WA&= REPY3C#EhuVsq-N?&4`p-PEPEPEPEPEPEPEPEPEPEB_ ;2H;nIEgX#F~lvţXI6=1#Ƞ 5 ϲD͞Svu'̖Sa&aǞvU뚮O-IJ#+$r XosItbzϯ1JCkjw''?3;tQ٦[ GӥX/. rXy'Ā 'u&mbбKv{mԾ~$Ry܆ 4=>c+?@5JmZ Bo6a(T8j?섛wڟ5v"GIP/7f? ?$b3'伟ĚѢ BG  }jjZ()h ( ( ( ( ( ( (Z(Ηm<` жH9u+>/#~uҢ)v2yJ9*㊹PZAys J@aQjخy.X?Jt,#wX閦(\ 7I5{+Zj|4gpn2]u 2AEQYW$ #vrO`?84z#z[\F#~4h_AŹpaH*QEQEQEQEQEQEQECyp\I!BJk[5q!&oW<Tz:vM gҨ?ή\["!vD,?Ҁ$oĖ ɝT!J8ܹ< ڙjqj)wޜn,jvMix!I!]?x`ƀ"}EHb; ߻Cs<ެlC/QMz}aO8_֨RKkG"K+ex1WmOPcTH{(2piFl5ْnr?t~o}l+ ʪ*S?fy_E6'(BٶW?Gͷ ТmOV.K%YyjZ4@ 9::+5`4Re\Cr!TOi._ђdvWiBmW c@Vͷ W mdSIU}YԖKkDWo)A u# j4qIȡF &pHV[uTH<6.8g19'<6O*7mUg$YLeKy]1qr~}ODm+<̨$$z M}|'PjwpZB4p*)cp) Z4@W<1@Tio⫟>0}>v6^\02s#xy"up>b~Ծh;ssb5?Tio⪶_kZpg%xb^J͇SM{gwu>Y^6$?۠ 7mUo@?Ʒh{Fkkd} jP>b:qMYodaï~ʡrsChio⩯f .ȸ Mab?kLS$@˜g[#R\H19UOҀ5 ;"%Kf_ƖS;rq iu$ڭM$D3aw< s@V/ .d-yŤY1;+ lڼq#B ٫.4p`g؛uƊٶW?Tmrd@1-A'CZ}V]*ʰ!fU?0 t#>ƛm<"5/Vk<@G0 ,Tq8 .խ,$!fXnF:bmmcxclG,I]-n;9wi  mbq;N8d\}XU;b* *tSLGV@ Ҩ>+z ( ( ( ( ( ( ((kJ0e"SaA)HFAYteҧ$ڱF;g˜c}p4ǺWJј$| 'h2O/Qg,euy1.Py s/j*)g`$sw\ꎺaȷUvHAz(F~bYlmaFi;Rj<<^\A/ ϲo[Ja3 xΕ myٮV9Y?nNXRL]>=Uӭ.5żn >9}LN< +;Zb[4{)FyΦ6?@@+7Sѣe}M ̌S12y*(>I//Ϛ5FGf2t+"ӬOI$䑤Izn* H"N G@ocڧ1mk7"l[#gi `c΋;.Z;&c3CtEl@v*H7_\In#l# 62N2qڣG\yڥR(ȣX:w(Ԧӵ!K*Kzc(zj'2zn@Ls޺j(H8:ﶎݏ,[b䲒X}y%mњ=VFFXs=0n [;h/G) /Qk-4 va]]jhLcXbp ʒ8$|pixhݮMHwG'F<]% ],Z ޏ5iXo3y6;q[ʊ41Ɓ_oA]^+(!{˒Ap܎,-bʭXU ¬@zX%o:inf;v᰸p=;;7731P$̤D@$:(Ǐh/Wg-i[lqv> ͲNI/H.XOYSǥkQYlƇZ|;h.ecDխC%^ v뼃z/EQՎ5208#ƋP`œ0! {k;8绸ٍ+1R͕Qwe'rzvnTlciXL(ǽh*)g`$QxlYn ̰&Y`T1,Ϗ| { :(((((((*hn1\F&s>54k< eSN(օPea,r>Z{MYEݧjFfG$u'Uu*X`2fHY4ۢgf͔0 Ǹ=9Mm𓙣ן]/6@uЎgy*N,.1 8ǡ9ekcAtaЊL(Bȇ?QQhdX5(1J1H}c ֍gc͜YH |FVߣ/c Bh tkO7'\1%ʇTNJ*dK@(^uGۯ =~ă8oѢzs|ܙ"Bc T N3WV g1H۸s|G~.Q( Cu*==I@Q@Q@Q@Q@Q@dHbyd`Y:n)ȞO,J2^3ц (Fʾ InR8SyPy{} Ijw_3RO(ƅ݂$T?n4e?ߌb? Ҧn\Iv^JC\eZݻޭuhE#krF2S࿿!I ד<:ֵkfKA ސ坾y?˫JH񪕊X䎧< ((e9dހ((n`˸dL:Q}Ѭ p!gP~H (((((((((((nx&F8 󚚊ɍEھsqtOfR]e~A ,7GR\Dw(w/i%[&<?4zXh9Q^6eaG]iql:H2A?RNw\c_cϨWXr+YAhna'{/!5EUNtgǿjӢ@ Z(.tn6{b[˵UJ3.3vP0zO>asici![?>|ăp# ǽQѭu7[ c`XxG,A<+9uu}~;eecp0QE ݗ `dYî%3@3v9YY?Zc_>OU@j7ɤ^>ч)!#g[fA8ztz%9PJ{S((((((((((((((j{fڢ+ cM_*)9_2F RCGP[Kc2Z_9ts 췣{Iv5*Zg_Q9,p^pA*C@R@ AgM-nl-=ϯ@k_LeI?}{bP0+<2 :ǸȫuZ _5Ht9It> 4Vgڮ/ty_txqh"K )#@(((k7zMܦ+dhgHAV7!chzrvM`]#]έ[u؈m$g5#[D ;NtY!;L3sEsٶ?766Oy|dQwP eS&NNHϩ( US.R0rv((( NMg>k2N?Ԛ]i%r-^`w@5Ww/F#SjVWM d~nQ֠ҿ&<ˋ@q@4QEQEQEQESd"FyQdX5m>Q7;P-(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@IoB(ly㹁&*ýIYS웆_:dZc_h"E,~W9/@-5 V(g S$NWHr8 PkDڛ[F6cM=.? :B%o0V HE'v=tUjm]ϥw[{l9\u)RhH^7VSE>( /SP[pF*1 nr_._z߷B٫KU5oc~(?n=lTuoc~(?n=,Tm筏*( 횷oTWV>LYeH8 7kQ@ gih3s#JU|%nqW5XZ}t!YeVQEQEQEQEQEQEQEQEQEQEQEQEQEP]:UYI_˰ΥEuo˺7#CU,.%caxۧA9O_B?Yr&#\Z#Ijt2Tt{Ԣ#h!IuxeYNA%fOo.3Y!x{z^"&!KEPEPEPEPEPLD7F uv0yυPXYYB¯EQX6Vk~fF%K'=n.|+sy3ķDZ0exّN}ުwZϹg#zc,U@ cҀ:B@; ucҍfܰp/N(dtr$q!̍.MRo{x܈ eBT9;Jиӑ#JW.d$ld1qh7ؠC&$㵣Egc56\/MЬ!*X_̎[dEe8 A#ZtPrhe5@bxCXrq rxjMZ?\)`#?7o K4:1Yj8SonUCƟJ}e9U#'ZV =-+d;tj(:kk[ /3[yOfۭQ 6hâv'(f,mg+ o;U((((((((((((((((/#{ -ԴmD%0??Qi@ D56+) W}4XG@t=ɸK$(0SL̗wߚ5EgfKA;??%MhQ@ْNO&'}ZPd2_ ~iօ/4ijlZiEQ\ʧ+3Ϲ]+h(#X^TQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE2@]O\P> `=ʡ32% s8xD)h$⹎\E+?߱ZP@o(m~hQ@Z_أ K}EP]LV |֯EQEQEQEQEQEQEQEQEQEQEendstream endobj 304 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 388 >> stream xM+qbv}H+H!JkpzlfDy g{Ѧp~g|> stream xR1{0 ײ峝-m[RKrp5c'vd'H좢 '&70cևQs3)fk"&CV2 Lq4+l wJ!uiKf-dL,˼W[@KSP*^LХbeï Js#x\'H@]8_J,14BBL}Hj uqW>\م$#Eȥ?v5ޫgB<¸iN.@@}/"R_cУ4MkB:Kw/*Jf f`xp/r'*.bW+#y&~5=Տendstream endobj 306 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 302 0 R /Subtype /Image /Width 480 /Length 22598 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( (35{O#}1W4B!Q.kh[lxϺEs"M~ 4ٽ!eML(ӴRUYmC3Bejyu˧cM'i f w|r gtWnkmx{|,|ߚR:\;[KhDm}h)f8U$CD֭5fa^HG"ZGs{M`?d$go|rL jmmz-Xl|`$hYHA}mquqm mᑟU!cgm,ꎩ5'p~l`p+w^zDk DC_j쨢(((((((((((CZ:R@!KEejj8%+mAiv>  rI$I$Wh LR@zlWQۆ̑&(lV"Ɗm zS 03sKE``t L @! LfB20h L -Pp:@=ih ( LsP]JrۋL:݂ȼ烃M3G]6 %+ NI'ԓWh((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((MiJMG"2< pM][]BOBdD ' 'v _ۺG,!?Ə#?Q-*!kĪUU'b fc Do%wc3n?t XBTV%$ufйePpX8^1ެɯi^~c #V` `g#<s2ok,R9>rbՠ j$z5 dJ:u(((((((((((((((((((((((((^U-UbU7}?&>[D99=FMiaib-/PM.qISNi@< 'o_C,v(ƀ'(((((((((((((((((((((((}wcNE坏EB숊Jv8,}Oj4/+S.1E3OkFײ/yQEQEQEQEFO%Mgʸq~P+=C͗1 d8CC7ys@9V 5InXGo%ǴkҀ5(#" ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) xbkH\@#R,m!XCe[Ҁ6.b晶u$;Ulm^وQ^7 Ckm,qYpB3f(+Hv^]w-_2K@}M\\y ;ƎPQp=Mgѭ<, ਓc@$Gp<Й y!ܙ>nƦH-d)s D׮ݓYZimg$2HcdLg |Ámދ}.u)K ѣx @ YKIx9hY-ti..\2 .nȦ-1^q$~wV/>5 =K20GGi_$drsHDդ Ep5hp](rw4ZGs\XLG47ȎTy4ѥZ VR2*gd%pҬH!f$F>\CECku^e*gSCjj)R`ޖ6gu?ۿcK9vKo˞E{xaX`Ah0Pv0Z۴( XVtVQdr4Pִ 0?/}|Bι:?n( M6u?$R@z1ZQ@{|`M 9Y^?#l Ң+^ީ6+/FST֬U[>LJvT%]~9:UzjL?;VPfHމW_@XIn Dpg*{еKnR +ۋWzgaEk_[-ūx6##ֲl,uHUm%I[kr 1;r3Z|> [`Đ0Y3ydr3xmW.RO5_±F0G$u߫@j(((((((((((((((((.}Fwb!p뚟_S{{q, &.a,TǰO[x H ]ztQ1q(D@UFF;A's.{,T7>tzNbؠBFH# G99I(I"(3=k3k|2<)_˴2^<_q*VH "Q%VQs;ƃ-#zXO Y.fkdH9NV&) Ӊ`0uav2n4'yZG+$Ђ&tn3+kQETW7HƽY*KP{+Sl?|=>íCjw{wpE 2p 氬^Pi-ZP-]%|`3ruIZ%G!˂N\}֫Ek$ZrJ2Nq98oϺavGe@y;6nj.<Ԓ({o&H ,2u!Y8][xXhݫ MrsjuSmuq$Q1?9qCt [EZ4_9Hm߾e]=2+߫M&[,4ٵiQI1/'~ "FӴ9;\ܤuS }Z=ڤPHd>[2?VURH9$ V #+{%oʭT6vc6=$@΀'SAG~}/?*hFuXR ֏C|^#8Z4jZVRqLwH ԌsQnibװPXi4b-BSx&A2Fz0?K>\cm,6%,Gq76|A. Gul᳹C'$ghn0:֕gǪƎ_Fr?8>zHX$UtaVQ$i*2HXdYٲZ\oU=]ƓlGXgۨ힕~+Vh$Y#nW& =<{YMޚ˩W7zPR.dhncQ*TWhxRp >޴]F[$doZEPEPEPEPEPEPEPEPEPEPEPUL9Kna:+8i 8 ''W7}ȅ?=O>/qrKɱ0裲/#Wh弙ta52b-2Au>Ú-6ye=S"ʅH19f'' gnfhrҾdNJYw*quu.eӣ3)ù83w>'jr]kIrU6ܘe!_k(c8aUFJmnn7WC_'ޯQEQEQEQEQEQEQEQET,PӮodpH#5iݛX 1`f8yz(.٭_oSo#zd{Ah?5h@1ƙr~wJ5q,g>@V!@ H#n!jiB_Mٱꝿ84t}>Wp?1M1ǵ>o?RMʣU{g;sP_pomb[8A;IR ?'=+U][N=$Yh],$3yB+͜5l4nL &~b:=?Kc &9}?S^X|KN,EjE]5BBzH)qp>7O2i[v z(>]k&25_Ys# EQEV.L ik}`*X. q40My}Rt_M5#NJcOOJHK.Px;pIsN@':ƲZEl%^ 6k+Q rJӼ1<D,uiԿ4}Rt_%櫨Oyo*4QX.bXJwI$5^}1 ȱkGKOcRX^Ir4`` `_Z69㺵&Hm3 zS5-JY8+gt2]" (!ShCihYى'??f/b Т~S+\Qn-n}' SAQ@FX=MPƴ? ̟VlRfoW1I.?Qk#5ku nYe  `uQ[Ac\hpOzy$%Jr:ck3@;Fh wKTn5ޟo5<`hPH Xr3#>#)rWH `c##jՕV6pۂ"(''w=VFr? b?E 1i36dfw<€fiYo߷=(-f̲ۍSw?Wͷ5vKye';Oz9k Z?v3!TtfobFi֯nI;=`~QEQEQEQEQEQEQEQEQYwڬi N7B?\  ?wu Yj$w'ҢO4Yvߠ,yWqz/o8Ck5s&9 {3Ay:+:MIvL\:4qg(6n$XqST{}6qRCsuG'E5z!/*0u'Ԟ(|Cuj}Ԗ ]ʅ Du.=ƣTctO"bVኆ>T%խC^ v뼃z/Eav[ou%{yFy&f@9%!bqҺq"ƋU ;u;{&$?(JA1Vqi{=? Ebkyi,Ppe]@ggb'OQltH/nvrr @?.9WKE`[GclzfdS(˕Ibğk[MGHlnVFwnt4P:{ 8Kcnۜw1,4HƓ䍢ʢ7T@p>:WKE`ݭiy|̪~BJC `Үi~d7’Ȼ@ ִ$h5TQ(((*93$$QVv.ml}<õ<>=M:HZkHTvfu+#<3 ,b3n%Ă($EavzTZ& ?tn4}g[wPS*?\cbO>RX!l m;dpqPwt^(?t­[٦hcO$":iE4fc*wqmg_8eO@1 VԞ=P%ӬڣCsV,ಌ q19g>I5=QE#(`CA 68%*E@Q@Q@Q@Q@Q@Q@Q@Q@U Lȏ89}^O%afY#}2駏O+CϷPQ=SjgiJuY_­[AA#1R2ԟ%<0ߞiחW,܊1?AUsqu*qO_Vl цi_!?Ӡ@ss7ku}_Z1Ƒ"h0:]jVyRKc(w?[fTRB$Yvu;o•t<g9P}aGC)+a#3Gٵ [haր'w@Eme\Oz6Fy>Gq~vc >έSGFws Oj(((6fA 'էno&4(OM,zG3W̶82T~(>i !q(TO+(L|?8P!A$Rjk,KbrΐhHC^9eGh*Pj٩}"yDmm"Jgtv20gኽE%-S/l,~lHFf Ü)nב܉n-e1MhaUhQU&6ֱ58 G dzzwiqd ?vy<޵kp;S}:sI*j  Ge}}?NEQEQEQEQEQEQEQEQEQEQEg,/mijI<ç#"4(}V㶺Q"odOԊ%-ŒOeyIX\u?w&xDsgCފ?^ꅲ|ߐ gnދӞR&E%ϗo1k'D:'\cD:u,i+ÄN~qo^LhzNǦz4֞ER\H+3;sbbeyw=b)vˉ%?& FYHY?TOq=d?5$U2ZyIgm>bw.ny}Xf5[}*ݭ{-HB.2}OMEQES$8t=X⩾#m7ſ?/Y6.rB?=k/ĺ]>byY] ̪8 ӽtW=ͫA[CˆVQjYF8w&,LOmBiiI7y8 InN@@Y=5jM۫~. ~rN&3˹OG'ڥO߳SMyf{iv"n3(' JIOʼԹ}JؖA=>Vd{K]0,ז.X(ʰ8v푑JvcG<&ki쨘*yq:AKqªRP+IfSѧn+vv)Bdܒkr(((((((((((p2<8Ş؅_Ԋ,c|WL (?~'ʴ}S+l͘*Т3fo ?ѿ̌?-ح (z6nK `ή",k((KsDL$n 0aE>gQE  oV07# v<}vK5K/2:F$u4PEPEPmLIhܨ<?TP_gx|U$m) IEQEQU/`U31 ɠ 5&4:b,Χ3ĊonoFa=IHXEDQU}(K.Nz(~9Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@[w!ǜI2TCY,C2TV+:M>K{ntHchsnlEX,H-*98ϵs$mJfYP/9\'w8kծ6`ḓK.nk[tb6w8sՉ?{=q@쥸,co5Zee$UFFKQ+!"ح 2HORG#ڴVu C.~de ܇ճ4[!%$ Ӭ@sI _hor>~ ~G}?)ր2ES^WД]I?1vAe궳J!g0NzE2cᚻ@tv3?}?intohQ@ʿ묯 +vShQ@ྴQs 䁿Xw ?߉[OEhT3F VsZM_ r~!h'm7\YƖ4J^s󀩌r v(%rIMX%HC#`z{46K[B*Ϸ? jZ^,pB@-Oه nмESTOٯ-lpe95{ui\Gqc̀>[c#@]xz+4|m>1jʎ8Lk kJ^r-Z!!fRÒv'v^({ TqQf$8=]}{%ig:Ēc"@cV~Dw! ^RL/,mTD0ă-@$8ZK9u %]L3N^51jӏ~bO՚\0r=ZP8v(((((((((((((((( z ,"&)1ǺU= Ϸ2n?.[.śObzѻʣg#q /? ;ךLgceYN0~j!q[dqUuA~>`gOEqԏ#9UK[ʘm䯡aqo F+XUu/-)?{NGE7m7Z'3F=>Ayo u8 c@>umm2/x~GVn*֛ktI"ä?C-YNk/#p61B/RK'<~aWϵhH` ЊZ))h(( זqHF8w!+[OW3#:@?z骵?8Ir4rdH= fW[q$b n!,rNz_%][O=ç$ "v'lۊȶ7GEFDGζE;Y@f Ǹn#g8KIglVVʓ$2B?v5c; sV-Mm=/:o.2-P4|mua݉m[P06qKgg :@ؼXUV-ʹD|yǮ*ZBHҢH L *cc>КnuaYY\GK>!1"m9=Vk#o-"5,`G^yLMXETҮ-n$+gI[AEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP}M%bH:Cos.expA੭ ͻK) Z/CzP/]c+0:NIDXǚF})Gk٩Ȓã"kVQml7Xs[ѿC(c^McO?_>&iF$0 g}N㭬ǧ(N2`<{{;/YC?5f3 dY9P@}_K;[F?ɏҴh i,es2}C`K 0ܮ b+bT){ yS0nVh2]{̠Ð}Z,+@ٍLs8>?Z.1>oaڦHk 2AAKPLPA)vvI,Tbdڌ/_OILMX(QEQEQEQEQEQEQEQEQEQEQEQEQEe΍LPkI눔ga"?XnʰIzUu-dIe.?#em?ٽWߨZ2TQcA.K$il/XLO@-^XCvUtsܚ3O%YmH$Hc Vnl/ .&.aEF27l .s |(O͎ր/mgnHFq2WemD1}$7;+JvpNہҀ (*j6]^L$Vd2_Z!B>?>Ϫ.( m!B>?Mk;s]ydժ((rjfՄweZ?E}-ע2Р3"y_-\mcN@u03sKED$T5P4E*)p5W4n#Jwgg%Gv8IY8FUj(s2JIchvS*#7k V//X5X9bfH6 E;I+!TLFd1*b\$4Jez(}48cd ۮo֨\NnkKQǮEqo-񬑷UaT|7NQ,ٳ,c؟=>i@Z]yo pt*}13OT2Tr+čj\u?N(Х"Aqp$d!w,QKm6CϮ:PZ[nO!Oʁ+?2+!%y&rNN_ǁLԴ|]hp~Tpr^ZEVb E˱KNO".%#ꧨ?EI}}[ tUU,{Q>–(%ʖ[ivyۢɌo<=2y@6 Av\Jg>Z'ܚEQEQEQEQEQEQEQEQEQEQEQEUk5)cwE*qY)i3=ʈ!:;:Nvj_jT'9\g>{kGYʹ"sP{$i,m0 JuA뗀Քq ػ NH zs՝7 ح`NN[$OӚ5(mcdWT!K錐:s֧mW[rܻw>le'Hd@n@N  HEM#|.HC1ۧj٦LuگH@nPMe2}+H  eN(028c/bWȞfZQFIr8^ ge@!dV#?@j$7/ؚLb-z ̰KI.5=}IS9U{]vciEl#1o#ddd;ImP*1ޜLq9>axd>~'ր0d+[X&keȍ@rH~O֮ꚞזS\D"1J&@8=, :c[^4Yƶn<5&1m$t8 tmZKmN$CđaC.샑T[+|J~xrqs9puI:94TIcG<iNeUfW.2&Yer>ByKh '!󚖊,.f1hT8 R,m"xI@r#6Fsr}MhQLh)}ʼn@<( 8'(n߳pߌ8yED܎v{H3¨5Kr2'8:-ԅ.ŎYȉ!4YTsԵ hpކVYس2 "8I!OŸikj`(E2[QE((((((((((((((*uhB^D0uCZ/a.$mnz՚Ͼ&@}F2p'_qCVlfR:;@}ՔzyT?#naލVZ;mX"qzfXxȻa%9a},K+:FO"Z<0w QEQEQEQEQUa<͙q4?E+k'{<ȵ( H0f)?3y?濗X%R;o\O^LzR+CkuveagNn fAX*=..K'$V|n`TN;ժlGDƪrXԔRfoqjBd7ۼ{ƈ̲T Qz=*TE"U )nVb*.@}QL(((((((((((((((((sYԓH%iDh_`lX@s>apGG\ַ6MjyNX'80C@7ڌvq|fv1 ?x0'$T˒-*e"Z]O=՝[XOp@'K0l`Up#,J.G @Ҁ5*Wrȇ zsެ@ײ2jVf)a&{ǚIb {M:HpWg{zĺPde InT1RA#-<ӗwߔ]r.ZUL!w[Fy2{ 鉢;xikoY(Dbv!'=Sӗwߔ]r.o^M%1k(ed1#s"Gm ;C1;A@v7k{ cxʹFIʐpz*s֒?۞5W ]yVǯmrNd:gޕ,opqR}~'BDvf@U̚ bѬML'!`0v4:-hfȭ9a6vL+Bd4$$ (UU @)Us'ڠci01=q@ҸJ(FUGI(6v:('#]h,rO֝HwES$(((((((((((((((((((+)ѥiTĺF̊?ݏOqۯLVAdAzZBtiV&?.wc'@d<"dpNJ*@ 8kQ@K, 1c*F> '^3Š9'7k6 # yttP w:]r8,SR%0ADt.) p q9'ޢ3t6[JIs#)e+5EQEW{[v-`G۸Dր,R2z.H.⽵D!A&Y*J|̨\Nyv~l(b?*rHOҦU TPhv) *}=BnEP (((((((((((((((((((((Fȡ 2yL,mrAl}}~zTWEu:MKEf-cxyZ'}qn!F;CJA>VAKOwH'Rh?)c 4ECkuoykaq{+ib.d()%'&LB(UT REQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEUԢk)xu?#\s׊|> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( (0_izMiHV(L)'ՈCMA[O $f;GzW1i'ċ+o鈊J8JQq5k-%H(LL;tWxQKeY[q]r=~."Կn8tBl #fO;@kMw{9L2a{}Z%uH渎QfP+pIԺIq7nd[uXؠ8ހ=:t]\(]'d1Es.XċH8## ;dox.nY&]393r7x?J10"m'1;?/%z6dzV*A$>ӴJWᾲrQ  s?)7χ~)ѭ7r_F%[;Cg"=c#YiUexa),zמJ{u-PJ/yfguY6P6Υ"fjwj$`yp9qzs4sEurAezF6sjZ얾,h.iSBcRl4+&3oSߌnٿnwh|;]~!u99#96CON=x†Go.$GR-(a^FGtEd \CWYykCO/y|CBϺIyA͍[Ts.Գfp|Xώ⺺œC]ڋ)nRo1v*A:i$q;D3M6=-5m!)IB]e+{;˻/-%d-+͐KuxbM2q1O :٢((((((((((((((((((-f]u #[\GR IU_nT7kU[a,ǰ/ր(x~? ڛlǕ ;[}CÖmD0daK@Vuܳzyj#aVa;P|I[?5\YuKKwLQ-":?>m.jbI.AǜBE*.0. ICH 0fb3Qm+Qo*+6 Cn-7^罏.-܆Hb{;ęPIUyE][C4u6Q73y\#,B ⺭ѳW?$[nn᰻u2E\`ր!%M1 6 0?[IiVK%1ִh*yTJm&w%>gv9?|Vir=# c\ՠQamRyr$ 98m1h,X`VQ$FR IA'|Vx/.<1`Av@H HcdPbk+|Cz7lэN/ q2*VTLrvPG",Y}ka-_(mG_U~ ⸅eE6 ,pJ(3X5k V8gooU ]Ve.2Щ?eo#cgr{;洨(((((((((((((5p(cLc裩@_$ 7+3 ?z{~'\;XP$h0Tvkg ]I\V#`4QEe<TO,{ݺz:[ٞ*܎vr+Hj/IIO:H`Ah0RPEPEPEPEPEPEPEPYz̋Q :$'qZPugeI|ؤ]+H*Fx b+O 鶖p$̬RG$ˎrMkQ@ٳڕɶUdž֏C?7(;JXNQ(I?dXIO%Xc2!yF'g޷nu++F=Hu5+qo01تs`@[,n *TԬ_hCrZ0yT N촹u{ȈB( yp<3G͜SxR@ WS$ ߒ̇?{(GTk+Q-Hp8@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Sd"";WQ[䁀FYP;j :Dg|ײa?Eg.pc\&*{ZtW775Ǖl[bFqc]0E,$O//$'N5TBI#}"IևosiC{ *0:t5.xgV`(۱>WUMU4F*Ai}R ;KB|(,QN(OK9.5+(BINbs6t'p+dj+9@a 3*(vhړ3e:l`"Ydr3]233JQEs? Zʻ'b!Y{Uv*)T|w$u@EIq2F<¡#h,RHP#>άyǯtW+-Ɗ.䷊~ȭF+`#8HæH]'fӳEtTVk2(~D=gNO%gsuCgBO=d}MnT$,- +rio=qٮF~Egyo!_Kx06G;G5]yK)Ҁ0=Ƥ`/u UV @c<qYCO'jjηj#[K{2]ߦC cȏo}yQYZMs;m. =jC,EŢWD/,9zg=[$h[OLpVI8=}zSMP'RqF2G.څ`4xDfDVb]ptci05+ۄ0sl?(՝6QpXݎYϫ5b((((((((((((7&D_! ŋ~TX|Gm55ZZo܉8@QEQEQEQEQEQEQEQEQEQEQEQETs/48cTMVs6b;z}(KdB 9&H}=:zvQp#Ĝ%**S^jɣ] =C7/E^V{/86QyNcaTszVG?zP[htܰi?~Xг'ɤ9w{a*"E uQEQEQLAm#nڠKM6 HۙY8q qj]YZذ( \^\6 z_!?Ə/VPo0UI^g4@XPz/3߭Aq6;9n!yg;Vhe=E]%g 4muޠ-teQ#jPEPP}dL?j'뷮*;JM: HsQϨ[2kd!d;y|d;{Pgu{kdnO6@Z.m=0zTRRkoYI:鴉w 'ʌjt{{HeK4R08y8@ 4c4~?_Z>˨\j?6Oh@,pjVw&fJns#*Y,!w'B- ﯯ-g3 x2mPQ#iAws sGvHGN UҿeFEXܶ$Ƿ?QYxsRin$x1.6}ҿebi_ t w3XC #{Pad\=蚎v 3y!MBx~bU"qʐ>2(ҿe.{al%0<1 >Z·0Jד|~;3xM+_G&@/O OAAda enwa߀D&Z) y$#ܜ9FGNOJeT}`q*=8R85hՠL`?2 V\Gxe)8pqsZPI#*adXaXN$D1CJ$;inaKR&ok[KI[i ELXXw=R% B-ݼFxǓ_1xh(`Ko*J-QE41X޼->>VgZj7R~#h@REQEQEQEQEQEQEQEQEQEQT.PK>3$q#~8 VqUo[k:a1ێ?ij`lZ5pn=sr1P$K<;!oR{ όjkj>6f,yOe_4K.R;G }v=O$'MohN^A&'\x$:i6w|s1E*{}=e\\/(q=<:UKHlM'%'}LHpRhh- gpVKGE'\`CS?4Tլ&fbL>sƣI}|.sWa+xpD 訡@RNqin߹|s2Io#>R~KI( [;k4)mp@֦((((((((()\vf m lĎCQgR!b9G[*(ms'c2GQ8 դw0כ?.? WBk7yjHQՏa njlb#yēY YmCFq-8+PC) -Q@u}1BI̲?Gl$#G7ŵ:b1ێ?hFa{l[ QpT_XEPEPEPEPEPEPEP7 ii5ğr.}tfQ/72fsGl$~*̍"dBʣ(JIl]eAxݍ˓={6gƢq]ƫ  goqz֗N/"5N h+m.8`WZ4#`=w1?}O~2eק?ﳅjm+$r$Wfy_E&5Kod+g~FhC]/[/G(ٶW?Gͷ QB0:mOQm<"4(o}l+ +?fy_Eb^Iז#O$~Sc^(c^ N&Y/%1ow)bH9柢Me&Geq& t إr:~TEgl+.pbnE9Ě|Xz.GIaktDEvR?io@?jG`@2gUmuUDʍmchBSs#smio Vq;*bETW(!')$$Jfҳ ʂ@ 2HY o@??U{w,Mw r<ţKm9;/.Dq01kM}|'G6O* kcii~_`a,8bcB ͷ o80ÑPgAz;$_ѢըA+:~AOWm7)cc z(u==FQ'.-a*<1qOVGmuĖUèqk9Jm;PRT~헦2|;C+뗦.<iPzg=릢9{4Ã]hż,K)%'R[fnm/iHM:]Z$1B^en>$UXSXI3 0Ǔ$#}۫j(11h)V{HH Q+- _Oux|YbqW''fI9pHh;7t{֋v 2I8P_u??:ЬoΠUCaH,ǰzӠ(((((((#k"g8aCSQ@F2 U9 4"hQEajVQIg#.5Z/'O՘[vfldqL/QuWR# kdM-vlNϨ{Ӑ o4߹ 91}y[o"mP}w@0zQqOӖY~o!<{هF^} bd)*,z UERA#$s>hw=|5mm=01?2+FHirK?U{nc[0KT4+ ZJ?4r_] q} 4}݇H?# + -ɑb.+0I@d5wSOh9!#npI; ~=\ ;F3(%EPEPEPEPEPE2YY*"f=jŨJb'̠a#;ѢCceC1[T@CRy?Jw`I'Ut>o<4[]p~Gnl!cyZ*Tr:_e?f 0?>gԣWv7A ūZIowɣ!f\L0{bjQMa0U z>[ˣ\e߿׊Km6R?}F?P:qcأ W fuq~ kÏP+F9XH]eYNAZuQ@Q@Q@Yfn1\K$SC:FFb 0ὩCCː$[n#9ul-ۯF#h?y'=I'i@wgg;̡ dtS(ͷhI}԰$jCfPn#(x6rr@}Mo@hdҭbvJːp}8Q@Q@Q@HpRk?EX$a^9gtA|~L^,А!S˟}T*PQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE'4{@Ix1L()Ah'dWXdY&"t%N&3&*I%Kc8C+ *19=k7Z>w1{8yza#5y{h?墌qϱ@tTvs $mє ( ( ( ( ( ( (/nRk2V$,@qPX?ҵy)a[Z5SJ{[\/)ݎ[&EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP{D19*r~0TZu^㳯E]zNkv[=Ӫu 0AVXfHW%±Tvo`"Fca<hr -dSOQ?N2T:Z((\i߾k>rܱ)'0}!Ԉ[{RSwjЪzC U#9ޭpޝ}(ڭܭo{5 mQ2 p<*6ĒíO$R(dtHH`yt ^'kJ̴ KPO4q̦H 2FOn1@#Y].7k'1([+MbHȎ\8-^J-EI2Q .yN7U#; .ba/ \9 Ì>yA{U';kĆ+1'0+z`Rѧ\*@߈,Ik|/ ϕJtw~ ~~(E[77(]T)<dA@tV ys[A%=+̊vWC֦}!|Lmt_X6qNsFVÍe_g1 ]=,q5$ך [Cq(kY)nqj $7qPrG'gRz s[率p (=E UJh0MY:N\:!ئVbCdyٰ6$Y_L7::ق'L1#E0_nAz㸫WA`pMh7ײiF뵉?Eh@t1gnsO>ǍZs M\A!@$gd (?2_ ~i/4kB̗wߚ4fKA;?Т3%MْNO&( '}Mm')_J"I0Ja(=@*(:+T2z Y7k's'(, m$2s@J 3js4RPĭ";\kkwZz0R_2zm'{$HK屝u4mc˻[!-QyO2ly7Hq$;玾8b->@d!RH'':@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ 46E 9t-g첱`?{Zuw SVHxpWWI$TEgn?t XBhQYۺG,!?Ə#?@VAKOwH'gNc%qࡏJ̪f .$6?jGyk]%},Q"E(U{,L9"ɪMk;c,co8i/ڀ$Ԁ7W+*$ASbL,ڌU9XQe}O*[DAU((((((((((((((((((((((( p)eY%8˄>%OC`W=Oj6imc$;Gn++>dDn#&r08S?vqڅv ]LkͧB(ܹRUТ3߱G@o+Bm~Z_ح (be厵~(((((((((((endstream endobj 308 0 obj << /Filter /FlateDecode /Length 1197 >> stream xX[o6~У\̊H"9`/+Cm>{`%V!Y.[Gȣ(i+?sw. gΪM74<Ư~N77'9\AG xi٩*. @mWٮ/Eʹyq>> stream xZr6Or.VL$9$$[D{쁖h[ItHʎmw5e!% gp\xdSR-sj*{vg@_ZTNV cO2$(IK5 $ioWg]ԅKX]ymB9YT6tWnyaXnξ_zI:ĎLhN#a zPJ.\cUIr8UB[ [UIC f$v-e%8<[)ήtųA>˹%:v{v+ߋ{q~7>oϿbWg2twan\^TeYo҉tf޺hM=TTl)I֙pR׻ ,02 =+ghhM8]W兆s-t{>+DuJE Q v3򝱳=M\65M+F0RVb1o)n;=)A0Uũ \.mK:n.H텄fKeQ\rXw>G8]錸z:xqh+n{l=sUG7/~#-^.p`.y7vCF-Ů;o4p2&8 [xq|nq4qi2v޷ᔩvMpJ"-XW+ g sl =9[a&q޺0DO D`c@Rd @ ;:pXh4Q4NA$QXepJkѾl"B2~oUDg%{a5.y#ADrD܂Ğ:kkY'Ci*qιL$`M7 ViĖEGU_ xQ,҆0Pá_Vx붝݄҆פh7YB8Wm,#-γN9 *v58\XJr}#| ^e@ 삵㔔%9\b_~B6|HW]=v; Lv=xW,&,c_A=P4lyq-sho>r _pakvkcXWVeb"pKy^3{lՉ,EezbVXWa8/q #ep$ZL/;o{z?'Zu tpb~sL{p-^I<ZWI ;Lْd3/9{c4'Z6ȅnua! sy$.k_@Cb7=//"U$|/K1Ԧh1vƯ//C{( p=Yoz*򡻺0^fʼ>a?A܌dLܸ':sБ6c+6ЫX\!}kKǞ4@nlnII[r )H-L4`T3=$fC3%"~kiCg>h3P Q?[/[}غ͘8dA!Cj@Zt~ W|j{7WC;<vY|jn I};u3Gc2ks,WS̓*;?f 8yIqe)!`g471IiF{r㓵WX68<[+' Nïv@P K nlIaM?-4~{8N,UZq5t>[ +6RVNG=ేt˛ LĸX:Vkuow`ȪHjYi>z7t!Pų]㲌K(gݵ =+[Ь?ɭXxyWUkĸ  iyϺqYcQ*zjS/]B᭿nd@juB`IبqONt4t^➜-(Zg T_i ?%bO@4[ܘГc0&m-6ESJáIhL_u S鏲mJ yڐos.q/6]<l]ߜqXw>$#g.a(6X8z0 c<)t>*V𴑔> stream x'NimbusRomNo9L-MediItal aO  psychQTZDI!a98+xc~Z'{N~bpZ{ώy"IAaIR_k8P%{dW`tkJk'gJlUjojuzݕ~0wXanx|yr~w:VY?Un=^irmrsktv{wpu:ָrSeyg8Pa/bD4*ltsyrvopvzxzryqsqnjp̳3 njmpplsy}~myaFu qy[gJP~>![Hlt``mɥ{mu]I!$842M巶 lp"`Mxv~FОȖn\gn~mglqsmS;4>|Y:pu|x. FԵǬw[ ~YbisȳwU\ ,xendstream endobj 311 0 obj << /Filter /FlateDecode /Length 4555 >> stream x[Kȑ^ mqL>a>.xbUѐj޿1qɇDޙCd2"2Ţ㿛]x|'"-~ϿjwPW"B.]a=7ǧ?# OB0aɇֹQ\ZCWHU)cV˕rq|_;6{!!d͞">{l|O6ew H3x>W*K]CkqIˍMځ@V7VOV+]zw++@AEXʍ56wtaP$wʺ r)P*d?2/ 5au)PUDDoǮn9HtzAKl{+vkĽCmSM>ޢ|ȅ4b<9Z Y6JFۀX˕ԁCuoPgwJI4"vu`Y`*@ql i_~>Dgۦ|mN"WRO?f/Ip 0xe!DҴmIB4/(o)RV-'fP_I"okc B&{Ձ ܟ1 3ٺDA8U~"a0CKI'14t B2OL[*bK3?כee* K5IR\Ȣy.Ą\ __ q+$)U* rNY$i;ۻ].a\!MT 3a$ :+sQ'Dnm!ǹB9I=HRSiv/q!'84A~% ʏ/LDd;?# a5o*qaa"OhA>9kJ//uU)HmY1ӽF")(."X++S-MP &NPN/_0*!ZOm/,ؼ$4fH2TnSWDŦ ru7Ka5wݜ )k$)c,gy'6xjԂUY uG\)XrUETB?`Hֻz[C`c=ȉA qw۞s9ZiTJZoߌD!Hid5?fQS۪%APFT+zm[R7Og"Sʫ:evќX.lѺoA >mDa,A,s2)rQjw YRB+7$ rh_ ?^EIOZOߌ %(ou~CQPaiXFb#k w/J/iZ诠:*wAM\ZxOa1Ze&j+]P Z.yiA== 3,Fc0 s4sK m.qJLK,RB~,v^ aNE)ӝMӻ # %q6}X{ww趪.ߖƦJf,(*ݰ$k3!?nZ;?Gȫ$/զ~+.mRN;&@O:p2*ѕ7#1HR8cx 4@x}3!5 e?e?THm BҠ$l/n^6Igu"]1vǺ}G}&'rhy+zURKix(dSGƝ~עArVeϕ^'込ۿݺ7h*6[7㶂\'HO˳8S?'VgAHZ0p0S<͒\%Yq $ !)It.w1zz`dh*zG/ik;ȹ_6"_.8H5(3u',gdb~ K׭БZMrw\IM_'W Ygze]*gg8^z|b2fr @/&YNz+ŬPA^̙#rZÇ9A9+U  I`LgT]I -"; MןOCT_w\P)/ _5Eù䥈? o$a>kT$EO4[TZ, (S DhWM\OY)})p%t= {uBo7^襖1A 5xI(:Z(o1N}qNbԸK⺘Ɩ3Q37w'1@a{Viǫ yK#h`sK{S'fmY2|NRBaG'o&{:>=FanapQ@C&콹\`IbOk{#tq <= .nhC^`~{CM Fwxj8ߘ6&;!s㷍} ; Ġ'5]q  )~eAC%9t4!c4t[]&JE/C-RvE!9 pj pQk{).ſ&|l!̓Ҋxz<'wJoiKz`RrLJ:QA4El x .Dc"%30[ mdgkt$x$F L1\N ۲:(df?BIUQ8SPb8wK~kG,OOZY~cxȨlnh5g[Keλ4Å:X KGP2~*^n0x_P5+@#_p"y%q\ 7U~Hnh3Pa͢k(5skAҐc)%rΞ0g-J<'r.utٶ?*/qIWASr`MwX5?b1Ъ3:'~T@gixcs܏^[1ꌃL T器xO?^uēlWNA(wzsqO /NMǀ_9\NF(TtͰ6OM Mra_rx}&Vz}bMP4o\aLʕ wkendstream endobj 312 0 obj << /Filter /FlateDecode /Length 184 >> stream x]O; 97gLM GGBRx{DZXewH?&8;$l7yqlNVOTg؍_M4>-gKPRY+x'h3.QYATdSQ6_ͬ}L4 b>յjynPR8^\uendstream endobj 313 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 425 >> stream x=OKOQAE#YtX6Mݚ. 7 JBZ)228<FP4*+MĿQWnMp8S1$999\Cc<)<x"<.a9]'lf~nvqx)~C_pk(GBѭxd#r!a+.a'ޠ:2,+xMv # )k$Dmc^.09z+ѠPv7FFɩiE.0prMzt> stream xcd`ab`dd .IKI,J  Hvewm˂ $KssK2203012x};ϴ-]~F~_{e5l-Yf^'w֟le[V}{/|?MususwpuI!=endstream endobj 315 0 obj << /Filter /FlateDecode /Length 1799 >> stream xXKo7WeZ Kh EѢ(P$CVZۛHpI.*U s8pfOcJؘXf|?_GBRzčİ^2IYKS bh .4-iiӝ 1%Zt|34bqY?G*5j둇2R* f aףwLYKb翏~8`@wHK0jCAך0Q2hF} p#c,a;T~Wv/"*B%ԞO桩鬤PΊfab_5W)mECӶɺMb֛}khrbR`.h1+&j$Xi3=[=;=yJSRH^'“tE@n7Ͳ޴IN6ի^N;hV.֙7D d~kb\Ma82 ԤfPNOgƺ1H S$_tVf2 J. ܻa$&꺮`L~9Q0lD5Rde5ź٠AjsS*>񱾏î&(TŽgL%!K@N҂%`:ك\hӈ# egDiCi"y+ VRTfu16c߼+Bz9W,Ά y.pHb';d[d3 ln΅]")'$.L<.Ng0Yg ;6Dv `UV,\5l )XC QfhQTB@3fmB+ZY碥:#3`lrd”S(v-TuBVN]_FSќ)ы 'У ~θ9zgIĨAZ_y)FSS/ृx͹xݗ!SAY2%w}_{(uwIRUyq/" &g^D^h|;$"-&5fR"i0 5MK~;XBc/E%8'j{_~N G:,!b/tf T$*γ}m:8t =CьCWOE]l4i7h)dtt[t4\e}/0 D%˾^FJq$ ,^̄8a"LqG"3?IoFPC e>e3 :47hY9c}mPYt%R YcL:xK.宲#Ϗv%!OEZ8~1rBdx@i#v`VJ-Η(G0ƥ4Jp)+ťTPk\= HF=&QDg@K\J1`b\].n* ve%MwCWkY[Tx8uJ&\h/GGب.ތhuendstream endobj 316 0 obj << /Filter /FlateDecode /Length 1413 >> stream xWnF}W X/AS-E6ޜ)JbJ EŵȌ@̜9s!%F)ET>BHc"Lb!5J(FR:`I4UhQBeJ|3j1%q&xPD؅_E^pTK618Xbu&7W+u5MvS^}ZxJY|1'$UaBբDN6N9 CpR*%IE(^)QlE)y R!~<[Ǖ6.:.=Wrv[O SD}9X]޷JX $S[= YYN< TN$ʞY ÂTLͳTJsj!U-%3uarfB_/n_~5>nIs=i CiR$W۾'Ēm])2kW8"xU*^oL;m]՟&$DjN2KSөr>y@o HTӗbVpC;i1R' ">(ј_j>@{t#6|NA׼[I̠Zb~)Ff*-TXfN,Z~{UvyW"Ok[c \XCs۾*,s A}6Eڴ%2Ez6Pj]Y5߸m1/]Wvc;1}.1fӑf[$K(aWNjFY3Jr$/"޿!ㆱ Y@trɐWr~lEg_ӱ /'显Zs^&x6XHVJS5@$t@T)IxhizDmܙatB9p`%pIeuX')l-Bhg P" y+aYG"?B$ pEv̻h#Y'!`PQ *JREev*0rO>M=:ĥy hܔpYp %dZ/1ͦ2jޞ ]a̽<(Y!d|n8](%6ٞ>}Дx3Nb%1NEOӣH#>"UT\Q؁4J?LByv87wD?(h<N8X,Xdj]lrЖ{ˬl ٨A aXl \@ٓ+ǞId< \P ۗiKžAQ H ers.E`â4Ǝ9pbbԗSgŧ01^vU  xypEƞI;!| =FXuuƼ$5 Rd,6&B^^ܟѿ^/endstream endobj 317 0 obj << /Filter /FlateDecode /Length 1480 >> stream xX[o6~ׯ0 SU"mņCc{hڴ’RYnRH:vE;!υ|<7CIuu!!v7ul<9 Id!"HbBӼ 쟪<#yv~ծNfB)ȶveHӓ?9g+Ηu픨l4GD.; :0 wJD GtȌ/B 6`PY?#I7+7O`)PH`I]5VOۧp*ztj]6tMnP:s"FL(H.{f=G,݄7~nm5>ڔUi[׭ﲫfGmȟUY{桦^wĶ*m֍7C*ËGyq8Y[!L~O!zFߡp?8M[%߶$07(Iz$1*ءV8on WS]23h1RNï`|y@™T\)Tɗ)H,2Mf~̭7O\-V[]îΊ1“12_<шʶݦ6_8Cf J"SX"\2ɩUMUj9_zWu ]"ty‘,B Y=,Mc`kYΕ.\i2a_"| 6#O^% JYze4IR<*9EL;$EyRՐ@M;#7\P "5褖'&H8DAS.8C> stream xWK6W(kHQ CZ4-M=l Ad[di%9/gM{g7CwC6wڟ:GR:7? O#qX䵕 VlaGC >ե))jvyWd%n[">dEk}ݠ23U_ݺuQu5ōMUv5^rm.<Xsʁ>TuWUA5TeJIoqb-w21ϱNJNxAW(6+2lgM$<͘3U"']lq{_]}7NꙐmfLzDYv?'2O$~2X}=Evdfسqs!&c_,IVG3vUoN[3Ј^9Da u韚s._m0[Yh{9u펏ђTZGKl:=%Cycj&`0 !dPmaѱ)U*p_TZGE]N;e(9Ny{:"Sv/ aI !Q(Q7qR5JYA)0"GQ]G8c;a]16c3e AQ{@ ;j%Q.$קÍG(R勹!b)^zRMks9M@΂&Iƅ[r`z?A*=MP=BԠ131l.fF Dc~jY"$(@c9^C Ux0 c}';E86G \Qek#LǾ/{0!x31YzMǤ`S_еC^q%!;d3Muq喃(65y[1}a=&{XTEm;I(p~cOޝkZ:_=5n໠:R^o3QoO]BjN$M̓V°?)HIΝLYoTendstream endobj 319 0 obj << /Filter /FlateDecode /Length 1324 >> stream xXYo6~KeQ+ :g q~_>\%g&Uw$I$I͙EdB!Fʹ&6`U6.`f{KPaw+@eYk&gUbN'w[nL:Y-be$W+o[*Z̰Rq4Zq\\Y bfU}yW}uy]ڟ` 8r{͍޺q fwM}kV? 8`jM]wFMvhYϊe?ubZ7 O;; ˋ9ϫ?I\>>aLi]Rd(AD  9'(3cZc]$ Hdՙ.{Lykfs-qi>4f,)8Njsܦ׾X獵OA}9AD1Ą̽u _B+$s-#[$Rp-J<) x_p;ncZ*n@yI\7"M1pIaxR ~Yej%|Ve("!߃HBտvUq[šUtp;j YБ!GͥE_t&& B_G*'I@{Ŏl^U^ 顏uܪ'Q6Cg`'p6CE:tȆUݱ{ПuWqͣ3oqYj `}3c:~zQ'~e4PHrާD'o Εfo|l)09W)L4SSؓ`$N\pTqu]C^ml*V3NL\K.Iy:Njn\7p<՘'3n|她W(}1Ϋ!zyTr(C|eLwVQwT((r!('GP eP%BftP8z~oч(ɶnK[O!^QU$yhݪlt} ƶ H{șhjCr7림̾&ːO"Y+ ۥ j/uendstream endobj 320 0 obj << /Filter /FlateDecode /Length 1250 >> stream xXKoFWHOr@/ Eɕ@$ejb;l8E{)XZ7߼~HDb?w^H_=h4*q <44V 4,UlՇ#"=4OޛzC֑![oxLHD($]ob9+ 뿶?(P*ھVd7uY0L@q~` ǫ72 1kث֐Ƒ'Swȗ#4CМHGJ?7m2Db> S:5sVto2YhDE'a$ T$JҬ(ʮlt9c,..\ ySPuQ"Ư܃e{DZm2<ώT}w=9@z2TAmMG`/$ VWTT_B3Zň"*<8ݕv -4G/+?A'is:7}dIbd%zb .ɂV]:ErYRm)X)e 򊓑09SqH9F+#ɏ'?npPEM}Xzl. #F+aPp- *8&ėWl5#@I9x^DDψGtUa#9kM Ce?bw5fn  t ~gB&ziPy ޳^#{mxF,"*E <>9 ?0֘dft>DԻi',`& B\0;R_Y]8+;(O~dAB$/ܶLndv Uā7UYgaz`W:p_<6h0\i ?t/qn3[Χww_ͤGTf-:7~<At]C$'!'Ҟ nvnR7Ң0PXs%+:uY i9^lP=8D=U'GΪX'h i<*qF_k׬+z7)Sd~a(4񐅛bޖuY2j~ɱ46yLl|(X4oiat;OSEN'A-t2ys'Rr4z{;bc)_1Ee:HX>߾Dϋ"J/Wp~cwO^xx|F\E4!Wл7| endstream endobj 321 0 obj << /Filter /FlateDecode /Length 270 >> stream xuPn 7/> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( JkOqVc'xD+3;pв+t±5בڄ6i7j^oC!um wǫ+g`L6*yݚ5K]Bka# ޮW֡,cG5wVz04s29\H8Kcv7+%G;NnSBI8'u+yr$]Ay܋&}[sr7əɛUgцwyhq=oy/}hѴVU#mR jVھ TpH<pky$Kf|;No/K5$!*89WNRā72T y]2 Ģ'fwPNUnciYYP_ [Osq}z화ăvU9-l/Rog!`0N?'5C=2msmDIs! a34UKVm~r%1 iOYF]n,5b\A^* ]ź^p 7Wqnןxu?ӣe08 J;m;@y.ꈳO=o(9\9F:PQ^Oqfj0ɶWV(';qcf[kmfc#1e;3j`R XNu槴[hDET("Լ )qHRI 9ǭ[ Agkڕ񮈑& R>n9=J[K_u-:hq\MJ L|}zV&lk5Ұq0(9Q4^OMw2`v'zyjr5̖kf2nQ~wǛeLJ5vVId+MXOu]m3r0j/Şw8lX[\gd*q3Պ(((((((((((((((((((((((((((*b$ZliI4u<Ċ.Mg)( r;~Ej:ӇpF*^cwuJi-\I輜`@w <8UavlqSu%\rʞdHp d#iѝz_OIQrkX<bO<X iI6 9$#߽u"+ SjHncHdpsh}"9՞RrZ? +;ԭ?—'#SZVRyI&ه&G@袊(((((((((((((((((((((((($BII5349?_N:dix_N``p(KEQEQET7V칅%Q3um͍m2/x~$({~5Y-OE}h+ĐȒFRUi$3Dvl'ٿi:wERmfB˱jQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQETsM,$Q ;Uܚj][m&_ mLPd++m24? ִ.K8$r/] REQXI,צMNK;x j6YO$u +.[iadYu۔g[''aGn"`BPSIt9;v8IPM[(((-ẈqKꮠ֩fmΟy$CyMcN{VCO%kfZ<͝g^UjwZM] hI3Hƒ?1=(w_jX?ww͌g=Mմ;N8j"77+A=T8A(i+@8qN{mCL/@>V֦Vi)a'oEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP7"y[ho#yپ*sڠͬt6p~쫁3sV8]5Nt{UUQB 0P7#YަUw\Ł!F*=UEQEPvlf|5?!!Q.}A8ƹmêy_ ~Hmۑ3߳ݞYan >jzu՜>[hu@#&bF8!lP%Wj:ځoZKae7Ԋ᫫}EdP4,B(mO3֖_{߇ zy<Э1/ftQ#P@N w\5}TOco eάic-ǻV(?JT]^'bJ?kMvD (:7EIuhsҢ Qv}a(BUSy}Q;W3xEg>3qT}POapm +]&as-O+.vݻs:Mڌ##V$~A<,QG4k"7Xd¢$xn!r0*ge~t-_"]}f̃[ZA?ZѢ B$pv}jzuݸX0Jj'RQ:^F?Qƀ4hV xYHNaIq5|QY}=8yIw(FohFm.#B߁,8ի;"/ ?+u# :;((((((((((((Yv&+)Ē9{Xv+,pf=O}O~i,hT`(PQB(݂N 6QXDQs裹g5u  rGsG۠@ \jZwyGzkhm!XmƽgԴPEPEPEPEPEPEPEPXi?_,Kn|g]h@kcE#+&dBs{J(6aHْ5 p94[!%EhQ@ْN?bRZ>Ϫ'ܿA-?UEguz*IJЁ*E̲$c՘ ޚ { ?6%5kR. HZ_ĀGTojI@r?_}1ctb;#KG6!V4(j/MTmZYAy+[H_5~,@ 2Hw5N][N[U`4rPüm@1 IE9h|A44W2B=tdl0H'r=1#cd>ۉ^((((((((((Y^,e8.{Bid%{kgdCysF$$TT`@Q1q"h0J}JPJ-E Q??S8|h%`aT/mm3Ǯ{Miao]1XǢ=^0-PEEoK<kg8 *9&y(׫9GWilߎ-UyKW>HڄFh(bR~#H좐}3l>5(/vȳ\d>jbq$\cxjtN$ih$2C:'K))v;a7?(] _k-Ma>-6XFsIS tiV- ܉W ,@0*Z((((((((((((((((((((+.yd{[WdCy=yf{KG) ytC{}z_H@ª("#AUSm!28Dd=ϰ>DxklC?JVQc!vFG~ߥ[";ԚT"P@`K@S%8ci%ueZPgqqgc ?2%Lyl"HhzGH}j{J;it{G쳬I0!A#w Î.i{]M,P#Cm=w8@ k:+&oE = -{4Uy/D?E~1u--t>̱I"YddWE@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@f\O&3YHP^?= 忝ܤhqqp{}j[B#AQڀc% jTt Uot) qWޝ-y*e:hyƙ?6V?uoޝ"{#^L*dD?AօQEQEQEUKNS2 I%U8=8&w{8+gXقHd V(Z,^$#r }C[d=4v ?jhjUQPwo9~@m:=b#N!I*2HT)"+2 6 XZ{夑M:c%He]CPkcg.pVw7ؑb>K] u+ss42Ff]9 @M"$XRWKV;.63#J1c\ׁq]=er\w1͎N@((((((((((((((cU_(_ڙ3e嚹@f\Kw;YXMOp?+{FKoo2± 1q:mnVJZb+,ޤ\DjFE_+ܤG[vPأb?2!?{tV;(e!OSn}No 6¿" nIM2bv¿/R}JSvG/;[50@*[5(A RwW>:}LߗhF_Z71C~V2L~Ջ[ K.?2yk&3ق-=J }jQEQ@Q@Q@Q@Q@Q@ ֖(-M2vE ?Zdž?HJ eJ6j}mE172?AZ4Pwv7P9V-u KERp{[>o]#{P+;+;۫|1'? QVkvL-b4ht>m}=}&@Hvvix_X7 (($ uf8EUlܥ?9UjQEQEQEQElH8,ޣ :e_s&ӬQF=MCm<"o}Egl+fy_EhQY6'(ٶW?@Vͷ ?mOPm<"o}EsƼVl'X\T2` ^T5Οxyi44F7`t +޿1cuw䫘28ڷmOPm<"o}Tfw2A7 $v#h!䬶q鐜}yVnͫk7zP$r1~ƀ6TTp3}|'Y>TӚbbn[^xPGt Ԝb5Kh"ɎT8#"G"V6qCmi)$;HQN}ZٶW?@Vͷ ?mOPj eojo`kUvLI>ѧTy^2p0quڀ6[@3]Ϩ}n~YTY$(i9~bmOPm<"o}Egl+fy_EhQY6'(ٶW?@RL}[Fv.}r*/o}l+͚.#R&_{ǨH?[Atށ1/ͷ ?mOPlGf{QZ ΁$CёKfy_EQy\+=d7A mcR}P٩,p-Ǡպ`qYw;AGsh`}:Lӯ{Ucx"O͚#q HLW*[=ԆCr {=<\jI7u/$!Dv9>@'%0Olw`0*~EPEPEPEPsij$/dRF*3MIJyRG^{WՔsTIdt:؏0U|;/&FtWs;+4[It< 1$trI튛횁FCgG^ wo-'CNWo,lyq'nϵhyڤm!_A&?bhc 0\ }PLܳGEcSw?ycf>.kCόj3E:DFF~bAFҬH֗ Iz9e7ӯ:m"g2dIO14v?dA*|7=G58?p޷ -Ph\#(jR2D=NAEQEQESQMB&GY#27#~cEmo\Nbs3?R1Т3!,3ԾPrp0NIh (+x ^59IQ{+:;{ R'& YOڶhn=+^32dc @ޕ-Ɲf65̜\P@XDv44w1[F7 }ѕoQkZ((`qHdA,RōGBG#5<ۥ;eP'gmşNs1Eg-su=pRT 00gMhQEQEQEQLXBȱ@m_Q-x/ZTe$s X=d+E 'W="@a=u($~PIҌ/kF՚\37ըOa_\W?TQ MZhc;"c>β:I12?5z((((((((((((}ffhC9WFޣ;6Wm#]"e_/~_Y%j Uѷ },S-V)? Z]CyܹOpGP}Wy$k[F2@/۱ВA0[Y^,[u$62*/,Έ˽_?-CoqQSC*RQ'X0O~ڊW$qT{e͔h 9_?Q@TU+mNHx6va QE[M<6g{[ERHϥUӬnᱺ8Z[e2lopOηSBu&nc-c9?m(oѶ5Egc,g<C?Mg2AGzFUu*OPFA-n- F; ƀ/ 2p3Yw}%۔h-, $gST[{׋/ݍ9vqjyaCrM$@Pzd>W?FW"ǏlMsque%Zisk'Дr+O@yc&h96Ivn IV1Zհv6 f%pW85hU=q}G2&pcOO$~d$ssum_p MsZɮcY;F\rj)M>A+|[ME FM@i5ZOy64d8iR@|Sik`g2[(3c(@on#:}!03i A~(((((((((((((((((F1h_+҈"eu.[%E!SwE*CG@0)ʝp}T5Q/&E0h]>~ۥMaz;[\!AчOշUu*X`2QY~Eƕ͢ŗ{|zOWafOi,/MxgO*/?FSOcuRA$P3PGu= tcIhEtaV{k ߴdn[sFq?$#/Q=+BxaYdC)5%gXIu23hBehʴWq[( vV NU2PG *Xo?BU7Fq*(zJPHew=\J׵R7Muqs*1QӸXU[OFfHi"fu>V4m\߳nۓМ5!\d_JE}f2Ig Jկ > Zb]-'Qj9'_LOzҧ{.yNdv c$&AXQYcP@N7 ]7u4Y?(tEgiȟ+ h۱$ @UX5++*jQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQESNa&,qHxO&.%ЃOcr*S7&ɌUu=ր.QU,/ExO*.%=S\@$\h wΰ?x0{-խ],Mwk32!qq9[1eBa22$uj=2kx6 Ӽ\:Ǵ7MץA7Z[2fݔ[09[Ui׺%༽}F%L$d#G  ʲ(QE_\Oi- iQ@uc~)Gc3*h }-0D3qU(('_o oUC\ZPV7o3C G5W ZТ363/}?indohQ@>% ZZ&v. _~=ߊ@yfu!, O;x۾ֿbWWclc9f}^Cw!c#3ΊT1 l n!fzZ6Ȫ6 <4[5U\$AТfO:{6j/m[0P-%p"֏ [thY(Bٶ_utikl/w]hf-ĶtK!yr#V#8x5[KgḻFÜ g gi2tCK9&'Vo"7I`Oj+Ȍ8baPGcUx͹X)b0'Z io/eY-;/BK!> ;PQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Iq_wV~#[ v+%TP{TvKw^D?w![OP*ݫ!#XXTVt2iUf;c>߸Z4Pk+Ic8't>=TKYUO{ebn\׭hQEQEQEQEQEQEQHNOJ6q5gѥP\(C,4WnE{3vݞzcYqۘt $<8ccڀ:J+8\jrcE= '?tVz!3̰TEgg?VFIhƶo]M̄~Y@d8tqTZUݛ9Fcmam Oy2~HQxP/Ll~dLvcM0?BONI}>X3G/P+^?7<-c]-g!LḓMV4=.uou F 6,5QH{1c F~fvU#S}=T dF}('-ҏ&XnQ/H,@u+J:ukʨ0N??δe!#Qf8}jϷ 0X>=@TQEQEQEQEQEQEQEQEQEQEQEQEQEdmXGA)'Y֧Dls I4sB떍ר㯱sQY*@$1<7.m y<w\Eh4gOգH Ŵ˲ulTpxZxtK>{w72H|pZ*+xhgdh -Δ˴nxĿuxo-nu=B9%[PA |F6otv6Ld5iVvw:ѝ9Aj)i̢xe $#f?7N@㹥oh*~V#SѵOEf!nVXѨ8|-sxwL:syoce"o#m͐39@tmAM\5m!6u=ݽ}:4 Gc,l'hXYQЃAXJ?EwK7qO?CօA?¯kB?U^^o +BrY' CCTPXi?_,Kn|g%ߴI@qҵ,hE*SMHƽY?T:Kj߻<4U.+[W.HG5n`Xf5[ZBФJy;W>_7RS YF?*i]ӝe (:RE՝$ r*}AS@cQ&FSi6mQEQEQEQEQEQEQEQEQEQEQEQEQEQEQERynGy±ooy/#o,gl7ލ=Z7N-գ#{ UkԼVT;emǽYMy2O .71TPd:dN(+[t,p (((XQvPVw@YIV 凱Ƞ}Axג:+ӝǑ+N(UQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@oݤ[2vW{lo"$CHFއ֬9 ̪] *uzcyE2:F4mZmΫK\Z(eVhRh?+c 4E5dEx:0YNA@ݽ"S6 c_~@QVI(KNy_Ċg[\sIsLq#&C pFGTP(N4vɉ%?&-X%3N?]z}] ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (25[9Rcc?o^ 5=wPZ(_ٌ<8kOTW E+>%˲7E>:w=[JK; tIR_1J8NF?< 3@gi$d(!8t-6Kˆ(tHqJҀI%n(w\MZG%PX%(,pNNO'3jWK(A`~K8VSoD H(kjH1,EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQENJqgv@I5rm~Z_ح (ƑFơUUS ( ( ( ( ( ( ( ( ( ( ( ( ( (?endstream endobj 323 0 obj << /Filter /FlateDecode /Length 1637 >> stream xYK6WЃ ߏ)ЦiEHT[ua6I}(vu(=X̐ 93o+JXE&8[qZi+ѬqM6Wq9y;a~]|R!PVW4"THXQWnRn~t:cl>y1Q]m` TP³MV Yחz^ԛnQCpbzF0%'A`h(wʸWѣ #΍3XZJN,gvc\"83hɠX <#A,W_Ng9pDԋ~N '+7+Ì <p$J҂gQ?tϾJ+b A7vspA|QF$1Y(.+4(9|]s]ɤ4$3 f5G=KгF=[BfL…X3Jqr=ɚJWjO7ԠB+G X6p}O$2KGB‹Q<285Zc9\(аAŨ&+4ڌ3&+4{:S#+#BI@ vfpVogFnP h rvQqvg/BQe&%I_|fpBPA),Y6~ܡΧ=C|l9)N#-;&#@x5(6 7b4ʇ73maIj7ҵ'peu7iJ ~qx714 N>V(U*B]umـ-.ylC@zQ.cbtfXr*Xq9zMll6n(uz-qLygACBH#)^^XA XU)Vڈ̬dp5s<"D*H{j2Nj~&%]/m; n^JBW@ѵ\$>#pAwzy~fllMs>ömhٶYWض٤P0Hȏ22hEݶ}LdA17f}<۽n7= ]fw"-!* δg((8dlpitWt]G*Dq/fqb-CJ#\L))cM$8Lk U >#AЇȜLD"(^·Qbd]1%H{W| {4m{YbY`pB\WP*q4F[ is]YR.hɤu^*qO 9Z̳Ld7&153$2BFdp[k,aŠ{.@5(ddIu3 7.~hsX 3]P1/{il5H|l> stream xmRn0+4pF*U]I\0$gڿ9ITya8}r̦EV>Cw:))8;c˩a\$8kс(B!n]qe'Qrvŋ9zʾ#KU@٧9@8e!4C.b;InnSʝR(rmi%\7u<ו[1']{y튦' dz pVОr2, B]#>nW41Q]'0,S@ jA.QrrG.Wrgo/w}fL|ݜt* F .LZ>nC &$rt'Kr'dAmym$xlo.<U:63݃Ωev~ւ* ,,)"ʞ endstream endobj 325 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 666 >> stream x]_HSQuֲ1ٍ BȈ荬8vW*>)ڏGW"6P*N79P]nI|3a]0VkNQOP#iM<63P3 ywsvD\#,X}\^ Љ M_C~pLq҄dv8UdL%OkK˃ j=\c,-YR9[snX~ٓ}nS@VrFxƈg%P yjiJƓs$,.NBxS> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 327 /ID [<5178889d3cf0a2be94afbe6d912a27b2>] >> stream x? AQs/ $ve`Kɨl6RI&E|]lϳ|s_O}ﭷ.%ћP!_?ٶĞ=I:zCH&f'^BGPat- XTFzЀVr0xfgŞ-W^˳`)ɧ#͡: V4:tSK@[fN-m1 q+/ endstream endobj startxref 211809 %%EOF psychTools/inst/doc/intro.pdf0000644000176200001440000221153114552047403016002 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4274 /Filter /FlateDecode /N 93 /First 787 >> stream x\r}WLv4o)XbIE)Vr@`H"140%}6$@I)^PPu.)r-p8PBHPN!-QqQR]U pԅ2GShnZÊ+B@>_ma$&Xd5GQX<Q#RNsp -v8w }@yExEPxREQ @E(0s @"Q~NESHPhXh< Ѩ+ rQe\T"U40,Q=ei,`j0b`YIT-2 `Y\*Es[P `Ѵ2,k"r_Xj-c 6yp`(1A,ZC:vl* 4e+=`ZE}á,m@8ha/)ab T5a ނ=%<4e(͍J͋A \>=h XūrLj߈/8`>.ߏ&7';ܙUf\O%sjq ߴQgbܜ'=UGs颞ztzt>`ǗϊOy3g zqg[ hT%xTOjxo7g_)TΙNGلOyήSvR~G|AcOcz2ԡ|nD!Y*0۷U~[H`mqgϫ|.}-rs]>o\)"3ԦCQ>LM_8l:܌ȶh $h=`:72=O\6&z^ƃG\aơ +fxuWռ> Rza}tV&O}g6 dQ゜q5dxwSS^L' \mQ2$::\mvH;a{q.9F#ѪE^c>~k{l+w'J: OkRsj~^侞*;afCvݤ&3)Ilgۨ=ZGCRvzKV\d%+.YqJ&å7;W~oN\2TLn2džrDjBH (-e k9*sܬ2'Ɋg?\6s;W෩y߽yo/ƧW:<:>/a=OT_>: >2J&H(:r Z$ͿG 5!}tJoQ8"@Dtx&^C&z4h'OLC3Q)(MvȚiQ^J^ 6^)q] {H۴[SW"N[{Iv~s> |S5>>)QG>-{G1=a?S3{ƞ^ad_)$|01j6gjؐ dzѤȆ逍X"VMG 8L;CŎp7cATS6feل)B{?'QRht#v69?P Q7p%I4֞${,%gl8h^}#O$ kNfUŚ}d؟jVKl{= iab{PnP2RDXlڋiu%<(i<|0=<`AScbq {;]aGO~ybĤ=Ê\i.nQ?eIe2+'NHFqZQĴqw(;6y̜"fLv9D]Ee >+'q[0!zH xG ɭ[gڍ]< 4ѓtĂN95N Ŀ|gkۗ | G#+mvlgY|H?mNG1njA\dߺ^'I%E_h'n]=bdJ_/Z( R_+u}ȈЗo1bN`~y_T֒cKǾƽ}Srս_{ y=]ZeVbձÊc-f NgwkYs{ʼnk|}蹴UñOFՂl0|_5 s:9OcK 8j*'|_}O5nϧ#PٰUWІpK!]UY& LvY >x9_R35O8[B _^0R])PtmLI!/ꞵwxEvƦ,TæEiEyWp6Trl c&}ɥR*qJ:{ִie0a-=O=ۚb́)JI˵8:1˻Ʀib3&+][6JA;k ~@+bR%m]<'O$ʣ彫G^Uy]D⫯ܝX>Y@BwW d>EoUB``kq2'=h!xQӔ eg"ABՊ!QC.vЩM~;BCkԊʃ sP7vt4K=iO٬}e=;Fm? OOWMP7j<}os.U]$@+Hnp:6nE[l8LBnYJFsqQ+Kyh.5) Qqn&w#Kpg5B#7ӈ) ` #;9-R;#{2n%GhYrhjh;v{g@Kpdl׀MBJGwn]^= =-@x0Of7,nKp-f^ gv;Wȵɕ? f⒨.-fhL]z)iQ/1zǠ;Jk Oؠ kզoVne6>Ǘ* =ioјw:/xo~E ꫶J qIk- zB ߚaz^'T%´ FhNkc endstream endobj 95 0 obj << /Subtype /XML /Type /Metadata /Length 1388 >> stream GPL Ghostscript 10.00.0 2024-01-17T16:04:50-06:00 2024-01-17T16:04:50-06:00 LaTeX with hyperref endstream endobj 96 0 obj << /Type /ObjStm /Length 2787 /Filter /FlateDecode /N 93 /First 848 >> stream x[r[}W1L@\7N&3Uמ[q=~P$Zbcߵ@#R[:W$eTzJQe h8<2N%}J8g";lHcb9([I@ɒ 3FP&Ӕ(_SOi/T:lU.NHV$J5W=LgKfs %{3 1xs\ ~>!I] qY1<'@7ӨfpF?N̈}p y/\M~icc܈wc=`Of Q1m]wwӭvڱ%/i|IKH_ܟ?){)n+M]RҞr27.sgnMenv"p!clGi܎>nݛc:fT_~\mmk~.MzId8`6\=F5z+~i˦Y'=DYt2=NLEE-/3*m2ߪX *EtaN=PDvHH:e'I D"%h_ϫ%w!É'EPJH6:sSr&iQNrD+AQH.X]V_Xt908T:.pQ6F(P]щaumԬF\݁YA=3&f+:Av!i/f:,B Oa<4P0_fu1::_FC9j n%:!: @t_t.WNsh\?̍>3:6wV'::h%\kv] %k&i6CsaC}R0 #-Xg䡹\X$3mJ pSm8' @Lɞ[nl@1޼?\gzPU=gz|ߧk]-9~y*_C ^6kD~*ֹ4%@I`QEQwRz[gQ/.CAtUS!pOo.J߿(;@ݢ[Dك8vY\WwLknr"#Z 7Y\w&A uղk9(Ċy,ν^k jzRPݦK%ҭlXY=:zo>y ;lr>_Ե:h:?<Ⲋ?i]/:m5Qv)5:_Kj1UaΪb0N_ GK&Khrp5̾XӋ[tP@œ磏Cf.ӫ~=_|lTF*|xShX] eꔺPa-kGA]f^L+(ҋctH 3vrllA/jcD)0+N:^E{+--tB\Pp,941nsm)}bR{!Y4fCh6=K ZaBqP<nXT >< ܓN㗫xqzz8MgO^O']z2L׳Og~ 99Z_n]z0A{鑐njj' :!p:צLF.EF$u&ቋEAh@/P+b!enBOzy88֝Z\DA¦hZ;`X6i@џ%UE 6F`1Gz1 |Jٻ }WZVzW` +h&247:܌=XFK$+ $75ו@z>4- .x_5-8ⴽ#\U_蛓tz~gpk1#VéЪoݫߩꆵ:xqIok܊QgJ%p}[oǶB[h0J M5KɲZnyIہ-#V6g,+lIJJ+R#V9/XbCp]^Fe%򟯰9hVg+*"weAl6b qQ;C-I!9.̹nj tAm?Ts٢FR"2=K M VÝ0 30AnSZPH FꮺUD. rK1uSEx(E`AcV8_@p4W$lt{hp:s"kl/~ Idu3 (‡endstream endobj 190 0 obj << /Type /ObjStm /Length 2927 /Filter /FlateDecode /N 93 /First 865 >> stream x[mo7~rI_yEE`ME[ki+ѻ}ڗgg83NZ(dHi'EcZF("Qx Yɠ'cK ^_PKsף0"~iܗ,7 ͏j!Y xJ[A(vbUlɚȗ$w861Z8 3qܰp«шI;JJi:"p?"mmpq"Dh`ȋ]~7,'hI"zlUZ$ƒH1llj1 bǃH f K+з6Q98-ÃVp|E+\К_D#} @eBx<@p\\xit+94xDUgеxe1a^ d~<,a d3 b!Z19)F`vc&O;Q=I';Nmӣ/PΚu9rr,|<_"y E^(B04I=z b4x X_Z+Bka {7_{6zES͏5 EP EXEhG㦽:Q<;|?)Q੄*1_%C#I.̳~XxCM2W=ܟ3$fQR(#bС)_9r$\1L̘=$HwDyO =o7[%@˄;?xpILGm$@]FJhXބ]}z,q.)\2%7%_1%_1e7e7E^)XQGEyTQGEyTQGE-Rݹnի_|_ݼWߞ՗w/'kQ=RToFGn4?|v'WV H@a;4m^bɘ^ nś;AOY Y n_ԣ˫'_Wgd;].;!5 ^y>E|M}0:HV gEh 3jMof0\js/^5=;N!USq(xݮFKhN#GyoA]6∸M~x8$4$7vxx ,2BMo <- P10zrI%Ipz= 2lf{$Ua6Bb%F -gE7i~[XrZa4Ѻ帞Ln/QT;`fKFRҘUT@kPbmSC҃u2D"Ip4ècG]`-wbB2@C,]p vA;/TL3BވЈ>ט,H]ٳbM}92fQ i/ ML*(_!-"W IRRWۼN7lZnK/ur {q#"z v\7S8'cAA.HUݴB쮚v"&7[ \oCS]JC\ [UF+]1Û-aDj{@X2)>Zӿ|+fek/9לq/ɭJ_pCq9Ǵ,>Y.S\{k~(pOMMD>$%{D-"*kN$wЖ ܒ{]Ķ l:tn8Z ! 6yK4>GUcC"nu8e 6Y/Ϋͫu|9L9Vሓ??ĕsrsRnjv8-f\?Ĝl:-%i˫ 98"D*ՃsF{a] ҫpcFA{ &okln0tpsNkm=p¸]1a5DӎU[,?+]R9?_R0̩#oTln N %PkJn%Ѕ+=lE8 T.6.F.?^va9]-o`;-[G$Kiy$I Hfy X4INC͠a[yy7܄m e3֒Cp]vSg/,/!$zZԚx endstream endobj 284 0 obj << /Type /ObjStm /Length 2683 /Filter /FlateDecode /N 93 /First 849 >> stream xZko7[xI^>@l'I6$Mv|3Yr%y{.,KH#a 5}^&VF9gT6x<̊CR6 eR)}Sd -GM3+b#XDEK(g.+KOGRGB}QpFq//uX9wg>{J(ty\LGaJ/P9 ORgv(R9d@H"[Q*:kPHxcIZSq升eb8:LF)K夂R'`ѫsF ;|NBy;Gs-X PtA]T|J*Z(, X."U12:D1eyU"JVtJlU "pM*$-TWY:($@3cr8fLEi0$#`#ts I _\(' =;,"L 0?a.` hNzTL#d)t2Q T,_1lVztER(Z,Ϫs<Ld,Pu:/{4SP30:?u;ÛQ+:*Z {o >y:o?'_Pz]IW~`[d0ǻ\ a:\\@,$;,XtJJY8:?÷b AL~&Og^7́6[pNytVr_FٴuZnal-f>x`X}4]Tp8ґ1oI'!0s9h=iB&B$l ]tzbNI|+]ym$e Ut>:X%lB.텫SAx"=c`:K@b-ygt!pi6xM>::Yb%**go|)3 ا磃c ]tAAi{s'_vt~;9BYhM݊JFJ{Zw`Խ{y},n_uH. ۮ {EMͮO?xy"*mNk: k{ënËθlskXZE> 4FKr%L6Or 26ǘ!Y:Mxl~:d\MIz7&BoRW}L?u:_Dn:O_ݫzR}_Ӆ*#Ǽ%))"ۆo;lLʡNcP7>Әl /[n_rfiI/3[{dybI@%wQM2M`%ñYJaZ!a'l- I6/ldpF H%{ixhC_dO1o>!%BK/zK1,4zc/ ̬ÖfKwLf=i=ki?7\shQofKOX:/=.7x,8̔g [v:.氣]4kQ:6M@c,4,^|rs 8/6l)7h375Qe4nC FM6'͎^spNŖ> stream x[n$}W (Y `m8 u~XG2Z.+Qz2~3]<,T5U)  Ptz[bA$g\ "HA!AlM /40<5 Ӧ1h!ΧzEx1BV̯)[\U K@ Yඖq!w͐^R u4LQrhR0ZGCS=ZJ1UB3:wOUB7>9aMw>F0(Gt؈QCj)÷{ +)%H`fjaWc i0Tyb|'0?1$RajZ1tJtɉ; ;Ia05̋ﱡi׼>M(W:~'`ZX Q_C$Lן~:opy+Mz3 3-r7] BV#}.^ƣA]뷇wrWWo:@ū/ ~?oo/~>pX_]X//ofl-X}l>v 1p\_Cחq|vuڧK>/n""FN%J]'Gl3Zk1 L4vE)vx w7џ-_&;xUUiLtGDfq0!bd-2a[\ p_umhL]"zq [X[N#2\)#j]O96er;07(tR~dB<k+mxTǢb!*nQq#QKmBi#6#+j?j`Uضq);ls۰G{+$`^-ҊO,m^.,qǨa4]'(8\VoKe5-\6 G|><yF2g/<X~Y ct2FBr?S+#7jd9@مf u Ïe7UpvRbcLs,Ct]iQoGt"3gQlJIآoюc+C Glnj@Ve/_mԱM,fmqWqBC&716sW{ Ǹ(Okt5xYl";ZX76#!$ ЭwvטV,$&[m &5>NVg9"Wػ۰cښehzBa$s_t=]08xA%= {Qփ]j(UA&i# vd}z9u^ t8 /Xj;.*OB<"wbicG8̳<<y-Vyd(@XnZ m7 WlS>%]l S<{eΌ~j($KIN&0ώ%<8tgߐwκn^@ ~*6|3#0Eg|8TEf<\ylycz-HĄ9 yey7ק"kfӼk˾|SҦ:'V`6ͳ0XSaAB=~DktYڐOEDEG7X<^24:T5pZMV:KSۢD;,$-a<6w \)- ;Y=;m2BFOH ]\QwF>N#}k<&K>w7]~XX @eQA"Y):0~ܢlo mUDբvcךq{]n #(@ruv+}zep> stream x[]%}ϯ/ШTf!1 $8a ο9;tsV龥%UթR]JnIؒc7= ƑgV̉ IRĤB! %҇Z b!gF(grfI9TYSoS΀lZR'cI]0I;g#ojU+ )7hpx2qAppd[=5Uo%7x_$%5T|M^&ܔZwj3^߂g_LԵC-Ax G}c# |NxM~6=q!j          :秏Ob~ᓨ>Wx6EAO=~HtAq{?n<^f^r( =, V6uyMəV  u+cS7 nةTּ8:>Afر _&bZuE"HB+\=锈{8Ď/^.wuG* b \[/@w@se<ơD[!Bg%jk=i瞄ZKgK!2HvYwl]uGΞ:ϫ3r{u(F`aٝQ] I` ,E\Z]գS݋H./|/"ym얀GْxgkE2_dv^"fz~l@? SuEKdhm_!8M j3P9xDu׭a6 ·-[.CPCWpI#J9E@]f7t tGVu:V&:+:ɼP]n^Qn;׏@7 ujq0VWP_T Ggv!*,_51l9y?Wg o?"!u\~d# i;*, >@0K$"qS]uܲkW1FX ufs ŗnH/@w7tM#MGe!endstream endobj 566 0 obj << /Type /ObjStm /Length 2700 /Filter /FlateDecode /N 93 /First 857 >> stream x[݊&S 4*U$YcL ,\\lC013aw }]efmRK{*H3xj$Kʿkp4jICKRd$&FkN4f1zjZ }*FMUoiMQN-:98 T8I5>>KRSv>kYyKi*G-dm=>#X\y0  0=4xw/$ǽ-htL-3-rM$OK7R>-fzcI4z|!_jIC+ aMO1^-i4e4V"&1+J! >ZѪ|U M|'<.e(FTHH "" cw{! ǼtOdr"8;ZP0a ~CDưiB%2ELBXVxcCB3g)%]($S hfoI>c;4#=HrTһ-͒nypV~gv}zCzxa=2=C]R=wV-3 h1r̠ӿßWOOϟӛ7|iFFQ{;  &2_]2ULf= *Y DnUKin09F0ӱx2ڲ\N0y$JفդMlȵt<,Y6۴l4SSP 78yZ]&JG2J989}Cw_ K *&}dzSNΝe.݄8Ȳ"b; `4D܀WDSuB ͈o_@oPkedr&1fP3g.&fdu/q0kܰˆ|n8H+kSI ;̍J;28~vPNv7vcP 9yb}NcڼL\4zfٖoX3lsC# K 7Z<~eOm͗}U+aݹAn*s;3阰vG b:1fH+a]EvMCB7L:LafXL+GMZȥbUENӹb6jHe, `e sHy. wAk.`H^ swk |Gk_iO1H,` gAnxJNuLН,+!ƒ|c:bu=rҔ;}?Dx@\ $BK䠣7}H.:`ݜ\ VTnmFokUmɐGr/صr QUNzYYsw@K!7D+92x.YA1ۭVCX{a'I݁8FK[ )^_A,^nC;`mu2R2wp>ځ ;<7]@!,#&Ƹܑ܋:WP Τ,[\kԤs`5@@۹ҏD&r.Eo8~9̢wjgmW0;"qe`T Su]]A//9uB?tƭ\6P?XO_}j)P˽ٽҊҪF1Cwv`Xs>;B7k. 1dƁ홵+ZTeM Q/ROq0{!OrW;c[cuTq#GNXzEep>n,et>3дz/VJetD je;WVGcg>(;"fj !3•2?]Qw3X%iQ]k ]{ͅɂڶMwuVj.GMAa?=D=Xd|i6~=L㯟MXŷ3@ݝ”e !aǸgZU5B>r.)L,f[ ,ੀr\5'zڝ^g_ؐ4Vw{ ;O֍oF[{Cgzf.ˠdYtnl-Y8 r/i-^Yyjv~*켳%utvGfn*6/fcl/*y婃k/`֩ 9$lr"W$Pް0|Γ3m>Cl1i'۹'xa hy sP9xa 7rH\:endstream endobj 660 0 obj << /Type /ObjStm /Length 2665 /Filter /FlateDecode /N 93 /First 862 >> stream x[Ѫ$}W tU%JǘXyHY_7sf>nf1k>:SRNIսK*wMbmMUmK󳥮mO>Y'ڑLLRQB \ ^ >-inIe{j=GRvIQΡk`_tya ^8zj>3lPp1hR0 XhFri{Z4azє`TPu!,I|) R+Lpfa)WǕb\1GNއI"fF Խh[1n>6އ>KE&(8cZIo:hfQ4Q }T7އ>$>Z! 4/jՅ> QGۍ}8 ,FŒ0P7ߤo?1nr|.=?b (ǵ<O1=)={\1E{躺: c-=Y4 2$;8w";4 otTn\nGv8(ҟf4~w|lu߬?>Eg^~i{2'{ĜfB~ik7o^,L.h5m֢z# U^ < < ̺WW^ x5jW^ x-Zk^ xxxxx88888=pzӃWx=z7o^s       ~1/F#b_~1/F`z~zy|Bǟ~~:?7}KN?)1| _>GƮ}x ޼xzd47^"$7n )sϵT(u ! &]xm;9GfJn@zq g3+&t7Bb1DxTzC"DP*Pg'r?]gd0SiӍ;"/J#۽5'0$ogq{ JZ5W6: cBe0Od'6رXWzc7sHg!_IM( xoSmfZʂ턊1,7Rr/f*.O  3nbwǓە ?bpH8y0q gۑ^UaEeT>Hzj. %{8y+ _CQ(O jQwɝΗӎ1KgKCۊ.pWcmohg۞͆|a\iAγ'}^¸nUa{ji+I96,b[Wr<+_91Z>`Jˬ> stream x[]%}ϯ/Ш*f!1 $8a ο9;n0R}J,4'4\=\guq\%M&)hIM.>FwES-{f@a`jyT;:}iEV'W^R8z_kC/oI17q {zX+'}&k b$SsfM悛gK6cjl@=uUIi5fLgI oczSzx\Sr|B3מ;߿9zfي]AN!{ytc7[>`W]{͚ŽHn`:{"iAdW/bWaGl*'!syWnS~i Ŏ15Zlo7;Z\! ._i;b1WqĐ헹tm9EuQ B6렘7V&obfg }~D&Oo0cv}WV=]eڶW7 nxuk^چ6 mxmk^t O7|S@vd^Gʇ}g zv?^n9D`Iz]U<}"u>p_ .'w:to~&)BcE!kLt5swz@:VѬkVzK֕U0Q)ƒ J;/騹s @%1SZԜWS Vg|ށSH b)qw3;]Wͷ`<vCW!2-.>؍'"(Vy |S̎#,bjGzy>\mPzl1O헐}䉴\]_";bFTT\{mOxk 8`| bvB "Gwvo&nfw:vsQGu|-O'X CQ:߭TLTxRV~}AbA?D"x!cn<۬r"x.:a/z&aw"+0&٦^L2+_b;ń4ټb/=IYP,~ 8endstream endobj 848 0 obj << /Type /ObjStm /Length 2676 /Filter /FlateDecode /N 93 /First 865 >> stream x[۪%}W tTU8$`!0 sﳖv>mff,*n]=f+ID+ɤdfh-IP19%ӓpHZ3tZ^8V:T9xf=f >=!=XL Kkl*nB??o߽{)zIw< N2v;wX\!/"N*vgOĿS7mvD;[KFx=zx#F7ox3f7o xFV7`lB||珉j{9tL-ZW6-ͿjCЀ2fAM:L!xnv:3U)nKOOO^Oe0:L[u8n}dSM~Zj, Wв}!8NαBlLkq"BRQxv]<@jqmv_*|;9/DJPq`>wX.hv*X53NmY;|u.$LVZJVFnD *NR:Q\M G +N/۟6Yrei%V _8DLi]|\HkbݿFG v:caa!XYU\;~ӔeO56^ I|˄<`^|rl?!32l7Ϫfz۟ˊiLFD-*Ε/:Sɦad~{x'v!On1dbB{;*}<W?98ڕ[sA WN$BoiKMzlsendstream endobj 942 0 obj << /Type /ObjStm /Length 3636 /Filter /FlateDecode /N 90 /First 885 >> stream x\[o6~_]ѐ<A4mIPmE\[NM,ߡD %qo c->>?uy'o{!񹄃Ǜüsᨭ_7Oē'%+C VڣNi+L` 18&3 ' 10Ku۟ 0#/|! h8g1-0Դc{Mc )f9KFZNWs/p8'ڞM (|R"^xWXWSg|z1nW#F@iL! 5Da\:T,ӱQdGlHddmT틽ζnYY'Q^#3!a`몌?ۭT^SgjM.!n,L*l<(J6Y \uWP,%Eőꈬl?*.iIWjH΂Ku:edlcrB+ѐlx L 5ZС؁Wr2sPkf20ɖo^kCŦ8ZAp6e_Egrԅ7]cj⁸&ȶ΍ֹE[W56c; .yJ9cG\jkC1#~Gj񒥱gvf.n\˝Q¨*KYaCr/jI[;NeRfC=!F^HEBT%4e<>zLJ੢8!6f\_VZHU{cDC׬ʜ0Z*N-V k2j?U!-,Q10eO3Yc.˘f5s0vl_l&3OݨjeWُs L6ysKxg>\j=Hq5k^*'y>vA'UuXIO>E>f*PBu) *1e䂙ݢ񟒕ߐs;6aA(.YU!&YfPhؑXsP݉9 eU$I KcQ1)ߴNEQj* !=I髕k{\5o` թ D?7NβNG}5]K0kjm%kYs 3%.\ JrKҘr9lqvBb펥')XCvʆzqxtCG[;FePcTd+]#RSc2=saÜ]3pU-]f󒠟ZPZUӬG N8*ubI@8XPRQkgRcY9*!x+?Ji^tGr{UtĐNMe .RA(w?hwE{Ԍo|遙oQ^i6Mz2hăJh#փ4d?뛻5$HQzu8rB{&;žT?l.!o+&+9);nz2sn#4VA 5JGA7Fyaid4븹סa"zNn<:t&`tN7NvQÏ$V6U׈-=`vBݢul $? %a1`)}< l q=+ӢnO; &% \C&|nӡm2:=IZ)W8g},uiK<){ !C/&4DvmNsq IFȯFY0縷ޮJy2\YɺX:^'vSb!Gl-A0 ft4І\ Eao ֈo5Bl ysUPKtgްÿq@~$LccȲ4"c.d3a+86;ݽlb^rIO[()!~ӈ86An@G?`Dc/h'MnG(umvmIu.n-F=4Ao +pP.Ҵ\ȶ͉c{0NgF= :wy{t)8 J##J ;۵DQ BO lzoܠ0asύoP+7w5VVԯYKG]Ts|=o Hq_9"/h~L{\MUK.蔍* aP9I9&/bYdy`XƯ*fpHA-{N7 ;-{N6:G #1)ް8 Ŀ6^ Q+Yk7ͥImgB> stream xY[_!wmiGEQx@K\D*$̙r(k׍}Xw^҂-]_`877Lp*ul[3lXa)Kmrs\7OۘfZh*oIݯ\YK}Eɡnޟ˸ f;ioF~_>&n\sZ.QҬPs +(5lo^P&I{IߞmLSTm0!1is=fN$vՊ+xA;pYRO9L{ eמݴEW;"}hOxƋNZ3Q(xT~ZPܵhdj*~q .}4m.j.wz& m9HYI (,>A8 iҒCUC|pR@N3tXOLSP9h)hm"?ǵnU" ⤓X q k^j[?ۦ @eKV@feL.J8[7sqx"d%m&Au賞TP2%7 &#$0cE]X7 JO+e4U' j.,OUw|ʇ^h͚49&]է%(4 :  %y^K B%b8+M0WwDC^gRđw$6*-R[(b Rp@pՃo}QGnb%'Y7 nCq޿ .UCY + _o?,WTu1C1%`,D ޒ077>ax\2^ 7ݍw_77+1ͨ|"w^'L(YP=#ܮ|BYzKa'7%Pm"Y4[µBڥ[7,5샧1d/jQn2$qz߶}59TyN]]٤O&gg2h\^(A8"xӛ l!d晆O^u[=w]d)hK ,OCx99Ȟq(zpҬ)Q-*FboeR`ް$kV0ݧӉH4}L7 2Vk,Zk3"H?6I 3m_u~ QJ>cN@#A:V|J v}"BۻĔ&uY0%PQu}q_3$/pOݜCA8_Lv۴c;fHԙ('w65gM'_}8bbvia.Xfj#>ljS"UE dk'dmóX1˲=D`&xc&ȃ<r`gAn`!ʕR3,o֐ͯIv^$kb̀yB*IBJu|hϾ7Ⱦ\1ϯ;dh?٬fB!_ri#qhf %H㰙z/} $Կ =o^}_a"!k@n]!vFalp+}a}5HGpr4 X;jc5e]96rP\"|.3k (xN9)/u9@@†DLx/ @D쾷X'"z@Ga{2vAg_2<@fnz] ' C}_>v9u{0$R~gTY孂WPh d9mgM()7ˏڄc_Mvlc,iC^+Shx9+si%!qgk!< >c46qD H;iFSvJ|Jǧ\AjVSF3LF qAmKM!>Ē{.B.D|f,çӖ03 ¸Ÿ=o C"]cqWkFxK]`EC/fN*|MӶ*;hysvg?D%_T"ڠ Hg]`h~-6k|Uo!?q vxC5rWO F2ޥ3m}0=~g7%X|7/0_kj ex}P/` D,?,}endstream endobj 1034 0 obj << /Filter /FlateDecode /Length 3325 >> stream xYKs6ڣ~*'hcēV!k+XF?癜v|~7c&itvϗF2/|y;%r.|.λr7-)qB9 :L8j|Kt}..Y q~_YYB8]4*ձWY[K-Vmش{K/vձkzD_I%ƿ8򈻮:l%lsԑ)/5 ':{>00]/HoIK'v9lo ea/[km݇pu}f8U 79XqkOw:T巳_uI! E2<&[\“7}dű}ZnE};FzR "G1i۰3JA^5tT<o> oNC ǩۈzڶA0,rRG;ۮѾX~q>4Rf+$q^~q.Ӑ̴|j8"̻Ry>8.7Y[*4 s( 8*yY\,_ 芊4+/$ZCԪ4i \獸ojMY6,!~? TCX e\-J߀^AdAN~ dat#clCvdvwu8@;9<Nj)]*c~5 %LeLK a~@d mHBjn R"Qv BOO!LhKOK[جQIq$`8KQL,a cb.eP ` DÈ.S`ag2?HI[d׺_) >`^q; ]?#z^\5bsXV%UF .- XEzl[bke6^Ǯ ؠ{4!)$J?ȓz?F\æ- 0~g[%M$sh<#)7Z͏`Q}(*O;A]aXh.>D{$ab'{g"ZdnįK (#`{- A3~>/9/t8:v\SwEbCF+1ŗBsٷ/ZmĞ=Px'Aq \XD"K;f'>V͟p!S\cr7 GoSPRcAKP P噳b@,~(& $ g&cQ!ڥ eiV*"ґ?F`"-q#]œ|`Cu8tg @鸔Ji+JYgr7O&4nD/^!4/US]p= /Psӌ*(q5o]c(А Ǯj/>nZRxNAɤ1s'm9'\>Cu7Y]uW{W1+FRA&*U8wIqַϸauQЂ"o AKo'D8xM"K%C'g E`llõɃDu)*3lkWVtP(4࡚9j()8cf!܅" # )\8BTYGM Kѱ3VO&2 R5xgt9hY/Ĺ'rk#]#[ !J=:PO|[e3H\uAeu~YHhuͮxcwZO1$δuuߟӶBPw'T$ҐMOY`cC`i'NkEatrV|l 6UrH(MDClHܻ%q meoEҴM~|ӎuM{"@Ig*,q mG^'UK좤U@%'}HB̕ [w Xt)=^tra"DJ`ۤR")ApP|t։6> stream x[]۸=gW)r4EOg8'q}X{(bF5$5vϯ[")3`P(Tϳ,.7w7?X7:U:9gwۛO:RW䯿YgB䗺2Is&KA#ur Hڹ(,s.6e_ #&Y5öL\Z RP&[WbF!&3D*2iw9\nyEZ#7OC5U`^?'˨}AQ0f.C52*s46xt! p\(y5EK';)3Gda:ى8>Ϗ_=BdQU8R]Z Hٓ+0IwL_MۯT]_8C$-̘Nc|%][` C<٭PNz,on+zYTv˾nvqζ0AU =+lM:Z+7^NoUiV}[/O_7aΦy&RuI[uU.8j7["ov;lmD=g֟Wp ̂ ;C&dSķ,mJd_W\y\'e[uX+dRdx߯U(EYb宯{XqJe]A:HX GIf y06x!acI/bk&j.hͬ~]lƥS'}Uܨkk \lzA-F _> *aoHJ[HD1!o&R.JEJb>u\,^Nwrؑ$Z| HOU&/Lh?mB L~ yjH]e HR%gqN\gfNtg)>n y5Ұ:H7#\^'!kzr6S=/#rg5"5@Eb%I2𣈙߼VkQ+#yr ^.v~ڄAQ..֑2hK'2"{LՇ;]<E0%<]']0=NL{^wީn}T U,;^ }[uC(. (g3QէM`!)M ~+_@ZՔ:Oxsᗤndn쇚)SXQg3ْu s.ס$]TXH֫)OjI5WdN ݛ|# >;q֫#ſT5Vb<ypW{*  ȣ 2 _Dxz5zlj\1!*.jBpT4l;5' -YLъqvxsX*?{&bbdw~5fy6ƅ`t%/cɾld1+f!P} Dz&F(f+Y,skmU"ŅݣEZL .\N%ӁbT? t!xxrB&juetLA?h\zX8N ߦ#nYG0KXJVz2fTfXv-/V$JF#jUS1hϺJU u 3ccwg50NbCrD+5|'AoF9<"/Us*mv/}P DxWOOD\T8:9(X8V$۪|³?~#w;vmn:vRbtR7ބ A|%nwo~oYd[nrRP0$&rdvi?l:H@ּFE6^l'"GزmLg8j 7Ȕ2 4lѾ rXt <@G̳] E`/n~x'?=*m]_yZ gOLװ :&nQ&/r"#t3ykH0֡N1P o7?endstream endobj 1036 0 obj << /Filter /FlateDecode /Length 2901 >> stream xYK۸ڣ~jNPb'TrɁCqF\K䘤<;FAPCǯ@huun+k:_V}_5ww+ tNZiޝVׄmƘhCش-yS2e?v 8!3Fw\rM~N5,sI;&)#w'z0Hӆen_6TtQ# <" F-o"I)OxuwhPVz6[Klwh@7pqÕd$mqbiez<°칬@uTaÁ)NaDX:ߣm;  5"7N~ g}[橵 A5Xn"wf3_䅣sQs("+^vjZC-sIm~Y^9hJfB hߖK~ɜs?M[5k^}lﭠ`󜯷إ;4u_աJkT@#s &$9uh ;g8%,,h~8pԂ)T^kfdHu 򣟡 peq767#(t]Ȅ}dBVj(({mڇ5|"NhdE/L yv1'\Sܺ2үHe6)ACA%ua2Z.Zn Y*xS8S?#ܯ#&Ҝ'g. wH4sQu|;8/N_~!=/n-9}fq:F"j%^oկ+׏A@zFذG.קhea @J\!3 IT)G/^i z%4(7[iN*FŘM&" $;6~RqV5f$-|iư|-9$^}r#(\&HHfnO8$? j*XIl n՛wzή^\ڮ?WI!ܢ.QU씁Fdur0s(RlpQ 9Ah+cݷpMWu0HHsKj@[M֑(I!>SiGiy$~ɪl=ː<}Lؕ{ϸI96ڪdzq=$)oJ0T&c"יIP3Bӹ4(tXD'Pb$@IQJ9g3iL6U!Wê) xlnyTؙQ(-CN`L;~/@ axx x(s'pR KT*x86٥-& /v(T>J|Y5(_ ѵbץp>@UN.^`#ց19]H|402~oQ*inz6*<h-5 J,]89^FL 0bj0FifPn1T ?S Xק I8/#i $̤¤RXGkAPVMn#=S,@f%o,k/tL(l&B%^lutDة_rf yIqy,@³H8Z gC=3>Z>\ˆ HF_·?.cwxn\ȡX`EB2jHv,bCT!*]송A\?Tb]HL+$KImD(tdOx킷po ڼC_bGߛ~|B|Qsdz :5}e,"[ .7yt_W!-endstream endobj 1037 0 obj << /Filter /FlateDecode /Length 1700 >> stream xZMs6QGhB ܚ&3iǝ:=-BRΨ? Hu숩L{vԇQ/ ֳ3pݿe<;}urP28@H ?gˈF&iTjlҾiS\&l4:y:_`$~kWM"/8;d 4ЊUnGʘ ڱ/#_*Uq[qau= 6Д6v-Iei{O9W'W $YqW)pFRv6fEgHƩέK+:)cR7I5"sFTuڴks\K aԹv/$/$>NQ 8-@ &2 `W#?En?g/fo;&Ua PR*MG<|,&F,uIN{~rQV#bG'UҤy s"J Y;7|ii}JY TOs7{B&UMˤSKF3n3pc5UPˁ;FVnj0$67qZ8"BGE+cח {T^x[͓J-•Bx,mUW&aU'ן\"idF|o Qt;P%3,X[3F^_` 0>৵t_Af*r ^[swkXT̸.,?!ZBEc lHMDfx.4뚳ָ]i|UUj뀜OÆ>{Mg/$^'aHĨ<~ 0Yѳco<֎Ͷs&U$en˸kڤ;>Џ5|:-=kH,Ϯ)9&=gaahҺIwћIn8?TܕJ{L  j@D~m4zAQȡ&k:Zewh'Bn~±kSN;\Z {[yϒhpZL,q:E#GF5Lbji1Y'My,)tH.5좇&'D|lS$:>%!y!}.7پ [uo.'jFG@5|f:YggCyo|'țlLaj܏#3%g_SgǠ%|q"daDђ*-:>|#X"_y+ڦc="IU"q5| ,9>&@ 2hY_tDpcG}:~x,<\{7y|4;4ٳCyv͍)!>C+JJs[|CUZox?w5|d/#էt ccj:@CCpx~| 0'qMH~XY0gAǒӝYTk?.#GGH R`!9eL{>endstream endobj 1038 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8439 >> stream xxiXSwJM&jm묵gTQTLI0IyGQEjZ[s{ٜ}߳so^.~p}w,PR$zdbа$߳;9s;0žyt_%1[$~[coOؑ3iW=C.ʎ 5-GgWwϤEvK,]|q{U%vfoe_Pw]HsM•XK#܈u|x ۄMK _b # ™XBۈvbXN$Vn=bp!'}ML%bixxN8<"x "I!aG"IP4qxCLL&>Bž%sb'6)xvgrin12T-D|iKQ/&MN 20SѴ N*WOupv8sռA=|;gTt Y0 F eBmY:f]up,m?[9}^׊H[xEs~~cKYssyͿicG 1o8cV|1.c RHtd\J J H15 M!ZȾe8x;bj\ |HFHF4& XY9G3-D"[:|7(3~^+%'MG&%g>N\%b aqvcl1$RLN$M*]D6W+@TKZ V&Nf?7L)@[(F,|JS40y/է'0V 2rpٍ7?&sI}r*yȿܯXznI`Iw#\c:rh' tn/oKp3ɇ{Eu7QCTie]v&=(a^@ p ծz fPԦ\e)˩ZM?_C{8w=⽂(}WrS&n7_;͢i gt<4)I A w@##83Zk[O *jőƕ3T-tNT.9CBL^[Uʍߤ4ʅk?/zqq:5$oz+I̋zo)-{v-ICU|h1n}XrE2`ړ<9gK7O_Kd M@ǒ Pg.4p )(MNt 'CrB)h0xAIOt7\)uWoRmM!߂w2]4 z;3o/-t]IZSOۣ,P;epIT M\Q7Rؖl;/N SJӘ G#p&qj]|}>z!? CF'5Rf6(6 c|1S!Tl㙼E gsdvv.P4yBWQTVO#) J)=ek4DyK 0g76dV:>:񩄶bD\@qb5,-)z{9d`7Tr ,LkI/J4z^IƯEWn `X,)GאZM"TE2ЀTAK`ALo P; .?}(8ATf)fJ fbL[oA4Et}NIuz],MnEkϴ2M7|(=HAe^xnC!cKK0նHR5:Qz-VjS҄ ϟ]a\-țbdƬPn=qnS 2P]:$ߣMF]*?( P(ԱIQh@l*#:e@RS :QA VD$եf,Sۼ R(u  ͙l#0 AUYq{k.TBG,XQ AkNR苀 K{QPٟ_hßv\ta>o?;Η)Tr@'̃bLF63 ś]m)5Uꂜ8$/> -+&(24:WufT3V&9;%S}TFz*A!IOt}@\N_x7^}n,/1М]) )1mC0WeC}8Avaֳ SU{9g  N`X)\qH޸V^|PhE,`YƬp` h!@Jy z >S 孹B Z!z*UR|T^LQv`f9jʖߢyD5ч4,ηPU`1ď+_9<=cתˌf;[rn>)3BJaF{KCTӈO9߄lv>0}ω3OGӐ]5>k)=/&nBrYT'@$(:L4n͏ 1)?UtP'v@1OQ<vV񬖧etwQ`ޜi@萂ϬP rZKt_yk.hE\T =OS(5 dgSR"Z?:y;'KERcm S %`l'ǝ&Q(XRZ֚ NM ;$ hƣ%xoyK=S١A~T/B,/(t ō4&&$R`BϩXqՀif Op$N439БZӧ)eBX/V. w^V%w,+Hd{ũ~3/7r'v .8-RsAô噫~5{d48DsHQ%x-^tv]ӷ=TujJ&NW wY"TYXVèL .&\ͲJJug3-6EIK/q>#墍RrML> [0Rftl ApSn][( GI5MS|ktg`RC8 `How.A_E҇]`JLdO'{ s#4ŭιG\8\?8΁?<,vs!~ vFoY dܞ/OL ? 7>sA+ ixWtW512Mk5AzƉゴa95HE& VZu)GÏ4u0]'A8ȯϮȩ9@Qp+c׸wEɫd5j%ZF݋I _Ϊ9/Io0uCT"7/Q4JY#z 9ô vL#lR.bH*c .ټuKC45UψQ`eH.S8Fà=?#nhʁ_$΋/P\clSNFK82j4ҍ>6e#ҭi`?%./5v ˢEe?w{]2Vnpo7LCww5pn-NK{D=!)Nx n|Õ7Sj˱vD h]3pC> Uz MUM)Ctӿ82MP[?P/RTZ4a,+8z`x$^nZ|r+Ҕ'NR_ؖz*ٖz0O1ƴCH𑩹NeW\ShS=VM$︔5vj;x [u!Q.\E|g^8}$x_rHT_ͺwdK N}&K=rLxey XتQogEcvj c|a2?61Q"NllnjLYEgA}lAϬԐLf&2q`*ymG#A,"&<*5uvCu%d@ ܲ<'J$Q8XsGfZuM^m#x˧אxH 8Gr_!j4Ǖb'z"owM Ub/̵Yr@XS"})zBr1ȪRk%iXtSeIK\1g߱ v_9ЀagQ}ډU(L/>GAT֠It-㣤m֒Sc)^V8Tͨ 'S'+k+p+-TJ6+V!HۣғiYqm^?yvVf.ߔ_̞חQ#o䥠+6 u5D-ZΎ^rϕW+4,*}2I(պM =Bx/7KzX }J=iw~ߝX;q8MG_ ~]^/L[A)1cqI9umksPLUfNV -Rt%k1ogZ¬Zȧllxz䬑fe¼զA:x207}Q+=qʣ@i>/ frBjPw-b;$o)04=f5nRQ׸a[8~SFޖ\3zQQp>s0.*.%>Z'Qa᫽w(۹7H~̡S=4}ҞȎy" ⴡNxtN@EgnH8!h(+8ڡ(4hΪUA#08{&~Agͷ=ܹ K * Jbv+&Y!5Yrӌ$&L]#GݕiIt⛞I:|TyL)s&\t_>pbqU,/;n su捗߻;:z l?u~z{&&\ ?_5ٵWzvzͱ)ڣJ]<;!>W?>NĴTK˂4u]f=sa_,2L+Ko9!r Nj% rb 2m 2Q0?q "Gn=x??랓hU>ґPgW1zوgY-lـz .#b>C_7r AAHu %i^Yŭ:eRGo mZ"3TG"kɀQCO${r)>-;4^^P27lvm5mAcfsld8/M4kܤ[|5:pX>k[#*(Y"n =$zB=gb>td߶^¥mqUyKIDŽژ;w9qtE *7*MF5N66mw}dC<nПnq\R DI1G; Nypdž/Ew|jÀ}G>Z?rB{0b$l\G}xc h{(# ,"f+3V~e$V&&HS,T,gĦ`9_]JC{y_Wtᚥ%GWѴk!qZEq4 %3].I8 ƀ{pU []i?? }r\hǁNcsch“wv<[sKhwwtϞk{ 7B{v ְ đcdv76V:~?BzA!FڟV) 9MFmgݯ uϜm}svYFe2 zCo ${(%_4A~ۍS"鹦BSaVe4ieU|Gp5wz,GQ DX={܌<Fk]EcKUѷ[٩"z|V)?CM78Nlij^$Yo_Fdm5zՖ/Nx66+=uܽ$z㶓p/p<4'. ፛jwn J}谭n,ODozƋ+K( u2Se֪JkUQ)$Rv` YU º U%6;fKu4 >RYW- 7Z "S)krR OJR2-j,m)R*<%E.OQ%Q VRUΔZU1zdK׬*KuCiZ IfeuyIBVXXl0 ;qj΁y`#.(Aa,\GbcmF6t222h0M87endstream endobj 1039 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5746 >> stream xXgTT#0{G1XfK,K,X"" }^f0 0(( j%xb$znq߆xֹwu/`<<Pc(@ <7j͞7]BOG7v!{do<]a(g{G6GmMr{쎸|$$ r 9zPXxĘK-kʷYzFEP)WjKQ!ʙZ@Rn"rPoRGʃFO-S˩NjZIM\T5&R)JDMXuʑrTj&KR#AƘqcjfvm-gg0@hit?3a~ u18qR{:!pefOESfN 1-bz1t6u ͂mV6GRja,VrNQB\NЊm]bQ0Xk/Tu;Am1šxUzH^6R1 xH炆r~9v9 8)H@(Η¾tfh,tP u2`QQIYY)#zX_g1Ok>(4 Rj K7S я_\O$3M"imZbBXo@<)Q&swFzl"d!,tR 䏂ƊV^p9-8&"Hr"Y2dEuϻ>tcL,U"%'kCr&_OjJVxŻ j' -EVE eK`h,RзsjRf8FGR՛3\hX?dH4Dhն*FL[Ϧ2^'ً'"o>cNrUQ7gɣ\.7[,|Xm`yg?>{A7s J +5j$mk‡0&%O<3Z,l YW0H<+ D{##ϧEc~7)WP/oXA-L hŕZ<==`?W;/J[,[oQ"72A;(o+6G# l%4"S-WlF7x>٠C ~A)q .M+d03hه(T)ڹm?fGQOYH؟Gz4~3a2N+Bt}#&S֛w?&i<\B yB_:Ei-m.dKvUBJ~H<^HEg|KAPĸLz=0(>9h;"g{BQæ[=R7좄;#eAR6"fwbEiF0 8F*` (UgC* 'p/[2_݆Hެr tw H]1lm5fKj lhꖊzFLYWJ|J7ΑRۿa+(Ɉ.2FTIc0 CB#>|kgEه?\Mi)ʣ+08[*h|g6>ganFY(0X^[e;]V<)Gz+I˜mo%QxUX^/)EȐWӨ>iB׾4t(+jcZ] :ImByR73a&uȩU ` @)4f}$2nߚ^R# ^Lf7>L?2 Rn񁁙ԟ} +ozp^1у!͞;)Q'#qG ~ID. @UO,xdžӓ*dMNۜ1ʮ[JS*Y#];g6*&DA6 w,yr򽂾u,<|4UMKnJo6$W[ &qx='8|Jᙊ}\rĩ.$e`˔0i~vU'3 Z^ފܾl7B@(F!Uv$'{"M$߬J48`龎D]Jƍ'k3,XDf"ϘIMrz3kH/FUe%Bd(00S\``Y!f :1{Q됗U|rXt_ \sAy%QTQcKc΀ yh_Ww!GCc`6OOS ;s3P,RM ȈW5OلJKGV)Dx6&RuGӂ*1CS9P EY;yxE]rsMCC8X kN 3p7l$N,5IxxdEqVU6IeLm]"zr!zt3MRDaxݸ||H]YԋM]'/2V"&"ʩS_D RYY!p77-]%MKP*JMO JML*%0V[uC>SSdP\vhZoc9`龶 <}x| ^jE:ᏭKmrd4:r)%\Uub{cO.{Y&/qQ4ڧR)Tek}P<خqD[7 &WJ6J HJ!&R)|aij֧ &UN N4KqK6d֜ l*tZ5!QNUAl;w)٥ݴ˘53\OVӹI_XV%kpVD6^ڬ % :aeYI>(EoOjh͹@0a]nyUxE0˳-O>*XYԄjR ʼnQGT_NDwbtCYH`QG~/EX&͗0O1ƴ q^~PkRfD,?f#hԲl2z[ڈ>f7}+a}Xy:'73+]MѠt&Aiv^u=j;Zfx Gp;1>ω#PXVЦ;esG!OEDE*S6fE4~{f[_mlS{ԁ1eˠjzԃݯu?2my/R#4OW(:2E*^_f*"NYS1ɡ}k`_`)Y ?UIx2 I+B+QmOHW7݇/)͉f>0`h5EAgdd$Ⱦo NWo+қaZb^[J;Z0ꭆR2ܺsɝ}8?nYS]O%uHBL]̈ 3 @;2=Ƣ4y^+2Yh3(< $2j7x&1#b,;.\_,y<,_o-D*MOh<ʼnۂ)d8$yh%=Kh!]oyV+J(CKsT>9auzuhcR؞kJBA#%'y ,8(GY>g_5Z3te桮7T1/M%ӺbO 4bp]59*Q_:?#G&bك Yt\yUx;8"B`Ȉ4ר_M[!6 OirC,jj/'DE+i kj_ގl>$O{eH|5Yr}uIr\;X`n=bn s%Zىb=*KD>BT8ܠUnr ^\4PE09/3]=!qotxtC[]hߖCqo ȑgđs!#Vrk8EњȔXĸ'^g)$Ѱʙf<_›R y^p;r\v1tΠ6YK*c-4ZLɍ p7yG@̹Pa `V)ܢΚKwrK>~}&}grH$Fmb:.>ԚXl7D};P#C|h/cbKqt pfA\߳3$dq4*5#n<1uKl2E. 0E &0ZG?:QBw:7]oI6cD_9~uꣽu>H0 lf0\<f;~!frѮȘ۹tb1<&:%[(z^ǁBsv䦌L jC\i #Ծiɬ4wQAo(B_ kfi`yxњb^Û&XFFf ')Ntm7b[ ~Lgaq9I'Kw鸛YcGcjҥɭtMؠ,Q~Ә``zcUXsR{B>)`<,@ż.fޒ=k9ycw/qx[fm9]DK-^=3bda[-a=f翻Xs QI4Xie_^'/w3{@P\(׾D2 |U~vn^fvbN*b\br`'Z5Ҫmh+ ifpGDRXtPy'mO=~*a]ֆ.s1F ic:7{qKHXFF0'M,0HgЙ΁Ӂ23k7u,"qE%%ށ smpendstream endobj 1040 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7378 >> stream xu tSwI6ʠ4[EAADyJP:Q:7Md7I3MIB[)[D&#Wϻ{M9gs׷fdgL,qŊޚuX"ښdؔ4ɆCFP_w`BHSgS`'"+WdǯY:oMZ 6%m'oMٖv$6}Ό]Y͙;o~+ ^]닖|k֋/s6b 1!'/Lb1IH/ne"XI!jbXC'zbHFNl&[7b"HL"&+')xShb:%DI'%V\,i}zd#6,3Sʝ˭ g?giuO84DL:9kǗ=^'x|^IᓧΩ©@0AH  raҧ];1=iC"htLb  u |.-qJhlqSh]^e5xd0r?7StPAbѼ_uSa;.ࣝvI5%﮾l*om$y7uOq P͹h@Pb4yt@]oء!yס^_=.đXM:$7[!y||Wu8 ?L_+NHS}ETyaVX ~lE4-x}(۫SWt>"?>H*lL]ytVF*uWJ~" gvw7C='iGz_:XW#Q#0)N]^|]8OwO_j gJ1vÛPQhrxڿb^p/ MCAY9l*ъ w/+PuJS L8. ?N_q_T//V.ؼ6+"=͓aR ٯ'n9/s7 sc0p3NGX3p30 0* Nyр+{qi-~9 Hp1֊P n0PO5l"G֭ٶ4k  NJ2Yu_(f:sRAa 8l%#XQ8:ڌ>~;Nz)hF# woM_=.ʓĀL4QWR--mMyƲBQ$<CWeccuHL "\D{oK S4C\Z[V_;m+jXq[L4ڵ@Q2 A$eI#֫X.+]Юܦ*r*l&ĒB'NoOmjl pc )XR)UQ%Ii0l_ZVrn܀id먥P~nc#aiCd8obuwCVwU_bAZ kJEe wR9/69wW](P=GodĢzJ;g*mqpc*za1 ح^9l>ȴʢg8e?C$/>R_h⡋c48n y '3ݑ;q=oIL,ļ3Qaf~+旮-G/d]Oo+lkȒ(KUI|*h (j >kTޑު3ˌ;5)˵!{LF(F\2TD4$:X5R58AEyuEi7:[D 3f!fQ䘟ߍuÅ86N[TN)-ֱdlyqβP{ٯ+&t˞k7JKlg>߸ d:K#W:u(pYq(b,lEx.7oy\T[}cuYԽSؤVYȟ߇7֢heUN @P{j\_]t{l588M6e £)EUjԷg((iX&`Zka81 [Q?;c%{~_O55wWbTFѤJhI!;ؾ 3h&zeιywٶi79QNFFh΀VIaYLfIa5[MVӳ sB;K^7RY;3YO|[a>vPk`S; <$W̜>cڗ6Q^8XTYTp@"|7c"=bkJCCzmЂ嗐}oj+^9~E)= x ٗ8мJYH\=?ZG" NrGC[Q=)(xs5^-r*Ycԃ,U,"HbfZ+ 9'6x{kh95v!8<55m3y^m| :e;9{!b>i8S*F%ꅨU)G'nDldf2ڕ^R%3e2%^Rƒ_+Ik-=w>i֛Lt5!*JxoHD{b+T`t:mpw]AIWE7ߔkɝfswZ꺚'0 l&e[Bu`݉Ħm;v||`O' !;hD+w"؂[/K,=|)̆k<,]Z_ܒWp\TAb:ٷ9̤_0`*\vIumMա((RTj#ίo6Z #"B >o~s.yl>hZZpA@e | 7qx˩?63ijoI{Ƞ &PǫSXbqXe2 Y;lU@*(CQ@ZY;]6E<=8L(N܉_pU;IYUaɦ ynBsAInްBD_3$uoklGjܡ´lPvUmm;MibqAҁ$,EYa]8?Dkp+o} Loo6soݒ(hzȬc挾>J h->fAё7%H =Mzb,rNM6rflsa#5/"kK ep(J:'#ݒp '‹gOPig`5߅ʑ|4M>͈7m@3H0 N/΋9Gu~0WhQ9Ʃ=o/KMe<ٽۇƾPܿPSaԔF>~ij#Gw?Lq~FV9qk~]&5iJvz s딻?yG[y;{܌QdBŖZhoj?6l‰s7,B6ڑ'l }I }s+=.9;}tT<.dKdLG>:[<5$\|t߁x틎%ONʝ÷o]Ku3W="^rOtPMKB7pU%3?j8h#.Ƭ?إŊ/Ey:~pB|ForM= fmVo˗WHgvl`&ę˽xu/ȯ):~Rd[_ fKG<1M$iYBG?~ LxLPgendstream endobj 1041 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5820 >> stream xYXQY"+#EDذ`AA,wiET FcI41|=?Rv5<9sW{PF(^AByn4k5BcN%FJL !21:лo/3uٝ~q޴pEӶlmP+g3k欟aFA .6|F;n~&9r_NlkdEfS7@ P ʇQ)_ʖOQ !Bj*5ZDMQ)j8N\5Aܩ15IfQ)OjES]ɔ)ՍrS=(3j%zR)2,(Kʊ2zQToSՙBS 5،2B :;u钡U~F~,KXyy|gm.2N3d2ۤخG37ֻۖn?uw~GT]ɾճȦ1O34jѢ0%-M,YZ Jz˧3>*뫽={'ҧGa}6ɽ})4 Mjx F2W(cF%EN8Ƌ6[K$P44D‘ d,I5]t뉯-wx(-d`0uo"]_a,A6}ەȎ-?{$QZzi  ֭n\օ͙dBxx < nC/TdsP/P5ex,;g `o$"kI=lxS4R?#:(OUß'ilwࡰCr\dNi͹[ۏn).RZ-dMB.@[Xy:bnQ.کLJW}g.=p`S|LyZdN|>b sD#wRTk͆xcmDS !=T?ֶҲ7zu|^j/}g0dxk}ʢ-5INzK7 Ef0~e)F- 4 !_ZEU?l6Lc; L-dO]zg^dbCGbclvtd劚; δU=+[O%RYl)v6?i8Ʒo7ʵċy3mN w?LEaq,I)r\^ږQR>a,ݱ(tWڎU:J#N 3&7kį]/Ѕle#Sj=4vezjb|u*ۺ'D -D75hUzdi٦Nw?ri tIaPp@fPćV[.ˮ?k.bl., *#ʕ _'Pfd?fy ^Sg<{̽'yRYS"n[GUayQ'2EN_>&,yzd$v=wO*3Fap)tn{c?bXuvEZs؎ٺ>~ cCo^o.~DWe.LȎ/h;TfIPEԉ+qvGs\$0R<`NIe]d$ J K;vl{hK~sqɩr.>q]q"Eڑ3; +J$,BDj"* x kj?%jwB?""FT?QC ^8_5,y<Եx0qQPJ?p4|GL<Ǚs &׶O][C;NB0,,>HGvK Q$x2w7Y(.f&(I绺s4q/0|3̡agaWBt~?7F-}z󐾍GڈfF+ռ );F޾egPo &Mm¦3ٸȅ쯏:LdՃ57?y*jT%;zy"Ja,˱xYXEpτ79Al (OO4I _KqKR"g%ŋ$s}+lLUG}5^$0{ -q_Fŝ;Urͮ*qx%ۦNӋ+grJQ)״j&iM,UKHO[mh<7Q, |ŜM>h %ȳIۋ~L)o$.MzR o$;/Lɱs8i9@Aڎ4]:{V*F owsԟ`kHh0pȜb.h*E k+-i|UH$vӗ7'a5 W[Z<,%,IDY|!D6qWl~ &gRSC<Ф{ѿ3Q6&]4i "/ѡzx"/pЇt0&c q_Bx3K@ _o)@D|A6Gb戢{uBu՝='% mU 9;3ٮ9k3j}}_يt_o$usyh'Zd 1dž7ooqӆ" '}\'C!̂ ̼ ?D C`n䤟֟Gбc !!4a-zBw"D$R>tNU<!̻X/ `(ebRRZT+22tݼ T1yE֧n*WcRPӷYX^M֡(2%(9/bX%-eZ% [4Zrźr?PyIjuQ +QUw'-2uýVnZؚ'Q;Z,93x>,iجoלC8+i0L왓vd _GH6FE =EXZ֜"|z 0Z*3~N!gfPȮJqƘ#۹;|sw¾HB`#7!Z7D>}h?ᧆOjKmV%Ƃ^.i:(F3G4ܢ/օT k䐨9#ҵ-|LcߖI2ɷIC߉5> #Bv eFh/@wYՕ˪+=Ao_G:C"*n96.򗇜۸wbd+Ѧ%^cS4H`2@rAt%ralBo'Zz[$oDfna5 dT(* @ɕ@(іyܝЫcYQ1:?ܤ/4)vH2H$E9`XkVl:'*ʏ *U h胑vC!CW6S28u#rYID"r!Y9"VCW!~ca!6)L{iiiZK r]"塑ᄤƑҭHϕ<_z1-Xe81qYtx])P.m>s1 Y7K}yX%8~[6bTˏRmDPpT(^+P*+C#?s9O#M\َw<%|q*l$"r B,p)"}=upXPJ0hb)Y*}9iPIrn*135 1y*uf] e9Y!0xsl ]}Ի)/FJ;Wѓ!wqsݝV%QZ^mR 8z48d(+O _/4j G|\<8M}kqs8Ϟqg8DQ%Vǖ (lKm3@ktboΞ0#hf勝NAa(<#.+>+)-2^v4e5_q 7~@00Lq)15фjO> Q׭]s<ʝo.M8e(PjvFBqPK7;tPB_nPwB%+QYY)*egfdgXg@Iي, /uVfRYԌcIFbws$;5KNeD̖qPBRrBJeJ27)3ԉx%&IdˌlLfzVN̳ "jR*#N3AKU咜Uedq=y{`NJX^@uCp${)bRG$$F399 ~E7FۏRtrjbS$d8BeJl#%Ȗ*+3W% Fϰ*63Y꼬΁kSQ݅7F&]idbFQrU}endstream endobj 1042 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7708 >> stream xz XSAɩRmǂ8VZ{ֱZ'@2CMHB )!*jkm{{ֶXs'! ?a]ko7cD̾u3 RPSk9nxzԿ< ~">׶; ǭ'ae⪤wWI ^o]z6n 9bK֨mcvzmY͙9/oe7'.Hۯ.6=hAL 6oBbLl&[VUb1NL'v325"XN$,"xM$U]b.G!^'uz/?xxxI"///G!F41x&|wb,A#8+D8'sxb81XDx۱cnMv~c ǝ#"rIns?)y-#F~8 ^b^7xZZ ~/Y5mdܲqG_^+zw=/9+eM;&'uMN||ߔ)OcM?x黦7͘>#mƓVvu$+_%fݍyΥk6qxȗ)2Y"LUjd(SkʵZ0Jnd9[kDz{+YuZ3*SMq׬I?9= /_VK5%W5\p%Xȡ}e{V!M9˴vp?\P]}QQl DyrEL.b˲fBnޯA TM(?RAk1U*8F Q '49-atVܦ{JP="pUj:q:5T(p'ءf7c?odÑ-ic W?ƥKVn;w/v]cL !A @GMεրFd%2UɄN*Kg^AUUA**&(d4y 7n9<=Q^XrY8`!r3l{ˆ}laҼ,4D Vsk쓊J jⲲs$~2A"( :_"DăjFe5Q|RKe"m Jg!v[tG+,y< GAzh`Qp$8zw_?ا2-pY }pXI&Nc&6THwjlm[61 oXks;} )=7?5gunSpϣ)|Nu"U~o mC .j7 FGGEfodóvwfzޮT%1FI&&!'D)ǂ?OƠQIc9[}"*-,6Y!  BP[lVPmv N|odvK AZV$ӊM2(wEX(-(Z+0ʼn,T%ØP/Kd:j:X)8kw@>.^f0Q5ԩ9ZiHB'!i=I^_SnFP82)Ygu:a$?K:R;F0$﫟j.< ?1ZЧі(}82ݰѵR.'%&iuj-w.D\; _|"l'=t}Qp;3ޠ0jtz6`ZbsXHW5_] łU&E,dQISn .eDx L3"Πԉ P4Kx+vVc )][UdZ*NR|b8)).mLΕƝ8[YJw}%y c< і#2u :͝6[cIEpt&5+4^ J0ZL:åi@*N ,kؾ=z)XLwV{&/ñ8ˑ8"4\b>8% Z}AZYyFwɲQ 4uEos_jL2PKYSj$ ,')H’2eJ " a KH;JL5sᑶ / N4Z6є (N('kVlg^LQ]zf7Gc<:7 nii};`da{\0XOPG6Γ$%e ~aYVO7w|z \ZN5^#Wӷj=MOE#R%drpfM}ńcݚU,/bͪ]qP͕ =>Cݠ.L|ШYATL Jj &~ Aw_Ita V Hhj7\1ԝ@zkĖminv\E';~ҮO?&a2ROE7p*= ˥E@tUrsCG<^0Tzaͅ}b{~}'%YYgLx Pw A]Ͳ+O4_b6J˄zOP@Uu}iVShRLjW/ `^VڳŪ'k/˻O>j vFPpZ}4e7k#@$ȌHHEd< _ :jӟS@?Cw1a>%'7M(ߗzno -j8 NXv0(Y(5)]E|%p8:ȹKBwx ._( 4DP'Nr#y' j\6HUԘn9ifhcxoa)ROC}I%۫*0ti4fhF'ITʼA?%dPYΝnXBB>MCSd^n3[UOkKK ou,[ۭ͟IW;tWZncX\7n\*;?x4^DE-Y5ȃD`{wqxY9k?A \OMAxs10zYmF+i7^jp ѕx[zv_!)9w/$y33O{:n>cq(rRL.M~t'~Yln~6VД$!$ۘ[%6bȥ5Hz%2mVQS[FﵚǘrXrl⟉?>^+>}|.hH uC:U\*}q!Z~I%6&Â`ւ7Yܻl Y]Da~JXǢZޒCo0lM`'HTf8&8IM+Vl:, u@_]UўOF.XarqӢpxvxEp[ -rugX~\{%@T"6kѳ Lgy'hǩ(ՐjRj4ftz? a0ZJ >b*ꥥ Pd3ޣvywbf[x]r$?sls\7͇*K$B~O1֢:6Pb%[q?٩p!k:āȫL"S,^ϓn1LL$0X9ݠ{-:KEEra/{*Y$@%%%HJ]_zi-t 6@!KD< Gl2YŞWgXDo"Av*n¹OhyWKZ]>x]]雟vq|ML646 ɰC1-yb,ԃQ3:RuLʒF,I'6R[k.gSݾcpfwh 6…z ;w4N.ӕ-߀7q'nu wU+V1;,f|ȤӠ^4U%#VnذpARݱ Ɣєk+V!rW\|ȚZ r.8cJlq'ËF[CY '֜dUt͜'eYcJw6Z8brg}݃k C#7nN GD(*&Ro*6ujv@ܿ3"#y`Ͼ4v&0vOOV$A\&̏U`T6߼zbk,M&r?a:_t¥[#44VF( (66I{)#Λ1)q6สLU%;BA$!C*] ւxH09Y8 AG" v.nʼnK녱hGvTWoN7k y2>9ޙ{-؄+ev~vz+~F_m(oQNn{5{6$r,;ynm;+B{֭r쉖#dl΀U[voήsi JcAK#,l`}}YcDά$4j<_9bZ$*{c/p+|߼ B"Bw|?ζʳRȥjގ7?z1cKoa6ҥpZ]_|lag*h ?-(&<~5zTbUI^q[if9e+pof)UiXK ju (2}rH2`Bz3z}Fuoo42 lY6H PQ.4J ꋙe0ܻkK 'ddd嫼*Ptmv1 3zXʒ–!h4аĽ8 $xQ zU(X =~| =tF,T}ru,R v^y{u{`ڌ͚6@]?7,lW6S7xKvÐ8 C8iu0I \wHpy4 HT\urC^{;G?+ 'TVi҅G;Vs '&ެ+>;JQV\J?-r`$&)Bοi~}r[S '!9).,U"xF?bj@Jsco.B] b,z.x^B)9hw% pZ@jfVl&8x#~^?tendstream endobj 1043 0 obj << /Filter /FlateDecode /Length 3135 >> stream xYrܸڼ+)K\~Iw]GVš58,ɱ}op8^҃8hi$ $99DS\>[|{e&Γ\.>y%RZgO듟E4NH8jIt Hc+饁F}rq%T"UlH#'r{zz&uNKb.3eجŸu1T4ebYF+;P rĉMSiM Pߴh&h 9]r^AY GbhlCO0CasuxOd\0:8GF<eow?_E, '85$dDѬX%Wn9xSD4YP bJAjS\oQXaw+t9lbLǙ94si@b|)qY`Иny -*2j2'$y63R]t-D,7P?(ΉDu;/]MSN\=rl'h-2ܙԟA, 黲Zz ^:j5H$y4]UE'7 `vFo76>W mj,UV|eE9vw)df?}]('Us 3k?FC| gi\MH\ s=57 I:ēIrq8||'i:-jPs U;gP9U?tmO0ɳ7m\g t{pqxLb~:'ԸE @SjGp +IHlň!N/4Vp^0rzaJ˳jYc[J+*@\/}~1&e /OČ3F||XL@NNV[|v."q QXIZw%ktPտVrId$cqm< wN;B`BɷtC=d8 ĥ+n,㶵=Q|⫽@$7$EQS,)t#Sʠ]i o32dڬ(3kE)uŇ*$^ߌQ~`޲[ ȿGR a]?>u.]pΣVbj}}[ kbk"Ҥ2 )Q=teZ'>JL#U* Q4\08Х)`tl2Rbꋾ\h T7eb-$EgL \#~Q}xyTzUm IIK&&D: p9_5PoZ" +rOh3jd$\*ʦ\v}_5Lc? 1RӐLXYyޏ㔡 .k*rc !. (4[#TG}ȏ8Y*7MXC릩' e}x/b?@8mP1bmgtLgM ^x%<=Q srꀔԈ|0|VͶ H j-3u7A(}\Ӟoc(*և1jC??ǭ}WE!,? y@P0)r{GL;5C^mپ3K{%6K'e.I |Yw/̟=ݹw .k*.7U{!d9mǸH i9_p;:zʸCU1ldȳs[A7iFERU12~];(HISdT5z |;"y3wfLCf*<ûxOfIp"H;X7dh bJ9z~3=Q$'"Z #Wex=*+9USLYb dn*Ω,nQ _q#̑2:?7N?Lz`(2'jUtWJ%sgD =SIvII]_w Ptb `0H*N(fw xm@rlOBU_D)v-S#f/ ѴZb;Z9"I)b%1 ?mq9OM_ ,b^Y#Auyޭߐ)}8*6D)D;|XP.ʶX,~~ =%aju  h go{8g&)@m0u%~T4d0=W -@'|`9x-I1$1rs![ߍpʲX%JS1вtF ?@n3OŇH7C{ qՎ /Ã]%Y ߡlaZΟU)9Kf:Gp'x=Icd71҄4 骆!K&6akg ]! Rٮ}X/v5th+!L.5MC쾅0aƀ6 [aep1[rqw/р$endstream endobj 1044 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1247 >> stream x{LSwq@}qs6mtΩ'*RJ @j8 R@ m@P*+ԈSQ(L1F3.^.9$|INj I24NMuү8E`& >?B %B6q0g ϴA!|4I4y\XB2%r $Ӥ KR,'4#|br.9ث{O62}lsQ͔X{H#璁 f#덜jk UW-ylP35w* h총t/ e*^)tqv4 2|'#`P)`lcx#q)".}ZW"8M6짪vs2RPeJȂaoq]&OEP|t-{݆! wk9zZ5l`)A8xM1,~w(sgli6p*Oj**Ŭn$mlb톺t~Omjt&[q 9^wV(rürsJy&e6NBeREq؀HVB<ӈ>ܲae`.ANN^=ͷghG`o;f.Qt/ _ڦ%(pr<@vM#&hFs nc5,VĠV+ nZ` k235dKvfA,: w9`dk(%ITVI߭|_xC/_6P &'VRendstream endobj 1045 0 obj << /Filter /FlateDecode /Length 3183 >> stream xYKs ѿBT+5/vsn~3YV*McJalRZS[>X$,,??_ųߎ8jvvstre 8峛#7R٘YbK]̅Ҕ Xf(aoJ+mdZ>TE7Lrev [muօA¦ bOpj|;?|T5;IZY;YnV}Օ8n󺁭I̮h\Y>U5ʀios>]%ٲ^]S>d~涁%U7~78,ߙ>+Er6>扌cGR(]fyVU +M𷤵#');k`u῀إh !YF(g\>Jc S@taM² +es[4lU/,kâfqnæ9|E? H#1J>?N}X `zD"˓FMB[PE7[\c2*Ŝuެu:` ;;}NL߻뛹9{6G U"'kG&6vX7}AJt\ntD̝ؗZ+6:.%ػ ;m:/VA}o]t#-XbE:44kV&L<|0$` A[#_G]H+EǷ/K10㏀@ξ#Ovu7NR HwzRdl<"PXOV?+5\`'QVd %&i5MBۚt0qHNXI8#8Y0 PI`F"qAbKߊ2wpHE.sv)@"K_TKDXK)"K2P@()(cB]H5~٘gKx+\МTٚ 7Fa39ܢ$J׺L)|Ò{:er'Du yydh==+P$.9_϶MK7^h[=~k C-[YeBn)D.6̶%5+]_[呼*v}z# b7iZ*(70Yia.\dp,:XW`IC @dʃTSp!.nY/HTإ@Zۮ6"3wCU_c^G@_7\OsqP&7`yPMd$ nE#+Q+.}"bLv-[ q[$!PM2 2]0uc_,DM0 ^UCZ ;T8opl0L[-]{䳤JVSn4!coB#&f̃y1jRfp}T}M%c"`΄QI 93>SbҜzGpE|Ϫ>Wh $W>B| DOߏ@|b[kt˧~x5pǺ!޳=se0;:|j$Y,qޤo|@Wƫo$ԩeh9Lpd+ ԠYn<9.ҳ՝T /6x}4k~ay)F^Nij|JOp;П>b5.EWP` a{\n+D)WOnIdT]gBPջWVs-腤`Edtlwth#PD|o'!bCÝhN+MQB [<֐Q:r(BheX/2ip~r5e>C˜x!I!K>pYä ;Z1+,uf~P4vu% f;Ú#֡VxO\{zC"RAb^3h&@|mܝ{%P02yU!ȠkCm9?endstream endobj 1046 0 obj << /Filter /FlateDecode /Length 2842 >> stream xYے~aJ1 ,Zr6Ҧ7XbH 4J|~o2i\b0=3ݧOeGr?r{W\Iz;-WwW_H46VVWdX~p].}9_hmhNݙچvď,hʰ7Se.|SUG7e#o"7ŧ paʌ)%wE7Vs1mgHbBL|tN/ų_hA_ArML   ҥ.]SS眞D ?>6BF@8-8 ostDv`u\ۆ|Lʼ'~p}-Ja8ܼQo V|S kѧ0B,dDR`} i>/&)D£Zkj뚁 ñcʨ۹D RAA8$bx=TCWtOUL_TIJo`93*Pm"F S|?svĊ8'9z֧,RBX]j?~g_xSk\6%CT18srqPI3(XPқ`Q?Q XD<DMkߐ3 UHЗ@)xiW߆ X"&~]=RJ껈`]%&W+w;FZ `W;o "@錢c/cp=p/k!<=B-LNg(e.Fp$ \(pJ+&ZMW?TI<^}DX0nKp+eMHK`#P^s!!b(jJb f,x!JTf ?),<yξ %-QjeGCHtKak' M6f=Amх0w(t;*NmJ4);hS9#„ }cB VgYq`a]4տ]yHihV ?Bn,v )WNX@s[.>@ (@߫O/#MzTT {)JZ-TV$QIekP^#,Z?sŎ 6rҰ1k8ә6JaJ_ +f·-xϥ"r}prή]6Xϊ­h u*nʠ\J"C]-e-fg mHbR VzKwt~C]$íѿ%/ X8%G!S3r u:\A ]LM|;B%7R &⫥׶t0zEx-o 7@i{pф"0u]]rrYRup7k`eɏS%MɆ##vۢ"En.| 2X?~)TƉ WK6eǡO3{T'w”VǗ`T|;Zҁ϶U36i55գnmֽ#ExmǛ4(c i%زEhյۃMދش*ssEMŋ1ٲVNw4x1gMQORYcʒl)524$mF3c%7{fS2#*.̈4-Ib_N,ב >|Z@խ\\>;=(5fk32K2̐7wW\endstream endobj 1047 0 obj << /Filter /FlateDecode /Length 1320 >> stream xV]O6}_Kwo.R[u-ja&0i3 PC=׎]*$psνj(o-ߝ: /"^,livqƖ2(f}}IrK އڱs&29Sx,Jpnz_]MWͪji[s_Z}Ww&ŪvW]krIrڰ\ʗn{v}z7 Oz j= X:XɎFe\/h/Jq<{@O#@J22(,\#XLӃֹ 7ʹ # Z7(no4hn%ّ,Zk/MZ):DS4#{ɽ fDL2jf el4d}X5G vu6\C>ج6UrhK^a7yI/ P6zh\Ш48kB*B.e 0:xِJX;MtWtP|zw e(%o I=4?~MXCu5욐vAa[TAߍq}^ΦƋU[[8g xPMQp<7E5EkiՄvcödȉ " ~"|_/Eeխ#- Rb>("/6q&7SURμ`gHVg;T 15"3Ӻ.Ey Bv7@C6;k]|Ux;L'CE>RruHg s,$7 u@4] (%%wl LpR"QH} _EI;dgwn+˰~rXOjOi 7r)?J U߭M6@ TP7E66O(Hy.Q\҅STB(#D"9/R^x!||[H)Ah!~MH4Md54$cWzAo1a\ %^B)rHT& w%> m=xJ-#w[UۦiLQZ)e j5Ʃ]j%泷4й2R R{Z= a#^xJ`>4rLbR 5PF)#BgOlbe붩$CČxFN?x3dUTo)sRTMjS<`ȍ42He6ඒ ,?_^-endstream endobj 1048 0 obj << /Filter /FlateDecode /Length 3010 >> stream xYv+9"~&G53VFDRObe 88cCG7jHB$Џ[n5?Ƒ<_lNIOO$'QgHxDԝmN~?8cfSԳ:e"z_Ɖ)>ʶ8#nW]EYD.-̤4qI=-TX]i TC܋eFla~60>[[>ME$Q'4ԈӂLΌjhLXiyd.udM^"`dvQF ( w̝tsGZK^~Ip/ ֏3x?^)GfE]H9|[1Y z #@U@GeUƈ'/T@JSwt ~31&c38AV ǔB*5Z݆7Ҋ}l).Ub̥;Wxy\R4)q}?xG#&XqE7vR  *UpnWlpk%nvw-CQIA"|wy_6uxu,1FN[X%lۼ]9DC-:gzP54s3MC&90nl zh)? Ӕ‹̲wuleUL$߹1'f$DdzHm/{.'eG %D&@ mgssfo 8GۅN|^v6=R,E[n:),bC"䕴(7ۦs$aREUݸQz>Q'wbawH%XD[8Y83[8Ѷ-wGp| 5Ċf[ )L:Ekk4YhH`^_aÈO vLJH4o=;`4yF+05/m[.x &fDDYBFƒa*5Uovs|@TKO3|j3HL0qB\CH1)pIUKM*Vq$T~, Ѓ1ӞP1:dU/ Ѡ@6"oZ.1s);2 I"O Z|Wv}kH< pÃ颗fV +zYMnlLf?}ɸb4mnWpzY5]KUgVpY\˜ÆW4d/\.X0ED[x$8QYuA'/:voΫUzsJ fIh=|ܿ,bxAbLY/O'x:% 9 7Qĭ>6cܿ -w .U)NH΂@ /YQV,s0 [.y%v6)u.JMngh +~z օm琒Tz IoiF+>Y%IRsYZGt}#! w]2E"`974ߑR  APT9 G az75-vSbs-5glSH28С.m M^J)ŖGxEυ=He͔֏sW _tT(2vJ>KUy4QmğDcHP;j” V0~H|6MB-~{-ITR .Iq-jhЃbkÜ`Z;0T <\`I.8=Nח`@PgF8> H(yJ=Iۻ t_y{"t2Sdj3!Xpٟٗrgk !8Kд\Qt <,<բ͹XS7\O}^`܅qmk0/ xONG{u/$_@ӱ503qj1X&ٳLnGMB7cΨx>TʸW]67P5 g0x6YV}^u ů_E#Fڙ٫?~x9!54ojALlae -;DOEiYgf_g\mS"kO/N#J#endstream endobj 1049 0 obj << /Filter /FlateDecode /Length 2141 >> stream xYn}W!8%l @idGFfgeMv~;-p>`>$FIsR& Ox̪uV k8LXF6 }=W k 0|N-:Z:=]yPR}a \Z.BW,dm-|M*\[{q2F~ Ygʑv{-,]u:v}Xʯ}cB_6RJtj|w 韦iN]P9iy})PI}u:Vjqajc?1 Fnƭ :K ( u c2%IKz-jZEU9FY1@dW) ~UqYR{&%*3S_H8N[LT UW^zm96ʿ>SFĀYcTFkҷC 'C⢣'GG5R)Uv4)0剱;TD,y)\ ؅hњä@}_Sƒn};c{~b?Y݇Uy?Ƨ/A0tQRҟw􃖕ywmƣ*rt77Geڲ_-p p,j * xbd{1AB?U)V )33/ľi):a=>ǮDŽ鳀edDS'"JR$t v !=CknD;_x2XcqƓn/,ބ endstream endobj 1050 0 obj << /Filter /FlateDecode /Length 3114 >> stream xYmѿ⬈HE[MҢHEv-9o$?Bkw~Xg 2M2ſ{\O Io{\uNb3޾{6n7u'Nrf)Yg9n_v/Ĩ/ #iG G>i:ػlbX\)PXZ PtnC)ԙ4]3n0R>79T6?OQ5#>O ϊOLecXWyGS9AMrjJ;Q'j$xʇ!s/ ]+[B< 8'1p +J\s7p ^TE䜉]ѳqlEc:^- A!q,ᓁjRJ{ g[MV}W}j/0@x?Yf{(vbgD/p!F @ߪG СBsko7s5ci8n+TP&T11}_}<7~?ZDx7Ő`xD6LV s?HV4WݸJPփ5a+U=OКa3 ĵYZ)̟݃2%"'\QMM 9@cz<Ɯ99MvrR!)GW|?Za[vEn 7#}>sn\aD6#36+{}-i_4sD'3hҩL1+UaDX/r\,d/Jx=z% ^흄 z DbdZ&h߬* Ux^ϊ!$w\%؇LC9A9"P`p)(@Hv'CePthzҒ;W}dﬨV{5fhddaBr]sM)+')^ڋ(X /e[Mgd(p" | f%I*0+  kFci(E`QlGkh!`'+t-;&'z jC6 ~"iQY_Zty'G1FJcvk9qwWd|vUjT^N-7D)AEʛ} 2,bf Q pQelz4;unV^ ]UAz_L^~NKiE+K7f6@;6m[B5+y;B@!(,~z8_)*Nq0S`w r8;L"VwmaN\| J4 I,Lhm0jz'ī/#l`x,7V44r˿`Й - 蒐4;ibp!I ]J$e>mf2ttݵ D9;wcI]B0WlTAlE]V-YsB$EA'\6f̒W :ӫ}%~$ytKQyEqmK3t賷QK]Uadth/Z`d+)X! V\eNr&2#`7 aćJ xꞷ|5b=I\:|zYA=FT@mz庢?4mEޓ%mo<)EN|[m7m 'Ӕ$ƔK ?Zhz($EFv5ؾXIj.*7-/r"ȥpk-z$󡯰0GCv(są10)j Z_vgH2|l8 w%BŁ3MvY>^$bG$t&97 c!'I]Bz^3weendstream endobj 1051 0 obj << /Filter /FlateDecode /Length 3137 >> stream xYɒ+t3hqxŽh8fӭJbUqLj.S];J>@D7i"7)txNMsȯ)vF$VwuNF'q+4_O-Hvl*r$^`U_vUQop9 'χ/Ai[a)Gf`  ~JO T;Ϗeu{gk("P bEXR b=cϻRũHÊ*΀@oiZiP_L;tvy 6,}d9 \fr$t%p!ձ*!!ƂD ]Tq<&NmHvR'xȘ]JvR   ǴӀ ^te<'  S/UYǶf$m7:CF(<M6~ۂxC]2,@fN/+(,DZ zjD}*|G:'rpwG ˥j@qUyHa[D+i!c?4 i!Ƀ4Q#tl4WSuye'ȼҌGSGNK-AtXDeX.}-8L;^5 3-"8~!=EO%31^x?O6iPXߏDj^CEBOJ{'3fشݙ|wt!Y{DT @S*EyO=eã4?<q r c=T %ZWc"& aC t4˔aҫtA\ YNZONдᠰAvZbT'3;0X3>{vEVb@ӼPG<.A-)+Mu:qx#I]Iۙ&nù)ЄY'(pAQA5W i]{:wVɬi¬qSzyLΑ bfKY0Y2,Y2-7,Տ5 쿎#DJVzEsNtqNK= HƑ|J jSXN/Ō%?ȡ :RC;6  -_@ <#2pB&2sLJun^!{!nmi# _aŅeZڻqǵ>s^}S he= ʏc@ǰtɛ^Y3DO~Wީ~8bc7bn[8U,_󩺆Fħa>+Jr̭^EUM>,|ZLN~t^-`{&`GCa 'p\@ =N>Nu'~/t->8ʀ3t$ ʫ㑜:69iR{3f[)c )o:yLCkԤO T mz_rdք @9vm "UK]K+*8Wh09׊ Vιu27݉Y˃VkwAW[Nq--gǢ>5`Pw%B0l6v*ưc\/8Mf2qݼ`7s TY4B/FYܖ"k%K %ͼ4s;_5PbĒwc(I{^1d]C71(fV/N SbJ`<%&TɌn~){0 TNe]#ehr( #5wpD(nM+m nsOщ$6Gɕ 8p*`)%oY=uƥu3vp,[ϛL2.qo@9Q¬s<> U`t&:dhtMdf j"\DdT/5]{yUғM5JmSU_ (ٛxft>ķM QdsFO |6b[Z0@yUH!KRS&&pĊ HYK,͸u`at(M +Ϥԁh Ʀ#}611dЈ,v-/eĢ_t'ag+|e FOw@endstream endobj 1052 0 obj << /Filter /FlateDecode /Length 3418 >> stream xZKo67 N " nb8qrVԃԣ^{v2HbXUb|) u)o?_(z[/?^_e _()2"H/}OՕeaS?aʉ갡i38C~ڕxJrL}3k-C^z|VV|^)`b bV +OM3a=>ޮ"V $İ+E oݤٯȓot\s e gCfsvbueV{[`kb_}sh8j-Y{ȳ@lDvmkR v]<C%X mWIp0yb׷z`>< iK򢁭Z]))K2+ %Nx*/IV&ə?!% Bbs6 JNZdas%ǼezsA|^]E-JW)҂ @yIC@XtrN]05 9ǖ|Bj yI\1?UT]7֫YPsEY)J9'%+0v0'?vsSVeFQJOfJ L@|˫1jpr3165HAHS/$AW.b5yR!O;cW!rSJHzCM7 dDЧo85A&N Ԉ\٨d"AyЌƨ)cqTS `@5` sߒ8 PN9S1&@JMMAQC"u`da^G3S6ضzI7T!;sVtOb? a;ԛLkh:\PEpy>& hcߏB48񂏰מym @K^CV;t7 ]a]0-/ANJ 9Sv g`?쭠P:|5u_%o6B@s Հ(Uxya` ;)-Hy)lrSp8[m7'8-S:( 7ΞxN썖 AR q1ϫ+BH84?-d!rjRS3+OXY~lbʤ!Q6!3M_LwӋh0޸,7\&̨҈"w1|#nb؂&-%oIz6Z֜2I-fJ""fr? L&n>+$}ύTWM ²H,و0qȆ/+,r%?k Lm *]op,LˆRbNe;;_p`3aHeNFMȌ Xdr6Q܊"ǤPGL2͈~Q,N HM Ed{@ؔi,l5-CZ)ZcN/فSvAKQʶ=Nݢv#9BO0v΀A(A2\Y7CJ 8e5JxoEAxqFh G$SC?!Hp{`Wq: $쒦vrL}͵.a,O K`Y"]rwm;]`ivEGKY}K>geM͏%!M014:8S,ɰVb)\=/[q)ӂ>O+I(:zΠ%ʜ9%4ΜB6Ǯ#s|jyM]MTc|`,cTV5Я } {ؖ_#oh7JYӼQ='{ø^޷. N)ug -2 Mu;c"@Wcng'=nSJ-e0]Zp"Urlx? +endstream endobj 1053 0 obj << /Filter /FlateDecode /Length 2719 >> stream xXKsqŖs06ENTaR,)`y$%03_~YrH\ܱNCOĺlnݍSJCwyXLg?mVA4XeDѷ"qZq-QE Gk]^qf5.O i՛)">]Kn@RlZl z t7q!x!;[&-` s)``TT rSť,RbMxrEe`?c7i'p}$|JҖϺm {*Ɲtgid |wPc*tp욞5 Ttæ#`1E%K]e7I(d(z9W_T+\Ħ<2 ^= ߊCz_kť<‰ť6*q(j;k|1t.4ǐgmV4.irYyؒ $u2#G/_? PTJ[mZRnkV(>xwy#g(n]8~^REs==wp6CUCϋ|*8|ҍV\* mC$̨M曚j-.tˍߢom*1ӷ _AE,S+ShY-\)#Ntg@R?H9V3\y. 8pf9a(΂ 9f}*Gpnn5!:j! 0XGՒ>FvsHUyBtV2kk8u3q fb82`j?J3qB .Vʹ5ZUHb:?'$mWQGJ o"Tpe|ǒys۾]] \ U]/~@v%.FjܕjoW'>NQIvIUHv -b P-Hrq0H喼7GN4IHZɹ)bi W kPa2JP f9e:]bY*| i$D c:Me )c8\RzKc`<]nXbf@4$inVsΞ2T)C9"DXKʎphW5h>6ȝI0~.c !ٞKa:Si#D<r-qu:S'q%6,nl&j"IS@uGcqST\%48f#J!^H1 T{c+Y@FC{95p8^7}nG-J!ģٱj\HOv-!BMbOc˴; PkC:[D˖)qCd7C7 Q`l嘫KroPݒN;c"ͮmvCpBk6$H-{ v1 qB9{=fE9ޱZH!=YaL'a#ʸK'OwBÑ c'Nj}C9kyGч.K2%vQ3YO`z/3|GY=w-*Vqn63ļ k߽OĒZC_ !MC9-%QAؘ%Nt]j(q2>KӚ/>/$ܳ Ih`6\⊋NnHIEC办gN_-=Pi,? B6>Q}`8} ]uGzĢ:!niRX<$yC,`5˗2_HV HwzV> myM@u-P%=GMy֍>3iQ%,=i?r $|li JNm nݶ.a΅/춳Ăћ.RSoȴqI lT\b}l`ҥ6zԡxfQYSHxYo6sYLR7M)>MLdqsM&bot2ύ59iO-= !'妨tf&\aLWcW| >wk.,*-qUM~xݫ桸ZB@k 7;$AI…RJ 1Ro温}zo4xIOٙ23]f>^endstream endobj 1054 0 obj << /Filter /FlateDecode /Length 3205 >> stream xYK QBZ&*g˱lvrH#iLRYr=3>[F44KgrzLn/0aW:ډ7b]-aww-TeU(KZZV`koxX,umvƭFt;&t D~8Ds\h_Ҏrڊ!ůD<+k FkW3-8[vo۠OElGu=_}=[HRҾGZ03tnHnoj݌0{r(W *~ՅSivsNU988~fȇI32Y5E]1/=pG*-8KxM m3) cGD&@Jf&GZ*9K2F[G*v~3; SC#NyCa4T ߮_߷RY,+ J<7Ϛ晽خͩ㡽z/nIIUBQU&VV)'va{ _Y0jUZSXe 㥦 3e8am;sNaݼt@_vߏݶwj"ߩr"нl]߶H% x TZ6RϜ ^Ȣ$J)%}40Z`,:Tu ~ _^#J%r$r{Ώl\KȾnrF%I쭬"̮h/6H^Z$T*/nGh +fYjr7+ }BqhQ6 BA%A &@M0M2d2B>n:ci .]Ȩ-:Qv 3! [kxQr+}qP!/E0S}+9|H'lnLl,*Oh( -JXJJn=ĺܟߋљ7,LIeS'MGvpF\RLW}IpM%ɍ9.ŦJCYq>$#Caw{J0<+ dqm.@};8OK/bqQ%ގ m<ڎGm8ݦJG'Mu6_՛  f;ܓ4$ip_X\݇s>JH҅Cm}]o`QRj?dD,;~6ƒ̈́)f|?%XYM tHIZc}U~&\tP"C\KP9;VnU kta<.$_pfo?CLh>s>o"Q"6jDm"HTyX]3XLQN:ChqbP==YMZTAWXJ[mrq}no.Y` ˎnidJ5SxcF-|٫_n:|0z6sdNpH#W|{hf*u.3qxMɲdNNF]IK?6T΃@ m?D0$_h$D%>bݟRqMt@i2TmnHDr}~s}G+02'2h ZҖk}?_G-V GNl"ͩocbB]`A8B) tL4妚B;s4 (vEi_P?X鐈Ys1)5b%l*;{ GBC셚5%NHvۂIQhxb{T>4~2s@&O"J%*?OEyX4(oh\j SO=-~$Gx;@x}:lA4 Byiߛ&El&OW}ө= qf ѻ GnJcӚ~2 w¬P9yN$Y;.,r6ho[6lys3"5u ;bVB5\4QhJnbXxb$]}1VY&fXϋeW.5&UU_*z9,}ʚ&u]| q cIT|;AַW Y%>.ڏ(R5jJ.{6EǞD7rLgE1mYaPyWF) g2&(\Q8DW#Qb57 Lqsdug TIx\$3.qGUHKd~ mpb?OwĿF3&,Ӵ-w?8z(֛bl ~>Zbb*N7&O$ J=%^oyd#WkDVSy +E8z:z=3iHq'P^0@i%Zc$3 ?yXx(a3<nRG f. DEPT|A3-Osr:/M#5&*DzsŃ.= T^t!tvZz Pb=t\?p%y=4UTWzęIUjY 9~h !4*GV,ďL8 tNTKc4K 0YbR bFYL:RqI|0Gg(7}<~(Ә:mQ܄^(ޜEFN?'fq)>\D`1Dxqq(Ocj3xT*Y)uxNp5xqq w(E|'@X f9yTendstream endobj 1055 0 obj << /Filter /FlateDecode /Length 3041 >> stream xZK۸QB\do*IՎ}$TX9yr%Όz-Ie<9OlF-&F_SӴ,vRN'?M8Nz1ݍ0Rnp+83]l'ſ@\ c`b5az:*Wy|כl.+wڴ{|fXW8,qeYS͸*Ӓ=e٪Ln^ Ux4sPdMuxZbC9U0HA {Vv8,7z>/y2zes&=gMݛumQ&:BU+SZgٿgBÐ6ݦnC[w )Q}LJ_doxJi*=!'oSF:E\ϠLC_ AgknN6hn\;E#/JpzoݕhF)$[ ކb.'n"*Y֣aջkӤU4Tdef6xIbnؠ rd7` VwiSmwnQ68"^L~D|r20s])1{eTr]ŝ<ڥ]%"SBN|?H8/BW`Z2*uY\ngt6\'$qB(yZ;yWxXHM.j! '?{qL xj )r0FHs,̱Wd#/*v`f+d FA ߺBPtYmy%C9mODI9ӊ+/pUqu> w9ͥu/IQ N+,7uxuzbF:d0kXQ Ik{\>$m{JexnXp k J0Că~$mNk_ Ҷ/?K\ X,ݩ%[o/o܊bfߌcW8k'A9Yyi 'Gݱ:!9CѸ+a6pKgTI]X?CDYr,65*kH%ݻ>ov/[x>32 _[Z1R![:t0:%3jp l^o릎TPK1~(-Mx606JiC->pc9+~=fWCڔO G670M^BHR$%/o%%$=zFCRAd4l?@dߪݴ߿m ef 3\(1FxQBpp N&,ȧk6O\ K0w5VŠÊ~]Axh&ίw>G-XJu5 >PzP]sT/ :Cԉ 4 mu!^OwM_ k`>L}_b=9I_uU@ g;wߣGK{gUɬy R\]8\ p]&S&6*e=LtX:%^sF>HpeRIz ƜqY+(wNPF&p>`ɋr/#ݫ>Ia58Şꏁքc1 s|‰Dh8yAO /Ν~6''rH'J(rs S/L#9!θTyУKBa0?'Ghcz`MəL L&.BL-0k,a:f$/-dTbgWiϥ YvAiN !J+b`(F ^ɨMhS*jHϊЀ(&1 {I}{S{n6=eʽ/#VE XۭɊ ddFyeTrlVD(7A#]|S=ę4]0C0E9;RPp>s_ӓUwcWz8dk" '%܆􍐩.endstream endobj 1056 0 obj << /Filter /FlateDecode /Length 2793 >> stream xYKrԟ VL?H $''{01IeTuu7Y d zuWUk^5JgwZ{+ֶ,kaT\gwvbʱכZQXū*JSr[aN ^(c$- 4~AM)o!R~*ӻKe2ieh_AllHjخXOm甔 ވ}5~f?K{Qw}cYFI#e+O^UrJRN/kdaZJ/TBɢ,=E%dJ%̕\(.)T%)^*ǰo2҅*3җYdP(unKTJZ[*\̅_*ךKW8 /Uz˖efr/ ޱ ؙBjM^}楺xc[iDŽ/k}&~S M^!ehJvCvٺv 'EhLa+ƃwI2,`]$#=@Ax%eZxy*. 4{ $K:WW'Zv\R# @% Jn+ᣐ@]12$m@cCմ|hfRH SBu"ٰ9vbF yq L̇+ W,W+MTo gY^brV`!+&,(/Lncw8 pX Mea]9v\sQ oYȥJ5 ;c ]},Beߎ8B +8.ub,Ka-E.KũA%iOFilGՂ+`HT'SlJQ;CPuVΒ9n|Ob="M cJ^2x+JJWp 592(>sqjO+MŔ !\O.vٶZCRѲw4I ɦଧ NzB4tbзA ģG]WZ͈GiA(6.ڋ !cgh \8~dSa"$y6U,c@ O=a~~w$O'U=aV{0QD"`3 ]^hͮ>~l36[(tC*,ides08a3f$|PhC0yOx'QǙ,?{"E'$[pbFC{MRTAG6Bw<"udBI~|Y{?5^ػL)ccKг||d!}p\io‡*Џ>|]fȣ$4{vLW%>%\`K'-QWzYKd/Dqt;HdE  PzQEcn^"Fn`:b᝚.Ey#`였F]bSw5]_kΏ}7+Njp E`yL -/tN`{~NNW~H ǡxq}ᅢ.¸OSHccg(;B.h- jߐྩ"PVg=Vqw,O_df4>0Q..&05"xH``~gx%gT hYԆ:\צ6N ^6uZ.źo*U`a;~^* 3`&R\5fg-}|svPU(c=n|[1k&|R%цԠT~8S  r/tWPs!C5~"}iAPEe[VEWK1 dY_̨TtCRǗN\"ֶ@!8/tiE2ҍVT\9CCIxzendstream endobj 1057 0 obj << /Filter /FlateDecode /Length 2412 >> stream xXMr?m~&pbЖQRx}_Mgև EX||UXEYEiUzݷEвċʯ UbJ,ǫzZZ GMQ 7RX*ˢan-WD;;$EAr A>J|/\B*,(Xo}5+x[I!J+]0JWd=|<$ޛ˕pP|:o0G{@w`eASb'L1g-sKsaY&Ǽ* ,Om/X\#oL5S :9ΜVj S9LK>"F$f{TC6-8dF%0 0t+ r,01GJuwU"UaApL MMXb1s,\9,c{,73PۡjUM߼꺶Kz}=ӈ$GQ5v0mc-^·>Ltc ]Fi$"nWݤɠܜܐ4vߝ/Ix3*}5~g7UC:ϩ̷1 l2y+WTˋZvb~z&#':)guRp=?]J"0,?!czPJszy!$B^ O ' |* |* iY(hsYr"QϪ%R5dr@.-!.2-%Bؔ2A)-< %Z)e,Q3jIPdƒZZRv5]8)ۣN3SI=UI)]g2YrSsCưb?ތ\}o:spا ׄۯ3۴eմMIyJY>_R "shj}Mɟq.@ł}[M%ȀⳈ&ܝ$> _"/hl|M,)"EFUqYy7p*-faeW]RZtYJ| mOso01zTO$L}Pi}3Qk %.G-U`l YF`m]8s!5+$-}8ETfUu#ԙS }9A؞[й7ޗ[$6|~U$#qﰁ=z3{vPjVP@1-8$$_0@̅Op!lsԸF6.l0@zk0Pǣzqk_S{5dœX ZPBHopBD!\%`Ύ̅]3+Xe'Gh B2@_Ԍ4%֝ĆکY;`Q% 1KQ=Ed֍Đnֹ nGy8#$H>(_{)xN`|0}tHѹDo2Yak ^HX][[M Iཙۭ,Bs9ZV蕟R@)悿l5B2aط; );Wl&DǥJxZSHGcd!x*\QnMBt-H7mjqgnEMZTыB&_ISA,m8NJ;4r bm@0viTR,ܣȅ U]˶mLp&crEw[L 4`m6Xg/.0z{̻ $#1 wj;:vT#l3^)󰶯|w,7*p<,GrWxV,(cpc[ j@#?@!Nv5B¥G{H}L J-Q  WQ+sKV=V:j1 ƠA& h'Ԃ5 P}q(ڲ{)E/GK(vrwR0n]ںՔ:*6jn@֕EN򨗼O>+m-zTw-l™mY *1O y7>tHVN\\^*Po/!].bihNS#oԄ>=;Nܷ<M[4 4r(0NJ%E!I( &|QCU%vO6GD8<,Y=u1ל'SZoZgRÅ -O眻h#Ww?5jendstream endobj 1058 0 obj << /Filter /FlateDecode /Length 2944 >> stream xY[oܺ_oYU$E|tsS䠗lId-U667ܙ!)Jn.0l2g*M*:\OWz Y"\wWn _蔋Up1&1ڰ롲MS; ݩƺkFlpd,DKWwW?|`׸.K԰t= #Ywq> /7}^ fKvkm k*_P6MOqpUIF}9]׾^s2qF3j @Xٮ9="LTfDP\7IYED`t߁z#5l3[O*8nt zJP(8cRkUqbSi uCX\0:;5HZ$;@o-+E+<$Uү m-h"p=O639A7^hP:ae7H%]mxZ;#BՉ|!TH6]e/Y!,ue"9NW4?U㩷ȤSt @٣? ?;0)دK8FI|?{wj#M\IA*O QP-$-.Lf(wH+ /[=@"MHyZ"lǂ!^eE}2y_IXt~`t "2[:!U1 L\@^P 4kR39Whzp4 vnY jJ, 8n)^4C=en8ޖw;UwGhI?kz,FOZM $ՇEU@Ntg23ט vtXSWoèfm9blbk }nKaas<$c)&_Pr.g{P4}[9q•dz᪒R$N.|mCf'z U#}^ezVRugÃKTP [D I0B:é;+Z9(3<뵫H$^2,R7Mrf/_ ytף{Io $ *)qG4  hh~]kJa9l>qH2+JvY0EYp,.l}Na2򉧥R_AeY0WkCsCʠE>}WZ6ڰ/aG7,Jv:մRCE^ smW.~x vDDR7XfDjižl NQlJ`G7R[e}b$(̋< 5ΎW?Q2"b`Xtp|}LZZc^r8Z ŗ #f(3Ng\tpl:ENGf Gوr}̦{cj#YuOl-oy>Cyo/g.2Tm(\( FLkAp0}mei'@6OV-.2Ibo߄z"uaස羕:jM&PG=K ݷ^?0nu.*h0.h Ía)wo\T+0dv}}wy/?$i;`3 UOrQhDΤKW2,+@Q pRZendstream endobj 1059 0 obj << /Filter /FlateDecode /Length 3645 >> stream xZ[sɣ~ fL{}LN$IʯBQV\j<ݳg;gex!e^M ..x"ӗŻUwb)uC0Y֫h&8]vkus}mj!L^"fB i3@Y{E+] ՟KڊG ͦvKxޥtt].Ʌ [8_,CB}ٗ uU%B3I{\oeW ea{SAL:128@y.۲C[fm=ֻmHmWuS,׿],usaRh^y_勥vz]u*p8՟ANX4$D#O Y-$}"Mo-պ^DHew 2"+W=jW qXJ\>f!qGI,>QFbྩyQj(1AԄ(-H5ԡ]S-HO Lʀ:k㔁XϞt6690qv?@`'1{`ns$sYR="%D] PCqQ]ےʪ}dkؗi7 tsw'JMUCU|8׻"gRrC,(tq.8BNH/m9U"UVwi62PL#[(AD̓IB&)F!i$&AܡԖsQPB>!Djg/~~uU6 ^쟫wME"& qF4<begT3eBr0`IJRJص}ݔI)őYĂfBl 'Z{/CmDnu8ҡgXIG!Ƒlڪl1VBt ` ]Pyx/ӠCQN<|LՄKx`'4EFBbj; 6uѕ{CO!y=P߾Do<4<,]LVB:V]Ҹ:j_7!w)"uŦc(B9$`.HZ0 8PQdѤ'>tׯHc˶WlzKa4+5x@Ns\FK xRsdTSj@nkn|~qH!j_OX>CS !+p)\I,u$a |`4+zdd4[&=SkHIW=-P+oj3/jN *}՗P͞jb&HB)-d z(Q@ƺlx("8Jհ[8 %1 rE^ '`qWOnqWJ5/e:b=$Pr$<ԛTssw@KC3XC/zRsUX)0zٹݚ\ܧ|@<8,ػ GBFΝ$dp.#QZm1RR;_UˠɭH]McIG~Ghox*^ $`o;:4qXoaB%e@IWOKi'UGoґLvSvc)3YN97oժGw|‹!` Wz'OvnH߀+,O׬HR]\Owhѫ6mpCUtSc mV]uQ_:Ő}:=bBRu*YӺ qg"MA% -7_&UY.%"w(79tQPܔN*Q b>+DD"݉sK)YV>O-0]Yq-`#D Q[2g*ɷ~CDuV| Mo *V\CRY&4<9\;!8NKW< }djK h̐rHRXZI[xZ :^``׏K_e}N}5MYdf])twVqXjfO$unuAPY꾢t_5P/UIajcY03AK3`iGb)~$քctsiQ5ESk;ky)tzLk ]՜ Υ0dۖ=ׄb_q]0CKmz( @ۆ?,$! Ų>1n9~<ԧ\zYj=B=US?*҇f14}]ќɾԎ _<dÌ&+&1^(Y[=^5+7mD%98CT4*̬U1m1cπOdTvdϷuߔΞ|NR*RV1ptU ~ }&BF+OR଑IBL27( EL(Mz A贗]#ڤxSx|7TX/M2;%O%/sc yVQ|V8 _ݍXq bq> Jq?Fbl1lDpc̀~'endstream endobj 1060 0 obj << /Filter /FlateDecode /Length 1284 >> stream xYIo6WHcL74LƇE$*xt_RImX9X&)o˷A ٪{(VV 8 >lVo#P#}RH8&[(dPkZ,MIGi&̍rPeMi?6>mV_V(8uo"Dafn[#1"" (!8@Ʊǁ8Duz(IK}5P >% 6r~ܷAr~XreA6&P%_In3Q5?kx<0cQxiD1)G"ǏE,1jS|iK+S&Q:2[.RZZrsCxCRK2Sc&4dn MIjBl)]  ѳbkRG y18Ґ1u?#2Gٮ:fk!D6$y]oߓ19Mݘas`}g;ǜV3:T;*:[僂vebTWN9B􏉇hk Cd̏&7eTO#惐-zXLqzsXB#Œ(P&PJ.!B!!\M$x(fw*A~8:R#N*D^Lbs(Dl.,/!((ƸǸZC'sU;Gg(*ĴyPN;MkFI۽NJWW$]j*M5Tڣ`D]QSozL1ZknK¥nc*d;󩛱'xLv~JN 89A6N}/OR&MXaYmb:v1l1s /ToN`N/`t'bGJ"= gb|RrL/X5PDPo*߳&ߕ;x KJ {n(\s%ϕk%gƕ Cy4E_㶀L */1_Z_)A~ތ)vMfVMX<|Y oendstream endobj 1061 0 obj << /Filter /FlateDecode /Length 1046 >> stream xVK6rԟKf7U` 4@C랲=heګB}wٶ@p>ǾSL~wQG g:~(#R*y՜bMfK]MS,e,Hq*!Q0c%Dq%tAq=1C?WXL$"4#X i%VZǻ:2e $~.w L`ab#ǜbT)L6ji4QD9뷋Es1@Q?H*1SKz~\d z[}W#ۛd#p) s=! @ ^ ;6fӜ[/73ŧ>__ne~ <]` ̉BWh6qr5Š2dd :/wY{$M9&Ey_淕ӡo &^^cZ-4ඕ3ү c  z pFpwl1<}̝&XJ9Ŀ`/%K8ڦ`]&dgaE 2 {QqTcơKq;(ӀA QsfSy> stream xUM6OT3$94m =4[ʒ’l;HIS3G` eplt5!R35Mۄi*FN/ +1c#%Aeҧ 3 Kʅ"ec~׻ B+! 1wy1nkVنCP(mSFMw9"x\Cg3t]>h8Q̕թpEX7s,R([9mfq/w*`ϒ>u)~ñ@ 5'=Qy8]qzmqkM Grru_ZB9 T۾ i*Q>QkN98Tڪ9p2t 80oel[(#m1ƙa8>\] =0K9BMR5t4eg+nSuR VyQ1{z`4 2݆t3h&'DfkΕ=!5 U}9;kLJA` eWe9|P7F  D 1C`endstream endobj 1063 0 obj << /Filter /FlateDecode /Length 831 >> stream xVK6Oȉ*d78@ilS܃"K+{_Cz({83~7΀~6;qG1pJ0e}Bb3B uM'30t3!x,Yܝ4XA4X~DgXPu1 x,o|-Li,Y` 7}Q<- 1QSS&G͕օ V2F^uR-| ]s0EjaSMRUy@_\(A cK℠=ꘀL9p};Z=&,exy@e:!NDmAsdW3ym!&3t;|{ǯPh6O=!lrP#GU,,`B٥1sendstream endobj 1064 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /Subtype /Image /Width 480 /Length 1044 >> stream x  Z{Sl +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q?endstream endobj 1065 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 23523 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (K&thG!88? Չ 88=)]3: YxEee0NFqϾ;W]ꚉ Bp.G@-ϭ7zNksyu5@q_Jo_QM2mm}q{=^Yxǔʮ>wuK;Qԓ^||Y&xY[elsG1i)3k|xx\HpW'nhٕ:xЊmJK<1q"HJs9]xB:FcKm9U11(U/-尷XY,,Q<2G^ٮQeGjLH`1B=zl\Ueԍizz;H2#p@5RZlrV $0xI%swC0zӫS—ZZNc sמM-5)u9WZ}đ$jqF9s@Ep^"-I MB$$deM[dg3,1u 8?Cc|1|gfyҟ^S5ơ^x[Im(n< ]-֡+ ^YrO%рUWfh^?*+]tj{iҚdmNFEI % L4.gDcdh\<W ]absę` ZkWЦx(}p C<pH=(h]ZY[+8Bo6MlA_; cVm-t`F[e(űvW5}BFDڼKOT@x5nS-.כֿ̊|Ȋ q :( ( ( ( ( ( ( ( ( ( ( ( ( B4PF#F{>afW9䝣=Kh:n"ѶZLl=pTZTP=߅k+k9lPCk= G>gaZX-d ުGu~먢9_x: =2[}N($io~#,B$ w[ WZPy>C1Ed^xgI-5^LJ1:wR:mK1$(*zUWMk5Y.Ge)ƅki6S&7 ɞe ֕toyk`aa=y'4^@쿻l ?w_ӧj@ tYU{VkxwKmMOJ(EnkHʼn s㯵Q~c,R%tF3;V#ݹnQ@o-t It!O9ѿeͦmK&er5Ea^?C).lCqyoU>zVlWP[mP,n3٫P$6XplXn89MkYAckK.ESQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@w[Mqzdw1c{ +?{lUeBǷ/G=ТQo=6_*4({}Tc{ +?{lUeBǷ/G=ТQo=6_*4({}Tc{ +?{lUeBǷ/G=ТQo=6_*4({}Tc{ +?{lUeBǷ/G=ТQo=6_*4({}Tc{ +?{lUeBǷ/G=ТRNh#e䟩@ &կu6313#ۂ9ZMs)aqj gѕ Kq'urϴ]з>gcwa8[UŠ(((^j2$wIYU }<պ|A5xapE}7h7`/!䃃ߡ:+uLi[5rFF (P1*}1ۭ_ռ{vUt yg Q]2 N1Ja`-*&H*TYxi.qzח"HX-!+yADv?|FGvWڔ\[2j'76a+1+>pt}niΌ lLf`+9<QY^i6f;1#; Ӄ`峻yR5'!qܮh-sYwZsۙ8k^ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( l똭 l똠 k^^gFA^5LG2y&;yAplerFpr:{+(((()1Z()hQ@ F1)h( oȯ[5:ZgJmc?ڿ 1tp$+gL4gL4?;z++úݓFL{w9j*rqaETQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEV g\hV g\p~״k+˼uogxCo #פZjwr^e/$Y+߷cy )fK PIFۙpPF}Y:YEs7cplnca #_1ʐNg ԺXƐ_jF; mqF*y$=@-GjAu8d[O$-@X'8\g=Mi;[vF %tW%-ehFqg*r7g5 ZȬI8 c4T{/n@x2"xBIL}%ISMEđhƬ?SU1L V#Kn w3CU$sOҾҔG~_,Y,k7Hv{To:!*`=G'VokAEWŠ(((((((((((((((? [?+B? [?(2˴+?Oz%w35=6;+bxX^`( .M6PΩ ُqF1>W:]Y U{Ybj PEPEPTҬa[Kuz rDst(-<=P瑜9\1;0h>HQI3 cwe|֥ҕ+n"ƻ|6a.614 ;j_P<ڮ` EdAqBRbBjb`='V|if,7T9p63qGak|2YWQm_Hۢ?.?!?Q v? ¹~[mYv^"R̙|AZ(;IX((((((((((((((Ь'J $1(On;%QT5U,eH3:4\ ;:Ӧ-ӣR0Ce/\C.U쮍Ekv T2AAV(5rQ0y0jKw N䜮&0:Ҁ::+"}~{ Lh 8 r 㓊jx .9KtbySq( n!٢ ם)-I$I%, #j\j6 %ƫ-Y I,b3Ж1xӚբu2l/Fڅ@= w,FdxYE%U,PǝNFGhndsi{[yYJ%ap뎣]_@mv.c“_.I 9$y z+RYsw Z[̰"nfyY!$&;#K;Ǻi^#l|uPo 8zۢjP˙w{Pˬ˨"2>fK5Y&[„98"NB%(M F$`گUavL2pTh.."gۏ2_@o+l_ÎML.2Q._?ko/OՀQE (((((((((((((+?b+?b8%ƽ ;ʠA!RgwR vQ1;q\@!/Jg#bkmDuRHe?1qN Qgigiƞ8t=pG=q\2<7e%қo%=W)F>R@lע+&MyPH@CqWe>aV˷#jpfPU*9ִc6}#>Ms3Ӛע1m)CHYm[E>ˍ QHML o;{V[ 86(XߌnQU()nE$} 898qPo>.ciPYS]BMl$u@샰5|︈f0?)fx|7J/ğߺqg3٭9Z$4?Qh?Ȣ+Xy$H2{TSHI0C)!AHv݁feȹ zxTwWZU,HN'֢vz "0eaGB*,`R< q<]?kb6ijO$Woq{b@$B";A?jZ*%(‚(((((((((((? [?+B? [?(eeϘHzWUho2k>Qc%q WU]j1-Y[ IQYd.[4<#Kyfdh24enrO KEPQ,aŸQa%yV4Y\g 70'23\0">5V+z0c==y+EpȣX%$䟩$Ɵ@Q@Q@:Ο54Vmpk| I pxoL{ o!wߒ>5Q@bimPay<$u,Q}\Gb@qrwd*(jv+rn4d*d)qn@59xmOpM0Y,c\7G蘒=}>K8dDvbl୹V?$ nECcƥпk_vO`}QM^(&@퀸ƒӴ[}[uQ,w6uv(TwMҰR97GkK%L_a۰0;t bLyu{k#"1W/3{*-B YU-Ͱ".y:ߢNq RNJ3TjQ\r R8*OPEu#˺XW%}@` getJ(Qm;xzWKEf.Q<&]i>Q0:瞹1^>'u>'ōVQQ,QEQEQEQEQEQEQEQEQEQEQEQE1Z1@j WO\^tuoQX((((((((M AU"ʿ^>fQEXHM=֛V&FKETZ`%&7``QJ7`Ww HD6)*֙XN4lnc_?1?獯UsVT.·Cx-WGNmVcVYJܟZ V)S 7s+,(((((((((+?b+?b2ZkVo*AQ^C;(&-/,"Iԯ'ͷ?pȁ+r sZ]3*+C(Q1~}Ƨ;KIn`g}63L?Ki),s-ŬȍPYS}Q7 W{X -JF[0e9A }sr,4>s iB0'v#jk Y-!1y=C̨6*~qa`F~+%qG~|޼qjL(li$J;p"u[,CҪbO8\ \nGd,Il(aD |Uetkuӭ Ah h4;{[e2.?,4˩Egfу]=ǖq QE kh0Q#xM%v=隳G{ XDWwgP6lS= Y(Q‘ Pr=xB.~H]4ph0q8\m(5g\B]-)Nq3e#ⴷW("I:#?ZU"c_lSs M~5пZZ. 112lZJ<k6S@7;08 ӞN{z|<3(nuHaUh>#X ֊}MBCʧ Hkw4>c?P 19?Pzݵ"o26S+_s?Ny>ݻ=3Qek:2Mm ͼ-gY=5lF$B"%8^8ɬqܐHH7sf`BG POrM(`,Atя#:#(B!c!G@vMJpʑkvO9 ~k%#HcTvР 7'~ѻ&(YZ[hM4Pڠd,P?:&_QS;T.NN2}k?eAZG5QEQEQEQEQEQEQEQEQEQE1Z1@YVeHk834Z; (((((((((4пk_-ܫ^aEUӟ6(`9>*4¤c (cΌg͗kkjŃ[oJ<<š$WRnf,xӥc^Y hw_i(L\= }ACom'#gc *_ 9& Q^AaEPEPEPEPEPEPEPY-sY-s no散Xڅł\ĒbiY6[QqQRT[s3I Z;x pJчu# UGyoih`< X~b8 㞜Y;Hf Xt%T r((((-v}\Z52 r\`j:܏W:gopfʶM<}ܑh^"=9.YZh$2sa=RK㼅!@;JbScס'63HPCo s 0H;# &S/x^*VpmSmbqLH1.Ljۂ9xKΆ&25YW0dpyv9<.XGj+]zA?XK{Jab>{׹ >jZĊa;p>ZJ$ %CdubCR/ ȞS3O?> 2܉0yxl2<QiP.?Z]Bs*JV/[JqL~5k5tYgf3{9r~zdҵ6b,xPI>dC 2I;kRxrB 3 33:uS1@w?hh1*P>P֛uyꑉ<{GrNA DvJף yqqmnW+O3O5$aX2 ĞjZ_4FH1)Tl~l9bYFBGڽϹ=g,!4)'Sa=ҭX,)&Lbҳ"&w&;y9tYr&wbXGShJpRQ[̫! `%wg8:bIk,1Ȼՙi0;/=JUәfu#$,;WYSzgiف^Rha|Cv_.ztտ A5˾lm$2+/6:@f k6tYϟϛsEWϚQ@Q@Q@Q@Q@Q@Q@g@Vg@P,A,fQEXZmME; 5\ ~l(p#ֿƵ@Ǣ(@cӥjCeE/ieioCV/R[ZΤ^Oռ˹Q\}[.uTVZj (Q@Q@Q@Q@g@Vg@PHu?7Jۮi]j[ΰ.KGlܴ2iI-M%Uij k[-a;dX Ptړb7BVc!]? O $6:K%d f=mӚfgN׶t-Zr" Gjrwy՝uUy6"rz.OeQEYYu(c 2qTKZK,".@ h-E̎C9iPsk\&}˲KTm'9?djP:鷖[2B0$/9S̑o+{1I<7\ !6b:c#.}g%g 2Oט"<K398ڗXm&D[y6X2lGJϸwZ6AW VED<}L+JU#ZKQ>{^[,FE!V6$`5f[F(M6p{-kYpNьHN7gbĊTd#Z|jP5/"2ATvyhhn. ]u ЎHX]c[5q%N-R[;qp{5r/#fUthܣnF2;ǭbLY]ʒ$JAfh5B+s90f*$qaAp.5 oeHNQwwTWjzҮ&Ifk y$PA Ӏpjڮ ]R-m#QсyG';+;÷km&rc30f8$gpp{|jfF1^Yd֌s B-UHbլUZ9d La==ֹ+vYυHpsI=G81tt(n5O6+63g(ߦ?mO,%ē-q=K Jr\d54 5PXԜ PUFv;%֯oi+OdȒnLʯncm#=ykQ\)mlڝpH @I^G~+[DXHTB_N㌓BqO꾾̖eI_ A?jGowRwg ]iѢ~EJZ)7Eܯg,\ĺ*U]m`l+[]^'-lQEs((+?b+?b14s~KҺtBO-넿+ub³m>9RE<(C⴨9Hfy`T^#6RsSQEQEQEQE'Z)h ym9VS>8l- pB[bʼn$II?X cR@Q@Om.`)z;KxK`B2:zѢ;iV ]#_IMǑ_L[@'1yFΟw7=*:> AQ hq bb0d7~uxYHG Og=r[ѩR~+F`Gr*e~f.hV <152y?3Ge~f^R0I&4$vWL[;d[x&  O)EpF#5EQ+b5n22T Oդps8I 0b" "9 Qgl.~-ǛnӼ4yk_! ^XmY>[jj_CG+\o#]q^l,bI* '9} ._ F_]ȥUʃE¡3Un`eS$@^ifcdIQNO%V` v,»wzj[[K{8v@+}*j)YtX AU1pD  #ǭXp.%zTn#ssnD *ၵZע? WN@dYXV2>e<۠()#b:hV_9Y WXROzm,_$3ywbTX`ǰ?ꨮ>?Kmgn/c[ω/Iyc v"qK.67 &λ>@4W;sy=ڜcka2#`Up0g _  A;P߯tV$3Cp-<١ث6RGٜrQgi`'<t\;N͎nU4Ԭ"Th27U`HaE2]KˑworŐ~ ʿXKg᨝WlZtc?Ȳ2pۆWn" VLV+7Nu;vYţKcfֶdlJI\/ny94 7{ZbRrc;qQEQE7)0E :MN{5b)<.6UIjv+X7yq$NMXL%R ?i摔q x^1C#u*A9~o=kڋKFfdD$zgqQkEm$,%J0F8I= ԟzwӽ>54%Ң[;͔%3Ig82iisyN?/ΥM21ʁR 1c[B(e"6AH'`N2b?/Ε T*0TRG*-#%N2A?~tnMgD-̯*@"*+cn:zPcFFy.e+=^$?/Ε Vkf#GYxtqP[R.v>Aޛ_WmkN,WCk3쥥m^:iYV8匒 F$*O4/伹 ,R@b{Ъ:GΟ?qRVM}tȖe($2r6=OL'2hҭ-+3#'8gOӲɥz}}&)SIe&F@VQ1:F+J@+7gOzpwsA'fнR*5#%N2A'tB6?~t_$/G>S,M$̆I>Lv685~ps҅O__МP3uR";]uUa7+HKHr@:c{w4Vɧ 4;?Oֽ:N͵NL̓`"鞼h㷑XI#,`hb0{?h._;?O֋֫ydQFMEoXnPsRlXuMvv 9q36m*)Ie&F@VQ:q:~@Ty4E>57|<խve^{d:2Ky ݒO5WR7Өب4V)f'TV4" l똣sL:4FgGZ|,I _'JQ׼+'~a_QIҩXjZ`QryIr/QTVK߱M!hb26#g5v ( ( ( ( ( ( ( ((鱼r_RK.GQy*PEPݵ{9vcEQEG\5R=$U((鱼r_RK.GQy*QEUݵ{9vcEQEG\5R=$U(((%u*uWүQEQEQW)(J'f?Q@Q@umP%/#H2I*p^( JDmUkܱ{3Kx;F(O?s/|#?RP촞8 $5uĺnN.L*|+>v.,mg*qnTc ((((((( Zϛt KY2!£=iuI4 \Muz|`uW[so ݼȥ]dT#̍  بEDؒ:6=a젼Tq032+VoUI 4~((]sx` 똖?m|N2pJk7{?~c1өrmFV(c d`0~nH=+wSVmk{Y*HvՉ8+8GMg,8>#BľB;S@ts͚Ǖd :$y?Ztv֩ۢypg9${U4+->;EL-! =!,LH(FC9mP7\̍5e $d:q}QLX 8O'#|9ܨY-A R9]sJ'Vh&_w nF:P9c M$%;x'y fMlˍzԖ>&&& e#a Wt$ubD#[o,hl0s3rw%Fh|! shkH\%CDk g<2>}8`py۪v]&UI^Fڹ@<{@qO75V1-/L)Gǥv vs5&&(y q忷;I72G]C3Y9篵:Unn'V+'"-&1% 8vE73BCx2NWrǸ4ài] @< 3 z:JGml%Y*Cn$皖ZHc,YIYB˲p98>D(1hc2n }${ִ=y8+#+,X09$=Ҁ0%FV1]U`N6'ĞLo;--94haFT%1i2;A@TQEQEyci^^}y?WT̿e(O8(((((((((((((((((((((((((((( GuZG 82)Nz]գ9oCLSfGX]KZK!d4{6GXЭŶ,L^WĔ>ݦ,Q"ƪc{ެEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPendstream endobj 1066 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 50583 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (~FKkV PupJ0`89ʬ />U>|GadֺTV6#a#57wuEn'1eGd ̀=1@Eq^ MjNI7]>1ҫxĺ ky Df w`2h2mcSTvcm-%AaX&u8%|,g!do$PPʥf Ψ@fk̗Vu^[_/PіE m'ny83֥W.4xybY6ۯJ+ϴkw۴ hB#1MX|H-&^"W&'LvҀ;uLn`N2})x h?O3XO.vw# ߉umI'.`%M9l÷z}I!x`c'U叠WIc**A\ɓ@E5]YU+Ҹk7ڦWz}pԁ.qns}>+e;hՊ}}ZJ+<@5];4#t+ Usc_I-6im$}=ic*ǵuW(X=MK+C( ֓KF$zEܶougBA'$y1@MWVfU`JoP>SgH0D'9ck@x[GRЎEϘe{mzLš0y_81yٝl@5 6R7>:EE^'l6t甐Kg9qZP=SL "XI H#rҢҴ-?Gy, 1=5'O=֍{]Q76+%X`6=Iq*wRixs=xǵj@zLJm}BxreH8/ݥKdld!j_c[PUk[A>ω~gyϿNG*8-K\Gms\=Oբ93+w}uj]DUH9ZڟúU,֊Pek9^{b( E𖊶Mg2I* i\ts#گYi6Z}ͤ>TlmY}?A] ( ( ( ( ( ( ( ( ( ( ( +%UxJ>d6R8 @ǮEZOK$A0=([Mvkwg!Iv;wqjWkZΠQWH@ TFծNCzpj*JK_2=DDj7dFppz{֖PR'~Ig9ӑ\ %s,K).lpɂ{񵩉}BF U\hbX8N& :dR-4pAozٰQ\cu 6_#.q^s hiB5 2H?@K3 h\QgIǩN6tW;Z8{cO1^y?7NKYqۮP_ڋ#:+as>^.7 }?Zg0ؔ.\S&G]-+?{ЏzQ,Pc!!1}!Ad-(hu Ym _ss_bQ\}POW#YRٻioɌ? P\DOMF[@ FQ&Ql5_ފAԮ!m>u,WgvrrOMpEp^6{陉/@kK Q?Uz27 n \Eb)4on#t-叙uu:`0((((Re-cն}3hy1R~6-ǟ'J(#WԱ+. @mGbq z htWҬe*d%TʒIein,呺 =zZrȫ*=^jKRVWpP$Z"Ps\>\ KoYq'y{22Nsח(+nhjK$XabhTzҕ|zE%Y"T# OHG#BDox2GY&V[Vvc8; #57bd8 =k ]@E42e 1fz֍ѵ0p ZSzMNGR`!Tv!WHm)?nՙMm\ FA WמWL-U$a(}n`T0p]Z\ -7tiia,i m(#Q棇W\ΪTc-~#jjL2fB&0YNYtđdewdesP[\P#)MJF7l/$,J^0}ܺ::![<|!nyo&TP v U\G:{Ӟw3M |1qr3ӞB"7ݖ+0qNԅέeH9u=zoJF*I[acg$#9Vf3y9۷O^*z2cю*Wv VZYbxb˅sup+󡫧<_h0\iF۝s7?VC^FBFJ@Nx1b9G d|s/*@<Ȧ#(81q>* 4٠iv,'RI'F>*9JIraA璽 )j";CpоH. >95Dz8Q9Җ>VI6e8L#NGg9냏ϦhGHaea0@>"f[1 [ӁQūE"Bcv`~]%41}V^Nv5v-8CvgV1 9< djZbPd|?MtaP$b?4ɔY:,^rH%uvS;yK$c+T /gǫD@cbkc>"RYb`+a 6s'Nr.哢BLh}q ɻy۶߼+&=rݷJǸ+`3T 6[Q r/@#*מsҝp]oE=Dzt9ץKs%A }6ީC6)^ ˹@M3 rOAT$֚@ s/̽NI~f HHiBKԏ[m #$T=Y-fH>i=znSVF&E H /D4j7ٖ=㞊3SWkiXd ]H# a8Uf0IJ61{]Ȓ5+Iۏ~fX͘~޾DRO16>B[b8ٿ?WVR\H. l!:g#~hӀ1.P@^O֧EW0`Gy2z lZR; @muq 6G;wLWObWdL zO\H>?Od'Z2yv!7t5WPQEQEQEQEi|f(͋nDNcXNۍVmKu. 2,)<ӽe^X`9tkf$`{#lvVyUcB^qAZ)XdI 1,dxZygѣK\E$J呕O``nw7q̃Tg&8+%kɄys{r7gٿ¬ŧ$ FpsU=swu#C{s#%z_Ÿq,Е)!i aNq^'hN`9r~uJ}:no ۢvnAVW02ߺv`G9Jn&dBa~'^:A|Դo Qث9ϮysqXt,0,o#'ot˵N I ;iWJ0m^5Hd*w~f5-R0DyrzOYww*-JT_\b;v~͂AjYxYD (e''Wx``~>u\$vDFy^Nshm/#>~iiF7+>OORaha WgO|qVmnd>XD܀;#dІv9?y#WC?PZkB o~\ O1PBIv!C=gѡa#'$s`# 3~]zqeūߝ71ͼ {z}G'wq^lgYT ڄg1XjMMHV9NOFTJҟ(9v `F}|W m")bč@Frzb}}sklR6Yv l=Qce=M?я0 P.8V#18{P=@5ԗq | znޣWk".T $8j?fC ISN,y73^cd83ڪ^˪_0y !3F#L8H8̛#Dz>ϮyW_(a<*-*@>qZ./.ke(mUBIǥ"Eb38N1M:Kxdd.OH [.ms@`-ofI\0;`it_k+F` gjLXF2+{yձ">0yjWe ї`9,42iǧ[C*ʱecߞ{~B6C#T"bxM$"YF=O,8Ozlӽ+H6J)+gzQ+[݆,'#>!2J0OS׿ZǵX˛GR-C)ldOam6J6g<b"M\ַvݎ}1ǧ*gC#&\7dڹ^,_,Kau7ڌvb"/O^H1j-,'QF1OO[[EgaFy OԟZö.cs?,9@}qJ/o渒eF_d 7zApS[M"0]<8WOi+HQe ;WxZNHn q"*NגI' VEİ"s9U}BxkHKQOiJ6'yd_R~in f0 c ?ɨn/1Oޣד{U_ܙ-5gO$`\ ydbb2ss]c\Eq:rαdC,p' WglEFA^5L.]սK 4g+^iYޖPNWm,YZӼN({c¾YDE.$FW$N0+Ee{R}VsY#R@JjPEPEPEP-ʒ[겇"FgҤDH8ᕔpz޹b7RҢ #J#p6R=jvm!yᑶα:#q4wM(al>9-Nsjbx-/oÈ@ H9E4m㏲b?Pqu=^?+B.n^B'n2GIϧ5h-LYfbw>RWp0k2|OU]ONMywcF{]nyK}XnA1~|TRA~"p ]/ՒhV2ףExGn=jݛ 'h'<^5x-YHn rp3 iםYrOTCIjI"kEеy|/kמN4p_Zo wEd(;y:uXp,B-u( =-FV۬@d7 {som_!Y^hW'*hk$:jם\ŌZiEw(n9;sҮ[se0hNlۊVsjcpAy;ZM/c n֭Gق*4rpr8}OdA?/Rym?`'g 1?`zvVu(u)nD ^|'qpx㌊ɥp: g͜gO_c,:Y) )7%_d 6@'9 JKF$a0pAI>kRm2Iڙ-#s=z]@ACFͻ t5Hk+ ޳)0O1``=VE+\u+=1z^)ߟ-V`2w9 I`>[v+c1Iv;١{FTD2LIld=\4wnu!6j=L$S}`w>ʀx9ԟJɷEqJIq*#?7q߹%"Lo\W6;7!\3,oۧj~?5 b7q=dPN7SV zL#PBJ1wn6z}:yywJ#]FFr1ϩH͕cDXH 8ٴr9j&x)%ڦrN?1d)6C:6f=3[8XpYYybrxZ1iC-eiBF]QUbLFp#>$2R1Xg.&b'vďALM%[lu,WO<=);6mx[f`qֲ[' 2U PI đN{[S3(iđU1$0-ylF\K3Nu*rULHi%$p~ToU1+8<={BuNaSo~RDmRQ4⽍0ˆv:֬1x)6}d[̓D2#x϶*x١xbE-1ghPqR=+̕h-|O77>QS1}Ñ}=k*D$ģ@88$AZ<#pb?9-8żll,6r\Q80z~CEql$1֥儓&hbO'w׶ӏsjyog2 ȹa=h}AP#S',F@ҊK*/.*-3n;ܺ`aϯ"^A9H]I\#ڳY.dƬ0|}~Ytv_pLxw3?3U'/#_LLv8\=Ѵd]Y-%dCpI8x;ms )CiFZ#80`9?>r2#D| E9>oPHy#pp@b9trsrG|H.5Ų 4JPp64 c2Jg=qT.tyn-n~E|AϿNhnL}ƙ$vON,G*6*E;Cm }V*ؕe2oD g8=YUPJ^~1IFт&wraSSt{d8Cabb 1 Q38L#$iϖ݌g DIZkoٝg>=QW /ҲR.L==1V.纝%i|PA+cU/S(3"1 vQaҳ ^/)-R gi !!aZ%rCG^4@ C"i]t㿎@ *gFˁA!cqStڥZtwZXfb}r+e*ѻ[nP?PH#*QEQEQEaͭkƆǒU,JAzUv\!3ĄSR_yZ_,8bۑ6Әs$ڮbΉ7v \3!btJܩziҴS[E"GTn`tVWG f,p2p9d5lxrt6ZQ?s3ҮGJbFE"3ԀGნg]2.nx]|ǮJkjч%>|G??Z=gwk [g28zzSQ!p3!;M<61#o񌓏XƢ]"q>[ׯ@?5v!k$ |!mͩBD,FpC wm,a~x~Uf TeUu./8ǧ#񦛸 cm%O's5İ$"8=zU4|cЧӎ;tlaL$x-rOAm6&=`ō߸yӃHvhoaTH*NLc!s)珧'u̗N-!a5a$ܟ3Ȑ;UMB t,ǔNp@ 0Aq:d^$ ԟjQqޢIM%RۃѳҤ7}89;ycˠL,8\G={տQQcwS< ͶpabtN=5nPQ)9,*vVD63;իh.$ ˜ӡK ,LNӌ>*UFeipӒ^棏OQ yHv :tmCuB!Eefj$Ǯ% 0G#DG˒9iY23ĜgIԜEڴЇs81րj NЭ qo2Sf!@3+dA#L_;ku za&e$aV_I'I<%C_RfpʥHTwdv UԭtP=j0I+),Xgvx️UmFh]~Itu-hmG6iNrBAϮEr 6ϧqHdA@-Щ ˱b޿0IؓV p<HTԻZ$>`W$ӒINJjiqE/ )yYl*vsG9d=5vh]>S>? lRr3'$<FlzMB1 $gI44y|3<$c+8qLMi"Vm䜃=mo4;ervlg=ߕ6 ̋)ATql~TY%>yǏŅխ[8#?L BP29%UǮHZŧEm-R vPHeK;6ݲ G6?N*;궈;HB̡HNH? >1Nu'z>hhBA֚4[ spF}0*ebi5hx0"u <~L}`)1*+eɨoXg#,WHw[]Vڠ|ulmb7*[i8`q84$].L8ŕA\d3MIq~ы+@8?\9O jM#Ob5׭XfX[!];7*19|N=jMb54j_Cvќ} )BXzYkIpnDwpxj' )8klX$rHO*`}=+w 'DB?y ?U{JX㐘Q]&hp~IǧS[+fTP)PH#9D^qIFH+@9qzګH =sVفH E'Q.[QfUA'88M8ANrq1u84.P8è1Um1c e%H QHTi AVdV$#ps~M\D aQqH.ԐQ=R8#ݲ]-' 2 F5btqq%,H`X'pPNp^O@wnIo -㴊h;xєU"@*25D$gg88rfk)&@Ƕxusf!vlOF>`0$h!.5ƊuJ T>9^ClV |`r?`$ ~UT^Uֺ$r-hVBerN9TgYf!K9;0s:m$123wmf#ozVM3h}̫BxMdybw$@[Fk0p!p>|~OSvP/8<֑wȗ[m,-)p1;? QVX*X;z*(C:hcec  "A;[<%FHFXnPɅ8G)Itj(.@SA-n#;>Pq]6,P4 Wp1)UV$IR?#Vg; F~3j")E*9)#Fgi*CZ*-r@'қqI/1Eb@;NԎHʎB)I 0bBH9&6-L4U?.>G˜BMUQ$@,Wac ӛ1b)BTP zӺ#E8uW F)bsU'>\,LJf*r@}[ۺh#epPSuhVH0GҚ"Q& $u q׎*\@dLAN9$Z!#xˊT8BPU0/u `$!6;?f4 7B`d۴=)|= K/*[GT0׼+;APA\%i]u⿊̖EW(Š((((ORi,&QwW#KUw:uq~"9GJN+DDi]>hH> cQIs^m>݈.O $c4WEƌI2DOGA;Uۃ[jb#0oS-$ aEEc#qzSqB댈e?vFG:ޖ,L2 n^{hlET3+B>\ˮf{棍BϿ쏍I8zz+g>pCZs#.FcN|b?!`Gg# 3ޫNڡ>qI|d|clsfޡqj]T+@@Qxyn++jQ[tFJ䜝ӛC0aU8lq;.qS]Fmahc1|~ j-ֶp0-DEBGrJ8'x"@_dLf8 8]߆st[ ny+kh5G;|'LyqӃpXg`Í۰7qߎz%ՌwP423ldfz}Bjpd41<6oEɈɿ+ m\ *FFG\?Jͼwggw61j$ןL$f뵸'1R.Fp۳1ɨ3Hm0\ M\ү$y|(E[}Tm2QGI|8T8j u.c m69ϷNjQ!8`W6:NcfQW#>ڄmC} Mj;?&::Zvw ҳt݆V ifі L 3yDMOmK30 ˷p *V-`u'a.^JS)>g3ꅬ!Crq˿?iy*Xزk Ew&So`^;=D}p'v𮂢m3HI#$h.VU,:avc9o#[w?.{gn-U̞P +W\>ݸ;W9$wOw4;|0K߼]~kU֠ǩ6Mns&щJ\H>CF> #qUP6!J`jh=M'9_PFku!z'qn:IlP}܁OַZ!zycԚ[rOx'pI*;7l {ˆf;r2'15R¨ͯ3.9oSNL.Z}˴sWvpvӵx[m{N^̚2k͖J?h2|)8 @zv do5UQ$(A,w+fp1N̻7) W;x30 !UZiuoK2$ e=+7o(\넿+F̶9f [n(5%G[)dU odco .潚іQʎN9>,-/CD }FjE$Xep(gs<uXy#Q›"c\Œ ~}QEQEQTPGl QrwuIwѥ\m虡X>r.9)1ck%XY7Pxs&e,Rlag#둊-6A4K n%`W+cӯQH,Vl(x9=;mb?^RdpH'' AsInS>m4rD$LIrN@0J+ leVg+vǎI?omgUHHiU$q׷ qUcR!y012 @p 珼v=:Tv11H!7qvb#Ȅ",[;ondNSRH8c~ zqo淛}3=ֲTCx$ 109'p?wsW6Ќzt-$L]H.r`paSۓQV 'V` AZ9 [O"l4(]B.mHdfQFI<8Xtn呆[n7:[k{kpDqH!MpA8vB,D`9$F1ֲfzچ;** FێJG:Z& xvcvgqu+)Jy8ۀr8(]P1RѴd9oѣo#31U% ;pzuO.n..meBXޝ8^jV<&i wLg950IY 3O>u:"W3%xLF&H@TTu PiwR\,O`Us~cqqZݞ%e~St=}) :ӧR*sO'di% `uV]w6"Ǔ _Qzqΐ"\zښHȨs.TFr:p~VMN=6-:KeKgge?3 $sޒ "?26Bۂlǧ;8K:58$+g=1#O,.?{.>[Oh"@4Bzd~ SU.Va T'b9Y';lIy"x l(gJ0kC=R#+`f<}z@jc$,h '%~}eߵSDKWۍ[Y(vOv1mp\3 zsJyP䏓~6w;N֑vf\7H RTa9(tH۞ }m!1İ#U^cDnY5)B0([85kx؊ۉgrYd |U-'Ep*W AըUHȕlukEa")?UU8+0ڡ$nxӞ>נ}<߼U; )jB7Z 3L8P@-VRl#4Ib!qF,}\ $Vvьn7t냊̺Ԓfr@vp9izr41*6F⥱g=+$XQo0ˌD ωeq.c]5Qm$@99c'KFR~>| O_j皸ˇL#P^RUYIߴf I#vSUSH8k4e6AP85ngZ)A)$~>\<d; #+1c㢜~EXȋR hr~Q<L2D8ۏA6n`YFБU9QO E/'7cmNyRbFeS,%IRcO8zmƜ,K&198(&#be$*KEmgXbTI  3P$0dzd,2A9$LsJ5` ;g4z3ʋ @r>Y$>G' 9=a* 3Fy sҡ]"$xΘY+@\I<뙡y]#F`6sGZuhލ́nRA=+4ɱ!NF㑎 6-NBe-Xԑk%+GWlDSWrшLG{ԯtVcx.ȱdg#OSڤ-F*8 =o)3O@G`c`$yP2Kӎ髊\&$3ۀd89ϰׇ?c\`4^C|leh :T֑87)iY1GyT젚ܴ찉'R6H-f"ky34ާqR}V; KfyEEbHe >`F99ӑO=gyi-L"0@fxgu-%/e * #c*r9;AOkusHcfŞ 9sYeam;V d`Zak%&9o'9yQýY((jE1 A*}$jaWG՞G6S1XE)=?@R+[iK## 8Վ*.=8.}6I'  ʳ gԵ+(rH+\ PYY[XkB U=gh vdmʲ6D,J+.j[RVXlXG3-b2uMR}2BR_rys듚/8y~lg>^RT1* 8n$cڋMZF3DaIaF]0NUzM&N@ܤ9I$dfEas:F=1S.~(mI[g* >]=Pvgq۞FHң)bQ!;ȈÑڑ5MB[i\FNޣ9XKLdO̹8##| Ѝ`.>S~ }2#$z);װIdF0^K|Z/fS`7NLg%k3+2 ȻT0G?58}0m ϡ?k{pfj6,}9u #TLc8U->AWx}s"d;#'ޣ絸H6,p8䞼Ժ\,T.!;H'\UV{iw0!!p}Svb9EzH`p+}8vl ?!asqq֎s2)$}\.jQ =S1?T۴Q5[񬚋 ֢O0c~gc_N_=~ɋY<СdnAb1kbirTT>*~KH A9wS}9Y9wy'5_V?d92lI\[ˇ#& [a6 w"mkFXH {sޘ1$b5  ?\XڅI˲.0eYcROn #5bUhR9a$,3*׸jM"-Wcc&W%ay=3 3u+Y QP+&Gb!ܣW?d~!ع9Z VChDaFă~P0>$hB> w2lhXScA!A稦#eunN}y<}ϭWMBo:q6ؑQ 1csFO^NKtX8W>s"e,)9b=?cY|Pr1`g>*+47gcsdRc_s7ֹKk4y/n>e;[#<{~%ՕܲLo@ #pr85וjTd^Uw.yZlV:ؐ FXØLqԜtHZadʃ_Mq!t2O~x-YY_ˉCت+`IsxG`ZHJ?)('⳵ksp=~s>vz$-S!,GNZEmO/f7g#咤 9b 7i0O<{֘q,E:] b]M;<{B0rܩ8 =?3Vxd|nÜ}kWߑޭ-M2 &U@<xV!xJ4fv/s0T~wfo5sZ5ࣜ`'嵸k! <΋gi9ӵe-ٵX~nk+Bf$ ܛTmFGOozPc]0W G^Þ¹Ѿ֗gbczt?8$*{dNfGR\ߕ!:6e\+bGi2DJ\Hvl3lv$W.\t<.sűF7qYiowӻr0;d*c%Ǚm#F[z$75<ҡڨGk{$-#2>U3cŋwa7JѬmB b.bITE1F~Jд,-(jp:Xʑ yfti<q9 wu=Vuo)P:0dʲH-X-gTO@sӃWtk3i6L8Ҁ.QEQEQEUX}FkE˒XЯ?QVĖXIۀ 4iimUI@"-n/iTTרڭAVء@ XIKf# jɨOs섀7^zPΛ{aoy :Uq՚݆gm|T`0Pn ֬i5fD`(ZB;wڥ[?AޭTiHVˎ di&vv 8.p\9&d|ۥ*R"W 1#zPrE:1"QQ*pסF5xVe!#QѳϿFC",hBc}bkbb3&$#zԐD"0O}k5hcθYWls+\ -[M5 [`o0`s֑8fU;K`8Oҩh\.]٘FpF q:cTz\K0-#ڷv looM2LlwbHp> s})R` hAL`_Fc17s2H"OI[&!XeCh7r_Jbm&Ij:M;$ f }MZ^oo17XD;F߼H-$C}!xq CHFft(|m ۀ#:֖]N[c)۝F3Y.R (IadR6^WgcʈYYvְkQ-efi*R4rFU+&w}@ac܉Yl%QO9O皎E|i)7 Wq#cd_4_!xՑLnPܮzdvL kߝo늭o47C0HaNN d; T19eKSEUA ןξf^Ym&eƹ:7Zǝ|Tht7&M1}"g~Δc2$Xb[9{qDg֢i[x@}jirVAfh.ܐIԌz*:+DK$d\`c=1VKLv` zY=FEt+@NqR@QG3F8y$v?5*[Dk1n?*6ed[pw8$x5G15Q H z93*+nr}JtQDERsðaONTe0ҁV"X⑑mpyCG) vQep<Zq*m}rr<֛byB=݉Jri&!ec#u;&ԡ+Y R`t{z&`!ۂ'c=jmDvH<ڀH(}` {J#{ #FC!Tc'+ "tWuͧYv$cf \ ,E=O?SU/_@MZ-qzޤP;Sp Ub8ʐq8QClHYvwnS}ݡ1r$1syMyMnX.. ,O#8MA G#ML cio $Z}}[;žu8bf0HTC;v?XY.1J[ 9<>1NჅ ߌ4mKfWW$m} #i`v B8ZoUɽٰI$O^O=k!MZd8Yve08|S/5Ȼ$- *3zvA$ Ry1`ڥGrj!I`z= 0갬{9F.P/'`{f:LJl6imPG6O9xovZ6"̲ \3wkxpB> ʓHi`iLqSZt+ UDЭλg\fi[u2KYyeh[]F[7)0=ų[UVfy#E@J>*)#t!i2qs,lCc^6@cگF8=9ft{jBծa,2!2 ֬W'yi j]Yy7Qp^UYgcb(''mPEPEPXzg͔v$,ebOOVUu.R, # :?|]z,q9s]$l0O =εv,Rj1U oQ ꌚEDffBŋ 䞇:P^Ϧh)dE_1#~O8y/fVDӮQ1?TVX۬ɲ5$ĒrI'I$jzM̏*xk888wf``#oX }4x. [36hԎ8*;tgToc-G̼P)*JA}Ң՝Dx;ʸN3.Q7d:S!2p ~uٯrKe$쑣.Č0SI֙&:3 QB*}VI$بc?, 6!'w# #^+I;p69'mibq|+8#V@@;@VHn4ylw㎿,zyGu]Ų$1?ZA1'h=)`ʎ(%֤$k& $dg;ҴZyPDHc+82)ElX#xl}~p4!ˈr[h=*F3gŮ'1n0{8#܈c2B*$H*$c 0*X^ bE{ J*F9*TP1a:3"r’K @9>f@*>*>oX;KNA283 E滒ث| q<~Ț>ΘYSΊ4|WI%wb076ŽOǓVe{Ђ I@nNFg^=jI.ۂugF$z'Fv${rȨ#BjU Msr>= `UѿJYPBED%lLѨƀs_^׵F<ԽDeDԉH ,?u5 J!Qp/+'5QSFG6XJÎUP(}*O4q$N#PAߌS=EW]HuPwsӧlևOS%6E'Ү) >%#~\I.T|+1 |ֹs{½,$9c9+zRY<|Pʺuxك.s~_Ϯ+JFo M# #l2[Ӷ4F0RϪ4qG*D+.Fy@Cj6r4jr:֑HaBu:s-4Co3]Ul~'&yKo,F [/nrF\!~QҜ -W;N_sTd*>>ޢT< :HCiQ}qWN s9mr$ ui%y< 3QE&I-ǹJ~:|8i0 h=sEquER@qҹF|̳YyTK!_$l}~]5<}<9# 2d{ l0&Ӝ''xbpF7ֲi/RZʚ{Kz{U)5Xp$GHBF* <⣒b"p}~ԵV2;͜`'Sgvb}aB`*;zS; ;/)*4_/J(_aIKEQQEQEQEW;] T:[4L@^1 w/g*[오'c uSECifc>lv5 6pxNڥcfW$$z 7Xo ^Eu M3erq$peN@9<g_nr{vTQ2E"Ebߡ.g}@8#pAAb#Kk/hϔ2߻<3WoSU6S;AQ@qՍo8&=~BC:c%Jf* 8Nu#,M# }88;.rFi>GwLW]Z2q)&H8];n'jHdՉ̋jc S9cnyq-qF\u"S%|0K9Mqo&۔L c0pIs7NzY#nKu@+_s6Qߘ=yϥ-!ZXb5ީn~l'$p*&p#ޑvљodqLK8?zV&C`?.:YYuZ מ"Q1`}PFZ20H;֜%]=,6~8ۺõkyb2zown])Y8rQ *㓳>3҈޺i$NJX.9\Ҧ7$ܞIJw:ೝnۻ8Iz3HqpNsg kE8h.s\8oyɁ`}Bڙ3}b6~~kX\B|N7BTnj&Դ ̣q®GL}ӵ+)V 9zg;)L1ľ6ǦMŀc2ߡo,N8ҳ: w8l>\."ӑTee rj%q̷Ov¦] oOތ'?7JgR{Ỵ18W,a-g'x8q^{kB#8d9c76Cy+U)ɿI6̓ >bn᝿]N붖fEm3?Lwh?ڭ[ N@g9UOI3.?Nt%] Fno+.d-8ߏIw%LmH˜8O|)4MZ[S$ aP<h}8^|2qe5[x#L~9~ hym':~5UE(u8vWJ WہJ!MDO+I0[69$=3Âr^ҜD|3X1vC?;FOtٜi-UPϷ߅Ӷx1q >,ݹ`׹]3O(IQ\?sPoՍI1 r\ρ]2)8T+15 .H4K#^Cnӯ^:sZ N1E85[hPOc'M9넿+BHuV[6Ps0Z\9a-t2g?Mja'EgZ6'a)дa`vRGYZ y`1a g9\bV~ [;ec6=}+((iS1ky\Ӧ1HdF\>I?>:c5;_٬28=6\gL񞔫{ 4$$ nnڍD^X&wJܦ ,K dT[b!"ObxďzJP]i ۞9ơnmC厧kdqN~qte*#}pAO$ يZED&[ UDٗ>QPH-qԜU@d!I~޴C1|3L%`zg\ O&KF'{ujõXL@*Ðpr1mR8$1<`Ӧ:=iySf@2Yһx q?k eQa|Jd+^Df쁆33q4I@*x/=9I8 ]U3n~};?Ո_ΖHcO5e񕐿9L!Z9ϔq ;R Rc3 i-zc9q.sXΟDkkX|qż#%H<=jΏ'{^/$F #o캕)2LѰqI9}jܾh6pr19QW#&L7/,*` 18'9IrohݤqEZݖ%éǠg"wk-ЍAB8##uI\=&_>9Čn!ˌcqL| l}l^[i̸A".SƜVm`|^zfMċf%H8Nֻ[q;G2Pc#=jQfLh܇1姷399#[즶-"$DN[?T1iO" 2<^O]o4)9'=Vhir4$HBCĂc1)ܢ"T1Vkjө OV vL\ldK)^@G\ax~u"B4jϧC s%.|əgtʼvV'#χ g\'_8yzr>Vҏuo/J > 4ub³m>9RE<(C⴨9Hfy`T^#6RsSQEQEQE=&}M 63.ؑp1k"Q}?XnŌ4d4gVSMjDT —Er[4v lyVaeXnz5sOџBc 㐸@5}-ޡ%[(#k@p9>8aՒyX]$ Yp2~qJFMEo3Κi7sn~ t;G,˸9nI'szTWA%l4gwOz DNUf𤃟NGx 82m0vw0'8:T#MAVO<@?*YF G1'!r:zUI5tK+!M%C~=j]cz &FIg-uO؋v[(T+'玾泡ay'::"0|ĝj Ɉe@Ar2;~z\PmU(Rwp h1DbM8J\mN: )E`- @3p@n7/p@N7A5'-ivIIF߸g1Ihė3|3y**}Mg4D x$6#90kKщi}Ġ'v1ձy2qۯnrfa;3TqvI/̲nrŕ`xmur 20%^(1U?2h0y v*`uϵ]~E՟G+y's qo_Fq{qI6 }4,]|J c^Te0eBsaD--1)Z8(ܲ2I,;Uv 隆N~nXv1n7t냊wioZ>À_hBz:dټsins׊͛GkO0p:}ZO찾<,r,p8'֧Xw%~e9 p?w99_.PBsJ.72PbRЬl(P_T.x4y&p6$9=d{r8rrhbt><߰a7ʯ>}GVJ,oUnP1A&,HcKSzZ?nDUYs㏺}{sK>E t.7|-ӠϩK`9MwIn`H #L$SKhlrm?tx^뻛S;71G$O֯(9u8sgcԇJ"wXfXZ3"A(:b +D۷5aDG WpHqyfiĿjlnd+ñ$s-{Co, $ۿn#)NxT )97m'#>ҟ);\ =fŜW $ Aeبt:e%gL`/Ab ,Ow ȅ!rV=zH=l?,wߜ1CZCg%r.Kr^W|= K?+W* {6he 9ӽQ,p6vWl*` @1F<!NƱ1]N9IꕆϦjcN;ⵄf4 qKc$wniQnggsvbYMY Ƚפ_n%VGٞ? Fܥԏf_ 8?\V՝]A=O+/.>sꈦ(2qqڧkԻ"Uebry~ʄuEl̦SfV_8HcE@(=qX3=nP:+e8 TPw &I ^ b;_`Xv6K/0z+EMhp>? ̟SM>9#(oga;߳?ǴsQDz鴝=+HF8 #vKSAm!TFc cUItdE;H%P}qP>tcٴbvP隯sj[ 1Ghpv.XuZc+2mH ?o-r~e ͼGb\t6xC!n6[rǧ9#\^GuW ma)s 6*llNui#Qu֕oy(ׂ:{}nd >U^XmB'ݹ=Bm>yXU 'p(JH% v# •@03?U[8 $0 Pn 06@2'kvȪP:toA2 7=bWZ4đ#@9ǭ/ܭEv8Qcp  Wt ,NDl4jrX& >iE9HbRWa!}>+!5@3"S哷qgT1Uo .!fO,'yto6ѠD5QG֭Yb#%"O0~}^}띓R,ф)D,W` sQSqI^vՙE14&qGF#loݏ}=Aә1ۼ=3{ۡm1%pp:gE2TxlKc2`8hx<ǠRhpH׎tpFl~]lA6@$דuޭ}aT`lGʹd)2H#Ԯ^oTW>U fRI۳!G{SSODMopr?S3H+&ؤtcvs=zԗiXA|JcX2ܟݎj׷@X TS ~bXx$Ƣy%;Y;J LrO޶MX CFE +;r;aZ(L2Ln><|\G/<Ҳm$cӞ+X$* 3Gy?{k:U&F,dtڸv¾H>n9j·s8FU7`6ڵBb;|ߐqJ8/±1׳ xYK6ޣkdaL$)+ :ּrvBo8Eu(2bS(>Qӊ{yd"wy1~47{]ѐݻk)F#6PDFrg1ʯxw@v_W)6qo"H#ipdžʁ<(N}됮ZiaG.tV xa]p&83j\gN|C{һz㿑FKUYWj8?;M g-Zۅ)%rvׁ +C.J ii5Jʁr8cǯIEQEQEUyfxYd1ꭎǎXwwhjp& zNZ/ PU6"@^?xb4)n,?mY 2}Zht {KXGXg=fMa[Yϫ\7w7(c;1  8Z _d1pGcf-exi M) 7y$2Ř.x7rJ‡"0tWuVmǔ*۠_v2<Ө-V\Dc O˹OpWl_7S+"e/^ 9XG1PjVژռw{yԅڰ粽{02woٓvx4@Yʒ;.n |`7`YY{sȞK ȫMWP}%ƛxۼ@!'<vD\dk?~~{e{5ԲF]TG:mCvZRd%Nd<1?Q4;Cr8^(H\`IϵW[5 LKUު>LzCo7RqY\~b.qgcQzsQAc K2N6czu!67Ќ!F!XRY~hԖ9䁏aEaz#dM.|;00:MI*6 V5ŝ$jVM\nA=)_ۀb J8'Ӛoo~seq)hE2ex`NGӁ֦5&wHܧ @R{L \ҵ/- '%zM8Ctq#7g?JÌⵋm3Ze֫l,/V óȆU"?0nxW)l.'&Ffo߽nēΟ8G޳v,}%'899~5 ]@]pqϯ);yn{l囖|`DZ zMdF$-7%G)<ǹ53G{z??Ӽ; s:{{I?$e=j:u+lwsbjJ2ْI"}ϗǜ>ØQNsM R6;/㝌3 ޵8F yj3W=yow5ʺ6! A@$djmkvͱGgl|y46V?c\rk&#Ư*A$rzv#+l눮 GBXOW?y?Wy\4? ):U+ ^Pb82_) n_qZ*I{6?#m FBsEPEPUcvK.HebGBGZ?X^\ic'k;nlr[X+cuXgΠag 8#Dڲʢ1:[R9 gj[M=*ϖ[(8$YV1]çLJiHSk1I9 :-F.a )V*J?B594<9"یQ% zOZq\ʎ]+4@/n39u"rnc%#,SnqtI838j9?>Ek\mm9 ?(=?:fMyT2R 85}o#i 2Td# q#>4v>i?'lV:hΎVuܐz#)"WLѪ\Fi`0;}1@1U[veBv.d77Mۃ_MP+(9F"4&W9lBT_l]BN1׮jq*FAݒ1Z 0cxn?bKV,2pq(P+ND4!mvt:Ne'S$?\\c-GqѬAHAb?RklTmn(\Q *O#WOX*K[=:`0WkX}45GZ_RXC-r w[/y=z vqڢ{ҽ _2~F~9i=p2I$u?kI t5M\UW#]M}Ռ ' u]"XU9ʨvQ@Q@Q@fk2Z\in|2rq ?LMiV^. (f0`/{ױ]^hv!]NHl')3VZ'\Ko2@i N'cZZ:tw?cjLvϠfxqm@,v6dI-dI"BI9_Z^˨ws,Į3}ƭJ\^"G;hZZhUr4%v'>_?kV+ S8Aj1I"@!B䎜~? i_HWCq+H$*ArAcN*XlRbvv0k҄Ҋ^%BcHs Jk Cc31SHXM‚2xI4-sP9z\3׊9tvvG 2y9RjLIs}*j=F!T\ $}sT EHO¹+n@Jj۠5'`ʘZmxڸMe@r0;FN{3VcXYw⧂}=U7Xį Rss=y[qnuKRjb0d69Tsg5GwW.| c~Un4{!!Ugsx<ՓyY~è(Hu2ʛ n  ס u!"YcUy;>CcF:}3Y}lS?ά,s14t7Qq ?n :+2-l[̑*ʊA`9Mh")v y0AQI>|~Qm>22ySitlm5A}+zd{Tm+n\}VW* _,Pc9JPGn  rz!3 ;R._7;;r9$ޘ؋Zj~mU?"ҦjۢbR 88HORVV1ʌd?S͈Xi X\@;yئ-5I V?d`Jc2 ?SEλ辍D;Yo^ޡ:$`I8b;=硪5,n HUGsi5IvD%}VsII"]h/!& W"*q>ϯzIqc}B[`Ir$z Ao$7l)X P5՗ښl0縱m TQiQu'F[?wd~Ф9`zC5{y>#@qU{$) KH}ޝ=ޤg!c1d(wYܞ3x?*۝wB&k&}y׎3U/58/1B;!iIS]VՋF>r nI=98峟Ƣ,8^j)6]7mUAO"y rNxXu-4Vb~7p>akB3m/Z&# ǷnrC^OO^Syr/YKOA gP24r$ X`W6gUTQaX|#'J{ҽ __2~AEVQEQEQEQEQEQEOGKm* lĪ9Q@x$Ӧ#gW()A$Z{aS6r(PHt"zi P=6 >bp ZA( pʻdFP 7UKTHs ㅕXEN SW1ƒ9N#W("jws290=Hݟ*U=* -]%]n'p3V`"*WU4b]I$F Ơ uORIŷ\#8W()NIo*3gfʮQESHu8t9<\jjP=" -bvȠg8ѬA%Εw+I"eQdW(A$Zsa.="a(kW}6ꁳ3~Q@S/L-tڣ?PTh$,`vhES`ˉw7c8H( wPI&e*R"zep*P8u{H"El*?( zT[H78 #0?r(<)ϝi2p,:BwVx1Ng\U*!Uc_u-k./$U` k7BƲd1y_sS+vF<ɍ cOz}Q@Q@Q@Q@Q@!4P!jEz&1kj񍸛Gw2J'F؏c~=:Vȷ\51;(F(Trzǽ,G}R8Dc z[xfhXmPJ61pO>Z 6;}&-:%8X_}O^kIm-.me'pA2I=:_Tt}2(ӭ&,i$ 33@i-kmq/,Q3 { Q[[iAm pƒ jWJ1J+Xu>(|,~QM}EԾ\'G_Vu 0ARCpDCj@ssAmc^epi'3#%N08;֫\i+E2!X{C4Zyvv*gk (n>bꮌ+ zN9<4.KfN6{ 9|[n$*7vE|+.C֬P\t4-P[KGul2xԂ򮊣U(:F{Zˆ ;_gfZPw1;s'Vc>9M:.9-:q5][AyAu sz9P2~A⡲,4,mO¨C@M44$TUU @:2Im$[nmnad9 %MSPգ;*vV8 ۨᵅa8b_U9ZOv KwrsXy dq`H+w%Lju&n'I*p@'ַ4d;nv3"eiDj$pX 23@(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((endstream endobj 1067 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 20858 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ~n5mAp-6R|<3]qz5-CV\)sϔa=([qjtK%ec{oo'3k;ʒ08=;z5Q$pAgowY؂.1#m!٤/c,g=fb9`yĚl|Ck-K$P( wtr-VkײL\\c9) HeiP3Pįh߻m[h좊KmfF#3m=GQյTX ; a.+|`9[_ VynS\[]̰Lx =O4#FiXI̯qu?d1GpQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQTSomsuQ>5خ1_oҀ,_Y71DO@?Aޠ؁w7[>?2l-lkx'*S՚o_cG }EhQ@o/3k#GV*Յ żr0~ecʃX]?ERc_̍muRSч]((((((((((uRx#kgʏ}Qwwэ%Gx~fi"zp FQ7w*1Ir@5z?f2z-=MM, O,4RǠSS]H:)`ǜ\Fbq*WM qq|"un /.Ne1+z݋u׭zZ֓m :d[_WM\<ӍG$Okiy\)B8$}GjU-o0n-㑇F+/V67FTaTU+]F9TzcAX:SFA w3"UCJ+6GΌ K G֕QEQEQEQEQEQEQEQE2SIm܁=>AӮp{FTz >u=UHcX@*=(""'''>榬^YmᙠUǖ Rnndzouu}[F &@&ՒR3A`ɦvneb/:ݖMp0~e=ⰼGOwq&4%|z07p1ot&ehQ@(o28!xeK>7;usŒp{\Z ޱI֟엲ib;i;s?\դwHC־aJ/m|/iqYy&"$^ U>=B+dG8q:_yslnr3V=6*WH,a(ؘ00@P;_(΃/*r;==AR;R r+'}Wh}h+)b2t#*IޮO w3"UCԁ%e#\ gFJ%x~kJ ( ( ( ( ( ( ( ]KRy95jZS/@,-Ÿ䴒jRl J6FA^1{}*Z)J={vs7(VA4˞6g'nn/V{ -H]\HcF+^M =c aq؀TSHYH6񽴎!#;hi,ib2T` ǞYy9-yIfMu5;` ފ-1Su GLޒcÐ $ aTF47,cYsʣNx 9-DRχp>=;j=6Pv#jbй,7Me{F^8lD@EA’9$[:$I%X851ygx!`X#-!smM+ {E5$}H4,eX9O"9EفǻdAt?E&to-VG])*u~}=Ttss&z{HE| d/jzk MA POYPs+!tTEQ<Rרk-⸉dj}Gj((((((WFԼjf!"CNx Zֹ;8 Aeln.-$($҅ê͸ǯ4SZ}۸bC*IN;ߓVVHn aRv'sAVޫEIu7!pv' ܒrϥ\ NTs` {c֔3FjExX, ?uZKUxO:ѻU2)sE~$Q28>>}2ϥd]:_kqi>H_?^*SeZE`-tI=ؓOzUuV*&f% ʇdj%e*KGd_zJ"-屏v 8lM:Z%RRT{bVpDֈGz+4QEQEQEQEQEQEQEmrzJgBիLW 4eCpJ(G Lw0ݞ~:p 8` }XgyJꪨdP0sY~n'`ehY.K<+h?z@XIA!E@86wYחcXކA2YMR0s8-g eԋB%%ʴ6y92Ej[n?a7# Xv,;z.tsmX++~qT. ʒ$xVlrHn2L']%4V_RѺ~eMTؑƗ]̝דEs2fe9dc\Bq Vc8ز9cV=dcnN~@z魯:Z3F_j$C _40GvZ.-˧yA ^ nu ioSb4>}Nj.{xK^I-"= ܒ:dhgirGtw.WB9 p:>m܁}Q?6sC4&C:״M\F罣4@pFkGGwa4r:1a}`N`y<ü{yյbʃxp7}x>Z6un 61_;%|͚L^[wl-Az2~Q ?KP̀[}3nR%$ 0A9YF}v>+*c NGi~JH0b*GbG=sPBiwPܺa)O_q\04츕^3:!\gt+gw{XC-NzzsR^-ƣlīB~SӮ q:8R)YgRLm;Xr2:d ҌK?ĥx u24Q9D?ݷ*7imBW}x[2,SryQ' ~V8jJd$ё\0#kt>Ɯ @9VMpZe:>[5 beoH sH`IR(T#5xif'QK6 Nq8.yYIiJA7r0DG*NI۫@Zpt??ZZO2],n˼7{OzӳVɭ5Clmm2nN\8y3yQXK;q~~8=+盶1i̡^< FCP%G*4m#\(#$ps\nhӾl8'eiTyK3ӶtAV5vF#1K>Bnw r)sZ:ݪ4GEy,m1J鶊zP㢬*P0(((((( үu08MKhaaТҤt##t`AZ}F/Ph2NGIL:2+mnӔ }|ffU$YYJf>?ktFBE#*L`wc23"k/;y/4Λo EP_{ve׳+&E'}$K>vuY]Q~|[b`wyRK*ղe$p p[>#ξ)E<@>ߎG1֨8s|U\yAǯwz1xM0ʛ[ ;y-c4DP83ɸ~H+r<"1DؼK뎤r9jDΓFcJSլ<xcm aij =jMumji.Dnu=sTV-ְ8.}&s4mB'CJp;y 㞸[TȓˍPm  +Wqf6*׆m_0[+=lORD89{=yNXK" +)!AHBQ@Q@Q@Q@Q@Q@gi<'֍fARҨ,w8"=HbpJ+x<~͢7\fxdd+`$ ]88gD ?RiԀk};@lVxE8`rۆyS$ޭ"C68&}ɮɢdTB#9}= :MݛOIe-vA#6>SzfXmꚭ=1=YȚ}֪`*, }7z֥::zNu0Pq*෺Ԓ(}t@K)I<zɛOTA :LqݧwJϒO>_Zv:V6:=EQu[+wO[7G\eYBm\.q*ƹl? avʸϥrJrV]- 4R**ACm zc֗Qo3tNJF YWT-.pK}iQEQEQEQEQEQEQEVvCy|=hn4'M  *-rȫsi+0+Ԍޚ.x!/-q \ݵE 'e3^_W8Qgv;y7 e #Q\^VN(moQYqGy&m˼|rw~N)I}QTYK"Dq4SC B3<ЌWCr4F(tۜ)#zpEgM.at7$beK# PqL5gd!u41Lؤ%*~1sWwϹ/E qA-Ԏѿ-.;vI乻7 PW jPia֠%ݡS,bqa`rO# {v7o<$VyN$HTT0?5xzK{6#g@M̬ rz]X4k6# ``< f>->-Lq$xON*b嚊UB˜OLr8ȧsg&4+m۫*>֚}gj?y?N_ց8=+;JJ}E\%IoҢ(((((((eWR+ zKEfsfI 7[98^LZҪiyFbtr/ލB?=* Ci|pGc m1xiFzCu4#P@>pHFzc͍?ڜ3ne]ۃ.r}}xES :m4k,>U}hiSvxYv q)1(!** r'F_̐ (o z-BEZXIx'q;a_6?A 7p#\ ;H tV%P@  DRKI#}cԟV)QEQEQEQEQEQEQER2V=3tk9f$OiUk4#1GS9Fá瞕 !U8Sʿ\ l6 t)rOHAS65ݖ*>44ڎ쩻~^ZvbZI;jH((((((((Y{Iʝpޠ5bw:~hKא?Q8V2  $l2 4.i-&cx7R*@}raoҗJd]^'q6JТ}/^iLt˶m?V@ɦYXQg8?5}3Νʳ\4sȒsi_~[h =nd^OzOƮYCg Nf9goR{(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((WZE)6|ݏE_Ww|] RT~/@n,'wPl@a-Ty5qՕyojgj7\b] >l"( 5R#GvZ9tb2QUoZscteA,.a?ҢZ1/F|?zEPEPEPEPEPEPEPEPEPEPERR)M3G>z(_bƇXZ Juig=zbS l٭㌞}OSVh?Q}U/n{gEWٮb>XV7ãz«}ӛ*atKwPJQi~253ICOFOv ( ( ( ( ( ( ( ( ( {u)Vn@b}[8uX@#@ Ԫp@=R:*q,qhUJe6pIIO D NpO\vyXגp) m ${ EVfU:cSI~p'A7`8RQEj`өw(;NF{`rOCyp9|9 _>Ǯu M!xfE)# Vmer,.m+*((((((((+-eԦ 1[e{}n\׎-a7R@}H{FƱāUUzP--aEoEOrOrOR}MEB7N7@GUpO\vyXגp) m ${ EVfU:cSI~p'A7`8RQEj`өw(;NF{`rOCyp9|9 _>Ǯu M!xfE)# Vmer,.m+*(((((((*tm-Kơb$?>ժkcN?룏X[+Uv夐vR, ;c;ZҤOgoL3G0kůh(,Qw墠W2A=AxCIJc(݃3փ#wNILdmaN[BGiiEG `֦pkgM:6~ZF d/z ."9``dda[V!/ q)H+|A-0uhCf%ճs~q3@Lv[Zr:ȁу+ AFH8`4%#q2?=P=$4r=)4yj:IIS8#튵YZ qg'?@hEQEQEQEQEQEQEVe[l Bg׃@k o5%PJdPz78Lm S]QAyx#c`iq3s^5Cf׏ZCgz}}\!)˖*/cJ`G$rpy>k~&i"G. ATA\fA%ܽ&wir1``WarJ_-U]KdI#(ʭ `*%ŏz:,<}+y"F åj[x |׾1^LUSGW-ču`qt a7m-35 V1͌#G=!(nbe%>scPG`p[+κV׏w4nC-H휟ò##kCZwkk2KA7:W$]p19a99꾯^E54設da+~b((((((?ͮO[^lpZ{)Q8ٿ!fLt_EZ]֖`Z'P1 O HdIHbPxNd[;Yng|́y8<⺽b;2*ɽ,DdI;3k,s=sub5ԓ4V)Qg/u{lgq,gD9$QPpܗ8u0Ȃ0}鑞=~nje.SWDZ\W?N$;eįBQ=p:CO Gq\u 1YDЛ;Y.qēBpH'=3ʊW q|NUue s^"m59({|ǓRd_~5e 1e4%vg8E9=bt]]+v} 0OkN?wb0T8-ޕXy)ybmOJ򓓴v@8J##r:̒g Ux\ aX}NN:iW~_M&*+YLĴcn:ViY[x.p{ks4Ms181Yi+6uym 8%Q 3Vs b qAT 4EN^O^b4{S3(Hm1J鶊zP㢬*P0EPEPEPEPEPEPMYKiW:㦥`ְQOR: 0 - F#?4nu]'#c֤LH6CiIPX >s~"m0M:m`GPOTBm\\Z?OV_k ֒$6JΚMż17}qs]̮&1)2,=K"_yk#<n@n}$ERgnNd?-oȪVq˲9CG-a,{V 8WszWyZۣGyD 1<7 ԑdFAFKM뭣2Cqbw \:R:UZZ9`:e!wE֢n2)xΆKhSOr#v@xqK&YJad>LEs8>f]ŪخkCz<,@(y>OԚ۬O ;xp9l*Uw8PqjϨ b qAT 4EN^O^b4{S3(HbmEYU T`KH((((((^_ZO>1Y,j#Ô62$$of-`I'-^MHtYZExmLQC\FG7y>>/Vq?_?fQvɱ 4QE61Yx8q5-gw=6QG-vjQAӽ5 itGB`ǧ.9'6L!a%l*//+{ܚ?6$0Ai(Npzq{eW7jyjdW*.`략׆K-ėPG݅z?`wyy0q{OTS_r~ΠlK5($窯?A\ǎ-?tX~fWKTQ$,j1$ OLݏT ,7}3\/Oj?JB{F]U9Ǖ:1GbusgӤ;E'Qۯ_/7-MU׸97^]:St$|z:u$:dbH@̥aϖBpO32vJ?F٧+bFGcdz֔$*9lqߑY Ȗ1/ŵvMѮ]P$ܶ0PGlhW, VU}+w(}gj?y?N_ց8=+;JJ}E\%IoҢ(((((((eWR+ zKEfsfI 7[98^LZn6c5ǻtgӑ瞽*^BaЏJF_*x)e_.QH}_IbxIFG H/èN8JN$idH^/{6XG5M(iӃ3٬$>OOU;wħYw <c@v'ۧ?)Wv˵w_^:SנVn @!@ |fj65ݖ*>44ڎ쩻~^>=M-RX#~:/!QEѰGCa{#Hm/b@N?}x$/]Җ+X-. aF-x]-^¨8t1#h<;w7@NĦKr~^wL wAas$.;B>tW]^d`؄>'PӭnlREIP9EN@%#o85˟kY[̉ȧ 7'}O^ vEQ+(Et 2"7؜|X^-sߊ=^UhݝJ~)<\icd}YM6/ZI]K7,,`)#$ y=Kkb˂w/6ЊťְE/%ɲ! "2vASgG%HQ5S\+` Iݚ4q<t_BpU@W#7WZb̋qO_;HlS,OsS@Q@Q@Q@Q@Q@Q@Q@Q@Q@W ;ᑽAj.tLQ qexHdY#ad9 t 5Ii3q9S\_=#fo3 ?}raoҙ=K]W~\Qg)T)t&yhY<&I!@zZSɱ:d,A8Ҹi2SKi]mGٛgOWo3.ݶ [?tbڣkoUe,o9sӧ^jIYXQg8?5}3Νʳ\4sȒsi_Q~[h =nd^OzOƮYCg Nf9goR{((((((((((((((((((((((((((*vS600@}fm(&^ޫ̮:.:><Ջ;EIf _6B}<$PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPendstream endobj 1068 0 obj << /Filter /FlateDecode /Length 841 >> stream xUMF Od =P$-Pl|A]jW/gF_Y'K|?3)mRHgŜu X[`0[NG%ci+L V gˈ2 eSJ⹀D?-ހv XdpP\K)XD;_m!2#Y-+sEpFFKDi\u*IOUwPI 5m~kw~] k#8z_@:=@ܩߖN==7C=U/]4.3|{&Ts k~+yhka0mrŌ (fX-z35ۉWª^E'{+M%V8Y~T% HګB:1ñ~.PXgPp=guIGaJ;/7F,%~rh/}]nTZn4mۇQtydfqBZ^<> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ((FePTqM1Hu`jJ(((((((((((((((((((((((((((*VaCy$8$w>;nۧy7ُeillEis5ԃ0}!׷5m`󏩩b4NR ǫc'Wh R|-ga0TF洙`lYҢ+Y^xYHazfX Y"1gIE]"sOu=#](((((((((((((((((((((((((Q$nf;a8}OITQ۴U,OܓAȮwx7s DK= ,,ʌHeCGvj(((_jT'a9\g>{늷ET>Ԍ'q4Di5n[0>p%Nȅ>#3<~SA^;8O3x_m͟sV(((((((((((((((((((((((hTdpV\6hxؘ;=hlѵH?2;hG>袀 ( ( ( ( ˽L}B ~{}+R /8 ЃNO2e[c6VPLdu+]eQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQT LjODݽҀ#IfsvHa@0; ,ج]F1OY((((( /UuO]Ms6IXƗsi!䘉PK|g +CE)}7(M9Ⱥ?d}zWRze%Q7޿Zna-tI=w_/>:*++DՍDAP$SD=ZQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQdh&#;Ics{u=@7lbkD[ ;N(wۙNen=v&#^e-=?un ( ( ( ( ( ( 2jU?w\_A4`|?icu$[XĻFCo<3G8oa<j^巛d۠e;0GXfQk+UgQa';2P^=-勘DL]Yq'?ğ洴M]u(9Ua,A ?֋{lgK;.qopYΎm[7xV2X?_sfeK k8ܪ=FhK{q@iwr1FLL?iPEPEPEPEPEPEPEPEPEPEPEPEPH۶ݎ34P7[8ǵ1Gon0$QZТ3_> >L̿vndo q'cP-QEQEQEQEQEQEQEQEQET4W*HOE`hZiV`v%rL`N:Zs5D3b>Wvtݢ0eю]Zi 3&G^z{aQN+bL=zۢ2kۻ?&Gݽq"jFOa$3&⾍$z(FϦ%3'y{^Gz[pvkGrVɶUsLݢ0uki5_"EߎPFmTӮ#gCﰱQuP$(f]06y#51 սc{o[%ŬH`uw,QEVyCЬ!^CX29'3M}H5\ά|hҖ 2GӕsPMEPEPEPEPEPEPEPEPEP*/F5mV*/F5mPEPEPEPEPEPEPEPE&H鱋'F}s?P&y(׫9GwwXO?N?}U\*0דWR/sr:K1W*PEPUuO]MZ.&2| ?M hh'}1CZyI_w?91חNXc/ȱ'{(}s<ojh?/FO} X tz s!?!A-5\#6i^EQ=~YʌF?=g~j?LTb B;gЃЂ;x#XSMfѮq68=!uG i ?1Z>?b4+p5{ Gb\I%VQ=>RW[\z0ŸشL>HԶ _aԗ%gT_1ǁ*(((((((;hilh2 (vڥז!e`2AeN;T\M1`49K`э[U]fuzcp1+(($fAKI&AI3)>Um!o-t6nei E~>pF0;cojۢmEk)|Ï qؙ֮&+.N~Q@Q@Aww ^dP2}* \c{}:֖O7d`GϹ4u/ulm?zVQ1q"(ª=>(((* ˿ UWTeqOI <?hkCC)?G=VF?)ڏװBc"S$aOǔ_mS?H2*"<p4Ĝ̩=Y6=wcj tY˷o;zm.@79c\'q?>?3Yf=[ D| Iq5ݗCثH=X#h?=g~j?LTZjѦ_cD@XZC}Z&fG_Pfz$)S<^n8RXZ7/@Mg? ?1@}y;5Qp>Yr1yv/fOFy@4?>V6!v'li[jb-ceoߞ+o]b#$0YH$6ïE BmY![Skr2U\2Ps7hQEQEQEQEQETWV GGrKEQ:U"5۸7Xw8WH-Rэ[U9K`э[TQEQE\XZ t%ާ|Ў=f5 4YP.Np 0:rr@Ѵr 2#Ri&7Ӹdgր2 ןBP ʥmpa8W44#1*2=EOtܑ' l'}ɣTnk~{(!^CcNfkuy$W?1@ug߈cm!Ϯ:++Ԇ <{_>}{s@O-gd#Ck6gmxmund6=qڶ4Zv\E({~[6-*q+fQ 1Ѓ@.jKz2cjnf=:kW*2cْ?3E,:hsgL[_ _8z4տ蘨OT?|U<N݂01, (Dž|3TC*? xgH?z Pb_IeԈ{Y7wQYi -p,KOKC[Iqs)i2G#vP?@[i&_j,r Տs۠Ikm$ @AD{tɋm0Ө[ibЖۓ+=tu2L Bvv0SZu̓LltE͗Xc~'?XӭŎ4'쮜)xҵVڔC2E%?kN ( ( ( ( (M4pD"GRhUK}NO*i1ʬ jy4th%?rMF_?nWa?ƀ-U?,?/a?ƀ-U?,?/a?ƀ-U?,?/a?ƀ-SgYtm?÷jլ!FȠVoq޵k&ߎ-CPm$oI' mi7'оeiBȠy+{Ѽ-dG?b_np[v} VK[ Iw=ٳ4u ";{x̓HH rҷv',heis,QTvIVj$eu̒ ;Tg8Qmw{٤hw[۵|?{vim2ژmgldxw89:3R+8nH꾠~;&k M'ZS秫~3WմY Ν*ʻpү9:Z+6 GޯoX6.|i>~aw9XH]VSAAQY:[݋fw` €[hPEPEPL(u*! > xDP<{Ȼ]CB3N0RL%LxCz5l+)?r/<#exG| G`",?UGbZZC"%w?\K;v@[ {Cڼ*ܐsґ}{דހiZ[1„/R cܓܚR@}(,?TP_exG| >-`<#KEEX?R@}*Yk7*1 *)/SKpw={=:W2\O)˟oa0(sy 8g?DFKERG"OO`Q)%ѴF$[ ^2F/ϧМ8o,g+n cӬq~ˋ|$nZiGK&ܓ|k6tKO"_cVKfbr_TPS؞VKjc/Qc/U(m[ߥ ?l/U(meo~*Ս V.6WhVgZ~W©nP77@>E#H墮mNv:?1@V.Yz1OEUͱm~(ͱ~oV M=lٶ?o~*W6˕_6|Z*fϝ_i.Lrox=jQ@kjwZˆDhgv[t"*݃d`>I@- 71n(((( T_'jڬT_'jڠ(+;Txeq8>퇛[rVvv0?V68(8* :: uQEQEQEQE# 2IYAZhp8k[Xbb?ќxan``t454TEUQ:(((:b]3Vtꥭ"ѯ?o!M&]=mE^:4cz ( ( ( (#-iN#KdmN\(v; Qkb?M43U@g? ?1@QEQEQEQEQER]l70eךES7O&1ȳ$SN2>89rfRXGwLRު}T }ؼ~%GG_ ( ('w  -JUBzHA*[:znI%#/ Orƭ‚X)ӓ`VQEGqjldmQ՘{@imZ۟8ɜws8 ikjUڝEP--3&@GWӄ"c}l",P9`*[;V?2w4bbK2WSG\TZ=E3B|<>x;X`ChQYF<ȱGgBV$zZѠHK~˄?jD闷s&=܌Q}P'AV_?Vꦓ /tQEQEQEQEQէ+a?'~PzwU3CꟘ-EiTVGko GQ*Z+<|סhVyCТ((((((ۡ-J+ v7iU-f/;JAyLT0.Q[("I@EuoLn9 AR@mY{tgLܱG2l5}dS x"bHАoJެT_'jڠ;[yg8aRn{kb9LcS@6Ejdbٽ0? EQEQEQEQE7f=b_9l*?yo-u3Is?ZѠ-_Ir`}zJK\4V+#J;+#F`9qt45΅+\ݤr\<;U%#?>b @\B'#=;{M\]jB$2 IH+b:J~[踕Y>s9n4D( l#OnOd9Y"&1=zp85[ hRYcR!em9 2mFW T5FKV\䁌ҀLҞ姖h"PPIpO=kRuZA=D!Ya!Ԓ AI"";mNmPcIg4 Km1rKrI?EuԨem CDz`zۿT /uSIUpOU(((+6;P 9ߟ0?>VyGilnnUa,=ȫvmp»cB$(!^CYC(B((((((k2:Uێ[`ՈvnumȞs>cwzxxh%PEPEP*/F5mV*/F5mPYG//MbgOBq4Cf;A3¬ [1 GQ ((((* LW?eq$l4HHEf钉IGI!FTVElyg`; .p; gEUM>;׼Hp>Bq4Z}ߪ1ۜ TWz5LGq$aF6_"EI#"1ހ) &%IZ=/3J8b=NOҠF"C)ráp~۪X8`އ'~u(j+U-Ewʀ!e\Ani? @Q@Q@2YI" ,z:}f\ͭ=ȟw4.7'RNqz;VPEPYC+Bz PQ@Q@Q@Q@Q@UKkx</ poOr}w?Ԋ}ac$后]Sdf{k@HQEQECws RsRp=p9 68 ň/o" }Y@FX=I d_'jڬH[2`\4j۠ p ИYԵ>ʹ?+F ( ( ( ( (3tYӟeI#ZҪKxSDۢ>B:UQԠh-R7ǹ **:0[?ِY(fz?Y!8g='l?!h{BWaa!>Ty"ͩ!NCCر#ýZBrNY'~b ( =fqKQ]Ǭ7tYE[O"EPEvv4^%I!ԮH-sb}SYZCHnǒܞj :E/wvDkӿϵ^((z Vg? ( ( ( ( (ǻPvNm.=B>JeA=+,c{{حy2-`;Igi ^\ N$$'ާ((AdZ(2C,Y T,?:x!˞$3jJ(-BOBDh7o*/F5j^KZO7 ͧ,I&U4./U((((((k;YfC+Xa3ꑁS@Q@Q@Q@EwʥoP:O"M'AV_?VCɠD6F fcgZ#j :?&zރܚj`A6TާgV ( ( ( ?1Z>?b4(((*;ⶅE4fc*+جVs;ƃ-#zqޫKq2j;ZE99H}o?*}[{{?4EB uQEQEQEQEQE9K`эVWCH-e?骉#Oo_е;})Ԋw(>4QEQEQEQEQEQEQEQEQEQETW7Z=fqC*'*Te\Ah2hk$eVG}9=q]Y;"bpr V"ƊUF UT*v(((+<|סhVyCТ((עdq^"N {Gsp(*Fm̧lQ}LM!ld==G>& +׎0ώuGa(((((*˔y U?FKp$@QYnb+b pH5@#Oթyi<_6_bG)1j*i2]߁QV;C,HZѠ( =.B䨷wx=˦\p\ji*| `QRhn}J7Efm>j팭=RFcX(((((((oTSUi'}P:$p}li$nG5_lˆNa>:K}ae- D+`r8 t"@ ;REU=aLkd=!Ŝ`w5]}9jqG!q>B'?b+<|סhQETQ۴U,OܓOYJ76Rvg~' tIacEsϦ/QEQEQEQEQEQEɡx)dXdE>&Uj\a{jʹqyW04ddgjZ(|im t$EPOޕV*/F5mPtxKċ|h^'wOjlj?>Uy9`ȡQEfk7]-i#c/b}NS$̆4RO(2{ W9hE6eaGVu;r[m8^`>G<~uoNM<Lc*8?J<CB*Ӝ"cUFT`:((((((l$HHꈣ,pwnu.,ojzܲ?S5![n.dDGϰ5 5 DOW,᳌ y&wʀ!e\Ani? @Q@uŮ-[4%QdgQYڅ;b&)6 2p1բꮥ]C+ FA"(TPT+Ekuf`Q_#Ơ75k!@rqֈ0$>Cm CoC *FUGIEPEPYC+Bz PQ@5idGk鼵a2 8pC15 ;ҩZjW'}/kF ( ( ( ( ( ( ( (1SG)1jSG)1j ̀f_f@{#Y?PEynL2;{{yMEgYc~|Gp?zqF ( ( ( ( ( ( (WJ`50>$Pڡ>Vܯ pnL-7ywc>AV,PFƽ Q<6 NV 1gw>hEz*Yo@? U4YE[(((((z Vg? uy>H]fsıG%w4&[$YwW( ( ( ( ( ( ( (o.cyU;($$ ̱c}ŕT (95@#OյX#Oյ@Q@[Cw tBbc*LnZ 2?QEG\IJ"Ktd93p=i;rB@Fifm ≼[}hY61[l,W'S{m'n@~W0S@MA?Qj/&R^Aր4(kV1 ڌVc?g.?bz텵וb|K&< OzkovoߐUs(Bj݁9-QEQEQEQEQEQEQEQEQETWVwk51̍`FXhL냎㷡 TVn}=-2sDf2jJH{0{֕QEպ]o.Ls#F88#wf{q}"1drq8 TVvy5S"4(XO3fh(!Ky`;%BB0jJ53$-PEPU`mY|nUvBpsH=EX!KXV\2͉55PEPQ][EwC:F  G ȩhm-bʁH\;$I䟭MEQEQEQEQEQEQEQEQEendstream endobj 1070 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 296 >> stream xCMSY10Je   asteriskmath)z'zyzzywwq?q{~~~~/肐}~}}{"GH{||~|<v|<.O<~}xr: 7 Yuendstream endobj 1071 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 236 >> stream xcd`ab`dd .IKI,J  Hvg3k7s7˜BIr委&0000^e`lg`bddYs|g!yoۖveuL0cv~ٻO/9c=+u[5ۇP6> ٻ͚6wets-;mM*j9> stream xZYȑEA,CM1 BY>HŮ]U!Yj?qdhU )A򊌌H3_[nI:~wsГ< /+)C;ޮ7E{] VDYZ4js#v8 QiċĦ>~ʡi!QVRYjMt8CqJ#OVTiqs\~R|^Ksqu?cYHشq/M[p~h>#R 0rrʭnUi8ns#f O뻿q-df`GqSiH}y 55J5 D{S xmD4K_K ezĹk-EM%?\MԢ}Ӽ^T{۴~$uRMoI.j/ 9.գBlϱ CC׀ hp'&5: :C"Ȯ 1UOs!f'C/&f³ %jj)k%xlakӰS y&36ח*t#~7L(Ʊ<$#2"Vb6 VBE^8U@^b9lb IsiTˍ\έ.ȑ@ d Y8/ʠUf$<#ɰNhFe&ew0zصimb }^$}(\~V4D>GH) ĠkvK|JW`^k `;a:wM CnT}rI2٠#y[L`x>}V@jm(єS=,4h9GriRNc/4IvSo1F*xs񚢏qy&r7]( _&}.O3 1z9LA[~oBܸTljkt-lRnݱ\// Q 4o12$Y?DFg[Uzߞ8w,=Q"I9]?l+0"DCe/-M U\m\r :~;M1D߾4K)uiȱM aMb |{zݸE9L @]}jPBeJ2LT !SRҧ ăرnRUMwg DXY ZNb(cӎnҥ@w13U^5t:@cl&Ej k{zGӶӉw 2`EIUm!⾶kgǨK1sF1ĵw>A?JqM׳+OzSh,Q/\c|#!XD1)js0=}Z]xSشCi=%2$#/7 Ţ\$KN97oe(daWhFPL 7}WZ5FC Ƃ֧(.fo ]wO \#ߨ!߷T.TK|/^Ou+qKcMU:={~Ņt{'r\4قhA18Y!_%*8{fqp槉=8KӖaKr {TRVUj9XQX0lNi򯑓-OS.eQOթvlκBWBTO&fpYt8w\]Icup|Ğ]{⃙Rb8P#L7Mz~lTD1+v$sB`,YKXuě}wz|| s`HqۯO~cǯ-fd19B]OT%f}=φY VUUsq'Qg[,LS- mG a@%{Iጐ[ԑ)N`Q 2fЊ+}NssзĨTq

%MDۆ1|nPl/wFd t3% M8N cS9P. 5#MLendstream endobj 1073 0 obj << /Filter /FlateDecode /Length 2069 >> stream xW[s6~ׯeNW3nn2ښ};X%6T@bk=qD|{ad_9,*yXd(H% :9,+2씋kSKHe9fl驸RnzVf,enxgsH~X/VW$:H_qIB5Rp`+Ej A>6.]sz (İ1bGA;= x)%eXxS "Ir^ L3 C{ce* gCC4zE1`l>ձ}_,G<ЃW+G3;5!6^" `Y`5Ey,ɖ)w*5fR6Zm} j9]`>GJAo>]3_E颺 ҪD>A@RJ5YSk{"H.oD_)5;wMG8g`Rxp_m\ y^SR R]`W`?B6d+FVm43mnNm(~2WZ pT!楈h_Rr芠eьfGtT&J,φ0?9y1V6|v\UD͕c A%VR yډ2tv`ެ;[ݡ<!@FDGluc 񏎧.kGҳ _%!cstm3~+z tJ!2~[oN/ 2ӎil NhNmQFE1_e"BCvlx4@l-9n~c:pPs@ܙ5{& PAYDw%v& 8jLrOpqm<oꁁ}?x쩩 PCݞ5[zQjwoгeb& $3yGٌt^$SzKJBb0wSii6AtA@c/eac)#=|_8rd\C/yj\ӜnMDȔS8+ru*sQƀ(u]3Bxf4WQw14D֭78X&^^%QQz[5y\ܘ} Ū@ ʶvUw4-jHuo/_ň_ji ^4_ zB 8ΞzcJ{s?@~9cpW?^&@nigw~nr vE!8m<qZ J9]hOl-dF~+4/dMtFQdDf,Fn ~Nm @ψX.D_w%X Y,;-wC0z ,Ev>6~Uط8#Kwn@a bFL,!zxpFgc2@rE8b>mdYKwi4jrMnֻBdXCjU{^|oj7]۴nsL~V y~qC DOn/s 6P5 3x8>/|]8+aT-l>~aYj)^Ygw?PhebY%<ǓLH'Zcu3āJ]p#H;ɍZ)8R8֢8)JnaT%B1+ )Δ`Ek=N )]ȍZ(&8J$/Ir+8"d8qjJ6J9Idd$>Ҿ+#40fnuԖOMagֿawλ>hՒjY Ǡ ds\ڋp7A.4h69ڄ;q V-]\A@a| e/*_GTP7.u(#X5j7,VB6KL (5h^"{ǒz(]N}x OO 8?|:ع@ad.o莋~=fA:v >w?+m3U3TUʄFL^lt߇ zy(?_)%)](y쏌8GvGl .Q)<Ѽ"$| 't} p H .bh)#$s^KsGO?>i=f욽6&8@7v֋bKiKPuPXkPe(҇0`w׮7?|Ú@?z7Q%CNBT|[l@(6 2N#3p$¤6AB0]6đ+F[˩DbybY'M,HڡVBIA~t0'aD=a^ @%,$*8PM3bꪟ=U&qp Y[% Ò`K0aiBcHK"#Ai%(}tא=.tM_J;A&wmӆ:*A*ի\_a{{VǮSUxl|eO}v=BYƎ;#G3@-IDđIvUV5_'=zyCF?vQ]E } r/WKB}i3@ xZBr?) U8eendstream endobj 1075 0 obj << /Filter /FlateDecode /Length 2839 >> stream xYKsܸ)xhAJN6TYrGͼ䬤KD*7@PJ"Fwc~^\/ny(-eaͲv,_[_H(ŏ ]J_zY{]U \Z[]D`&%RBk$vfޖrZr˪PV~/މu=hxٮ⏛,tLd^f1 1*)w ODY e+Q\] ,+?&ZVzZ $XZмǁcc_oBibNc\Id|dX4ٙXfB45'>f@)|Bd ǦlajˡaPlpZ[%ƛ_ꢔ5M߷f쎇!(q e-_*xq>quЅ)\'Dxdf [9[&D"RjBS`ޙP"4y">3+iBV\]H-+OI ?RNs2$| %r+¡O fӚ:B*KQ ~6os,a{_o0MXZ%_UAi/'"Gx1% Kҋѹš׉e&3HP7qs g')4rv;BA\(m|w xYšr.Vqu DpdDD΋ەx(!L]Vt=s  >®Tx'-nf o?IϪ&A (zm7p RA `y`3؛`N-vw/aUښˢ2C [̐'fZj B}N1}*#!?YUZ$fZx s+\t'$iUIrO-P8^qR_w;;bp?aB4wyˆHNF2C a2$B')GISQOocp2Txy^ʬjע3ӴMheNW_FJL#U 2DIdS 9& !mJ*]Q烒%4PLd \dK 4%vtky\,Y1k=tZ* )c;O5ꁎ%&1,,M,38Uh9‹e&4`)Ql"m*CszӾDR*-vX(nrPe͵Ə-wʻY-RՑطa E'W8o,+:#{nVb)Ө`MS(r-?daPVTG:mlǦůfƉNS{l^csNެ9yh9ji^v>6r4k B*E! UEC 0Yƣtoe0+G';H{WqB.k>??J-#V6vW<`P#>+SPC0ƙaBU:Y AGi ro~eG˃IV%TmqGBWݑRs92n7|E +D|80o"b#Y~``]B({ĪZ8y! a~G]#mS{דO=3x-+V[e$y`KQƾ›nnvqU*eٸ0u 4dÞN;œt7x!:-gD\Ѕ'+)?MD 0 'LjUqA$W?,x16Cjy.!(O%"ӊu\f8U{ S9P7(ah=QD~>Y}T͊mՈn0Ff*hbtx>$u3dS8q4( >lq(eLjwh?Bx/^  ǧ{>.:BZE[n,DtT]{kO ~Tz*Q3[!!S)0(DaF^MC;wt\{x,`štW&̼GU|~s,fq^[+b]/!endstream endobj 1076 0 obj << /Filter /FlateDecode /Length 2934 >> stream xY_џ@^b% 4mklvd;!%jۻ}8g3!Y\v|ye!itvo_+ |rs%r)\.]閛njmϼWO+i2_NTx^ -C>K+E_asjVœjͰIQ-6+y]7npnxε]T+чsEbW7@xiտ6^Lʹ WX헛XZ"w)@+RT!~4zTqsɉ]3~]shKhqfwZ%+o-\Ǚ8V P͍J/7/6),=A[ %nYx6 Z;`}M[x!`[t/ox }VHq:}sӴ4_tgJy]O}1cC=ǃe=G+$ Dpw:9Ao]:o݉%F2YKB#Ǒ7>WVmĈm{s 8 $PW9?-PawѰEƢ,~X0:?N)R+ \qϐm[}N%i$V?OeRS T:/2E ZŒIT&I]нrIMAj="-H~~Hht&+i AڳV& 4Y  H=N^61w @4̌vKJOF@xJe%R I 8h,2`t>8.~\h 9dqZy2^g8D7TnR#QѲT/9|Py` ieއ%12ɬq$`EMK "Y"皙@ʐhPl%ܱsE H Yook=j ,͸$j6bTXL g=.#HC|3qg̔KE#^i2Ǯ{|މsdDSš?&"HLfMqcJPԂbRWo(ԥ%L}<^C-B'N`FEt%.BBMu9abU ;AtHL#74s #&mND96NP#(dS xVO 0KÄ&kJrq$)K`>TH!* r*G |5,Y쯄D80\1R.a ,'f#H:$HŸ&)3;UpN"xDNe4^iIӉ$aZHҩU+#0K島GKS}R4AdFV:E d-!QZ@yۦq8Sg' c1 l]ZB# 67&+i8D5m=2>ع/¨E@Q>`5 =kϐT[}W]\i{SD`(pOFCZ@*cNlc%K=t.KYCo[poakY2z\SM_ߘ.xB,V ]ʴ[;WwaȼDy;v}xҶ0JA? ^)8H<ǁ4NyFq @|@72'đDQ>~2˘Y0O=PDŸ%=|o] >܏%( Z{4P+joVŧ\e=! ](WIKIa 5Epqkö{Kڠņpo#=8F ry(d8Dr?nYX(aT\b\PmCW -ݧPCXJT}Wy {bKk Y_@3>t˜5 yxO?W2l:Cuy,qNbSe6tm pta#ЪPވ5UW$J~M=V\RqJ,jfĝ5F&%@Xoq}ݞA%1N:qWCA ҀnNJ^#ý s7}WCGzl-L 6ZZc](u1vn+ ۼZ~`K`taQam)AL]ާ 0.ȗ\".RA=µ:A'(TZiꦍ/K:\## T=kNfvY+j7+MWN|988›SށD3Nԇrޑ<ѕ)ٙ wcN2\)8gS`wr( B1?, endstream endobj 1077 0 obj << /Filter /FlateDecode /Length 3233 >> stream xZKQBK7ە]vŏi7H6E$p~p25x&F$AuuuqWßq7ĥoWv<)f|J6VNߐToY^uFHʪ_0zG4GC)7kf;}_lwŶMUޗMoCIJPCQH/ſo?_XiD+k ʋ4B+v5E㯢p%~ Lz$,)A%%X'WU/HD*"\Vq)}x`//F30\x`xoAl7$W)$mz_, KãۦH+df&Sz(wEIJ]z g ;gocoʑTMh4KwswUʀ McwlYT*Nz[wTLqP;خNU؅;`eδYK 6ъֱt:Rؗyߖ?kwۯA2īl-">gCނ5m=;ҷ$d" B#ok׏We "2b͹?{z>o;6m0**s8)&őx? 4%>LXI y6=%s=61SlH>?OƱĶ|ZOi@BCr7oNE5uU>Еb%i042^ܠ`®H^w@T:?@1/0VḦ Wy?7qݫRT(WVT "%g~q]9d_>cBHuxnilWa ( x糬'8/ol>UX z67D Uf]CK )U`‚[(o!NMl_Ԑ)гfRa2U?="??b2!XCH=Tԭ B-їCpgq*FI {8zLx8W:#)Ʃ]cI'u!`FluTŽr.*TBsW]ٽeɐg+N`Â_xs<55$]a)ˠ(J;Msypm=Pӆe|9\Q$Bs /N :Ůœ`ٳ%'S5WӢ0J|uGΕ f&> jP)M(-_HR]_.8I)$7@0|"x|Eo>B?3m*I wy7TLćp7vi SY͑anIcՄcxPibç(é7% ?[o{܏$Hh$t- i>$)s4o/lbnf/Skx϶O=hwM *fR[)HwMb'ɚC RfzVl< Wendstream endobj 1078 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 254 >> stream x NimbusSanL-ReguItalm  |R3fF{̯qZzvus'k|v~ϓ~\䳰Q/m zv}tsf|_uongazK {@hendstream endobj 1079 0 obj << /Filter /FlateDecode /Length 1540 >> stream x͘O7X)/GǿJWVJ*9HB% wޙpT=̬ڟ[)o?_4Z~kdk! u]4*%O %k]VX^Zi/.-鼂'uvsQ;/ڟgcЮ"z }B"g k񍱝-ד#|E|ּJ`f40Ox=n۳QZ{"sU!ͬ(-VxעYnF ј (&͂oqX6Wo&7uD+C-ȵA WypAė58(ݣ~ -]е@p!(fkff[f;fM 3 2{JR4]p;܇ڃ(3ҵ3>I`bƉ"Siȴd:2=HfAߦDx¹KnX΁X΁X΁(@9'pM+b+\b2n\3p5 \3p5k < xY^C|{܆2ɛТYXȃ!rkr5ZՅ\3՜]&TiK%^Kkr33 !XYvҺ-mz+Xcgµ`:𳂕 a.`%J#pw<(Aia%bO Uxf2!͠%'=DO=,e;oL8|\Sy9֧y>ݟ_.ο>ed@,*;#a [q00VʋG+d>eg8{4ťbf@~_Vnw)ktg:~:W,5e1rUeTsPVWF٠}e! b&kˊ%:YYJ>"HhP(rr FW r W9ڠL堗yX*G[F;"(-Dchr(3̤ҩ5Vd(vJ4bݝ;[,:_8 vM%͘}^яէ_Wt1StZ"$η_C ߮Q> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1081 0 obj << /Filter /FlateDecode /Length 2954 >> stream xˎأBi3 fk$QVZˤfgA=jƳ=U]]U]o2J=/_flqVͿ:6s.v~Lt`/om]MimډXD*n R50ey:彶~ޔmSb3cvܴ5ُ}q[-g/1z147162&-Ry~膧:O-^o&ĩM@:\ q l.۠8ꚳO9{+n{64<=T_%lPPo ٴs umr!ѬB7GJ}_.ޭ.m~]4Pho[w͞=xj˲ZRO ֿv==|<:tB; k5Uok\xX N[!&22rr;QV ( MG!PBR'҆$G,kL B0纹 !jt,OzO݄6l&0ڪnO` P{0v*Wi|J0o${k hf >.-.j}7Q+%W}fæ0z :m__ޣ (cDEdT|Na]&b< ū!}w)QWcm: >p3 mwX*E4%IV%F}&,/$*?,K5&f-\U\@u>CK# r ,BC=2a%ȟΗDV- $MrXi?~ˇu7Ag'lh_$T4lxϝv%h4A" 9ULk]fg ZC4y);yYWvFg'`6=ڬ6'NAfrSvr3EjL/XWe-&MR2Ail@ϱྡྷBFЖƂTrSSIzR!UY9qu%Bb[aM&qgU(Lq7`! F}ixПJzY0̫/(i 1=1 M/#b%.8,pKBݺ&pz|В2=OmFC,+I"*=Y {*(DK@tW<ٍ rÇ^"цޫHxM7˟ W0,dB5(XW؊5N'-XOg,pїҖ#*x3TZy$R2!R u&D  ,-ju EarɌBWs߿H'AHu)}՟-HMYČ x9 F:4bT݇-gv蠃V0248QmO<tCd%m|cCol6&N8jQp}t34www(셿Xю K@Щ8rӘ|{f0ʐ~C#!" 4.#btwopQQlXR+khxjf}-I5l yWDԠ'D 0LG|?s]tY+[!ġfiVc:^14ظA ĀĺKӰIF4ܿRwW'z~ F}m?f(t`kXrlim{mZMq(~"Hj8=DgR;%h $]wFeH1ߏ/#/Bkr'~sp1" D2 O1YO7~J'tDR% 70=ab0C'W&3IY_?+3iV6G]bs/ε`(|.IbJ0Dd zE*x_w<; ֮79J;XyNendstream endobj 1082 0 obj << /Filter /FlateDecode /Length 2694 >> stream xYێ_a>ڊHdl Im-wk#[˞pU}\-b!y0/ >/ݟÌc[~s v3bLbeY?4f-;/gh(Kv7Eɥf>HIvoScwۡ9m^YPM--wW~ۓ+hUlj6crf{Kj8kG/ܞ Ͷl (ͥeQI譶3nkuajU{m.tXsΕk9i|-g W/`g\J- [U%8*+Ρ wlOwXksxjwn[)n[jڅP}Ľ2 `x hݬ$&*Wp{v{oqEYæ [広sK(>_xmwNIil<:X>gL8}۞/ y< wƣȚÖC;;sRt\ݷq:X8rV;|ی28+ë:E6I$F>#DS$sI&O,6"t-|o~C9 `mnnߝּ\vDiܘExM/Wp(tinQNn.w-nk`Nwj7ѫqCXȲ?Q,XZ}EEO ]Q5 !WQF(5ܘ+kaX'lп~ >~5 HJ.} }|5R귝K5[ wCiWY`ggؕx5 ?\& Ev >md$WXq^hf~7,țmcfot>&6m*< 1E^:aS."H*! l_MS?-@k.2a.UVaoRz[܀C'IՑNp|SP)3(\H=1ˌe<#dHiZkاU.3q5i&Ah5fk;1D 5τDaxg># +Be*F&#LY(R/լ\C^LlKpPu텿)??tpu ~{Ek/"&&D 3?t; gh<9slCk_놫?/҉CUH$xV nȱF-ֵFV9?8r®5: 7ai~H/mM ʛ9Qe.ƑjuQkGM&w>0wj(:gj,$f?l%1WF*>qKk-@ʖHqXWgD_Nj#ReoQ`d0!"PG<d$%e_H<'Wk#ЀCeLKSN AĊѼv%.( Ԍ *3!7w<7t0{X+JWpTxӧL^Z`,}d6+~6!Ejl߿]o 7eɾ۶ν=xh/ Cc8#vDO]yP/ !!a-,m aTeX0nD%%xrIO^>+ux('za%8Z[iKey."uL6DD  !**D_!8@DO'%U%* P`^ǯȼE?I`D) %<() |X,c-ãJ?L| :mB0Tc0oAD=2֍  eF5^R&k C^c;B\q!.S XhE5qbٛ7,"_`fWR8z,7L=m?`Jg ͛ _1yS>/x$a3@<'%> stream xXݏ7:UCY һErF_n ZzlwfH{%dMq8oo~Z_ݵ|yXuO?vyfB,7 w/-LRܴwLfryVklf`z Ԭp] >/SՁdTM85q?$ln9+'vaWóhsoUm5>n5ݷa 9t^#{Y.5/.zz~p4Ot.p{x6#}1~?+E>4lmO+^s,a3_gXs w=e-.%uC/8Hg}A+Pu퇶պ*}ߍIȱVXOW&48#\Pkkvwb'^PPo$A ecW97f=[\سj6U7`}B%Tc=ƻnHULaOP7)DB L__f@nEP+YZ!ՀQT5i1{zAf4{PHZJfpSsXac5&~QmYBUƛ g? S?6cN5st!<#Bu~Rk]rvGRPA:C"-feuwjBkf8]`)ܕ\Km]&̕ަ;@>1_mk=<E0 [7sN D[z(G%U{`Q9)خ߃а>6sW+  ?fEa)>sy o7K?V.J bW]kg2~^j>ԙTл h;ݾw C Zm [,6ljw/q (_ CFNQ$šV2R'> d?@R]v".67 |Oma9^, )] a69.7#2]̤x*ETطqr~ #Ҫyo ~Ӻ,u Ya RI&6)Dtf+e@֭$MnNn}z"ğo&LGqgD3P 7~|A yI[쫮T&B(Sk x`:hmqJx6m?EJ]ǸjJgz`z}]=FZ$AY\JF@ ੅0 }˴TQD2 i @H+K! 朌˾(!b́ ~{ g5%"hH&ց0s 4:5($;,ڛCM7.hX+w>VQWpc/@~9X֟3̓)[/$;7ߝddu" DZT@F^3T@(0L"*w T,9q.O3hl ŰY"mI,2+#> }4.D&W k1_='Ɋ$xarM7Q)J% a:p p!S/ }7PaOwG51iHؑPX3ituQ.2EA?"u뢣.ڔ.y!+gtPE<7 TnsWX |n azt[9!|7&GMp+x.%kaO_s;s΄Mh9 " <9|@ !L1T&XG:‘M SCԥJB]Rs`"lʒ3qk W80OH.~ִA)JHN3+#Aԅ#0`8qk[+QN0? 4F—ҍx(uyҔ&BSmmc9:Ssް>2P?Z }QTV*CL?:zҦޱx2NKXOl7^}zno_l `%ES38ʹQpE4ݟYC DmIX!ѡ\nRɰH_6n{N&_D, pJt.&/JL—yKL$,NS 4;_0BGQK" "RSet:.dnFJHv .mLz; =oGW2J=|.,=멢sA{E>OQLQP]|eK#-^SʇB OSQjL96YI-?SB:F~vs<&="?85\g]Ǘ_K_P>xs IʛPUTFT- #e5q,5Y=tVg+ ƿ8O{yE8+B"a 1FdÏ}ؘV_?W>6PQGg) :[KS}'ݽYnendstream endobj 1084 0 obj << /Filter /FlateDecode /Length 2965 >> stream xYKQBxDIU.;)Ǯ]+@Iƒ8KR'f(BkRfj);.nahv˯7fZnnC- 2/x'yWusZRڅ`ufVG0aTHI-Tf\$,|_!DyWֹ9W\ˬن)[kGMl_}l5EffyzN۟^mT/oEd$ZΌ.ŜMdOX[=v!Ϥ6SֆY{8,@'efI|nLLhùDZmjR2l&  ^6WݮOͿ^HCTLNܞO;&]yJstiw>O}4L8}[T 7G0J<)-)QSWwdZªX+Ezep2S<][ I:p)-}ޠ@a*$#w]ۜx{(Bt ./+v缻>%(qrAm]nUBKRAnT\xaNK1g~Y U#/Q&BpʛWqKvc?%ı+y ゎsv.,Z>M)G~j (&2pڤr2(S{o4* &2(̪N;ʴ_~@e_1ZfG<6BY :J G9`=FLMnxW\of^bN}D $*m`^s(?ܬvT w>+kP,W k^~0|0O=й8 :<z} L^t+#f<0! P3P~_e٦Yxj5d]HЀnf*@sHAfl)Ӟ lF~WPdN9<և8r "}ޕ)s[1>B\Ocֻ9=G "FimhL\2T}`7v5"'1髸H_27Z.t%,]2U8HM\['K/[xBM硣VԠ%0A C+-4%dcU$ک=H@RwZj+B3݈C'(*|س(k[EJ9骡yEV{QMHyt/TE2贓 Br,%pCdN͜4˰x ɏPY7wl CoG6*7OLm0̘? KT\v50os疼mӎUןwgԏS mKwN 8}:\˾ђcUmj| k~3Ɔn,Ժ× |rx )g($i*P-G!h/Ojԇ]$[]d|E.JV$}uw񁋛gKCw4z΀%`!Dws28pWfD>Ayd*e@fE{qfAaeZ=2[/.UlA2@p'#rKO/ o+$g 8S>T(FGp}XP(W~V(R(Pt}:%S,pХšV:*"As;ya_/:ᢰDLTXK鯽_c5N_Q!g[ݕCĉA}Q 9T&Pc,>陪cU@Ey)ųZp:6G{|yt-_P-oxYp!xvQioD,.rDQ>`9瀯%'#;a)q6DȔ%3Le)v[wfKpv&átV N.^Y%qoN#jI ?wn F [ '.W^Npnqɇq+:}jONBm ӗFGoE_L1# INeN)Jf12ЖՏlgWJEG/fxҴ$,w|<1a:{^U2 > :!1]юB?W!Qp?k:) [IP& '9?R`0zځNqUV,46a͜L\=\k>@,Jӌ 77xYwmUrA]P$c %~~2|h ZVUN7engq$G8'DML/5\H%g& B J(|*Z#kX@\.*JğsYLjaZ!+$:)"'յ֜R''[Lܬ~lt qW5*'"h:1,Ю嶊5+nyq2Q eiD~X?YJendstream endobj 1085 0 obj << /Filter /FlateDecode /Length 2780 >> stream xYnG}O9%X/#56(Cr$N!2U3Mr`S*9ĜsTq+.z+Lz-+//{eee*cJI*/JpXALgӏM7wBٹb~s7p\QY}-V&m?|3[dz1~(@xBv~$ߋpcXH\''}3!t=M7- q $$"| ,А(4$ (F<# < ,,%UQ~**$<ģ < xk o6?6ӐcN6ǡhjulW8mzhK& 1g40A A8_B<cCi,:Ȭb%J mf~C2 h{n3ɶ41pݱC\O5R.;>BD b}jDMTl~x>ۦdxo3e&Y!hZa :Qz4C}-\Z cfU朳w Q M}j}BBZVm7CFY{83as=M8n6k|^ d`v !JR 9SBK_Aۃ;O`p5}'A';ߣKt`ax|~l Q;RM8ZʼMAv4ƃSyHvAM}>h%4G1QoQ~7 Ol1J"+pӮ94$=oׇlBfIejwfAd׀DOb>Ҏ%!g5!IMO#k<-,rў64 o  ϡ'.#+M*W axrC_̷6';6$฿&^dɂGcKRkb@ >UH:_AȇS99r,72B+sʂHAWJR8:=J%lI^Aa<ĥ=Cr5.LZ-+:ՙ߁$+F XâtҤ Fŵ蔋؇"p%'cGo܋;${)m}={#Snٿ}ߛ~d4{,+(21{YNwSYsTJΓfO3.{lb?/<(;?:oF߇;X9%(Y 2maJB *C[JCm|d}`obZƒE@y=pԭ3> stream xZmܶo+ s[*Idp 'MN|EPAS6zK:/p8y*M*"]^p!ivW^^ܯLjuysKĥR2.Nz#4o.eS+mWjse{T $14-npWm/[ DS/qK?//.N|δ8K4mӇY)Cɥ(: p 4;Qva⮬7:ЁpY8qvc+~(]"]«G/mjC:ƫxm1Fҡ"h`!N9ѕf#!ªM{U1tնÌJ}忾z{T8ac*:$_Ӌ6>+]CQu}r(ח=\?awl'9pγDՆI`.kI70 9DmǑoɤ臮hn86qV0j Zʉ~O Fǡ62-Hh US]5T%9MjAe׵]r]:Ωr7Š+2 ߵkE?3L[2ۮ=/ %Z+~G~hͳ]l0w݂KX ->};}yJ'd΃LDK#Us3`hA֓NGp>PI 8e̓kJ3쥚'tBUqJ|V:x3x8~{$v7¢Ə<\;Xʱh1M83װ/sL\;M]Sp *3  "8ġV7=>l˷{J$:XG_ 5R@z|>QT{hW-ynpVZMs nV-ì ဆݷ+qdx=rAI~SD3!fJ[Y*O2\3~hyW`e?j̃J}GhOWEzǺ`%{2Ŧ.|]JĝE`F9`_1-1osR 9es's4#YiG)y<` i1cHO!+UN 9&+DO8& |DF!KuRFT%6/a{(_+^tGQԌ2H#q¡3B'ӲB!I"2JC|w0mOQ9.FpR.I&O DGT~rHٌJՌh.s2iIT%aPmSxE%~ΐ=BDZ{bN?Phnq:;IѴ2FZ0/Y|Yb[AlY3t4# F*c^I$So `*xk,0~ZdcOxŗ1|p@l9Ӧ{߷ \Byj QYـ4hߔEsueMQtɞrG4N==LX\q8bp|#7mAh8v -B\ 8l\ǽNG W -(Pv>Tq b0Ws0Fw-$3lBHeQV9VcS`a,Q9^cp=,9v{9ZQp*fh2z,]2 Pt3/̩ED '"7v$-Hr_Z,uc>7/& )'_]tk s6rL7d)AUb CS76ƐmS׌HiWq~bhWMl[4EX +|B}9LǣijEyb~}ڎT[@QP|,zm:A!ŋ}qK 1 )ThMf*mV~pvC '*?5O.cyדp큱6nj7ZtW %zDnE'X*8'O}_|=Ō*`"k ]x[.W3M cQ/y/#8pA#Ski$;nQ"=A=38&YS $"RQvAEHڎKg ETr>Å?(_.U)#+Ly0cUӝ@Ō`Lkl4rjֈL!>`akԕk!1M=|_hnRNZ\ xjž:SA=9tr74i9f8~§("^#|ZSmk1R ĚoHW_xꫩti8@0S_9,9C*l9J T ЉWqTO5A>O #zeO87$0ʩf].$gfɡ uh/L/x@ ̀F.Šgξ 2&GO2_'=Qlo/j0+1ŚNR3|Ԙ*$W.J<z_>pR!YiVfZ=DTHx9sP$~i HNڛP> stream xXK6Oζ%&I 6ԝFʒF>ŧ$'A,b}_= &`XeEnhL3FpJGhXV_@qaA)˯.%V2!~tJ1 tqq,IpBѪOeu^ݭ7Y! 6}U(XtWF18us^=ֿmX.~^Lw-RҀ τ%S,Rhf1SuVʺ/ 2]Cͱ˼۟Z<ɢ: šS;jL']02.hx=u^v잚S?w{_ֶ|zxpKxC; QT] *21ፎDєaQ^”1 (Cc*T9N{X#a *Z=ATDPV(M9P -{3Pߵ8l_:+)~m e#DrEo`+hhk33BIcYY~@pF\w=n󺬀p4á^o2?X|đe05x!L:DCW 8)\Onj{oN]8NбPP'~_CH4JЕGS"7R%XiɊ[ΔSCUNJ, |%bNk7'/PM-Cw zaL=M2S"̉+SJX*Q38N~uPm)z:a3.1qh f{Є+9zafڦ5 9RԕUn3ú24I~j@ϵ?GDZɮ0+< D͋*G`DG7ړ`yq\ V#+[0&~Nz<|@wVh{ytC]c%l )?._;j2Gd8ч-+VNؒJZK۷fN)ԾE&P|L-5 ۼ UaYCI.@o:*WlLM|M`c  ǐ/m\*e@"qhDeG2ce@qSV 9`Jc0 fp /|<|6z/o6RML"a*S0Tp_ƋJfwkpìB/ 5|ߑin+\ { ;&m!;1? /":/e?:7 vKҋD|5;Q[^­¸,i^HXi6۲+&䪉yc!5|Y=?v$Q^A5s*&maPa(LU7۶Yb  !p&&HB'mg٩oL>㾿8Roys8|~5 w}'AAE u`cƨFfO*t@UOp2#ft#͒ _>6q8T -f0h1 )IHL rAب)aK$EI/Kendstream endobj 1088 0 obj << /Filter /FlateDecode /Length 3292 >> stream xZێ !HV2oE6lc'Ӯ(3bVeX Sn^f4kaHvuuUu]N""p/nuln^}|BEϥZXn L/W2s?Z9W dE^-D0 %5Iz3\L GK>/c"d&9FԀoD[=^ݹ:ZfV4em}cߏokgrlbD~9iXUǴ]} ڶړ:PU/$A.t1TVPT=ܦ?XH_ YZZV˶N^ϟ8w!Z P B#?n>2 7#SR\ r7}zb7r]?THB7Ģbz8%cA1f'ə "zxЂzNk+yi^SBbkrAQه9f/Hɜ̣v`IlVV bPvPmo 1 "or4xÞi)(qS t^,by<4O/yI!qQbJ˜mNM19;l(? T7fN)&D,!\><"u-'<;`C]rl],3"d*gޟ|uc2e,}~ V,=<_/T>aP :H9ۤy*c@PՋWQ 9 1ɻux$3Gp,0oRTTՍ}?P9b' 6GSԃb]Hnѽ5=b'9dd@--K/>wC{ Vr?Cp =u2x7~2Q:hO:ɣܛpb^Bq}UEh*z[o\ޥw X:ofpV|V?] * LfF[L?8xϜSS~o!xh0N1r@j;]TA9OK@0`{+;mx [^:2cDv#- w灟%Q$ϱ,QPp}].`I9+#ݦW  FZ26UW!hwzу@ZyZ+KG v )QBUT6*Fl٩us"W]770x;V)bw:EpCqgHn-S*@ [T4D6080tx @%bM`ROH=!Q `s74*|Pw9*@eOwBU1]:P3^RN@. [o߉Tgp`4jb& yV$-g ̿bd(dF `T)+ڛ-~ˇp_4% !CD 2R_Q*`>nX4\}$Žߧ7K܈8#XyQLJB^'?XC*KEH։7% 8M֏=bٍCՓ[XaOͅ_3_$HC950>/d#BUc ctn6  ק-^9͆4N!M*n263\V *+@Ѿ5ga}| (e-"-HDa]z6MXS7cgdL 36/y"dMz O~ i4bu' JfSE&NcNo9ӿ4}M-7tpy~P^q.LckA>&O= ', /yaܯa `{d)^փ~/\DXnHGq ,@bzyeSWOt6ތ<}n…lu?q~3^e:BM{{c!_LүDi'0 SFbɻ|?>=o1R$3[6|u>L@_<*vfޥ9j;T3%/; ?@wendstream endobj 1089 0 obj << /Filter /FlateDecode /Length 1928 >> stream xW]_a}R7ŠS`(Ruv X-9Gp./IIޙ.1ɣ{/_9i&mxNs㌥f~\ q}\Pc)NI!-r(Q K5P2(bٯ3 i~=KRg- ǩ j;7_fSQ$62yzLS&Yi4b(xRFm`j\H[`? qV8*d6bgJ [MA*m۴tSܞIWwelweOQ֐ʯ&$0d+"erWw\ߛLhr-HK)0V! Ů SW{$rrLC&;4HRJAh 0|H.0*Ҭ#r` ڥޥߩp}µg?ֻXf_^ JVqÅ˥ѮjmؙcqrT~}(2}ɩHX(d M;8 %OL' NQE'CxOP&&&Lƅ{ Y357Z {.-rj͘3``#ƑS6gjlFe4U_xkp`TQМ#iIL/w0ܬǟ^߹#ת? Vg[9>rw^W`LdbI~- WPR+m]vd 3Ȕ ~^ℍMN Mlyn@by-nMѤmM@IBǴ@ C<&'_.>7#QAk%<ɂHU0*h^0n tc> 8T刲Є7=[eOirz/7 h"?3J92ݗ 1)lqlAE=mR7 *^Y2 Tsx.Xkoln m&\.`샐ɸvaLq@;>F ?U]9 `Yڲu"[|S6ձ2(+VP)ջŖXPb<̯s79s2타u oxTl# ɸabƒ^~y+aUܢ%j?~:endstream endobj 1090 0 obj << /Filter /FlateDecode /Length 2268 >> stream xX_/OTk")JT-p KYKʒ#ɷ?&hb,p73BE|Zvv~oş~H3 (~A[2㡎X&:Yn{&8TGQĶA*,S){`oiΚ`#,̴d]y&&St~vk\RM~t.iۀkT5mNEs=WY>H`w \`ZO_p6 }'[2gپi> @(?f{Ӛz8:eES?E8_F!;Oqk9U]Fi(e V>.mtW@if0Cs](!RnBrʩ8Hrث)¬aJ ˙!(8G(#[{&Fe,o9*0 &* Úzzt8E}y[Yy 'D{2}YS"޴:~s  g)g2E^[XxMIduƠ 9{mJ槃ݯ/kdž@1?[gTǼ.O*>iRCӕ}D~9=ԻqG`/ SX\q8pE W -B } ;4n#kCy "{tƲ.Zw3Ml5fdedCb A@槠tv GBh}@FqzKdP_ܾf~Hw~NÅ+M]Xv~!|7b25Džб5fG"LeI8PI_rqT1RL0QTq,~H+'KT bω'^;jgJ4 y6AFlL&3((M]eN-} mR,cD]81yQ$[dTI 梩0$=A vU^g^eowWZA扆bT)9Ur7's}_Vi+>ɷ 5ޜ6p WĞ)9h%A Hy-ZAh+KC%\TLLlt7t;bpOVպw,zK %'Dȕ߀[^#Aƻ>e_d\C=b VHRG{yDkk Txr nK߂s*0Ěb~>v1A$wk}PHs0 NИ)Qp'ԏ u. 3yeB̠aueA^8Kt(ޢl $ r)ʬF~P:};> stream x}Rr )$%e5 L<v_kA[BdyizzW/? wIZ銤Nr+dA+[Ѻ'[I!扭 s\:[2\neh@NXF ҠzK`#$7>xhn8ǾRIôϛEC7Sks}Y.!RðZhp=)XC- ?Pa ؅]  NiUYntJ*^jWqD_!c(+C9ΕG .Y lg11RX[fϝ+ kTv1> stream xUn0zWV ÝHS=4nI,je !%vjH]`qyyC(bx=DWlOY8P2] v@-klA%5I 1rS}_OReȗUoGC`]}H.xŠ'gtc d?3r#x,mW6It!ݺIt:+gܽaUt#`LAf;ʗHV}]Β|E-Їk2,/YzNQ)cvvpW̜h w+*$L>W-E]Ml 95kjB{ZM./~嫒9 G[=7*aGendstream endobj 1093 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 196 >> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1094 0 obj << /Filter /FlateDecode /Length 1035 >> stream xVɎ6'G p_$`rAe[murz笠hq=@0AHa sȯ[r(S{CeD҂cOFsqc"mTHG} ?-w\b[rS$hӆ,=+{^Һ[7ߊŧLT3cόŨH; 垀Z~WxQN҈oF<Gq|8#^zn33arDѨ'_Ko`C9fR]x KFWb 5vaT*8nUKr!FC4aniK*#<$ KD9<&lXmw `LҾ6t{*qZ=ں_+B~Vg"c.w:/˴Y=vX;vh{ձ[! ksI `BGS`ƬF{ 8q#PN r!P(1k%+4"& n]<&+VJ;dGy 9>OұG7i0;4{5wX5 $T28ǍŔj4cBiuwQ&Oi#ތi Z?x+/u7u߬qMkBaIkbaHU(jLe1O`~XKV dUXXձٟoyn|2/O_&O$La~K0lJzzEWnˈY#\;!5޳9VRdrtjQۧ @Iuendstream endobj 1095 0 obj << /Filter /FlateDecode /Length 1171 >> stream xU]o6}ן=bV&evÆa@3)"ӱ6r$N.)Rnyy9iI_/w F$OI 8'4RIMKk2ɟ0)2J8(Sq&Dq%PaBq!yLgrL&SI$]RC`%VZ]rn0P٬mq[nwf|"1NHz$㘓0U 3FМ@3o S)JATXE0_>e͙pDr\]tɦa§fաPmaX{8ZeL00QA~8 Յf CQ[Dٕ+zMAMlvD;!*i|o7M(ANg;13G)ԯfe^2UXQvY'.PMBW϶}}Wn5U x}(7\mwF]3$.̄ȆGp٬P#3#AhH0O\>cI> %LpZvLz * kta pNɖ SơHC¸ki ckq*>crE#spt7Q(D\CW4W)6̰ eIS9xߡq_UYP߄lBmqVeQnmlRt.Jۙ{mZnmثzrOU7V{/iAy Ha݃٢Ä, ˢm;LwCk;iw$&S6qT >eTaPV}ma 1o|{@p`BmTo#KeE62`6#S.GO~O_ߡוjre2>e"/ѯj\[)*E |Hi|-Ptt(!(bFV:@+k)GPJڽ[+_|U?KZmsבA̷`ЌK1 5hθPpTx[}FGGHH598> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +3a V4/wszƮ="j6KMOr<۸[fW;rCG浟[]Z]* Em,!i>Ǩ6KMOr<۸[fW;rCG׵+?A^\۸țVt{ 3u6Gpz@eZxX/e4JQ tVsws$Y~`I;s?(r|G,6Y(1#p;1@֥:N\wl{K88C0֝y^gSsi1bc گSڕΏE PI GܑN: -5VE8va)H jiHem?%F|>q;OEqڍޓtSc(I"IGhc4/l͜(ֲ`ztlj9KXR{o#$,)*d;uEg$:0bbeM[ sw:+Z Se֝$S6R0J䃜,'[XVDY|ÕW#h#hcI9f|`e y& FAhoN dxTe]q3@:~ [o4hnvv <xՙi:trnd4GvXl *,-|w1o@W5x{_s,Z@mg.pp=뢖E'>€Es6^ fHyKMWsDVB^5a@:sV,.m?)F\?tǯ+ޢ]?S\jv-ّqo1eRfiHCݦ,Ūy;db2wӧhMR/ 9ktVtBc#<:|]%ͽvȲژ9=@}]xX4cNJ66g'$կjRiИ!YngKxQjnyONEq~ 59/4R.dxpE,Fpkv m^HBDl*02w{t֪-g88g$=iw1Au &)Y#d:Ƙk"l[{5b2-/HB=;$(.]OɠEQEQEQEQEQEQEQEQEQEQE_PQ7 {pAQ4цKEtdʅ8$n=k+0j6Z&pAb5<&0߾}<Ȯb9P'GtTP/tG1區h#<4BHO,]nB>l cik@v~7R[ZHdv_.9`n8$5{ISJ{xHFL/qQ8=ryW ;? Zo-$2[Z/ 07dq,",vEg`\rX&Q@^31ӝ,67ӕ @wV,P\2dcm@-l%9ip2dLo @%IiYP#lᔌp1x[tP xJa^[S#!>|gh]/n-M,n P3淨 +;jot!#6:GLwx^)[ˠma 2p-n@PZlww*kŒw.6;i!Xf]Jʪ03$:m@k 4L,oP?JC]_]1.SB dn9LsZP><#gAj7mle#n>^F39|;3M QR`uPTqT٢1~Ҭwim>:]Lrm:GAfl:f lw(LjQ@AiV"ztֶc92Z%Ԍ"/uP!KnfBvr74k^W_EQEQEQEQEQEQEQEQEe^W0tEA$MjQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏<q:iq:+MOWM2Ƴ0UoN@\< 먮jKI5:"FY g8*8uym-R[X;0I <gSEQ'ki>G4Uې@W((((? ?H ϳТ((((((((((((((((((((((ƓFʊ+ =bc3gnRĸC cEcϥJd/Y~(-X+xb$O\zu?VG\'J:#HJFA~8M_ M}ЬM}Р((( ef:~o$ppf闩tP>ARA28kJ'SFރLֶk-oo1RV$( 02}(KB͕n&dW0x[k~tuhj(((((((((((((((((+ œ%k{#1ax3NNAEr3^ܴ&""͉>[mowFR604dnj8'{f’AyEsuܲ Y΋{=k(((( M}ЬM}Р(MpqK@Q@Q@b2Kb2KQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q[ϲ8ӌݍv#\hD+ f$P2A P/5% qc3R N=sm kY Ɍ2 qhOPNʼn(!]YH aN9 N)4 i5oGgP2Ha?0q5NDGArDI$v+#oÚlt3}) [9*zjQsԓIآ(((((?ESs_sf+?ESs_sf((լV+k뛃>+ȈC6:@sZvN%dm Od0` b<#{m{HgEpLD.[ nqBTuTIcFLv^$ --b,h| dPEPEPE q+^?3qAy%8_J` g\^^()h((( M}ЬM}Р( [ͥ%ȹ#Cp $qgZyMYG edRMaqênc$Nn#=YxU a#@MQ@Q@b2Kb2KQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Pִ=^_A ?.nYh,O`2N;^}w-fE P@bU =@#n(Uai]Ɂ0bzrݺzW|KxĂ>\clQ{,s]~[GupZ؇=O#@VcZ&cs,19NÍE $s >~9>EC*F*@ Җ(((((((((((((((?ESs_sf+?ESs_sf(((((]/F]ooڬ]/F]ooڢ((((j:( =kEjCO.UsO@wwoe Ms2E ;`^wZ|Z=\ K'ʟQۏpkM6g;!"Xl-mc!!5PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEr Λْu8!$ z~Fx< jM[ψ^7 (˸x'麷m=[ʟ| /j:Ӣ,–#'}p>Sm  :=6*i|9#|-Ho%-ȸrI:{:V"ϩڌrȇN[89]$)c⥢((((((((((((((((((  ((((٥m4v 0Iگ]}k|8 EOX_A5uZYa+kr 2 Oh~_zYeʿyΥWwnXl9a̗Z \n#$s@ZK,07ρ|?JR0U<+|]Q\~-=JD(TQP0(~_ILjDh1 ^3WiZMj-XrԞEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEgno օgno օQEQEQEe͡[4G=忚ŝ`tV'<튽ik v(rOy'ަ yV$SEdrCX*Gs{ӿ玣ۏ"hd:sзd-唁@QmG[qVgrg ]מ_[qQgޚ0G2@F?܌ Aޥ lg V1yc~:}f(((( iOw,x8ۡ}á݌ޯ@ఴ X"o$`3HՊ((((((((((((((((((( v[54ąBu@Oݟ³4+c=,TEeeJ G99Hod]H0=O jlQ);)]NQ>n}hI-rۘ%̡@'R};U+ov3ܽѶUhyyjE-2^L8Fr".{Ջ_ox.ipZB 8zPE׉o]h "I8ʐpGSQXgkwXp豦7` sϥ_bE#GsgyP9%˳$A%IN@@[UNnaHeG> stream xV]o6}ן'jo1 ZtPlhyز[nЗ]Q$݀!^sH9RN8$4%qe*F}[&Jb{957OFvߏ5ϸD"Bx&iZΒf,w!cwcal0Nq[ǻ+oz 5> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +#7V񩶑܌6 ϿkET.iW dPp'Φ#E;Ja=nd` eSigx&3L*w@X`щj~$Z@L3L3h\ {wch0!h뵜oiRK-O9,?3 \G?[55+T';w.KssJ]GRI0#@->""6o~Egߨ>{AYMhQYgxYi$XHyY"@TVo+7^]^[\L)\(v! 3 .n#yIƻ+3Z{K(Yrto߼#Q\zռKܘ]>hmFA&Vxc3C/ЌC#x 0i躔Q!#P>Ah^;VX(#?\Gqyd-7ZǶ hV(Ay^r<.=6#YI 鑑R֟ͨIv/#w24\6ؚ4V$IxPH<( ~h fQ4Egߨ>{AYMhQYa?&K%_%xdxOA5&nc$#:vRB{+Aeq*ctq ʾkkG*T GHİ)>dAK v94Aqs'clc$L?g34AC{oxz@o7Cq89یT۪0;Ma9{믳>N"c;sҥC.VM~uqPr?Pė{AYMhQYa?&Vo@4Q1;$'p2j,.$^9~ }kuk%!YƎ\h/v2DgQTQ|3fcqX s|ёOIEz~slٟ9l-ms%'̍cA4GqБ]P[.sH~E,GhC"YW_1 s<Ȅ ~: -#Fh!]c$V<: ܃3xy8*] on쥻{tU;y7}>Q@V~;x'0y:c( fQ4Egߨ>{AYMhQYa?&Vo@Vڎ7r:lj0ʡ=b٧h8\~d@EQEQEQEV~!-SZЬ?BZuOY e&WSymnwO=j+;]w $ۤa!A;G ]ErMqqb]ɉ $=[85:n ʨ"QD!YOό:(lzm2 1$.KcI=Q[Rulh%XU ,}wݍBKq6}808N\$l!?C+>o׬5| "B:n@7&\Dnb7뎸 !HชY"8Q(}*XIcY"utpYNCЃ@n9c\&qѬ!E,:5V(B*{fn.";PHKA&,I3q3=DijMu7IL!zPѫW20eaA"}ՠ O]M><k.&ep5T=64 K`?ODWцU(T6vjmqk6z|r(cXm9Aʙ2)?soLi\SAjЬ=f}U,I=hͶ97~.&A8,Ԏ&H."8uG Tt?FUu_sFo_hꮿom!4(nn"8+ɩAC#9O%ơis 4Qҥ[WBs K8#a>Y~`櫂x7,HGTz@߬ hV}߬ ]D6WTYM>Vki&S"9k 8#8 {pG_Z;icH"t6W9TjۻΏpc J_2ܿl[JDH$HT|?ZmhrH$*'g?_kbtI)Fџɀ4oOm-^u\R&=k/_ދE܊6&27X$X~W_,U/K7 $Vfs|Ԍr3RM!?C*MsLα{g<O5fXw8#~ V}Bv֠kK"iiN.P -兂k52 p9 ev#<_Ns:K@?8Z?C?o_Brv!v1$eP<b1snL_xf&C9 ʒ9^t]?NKQ~ omNOk9M7N[3 BS69vPo" ;[ q4Dc k}խ ѫ@j /}y\S5O]M><kUot{xm,lL2cp/{مRҬf@TُkCDYFhP;^YWRKxD#y`@#pcfYKoiE-d.nNSqһNP'3R-"٠U2yR]9t`FI<(?FUu_sFo_hꮿom!3ZFQYm&-cyH,i*z=k_B䥬~lln?0Fzu\ pXu ۗr{'$=";c t=: keʉr~` χC5~5S_X_QgK0+*Ȍn97V-dkB1V-в4,ysYTWZC,&؎-c YAqSvPC} sGXnvP'V?0!>ǨL߅hhQYc?&=Cg-hQYc?&=Cg-?8Z? >e1">b<*mB "pT硠 TV }P @V }P @Ǭ?oV?iiSƠH*?P(Ω ˿ ǜ>%HX)RG\Q$k"{P=Cg-c?&=Cg-c?&i )-{/7ͼj?/W>nWuRO}>'o$('~XmX+ mn? ץ7Pk"nV4э@e0yڐ nFQC~WfW[Z+L PvV)v>V_jԮTԲcr( 4Go+EO1iFnGެFϕ?տV^dҭd ۇf }EYmVF%g}URr ;V+/ 5Gϕ?8V_j( ;V+/ 5Gϕ? (6[V(CcdB)cl)$@6<m_-?"*}\oejbI^0dec3'ϕ?DYFhPϕ?տVjeƨoUETn仁h)Gxʜpp?E5ῖ QKpS֍U}-9}\!rPjeƨoUEgڷYc<[|1hQ@v>V_jeyq-VDF@Cq?ZY~`A?y)zoLoT^[MօgڷYc<[|1hQ@v>V_j;V+/ 5ZPr^yo ݭ,4W (==kF i[VQEQEQE4\{5&i[3agqg °um1]C.薏,`FO⹿Ii*Oayw{nf@ݸi  q߽;>erݜg^I8jAiS]qY8kB]' Bm.P)ʁ==* 6Y,-5i_NOy?3GVuR΀(xJ\Ӓi0YMS6كNǑiox͂3F} s!mo:즺mYΜ̒4X$TE|*}_B\rMYUk_pBEbk%,2vdr6,|(Ω ˿ ǜ3Teqv,ipE+.t8`I8= +'KIdm.(Fv FOejx3yQ}FVnOH堂 6&rnF$dg #Ӯӵ1{,ڒF,}﹎7?soLi\SAVCx/nd20qzkKeqOP:'z_w5BO?kUMr(M.CJe.~Wph>8 +[%̑)rn+ׄV9;O {IcfYaVq@ΊXcke"9 ElI@7B4[rCFUu_sFo_Ed4vG`qTWMC$Vko-"?-Q=;{~\gH ]ݛ8cW-\(*v^!<%rE #gp>׬աY~`BoO+>BoOkڃOmL#*DVc(nЙ6kَ˶-ᙇ'R}RQo5e"! 8zkHfe>f7X8=ygQvmϻ>n-sϿ -B i[VQEQEQEqO#IDo\*v}:(+x1LI_[U- Ŏ3$j'v3׃]?hI6:÷.t{fIB#Oozji}W?hj\JD[Nܴ6toEh#?캊p01JMAS?鍺NjVs;i2Fљe}졁?*{ te 6ddoD\p1׮koU,iߌܤggbx:N}B+㝞6dB/ˎ3l5 {۾q~g |GhZqz%1 ˕%[W֖jl T'jXF:?{ܼMR&g9wmbB Sk4sRiđeeXx# 7`5#CoB.hRwgktyX@$ڱR?v9=Q]-i.;`hz~;XR@$l&N=䍍3]T񄶯ljRɐUlq!\Tt2mY!Q%foNNQ1iyf`hheH888iVr$/b4ǽ_)0xQH!1yry|nmgvq^U;Hlm6D=NI$I$OZ+?[XFhV~ݿZTeqbJ -D<1R=I2i_s_@Z閶&fbYl˦M6kPdڭ@,4mT8ʏATPvZ66ı(F`պ([[{8D6GK#@?SQEgꮿom!U}-9}\!rPcIhE7YXd0"N8c} 1TPht8.e&Y*F?4Ziv&CgiQZE?jЬ?y^sP{!m7'Wf9x$GPCBZ{!m7'Z^HLAc!9d9c'IUdTPpAK IKQ(@*J( CBZ_uաY-B ( ( ( ȖRk"M4o/dK!.r2OXm0F VpLk0H\HNa @,Nul̗OSd댚Og ?}/‘VWMoJӌVSL\w SP{LִźvIGvBT[> Gϥ?S%B*[lch6 h+K 0'9zeF9+B$gU=/^Kai3@F8<:ѽ6mT$E$h?mg,k'_3> HaS>Ѫ>Gϥ?Q}}T}"MJC"\1=*odK؀2 ;{v,p9ǩn#=$bɪq bQB.ah"!"cPMf'Eu* ~TjQS?}/dK,}T}"dKY?(;5Y`1al PM?ܫq{H!b G#@Tmb%Rkz$7^E$3u ̵MJMvO$!}jojRl@]8.셒݈ʜzK}}T}"jQ}k'_3h?mg,k'_3> @` y>ҨI3Up3bSfh_b-vWq^ǖ: 5Ƨ -oK"vB9Hg5OY(F@o ?E> Gϥ?PS>Ѫ>Gϥ?Q}}T}"nΡsuuQ "5T.I?(Y?*[=B+ehUed_*Rm.-cS 6BA,5VF%ewePk'_3h?mg,k'_3> @5OY(F@o ?E> Gϥ?P~]A P31+9rr@ZFRn#qɐl,3`jQEQEQEQEK|QsfAY lKEPU13sW^k\ fiQC*I.^h(QE⬏ k) r ll4F$_=[cA]OxƯ?Ц bd$y׻ێudznY8kBzV8b^#5`Uuh4=*}B]*I$?2)֭.;UtG%J>2qOtMwL{[`2}Ar  NmeB';ZנLTt&4mn=YV !aLʝѾvҶc#3Ď24n#!##G7-r$|wwKU W}9U:_Bx!Gʊyf(c̪y~Wg!UN+˻_shU-biܩ ##׹ԁTF"$&&ۼc8\ [5)9$3Z"}"e]!D[!BsW4zWHTco?zi\pd# 㡫 (Ǭ?oV+?[XFM2i_s_L?w\_A4/ 袊(<m_-?"{s6T/A?@7}֭ ?oѭZQEQE#E/?J4oW_7hp@QEQE?jЬ?y^sP{!m7'Z{!m7'ZQEQEMa$pOqT+il p,ǭM@Q@Q@Q@yǦFh>Қf8ˎNsیmy~,"T0bY A9wenh *Yc4lQ >*q̷1);q4h)iXCikexŹN K|Ě.>VxcW>S^%z)0 ۆZ=cdےxղ6T)Y SI̛S,cұ^/zPxmn,2G8h(/-ۦOjo׬5SŁ?3!0p~l! y sjZ_OmAnA} 'Mpyc J8ڠH M\l& ex9ӧA| n[O tx>UK+r#-[Ks-DiU2vzg 5^m:}mkѓs.ma9xϵg|5jy >uL1{qgx|qG1kZSOv?tdgg6{;S3$M=<.Pȼ`r{c1r_n>ݺ-Igrn5ԕIk3M)HL?\ףk?Wħ,+i8&9z`^zڻgU} փ_ɒ8ks} 2H}~56" WǦFq^~f Rhvy\8Muymnq׶K vNɞfyNݿ9QEg}խ ѫ@j /"AdGb=pTeq5*bPAbO :j6mqFaR:OgQ]ҡCXJѿwsHޘۺhY}˧).Mg'E~QWgy/fD91(sǣ(Ges ZIi,(cst~~o>|{_⭇7/vR~f ا8S4ZE><m_-?"!?oѭPVV oqP \p56jNh~vB LKiw۬RW0@ょ"k%+;˩`0D$*ۺ|{b-4 R\JN7^€y<皊/Zim;Y6 d3pIq4MZQoRMihfm '`8ެ-Md dbq*wszVgꮿom!U}-9}\!rP-m)aIN#G)sZ5;g.f=(³S]2T>mCm8.nJGm+qj76 iv?P0f*0r}NwNLqFT/<V|? 㖒D*@A<8$Sf{\}~`M@83ڀ5k>׬աY~`BoO}N)5KypJa]y)cJսA(/n4 ivA> ~f)#G!P#9P{8zk_-M$%%V rWAt7ZiR,lns˷hpWbRxⶾZRsʑyOIֵ5g\YJÌNx~dh;#9۵+x$0DQ@-axWV8$@kbW A$ B?&5m $Iy\d\ʀ9 X#UfG|ߚjۭXBqU(((+ĔOYԬqtѓ坩=㿸ǨW&8n>\H,>Pyjʬ\K*.c|7q_E5ݻi }H#q3_yfy2꧑ԟ WZm>as)^%$}܊s/ve}3[vRo j !F k1{*\#n?z]lO.qMu7.)J+A&7h9Ccl=3޲, 'O9ϖ2Cw-"oDB=t4[kIQB6O3IԵs]l=kTu)]3kqDc $y*[]N}+Q;Q$ s\r]тBsHXwEogmRH- ֣mGZ+𞧲{~]Py[|hbWua#4VUɧAtR۞5rYT[ˋ/ k79 `pFAC]?@ >Y6?+lnG%Ezѫ\~8|I|eY71P֯&`&j&qk@YN8Ԛ.&ep5T4(4L RաKXQ*(#R@Vh؃x_MhQY b}R4f<m_-?"]jнȶř)}?ݫz4v,J=+7}֭ Ű[$䵑F *hB؃x_M  +?b}R4lA Xv;/+4iX_<_34L-܎FV0 tc>՝6 / ~-̹V|c{o}{~z2eTl888x?yyr0K/-u >SI`r2xU9oA)%|J 698ϧ~5jߗMǥAykr\+(Tp~U$$(^WTA՘ 6Wmy \J^5ldH{5^$Ec FP.bځ֑qrGUA=4TȾv_i%95i_y#nFs9^ ;7-^`vG\

C]* yD֐:O,p{kju^_yN[J-.&gkn֐D$ұG[tF<0(%Ae]`K)D88 ܞc?Ə+5w9Yr)HRJA' |ෆHUH\QI_"+5gJykn@ i )tI.F^ MұU4{h$ٍ%A?Z}}3J-V?oWicxG/P?c?Ɵ;o}}I2e95ݽxb2z*ArT]̀4ء]r̍C9-iX_J-?v(| g[?m>ϼ_iX_a]?*o/U;H^ƨ 1sPCM*F`J-Wd4uVRdGݫcx@ ұG[/Q;o+4iX_}cx@7Ӿn! -OL1ĈLʨͫR ( ( ( M}IV8:σd{@\@."1ȀWjy>7$dJU0CG>-;F|lnW]*:yRlVfپIq9#\p{sz̨;i?ڭd[`~62=r6i[1 hU)2+?/85S K3;i'X~ n~##hB A]Y2CS#j/$tCJTVmKĩ|K pX6yχzU&Mm~qM^.sUwf[9pga?!54#͌IVT=+G3ψI-Ř'"ph\g9qᔹ;{c⍧T\C$7,W >Q9隗W'XM4HO<1'a5VE?AIZżeyd"5"Mq?+>q 9;ȾQ08MljVRvy &20w#?7O;F=y5-8ͭGmN,[1HO W9ǭjkGV-I Hy32YeGZi IUtC+3gק^T˕/DEq-枢BS~[J|aoތ`E$ў\x5;KVAoopem 'ڻmhf`yjB~g$w-qriq >@@ӞW2oiI$hPF%x##Q* 5k<v2wH*dd'08I)n"K[ۘH65bQ1\ י-S)ӄ7sk;[HX # @8\^Oү׬ n58ō, Sh ϶9z@߬ hV}߬ X/#g1.B{+;Mԥ0IH26@ s`GzDMw-m32RT*|sӷ<JɷVRm'U$)%|F~M8* `Jy8@/j趭 ?%WmZQEQEQEVLDI@|n\ gn<$ m0~T뉅FCcc]3A̓G "RRq^Bt y#2HA'eg?<CKkr[sݴy){TN/44oEb (3x?|{mZLCX I5Ր A( P;VA,bՔ;Z"lL7 sR&ky)ilƠ =OnI.]~st1epB.wHo||eۙ#W YI{z̾TCNPN( CBZ_uաY-B ( ( ( ȑ5v8, )K ֽm$q٤θHt_iW,l<`'Xͱ;SCVV5'$"3Pc]2:6CVm?b57 P:oPq_ٶ?o~(M",IL&ɐcy q_ͱ;Gmߥ [[Po}~"36|ٶ?o~*@,KYyr# 1 1 $[- F`@O4 Jz @#%I|vܔ!Di 䓎OaRz_`&7q q*mߥ ?l/U]rڀ[_أ)ٶ?o~(ͱ;Rm?b0Ioѳ~֭[ͱ;NK HyU?+]Ik:r{ָ]_gRӛrɉ207$C??|m1m1[N' ir'%dyw%Z9Z "|nیtZxDmw㑿t(=zW g9ѴF*toC$w#9=oy4o{y.S2 y"^.'*xkC&+)">+)ϝݝl:Ò/O3/G;yX]pX-/R=^KX$l/TCm?b[_ئfϝ_6|?(eE}gmߥ ?l/P#唂 ԤzƙE^"fq2VQ($TAT` d֖iFZO[_أ)ٶ?o~(ͱ;@eE}>m?bc>vK[_ت.zcup-`S⚬fϝ_a1]*:Gi쪠Vm?b4\(YIPfϝ_~"lLͱ;Gmߥ -/QoKfϝ_ .G"WYjT@᷆67"jz(0* `1Hd9(((+͵jO2CqrdwI2#5 @hNm T&~ncU/G<eKﲴQGMs9"(RO@7w?B9cV}Tc=6_*&am%fyd`N[蚒;> bԏȃJb$䖈_BԮ IDa{/ ylu ofRTٛrcSÞ}RxMh|9ڨO00x#T>[k `d(ŀ$z?]EkWO++ph<:D:\Y{AOst Mff'F{tG[lU mte@Oc4o YXYZ|T ְ/hkֺ5w{0?zsJX jQݽ34K*]ɷhQt<1 N[DM& 6D`ڳ.l5$2©{쐝 #,~[]M~kܿDח0G$;5&D&69'x55DCIDOuY/݌oHbxv~.;AvBKx.TIFiiW+.]@vYSn/_.pRVfbYYk;y^$O#ֺɤ4nF,3szW @/#IMY4:+ ۥz ;R&88 +ZMCўQmjbW+ d:csͩvyuq2I)AyݸH@8Xs-7x,?,21nbI\㎱ۉ#>Bc7<W>o_Cog;?wo#mVYo()`Ol^5 Ryt8Im1q_Q}ńVs:i'*$Pr^3ag }m6rs 6Whݰq윁5קOMLw\Yq(g# u=Q[\R6Ξ}˰)$67W-Z]O5♀Q,ꅼa?.# ">~]ݤAc#jF[9'ںNU%I|{k=PvЕe#VL/k ř}?ޫz.&ep5U%ox?QЦFfdf8?O.)u&feqےIxۜIZ-/H$2̩j2![W_w 0y31o( =7PXpc#vӎI5rܓ~KK͡NS*ݵ޵ 7ZC=Aj @Pw{k4m6I gxQ䨯 ԴvT[" ȬN >r?e\AӅ2m[&BoRyf_E l.ll3\C {@U6jnnypK3G(DN<<` [.Fpm`'XA iܰ*l~Gߦ3DA*\OzzXy>΂"lm`}I]uSK[Kۗqӹϭ\(((]|sq <"W>y]z=cƋ+Zm>bh':68z²m+wEEH+o-y)Ia,+p# -SEbAm揽DdVAugmxnD ζW?OPlo,GpeOfxs>y0)k[՛Gc~OH?TE8;2l $ec;+Բ ;^5M"jҭ4e1Y%˰;vɪZ']L-CF?v?AҬU?RZĶex Px nw=W6qO,rI 3 s;G8qV$\k6 ALp$ %|+dHUI n׏NV/8QLȾEaavj*$;0d dp8?K̛,YqHsZ壏ፓ1($DCހtueiuW /$o>\ A|=9m~ZܧX[_AFtovڔ>&I#]98kZ]JPr,""'quf6ZNS9Ow09lHzNxiklFrlg+|!\I#?֨F"q][X#%=K8#,:Vu;9wgKnXdy o$M| $Mݪ4.@# jPknaKec*0! c6]0[BHB2 `’ [mo߯KV!-% Z^T۵6|H\ZIys˦\J%vw"}^{iV61Ko9VuI!Ov-->ߤ i6C'+ⷚKYmc%(.79ϲ_ lDYFhV~jЮBϻ3##T^WvyNwqntm6tE(0 QҭgYmH1y7}}34ھ4< DBDyXv,1;g85PEPEPEP\-VHՅͼf>L*+өہֻ.Iom{q̓C$V 8  Q89%~w_QVEP_Xǔ5mxl`I?_[# x{T,-%ʱ?!¹Wk{2^zhh1cEIm/y.lVY#v\%~B s/-=l; жprǪ =C? KGES۽^}47dUW>A[;BH̋2ڣd&NIBZv gÖ~)k+=V;-H,>~鵟V+&ö:?h$^3HPw!vZ_B ^:<_j}:;Xk< BXt϶ ˮ߭Ψb2efP GcvA0MN+DO1d@]9tSZ>ԡ77{&+HCRG `ɯ=rw/ki۶C7GԖRX#tȣc|=$g93Et.&}=Τ P4kXn^:`79KdU Q`E߮M-& 0Ϫ[j>l_iک '?LMqYjlS1D/`Rz*p}*Ůkͼ5'+M&YnݼcԞ9mc{wv31ӵiN*0Ym'2i_s_L?w\_A5j־$n3mn&Ujt՚-xlb p}Z2;;|8 l|/ec@UF /kO,qwQBt B:J­>us*_, = 7 #w#54ȴ >Wך3Yz Aoēt~.nQ,K؟3h9 8낸c~;7eQfbq+\zJ+VOM3-3Qҵ:ѵ;/0AlKeqOVViZRA2Xm遚i\SAޡE(߯:'z_w5B4%uH1Q$mK- oPB$IA{[&?"Qʳ'5iwvq\\_dbsIOUOjI4WgP>iu6}۞ 8VZFK]]7Źƛ~{i_BHsug;5ERHCuIqWtWsЅGd3odOV]Y>xdž%33L;:9*0hI9 #*/?J4((+>׬աY~`BoO+>BoO((( Gsq\bKooB8XgV^/ \+x[qZK$!B\OEs:̺BN߼p7@H0z*((*jir-$C95ܬڎId9S~&:jž4/ۉF#qZIE ?/PFYogolVypg 9k{_O-sɏ~%Ə_h>A o?]g?!mK1}S>ϪB@ Dx)n/9+\1 it=@Hti#omXwUmZMWOүoEhPԀv8jO j:V6*}$bOzig}M>+bd%eVR G~/_k':Όm=Xr() 63Uu RNiUٺ1jc~061޽]Hl[pӭ &-a^3޳fֵ(3v7ˏIqj_iKqnm8]!r>{#ثcgN𶟥X5ͼlۙca'jKsg5KUf5@i)lmf3߭3ݘ. ڥ4q1U*ggQQoCyȪQL33Oom"ʛxG*A +g wX{kj!^E0 󎞙xm7L3۴Jb&T,$x̬؈5e[5SpdtMӼ/a[lw 'ָ޲ o<+s@t|[K4(І$aILkA￲c &?nu EŐ9ZS-3! 2{灻WUե &Q*$>bA z1N5)rY?1c]I^ʜTn&uK{NGg <ǙבFQ{&.y@ӱ#k IcG^8Ķ 0Ȑ[hl`3G[,j#5pw X<jWOw 4Y}$${q?O+G+%a:+F+4wo,FmʌҦ>A o?]Y-'<6ュe-Nxڴ7RǫA0sXl8}_ pk\l^xFehw 9,sT:[ط '? '??/=DImkr[n\vsWOaLc"G5R[_ՊgsiEvvh|(f,3M!<ˈe)8F%>ZK- p|$oEu-IK1}ShR+j6}E@ɏ~%Ə_i Z#gu>?cktE<1Զz|V*<$,$z}_g?!m[\K8Y")'&4Q=*_hԦ[K{Y#͹2ȣ-td?wGL}/4}T.CK1}S>ϪB@4[S4rf1dR *QG lvQYeWMBP)lqJmwcI6b=0c訢 ( ( ƛ˩;!RF<7Px{ElaI sW>@āH 7-:Mq'eB*V/3Ǧ{]N hٜ0tl:{gԮ<(;y^[\F/$'0yn?:Ӿ!X^-ʤcGkl<5彻<ȇ.F`~cA׶{[~+ʊNvʾiot!T["&Nyzu][X Ui?{' zcF4ӥͧS*I|$rsIvZxTFa9NJ qP_̿xSCGe4(f\ʃc֡[=LI6R1&Ol^6b4q2uJ&51$L|qFET-vGF&)M5.j|1\iMٌ>O/| wz`pnb;W6Ū[NG, P<}w*OP}y]>x_^+L=͜RP+X7Ы^P睭e70%9&~r~C`ӌtl[ڔ#$FvI'1gݴq<"y A8w>k[tOGm*BRJRTgSfn^5 m1%K4IKPc3L}3Shnm&.2\G}X t1Z*bI4ʀIٸ {g56[j/0Y/>,vΨ>$IPIf9$p]q^kO>;]?Tf=ճQ, :xLbIY~xz Mim$MnB0_+ 7=%'d]5~uIE-C2i_s_L?w\_A4/"zR%yRC(7(A?ήK+o=\u3kFVtM*F mD_SYq,1%%屔m!1 ?(Dz#%)nr&88 `.kT%ܟiʌ!tfn:FAVbwW^ g=̛i# kE%ׯ>YX #I ǖR Ƿh'<khtz̢ha@-lC lF41LAՅ4]Yh7}֫ $HIB>3ナ?><}6Ͽ=vt/r[b{mQ#=;fyv]X/٬K bkoG9s;Ʃ ʳC퇌c],>1Cwh$'p@˷x㞹dn$QO" OrPAznF/kWOrvWyuɖ E*$bQX\# xek$_t)…NXIKϡCn&?3w7wǭhrC(yk,7[nFqqZV9+֦;\ODRgWBa;N+h%Gh̒y-#A;UrͻiEXPw6 -ݥA#["Tzg5o jJL  /#BprsI=As=8f5&878c' QMzرܠá8U!zT1\&v UZ22I\~`՝%8Gf~5Y~5H(4dzKKڴ+?P]_EhPEPEPEP\ڧYp6W~zWUTfgo-C?[i |_nhm$q٤μUeOwqyןv%n##Qi=q}J9%S4/PH yOidd(b#m?>JJ}*iLʭ X\:9V3ɨGR?5b}5hQ@O5Vg1+ FYφr<4yRS*mHSlc$m*J?u**rN#@yE[.OOüdqc%_*8=sb\Y5Ýb8'8duF Wn:+ JR[yM:UdQ f\@?SYc0H#OF rN8+M}Qt3.5 S4Ś/4]l~y9^OWywO4ؓylOOG_uGfmRO4Gg֡mm2,EV܃)-||jƛV!_mRbY ;lȿptzzE $8D¸j ?nKJ\gaGEmГtZ+\_tMZJMx}@XJnB\[$eH 2y!ѭCЈf.#O[>"ӡė66Ԃ#‹'ɽC*6 0oty5]KPK 8-S:-_  Nqϙ.iTqZ|"$ijWhnQ?,F =ӑ EOQ;1\;v^IimJ򗄽q qe@0#:Ŷ xTĝ}t\kwy^nEPHy~pP# 9qMǬ?oV|]7ŲD[ۻ<$B!߾@m$8&x$ʿ6W !#؊>f։FE2i_s_L?w\_A5=T,&ԿPĻ rr޼qZ$1F @lpOc^Cy/#o}]%lb2G@=Sܖd'>2M3Rկq1\LyLPPmJ(b88s{)uF*:Q&-k$7#'* ^杍ۄ ovgT\lGgӎn-ccKˢ5Ԟ\.F)ۜ dULZr}EH Fx8`3\Nq JNE̪A+}С NNA79+篐_iWrN!B ``N2}mi )hS䊾_S&tO?kW=;dYgk`ʫY =F:VmzKQDW7)T1 wʸO?#Q3 nApkBe@ xo˵릟P*4vH r͸Gu+"̓>NbLwPQ9\N c#iYS!<]nTy.R8vڋ^Wv/yGl` JRmE}~-%5k-3 wst#dBA8^.MJN.ȷ4FɀO#$mi| ]G$s.atHM#I$\(`N3Mn^}dt<[7`aq3<%z".hJZB\(B۶=*շ/?J4oW_7hp^VV34(C:h:[Hs8ǾiCڌ6%űl9/(IdڴmvY%!$.u>Eb˦Zj},ݰ䃁@rA5bn_:NL1xnWMni7֖g{ַx ](t~` q#Sm`pG9zկ\,F/aS'oT1&"<qqQxz[^dAkyo#\̹[jpzo^1@ݤP{!C̷lnR\6B`T*[Eg:<[l PVտT=V6iX6ֳ~ATAMh Hσ-[1"I*v`N@82Hf[M^g{-B8pT8cO<o[n/c1MJ M>H*ޯaR:ڎkB[SJ+2tUO]MAoh6Bkt˘EŴH3鑊 I!.~6Td4B(UT -}B{MKF$H apz3ӿ:/'V/;G()+1\W -'$?-:ʲv9c;U쨥U$86%[gjUQwU#qɵ?yn%-D1$s3=)g}ʡ~R}m \yS9k*-=<▥oCzuC-u<Y**b $ddoH3xbduvDYq`~UDZ+@x-CW r$'k)\\\c?Һ h3q.o$<;Os˟NJj燛z[.^[MօR-'ki`f?#/y: +?տeohBuo7y:5 i[Vf엖ۺ@YnI*GRҴ((( +:MBsw<M0g2*"ki4GFk#ĪFqߑUl5}PaZTCl?օy^YOu6(#idT>5g aɰ9Zս{0I ;\?S[Ail$E!}^{}$PAl*<8P}PaDY8j/kJc%'81rj)]PaP_jvsϦ29)8&}K[O nrncYjojF8Z4ro {)s[M6\Xi*CZCioC E|3^msf[V)\?6vlY&EQH,q7?8Z?Vi!w6ٔʠмM&bn411( Xog>k=@ n˔)^{s`g妡Z]X[-Jª!`qTayE+}PaG5Ed3?횇Zd3qF${,GR+NjˉV &`JƥpjWĒ.pfuVuO]Mbx'xQ5!;ECl?օ gPaG5Erz#5Ht>U`vȥFWQo*AY0s&c[ZyGT[y#t:_-?"J;Z wgw3mf@ֹ k{xQғOX]d=quV߉Ogxfi<*x'(.寶j ?hf@֭OռW@}A-d3?횇Z>٨0 (vo`i&F8*qV&+}YifUsqZ7B5 KL5+OQI@DAYtpW{}Ϳj ?hf@֦t{mUPgoL-.{ǝwq9'{-iPaG5EHl?쯤ky bD btpvz@_޽EO,@$횇Z/-dkB3٨0횇ZxZ-nNsDs|3&6٨0횇ZI7Mo'; w8jgǨN.ɡUa" =hV j$Ni ӞZm=G?;̒h:2ʈ#$R9Y0Fzx5z-4u:ZyXF=Alp7(((x[Ygh3$Brֵk5 DW%/ŹHo=pt0I~1*@*(]Gc̆Hy>`Iڹm=Wȏ!z5|s|Vif 3J9֝O7{gm焐JHGNZo׬5SʼnF'SI7Ʌcbl42Fa=FK]Y^C>/c1\׉`Gp!an޹`2Iܟ|H~a ˍ3|=0sק1O?p; +}ͦMO9o+ 2rrzL(D|!pc{*i7zF׼e5Z+c|ϙAt=kZ?C·Zm׍.ﲳG1y OJuNA>YUk_pB'xmDHN\5M:JK8'A (TQ`\׍趓%C,ՙ#mk8=+[IK;UY"6#l#H?0L28Nq4Vu޹Y^%ҤU@H1 d%΍ͫx̤w`p@@EǧNI%>Ufޯi/xc {+iZ|-4S\Z\ 8 FOOn7Wk4xˆhyeD8KlK>vInh?<c-#uI[^mt{& /M.{V2`$qޗTeqʘETo qty  gy8ӷ2@'#V ڕȇbm,N:d~u.YeŤ7e|qGL#kԭ`]n{ pUj Ã9 q&֎mNAu/`K״:~]Ap89ǩZ_-?"YZͬl ,^Y AXÏEg\A<*hV\ΰƳ= 0=M@K1ls,YqǯRHn'dmFN=@ j$C 2X|(W%4RO˷Qu;on۫#yDČJ +rlƓ:<,:>5y險Ɵ`ᕮc#3{R.8`R0p;0?ZQ %md!uޝ?ҝI xsIyXMSm5E'O j9!Cq(?0f#ƷPn8b=u YF= f;sǩ5b;Xbϗ*\;Hഅa8b\H*KE;[C7y?Կl[POwֱA:[jo'#9R&-!${>td?V-{-"5D0ݵN=j ( ( ( lޟJcu+t ^]"O)KV5+"-*}q:q\z̨ݑ4VM FDV g'9;Ӗ+)4S<x+{W5*O;HЕY!d:V?5ML%cWAcPEID8:ӥ*hG3)X? 溞-NKcc2`D#.Fn C'nj9Zk}I8@V85G#vucCQZJm9bc**r%|;J7A6i-_0%@q5wn4D|nQ|~oL[17ֲVWS q?74+kj\BKsmQ#wG01듏95V5h2x4 *ݎ1=k~o{},5JoDw`M[t.v7^N8xᰂ96"Â<C)βD;qNNssڟt]a'xa6 J,dm'/F8Ȭ)gBnZ{qs>j hX W#_v 8v8Sp? wԭ{3k6!W,NyGL~5x .t'IJB2cZrYٞaY&6%b A|i_M33.$ލG n$`^{Ry崖pt"|v8ZEVyYUFr`gy7vUN HZ*欷C4+px@霎F(A!v6.LBB,# 玹Sc-i6Cjؓ+9s~E݂w t4> %+k4v(ls#sƊvh_;_kt94/tn6@nlcAY^UT={ 5{{i$B%ch1Oj? Ai cM@irI$y;gjݿZASɔխ]O]MCo[$,cRbtaM2i_s_]FV }@ bH>=kͭ|]qg y剖.7!8^<)q *G j]4!>0S5]N$!ݽ܀7* n  IpH*0>Q9Eg@'lO<2Gr%rB;'x)(YmmWWDLDmD貄Cp y-ɝ4p]AltQ2[CyD-nS>8:Rҹ0OWwx]l Qې \5#nѬt6џtWV.7߉4kMvd 쌾q+grz.ei%kg<)gp\$.Xsai[j6N*ed*Ak|}ڴi1(*sntҲu(C#Vz $[5k0`nrl̼8 [{MQv_7mΩ{3qy"yH-Nz.-㹌$0qʰaL^TsgH]m I-#+IԄk5BxQ8@cմY;]Qݳj/ۃjmna "7fF%? t𥵼PD$%vyqs7'M(jz)Yni>c{abI H'K랎/Q/1Ƣd%m[NR<+itmmHL6b'Hђ0˸u$N =k[xɰ0OzؓɼE}vjJUcd~+'F}ξvIhVA 1Fذ\$^sֽ{xOמ⋋xc (%Cr~Vn涥)4 R͚ 崃$ yaF K{]6c 8$S]ͼwV`8.mPLrF0jTv$Ww#8*b9d}"2@sVPolb-m Dq E0*mM=IF3F*PGҦ%/RuUKZKkw,C4|돭k@Q"K+i&f8R9ëga㚃!i3X"Pb8v5TVNJMlyf=J)d.!. :ߎyLln%C=qc$ﯬnnlbfeޓFl9_ԑ뚄h% 8D<nd"RFY@wLC?=H!TӧomnRB ['9jxO*Ǝ0]qpNq<62 Ͻp{x푒0@gg99cQ(F[_VA1FҽsV溸ӯbnBҮ ',zW[[m BO'> stream xn6.CdE1KvހIդ ŖeHr})R4Ib$;I?!JS&%1K(Hk3q+9l9fDk \"<dRjC8b(%F()c = eg/C1D*SqNm߲'SD<+R%1:S~ii "—ΆYX>W!^8JlZb''hAm?ax&ı %w00د$Q(wU;4MYW7u]߼ƞU,2vU_͹wkg U U1x/QZh6HD.τRjW&&q +|Se Gݛ`LNԗ7pg3]ƫ"C~NJ% _m:]}aі(wJv;6]Ejpr.44_O*C79Tt2 ]T!}ݥ40IBwΆ ϙG.&1|Fq3'"m,~Ι/ZW b$߲Ů)ew] @*jDtcC~xp0AAHƈrZ:>ݴS^֩>+ta)l{_ZwZsI7!V ~ҷKj{[1C5XrL3jjg2OcSc7^j_[է >]CZTFwkwiDЗMΩt^k||-}&xendstream endobj 1100 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 19504 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ('-n#|\麮ܳk.snOMqk1~W/378^? +owi$Hpʅ;AC]]5RܼrK3;pǑ@4WG_\x~ s(Վle9!dW{_Iq LaU~0 dҢD5[˷(s#>3҆+6 s sH#'\N}x5Xo* lSxͫxB{lE]J r1ݴ.3@m<[w5݇R4cDI]އ9€ ( ( ( ( ( ( ( ( ( ( ( ( m~>\X۾-X<<]E`%mfس#2Z=֥pd>l-B9ע9Igmm[ _ʿyJϸԖӭ/8-Y{ҍԞ3Ʒh_-<==տ$w68F k+xWlPD_@KEgh5EZ< E=ORv5A9I$5Esx2[j^M[CHt q+N )"丞x- FB8ZP3.KX!O0d `r!* ]gW֯Ŕψ!z$q6]uJNym]kц " [j>ma0ͺKv? uiEa Zmi w e3<So|!_6ӽIʸ6aJp~(qq{yC0#ہJMuUGieU9F62kT\@5< -+̹C0 cq;2{WCEsC:{YA5 2~PN1n! *u=H%x{VkFA%&>m-n!]̏$\ל ܢ0vrxj- KW.g ;t[Q@_OxDl=r63 uZoX[0,$L#+FO,^+ԖS},R"-B>^LU i֡=ךo`7 )#z(I𝶙﹔?ɐ@:c5>MmY'ϕqn]A:A"(g> ^O$SDHU$< gtQ@Q@Q@Q@Q@Q@Q@Q@FZ.+;y眳M]VR2<@ E{s\  PbII4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EQ'ki>G4Uې@W(((˻,ghRt1Az0;V6Ev[w,0Oq\zh\L"Y-E$yR38lxF4{qȠn$mͿqI<(V "y uGMWRheIdV)HA}"4zƊ(ܢ((K"BuDYi?.LCNl~d㵾Ս(vW;;43[r*ξq`pE} [Jk}/EegSƃe{+qvfER((_D$zH%oHpv> 7ss2wircVGK)$c?ե`H ;׃yi~^}pNZ:GJeQX8)]7m((() $:KX^+ŤV+?>@V?oWhұ\1")QEQEWB˰SWo^Eiv@-? RFS]mxͼ&p#ӂ\_SؒM3ޑDWBX)x s%`JC_ 8I<vaET(  ((((+K[[&K[[&6(;kygvd^˫]&6atx?y\5 5]R\B0*~aVrM݅Q^^_cVDU^][z6"Oבd~Ugxkx]Mi;EWÝ!EPEPAGdt"~Ї\YԮݩ]"yx1Uɪ6>_S❭>./N2uT_UcݣedCpPiՉ˯f?V{ \QqQE2B( MtcB)Y567u˖uX? ( (6)65֒W ~\5ۨ<~a]UQEQERuXݻWgb1gbY'~n[cppMX:z8Z.]Š(l;i\.rk+-.8uoǥ{Wp@sOJi~g,ܞ(( (3_7?7kB_7?7kB ( ( (2_[fU/#7/,.pou'jeww ;A]!x]$3~E 9Ï%C2j)$O 'Ҭ]/F]ooѺQ#$р?Jx[i-l['?Zߢ(G↤l|/$(q%F;z1]^Y7m7܁U102vL)w~U/9,:nfߕ,: N$E~noʍTNTzZ>KXn"9dWSFEK\떺~NC?*q哏c( tp m?ZUK?D@< *d5iR0j6Lh霟ygJZ*/?|9?,CuAaڼK=1QR1s (<(#K.,I X8)gKK2=|POߥ_jS_h=7ZEWKmOOK K\l5w,q-wTQES%!䑂Ǡ1P6^xPKw~\ %Ԩ&M:C+kVhL~*HeYIP$P}zg|n}Og~C袊>x(-ʉ2<_*jP֯~0j ( (P{cQkODc-!x]eQE/TjVOi:8MzUygē(A5wta꣑?ɣϏ&=HOh?ɩh HOit*@'8驨&l*]$Ym ukµgc{QHF~hV~hPEPEPEPEPX_A5X_A4EP\7<A00ܯ>k>ፇN\K~b(L8(g*ƝI6.Jrd&56n-4[aR?Vh/;B(?QnwuwBN?LWk&DS+eTA=> z% EW EP^໯xbFQ *Obyp2ꦺh5ϳҊ(@Т(3 '2D_8qa\*Ǜ&7(ﬧX}s >ϮBOZPOY)>A ??UkQ@<ot\^M4qQSݏ]MdY6h1+<Ӓ?B+Z ( ω#$ڽNQ}SBjr# TrQE}qQ@Q@ VdL:g{j)|LQE"3_7?7kB_7?7kB ( ( ( +] VOt(`q98BV%GF&l]7w>+(|& ]p]_}sWקIK $]ʓF?y?uMϬ>D]z2[:xk*y@6kѭ% I9I !A<€$FSms*!ߟVN'uq*6{db2KQ@Umץ[@jEZ>h׭;/{P csY} Ҕg'MY(A]7È<XR+A=gjw0Վ_ּ֧&~z}^Hj(=:Š( ٛ_1P;pGC^^1-4:ՠ6nG+#r5%I|QEp\QE/"$u#'B+9 =M{7tD̄ws~^7uQn%Ң+ࢊ(?&o>,T~8ͮ]uF(#,)SNZ >~%Np?Eo΀:( ( Ѭs[Xхzr,>ՠ}F^A'O?+0 B[kE3vX4mjwyryz|m?Vh.O7X4.I!pZXiVePcES)]ȚQzjZ%"E|7jWŞQE3Z3ZQEQEQEQEV.#.MmV.#.MmQEQEq8]@OOq_wY@}3זd9q]娭 +3 ?_gɸ nG?Pk+ ڋ? i-ш#'&k?jPwڒQ_tQ@q_6 J5ːǏɱ}jfqi'ܞ6B}2:Ayds6䢼|9{'.VnOEWHQE3Z3ZQEQTu5YodqAq]\ՖX1 22}@V%˨rصHyK끴 ryMѺWWot-<6( 7|ܟ@RRX_A5X_A4EPEP^/ˮ3 ?#5x*_:Fk+zޏ97 꿕oUW{5WARXq_JĂ(5~X}k .G>Ҭ#~-(6 ( (ݠR9ڌ}ij[X~wo`?gvV|.ɿ}:MxaD?PjW~`QEQE"h[P#-?cnD꽊TdҬPۘIYb/vl8?һ(((O<5Vw/CSkCۡ(Q]^L'yzτZA$6~=6?xW~oYtpAC{7_sԙEWhQE3Z3ZQE-\W6m,g),6LvD [,xk[Y.D`gIA]5 P Izfkym+y(" 4T#IxV͵ C5l Ƶe+mr`}QN3),B.2ǩ>Itkh});8sUKhJ‚I?j11U%oC AEWAEPEPGm~B 2#"0Ex9 {(u* ^4ymC#F$\xgd=-B쏼 Ї\ zmffyOX+f{SGEEW|XQEQEQE ޤ5*ƴ!{JػwLR}k(~͢XBzoњI(u#"*0+<*ѳ%S( ( ( (9o.nUN|(((|V1>HejYI<edV=lxH?J+v(ѕҷ6?@+b ( ( ( <i \\YtoBHs>TRk~_4Z>F¶?夒7>GwR*~vVDh<((  ((((+K[[&K[[&6((O|Tw Hx*mM.1aLOn1 >45?kzg|8rKfQ^yaEPEPEP\woZ3="Lf]Ejv$_̟DjTohG]Eᣳ3wTQEQ@Q@Q@pvQvKrWy\ece4sPgEPEPEPEPEP|BM)~(#WytM8zo͉H(Cw~|1`b]g]WQEyg QEQE3Z3ZQEQEQEQ\Ԛ̗7J5='O[yZ?& H@8 OElh]:i8y##=2= ˭-[U˭-@TQEQEQEp?^v7?WĂZ EϭC_+e( ( ( ( R֦?Zaj/hcΤ޲ ^?/p?]gKGn`Š((((B`S_\O]k@}Q@Q@Q@Q@Q@],cq'xTczg{'hf{၏iEz8Z_?|:(((  (((oo:՜ QX,Phر#0N1t:<7lޡINSi<8VL]ėw 塆Ph1*C)j=2o7yp37lc'4%ѽܿdqϚXyi1o}[˭-@TQEQEQEp_i_?+W_qi+?✶oK?ƮI]]v讹h/9~n(B(((kBWQU5ߦݧq~ݷ?Z?➜zqv5uc~l((((+E/I03*wd\ݫn(((((/+Z[\~LƻM_?\?t̓ zyv6ؔ~@Wmi_I7W=Q\FEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPi7xb#۴?]춉~P𤞢x=]`ⶔwAu(FQEQEQE}Pҥa#P'qzw?Һ~ xV#ֺk;ԓ ((((((((((J:=]A\_ȼȴ{ַ8/_OK(((  ((((+K[[&K[[&6((! J??1kwǣ>V**@((((> xR?#]=s_<+mةL(dQ@Q@Q@Q@Q@Q@Q@Q@Q@a󮲹 ǢR5uModQEH(( M}ЬM}Р(((V poiXwL\i䛐H8'g5Lo\ͥjR9d#*8’p3xw#FS0,70m tҬ]/F]ooѺ핤J*EVX&IYOv&6(((y"ܿ{}FGDYXHH#b@ (Q@Q@Q@Q@Wo뤿1Pimj\*X8,KՊŠ(AEPEPEPEPEPEPEPEPEP7eܺ5tZ@.cLסӾQE ( (3_7?7kB_7?7kB ( ( (3[E yGyLʹ, Si6L4 # r+#+g^+"Q@ph((ujRZ;f >tTWqq.2osHHI%vř0^~>zR5(;h!ƄFKBۉAc\ꚇ.OĒ[*юKb5__ ɨ_}.o'̘g9]'TȺgRNk((G%Z%q: }QXEiE%&D'V,[ (tɥDy%o(7jmXMbngAslcʋ }y;Z+yt]N+`y \(03 ffDh8'WOL((()kh,Kh·uHx^kȳ)U> 5IeK xdLH + ܞN@54Zmnd/o&ㅍ@䜜"MK !AOU T-QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEbe*+\0ȧ@ Җ(((((((((((((((endstream endobj 1101 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 388 >> stream xM+qbv}H+H!JkpzlfDy g{Ѧp~g|> stream xcd`ab`dddwu041%e~WewysO$S2s2 Ytj\ > )geX$&9.|nnn!ţ5endstream endobj 1103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 257 >> stream x CMMI10P  x;:= JhU@I_rdjwropq}AhOjj TsnnssnnsSK\M~ 7 Ed:endstream endobj 1104 0 obj << /Filter /FlateDecode /Length 1055 >> stream xVKoFz6~h}=5nqD,$R]>T9 qvgcvQ3Kc&w׌g;ʸȍ*3ᔠ+9AɍՌ2YRHKWR YFP*-X$Dy&[.py.F*OZ,)ϴтqx6^h)"xawc8ml%J3Cʀ\"$ӶGՏŤV4"5@$Un<5GB'ɻu.w0h3&-םdR+ uMmnQb_5꼸O{\;u#2T!Pu)vC]v gzI6J7Chw^v84";CWav1Ɣx?,a8,A`39mwS #K56#w\*  G. !8y?RK ̿ Lp03%b)~>-#4s:=F#nHKyRC`¥]K_T׎1-_=<.n9yf/6Wpoj[NbgBQ.9Y=oR>_rI f)0162`M$81N'wQN8RٔXشC~M)$, ,?Yx7BWת`j'sҫ&V|`taFK!p[5 CS2ֳD ,=>#!ƌޕنCAwkF " U=8+&m C_C[:'`Z%ׂ#Z.\5t(/ѭP;Ս55z9R7C] ԙ0ަˇkB`xCRM> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +':^ `s̊|6Sn2%?tyh(&:uEiVY:&QNZFi{+EII@Ihu.WiMvtQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEڥHbg򔍲0r=υ5 ["ڇB a1j}zjQO̷hsG 5i[kohfe2G= 5Edk%{$fx@1pzc?5xq ]ƢIYʑzzb(–Zy}jnJؓO;L!i3\^_,iQޜJ+3ZDHhJAck}J+SXď">Yʑzzb(&Wǘsfl䌑ǜg>:g,}\Kby* m:]%yAy(H"U#i޸9=GL𥮗v^_ x+C7c-9I(l\ӮD園p/O6p}ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@U"y$sI] >z ( ( 5 C~lt7K%W duj.YE嬶J[muxN3ʰpA\WvM>GgB#&dr9 Υ,SGRGFѳmS |v ϳYLW A^&]!K 4AO@EPEPEPEPEPEPEPEPEPEPEPHHN)k/`>,m:tEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPEPEPEPEPEPEPEPEPY^%t?g֭egO~u8R(((((((((((( M}ЬM}Р((((tukjtuhj(((((((((((E 6өGZ- %Ρj. D4EPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPEPEPEPEPEPEPEPEP\#M2 yp:+ŰRP.2U#B@ө+Prȥ( QEQEQEQEQEQEQEQEQEQEQE3Z3ZQEQEQE2][`v٠ 0t"܁QΌ7/ȩu }A]^6FSzWk\^fx"+HE 4b:|MyIF͵NNcڀ6+K[[&ne}ql,dMdQ<>!K.mF,kA^yNkmT&S"a~]M<]$*`((((((((((?ESs_sf+?ESs_sf(((((]/F]ooڬ]/F]ooڢ(((((((((((񾷫hvOY-ҝvhj9;H1/G7BZ$l9&IqP…UE%AsA2:GezW9Щ̕v}v~kcX=0UƧvݟ8Whs#OR43F ~SWNZ_[]&{^P[IVh_8uppjv/QEQEQEQEQEQEQEQEQEQE3Z3ZQEQEQECyOi[muxN3ʰpA\]jzkG7>_]6ZRo)o)#hٶ>lr;Pb2K֍լ-"%}) ':q%b(?ttPQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@oiɷuڼXGpd) zezn-!kUCqqF$Up+,}J'/}W9R s\ףxbMN]%YR{9 q\.FIb_/n#RjW%-x8q+{+8е^ygs#wNzgw5w<ڔw (QEQEQEQEQEQEQEQE3Z3ZQEQMvTFw`$Ck}kz.aQ@Q@b2Kb2KQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@o-[6x~bH 9LW%lzoZ<{On#MNx !H *1܃\Hgufó8'Ԓ~ҥ(%++8]݅M>F?iіDu#SMF}nލ~>#妔*2qWgkEdsi0Hdc\'/4`^_K"$mrF$v׭h݀Y2̻d0 5J[x8*mSJ=m=?"Q[8QEQEQEQEQEQEQEQEQE3Z3ZQE4Ks7M'\.rTur;=H,]j.cl{)~Y9' 8Ԛ5.|? pKpp]]nᮮፕVi8Qr(((]/F]ooڬ]/F]ooڢ((((((((((x"p/wmn3[ZOK{D=qAW%̮mƾ-nw24(pvNkfD{gx2m:Kb'Ȼ!H*1kMD~aֽS.;X~hWMB%~i`{'P7:izP{Z1.v ?ď=ѴC}O(?Ҿ]<vHFi>OtJO/dQuRH]b@“Z>Z]5L{LAs]OV jMG ʑq+Xӓj(yyulPwNƺ_~@..ǜP@\sWAEt($&XQEg0QEQEQEQEQEQEQE3Z3ZQEQEQEGq_/~vlglR["9l}o#kqU#JJ:Mk[H%wle@,rtZ1kKQX ΍fڧ'k@@˭-Z7Vb`2t(k%ė @@QEQEQEQEQEQEQEQEQEɜ \wOWsz&FTO޽.6;NUvg(y TLïNJ[X6֓"}(e!9U4ڲ!>aǭz5xy4OtU~hFxo?1|%=޿!۽hM{|Q/={B'1z-zt7@kʦdxyg?1\.MW\_'AE,sF$Dn 4?IӣoIl3ySڽ:ZfHm+9e~#Y댔ʔ4+(((((((?ESs_sf+?ESs_sf(((((]/F]ooڬ]/F]ooڢ(((((((((}slCHA>O, O,4RǠg/gkHgN*۩-ثKWw9GO0GёN )9g?^pPy/Q T83~q3iNT|ÐsYb }iG_4?<?M={f+-HwߋOhOi7o=7!|?<?M={f( Hrʫ3b#OA[uyx@۔='sXʒ X` XZ⢵^U='ltxSKd@16sp+9ߏ.&ԶkGi!1ПzmU\D\N]Pj۟=5?vM(8Š(((((( M}ЬM}Р((((tukjtuhj((((((((jfwy0)ܓպ!i~%4j]7ƿ8b{}=ZPSvBzw>8ͼKf9P&QFא4yFfmd=pzRudvF2ʾ =~#+'8OT~UvHz~ic8?xtzRֹM ?֏c4inM?KF7F7Gb,~s_om>Tm>Tygx?(Qp}AM}QM}Qأ?EÕ7F7Gb,WOOY}<<\9_om>Tm>Tygx?(Qp}Foius*I 1Ԝէ>&ծg{r-e^^Hg?[~"\Lcͬ$zWkf'%z6)/::Ɖڵ}L]FAMw5! KK??b|']*p_k<:|UGwIHC.>tO.CԱ?C.>tO.i,Os:+ϥ]tC}K>ξ?b|'[oT9BF= 3I^qiyt_7?7kB_7?7kB(()ii0H٘@'@l"#,?{jŎo#kqU#J٥-/kڵYe F@=2wb:|MyIF͵NNcڀ6+K[[&ne{ql?ҚТx|CNqo(~((((( "+h# ,sIHЗ|U#7l??²OMOHMfRBʌ4I"O#xڣ?Wu V?¹xn70w6?|m[_ -v޽U@E_ [Dvoi+(qqoLE֥a3B r_6+n-PEPEPEPEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPEPEPEPEPEPEPEPEPX^6n;48%DdVaove[h/PxZ}|=a-KlTc?ݭj DT3Nܞ(dQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@/C5Y/C5@Q@Q@Q@Q@b2Kb2KQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@exAGZ⋘aGQ$&F8O@4QEQEQEQEQEQEQEQEQEQEQEQEgno օgno օQEQEQEEs˖x=FMtV]L豝bi u,Pg> (((+S4 n"R`Hg$23Ҁ5+ON d=K*4X`8!YޕbI%3; w1a (R(()nR*HGQ@ Eqi$xY9W,YH;$) Y:tJL"b;qSJ( >jY0F'$b.+V ( ( ( ( ( ( ( ( ( ( dG.25}w >ޟEW X>F?7wZ---e[kX!c8—>uPEPEPEPk>{H'xQ1S힔XZIvrZ1$.OV((((XZ_-7 rcՊ((((-ẅ&HAh ri:|ajќM S1հh(((Hh9J$8DVkf6j+ JjUDTE 0S ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (2Qk4R& XzUZ-P̩U' .\]^Bp$̙`RF^Zh771m 8H$qYP[ r0ga1yo?]{8E, XA?@AsiWKZ]34<c]8'U*tsH'" πrGQ(:Enp ]dzDZ o Nʥ3rIj zDd[iCDT1e. $mI'f8XgE> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +4RfY"s4CtlT"xKLVדXߤx.&2ػ.z{qEp꺝ۤB)IG1qѥxRFӭ~ LL@81('Ɠ_Cin<ɒVI ˵=g'jdw^*t\u׌nR#[]Eo*ln6%5')dA,@LU1utW+BM95tJd,?{s}*G7Dxtu,RULI$wEyxTյO 5ioijqndA@=zWEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPo4[}L{ &'ebАr0H>SL𭥍PT1y5=B3[P[m"7h <-pdSm!amV 5ɋKL$f 2Ǧ+93Au-m9ye AL3Z\ۋ|u .1ֺ:(žwfaW]d+:cq<^ѭ9nT\ 9A(+uBBLWcF-'Ȏ Bc`UQ@niZsjtgHob{q 5QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQYn׷:0,@$I$@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@V5 _욏MGCh&A!4EgQu>ɨH:hQYd$?Əj?@U"y$sI] >z ( ( ( ( ϳЬ? ?H ( ( ( ( ( (#h(%3⤯Xյ"N{Ӣ(((((MxcT~ERֵs:aѓ,?W?j$B"QVtY >&8Wi!o  EȪpN }(y67Cw _C\ԤVEEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEP7K}1k᳖Q:;"c[:T& a{ch1I)'YFEf9bO9W8-#391$O$tֶB8~uC>"5ſ kvtuhj(((((t&vk?IB~])V>{E‹dswPM\8s lz0*~oqM[0R?5aRI*4`Cg[hO*B3R?/1Q[((((((((((((((((?ESs_sf+?ESs_sf(((((]/F]ooڬ]/F]ooڢ((((( Dvяsf@?ݯ*Z?9Xkj?&40: }l,d~ 3M3yr/$:ޔj&{sQ=R$=I\"}ZG0&]us\$lQEd0(((((((((((((((?ESs_sf+?ESs_sf((((IyUGu#69{nYhe^6 "$]/F]ooڬ]/F]ooڢ(((((.g_WGo½F%e#!ɭin +Պ*TsAՔ(>/K넎>=ч5חxBo'\r 4Yרщ֧7t.<ǰQEEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEP#C%m%W۬^\NwRgd+98vAv +QM}g>i[{ºs}F3Z\ m GhX<Nz4ntukFNek;{QeXЭ`-X( ( ( ( ( ( I"C+W׌y~{7vv٫Z}N*dKEUyQgbd{H Zj6l2?+tۡ{Z’@SQ#CԳEV'(QEQEQEQEQEQEQEQEQEQEQEQEQEQEQE3Z3ZQEQEQEfg%Ȱq+J|X,rA!aӌIn m $s*V.#.MmV.#.MmQEQEQEQEQEWihYmoA캤Fw7O.oI-=ۂW-EgWR̪pŗI ڼ'`ɍZ,zbyB MR90]y]F榳cᢑQEQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@/C5Y/C5@Q@Q@Q@Q@b2Kb2KQ@Q@Q@Q@Q@~)/:g\ay] ?JҪL5HsԠ'{QEGEq߇).! n#!ߕa\*m.,une'qߥDؘSh(<(((((((((((((((?ESs_sf+?ESs_sf((+_.IveU{-ZpN<hd$_651isHug&Ue8:V4VoGlwi˫>dwlz{uQEeKH$ :(Ѥr{ $wN~+x pHpkI)~VtXv#lO͜yҵ?eAW Ҍ9lۆ玴~tukjtuhj(((((g,/ \r?)J!]"(|R?NŸWs+|O("V?_TSƓ[ƃ9jX}!KBlLT=_AѬ3f{|5ߤXZNBDnG뺺ǒN=(((((((((((((((?ESs_sf+?ESs_sf(( O5&nhRgx+7@R[fIcdg1@#%E\s+C]hpʮ(:8>ՙd$N̖W"R8QAڀ::(9E4;kIm V{kp- )Qbrry9z隍"[ ĭ)bN0;U&i|6O3-h$Naiwuk ̣ȁ?Э)bE}[˭-@TQEQEQEQEQEp?cJG69)!EPEPEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEP7&9f{f+ h9 sYNu y99$w0aƩ\_ZX]AG$dM0r.l4 ym; *[4Xl j( ( e e ( ( ( ( (<3&hٿ2GX2Uc ˭=(gqB27V?_RP:G#G]R0y;Ot%oV8IK[]X~UMg&25;=(<@((((((((((((((?ESs_sf+?ESs_sf(((([WkUPnhDRjHdIppZ}b2Kb2KQ@Q@Q@Q@Q@S]KiTMZO;ZԽ~G[wEQL"V?_RP: XgP7bQ2JNg[6 $$$CP|ϳ pއ&X4=oNK.YP6?{Vk.l>/?0twW>v&QL(((((((((((((  (((%{o.wO$7ƍ ;]|ymx]vhv%$fSHyF=|Ҷu+q=fO8`"QǼ6z{e  kV2Fk'B:pſ'OoEQEQEQEQE,mSUt{n8u%Sқ̴OY]5rJ>EPnEqi6u }p?).?ՏB-&Ρo.dKE1Z^Kٿ7tow $Atk=v~UR̳k)2aFzgW"\qA'僖۴I'U(]/F]ooڬ]/F]ooڢ((((zf/U)5r|i?)?ﯗ鋲jEl-_DkH+E (,X}!KBlLR\)c(ZMC|\]D(c$B2 iQȁXnC@>"aoRe$-R ળ,SJB?NQZUmعD $e~7QFX;=Ia9>Xzcן<)E9A(+d!A)աQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@/C5Y/C5@Q@Q@Q@Q@b2Kb2KQ@Q@Q@Q@ry"` k/℃7M?4 )ʊ9Q[JQEEqi6u }p?).?ՏB-&Ρo.dQE1Q@ p D; t7Kyjxuj}2I}z~U^\h'yӤ<7CЊk[&ݲ?.~WwdpXt Kf:(9((((((((((( M}ЬM}Р(((mկ^cyr]aT@@v9M/a +ʱ`Ge e ( ( ( ( >%HUѠ,Ұ@יxQ?ŵ!,QV(ʢ+c(?ՏB-&Ρo%B27L(0(ȂD*I;{Ө 2چ|yvH?—UO1 ?O EpV?a'eݛUНMFwkGBtwV^EF#,7?y*}?9y Mk^'Y.#F>>V}Bjlq)ŸOs]?Ewݺ?ƏAt_TG8}zQ] /n*O]_'^fpTW{.ۯ hEI4sסٜ v?uRvgEwݺ?ƏAt_TG8}zQ] /n*O]_'^fpTW{.ۯ hEI4sסٜG, )V`C:2PG"]_'.ۯ h@j?xr;؀['Sl "oI|~ v4R0VqVRTeS_q|{M>TbW\85vь 2~$L'\>?=t[ kG* |-|kymW\pg7'/.q]A. oX: 2]w'-Íf?[\b3ԃո!eWcBQTQXA _2juQP|3bzm@o?5 :=MP<7fvRMBqR;o?UkUl#B-ĀiC5chQ  (((t7]hv:K+:\O(ުNBv eos T9$O$Or@jC%Ū$KF{,@QmG[qVg8Cby^ Ef*Cby^ Ef*Cby^ Ef*d$A%ĮD(.pp@"h ( ( ( ( ( ( ++ɡ\bW`q.{|:1Z꺭$v£%:6ހ6袊(((kftP-`Trpu|_}8 mF8e81vB@ 86brJ!y5h((('OJKnK& th:y8@sݎ=(h  k=v 9Q- 22wp@((((3iukx$NK[ݰ61ڿ?$`z4q.oL61e=@(XӒh(((fьQ̚xcM "?'z٢:dLb<*?FEP{f8=>x]R\a19%q@QEQEQEQEQEQEQEQEQEQE6DYEeaG,ao9\OEQEQEQE坭>M71g;&:(.-]2m-v1UDTE 0S(((aɷf;}3O+X#%6s,QV( ( ( (+]XY> stream xWMo6O\~dH$9dKUV";!%Jr,"H{1$5cC@›P eaƱ 7ӂaMە"5pf 3^q9oW/XjYь`& Wc@؄MPa ˠKCf(0!q8h1eEL WLb.z(ڕ6#Eb,M?fzqǎd¦GF8&M[ዾ~ٝsqk#r ɱMMԯQiOfjry7:jH4/3  "O>lW3Լj>~U_7 t@ ˧0sF}pGI⢇{QL&:qmӬv_XN2 Al7PȞCoċMY˿i?1H*܀90jNi/"nTi /~m3;EYUYNz-6.7)Vx=I/IUt-ƋTY:S6E^8%|F!"~/7s&F]B6k~Zj)"9*6PN(9=մQn褕&hf㸥.imj}ۙZBo,Ѹ?u泌u@)e470XF`K4@Z\! O Wp>/̊2P]Fzq?R8Rb B;je (s:YE%qW|DF3dZ #WɪxjQs4i &CΊQ4X jע3D.ø5iՁA++1%eRRs,4i]&MĤ݃ݺ0nvY-$ٯ VeVeۅpw't6Y'E |mBGLl0GAYn M%Uendstream endobj 1108 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 23678 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( qh2h)HYHȏ{-lCykQ,J]d@ܳΌgԣe$Lmc NN={TW^0P^鑭qe}0A/ hVCd;7!uXMº<I Z:HvbP>bsq@0x ֙ FxKbFAQg8U7]@Ae #&.FW u]3h:k;9^}Nt{*o*L83P=c-VN4#ᶫFBrxVFmB8{ X3jH!C j݃zU~\VWcܓ}O^Ɛ0-$cUįB˜1 &{VMU6^P 29]n%ީqo!hdtu)Dž}ZbMkHz\ߎj6I{[d})@guyEl{KKU@~I$P4!$' ߖsR y&`I##7ܴ_pOxCexdrOkLHMQ̸*UNr rxWONEh.LdVk FںX5#Y\/_s_zZ-l@2;QխݡbqhTJU3ZDToF{cgW}=[Q4Gq\=jQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEW9VFJ)Kd*qtup~i1YKQ =Yy^dm/E61w,lwVQ~S{Vm߈n:ΗX=6s#2>U#jgI2^GaczZ.b_$|} >>_څ$&t*CF$0+&Zm&ngmjZ~mv,ͬ! 9V(9Y<NOt96mK(ݔt$(]%dMiﭢ~eoHnڝUEԢts1;A?\aL7OEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPET z Gu݂1p3ťt*^OnRkpTm>ÿ^bg>0[!4T`0QE`z{MI۪ G7?ɿʖB$?h-$2e!ɶ- wOÏcV?a-Xmm7-i1[P}EʀVOʽ>ނ:,U2W6Ǐ9V:{KR?'%r̦c+?kI1{Zݡ0Hxe!Jb2qw$HcO/@tfm?=,oo HOcԔU4-jGr:pK?<{WYkڨ1aQ8\E! 7hI[ FZV'5(u/\^A*ۯQqv{QREPEPEPEPE_P3&e>@(#j+k縈8FLc8 j|4w K9_b4Ec'Ҵ^*K6G>T>^o%O'9=JҢkVVl^"Fs1k7چ$%MQX^*.,b8.y@+ ,ŽUOw&0\ִ/ lR0ToH_OcJ(oHI]IW-'C=K_5mk2ctS$)h=@(x&F #;}jLjug|F>cPlۡ*().$V)*S?ϥ>z2ծPﰽOVfFAQiYE1*/y\F設b̅t*}jZ (i#9.xtn;B+hkO0v~ p%}]á8/u??psGtT]HX^ڥͳpGb*xFEPEPEPEPUuO^MZ8/Ak=nb+B6L[>SBz48 ,53OyFeXT=ki^aιNsZTP\π.v$]5xKbAcSyYʖ*Fp玔[>/o->Dh"w'j{һ@--}?_N~1l_37c֤7n݌f (0|M";7,[6 mR=rN>Q*nʄ1ऒ?X,{i79a(Tg bxD+o[G2O6~_NO QEQEQEQEQE 'u&zln/%€2݂ tt ~[@yy52ԨΫM-O/pZ k׮3?߯Jdžcwy$Y4s8*@ ;R4{tp߸QE'HQEV^rm#%c f- X1I'I'Ԛ7Qo^w#BOI$jD^VVGZ(Q@CiO?6ЍK &ID9QCB;ҲԖvWӭgdd]2+E+TSmpEe{ֺ:ȁу+ A(1hd4B}&n y|zFCZ6=y>{+YJa2=w~pކX+| j0D?#oGZ0+ǜ%i+\((((((((((&KF-BR"hYa@C;5kI{ >i],'sW((((*nn/gH"nsS(a^#FAw`bwnNӽdj:g+ O =*VpUO>>%PzD!Ig70,c?Sܚ+{`QHH$ .cWoHz$7%vǓ^_ak#{?*ڥH5WT0uma,E5iyg[:ý& =©YWcK^ !S)B*PQ^2DNOJe{ˎP%|O01!(]NvC/Av_JJ5hGY:0e< 0D't6(ߘEKJJf+"/a&AaG]NY~J>q\&$9P$CSk ?.\։q#%V9 8$>ޕ׏8JHp*(((((((((( fAuexJsױÏ&,&\%np1yݏIw_~?J P&nt- F4Կߊ/]:ZF/ ?-}Y.%}tQ}|Դ[Q?⹱85io 4(Š(((((((((((((((((((((((((((((((((((((((֓q6|gMU5MAjF NƯc=[X_R~5[Ưc=hQ@l'EgWj?օ_z1OZP~5[Ưc=hQ@l'EgWj?օ_z1OZP~5[Ưc=hTsʰBv$BwdSƯc=l';#?cW( j?э_zТ3OF5[BƯc=l' (?cW( j?э_zТ3OF5[BƯc=7b݈I1yg9 ?1@QEah~$]Z#wݲB?]5 ž 8Hkn⿴\Le{r(DQEQQEQEQEQEQEQEQESWMpպ&?hk_U-Ekʥ(()3DdHY7vƘ-Ȼk:RyeAr[{QEQETrkmQu>%QEFb/ Wf~SZQEG<~t/MRsZZQETpc-9{j (Q@Q@Q@Q@g? ?1@QEyَvV5?7m,ozD=ΊZD<kߍ8/\׆u3 rČ9=@;ztНdQE2(((((dZ\j[&!@g^ܬ;5V{t0ڴA;p=W4tmexԹB'ďkz2j0(`v1ano-y0WڧzKhCZBA}*j>/b ( (#yflˌaqRQE (I!du㊖VDd!ca*J)`(QQ(G1 8JQE *4i% c:qRP7nEZD 2N]y9*񖺶o))o>qwʎhKx(zd3RS (TQ+M*<%1׎ߍ;+`^⤢CaEP !^CYC(B()8?Vs[mg~"Skq~Ga!.7`C+/UaЏq]^h۔jC*ч9F mdt'}_g rqXkTtNRd"oGWiمQ@(((((G"^k;/j/hΟ oU>/b ( ( )"F "@eF6gݟOLS4gv 2I(mXuFGJz<ZHN*8^G2yklz})e9`؎ H@Y}zCV 9\[زm+HZP[z|}zabzaO?.d4Tg-b-1Ao6Nq<Պ߳}u>lm_ddE QTz@ TA້]%F`xUQ ¨oB@'Ֆ6WR#=2)&9drmuxbTL ᗜr:R[je04G䜱yK s`g IJڏES$*2y0b*I}܃bMY+B21@LS]VoLU= #Һ0r2:WBixd)QEQEQEQE?O@5Y#{TI@t%BU}?AJ%!r=s@IEsG)q([bJ( 4D:*O99"'̷u`˔nM;KL$6U 0AQ.CT_{TȐHQFI=Qt/<̏c<&1<,qA~}Ne7d@2FJm[̳}Eh|Y,5 #\ZF[dCϽ\ +By$]J s!ͣ^{HVH]/.5nᔒq9Y BVﰐNCȫuBfܡq3ZeVm0{@b(VPFppGLv DJ'di; TޓIe(VwB v*r*"uM?E#[5řJ!mϝmptTTSMREi#5[]N2C߉>2~e)H oco!.mmIXeI{t=+3L%KU: (8((+/qsc߼1Brs\výUkAs Kn`X K{KK.to6t]ңnqֳ[ q)e>y8OBruxږ۵ى?O N3.52r%: [_2w.cA@;*dꖫ|&@ F&y )|!<7Nծr2:Bх Kc#K6#clVnVᤒPPy{|?럭jC}#!@ҡhoVc)p6`{IKQf2Pm5%t.v’y8*@rgkZ(TR\G۷ɝRGKYC+Bz RB(>o]W$g=}M_AM^OiWl S=\ѱcaP==(e wPtj[CסS:+()F"V Q@$u}>FH4R9<}9=aRQ@ӰQE(+ϳlwoc8}}jdFɹp#r)c][)Z͉=:Vct0v`(i@LHV<(jFB^:hEP4d0$9IQ//뱱 QDvbGM8}<dۥO6 ަx٤F0Zl>SRyy>dw>!Zu\OQڭR[tK*0q*ݬ7cE IYQSFˌ=n$kjuU76bn߽Wvvv>fbI62nPvުnEs {+E"OH|`y_{$ͱoMםCM#1\sU nF.c1Uɜmϟ27yy qꮓ!-DWMZs~f2鵊3ڤj03F#l,~=ϒdL#&Qr=dmdgjè}CHXy_{⥦ՄQQO |#CڅQE ?1Z>?b4(;KiPu7Tfc33X>oB48P&;{vj?Ы> i?ذOT߱|7JVPUA *c^2:O; ?+7J"-o?׮|ZR.Y#ԄSN ; EeTӱ?o Ժuf,Ip{)ϰ>I]έGNL𥙆0z(󲓓r}B(ISnyF(8$Ǹl5l,6pyȬO[)bGpL.8‘ǯjLͤ[DC)UI3@袊+;/j/kFG"^,KX!V((y#$F&Ih%5f XE#W(XUj`A o7֦k so$/>\2a8+V:HdmGOI/ )e8ϷQ$ttQqt}MʭE|ٿ|{T0(lf@G=~YOIvqVhT]Gl'2HK &ss[b0U|uJJـ2'x{7V)ЛiYIl$s$V¶}Gzm͔WNL f6ZFF)DB&v$fķuKjFYco"<L|~\_%&P5R=}DUQOCg^) u|$?ְ)%D h7 I.;K|W-\ǑNV#jF<̀)XuuZVZERȦLmF׎էW6KrzM>%-gYm#i%ILִ2Ju"PkEqB*0[^ ڔ)YeV&"Hr8i XP$dLZI)[DOVEփi4[ ' zћѸ|ŋrZ ۴V:,b}k4w5(]M&G's?5X<i_|@aNOj'NTwZnI<($QdRc#Eb zʝEeAER()`up 9-Sg? ?1H (<^ocS @89эM/C; +B5wO%7VGT+PhEr:dEx20 ur֗SXh>hDOztۏgX+ y^?jYѕCBPd-mIu(!<ݏZ총:=2`C$rzx fåO<2F NhQrF#? *P(ׯn"a˔(90\x>:Eg` N0xzu5[SL饎S l#`m =j˧,pfs{ U{cO~Xb+A xnrJ[Fvۏ5 f( !QG/j/hΝΟk\ U%BPEPpk;<$(ެ*3fuJRQ@&EP (2L//lʸѩ_/0'7u@ PH'{arn>.-jR\5 2A@gdyO]wT.#2]1,8y#޵Q쉔*EuT4E]`rxڒ(m<ډeӣq>PԞ>iXYbU9#ֳ[ylmHgB9_&ݣ~{u浞!'M?p^?~k-v=&i. q\wtr@|9晢kS]jQ[ePco'`Of.w3DcRth rr~Q[l}K 6IBNoW,O5|zk>e~\:jx2T26}jHrynKT"淶j+1䜟z!4~ZR9'{Pat HyX|XWvZEлн]ҦwP[D*"c3:oFٴw |}+ju9_=庹.}l@ҭW-pڼr[*.*Nq+vKyA 2`9==I_ \sn8c]WԜW8TpyÐ6w/cI N^Q2"oݕluM.こJmj;)  2x;~6zqޒhy!2.ᚚAYC+Bz THHpRii:fcSc ӝ%䷮QkEf=XգZ8'QɝG)e Gy}G?S^b|卌sDۢzzȮ@FcKɐt =Q^' ]EWAEP,lp+۪q$csڵ4TTXBS*dSY>&ѻ *f#*e\ܻp}EIE$ r44gr3Ko?I7y3_lQ(77Ho|⥪!^CnN Arc1>٪C)5g`4(@xw_SƦӦF5WlH8 A5vDvGDScu*zujPN䚿Sq Ē_=jڦ1oO+ZQEYI:VH E:ʭo @fP>KhNOL@jػڊ(5 (9Z4~s1 wR"ϯAfn>\ k33CؼDɵd[ =Ai=KG\idYﻸ=](ȽפڧzK>/bKX((C4lAܛAlT *9Kx^Y[j g 0 A 5+>lfq*OUL ֖nE'Mmp_ }=-D*ʶ>a։c,M;ԮK~=dGf&A==JIt0U?wIʲʢ2m\?-&Iv-MIh76i$o* /2:l{P컂%΃Ȃɉ\?(VKI2v}Ҥvs&c*h~;z.- f䌈#rdݐ=GiDhs8Ygz1h81A[\}XF u^U<3i[αbUD/2uڷʮSGU}{UIFVm$AA GnƬ&%h\ 89clyϒwm x^`Ucsэ8Ǧ?[ta H pBTSG7a.6[̋`;㞣-sM%nRF8vcvZm8`H0X< ޶~$so}K0>,>b ct?ַ1=Đ+,`_@zRƲd/ h6(\{ԔW+B (Q@g? ?1@QExǟ͞^ߵM?]ZOpۣRgZ}M^ M'i^( 0<֝ 7wR1>}jhk|2͏?ƶ -0'Z"51n wǪ/VMzwǪ#ƅ܀M+yY@*%ztbs!'eX`~ ɨީhZkWEX((()u?VGDl^akvC,'} IE^I},+H zn4^c,~pE FcBQ{Pfyd]TN9AjP&@R٥\IJa Ǿq[P$F*0]8~G/j/hΝ _U>/b ( ( (">o6m1hw)QETRNE\ U$DЙ^&q pږ12 ԣY7+X˂T' \Y%ӱZm=rsUV׵Hۏgc=~u$'2 a@/\wֺjT:'v*N?bQExw_SƦᙖ8dsSF5\aʵ_Oe}xG VkDf=XQ]'QEGeE,$oAi=CP az^cG0!!}oһ*xg "Q^iaEPEPEPEPY#{TIZ5?O@4gO}r_*Wm\ @Q@TrBIc$1wjI(T_gO}vq>-7` *+$x38耀ORm.E9M6+uZIY&1rrL- FPU*F=iTb\4@-A^?_ζ̷pøQI BVKV 펕ybSqJmgtuBv}٨!I J]fĄ,oO6>UMvIXkHwVnHj֥-M:),n2#f5y>KYڋDtO64a; U&,ϙu#lVRxe6H9֭U=~+n*CI#U$W:څψeۑ~O)/ XV6'Ŧof!Q lQ^Ί/ VIcgŽ'Պ(FweQH((z Vg? (aq̖~_W)b#4WCH+,((((+BO9dڷ+LW[qC9:*ww8@2-&ȕw2'>6j蟳J$<ҵt<{j^?_;A?_O}r_*QEeHʜdqK4T\4)QEGqy/rl|`;skP$snsZ@~cgfh)K˺'W\9ik{f2BWzi@vר @ƨ'(w(EPEPEWB[F2B}|SjQE ?1Z>?b4(qnoiD5YvKXoK0o&+h>T~Sd}sd=4T_ݯ{!M?*kTa~JLJ4b\}cb;==Z+[rwfER(((((ȽפڧzK>/bKX((((((UK* ^(Rʍ`69EQEQEQEQE#gipq2eXguy@WIE;`"7Cyl#fwdsΖy時F,ǵIH@ 2 P!#yQH*(T2qp8Ͻ0%Y$vCG Դ4֌z Vg?Q@IfZU xy9Ȍ?XmjĻv yڍ$c'/hg$83D{}kU TSȁ=OWkY՟34JEV ( ( ( ( ( ( ڧzKѬȽפ :!V* oU((((((((_m7i3-S`QE ( ( *'%pr 'p\i` n^z(bv`RBQH(xIv`HRE6YC+Bz RB(,9;?jp1ٯ]s} Ċ/!vOhƻoDF{goB9pc46 (((((( o6}ؗdEXaOiTH6m9S? whT/g&?h `Fr?V*+_U-QEQEQEQEQEQEQQInM2H;VQE ( ( ( ( ( ( ( ( X<ɢ͑|~Ul+dwj)m+<|סhVyC@hQER7S[!\^I#H'?zZ"ƊUvvxm帘wLWdAEW)AEPEPEPEPEPEPEPPnlX=1SQ@kG &W?Т3?F_xXkB߫ MU`(rt–mTRۤC+gt,Y0{G4x}t _'[P?/ҿ&O"3_LElQ@gJ?KGw 7JL {D1Ns%e^xc?Pg/ҿ&O"3_LElQ@gJ?<Ϯ2Ec"]+d*jm41*+~ktkN|ѣ^x'Ax}t _'[P?/ҿ&O"3_LElQ@gJ? o~ɦnLc8o_gO}3g׌g4x}t _'[P?/ҿ&O"3_LElQ@gJ?/|@ײڋM3|QLaߨVK2DX۞0Ѝf"]+d(WVx}t _'[P?/ҿ&O"myIw=zJ!mIns-UU 3@7?Ej uv LErrhQ@Q@&t뇘Jn[*h~Em݀QE((((((((((7ɓ;7njǃY4V̘ e `JJ><1$3 xR=jzUFvY 2;~n091@ .n^y`*Cą ${VV]`Vs3p%=f ("7&dP}N9?Jʶ/'.%THL}ܦr3zzչu#Uf hv9 +I< v&w-2V HÀ@#sv ~e$v ēX( ZmO)B dYn=̻Ɍ;8O\$i"цET]&mb"B0=rQiW3N1ܔi13ƥUU`@$PjAii ^\ K%1=I$O֧( zk]#Vm;j:φ-oR9"DhYAb28':đDWp5PiKh,"(SG<G^&I<#i'ǩ^r U',I'$y$NMM@Q@彼f/2W)IQ֠}JY,,HkbVSLHz8ocT7ەN*A?6fFW6px<vu%K0Q(g)ebbFjEmo  4Q֥( j(>$sykruP]jmi.d)X J[a`GL`օ78#$d2Gơm"͡,qp~^ uNv0$o\S'I#٫5VG (*sREPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEskjXEڙVƓO:IQιKnx;EEaZQ3E4{XRҧ\Da$L!\y8⍖嶚wXil1;ײ0eAPhQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ҬiDpŏ qӀz1McDc(g۔)#8$Oi@(o7(Pma&iU@*W/;s8ZtPzzz^'(a׸UXXnhBIǘA=H\늷EPGˉ]$U`ZP,c)zʇ Pqqv>2FΌ7oyPrhv! UXF#޼ԺFAg ĸ'$$W((((endstream endobj 1109 0 obj << /Filter /FlateDecode /Length 918 >> stream xUnF'2dޏ.ТM(-Eʤd;3$EEiЂ<\!ó'8^>%YBGZ9CE[ɉeNDka*\"ddR |.,Z1m b~^&g(CM2#ZIk-=K3qN]e#SD2C11RJ9' >Fpcs3m Z^h8EZ*ApRJ;g/#!8:10@AX(N?u:4~o6eq$pxJϲEdnuʵ$Ҍ@7pUדCޔu=yy+fX|U2Obǔ>VPn9DbH5PeTH3)%}^54 F*sUe?ď8x>_Cψ33javd6%B!gn6+| pBpwD<]X)$\_4KX=6kNu=hU$ eV:,]?!!9lP{˄԰o8;A% G7rj{Jx߸i Ljf;>"¬{&{I} VǪmB|lnmvU7JM__X}~Wz Rx+\k#RU(eH`gL%A〮̋]q}e J|Е}{oӁl OapǺp<tRD|ET׆rW&&ZX]k Xxa~OړB{]mbs();q6eޥ5rYH()|D6^>t> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ^E^Nq}XwH]$e8%+`9H{Z:t7Kg SMUxqW _j3^ pl qQoeMm'Q6A=8ϥR5^ZM孔Vѷd9@CWY6*ٽL,&=qXökqB/7cKx!mQ" {='OmG5BX;/ot}/O俱Q G`\V]NoMմg6w $9 W+fw6-'s@/әb~uO 5)bpHYaz#gʩbF8Z1]"ݽs91b Nn#J.~љ\m# >ExF$"_18=FEq6$t{}zN&YIU,G~:-d֭# u'ày|M-{ɹ+݂1ߊSZnm#mB(-b@eݟkxZ@V(C4qeYRh7:bծEEcs*qtcמkvkkr,(1Tunc6]Imdp 3^[t]>+委îીysZW~Yy%X8\ qǮjo$#gm<|Qێ1@,O{d'.g #5J١sx+mU m<rkoVZ|ѼvL!@I GZyYk}?-^ѷ\g?s'&524s ZJ]Q-#Үx?ŲO XEV#9VFPx{L𭾜Q/ ,H{.9i~ӵ$kɈON's@QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQETw-M'܍K=C_&l'E(3V#$P*Y,EGʑ `A*;J;dDD+>0I>z](h% 43m!u B det.glQ =EPEeKj-keU9ǜqZm:][ET>VѵGq$pXArGW"7. KIu`᳒G~\l'e*g|G}7XӭaEZXEv9@ zƛw .I 6?Yݛz@4nnY%>l~S&n:2=x=qVm-"Yř'$5{!uUa4NNʲ)agvo]l\ޯw,mm UٿtfM &iI$>h 7\ I15 uKiGi }Ƶ,IcfHI@8<hRm$1 I(bc'=EE'/BӓTi@?ТeUr2O*4(9?}|G S +?NO_)Q'/BӓTTA'Mr~TFO= i,Ē*{y;%@둎ȬkRc{nA4!. vvGe]4ePH@T~\bf|Gh{.&mU1 q3M9iʱTq:ɫkCvrrII&{n,=U c_->< 7_?.6j;|ox4m9#`v5)f:.(c1'k [#vݻxXfXW!H’z ܷn"*H @XzԚ[<і28=m 3pӨ@Q@Q@Q@g?赭 %Tk@QExH.>}̀$|\:l~m}Lch>iڕnn,.c1RFGo֝c{m[Ŕ X>%-<3$sWhsresT3,VzސVW6ʡ$iMtvޗyx֖څ+ƒuگ%km}@"4iw G Wbrw7r1uQE1Rky?Q_- T/OoJ=p* ( ( ( ( ϵrg ϵrgCvo+>Cvo(((((_*; AI"EG3@QEQEQEQEQEcj뼿%fAkf#w# ivдmcmÞ}@qWh ( ( ( %TkZtR{<RĒM͚+K?wPxL#Dyh gΫ]zOE%zo7jyqhu̱ !X%l,l'HN3 ĭP:{4pBFDv}ǰMSvL] qrrZv-|?ZIݤq$Yi?3㩫]E [+ܥ[#5Kwu6uAI&=0~}kgo<] H ӥ9S7&2!ڛ i:|W$d1ڢ (3*McA'j=kE}XE{m?IQǼ_RPEPEPEPEPYPYP]nMVgnMVQEQEQEQE{U%GsWѿc^"\4oX׼_?7hB((((( m_CzwDl!e3FO[xbI$Hۏ@-fbF,U.F#iz\Lmb6.0xy9EPEPEP\}g[)Ub??G2Bp' ֬USVzя[-cIћ=El+z Oܺ[[_07BC7C(m/O4Pt7@ Ë?.;$$o8s~{Y'2 N;Km*Y1&ٷDLgw_v9}`QEg_- T/OzoC& A4b=p*xʤlp ' {mcKZvsgo (5Mv'u6_bאc;$KyeX?4 eZ_ʡfpVU ,5&[ƺn%5;v~iO$ 9_WEw{6br1 -%ϩ^m"I+bܪJlHZu_ \1X;W1j^[$ ?*I$eѩk/DxgZu|5w>1#Kk Z;~^~ ϵrg ϵrgCvo+>Cvo(wƚ֟eim8QKX#>^a뢮KǸo~kP}.s^_\-]ru`dtҹD\&a =Χ UvK7q]ggw#_n4=.P^!+.]Eu&I|9ԯSw+9B_j3jψύ4}Cο A:hFy[aa }'NK y 2&:uXdQ\|_mVwv~(m#I 31 ' oP3x+ljdf\=JH3HҵQ}Rbc#3Νh^Zo^n,mec5?.W~,"?Bh7mmDK[6$ty?u3+{B4JOg=P^aT(€-Q@Q@Q@Q@r&Q&{u?*ºȞmVۈm`+gUQwjR~Oc[kxLE'?34BC6?o꽏&gꅿo?Pq?T_* <1rJ~j~._ P2iIhk (}lxFlln@Y㴍${F=}47/P+kx&f*}C W&%l}I7NDz>urȢv>43*McA'j=kE}XE{Xxʤ/(hW]\YfI[t%tY( ʷ an"V(ޘF1W袀*ieE$Ҵ7˷S5xGE3H1#G#F Fۢ";{h(bP0 (_ (zЬ_ (z.7a\+B7a\+B K[Rh%]dS@O4}VvNbw®d/!ܦA3s(ivqjk/eD<93Tז_[Imw M2 -3&uͭbTd HETw?/T{T_FE{EQs_sfѿc^"\ (,i4o2ınayս$ gToQ@4+JQv7`qU5 iZq{lLEo!zT-3{\aoC^/~._ +?G/C?FQ a^"U@(%729SD,CJJ5@O+5II6,˿߁O%{W/_е1Rky?Qk Ք . A5{ŋoJ=p* ( ( ( ( ϵrg ϵrgCvo+>Cvo(((((_*; AI"EG3@QEQEQEQEQEaxfm[CG|i#.?Կ`GebH䓻GAe뼿%f2-WZ5̀FJenqEQEQEQEW3h ju i&eb\=q5U H㹒gQ# gBRJI$%UՂ`[?WRoY 6\m2a?_q?z?Oi>'԰ʎj?n -!2K/hO^oY6[,2Y%]w8ߟڿ}~eN2ž+7 H2tv_k[׈f5hsϹfmWmU )G]8ߟڿ}~I=! mΟ=RՖ!tK!@3{W_\@&@O@H" ^0Qp, Kx$SRq2j(+/(DlN?S[|l1"2FGڿ}~;V 5Gύ?Wo^_q?z<[|l1v>6?j_q?z?oTyڷc?נտQjcƨףWo^;V 5Fؼ̪]ܒUG8ߟMg,rDd6! 76!]Ye BhoU-vrEG4K8EEN7@ύ?տQN7G8ߟv>6?j;V 5G8ߟڿ}~yڷc<[|l1ڿ}~jӍjcƨoTjӍN7@ύ?,F#?Slo@Մ mcoZ(  ofgH%yᘞG}}kJ 9:c EQ,2?_;V 5Gύ?Wo^_q?z<[|l1v>6?j_q?z?oTyڷc?נտQjcƨףWo^;V 5Gύ?Wo^_q?zswo}lM+__Zշ-\瑜lIq/.Bc$ ?@jdZIoz0 XϟsVPEPEP\ðJ _)(dCֺa E';wy#aHer&%ƲG4`dsXGJآ(tTe$8$~8뎢1d&&kkXav+ƁKRG^7V_(dgDr9{#D%cP71:\Ο AoRY˼XfOM'uo,n7<9VIɳ>[y[ql⦪YiwH1$)@g`:8@ B+Et sR}1G 4n2tԚSYiryh縒h-OLvl7h+>Cw+>Cw )JЬ )JР((((y?ʤ_ 7,?Tz/C5& AhQEQEQEQEQEKKڴ+?P]_EhPEPEPEPE&Ny4D҂C1wR;P˘hG<18’?GXյĒy'a<_=T%:wMIZϻ 5kAX椠Uwmg9*ၨkaI2zt'/ _YhW߿ P9"=3UxK iI4h7 mG'#E \\=o;xes$tQ= [hg4&1Rky?Q_- T/O$m?IQǼ_RPEP8cgUΞ,F8~cޓK!8ZG3LYI8=_TӴV>ԯ+L~nz=O|)rE[Y׷TR4o/?}? _,n\UX9R}9;K4S o cӼu&K{ڠ Uk)Z d[/O}NUw ˹csV5_׼ voJ=p*gڑ4n>EdTv օr"'PWkQ=S"?q-M+ԓD#.)kXa%gIRcGڵCyg6ɒ<2qQ;PH5m^QԚm:Z Gp9WuJ~,{1/:uuؽYvFz?UkrAe8Q 1*9Q;Oj߮Š(7\B7\݇rd Ϻ݇rd +uZ[i#n)ϗc:諒 qǢ+qgxFKח7 kpl7u8+C XFCOsUG]WY!ǽw+HQ|Wz&w+fT3|ĞisW罳gx-$q~?:/e+O)!=i~5˽'#eIo jz獯"lXM.br} {`ѕPQǼRTw?/P}A?*=E}FE{EQs_sf4({Qn4-QX0I%~8Zx5 WDn sv48Bj ^'g0 0׉o# ot,jxVH7*mlq9'ɬh5#'֧ajۛ;G VKWUy^y*Ҡu-MB xRhD GSެ^=Dn5y:osX^#3\ܷurzWvEP~!-/jЬCBZ_uա@Q@Q@Q@W;=ӍY@SzU(b#<W[kjV( nfL1nl^ʂ^/:F%gH ~IS$đd<;۫%ͮU >w~H㊏savژy-uȻ ź@-=.#imvΰ<V0Glnv9a 1$?2kkuiڕwŹ6N?JZO[/Zç&]>rqopO\?}^&4-3O֖qusw NdRq3Z/Oҗ--/*;oJ9wXŽS=>R0*\°FFܔ`sIrZ'hᑣO.@:oBJJ6gcq}dte5m^Qѧ֥_#EGDi(RwL^6Dߺ[*zZj9m)q< Z6p^ @RO3\,KO +G{]n>fur9Q2> ԩ]RVm9Ot+>Cw+>Cw )JЬ )JР FGTP.MGUد$!E]𫫥Y&Ëiw)q5v!jouufL%1%Hx"8 c5 @*J(閉>bH-&1utQ@GsIQǼ@oX׼_?7jMA?*=E}Т(+X晭I妈a%7rqSEa sԓԟzEPѴ(ip[ .bIvI䚥xCD.㹵ıg/+? HEsڟ:W>ZCV/}j_?TtK!oB?>/*:3>Ke(Y~Vkm0 Y~Uˆkbdnjc\evF!T46)9ncqvW:L1UW31Cvo(((((_*; AI"EG3@QEQEQEQEQEg趭 ?%WmZQEQEQEQEW-h7G$ɹU <]MQU+ H cFjhO 'd}S|Q+ϭPOWaGu?_ϭQ+i}S|Q+ϭPOWaGu?_ϭQ+i}S|Q+E&i$wI,ѭ39]FD\Dg%[u B[_FG+/_}qZZU5sOk$VG5J矸c۷{$tV7D8 6»/x_*%wciыw,$c"Ϲa90wi T'J.*i*,C Gpx ;'!uՅHcQ}~N$yDF|]C?? [^/W =0)ǡkK2Gj#q#/yQݿwϥAc SYx$k* HuTm@O_(Ο[X[@%F#@.fg;H%GWARC1=6֜2,grH#"b2DHܣ4vˑ>ө> (N@?+^/W ?[: ?[^/W >ө> (N@?+^/W ?[: ?[^/W >ө> (N@?+^/W ?[I'fbVrJֵ+.M~)bhiI dy!$až>xŵodRUA|^C)E-w[TQEQEQEV~!-SZЬ?BZuOEPEOKvIbbM'GTbvYcYGJH$ $Bp2Wn\Nn/'~rFU3֨[?CI qu5QIdgҀ7\B7\݇rd Ϻ݇rd (dGYY9Ul!mK.e\:M,ˮ\jpiGD̤D\6wlB@4R̡eR\!uMy΅[Gf󵉤6F9# Oi 6}^dc^d"S4H9>Tw?/T{T_FE{EQs_sfѿc^"\ ( ( ( ( (1 ?_X^ iVʹq'.I /b٧h8\~d@;;i$"Hd.N3{ZTQ@Q@Q@Q@g?赭 %Tk@QEOQuD/bXr 85rBBNW'&mhv~6偰6r܌.Wҹr×h 7?5 p;@'효5ֺͮvzYs+Y6VppևL?q}js:1󻥓4p8Lr[8}xvT RYnv1J .9j>ԍ լ$Wk ӓ-֩6Γ+=]5~|؏%JpPN?*Vm,U=ljC[H?c6\G8ah]jp,iyxt;p;OUqFӻS;{KX].rOsV5_׼ N ^iZΧ>Ŷ"yHݓ1ۥu/OI$k,[Ǽ_RTvT kXx:[a'iH+6 9U>wWѦaIP"ͻt%_vHuA\_B%B*H:8 coDʊMٻ֧[ZnaDfeQq{zzoNŞ|֘2wg ^֙C,H@^'85;N}O]]\AT ێwsc]`ԕv]HZռCZG*b#}tZcG+ػ%`T]Os.^ci-, Cw+>Cw]nMVe.b-`l׵8t"YKlb8U99iз;c?yqI-%E1-`9mt~Fv́?RteQSXaId#9ПJ]WOUӮ,fH]oqQUsc!kUƿ_jPAR2jMZmiriH@3LT VZxLEwus-ܞdZ.O@98;WEE"K`c'*;J=p*"EG3RhxQ.o Q@Q@Q@Q@Q@ڿ/z٬/DjG<1_0ܿl[DI䝇|?J-JYVu[]A}nj'muRza=PEPEPEPYO-kB j?Z5JK?H҄9$zv5-5 ؑܥvQ3QxOԵ-SK0Ho  8k ơsk"bFȐrܞ'u_]dG8u[9)L6FyW#jpMB 7RN%1 f(+z*k:wg;fYݳ;]'pdO=[DAc4gj,,T6w# }rOxjöcPԅ|(\O52fMg_- T/OzoC& A5",[Ǽ_T^W]%#2!=3zqo}e.s.zpN⾃M֛ercJҢ9mǻdd{NkFMLIǖ({m c'n@~3}GEՔj\\KlC|8ykq46׮Q\oWDMZ(|3:7n S]-$V}?=s'Z5Sq@< zBt{Be `H׵J4 cvFO[aG8Tb}Zt(ZM$osqW^v|t?R{T*IzSa?Ƹo?ZxȭjRXR-DWsGIʳ[Av9ҏ-ڞ?qǷ-6F_5 ?տz 7vhRg/>-FOYXgxU jPtMFϧ:`Iqt&-|e{I>Y&xn#Ю M x2 B~aPu{Ec3%a_d6γyngHb`U7.olDe:6~<Z2OI1ÐD(@9,w Wݧu ʉ"9~ڮUM.pnTO Ud# Hqqkt[ȧQ+ݾ},NuUm]:~7'|BUw9xLː8*wddP-{ ӮH$ ˖qM[+β5j!T*98,On kKdeXLc' `tEH<4XH7쁎GlҴQm]w0ܜw$gִ H*ā : Ե&g7emsLWs@۳cA'j=kE}XE{m?c_g"[Jo8AVO󅬳PyP8#.5 x@ $-/ᷝF3rZjG-D @beަOi6{du [^xK+iWq/͇/ܹ'=wg⦽[}}Ϝd\Idp䁁ZxL[k[k-'QVI )eP9= l9*I'{v]&,j׺˗P+ϱ㎇4Bk۵ſ%ۅU{zQSkM/o'8swr;:Tڍ-:j207!<=~f|UkZhQp?Emvk"f0/y8Lӊ^)ew3$rPI@9iAʂ-+vۼ^s;K2ɻ+9^1mJJ$+[ˉ'RD)ikT[khdjڤ܆#KL$x}+{i>^z?̦ICǯ94 p#23vO]:XV}<[I py 28==:%w(qi.p ɅA S<;76J03< $Iϵrg0De466/ *FouHk>DZno ~/[O}+#>-t՚QEdzQǼRTw?/P}A?*=E}FE{EQs_sf4(<9kRG-iIcvܤ{T~ciaXm9E'$'ޯQ@,m>IT,.KAݒy&it"h%y`t18(gMk->cJ%#cƮQEQEaxaRI1<,k~ձo0H#< UoA藭nԒ']bgpʼnz+zfB\SQEQEQEW|ET*Q/ۺ/9^^U&X٤NeX6q.I"=BKۍCQM-I1^ Px!ǵqno3ѳe-_ӿUy̸rqmLL' ڵMU[廬f+Gg \\Gn8~Qv|}6EKqu{i:d%[VKo\g׃ל׻K'ԦOQ Ķ0O ~$Ui/oS9r_O[.Ӵ6Y=H@8铜miW*iwN}?ڞeFAvhղTq?J|Ce[Ksbb.cgf V9ctzf{xȖC &bsߦ:עEG)%ά~~g7;^{_O-B(B( kE}XE{ZQm_pb?}^&34qhf>lzy&#K@Ml[Ǽ_Y$,,8,I8<Ûroiwph[][hC~H1>_9z@FxQHkg8]u[7 S|*RZ9gi5e_j;;@!mʈ.̶d:+F=p*"EG3RhxQ.o 3B((((( /yٌbO>\y+bLfNX ~oA藭ȴW{D>\A00bzcmz(((*ꖩ9=oZ\{H@r!*Hz戴7 ר3&o}l+z?ah^@Z?mOQm<" }6XgFs88 /sasx,LH Uu-DB.i*.OA 4 O,K1gsHMU¹}G2^)ݙ,.WI s5.j2')mOUFN;u^C#6@ ,WWh7Ei$ ,j$ad1 #995m<"o} XIݜ6+m5J/ :HUM.amOQm<";lIM N=ڬi mn\ hI@9@d%Wsefy_E6'(Ufy~{5%mbr$a/)OiF?-xXw5y!y۸ںo}l+܇a_9Uר3&o}l+z?ah^@Z?mOQm<" Ʌz?ahٶW?Gͷ >ר3& Ʌfy_E6'(^@Z>ר3&o}l+ wvwZ\5v].pܡ\ Z׷mw˟Um!QpI[i#'P:UȵВ.E;8a9?0Ӱz((('oRk?,ND3~sdG^PW-F7i0A!į+O<HzMk\EkwMc~+[\xGqJݢ(/FeIhٔP? t-y@8QEQEQEg_- T/OzoC& A4b=p*xʤ(((gžv}5F3MEV}?=hV}?=_S액Y_S액@Q@s:GS-5BWwNO~G1]5QEQETw?/T{T_FE{EQs_sfѿc^"\ ( jvm8>&yt=SSY^) K߁@򺲖VFy20e=9oP.-IUi{`s?hxR{[}_A IQ2F9V3€:ԑGV*pO;IO[@Hm45 'b}Oc]QEg趭 ?%WmZQEQEQEQErI$ 1-j4V>!{RZuhN$U75mT0{[0*1QUQLXeã OEM\ڬ$i"z:۪v6oo\]B'O\a}&_a#VhCe'sӃަZ{IZ ?_{׺j(޾yUcRJn3߉u|.1L Rn 'hA<(ݕpOx掣n;m|Q-{R##<ޭhz-D@ }?\΋OIعMpXA9 CߏmWLԮ")cc۷HyQwMW*spszAR]~_6;Ki&bBG '^} Y494Jixb ?)i~MJ,qYT HVq GO?ѥ܀gojW63*McA'j=kE}XE{d-/*;oJ(+oյ Dd nNoJoGC# 88ņ6=K\g#ߊlkJgS{[;hlV!.V6KR ۑ=}ϭR4W*L%1c=?+QHsa1qqϡS~u"2$Uh3x$qEr~_A}CI~e_-yf9 "O%?wr\l5cZCfB!_sg8U4Xkԉ}34K$C%dwxCMMēGap A` 8FBݿU3R@Ojϴ!a;[_P4$V(n.e@[~q9 OINzvM;Ej? !Ե[[4wrAls3t!$KG$=y3kclihm;TpF=̚ψAorqp^NUH8J.aFqr迯^deO-:Je8bGCZJpps^gIEHܢY p}\կuΟܬmsc9;HӼCH4@G0c Zx|3uk U|2"eu_}΋.43Rq {DPF d0 [jw/x ^O|*@<瀮4^JJ^]hLJ)Ð1ߌuX¥e1;n舶. iHBSy<1k{Ti~VKկ1äҲG _܆ ~ph %5-(jnF[pv]5= vcCl6 \£rg ϵrg03Sla3C. Gs62']Ei#, fj5͵a 0˻b'&0R+./ou{mQp1' $Rm6/ΥyquA"bT$^ϯ'6G% ~@XlEQ&3HgB>f4tM m]@p)`7'M*Mm8sspa3Ϳ.k?N]6#$SҸ#j |Is7v}u7Vk2+~H8 ;xL gozZ]Ek ѣG<)R:v=ϭ |K{?c >sFO}~+Cٹ=>>(((?%WmZKKڴ((((/5?,I .I?O]z(+b&8䓲!Ayo("m&HgyH2ڽVƷZWAe <&B݃5.]JysOf6&% $4a$}Geh7O4egG/ CqTmT]IglITiv&RChyB 6#TiJKKGևDi5ɻzZ?tWE2^10UU,qxu-Nh-_=4Xx<{c]}.al dvWV8kkvW Zz%4+Mp 85gWV5դ&bЛ`ybܪ\sNGpZ]+3S0@O|qͭ̚LjK{ +RJǹXb'8,]6" Yu=b 2Z+hwv?JЯ$iGc;LRoF~^һv:Lүȉy ӳz拺oC& A5gu^h|+麇Aǘ0Hi#6u_׼ ͫ;k4s1+0@$ ,5ZTh#_֥G%YL`:F+N|s4_ R/{I&"ּYkxwWb8ǓbRf2asH*뇯EFttkKUV4r[v 7GM.O , /1l7I%7 #[tެK (J3SvlU:ԣ:97uPpylAp$d-Bs^1o4{bI#R G#==XJrL$#%϶Oox;:z{Idk, s)I6w\>k~[k,mHgNGqZm$D *Z-c9I݅gnCօgnCIpdZw0e]1 +nhbTwt'<-Ӡ;-Č E}+˵!%wy4• $JRom*7[~ޡḅ4i#ݻq uۦoi@- 1ہ@e9󃌎9nvdsw- x``{d c[gh竁8JNq7O+??]w]ۇqۮ o=z̺{O"E{qDnrp8L[Ѓ4w6c)cgwvz2ize={{4IaU;%eVԧy>|ZZU~gI_/C*]:gn>m[E/gi/HG۝ű}k[Ֆh573ǰ t<bᕅݘM܁MW#<k;]+輶~f Sj[DLjtoHx!r:O9Mm+DI3igpr}s-o4tXg2|x܎=}>",chfFVl>RwjT2m[˾Eh]BѹAҒ=p*(C[|gozJy˛d0=ͨG A˿hx\ZÍvUYVo B~BBE)$*N^_5Σ3\x㵢qj4rMo ąʹ,@9\s,K|fo8'?{GrJ2 5WMӕhQE&EP~!-/jЬCBZ_uա@Q@Q@Q@dK%>(|cc~Az(+|yE⍰kYw<}nϑkre v+j)TB:Ey f]g-˅egXg iǂ{˻HMEثq'#?1?ν{x9>djʧ=B羢CšiE2-r` Wאdg.j%9X$$k {uD̗2DTcXS_2zlj:l˯#Y3 iYD1ByC^QAo<.=iWV\z%ͼwVA(&9kqKON_oO qh:WRp$2>l9$;}1|:.}H S淎va}C?5-Dq:5<byڹxZզ-!UyeP[9I_Ceyԋ%ۆD 0 X$zץJWT~ •0Ѣ@vYOᗈln2.Fu})n(^Ǯ7{UQuVG !dҞQ$|ch?¿7ד]_ۯ7 +nT?*^*oZPۯ7ᯮgh+vOѢ9iw:/km[࣐\2f>2 Z~,uG(V<jP```8cH*`1Tk .PMdS"RH^?yx=:]~)X`d4K:8?ʽ;A+[T-WqXXȑMaB sӯ6O+n XAWoB hs+ԴGL}:7.L#26o2}q?E6wUЫ6Lz`6g=N_Oo뿶l FdJ.7c⣛Zl6`#˙vCOcz6$ÿ=NпEKSy.<$g %S(d/2F:54N\]{ #3F&< cֻkxDPKrs$BI )*`8#dKm#qHQX{N+rJϾ,dn9&T(-$T-Xx-ڬY|K)?ןR]'ug]~GO½2O²2my問E -bIQ!;MTix㷱 ۦe̱(eGm>S4Z\C\ ]I~9o/m Rstc \qE'RRܺx*Tz3,oYLD|ыȶ+eAҶm|] ҭۙ&H$WUECw:Uk?Ê>O)`Y{hbZGV`q[Q@Q@Q@Q@Q@dkIqԁ<#|Yl>lZע Ⱥz cZ-N>[!W;E!G\ۡk+3o0|gdwQ@Q@> Z\v#̃w/$æzi% wnfvێè^(RߑD3G%~ou$V%K>8rrv}qպ(((((((7ޛg Sx띹Jʖ(&߻sM`9;qךEex)嵋m!b#[ᔁ;viǻMk`d:Ŀ,KgTrp\`trGh2is(}'8{EWRb0i^C#TP7e fk.W2R P ?)qQE=لT$; ]qH> stream xYKo9_Gj4dY dv:- LoU&eyEX"USb3iNUT?'?zjx^&a <]Ee3@Yvh\/-4v^ݼ=ę ww[Fn Ԧt-3r: Knq(+=t .;nwHۜjkesobٷqEu\=6%4 [vwS+Z{3ӜBCnI 9Em&#vQ[{rSXXC 0"d q ͧa1F'W1!OݸZ:[+j9oAQÚ8 }75Δu-| zî;^h̻{'sx6`!MP'<~`wm\*QXZ_h8jyM!>-˷ٱ93aGo0*q\%fzhj_1+kx lλi\VQ :$xP\turWA#4&Ί7"8R6XT8npvݧbkקX_s6zU2A3C:9AF͘ ۨx5yfL4O*(ò3 }p̆3c=os<>KuMIUߣp'k;d*_^G8Q:" P!p3(sG1i8VaVp=59Q5VR=QJ v!]`5I= M \،VZPOg{,vPt-UA=Hр1ԃRRX8| 2^4vp 74 3I*̥QHy1xC!#E۾n}<#HiScpf3-=-؇ky<)߶!?R4Pah!Ӆm^&q&IWv I}]ALb:kCp94xh\h]Y!r; q5yl>8+i5U,GPIxE2)]HRŋVShЩdRTr 0~n2hh-rk*VzM" K#!8gsgmE֢,jnB&daŸ)- ^rk=$W6IP6K?Oȷ",•0FRB.K/w3LB]$_`!K|r'(1Fkh|0&Oq1tݻ}jDH ҇lx|aۉÚp ??E.Vp`zFjPq`q; ulWXcJN/.nG}5#g;r4"s"i.v)Հ)"+ӬUnLYBIx]+^]RٱR#ۻղ.V'jwؾWg'qxqS^GǏ7^D(p!61P 81BZ8>]@;I]2 1XVS\]E=)ɖm\7sZȟ1jIԼ(:PWb fiB\' ^rG kC#P? >aQ #!O`B dՂ8UHM1}`}|vAqZ_N(kg ܻ%~[XD6,H42pD",MH΀֒LԎ> -4;ND/ONcCSkޡc˱+EUqةc;!U7"R#G4 փ3 bS P U1R8 P{ r+TᰙͺS>[03j*dH8dNɩ)%JFMLD)}35:0d p (`bOL$>%YG51r6phf(ϽOI9@%f{؈^>`BayUEdB e9- K`L=ϦtZ 2""9,iP3@yv%6q> stream xYo7BP]~.p9-oq:A:+_3O)R8whPpfH~yżnV>Ij7z[5oJ̯f~7':;ޱi4MÛFv{BvLrKW=m{vLKeϦ@`Ϯub٪m~E# nOK!Q$Жcem]Cȼpy\ͯY@K5e!4X-,ööay!@Ziͺ?S l/Î݄aoɃ`dK}?E[m]E`tEMŞ ȳ#5# H-vSץ(i,$6K6 ~]\K7 ݶ6~RYaaQ_c=! QAڇV'ؤc ybBT3APûMg1!ҟY`v[>&!|A2BƛU 4V Q\o8 t#k$X#x|{)'Ё艑E~i^ďHdKx~^Jڪze}W* rzؾ ӁeXRm}Mt*0 fɉ6\ԮٝKu]"PZ%:x>u]@v\͢ xZDIF:8%DIFXeF·!x)d E#MZ> ) g&XFSYLz3Tn,Q_Cqh|=hHS@T\q ON^KՍM釦`)*ے|a{=U8e !]J!f.CUDK} R]_7Y~6mkblYq29[E5nhrOGIhL>JGQXP(O<|7ha/`~l/ N=BT?ЧR~qu`}(ϸ6I2anXDY o&()YW$()F5P вQuD[VD=҃ hInJhrf@A؅kT$@mA4ۃpOk&ʯT^~?g0B_Ƹ<:@˷N)Pr|svR@EՌ+%(`aSTF, TҼf)Nh*kեu487W"i3Y8ziIey<3wZa K_˯^%Vakv*(Ԟ; `ڨ(خ͟Qr?O+RAwCj};-m+v]#nn`-n޴F?D{J?ɢ-1 ֆ vBlmؐdz{khRO;Wi :z@ 礬_瓅ӎ[gm4i̠d~l7B5wdXVXxf`Bg4*ް|uqdU4GuUnJ]:"SpG vpmrd_Q=ԏ? %qƫwv/c6] \UOs9E k&u\rx`Թptz1N]]Ɗ:n'(0qis=c}XAp }_c;MT㱘\qS/5 :*CZ{y$"5)mk`| nნ;iM} RcO~`_fcg/rcon?g ^t*R}%e(P]op|Y-ŷ ػyj I R4\٢,xsfbUf8Q|X ̟) E?[Tet__'.m>wlɻj% \lA7zKSe 2i,Bp׌6sA/cNfcɽendstream endobj 1113 0 obj << /Filter /FlateDecode /Length 1145 >> stream xMs6gzԟ(T'DE8иudUɁ A2})8N$~y;,ʐ0 QQ#!E4Nn4!RHxF7$%`}9IƈS% q1h@j zF2ڻb$`1,VBn2I"R=~gU^<32F$wi;>'2J U]W D2 9`Y4?t_W|nr:d!#9 {.cAvMQ bĨUqbmebi(E3=nb&֚xokuK)"#( 1ɥj5j`5Fy1O^^6KMOGH'w9 09"sp9JN#W"7J˧޸;Cg87%-\!iaQ+K H(sCv`̑2w͉'ৎsqPcy?,Ǿkit ?ApB4ك͎͵JGf:?~7U{c9 ʑJl cdI7P&72snC7=rٳwϿ}G4Zte|妨ځjJb]76oBЫsK֍ObY7m]}mn{_eU|w8zC>_({ҜIhcՙEV< iIr\Tw1(/ UgÙR K*g5Aw>͝m*o@kGd eMB _Gӂ(q\X?孽5vMoLڅJs6ΕqQ;=иSbK#>Ҋpզ}~̷\~(np%SoX Ey(;A.g*Eb2B$6Ps:6 Kendstream endobj 1114 0 obj << /Filter /FlateDecode /Length 914 >> stream xUKF Odnh2Gڦ=4ݲ=(d,,'_H#im"X`!??rQNX?w]&wS/2.1SnI u|whsCeZ()R."J;OfeZQGJdu2{}ǥ!z8)lˉ#ʴ!eS%}YTfo3MڰX,KGYPRXKߨX:^0bTiDē#G'gJQiG[m5O/UYbVM":a(gbCeݱڲ_4Ot#V _!??Ҿiz^1]>ץYOtmbΖgKBJ88웼+Ti,)]Y>رCo*C/)i0Be>'f佀?K9:Op~+,|A?A9@;o|a> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +ANXdxXWF t"Wu:B^Nzls*C&6zg=SǒirAc M?1Y&,0_^ ^Gಱ\M$y]@RuV_6YD33#A?-my5͚E`g6R\C%"#/ۂ}";+t-^1y.R՝U'U?_J~q\h$*HVe0pz?iEp>5ԡQuXiڋYbࠨ;kR:Pn̑c;:[m^94&H %[lg\ewp|W amO)C]W:+/Ԯm)lhDݷn@<#ҹ73s}.Rd`X%*~^ 3MEs{/X9Ŵ>3qE&Jks{lnaܤmY ZCes-(EXL@yvrp?VF}/$a njq+]$Ne'O*(((((((((((((((((((((((((Bp2x}rړKPX47!]wܰc5h TSGӧsc%N*g@o+Bm~Z_ح (? K}aib(- AېTĪ&ҽͧ\gwC#u?hMF¦6Dzh[Oo*c Ic'q5f ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ,w:rp*z̋&Zkfcyz3}=z L{xY!o2f7z`0ҮQEQEQEQEQEfW0*[Qt`=W"0eaA"Yv+Ťs6cu#jQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEGWm#wV}%A8) X':pGb&((((((((((((((((((((ڕiȬ *[֬=b:]͢F2d+v?(=;Pm`TK)GݴXՔzؼ#ʊYKDnG遵I3Sl+swx[$)bHb'v{}&;A$O*o2m'<0i5ݢ!Y¤f0 Ci'l ?40湎y_c]@ kn ( ( ( ( ( ( }Jih$[UU"q#i*ˑ9y3Im>%+ 2q#~Y_wS@ a,+%̛X!'T=i%uM/#c{q zuT30N0sh(((((((((((((((((((''KY7!]wܰc5&>rړKPX5H*PԴQEQEQEQEQEQEQEQEWPmWC)t?ЎI]O]Mh[P}u FK2.Q̑E2)RhX ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( K+gm*ǀܜ L{xY!o2f7z`0Ҡ&Zkfcyz3}=z Ӡ(((((((((( Wz!-`B=KEE?У0h@ Ry1m ?x"Ky'Ҁ- 5 ڥ(((( ]lc{b.W s19j٢oYb`8g? VlZ5cEr4mg),j\1ל՝v:7OrI+R( nI*?hCKUnGGnTU0pxۇ ( ( ( Z2vDjEAeu@9 F>S]K.Ǭ $i3*`Ԟ(T_i{G} >-`B=KE1%Cub=iQEQEQEQEQEQEQEQEQE@niNҬ*F\-: wZmiZ?$yy!̢,a\@6*.qMG4v֗7W~+x۶z y{ givd{E7}@>KiFDx F r>Q[ߎhBմoC6sJ񉡄 7##)]h̚t{t@m.}A*Ahz=΍l_hdC4۞ 9#EWz[K'WѰlg'ϭZ[8;4-,M$ @mq 8fm{Hl7PՒGϡ>ma\7$HBnِ21 tIiCM_Xv^29Mqss@4(-(QTǠG\퇇tOY,켓YSB]@4V7"?пm|P@oE4/Ec).M vlXh_ (SB]@5At{%7 fmݳ;wc5WM v2_ xz 6g $$@VD~"ut- k|%N q[h'b;(#'T>lqy*!29>s֗k'aV7y>`ߏ]qYwJiqr~q4kbv cF ggjsb;{KqMO@o6hoE4/). +M vh_ (fSB]G"٢пm|Q@o5ǔMi\-v&ٮì|]n#cMiVrǃ, 7uĂ=Ev? HtnJG3ۉ͹[xam#NG:^f!6g8J͗MmHMi *A,Aޛħ*y{5Qy~o?&sq@R6L4vU q'O9 }̖dM̷,Q`I%wiGk2(9`1ףΰIM:G7IJVx\ .N-TӮ--VKm6Tܬ *yݚm3]B܊ߠ((((((((( SiVN0d;3`:S??wUEgcZz&ƴMVi 7ZP52o*kO]dUhQ@[Eg*9$I> stream xK0%룃,/!lm!jnQtvߞ)]Ъ33fc~lៈsG(/qA)A-56'1hcPBZ*hI*UJK},h*tT1FG$>K-qP˱ Y7̳z/ɲ-{m T hP) Z6Z0G TAW*^1uˉ?>>N:qfpTv W}U,}P0\-Sz }d内5\b/pi\,)321&3PJKꑶՂ\gBQ$},NM 1J,J'bHh m⅐]ȃAg?yJ@@/P6&2 kÆpY x I04uFYU6 ܾfJkG`.l3.:q'iEtP3D N%Y﫮w 5i`$Ȫ> 9܏ |M/5ؖ+ȧWսbHQ,ŀ"IWNgum$U_#n]g3G w<% tsśnϊÐ{YP) @byt ǷSO58DhL<'؝t/EҔxf=5Vݢ{4endstream endobj 1117 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 12076 >> stream xy|LBiJZCl"4ujFD(j'QE}Ik=߻9/7(̙33|do z, 4@4(@4(@4(@4(@4(@4(@4(@4(@4(@4(@4(@ܺuk緱]vBtߺqƁʖ-=駂 gG!x!L K.nݺƍ2lڴcǎ]v]vcL[L *\x1uT?r ]|QFٔݻJ*gϞ{t̙3K,YcɌ@oh-C%7o޴%KR+Vܾ}^z}ɛ7ɓ'-[ڳg+W8qo߾rӧ+WrʫWvH㠠 YRJ{K[8xlݻWNMVV/\f9ݹsgmȈ;wԯ_Gy䑅aaarG۳gOTT+/]ի!!!ΝkٲeN*7nmX)?~7tvv.UF$r [oe>^m4^H@˯X"՘Y.YIHH(Xt磏>%hi_֭eDJ:/E-[ñc~g 6Zi+-Ԯ]رcNBk|rY-?|ʔ)ҤI۷]/_޸qcVZZZrrr 3=FB.ޥK?yD6E%ۀm׮ꫯn޼YrZ9d$-o/6C/D = .,9KLLLIII9su&+̙32СÀ$2tqq۷O7߬\R!rz#Gϟ?o 6l$7%A-\PhSW2ԸyY-8_]#uss Ɨ_~9i$Cm&kTƍF <"Ռ3 %˗1Kde@*;<&A˗/mV_%f@h.^ 9!2C;wL'e3goѢE2=KJKXLY9c߿дiS~2mLeKReUK5k&gZ1pC !7N6rtPrG)xN3~uVy-v#֭oiy-Z["[UCf2rb:uJ2S#Ӯ];-Y=^m4^HƗ8dH}zl2_ehee%ҤIQJӓK(a-}$iK>,RnS?^[(1cHvyIߥK:;; 111R^{MZe߳gOw9vT_UsNA:+i;r @nD444T?w .n4Z&/רQC tVwhLA˿2+LII>,TR\\K,y7nԪUKܦM۷~}ݥYZ kwgIpeݿ'OڵKZ}I;u$kY[Y-hIXBn_E+իWk/<;RR/k)͛"JɼX+/Rȭ[d7B ͛7g8qB6TRdنɒٳg6L tV"x!O_ׄ +&Q+WtG#{=z>}X"9Ӓ?-[4]&Ԇ@Kڤb FDD4knȑ?>o<9;c ,XZ۴i={ddyfYˮLMVJ(@Cg}@&E@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QE@QEN2e?oGEE= hS|}="..?{ @.!fz8|p׮] 46;0hXhct/^nݺ(QbժU7,,VK*u7o<<]["K^y7nhK.\on$_|m۶ \r|:Y]Q=zԂ@hctZZPN4l0))IgJ 3ݴi˗.#_b,zAn+++Y2uT[{=ٳ+VLHHXv:uTjVZOfDDܠܾ!f8ի'J^h2˥n3cEddt\˥K2/ C-cŋ*TЮRHˌ~Ѿ6l,;uss!07d'Ћ-2]`ƍ.*U$p~dV\DK. 7o,S̕+Wd.⒘(3~Ϸ~{5jX0%oq}I;v?@ڼ,Y޽{mUfX̙3@KOe"lhƍk ;wͫf`mm-ev59mee5i$#ko`&M~g6Եkז%2y7ܗZ#GOP6#/޿͛e>qK|իRvMKdJ,)72Y )SRkK3}Qnjժ!.]HW^ݧOGGG-"Bk׮m5r5]vjjԨQ>>>_B,gr:kЙdh5踸8??GdIx!??ի6Dz ڔ%''>I&z2,4@ Xx֭[e߮]\#)իWi櫯{,x>=zhРAM6{,jڵSLٴiSBBBo߾?O>rwݺu+WH?h_]]]+ʉ5kM2s8qdZhߖ(Qbذaz$Iիa>1c{-KmdO>ƍӾ/3f̐e<:vXPP>B!'im֮]+OBaxY~gFio0Rv2zL6J*;vwT>md,;SN}7IHH R{zz1BCC/\0rH̦CG(h#nݺG2}9'O)S4tz-Y$55YMBhc&'VZUﱘ2 ܏?j*xvո>9k,;;Ν;kg"##e塚}Xٳg GѣGGXjFlR;tR;*d6VCuvv6|W7rO?4|{{d03fLnׯݺuɓ'@]{miiX̙sO?>e  .tyf77v=ױc+VʝRt۷oן:6>˗/{ &ZYYy{{=~SNe\bkkco4O|wիW7w 2ģk׮{V ׮]S΍72.Pkժר\IKKҥ˒%K/Xݾ}{̙.]5j";z|Ō U6g8mdY7wy=(tÆ u?Ǯ]z ֭CQh#X@ DFFzzz6kLǑ\rGɸI&z2d^s!FC]D#+N:u=e˖ɤ>BiW_}ː1yI.]BCC"Ll#""mۖqa=|}}sy0g19|?0m4zÇs cƌ]fMƅ ͑#Dco:tپ}ܹs[nݿ\b_wwEe\駟^reժU3 mL&M{iF=x`Μ9[ģW^Jt &DGGoٲ%G쟎;RJzБ#G|}}UiccձcǺuJ3._vmDDD5^mL֯__`A.))iɒ%6m4hPs.Ν;pر-ZX[[=Z[>m4++ŋjժgϞuɉ{KDƝ;w\]]%z/.S|y{{WPQ^{#F|ݻwO4mڴ?KSth$&&J˖-@rSoƍ]tqvvAST#GZt/"@j1ģwݺu˓'ܹs*U)З.]*RHɒ%_]:uJ*\IE]vGv%___-LNNӅ ZfM۶m+X[[+RL39a~ TZڗh}hܽ{W ]z=u#GH>|XX1 ĉd)Sl*SN>}[{=dY|ʔ)שּׁR-Г&M?~={$'Nj֬w^ 7={V\y„ ۶mą >L֮]+OZ@) ~…rL. q3g{=لϛ7ODKm_!M:thѢ7/_>>\;kȑ#gϞ}U{ehߺBE"ӢXI"ɓ'Ky3am#2=?S:9By敪ʿ2A>w\=z$6k,""TR-[fBʔ)sTšYoLƫVکS/B{}Â@@BEζo߾W^{6/Qwpp=sLȳKpe޴qƷ~[%ۿÇ]xq˖-GIKKu떶Lg͚uYY(QVڵk/b@Y"@cǎ=3}\Rp Vׯ/'|"O Y"Cy4h@ L&Y/g jҤle#Tf Hȑ#wբE%KU$/}TP!zghZK.,*޽[tiU2d072ocrWWW''e˖8q";ջq߆eRSSׯ_?nyذajZdILLL͛V.RdWӲXk>s挏l *:uꄆje{CERpay:iC^nݺE3k8XllLNFFFZX|y=q0RpA/WСCd|Dkp›o٭[`IiӼF:rL # m۶]nv6@4hѢE .߿,裏Pۙ#" ۷<';wg3;wIB}ȮܹsO81x`gxbtIHHQFn) 4ےVX!s]:99rsaD4v=o~~~vvv|-55uݺu?C߾}aDÇg͚@8p@@@@ k=m|Һw>} *=˗/k4ׯ__Xh` zQHH۝tb6h7bĈUV&u>ݤIWW׌ǷmFզML߉hb2xAXEGG ܼys޼y'OBXjjj޽ǍWzubFΝ;/Çs7(mܶlٲ{nbݻ=pm=>m{=S&;+k֬Y|tŅOl#whwސ =+:Ol#7hSо}{bj.]$iqGA#Ц 66{ҥE{,&Ç_cǎ>}tܙOlCD̜9S>|1zشiSpp0؆xQ~ƍWuGΚ5KvD<==6tGMGTTԂ ϯXύ7Ν{iM=/ڤ?Nv1ILL\lƍu֣G> uhrHy#v5o޼:u긻z8p` {,J;{rrwLMe+ Cϓ'Om[n~ɓ''MDa,)1cTRM{&&&jg۷o߫W޽{V(;88hmdãgϞ&ׯ_Ν;O>e˖dI=4h@aDzСCw}W䈻w.]:99YN_~>㏵K׮]7h2duQ f!&&_׌3*TXrD…?zСuj͚5kX[[[DKEEDDD@:)cy/_ܧOjժ} 9rrK0.ڌlذAgϞ]XLݹs{iii i+V\xqv=ӇfΜd5L&Nud`_uРAmڴ%n*UT  ̚5ٳSNh ٣߸L~_ե)))VZre6L6G>>>񇟟vF{Ξ=72dHٲesy`@n"fJ| XIeio2"￿})Stԩ#Կj׾}͛7gZXxǏɓG%7Ꚗ>@[&44qڒL~EvҩS'CTF͗KK*իW d 'O)"=L^ZHRSRRDÆ >, Cʵ,s,m@>}Zj/JHUN:)߷x,r䈿ɒ%===e9Da1w\Z[[GDDhKʗ//sٳgK=%.../R:+CZ[)ڵ{8 ?^[[[ww2I&SCgggGK4ŋe*r5nݻ'O4@˗"-q _f X$_^Jϟ;?@AGBe˴w%''޸qtښGHHyĉcǎx*І8"##6m_2Xb 6ѣv$X;^ܹshhSlV2Y%HGC[lyEq8`x?_xq3g<.'$$|oAt1Yf֌q:t`Oű`wwy>>hQ@Cig 4`A1O@/P_4 H5j@c…z=֭[z?4h(hPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPEhPE?endstream endobj 1118 0 obj << /Filter /FlateDecode /Length 1574 >> stream xXKs6OKD"6M&xquHꁑ(GIT(9i.]PvNfbAo]`1Lj!_e( ͅ|Q)R$t,ߡKQ$D.1'I2{,nf M%]H4"M1#PLWOa0iI>g-ɩ&HT֭:jTVZ#Y1mg/AV!'E,YhbQ1(&gʍ82$L--*?Q׌vQsX"X &Աcdig7u7]gQ$ `@RL Kߔ.VlQI5MtaH$vZۈrJ(HeLJp,d6/Q)0FwMFzW_읯bt'g(F+П@?RXKQI%8_ՋœKf$ߢ]{ -&Y#f 5ɡ@zq^G}v28н@}ժLRQ0,dJ?9k?d,TygrJyXUF֡5 ]I$p@@TiŢkχnAbճP/*zaǒ2'I15ٸ]4-2lPXpA ߬q}.ڐ6m69f+3p4 VaaٔR3~^{A`4:C^ U!dq(oJo2wq)tIE1;-@Rܢ Xfm09B˞6ZK",n-ub+sq\p¨q~S=BFVˣD,N׳u˸T/oȊ:,m2t}ؚ E}O(nujI"3L1&#ƢFyevd6>f0~XQϚO'A1 U ޶8.V0+J8FD0@9(ӜPP3b3Nv!0.'e'̋+.u5u#b3Un#26D`endstream endobj 1119 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 12751 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (K_oĖM{Abn$u^=wj.h°Gv-+K2yW6wg6N`v c=4\5}z ̲BMey@r(J~xjKHCq5Ơm٥ $w*~z?J[mCDJL23#8@xVPZX+qG)xy\׃ҙxQOG1]egW=*(-ms`Uɱ[VKV`X0rFHP|@"mIK#B$=zuEp MIliJ#0## :WG-C\DvŸcr}q\ >%յmk٤P_C,BJ>p9}O\R&+O [ت$3`cwW7&y4еK)FVzy{jzfm76[nBߢCYW?x5qC b'afn͢v^|"<6.rsր;z+}J,}ln\LV88$@|k+u6vdVS 7 :zeEqxP"iX$JBPIޕ]i ]2Hۀe88>ErMh}<:,ޢ#{) k;Eu=J6[KZ(JL;Ych{ORcy.n7afY1Ǯj^+4%ޢ\CktpG I=h h}VKkint$o+4R^ 3S0Դll fnD%#ӊh:]IH_ȷ2X R2'$=+FԮtVIeZ{y,<ҧ}((((((((((((((+?Y `+Vu1 e9+BWZ5#)K/c_z[wP]$mLû gs+9OZ~uu7/-V16\ )#~Yf A{hl5LѨ_q mWRG%ەfSlܚʲ=Oc--"9Aszi|`wʖ]E6Nc8|JJ{٦I*H:2aqzߢ1O h׷w^* @Ŷp*; lk/˰`m5EaWO{4ut,6`=3=Sm)kյW0\ͻj@ַoOe7m}\ nyb21۷לSbw5-bIV;}OQ]5+d6ҋ.w2+|#B=Om;H1lWIEs9tno$Ie9bGOkAkjq{dV#h01{Т9_XPŪ 4r'ˁU#j堿[21l>^s{(> K]>+kil#hE=U\ʟq+I.e XϨ%cI<3\c8w9;8UHE{kgyIr'Vx69Ḽ!ѥnsRi[kohfe2G= 5EsB=6MsZ %qpŰ~^?_zmσl.fYK ,"@\C 6Q@ү,/5 F^2%`\l m9㚵~ V Y@5bNAz(V+`R q?YOPAjZG"VO$ yTNX^ɮ(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((.mlZucL o#?@VAKOwH'^1'늱@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@v7VSdSy$*doڤ.Z#(M QpGp+5Vݤw$NI"l [;Ւ Rc}#qzt,[y[]" .ȥ`zq jZ֑Aa ~qn9954s*,&KR󍥔6YzוE69XH]eYNAӨ(((((((((((((((((((((((((b9$o}"{xdXV#yO ?Ql-(^^${;݁*(-/UbH"HPơUG`8@Z_أ K}EW[xߍ j]WoE)oJ tr 0 4Yldi)՘\o!P Mc5oHe#{tq MEwm ?;?ױPk{Rh;Xt>Eaz&MR'a,x{sZ:vkd>õЂe<4n((((((((((((((((((((((((YCaWo6/}j=}d ( ( ()jV:$-tD>}=[+YC#uF>Պ˻eѾ_z ?jVv[.Qar+C-aZJ"=r5z- |ⶣuetae9zRkYlЦ[bN^Ly^=A +.[{gyD|}9(((((((((((((((((((((((ȱF9 ,OSDK2 I(38g%i-I<ܲ}S (h(()C)V 4Pe I1ZuPoQ5UǸ8GdSt붺e&voQG#(+_6 ht>sY5M̚#1bx{7(Pm&;]pC!e=s⥛WO0ZP0Ñ辇4\׆&n|pMjvf36HʩJh((((((((((((((((((:ege]qVgrA F>oehPEPEPEPEPMRim?dm 8Tg,96RIy$Z85}" l 0YI`bfI#2wr:\W/a-J#0@hr3O YFQ{OdZ1!!wzjwZ׉qi l1$SʯNk2LҢ7'{K 䞽3ؾ[LӪff^!9r>I QE!=c4L2X#8T'j PIw WP;i4k\g 6*b]6fcm1GիEUttVTFPyF|L=ZA-iu%pݣKȓǃrIzkBegڣFz*RլKH7c1VpX6\@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@S%bn {]?丏d aD7'&PEPEPEPEPEPWV˺9=ꮛq&粻lNUZ2vDjEAeuM@<n 3*Q$ZP;3]tTd/Һ*( [(ƟkD"(IsVj%)^셻ؼQSn>8]7^[⹹mHFF95eu 2 C(e*#[GMc.*„嬥ϐ8 +3O֡6`q((((((((((((((((ݪ4?_c[8PPF(((((((.%fxr?z ?>=jS]UԫEgX3XgJILr~}4EPEPEPEP]COԠo!YPT9VoM4_؏cA7ַ( g2ʙO}5f5 o#_sog{]uk,*N, x׏zۢX2R# QEQEQEQEQEQEQEQEQEQEQEQEQEQETrC1d>g'((((((((j`cC :pH4PM:UD&zjgj1=˨)gv?o?ޮ4r³F2W=hJ*/=i{G} 0hG`B%L?Tdt(eWR+ FAP#hct)V8󖱘%=c?LjPY[Mzg*iֺ"+VErHq@<7j#i{ɾak'f8%z#>ǚE$P%`B=KEE?У0h@Q})Vh$F> (((((((((og;;[n6y ~="]-ݺ ;ֽޥrt֖DžmsFNzOEs>LxjYWFoO䝾5PEPEPEPEPEPEPEP\Oul쮬Eq"Ec&E޸=QH#wW./-&yn<cP]ǩbH ijqjoǮ޴]A)A˴Fvp9*r5E3cxc'GRӴK,9ln&, < Qr8 &:'HKl`$ ^o=Pmo<$gp H?}vSڋI&3P8brX,B[cslWB&ڱHb (n-_*4d$F;OFRxxc@HYZN={ eEqvҕ+»NLJBt4=9fPrvޢa(}B; o:Uv** ;1&a{ lsG(`#F e~7ӡy9|0ܹ? -<ۡТ(((((((/nRK*8XܜƧ?UD;4|?R6lٜs3&# \((((hyg#Yݰz@Vfi0/em<=}ᚫswX%=Mִ6Lks%Fǒ}QѤ/5Vt;G ?ϠEQEQEQEQEQEQEQEQEQEQEQEQEQEQEV44Ӭ_ NX@袊((((((] ;GncAܜ(IuXٷIy_ycobp) }XVQEV>|5#e-x#\g !T`t9nqj2Z,2Cv2$mGF&v$=ǝ%ɧP;p۷zqꨮŗ3C(HP26JzΧjVWsډ`W˅;G9$;-b)V${ccW^̗Z;8?}?{M-ș-sY\Vf=kJ ( )R@dڱT՘šC.cf_kwwx.$QI:0$,zc:REw!Q -6Gc{w[fmxq/ۉN$Oa; @z͵t#nD^p1Okk\ȱOP6w"t,m^"3Qxkǂ6mד$Gp8Y|IȮފ(((((((((((((((((+?F߫Y_un>4?̚Т(((((ing;T_ot"Vv4}Go=G I) J8*J}dOUUŞiN"%$WRVݠЕ%1'-{U3HOg_3?{@0S]2Wa& Sڷo[jUQ((((((((((((((((((((+>5E'JЬ7g[D J( ( ( ( (*)g!UFI= 4V!bx9 ?誊@UQ@*?J{y`HKvk_$N/DG8".ZE kI[TrkT\+0V` r1G )7'B!,x*tSYHKIrC;F03e4[Xl$<7nQVs ;z , ݴq6rx9׭G4xeͯZ+iL$֥El6fotI$S޵;y#{KL93(ihbW±] 69sLI5";le8=J F}svo*G;UV<`6AҼ7@imZdyaP`d'[hK:F/RG.)88d0?*bxhڪʄp H8azJ}yiauw3IԴIfO-^qwih=:`VA _gj]:{UPH2|zu@}[=֖F> stream xUMo18O7A\ pX%4h7nS*.v]FM+*gog&QYuBz_2.Q^RpS:,%lT(@I!-2Y:(%>,h*tD1AGJ[eK-qQ˗c95ZA\G58r5j,U1}E2ti*ՈEXZCHa-~ÕGx h@ĝ [/B?ޟ:qfp2}d6 rwˢ)+ ۳dЭOLaAj%D<3VevΓ͂d0kț`vu6Ovv*?NIlLD/S}NSx҉6U< j/'؁S`t7/"$Doy.M'Od bHHmb5j=~!i,B g+DDToT6>T*,t5aڝ_)E> stream xMo0 'CX}aۀaf-;fVߏmAC#"H9o.pxZ؜6DZB.&іKZcH*%ePF1`1ր4Q<Y6 s,uXWPX1n;Z4g3=xز]U+T@f@ EL(RF`iB!htH.ȓxɩUQ *Jދ;~9G4'݃8xN[PS9~2} w$)GkiB؍y #al_hPi"LOL*-qlbPڂR8ڰ.Ђ/In /wWe31o Br˲ݶ]Wa1Xa̱}wqX6*Y9F2:x~8ٗ#cKZ|#]}_L <^Ⱋx§;}}Pq51S{cendstream endobj 1122 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 15718 >> stream xw\W6pŨ![콷^" `H" v}Q F"bW&R~y!J2;{fv:)jDD$b h""11ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"rϞ=S_רQQFŋUY:vXZZСCׯF{)M~PPnԪUҮ^ٵk׊+~>[n]fͼ$4ƴiӶnݚi"2k*UI#111555ǡC~(]ttttٲeq{ذaG &ر#KC4g?u۷ٳg̘1yl<E h )ܻwo޾}aÆ033e˖ݺZUX<.Jp#+Wƀܐaɒ%ҔkΞ=EoBBXn]$W5oܸ]tiժox޽;JQFang͚UTǏ;w:w,-!<<wSO?JOM_bEJJʢEN>믿jjjJuvvVWW9rԼѣGgZk)4h###___<4%c@_|ҥKQQQڵC*w<ݻasAAAѺu'(QB7e=zmBM)'Mo>K{ t믑Ԩ1/\мysnӦ .]!բE۷o/\ |ԩ#WJ@WWג%Kb&䬡!ޮM4\khhhllɧ{rO{i-T>עb:</ڐqFC Aä-SֶZjhgڶm{5ib@SnH]LSH_T~-2zٲe(7mڄP7n=憐E>|ڧOϟg h֭âP5vZ^Ah>y䯿۷/:8۬Y3gϞrZNNNYʕ+(~a >x]~=Df\k)uuu_|g Cn"'C@c~gT۶mCy>cƌ+W";vcllEb9X 6Da6Ԕ)SPJ:餀 jg 8,_*74Ѝ5BuA!Q>KsuZ`洴4}}}zԞ;wTTAqƀ޲eԩS1 :gΜ.]H"Q-ڭ[..{gcǎEAz޽,ehmϞ=f$2'%%!*Djv)Q>#XƵV4ִiSA600@ڵV<BIQSF@ch-ЪU&O陱1 @G%wNMqǹsAeVzPb+G>De hD1 U#TÇ?s e)Qcɸ銀F}2dtHu+tԶR@%J Be{nƵV4J:|=BE.A@"@,:788-%H=G&MU Xܹ3߾};`"  ДAc;wP.^Yp<<~DaJ$f۶mQf hd}^7n`.&8q7n AΝS1*,#j?ƝXZuhDV-8kvvv^hѸqvڅX5l t`'ODLzJªWO {%#<;梄G1߽{7oĖGRK_}*4 hʍLQtyڽ{w$!baÆ/^HLNNn׮RQ.oKWddY< "ݺuC/]E2ɓ'YNUV/ {~1V~Z:C-K4(튀F-Ǧ@igbqLP̙31V@ٳg]JyʕO>ݧOE@oٲ%1ڶ~zCx?4LJaERKqıitt4Q兠(0Qb"*: &nlڼy?5ի7Y7D4h ʕ+\E/˅ Ug?10j{`QhB[[[OOS1bĹs=kBCCG@ jϟ?KcjjjggCFܸqgf۷ϟ?̙3Jٍi h(N߿x&V^K.ǎ+]7n@y+}b|Ezf穑UVE7 @quT 6mvZ۵kW߼y'}OCNXccFĠħO|f^DyƓA?z\rҮyTxqQe/X]!4}аRJ,ACv"""BBBZZZei:rF3g\nZ>'O8;;xn)P ܹUV,oݺu#FG#јKU3Z?q.GbݸqcR_tg^ `)h&K804Yx1MeM_ªiӦYőr…_۷ɓ%KF~ݻ8tǚ5kn߾bŊ_läI£R5kV@@^zz}Ȑ!aaaM4yz͛#ŪTG]~]كE\rOL@㶦f͚5b|X711Q˰[ 70g9_|Vϭڧ.^8>>>>KƿfffW~=]H+V1Bgƣ8Ο?|3P<_%6oܣGLD{xx3Eg1d``0}tblD5jT HO>KƆaL@í[7&L4jΝ; jQ9(ɓ'K;rKB ˖-SK2fw{ Dq"?gz.\yJ+ѣG(G>sŋKB/_yTt#^Xm h$TXAAA..._Ĺ84SsU@jj}ttK77o{.gnݺut4e ѣG׬Ydt˗/^C4n8KVzɖŋǰTRcR'Kھ};^k777rb@S]O&*L<==gΜk&$%%}<jŏ?+MM%K||Q.]ܻw/ӎ+K4&*ɓ'nw hdžȑ#sN::ݻK.E)שS\/_)b4lKw:}t^[n5j4@A>4KLL^:HBh"}}PqFFF;wx^'~ꧡT?x3 Zh3igϞ?  ]`СCǎ+W^x1w\'''mmmڠ?6mB |r:!8a!O2d-?֮]yf Zǎ+q+W|+ƾ}~7WW׏0"x]]])0UڶmBBBnHl޼ClDXJnK>x"VH{֭[...(UaЪ˗[n- ٳgÇQMKWwuvvVWW-eggAZ`AN/*=b %8[qZZz˗-[V۷o'ORJ.]k׮7ݐܸpNZ>+%%&11qٲeEq_ǥ eƀVE:::͛7-ダFU@./]UE=uuuy!ÀVE>|hii)wCXt3۷-9gbb.\HHRmۊh#>A:L0aΕ<@͙3G۷o[j5k,ےAԃrlcdd$wCǏ-Z4yAݖ/ 744ӧ't_K,(FZxxx(ӡį^Z`G-w[>˗h1cTےlmm5j4rHЪ3::1!wCYDDV{SL-Y Yp/w[V ={(NBQ) 5k6gےY``a׮]nKXxqn(wC Z>~ٲeٳׯW˭9rcr⭢*4i2l0Rvvv~\X4%%%5jEOc@|xvڥ'Sڵk1npqqXb!?;N<ꪥUO-#;;ƍ/r7Dy0U™3g[[[RؼO>榩YhOqF___"qㆧ'E<*̬gϞz!28x={P֬Y +W;99ɵkEFiii(lRݡrc@+#F۷\rrENڴi_pϒjoo}pttlРrrѣG/_.wCv򓓓---/neeUTx"~C_(wCZZzꂟܸq¢u䄄*UொxbGQ^*1ߤI.] ~mfffll瘏]h"m֬YӧO/VZI׎;t EppŋEEEIvD$}ia֭%KTʋ|||<$wCs##qPСCǎ_mSW^=z Q h%鉗Xؓp͛7~M81wKxRG@oۊ:*tuu>,wCZɅUPAeh$lvfΜ-Yd={,u TW\\ܢE{Tٿx;w,,,/^ܡCmTZbbiŊ̲sRB&UkkTO/^zj{{ ZH1cxxۧsqOOOggufH1 l``e*IX hRu/^433 ԩW۷$,,e˖e˖azɒ%uttϟ/SI1χKtt޵k4440W:֭[;lȑ#2[͚5CuM`7*>~E\v-f͚gϞ]x˗SSS۶m駟d\`Sl۶-..s_|ijjw6ntEV1 "cǎWͩSԏ=ꫯzꥫ+}<ʔ)SZ5/ӧO/_… ӦMj,lOիWp2e7|jժ;wYG->| q;Aasg̘QjU[[K.M:"\Wp "3"P*U6g5}u:u84]7oF^ر&ʕKJJ*]tJJ $!!aٲeO<}66xڵqĠF^VӦM;J___-XlӦM?wDPPPVPȶETHs߾})ҿ(d+ݺuCM?DDD`֡Cw.WEF,/^lIsssTͨK(qƍݻw*XDGG'00pܸq/?AW'z}Κ5Km<\Yνsѣ|}}yQD]e.*Uku/>zB@ٹ[[[:uJ C&Lx]w455MMM[ccclRţP>O4 #$ F! r\P;;;K5ߏ7s>?Ñ#F6ޙk׮Usggð1S`Hrtt4>|߿?$}޼yzUʕ 2;447UCsW\QK?[э!gϞn_j D`>dLܹsUӧNn݊!gzyymhnӦMjjjZ۵kWV`@aǏ.Qjx 1zݸqcIR߿?rHejkk`TS)%&&֮]ȑ#iӦ]~}ÇGn˗͚5C#\Ν| ܰaõk׼SRR%uuu^6y?3wu֍ OE ",c̙3lٲ+V^zרQɂq}@@͛#q0Ht䑊fwӫX"+˗/0 >>^-a/^dɒeddkllA ⢂W=v옵5_9P&wӧiii,b# 4iUhi[NÇKGe`$1pJ(y=z`.2h˖->|(S5j$J2}X?ȻwHj#|J Apɯ 0Q%r-FlHm^&;Eڈ O MM͌SGFFJQ``w [j(/ 2?+TP(S hRi7oDYn۶mvxڵkg:ƃ 0Iu]zƦYfTRRt4 GM*ٳׯwrrcSRR뉉s8*8 hREڵkڵkn iiiW^988QT8Фrvy WWW--<.Ν;zuu|iQF hg``rJ%6mYb7yuy}CeTgݺuU/F,outT>tvvt}|=Wn`@[[[r7J՗e3##_U쓊@4u6mVޱ҅B'NxBB\m(Lϟ?۷OqM;ݿ_:((hɒ%fի-B?ѡC3fےBj*uuudٔ_*Ҳu2w5 ///ŧnٲqƙ+qqq744T2!!a҅nRa@777OOOccǎWͩSŏ=88wB@+.g|O;vL|DxhjjWX;::f<@3sFyMy/z++¿JVlllѫUV :n8;;; 0U˕+W.wCr۷ZZZIIIҿnf3y=gv"d|L67<ɩ Ъ/)SfΜپ}{ے]ڵS=zt^8700*]]]>|,.[8%ԯ_Pt<'N\dI}ĀV9(7m$wC UgժU?| ۿWknn ~;"lcnذa׮]cǎ]t9ߗLj hՄ z_8PR^:n7nxΝOvM4Aگ_?)Ǐ# hp&˖-[ѧO ݦVVV 6ŒZ;88l߾3aҤI5jPܹsf @w=x`uu)S5uٲe?^8!SGGF^XUN:5Hc@.oo"nH/YVZ .ݩr}6F3fffڵ+_zɓ˖-srrB70`|Y͛7]\\mVuJIIرmɖ##-[*)߿obb2o޼'ݻe˖r˹uuuTH nhhػwo~uD8p`.y׮]qqq3f@yfy_MrЪ`Tpr7s^|`ѣG1BW^aFnܸQ]]}رׯ_?~x`eeQB|i!}Za:uTa#bllr`EDD {衫_tvvnܸA֬Yw?#/K-EeXQǀpu˖-+RaYM^Ġ7jѢE~g0`ȑ#H˗ߺu+/KCܧ-^8_F_Āر͛Biy۶mnKy=0Tiݺϝ;п~{xxl޼Y 40+'W^+c1Mٲe.]Zdɼ,QFnnn:tӧOs3gK{(G_QQQӧO755tY={vNNN*666 ʔ)ԭ[~kժEX: }}aÆi hwZZZnذjժ26;v(T.-- /ʗ/T^[Xŋ_dI@ƀٿ 85Lo<Ãd͚5ovqqXb.^Rׯ_K58{`ǎ[v-4XДcRRJ?Wrm۶sΡF1211133훣ߪܸqu_ʂM̟?M6f͛7FˡժU2 >\rePPJ\؁ۇYsY4::߿}N_ݺuLwKNN0aAϟ?;wmӦMq](Д}}S+e˖8qbѹ^2󏿧JMMpk\.Nڼysz2j׮]>}r}2?ܻvzAƉlݹl1&UO@@_rI֮]ٳg|Ʀ\@@./_8ήqm۶ إK(J|脄333 SS%J*qnݺaǀr+WsrM8FɶjժZj0ݻ?d:$c@{nѢEς J, QΝуbSg3˗/;LW2eǀ/@{yykjjf h F'Yf>>>ҏbywկ_Wq"1:t1cLkvE!!!c3~98z)l}>|ذa~>}~lRF@zo߾}q9sH?/[3ۓ'OxPe8z(htƀu>̉1dȐ޽{}zرs-^˩m۶+HecqI&o޼cNNNVK1k,4]xqܨPRu1#Gb-{ehtKׯ_ǘ_ Mٲs3gΠyfƀF&ݡaÆ_pڵ.]@3B|̘1pD… ѣ6mDGG|7???fҘX>|x!7`\xɸnݺɸc˖-בE[OOO-;իWϝ;WHǪD`@Sv`ϫ4*J `d܍7P,:F6lIƟ!۵k.|UKvء~r%%%}M9+ @:Шഴ޽xZe33(Qb޽+-[A"gPHQK?nC;"򜜜Cھ}{t9(N_~޽cM4ěh?7o>hXn;1ٳg4}ӦMvvv>~g0)2}IqСCqß"}m(=}|\J/^ܵkZgL'277⅗)STm{wGawA{>C-G猪~&CCիWc$ԳgO&A0)>(1SN˖-9"Mt Ǐ;88yjG|6,888}P#OG ,2dZN۷ C9}}nݺu!avaC; ͛Y-04 ӧ{xx tuu1ڵ+OqD81Hڴi3gT+V@I&>ZjCq׮]CW!ȑ#xCN'TЏ=F===u1ƀqŊ\޽{!Ap)444.\Z8 wӫR Ç7/_0`@||<>E)Sšqqq)W\7ϯ^zŀV%%%hJCAД9%!NSS3ӏք hSjF/F })o4hq"ZX hʁ8Y]:K ha1)bb@++4СCy֭[SRRImڴW^vdw]O rfܹ~xV͛!:}}W{(0ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A?0endstream endobj 1123 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1064 0 R /Subtype /Image /Width 480 /Length 11468 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +Ěs-:'QsKg3%%"1,#eF/km4ۢuMI,#ml>UBYw [|\qˡv]\QСF %.(F(i|`#C5wn"2'އ[k_G1#AE]936v7{qu{F{|-P8j=?Z}q{46^iE1;d(|BjMsI$ ]߿uVuu;fpU#Eb7^[)$Cgo%vq,H?o+أK"Ta 8k97Zx.dM:gdu!w ;M6/]G ?#isɜ.3׶q]5s+-Zy˕lunPQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@WP$ yH"8Ƕ{QvXS諜@tVL]Edi4ċ#hNx`O%}Ap kPEPEPEPEeDgrTd u /]ѹXώy@:f|))R{>Ҁ4WIyl +F pxQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEsc[G?a""\ ˓::+LGh.lFD`G1QwԷQcGHʧ= nInۑ<▀ (+xYHAw`4%s ,N2X{QCYCwo"CU!>ͩBBteRKZ[%7hx!lz4%VWV[#e$ٗ]-ri-Q=a,p0;l}S? V_Bҹ "[-ŏob#uImOEI$ &Pʳֻۺ~*Ǘet"7[&@ HN>Sd^)RA$lCO&WE",*=E2H x8aUF~aC:J3/P wo hdiRYJ]xMVT#Be sEkJ)6wj:+v5R-J ~s5Y-"eB#Q|w u)hxen=N-dWK_-8@}sBʂ+i-k#Ђ9AQ'mG5^+'@/.c\r@}PVmd6<&Iq9# T1\ܤ {^xƕQEQEQECXΗ0im$*CT@ T$&eaЃ-mtD'v-oѱ9;  ;qK+jX^Gu2IǥEcvz@/.z8 ?X=kb|HZ0|Р G\r;x92+W{.NB+obHNqQ@Fkynu(UŭޜCz(Ofm "M쐝O+oL}U(((((((+2Mlx&H}N*Ӫ-Z5mq hfz4zO\[Tyr0FO5gOeWd??:UGeng:ƃ7p=ȠRM: <)\=ͻ{Id# p0mCAE5 :: }Gm(30dp~@TQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@fz65 "2Ȱ;#9#'Ҭ-b=Bk;F6f [J9O(K[t"U|eW(O{qښƜ4ccH e8#j}GH"2Zyc($YJ8`=qÃEti,o"E@3;X q$h0gޝU#(#uyvU ǦOQEQEQEQEQEQEQEUCR[)"m繞`̑BqUYwPz݈7Ua`ڀ,}iZ* qUfNOjnugQ xC^G,bY0"=wۚkksY19c9(cO K* 0gߚYkzWۢ8 6Nq=Ӡ(((((((((((((((((Ur7I 1o=S݋872H$Qnhmbf3H?Oov$0HUGaUu+Yՠk;A8/t> EAguO;[*G؃OYw_+kIJ=ѽ{Ҁ(((((((Ks5$sҦ?a*?# i!ڮ̛QLY[cO?Lօ#(u*#P9KYSgMm0zҠ(((((((((((((((($m$f'ޝYr9ޞ:'u>:7FJ FÔCDyAZTQ@Q@JH&:u$6}Xϸ>^۴NJG_:0&wXѝ*(18ztW׷%[I;2PURiu;o]>Y91Aozݠ ډkgye,rȣSq@#5~6l(e;:>qOc08aG@((((/mh|y,S G.\Imķq+3 ݂3c6?>Iox\Ov#r;;d,Q{I̡A ٴ/HSzs ;OV;ǖc5ڴZ>謐5GI=ַ(( #RQD?y? C0hPø5%fZjdx|o?3}OiEQEQEQEQEQEQEQEQEQEQEQEQEQEVjLl%@C. >ⷞ$IHRIenio⩒)-4*\2~n,Zu,Mt]ܑAt0*=fO>[⒪cb`tZČchnf.?woa Z vƃgX R+XGs ( iڷ2Ku ie eF_EcxP}>W3#Ѯ#Հ zA]%wm(H-` HPAEgl+fy_EhQY6'(ٶW?@ ~[-.0~u\ŭZ閶wy:fbađU۫ 7-Qbd216 UQ%?cn.SIJ,;Q:c3TֆyU 4J{@5mưrK]:u{ ٶW?@W'k7wsI4ԢEYvўIϵ^m!K0#Ȉ.ܩoA׫Eq~(M\ nnfBP7;wzmOPg\ZaI* ޮ/UIA4ʰ8\_Hi=!$d t@CNg{cu;.i#'1j궓M%Y JUr0 ti^Uн~+~֍s)%žkqz 𣆒T %}8Z6'(BٶW?X,Ag5jgbI0d8_׊ꪦjv؉O !s.:~&]jd4ۘDPx3,B<`gEei3_ü"fr1L$c9@")LBŗߕ/6_*Z )3?dq7 FA<I>{}<:y?z TWvҧ,2DFy ~PV=FdX IE F>uJڳТ((((((((((((P I`j67vsLTĀF utP,-Eh;4k230 r m# mc \ussu;/#o@I€0:@Ⲃ<|N3֩/+]pTNN{ Kci[ødKrI>O֬Q@Q@Q@vtwzI ֗s8#=#ݣLfY2>yQ hbU< GaZ4<0o,[BaSLq(jA֫}&[PC9;լy?s4 U %+e.q3'(&Ao1.nJA+y8UA{I$E#H$tPTzެyI;\%+嬭M$VPv^ENǜ 7QT(֞UۅcOVgj!C证VV.&ѡH|^EC}1U5i-ovkvG*A¶ {Hk L%oN ֶ+95QYYs*+F hDhsC!#=T`kJϺcQٴy ~yȪ"Eyud-t<ߍ6V5^U?;$ncԒHԟnҿ|'NݻֶhZ(45Y(;Bpfjs%Ρ<$Ml jQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@uKy#UkbZ5c #'}{jB2 aՊu^8{Xep0U|Y$s*PLvOl",hT6bc45訠 ( ( ( ;y f9cR@}㣋UN ׳/}LVJACNY;6]Fc9> stream xYKo7r?AG!x$b=ݒ;;/wH"y_MH2&7b=>_ s632Q?;6_v5`K,_^:B\5ޠvdZak%5^6Zn3#`e ;V[p 5YWC *®II&6Bnq=ŔaJɚHjj Iq"dUw.\j-fj'pPm:qDj#FCno:dQV)bP(gc$霄gwŘT,#sE+ GT¯Žr9 u'/R^ pDa9m|8X Հpr蛧k滫E{=-q9bI+13N_Rv&&Ѭ7W觳?*E7Ͷv&I5a/_Xn܅^E9QxMh('{Avl/ <9(+ d̥r 4k+{!ղ|DpT KpӁW H^zFmA-=V* }4gyP tHS&6Q+2% 'E@3™wu Qq3Ld\[hGn9j|~GkXwRn%}}KӨa~?C3l Fs=_G p) ??) e{4;h P 뙃g>6I~ޥΠla< Ð a?~w?YoO(> stream xVn6#U,/[߶v".A+ˎ[r}Eʱ6)ļ ̙9K(ϙ >c&a5?>̾7Wc:qj:/P2ɦ94ݶ LUmN]op :Iߦ][i3ldS,SyȻ*6gܲ@-h;wE%'w;RHȻ4Y T폻fbkHNPH?49`4]=l&+Ix\}He X 𺺕v4yi)ao43ci~ 㱩S l{H㲰^/R3G>v,0@lk6h N_aH~/"_HNyA&mv@zRqR]գN< b5c"1d@HGoiCPOӄHBsz?Md /Jvb_נoa3#qe-_}n|rEfl@ZEn;t Bb8ĉ+ɣƚG Hoă)N+o桜oqr$l}s,p < 4Y` f)Z0ʯt 5is!%yWuϨIl!0$`} XMbsm@WҌE,##0 %Xö;Ʒ)yEV@p^(/"o:iqХ# n<'gxu!"_=ȠbC8E8T$^+_K{ɕ$Mj4I*Tj隁P`Ӈ=y"/#`+JDB^ Pf}bZys0r|$j _ppv~&pn P框W ЃoqEQp"}{rpyʝ*qi VvV^| ˂ (1}aendstream endobj 1126 0 obj << /Filter /FlateDecode /Length 2341 >> stream x[M X`W+[ǝ -rw;rٙ!lK!"@(z2[6?>`~\Ʃi # A흋"D?^v_spW#0"鏔FA;U}nrpFbǿt`Cl@a/ սNkJH頬zj5V*A+6#ŹJ Щח*"` /rBH GC@K6}st"(j{eWOSXt!zZ˲аǶyyPwLiϒ$,@&g< ;}() rXUt 2+rMsff'Nxc 3`^ @Ҙ\ GIK eɒTvɶnN1H$؃NFKt Y:gۈwB ,> էEp^t5 MHgίQ|DJmŮQ<^6ok:tMݯNTUsǶ:0"D!1gF+S*,#lNpf8|A.:|UL.;ؼԣ./VPWF0,g鵰1P,~ŮU˰r76{'8o@ccn)wy} m=lդ0Z)q舡(b.m=ǏKc ,ײo=:{eSmxvk,2q`Եs,Uc`6~}eZX ǹFcY"8-T8(czH3]酁9~@n*XLF0P˰0Q.SiAJF\a`3Gv>3TSjp z8 ߰ޟĐȅbG uRW#[) aiGX?HCŔ\]df k Km,Y9)[r..sl]2KxdQ S*S#xgeE!P`,j-0NQ`4 @rs;ܺx'N/OFXj2hs_#ӛ.{T56qs{k2rIc/D! #,&`_i^Ni+X4x=%,`k Rb)[Jœ#]aێmZt2I:]/%Yv|ZfAchEʲdu]\v?ΆiJjoVpػCIx7yG!ͥQ%FP- ~  Y;@4rӶ\;Ki9 DcijP~.6mùe}-l}^s󗡾tUWH]srNxCU$qo3L{ʛek8Kh_; XXYJҕn㚋BqޟcV. 6 QC q>0p1x"( N/S`4կL*f %= 5;ӛ#FjRy<)) cH,1B$,AAT8A' Q f(fn-G -nUeH7sc76=3~V{b諃qRUǥ> stream x\M68j fD?@`r QkKZ"!=AUqcXXꏻZ]lǻz|N?qݷOD=<ݭ"wA _Kƻ5o l )ܘB'p6oj#C߿X$* \O)U-|X|&K80A W^. u94Ş7^  L%8ⁱNXC!XS}b8`J"L>aYYe/O;׼)P/4vܷ'c7͟+(_U< ov$=pѶ]&#d>QZxm߫ܝ総]#_vÛіUg_#/[{(YB_)*Ā(c<$ Gb,m,7 Y cS,Dc. DҖ,9vI7ES3!!Gq0xmchYUa ͉#UZrj#C87lJC`"o*9hG80h'ǼR xiVDV`sm-bskVC/VM1v_1d b$8sPR!dB*xIbUlJ,1L*xY"XTKJ0ABepI,)ny;֦ݲZ` ˗ =gs&"t ]K30UgE0._'8ZEUwãjae(9=3u.9Yh]NmOg;"k TϘ.p]k̢MzɷMX%{i/ӵ{vfc!h0e(ȧ \IrzoE`0ғ#`QF3zc0^u\yo8n!N:4 c)pER%Gҽ͸t;,CmG|kCLE[ 1m*@%%ɣXYbvƖ,) ԝYY49!sp +[RܝY=2vjPv}R禟Sq dQN8^ssBd-@a+VҨdUIʶ|T$$ $I R:F;LR:K['/%DO/8d-&ͼ V7k8nXbWqS8URݹ_[CòDډz8w G7XyYV8(ҽX˖$9ҽɜô~f'=֘GzyvA `b G4.Ig̮J-cH:>ԃ5]Fts_%<lfJM;a=Cd,ﯩWO/.q4h& ϑcp!a8yZ_PzZD*fv6N #Cä^ I_1HYbl=.pXd86UzoW/3XA*ۤt6 > /oTY2v,}n>i~$i>dT}Ђ%Yඟ7۠,7Y[S l7g?f{[.oYciebd3Ol헾c<񋳂,iWqJw tNCs>3Tg!~i@Y~|ܔendstream endobj 1128 0 obj << /Type /ObjStm /Length 2284 /Filter /FlateDecode /N 93 /First 950 >> stream x[$^dHV`$ '7$ i}NΌB5эY,0þf.TwY]9bse`VfL,s>ZNsVp02> FijiA<ţ罳J,#H ௳aƕ!1r)e6VD2[*se2=hF弅\9Z&#z NHJUh [PXaDhJk䯳r#\ e gy5XRmD0>q-,4laVsͻ6[_nJ$eDb(ƛF0LakNI9#i82 CD&9k:>-棹tܫ:r).iZ(v]+,OKz-YfϿ/埰^Wy3.w~5o߿GYFV~俔o@e+U8g q oߕxcy[x[T*.NB%\;3 pt´D\z|G{KЭFuZ*pF/5oB*vl"`YtkUK :mwtu \츳~ؖJ%4f;>EM tk#L(H([6L q0c5Il_@#s+tNvk5wea経XXg KmL7L D7'f݆`4[֣89(1/OڗbC8L%|"6V8_v9e6ss#A;H'Y@^ǝ:K=YkIM.Aw|colitNFk`'j<H7!+8qW7|IQD"8biCǦ΂n!e#(.:ٰs::;.;[Oљjg`D{% :< <eWll?d=vzQGdLh(v1d옿^ѿh=8팁l.c~"А8tk Se-h ?Rn6L4d]aĬsYё+z¶kΦR \ٴn06IJ[EM2Cd֡) gt> >6]V3um9 Ψr̮FUVӑgcdl8x5= `4Glf k( D] hqA78ϖ+JЩs45m0[Et =M1ҩ}h*KhUXuvO܆mKendstream endobj 1222 0 obj << /Filter /FlateDecode /Length 2712 >> stream x\M8b`tG{ `&;C'ߛjw1~a yX]Ik!~>pݟ=}"bㇻRJᕻw?wiܙZԵw_vǻ׿?+|WXyk-t^e+U: @M}^&q:V"bF\1:[}0^8שlq1nIz-9K" E4\pgUR88#2X RV mX[btFn}ܹHղ(6|::*˃Kפ,ѵQ iu-%x9ɰGTkMKwBlsR*lL)Έ.קnbL[C[jka//;(t *Y$$N pyQ*Hk'Y|)z$&NСBYYߡZh`EL *FG)uQN21Գn/cRcbjk碽%/ׂ\l(+U|9իWNtv1ТҁI/ImHb3`IZ O0#Tv15aE%)g2I Y˜%oy?.Qm-PD r?to#yPN/g!.if1|Ix6&v$ұBKE |3YYgxyFKXIWXT-(޼}qM|%ȭpJeR&#!?_vCE-jo>OBK:e{ۓU}nƦӝƨRUQtQGL$}&3PH|׏޾mn$G͍j-X:7R> pZ47H"7ʽ ul!w2 :aZA~NZ߿!ϻJ q( ` U8#IBӁzGCQToKbaE[9.;4H16F$ T{nOC;^ ms; S0jr~A*v42.9ܵNҌ 5iTu /ms(fm2& Ô9<өr>ˠ1\]_ 5d9'}V0=mfUqnV͉|N|DdH ]gKWC B*_b$o'+Y}Cɩufk-rm2O+i'_ ~>I;%fЮdaАv{Nw<˔#=*Q4dIȉ]dZ$c %.9h5jf)SՓ9˒c9и)mα()=- uC5^FTrZP &ZnV-KH~386b|\Cuy2dQnOU;JQܟ <;vq!Rgx$ދG]N]Cj{dDK_`ogR,2B*)sEQ&.sTsi8Y"Ÿ4n :/jz)pW| Aendstream endobj 1223 0 obj << /Filter /FlateDecode /Length 2759 >> stream x\ˎ ؕ[%HJȢl ;KH{sIVсAi=up>P+[>]-lwO2ǧGJ)%< n|xМQOokg66߯????+VX?gyx= c$/NC&E:C \ESȫ&BuʫQm࿣Q/з{Q Y5VhgCg\t!WFBNO*/iB^ J".^+rzTHUA,5a]@&usn7nʯW?(- ah_}?r.6Њ$"|P[sPR1pPv"5qP4͈u4ݯCv޵!\=ādt|*B~*,]ٍv H1N˷eexL8| `Dq]=NsKUʩ&B*L1 X4٘xi V\t]DjDP.J\U._73!JFQ .UAys%X@J‘)uIMtQ,&ݟ6C=~C@;[5ItM6 clH5:Br^rN%ek::l bRB`5J+QBRvvM?lm4 ;21p@!GAX;صڦFS3Fyi?|L94* 7r?̡k^PY*a_0}uNqC=mޜvQ|jgpb|qŽى~.b[I%Ⱥť6.hŒlNwKOKiO%HX4?o %q%΋~|j=MW%as}h?M\Ѧ/,ߓ$|Ctsƒ]Eeb.~y?U@˜zh-U%hHǛN#Qr]e^H.z mݫ[B4LdM0ƒ*[#LXΚcMԘ)j4I G6n˥܍g*+TMPY[0#L=Rj\zT.8,_uw*endstream endobj 1224 0 obj << /Type /ObjStm /Length 2266 /Filter /FlateDecode /N 93 /First 950 >> stream x[ˎ- +I$%0 䱈,@6I"q8 xe pόD(U1ǘ*҅^t_1p!%dnbWm0vX#aD e&QF졽 k졣9y2g;-#j{CfF5֊D_7VETXLf;+rE}fUϋbQL72 b4#]0vZfON=2f2e;LF4[^H,k%,|eefYl >ۊ@x\bW_v>G>Kvq-1.n%tdY'r/9G4qk9I`J>a6+u>;8(|ds.Gmq.Ъm0ܭO.ki[_0(.1b8ClbYnO6-jeQ;t:%2S:&3KL|VD'Ci`\_}Uy?ӏ^_> έ|W翔h-{6}y}5* 'aqh k~}.o_×:&kA\+Ǭ\'b7[D];Vł]lQLІTC܆6Vml5^[ /D}*V|T4Y"ت:.*̨?]W`&ku"Q|lM*kUX`GExˑsžG7fTKCv0FJx*۷(&Y@ 8XNãR<='6G]zm+ P"; ^ښ8L],@.K>^. bZ&Z<V_G82t{GuhH;BL$.y6U%2:mٹV2LJ(/Ʃ\s^&|b*MZE~'/`= CrIM\tD> d+Of&?60. (^Ch!9"5֚\ewtPؼ]E,Aɟ:IWx h`CM=| x񠰲?Nw_uUHu;hP\ n'Xby*i5(lZnFN s66m(]ؔnW`ftXX> stream x\n,:}N Y @v>2f $?MIQՆ b<Ӈu#}iZlz\Pi77?ff> զDY"J+k<{A6^Z dp)SR EcIB2,F_ 5KδfsjzH҄e.UH^s3EJi< z^욧9ZUR-!T;^o4tK蓜x#<bvjೂY8ݠxa\a;Quq:hiPbNfb 4b߉L%j6*l`!jS7_q:d<7׵%OYj | C~dk5PR@b)Q/ѵ{SEReadfQ_pV+@@Y*zox#KDPHIrBDsf.U'"M'-V_ '' 'R)Tug8mU.[^,8!RM鬔TJRvng(;!+@+i*GQv̕Zʋ W7(;kr,VzTV{ezTltLbzTJ"JLy5t+0I 2G9=*0Ta@n.Qq #N~k"]E$,Fv u{\LJ'>dY-Qi䴨mҸZT|Q%3ĨX5gĨx_ba{dKC$0/En$>t6jpO /⦋ 3Hjg]W,сKQ9*@7Œ%,%v*bSJg@<;'ij8[ODD)Qa($uAP 4yY,3JH kegU=MebRnS~zvf(&jT󪞔Sh7ijWSD> stream x\Mo#rԯJwWw [,5+MBpC{S==uӆ*jMMuq@oT|wjt㝞,Co 7ʟxe80 ~g,v?|÷w|~k!x5j Xgyj_II9 .؏;@V5VKжaԍ1_:JPE QaS7]>v ѵm`#g GRlYvxp jIC0 Ӳ!,~=4I$_E%]Ҡ py=Qp-ն.&*,n|OcC4vG~%hbcE"8܏qI -K;+Ae8NݧC/Dd#B=$A),-XƩ$@,S?4{>_;.|黝Q~_$S OByآ fq@t`"wn.T"qN[EN]iG a^?Ʊߗ;grue%VARiG,J=5ȬJvܓow;cKt(&r2+kk{a8:u]׍ VE>DfbhIZq&)S.tGL$SNe QE>Z'/K?YAP5! _>])jЮgLoxNsKQٰҗ9Unnw5"WS \ @gޕNJϓUjI8wc*2&Njs Ot2èiGE@CbcH:А%|jIWC};U HsO\)!AZs:_*@0tÒ#WV#pp(dVb:Ok-{z<S㥇l5eqFyz`\#m< Zi+]I,?|nGYit>]mck8 kt H2ՠ2]j~X| ltW ( Y7>hFN%UueI۔UYR}7M$].)b Be iO\Gmi-Կ #A%-VTƅq7uJrf C&b^!E6Ki\ݟƾЎ||`U=[YY[+?OC琭Y9gtj2OkP^Is'՟~ydWTܾaY w >>Oq |r&m1y2'b*Q>kOTw-ᣕF2#SaIiH]e7ø^GS˄}+9ETk> stream xcd`ab`dddw441%z2@юA%GϹ) ~xw+DM<{z >SnRgwG7GCSSCӄ֙-?ĵ-mM SvO!'b>Gu;bendstream endobj 1321 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 818 >> stream x'NimbusRomNo9L-MediItal aO  psychQTZDI!a98+xc~Z'{N~bpZ{ώy"IAaIR_k8P%{dW`tkJk'gJlUjojuzݕ~0wXanx|yr~w:VY?Un=^irmrsktv{wpu:ָrSeyg8Pa/bD4*ltsyrvopvzxzryqsqnjp̳3 njmpplsy}~myaFu qy[gJP~>![Hlt``mɥ{mu]I!$842M巶 lp"`Mxv~FОȖn\gn~mglqsmS;4>|Y:pu|x. FԵǬw[ ~YbisȳwU\ ,xendstream endobj 1322 0 obj << /Filter /FlateDecode /Length 408 >> stream xN <Kqθǚ: (i?e% gn6L2ssዖ]9F Ȁ}`/8y톉YoNrd4ٚ@&)0A!H#J⸼]᤹i/ +m,w:*Ƨ ] Y҉ jnw]c!2`wP Deڦ?VPI \ma_sR%:c18)r=[l*eВc O.v17ʄTb:.1YLbؾ-_` ^g5>.1U8beҠod h~|enbږ-%XcS3%`Ĺendstream endobj 1323 0 obj << /Type /XRef /Length 525 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1324 /ID [<137f86b554b94961251b6700bf2de8b6><890dfe44ca18dde8e65fa30ef4b02b2b>] >> stream xKTQ}44F@b[TAAD %(W@ȅamC $@ADN ݄[ ?p8;o> }Bi+pF-ES2g屙c52?Zpf~1: g3F_g336g43S39Mvo2z;suIμ2gδșW9cuyƜ1:V՘3 + uNTX*V^>ʳ>xw< #VSOTB(b=:{ldtF*ju=ó}&}yNLXLǰ0O=Hߘkn;NhN,%g nN>/6 ITw*}g묢Iއ fN}c4g`C2/iW| R.,rr6vBYl9m|b\3m%Kn$ w{ endstream endobj startxref 593975 %%EOF psychTools/inst/doc/intro.Rnw0000644000176200001440000031407114545416053016003 0ustar liggesusers% \VignetteIndexEntry{Introduction to the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} %\VignetteEncoding{UTF-8} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} %\usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{siunitx} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} % (replaced with knirR ccde %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \usepackage{fancyvrb} %allows us to defineEnvironments \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \DefineVerbatimEnvironment{Sinput}{Verbatim} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=5mm} \DefineVerbatimEnvironment{Rinput}{Verbatim} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=5mm} \makeindex % used for the subject index \title{An introduction to the psych package: Part I: \\ data entry and data description} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} %\SweaveOpts{concordance=TRUE,(prompt=" ",continue=" "} %\SweaveOpts{(prompt=" ",continue=" ") \maketitle \tableofcontents \newpage \R{} is the lingua franca of statistics \R{} is an open source project guided by about 40 developers from around the world and is a framework for statistical analysis. In addition to core \R{} there are at least 20,000 contributed packages that are meant for specific tasks. The \Rpkg{psych} package is one of these packages. It may be seen as a Swiss Army knife: not the best tool for anything, but a useful tool for many things. \subsection{Installing R for the first time} (see details at \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{https://personality-project.org/r/psych/HowTo}) \begin{enumerate} \item Download from R Cran (\url{https://cran.r-project.org/}) \begin {itemize} \item Choose appropriate operating system and download compiled R \end{itemize} \item Install R (current version is 4.3.2) \item Start \R{}. Note that the \R{} prompt $>$ starts off every line. This is \R{}'s way of indicating that it wants input. In addition, note that almost all commands start and finish with parentheses. \item Add useful packages (just need to do this once) (see section~\ref{installing}) \begin{enumerate} \begin{Rinput} install.packages("psych",dependencies=TRUE) #the minimum requirement or install.packages(c("psych","GPArotation"),dependencies=TRUE) #required for factor analysis \end{Rinput} \end{enumerate} \end{enumerate} \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed the most recent version of \R{} from CRAN (the Comprehensive R Archive Network) and want to do some data analysis. You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package and the \Rpkg{psychTools} package: \begin{Rinput} library(psych) library(psychTools) \end{Rinput} \item Input your data (section \ref{sect:read}). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, then the file will be opened and the data will be read in (or loaded in the case of Rda files) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using # your normal operating system \end{Sinput} %%\end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} %\end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or describeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} %\end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} (section~\ref{sect:pairs}) Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data (section \ref{sect:scrub}). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} %\end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable (section \ref{sect:errorbars}). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} %\end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} %\end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. This is discussed in more detail in the ``How To use \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} tutorial. \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find the linear regression of Y on X (and graph the path diagram) for multiple y variables depending upon multiple x variables. For raw data, you can also find the interaction term (x1 * x2). Although you can find the regressions from just a correlation matrix, you can not find the interaction (moderation effect) unless given raw data. The regression equation may be specified as a formula or as a set of x and y variables. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") lmCor(y1 + y2 ~ x1 + x2 + x1*x2, data = myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. Specify the mediation variable by enclosing it in parentheses, and show the moderation by the standard multiplication. For the purpose of this demonstration, we do the boot strap with just 50 iterations. The default is 5,000. We use the data from \cite{talor:10} which was downloaded from the supplementary material for Hayes (2013) \href{"https://www.afhayes.com/public/hayes2013data.zip"}{https://www.afhayes.com/public/hayes2013data.zip}. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} mediate(reaction ~ cond + (import) + (pmi), data =Tal_Or,n.iter=50) \end{Sinput} %\end{Schunk} \end{scriptsize} We can also find the moderation effect by adding in a product term. With raw data, \item \pfun{mediate} can find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. By default, the raw regressions are mean centered. Specify zero=FALSE, to not mean center the data. Specify std=TRUE, to find the standardized regressions. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} mediate(respappr ~ prot * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50, main="Moderated mediation (not mean centered)") \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in the second vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in the \emph{Overview Vignette}, which is included in the \Rpkg{psychTools} package or may be downloaded from \url{https://personality-project.org/r/psych/vignettes/overview.pdf} . A brief review of the functions available is included here. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{https://personality-project.org/r} which are also included as vignettes. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}) or Very Simple Structure (\pfun{vss}). Perhaps even easier to use is the \pfun{nfactors} function. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) nfactors(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Factor analyze (see section 4.1) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities such as minres (section 4.1.1), alpha factoring, and wls. Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section 4.1.6). Also consider a hierarchical factor solution to find coefficient $\omega$). \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} %\end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function. Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} %%\begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10), second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} %\end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. Although developed for personality research, many of the functions are useful for applications in other quantitative sciences. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{https://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes six methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{alpha factoring}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Rotations and transformations of these solutions are done by calling the many rotations available in the \Rpkg{GPArotation} package \citep{gpa.rotate}. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51} (\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09}, \citep{rc:pa} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} (\pfun{mlr}) will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \href{"https://personality-project.org/r/psych_manual.pdf"}{\url{psych.manual.pdf}} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{https://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \href{https://personalty-project.org/r/psych_for_sem.pdf}{\url{https://personalty-project.org/r/psych_for_sem.pdf}}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"https://personality-project.org/r/book/psych_for_sem.pdf"}{\url{https://personality-project.org/r/psych/vignettes/psych_for_sem.pdf}}). In addition, there are a growing number of ``HowTo"s at the personality project. Currently these include: \begin{enumerate} \item An \href{https://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{https://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{https://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{https://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{https://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \end{enumerate} For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{https://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{https://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in the Overview Vignette require other packages. This is not the case for the functions listed in this Introduction. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: %\begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt") \end{Sinput} %%\end{Schunk} Alternatively, many packages for psychometric can be downloaded at once using the ``Psychometrics" task view: %\begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} %\end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: %\begin{Schunk} \begin{Sinput} library(psych) library(psychTools) \end{Sinput} %\end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., %\begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych) library(psychTools)} \end{Sinput} %\end{Schunk} \subsection{Getting the data by using read.file} \label{sect:read} Although many find copying the data to the clipboard and then using the \pfun{read.clipboard} functions (see below), a helpful alternative is to read the data in directly. This can be done using the \pfun{read.file} function which calls \fun{file.choose} to find the file and then based upon the suffix of the file, chooses the appropriate way to read it. For files with suffixes of .text, .txt, .TXT, .csv, ,dat, .data, .sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, the file will be read correctly. %\begin{Schunk} \begin{Sinput} my.data <- read.file() \end{Sinput} %\end{Schunk} If the file contains Fixed Width Format (fwf) data, the column information can be specified with the widths command. %\begin{Schunk} \begin{Sinput} my.data <- read.file(widths = c(4,rep(1,35)) #will read in a file without a header row # and 36 fields, the first of which is 4 colums, the rest of which are 1 column each. \end{Sinput} %\end{Schunk} If the file is a .RData file (with suffix of .RData, .Rda, .rda, .Rdata, or .rdata) the object will be loaded. Depending what was stored, this might be several objects. If the file is a .sav file from SPSS, it will be read with the most useful default options (converting the file to a data.frame and converting character fields to numeric). Alternative options may be specified. If it is an export file from SAS (.xpt or .XPT) it will be read. .csv files (comma separated files), normal .txt or .text files, .data, or .dat files will be read as well. These are assumed to have a header row of variable labels (header=TRUE). If the data do not have a header row, you must specify read.file(header=FALSE). To read SPSS files and to keep the value labels, specify use.value.labels=TRUE. %\begin{Schunk} \begin{Sinput} #this will keep the value labels for .sav files my.spss <- read.file(use.value.labels=TRUE) \end{Sinput} %\end{Schunk} \subsection{Data input from the clipboard} There are of course many ways to enter data into \R. Reading from a local file using \fun{read.table} is perhaps the most preferred. However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using \fun{read.table} and specifying the input file as ``clipboard" (PCs) or ``pipe(pbpaste)" (Macs). Alternatively, the \pfun{read.clipboard} set of functions are perhaps more user friendly: \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command %\begin{Schunk} \begin{Sinput} my.data <- read.clipboard() \end{Sinput} %\end{Schunk} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. %\begin{Schunk} \begin{Sinput} > my.data <- read.clipboard(sep="\t") #define the tab option, or > my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Sinput} %\end{Schunk} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). %\begin{Schunk} \begin{Sinput} > my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Sinput} %\end{Schunk} \subsection{Basic descriptive statistics} \label{sect:describe} Once the data are read in, then \pfun{describe} or \pfun{describeBy} will provide basic descriptive statistics arranged in a data frame format. Consider the data set \pfun{sat.act} which includes data from 700 web based participants on 3 demographic variables and 3 ability measures. \begin{description} \item[\pfun{describe}] reports means, standard deviations, medians, min, max, range, skew, kurtosis and standard errors for integer or real data. Non-numeric data, although the statistics are meaningless, will be treated as if numeric (based upon the categorical coding of the data), and will be flagged with an *. \item[\pfun{describeBy}] reports descriptive statistics broken down by some categorizing variable (e.g., gender, age, etc.) \end{description} <>= options(width=100) @ \begin{scriptsize} <>= library(psych) #need to make psych active the first time you call it library(psychTools) #additional tools and data are here data(sat.act) describe(sat.act) #basic descriptive statistics @ \end{scriptsize} These data may then be analyzed by groups defined in a logical statement or by some other variable. E.g., break down the descriptive data for males or females. These descriptive data can also be seen graphically using the \pfun{error.bars.by} function (Figure~\ref{fig:error.bars}). By setting skew=FALSE and ranges=FALSE, the output is limited to the most basic statistics. Here we use formula mode. \begin{scriptsize} <>= #basic descriptive statistics by a grouping variable. describeBy(sat.act ~ gender,skew=FALSE,ranges=FALSE) @ \end{scriptsize} The output from the \pfun{describeBy} function can be forced into a matrix form for easy analysis by other programs. In addition, describeBy can group by several grouping variables at the same time. \begin{scriptsize} <>= sa.mat <- describeBy(sat.act ~ gender + education, skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) @ \end{scriptsize} If some of the data are in character mode, \pfun{describe} and \pfun{describeBy} will automatically call \pfun{char2numeric} which will convert all fields to numeric. Note that this will cause problems if the character order is not meaningful. In that case, the \pfun{recode} function should be used to make the \pfun{char2numeric} coding make sense. \subsubsection{Outlier detection using \pfun{outlier}} One way to detect unusual data is to consider how far each data point is from the multivariate centroid of the data. That is, find the squared Mahalanobis distance for each data point and then compare these to the expected values of $\chi^{2}$. This produces a Q-Q (quantle-quantile) plot with the n most extreme data points labeled (Figure~\ref{fig:outlier}). The outlier values are in the vector d2. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() @ \end{scriptsize} \includegraphics{outlier} \caption{Using the \pfun{outlier} function to graphically show outliers. The y axis is the Mahalanobis $D^{2}$, the X axis is the distribution of $\chi^{2}$ for the same number of degrees of freedom. The outliers detected here may be shown graphically using \pfun{pairs.panels} (see \ref{fig:pairs.panels}, and may be found by sorting d2. } \label{fig:outlier} \end{center} \end{figure} \subsubsection{Basic data cleaning using \pfun{scrub}} \label{sect:scrub} If, after describing the data it is apparent that there were data entry errors that need to be globally replaced with NA, or only certain ranges of data will be analyzed, the data can be ``cleaned" using the \pfun{scrub} function. Consider a data set of 10 rows of 12 columns with values from 1 - 120. All values of columns 3 - 5 that are less than 30, 40, or 50 respectively, or greater than 70 in any of the three columns will be replaced with NA. In addition, any value exactly equal to 45 will be set to NA. (max and isvalue are set to one value here, but they could be a different value for every column). \begin{scriptsize} <>= x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x @ \end{scriptsize} Note that the number of subjects for those columns has decreased, and the minimums have gone up but the maximums down. Data cleaning and examination for outliers should be a routine part of any data analysis. \subsubsection{Recoding categorical variables into dummy coded variables} Sometimes categorical variables (e.g., college major, occupation, ethnicity) are to be analyzed using correlation or regression. To do this, one can form ``dummy codes'' which are merely binary variables for each category. This may be done using \pfun{dummy.code}. Subsequent analyses using these dummy coded variables may be using \pfun{biserial} or point biserial (regular Pearson r) to show effect sizes and may be plotted in e.g., \pfun{spider} plots. Alternatively, sometimes data were coded originally as categorical (Male/Female, High School, some College, in college, etc.) and you want to convert these columns of data to numeric. This is done by \pfun{char2numeric}. Values can be recoded into a different order, or converted to character form by using the \pfun{recode} function, \subsubsection{Joining data sets using \pfun{vJoin}} The \pfun{vJoin} function can be used to combine sets that might or might not have overlapping subjects or overlapping items. Unlike \pfun{cbind} or \pfun{rbind} which require the same number of rows ( \pfun{cbind}) or columns (\pfun{rbind}), \pfun{vJoin} will work with any two matrices or data frames of arbitrary dimensions. Not matching cases are assigned values of NA. \begin{scriptsize} <>= x <- matrix(1:40,ncol=10,byrow=TRUE) y <- matrix(1:20,ncol=4) xy <- vJoin(x,y) xy XY <- vJoin(x,y,cnames=FALSE) XY #match on ids and columns x <- bfi[1:5,1:10] y <- bfi[3:8,2:6] xy <- vJoin(x,y) xy #the merged data @ \end{scriptsize} \subsection{Simple descriptive graphics} Graphic descriptions of data are very helpful both for understanding the data as well as communicating important results. Scatter Plot Matrices (SPLOMS) using the \pfun{pairs.panels} function are useful ways to look for strange effects involving outliers and non-linearities. \pfun{error.bars.by} will show group means with 95\% confidence boundaries. By default, \pfun{error.bars.by} and \pfun{error.bars} will show ``cats eyes'' to graphically show the confidence limits (Figure~\ref{fig:error.bars}) This may be turned off by specifying eyes=FALSE. \pfun{densityBy} or \pfun{violinBy} may be used to show the distribution of the data in ``violin'' plots (Figure~\ref{fig:violin}). (These are sometimes called ``lava-lamp" plots.) \subsubsection{Scatter Plot Matrices} Scatter Plot Matrices (SPLOMS) are very useful for describing the data. The \pfun{pairs.panels} function, adapted from the help menu for the \fun{pairs} function produces xy scatter plots of each pair of variables below the diagonal, shows the histogram of each variable on the diagonal, and shows the \iemph{lowess} locally fit regression line as well. An ellipse around the mean with the axis length reflecting one standard deviation of the x and y variables is also drawn. The x axis in each scatter plot represents the column variable, the y axis the row variable (Figure~\ref{fig:pairs.panels}). When plotting many subjects, it is both faster and cleaner to set the plot character (pch) to be '.'. (See Figure~\ref{fig:pairs.panels} for an example.) \begin{description} \label{sect:pairs} \item[\pfun{pairs.panels} ] will show the pairwise scatter plots of all the variables as well as histograms, locally smoothed regressions, and the Pearson correlation. When plotting many data points (as in the case of the sat.act data, it is possible to specify that the plot character is a period to get a somewhat cleaner graphic. However, in this figure, to show the outliers, we use colors and a larger plot character. If we want to indicate 'significance' of the correlations by the conventional use of 'magic astricks' we can set the \pfun{stars}=TRUE option. \end{description} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() @ \end{scriptsize} \includegraphics{pairspanels} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. Note the extreme outlier for the ACT. If the plot character were set to a period (pch='.') it would make a cleaner graphic, but in to show the outliers in color we use the plot characters 21 and 22. } \label{fig:pairs.panels} \end{center} \end{figure} Another example of \pfun{pairs.panels} is to show differences between experimental groups. Consider the data in the \pfun{affect} data set. The scores reflect post test scores on positive and negative affect and energetic and tense arousal. The colors show the results for four movie conditions: depressing, frightening movie, neutral, and a comedy. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() @ \end{scriptsize} \includegraphics{affect} \caption{Using the \pfun{pairs.panels} function to graphically show relationships. The x axis in each scatter plot represents the column variable, the y axis the row variable. The coloring represent four different movie conditions. } \label{fig:pairs.panels2} \end{center} \end{figure} Yet another demonstration of \pfun{pairs.panels} is useful when you have many subjects and want to show the density of the distributions. To do this we will use the \pfun{make.keys} and \pfun{scoreItems} functions (discussed in the second vignette) to create scales measuring Energetic Arousal, Tense Arousal, Positive Affect, and Negative Affect (see the \pfun{msq} help file). We then show a \pfun{pairs.panels} scatter plot matrix where we smooth the data points and show the density of the distribution by color. %\begin{figure}[htbp] %\begin{center} \begin{scriptsize} <>= keys <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) scores <- scoreItems(keys,psychTools::msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() @ \end{scriptsize} %\includegraphics{msq} Using the \pfun{pairs.panels} function to graphically show relationships. (Not shown in the interests of space.) The x axis in each scatter plot represents the column variable, the y axis the row variable. The variables are four measures of motivational state for 3896 participants. Each scale is the average score of 10 items measuring motivational state. Compare this a plot with smoother set to FALSE. %\label{fig:pairs.panels3} %\end{center} %\end{figure} \subsubsection{Density or violin plots} Graphical presentation of data may be shown using box plots to show the median and 25th and 75th percentiles. A powerful alternative is to show the density distribution using the \pfun{violinBy} function (Figure~\ref{fig:violin}) or the more conventional density plot for multiple groups (Figure~\ref{fig:histo} . \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('violin.png') data(sat.act) violinBy(SATV+SATQ ~ gender, data=sat.act,grp.name=cs(Verbal.M,Verbal.F, Quan.M,Quant.F), main="Density Plot by gender for SAT V and Q") dev.off() @ \end{scriptsize} \includegraphics{violin} \caption{Using the \pfun{violinBy} function to show the distribution of SAT V and Q for males and females. The plot shows the medians, and 25th and 75th percentiles, as well as the entire range and the density distribution. } \label{fig:violin} \end{center} \end{figure} \clearpage \subsubsection{Means and error bars} \label{sect:errorbars} Additional descriptive graphics include the ability to draw \iemph{error bars} on sets of data, as well as to draw error bars in both the x and y directions for paired data. These are the functions \pfun{error.bars}, \pfun{error.bars.by}, \pfun{error.bars.tab}, and \pfun{error.crosses}. \begin{description} \item [\pfun{error.bars}] show the 95 \% confidence intervals for each variable in a data frame or matrix. These errors are based upon normal theory and the standard errors of the mean. Alternative options include +/- one standard deviation or 1 standard error. If the data are repeated measures, the error bars will be reflect the between variable correlations. By default, the confidence intervals are displayed using a ``cats eyes'' plot which emphasizes the distribution of confidence within the confidence interval. \item [\pfun{error.bars.by}] does the same, but grouping the data by some condition. \item [\pfun{error.bars.tab}] draws bar graphs from tabular data with error bars based upon the standard error of proportion ($\sigma_{p} = \sqrt{pq/N} $) \item [\pfun{error.crosses}] draw the confidence intervals for an x set and a y set of the same size. \end{description} The use of the \pfun{error.bars.by} function allows for graphic comparisons of different groups (see Figure~\ref{fig:error.bars}). Five personality measures are shown as a function of high versus low scores on a ``lie" scale. People with higher lie scores tend to report being more agreeable, conscientious and less neurotic than people with lower lie scores. The error bars are based upon normal theory and thus are symmetric rather than reflect any skewing in the data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) @ \end{scriptsize} \caption{Using the \pfun{error.bars.by} function shows that self reported personality scales on the Big Five Inventory vary as a function of the Lie scale on the EPI. The ``cats eyes'' show the distribution of the confidence. } \label{fig:error.bars} \end{center} \end{figure} Although not recommended, it is possible to use the \pfun{error.bars} function to draw bar graphs with associated error bars. (This kind of \iemph{dynamite plot} (Figure~\ref{fig:dynamite}) can be very misleading in that the scale is arbitrary. Go to a discussion of the problems in presenting data this way at \url{https://emdbolker.wikidot.com/blog:dynamite}. In the example shown, note that the graph starts at 0, although is out of the range. This is a function of using bars, which always are assumed to start at zero. Consider other ways of showing your data. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") @ \end{scriptsize} \caption{A ``Dynamite plot" of SAT scores as a function of gender is one way of misleading the reader. By using a bar graph, the range of scores is ignored. Bar graphs start from 0. } \label{fig:dynamite} \end{center} \end{figure} \subsubsection{Error bars for tabular data} However, it is sometimes useful to show error bars for tabular data, either found by the \fun{table} function or just directly input. These may be found using the \pfun{error.bars.tab} function. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") @ \end{scriptsize} \caption{The proportion of each education level that is Male or Female. By using the way="both" option, the percentages and errors are based upon the grand total. Alternatively, way="columns" finds column wise percentages, way="rows" finds rowwise percentages. The data can be converted to percentages (as shown) or by total count (raw=TRUE). The function invisibly returns the probabilities and standard errors. See the help menu for an example of entering the data as a data.frame. } \label{fig:dynamite} \end{center} \end{figure} \clearpage \subsubsection{Two dimensional displays of means and errors} Yet another way to display data for different conditions is to use the \pfun{errorCrosses} function. For instance, the effect of various movies on both ``Energetic Arousal'' and ``Tense Arousal'' can be seen in one graph and compared to the same movie manipulations on ``Positive Affect'' and ``Negative Affect''. Note how Energetic Arousal is increased by three of the movie manipulations, but that Positive Affect increases following the Happy movie only. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{The use of the \pfun{errorCircles} function allows for two dimensional displays of means and error bars. The first call to \pfun{errorCircles} finds descriptive statistics for the \iemph{affect} data.frame based upon the grouping variable of Film. These data are returned and then used by the second call which examines the effect of the same grouping variable upon different measures. The size of the circles represent the relative sample sizes for each group. The data are from the PMC lab and reported in \cite{smillie:jpsp}.} \label{fig:errorCircles} \end{center} \end{figure} \clearpage \subsubsection{Back to back histograms} The \pfun{bi.bars} function summarize the characteristics of two groups (e.g., males and females) on a second variable (e.g., age) by drawing back to back histograms (see Figure~\ref{fig:bibars}). \begin{figure}[!ht] \begin{center} \begin{scriptsize} % <>= <>= data(bfi) png( 'bibars.png' ) bi.bars(bfi,"age","gender",ylab="Age",main="Age by males and females") dev.off() @ \end{scriptsize} \includegraphics{bibars.png} \caption{A bar plot of the age distribution for males and females shows the use of \pfun{bi.bars}. The data are males and females from 2800 cases collected using the \iemph{SAPA} procedure and are available as part of the \pfun{bfi} data set. An alternative way of displaying these data is in the \pfun{densityBy} in the next figure.} \label{fig:bibars} \end{center} \end{figure} \begin{figure}[!ht] \begin{center} \begin{scriptsize} <>= png('histo.png') densityBy(bfi,"age",grp="gender") dev.off() @ \end{scriptsize} \includegraphics{histo} \caption{Using the \pfun{densitynBy} function to show the age distribution for males and females. The plot is a conventional density diagram for two two groups. Compare this to the \pfun{bi.bars} plot in the previous figure. By plotting densities, we can see that the males are slightly over represented in the younger ranges.} \label{fig:histo} \end{center} \end{figure} \clearpage \subsubsection{ScatterPlot Histograms} The \pfun{scatterHist} function shows scatter plots for two variables and includes histograms by a grouping variable (see Figure~\ref{fig:scatterHist}). The data shown in the figure are from \cite{gruber:20} and the results are discussed by \cite{eagly:revelle}. The data are in GERAS data set in the \Rpkg{psychTools} package. \begin{figure}[!ht] \begin{center} \begin{scriptsize} % <>= <>= data(GERAS) png( 'scatterHist.png' ) psych::scatterHist(F ~ M + gender, data=GERAS.scales, cex.point=.3,smooth=FALSE, xlab="Masculine Scale",ylab="Feminine Scale",correl=FALSE, d.arrow=TRUE,col=c("red","blue"), bg=c("red","blue"), lwd=4, title="Combined M and F scales",cex.cor=2,cex.arrow=1.25) dev.off() @ \end{scriptsize} \includegraphics{scatterHist} \caption{A scatter plot with histograms for males and females on a scale developed by \cite{gruber:20} and used in an article by \cite{eagly:revelle}. Two scales (Masculine and Feminine) show univariate sex differences as well as Mahalobinis distances. } \label{fig:scatterHist} \end{center} \end{figure} \clearpage \subsubsection{Correlational structure} \label{sect:lowerCor} There are many ways to display correlations. Tabular displays are probably the most common. The output from the \fun{cor} function in core R is a rectangular matrix. \pfun{lowerMat} will round this to (2) digits and then display as a lower off diagonal matrix. \pfun{lowerCor} calls \fun{cor} with \emph{use=`pairwise', method=`pearson'} as default values and returns (invisibly) the full correlation matrix and displays the lower off diagonal matrix. \begin{scriptsize} <>= lowerCor(sat.act) @ \end{scriptsize} When comparing results from two different groups, it is convenient to display them as one matrix, with the results from one group below the diagonal, and the other group above the diagonal. Use \pfun{lowerUpper} to do this: \begin{scriptsize} <>= female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) @ \end{scriptsize} It is also possible to compare two matrices by taking their differences and displaying one (below the diagonal) and the difference of the second from the first above the diagonal: \begin{scriptsize} <>= diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) @ \end{scriptsize} \subsubsection{Heatmap displays of correlational structure} \label{sect:corplot} Perhaps a better way to see the structure in a correlation matrix is to display a \emph{heat map} of the correlations. This is just a matrix color coded to represent the magnitude of the correlation. This is useful when considering the number of factors in a data set. Consider the \pfun{Thurstone} data set which has a clear 3 factor solution (Figure~\ref{fig:cor.plot}) or a simulated data set of 24 variables with a circumplex structure (Figure~\ref{fig:cor.plot.circ}). The color coding represents a ``heat map'' of the correlations, with darker shades of red representing stronger negative and darker shades of blue stronger positive correlations. As an option, the value of the correlation can be shown. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,cex=.7, main="9 cognitive variables from Thurstone") dev.off() @ \end{scriptsize} \includegraphics{corplot.png} \caption{The structure of correlation matrix can be seen more clearly if the variables are grouped by factor and then the correlations are shown by color. By using the 'numbers' option, the values are displayed as well. By default, the complete matrix is shown. Setting upper=FALSE and diag=FALSE shows a cleaner figure. The cex parameter specifies the character size. } \label{fig:cor.plot} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() @ \end{scriptsize} \includegraphics{circplot.png} \caption{Using the corPlot function to show the correlations in a circumplex. Correlations are highest near the diagonal, diminish to zero further from the diagonal, and the increase again towards the corners of the matrix. Circumplex structures are common in the study of affect. For circumplex structures, it is perhaps useful to show the complete matrix.} \label{fig:cor.plot.circ} \end{center} \end{figure} Yet another way to show structure is to use ``spider'' plots. Particularly if variables are ordered in some meaningful way (e.g., in a circumplex), a spider plot will show this structure easily. This is just a plot of the magnitude of the correlation as a radial line, with length ranging from 0 (for a correlation of -1) to 1 (for a correlation of 1). (See Figure~\ref{fig:cor.plot.spider}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() @ \end{scriptsize} \includegraphics{spider.png} \caption{A spider plot can show circumplex structure very clearly. Circumplex structures are common in the study of affect.} \label{fig:cor.plot.spider} \end{center} \end{figure} \subsection{Testing correlations} \label{sect:corr.test} Correlations are wonderful descriptive statistics of the data but some people like to test whether these correlations differ from zero, or differ from each other. The \fun{cor.test} function (in the \Rpkg{stats} package) will test the significance of a single correlation, and the \fun{rcorr} function in the \Rpkg{Hmisc} package will do this for many correlations. In the \Rpkg{psych} package, the \pfun{corTest} function reports the correlation (Pearson, Spearman, or Kendall) between all variables in either one or two data frames or matrices, as well as the number of observations for each case, and the (two-tailed) probability for each correlation. Unfortunately, these probability values have not been corrected for multiple comparisons and so should be taken with a great deal of salt. Thus, in \pfun{corTest} and \pfun{corr.p} the raw probabilities are reported below the diagonal and the probabilities adjusted for multiple comparisons using (by default) the Holm correction are reported above the diagonal (Table~\ref{tab:corr.test}). (See the \fun{p.adjust} function for a discussion of \cite{holm:79} and other corrections.) \begin{table}[htpb] \caption{The \pfun{corTest} function reports correlations, cell sizes, and raw and adjusted probability values. \pfun{corr.p} reports the probability values for a correlation matrix. By default, the adjustment used is that of \cite{holm:79}.} \begin{scriptsize} <>= corTest(sat.act) @ \end{scriptsize} \label{tab:corr.test} \end{table}% Testing the difference between any two correlations can be done using the \pfun{r.test} function. The function actually does four different tests (based upon an article by \cite{steiger:80b}, depending upon the input: 1) For a sample size n, find the t and p value for a single correlation as well as the confidence interval. \begin{scriptsize} <>= r.test(50,.3) @ \end{scriptsize} 2) For sample sizes of n and n2 (n2 = n if not specified) find the z of the difference between the z transformed correlations divided by the standard error of the difference of two z scores. \begin{scriptsize} <>= r.test(30,.4,.6) @ \end{scriptsize} 3) For sample size n, and correlations ra= r12, rb= r23 and r13 specified, test for the difference of two dependent correlations (Steiger case A). \begin{scriptsize} <>= r.test(103,.4,.5,.1) @ \end{scriptsize} 4) For sample size n, test for the difference between two dependent correlations involving different variables. (Steiger case B). \begin{scriptsize} <>= r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B @ \end{scriptsize} To test whether a matrix of correlations differs from what would be expected if the population correlations were all zero, the function \pfun{cortest} follows \cite{steiger:80b} who pointed out that the sum of the squared elements of a correlation matrix, or the Fisher z score equivalents, is distributed as chi square under the null hypothesis that the values are zero (i.e., elements of the identity matrix). This is particularly useful for examining whether correlations in a single matrix differ from zero or for comparing two matrices. Although obvious, \pfun{cortest} can be used to test whether the \pfun{sat.act} data matrix produces non-zero correlations (it does). This is a much more appropriate test when testing whether a residual matrix differs from zero. \begin{scriptsize} <>= cortest(sat.act) @ \end{scriptsize} \subsection{Polychoric, tetrachoric, polyserial, and biserial correlations} The Pearson correlation of dichotomous data is also known as the $\phi$ coefficient. If the data, e.g., ability items, are thought to represent an underlying continuous although latent variable, the $\phi$ will underestimate the value of the Pearson applied to these latent variables. One solution to this problem is to use the \pfun{tetrachoric} correlation which is based upon the assumption of a bivariate normal distribution that has been cut at certain points. The \pfun{draw.tetra} function demonstrates the process (Figure~\ref{fig:tetra}). This is also shown in terms of dichotomizing the bivariate normal density function using the \pfun{draw.cor} function. A simple generalization of this to the case of the multiple cuts is the \pfun{polychoric} correlation. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= <>= png('tetrar.png') draw.tetra() dev.off() @ \end{scriptsize} \includegraphics{tetrar.png} \caption{The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values.} \label{fig:tetra} \end{center} \end{figure} The tetrachoric correlation estimates what a Pearson correlation would be given a two by two table of observed values assumed to be sampled from a bivariate normal distribution. The $\phi$ correlation is just a Pearson r performed on the observed values. It is found (laboriously) by optimizing the fit of the bivariate normal for various values of the correlation to the observed cell frequencies. In the interests of space, we do not show the next figure but it can be created by \texttt{draw.cor(expand=20,cuts=c(0,0))} Other estimated correlations based upon the assumption of bivariate normality with cut points include the \pfun{biserial} and \pfun{polyserial} correlation. If the data are a mix of continuous, polytomous and dichotomous variables, the \pfun{mixed.cor} function will calculate the appropriate mixture of Pearson, polychoric, tetrachoric, biserial, and polyserial correlations. The correlation matrix resulting from a number of tetrachoric or polychoric correlation matrix sometimes will not be positive semi-definite. This will sometimes happen if the correlation matrix is formed by using pair-wise deletion of cases. The \pfun{cor.smooth} function will adjust the smallest eigen values of the correlation matrix to make them positive, rescale all of them to sum to the number of variables, and produce a ``smoothed'' correlation matrix. An example of this problem is a data set of \pfun{burt} which probably had a typo in the original correlation matrix. Smoothing the matrix corrects this problem. \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. (\Rpkg{nlme} and \Rpkg{multilevel} allow for statistical inference, but the descriptives of \pfun{statsBy} are useful.) This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} %\end{Schunk} \end{scriptsize} \section{ Multiple Regression, mediation, moderation, and set correlations} The typical application of the \fun{lm} function is to do a linear model of one Y variable as a function of multiple X variables. Because \fun{lm} is designed to analyze complex interactions, it requires raw data as input. It is, however, sometimes convenient to do \iemph{multiple regression} from a correlation or covariance matrix. This is done using the \pfun{lmCor} which will work with either raw data, covariance matrices, or correlation matrices. \subsection{Multiple regression from data or correlation matrices} The \pfun{lmCor} function will take a set of y variables predicted from a set of x variables, perhaps with a set of z covariates removed from both x and y. Consider the \iemph{Thurstone} correlation matrix and find the multiple correlation of the last five variables as a function of the first 4. \begin{scriptsize} <>= lmCor(y = 5:9,x=1:4,data=Thurstone) @ \end{scriptsize} By specifying the number of subjects in correlation matrix, appropriate estimates of standard errors, t-values, and probabilities are also found. The next example finds the regressions with variables 1 and 2 used as covariates. The $\hat{\beta}$ weights for variables 3 and 4 do not change, but the multiple correlation is much less. It also shows how to find the residual correlations between variables 5-9 with variables 1-4 removed. \begin{scriptsize} <>= sc <- lmCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) @ \end{scriptsize} \subsection{Mediation and Moderation analysis} Although multiple regression is a straightforward method for determining the effect of multiple predictors ($x_{1, 2, ... i}$) on a criterion variable, y, some prefer to think of the effect of one predictor, x, as mediated by another variable, m \citep{preacher:04}. Thus, we we may find the indirect path from x to m, and then from m to y as well as the direct path from x to y. Call these paths a, b, and c, respectively. Then the indirect effect of x on y through m is just ab and the direct effect is c. Statistical tests of the ab effect are best done by bootstrapping. This is discussed in detail in the ``How To use \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} tutorial. Consider the example from \cite{preacher:04} as analyzed using the \pfun{mediate} function and the subsequent graphic from \pfun{mediate.diagram}. The data are found in the example for \pfun{mediate}. \begin{scriptsize} <>= #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) @ <>= preacher <- mediate(SATIS ~ THERAPY + (ATTRIB),data=sobel) #The example in Preacher and Hayes @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('mediate.png') mediate.diagram(preacher) dev.off() @ \end{scriptsize} \includegraphics{mediate.png} \caption{A mediated model taken from Preacher and Hayes, 2004 and solved using the \pfun{mediate} function. The direct path from Therapy to Satisfaction has a an effect of .76, while the indirect path through Attribution has an effect of .33. Compare this to the normal regression graphic created by lmDiagram.} \label{fig:mediate} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= preacher.lm <- lmCor(SATIS ~ THERAPY + ATTRIB, data=sobel) #The example in Preacher and Hayes @ <>= png('preacherlm.png') diagram(preacher.lm) dev.off() @ \end{scriptsize} \includegraphics{preacherlm.png} \caption{The conventional regression model for the Preacher and Hayes, 2004 data set solved using the \pfun{lmCor} function. Compare this to the previous figure.} \label{fig:mediate} \end{center} \end{figure} \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} lmCor(SATV + SATQ ~ education + age, data = sat.act, std=TRUE) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} %\begin{Schunk} \begin{Sinput} mediate( SATV ~ education+ age + (ACT), data =sat.act,std=TRUE,n.iter=50) \end{Sinput} %\end{Schunk} \end{scriptsize} \item \pfun{mediate} will also take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It will form the product term either from the mean centered data or from the raw data. It then tests the mediation effect using a boot strap. The data set is taken from \cite{garcia:10}. The number of iterations for the boot strap was set to 50 for speed. The default number of boot straps is 5000. See the help page for the \pfun{mediate} function for more details. For a much longer discussion of how to use the \pfun{mediate} function, see the ``HowTo" Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('garcia.png') model <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") summary(model) dev.off() @ \end{scriptsize} \includegraphics{garcia.png} \caption{Moderated multiple regression requires the raw data. By default, the data are mean centered before find the product term. } \label{default} \end{center} \end{figure} \end{itemize} \subsection{Canonical Correlation using \pfun{lmCor}} A generalization of multiple regression to multiple predictors and multiple criteria is \iemph{canonical correlation} \citep{hotelling:36}. Given a partitioning of a correlation matrix, R, into Rxx, Ryy and Rxy, canonical correlation finds orthogonal components of the correlations between the Rx and Ry sets (the Rxy correlations). Consider the Kelley data set discussed by \cite{hotelling:36} who introduced the canonical correlation. This analysis is shown in help menu for \pfun{lmCor}. Another data set is the ``Belly Dancer" data set discussed by \cite{Tabachnick:01} (Chapter 12). Here I show the data, the correlations, the regressions, and the canonical correlations. \begin{scriptsize} <>= dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics cancorDiagram(model) #and the associated canonical figure @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancerlm.png') model <- lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() @ \end{scriptsize} \includegraphics{dancerlm.png} \caption{Multiple regression of the Belly Dancer data set. Compare with the canonical correlation figure \ref{fig:cancor} } \label{fig:lm} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancer.png') cancorDiagram(model) dev.off() @ \end{scriptsize} \includegraphics{dancer.png} \caption{Canonical Correlation of the Belly Dancer data set. Compare with the linear regression figure \ref{fig:lm} } \label{fig:cancor} \end{center} \end{figure} \subsection{Set Correlation using \pfun{lmCor}} Another important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{lmCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{lmCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{lmCor}. Two things to notice. \pfun{lmCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{lmCor}. <>= #compare with lmCor lmCor(c(4:6),c(1:3),C, n.obs=700) @ \end{scriptsize} Note that the \pfun{lmCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{set.cor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}), 135 items for 4,000 participants (\pfun{spi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 16 multiple choice iq items (\pfun{iqitems}, \pfun{ability}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [spi] 135 personality items and 10 demographic items for 4,000 subjects are taken from the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project \citep{sapa:16}. These 135 items form part of the SAPA Personality Inventory \citep{condon:spi}. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item [iqitems] 16 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1525 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [ability] The same 16 items, converted to 0,1 scores are used for examples of various IRT procedures. These data are from the \emph{International Cognitive Ability Resource} (ICAR) \cite{condon:icar:14} and were collected as part of the SAPA web based assessment \href{ https://sapa-project.org}{ https://sapa-project.org} project \cite{sapa:16}. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to introduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:84}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="https://personality-project.org/r"}{\url{https://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"http://personality-project.org/r/src/contrib/}{ \url{http://personality-project.org/r/src/contrib/} and wander around. For both Macs and PC, this version can be installed directly using the ``other repository" option in the package installer. Make sure to specify type="source" %\begin{Schunk} \begin{Sinput} > install.packages("psych", repos="https://personality-project.org/r", type="source") \end{Sinput} %\end{Schunk} % For a PC, the zip file for the most recent release has been created using the win-builder facility at CRAN. The development release for the Mac is usually several weeks ahead of the PC development version. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{https://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, %\begin{Schunk} \begin{Sinput} news(Version >= "2.3.5",package="psych") \end{Sinput} %\end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{https://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{https://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} %\bibliography{all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock Multilevel modeling in r (2.3) a brief introduction to r, the multilevel package and the nlme package. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\citeauthoryear{Bernaards \& Jennrich}{Bernaards \& Jennrich}{2005}]{gpa.rotate} Coen A. Bernaards \& Robert I. Jennrich (2005). \newblock Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis \newblock {\em Educational and Psychological Measurement}, {\em 65}, 676-696. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Condon}{2018}]{condon:spi} Condon, D. (2018) \newblock {\em The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model} \newblock {\em PsyArXiv}, \bibitem[\protect\citeauthoryear{Condon \& Revelle}{Condon \& Revelle}{2014}]{condon:icar:14} Condon, D.~M. \& Revelle, W. (2014). \newblock The {International Cognitive Ability Resource}: Development and initial validation of a public-domain measure. \newblock {\em Intelligence}, {\em 43}, 52--64. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Eagly and Revelle}{2022}]{eagly:revelle} Eagly and Revelle (2022). \newblock Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees (in press) \newblock {\em Perspectives in Psychological Science}) \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2012}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2012). \newblock {\em {sem: Structural Equation Models}}. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Gruber et al. }{2020}]{gruber:20} Gruber, Freya M. and Distlberger, Eva and Scherndl, Thomas and Ortner, Tuulia M. and Pletzer, Belinda (2020) \newblock Psychometric properties of the multifaceted Gender-Related Attributes Survey (GERAS) \newblock {\em European Journal of Psychological Assessment.}, 36, (4) 612-623 \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holm}{1979}]{holm:79} Holm, S. (1979). \newblock A simple sequentially rejective multiple test procedure. \newblock {\em Scandinavian Journal of Statistics}, 6(2):pp. 65--70. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to Bartlett's chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28, (3/4):321--377. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, pages 1--13. \newblock 10.1007/s11336-011-9218-4. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1984}]{nunnally:bernstein:84} Nunnally, J.~C. and Bernstein, I.~H. (1984). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[Preacher and Hayes, 2004]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2024}]{psych} Revelle, W. (2024). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston. \newblock R package version 2.4.1 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[Revelle and Condon, 2018]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell 2018). \bibitem[Revelle and Condon, 2019]{rc:pa} Revelle, W. and Condon, D.~M. (2019). \newblock Reliability from alpha to omega: A tutorial. \newblock {\em Psychological Assessment} 31, 12, 1395-1411. https://doi.org/10.1037/pas0000754. \url{https://psyarxiv.com/2y3w9/} Preprint available from PsyArxiv \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\citeauthoryear{Revelle, Condon, Wilt, French, Brown \&? Elleman}{Revelle et~al.}{2016}]{sapa:16} Revelle, W., Condon, D.~M., Wilt, J., French, J.~A., Brown, A., \& Elleman, L.~G. (2016). \newblock Web and phone based data collection using planned missing designs. \newblock In N.~G. Fielding, R.~M. Lee, \& G.~Blank (Eds.), {\em SAGE Handbook of Online Research Methods\/} (2nd ed.). chapter~37, (pp.\ 578--595). Sage Publications, Inc. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Personality and cognition: The personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Smillie et~al.}{2012}]{smillie:jpsp} Smillie, L.~D., Cooper, A., Wilt, J., and Revelle, W. (2012). \newblock Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. \newblock {\em Journal of Personality and Social Psychology}, 103(2):306--326. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Steiger}{1980}]{steiger:80b} Steiger, J.~H. (1980). \newblock Tests for comparing elements of a correlation matrix. \newblock {\em Psychological Bulletin}, 87(2):245--251. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tabachnick and Fidell}{2001}]{Tabachnick:01} Tabacnik, B.G and Fidell, L.S. (2001) \newblock Using multivariate statistics. \newblock Allyn and Bacon. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of occam's razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}): Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psychTools/inst/doc/overview.Rnw0000644000176200001440000042507714551776323016535 0ustar liggesusers% \VignetteIndexEntry{Overview of the psych package for psychometrics} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \makeindex % used for the subject index \title{An introduction to the psych package: Part II\\Scale construction and psychometrics} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \tableofcontents \newpage \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} (section \ref{sect:starting}) and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} package: @ \begin{scriptsize} \begin{Schunk} \begin{Sinput} library(psych) library(psychTools) \end{Sinput} \end{Schunk} \end{scriptsize} \item Input your data (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.1). There are two ways to do this: \begin{itemize} \item Find and read standard files using \pfun{read.file}. This will open a search window for your operating system which you can use to find the file. If the file has a suffix of .text, .txt, .csv, .data, .sav, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, or .RData, then the file will be opened and the data will be read in. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.file() # find the appropriate file using your normal operating system \end{Sinput} \end{Schunk} \end{scriptsize} \item Alternatively, go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- read.clipboard.tab() # if on the clipboard \end{Sinput} \end{Schunk} \end{scriptsize} Note that there are number of options for \pfun{read.clipboard} for reading in Excel based files, lower triangular files, etc. \end{itemize} \item Make sure that what you just read is right. Describe it (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.3) on how to \pfun{describe} data) and perhaps look at the first and last few lines. If you have multiple groups, try \pfun{describeBy}. \begin{scriptsize} \begin{Schunk} \begin{Sinput} dim(myData) #What are the dimensions of the data? describe(myData) # or descrbeBy(myData,groups="mygroups") #for descriptive statistics by groups headTail(myData) #show the first and last n lines of a file \end{Sinput} \end{Schunk} \end{scriptsize} \item Look at the patterns in the data. If you have fewer than about 12 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels} ( (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.4 for a discussion of graphics)) . Then, use the \pfun{outlier} function to detect outliers. \begin{scriptsize} \begin{Schunk} \begin{Sinput} pairs.panels(myData) outlier(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Note that you might have some weird subjects, probably due to data entry errors. Either edit the data by hand (use the \fun{edit} command) or just \pfun{scrub} the data). \begin{scriptsize} \begin{Schunk} \begin{Sinput} cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA \end{Sinput} \end{Schunk} \end{scriptsize} \item Graph the data with error bars for each variable ( (see the \href{https://personality-project.org/r/psych/intro.pdf}{Introduction to Psych} vignette section 3.1)). \begin{scriptsize} \begin{Schunk} \begin{Sinput} error.bars(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Find the correlations of all of your data. \pfun{lowerCor} will by default find the pairwise correlations, round them to 2 decimals, and display the lower off diagonal matrix. \begin{itemize} \item Descriptively (just the values) (section \ref{sect:lowerCor}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals \end{Sinput} \end{Schunk} \end{scriptsize} \item Graphically (section \ref{sect:corplot}). Another way is to show a heat map of the correlations with the correlation values included. \begin{scriptsize} \begin{Schunk} \begin{Sinput} corPlot(r) #examine the many options for this function. \end{Sinput} \end{Schunk} \end{scriptsize} \item Inferentially (the values, the ns, and the p values) (section \ref{sect:corr.test}) \begin{scriptsize} \begin{Schunk} \begin{Sinput} corr.test(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \item Apply various regression models. Several functions are meant to do multiple regressions, either from the raw data or from a variance/covariance matrix, or a correlation matrix. \begin{itemize} \item \pfun{lmCor} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables. \begin{scriptsize} \begin{Schunk} \begin{Sinput} myData <- sat.act colnames(myData) <- c("mod1","med1","x1","x2","y1","y2") lmCor(y1 + y2 ~ x1 + x2 , data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data or a correlation matrix and find (and graph the path diagram) for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y1 + y2 ~ x1 + x2 + (med1) , data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item \pfun{mediate} will take raw data and find (and graph the path diagram) a moderated multiple regression model for multiple y variables depending upon multiple x variables mediated through a mediation variable. It then tests the mediation effect using a boot strap. \begin{scriptsize} \begin{Schunk} \begin{Sinput} mediate(y1 + y2 ~ x1 + x2* mod1 +(med1), data = myData) \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \subsection{Psychometric functions are summarized in this vignette} Many additional functions, particularly designed for basic and advanced psychometrics are discussed more fully in this Vignette. A brief review of the functions available is included here. For basic data entry and descriptive statistics, see the Vignette Intro to Psych \url{https://personality-project.org/r}. In addition, there are helpful tutorials for \emph{Finding omega}, \emph{How to score scales and find reliability}, and for \emph{Using psych for factor analysis} at \url{https://personality-project.org/r}. \begin{itemize} \item Test for the number of factors in your data using parallel analysis (\pfun{fa.parallel}, section \ref{sect:fa.parallel}) or Very Simple Structure (\pfun{vss}, \ref{sect:vss}) . \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa.parallel(myData) vss(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Factor analyze (see section \ref{sect:fa}) the data with a specified number of factors (the default is 1), the default method is minimum residual, the default rotation for more than one factor is oblimin. There are many more possibilities (see sections \ref{sect:minres}-\ref{sect:wls}). Compare the solution to a hierarchical cluster analysis using the ICLUST algorithm \citep{revelle:iclust} (see section \ref{sect:iclust}). Also consider a hierarchical factor solution to find coefficient $\omega$ (see \ref{sect:omega}). \begin{scriptsize} \begin{Schunk} \begin{Sinput} fa(myData) iclust(myData) omega(myData) \end{Sinput} \end{Schunk} \end{scriptsize} If you prefer to do a principal components analysis you may use the \pfun{principal} function. The default is one component. \begin{scriptsize} \begin{Schunk} \begin{Sinput} principal(myData) \end{Sinput} \end{Schunk} \end{scriptsize} \item Some people like to find coefficient $\alpha$ as an estimate of reliability. This may be done for a single scale using the \pfun{alpha} function (see \ref{sect:alpha}). Perhaps more useful is the ability to create several scales as unweighted averages of specified items using the \pfun{scoreItems} function (see \ref{sect:score}) and to find various estimates of internal consistency for these scales, find their intercorrelations, and find scores for all the subjects. \begin{scriptsize} \begin{Schunk} \begin{Sinput} alpha(myData) #score all of the items as part of one scale. myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16))) my.scores <- scoreItems(myKeys,myData) #form several scales my.scores #show the highlights of the results \end{Sinput} \end{Schunk} \end{scriptsize} \end{itemize} \end{enumerate} At this point you have had a chance to see the highlights of the \Rpkg{psych} package and to do some basic (and advanced) data analysis. You might find reading this entire vignette as well as the Overview Vignette to be helpful to get a broader understanding of what can be done in \R{} using the \Rpkg{psych}. Remember that the help command (?) is available for every function. Try running the examples for each help page. \newpage\newpage \section{Overview of this and related documents} The \Rpkg{psych} package \citep{psych} has been developed at Northwestern University since 2005 to include functions most useful for personality, psychometric, and psychological research. The package is also meant to supplement a text on psychometric theory \citep{revelle:intro}, a draft of which is available at \url{https://personality-project.org/r/book/}. Some of the functions (e.g., \pfun{read.file}, \pfun{read.clipboard}, \pfun{describe}, \pfun{pairs.panels}, \pfun{scatter.hist}, \pfun{error.bars}, \pfun{multi.hist}, \pfun{bi.bars}) are useful for basic data entry and descriptive analyses. Psychometric applications emphasize techniques for dimension reduction including factor analysis, cluster analysis, and principal components analysis. The \pfun{fa} function includes five methods of \iemph{factor analysis} (\iemph{minimum residual}, \iemph{principal axis}, \iemph{weighted least squares}, \iemph{generalized least squares} and \iemph{maximum likelihood} factor analysis). Principal Components Analysis (PCA) is also available through the use of the \pfun{principal} or \pfun{pca} functions. Determining the number of factors or components to extract may be done by using the Very Simple Structure \citep{revelle:vss} (\pfun{vss}), Minimum Average Partial correlation \citep{velicer:76} (\pfun{MAP}) or parallel analysis (\pfun{fa.parallel}) criteria. These and several other criteria are included in the \pfun{nfactors} function. Two parameter Item Response Theory (IRT) models for dichotomous or polytomous items may be found by factoring \pfun{tetrachoric} or \pfun{polychoric} correlation matrices and expressing the resulting parameters in terms of location and discrimination using \pfun{irt.fa}. Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman transformations \citep{schmid:57} (\pfun{schmid}) to transform a hierarchical factor structure into a \iemph{bifactor} solution \citep{holzinger:37}. Higher order models can also be found using \pfun{fa.multi}. Scale construction can be done using the Item Cluster Analysis \citep{revelle:iclust} (\pfun{iclust}) function to determine the structure and to calculate reliability coefficients $\alpha$ \citep{cronbach:51}(\pfun{alpha}, \pfun{scoreItems}, \pfun{score.multiple.choice}), $\beta$ \citep{revelle:iclust,rz:09} (\pfun{iclust}) and McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt} (\pfun{omega}). Guttman's six estimates of internal consistency reliability (\cite{guttman:45}, as well as additional estimates \citep{rz:09} are in the \pfun{guttman} function. The six measures of Intraclass correlation coefficients (\pfun{ICC}) discussed by \cite{shrout:79} are also available. For data with a a multilevel structure (e.g., items within subjects across time, or items within subjects across groups), the \pfun{describeBy}, \pfun{statsBy} functions will give basic descriptives by group. \pfun{StatsBy} also will find within group (or subject) correlations as well as the between group correlation. \pfun{multilevel.reliability} \pfun{mlr} will find various generalizability statistics for subjects over time and items. \pfun{mlPlot} will graph items over for each subject, \pfun{mlArrange} converts wide data frames to long data frames suitable for multilevel modeling. Graphical displays include Scatter Plot Matrix (SPLOM) plots using \pfun{pairs.panels}, correlation ``heat maps'' (\pfun{corPlot}) factor, cluster, and structural diagrams using \pfun{fa.diagram}, \pfun{iclust.diagram}, \pfun{structure.diagram} and \pfun{het.diagram}, as well as item response characteristics and item and test information characteristic curves \pfun{plot.irt} and \pfun{plot.poly}. This vignette is meant to give an overview of the \Rpkg{psych} package. That is, it is meant to give a summary of the main functions in the \Rpkg{psych} package with examples of how they are used for data description, dimension reduction, and scale construction. The extended user manual at \url{psych_manual.pdf} includes examples of graphic output and more extensive demonstrations than are found in the help menus. (Also available at \url{https://personality-project.org/r/psych_manual.pdf}). The vignette, psych for sem, at \url{psych_for_sem.pdf}, discusses how to use psych as a front end to the \Rpkg{sem} package of John Fox \citep{sem}. (The vignette is also available at \href{"https://personality-project.org/r/book/psych_for_sem.pdf"}{\url{https://personality-project.org/r/book/psych_for_sem.pdf}}). In addition, there are a growing number of ``HowTo"s at the personality project. Currently these include: \begin{enumerate} \item An \href{https://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{https://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{https://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{https://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{https://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{https://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis}. \end{enumerate} For a step by step tutorial in the use of the psych package and the base functions in R for basic personality research, see the guide for using \R{} for personality research at \url{https://personalitytheory.org/r/r.short.html}. For an \iemph{introduction to psychometric theory with applications in \R{}}, see the draft chapters at \url{https://personality-project.org/r/book}). \section{Getting started} \label{sect:starting} Some of the functions described in this overview require other packages. Particularly useful for rotating the results of factor analyses (from e.g., \pfun{fa}, \pfun{factor.minres}, \pfun{factor.pa}, \pfun{factor.wls}, or \pfun {principal}) or hierarchical factor models using \pfun{omega} or \pfun{schmid}, is the \Rpkg{GPArotation} package. These and other useful packages may be installed by first installing and then using the task views (\Rpkg{ctv}) package to install the ``Psychometrics" task view, but doing it this way is not necessary. \begin{Schunk} \begin{Sinput} install.packages("ctv") library(ctv) task.views("Psychometrics") \end{Sinput} \end{Schunk} The ``Psychometrics'' task view will install a large number of useful packages. To install the bare minimum for the examples in this vignette, it is necessary to install just 3 packages: \begin{Schunk} \begin{Sinput} install.packages(list(c("GPArotation","mnormt","psychTools") \end{Sinput} \end{Schunk} Because of the difficulty of installing the package \Rpkg{Rgraphviz}, alternative graphics have been developed and are available as \iemph{diagram} functions. If \Rpkg{Rgraphviz} is available, some functions will take advantage of it. An alternative is to use ``dot'' output of commands for any external graphics package that uses the dot language. \section{Basic data analysis} A number of \Rpkg{psych} functions facilitate the entry of data and finding basic descriptive statistics. These are described in more detail in the companion vignette: An introduction to the psych package: Part I which is also available from the personality-project site. \url{https://personality-project.org/r/psych/vignettes/intro.pdf}. Please consult that vignette first for information on how to read data (particularly using the \pfun{read.file} and \pfun{read.clipboard} commands), Also, the \pfun{describe} and \pfun{describeBy} functions are described in more detail in the introductory vignette. For even though you probably want to jump immediately to factor analyze your data, this is a mistake. It is very important to first describe them and look for weird responses. It is also useful to \pfun{scrub} your data when removing outliers, to graphically display them using \pfun{pairs.panesl} and \pfun{corPlot}. Basic multiple regression and moderated or mediated regressions may be done from either the raw data or from correlation matrices using \pfun{lmCor}, or \pfun{mediation}. Remember, to run any of the \Rpkg{psych} functions, it is necessary to make the package active by using the \fun{library} command: \begin{Schunk} \begin{Sinput} library(psych) \end{Sinput} \end{Schunk} The other packages, once installed, will be called automatically by \Rpkg{psych}. It is possible to automatically load \Rpkg{psych} and other functions by creating and then saving a ``.First" function: e.g., \begin{Schunk} \begin{Sinput} .First <- function(x) {library(psych)} \end{Sinput} \end{Schunk} \section{Item and scale analysis} The main functions in the \Rpkg{psych} package are for analyzing the structure of items and of scales and for finding various estimates of scale reliability. These may be considered as problems of dimension reduction (e.g., factor analysis, cluster analysis, principal components analysis) and of forming and estimating the reliability of the resulting composite scales. \subsection{Dimension reduction through factor analysis and cluster analysis} \label{sect:fa} Parsimony of description has been a goal of science since at least the famous dictum commonly attributed to William of Ockham to not multiply entities beyond necessity\footnote{Although probably neither original with Ockham nor directly stated by him \citep{thornburn:1918}, Ockham's razor remains a fundamental principal of science.}. The goal for parsimony is seen in psychometrics as an attempt either to describe (components) or to explain (factors) the relationships between many observed variables in terms of a more limited set of components or latent factors. The typical data matrix represents multiple items or scales usually thought to reflect fewer underlying constructs\footnote{\cite{cattell:fa78} as well as \cite{maccallum:07} argue that the data are the result of many more factors than observed variables, but are willing to estimate the major underlying factors.}. At the most simple, a set of items can be be thought to represent a random sample from one underlying domain or perhaps a small set of domains. The question for the psychometrician is how many domains are represented and how well does each item represent the domains. Solutions to this problem are examples of \iemph{factor analysis} (\iemph{FA}), \iemph{principal components analysis} (\iemph{PCA}), and \iemph{cluster analysis} (\emph{CA}). All of these procedures aim to reduce the complexity of the observed data. In the case of FA, the goal is to identify fewer underlying constructs to explain the observed data. In the case of PCA, the goal can be mere data reduction, but the interpretation of components is frequently done in terms similar to those used when describing the latent variables estimated by FA. Cluster analytic techniques, although usually used to partition the subject space rather than the variable space, can also be used to group variables to reduce the complexity of the data by forming fewer and more homogeneous sets of tests or items. At the data level the data reduction problem may be solved as a \iemph{Singular Value Decomposition} of the original matrix, although the more typical solution is to find either the \iemph{principal components} or \iemph{factors} of the covariance or correlation matrices. Given the pattern of regression weights from the variables to the components or from the factors to the variables, it is then possible to find (for components) individual \index{component scores} \emph{component} or \iemph{cluster scores} or estimate (for factors) \iemph{factor scores}. Several of the functions in \Rpkg{psych} address the problem of data reduction. \begin{description} \item[\pfun{fa}] incorporates six alternative algorithms: \iemph{minres factor analysis}, \iemph{principal axis factor analysis}, \iemph{alpha factor analysis}, \iemph{weighted least squares factor analysis}, \iemph{generalized least squares factor analysis} and \iemph{maximum likelihood factor analysis}. That is, it includes the functionality of three other functions that are deprecated and will be eventually phased out. \begin{tiny} \item[\pfun{fa.poly} (deprecated) ] is useful when finding the factor structure of categorical items. \pfun{fa.poly} first finds the tetrachoric or polychoric correlations between the categorical variables and then proceeds to do a normal factor analysis. By setting the n.iter option to be greater than 1, it will also find confidence intervals for the factor solution. Warning. Finding polychoric correlations is very slow, so think carefully before doing so. These options are now part of the \iemph{fa} function and can be controlled by setting the cor parameter to `tet' or `poly'. \item [\pfun{factor.minres} (deprecated)] Minimum residual factor analysis is a least squares, iterative solution to the factor problem. minres attempts to minimize the residual (off-diagonal) correlation matrix. It produces solutions similar to maximum likelihood solutions, but will work even if the matrix is singular. \item [\pfun{factor.pa} (deprecated)] Principal Axis factor analysis is a least squares, iterative solution to the factor problem. PA will work for cases where maximum likelihood techniques (\fun{factanal}) will not work. The original communality estimates are either the squared multiple correlations (\pfun{smc}) for each item or 1. \item [\pfun{factor.wls} (deprecated)] Weighted least squares factor analysis is a least squares, iterative solution to the factor problem. It minimizes the (weighted) squared residual matrix. The weights are based upon the independent contribution of each variable. \end{tiny} \item [\pfun{principal}] Principal Components Analysis reports the largest n eigen vectors rescaled by the square root of their eigen values. Note that PCA is not the same as factor analysis and the two should not be confused. \item [\pfun{factor.congruence}] The congruence between two factors is the cosine of the angle between them. This is just the cross products of the loadings divided by the sum of the squared loadings. This differs from the correlation coefficient in that the mean loading is not subtracted before taking the products. \pfun{factor.congruence} will find the cosines between two (or more) sets of factor loadings. \item [\pfun{vss}] Very Simple Structure \cite{revelle:vss} applies a goodness of fit test to determine the optimal number of factors to extract. It can be thought of as a quasi-confirmatory model, in that it fits the very simple structure (all except the biggest c loadings per item are set to zero where c is the level of complexity of the item) of a factor pattern matrix to the original correlation matrix. For items where the model is usually of complexity one, this is equivalent to making all except the largest loading for each item 0. This is typically the solution that the user wants to interpret. The analysis includes the \pfun{MAP} criterion of \cite{velicer:76} and a $\chi^2$ estimate. \item [\pfun{nfactors}] combines VSS, MAP, and a number of other fit statistics. The depressing reality is that frequently these conventional fit estimates of the number of factors do not agree. \item [\pfun{fa.parallel}] The parallel factors technique compares the observed eigen values of a correlation matrix with those from random data. \item [\pfun{fa.plot}] will plot the loadings from a factor, principal components, or cluster analysis (just a call to plot will suffice). If there are more than two factors, then a SPLOM of the loadings is generated. \item[\pfun{fa.diagram}] replaces \pfun{fa.graph} and will draw a path diagram representing the factor structure. It does not require Rgraphviz and thus is probably preferred. \item[\pfun{fa.graph}] requires \fun{Rgraphviz} and will draw a graphic representation of the factor structure. If factors are correlated, this will be represented as well. \item[\pfun{iclust} ] is meant to do item cluster analysis using a hierarchical clustering algorithm specifically asking questions about the reliability of the clusters \citep{revelle:iclust}. Clusters are formed until either coefficient $\alpha$ \cite{cronbach:51} or $\beta$ \cite{revelle:iclust} fail to increase. \end{description} \subsubsection{Minimum Residual Factor Analysis} \label{sect:minres} The factor model is an approximation of a correlation matrix by a matrix of lower rank. That is, can the correlation matrix, $\vec{_nR_n}$ be approximated by the product of a factor matrix, $\vec{_nF_k}$ and its transpose plus a diagonal matrix of uniqueness. \begin{equation} R = FF' + U^2 \end{equation} The maximum likelihood solution to this equation is found by \fun{factanal} in the \Rpkg{stats} package as well as the \pfun{fa} function in \Rpkg{psych}. Seven alternatives are provided in \Rpkg{psych}, all of them are included in the \pfun{fa} function and are called by specifying the factor method (e.g., fm=``minres", fm=``pa", fm=``alpha" fm=`wls", fm=``gls", fm = ``min.rank", and fm=``ml"). In the discussion of the other algorithms, the calls shown are to the \pfun{fa} function specifying the appropriate method. \pfun{factor.minres} attempts to minimize the off diagonal residual correlation matrix by adjusting the eigen values of the original correlation matrix. This is similar to what is done in \fun{factanal}, but uses an ordinary least squares instead of a maximum likelihood fit function. The solutions tend to be more similar to the MLE solutions than are the \pfun{factor.pa} solutions. \iemph{min.res} is the default for the \pfun{fa} function. A classic data set, collected by \cite{thurstone:41} and then reanalyzed by \cite{bechtoldt:61} and discussed by \cite{mcdonald:tt}, is a set of 9 cognitive variables with a clear bi-factor structure \citep{holzinger:37}. The minimum residual solution was transformed into an oblique solution using the default option on rotate which uses an oblimin transformation (Table~\ref{tab:factor.minres}). Alternative rotations and transformations include ``none", ``varimax", ``quartimax", ``bentlerT", ``varimin'' and ``geominT" (all of which are orthogonal rotations). as well as ``promax", ``oblimin", ``simplimax", ``bentlerQ, and ``geominQ" and ``cluster" which are possible oblique transformations of the solution. The default is to do a oblimin transformation. The measures of factor adequacy reflect the multiple correlations of the factors with the best fitting linear regression estimates of the factor scores \citep{grice:01}. Note that if extracting more than one factor, and doing any oblique rotation, it is necessary to have the \Rpkg{GPArotation} installed. This is checked for in the appropriate functions. <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} @ \begin{table}[htpb] \caption{Three correlated factors from the Thurstone 9 variable problem. By default, the solution is transformed obliquely using oblimin. The extraction method is (by default) minimum residual.} \begin{scriptsize} \begin{center} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { library(psych) library(psychTools) f3t <- fa(Thurstone,3,n.obs=213) f3t } @ \end{center} \end{scriptsize} \label{tab:factor.minres} \end{table}% \subsubsection{Principal Axis Factor Analysis} An alternative, least squares algorithm (included in \pfun{fa} with the fm=pa option or as a standalone function (\pfun{factor.pa}), does a Principal Axis factor analysis by iteratively doing an eigen value decomposition of the correlation matrix with the diagonal replaced by the values estimated by the factors of the previous iteration. This OLS solution is not as sensitive to improper matrices as is the maximum likelihood method, and will sometimes produce more interpretable results. It seems as if the SAS example for PA uses only one iteration. Setting the max.iter parameter to 1 produces the SAS solution. The solutions from the \pfun{fa}, the \pfun{factor.minres} and \pfun{factor.pa} as well as the \pfun{principal} functions can be rotated or transformed with a number of options. Some of these call the \Rpkg{GPArotation} package. Orthogonal rotations include \fun{varimax}, \fun{quartimax}, \pfun{varimin}, \pfun{bifactor} . Oblique transformations include \fun{oblimin}, \fun{quartimin}, \pfun{biquartimin} and then two targeted rotation functions \pfun{Promax} and \pfun{target.rot}. The latter of these will transform a loadings matrix towards an arbitrary target matrix. The default is to transform towards an independent cluster solution. Using the Thurstone data set, three factors were requested and then transformed into an independent clusters solution using \pfun{target.rot} (Table~\ref{tab:Thurstone}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The extraction method was principal axis. The transformation was a targeted transformation to a simple cluster solution.} \begin{center} \begin{scriptsize} <>= if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} @ \end{scriptsize} \end{center} \label{tab:Thurstone} \end{table} \subsubsection{Alpha Factor Analysis} Introduced by \cite{kaiser:65} and discussed by \cite{loehlin:17}, \emph{alpha factor analysis} factors the matrix of correlations or covariances corrected for their communalities. This has the effect of making all correlations corrected for relability to reflect their true, latent correlations. \emph{alpha factor analysis} was added in August, 2017 to increase the range of EFA options available. This is added more for completeness rather than an endorsement of the procedure. It is worth comparing solutions from minres, alpha, and MLE, for they are not the same. \subsubsection{Weighted Least Squares Factor Analysis} \label{sect:wls} Similar to the minres approach of minimizing the squared residuals, factor method ``wls" weights the squared residuals by their uniquenesses. This tends to produce slightly smaller overall residuals. In the example of weighted least squares, the output is shown by using the \pfun{print} function with the cut option set to 0. That is, all loadings are shown (Table~\ref{tab:Thurstone.wls}). \begin{table}[htpb] \caption{The 9 variable problem from Thurstone is a classic example of factoring where there is a higher order factor, g, that accounts for the correlation between the factors. The factors were extracted using a weighted least squares algorithm. All loadings are shown by using the cut=0 option in the \pfun{print.psych} function.} \begin{scriptsize} <>= f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) @ \end{scriptsize} \label{tab:Thurstone.wls} \end{table} subsection{Displaying factor solutions} The unweighted least squares solution may be shown graphically using the \pfun{fa.plot} function which is called by the generic \fun{plot} function (Figure~\ref{fig:thurstone}). Factors were transformed obliquely using a oblimin. These solutions may be shown as item by factor plots (Figure~\ref{fig:thurstone}) or by a structure diagram (Figure~\ref{fig:thurstone.diagram}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= plot(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{plot}. Factors were transformed to an oblique solution using the oblimin function from the GPArotation package.} \label{fig:thurstone} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= fa.diagram(f3t) @ \end{scriptsize} \caption{A graphic representation of the 3 oblique factors from the Thurstone data using \pfun{fa.diagram}. Factors were transformed to an oblique solution using oblimin.} \label{fig:thurstone.diagram} \end{center} \end{figure} A comparison of these three approaches suggests that the minres solution is more similar to a maximum likelihood solution and fits slightly better than the pa or wls solutions. Comparisons with SPSS suggest that the pa solution matches the SPSS OLS solution, but that the minres solution is slightly better. At least in one test data set, the weighted least squares solutions, although fitting equally well, had slightly different structure loadings. Note that the rotations used by SPSS will sometimes use the ``Kaiser Normalization''. By default, the rotations used in psych do not normalize, but this can be specified as an option in \pfun{fa}. \subsubsection{Principal Components analysis (PCA)} An alternative to factor analysis, which is unfortunately frequently confused with \iemph{factor analysis}, is \iemph{principal components analysis}. Although the goals of \iemph{PCA} and \iemph{FA} are similar, PCA is a descriptive model of the data, while FA is a structural model. Some psychologists use PCA in a manner similar to factor analysis and thus the \pfun{principal} function produces output that is perhaps more understandable than that produced by \fun{princomp} in the \Rpkg{stats} package. Table~\ref{tab:pca} shows a PCA of the Thurstone 9 variable problem rotated using the \pfun{Promax} function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the \iemph{common variance}. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the \pfun{fa} solution. \begin{table}[htpb] \caption{The Thurstone problem can also be analyzed using Principal Components Analysis. Compare this to Table~\ref{tab:Thurstone}. The loadings are higher for the PCA because the model accounts for the unique as well as the common variance.The fit of the off diagonal elements, however, is much worse than the \pfun{fa} results.} \begin{center} \begin{scriptsize} <>= p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p @ \end{scriptsize} \end{center} \label{tab:pca} \end{table} \subsubsection{Hierarchical and bi-factor solutions} \label{sect:omega} For a long time structural analysis of the ability domain have considered the problem of factors that are themselves correlated. These correlations may themselves be factored to produce a higher order, general factor. An alternative \citep{holzinger:37,jensen:weng} is to consider the general factor affecting each item, and then to have group factors account for the residual variance. Exploratory factor solutions to produce a hierarchical or a bifactor solution are found using the \pfun{omega} function. This technique has more recently been applied to the personality domain to consider such things as the structure of neuroticism (treated as a general factor, with lower order factors of anxiety, depression, and aggression). Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations between the factors (as shown in Figure~\ref{fig:thurstone.diagram} can themselves be factored. This results in a higher order factor model (Figure~\ref{fig:omega}). An an alternative solution is to take this higher order model and then solve for the general factor loadings as well as the loadings on the residualized lower order factors using the \iemph{Schmid-Leiman} procedure. (Figure ~\ref{fig:omega.2}). Yet another solution is to use structural equation modeling to directly solve for the general and group factors. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A higher order factor solution to the Thurstone 9 variable problem} \label{fig:omega} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= om <- omega(Thurstone,n.obs=213) @ \end{scriptsize} \caption{A bifactor factor solution to the Thurstone 9 variable problem} \label{fig:omega.2} \end{center} \end{figure} Yet another approach to the bifactor structure is do use the \pfun{bifactor} rotation function in either \Rpkg{psych} or in \Rpkg{GPArotation}. This does the rotation discussed in \cite{jennrich:11}. \subsubsection{Item Cluster Analysis: iclust} \label{sect:iclust} An alternative to factor or components analysis is \iemph{cluster analysis}. The goal of cluster analysis is the same as factor or components analysis (reduce the complexity of the data and attempt to identify homogeneous subgroupings). Mainly used for clustering people or objects (e.g., projectile points if an anthropologist, DNA if a biologist, galaxies if an astronomer), clustering may be used for clustering items or tests as well. Introduced to psychologists by \cite{tryon:39} in the 1930's, the cluster analytic literature exploded in the 1970s and 1980s \citep{blashfield:80,blashfield:88,everitt:74,hartigan:75}. Much of the research is in taxonmetric applications in biology \citep{sneath:73,sokal:63} and marketing \citep{cooksey:06} where clustering remains very popular. It is also used for taxonomic work in forming clusters of people in family \citep{henry:05} and clinical psychology \citep{martinent:07,mun:08}. Interestingly enough it has has had limited applications to psychometrics. This is unfortunate, for as has been pointed out by e.g. \citep{tryon:35,loevinger:53}, the theory of factors, while mathematically compelling, offers little that the geneticist or behaviorist or perhaps even non-specialist finds compelling. \cite{cooksey:06} reviews why the \pfun{iclust} algorithm is particularly appropriate for scale construction in marketing. \emph{Hierarchical cluster analysis} \index{hierarchical cluster analysis} forms clusters that are nested within clusters. The resulting \iemph{tree diagram} (also known somewhat pretentiously as a \iemph{rooted dendritic structure}) shows the nesting structure. Although there are many hierarchical clustering algorithms in \R{} (e.g., \fun{agnes}, \fun{hclust}, and \pfun{iclust}), the one most applicable to the problems of scale construction is \pfun{iclust} \citep{revelle:iclust}. \begin{enumerate} \item Find the proximity (e.g. correlation) matrix, \item Identify the most similar pair of items \item Combine this most similar pair of items to form a new variable (cluster), \item Find the similarity of this cluster to all other items and clusters, \item Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster remains or in \pfun{iclust} if there is a failure to increase reliability coefficients $\alpha$ or $\beta$). \item Purify the solution by reassigning items to the most similar cluster center. \end{enumerate} \pfun{iclust} forms clusters of items using a hierarchical clustering algorithm until one of two measures of internal consistency fails to increase \citep{revelle:iclust}. The number of clusters may be specified a priori, or found empirically. The resulting statistics include the average split half reliability, $\alpha$ \citep{cronbach:51}, as well as the worst split half reliability, $\beta$ \citep{revelle:iclust}, which is an estimate of the general factor saturation of the resulting scale (Figure~\ref{fig:iclust}). Cluster loadings (corresponding to the structure matrix of factor analysis) are reported when printing (Table~\ref{tab:iclust}). The pattern matrix is available as an object in the results. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(bfi) ic <- iclust(bfi[1:25]) @ \end{scriptsize} \caption{Using the \pfun{iclust} function to find the cluster structure of 25 personality items (the three demographic variables were excluded from this analysis). When analyzing many variables, the tree structure may be seen more clearly if the graphic output is saved as a pdf and then enlarged using a pdf viewer.} \label{fig:iclust} \end{center} \end{figure} \begin{table}[htpb] \caption{The summary statistics from an iclust analysis shows three large clusters and smaller cluster.} \begin{center} \begin{scriptsize} <>= summary(ic) #show the results @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% The previous analysis (Figure~\ref{fig:iclust}) was done using the Pearson correlation. A somewhat cleaner structure is obtained when using the \pfun{polychoric} function to find polychoric correlations (Figure~\ref{fig:iclust.poly}). Note that the first time finding the polychoric correlations some time, but the next three analyses were done using that correlation matrix (r.poly\$rho). When using the console for input, \pfun{polychoric} will report on its progress while working using \pfun{progressBar}. \begin{table}[htpb] \caption{The \pfun{polychoric} and the \pfun{tetrachoric} functions can take a long time to finish and report their progress by a series of dots as they work. The dots are suppressed when creating a Sweave document.} \begin{center} \begin{tiny} <>= data(bfi) r.poly <- polychoric(bfi[1:25],correct=0) #the ... indicate the progress of the function @ \end{tiny} \end{center} \label{tab:bad}1.7.1\end{table}% \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations. Compare this solution to the previous one (Figure~\ref{fig:iclust}) which was done using Pearson correlations. } \label{fig:iclust.poly} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the solution set to 5 clusters. Compare this solution to the previous one (Figure~\ref{fig:iclust.poly}) which was done without specifying the number of clusters and to the next one (Figure~\ref{fig:iclust.3}) which was done by changing the beta criterion. } \label{fig:iclust.5} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") @ \end{scriptsize} \caption{ICLUST of the BFI data set using polychoric correlations with the beta criterion set to 3. Compare this solution to the previous three (Figure~\ref{fig:iclust},~\ref{fig:iclust.poly}, \ref{fig:iclust.5}).} \label{fig:iclust.3} \end{center} \end{figure} \begin{table}[htpb] \caption{The output from \pfun{iclust} includes the loadings of each item on each cluster. These are equivalent to factor structure loadings. By specifying the value of cut, small loadings are suppressed. The default is for cut=0.su } \begin{center} \begin{scriptsize} <>= print(ic,cut=.3) @ \end{scriptsize} \end{center} \label{tab:iclust} \end{table}% A comparison of these four cluster solutions suggests both a problem and an advantage of clustering techniques. The problem is that the solutions differ. The advantage is that the structure of the items may be seen more clearly when examining the clusters rather than a simple factor solution. \subsection{Estimates of fit} Exploratory factoring techniques are sometimes criticized because of the lack of statistical information on the solutions. There are perhaps as many fit statistics as there are psychometricians. When using Maximum Likelihood extraction, many of these various fit statistics are based upon the $\chi^{2}$ which is minimized using ML. If not using ML, these same statistics can be found, but they are no longer maximum likelihood estimates. They are, however, still useful. Overall estimates of goodness of fit including $\chi^{2}$ and RMSEA are found in the \pfun{fa} and \pfun{omega} functions. \subsection{Confidence intervals using bootstrapping techniques} Confidence intervals for the factor loadings may be found by doing multiple bootstrapped iterations of the original analysis. This is done by setting the n.iter parameter to the desired number of iterations. This can be done for factoring of Pearson correlation matrices as well as polychoric/tetrachoric matrices (See Table~\ref{tab:bootstrap}). Although the example value for the number of iterations is set to 20, more conventional analyses might use 1000 bootstraps. This will take much longer. Bootstrapped confidence intervals can also be found for the loadings of a factoring of a polychoric matrix. \pfun{fa.poly} will find the polychoric correlation matrix and if the n.iter option is greater than 1, will then randomly resample the data (case wise) to give bootstrapped samples. This will take a long time for large number of items or interations. \begin{table}[htpb] \caption{An example of bootstrapped confidence intervals on 10 items from the Big 5 inventory. The number of bootstrapped samples was set to 20. More conventional bootstrapping would use 100 or 1000 replications. } \begin{tiny} \begin{center} <>= fa(bfi[1:10],2,n.iter=20) @ \end{center} \end{tiny} \label{tab:bootstrap} \end{table}% \subsection{Comparing factor/component/cluster solutions} Cluster analysis, factor analysis, and principal components analysis all produce structure matrices (matrices of correlations between the dimensions and the variables) that can in turn be compared in terms of Burt's \iemph{congruence coefficient} (also known as Tucker's coefficient) which is just the cosine of the angle between the dimensions $$c_{f_{i}f_{j}} = \frac{\sum_{k=1}^{n}{f_{ik}f_{jk}}} {\sum{f_{ik}^{2}}\sum{f_{jk}^{2}}}.$$ Consider the case of a four factor solution and four cluster solution to the Big Five problem. \begin{scriptsize} <>= f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) @ \end{scriptsize} A more complete comparison of oblique factor solutions (both minres and principal axis), bifactor and component solutions to the Thurstone data set is done using the \pfun{factor.congruence} function. (See table~\ref{tab:congruence}). \begin{table}[htpb] \caption{Congruence coefficients for oblique factor, bifactor and component solutions for the Thurstone problem.} \begin{scriptsize} <>= factor.congruence(list(f3t,f3o,om,p3p)) @ \end{scriptsize} \label{tab:congruence} \end{table}% \subsection{Determining the number of dimensions to extract.} How many dimensions to use to represent a correlation matrix is an unsolved problem in psychometrics. There are many solutions to this problem, none of which is uniformly the best. Henry Kaiser once said that ``a solution to the number-of factors problem in factor analysis is easy, that he used to make up one every morning before breakfast. But the problem, of course is to find \emph{the} solution, or at least a solution that others will regard quite highly not as the best" \cite{horn:79}. Techniques most commonly used include 1) Extracting factors until the chi square of the residual matrix is not significant. 2) Extracting factors until the change in chi square from factor n to factor n+1 is not significant. 3) Extracting factors until the eigen values of the real data are less than the corresponding eigen values of a random data set of the same size (parallel analysis) \pfun{fa.parallel} \citep{horn:65}. 4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop in eigen values analogous to the change in slope seen when scrambling up the talus slope of a mountain and approaching the rock face \citep{cattell:scree}. 5) Extracting factors as long as they are interpretable. 6) Using the Very Structure Criterion (\pfun{vss}) \citep{revelle:vss}. 7) Using Wayne Velicer's Minimum Average Partial (\pfun{MAP}) criterion \citep{velicer:76}. 8) Extracting principal components until the eigen value < 1. Each of the procedures has its advantages and disadvantages. Using either the chi square test or the change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is partially sensitive to sample size in that for large samples the eigen values of random factors will all tend towards 1. The scree test is quite appealing but can lead to differences of interpretation as to when the scree ``breaks". Extracting interpretable factors means that the number of factors reflects the investigators creativity more than the data. vss, while very simple to understand, will not work very well if the data are very factorially complex. (Simulations suggests it will work fine if the complexities of some of the items are no more than 2). The eigen value of 1 rule, although the default for many programs, seems to be a rough way of dividing the number of variables by 3 and is probably the worst of all criteria. An additional problem in determining the number of factors is what is considered a factor. Many treatments of factor analysis assume that the residual correlation matrix after the factors of interest are extracted is composed of just random error. An alternative concept is that the matrix is formed from major factors of interest but that there are also numerous minor factors of no substantive interest but that account for some of the shared covariance between variables. The presence of such minor factors can lead one to extract too many factors and to reject solutions on statistical grounds of misfit that are actually very good fits to the data. This problem is partially addressed later in the discussion of simulating complex structures using \pfun{sim.structure} and of small extraneous factors using the \pfun{sim.minor} function. \subsubsection{Very Simple Structure} \label{sect:vss} The \pfun{vss} function compares the fit of a number of factor analyses with the loading matrix ``simplified" by deleting all except the c greatest loadings per item, where c is a measure of factor complexity \cite{revelle:vss}. Included in \pfun{vss} is the MAP criterion (Minimum Absolute Partial correlation) of \cite{velicer:76}. Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal (Figure~\ref{fig:vss}). However, the MAP criterion suggests that 5 is optimal. \begin{figure}[htbp] \begin{center} <>= vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") @ \caption{The Very Simple Structure criterion for the number of factors compares solutions for various levels of item complexity and various numbers of factors. For the Big 5 Inventory, the complexity 1 and 2 solutions both achieve their maxima at four factors. This is in contrast to parallel analysis which suggests 6 and the MAP criterion which suggests 5. } \label{fig:vss} \end{center} \end{figure} \begin{scriptsize} <>= vss @ \end{scriptsize} \subsubsection{Parallel Analysis} \label{sect:fa.parallel} An alternative way to determine the number of factors is to compare the solution to random data with the same properties as the real data set. If the input is a data matrix, the comparison includes random samples from the real data, as well as normally distributed random data with the same number of subjects and variables. For the BFI data, parallel analysis suggests that 6 factors might be most appropriate (Figure~\ref{fig:parallel}). It is interesting to compare \pfun{fa.parallel} with the \fun{paran} from the \Rpkg{paran} package. This latter uses smcs to estimate communalities. Simulations of known structures with a particular number of major factors but with the presence of trivial, minor (but not zero) factors, show that using smcs will tend to lead to too many factors. \begin{figure}[htbp] \begin{scriptsize} \begin{center} <>= fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") @ \caption{Parallel analysis compares factor and principal components solutions to the real data as well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis suggests 6. One more demonstration of Kaiser's dictum.} \label{fig:parallel} \end{center} \end{scriptsize} \end{figure} Experience with problems of various sizes suggests that parallel analysis is useful for less than about 1,000 subjects, and that using the number of components greater than a random solution is more robust than using the number of factors greater than random factors. A more tedious problem in terms of computation is to do parallel analysis of \iemph{polychoric} correlation matrices. This is done by \pfun{fa.parallel.poly}. By default the number of replications is 20. This is appropriate when choosing the number of factors from dicthotomous or polytomous data matrices. \subsection{Factor extension} Sometimes we are interested in the relationship of the factors in one space with the variables in a different space. One solution is to find factors in both spaces separately and then find the structural relationships between them. This is the technique of structural equation modeling in packages such as \Rpkg{sem} or \Rpkg{lavaan}. An alternative is to use the concept of \iemph{factor extension} developed by \citep{dwyer:37}. Consider the case of 16 variables created to represent one two dimensional space. If factors are found from eight of these variables, they may then be extended to the additional eight variables (See Figure~\ref{fig:fa.extension}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) @ \end{scriptsize} \caption{Factor extension applies factors from one set (those on the left) to another set of variables (those on the right). \pfun{fa.extension} is particularly useful when one wants to define the factors with one set of variables and then apply those factors to another set. \pfun{fa.diagram} is used to show the structure. } \label{fig:fa.extension} \end{center} \end{figure} Another way to examine the overlap between two sets is the use of \iemph{set correlation} found by \pfun{lmCor} (discussed later). \subsection{Exploratory Structural Equation Modeling (ESEM)} Generaizing the procedures of factor extension, we can do Exploratory Structural Equation Modeling (ESEM). Traditional Exploratory Factor Analysis (EFA) examines how latent variables can account for the correlations within a data set. All loadings and cross loadings are found and rotation is done to some approximation of simple structure. Traditional Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of loadings and typically does not allow any (or many) cross loadings. Structural Equation Modeling then applies two such measurement models, one to a set of X variables, another to a set of Y variables, and then tries to estimate the correlation between these two sets of latent variables. (Some SEM procedures estimate all the parameters from the same model, thus making the loadings in set Y affect those in set X.) It is possible to do a similar, exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set X, one in set Y, and then finding the correlations of the X factors with the Y factors, as well as the correlations of the Y variables with the X factors and the X variables with the Y factors. Consider the simulated data set of three ability variables, two motivational variables, and three outcome variables: <>= fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) @ We can fit this by using the \pfun{esem} function and then draw the solution (see Figure~\ref{fig:esem}) using the \pfun{esem.diagram} function (which is normally called automatically by \pfun{esem}. <>= esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example @ \begin{figure}[htpb] \begin{center} <>= esem.diagram(esem.example) @ \caption{An example of a Exploratory Structure Equation Model.} \label{fig:esem} \end{center} \end{figure} \section{Classical Test Theory and Reliability} Surprisingly, 113 years after \cite{spearman:rho} introduced the concept of reliability to psychologists, there are still multiple approaches for measuring it. Although very popular, Cronbach's $\alpha$ \citep{cronbach:51} underestimates the reliability of a test and over estimates the first factor saturation \citep{rz:09}. $\alpha$ \citep{cronbach:51} is the same as Guttman's $\lambda3$ \citep{guttman:45} and may be found by $$ \lambda_3 = \frac{n}{n-1}\Bigl(1 - \frac{tr(\vec{V})_x}{V_x}\Bigr) = \frac{n}{n-1} \frac{V_x - tr(\vec{V}_x)}{V_x} = \alpha $$ Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is without doubt the most frequently reported measure of internal consistency reliability. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the test has any microstructure (i.e., if it is ``lumpy") coefficients $\beta$ \citep{revelle:iclust} (see \pfun{iclust}) and $\omega_h$ (see \pfun{omega}) are more appropriate estimates of the general factor saturation. $\omega_t$is a better estimate of the reliability of the total test. Guttman's $\lambda _6$ (G6) considers the amount of variance in each item that can be accounted for the linear regression of all of the other items (the squared multiple correlation or smc), or more precisely, the variance of the errors, $e_j^2$, and is $$ \lambda_6 = 1 - \frac{\sum e_j^2}{V_x} = 1 - \frac{\sum(1-r_{smc}^2)}{V_x}. $$ The squared multiple correlation is a lower bound for the item communality and as the number of items increases, becomes a better estimate. G6 is also sensitive to lumpiness in the test and should not be taken as a measure of unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. G6 estimates item reliability by the squared multiple correlation of the other items in a scale. A modification of G6, G6*, takes as an estimate of an item reliability the smc with all the items in an inventory, including those not keyed for a particular scale. This will lead to a better estimate of the reliable variance of a particular item. Alpha, G6 and G6* are positive functions of the number of items in a test as well as the average intercorrelation of the items in the test. When calculated from the item variances and total test variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized alpha is based upon the correlations rather than the covariances. More complete reliability analyses of a single scale can be done using the \pfun{omega} function which finds $\omega_h$ and $\omega_t$ based upon a hierarchical factor analysis. Alternative functions \pfun{scoreItems} and \pfun{cluster.cor} will also score multiple scales and report more useful statistics. ``Standardized" alpha is calculated from the inter-item correlations and will differ from raw alpha. Functions for examining the reliability of a single scale or a set of scales include: \begin{description} \item [alpha] Internal consistency measures of reliability range from $\omega_h$ to $\alpha$ to $\omega_t$. The \pfun{alpha} function reports two estimates: Cronbach's coefficient $\alpha$ and Guttman's $\lambda_6$. Also reported are item - whole correlations, $\alpha$ if an item is omitted, and item means and standard deviations. \item [guttman] Eight alternative estimates of test reliability include the six discussed by \cite{guttman:45}, four discussed by ten Berge and Zergers (1978) ($\mu_0 \dots \mu_3$) as well as $\beta$ \citep[the worst split half,][]{revelle:iclust}, the glb (greatest lowest bound) discussed by Bentler and Woodward (1980), and $\omega_h$ and$\omega_t$ (\citep{mcdonald:tt,zinbarg:pm:05}. \item [omega] Calculate McDonald's omega estimates of general and total factor saturation. (\cite{rz:09} compare these coefficients with real and artificial data sets.) \item [cluster.cor] Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n correlation matrix, find the correlations of the composite clusters. \item [scoreItems] Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame of items scores for m items and n people, find the sum scores or average scores for each person and each scale. If the input is a square matrix, then it is assumed that correlations or covariances were used, and the raw scores are not available. In addition, report Cronbach's alpha, coefficient G6*, the average r, the scale intercorrelations, and the item by scale correlations (both raw and corrected for item overlap and scale reliability). Replace missing values with the item median or mean if desired. Will adjust scores for reverse scored items. \item [score.multiple.choice] Ability tests are typically multiple choice with one right answer. score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds total or average number right for each participant. Basic test statistics (alpha, average r, item means, item-whole correlations) are also reported. \item [splitHalf] Given a set of items, consider all (if n.items < 17) or 10,000 random splits of the item into two sets. The correlation between these two split halfs is then adjusted by the Spearman-Brown prophecy formula to show the range of split half reliablities. \end{description} \subsection{Reliability of a single scale} \label{sect:alpha} A conventional (but non-optimal) estimate of the internal consistency reliability of a test is coefficient $\alpha$ \citep{cronbach:51}. Alternative estimates are Guttman's $\lambda_6$, Revelle's $\beta$, McDonald's $\omega_h$ and $\omega_t$. Consider a simulated data set, representing 9 items with a hierarchical structure and the following correlation matrix. Then using the \pfun{alpha} function, the $\alpha$ and $\lambda_6$ estimates of reliability may be found for all 9 items, as well as the if one item is dropped at a time. \begin{scriptsize} <>= set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) @ \end{scriptsize} Some scales have items that need to be reversed before being scored. Rather than reversing the items in the raw data, it is more convenient to just specify which items need to be reversed scored. This may be done in \pfun{alpha} by specifying a \iemph{keys} vector of 1s and -1s. (This concept of keys vector is more useful when scoring multiple scale inventories, see below.) As an example, consider scoring the 7 attitude items in the attitude data set. Assume a conceptual mistake in that items 2 and 6 (complaints and critical) are to be scored (incorrectly) negatively. \begin{scriptsize} <>= alpha(attitude,keys=c("complaints","critical")) @ \end{scriptsize} Note how the reliability of the 7 item scales with an incorrectly reversed item is very poor, but if items 2 and 6 is dropped then the reliability is improved substantially. This suggests that items 2 and 6 were incorrectly scored. Doing the analysis again with the items positively scored produces much more favorable results. \begin{scriptsize} <>= alpha(attitude) @ \end{scriptsize} It is useful when considering items for a potential scale to examine the item distribution. This is done in \pfun{scoreItems} as well as in \pfun{alpha}. \begin{scriptsize} <>= items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures @ \end{scriptsize} \subsection{Using \pfun{omega} to find the reliability of a single scale} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{lavaan} package based upon the exploratory solution from \pfun{omega}. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} \url{https://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} \url{https://personality-project.org/revelle/publications/revelle.zinbarg.08.pdf} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Four options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), fm=``mle" uses the factanal function, and fm=``pc" does a principal components analysis (\pfun{principal}). For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{scoreItems} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). $\beta$, an alternative to $\omega$, is defined as the worst split half reliability. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ \begin{figure}[htbp] \begin{center} <>= om.9 <- omega(r9,title="9 simulated variables") @ \caption{A bifactor solution for 9 simulated variables with a hierarchical structure. } \label{fig:omega.9} \end{center} \end{figure} In the case of these simulated 9 variables, the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of 9 items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \begin{scriptsize} <>= om.9 @ \end{scriptsize} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{sem} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. \begin{scriptsize} <>= omegaSem(r9,n.obs=500,lavaan=TRUE) @ \end{scriptsize} \subsubsection{Other estimates of reliability} Other estimates of reliability are found by the \pfun{splitHalf} and \pfun{guttman} functions. These are described in more detail in \cite{rz:09} and in \cite{rc:reliability}. They include the 6 estimates from Guttman, four from TenBerge, and an estimate of the greatest lower bound. \begin{scriptsize} <>= splitHalf(r9) @ \end{scriptsize} \subsection{Reliability and correlations of multiple scales within an inventory} \label{sect:score} A typical research question in personality involves an inventory of multiple items purporting to measure multiple constructs. For example, the data set \pfun{bfi} includes 25 items thought to measure five dimensions of personality (Extraversion, Emotional Stability, Conscientiousness, Agreeableness, and Openness). The data may either be the raw data or a correlation matrix (\pfun{scoreItems}) or just a correlation matrix of the items ( \pfun{cluster.cor} and \pfun{cluster.loadings}). When finding reliabilities for multiple scales, item reliabilities can be estimated using the squared multiple correlation of an item with all other items, not just those that are keyed for a particular scale. This leads to an estimate of G6*. \subsubsection{Scoring from raw data} To score these five scales from the 25 items, use the \pfun{scoreItems} function and a list of items to be scored on each scale (a keys.list). Items may be listed by location (convenient but dangerous), or name (probably safer). Make a keys.list by by specifying the items for each scale, preceding items to be negatively keyed with a - sign: \begin{scriptsize} <>= #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list @ \end{scriptsize} \begin{tiny}In the past (prior to version 1.6.9, the keys.list was then converted a keys matrix using the helper function \pfun{make.keys}. This is no longer necessary. Logically, scales are merely the weighted composites of a set of items. The weights used are -1, 0, and 1. 0 implies do not use that item in the scale, 1 implies a positive weight (add the item to the total score), -1 a negative weight (subtract the item from the total score, i.e., reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the maximum + minimum possible value for that item. The minima and maxima can be estimated from all the items, or can be specified by the user. There are two different ways that scale scores tend to be reported. Social psychologists and educational psychologists tend to report the scale score as the \emph{average item score} while many personality psychologists tend to report the \emph{total item score}. The default option for \pfun{scoreItems} is to report item averages (which thus allows interpretation in the same metric as the items) but totals can be found as well. Personality researchers should be encouraged to report scores based upon item means and avoid using the total score although some reviewers are adamant about the following the tradition of total scores. The printed output includes coefficients $\alpha$ and G6*, the average correlation of the items within the scale (corrected for item ovelap and scale relliability), as well as the correlations between the scales (below the diagonal, the correlations above the diagonal are corrected for attenuation. As is the case for most of the \Rpkg{psych} functions, additional information is returned as part of the object. First, create keys matrix using the \pfun{make.keys} function. (The keys matrix could also be prepared externally using a spreadsheet and then copying it into \R{}). Although not normally necessary, show the keys to understand what is happening. There are two ways to make up the keys. You can specify the items by \emph{location} (the old way) or by \emph{name} (the newer and probably preferred way). To use the newer way you must specify the file on which you will use the keys. The example below shows how to construct keys either way. Note that the number of items to specify in the \pfun{make.keys} function is the total number of items in the inventory. This is done automatically in the new way of forming keys, but if using the older way, the number must be specified. That is, if scoring just 5 items from a 25 item inventory, \pfun{make.keys} should be told that there are 25 items. \pfun{make.keys} just changes a list of items on each scale to make up a scoring matrix. Because the \pfun{bfi} data set has 25 items as well as 3 demographic items, the number of variables is specified as 28. \end{tiny} Then, use this keys list to score the items. \begin{scriptsize} <>= scores <- scoreItems(keys.list,bfi) scores @ \end{scriptsize} To see the additional information (the raw correlations, the individual scores, etc.), they may be specified by name. Then, to visualize the correlations between the raw scores, use the \pfun{pairs.panels} function on the scores values of scores. (See figure~\ref{fig:scores} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() @ \end{scriptsize} \includegraphics{scores} \caption{A graphic analysis of the Big Five scales found by using the scoreItems function. The pair.wise plot allows us to see that some participants have reached the ceiling of the scale for these 5 items scales. Using the pch='.' option in pairs.panels is recommended when plotting many cases. The data points were ``jittered'' by setting jiggle=TRUE. Jiggling this way shows the density more clearly. To save space, the figure was done as a png. For a clearer figure, save as a pdf.} \label{fig:scores} \end{center} \end{figure} \subsubsection{Forming scales from a correlation matrix} There are some situations when the raw data are not available, but the correlation matrix between the items is available. In this case, it is not possible to find individual scores, but it is possible to find the reliability and intercorrelations of the scales. This may be done using the \pfun{cluster.cor} function or the \pfun{scoreItems} function. The use of a keys matrix is the same as in the raw data case. Consider the same \pfun{bfi} data set, but first find the correlations, and then use \pfun{scoreItems}. \begin{scriptsize} <>= r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) @ \end{scriptsize} To find the correlations of the items with each of the scales (the ``structure" matrix) or the correlations of the items controlling for the other scales (the ``pattern" matrix), use the \pfun{cluster.loadings} function. To do both at once (e.g., the correlations of the scales as well as the item by scale correlations), it is also possible to just use \pfun{scoreItems}. \subsection{Scoring Multiple Choice Items} Some items (typically associated with ability tests) are not themselves mini-scales ranging from low to high levels of expression of the item of interest, but are rather multiple choice where one response is the correct response. Two analyses are useful for this kind of item: examining the response patterns to all the alternatives (looking for good or bad distractors) and scoring the items as correct or incorrect. Both of these operations may be done using the \pfun{score.multiple.choice} function. Consider the 16 example items taken from an online ability test at the Personality Project: \url{https://www.sapa-project.org/}. This is part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) study discussed in \cite{rcw:methods,rwr:sapa}. \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results @ \end{scriptsize} Once the items have been scored as true or false (assigned scores of 1 or 0), they made then be scored into multiple scales using the normal \pfun{scoreItems} function. \subsection{Item analysis} Basic item analysis starts with describing the data (\pfun{describe}, finding the number of dimensions using factor analysis (\pfun{fa}) and cluster analysis \pfun{iclust} perhaps using the Very Simple Structure criterion (\pfun{vss}), or perhaps parallel analysis \pfun{fa.parallel}. Item whole correlations may then be found for scales scored on one dimension (\pfun{alpha} or many scales simultaneously (\pfun{scoreItems}). Scales can be modified by changing the keys matrix (i.e., dropping particular items, changing the scale on which an item is to be scored). This analysis can be done on the normal Pearson correlation matrix or by using polychoric correlations. Validities of the scales can be found using multiple correlation of the raw data or based upon correlation matrices using the \pfun{lmCor} function. However, more powerful item analysis tools are now available by using Item Response Theory approaches. Although the \pfun{response.frequencies} output from \pfun{score.multiple.choice} is useful to examine in terms of the probability of various alternatives being endorsed, it is even better to examine the pattern of these responses as a function of the underlying latent trait or just the total score. This may be done by using \pfun{irt.responses} (Figure~\ref{fig:irt.response}). \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) @ \end{scriptsize} \caption{ The pattern of responses to multiple choice ability items can show that some items have poor distractors. This may be done by using the the \pfun{irt.responses} function. A good distractor is one that is negatively related to ability.} \label{fig:irt.response} \end{center} \end{figure} \subsubsection{Exploring the item structure of scales} The Big Five scales found above can be understood in terms of the item - whole correlations, but it is also useful to think of the endorsement frequency of the items. The \pfun{item.lookup} function will sort items by their factor loading/item-whole correlation, and then resort those above a certain threshold in terms of the item means. Item content is shown by using the dictionary developed for those items. This allows one to see the structure of each scale in terms of its endorsement range. This is a simple way of thinking of items that is also possible to do using the various IRT approaches discussed later. \begin{tiny} <>= m <- colMeans(bfi[,1:25],na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) @ \end{tiny} \subsubsection{Empirical scale construction} There are some situations where one wants to identify those items that most relate to a particular criterion. Although this will capitalize on chance and the results should interpreted cautiously, it does give a feel for what is being measured. Consider the following example from the \pfun{bfi} data set. The items that best predicted gender, education, and age may be found using the \pfun{bestScales} function. This also shows the use of a dictionary that has the item content. \begin{scriptsize} <>= data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) @ \end{scriptsize} \section{Item Response Theory analysis} The use of Item Response Theory has become is said to be the ``new psychometrics". The emphasis is upon item properties, particularly those of item difficulty or location and item discrimination. These two parameters are easily found from classic techniques when using factor analyses of correlation matrices formed by \pfun{polychoric} or \pfun{tetrachoric} correlations. The \pfun{irt.fa} function does this and then graphically displays item discrimination and item location as well as item and test information (see Figure~\ref{fig:irt}). \subsection{Factor analysis and Item Response Theory} If the correlations of all of the items reflect one underlying latent variable, then factor analysis of the matrix of tetrachoric correlations should allow for the identification of the regression slopes ($\alpha$) of the items on the latent variable. These regressions are, of course just the factor loadings. Item difficulty, $\delta_j$ and item discrimination, $\alpha_j$ may be found from factor analysis of the tetrachoric correlations where $\lambda_j$ is just the factor loading on the first factor and $\tau_j$ is the normal threshold reported by the \pfun{tetrachoric} function. \begin{equation} \delta_j = \frac{D\tau}{\sqrt{1-\lambda_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\; \alpha_j = \frac{\lambda_j}{\sqrt{1-\lambda_j^2}} \label{eq:irt:diff} \end{equation} where D is a scaling factor used when converting to the parameterization of \iemph{logistic} model and is 1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of the normal model, factor loadings ($\lambda_j$) and item thresholds ($\tau$) are just \begin{equation*} \lambda_j = \frac{\alpha_j}{\sqrt{1+\alpha_j^2}}, \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\;\;\;\tau_j = \frac{\delta_j}{\sqrt{1+\alpha_j^2}}. \end{equation*} Consider 9 dichotomous items representing one factor but differing in their levels of difficulty \begin{scriptsize} <>= set.seed(17) d9 <- sim.irt(9,1000,-2.0,2.0,mod="normal") #dichotomous items test <- irt.fa(d9$items,correct=0) test @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) @ \end{scriptsize} \caption{A graphic analysis of 9 dichotomous (simulated) items. The top panel shows the probability of item endorsement as the value of the latent trait increases. Items differ in their location (difficulty) and discrimination (slope). The middle panel shows the information in each item as a function of latent trait level. An item is most informative when the probability of endorsement is 50\%. The lower panel shows the total test information. These items form a test that is most informative (most accurate) at the middle range of the latent trait.} \label{fig:irt} \end{center} \end{figure} Similar analyses can be done for polytomous items such as those of the bfi extraversion scale: \begin{scriptsize} <>= data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt @ \end{scriptsize} The item information functions show that not all of items are equally good (Figure~\ref{fig:e.irt}): \begin{figure}[htbp] \begin{center} <>= e.info <- plot(e.irt,type="IIC") @ \caption{A graphic analysis of 5 extraversion items from the bfi. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print e.info to see the average information for each item.} \label{fig:e.irt} \end{center} \end{figure} These procedures can be generalized to more than one factor by specifying the number of factors in \pfun{irt.fa}. The plots can be limited to those items with discriminations greater than some value of cut. An invisible object is returned when plotting the output from \pfun{irt.fa} that includes the average information for each item that has loadings greater than cut. \begin{scriptsize} <>= print(e.info,sort=TRUE) @ \end{scriptsize} More extensive IRT packages include the \Rpkg{ltm} and \Rpkg{eRm} and should be used for serious Item Response Theory analysis. \subsection{Speeding up analyses} Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed up the process of analysis, the original correlation matrix is saved as part of the output of both \pfun{irt.fa} and \pfun{omega}. Subsequent analyses may be done by using this correlation matrix. This is done by doing the analysis not on the original data, but rather on the output of the previous analysis. In addition, recent releases of the \Rpkg{psych} take advantage of the \Rpkg{parallels} package and use multi-cores. The default for Macs and Unix machines is to use two cores, but this can be increased using the options command. The biggest step up in improvement is from 1 to 2 cores, but for large problems using polychoric correlations, the more cores available, the better. For example of taking the output from the 16 ability items from the \iemph{SAPA} project when scored for True/False using \pfun{score.multiple.choice} we can first do a simple IRT analysis of one factor (Figure~\ref{fig:iq.irt}) and then use that correlation matrix to do an \pfun{omega} analysis to show the sub-structure of the ability items . We can also show the total test information (merely the sum of the item information. This shows that even with just 16 items, the test is very reliable for most of the range of ability. The \pfun{fa.irt} function saves the correlation matrix and item statistics so that they can be redrawn with other options. \begin{scriptsize} \begin{Schunk} \begin{Sinput} detectCores() #how many are available options("mc.cores") #how many have been set to be used options("mc.cores"=4) #set to use 4 cores \end{Sinput} \end{Schunk} \end{scriptsize} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= iq.irt <- irt.fa(ability) @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The curves represent the amount of information in the item as a function of the latent score for an individual. That is, each item is maximally discriminating at a different part of the latent continuum. Print iq.irt to see the average information for each item. Partly because this is a power test (it is given on the web) and partly because the items have not been carefully chosen, the items are not very discriminating at the high end of the ability dimension. } \label{fig:iq.irt} \end{figure} \begin{figure}[htbp] \begin{tiny} \begin{center} <>= plot(iq.irt,type='test') @ \end{center} \end{tiny} \caption{A graphic analysis of 16 ability items sampled from the \iemph{SAPA} project. The total test information at all levels of difficulty may be shown by specifying the type='test' option in the plot function. } \label{fig:iq.irt.test} \end{figure} \begin{scriptsize} <>= iq.irt @ \end{scriptsize} \begin{figure}[htbp] \begin{center} <>= om <- omega(iq.irt$rho,4) @ \caption{An Omega analysis of 16 ability items sampled from the SAPA project. The items represent a general factor as well as four lower level factors. The analysis is done using the tetrachoric correlations found in the previous \pfun{irt.fa} analysis. The four matrix items have some serious problems, which may be seen later when examine the item response functions.} \label{fig:iq.irt} \end{center} \end{figure} \subsection{IRT based scoring} The primary advantage of IRT analyses is examining the item properties (both difficulty and discrimination). With complete data, the scores based upon simple total scores and based upon IRT are practically identical (this may be seen in the examples for \pfun{scoreIrt}). However, when working with data such as those found in the Synthetic Aperture Personality Assessment (\iemph{SAPA}) project, it is advantageous to use IRT based scoring. \iemph{SAPA} data might have 2-3 items/person sampled from scales with 10-20 items. Simply finding the average of the three (classical test theory) fails to consider that the items might differ in either discrimination or in difficulty. The \pfun{scoreIrt} function applies basic IRT to this problem. Consider 1000 randomly generated subjects with scores on 9 true/false items differing in difficulty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest items for the 1/3 top subjects (this is a crude example of what tailored testing would do). Then score these subjects: \begin{scriptsize} <>= v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") @ \end{scriptsize} These results are seen in Figure~\ref{fig:score.irt.pdf}. \begin{figure}[htbp] \begin{center} \caption{IRT based scoring and total test scores for 1000 simulated subjects. True theta values are reported and then the IRT and total scoring systems. } <>= pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) @ \label{fig:score.irt.pdf} \end{center} \end{figure} \subsubsection{1 versus 2 parameter IRT scoring} In Item Response Theory, items can be assumed to be equally discriminating but to differ in their difficulty (the Rasch model) or to vary in their discriminability. Two functions (\pfun{scoreIrt.1pl} and \pfun{scoreIrt.2pl}) are meant to find multiple IRT based scales using the Rasch model or the 2 parameter model. Both allow for negatively keyed as well as positively keyed items. Consider the \pfun{bfi} data set with scoring keys key.list and items listed as an item.list. (This is the same as the key.list, but with the negative signs removed.) \begin{scriptsize} <>= keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function @ \end{scriptsize} We can compare these three ways of doing the analysis using the \pfun{cor2} function which correlates two separate data frames. All three models produce vey simillar results for the case of almost complete data. It is when we have massively missing completely at random data (MMCAR) that the results show the superiority of the irt scoring. \begin{scriptsize} <>= #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) @ \end{scriptsize} \section{Multilevel modeling} Correlations between individuals who belong to different natural groups (based upon e.g., ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation within each group as well as the correlation of the means of these groups. These two correlations are independent and do not allow inferences from one level (the group) to the other level (the individual). When examining data at two levels (e.g., the individual and by some grouping variable), it is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as well as between group statistics (over all descriptive statistics, and overall between group correlations). Of particular use is the ability to decompose a matrix of correlations at the individual level into correlations within group and correlations between groups. \subsection{Decomposing data into within and between level correlations using \pfun{statsBy}} There are at least two very powerful packages (\Rpkg{nlme} and \Rpkg{multilevel}) which allow for complex analysis of hierarchical (multilevel) data structures. \pfun{statsBy} is a much simpler function to give some of the basic descriptive statistics for two level models. This follows the decomposition of an observed correlation into the pooled correlation within groups (rwg) and the weighted correlation of the means between groups which is discussed by \cite{pedhazur:97} and by \cite{bliese:09} in the multilevel package. \begin{equation} r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg} } \end{equation} where $r_{xy} $ is the normal correlation which may be decomposed into a within group and between group correlations $r_{xy_{wg}}$ and $r_{xy_{bg}} $ and $\eta$ (eta) is the correlation of the data with the within group values, or the group means. \subsection{Generating and displaying multilevel data} \pfun{withinBetween} is an example data set of the mixture of within and between group correlations. The within group correlations between 9 variables are set to be 1, 0, and -1 while those between groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0 between group correlation with the second and a -1 with the third group. See the help file for \pfun{withinBetween} to display these data. \pfun{sim.multilevel} will generate simulated data with a multilevel structure. The \pfun{statsBy.boot} function will randomize the grouping variable ntrials times and find the statsBy output. This can take a long time and will produce a great deal of output. This output can then be summarized for relevant variables using the \pfun{statsBy.boot.summary} function specifying the variable of interest. Consider the case of the relationship between various tests of ability when the data are grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect manipulation (statsBy(affect) ). \ \subsection{Factor analysis by groups} Confirmatory factor analysis comparing the structures in multiple groups can be done in the \Rpkg{lavaan} package. However, for exploratory analyses of the structure within each of multiple groups, the \pfun{faBy} function may be used in combination with the \pfun{statsBy} function. First run pfun{statsBy} with the correlation option set to TRUE, and then run \pfun{faBy} on the resulting output. \begin{scriptsize} \begin{Schunk} \begin{Sinput} sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE) faBy(sb,nfactors=5) #find the 5 factor solution for each education level \end{Sinput} \end{Schunk} \end{scriptsize} \subsection{Multilevel reliability} The \pfun{mlr} and \pfun{multilevelReliablity} functions follow the advice of \cite{shrout:12a} for estimating multievel reliablilty. A detailed discussion of this procedure is given in \cite{rw:paid:17} which is available at \url{https://personality-project.org/revelle/publications/rw.paid.17.final.pdf}. \section{Set Correlation and Multiple Regression from the correlation matrix} An important generalization of multiple regression and multiple correlation is \iemph{set correlation} developed by \cite{cohen:set} and discussed by \cite{cohen:03}. Set correlation is a multivariate generalization of multiple regression and estimates the amount of variance shared between two sets of variables. Set correlation also allows for examining the relationship between two sets when controlling for a third set. This is implemented in the \pfun{lmCor} function. Set correlation is $$R^{2} = 1 - \prod_{i=1}^n(1-\lambda_{i})$$ where $\lambda_{i}$ is the ith eigen value of the eigen value decomposition of the matrix $$R = R_{xx}^{-1}R_{xy}R_{xx}^{-1}R_{xy}^{-1}.$$ Unfortunately, there are several cases where set correlation will give results that are much too high. This will happen if some variables from the first set are highly related to those in the second set, even though most are not. In this case, although the set correlation can be very high, the degree of relationship between the sets is not as high. In this case, an alternative statistic, based upon the average canonical correlation might be more appropriate. \pfun{lmCor} has the additional feature that it will calculate multiple and partial correlations from the correlation or covariance matrix rather than the original data. Consider the correlations of the 6 variables in the \pfun{sat.act} data set. First do the normal multiple regression, and then compare it with the results using \pfun{lmCor}. Two things to notice. \pfun{lmCor} works on the \emph{correlation} or \emph{covariance} or \emph{raw data} matrix, and thus if using the correlation matrix, will report standardized or raw $\hat{\beta}$ weights. Secondly, it is possible to do several multiple regressions simultaneously. If the number of observations is specified, or if the analysis is done on raw data, statistical tests of significance are applied. For this example, the analysis is done on the correlation matrix rather than the raw data. \begin{scriptsize} <>= C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) @ Compare this with the output from \pfun{lmCor}. <>= #compare with lmCor lmCor(gender + education + age ~ ACT + SATV + SATQ, data = C, n.obs=700) @ \end{scriptsize} Note that the \pfun{lmCor} analysis also reports the amount of shared variance between the predictor set and the criterion (dependent) set. This set correlation is symmetric. That is, the $R^{2}$ is the same independent of the direction of the relationship. \section{Simulation functions} It is particularly helpful, when trying to understand psychometric concepts, to be able to generate sample data sets that meet certain specifications. By knowing ``truth" it is possible to see how well various algorithms can capture it. Several of the \pfun{sim} functions create artificial data sets with known structures. A number of functions in the psych package will generate simulated data. These functions include \pfun{sim} for a factor simplex, and \pfun{sim.simplex} for a data simplex, \pfun{sim.circ} for a circumplex structure, \pfun{sim.congeneric} for a one factor factor congeneric model, \pfun{sim.dichot} to simulate dichotomous items, \pfun{sim.hierarchical} to create a hierarchical factor model, \pfun{sim.item} is a more general item simulation, \pfun{sim.minor} to simulate major and minor factors, \pfun{sim.omega} to test various examples of omega, \pfun{sim.parallel} to compare the efficiency of various ways of determining the number of factors, \pfun{sim.rasch} to create simulated rasch data, \pfun{sim.irt} to create general 1 to 4 parameter IRT data by calling \pfun{sim.npl} 1 to 4 parameter logistic IRT or \pfun{sim.npn} 1 to 4 paramater normal IRT, \pfun{sim.structural} a general simulation of structural models, and \pfun{sim.anova} for ANOVA and lm simulations, and \pfun{sim.vss}. Some of these functions are separately documented and are listed here for ease of the help function. See each function for more detailed help. \begin{description} \item [\pfun{sim}] The default version is to generate a four factor simplex structure over three occasions, although more general models are possible. \item [\pfun{sim.simple}] Create major and minor factors. The default is for 12 variables with 3 major factors and 6 minor factors. \item [\pfun{sim.structure}] To combine a measurement and structural model into one data matrix. Useful for understanding structural equation models. \item [\pfun{sim.hierarchical}] To create data with a hierarchical (bifactor) structure. \item [\pfun{sim.congeneric}] To create congeneric items/tests for demonstrating classical test theory. This is just a special case of sim.structure. \item [\pfun{sim.circ}] To create data with a circumplex structure. \item [\pfun{sim.item}]To create items that either have a simple structure or a circumplex structure. \item [\pfun{sim.dichot}] Create dichotomous item data with a simple or circumplex structure. \item[\pfun{sim.rasch}] Simulate a 1 parameter logistic (Rasch) model. \item[\pfun{sim.irt}] Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also do 3 and 4 PL and PN models. \item[\pfun{sim.multilevel}] Simulate data with different within group and between group correlational structures. \end{description} Some of these functions are described in more detail in the companion vignette: \href{"psych_for_sem.pdf"}{psych for sem}. The default values for \pfun{sim.structure} is to generate a 4 factor, 12 variable data set with a simplex structure between the factors. Two data structures that are particular challenges to exploratory factor analysis are the simplex structure and the presence of minor factors. Simplex structures \pfun{sim.simplex} will typically occur in developmental or learning contexts and have a correlation structure of r between adjacent variables and $r^n$ for variables n apart. Although just one latent variable (r) needs to be estimated, the structure will have nvar-1 factors. Many simulations of factor structures assume that except for the major factors, all residuals are normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the major factors. \pfun{sim.minor} generates such structures. The structures generated can be thought of as having a a major factor structure with some small correlated residuals. Although coefficient $\omega_h$ is a very useful indicator of the general factor saturation of a unifactorial test (one with perhaps several sub factors), it has problems with the case of multiple, independent factors. In this situation, one of the factors is labelled as ``general'' and the omega estimate is too large. This situation may be explored using the \pfun{sim.omega} function. The four irt simulations, \pfun{sim.rasch}, \pfun{sim.irt}, \pfun{sim.npl} and \pfun{sim.npn}, simulate dichotomous items following the Item Response model. \pfun{sim.irt} just calls either \pfun{sim.npl} (for logistic models) or \pfun{sim.npn} (for normal models) depending upon the specification of the model. The logistic model is \begin{equation} P(x | \theta_i, \delta_j, \gamma_j, \zeta_j )= \gamma_j + \frac{\zeta_j - \gamma_j}{1+e^{\alpha_j(\delta_j - \theta_i}}. \end{equation} where $\gamma$ is the lower asymptote or guessing parameter, $\zeta$ is the upper asymptote (normally 1), $\alpha_j$ is item discrimination and $\delta_j$ is item difficulty. For the 1 Paramater Logistic (Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify. (Graphics of these may be seen in the demonstrations for the logistic function.) The normal model (\pfun{irt.npn} calculates the probability using \fun{pnorm} instead of the logistic function used in \pfun{irt.npl}, but the meaning of the parameters are otherwise the same. With the a = $\alpha$ parameter = 1.702 in the logiistic model the two models are practically identical. \section{Graphical Displays} Many of the functions in the \Rpkg{psych} package include graphic output and examples have been shown in the previous figures. After running \pfun{fa}, \pfun{iclust}, \pfun{omega}, \pfun{irt.fa}, plotting the resulting object is done by the \pfun{plot.psych} function as well as specific diagram functions. e.g., (but not shown) \begin{scriptsize} \begin{Schunk} \begin{Sinput} f3 <- fa(Thurstone,3) plot(f3) fa.diagram(f3) c <- iclust(Thurstone) plot(c) #a pretty boring plot iclust.diagram(c) #a better diagram c3 <- iclust(Thurstone,3) plot(c3) #a more interesting plot data(bfi) e.irt <- irt.fa(bfi[11:15]) plot(e.irt) ot <- omega(Thurstone) plot(ot) omega.diagram(ot) \end{Sinput} \end{Schunk} \end{scriptsize} The ability to show path diagrams to represent factor analytic and structural models is discussed in somewhat more detail in the accompanying vignette, \href{"psych_for_sem.pdf"}{psych for sem}. Basic routines to draw path diagrams are included in the \pfun{dia.rect} and accompanying functions. These are used by the \pfun{fa.diagram}, \pfun{structure.diagram} and \pfun{iclust.diagram} functions. \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demonstration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim,e.size=.09) ur <- dia.ellipse(7,9,"upper right",xlim=xlim,ylim=ylim,e.size=.1) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim,e.size=.1) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim,e.size=.08) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim,e.size=.08) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.curved.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl$top,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) @ \end{scriptsize} \caption{The basic graphic capabilities of the dia functions are shown in this figure.} \label{fig:dia} \end{center} \end{figure} \section{Converting output to APA style tables using \LaTeX} Although for most purposes, using the \Rpkg{Sweave} or \Rpkg{KnitR} packages produces clean output, some prefer output pre formatted for APA style tables. This can be done using the \Rpkg{xtable} package for almost anything, but there are a few simple functions in \Rpkg{psych} for the most common tables. \pfun{fa2latex} will convert a factor analysis or components analysis output to a \LaTeX table, \pfun{cor2latex} will take a correlation matrix and show the lower (or upper diagonal), \pfun{irt2latex} converts the item statistics from the \pfun{irt.fa} function to more convenient \LaTeX output, and finally, \pfun{df2latex} converts a generic data frame to \LaTeX. An example of converting the output from \pfun{fa} to \LaTeX appears in Table~\ref{falatex}. % fa2latex % f3 % Called in the psych package fa2latex % Called in the psych package f3 \begin{scriptsize} \begin{table}[htpb] \caption{fa2latex} \begin{center} \begin{tabular} {l r r r r r r } \multicolumn{ 6 }{l}{ A factor analysis table from the psych package in R } \cr \hline Variable & MR1 & MR2 & MR3 & h2 & u2 & com \cr \hline Sentences & 0.91 & -0.04 & 0.04 & 0.82 & 0.18 & 1.01 \cr Vocabulary & 0.89 & 0.06 & -0.03 & 0.84 & 0.16 & 1.01 \cr Sent.Completion & 0.83 & 0.04 & 0.00 & 0.73 & 0.27 & 1.00 \cr First.Letters & 0.00 & 0.86 & 0.00 & 0.73 & 0.27 & 1.00 \cr 4.Letter.Words & -0.01 & 0.74 & 0.10 & 0.63 & 0.37 & 1.04 \cr Suffixes & 0.18 & 0.63 & -0.08 & 0.50 & 0.50 & 1.20 \cr Letter.Series & 0.03 & -0.01 & 0.84 & 0.72 & 0.28 & 1.00 \cr Pedigrees & 0.37 & -0.05 & 0.47 & 0.50 & 0.50 & 1.93 \cr Letter.Group & -0.06 & 0.21 & 0.64 & 0.53 & 0.47 & 1.23 \cr \hline \cr SS loadings & 2.64 & 1.86 & 1.5 & \cr\cr \hline \cr MR1 & 1.00 & 0.59 & 0.54 \cr MR2 & 0.59 & 1.00 & 0.52 \cr MR3 & 0.54 & 0.52 & 1.00 \cr \hline \end{tabular} \end{center} \label{falatex} \end{table} \end{scriptsize} \newpage \section{Miscellaneous functions} A number of functions have been developed for some very specific problems that don't fit into any other category. The following is an incomplete list. Look at the \iemph{Index} for \Rpkg{psych} for a list of all of the functions. \begin{description} \item [\pfun{block.random}] Creates a block randomized structure for n independent variables. Useful for teaching block randomization for experimental design. \item [\pfun{df2latex}] is useful for taking tabular output (such as a correlation matrix or that of \pfun{describe} and converting it to a \LaTeX{} table. May be used when Sweave is not convenient. \item [\pfun{cor2latex}] Will format a correlation matrix in APA style in a \LaTeX{} table. See also \pfun{fa2latex} and \pfun{irt2latex}. \item [\pfun{cosinor}] One of several functions for doing \iemph{circular statistics}. This is important when studying mood effects over the day which show a diurnal pattern. See also \pfun{circadian.mean}, \pfun{circadian.cor} and \pfun{circadian.linear.cor} for finding circular means, circular correlations, and correlations of circular with linear data. \item[\pfun{fisherz}] Convert a correlation to the corresponding Fisher z score. \item [\pfun{geometric.mean}] also \pfun{harmonic.mean} find the appropriate mean for working with different kinds of data. \item [\pfun{ICC}] and \pfun{cohen.kappa} are typically used to find the reliability for raters. \item [\pfun{headtail}] combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output. \item [\pfun{topBottom}] Same as headtail. Combines the \fun{head} and \fun{tail} functions to show the first and last lines of a data set or output, but does not add ellipsis between. \item [\pfun{mardia}] calculates univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame \item [\pfun{p.rep}] finds the probability of replication for an F, t, or r and estimate effect size. \item [\pfun{partial.r}] partials a y set of variables out of an x set and finds the resulting partial correlations. (See also \pfun{lmCor}.) \item [\pfun{rangeCorrection}] will correct correlations for restriction of range. \item [\pfun{reverse.code}] will reverse code specified items. Done more conveniently in most \Rpkg{psych} functions, but supplied here as a helper function when using other packages. \item [\pfun{superMatrix}] Takes two or more matrices, e.g., A and B, and combines them into a ``Super matrix'' with A on the top left, B on the lower right, and 0s for the other two quadrants. A useful trick when forming complex keys, or when forming example problems. \end{description} \section{Data sets} A number of data sets for demonstrating psychometric techniques are included in the \Rpkg{psych} package. These include six data sets showing a hierarchical factor structure (five cognitive examples, \pfun{Thurstone}, \pfun{Thurstone.33}, \pfun{Holzinger}, \pfun{Bechtoldt.1}, \pfun{Bechtoldt.2}, and one from health psychology \pfun{Reise}). One of these (\pfun{Thurstone}) is used as an example in the \Rpkg{sem} package as well as \cite{mcdonald:tt}. The original data are from \cite{thurstone:41} and reanalyzed by \cite{bechtoldt:61}. Personality item data representing five personality factors on 25 items (\pfun{bfi}) or 13 personality inventory scores (\pfun{epi.bfi}), and 14 multiple choice iq items (\pfun{iqitems}). The \pfun{vegetables} example has paired comparison preferences for 9 vegetables. This is an example of Thurstonian scaling used by \cite{guilford:54} and \cite{nunnally:67}. Other data sets include \pfun{cubits}, \pfun{peas}, and \pfun{heights} from Galton. \begin{description} \item[Thurstone] Holzinger-Swineford (1937) introduced the bifactor model of a general factor and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items. The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests. \item [bfi] 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 2800 subjects are included here as a demonstration set for scale construction, factor analysis and Item Response Theory analyses. \item [sat.act] Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. Age, gender, and education are also reported. The data from 700 subjects are included here as a demonstration set for correlation and analysis. \item [epi.bfi] A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demonstrations of correlations, regressions, graphic displays. \item[epiR] The EPI was given twice to 474 participants. This is a useful data set for exploring test-retest reliability, \item[sai, msqR] 20 anxiety items and 75 mood items were given at least twice to 3032 participants. These are useful for understanding reliability structures. \item [iq] 14 multiple choice ability items were included as part of the Synthetic Aperture Personality Assessment (\iemph{SAPA}) web based personality assessment project. The data from 1000 subjects are included here as a demonstration set for scoring multiple choice inventories and doing basic item statistics. \item [galton] Two of the earliest examples of the correlation coefficient were Francis Galton's data sets on the relationship between mid parent and child height and the similarity of parent generation peas with child peas. \pfun{galton} is the data set for the Galton height. \pfun{peas} is the data set Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities of the parent and child generation of 700 sweet peas. \item[Dwyer] \cite{dwyer:37} introduced a method for \emph{factor extension} (see \pfun{fa.extension} that finds loadings on factors from an original data set for additional (extended) variables. This data set includes his example. \item [miscellaneous] \pfun{cities} is a matrix of airline distances between 11 US cities and may be used for demonstrating multiple dimensional scaling. \pfun{vegetables} is a classic data set for demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from \cite{guilford:54}. Used by \cite{guilford:54,nunnally:67,nunnally:bernstein:94}, this data set allows for examples of basic scaling techniques. \end{description} \section{Development version and a users guide} The most recent development version is available as a source file at the repository maintained at \href{ href="https://personality-project.org/r"}{\url{https://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To download that version, go to the repository %\href{"https://personality-project.org/r/src/contrib/}{ \url{https://personality-project.org/r/src/contrib/} and wander around. For a Mac and PC this version can be installed directly using the ``other repository" option in the package installer. \begin{Schunk} \begin{Sinput} > install.packages("psych", repos="https://personality-project.org/r", type="source") \end{Sinput} \end{Schunk} Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{https://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version > "2.3.3", package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (\url{https://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{https://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>= sessionInfo() @ \end{tiny} \newpage %\bibliography{/Volumes/WR/Documents/Active/book/all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Bechtoldt}{1961}]{bechtoldt:61} Bechtoldt, H. (1961). \newblock An empirical study of the factor analysis stability hypothesis. \newblock {\em Psychometrika}, 26(4):405--432. \bibitem[\protect\astroncite{Blashfield}{1980}]{blashfield:80} Blashfield, R.~K. (1980). \newblock The growth of cluster analysis: {Tryon, Ward, and Johnson}. \newblock {\em Multivariate Behavioral Research}, 15(4):439 -- 458. \bibitem[\protect\astroncite{Blashfield and Aldenderfer}{1988}]{blashfield:88} Blashfield, R.~K. and Aldenderfer, M.~S. (1988). \newblock The methods and problems of cluster analysis. \newblock In Nesselroade, J.~R. and Cattell, R.~B., editors, {\em Handbook of multivariate experimental psychology (2nd ed.)}, pages 447--473. Plenum Press, New York, NY. \bibitem[\protect\astroncite{Bliese}{2009}]{bliese:09} Bliese, P.~D. (2009). \newblock {\em Multilevel Modeling in R (2.3) A Brief Introduction to {R}, the multilevel package and the nlme package}. \bibitem[\protect\astroncite{Cattell}{1966}]{cattell:scree} Cattell, R.~B. (1966). \newblock The scree test for the number of factors. \newblock {\em Multivariate Behavioral Research}, 1(2):245--276. \bibitem[\protect\astroncite{Cattell}{1978}]{cattell:fa78} Cattell, R.~B. (1978). \newblock {\em The scientific use of factor analysis}. \newblock Plenum Press, New York. \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:set} Cohen, J. (1982). \newblock Set correlation as a general multivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3). \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Dwyer}{1937}]{dwyer:37} Dwyer, P.~S. (1937). \newblock The determination of the factor loadings of a given test from the known factor loadings of other tests. \newblock {\em Psychometrika}, 2(3):173--178. \bibitem[\protect\astroncite{Everitt}{1974}]{everitt:74} Everitt, B. (1974). \newblock {\em Cluster analysis}. \newblock John Wiley \& Sons, Cluster analysis. 122 pp. Oxford, England. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2013). \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Grice}{2001}]{grice:01} Grice, J.~W. (2001). \newblock Computing and evaluating factor scores. \newblock {\em Psychological Methods}, 6(4):430--450. \bibitem[\protect\astroncite{Guilford}{1954}]{guilford:54} Guilford, J.~P. (1954). \newblock {\em Psychometric Methods}. \newblock McGraw-Hill, New York, 2nd edition. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Hartigan}{1975}]{hartigan:75} Hartigan, J.~A. (1975). \newblock {\em Clustering Algorithms}. \newblock John Wiley \& Sons, Inc., New York, NY, USA. \bibitem[\protect\astroncite{Henry et~al.}{2005}]{henry:05} Henry, D.~B., Tolan, P.~H., and Gorman-Smith, D. (2005). \newblock Cluster analysis in family psychology research. \newblock {\em Journal of Family Psychology}, 19(1):121--132. \bibitem[\protect\astroncite{Holzinger and Swineford}{1937}]{holzinger:37} Holzinger, K. and Swineford, F. (1937). \newblock The bi-factor method. \newblock {\em Psychometrika}, 2(1):41--54. \bibitem[\protect\astroncite{Horn}{1965}]{horn:65} Horn, J. (1965). \newblock A rationale and test for the number of factors in factor analysis. \newblock {\em Psychometrika}, 30(2):179--185. \bibitem[\protect\astroncite{Horn and Engstrom}{1979}]{horn:79} Horn, J.~L. and Engstrom, R. (1979). \newblock Cattell's scree test in relation to {Bartlett's} chi-square test and other observations on the number of factors problem. \newblock {\em Multivariate Behavioral Research}, 14(3):283--300. \bibitem[\protect\astroncite{Jennrich and Bentler}{2011}]{jennrich:11} Jennrich, R. and Bentler, P. (2011). \newblock Exploratory bi-factor analysis. \newblock {\em Psychometrika}, 76(4):537--549. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Kaiser and Caffrey}{1965}]{kaiser:65} Kaiser, H.~F. and Caffrey, J. (1965). \newblock Alpha factor analysis. \newblock {\em Psychometrika}, 30(1):1--14. \bibitem[\protect\astroncite{Loehlin and Beaujean}{2017}]{loehlin:17} Loehlin, J.~C. and Beaujean, A. (2017). \newblock {\em Latent variable models: an introduction to factor, path, and structural equation analysis}. \newblock Routledge, Mahwah, N.J., 5th edition. \bibitem[\protect\astroncite{Loevinger et~al.}{1953}]{loevinger:53} Loevinger, J., Gleser, G., and DuBois, P. (1953). \newblock Maximizing the discriminating power of a multiple-score test. \newblock {\em Psychometrika}, 18(4):309--317. \bibitem[\protect\astroncite{MacCallum et~al.}{2007}]{maccallum:07} MacCallum, R.~C., Browne, M.~W., and Cai, L. (2007). \newblock Factor analysis models as approximations. \newblock In Cudeck, R. and MacCallum, R.~C., editors, {\em Factor analysis at 100: Historical developments and future directions}, pages 153--175. Lawrence Erlbaum Associates Publishers, Mahwah, NJ. \bibitem[\protect\astroncite{Martinent and Ferrand}{2007}]{martinent:07} Martinent, G. and Ferrand, C. (2007). \newblock A cluster analysis of precompetitive anxiety: Relationship with perfectionism and trait anxiety. \newblock {\em Personality and Individual Differences}, 43(7):1676--1686. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{Mun et~al.}{2008}]{mun:08} Mun, E.~Y., von Eye, A., Bates, M.~E., and Vaschillo, E.~G. (2008). \newblock Finding groups using model-based cluster analysis: Heterogeneous emotional self-regulatory processes and heavy alcohol use risk. \newblock {\em Developmental Psychology}, 44(2):481--495. \bibitem[\protect\astroncite{Nunnally}{1967}]{nunnally:67} Nunnally, J.~C. (1967). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,. \bibitem[\protect\astroncite{Nunnally and Bernstein}{1994}]{nunnally:bernstein:94} Nunnally, J.~C. and Bernstein, I.~H. (1994). \newblock {\em Psychometric theory}. \newblock McGraw-Hill, New York,, 3rd edition. \bibitem[\protect\astroncite{Pedhazur}{1997}]{pedhazur:97} Pedhazur, E. (1997). \newblock {\em Multiple regression in behavioral research: explanation and prediction}. \newblock Harcourt Brace College Publishers. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://cran.r-project.org/web/packages=psych. \newblock R package version 2.3.5. \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Revelle et~al.}{2011}]{rcw:methods} Revelle, W., Condon, D., and Wilt, J. (2011). \newblock Methodological advances in differential psychology. \newblock In Chamorro-Premuzic, T., Furnham, A., and von Stumm, S., editors, {\em Handbook of Individual Differences}, chapter~2, pages 39--73. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Condon}{2018}]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D., editors, {\em Wiley-Blackwell Handbook of Psychometric Testing}. Wiley-Blackwell. \bibitem[\protect\astroncite{Revelle and Rocklin}{1979}]{revelle:vss} Revelle, W. and Rocklin, T. (1979). \newblock {Very Simple Structure} - alternative procedure for estimating the optimal number of interpretable factors. \newblock {\em Multivariate Behavioral Research}, 14(4):403--414. \bibitem[\protect\astroncite{Revelle et~al.}{2010}]{rwr:sapa} Revelle, W., Wilt, J., and Rosenthal, A. (2010). \newblock Individual differences in cognition: New methods for examining the personality-cognition link. \newblock In Gruszka, A., Matthews, G., and Szymura, B., editors, {\em Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control}, chapter~2, pages 27--49. Springer, New York, N.Y. \bibitem[\protect\astroncite{Revelle and Wilt}{2017}]{rw:paid:17} Revelle, W. and Wilt, J.~A. (2017). \newblock Analyzing dynamic data: a tutorial. \newblock {\em Personality and Individual Differences}, (in press). \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Schmid and Leiman}{1957}]{schmid:57} Schmid, J.~J. and Leiman, J.~M. (1957). \newblock The development of hierarchical factor solutions. \newblock {\em Psychometrika}, 22(1):83--90. \bibitem[\protect\astroncite{Shrout and Lane}{2012}]{shrout:12a} Shrout, P. and Lane, S.~P. (2012). \newblock Psychometrics. \newblock In {\em Handbook of research methods for studying daily life}. Guilford Press. \bibitem[\protect\astroncite{Shrout and Fleiss}{1979}]{shrout:79} Shrout, P.~E. and Fleiss, J.~L. (1979). \newblock Intraclass correlations: Uses in assessing rater reliability. \newblock {\em Psychological Bulletin}, 86(2):420--428. \bibitem[\protect\astroncite{Sneath and Sokal}{1973}]{sneath:73} Sneath, P. H.~A. and Sokal, R.~R. (1973). \newblock {\em Numerical taxonomy: the principles and practice of numerical classification}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Sokal and Sneath}{1963}]{sokal:63} Sokal, R.~R. and Sneath, P. H.~A. (1963). \newblock {\em Principles of numerical taxonomy}. \newblock A Series of books in biology. W. H. Freeman, San Francisco. \bibitem[\protect\astroncite{Spearman}{1904}]{spearman:rho} Spearman, C. (1904). \newblock The proof and measurement of association between two things. \newblock {\em The American Journal of Psychology}, 15(1):72--101. \bibitem[\protect\astroncite{Thorburn}{1918}]{thornburn:1918} Thorburn, W.~M. (1918). \newblock The myth of {Occam's} razor. \newblock {\em Mind}, 27:345--353. \bibitem[\protect\astroncite{Thurstone and Thurstone}{1941}]{thurstone:41} Thurstone, L.~L. and Thurstone, T.~G. (1941). \newblock {\em Factorial studies of intelligence}. \newblock The University of Chicago press, Chicago, Ill. \bibitem[\protect\astroncite{Tryon}{1935}]{tryon:35} Tryon, R.~C. (1935). \newblock A theory of psychological components--an alternative to "mathematical factors.". \newblock {\em Psychological Review}, 42(5):425--454. \bibitem[\protect\astroncite{Tryon}{1939}]{tryon:39} Tryon, R.~C. (1939). \newblock {\em Cluster analysis}. \newblock Edwards Brothers, Ann Arbor, Michigan. \bibitem[\protect\astroncite{Velicer}{1976}]{velicer:76} Velicer, W. (1976). \newblock Determining the number of components from the matrix of partial correlations. \newblock {\em Psychometrika}, 41(3):321--327. \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}: Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \printindex \end{document} psychTools/inst/doc/omega.Rnw0000644000176200001440000015450614443423650015743 0ustar liggesusers% \VignetteIndexEntry{How to find Omega} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \usepackage{fancyvrb} %this allows fancy boxes \fvset{fontfamily=courier} \DefineVerbatimEnvironment{Routput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Binput}{Verbatim} {fontseries=b, fontsize=\scriptsize,frame=single, label=\fbox{lavaan model syntax}, framesep=2mm} %\DefineShortVerb{\!} %%% generates error! %change the definition of Sinput from Sweave \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Rinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Link}{Verbatim} {fontseries=b, fontsize=\small, formatcom=\color{darkgreen}, xleftmargin=1.0cm} \DefineVerbatimEnvironment{Toutput}{Verbatim} {fontseries=b,fontsize=\tiny, xleftmargin=0.1cm} \DefineVerbatimEnvironment{rinput}{Verbatim} {fontseries=b, fontsize=\tiny, frame=single, label=\fbox{R code}, framesep=1mm} \newcommand{\citeti}[1]{\begin{tiny}\citep{#1}\end{tiny}} \newcommand{\light}[1]{\textcolor{gray}{#1}} \newcommand{\vect}[1]{\boldsymbol{#1}} \let\vec\vect \makeindex % used for the subject index \title{Using \R{} and the \Rpkg{psych} package to find $\omega$} \author{William Revelle\\Department of Psychology\\Northwestern University} %\affiliation{Northwestern University} %\acknowledgements{Written to accompany the psych package. Comments should be directed to William Revelle \\ \url{revelle@northwestern.edu}} %\date{} % Activate to display a given date or no date \begin{document} \maketitle \tableofcontents \newpage \section{Overview of this and related documents} To do basic and advanced personality and psychological research using \R{} is not as complicated as some think. This is one of a set of ``How To'' to do various things using \R{} \citep{R}, particularly using the \Rpkg{psych} \citep{psych} package. The current list of How To's includes: \begin{enumerate} \item An \href{http://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{http://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{http://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{http://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$ (this document).. \item Using \R{} and the \Rpkg{psych} for \href{http://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{http://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} \end{enumerate} \subsection{$omega_h$ as an estimate of the general factor saturation of a test} Cronbach's coefficient $alpha$ \citep{cronbach:51} is pehaps the most used (and most misused) estimate of the internal consistency of a test. $\alpha$ may be found in the \Rpkg{psych} package using the \pfun{alpha} function. However, two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt}. These may be found in \R{} in one step using one of two functions in the \Rpkg{psych} package: the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} package solution based upon the exploratory solution from \pfun{omega}. This guide explains how to do it for the non or novice \R{} user. These set of instructions are adapted from three different sets of notes that the interested reader might find helpful: A set of slides developed for a \href{http://personality-project.org/r/aps/aps-short.pdf}{ two hour short course} in \R{} given for several years to the Association of Psychological Science as well as a \href{http://personality-project.org/r/}{short guide }to \R{} for psychologists and the \href{http://cran.r-project.org/web/packages/psych/vignettes/overview.pdf}{vignette} for the \Rpkg{psych} package. McDonald has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \cite{zinbarg:pm:05} and \cite{rz:09} compare compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} as well as \cite{rc:reliability,rc:pa:19}. By following these simple guides, you soon will be able to do such things as find $\omega_{h}$ by issuing just three lines of code: \begin{Rinput} library(psych) my.data <- read.file() omega(my.data) \end{Rinput} The resulting output will be both graphical and textual. This guide helps the naive \R{} user to issue those three lines. Be careful, for once you start using \R, you will want to do more. One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. This is done using the \pfun{omega} function in the \Rpkg{psych} package in \R{}. This requires installing and using both \R{} as well as the \Rpkg{psych} package \citep{psych}. \subsubsection{But what about $\alpha$?} Several statistics were developed in the 1930s-1950s as short cut estimates of reliability \citep{rc:pa:19}. The approaches that consider just one test are collectively known as internal consistency procedures but also borrow from the concepts of domain sampling. Some of these techniques, e.g., \cite{cronbach:51,guttman:45,kuder:37} were developed before advances in computational speed made it trivial to find the factor structure of tests, and were based upon test and item variances. These procedures ($\alpha$, $\lambda_3$, KR20) were essentially short cuts for estimating reliability. To just find Guttman's $\lambda_3$ \citep{guttman:45} which is also known as \emph{coefficient} $\alpha$ \citep{cronbach:51}, you can use the \pfun{alpha} function or the \pfun{scoreItems} function. See the tutorial on how to use the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. But, with modern computers, we can find \emph{model based} estimates that consider the factor structure of the items. $\omega_h$ and $\omega_t$ are two such model based estimates and are easy to find in \R{}. ~\ <>= library(psych) #make the psych package active library(psychTools) #make psychTools active om <- omega(Thurstone) #do the analysis om #show it @ <>= png('Thurstone.png') omega.diagram(om) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{Thurstone.png} \caption{$\omega_h$ is a reliability estimate of the general factor of a set of variables. It is based upon the correlation of lower order factors. It may be found in \R{} by using the \pfun{omega} function which is part of the \Rpkg{psych} package. The figure shows a solution for the \pfun{Thurstone} 9 variable data set. Compare this to the solution using the \pfun{omegaDirect} function from \cite{waller:17} (Figure~\ref{fig:direct})} \label{fig:omega.9} \end{center} \end{figure} \newpage To use \R{} obviously requires installing \R{} on your computer. This is very easy to do (see section~\ref{install}) and needs to be done once. (The following sections are elaborated in the \href{https://personality-project.org/r/psych/HowTo/getting_started.pdf}{``getting startedHow To" } . If you need more help in installing \R{} see the longer version.) The power of \R{} is in the supplemental \emph{packages}. There are at least 16,000 packages that have been contributed to the \R{} project. To do any of the analyses discussed in these ``How To's", you will need to install the package \Rpkg{psych} \citep{psych}. To do factor analyses or principal component analyses you will also need the \Rpkg{GPArotation} \citep{GPA} package. With these two packages, you will be be able to find $\omega_{h}$ using Exploratory Factor Analysis. If you want to find to estimate $\omega_h$ using Confirmatory Factor Analysis, you will also need to add the \Rpkg{lavaan} \citep{lavaan} package. To use \Rpkg{psych} to create simulated data sets, you also need the \Rpkg{mnormt} \citep{mnormt} package. For a more complete installation of a number of psychometric packages, you can install and activate a package (\Rpkg{ctv}) that installs a large set of psychometrically relevant packages. As is true for \R{}, you will need to install packages just once. \subsection{Install R for the first time} \begin{enumerate} \item Download from R Cran (\url{http://cran.r-project.org/}) \item Install R (current version is 4.0.2) \item Start \R{}. Note that the \R{} prompt $>$ starts off every line. This is \R{}'s way of indicating that it wants input. In addition, note that almost all commands start and finish with parentheses. \item Add useful packages (just need to do this once) (see section~\ref{installing}) \begin{enumerate} \begin{Rinput} install.packages("psych",dependencies=TRUE) #the minimum requirement or install.packages(c("psych","GPArotation"),dependencies=TRUE) #required for factor analysis \end{Rinput} \item or if you want to do CFA \begin{Rinput} install.packages(c("psych","lavaan"), dependencies=TRUE) \end{Rinput} \item or if you want to install the psychometric task views \begin{Rinput} install.packages("ctv") #this downloads the task view package library(ctv) #this activates the ctv package install.views("Psychometrics") #among others \end{Rinput} \end{enumerate} \item Take a 5 minute break while the packages are loaded. \item Activate the package(s) you want to use (e.g., \Rpkg{psych}) \begin{Rinput} library(psych) #Only need to make psych active once a session \end{Rinput} \Rpkg{psych} will automatically activate the other packages it needs, as long as they are installed. Note that \Rpkg{psych} is updated roughly quarterly, the current version is 2.0.8 Patches and improvements to \Rpkg{psych} (the bleeding edge version) are available from the repository at the personality-project web server and may be installed from there: ~\ \begin{Rinput} install.packages("psych", repos = "https://personality-project.org/r", type="source") \end{Rinput} %\item library(sem) \#will be used for a few examples \item Use \R{} \end{enumerate} \subsubsection{Install R } \label{install} Go to the \href{http://cran.r-project.org}{Comprehensive R Archive Network (CRAN)} at \url{http://cran.r-project.org}: %(Figure~\ref{fig:cran}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/rcran3.png} %\includegraphics[width=20cm]{../../../images/CRAN.png} %\caption{The basic \href{http://cran.r-project.org}{CRAN} window allows you choose your operating system. Comprehensive R Archive Network (CRAN) is found at \href{http://cran.r-project.org}{http://cran.r-project.org}:} %\label{fig:cran} %\end{center} %\end{figure} Choose your operating system and then download and install the appropriate version %For a PC: %(Figure~\ref{fig:pc}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/cranpc1.png} %\includegraphics[width=19cm]{../../../images/CRAN_pc.pdf} % %\caption{On a PC you want to choose the base system} %\label{fig:pc} %\end{center} %\end{figure} Download and install the appropriate version -- Mac, PC or Unix/Linux %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS.15/cran-pc15.png} %\includegraphics[width=19cm]{../../../images/CRAN_pc_16.png} %\caption{Download the Windows version} %\label{default} %\end{center} %\end{figure} %Starting R on a PC. Once you have installed \R{} you probably, and particularly if you have a PC, will want to download and install the \href{https://www.rstudio.com} {R Studio} program. It is a very nice interface for PCs and Macs that combines four windows into one screen. %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio01.png} %\caption{Using R Studio on a PC. } %\label{fig:pcstartup} %\end{center} %\end{figure} % %When using a PC, RStudio is very helpful. (Many like it for Macs as well). % % %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio01.png} %\caption{Using R Studio on a PC. } %\label{fig:pcRstudio} %\end{center} %\end{figure} % %\clearpage % %%For a Mac: download and install the appropriate version -- Mac (Figure~\ref{fig:mac}) %\begin{figure}[htbp] %\begin{center} %%\includegraphics[width=14cm]{../../../tutorials/R_Short_APS/cran-mac.png} %\includegraphics[width=19cm]{../../../images/cran_mac.png} %\caption{For the Mac, you want to choose the latest version which includes the GUI as well as the 32 and 64 bit versions.} %\label{fig:mac} %\end{center} %\end{figure} % %\newpage %Start up R and get ready to play (Mac version). %\begin{scriptsize} %\begin{Schunk} %\begin{Soutput} %R version 3.3.0 (2016-05-03) -- "Supposedly Educational" %Copyright (C) 2016 The R Foundation for Statistical Computing %Platform: x86_64-apple-darwin13.4.0 (64-bit) % %R is free software and comes with ABSOLUTELY NO WARRANTY. %You are welcome to redistribute it under certain conditions. %Type 'license()' or 'licence()' for distribution details. % % Natural language support but running in an English locale % %R is a collaborative project with many contributors. %Type 'contributors()' for more information and %'citation()' on how to cite R or R packages in publications. % %Type 'demo()' for some demos, 'help()' for on-line help, or %'help.start()' for an HTML browser interface to help. %Type 'q()' to quit R. % %[R.app GUI 1.68 (7202) x86_64-apple-darwin13.4.0] % %[Workspace restored from /Users/revelle/.RData] %[History restored from /Users/revelle/.Rapp.history] % %> %\end{Soutput} %\end{Schunk} %\end{scriptsize} \subsubsection{Install relevant packages} \label{installing} Once \R{} is installed on your machine, you still need to install a few relevant ``packages''. Packages are what make \R{} so powerful, for they are special sets of functions that are designed for one particular application. In the case of the \Rpkg{psych} package, this is an application for doing the kind of basic data analysis and psychometric analysis that psychologists and many others find particularly useful. \Rpkg{psych} may be thought of a ``Swiss Army Knife" for psychological statistics. While not the best tool for a particular job, it is a useful tool for many jobs. You may either install the minimum set of packages necessary to do the analysis using an Exploratory Factor Analysis (EFA) approach (recommended) or a few more packages to do both an EFA and a CFA approach. It is also possible to add many psychometrically relevant packages all at once by using the ``task views'' approach. A particularly powerful package is the \Rpkg{lavaan} \citep{lavaan} package for doing structural equation modeling. Another useful one is the \Rpkg{sem} pacakge \citep{sem}. \paragraph{Install the minimum set} This may be done by typing into the console or using menu options (e.g., the Package Installer underneath the Packages and Data menu). \begin{Rinput} install.packages(c("psych", "psychTools"), dependencies = TRUE) \end{Rinput} % %\begin{figure}[htbp] %\begin{center} %\includegraphics[width=14cm]{../../../images/RStudio02.PNG} %\caption{Installing packages using R studio on a PC. Use the install menu option.} %\label{fig:installPC} %\end{center} %\end{figure} \paragraph{Install a few more packages } If you want some more functionality for some of the more advanced statistical procedures (e.g., \pfun{omegaSem}) you will need to install a few more packages (e.g., \Rpkg{lavaan}. \begin{Rinput} install.packages(c("psych","GPArotation","lavaan"),dependencies=TRUE) \end{Rinput} \paragraph{Install a ``task view" to get lots of packages} If you know that there are a number of packages that you want to use, it is possible they are listed as a ``task view". For instance, about 50 packages will be installed at once if you install the ``psychometrics'' task view. You can Install all the psychometric packages from the ``psychometrics'' task view by first installing a package (``ctv") that in turn installs many different task views. To see the list of possible task views, go to \url{https://cran.r-project.org/web/views/}. ~\ \begin{Rinput} install.packages("ctv") } #this downloads the task view package library(ctv) #this activates the ctv package install.views("Psychometrics") #one of the many Taskviews \end{Rinput} Take a 5 minute break because you will be installing about 50 packages. \paragraph{For the more adventurous users} The \Rpkg{psych} pacakge is under (sporadic) development with a new release issued to CRAN roughly every 4-6 months. The experimental, development version (prerelease) is always available at the Personality-Project web site and may be installed for Macs or PCs directly: ~\ \begin{Rinput} install.packages("psych", repos= "https://personality-project.org/r", type ="source") \end{Rinput} This development version will have fixed any bugs reported since the last release and will have various new features that are being tested before release to CRAN. After installation, it is necessary to restart \R{} to make the new version active. \paragraph{Make the \Rpkg{psych} package active.} You are almost ready. But first, to use most of the following examples you need to make the \Rpkg{psych} and \Rpkg{psychTools} packages active. You only need to do this once per session. ~\ \begin{Rinput} library(psych) #to do the analyses described here library(psychTools) #for some useful additions such as read.file \end{Rinput} %(If you want to automate this last step, you can create a special command to be run every time you start \R{}. % %\begin{Rinput} %.First <- function() {library(psych)} %\end{Rinput} %Do this when you first start \R. Then quit with the save option. Then restart \R. You will now automatically have loaded the \Rpkg{psych} package every time you start \R{}.) % % \section{Reading in the data for analysis} \subsection{Find a file and read from it} There are of course many ways to enter data into \R. Reading from a local file using \pfun{read.file} is perhaps the most preferred. This will read in most of the standard file types (.csv, .sav, .txt, etc). \pfun{read.file} combines the \fun{file.choose} and \fun{read.table} functions: ~\ \begin{Rinput} my.data <- read.file() #note the open and closing parentheses \end{Rinput} \pfun{read.file} opens a search window on your system just like any open file command does. \pfun{read.file} assumes that the first row of your table has labels for each column. If this is not true, specify names=FALSE, e.g., ~\ \begin{Rinput} my.data <- read.file(names = FALSE) \end{Rinput} If you want to read a remote file, specify the file name and then \pfun{read.file} ~\ \begin{Rinput} datafilename <- "http://personality-project.org/r/datasets/finkel.sav" new.data <- read.file(datafilename) #the data has labels \end{Rinput} \subsection{Or: copy the data from another program using the copy and paste commands of your operating system} However, many users will enter their data in a text editor or spreadsheet program and then want to copy and paste into \R{}. This may be done by using one of the \pfun{read.clipboard} set of functions . \begin{description} \item [\pfun{read.clipboard}] is the base function for reading data from the clipboard. \item [\pfun{read.clipboard.csv}] for reading text that is comma delimited. \item [\pfun{read.clipboard.tab}] for reading text that is tab delimited (e.g., copied directly from an Excel file). \item [\pfun{read.clipboard.lower}] for reading input of a lower triangular matrix with or without a diagonal. The resulting object is a square matrix. \item [\pfun{read.clipboard.upper}] for reading input of an upper triangular matrix. \item[\pfun{read.clipboard.fwf}] for reading in fixed width fields (some very old data sets) \end{description} For example, given a data set copied to the clipboard from a spreadsheet, just enter the command ~\ \begin{Rinput} my.data <- read.clipboard() \end{Rinput} This will work if every data field has a value and even missing data are given some values (e.g., NA or -999). If the data were entered in a spreadsheet and the missing values were just empty cells, then the data should be read in as a tab delimited or by using the \pfun{read.clipboard.tab} function. ~\ \begin{Rinput} my.data <- read.clipboard(sep="\t") #define the tab option, or my.tab.data <- read.clipboard.tab() #just use the alternative function \end{Rinput} For the case of data in fixed width fields (some old data sets tend to have this format), copy to the clipboard and then specify the width of each field (in the example below, the first variable is 5 columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns). ~\ \begin{Rinput} my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4)) \end{Rinput} \subsection{Or: import from an SPSS or SAS file} To read data from an SPSS, SAS, or Systat file, you can probably just use the \pfun{read.file} function. \pfun{read.file} examines the suffix of the data file and if it is .sav (from SPSS) or .xpt (from SAS) will attempt to read given various default options. However, if that does not work, use the \Rpkg{foreign} package. This should come with Base \R{} but still need to be loaded using the \Rfunction{library} command. \fun{read.spss} reads a file stored by the SPSS save or export commands. \begin{verbatim}read.spss(file, use.value.labels = TRUE, to.data.frame = FALSE, max.value.labels = Inf, trim.factor.names = FALSE, trim_values = TRUE, reencode = NA, use.missings = to.data.frame) \end{verbatim} The \Rfunction{read.spss} function has many parameters that need to be set. In the example, I have used the parameters that I think are most useful. \begin{description} \item [file] Character string: the name of the file or URL to read. \item [use.value.labels] Convert variables with value labels into R factors with those levels? \item [to.data.frame] return a data frame? Defaults to FALSE, probably should be TRUE in most cases. \item [max.value.labels] Only variables with value labels and at most this many unique values will be converted to factors if use.value.labels $= TRUE$. \item [trim.factor.names] Logical: trim trailing spaces from factor levels? \item [trim\_values] logical: should values and value labels have trailing spaces ignored when matching for use.value.labels $= TRUE $? \item [use.missings] logical: should information on user-defined missing values be used to set the corresponding values to NA? \end{description} The following is an example of reading from a remote SPSS file and then describing the data set to make sure that it looks ok (with thanks to Eli Finkel). ~\ \begin{Rinput} datafilename <- "http://personality-project.org/r/datasets/finkel.sav" eli <-read.file(datafilename) describe(eli,skew=FALSE) \end{Rinput} \begin{Routput} var n mean sd median trimmed mad min max range se USER* 1 69 35.00 20.06 35 35.00 25.20 1 69 68 2.42 HAPPY 2 69 5.71 1.04 6 5.82 0.00 2 7 5 0.13 SOULMATE 3 69 5.09 1.80 5 5.32 1.48 1 7 6 0.22 ENJOYDEX 4 68 6.47 1.01 7 6.70 0.00 2 7 5 0.12 UPSET 5 69 0.41 0.49 0 0.39 0.00 0 1 1 0.06 \end{Routput} \section{Some simple descriptive statistics before you start} Although you probably want to jump right in and find $\omega$, you should first make sure that your data are reasonable. Use the \pfun{describe} function to get some basic descriptive statistics. This next example takes advantage of a built in data set. ~\ \begin{Sinput} my.data <- sat.act #built in example -- replace with your data describe(my.data) \end{Sinput} \begin{Soutput} var n mean sd median trimmed mad min max range skew kurtosis se gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 -0.61 -1.62 0.02 education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.07 0.05 age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36 ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 -0.66 0.53 0.18 SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 -0.64 0.33 4.27 SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 -0.59 -0.02 4.41 \end{Soutput} There are, of course, all kinds of things you could do with your data at this point, but read about them in the \href{http://cran.r-project.org/web/packages/psych/vignettes/intro.pdf}{introductory vignette} and \href{http://cran.r-project.org/web/packages/psychTools/vignettes/overview.pdf}{more advanced vignette} for the \Rpkg{psych} package, \section{Using the \pfun{omega} function to find $\omega$} Two alternative estimates of reliability that take into account the hierarchical structure of the inventory are McDonald's $\omega_h$ and $\omega_t$ \citep{mcdonald:tt,rz:09}. These may be found using the \pfun{omega} function for an exploratory analysis (See Figure~\ref{fig:omega.9}) or \pfun{omegaSem} for a confirmatory analysis using the \Rpkg{sem} based upon the exploratory solution from \pfun{omega}. \subsection{Background on the $\omega$ statistics} \cite{mcdonald:tt} has proposed coefficient omega (hierarchical) ($\omega_h$) as an estimate of the general factor saturation of a test. \href{http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf}{\cite{zinbarg:pm:05}} compare McDonald's $\omega_h$ to Cronbach's $\alpha$ and Revelle's $\beta$. They conclude that $\omega_h$ is the best estimate. (See also \cite{zinbarg:apm:06} and \cite{rz:09} ). One way to find $\omega_h$ is to do a factor analysis of the original data set, rotate the factors obliquely, factor that correlation matrix, do a Schmid-Leiman (\pfun{schmid}) transformation to find general factor loadings, and then find $\omega_h$. $\omega_h$ differs slightly as a function of how the factors are estimated. Three options are available, the default will do a minimum residual factor analysis, fm=``pa" does a principal axes factor analysis (\pfun{factor.pa}), and fm=``mle" provides a maximum likelihood solution. For ability items, it is typically the case that all items will have positive loadings on the general factor. However, for non-cognitive items it is frequently the case that some items are to be scored positively, and some negatively. Although probably better to specify which directions the items are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so that they have positive loadings on the general factor. The keys are reported so that scores can be found using the \pfun{score.items} function. Arbitrarily reversing items this way can overestimate the general factor. (See the example with a simulated circumplex). The \pfun{omega} function uses exploratory factor analysis to estimate the $\omega_h$ coefficient. It is important to remember that ``A recommendation that should be heeded, regardless of the method chosen to estimate $\omega_h$, is to always examine the pattern of the estimated general factor loadings prior to estimating $\omega_h$. Such an examination constitutes an informal test of the assumption that there is a latent variable common to all of the scale's indicators that can be conducted even in the context of EFA. If the loadings were salient for only a relatively small subset of the indicators, this would suggest that there is no true general factor underlying the covariance matrix. Just such an informal assumption test would have afforded a great deal of protection against the possibility of misinterpreting the misleading $\omega_h$ estimates occasionally produced in the simulations reported here." \citep[][p 137]{zinbarg:apm:06}. Although $\omega_h$ is uniquely defined only for cases where 3 or more subfactors are extracted, it is sometimes desired to have a two factor solution. By default this is done by forcing the \pfun{schmid} extraction to treat the two subfactors as having equal loadings. There are three possible options for this condition: setting the general factor loadings between the two lower order factors to be ``equal" which will be the $\sqrt{r_{ab}}$ where $r_{ab}$ is the oblique correlation between the factors) or to ``first" or ``second" in which case the general factor is equated with either the first or second group factor. A message is issued suggesting that the model is not really well defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=``first" or option=``second" to the call. Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum of the loadings on the first (and only) factor, square them, and compare them to the overall matrix variance. This is done, with appropriate complaints. In addition to $\omega_h$, another of McDonald's coefficients is $\omega_t$. This is an estimate of the total reliability of a test. McDonald's $\omega_t$, which is similar to Guttman's $\lambda_6$, (see \pfun{guttman}) uses the estimates of uniqueness $u^2$ from factor analysis to find $e_j^2$. This is based on a decomposition of the variance of a test score, $V_x$ into four parts: that due to a general factor, $\vec{g}$, that due to a set of group factors, $\vec{f}$, (factors common to some but not all of the items), specific factors, $\vec{s}$ unique to each item, and $\vec{e}$, random error. (Because specific variance can not be distinguished from random error unless the test is given at least twice, some combine these both into error). Letting $\vec{x} = \vec{cg} + \vec{Af} + \vec {Ds} + \vec{e} $ then the communality of item$_j$, based upon general as well as group factors, $h_j^2 = c_j^2 + \sum{f_{ij}^2}$ and the unique variance for the item $u_j^2 = \sigma_j^2 (1-h_j^2)$ may be used to estimate the test reliability. That is, if $h_j^2$ is the communality of item$_j$, based upon general as well as group factors, then for standardized items, $e_j^2 = 1 - h_j^2$ and $$ \omega_t = \frac{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}{V_x} = 1 - \frac{\sum(1-h_j^2)}{V_x} = 1 - \frac{\sum u^2}{V_x} $$ Because $h_j^2 \geq r_{smc}^2$, $\omega_t \geq \lambda_6$. It is important to distinguish here between the two $\omega$ coefficients of McDonald, 1978 and Equation 6.20a of McDonald, 1999, $\omega_t$ and $\omega_h$. While the former is based upon the sum of squared loadings on all the factors, the latter is based upon the sum of the squared loadings on the general factor. $$\omega_h = \frac{ \vec{1}\vec{cc'}\vec{1}}{V_x}$$ Another estimate reported is the omega for an infinite length test with a structure similar to the observed test. This is found by $$\omega_{\inf} = \frac{ \vec{1}\vec{cc'}\vec{1}}{\vec{1}\vec{cc'}\vec{1} + \vec{1}\vec{AA'}\vec{1}'}$$ It can be shown In the case of simulated variables, that the amount of variance attributable to a general factor ($\omega_h$) is quite large, and the reliability of the set of items is somewhat greater than that estimated by $\alpha$ or $\lambda_6$. \subsection{Yet another alternative: Coefficient $\beta$} $\beta$, an alternative to $\omega_h$, is defined as the worst split half reliability \citep{revelle:iclust}. It can be estimated by using \pfun{iclust} (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimentary review of why the iclust algorithm is useful in scale construction, see \cite{cooksey:06}. For a discussion of how use \pfun{iclust} see the \href{http://cran.r-project.org/web/packages/psychTools/vignettes/factor.pdf}{factor analysis vignette}. \subsection{Using the \pfun{omega} function} This is \R{}. Just call it. For the next example, we find $\omega$ for a data set from Thurstone. To find it for your data, replace Thurstone with my.data. ~\ <>== omega(Thurstone) @ %\begin{Routput} % %Omega %Call: omega(m = Thurstone) %Alpha: 0.89 %G.6: 0.91 %Omega Hierarchical: 0.74 %Omega H asymptotic: 0.79 %Omega Total 0.93 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %Sentences 0.71 0.57 0.82 0.18 0.61 %Vocabulary 0.73 0.55 0.84 0.16 0.63 %Sent.Completion 0.68 0.52 0.73 0.27 0.63 %First.Letters 0.65 0.56 0.73 0.27 0.57 %4.Letter.Words 0.62 0.49 0.63 0.37 0.61 %Suffixes 0.56 0.41 0.50 0.50 0.63 %Letter.Series 0.59 0.61 0.72 0.28 0.48 %Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66 %Letter.Group 0.54 0.46 0.53 0.47 0.56 % %With eigenvalues of: % g F1* F2* F3* %3.58 0.96 0.74 0.71 % %general/max 3.71 max/min = 1.35 %mean percent general = 0.6 with sd = 0.05 and cv of 0.09 % %The degrees of freedom are 12 and the fit is 0.01 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0.01 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 1.48 % %The root mean square of the residuals is 0.1 %The df corrected root mean square of the residuals is 0.16 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.86 0.73 0.72 0.75 %Multiple R square of scores with factors 0.74 0.54 0.52 0.56 %Minimum correlation of factor score estimates 0.49 0.08 0.03 0.11 %> % \end{Routput} \subsection{Find three measures of reliability: $\omega_h$, $\alpha$, and $\omega_t$} In a review of various measures of reliability, \cite{rc:pa:19} suggest that one should routinely report 3 estimates of internal consistency ($\omega_h$, $\alpha$, and $\omega_t$). As an example, they use 10 items to measure anxiety taken from the state anxiety data set (\pfun{sai} in the \Rpkg{psychTools} package. First examine the descriptive statistics and then find and summarize the omega for these data. By inspection of the correlation matrix, it seems as if there are two group factors (tension and calmness) as well as an overall general factor of anxiety. We use a two factor solution to better represent the results (Figure~\ref{fig.anxiety}). ~\ <>= anxiety <- sai[c("anxious", "jittery", "nervous" ,"tense", "upset","at.ease" , "calm" , "confident", "content","relaxed")] describe(anxiety) lowerCor(anxiety) om <- omega(anxiety,2) #specify a two factor solution summary(om) #summarize the output @ <>== png('anxiety.png') omega.diagram(om, main="Omega analysis of two factors of anxiety") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{anxiety} \caption{An \pfun{omega} solution for 10 anxiety items with two group factors. See \cite{rc:pa:19} for more measures of reliability for this data set.} \label{fig.anxiety} \end{center} \end{figure} \subsection{Estimating $\omega_h$ using a direct Schmid-Leiman transformation} The \pfun{omegaDirect} function uses Niels Waller's algorithm for finding a g factor directly without extracting a higher order model \citep{waller:17}. This has the advantage that it will work cleanly for data with just 2 group factors. Unfortunately, it will produce non-zero estimates for omega even if there is no general factor. ~\ <>= om <- omegaDirect(Thurstone) om @ <>== png('direct.png') omega.diagram(om, main="Direct Schmid Leihman solution") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{direct} \caption{The Direct Schmid Leiman solution is taken from an algorithm by \cite{waller:17}. Compare this solution to Figure~\ref{fig:omega.9}. } \label{fig:direct} \end{center} \end{figure} \subsection{Estimating $\omega_h$ using Confirmatory Factor Analysis} The \pfun{omegaSem} function will do an exploratory analysis and then take the highest loading items on each factor and do a confirmatory factor analysis using the \Rpkg{lavaan} package. These results can produce slightly different estimates of $\omega_h$, primarily because cross loadings are modeled as part of the general factor. We use a classic data set from Holzinger and Swineford, some of the tests of which are included in the \Rpkg{lavaan} package. This analysis allows us to examine the hierarchical structure of these ability tests. The data are taken from the \pfun{holzinger.swineford} data set in the \Rpkg{psychTools} package. ~\ <>= om <- omega(holzinger.swineford[8:31],4) #the exploratory solution omegaSem(holzinger.swineford[8:31],4) #the confirmatory solution @ %\begin{Routput} %Call: omegaSem(m = r9, n.obs = 500) %Omega %Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, % digits = digits, title = title, sl = sl, labels = labels, % plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option) %Alpha: 0.75 %G.6: 0.74 %Omega Hierarchical: 0.66 %Omega H asymptotic: 0.84 %Omega Total 0.78 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %V1 0.70 0.53 0.47 0.93 %V2 0.70 0.52 0.48 0.94 %V3 0.54 0.32 0.68 0.91 %V4 0.53 0.46 0.50 0.50 0.57 %V5 0.44 0.44 0.39 0.61 0.50 %V6 0.40 0.32 0.26 0.74 0.59 %V7 0.31 0.31 0.21 0.79 0.48 %V8 0.34 0.44 0.30 0.70 0.37 %V9 0.24 0.36 0.19 0.81 0.32 % %With eigenvalues of: % g F1* F2* F3* %2.18 0.52 0.08 0.44 % %general/max 4.21 max/min = 6.17 %mean percent general = 0.62 with sd = 0.24 and cv of 0.39 % %The degrees of freedom are 12 and the fit is 0.03 %The number of observations was 500 with Chi Square = 14.23 with prob < 0.29 %The root mean square of the residuals is 0.01 %The df corrected root mean square of the residuals is 0.03 %RMSEA index = 0.02 and the 90 % confidence intervals are NA 0.052 %BIC = -60.35 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 0.21 %The number of observations was 500 with Chi Square = 103.64 with prob < 6.4e-11 %The root mean square of the residuals is 0.05 %The df corrected root mean square of the residuals is 0.08 % %RMSEA index = 0.076 and the 90 % confidence intervals are 0.06 0.091 %BIC = -64.15 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.86 0.63 0.25 0.59 %Multiple R square of scores with factors 0.74 0.39 0.06 0.35 %Minimum correlation of factor score estimates 0.48 -0.21 -0.88 -0.30 % % Omega Hierarchical from a confirmatory model using sem = 0.68 % Omega Total from a confirmatory model using sem = 0.78 %With loadings of % g F1* F2* F3* h2 u2 %V1 0.73 0.54 0.46 %V2 0.68 0.29 0.54 0.46 %V3 0.51 0.22 0.31 0.69 %V4 0.54 0.47 0.51 0.49 %V5 0.45 0.42 0.38 0.62 %V6 0.39 0.31 0.25 0.75 %V7 0.34 0.34 0.23 0.77 %V8 0.36 0.39 0.28 0.72 %V9 0.26 0.33 0.18 0.82 % %With eigenvalues of: % g F1* F2* F3* %2.21 0.49 0.14 0.38 %\end{Routput} <>= @ \section{Simulating a hierarchical/higher order structure} There are several simulation functions in the \Rpkg{psych} package for creating structures with a general factor. One, \pfun{sim.hierarchical} creates lower level factors which are all correlated with a general factor. The default simulation has the parameters discussed by \cite{jensen:weng}. Another way to simulate a hierarchical structure is to simulate a bifactor model directly using the \pfun{sim.structure} function. The \cite{jensen:weng} model: <>= jen <- sim.hierarchical() #use the default values om <- omega(jen) om @ \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('jensen.png' ) omega.diagram(om) dev.off() @ \end{scriptsize} \includegraphics{jensen} \caption{An example of a hierarchical model from Jensen.} \label{fig:outlier} \end{center} \end{figure} %\begin{Routput} %jen <- sim.hierarchical() #use the default values %> om <- omega(jen) %> om %Omega %Call: omega(m = jen) %Alpha: 0.76 %G.6: 0.76 %Omega Hierarchical: 0.69 %Omega H asymptotic: 0.86 %Omega Total 0.8 % %Schmid Leiman Factor loadings greater than 0.2 % g F1* F2* F3* h2 u2 p2 %V1 0.72 0.35 0.64 0.36 0.81 %V2 0.63 0.31 0.49 0.51 0.81 %V3 0.54 0.26 0.36 0.64 0.81 %V4 0.56 0.42 0.49 0.51 0.64 %V5 0.48 0.36 0.36 0.64 0.64 %V6 0.40 0.30 0.25 0.75 0.64 %V7 0.42 0.43 0.36 0.64 0.49 %V8 0.35 0.36 0.25 0.75 0.49 %V9 0.28 0.29 0.16 0.84 0.49 % %With eigenvalues of: % g F1* F2* F3* %2.29 0.28 0.40 0.39 % %general/max 5.78 max/min = 1.4 %mean percent general = 0.65 with sd = 0.14 and cv of 0.21 %Explained Common Variance of the general factor = 0.68 % %The degrees of freedom are 12 and the fit is 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 % %Compare this with the adequacy of just a general factor and no group factors %The degrees of freedom for just the general factor are 27 and the fit is 0.18 % %The root mean square of the residuals is 0.06 %The df corrected root mean square of the residuals is 0.07 % %Measures of factor score adequacy % g F1* F2* F3* %Correlation of scores with factors 0.85 0.46 0.57 0.57 %Multiple R square of scores with factors 0.73 0.21 0.32 0.32 %Minimum correlation of factor score estimates 0.46 -0.57 -0.35 -0.35 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.80 0.74 0.63 0.50 %Omega general for total scores and subscales 0.69 0.60 0.40 0.25 %Omega group for total scores and subscales 0.11 0.14 0.23 0.26 %> %\end{Routput} \subsubsection{Simulate a bifactor model} Simulate a bifactor model and then compare two ways of finding the solution (normal omega and directOmega). We compare the solutions using the \pfun{fa.congruence} function. \begin{Rinput} fx <- matrix(c(.7,.6,.5,.7,.6,.5,.8,.7,.6, .6,.6,.6,rep(0,9),c(.6,.5,.6),rep(0,9),.6,.6,.6),ncol=4) simx <-sim.structure(fx) lowerMat(simx$model) om <- omega(simx$model) dsl <- omegaDirect(simx$model) summary(om) summary(dsl) fa.congruence(list(om,dsl,fx)) \end{Rinput} <>== fx <- matrix(c(.7,.6,.5,.7,.6,.5,.8,.7,.6, .6,.6,.6,rep(0,9),c(.6,.5,.6),rep(0,9),.6,.6,.6),ncol=4) simx <-sim.structure(fx) om <- omega(simx$model) dsl <- omegaDirect(simx$model) @ \begin{scriptsize} <>= lowerMat(simx$model) summary(om) summary(dsl) fa.congruence(list(om,dsl,fx)) @ \end{scriptsize} %\begin{Routput} %summary(om) %Omega %Alpha: 0.9 %G.6: 0.93 %Omega Hierarchical: 0.74 %Omega H asymptotic: 0.78 %Omega Total 0.95 % %With eigenvalues of: % g F1* F2* F3* %3.67 1.08 1.08 0.97 %The degrees of freedom for the model is 12 and the fit was 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 %Explained Common Variance of the general factor = 0.54 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.95 0.95 0.89 0.87 %Omega general for total scores and subscales 0.74 0.55 0.45 0.46 %Omega group for total scores and subscales 0.21 0.40 0.44 0.41 %> summary(dsl) %Call: omegaDirect(m = simx$model) %Omega H direct: 0.71 % %With eigenvalues of: % g F1* F2* F3* %3.53 1.22 1.06 0.99 %The degrees of freedom for the model is 12 and the fit was 0 % %The root mean square of the residuals is 0 %The df corrected root mean square of the residuals is 0 % % Total, General and Subset omega for each subset % g F1* F2* F3* %Omega total for total scores and subscales 0.95 0.95 0.89 0.87 %Omega general for total scores and subscales 0.71 0.50 0.45 0.45 %Omega group for total scores and subscales 0.22 0.45 0.43 0.42 %> fa.congruence(list(om,dsl,fx)) % g F1* F2* F3* h2 g F1* F2* F3* %g 1.00 0.64 0.55 0.54 1.00 1.00 0.67 0.56 0.57 1.00 0.54 0.54 0.63 %F1* 0.64 1.00 0.00 0.00 0.65 0.62 1.00 0.02 0.04 0.64 0.00 0.00 1.00 %F2* 0.55 0.00 1.00 0.00 0.55 0.56 0.02 1.00 0.00 0.55 1.00 0.00 0.00 %F3* 0.54 0.00 0.00 1.00 0.52 0.55 0.03 0.00 1.00 0.54 0.00 1.00 0.00 %h2 1.00 0.65 0.55 0.52 1.00 1.00 0.68 0.57 0.55 1.00 0.55 0.52 0.64 %g 1.00 0.62 0.56 0.55 1.00 1.00 0.65 0.58 0.57 1.00 0.56 0.55 0.62 %F1* 0.67 1.00 0.02 0.03 0.68 0.65 1.00 0.04 0.07 0.67 0.02 0.03 1.00 %F2* 0.56 0.02 1.00 0.00 0.57 0.58 0.04 1.00 0.00 0.56 1.00 0.00 0.02 %F3* 0.57 0.04 0.00 1.00 0.55 0.57 0.07 0.00 1.00 0.57 0.00 1.00 0.03 % 1.00 0.64 0.55 0.54 1.00 1.00 0.67 0.56 0.57 1.00 0.54 0.54 0.63 % 0.54 0.00 1.00 0.00 0.55 0.56 0.02 1.00 0.00 0.54 1.00 0.00 0.00 % 0.54 0.00 0.00 1.00 0.52 0.55 0.03 0.00 1.00 0.54 0.00 1.00 0.00 % 0.63 1.00 0.00 0.00 0.64 0.62 1.00 0.02 0.03 0.63 0.00 0.00 1.00 %> %\end{Routput} \section{Summary} In the modern era of computation, there is little justification for continuing with procedures that were developed as \href{https://personality-project.org/revelle/publications/cup.18.final.pdf}{short-cuts 80 years ago} \citep{reh:20}, To find $\omega_h$, $\alpha$, and $\omega_t$ is very easy using the open source statistical system (\R{}) as well as the \pfun{omega} functions in the \Rpkg{psych} package. \section{System Info} When running any \R{} package, it is useful to find out the session information to see if you have the most recent releases. \begin{scriptsize} <>= sessionInfo() @ \end{scriptsize} \newpage \begin{thebibliography}{} \bibitem[\protect\astroncite{Azzalini and Genz}{2016}]{mnormt} Azzalini, A. and Genz, A. (2016). \newblock {\em The {R} package \texttt{mnormt}: The multivariate normal and $t$ distributions (version 1.5-5)}. \bibitem[\protect\astroncite{Bernaards and Jennrich}{2005}]{GPA} Bernaards, C. and Jennrich, R. (2005). \newblock {Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis}. \newblock {\em Educational and Psychological Measurement}, 65(5):676--696. \bibitem[\protect\astroncite{Cooksey and Soutar}{2006}]{cooksey:06} Cooksey, R. and Soutar, G. (2006). \newblock Coefficient beta and hierarchical item clustering - an analytical procedure for establishing and displaying the dimensionality and homogeneity of summated scales. \newblock {\em Organizational Research Methods}, 9:78--98. \bibitem[\protect\astroncite{Cronbach}{1951}]{cronbach:51} Cronbach, L.~J. (1951). \newblock Coefficient alpha and the internal structure of tests. \newblock {\em Psychometrika}, 16:297--334. \bibitem[\protect\astroncite{Fox et~al.}{2013}]{sem} Fox, J., Nie, Z., and Byrnes, J. (2013). \newblock {\em sem: Structural Equation Models}. \newblock R package version 3.1-3. \bibitem[\protect\astroncite{Guttman}{1945}]{guttman:45} Guttman, L. (1945). \newblock A basis for analyzing test-retest reliability. \newblock {\em Psychometrika}, 10(4):255--282. \bibitem[\protect\astroncite{Jensen and Weng}{1994}]{jensen:weng} Jensen, A.~R. and Weng, L.-J. (1994). \newblock What is a good g? \newblock {\em Intelligence}, 18(3):231--258. \bibitem[\protect\astroncite{Kuder and Richardson}{1937}]{kuder:37} Kuder, G. and Richardson, M. (1937). \newblock The theory of the estimation of test reliability. \newblock {\em Psychometrika}, 2(3):151--160. \bibitem[\protect\astroncite{McDonald}{1999}]{mcdonald:tt} McDonald, R.~P. (1999). \newblock {\em Test theory: {A} unified treatment}. \newblock L. Erlbaum Associates, Mahwah, N.J. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{Revelle}{1979}]{revelle:iclust} Revelle, W. (1979). \newblock Hierarchical cluster-analysis and the internal structure of tests. \newblock {\em Multivariate Behavioral Research}, 14(1):57--74. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em psych: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3,6 \bibitem[\protect\astroncite{Revelle and Condon}{2018}]{rc:reliability} Revelle, W. and Condon, D.~M. (2018). \newblock Reliability. \newblock In Irwing, P., Booth, T., and Hughes, D.~J., editors, {\em The {Wiley Handbook of Psychometric Testing:} A Multidisciplinary Reference on Survey, Scale and Test Development}. John Wily \& Sons, London. \bibitem[\protect\astroncite{Revelle and Condon}{2019}]{rc:pa:19} Revelle, W. and Condon, D.~M. (2019). \newblock Reliability from $\alpha$ to $\omega$: A tutorial. \newblock {\em Psychological Assessment} 31 (12) p 1395-1411. \bibitem[\protect\astroncite{Revelle et al.}{2020}]{reh:20} Revelle, W. and Elleman, L.G. and Hall, A. (2020). \newblock Statistical analyses and computer programming in personality. \newblock In Corr, P.J. editor, {\em The {Cambridge University Press Handbook of Personality}}. {Cambridge University Press}. \bibitem[\protect\astroncite{Revelle and Zinbarg}{2009}]{rz:09} Revelle, W. and Zinbarg, R.~E. (2009). \newblock Coefficients alpha, beta, omega and the glb: comments on {Sijtsma}. \newblock {\em Psychometrika}, 74(1):145--154. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Waller}{2017}]{waller:17} Waller, N.~G. (2017). \newblock Direct {Schmid-Leiman} transformations and rank-deficient loadings matrices. \newblock {\em Psychometrika.} \bibitem[\protect\astroncite{Zinbarg et~al.}{2005}]{zinbarg:pm:05} Zinbarg, R.~E., Revelle, W., Yovel, I., and Li, W. (2005). \newblock Cronbach's {$\alpha$}, {Revelle's} {$\beta$}, and {McDonald's} {$\omega_H$}: Their relations with each other and two alternative conceptualizations of reliability. \newblock {\em Psychometrika}, 70(1):123--133. \bibitem[\protect\astroncite{Zinbarg et~al.}{2006}]{zinbarg:apm:06} Zinbarg, R.~E., Yovel, I., Revelle, W., and McDonald, R.~P. (2006). \newblock Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for {$\omega_h$}. \newblock {\em Applied Psychological Measurement}, 30(2):121--144. \end{thebibliography} \end{document} psychTools/inst/doc/mediation.rnw0000644000176200001440000024251714544655263016675 0ustar liggesusers% \VignetteIndexEntry{Overview of the psych package} % \VignettePackage{psych} % \VignetteKeywords{multivariate} % \VignetteKeyword{models} % \VignetteKeyword{Hplot} %\VignetteDepends{psych} %\documentclass[doc]{apa} \documentclass[11pt]{article} %\documentclass[11pt]{amsart} \usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. \geometry{letterpaper} % ... or a4paper or a5paper or ... %\geometry{landscape} % Activate for for rotated page geometry \usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent \usepackage{graphicx} \usepackage{amssymb} \usepackage{epstopdf} \usepackage{mathptmx} \usepackage{helvet} \usepackage{courier} \usepackage{epstopdf} \usepackage{makeidx} % allows index generation \usepackage[authoryear,round]{natbib} \usepackage{gensymb} %\usepackage{longtable} %\usepackage{geometry} \usepackage{amssymb} \usepackage{amsmath} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage[utf8]{inputenc} \usepackage{Sweave} %\usepackage{/Volumes/'Macintosh HD'/Library/Frameworks/R.framework/Versions/2.13/Resources/share/texmf/tex/latex/Sweave} %\usepackage[ae]{Rd} %\usepackage[usenames]{color} %\usepackage{setspace} \bibstyle{apacite} \bibliographystyle{apa} %this one plus author year seems to work? %\usepackage{hyperref} \usepackage[colorlinks=true,citecolor=blue]{hyperref} %this makes reference links hyperlinks in pdf! \DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \usepackage{multicol} % used for the two-column index \usepackage[bottom]{footmisc}% places footnotes at page bottom \let\proglang=\textsf \newcommand{\R}{\proglang{R}} %\newcommand{\pkg}[1]{{\normalfont\fontseries{b}\selectfont #1}} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\fun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}}} \newcommand{\pfun}[1]{{\texttt{#1}\index{#1}\index{R function!#1}\index{R function!psych package!#1}}}\newcommand{\Rc}[1]{{\texttt{#1}}} %R command same as Robject \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpkg}[1]{{\textit{#1}\index{#1}\index{R package!#1}}} %different from pkg - which is better? \newcommand{\iemph}[1]{{\emph{#1}\index{#1}}} \newcommand{\wrc}[1]{\marginpar{\textcolor{blue}{#1}}} %bill's comments \newcommand{\wra}[1]{\textcolor{blue}{#1}} %bill's comments \newcommand{\ve}[1]{{\textbf{#1}}} %trying to get a vector command \usepackage{fancyvrb} %this allows fancy boxes \newcommand{\vect}[1]{\boldsymbol{#1}} \let\vec\vect \fvset{fontfamily=courier} \DefineVerbatimEnvironment{Routput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Soutput}{Verbatim} %{fontsize=\scriptsize, xleftmargin=0.6cm} {fontseries=b,fontsize=\scriptsize, xleftmargin=0.1cm} \DefineVerbatimEnvironment{Binput}{Verbatim} {fontseries=b, fontsize=\scriptsize,frame=single, label=\fbox{lavaan model syntax}, framesep=2mm} %\DefineShortVerb{\!} %%% generates error! \DefineVerbatimEnvironment{Rinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Sinput}{Verbatim} %{fontsize=\scriptsize, frame=single, label=\fbox{R code}, framesep=1mm} {fontseries=b, fontsize=\scriptsize, frame=single, label=\fbox{R code},xleftmargin=0pt, framesep=1mm} \DefineVerbatimEnvironment{Link}{Verbatim} {fontseries=b, fontsize=\small, formatcom=\color{darkgreen}, xleftmargin=1.0cm} \DefineVerbatimEnvironment{Toutput}{Verbatim} {fontseries=b,fontsize=\tiny, xleftmargin=0.1cm} \DefineVerbatimEnvironment{rinput}{Verbatim} {fontseries=b, fontsize=\tiny, frame=single, label=\fbox{R code}, framesep=1mm} \newcommand{\citeti}[1]{\begin{tiny}\citep{#1}\end{tiny}} \newcommand{\light}[1]{\textcolor{gray}{#1}} %\newcommand{\vect}[1]{\boldsymbol{#1}} %\let\vec\vect \makeindex % used for the subject index \title{How to use the psych package for regression and mediation analysis} \author{William Revelle} %the following works only with apaclass \begin{document} \maketitle %\bibliography{all} \tableofcontents \newpage \section{Overview of this and related documents} To do basic and advanced personality and psychological research using \R{} is not as complicated as some think. This is one of a set of ``How To'' to do various things using \R{} \citep{R}, particularly using the \Rpkg{psych} \citep{psych} package. The current list of How To's includes: \begin{enumerate} \item An \href{http://personality-project.org/r/psych/intro.pdf}{introduction} (vignette) of the \Rpkg{psych} package \item An \href{http://personality-project.org/r/psych/overview.pdf}{overview} (vignette) of the \Rpkg{psych} package \item \href{http://personality-project.org/r/psych/HowTo/getting_started.pdf}{Installing} \R{} and some useful packages \item Using \R{} and the \Rpkg{psych} package to find \href{http://personality-project.org/r/psych/HowTo/omega.pdf}{$omega_h$} and $\omega_t$. \item Using \R{} and the \Rpkg{psych} for \href{http://personality-project.org/r/psych/HowTo/factor.pdf}{factor analysis} and principal components analysis. \item Using the \pfun{scoreItems} function to find \href{http://personality-project.org/r/psych/HowTo/scoring.pdf}{scale scores and scale statistics}. \item Using \pfun{mediate} and \pfun{lmCor} to do \href{http://personality-project.org/r/psych/HowTo/mediation.pdf}{mediation, moderation and regression analysis} (this document) \end{enumerate} \subsection{Jump starting the \Rpkg{psych} package--a guide for the impatient} You have installed \Rpkg{psych} and you want to use it without reading much more. What should you do? \begin{enumerate} \item Activate the \Rpkg{psych} and \Rpkg{psychTools} packages. <>== library(psych) library(psychTools) @ \item Input your data. If your file name ends in .sav, .text, .txt, .csv, .xpt, .rds, .Rds, .rda, or .RDATA, then just read it in directly using \pfun{read.file}. Or you can go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into \Rpkg{psych} using the \pfun{read.clipboard.tab} command: \begin{Rinput} myData <- read.file() #this will open a search window on your machine # and read or load the file. #or #first copy your file to your clipboard and then myData <- read.clipboard.tab() #if you have an excel file \end{Rinput} \item Make sure that what you just read is right. Describe it and perhaps look at the first and last few lines. If you want to ``view" the first and last few lines using a spreadsheet like viewer, use \pfun{quickView}. \begin{Rinput} describe(myData) headTail(myData) #or quickView(myData) \end{Rinput} \item Look at the patterns in the data. If you have fewer than about 10 variables, look at the SPLOM (Scatter Plot Matrix) of the data using \pfun{pairs.panels}. \begin{Rinput} pairs.panels(myData) \end{Rinput} \item Find the correlations of all of your data. \begin{itemize} \item Descriptively (just the values) \begin{Rinput} lowerCor(myData) \end{Rinput} \item Graphically \begin{Rinput} corPlot(myData) #show the numbers, #scales the character size by "significance" corPlot(myData,scale=FALSE) #show the numbers, # all characters the same size corPlot(lowerCor(myData), numbers =TRUE) #print the correlations # and show them graphically \end{Rinput} \end{itemize} \end{enumerate} \subsection{For the not impatient} The following pages are meant to lead you through the use of the \pfun{lmCor} and \pfun{mediate} functions. The assumption is that you have already made \Rpkg{psych} active and want some example code. \section{Multiple regression and mediation} Mediation and moderation are merely different uses of the linear model $\hat{\vec{Y}}= \mu + \beta_{y.x} \vec{X } + \vec{\epsilon} $ and are implemented in \Rpkg{psych} with two functions: \pfun{lmCor} and \pfun{mediate}. Given a set of predictor variables, $\vec{X}$ and a set of criteria variables, $\vec{Y}$, multiple regression solves the equation $\hat{\vec{Y}} = \mu + \beta_{y.x} \vec{X } $ by finding $\beta_{y.x} = \vec{C_{xx}}^{-1} C_{yx} $ where $\vec{C_{xx}}$ is the covariances of the $\vec{X}$ variables and $\vec{C_{yx}}$ is the covariances of predictors and the criteria. Although typically done using the raw data, clearly this can also be done by using the covariance or correlation matrices. \pfun{lmCor} was developed to handle the correlation matrix solution but has been generalized to the case of raw data. In the later case, it assumes a Missing Completely at Random (MCAR) structure, and thus uses all the data and finds pair.wise complete correlations. For complete data sets, the results are identical to using \pfun{lm}. By default, \pfun{lmCor} uses standardized variables, but to compare with \pfun{lm}, it can use unstandardized variables. \section{Regression using \pfun{lmCor}} Although typically done from a raw data matrix (using the \fun{lm} function), it is sometimes useful to do the regression from a correlation or covariance matrix. \pfun{lmCor} was developed for this purpose. From a correlation/covariance matrix, it will do normal regression as well as regression on partialled correlation matrices. With the raw data, it will also do moderated regression (centered or non-centered). In particular, for the raw data, it will work with missing data. An interesting option, if using categorical or dichotomous data is first find the appropriate polychoric, tetrachoric, or poly-serial correlations using \pfun{mixedCor} and then use the resulting correlation matrix for analysis. The resulting correlations and multiple correlations will not match those of the \pfun{lm} analysis. \subsection{Comparison with \pfun{lm} on complete data} Use the \pfun{attitude} data set for our first example. \subsubsection{It is important to know your data by describing it first} <>== psych::describe(attitude) @ \subsubsection{Now do the regressions} <>== #do not standardize mod1 <- lmCor(rating ~ complaints + privileges, data=attitude,std=FALSE) mod1 @ Compare this solution with the results of the \pfun{lm} function. <>== summary(lm(rating ~ complaints + privileges, data=attitude)) @ The graphic for the standardized regression is shown in (Figure~\ref{fig:attitude}). <>== png('attitude.png') # standardize by default mod2 <- lmCor(rating ~ complaints + privileges, data=attitude) mod2 diagram(mod2, main="A simple regression model") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{attitude.png} \caption{A simple multiple regression using the attitude data set (standardized solution is shown).} \label{fig:attitude} \end{center} \end{figure} \subsection{From a correlation matrix} Perhaps most usefully, \pfun{lmCor} will find the beta weights between a set of X variables, and a set of Y variables. Consider seven variables in the \pfun{atttitude} data set. We first find the correlation matrix (normally, this could just be supplied by the user). Then we find the regressions from the correlation matrix. Compare this regression to the (standardized) solution shown above. By specifying the number of observations (n.obs), we are able to apply various inferential tests. <>== R <- lowerCor(attitude) lmCor(rating ~ complaints + privileges, data=R, n.obs =30) @ Compare this solution (from the correlation matrix) with the \emph{standardized} solution for the raw data. \pfun{lmCor} does several things: \begin{itemize} \item Finds the regression weights (betas) between the predictor variables and each of the criterion variables. \item If the number of subjects is specified, or if the raw data are used, it also compares each of these betas to its standard error, finds a $t$ statistic, and reports the probability of the $|t| > 0$. \item It reports the Multiple R and $R^2$ based upon these beta weights. In addition, following the tradition of the robust beauty of the improper linear models \citep{dawes:79} it also reports the unit weighted multiple correlations. \item If there are more than 1 Y variables, the canonical correlations between the two sets (X and Y) \citep{hotelling:36} arereported. The canonical loadings are reported in the Xmat and Ymat objects. \item Cohen's set correlation \citep{cohen:82} as well as the unweighted correlation between the two sets of variables are reported. \end{itemize} \subsection{The Hotelling example} <>== #the second Kelley data from Hotelling kelley <- structure(list(speed = c(1, 0.4248, 0.042, 0.0215, 0.0573), power = c(0.4248, 1, 0.1487, 0.2489, 0.2843), words = c(0.042, 0.1487, 1, 0.6693, 0.4662), symbols = c(0.0215, 0.2489, 0.6693, 1, 0.6915), meaningless = c(0.0573, 0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words", "symbols", "meaningless"), class = "data.frame", row.names = c("speed", "power", "words", "symbols", "meaningless")) #first show the correlations lowerMat(kelley) #now find and draw the regression sc <- lmCor(power + speed ~ words + symbols + meaningless,data=kelley) #formula mode sc #show it @ %First show the correlation matrix. %\begin{Routput} % %lowerMat(kelley) % speed power words symbl mnngl %speed 1.00 %power 0.42 1.00 %words 0.04 0.15 1.00 %symbols 0.02 0.25 0.67 1.00 %meaningless 0.06 0.28 0.47 0.69 1.00 %\end{Routput} % %Now, use the \pfun{lmCor} function. % %\begin{Routput} %Call: lmCor(y = power + speed ~ words + symbols + meaningless, data = kelley) % %Multiple Regression from matrix input % % DV = power % slope VIF %words -0.03 1.81 %symbols 0.12 2.72 %meaningless 0.22 1.92 % % Multiple Regression % R R2 Ruw R2uw %power 0.29 0.09 0.26 0.07 % % DV = speed % slope VIF %words 0.05 1.81 %symbols -0.07 2.72 %meaningless 0.08 1.92 % % Multiple Regression % R R2 Ruw R2uw %speed 0.07 0.01 0.05 0 % %Various estimates of between set correlations %Squared Canonical Correlations %[1] 0.0946 0.0035 % % Average squared canonical correlation = 0.05 % Cohen's Set Correlation R2 = 0.1 %Unweighted correlation between the two sets = 0.18 % %\end{Routput} A plot of the regression model is shown as well (Figure~\ref{fig:hotelling}). <>== png('hotelling.png') lmDiagram(sc, main="The Kelley data set") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{hotelling.png} \caption{The relationship between three predictors and two criteria from \pfun{lmCor}. The data are from the Kelley data set reported by \cite{hotelling:36}.} \label{fig:hotelling} \end{center} \end{figure} \subsection{Canonical Correlation using \pfun{lmCor}} A generalization of multiple regression to multiple predictors and multiple criteria is \iemph{canonical correlation} \citep{hotelling:36}. Given a partitioning of a correlation matrix, R, into Rxx, Ryy and Rxy, canonical correlation finds orthogonal components of the correlations between the Rx and Ry sets (the Rxy correlations). Consider the Kelley data set discussed by \cite{hotelling:36} who introduced the canonical correlation. This analysis is shown in help menu for \pfun{lmCor}. Another data set is the ``Belly Dancer" data set discussed by \cite{Tabachnick:01} (Chapter 12). Here I show the data, the correlations, the regressions, and the canonical correlations. \begin{scriptsize} <>= dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics round(model$Xmat,2) #the X canonical loadings round(model$Ymat,2) #the Y canonical loadings cancorDiagram(model, main="Canonical correlations for the 'Belly Dancer' example") #and the associated canonical figure @ \end{scriptsize} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancerlm.png') model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() @ \end{scriptsize} \includegraphics{dancerlm.png} \caption{Multiple regression of the Belly Dancer data set. Compare with the canonical correlation figure \ref{fig:cancor} } \label{fig:lm} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \begin{scriptsize} <>= png('dancer.png') cancorDiagram(model) dev.off() @ \end{scriptsize} \includegraphics{dancer.png} \caption{Canonical Correlation of the Belly Dancer data set. Compare with the linear regression figure \ref{fig:lm} } \label{fig:cancor} \end{center} \end{figure} %\subsection{From the raw data} % % % %If the data are available, \pfun{setCor} will find the regressions between variables in an X set and those in a Y set. The first analysis (Figure~\ref{fig:2pred}) is perhaps the more typical (one criterion, two predictors), while the second example is more complicated, with three predictors of 3 dependent variables (Figure~\ref{fig:3x3}). % % %<>== %mod2 <- setCor(ACT ~ SATV + SATQ, data=sat.act) %mod2 %@ % %<>== %png('mod2.png') %setCor.diagram(mod2, main="Regressions for sat.act data") %dev.off() %@ % %\begin{Rinput} % %# a typical use of setCor %mod2 <- setCor(ACT ~ SATV + SATQ, data=sat.act) %mod2 %\end{Rinput} %\begin{Routput} %Call: setCor(y = ACT ~ SATV + SATQ, data = sat.act) % %Multiple Regression from raw data % % DV = ACT % slope se t p VIF %SATV 0.31 0.04 8.09 2.7e-15 1.72 %SATQ 0.39 0.04 10.08 0.0e+00 1.72 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %ACT 0.63 0.4 0.63 0.4 0.4 0.03 234.26 2 697 0 %\end{Routput} %\begin{figure}[htbp] %\begin{center} %\includegraphics{mod2.png} %\caption{The relationship between two predictors and one criterion from \pfun{setCor}. The data are from the \pfun{sat.act} data set } %\label{fig:2pred} %\end{center} %\end{figure} % But, we can also do multiple predictors \emph{and} multiple criteria in the same call: <>== png('satact.png') mod3 <- lmCor(SATV + SATQ + ACT ~ gender + education + age, data = sat.act) dev.off() @ %<>== %png('satact.png') %setCor.diagram(mod3, main="Three predictors, 3 criteria") %dev.off() @ %\begin{Rinput} %mod3 <- setCor(SATV + SATQ + ACT ~ gender + education + age, data = sat.act) % %\end{Rinput} % %\begin{Routput} %Multiple Regression from raw data % % DV = SATV % slope se t p VIF %gender -0.03 0.04 -0.79 0.430 1.01 %education 0.10 0.05 2.29 0.022 1.45 %age -0.10 0.05 -2.21 0.028 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATV 0.1 0.01 0.05 0 0.01 0.01 2.26 3 696 0.0808 % % DV = SATQ % slope se t p VIF %gender -0.18 0.04 -4.71 3.0e-06 1.01 %education 0.10 0.04 2.25 2.5e-02 1.45 %age -0.09 0.04 -2.08 3.8e-02 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.19 0.04 0.11 0.01 0.03 0.01 8.63 3 696 1.24e-05 % % DV = ACT % slope se t p VIF %gender -0.05 0.04 -1.28 0.2000 1.01 %education 0.14 0.05 3.14 0.0017 1.45 %age 0.03 0.04 0.71 0.4800 1.44 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %ACT 0.16 0.03 0.15 0.02 0.02 0.01 6.49 3 696 0.000248 % %Various estimates of between set correlations %Squared Canonical Correlations %[1] 0.050 0.033 0.008 %Chisq of canonical correlations %[1] 35.8 23.1 5.6 % % Average squared canonical correlation = 0.03 % Cohen's Set Correlation R2 = 0.09 % Shrunken Set Correlation R2 = 0.08 % F and df of Cohen's Set Correlation 7.26 9 1681.86 %Unweighted correlation between the two sets = 0.01 % %\end{Routput} % \begin{figure}[htbp] \begin{center} \includegraphics{satact.png} \caption{The relationship between three predictors and three criteria from \pfun{lmCor}. The data are from the \pfun{sat.act} data set.} \label{fig:3x3} \end{center} \end{figure} \subsection{Graphic displays} When considering the within group relationships for multiple groups, (e.g., gender or grade level) it is useful to draw separate regression lines for each group. Consider the case of the regression of age on paragraph comprehension as a function of class grade (6 or 7) in the \pfun{holzinger.swineford} data set in \Rpkg{psychTools}. <>== lowerCor(holzinger.swineford[c(3,7,12:14)]) @ It would seem as if both age and grade account for 4\% of the variance in paragraph comprehension. But combining these two in a multiple regression increases the variance explained from 8\% (the sum of the two) to 18\%, because age and grade suppress variance unrelated to cognitive performance. Show this finding in two different ways: as a plot of the separate regression lines Figure~\ref{fig:hs} for each grade or as a simple path model Figure~\ref{fig:hsp} . Note that because grade goes from 7 to 8, to index the colors in the plot we subtract 6 from both grades to get a 1, 2 variable. <>== png('hs.png') plot(t07_sentcomp ~ agemo, col=c("red","blue")[holzinger.swineford$grade -6], pch=26-holzinger.swineford$grade,data=holzinger.swineford, ylab="Sentence Comprehension",xlab="Age in Months", main="Sentence Comprehension varies by age and grade") by(holzinger.swineford, holzinger.swineford$grade -6,function(x) abline( lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ,lty=c("dashed","solid")[x$grade-6])) text(190,3.3,"grade = 8") text(190,2,"grade = 7") dev.off() @ To show just the coefficients of this model, do the regressions without the plot, turn off the plot option: <>== by(holzinger.swineford,holzinger.swineford$grade,function(x) lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ) @ \begin{figure}[htbp] \begin{center} \includegraphics{hs.png} \caption{Showing a multiple regression using \pfun{lmCor} with lines for each group. The data are from the \pfun{holzinger:swineford} data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect.} \label{fig:hs} \end{center} \end{figure} <>== png('hsp.png') lmCor(t07_sentcomp ~ agemo + grade,data=holzinger.swineford) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{hsp.png} \caption{The regression of age and grade on paragraph comprehension. The data are from the \pfun{holzinger:swineford} data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect. Here we show the standardized regressions. In the subsequent figure we show the raw (understanderized) slopes. } \label{fig:hsp} \end{center} \end{figure} \subsection{Moderated multiple regression} With the raw data, find interactions (known as moderated multiple regression). This is done by zero centering the data \citep{cohen:03} and then multiplying the two terms of the interaction. As an option, do not zero center the data \citep{hayes:13} which results in different ``main effects" but the same interaction term. To show the equivalence of the interaction terms, we also must not standardize the results. Use the \pfun{globalWarm} data set taken from \citep{hayes:13} <>== mod <-lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm, std=FALSE, zero=FALSE, plot=FALSE) mod mod0 <- lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,std=FALSE, plot=FALSE) mod0 @ <>== png('moderation.png') lmDiagram(mod, main="not zero centered") dev.off() @ <>== png('moderation0.png') diagram(mod0, main="zero centered") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{moderation.png} \caption{Showing a moderated multiple regression using \pfun{lmCor}. The data are from the \pfun{globalWarm} data set.} \label{fig:mod} \end{center} \end{figure} %\begin{Routput} %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = sat.act, std = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.47 0.03 14.47 0.0e+00 1.46 %gender -35.08 6.40 -5.48 6.0e-08 1.00 %ACT 7.72 0.77 10.05 0.0e+00 1.47 %SATV*gender -0.03 0.06 -0.47 6.4e-01 1.01 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.72 0.51 70.33 4946.43 0.51 0.03 183.23 4 695 0 % % %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = sat.act, std = FALSE, % zero = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.52 0.10 5.20 2.7e-07 13.52 %gender -18.71 35.31 -0.53 6.0e-01 30.44 %ACT 7.72 0.77 10.05 0.0e+00 1.47 %SATV*gender -0.03 0.06 -0.47 6.4e-01 41.50 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.72 0.51 40.02 1601.68 0.51 0.03 183.23 4 695 0 % %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics[width=7cm]{moderation.png} \includegraphics[width=7cm]{moderation0.png} \caption{The difference between 0 and not 0 centering \pfun{lmCor}. The data are from the \pfun{globalWarm} data set. In both cases, the data are not standarized.} \label{default} \end{center} \end{figure} \subsection{Plotting the interactions} To visualize the effect of zero (mean) centering, it is useful to plot the various elements that go into the linear model. \pfun{lmCor} returns the product terms as well as the original data. Combine the two datasets to make it clearer. Note that the correlations of the centered age, negemot with the uncentered are 1.0, but that the correlations with the product terms depend upon centering versus not. Drop some of the other variables from the figure for clarity (Figure~\ref{fig:splom}). <>== both <- cbind(mod$data[,-1],mod0$data[,-1]) png('splom.png') pairs.panels(both[,-c(4,5,6,8,11:13)]) #show the mean centered data dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{splom.png} \caption{The effect of not mean centering versus mean centering on the product terms. The first four variables were not zero centered, the second four were. } \label{fig:splom} \end{center} \end{figure} \subsection{Comparisons to \fun{lm}} The \pfun{lmCor} function duplicates the functionality of the \fun{lm} function for complete data, although \fun{lm} does not zero center and \pfun{lmCor} will (by default). In addition, \pfun{lmCor} finds correlations based upon pair.wise deletion of missing data, while \fun{lm} does case.wise deletion. We compare the \fun{lm} and \pfun{lmCor} results for complete data by setting the \texttt{ use = "complete"} option. Use the \pfun{sat.act} data set which has some missing values. <>== summary(lm(SATQ ~ SATV*gender + ACT, data=sat.act)) mod <- lmCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE,use="complete") print(mod,digits=5) @ % lm(SATQ ~ SATV*gender + ACT, data=sat.act) %Call: %lm(formula = SATQ ~ SATV * gender + ACT, data = sat.act) % %Coefficients: %(Intercept) SATV gender ACT SATV:gender % 138.52395 0.50280 -22.24995 7.71702 -0.01984 % %> mod <- setCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE,use="complete") % %print(mod,digits=5) %Call: setCor(y = SATQ ~ SATV * gender + ACT, data = (sat.act), use = "complete", % std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = SATQ % slope se t p VIF %SATV 0.50280 0.09936 5.06050 5.3589e-07 13.43994 %gender -22.24995 35.25783 -0.63106 5.2821e-01 30.29663 %ACT 7.71702 0.76977 10.02511 0.0000e+00 1.46678 %SATV*gender -0.01984 0.05652 -0.35105 7.2566e-01 41.25607 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %SATQ 0.71414 0.51 39.93879 1595.107 0.50718 0.02621 180.8401 4 695 0 %\end{Routput} \section{Mediation using the \pfun{mediate} function} Mediation analysis is just linear regression reorganized slightly to show the direct effects of an X variable upon Y, partialling out the effect of a ``mediator" (Figure~\ref{fig:mediation}). Although the statistical ``significance" of the (c) path and the (c') path are both available from standard regression, the mediation effect (ab) is best found by boot strapping the regression model and displaying the empirical confidence intervals. \begin{figure}[htbp] \begin{center} \begin{picture}(200,200) \put(10,50){\framebox(20,20){$X_{1}$}} \put(85,123){\framebox(20,20){$M_{1}$}} \put(160,50){\framebox(20,20){$Y_{1}$}} \put(30,70){\vector(1,1){54}} \put(105,123){\vector(1,-1){54}} \put(30,60){\vector(1,0){130}} \put(50,98){a} \put(134,98){b} \put(95,65){c} \put(78,51){c'= c - ab} \end{picture} \caption{The classic mediation model. The Direct Path from X -> Y (c) is said to be mediated by the indirect path (a) to the mediator (X -> M) and (b) from the mediator to Y (M -> Y). The mediation effect is (ab). } \label{fig:mediation} \end{center} \end{figure} A number of papers discuss how to test for the effect of mediation and there are some very popular `macros' for SPSS and SAS to do so \citep{hayes:13,preacher:04,preacher:07,preacher:15}. A useful discussion of mediation and moderation with sample data sets is found in \cite{hayes:13}. More recently, the \Rpkg{processR} package \citep{processR} has been released with these data sets. Although these data used to be be available from \href{"http://www.afhayes.com/public/hayes2018data.zip"}{http://www.afhayes.com/public/hayes2018data.zip} this now longer seems to be case.\footnote{The Hayes data sets (2018) do not correspond exactly with those from the 2013 book. Those data files were at \href{"http://www.afhayes.com/public/hayes2013data.zip"}{http://www.afhayes.com/public/hayes2013data.zip}.}. I use these for comparisons with the results in \cite{hayes:13}. Four of these data sets are now included in the \Rpkg{psych} package with the kind permission of their authors: \pfun{Garcia} is from \cite{garcia:10}, and \pfun{Tal\_Or} is from \cite{talor:10}, The \pfun{Pollack} correlation matrix is taken from an article by \cite{pollack:12}. The \pfun{globalWarm} data set is the \pfun{glbwarm} data set in the \Rpkg{processR} package and added to \Rpkg{psychTools} with the kind permission of the original author, Erik Nisbet. To find the confidence intervals of the effect of mediation (the reduction between the c and c' paths, where c' = c - ab), bootstrap the results by randomly sampling from the data with replacement (e.g n.iter = 5000) times. For these examples, the data files \pfun{Garcia} \citep{garcia:10} and \pfun{Tal\_Or} \citep{talor:10} are included in the \pfun{psych} package. The \pfun{estrss} data set and \pfun{globalWarm} were originally downloaded from the \cite{hayes:13} data sets. The correlation matrix for the \pfun{estress} data set is stored as \pfun{Pollack} in the \pfun{psychTools} package as is the \pfun{Globalwarm} data set. They are also available from the \Rpkg{processR} package \cite{processR}. The syntax is that $ y \sim x + (m) $ where m is the mediating variable. By default the output is to two decimals, as is the graphic output. This can be increased by returning the output to an object and then printing that object with the desired number of decimals. \subsection{Simple mediation} The first example \citep[mod.4.5]{hayes:13} is taken from \citep{talor:10} and examines the mediating effect of ``Presumed Media Influence'' (pmi) on the intention to act (reaction) based upon the importance of a message (import). The data are in the \pfun{Tal\_Or} data set in \Rpkg{psych} (with the kind permission of Nurit Tal-Or, Jonanathan Cohen, Yariv Tasfati, and Albert Gunther). In the \cite{hayes:13} book, this is the \pfun{pmi} data set. <>== data(Tal.Or) psych::describe(Tal_Or) #descriptive statistics mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) mod4.4 #print(mod4.4, digits = 4) # in order to get the precision of the Hayes (2013) p 99 example @ %\begin{Routput} %data(Tal_Or) %describe(Tal_Or) #descriptive statistics % vars n mean sd median trimmed mad min max range skew kurtosis se %cond 1 123 0.47 0.50 0.00 0.46 0.00 0 1 1 0.11 -2.00 0.05 %pmi 2 123 5.60 1.32 6.00 5.78 1.48 1 7 6 -1.17 1.30 0.12 %import 3 123 4.20 1.74 4.00 4.26 1.48 1 7 6 -0.26 -0.89 0.16 %reaction 4 123 3.48 1.55 3.25 3.44 1.85 1 7 6 0.21 -0.90 0.14 %gender 5 123 1.65 0.48 2.00 1.69 0.00 1 2 1 -0.62 -1.62 0.04 %age 6 123 24.63 5.80 24.00 23.76 1.48 18 61 43 4.71 24.76 0.52 % % % mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) %> mod4.4 %Mediation/Moderation Analysis %Call: mediate(y = reaction ~ cond + (pmi), data = Tal_Or) % %The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi . % %Total effect(c) of cond on reaction = 0.5 S.E. = 0.28 t = 1.79 df= 120 with p = 0.077 %Direct effect (c') of cond on reaction removing pmi = 0.25 S.E. = 0.26 % t = 0.99 df= 120 with p = 0.32 %Indirect effect (ab) of cond on reaction through pmi = 0.24 %Mean bootstrapped indirect effect = 0.24 with standard error = 0.13 Lower CI = 0 Upper CI = 0.52 %R = 0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF p-value: 9.83e-07 % % To see the longer output, specify short = FALSE in the print statement or ask for the summary % % Full output % Total effect estimates (c) % reaction se t df Prob %cond 0.5 0.28 1.79 120 0.0766 % %Direct effect estimates (c') % reaction se t df Prob %cond 0.25 0.26 0.99 120 3.22e-01 %pmi 0.51 0.10 5.22 120 7.66e-07 % %R = 0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF p-value: 9.83e-07 % % 'a' effect estimates % pmi se t df Prob %cond 0.48 0.24 2.02 121 0.0454 % % 'b' effect estimates % reaction se t df Prob %pmi 0.51 0.1 5.22 120 7.66e-07 % % 'ab' effect estimates % reaction boot sd lower upper %cond 0.24 0.24 0.13 0 0.52 % %\end{Routput} <>== png('mediate99.png') mediate.diagram(mod4.4) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mediate99.png} \caption{A simple mediation model \citep[p 99] {hayes:13} with data derived from \cite{talor:10}. The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi).} \label{default} \end{center} \end{figure} A second example from \citep{hayes:13} is an example of moderated mediated effect. The data are from \citep{garcia:10} and report on the effect of protest on reactions to a case of sexual discrimination. <>== data(GSBE) #alias to Garcia data set #compare two models (bootstrapping n.iter set to 50 for speed # 1) mean center the variables prior to taking product terms mod1 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") # 2) do not mean center mod2 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50, main="Moderated mediation (not centered") summary(mod1) summary(mod2) @ %A second example of simple mediation from \cite[p 118-121]{hayes:13} is the effect of economic stress. The original data are from a study by \cite{pollack:12} and are available from the \cite{hayes:13} website. Is the effect of economic stress (estress) on subsequent disengagement from entreprenuerial activities (withdraw) mediated through depressed affect (affect)? % %\begin{Rinput} %estress <- read.file() #read the external file %describe(estress) %mod4.5 <- mediate(withdraw ~ estress + (affect), data =estress) %mod4.5 #normal printing is to 2 decimals %# and show the graphic to 2 decimals %#print(mod4.5, digits=4) #print to four decimals to confirm output with Hayes %#mediate.diagram(mod4.5,digits=3) to show the graphic to 3 decimals % %\end{Rinput} % %\begin{Routput} %estress <- read.file() %re-encoding from CP1252 %Data from the SPSS sav file" % /Users/WR/Box Sync/pmc_folder/tutorials/HowTo/mediation/hayes2018data/estress/estress.sav has been loaded. %> describe(estress) % vars n mean sd median trimmed mad min max range skew kurtosis se %tenure 1 262 5.93 6.58 4.00 4.73 5.07 0.00 33 33.00 1.64 2.67 0.41 %estress 2 262 4.62 1.42 4.50 4.66 1.48 1.00 7 6.00 -0.27 -0.49 0.09 %affect 3 262 1.60 0.72 1.33 1.46 0.49 1.00 5 4.00 1.97 4.57 0.04 %withdraw 4 262 2.32 1.25 2.00 2.19 1.48 1.00 7 6.00 0.70 -0.17 0.08 %sex 5 262 0.62 0.49 1.00 0.65 0.00 0.00 1 1.00 -0.48 -1.77 0.03 %age 6 262 43.79 10.36 44.00 43.78 11.86 23.00 71 48.00 -0.01 -0.82 0.64 %ese 7 262 5.61 0.94 5.73 5.67 1.08 2.53 7 4.47 -0.55 -0.13 0.06 % %\end{Routput} %\begin{Toutput} %mod4.5 % %Mediation/Moderation Analysis %Call: mediate(y = withdraw ~ estress + (affect), data = estress) % %The DV (Y) was withdraw . The IV (X) was estress . The mediating variable(s) = affect . % %Total effect(c) of estress on withdraw = 0.06 S.E. = 0.05 t = 1.04 df= 259 with p = 0.3 %Direct effect (c') of estress on withdraw removing affect = -0.08 S.E. = 0.05 t = -1.47 df= 259 with p = 0.14 %Indirect effect (ab) of estress on withdraw through affect = 0.13 %Mean bootstrapped indirect effect = 0.13 with standard error = 0.03 Lower CI = 0.07 Upper CI = 0.2 %R = 0.42 R2 = 0.18 F = 28.49 on 2 and 259 DF p-value: 6.53e-12 %\end{Toutput} %\begin{Routput} % Full output % Total effect estimates (c) % withdraw se t df Prob %estress 0.06 0.05 1.04 259 0.302 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.08 0.05 -1.47 259 1.44e-01 %affect 0.77 0.10 7.46 259 1.29e-12 % %R = 0.42 R2 = 0.18 F = 28.49 on 2 and 259 DF p-value: 6.53e-12 % % 'a' effect estimates % affect se t df Prob %estress 0.17 0.03 5.83 260 1.63e-08 % % 'b' effect estimates % withdraw se t df Prob %affect 0.77 0.1 7.46 259 1.29e-12 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.13 0.13 0.03 0.07 0.2 %\end{Routput} % %\begin{figure}[htbp] %\begin{center} % %\includegraphics{mediate118.pdf} %\caption{A simple mediation model \citep[p 118] {hayes:13}. The data are from \cite{pollack:12} taken from the \cite{hayes:13} website. Is the effect of economic stress (estress) on subsequent disengagement from entreprenuerial activities (withdraw) mediated through depressed affect (affect)?} %\label{default} %\end{center} %\end{figure} \subsection{Multiple mediators} It is trivial to show the effect of multiple mediators. Do this by adding the second (or third) mediator into the equation. Use the \fun{Tal\_Or} data set \citep{talor:10} again. Show the graphical representation in Figure~\ref{fig:2m}. <>== mod5.4 <- mediate(reaction ~ cond + (import) + (pmi), data = Tal_Or) print(mod5.4, digits=4) #to compare with Hayes @ <>== png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() @ %\begin{Toutput} %Call: mediate(y = reaction ~ cond + (import) + (pmi), data = Tal_Or) % %The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = import pmi . Variable(s) partialled out were % %Total Direct effect(c) of cond on reaction = 0.4957 S.E. = 0.2775 t direct = 1.786 with probability = 0.07661 %Direct effect (c') of cond on reaction removing import pmi = 0.1034 S.E. = 0.2391 t direct = 0.4324 with probability = 0.6662 %Indirect effect (ab) of cond on reaction through import pmi = 0.3923 %Mean bootstrapped indirect effect = 0.3964 with standard error = 0.1658 Lower CI = 0.0895 Upper CI = 0.7317 %R2 of model = 0.3251 % To see the longer output, specify short = FALSE in the print statement % % %\end{Toutput} %\begin{Routput} % Full output % % Total effect estimates (c) % reaction se t Prob %cond 0.4957 0.2775 1.786 0.076608 % %Direct effect estimates (c') % reaction se t Prob %cond 0.1034 0.2391 0.4324 6.6622e-01 %import 0.3244 0.0707 4.5857 1.1267e-05 %pmi 0.3965 0.0930 4.2645 4.0383e-05 % % 'a' effect estimates % cond se t Prob %import 0.6268 0.3098 2.0234 0.045235 %pmi 0.4765 0.2357 2.0218 0.045401 % % 'b' effect estimates % reaction se t Prob %import 0.3244 0.0707 4.5857 1.1267e-05 %pmi 0.3965 0.0930 4.2645 4.0383e-05 % % 'ab' effect estimates % reaction boot sd lower upper %cond 0.3923 0.3965 0.1645 0.0896 0.7392 %> \end{Routput} % \begin{figure}[htbp] \begin{center} \includegraphics{mediate131.png} \caption{A mediation model with two mediators \citep[p 131] {hayes:13}. The data are data derived from \cite{talor:10}. The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi) and importance of the message (import).} \label{fig:2m} \end{center} \end{figure} \subsection{Serial mediators} The example from \cite{hayes:13} for two mediators, where one effects the second, is a bit more complicated and currently can be done by combining two separate analyses. The first is just model 5.4, the second is the effect of cond on pmi mediated by import. Combining the two results leads to the output found on \cite[page 153]{hayes:13}. <>== png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() @ <>== #model 5.4 + mod5.7 is the two chained mediator model mod5.7 <- mediate(pmi ~ cond + (import) , data = Tal_Or) summary(mod5.7, digits=4) @ % %\begin{Routput} %Call: mediate(y = pmi ~ cond + (import), data = Tal_Or) % % Total effect estimates (c) % pmi se t df Prob %cond 0.4765 0.2357 2.0218 120 0.045419 % %Direct effect estimates (c') % pmi se t df Prob %cond 0.3536 0.2325 1.5207 120 0.1309600 %import 0.1961 0.0671 2.9228 120 0.0041467 % %R = 0.3114 R2 = 0.097 F = 6.4428 on 2 and 120 DF p-value: 0.0021989 % % 'a' effect estimates % import se t df Prob %cond 0.6268 0.3098 2.0234 121 0.045235 % % 'b' effect estimates % pmi se t df Prob %import 0.1961 0.0671 2.9228 120 0.0041467 % % 'ab' effect estimates % pmi boot sd lower upper %cond 0.1229 0.1226 0.0825 -0.0017 0.3152 %> % %\end{Routput} % \subsection{Single mediators, multiple covariates} The \fun{Pollack} data set \citep{pollack:12} is used as an example of multiple covariates (included in \Rpkg{psychTools} as a correlation matrix). The raw data are available from the \Rpkg{processR} package as \pfun{estress}. Confidence in executive decision making (``Entrepeneurial self-effiicacy), gender (sex), and length of time in business (tenure) are used as covariates. There are two ways of doing this: enter them as predictors of the criterion or to partial them out. The first approach estimates their effects, the second just removes them. <>== lowerMat(Pollack) mod6.2 <- mediate(withdrawal ~ economic.stress + self.efficacy + sex + tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2) @ <>== png('mediate177.png') mediate.diagram(mod6.2, digits=3, main = "Simple mediation, 3 covariates") dev.off() @ The graphical output (Figure~\ref{fig:3cov}) looks a bit more complicated than the figure in \cite[p 177]{hayes:13} because I am showing the covariates as causal paths. %\begin{Toutput} %Call: mediate(y = withdraw ~ estress + ese + sex + tenure + (affect), % data = estress) % %The DV (Y) was withdraw . The IV (X) was estress ese sex tenure . The mediating variable(s) = affect . % %Total effect(c) of estress on withdraw = 0.02 S.E. = 0.05 t = 0.35 df= 256 with p = 0.72 %Direct effect (c') of estress on withdraw removing affect = -0.09 S.E. = 0.05 t = -1.78 df= 256 with p = 0.077 %Indirect effect (ab) of estress on withdraw through affect = 0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = 0.06 Upper CI = 0.17 % %Total effect(c) of ese on withdraw = -0.32 S.E. = 0.08 t = -3.98 df= 256 with p = 9e-05 %Direct effect (c') of ese on NA removing affect = -0.21 S.E. = 0.08 t = -2.78 df= 256 with p = 0.0059 %Indirect effect (ab) of ese on withdraw through affect = -0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.19 Upper CI = -0.03 % %Total effect(c) of sex on withdraw = 0.14 S.E. = 0.16 t = 0.88 df= 256 with p = 0.38 %Direct effect (c') of sex on NA removing affect = 0.13 S.E. = 0.14 t = 0.88 df= 256 with p = 0.38 %Indirect effect (ab) of sex on withdraw through affect = 0.01 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.09 Upper CI = 0.15 % %Total effect(c) of tenure on withdraw = -0.01 S.E. = 0.01 t = -0.85 df= 256 with p = 0.4 %Direct effect (c') of tenure on NA removing affect = 0 S.E. = 0.01 t = -0.19 df= 256 with p = 0.85 %Indirect effect (ab) of tenure on withdraw through affect = -0.01 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = -0.02 Upper CI = 0 %R = 0.45 R2 = 0.21 F = 13.28 on 5 and 256 DF p-value: 1.63e-11 %\end{Toutput} % %\begin{Routput} % Full output % % % Total effect estimates (c) % withdraw se t df Prob %estress 0.02 0.05 0.35 256 7.24e-01 %ese -0.32 0.08 -3.98 256 9.02e-05 %sex 0.14 0.16 0.88 256 3.78e-01 %tenure -0.01 0.01 -0.85 256 3.97e-01 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.09 0.05 -1.78 256 0.07710 %ese -0.21 0.08 -2.78 256 0.00589 %sex 0.13 0.14 0.88 256 0.37800 %tenure 0.00 0.01 -0.19 256 0.84600 % %R = 0.45 R2 = 0.21 F = 13.28 on 5 and 256 DF p-value: 1.63e-11 % % 'a' effect estimates % affect se t df Prob %estress 0.16 0.03 5.36 257 1.84e-07 %ese -0.15 0.04 -3.49 257 5.70e-04 %sex 0.01 0.09 0.17 257 8.63e-01 %tenure -0.01 0.01 -1.72 257 8.61e-02 % % 'b' effect estimates % withdraw se t df Prob %affect 0.71 0.1 6.74 256 1.03e-10 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.11 0.11 0.03 0.06 0.17 %ese -0.11 -0.11 0.04 -0.19 -0.03 %sex 0.01 0.02 0.06 -0.09 0.15 %tenure -0.01 -0.01 0.00 -0.02 0.00 %> %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics{mediate177.png} \caption{A mediation model with three covariates \citep[p 177] {hayes:13}. Compare this to the solution in which they are partialled out. (Figure~\ref{fig:mod6.2a}).} \label{fig:3cov} \end{center} \end{figure} \subsection{Single predictor, single criterion, multiple covariates} An alternative way to display the previous results is to remove the three covariates from the mediation model. Do this by partialling out the covariates. This is represented in the \pfun{mediate} code by a negative sign (Figure~\ref{fig:mod6.2a}) <>== mod6.2a <- mediate(withdrawal ~ economic.stress -self.efficacy - sex - tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2a) @ %\begin{Rinput} %mod6.2a <- mediate(withdraw ~ estress - ese - sex - tenure + (affect), data=estress) %mod6.2a #give the output %\end{Rinput} %\begin{Toutput} % %The DV (Y) was withdraw . The IV (X) was estress . The mediating variable(s) = affect . Variable(s) partialled out were ese sex tenure % %Total effect(c) of estress on withdraw = 0.02 S.E. = 0.05 t = 0.36 df= 256 with p = 0.72 %Direct effect (c') of estress on withdraw removing affect = -0.09 S.E. = 0.05 t = -1.77 df= 256 with p = 0.078 %Indirect effect (ab) of estress on withdraw through affect = 0.11 %Mean bootstrapped indirect effect = 0.11 with standard error = 0.03 Lower CI = 0.06 Upper CI = 0.17 %R = 0.39 R2 = 0.15 F = 22.8 on 2 and 256 DF p-value: 7.71e-10 % %\end{Toutput} %\begin{Routput} % Full output %Total effect estimates (c) % withdraw se t df Prob %estress 0.02 0.05 0.36 256 0.722 % %Direct effect estimates (c') % withdraw se t df Prob %estress -0.09 0.05 -1.77 256 7.78e-02 %affect 0.71 0.11 6.72 256 1.14e-10 % %R = 0.39 R2 = 0.15 F = 22.8 on 2 and 256 DF p-value: 7.71e-10 % % 'a' effect estimates % affect se t df Prob %estress 0.16 0.03 5.39 257 1.58e-07 % % 'b' effect estimates % withdraw se t df Prob %affect 0.71 0.11 6.72 256 1.14e-10 % % 'ab' effect estimates % withdraw boot sd lower upper %estress 0.11 0.11 0.03 0.06 0.17 % % %\end{Routput} % <>== png('mod62partial.png') mediate.diagram(mod6.2a, digits=3, main = "Simple mediation, 3 covariates (partialled out)") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mod62partial.png} \caption{Show the mediation model from Figure~\ref{fig:3cov} with the covariates (ese, sex, tenure) removed.} \label{fig:mod6.2a} \end{center} \end{figure} \subsection{Multiple predictors, single criterion} It is straightforward to use multiple predictors see \cite[p196]{hayes:13} and in fact did so in the previous example where the predictors were treated as \emph{covariates}. \pfun{mediate} also allows for multiple criteria. \section{Mediation and moderation} We already saw how to do moderation in the discussion of \pfun{lmCor}. Combining the concepts of mediation with moderation is done in \pfun{mediate}. That is, find the linear model of product terms as they are associated with dependent variables and regressed on the mediating variables. The \fun{Garcia} data set \citep{garcia:10} can be used for an example of moderation. (This was taken from \citep{hayes:13} but is used with kind permission of Donna M. Garcia, Michael T. Schmitt, Nyla R. Branscombe, and Naomi Ellemers.) Just as \pfun{setCor} and \fun{lm} will find the interaction term by forming a product, so will \pfun{mediate}. Notice that by default, \pfun{lmCor} reports zero centered and standardized regressions, \pfun{mediate} reports zero centered but not standardized regressions, and some of the examples from \cite{hayes:13} do not zero center the data. Thus, I specify zero=FALSE to get the \cite{hayes:13} results. It is important to note that the \fun{protest} data set discussed here is from the 2013 examples and not the more recent 2018 examples available from \href{http://afhayes.com}{afhayes.com}. The 2013 data have a dichotomous protest variable, while the 2018 data set has three levels for the protest variable. The \pfun{Garcia} data set is composed of the 2018 data set with the addition of a dichotomous variable (prot2) to match the 2013 examples. We consider how the interaction of sexism with protest affects the mediation effect of sexism \citep[p 362]{hayes:13}, I contrast the \fun{lm}, \pfun{lmCor} and \pfun{mediate} approaches. For reasons to be discussed in the next section, I do not zero center the variables. The graphic output is in Figure~\ref{fig:modmed} and the output is below. For comparison purposes, I show the results from the \fun{lm} as well as \pfun{lmCor} and \pfun{mediate}. <>== summary(lm(respappr ~ prot2 * sexism,data = Garcia)) #show the lm results for comparison #show the lmCor analysis lmCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE) #then show the mediate results modgarcia <-mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE,main="Moderated mediation") summary(modgarcia) @ <>== png('moderatedmediation.png') mediate.diagram(modgarcia, main= "An example of moderated mediation") dev.off() @ %lm(formula = respappr ~ prot2 * sexism, data = Garcia) % %Residuals: % Min 1Q Median 3Q Max %-3.4984 -0.7540 0.0801 0.8301 3.1853 % %Coefficients: % Estimate Std. Error t value Pr(>|t|) %(Intercept) 6.5667 1.2095 5.429 2.83e-07 *** %prot2 -2.6866 1.4515 -1.851 0.06654 . %sexism -0.5290 0.2359 -2.243 0.02668 * %prot2:sexism 0.8100 0.2819 2.873 0.00478 ** %--- %Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 % %Residual standard error: 1.144 on 125 degrees of freedom %Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793 %F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09 % %setCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE) %Call: setCor(y = respappr ~ prot2 * sexism, data = Garcia, std = FALSE, % main = "Moderation", zero = FALSE) % %Multiple Regression from raw data % % DV = respappr % slope se t p VIF %prot2 -2.69 1.45 -1.85 0.0670 44.99 %sexism -0.53 0.24 -2.24 0.0270 3.34 %prot2*sexism 0.81 0.28 2.87 0.0048 48.14 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %respappr 0.54 0.3 0.65 0.43 0.28 0.06 17.53 3 125 1.46e-09 % %> summary( mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE,main="Moderated mediation")) %Call: mediate(y = respappr ~ prot2 * sexism + (sexism), data = Garcia, % zero = FALSE, main = "Moderated mediation") % % Total effect estimates (c) % respappr se t df Prob %prot2 0.00 0.84 0.00 125 0.9960 %prot2*sexism 0.28 0.16 1.79 125 0.0756 % %Direct effect estimates (c') % respappr se t df Prob %prot2 -2.69 1.45 -1.85 125 0.06650 %prot2*sexism 0.81 0.28 2.87 125 0.00478 % %R = 0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF p-value: 1.46e-09 % % 'a' effect estimates % sexism se t df Prob %prot2 -5.07 0.31 -16.33 126 6.81e-33 %prot2*sexism 1.00 0.06 17.15 126 9.41e-35 % % 'b' effect estimates % respappr se t df Prob %sexism -0.53 0.24 -2.24 125 0.0267 % % 'ab' effect estimates % respappr boot sd lower upper %prot2 2.68 2.65 1.60 -0.69 5.60 %prot2*sexism -0.53 -0.52 0.32 -1.11 0.14 %\end{Routput} \begin{figure}[htbp] \begin{center} \includegraphics{moderatedmediation.png} \caption{Moderated mediation from \citep[p 362]{hayes:13}. The data are from \cite{garcia:10}.} \label{fig:modmed} \end{center} \end{figure} \subsection{To center or not to center, that is the question} We have discussed the difference between zero centering and not zero centering. Although \cite{hayes:13} seems to prefer not centering, some of his examples are in fact centered. So, when we examine Table 8.2 and try to replicate the regression, we need to zero center the data. With the global warming data from \cite{hayes:13}, the default (uncentered) regression does not reproduce his Table, but zero centering does. To this in \fun{lm} requires two steps, but we can do this in \pfun{lmCor} with the zero=TRUE or zero=FALSE option. <>== lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) # but zero center and try again glbwarmc <-data.frame(scale(globalWarm,scale=FALSE)) lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,zero=FALSE,std=FALSE) print(mod.glb,digits=6) mod.glb0 <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb0,digits=6) @ %\begin{Routput} %> lm(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm) %Call: %lm(formula = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm) %Coefficients: %(Intercept) age negemot posemot ideology sex age:negemot % 5.173849 -0.023879 0.119583 -0.021419 -0.211515 -0.011191 0.006331 %> # but zero center and try again %> glbwarmc <-data.frame(scale(glbwarm,scale=FALSE)) %> lm(govact ~ age * negemot + posemot + ideology + sex, data=glbwarmc) % %Call: %lm(formula = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarmc) % %Coefficients: %(Intercept) age negemot posemot ideology sex age:negemot % 0.008979 -0.001354 0.433184 -0.021419 -0.211515 -0.011191 0.006331 % %> mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm,zero=FALSE,std=FALSE) %> print(mod.glb,digits=6) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.023879 0.005980 -3.992944 7.12038e-05 6.949401 %negemot 0.119583 0.082535 1.448881 1.47759e-01 11.594520 %posemot -0.021419 0.027904 -0.767597 4.42951e-01 1.028663 %ideology -0.211515 0.026833 -7.882678 1.02141e-14 1.198910 %sex -0.011191 0.076003 -0.147240 8.82979e-01 1.052907 %age*negemot 0.006331 0.001543 4.103542 4.48155e-05 16.455422 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633093 0.400806 0.571703 0.326844 0.396357 0.026299 90.07983 6 808 0 % %> mod.glb0 <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=glbwarm,std=FALSE) %> print(mod.glb0,digits=6) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.001354 0.002348 -0.576864 5.64192e-01 1.071058 %negemot 0.433184 0.026243 16.506679 0.00000e+00 1.172207 %posemot -0.021419 0.027904 -0.767597 4.42951e-01 1.028663 %ideology -0.211515 0.026833 -7.882678 1.02141e-14 1.198910 %sex -0.011191 0.076003 -0.147240 8.82979e-01 1.052907 %age*negemot 0.006331 0.001543 4.103542 4.48155e-05 1.014744 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633093 0.400806 0.34298 0.117635 0.396357 0.026299 90.07983 6 808 0 % %\end{Routput} % So, when we do the mediated moderation model, we need to use the zero centered option to match the \cite{hayes:13} results from Figure 8.5. <>== #by default, mediate zero centers before finding the products mod.glb <- mediate(govact ~ age * negemot + posemot + ideology + sex + (age), data=globalWarm,zero=TRUE) summary(mod.glb,digits=4) @ Compare this output to that of Table 8.2 and Figure 8.5 (p 258 - 259). %\begin{Routput} %Call: mediate(y = govact ~ age * negemot + posemot + ideology + sex + % (age), data = glbwarm, zero = TRUE) % % Total effect estimates (c) % govact se t df Prob %negemot 0.4328 0.0262 16.5043 808 5.9317e-53 %posemot -0.0220 0.0279 -0.7890 808 4.3036e-01 %ideology -0.2145 0.0263 -8.1510 808 1.3712e-15 %sex -0.0173 0.0752 -0.2304 808 8.1783e-01 %age*negemot 0.0063 0.0015 4.1025 808 4.5004e-05 % %Direct effect estimates (c') % govact se t df Prob %negemot 0.4332 0.0262 16.5067 808 5.7578e-53 %posemot -0.0214 0.0279 -0.7676 808 4.4295e-01 %ideology -0.2115 0.0268 -7.8827 808 1.0360e-14 %sex -0.0112 0.0760 -0.1472 808 8.8298e-01 %age*negemot 0.0063 0.0015 4.1035 808 4.4816e-05 % %R = 0.6331 R2 = 0.4008 F = 90.0798 on 6 and 808 DF p-value: 1.8246e-86 % % 'a' effect estimates % age se t df Prob %negemot 0.2757 0.3929 0.7017 809 4.8305e-01 %posemot 0.4232 0.4176 1.0135 809 3.1112e-01 %ideology 2.2079 0.3943 5.6002 809 2.9334e-08 %sex 4.5345 1.1269 4.0238 809 6.2643e-05 %age*negemot 0.0031 0.0231 0.1346 809 8.9294e-01 % % 'b' effect estimates % govact se t df Prob %age -0.0014 0.0023 -0.5769 808 0.56419 % % 'ab' effect estimates % govact boot sd lower upper %negemot -0.0004 -0.0004 0.0012 -0.0033 0.0016 %posemot -0.0006 -0.0005 0.0014 -0.0038 0.0021 %ideology -0.0030 -0.0029 0.0051 -0.0136 0.0070 %sex -0.0061 -0.0057 0.0106 -0.0273 0.0150 %age*negemot 0.0000 0.0000 0.0001 -0.0002 0.0002 % \end{Routput} % \subsection{Another example of moderated mediation} The \pfun{Garcia} data set (\pfun{protest} in \cite{hayes:13}) is another example of a moderated analysis. Use either \pfun{lmCor} or \pfun{mediate} to examine this data set. The defaults for these two differ, in that \pfun{lmCor} assumes we want to zero center \emph{and} standardize, while \pfun{mediate} defaults to not standardizing but also defaults to zero (mean) centering. Note that in the next examples we specify we do not want to standardize nor to mean center. <>== psych::describe(Garcia) lm(liking ~ prot2* sexism + respappr, data=Garcia) lmCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE) mod7.4 <- mediate(liking ~ prot2 * sexism +respappr, data = Garcia, zero=FALSE) summary(mod7.4) @ %\begin{Routput} % describe(Garcia) % vars n mean sd median trimmed mad min max range skew kurtosis se %protest 1 129 1.03 0.82 1.00 1.04 1.48 0.00 2 2.00 -0.06 -1.52 0.07 %sexism 2 129 5.12 0.78 5.12 5.10 0.74 2.87 7 4.13 0.12 -0.32 0.07 %anger 3 129 2.12 1.66 1.00 1.84 0.00 1.00 7 6.00 1.29 0.26 0.15 %liking 4 129 5.64 1.05 5.83 5.73 0.99 1.00 7 6.00 -1.15 2.48 0.09 %respappr 5 129 4.87 1.35 5.25 4.98 1.11 1.50 7 5.50 -0.75 -0.18 0.12 %prot2 6 129 0.68 0.47 1.00 0.72 0.00 0.00 1 1.00 -0.77 -1.41 0.04 % % % %Call: %lm(formula = liking ~ prot2 * sexism + respappr, data = Garcia) % %Coefficients: % (Intercept) prot2 sexism respappr prot2:sexism % 5.3471 -2.8075 -0.2824 0.3593 0.5426 % %> setCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE) %Call: setCor(y = liking ~ prot2 * sexism + respappr, data = Garcia, % std = FALSE, zero = FALSE) % %Multiple Regression from raw data % % DV = liking % slope se t p VIF %prot2 -2.81 1.16 -2.42 1.7e-02 46.22 %sexism -0.28 0.19 -1.49 1.4e-01 3.47 %respappr 0.36 0.07 5.09 1.3e-06 1.42 %prot2*sexism 0.54 0.23 2.36 2.0e-02 51.32 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %liking 0.53 0.28 0.39 0.15 0.26 0.06 12.26 4 124 1.99e-08 %> mod7.4m <- mediate(liking ~ protest * sexism, data = protest, zero=FALSE) %> mod7.4m %Call: mediate(y = liking ~ prot2 * sexism + respappr, data = Garcia, % zero = FALSE) % %The DV (Y) was liking . The IV (X) was prot2 sexism respappr prot2*sexism . The mediating variable(s) = . % DV = liking % slope se t p %prot2 -2.81 1.16 -2.42 1.7e-02 %sexism -0.28 0.19 -1.49 1.4e-01 %respappr 0.36 0.07 5.09 1.3e-06 %prot2*sexism 0.54 0.23 2.36 2.0e-02 % %With R2 = 0.28 %R = 0.53 R2 = 0.28 F = 12.26 on 4 and 124 DF p-value: 1.99e-08 %\end{Routput} <>== png('mod74.png') mediate.diagram(mod7.4, main= "Another example of moderated mediation") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{mod74.png} \caption{A simple moderated regression analysis of the \fun{protest} data set. The data were not zero centered. This shows the strength of the three regressions. Figure~\ref{fig:garcia} shows the actual data and the three regression lines. } \label{fig:moderation} \end{center} \end{figure} \subsection{Graphic Displays of Interactions} In order to graphically display interactions, particularly if one of the variable is categorical, pllot separate regression lines for each value of the categorical variable. Do this for the \pfun{Garcia} data set to show the interaction of protest with sexism. (see Figure~\ref{fig:garcia}). This is just an example of how to use Core-R to do graphics and is not a feature of \Rpkg{psych}. <>== png('garciainteraction.png') plot(respappr ~ sexism, pch = 23- protest, bg = c("black","red", "blue")[protest], data=Garcia, main = "Response to sexism varies as type of protest") by(Garcia,Garcia$protest, function(x) abline(lm(respappr ~ sexism, data =x),lty=c("solid","dashed","dotted")[x$protest+1])) text(6.5,3.5,"No protest") text(3,3.9,"Individual") text(3,5.2,"Collective") dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics{garciainteraction.png} \caption{Showing the interaction between type of protest and sexism from the \fun{Garcia} data set. The strength of the regression effects is shown in Fig~\ref{fig:moderation}.} \label{fig:garcia} \end{center} \end{figure} \section{Partial Correlations} Although not strickly speaking part of mediation or moderation, the use of \emph{partial correlations} can be addressed here. s\subsection{Partial some variables from the rest of the variables} Given a set of X variables and a set of Y variables, we can control for an additional set of Z variables when we find the correlations between X and Y. This is effectively what happens when we want to add covariates into a model. We see this when we compare the regression model for government action as a function of the iteraction of ideology and age with some covariates, or when we partial them out first. <>== #first, the more complicated model mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb,digits=3) # compare this to the partialled model mod.glb.partialled <- lmCor(govact ~ age * negemot - posemot - ideology - sex,data = globalWarm) @ % %\begin{Routput} % print(mod.glb,digits=3) %Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex, % data = glbwarm, std = FALSE) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.001 0.002 -0.577 5.64e-01 1.071 %negemot 0.433 0.026 16.507 0.00e+00 1.172 %posemot -0.021 0.028 -0.768 4.43e-01 1.029 %ideology -0.212 0.027 -7.883 1.02e-14 1.199 %sex -0.011 0.076 -0.147 8.83e-01 1.053 %age*negemot 0.006 0.002 4.104 4.48e-05 1.015 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.633 0.401 0.343 0.118 0.396 0.026 90.08 6 808 0 %> %mod.glb.partialled <- setCor(govact ~ age * negemot - posemot - ideology - sex, %+ data=glbwarm,std=FALSE) % %mod.glb.partialled %Call: setCor(y = govact ~ age * negemot - posemot - ideology - sex, % data = glbwarm) % %Multiple Regression from raw data % % DV = govact % slope se t p VIF %age -0.02 0.03 -0.54 0.59000 1.00 %negemot 0.49 0.03 16.19 0.00000 1.01 %age*negemot 0.11 0.03 3.75 0.00019 1.01 % % Multiple Regression % R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p %govact 0.52 0.27 0.33 0.11 0.27 0.03 100.5 3 811 0 %> %\end{Routput} Note how the beta weights for the age, negemot and interaction terms are identical. \subsection{Partial everything from everything} Sometimes we want to examine just the independent effects of all our variables. That is to say, we want to partial all the variables from all the other variables. I do this with the \pfun{partial.r} function. To show the results, I compare the partialed rs to the original rs. I show the lower off diagonal matrix using \pfun{lowerMat}. Then to compare the partial matrix to the original matrix, I form the square matrix where the lower off diagonal is the original matrix and the upper off diagonal is the partial matrix. <>== upper <-partial.r(globalWarm) lowerMat(upper) #show it lower <- lowerCor(globalWarm) lowup <- lowerUpper(lower,upper) @ %\begin{Routput} %upper <-partial.r(glbwarm) %> lowerMat(upper) #show it % govct posmt negmt idlgy age sex prtyd %govact 1.00 %posemot -0.03 1.00 %negemot 0.50 0.13 1.00 %ideology -0.19 0.00 -0.07 1.00 %age -0.02 0.04 0.03 0.14 1.00 %sex 0.00 0.08 -0.07 0.04 0.14 1.00 %partyid -0.08 -0.01 -0.09 0.53 0.03 0.02 1.00 %> lower <- lowerCor(glbwarm) % govct posmt negmt idlgy age sex prtyd %govact 1.00 %posemot 0.04 1.00 %negemot 0.58 0.13 1.00 %ideology -0.42 -0.03 -0.35 1.00 %age -0.10 0.04 -0.06 0.21 1.00 %sex -0.10 0.07 -0.12 0.13 0.17 1.00 %partyid -0.36 -0.04 -0.32 0.62 0.15 0.11 1.00 % %\end{Routput} <>== png('partials.png') psych::corPlot(lowup,numbers = TRUE) dev.off() @ \begin{figure}[htbp] \begin{center} \includegraphics[width=9cm]{partials.png} \caption{Correlations (below diagonal) and partial correlations (above the diagonal) } \label{default} \end{center} \end{figure} \section{Related packages} \pfun{mediate} and \pfun{lmCor} are just two functions in the \Rpkg{psych} package. There are several additional packages available in \R{} to do mediation. The \Rpkg{mediation} package \citep{mediation} seems the most powerful, in that is tailor made for mediation. \Rpkg{MBESS} \citep{MBESS} has a mediation function. Steven Short has a nice tutorial on mediation analysis available for download \href{http://docs.wixstatic.com/ugd/bb3887\_73181065d7c744c4a0925844302cf813.pdf}{that discusses how to use R for mediation.} And, of course, the \Rpkg{lavaan} package \citep{lavaan} is the recommended package to do SEM and path models. \newpage \section{Development version and a users guide} The \Rpkg{psych} package is available from the CRAN repository. However, the most recent development version of the \Rpkg{psych} package is available as a source file at the repository maintained at \href{ href="http://personality-project.org/r"}{\url{http://personality-project.org/r}}. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To install this development version, either for PCs or Macs, \begin{Rinput} install.packages("psych", repos = "http://personality-project.org/r", type = "source") \end{Rinput} After doing this, it is important to restart \R{} to get the new package. Although the individual help pages for the \Rpkg{psych} package are available as part of \R{} and may be accessed directly (e.g. ?psych) , the full manual for the \pfun{psych} package is also available as a pdf at \url{http://personality-project.org/r/psych_manual.pdf} %psych\_manual.pdf. News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news, \begin{Schunk} \begin{Sinput} > news(Version >= "2.3.12",package="psych") \end{Sinput} \end{Schunk} \section{Psychometric Theory} The \Rpkg{psych} package has been developed to help psychologists (and other quantitative scientists) do basic research. Many of the functions were developed to supplement a book (\url{http://personality-project.org/r/book} An introduction to Psychometric Theory with Applications in \R{} \citep{revelle:intro} More information about the use of some of the functions may be found in the book . For more extensive discussion of the use of \Rpkg{psych} in particular and \R{} in general, consult \url{http://personality-project.org/r/r.guide.html} A short guide to R. \section{SessionInfo} This document was prepared using the following settings. \begin{tiny} <>== sessionInfo() @ \end{tiny} \ \newpage %\bibliography{../../../all} \begin{thebibliography}{} \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:82} Cohen, J. (1982). \newblock Set correlation as a general mulitivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3):301--341. \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Dawes}{1979}]{dawes:79} Dawes, R.~M. (1979). \newblock The robust beauty of improper linear models in decision making. \newblock {\em American Psychologist}, 34(7):571--582. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H. (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28(3/4):321--377. \bibitem[\protect\astroncite{Kelley}{2017}]{MBESS} Kelley, K. (2017). \newblock {\em {MBESS: The MBESS R} Package}. \newblock R package version 4.4.1. \bibitem[\protect\astroncite{Pollack et~al.}{2012}]{pollack:12} Pollack, J.~M., Vanepps, E.~M., and Hayes, A.~F. (2012). \newblock The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. \newblock {\em Journal of Organizational Behavior}, 33(6):789--810. \bibitem[\protect\astroncite{Preacher}{2015}]{preacher:15} Preacher, K.~J. (2015). \newblock Advances in mediation analysis: A survey and synthesis of new developments. \newblock {\em Annual Review of Psychology}, 66:825--852. \bibitem[\protect\astroncite{Preacher and Hayes}{2004}]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Preacher et~al.}{2007}]{preacher:07} Preacher, K.~J., Rucker, D.~D., and Hayes, A.~F. (2007). \newblock Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. \newblock {\em Multivariate behavioral research}, 42(1):185--227. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em \href{https://cran.r-project.org/web/packages/psych/index.html}{psych}: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3.6 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tingley et~al.}{2014}]{mediation} Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). \newblock {mediation}: {R} package for causal mediation analysis. \newblock {\em Journal of Statistical Software}, 59(5):1--38. \end{thebibliography} \begin{thebibliography}{} \bibitem[\protect\astroncite{Cohen}{1982}]{cohen:82} Cohen, J. (1982). \newblock Set correlation as a general mulitivariate data-analytic method. \newblock {\em Multivariate Behavioral Research}, 17(3):301--341. \bibitem[\protect\astroncite{Cohen et~al.}{2003}]{cohen:03} Cohen, J., Cohen, P., West, S.~G., and Aiken, L.~S. (2003). \newblock {\em Applied multiple regression/correlation analysis for the behavioral sciences}. \newblock L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition. \bibitem[\protect\astroncite{Dawes}{1979}]{dawes:79} Dawes, R.~M. (1979). \newblock The robust beauty of improper linear models in decision making. \newblock {\em American Psychologist}, 34(7):571--582. \bibitem[\protect\astroncite{Garcia et~al.}{2010}]{garcia:10} Garcia, D.~M., Schmitt, M.~T., Branscombe, N.~R., and Ellemers, N. (2010). \newblock Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. \newblock {\em European Journal of Social Psychology}, 40(5):733--745. \bibitem[\protect\astroncite{Hayes}{2013}]{hayes:13} Hayes, A.~F. (2013). \newblock {\em Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}. \newblock Guilford Press, New York. \bibitem[\protect\astroncite{Hotelling}{1936}]{hotelling:36} Hotelling, H. (1936). \newblock Relations between two sets of variates. \newblock {\em Biometrika}, 28(3/4):321--377. \bibitem[\protect\astroncite{Kelley}{2017}]{MBESS} Kelley, K. (2017). \newblock {\em {MBESS: The MBESS R} Package}. \newblock R package version 4.4.1. \bibitem[\protect\astroncite{Pollack et~al.}{2012}]{pollack:12} Pollack, J.~M., Vanepps, E.~M., and Hayes, A.~F. (2012). \newblock The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. \newblock {\em Journal of Organizational Behavior}, 33(6):789--810. \bibitem[\protect\astroncite{Preacher}{2015}]{preacher:15} Preacher, K.~J. (2015). \newblock Advances in mediation analysis: A survey and synthesis of new developments. \newblock {\em Annual Review of Psychology}, 66:825--852. \bibitem[\protect\astroncite{Preacher and Hayes}{2004}]{preacher:04} Preacher, K.~J. and Hayes, A.~F. (2004). \newblock {SPSS and SAS} procedures for estimating indirect effects in simple mediation models. \newblock {\em Behavior Research Methods, Instruments, \& Computers}, 36(4):717--731. \bibitem[\protect\astroncite{Preacher et~al.}{2007}]{preacher:07} Preacher, K.~J., Rucker, D.~D., and Hayes, A.~F. (2007). \newblock Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. \newblock {\em Multivariate behavioral research}, 42(1):185--227. \bibitem[\protect\astroncite{{R Core Team}}{2023}]{R} {R Core Team} (2023). \newblock {\em R: A Language and Environment for Statistical Computing}. \newblock R Foundation for Statistical Computing, Vienna, Austria. \bibitem[\protect\astroncite{{Moon}}{2020}]{processR} {Keon-Woong Moon} (2020). \newblock {\em processR: Implementation of the 'PROCESS' Macro}. \newblock https://CRAN.R-project.org/package=processR \bibitem[\protect\astroncite{Revelle}{2023}]{psych} Revelle, W. (2023). \newblock {\em \href{https://cran.r-project.org/web/packages/psych/index.html}{psych}: Procedures for Personality and Psychological Research}. \newblock Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. \newblock R package version 2.3.5 \bibitem[\protect\astroncite{Revelle}{prep}]{revelle:intro} Revelle, W. ({in prep}). \newblock {\em An introduction to psychometric theory with applications in {R}}. \newblock Springer. \bibitem[\protect\astroncite{Rosseel}{2012}]{lavaan} Rosseel, Y. (2012). \newblock {lavaan}: An {R} package for structural equation modeling. \newblock {\em Journal of Statistical Software}, 48(2):1--36. \bibitem[\protect\astroncite{Tabachnick and Fidell}{2001}]{Tabachnick:01} Tabacnik, B.G and Fidell, L.S. (2001) \newblock Using multivariate statistics. \newblock Allyn and Bacon. \bibitem[\protect\astroncite{Tal-Or et~al.}{2010}]{talor:10} Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A.~C. (2010). \newblock Testing causal direction in the influence of presumed media influence. \newblock {\em Communication Research}, 37(6):801--824. \bibitem[\protect\astroncite{Tingley et~al.}{2014}]{mediation} Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). \newblock {mediation}: {R} package for causal mediation analysis. \newblock {\em Journal of Statistical Software}, 59(5):1--38. \end{thebibliography} %\printindex \end{document} psychTools/inst/doc/mediation.R0000644000176200001440000003270214552047365016256 0ustar liggesusers### R code from vignette source 'mediation.rnw' ################################################### ### code chunk number 1: library ################################################### library(psych) library(psychTools) ################################################### ### code chunk number 2: attitude ################################################### psych::describe(attitude) ################################################### ### code chunk number 3: attitude ################################################### #do not standardize mod1 <- lmCor(rating ~ complaints + privileges, data=attitude,std=FALSE) mod1 ################################################### ### code chunk number 4: attitudelm ################################################### summary(lm(rating ~ complaints + privileges, data=attitude)) ################################################### ### code chunk number 5: attitude ################################################### png('attitude.png') # standardize by default mod2 <- lmCor(rating ~ complaints + privileges, data=attitude) mod2 diagram(mod2, main="A simple regression model") dev.off() ################################################### ### code chunk number 6: attitudeR ################################################### R <- lowerCor(attitude) lmCor(rating ~ complaints + privileges, data=R, n.obs =30) ################################################### ### code chunk number 7: kelley ################################################### #the second Kelley data from Hotelling kelley <- structure(list(speed = c(1, 0.4248, 0.042, 0.0215, 0.0573), power = c(0.4248, 1, 0.1487, 0.2489, 0.2843), words = c(0.042, 0.1487, 1, 0.6693, 0.4662), symbols = c(0.0215, 0.2489, 0.6693, 1, 0.6915), meaningless = c(0.0573, 0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words", "symbols", "meaningless"), class = "data.frame", row.names = c("speed", "power", "words", "symbols", "meaningless")) #first show the correlations lowerMat(kelley) #now find and draw the regression sc <- lmCor(power + speed ~ words + symbols + meaningless,data=kelley) #formula mode sc #show it ################################################### ### code chunk number 8: kelly ################################################### png('hotelling.png') lmDiagram(sc, main="The Kelley data set") dev.off() ################################################### ### code chunk number 9: mediation.rnw:396-409 ################################################### dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics round(model$Xmat,2) #the X canonical loadings round(model$Ymat,2) #the Y canonical loadings cancorDiagram(model, main="Canonical correlations for the 'Belly Dancer' example") #and the associated canonical figure ################################################### ### code chunk number 10: dancer ################################################### png('dancerlm.png') model <- psych::lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() ################################################### ### code chunk number 11: dancer ################################################### png('dancer.png') cancorDiagram(model) dev.off() ################################################### ### code chunk number 12: satact ################################################### png('satact.png') mod3 <- lmCor(SATV + SATQ + ACT ~ gender + education + age, data = sat.act) dev.off() ################################################### ### code chunk number 13: mediation.rnw:574-575 ################################################### lowerCor(holzinger.swineford[c(3,7,12:14)]) ################################################### ### code chunk number 14: mediation.rnw:583-593 ################################################### png('hs.png') plot(t07_sentcomp ~ agemo, col=c("red","blue")[holzinger.swineford$grade -6], pch=26-holzinger.swineford$grade,data=holzinger.swineford, ylab="Sentence Comprehension",xlab="Age in Months", main="Sentence Comprehension varies by age and grade") by(holzinger.swineford, holzinger.swineford$grade -6,function(x) abline( lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ,lty=c("dashed","solid")[x$grade-6])) text(190,3.3,"grade = 8") text(190,2,"grade = 7") dev.off() ################################################### ### code chunk number 15: mediation.rnw:598-600 ################################################### by(holzinger.swineford,holzinger.swineford$grade,function(x) lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ) ################################################### ### code chunk number 16: mediation.rnw:610-613 ################################################### png('hsp.png') lmCor(t07_sentcomp ~ agemo + grade,data=holzinger.swineford) dev.off() ################################################### ### code chunk number 17: moderation ################################################### mod <-lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm, std=FALSE, zero=FALSE, plot=FALSE) mod mod0 <- lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,std=FALSE, plot=FALSE) mod0 ################################################### ### code chunk number 18: modplot ################################################### png('moderation.png') lmDiagram(mod, main="not zero centered") dev.off() ################################################### ### code chunk number 19: modplot1 ################################################### png('moderation0.png') diagram(mod0, main="zero centered") dev.off() ################################################### ### code chunk number 20: plotting ################################################### both <- cbind(mod$data[,-1],mod0$data[,-1]) png('splom.png') pairs.panels(both[,-c(4,5,6,8,11:13)]) #show the mean centered data dev.off() ################################################### ### code chunk number 21: setcorvslm ################################################### summary(lm(SATQ ~ SATV*gender + ACT, data=sat.act)) mod <- lmCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE,use="complete") print(mod,digits=5) ################################################### ### code chunk number 22: Tak_Or ################################################### data(Tal.Or) psych::describe(Tal_Or) #descriptive statistics mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) mod4.4 #print(mod4.4, digits = 4) # in order to get the precision of the Hayes (2013) p 99 example ################################################### ### code chunk number 23: ned99 ################################################### png('mediate99.png') mediate.diagram(mod4.4) dev.off() ################################################### ### code chunk number 24: garcia ################################################### data(GSBE) #alias to Garcia data set #compare two models (bootstrapping n.iter set to 50 for speed # 1) mean center the variables prior to taking product terms mod1 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") # 2) do not mean center mod2 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50, main="Moderated mediation (not centered") summary(mod1) summary(mod2) ################################################### ### code chunk number 25: Tal.or ################################################### mod5.4 <- mediate(reaction ~ cond + (import) + (pmi), data = Tal_Or) print(mod5.4, digits=4) #to compare with Hayes ################################################### ### code chunk number 26: ned131 ################################################### png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() ################################################### ### code chunk number 27: ned131 ################################################### png('mediate131.png') mediate.diagram(mod5.4, digits=3, main="Hayes example 5.3") dev.off() ################################################### ### code chunk number 28: Tal.or54 ################################################### #model 5.4 + mod5.7 is the two chained mediator model mod5.7 <- mediate(pmi ~ cond + (import) , data = Tal_Or) summary(mod5.7, digits=4) ################################################### ### code chunk number 29: Pollack ################################################### lowerMat(Pollack) mod6.2 <- mediate(withdrawal ~ economic.stress + self.efficacy + sex + tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2) ################################################### ### code chunk number 30: Pollackgraph ################################################### png('mediate177.png') mediate.diagram(mod6.2, digits=3, main = "Simple mediation, 3 covariates") dev.off() ################################################### ### code chunk number 31: Pollack ################################################### mod6.2a <- mediate(withdrawal ~ economic.stress -self.efficacy - sex - tenure + (depression), data=Pollack, n.obs=262) summary(mod6.2a) ################################################### ### code chunk number 32: Pollackgraph ################################################### png('mod62partial.png') mediate.diagram(mod6.2a, digits=3, main = "Simple mediation, 3 covariates (partialled out)") dev.off() ################################################### ### code chunk number 33: interacions ################################################### summary(lm(respappr ~ prot2 * sexism,data = Garcia)) #show the lm results for comparison #show the lmCor analysis lmCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE) #then show the mediate results modgarcia <-mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE,main="Moderated mediation") summary(modgarcia) ################################################### ### code chunk number 34: interacionsplot ################################################### png('moderatedmediation.png') mediate.diagram(modgarcia, main= "An example of moderated mediation") dev.off() ################################################### ### code chunk number 35: zeri ################################################### lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) # but zero center and try again glbwarmc <-data.frame(scale(globalWarm,scale=FALSE)) lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm) mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,zero=FALSE,std=FALSE) print(mod.glb,digits=6) mod.glb0 <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb0,digits=6) ################################################### ### code chunk number 36: izero2 ################################################### #by default, mediate zero centers before finding the products mod.glb <- mediate(govact ~ age * negemot + posemot + ideology + sex + (age), data=globalWarm,zero=TRUE) summary(mod.glb,digits=4) ################################################### ### code chunk number 37: garcia2t ################################################### psych::describe(Garcia) lm(liking ~ prot2* sexism + respappr, data=Garcia) lmCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE) mod7.4 <- mediate(liking ~ prot2 * sexism +respappr, data = Garcia, zero=FALSE) summary(mod7.4) ################################################### ### code chunk number 38: modertionplot ################################################### png('mod74.png') mediate.diagram(mod7.4, main= "Another example of moderated mediation") dev.off() ################################################### ### code chunk number 39: modertionplot ################################################### png('garciainteraction.png') plot(respappr ~ sexism, pch = 23- protest, bg = c("black","red", "blue")[protest], data=Garcia, main = "Response to sexism varies as type of protest") by(Garcia,Garcia$protest, function(x) abline(lm(respappr ~ sexism, data =x),lty=c("solid","dashed","dotted")[x$protest+1])) text(6.5,3.5,"No protest") text(3,3.9,"Individual") text(3,5.2,"Collective") dev.off() ################################################### ### code chunk number 40: oartial ################################################### #first, the more complicated model mod.glb <- lmCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,std=FALSE) print(mod.glb,digits=3) # compare this to the partialled model mod.glb.partialled <- lmCor(govact ~ age * negemot - posemot - ideology - sex,data = globalWarm) ################################################### ### code chunk number 41: partial.all ################################################### upper <-partial.r(globalWarm) lowerMat(upper) #show it lower <- lowerCor(globalWarm) lowup <- lowerUpper(lower,upper) ################################################### ### code chunk number 42: partial.plot ################################################### png('partials.png') psych::corPlot(lowup,numbers = TRUE) dev.off() ################################################### ### code chunk number 43: sessionInfo ################################################### sessionInfo() psychTools/inst/doc/overview.R0000644000176200001440000004040614552047402016143 0ustar liggesusers### R code from vignette source 'overview.Rnw' ################################################### ### code chunk number 1: overview.Rnw:448-449 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} ################################################### ### code chunk number 2: overview.Rnw:457-462 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { library(psych) library(psychTools) f3t <- fa(Thurstone,3,n.obs=213) f3t } ################################################### ### code chunk number 3: overview.Rnw:483-487 ################################################### if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else { f3 <- fa(Thurstone,3,n.obs = 213,fm="pa") f3o <- target.rot(f3) f3o} ################################################### ### code chunk number 4: overview.Rnw:510-512 ################################################### f3w <- fa(Thurstone,3,n.obs = 213,fm="wls") print(f3w,cut=0,digits=3) ################################################### ### code chunk number 5: overview.Rnw:525-526 ################################################### plot(f3t) ################################################### ### code chunk number 6: overview.Rnw:538-539 ################################################### fa.diagram(f3t) ################################################### ### code chunk number 7: overview.Rnw:558-560 ################################################### p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax") p3p ################################################### ### code chunk number 8: overview.Rnw:579-581 ################################################### om.h <- omega(Thurstone,n.obs=213,sl=FALSE) op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 9: overview.Rnw:592-593 ################################################### om <- omega(Thurstone,n.obs=213) ################################################### ### code chunk number 10: overview.Rnw:626-628 ################################################### data(bfi) ic <- iclust(bfi[1:25]) ################################################### ### code chunk number 11: overview.Rnw:640-641 ################################################### summary(ic) #show the results ################################################### ### code chunk number 12: overview.Rnw:654-656 ################################################### data(bfi) r.poly <- polychoric(bfi[1:25],correct=0) #the ... indicate the progress of the function ################################################### ### code chunk number 13: overview.Rnw:668-670 ################################################### ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations") iclust.diagram(ic.poly) ################################################### ### code chunk number 14: overview.Rnw:681-683 ################################################### ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5") iclust.diagram(ic.poly) ################################################### ### code chunk number 15: overview.Rnw:694-695 ################################################### ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3") ################################################### ### code chunk number 16: overview.Rnw:707-708 ################################################### print(ic,cut=.3) ################################################### ### code chunk number 17: overview.Rnw:731-733 ################################################### fa(bfi[1:10],2,n.iter=20) ################################################### ### code chunk number 18: overview.Rnw:746-748 ################################################### f4 <- fa(bfi[1:25],4,fm="pa") factor.congruence(f4,ic) ################################################### ### code chunk number 19: overview.Rnw:757-758 ################################################### factor.congruence(list(f3t,f3o,om,p3p)) ################################################### ### code chunk number 20: overview.Rnw:802-803 ################################################### vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory") ################################################### ### code chunk number 21: overview.Rnw:811-812 ################################################### vss ################################################### ### code chunk number 22: overview.Rnw:822-823 ################################################### fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory") ################################################### ### code chunk number 23: overview.Rnw:843-848 ################################################### v16 <- sim.item(16) s <- c(1,3,5,7,9,11,13,15) f2 <- fa(v16[,s],2) fe <- fa.extension(cor(v16)[s,-s],f2) fa.diagram(f2,fe=fe) ################################################### ### code chunk number 24: overview.Rnw:864-871 ################################################### fx <-matrix(c( .9,.8,.6,rep(0,4),.6,.8,-.7),ncol=2) fy <- matrix(c(.6,.5,.4),ncol=1) rownames(fx) <- c("V","Q","A","nach","Anx") rownames(fy)<- c("gpa","Pre","MA") Phi <-matrix( c(1,0,.7,.0,1,.7,.7,.7,1),ncol=3) gre.gpa <- sim.structural(fx,Phi,fy) print(gre.gpa) ################################################### ### code chunk number 25: overview.Rnw:877-879 ################################################### esem.example <- esem(gre.gpa$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1,n.obs=1000,plot=FALSE) esem.example ################################################### ### code chunk number 26: overview.Rnw:884-885 ################################################### esem.diagram(esem.example) ################################################### ### code chunk number 27: overview.Rnw:938-942 ################################################### set.seed(17) r9 <- sim.hierarchical(n=500,raw=TRUE)$observed round(cor(r9),2) alpha(r9) ################################################### ### code chunk number 28: overview.Rnw:949-952 ################################################### alpha(attitude,keys=c("complaints","critical")) ################################################### ### code chunk number 29: overview.Rnw:959-961 ################################################### alpha(attitude) ################################################### ### code chunk number 30: overview.Rnw:968-970 ################################################### items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items alpha(items$observed) #item response analysis of congeneric measures ################################################### ### code chunk number 31: overview.Rnw:1023-1024 ################################################### om.9 <- omega(r9,title="9 simulated variables") ################################################### ### code chunk number 32: overview.Rnw:1035-1036 ################################################### om.9 ################################################### ### code chunk number 33: overview.Rnw:1044-1045 ################################################### omegaSem(r9,n.obs=500,lavaan=TRUE) ################################################### ### code chunk number 34: overview.Rnw:1054-1055 ################################################### splitHalf(r9) ################################################### ### code chunk number 35: overview.Rnw:1069-1089 ################################################### #the newer way is probably preferred keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C2","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) #this can also be done by location-- keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) #These two approaches can be mixed if desired keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c(16:20),openness = c(21,-22,23,24,-25)) keys.list ################################################### ### code chunk number 36: overview.Rnw:1111-1113 ################################################### scores <- scoreItems(keys.list,bfi) scores ################################################### ### code chunk number 37: scores ################################################### png('scores.png') pairs.panels(scores$scores,pch='.',jiggle=TRUE) dev.off() ################################################### ### code chunk number 38: overview.Rnw:1139-1142 ################################################### r.bfi <- cor(bfi,use="pairwise") scales <- scoreItems(keys.list,r.bfi) summary(scales) ################################################### ### code chunk number 39: overview.Rnw:1152-1158 ################################################### data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) score.multiple.choice(iq.keys,iqitems) #just convert the items to true or false iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE) describe(iq.tf) #compare to previous results ################################################### ### code chunk number 40: overview.Rnw:1176-1182 ################################################### data(iqitems) iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7) scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE) #note that for speed we can just do this on simple item counts rather than IRT based scores. op <- par(mfrow=c(2,2)) #set this to see the output for multiple items irt.responses(scores$scores,iqitems[1:4],breaks=11) ################################################### ### code chunk number 41: overview.Rnw:1194-1196 ################################################### m <- colMeans(bfi[,1:25],na.rm=TRUE) item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2]) ################################################### ### code chunk number 42: overview.Rnw:1204-1206 ################################################### data(bfi) bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3]) ################################################### ### code chunk number 43: overview.Rnw:1230-1234 ################################################### set.seed(17) d9 <- sim.irt(9,1000,-2.0,2.0,mod="normal") #dichotomous items test <- irt.fa(d9$items,correct=0) test ################################################### ### code chunk number 44: overview.Rnw:1241-1246 ################################################### op <- par(mfrow=c(3,1)) plot(test,type="ICC") plot(test,type="IIC") plot(test,type="test") op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 45: overview.Rnw:1257-1260 ################################################### data(bfi) e.irt <- irt.fa(bfi[11:15]) e.irt ################################################### ### code chunk number 46: overview.Rnw:1267-1268 ################################################### e.info <- plot(e.irt,type="IIC") ################################################### ### code chunk number 47: overview.Rnw:1279-1280 ################################################### print(e.info,sort=TRUE) ################################################### ### code chunk number 48: overview.Rnw:1309-1310 ################################################### iq.irt <- irt.fa(ability) ################################################### ### code chunk number 49: overview.Rnw:1322-1323 ################################################### plot(iq.irt,type='test') ################################################### ### code chunk number 50: overview.Rnw:1334-1335 ################################################### iq.irt ################################################### ### code chunk number 51: overview.Rnw:1341-1342 ################################################### om <- omega(iq.irt$rho,4) ################################################### ### code chunk number 52: overview.Rnw:1356-1370 ################################################### v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items items <- v9$items test <- irt.fa(items) total <- rowSums(items) ord <- order(total) items <- items[ord,] #now delete some of the data - note that they are ordered by score items[1:333,5:9] <- NA items[334:666,3:7] <- NA items[667:1000,1:4] <- NA scores <- scoreIrt(test,items) unitweighted <- scoreIrt(items=items,keys=rep(1,9)) scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted) colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit") ################################################### ### code chunk number 53: overview.Rnw:1379-1381 ################################################### pairs.panels(scores.df,pch='.',gap=0) title('Comparing true theta for IRT, Rasch and classically based scoring',line=3) ################################################### ### code chunk number 54: overview.Rnw:1393-1409 ################################################### keys.list <- list(agree=c("-A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","-C4","-C5"), extraversion=c("-E1","-E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","-O2","O3","O4","-O5")) item.list <- list(agree=c("A1","A2","A3","A4","A5"), conscientious=c("C1","C2","C3","C4","C5"), extraversion=c("E1","E2","E3","E4","E5"), neuroticism=c("N1","N2","N3","N4","N5"), openness = c("O1","O2","O3","O4","O5")) bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function ################################################### ### code chunk number 55: overview.Rnw:1414-1418 ################################################### #compare the solutions using the cor2 function cor2(bfi.1pl,bfi.ctt) cor2(bfi.2pl,bfi.ctt) cor2(bfi.2pl,bfi.1pl) ################################################### ### code chunk number 56: overview.Rnw:1482-1486 ################################################### C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) ################################################### ### code chunk number 57: overview.Rnw:1489-1491 ################################################### #compare with lmCor lmCor(gender + education + age ~ ACT + SATV + SATQ, data = C, n.obs=700) ################################################### ### code chunk number 58: overview.Rnw:1574-1598 ################################################### xlim=c(0,10) ylim=c(0,10) plot(NA,xlim=xlim,ylim=ylim,main="Demonstration of dia functions",axes=FALSE,xlab="",ylab="") ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim) ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim) lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim,e.size=.09) ur <- dia.ellipse(7,9,"upper right",xlim=xlim,ylim=ylim,e.size=.1) ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim,e.size=.1) mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim,e.size=.08) bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim,e.size=.08) br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim) dia.arrow(from=lr,to=ul,labels="right to left") dia.arrow(from=ul,to=ur,labels="left to right") dia.curved.arrow(from=lr,to=ll$right,labels ="right to left") dia.curved.arrow(to=ur,from=ul$right,labels ="left to right") dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it. dia.curve(ml,mr,"across") dia.curved.arrow(ur,lr,"top down") dia.curved.arrow(br$top,lr$bottom,"up") dia.curved.arrow(bl,br,"left to right") dia.arrow(bl$top,ll$bottom) dia.curved.arrow(ml,ll$top,scale=-1) dia.curved.arrow(mr,lr$top) ################################################### ### code chunk number 59: overview.Rnw:1719-1720 ################################################### sessionInfo() psychTools/inst/doc/intro.R0000644000176200001440000003213414552047330015427 0ustar liggesusers### R code from vignette source 'intro.Rnw' ################################################### ### code chunk number 1: intro.Rnw:513-514 ################################################### options(width=100) ################################################### ### code chunk number 2: intro.Rnw:518-522 ################################################### library(psych) #need to make psych active the first time you call it library(psychTools) #additional tools and data are here data(sat.act) describe(sat.act) #basic descriptive statistics ################################################### ### code chunk number 3: intro.Rnw:529-531 ################################################### #basic descriptive statistics by a grouping variable. describeBy(sat.act ~ gender,skew=FALSE,ranges=FALSE) ################################################### ### code chunk number 4: intro.Rnw:539-542 ################################################### sa.mat <- describeBy(sat.act ~ gender + education, skew=FALSE,ranges=FALSE,mat=TRUE) headTail(sa.mat) ################################################### ### code chunk number 5: outlier ################################################### png( 'outlier.png' ) d2 <- outlier(sat.act,cex=.8) dev.off() ################################################### ### code chunk number 6: intro.Rnw:575-579 ################################################### x <- matrix(1:120,ncol=10,byrow=TRUE) colnames(x) <- paste('V',1:10,sep='') new.x <- scrub(x,3:5,min=c(30,40,50),max=70,isvalue=45,newvalue=NA) new.x ################################################### ### code chunk number 7: intro.Rnw:596-608 ################################################### x <- matrix(1:40,ncol=10,byrow=TRUE) y <- matrix(1:20,ncol=4) xy <- vJoin(x,y) xy XY <- vJoin(x,y,cnames=FALSE) XY #match on ids and columns x <- bfi[1:5,1:10] y <- bfi[3:8,2:6] xy <- vJoin(x,y) xy #the merged data ################################################### ### code chunk number 8: pairspanels ################################################### png( 'pairspanels.png' ) sat.d2 <- data.frame(sat.act,d2) #combine the d2 statistics from before with the sat.act data.frame pairs.panels(sat.d2,bg=c("yellow","blue")[(d2 > 25)+1],pch=21,stars=TRUE) dev.off() ################################################### ### code chunk number 9: affect ################################################### png('affect.png') pairs.panels(affect[14:17],bg=c("red","black","white","blue")[affect$Film],pch=21, main="Affect varies by movies ") dev.off() ################################################### ### code chunk number 10: affect1 ################################################### keys <- list( EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake", "full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"), TA =c("intense", "jittery", "fearful", "tense", "clutched.up", "-quiet", "-still", "-placid", "-calm", "-at.rest") , PA =c("active", "excited", "strong", "inspired", "determined", "attentive", "interested", "enthusiastic", "proud", "alert"), NAf =c("jittery", "nervous", "scared", "afraid", "guilty", "ashamed", "distressed", "upset", "hostile", "irritable" )) scores <- scoreItems(keys,psychTools::msq[,1:75]) #png('msq.png') # pairs.panels(scores$scores,smoother=TRUE, # main ="Density distributions of four measures of affect" ) #dev.off() ################################################### ### code chunk number 11: violin ################################################### png('violin.png') data(sat.act) violinBy(SATV+SATQ ~ gender, data=sat.act,grp.name=cs(Verbal.M,Verbal.F, Quan.M,Quant.F), main="Density Plot by gender for SAT V and Q") dev.off() ################################################### ### code chunk number 12: intro.Rnw:732-734 ################################################### data(epi.bfi) error.bars.by(epi.bfi[,6:10],epi.bfi$epilie<4) ################################################### ### code chunk number 13: intro.Rnw:747-749 ################################################### error.bars.by(sat.act[5:6],sat.act$gender,bars=TRUE, labels=c("Male","Female"),ylab="SAT score",xlab="") ################################################### ### code chunk number 14: intro.Rnw:763-767 ################################################### T <- with(sat.act,table(gender,education)) rownames(T) <- c("M","F") error.bars.tab(T,way="both",ylab="Proportion of Education Level",xlab="Level of Education", main="Proportion of sample by education level") ################################################### ### code chunk number 15: intro.Rnw:786-796 ################################################### op <- par(mfrow=c(1,2)) data(affect) colors <- c("black","red","white","blue") films <- c("Sad","Horror","Neutral","Happy") affect.stats <- errorCircles("EA2","TA2",data=affect[-c(1,20)],group="Film",labels=films, xlab="Energetic Arousal", ylab="Tense Arousal",ylim=c(10,22),xlim=c(8,20),pch=16, cex=2,colors=colors, main =' Movies effect on arousal') errorCircles("PA2","NA2",data=affect.stats,labels=films,xlab="Positive Affect", ylab="Negative Affect", pch=16,cex=2,colors=colors, main ="Movies effect on affect") op <- par(mfrow=c(1,1)) ################################################### ### code chunk number 16: bibars ################################################### data(bfi) png( 'bibars.png' ) bi.bars(bfi,"age","gender",ylab="Age",main="Age by males and females") dev.off() ################################################### ### code chunk number 17: histo ################################################### png('histo.png') densityBy(bfi,"age",grp="gender") dev.off() ################################################### ### code chunk number 18: scatterhist ################################################### data(GERAS) png( 'scatterHist.png' ) psych::scatterHist(F ~ M + gender, data=GERAS.scales, cex.point=.3,smooth=FALSE, xlab="Masculine Scale",ylab="Feminine Scale",correl=FALSE, d.arrow=TRUE,col=c("red","blue"), bg=c("red","blue"), lwd=4, title="Combined M and F scales",cex.cor=2,cex.arrow=1.25) dev.off() ################################################### ### code chunk number 19: intro.Rnw:873-874 ################################################### lowerCor(sat.act) ################################################### ### code chunk number 20: intro.Rnw:881-887 ################################################### female <- subset(sat.act,sat.act$gender==2) male <- subset(sat.act,sat.act$gender==1) lower <- lowerCor(male[-1]) upper <- lowerCor(female[-1]) both <- lowerUpper(lower,upper) round(both,2) ################################################### ### code chunk number 21: intro.Rnw:893-895 ################################################### diffs <- lowerUpper(lower,upper,diff=TRUE) round(diffs,2) ################################################### ### code chunk number 22: corplot.png ################################################### png('corplot.png') corPlot(Thurstone,numbers=TRUE,upper=FALSE,diag=FALSE,cex=.7, main="9 cognitive variables from Thurstone") dev.off() ################################################### ### code chunk number 23: circplot.png ################################################### png('circplot.png') circ <- sim.circ(24) r.circ <- cor(circ) corPlot(r.circ,main='24 variables in a circumplex') dev.off() ################################################### ### code chunk number 24: spider.png ################################################### png('spider.png') op<- par(mfrow=c(2,2)) spider(y=c(1,6,12,18),x=1:24,data=r.circ,fill=TRUE,main="Spider plot of 24 circumplex variables") op <- par(mfrow=c(1,1)) dev.off() ################################################### ### code chunk number 25: intro.Rnw:963-964 ################################################### corTest(sat.act) ################################################### ### code chunk number 26: intro.Rnw:975-976 ################################################### r.test(50,.3) ################################################### ### code chunk number 27: intro.Rnw:982-983 ################################################### r.test(30,.4,.6) ################################################### ### code chunk number 28: intro.Rnw:990-991 ################################################### r.test(103,.4,.5,.1) ################################################### ### code chunk number 29: intro.Rnw:997-998 ################################################### r.test(103,.5,.6,.7,.5,.5,.8) #steiger Case B ################################################### ### code chunk number 30: intro.Rnw:1006-1007 ################################################### cortest(sat.act) ################################################### ### code chunk number 31: intro.Rnw:1021-1021 ################################################### ################################################### ### code chunk number 32: tetrar.png ################################################### png('tetrar.png') draw.tetra() dev.off() ################################################### ### code chunk number 33: intro.Rnw:1097-1098 ################################################### lmCor(y = 5:9,x=1:4,data=Thurstone) ################################################### ### code chunk number 34: intro.Rnw:1105-1107 ################################################### sc <- lmCor(y = 5:9,x=3:4,data=Thurstone,z=1:2) round(sc$residual,2) ################################################### ### code chunk number 35: intro.Rnw:1120-1134 ################################################### #data from Preacher and Hayes (2004) sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35, -0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33, -1.59, 1.34, 0.1, 0.05, 0.66, 0.56, 0.85, 0.88, 0.14, -0.72, 0.84, -1.13, -0.13, 0.2), THERAPY = structure(c(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0), value.labels = structure(c(1, 0), .Names = c("cognitive", "standard"))), ATTRIB = c(-1.17, 0.04, 0.58, -0.23, 0.62, -0.26, -0.28, 0.52, 0.34, -0.09, -1.09, 1.05, -1.84, -0.95, 0.15, 0.07, -0.1, 2.35, 0.75, 0.49, 0.67, 1.21, 0.31, 1.97, -0.94, 0.11, -0.54, -0.23, 0.05, -1.07)), .Names = c("SATIS", "THERAPY", "ATTRIB" ), row.names = c(NA, -30L), class = "data.frame", variable.labels = structure(c("Satisfaction", "Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY", "ATTRIB"))) ################################################### ### code chunk number 36: intro.Rnw:1136-1137 ################################################### preacher <- mediate(SATIS ~ THERAPY + (ATTRIB),data=sobel) #The example in Preacher and Hayes ################################################### ### code chunk number 37: mediate.png ################################################### png('mediate.png') mediate.diagram(preacher) dev.off() ################################################### ### code chunk number 38: intro.Rnw:1160-1161 ################################################### preacher.lm <- lmCor(SATIS ~ THERAPY + ATTRIB, data=sobel) #The example in Preacher and Hayes ################################################### ### code chunk number 39: preacherlm.png ################################################### png('preacherlm.png') diagram(preacher.lm) dev.off() ################################################### ### code chunk number 40: garcia.png ################################################### png('garcia.png') model <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50 ,main="Moderated mediation (mean centered)") summary(model) dev.off() ################################################### ### code chunk number 41: intro.Rnw:1234-1245 ################################################### dancer <- structure(list(TS = c(1, 7, 4.6, 1, 7, 7, 7, 7), TC = c(1, 1, 5.6, 6.6, 4.9, 7, 1, 1), BS = c(1, 7, 7, 1, 7, 6.4, 7, 2.4), BC = c(1, 1, 7, 5.9, 2.9, 3.8, 1, 1)), class = "data.frame", row.names = c(NA, -8L)) dancer #show the data model <- lmCor(TC + TS ~ BC + BS, data = dancer) summary(model) #show the summary statistics cancorDiagram(model) #and the associated canonical figure ################################################### ### code chunk number 42: dancer ################################################### png('dancerlm.png') model <- lmCor(TC + TS ~ BC + BS, data = dancer) dev.off() ################################################### ### code chunk number 43: dancer ################################################### png('dancer.png') cancorDiagram(model) dev.off() ################################################### ### code chunk number 44: intro.Rnw:1294-1298 ################################################### C <- cov(sat.act,use="pairwise") model1 <- lm(ACT~ gender + education + age, data=sat.act) summary(model1) ################################################### ### code chunk number 45: intro.Rnw:1301-1303 ################################################### #compare with lmCor lmCor(c(4:6),c(1:3),C, n.obs=700) ################################################### ### code chunk number 46: intro.Rnw:1424-1425 ################################################### sessionInfo() psychTools/inst/doc/omega.R0000644000176200001440000000630614552047371015373 0ustar liggesusers### R code from vignette source 'omega.Rnw' ################################################### ### code chunk number 1: omega.Rnw:162-166 ################################################### library(psych) #make the psych package active library(psychTools) #make psychTools active om <- omega(Thurstone) #do the analysis om #show it ################################################### ### code chunk number 2: Thurstone ################################################### png('Thurstone.png') omega.diagram(om) dev.off() ################################################### ### code chunk number 3: omega ################################################### omega(Thurstone) ################################################### ### code chunk number 4: anxiety ################################################### anxiety <- sai[c("anxious", "jittery", "nervous" ,"tense", "upset","at.ease" , "calm" , "confident", "content","relaxed")] describe(anxiety) lowerCor(anxiety) om <- omega(anxiety,2) #specify a two factor solution summary(om) #summarize the output ################################################### ### code chunk number 5: anxietyplot ################################################### png('anxiety.png') omega.diagram(om, main="Omega analysis of two factors of anxiety") dev.off() ################################################### ### code chunk number 6: direct ################################################### om <- omegaDirect(Thurstone) om ################################################### ### code chunk number 7: drawdirect ################################################### png('direct.png') omega.diagram(om, main="Direct Schmid Leihman solution") dev.off() ################################################### ### code chunk number 8: omega.Rnw:734-737 ################################################### om <- omega(holzinger.swineford[8:31],4) #the exploratory solution omegaSem(holzinger.swineford[8:31],4) #the confirmatory solution ################################################### ### code chunk number 9: holzinger ################################################### ################################################### ### code chunk number 10: omega.Rnw:831-834 ################################################### jen <- sim.hierarchical() #use the default values om <- omega(jen) om ################################################### ### code chunk number 11: jensen ################################################### png('jensen.png' ) omega.diagram(om) dev.off() ################################################### ### code chunk number 12: Simulate1 ################################################### fx <- matrix(c(.7,.6,.5,.7,.6,.5,.8,.7,.6, .6,.6,.6,rep(0,9),c(.6,.5,.6),rep(0,9),.6,.6,.6),ncol=4) simx <-sim.structure(fx) om <- omega(simx$model) dsl <- omegaDirect(simx$model) ################################################### ### code chunk number 13: Simulate.2 ################################################### lowerMat(simx$model) summary(om) summary(dsl) fa.congruence(list(om,dsl,fx)) ################################################### ### code chunk number 14: omega.Rnw:1014-1015 ################################################### sessionInfo() psychTools/inst/doc/mediation.pdf0000644000176200001440000165603514552047404016634 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4207 /Filter /FlateDecode /N 95 /First 798 >> stream x\ks۶~v:!d&q4'nN,ѶNp%*(Q/[V ^UL0͜g)'e̱R YKI]J&VB1$U2%edUZtkǔ֊311g iQxY'a(2Me^R93, 0JKB  dqX0Zsl@~e`C2 :Rc\d%bF $QP Ia`APA2!'  1tdSdYڀCC$x48"B$ )X-i&CD4;P3@YKт2#0ʚ8P %8@`۠3;l4:Mi,M(Іt!se N:vI+ JNQ<& ieKb&7QeLt LIgM.JHa-#)50Y vm?NSw`_f?I~ӹ…I_o*Ə~0bGOfx¾5Sǣgb=)=}$?Gӎy9ޱ]dR]UxқF]LƽYo^i=N75T6gW:<׃JyG٨&e 4^w<&WtL2|jn'aB9ڧZaZ|ҹ/UԹv:_ge`H20K<*!<6'Ec ]3̥N]bCpIu5MC2R?]?"Pu+J FEfH2sBB7ct4\_^?^Hf>vyH9psŚǪ gTT؟r\iܲAul\_FYx1n(wL~b Gw$wէAz>3!1ٕi6|˽n0U48;Ie?N쿲+;wMXи&|4Z|ޠ9Gn_pO;*>߿;}{rIx1'jO]IEvtݙ0zA Lr ֱsbA6{uHHK{L/8:fl頻QXwtPYX!:(Dfh!#LG権 LG)=I%mjJn.͏QSLWym~827|G|o qP]֩4R(bBdh(w1Ez:^->jOVԴO4ד1O3¿T1"R$|йD3bi21bm cH!U?*Gg⭓ΰFD>]!Bޏ),FvD?H߲ۖ]V fN˕Z:{Y},_"]nj"Y{xܪ~*r1 }M6<65V1F+kOݪkۚ6Z8˶- Cea]- Y6ѲX\:l xn*T Uh˥ T [+PTDk@} &mUU\E+f7Fo󋬱w{5H<":~IS1ڿn;ڞ9qⲹKLDT˃SKtQ:\X?Ed] mwPig8Ys@c D:Z(Xo `4>UZyXVP`WQp. w!u$yA ƿ. ! vƕͱ~Ǯe,ʟQ,R[vZ N~* Sӏw&b~@rB*R{m /\8xPM 7 /`W;br74X7F=OB^a#◍\JubbCܪ نUҚ%SdSb6%vC{z_XIѓѴ2*fݨ5_]ߺYoWZ{zr[A/w=i;3$6'v9GӲcmadadjbU' :*:)a t'd^(q9&6x3%.=P S^ھ4SR-`?0 fWRlaM _HLqe<ҦQp5 #]Y[8 0-kZ‡pDŽjYh ǵ8CV>T ڀ|H)&CƬYm c5 /P1mc.Ƽ GyӪڗ3$?UO`kڄBksk5Y]C-b9d-تn9VDY\;SیC2'9ssYRPD^EM8(oj\(0JAF4/e rw1'ќf1VA<`RU $e֤(;s riXGsڢR@a@d =X۸Ś, R:wBS;@sQљd"`yW5ʊ>HR(ԎK -*{SRLGg$Onu)ɮ@w'4צ4٘7d)[Y9%ӔmكH 䫴1 WȰcM@:-QN4(C<iCbF Bs Ru1Aq6δ4+$):ZG$J2֋oƜuJ ܷ`.ڲĜpo8Eb=8HAϻ qm} VՅ T[9N!An>/(CƇ дGo WuJ_#*V( yeQM{([Yny9%!GO(hiZvRo ߂9z@u kCI8jJ`Έ"bah=vrNK6[]w]G71b<⟫ ~~kGKq]G]br(@!BQDQe Q]o8dF`PL}oYֿh)K_ͼChN6('wOCTg Y|u1Hޢx DPIm4 #Nl⻥͝?7.endstream endobj 97 0 obj << /Subtype /XML /Type /Metadata /Length 1388 >> stream GPL Ghostscript 10.00.0 2024-01-17T16:04:51-06:00 2024-01-17T16:04:51-06:00 LaTeX with hyperref endstream endobj 98 0 obj << /Type /ObjStm /Length 2768 /Filter /FlateDecode /N 95 /First 865 >> stream x[]o#E}_Q \uo}XYFXYvWyxؑh9vb8n'QWOsouj5xqFSQLyLiף5㈱w8 bPVd\sf'8bgՈ*nHG#)dpNjQ/fA1n),jx FkV ^vI&HOلS1!VSMWp_(ʁ7&T" D A41*T &fb48ap&*IZ8("1m28>M?)6ɒ!L0&ǂy܄%B=Ā1bLqT\̧̦S5%PPə9sP?׎'K |RS*UGH0 J㤪pM W*Fhا35~h bjiW+4f7D焢jɴEҠ\fZs9_`MQ\8U2-sIHViIa V.#L\'fl:-?MΜ4Ů;XWG(lOtd|3] 3^{q NƋ|4^bxy߾FoKL1fKr9Tgc~~Dzn7H /􇗤<+VnRoեGwXw໿xl1lG4[?Kr%9ytY|w-/SrJu*ݲJ-t˪ݲjmY!z>\5O>/8Q}#YdJPV~c%@ Ltȃ6SHV6r8ez2i?8:]$XNL`0vAXpQd/tat ww!w1wK3/[KÒC~#Ӿ<툻DzR@Uu ѲoXХPXpiV[‘mt!:k]6JNVtf9I*'[a\ .ՄD DjI65:`U-뉣[Bwb#g;pň5b*88nLx( zCko@[X^%P?:8u+;^LbeN &;)]Nr(cˉZ^9k]FLFV{(xW Ԃ_vJkX *,Cm72 92Y!6Dľ  N|/:6H;l"bj}*p YdWG+PhlC/ph1\CsD@;a2oƧ}F9BJ߿~V`-M.!aGm!a Gm4keqTj N[k=)lن#˖6A)[) 'V}xHZI㮔QʤPkh KzGVP-b͓$5ïcnҫZ6`=*M,pL2Q{M - ѣ⎆^l;mUG5ڸn4o=|92|Nj/JLkXu-'_GU,Qyz9!:9OUBi-n}s gv4X+%>Pw :%VmClS{csTȽ:lم|z+m~ XtHV& HC[_ClY6e\_@'Zl1nFAC v. <.ɻW7OgWft4;Lt1r2_,_l!|rwz7]ˊRka|;9]òHkn1^~1O1+]GMN.g nBzmNk{//'cK_ ߍwrx1=]/'ѰH7-mA@uc7 ؼ֚lGu $4TC7Jn<_./2F ϋp9tw)QaR ' <[~KNCSWY=/~ vF~*!K|q ; rEn~y?6||nAt>K33|1"s,r>#c`@>ؔo_A_F?Ny1:Jb"<' jAֵn_b,b(K)[Ċ۳z_;> stream x[koFb>Xd4Ǣ(Ͷ@NL;ڍ-CRÇP_u8p$e蘖WL4GdJ ɤ ŤJhdzbҞ)khg;'S㱈XFIQԐLۀR1=LG0)JZf>A U20"ZJ0+ɜbNc4sր eC)\1hxb=/8P XT  V׊cģ:kÂ#´e!cQHzY9,[xUOV{:;,Xߝ*tW?C*jژUMzgv9͓kڞѳD7yϝtMOtښ^od_~/'7c_a?lL[buU{sja$Гˈ/J@F"kIU5C;IY7ddVU-tڌm!pӸG$tG_} 3%(HSp5扽^oe$ѭj qc86X1Ia4){8Ug }y7O5rlynJ\y$]*^ ;m*ط77̵2>kƼlu}"$P%3U޷ w5W~ܫ-`6kD;ؕ,Ө>`]ƌϟi-^bL5 .roD˺XqQ\CY-wʼX󮳖0#g89W݄CP_Y~U oүJ=FZnCl cc@oY[]#  HQ(JI1|-E!0(ze^tL.&Pהh1nn6(y~lJFTї&K}&M\e]G 'm"n` { S7bڵgLȭoO|*xװ,M6Aih17xTIi.kIIQ3O4,7_R=fӚsz'9( i|_OWG9o:|osMqٚ=?j'UJ6 :B-wՋ f_|짯~Www/Tt}yo֗O/wÃ럿_nY@ik]_7 ]?]U ROw`}RtJTDLZ^}S߷ug-N>OXƄ^zC%endstream endobj 288 0 obj << /Type /ObjStm /Length 2834 /Filter /FlateDecode /N 95 /First 878 >> stream x[n[7} bPw4ӠI'ufyPь#]Rb69<nM6e-FIb)EVEP:sĂJPbmF%*ơ(d!()(gqmTe07T0SE}YV8^b~iFvЏuT09wj0 >b2TN_Cj"F k5Q DEC2e^2ݓ*Z0XOhG7a `,0л`-8:0 vUǃj~1t1\'fW7ߨl4MfSH ~qz>z3><]>TJ ^ /]hZ'S}h./?Q'Gj3?^wt<Ӑ|-q>'#HL&g[lwySi-!edJҕִ֟m֟m֟mٲDvw9\oM_771;fXנqwes+!/.^(;XX81b޽Lq =LvI'.pp]]Lx<#/Fj>2pz#.1?67Vp46Yl<_oSt]ʺp!Z؁.+IWl*X0l(7i9mQXQdsth0ʛIh$@GG373Y2h*{E篢@7|P5s0^r]\MoB6LӠʵ {uDnCOI-59~ft)4襎,ԆZ$ q< &k@LR v@qnfa.~լstQ\gZy`Nc&a]e5Yre޵e޵ehW6H_B߆t-[/u u$^j0-`!%d"FBN,alLn hβ% 69u} ( T8tWVq?oذ:T 6*f=H͇*˪'0f01`TdSl\ۃ㢟o qfl [ av6v&݃IGkW8̂x K/s 4*A]_^68&ݣ/x7m0}7c4g^5 gC_|rUk1x~lI"FKsB N4jvXׂ8PsnHw<}@"_.k~?a]36\ sۗO#؄ x ݚ<s4騒^׿>{wHMތ''~d|1=z7JajFφM Wzp?MkNnߚvp .gzdD Tyw``hCɃaa_U-= |F/mkd|:rȖzя+f|:ILNNG4t VA/gpYS8a5 LpjnƢL3b'Gc4<+nU=6n8{uiu+Ҷ{GdEOq: cy_V[qg%LO zlk 8)wÌB/)oE 5oA/`.dtpAs?G9\ATEۄ EkY>ewXNJ%j6mpe { OGA+w .csnܽۑ "ϼ}# _/E2\8+kg, TE$sg sm&ed9d#ϡ|?0J6XspYgyB-úy[fF;I^4o^Ak.܃k7\I\;[|6z}&NQ8o,d\wᮼ,ңQ}rx|3xL +378+"'>Oqie;O[$o7w#mz9]w(xa;T;串5#bspQpq[g@F劭geK!y{k" <*T|b91!wYޱm$r);#,$InKh'Wֽ!W1\;DD9<>8<_,ۚlP {He=R0kx&&KW +!kskk5=w-nكCh!'d}xx`2<};ifJ7vCPK0se7O1)endstream endobj 384 0 obj << /Filter /FlateDecode /Length 3299 >> stream xZ[o_2[D,ƙ iZq-.%1.7$ײ~G~g.%'܇Zs9w**v/~*W\EQʤ*jsu͹XXm1te:͛5~84:sR(cY{:ϰn>]򰋣gݚ,ϝcUSD]=ЯT;s$Pή6;Y[Z[q> +X~k,o٫鑍27kAUjIv=M=vL;wۛimĉ\ꫲޤ-٩(k~ef@.؋wN#cKC;LヂmLS]CRZ%v_}ql}כ?z ,o'*\^ Vh |̏l=۴yt)1iLߎAu]ݞC\Ӏ3[_vqKFc\|{{{-׉$B<؋ ߷]D ܬ yUޟ!m|-gq"bM 9[+jr K\{AaMh>PoOM5wS :1Q`b:)]D"^sC4?L}4k USPy"ǫi_hq;=]/Y!b'0:QKD^fBP0B%.M'C:I7$k~vRLJ4YHtmƌx6]]:#r?8t9@GZ+xba_ݝC /  _a6b%VpV+K!{Vn ʾe΃wرwe #6Tn((L;ȤgtxGch{ ̗[χjߧ}DR(Gr*`:@QmWtcrOR*:t{'\>(NW}P6HN2Ƥj(*$L0jN<љq 폥EaT&W ƙXQX 3̾U 2ښ, GP呖VЏ#s>+#i`!KgqST+\]^FN*]-p 9OxZ DחY} @NcJÜ,ůwo9FYeNΧp O ]5Uh^qB?BT/9%X?9t7R*iM~QՁEPwȌ{ܬac,k~+O䧺F⬫[Ď?\ %JbB8;_6Tȕ4Zc(x# :giLa .b#1J=]-E1B"*>>ݘm?Dt9µȊ -rB|pC酅<H`Z>{/qoݟ-y2do&UWvw/C{-Ęb*&4D9a 17d:2U: sYI+Ŋqewx}~;ZI0&*gy~8i5l]Q$br(1*4y~qiJUJ-~XoYruԘ-h( q?^l4Nlcg.f1qfXӥ=E[9g/ 48kNc;DGjpuϿBbE,OO*CdDW,?!͔lWwv]xAˁXTq zeNgt>]!]qT|'$sim=fHFRK(`snӜ`x wBg3itcx ƜL$4$7U Mnz/J˄f|p~ <7d}=QD~}/Aex&=Y2TD4MY{`I#m}صu* ql{C^, QsAh`,~ xBG$kHY#x?(!Ӎ]lވ? \f BH@04s$_>'{A2K ʅH ^SrԦ'&gO9Å/ '}8˴?c?.~0{V_M&]ܔof3VD&oОa2x188Y,:gb%,;9 Oߝs7V塯>#u%!xn@0۱gL"k' 7#>]sC' - qO6mz5 D$d4jUIي`DCNk/3$*6?o^%i;6#2 T{Ra?5C3IuMU 3k2Z$K3۪ %QA%X"(o}nb2QԎTo_>|%9 GեO* ǰrendstream endobj 385 0 obj << /Filter /FlateDecode /Length 3559 >> stream xZrM_1e$Nc\[\NI[bRNIyd۳P ?HF_w=^??-ND}w˜kj#GjV;7Zpg\l? su#F U+ *!MD D+'D"jF'N14f7'ygi$0FQ5wXTBCn{Ԛ1bjOoހ%Dؒ8,I[3iOn?NY]0{m&,W !GTKԮqCIՈ]XuY'b]WoV_actsWmm^nU2R/Ρ:oDWݮvicFh_L]lFFW+ϓnuDZ4܈jzm{FX|麛KHvVg |MOz;ݮ~u`zpZOtKbKr+ۂ#[o鲝o{+ӔֺHPid5ǁ2A)XRPnj.1;oGfb(^4P^+)JVNZ *]kzOy-e5e] 7!P+.\Y(f{\ _)\Ҥzb!DԢĵ4|\SD"^w<gnm`M r: ׺`λ!d o`laV7«oTv[ Socwm , ,I+P`(*B9k3_BoÄtq ܱZR,PfBYpH.Dr})ϒp$q=P T|P3<]xݙ$>I`0 LH梖S$WHV;8o?`x!C>`0N$E*`ViQ 3Y.*Wzz}/AAY8|(D:$ .-J:i!c@Xw/vO#YāݳFe $K @PNГ}c5&dU|K bHD-L=dEL1M4mj[kVAm!ߞZ(1 Mz@\ڢГ Z$. 1p6{v5]OgT{TLr] }IK, ӌ% P^_^3f YPB֍,nFE @ƁQ DL9ɸ{e+I(Գ< gÌ2qzO?i-T/r䞫eܞ |FP̢W g) {d&̟*4wVK. Av P 끿9='e^eY+{1+dB+cH|$,2Gr VsXiSUb[TKe5LBK<,&Pv;tyOSZkj>_T7+E%ZK*6>jNWڮhjN&fzCh:qtp[طqپWs FDõEn"͢=bhirFEo@R pl-Ȫۤ#tSŇN2o]-Im`i WM`zs; Vq15z f|B u1?_bY-^6 Ey[# k GbJNԠ"?UowmWFw/lzsx cjRo3bnA%1T^bλ JxGe/sx`&]5t]$`8'Ff9R[WrII@ʄ*i]mMc|54ݘAu?0@Ԋ#Jjqt-3>T~gYL*uoMSLtE2ĕӡol“njĬ'%?Ow7eE k rh"59|"&; ucN#ceOcZ 788^%=y4@Z#T"IIysP?uȅE;:E]WcIcQX=<^&O=W(ʝaņsbQ ަЗjBo@|Ԧ0FsjNA>kpe}KUl:L8}<үKxӞQӜo|.Eyѐ9+R}!f!,*2Yi3'‰UouOӧ WB7K A)҅l֪ޗxlB.-:Myilk_5 _)zvO[%"I$~5T1D_89m]b1Xt6}7EpvwFQUYhВ&Nm81H{m tj;-udZ!V 8X};|Fz7čj_P6܊':~f`zF&7Ph֟v0o:R:+G:K:(]4`L|Ȣ_ѡp1ѐ'Fz˫͢W:vA|Td8 @ DQ6cS}yt7pkrOppXr9ELpip1"[.ͧC7S< P|̈́DFOP_CPttx|r r}0Lj3&e'endstream endobj 386 0 obj << /Filter /FlateDecode /Length 2767 >> stream xY[_!/T>Qpݸp>L݉%23zsx։"@,9߹}yI+_w{XsfLVBj,26z9,Z[k+k,y+f*J%8vq';ޮ]dxO*K-Cu[sYa '/]['é6L KmUnkIe>nVdLY+ɡSEe^i2ݵL^u]1ildf^=9x5 &wƨ!chЎQOP9"knDeZ>>~ 2 !y*EQ&/lah(K A`JI>8RktyD f qa+1#@!My~^4c4:3iETjrn ANgzi.h]ՠ܄H=c[RJҫdܷ)" 1,M> NΚ1)7{=1nhv#7hF3LdY@(ppx`ߵC3%Ss%m{o9q!9u^|8y'* fsK 4$t CmLAޭ^8e:6&Z>! wE&[>M@kEi63 p GС 9g(^ [Nx {B:SKۻ8FrߙAl~, @ ((7PL)GRTD"@DVkF)%/nS Z>S5hl0QavNQTשWé\~eH Ev~,ug1f]X|3#PJ7C-AR ^Ai&HI'P@gN -ŚDe**üYa,][!,H3b0&̠5<l) )ᥣ?R@Vj ;0N^"+nf_:S 8)twϞ0iS]2|^O=+ԥ"MalZ.)$( 3_l45X @wo1naG, c ZR pV ˞4iaXxx>'ZUj6⬐gfr'UBi ;tugBah3~+OB=Q 6S#xB/dSDM4Di h[MiGx n޶q=a.^I+bnJ; S$yE\ʾm'D>aDb uiDf2X CsQ6K>nD,Q-K2,K$ɌYRn> stream xX[oQ"zr9CY-66qhidsK Iqof8Jmd_yyBffg·wy2"Oz=s'+4g:_of"yQE.XD)} a}lQ$qµ=sWof=~N64L[pXpv$[g0!- [H屆U mW;OQ$ӑe`$#eH& F ֤ӑ"l\D>DIne2SH\$u@$| pR;_7]ٚE$W)$zWvXւ=To5ݾik|G]N\LEEˌ"z y az]81|s={7j0ì2y2|38SϮ0Y%dK5`0*D(*3.)<0H8 RJ`eYU.ðnK%\6T EϝvM> ^n9=76߆][}jsg~=c/_}_Y,Cƣ@* 0l>v%RS 3_oFLA+$-5 9-_Zͯ]}\7f_X ̡O[(I.MWeݝ/~7H{2BRKޚUUkLEUgWB:pF(EROѯV2s"Wi ZkjYXH:=VMW7e_^oڶia&ް#Ӷ7zl}PEݠ^% 5$K IOe%i>8R;% ᄘF\ Щ̂i,;&9 BN8BށΦF0:E}uWݶZP @`ē$RЬN-dT襓85 `.G(ű\H!&9TC'M爥bPѓx^L 2~!a4=ba_7B6u}]*ʨP"~V5 ޛ5VVE~ \TIJ_F=p<E_:<~uf5AϤEvo"}bcQ-]01U0D/^zЩ.<Guk}9u$!Wl`\Pөu̪EYEXvk x]Twv\Sm֡˜ꁜ+)[>wwz^TлY7HhŞ#Q;ou&STa|"FmBn(B+"?Y*ܪ\ H~6ٙP;.nG!Qͺy0mBwag.B?j'5nd@o|'[ L!v'Gƒډ.qd o[<&"Nk&ON';z'zysX(&7|Bj,,<ư$ԗvt&Q 蠸j_M)[)w2!Gpo=ɕq [-tlj~Pr'@l7pzh PWұv3 E?TdiMuMQ1S"g=r,Ῐ!%l/i¾3}]?.2\y^~'Jd,¿iz*ݦH C5]AͿ5ԖSXz H$0Ŭ rLRKmZp~`K VUy[۾(k]e%ЌL=@'_%s` )Eb[6-ʐi%A")Xl=ժm婷>c\{ f ] "rߴbV3u?=Hm]O 5Lf8z$oضi7XFP]+M:\:"|j4L3Q(2sbXp:Vs99?e"pu[;s%@L-wm^i ~xo,m z0: ronm6I"]r4''DQAc%<so~p[ 幔0> stream xYKs#OE_@*DvUa,L e^ p$Ga@*BD w߾'2|c;Fxbm\y ,d:R}/]y*iґ v PEF*kL@F3FnV -D=5|v4"mɑUC% Ob/{~Sp5˩O"@057ؓݎ^zY1ˉ.(Qd0z•aP rY56g'?r{Dp{Rwwou<]n4tZw|giJ:=F>9 M)l\kp#:+ݠ~ϕgh͵e9L/^ t$Hg!WOGLW F6ף1laؒ=Ç<#@o=cdz+Jg?K#1+fTD"|f#93An>%[H2E{S}8yU7÷.ڷmi:,H %WW%g/\N쟚t;5_Ibfyp~I}d(jbtd%%?ۇƬ'ucNnJ (o… +xy^M t< R%k&]l{T К x8}!Gx^_oH[лp dp;C_,'  YqiEi`v#$T 6.)/endstream endobj 389 0 obj << /Filter /FlateDecode /Length 1361 >> stream xWKs6Q1 8mӴht{`$b+ IVFpwȌN+}awQ1~Y[7ūeɲlu,D_ *ɟ!נ^VA;c~l0t@JFV>gm_}xT1Ubi1 1 zy<#¾s9}Y-&^Jo9E xfnT Gi7C"fnں*ٷ ncΖv՜gx^˞b\yBgBђy7DY?P1װl> =5gzS zT蕁M3DT8 Pi@2^^/PGZAVLE"Syv&rw( nX5MG!5fiT0 k,d9[BflitTa|vp>0mo]Z3jL<&"KV'2?=_0VxdeȗUn=~|[In4#R%Ԁ@gf"w r橀,r/>p4B ϻkR! yH{~`\%_%>s:qBp3Mpc9n)IaBxa^endstream endobj 390 0 obj << /Filter /FlateDecode /Length 2973 >> stream xZo Ax}> @< XE?HAp"OG;Fv?oDʵt;;;3;,,輴v rP]ͥ0f1-Xif`NBʹ4** TqUpg<@*`'@Tg?(J4V_~P\Ft~u7s93hW5a8Yfg__;rH2ĉLKřR5i*VWnJs+#P,q 5?HԒ}Ү~LUVC% 篙}ݪ?|z{C`reYm^]w]]f=~7x꒓) IR^}wъޭWCjYӍU%H)91}42ok )i w.D<%ʔI@H$@JJ\8!N%e A~cH3)TZh)Bj8#8<0aA[@Fɺd{3pCnWc0LA=FA:bVXsl %wDgYڱ9uvγPoF juK/ƗԔPl`ʷ_Y QBrpyTsl%kheYo~Ӯxa&v`I!O]]kX-KZ T5Xawo'aHaC;n."˜Āߴ!Šwz EفX(I(ב$U֡e`4m:0f`?6fh84wo$c YTZOCi(_qI H.J{<jj^mF oU%= U=i wA"TOvRjal~`;FXFBEc0A~B@L1YEh!_@cNh̟Q Z@ 9 K/7-T UZT[Ӫe)hjIųA@R97zuC%7! &Ji#RHqi9E'HT$A6$ >p{ Di}e}>?ERJ[mZ T ij/DKS<ٵަMh,eA'Fe O20&?E8I'\r9WW3IÅR^BYo63ByaAmהnmf(VKoqmrPA+H|@-'jwcX"kIzNtyW*^TԀ=IK|RApKSqmC榰jۂ-=Z>LH<a:ZnFbBtbp3Pg{#8y r:}wiHnbuF`fXp;Xvbn']}3qI?TX ķͪ>1@Xy˻ny ?kq`LD]; W9^ koE)VFCh!hbz^pM"a0[nv8Hp;ԯd*͡)lx " ԁp]?S= b H *w~M{%n@\$K Z\{+g?!v+л5I%/BYIY$sDQ4fkK4]?z ް<5]FґAn,ePCW߾x7 rX79|d_Z\^m?LߍDAN JiുIMo)G?Tٷ~ "??_DlmbyDq ij-pY#&TDe Qxo{8Ko-`!5%C"Ą.k٪Caɩ:mM\ 3 o|6CX?`f[wfΊn-0W2PEmNUZ0˟B"73!E1|t}$˗1G?߾+{!9<[t)>iP Pc 39HrSI $4jWAZ dDetY)gr \27utKP`$O~֑^AMm_ϟZ:6.ˋ">-ILT쩤Uz(V@ARMŇBΈhŇ^5;rZ^DuKݐS陨Rh;jZxM*w0?sH3e~?,?=endstream endobj 391 0 obj << /Filter /FlateDecode /Length 2462 >> stream xZ[s#/c҉;NNIu>JbMre>+|9uqf|%ɔ3v|2r\6qE3d3zi5iEA3σPO.oɏyCTJK'&|d3pEӒ\G 2f4-z h,YwtnsrBޯۉlج3wCfN*dUMǮ8M&z22~|ohܮ${GDpI"f±V&X%ah _sKx^4N'.!lIk& K_K#= uJ d,ȡWN&Y10뼭2\nUdw=ho9`YSr#%=:fBuC2\ #x4o#!Y|u0̀$C1tSfFR0~, ǨfvlB8#M}F(gCNrS'c΂mV+ W]br/!RPf8dzم*%-(?khZQcаA Q ll pǓq;VDX˕OO—$ְ٦]u+dnc?OVsA6!ãL՞:;5K$uf6oF> c`H8%rt='P&(R;T/UqH>K,Y6 "D6UCt=Ǽ>{a-T`S+r>(}9 bCRtvN@O(P$ʁ}UtzpF@n&"L }S>Ntԋ_տd!MjKf K̮ @Q{&Qp/Ctl/`#ơ#})Jb벽n6tQxuy$.S %I 6.4"ܖ@xq X6Seڜ(y1/ČGzN1D..5SCKToU4K*jWvDYj2)*bpզ.xˡMZaqF\#6Nem6HV1jm9TT.WĪrO'Sa j#T|8GbÈ(:n?|ei@HJ]eT\NtYeQPz%TL=(+X3 i[<#Zf6j,ͦUL: 4\P10oWrSCun9 *|\ZJ`VwI1<~Yc[+[\A)nwJjy[:tZ֍tۯA!ꎡ-aQ6tJկ֮ܞH~Z9j"y؈T)R#z4"G<"UyT)9"XO;&<|MH?*C_ ?07endstream endobj 392 0 obj << /Filter /FlateDecode /Length 1660 >> stream xZ͎6zSHkym m!A^5&"})Q"ݍԕJ"g8|3`3mfg7jVWh"Z̚W(th(TE OC~/j{R2Ɣ':Z%y c.R@yQ-'ѫџ9(+̮`0 fqΚٞcZ;bD+w!#LطA89[BPLbmeCvekeaV5ԷXP14nK JA͍\*Usj噳⨼qBаF0Iٺº\V U,6Oj a m&DaH$ 8iۍN:m1U0?aXְ0`cnD,_NRhsYoy,ʷ{pn] "C+x`A'RI)xPK TO'1vveGQ6hH-BЇMF%#S1:fi (Xܘrc~y/ aA;@ 3j[_Yݒ&&6a0!yMDI K_8$J\ 2KU~y~L1KdqO[g$V kYuZ?i2u 3>|,RLˎ1eUKeow;`KrD6{eU 0( "*T|MGmk,mzj*).r2pӤ"pt(;fFR=SΪݹj L]1ڦu %޴2=aCѳF:+&[<lPa1ԏLooDz<1G_]WipO#,< ?٣$vz_-%̚pÅqsoUu~0rbІ:No >Y!Z8oXaN 1{g;MǗG<[asnl]jCrJNZ0c( {FѮ{9iըendstream endobj 393 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7887 >> stream xxyXS!Vh"6Vkq" 2 LI´!@ HyEqBuVɶ݇{>y`<6Fyo%nk'H)=rx=GBBݏyy?=K.[nzʢV9]k[mK!Vonć&'v+J•E"vD$1"+īFb:H5B@ \bD&HBI 8FHbቑ#`'fk'^qϣy_@Rs:1qĈ=vLarޔ)}S?jv^RynǷ]Z`@&ʌ;f~%/(|(|.r9EfJ_NkzgKffx}멯+~],$Ul:oDBôѣ{7Q/Ac r+dSDoRDRk%KY2'y$ "'zeRXH)I)XiTϛd+3' +(0r]_$ Z)` *e>MGo 0zp~l6CJrL*OituJgJu )Q! J[ [rs6tNJ],I eh733p 7/TcN ߡ9-ǀ\RR5Dz3:["pFyM [pǕOp`KM<!L!f)qRIzl(QtΤaR'Yl?NȺC Su͏v̂ˇFj0._wuؗtpBx!ǀU5K`XdH-_H˥gs Ќ"1r-ÙKCIт'E#mND~nߝ|S6ʵsQRr(L &]&Go$!Zԥ2P,喢<`9 HYO 8y & hf`/ڨ幊p^\F\[yzcE?K7ww`i0DRU R`5peWb&ō+O_M#.G:+vzF|  'wíѶ4F ES`vl&?y]PcEn5jHB)_vd0,6('4\FUkz '}|/ Os%*=e"A;6pooOc d07@IJN PHƅ:VE%Zh^VQpr-xo<93BUCx٥`Hșr`J>vPm|Ŏ/@v:~cɟ-p;#^ {]I=vR`_J&Z悔>M9EQGzg0L1kuEG𓧿lιkdf ,@H>:NfAfY&R} 5RE jkY}KXPT*=+1D&Mcr|d8-,D£E+⤚*:-5FS^.FZ,YUxuN?T|˞v ">.׀:QwSc˫XZRt3us!;/$DkM+H4 ZIyuy0( i.MWZK$EЀTCտ F( $׶~ 'gNona.iI3Liv4t 7SXi-Hl^Kӧ4~4Zץ9Y, :Kj 8Y="V'4@tT^vQ?# a xC$ n7bmRujy4l]lԆ:<ϣtq /aw;ax ܊sğ --2rfHEtB^ >Do)9Q>I]uu>3w:eo/>mcuq 3XڠT|ɫ p{<<))Xv#;#lδjh4D8-PEf[Nuf5-tmAJ_w v\plM)]\G-1hAURB_XkRKc1$&DCb.aeqrUg1PpL "PYlj7$)@T[i:*_Cm#xrw6q/>30|&}zwXd7c}I7;lQ(v,2<+%U,Cy NŊ L3 (7vg!qa>N<>U))dҼrIXɼͳL4WNݶZ/a(&mm(e&s'\F J, -fySl?d2Q*US Q9$AK}bE]'ﴟht:Fs/40GYaL6ddY^%:3-4(WԘz),.Gͦff7  vt A`CԅN]K GHMC\sd~;p(ƐZ ^D= vPm^ғVIA 1,@h66+vȟq |l8ƪw1` =o"&7iqЃ)^,m?3azO]}s.hA_p/S 6ö &\\[)t=v.XIl6${ :1FMjfv?7[Ҫ]^Өb׉^Tva6,<gM}՗GUЫi8ܿ~2_@kӖh5u/'#Us~Pg4A惨dENnx%.pf ʯSs0F(ZG%]0٘X(1c]qR׺aiJLLʐTIv^wHT : HP ʍ+VWXm6[9tnkS]K  Uff Ztu2d#ކ*$~+X6T+,#GT+ߋ_8~wZ- z˺}&dR`FW8eI_nЏk݂*pLHŰcJOj%cxѧGX /^@%[ l`C)kƒZ[/8 =εlHq)uWkRSG5 51/ >\Fxp%c E>IA!Rl,,'[p />p3{Hē'Rk)INV/5V|}7L$$DGW&7TU6'TE=ΠcvǛϠgֱzIL"3j6X i~p@ H ~v+xPMp2? }7-w=Fʫ$ /6~[/ ޔgsJCMR7QTxߌg- n JL9\k dP`}f:YQh@4FYEJ(k\,1;,p+=@"عG X&>PYQ:u³$AeJ@Wz76B:^5Y 9U6l<(WkC[LJ?Xgfnf[J9gM])81dff2EiizX*QV2a :A/aCͫ E5Ry*8G3qe2ѸNsFwGjAR\fDT]*- ѻ*`X#5̲(qp،pm^<{]o+0 ڢT? *`c{d⬔WtѰ& PKR92pTc_K/8KPܵڽ:|S͍U.,}]A=)b̬8WX*{}׭"<>_CoŔaSuKf@oS]CUcNNk ǩ@ >ej̺US@p]%A}"MdEe^E 7 lc1Ә 6[ҋi44y>?PUtG xv!mTe6\̏Ӫ /7=?y>tln4 \a'7hpe2)΁DFD5444FJ$*b|vc+:FW8dZ`|)egź,Է`1{3 Hv4tG0M<p:~}em:! T-oX9+WLEXn=~+n_SP%yyƲ<̪Ep AiRi vrG9&p-{L GݕiiItۮ{?Qq1y̥"]~r}ZūKVbfaaqp n{6[.#0L ~!.'v*cGő2#I}XsBrv\SOD5%WJKl45gg=y~O, p I"#ǵ|ʬ;bDT|fo턭h >\D?  u{v Ut0rg\1z! /iFy&= CL"u(d2 u1ް6YfW%PVS=pK:s*߽ MQ17~]p_sx0s(c ,Cp7c=0i}eG7+䍈unhXQ~Ogx3ywP _QI`WI|:@.!%xvj3 Gvoysta*(m*jZ;sه|$Ђ2mr9 $wsVxޖ;0=HaC ~< ӏ7_Z8n_%bXm;Ar/ _S nwӧ'ˇCyzx'Gtg} 8p,0v+DxiJBebpr%(MPi{1Ql7_ЉH&/ 9i>ĹҞ3ChA"4uZtQe݅/^k+G,ǩ!@.fr#bdufC#UaV}?X=2B??>zGi5’fZSݨ;܃q5Wڙ|p1o=}xGi[ٖG}=k.l p|@~8J> stream xXyTg"S*+%օVRںե(.vK!  &˸kөZL;Ǽ9`3{埜C.=;]1Iʽq1V|K{:xgh3ruBc[;AdIظ)$nMږ=%HK;;{S>5)Hufh\,lv Xo(aUVnCΎO ܀1:Л*6;1 3"t:#uqRb^q0s!՚΋z[9J\_&="]-[9p>GћJhE:z1͆n1}ƷQӇK;ffc K.%?Aʀ:8ӤA$AIų!ػnHADGff"<ރ k]Cgcz{oȝ[=xR38NW# ?D. @CwB5pLEFi >Ad]ܴ`)l4UH*fTDv#e݉ƌ}鏙?7yiJag% %"&,z:4+Yy2"aʝfT%]Frm-,fRyl7uٵ9U⸻VTI2n)64mv!Lםc4KBAk"H A􅋹ff qFvU U֝튓=*C*їpfkDJc.N S9 dv ߸|vr^ukIF3GhInruD[EJ% *fi)j%]V`.0:3-.`PɆ\S^qԩ^FE_n5b` >/g0%-,H;^QQu㩮ERsiYml¤oi3 JH3rs.;ưp"RxZ_'r<^[ Y; K [k!ZVb_;[A'6\|^^) bTUQ(z 3%D%">\V ’TS"d~=*$u - S-FX81Fp JF̲_ZZt&i%NĜjw_zf)> <KI/<"M-)9 6h_vѿvk3-"Y]Gc_.78hqЫLZ4 $t)pۓjӕkDJ8JI)&wЁc~DǬHEmxgoE4&%1YGw ꕶoT[>N}>^(xr+6T>^u^fSڲZsVrO:7sOrer(06mb} Z\̆N D(hrGjkV[J?~Wzxä/϶>)հ5ўզKTEqE5o  ܌-,[ġ8y$5Oh`>YsO KLcڋJNts/3Hq{r?QNCNo.V oL/Vwdks :W2Fe{yʭ>ʀxIRDv0Z b~">wj´vc/[>E` ~bt&|ҤPfqЫIb{rcj*ھj N,!QLgoBV4Ay}[W ia(.ŞǯӢ5 2 ܶ R'WjRVLJȐ >z#۩+y nv)Ǜ{ajEwƆ秢ffV@w1M?s_C_]A*O}فZ…p#'P9 }5:vg՝ ~^JP03\7 dA6݄5tS82K# IH;`PMESf%.fDZ&kgwÜ*58R kߚhw G&SāvC i Hkԏ``h@֙KO_#G;Zxރ{کTa'$Xv|u +cч:r^v2}pv^.1a>9(~DŽ52x&3#b삻.\9`&j''bODn_~yH,û0u&v;1j;=@H mbFpu9 RHa~3gm^xC A[r.tds\ tl45;J+$JYJI$\⢴jb%-Ĝp;q g؍Zby[[3ok?ԡ#)ДȸLZgԇT8T\DL{1-8 N t}}]5 "zwm biWmi'"ѝأGnV,rIhw51xeǟ?G aiuol4ٞVr}}թOv}2sG@$psg,{-i-ڽ@Ϧ΁dbױL28Lv'2O"3_g4e;mcK8" lL@Lx"oa x ,h,ūJx4?Ͱ'NΗSJZǮc3ç3a%Xt¼[ R<^s816S֖=CLKK̦'fǒepvko.Uz\Дcn0@ż/<1WIPƩe(%Ͼ "у='oLv%삧y_ؕ~%fĉKk|dz 3,6أЇVyǻ{s$hN-fn;po/@ēxx@XR$ _g2MAN^~v*Wīg5D:|3ڄ)6.>6ax\#W6KqQ{I&endstream endobj 395 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5340 >> stream xeW TS׺>HINmŖ4%9vҶVvT΀82K@ s I aEQĊk[ovݶzn}oGzod2&QQQkswEI{YzvRfxENa䣿(}_ĀG=dg8dO=y^\dϦ J+JWJvZ-M_#\>9OoϘI눅sD6?gE_ni9 |P1043u`"4ub-O7א/n1 X- }GIΩ+0uUI"*WE?x03'|6݈ט5\2zEIs'gWoOJZ잙ڐY[=/>r7v rӸ38wD0Po-ʑ& )l[]Qv5\sxn[yo<wymJUJk(ܶ94E&1RA>V|S}ACkԅǪcǎϕ0DEOg2pKL)KGk *{s{e+(m͆"_{JV=W]\a8u-ghJ"w* -;x"l>WSm6z6 g^)U;9;2o:x-tjT֘ g9]+佝H`Y|-f@Xq aXj@"XQ5;7r_[/SN24v27:P=7d€e*jCQz]$fٟg몢~#"@U4TV6ަ|{-*b8v-̢4CF9(g^5U Ϛc= IWktYZ\XBK@Jfהu_8 LlAtz9(%95Ҷ/p7P&AsV@ Wy;Tfu//ОT/$HC[X9ffr+m<}BV=by=v{CMg@/QԜ/+KiTNЀm+P<>cV^0@oՙdMljPG,zhF7:m,$AC}y3ţahV&i4>b7`x'qrQ*5Z@ .w~0Q ;xkfz *AkNmJY D3U;z^vYD  M^XT++dNIO=wr/Bq H3FsuZA*Wi[,(M}1Wnj8, 2/ԡB\Z+z^o.mV4=,ɗHՀoƥt:@咢^=5D5wOGyToc=ؑ(m4421КUEo[===a1KGx~<񲍻ФanMl:f0@ +R'2wby+G~L{<0?=AtӟRPG3.Iĕaa^#ex{g-]Ѧrly'\m'Z\ـAhTKRVU:%0CWj@e2qq]Y0/fHPԖVܘ_Br:ԪZYGH ɓ^ibY&`ZkahUapTM &'d72)ojmޯS-F+-z%E~ECs8th{:싦W>IE }7If41h27ԙdVVd5=3A%#z36*̄M ,㝚8d1S; ;͏\ZhA4GOB>cr~ SB'H69:C.e R3 Q(Zc50 LjX-H;QK^%e ;bfo5XU˘ty)kZ 5:oeu턓_[1L7 8K-n3(JAt@bO(oǙs;~=GS-rPBr|AicKN*Zs,2MWC抚}3ɳ-->ΒsP,@h!f0 V v7و؊fM%&c v ? FoQ#OW0U,B3`>2;_s{6IlERZZ]x .K10A뽀kԛ2i-X0ښެ͛3[mȹro/jbw lO諵Fr;<ONoHa`[^t*{EE1k44Y/ڇz[Oɿ-:  .MU,{5!E2l+K e5;tq]uvnW]9y U<ߌyeFUX"*z7(ҥ JVJ|\~vo0ƧNo9J (gCT[~!D 8Dc׆V{{Rg\@¹_dq{kE[sTiexP Lq'>Cor\f2OKH>Mz+TϵAW؜r |I6:uz6ծfFfVYai^_Wߩ}֍ӴO4aidܬ(H7n5gYayˆ@ o,YيrqQ78zѥUe H-F9^;A'p#0w" U1?fWi\DE< Pԑ+Ѱ3mlAxtA$dV@v A)s[()ϫ-mmoi-i*LELtFBCmx&YRjbԎi-^R`tj[7Wv'.YHHSrWV󛚴d͆vL[`̙}Phw]) =럻ƧD\+k'Sc: m' "zƁ[fcBOw U.H1FqŎ8YdT0Qk(ERJ-RPڙ7O#gР{UtXWK6mRU rLPf^j2L_fREC IaqG imM6cuMY+M7"tEE28U*og\t;!9mv8f_&4J:[vku^_Li̦=٥2ltFW&pcbÉFWܾ@,)Ե2_q?n OGn=,X핆y8lb5E1XL"|M527e<{rE‚֎Ɔ|O\8/AyQHŎJlf~鈻s>z&iwe}J=vto~Ȼ;j:?qhF;6Mc?=M]%] /_X OwpIǦ GԕTW"9{U^qd͑M==k֌M\|~K}5YC]? dtdەJ&XDȼYgo0so:t?_piq4^b~G5 ;OQendstream endobj 396 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7372 >> stream xz XTF=;3-m5#/yώiwD3\a 30 w7TԼfz:թN_Vfu}/{w0\Ş]~;.Y=뢣X$ A0 _; Z!dc覰["Fn{i猙oϚ=G6w^_˂q_8E:e45zzOR Dj#5DM6SS-Tj+5FmQ/QrjGfR,j%5ZE͡ޤRy72O^Q|3_j ,NDHmFQS'Jܨ1zz ĔzJ=M-Qc.{LrUzmU i}jS?~:}03=S6G|lsCkt_ DGR#kFvkG2>?<=#=}h1m/ļ̋bC- ౞c>k>~ &MvIIO禼=%sJT辶wNkpg]%6e4 HcAȔ4HNVԫ9 ]%z}YUWрdA8U(* j{4%%yX N;!F5(T1$59h7}e tцmϋNmjv-ȵQ9iiGr@UfuE9w5͏A޴ӳ:\&IJpbIɷe <VdlPNn,^QEsϡrh4ݹ:9*uR%$23Kȥ/j^ۢM!2'JmӢx^A)vK1];`ryh/h<,D <Ƥ}y8߳ F_XodcK:)xFC?{[%"DKEs|b\^R|OWk)m؋E^S~%XX4&ujƏM]%&Imr̆n\En+`$G!zQ#%ɝ~ss%+7̝'y{\` * K}(ZP)|fq}OP"W/P`)6B=T$T% ^zT^J-$JK#(-(x:{t7ZLb1]eE7-Ctx(_гʛN[j+,P'ddfh&N 6uKKRV/n2WT:ISf(JPSu:.UJc SؐІ6mxts'Wxx=?~<&(.iO-h] >髶{I M٣Ь$7$UA:|:o5U5T-c7'`sKH YnZs\kp9%DszOo#b[Dh< i5 ;B؞S rDZqZU3 y>}`&|t cОE 0%9vt< x8I4i])QPE@!":Rl8.4~Nȡ(ZMC|R/+SA-0H =곭1d*EZUPB>WH^VPdfr7 :2hZz]&8N&ʅhR<ZN6WA4 녎3)llɁnFRP: Rr4|0z;!zVl_%ÈO`,Ai~<\4 0L}M\mL*DX!^{]$Oȗ)znCuEyfJo_V p8yyzWA?|=8L]4! t5&[`0mYeLNQ5k2;2u$2kXʃRS,1D7]@WJԬ*S*.S{W=v$,xa^~@ZЃ)?]vX2*-{=Q?$z Zu2sqG-'A8;c[IK۫[aI?Blnnlsߞb/Ѥ@a;v2JXC H,MF28U̼@w!Nrk+}^VsF|X5&F*Ļ[aDehzr$kCq.D҅xXhX%)jD1vh ' *ʡ& )4zДq8 +kAl^HmaDvu’?^dȋυ Q.v9(g`f靎m3HJgy'a}Ȧc'4:O1? ]l%+$}t*0/pƒ.Ѥ|5\OT5t6vc/ h8]Pe4A?zv75 ^ y">Vj]|LB8Nٻk-Et o{ь:k\1՝~CnMi[VV}ڡZڲܳճ\v DCOGNDu_4h*tIOqp*ei*DC!JWh!IK<Ɉ? մ' )"47o!("LY1YJ IsIoi{B73%t^$ g\bUlj-;OlZoPMeOCSfCtm\i(Ahzh\\tLh`\\W'ZgHn4|HOXҀ{r/u6216헫O@,e-X v k7vxb'poeB3{yh?iO8SC3BK,ͦ:>O6TLq)'fK,%UM4tkxm]ce]nEbTau:ȇQ|KreB^3x1oEA1^T]o)4NjlFTrznݘF[f4I(F+Kd*sd u^B!#ڥ;FL3Wdy!ԼBzAxev_nv:| }B4BEVYzYLebWb4J=AѠm߼JWpolqO1]{>bw?|t.h`$neSV~!XVC}kcp";ZރYG7v>w = @ _%N|ae=@9{16B"UL[!o4hKW d]"'ՐTG7#oǜ2-`Mggfd+ J`Z$9h2BCX_ٵ v#ShGW׋ wyf$m(b+ӍA/-,ěvo.̰op>Vp]1jf:u^}~}MxUZ{.ºa8e>|xE-9'!Gmȕ "4uIXN=_ %>vEr8YBB-+|^Scb>S-f=EIPM F#{NVD3;?4%r .銖s/{ [:V'N8~+v~ȡ́LL Tt͘'-'g}2==B-y;Wdc??ěh2Y&DR _198PLlMb}U쀸)/`*mFigKvIDŒHǨ3Nsr7Q'b#b*ҚmTJCA<.MX k 0Lj&:11zh7M'$֋pu.n#~㈥h8z"qߑm;e놘zSI^/i:d-Q;x UuX؞WUM< O4%{l"!i=Rq.3h{P<ؑWh y=tVO4@rVzdYd0n?Я}8SV~.1Hql?zw/pwp72>p&ӺeiUM<.Zpy¾`./hu`|ܿͶE?s Gvqf~Ajf‰[Em[7zeh$uέi~P4{D6]kj={Du!lv_Uvo[}N>ۂuqzExVΰ҈<>5oy{"/. rG̚Ep'/-T+I$$D=/}u˧pn#Ծ|Z62X:W=-V !-;.8ލ֠K#&n=[Wł&7:/XAyyڨr:7 "壂V{  _"B\5!3*؈ >hSqIyx&-'t{ > RhoAnלc2KlZ^O.N2>h@:*/ .?:z#W928 ֯a-?y\צ@?{ֺF)u[tGqes7h)Q!H{0_ U^qّXKy]c!4mGmOK)TRd0u]PԧܼM~V*? [n>ߟ %"+2fo'ZڏFYv5Ȅ~xr%WVV>x aO0l sܺendstream endobj 397 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3027 >> stream x}W PW-*f:Q"z` ( ( a@EEERJD<5Q&3eWtkuY6AzcվiV(P(’+C-2`ڼZ˞f#7BPuT9CxWW(˟eSXJfNjڹi_0iQ%3}`џQT*r"it*򤢨hʛQ3T,HRq*DST5L P*I9P?Du( M\."J)j*]=L7&]Ξү.&ؕ*5k$7`vvXX'8H-ƋEWIhmnCAWs7(mm%ř|k;qň+"rճ& flƎd8bG}Jo4_/* ¬-۲t1˃y@'r59YE[7 ׻Lgؐ\!N0pגԽ@*GdG'5(5eK rљw=O3S5\,]R ^&1\{xu3r,g +dq#m,ݥӱ郸Y88Ezꄧgw~aDtVH126n(*BEi< ULvl lPdO+ 1B2mYadr~)=jW( &^&-)KXWU.e}r֗X+:$q߂,Fk-G2\Z}fI1)*| 7^*/_/ 5dЖ܁EJ:}pXXHP!kS1L]ޡ՞K-é<x썦/_5}C3BmǫK/ Oܘw/}ptk8 x,>,-DX?gfܒ! `ןȫ7ˎ־wM ta)3V} x/N,,ؼu,M4Lt Th8Ą\4٥Q$I${K ⪧F%Ot{<|l8!O|;㾆 )\TZ'iE&KF5Sjb^Cexd1d"ݫB]J*hsw:pȧcp?o?|ЈU"="DmfY>G ;҆Hͦ-:!d,ؑ"֟_2{ a<M?wW4ܑj)Q+Ie^Vw3ut~eji,N!v>c=Q~z#`<љ F0` 'NDya͌D# bl4Yc6ni~TVN>-؁N d!zs՞c~im:U3U.ܗSs2?m~NB` 苲>o=$;"IN8e #5ݟכ7MU 2-4dn̈ ]9Tm|~nNnωwd,06R5Ai{5ojI[n[y [`h=mڤoQG0m8#L,- Q^\&zdt 鸒D lFnŅ6GIj-±eh~:;7)1Џd8O2E\A竫n=u͹lAaE;yAy;xr8>l`^DFu i"l+QNM4"' MM#>NV6v \ uJ ^̽ӃO5]LY6MJPs5!> KW.>$,4/iƤ뉤'Zg @g6~Ѷ*ЕZ=xG5+ȔyJثۗZxU$mLN 7lΪM{m_ EV=Yo鞡c2{HQ|BPCaIH2$O;0+}Vx$8{ВL=pMmUdPj> stream xStandardSymL-Slant_167.rzx    g    betaepsilonomegambew h~U:`N2gXiuaQi3tvrmzMtam{hɓk|v~ɋpevmtmwrQeVMVFec|ŋ V״2 :D,ەѵʸQ;VoRq{|sx{xxa?9'_PAYYiK~_X.'vLfrC[cowƭtyjXjƵ{k|uG.L]}ldgozlfjmx|c}xywxvln5MɴB~\**@{wc<3KLxgtr|qYj}ܣΑwiiwaFZkH};jaYqrxɋ̋ܢװUhl~8gV%!ǺϭGjNj Z>keO5 Caendstream endobj 399 0 obj << /Filter /FlateDecode /Length 3135 >> stream xYrF}WiҜjhYHR<@$$"&|wXH)?z}96?DR_n/ Iogvŕ3im_p9 2T3f{*f.]󢨖E;[IHThuQc~M`<6L[!Wszq]t-vZ,)6yWuAm|NȹmF<U䛱v)r2hx'Mw44zzʻ2sW.yaۢ[׫ߛM;LCnV~ӕqț..3:LPOXe 3MT$D-f-`(h%' ’RªbvR6)Sfá`HѴ !r_}88w[=̛ u >yc6V%(? \ފw ?@x+7"ԑ&~ b۔0WPݦåJ@@<ׁ/S8ms/t, Y8:eQ[hpx>[pwg.I%a~CcChm#m[/)맹LE_BP>$j ݬoVp8ybUb$z|YD_s`&3g*g̼L<񀶘%iM}7O'm7.slP]Sf|)+L8zUl~ jl*eKCSY=a#%,ES.A\ct>ϓ,75f%lgYb: i9%c6Ax,&"Ǽ, CN)'z\oˮ7=D2pf!xUw(? {@f) d홎2%pd:#ۢn! 1ʙa<:ցrI vҴ} +8qpZ%h Ҫ_)ewuD`KP:Eǎ(dֺrݷD]g R A`vP}Bdĥ73; q|fQ,,0۹BfMEHaO1!>JdVBK=Im\uK684Lq^P.ZZ iarU#vK?ULդ12hRijOs-8$*;Ο(jzyt(Mp|IHZ zb=ĵ!Ȧ#2Sʋ?X,uW0@ ЌZS2m,֫ڱ]=E5j_Dz&*4հcz&7U 5}QH+Byp/ Gѹdx‘KXWPqecĀ}^o'wg-ICH0UgpF@Xq45eYnMB k_z}Y_nH?P$dHIτ)ÁTIKzH>$-"F0NI'TqxIt ^}C |:\~! ʆ(Cieeֳւ't\LxW\qYCr:KKul(\Qa ֏zwpT9qJ ` o`'`u;]xkHӊ8M7ZRXOL@פlh }~75"4~[L:"Tqd U/V+FWlgC#Z3񼫁NK-Ă)#qM-]iRoGvp(ݑ~r сy Va^Lg3 '|Q^g_0lbJ2Ptankd!4?sK7|K)="UAs vW/9, MI.9 Ep$1)c处⴮0Sy l FA\w`%7%DFL 'L)"I~W})#`5b^XieQU[쁰|>WQM|ayP\b0xon.~UFd&5e0A/+Ai;C_Wv>,œ7'W)"/G1@Yy 3 xX*Ǣ oyP&+ItLa81kH;Qg܌QȤquӭ@Gn򿫒|eԛ` K}8 'ax3]ŋWI3Wt5%؉$Htt3j'~?-,7 KĞ|o CǗpĿ;n.PuV1;aX izdP'Qn̗z3 <, cZ,6hݻ1cjvRR4b~+LTN}brZс!{AFZ9 3 ]f<0J8ɔ9To_S>hUG8UvQD-d d 枝 :~1endstream endobj 400 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 388 >> stream xM+qbv}H+H!JkpzlfDy g{Ѧp~g|> stream xcd`ab`dddw441%z2a}@ʎAE)G_~er@tE⼼⼼+V,^Bܔ?g;O&L={z })Q7iB ږ&Ɇ)Mz'͐b1#L endstream endobj 402 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 277 >> stream x CMSY10f  similarj],QS 3^wwyy4yyz'zyzzyww-fx+ITEL[ZXWGP0kַȋʋ``]]ϋ 7 m[endstream endobj 403 0 obj << /Filter /FlateDecode /Length 270 >> stream xU?O0w/C$1؊Q QMHb}+Fez6)P)kDݼЋЈA9oᾘ9wqr (Wsi2$ȷFKKi[l1b91v8![X95)xX2,cq(X"*aeWc]?N@~eN/Jފgd 6,ɠfI!{\dendstream endobj 404 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /Subtype /Image /Width 480 /Length 1044 >> stream x  Z{Sl +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q?endstream endobj 405 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 8609 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +4[gK&*%r1{*`ΔKshf q^9.i5dH#I52rJu%vcrj߉d.A46;{oǘװ迅wtW wnѵxM $nk#@_%NfŚ[̖R.ۊh L~<Of_Ʋk60[/ڡ3Dm.c; aQ\޵V"8'{c>* 5B7gc )3I4Q\.}J=GRmN g[}sW[WSPg{.*G(}Ǔ_c[G-%.ϖRsƓjt^I$٧[Jpa,2OlgEq/e/e R eʲFK׳']y`$@kh4ըOҐ"x I[^֦&KiUrSӚڢYoė)io6~D ct=wՔWB(8%%%iFS2=Ί.kuǩíXDVqY%V`20?Nmj%mi.y7Zj[Mmqa,D);_ aGt I)I+5f9$㹠 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (2n<;cujݩA$Rhs4 =+Qvy.JT`p}yZ(gH7YDZ1 u߄,.ۈ$GtP߅^In#9oqw FI./-l)mUiT.X`ފ_ =k%pcn9.tiU㾿Hyڢ3H}v-\hۅlNsg?Q𥭍HD: vpqBq[P~ԯo&M8i _{y+lTH5F9~ +R<+o+ g6-˴GbrEGg;ks5ܢoO(hz>]Z6kM[FȤƌ0pBsI|dm{|`,?]%g=:]&Ko9?(nyadbD:]%_ ៨+B i-d˟39~_zu߄5W3&h s[P9Gy5ш]m E> kﯥkVsu(mz ?v1I'ۛhpV(e؜֦ťi03Vй@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@; v{iUT8KAoZʿte_~֢.fCm$@v'</dEuVɷ~bĵf_v6q=qѢQ O~"gH<>V*ƀ6~/0Z;  (窠9ʎPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE<,-λx{PO (uGȹړܚct#OBr䞕CakL)e;{y\<ƕtiSI4BnE3OGQ03Z{cjf("!<ҿ윶ӎzWM~4i_'@wX·v7ik+DL A#wm\l%N)ԭqi+aC7{YgcXۥDPvɁ~G?WiٮtӮZx4f8x͝WfW9E8ߜd9u_Jy?<ƕt_eE\\$0s;WOk${kku=}9N.ɵf!Y@b?aqșcc(j+ӵ-խNY 0rN9p-ޒKlo٧c9r[Tr i5'(JCıg1gf_`ޟ%޿). !bp=NUPƀnXAW~g74nJ-pBzpI 袊(((((((((((((((_ 61 [C ;P-tnZMb  ?:ssss,ڤ7I(-Z7'~0WN9j,SGډU/S PՌ2O p0?hW MR i̖d r.2wv@ qN3hJmKAOY"/=D<' L7:ZOqCY m)sq$-ph-k昱0 Nz M/r~QKp#;ӎG4vy[ ǜ%G8÷4go&-4o-Fe[GR{{_"i&M[DXfWdֳ-u>}GRWS{Y|!ٹq{EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQET7w)in=5G<)q7G"a (:<%c)e7W(((((((#-ċg=Ϡ>Ku5&q:'({Fi 4,2D2Ta' k6NvpY!H# 嘜RO$j5cEDPT`U5*Rh$-v4s+nNC3yNX{ #|k-~mJv#(Rͧ޵bՍWzURTݹ1#hcL^ bh(H ~P0K~o cEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE]:=F魚Yls&Ҭ NvLeDv '$Ͻ:-GqOc2H]>/&ٶHLic<k8'V,cv@Wg\br9Ao"Wg ;2,dR8zWQ@ --nngȞt^jXW$sW߄V^,H#mۿ𣉠.#bY#bnSF~( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (?endstream endobj 406 0 obj << /Filter /FlateDecode /Length 1414 >> stream xr6)x ة`@fzp4GGV&z`)XbB2I%v )#g:db.J(,6QgBK6,ZYFMx_uMclR&35 CdEx“UL㿗sr41xr vM,%H%s׶ݾt;WuYWpeפۺ~C'׋XXz~sd_,3\; CZ5Ϲ`ȶӋ[s!RjLP%?uds/ >` yB<_8t3<>ĕ0Vcl9|…#6br~((s0P.t}{"Y?by&NIGC1Dc}hbw.` t%āo,i*+?/,'Yd[Ȥ!"^`+fZl:OTlB n͵k%ŨN>TE=|Bb0Zy c&ϿdUհS,7d>Հ2[[Yw  a3d8 S߇v |?"x xԸc5ʃf"r:kH>yO">nq+!~_Nh=? Ō_CQSz0:%Ke3$0,0QQSǞ=7Ta!m׀̇疟;Ekkܮ^<0=W>O Ta{p 6Yp {v7m CRً c* d8[e(V,/ M`(W>]19yCoNC*b أ$w+BY6&TȬ)l1, ,k.Z->L ـUoi?@꭫EUXe{NaԚgC b8TM(_bT|p߯uAZQ<;;ِuѸ~&C'cl qX> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (G=w76ɝ~uWjhm6kOt9(x$ x{/P{8EمS;0md gjh{^$mt2@'e ^)AR@=#ګ|LWC,:qg@UoS[ŤӘ /xǯvpKon_-$;y`9c@Ԯ>vGMBw݌f_O[B-Uo$Ş&PJF0c䴯KIA /бG7x{ݖze3^`gr$y +ϴ ~A/&K/. zP_VԴ)lR yY[)e<W!<ހ="h'I#[k{:ĺ%6{*jpY EqG~_%Y,\-_gطBvgZxn!Ybx(Hs="m7J9Q* REPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPT2gKZDvF@`32]24+k1ٲm#*07q銫q->=E${Nhz8ޢ3(ii(7wrL۞K7Rk5ʑ;+JѢ2o|?kyZjLy%C.9}:}¶Eoo{~Aɶy[ 8(HKrI۾^z~4WiRK["?h=@N+~|\Z:}f,|Eo kՉ# N0. F6Q@Zmc2JAgs9h ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (z;kyYI&-Yh? -a)4EgAZSic4dX,܅U[$Т(((((((((((((((((((((((((((le31oMs:qqq%ٯf(Op?sڱ$$[&%w7-݃:c`1@>4w>mA)W1q$}r1m gc69Rlۻ8"ڄ\ldu1:3D35u djdFV7g "=@M-u k("Y%!0XBw#ҫw'Nd~m3\0ܣ 8-gYdfiH$²cCJ˺_vc$v HdWs. B4If.m%N vySo4 dcHZݢ}VyNVPsU]Nf)#3^ٵոFA@UN: +' )~?% A?)$G^q֠(((jW&T3GeSMqVk?[az¿O ?I{f[) .$8 5v4j㔌t܁JӠ(((((((((((((((((* i}'>Y]R4fcs]m]-2'|!3߿:Tiu\Hz~(<ݷ;hWlh0;tb1E:fqDmw@5Eb%ςm4%ςm5Eb%ςm4]$GF 73r8&h Z̩=ݹ-<Cjv{cvȲ]dF8#g[՗w˳zZ@=`&%n#inϔ@(\_^g/]Qq~Z[{oZM f7rXʾIE`+,w aF6Աl>l<5l5EQWfqs)6 *2X Kȇ?QƷGI(F٪mE172(b~i~8 * [k-mquld[n QI:1YԣGF80dE!`U[p.:Z(̸89<z~{ov){$ +'}@Jk=>(Fxɖ9AF>Le~zFcHU8[i9?NG?W ݕW6HX kV1( WWw7!>javn$vo/<]_Jy?at,s$0VUyqgv>dSGgmgj dIO<t.5+hmZHu3èXNz.Fsj7vw3wOޫ`eGߵtUOVhl%wÉ;H,?h&Kf+B7Dh{nSQDWBXdS((((F'ue-$kh׬:w(ʓĒu :{.?ވwNL~Hy+n#YXQf8[,y_Eנi8SmnU?Ϳ#V cR?ߕU-֡ ?rCsZEp*OKej+ x = a{OdZuSLk[lJ%c$?_pn ( ( {h W^ÐESn'LLaG#W+7RCQ^b+x$Z(((((((((((((JβL./1MaiTV#02r: NPn~,kִh( ;s@X-lv&އP*9g Ҥ` g?p4f?@ho?>g?p4f+ydS me{Xa{^%Q:Ig"& =MqVL,_]=Q"\8%Aiz=ꅗ̹G l_Q@u-qm-̿)GcT=Ǿ{ u}za,!a<خGVCķ6- ChigurN K}2Ci+w*fks{'4.m̷ֱr85b)c$Y#p]CЃ޸Z;MQWeT qN+ЧFvO$*6䎸@1ambp=b9?q'ҧ.$73?=ϰ'TVgkrr((((MM"GR=ESѤveb[9v?5~Bs>T$T?*EPEPEPEPEPEPEPEPEPEPEPEPEPm_>ڱz|Eoi8׫;k[Hk&b;v|gojOqydAjZlqYb6wcH8\qד€:Y2 m6i u`vG]-ɣl_8u~+r ( }e#.GvWzz^_Rkhv"0py0uE1bm>`H9da)##⮵IYV@hN@O\dNM7Jw5XTVV]n݂H4z:M@#ִƑFơQUQS((((ڽi$LJbA`6= InA w=sz3SOA|`ۂ}=jO[巊աz;ɂwcv$P$taC[ YѤ~ԗy5-@n{QEQEQEQEQEQEQEQEQEQEQEQE%-V孚؅%F TQEQT/eiVͱq c"װno${-=L <23wb@6vqYDR rs+8jI<==Zj/ܬ  622d|0z(#?t7. F[Oޟ{ ע3- knXIh̷rT3?Ӣ>V rCzHu-e1o_cZɢx)dXdYfcqn?V?ɿ1RWҼ̢?q$U HFHQfcD6 y6讧!l|*g$VQҦ1!JL?*zz@}jƙh}v']69if&4oocCV;Q]FKﴕHW*maȅpUp U?nU ݒ|eYq?/ ˋ%wŝӓRJ*X5-ecr[Uhaq=ǡ5CM,n[SB_L/ ;?5Yˁ.׊%?KΣdܣّXūBm OQ$=ȧA@Ts/48Գ1 Z4D.V#> UT0*4*VkC8_sqڴ(((((((((((((((w6˺ٷ|~#\#O iHa`*6|8_x)Oc}hQ]ZDOr,K"x Lp:rs{ktڍkdc{hę?8h$u % 3ڝH 7[0 +)Y#aV}O͍ոy[QÞFi@3Hhr#mnzu*Ih4ſ+#Ʊ(av`0O\cԺ3fdqSjx Y#yפּf̲+-9? ߔ#UK_KF5yA*bONu/i$V"9R;dR9%qQF^Ci%nIoI9@K<r8LxF+Hߎ;տU-Պ[[-bIapțvxUE]vTRBzT4kQHO?P;P!% jTvIEax8l"kYc;x +үhiʐ ~nwl՗ZAVW2mY$y#͸ ]j6iHzFgoOP}=l(cAJoŀL0E,W_0Ƅ=0H==룠 춟?隟.?y?5f쪄آ>Q@nl.⳺g)"sG sڇ 巒5HFi@s xgEq_A<;ȲβKOaL bı,%#3Ʈʆ ̑0.*C/#Z+"(s-0 cTB}H5vMe!K((lm$s-Kc]N+v;<_5o6 vɞ@.t$Alvךib$!c";M5oj4XZMp;HˏnHUt+gֵ6oVFPX[tKv' O]N5R$2\{?^ b}? 2)b8DHsVmmmZQ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (!kitSFeHk-|78[TP/#OVף'kտ5r? Eb9o z?zmQ@GA=[^G#[TP=3MMU摦̑搻3m >W( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (?endstream endobj 408 0 obj << /Filter /FlateDecode /Length 496 >> stream xm˖ >K\4.Evjj''y4$+ _Sq%R d"(ˬY> !ɻx,8kQ875&U WH}*58` BSD? mAc)Z=`4ϥPYGgmrH۸ IQ-iuy[Η#3O 9ۂy)/(f ,Ӟgqp>=DBcͷ .͖8bMAe󃐆ʒHX&~bbC=:lG bLLI4]%q+!DV R6Ks%½4OS 3& ]?U|> stream xUK6zԯЭT3CM@/-ꊲڒWH~}6=,|0o>ΌrFy/?3Gm͝a0l97rrmu?g]9d _q@B~J/Sv: T\e%@*ĢI^2zi)1WpUS$4T_zd~Ǯ@(*XXb&x 0r!Fx b022I݊hň9=+|2')BVϴPtMx7h+7-MɾtGՖIx.Tu+|q〖XS.$ DȅT`@`ڰ..-QCs/qjC |p=Ϊ88R9ofN\@*AccQV<;IÒΒ Jkg7\Te_Ҭz6DE4Č BU_r-3@Kf?|3xJ:gN_o۱uWŷe,&Qܢ R,4R465&q7j܄Dn.%FI,;}<NMT8R¸gȻXۄ^w GKrx,'iGc$ 2_ѽc2n 4bJis6P`isriRrА~΁ 8-ߔ16KѐaD˾:~ąHlݯȯmm@ -#b17Hm9gTS4rؗ c5מbN#e&f>d endstream endobj 410 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 27829 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +coIM,jjM%1''E;nv]*ݞ? {Eqqx4%"7JBс@9ONx[ҍP[N5cepVqz-j_TmueiHp̋=8OjvkfOGtZIYՀ?(@KmJSnE1K??d]ʫ3犥]7T܋I+$v s@f[]9y 9]q?R|7sǮyϏ=n&2-G x=(.l-㸍cr3SGB -->ZK1_!Fv?uW9a,.llmL*g8';H]&i"IV r Eq=="l)d623۵E ˤ_g3JLR}FwTW/u+#yDv$񥴌Վ9ƩO<%9ѩ erNOp@t;+>..mt>+5O1Rw.ીrq uޛoYC!,ʛ 8 qހ:+z̺bREqʇRWEe~0SHEєFX< h3L^ Ӧɣ26V' q'q}GUncIcXYݧ8?J+ -V$kK)92.1yOwYK&ALU8˩۳3@|HFkgunaO8ϽTvmwۛ+uUVdxKa ;J+J[HѬs>ygnvk/ž0.H8cWdgPvQ\o٨&4e\\ҕc7=j-9 ..lVCq1DE$ wEgiZjz:qynm#$k|sqq{5Y9r\ֳf";+7lՅΛt1)"C&rA ~w;+ּM 4GFcH H_}Mi|/sueDTL$3J(1|cq{J1=[٘$jx$I+β5 *񓝬qjEQEQEQEQEQEQEQE5'!fAg65GM;?ೖ oA=zWCEcEHt>҄#$.H* աKȘ߶tˌ~tP}F[oȲO 3mI]qp39k)W*g/ˁ?x.s2_[ X'JN07/<#gqx0]YcHKY,.x'AWAEAug圖1-BzX:lmnd сӶ}+9>fC=Z5'\z⧼宯o$!5iRYʲJFߗߢ9O\jdBaX3MM6̖{ˉ6f7qKEaO[9t>gMn@sR ژKɚK$g~~#=+rs=L'[`4n qw6_ \iY]__$,RqWAEc]jIoaH_˓fЧ  5K R]B5YuN@P? tP;x:vnXV (Q:ێ1W-;ck[#6v(ԍ3x}ZP~AiZl sU<1Xjڎ PXFO'l@Ο->hoyG$R0\mާ_/D?dë]ێҷ )k&5wEx dr'fgH7YDZ1 訠 EcxҬ%ϖhW1\.揦NzZ(㶹]Ysx `ռe]_NW AncE &х'*OttP I{7}dXo!SץkLyui}gf5KT3;QESm6қM̒0,̤`9[_c E!bamyćQ  'a+,~p˴=1T-[jylEŴ 01A1П߮z(ƚdڦ[ZΒ&D#?210z%Zon!,>9$?J M_/c|ȉS{5P&b^_c gP񓝬q9tP34{++{Kgi D#:4(ciV1H]ܓVh((((((+-R(0<Ē $hR&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChBO4}i#ܫ!XүPEPEPEP+-VyමWIFR<*e?a$-Bs29^2Xa:5m22Hߋ1$4][ې'(p36xn5]I$EcZC#G#?k*[hr(((( e%"4$Z容nSmtq:e%ʓ{Ph%hmrң:`~{ƍQVrQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@/C5Y/C5@Q@Q@Q@Q@b2Kb2KQ@Q@Q@Q@S]]$Eu|`889QEQEMBKѮnMBSۍGIkYLG(y9u^%\HYbRrNk+B$*8p;ynQBU7_^A(aEPEPEPEPEPEPEPEPEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPEP\CX:F e*g5ftaU!fAar[J?xlc_ưGHF }ێrv/$̛F1+zFi*4 ʦ+t=NķΨNO6뚳xN/20.BVl6P9.`)^FҚk38F2{y4U[XѠY .y$j$p`rf%&d:4)Efe =랃kF;IVX%׽TT+z+5u-lB{T*QߞwtZYN:⤎#ER+Nɿе;jpHCBOU ܞF>_ zy˨jmyěSC>誽i%ܫ 5oIj_{eba}oYwg**z|ڬdwHב.;sVzo;QE@smgtֳȘIGo_Lj/ Z^oi}tngpX_A@5EkeKoV9G^==yGET*譵QEd0((((((((?ESs_sf+?ESs_sf((((kȷmi>_>TtI1rxr=Mnh׏i]H 9۝FPgqu\< =d_~$oWE#=8j\Ғ M%G5O^ks_ޛ%b'?=xDԵgkFx\s҉t,58Ԫ)[MVVԱM??] TүnfO&flz tҶtMW˿<1HFrOJsofgupws3ҭsAsFN˿cGrݸc4F}+<It㉰<p>nW^"t-Ơ\م=}'jqվW9RP˯G].z:vpppzuy~[ڍME}23GWSf.psg֮P\Z^\}4IqƵpSu-EŠ((((( M}ЬM}Р((((tukjtuhj((K$Q)fcTWsZ U*ܢ>6 jIcv%]pHՁwj^;)ƌ#|ת iZVu)oȻ|s{^mmcӚ{q˞Kt*;[XJrm&[dc0N GxJX[ɤ:p?Am}*fq$\p˞+_ͽ3Rmu$n^v#[EЬ{;ZS=_sWRյ[]U3,}e?eX!FNfu[52a+U5H@u(0g/zet׷r۷O:4b1DAw'sJLkQsa:⻗RIgo-%{rY*6-YYku<Ǿ56\JCwc=T4mZ[;Đ0GqG/2ۨY^Akդ,1jrFב(g@=VkXge==ɪxsL֥Q݁v'Ryݻ}Wc^xLyLH BO@Ml=BPՅ($Y[:vm\gm%̋1v8U&O}xab~amKiy FO:vvh vN~g{vRX{~ߥsߡHB@p-sQEQEQER//n,TSҮN3LԮu K`x_]O&Zϛw%~EVC ( ( ( (3_7?7kB_7?7kB (+Gai%F: NԒCa-܌iv &ơ9Q_oMP#S²|-Sk<ا>qw=A8:( ( Ӯ!O0ȰBp[ sZެ=:4ĺVvy ev5J3]B[>U00duR:~9*6i,!,l,>2M'cj:U#̗BjRj<sF#Ӧ(TP:M-H(nQVO`)p p: Z(u=wsF>1O~΢yc4O-DKw:5iU(rlymF_6VDG- {MN #DNq{~+6VFp?寖7^)[Al[A[b*&w-,Fd~~ <;[/n $Gwas}aq {\a`VM"I,12W{TRGZNl}7-.Ż Fۏ׏ivr<۽W," ͲD?孨}cqK[nx9}C84EC+ # JuU-~jXBQd$t-,өBUw71ojzy-Ll/JkK/t˞3fJRhee {Vf.tڵjŠN6څr>:uMMM!@CF7uUN*j ^XzRmw<U$37yztoius%hupş=xZ,m૦Cܢ>>-?ZXo2>J=šSկNSZZ\7=ruvy3汬|Q-co12b+ k5Z*qk]/eZ5 K-%xQp:QԬ EsU |Sū&C/02=knI5{i[$UswͫDQ6`7Pr;ouc& 2ndԁq׸5?V3 a#}ec5Ww1%X?zхJtj;[+5I$ՠ.] 8۸uY^95OL=u6#7lqmGMx$4,AھSӣZdYW"Bj֚s;= xwM}]B`3qm׌c}7[duf%o<"; QV+[V>xE]Au4 {q[Ji×Yz_NdJ,r?^Ϩ+鎘Hq.;=Y^haCK|GY]2# U՝eJj*rM'LԵ+[e:25lgֿ4kh/u.x6e62ƗScXnnQ՛)Pniޠ'F3׸ܻK(b]xa{oGug**tR5V+noz>T#$Y6\}{V/cN5s#J;w{o娺/f;E G<Mm~L-Š*eysqmms[6QO(k%il2QH}mZuy2c,R,sĒ Sv涀ACuq\Ec8t"9J)Ԭ4X~r 9(}kZYRY]R4;RK9h$ f|`˨(҄X0ǮyWGEUu-tVXQETS,`[Ka袊@QEQEgno օgno օQEQ֣JK< gcR v, |)I =x늿hg%(XHyn A ӊtdNNdŽ2>QEQEV.#.MmV.#.MmQEQET_ZMk8&)c OU+c]2c.8'kj\!X]=HM  ˋح B8 ׽pki x 9׊|7>Ew,B7bUH8݉p~5([3GXr|AU"!3hh^2Եe-G @>jiJm\`qzsq5dok pDᇨϡk_L_I?hr[i/ $`v߶^<~[J+qk8qV=ZTU{.Yz?]3\cy=~3[|njooQfj]M["Y$y sV ^>aӼ.Y^c@8r8ZlG&n-fݯv jWw4hREcb{խAF YYYzgwz1ӧ!#aO?O^:z{:z{V~5iu_HGoww>~<5Qv^}B26V;'GҺ:ɒ;H Q:Oֳ|Qf.l"[ ԛK ={VD>'m[LӢ{fC).jӵYqbE4cgL֭YuN~V#;ڳQ]xSN5[f5JoZ] giN Gb|㿧=Tib-OD[3մmcO7(TziiedF7,ݏrdQ0钡$o pxK[\ӞyT9 tXՕJ/vnҰt~{E2-yn=~PR+b*'Rs3V>3H.l5'!p'آԜS],QE@sFtBc'r27bXӬⴴG+vUIr_M+u+Aiw k*6 gbFf9goRkF=9/ u (aXt;Wsqן3hE\jN _1X('gW=_7$FzFֵiN&ĝŠ(gno օgno օQEex4p" 0PrA##gQ&:y(Y1Uy ~bO'Ӟ}ynH[5wʨ@c 8=CKMWm->&*6LsrQEQEV.#.MmV.#.MmQEQERҖa?i'gyYq]Dm.uaF5e}zrv BV'  qVc"cFT`\,+6$w$̨}GW#qxd]gwUS 3sМ}+9TvQ;08)βWKǨ76jss9D כw)g<xQ_0bq?*#Q+`B ɵm裲LnV+52DdMĬH8c S= ~-ަҴX"E'Jm.WWzkzmwek|vNrETPUF QiVЙAfVfw=$OOgvǷuⶩFiݷku^8z^ݸJ|++)Icn? QqĈU/ө Yk֓_n.Is#& 5kԂ932 q>דzG';t;8UΝP^%L,W F ŇCY\#=2?2:[NIVrz51(I)e 7*;5x^__ZKd0?Qю6~sE{HJM qXxqQt:jK[xvS Z^-kO#b2s~ ra誑sQ]J b)3dR@=/7GOMUmʤч":!ƲJn,W'ns} QEQEQEQEQEQEih (3_7?7kB_7?7kB (2]b\󞣞?ZUwh&S@ '<+jݑ{,?OCJ4;Pxr5!r91Z} ^F$)1>̟vP_H& &=6uzuZu6gˉvzz~8P+m߯b-OVҬ܅c8 b{O5+]Vnl8<`("9%h&G*PFyzT7PpVV8w^W?.ۥ)*4LnPyO9Z_^kqn%ކ6};A=s=ZS3wZUV<(Y@*ZũXMg9"9W?bm +۩je70 ?W^@lvP淽!RVǥַsOrn%Ul>՚%XQU:J.}jOu^d ?tU/xmz‘\8$V]B25g CsGS}i5.{BRø8{ȱEVQEQE-XhzD 'z~[,2B&\`]uWR# P^h{>^_zߧk [=\Gp!<0}= > ?jwo#@y뎟ZF.]x8a*Rfmmk.bߺ(ǁlpT+-[e# Ls]^ݻh݌g⳴*=%g0*ɻj}ۧc$ܓ:TSy=bPTIt8nVऎ#BQr8֙o4Wщ<7UzZ[Tbu[~K!B}0{ҷ)ƑQrN`diԪpV]QEf29A$]jX.Xto |KiTbȃX?ԣVHH]Bnߘ p?Ѥ A9*Mm'`N3?[E9L,Sc ?,z>}iݨ1-A'jJ$m︕**▶dySGP~bQEQEQE3Z3ZQE'=MRF=I:r1Y>U)ta-1LJK rps5iB7>AU1ۮ:tⳬ6mnY'h:?hҧxʵ*RWeWYmmgѱygGQZ&UXlPXrL[CwrsǨYwZݰybPu0ZR!|4 J"+,[u|#lc*s6-ZkSjL?F@p"8{Yہicz7M_?R]Ksq K4PYyjK9^z{Eɥݼ(L@ :+.]Y#gm \D|Ȁr#~ VkiRhe]0?nKER?ESs_sf+?ESs_sf((wv4q} lFMGˑkR,XX>Ua,6r}+ã]Io_zB#&q}wge͗kۢ(o$0M02Q$v*289=6_Eq\Nv$zX_A5u}*ʗ XdyVH?5SЮ:ܑH3OfQ@Q@Q@!K>2m#XIj$D dflSPWgFS>JJrmZO RZm3pFyQ!WVeG?߲ M'ݜg먌ԯaTW#=7X[ve&-mloRI0RQ<̠CzFj=ʒTt̴E"Jo>]xm's=3]Cw8ᔲ9o]{T(G^𭆽yisyo=z?qsG-\X%$yd*Q }F\O5kML +CγM{赱%]u\moѲ|ywՑxn;IĒyis1$ǯE#4:y'޳y<زx.p? iQjX4OǕ6 kQ@4m?6&0啤bA8<{+پ[4V|^9KGOkZ996L2?'ǥ[.%)(#pP{f2hVfxԱUXԞMiEP-anL[E_i#_3_}ݑon*9gmΟV!L2Sqϱ? _ +ˆ3aX~+\bRB['+,cLKBnQEjp%e[-bk$+ [VH)J{?I{`O`Ta׊?\5'Bml9;:j|ٻ_]g}mcrPEyL>)6>P:~UG>Fʷ;Oj؋g1|Vuۮ5OEVdW!I 8m.X]ϖ}ƹǬڎ'lv8/yF۝tJUqu1A01FCZ ${U%x±F#N]1߭tu:|w]:zm,$6igaV8A: + 5c"9P#qG}[+k|Rh3R[+ qªP^FYP3}ajMsKQL(iVOu Q'u\VdROri"s9]8EE*v(ҋz )QEgno օgno օQEQEQEQE˭-[U˭-@TQEQEQEQEQEQEQ4>8.Y~>V.a{8cgcs>]gT[tb v8+_Y4pGLwz7Ŧބngγ"6py?K9]Fc5U1FjE=QEFs/,αƃ,p4NTfE8ld` 7YӗU'w(%\8 }Egx[Ã@|p̒ZQBR=^FA{yoanʱDYz&c)ëc##} + TJzZJjYeH"yep3+3z*Zy603Vk4,ˍñ(N\{8Uc/rYj,ʇ ?W+Βl[Aɯ{pFjE=QEFEPT,?P K>YWzvD##t`Ac@rh7FPkrMYTaBTI-Φ(9Bje9Rybd<9WAV( rt7,˂ҝqs8 .ǠLo9U3qt iIA*O70 lfO<nqzTxN$HdY"+1`p6;{dںH'?2 D7):#mA_%QY (((  ((((+K[[&K[[&6(((((|EjfhP [}? q,i"k>RHkH?;zQRMuV SInM`D'V|!A2{CLR&rƬED* K ΃6\<_Z(gbzWST FX張gƉ5aF/^0uɴa^4ޣO_=D:D4+P kk[Eg14[-td-8Gw9=k[ĺд&Vg ?XHKm#kGC- h.Ybn¹m;=}TSjr\r3֨,m X(t9k8JtգQTdoq)7/~>nS[qΉ$:oPvGi8FiW]a;$V pFFF)hQEV ѼPt/*o8.|͇ngLw[G<6sg57M__M5Ж(QED,",uQiXUQ#ʄc$lPŽx1$41?OKmq "X$Y#=G֥ hďl04-kvz,Q/0i?6FzvjӆT$3u 4( (3_7?7kB_7?7kB ( ( (9q-4̯ba ,nb9GUZI๑l8d`cVZ_ r, мHuĘVN>e ( ( ( ( (p&inTc);E]"+U) (;xYcY@mQUouLs SՂ@;N\]cYj "3Gr%AJ(dQ@Q@Q@s,>!c"+;w\vqJ設iTsR~Oa5qvѻ:f+!S .faΙN٫UEN‹s{nZQNk_Z+:f:Sw_󬫆4]kLwwtº+zxg^DwV: [2ta@@ɭ'ɬ{D-1_91BI "mTNťtidb7+fAz{(%e_-%/G5eF 8\'$T>8Xn粒Fp0M-^v|(s3+/ڢQCmb2) ǶE:QMXI$WB1[Qܸ&5 ]}Ο ]H?z$+,PbkF@xث'ЏҬ@%Xб~(3):S<}C-D,G(|45\ $Ojæt8GzXo y I# ={{ /C5Y/C5@Q@Q@Q@Q@b2Kb2KQ@Q@Q@Q@s~+k,W! 󮒊EIYP:U)4U,OˈP.ޭQE4ܞ*_Lcc8 U(jp%( xNN&v(8[7p-լHY1RIEEYVJYx<-6ЯeLYJ(Uzʺz(1QVC^"~ң ((ZƐkٚ5p.A>u51ޮ5netQEQQY>%,H""Xz3W⾴LS t$p}hMATkG}lOEVc *9Kx$RDqf O3KO[5HKe~G=9hNPsKE4V3[ҧYL8 >>+vҜrVOUQEŠ(+G@InS)(j4jWM] _OK.$Ue((QEQEF{/CZ j2Rա%fKw3bnXZU3ZFEPEPEPEPX_A5X_A4EPEPEPEPEPEPEPEPEPEP|&=Kht!z ([)VRwQEss[u 'ȃԷ?,N:VW3nլ4P62( )haQHk pbQ@'$SKKyn"hs &z(EPT-"U/o,I$E&ѕ.dQ1q(D@UFE2w ( ( (34{澆5bI~x'AVRI-7y;/C5Y/C5L(((Ns%ԲjעB$PYrSZ͒]9c4-b2K֍Ռwl$ T`yWHP,յ?(Y2JO{4EPEPEPEPEPEPEPEPEPd""1i WKar?fxGÒh1Yd j2V:.梨j6w"Z30$T0i`bTJ FF+𿄥5nI҈'Q'$K@NNS]ή(9B(((((((((((( M}ЬM}Р((((>Ҷz+,e;i$ʩEPضW7GŷEPضW7GŷEd; cY#KGN Ѓg =.bsWh/~x?-(߳: n?Ԣ2玣ۏ"?J(/~x?-); 3/i*q\}֪Zd2@E۾G^zx4[qQg w=`IeoGEQmZP_[qQg(]3z&MRD\J$B+F((((((( duK6eO#j>X#Lː2N98uW eqd.oK HF+x^]R\a19%q@QEQEW14f5[ &y9"2ZltRڦ-0YC凍+NNrG\ Hdmma)/AXo/ֶh(¾ .s$]&P* +ϴn7E^a*N006[ 6ڬ)X&ӒYv }Iq@-Q@Q@q%IWɻ+Xa?LAV,6P~q77w^O?Dz(?KD[&18΀Koee@=8€ ( (ۋ ƢcS#}(N'+u4;T4~6G>V/ooEyh'FXHQwҀ;j( ( *;^!#Ǽc|g > {b·q%kIe-z;:+.dMX!Kp\ OTGzkY| h@(_JZ+ōM`$52.@P@c=0jYֆq {6:`ǭvtVG>]>dC#! tµ((((((Gq1ƨdmTcq>~T(mſ糷 J$qg$UF uQEQEyi:f23O'sUҴm巊 lk  \">FT~()o"HѫIv1z@Km`_`3OSKgaibYn$;ʌ.q֬Q@Q@Q@ (MƲ.CaFA?k _hTdNOO+ai ԗQZ2<SX()"2:FeaGQ@4+n- bV$0OG=iv5c 3F =GSVh((Koym x70W$8霒EUMHR{;yVJ)Nj((,X`zS fֺe "nYOU8jzZzٛ5ra.}vrd1GI1q¢(GEQEQEQEQEQEQEQEQEQEQEQEQEQEQEU[`xy6gWDcSHo7ϕEtYѵ[N BE. ַs YTCo!nx|>ֲ)'rH7.쁃f<-]Z\y1]E  dŎy@YB56ʎəEyQjiZ\$$Q޲-4iRZ1S=Z]maJ-գ8O9й--c:bgq#iu'io-٭*1-;+؇-Cui~J&OCfw-5v X${S>NnIT9ӴfP, |T#djZMZ=FQKyn !JF kf 7ܒ q:d=(F{;nNHXwMp"ݕ- & (((((((((((((((((((((((((b,j}PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPendstream endobj 411 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 8631 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (Gl' ^D1W`Iz]Ey<]bڬvjoͺMBĎ;nd?]$PsEqV>0&FMXl,t^~3ӥCuЮ5:F0cIw}uI 7V6\vqRi|; 䖬ECce+@@Zʹfhk+]}@tG8=WZwz^ žo, ew@ހ:+ŗzeiZBAb0pѵxZ=LG3 d +4gPO M=wnҴy:<=-At=No5+wTV#$I'.?]^Eame5[)"8 dڲi:aZ8b~l}PQ^ux}_G`m&9TҴ4xM.Hm EO+G+O1rH=rh(((((((((((((((((((((sFbyQ#&2ܧ#g2߉Q%N^_Iq|Pre pT?.{EEs{ u+kɤԌhg_0 \.-NWU.j\(n8Q@0zT27XJFň63ƥ4k}#EJyZ4d !I'Z4P3m}.M^Ӡh",+n^HqSVO]=Y Pn`ºJ([ili_ooKsvlz}ŠB2*L1+c=MtP Rk"nנ逾 wt. J {ǦF=*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((-d-$tq:*$_Yr5Gay ~{AdEu9VNѬD_(((((((((((((((((((OyWkX[ O ;Է_|`?0ڮNGttVm%s1mc^zUo- ڸ-03;QE`IEu+.e!alՏMs !{hGUV+;@X z( ( ( ( ( ( y?* OAT4Kz F'm<aЊЬ31y ((((((((((((((((((*YG;b~?ǰ椺癶ƃ$Aj)\\ȸHȅ?=>P$ZݭZ'fVim^ q\k6XZG5ƛkK.ݖ^eEisyeO6,7σI%,#h$q_a[xwP<]2Ud!d2oe"I4脱۷(Hg=N_yi_'G?ҿO.9e)dӋ\Ii*d0*Qy-B^߶%>\|Ӛ~4K kb{3yHUW*O,k$n2 cNsR}/PqnmM29 mB4~X1 88w' cր-Q\xw ynG)ut#H);V{xd1Mt-Q@Q@Q@Q@<>OBK[Gȕ *H:c00:Pu(C!Pd*lj?祄'O*(((((((((((((((((($V yQտ (wCͥ$E=+N8!cBh((M"fuIF*#O9Fm.EζkyٗUű8ȫ3ͧ #Hob2Qל1[Pki7 8>8LE"A`+ s`UY6YFc,jhc&dY#qVVv۝+yvC>on^EEoq+4,FSREPEPEPO]E8g)UkVG=/*Z7i4"UXͳIkb ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ·+YSZ ?l3`Fhb$J<+#s €/EQEQEQEQEQEqLZ{7 ˣ9,vDh.e~:Uʭ{e (sp}A@hŽZ"pj0~ۥiEE50&8齀G? 4Uoo?&c?Jٮ;]D%Z妷dBN} IP;Qt z^Ф'k&GOa4w+eB>Һ;KxmkeTos"ǹ Uoo?EW֌@Pz QEQEQEQEQEQEQEQEQEQEQEQEQEQEU{,a9U,Bff=P ' Yx.rIyV4.LR&BN @mm2\ =1U!daM4& rĞ=EQF:=2\kR0[k1$#ACU{).S}8E HdY7 8s@YC!)AR؊XK{[e7NIpeHdgVQEQEQEQEQEQE#*`HdYOA]Yed'B:Vao[gfaG(+J67mk`'dpG8Ӯ[ai6M mԪI@{ =6.=3khA]Pq;s"A+$CcE Ѭj[R>+d(2L3fXF`s((8`0'몛E IeV8Գ!'Gg1h,,~ L#Ґkv.d;a3Iu@>O7.2#YDMBH'=A 6`|4w4CUW@>qg+uulUd,wH80MiiٚI1Y11*^k!-,ߜm#ݸ]=\mHȖa8Pźw36ngf9Ȕʌ>n0ds;V-j #*]Cgw^.T%MM[xc"(˔%A>mSÊ7ű]3~;ॏN[&#E׹M3]k_Kq0XV8d\2;ujV& NKe*ȲE"8A1i^ ֣i駊i 882zWO@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Cor 2!pG|55g7&x6}$LѢ((((((naq"}}zcmk.,*Wo %DO]qש@l?gYeҴ!;x(cXAU3[+q:&#đeA$y'?oa?ZPG#z 'oO]k@0?uEd7.F[Oֽޟ{ ?oa?ZP<%]0!!pA~ElQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWQ76AuʟZ+ibe۱YG Y˿ݛ`\O}{V-Q@Q@TW7Z[Kq;.{(' hv hd0#q@ﵸ-/b{00 rI hK"CI+"1wuql^I `GLսRE{p !a9===I55PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP2RR0AYtbMO'A=G:]@΁q*jztDm.fqHP HW~Oj?nMJ{TvvR&~iT_}i" Κ[8@!CvPտTo@M[XQ഑_i:ipo3;]qi?ETc1L vP/ҧ$k H+YU2xW{EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEendstream endobj 412 0 obj << /Filter /FlateDecode /Length 2521 >> stream xXIsbxsaSm}ؔ^lj/ۢ뙲bO :{'t2Bcۤthccp*t2|LS# Y9p"RD) >zfϛ:iŚ'3SФh낡<`"wP=I$niؘL Gtq6}W^Pa*-cmˉJdj_ٮ%3}}i2oW֍}X$l{ (')LiQ:9 'Cݲ mԐ)*O#h>JLpa[z΂kÈ74Mv߯ZGw~s)'{cy M +!C2|e{a-|> stream xY[o}ן}hq9WMm7m]@HVJ7}og(n~0|ч*iQٿTÄ"o?]N.M]r9'haL).TJUq#ojn3UUeEhv_u?/:T Т\tF)C.X}Τ ҈7qviwPso_r6t۾YaFɫbI# X`&kɂ *@]I"RKKN\WN2*Fa٫1)V`J?JAbD>#)%Q W(yǶnqU]?̂8C],Ո`;DU֔RqU;o]7U>_4ŏNiū_}|Ӭ/y!"]-Lt ѾaKiy׺fJ91:I)uT2lN9,14VRc@y\Bj1^?#>y瀝O Q/EN3QxfQȟ,D%"OF,3|nH'ݢ2Gjb;8](l̴u*]fêoĤ].a}9be7JMZgb̟q/Įog 8+q{W46LZ,7Ƙhlm?ow8.jNF 5AVIQȨAדoTTrkQDx2[y3%xzvP*zQ轵lGuЯGuKbqoh*ۋp۠r[TDf66x;gQ,s({odu}uN6Tl³.3WnY[=ʼG5j^v}g=wxJ9*8L0̞LfŒD̲78?05R 3FI? ]g$LA5 ʄ(&6alK հah0 *5i9 Ӻ_KFm87?f5VJXI&+Q9i1,m20[*#0̊ڶkjE8O)%XHr?ntP @KN+tMb۶#e}+}iԈCP.):XIGJ{o[oHnAvп &˾|Gp##}ńAQrf5GTУ92dNzsև5kd:1>ċPPa0Q. GU>gvjP&ͥendstream endobj 414 0 obj << /Filter /FlateDecode /Length 2845 >> stream xrΟ0on:Ce*gb;N9xeF%$A5!ߞzA7(2ͤ*ݯ߾6~YҊ-)7].~Y0n?\-|mTP. dVJꥶzy_%ݯ͸Z JiEZr l3\lWk.%w\y;c/׮ZR@-PV5`Ld\Det]Ғ9ONVr*kqw%>-iI؛al q rMƻK[Ի]Fo6m=vpdUIH+٤7.uݤEN 3߮{hzXFӼbڜ60W!-TdtJ8*R\,~X\}5}JM NKuYo2=!b & =RIIJ1j-wLVBjYqp%$_99nqP99W3}NZB>u>לUNs\sZ .lU?}Q>޵(\!&Gx?5 m>ZYcvMaO$|259fOzU%5d)UML2@C7a<܂4q /' ɾ4=cC*E- il]ߴ5:)&+d{K6XCr`BE^ʜHwdz\%= 7WdKO12r23O#8':VYgX98'0*b(ߒԒ`.3 `i*vZ(FiH4 Z jd|X1JgdnW\aݒd +15F3k3м<=v;вlЄ Y"k*A!5}\4q `4&11 $Z0\oЌ6pׂ=BBOd6f2W($u/XDhQ1b|ym w+ʓBzջ@q(hʊ6h_`JiHn>`@;#!*ڂ ٽ*4\2S$d<5C'y\ 1)b"&$(IcsnTMAS㠼cxdK1u%4* 7$!|r[Bͅvv` : i y(Pea NJK=c paz֠I+ ( euI_?'Y>A(e;%1v֋DgzqZAC` OFy+**zr`dSHxsn]s8y&nfgfrYxNn+w-2i2C"kC2FCV@tsi8 ljo{l#7PPE_pO|}?vC;|G¸7u4ʲ$ YP,$4`LB2aS<H̅ QQTx)pÊ̛B0\&3Y -ۑq$I}zbD\/S+d 6) -|4b[Ǯdy"ZGE(q!A&I$(I x; ~e3Yʲ`PrXReQfl^瞠 yv/}A̰eHsɽ ~ɽ!ϲ$4䍙d@/ tSh$FY{ @ }Q{NG"}@P1 V6i``F1AaNHLjIP VS#W:V8G\[qX^9|rI=6Bhؓ6bGzGWex H3od@j2/Agگ./Y T%CuVj@g $1<_@b)4.I^ջˠYAQԑ ÔF 5 yB*HFR0 >^W]ݶ7-+x=Hd|Msq T;Lʛ˞4@V=,?ޤ솅lL֐(f*kuPNL %?I*H?ȉi#q(EEeJ1rJ >*#G3b?d : BS&ĬJR0@ApF!Pd|Avؔ xy&%H/dEFf>Q0E@[_}?}b7דL7\l-Ng< Xv>:rUԩD+=f%<;yJ[q)/E̝t=OT`7}3E3SzvМZӳ/aM^7 ƀr}w$P_R+s]wlɓИ? K7͟gh&7ǫ7sOJҡ>u2fi~I2@I|~fF-![QFgP+<R0e3*pI]689\G?l\ ᧠򝂟SN?](Of3zحf#䥡8>ϽǓP~+Rq%Kx ps%Ca|T> stream xY[s}Gә Y\ tδ;N&'kr%1&̒>6fA\p 6. :.b3*7FԎf׫u9 ]t|u=r+XBJe-f\ج'3YEI%ywh˦_}Y5TdFIY6}Q&Dzvdt~?M16WVUfJq}XmBtiW-Ek=BH[vkw%K/ EɻnA.8߽?3@wz|8Y^p e ;Lԅ@B) է&(w>_L_\_4;r2_eE}^aM1Jeᾼ2iWIXRL7#Fqd=z1 )1VBA3^/# ɏpdE-[VW`2G2Q&EAe1Ra-+ Z4+ KQNbA6뾲i+N5ߛB0DG5]&s= I?IS* oG y9&P ,A>H팩BjT|YvfX .220zt#_{gɪT\Benv׬-beJkh|RDA@a# .},y7b2csnO|!4s3 ,85)ktc.yk b6mBh& P,eIdj&LsD(ibP3HYinV3۳oOM 9%&/.4c<ɫͱzWOCJB%ı]-ZbS  ?v?!*SY|d>J({Wyף' 91'_mT;2VsPu8YZkrpQ].w=\U,{?nl;ȶ; b|m̀Q‡=5{F-~x}K>N{srq,>]L/vy1B>{ՇC#Cٕћgl5B͞ _6GۻK0JMmd֎=?(>wm*GGOũ:Eh- 2"bo;vLP]i tè\P?3+Ų߶Gw8K{a>9ֈ|gRB>A8E8=,E#9w! aM~۷M1 ;nIh'GNZzmP0{c|S7c.X@^0jJ1 5VU d*> stream xUK6WH#MnX#iͿ Ev Ap87~% /w]X}g\Hb,kɼ,#ؼdaƂ16KKxBeCPjuX|-DBDgבwuqXp\P,hA0k4D50+CYaOouqb 7r⶜lA/%c"Pc$On Y!FXN+p|<db{x1 X x~۲{cI幃t=݁V]KW8nueK*(-7J[1Q@T`aBɤ@~oOc,+5SߔWЏhrOS\!жvs8?د/$]'t8BK/0i^5S,S>0%0k躼[ΜP{/fܵ hh~{fnV 0,EІ':18tSX@I3.qӔ/i< niX3xWq"QrCIFmj^` rW,Z@8Hkm*>U E)ڌsۜnƱi xnPS="+E|O{p;s>mw_Ђu^be O\-O m򄤀⊙:Xc 6%{?Mc\;Ѣ4,%#OwiSi \R|ڠ =j9W8F.$H@*4*hIC/2endstream endobj 417 0 obj << /Filter /FlateDecode /Length 2972 >> stream xZmoQB@>JN,ˢWM/I]?,Zf*Ew_̾S@a<;;;UɖׇE-~\0ۻ?mzX(ŗ– +MRo ]՚UUUmՔM#.qjUUVhCĸODgJoS,n3~F#K PNSVp9[N{\_*M0RfzmU⪬*Ip;BFaBS7Qr8]>>;Vg:q2sbS|_@xKch4paV0&ROYmC ~8ҙAtz&J%~%\Qh.Q' †~}K\gU}7=tO{R:l7von'Xnc"8m{w3AON?`Ue`)ʊipF 7]j'ETGD[ImR_ZXôHm) ]bnJb7vv-c8@y8aD8'Hi fk]+v e%W}WGni*Z OA:8?ˇŽgwrGWiEËQ ,ʝ;h,(xMlp?yxJKjv!@|jX ^ |aagx>K\ R<,u)DTѬjJ,S7N]-1X~Ui%! lFҹZuװL/2 e@"U&u]&FLL+qkŵ|78ѫjl"(^Yedp|1@0 %<5"0ƖGz_&a⺲.ֈU%)*f%,?[3$#iJS_ ;xp2O2 :VR5B\3Sf(>[m~X4 gocÔV<NO%GbO݇G gGk.JתضSr޷4m_~ǯ߼z:5Ȓ .7%ATGlI*k-DG}I~:E'Q5p</;;SS5 RNo_ڵ V1Y˄hgڛ~C+ߦsݔp&L39+i 9qnSKĂ j# q }s}UB@L+!-g%dY^3.yɋ]ypD vi?٘ѹep4.H]hV⻏0蚟mauw7B YF'CSQ&ñjX>#\$(Xh2ҝU&h6RX2xjêӰBҭiB@2IF{ḡ\(rBs"Ȥ3NL.U5Z\ax eb5ea_*OQ%],nf`ڤa -Usx~o.Ei9sL4Fa}dr&ױmAmdc.4.636N1`LW9`p3h۟0y, L&\O6c{~x91(JQ켁"ѱH 8ӃZw]S'wLȱqz^#eFa}jm a]jlɛS|yg«wiym1DddP3btnmeYgfC0M2B䶻f@YukS`b/r)jHdCO x< RY GiP+X/Kc' EMj+( }FP̤d.Ĉ eResJQ9<C>*s삛Iyͅ{ko<^GF6vo4h R%dţ1>۞La?,~~T_P&/Y(ጙ% ёy sK*5#ca5!Q"1B[~;nX5{8ɖ`q/cνEI18{ v%0jI] C;Nu/CiiV;ýTܡK? fѼY?wi'e瓩'כMB$!{[2ƼXkqqlUI^|h1L!4 10@}uGs`HbIqOXF:/1.TJs-[ S`Ƚ28Wx"ծ+R7*n/ۆ/ijg32h|GhgPPu*[!|@hBuݲt, >($5"TGږ#s[u,%ac T±:EDނd`!9"u*84SGSyn9Ǻ.SL*tn)>րbVmzʄ yPSm 5|迉EmBi64\ݟɟW_ ۅ@h[[; !TܺqwpUVj=nПwvdzT؎rgZcNX[&̴o&] uJٛ-+ٞ~w~ݶEkTs5qCgSai3Ww&m$pw_uھ%|<;uQTs&.!'M:SR.HPL2.. endstream endobj 418 0 obj << /Filter /FlateDecode /Length 2046 >> stream xY[o#~ׯЇPŊI(m!ԇӶ3}t1%BgA|]>էhd,?7ht`K9Y@ix t;׊f v'kHIN↓OuqW,}6[%qp8=7OK)qR o岪`'a}P{BN_==ރ鞍*SjDqlzoL(;ZУ9|PZVb|Aa! gѕ}Qs/-mc~%.'Se[W凢˕L%*H)aWc)S杲(UELrQA26 )Zsw2%FC @y 8Ӹ2E2htEe,.HNZ~7u4幛dx¬dܔ.N;WcJk0yhq }%,z;&K!gٛ {6lu,CrꡉD'du *CF(P9P& ̹NRP#,JPy=*K-`-%*Q`awJTݒ!t"%XZ9xyWLSۑZ\ v>>2+ K)E;Yq0l1nJ'%P#*wl/V3'埃 K'om5i:[-赿#sdx=e?pRw HQa@+M9SJɂ9"M' ?$K@ Rl|R >XΔ?n>mpK 9!)y$ߺO\8:ۋ@erޱx5Kx#V2|dHX*Q ilifޓf(o4 awdSs @_ Q$ Z,a1 s`e#nx{ 64tj?{JTl$g]i==6bAڧʼNeLWuT[IJI%yw}iBwTWJ.4T6Nq3gjx> stream xYs۸G)tă ]Ǘޣm.ٞùӡ%u$A✓LX,-Fސ[G4D \ !g f$Co9'պ;%UՂb @r\/wPZۀ&M=ހ,e*l>T"d~N}L78S2PRBS_DGƌ7af: CnPƙfvsS}* P . *8$RFKUN K搕l?bW8~>~8{Z_ܵ!'燙p Rj3ZrlD-g0QJ3iWaGqP$Ëk F:5yߤ>WIe*lYhbɘU-99 'iqd9cW }ȉ 'Wh$%Z)ƏJJj*h!e*l,^n} u q63Oxp9h_6*i$<%֤n(Ǵ&<] dM+ ,wȨĈRַ$~9.JLF͡P<5æ=n rnC vyv][}>MXrX5{1]t1P}W1i?N؈{*4DXkhndx܀xҀ mFN"ݖQcN1EÖU0̚]D@f^[2Cl_mҖhm r,9iG(Z֍m8p86+ {1u@(  #^mӷQtoB`GAm^C gxjqA/pYƩg9{.=ZS? B" Ogp`ɝ(ҁ|) b]ְCrYmʝqK lέαle)ɛsT:C^x. 2 0FA:E#:?.%#!B\Qmi* 6`v_AB2 '(셙!"0"0=CB&{@5OB{RFD{Qq&` b]D ZBOՂpB"a҃ X.uK񙏛b=  )雨]uPߡtHOo*t©ik QHTxGu1Rg'q֓/pq3( /nWETf> X-tMx"Õ-Ɩ%$W0?IvUFקNVa۴P=++rWa5p;hQu /}Sn<0)Ϝ\@_J2բ*xa )j񝆸n%aƳ9S" ].smj<3שSi}E=_l=+ԫ*{ [:? #=GE-0qH|r/MS}kʓMR3)}W?Qr݃h@jK Pb~!?YSmo!~@DxFTæCOՃEL'#& 7!~{,O’L{9|Ƌn.AUh@EHBrC?(d}$H]@{ ",r)z)车^~4{sG7ö  -}x]ߴ]>F_n˟` rb6cxޒeP3H.*ݸlcKe; zCݮɛ87>1k^CA6M;wW=K\msKa&0(eEb]'bTK^uKq&90Dz?KQ/zK@-Bl#e?^0,~nG G S?:l{E@Qģt fi񱈙T~<5%s!OzB5@$ !z=*TѷM9`~)+,7/eQųiu=  ڪ Hmտ.ݖqR=F8T=RJMÃ~%vv79}]_wew}Wn{ןӛ08v ]VʽM}MӌapLޞ˨/rjSbNKg= fwu5b? 3Dendstream endobj 420 0 obj << /Filter /FlateDecode /Length 732 >> stream xWMs0W(oKG SNm %1qjY%rw:fb(er]}<ݷ۔` i"MΔǴJ% 6дw 4JJHbM(L'W&Ll4GS\憣0h]w0 G] ao=1l4X\o`ε]Yoc\'$=,;,&wCB%zb—`%r>*eEfyvn֛ܬg8Vlx߿ 1/5X<jfYNc_feU/}۩'=a)^)~-AO bM(X'@#AW @JEC4a@$V@xH1N3qI +rt1 9ʵ}P4owd*@gͥJ`kr1s!8`ω1ohC(~vră kkq9ri<|u'5RB:w@K`.t͡9rX,]lGap@`sIC7EI6dk=i^rGA 0*؄p:-f bo,bendstream endobj 421 0 obj << /Filter /FlateDecode /Length 2567 >> stream xX͒۸ڣBP!^{Trk]v3C"5!oMF{\@~YR– 7 ,t2C(Ke#.w nJN f3(TVH"H .4b R%J;QUBD!Y`h2\|{R)[^^/l-#JUvy[/.Vki-'MW'gɆi"ar0rwŒ\kl)~塱X8A%0,S)yIYPV>' ՟آE?|(qlJaNyePdwh}9:2XF<}LK70mw2Ff<qJ,6\q´B~%6g]Hic;.O,:d`)#Dz@QϢ* A*[4KˠO*%ie%>[|ttÊ;vA\Nwscil~#M'%c映莻zotBpkz3,77: xӂ_Cܜ9 CҋЩD+0&]ʚ1*=i!n!z񰂍|>9C(T4<|ʖ-l 7,(-} rn\A7 -˙ޚϒ zrB\jf- fn*Ҍ`ю+(vsPc'ѺQL-{Jщ|`,l3N;~- 3z&t*PW"kE8{%N4bPP@]_ QQ€u& s[GѪh{X@,E'^O[eQm+@>T}އpeܓ*0'\ +=—Va}a ̯`᫺ |& ;@1qVtu5$]C0!G+ox̅g0V-ug.^P3>W} mL=)6EL+eVLgRdYb-R{Āv$W4& 85,*ءgu$i[|uzyA ~lAʡF;{TUah_"ªBAbQ^=S8fWzbc?2f;w#jY_NW}@B㆑V Ql ,^J~aijWCu0d!;ta MEY`'&ΐ.> stream xXYo7~ן"úGhqycd8~opPZ%p8q.SE Ζ#AG}%J[͈srĭIJDY.f9ѺN(4H . "Q,@pBD!Z]>XgQ̖dg(&G$hUp&dD=[_5'&~x@Lfِܱ t0Nx)!!hq km~iq $ JYKzrPp%s5]͚dxBy87nkz1l/Edge^DMv5/b0_DDwM%|3JbxD3H 2D33>=B@b`x%Tt-MXxv5Nvlnd4ؤ}1U߿ᜰ,`OPK% |4&^kidPHM넿!%P,׬盛}MKNv}HF"P$ AA8W.uc>(OFQ nJ0!!|f _)CxLB{Ӭ;"⢚\df IԽM~x_ܻIDVM#+0Z,\XQ0d:q([(2y2/%Eݝ7-cqlQTeQs%`xM(%!EcTPqHz&XR#r&J#Gl@ 3܉$;(x&eE *EpTd2;,3:B^]N\VdxyݼzXK<2ʿz:({zd~l_zRFab .Tx킵[.eؘ*$0p#t |u2yQ.A8SbpPc6Pqa,n.8nf^uvwNwbDș Q@q뢡 nnﶝrf_l1Ul.Q|B^cmYsk?͏EjTAd1%]^5>G4N8u<37K:H, pQ3 OgowT$m̳u6 9QD}(qbԋOwӶʧMW|6]DX ALIkED ˍp3Hs\<؟ Hhh/9(xHĒ`uCCإa< 8>1r!^clw ~!"twÎ׋jmُ&QD7p) e5%@y{T*0 Mb3ゅEPc& Rksi =~Ln`wl "rJR##S&Jc2 Q*uؙ@)1EUѯQWbe{y4܏K{c9 ? + ~^g7aH]( "0?]g.`迫Zrv7dyendstream endobj 423 0 obj << /Filter /FlateDecode /Length 696 >> stream xU=o0:O[ifvH زBiGJd$)xw-fc~wQ!IsGHǨB)AO] j 6JK J<JETKuybxnpYTx+˰2jr,LdXܜyIv'wCzvI}_\e~{VItTD/U}VSxҊ۶e֫՜> stream xMo0 'CTa6ۀav-;fVߏA-rERW~!>_9!U9piCd%E;rɭVsQJ*ǕJ!J(qgL5 r "oЛ\;{k *h기9-g3=^eW wpGd0vʹvKRaE?HXB/!C\E'nzerhiO}lJ%o8.%vFG͂]ݲ8.(YO0.k&o;>\"_ͷ+k`맠d=rs}3(xHERv^t숇̺3<ޔHw:L.`y}8xj<ClZg/⹱OhǏbE *-q^bS(mR Gmh 5*T/wWe3 T,-wn,fmUuyڶ!^h֮7%;=DTuw㐌Uy*cÎ)%ePCVleOgyܞεezp$QlUcwJ(nFػ^^WyQS|Bwo`mendstream endobj 425 0 obj << /Filter /FlateDecode /Length 338 >> stream xQN01>nj (Cոmi4P>seDw~wAҤo>׭8HGk7-KLWЉ0r+1r>֭TWt0eʀ4h%j<5ۯ>FT#jc,:eI2)1݅ƺY MBvuT,\Z*,|N`w- ,^=NJLlk;iq.hʿawA-;yM2XJ<,a oA8F)Sg,3Pf1̒g:SyvR7Ei"ہXǚR{"nA1R K8 ;endstream endobj 426 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 18654 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +{'oc.'9BF@>? N,-$rld21I3{ J+ 6ZY9864Q\-5'n4M:L 0?u<kҿX,I 0OTVBunXY%ݠre$bRzmzu$>q <\U׍;EޞaJIܒ1⣏GrOmVf1e-C@#w4WZ V1Ac3A=_:5+6Qeܓ+U`PoEp֩{E4ҖDd h%m'CҬko++$hztvtmhDwmj}b ռ8.QF+A<ۢ5=n wQ@{gkX_K1A;8ڌzdsր:+jWipXY]fi1 '+SbKҧ0\;LVWa1>hmjqQ#+.6 T^&ރq"-e\+vh,f;Z+> nAiPKiR0Ug|+l"vMb1 >h/jy(lIai%r8r*] +Hm/eh )3Gg\c<=ImdYO fu0<m26q'((((((((((((((((ZZt^  }A;wkPX`%<}뢢0 Xi-6RX2Us\i,˖f$/#=1]k]j+Etc 6㵈5q >xUVb C?AEP4>ut9wMO@5Kw! p>^AEa_xOO'iԒ%gJs9 MY_]^O6YvҸ.1|']=s5ݡYVbx<""mfXP%E]/_tP ~;Yq,`qxAPX-oou{m.\(Yvs]%k :iKN+̌\+39?LSeف&m/u7(H] kVbw-G,-u<2ZBЭH4\IMZ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (Qi-SxRHJ#:#t!gloy/nl9]&Wf 1  zwX^^]!.`Tllz{X<3sl Zs[FiXcҀ6ZMpck FBt_J|]8$mC c3gB%6kدRR]9)=84)펝?e6<H#cFfTSs($5cNgه/EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEW![a-cn8iWܼ}+.?~$Gu4$\}?J2hF $e[ տ-/RjwRB~֍gaib-/V>?߱ZP@o(m~hQ@Z_أ K}Egaib-/VwgmG% 9J~U6-I_B?sp%#< SxCݏ}ȼFѫ#8 ZfNlu%JߌG}J9+!ve=RԮ-.SOJF}{4QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQHK1@'c7 \7Ga ~Vll-F1w?ɬuS=8!;ŕ#_AOn]E$38I_`G(7Xm!0O4+k l{#zE\\p0Oz]JKڬi̬\qm-ΛB7ǹN灓qҀ!H.nd̩UF޻?ZBYA*TWI7v.'ؼ}'$b;8̕#Uwɠ (((+;GZϽ|l~Y5n??;@5흽q,0S@1\h2-+O`,7?E{wFȊ+ PE`\FTeF=:QLX%HWS@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@gkdjj~k<t:_qTh}O?$d b@Vg|Ρ'( օQEenٿf &?}^Qw03 xaF[+boF 'u&i_ tUO;5$7na ' 袊(+;Xд{-|BZ5^^Y\[66Ldu U]2I,=5j (0e{&3-/z7>Ǯl "npGPGBsZX-<|L%Sd&Hݣ!ǡȠְΚ3 SU*cl Gj';Ź$bYB"$ۼ81@U]6V 4L3+F)y8V9tkt!TR3^A;ɠƊŗ15۵ֳ *1r}Oy=3|PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPY-$=nijMffKx$(R?ۅH6F{zh?hV~][?hPEPQ\u: 54>PfX]!#*pzF}Y5;.M,$Rնn q܌{W?BvXʧ(V#<殯{{% lf@yN*OKIo$MaBns,YuA )]_^McVHĪ,T9ik w gY96eFyQxjCc*=ZiM=%rTpyQi7K',vJ\m\|˖=H=xf3؞,ewGjh%s j[v[ƒu2z ]'NRݧb 9;Ӡ{So .k ʹRl%w)G8'ր7l>eoqgjzZ=kk,,ĨNr@? @/{-Ba5Lϳm2Lk@a#Wm.Ἀn;NЂ(ޭ Ce><~u=H ČTĎ? EPѬVevueE`[ǷӞq2."Xl_F'i@$+b0qSjVNqrbǦ=a{Y34Hȍ±RjjgFXֈrUrOQVh(((((((((((((((;U3}jh|נv?VeV "]RdjPEPY~"ՆpG@}A}jW7ko_mͥ#'q4s*crDWdy#su;V?4hQ@ؚ?ƤҬY ;X8M\ HA t #֪]k2Zj 17}ۡ4j+xxg@S@/]?PKqjx2xjb1  SEq."޹ݎn[=~zP)מӍ[Nя>/y%g{k}gqމҧNy7?n)??h1[t>2HYBn^;i`+yv0q"Qi&D6Nk"Ã@;^R[6}6+ ĻVX1\ubOH9# vmr$֥{+ȂFm}#c|kvKa=Q<+rsI$d؂Y$#{cgo-P3$3mF!C23=}HLf+$gWw1~A)m73}`Պ/}f3a%dV>ӒMCP2r|d CN1@iM-.VSpSc$nzS%ԴUS̏JcO*@(ˌv9=ElVy.g7I{G$)o•֝żWP<H68a@ԧ86l?J֬,`.GDg~잍wFWEt` E:((((((((((((((( _ZG_ڵZ-&FH7WVkMu4=h5ݝhëM*) {(:[W.na;cY$ \ _X#+6s'gPA5kO6$$wJ%>sf\z|oJvptdcJĪA@QMwXѝUQO@(3]QKWFT~>[fS"cȣIa מKH}N`OUO/}C@Q@Q@R0ܤr21 ZX kslM6NwQwvz="9ĊDe0\SѮlnm7F}u#e_abct6t$tM 6 čFF8RTsy ž8e6}kM.{mT$zʹfVf<(r,g9lg-"eۉQ$`2v*`B\7.8!e=3޹mB e<2Ms>\@Vp.6kL?Q?Р Nǩy/6[0,  #kF4m".#i.YNv"QNz0hG`B8Y?У0h@"aGnݡ<7MkTmaF0?fmΓwso@6+RҤk 2EGEѺңVcVQjif߅MgsE=˜O~Ǩ #h'F85Yڮ&FM}%=>j=3Uyg6kmr/=ǷQԀjHHpG?Р h}(Z*/=i{G} 0hG`B%Yf 'aRPEPEPEPEPEPEPEPET/$^;+͂l8jVW`˫C+F CEBNŠ4 (Ӯ<0Q_s*@13 r+Wj.x .a~`J7@gi? K԰֍g^ꖗ]oiPy:O_;KMeڥp0$tƗ"Bs`=0k+3H5%)&.V4.4!@$Iҡ4 }H] 4d`1;C' 4I,-D1Hx=ՕYC!)AR؊Î.u8o $,B0<yjυ`YfMӼ\)YdR,sEPEPEPEPEPY: &}[1 Vg)=_⵫3_`B4s∨iܞP!^Ūx)b_.0$bBr0{֚kS]mr[U ܊0Oqs=3/[$E+0\? ePyMZ} -Y1 }ϨiƾfpӋqlm72^nqJ$&I_ B0W/C/nm>l~nY](DRT6[$.1Z~X'3Oq4Na6i]Xp5fɒw 0O|a5ͣyS2+gsQM"6CZ*_1Iccj)X:3+k @;^4H6x@"kQ',RTJf Oj›K(>V-w^l,3*%HŔ ]J8@uu 5xLyT4yrQqMnt/-4 lfg 0[s&3INWc>MiqgqپHyngw#ZDi:݊ &-\@;HG%桩[Zƃs$w6 `}F E=:MCU[Oy0`o˙9n9PZ薺VmWmD5$r%I /tqh(B sפ=2v m-=kMNL6G;{ ՀǦB[D s z%kk0<?F:8D&FX/ʭR0ßdOS4l>qepҠxIg=۞/Zt>8U]7D$Ϯ:nI?Z\9jD;FNR3ueJQ#BLcst-E]3Y]dx\)6~c&xF[ 2ɧ#+l(ʑ@*{&K qj&KL4ŒH|>QߟJԴ=[]X [ "EdQrpYOh(((((((ahx-ӌ40vV(V`C8 Aư{żkXFc{E_Prۖ]~Vu8?X2<=,d,wHַJO-]7z Tr?Mhz(9-gOHV3Q*Р((((*vPyDQv={y;33TdS %Fcݍ~=϶ei#MD+ tzSMIԬzy@ D7e=Hxϭ?7U/na[aof,nC9` s#9w5#,sGG֬z}|VO[)MVںI&OIs_Q {ΩI0Y } dҶ"V[Oc[ZGS裓9Hg#HlS <ُ>1YiSOr5Ҝ soV?X죁Z$.R2FAU?kO]dUhQ@֟޻ɿ??wUEgcZz&ƴMVi 7ZPD|N2GCU(((((((((I*FѫS#mL8'4~Kϴ1> 㻫F"h~T}IE,sD"=A{VK>}R [{DSP)g5X-\yK8șnTzlY:l[_[!,*Edǿ:Va vmdz.um+IL3i T#Lk+_UΐJ+{kw935zOR*EԃcB7P!*Ѡ(((,{ˤ"]DΠ$Nn}#ymqq$ eJ8:=mΚIYɽOX{ϭnֺk…\XAZϵMg}ҽA܋w| JA=< /sJ1Ey`8e 3QcDGK{eÙp` O<ݦoy^YCdl|v?l>Qm7Sg&)kh-maZBX>ƺh("$@.4{+u,LeKbF NWrj6II]R4(I5B]Ӭc^gHaI=0Wr+ A Uk k!$F? UeE,Tdp iZۨ a!lOOw5.--UF%{©ʅ$@: {[{ؼI,|Ns^q%70<_#Id0FnofggvA8qV희6V (rOy'ކX呮" +CpOn-7PG4M`@3R@P2I* }>ٮ.X^IwZ u8NRğ_C/zPחZO$EZֱ%%;䞤SSPP0)h((((((((((((((;V !e$R#[F-O\ߨ5vjeOyX4֖iuVU,7hj+h-Pv8 B=榢0f[$^03ctd`*K}Wzu{cQ!-?y~xzntEJ`>^sp 7hN((*+ yp?P]\iM;mE'>R[vQ9{tK[yn[(W ?y?AܛK1/WMIEbB\iW".կPG8%ZMSRաmPEh_ZFʨ!wp?)oxҴYOK`Zgt;k%E|2?tl~m[T']nmhhG;n_ie- k1ԶƷkMB]VEm38R:oFxl.E$q ;=f3b&,졔)7w==mUN[t >lɟZZ|qe (r?/-TԮ#iq$1G"$Nvhڳ46ykXMݪ/UN<v9rkOU# i."-xN9" 2XКV3Hgsz8Ҁ2"LдebZè."@DWws5.Y\7ӴEqAP,qqY4 {Y`zr8^:ֈwkMSͿ( $c:zCc+j-EUn=Տ'qZ[Mf}:՝3BrI4QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEVvev>co'AG֍W-~e5vRݏphgug#k0"վWk_4(+*?.cHԡ) R=?Bڻ|ikztq;HRUԞ܊xeaL壌IdVq$zJA ܒ0+ z?:n |sorEUM@|a:ҴI{y Io4LcBg<@gLBM8*(w&4©O8@o )X˦jgWʓZ؜G5ZZNp7?/4ȴx:Qy#Pcэ@r3Mu1E1q"*PFv=쟿8Er kX} VTx^+CȑG$?:}?\8)Y2" \{ѨZHm;DZ88Y='MK6El `R~luH)qɧB@I$ϙœp$g@/&k2Bex4ckr@MWQ Q #TdSЌ XI&sUPwn̘9|i|/ͧ`gܱuoKI8l:q\ bc/[0Wr6LWM/4$qF݀U$(,Tc zJ sBC|TA`qUE6_dΊ=I1ߝĜNO''_vTRUFI' /6x8\ES 6i4Q6s})al۬xvvw%<ϋxCU9#ӃOèI ]'R9 qFđF0Tg)^m7|Ng"(((((((((((((((( OMV}x?=iuK_7ῥ2q)ilue'\G"0*9-fo)of#[ zB s3yp>daD:t1d$V8i }Hrj鯛&>GiPp_숿kBȋ~o)Ə숿kBwLd%͝A>uz((;Y8$.Pn3 <3 տ~#[ɺO1VQE5yqm^%McO)#hS`z]ec]]\at;gq+5\\^X-|ppZ5ͺ-#Ϩʛ2,*OEϯsⴴ. 5in&;IOگP?w{͜fB9LYC)pSoLnz{jWPOXl];OBqq[(5uaVQxԻ->N;Ag+%͚>ڿ8ϐg8P©9hs3ڞuIkg p bIg ߳=7cg4gijqX64.$݁đNzօ7,6$d  CQPEdqoPE" f@8HßhX>yIJ|vyuךԢ(((]}k.UNWIԯ.x˟Z5[N0ȿ;y,I4Sd"ff8}GPmڤU,z*'Vdz}γ"k)ک fcAh}׈NFJ+r=Skf hbXaaQF(((((((((((((((((((((vZ$P^Zc`>2֑m91Yxl`Zvm$[ep'цGՅn"B Ъ dzO袊(((+:'Qq/xQ}5YWDwǤl@fzʖFcC1?MW./$v= ۠Wt.L[YN駐Vc:_NZ;J. zc{VPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP^ssa5f)mv©I 0|Sakh7@*`c@.a-v|̪;F2nv#Neߋ"\b2@'4gE<0E$G;׎U>~MMvI.ZF0F܏%HBr@!ntGPJ Ha$܏Z/"!H C iz=VE6JR}ܝ ? nq7%iu]q)+d.QÆ@#I mPNpÕ FॺpNqګ˷Dn%qgVCӠVmJkkQoq?frY`=;q@A7Y]6/9D?)ln_qRٯeHvѾP2z_ RQgm #ppSqjemHYv9g3fn@XZXc,Kp̩6?Y}f+{O6E 9YT SjΩZK.k$F*6xmPVomE c 0h ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (  A1ʅ( 4K+Bo_e/ Т3mA ?´( G[B (ZZ%SIss3BK Fx(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((endstream endobj 427 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 10903 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +μ]oMJN ۜ5F9=K)ķM>y7_A?km$0 2Tg=6(^ZtIklϘgrFTpzN:zWt?m|fXd,@GҊ\>%6Zi#Y$` GYC Wkm,a cdlq?ZhCBxGSHn%Cp@>o5,{K< H3ns@W/ l6j/){ E9,N>h7E i!Y0U$QYum& 2qW%i;>}]OS1lBǸ?2h$]jֺW1˰Y Wkm,a cdlq?ZhT ^m-Ila-ww!eq7% TWotM,;%fHqާ k{eMJE1 ʤuW+SbKҧ0\;LVWa1皴-|=&)$>\<:KwH><oz=z rIm@'((((((((((wS}q{ a-҅YqJӢ{o+ mq'#$(¶V'GY ̿0q V." .EWO0VHڊ#feif['wId#q1KR^Cy}M8)xg85Eg:Dvܼ-<Yzx7XIn@}.cotޢ9 Z-w~ϴGo6Ř OW]^ۋ\R\ F#GEsx3M%I[`\}{{Sa]={}rVfC4v}0vk0l)im&#\ G26gj?Z}q{46^iE1;d(~?XG |[z.'W+I ..dn.L_L02 Es> uɒqrbQN{ˉ'gk&F YX%-k`C2 qv2n8FTRx5/mHD.$y1.+2Q`2!eqk?M]wepxIdR0WGtP/mmi-fw 2ˍЃW%Memo%bۺa;b( GдP1r19$<-.tx-:'*%9 Q@>%w773^Pe]*>x5/mHD.$y1.+2] KQ cBn d?glb-`Yetu<Ͼ>1WKEs>= ."r0A84x.;;h [I D_LWIEs^_NdO?{ LbZ["#^BG)KhCsJ<9ĎKglQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@mMq*E瑂Tt XBhQYۺG,!?Ə#?@VAKOwH'Rh?)c 4EgnToG2Ǯn((((((((((((((((((((((((( w3߱G@o+Bm~Z_ح (? K}aib( -/T]uJ]?\3m?ulϙ9;GҴm$`a,9÷Ќ.c,C ހ&(((((((((((((((((((((((K֝dt|.˩Y8$. }"<&Yc? (Q@Q@Q@Q@Q@fr[!?*ZͯH0=t @(,;J{GSEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPvqib9?/A[hfk;MI<7H'b߀@Q@Q@Q@Q@Q@Q@H/s$~(0G5iUMJծ#`!q?Nؚ}G8RTa)@((((((((((((((((((((*+[N# dԵ\Z!'b;1hur-,!89aFG#]^X5x,UCl&C,_`'sqAacG7ڮVCl*J[Yۑ=:鷷'vdR|Wc$gwN>G-56HY𻕷r{M]uutH'EجMΧL Yibz0w#46>^KrS*Hrp=^(((((#Qp 'S9Y')S#2^CŧnnmȗydA06޼r9Doi/f|-=[< t$ӴNݠqhٵYW,oxi'ӝ^ B*5ѳ.9 ^OϵYoGΦM :}q̋j|`4]U?;r[(M9ʶ!qs5^Iڮ'ȼySGS&r=}: nuVRI@4QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE6GXѝUPI':*172%s;GGI!nk1`m Ѡ((((((((  ҏGiU{Q{i$3r:a ntnBL?}3j(((((((((((((((((((*u;) ~E~${?REx Ѫu졀EycOVh((((((((?uUGY@O>kJ[I rT8U=A=SLkPfn#c;8؊@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@RPQ}(L?PT_i{G} >-`B=KEE?У0h@Q}(L?PT_i{G} >-g^j}_ÄO$ѹ!$F#~&=nr1~`nѢ(((sY ڭ|+;!<1@W;&rȴ~pi~3n/]Kcj7PM!pI4(]1[n'72 b3Z_}6S2*#bzuTW9_\Ķb{Ȳ\d| !p8 \LtK#̐Y\n5袊((͸A#Awo5P[%嬶dGQ=ZKyH \@9 ÿЌh`B=KEE?У0h@Q}(L?PT_i{G} >-ԑ$sN((((((kQdYr?&w@{Im͞i Msmc IHT}IM "URp#a_=0z6WXMЕ6|TX}=qYvMA3ia$ lm@g!sk}nբˌ%S{PiG\LtdA2Rj=퍂x#DJwd*1=97x=9pZ@q:nBF4Ɗ6YUoB{H'(.3cuHuiBN4B 491’0Jhs/V[TD랽-CaH(G ȩ.,b->)ڂUE}z&جq\ikrh]ǩz-!("k$@) 蠟º8cEDU@±:Q4me 88Z_E4/Ec).M vlXh_ (SB]@4V7"?пm|PPL26Ҫ PI 2Uпm|S&ׇ6gg P6HX928*FAE4/kkjUci Jy*7Lhİot"q+c_hff +jM,αƃ,p&O:Es,6שG Ì{@ zNgEM"*+1aVaFHb!',Y>O xyxNgJ瑑ڈ5锴Zu*>P@oE4/Ec).M vlXh_ (SB]@5\jpo,&\,ˑF:28M vsςZ tv t3vǧ@CibX" jRzj6!䐄;ǨoSױG]Damw}l=k>] U]-_]Y^ǘYd#\矕N(b7ol UP2좸)!bӻ2FLXRq )277#Q=чd?+<@jhMטY6ܖ\ nhqqR9Ebcdr偱9|gos8mm, B`NPh:e EHdQDjS"9:Ē 1RV5o, sSBh}>0\En^$Edj,eb5x|:䷘u9q]>i% dD*H(6k1ĦB(PN}+VzKZQEQEQEQEQEQETsC*U(8#3?wTcZz&BƴMQi (?7G52o*( kO]dU֟޻ɿТ3?wTcZz&BƴMQi (kopU*IL1#](((+ZS1{FDm #=k [^\ycInU瑎=^#+RpP>`׻`fQ@&^Z24}ŐH9e6<.snn5 #?"R$WWK8L(R8nUF3 ڢ ( ( ( ` tr)VATP52o*kO]dUhQ@֟޻ɿ??wUEgcZz&ƴMVi 7ZP[=>xD3I+9 g,OPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPendstream endobj 428 0 obj << /Filter /FlateDecode /Length 469 >> stream xRn0,W1|?9HRsB8'''0ϒ$ C\ miD*a,˥2TaNߕ\Vk َH>5XdP<']sDhN%Xp~\B}Qp>(1p3q.R4s6n20\处b)' C;q[0R7܊?'^MW2Sܿk2s0 1-a:>" wY=c,4 {iч<;{(w:"o Ԟc{eQIIͶ!/ Svf]=NڒpZ9j(ijohendstream endobj 429 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 13904 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +|y*ƭY[;E`r=H|QkPk 4JFF:[hRqzϵd)jXOpttW94 miT, GFsp'QA >{ӹV{ 3w-|o{}mM>s4^R>qߦi6-gmNb[7(4\EHN<:ezEɎf3}ьdu9x:\D𳐠gҀ='g/-nϵeXv$F V|UG{G[vPWqT@[{+DGs-qx,Eokk:m]@B}pQ\N[ѧӡSVY:'܂:|oxꍧF4;$Sr2:g4Q^uw.l-+ ry%@2@ެj^?}>F &"i>X3@[xP%igYM,)V`zlk}y`Yh.EGAp~h7ҼgxoGaQyLsL)g prp폥jC{].=>#Ke"$Y0AwҊwwv^YSRLfB<=TmZF=6K=:8|ьgr{h*Z\Zz"O0Xf%$~IqQu9'k3첖c! ր;+5Q|AA$1; ^*ߋ.4K{x}:;7,d|'@ǯ꺇,"44qwH 62x<]ķmvU}ypcEb2[MwtW6NN7rȃ9Ҷ-OAzGՕJ"bq's@tQEQEQEQEQEQEQEQEQEQEQEQEbWK[IIw3M,(n AP^ҦCԍrAŒtP6|;x绊Hn cw8=oͣKyYqs%ѐPs1WGEa Zmշ]Hڴp"|H995 h/o-F)51]m[[jjqi-ܫ6WjLܚn5=ŵͣ{v 鑂9`V7n`O*yw{FN3x*+{#m=ݭ)xd+GtP;:O5A 3F|ڹtکƦ!*?(a `p{ޢ3t} i~sf R< sY;ۋ^ڛTmp`=WEEeàY[_þ7$q)yLg-c]#ErkvsZ~1ԥMiMhڴ-*J/~$,nnm!L ǦQaib( -/Q>Т" Ic$".hk$gޥ3?4{h?8ǾzD,j76ke_ V|IV1m;!c޾ִ(((((((((((((((((((((((( @LG#Gs6P3ֵpܡ$,4]v\ Kn4WڻZюݕeT6Hq ]7ƖiT jZuƕV,I,. %A~]+ng׬.U3 VG yߕhEQEQEQEEqEƧWzrO/!vhãcbQ{yMcH~}MhEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEbv 1= *6Ծ*!1cj*vLKL}!O]'K!4k3HP[@ mƷ|=aY Γ:,z\[g?&oʦӰo@誟vmWhӰo@誟vmWhӰo@誟vmWjHo-g~=Q@Q@6HX9]aAEf}Měa_'B*ݝ;цCAUyt(fxa=E[V[&ꊨn~ڴG=(h((((((((((((((((((([KIŒ ;FHi?JCe>g-k5JT90ozI>qj͋S (OhWO[,H䁃ךg.P1rMxKS*~SZFle}ΧMѐL+QefEJ J_nAn[M]IkZO5r#+p sbu=A𨑹A) ,G|0_Kk{qO=v@z#dIoռ2ۥ/̫rNyyKc[.&h\n| 7g8@đ:*E֏s@ SG\N ZGk3G6уqJ6ߌ)"X;w'^plsǥjNo:Zt34ؚ?ƴ( M?xG&<o (?O7Ԗ]h` (R$qg*QERL̒&,d~ͨ[ǵ wKA(;TG}/Av nc[ʒz20`RU+*y W1Ԍg Vw[\ };g.(FdR4bHdFrOZ(5%c&ʪNZ{=B+hhnea{U,U)܇)"Ƞ 4Vgڮ/tE юD57WFVSGրEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE69Dslpp}ꆤ&Zn]S3.yڊyjŮ.5 'jGmo}rI3̊9' P̚g6H At$T|5l]CJc;Ir>H*0{t֢8`)ki`!p:fC )$%6HMEPEPEPEPEPEPEPEP&F"3[ @ 9#%ZE\Is峐sRjVWq_ y[$T C#}xw6?k n& cojnǫZ0YW#sU5Mqf|,Y2m(?t` )$dvAeO0wM!vdj=l`6;H4`nʶ0H]Mk#if$kw3`8X1oh@Xr*롤򠰻[i#Вw;Zm̶ڼwHgP.swK($$t=>M9iX]^U! 5ndTz3SP+ME'ș dG=㊻P]Ay:NpT9U?6M}ʹ1ҏ=>N eE7VSjJ((((((((((((((*55UGY@?JbH]y0bN 7TI 6} t5g/)E+ # nr?nmEPEPEPEPEPEPEPEPEPEPMuWRAEgk)%o`OJ7~(oPwr$?(Z8Wki;1} bhr7Ua aP3{h;1{WaKo"PR:i{G} 0hG`B%Yvڲ#05%QEQEQEQEQEQEQEQEQEQY^(vM !us&._jznH(ɪKKqlKq$˵a2p[}nEu9VڼhW^cwJ rdq8A]&U&uRHP( ( ( ( ( ( ( ( ( ( ( ( ( {xnc1Dz`RQ@Fl.`2?H76LnRև"Ob3} k]3}Y9?gk3F1+#\d3Eek4G{Ykyb`3<:@M{e7[@ˁd9?Qֹ]g#42.IP[N2qwW~YoI2%לmϾq@*Qn[2}JDlt+2hRۙI0FmF[TNr0qU24iop"q&)q8,][hGzAw?y!Vom7YFwP2}IgԹͽl8m?zPRGD%lS]"Y9٧aOAGQƑFƊ 0xcHe]ȥ}A"bz&BƴMQi (z=sG.'f/s#qPEPEPEPEPEPEPEPEPEPEP3F VsZ.4X[)f LOT|I$I6o3(,'AAY?[e|fbː|ǷZ年K4knHzկUG*y͍pq@3usyFç'hC*"*Pk=>;y ;Ot 4qEQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ YOI,֍gk˲[e%'C jxPڭCIj|F~MaoOa rC@ EPEPEPEPEPEPERUC q(T?T{;V12O?J쨥pP:R1Kzޱ8_ȓJ=0{A7p~_jW_[ ~KejEnKEQETwYFw ¨g>IOȺkjz[|?a?ڀ.iH3>"C<L0I:(jQ$1q"j0aO((((((((((((((((KYFѷЌ7$̭ܮQAqqIju> BjQRѵM^0?ݐsT!I|y];D?ğ_@ JofV(FciU> \6;)iHցg7zϲ5-OCV mQm@ss]KGy͗Y/O9 w 9x9!Tg-`o2rn*xz`Q@d'":y!"( ݁>ةg{xm׷򮦉˽G'"HAI<ǡ 1C%XڱA!tU0J x҉Y kJJ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (a@8zg_NL^@ (u# ##ѯ5V}$,VCh!@ctQ,cHY-.c:ErL ˀ8󴟗=k?ő}SشP␸W1I8WnxGZ}%sā5'>JX(,[df.O^(((((/2@叠}OYj-,o e8y Qs9G]|o?[H?#aϿjІXcT`@4_N\}裢M](((((((((((((((((((((*o%̈́"|uSFGWhw`[ɦ-\4 ^rW1jСhQWdOEu1 E d@(((/6@叠IK˻}Jq,>Vӣù8#:4_\HnnǚE~՘!%8aUF((((((((((((((((((((((((( HdwG {pz]wJK+SzW&YjZE)d0X#hZh3 ZMrZʒDdpf$'\%ݤ &U4LT#qFz{Չ4;V;̐`Ϙ > stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +3nK~"Z9Y$\wumy6嗀ռk̳' WG=OӀE}Ǔ_c[G-%.ϖRh6TK?$FQYA@2->,uU")#c,i}*ƛZ>r-LLI!Yx`ÏB#xu#M01ƥ%Lxm &X\*eԕَxɠΊu?&U-q"yp̋`{qZ_o QEr7&N}2&-9U˻d|sq[vz_xy5{h$^̰H=1@tWxAy=مk [MP9f5.ىmko*fpvIq@i~-aԣaj>a06&;|R>3JҴTH";1/y,,8Swq@ErW(kgM%Ɲ9ظluD1gVA0H;:+WNi1,E>g},oŽ_;q(aEvTWtiеά'%8'83xK{V˲gQӮ(tHf3]X3i0r1+sškRh96rA@W/ϣjrD!)3B?Fh%Lxm &X\*eԕَxɠΊ>"}6Alh q8Bj.tX5+HV)Hˁ8ŠO&}ck-wr899p" u{?9wTVUφ[h8~gt<k źɧ5ޙo 1a9b*$@1sZy]N9ܝluj+jpũލ2Ӵ浝$`.Uq\~*TTY4+-q9+W={źɧ5ޙo 1eVەqȠʊ:뷊 esng1lUBkŴΊHϙ]OҀ;+j&uf>. +!Opp@ǭw1| OuQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@ڶoa-ʭcp ñ<~U^_ XɫY^*G2aE`ӕ_3xe#9"7.r[[E;\c d]Mx_wR\[I0xvbEYFiuo"xֲ0@x'Z騠|BXy>Tl'r߻v>L>Ozďsy|mK% L8–jS^Gy}n.$Yg G+BxnpFj[\}HKAEsW u F)`)?'+n-: 5tPlyJ\c>j: om8?NZtlꚛ/`<dv$VX#L9.`jus>G-~\SuY[Z[fܫiJϸGEaWŎ"nvOݟ›g;49n ̿6񃻎zoQ@~#mEso44k3|߼qӮ%i^v,s;+bt)C?3[IR,)kH:mة-E{c{4ҵcP=/Q4">nTt<~.=NG6ʲk0Ǩ$t״}wKOi)vѐH 3⹽GwZt͖k٦V{Gr1ֻJ(5k-n`$eS H玝J2}Ow`fG+4_9< (v0,X4%bŗ9'c^[\ ە -atpgяN9ttP~Aej tp0:cY_ltks{ra7n 19bEZhKwia l'8뚴|5[oKYiG7n?=rO4d..ؼ7!tO.4B@>((((((((vԮa`L(1$I$ԢɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТɨH:d$?ƀ4(j?G5 _ +?욏MGChB&A!4}QuТ5huy#H*V qQEQEQEJUx-rGє2#Y_I GsL~W;X`h[@$10 3I?$V "y uGMWRheIdV)HA}"4zƊ(ܢ(((((((((((((([yGqֵk3_Э552&D@d>r29p\ux[>lGrG # qZu趺 22l@t*Om(dQ@^!U4pLd@d.qH*׳+v1k+_𽆽4S]4 Yzεla6C E8`rzԫcY{>Hߛ[5QTdQEQEQEQEgno օgno օQEQEQEQE˭-[U˭-@TQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEA}rVWNBRg&tlN1~ʮXR0AV^GNᷚAu8>EPEPEPEPEPEPEP}G\c9dt%$ u[],-P Hh5YS^YYuLM}ЬM}Ъ2 ( ( ( ( e e ( ( ( ( ( ( ( I!H2Ȉ̑ p?_^0׵zRA%_" IsZj%T': (<~4u̎p! qȯQ( if^O9%?g͞z}7bߴn7cS3ZTP8`TEq ĈB:`q@mfykO׷LO^E)Z*%em:QTdy_Oٝ` -I_wc!MI%GA:z;t2NG+:wwV[џ-t} :;VI?+N)%dm^Ot@ڥd X䞀4Zlצ TTEQ~|KjͅKqm}v5vE}mV€2qv &ݑEV-,ZT7NA=suEZ 5TF)Rh ;_IYRnvg:g!|1޶qvK1QՄҺ|I>RIrR8gb+-.tkGܜzU=ĚN$闉;˨=y>T}i2[QTu}^E:11/QTZYVpu(+><{ȷ-?pI;qlצQ@I<,_,Hⴢ&%u !AEd7u~oGڼ+f3u⁨5x8q"oB^9(Iw"7æ:pAC@(wvpV&I[.[$Z&da' b xLy2Wq'Uym'XL$j9$SڵJk{:#kF_7?7kB ( ( ( ( e e ( ( ( ( ( ( /  %Ϙ{S:m;][ WNJ8|]/ A,N$qp:OVk$e 10iTz>Yq[W9x][\D3 2m8Zcowc|CzNl^sX 0r;U<91k|F13W^m;wpDDߡ?Gz_yhd2nwW'=9ះ6.G;}+C>Mr+n>? !a2{WQE )+1ө:RSF%<84h$xc.C$wWËg4 ]95s_ tX,r@~Mm)X# @&U{ϑӾfr~/|7IG8 +r:溲@N3ҙFvb9aT4:%8;4eCDy^XOrK9,x_x/ voY#lءr 8]p6ݪ3`sێ=hoemppx d6ۻ$xi|S%]` wߜ1Zw{[MdiI^UszROt$\wI4*T1l܃+I޸>Ux 3V8r^~c>Kc eɶiNL#='O2͏*7_!Fz)d}w qǩX:,=v#.$rG?):׉-4m 5{xftJ1RkG3lNg$mB4adUvH=5ZK8#DNOgCc$3ʼn3$dӊKp%;VVw2^xcܬ{9?tfmRHD#r}ik}6;ws[@.-focě~~$X#vC3qrO^\\VU#tooiqWbPn(T `q?JT*PRi=!VtugW7rDevOE͔wj;Uz7Y((GI :L 0fbmt  ((((+K[[&Q~*ՠKi%HYb.v9$GSހ:z*jcW2 $Q`qN?"AQͭ[C}B3C(Oo9` **74pA$q*U^qw1&Ip Aԁހ4hڍŠQ g ",GOz|wֲ=w0c/ EXn&\1D<;ppX@W++ݠ ĂzFT)'r) 7}QN?PTfFī22Gh&S W{ /4[|&⏜}1acӎ1o -mnƒ| gUH ˇ=:WH.lxt,Hf%T~qT#xB"nڻ_䎣W,)#QMj0CKscn$ߕV''!'q"W$MTo$u\ڈ1Ö,;+˞\ӱ->j11$?9_ϭy߃$$Ϲ8n7y^KGO{:Z3u扨Cec 3A$#.)֚: cGZ䱾y ,$3~U_|; ŧI6 5OSK[x,x PYG z+vwSOmA @̎C \qюr~Ξ:R@Q@7~Үan|#Hqַ^\$PL|>ÐОEJrM$i,m 5x7H-LN P_A{8]ʪvW)]jziE-F#8I&.g8qZGss\ޗ\)7!ѓwӯ=@:|%m$NP;r3X&4ԆG²t#q$6.CLٳ0s~'nUHUT).L j J(&فpI'^*;_i6FC(1aמMt4Si3(Q+Š(HQEQ\Ǐ|Q7t{-!؀ W<I- FXVSmEQEi4mkkw[K*#'?Һ:( M}ЬM}Р(((ϷY.7m_p9`s֍xԊ*$n_cb(qS\i7a/m( ]I˩e8#e ұf^׋Ɩ(n(Wz%7$#i^6n}7qj?W~Z'8]=립uGP<GUMٯZTub%9urhޤS[J ,6[XNI\ػʶ3 rMkLyivWمI,avdqXc8ըo%Ρ%W͍qZosbKy#r651pv 1@;6NAlfڍ ;<$i XynF$ G#Ɗ.a9?\;% ,0`AzU(e` nfXFYh"mې6 :!RQ@Hޖ(((.upn.4ifl# p2W/,0^A I0ZiqX('׏Y343N*O'ij_WQ^FzNx+ZΧ])U̱Qa  ژI\ڭ)Q+zAqekskYyLN:qLӬd\HV)HoIO,|,;Nxygx[յUܢHLc 1G'֎e{ RidqP@,nr!` ~j"{Kc8o2F awp1άcUauyj_cK{"A}ܹ!A,} <U?suw}s$`?vǽhUYدC^5+صM[${ 7<{}k((?ESs_sf+?ESs_sf((((yAuPX_A5X_A4Egx+;贷z𰄆{C\;V/~uqcI$NHc(jƗiq!LQEgyڌ~k<_-1c ~8(Ȓx]r :IZ2@S{vٓ:n5K^ cߺS-hY[ t$v}A EQEyb!v-kBwϠ52vkJrJɽ#\'1Q\CkT1՝Uan>f6`H6~+KgW1ڂaRݍiSUKN:P]^%@cWQA׹\X,b%G#>隙!v"[y*d{Dhy&x!BNs__i!]$@8iq9938B֭5N\IF]j]"+$[uyutQEQE˭-[U˭-@TQEQEQEQE5]JSdtxc%ɽ!o9_Ҵ:T$m*o)s鞙 fkP'>5kId4HS= ԰q<Ą9pHS fڃd?6}_z4NT&ͶS#z~UR-;$ۥ%>PE?Z|٭ij(DJa}Nm6^oZ Q,|,'$k~|J6vJ|sk`JѴYt 6Ky lheEnkASRRv4-.;kfx$X Pӡx;6nc&VOrxgJmjNЗ2QEFAUomm a-H?X?~u.-$pa39K/`YfIr a>𝾔")4;I}jދk+JVK Vcwfͭs*B(<ˉ30Qkz%νohЫ8@#k Nh\e$컛P\CsM*;}B[]3׃Xnt 2IP :Y^KBLBI'8һC_gKM袊(((((((  (hB'6P4} $sڹZέx.EmuYf/ɵu\:hw" ^fAx\,uMypqӚ6dX`9ceEPEPX_A5X_A4EPEBndEn\⚳Muz̠3b#85q\ [r%=j!y'Y1<n[Gs,˄FʤG?‹ ,GԜ*EV[e|4yr: B KEQEsY]&k[`v==u/TFK%Qa`quVvQޠJqo͍_h@okl|pU&vfLac='׊ܮCY  9s='~ݗuVbX^Y"xaa]0wHǛ9*+{.[0*Z_[i]^J"?߀'A6Z-mՔ)^clvv]FJwUO r?A0 v zoj?fotEU6ȢB Yz7tmv/EĨDn\@Zͣ1U,:;pxVkeibdQEQEQEQEQEQEkvsw")bFlg>.Iy&rBR3g|/aRyCg1՟ hqwGNfc,w99@QEQEQEgno օgno օQEQm*-S pH9\k#HݛggEteRhnG^}+C!)@Y# Is'ӷzḛI0QT rA9ZGX-5dFxċʐ#40\u!`QC$!d1r ֥RtMY#$eːXq]^ڄy&(@WkM?*3)'8\c@'+<A.bT1 EPEPEPEPEPEP~hV~hPEP20R(9DU'bEQEQE[X[^xXkiFFCt.#.M[F6Ko|n9i$1?&3oyعMbsh@b!@[Qpnp';*xkJFr-vUUIƒkQ@K5CbVɕӼA⦲Ѭ,eYm+"!/9'$_((()m졈d _^?&⾇ޕ5i"7 rP6NQB);沔5UuQTdQEQEQEQEQEUu*OiPq[&OJߛ+ާN}~}ߋ?孱Woh@/mi]x)~kʹů [Y-OHY-IqÆz^w^0iVuÑ+f-ix%˥Ǡq *|Qd5 CH̒r/XFJ+GMh?6?yrĖG,gҀ8h)仺7|oG وG Gkwqn:\ .p[d]w~7|]7^w x7*F(I(tV{YMq1fI\:W \ 5 o F`,W?0*]A,hTRր<;-mcک/&c8Is`w, ehaxKY@ $LWm(z/;@җ(Fq|(( M}ЬM}Р(((JZ+K[[&K[[&6((((((((*9FEJTb2ノ%_O-ATazO5jCTzč?H zamY@;oö~%Zm#QFޣ>m퉖i0f=mdEt9V)QEQEQEQEQEQEVf[k&|1JzY^" l dآ]mKι7n<7}Ԥm\I̳c8ձX > wT" Ks ë(faEPEPEPEPEP~hV~hPEPEPEPEPX_A5X_A4EPEPEPEPEPU mN[;ؼy2FFssVh ^&]0۱u'֥PH2`#P6m+Crܜu}yZQ𮑩jժ?EQEQEQEQEU]Nl'H$h?+Wב *ID?}Z$F9S[GQEFAEPUu mNK[đ8wTP TR4]mljY,'Q@m݅Q@((((( M}ЬM}Р(((ƬW(J2(hoWhx~k&Gg{1@5˭-Z7Ozdqɖv#Vfyn6CBaOrPQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@W>p](Պ((((((uoDvv|~lg<{PQEQEQEQE3Z3ZQEQEQEQEV}_օg_QEhQEQEQEQEQEQEQEQEQEQES^D d$W|N\IJ[+)@Es:ƓOn Iz[^. ͑Yȭrx&Mϙ^u:(()I' Z~#iZISX@JH ;3K4oϾL8&{J(((y{~3< |+[.cQEQEQEQEgno օgno օQEQEQEQEg!}G5Y~#@QEQEQEQEQEQEQEQEQEQEORltR+Mz\G[RLI*}CdZь%4;.փȥUur< m $NnɅQ@Q@Q@Q@Q@Q@Q@Q@u-BKeY{jx{yHPr5o5ᢹYz+p%݉1BÏ{Q@Q@Q@/C5Y/C5@Q@Q@Q@Q@d}lk4W%dX4vHR+^m<o"o{3~˗_/wv~x?-*{d}NU\@g rp8g> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 432 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 196 >> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 433 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 818 >> stream x'NimbusRomNo9L-MediItal aO  psychQTZDI!a98+xc~Z'{N~bpZ{ώy"IAaIR_k8P%{dW`tkJk'gJlUjojuzݕ~0wXanx|yr~w:VY?Un=^irmrsktv{wpu:ָrSeyg8Pa/bD4*ltsyrvopvzxzryqsqnjp̳3 njmpplsy}~myaFu qy[gJP~>![Hlt``mɥ{mu]I!$842M巶 lp"`Mxv~FОȖn\gn~mglqsmS;4>|Y:pu|x. FԵǬw[ ~YbisȳwU\ ,xendstream endobj 434 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 15718 >> stream xw\W6pŨ![콷^" `H" v}Q F"bW&R~y!J2;{fv:)jDD$b h""11ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"rϞ=S_רQQFŋUY:vXZZСCׯF{)M~PPnԪUҮ^ٵk׊+~>[n]fͼ$4ƴiӶnݚi"2k*UI#111555ǡC~(]ttttٲeq{ذaG &ر#KC4g?u۷ٳg̘1yl<E h )ܻwo޾}aÆ033e˖ݺZUX<.Jp#+Wƀܐaɒ%ҔkΞ=EoBBXn]$W5oܸ]tiժox޽;JQFang͚UTǏ;w:w,-!<<wSO?JOM_bEJJʢEN>믿jjjJuvvVWW9rԼѣGgZk)4h###___<4%c@_|ҥKQQQڵC*w<ݻasAAAѺu'(QB7e=zmBM)'Mo>K{ t믑Ԩ1/\мysnӦ .]!բE۷o/\ |ԩ#WJ@WWג%Kb&䬡!ޮM4\khhhllɧ{rO{i-T>עb:</ڐqFC Aä-SֶZjhgڶm{5ib@SnH]LSH_T~-2zٲe(7mڄP7n=憐E>|ڧOϟg h֭âP5vZ^Ah>y䯿۷/:8۬Y3gϞrZNNNYʕ+(~a >x]~=Df\k)uuu_|g Cn"'C@c~gT۶mCy>cƌ+W";vcllEb9X 6Da6Ԕ)SPJ:餀 jg 8,_*74Ѝ5BuA!Q>KsuZ`洴4}}}zԞ;wTTAqƀ޲eԩS1 :gΜ.]H"Q-ڭ[..{gcǎEAz޽,ehmϞ=f$2'%%!*Djv)Q>#XƵV4ִiSA600@ڵV<BIQSF@ch-ЪU&O陱1 @G%wNMqǹsAeVzPb+G>De hD1 U#TÇ?s e)Qcɸ銀F}2dtHu+tԶR@%J Be{nƵV4J:|=BE.A@"@,:788-%H=G&MU Xܹ3߾};`"  ДAc;wP.^Yp<<~DaJ$f۶mQf hd}^7n`.&8q7n AΝS1*,#j?ƝXZuhDV-8kvvv^hѸqvڅX5l t`'ODLzJªWO {%#<;梄G1߽{7oĖGRK_}*4 hʍLQtyڽ{w$!baÆ/^HLNNn׮RQ.oKWddY< "ݺuC/]E2ɓ'YNUV/ {~1V~Z:C-K4(튀F-Ǧ@igbqLP̙31V@ٳg]JyʕO>ݧOE@oٲ%1ڶ~zCx?4LJaERKqıitt4Q兠(0Qb"*: &nlڼy?5ի7Y7D4h ʕ+\E/˅ Ug?10j{`QhB[[[OOS1bĹs=kBCCG@ jϟ?KcjjjggCFܸqgf۷ϟ?̙3Jٍi h(N߿x&V^K.ǎ+]7n@y+}b|Ezf穑UVE7 @quT 6mvZ۵kW߼y'}OCNXccFĠħO|f^DyƓA?z\rҮyTxqQe/X]!4}аRJ,ACv"""BBBZZZei:rF3g\nZ>'O8;;xn)P ܹUV,oݺu#FG#јKU3Z?q.GbݸqcR_tg^ `)h&K804Yx1MeM_ªiӦYőr…_۷ɓ%KF~ݻ8tǚ5kn߾bŊ_läI£R5kV@@^zz}Ȑ!aaaM4yz͛#ŪTG]~]كE\rOL@㶦f͚5b|X711Q˰[ 70g9_|Vϭڧ.^8>>>>KƿfffW~=]H+V1Bgƣ8Ο?|3P<_%6oܣGLD{xx3Eg1d``0}tblD5jT HO>KƆaL@í[7&L4jΝ; jQ9(ɓ'K;rKB ˖-SK2fw{ Dq"?gz.\yJ+ѣG(G>sŋKB/_yTt#^Xm h$TXAAA..._Ĺ84SsU@jj}ttK77o{.gnݺut4e ѣG׬Ydt˗/^C4n8KVzɖŋǰTRcR'Kھ};^k777rb@S]O&*L<==gΜk&$%%}<jŏ?+MM%K||Q.]ܻw/ӎ+K4&*ɓ'nw hdžȑ#sN::ݻK.E)שS\/_)b4lKw:}t^[n5j4@A>4KLL^:HBh"}}PqFFF;wx^'~ꧡT?x3 Zh3igϞ?  ]`СCǎ+W^x1w\'''mmmڠ?6mB |r:!8a!O2d-?֮]yf Zǎ+q+W|+ƾ}~7WW׏0"x]]])0UڶmBBBnHl޼ClDXJnK>x"VH{֭[...(UaЪ˗[n- ٳgÇQMKWwuvvVWW-eggAZ`AN/*=b %8[qZZz˗-[V۷o'ORJ.]k׮7ݐܸpNZ>+%%&11qٲeEq_ǥ eƀVE:::͛7-ダFU@./]UE=uuuy!ÀVE>|hii)wCXt3۷-9gbb.\HHRmۊh#>A:L0aΕ<@͙3G۷o[j5k,ےAԃrlcdd$wCǏ-Z4yAݖ/ 744ӧ't_K,(FZxxx(ӡį^Z`G-w[>˗h1cTےlmm5j4rHЪ3::1!wCYDDV{SL-Y Yp/w[V ={(NBQ) 5k6gےY``a׮]nKXxqn(wC Z>~ٲeٳׯW˭9rcr⭢*4i2l0Rvvv~\X4%%%5jEOc@|xvڥ'Sڵk1npqqXb!?;N<ꪥUO-#;;ƍ/r7Dy0U™3g[[[RؼO>榩YhOqF___"qㆧ'E<*̬gϞz!28x={P֬Y +W;99ɵkEFiii(lRݡrc@+#F۷\rrENڴi_pϒjoo}pttlРrrѣG/_.wCv򓓓---/neeUTx"~C_(wCZZzꂟܸq¢u䄄*UொxbGQ^*1ߤI.] ~mfffll瘏]h"m֬YӧO/VZI׎;t EppŋEEEIvD$}ia֭%KTʋ|||<$wCs##qPСCǎ_mSW^=z Q h%鉗Xؓp͛7~M81wKxRG@oۊ:*tuu>,wCZɅUPAeh$lvfΜ-Yd={,u TW\\ܢE{Tٿx;w,,,/^ܡCmTZbbiŊ̲sRB&UkkTO/^zj{{ ZH1cxxۧsqOOOggufH1 l``e*IX hRu/^433 ԩW۷$,,e˖e˖azɒ%uttϟ/SI1χKtt޵k4440W:֭[;lȑ#2[͚5CuM`7*>~E\v-f͚gϞ]x˗SSS۶m駟d\`Sl۶-..s_|ijjw6ntEV1 "cǎWͩSԏ=ꫯzꥫ+}<ʔ)SZ5/ӧO/_… ӦMj,lOիWp2e7|jժ;wYG->| q;Aasg̘QjU[[K.M:"\Wp "3"P*U6g5}u:u84]7oF^ر&ʕKJJ*]tJJ $!!aٲeO<}66xڵqĠF^VӦM;J___-XlӦM?wDPPPVPȶETHs߾})ҿ(d+ݺuCM?DDD`֡Cw.WEF,/^lIsssTͨK(qƍݻw*XDGG'00pܸq/?AW'z}Κ5Km<\Yνsѣ|}}yQD]e.*Uku/>zB@ٹ[[[:uJ C&Lx]w455MMM[ccclRţP>O4 #$ F! r\P;;;K5ߏ7s>?Ñ#F6ޙk׮Usggð1S`Hrtt4>|߿?$}޼yzUʕ 2;447UCsW\QK?[э!gϞn_j D`>dLܹsUӧNn݊!gzyymhnӦMjjjZ۵kWV`@aǏ.Qjx 1zݸqcIR߿?rHejkk`TS)%&&֮]ȑ#iӦ]~}ÇGn˗͚5C#\Ν| ܰaõk׼SRR%uuu^6y?3wu֍ OE ",c̙3lٲ+V^zרQɂq}@@͛#q0Ht䑊fwӫX"+˗/0 >>^-a/^dɒeddkllA ⢂W=v옵5_9P&wӧiii,b# 4iUhi[NÇKGe`$1pJ(y=z`.2h˖->|(S5j$J2}X?ȻwHj#|J Apɯ 0Q%r-FlHm^&;Eڈ O MM͌SGFFJQ``w [j(/ 2?+TP(S hRi7oDYn۶mvxڵkg:ƃ 0Iu]zƦYfTRRt4 GM*ٳׯwrrcSRR뉉s8*8 hREڵkڵkn iiiW^988QT8Фrvy WWW--<.Ν;zuu|iQF hg``rJ%6mYb7yuy}CeTgݺuU/F,outT>tvvt}|=Wn`@[[[r7J՗e3##_U쓊@4u6mVޱ҅B'NxBB\m(Lϟ?۷OqM;ݿ_:((hɒ%fի-B?ѡC3fےBj*uuudٔ_*Ҳu2w5 ///ŧnٲqƙ+qqq744T2!!a҅nRa@777OOOccǎWͩSŏ=88wB@+.g|O;vL|DxhjjWX;::f<@3sFyMy/z++¿JVlllѫUV :n8;;; 0U˕+W.wCr۷ZZZIIIҿnf3y=gv"d|L67<ɩ Ъ/)SfΜپ}{ے]ڵS=zt^8700*]]]>|,.[8%ԯ_Pt<'N\dI}ĀV9(7m$wC UgժU?| ۿWknn ~;"lcnذa׮]cǎ]t9ߗLj hՄ z_8PR^:n7nxΝOvM4Aگ_?)Ǐ# hp&˖-[ѧO ݦVVV 6ŒZ;88l߾3aҤI5jPܹsf @w=x`uu)S5uٲe?^8!SGGF^XUN:5Hc@.oo"nH/YVZ .ݩr}6F3fffڵ+_zɓ˖-srrB70`|Y͛7]\\mVuJIIرmɖ##-[*)߿obb2o޼'ݻe˖r˹uuuTH nhhػwo~uD8p`.y׮]qqq3f@yfy_MrЪ`Tpr7s^|`ѣG1BW^aFnܸQ]]}رׯ_?~x`eeQB|i!}Za:uTa#bllr`EDD {衫_tvvnܸA֬Yw?#/K-EeXQǀpu˖-+RaYM^Ġ7jѢE~g0`ȑ#H˗ߺu+/KCܧ-^8_F_Āر͛Biy۶mnKy=0Tiݺϝ;п~{xxl޼Y 40+'W^+c1Mٲe.]Zdɼ,QFnnn:tӧOs3gK{(G_QQQӧO755tY={vNNN*666 ʔ)ԭ[~kժEX: }}aÆi hwZZZnذjժ26;v(T.-- /ʗ/T^[Xŋ_dI@ƀٿ 85Lo<Ãd͚5ovqqXb.^Rׯ_K58{`ǎ[v-4XДcRRJ?Wrm۶sΡF1211133훣ߪܸqu_ʂM̟?M6f͛7FˡժU2 >\rePPJ\؁ۇYsY4::߿}N_ݺuLwKNN0aAϟ?;wmӦMq](Д}}S+e˖8qbѹ^2󏿧JMMpk\.Nڼysz2j׮]>}r}2?ܻvzAƉlݹl1&UO@@_rI֮]ٳg|Ʀ\@@./_8ήqm۶ إK(J|脄333 SS%J*qnݺaǀr+WsrM8FɶjժZj0ݻ?d:$c@{nѢEς J, QΝуbSg3˗/;LW2eǀ/@{yykjjf h F'Yf>>>ҏbywկ_Wq"1:t1cLkvE!!!c3~98z)l}>|ذa~>}~lRF@zo߾}q9sH?/[3ۓ'OxPe8z(htƀu>̉1dȐ޽{}zرs-^˩m۶+HecqI&o޼cNNNVK1k,4]xqܨPRu1#Gb-{ehtKׯ_ǘ_ Mٲs3gΠyfƀF&ݡaÆ_pڵ.]@3B|̘1pD… ѣ6mDGG|7???fҘX>|x!7`\xɸnݺɸc˖-בE[OOO-;իWϝ;WHǪD`@Sv`ϫ4*J `d܍7P,:F6lIƟ!۵k.|UKvء~r%%%}M9+ @:Шഴ޽xZe33(Qb޽+-[A"gPHQK?nC;"򜜜Cھ}{t9(N_~޽cM4ěh?7o>hXn;1ٳg4}ӦMvvv>~g0)2}IqСCqß"}m(=}|\J/^ܵkZgL'277⅗)STm{wGawA{>C-G猪~&CCիWc$ԳgO&A0)>(1SN˖-9"Mt Ǐ;88yjG|6,888}P#OG ,2dZN۷ C9}}nݺu!avaC; ͛Y-04 ӧ{xx tuu1ڵ+OqD81Hڴi3gT+V@I&>ZjCq׮]CW!ȑ#xCN'TЏ=F===u1ƀqŊ\޽{!Ap)444.\Z8 wӫR Ç7/_0`@||<>E)Sšqqq)W\7ϯ^zŀV%%%hJCAД9%!NSS3ӏք hSjF/F })o4hq"ZX hʁ8Y]:K ha1)bb@++4СCy֭[SRRImڴW^vdw]O rfܹ~xV͛!:}}W{(0ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A1ŀ&"HP h""A?0endstream endobj 435 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 11468 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +Ěs-:'QsKg3%%"1,#eF/km4ۢuMI,#ml>UBYw [|\qˡv]\QСF %.(F(i|`#C5wn"2'އ[k_G1#AE]936v7{qu{F{|-P8j=?Z}q{46^iE1;d(|BjMsI$ ]߿uVuu;fpU#Eb7^[)$Cgo%vq,H?o+أK"Ta 8k97Zx.dM:gdu!w ;M6/]G ?#isɜ.3׶q]5s+-Zy˕lunPQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@WP$ yH"8Ƕ{QvXS諜@tVL]Edi4ċ#hNx`O%}Ap kPEPEPEPEeDgrTd u /]ѹXώy@:f|))R{>Ҁ4WIyl +F pxQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEsc[G?a""\ ˓::+LGh.lFD`G1QwԷQcGHʧ= nInۑ<▀ (+xYHAw`4%s ,N2X{QCYCwo"CU!>ͩBBteRKZ[%7hx!lz4%VWV[#e$ٗ]-ri-Q=a,p0;l}S? V_Bҹ "[-ŏob#uImOEI$ &Pʳֻۺ~*Ǘet"7[&@ HN>Sd^)RA$lCO&WE",*=E2H x8aUF~aC:J3/P wo hdiRYJ]xMVT#Be sEkJ)6wj:+v5R-J ~s5Y-"eB#Q|w u)hxen=N-dWK_-8@}sBʂ+i-k#Ђ9AQ'mG5^+'@/.c\r@}PVmd6<&Iq9# T1\ܤ {^xƕQEQEQECXΗ0im$*CT@ T$&eaЃ-mtD'v-oѱ9;  ;qK+jX^Gu2IǥEcvz@/.z8 ?X=kb|HZ0|Р G\r;x92+W{.NB+obHNqQ@Fkynu(UŭޜCz(Ofm "M쐝O+oL}U(((((((+2Mlx&H}N*Ӫ-Z5mq hfz4zO\[Tyr0FO5gOeWd??:UGeng:ƃ7p=ȠRM: <)\=ͻ{Id# p0mCAE5 :: }Gm(30dp~@TQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@fz65 "2Ȱ;#9#'Ҭ-b=Bk;F6f [J9O(K[t"U|eW(O{qښƜ4ccH e8#j}GH"2Zyc($YJ8`=qÃEti,o"E@3;X q$h0gޝU#(#uyvU ǦOQEQEQEQEQEQEQEUCR[)"m繞`̑BqUYwPz݈7Ua`ڀ,}iZ* qUfNOjnugQ xC^G,bY0"=wۚkksY19c9(cO K* 0gߚYkzWۢ8 6Nq=Ӡ(((((((((((((((((Ur7I 1o=S݋872H$Qnhmbf3H?Oov$0HUGaUu+Yՠk;A8/t> EAguO;[*G؃OYw_+kIJ=ѽ{Ҁ(((((((Ks5$sҦ?a*?# i!ڮ̛QLY[cO?Lօ#(u*#P9KYSgMm0zҠ(((((((((((((((($m$f'ޝYr9ޞ:'u>:7FJ FÔCDyAZTQ@Q@JH&:u$6}Xϸ>^۴NJG_:0&wXѝ*(18ztW׷%[I;2PURiu;o]>Y91Aozݠ ډkgye,rȣSq@#5~6l(e;:>qOc08aG@((((/mh|y,S G.\Imķq+3 ݂3c6?>Iox\Ov#r;;d,Q{I̡A ٴ/HSzs ;OV;ǖc5ڴZ>謐5GI=ַ(( #RQD?y? C0hPø5%fZjdx|o?3}OiEQEQEQEQEQEQEQEQEQEQEQEQEQEVjLl%@C. >ⷞ$IHRIenio⩒)-4*\2~n,Zu,Mt]ܑAt0*=fO>[⒪cb`tZČchnf.?woa Z vƃgX R+XGs ( iڷ2Ku ie eF_EcxP}>W3#Ѯ#Հ zA]%wm(H-` HPAEgl+fy_EhQY6'(ٶW?@ ~[-.0~u\ŭZ閶wy:fbađU۫ 7-Qbd216 UQ%?cn.SIJ,;Q:c3TֆyU 4J{@5mưrK]:u{ ٶW?@W'k7wsI4ԢEYvўIϵ^m!K0#Ȉ.ܩoA׫Eq~(M\ nnfBP7;wzmOPg\ZaI* ޮ/UIA4ʰ8\_Hi=!$d t@CNg{cu;.i#'1j궓M%Y JUr0 ti^Uн~+~֍s)%žkqz 𣆒T %}8Z6'(BٶW?X,Ag5jgbI0d8_׊ꪦjv؉O !s.:~&]jd4ۘDPx3,B<`gEei3_ü"fr1L$c9@")LBŗߕ/6_*Z )3?dq7 FA<I>{}<:y?z TWvҧ,2DFy ~PV=FdX IE F>uJڳТ((((((((((((P I`j67vsLTĀF utP,-Eh;4k230 r m# mc \ussu;/#o@I€0:@Ⲃ<|N3֩/+]pTNN{ Kci[ødKrI>O֬Q@Q@Q@vtwzI ֗s8#=#ݣLfY2>yQ hbU< GaZ4<0o,[BaSLq(jA֫}&[PC9;լy?s4 U %+e.q3'(&Ao1.nJA+y8UA{I$E#H$tPTzެyI;\%+嬭M$VPv^ENǜ 7QT(֞UۅcOVgj!C证VV.&ѡH|^EC}1U5i-ovkvG*A¶ {Hk L%oN ֶ+95QYYs*+F hDhsC!#=T`kJϺcQٴy ~yȪ"Eyud-t<ߍ6V5^U?;$ncԒHԟnҿ|'NݻֶhZ(45Y(;Bpfjs%Ρ<$Ml jQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@uKy#UkbZ5c #'}{jB2 aՊu^8{Xep0U|Y$s*PLvOl",hT6bc45訠 ( ( ( ;y f9cR@}㣋UN ׳/}LVJACNY;6]Fc9> stream xm?o w>#| c Ry:6I\q[ڊxz{ \Nkٛ]dArD hN&!N7B͟aمl×CDF8W;v!VU϶4HY>˕ a@#?ֱN;O]WRÊxޯۮCZԧ*~EzU; CW)XJ) ShUıBV}I,٫j+ ˵dlo)ֱ^)HE28Gl$I(h] 6^|endstream endobj 437 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 14407 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (Gl' ^D1W`Iz]Ey<]bڬvjoͺMBĎ;nd?]$PsEqV>0&FMXl,t^~3ӥCuЮ5:F0cIw}uI 7V6\vqRi|; 䖬ECce+@@Zʹfhk+]}@tG8=WZwz^ žo, ew@ހ:+ŗzeiZBAb0pѵxZ=LG3 d +4gPO M=wnҴy:<=-At=No5+wTV#$I'.?]^Eame5[)"8 dڲi:aZ8b~l}PQ^ux}_G`m&9TҴ4xM.Hm EO+G+O1rH=rh(((((((((((((((((((((sFbyQ#&2ܧ#g2߉Q%N^_Iq|Pre pT?.{EEs{ u+kɤԌhg_0 \.-NWU.j\(n8Q@0zT27XJFň63ƥ4k}#EJyZ4d !I'Z4P3m}.M^Ӡh",+n^HqSVO]=Y Pn`ºJ([ili_ooKsvlz}ŠB2*L1+c=MtP Rk"nנ逾 wt. J {ǦF=*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Liw/)MF<ԊEgh{V64AbW\X Ѡ(((((((((((((((((((+;G Ak O @4Vw$??%?ƏH4 XJhQ[\w m4sD"(((()ȐJh 31P;@mk yp hKjh &Ategd*ד9e<Ɵ)\!]WdZc61)lS/2:V$??%?ƀ4h`Mk4srTQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEEss s" c,pI*m3HдLaՄHTIH=3О~]i%l|#[{q\5Q\EC ),Xy|1#PDnt k I+B:`jt;Y$ӥx9@$}9[&;}G(ets%0`Udc’3#'nc5h"FG<ϾhMd/.Ə%1C-O,3A 9N,0D4ki!2'1͌m`TwYMJ "Ck3K6FGZSWWfkeki&mfw\ H5PFpGyꗷcP7hղ0O$p;dz:Wh.4071x`FUc?ChƗ=KQ 7\I }ၴ'4]ou8[PGyew Frr:* uWx!x phVx^q&Юn繅onb% eUۂAF2x ka,'Xpq'W.m%ņ[K#e!.2SZZO?€/-'v_G@/O 5C I]Q.(k~u+kky l#/evZ41  4+|OwwoFP+#p3:ݝg1F.aIt**ck},4rmY.>P"wQH%z=wڞP8]ַe'\ O{w-1(sqN=q@纻MlizctTVUyGsߚ`mNcܿ͛wmg+Qt)LJbHĝqO<Uه<~;<19 UA5@`V%HKiS췣iz:Nc A ތ?Cڀ.EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE6I(I" ,WXZuu YX֖WjMֶ/> ރBu;ac nB=xGCֶ _DO_ƏDO_ƶ _DO_ƏDO_ƶ )YE,6퓵8 9VO9ycuU"90а#zGb+nu56'.^U<7b.áV>%b85jYxdf)ӜlIMod?,{n( ( y㶅q3%V4ӸHשU-录o/ˍ-?Vך{$v~ ٤u`2yӞEL\- Ԝ~-Aw֝b%ςm4%ςm5Eb%ςm4%ςm5EVӭ8V[j'=ꞯ<}H# !,7`=h WSգ0]vn捿5X> Mj Y;q{#KNj""Ǚ9`{4r((((((((((((((*˨& rx5sz6?`LPn96U}FS ŝe(񂤌V`*[IoW+P#qspqP8v;Wo+ȞCedp?@Q@Q@Q@!`@w %?"*W ܎ cQvsh[[̅@ñ# /mRtwpz pr(-#qa&onjiws^m M$p<{Qn~6FXIb>fcbFe\;hj,ͅ%Of;]Tk0S:>9Qx}HL:Owfa]Id랽 {[Yng[ï0}ϫ;Dۅc'c L;G~>UiJnuv<SLmf`373}=€-8v(((Bk 7_2 v w f*U+&o1NQfX(FjsF@H_Cev-f2Jw< cvEU5bSUM./mF8F K@8A]!*AGzZ( ( ( ( ( ( ( ( ( ( ( ( ( $&A2Yc>Vgj7`b">}^Y4R7\v9Eo13/.ՖEUÉ9Zj NVڒE#i\ÚDڇ!UdoӍrs]-PEPEPEPEPYĻR`iWV1ȻO@Ƈki;crO9U&k)俼年;h-1,rTrw`m=ŨuVNmJ6KIE[hkH0ʃ;4=վ<~F9'98%m#;O#uI%Hqǚ諝boi{\X?3y 27gkrRvf~'i{ -ٕ@@페QEQEQ֥xFC1E^t4Y&BZNc@OE 2 ZTQEM޵bՍWzURTݹ1#f} Ɛy`6Hl~[yFGqU->y.`ypv^- u;>k_>!1^*H0 z76wiy>kJd/"fh'@ )"+ 2)QEQEQEQEQEQEQEQEQEQEQEQEVu+Ym'b? ѨFH%'4-g7)g'zD~}V("+*{ӫ.r-ߋ)-'?}^@[}~h[G?ƀ,Ug?p4}~h[S"Juu=NA ڻz1aiii!MY xv'-S[W׭mjkU Pyat >X7 s(7_>ltjeKi͟)mA-s]R:ȊA)(US" 8av{q %_O=]I'b '[I=j;(=r{C&ZO$޿EJӠ )a43s,,p}}ѿ<+G]#q9Vj퉖Asja~] heC c};h]*VvAK8ͻ}v-X}.ۙU\8ױ`hJF\. JԮ`kigNf9ϧ͏o}~hȥe"VT7׉gb lQ/ޑ:Ā%b!HkOv"pBcB_Oxw\{2QWgRF -~KCVOuj(yfPCˍp0*Z((((((((((((uԞ +X9-yyWW*6;~na;_ʐ6q_00oǮ޸sGkfm-gF6zqgޠ!_ˠWX31]|goj`HYb8@>txvMյT!ᴵU22x9d2V576n[L\ѻ`RIY[[8qq.2d!Nc_ g=LQm$k z~!/weyVX(*kGE+qsr<]8$sǥVΥzQ{џ#U ĩpTs;xxŖwHb\E.3ubnC- gZ"5pWwPs2qۊMckZmcXYA,9Snڀ:$fYe#z: Y6fwwٌڦP`x$SZ r@O;ޭϤiYۤqfb+ >sm $N\mVH> Pe&"X?X0궟iY?1ĉTr;X:UhAmsl㙘u}-[Ѽ;iuav*db?"7=/| z_A| P1#XrΧ?S\vԅr#--K$ΌSF2~~_i-iP*L(.¢Qӯ`/-!,"S2( Ĝ돔Νymo*H6*h@iųg㚲D>': Eϐ3mc϶)ﮣLz{ [>Bc8~13Pv,ػ?BDf73@C>tyom;|U7c2yLU8%IL=03ͣΗɬG[I*#$pʂTm=xI 4i(`27c=((((((((((((((WMosjG;wVW8#EZlF;DPFY&,-Ƚb#V;Ql.=*e"{=UZР x1ƊE*v0z(#?t7. F[Oޟ{ ע2?oa?Wt>Mhv$$ƭQ@Vr;^i7I?zX"d;]a;X<-{ԥ"(,=Qۮ[mmX4ޏ'UO޴7Cxٔ:\C$%NNG;#H&]ȥXzU4+%n!YS_}F4z Z[pw3uF^߈$Gݸ0?G嚀Iuh쌢/*啔6QwkەqW>-|AC.<"@c>a 8fC)XdPe.vtm̖t^쟇QOjV5g-MܤiPG1Us>lVU,eH3:4\ ;:+'z)ncIsy Nda%9uŘ%$X/\llW-OeBxcC"e=@KkH廊 hU1p26gY\/cpŧz`ZQE! (h+Rh$IbnGF =A%WU{.#&ORZ96v;iwV+۸blcB-F;)fۼE~c΀YBvrMsOW$ 43ӡ7!W 0#÷_LrӤխwEo }J&t78sӞ;hP$h0;TQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEGW#-3SFw:}t#;:F$=ˠiORj\ZQ MqЊEc麼i,Q[QEQEA{tV<^ǀܜ ]Ll,Aw\0<^V={U|CvJϊOȳ83Wmz* ?SX̷Z, hwy(?"}[Vm /?JU T`R@Q@Q@%+4z613F>vl{đOi]o oPq}1psX )8OJM>[Ff,UbIݻs:P#~5S%щQ_k ?IH&&Xwo,!,RQ1Z;W/JXn1eu9(ZkWG pFcR;G-BTOyRx+|[aKd-Өl>?ҮEKZbHNsA@W?{>6eM@$CjblrA)MRK A lq#Eag#ۊsTLk.Ԏ@_RI|w*F\ ا v5t ;b̛bE* 8 ec'ɟp*gbQgO?/@V-<\UضrTEgbQgO?/@WPgqqgc ?2CgO?/Yւֱ\%)]]pA`:՜$<+ e%4ezȚ !%HF ʌp O~Y:$e{[e'֙ }:HX2_'({MPIJ$2A!X`z<XsF->j#dvaI[ۛ܃hݝG-Kö0YMĬ=qSFtr}sV֠;xs5xWRʼnq@-䍘Ak)<*jz>+ykX|,c`jID_m&"4ŕTOXc! b1}pG {Um&XtVF:dMy[$ބ6~9u:eΧwyq%ݗج+7;b{-/;RwwK?75ψ~K'K#zGw[Y[Gok c 0G)h(((((((((((((((((((O[5EwodtwGA=[^ G.[QYX`z"+xWlQ D-QEQEQEQEQEQE{[5ظQͽF.q=2jG#[TP/#OVקEein $DCpqQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEendstream endobj 438 0 obj << /Filter /FlateDecode /Length 1677 >> stream xYYo7"PT1))REJ+[UVRCrZVj;iId998$m R^o etU~7.4)5riͩM4F}g#Cgij9$e·Vd9Kσ gCY(:'E-36~[lU+*4bN1oUL XFx9npW:@D=3WvYo5!.˓ >7" |;]Du o6(?K_o=h$ s|i3%)$(:*grՐʈ" u}0d"mhR&]M]8r|E)¿2Aqx9GC&ǤoujRmb,S&٤%IMڂ2ۚɹ9 >{kNl}P%1T;F,ٯ)I?RMRYlN77C3 Kts:"X#޵)bL MWN/0]\q CJ,~?]{1|Y=H) Jւ>MY̲>tA8N:ͩ~WhK:`T>U/,`fB>;T𛺗=`7HfY <#%S9 :S#%~En9r#%?L [)ĝ,nbV 1+m˴j-Ӂ)=BLܛ9zp`zp0G&=F!#D{D`ANtzNQo2Ze&%xS\T>;3- JT7-3)%zMo,麍жBܦ*Ƶ~HV/H6{!CG 7ևY9pg^vG^Oԩ-jJVG^Exux}&OKH.&y-"7L7^[zbgvtE)aߋP~1oN-endstream endobj 439 0 obj << /Filter /FlateDecode /Length 564 >> stream xT=0 Wh*J-ukE o$*b;-ߗ. "<3)[ΪI6*z/&j Tn*F1c1l<'8̐G8d̡S) Ik؎+mP8>qlgD8?G)h|!tɅt/W{򥘘k̉< ş!].6אWpoT,J bҁsk~@ÿ0)jbN/G-l[.wCVRB_/pI\T뜖'hTA%U"B7<`5cS4;Z>~i 2հ

:#dДm8eO甜ZSum`zs8 ,zJ4h"Q0g =T@W3q9aeqћB8N]d\iܧ4qVg&Dn'O%UDZswҡphB 2PҊ"(Rg#PY?Eendstream endobj 440 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 8381 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +ANXdxXWF t"Wu:B^Nzls*C&6zg=SǒirAc M?1Y&,0_^ ^Gಱ\M$y]@RuV_6YD33#A?-my5͚E`g6R\C%"#/ۂ}";+t-^1y.R՝U'U?_J~q\h$*HVe0pz?iEp>5ԡQuXiڋYbࠨ;kR:Pn̑c;:[m^94&H %[lg\ewp|W amO)C]W:+/Ԯm)lhDݷn@<#ҹ73s}.Rd`X%*~^ 3MEs{/X9Ŵ>3qE&Jks{lnaܤmY J]ExVsSiE` KCy?_Q[y96q@h((((((((((((((((((((((((((saf0*{oNeVwgÏh>?/o #˴ J[x"!F I@Z_أ K}ET,2ZC vD?dB ĽeAƍGq M eaЊ%EX\? u_C8ՠ((((((((((((((((((((((((*഍vyNboR{ P6K[@avIm#D$}cՏif^IKu14{裰պ(((dѴr(tpUjc#\ >)JǗQ$x~ZҪ։{nbrT~0P*vEvu?#](((((((((((((((((((((()K$;hP$h0;TQ@Q@Q@Q@Q@Q@Q@Q@U, +P9Fv#&Q@4u,#< BEo71 2grw_p{bjͭwv<-dq=GMEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPUu iO6yNboR{ }vv4pFKܓUY<ƼR "$ͪmtcRjPEPEPEPEPEPEPEPEPEPYw#*<9Q,zo~}u) `<{FG"I.VB~!Es'ynu(((((((((((((((7zd?Р h}(ZdO,4 vF33>&K=dvc2#lDu^T??>2~zZҮ~=ܽvq/]~9=wgr2W+SB]G"٢пm|Q@o6hoE4/). +M vh_ (fSB]G"-f THd@%a\ݜu :SPk&n&H ?x)ڏ.H]" +A{ZL-.MrYX*UO$zphܽqiqĪzS ]&x*AF? - RRI ȍ+ |t_0pb1)fQo0 .es)P@P~EM>VGxsҬz!CG ,{c<e^\̷F B Ơ;pOa߬35.fn!;Zߊ-{4'PIDe3iUM"PT 7iLsl]K3 ny9Oҵtm@QEQEQEQEQEQEQEQEQEQETmJ%m 9> stream xXKoFOȥTjn(m@hR=0DrwKYt94EX̷3#c2_e2l0++d&2s_p$02ŏrͤ^]I)1F[lXMٴaQM 1E J t'3dRb[خLʋ x19 :i1vߢI Yi$B!u^%ZŮnkOTY:&xpl4BV[4&u4^z~1yp1 "TFj>^l֗vXmtEkuk ;lq0߫xggNa_;"p0މ14p&%7+8!8Kۼq mVos?/hW EB"" AY>}M[*jt>FHpA A 9g^WexahGJSd!YMtEV#l88sICS{Z FzDz6m$f[y ]n= 7Yzq6Srmi:E~˓i":ͳ̀Ι'_AprȵYf/aNS T Ҁm1#xKcd5ݮz(jH><ܼNE( ~&Fcr3vJAI #(&t`C17@D'H0wvJd exΩ8Z;;}^#tJ͜zJu&sz b!BBI/'z]~39f"_uUܵn|r-8kC~_ۼ p@V@%DxtxAB !}C^I{%dB}HH/!-zg쿃*a+mgAWRT vA_}x ځ{1BǪbJK 3l KhI>݀q] ix4_2"H5=ECV>_~imЀ;%7Oۀَ±:طۚpAAh#%PFu*ˍ&5d!ս %:\%Bl\]e6%*/XHSaʂ hendstream endobj 442 0 obj << /Filter /FlateDecode /Length 3147 >> stream xZ[o}>dH;u-V6b@.EegHQew)џ|=aw&N?o^1ǧWpO-bj^'oafBڹ\[1YiA; ޷Šs7\sbjKpQX?qk"`zJfzUA$T悏1v*,YZlYSlv!TMtռu}r.%Ek볙d{z?Ӫ}xjvՙgi%p{7ϼg%θvz;/5Eu$f^dž \_̂CP}dpj(cEUw~Χ3j o׼ ocҧߵ7~U!0xp_z]\ <٦}o^CRlj$Djۃİ#SFD]WCWX0t ?U]w}w:Fl4Lp¸12%ZO٪Y$>bê;1\Yoz?j|fS:MT) KjgBnWUj䥏mMA+𐕌ײ1S#-m)9|~JmjtImQ bLE Œ3NUE:,gFc͟z۬7!xNU+\L&c7U/穎6rcmѭ4!Lkc* i@E){HBՐO_m<(0NJ2j&ߋ{RVhI?|ٞXbmk sAF{$o*)j/ZWm7! 7QOOIFG2tK.]&UGV/rsNl| x5h qM/|<|匊?M.b,G,a; r_e:3KH.|s3, ef gy5jhazo DW:I0_u5FU7 I/uX%wtxXj ZzKGnk%Tb05 C:s@CZc1C$ΤoCAq [ڌ Ir+j}1-d 2n$= JԆč Z0FBv'PM-iί)igFX_u*Vߵ5LbLch]B |\R1>S]QC7H%Twy?Itݠ5^7*I@"$fz׷hiWZ:/WÝe47;!x:xt|@d%: y>oW ).A _RS[_!jxT5`WtyoYlG%Mt4gP11zc)$E˱Xj H 9tWW:}5A=?v53ov:YߏMm{wy_e?QAy 3pix73 * ynƚpٓ+GAٸhQk^1)ƪ*5P۳yA3Gbl,@ e# L'I2! g-wپ0hs@Ts_fT!tYY^j'g/A!vmtV`8 Koqj$@.j <.9%9 q;FTX|._j_?yhV5%Xr2; _䙎IBs{mfѽ뻮hx7^aeV%r*۾œt5qůa׍24NfT3h[͓(üQ$i]%y#|`zoW'YD5原zd|@6͔Oz,` fJ okT d%nw}0OYq`Tf$R dnaVd@0~tBN1?"Dk! {?b4v57ðPa@Q Ke6ǽw8Jpj? BnxH4[)Dzn7O|3n"(6Za{4?;\*  8{N3,6w]AgOf XriO-(Qŧoӣ gZ> stream xMO0 9ff;Mj/!q8Tk7(ce_h6RW~m~]Ujcjב5G@Ԝ:{6˝zPVo^VF˪ ^v-;UWivZ)Bԓnr@`7.K(PC>,a{wDVhfݩԭO5C<6jns'k Hs~?!a$PHƐM atP $(^.i-"?="M"nq0y׫mW֔a&op\Z24F'S6g.wz76*DQZBaGP~ڲendstream endobj 444 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 12488 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +4[gK&*%r1{*)mԼm&fCCn 繠=nZҵ;X!4Z +vEdov%L&Xgl`vWN-a(m9ĀU1l;@lPcEqzunuENYJT.kb!&ڍKuWP}!X^9:j|_>m tR^ ݧ"ԀI'L|9&ũ4F *H<fli}*ƛZ>r-LLI!Yx`x#B:U+nU?.1߭5&NHHfulc繠ފeΛńqcwJX8s0r@'RmY=FR ʀ:+_n КtN͹<0s@꺕2[B)I\ cv4Q\^VÏMcc.!2]l%8[Z&Asgs RO2r(ҨW֙}=2E]+N+sZE{H +5JQǙe<>Q\}-/OIr<ȴvu> ivA[c5km%^i[Emm e+ANH[J"-.#}yH! ;:+VE%/;~?ßQghlKմyqvm2}kVm+^R"HՖeA|~|u?jOIiOc6ۧb`p=h˿_q|UYG{O)RQv0ӵtE;C%Nv4r(((((((((((((( k_ڷjn%y Z4\ cjςtc[zI$0TVTm=뤢3 ZU7,L/L g?R|+m}z֒\*ML猂:dn@7V"0f)89䓚PM-ܒ_bHr(V?/_tP xNŗR 5ѶcxT]:f ql=ZcB˵\ ( *k䶒`C!1P"G,4k[y4's%,˂}+*11ZG$crRz4Ky{Ƕog$ن'r3nXڧ 2};6sK5ޡ$`גp:(b6Wv7m'o45`A\c?^Y<+mOߴ< pdVϏ[-Ȃȥ<}Ł1Ԟ "[MJ /:FH)``v1]5y QԢX;p'Bu+ٮCrMgP07dt4P|=u>Fv8qUm|3gkqMh! Kq+jV0YCmw{o-G"r#n%iqo`w ņ&'o r tP7m:x)5- $;G+py~-HE\ mMtP5qΠuz "W] `r2)ڟ,5˙^m7PA6?@؉ QOڭT1XǦi03VѬH\wTPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEAw{kdw0۫e 'fnТt XBۺG,!?ƀ4(֗> }\U(((((((((((((((((((((((((((֮&8"V !S' x!wyE"h )ȒƲF*r@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@# '-f{$ź9I(aoB%k T6&?EhaibAE5 ;m~Z_ح (nؠg3TJv)Oo?jTW0GuLaeIc#OL/jyrjkn9Mc|zC)>Tl+nd9T6څ[BDyáP+4na2j#Y;F?căӵ+]N#%xϣ)O tQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEub }q&?hvCP`C'fhEQEQEKRy&!n;'Sz~GKet2dnÂYw,7]/OA'` Jtk{E3ޠ\pz=Ehu 1]iDGFOEO^~WVn"l2 QJ@ 2 c>-lIIo!>Ǩ4EekqOp,"{>VQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE2Y(G8ThivA%gM7]%!X? BOW`p-Q@Q@Q@#(e*#̰cas)&" Zu>ۘu!uG}ZGFau->=csJt[g +A![Uυc'|`$71*"Ok=m1sҀ:*+?RZAm$q0RAb==O<eoJd!0$N8mQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE}ONGFt#RK7鲴(((((oBՓ[ ?edl"#zmAzٺ khNUb[z˶u$X앬)Dqm7r}\x.Uim4pO7Wpaq'#=Rj->[$wEh8 Tx>6)w,.`[-JdnGP #}^HuFb.=cT.EPH@`At,m$>Ҁ2-7tnR!;Y~#HwVL49}3O$i,me# UM;KC3<#`tbNNNjGg|!U3"94md I|3Tz[Bɐ9a8veFr2(VϓZ8 V ̠7%HhPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEdXyE,~)h8O.#+BqzE+IQEQEQEQEQEռwvA2A?zI70SC>~jVL=ݹ-<CCڀ.PY]G{lG[8*}⧠ B[9ZO:46UpH-&$ <\2 c܀P;h3X_V4?Y9Z fFv3`u=G'>%UR;@X/6n*pq=+=jS]UԫEgX3XgJILr~}4EPEPEPEP]COԠo!YPT9VoM4_؏cA7ַ( g2ʙO}5f5 o#_sog{]uk,*N, x׏zۢX2R# QEQEQEQEQEQEQEQEQEQEQEQEQEQETrC1d>g'((((((((j`cC :pH4PM:UD&zjgj1=˨)gv?o?ޮ4r³F2W=hJ*/=i{G} 0hG`B%L?Tdt(eWR+ FAP#hct)V8󖱘%=c?LjPY[Mzg*iֺ"+VErHq@<7j#i{ɾak'f8%z#>ǚE$P%`B=KEE?У0h@Q})Vh$F> ((((((((((/w^lL3bLIۈce7+m.>V|aGAVI:?*(#1׎Xe H zq^ ( ( ( ( ( ( ( |CCgeud+2.2.2Ag#ڸAqyi4sȦ;q"=K:Ao OPS~=v" J 5,]3ϭeiW[ (C31??l*_`cq4`mIgjgh"P"6ՊE8` @_@vhw2VK&&1z6ozOE tY[,B+^݊tlkԤSI2l؄0'#m]iP(!>K}ES}(sN r 26Ě4V5.rsع$z4]W>2ν}*O=/| CwVqumk (2P-ԭmy)h.?2oɦj,k[_K4T`ʼn*s|-'qJʑθs򃴜GI=3]g{{m'J\}Jnb ?΀2|E\^c"R B3*HO*hu+Y N[L%[nF6[vХ+(U7]@n;dvW~v nip<9ɠ Zk1Ѵ,rıĪpUNXqAlXnm&’]7so vK>Op KhH>²%̿l8/ٰ38VgK[HcRHX @QEQEQEQEQEQEQEQEQEB,2CJ '׀: sȲY5M{"3}y=4g/uVc@1 hW>MɴFcՙROTVp,;~ЀKTNNl Ѣ3?wTcZz&BƴMQi (?7NHhvx.$pM^ ( ( ( ( ( ( ( ( ( d2,0tqaS?ϭA ( ( ( ( ( ( ( ,d3Տ`=jz͓?UXdCJG?s+@ivmm731b?{}U((((*9'y8eG4%fj:v KhV#sl>]7}xG2S߀=kKNmtLVw;Yny'mKZnC(~?y<[4Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@g|cAG: ЪA~((((((( څгy~4]đIZ;E|?銮n' ґՏiPEPEcWR6Zr5pFCpi-2$1l,RH:vjTtk/li^7bHqayڽ\qAHU@cG qֶ"x-$B+cGk{,[BQr0vhԵl[h,#ՏE_s֫C{2]k$tvhU'ODR|;y&PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPT4M?*g{@ZxA( ( ( ( ( ( ( 5جn"[듲%T%U$n=ج)EΣYBY[#YZGGǫ1$Պ(( :elJHɹUmn_cW@($\C%Ich7q1ހ%:=M48ӕܠybuĐv7]^U0yjy}zƾ𝦫vMqr۬8dǨoKM$3O,LW+xYHAw`>屵Pwyz(nQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@g]"+?BN ɦ_FҀ4((((((I Io*bz §8"$jg;o1&aF>=kJ ( )R@dڱT՘šC.cf_kwwx.$QI:0$,zc:REw!Q -6Gc{w[fmxq/ۉN$Oa; @z͵t#nD^p1Okk\ȱOP6w"t,m^"3Qxkǂ6mד$Gp8Y|IȮފ(((((((((((((((((+?F߫Y_un>4?̚Т(((((ing;T_ot"Vv4}Go=G I) J8*J}dOUUŞiN"%$WRVݠЕ%1'-{U3HOg_3?{@0S]2Wa& Sڷo[jUQ((((((((((((((((((((+>5E'JЬ7g[D J( ( ( ( (*)g!UFI= 4V!bx9 ?誊@UQ@*?J{y`HKvk_$N/DG8".ZE kI[TrkT\+0V` r1G )7'B!,x*tSYHKIrC;F03e4[Xl$<7nQVs ;z , ݴq6rx9׭G4xeͯZ+iL$֥El6fotI$S޵;y#{KL93(ihbW±] 69sLI5";le8=J F}svo*G;UV<`6AҼ7@imZdyaP`d'[hK:F/RG.)88d0?*bxhڪʄp H8azJ}yiauw3IԴIfO-^qwih=:`VA _gj]:{UPH2|zu@}[=֖F> stream xZKsW*/lb2LUH))D99,%B |oO>0a(ZLnz/^jX$=lAC$2a@#BCu69jZkI轰~=^=,`he|Gŀ%R)`M!#A 7c-  RW)M`!-ʮ1꽭?ݺM~nspߵ~f`TM.& \r'3A݉vBIlU6KCӑ (qy|*`:[ N֢ (S H|Lf*uHEE-2ewEGj@(M>ڼX ෱}1Y̳@ i|f $| O-CZ!#wqf*,/Z~kq H3&q<}}'uQhKRBc>빏+FG5ݚ)Aeg:LH5و6޵I9)5ْs a1ZFB9qߚX%v;UO|0qh 7YfzJ!@ 6|镉r͒,sJ!inQӟ̗1 "`ڧA6ޯzd/#(~mO#Z`-֠_I@)apΉIZls2;(,>⁒YU'g9QW(?נx/I8Fr ه,zyendstream endobj 446 0 obj << /Filter /FlateDecode /Length 2390 >> stream xYKsOU9xiy?\aĩ*&)3XH,Xy%QqU"U)Oד'ĵN?*d& Sc'z*&?T_4m!T|]EbLg0Sr 0mŌS&%퇝y&>fgu;n"Ʈ-^`a<n@ Mq4B4bG!y +`PKƤ46!ʸa5BKC eSEq3 )~m7ͥH@Q=>X>r.ei=]f0Uf w'l{^3L.CƙW]ui4u^6qHRhn?>In-:!a7仉Ϫ,4a 3p\ " xb dr]ȼ2g)' o \ sQaݕW@G$ a'ݬOm{4팳:=}c81Ap  HlNnMSH 2L.`BŖ~w0P7/ݠ%$T_e?[e?6dRa_ocU  P 0IQ$,  ^hn@ SPr Ğ[3&d%~sXL\&f &pTNzմufi#YqqH<5Ĭǥpp "E%@hOvvv=(wd`ꗄMIp|H AqYG@_%1AKp8bgs;kewo>owvnlwHi ie%>4ܙۧSzs[5"3V̝1DSw!+U /r)w}ҩoR)]0ҐOr>I)}[8Q)wnKOE%ae3>s(ժ|?vibFqWu|9PR`pB.^`ɸ w&V}c ?OEX;@8nJm>Eϟ 99\=I~_$6ZIw}"Lhr%*9`M+ f*Iw$m!GغF:3uR18_p5 Th X2hr=2McLP2&";jtł2c()+JQÈG'x3wk""^}8 Wpߤ\Y%!161_kK/KfSMVtx-prt±IHt5^l=) H6;)MO6?mNhr'jʸ-s[2{۴# mu1>mӈ2 &61ܦXm M`mTp1&hLRq0WB8D]؅RG}", 5 9TB^Bl2Yzh2)pEU,9 2rs5-a1 bI ')p'9ac.{l]#"Zd3 c:2ѯ EBe/#z¢_z=?noN@(+Xݿ4 wyjߵv*&pYO`}Wq{j: +fb]endstream endobj 447 0 obj << /Filter /FlateDecode /Length 251 >> stream xUR0 {?J|Ŧ*qRx a BI&@,gHcK &P",ŃnFv`61Z/BC{ 3! **HGJgx6s$*m x=ss;I֞{g񈧺3i,~ê8m30z -6vZ`a$x3 ?y/r~!>{FNq*$dCjWvZendstream endobj 448 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 31725 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (SDEA(n]N @?)H`pjJK5uͭ/9#8?γk@wZKe䭴Qg;Hlz-ci;Zg]^B3"*gAT.o^&*3t^4.4o jV[DyewКbK1Oj(e 2\jmh"mk2_J9+Tnb]&k{C ԓO(@}Eyx^%Y7!!Á^@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@A{iok%)4:8"1 h$Mوvgg;}bp)4}i`Τ;jmQ@GzQH6/1;u~=ikF#o<9##(=FTZTPbKGeE$M Qc89t.mlMoDi`a-`:VcMۛkBff8vD~"Ơ.Dh;h}[TP\涿t:m<玃*-^8f֐ks k? hQ%U6dbJoa a+#,`cnrF=MmQ@SxoJgyn##ֵh ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (K5ʤQŵbxzPo=6_*{}TEgc{ {lUhQYe⩏@lUiY0{ &}Tƥ?a/@XԢa/X:rY$p^^9>ZR˕ vTW_{Ru^T]Q̏Dκ h>Sdz%~u^T[Zu9$,\¶Tc"ݑQ\W~o2_*dUr#_e#ﰯdUa_9{) }% ¬s/Tӹ25({}Tc{ fhQYeǷ/@V=?Po=6_*{}TEgc{ {lUhQYeҡ G/UJ_lUqRYEde?/G\_}T\9YEde?/V4'y4{72rO&_/ xVon {ii5̥Ũ ʷFT&-N+şiM){qo,|îqֶQ@Q@Q@Ui 8.k#V7Cp ZEUmFe&»C*Նx=嵰v ]dzڥڥ_[ ic2c84ͤmP#".V}?=hV}?=hQEQETo֤߭ChF95kZpjst]JX .a]dӮ HJ?"FxR}7Mejsbb.-5:QPԋD ]JF j+O#CuΟꚭMͥXAj-/3/PyHkeʨ xOu$R&[TVu^Yo$BP2zGojݯn2ꌂyo/D(h#>wQN3]"IG=qӁYXڮH|_55֍yfeA @ʱA43\XsRTCzr4OEuCMcgJv#[d4h'P ʽk:ԮkT5B]:dyGQw$=k':!xS~U4֍{ӿM5Z;Ao;9ϥt~dnE_mp¹OAuHƫ:*+^&&=k;DD1* |{Imc{@JyQ0$6= QkQ\Lj Nk3s|ߖ~~ mjOq Oӊg]e|M+Kz#Wbsֵo ZqylLvyѱ_BTN4]$t T."~avnB"Ooϣ\KOlY,kĜ*zcsU z<=2#H}bp(Ze<}DY!px n+u Z B;q7:)G\3^[HծձNݦXhه*Faj#഍-<<8?1~Ն5K"edיW95wm݌<-o6HC3 z *uoZG1ҽ&zmyo<$C2w+ՙ46wbHݻGkti-y>eVMBܮ/b-CR%K^d{p;\GMdqݳv-o6HC3 z +?rcb9WQ?6I,f9m!4!tnY)lW iZ, H$ w^iN6eBJJA^IғEr2:W3 ҺHbcA@TZ}6yff_zO59M>Syu7`w71Voc=+Xy4YIs,=6'x[Hn$)# L+[`5(EfTVG=`5Y$p2r9hl6 pD^f>c9#t+.̒UeuI(8?hjz=aq%*Dat,'K5'u}}pi]|K#X$h _G֭̊ۗQiG*Q9Fvg絋Kri>qoi讯8gݿ,ϡi~"ͼFNKv#Si<+@2U:%4<7۽ז$oaN1d%<ʱ>O5y c󫷾 Я$2JۥU$>UomĖ(:}(,ZLE"r91i|DHVF0J]ܐs]&iQn%tn "E xtq۝g>I Z8沆Tq.B[>k/%tuդ%]yg pI]t+.̒UeuI(8?jXP*&TN[DmL#2>k/iQ}XӦn=\,jC*WkC0ůĉߔ^iE[=SԮd7.JnKU?Q]6k1Ɨ <7 U0 ]#FѠx +břϩcɠ,qvu? nN[R#u%?t|cngLYяԊ̓Z {DԠ;JC`8O?O ub󹍂񬑩Q SI%~ҵ((((((m?FcJ٬;"G5|cm(r'ѓi r}M>5Fi>yTAHw"`z UB!u_, nv,FjNfLGEucxGW"#EucxGQ tzGcxZD(XZVU`]M)GrG<ʏy^g)c.kQG<=e֍{T*iN*LQIX'ѓjdMECh4X r}MF]~cQS{xtooΟ [oo΍-vL?XUA FE؂?*6GSbUQ?*,jB6GTW:]Y U{Ybj PEPEɥHbyd;Q@:謸H_X[\p,JLҭ"(UQ&E-opEXt9lmf "mԯ9 YhΛ\m6<*H SxX ɩj.-a货U t7.:yZLXU~$U[{v)`E"SFAd3$XxΫd-Oʥ)NyW=С']69h0MA#{WW5ű#i#O,t; H-QXE\|u[֚7֙qַ16XgbaJA<צn"Iakr´+=2GJkxdLlhG0j';A;]c`4Q$z[[IG^+GΚwt=NZ6IX!aϠ'5- r+kp70=HẉḊ9~$P~HWQ-[:$Vr,˧4  rQ=oP ZUmK" >fMchm!F9aar}RCio G,]ƨG#x*f'6 0$Q.޹$VZz~LZ[DtsU{滩4m2[y&j@0ljʹ7P"nV8s2#r=M>ho7iC2=P{m YP0Ϯ -+xAH(P5O x_#A51Vxx"mb3_?h(*1JўH5YGhX$ﻃ~[r>xϼ+fKcTUѮxJ! pA=85FE;ez\s9OEr ݔVJm _ܦI,^((((((;?5m+r5zڅ?kQBh5/~=*Z(ǥSיWO+?gn`Lh+E.iUKPUOgE5E,fZTQ\ł;qހ4謶EQ @‚z6oiP\<]"9 `#P7t`g]vBH*T:7,+(v0zy牿kwon@x-;^_HESʒ9FF %uadUI'5gF[';BPH k|@#~mՙ\Ŕڥ_M 89tzӑM3rTn[ygkO ]??O-e^I"C)mڻ;B]UZ'  sb*~V3W: Hi `qטAEp:"VL%>d%=eSZJYOpl5kyf+*˻$Ru /)A?Ҭhw%o4&9v *b<["[ksZ6*죆T q ut60As{̐0q ítuxg.'KHid,@,y= hw?%/4&9v *b GWЬo wC@\Ң=\>dh[_NHPy7u}WLIeM9 U˔+S' Ҡ,됮/O M^kKnnȝq.߻t#RC7SDHeeϘHzWUho2k>Qc%q WU]8j350ZqA*=K"wpe}@<&ytvO5FFTrq8yai~*%8S3R,1$*Ƌ+F8OkfGжFupF |'>EtȢk`d$(픚{gA%-#_9oQ:}w<爱 /+'gT䳟BR!3 d| (iO, h亚)H9H0z0AMu'- aFP:}5Er:M%%{Į4H>S$tZ:6<$hT}~Qcsآ$1ɏ24|tܠהGF+y6B5&CNj^:Z֛{є2GK=ˇ\t.* Vn} ުltr%ܿghH#O]6 A{( Xt8%a9? 6(`2A|E61g}kuW_]DUb`@rXmltLbşLҢ4 Z[; kyDO*sknKt`*g=̱G;E1Z%"?嚓Uˋh.ahldt85#u 0AQ`86as..7J }IDV~e|-hU8ij$z(QEW/mxE%/m}4=7]EA/4Q|ƛs\#v,z7%N𬚎.KJq]Ayi}YEXk{"h@qӃ"s";d%Oʥ)y曨EDEt!nP ںm-ͼG$m1zcGaiv6[#0>@s#ƩG~`5'Ԟ1e;vZ\S?d.OGZoy}gl;wuyK,1BMI2:zjL9/\6S$w1GMn[vٶdxrԁNcOҬ4-Fw2Z[s%[ķ$Pp:d838'VqwfA"v TF߇(^8\:4].[{&j@0|jBDD (ea p6PH’k{>q0[~N#=knFIF!I$c;liVVR\Uȸg5-/+<ȧ p1V<> T-fFi7+[:.ut.4Yn1+¥*ե&xJJ#ǤAaQ#)ҒX_W7%"vt׶V>MWg;%@>4vv,ⷈcGּy$+/42bmO x88'Aמ ! H̤;[xx&l3`d8-cҼEcm3\FZw(o\idŠxSJQ-$8-ZrhdM>ծϜaR:՛K{E):0Vz1Upإ++ofE+:=\ѦկTN*2*J+>R(9+Կ#u]衆ͫsQ^}Eug{=(BZ1"\W.# -qKMjY0?w zeWeI:Gn5#]nV5>"QKw>Z<"$20#ȧ]\j~Twۑ 3c(X,%!y/5Ge LbI8C8KE3YUNNzۢ5|yRbTOPD%b*$ UI'?ĽFq@Ve-o"ce1 3ێkFRg >>]u]MޡidT]\Gn@vk 2[ʒܧ#'ц*$h"&N4J4+}sUVCpmaIUzzjDžYRw3Geq%QBQMћ1 M?+pۜ}Ujsbd,Mq S<o`?HFG"N._j%(#nX8]cGw ĒʮO5Q!A$$.%UF ?J\k*fwR?.FcPm7UNX@:r+3[#^NE%K9+ïe?Aiopj4>-ܚ6򢷡`+dI,#19k]2^gnIJ F0I U> :[hJxlzqVg%yGoQEQExB*wcG٘[N8S*}kJnL݆x]ʒ((ҤGPk6Ckqcj8#8{]] kȑq=k6yݣo # 9$XuN-"dR퐑DzG?uG4 0d%sʐv rI8–v/%n嵎YHO`~dt|)Kěk9h|2$`GRW-vl4xP*OLn` щȏpTiH.mٽ?DnR{V<j~t0M,jXG]K7(tWl7k\YAݐc*qK "NEw>{O tf\-TxwZp_^~2|e" k_o敳YR(?+V;(((( NJ nR=0G-csPiﱅYI 2h7'#YPDI5Uab23=벢M)ۣii!MK,2ׁKŤk ub|ܞ**:([i펾|H'A3+Jp^'h?ˎAҽE_6FEejeypVkṵ RO3)đ#t8=~ ]\IvTPk*㑑KYPk.!avb-ܮd)&,#Ež>HZjE!H#L9T(€([ݜ>(l&BS$LrMm7=;P&-B&!$v*bH3ڷfvZ+S(+ҽk>xE$n-A:>U5v&q7W&hLSsMtjw:tnMͲHNa[UUPB9Sß?S YZjb)؍n%V䁜q[Q`8]&UOݬںLeUS?w~rtkDdV6veRLj`z_Zg5d4qKLc=K:A=Oɯ-5ص"Cm@R@eUAG?M컟15h c8Wr55H`&X[)<Z7bK8]U,8Ө𭖫5?WYL&G쪿hgokĮ,ȱ"ךQgFˁA!cqSmI?4}'k;~.=i猟ɣ?] r֥?5#GlԩNaVҮ02]6(8QEpN)u(oP3֕2ѥ:y生ɣ)?[V|O_c )?GR&h>_gyI|װu40Cɩ:>U*ik~t_?GOV=WsǝOQE=Ew t_?T Z_꟏AKʓyG'oʵ(XmQI}l\'U{4/ (h._et.2Aɮ~QwZ[/}O~(ϼIwV_8?Qy>߶ (Ty>߶ 2]-r͈:ֺYcxҵ_o敳\hQE2B((((+īmc,0*r)tfkYȳd9 }f]w%5;XnXuRF3f&`]Nnwzzgڮq{q+y>VK٭ Vzџ4&\jڟ4(`Pd' 3WxM:^l!\uٮⶓLe5yS\ݳc^x@T*sVsLVburZ=e;dVWQML@ljVƕUY-mnDfc1CqҫjOgʲHiZ}avb4;!><2Đ,-NNi;^ڭеkE LyjeVvMs\VY؊ >G|uQEQEQEV1ڄ Xw$G'{1Er6^[xKT 1\l‚ Չ==+kC#IysvZv^造דʮQ@quM[yZnb>c.g]`ѫoC*;pO7XMaysc7ڡ&X>IVg3 @>D맢}>lh%iWqeGbhOO$$3-#! BCI^%Ԯ䲺5A%FC0AtKVujOwͥ+maCz ^N^Krd8ZM/ 5P5^vz}+}AXO#eHO)I^{۟]i3W"9줶Lr#=J9 ]91޻Z(<'t/ܰ}]1޺ /x~;k 1:C-(Ǝ/OWZƛ}sm=k0~qЂ;տ [/-%[-a< u4Tr]v7eaqh3e=?FB1߭bZflf.H+>ZWdIGEguoeM$˾0w7o-͕[hÉ|V\=OlU++y톣4ړjއ\\Ddn2M}\}~wq8U(JsM^amHWv_꟏ղTeUZ#DQEs (+];6\Ien1;{WmYskM^g%'[K{696f6Gpz޳kv[2,9O|bQ[#=Z ,W(}Kf-KS]CBuPnskrV@qŧ5Y1LrJ-PqͷJaӵ7^k[]*`z_Zg5d4r`|ZZ\Z`DeWc0S⴮KxM4״ud]SSjo6&#䁍Θ?Z׼mKv:[k(c)€=EtPxK R\ciYTHZ? [?*Tl됤ϴpt5؟Z WIYcj JZ*B((((((-(CYT{$4~CGڡk:= ?jV9#AZOE&7(o~V>ՅQYѢjwf*#PG TT2-FhloJ67KE-UPEPEPEPE}]n-5m%p#gHڑ2yۢ/}}-k3?}1S ft=ge%;g(F27 9 JV6Rܨ[Y \XZ|j mZzI i._CnrO)4$8ʺ/8cuZ5;18 %R%E\tdMz 'T U(=G*|wo15^YE N zW][!4my9p~5bSӭ( rdv$~[>]Nydn#N:TDYƗ eu, nRC$z~V\bZk/ M;F HNz}=~ٞ3ظnf:̐_2ߜzAZȒƲDe9z\-⿏X.IfU簩|L6 l5ɜ3צak2KHbiGU Jmo ͒ ʩI5;(XsAKdzt.qv3r>:Yӿ& !=U"ӴA_J\JO4N{[K4- uyo4 c)i^".Z/:]MM\?sxj>%Y#V"FE SYҞ;1%ԫH%tMj6]":kfmewj;X2!,B/?*/MEa[D4`qv/~t-c3Cr˽"g_UZм'T$gvrWW>/[W:e Y >0֬E޻:Q{%F4u?U Ȯ }\K,Bчu5iH#edJO.ނuk ,Fo3ln\~bgH:%w3_T0HU_޻[[{h)v6?:I|&ng5+i%?zoYعT@0q^tVSmQEb0(gl {\|Gm.Ih2=@븮c>r 46F5ԬYF2>Z0,VT}:#W>ݷ ϵ\m+xW0QOrZ 3kq`ŧF|Лg5wMb%umAG$# @Vk!o)7#:1\4:kI4\iH񏕋 $d ꮓb14s~KҺtBO-넿+ub³m>9RE<(C⴨9Hfy`T^#6RsSQEQEQEQEhj3Ef(Ai:(& mˈ/c24pX>\H HZ5}zG"hʖQNy(6@uoImO{vU#F\m&Tw0o :o-&L929V<3owegjp-Tf@|{{OEI}^CpKnҮ؏Zѭ^!HdHf[o.FB@rNxoĚ]\jJbF s5.j-^Ṵm(oBAҧDs;o uG9'9o /tq,iĝߠ,99DK$E*ُP}Zx+@em_ΐ biQ?nqSRSӯm{Yma2:}j߇-]WK-< 8XXcsk eEs m="I+N0=GttP;ssOk\kZ=vYHlj&aum{\ *(SkOVe5drm`t=;so*!m=w0f"Hm0j/iZZX0j0'\}cPjrZ.([yVC6uP٭Z(վ[>;36nei&WisPjϋm.|;T%Ӧ.Чxaj*7ƚ@rO$$״"٦KeUP};AKٛKR'drdg {\B9O>0"zBHAV%D{8B%Im`` Тŏo-vldK!~QtV]jC?M(QEW+(ntip/ku EBr]Ukqxu0<`1i\isg2d0$깭(u9+oƬcba>H_s|S.:V2B!Xn 1wtP%]VMuN{qg3vSJl똭 l똠A/J+n!^#_"Q`T {D)B8l~Ug&#Qp 'VV{q WgU"]pzYkX+'O myguʬp +2smEPEPEPEPEP\מU ?u%u#N\-zlmF*SIn >_EeCt_Q迺(a`h}/*ͳвdqcVBw1N*E,Qjۙ<>ygڤf>^e°$*fj%'cZ0NC~T}?F^d~Q4Qv%GߕgkOŗŒtӫ?#7z qQv9Qѽ 5G$rW:_8.u_Y94Mg<G+ES0Mg<G[g0GuW ]~ ?_lFx2Q\# ( ,jnFD{oI}=QQȆ[Rz5jOFQȀjNwЋZ}D:(QE1Z1@LJ9uK J(1ƉT <2s_tw(iq_JK5R#UiA,ѥk[p6%$YߗZ7uK> /Ja{oڥͤX\pkc̾׮k_DPud$tOw6י}oZܢ(SsTX3,Sܱ!uC 'C\LmN@-,v}pzА'njzݞ,pdA˹oڥa$ )WVYJ6l-#]cg}`p8瓓jN}U{'N<`sNjn&}?Ky[BҲ/cnkGyc2*W;^&ffO]Q<k1މG@]rCu;M"B$9&>$n^/:]EMV_ǟ Z3 \M1@W<_xb>%a#G\@%}wRKVP mmg2n8Y:>(Nt-\GK O y4Q}lnDL>rOsS-|K s47J!iu w,2 ,=8u{eUoʱʼqQc2nkꚭy!P͵T9unTHix^(=p{Tv6ܰy< ~ui\xM۝:+h3\ハJ{[ K-qq,\-iչ;lƳJҰF=I'R[ȼ* »q*L׳1& \U*qLi8$qTҾzt+%9H%t&G$h,"K}o ڞUas{ig` Ҵ4I"1d eN꯷p$'Xq,R8 c+5]+]^"r3KS\ SeK4skv+g&yH=7 3\ؙM[=GCSkhnUw7ܯZȑFI>jvE]9XTT$rzΉmk%4]\4Ϲ@=+WƖihxH \.qdw+u`>ln8Gjjh./e؄Pfv=k -kV[K=vEz!јX7<sC'1 Ҩ= c)7m'_ե D<ci/~ƾ>aq % 9 fOO(>Up2zW hvfܣK5΢ (ҺkIY[[fH7b}`I6z\=Dc >8,dcipC6d)lm G8jQEQEeh/geP])#qfh ƔgeZ<,gQp86 >{py,g-!b2NA-(2,^*[۵'`dwSiM$[$dD$#6%ay]OIݻbV|[V7=.sZZI-[+5?\إ֟ KYB򫳲UnzME 9mojL^7QAxn/hWECxGzЭm+=\^nsg|=SiԬulI)qMiڞjW[qL-n {QZ'7ڎgjV"j[+#>vt-7so*)R =F)XZ-4k 7RLCOCn[QKaTnN7S+2۪{g:=\?:=đ #v+v15/퐺}alLTxmu _]/m`b3 q:)\9oD:&o4xZ^F ~cUuoKi{m(eWFFzsZf?K/Vo~8]6f,1vv.,mg*qnTc ((((((5->Yn-Xin>ʌ]V8?#:tRFX u4i9.ng'ٵoa]$+˙&ف4rN%m{vUI5hd[NsQBDʴهwQwVFw9u=jigtX7@7ʆ z;;[c䥁L"?ڳ@\^@k*āmWME&TfS׿mF@o +*/qny'Dҭ[foz0{VWEklm漐?hH:|ZG*oSy7 _yklv+ZU%F\ё::o_+_ ho_+_ khokof+oclw|+y`l fo_k_lX[vtgٞ~یzh*Ei09ŒºZ+i wQǤ[dxo{? KwV共,tɐ?jAcλ@)Mt[wa]sg;k3]=QG;֮2G;7Պ5wa[:}1 LI?jwoX[uT[~?*\ okk¶hE^Z8"Pڳqڟ:Ƨӭp S<ל՚N@+ty-4h&G gպ(ϼ#'J{ҽe/QEjyEPEPEPEPEPEPEPEp u%ż]B V8D /;tƺ[KyQ`B y`IMvފ ',I07u;(q* &DSL[C6rB~?Oc@s$ĎHr23Tr-MA͜I4p0iGPEPEPEJ]GRi^xN+%D1PMEpWvZd퍫Iv:gvwn=zQ4%5K=L5gԮ(6Lc_wWws: K9gg;|2`t5ũZb$g zݏ|YYX,h@SJ"A&46 0YSn#+pjetE# 3^:m @h(((<^q%I-䍃Wn=(:\j16[3C%eX$'V -9M*gFf!sgvEPE(5l-f$E/%1Re94tW}tiȓmdb@~w.܃'$溽U4{TH%ژhŒz^EOWIEyi:e ],Ⱦd,@IXw3OtvΟl[>!'j  BuHV~$#ȋ1 gO^j>.ffӭZv|o)0E3SM񡸴HDQlhy@}7=̹=}=xe瞄Vy##CeRV!&)LrED#ʬtkzr\ʲu=#{, fVXS̖R^&/+bJ~An(GcUy1ltVs(((((((ew%Mpy~V袀 ( ( ( ( ( eKX|?StPEPEPEPEPEPL(HR2}ZmaHʹrǧ'Y((()FȡV4(ƊP;NkH'^X 11pEOEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEendstream endobj 449 0 obj << /Filter /FlateDecode /Length 501 >> stream xuSn +X2dצT4.F37`&|}{Ld{93܏iV6N2`_d{c#cC2f 8N@ihFl߉@<8?='t'Eo7HBzaյθ j(=oKrUa0sg#@`[iVrdTG]M$dwI'Yfe.mR:{3U4Jw3ИJH.rGW@1CwWLtjGYWrcqD|@rKdPƃxiZu .3aʶ l]|{(/(f ]DT; ScsbMm l@y"-vkpk3DR`m!:C&g_7%F ~O߭؟ù'$^EA$."B)=)݁_2?]endstream endobj 450 0 obj << /Filter /FlateDecode /Length 999 >> stream xUM6WV~49m8zشWdzeyȯ )ʻp޼yC?ԌgݍCiݶz[*jL;u0F7dS\xjR)In(n{p4-=وgSj\;'[8@.9úuB| S7 c1I?FK!9e*K\Rp*pn.0jdSL湉EX%YB oqykn|:ZgSnkECCNEOԵHfwծl2_-MnէꡖJX*&%PU #$f#3 Ng )E > cN 3ۦh#6B'O鈗8p)`) 9 %|_GKx5^/uω kc}VO jͷ2Pg51OMa ^ 64vZ'V!~?i|q;Qe Bpr 3]SsॵHܸ,@ qS?r+Tq#|)/H Xr(+y6 )N" qK˵X$1EGUJoŒ/d Kv)B?^c@A/P)8a{EXYrB,K;)jBF)0y߭0ޟ<ǹHPTZ2M6)k*rŬLaNm {_ i̗ GAˍS9]/-+\c*Ii}B+(3y&tA cI/;}R`CFk|<θ:%{C$J+bUj) ]%rM֫>8r;ԪĘ Q\ƒcc5ͩI0Gu+> stream xX[_A#ךR)Z@mn˂eAߞof8"j0`kfΜ9| FyŸ~)*Dȿ93r^(4>P]ydVR>V//8KW|5p3zHs2a~qC~O]\in(o+^x%zvUW6KI!wXU!g49C~̅6apopŊ+Kz e-/V8n]8g.i-2[dI9v?45kVJŊKsѪ+n4(w"[,QNj#E򰀓vxrlʾSKL|2:lyS4zqS>mO&)%'YNZ]PlaR$awxf$s*I6mUM9Ocu/8v)W>_Hjug[9C>3x FBSCEq~v|=1v#v7,g wUe  e5 ˻t%%IqׯRnJ즁Cz6tTRPPc F LG_?[PxJ,+/` %QX l,vd}'L=UF XkzETxe t-0vD͵@ T;}fkB+ԀG@9K*cT>Ge;J%Թ=zSE3Q|t&$ p4e^c9C.'=G4bP%V6{S U>!RX!e3<+\tY:n'mZ3s6䗪k2L,+6иFo绑JKxfz}Hy[햡ѩBu~0nm PIagQSr4T;4T' 8լ݌D+%Je- d }n48JTHv8 uGN-C\G;Y.@ قSfl&riB'QN⪍x1rOW x Dvd9lCSegǻ^DK'abRz2f!eɧ,=ܜ?O:?Աhg11V?*)>1iMccr%HJPoU䬖 <&e?|@p,7SөkK\(gEWR3:&ܼ,a N2o2*XiqBZ\IHWLI$>na.Moޞʦ>  (fTu6D$d%1xF$d2.޼T/AؔV@iCQT3]R1kaΏ^[vpb!ޗùn).SH <%:C|[f71b!\yuvVqֲiGPa1K9W:9*ʀ@ 3L86AٻQZ1{eϞ]U0qYiwnendstream endobj 452 0 obj << /Filter /FlateDecode /Length 3609 >> stream xZmo"}Unb)b U'$&yъ"3r!mݾ<;;SՈoF?k?g5`c+I)_Fz=Tʊ)Kkdʌo(˹QRa/(Qɿ/1DG?LK]h|2 DkMuZ+X\NBt⹰Q12™||1ϟ?\w4: }h& G)FPi!BB͍NoFFC75cV̚yݝ&4G;-a2IXd@«6A xL~i2iM|-dVإd߿sofZnӤbH/FF mdO(cTx5FrbвC {9\h"FIӴZ, 2R* T{L`! )0d Dc`h[p?f(ZfY7^w׬ϦW,@YA -ɵ/ U3Oir껦X.-&bp3VM ZL1oh$RIs^^]Փj_NNk6/߼IRm/͚óp#.b~2ZRoźDO招E߽T4{PԖ&*'whɥ=8|)judq M~T zG4&:rb>y)Eu画-6@o&PA8qŦj*K@\5>\gO8JxCʲH>mǛͶ Rϛ߿kH@ VXQaqpL fCղm7 pyE.91F&[7y_ͪ~P:or.+@jkqplJSsslN; UaG8lǭQG)8nep)7E1"Uv8<;E%6VWBݺݝ\7[J(d0ЭjЍ-n:=ʠ^88m}'^m,hY5-b, -A# p`p ^@@4T Ͷ]#>AuDb"z/6tYn}av_ˍc? (~c>9C}X,^.: Xwg׃O(Kp%ҘTKtt_vd iL1ú(d1mٰ(r;ewqÏ Aƽ' ſq_{l8?OG2[n"[BZs'C4Mi9mۃhBRI3;6_-h]YeDJv8ь&>;=ԃk12= r /uc4scx > stream xZ[o7.np.Qpu7 EAk)ܐ/}hpϙ;W^Ѓ3gΜ|syQ(؞W'?Pۺ.ߟ|LT[_!ta(%e |{.W,y]7blzjnĔ"3?)3OοxQ_(^iR0N*%ΊwzX.,G'?8ц_e6}Ѕ*ERV )Po?ʊPfW FCsd0'Z^3d^744 ) lxM]4 m[wᷱ]L}): %hX/DCZtLK9! ~jV9-.j 8֯2^/r%P6k]v.M2-Klq_=SlVa$0!S  ]@bofU x`_0:\1C!Vhm;]h+K{jC-4~vͰmF7C;OqhKj]]=] ]|_5?-}( "|rIƍwfb7(:`0?&}O\Oc'X(XBٿg`W!sr+2a,]JA߿F? gv4v=zw$҄j.}TC;mAls"P̶lD_U@븒V[n[McshMXe'qE8-J UeYZ^Y.rɫ9%F8>[**7YP" e@SIЂT&3Lq cX 04 ~A/Ti{aDm?~;ZTʏm(jh^=,(08௞Bf X;=bA*10gx)\\4Hg3LϰC]/)OCzLe$-qœ51ss-byٶ~y !,mTT_'5x.."6N oAd8*xN>[ԑE\ei{,EϦ+:~L4DJ&x ͶcZe2ܔPe@>AjX콴rene S@wQBᵗF/B${Lyʶrn) A OfKbP .;gށo-B>tj޹Ϙe57jcR@G^Խso,xaGֺ']Mc} A[ X Mbnw7t8b ݦ;m٣ J0""C0!_Y9 -9a40b:P` }C4l揺<0%0*a]ʬ7\A'ʧ/uoqG#A֗3}fu[g%V>/sxȔN}Uh-$ lY ;mv XگǴ]g;T{8Ȣ#oUKFsa/(Z`fh *8Q, O(64p E՟mؘ'@0!v77iO gםLN%KBa<і*N2?`"w;٩;V|wQC%T{fkef/ ޵6˵oZ/O1 \f=ܳ^4̘z`=K|<56k/AnϞ&,L;Y¯٬ݺ{Hgʦ3~+CB- G+;^_H"'&;);kO L˨[[*KKze> stream xZm۸"C_D%iS$^+֖wu-G_;|P^ppx?L3ʦ $^M>Ln".6C%SU( 5]&ɓ'9c0e46j*h%ޕ}Յ!&Ȓs+nH j}l*)i %y9c TΧsKI-5XVݡ<@i(\d&Gk Yo{-[\:s!,dT)~lΥW9`QIF 2h5Bn)I 31;FnuҤnQŮZeߴ]@-/yp0jܻx4}Đn=նZtx8NqTqݡmz>vNF*a&HXN󸴑F0\QRǑ!6 r_›]CH?w1Asix d[A'$DdioQnCkCt;%/&}Mr[Tn΋ljOx\i.aOڋvCAІMN0En(\\X,JQP(BUU[Hd!;]j3p] POCe}ul+½1dF"p9x<3b - @ fO΁OwpIlN.nDfS:H ./1)餘W9]anxp86%}0*B& #3Lk WALRC\3sF@?"fgL2qɳ ,,2p98( 4[i׬s*qxGTKrO#FXzwhޞuFӇ]]>ƋP؀@H62.S=@e"kɮ{&}e/-WPB3rS_۪;ux(#F_NX`t" b:68p/OQ{ 8mȜ}NۗۮNIGHppaw'\#puѓi;<;%Ůn]hjUh XO)0ce8Xuy'bϰN bTjSC[wWNKBcQ8X( Yb T&/0zG_ў 네LT'I18N>W~@(mv5C JLF;IefTE. #fE*X ]N{ք&Ѹ}ȸM:El @|WsOnBtL8X5c!8ad6Gwb1u=yLAS#K9XBQcR.|s̘$h;j'I%uVAp {vھ"n-Nte% '%tYh (RUlW(]]m w6N+M]3ayD^.qYxlWA1 ĵ5b6E;!w A~v}\;wi;C{8}߆7B1n@J&"ÑH.O KhN~&YԥFH(p4v)9P{ EHzH?N^endstream endobj 455 0 obj << /Filter /FlateDecode /Length 2541 >> stream xYr/!Ұv*!Jʪ4Np0 0``D^8o=$J sǿnF淳_gz7jՕ&s&t :+.\5_fvv^vͺ=,L(Gk(<_wuZ˼pݡśDu5TywA~Umz3jeWV_|@ߴ}Sl@c }nW8M8۾9a8-asڍX?e }n߽a4/-J0 MƉR Sί7ySzFzM_7! >DdS̉yL%&4Ae$) XK%(|0{,e 9N3 D)8Y:2'F'XQhɊ(M3+`+PXsPN,QZX%zvXА ƟRXR+,r< Kj{j&՝ix #|t0Yu|O:_p ctJލO9vVU05 X`Z)]Xe i@)gz.:'cµ}dX-eng±%ZOEY -'GnE!5p=+}-)3vLe/F^߼-φʤ>}ݶTt}짳>LII\c}[,pnc `6DEASE澤@5b_oOkć%! pxе73%*V KݧF]=} my?kTOATw}l+w@AJۏ p?'[W^#93mfޞvjv6} IM,4PtHN mj fP8!T6QdiJ P'I"Hu6/H(TP"p}_}PCA c{| t> m0q# (n]aF~91Fvsh ]])`)!z S*g.h4؅a$p`:1eqa#&0~NaX"I 9þuvCoWujbrLb*$6J 1:" 2Ea4be)+*Ȉc1_|K6q|H<œKݮqb1lj ,[ճ֗ _7"uwG{Bj"",יECuKh!HB1I<1%yǎ#q0>C $t fʢ@tſ( ipԄ\ᨅ[2Ϯp(l@OpYq`TƄB8SVlKøtV%<'yגa!aV8 %@%\vZ [Y ф7 ](i}zccGy庈t%9nbѮJjm-V2Xe~Xvwwix7h;?i$X*qgK--Op> stream xYIʑBޗT*'򖊪l49`H bP]z!F3rt 7)n.-;z;M &X,+.m*{rr%m]\)B0˖۶}Ģj}]V]7,iKWnpusSoM1]WXmA-beP[0F0˸Bj*ؖ}9HG7]A\w)"^[flMV>Y~N]_!] r[`l *Gmu;\1x6/xd[gsgoVXRfc4vJ rl4ޤ:b*s8}n#<9ג0RhsƤJ8Te鐌/xq< Kh:Šlذ8ѦjEب{WKbX] xNd@; |%JO/2d%d>`3:S%ɉ6@9(l & j|tEéލJtsƓ 17K*6m2vbJupPN0.᠀nXFeIICh> w vB">Wp~ԧV9VxvP9ޥ.4ID4mw'<..Scm5U`s:a0<*GRh># &vX72v9Ҙd,gB3)dOXRSl CP{peV.̭1Ŋ2nb7v:6-w"lN-ϯ[璳xoS{;c B! 6R;Y>`F gJ |]yF^YT ]0Ѿiu ? }&ޕK, :c)RP}HP ^0c=}[~ 1=W3@ݡz";%1xjzίSt % I,@PԅeTkZjS|=}7ߨkL .U<Bc} < v^nJ'jxیVJ*xET%j@P""Cݴ~g|_˱:;NYmsM] 3^TК~ӳ^񻚪Qe1=o,`\E?NdGWPܕ8vq5h"xIX,#T#洅PEx _qZp ^]&D)B6Ń?һ I~iZ'| YaZոc$MO?ypCe)pOvg$\L7u̎_Z^*ͣU u9"-|iNǜa ?Jendstream endobj 457 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 17427 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +uFFio44琢?_6:BiKRw,GĐ2zp(S^zbYEzخiN֑y y~;e^]iuh-7EHn(OiQ\ޡeuuamm61KS,`dn3xUƟbwq|,S!ʜӥwW!u}`\ZY鶳\i5ʮ]#;۶m<65f7 $[NmWQMkFI s+);kt2Y>D&@ǥw4WxUHiֱǬC!"f%]wdRΟ-.eHfRXg>4W|sq&iumcsjCOhӰVCn6{Y,Ѯ3.9Zh'ZE{H +5JQǙe<>o i2Jֱf9$@QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEgɤA&^_C@Tg?eV\A-Q8=1]-?tAgq<7_l+ 34ى~=o=9,n.b\90G9 ע9tmr꺤( 'S$$ a~\`V4%cpnRIe?xӞEsDŽKn{g-b+˰Nn>irBE]ci l5K 7nHn v?v1I kv9gb؜AEbA([eܻN9J/d^ߠs=ݎrrrk0kcW+żY$s?xӞmRKU[i GL8(<c^tnom"m: +_KLӭ`ghXйQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@KVh&^vy$($ɪں _@V?BCпutEcj/D?]ں _@V?BC՝#RҊvky-c TI(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@xV&kj70xQkmuO$w`ӑC'pv9{'}x%\#yVw֯5kM`-)nZkhE WKx "Y?wL?{Ni'QII*@]A9395^]fŜ1̑B?0H͌  [6]wi-2I4D=yZ6 wwbgD"h9 [h}Uh]He7ܪƠ#֭_\ 2JNPO#"Ht%e&0ϭ#^講J(!m:<(\j3xRUje l﵀\d`@#{r]둆PbʠIMu9ڮ:0__~چmw䉣i*XA#cuTS!'%"V= > ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( *a|%߄s&GW[k]3 Q|Ea#yoqө soiIy{O~gB3^H-eMǮSoSՉ< =Fj5mnͻ#pQj6-:vkm*`bI8= 1‘B#@TtVliQulX}I}F⽱Z,]I Ƈb]ۀ'Ɗv*H'בv:(((̃%fOVVGXS,+xV5OV='4I<2C*E*8#EAQ㞕Es^)bݍ;r46r.OP2)zs]=fZĺ-żĽQڴ((((((((((((((((((*bOAY{"gO"</SێH彚Vvl,2A;S;]Iܳ3di%n{­ƑZ"5@Hڍ)z{G>)O^i}8%NE_ñsg9E&ֱijOnHP&_׆[l2oR\>(gƒGeY.ge]l9gȠ)bm&;ۙm!P/Y>#ӓӽsIeGʃocxFHU;\CӛZH>']#~ZKhKf/4\ۧJⵏF{Xa:ŨwĜO^˨'o,U}"F@'sv͕ך}݊Z;H26SG6I 2~ʠHJoy6ݙa$@t;ׂ LP) n@5"zv z]wDg( $_ʀ5#%dцUN,@*t\*C֭Y^{h k Ўb( {l(Ar} 7Mk."o.dGnu6S%lQQo~P2Aw((((((((((((((((쨌UFI' uecfcD?} :Y_7i?8^dXy$!Q ϿOM<Iu)#`}kN4P[_\vJ0đ0@Z:Li7 ky,]B( mQ\owt^ɱ ؟hsڶ|$=4\N$3'@51ʼkW ((}yhzW˅h8kVmCH 5L oRQcG \ZT*“܀(5h_MIm$*gh9Vg~enPô~I8rúmƷ\kʆ|<>z-vI/nVP@}qP(##= ttRg{{cZuWQeo.d!qC}A">|P?8?EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEZYڼK :_đ@ݯn?bNPP}[bEH*(T =*hm-瑌8'=OӰPL$'U(+xnh."IqI24جaXV+hQ`D04'S% : Ku? q3&| 5< znΓX`M3oykV8COC֭E%$;ooN>4srV[7}A#OZҵ9mѸ?硨,` vb94:p6w95\qwVUg;ATX "(53!*g -=y>Y[s <)TX6;&s-Ҭr,L-ɽT'q`sϥv4W< 丹,Jsn&n.C?0$h'dӠ$;{2 pqsҷ<(<;C;$7,UC Mm KEeY^LZ{֕QEQEQEQEQEQEQEQEQEQEQEQEQEQEV{C=s,x`73U((.}^hM A L+V& r!Y\)1 O .GN ".Ͷ >T8ʏAP'}g7|P%65p3r 3Z~itDh+ |6x],-ii ߒ?)DR1i1O-(Pw#uFTn-u۳p" ,c# \ Y HB2u]hɭ_E|\Y۲)[wrJϥox\cG{ʄK(U]c@V=px䊹أ1n-VXX\<1W.6̱5-z;zu_ KM3/m˒v8T3fؙ4gB@% "&%#eaЃKNg0iϕ ՏEX,gymm{(&ux0 4$.1-o5ՖHi:ZŪ- b>0&fn2x991?TdjzU4P&Qb 9ju+%WI&*N7eGv8k6V;s$3r uYx8?0W/kql)2ARA r-^M1B*=i*?snnrdϴjJH\3aI'=n(((((( A5Ak=VZ݌y>pkBM3 zG@&J[[hm!@sSܓ:c ȞB" ߆sVLz%:*tyPs$dGeOIwX-#NH9$ m8*aT #!e| /CT-(J[S9y(>Ջm^@whbTA6v9ېRNwv(%K4? As{[u r@"HUSv0 &KqIwkI>m2\e щ0ڸ;V(SP~G%²m|O~fѽIiD(;NI&s,[\A <8 8 lYJ+N h-eIeAgAuyof-H{CD" {n%km4+ȧN1}?oaQO-%Y9gcGFNVo ,qª*uǘ6.c=![^cdppA;N}sQ7. F[Oޟ{ ע2?oa?ShV7?if3l1Ip@*?*Т ( ( ( ( ( ( ( ( ( ( ( =A}o gUF/zU Qyjn4n:? 5ĺysunY4H\mrsU,d4!Belڷ`I(HS[uټ d%&O8>DZj9{%ŽV.)JJ0UN9$dabNi٥}$Y2n '6zvmw,0{$VR.%;"zC -[m@o?z[h0L '=:[[x-Wlh0_qg-wm9̰1M{EqŴgi$\ڤJLiz歙.['7Z=™  L$qgtڽKY I{κi$$ae!H3<t;K 5.28*>b kҠKO6xD@'zăR6w!y1oLS85evLge8i$?_>".4V4ȑƼs?ƽ]2мiP/]zgOqm-}z}s<18PrH&?f4d4뎊?8Ԛw;^vK9?q:dx*as}=Mܲ* b9krXh)Q^7R2?*e{+aZאܨZd"6WyE:uɺCp->rq)bAlH#5@}?S(sD>'|Rs6b=̲^TCz&ieXNKlX,[=+sD>9OT i?꺽Ȋ+*& Psڜv*ǃ]z_?#'OC) Q ¢(UQIEPUoU߹8ew.oݦk[YWsRX%45̃?S=aUԶ)Gy޵ECVAvV+HpC5 ;Ҩ˩7ݐyvуGZҠ((((((((((((((( k t2J+EdEt` E:ƛitcOOCR磰{oaao$0v\cǹ 7K"XnB8qm?Rj_E{-[!f bjQ5Y$l,Nߗ`'ij^x[1p` yw{tjUMB+K?O4X{RO::ZjsOAf+vcT}}&ma# dlwSbym2O>NkP@|3>GS۠Hu[d$jdACQZ[ݯ-co6 `>XnbksC%6A*p˟=_a[A < QX1pN%u&5AF۲nʹl5 ˪Z8$)2Gp[ћ{uoZ|HP'vN9WB h(((Z%ȕZ-C\Έ"DRyx'cg뵰9Ҁ:u݂NOjodzz/Zr3\"ujc,rW mrլ-^1I<]!@xt6-ᴅa1k}Z(fi>"CgyR!㐣ݽbTd Nee=^[cIIc=QQz9RP7 ur]uM?Qg"tGCOLGQ_%.QtY@nUS@V>{[uلEfOJmε"V0D9d1ܻuFF;@GdQIgbL=XO]/mŴ6PII#ZIq)QP>9vY4!6i^1]Yx0?6i/ۉ4o~V [Q{ڽ2QƎrI'OM_*/vZ^O"IRm y#kVkm,-=Ŵ<0nE9-#p07c4jj/QXuW{9-.-YC:C Ki\Ru[^9nB0pS(Ely.C(cn77dAw&-b{dpW=Sڡ+;Y.o.Ϲ5v8|j$ǹ'>槠 ؼv[p'1.§1Ff T>>` ~T(y&f=@uOW<ˏh<}7VQa.K+qtwŸM_(((((((((((((((((( lB-*Cֳnmmhbi`徱|ʽ6]%TuYA?=b=rueyc v1o ٳFıִ̪}FL ,mnA1Nh1KKIgnLN{jߗOG` .)BqHn,;w 23xTE Y1Naml b6MNb%'cr(*9&y8׫9Z(ϻa =hVO\*Xa#q{}y>϶]qa Sv4bv_;G G ('}.co4vL &B* Xƨ.~ $k8WLz(G!.TFB2 #΄Gzh +$0@Rjߢ ( (J_XXic$YUP=hNoӯ&Zw*'1FʫꜞSY77y( aI ߀fg4:dQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE#IchEtaV}+ռ8K&}"?9qEtPIi߸e+8CIo#o3X#z{CЊfY갘~> rwZfPa@4ƾ|˝JOo 20\m9ZVsۺkፚE@Jlz=N|`e]ĥ$JN7)pZ ,w!Ae\8 b/O%Ճ\Li]D`Ao{{+=E)GHG9U 緽h{r:G$ yc5mLytX2?t84+%|= @iijF;$?'=t?gۼT1 TQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@z߅tZQr_)wnvHY7m뱛#`궑c$d`*(7CmQ-G 88?YBki|ub71,!r35 ZvoIy_ߡӿ/%K N <H;~A?+Wy,I^GoXp*2#kژ[SHl'P$#O;3@~A?+W!o^m4ηk.a!2DU1} @P/BdJ~o8$Af;os Uuڡ] pA \z73_Y]/ ϒ лw'm/EF.tՊo*fC)#'#1ڀ4?+Qv?_*l19K[; iP*Y|#j}ՊIwy]Zf m63pF9Pl.nF"i 3N>Yy&5vLmYEZG[@aa;Bjcb33O8x+kƟYvb2OI ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( toimAH,à3.*(i'";#E<$GBw;guP?/*O7G/*O7[P?/*O7G/*O7[P,DKcnYZB.ifZ<B -&> stream x}RN L<_<-x4xYxX[ť&~]v33|jɞJ%J&D (ʒa>.EOք-j鵍BfAjh 54GARLpImKnV"h ȯ ׄ\qD(ʹ6R# u.A* .Bg* .c5.2Ks&dNCl{#ɒq,Cl J+#} ?.%ln喻"? [DE=]⏃IF׬TijkBd)bendstream endobj 459 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 17427 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( +uFFio44琢?_6:BiKRw,GĐ2zp(S^zbYEzخiN֑y y~;e^]iuh-7EHn(OiQ\ޡeuuamm61KS,`dn3xUƟbwq|,S!ʜӥwW!u}`\ZY鶳\i5ʮ]#;۶m<65f7 $[NmWQMkFI s+);kt2Y>D&@ǥw4WxUHiֱǬC!"f%]wdRΟ-.eHfRXg>4W|sq&iumcsjCOhӰVCn6{Y,Ѯ3.9Zh'ZE{H +5JQǙe<>o i2Jֱf9$@QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEgɤA&^_C@Tg?eV\A-Q8=1]-?tAgq<7_l+ 34ى~=o=9,n.b\90G9 ע9tmr꺤( 'S$$ a~\`V4%cpnRIe?xӞEsDŽKn{g-b+˰Nn>irBE]ci l5K 7nHn v?v1I kv9gb؜AEbA([eܻN9J/d^ߠs=ݎrrrk0kcW+żY$s?xӞmRKU[i GL8(<c^tnom"m: +_KLӭ`ghXйQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@KVh&^vy$($ɪں _@V?BCпutEcj/D?]ں _@V?BC՝#RҊvky-c TI(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@xV&kj70xQkmuO$w`ӑC'pv9{'}x%\#yVw֯5kM`-)nZkhE WKx "Y?wL?{Ni'QII*@]A9395^]fŜ1̑B?0H͌  [6]wi-2I4D=yZ6 wwbgD"h9 [h}Uh]He7ܪƠ#֭_\ 2JNPO#"Ht%e&0ϭ#^講J(!m:<(\j3xRUje l﵀\d`@#{r]둆PbʠIMu9ڮ:0__~چmw䉣i*XA#cuTS!'%"V= > ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( *a|%߄s&GW[k]3 Q|Ea#yoqө soiIy{O~gB3^H-eMǮSoSՉ< =Fj5mnͻ#pQj6-:vkm*`bI8= 1‘B#@TtVliQulX}I}F⽱Z,]I Ƈb]ۀ'Ɗv*H'בv:(((̃%fOVVGXS,+xV5OV='4I<2C*E*8#EAQ㞕Es^)bݍ;r46r.OP2)zs]=fZĺ-żĽQڴ((((((((((((((((((*bOAY{"gO"</SێH彚Vvl,2A;S;]Iܳ3di%n{­ƑZ"5@Hڍ)z{G>)O^i}8%NE_ñsg9E&ֱijOnHP&_׆[l2oR\>(gƒGeY.ge]l9gȠ)bm&;ۙm!P/Y>#ӓӽsIeGʃocxFHU;\CӛZH>']#~ZKhKf/4\ۧJⵏF{Xa:ŨwĜO^˨'o,U}"F@'sv͕ך}݊Z;H26SG6I 2~ʠHJoy6ݙa$@t;ׂ LP) n@5"zv z]wDg( $_ʀ5#%dцUN,@*t\*C֭Y^{h k Ўb( {l(Ar} 7Mk."o.dGnu6S%lQQo~P2Aw((((((((((((((((쨌UFI' uecfcD?} :Y_7i?8^dXy$!Q ϿOM<Iu)#`}kN4P[_\vJ0đ0@Z:Li7 ky,]B( mQ\owt^ɱ ؟hsڶ|$=4\N$3'@51ʼkW ((}yhzW˅h8kVmCH 5L oRQcG \ZT*“܀(5h_MIm$*gh9Vg~enPô~I8rúmƷ\kʆ|<>z-vI/nVP@}qP(##= ttRg{{cZuWQeo.d!qC}A">|P?8?EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEZYڼK :_đ@ݯn?bNPP}[bEH*(T =*hm-瑌8'=OӰPL$'U(+xnh."IqI24جaXV+hQ`D04'S% : Ku? q3&| 5< znΓX`M3oykV8COC֭E%$;ooN>4srV[7}A#OZҵ9mѸ?硨,` vb94:p6w95\qwVUg;ATX "(53!*g -=y>Y[s <)TX6;&s-Ҭr,L-ɽT'q`sϥv4W< 丹,Jsn&n.C?0$h'dӠ$;{2 pqsҷ<(<;C;$7,UC Mm KEeY^LZ{֕QEQEQEQEQEQEQEQEQEQEQEQEQEQEV{C=s,x`73U((.}^hM A L+V& r!Y\)1 O .GN ".Ͷ >T8ʏAP'}g7|P%65p3r 3Z~itDh+ |6x],-ii ߒ?)DR1i1O-(Pw#uFTn-u۳p" ,c# \ Y HB2u]hɭ_E|\Y۲)[wrJϥox\cG{ʄK(U]c@V=px䊹أ1n-VXX\<1W.6̱5-z;zu_ KM3/m˒v8T3fؙ4gB@% "&%#eaЃKNg0iϕ ՏEX,gymm{(&ux0 4$.1-o5ՖHi:ZŪ- b>0&fn2x991?TdjzU4P&Qb 9ju+%WI&*N7eGv8k6V;s$3r uYx8?0W/kql)2ARA r-^M1B*=i*?snnrdϴjJH\3aI'=n(((((( A5Ak=VZ݌y>pkBM3 zG@&J[[hm!@sSܓ:c ȞB" ߆sVLz%:*tyPs$dGeOIwX-#NH9$ m8*aT #!e| /CT-(J[S9y(>Ջm^@whbTA6v9ېRNwv(%K4? As{[u r@"HUSv0 &KqIwkI>m2\e щ0ڸ;V(SP~G%²m|O~fѽIiD(;NI&s,[\A <8 8 lYJ+N h-eIeAgAuyof-H{CD" {n%km4+ȧN1}?oaQO-%Y9gcGFNVo ,qª*uǘ6.c=![^cdppA;N}sQ7. F[Oޟ{ ע2?oa?ShV7?if3l1Ip@*?*Т ( ( ( ( ( ( ( ( ( ( ( =A}o gUF/zU Qyjn4n:? 5ĺysunY4H\mrsU,d4!Belڷ`I(HS[uټ d%&O8>DZj9{%ŽV.)JJ0UN9$dabNi٥}$Y2n '6zvmw,0{$VR.%;"zC -[m@o?z[h0L '=:[[x-Wlh0_qg-wm9̰1M{EqŴgi$\ڤJLiz歙.['7Z=™  L$qgtڽKY I{κi$$ae!H3<t;K 5.28*>b kҠKO6xD@'zăR6w!y1oLS85evLge8i$?_>".4V4ȑƼs?ƽ]2мiP/]zgOqm-}z}s<18PrH&?f4d4뎊?8Ԛw;^vK9?q:dx*as}=Mܲ* b9krXh)Q^7R2?*e{+aZאܨZd"6WyE:uɺCp->rq)bAlH#5@}?S(sD>'|Rs6b=̲^TCz&ieXNKlX,[=+sD>9OT i?꺽Ȋ+*& Psڜv*ǃ]z_?#'OC) Q ¢(UQIEPUoU߹8ew.oݦk[YWsRX%45̃?S=aUԶ)Gy޵ECVAvV+HpC5 ;Ҩ˩7ݐyvуGZҠ((((((((((((((( k t2J+EdEt` E:ƛitcOOCR磰{oaao$0v\cǹ 7K"XnB8qm?Rj_E{-[!f bjQ5Y$l,Nߗ`'ij^x[1p` yw{tjUMB+K?O4X{RO::ZjsOAf+vcT}}&ma# dlwSbym2O>NkP@|3>GS۠Hu[d$jdACQZ[ݯ-co6 `>XnbksC%6A*p˟=_a[A < QX1pN%u&5AF۲nʹl5 ˪Z8$)2Gp[ћ{uoZ|HP'vN9WB h(((Z%ȕZ-C\Έ"DRyx'cg뵰9Ҁ:u݂NOjodzz/Zr3\"ujc,rW mrլ-^1I<]!@xt6-ᴅa1k}Z(fi>"CgyR!㐣ݽbTd Nee=^[cIIc=QQz9RP7 ur]uM?Qg"tGCOLGQ_%.QtY@nUS@V>{[uلEfOJmε"V0D9d1ܻuFF;@GdQIgbL=XO]/mŴ6PII#ZIq)QP>9vY4!6i^1]Yx0?6i/ۉ4o~V [Q{ڽ2QƎrI'OM_*/vZ^O"IRm y#kVkm,-=Ŵ<0nE9-#p07c4jj/QXuW{9-.-YC:C Ki\Ru[^9nB0pS(Ely.C(cn77dAw&-b{dpW=Sڡ+;Y.o.Ϲ5v8|j$ǹ'>槠 ؼv[p'1.§1Ff T>>` ~T(y&f=@uOW<ˏh<}7VQa.K+qtwŸM_(((((((((((((((((( lB-*Cֳnmmhbi`徱|ʽ6]%TuYA?=b=rueyc v1o ٳFıִ̪}FL ,mnA1Nh1KKIgnLN{jߗOG` .)BqHn,;w 23xTE Y1Naml b6MNb%'cr(*9&y8׫9Z(ϻa =hVO\*Xa#q{}y>϶]qa Sv4bv_;G G ('}.co4vL &B* Xƨ.~ $k8WLz(G!.TFB2 #΄Gzh +$0@Rjߢ ( (J_XXic$YUP=hNoӯ&Zw*'1FʫꜞSY77y( aI ߀fg4:dQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE#IchEtaV}+ռ8K&}"?9qEtPIi߸e+8CIo#o3X#z{CЊfY갘~> rwZfPa@4ƾ|˝JOo 20\m9ZVsۺkፚE@Jlz=N|`e]ĥ$JN7)pZ ,w!Ae\8 b/O%Ճ\Li]D`Ao{{+=E)GHG9U 緽h{r:G$ yc5mLytX2?t84+%|= @iijF;$?'=t?gۼT1 TQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@z߅tZQr_)wnvHY7m뱛#`궑c$d`*(7CmQ-G 88?YBki|ub71,!r35 ZvoIy_ߡӿ/%K N <H;~A?+Wy,I^GoXp*2#kژ[SHl'P$#O;3@~A?+W!o^m4ηk.a!2DU1} @P/BdJ~o8$Af;os Uuڡ] pA \z73_Y]/ ϒ лw'm/EF.tՊo*fC)#'#1ڀ4?+Qv?_*l19K[; iP*Y|#j}ՊIwy]Zf m63pF9Pl.nF"i 3N>Yy&5vLmYEZG[@aa;Bjcb33O8x+kƟYvb2OI ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( toimAH,à3.*(i'";#E<$GBw;guP?/*O7G/*O7[P?/*O7G/*O7[P,DKcnYZB.ifZ<B -&> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (9^٠꭬^YY Ky=,)!y-OCx]F( u !FQKm `:h"zh6dI1̒1 8G˞kwzZo}h&arȍЌEo\Lj[bF!M(o#0p=Mgk^?}?T+hEdғ`>\4\fJ+n=>h4VRɿyT/-DQt}.r9qOKnXD3h)md QM_~ ZO/Hm?xq&;+ǒ-!PlvQ,R *8=T'9"yQ^0vW uƊ((((((((((((((((((((((("yneܧ{uhS$4̦9K (V4 i,wڄ,MPK>R%n g5Ea49]JCQJD-swws6;pVj^5 s{o+y$znE:vw}i|VlIvp#V7Zf$|0BA|G–lYUEl~91[P;m7P gDlmG.6I!3[PҞvilʒ\zަ<7m^Gswsqx&{ۜ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((jڀmK"D3$95SWS~!b_?u?".6(]OWS~!b_j_QNo%La9 z E_(((((((((((((((((((((((((OXd5mmF=br6`cd#ߗ'8]wO{2o/Cp#{2ۍi0cݍۺc_Sҭt2Ȥ^[ov!dRX 1=L߱9(C !c9rFn%FI&H\>_>^=S_k{?ʿmK ,໕XzռkkPIU q~}[IuD&}?w8kciW%" GXwۥbFoX\jRʶ:cL 7oxnTkr0zj Y{Q0CT >vɣΰG #`PMEs {pY r[|gszڍ7K0E9~>lE\C99mRD_l+|eojZe֐%v*]'RvgoLϡ./mkhgKi ͎WSY. qo1/lz{dv:(((((((((((((((((((f dV^uȧ?ofݤ- gyGw,$oI[qVEHxP*6pD+z{z Ssquv_N ESg0\VbD`RDv6^ m@5ĩuY ܦARc#N8 ]^i1M HAPrqj2(($hUT`(Evr4X!ѭ5dO5c@Llώ_0!(kO+WH2!<Ҁ8c{Q8XA*Nj,g&#p;1'=i闶727I)n6bȥp" ]ey5wb<2 zoMsͦRF x4ҵnMf@+e|Ik<ขS:}J|#A.8lH(ª޸}rI%W HIcY#etae9S6K)i %8W=ʟoVWZ"C!!#X(4E8!uFCMnK˙<E[EMF E.T}꼟>E"e FAh((((((((((((((((*#;UQIYX٘A7OaaFVWMǣ=~+W-2Y(ITE,3O@]c ZӮ8%{asw->ݒj1$|3֎"ZizMy P2B}ptWk9ghk>'WldAv'Z C$,ӁJ a w |NU#EOp$uG'ӡvp u4yhqGGN^SRQ3ėI ^OD |PA̎ᲂ6-6} t4-?NQ.偶Lwn@'>$ok iftlg[)dRo%yRG ÷#b"+i<ڗ]E½r8DFe(̠=> ( ( DfI홡TN' : ڦKG"GYH dRH^9f2e,sVd: Dm<63F2q K!/kn{H?aǮ;jRҀCAReϺ:s`^?=:}j2Iv>Fw}\JKuz Z(((((((((((((((t,^mۅD]¯H ׷бTkSz(> Vh"j_M6d`I{VKM*SЏJ}ż7P4$и$OlVV+(" X=vgڧ+Yo%0y/FqZ(6Eƙ'j IԍDR_#)G}*s>vرӣ]ccf(MI8DIxQ| ? Nm mo ܢ4 >P}p< { .N?aU{ ?[skh(_G`;^XIIol#*7o}: mٸFd]A1zuU R[_FE!?ú.xx/hl,Ԋ;%~^AҷAi|1#ڽOB%*.K1+d ;Jj:$+O9lzк] FyH]F?c ,;\]S9/9lڽ2[_`r?E%<(7TGSCcUkXu" 1w@a[8nڡ t$oK?ﯺWHx;$ր+Vu10K̅# },J6JÂjqnsb:H?*6tW<)폺Jآ,»#\, @ n^Y!ǜpn؅\$T:CO{mbgU Gex^Rҭ-` q׌6O>ux ޣ;"bage<;VQ-b[@MlC[`)~p}McvURuSP 9'Asq..IayVxOکH {UMJԝgI(2DeS qϭ7XIZ#m4?H' ހ#/$+q*ݘİMmB7Bv t=Z5֪W%fs?FKxckeoWe gn8ɮth%` }sh PIA|S@['Yl9$6Zΐ}#s `6f랠'YK6A=֧Z#Eزe `nƯWR\zN;r` Twoc Veia#?iJ7 P 9%رkr΍(L$"e~a!2|Lvr8FV,KK/I]LVT62q=ހ6袊(((((BzTF^kY%Ǔ*{DsVSV~6[ik@"Ȏ~<(^wk.ɜ@g1!u ႜc&yG q`A8 t0(kh#FP=Rth/ɖA2ׂ;P)oZ]O,A@+ 1zZѱxՊ2le}89o5/ ]e|"Y}бz;{d&At9 0 AXh[\=pt9xopEnO4v4αwcI5 fA(?_kfWZs&d0V.|G={Qn@I9 h ?,%m;`7-˴WIĉ!UM7$/Ǖ%ݮ$}ps1+F$Pj!XȠ OK4? Ah ɵ=F&}AHc9'>mώimsep4<6S((\2 fA(?_;K/m&At9VE彘"gegUi#ьe Jci*]LQ8F`nbھ!%ÕV`K31IW6!,fKȐr͎ ڦ.$v\ EBW>PIP=;` Wy'?;W"_7z]bic&gXAf8Vvn5ne0h兩Я"I; iEE@myWR99Eޟ{ ע2?oa?G#z '^oO]OeXͰ[%’ sdB(((((((((((*M.ɜWsV-EEcѸT,?\K[uŲ\$0a7QqZuټ d%&O8>DZj9y=57\JCHPA+˝J q0bFFIPA$uLW[EbxV -nՖo$;%•E ;Wu9]m <}2"T+mܽ !$QS@ koA ST,川G98Io~h;XW$KTT{ITɂ"Cs\ճ%c dGS$3!rd>|[W r2;At 2ucYM$Dl,8b{rCΗGvI}&5eдGGB$8tzTZvp\(?(uBXjFD/&6-z鑬 3DG~$P&y8גpX׺˲CZ\m0*zzL-YcǗ`' z.I=y՝:昬fqG#'@wig3 P'L^,.o[頻XYc3"A9nKM*+UCV#'O |/el#k]Z\$Y{ \_Ny7_܈n%R.<,H- f?*h?€3ՏjW6f,RGWʞzZּ-,5 vB`q~b!4$TE = (*Vj<G azk`5?x9j[+fݦ~g} 62Je;S7Aִh(jH"݊]6anc8bPơUG`:U32yu&.0~ ZTQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE~csnFIQ_}hXdrVP?m?S>{ }jUhO+)]Z_=xUef.{>۵2č3gh9g.ځh +v5o[hxm{ѥY1[>|!FcO+E7:3Go{ 1f&Í|&ݺB$HX"V ZUis/5+u8<¤W' 9>޵ma# dlwSbym2O>NkP@|3>GS۠Hu[d$jdACQZ[ݯ-co6 `>XnbksC%6A*p˟=_a[A < QX1pN%u&5AF۲nʹl5 ˪Z8$)2Gp[ћ{uoZ|HP'vN9WB h(((Z%ȕZ-C\Έ"DRyx'cg뵰9Ҁ:u݂NOjodzz/Zr3\"ujc,rW mrլ-^1I<]!@xt6-ᴅa1k}Z(fi>"CgyR!㐣ݽbTd Nee=^[cIIc=QQz9RP7 ur]uM?Qg"tGCOLGQ_%.QtY@nUS@QXݖilu7[[+%h˃Z%:K>>n3g98R}*dxPdg$@R:x5m!)YB3bGL h+ Y𥆩0})ulv}7&hCgmj5+D$$c#" ;ku9`Sm_iiߌ@ l!{eWN:!ښ T_\ֵݔ3-DI2ۖ`8=sF3U$֭YZ{hx`܋ rZ7F`n3h_5ռrZ\ZFu|5_ZӴ3p3ڼr݊&a?Q; Ӓ]wT PmnoP8랃=7.M[Hx\c{nCVv\]I 2]'x=F=?rj6pP&I'%rOR}O@[My̶,Nb]с)Nb&1||3PE%2M+5,{ր(Ŧݔyxn\w Ve=Q?ܚ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Mg#O[19T ~P(nVkD{fIWFG#jˬ ${h:5_QvW+2؎v?Iq<'t[<.TcEcxOmnɑaBe_8b?$dt 鑳WOEs":%jѨ]&Ac_ОHRxmu9ᴖd¦ @q[PEPE^]k M4RLd *#\wimuV#3_zNbD&(69UySߐq^;`R %0b $>\z{PYLpL5bL ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ($i,m0 sIdϺb$G=n=֞i#ԙm58,cq;z8^m4SFv}oOqzL=V! 7ۡNL;"X3 (3F#xngy/'hBP YJiFG=slu舅\鞢M6\4eA021P)8bHyFwdpEY2xsOq1ZJ"X}:3}MkPEPEPEPEPYږ=սݕ["$c#s޴jZI9RxT] ܒbg<pPBDd_ rxsVV #ɒgvUR*g*Z(((((((((((((((((((((( =oº~(/Ӕ;$_Kuxu[Hr @20q]6ͨHb!5OK:1]wTd7TϤ< goZ~%UKv?$xo?\Uc⫈Hm$Ɂ#eLfHjmLvW\$6Kkrѓ (pH'?\Uc⫐/H[u"*A…v q¡l]2pyv?7?3@~A:Pu܆8G HϮ=Ec[}J}m ch]\Ҷţ@:juis7 o3!@c?;^~zZYKcq%蝅P,dp ǵ>$BӮ-|3unt8#vk[v7#[4M'{ڬżmѦeP6"խ|#VkuU1'u> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( * -m&C7C"@^IhFJ?8Qh6 ܒf $}288t QYԍ3 $rڤ`8EkEQEQEQEQTYeɞemdROF,Xsv.V?Uh ǵ!ɷV* 8ăxoVKw/8M|sU[ g]Jd\c @W&چH\[΍ [l`rA֦uw5;o"$!8 ( ( ( (m^1M.R'P˜cwbp RyC$Κi;(`\FnMO>18KqRf*u =@\0L}C%_- Cxx$Bhb;hHR<-s>2,Ee`d :/c+Oeo+tzȴ[՚_ "ycTXʎ=O ~hB fQ4}ߨТ{AYMa?&4*+%$.Nyf ?R*,.$^9~ ji{%P2.5b[{pP4Q1;$'p2h[KpO+f,kMPhm~D?gt=Andϙ"*1<=Ѡ xnc$t$nwSL7ЋHn*cC B_ #3<<9?LvCmuBc({AYMhQYa?&Vo@Vo+77G{6p/ ܎'#6rOjضi nc9;rPVuΠțRr?sZ4QEQEQEV~!-SZЬ?BZuO\ͽ+K@&q9̀ct]5q˼\,eu!s~9OpA=̂COX` n: UoNRە…ARе-^F}R/ F1 TpT óSkug[Rօg[R,&zZ7Р]ۛj."7n1o\Sn,-o \3@(d6<1)eǰTs!7gU} .9c\&qѬ!@QQ\\CkKq,pĽ^F 4-dEx:0ʲ=E4O *bϧƀ$o=an G4M`U5jڧ.&ep5TSAO8?* H3G c@MHV(h$Ω"F\)Sp}?KZ)SpGAy\S4ZE><m_-?"!?oѭZǬqZ;*#;UQIEEmsB[i&e?,6۽’ K*s@hmx6qҦ U}-9}\!rQ#E/?JТKxKyR6phj):EI#*"pI5זWq ~q{ gOY~` χC5~5Y~5@ ]ۭ5BV"yu,ph2G4*8(5ax|3/[>,ͫhbHϗ $eul@\wh(?"O hD֍s meRp~nwEPEPEPYO-kB j?ZfFBuvB"?2~#iW;㛍iǢ\\}XSDf`iaAqyob<MjotI]PQrNs\T73N}Mwl0 }P]>fXvU󮢖Hlʱ[R\`ĉ1Q޷HmSQ*AGR8Ko׬5Y~g Fnеݵ)4(X#-!{1UYw k*Hw. pNT Jꨠ?զifr\rw\Wyz P},:5V(pFЅhW5Ll6P6]1Vl9Etzd4xn'3 =vKaV& -BI^k0>ϨjLg,2;Ǭ?oVT5jڧ.&ep5TSAO8?*TҧxC(g!QxoWҮgCcz,Bv8 tihmt3^$v/0n=.z\zZ4yamW*~8'Oø( i )}y\S4ZECǬqZgEr1,4Е hlfh7}֭ [OwM"t#d5cp,<+Oql!T#l),vyۧJ(h[iț@ o?)f*( U}-9}\!rQ#E/?J{%Pn[r>F rZ[{jVkr;$9==+lVTY39??VC5hV|?X?9A ϽA /_ZOY5[yaS XahP=8aZ>1S(q2C ̻ޡ ppA#WCK@?2ڎL(E"0#=UFNXp+BYA #8=P#]_CX0\8Pqkb9",@+4ھ4<<{r?rҶ-hb9&ܟPVUqs0v.++p8+Z(((+M[CiH+UpNO'+_:]E\YRbQBA5kDԜ_&~fI<+N$c' E'Z[b1S$m=I=NAk|P12OR/$ŤEBYsG}:G-Hbf$%k~Z8ƒE3Wvr1?.fwqH|Epgc䢐Y9ocʨ_,-6SǨL߅ +?zZ>ǨL߅ 7?soLi\SAZ[ bxT8u*q-¤z P==fաYP1+`#?Ric?&=Cg-c?&=Cg-c?&#E/?JO6P4m+L#H 9*KkƀȊZK` +?zZ>ǨL߅ +?zZ>ǨL߅ χC5c?&dkZyeD Rt| iY?ЪwOu$pKP0AA3~4(?hA3~4(?hA3~)x8٤PgܡR5o#V#?f['[r̊AКҷ![~g,2I h6MhvpĒA=q^((*7!9T$';rOa(oFq?}^+ 8-Q̯ do0Ei\CkE1f8>#?.ԴrThv*a\ӱ)bD}lL3@#|}Ks[o[kzyoqWAJ[p17Ny'u mt 'Y܂~GNǮ;H#CX83G}hƈW\PK,y0zrk=\|fNWa]|TjeƨoUq}@Ϙ!I |18pH SYo RFRo-)q1w[տQjeƪ:J߻Y>f ^7sG~KJ7&پٻc7+kX#W /JRxbYdy5W},@*C?o_ByڷYc<[|1hQ@v>V_j;V+/ 5ZPϕ?-<130s_ZԬo=anaom,n|zfsKH,lu ?eVuO]M><kϕ?տVjeƨoUEfsllE,qx]\[E0DǜͿ3KeqOPXo 5LI+ Lv\Fq֤oTh7}֭ oTyڷYcТ3[|1v>V_j( mܗp;"HS򨦽7ZZ 4vin }ѣ#E/?J<[|1v>V_j( ;V+/ 5Gϕ? (?տS.%((@bb㺮>W>׬h#Yه%1Pv>V_j iY?Р ;V+/ 5Gϕ? (?տQjeƫBK-ỵEᜂh~!-/jР((( C3Lm`ă@Ɩ5`'h]5zⷛ:Ȏ)%IT dۥm sII "(XR4ŅEJո(n S% i#y(4=*{kh o" n{W_ qkZj[B yWk匓_yGs #F@r{f;Pu?U";}Aq&֫-]0(}н=Y\x~J Fvt~ ,,. pDvpr׌ͤ̏"\D+tO ^KiMQ\JVA6x>V#muS~g /;9^k}TTݷ%uj Oi.fhi~s>xr_]Ύsč}v^T3+ c+e1Nbc1O)$queFGt^)FIk l!;nzp_޷9Iau7WC_%es$m#ʫvhv6rHI4d9qC 6WWRgMs!7gU} WD6CFc5V*B+ԮF}]Ah,-f"7*8'##8>:J+kjok#onmFpaSM0h[ڙBB[-끞~ݿZj6Fb{y"ܟ+E#h?tǽ\ѫ@j /}y\S5O]M><kz+\;SKPK(=燣TPv6GGt ;̱VԌjSM];JV1,S]>Xa`0? +i )}y\S4ZECǬqZ+?DYF\I^q"cr3PV'TCeق\i,q= U}-9}\!rQ#E/?JТܵbMrr@-5ɪ/3aRfp}y;:+[H5M.+e.h>8MZ9 ŵK &nB:6OޠH?y^sUiHt uw~`BoO+>BoO(V$h 'w̨LC`ef${ڵ5ִKY<Q) ^Eyh}KSw4zjiԃ&'$dD 9pKP]_EhV~!-/jР(((_C{)HdۜgQ;ZTPWDbw!#Wo\xPB )T񻎿һk~̒<muzoڄ\=*/q# BNNޟݠ _}Msqۑ׿R[q/{!|wW:<:֯n"Woa@U8'U|E[ڈf~@~K <[C}e=*h$h+8Ug=875[6[d) r$`r36wfxy!l|돩jhAE 01aN+ޑ Cj]Ŕs׬աY~`BoO+>BoO(XY5 t 1owZl]ŸHo I$$EVOXe yNтS{U( CBZ_uաY-B ( ( ( kw#Ac^8>z9%3_Cc5,3\jI[9]);B8kjڬ1\IWY$d @iSqI W6IJN#:TcO/,`<#8$m:dKY?(,}xM__ZZɶ{DG$71m@{=ZdK>(. rvހ#c׬4{[Ԃ% rTY_#hOSs+"(&IUV(˜._ x˒8FBq29_Y5,׊kvS}/i>1|9k6jDb‹wb@GLַuh'?*4]#8?ʋ}NV˸FR%1-VPo $Cm"_,}T}"dKY?)h?mg,k'_3> @5OY*ԯ1Iio,.K ҦOg O úg`2z@"3O HA=2F*PG%)"V,1<")f>UbtW[[2ٟ@F@o ?Eh?mgY?(Og >Ѫ>G5OY(Og ?}/€#U #ݞʽg q:d UF"U,ַMqUYI#9GP}A TԬio*4HnJ ֦F@o ?E'c@Y-،Ǩ4> @5OY(F@o ?E> Gϥ?PS>Ѫ>Gϥ?Q}& ී*$l; CR8 Q\jpr]IJ*a,d}T}"jQ}k'_3h?mg,k'_3> @5OY(7WQE(UIK?}/¥"X&HYX6@<(nZ80nI$)\d>Ѫ>S^EdbYWyIF\ ϥ?PS>Ѫ>Gϥ?Q}}T}"jQ}k'_3GI=3'*T mTa!8 W< 8PEPEPEPEP\'Úޡo*&T$e(yu??t~?@xE`ӧeQ]𸌐:^wWQY]5nT,3dQJ=>|2@\' gxr0rq}sY.>9oƀ=GC!xA@wy8sqĆ?kG ^}Ep@H+=~]ŐIMO\Iy a1G'=sס/SSH# j7i8#Y{Py O^;PAYoQ/HfBDy'tt1ZB9Fd0/qx'dz(홿JAsPP``%p28X6֪kE>ۀG < JIJ!cJynO(BM>XLи֥z | ۜtm 6_Ga5J ]ʣ8[аux֯Wb'ZV`egXG\?-^뫪%ͦq >ukZ?$.⩸hZgU} Т(!.Ho:3j2IpژM57xonY\FG4Q8 玼wMYz_v5kBj2mSAO8?*f ˿ ǜOEPEP?soLi\SAi )DYFhV~jР(( U}-9}\!rQ#E/?JТ((?y^sVg!C iY?Ь iY?Р(( mryԴ9diHPc)UlӴ@rwX.?2G$Lб\:$~F+b9",4P iҪHͲV.360px uJ%G ך ( ( ( ?Z^|R K)ؐ 8WWx`ɨZڮHb:vhm;)kE !i"#Mp3Aqy Uvbq{V-H:ٽMŀu!#Vd,8M~k+UܱĨ z/ZYKw#"~nvY}9Xعwp#pTscAPOw4{GtKZ׵&+mq/81x;԰dqӡۚτhEXMkrɼ n}銽NWMZnOA+ncKdutB2NrNI@9KO'=9㎴jڢy-dX6'uTmŹH I늽 V NH[yX y[cw0DcVv,2EDXwnx%RCII'-C_ty6,Ep$36~xAsZ)l4;ᴟʹČ-`<m_-?"!?oѭVg8)%8@ϰ=jj#+w.[^(HcA dt;MUK,s]BR>@W#zp8 m_SMRq:R||{dG@҈; 86jYUVt ɓzwCwp=¤q>ޛϱRǡAbYm_-elN I8 ZχC5hV|?X?9AʊY*$To-dj=A ;BMOPI" 3Yr F9$ґ|-gFAUWTϸU+" 5dmIVA#91]K!d$;U"4 )wRG'~*3HBɸ񍻁1޷?uqyIl) m2r0^3sᘮZo N7JTaCv1ڵl䶃˖k|ɂ| OQhU>M`~#liکf'=lFIq<,c$bo> )"0h6YyDʀgM^kE\yG77zsנ(((_xr74^#vS-91WuY t,+:%tdhꠎjþ%iQ]/-qpsAcU6=̑I,w;a8g[Ic2W2 r=w]iчB A/Z2 v2tt_ O&x,$ynv9SH$c5?K)Т /GhBzGj=>_ח $4p /-dkB5G0^NbFpTM!^8PM?b}R4EglAm>c?Ɲ; $ '"<wc^+ޑJ^MBؖ@(>aC֫iX_TeqxbD1d}3N:@c?ƩCFI@`N|Ăq7)>^'"ݎ19x?#q V?oWhұT"Ko:R#$}i~ۥb)qZc?ƬY uC*[y-!ʸє"i )tI.F^ MұU4{h$ٍ%A?Z}}3J-V?oWicxG/P?c?Ɵ;o}}I2e95ݽxb2z*ArT]̀4ء]r̍C9-iX_J-?v(| g[?m>ϼ_iX_a]?*o/U;H^ƨ 1sPCM*F`J-Wd4uVRdGݫcx@ ұG[/Q;o+4iX_}cx@7Ӿn! -OL1ĈLʨͫR ( ( ( ("a 1)Xn?%rKXh#V?-[\YfiO]=q爏لfNa ~iwgl{Ȧeso%v$Nǭl:e մmv2;{ȬGZ }nn-\/=2:};kBHҼ16I;L)g\;~?l-7C[dA`ggϦ3@|{YxMmH}FYG' @H1KN&ʍ Pxu'n`seYUxC!P0,^_ u&4ۻ؋{kFOkؾ hw";y?g^pօg!?C(xQSӬ.?rԝ=z$]jv~m"IJm'8Z{؛-vʱG/B '$r3s7xMav2B.s{g(9  ''dwQpZ0?׭?Ws{Qqz֩ ˿ 閗vpYG; 篣2kѭG޸2.*TٺMRw#,ێ8;lycXyf3 *A21'!>ߟ7M8!uB +c8}Am Y,źȅ˖)FT2)8|Lq "Vip'XJx>cp~lg;5 ևi4\"r#qz`ZtTFRi} 7V䎙ŽqVZE><m_-?"!?oѭZǬqZN{F]قI-T4A>sld@l ơDiK%8](} mYfwwY\X$?g3ǘ~Q9cVgꮿom!U}-9}\!rPV6e{C 1#٢oփX΂wpt"$l* Qiޯ50VCrDx3^Y~` χC5~5Y~5@>bEk8n[0>aq˨'=UR{4S!?^_qᆢc "Wϰ涨?P]_EhV~!-/jР((([FF0J;uUsE4Lr*:( oQop ^ʂ\>1$$$`z\N$TqF%י4GeMcŤ)dIV #+~:PO3)-9J˱zOnēz#[?$t |0ᣚq`0:yࢰY3rc>oA"US ~'Y_(DVhx񻑞{c7zW-ADYK{9JyXug> 5;`#U*"wt֖F>;[%ilS׿iT. L^E6YОx6֞Ңx̉? ~o~~U,6uO]Mr.CmOŶ)?w\_A5ym}}o<J̲U;mKG?YJӿ)*htRQ2JujyhF˒A Zw%:=5H̊88Qd?CVC.-YbeYNA okRioqqm$BK׻al`m΁\3>" q {s6T/A?O9*f O:tO?kRVR_,2I>Į֓DYFhPNi 7s%7Ʋ1XU nn56c%u9FUT5POBld(I4K1v´(3oW_7hpFЍ9(C\6$+&nڑ#fc_~Qk9gH>Cb#DWK HJEܺ YGmr'++dd9(?y^sVg!C iY?Ь iY?Р~}n Co 1v%%9[`. 1uw;sO H֭߯5i:UNg4RHO!NHOϥnQEg趭 ?%WmZQEQEQEUGԬiI)Ǡ'<=R}.2/.qҀ-I"DuEWI5OiqLCN߁w5F]}dTٶ9'v=O 6I\:f>q\19Tgq"Y.f.rЌ}c>vK 4˦_B$FfD=hu`!rX gx23пٶ?o~(ͱ;@ '4伸]JXĸySvbGPIsA gvK40Ena#RrB(?yf:/L6xk]X$QHV%8?xn(78/KW3Jǒi %E3\㞣pyZVne))Wnp1^c>vK9k_JڼqOYtZtNE`s,EW'ٶ?o~(ͱ;@e)u/.D|A6v8:K[YŒz61h`6#J|RTWCXd +-f@$$ / wń:||X-gl/Qc>vۻvœx`F^C,`@ y\A5 M)hlpa9 z^/tY>#֨O!Qc&M_o3NHo>hGS==-ߊty-UK̵Ãzq5h??cA&_F;߱]wP7C1OqU492ņݷB@>zpކ1NRJ}E)UrQF9?[whv€o}~"36|ٶ?o~(lG-/S?l/Qc>v€ 47,n 4Ȧ-ȓ0Cyb!@"S&MR0}~"lLͱ;Gmߥ -/QoKfϝ_~"T9ukʜc6|K 6! zP3P-A=SNgeUNX}ڷoBHPF6|?(eE}gmߥ ?l/Pm?b[_ئfϝ_6|U)u=0G*9v?ͫR 11SEPEPEPEPY j/u+:k"tTXֽs1K vs#[?N޾u4Z׊Yn_Ǔ#tV\n&-&8c z//ip{nY.l!R |ͧqؠ ~+jWy&u=,F6x($&rv{ׯ%@79\}VygHDS4y!;H?I&zZ3/G<eBǃ{lUdxN%o6hȯ1e O8֗|Ce7i#Dw31:y#qеOjQd/5 2 d^{yCQ$ 28##]?oZ>}q]}f1ǷUDȣ}A' ]Err>UiV8 3oj+:w+F(b#. wc^` =ZI)[hnpyq֮_B𿐛vxt'>V(((?BZuOYv_joq,q'g^-]VvSuu2ܶQ!ǭyu/-lXOh6xD@|qCm4n!Y( ;pi<@Sn{#C? hV|Y8kB fMF^89˜p'֝ZxoK 0+r{ 8Fu+whF&D#ho&MҔU_nZ߇oQIhCuţldNX}k8"HE(*" )1f},:)R I;՚) %I<zs\pU|[j׺;Z*<$jΡ,qQJ|;%vU*łg=yWA0O9l_j>kquw\)% ?6Nq#M-M=?-ٝb&<x}8uw(ZAщڨު+Q;01rm5|;&mVvW7QŊή:r9"oJV)m-5VpF\LdLpktiSY9x y g:?5]Rդnb3"եBߛMss8.&?+W;#k?w\_A5ZT,a eAvʀ=y$QK1Zu Frz >2 Lq?8N %e'z B+[CQJ?7˲~"S_kZ|%&ee3z}N㰵[żC;|}]MerQ園[$^2+ЫS 9*f OǜͿ3KeqOP:'z_w5B5Q#Q+eo_ԓ U.O0iVd2G$.;;vdE4u]N-2,46 oA̓aԦU]EKHBC$sZz%M\{72`[D*SܓI/?!󎵄uw] Uor.N޺w:@sM;Fcl"O6WT| Jr2:U?y^sU3yʫ./@q*?X?9A ϽA &c= Bp-G@NMIȏu!M  3`dOۨg3^fss&1ab@B0Nxzլ5#otqn-ݝ\`8>[ ƀ.ͮ鰴*iEea1 aANh6{%IsEbK7߂[t5D#E-ހ1!(%.U0?~ƶ hv$QBoAί.ysʟ/Žvݴs9cM*BҴK,fUꁆTordD y =:(((+ xMU.MpG8?WB?i?xk6pe]sY ;|F4xEfw̪?#_6˴``FK{c6(CoAH=z~"@7>$>Wl$ *9Q8@O]MxKoukpkk4IHO<`=N}Teq:S.LQ3Ivݑ8K] DFjE+~={c)[*Qtx1eWkMѺU ~5%ebg'99>ES$<m_-?"{s6T/A?@k2yF~MCѿ>ukߋQv9o1IzUm6{g^#gkFϘHmOJPvvc" >g_ro}{I|BP'}kvdaQ%iӥpiW:}ZupAW_6~oZIGKo_OBC%pZ4(QE?jЬ?y^sP{!m7'Z{!m7'ZQEQELY"&y~h~kbA JGHA?nI 7"M! waҵ-X z/1PWg; d#;*rxr+#+FһAvB`u?^Z-ٳ:wWi*$0Y1)/9=TV{ȣ`h r9OB  Η1 i|^$eqT1}5-me!$RGO[!ɏ~%Ə_h>A o?]pn4~M!40H1ld?wGL}/5mbZYH $m0:7gMME[XZ!/%Pru d0\Ǚq,388 ~okv|dFqX7ucmZ߄O&]ۆCu=:bi?2,Maw'΀0Gß G:}Q³ Mk-t}T.0[ᧆl_IZo+ ϔ]O[!>A o?]b[|:<$do9:Mmc]I^ʜJ`]B\uooA o?]g?!mAK1BԼJt䉣S[F@?ַoAqc;-K{ܥ,U?z}'FF*}~u~(8*@+GEw =.1} FF@r@< Sqii#V t WwRʓ[6{1&D+FrïzjDy#T6 FNS}T.Q.|.nqDА(XgJ߶MO]jz>wY>}nP1oSp4vq溛mF@8`}g:#hŬ<>3O?>dy ܹfCn1A:x?\yvt'=>ީu m̡X .ʻVmXgfG†b4ۍ2Z̸FPb3}AK[L[4s;4(AGe}N{{i8bxKXCCc &?>ϪBGO[!ɏ~%Ə_h>A o?]g?!m&?OYeGUYO:-tXv5 [bGR+$E>pApP׶^F"J4R##CK+siok$q;_}T._hɏ~%ƏC}S?c &?>ϪBGO[!Pq[^,gfpO^2+&ve!`(FsVQEQEQE>x\qbu"!?+'8*:ߢ!f~9C_xR5;M2H]Z|یj3z~ ,˟"%D"0F"N)i6쎺_w.8_1X ܨ^%ٛ]eKԩ8'nm$PA ^^pIq׿95$SCy"$:G~h4OjzrNRk 7Fs2AjKDT|@4K\RH;:3st :]. <˵xX=+پ t O= (Òiwѱa1~5w,yqu%eyݻ!@ݍA9'#ׅm.l|Lĥv1M2k~2 ȊFeϲ2B__iswWYǙ).KzFqz֧`zպ0 s2`j9@zC `$@GbYFp8Qg]-յA-w9kY/=\gjcKO]o#q{/"16_(^w*o}}?Ct]7O$Z/w*)U+q: 5 )[N(Qc8J(Pi\SA37.ﴩngi>Y3rs X"x6"/(C(lOW=ŖxW|ԏΰijI XE=nR2+61[5]= *9"ԭXĩp+A# :TT^z}pIMq)_ma#0-&Mrr; 7\Ů{]j:/ s12v\5(f@C|?PaZGv nj;o_J&7]qo_TX.n- vB$'WjsηscGk[H v#)1= 4Ecy-rbD\,qq<5Z$“U;g98fKo:@=dnv>;xQK-YmF.ITr@$ǦKuMEY|?X?9BzHA ϽA (nn=@ #sR;!w`%րEV[67Kwf J)c5'Y#ae9{KKڴ+?P]_EhPEPEPEPYwi~a[l _*BYImmIǷ$VE~ɸ/^G^]ZX+VD"6[i :}zm$q٤μoƖ~2S}N;YDN y`ayR@ 伌6bO}H- HԤv#$35Q~6:dFwct{Ze^ZKX3 8Wv6pipZ#;Ut dV9f?zF{/ʙ2)?soLi\SA 19*ak?uxmQu0m-֏4c;J2;x$V=Z խksY'Jũe 59%VRxyjާao(a*rxVd4#9,I>u-:i)Ɯ*i׷L*|FH=e2qm0P;Q]g"YbWo?5?jjJqR]BBoOHX#P“L iY?ФQ^]ZLjaMHBFH1\ E+cir߾I.n]a&j?C]oZZ475&{Ⱦɉ$<w=VAyowK$%vbWzҖ3 i[Vg趭 (((+}F=G 4'ݴqgY3x&XAye$. 8{E_9`+4d|!` 敬Ꚛ^+ܥRF31ϒ?ºt)4i"uVlz]ťĚt֖NUmj[(Cs~&!5Mi !B>n\יxZu%ӲHYF>^yyտn|AlSG\ZȤDa6^9 nW|m[5{ ,i ]!19qM½>(vwr8nKxqcϚ#k/5&kRdoӄbI#9Ӧ[u+ky$eDKI5:-]c*CE%I 8=8?<m~.s'ׯu-ۉ<,{FAB<5ɆVvG~vݣ4Yc$HpԒu[l $Т[l N?_vg}գտsX>R^ژTYX`ɐ㧥Z?w\_A5^4wI݆Nz_L.-D)LWHB-yg~1ލ.ZВs|A73<'? ewM; 4;}I'7  $Oi&ffbAĀ׷'V/;@Vտi )5,OԮ~^[E;h>|apmY2ɀFzyc8A%c<rO^}fRsgpN_eͫH=q{L-yݒieV6Ҷg<bGҀ<~ 1_mmf`.`spocjd[Y2Ǔx$ұ=:(޿w8Gz5Nk%Wx$ypx3 s}Geߟ-`_*Ԫso< l律#ʈ&9o~[F Oֳ9b)^= ?γGkG<~%AK@RF Rݻ?ݾ !x|f=.̩%u/Hmq*Klv $<D[7WGee9 K qhY|G@[_t̞KQ{*h8Q<a6=| sY jڃ%ҁM@?wOsa@mwCo-Wh~Ec#;}GT10c{Oj ?hf@֯#+d` E:3٨0횇ZЬ?]}ºkbaeԒH~/}vHKy# 1 TVGǐnjp][Z\\f|1]e;c$+׈a4SFv {ؙ`r@&epA}Pa^#ax[ V%x1PlWZaml٨0횇ZФ$pg :nM>k}qdS Sr22~՛;gc=RJ"[Nj,ڋ0˿ٌʃhmfjXf4Ck%ƛbGm҅ =ǽl /o7ĺ򳴑Qʜd =횇Z>٨0 (?횇Z>٨0 7-<7~QH݀ <66dP٨0횇Z̵5-ȾpGuMsܞ>_z|:+h\"2IW j ?hf@֩[jsCqu)3ζọR<}+Xh::m| P#wG+=[Gh%ruVRy$yr:~%>Qo89 9jʲj7(sztaT,-4d$Nwn"OJg/;'?Fr׬k~.i*r71޼⫕ xrLr\@"T$H2~#X2GhpXO-קnգ?MNOre=V^k#h[RL a@^Vg?R)BOd}'oT) s2Ϩ' ?9c6N ]Jѳ䎹Nz^AK&+Z#w_SPqF16\%jQ%tnx,jbl2Hy@ Iv^ԚyMmI+Pvy^3漇DӭnuӡTܳMГjkZܖom<)m/e+2qyO UtwGtzn ˿ ž?hHQkg׸j /o,:]$$eAE ݧoutJsPūiH#I*̤5 B`L+qx^pH;qk_VM9r:c7ίb=O NLג.aOW=ϡqL|}j=,<\1猞rFyMV,RҜ]KLIk> +O]۠EdsԟSUu}zui,q$EUT` n OǜͿ3KeqOUO[Z}^K>cO,9'ۭch΃Cf7μ_>.1[3ɴ9gU#q72?I^񽟈UڈF `~LNk+{IG dbp^Dz;5d`u5SK %iU"x?z5۪L϶\q\ \O+#fglORM 2=`O/Hp80r3~ txjm"[u6!:YO 8 > $H99#XG{RS\:FAs~iO{m6wqiu `ySn> A5zVu2"Y z߯5ķWYXM-2E%X ʜFZ\FH2ĺ53jV8,Pɯ_oI~ m4/ōlZU3Y> Ts+:g/Z;8|2zkIXkK}bUa@OTrud3^fMu84)2[UA=q֮;[jBoO+>BoO(N-+Ou)>\` qkxcOQ2UGn?j@wTָuYed:[S1xКQ٧='NQp2*s }k#u_OmVrVmfSTu\^`aS$O/2rVżk}cA'MѦy14O3D\ށW|d6ƩpS_%uhy#2ݽ9sZ lq?ݎsc4BH2iHH 8;Fs>9ǶJ!Hl yxY%=+iKYIs4KH9*0v<f? xvö^MH&TL+N:cZ .md,Tv@uZ9f.eHmǶhK&2bpñ皓LӮk謬!3\JHD dx ݷ]jvv,؞22q^C{3,%U9 ϩ(mM?|;6sf]5\!zs϶<^o4 JK JfSE}5\|-t_5>ڋ{uֽBѿtZ8Z[y,:|8&D5+SHsz>3>ѦfxGI˚Ge9zހZ.&IK5?=z ˿ 7fdzmE}w9?ZyLrM7d>qVsQlRg'*΃Q66QPo}g{ÿ Z=vCqߦI;d-敹o Xx^V^:=95QE2H/ʙ2)?soLi\SA^(:TjFXAߓ]opBQ(DE `RSVOs_JѯPEpM᱑$t}/*n_nBn%F~R229UZ߃4شˇK2/ГF{8h  Hxx3xۇrmڬFC%purq[Ѭ|)mnG)G&܍' |Q~٨Ir`η"n,NI@kTyOI5x;&{lalK!}0;ok+is'18y#qӜWizua B+xFAϹ?RyGx_-֕ ymcDTz dr}+ɫ^bkL9w @?h?/YH|cUX[ 2',Z\~_tD5&ffలfMpRy2 #az@]{!m7'Z{!m7'Vno-нP(€S0<[i^GNTD >\zZYssIYڵ~aJ>r; w[jТ01߁iZ}G z0*/sΗSCe$bR*~S=^QErԋOSVJiG_oA藭!MKG{gdiL;ZqKFw1MfvǨYpm㻁ʥxjs:|RJGoU;[V8^ݺj(((+tȢHfuU ?Mo\pA#FE9IEajw&K 9q "^6-:k3{@UhQ@wW$cJRc?ޫQ4V>7GǨ&Oijww O4w#;6umZɎT2?j+[xm(91B3$ZP̟UbAsPT.I?D<B+b;hq?'<?4Co-+ ߞ (5A.wD<zB[MY"p>azg-KgP|B93h<i>`Ml1\ 'vڱ|wϕbQnv-$gts׊( M*74llti㷄zO%I5o׿ VMcuUEr;V}NÒ1e?hMO]Ӷ+zn$ԮkuxbUX!'+F6:Mws rJ##p&e_Z[q2:K 38 ^Q\[sIA*``v8)YlyG_ň0`| zzӤOi@[EL\ܛo^Q5ms̍'A~}gÿgf[mrL<9e?Qm7o}PWTP w;B%.r{SҦcmvUmGG-ؔT`]TP&{?ARQEQEQEQEFh:"=z_ZEOqo0pݔG$t |+V+#C)nk# b[pb0ϵk@ u0R-OO8LHP'3ޯ@Q@Q@Q@ROSJ\$,U#\vZEslyo=ԛH̒ yXR~?6;AE<w.u%L1msp974ՙtU$PJI݁֬@wOhlPI`8#9NУIϜ3a$r\cֵ((((eU0Ǝw ۜ'ۏg|JmyEo|W [8u((((5A*FQԲA\nwQj0f,Lt+^(IΑ41sCdzPvDP &Kǒ6q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@endstream endobj 462 0 obj << /Filter /FlateDecode /Length 2771 >> stream xYK|1u3X{"^qv3A@I%qd<>U|h%;&Qyf?̻, =n5L~&1vLڹVV3(=1V%|~;yI<_fg|E\9Z+f|eX~Bz5ۜ ^x;_rfj2߬f?Š!Ad]oH|nvsr,ɹdÃH䘶s#rEF9+t)oO1Un H@1Ҭ2Ҭ7RyOEFH$(+3Pi?9\!-(VR Wh\JHX-ۗ7oȆsz 'y#$0aJ!ꃤO8'ER L@X/57 <ϳ_/LB95_&z=Vc9Xr뱆f&鶜(:(L,:RCIe1ғ/t\"(0AYY5¥ CZuAbBp]&E!!`܎6nݒFK@/p)tr@x)"0^r/]R)K:RzHd;z6m@/UU!>r@ϵb$T5K_W`5Y%&i}CKjlxTp&6׋Ȫvx6YW'^6[ 1|. Z/oT4YHI갍잴wy.A!RPe+nE>Rm 4ٚXzmbux(P+ƽ_Ø JelxqEYnB1!!52F)^ϊnگ/ 3j(>7ESZȮH&5owʸP'*V !`@_%m$(3àTVX˳q/#y~*VX^zU<bܔS\/^EOB,"*v9Y Sa;I"sXK ycX3 O8/ A-c!?Ի]p2؎,)؛i]2Z5GϩൃV|X@f!4W x)tKIJ|doP""i}aIAs~o)$pqcɢpɳ$ ZE?y!\]ۢ+p#NZG"fi4ug0\^鐺{<9t=:a`tl#f1ޔm.}3HL zݖۤ@PpJ x>my%SwI4ϦxewI7pχ* _WF#@7UyMu[ X("f74ՇtVB%3Tq( @a>*rqʡxWL~@Bi]m4dv&v;yTXO!g*b3x#fQOiL Œk@, rIr}e:K5% х@z˩C# rl ~ti> tN4eϳ18B\iqCVpR;toNv[s'mA%8ن3]h{? 6e$qa_Z?%9DWg<:# bOt}׎wn#UxBuwb?0X;ЙzmVq\}_ӪMC^Ć6PVR g[ iendstream endobj 463 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 331 >> stream xU1K@;%] B+U:HuA)~Pps.!̕$. N..tGnx\ܞ‹Qfasg:HDYNN2c>vJmX̓Y3fs߬7B(=1GgçeŠם kAAD|yZ\v쌢(B#|%PYI}.*s-@CeO;JpJm9 -(vX? G0^eIZQ>7pj;Oӫke,bCxV9/*endstream endobj 464 0 obj << /Filter /FlateDecode /Length 3009 >> stream x}YrF=M_Ӹ8aBvOm#)yo wwS0k .0csMAݷv~_2~\\:0fj]C}KV6btU)㦇,RrEyP)W< he]jSjP[O':g2GiKXCo_tkŮ5}Cc Z-D\j| O9oxb!~I]MP(Ӯƭs-- AdWh7K W׸"[}R> 6D=te} Kd6:Rִ+^pnb!8it^IV|D~nkh+\ (0"e s!Fw'&),m+`Ipr`ظ==Mm00,(9բ么_mWT8`|db`//u`fD.lVq5l)lyߋK UlocT(Č#"_3…^;UBkpFȗ):rP`}Ä̬o>৥!4x74/s+FQ?X`\(V՗%:|r9<NF:S@nsEVY⠯[NLO0}#8`ȈBfST. pw[WI;J;bueiޕ.^U5kDf7Dy)c9&b|`Mvd:RK<;8 Ƙ 9ƭekIk-%ӊr_D2ݾmlC,Ůmw+X(]2pZ:j[`ꚉlvO,mH,1N xm> Y5d!3}%rR ^%qW==cW4Q^50m[ݺyzQ)pzQ"Xn=ث;p&39,3vWxZ_^< R{]%l,*^|7Y^<[o!A m =\SLe|y?BޯI(**59XN>W-9;Cd:J/91F5K ɔ/T0ym<߉ofXT'`F9ä-_C[PʑI,UI_ԩ%eȠ0dJByE^* 'h "ȴZ:/qq G\tC4 ?^9 l_rA _@>O{o3B6 $!$TbU]S3 SҚ8j3 ˸ v3yƩb!%S(PD2 τ!ÆP(Kr?,)hQsw{~KqD8*l/nV7a? kZMU;oE1d2b<.^ ¯}UTʟxra3\#C1a1_y +pmN$S DO! @qK/~TYq jʃ&5Ġj+ur{#xZ+Q6 )KqcCK2¤#fy q㺑pDM c٢C*,!rbfII#4܉ql&5 :] lPtfe7-ȘPL<;z ~0*T¯H\15ޯ3rLHt/e0BHi)]MpM!*%%TMG4f0`? |56 2dgxLgJy̌15C5I2/;&_.4ޏ[-2)*_[ @XU>P';+n/endstream endobj 465 0 obj << /Filter /FlateDecode /Length 665 >> stream xTM0=p˯F[@BBʭ$|qmrc{޼&OQXx{dOH*SӒKeBrC =HЧ.gO0( X%`:8*vٜ#ǩe\ -JKzOVB:ʘ\'+4|Haw쫺MᦫaHgd wa&tp`}.buq%t ~Y"ZWc*EWwxGT9[xJ_{Up㢈Y _-qUeR \Fk _+Iy}MdUصJP2h%[Aii,vڂXʥa#8i Pk cZp^:rIs_RF__1 QoQhЕ0~G?ocl\Sq:D jCR&\' ഺ}{c$]^/M>{MYܶǾP0:/?&xWzX"iG S )05vF8inǦ>Ykͱ2S&&:@xPȺ&!}ʕ1Eq;> Q.}endstream endobj 466 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /DecodeParms << /Colors 3 /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /SMask 404 0 R /Subtype /Image /Width 480 /Length 17574 >> stream xw\i6`Wuuu-kE, MPAlEYbWĆ *eA]y"!s'9?dr%s0G=h6!`QhF!`QhF!`QhF!`QhF!`QhF!`۩]vm߾=7ٳgjjj"+؆300rww_r%7v…[l4,X ::zGҪU7oK 'NLLL***a,4T 茌 RN|خ]sRks ի;uT-.. ӧϻwhȨI&k㞈&RJ _mۖb7oiO8pɓ'-:zhBBBϞ=鶢\k.zj--s;qℎyƍUV|v P}\@Ι3wP.)tBbƍ)[ސ?͛{.))(_|Y~} JJ:uP6k֌zƻwR֭[WCCbBӧO>wҥ?{}QfjjOLLL02d=)-˗/k׮ijjN2t@ ̡C;=6lM)yGaaaӦM/_>a„ ԰0Fʨt.Ϟ=Sfرc޼yǏɉRܹs#G7n׬YCm&'믇 4~|G ?K7-ɓ |rh@[4m (y)XGZ̙36111qKΝ;'%%V [n+5k֞={(Ii U;f̘ W&D$  4СC).8QPPp_u j!6uڵk۶gh>88"zÇ_pƆ҇RgYɡuQ[[{#F(SKwy&{vT^߾}TXЋ-ڴiCm;uO>|ݺuVZb%43ͦO^6 .]}t>}[nhSlQ`o1114199Y=Vӓ;aVP55,M{SJҞ>׹h _ Gy]zÇS WRNM++=/rbbj={vqq={Ŧ_UUU88F~~~III'N4<00ʪgϞӛ[ ۱cimc УGO/_pX 򀦞R˴OFC]$4's) 6ѡԩSҜ:ӓ'Oɕn޼y35e)ؒ޽{?y$""ʕ+ TRF*Ҫ4m۶QlْBK^ဦe߿ \(@wў˗/4iBo YNvvDh@XhY_SO9Xf:8Eڵk+ZjNFk훸>zq[n-ƔWXX)8B5娫WiZ&y@ AhرcǏ})%}7A@?Z@!ALLL"""ڴi.d8}4 (((]B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4 G&̜1cx͛7w#{aPPPHHx$$ ̙Tϲf͚˗+))!A ˗.])kժB@lmm;M|zN<)nnnr_ >lܸxzzҢhb h#h9=z\?:88())EEEVC@Tw'N0aeepp08P޷oLik)++:P+mbbB߳gK.Q.hB |uf͸Cɉ7$Jzz:7FJJ}ݺunZpPTTfy˖- sΥGegg ^*:::/_v}(g̘1~x>phB?|\p!eazAYrH=2wLC۷_{z HjiiI-|֭Y)dggnaa5y}Vu5ժUzKiy;wP"+**޻wo͚5V=oܸAӧOiv-Z077@!A\t) 22QF_꠯]v K׷0`x i鑚jeeѩS' & 8P<5竪 PO}ƍ6m*@j AJ|dΜ9:::ezM^^*QSSS[޽{Wl]}:ߵ 1nܸAfxxxfEdMLL۷ow-4H7oޘ][n|"bgϞݴiSdd ߵ[ ͜:uɓFxzzʕ^mB-h...[l߅Ԕ SSS`w-5.&&ٳ)Ovjjj]Xcǎ|L@@'N8uTk,===GG^z]  YYY:J oڴA|tppl֬ߵ@MA@YYY 2dΜ9|"%oݺ#//w-P# &^^^cw!҃K,߿?y  :u]Tyutw- zhq>\jUPP:ߵH˗/oذaӦMu14Ԭ>0ZV@@@vv#߅![YY 8p޼y|" h+] junnn|"RRRh[ܺukkA@CM9vخ]A8tP\\\HHHZD 5"11>00 89::jԔB@4 z?~422,''GOOֶ|";y򤚚&߅Ȣc退oX~֭[5[d 5e VPPWTT|葛۵k444ͧMi&gggG]r>J>˗=zpҥ`k֬Y>|k*@@Ce˗'3Fpo||ӧׯ?SΝ;wܸq'OO<2dȽ{֭+RRRh>*P6lpĉdggуf*lْf迯^#/  1007ׅQ#GydZRRr_K}Ǐq7oǫ( 4ͥ~966vРA_P.\H١f*3vX#6Sӷ?Kfaaa;q9)>4iMX6(//;nٲEQQQ0]CRv^z!لݛ}O:%tiӦyzz .fJ0tPww pS>|8`zH?:gϞΝ;s?L9ϟB@CęQQQEGG ۷/8s#R:'&&n޼Y4^WiiiЉ%H?a +̚5KUU{hА|JJJ|!Mhn>}6qAAuN2eܕBCCO8AڔԦ\RxQݺu7n_Cٹsg.]˦ͱO.L4)99Y O>P7 [z)(_8p`JJJIIIvvOk㩛v/ yyyJu|RMMW$*POَ;]T  ߰qƇr,Jg^z] T xbpppxxxFjDBB룢6lw-P*%%˫C|5(""ŋƒJ#Pϟ?sgbikk] ԬbssqqWiv V۫[XX] Û7oLLL~'k lڴݻ>>>8Kv:u*:::""kcL!@]IIiҥ|KjjGN-77xذa|rΛ7ޖY?^|9?hтZ BԨӞ={$!۲e͛7A޽.߅:4Ǖ+W(Û4iw-?^ZSSZd,,,֯_߹sgkV\~'** Zϙ3GGGZ-!!!鮮|"вy/`NQQɓ'Mw-2 -ӢiO oذY]W^ oڴ)ߵ?wް0%%%k9h+ kvڕZu5E3f̘8q"ߵ勞E eSƍmll.$ÇWZqf͚] A@˜;v\|9 VZ|֜7n]@@˖ׯ{zzFDD(+hKKKk޼y|"+2k֭֬ߵDz,6hYgjj:uɓ'] H+WDEEիWZZV8;;7h֖B@Q@gee999]C@˄ݻw?~Æ kx&&&3g-5 -֭[޼ysk)beeܺukkfh)nff}A>|СPYs,??yҤISLBNNNjjj]B@K3WWW˗]H}}KߟZZjݻAAA Ԝ{9;;oܸ?} ht͵k׆] H-[ܿۛBZ eddR_ӳgOkWRRbmm=dȐ?Z ZL6Z$Frra^~]vm[pmۮ[;C]Ϟ=;&&F^^spihhѩS'k*hivZ;;; $[>s /߿oܸqy:v Th 1͛7)))!!!666njٲe=&OLSxy9xbhhhTTT:uEz o'Nލr^RUU 9s. <3%,m/zGq_ݺuV\)<={Ŧ(uuu?.W:6ŠA>~ثWÇoݺȫeo^^=߅H}kXXX-E|k׮M[&j~O>%v#RvXEwo/zϞ=}z\\w;??VZFFFnnnIIITO<9qDF+=͛75Gm%<զo5eܹAvԞ>~e6! B@ZA}g.?p!Rd6#EEE(((pUj,qq=<<齥&hMӣhcЬY3j UTT({[jM͋@ [f }:5RWAo'u|WDr]7 k:33v'D_.]T}/_9gLtI[)ɕ\ؾ}; kJMtaa!S96*:jԨӧ9rEbbb]Sj:1uM^^^˖-KOO7) h55K.\@,,֏?榥e;;ɓ'}tر˗ZH{]t7nӂ FEݷիWӽO>V_|>IELVM6***%Laa!w #/իWJ+65C : Ύ<<}tuuik׮fff7oޜ;w.=:k4:-npCx_t C͛7_W~PQQvs4ԃChOr7qc0|gi-ݴi͛i/raqvva\qjMBJgV)~qEDDP;99Q0>>> 244q* |taa!ܨ1BPf; &<ah߾ˇ)))UP;w2Օ σ...s%Z5)3w'A /sR.GC@:fG-C@@@HH}"It̙ѣGZu:::Ba1a„ G ~^QF}ZEFFRpiӆڷ## Q"sk&E/O ,ZvӚ6m*{8q"((WSy󦖖Ǐ_-[JpJyA033ӧOs]Zw9rK-ZyN!,N:g׮]r4቉{srr(o믿tkS?yҡCݚy***1bDqhE߈ -m w!߀Wnggnmmw-bU%9Gݰa j֬1wACCCU k Ν?R@ի.D Dnn.O8bZD$Ņ;acceN\@Е\ |۶mwӋHǏ߹sgxx8ZzpXKzsDMt9600.{…ϟMЕ_ mzB9ɓe˖.KH !ǏݡCkq_қC9ˍp"@]#/}={ܿ\ ._\~6A@Ut-ڵkSg*(y^2˲͇w--m.]/#'މv}||n߾M 0`@`` ԡ6L0p@8m DHyl]Ν;]TA@K}?~\N%9EEE;v|-m)=zͥ=wl]#GPsݼy->$&&҆JvZ:}vݺu%9iii KU!N֭[$S7.[Y tF3@hfaaA;F0Ԣ}sss &Ήw fqjw- -233ccc3h k)ܨQ#;ر#ߵTٳgٳgp~/_ @< V5-bbb=,'ށpYuppjZV‰wPs6XNkժŋ$' ͵љ1cߵD`ub-fffD>>002@@ˮ;;;55%K] 0˗*/hƝx7nܸ3g] 0VYf?ZdZq'Y[[P>}tRڍŘ gϞsb:!?\R 0X#߿?...88nݺ||466vrrիߵ:4W^;UTTdaa1rH V4x>>>>}rqq4\KKKmmm4P2رcw Kpl`u B@C>}jkkdDvv!zh\L" cgg$,hnyyy8N=zt޽NR :޽{gffF1=l0k*IJJZbEPPP֭  3Ν;] |CVV1mP1XdA@C]z+$$'ޱ I.4+܉w\h===q.^HO V'o*doo߼yK] T+++;tw-Phgjhh`Jdff֯_'I.4|oݺ5''gɒ%_|xx۷oZj+Wį8wϟ?~CY!ՕB0ƍӧOOHHh޼^:qmΜ9#Wzz߾}KbJpkРm>鳘;wi˗8_' B@CU;~[n?aΜ9>'%%=yD8)Y.\p)---uuuRċ<6ԫWBVIIIxǏ;;;߾}\CC>-[:99]<!zطoESƔڽ{75ke[n...3fLyqtx{W;@-sӦMwڵ~j,X@6m2rssnժŋ9"&4TԩSvTTԹs碣hwk׮-ZػwoZZe\Α#GyFYYY(g˖-|AoΝ;OTUU)v+}zǎr_DMh*]]>}XYYm ֭[E;׿;wݻwtפInK tEQ;n8 vj~O [j޼yt;##CMMZj5i҄&'}^~"&4TU\\ի?N;zh80%%]vaÆYZZ f(,,[.e券_8tP߾}ͤ7ٙ6ZZZ^ԤYfgð˗/o۶-++kРAJCO &رc***zzz4Ԛm޼Y0[ڵ+5:::('AQ7o޼m۶lР Əg7 ""BAASNΔהSNMOOĄ;PL'RI`Ovvr*ӞuPPPVj0YPTTD]3wB´Ql߾)S2cnPLSpB@C۳gOhhhHʳg<<< #x'Z.\ lРߵ!AL^r%߅H V' &C ~| RnnܹsqC@|hԨQ|"5kxb zeʚ5kww-lΝ.] Uߵ@ B@%$$]'U͛7 @R <8rȮ]pzsϞ=jA `bb7vҫB[[{| 8::֫W'UWnn.734𦠠j8*w- &hw❡ѣiIII+VVWW4 '}SVVA  N D{X^IImn  L8rݻCBB0ON!>>B}) V5 2ߟaÆ3&==}۶m?ߟBnʕ߿]|9%#Gi~ }%&&ܹS<Yݻӥ>~H- fΜPSÇ Rdw[nGihhP/XΝ;SLINNt޽;w A椦RL/[lܹ300NHHUTTtww){葶˗/Mi~ŦMj@!AFQjjj; ^~ӧO...bUe΃94(A@ƍ񉉉r4(A@O4Eܹm۶E@# =| >|d444Ȩ2]% !AFq=yO6K@@CMC@ZdtzzzΝSSӴ4PdTnnJЩS'$2B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4B@0  (4mrlendstream endobj 467 0 obj << /Filter /FlateDecode /Length 430 >> stream xRn0+x\[&(zK[Ӄ` +AK=:hXgf/B7K&(KdJ<;y_q'|{\~^^W<-wT eK;P&TQZ咓U/~mp<4EIR^|ZBlzGnģmvMnlF=4,#P˕?ɕKPyq꛸e·KIdo+/~CL: Otj4{xƠ,sX]Յ }9ds |v{lL&1yDR(-zv9!Ʀ [vv= +'B <9]5۵G0G&N:G̒Slf1.C{s~{@6Ø39#U X>Ӷ;k)endstream endobj 468 0 obj << /Type /XRef /Length 356 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 469 /ID [<07ec81ed9d59c1a912f2971f4ede5c02><10ad71ed15781d532c49f988327c55f1>] >> stream x?(qwsE1\Rt8`A)7I.2\d1bJocQ~^==}wOs,۲n9JF?^?-2VE?'?ƿL⾷3fgOz[\'&Y,/ҿ#21ڨ5a260ʯuuVS5ua<`OO cSddL1-yP [snq,&]j{eOvDq8̻b~57CXC endstream endobj startxref 481702 %%EOF psychTools/inst/doc/overview.pdf0000644000176200001440000221716614552047405016531 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4492 /Filter /FlateDecode /N 96 /First 819 >> stream x\isF6-c0L**k;HNV*5E*$z(hl `xg0(B Sp!map7qT(WB(#QWNBrKu!@S(pqdWhUa Z/ c-`nR & ;KӸEgq _iN^>V- I586W($Z+ hC)MB[|A2w YT@H܉B.%*HP9$ :(C߸dYyShH5$KՓBF+HB9P $ MА^!YI( =˕r$A:G * $k4GAGV"C{kV@8+t :r 0d#!BQu1(,$ !7Br\kɺ Vpa6NRɎCdȮG8zR@hFz{ܓqE(xAA@>z{  iaVA^-h:au}w|:o ӓ =ΊořYSq67騊C1RZܫ?ꟹ]~Ӽ+)df1N|k:΃m^ϦŠOOv>[~Y?. ͨ7TJ-x4]LZRi(yl@7VQQB[kV邸bb0i_m'o [ULXOUU&8>ᒧyߥJ%2i[%Ug|֥iJLIuiکD>kTϧ hi?nN}ү6^[ү~Ʀt?$c=mb;tңOd:&H׋*'{IzN0^M X$ ;v0$>̶EٝggL-@].Di!r;E E>Nf ObpT?~PD*g堙O'D3 ͦæ @o>q~Vɞfž6D>u|}.A~˖M5lt K@33ehM9T]UfcVUKmVǯϦ:t~x.'9Q*[6&>գc]."U8XuPxqxՀEMJB"q1eDSY$_Nn-@Ki-qU$qoy%?6ɽ&^,Ļ'vI8*Q˒zr=':qU֤b}\H@23PGN23Pq"ZHSBd%,9u0Y-5"dWKv <'vbOR;nHLܪ >[$%u)扜MʾRs/S)eˡܭ9V2.L&W9v⌝ oy.g/}-ӳSAs(ؿ'p49)R~zVxwېc(EU(K 7'<#w~;i4(ցa)s  Rנdʝhkn!0K`/*/ @ϹT_GRssH"ݛp];xSٮhkFC@ʱ}WWxt{Ϛ)-DFC {G17{žg#=g/Kf?vް_د-{~c50ד!5=;bGH `4,ΎG6=;ِ q=c PX3SCÎc'섆͌2 vO l|؄M)9;'7m,M@tNj9@ڊ7 Ӷ< N.ǃ36gl;o>|a_S`_#f7!uO |\dBpڇ!g g? å({Y57m= LNn1^spN m~ Dڣwɔ~՛wL|7![.v_4*og}ߍC% 5錏܇㑛2%`O,7 @@^iۑE(s<tdԵοUehbGX[2U-QOt"xfm!jJ-Y2װpև Yu2 M:WXWo<{}&k0_fޚLPlɇïsq<\_7Je:+󃾋mo\[wE\2.+N1N߉1 ;j7{r53 ]Yn>{&%Im_lo!}XSh={t6lfiSM &# tFe%G+K4aK-(cJz{_&30 Mh^oæx 5QUR)6|Zdї #C=9V뛡I/u%=S)w_ŦeUzs6JIOS-+M@D5za^6pB`4jGasifY=xߴ!r ˹$C7ps^?@{l4;鬹!"إ{7% J)^ZPo#P? ]uj!$6t>- okKZ*~naL(NW00!DiF/ NSdA8-`[ѭ7 n+9=0% 'K+2WN8[jo:pC=n#KLx]F_*KO&V|Yp qSKNqz\lz6i*Szlt+Q4:v iB_hڛ݃ΜwWuh;N!E  %˷aě)JgpZ-:pխ&_k,=d{nZ= NbJzgl >bgadURdEz>-Yvp?c1W.j;zaiwHXsbn_8aTN8II^ǯv]I Ü76%}A:(8Ju2Z [V̷:s>48㬞,qy>P*EXÝ}Lml4ig-EZ${PAk/ZrB 9Ie€Ywn坔(Iq !Wa }}#}CdYtp Rw8^ys[d #x#<(*(8% o1*Sv_rz^CMIsFn[!+T ~~ś7:}sHKnh`2]x<:>nf̈́fK/JrWmYtn論zaeV^k/W˂a/e;[ŗ4L+̂dbqf\|J3xLb齂Lkc/M^}Sv.endstream endobj 98 0 obj << /Subtype /XML /Type /Metadata /Length 1388 >> stream GPL Ghostscript 10.00.0 2024-01-17T16:04:52-06:00 2024-01-17T16:04:52-06:00 LaTeX with hyperref endstream endobj 99 0 obj << /Type /ObjStm /Length 3009 /Filter /FlateDecode /N 96 /First 888 >> stream x[n[7} R( Ҡ$Eij"#y$yCɲ%ٺ!0 Re5V hE:bFUmPD|_] bdqg1hNcEqc[+WAIa$))"+lj-rN|bO]++ K{I9+:Ϊ uKX)|x, E q9 %IVZWI8ުzQ1>q us*>Q%>U$- &l ^\d_p ;G``&CB$'9BjِUWEx* W"ilʩRd9ecP("cHR?-pޒx(JŇw )E0B*YUD8~J 0޲Tsi\O{[O0|KI DH!*P(P<dǒX.7=S(} &+ KI/|&b]yjԅM ^L'O-χt^Myt~7]|z;hwf{J ~~?oFpŨkCkckSkskßhNZG@1ڶۺb[Wlm]qJ񧉈mP96m{[N›et:Ornݲϧ/j4kәY޼95m_u6P'h&&)0њ Vю9 o?,*7*A{@$SL4.1ژsh tPfBS?Cn6kGGqtjjwu*iz'[HƖws_FbԶu`yzH]p:N =y<;:=hNtKz ()m(\BE 'j7 ׆MwC{h[eNkZk[Ƴm#yr^kƓ6y+m^iJWڼ6ym,)؀fgD5Wzcax ]10H6Z`9cR~O/Ɵ?'o}U&ӫ<q;%n/)3 U/7ߏ?-o1*䯃UB֞]?Auk1׿uo^Gr3r|h7A^/g#v<6lk\[B5x` j_\Df)05_ ပ)84Gtly%6!瀶m/ d5 6Y\i/^͸-,̉F`W3< _},h^uź7ų/ =kӌD\|9a`벸ef}f:nfӫ`~p1NBqccX=քJG C^gWHv} y kox`5ӟ&c q\ziJVkc-ӟv^=p]pB d߅U{0w[CTN% ] NݷJM^hO*yC yd{#ye}10VhLAXGMd,ʡ;A@g ߣFtW\ ^l͓jyFDtYa3S d\As`;6a#]=:T;l٫ +s.wrUo)kRf,Y8y>O 3D2Lq *1 \̔Y?J;.yNsWN!(~W){[V_Kkh,,_J4wXu˞gZN> stream x[ko[7R|E@6h(v( Vlmɐ9ԒUɽW<ΜҶ$e-Y9p-KPjD^J7AYWx MDY %)с3F*Y~uI}E6^C&4&(_? 77Y xcA+gᕳWxU]PɹBl%*/B* B짨h{b@S *ƌ~WQ$& G%&cQB8xoت(tQ2iK/W^%."; Q@B%嫬M)hp>Z)ex3{r.*JTaLTUbQ%RbTIA)й1QAM85>-DϷ»·0(d՚"(k- ظ]z`2$hmXpWhZ cc8*%c10kh31\a #Z_ Zo &2@+ le, ]K!P ·0 ,j X>Sgt1W6bY5,0նkW߮]cJ.Q N Fb]6|3O^p3|F|4WUKロM_bݗ//_q͈]]XyCC9C<C4`X;6}FIO>Rq2j6MǶFb[#ikDLikD&'Iy6Οgs(#آ_ ,8mK.bV'&apm[`D1r"2 HЋRُ߂_y&[·oԗ;iԮa_#f#N;57 rCo_ÏݫR M}y8=`/pcє}Ζn-pa g*ߙpT08ޏbPnAKfOow-\X,A ƭhV=xT 1 w6@C,1+ٓfbKϖxWqB/rS%Gm2T@ųfFhG ^Iz8ghnA ÛΎ ^b<pV+I`%$Yn-y槳'VD+%?\ҁ>[A9u8<&뤮cRjeNOf{b)m$+Jgħ56$I͛)ʶ|T+SϿݛէg[5jr>O.d>^bZM\~_,XKZؒYSKJ/7_ƗW#ze'UKs%o;:;qzăݮ&vn] /ΟM.G|iT|b<~wzw$sJ00nN@mDǨ);aƆ_À{؅,$k9tpoMJEfr/wy ¥i#mdҰmDE!/kpd'!Q\ݤ7'!!UE>8\;m.$ݾ5²ܣeu5G@(>t.3a+ӎG.gs0M]vڸ >{v =bYz7Z ΆRiLR3% 2ff: Tl!/zib"2?P;]}.bwhIW)+ }/ieEd$ƺM0A-Խ[@3g6hu셭b}a-3tg<2w=O3`s̕2پvtF؞V&endstream endobj 293 0 obj << /Type /ObjStm /Length 3039 /Filter /FlateDecode /N 96 /First 889 >> stream x[n[G}[dgc9{FbdbdRCJ""ł ݽtUr%(\QpL*YYkx(Se38J8q&q͠uD$NR.Gi) Dx`yw9$`"O@mRA ?*$1z#Y%)JT=f-1YBPJJXNV%\:B$atTLW1g J&+/*9ïJ^'IVI8/*%"9!SF>*QpD~>T.;Y,U(c{H0q8=_LKrqBJR KxnKE(i YCo\&>B?LJΊ=eދ8s6Q'P3ư:C]L{Ñr/ FxӺ xBc@c@x1،IfTԂ(b _ b`Ofecc@ g#D+ ՜ ۉb[%s=m=zQqS:T|41Uf9=$an8mowՔhsޟ" Z@m$oz܂—_ϛ>I]q2__<|w|U.#y?Ty~ eݼ׼:X-:X/:iQ.OHȕ:O?aub/T7vOG;itNtY{Ы?3p:)m" :N֠ N\.ZŤ0nf~uPtqdS?CDҦ:z]N:CcӁ-Y$a"%=6:Qtb6HÀh8ƃK1p`)JӋCޤߺ}|nz4|j9]Wq0<N/B0l&s1܎j_Kt Hcg~\޾gƨSL߮߮盾w<``vܜ}jؾ<ݼׇdߛ^s\6y C3lFMsF͸4]_?Zj%xyݻ\}6N#<# {7}bpgkj{ozmzpq6u9L&P;oo~@5,%-i~<(U6iMfa0>/%L@K]AgMk`U.hyK׳98K`͖.i4-k;g?xϞ~ 0z}0~8>˴ Ʋ],oYÅe}G%13s{Z1D~b(- eG]!Cg?h95+&UIQd3˦߻uss}7Yh|g*(徔 Z[}έC0ysg[IȊDFK,=GrCi.!^eyXe K9*,۔t1]f{Ta+: "?h|cpsp)m p&xTLCmz<'H-'~`@a؊t W?,kNHfPa}x`\/Aiar3\Htp 7Y!}\1`NrٲCͤsEt96o J{lwK5bF tFYP9kLȐ:V薚rM;DSn}pjJbd@܊7FPwUmzʼ28ͯk,~lgݳ{u`My+LT! 6Dc; q^\A2lv؟{5B494['vsI [s86b ig2 9jcw۶ySltw%| Ue-j9~`Q- GdCB`BW?\\HNob>&;IDsГ X.1xAhAs>',gKI ]-KpK9+JL F+HX> stream x[k[_AS"!Y$F $n>ZY]K I.8ZٻRVU#Jsg"7T2΄ %g0F {M.{65T|Cʅjȧ`sc EELNA0Ta U$%Ơ0x3qȀx{$o|(Tq[.%|r1 LrO=@@/i9{cJ \L<<!X#I.=$ II|c Rś,C4L^h8DĆC1\H.UљLPCdrɩȥ`rFV.U.%S\gЅR65bJ).XtMIJZ`:ɛEt& NTf YW$Wʸ U3l9L!BXOdXSĭkH!CrM#,Q,t r1𰌼\;ȋnsQns YEJ5$X%ՂwLU}xLx!'9|j0“~0Zb\;̅4mx?dCq^_˽_33\'| +ƲȂm,/73z:fyܘmm sxrrP RK9I>a\evrZ^ =; <@.cLʚ2[8 Zm;<#WiCʒ9NQ%W@JE ʠm*Mwj !XI\N0IwKx[%|R։Ki7EʃpSLՖ|%ߥcYҋY!HL"@ְi gdm`4$\&t^eg~ +]GeI9J&;ŰǑȥǁBl9rPX#93A "JJ+~OK ,P"e^v6ʸdP ŸRnMSr@(}zSRPkw@ZwZ MЃ)2Ɔ*uHs9ʘqJ5YU ۢWk$^(V&z( f%[b=X;vxoӗ.:2@mk0C09d !V-o] 7T1H~+rRYi)9XC%ߒZA'5.NLM|0BTHOZP(ˆZ /;ݮKHq㾒x,;HQNRr<ܛ}/<em?{ = = ?s,GأRxuC~=Q.xto3L jTIiBkXqA(ݿKU 5ޒH.Fq 3t>[ffXgOo/F'דۗ˱<o:{9^\~޼,W?}T[&twgdIv`U]ucyId$le{̶0piW/{Δ#Seݱ\[줎J-9֚YȹSmVj+M^Wp87*:7PI*y,,]P\9w73E50Ҵbg9#>Ys|A]lJHv$T7HBVzȨGp򩵣?KO@Nv=Za\8:Py mqdoj^H7+(M: G6WVz)3ItL86J:/'ѳ'}vO/&WotveFOggO)~Kr1YPx͂* Z2{R&㛯&ӫ2ӏG47t_-%'kOdk{Nd@x/Ϯ'o%XMMN6mOoK29SiG`Rlts:w{gm$^AǬ4{e#h3h mwOYXI'dmdߟ]hq<}Q 2`jA?4_ g#Hي2~=aۤƾ׊^>Pgr쨷so>Ͻ}{y祷KoǗWx(;I{j$ҁׁ"'EN9)rRȬȬȬȬȬȬȬȬȬȬY"gEΊ9+rVY"E.\(rQ]E.\*rUU"WE\*rzޏp%J㕤HE_#>(:PdRdRdRdRdRdRdRdRdRdRd^"{E+Wd^"E9(rPAJ]ɩ8u/N]7uujSlM]V+NF+>6+.&߉oqg<8绰ZzJUF*v5=YrVNGP9TLi=;;Ml?rL8zhЃP`n-H3[,`vlol4RnKtٚ<;\Ypˮbwt=탮$W\eLNF͢'5xw8i,z,)J+;aW`e)G5t?A"nv'r~Jx X`r.ی5%}Ee/ڦ_ev*|endstream endobj 487 0 obj << /Type /ObjStm /Length 3037 /Filter /FlateDecode /N 96 /First 892 >> stream x[r7}߯cR)ָnR%v-;ʎWVhi,s#Ze~Oc)ˌlJ5 ph4N7.%KYX(kg#=f@ > i>,k'f%4<76%.e.iȺn|<7D&1*rnCC S }3PH`4ϦE8.T_Cs55\_F4W\6Q)x4F8W7Ug#U!T~>St|=9?FCE!˻j&󇏅zY}~BUMW3\;.guM3wKm2Nx}\>so盵s^oНӆ+:M6v,+u[u?w;1߃͂l|l|6>n_llQl6>2;OΪIӝ.pc7)7RN^**A]Au^/./B=ah Ȣ4Xz9HͤIsof9"]UtoBZ`1 p^2A}z]IڸQv&JwdS"m3-ruJ6hhlvM 5p-7g5Vc{ȣ@Av0p2sp}/BeO; Wz3I5׃ u9]OdxYlx:(YiA2]G2CZ QZ1iݴh;4мa. X0~AV&r3C-ĮGǭF(:Xx^xA5tg)-88.6WW56`a[~t7psH=ӫ u2Kydg✂wb H&gh@r17p'?l>ɒ:0ֶ5ph7Z+3 `"q.D%x4f$ΰܱerp4!&77h8o"IcKYax/\OGO/h*`4>嫮R疯6')ltr]w}|wlL}e@dՑzzNՙ[uީKAR#5VW NLMTX]q-\_L_ΥK$Ѣ[NgDžQ.q߰}Nh[AoHƢ`Y%b!LP>m'm9Z˕ A[%AsѶOb[dYGOB$'qhG:$uO F@ F@Tsl8zM`sw[c3.h+/.T5r\>]^wT)KN`.bK8_#ǯt @"q}!p[.o+[p೅m)aB~q$u.(µ\wƃ24L2Ãƌ喁zH2 $m>S jjI,s[$W|TX_"2,Nn{U'z/b˞s;;#Ζȷh)3AP׻ʼn~KFhv2c wOW+؂=R F!q 'ѐxC۝"d'iĠmM״8XvEҔ-ޖ5i:^#ӻcl9*Γ& >(UMճIk-Kd8WB9w7J! goVTӂΕ$R*еXJuBRPpEҜ3MW$#x|_/ķ*kendstream endobj 584 0 obj << /Type /ObjStm /Length 2803 /Filter /FlateDecode /N 96 /First 893 >> stream x[]%}ϯ/HU%f!1 $8a ο95w zx>C^>C޼Rb1Jb1z#Ɛ~kȋ5<?}~|5?ör/ ߾kS??=SQ 8B޷?|Hsoa$ o޼˷xzP)w>"pg0WӵhU`]XN[5D 7_{Dpm9kZWxLv]T69ܞbʪM^R3[X) ACCX4fĄkqSWUʐbƸ2R1;ϙVZvGc`ߑpU8==v!iB;::0gVG n_u`M`MNAQݔW'NM ڡb_JW=w_}R׆ud)s!+ak7u_wd=퉚Q4]l`OQqvm'DmYX$dgеCM Qqpx*k?w-ҕ !۫:nGf}XZB{cll,X{E؍@WwN Wtܢ@# ̝jEQeINM=rb{@,M_Q@ :W|m8/%g$%+8h2smIcUS_с t{&UwG7ZsÖ 5Zvs3c:2 vN&D'wtz$ڎĭAVu97g/3$ZY &X0W1kT団Bju{ k c<9oGKCW2{ۑ\ݱV8L#';p#kcϘ=e*9}.9pTs$> stream x\MW dUE0 lU'1|XKyy]ο+kfutc|;|~j )Tk+ueUCNQ!7z =CFym pȝ3 JvRnP8[=Vjh) RPeo4W *joR(@]a f(W[N♜Kf wJ(pm@¨)DniDLV{fZ+h#bd|e+hooEЎǾ ao *gqhfj'Ho' v%v't5[# COS蹡.P'CE[wW[^ǯ9ek;4mNgS<@ɞijd(b,d4DP|KC#AdSC_/%OkvAЮ 04ݠ\*[:PxuP[E ,L49A uYW3 DYiQ먆:JUfll4'7WwO꫗۟?]}W_ܽ{{.\}w{ëۇǧ~y@/|~x|p)\o=ÏO}1|?C >O><_]!\Ydw˗8m8yu@~χ _=ݼ}#Zc@?͔oU2>'yX?ZP=%XÛFQՄ#C(%qlf4b-{o,_?-#חrZ۪BR0ϑ`/ʍ9GE?¨>^ s#* ^a׶!Yr9&;(c@nyˁ K> D/֣9 <Nft6K6'<Ռs@Պq.7D@Q*6`eonRjAYJ NeS w56 T*QXK"xيt8$m\/*0$<Lpd)|FŷBpdi|YM!>Ѧ$9TEIFwa36e^`czI.fO7mKE10Zƒ AV6MrR|fu;[5}(mU*&CWk禢[ѯvП֭-rie^]1ZKg7Bp0ȰL #du /іNj$Mp6x K$kfLw!9$8 2r~+/B2( )SCOadlb*ѥD%KmvF[?G׷hG?&'v{=qZ!Rsqxme[#8I}'vYcEG-w\>n\gW cDZ j*#@t k ˼q| 3VƬ֬ Lп6k%5%އ1vݜؕTfv|$;`v9H oc-XeuyɡW@0)ۡW΃/rBoqTbfYzQ{&g- 8>fѭH1 _:አ.3;X>G6 AjXR-M(`5)"|GJ![lLLia5/!7[/-f}f/[d:W[)cvc,[q q36iFu,?CY-".[Ѧl?g[mMUpk'vѲح~y>X66tHG&pa;f.0gv gQxv,bYʨ[MQs<{ `P٨4* B8<#>#neK ;[lQ$'v1AS]aClnǙzݎu^ۼ%jAkvR>`WϢdijk6`h=kfٕx\n|$R(1~7gbM)l /gǣvu;%I.[b9bfmJ`Dp[Ң [aN&ڍ-X`;endstream endobj 778 0 obj << /Type /ObjStm /Length 2819 /Filter /FlateDecode /N 96 /First 895 >> stream x[]%}ϯ/ШJ%f!1 $8a ο9}Uso1lk>]oǘ%Is\%UijQqW3ҴkO"FmēܦIPNIƘ̚T XA`M8'탓GRI rKIZ7 4ծc0h nd*&KIxhI&&KM6LC&=5Ԧ#O] ׭aJqՄBS8?@.@Br[G&a@w zzU6>n)$"T|KbWaߥ4JbK>#e|/UZXW3<<~Dzw&P A9Pl(*Qpo I:R- E ܣnp=-GPeO{K;Lޅ{ )AGA6=lB%:tCW Q ܣu`Z Tb! J>1vL/|3~ɿIi ݇TP'NczSzx_s٘`x K"TM˿>ᅬ?Oz6>WvӲjkNr-Sm˹ 뒍lZ Ӄ -:s3>`k%7xfg []3ݱ՞',Tv]ώ0Gc`Sa[ӚNd'e79Y:hpZ! ~i e@1x y"j&! (oS2γ1U3}3aEs䐋ZsH_@0=yb7.aLgtE(;;7]N3;+!sˮjV}ZkUU5Vap{UxnS{^n!;|ؒ=bFZWPKyb%v:ljAleʉ+SOӌclGu["r3$y` ټnO\Q1D,Dt g2LLf]1IJoq#!!Ě8;XwH<&dĨUY{zR[.rj;YRuHʝ⬠\ְғi HKl 2+{ʩw1+wv2!yV`Nn!~r_gM=c~l.xn0xa!; E6{CQPf&N!C9%?蚹yl=p#Wp~}ܹ9F=s`PSCSƸDl:zF}[X["(`3{}De7M*g SbUl6m-g`N{:nmJ-Ijnnm/ le Vi<1kۙJS%wfP$*ܺMY~ Gd;91O+dwdϤέ-'m=q~Lvd$Mi 踟86ܟxٲ'n[t+e;{كHHSl}Tn1}ermC`:`xvuujl³g -展uᵅ^[x-] oՑ]^_x}^_xcܮ o- i Xb0`It^kPc G @<y 3g @<yuEx'AŠŠ`c5k @\r 5k [ [ [ [ [ [ [ [ [ [ @nr -[ @n9x/e,_K})/4ߗ{_jK})/4ޗw_KRvƃ??í/??AmqOL~#Uyw %?~x#Co3^P/)#(Ww "| {[rABa0Ψo/̭B4re0Gyr|w̔ßk E 8-sM* S; WyWRtREe:OmXS-]*V'=Y~`Q%+4ҁcHF2+\})+ b v;Ҡ\x(qrA+\:`C2ܬ7'3Q^dNx%^JGl58> stream x[۪%}W tT*] 1&q<8!03Vo>'o馛mXڧVTWGo{hGbhgiZ!VӴ&%&x@F0H_c̤piZpiJʁ&uᥚu^CyɓNHTktkTOԉc ;5GǓ8qI2S3@ "u>.T^lA׊Sx)-uNOsteUiŠďQ+:A|&>adSa|aOHv׬x=qYJib 1<J[^BJ#i, Lz&zx zo9M3L4!$o1̱-$Qu^jŅ110v'6cԂ&f1dua5 cA1aIX *7Sk_l jBJx!{b!0+gqWFyU [I+\Bc4i7_|oC{z~Hgb,]z_Ū̃@Z7>=!={13W`AZь9?>?Wz>7ovdre\G.,=SW$Wnv"RvV,nWFɲɚm3o5Xxk١4̴8Cf.`S Ase )f>1;LQQYaHNՊ3k3 ~g񎗐 U5n#A}L - 6H2n b?ܯu.q6&C1!r21aA vsWT2LȽL﷑_˟8K XڶھڱeYڅc.v-Zϭ]xuՅW^]xl³g Zڅg /<_x| /k -k - [t<:-:=:#:su :5:5:r=G @<y#G @<y 3g @<r_%t$:GEGgD'%%%%%%%%%%5555555555k @\r 5k @@@@@@@@@@@@@@@@@@@@^Kҗ2?/˯4i[7?Sq@P߼oJ~5/M2t~kM-Lxl$ 6v+sK) [;*҇kđ5$NW ,6k#sv$7KAȍ3w*5%WoW䐉k^@N! 9E"raZzӒog!K.Q:,9"G;wBJ!>կQ)k`tB$G}ʝ>'b^ ;9k :$ax vx̚7X+;عќ?@x+r|n 'ٝ]"n{ri!W̪n%$ 䎘`xsAi=`攛rմ:BM( ɱBT"a0~"!v`<\"ѐ˝m|rGCO]T|_!C<&V_F;`M"[*ak|EE(vҵ_x,:r[\hGIO5AL/`'J̨`F}lAl 継ΐccK̶=Rog8< 8#-X r}ޢ kz;8m@d6$T⹶eauHWŐ &*z{07m ɪ&OCn?UL3a n{Bnsvk} >Ӽv#X6~[+vhn5G!<WE{ҕy q[KBZ`Xeܡzà&h"N/~TXz\q둍8Ý7KFp6͹2pq`}> stream x[ۊ%|W ʋn x,60^lc/f.{GT*螇.9(I)RI{KMb]hIN4z6:=1iTn}&u`aI'ȣ&hdnt>}&3gIwMI6p뜚8GÓ[mhU<[٧'>#93L肗+Z1$Uo–hY^:h RSFj-Z!"㷢XZ궸tϐzd -/s?t^-iY%V 3Ҙ;Saԅ5|>^v|sde M7~t%v35+e3+lh[#X9`##0"s?kY$k85&UɁ:S?&k+5Rk I[[]V1V_li cy,sF+\Åzf *jm݆ժ6d/zU}Mzx7@XS2l?vulyb.oWٮ]mvƆ76 onxsÛ77 onxwkH44 FFFƈF K K K K K K K K K K k k k k k k k k k k [ [ [ [ [ [ [ [ [ [ { { { { { { { { { { @\r 5k @r -[ @n`={#G @<y3g @<y 3$LO$LO$LO$LO$LO$LOd3?<}^L6y} 76V$:#w||)~ "ߨ>xxᯏ}ě7hᅬc8o>q{^YAw$ۘ=?"AX=/L">3@cԔ< l/˿>/By͚ .iY^ Q{jm0;G`nSJNmlpN=C͙,ȩhK{%K.s^dl0LrE=,țάF n̡\v (;&$O$w`V' "٨[⤉es"/.f?h\!aNVˁIIɝBn\N[(;+t+;؆Uge75C0"L*^fJn VBծ\? = |/B|/Uxf&gಟ> stream x[ۊe}W RJ*cL <$ypM013a.}R:=ޛ-u|^G*]j%T˨!FK: M \{:Tk1QzckG_c@@>[b-M"e=aIZK'IXOxo&oU%򬩵B?AX,و7{RB5WOO Lj] FB [5VJldu~|3K-=Y``y]z4t364SRkP Q[cTLpjeo{rmۑ֓'| ?aNVR"i6NTiM4>W?KmJhxNl4YGum.FO\+2V_QS'638u þ0` Y8hTm4MÊsʹRȄax[ku?Ms[_T myA3 ]P]?KmǀsZoSbNj|Ѣh(aT|1m|$2 ~?>~HHe|ǏY1%I9f4}gvczSzx4<`IZ6-wؓerF>ӻ߽{)zu]͙Y֚'vƮg՛\`=dr*f7zv)#  V=é^|f[i陱a^10t/+ұ0Fts-53T_Ĩ:0~l vȂ0Ρb pan RZBɉ]zFyf'5 &ص>l3|j(%Jf@eg#P;y.9p#c7D0f}%nҚB84x݉yMLͤz_jt'< kHh sTX91g,n*\pcƼ?!Ċ W3$fV/$KSJC>h6fVZ,RYarU֐5myVC=/sR`y&Ql!wXٶV2 euLT2f37uܤI8ZvӎG:|hRPNtF W/Ut0K`~?/D^.\b9(b!+[7B W#d0wJfVl)#*kor'*˥bTS(fa ΄@7Noy/J3KKgKAUT$ 3V2ke"/!DJR$x5Ǫhn"nrXD~\xX7mb_)y-7TKҹqg'؝YA2PWit \ftg fyn!WpM+2ɶ\ t뜆L6-Q:.HrS[R9'k#VOPM~~3|?dJ~+o Ƽ5npT F K K K K @nr -[ @nllllllllllr= yW#_hhx4n/DFC#G @<y 3g @<y ۾Wے5 EGcDã5k @\9===========================================%^*ROSO?|[VeZ':[o?&oD~LoW"ҿߏSdE51œpΑRuEa4;;-xuz)`'v;,/Bw㋼ԙ~Q&]C؝EנP "BnCtX 5J+=h0w'70ȝ2<2`Ǔ,Cw]+y0hurGƥKWORyrdf9Z2O0(e(O2dRθt!b;3' .ew*-w_=CN#z Kr=Ln!>y ~ Sjv8qv'Bz^ZDA .n @ly\Arm\\ˮ0*;;A_\ޟu> stream x\o6~O-8GiP8}]خ^cif(RK8n 6%Ҽ!%!kx#4ovMPan 8ЙFrFJ}<Vhd#]DA |@ V x%}p}q!Ix+6aR)Ix)6a 8BJxne|Q+TpmPRX EK&1"4PIxum\ׄ?&T&>Sizi.yDu^}q;r?ƚ8>Ǥ{a[vNcCw8N'蕱KtdZR~ j]P9c' ]bg݉;(Fb?ͮH<:ݳiRIXmZ挩d <%7RARuQG~*:EMQK) 2ѠF& 9ND ~}~&9 9xݬ;?_C ,1O;QKCC!ƥ'ƲޛaI@0 0dxhyGVZ}ًt"XS_ם/ %_w}o(U3{=Fd2;9=|^p+,$BNc=!4 Jkk רS,xδO"F!4Z2dͧOM5$K V̓C*M5QCK V]aǏ - -rbe(\̤E0wKp $J>fˌ`3-P$;y>]_ڭw_ -ȴrԮUG@Z혲u4y$'<ط7KۄgkgV@iz= 26(;)dul֔jmB&0QNcܝɎ&>:W dt`H8Ev$"}1Ss[`M1DŔS @uufgJ%#jda RrLfN2Dķ8M:ar!qf-9څ°^Xh$@);VƉ&!8pI:SCsL!wiG'4aC/<(9PƬ^4EX:&ܣAw!)>]u) 88FDj(0*U✇"%DW:˼&}dYճ5Sڡ@`9R~] (dBH4cD=âu!M6*L%]+'~>Ƶ1$̝Z PyjA1S`}1.0qe5P wF23"\+&SYTCUF֣x_١Ues0 D̔MkHe6+IiڲPh~{UR-(u^ SroUu ŘʿMgRFC$;1ZMYMYYd &Lt V UtAp:0Qn8IMs*'BeKs=j F(Gz, 5v~)&j','+2ckb^!čZ[M6ria=s֝jwT:74H%@Wj}SJD'wHcYf4CaG P'S A7BJ!"W`'eB·wy3<j'c\ mn]VM^@}xۛ8 '.*jPc p̫* lyė@|X-.7GQ3q gFɎO? D=x]llZlbϽX^nVO/@Y|AQ ΁RL?&ƴ= },;*{:lݩ/v^Onv.r>| f;ow Ng@| 43 7r4l[d+iv 3xz{;1<.Fab·k[F4n Yv W LC8hiq|2~1a SJeIh{=3܊3g3DiTBegHC7U3)z\^?r^ô%5-=}YN"|wG"-(~Q[_uL>%ɀ|-ѳNZR^~(MyTi9!|H?%M;>sr m8w/|]\_О V`I*ZߍU{gV``cVfB-8O쬗+v9X9ǜ7r0?HKN:~N1A,џ5*dy#!8 6(AW3c>\Ў/<\Z`1=+I( !G< i֔^F[ayx > &XSn8evlM?"U6:# *UYa]aܓD{QE|pVH fz> stream xYێqB>xXvE@䁒mIjw!&,abuSWq$W1&^~#۝V_mnJ(V6G2T+tZX|&Rt^*G/{%v?nC=;Dő28h[g(2qX [o}N35R0V2iF)i4l(O/A!GYI.]\9Kx'yvSyݚ&"lD+Yfx v+5.ohtEhDK;ͥh|O^I8]vpqZַcn?[#k2實>*A"͗v8͎NV ǘ+nkD)8 9*3bg,.R%L%; #sV]%QS45*m^#\"L MT,tQh<0e}ƻSi h^oH>)F"Flj#eݷa :rG|F~FHsߔuëfᇄ\EGnFD?`9m"XfG\&LqvL/F0Pf>~oDA_*mIp@㱯x QF)zD.늼ŨB S0*hCϒ LB<@2vԖ:vMVF6jʼn`w) ؈r] )0Z>.1D? ;ݫ͟zUOެGLD)h9E`=l}8ןqO|>9Q&luoKs dJvW:b BO-.Mܬqgל}\RI`.q!$T@$6,mq#A&C!TP$޼w%4ၙ#ui[ 8(f3?gS;!?&-PiK, d=(whRS5vV:e'2 %_",UCmb(!w>{$ l-O:Y>L$JiK;T@1 Tzux ǞEkKJ$zs2 ^Ǭ?ttY-^a&0PuVM["̤+:YOw8ט0%<C*}%hh Wd0a!sTo e!>H؜CxD0N/|jxIL<&}#aX; O< st\z63aD'l u]2ܼ:p/3~_8ӵhSefUC؞p_ԝef=LG =T)i4p.ag_|rOH^JQImqW>g3~QB9J5?ߊtJ~.tBK"$Xc1kb[(xw:-#HsaD]Rendstream endobj 1257 0 obj << /Filter /FlateDecode /Length 2552 >> stream xYnfڵ9n^I6L;DPVԥIsAv0KuUuSUO8ҋUxJ"YmzW6gn ?_~}^Gű|)ծ +Qk( 䰶BaG}"f(ѻݦl]_0 tq??˄fl~<9din /m\ٵnmO!{!UUsl%Kzlˮne⾘Vr 锦[d ]"Wm' fG-]<j %`5^V*vHrsgYS o9VtEح׫fqĘ10S%%.g%83CC!r(QTxVc4w&# Vsh Zx܌PhSy O(p/q*mksތ&(@\vJ*p58]|/wj8a?b\r^.Ud$C*;>*V=Q%q6zWlRE2ju^CWׯ%y wħy\KDhWG-))S߈XcqE/qcMoƉϩz><`}U%$.rps@u$ėJ |Sq C5=NхCgPjIKהIayѰ5燜C&F!>UMhjgOg=0<Qd}׈a2qQG~#XE85b<6:&8t mqlKH+=3H]BI_t.ߥ4pMkD@W=Xym\_wJ9GuP[(EWC]솼.;Ta-\H$H#'x4Kǭx{:bV,QO\jrաp !nPs÷icM)I3?)WQD^hHꡭ>,oJ㮝=5uaC4{v $U<T(\>Ќ\zQ*0ื̭97X>r=i"r׷C!5aW1XЅC%XzF>#WrRbzCY]¸(X6#o^p LJ?GIh?CwKDPB.t׈wBl#w^ޗm RV86jDǏ>rE'he<+NqiZ)ߜ)"7D5h9MSNhC2_5EA{IŇSwA$Tj!C;쒡4yL&%Yo<ά|/-}3걸`.ʒ܆ :TQs /vh9PRz;T6,e D?rsHت!9WxPef1Mgi42駉3Pi7_pjQ'wH{)B}Ep$.]' 3_ -֦QjqU:} &endstream endobj 1258 0 obj << /Filter /FlateDecode /Length 4547 >> stream x[]wq=g+fLB]9Xyg@3Y#}P %eC`Ш[Յ_\\/]_W~}%׫gE!ʥ2ݫ"w(3W7W{{?\[K!TVץ1.kp4a.8ʋ[ Yz|M>Я?`<er'ӫf[~ !"Ei ?+{2Q;jKu_u쇌_Wy=-9$Ut^ps*5 d1pX8vto\f8O}E̗:vJ,J9!ٙ8>V=ݐF춮#J(5IBpvCuwH#D߇fEROt}3|JoQ,V]hޜk}u-d/ -B;ma=4OcLo{b$dvӎ-]ŷaVGg[mR%Zm53gcz>ٵͺ%d}]umJUya-_F®e5r_}]p[e Y:w5w"d*]lNhD%5[a[ݧto^ZU##U^{kfw*s;rsU0.kcW/WeL. H&7el/[5^z{v,bV%og a6]u qS@! ?=pKb9\ ue0qua8\ NlV_woחBĔ,%\:uu'Ana/٨8&cɞoqs2:ϿaAzу/#]+& '.o{\ XpߒNB + ŗGs"TOQ8>%OS-='pyHм,uFy(-`F3 ~JO 6)i6VB917. ~?tNdԋԯ^~1 +ѐd?aVVfY KQ]x`ps:EQ2 h_B'Y(> $R#_VOFjHO%nY>'69~xUz712!٪Ƞ Q[]A-R61 Ng6o 8bTͲ#Yp^!KA$h*epW;Χ0q0lH*vu4A/ YnބpɐZZXVgu&ETPc:ZS < ;Kܬ`iQĢD F CO$\{tCEU §4۟Wfev;$Bγo7T7{_C RġݷFn4{)YH8ЖZ3u=kOiÐSF,-` h)o[lUBA"w6e4̧G>WWfsBf\4>G۱>-?Dh J.MΝUY:N N[.].Xi"@aPn6HD('leBM70 !̧ kڍـA„smѭ,YPX_Gčxsl xF4pπ_: =ٜIˇ.cWz2%xtRE/q'eN霤"rcWb6ůND/9+tʗ8䳹vFT0]ts%\4!gCcfHd)Yݥ\/>yMa#cf.d>9P%›rg6!.. vwJӾ0Z]19s?1,Cs!E+1tASKtW7UعJJߎr` !Mh <ٺ:$=!x1x|.\)\.a[ *Xk8KV{ֿ,-ٳG 3}V{Gtv3^ϿI@OkLqȻ˖ .0rj: bDfJD])hs3nL>>8S`?$V p?V](F65#?sN5#6Ą$}XЦm"҄E8}n&J뱄 'IBmƘNs:>$58 =%kh&_T/WvJ *pi-lr.;")jw.CoĴ[S٠GSL謹\u.8֧^]#B]@_Y$奪J@sڋЂ^\}R Nٿfln ) 75(=oMZ!&9boS ͞B` l\U3%ɵs_zrݾv*3$بS_M?OmL߭t<ڈx.:'h=sLD[$J) D6+5HĖFVi7ElE r u@ {%n,&tQ koڔX3(((_䢨uNʹh9h7bq_1LMKM0n4)7\ R} G^,=|+H7j*՜-5H_Fq/bJsiK$2% \2qm{ʛ՗P 3+} $uhdN܉`2j('? X MCyFʉ&VqS.xL4-2U"iJ4'سjd,#v0@@tvF+ X ]dsޅUZ@<)?[gM dgmg\pB=LPk|;$eW}>>{OfԓVj7OO1N}l+%1cM~b%|tROS7gL| _gє3"|:ds^,b1-V+-VNG|0!x$*=n+=e@ X>p OƁV3k3 :_+l>i>>yH֟n Of4nM2 F"酖$J8*FǞOR3mfT"~o+7 P@r[P 216fi"Y,؇ͷ5丹wN&~{r 2_X"WP${2ԍ1b| #:U)WpKChQ>QT[е#5>qJ&- \\de=T台hh2ZeF G8LKp3C}O W{ՄTXfFOg Ӹk=YdQv>%xLn _UppbtMC>Mu6,N{R2JAK(>NbcCUR bG!Yyܐ؆E<4:qBLpGq)B'EsQj#Ƭ;· ,4{2>k#jԷHH}DžykDJendstream endobj 1259 0 obj << /Filter /FlateDecode /Length 3469 >> stream xZKq˗)."ۛrA$v $h Pص"fzzcU.*f~vl\((Bnnx\R\ nuz}ٕ])ʃ( mؔ}|TV6i[ ӳ6Z -ymQ}ic4ƒ#0yPiԮzc&"O)AZZUħ\ϾC'GU=UmveQuu?,!V̅U`epm~8?Շ۶۳_K0ޠi75itVOPcD--;"?H# #2qQPs;|JTaGlhiXvWò 0IĶ٬LvAfoDpvUtgШvca8┹ʲ8(7?wX_;):f죍 ,l= vLY|+2Z5™pai/{0C%ÿ IܾTboO uFÎr ./.Ě.=Y6~+Ǧ" YUq6}w˶ea.-3MWQfx2>ֻj{ڌpG !! t@ 3l1fWL2Tm5R S٤/nPz{8EĘ#5Iݏ%`1B#[\|pn&]..V6,^-XND`! 'v)kO4sԓdnvU/TG5e(՞ZFK!I֨pDM``$Ǧ]'p SQ`ϛ=O-׊¾|ӌ$l0G"h ñŋclz}  dǮ ^t/α[ b{++*Bl^ 5!2d!b9/8%#pW{zS(!9lG?ºOZgb(ڜp:|\M8HZ0o d{% )*5ǜ~ gv۵U㈊sE6eII! " _J_Aaoi.UJQ%(G hX/˫U1]Aza%SbI djSPXqBy795`=ɟBe%PQ* 2*dPOq V+- U @}Ӷ?yQUJa_Y(l%ݢ0cWIEkn1sfGQ齃 ڱP]b)O Fi&kL $!Yood0O}FJ1DgI절SUO35Fs rDGX ZA 0tmiaF!q]_T,&BGO*Z0NZIƚ)1tKr|M_CNJ{ŒOP$z3 u87h@U1P6 3b]R3/r(M6}=5geD9c Ts 0+״o94o6#ll>h  Acp{Ŵ-Tع0߁Qj\3.1{OB . L|9)7Pg'SglYɷ tᨅ6+n0IաT1sW6<Ϟ bzfI4F<>鲹)x%)lʼn H= e"DܮEK1v璶ᙐ/O"RciՌԮרP*u蛟Dpb*Jso{ wm7ݰo"ৠn\zj&.2}\D5ֳkCD`婰(EVбIII}:Ҡ㱩7hLN)gAV0fԁ刄K䘥YUt@gۮMG|}@}U aGEaSOH'4ЀM8E%B\uQp+K9!YajfH~OŸ! W:F|sJ~9ݸ:8q,9ˑ"ޜV<ϙ?tm I(MU;\S9jz2jU3t.Uv<wӇ>mXu`F r(% pEg;Qvݥk Rw)S)v2V#8Kޠ] x'F*K9:TZe"d1ݢ| v>7}]H핞sG\Ž]/_Md95SU?#n/3&5+77BRc> rCjoq[Oz,έ,8,4r ɚ[s|!)O^BxwJ<$nF폋}y)sd"Ǥ;xd"(e1sMy`0xb%ϰ*D\{۲4gCb$MҫןpPm:f-VF^f-=^irT <83wW nendstream endobj 1260 0 obj << /Filter /FlateDecode /Length 2876 >> stream xYKs8~ʗ,L%2)=m1!E Il@R6YWF_?22^ˇo I.m|Y|,rs;rR-M󪊎KPtj]62vnBT][pBy%ZxCwr],(Q qZ9e./Iǎ dVJGYf1%ⱬȫ䏥?ˬv%S Z<C*hG}83'b]0 Ts:j ;YhMx=߇wy[';SFzRYlNc&! my_6дu:~whw6?։2dDtp,IJŃXbWޯc,Tg%0rAr\ DČaIZo]*udrx0ȫh`JJ@щ-0/WHcŶ +W<_+mWIJuN-C`!(Xࢵ5/)=_) D^V]UmH*wƔL]veB]UZ`W5GVFiW:ѡL72A<` _ }Yz/r{st* zt|Ͽ 8 , }`Hx+{<`e큑On.|v (̕Y9}dͩ?lLyb!΁_S'\ϒm7!!}><РyUMpSr $* DRHfYF%]ޕ[0sܕl#Bxw2\EAeY#oB?'0=FK mY腗Bzh*CƑl"2JLzt1(^X`nEvu۶ܴ7䂛w؏/4yUR:T*sԶ}Xr6":Ý4A ^ 㰿Zk@ 3#V(7܉%}#+Eֺ-'<,-o |:Aq7qS >]ݗFZ%=)=e"H:e]9d^:wP-50"56$fe.(jN IT7@M-{w5Rh/ D,s0FLA4#4)8AO|*Jŕ%`C$ٷKI+J_@W\GyBuL`,bÞc|nNK q`w0%5,rg،~>BYt}\|Z~{/8A셙Q$^juATB%9y\̤i69iGdn&4JrLys'@@? R3;RS֤dRv1~-5Z nxN"c-M%O/5P{z6:z7zr @L^ԱfYzD84;f/aֳ6a`ޱ ۧ%U=%{~lCWYԾ&44V]f n`E5S[ΆYNhsqdJ5cj](C~ּ Bs%UL`yuucJpI98f7$"z_ZnCcB*~Q[ ܓ8kǍ5# jҁ(vpmx:(q"덧%؅Ua6`!=k6me}8,SOq`0V S-.v`Ń5 :(vLq͞Б;P`j3lCWө)--&}[6BU(-'I? tOMOUw<؎o~R5 ^8؂Khy7U}Fq ,CN)FlXoh&endstream endobj 1261 0 obj << /Filter /FlateDecode /Length 4408 >> stream xZ[oH~[7.aae#x`pwvLK*2 ҶN:\~dd7Eo7Ϯ*xVY6w7yUg>kWou0H#Z4L%m㗜 ͏ jE8~ܣgvnTuQ.y8iBcǽ/>7جL [l :Dmg^t)nV:AĒyޑf uEU,RO;5ZF[_=46\.ilzM&?iCjV &'X<%M &7ƱY㾑qGB $T$&xާSW?m+4;]0/Ub͹2`a.:$f~b5XkEN@EԌI ՑvPL~w$H⼤N)>ߵQ%06KogY E7IԂ]ExͻA0,*Å6)c<6`:) ϧvG(V˛d_ϵ|6 J0OsY+":6Cj`\AvPh$ES;OC0̑+=6?kvsdaO( Wx{Mpf)NLȣ\eɍKsMNyT Y@Py,IB'Q YF@̱#SdF@ag!w5,gKal40S$SQ~!WҐv?5l"s 3ej\<'Ү y?C:y~Õ3OxQc-DAl=%%1E~>g5#hs~`, 4 1jITc3/%eR*s!!$X/V.y&&7.ܾJlY)(wXj2p2A' {_Nh5wfo_#Ȝ0}t]%.:, U2@T9*I3r֑T8{b'lO+XwPG'uI~8M3 ;3:ĵ՛rU*H8D0)J4$0GHm|*v5mBLx:bܹʂk!ڿ_cQG^&L"\e,,I&/(y}rB@d `k+"Tq8 2oF \NV үU[#\@Fe^;IpǙ BX4c>0 yrWsdȘ0IH>F?'劏:d>~e3%C lmga7TDܙ;~ꎓ%mUR`d8P#Fw#x%W{JTT/ 2i.ц̉nƝ91K狡n"6RhN8O2%"SငKdټN7fgYk..<ԵSl{U,[}U@ͱNh5sx]>).lQ(L(r^y&Pj7h%zżeV11%$P} 0+怂7_VwG fo61ݹ n(r}52EZZ@o QBȏ}l jZd–¤KimR4 U:׏|@5gʐ~E:0!m d{e^]&n²ZCTgH1Gr+! 8^V[^ .-Am(hK's|PXA lcIS#en90ϧy[l Rbw ϓ$^9]FR`KhًS! yՊ+p.vY>}(c{E|wj}anbM_J+%ddJ&&=΢I^<1򱝠c-7 >V 006!v@KE"p1#=(֡tXGUv75<Ն a}R+E`Zꡰˁ[pg ܌]w#bg]Ծm/J |L%KCW|C4ޜ{҄R~-A:d2T9.>5]-IǴ夒V8IߍY1zr,QYCGY$Qȟe 6ɎoIj)pjdxFր ŷ*a{ZmŦ+.&u37]W"5#H/&߶9z`*/m1k~ ZAr݌T|F5u/Ӗw~3+|h?0qG,Bo v G_2b l'%P61ea  xU X C_i Pvqe&]gbHhuҌ.`_BSXɿtNMMEWF]Fyt7߽u]qku[ J%\{O4ҊN0 TeyВ6 2 `,z_*=].֑LK>h!+#fN垾ɡeų P4EP*RY..[w|" rϤoM!9aDt ۻ%WB͋ԽD-}O ^+6 ) 3>UF3̢lr2@ 't J-lJf,lAh P-hi]IXT|_d^6[nOVR0[ryR+F童XチDz躒,ڥ_xĥtn45B4uɮ)c0-LtK1Q'ɬmLwHo!*o>u){7<3BL, 6K@Ίb@Mwc5(Xoм @_; \[˗\J(;?Eh`gD.endstream endobj 1262 0 obj << /Filter /FlateDecode /Length 1630 >> stream xKs6grԧ< 7Id։P'->@ƉG(wbЙ P׽yO%N''ǯs杜.[9,F 7pK$RUEJͧ*Fؖ{J⿣_R/"@TT=<ybA8DoI08NVƊ8J}$DyVVQroyBǥuڌ9iJAo| IԙZ4 8sM4)amG{TeU#ka/fh.P?@/yQmޫRoIA.ƶڱp!f,j| dڋ(⢏QAuqHA%bic"q38̳U'-,^u"*֜I< !xY؉Ψ_b~QAeeeFvtDC ZlFpwVF-uW18 G~'=nJ7̛\7/J3=위K&>yslY0Cy8Gyr83;>ԤXuFGU]$8LUډU`(ԋkXHI&7&HPC߀ &)žLڶًܷxhғ&}φ92G S`n7$Q5p5Wy\6 }ϸMZL]520m`HFYy͸6'p>?Wp'<#3ų|X4dD( 39g{JLNfBL ?{y[NlASޒbsG2{xendstream endobj 1263 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8670 >> stream xX TS>1$mI:ԶY+jqFeD@eL!aB HyYV묵U{;Y{?ܟuo[` {߷a7`X=aQ$Q{$$2Eq4&$o=5˯̗hM1>N[oK؞#igr.!ûeG v q u s{% ,^ԸlvE+gZ=gZ;hyw>A"ل CkN#<};'.Oxob3!/XDl%ۈ%vb)XF$3>XI!(b2ML!$+īF5ž H"4B@ 61p 8 KAFDb$ .+f&bd_jP"O.$3ȧ?u/EΗ:3)pR'OFSM9{WW{'c<'^_˦N}j4iLh N98w2co}Ӣ"{l̩37|2k¬g]g?sm/0h0A^Mk?1FyA2SBoR}Rc%}M fI<_@ w~i!( NCIa9F>$aPg ,OAG2z0ߘ[bMʤ0BzKAGJ[5TCHଔy37>zU)` FHٮm6'%L*Oity]>JrdiASC<UB`6 謔U!+CZ.@KоofdzeVҵ TsNo E3[}*€\RR5a9@b8a%= ƀa-}[8E*wJf<_ iwq<|Q1lT*(^~N7*;:ZlGq0US씩XSI"k,ӡaQ } ft;ONH9P>1U-./#Kz/ri /K6̧hHy CgB[X)?08m8\ӓ$Jܠ=v醈)umck٣L1$Rt449m.ӕ!0#(ɥUJ6+~@oiC6`F8|J.S$0i/uU'1V ?pG ړ8I\]R*yЧ̻X#w{l `aӊnw~=C*bӎ(G t./dSp7%8=ĺ¨rYE ҴS.yLeos PmX( .: f\e L%d{xP寡 _ŻqH]޾PLo:1x{h=gnM)4]g],t5Iɉq 7@!#vXƪdS-*WV75_ş1+GN5Љ3^?4r,>جR&$/]|uՁX͐iy[%EO׻ \}+UPU)Q4+ʡm`_>Ɠ1z-߯>~k.}:|aqO;ḆdPm&=JӋ@E&7 >SIO"A$1&"ӷ_j>.ϧp-_FD@< k %.$?ɑP\P$p a^KZnkrmI|IJwS̖kmz:ߜ_[ T1'VKYPk!,<ɖQDgT5#L QHS G%P:qjM| }. }Ɵ~o!i)l fpp.KWjT6zMYe\4{ gp4mMhzW^XfÏ} R! 4UIEIiT*Zlys10gW*5gV8p{;ĈPR&žMaKZRпZ {GE)ҬtKZadĞh<ȅ{6|50$T C&IYLC8\4E4 5?pWt#y<Ns.⏶> _ki? .ج9EOj7 7cXiw-Hq9:6MyfRjN1dfgSʦ C]5ZEʒ8&Ű=;>phvZY=瞳aD|̜fI=f)yO[RZԵJn(T0CgWh?{ $)vѫfV :?.gh)kJ5B*H2 uLb* PG"ļr gBz^:EG\}Qr,d:jgeAgH2AZBW姚poM p'cUl,:crnKE@ԼJsaΜeXJ yɮlfpzy|m~zaJaz!(o YPtcs±5'VIBETAD&bZHӞZy'1!&7j#7kby_z *'۴F-.^ V $U%c,Uiab+x3F`Ң|v9Y][AiTAkVR t@hTm#p]4݆iA{e UP Z9(IjF[ruM GcgUR3TOD wa y9 VLIm8.| -TWHҒ*i!퀓^W%9FPKA2HLB[  $QN)y_WNL[ɵEd]寳n8@Jr2a+?Wa\R|t.׮] , el ,H\9^^$k}SYKЂɦl(JS(6/ dhŵ;,/&@S4GhU!6 !hOYs5oP] 1ow}Ev ʽa2fzԗDcy( ) awI0G!uT8˪=c8f.N4ӛXЁR֥*eB,, + w8^TpoY,Wqu')PFw>wSFd,@c?W%EPŚCb j)9?\ײY;s]cm]VҨS4рr9C:ږflZͧIpi5.UR+˜iI)Cn }Ii)r95y`3Hރ!c~F@Ew7}>Kۚ=BnMc\KT_~ 8VaHow.@O%:G3Ն=:eÿ:;ͮ߂g\_ 7gB{\;__1Cm7S:"4/h"pQnMޟ'KH = ?Mjff?7YҪK ~/gU<?<: ~]vyNk.tOxx`y\^9&t[Y}1 5EIvC=tt`λ.ވLV%Y<\fjax1LWi{wdCb BpAWҔ.#@v~'x__y,_;;prP/wΰn={p,}M݀:QE|HMtս8g% <%0~'3TqFp rcxAҥ#-k??~BĴPɴԽyV~P~1 LM-u>p +;cz똶jJ;F®Qm` Ͻ{Zx`\ט/PR_X"ņg3?n>6̩"^i)kW89 6k[AXt#i^0 T%44VW56$TG#F0'P#c15$q3j8\QVsppQCGF`̀;stPmPR~:SE &ʩ򜭹fj3Z&yWOz$xӧWxp8CtO.j0ǖFƳzڏtIϵYr@X],}:"]@cUT+S#z Ybޏ^ *[i("j#G/P_t\PR&P5\\:N u> (kCZJ_X gemfnL=I]I8iu JKөDR9p#')hq`cR`ZdA nwNI&vui hG23/H*Jgas6 R>x^Z e`mFOM̱m'stk|/:+BWuuZx{Ƭ>b[1ܒ\,-FX, )t.PY~/ l ǥxt59 rfUjcTQh[ïoWXF振$̜YPYѿ ,\G>()9֨S'3Ͷҳ"8W 988 '/l'A^`/o@U(&"l1j7f,[\loG1 ![z$yQy -H\b]R·@ptw@u-炁f}(hVeM5ĸJKyUwú>!C`j+|-g{{/3&֣#"u"`h|BWQ-(4xyr u}a2vv N}ut i&;:J*J .sS3=Ũ@c(;Psԙ*PH@/S%x/^r$*@s$sąO"Sܟ+O TTx) ́y sw9 X0·"1j ?*.6269.J'Qa=sQ߷raԞ[~n6LfR^AGkۚl!:mNN P¢ֆ3nԾU 1PW D@V1N$/h>)'S0p1|MeF=\7x',z| }1GAK * U+bf OOHM)mq̫շY'lZ+nʴ@ҹ7w}؟x8X&9UfzrPλ\pR1ڊ\9*z:' opٻqŽwnܼrq8<WA73P]v) lVl EU ~(W$'~|A]1޺a8z,9JZox<3se!yl^Kˀr9D'ȷŏk ^kGﯻŔ?}4=9m\ϘT`ꌨv>X1>XP'>I>)7t}!H3ȓ4InA\BlaFAVQKV+dmj ke(QDu1 P U\б;n֟|qb޾x5E"XmAtO†/E)sׄwj;{ aU1=Ap>{ZV7A QFY80OћAJZ/MIHSDޞ\aXQO5f_HC;Y뵡WtE%GД!qZ3{G 93M&Vj8|:qP]>`U 0Yp̋1uxzY|&,+0gY+I I> ОFIa r=BT>,jyҎk/8;T1sGShBZ0ζ]7S;71`7Vθ5fad?ly]7+Eb3J ښ&~.rM>][ qfkk{}!O] )2DZBGẄun󔸾PK>ò0H0(^X>qgەV--`.ͨVd5PgF?+8~#=/LΗ8:4vy|Ar 3Ҍtܻ#nocН?8;Hl>ߠ?kt;9K$ D}wqɵjS;hn`Ŷm+"7V ߻ËWxʝb>nKq~#j; jzm' %˚.p:68_ijnĿ緸8>jˇ>ln'ݡ 5^Ek8m\8'8ef8*~E7Sc;\.ns0$0?<ڿpf$d3]~7+ ]iIov[w(cO롌sLҎ} pXDZ-9p07lpK+5͆YБ_QyOs+[Lt);C]jіݎkk̺RyXe(ET`".'_hɏJJljjj?}B[7u}(ݲ燎VoQ >qmPd=f+cHB622 u>~,/I jS2e@M%ɬ,SIlv=@*SÅ l̖:yA|04,]/j ]PKU˒2$^f HPSP\h-(%TejYr\*H)L RAҲUQ*xxSۤ*KCq:2ʪb\ت}{3>ʂyW0vd0J" l=mmzD0e0ibSh0M&{4endstream endobj 1264 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6284 >> stream xXyTS׺?9@<8$u֡b#CE0aN I3)$HPAܪuתwz}o#'P@+":0Q76zW캝{GāGnw@Nvɾuϝv*L2ߋ9)͊[&nKڞ35#-8dwgXވ}#?:5aUK-_Uo^v[nQj7KyR=|j/G-Snԇ"E-R!j:uzZJySjFS7jʃZCR$*LMRΔF+ J %j65D@SQA {'\i7l?׾֞stZ,3 z3&M̚x1ȱI$sK^yR乓+̝4uCS:ovNq!ʜ8yb'Yw}W.Lvt+jOoML%FC 6,66OD]cX16T։g=KP6Ϛz]!QرQ:3  3 ܧA~ y?PΏ=WS*H+Fii<-T^<Ej[x;t~v;IːM~Las~`9"zL,2)yu 3B*{#+. .8 o0m61(`:ߛ m.=&9!Zࡷj\}W"y,/gr[6X+`r,3 OfEQźx-^3#X,% O99RlKXOH<'mC;;cFbdB?2t&pjH?Q޹:Nզ R&VzZ"@X@gjI,,PdUB7A]r"/6V@,7\%4"s=$͂1*}ҧI=tw3,aOT4XƢ hl@̈u7vSb=c{Tq):g"'owQXHS@F7hyAgT. jN \6Z>!i>P֠%oFFȼ#W]=(٪[gmyF^cGnRJ*tGBbʲ9-p}f")1QvJ_s9>[9j `+Cj+¨ɱa1#_ 4`#f&x/TaapP=#T$6$Γ kK?JƵ"0SE_gwje#-톊*I]Iׄ^h`Dϡ>I ,ɓ/P=^ yKI JSݡ56xbaxB_]]Ki᭒EU\NJgtpk?<0?QjP,N/W%&"f65ێ~^nQH&8:wl$I,^gV+P2T5kh[o> w;!r4ֆ:[OS6AR\jc&֥ a3rdc K'=@@3$!?3 3y =W ѭ*]3 h>@j]ončDQı>)&{:; 6j;NOht8-=빺nHFizQ' f%bp΁'7'(k9GT ˇU:76ݐVCv4,ӨFNbu]S5o~Z~ܵ+&g` ˔<3 I*GRx=,2zi/G:ͧ/mTh Pjlr_l􆲔42^HN 9/ VnЍk "RyN,&(0fCgn]=ҋV\ E"ƊKtc>_+.^h'|ʵIuCk콸}&(|sYttoݯ |KA#EZ]g(W%FSPyDH`oo)OG1=ˋzvUeQF JDd7&I݂*[{ S\ ʫqMm& -dBI74oV!L+?+BX7w Me?l#9 $x"E_e33 s8#,oIaVkGMN,U2-NŦ]Rw;NUGgv ^0d9}NRu!G'uJ(wĉyEn+^]] 'pkT%MKa j,4 ReFRTI9y}wݔϵD4|5&4N^rZhV:8DPqI.V5+Si2r9dh柅-Vưa|:*tDǞ鿜 J? ~ ݧ;4-8T׾bnG֭7%wĵ|/W^F!'GGK}1xhtRŸ#8 TkuS%ŐNw! bTc\%hpQmaIi#Xe(BE%Ң2TUZ"BCd} GFK_緰{յDeek g5NW `C3j0+#fSV/-ӑ>ЍM[O3a7n0;~hzkevoqi/C3._U3E$dͳ>cQ؇rzvY[\,v5y Uu:t4=rh6uɵ"Rӓ"#tnCMg9MBwMf]cn N46kn6DDUXU._6IlnH%}-" 6ˈLX7ϗ{ni7̢4:9!IKc|b{2FʷUnLeG`s$3-=eœ#{2~kோaڞ|*&ӑSեRc2*IL7tY[XB  QG~/X&-0*~, 0i}! ڗ)I5ޭψY~ƽ4jdVzsƈ>e`}y*[)ѩ(jRvtlݗ<$g7~gYQQ2pցO}%"+ ͩIG1(uON>,6J.o3\}cv?LԄ'HoV8uFw`Œп).ÞТ(_>hv\mID1VڠS'Pԫ {N\8}p>}·[4I ManRMLG}c-̻cXm٦4lJY@}yUKTzẐKS|S|[=,}1wy`^Wsjmh$#+bV63kz 4yG8!EtƦ">ˠRv܇ݮ/nNn m-|yOQ4?9@Ptpl=\fCn9;TI $cXF/'̫*/ϳxvLKʲeCn3.h[J35<@F8r)\, tv|VVɘڒD>xwʑWz-x%{NH3n21m 32i$}8ߕ& o՗hC'ŗO\<%7X3^4hOdzxEio:jW鵕Yi7"ŎQaƾcQa-8 Rf5Up%OVTZ󫲑2SZ< Os6J#& c)X*I\=f@H7Zk%9P[i--wצ#WH&3QMX wF+,TcZI NA9ǒ|n>}/L |M>}Xi.=YL>"6 0y'~'ïFw͆{s^ScRؙoNE儦%GQ(̢䄩9$G(嚲Q$Jפc+&I3"5zPu PAήȲ퇊BHf\S=LgϹ<_r4/}>;fxx7UW2/3zM 9U?oxx)eZ1=&&_Z#? <$7$a$Ju'ډdq!ITnXGخ7e(.Pf`{S0-τ*j()&cŧ xEW\'OG ʣƊ>+ +9>kvqa,LdȊs4 Ҫ^W1>I/#U!\XEcV00_-" ٔl뼰Opߗ* RA~ DZ}پL[z Jr,]w_[Y`z}H.?$ˎEQ^"/"*QeЩC"6z  @pf a>lFV\74y*,ge!]'{Cz}DF _!< eT"0ްh_ 1OI"k$ c,ZƤg$ P%pB* .#s i) U c6ir賘wy =LN 'GndZ[΢ԞfL2Ēy/eHhZ$pd ]`#]D_],l'#s[xhieL{ZW#s{neJU\mFLH2O$#a?SdM3aD_];zi]wxh&Y` q+,`x.uD¶6M{Kdmv/c(hb`aWpB).D?ۑ?BDZ_.x@a왽ho_BXĿ-:1a:xGxَϱURUOAfA@A ,' [bx$nzb{ ~19lyhI7, Xpָ5чR+2i홷tY̠)O^d4,Z% q ! Gq责-2,@ż/?>7%AU ?fW[Hܖ>:˳KDv:xc}?5s<35|wOV܏ ̋0Âc?vṪ־Km-ῚMi]ٖ?_xo8x 7< O6zj%x[y1 uP]_BG%X)[6Jj܌GqW*5'}a/ =zrׄ-!pKYylRpe208ahS?<zo)i0rcHj~j~q86ˇ,·%>~% $E 5Wz?v`~|O OX{[S%טV'TQ%cδz {HH@(fDOYY0T=<+{Q;#i=-EXBMQ{̣f)3d,ݝ질LJp'lG499WW;9!'godaendstream endobj 1265 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6834 >> stream xuytSךCJP%HtRIB(!B: q,.muɶ,ٖ+.1C-@h:2ٞe]slb!X,VqҾuZ33)3[dW^_OP_lCO<ݏ.O$b? ,޷piѲ%KVZ-۽FV.3!+1{ORΆs6o3cٯyu_"gY"xXO*pw'ꮭUؐzMz9ǰL֖Z^4=hR`O9@g;> P@+טTV:ŪMɬ;]meid"x j ;9p$tJj)ibsf}s}h@|*9!bMY'76HhA%b8hH$"DwIBMG޺qѧﭭEI41#fH4me5݃6l4o/]h=}t>|7DR欤{_H]Eem,Nn|uu`ly?K|=J9Zg8K=;ӽD9(@h&$g~P9s&Gq?;| |'!b0s"Ȥpt~ϻ5ļȯG(JFA3jMOϮw"A5-u,ν:tն멖_\Shs9xlv4Kø",x=mmyO[nPMvd  l8y19+6+4rX[C?_; HpPNp|4Te7 "vVHL, wڪnʬdղ8Mlf*Wp@incns#nvzA3yڑnzQӆUfQw0h,̙="*jĀ̑8/Qmm-C{xkM{Ict=ߠWIY .//h ttTz ,R|Coz"Ԁ\%xkC9]iWPQ !0GXpݪCGnv 5U/X<:oMWR,,vJOUق0\k n| *|7*yaal3͹h0sєd{.y9h~W[{ݶZ{-8|%d6), r9V;Z`JA kMlWSv5Qȣ̌:Ⱥ~f<hn\{=eT["fg;{fOg 4h֬wDaT`Q#9eNIO]-hZ_2u j( wn;#-w3Y'8k)JBh\ߖp7քlmG+Z l\/|>uLd {ְȁĴOHjh$LN|!0N8ywQ."_'*۴_,xYS2vIvK`4-J,A6j =@JtӑϋԾkhB_B䢾_t ?ְ4猱"*Kx'@=SpsxcY0i([  =Mk}~ `gқUF0wW͠uFdËL߽KavaܼJix˽|B݁'ql#c1럑5%wF_r'.[Vg:ۘd=i6O\BK9@NfW:<!WTjy@]ˢ L ;5Ii8+p >}0_]$#̛8fs"&ۋ%Ju)TӢc:c%b/]+0§M'76f`rF]ivmDe'pќʘƩ,>?)fX#`^*m(-.Ir7d_=n5G7g곸VF7b&|48 x2/"i\3iZx#'Z'B~PVp=n|yNVImWJQX\i9( m.j3EWh yVEk[-@gF'ض3;2Lg2Ri2 yj t.:ժf.,g:į(;V5)46|{C 'Z1܂^H\(䞒#z~?t=33k8+R1ͩcŸ-ޘZ4iBML00wOmFQ9(PF=@&J!jZچ_ތ_5 pHOh]y[H{~;bA6ߠ7|N/Aco]ſj[]Ie d2*짖STB :"p+{gW_Ђ&BcRM@y>HR)-ЭmhSߙV Ah?(uc,Fp ?y@VIb3ڌv(@O,ܒ[Ce8.sn|hR k=-lf(PM+SJ\Keep,;s Hqt1?`q%{z,)M(v^{FSCDJ`ל1.'PjU=Cm"T1 ]ZBRPHke-L[!A]?Z)QFHz W@Z8vXޞmڤ6nUŸb( 11CI9zCAc-zʨTMH㑝 8?WfnŎ|dX栯Gt]ZIsZP InXj-Ogͱ l+^Ҋ=Uaf࣑CqUfsGқLJVxGR YP8?:1Fg'>)3x bΏ}8Ta=P W7rpWoT*xRZs\& XIDk}{EeAx,(G<č-8eL } P$c1j @ v8=1ݤ6S泂RT)ز }pN(M_ڛv_.S`a'D4^B2MϢsM>䥫f[Lacf9m@64Fi `~de08:D葑qf4U#+]X /j|ݐ~:VۗPv ,</)TSn8=M/q zAoOm}?8.ɓeSY{2寗 y_0`3óo9o/6+h,Eȃp'̂"|)\?ѴU3 f,;>_RC}slCQN;ղ 3+;p̓P^X4%% xOGё/ބs{E933't;hB-'!^gڄ蹑z^;R9*J\.MbŮc|xڮ)رEyH*vdd* 0-2[j:m4j[ZJBɰC`$3ؘG5F̦0wXTV` oD)(|=ڸ:[ؾZzAcCQ=?=n-UL>Pmڢ0䫔钜yX% Ҕ9<ѫ>r4il*hE m#B/~X9道ݞsغGX8uO%Sʱ}>W'B9\ _fn#Fj7YzrfavDgOc̖G4V:o&݈dx^!_Yv>V(zHÌePUS!='Xw˰z4ղ/T-z|aWqSLjTE[swo[4 5dgICκeXfLs2O)AR[J6Q%oYu2PC^\4n RS1{%2xڱ˃[Yi6YNG }EtJqpǍ"/}KZs\nċ8m(V4{%8X<2ok`-D2q|)뚖vXրBU>7R[qָ1wz*1[KK!jDvzc&ӃWyA6|R2-mG/iRy\JK;opm)X -]Jwp+v5lYji2{<,k=Nvxfv]țm),NE9z#m =UqR t8VX,hËY\oj8֒a8chv8ܸA|#C`-n[ *(=(,)ܼpy~>QnL/.+h(nnoom+j̏UaK8υq9ᅱll6wy|f  ? Qܸ _MqȸuhJ:z+y*sL wTׅmG~a>vɰ=Dswzcg;wWmsY 9r0ش6{YiTL6YD#Z&T8zLu3 6-dv<?±7^ٓE) s DZکJ2'\rB%A(mOK$xn!6+p9sy3ȓ]YɻJS ]iW$vX7HJ;6. *qI}XYJk O}8`Ӄ ;G'Go#]\|q\O8δ =ix?=]]w?O\_/n!V6՜?h |dixYᔕ-Z] V,]^`v z'B~jTq Tg];̂C r[*Xkjr4,N÷> ſ'xHendstream endobj 1266 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6065 >> stream xYX2Et'V{B)*"v9]"*(:!֨K/ MC?5>83ߜ{Q'g@Ъ6:m{#d&w6]w:m\8uӢiLv-=tʙafkus8?heC->bdԨ1cƎw8_Mdkd0EfS~5O͡Ps7eCͣQ>-5P j5J-aj:5rFPHʍESj&5E<({ʓO}AML#ՍNQ(A-8ʜ,)+ʐIYS2ESuTʘrL(o6ʈ 5dE'N /5eӝhA)f0E̫:ueqb%]M^j5/»tkl#ۏ b1Ge7X|y~-h'-[:[6Z[eX_ϔ׬'[o{Mbbbg_|9Wl26 #xql LV'0.U*s54^$jdx ][Bd[o8`#,;hNnY0a{&c9G"jڗk`_rB^|=r^QI,^Zzm /@.(ֆ͙tCxC)sylWex8,Я;%vcF7$Ϥa< xC"ahNDnڰ ?+ۇw^ZqƾrptytNB9}xx.c\A$ʯꄃaGBvCkE q  kqف6+<X0O0柸ؿg_<׻8.Y9]*,SEhc4.Sr;wp@_I0}V2"/3Uۂm,n ym]b٦ȓ/w^7UԝU-/(AyL~jGBrj|g-.]l> O?6{f)#s S&J^ emSs Y/PM -!HTͺc*fTyѶպ)S ^sKUM&.6d6CW}]k`p\j*{Oor_,};n٥u3Dg ߿$^&ikb`|K* Ip`!/@ҿh,,=[:շHSc获AXH6^étTq;bKFz %yB] jލb˷&d"@.P'"-CBx0{FjAЃ6;tVF譼JKt㱢DZ(3(l?B) v,rܺ;"vA|eDeo%fت}Q%zw=H"W^ޡsx9|9[ {qQMXu.~î5Չ!E / 牋>7[@ N>GΚkHXbc#Za f 0 :ս1b sEFn|<_@Ћ GW*oj*ޠGmVΚjU:slayh6ߕ:!gIG>PZ}M3Rfe$rIR`c'y>ĻikK~yʼx6oĸ8t2,(O{Cѝ$Ym/,C*$j"i ?h ikyK@d[hkBWU,X?qyD,%<ܬ>voH25ޗF%;1L,4iea4ײZLd5/Ȓs ~0 TXd_^PC$@[\ kw}"nho^((^fFL<2h3LFM/( sā=~qol{$.{<.2d?+z4[me3>Oє%A!}ǟG:~3B}SWߢ!nqǝiWXIS3tnC)ϞpB93-˓l'NS77?}&@^,!D^HV\$}m +oDf#Ԙf?mϠA-ʊ>z/xx) %vzIK뱸^4Vx9x=~ e5JRT)q )K)b_Q\MV`v=K` R4ч־t~0Q06?X5$IɩI SC<Ф;ѿ1QO/7&ЫxӚZyA\p$( ބ[X)0}Oq!Xe r|G@h9U#9sjvMI٧8Pש swdr\r3rh}{_JtW$uslɑ7߽7?vid{ze17d~|oͯ֗lP`~8E<'w WMCGJjT,<0A6sF8l#Y6D.D w.hl\&*~3dH$qw:X1rFBRr"JڡVgfj;݉[Uc¸)ǿ=PVT&'$#BQ تfذmYCQdjP"sV|+D]X*a"l,kK(ѵ@/QIX1;aOX-c _ qwN_Ȥ_r֪5BtIőM;c.2}6u3&r};NZ-dA ߿3{UW3(⧛jhld.5#Kch9Uwc(вpT95EJ 1}FWqwǽ#ɬQQa]O>F8oHQ'bM~2n,! M緝+4T =U[Jȸ\]ygõϟ\:߷d^,%.0I`q,AArŋp~{;^k$UBzėG0I$=q7q6}ʗƫa@3K&aNF&Kx:4Kok쉂AskH&~F|bN!9}Q.wT?-6j"ƀ ^/i:fXֹEO4r%E쀄^|BcY =c`rǗͫddVתvD{فBٚK+jCOk/W_s`?y>yXC_YzvΪ!g6Yk%[lj~ZnwJn'!ܖ@%QK/oq을KzVn:L#芒" c U9< Rm݄?{ExNUt.>?IwnҭOA*sڵ oIL}/hӚ5UyѪ#A~n(:r-H\*= e1yq8#f%'%̝UM/҉ee:t#WFO b)£6dD!> F)9tvUjqtUZVf2hfkвh% ЄTՅF7Z'[8}QǜȤDKSg2H;㲖B3}ItC-:t@a[!L.!=tL3ׯegޛQm Bጒ̎99EYߞG<]|6 ;:Mr8-gab{fKϸttļrf ?Ehdt8RHVef)W-WXoe81qUtW9ONHDLRSs(tYĀͷ^6`PO* ^pq(9%*$xֈ(Ũ9ڀ֣QV{W޸\gI39RdUՐcysw[ :[G KKBJ43cŎK0DB ;y͊k~@00m<.vSaj#=Q֮]spL%JT 5 گ!΁بLp ݉o!2vBӐFVLqҞ"-;N6:!#'RKrc0.X.L`,zNܵIE5+?4g{ -.w] \=YHe22SɯerNbIIdC)))9ĘL3q(!!b3;#PXg:.W:?+-#5wnSYoCxȼfd8elrzjFwB|&dFNJQ~A Fj8Kǂ:R4Z9%đtc*;+OxFϱ*6+E씜\~"99(JAJBZj[/dpi`d*$aAӑv EIڎ'˰չaoıe`VVVF"#. 214ގendstream endobj 1267 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1897 >> stream xSyTWTɉlNbTj]ݰEQ\Ģ$$AH $,% $@D TPF,֥Zci㜙8{{w? "#  Ztʵog E$OHf$/QR*%} )䑇| "T}j_0y,2'J y0UD5QC@:@%(%f ~x`ڱ!Z;%=)@U2}"YEVɎH;k+@=Qm\┺k$j ZKN(\:.>k(Bf=CoUBTRggCt(?"wWJ#85-nz~;$9/7c FedG)w[zNx 瑜Y**=RZ,k!d^)ԜЙü<_ tL>pu5DlqbͰ 릗ㅏ S7kwݢqE4`:Q>f*[9sAw,nb+ fOH H5 |_/ۇZVs| gLY;3Ja'l>{8N6o)L{/ 5Tt frfzg'~X{{1 [>2ݔC{ᨆSd(ח4*U^L_m24菃 5bt|!굌ݛҬ"N(Uy} fb/jmO ๏S8MӚqfՄ;K4ur^r/?AВ;aXx -O尾[| z潔?TWIJhDJ!X(TjAΠ:G]Qs2m GTUʤ\S'-ԯuDފF1u]b0}]C&x c\ wy1ɜJSV[չfiteyU!d#~%>q6N8{YAD >?/\tjǭO] C28ЏBfy"WRoiGŷ0;PkiP`.%@ZBЙTz;1 T a{J;u,{u;TBVi-vMH$8ifUM5zvu=(VX!Ѯ,z>9^}69{֑I@=-|.ڧow)vcl1sYDUN?uir=Y7dJ xK]osNC' X(X֯A== z(Wd$`{׶wMO q;uL8s(}ֶakZ7> ԕ|iϪBXI+iV2za,Lt7Oz0Buv Ez}7DV/v+ƞ޼ ctcjYI*OIyxK1Cs Iq 'hT9giv&\ _c0¥endstream endobj 1268 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6764 >> stream xYyXW/**B4-VS[M%nQn(\@PP ִ.( /hcߌy1Vn5`Խus~;Ճu}ʎ|)ex9~_(R|=WM~px¿m3g&J}Ύ)sSO_ c̍a1b7EE/޼dKTҭ>ZF=&ܱO0qৃ& }6uشF@b1'"XL %È("XJ 'ˉG b&1EXE&FsQD1%sOyXb>1X@'0b".1E&#'V~XK!>'Ÿ DBBx} /AqKp;D ѓ!D$^Nx|cg_<{>zzFoW=||}}n^~7^t^ֻ==S޿7߯XCtϰ>L&v0 `zč@ɾW=7|?8f-\Vi. 20aQy/9p`8SӨr4zt(@Fa X*p 3)?8{@ %HbuDL[4'-gGL0(Q}뫟!9ͧ`sxBc% C:8zVV; ֑¼SH8: l)]ց|u:'kx4v_ecfu>I~۽u/qQHOa?r (J4 z6+>D$構K& 8Q۫⺑+FX!TڢN!0/ GmA&ʖ yE֦s8s韡74riMbBIlė1t]Xk2.rHQ嶹$L@Cu HŌt۶]&r@?øyNw]*V@$dSwwcX.dJU9-s1#b45&;$70 cp%z /f`yX֕iU;y:..K(A~.8xK"o*% kn؜BEok1]gȷHoS|ɢ7n=su1LqYv* #(QV ux"lnVܢP"ftj |L^ރw ~vcx|bۉ)jfrxkT[g9ɒO( YX$;&|S*0hIn4۾an eZ\հ<ik{εL/ne>]c$nmUH]`2q(Z򨛳T<\tfX W+\U+!)%vP8Ep>0+h.Ч'& h;CJݲJ}a썂n;ĮTw^:Cŷ@- \`Hf +ijR9O}"b(^μ38xY8yyxiD䍈@=)w5$8/v\w: 2$w\zƒ60 t/5 !ۭs\i5rqg읎c|,c<ۅ 9xOGցw1ޗkZ^6Ña_f޾ˎ,ȕB _=#y:.<1A38+* X 4a5t&T)]"/ktN_:/xP  rXgpwriCX8L=DI/ %/T3$4P=3&Iz+oHyITGtxFŗرtB1(?Ί8#awFÝ+(=} y,n ̏'r ~޿GqYE6q"ul@+y 9%k03t pWi/UVW6@0\z!y>l]Eq1Ea* J)jԔr5Ŝ4?Ij/[ķ3h"BQ p$ QQ|=QIqB=xͣ!u~ #F9(*T|Tu UMpl2kIIij-ƹ` 4{Fn;K 7v9He3b0q>|۽ygFrHp'9uBzDtggqآOLu3q{?֜n\2wIFF,ԗQqU,Z4?*3F}aPK<oG ,@ON4p64Oyi3Giy $FyV٣[%A-PТ҂%~䠭hĭm(-,,R)MiT ڝZ^/d(h8Ą7LL i#ܙNX +\Zz3@ls:Hv1ָqEOsZ6FTӅ>i]iwWJfcI_^y $rӉr4έ[4L82Щ);p-ӚVhj '2fp JA O,jjSnʳ+YA Y7)ʼn_M4+ ꂂŒK\TXhNw#gI$wmm8f6nKL/ +nqW;ՃkOs3+YtfTVP\Xk8zۜR`*1,'$|\L}ܒoU=!F Z7Oawr ILgA>(h丩H;VSIxy; ';C>-hz\;`(sp .ݶt#$ #Mp! :RgqȸvP4T]u?p.MA.fOG=H/;uƪrw\Aw-^Pe@Oz~ ɚ.-Yq'4?RE]g)؎@*ShA/ ާqp55GlDaρf 7CgW#ǛjNނH[],?޾A_Mn Qk֘Irt}oȶ{ |!v]Buj=WBinj9sfa2F=@[0Gv$sBVb ,6ˊda;mu>8ɟ]OCeƠCڌ̦oUm$'n`1Wo6oۍ?LR%*wpcroqd[ƌw>^C`#" ڧBܰwO~b-^&o>5>7/U݌O=Yrt VAY78ܸuN;` `&C%SD OǍǠ T,BRdj\'1 S#?z)㒋Sg-i8blMGprg[V-1iEeqE:u";_?η0hwGqI[BJ 3 eȎwiX>@%WYS# [NbZ kƶǕ  G~l7#&>!qN[J5w&"!f$9c_3 U-5Q۰sGUN`?>'^]'K鰒ѺnaԹcr\jbڏEϝ4n+Z>3'bOCF;RPf+)?A#yx!|0ɨR(RHD& rKikI/PB__5-pnm_lSKOQ>)ܯsawJ@md˜k1$*__[ -eR;;YVIuҋo:@H ҕl¾h}I-z$`l`xOmP: 1^o:@j܀b~\Qb4Yt@S-҉F^ JO #`L=?FnshJR%*jXE[!PhU&%V; w0FQ CZLFߏ/xW 3#z1BC oJC\يMu @ZKUtܶyM?<cW5 %N][uM=Km#m%aJu^aN3_!qi2;i0IMC#WQ\v[,w؄>N~~)\*7/ZO! DCBF);hma*#v7fᲸE+`ɕ"NW[7yaXz_yeש@bnөj=?2f4@)&L%/R+Y4(r+ivcW/ļܭa)4 $Ývs_nCP0\n骼Tl4ZCW*P*֙}8;픣aendstream endobj 1269 0 obj << /Filter /FlateDecode /Length 2992 >> stream xYKsQB S&ya$!k-Ue+e#kly~o{fP"VJWO ?N/_㻣ߎ8=ӫsxiΏn~Ħ\g6;Z}fnfNҔ+b6ߖJfsܰӄAMˌ5UQ0Z*fӥE.ۦ]u9_dŎL+kvVm޵ط/ +XYRqaX.q`=,VM=suqu<2k]vJfWRy*ZU()Y]̄bͶ$ J%knq6{33z$̸B%I"8XYd{fO&J(P+ϯ?r)Z>V%REH_uT(RL)`7f?-kw۴a2)D2rҐdk3vrqݔs2M ɊEߴD+f?Q0w;Xٖ_ZTe95΄WZIœLAgF"Opx_#YpR(ۓ8*Y[eN 76 fz |Kp!cv}CO3sZtFtWgGB<Ɇ0:vqջ qjX+Xj2-'d2HG5#nrP&T4AS}ͽpߌﺾmִL ~z̗)4_ΊwUיkjͺuֹћԶBqb}3m_G,ӞU9~RsdGEt g Aa^8M|5c{ fMTn}(h {.U_mY.ʨ٩[%$Ր(`($?؉O"5?v:xipuݖ D)!%9 ! g|], R X\JQ#qeJemF>}1HfMA:QSJ՟iޔ)ЛfӦ։6 Ԁ:WDŽ Hp2O4˙l- h\/hb1[f94O])09p{L1Qh5Gs~OE*ϊ[b'9-$-%tdTբrOͪ'ps4 ~jƭ Dd!G IN]:=9Υ &ʳR{H}ukF ]7KWu/OHNVq/0k5" ]! AJ^m ܞ"T}0O8ff"8"x|bzz%`^R-dE.WĬX /\$/p*)% ̓>cR3"tҒmi"$b j) ',Na%BVp2l]"S{Ve d\5ODoڣ0 iƒDbܼ[4=_e'a %7јLybbqVTE{`Rm3XkeXZ %K)`賢gj5>*#x)e+U&|rO7lZl_}+מ%M#϶Ks<4bLKQU?^}8$ hߋy=UYwírfzsuKL֖ 5ưḛ{W55$QbdRޓn$24uk!%X-Q k).BKƵ-99L8Ѳ8*b|R[R&Ժ{ӺE޸7%/̽_PJ?3?J[gk9 Ƶe!M}[p,P!4c/rddۺ[N3pnjpk{(>{Kb >ɟp-U@8{=dW=R$ ~/ҡ@`.dalĔ9Y_ /cxt"`6n*et>M ok]l7]x]7%?G7rx _~yuKPӞ>ԐVskX ӍPo{;jY!y/uQ Cu\jN)5N[XKI yМ}TEka3nYf>"N.bR9qaPK$G/m;t4S|Ϛ Iw #rbǸq_DWɤ2_1N P7?O2P7R{Y.SְsOd7僟SL)y(yR6ȕL䠚RRhmeM4mflhڐV b3endstream endobj 1270 0 obj << /Filter /FlateDecode /Length 3146 >> stream xYn8_aӊx`8{vY-wkz$uC["%m`Y,V:EqG2v/W\p|z狋'Di-)lťrX̄KyU VTUl.ߚ6KLEPQj xix XN76RRYtmCNf맳>3#9kbkg X9 8l,m\3@V32uʺΪp@T^a%ٺ\ȕe2*T=",ܷHTc}i}E[ҹ<2sie--.gm!h;w\0 gf|]]lغ'O6#0Sp6߶EG`DnAl侸ylUtsY; Y2?'h6dSiD#oT~fSmiƓߗ:hkYV*'ŏ'p= &FF%S0-];ӃJ$0ܛYo0J\L_4 $j4(mn1ge$a6T#8wBC_7Kw8uy)I &-ڢA qS*#/h|Si:4m?fD'x,)JBܵ5, O`3$cf .:eͰ_®݆֦kZ no0ܧuki¾5a7 ']LE3`[ mK9$@w,@"JL8_g[|!7i&~ 臌*1d 3=`3I 2=cBCC\} ~`!ioi%*sD/r !"Mj}bd\:)! {CHZ9hزMӯ,x`T {zzZm,X8xhgBjO M 78Att2ƻK7L 8͇vA/v=Xtk)&s,'߆&p)xz&ʔ)@4]U"x<&~ $Ov 2%r GB۵(7J*=޸)pmHlL -Κ\w! @!qB-VA-`wlK$Wza o9A_e\p'ʐ,bfBa!nxbH=\hAi͸'K"p*`+(! RV=|B-j<&SNzY>еjڵvu!4o[ͮ C8O˙Rdԧ`J'LØSc"/R6_), Ӆ `ɀ} mj&Agx}dt[U7 vnڞ$O2{m4L#I#K*Y]vҽ]{7J S#סRs'U\Mt [RbJtH)Npл="4Q{P[&l,^zPtJتfL6al]mkjIdʵHR"řU?wN`#a}cAܜp+ػ+as<V̻8L%u4|ȑB)tۈW Ԕt91v.i4D>#$\,e#umɔcĐخ-I 'Hܴ*\Z t}&9Mڕl B<.E*"V'\եĦCeU+MOo (p,φHHDWYבiۢ 9HUR!qr,X[fH*H_iw=4d>|% NO5a׋Q ;\Ʀq蘺n8pLJ19 o!;5k ,Uat:t_\w 72Ͼ4uypD48{K;QS0жK̋hWʸNU@X\`\##){KW#/WT;N\F9/ۢ"5(#y}f`.o#Џr:dioԑڃl4,oYyj:4iG9|M,Yg{ʩ3S{dљ:÷"xs=*WZ@L;L-#/Pg#<+j",.,2m8 w"vmA4&CT5y/3:U@P$=MքMd}61XFsZS?hMюXk T;}yWljkbHxv/xO`R;pbݴ7 bNW agl#~Jf]mr~mW+Xs?y/U pvRJHB/<~Zw^J}QwwSqO k' /q hKf+!_Mf@2 ݞVUBakwO ̛q%8n@‡R|ܛ)I)Ed'XVP=$#&Lϛp $:4x ,.Oqendstream endobj 1271 0 obj << /Filter /FlateDecode /Length 1318 >> stream xV]O6}_KwV]iFZC LL&~oϵafwCA>)+ /ֳ"}M|ݙ"_͢ȼe!dfK׳s6ϕE5HzŽWc]L.-֎]0ᕹȱ '͢dUIҳ*I*v3>,V}_7m}i٢_]mǪKM=tզ%ӆVd$=ެ+?遨*ұjq1q ō.lA07< BzO8x7Gx%Y.|#X2MӋչ ?wʹ!k Siyc-ͣ6i`>;WR(2ᤵ9C8=3bڳKN޵# VuU06A\> QeE˪a9>)|;0&^KHrMu҇fjFXrMX~EYԓFFı_s_Rr)K]ΆW²5ܱn&ARB%@ۻepX⽧(U~.皐CwЄ54Tæ y4;E>+/&ƓUk5<)dQI7n~~ojE Ak5iՄvdĶw"vERHv(ݾ^ҋ̪[F,[SLK("56q&7S]ZJ h?Tόw(A"kVEr:P\[I2Y tr >,]#e,WhS,};jBZ^:MC"`bzg8@Yɝ6ACFB/Jg[e 2_ _Ea[iKf/j }H,pa:,dHh.筶t̢j@qD,A.<ְp k+&MTB&"A"l"]Z'/TvEJwp0;2zGjǩK؁HEy@㦡'4 {uCm R.YrJC/wZ &?Ij1 ާ~?b^#9 cB)najK8$?ƳcNMh'IE(p }|mW-:3_,%:Q5)l! M vrs63#釺o*ї5PqT@u*T )1t4t8eg rQendstream endobj 1272 0 obj << /Filter /FlateDecode /Length 2779 >> stream xYs۸GzG"ȼٹ4RGZ-T⿷ m3DvYYw>Ifw'O8b=;t>**g9Y7veomqɘ1 y6<9I,f'?b7ղ .K6DsʮS~a`g5v (ev)rQTab]]>mx_Y|0T(_9+}Ɋ0WܔUfHM'rMrVKq\Ijֶo⠃RiE4ɩpeU.KL]G/U1} N7Uѭ~+h ^%%p ۠?IkHFa ;$}EF#YնmfO_FR*hIXԴ2aFYiΊv^hVuǼodi}xKіEoIW;K H8eJ0B٢dS á Bz$i ak4S#{s"~ Qc BǺ(`IQT.dWБg0Kb%`B02`C;$dr`x,1KSMl67]w9‡A8mGw5"ByO|]g)7.p<3*naUhOБ@[P1ss!C,7MsfnôSVl$pFۖk[9NR-UqįaLЎ r02'3qv#2O R*Hv=BD^~ ȉB 6$~!\|@5㿄,qX# C@pvrB"6O5UsVhIS^^6K[kAe?``X}bg~-黺o#]Rc]e3e}،V9HC!%(-0)6J) s'E4=gB A=|q\8/̞`O4͇Rb_R#*p')Gݢ3 ]:%20 JT71;3.h阆:M*a,NstpO2.'0QWaI)֕?,R~/| :ȳЈ0'Vg O /M'M杦|~jVL5$x.h Ѧ>-U !v睭mh!CTK8 [`ˢ/Nu}!**PGEk&$}AԮ\0 *Dv^֌7a^/HT2 G (8z= WN فIw @pa<;'u[^8u]@\vQqY }Y Fk9Nү NjSɖC"CxR'+RO1z@h72.Dc2dqAYqQ8<Fja2YKbYu|$tӱC3 uh]n[R,j$^1V^X)^ &%[ݦ*} MŅ;q8k7X4jpϬۮH(dOEep.$z*wʡ V#/i0C:=i|85P @\1S7łߚ`2q,Ę Qi"p㹫EY8rQ @E} Z`f g"%vJE@a滯TCGRxRɹO*2Yg o+J??<ڽ$900K>xZ< uI&K N[Wdj "2+~^fIR䬂32dPA(B3(5K"(m۬Gn-)>K%=OLɡw ^cs#I:qKn7C8^.ړHrJ:RIQx,QF 7' )aSO4h r&@lf1UkD,&7-p/73.ĸ&~ ̰b9xu_ɁR~Gչ%]IE'ٿw 9;lkᥛ$#a@`86>b7|b?oCvS wp .T2j\(;JČxgm70S+#1or]?rW~ncF㏂LWz흚`txR-@ɉBϿ-h؁ZϞf{i ؐIz79p?oHgwFᗋ7maoM)αK7۾_3s.@(H5u=qSL-?(GTDwMH,^C"|C;P<7%.Thm]e3[=4{\osΪn>&'!D4c"W/Ǻ}әHC&d@Ci&,$&__ endstream endobj 1273 0 obj << /Filter /FlateDecode /Length 3245 >> stream xYKF|_!¢o2,`` 6؃'DI%Q!)go֣IMrX0$uEE&_n~uW7/ޖ%|ʼ oRfE.nq{y/^.WYY8nkLtB B)ևK?]X.ehS??Rܷ>eE5>P'kM8+/%6FEK;^Fn?oά)7y/z?5^>[t#nJ)d$̱z%ÒHfJi\9]\+,o{"BK()>U,}9La}-vwMƒ*]d2'%?Z7cxZfhM בȑq\ܽ8Tdº:Esڂm1dB0ZETQ K0Mi7~^? 1WbbQ |}u#{>2p#h@_E6XaC<ۓ g=ڿsW(rTFMyݗ+էx9}bO' ʂI D 9jMTM|'YPd#>R-i/} 6@!7igV" t_na n~Rr)̾ƄX/o|>knu^fdz''Lj+bf ‡}cRkR$ZuDR#zPNƝF!,&<<m}uw8~Q5?BV'ЖOs>%eHDM{q [.V)k&[$ϊ|hO;*Ǵ- rB¸+Igٔ#FKPd&Ku2êyyֿMd"֊0H*sa9g)]]Zm@Y:H 40/yP!P\B00Xzشreh:P?ju3֊{55G!8AձǾc53&R _-kCL` BQPꠈI yZ#3ЗO= FֆW 3Q0!o4RQ|\Or R8NO>]y]W3BG"9 #-JZt{P묱V#(ʼnNөPp~g &(S*Dt0CDvU o `xx%zRBG|7 ]^j2.*B<7lp B!:\AF('^]SwkWbfwpba&}m%^??`E0E^6m?`Ƈ~zG{ h@NLd.J<#hM/5ݡT&۬ ]$=oHm` h: ^9ruq]WWiAIW IIļRӥ%<@]WqbmaqŦDX_GVed)M;!w (d$m/'N t1 iȻSfiRax}41GCm&B {7^ɴ+8B|v2d͘L4ņ8z3ZߧEY?Nt E8 iy4p؟ 9WB%G.*qT ¹k7*}΅8tqix-mӑB9z 絼k7J1z}ӂ2VxZ_y_k)(5]^]%eVOatBuЈTKIrٺ^;kYƄApji %A D nT`:M#-T &/1d_.}B},\@DiMl!M$°8N"G$t%]QU 8 Y- 7ɑ*BfU)eX6X =褒r&4:f8a/42-a~\, 6HJS:pY$]g%-gx$|5Uy]$+}쩡%29 2hҏF|3L{:$Np)X^e i=bE aI|.7S Ѷ8urySw NYd$ir> |9D xI SAJ<`v8mpVL~*Ә5f3"҈i7Dxي#o?.2x9.xqat _5;zouiEM `2\uGPʖ &> stream xZK۸q~*6 rH-WNɁ#qF)R&'#8@zcN.,@?iA3O7 .n Mma ò2PZn>orŘ1)̈́\$Yь~ ;,d(w1Yr ysI(2:5A9,W\¬ad1u7Xi_ʾ-ta"CS:x DA%#zzO5!l.=ym$JRMv SC}ݮ}/p|~\29[306&vmՎወE,ױ%Fmm0IM9[a&DQ3@0SXȑs_?48^675]v]-sUسVvxhV xZ+=Wn8⇻=Q2 Q +1a#+%uLkл_f?=˸iz,B9*ܪmt.%.5պXD2C f Aq{aRN.J7(Aqc!/I҉`t  Z[R 4vY@QôTa_}H9=ia'b|(^3e.j|e?ݲ9tͱ ޿ばQjSnȏ̙`f"h6Xb,I% aU@/:l,H۷|@%V\Ljo;Ed;W%s` "^ɒvD<|]GMO\Wĕ!"!*shJcEe _^cO_Rt-է6X^s#G,BV92#%.ȸ,(gv~WN 7W{e{=TE "{G4^:;ҟ ]5SA3~> stream xZ[o7S؊( E[4@yplm4W#Bl҅%<<<\8Vi"W)e|w)V\~,KR\/y\2VW7¼Y3]&e)wƾڎu{ Li&k*tf+Q qek=Z UZT s Q{7V%oqʔ]揯Ed_sHvOkGF?i;Nq3)kح鍠=|)Uz$& ݥx? 뛷OE[&2%Oz-Q t2[&& nH3-ޯ#VqAm]x)nKSKf>U(C\8s8enʲ(t?N XxqD:A Dfu*~ò$M6WKCkXPR qu[CׅBRi}ul(@XWMf d~5B37k~UIdVMb=sQgyfrQ+k49hTl9lW*o:cn}4Bl}׺vv) DշnVsD4̼f3ONYTX]PAn;<=+Q%V4<5#<(d} cDW}DՁ2xc_9a Ft}aPJPwUK>m48 Q N3! WL4m7 3\;c z[b EU]\5ItؐL.ôy붤"b3׸j7G;ۂtH$]v dǻZzG*a-Da퉔lJRjE}Y RGPǸ}?l! *28a2@7+ō ڪy!f1ni{[6jx!5Ӹ>eNc9Ih3l~54oO& 4U>jqz0!쬽ʉ8ll4Ɋ;лW̊bYuӜ1H>CB,#,W[ tPAe׆a @9O ɃU;M4DU $fZ1a[0N"j@L*ôCw 9Ig.goMOɼ0??ܹ6yE8)Zx!_7~^Q@R.8NDžR\~9G5z> L1 th{b%#jiٵF3gaoFTJB?0| яCx8t#U~享 5-WDQ7QJ -ȑQ@pSs0#$MEۍiCm)0>g (,R v)렑P†/FE)SxuwLD1ua9-iLRyŻ1f1]\;,y PT3, X@^l܂yT9$P#sI-u SvGZg<] sq1aȗZA4]6E;` *{p%{F[a%T9FZUN;0PoXvZ2'Tx~L]A[)&j* Me(ןk/2d9߀)\6Di/Nb|u=g8贎,7M+2b8;ʕ-ZzSe*s%ˉIVȨeTI ^η[]u`9f_D}qeG *3TqV߲sx1N+rHa CGTyw"QhlKFݥɘӻpV3`|~Fa nLֈͅop'^b';QO C wc} K7iK _TYVnd)A1$J<.`3!ox/""l=qWTDkә ,oWޗt0+H{*N$&92O l_+9CW-1S`-KãO/DM_1PX T4J#|3h >4 W~nao0d6*3?_yFĩGdCP/ù +ի.+P̬H=̋]2p>(g8Mc"O!Û/Q3gbcԜgiA` W*@f8IY7endstream endobj 1276 0 obj << /Filter /FlateDecode /Length 3413 >> stream xZ[sܶ~žzYFϸLKӗ.%]Ke\)I:I8sJpQn/>_ l7W TX]\tի]K_۶iuvMX8tp>M\,pz#).苛f;a﫿_R׺qq矋7>/G_6FAY 8el62edBU4OalwILv;l8.TUvJ/dn|q|NɉILjL~A,},or,O%u>7":.b|jnd?\~:,}:ZWl{d-/?!n"-T|3HŚĪ>M<{:$If*qR])}K߄T]EeNeF*+M:tF˥씹Fjp9ULo(a\&|%Yl`-ju{DHaUlf| , hf׹vya3ݥ KVo*2JU;F &?Cz=WFb.x]4w3\󌸬2 /z]fin3¢Z뤹zg ƒ|n4d,uڍCԹn\BzFռI+B 9SZβR6%o/,:gusd0AgWzRq#m&6WE!.&3n:9@3gj>M̠C*eZ?f`l˙nIknBE )-- 4j״Z%e)02ُ̙=Zj_ր-nq.#=-£(v-ЀV\1޵G=p pDr͚h87s* ܰojN2dߟǮ?eUũ9Cd׌ w h!de359Л=ϸC4C\QYf\;bhDzN;ޟǸVsvx꾾 "[Wj5`c\o?aJhAe,@?5X:o,$N~)i}Oǰ*|]e/4DiuJ]$Ǩ01&(xS 8x;)2[]s BWQWts.S".x}bzqP扨(01ooہ$mHcŏBڔCw{7p.UW# {̈NPF+)?O⭁Hs֭2@5__}b/]CHS.Ͱr(tpI-3o]/[>#7HZ!% PRMWh:62DdC15|3hC1 IC+aCB&'2i^9T9(ӳl9PP[(f)$7=E%*=bT?0u(nttjVb )Z+H̳4q:G""bߴ T S5"u) rs )|K5CukJϠϮi,^/7N0fin68dH@Dh#icFzN|V,iTr]wmX?"\+C %OO5 HinʟўnO9uO"H)b0cq;I(4 ¤>Spdv|h(~=%aqzS%@ow9~q m~>A_=N"Q0Ydn^oK"lRB: $Y$o4S} +A!:v]9 > stream xXo1a"VI`>mM[Nt$7I 9h;<=BFj!_grxLׅ9?T "$zq=sgª(J/<]g߄JI)튡ޖ+mld_n]r+jHJ#>rW5L{qr_@kAJP ?_nMlʮ)T"nxuweYngIƉg&FKeX+:M:æMH(uь7gOPLCx3}"U%j;*QfeL+6rEIT@%E\ybw-.[_LiP23YE]5elxjUF0T p0_"REWł @^{<3G1Å>HĺrGg9 za*0R)bbܗզ`W,.w0] mG( bݵ=SݨYXhϐ4%30,:Ŝ3tMwL4}[_gת.&6RewDU!z%z q|:Tm󡫋b Xd,{K1(wbX C=g~5H܇7>0}?p&_r\2뇒 ! 0cR:j}h\ݎ*uӖmL B=P \ ]X9::l4/X%37u\532rx)K=xLuAA1{=w y}l{ļm؊IB67kPԒ#:j<îˡl_X ҅RP"PVqHA0M-nVZPߜwD)Kmf駶/'dP6"$c$P`Ri}9eծ1d ԅ|;fJ9 J{րG Yl\C&94A]U#_,6U:EFvʱ@?_!{8V/Idꀫ@ST^2OÔ+Xj t7 Iz]0'y߷?HOҹ?Gǒl:<v6R]:q>@Zʌ4XisxT#,\/o=ӥ+gWs&b́P#jdʜ 88?0e4N@Ci)#\`<1xr'Ez}C{o ATkecvῖ$S=0YRH7yCIžw7pZ^4|! p*o*(uTv߬_qutFW,ݨQI˙oP}&j:H_ݜ}OOӡ2mR^8uZ({~a,Us_nrmHg:;pxy?-6sѴ]ߝ<>Cыq/&~h uz҂ O(yHE qF#_ hYps|lNҨs,`piEl]_j2nR?4-sB.Xي-r~endstream endobj 1278 0 obj << /Filter /FlateDecode /Length 1524 >> stream xX[o6?Q I]a}Hkb ͚=2h%W;$%tl`m"\sQ>&A~ŇѻS샗/ׄ-,"AvadH@4 R=zG%eB`!;}L(f)˂%a89V8 XE8bTK?ߣ?H:vKX$d^e3n2yqADZs U.p(p#!dFf8|yմ!Q/3dfgw%}oňIJ؛b /UޗMM2')kn:$P^oC;E#8dnO'b': "n*Vls*E/'GO#LIJ~:Q9KzZ9/}a3۩f_o)nA$Reijl۲1_&l}3z GW֐vz'NC禈?:jmu!_\*$V5Fǔ:&G/__Zm&4UÉnqusHP+c*-:TH&ՆC$J:wM=gdl̷N3.{VM)]g:_}gCE_:[~U˪Bs8Lch&ڲVa(ڳظ(4EAm 1ʷn}jvaFP+1*YDPgD88B1jʱR9_kFq OPT8 с|T^RUCf3l*A)䡟NǺ*W?YY6N2((Lz ˠ$pSU%1|(9D$)z1N(q!MI4wrY"d>D(ne:s34  .f  f,Ql{jj:Wh m E0ϼZ=[4'%՝!-geHƍ d2Xx"A@6$\> stream xZKs6QG`qL:ՙ$=l# I5/H,A4I oA|Q>yz6Hdv^XD(GaD~]/2fzD{ f^oti1 &b`pV,2[]٧O%J`*1mGSl%~%ĈƱTOF>h $CHތ8YUC8M5 LU ̮M^ "0ȖY}=`+GMc[UٟOt2iB &$(.LS?W*֥ ~y#;Y>#v2@$8?)T҆%J@r8kA]S6=ܺ"{/n {S (A r`rllIE!$I/ؒ!Qd"X[[i) %ZuTX*@)fօRtn7ǫtySep@ɾ^Bicp@Q}n$oՒn[ʐCBPKV? ;<3xE>\S(`;KhyQڻ{7:[o %E_:[IWL}&a௮DXhVm2FSh/$j.sBX^Q3܆ů}˲CM-ΕU`̕gLm!HHIܢZ}D/~m,GA|ͅoc;›ʶ]`|ly(wV &]mAkUË}!8&ܡ󐎠 j5y轈; &#" .D,BmD,c" rPnc(iP'" Qj cy QTiʸ+]hviQ # {>y_vwR޾p}Gmx}n>hg z=ʅ4YmW(=v屃NH!ŌP(H!<6B̃@gyD1yIfB!a336nP$k3&!ܣ(jϿ0ȒYX]Yx0Y(a2vϐÇnROaƁ^`j[9:-ԡϷ(O#˖B0@}k4*N+ a/Е?3( vexAE]IƢ썙z ˶w٪v^څ j:{ yxlާ6D%6}Uufgl]H Az yxET;CIfenzX-jLoz/,&x}=_h@Dc@((}֢":\rU0ݍӳ!/"!(z>ʂұXgXϘÇ<=CQa*:7QYNѭK?}zkL7ͮ+e΀*]pnS A,nxV9Lj^ۦ;NFNhdI˷H@+,g-.7yѰ@fCn) ot}:Nrvex\ xᖅȴ[BˁzZzCDJǡVMӋ̀g,Bb"!FHtXjůΚWR LiIl{')Bh:ㅐ)&!gY57e2f+M3]LϘ#ULätK6חL=4c5caF[v`,Z].ZXfUl/FlP?7}+&[<@RM(;@&t[K$GL@o Oendstream endobj 1280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 196 >> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1281 0 obj << /Filter /FlateDecode /Length 12287 >> stream x}[o]ב&Џ| Gɺ_3LЍ DjڦmfDMRx~}U>kG$H$Y׺"Eϯo_^H?}?) 3^v3G颍v__6=<<=A8g;^=՛ݷ\z×W>Q7o笇/o_ ջ~~m[ %cͱpE-Q _>-᭣wr#3?An>}pN_1p<|xp"~&&9#]Ns#W[z~]$EI]Й5M3Y'i%)΋>s9}n\/~/2^2HPE|l3ޯޜX#(Qs7 C}QC~h8#>F%E 5_@|Q E ǚ_h{;2E0 |]E ^h;ڏ/"ZqP0R->er&џ/@ůOXs7Gza&c|~vEJY PI֒WO]H R:vND_?ZڄeOcd_Bdw9s,ScԾcCua5VcW=6w?!K;,2 Ct2e1r01|ՂQ?ƺ\5Y=GZmx8 d#Js)^jGlƣg rou\ i\ѕ^7:Cgv>:s;j%Oa`+F%#r N>9R>ڦ0BFtMBs%~Qo) ֏g8q?Vo9N (R.QLr D8Vbc"8N&0AS QCP : H.ZIL< IC3Z}%zc9"ɁeI{E^BB!x^e8b wR0viY*UOXqX}Ȍ-" XMhǔ IYHM@0y IX[0=B &(0D9ucnBɛ8?)k録ig҂&V\Մv1?ڊ&KmKK{ڵ WhW>iI黱*c.cm9Gqk[Me//lU,*9BMdG}(d'Ԗ}Op$ >ֲ?8vED6, gRDD($*Qi&)-Q/Qܱb3"NXCalu5ZH.;vR<aֻd!(H5YB Q#%qvl1KIWw«+sc#LD)ԲmT8|KRZc7jZ92EW)εtrv ܏HM$Q iRU.iXsPŁ9niP^ɬ(;H;W<]zf!,g;'=w:gX59pYUq"ܷ"34lb!\6WIlǥk'J8*6t1Jͬ͘CҀX ,s)ѩr>RGsͭQJc:9D("6c!{&!) rR bUf#ű5[N/v.Q@$dj+t-!ɂ5a 95jk* ќa:L9抣YE#bp4 X} -5k!+7EHM{GN4B4TJu!$jn6,tٻ.CF-4u` =L  ̧Ά yժu,+]Zȫk!Օ+ǙMN1[۬JgHpw3se㭭l_.1L- h5NJj,ܖ sdr[6U;c#a9W*qD(l sA% 8&; "oD喔Uobr]P hĞ-ThI߲l8HWsN=Y -M3QLb9TKYTE@[W-}W^Ufc0$KXÌ'R"כP 8j]g :JffR,s ϣ?EBH*,Ir%h&e\/XEÊlmp@m[>j\؃"mhU)iV\»Ҋ:wfo4i+t5NY@fY0Vi}#1Hee۴ư=x3upڄKZldoӹ\zߍaFc(ZcY?{'wR.Yg,U.PfWf'huP @VT֟".͜**Xe 7TD˖6 䑺Bp 3RU$ҥ*,h$d2-@DIJR,띂9ARCſ,ՁAMэSĄ NұyoUuL"j>PXҴ^kZ#N9J1BUVYuDIq̧}RϤ^ 1BkeHALDM^:2=+QT=1634\Q']XQJ4h^RF+DpF[9%vޘ ?rjWmLI%\oPS.#J[!zMl&KyK(b0nAI4VyE+%>Y‹2 )@T#]:L^(zE5d .G( 69oRc< iU'fONAF(`k<O 6-=*oD,WU2pM&f B)آ `Dr7Ȱ+zz8c>7 {ql8)PqAҊ]4 1XF<3T:挲R?*38{xIշPsib~sfE1tܲJ5acXb=)₅Bʩe@Keݪ4mS gD X*oU:O8 ǰj8"KE]G8, (P:0d$ҧP ` &i7ȹgOpb)|EI4=U=QĹBQ&΄4NIXi"'H5ԫX%iRi][!K shFBCO,CFǤՍ*JY3r*#3vʱhIh%DD0Mȸ`p>bSZX-3@qưj2gL-; M # &dl "FyhļëQT*jӐmnzҵp >)v{¯$J)"Zqend3H7U PK19QKK틩1SQ~eVeTi 0TF32&==``"ʶps!ĩZg9ej !2 ;iVyl$z k:pVeM") _` "yZ7ÐQTa4 \w,JN-= HVysN%Trqq%z9V/߸z`:nRRU$) &mѫH$\C˭B`@k S]VLacBk(Tj E utui ')jyh@\P6x0!RS ŒЬY!Zߴ|A zJM3pW"&9"(WMʎ6͢ hZ囚 Y B#%vd$lFd#/9(1Fzj NL\ uH:]D[xv57̵rUcPQf̭PZp r e}'MAF2BbBTL \S d9[r\epem~rnmov-Y= pQM8RD |\(H+ЕE/ 5#" vjłHTBQ2(g>d3#@? bAfF2SֻEz\B]KH3![FA \ v[>SJ(eTC kfy9 MPdɩ#=ւ;z@tMziXF"̫8ͶHknQ;}didOFV#mBMАX e&v6n9X-W⢍qg6&A*VkDur^5luZ|jM[meT!KsjBE!ȂU <1^3֜IЊ9KCJT,!a/$=Z}/S0QV@H *T2E9q(@OE'i#HG0Mĵ6&q BE Щ+ iD6?br؊kjb_$PMqǦP̯(G UGN9 ЧSTFDۧm!6Zf v:_P _Ц2rʔq, : /ݸ q4WND,mx+G`N,/u'0(NrrS$]*J ͤ~ք; sM @m)[X;8S;\qY5x1Ю^L(B`FWY"`SOȐ`&[ MpTuv[q̎|=Svޠ`sqx@OC Bܢ=1O-%mюX+حF̢e>c Vݛx{bUB B^NxcuvKz> Y5vEŠq^s \큙 VX9yl1W@p5ObеRXň!cԙ/~26.pHn|43^jp`OE≋MS4 8z@7>m pްAU7 .sMΈ vڵ^ᬳ10SUЫ*x9!ÞIuJ ,&DyT!Q +h60Y>9hiJun]R Ɠ #ju-| 7- WhV?s%aXjVύ3uyDKnC{An=܎,y'su&9b `]FnQN^418`j \UiI5fK4P9CWL܊ocqIdU>"m!Dr9Pqgڲs^+!-#r'%Q6fݿgpy7د^!B')њ4UR4wcw;YW/H{^ς!qq.y`'+2/e1Ӄx볓{xn^ak?yP uŏܬ,d.`GY~D)ўmPx /:f<1V8sأ(gQl>qر6zw;޽i# S%J\7r?.~|f!:;d^=rk/{X<%=%kI[mSFQ8G2gϗ:cx @,i];(x )mT5hv)Ş YZ0^QI.0"Mix 40Td G lVQ/'."B)՝ܴ.DZ&^gVq[GY"Ч32y]пxJ~YEJ~ Cj%ZB|o+3 I J6;}oe,؉t܌@kxo!ӇeA8Wlq_pe׎|hc\3Mo#"\[q6>0GĉgZGVR^[mM !#e QDK% RTNSʨ[ĎY22-M\Rh+ Z>@T+|2X(u7+{D եUNeÕr;BcK]Dz2w_牢ֿψd5+xW_*M+wk+dkH 6 `z*9*zT. awp}"3ƹĠH'wV;j+Ʌ27jB7m@>ύvrUUkZ~Q:, 7Be[##iu$d]fnqt=!9ԃ`@ZڷM]/E# -ínu'LS/c l}طF_E5 F8JtJv #3mQ3|%\E>ρw Z^9B]yǞUU}3qў{|UBǩeGotKяzP>u[pUā%\-7NF[S~ѭ'Jdy m=G}|n92)S\ƻHBg~l+͐i8[p NhŌި1ͳEE%ܸ7t y%[U.)|tZezgW TdU12/ԥ]_3MZ]óVW|ψϕhyTÔP/^GY}Hi#>4?WZ9čU(wVdhlGi!x>h .I5D!flc#uvwWuD FsD9Os"_aVHbb{t% /XUWW`:85cʔ~'$ W;F [Mk+ na˳6C@!T"e8 ^'WU@vte7ϳVRN'9q<,DEϑ衱mqEU+{T|s1uBV}ވX7JuٍMAj6NLju,gg[v%jfK=Q{6*m" XwSP*uiI=2]S4װv\+e Pәp )72uƳS OG]YW7K`y &* -[A-j7Lo6$G̳V 5q_W+KP 8jiX+\K[:M=JO݊qߜzViqifU? ZfjV0(7QU>u FF/|n PG wIe5nz*#QچNH"0~۩#SeuZe|q6bD_J[)nWIj;VcQfc3.>8e5Զ~q{bi뉗NF>? |$j=ۙ=xǘ*4FLbEPNT\*wr?<^>x~ҧ'WK>)wW?|ы 9 5x͕oׯV:U6 ?Fݭ&Txf,ߋ>P~[#hnt%~/mgQi8<:,W EI|?\r{wTWCӏm3><ՕW!IE+08|v뇠>~PA|kxWdD {2wW#]/ ?Pv1ʾ-ސN,pLL׿ 8P}sq0aT񸶖ME~w5#:~po|xxV)Gɓ2*C+rzyOCD׏WD0yO_w/2pF깊Prl*?uK- +|[Ғuh-6CFÕ'1/P%"ٮlf-2FG僼Oxsn|*k:f+~u:p|Os]b="e뇿lg2V}ri%뵓j깥"3-*Vsu?U_Greu&gXߑK q|{pڧχoXǏH[ sIo޽sU?c뢤y|TQb$\?8d$Q7\8E?/Oy |mA# 6?ˁtF-tS rư^{QK)RD쏯vendstream endobj 1282 0 obj << /Filter /FlateDecode /Length 1352 >> stream xX[OF~ϯ[G'/UB$|9*]:,iБ*gfvv'$G8z{?ut6|c I 6$-G I4&4$2Gwhk` JVY %TהgFSvqS~اSSq!B@eDcUĕUo m`Aj^Ke潞`t!`#GF7WO)y[^S}wf/5Lefn`GɿKhCϚ$q#m9O=t74o؟o *nG??Yu9Y֎oHsv^YsAi(=؛'`X| !F4y/p90ցI7K][,S#C5mKUb ^DB&u1endstream endobj 1283 0 obj << /Filter /FlateDecode /Length 12373 >> stream x}[]q;A09;dp =6̃ H Hѡ1茶uΦZzu׭ֵ.]]Ϸ^_L?ỵݍ)߽J[2SeyË/ˇܿ{{{S$Υ17?o^__}s{ OiݿWo?|ooźޤܽ7h]ӗ~R;i]]2.5GQVڼ(;$lc޵.eÙӥUw޾a{nuU.߉n2Jw%yY-yK#}ɹKk뮮X7B_^B+ߤS) o:+_ &eD <>U[ ?d1_eU9gTlHѭ~|8٧Lq ae[PaWOGA-ucLctL~&ߴwnO拧/|{3O纡8n {m07iJYN*lWwJsӵǬ; 8qQ_Du>F+\iAǼډlg}|FjO9GQw(O[#yrvzz1 19GQңw}ޢG;M{G `<8uYr>MUoi @4fEyBP!})JQ1tQ{{ؐԬ[U@^ Qݸ+` `WeNSVft#D0Fl](<[(*6.GݻJW8F^ \a琟TW=)ʎs4AՆӭ!2⟮ sŦbZ'.C,; NskW;Tw:zC0bh.<cU.\%" uGj]&qx)ul@RE Ċ!)šQ\~KJdᖔ˛X[m$,R`h}sŤ@ZR~=ҕ1q 1 & a `)Nz~SH,&1K -:5키TPɤXK V!H4$EWv>M@}Wպ8 }J)qp@n9ނ}bmƾ=uyz*m un˾:}Äzu!N%\>BU7|. ).$B_!" ʹ!kj4]orsȹQ!Iau˥ΙZ1v3;vC2 !=zd'W5.ag)dBУ+_q dvd580lr!K%Unb_@ݤVc%7gDqgVMS1o,8dA:q▝`O(FBFi]NTmbR&HQi=j-)O4Jb7a1ɍzHXEXQyM*^DP跖A7ep}+p8Ize>o" &Еk9ОGNh'S/Av`<`֝O06tNݹ ݼ EruR铚urp4.]RC$-AŠUHdTt:7!;1[Af.a)sP&nݥUi4+<&I8a tLݖP!vc-fMʀ1*t_Iթ7>X=lCpdc3?>1M5^5')Qv-$R1#vd)$΂K2mbGn'B$?Bڭ' KrX呌x%[=d[_'S;*rwo@W?7f/Y@zb&A\A;pI|} 65tZKnHwu=E[I2e)dNjR҇9W* 1Cp - P7O6zfQGbHIdc|@>,N )|lD9:sڦ ,gB Ĉh*$]H !P& ͭ%WF˃Y| 2- 9Jp t $XvK<"-ߖ;$H +!cv%ԍ#mgZKJnKJƄ!li󜅑3m+(&:H{%TǛycqH6_A&6D 2oJ *4YT8Cu:/VxȒeaY1rSNS% l)ec! fM6D}i\!p@jr`ΑZk|!}5ɜAY6l̄;P$n1L3b(>ުmb[ۿ =z^tmegYG=pQ0_񥇛S^F2 MW#ۮĀ.(z۹l嬦%ؑusgY}z,Z]{NmqCppHYςH3ѬF7=|0HFQDWmVLE,G-qݷkzU>A3bY>Vؑ:#W"jz`r0֔Iv1 ̷P*up;0ܩzX Еuzq̌uJ|H e7ݳ4tqG퐒^]+†&(W..2U+ !6w<ۘF@<у4ue+aK#;=Ml5B-Mg9cjgj$;l Y TVveݴ궸fS5j='s[L%ӡWwg) !(Q7RqD4ǥުÂ^E>w%k6PͲn~`!yB82w#[NuN7vVap]9s aP0Ig)g2#yWQz%9T<YvIvꡀBP I) < !+.(곸5J[Ė=RXJOPLȭ3ar?3,v₅n(i$W-8 34=A !LIGԍab 89:@pVA/)O?}bmc?.r@78\+FYD J0$?2-qŻHWBǝz hSNq:ꨱs1.zәQn2V-n9S+je]n$Uob4*>EjR6uFhauR@KYJ2,lL]tO\P7d Ydj&fKbʀNA 3J4X`%8U\h D:_ ~@ ZWMޑHlp KLJ @ǥ.vkDjbyWw&Gu]jͪ`o1çZ= x'uW1-$Oês˗dӗDUvD @VK5Ԯ<*N0& A;سULPKaV#1 YwfC1ΐri362F`K!FBCv7jVOح#6h4̈́31ȯyFg}aJ ӨyR`,Z0I`3 tyåTK/@u ӆoj )!H00ѧ[լ` I[ .:6UBO5cbFExɡ:#|.Hv0n q 0¤>I@f$-@>mi=L4N۹ȧI:cIt, `rbq q\[Șl2,|q(32 5 2UrT/%*,#qA0QO~led=@=Ԝo$PMd2HQ3 fg쳙sE`3 6#B[SyNFgvV A],nEQ=ge1,;3D>pئuLS۲ +`zJȒĈnŘX`α NFf etA&SQrO9[$2-y>h Ȫ@EZ`Gp9McVP߷VLѺ$\šjv@6)d `ySƟ>",V./pAHr4SV@i!d= R)n)JE",H -;K:S_4a{:+ ÿ={} ntVW-29 +k`S$$PIE. ^JQ[Rj'ю[n.)"2[qKZ(ci2'P"K %QaI}#KGL$Ks 3kFWo-z_~DQz`׺r=Huz!= &0 )=jGmZe Tus4V$wc7Q$-f<L P̊NWzHhRYW3=e{x..\Wjʒmp0#׻]妶Si*EbY<_)R3M_- '30\tugz/Gj43#b~{&ϯX|p!LΦh(ֺحa6{-7PvJ}"L#<[6⇆ݿv ӑ5ΦtcGIy&^}`7S6l󯯣! }Kln0bmPnoZ/b-՚x e ˲A/!(G!e5LU yMTVV> b&|9 N?LC!6 ZqOw @GV&B~e+k,,O^4:^Zf7Q5LEܣ(1Y1!"8Na$S^1Q: ,5.~HnJ0+ҋQyQɰt43ǶQ6 {Gi8/kT.<k}lwt:KF7Lx ے^܇zRh?<1iĺK fj >́{}l?NvmyQ h5rs; *ttrX$(Fjڧ n< Kehb+´΂jf*!s,Y6_ D ʊEPd/g'" \!,~.&HZq/c8$7NRXO}3[Z7GUBh|Fh+[No Vh=@=`}aV6'Y~rG֩;Ae3 77|MAY"fIr-4X!p;mn`4,|Q!aǠ2Oآu 7 2i]I}3kn63xʨiJαcvPH9ރ1} gr^vԌl8UkXYf^Ѻ0:@ [K_fitB6+ɨt-v ޠpXH)&ײvۻt2c n*2bMln8[M6n *qh lwrz'PNtB~PֆV%OG[bQ\ CYQ?Sgf2J-ؾX=͠ -47auwk8y ǛQC Q U zktc gt5H@TLpRoY(f323nlt3;sYîVnrD[qsԱxWqQS!yqs^uaCC]e_*bM)e3dClY > PN\7GsE-&z\XXX5̩=TZٯ% 6"^]_- A~1XO6aV_}*Ԓ p}e a<8łS][K;Mhf݂= EoUoc_>j0r]-Gv?4덆~4*=(ڂW ?9MO'G"X6V̓QlﵣJj׬kG HwV?瞌*n9N+2u45y t(OG9T7ZE<*bIaJ~=q{>__VdnE\QGff۸ƳE4Tk>0zQ,Ex(>46|c|r>D'1v"7=$ĄLnިnIxxyLì?oQp~MU9mg6Y̋x:M_n~mxM6Jı;c :obQL(r jlQl{j{! $_.J(359,5ҬIc 'VTTO6/B?XmcB=m79v᳹eN8~ZuZH]7^|qW/bzˇ=߼~gw|7;Ͽ&[+GNw~|||mL5~i߿w]ܹ_}/m y\_Ji0U}|_AEw^gN̐Iv>oGǂtN}q\ͻĦ__#|?^)ﯾ1)HQ~QEZ"QËJwendstream endobj 1284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 388 >> stream xM+qbv}H+H!JkpzlfDy g{Ѧp~g|> stream xm?HQӻLO-Zjnts0I_jQG87JM"1l! .hF(l$ds`*^ಃKj}b{Sd4ͩj$LBlwBOFJœXPH& qXRR.a'xvF8yhauܚ֐_)r0vPvwiW6~!n|[MJ"vGqMl"#\O%k> stream x]1 EwN d*E,钡UĘ!zI:to}a& 5鈫" p4j ZaQ4;Ղ\fw׸IQ&slJVq.PfdUFء\w+K3-Ft>RxCq,&[/endstream endobj 1287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 295 >> stream xCMMI10U^  vector~;: ZųƟ}~joyu}}~kvzywwU@I_rdjwropq}AhOjj Tsnnssnns 7  7wendstream endobj 1288 0 obj << /Filter /FlateDecode /Length 1979 >> stream xY_61"/)EJ,ˋk]n&=t$ĭcggg>});H3LB["#)d,y ]>w_/,Dty؝6o OrsX [2B.Ai+۬ P"[C yZ+wޖ6;5^ơNh33f򕰊Gȯ˕A=mU?tĂo-DDʘb=8bN۬HZS'b+p P5Y;mD3pFlSUgn6] |UWeZ8)R^+~yd "g2Vz^ x/QEK`oE-sk*Iϫuؽl{oC$rB>ᤤtZX.M&o.bZkn1HkC~Y(.[5zR씵j? i{k񘼤kC[(e0BO$3@ES^MZok07\Eyצ>6VT!)9maҶ(s6#pmwILJG]gEȣVlA\lfӭ;<wIe&Zf7 +'p1D% D zcV¹?JLiLE 枵5u-K'*SnR3{ *$f!10Ɣ!~b'BA&WhE+/֞0 Ă<$RI (maosf77!S>, 372Pp?.p% kuhy]|Cbc3uu!K NA{oSgs{C=9?4/mE{N9`AMaDQ/zLePtyXu2ɜ3^}!a7tƔsӺ/zaRtJ_32|'o9t9ll/nǧs"n)*quYAa.2G]Qxj"` `Z lbFGWЭ<$29ݗ#$EZ$sfwȎPh q_6}CW, @~!P[\ ( }Gݭ-.mU/fmڟ];e\}9'jF3QM<*Tƻ3ׂ(y :1; 4n)s]m=Zx&۪MQNpfIwgP>dE~O9= _?@uC%7h>{sIMgg+`޽ f.DiB%sx2C DAd:m@TLF  ;qb(&V^1XP N߹ЙCD`kfF#tA҉Rx.&#@GH& "{,"AȿNx=} fKyS&)OFl$&2YV{З槴E%4i rLchHpLXϫ?KrV\>m]_6/o?$p`Gendstream endobj 1289 0 obj << /Filter /FlateDecode /Length 1617 >> stream xWێ7}ﯰxrG%( #@xFs^`>nhv\:.reR(&o.RV~η/D"ɤ(RibjF&Q3\>MnI*Z˚fQr\d*Z)PmQUD'R ( DŽ{I0m@0c8Q0pp.|cv@P/YVWTiг_Ro|ׇvS@~ÆP6H B>Pv0y$+/%(% zFٷFTu|'cPcݮenH~3եw4u}DtA5Rc!i E4$)H7( KE\Sp0OgI岢bS9U6d/2![3TPU4ZTmo[՚|R#ȉ` U}aUǔ*XAD; 3P&H= 0ȅNh0I!:J$oO ZhC8) ½o&yfn DuUnxM0isF(]aQ0JtdePD$Mɞ0A{:AHQ [(3]>YhGOge~-<=j6a*OJx(F@Ѭ sp~FZyyL6|);s2(i~F/3oVu%97=D!+JfsEmn ^grWxP4Fg:kdH[F4Re"G)7*j{5]v'0'$11))~=oqn7[C7:~ |—;h]RAIՑ)Ԣg%jj͔"O MWAW]9 kf!߮>t4\y_a>A(/*.pmVǾBd?3 )lwv͑,frUwX:Yό`ܘao?1P]W~r'ZF /k*i/uendstream endobj 1290 0 obj << /Filter /FlateDecode /Length 3393 >> stream xZَcE}W\Jr_a$fktdW54DDf޼H# j II+3iW_7z1,˛L SR%i3_nDLŨ)*07?oB)7_pym>O?zY?ٞE6a~q;p$ylͻe/naܾ>й]^?OO tuxx{l_rtq_֏ǿܽ2̟oόvw{,f\--zy_7ߒ{*YMNu)*vT څi#)֨cקji*y7BUtw.uN[SbP VA@6Fu*Bْ:aR&WB`^@>e2EBΓKqfw 1g4 1x2[10 Z $ D6DQ~rV9'ARP&D6XM̉U${bK9v+T 'V0NGgـLJLΪ5HD#H3ƩX-3\ErĢ#Z>U Q0 1<\WD6DQ<os8s yAlD" ~xKxOP"QǨr'TBj+ר*PUQee1zBe|ytRٮQU6u1٪eqgY{NMa"I'((c ɮ@'.lpwUeDta@ZS{yfF}0ˀC{ ۜĠL 9*ICW.QiFP .'0 pT9LZھF򔎱u{3i6ayo GHLVj0ԡ=PBS`(26*QޢM` XqȚOD,`vL"8KB(h.aMHvY-'EGXAšVk>KI{CXÚ.a-8xGf꒞lHuy)$,B @$~Zɹ`8$qB%bfLuJ2 <"'0efODq,SbDc1Ky6*(,&9jKEMZ`rj]jdq,"9#npkt&MxpK\&oY b6Qeu kᨁ&zXXEBIkFט~ʹHE?(B=ZAR-PbFTk[tŧյb6WQ, QLK˅̅Lwn!JT{g<S. ylu)IIt%ʒ `z:]kBe)s8,FaĻ5vp^1cwWEA?|4|Rn *i*J\!K&z Z$xV(%[.Xsg_[& OL K&Sssz:dbLDǒoIJre,d >& nc6Jȷl0cǕ(x?FҐNGOg%! !m|ꏼ#ȻCށaB?GW< >f4{|Y.F}%S_*e $߾ّoVU\W5*|6UWV=5}@ScjLmn859hQvAU6DM@Ewb1}m@'j& kFqdg0e۞1=̫n7Ca<]͌n;=>_m3Oz'n mpAL=#e7瞾!?ܜV7Z]>s&d$@~=\ip-_80.4D?SV/.bP#}mՏ],}M [>ona~_~/A;]i ݼ]Ȗ$]#.VuQ}$,O *2z{h(euQ{ߞԞZAx"`Qxkt,6]e"4K$ bwdz>Rm*}qT9*^~@? JD\lf(WbHendstream endobj 1291 0 obj << /Filter /FlateDecode /Length 2700 >> stream xZKr䯘[wIF|pZ]RKc2IYֿWfWW0drkUuNn!w_]yyybK$$9#[\E\#o=؟w=ŏ(3tY\e"8~me\aJʯhEzE&݌%vKVv)V9)Ǥqp_=j ;u6zyw7;mۖEXi1> m;m~'cmI`*eFc%Záond6#(vIfuʱӚ ie(LV Cg ) ,p[k-Lėk~tȞ?/&hJ+l^i빽dJ#~^,D/vF!0s1Y mEֳ쎼癌^ vZ8SHIiCa4ԯHJ ⬤ox;P!wӫ$YO+HJB7,pND1 r2˔3A ɋ07(VJ jHbð Wx(,A$D1$4؃p̢)Y.'d70LeN[KSN1{$F Wެ'T"0&H\M6nc(|HH%Ktъ+Ne8sf0uD=&P ГU0LǬ:r>qP+#dl0/!0[OzdTkmD¨6j2!6戔(7,Hm"zFIzFڄ$CN (ܤv*dJ !g޴oQ9J%ڪ}2n}p%GSҾ1p %p\9@O5+ô\9z:hcmY&n@sY$ (>guM&PL.pP&)5WMBB&aaH}8g쩵 /5ٵXébf\3dCuUݝ;n,UGTZ\qD3qG\w9] C"쫡+mp.JQp5e$qp5Mqb\$sԆ|RiT)!EnZ:ߖʹ o<0_Ci1,Mj0vkLD|&F{-?TFay졫+Ә6e1Ɩ3{6+dePɕi@z;n#v/ %#%UPBS ) 0KE=hdVSX^Y߽Ea"C#jĘQc=ZiĮx_#1yuɢ@chrVt ߪAHs$|DrD F.a1}Hgg #B\ߪ9Ũ׭bzv jij": l+)!ȕsyiӮhӎG<1,u;bcdXa`eBcxptL)-4 `āH\9\ qz}ĭnjL[կq<Λq\WuEf9?Ag,gV& K]i҄d"46 F=PC/h=gLL GpE88ܯQ25.XUU07%ʙg}wc:&I7y{Y cA`z 7\ˀBr'=w8^M]}@m@e]UqCXӶ#j- hk);l%Þ{z02_z&I薨rONt|vָin&ҒsGY` 81pa@C5# `p6`sX5NDh@LGLXJҺ'a`2 G`9q00FkUJFs\#O+9ߥ*/pKsh,>i@{00Nu2P'/X*B =6 LD{YYqg:avjuNu/uEg_ +m`)/>5u0E ]~Lx C_-j5[3J߼D)'A]]?o5?<y{&Ͱt,"OEg / 6a72T~sow [)nxPk&nH2~xEZՈT@",V7XDDoՇSӫqp;h7qMxf?.Rtd> stream xY]o\}_qbrHԱЦ ؊@mFskE-#g{9g̙wwa3~=;&I4J?^d6~ryӏ >v?9laKaKٜ%.o?}|{'բZl/xÛW7O~pk ѕiU$|DdżUӏEu!E_Br{%i75X]]ڂd˽rbDm^$gA-nFBͮҢ+!f|%U')!"R\rfI)|i Z|O-Xn bw+HGJg {a&xIvZ 1k$tnwO@ĜWtbԯFqg$_(ʋ$Q Zw_}rC,ZNd€WWk( T-y A.fg)ql=fWYbqD LueřZK6C:PDPt(2 Z7P4tE нJHq^ .Y_!iL|[詮TBA(Ol/0ECP$Df_) Н8K] 7# M&=ӡGp3=7?"=^[9,$b,<``Ug/]Aid8@+*l:qQ\ 4h:q0?fzHeЃTf]5# )u'2w2tVԧ$U|FdQBHlWK{z)S]9Vz`˵]jאj[O %:ʣdX(=XC+ՅwghF_W0Ax@w=I9j)q \3($_ %Òk.Nd4KCu2eM(o$H!!R?"_pWqD,7_{C!B(>nu;L˚n[7P۔[lYiq--*AZ`ÎKTD]Q ^@62BUBġ]&ܰxr8NFv&m[Lh4J*?&;jmH(.`1F Kꦜ([ jYyk I572:@5X_~rcHxb56@z_֎xbdq4Hg7vQd@ד~ tzvr*AЍGP,%rg R`Q:MI33m)˝ִRKK5)o]"; M ܷF3ݓRhÓJM,+1>aֆbnq֘6I>fJ"5>|KJcF{{XMGwoS=`qthTД=x*ͷz#ѯliyd@tUaˎ>7DP[mU2p 6<.F澉ޣ!'@ ' pQ_ Cꄤ$&KW64Q{PKD呀P19Ti}^GDlou<rlMKR.seh-Wht䖢d}*9<{ooc=kjoG=4z~4endstream endobj 1293 0 obj << /Filter /FlateDecode /Length 3255 >> stream xZKFr_!di-,~C$H!{f)Q!)gG7EXhVWUW}U\\7]勻?$=]ֻ7W/_\.̂1jqo"R-Yzwu#\+~,܊r=rLyl'EȂ1S#_~O ) yK߈oݮ9PbDJqf@ά4=YC(b q=g !XQӵc3ԇO@㻎t$6 ش*' 핹\^ׯ7W)ߖ JWRg ߈CwyWe˕f5vx_Ojv)ieA+aŋJ pbnʒ*xwh.z^iv]ƏNx{ K3*I=ISzؐ3u>u{-y\~~7b{ܯE ݕhV.9E6 G HIGkORTYTQZ9|*tq7.]?$ɨ\OQ!&Ejb뺪q=MR\^j ^$hs fվ(m2(Z ^R/HV!F@@|!K;r9'Ef$xf=?V>77B~ ,؜~E9ɯ_'_ݛ%m&$D/[B+PSEc a5I Um† }wRʦF4۪mVJ B.+b- Jw i\ (xZuS+*`x#gtGeRȡA|dݱ%פ$xA:ԥbpzӴrЋT,gm/W\:\rz9y8SƋ}5/B*9Qg̙b&UxOU8=WtW+pr uL$~h p(V&Oq%eZ#F[קAj(!6Q,ŦǾCS\HQ؊8q5$1d O3P}2Lb{vy` !:RɴMád&OGŴ& 9*vZ Ew&@hT(ħ{F|J3 P}ȍD&T. # q 8~FPGa !ϱ2*:w- axX.b bEBr*DN+t[SKD< $^)D+~>!VBMO/W 4j\LΤnWJ݁\[aFId Gz5r^m7{9+rW? L ^iK{7(hP~:c.|;}Y2TFZD>vˏ>DN#taSug$ ]M{ 8QW:v=6߶HAdNe~tЖ0*D$c)(h4~qS_yU@=s. &3{瀫b[>ċ"<}y,8%?7YL ]WC$ 0*wF,aI[Ie`0DMŲa)9at$bYY7y#V楁̎zY_vjxQ %EKɝ mםvanq:-1Jk }كĖ+F?[" t;J<TB ]N}gCOa۩Ȕ蔸wnY͉b`Cc,ۤUY [M)qTj?Tczܲ4Ebmť d0F^2)= <&siα1Cx=q;txS fMFވWU RBU B %'|v.:)KY> x'eaby`3ڏmIpD 2LY L' Xd>*KFۧ g֟`I$(j:ݸK>cnuO89C@دpXr,&%MK/A}b9Qf hCb@(K qH]pF~ ^Z^L 9\H=Swiy6SUU IOP6h,.S` YھO‡=ED Z'l"LP*yNaD|<)b=}(ƌZ>I$reMF~MWж"gVʬFğÁE']FV{x)n?D?C40n x"lC#@mw="z M鶎{}_V{]LU=ᑤ]KDžWZہ@?BdPF˪2i(ձFwsLI?:{EaOc$O݆$,ВU7>Tl "|GX^]Gα<*x#mj(;RЏ+|МYqzNҢc+b)Oy swd(%mq$kvR:u+[5 M0|^/F#m3Lb eӟ,7lȠ-U~`b#C|~c3`(7#_5@s(NbN6F\JB ˇc>&ȴ}@'v:8/L]99jrf⅛r(yUdNt۝v~-zendstream endobj 1294 0 obj << /Filter /FlateDecode /Length 2274 >> stream xYK|?A.`?9Ȋ (Hxwa4CHG;SUfr0`,twWUUMzrO}\}bs +lŤ͙Q+ǛpNn(gYYoc&;N/x3{1cuo7RH\*YmG4~\5@j%yY+#,eV YWa= +E`\m~-UYȘK0(23 -B,:Wf:M Q˅P/ݫF/eS fQFG'xDI!sn$i=K%<[VAV&q:HH\HH%b&܊ \B"n]/o# vc>\qW<۹޹!aYwJ!]w$l2׆b!06nQ04]Kז6!|qŲ}n?6|fwo}r!5<׵9S*&ݹF4sB$ 9[2[B@vH>'?Ra%˘XqL{x4G1bJN1DB}=G|x jDgM>fK&/R4*!%)(PX3dW&Mµ:gmr)mrBq+63Y^8u _)S҄>hWI3"g"6Yߟ31-q6K)~O"ZCIF!JM#eE^|R|7$RR@oQ.d_2V^fyηF`[ 6sg1l/y؏s g4]4^""J_Z o-,r80wHU8n!^R&2JRk%ؕ_4dl:$Vǡ2CGwzY+؝џ}Hak.A,^sxa%p}Sfݓ{1M=bɱ>VBG5L[&Y,o`8X`Mڝki`?V*ݒ'u A? Άэ}SbKa [X8!LcXi`\U`Kq70kF6Wg MQ5n'7vOIYdw?gρx6s9; rOXC@a5sXf綎MY;W[4E+2uvY5KGׄzbɍ )?6$2gl0RzyoxϝIŖ@jO rqԃk_>s@rB)e Wb: j׏UENn*= sۭ$r]{2fV}A:G?yI6\3e.F8qV: Wr:> stream xZ[_! >))Rq7\ZѕDYqF{Ι^$fa9eqg|___n;IsϗwEX—g.biY_Ê{%٧խTUi!h{@5EzoY~*cM K%isl_|pa^h+v3 0s둱T~˂L+w-~VD ĴDHRi#c ~g;ɊHpNئ478*v.#[w&-id| /P@@v}ԻVw='Gܰ{P?ޯ*si-i`W_`hRheq=kQOa'$NRjCy-,a ƙ՛P`H>3Pn@w*çcuNE&LN֞m\dIcg uOv=RƲjxmKbu"[.@.oѳt[&ʓgl r%><"|Hf|DKD_\TٜN.N3DI!Sz[G)jܳ7e k]\cPSni8ϔ E6=8'{I<`lfZX [dUdAbGFnjs=,Љepc@˂!:—S\aڰ@*V[(~%2|DX%;@O[̠ 5B*ih#t0" /bv")b1n^ŢMd:A?ݒg"aWӶct&?lQH%cZudHv|naٷ g50<{e-/Y>ꓤK]#?R@#u|(Կ;-p18CJlޟU6Dȣ{DO0tM]k RahTbꥒ O q4Q tA_88_˔pmRr<>#uts>3O!wx?zy" CICJX)݁N]ۮror.2Sі Jxx?r"t4aGvc(`͔Q%m(7C< g ;B~ Cp <Ǫߔcŗo! !0(1 s?^D N$J kH :1"(oAZJ۩ŵ3%).> I LrYdΉrQ!MʍihACRf4?ksii./3PEx;x (;xoRcx/³mr;F\0ZϢ,:rl#ޒe9::.%)pzV)!1~"RyhpeYJGû_H}xjeA: ߟ&iO|B4{h /&# Ov4mΟ @a۵֦6RY#.HNbH;/ L1HYf:=^ZްJi,NcbK v|o" L-y0XxSu ϱ~)OcPlð[yQQsz_b}*e8ᦜ\@r)ϻluQP9LlIGGATb*5ZiU-/vXRV8#S]_t4M*ꊷ&V }Bփ Z}Mi~PTUC 4h?}_Diض?߹gߜ.ہqcbئj}PYW{蟻S:Ofv⺓44 U{1^tڄYsQuA?VF̤/$A/i4A"Osդq0k~*.u9 V:O1<#g@,c5m:S,rJ2œE\|{Xwq;i8be_ x~w6!Ƨz`8Syha9YʇX1+õX("QAPr3g!\b9%̓&ᗃsvO+Sq1&0XPx*{x444M2":|uApd&,S hš?}hǞ6>}~:?ցtoS5mqLaAQZIk;#0: rHHkݑ\GE-Pf_Eypv)3 y!&Tp~EB%9yO!<;0XY-yњ7}8R;#FԦ賙$Cp vv~ V~g#i.:PY t| }5]fCR,O;GrnRnEnPWt/Lnçph7I3CO= s78Hr̴V(%BÛ8PF+xlWeFC/.*A%o0&GSu qan0dR;KpMqv iL\KrSbSd,ӖrgѾ]q\6.`**VD^)М=.dɆaNT'<} `Ro/½btN#V+@ ?V wX4.> stream xY[_ ZHBk-Ql$Q!)9gfHj wsoK^%w{\ⷅ=.,,]~_ υ\Zo=kڄPN>Xݖv}s>V} m5W,}XS\bWmyv|{X" %76~Z V~uxey`]i5;]`XލMEչGW2|7--Tz;-O;7g]^-IC-Lp`Tt]#,*>P`RҰ4n-oQ]՗!zB\VJXnT>շWd/ pQfپLf)m Y |$۹{%=]u( i i̵bnߕőm.}} [خ- '0 B\Sv|9z"<+1VR["u}.;~Z-Z qr6[Q%(jۯ6yqHUPRl9m9u9]ܛ ?> /:\jz`<8*Ĝ+*$_-OÓC.V+D*|@]5D?'1BY `$; g e @ Z 9F`TmB(W i81K@?+i <$kCPuYF۱79h⺐A/%#_zj c=ݸXQ+Z!8g[N!VX^󔊯]st(U)տ U%k:D|iMWu6p!pLzĥO՜g5 J`] q9Y`w&gZR Xpmvİ*O (15䭥7 %c []%{Ojd ;SEK&;za=5yA GzbhzRA]^l2p?FlSJ[@-=@=Z`Iu ߁JrBSBPK,i`"Zwx&`QVc"͂#I#sN]ְs~B3oDXHH63 zӱ9&7C:ʾ˄W&oM% Q[P>֒s0B-6Mi8*yz#ۇ;1O}_R.[l{g$ Yf|Tr) <7z| c^OwRAjR W@!P (8XAojCmڗccl2SҗR߃JyާQF7PV&)EBj'֦qH 4/[vh(^vOeOŲ!VŪu9"Jp45WM.A\2BSKL!0MaN`ulT8fӪe~6닓LZN),d!B*AY~<܁tO6SO5R(y!$Ѽxލ ꁑnc++#_GE1gA_gȑNϤMVQ'we?,Cg7ȆfGd.JN&qƟE?/i{-D9^_h.<'PK+ӰG^l ;Z'x̛mr<Ő3QXafy lѰxכG((8I gxBua$}bm_\K?Dyΐ%~Ğ|5tMc1AdA r:$8Ɏ!twE%uXI(pC=Up0]qSxoT0Js%O6ZnH,` 9Qp5f&t ~#ĉk½쇇6vGz~)[[hJՉ_Zo8Ѝk-iTOw/L84t D}"dm o֪؇+evbQ}O دAO 3o;>pjP!ݨ*V]_/XUI Dz t2HcX/HkvND".b]9$F}vԧ&e?̖ծm+rHA~j1S-OA =uǶqN4+gCI&H ',a&5!? /5m MHF";;3cʆW*+Jzk}ks\L"N|~Z3T5ruJ~&;t‚_I8^endstream endobj 1297 0 obj << /Filter /FlateDecode /Length 2947 >> stream xY[oܺ_oYU$u!9%[@YK{U벑q IQNö.p曫>oobq*]}t1$I&6+o4T&Sf\}d\lw<(j(M]v'is[U "kE)fj-K8֬=77{|$n;g<#ŖR/[]+zƂVp-(dD2v&)fǰb8zUO}wSfQXnе\LjhYI\FiW\7IYyD9+`tׁYJϣN*ؒ'l4>#uuݑZj<+*<@^kSmƉMj-{u~q@ JD*׀[֊Q)Uh\҅fX.Z9 #- 0jN]?ZP0my>Gtfuʼn֔#VʪT7W[۲n00|If b%pj@x dܷhbT!Vz2IroKY Nd2}#$,5]#UiL^hRnYjK1 H֫1^tE=حn8 m=e܀a0\F-Vm^/$Eu@Vt>MhB%G#m# UOe+-&eu^w/4!n@gnGmwS؝u5?P(h%2uTƤ!.[Cy˹U%slϾc|dŚ9–'eJ'o|83pE^֜ 30Xn rf9A8AQÿ iƎ1:3س1aa!: ܘ$r衾Y;񱢨ZAvxn+LqRN$9Bަk;ojX͚'OwL)v6L`߳f+ I$h_ !@܏͚=$ /gKΧ:hg0能q*󴂺AB75I$%f4L,q2CT) l~*Jc)mAq@2+M5nZ շŘ;68XuZSLh)䶀vpG;Zӌճ~K WMD-7q* K{2݀NE-P׼ܐۖ dx]l%kzK$Ŭg/҈}ޙkjKh3o;r.R}в@B>wb DY|@xX="7#?c dH]j~NF(Ե&mޅic>6R]h5e߅t,NMci;:Οs¹]Ls8 τ6Ag0Y 2DM} `",Ga6ӧ=ׅ3k՞$7v։PJ e  #Ô;}:2_hz[BQ"8˸Lwo | :ðո OZЉ$PKSlrPF*k׍,kd4Cd4q NF܎w~[.Irk2;ZVΕ^0'l=pwfD*sq04g'ҦC3,AQ p5rendstream endobj 1298 0 obj << /Filter /FlateDecode /Length 3498 >> stream xZYsܸʣ~ނqy"Gmvk$k+y@( 3䬭1\.hu/L^//F/닿 Fyy}wK)C;sYzF[ YV ]y6riŇmI]>M{i]6s)>F[I\ (+)h\lo0x&/ġkovվV;Wp:iS(ZN~F\NN4MGq89)nt I:'n}CW|ġl}H 1TmS?ViAlv6a$*1lQVz~BjB2YFyЊ_rnbmr"\άUZ2U,7Љe$վr))ya])$G@#%DUWvm)ww+Ro*8ncW% NZ)ܱwhof^=v U󅟢BkI~hjG (G,ح+fi˗,E۸o;rWnLeO}rhOz#0 y Gjm/<=j 9kN{[a 5{4nn=r{p^^D_U5fƃoWd?7EA)͡8<5ϩDݧM<&AnDfŚI8g9q٧㔄JWsB3ιYlCIGB8s"3!x;EN?\_zɳlLpi!{0norw,E_ML",x"1AǺXP!g0` =fFr4aE9 Jv}ݔ3qWDG4P D\>,! KQ6QQ&!߫j(;Y3MLZMX aK-뎃%#Mrِ"Jk6zˉ?$d&?T^o>5TapDtղFAԻ 2=sCϳSf,aw&Ri-20! fmE.>? 3 t%NL,b'&:B= {k-{=9ـ**ЧTcvʳeJPGKzDViy c-I:ޔضYtfFgڇKVF}AL3&ݩY x~n*pD.\߂}hG#,ko*?P`n%AYa.߷ՎiPZr)rX{5N vע wp}'EdkCiƤ1X$dF5+Zˡ- ]x+:.S 7CL ay֛N )lvt ZRF>9%B D,`AH/щ"3 5߳Ol$⛚06# csJ*c&N&3d7Ub%% pͥSY{l<7hާc1G?RBid0j͚#'5CcMbF2aЋCrAG$:f&˕~蟊Vcnt6pfT u`Ԩ0u\Bk+v`V|"ݜL\˓Yb;? }HB"KߧA}{Tf}}\}ܓC~^2qP‡:h [G+uvl^/B3D$ oH*g9@&oJ7fEJ UM$\&љ" ͂y.6cX`1<_֔rw.S1ǝ '『aq; B{Z !m_S3|ak ٞY[7~j'O5)UƵk`z8+*>@:樌W bǍp~WJ43 2a> QwaR=S4 ĺ ;ID=֩ c:upWgkRq@VYQ,3 Pٝ o[=]@qTveTȣ!eJ+t46gL D񃠄ipL 1&}k{/Fߟ  Xhx+ܬрv͢3@^td,ňϻD}xA2/1u*hNhO4 h(> stream xZ[q~1/X#DH\6)6ivB#sl%HNw\HIzxk~p~_ݤͯ7?nKR'gˇ"gR$-,ly#J9)}= I*xQEمV2.+k]ߖ}b):Giy9%iz\;nզ1kSR &sj*17?eWWE0Fi]_W]B{~B\dEY1[di2͖.={{BWOq[UNND}(ƒ<#Â}dN.jUtsh=l²2 J C7e?~r# 6 ˆ yICw@t.(6<T !Kv8",V5z ﵔ߆to"*Utvkv8M[X4Pl"eFfr- 'd?v =B# f; j=L'DHL"0CB-*!uyf6׏&nR%I`6J"0gz/ (HAXڈH"h>O7]H@rw\6Iفw".ʀXL@5ȏ-B TsLʏt_ {TxH?\i+^ ؜K&.,K4L{' T:~ww"ȺZT#Pj~U4&8`%ِ󜋙%m厔XoB]Vl93 6%HP1`ͱϧrY e2).U877SlpK枍NzwS.ű4gSqIiODwi]^Li*$| x]Lǟٔg(7 }gll+"U ]3qE:XQB:YwMmlWUё5Dk^c0?`I5v4U]=2?T| ||WϾecl~E3DU[ⲂI(@WN0/7gJ4A_;aۙ([J,_!$;BGz[oT'>*]VkӺXmC!]>Ԩ.[q{螪qMn/YՉ-O-'۷Y|oz2*9[ձo^o8OkpkV! Cz5xkqH&ҥÓŠ f!܏kZd9_{ʶ#PҔkו.5CH0>Up!OٽHs ˪6%NX>YcKNlڻBS(IGLd62KD+F'XId$O]0\;<0&` r3sTm&|(-l@-VZ)}bʝ_oycs7 F*d0Qw6@gy A߻I3|c#@:8[(惽Ϙ'!Cb.YC?+ZfÍ VJ2H*OޏTZwSw|C䷡pMQ'chz^؀Rp.8y9~F!5f g,/Wla/j L:OB =D҅A[wpW7 \?঱p9Kw5`epPs[ՙo_a0o.fdQDj}!|&e-7[)endstream endobj 1300 0 obj << /Filter /FlateDecode /Length 1484 >> stream xV[o6~aŋ$2:lK1-ӶIt):mwH2C\qc2ͫI%MV“N>NHv?y5}-,cIͤU@`:ME:]Vd+cfߖwxmRSH"[tY"%cY>0aW`)r_)ߙJYׄfyNԭ C n .ȕW8{Rz." Zx TIJCG8y`81lfg4Aq8# .K"(YGvg.+};,ّkU ]  XYbWţp> stream x1@ w㺚8fP&@y{iI]kU-lN2HYS*Y0p1l378>mIct}m&:Kg,/> stream xYێqB $}a_,ljM $U Y5J,͸ew]?5]0m(ʼn.AQ2(Ǯ`u%{ꎧmh m< 0 ذݹ旗ڠ vW'a_hʈ0o+iT*]`ɥ*Ǻkq_7?F&3 mT(2S)|Mse~d$Y F 진 ”LT؇?㱯 *U0 T]k(U̽P#BR %KM03-_ Kp 2=nO?Qp8* X@ ~d+ #<E WF&RYfzCEM/t6! #3p婔z.[uKq iewYע HfZjPmS'vJEwU_ũ9ARbM84.nۺǺYw p Br&4Cp* DO4z~Nu9se?IҐQ!0} u7g"eCJYElWW}ї,"lH،1:}$4Aw?:aYw=ʞD'd3w g>_#Q9@7agW`0We1U/B4ւIiŷ4Aa 8Toх}W}4jy&QSGQDڃ{nCG^N Yv7e]yO 2H9Njdu -xY5fU*G 3R L]gtpVYϒF> CF)(\`#t9GUfVl[Ò-a,B Ƿ9ZT㦔4r HסbqVq3vl !0xF^j ( ta=zR`:啴v T2Nԟ#u#xcFY8(fTA/>2rlGV ӹ6^KC/ Ǚ}1D爗IrC޳b6h-GQXwZZg Ko != m+A\'66xJ.dY&9|AQf[r` 5p%3M!$Zw&%:ɐC[De_KaʸyF6cT=,wWGcUF,I$HFI%Zp,\L1L3G@HwM3SNxxp9=iTRehw3~9YdyuQAMc) 48҃o?*@S~ kȖMD+0\e\gd HnXJ/97 ?VDO6&`94\}FOl^<"EJ`]8 ;30AGo{͌ *r*ԋP2P7(%Ԅln =ҙm,)mY=270ZFg};cH+ xmUR$aRJ+$xb4yǂ8&m1eȘ`!K#\Yo@WlnPQ[\[ͨssUJxF}LQqaߛ,OD͉ƷͫAdj]<%_ `&,QXE5phEr7Q:6րY˦o?endstream endobj 1303 0 obj << /Filter /FlateDecode /Length 3899 >> stream xZKܶqIiA<*ʩ8- pvis#}lXU^~~ݘw,U pmn(?a׻otoxڔ*қMC{q{#,TZ*,ݼI&4l E4u55K2Zi\[~5H3دݝHf*!dIuOc;.Ss]R#l[ڤkqWd|w`(ڭt~*iw폁n2a0e/2|9ۼ)OD N({&ECsLseBtYA-~s /[RmSSZE΍7][= PPڭ3&u? MW#\MC`vA] wO- !6 gA8CGla},%M>nَo3w(,VKӲxeRC][1p _H ňl5c{=>9+2I9y]v[eR~ xyyਫ਼rhu{BƒuH0dl]g Odz6h&x 2y6l=y ;hT38`*RE }n"^'u56"% ,7Il`θ"l!8vS?wg MNkmgdo!δa頂xJڧEifV>rhaP!dyrG'U0>G2$q?>'of eR ͲiAbGc :LA(j.21g7gIsD5;/J&#WcCF @|YmW寤@| $%4B`&g!6pT,',6 B$Cûl2JKH.-̅ۿY;o%ȇ\ri4gltjqN|p s@_HGvZ~  [;xRjIwfs ;m8ݝL0ZQV]ZF8&c ߊU)?M&420FJVbFWMO| K^6!6hRP%L@'z&e'-El8hm8!V0fF;+'pI'$zTk $~j2j/yHhB(й,ky_SzgCLq(pP&7w~Lc`$q}X' ی2a87ǺfJiO Nt.1D("\Kw##oxbTYXf!8"KejsS)|&XLQu=25L~!)F -/Ő~n&=Qmq&Qb`%'=LQM>rAyrO"ϺB K]N؆ 'drs3N{tY ^N sz G':I+>G(2;H$B戴iqlס4`8gͻ3*65D_bN&l~9R 4$@sR~!lXicħS[T4sT2fĖz +xnA]2.ճ;GAC[= FSKKj[*#tx;J:J v4&˫`DmI ;T P"pOHe(l&H." xp]VbG (^ HZ?4*Sc:El.P(f+KkxVA:BE W\`P"0>_\"wWs3=0_?7lhl2:y jIRAyA#}xgScNYc+˞I}8 əD!B\"RI CԥHSSiL[{ĤT R. CD2DBkv[6xOǾJO1;tL鉋yeI9v $-0;ζsu.ނ&/t_&}@)µn*ݪ~ qQ9@Rd ]5U_T{k_0ޠEgWC--}ЭQ̸Y.̪Ϳ=C|?)% Ky†0tНlj7NW~s$/Uі*N9E\|xSnnӀBtԆ /9C*ˮNK x$W˖_-$8&QWޞLGxG퟾ CuQPМ@`1ZUS?^1pJ7IC5GKr EC2I8  Dd}N<ן=)"z@q2j% yXbj$Q^xEzܨG9ϴPUݧKo r |Y[n> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1305 0 obj << /Filter /FlateDecode /Length 3860 >> stream xZKܶrn+t &0ăpa]Ķ6')Upwiq#|ȟcZvHF?n*M*ſHWo.$]ꫫ,S z5reRVWW$2LTPiި,MԊˮڝxo*KRsQl ΉCQn﫿OwWS*O/] Fܬ~ވ}+qg'40dEq(ǶyW틾jl.8E"b۴mYsa\Zk]|mw}4k!e;RnA /ȋ}™Pt03^EQ$*msu4u` wf3*ɽ]D^Bw} ^۔&nt"s ~4KM=S'DMbr`^I3D^"'y)Lgs iݔKq=}r/3xYO4LLޝ}dUᘳPzkLѸeH|H\mhdV;szI9LZM& C˩.ҊL;6]I _;'#.?֧.Dp"Ů*n(\6zK)Hq:ToN$Lҁ),H$&֥S;4F=_oR nҹeB_z;-Q ]¯t(L})Ę2;_ G\<8jiM⬞/^ j7N$7Z&K9m ?ǨE]F.EYWwMPN7<}H:P.ߜ\/(zMs"!Сt:s982@c[|q%eS6Ө/++ِ"c}]4q) [/k 9L:ei~^4~8ҳĦIoNm han\xoגDmD8N(9+J,t:x!VXdEGіqHd<ײ㒰hcfg`kߡd0Y&DB붧cч-\h 0v@xYwE}۴U',H4bHn̲]crq0]EKț1~d7 "B of6Ü3[ڎm-A{IHdAri%FkMӢ $3UNcSJNxa@x7XuP;VFa9,0T)dJ@)(HxM<38ؔ-Yd\A^OJcSrr⣸tq؎zA ha ݭ@uюKIڰ=;lŮ9aՉGSJt!q< !< kE܈S8u$3* W4kw X0e U#`"0]_X*#ڢir@[9DmGR8.Y7.n8a)2jp41tQƌaMᅫDɓdki(|841b%TEYDpqd)#5!%.wC|b>x+)Kz@CũP(Zsf7CcXzwGyXʆ`jBVA f H_Ϯ |b$A T}u7(4\% UTCԓ;]OQB41O'tg/(Gg.Q O&i!cf."(H6Pfc:'ֶĨAk2Z3+3݆RfaOAsp?i'gJU)ڒPCd: j- AJkX?lfBi?mTSSs@,3SAޘY-9(~+!P *I$2.0U= Hh Ȃu*=`v}{D<Ոu(&iԿN-۱tM*/C mȬ|NwfX$3y⌟^ؙۧtI> YkAWC -C偨|RClXcED h{FثsX) tt49\؍3픁O7 ״'DsDx"dmSAHcw.N5뀯xWgj*!0zo^ټWkr N9'k*<C)iÚ\0%i:%vҸ.fɒ 9HDCrN] E:v bT/4)@kIHֈ`N W?,Ւ1塯jrYu]jبnqHw%ip3&=U`܈ 1^ׄ:YԼ^BcN1GJzqw -\Ƕ%OQwXE<@uQT?)D^ =s xCmqpx1 @a"[&nS0 @34jlpCڕ(fIV wu#:vvdg-eyܚN\{1&㺅;k*}y~R>QPc倍Xmm$ ahFEs?#P(I aX)b?j{6=+JuG`KZwc`A\ -$?l3lv@cYw1>X``ׄm(MUƐ|; TG>d/9U Ű_-X5wpBB]i~z SNǵvZaTf\tD 1hlkFPѿ&}(˷Kȏ=싣x|d9~oF?=#5T\OH./bDP$XRQnBWټɋ W+Hp}Yjl+s#;P6fLFcAJ abΔ;A`C]QFH8O?Dʏu"u6^[e9H97Lh/\'l;5|*󄑧;-/@. EiXH@'~^i^qV3@nr5x&̀d&UlrtU('S.5%Q,_6M t3rxu-Eڅ)u#w^8CRhɬ`m՜q8E~"ޖirԭVR3z5?a!U)C,m9h;Di2ok!Egs2V߰u2lΡ4  `v'= \y‡ lPCOU4M!vIeLYǣ/kRɭa^\#r 6=#eNоKxg1~H('6SOEُfg Cbw cJ$~-GHigñxy skjU3l=Aj@?]endstream endobj 1306 0 obj << /Filter /FlateDecode /Length 2787 >> stream xY[۶~y)ԮXF3Ii&}yg~~EE"^]\/-_.+|aydb.I7NjWf/W"M8NYSJ"kٮnZ8ߛ:> OG,wG^K@5H<*Di::e7sD+g:DiN1O&#rbN1V@M^nIkĮk*cՑ2˥!8JV*v {s&Jm~rCܰv_UeZpXnXDh4 >h &cv?Ǘґ&&Q,!8mhڪ1kŬk.\T2#Y)$gPy4у  (f+bjhaBMGR! {rKjNKN["%εCs,) >eHn*^90I>J|@xРDҠc2jc4em]*S)}z‚.G sw RP?Tٶ(cg$`gWTc"2gh+:[oM[B3!mJYѢ驻#>+=,D^E}qO"_oЀҖ+n9,P M[߷m6Z+aMbKkuӐFj`Oau8=NC^iBP܆`"jgTÒ2VΙ>Pn*J\XQy$E!u,Pc.>W[vV ,[\|zso O!NH}$~zO*,TTLn:XEP%NN h% `+&`J # {C= Լ۱ D!Ho~E=Nta;prsȚ2'=f8/9=pvOE|"ƁCړ;tKE4hݞ2١;K( iĥRԮJvwcf_ lmG Ո:MU!۷eq!ƌɻndo:;WP 4؅7^0} #'"{< y:\!LH5"bIaH>zӘB.;ߗ+m-bw[WAvy  izoGfXŽٲi>'q:y `fp$La2e[ ϻvKyYFպD D_/Aڠ >ݘܐo_GA=E~_K /^!_P砨gʼn2d|VYg ilI|;BpAǯ #ZH_^q()ABrXGp=O&ûB!<l|! `3N(UJ;Xmuw6 #"Vd%Yѓ g@J !y zMJC5pn&dE:'ѳ=?u!OS]OPnWܣ$:E9ǎQ8^.3%.Dj L$|NwRN=ڎi(3A+󼮺T='NDQz3\ ;y>~[/ʠ (ynńwJ}WSUӔe?Bi^,0^9+=7Gdb1g9NޟYQDhhstإ!B?̓5!TR>J4Z^8*^oWbl30gL@O8* q̮}h?sWoB)l \؀mն۠_H~7ܕ|\3+5 doG;R`?.5\7+b^>pXl@2{&P2N'&s)S}a%|+ͶEƙMImEEI&Ϻ(m#> %}}w".ävA˄dF!KogIgKnF2aԜ]pwM8ލCNG!,qWĹ䮇PA+AMupR %D3-4Pr>}Li&@jPJEtPIqM9:*gIL6xTEӴyx2x˼i_uԹgwr&be8BLG?=W4qU5S]A ^ o9;D&0R^=d/#Kendstream endobj 1307 0 obj << /Filter /FlateDecode /Length 3753 >> stream xZKo|ԯ䒞`Ű_&rZ;6qY>@p49,YYN=iBV$]_UχUUUp%*9de^U)3K*|9\ks/E?L(c54]x1ijnWR“WtC=+JQ}*[Qu㿾zii_*C߈jg^:7߁d.jPenNLff}-<? +n?ՑIu5No?a-=|@4!7keqE!͔d^alйY)mM[b`q)e:EE5`XnW"w6o%keni+ešb('RgA1L<(o,r#KK&n+qrإS|8]=!fߌ3Tw1lFB=Z"M/hPmBk_Dqe`D!{6N5/Vc>86(PN OmpRِh5Jx"r%P%Ÿ n^4ѣC|Zx87+PhM뛟x؝ Ȓ $+H[6ߊ:KisD}z A{ Uٱ/zqYY󁥸7eqbcAͩХ NAe.e2gd gxT>Z={Msw^L4|[糢tޑ_S=(};&jr1_d,b]Pu#.(-ty %=*QCM4Bageh7lbgGǩG;k84S}X\U\U"(m1 fSE cWVLYjpx 99aJBI /Li3R.l a +o3]@ttd@beikBįA )sBN^wiyu)˄5);z V.D4np+ qN èӆdI:g17XR+)5aku{L<!ԫ/P2]A&ӄh ZWih-hXE3.oxR_%EF 'xDɪTx-PI̦YE5tKO|" ׅnh!X6&\߿ ˆ۵"u[el>Z GI`$tz5T3E]й54?m;_h|Mm p%|[-@ag n71IJZ6$ %}ݶH޸Pn쨫͕;(y_A C?1A4dZ5 Ŏ>& 7ѵUhB#H;1Ѳjg*UPjrWm1?_|Cz2ũ%;7[vDk}fLhVChD:l?llټr>LraD+5 gg1Iu ,2-d I8|X)h¡NKId D ĜNp,JqjnLNmnnʀZg=wg=wQWVAg}\+^Ԁ<+ =;/Džܻ#)}|Ay1t/u/kĐ1n!P;Ǹg=Iy}uL kUJbȤ˜ڶ DAXT24¹0!voo=<-R,+fT \qwaZz[K ,y(cfFcgW2 MDV,{w>8%&3I$6K0̛ p2RJJ]GNBh$<!8%a,ŔTDR+@&V}3A^I({ɠj _0U@|-4>KI2 hΣ'h]4_0L# ~JW4:/&5hK cUm,;VU[6qFE ڦ ͋e^ۡ׊2Sp)7<*lqG wam@x@4x-͂&{la*N7@<4b] 9'E,:=ǧc fqmDSr,u Μ'U~]#@#],1hN| IE&v)c*tTf(D0D)1"IGl&P):ū`'.uKT$!ov1lc]'Ea`4!VԉF,o`MN+Ѝ1p M*iUR#WBg'j<;oҥŸG$"y߳%cg>Ҁ}"}6o][mw+ws H7CZa>qbi{0joKK(8čy|@`@m6Crj!$֒ry}^H)m`gnr 皃PRRh(5?p)ms)6g4BK"3P Zqя\3Y@D|־ۇU5v/^1E~#,yr[d(h J=7u&{,#ދG2k b  o"hv IjH kL(D=%Ş%͜;o/4=wu7fn ?_Ԑi^s:7˗4!6/23Н9]S7 wL/6qMOPu\RqѕG0^EF+zB, _1%nd&}6 eOsrRmhC&eπ9p3=bi_m?T@Bά=yXqv97T/ռtO>@ H;1b1\7*PϜ3<H|ǫDendstream endobj 1308 0 obj << /Filter /FlateDecode /Length 4251 >> stream x;KU>ί[,xv/Szn8g,E*$@Yob*!An[/rq_ww+u'h>}[Q(CAz{p); /yd? C.ׅta+~: m\qTy!JKo ˾76:r}Pӎf 0{8n&wmao|]dZt+G8@ 5I=`]?V7;tjKi:p~|n- n;"X.{"UL0tb1CpOUgs,n&nx.kO}SjG󜺚 -RIϥqN]=È0!+0i]GTMC7- "M<פ~TۇHޤy"2^;6k/]| goa„5PEPaS!W.ns\&v|D&o6ΆƢ4ҞJ;2>uW^ Znw<:~BеVIPkۓ'N8 E>㈐!}GD q@^3^yηM9 ZQRP$Qe~E^\:1ӌ[2oMMiev3 T5p^1D@4 k@H3!=3yB 8ќV7NPMޚӂ*~ސ?AJN%4xuM^(ŕӨ ~G.#:2sK@P=ObkZpeǮ=VcO&i:zGAv6Z4DB=fνM²-sΊ.r$RǶ*Gѷ~CFHϵ6n $|X!QkC6~]њHA%Q8SoZuՀTto;?"02&:Pnf4`tA}zqYSTe|DG|!aWHo;UL3#RphQ9BvXԪ0ϴ֒[Hpm{pz*C9`b lVc6V ~=V$zNtefU'Am/%2\";'T:^R=zcI$kv;]]6#-|Ȍ"j#NQl(57 |HDxueKI%( ?Q}G5H:% H۷B]1*کOKʃJ3xH  md&k,EN} 3 h;#dl?bI^ggj%ƫTW|!A*h\.bAk83+TJ& bOk 9~Ÿo }~>Rߧ)5N rw7 幡y1BlZ*,lD g=-~|ߩ] m޷1n& jĖ<["|'< uq1}A11X L^gp!jA峜@\SHQE/.9fMC@^hI{/5Klf8NUrXL1Di>Si3cݤWv=Js>U;kyOK,/' ˰&.:j.䷨1bʺ+[~D1|e-K(dN _ddjeus\tCuAk,lUO]M=`EnƂNUb4X,dSq3DIbabRy;{VwJ5y#95!e,΢zmqwruYܲ\//$DFNiq,/J_tz"nGKK?GnlQIJ2 /r|scwnBa]f/pQ49d:B&l_ptjq{ss5g媛t MjOB˂b&|a; \܂g5ҳR@,)½CwS~>>ҕBNht< p4.p41!&뾊}Ӕ;T1eL]q:K\SǺdBWSDŽ!U \F"L1" # !A'l:m6N0*:Í # ?}\1B;<ؾh>#.'črZ)]ߵq.APŠP̚2adp+lYrݰ}-f_b{#? F D ~uQ_)D nA_t Xjy*ƣJ.@!y%YT@Y¼!P45IA;bb:vs6\yN‚46VxKXⳡğx i6Jſ~vS+NL%Ofar\$سj]/ _\~g㯷xOGIԵ  ~)M: [ F;c& # Bendstream endobj 1309 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2260 >> stream xV{PSgqsF]h,j'lQwutǶt,(/W#7  $$^2ngGmhqZ%$3r~#|(@0<5=!/g,c-$oBxCO;5_}`l!z2d9yEIɇTCER{(*#O}L}BRR¨*Z@-")jS>πz;t_81[/%ٱo zvC? KZ>kBzCx)] G4&NItV@=U+|v`P;|+0E!to=l]jCEC)yXaQm̷iv1CrSγhK,'$XVvFV_oLL{L:'2BTgˣ _X"'y!x+drr\OlconjUX3uT]ONo޽=+̜nB4jp+g\͐C?௛ʹ\䈱K8g }#l0d ff>4<'2D!]'w=bGlܸcѯ؉bGM3u-bXL-V7/s-VkWZg*%֒ceE͝M9xiveq 51e u䞢WaJSJ=߀l8/p9tMC~nk\ Ƈ@S'av^yCܝ/9l(f/^C? @Y$endstream endobj 1310 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 *,tahU@p' aKtpw'e?\v #z|QDZ`ɱ0Y!O dw~3g}i]ZF']UZ%͟tF{8[RMe?-ΣkĩT-Ur&SA|Tendstream endobj 1311 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 184 >> stream xcd`ab`dddw441%caaP1`ee%E u L,Q?:~tc\.+qj)&M 7}֢N:{zԖ -Jg5m^9}Fm7Gmk]se򿟲UUv#'b>GjAendstream endobj 1312 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 211 >> stream x5A5dBE4  KnbGom(4<'٬:'_cǓnOEa4]dMX٣Y5bj운dH7gJ2@qG:uԏ,ם/DyCOǘNll-:pפ1nQNY\b5-EEEE m]]endstream endobj 1313 0 obj << /Filter /FlateDecode /Length 163 >> stream x]O10 .XЪj8(Nߗ,N>ˮGֱ4%"@cQ+0I!O X d7~g}Q粫zCsHQHOݝՙ*C8 HJR%pLo9+lS_endstream endobj 1314 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 151 >> stream xcd`ab`dddw 441%qew!G 2sSJYl~t}_c+2#_t)S9V.ɯ(ldzKai=}3&qb``0Jendstream endobj 1315 0 obj << /Filter /FlateDecode /Length 1835 >> stream xXێ6}O}(@kEu!@H@6Z%Y7ȿwH"h/>)3 3?+gf_V_gO'a 3Q8f^}B=_, #-$C5\cE\?h`$3YW7->6uyCc}?}vu5>" ?C_A$Q06M tœ:9W@X/3 #quwaE|}1[ :<(ꚴjuS* EY8>!Q3JQItg/psnx JqlA OnzQ(R P[i)Op%˜ĉfbn/ E7/K%'8Lw;bTmgF\/Cj(ddc_BPWosSld/Zm"'Dd~7d qݤa!z==h54X%#=_ mӍ9}` ??uQ BJC+49ZUV9bxPhgh6! 6(&4C[oCV'qUk:KAm)Ei{ūW"ove @у~h f=J, 8%0hiȑ3G:0;<&)zu/1o8#8^o(ػR/\v8>i)X7>d{1vǎcrc`VJ#O6)P{K#ǻ=^0EqWئ*qѵv=geB0 ۣQ0-#˷M p>hϐYBaPg))g! \ZʟGG6"" P7n,Ї+Y3gd^ޯF]Yɔ-0쒊#> )Mrwj;qb 8<揢nOj͵Xo0:yn"{SݨdV"$r#3"SE9%? ­R9YS!d.yZYeU2iVkCՔhþ\Ԫ575JXp+y&i(J x( ιEFb%7ls3KPo*Ů0V7"A)S)W8Q?lEPZ8u*H' |[x``.cIo]>WU[332§PuԡN*ֶop Lc 4 !(';gwΧytMCŒ1uB0ZpxI4eN/M+}щ}MЮLmhdJeNA#g4Y\ꯍ^0bkÆNo}3,qjBur Ifypez= yendstream endobj 1316 0 obj << /Filter /FlateDecode /Length 2044 >> stream xXko۶_a 8="]R`'1rN\]d~/)$%P1%'dͿo~XاO~XYp5oh`uC]4{YP.v7=Tw+k&(sheF셅b[ޗ}M#0Éc8fRuV=uSH,+/UPf @oB.=)w".308љcˊQ Mh:!gh:qIp>Y-.՘I`EǬ-wYg8- iZTcFAr1*&ɧȳꆀ`N4:1)ioJYhk9t ~77Eu^Zb6?:ʁ8q( $Uh\Pe-T \q$G35KD$W4 &xSٌPX˦gK0Qp nc,%D,ŢI,Z :N?L&Ky2',%x>W!nݮ|41&8"陯 }u9T:kdMіc't1c,᭘&T^@n8XHi QqE^`#JFFgQ :OYa obhtT(xVBt=%D7T< P2imMYȠ%q[7@GX8M%sa0K|RUtks{c 0I)ٹa=w6t= #Y_HirI#SfT=LuQcrF'Й?vI6 'dG&Lʾ8Sn[c?yO\m '8fsCt:6OXOiq<xLg:@^;gvwz0ˈlcd0GB8j>yfhtDBtPcΗs+V4` JTs!jw$gVHJD&WϿ7!|RٯsلMD!.WbZnr͵촣l myK(:yYk~'*=4V&ˍJcٖyVy0X L!gn:OA\5ȸ r,ΚiW_EU ܋T(%eh]O򿊠]e`ѯx0ǂhwkhevWVAqTNА! X h> stream x[]o9r}ׯozpo}0 $ , C6ZƒfdTTwd{\E6<}} ӿWկWahOW1tl+q xnWuWto󟯯տs)!nRǖreWWe;Sn)mG>JvG:PzDrãXύ9D֞ANU`K[!p243e2>F]S[J9UjLX>bIo!FY %(s2*Mh3!΄Ҷi5RܷUV@"!l; W2 uku^I/ݒ=pvlON9O4Ձ eZZ۫X-:YĴ Jv[b rJzfEW[ݸhT:*yD鎒yA fM[&S1v4O ^+/@-ZЍmlI2{Hn!UzuiK61WѓJ^鑯$>X-3pN{^"@ VTGs)*`*a?v\:?L9@[P&2 b{093vU * ưi7ewF|2j޿hz:LcF"hkms>ӸQdf#ӸEsf΀5VX/`.:1Gfp/ܐpE3&G{F/B:R1[(D%LZu'C ª\dq6s$6> sl7Q;Ki8m?Dsy~At)IfDG0EaXk4w,ȥ@!ܝ)Ȏ!ZϚ/S=nAt4<#QkN'@^ȞBDtn`R4:Ҍc *;vA6X<# ~95":٥ޯ0!;T@U-yGvNN8ٱYXb_v\qv>aԊ.]*;s En䘰]#cǓ9DYJDXDZbB ەTx*'%p]aCc8+t?ÄUpYB auҮЫ:R4R%>W)&@dun  uMI5@ߑAdufuE(J{Rix'zA'a/ZyZNzH'+ӸUb)i&+deֹzlL쥞At_];[ez .C `u~{O_*;x; - ɕR$XqzѨ`ثbQw陯_DG05:ٚl |rMgesp|N IoijsM =̻ڭë,Pp_1"2~?)cK걭B;=7!sR:YFHy2)Df Z#,KrNjx"ՆL*mf[(8M9d{l"խq& Lèj:Du dʛdQ# *8 h[RX`Fp);!yc@>F\E-2Ldb&G!]C%%@œCd@@؎v*c;=#QN1h -198ITWŠ{[N*JW׼½O DTdh64׌77:h=H#yIa M{Dt8Sh`#Ce*U":\#Jtܹ22oy$,6(ȔѴ:Yty@E(q;?X%%": ; Z'1W~ZfƜ‡~\n4ؗFe߀&4v)16LPD),r_E#ˠPܕ C|ʬ@X+3] j S3e BPhliBYeV^Gp_ 03^jSL1^䎐03]tE7̒!Z0ff]@3Àw1"r ALd\#GBs2*`*aǂ24!@[ 2].t'af":S9_6i46 x2 "LV.5vya<2q|S9_aр q -frAdB.w&+ ``‚&4u)pǩ2Cv]C64ta2PCXsep \ЎeCn1/p T  y @{Ta|^δwN<']c/YVM1;Cs#(#Fyb#b1:h*[t〶kidUdXȠJ\pe#KܣWĕFTn< &,{I87DX0݅4?.[~Q/5yI3тU,.P&g*q4LJJdfgXCtc,#*)2"*E{KX❽ɠZAh!,1/e.KX8ʹiqҝCXX1VěqabL6V5iY,bV,PX!əSPb21be6)ΉF8- C f z`")1Uz*Gs7QbJ,*IePbQB"(e9*`*a'[NDF(L8l4*S8x)# 5jya<h1R#\c 7T1^lҠAEuW-~.-hgiSXB(-sW)f%JDu2=G'f a2FG%r#Ɖ1#-h@G&rpZA8/V̫P A|Oٟ#⛛q8{kt'w@8CB)ޣ=~$ H.j^6ǻ(87 MݥS իPxs<׎ܣ~N' 0xm5Hۻe@_299g5ěbQ. v֣!+V7DOkG(V7k7.vȣ "7d4Of7wu@T@wheٍNw , S4fSދUQ| @X/kݎntz">uhɎtGGn!UZq,{]#8{b"M!m.m^,P""X5»b@|;wk, ڨX+U A|WVx <'uik<$ƌhMҚ]F'Mq:?FN,YȳP!\KJ[nfOW|/狻8[T-^q<:$MƽAvz=v7J秛o~ռ\bC?$צ#"{pg4nWWXvM?<=M)|ۻ˚L]nS?nendstream endobj 1318 0 obj << /Filter /FlateDecode /Length 3124 >> stream xYnd+ηMU,>bKqLk,CqSd#1 CR,:e.,^ꗫФxB%}Xn$_]<^kf+Zyuo?oXfvsĜ\ ]#eǏn~y6%|(JE*ɵ&IYw&qdY.s`$yKuBL`yVanj]-\K\T] sae}~w<,ϼ>7X;lI-{GcvLJIO #^߿7a6K|Cn^ma}*!h]owzwwg qݽUJ89]mޖy/)0$ϯ84m0$wKdZw?w!xWxk3UH%1e@Q<5<9^$$q ? ΢|39 KKJRX$r)O.w,$/ʼnĤ*եpթ^'C-`P.7T\E FrXpy;A `%f/^(bP񹈏k17 _|"|E1 C\ʌ$81/**$rA%&8Q&X H.IHS}t6 X4 U 8Y㤒iS%%IW[MGi%zH .fupT[=Z|[$z\h4!ͺ^Jpm, Er3Ha`TҮ|Qfp&Gu8pds 2gg{p/QI<2| D/v@&(>A#)7LI|7hy1*9SxtDa 70dQON3 MG;{-- DFF<8$I0W49B,Mi12Xg5''%BI:FTt[*m]I&cR)D*29DQEu Q07? h*a:Hf"$eqbvPŮ Ypv~2N(?%LB2fs],{ !AͬNs!A@pz1 Qg3!(-HFpq-= 1,J!0EG)X5K&$-GI# *;b3 n> m ,4NgEGAj*)Pp,JU[A4 ڒA#: k)e&q܂@8LA"h܌BRG`ċ|5!tkPY1!maD.l I+ Bj⺇&!" sr DZ~\gBܺ.3g,D=ISJg-jZtv_w4(X}t|!)Zjxͥ":v%-Xkuo$}` zcj˴a[ZC wBҒV3@Pɛn:ܧ]`IbEHw3Q-j:1)V$j^w%Fp*$ ^[ E(Տ)5Nц3wǍ-@YVьEAufPM-Re4Yp{m;CE3j!P2oj!N//7A*}Hݑ?>/ ZFfWٯ7(7Zp ԥhQQ%OphFǥogCQj|F(֫Bm)}>IQw\*A"c9U*IVUd}4"}(тZH}jNX@$١AY95:M "P kLȧ1373F2ZeE\XӰ RƑ>,2ڔnOi:Y3D'r\he= [Z֙`$q*54^L5m5 ms?=  sȲ\y&bAc kAg.g}90JST_mUX'>⯞!ӎ1š)\)vs75(#m^grz.x<@=1ׇp<*6v K=`gOVO12TTٯ̤: <:\[d:ӜYHO!<*8P9l0K[e% [ee0:J+IVFB #_xCcbi~l`ڝ̭Gzls9| Cq b?Cx6[Wk+ij :~~u߽-XSO}e!LJ_^j\63jbֻc|^/Ip{C> stream xXMo6z_!RnUI .I"{h֫Bk}8v}(z(r̛!$+ܭWDO^oW^eHݯd$DAYW_vq #HVzkhemj0#cmصY1Gĥo[R$Q=S/ˣP.뱌3V>8rfa8V_$>g8Cá썕AFe6a& vi{)$IC1!ok/IiHqĞNZN{B3 Cyw(:k[&GYϠ{Ee$Ju+*By;bMcSޏ 'aQlT( A!}R}+*gިvKm]xxXG\W&/B|i0nj߹JAbKwk%Q %XEsh҈Ak"+NLM0$$c~P)ì}[9v:K ^t'WI b"{jJBNqqȉX DXMP)i EB0t~[obؑYFё'x9}c=k7й]zֵW][W7kĉ'rN+W $1w50]f BT 8pN37E>@9M]@fR4 ,P30cKIKzNtR5fuhPt CW>)8nE/(V=uE%m,Kڇ,F&II.zCR55·1*^@sЄ'b,LN- yZYxI6\܎`* AuزlDa(]1yԃM7%=PH4^3/EIkE2߷c7A_ngva$R*^=&30Mҙq/9O]4%^MSQEKN9^]Ye*e_ήSbWuUX=VϢ"UGStxIJEQTJjf zm9m9Au;zzn> stream xZn#}W0&}qH 1UHC!s2MÊ=UTU_>tbӕ>\InϷW{hJCdT }zOZ؟}| DI-ZY^ ʘy~4>,?RAkR7LtڭnX\ka1o7<_|qpYA?.~ʟbt4q?O?"6f\9?ri}y?a[n7Ok m讥 !aZn [J([~6qR =_7&,3pNiMB~?ݍiܬ6y8#RT#Yq7NmYF~Zu8E7G6 "BYH H Wu~b;(Cl,3֕rf!0Day`i\2jyF~x=Ġ;@.+9Us Hq㯚=#RZL3m!}d>\O"I&z6{\[m$0#!v;+iK+AX?~$_pOKAr0I|xC Qݥoo6K۫rL~nRZ ^ΑY?P(П҈JV޻~L `OqBDzjćl(9X'#=Z#%<4!ǟf^įŽEyگGpV*Vy9)Dj0ȳUܻymAjA*/q׌`l}CO i~oO;$v'ߎ?>kEkXrlZEIjǹ8.ɡ6RFDWtgDRIA "S_䯪 0Ys%Jԇ]RϱF}_jᵭ2>y4Y-$i~;n<0~5Կ-();̠d_ˬ L!- 럋 A\D#B_m+" i`1 ,N8V%W\0D#8ldFC~MQ!8"\9ݯ7(O%7Dr͎GjEC\s\FٗQ0yہ^$oZ\ۘ˔1Bu;n. ///|曻wI,i]/w,\ic:Ft(4vw@Z D 2B -5>O&p@7:MԒ2"fo~"uv~B8gur"Vh}<+mPkA D-~p3ZhnK-Ғ ZFQќrBupjABb@HjJf#CbԠ#f#Y> s+=(N}^Z(}zh=4 ֒Zڐd  /ґ' -$1J6ftMea  ϑ)Uinqh 2^v+nA#+r(}0-Ԁ~TdzZR@ R?4iV^&WYtJP̠jtx@OddMALY ̎kMeN|c9D} cxQ5f g/ihZOjQQ1DEQC3B*I@6@1A%Ce=8p˒yV7Q᝶/^5dN%91C$S\_Bbm4B fNN.*ʫ o0**[NFRlAŦA'5IQFSn% gkP -iC҂ tls-'6Uau)9&p-G(>G؞%WWa|`<φ}_1^97G%%EnsB^r\`%;a6p6ᔧ݌il ̞ll]JQElFA :mi-)fLaT!OZbMsHECWB84FiHeBDX.Z,;MyPR9[*iar`Y U<#[63֗jgmIse LI,Ӫjl JYN2\64+.6Ǯ<Cˋ;*ֿb`4ʼnThdE82,DҰ@*GZԋ:жDA;ܡpHЎ!;|%r9/:M" Pnc&sMrG='wcD S5o]܍!&CJfG@hsfGa쨛sf fvC>NK6tl2; %23;V| %(fv85\2;ZD*aJfǪ0n2;o^2;ʷ˪-\Ι-9%疒Q%W5kf^WQ3{]i5W^Z3{{75W^}2{A(5W0^W3{e 5WT״^_zeGM3JZYVK&vJ0TwqDk>BEX΀3ݟK:JKN"bkIhЄn&iv*Lhy~o68qJ [!/\cW@YФ9Mt<0V'@PP>I "&i7O,2 :[ iY&"+tq|:FSw>K+כi)M%Q ;'i6$:RCY UՋ>d$:cO"Sr_Q.teB8݈ qtn:lU'ӁHɃ@WEF:#J8EltJ6^>bG/ŷ!b1k*&"8LH bCN| ̬GG钚$ә| " FDgŘ+X,\kTC~A&P 7|$rV <qfo&iV6tlJM*4VKTF:aNp/iI#q/OyP W6> `$%Y"i𩗦bы?di/r9MmPlֆs%($FAh]nwԞurLq^ޚbw2HvT(&5}^N@QR N,WX< I|lbEv`BlAG7 PZJ֭ ($$\y@b8 4>čNT55/R&yk LH8MF ^"=]rb/D Qi:wٚp5)FA'L5!xotdn.\UعRUشg6K]٥^lZ0 E4ىz!Pj#d @J.Nny xؐ! (*r Zl{/R9wcˊ]iHщцM$9Cg^JV  $UG 4mgU=B&4㑅>E*ƱQB 5Qљ{0u6O QMIRCޯ{i"cwɆ> stream xZ]o\I}37]  X.N2zeٱ¿{{&(o:NU\qÕ]_xtt?<,_\K65[ܼj:SK$Ynfk5^Wn9>=?~8y|ko7_]knE$s2)/|6a8oqq6˼m_q%/dSBw7?ULLO"&EĉqiW[?/Do1ʹ~k%hgh%.?፯,Uíx nWڈKsT0Im$#!lGGjF#1Mn+5[ 5. 9q8bᨴ,Ft$`9G O13KOVOP 8ӽ|r&).f]K_#YxL0'v0NhÆr%"6҃0 ],]g(H3Rf5: ~f7F&_lco!6 6u0u62Mq{ s07gL TP#y[#mO9*uF qE3c:XaIٮZ܌~X3L'$rќu&sC{ԑ1HmM'#+ַgǶoP*TGs.W4_3O]H*Tr̙W*Y7L<_̊1; iحY'^:I /13+cCh]Xo?.@O]SzNF")|` 2;ErUR״y!XL 9q( dtI3V_daҌIA&uFȖɝ 7 gL?Ieb#]O;a;5OOOx5┓.ꮌfХ.j^j*6XϾpV/Ӻus)"9ɾѳ(C#l(;U`#96O Zmf|< aS9M\ ʭ#?l̚dJut5Y\$枱TbQ-\ڊԟ71N2i2QYV9&z|s9<ȻMνEE$"%9l=&r5soB'929DtI9ZDlzjF箢as @J8n3z(*qsW79Lj6o#CηyW5_^|loSqM)75|8kUM·˻lr>&#lr>P@&nA *+3VA_ٳ Jg #UF, u|D_Ë5vQ*R۫owg(7 ""QS<&&)o"wM.KЅv_χcȋ&0CzCnbE3r?{o6ǷO9O@^ɊmW/CgO xbwr_#rv>\|Bڠ58ǗrVfc(4QD x8Ė~CRHjqb<R,lm[w-3GT[L)/@s:O ٝFp(bVCkz "|bT Gj +O=+[qW" D+Q ]ACgϢ F7 @1h$:O \ hUdVK3sל3!ӜH) 6ɴf秐#npc?O[NdXp Xo+N}U.>h={{s&K|N=9BTƣ0z!k̛:B$2HdwzHI5)l+U+y0*;Uebҙ;,RtF%lZ؅68}mLm{%pS&j"Wfɪ,RjwE]BXuHMg16n՚$P/oFG+X*HD~Xn\8c:98DaS4jF1D7Ӵ+,t])=,o[֬"n|f2Ea bڤWQriѧV4{-05ViND/yRUr^@ ZN조0[U\j/i&&2LWk^-t~%բ1G(S ^ q,aFg"%_l%D6V9j%+4᭔ɝ8z齱ǣbҋ|HX;T8wjL 8*=67?]R-=mi~N A2ʹ]ռ{r<ˍv~Va[ ic^vݾy~> stream xVK6zCf8|),"E{Z ˲FIb;DK91ǗQ Y`~e~5*zZ`-P,Dݢj(2ѪZF&oe+]YQ\+q/%Yw]^z o{.LIC3A^nlvq ph%~Zn/~?7ŮȷBHțtHIDFK:#Iw|,=$SAM^r=!I0J xrʱ4D}Zmi qWrwW--Cfc77s[S |1,:S gm &Ya:(ṯ%8Wu v9wuw9,-1#:MXc"ey2Аd[=fǤ̬\RٯfQ]݌e'x%ĉ`.oKhi44Ă"͌zl^"M,EeF( 1h2eS"bp$RS۩y[q˙e3 Dt5gTGoT3 yĭ 5' v]G[DB\;Sv"snb&gF~=@%b]X( l;.$\[t l9vI$5I:~qKQwǢ=sg041!Ouf |/'*WPNMf߆ pV:pa_pԻ[w"%H nVњ<%> stream x}Y]Ir{ A@_Ȍ\ HHАao4l;X橺dؖ +*O.otɧ_K.+~ww/|zÝ}O3_Ftj.廻o=y߼ۿxӇo^i_>瀖>Ɗ^WϿٳxwR[iw/˃c7~ݷqwd.K~Y|?N￈%^vV/O<ۅ $[y_^?zZ:+NN;*N?<#󇏧gCų,(N6˅ۉ| %˿y̿l.Tg4N5ӥ͉Ý^;A Z[}+7ր*?JSixþDBkPi4~b|c@D<1~A\e'T! A%Kz y 3'>.O!!ޥ' NP6_@m]䕟, S$ܨR̚;Ҥmv"ŽtS3,fZ0]FV=TK_]R㛿Sb 8> kZŷ?1kS9'>O96$@:A5^OzR|oy5#B_s/W>>6qAǦSG"(P4SV $fR mlC 6DRxxWV$DN],B; J9 _]P >$me62-Iv YvW^ّ$fiJvH-.+IJ؎/`N B!M;202aMSq=-[ iES .whe .i5$ ؘq% Ei!HK.H B"4]ʐ̡X7IT쳪0}@Q=:̨ ?xac&셍0 +YB$Eun6:U)1&Guĩ`CNЊ;+sNKDQ-A/T9*aicbLL$0]q pTlyM-)<$W3^^r2 ab*_ cř)VLZE$ImL+ ZMt׼"_:]o{Cv#D7bjMa610>tv.b =s <9|E6 ^H B]8Cֲ ~ P-6$d elC̔ (& E9x? )̷w4EAvp$ D[acD[@moM#aYj($h8=1~} 4EycRqt ➸!a TN3I$ M'}d|'Cd`m< qUH޺@q:v#J}T s cG1 %cRċF6v)8Ws+DdUȪщEqsbmUl*8zێS4G3~ \P/Q4fT 2. 9`V ӎ z:ff0LZQ-DUbuxO!̩:$Sք!!t4e"_lh%ٌ߬za(C<11P @)XB Ũmtˀx8097l)" q j`2a\P ȣ9 .{gв$5@X+xrN x߂o_eSYHcx`!xhu?fsԣ*syL8iGy&;YR)HGIƬ_d@uPmg6x!ӌ,6'7.353&K@ ]@L@ɩ\%Qm&ҒaפZK&!hR iR H([R%dS2B :$#_l6y̚Р~;YT,Hd:>#w( 3CW"-NMc(0 rD!LKQ"Aq%YU5p<@m ,tbW\P>"7Cn;'"DDmpާXlm۝}8|.YmG,awOc9MYĐ<YG+];`97X kg.64r E1N|]P;voɇx 19+ʢdQ3gKgA5 XO4 HNgXN1& ŮsY!ԭi4 E3Pdyi4b2\fgS6`=DvD1:#g bܔMB %cPa48ySL2/<I9q FTI^ᥙBQ %EpiaX"f ~Uy}#fCySɶi"Bl8% YƱ\GE/snH'5my#:fڝx)uGK8 A?Ci RcFf޸`C-Kպ!OAx/Bę9 &rz"kwl-?!W9Mnjb1m\,$-İzj 34zi-*ڒ&BلYV,1UUِr? ̚أY6d[ #cd U+jjm!k~x@n^i.k$DI%<ޡ,=tBsXYR7LS+,-8qZT] hըx(ڛ 8C0yB! +W>mQK꾽ҵ4JR-I B@RʁP09ΎBYd: 8{-`93#-|TLx0%W7"J`{&!eFjԅ lR ,#iQ"@5GOj`Y˼6ĚzT]="2#B2v@4Y8,圳5c +4Rc8 VPBvVA9*mŪa5_`8Pl #!+ 3R vHM&}ҼK@eK [ƈLJ )$49pHE~UwsX|:hr6W5l+:|3v:K&pYQ]iύ$TH QVX^/bQ4N><;Ux +KLZ{uɸ"j1sj.Hj)Lg߽ҥrUeɞʣx@WFZQV5fh&`֪8:6/|p*җdIHc5nLok*Y 'Aj>Ce h6fM`l\FN+h FJrVmDDS",)?>N8y\Yog98yJ6jqz."QAr UvUey|MGqCD5ĥ>"/1𥹅1u;3;"9& A?h1 >@f#iy 8oy's g$;o#vh%);2q·}?;VaCϵ{tmqz EMCw\9ںmJ7kWhM'mtZ #rN+ wkO}WbFb^ /&S]$; @=Vy0yDQo (vmCi+D iU(kbd` 7xBl7js!8$TǓ򎮔Pr)Al퐣s'/q@7I"!%s/&Tjt{}첁}ubsKf{3 û6B*k+;%żQ[*Ѝ, B;PX5ibmoA|ً` b"Z^hD,fDuԝa)ڜS#6 A[_P_1"PU6qs!djB浢8b&k1:PPW*d~"i),91w^$ Hw P6VSM<27ED4EP0 BŎiEي_t)nR}HvRdݞ܄ӎ@)g&SiNF hT0:b)VQL6V01ͰQB]ׯ']3Sniᇠa9AhC4wPLuBFB#r>||B 5^ wy=M|Dh2[&u/4Q$r3s5iց0A^"TmvIY%?DN[ZELêSD@܆\Bp)  ОQM nmp`5M/Q+*npPn12Be$1 YUƛB=#Ulc͜QZ f$Ò!խx Ae֮<׵˜JfW٪GD8eٽ}M0!p$\Jd.aLdž~ws]׋ q2ś;& ":8+J 㼚(ܽ`epOYL*x=e5"vfdcaL2 o~Ճp}E*dG9TuNV5K(')%na 1ƕWdpueJܰuZ FTh=a\W2Hq>AN\{b#zcxg%(EH@ծ.j3ܧ|X.mlOse? 2_;%f}@MǶN` m'vN\@LPiJv_*VxM,%?jv-ºX_pܚ L C̒Wg2g5J | Z#&BC׫'%P쨕wnP2GDyTckQsTsPGP\G#ak7zuԓmS;;2X2,'`j͒5{gHȱ6k)Fqqm)F0O+'jM՝,ZџU\t3AP*3t_'4DT 6ˁv H܎p,Jq@IE*zMUm5V`MFT- us%OM2Y(=(VKu^T(I٢xF5Bϕ⊜7TTᵠjΙ>1fcq\q7(⊎y; ܧeG؈ ~HZ) 㡈#X2f-…p:9- >D-! BVûJ(*,Ζ"~gWJ֟|)e2侟5Z.^&a Bs#;̌.䞓J9Z#4NQOU@(]ZF5cx4BϢTfcZb,nKհXf=\7MMh"':]NR$'}Ĭ$K@/4#2MyE)aWiϬy)b{h*S hCrήO~! v@(\6k>@?WQC*\Rg$%P0S)Np-@gˍɵHd 7,g@ѧP Jȱ xɞB!/U~g?t 2]x H'TzjkQwWw #GHD !x W--$XDݣE…SbpA[{F1[oe\_yovxy%^.냢3fXNJǼaVmGH_~=-2`izܣ{q+c҂p#p˥>"eđI[)WXct)\ɂ_ZcxUnQ $qtdcR.!.c]Y ~ ^S!Y8㫻xbm덹J<\DNnrҹt}W_;; Sآw_CfJC_G+նQne'#;,݁D|$m2=upϓ?CJ({o;Ȉi嶬QpnioKC  =Xo ѓݙ﮳y1 Q7ᒶGs/. +Dl7W{Qlz]?:Sã߼Ak;)[x8 A@;(Quzj5(*xU=ov:s#F 6jهhOiu.fvUR8iX?=*is *5x ~?y/ݍuKp<:n+](a?Z`DVPH4%+)CNog<@>pq0JW(%3Gz{+U_z+"AZTj5Q h(d\>Gk ާWh˚6r:8UT)Zbj[nD_Ui.K=Bhz5LQ HHU`=^(К\ $$htFI(<6$-R"v>J Sxz0kVJߌ*3Kãw<j };MH:_8{VA _QPέAj^dz8HU>ECԮpOOv,Va-ad2T얱vTGn*&!Ҧϴ;y/Iv>>Y:&Feᖜ8qv|7UKey4j%_)l\ q4n[zkTA j|I?gTѶ^X.fonҸ͉Z:JNG흽Rg{*5}4 }*{WY͉n#{"# ńFG+dks!o+ujMub䄧|b񄂾y⊣u'*h,"GxhHCοjvUgp>NA 71u%;ˤ/_qZ!,ѦzI+[ ڂO7G9+Ȣf ?Hc "[D0J;i(ԜҧצSے5+E(h\ m5Q2;ka[-j!a-_tG?n\xiS}rA"&__oJFNk jk^-@JvU=\r񢍙nw4H\ Jg$MRһu#Lwo*^M}̞gzr[E ҇pO=RUK_ּ|dp=47eGU,1Q<4Vh^?7꺾h`^a.KUw'}lǣ"(bc-߲H7D^M #2,?i׉6(b!ʦ֧9QZF\xka-LQج50>9[d}cd+\ϣQ]o֋D$QKԿ%?xo~_x=l )q~Ar?O?ŗO>`w>R矿 +c>IIsOן|fX_0:vH%?}g^G"LvN,g@k==lO2 Mr~ A!b?Woh,%ZB %+_+ g~ l"s@uXO1G9_/` #RІƂp '_YQ'{b^wuR:'e/ߟct?Bi'z?^ƍBi69eJ4B?Obk3,G6LeW(_|#1c V|ʞvZ endstream endobj 1324 0 obj << /Filter /FlateDecode /Length 12310 >> stream x}[eq{` ;d>ay [r_?}UuiujqqucX-?$ŻWU&?|G{5R~__+aLYzZ7w~>yֺU篿O^nI|҇_}c7{۷_߷?*?|~gxW?կRJq7oßs͇o9rnRZڪ:mҖu fyedZz(Ⱥ-׼5ԑ깮\׭R YX/'+݄~᳟+}_M:Ŝ2^`_=Zg?D?١밟`חO;?O2?['~R}YM*6iU9ʧɆ?O3%%@/E(w_'XEHv[-J7O_:-[(?[_ܕ)y}МAb&7eʼ͏Ros|dPQm.qK\TVW͕ccFW}dPh[꬏l%oC5mȠm~dwT9NfIok~tzzy2 Ү4?HRV /=?TˠzTnd*~tC?KE$rCIfnJgtwmy^v>|2듘/sV}V^k%_6C[V-lSޞ8IV[fUnX_.PF+GJ'fk޽<{*09Q@ٞ|M|P;|1I z1٥8F0q0+^B1H9vh~gRnOua2Sk)ƈɞKw- *W<2W<_K\=^7/jx}+uUBsՎoKtTrQ`RׇmkoΫ]U{o/>#{ץliAǬArđn}|@b/9KE4AҾO>ƝR='ǞtJXl/d]>cɃ"9Em)ZGZTL~W-̚&+ǡB!j"릪GG%jR՘\BSWBXlZ!+p: Кd*8F3p e((@`I f`Y<.pS&?. M,/LTeD@X ]nw~\ԧYStw6Aeր3~' j&oc9'. u' T&DQ6>K"PZ]28Q*<.*>}) 22:"3H$J>/8Q8k N.T)C!%pXI*=9z^+uftS: T;L]y EkrBǸY%F}@GC**?q-Y!K!@I*3 Ñ* ULy3{wVRyC![||e8D hdWղ`- t8.2|@DwM[jrsNNdِ2:+vOHfP4ˊEJɭ\vyisΞ)Ƿtr.+˹&`@D!ENQwhvҥW 눺M\ZҩM~=z U,ԕlrac%]yf]ctם~Нq Y.1.bqE )жzօ,0Rhs;n(JX  CK!9@Oӡ-)2 ljl֒"/)Id[U(ZRmmC`t`wV+d5Qw8ʗkIFz0(D\k'Ub1 j K"IM* OlR4~*R*.jwQև뗤Jn7:W&+ 㭺T'K HPc}uIY{K_S*︨ShUD:hJ_Jup2 I!$/!`Xg(J즐,{ V}ڊ0_+ŲeA\㸜(aHJ&91<H.~g%0V,R'Zi9h4M]PŏS_1p u}O xt)$ꂏ9 ܘl/);ъ*B2X4oѩkқ1cuв6I,CQ'$ʼKHA٠Xք=(u<6b4@ce 54GS~s#,'"6Р|Q;)A2[ʘ,SH*iƲzPb]?Ba°\} PR@lǎ;AĿLSM-#.`p teM/enM!NoR?C 8X 8+jR_ ivrPl2+B\];Edۗ *},yY4Ȱ T" VП|U 뺯!&ATܐ tٍy (緡B냚i|3m\ H/B2pZ,0s(2LiSR8G'1+[d'u q4[?8wɴd|26+!}(OPe얠cc\PK}DJ'ܗn[yrTL(`I,Xx2iQ7AD 2I3BՋDt {pEJ˩ @w3e!Y*(eQS-@o!~AolexM!b1,WG)FԭI^5= @pH> Eڀ"3S gc!@;Â- {ľǼbУQs C6kFʹ]z<Kn"Mſ^0| pPlIJ-Iҝ, r6SA+jVfmPhd `d; r !]͔Q-3H~NY:o =!ts ` dQ2iA<**D吏LF#&b !P;Va +sĺzanz43CC:jЮQ@ +( WHro0fx2rx6܀4@m86q5s$ݰ\"j?ނǹΙzc.ZiWN{6/ŵ*q"2y سAb 6t8HM`zq]9f2[N>Oݲ-}&Px˥ *eD<@Z+WkE!lcƚ! olc~[E0 0+mL2;IW7{i@7O6#rrgp̔3rkzR3 {2l"`&d<'&iz`\l z ZTI劀w 5,hR6un]35< 2m]-+Ŵ 2%իk yJr|YY>AhSi$~[8#+x(cp\zT%+&9-tQHDvԮf:}Fs(e:PE}X&k0v+H9sG{M8wM9gpY"!x/RTRC$*Мr,UkR6blתU<|pPUDLo#9xg2z[,ƥT*BzD&Oz!K=k>TY<aӴ'&ʰcER3Sn)Ϩ"RT6)n1"/[$Py"`D*UAa9U%EM7A!+/'ٵ\`6aW;6*8"rdwfA:T:HTA"xʴFl@e Y5`2At3Bά"@q6 Ejenɑڂ.S@V^sBRQ$HAQ==*=+',N2UqVgGUCV/S/C*]!"N{ 0\A3y1!k*([NlJfJX! LA$\*/N3  6Epu[ T%2Vj.ɮH|+M*FR==I1/"4 -7|y(i| l>Ԅ@f722rb4w` vR&Matj'qM\K򶩃2d6ز %閶NF̏Գ! Hp!Kj̆yH!AI-4M\0"$iSa7X=⩊E6IfTkȝ$7tcZIF;"s-ZNAB" ,CraY0| 'WQ7h["bI- *w晞Oj8&P2\`YcQR' %2g-2sn:(g96Qo & ,*g9ybo s5M] YprdduHe{l02< Yp>ͱ#D*Yl_fu#DxevC1h"I\wA*G f’͢/XU0 GhH»L5 K[1l՜gk5Ļ]!Z/qthqG9!L($uPė"=xl4k=8:]ǠaBPcJB+k TJ5ziK:d"tjм6G6g@_aqjJ,':۔@N 8{SP=_KoD IK+H HP5fH!&֎3"0f3JvԻe<--{/:ޑOAve 1CoNX# k][">TU^K3s]]/5o5pwV^T[sJ0]^^ ɹvi;nkn$3Zyd$wgeZFP4bNg^@P!3YvxKղmYxE9 S q"m8*70<,s`*fqD|LY`! ӏ##@axU:TRT?ƅZNpЅ2qFũ le$^ }\wH,zԊGբӳ<$^q&w7DyjOT(j#*7]2 .Ff'Fƚ'/"WlEj󔍉">aEEU 2k z+fb{0#" ^dlc*ӊi+[;Bͬ8%=] #yp]\p*wTdɨ.6EIhLgĒ;;O|v鵺{)'n/ ҪBXj ;3MT0{B dKJ:/UCp9{cb WM~dsmzv#prOt!.TRy-ROA͙ ! sb*x`2E0Qs[i2oVlSd6yU!_>tFֻȆdjB4`RVp,ڋY\ɍfj"#oBz;9. %oVA{ ۮT\g6Ңt85Of!{+ ;Ts[-J(k6-6 %][*$,B4AvI%2oT8W7dv~NݴUdFHKD!L*ibƊc!)H)9VV诠,!v82ͭ)+ D bYRab-gE$vE2\.,*T Hz{%yA斬cW@]CLem_/]-0Fgw"3ۉK32'pȑ*3p=# [Pp ,lВ;/ͮS/°0nj:BYvIBoyQkeʴ Wh&dg4I!Y²K"3hWUp {BM>`Zp}]vۯD-ie= s1ݢH#|C[;p 3|֦h~Utm8+dm9y G3rpf#J@ͩ V5Z>TE:rq,o /_|*NQtwЌas/oي;h6 45`1ayDX Qpc'mo r0Dʏ;%t ṢXn+f ~ 㪄` ݦk pH2ŏk8s')tK&v\^,_kZ\| RGi[ sfRί#]ǹºM0/E%2Z<"b 2ڧ? vu[A_18 T/IdߌTf6tsoiV# #7`_Ac;B"5e3{OO@2uU #1VGeºCX̂/Vj/ӧ h@0k lIl4bh+t H h2 eS@.2UsH4ȸ-|zՏJ>yFů#4ʄͽrze+,8Sf{|*0k+N&y~Qyvi^5rVw̥_=WȋPE2˹MLD)'R?/hOíM IN bgzpnۜϜ'7% гLfƒstΑ3K;%z 4RBA^OZ։jԇLLV;7dLCg1 9:8n VY8ƚ*N<_OoRJtȲX@AQߊCd9Q(n. oYn r$A .Ce"(VG(kO-7# 'ؚ3m:0DtC(2z>Hr9u7c|s[}NQ+2P1IstSxaAp9#mgC37 ՙEIsNsC7a+qNi ֞S쏺c-"ȩew/&⁃'H# EkwA gwH!zkL S L6p 7 ~EHWZͭG' 0w"!XBG'8 T⒝;hq/7q1o9C nT.\PV4q3wnʫZ 0"j9Oi]71X܂ ƴK6zQ~ wyeb$/6^_=蔰 +lu]/MF?eHGǽY Tsv.ӷvofyFd%jl'C5}L ׄ/毝Oy4˙!*w ZRHťufhAP"V`xC=!V| Ur/V#" n%|u<;k5l{즤Ƚ>R F% XH bط[=Yܚԭ>7W]ŲzeϘnDc#QcB#;,}# .5 PoM}H}pMijI[dHL q!_ l5M|6lY9nmA}( LCSN_@9%l6j'+帾j>92׸\x1`0vޗ\pB@ƄY/k PZSS߿wUFcWoxd,ֳ[,+5\8t7بL ktFS_C>-q]F4WrdaJy^v]C.Ϭkx{yf-bQeە֢^&^OZb/JyCSXN¨@Pmׇ|f(Kcp͒K\ݍR:5/덖)Z+b4֊.MԧhT؟r2Xah D'){gwżFīՙC`W7:lfrw_z@0pGaNT)=}q>ǶqؗBmXW^-“QKtLP '>w4qbfsN_v*2~]|ŷ-R1M51Vva^wp'XC2}*ôh)XS"l.Ra7BT*߿2dJïZɂZ Zk?eJɂVUYG 7WfY/,L*XCO"_}\ #{sI  `UZ խh2^QeK0\քPH%hۢc)|iox.zQwC DE= \@ 4,'4Mdl4yP7/,dWfoRBiQfRYc yu|P^ߗpYbvԒtUjrQ%áD{03Aka_++8&:<꾀 ]F1d`.;mơPu~l(#VJYKުubgTl]17]07JAQUQ~ ubc)arke쏳J'ȭ{1/ |N;k~5CXYO4awzq O ̈H|ܥ[Xt`65;G%>(m!ǟQ@n?e?c~6pw8f-CYpU:{Fi?U`l]Z-𔎦 tPfe̳Qc4Qgrk+;h,}iToŨn  n03&ϨƏn!G4ꋣK9垼_ksQ b{YRAJ-M뚇veWE'f.h8 P <ʩr頼ORs^1r|2“'3zR] zOۀkq?Jɶ[[q=Dkz6F<t֣|`IF}X?v=pa07h˜磨;GE` F1{!l#Y5Ґ5/*0^'V\^Vn`Bۂ :ã )W3Y_UE2xXTpɊ9h zW3CPfL? %^{ԏ{t17B-#_K^&Q8qeUH;'$ e Us}T>{7[",kqO^Zg|g8]?/?X=)߾}_Ogy_/!9?~7߼_~oc_c̹o߽ǿoїc_?_n3g5ӯsbؗXro/mz< ڌq"qh5sN:E^OnVՑ u~"Zendstream endobj 1325 0 obj << /Filter /FlateDecode /Length 3992 >> stream xZn fUl6F 2N$@l “MiI Ɏ_J9m$˝!1hV.G%BZ\lϹ@ړ]33M~MN|RO3C ;n:Ě~N5XpW@P^3y$MIZJ+6R!xpH Ѐ,"">>u->7t}5= )JyrƮ΄rl]/1Yv期b]VA}+X>xĩ:s)<+= "VvC!@UPSU7 \n߾q$)}\F,zwt(T p %Έ[IQu]B&UCcϘڵcL+ʠ^q+ Bqj8' zyߞ!O\Y0qf tS {|gʻ=:ue*Oڛo(U?n+P%#1 몸jx&IRH3a??Fcs{~],u*(sq$&Su%CPvq e?UI]6MN 28`XFr֩nH8킁0ICz#P*hJyR J Ђ!c("''XĿ#6۲); X? G4 ,ԅ+.l֘OB)5X+liY7T+ Հؒ(cud N4l|_d0`"rA|ہ$J8"PRŔ'a _,.`.KBd η&P7a ٗ[qb:؞1?h⼜mvUT1ܰ$S=TwuNuUM7 b[3g].hU_XZ""dQng$U!Fe׵]z.\sZBg28 7pFᄧ?<ar,2dYg4!l4x9nAjckאSH"9=Y6G#,lAbN2n ` "9V?VkջI2'1G& ڏo> #hH~ \ =ΔIӎ35nLT%@#ӄ~ڲ 4d6`SZ}V3*I>VED69X&6|P7ᷟwj+#rY\Ze|4xL"jzQ3FVcl8I>c6Zk1)@uZA!kA ǦLnv5ũ6Iݡ:[!rbr`N c C3l 2Djȝ[ ̈gE҆Æ#Rdۘ/mҵJ.@Ք]%9޵!bsm{ܜLo62evJ&鍏BfmyOR6/Q6d>`!ܻ95?MWܖk>O-"ҜsFŁ7WKKUN~@q'|K:xhŒzIV)JH#l0|‘a .ٷM && ]1Hq'Tmޘf ~3^R|h)(Q"&Vd" o[Y/$&^C;~w(oG.?)ca;M\Y'2V.?Py;To}@PW2xXP.<6eMT%>eTjM^!nE[dX _y] dWլѠP"8GI<3ov(yF1*J-[.O7: `@P(ZBxp`eD5e 29q%-o#?8K^!ij0ߌvL),ִ?ǪE\?2q~0>[ߟp|W:x\4xOsѪu6b__x[endstream endobj 1326 0 obj << /Filter /FlateDecode /Length 1927 >> stream xX[~ϯ( l\mhТ(m/&3Nߗ,[yHIǏ4E5ٚ;qv+&MAz{ Gڰu{ZdeLn , =I,q$(1FRJ@~~2ԒW$BȐY1(UjHT$=A*I%R^Ro1ȞsUt -C’dKU$M9!K 1hDT&JoBfXf"1'#$BȐ!ᠲY80 :HP saXYD(m]O⶿ھ6RmmݵDmOEm:|:-\iYoPG~8}>thM_}[x8o +T;)g匇y[Gn qA:NO uL?|˓4Ōt,Ş$<&T:YLD@)۞F ,k#\a0`z&8eZ  PZEӛ8$_չ|܌ KqIPb!.'p1q0K͇ǭ]jRje#> \0uGq%*]o]w㢎51-X'9ߝ讀=o|u(5}{D1nHL8Ukic`ʥ*{ݮ7$&mkHk5ͅ 'i" eI԰40@{ʹaIc=֚MV{\ /S}uBVjY0^,1%qSRGrɮD!(EoU˒]>{0|f?|qWw#4B0@gghAFa=-`a}ܪIj &1y2`]8*:g$uvBAiVUze3PڈD.Zt:P,G^qN 6hV<-mo_FtşqW`ʄT)ܶ>KWOIwϽ )>XV>F"N^ۃsLh ZB7I֚!,]Yr {fG< k驰NQF-2M6.@SwaO&,dnCml @~wbU=$,y]!ȘD2_A pP݊{Ip,*A\~ =@.mݰnEvzj۸ XbNB푡;u ydx9tAf.&/Z\Oyʴ f wSEt]߁Ny:"^9Sk[2/$R4#@Ko 9endstream endobj 1327 0 obj << /Filter /FlateDecode /Length 1648 >> stream xX[o6~0zUEXnÆ:5CJͶ\INsHQ"'M\xx>ӌ)ίgf~j-tg6l# 6Lh5FW;q[,Ҍ2AnM~ݯ/g)|߄]bɘ5hR0.~¦* կ3f3 /m&p^X FF.\:8J֤:Q ?@f9AT P,7C Ru}6a]\֧æhub,7H/eWߖM/'GyWx,;RdT|⏟ݦ]P0[pPbmy}mwF1}b_[i9qrWծ>WhR]WY߫܇ U;Db`SxcN`H]Kn&Qy&46EWJH%ɛI6&7rF 0'T>iWqWT](͡66D@<^voy8tǦv5\H=nC2Px1 !]Y4"}z#2@cFE@&\j!YXT3ݗ,ıщ+l,2BH0idiZ;HBo-i(wu&lH>Uh}1pU3"Ih@`Qt$1<iq$e1_])Pܗxdx,`ъM!PdztGimTH_~;dlpQ ާq4Kt.bADz1Tڱ2^d\ĥkcznc:y4M;L Ofl8Ěңfq>9K,6IMlE'?5UM}T DnG){;a6ɕ|B2IS Z\-θ WaZ3K[pK9s9Y]U(8FUa'G $bML$-?̝mXծ +9Pqr>#c,kkHٴ?BRՠ,9dB 8P ۷5?X#8]03Ǟ˜IَW&'(հYr <$$8{a(zG2GA%< *vWd0r u )1݂f|oQVhc&1Z⠼׵\l7P}lb<$^plø3ɤ2 JHJ :I%Q:!Pi)L bZVydlǁQjp[ILsIR7.lxӮk/=P^P& 躪;mJ`w㡳hp A tFyyy~?ziDO ^o0˰Љ=ٳs.;ٱ6>A>orT|Yb/sh4/b=> xRb?0il`3*2H6}^cx=w9Xchb2o2|{)>S/>߂>+1`8gw;wȳ\ `w$lXRendstream endobj 1328 0 obj << /Filter /FlateDecode /Length 4398 >> stream x[Krn+TJp *q*N%=΁I*?~|h4ۇI ϫ, ǻlx󝠷g{\eNw+֔1vT&xR:N b1Dˆ~I/"ie8xb) Y$vh;m*`{R%r8wP8Mq@BgHַwv{Qi,d`j6e(‚šEȊHz.,I3+ j޲l~efFIYjX2NQk ]'Rpw=zb5<ݯ__~;mu߳Q G-T0*Ur:oj44Ii~= 2B7# $obOe1|6I}*%_{ -Jȋ>O1I?䛮m4lLa"k< 1&Aq({Dph\z "UfD+_pyt%w^)H b.ys\́4ፐ#F%(W.YTi.Z/R%j݀HU!eHw$S;\}HKq#yc`t =0k3"_: AG;0 Q9ܠU +y CvBkyZ{v9Cv\UЎ{Krg_0m |ϚR2lgfߘ0 FH^<-$ CrtkơEYm X2XJJ[ `$<ͳ|eНn12]Z-b,( 1. t@r?ާCJM\vc *ٕC9ɲ;v d?29'uI^#"IOk(zޱI!#g1ŽIQ(Amu%9L tGZJM9ćӅ*(X!a5qZ ߒM IOKldʦ߷qdגyaMF^ȗ$V]Iu[Gh'q5|)K+Sd)V`Q:+pYyF7H14O`urQMauxj7­XeyQ^;͖otMG2}aac7qVva;bm''s$T%U͑5aT}rĶ3 s P5 ZKmrx>⋂ڝqy :3ߩ2k}g2bl/Y|$ %S“ ɗ90ft?&yX!fOբ*=7ET(`au[Py0&iBt%T4ԑ(tx6,3I? 8$}Ib6X69j 5l<ʼ/lݴ'D7 TZ\0$(L*7h"ID9B5@JN y5OJ۲!'0ki-]'9kAvrH|\<9}5TXgCWNأN@|16*g2E#(ïl ւ1%ݚd`'*pEҴ}lh7H\n %o.c/ y# Em^"nY3QGb9Tι`n"URƘ`0"'K(e)3[JiJ)#Y][Pɩ|]x@j&oxoК7~|G3Pu! ?E@Ӈj{@iWu~ Q2\pX $A $Y+wl'S"kw^M5y5VRIL:T'D8Uu { .o vfٮczE`vp.]F6Ԙ3MD@ةÌێO$6B,r\b{ \)z{X%S~d#bD፣xBF{ Z p*j|Uh?jOm7Q#_[ 9ӴmLm3kʒmNYm Ƃt}!B|S3V}m*(0vaMbbMm"5dYJHxH:¾"Ozk$#=E3/iMd<8,C5xYl ۪۞i:EQȷ(|^c[!: mW[P 1`q [)k (~A/}O\Z Ăae k)i&9837(m SMȪ`z(} `cMr2"E(WIa4x,> L#̠m .ke_H,W Vcs9#O0"$<̻`dvY809΃!CR8 ev-G{M;E@ EXs Aq 6b"ԇ&(8CBUyB FV>ָ/!!2Ѽqǰb0VjYf!SAGg3ufHǎFeހN6#P@:::pP7Td\Z:k{ R$PvelQu1/sƸ)I)c[IT|u}}&,(* Ğ}3M |HM[v {oh"\CYaf)6pshbq0pD$71ϑffbsrX)%)TbA0e|Aw*SR񼙈T1&#hic~*P3 +|BmW)hIЖ :5Mk펔}3R@ +A!imUO6p3 y%(=?F%ùɰ\U.~7[p֊1C*Qt@Bk |[MWJҗRA{_!Xѭ\k3S$Ywc hn~<ahmJy?u㱞f->jjt3!ojˠdbx"WݩDbD8^LKk&9T%$+ emqn˾[)t 1Bs]c@hsgm>г/fGIo b.w:0 > stream x[Kȑ6X Z|? І ` lX*V I)'78"2/Qgg"̈"`>qlÝ3WOw4qSS}syxjPxz#{2kʶ x=X"{Z{ܣYmBG'uPkܑe.{+C2ʹc־9j,baε001g0[}|L cؒ>l w9MsyM<=_Kznj"{Hm_UK6<[l^ua9//w*zÝTNNKISořLKTJsXv\=asoQՆ! 0|#vUsซk+~35xî|*c+tp].|^ ì `70c< }ߔhsYu&0ҥͶEYg|Nz*gw|P .ߖoUK^Xל}ڒ{Bz\8H=+^q9uGP2v}r˦)iYI5;)ޝf{j:aaq id5vYolݯCPr:eS+} Ί &+V'5xd ' s/` @/N 4?Ec٢#Y6>2 }t$ "|\4E G͐$OYu*ܤ `XPH4|3+맬 <Bf97mZghϱcOq5+8Xjpp'`B+xj D~rfپh?Higp{Ua[ `BB4#DPO`M^v^_+L֖&'vEuhY,{FUQFv5 0@҈U5sp \;z>V /sXX&*0tl C{9|/Mmi-訲w۪ YHࡌ].IvV 8K#eqܼ6h=%R%MH[y,\S6ͼi(5~CFer$#Xtu o`^ gwtjWDžtOxLE(8?e-ʼn21 poWǾE? T& 9>V#NUBnM8nXQ0ƗSMga=DD2 %Ta"6(ҿ8-Il2cK<7Xu uuJ*Lqݨ03sٿ0%W# jdG@MXhGJs;ĝ;R6ñk"sPC<݅XϜZgbs*'Cd(‚@qBI}Ƞ.UXF8 <(A $f¤dB&Dpu S$7P4i<*;&mlH+ʥ9-~_`uRv~N:kfX1:N@`SHwoTA#VnŊFifD2b54+&x~S8$2Hur&$ ؁D:z;ZGbsGIYx BHؗQ Y*Tf5 +Z;TUhfYPV gg!JeUm(ʧd~`|/5F3-A.-:G5A))r$\($ؾpD0kȕ'HғPH,؃Әy8),Q&gV {i Ū@۟.@ Y~o@z}s909kYoAj7 6C@,bZTK؆ZnqXš=|23)ױHY+ ˚\oq|v=9~ J(e. 9i qxlTaWI><;1beVE] ]300wX?;ش$vӤ#3 哓=O)"_98ɜVLnc><9Lr4]5E~]K 5Cp?tFGy\".GJaN4HR2#*V\hv%N(XLywG\ ~!*/)gO`h>#r$,;cWΠub-@<'_[ĎL"Pҗa54m"@EPa_yBJs9Pwk l<bp@K:XU3VFU!K:0Tӏ=XnXԁ.Ȅǖ19nkk#ǎSa'6jN>|췳FjaO$0̼D>nsp/hxDL3D\640C@  ߄LA2B-Nall҆k}<&G_Ow2y }7}}urV"ؿV|h{q>η5 THà͸WQj-}3Si"4dcm>cPjVK?MJ3ZQ~i {1_s2rAPiDNP 'l ]mwe]1ntҭc{6ԜKRFdh||]qt{q*H .U)M%b7eֺ[I~IUii7J vRmK0=\f!:cYnT5NX({{3;mdR#pVnpFpsZ> stream xXߓ۶~_N̉/@&Lrc7\<$Ĕe.@X8t|z8v%Mؒ,n~o,,$j [j(2Sr,ޒߎy&á4PȶIin2fs] D;)'V<]Q;I+PVmcI*Zn^.;$` 4B.'2e&~hl4MrfAB:H($HjYuJsj\yJ.3HDRRw\eU0a@LFF|mTY0KGR eO3 ۦ ]WBUup(Fڙ'CV~[&}k&m"57A#S>$&,Qn3S23T PH_fI@EF$OsyXg&ӌH&!eU9+K0ڦZZPMm\r(v)\lkT)dԤO,Nd&tE]0 ,wizF~49D':ᕓroO{HI]>YG4j$@v!vtڹ<00 VrQ:F˪۲E&;tL>ꟕ v( E"h={A$WL2۶PQXu1s?קCE R[@Ͷh_+8aYiɘhNC;T9b3X@F\if{hxr-vmʙҶdάaG\R `Dhɤ% YHtx>t1^|Oeܭ 6W.$_㠤rxXo8N3 -r -3 f"hiJC\G8 -"~JF,:"uRy7i1`F -|14DG Tg-hGV+ -T}kEc1tE]Hc|j8͹9ߟ5 aē;5\§bw7PDMZC>8bWB2Q>kwIF BylgĻ=|.:ٷ7x1`.[) sf.%'x"5O6{1/ȋQ&/΀\nR,s7opb[0i%.H˩>~zߞwv:uV1;k͵NO_b ѰG}>o)3C|O(}\թ.}r^2ܦBOEf?K$ >7xc<:Vۧ"D]h7'ڹ <éͩJr 5!d~ f;Adendstream endobj 1331 0 obj << /Filter /FlateDecode /Length 1651 >> stream xYKs6W:x:$}L=:&!H*$') ~ 巋}|?(wZ,P]|\S$LVE#0 X WdKILok%G(BfX,eU7U=i ­.uv@QeR:n,)1-A`)"e.<|? _}r2np9RC)Asesqص~\,fu LB( C"oME^LH>ViBA"K=oD<(́!FV^4Fy` \r/&V)skv9OL:Ry ۡ~mHb<f Mq8 \qס,)ɤ8~nmgk\ Qvv.q4u(}2 .|}B0(qeMy2m]OK{`cDbt_/pzoݮ˭تT/ !77fU C)t N}Rvuj$?f:O}7mS[r:yx|1U=^Tў mt.5>4;hqg' 4U*3f}*0Nl,zӽ MN4,tueiF`]xmR>d#"Cza1jݺÄ#CNl~S EGfaM5cZ/ǰ.e< ϘO9)gt 2ҳ١$0u qbhR⡦w90|c'ytR0OQ'4?nq>h6YDv]$qB/j-xK  /{~shc⎇fnNۈ0߿ałȧgA$DLu~IW\u}ԔN0% #Fb[iO82ܴcÑsoOHi.g(I6V^ש.[g1ƢgNy^LOA\(^T^k(㓡zkU]tU5ޭz[{3] ،c ^ $`F(&޵''.!p43trmo)s+jζƜ%7^x\SU5n*Hx֠Pu8rqgܔyڼt-B5AeHiFdR9ҚrN"> stream xZo¸,wˏ)p9Eh8灒hD*$u_ߙٙݥNn}Hڏܙ u 7+E^?WNL2SWnUZeJ_Uq}zquk:k~NȲ4y2?<4s/u[c4yU} ˴FÓ}X=.Z,ϵ!L;DjS+ܗtaoHob/FUH.,ä#m-IQyo,(=#&ѰӎmR-F{GûwHGU<^s=YgSN)aUp xY4a¥yȲSUI˼@pХU2ZpmrlfȨ!90Z?EnrhUr۴MTZ + O+VeҺjc$K<ҕK& ^K+C3{YZ%럄2$vlE%[OfFMZ׶HU~{d~jSctK Z6IWRT' *;O "|? 'ɷSi{HXeMf`*Z%؊urh`*[ukvсs=9p8S7Z XTd&O-C^/ eɐ N| 4 uNU7Cd h-S($E7pwN6m$Zù(F$TCx,"呎;0YU«la&*CAyu 07{1_R c+T>ߢH·0#J! 9/lv\ FyR2 6̣g2y75A^^Er5 ^F0Aڦ2,mޥs|虬 |a~Xgq/J\b сՙ7R8ŧ xZ?}q,*K=BTXeyD{hwAM 9t[q21'=GV8Е\9iLn.$plNx#q*!k\C@K4:x`aS3.;6BB7^Mvtc>dA ZLҸh\AB L,:VA]Ĵ+$h! Q[ Ma/,S(M.k8<'uyolf|4Fæ[\@:N6a9oԀ;!*6dӦ,6ZƋ<9>/uQH(`ÈࠨRypBV4ɡ'$ص-"280b^EV2Xyu4H)Ue#F%m^&b7ӏ.+.E^ڹW&.ZVjhM'"9// nJG+<12U5XBٶsu8 <ƣK:Ϻ&%dX5`ᕆP\iv%Rn.&Ak̫+哘RJ?ql& rD8C˰ 10⼉yS |"DBE\ k0B&ɀ?7+LnιMPGAXs"/䩆 |n{ +xMA/IBYf?O;(Z2 IDX Dz׵'ɗ6ud6rhv=dXq`V -.? PͶclJ^Qެ'Xb j枫|pٟ[n3@DK ~F s;ՀhYwq\0lQ<=Ҕʠ:c/㺝[j{T ͧࠨBc5^umAض'e(B/0:“6ՕҌ9Uƅp‰XaV3 `ĦZ6=//C0]$ #lwfS E6HhSHsk*Fr"&7i~:!I;Dbֱ}Ta#\W\iFVAl,d6c i8wwpəs){%T)2*bQ.UTZ?pH?px8֝IϿ6&K}F$ 5iRˋVK W#OܑɊ\Wn`! R' WULp0LmhˆŹts߇KU X4΁X>ˎz,$koװXo8NZcpxm Ӯ/L 0t\Y)5̤(ouUnd]Uaέ9Or54 s/X'' 'Yfߞ-bB$ɨUuƽ?&r*</!q )>@2% ~cFbv#[4y@<-R P͇g./EdǥhMEeWlX(j۬:\$@VeԎ+,0D* Po8RXµfTTxP][Ji҉FJ9<-[zޞ2zIT(.S i2'Lŏ~'9嗹^b/=< !dAHepSDΗfF> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1334 0 obj << /Filter /FlateDecode /Length 2219 >> stream xYݏ۸qm]7^ ܥi#/>hm9Ԗ6dwH"պnADr8? OeaobaiAro{\Y10Mar_-diKrs\}j/'CuQWߖ0+̠r;]W;;"0bVHmf`}^FU7lh6hDp_ D+Puˡnx_sw,515`f,y }ގro1 chtlw!ShKÚ)00,~'5R7T Xp-*nሌ{Y9 njX5\^Qn8qیWkA5lhso`` !Aefՙ!sgo~\l~?:$Qag P;@MfE>?0sKb6D.@DI@*cC LI0m7 0% xܮFspgAPÒuUv}כ fIÜ$VN7iuQԄB@VKIR]\J0QČB,[f}Z6O@,n8zqE$Tizy1/LK\ ,$6|y\Pj9,=ŌV:XZp?%ҩ% DSJg.ILJ< D0ٰi-?DJPUd 3Q`i=`(jIT$-Iΰ5KHM5EAjWB")KزՉ^|/B>pԕ̠BE3Ff%X ~LrI`?Ia_>?+趘wQJR_&: Iop{G)]ekrfqƛl0`5k?u &?mzږ LܻHtD}ugAɎy<{RCWU}tGv1.)p<՝gکiP;cwg?W1SM!|) gNf^s:URU[I/ɰM}&}f,ZC>!稔 G]{Gml6Aձ*8ysWSyo۟}?ZFlMz"> stream xXK6WR.V ) 6!ARYHr6_!)#'[r8o3$?//"Y->/]arg|"Kr[%x)p',<]Uąh[ -Y{Xpʸꆑr<s`"10~G_ZJS<`5M|ӘPA&nd6\Ei NeSԏ}ջc_5wE98M[<$V٫֯N ¬ЧYS&áfvbfLRyt۝()dR.̤ũe 5JbfdM(eZ6W\'%jQƂA4\am%1MI*#R).|s"^rcX!"|KlK/Bt_MM&zVN3wTil@|re?8װ {sRLXxi,R?[`bypPI Ȃ 1bS, (( 4ZO隂- `8aƿ~߮OpapZM;Я.:kzGjH ! 9Y׏N]n[;znuo!089KS8xdꖈpZ2Rw<#01}gJbD30 Zr8fy"Ui*O"&5lP֊l8A1튁br3ա 08[O ll.o[e FYiF1Eo/+th:Hn)&qPJ)a,pxu.55)ӕ/U_mj昞3JoU_c($^6n^A9$0c)jq4uQp{2& 1h_ǭ24bG9وܖbEt 7VE l;[xr~]KSdQ(?){uen-g lk<1сq _7"]p?ƣ[;g=p[>xg wdyg)ߧ|}g_>xiiˈq5Jt|lendstream endobj 1336 0 obj << /Filter /FlateDecode /Length 3219 >> stream xZێȯiU_$@( ?1}MZIy76H@~n:e$V{<T䔋dR:XRc2Ƅ$@1l^X$AZEW$BC%8yo EQiT*. H"" Fi;y1$0ƕ{a:Eͫ`I *tʁB,l%#|˚*BO^Q+g{|H-f 4Аe D8$i&" ֪#[u Hu`gBݤ<뱑]/z"v3*zLq7KWHz"Je.GY6=fedd6BW`ANp|tC=΁ ZJ%P1)=hi Ȕ ÑH"A`kzy,དྷ89C2$JlB,r&#  Ђ})Ie/z2 ,ظP#5|Mg9 L^#=Jx^0>:W6)^VWQca/\T+Cn{.r\Gb st:/+w~s1'.C > ~:vMS|АX.,Dj;Q1'2jH䨖qbTQ=.f/~c>v8@pj 1/c3cg;yg۳O(+fDŽGn6#"u4wp&!ުj >*b<$Qh$r3&Z1KV|,d5s|=I(%Qn1Jx#q،\(,RH?|䏴0Rv/tF DzpHC 0HXmxy='eh~twٚx7tx8o z:=%o8mpҴp[Óh~z9Zb2D,vd;ϻ*\-Z+o l89yl_ac o+VB5h!Nԝz%-$`2pNrˆ@V9a2HN) 4'$ x 6f ɀU+8!Yx JH%$F ɳ$%$g1A]_@W0B"WQ5n!Q !$ĜdazwF=K :Nt8!}t<ۖ$S:M ".tkDv:APVi|0sB9Yc$$# S.IFH15:#ĂAG1#$I -UIY`SB϶A:%hu(!f5+:%$%>עiPŒR572O@K6fEne@{ *ba5Ֆ U EF  䥊ʼnD, , ie%`9 #uXh,sR qiT NhiP XpF lh i: X޽zGKl@8VJFy;VkQz^qΨ_}@x,8G8Wu uouZuƨ_/j4GB~u`fա=;`IW.W(,XX+2SbZ I`.$`ij^jXaa%llI=I²\S3JX IUrJ .%,5xo+AUV8pA $=NEFT`)WgQY Y70*;ӐTfQi߻_ }sZuVCgUo, (IB: RXHw,T:xT9n INIv٠78e N#/9Ŷ1R1Dd#ZO3*%HFeL] TZ&8tkʢQݩ`!*W!ͭTCTjE^BTH}U *0" QaD( ɁP|T :BI#]uVʆK-W`Y c5bTLqP,O8|b%@ܛwX]P:@EPP1Nѵ&hi140vֱ+A2 BOjXR* .tVXiLp6XVPVLh$_ XM(-nE,Х݃RY59^1lX] p?BST3 :S1 fI,牕V;A,_,꽴T@%ZoSkk٠F:`0|!psu%١WxeY(F Q+SÌXzJc)K\o,ЋX 5޴3mnUI,螲Db~] iX%@_vu+9- ,kEүwf hWԇ}VKCj<_]BgYed?޽=TMkCIygp_ڙfz9Er'n|OO۱4w`¼oR'ǾD,r|w9>}Vy8?>%$9hU51c/hG_ xϠj~aRbiQx_NJ)7]+54ͮ~_:˴O7>1zWeL`<뢱֖`ߟn/2,9;ܔxլ OÅ>pzN8ߞn.^|xnˬ{|Mݶwj|\iuR.N‹L|L9yu9=Ip<ߣлn߇7k]rt `6Wu75_FK;nGLޅendstream endobj 1337 0 obj << /Filter /FlateDecode /Length 7311 >> stream x]od7r+(X#l$^raE[Ӛ1-zYE3g`f!*Ϗۃ߻+sx{mW6Ckp{bXwHƆշ\ZZp~udZ ןퟯoԆb^|p_|: Ohϟx=ԃO1Qgv<{A՝ vggsQxbS=XFSęr%*D[\#W &GZql*y7k %dw})QI4}|uZc{ME CGHW)q)CGH'2FG۽sD+!Zh5ahw* %Ǯ*KJ BBͽ1ite:VױT\xVz{t`0Jra)~==c{{vGOЃaZЃX'`h- {iuZv 5X_}G^1:  ^n`'/WIT2@{'rr+dci |AC3>Ifiz<گJ{*4"u?J*& '}ayhs{ &MCZ~|?jKbQ5B.Q>z==lJܞϏׇ~P|8>_eݺZ vCCn^9^זnf;lLJwepZ-'XsT~.lf~W"nHhv>_0?|v!Aw`1YVV-P+&:bVDVV!j+jAVZ-UP,ւ7DECdk䰊54dk2ykΕ>_Xsш,j͓*F YcȐk,DU!@punE_u5\-Sކz`5j5<_Z+XZW}jyRksF5 hZ3$Ӫ֨Y5C6,j iԆZ'|\tlxCѢZ(j>S!/Z [W6a=Z6l&Saě!Oh jVFJ5O5TWV-bD_[ ZK& ZKڶj6 CQ'/Y`S3/>/w({I.Z "WFMb&;VBjXBrhru%^&^b0"`*Bװ7(":"%\tWTȕɥW Y BWڮ\Vi8;h:䊮bu4[/^f'/ 9L SSN&[_YEl%,)"! |4+*b_& ?d̐K:`7Ovf3% @Y܂-&#J0~Y)Uh%O`->0LXJ[Y'٭bY b}q̊h&,;}Ni7=L"+f"SZBV^}T蠠%e3caJ=5a'눆ߎ!7Ý0 " 9iqg9 *O0an!U[VPz! TX`#=L%*< ԆUbW{xiJ,.XATX0*h/)pέ淒X͚Hu.gH*FBe \NRq`VI,oʊ&S\pՄ5zԯʚ@"UY+bIT*5qЪx}SXoj,(xX&DòM]O^)j,谡"XL-JcGXR4SdEr1[U"+Q2U]`%PW]@&JUJX<^4u(?.xe(/Q^ Wvܻ;_]F SZU)vU|V.""(unI!˯Q ؊WEaӼ諐UVa+! jeЮq@n|B5~5%_xPk{PT< =fV뉲R+P&ԢQY h\2Ecjsd-r @5$B24,,kPLz2K~2 Ssx0KfϔX2&7Bh$(d9c0tͺy ݪjpKfX#Zt R\h4Vhj"eASdk)\h"0 DDDɪY;4 2MX?Md ^|;y#N*/NDہCU97:1!h,tiZS9y74Wt"啦 T 4 (t"ՕTNi*TfE74CdOVDb/$URq;=O≼eT^x*!h[U*B{(iHۙOvxˆ;}>`NQdGG&E\D`A++ӛ"mDp+ܺ7b+U vJ}A,?vU J\xX+ӲVbAV&G\d/i72k-{cdy=TȂm> ;B] b[$X3/#":Ug6)ɹZ1\bQOA!VMteLZ"+B,vKjye%a>1sZgbe(ʺ+a~VBX 4Njhԭ 1tǞ*P_@Ja 20G۱c\5FwRWff1()`M3,Sռ,MV A, I_n9X*pZZGX0Fz6uqc4~c0uR[T\#Rf~WSCqqjj(P9l.ʩ[|v*\Ћ&|-( ^@@XUM, ]ABns/=ma10)7T+ zYˏ kˢGn IH+ٽr+Ũ%LsXTҝC!*]9g qkvX&]JbcbE:#W(Q֘Vx__ lf"tBvcaj=k6E̚63zfVX !!2,@X4kr4>{ _WIUM%(hx&N!+6,#$Xb5)on"kiD{(N"UdQE9l:0ʜ-QY늰B'nWQII.䔳uV| |mxe8/}.+^ 6--/L~Fr/J9Y;|~hVrG%/ʹJV6eN;mjn9q<,z -"Qϝ pVlQ<+lD >Ȗ1r6ͫrOSQO됞7WNϧBi߮o"Z۰Mޞ=Q ^61ԪZ{$$JA^Ow2??ioGI¾g`@oJo0Н@ ~}CgRVNpixGR۩Grm7d.t>}8^NO7.kh|qW?/c^ }t//sBY[oq1:2lZFKkI4˄ 7%Qo7ۿ\˷#.L OYt{_gx:biX?x|e{rw~x|xB?=ߩu@Eky9ܞ>ϯD=ӿc1wOǏ@> stream xWM6z(o%9,) rhzhzpy^olIlA#9of,n nNP5ϫ/]*sR_TuXUrDjuXjVSKcJޛݩ{okݷճ/ >X2Tb GG&m\QV8>Z#`oX\ QQr֐Wg$xɁ7!jSdWL΂Dg#)OTfPwWF%; U &>&,r#^C@\"cey2Tv   `K :9=P5H簇@EtE\*q$Rmβ*y&)#@-Hv}/2l-NA y'b{lέlSR2%kPm>5.F7 N-D"J@zg(@biǘ%dae{AV8-'v4p i|bY ddH|DP8Dٲ%@Y c RA3R 8/*=R )/,l HC!IaU)P@¢E.sP<= YHPAy =9#Q+ULh!ê f h.AZ $̆q #,@HHUʗ22RGZr}&CѰ,0?_su>Sք "K/X2c 7c]5h~"]g܌tAf!3XzB.0 гZm~,Yz.饟=f`]-5Ms2uP\( A}7FQoOF{u,}"wX_R 7Oh*W0_qLԆvf,޶ùءRJk/z!9;*nP3 ["no+pi\D?$fmfa(ɇd~ݎkk]u^ѯQn,rړA@dt > stream xX[ܶ"wU"8.jy]+%3>qu6-ze-|Y>[ޞ%|f95Yars\}[7|!"$e̒ծu50nLٜq"B'mIյջuWM-> g-r`/>#}5j5̗?=HJ~[RWC<@ )8Fwv= Rb&&/\T똔"zhkB\\Rnfk: R7Cm/D_D|5W]+H;A|TtV$8!>~зۻGzsN! JQF 70+ r?'$8s@93_ KSĸ{'AE"~a. @Ge:¨h}.KːPa4&il<}d 9ɴ\#vl0gblBh tHbh s$`LN\rm8oBmv>)*qm )n{ؼsg sO7ѐݻ.96>N+HoVslaoAPsmzn׻mG''Wp#]Z哷XCDYO>MZ#>7ֻmʱADž;܌TmjϡQ).}l M N V @G?Arpܐ=#ބ' #qo4`$jN!3 %YP!9=6?@Yv"=~Ǜ,}}vm|w3w.,Ub ]ݬ|QƄ]onoqfUdF;/oܟF6|B !|4rQO>ӹItXW!FgC,o0&u\5fպlt8 LK jP%s_tȫn0F$ H?yU} 07(Bi?R?08 C;[99'țv6eKP:8uN_@5Ƃ\5Mh:$ZM}և&!?:\La-r;4ݪ# "JxP\ 4h&cJTy qPV(bMU"K` T,;Y9JcYnCEŒr%spC*՗Brdt {+d MEXX,BW]sKG&ԒEzp`W=;R[X5p8j̰7T}=ܛmyd )ZΌ87|2>@ Q>zD3}h-L "-R4u /qPU0R6.2WNȌi+4S `^5E?5jŨbvL<2;"3%ȹj?~ 5Me{; ЯaXpp;yMy/4S&xxe |wtt&8 $o^^&vy~j)Oj: %@s"S]pa&xդAVNd_VjB¦f_˩ɠCd*󰙀)'$bF)"LJJ(6SPl We&`CéyRg(&LY8 Xit:=AnfbGP\?G=k )a9~D$M`ڐ᝖5!R]e\F*C"۟m&21>?qS)6SnHiR_4x2b[aK+=֙p}PVdx۴DFA#CA=-d:N f-\1Ҏr *5.+endstream endobj 1340 0 obj << /Filter /FlateDecode /Length 2747 >> stream xYɒʱB@&6I吔۝ɁM[6EL} )=Y-b}O<o^~z4描_}=d>r[Rm Wl?)Ydy^ R! #^BӮ4-NVcwpg:;6]?l?`,dwG1L"+8 )Qu ><yaX*td /ȝ.|fάqn2oN#~I@04m[Vsu|m)vF$-/,xZQů¸ Նv|vº?0H?3"M݄JxK;~h~A&ϝ)1GvJZG{(a H^;IiޝOa& ;@忠2ePes+L$ 8w >4rGdLf2Ҭ 1WXY+Hğ,CR,-Q(8+_Z2lL<-VDaMfAfU]6.3VDLW[*y$n463QRșB_#"Y[wNe1 ءv%i pŀq< #IY@vR q8QډUµ 01G̲3 0?3}hw[Wq* < @ LП1.h_IQLdo{R/DZE]0鴪6s` ko ".Gd$:OsWy:s-M洼P1`:'>CG>KW>xZmE +5j857"qDND5ݪ'Ґ%$C!L8= &w\E0rA"BE3ý(ooAo#f b>P(Arny#Gzpb (JѴ̥>t8XSs9,'O poM(H V37Sfdb I`(h.\{԰JFgOr}G25=+/Zt'2@j+WX*mjNYƸĴG#x1m,EVژtO'-@?m %c6C-\O!!9kP꿆=0$>>nUےg 7P(P鈸n,$:H[P-D0̳j+2R]p/N pǚټ}C̛};{/ iG(c>., ֡7:`"վ_#܃^ ZqO!t˵a\UW(50[cÏ^ {/z>,kf^a iNr%7)5X;Jh @n/mm3Fʗ792-j$ZO)˿Q{Z/,!uU"4KE(8oX=FVHZ-vn=4 l].J?4)5V@krZYo3r 2;INH]jwU(,cv'cßmJ{&7Obc}d` 7p\]fh;Kppर`4m^Ir%JϯmrL8,W 6'};5  u7=\bɲ{!i`s+0#t3iE%4-^E>ʡf@Y>10W"O &+&[|kMq}]ckJA !+Fh 솵+\xhC5t \!ȊΤ˝y2?rҾŒ^%IoHH. U#(25%z,;5ѡrޞ5*o x#TiDn[LWfsBu,=hؤUܙytLu%mձ9BSN`"Bm:̭GBky/ǝ .}dzSOiO(|DȮ#n}k5=e7C:'c-lu8&B{(@=-5endstream endobj 1341 0 obj << /Filter /FlateDecode /Length 6241 >> stream x\mo\qQb躐OI_@&]C-߫]ˑ8̐go-3Qq8f6?+ux˳7_Ҧ,8y>|d%nҚl?jν{Y[b.o^p5Xaw}jߜsszɿ\\]],;.۷W5n}|+o_~Ëbϟ</q7vl|v;Zn.߀gα>\(k廻'n38rGzӷyǏ>^6:87W?t//}Q9O/퉋vmiCe{|1!7rd??<[X5Qt<$"D+D_]8fwO^||rD_^m [x|N~|sT|W°90([w&6{$珷jWwB7~V'$yrvh[+k۷ןD*ZfcGr5nn2}L|G޻ݾ]>ўs߾<#H^bܤ'~#1%?n.7yY-n_+2 q2xE#л~E6+}gcJ٪..5aP6mK^DiK .1RKFo𐖖'|{ggAX[r71ExskŷQ5.6+SvO}BDMvH*łH/]~71%H2ƞi/{ +=׭f3Th͞6'K()n8QϠdVRR’eI)IAJ^"LP)p^"%TϿ"I>RA)0X9xRjY2/TβTJ,9F>ITHq%-w^q.AptZL|_(`TU%d%HR` IhbFR @3S6&# KaJ+؉e>|`6GwTd/^.?/I>Nb3'̀I{xU/a0(]8Lpnw0%xظs0I_/MI _J$HIUzQ`r䍻 wM&ba&@$T{AD/+p=)H -L-%-Dxp9g})z^%TFtCNE& R``ZQ .tp¨Rvyk@B2\ ¤S8B6Q-`Є5{@T4f  0v&1wQl0Ҙ(@fqM|#V [BFCH)o WJ-8pRg]N%*E6OZu]]bf?KP (΢P_`*iR1(`}2g7xfz080,5Fr 6ٶCe6EWM>Ĭ#y9wJs ց @A܅$]Hoࠦh5 MƌKCƥn\T̆gp]F# )')[rG ALB"h(lDԭdꉻO JB\̤ Je&F4kꮱ(&R DlC{b(dȡ 2Q8뒑qlJZBM38tF%O 2K0I/*Y萄ׅTh(bgV, ;qR. rɆt;B̴aɸ6+XX::7}i:]';y#tvyw%@# 8I}wÄAѸ.^=08IeL;@T7hHb#[@?z/,c];/ y N$,Sg !%,US,]E(2HYS"QbM ~ՅvC mZo-ఔt50a!kP4BD3@ p%Rx5} rZĭ;G/t;D?߂p6УUDufCbB,U`Ǻ**+Gk&{>:e6;84K0&B* FR' ÅgLQfYD`'E ̭y7#xD΄ys5|-Sju|ԉ[^:J1Tb!7\H2)vPW@yɾ JZHikVo>C8"!0`]G!{5 M/?SnaTugEZNJlJֳzb$H0 9)jHQl \)E8Iz%["85\xg(4Z|mgki80գ j :TV vC!j-;ihxjK]^aVj՘&hCjxb5N~4mpCa' d[Bt{ e2IdsQGòlw#B@c3x!{=Vب7ר,w~u~l}SzCh x1)l{csw})* j`u+@! @(9KX$ CgLSb}FPzV,[ogf#֐Kr㾾ܓf Sw%TXGe@2:`a*f561Hu J2 ɉph4WKl&5J>hZ 5ZGm汿oSffMg-$')|j4<|W34B ׆ Uf7N=b~RNSWlbusRYf@P?+ev9 R{ՀVb>+L*LBͺVKiKP,HEɳ:ra!l/JI^v(Q);P^+aL4H4b}?ݴi#Y:~Û},H[%%NwGՂ  VdWrY[%ReIN@͓i;= D8!aO0_P,)k8D% e"D `?IfƊʭъ6 :Kd=iHy!}н m@i ܬWy5 /7Y]%CO iY@ַ7"n_ M[0@ތuީ6nk3GU纴ї7cCڗ5|keGQsQZThpiKa֨8(?Z~lՏdZGf;]=c?0[F%1Ab} U kc|YNQ%jrG.E7@UT'84G'Mڌ .zc6:!>t+-F/e xº&Z:(`xSn[Tx$pxyrP54W0JOK C55/XѢPL~ZUz x wq#uP:m]3n5͍5CBltJ"7ytƏZ?d7n#=SU:d߮t [S''aIg0w"[[%5Ͼ/$kRV{wBo $u8f޹aDQc ics,usDdCm;ETcv`'(#Q}!%cay|Ԓ:EVZR۠˵%a$PZ+*dOHF!Yt=b>N٬⣋J_*a!%Z!t2Q`L"LU`CY'}3-oչ>=2مQCO>4}йSmo>J!S6=,"^QwyQm6zճkڲD {$5dZ:"xT _uΆg%''RpMhyي!NII@++ng_g^_겅oPtI>5ڧOx@qjPM֋dϗWk@B:83m=[kjz1:{g:H0cm1W\U3P:@!B{m85X{\ K*zI*?վg rR 窖c쁢0~<``]^}xI+SL+fWVLk>؈i|tzڷn}XLk} M>՚ٶc+IkGv"HaEfR";MCA\ѴFlͥsnqJv9i.j^P5Uzψ(OZ2]wb汫ӊf!# N)rztPhѦY%58Y%iY]6ݪB;N0'6-V`TqZl̜B<*cFwVu`y8tч41iE#S͘-SkE>So4]}>#֊ D[Q4NXY`?x3s]YWl`Scl6SC6]XMht;&h CAuq#IO+ iU,W!L Lr@@ -Yw$扃'`Rqɜ^?B&OL*-Ԣ[o~{' 7/U_kҷvbәƩ@ٶ7pDV|[Uz˖N %zݧnZԡċŮƹ8ʷ1.]Fݳ#.ڴ: ͣt'؋vc"֝bõ6!m~f`\F)_y1޹BE{'Dz jy?[Y1?{/F&;:aWA[M|8&ZǺ֐LaDik"rvzsuGkˊZ9nki d1Ho\!"t&=Kx+2nʅH}~Ys5զs1 |s}&ΔΪW=+"&`M~Tuxx޹g58J'{Ye]S-rADs*X][-.Kv{],+s?' wS0[i_шA>dZؾo2(&ΖAqocVXN*]vw` B{aiSCPgߧSXř (6(7u5‡^'je2BZ)-*6"{') f"copDRf^SDp=|ڭ(ӧ61Ehi uwުl^F74QNKd ,NJlx`_Kha|jU䯞KAͮ\Ե]ۆOX޾ɨ /n\o.>7.^_.o;Ջd'o?8fa_, HQ?]?eIb~wOW\+o3z6qo϶N?TSendstream endobj 1342 0 obj << /Type /ObjStm /Length 2329 /Filter /FlateDecode /N 96 /First 983 >> stream x[ˮ$ +"E`Eddq28pƋ}aЃuQ*)C%ziEYx28Ţset`*xq4kS<#]9"sh#j;f>r*«CbEL.`dFx``.QzDΛbmqhŔ/CYsCW&e5LHRbC55+#yY4lT!Ffy Vhڨ6 wSLHT$j!mK"%bXOɢBbmgW(_Nj5ACs.3BJMi7Kʹ]6;zK4-cMMLP+?KxⲜTT>*o??T濿1[b7lB:?'}"x4ב: y}??O9Ǐ?~*_}Fg:P<*v u lp4Wm*{S&l#uVuTO/ {vM'86a? EhU u!j#;*P57θ*#i5K mx%G38 tY!"a%BP!:I C2GX/Y(d>Rpj LQNFTJZq-PMׁ [I%_a!@,ȧرG>06$ĥ1 3S6h#.S23Na>rn8y]p}/@HTف""W+ J`'';&}nȵ/@oa  uvcG&7K ՊKc,꠽s3 +uسu"j?8a 'xK08b09qt}I*#b|}\NNF`cC-,RN9.>g,v[t[r.; s}kGRef;e0EN@̡x*R0 X%,zjC`Ư0H%FOGa6 mHχf&3b f8q>n>ؘloY|Rtgj]m 023a<‹|xo.8nK:>zYCJz>:䜇:}8;sg"H' 1ohDyk:6Ϊin!p%6LN-׬h'j\>_kW`]U-)К ihk?ǣg yFވN:sOˍ'nH"23ێ9sD`B|tr FB%ΤXO3Lvqޑ _vU~ef.LWWd*֮w(%E-opu_ 'ʠ Q#=(( Vέ^od,8[ڇz ɚpo@@g-t@'';R(8Wͭj~:$2ir7YYg&Ѳ{}1q>a_E t |ag{zM]/?xϮ6=~D$6\J/: endstream endobj 1439 0 obj << /Filter /FlateDecode /Length 2922 >> stream x\Ko$ _[zRw@$9Fڎ硝9H~oB+Wlݟסּ{K?;{|z?Xo?pǻoྂ)}JՔwvO/_Պ8 GΙ?wp wxHD5ݧMp>y{S;O75DL%}exrLf I $3r$,7 2XM&՜Yh2HX4ˠLUr׉߹x9ar\M-׮_w㈱ uU064: Od@2z_ToS ͸*/w48jT9M& W:Mp'o"vƭ"OuSxl4OZ4V\0ޖYQƞaABIy኿J70[CvdYƎtf\1W2<5gRɠ`,𼫭$c8+1iGAL*6W]&%p 9c)u>rĒ?8Jz%`fe+hWZyB%g%+j,ѓi kl&J^drh;|W $WRLA%%*g)Y(d=[  ք,]a 9@)B 9tܲe 9Lۺ}vkII2y-Rՠs0P8I܆E%g)e8貤\ozGAƎ&*th_,8u3;4_N8wP}h On PJEםZj \/4:jg|f0wʷǃ²M0 FY޾nNi/2~rK?ͰpCCjEޱ ˨k8,t"')oI*9(Zb o_tY&WYJApdN5KQp{z}~3]VZ/y+W9hdr^[y)B t-ƚ 1& Κ ՞-#jEfiEɧ\@4*c"'\4lmu}-jeN[ NJȰE0bpp ZѕaNe>ry}OaEUz!2 =:vij9}_O7endstream endobj 1440 0 obj << /Filter /FlateDecode /Length 4065 >> stream xZ[붑yHU ׈K`7*r<ę$U9a"2Iy|EG3G n|}㏷y&osn7͏7?7%B 3Ku[p#\V0_ef5ۛfܯ, i٬7Ή8\:qU=qYV;^]z_ㄠDW6OUS]VwGR'CXB>Nn6ӶI(J+L+u9=/~H7ug +WhYfIbރ1#YPd;Z2c(tמ:Қ,vx[(ЀV3 2!bHI]?mtaz-P0#脇7pRwA!9O7Y"t,>8 w>+yF<׳\L͟?,Ue(K/F(<_0f@Ph;D'#IbRr{7$Hr gdzP\RWY`Uq֘[zχB\;_@Q(@0he\z_͑ATx#9@&HMϴz!?msUkHw1.0Ŝ&,cLa\BԭԜdOSY S<[VWv! h!W]*K7dZvwchM&ג[k)$2*P4>$ZQ^J ΃m 2DY5UGECZ+v -fh;.r8u_PcLeETL=tL&k4Igg4<\0ѷ ~@]U, {!HЍJ ȹ7bn ~J<_9¤lr>Pna5ym9i}5u9G߅= sA9X뻚H/RS7t:JmA?Noؤzd/R4Sz]s^Nes!(ɏU1!+EAT`أӆHTFZ>(HM:rPKNeYMu塚 dܧjU:cdx3 ,jɑ8>: $B6^9J4(:s#au*"yK.s FǡAx8AŠTcU{WwLΆG*ZцtFι 9E͜MWr+l*7i(d 9KL icJ=aikS+p6E#@Wq₺9~EL@?i-)]_ 'z)H.) j^E/ľ=Xj<.,HZqXvulH>'}IyVܩ纩tp6 ?OW4F37/x }HJ0!n #k(n[*A5tb!ɄZ hp_DvSl1{Äq g)rJ$bI-M]#ɵ䚢a:Hͧ>M ݙm̠{ckP! ӭޏKf;m.}yLSB"^P(a5kCuܗq8}_7O#, }؟s`q='m]9Dpc݄)q.U_w6u =>o3<) vCAA"rѝG_ەܳi?s[o~^az9RA;5(sNX8Qi˴..=.b(W@wRʲFl(,[;[̙H'.K)C!hQc]>- 0{{ӧFᦲ=pu (IxW3桴J%72oNǪK(c囯۬F̦>̀OK˾ޤ%k+'7Ԑxo8|q]n]dE3VAkF;38NmQc4 P615k\bC]l(vda3ט'I=I]^;bMߘl)5AA830z.nP))0pݴ<u`!={A$J<ۑ1^^.X}]T 1wFjLHKwy^*j1#,&w@?nm4kiҧQkOF܌Zu(#!K5̗˱*CLVuR }aW&]{|6ccD*-yFk}4s(6gh:}tx ÄZ,>[Ԭ$ >X&wM; >N|$6ܾk: V0cX a Z!Bn{3P8z ^Or!m/Dκ(s&d (㉫S$kZ"JeưOsoDnW"szA4lIcdQ$׳ Vݑ)~;.W'u1w 1/V)L-ַUD$a;R?­VEiϫ)Fow ~C:Y= kf K3gNp iB 23.\kxb_|ּx`2 TZYsg΍:,]yf= Fxf,yp0e㧓ŏNE\8/PΞܹ0XmgۼS^C\T1dQ 7֏X p`]?n=7A4y~ו/>~>USw0yqi/SS#t"]5Dz0vĕֳf~n~8iQViw>oyfɸœ?"=I||$I> stream xXm۸kQ+|yh{I~Mؒ#ɻɿM+'@,J$癙Os\90٧qo0jax^d2ײ,0 X j^=R\r ,iz*qX*XI]nkĸ`+'r)ʂ)FXzjKlġ@(U);HDeIAԉ?+ln}U7C?B0EME<]FѬ`Q׋>vc7dfSBƑ`Z ʂ轩ƙ/4 犨3I(]UVi/+ͼ2/z˸^j|/(`$Lz"M[mfmKʧԥ)q*$ >P79սԛio%zڙ&p8ޘn< ^RTC< 6FUul ur{p C4@fA8}u'agI D_k*iۦX,n.qic("qnanF+p B μqRDQ?<ߏk@e˾\+d jUS"-JZ ?"I Ki /,(ʣ[?C 2$ y0 p`}_n^^ۧ%}v7źCٓvz뫻ElҰ3G@sYB'3<܉uMh6 }_Ǥhֈ&HQjv{MՃTן`ĝI~v';z__2J_#Q!tsTiL@UhYHOyjZ2/^Kޡ>Uo]Eo^5edϊ`ƃUX` !@>D|G46wġM>M5 #%0K˂-G SzWJ_TWpfLw8<ƛd!1U^J~3 d,Wlh9iWwc8Z)Jb6Aia6uV}&oi:pJ4k41}SZtRH&Eg2.{^z mC kc[jGsWCiխw>%L 2."a^n@*4s.eh.'*;'?2mb%^4uWJޒ{FkUB`H*T7^uUsRl촡ތ[~rXQQ X +`$ X =FvlW;CU0>MGj=np[IgWuK{+ ͈y(v'endstream endobj 1442 0 obj << /Filter /FlateDecode /Length 2102 >> stream xX[o8ѿB/*D:A:t7ЙEmMuq%iH:LM,s?$Q߲Y%ail4Mv=I"Opݯ,f(fѶY}@n,&K8!)^/j;Q&D,xbZ9wݛ"YG;h0'"D"ڈ8RF97f4T}iLSG[Vr&Kg2fC,N6UJsj٣QP;#zMj&g13*))R&{u3'TXՃjP.Bݒ׶>ѣ '3CL9h[aY`<*Ti32ps=Y-;0p lr>ݹT`XKgA!cfv~MH 8^@8m9J:xP]q̵I҈o8t n;#MڡRprPWSpkP?Ȳ82Fe +.y3`j[XV|*Y\f9|lbRAX CQT]؊"',s$?^\q0\$E^o=FRtn~풊Lvw .!Yoߥe*on.ޭ73Uأ Fnf{-b-q.ڂo첿qH|ro{F6="$/ ]uaQdf4c5rQ zūszتY/_l j H(=HjzL􊇯 g%Eü'd23ե)s/+nB%SDzSkU]w,L-`S+*}y4x]wqC^ O *Ȫ x 鰟aaghH'>iJ.-bw)=ܡk=(K>x|$ -|i9]v#4IS-:It8 Hi/ZHNUj->i擦tq@Q[[ Ewfp#`t.zX|mM'_f/ver_yMpfó8QH?HCY}UG*MꫦbdRox`US.J_ȋ.*N/ua)<{vB6^1叞R1v'|c EϮ'(]2[蚋6At5_QCQtYl-.w?H!ٴfNBtO@8=,-b(@F7PM,F^{nǞ>.T fCX .E@oNgRO$U}_s}y|Bԩvb2Yr> stream xXo#Qp*$w%ciF(imo"vWw3Cr:]| D9Ìfoff0a=KL%[1_1"1\ȹ6z>^3XvEX&hຢS[f! +۔{^wOk혭O!|l (c~*#qA ,]S@Xag? L"St}w3>bkLa6鄠 \]Ǯ;9МPJve]bybdǢ{e%4|%DeVz6妀K,*w5HZ #۹r?,F$|2|ܛ׈$AV"QXHp.3v!Ƣ$# ҄6} FacT t\@쎡%~5SnT Uɹb٩AEBETMKqH 0U]'4i`dnqba~}2#O̓a aȹ0]dJ"X-CpCLK0'77!s~Yed&.~3Jz!G\2@&gE>pL>#]ACS ľ-{\Q+}y67@!k{Dh_%X)kGXc!>|>#p_8IӹPGz_$aFWnN.VsT(4}y{_pF Ob=\6;70-x('&=w') }N(L'<|[4 咎p_%r:ӣCn>EϸlS*L۸T@!T!1es7eMQ͠ EiȰwePA-ɱ<I JIOeL%Y/7SB)fۺe ʌ# }gpw"ݺ}曆 \5/h %`sTW2sg 7G̗Pȥe3<M[W.V$"ve(']Ij2޿DAnf nXYc m OQA^LN$=6OuӕC$>MਞC#J/<2ܶ`֮9n;| ji44c߻ʔPb4\>3@|os[J_(Qh&U`{ (&:H%yv D5Qd2 Dbq!KCQ>p7AfD<'c-ubz ]R 5:(1R9{8%s`v[3k]B/f_zP-N'q SQ:4W\ivV92EpŊ280[WQ6P*eS6#Bay`b (亦|ƐKuBfh?&!]46P`*5CQc OcD } fAhJO0 bRܜnùc+iH!~,QT8pՎԒ=a:!-xIi |w~ G|;kPk M~ԄoNыoEor!}9o؋եx|q)'ş ԋ'OA4)+$u%*)ʈXp^k$FB(5ߖH $tn͔H#Bu(70|K2"[$}KEdd'g}[>)j9cܿżZԗeX :0˕]B)(rwCL\X\B ń=RR.e|*#Ɣo Yendstream endobj 1444 0 obj << /Filter /FlateDecode /Length 2016 >> stream xX[o6ѿ\9EYv1fum)#dsHRFi3ݢCD<|BX猯s UY}Xqz_v7?sKf˜w+T̨6z;~r&f<hGG!6}\oaVA.pr3Md63i9rueYU;վ>Wgevsn-MvhPfKOdU6ˬqCݟKwi\{^S)|WNJ 8QlQq줎+fzn}}T7h%CUzA+#uqųHkm8 #NsoL0 24=d1_=D" ˡ:MLuT`~GTFouۥ0B<#YiVBHoyW=#:+NC2iuIɱnZpu2:ViA|lkӪ}{~Ǵ QJ$nOhfy1TyKZBQMB&Ѝr=]/,f*d>S!̑ CL⅞UFċQ<ЋAJ$7ACR(Lx*) I8ƋvnGQ:X0:ՍK:z'4~.[nsL<޻IDiU_m>@&-1itá$]|'}?E\ߊ_<5=䛈/fȓ@Dž'ES[eI5R&W=sjcݕ12&!$YHgbI(,v* eNX7$,)IJdݧ$gͲlTHXLk@81uۦOg*&MyNQ EOmuH0nt܇ki8fTp lH4maJ!w?|Ud;+dJm zxhJQBb*:Xr»&FA1*;4I ƿ \5g; A"Stv}?rI+lfCI4'"X}3+xbz{!=O~/Ű} *F:?\\[DsFw𼏇Ɏm|r!bgg|%-X*rBv?WHܡ#b5MTMa|K\ {M}RĴ91b0nkCeYQ[͌iE@D=~SEO!uCR޺``\2# lJ3PFzUӴ 2$(CB0Ї Xש?I _uN4 =#H=b[KEǟqL@y2fA{+ {¡ȷTDB !ߦ)c8~M>(Bl_|Cݻ/5f& (+Zendstream endobj 1445 0 obj << /Filter /FlateDecode /Length 2519 >> stream xr۸u >A!`7ӇvZm&T7{pL9ΦĹZ]nv|yulv~Z.uV.n. 2jy[FZˢȊ~S6UZERFH5jڇ(p_E&ۺkes ~[vHHG4G/Hƃy(]޴9(Q W٥ oj\ ]zk:vPo~>*{V*+1!6a(93M% 5wzu1`=l\ܞHN8ȂS<,,RKP3='Ij&5fff$EjtbUQ|ϵʮE++ӁXxAI AeT(f g$խ4 &k'Uwg@k׮L`"$-Q@\}@M伒 |ڦw0 :1.H .p)Fm5ut`i!Bc9En~Ƕ0Mм ɦ9@8kr OBh1L`^k PhK>rai] pX9ś*\*ˬfJ" ;-."6ꍠ1,sJiDVM؅5[F7D:8b#|$sµko%`֯A3 c>h j<9f A`R2LF } J=pwZHӱj!s澭7F8YԬmoL{(3S驀l_[9iKt][4 Yq JNJLät>BjW6p&>hql{1*Xwi08GwpY70kw].eZ1ReI=yeRa8_zxxZذ; ݫKt;Ejw($ؠ;(AGO0\[af\["H?#C4ci}` kg?BϨs/ig!??xSi;HqTa=!mf*.(} >M]N~3I$5$/[N(yr# K ssRfΎݾ3yۖCyMOX'' t)Y&ϊk"./O).ߨ ~/Bq\.R%I i_LASЩT'/!I~w<3bg*7F;2z'< $(2To .-^rA,6qǥK*.u\h]aa*]ߺ>oɸ*d"VֹhԦ1>`OwJLw9Ov,姻1 OwSfv'\y=d sHUΜWTU{> stream xZ[8@JkEI"HM/>ȶf,y%yvɱ4EvL+&_g'K'==3g'pg{<]֚+D=gYx=+39F&;KYDzF㖛D5auU'a˼ }zxH=V;GtqW6C5g@s2y8J SS%CW摒ƧqxWF?/~P}5zkwp~C]w<}eէz7jgyR4_m[/Ա*[W%cCGxt,Ǻ WrT} fRcVʡkuiuXO_}in>m ޠdZ u#3I-aHi(lV\^-tEB9*+nF?)V~eπ&![-F\-#bA~NǪOry ,}zi$~!^6Q1~^~H~^߶a')"G%M~W<6|g_70pM0U!:dׇ^Qff?E2^!vx ۇ(ue*p9 q/8 (RW$ 4P/X?]*:+p (< ^vA0ģeE7CDE܂r|$JqVB0TJ_qBBf̢ )uRKk&Nm cُ;ȗz<̽Ө@6˱t8`hފD0f-6PgwV7ފapў۪whT}}\H,'U;O!7,Pf頢 4 (܍Q TmJ@Q) '~bJw kXV2'x8Fo1 *>$-T4)#sw__k ʪ?PM,*v㹷O4spzQP|-ڒISn5{fiJ+fb/Ne_6Mո';CA'''rJtud5'_w}_5刨G'$›C?C0.B ugV01ܡM`8%O9%_nJBMtP3f*DZ&Kes:̆bYI lM\r׺:m՝&8(u_]\L-+Av&Wy[ r7X^*1t({F|4H&#TC:Q8x8gI@X(ܔ(7T慚v1u@FaNF%ŬAuL5O>Y.s*vtmojGl2!ۃ̉Df0#1+Cr=5Upڽd +_57 |JEJN];t=vK"L :@}N.z_5Ƃ&m7dr$f;NimSJ 1iZX}afG9k'pCG0LM>q01YZbͰV;U操1e6)pɡSpŴ9V2: /TӲn$Rڜ<,2B`>8vs(rߝF {0po]׸%Ґ5Fj-Y&"\30TBOT7qW-+KZ,s\b#YCoUmK#R'RN}W`vrffMjw:@f{24 y> stream xZmܶ~ #@ŭ"zcQpK6d|B*JkIwfH(o3yyf4UUx>^q]?q_xa*Qʜ+œ*bUTj{zHz4e7O0z#4I9N%kg}t+9qD`n'ذߙyΦ~;HT(\߲-1$cߵwڵABOkTزt`Q};9p*sL6DVֻinBqaXfrZYn鰐QN}D`0t˾58ꮞۡaZ bkf;ϤM.;})n8ݢ=PxYx;n4H`\.yrTzmz^&P``1P#ۃnn%7HhFD)Y@]<1 n2Ø4\;C*{k ^&j?=y"4_s 6tͪ2d͸U/lgG# ;  XY+[7v?F'ChpYgP>lDh 95i;$3u.8,U,(ˤPtI[!rHR,&gwv߾N/y&6e&DH$b!̾I#jfC [r2\(M\0.0F P Sӂ7{2yO+1[.*osPo/ܰ~)p ّ0ʈ22/H24kzSɒHzݡV=)Ye+H6ɖz lXُs;jy 42<6$,O `E,XQ),ګ@ct V RX2W% S4| jmup^ E&Ұa *C W9:jճ2&`w-0V=E̟Gy!YFK4(.΀;oP bqd$NQDhxTDnLx^Е\ BDUDq% ?k ]`D@ҰI{ʯXE\jU^Ҩǥ"f:>Jn$~ g~DGE! bS44~?Bɧ  "7C,fu{ C <x<6xHcå 6+ Ͽ!9tv=^K&DU'y/? mۜ1:Kő7#R_U2pxLDhՉAyDNSbn̞%T/J›X !D$6a3Z凶lYGj ]d(q=`Qz/"G#T.SMY FP!.H8YR"~/ʧ@*%4lyޘ%_C,(uC nQFj"5uEcXN͡x, -_U=5MT~w ~Pg<xx.(b* ¿K\gkmw֏VolZ>O3lZ9/ \X; 1f1`Uc?mUDF.+ 2_WH躲"&_O2V.awږdm].]vl ?ڱ/{ߜ-$jLT9}~S >z#5NiĘ]F|6 nzM b5hPql)2?؎ uM_T-ow#A͓aD"5cIC.ij6N8c/d |h@E0(+*"wتKM;6TRtͨ` ]!a\ቊ"ƙi;.cH:@4idHș/PBG]*/ؾ1 B/oRt0BAIWMFeZ}Zӌn4GKVϘ dt,P@Z߻7H8ӽf|mI7GG=lQr}ݷ=Wp)UfkQ۔٥{#73cus3 4xeTAIG4>t3Ըhg;7' G[P?X0(ÜVKޮ>DfgS"\W.7nsހ<5=XaL!+}oU*% ^/9C >'O!Ǒ+\B.N.T> stream xYےMmVR(e1@D^EoT#Q#)RCRwHP(K~nG|z?緳ѹ.y4vfpX#sj?nzS( {MQ-BdqLi-󺗋:[$JK%:A~Kő '{UL0rX*\fȻz`VMY)#Y2_~Mp ue[x8oc?*m]vEU-oEK/]ѕM=Z:+9QaK0C8q4#ѣ{;37v[E;űf}6 Etn%Jk>66,L`qgp?u6m? k%kqVc7?-]Ym pOkx}r82<#|WMY>]ɪƉw_Nc-&@m_пm[G\if3wk''NöǪP+7H9Tp{}hU1@Gƀ)ŀ31E"#2:qw [N.)ڞd@S+iҦs𳰂OGX0>m22NxBT4Df_$[Uh`vBS݀ݲvy?u^ӈ5]F?Og5_0sOԒiJjbzEgJ\P3X._\x-Nao 娤O\ fk~8M zT+ePũ )fkۢl۲b3Rhρ|hTq%؍9L+2離;4u аծhfyW]9@dL7D^vVȝBsّ$jXl4&ΤWN˦85j(Asyʺ܌3ƛ% 6)X?a(=wouL{NJa/m哑J!$cFvB X2@h>A9|ze`wCr((,ق>H/0k=P?04Bu[˚D;n :~c(9- aG=J6G>f辰5q)hg.ֻ1H@UHY)N8[9v춭-ӕ[jUs m8O1mEjp3ZFvh*Z>>J4Eƭiͩ@Яwz@p4֙]zi}C)&AiA&x˶9-: ®5EV.s%tCZi(FQgt\rW%Z"hU0K a^Gx1ҕwZTҰep+,g x):=[30M_MVp|e N wx[X~bMM$ojՃ4R,UsJ~ ҖMU`A1jgc.#PH/2,Uo8~C$B2ZJi 4v`ݮ9V*È6{ȲفE>+}_3ԛ1J]vqɮlHE"Gk? yd.26 gq|>22rl@T¹B8ډqWp?o{  #l++v+? +:6bQf]  ˱^0cuo94ZH>ѓ~G#TaqqEY(l%Ͻvk8_mBM >;_TٜGZKXg7bt"5ȩ%EAM\tjXjpcO;6L,HM> stream xYKr_!l.`d ;JpW|x<>U$[#9&U_UɟV+鎯> z՟w߾{p\ȕuv=}`?]( BÃPf-M.{os؏ޕmT_HȚ8Ndc*ҹB nw8_^Rq/UCtKo﮲`T.\@&%v<ܰ䦒}ݷ]$u״cIC}NwLH6BF;sr@nt6`u|雾'VBI•j-z#8S]1b]xМ#ґC=t}| */di;B{|ɿo>VCάz.1B9XMGCs.4p9 )Yc8C~ڨX<@ϞrqԵ!vvxL2!T 3g }u, 4gBVX^T?\ XRRRŸc~BIw}ih! ^Qߗ LC{KvtAS> #„c!wOkCj+E19{6?I|%ТhBdq 0B̋ ; !V73"P ՛ttlH.CC7gěxJ+u?dHl&%{G@%'*ýá 易] +Ǻ P 8>ǚ0 ʧ${_Yc$"Q կk4:fEnsJu;&UZM/ ժ@MWc}P!iK6uTxMB](C ʠmآ:BC}OKx(  m>8#OPLѴ6$O<><o#i@5򎼞|`dc+[Rsb$la涁HR6FERRԊjtߞNȬm50S gP?ġk*#4'h+Be8$ a1`"ԡe:y2^G Г`sľ&Cv;֧w$A8IMc͉UP`_9WͱM$ ~z ZCp4 )]Ruuz: z- @Af9Vڅ#"k 1LDlNW ծ96XRY\##B%}w P Ϗ9iz!B‘_!}|kEX7FO8WGN!w0G2u^AH Ȱf__94/liMuR %8]G55qhkUT𣇲<" : 9)FO|CƐDNay S=c'd~ KG.e{s\ߺQ (ViNj\*Cb7Tama/~`Isڄ*b9}O_86j^>n吕Ov}=$~ ʠr)H&laLP='UTc?Rc\nC7Pq\&p/xz fHtPym8aVM&DD=ځ&PJY7&3;-s /;Vj6;mvlv7Voݙ[ ݷRͲRd"SM] wD(4*3"꼐ymo[f+i{[%Vf>Ͻ?+@#r0el{`B3"dv|~jB^K(Z-Sjܫ[ת;\Xܩ:DcJrtEjꜢ' ~endstream endobj 1450 0 obj << /Filter /FlateDecode /Length 2492 >> stream xX[o1˜mQ5"M`)}σbѱv,#CQA9f\;aeaTV4-UVVnV9ZF)b#$lw:40,↼w3'ݨGwnM>?>B?Zwt[X*-nq/{Ī{gOFy]\!<7}Of5QR\NՓK,F3b҇5gv1osgO)&T&Id"vh'7ɝ ])yQi<\U:ݨ; "c{]\Ax1Nq4m Յ @r~] ~&VuwI8Pȕc^w4/S \JLvib۲FR=7/  ??s#d : ; [BaI$5<""zRw4/@MQ"䞠Q:e'gD6/^jh?k9=.@s*FΙ waҤ}YMs *kFhו14pm_dS’.\1b?ldI+ `_B+FsoeMo=(6=x_Jӛ:u?$|=_ٝs8]7<0 D\ewOK32*SF)en뭄P{T-"pI! #h(&c) j&.bB4נ#y7"*?duZn`Ec$@Mf,22 ;QA#hġ0yhob 5+%?TW= !' $(nT u1F!I7fc˃X2`MG%qaDk:=,H@sߩ cxa ^t{1%Wv D1m";k6f1Z&Fk_"(fSSqA`̙A91tɜ=q@][_Hb,{s+bG2"*d9|He͹.7$#koU>z:e|Ωn)V҈$C!]uoT X&-ddAb0rl m8[RP]v1Qp)JDN.l~ gd[>S>_m^@bBDM[Ot6|*ehP[|(?ͫ3N͍>tMWOdk0} '7\f_T ΞN5…2rߪϖr:1ҿG22I2Md!oN+H$Io)Vmd)HBe+$"&/AE ՌD.SwÚZϿx#xgg m^5;m sz ]6;z#oLHY7+`F,@~p_voyٝ}iϖ0n+Iz7endstream endobj 1451 0 obj << /Filter /FlateDecode /Length 125360 >> stream xĽ[%q&^X}^N<F8/==.ƕŠ0*V&;Ɉx<_я~>ͯZȣ}_?Opcw_?ӧ~|c{>?}?~?>/_S~]?C?B2O}w<[#p_}g?}$?}?㧟~Ï}z<?k~t?ߟ?};C>ۯϟ屇ӟ>Oo)O?i|Oo>~NR?WúH֏?~~7':V/_;2og|eO}N"O租?#_+ |q|/?3O_o׿{7~_>o5Z%|<}q\__?)O?I?<|$<_~x(C̏֙7 ї'?tMGH B_Տ.8:1CW0u)?JO=Br)C' Iȗ;Dˇ!'7%GNy)) ܿ*NT: U-eNh?O4Y+D]QuThJz87gP vͰ}=|SJ<: ?>'Q_?=r_D+GJa`]{%_SJ>j qh(KHGJW$=ɏPHy~r">d g cpML]hcs&$ܧEK8n|}E$nyBHK܀H&,t[BCo[$ Ls7/Z gO?1>x4a0`~1 #1wk"BǞHg Xh8ݶ0w$\w'#Mw@q<@0H8F ~7K`n<n*MNby={Bw?5IAڛ,H铂:+kϿ (]54nQ> ^1}y&Ty]'YTS( x}ʑd@Eܧh,4(P (k0f4xnWX%'0$6sݑ*_/}J.u /H}ϒ#ƒR߃~L7 DPS>u }@xd.id8i}YAhBS"I N#NF]!f_zx8cwځ*|Y!s5dDK-}3%>ts ?'3&WO ID |jU@"McS;%CZ;k4U[`v`(EUCYnm=<ًkW;g_ sUpa!"Ój/Dyl &F2*;xHnA!q2 D  N ۀ"Qxn9'ZnnA!<9"/( 4I|~ c5 YT@2Fm/<Q}'?4P܂gEiw s;H; nxPXOn@W#Bª+QϿJO(x8h%;B_iһ>ڹܐXu,j<<B@vkP܈"O: eN6]I=c"߹ldd \3=N" Zy(Mr <9d$>+ZPQz9%X{AY iB~s/ Cu]"Z.*(_.}Qv`8 &9OXV;=P=+e2Ekd5›1̢;eF(dtv3 akVH't2,Vx &EȹBBmϥ,UL&JaOp7*}Tǒ؎|c F1=:#4sS;Q ̾uӏMf'(O5f@称2'PP֙$4%>1d$ʼnjH`GA!&HOdH6C@O8Aн!H#cz4U4u"ġ'([WuJ#)M#`#IVƣH`>nU{F 1??%{4\dJSQrJx5i<z(=Tv[|_RW LCQz5`B,0IFNjLl$U`GEl(퐾輌 yϞu^;BXiTO,SU#7O:}V c }1Otz"y9L!w+u3in48_c˝?7TƎ q츳R4_<63 .ԱxlNHcǝ7qdr@xnǎ{Ȏ i ǎ{e Rǎ m3RgJqc w#+;q -wAs$MwAt"ul t[$;:YH`"tt=-ԑP)&_*8gYY׏+xsL5E՚gI U;zBTȹBY<P> bB5ߌ޳t'L' #zMUo,c__Oȅ4}=!oNS!rj❨9S0TS rgzBD4$ڣ>1r*lTdOI%țJTEbtn_OȅʳA|R1r | #*jNT\ yR1bTQs=lMqN U; zBT8OT(i(*f{q\gBE'i⮫-JUW UF_nF_B'*FUDӜNkn]PQ0z"TєH6UD5qMM5t\GE f\(6QM,( #o9pstW]y]Fw: #*xM ח JEU*Z7T(*e͇MUj47zj=Sg=Ss\yjhZDSmQTʋDQeM4'#6qLI[m/7oܣnMfkۂ(4Uֺ:B5ivE JvkrTY`sPy m7v*FM{-A(* r #-T(X4U>hyB'"RQ &MU'ߣ'#JlQTUinYՂ(*ͩ7Mh^:}%F^&,7GUP1\TnZʻg0qRi\y P=h=W_r *MTZJk( L4QyASi/@.TAq@U4oҼ5? Ur&UM=4Νvrg *Mn^\R\qjCGMnYYZ,j+5d*m&74e"ֺ(m o)7*m *EMw feM4\@@@UD$6A MT9k7DQUt~6QM+KueuQ@oMTzT5jyM~[ݙxM4:9+w)OiO͞<%w)9 *$MjT1h*}0+yU8yj&´XJgbT:X*Oܥ<7ypx1j"XNJ>S)=(ț􉓶Ӫj\iLy(2Q>UM (*oɏ|Aw 2QTi*ǷO|3wmSiTn.Ur*M:FBմ$Ω\*RӐiMrwɣr76ܝߵEQT*o2AQ wț&ur LһUmk,R~GTSM5Lc'țB ˁ(* om2k 78w}o:QM; DQ%M4M4@(X$# چ5M5eⴧo; JDQi\ESMfN' 8?X*L+[QTꔢ oJM7wOOgiO7Z> A:"ț_o'-o6U_*"ȅr}HEIz kiGM5똖v#MrjQL$>?Tם\J MTh*-]@UިR+]@u?g *M`yzv2E{墩Lov B_/T(*5%M4jzl ӁJKNmDu3z-_s X)J0TzGdJ4M&٥260T:"lzl BՔ<EְC6f&*%c(6=kNn(ƢɢU㫦7ٷ\s *ƫw`&n,,(WnDQ)nNZT:o.\t4E,(Lu DQi*TYe&&*77 IģGwrTo](4lz9SIm۱kfx JѣP YQ't@DtCS&I?z=DAյ@UiJi%Vo ӎ)`J); B&H7GM(*nEDQ*7+4IX?yZXިsOojFM3ͷ|'R oMSLT &8 DQYw&AEu TQϩ QTGDQ^[ ,Y ,YXsJ|!&oQT-i*ڠ:HS oj'2N,X3zU4Ք蘊QTjPy=\iQT w,;MTr }%A^)W2M35kFTS,4WmthU Wg r z􂼉J} r, \hL7+WNգQCgNQT]\@\΍&3P%M rGBU rjWgLS*P%P5u6k g:aYC8?u򂜩`:>~7 |7䣃;p>}OA;#?ͷ.v?}o>7_~a>Bo]ãJ=_]/t@[tI&(b/ׯ8"drT㇑ {bB;S1r {PXOT[{QS} K纖-X\o}_4}:k$ttZ;sSHBD|o_R{tŢ4y.it/I m=樘[$gLXCslTe0cl5pA[M_ϡÐ{ES@f.21+pdlAxO$]_qbSXknq=6<Q5Q)5m Hl3VsLP<_=)&jd=DD5Qd>ϢҁY֫;Abe|6pYkkF9ݍZR \携Lf_(7D؛<dLm!fir\'MK6SP/#&M]ls<%tlg*{ƧQLB?(<EsL>ͩLQ*hpݐu_E[,α nTq62tс D 1%r\wkA!~yNj8.֣BW_F (Jct^/ j=`h]esI]oFX.\wVKl ፩WVaWG+ Ed9ʳd6A)FbPK1xbH'(!IPf`A[H'y>Ɠ2s'$ԛpK2wi%d Yb\|ͣojd{1ģ6Wc.5<u{aqRC_=[e]xeZ$zS6g_Laz&)5nr[b\unKYL%_8/%RXp&ҙTSS\4oa @ׂ,J皓(|[B/yҠT&7h7 "*riޅx:v3QAXZ$Zp1TP-5XJ}%c.iT *hs#iIGrQz]Ôܰ~R4&. {lxÚtEEa,KyTK_,= eבVnc/Ze^;TX{'mGO.KO(f[<ҖchʥzLIp2s䟮_GMsY{3n҅*%s.:JdU_5-X7)p42D=[` oA1F)fx km.A$~]it/:pugm 2t [1 -ڙh Y]E۪&0SiOBPh5V Ov}kgi]j8bI:H9Cw=ް6a#̆gXq$"HV~4a: n,v |i2rs1[eo,9?'l8^ٴTZलa^Lŵxp͒p$AIvKjD:p\e{ kf݆Zوpoy) "gMza'%<ћ6)9G_ܒ[zO:qԼd˭'Qw5czf Y qH`IljӚr;'R g3эY(RUYT L^3'y+Ob{z"Ѩ] 1p*}/ oP͏ȯ1ag2Ն]*ո$id76t\xR0g]??N';ڙnWQo=._n'RΓbHwOȵX+nxrncH~#LiN 9ډ҆@ ;cq?pج&Y6Mqu@vl8l`5+bFp=z˥7 whKt@NDk<9j3#Vy#еFKq+v#Nঢ়-Luށbαr6.V@)WaOs~~u^+j? ŭpU!F kp,*l7;􀵼t-7;8"kvߙI.O*]p̌y`#hԛ ̄Eҵq5 m+ec~Y ߶ejÂ(/Y)jz̯.;mG |V<:/bܘI+CrŶOT/]vwKgi%PrzqNӱܲ^ˏյ\O2ǀ0{ & O~f.v|(3 Vh,k0L5+X'+ Ɠ(e$,2Эj(u DY\~\KF"NVlp 8vncֈFur/ 6b\Z>$(}=d  a:Ҝ&0km5\:*Θ)'p'r"xXj=O0nf(Nvv/*X%{U0AN&M'jp!I[jEY:e݋}g (]qDp XDYz Rtq&5d܂ej;3堇Yj/[zyvP4לnu,lՒJ[()S_k2Pd ! }W9&aFMHĻK@]ÒB&](%iآh N.h{Ej`4J)?G_cj~.*c/F@ D_;NZaB;{x@ aRWt h"1-q@ 8V )4`SGO~=%S;He/0 ZUh7Nȣ`bF HJg<5$ SZ|h*@$F*U_G;_Y$>FY\ WD[Y5]:j/j"H;ES&# fjx4g N$iX YEox|-w=O)mxHИHcGzHw47H9+=(#ճ{xy-M<|Ael͈ea&AH@KP w,,*'H#${Aix$s~idRyxȂ FFBT|9bWVق5?ѧCImiZ Ɍo<Jȫ beyWvc;R!<͠5cU&# 4-ň. oB1tKDHHa $D~5sߌ wbk8WcYrgH8()pѺX p?Ac|7KIG4OYH~,tW 1zǪI ¼٘|l.q3D02~]=@\-&;M8J`E!eBdu$Yoܠ/`H%0"Cf CLsdQ3o*ب.JE~A#$?I2l7\<Ԣژc_ΣRyHP fR(Kg#Ha> n88IAXXABm+ @Z,"M' o Z5TA;؟N:GcetPWIřK]cAӱ 7 2,Fɳ.gBȠ@ŔD[#46]X߾˹-QjGA 4f4#~v(.mkUczdnc 9膤N"#F4/u86_uVuD4peR@(Gj$ďWfI* .O6?"m}5Lx<&GBx$'  l=rXQ^ ?J,«e\qa)Gz*wh28.*>K9+GvyĤ !@.Q;ьʉ-' VHf#Ma}I^4m HHp A %TAk|Fx1 z$GHA)13B$adrEG|uDN¿*9Uy~%V JD'۲k,iU-#Mt?E4%y%<ds:6Ha EcUOb2ó+C8` R^w & idY=p< NrArE_FY4A@dP b pr|wehPnR xxJ:P;ᱻ a"wCbURyah %>[]"*9Hc& P5‚|`0Lo>Nv X/ ˍo?o|S4s y`6b*?!{`PDs>T2a ة& _"O _,p."ZrBX^^b򒹣++BC AAy)>T<\w)++ߣ][p3aw=1Y>Z t6#Lp%F^4iЄ@gƬ:bΥ緳 Y.-A(ǟQ%1SQ%g B؋52+ Nd;xr U_Mv-Wu7rÔ(1<#+U:JZD_"Xq3XHP$'> =#Y$ /]^R/pGUR/<Jp\ &ڑ+ @WH4.;6$J;wef-]0@hE?˅:7 W * 8CTBXm"ƯИ硯P f/sL)M%sJ9Fzqvi m<vW29J`[. G` $߷ʭ2TA0CUOBs)G!UȠ\AeG`sZ3V9ݖ.K+:$K!R/С>4R౎8!M! 0aѭƆ;8E|)ƴs@2A. !$DUX`%|B 3¿łT@pk >4B4w(2iaL)3V-=J "Yh"߻аD/66:򏸦XUC)TqV9rDh\Pb-ND[JLl4$7j[:\! @ON;H5 6.(2]?*Q83/x`&,e|jQ6 ItC 8ҿY.7A:0Y. If! GpgBz"[ J$2>J U.=1U|@_參* ģ*'#r.?sp{!z9 >v ''=9pδq)d'>|8>óg(>BK]CNBsPJ9#-]G16<7pl)?7$f*A# c? 6: /Xsro%594 _ظsכ6XORAVG"aܧo|tҁ[:.b_!uI0XWg_ozqG8JfRqQ53j;~9]J<&`.:9SIy.Wܶg/ɌX@G!r}jjGbvIMH+3F""}ÿ}p`"96$7P3ݙ+&! 3]Ż^Uh x BcneA= `%4!g{|RƭOd42n qw{U9&:7a= D/lv6&O:2\knE;)5ME9<# "{7m @"i6*XOd֓za k H 2 =I1&<[d1f'65f3[Fc^͵RADnEBYO pͽ-}6(@y;1Txs/]2q=!TP K^0edfkLXKGD "*ii'Ɠv3)ӦL%OgՍ<5驪9t"`e[uF@o.Co-ʆ;̉|]4M\٩*iiA&~C^t~SfAXxU԰M!ʙ*ElŽS;$>4mX8^ ܚjZOjE[= Yv$c)Is.:m1F-~R0y7Lӎrcͻ yq;7æ.Np9v;թ`no߅hnވ1p*A72\7QI:ݨ}j{ *֛e?c*ָFZ)\R5c#Wg4֊ ltǝ(>Mg> `gmT Wǽq@׍wຠy04g5&*vuK,Vّ{Oʖ[OB/?BmEq`oǮS1065&ӵᱣm? 6N팛Zm0Dꖹ pp)njofplp>C:L'!-+P,sڧ1=%#r&'6A8h8h6Σ} ٧?ޣe|my ,̣=:Iur1<6m٪8;AezCA!'w{lbxLi26n u<փv6i+p=;+M,𰯠njݍwئx'}q3!ю ϒX8Mm:Jjr1LRkHn"nJÎ 2;7:~# I!`Kg~ǓsCqj!}hGa|#&㫴!PMlE?66eI6vV =MӺcl@η9jHmiں ׃aYܝ6B\7ܡ-R9m ;.x8MuGVF z''K l~p+v#C⧝-|l\⧽+mԉ^[BQ;;m F呝#q'.,)'`Fʱʅ Fو3&;$C^zkSh.yJŽ} [wV̝$,KZ9bw\bm%o$ ])'z#6nՍT6f{K纴qcOlY5\,ұsĦ|Fl/gELS8џ`x9`̒/ٚ7 >`]8Lûc+tJXX!w[kK*8mʎ w6rM96rlK(ѶПζp#̎n}ԭӆ[]Ye|:X6&<;ڶRѾ ,&)_J*dPՋ1V,(./(8JC,o3Ǥ (,JK">euDXsht1QmI-@ӮT "fz2IDTk w[ORdIޘ59F[dXݙfN6-Vi?qWVU~[?Dܛ<׭=zu6Da K-ؘR6_fK&]5SX"]<7 vPmS*ˏC 8_nC`u-)ǎŨԁf,d|Xjץ^6EΞ'<:.1[J#jo۶q*~~et1%W{3n%Z34J-85ƴq  Ɔ {άrb)=v.op.7lOAЗ{v"#Dip]3InyZI7' [7NOvЈvl0JtR<򎱷GݰP@6^{G@3pm'KT{$fŎV8{uweǽW:-'qc&mF!jӍM|C +\1;JprǀABV^P}Z5:XeNfHB#+ o|&:O;$s%Q"('QFʘLrOW3i3qI\pdF u76]7Ea2_=ClnMjMSjOxjst"RugLfB'-F@٘-OýQ eUI6Lh"=ݘ4BCX/*&As*61q|ZlpR\?a瑶LeL9K(`k8[Vs,&{KKNɄ`A9R[:LnmvKw0s~,\}6۷Ckwv.@zmM2_l0ܙp>qBSٰ*r4tMlm/IkE!660ZzK"DpXDY5QDupf S lH&4y1}cfI 9pi;g`T!BxFB$2wNHS2a'“#,#:07hD`GaNU΁cƊ&RREءbA!<GM?98 $Cg|9 Law sSB(hancCF/ UP82F*KAaefx9T/ `c:&UdF ,*_V)ā._D`=-5sP_@g,KtʢU_//_'HΌ,0C`=]@sTDawwKH!Ae|t!U  JWJzy&OC>1TAag#8Y2;/De6*HuehNƬ׼FG6nEc^l,^"aS8LCf8G$9h- bEF k5Ib%(zA(|@>?P,\u{!2[3V+5Yq`þL_< Z ZjX? (KMmp&Bu54soܸUMgO0 S]XP]p3Hc$D R a?/|O D넥tW$Ah4R΀x)@3 @"D߽l|i!'g`jF@%3(D2_YϏ*^?TH`آ0rp( x#P 2SФm%E+"8#XP I"2UAI;PY&kX^l £HKDʜ(FnT"1,:1ɀ_Gg9Աj`Fȫ])DpK ǥH_5 Y&ºko\/Hnx (Q#kdQHliO \,Zz< U:3_"&HЀRdHvW۹>-D?IE#eH|:Ub!Eؔm"YH^I5.K bo1 e*A3.>'5c(*<#.j*vnj#1وO$_=OHOO/4L~i:َ8vAHґˍ8?tjHYu5R܄+"pHՈ;qtЄ7 FBH'sh0M#(rwd#-\QLr˴ ɞ )GE8BHw=g.)C9p 5_2/.~>8:4P2D~k:FrH)H*pEeIH&o-> 2Dd ]`p3cVE g௑-N>|$9rE7;#kHFD2#-^6 _H*I#mHD "[xȀ/nt^k))445)ҕ`#i)${"kfi\rFBN#Y=}(;$d i%~25aҏE:؜pU}l?v1NzP"@Hр57ߴE!( Q_!ã*oٕ$GWRZMn4;Ih1U!Kz7c VUH)^;i mj z'$`7{Cn܁ Zyٟ4k~BZ6g?=60d=WaNM9RWEdzZ6_uݏ:jB>ޖ@?59#o^g|Bҳjãql^c;Up0ݜݜpc^oKTm@H81"2 ώwi_h|_wCBy՜',=Op :+AI#ҼvճrDnz? U?!ÑzTʓF$G38)Eh" H)@by\!s@8sG 9PrLf V?nRN _Ҁ؉ ol7i@4PAQ Y)EQ1%[Q}ܮ~XA]y;^eO#6n)([H_SDlpQ]4DHx2$莨R˜t(k+b]A RrPvtwA;XMNol'ZLSL_y<8$yH>4!:y '"ݸIʤw5ėܭKWfzbZGI0M3G&[ ApdL"` ʐ˴;)J@'򜈚.mRDz CT'm~y G؆h$d)0U$X+QX/ήV~T"C19 ?EP3x'[LT.! ii{jML9 &ɒEiWfH}j)st˞UP3)'KqFbQ\Z)@ ko?sIazo't&PB0fhzOZA۸[o=|2[ع*Bh9Rc*k I Bb˯??K8珮??|߿_l<ᗤRRéA* }sedP1L>Jttjūփ`k7^\:H)i]#6"޻srʜR}bj zr74GȞ W4SlQ(S*1b%:(uC55ߛglԚA$CfJGt}V#U!od=JE>Y?v|w:T7$ J VpVTlX?ʪP&NfiGB%~V"RG NQa'c9҈ИՎ euU4V8=[Bf?Q ?׺d-ڶ{䅬 4+XƘa!L_iHJ* |Y-Ǟen2zHeK-Pen?Dѧ#^TiDԧO3LN>QG[Ə́~YbՓZ~-K/PƱZ1y5-HWGí8Iz-Z2-+VO[{kZn<%!3#KPt2Y#{^4y:Xϔ8.{\ԣ:LѪ[%JEz&+AAuJ b$5 iHvN#9*vfbUبҷV{N֧Ҷ[0x'vO;fCjޑq i K) *kU{p%n'=Ah-ei1\ElbV8Z(ttL$;rO"Z@\';Gr딻[%"bUV-N,rIE(aHd@ALV|G!{F2Y eVv=9i§EVR D^lU+qkeJ;~pFVRꈬX?ΊF3A n~f-HUHECҙ,N%FqZ1[|߄.CA3܉NT`@74]9/1'^$B~4UIZ׌Rva}ň:`-h݊e.T ٖ9sd^9tXǑ[bwq$q%>?]OnpT$ ת@Jܞo۸EV M`(T.;A?tzrZ~wDiC2F%VPRېLнbf&l&%%3pj!V$]xCaCm adMϔx{zD2|1sW{Qcj<6|Lac86+ Xb J<)ռɭT4=Шf0I)5pWZ G.+TNV\J;:UBFJ+Ӊ ~DV$~=e^jUz ]L4l)o|7>$+`fzБ72\@A,y(!E^ZЭkt[((i2Yn#!9SLmc8_&,Cu~oIX Py2#ʥd-wVh: '𒉬<&H;ҙ(ƳL;[U7) F8 <Ծ~αuZS\L~*4hmU?6/2)#LŽ\CSJrIkO֎fNᇖ㢞B@YF26aϛ7 /K|N3:ppxlݸE4&d'ԤsTkG+-%i h?`r8 /Dw ;Jɍ#]p!ϵyBS ak`4&f 0d)c2:6-?|햌l%cǾP7{Қօ)uz^O (hGmGt6Zk}bR|?uC|玴3YZ܏vlhB&j*JqW!Vo(iץm=OĎ*B?Cdq"mY׮ ,+ù҉]z{ɩ S&B?dȱTsjmԺgVlwu`\덩mhڅg+DEBsğ ;>6vf:2؄NLX3 kwFu M.lRܰ4!L҂ܾ*G@ʌs͖YBTpҵftO*Y.Mp<M@ANZFrѓmP=*Pw0y8[LAJ;*U3v(WPG'jnJ1w|hFiC+j:?laadK.eR;QMszqpƐJD~t7hb l2fbs챜͐5rUjnpr-,F݈Ɗj,xx^a k4t;&Ɩ!5:,Q&}IPKPKi;Jщ w.%R f2Ry a ĩqѵ>Ɔ:Ԡۈ\l .DnZEX*cB@G K*LǒOgAApg^>[ {9I e۲<I2BhG:H&_V .U#-2],l`dboҞG WYF,yy/3ؒD-UbMRj謷t5:{X yc)Wd)L=]=,2jlkw\fi׃F^JH[-Q7HK$JӦ̪βu:GE}z5\Z}m7{ >ٱNcݬُŎPV!TIHt$od]s_̮[GBN.Ә2 -+}B9BC}yZ#[f5!r9(뉴;$!|i֘BdYok8Y oBxO*0dBEN,$2l?VC)6)5_gp ja~ɺdU2KVteJ3`$xCSjj/ɼ&Wfab&WfoU",9@:UU7'(j\'Vרf׫3_Cb,פ,z,Kp>;cY22~Ӵ l ]˚U[Τ}kP7l9nM̸۶"}⁺<}z8ކj͆["ODN/堟 )QAboT7t+|^o|_XrT)2L,f})"=%q,D{t]Z.b`R2b0t}={·|1r'DdV\F Nv$Y# cҤKUX `>mԒ-=H LYgz ^u I{a=rBN$+ok\A9I3xI ~]:I_/.AtP0%}粱7(zxk4ݎJg:w*$ΙX:⪣Y5b$eIZ@#YI G6=*ڸvbz\b.% `gMF˳kغx[>tL :kea׃a9H0yO"8\ K4J'4T\e B3&z9H;˩{-|<? ڝ||Wav"Rq+P.B0TU**XzW"v9#t$rϋ ` jQB|cMKy~RvHGDkY[ JC9>Z:Iвop2k"뚣VjW93:X{PG"e0EkjAU0E|ܿVCRw="֒MZ#YO# H~XFY@,9pB> Mod<*$c*74@^w舆0oW2/>Ĺ ^UcE?=11: Vd#9=1f@55,ߩ73Nrv/ .8] 33HڧUUhK HKbO+;7 \d,&6THwDS|BtxAUSfMBt -1ᾛR.#6*r̵FA \3aǃbs?4ǷKx_"P=@,IܞybND1Wx"~=>" d1@9K 4JF<ݻHj{ !jTO)3$w_t-[JE7G85c.]C)ڽr@w4h'H$8WGyFKp ֒Rq(Q+&HfhjT00zW9uZ E} #EArl䏴_w O 2/2#YїT^^ _b@T+9݇kpZ r Gd'{#^Ln- P#H,re_%։ 䄴߂bH)h^]v:!NF ^#ܻJ -'1P$R ]GpwAG"QJUkQX@z2DG0$aL’(еirN]6G(bd"dH@~+h~?"Z %8EkDa)pZKQfVQvӜxzAfZeŶVlB)ѭiZ ǨiX р#N@?A]VX?#edqaO@W$`(rrVEG{>A(Up"SP%x08Ԙ;TGE!`bۼgD 4'%ර";Ribsƕ&TZb'BdGE&_TUsv5/ Q$E.FX9EόPr μGW j5JR9;fWBET?ѵDtRF:w3k RY.@hMl0w{DY#*XӘ$b_#T]Em#ULRd&&=IHf鑊 %14r*SSmBĽQH%@̂`PS%[URq-0s0*d,9Bg;s7XʰIp'4[D5܎HCU[D}A)=!j4vG;ÜyRTyt\+T`U$+ L+~ [%Mye's"S.{aR Ɋ(ϓPҌSpz4)OS P`ho IIj. 7uTX`VG%ݮ^jo mzF➓KEN5[ڠ 8prڀ826?poi!. a";0ڪn%]"՞U\u>!xan: -h8bC'zANCadu) oplyk)vOr-bT@cqo&< i/3AAT +܁X:<#5W(.3j?!1l ㎤vG˳<8Li7yRKֺR@02[!gd'N8o~Grz:rV犔@x'  ɜ8ÞȷH_7BaO Dy20'vE 3-22C N[vA3:#fM=]aw< %XA#jx<,;w=gLvyGq"<nqPnM O8jA!Q,-}u\aJ+JK;e r{ tGi*i= i N`"Ӕo)uD1o::/jMKω|?ko&ebi`"㎀Ǝ9O?-1*O$eG̀so-m[J$::0f9Dq2M\bApP+ӫa-DYG`<;fu 7,HcwK̿R 1Ot?W0|0LL%;1Vp\ ß1hө 'O=՜$^8:2 ?M.&-bpQOq9:*"A'2/7LW;t2o]MnGJ M/We׼X>o~:[6qp:#pH0$;1;P{SRE/ $4H~F@wHb_7iG c@_HMVN2e5O;*#Pr S4Q7[֭u[D#|E+>AHd+u?':naIn-.|ֱR9{oGhGGGTDOּ[lA@SH߹ĴET?e BuE@M T5".H$=kPC?"PG8%%/߳y|< s q5CƷJ[K|VY~yӤG ZzC!D[!ڦBy A+ }B:&D@Т 3:NxqThU~ "DԣPd8a}QfgHqn \PH pj/X:ԨyF2hzȼw4 Ƕ{-@j pI:ҁ3g#GK<,[!6͉-tFY9p$֜Hsx@@Hoh,P,HDXrHy f~ Um+Tyٰ3Qޞ!:<17"A4 >}Aq`*%iiWQRCk Y 9Z ]X'Y3dU#0a fz8fI+D !kQ.FL b iwx"o$G>7qض85JYTq*f.,psҼgH=E+4֐PfoAQ>uUլG$k֎ׯD8̀?hV VYO玠p+e'GTQq,#O@A4jHvs2J!] gu`V@ `ehU! v"B0k O3 R{MůW V @`b;fIw4hU',/<)8@9)UJzIWb3*wTU߿=£^zAN}8T/ֈ _=|DO2Kyy >gx~ӷo?sW)ct/ZH&'^)B/݂-4.~jÛqPqP!2Q#<~[Sqj3b,Z;ZHKAL@ZF3Y(/Nz΍9ۏ3Z9zY=cD9qd j9f8Q N$Y[ݓ`Br.Z`lɣ\:N;8>5/EĚ<>UGGQ -xnGbkǺ>  %s݀n )V(y_NGڀCp& wHlm(W9X"6K֭{/q ލe:OPϿ~oA:4!|7d׬'I~]O?ԧOF(ExKM>lH:5h d6&:Oyɠ}ޑT$"2ӵ/~@INF:SFuey2$f/[ o=/qdًç"\jX9E9lAMca{wi<*)km92k^f$2hDDΐA' #N2l;uS$˲טU2m=-`gZlFVcXh)h@b6ӱqV\D7^hONrS0QKMn8ͅot]Ѻ+4go?r Qm:9%dYӜw[)x)@/+,uXާ8b2#aYYzbILo\l&,yVȳZ\? IɅEN(M$"mxn8$}g5-6qIo8l\[fz ?q%)L%u3V>Ȑԅʞ&L.h֜{5ܫPBZmrep5QvY$'s´#v%{-xg\_4Ɔ:,Z.6 f4 7 af;㔸^18s>6# OPgf-Ŵ}w\iڐ b e9W8 7cٟì$QE(aށN 뙴*fndU"%o7A"t%[I/6A &y3%8^jA$xژ /^Ul`v%]gAV Ѐdrv%2B]o/JO6eC8̋;<2qJ=нT$q=^|l| U{g~3HP[B<*P^-uDdP!dۆSSb-bG9V(Z^93[BSkq{gPnqX +c)P QR;‟\͒zDSPRDXxt*(Dcʜ]^NѥZ\PuG\:4 SsrWZn*Y}Y Zm?sWُdpjXCJc$-jCJP񴬡TnrgzV+x>1m=H_)%nzտ'j fi%cZF;]v̾@Lw"h;?N6/)eI6&M; 8SQb)Ij :}'Ixx@bVba"OO/ HF`}m W&fՀCҊ4z[ 3yo- -zP}*)tX;%#wL}Cf-vNaK˄Zv%akLiX;On3L} zR0z"]B t+됉,⬭Y+t䍵L;;WzP'Aި"/n/5-Yzv-a.5Ak\6Wz{e?a-kE-I(wŬ 5#d-wVYMNz4jbS`=fDV]P LP0Oc}Y]$j]wi&ː$3ͯs,sਇǡ9hXqxLavjt19X*(!(o~TbB+Ih\=oʫ޸#.)!:j0uJ`q7ji; NIDD\W[9rI KWx$r[7NQܻu)MˈKG&|yB akօ"uf_)88sИR FN`\#^†ſ~/8nkeaر/6Ti{tsu!r^4WeD;J#Qcnp/Kꃈ{ZeFsGљq8+,|L,vmr&eguy`˙v]&Dj~.7^Zk'͹T͖±)ΖN<qNN=ojp7 ~Ơbcg? ˆXLmhúag2DEB ;>6vf:rτNT`d.ɅWvIܤOa9WeH9m2:NVȏI%7R֥iN >([KHY. :a.&obl *}ǯvTl [ A ;O(=m;"s_-`'ӞU6tb™e0R6.jݹ9;Tӈ>ft;V}t;agǭX YKv.mߚ`MzSvLKa4Ԧ*`qTfƆ-2g KD5Ε6#n8 ^=,Ćݍ7FBjoP69XfpY*3C7Blm|VֲyFA薒~l!AҞ6+XQ1^fAUYhkyOf ÿ?-$( {$[TV,ˉRܠIӇ Uݝq~ue0jBVF(?)ŝ/xB5P=zPk![o \nVrs~ة ~,5k-uod q\a[8Ʈ>M[au`]aA%GcGVtEC6X/]icV1=//ㄿe*uEEsVzF s*/c9/@"Էީw*qE?ɸKY{XYJWUf vK{Z,߸֬385n ޜ/`{GeD_dE,$nA7!wXc7sq ]w/`a\SfϐV́KA'5ZL*;T#H$4߹zH; Cm7ԵSE:ʎ.?gqTnQKv7s_hKu.xYrhon֋)wė88"\[5bdb:'W\lb숽+1gE Y3 ݯtT@Yt~QOGgD\)wR'  "n0)NqRr绉0*a()%36_v7'RlM0R~C܀s]716.$W[QDbC2-6tS>\$#1 lz"Gk+ǝL_3Dhy}0MEb|䫪,5,I\2#B?H1APR,hq)܋FhEsJOXObkYRM#ahj\s{*λ\$ -iʃ+vLԧԥ?(Xg*rcHާqQ!1:L1kzF߅@8]-AԢr MmlPl*WփZrh$(p( ) fr%ˠWBbrX%2F4DyEwjLryHl|'gErbJk +rEOfSPL N/A8GinX4!Y̦ٺn rFI%[PՎxz}wAU3)HlZX̠;o/_xidD{]JŨw=(kKN&JhƮ"6i@19XP7D4Hq"$bҚ<%`2(ҐwK֔ SoX"B".E~O%EG4(T_oN[S*Dla Q[)bRHOn6kNl& w'anQd >16'IQd8I7H@ G4#eHZA@SK1[)TjNeNIT f9h(% Qi}={ 2O>t X*iE@dM"GtA#<9FBnE4LbÒ5%K&뿤ל@-h`N Cp.ODs@@>( $V"]3!`lp2%|+\ݓ8Ѐz5C3nZ EM. XE/j~XO7Xai%:ײIn%XWqTNDL < ;ƴh:1@_jpuJ (m{p7ZM{awĒ G@19`!D>&T YRl$i+ ٛqb {ۑ1ˤUuǾ f YR#H~~0m8,β0 '6@}'3W7@-}lHwZ'+49PcKNo iHwg_SHP"8 ?֜䥵_U,Ւ$a& d<@mI3E2WtD|ZO1PF%]QЃK !գ)Q $) |'(A hWd '@(+jjFݔTEjpDӖ" K@lqőKPd[-uP6`QDZqDaBH,GnG5I 86T˲H/*ntGzGpݶ͐Q48G*̿R NNw(@>nHÅHy!|F$>!*[(SCF2Hm/bQRF4{kd'p"O , DU@4~@Ĉt`dLvNF$Qy 5TQ>u"ѐ@Y!Ej%R:)Z:ecTc2AD #F^o'u Ŭ5keSv ^F"=90ftG3c4Q$b)D $t3b\h|ɘT)^A1ɶ f4WĊtL:FLdȚϭhX ɐ1mPHcճ|}@V)q8 Gf^'Dz?Qp̀(ِ}XC'4zE#Nm{+2SĄڱWs sj%_ hQԱ}YR̠)~i-bEv  iwg@?'8: 59A(ٔћ]kFD~c}6[B:*bWJ5E$z3EI_=y4A"V-b :{ 5VVn"{UWs+@w$cg);00v q6V~gI{$/|EJ!OfK5 2H1|=ye+RA?ӵ5t.U>"^eEz4W j6"Cg@ɲw #^3R?gUmB׎3(h7AH!^^3g5H˼@H%+=/n@#c6]z ^.WV| NcZ$+@ b@:j\jgoF `"qܑWܑH}5_q{3+bԴUg+R*C xG~^TLo'eGWV$;^f~߃pːH bW$;2Hjw$<<^Amfo|EJ#/C 2N tGN:W$;R GH/`ȃ?6yZ#=3ۯ^RV\j 'TېHmH cˎxGpR\!!ȸ̓ÿq־BH-wd`<J@ OW%5k}EV/} {t a8jkh {bwEO7[HJT̃+g^YU-kČ?iX& 28RҼpvstEtHpDu'd0nvOA["H<~7c=O@8=Y-~0 a^54Kw:x숞0- D2Z#~k !]~vD a^ z'DOR1+4a r<'qeCn)j)鋇W;n 0U6WM0(`#B|x`dݽ89[Dw/#g<@ R/%O ;'-SDG FԷ'ha'hO{"|Fs/e=\'gX7&q/hyfJ8DrDotNd1DԀήV0nNEaH /@H1'b{~E dLf~b"\]ALW|( āRq`/CD Ýp1H`CuDͼٞ?ݑ+]h5.\%?V\>!J~:䐲澼Ct$ :*w8U)ͽK~:c)@TO~!v$V MR 2QAYFtc27f+MTS6̆: i/@w6OPxG!SG03Bo@ ;`Ini g'$p87[+XSU Pڪri!>,I9`ŻX9a pd(Y^w@է6PEk[D/-P_XRa&jF]FGT̓"(O.W[ 1[V&!E/6ƴ EL\cYrOU'ʤhdÊ1CғՆ*%mE}aOH2:bܹriO(sroQNSf*4̌ .Z013*KƧ_&c 8Lq)jD,S3dvDm2xzF%nx?ެ&rLDDj[E5q1W&Hn RjhNFlx!f4q}1\+&ՐP&~N{RQ`bEy+l_ڍMD׸4~y$k[VDjj~ N]Сjv5j\/I2S~s%fXPI6dψ>Rv)#JC7mQfM\tNnrC|mA /U4@u## tuxPK3JacJ3da#m$T㦱`N8//$taOZL\viw$0m9x-ymG'ο̥ןnM=o-]ZU.f8f/^"+nHΜrxm!m_apRe5@Pmjees(QW8")T?*h`#ϣ\G4TQ@FU1puQMn8<ʾ:r*__K's9w EEY%_~$qGʨЍ_n8‘;ϖ_''3AP:(YV+IS@WY7guփ$zС<L'29#3As*س[IC~n31l%50 kEVj=(h=JlS$#6ʔDj-խWs!;mh)oKXz.0q؜sm)˙$S⃤x eJ-Z]l2SdLZcIZi;" @d)5^-ϸWң0M*nTxqMḯAIN8 iG/J#3.y~PeR:~#4 u`;S"LxPڎ,@?yDqNs0} m+ TMl!,ʽ'fL0+^֯Hd0@ALVQ|G":d#yqQv=EWrDVs=O;h?)iL.(1 /6fBˠWU7+ڕhV~ 2;߀7 ĺ8a̋;<2qYk0ʎaz֍.ޙߨM&ҒId"fŽE!<( f_ccX5WN֋rm85{*GαB֊Kz Śkn:bRUwr4dO󛙫TR7^ J'An2#nhWӆK@Ҭ~*V#.B4ԩAkQ޼,A{m\3wE~\N X;$ i3ĈWq񴬮 *3npT3ӆ#d+č/ZPS[4ڡcb1mwu}IQz 7AhQ<*YsH\ZCj NZ?mo lhɦlS٠H;LpşB۴s'hfY^6S`K!s7GdhP5}*tX;%x'wL}CږSpX2YCN4"g"q,ܸL]E2>J'AV0 B] C&{йh+~M7 F$7< 5O{—'GCӭ):MsG]F3gƐ<6;؈(a_ҍv2Mݱ/6Til6[R(EC{UihGisl[sЩOAw3zǼ:F(q+$2nDSy.1 WjmU+D] <;j2vvtM'҆nxZpe- rgK'w8'7LZu>?eP<^4-.eÿ[Yǵ16;Qbg"vwJ;3m}6k <ƺ3 7~)ÙxHܜoܾ*G@s͖Yd (फ Tr:[KӾ#8>tH6ANZjӐ64}f{6TPƨloC[Gw Բ1T6ZiG[֮ ڱzc@dQqӆZ^v뱑EO{6V0/Tw2pbKPwn#;!yǪ4ָngǭXwΥ+71&;yhM1.9xi%iG>ʃ\ٰNTS5U† ձ+CClx7.:['p=9\nʱbwnE糲T79-Wc-K+^#.wd{+,PTc2D1P3 wPKi;Jщ w.%2a96|mKhy)t.~;6tԭhíWV(~3Ŷ)ֶ< }uwZ6A/R,l=S -,ؗ3<`A[ɫ ZzדO/>0{'VQLYD _/qC2h+Y,"%3tO '^d덓bFe3A!kN֜/栏sF*2R_iHinO&\)i %q M&zkv8gE,V _oeX ;h;w :qX᜵LV8gq0M[R:_aA('i;/i-Z]bl`XA~zqz=R{/x'<.SɣA%˸N ÷ >;՝%gk)tJkq>)n6(-70&L.)|H7Yx,/ЙZ ~wVƎed) Ovug=t&:iFc71q wCqbLSn!͊M.W*8A/{8f2܎wQ%%uƭ I;vo;|w)]?+y9 w34U35ޭ}*Ow"׫[Yg^RyFLVmYЉ)C{Rw۱G*o~ ;h/A2yȊW{ǝQOYlʱK *UGCF](.qSwZDJ6魶5,qESP$]s,;_u2Vw)rlVemcŷ(؝SlfP1v.0ΕYRxc2wE F|շI_B#+I,FK¿%8@7-!!}͉$ӈz횏2D|@7.%gKꪏu`/f\H9-&Ѫ:` ;#׈3܆+**W9Y9nma`Y zpv!RdžK5e; چTA(87UƩDuEq1NYK7Iz66(6?A-?}=4D:Y -+`=H ֳ\U'd2U<6V@l#6F84hEFw~LrIIl|WgErb N%}ѵecB'FU)ttN/A8IHin$Y̦:ٺ^r^eI\PxvKIwAUM(Hl".',f !z7ȗ/f<6]^Vd)zP*FAIqWˇ iòyQA }XtN3jEg*AqhIqQSϷ/q-jWYn_JP'[C$QJi(2wxHL-HԠ,W6e桡^`WrEEe)o5g3 !eT@wCa)@8if_T$cHݍlAY}*bS _ M)w6GDAk(-N6S*lwlR ۾!H6GpD@n29Oذ8UWRTԖT4c4)oqJ)_4|Z4KcWd Hڀ ^sM 4̬f *v*28 YkD|jc<hZ^Xэߘ].G!~GgŲɆ9.jWR&=)bi O$;(wXPӉ̓!܁q@CZS+,쁤'^8[gں^[$߃O@Q/E$E^~GIVg #<7H]T3IIrE#gSH"^rj}R]6Ȁ5)9"!ߑ 5- G\} uܑZ)=g)ٹ`O$;uP?gT%#s(:|r {v^Fڳ]]{ 5;b:q3%|fՔxpzD3ɘXjHw5'HOs p3({F f(񚝯^O+9# G`'y47PH0#xZ 3Ҿ(t8J[ӟHS^ ㎸rGJ#t6d`@fp+-HwCX.+2RN[wUN "|BvxXu2AJq$܁X9ɘ^Hi $Pen"1ܑ\_ AYڇ-,ܸV\wc}.{HOO^ (:|Eb 듛x?g[ddppQQvZ=܁PqEQ[AiܮC c^<Y!o6ׯ8Ki[Y`F2^<:TV7au$IF#dDۋ4nw rC~DBGb#b#՛. l<#a GV>7m9" C qx{ )>{8~=\&1<Ja[G6#ڹҫ9Blh!p2=2W`$JQ*H٣nJ"6ݭD1#rƫRG SG$?-}A-3]Uld, 7گp#?"b1V7PC &%z?ın7q,iv'Vu2TKpL#|)&O[4~0C&8'$dFcd\&9mþELru7$uW,y%/XQ׸4 |/qN$GM'FΪI 8V!ggK4 xB$+'Q\c+sQ+'s;SEN 1y=fEmapIRE2nY1 I^;1_f,ۑq9g LkpllX/8 ·CnAֿ N!m A<vLc Iu՛ί3{hw`NAӄJc)tՒ|h]5^(@`kAGtr=\u$&Ӝ`9BH@A-MHi" Mq MU(P"g։gbg<I PМd%A38CHp kĞ,X~KbAr^ (SF:NS#FH3&}:),QIa#UF'Ai1bxHM.@|CH5eq|9) @%8I_'% N6G͍&BԀE\=œo*kf~XmI b's `B@`2" C, qf>2#@AJM6+R|U xNylxm53A˚:>8e_Zd]H?Y%p~ @GP GRze[)RX$A´Uf;xDBB) A2hY(=jB')^qsJ4ar C݋Γ¿ plf"uv;>Ugt;'γ" ɂ9ϮTV$[AИ]e.a', h޺g }6y=E0,-EK//|[ {I\,BE;7l7қ[zcW#X0ޱ *E_BXX,_'d 4!t uF߰;#w'¯JH|b\i}nzb4<%YpOFT,b5Y)@8e5!̥pf"Y(\ ;D|d  HD%S{\D-Lhd=`D(k؅Ŗ7/"gا UYș8o5Wuڍ59T|Unp (#m\lV??y1QYԹbs(cH6s\!I חh +ńNuK/| eb~ .Uo`(v)|Ո \2k-D eco!W a}KF WϽ+p=?~\x*5x(v c_~_~2,Nߙ^28i)>a#X25)IYbc2ITl701('W˦NdU4㭍!t>kNҜtvpW&aģ>Bc!CP9dZ\C}wZqDةk\iB(b(bfZ%G2fn Ym05^KleJ'R"Di' 3$ڍ.YcVt`'MY cISL9/ߖ1h3 dao"4E%6w35@7_(%icR(!x&hj ^,G #SGT,NI|IWSڶp p F(}M(%Hh irkdU@2MsȔ!Ox":Αh !zT {GT۽B c""~'fNk #ht)Eϊ,EMs@7o]S9Cު)' qFc:0a.a"8 tϔ P޺ >nrwYB/-;=ʍ': j0/0j0:"閞V6СQ?'v8=p+5kNPh|\N < 1JZ -,pqT}\^-s>7mR'_7d;/H \)LbDxcݥD =IyaN۫8ސ[6$Jt5usvsO5|Okgܲ Q9FqPC7i. n#tMv\v6m+Bf)pMԣ+~OL[{&:yl8drn=߶ĸ,eh4c4r3۾#xi`=ڃob7i]ߣPM{hL|W+q4aYriFC|6z}>L-4>A_$g TUl-o:Dꈳ$kl/d%o;]6q~)W-vT2=м\9qU[kPmZ]]gFO]OF;LH[*Q;4V q'$Eka=1{ZRCl7MCeAҚ|%;d:”mҩf@mWC y;bqѢRf]ܜYumũ\'hڃ`kHn*K87Vw\ݾ .%|Q1:ZM?mpZ {螘,vkSY] ~ق|`c+`5TαVF!.uf*/+[=^X芳֎&g1sC~k1]$!9kS7M"ԅG}ʪEads}{oYw4wxjT1o#h:tiinGrT9Qi>yb\dW-/MY_Ȋ+e9tm+FQC:M˶\vR۬s ~kCs:ЌW`@:_d$twzCRm "d8B:BK h%$o/FuXPG7MԮÆ]ہlW#`t\1늀:ulX`&JesL$'-^'"l}8$5/D؍«= R)c"> 5֩g:\ vobA%EePkhf _FYqfmɷTQ=hjќ)KG-g/;8(\ᨴifڶf<'NwH\2|58VLgHOA5 7? Q62ftqrD!6Wk%8tC. 75n~>Vo4đcnz F%g}k^R:~HvRBۼoc[W#iѭh,oٰX8Ք1P/6J qnc]y4eSٛqΞw4Q:Rub>VLݒlIY9+RɩT:r~ڦIQ簾ЊEUͦBQfjlO W˚WY[ kv9%E[a槉9y 8GsP+p> g_m=j)by{ u$f9RP\ Atǒ%ŤlLU2>YԨ%{VƧj̙FKY2n=r+W$,Qt7+&xږ;,Sw(f(/Ko (-Q%w<-Kِ!;ə>.{8m(:v<"bxo.+',$ KSQD~ ;c9LTWq39 a㩣"MUzdrgo\CND[6^G(5S{9ԡ!E٭vx0noVmϊߚ4Ԥq:R9@;4ssJ,B 1RpPu"Yn)]0Z"Kx}tpv*#UP1טM[vM-(cݕfñPՖU}cЎ`-Ќe72>=C~*+IwXĊg69c#;>9Qx1_jmo5!J"h8Tc)s I͑%oڜBkXCaf:UpVtN--򕃡l^hjD19tD :-raVo:klHQrԴKrRqD(ΆEc DOˑMrw%zmV|6Hm͆@ַo9(CL6w|\mv¨)+p9>f;1];\M 7 4[Rl۲jZ;kAqk6ߡ-;H;X6S[Eש6Q%-}a[y`1ӢTP }h\_Cf&nAxMd <%=$C";^GRxi=$9NōzDxVْ5{]&.:TcA.ëE_~*~E{т h2~]ciDު!!$!6Xz="PLbS`+4L4S;FZƢ؈xx mƐqM0$.5wo\,P iiDo`QFL9Hb5v5P$BD~~pUP1tҠuYb{uEDkAGpd AJ0c i$ؿwUT:qx BC g{F>H-ka%k!%)#@~@EPpx(.'B{ЧIx(Hd3pmbw$3i"vR.#s$<1fZ 2 (2یDq!hr9:p0 ~ $R-B@,}{љx6J3 %Bs8j9keM*2 Y~>"lOca\ ] |h"J ۳ 3 :!4 J% tgfpC8- @@%oR#|ETG<(HaFt+j9Wo *] BB'KT$o%Մ$\+.tڙRPGS.Q[/'܊FHYHM+bؐEjBm%/QՂXA7I֣*I5j ZOmEX| + !SyPb̕-"El I%[87}ꜳ!+X"bbĿ"!+SPf@\c*\-F6#e]XWs p$Bs#w1rj#ܝD^PsX5tHa^ҬOg,6 TI#''Cϩ"3Gm on%~uѲQŪc"h]E Xb+YbU(JLb+ و]D~sU!v)_yuTl,&O4z} fF'A2;\2T5  2STBAVIu~!Y }p +2 ) \qP ; r&Sd (k Q~R5pL yaD )a#?"ތ(*H YI!i6M}w*;Z}D;k+jߐkܲۃ5#ZHyU,PnD0A0Š))^!~ $~aja nrPUS @@&T ))0ddBsGZɄ0Z>\9˸!k*0[XH&M$8a AO8bvjր<z;}8- E)Z SSV&&bDRj2'p\;AsWfY,eU(Gg PHO~2Џ$Ywb[XN }T "SDsH5_5IUY>嫪+[$c0c*ȂXi-k3u@˖CuP5Gb't'az yk j3v-~S4mC^} ?|I-Ҙ3N/*цJ&^˪$+15nL'#6TbH*%g]]iar#ΡUqp$SeʲE(ZE P l2sur]%qh"|.C! `;52"LqDnFՆnևHf-wp@6>ZwZQlC0nxnvǩ])|ah6h6 'g Ղx+`#Vvryd}tAN5&Bt]d@ č[e+y3z!5x3j]q{ټzGc!wwyB~b@Fyёj92hFxql^OkHqC_OKcd$z0  f$dTk#l{k$H; >"ɼBxxx-}p?8fM{ѵG'sh  x@D#f`##sIzdBDa"ƶW wcH~#7{jxwȣEe#* "ԩ !5S"o<&7. jӪYr>,)#u5 \bq;Up]H}S͈wHLըZ|W " \l']։}ʆdpԾC4{ 8nu>f,ÁwXRaFO.Cf_Qydn=^C,{%}|8n?AP}T= XqwAOͬF ;-nu5Wg<.|svCmđ)w'qTQJ5(H|Hd>D K֮Fݟ"4o@',kWtנLA2{n4Ek4J7!cc5C(,Hv5ŪW4!t{ (2j ҫ'Fɘ$6z6)v1'GVZ~$G%8-vYu'mDiC k̤+nФ <'˺P \=Ho`MLwyKT.x+aE.rؽn&H<wckY,WKV*̔ ֖+ {O*՜?(8 B:wH\;؋X>!)LTnf\! 8'bCmY,|pzw1fqߩżN?)|V @bGA}w5\(\setutQuZUJ&B oW1G>A+J^'bZDk@E_ ɇ+ 3-QH)upZ&߀L<ŗ&NE{X9E)veZP"[N`ph,};Ȇ=lA\p" 5m5'i S$^X&C9  "ާQ`CIM)$J-a`μ&ij@!a\OZ q;mNZ1`xN&q4"!ߌY~_`(HqAIa˲nwBM%߆`'$YMmȦ\( XS Hg ٛT 5B/ g2l@ja~*ӗGDэdx I6'.!0"x$&т:.sR'0LP16 XB,O@Vd"o0S!TNRH@wyOby nbBi,$ 6V2-gr_ •&j9([Iod`YX*`IH#fqf0.EpDDA6`=.W"Qx-~k4,Fqq,S<@?@R#Ic#}Op:W`HL XE%G|Շ0l$E&aXR")Ff&eh )t0:*Y  IIt@,GgeG_Gh$$.t*giz- P›d008crh:s]5<#brG@DC)-b;Achy'/8yUe7 -. ! 8Tn (^!'gFOV9/pR3e$y#A%.xjن1FD-"IX9AZ> p2£ ; % K$Oq`V;$x $=9LA ɇ$*v2ٓ|GAq ot xD/:(e[ #֯)3 oYD|j=>Uα̂8x Bl§o H<$K]A"I]$ O:5}td1$Ģk%cAGV@;s(9rA" 4H<$jA0)77 :bPLiH>&gL졣<39{ɱ dc 'dA h,&F j+7Ȃ$6@<XPq3 Ra,fXq{P:2161=$7Afb[ib/8iA8^A4T)aa=:H>$kA:/H>[da|)B,Eq3$,hPٍɓNnLK$}bA)^ML]2$6Yو.:٥+؀e6xO?eUy &0 x^m$FA6}%1 ~ʓt@¡oI8ᰃ͉C_e]I)E¡6E(̆%P)vؔXZ^@bfT݀4qc$lfG%ٟN+Y"z*\ÈNF Æ4n0g26sUPt J%ȢT P1Ũ-iB!bdQ}TN@P 򥨲:W*AբZTjQ-EWAI|sTnSQ1բZTꫢ+|7DY4H[*ǷT|kToHR բZTjQ-EբZTjQ-EբZTjQ-EբZTjQ-EբZTjQ-Eբz7T!=RdzߑP ǩD- T^@eL- E^QESeH͗r$n?[zҢY4f,Eh͢vihB2,z3=#MT[T|T>u+U*6YOT*E7V*g#.h⫱~bdQ-QWT~Q-EբZTjQqh6S崥{D/FQo*zٷ<**rGYTjQ-ʩ;}{߿_/Fyzݜu.E]~/Z]׏~yXi.ϋ&Ѻ`my _>wqjSO/K tF[6w1!-u&{7TGۏ3\(bb͓x}FSBf}K"B"pcEw-QXѧ!D?&Fh}X}z=JCӾl4nfL]FKm)"?O8N͆]gڬ7=n}]7l(fK]”nwih 㷮9GgޏӰZw.[SDn+ǭ_|XvgqqYlSk1rܜ> Q@M8 %*ld!qCٴ!8-s:>Ya٧j.2ƩP8Jp^ ]:hLf3Zg @{en~OG77u<Ls˙6h)岶d65y8%-}Ʊo¾wuNa<-GtDeMCٖ9s*uFiPKSONĦZ=qLRϾF qDdےqi0'ݸ!̙n8sw*-4t P紏/E4W_/?QS?]Qz3a!gBl$lM,D(ɹDnB>1jpk Ǥm?#µ|cp\ }S?t [*@%hcj1Fw#S]b{,d!gGnm?[*sl! yψഉI XNg ܩi*vl5(bxB,d! YB,d! YB7$$B-01o/氥9\VA PXD;&{F(m!B:AnOO%^w Pd̦M7bf=!9!zS[VXpF1B> qIk7>+6y R$B67Wc/% Ig1HpV5yGbf! YB9,viKْG2+Y %MF2#ɽW)%pCRЈY۱ Yț..G)~1ku.ES*bDҍq%\1>`&!ky $?!1I/ ozJFKq 4ː`G.nJ//|S0ѭ 4e8Fc40!c*XDeIX"#҂}DNY4 <~h  F2$C0; &\b),᥇0U<>b88; ˠL w8`f$)䷄SuSGQDw`<#A<M$&-,)ԉҝ7q0(pe o ֧Y$ ,|a RF }x% *\JK'o_$ʷ*^e Y ^HEo8u2R.E VsE}"N//7p7iM1;YlLjx WǧML> ygӹt ͉3SxJrگ}gAkx!T9["yS$g/?6c&ٰa욵.uQc*>Et=Æ?׺c:Q>OÖj۹l9NM{n q5Oچ d 4NzM&ꑥ]-DmlUUB!qCp{ۗo͞8-s:>Ya٧j$2ƩHm . MvNE-Zh˟r'ӎ8A/K39*եAQ20lG*L. \1Bl11n Pd4\y9-E4ǗVYDkZDh"ZDh-).EC$Ii>E)}mhI)&K 䡂TP>74̄\)XDw-Ej.Dg>5Dԧ7N4;13y1Uéwk{CU0\ (,h VC!/Md5VYp.-!7c@옞XE5[vr_ +]~^o_VKRQ"p&;/ڙ9h C˛X{$vɩ5È:7cfp-TqPf=?Ph;qЧ2j&fڸ5mTOסɒeY05¦2 I>Np6>*r. ~Wfcdp:젏tټMG-C=ʣ1ͧ@rx--!#I;o0Cz=tJ?&Z/KZ˿1`J}q:Ptk>ǴP kA?W- E~|I[ <<]`3dm@%đ\| HYg"o,!3bK 9m 4fB2+᭗?Ɍ8Ia [)8p Yț ٮLZ?ƉU>b!EC Rc;p 1>`!knOƁ\!qN/?ˏECZ>jǷ~#(K!eAL x(zKI&:1 OF-\H:q^XkhbE$>ft5(܌Q`){]b77ntQWi;u驅ffD"997n|ݔYAN$d8 Ya0KsK"N[<_E<+m񶩉bx xz"'D*%bC3u2cy10"u 4u9uNXѻ~MjLg4İ`-Dph -%;q0e)8gA8[4^K@tǖol|E/4Uz\ &ZylBb# "ECń."N|?dBV6]l,dW 1MoQ!F(jKl5zF'Mob.6]3ӥ.ap~eDfwH44P[לL]#3iuB;-ǩa"7W{ӕ֯q>n,ݳ88aL6ƩaXK5Y*$D=5Kx 'L}5Zy8kf׍`%d Æ1f+v.hCe8ǭ];LsZg/dÈz;l 3gT~Xz#]1٢E4Lя3,MfD'6٫;a(akiA LN;nj8 '(97#5dn."\S0pf7%һ%7p_Sp[u^?,E4ǗVYDkZDh"ZDh-).EC$\&J4GX)hX1 q&2FOI"ZD'վh-EtVut$:t_DH}qZD8c53Oh^{niܿHҦFAI C^;]]ȦdMFC]#I7[Dw)ENߦZ~{/4m@y-eaDErLNtpn'Q 55EHfF;Nf̴."*u̽]#0Tz;rzѧs2nz&en\اj jKlMV%uP/O3SO9LsW]NϨ-ܧJ58N7-Y\4?*={ t1whbOC~7ENw {"fW'b 7޲8]֭5s6#]F1kM7gyJj:p\SьaYMORgq䢭kSN3.3QLNdžCIqDdے5nLs7rFع;[KgQn:~olؔ-Dpnx/l»^YTGO#ԤxA%x9'd4PhoL~8-ᖂ=YQmzQ#nƔ.!86,d!D NH\ b9-~m|-5$:gs,y|YFSA2mTBΑb6ـ|SH6׏8 ?7{^ɿ1ylUZ]Do*YkQYa~cO9HHȗ%$o Kęs! BB>xG, MA/%m!#=l"enJRw߂M,͈SwFs07\SlrB #\>04q_!+ELdK^ORTSZ(APy'W㵁凗uh, [,xtNF̂e85x'hi`()\ L8N]śNAbn@ʪ%+@oXQjZxEzͱDKUi:6UMfVqèijdD*Ellt?NNgJYo4Շw&'uȶES!ijC7M2!o]-Vp;DZe:Ѽ<gA<B\N˦T䎿1[h/[(C13Iq5|yK/L*ᘫ`G,m)dE #M@R:2e29j2oZ|edy#[A:,"D!;z4`ZQ Ez 寳 {,HF .L^IwB /zVPF!/tPH|?$]BV^[(aҽO+ڄuR F G;"ZDH+ Y0;(EO3jbdq+e}_>}v^2v"Ffv.5gaH :Ol7dZD= f @Ϸu[_zFi ʮR0eGtkvdOCE`udu>>~\_'Ժsr&rs8]9n7Ʋ=Sȍ3&dshJ]5ؐ"l;G&wit|TK i{ݸ!pi D},t0Ssnue T]cLq{qNlQ:yz}malj[`rļ+7[4)q8wEqW]l&{u' %̖a- 4O9iǍX'&ǻ4\_&G_Gy&usY)m8|hbvn X1'EF*h-@h-_Dh-EtC6NI$DrWAJ~Leh)EN}"ZDNIti;N;-cL㴈:q#47j^޽!P a]ϥ! ҥfrw #:C=}Z)PtaъQR^6@ףYQ{]W}Y2}:mj弖20"PVh;u@oC] WeG}Dzs3_7 ii䯛Mn${^ԦBHtDo2(Vw Nm)_0NJA4['Sbí,d! YB,d! YB,!!(Tc ;Hi+Lj:Cٴ"{ϑE-$BBGqMڬYw Pfm7bf!6 zS-8)qi!8K1`/|[Oz8EJ.Hx&8% 9-'A"t!p+ l3B|1$r, $'nC҇dzWdFE$oNt]Z.6jڿ*~1"o.8ႉ&߿ PD<>-?q gg q;ǎ.0PŨ79 _Ƃs24\/' i x h8鞡.A3hNF.2}74IzFe)ɌDE̖|zGA))D0/Pj^H$J*cdIٍ.h5 .͓-73ac32\V/bi ^}eJ4s̓$˿^44.&@ҠbOo_$%ʶ1.Ÿ _+Jw M:|PX~Vf|k4ZQ<7%w *bQ1 bQem.FJ-D?&Nh}8}z=˨ش";\>k&-)5ݏػpƱf9147j2d=D]k{C2mIuC A4]!JjP|i"[t[ppEKU%70doN04~ TK%_1tok߾D%_ ֝,hƵ4 5zQ'7u@oC]<>Aj]C9wo1ETx@z*c9nSrI7J]mgnB7glEc`Hεj6 e *cxo~]8Q3ZyN^+փq2lV86T^=(u o^] ]Le'PxExrxG!Zou 6Gn_7yz9FG9T֍\R4tDøّ$k$HN[9͉[ "ww L;_"Pu $ N⍓~m  )=uLr|2Haɓ#*;w2)& kũ[ݢE}|:̻4A*"-z#5 #z[xp 5@zp9jJ}W'ꇭ8%xp| Z̧RF \''x5r$FɀhFNW W/=rwÇIAiMPޓq^сx5d!<4*]BA聄ۏƟO\yWJ𡳿D3fO}̴Z?UO{}dXI#9BZT~{} RM!g6oU%*/EWXaDSX< " {Ɍ*GFUxx]-nU-UujLq@yl˞OdbD)BzϹ Z0R ň.N";Bp<^" ҮIR\1c[DV=%Tt &I$:TIpș2p+t9߄6gEhI1!I}ʞ:/!|aNRfɈȢ q י E"!%2":zA {N8+VTA )na# bI248Z9RL<1wDR8 "߄|Y)j)ZJɈDpHrTI)p\i+]P*J~ *=) eDG]&a#Iu!7,$ ҜB_/Џ)GȞ"ug{KbqdD¬/jpՁh(j1MDC]BљLt@݋!DI~} sg>o8ثMjl:¯ "ZHa?nd5Nم8&YψW+_W1Mk/2vcB "[kqS-ෛH1TVۓ I#Ff*s^TbZX375LcdE0~LEbxe.rEF\+Y(gr2 .2P$4ٵ:*edN9O'Ywdrj5At%Y3f,X& 2:v34fnEӰ,OBjhRaMGV4-!|E;hN89q9ȜXRO@BF"')I@89AHj<2AH7\C^<^]+$9G1O r'$u9$_G$'Z{h"r:;->QvA>5z'wz4>˳7H_$/!PxE3WeDHP$%ɫ#DP\IY(q3) D΢Թ?݈&yv2.@pSSD,y&9S_eUL=s°XL9 dK“0uMdvE$8@F<,d $IeXrlU#*')LEܚAB筋txNV(i2ХQ"w*a>{)"S0u%woʫN'׮GDSe}(Z!Iu)F$q{qN&a[ȡhH%(.h*wXU!Մ+tY @axUY3`*.v2 [q^@>m_<+uD N?9jj@^(AQW6t (!U &bEwgKz E'=V'5!CɃy9p3%@! * I`1/spidOA2jb yXt6A)'S uRBe 0+)8'dhD𱯄tU{6K* 6&&a#WZ U|EK4AYөL NÄ$M0,"$ixa#yب<(B N%hy{a/PJEaʈ`.0 [ :wa/0 IMd/2sU4Ac6SØdCX:d ZݭB< `g@X:u.ԟ 갓榈 /msu?b.| kmHRV ' x[X4بƪI4dJ\I4di}z E$7_mzAmE%Zx6AD H|Ahzx}JfIg" ʈ lG+~ Y:~/lȪzIW(\4ʃȂzMNMQŮM^z*.B?(d]ɯ8~_4hS$C݄զ!4[&z9[^f Iu"/(cT& *FIWanq*[rDY1U$j RD6֚d2 Hbi4_@I66m+YWM'bh JIV)Hˈ 0t!9Edwdf*d|HJ $;PNŚ%_]3'l $8TQ-8B-" :tY(Y[%_QkG[]%SI:C>0Q)5$S̙8):3f `Hb+tّmS4_y6^Sm$G)T]A *GPߵ,Ί7jDFj޲5F*Ld]ъ?yHjj4g{#y") ,4xM34r4s0D`M3qd{IL$]fb)ڝ0b5sFv Ri& #85qm-j·4MazsnȜ"yͼ)ir>I b|p4#$$Ք7¹ʩ4i=\׭FʄCB$qؐ]@tC|KU)7 yS̶:7=WۼfOo0Dn.D1X7U79h?Hނ 0 =I*[-d][lXl{E4o%bC53,QQ7wذ㼁o1cYte[2ȱ(%&ixJ*vjjQ22fpIe'&ZB;v5I9F$updWaTe*v?sS=ko;!hM e* Nű=VF"Iij'fgH]+fp9 (WqW"ޏbe!9u]b ]7%h%\YbT܊c@S)Rw; rcGu:RĺAI;pF؁r,n*zaWU bjZpH jo8D:nr)ґ7'ܚ$ iPJlַ2԰nGk>"{! )b}D 0r74oGi=K#Ժgp$U.s,/[̿'GDvJs[?e,cn.׬y;,l@e,cX2e,cX,N^`81qc81qcmsrI1e,cX2e,cX2e,cX2e,cX2e,cX2e,cX2e,cX2eu.wq^b,cX2e,cX2u Wҏ>#2e,cX2e,cX2#2e,cݳZ[iGe,c܅L埗߹˯D韟?^~pbH~ם%yTǻ??_?PTt KLOugTߨ5?7{,Bs2V5 >nAto^#gYǰޤhǙRwm;c8c m8oc9q"Vj(86UO9tf܇nTY[R3c@ &O1`|oj8/6-&;t1ՠӵ=s:"'[|35|Yל̮l4{IV=qz3~S|bWrg,im ɘF'&NM[~Em5a%sʹ{4<)gW58=>%rEL=zߤS?SQ>bD=JH32*5.۲1X瓭Y;%eaβMs45"dlunmUOנCLAsLb2ڇۖdthf 'ٌBWjit&fMߑUl?aOt>pLُWɘ2S c5tjc¸9sL-X5?]/uC2vMgjI8)T6KIN5 $Ou=Z}3ԨN5[GW$;FҢYM٧|=.sFgS1>, ԥ#m:<lةҲ6X\@SC%˃{N+cu*Ng,錓e,74v? 8,G?t4B|s~ )ᚅ#[^)q n!b!)o``/䲕JH84C 1C 1C 1C 1C 1C 1C 1\HOK 1C 1Đ7p}JmC 1C 1ĐFJJ$C 1 --˸Ґ׆Cr+-S<>)} gHPrCbwȜRg׺rh+㇔@rš3 +xb4a0FF =;w4W=(TpSJlvÙR*qsH 5 !'5eF7TS2BzyZk*<6|#+Q%#~ 򀄴ps9nOŪuФ8!R; E&u]ڜrȑ>u^ѪM{I<[)8= 9 ('S JC"Bqen}ׁt(,h5y(:;ԠCC" @aBsBzc$CճZyHROKnRK47ٷ $TݎHRӀ,",V`ͧ@Hk:fȂq+Y5ҼsRC^Ӛ0{̟P kAErR<|qH>ʹKd]>r_9gvʬ#t,.NV4kq_qlRf4؈5D;16#dI)d$#IH%c{uX/ΫЫlk*hU8Sfvlq}M\vع:^g8 tlJc{>I& :4~X 8cNLv-kkU*t9y&JoٛIF2ͼ>:]Ҥ33 u+]v/5ru~޷J+F;9WV%\!hmwPgusʖU ԁ'\(!:onXR*qiADY͉n B8H[@H8kB|'Y$bPN񚏡㜖+NxeU^:rUT,i(CQLqB#$"uT0e܅ @n06>Q,҆Bh6;p.#cG\W FSƅF yU\$jBBJ/46. .}C4P.|-ayhwR:3Rd.h(!mWIk#*QQyn5Q|c3IBe6WVwcpSFIc HqHF2dC: #i]̗?GG޷FZ|ݐ3!9-y}Y-K.m!b!bG^(_``@.[&V!b!b!b!b!b!b!bɐ6ez3C 1CR\&{`!b!b"mb!oi)n)jY.~sJ?ń\vķK(9!F%p[|@ m%GH@xjڲ(w 8a$BRⶔ[Glqn!+!nA'R$s>"KYcHk[@s 0fM6.*(>`ZtHN[KPYHuRyl2-(.%\$W`^aTEqOv[ !Q{#nkrlLjV @*lH8?|~YWe旒RZ_JK92_ޗ#|'_җBmh3Yv=a~;ID‡b4|˿rDdoz4Fƥ_qr>P߿&!9G"ɇ"+HqI;pEuI+d럟?^~pHM/j/u$DUKƖ͟WJ?~M.>h81O )Fr4\1tE3;M)Q{_؝zZf ShK@kZqo-̴7g9Qcmؔ}we41`SюX9-JSg?[˾e44TDZf]*ϫ,VzQ\V z٠Ny̰U tX91)dc+QT6רIa)}l pf+)̒N,u-@Ԥ%hAoiswzN~?h:l$"rFH& iuyOm骕wr]'}˲]wL,JG&2viNU~]d,]$Mm1ф˷3g /Pҳ#3WquI'}Rϟ;HGHr{$OSA<1γ]c1;B81b8yG~;n97㜇,86UO9tf[O%Cb@ &O1`|oj8/6-&;t1ՠӵ=s:8s"÷>*&9|iiϫ;ݍ_#/Np 9Z j|rF|+i`tDd˃ wÅa(I)=ZTI>-<%ՍQ[WJbxcoQEM9S;t9Q~:Ҍ"\2WUIOZ )YsSfnjf>_LSMfء[5m:47 ։8X-46SiN3H3rƉp;)u,3 ˺n4g 5s:ljӣ.Db.G'g\,T)[؎`_A'kSiseU^w-<B~'aݻe"8Z3e-u"8cI'- uX9mqzlKC%HGֳ;?;x_ r&$[FH‚eQ+on!b!)oɱd``l{mb!b!b!b!b!b!b! is⶘ 1C 1Đ6/|o|d!b!b "m Ҳ!vH8Ɛ׆Cr+-S<֭g#PrszJ[ z֕+F+[nW%RHmKe'F+crpۏ~sA_;=ظ!qBJ! wn ~+$7\۲9s)AqR~b$˷oSUVqc/!]nxIBO eLߺd<dg@yqr_9gv#钓C|)a"t57ǻp|nّ߿ʺGhǦڠ׬ܳHN bai:]vY[[r_!H6]ÇsLK4Q.vL2J;xDa]@SDcow@cQ!{=2~Ӳ3[',/( -˯*M{HST;Xw0aJ yĵLYw{n}+}GCHE d]&.a,@~߿_)U&^XMt8L3(F$JK"ՑZNv\ 7?yԺ}V]$v@Εdy÷k9ʁ$pFÄ}$iyD^xϬPkt}'^" RHD!GWdxG UDm܆~7X$FP!]X2$PlG咇 s̈:Gp٣dNHӼ94N.^$CE&joIpd|ЫQh]bFc A~R4_-` Q a6 !8b}*!U+Ajr) (ӧH#,HBF-.JTNbCҖ IpWIA\ 1F7rD-p(FHA🐮i4  tٗ7!Re,ʑcYԤdY#2N2M$Ot86=rIHU%m$a&{%$b21+!Ub#Bh4hqE>4:+Ƅ9uOp8dEۺhh"4m4Ud,;*)*Lы6x"u((BNFGWI& Âz8CT8+ % Fjbp17]%0lt, $ oLICY5)IV2!]}~)5ׇ zC}M=TqSYv>֬k† B`W#{'CDGJyMУ.MC$+BVEӴvfhxk^z\C`9Q*͕qj }$y l`%$@,Ijhu`cÜє7eS !F!B]կGyaOHEMe֤u8Sdq[UIVU?OI,#N"ĩ1d`#XV2lu/g&HL'!eIN-=Hj'^DHSFëȪN)A:9j;T6Pa)$RjJ:J be0;9 64*$1%t9qLk HˈijX{hbI>Г<;d ɉd,#]HdCϨB)ɠi=p*d+7i%.A:KCHzpH` lC,j:$ ]p>j{F'k^q9#<8DuuWsIr9NL' :$o^=9I4'[V>>dF\D୲Tcg}=C_I =4\]ꐂWEt;Y>eE2S Wf ( =L̝" ZFY;NvIL/A # =ߦȡ_H)T$KLsHPO28UL}խq?9DliYOhkwqDb.07}&A22=["" (`!W7F7?p5%$JD)>*"DHfKǭݔ}KHXtR'v'=NZCQ<)l"<,w9r!WEYa$O± ]I+CXpfN#hG= Rgua$ONwIl+)!Pr Z ic;',Cd/,vH AHDY:)j:Y뤤w$FvPSҴo3%Rv>Q^QNa \%!$O$$OEWC:ӱwHHB91##3G`D.mҫN5 ?Ȧ>ѿ=ECV4i^yHYA2)nWޤ}#A:Xd{cpT{x͑ >r+JmSiaMA >Dy- F,'ȉwe"S>];)5q6W 9CH%oZ;FZ*4"j#{jYx'3UqɬaƗbiUwC&@3rK|Wk<)j=r^Ş[G,Y/+N,e9'7:J%O,/yhF]l=|,[!^l=LPO]f[4+D]WcU!"!P"~7]M˔ξݓ^t)6zmmNYĬKUBЛX8VCƥSU,=YjVZbDŲ|%$qjvuuY)dY4(;,SCDzhݍ n^(!2_r'BE%E*jI1x%EqA%G8"}1jMZpq)ԓS dKHpHXKh)e-aU"|wC4A'=pCXAYy ^>z$md&&SBƜ%zgVl]U֕VyW5܁a䌖CS{rFZQn 8Z.>rd3WJ7U5 YM/~߲Q6 R>6-Wv൹ <sF@ &{IF2%pQvst=`$#0nI1 iF2w%K7wEjq>_u 6ʛx{2Tn+(k(m7)Hm^H?ͅ7b0ҷjݒفIʛx!mho[F%>#IsRϷ{;"$cv";$*ߐ&ɯo|J߁Rr!)ͤTv=w%H]h`4Կ~;w]?SRi"ם%RqߺgOxՌ}6K(xC\b ~9o=/FFmqouors3bٟu@x͓U ҧT濌d$#1yh`I}HO |NKHGiJ3m t)Վ wK{Ve%N[.Wy`An+0L<'ždfTi>$0ӻInNNGBY d&4%$Z% snF-tnjI YU~X\8c:̓h rZGZMX"ɻm[|_AN7|t9hAkْ?NN`]uD/F`ܴ;va&?88w>;:QLPmi]P01.8ջ6ΐ2oǮNM8x VރI>:ب'iuaYlGxhE?pusR/yKԉԪjIDL޷<d:nVH怌d$q#HF2ҵGd谷j!%-Bj$$<[z[+u!$0Nj}d$#t$qX8aÍta)gOtKO0CZsї|6^9l=o} RϿkw< '. ~9 qn{§0.zv$)$KU`BE0* !_BNqϴ՟Yk@ g$~.R>^>^!nZ#*]Hd?șA䣄[ŕZ7m=uxBZqϐVޗpۏ~sBNoM e8w/`Xr_ՋYWR5rxи& be- nkq8eHU=p7j_m=UZnL KO(zAE|@RQ` RBhPh ~^ dE\FFHঽΊ,аס)@b^c I>YB(f"y :"1R V1"$F@$$IADHtohEDGD| uL8kćX9rSMZ4"B/YE^tdPA;h@H8ѿ4Ѐr"!N^]}$v搰Bd@W%l^_F G/ EZ" {zPAi埗|%" a|)akkqFLN΄2I`Y`I'-&Ep HGiJ3m t)Վ wSz.=Zt:ly<-hiK lQ&y؏=NO5iFJ?N3Tt-MiBSB Vn*&X&̹lӹI[x ;'i*_gWSc5s4_g돵l2ON wS>jo.G.jiY6ab8'o쉥U{ t:t@oZѦe%Zvꖉ@߲:L iw^gMS9xZdŜdr|0WՕcB;?v|zc[sGG벁u}pp|*wt=5Vu2Һ`nc`]2pwSm:6!eގ]ٝ0p] O9^mSjsxIfttuDX&u5ۑ*kJ%g;Es%Z:t2=?>Rͪd:n$#HFR44L._-|YH[md3g aE.`$3F2Id$#5b3'l8,79Lr2቎ufh^k5pPzI+8.HBg*supuO{e$\&i^*iJ3qs%U\"_@Iϯn^.ayMK?9`>fDD0UҌ̩ iR & Ɯ0)a#)+VnOVWp;[iJ 445,s;vVeyuN945[wO $9U4s43,gR"8#iݰHS ?xP3y3Ζ91 7*Hh}:x"S)[0A+'xJ ֵwϫ۹yp։`D[?H[#.mlC 1Đ? o 8 PV7~C 1Đw-$Ab0C 9?1*G~و!G-b]iyC 1ĐC/?[~КL3|;$IB|3Đ׎-5CxW7K(yw[$7b Bײ!//gGbo\ڂ3@ru[9h;7M,.[ooȑ_$ֲ)Ism|qឯ)ns|uw@pvw[,8,f4Nk[ȧDjCnek9^MHq;W~6EF.|ܢݑz EιWOK:,3ƗY$8 sBOժ5BCWf\/H3$ t[m?ԕOҊE}kWr⑫AdDEE 'R:A`PFQڄKw?ݹˏw|TRAbQR L"8Rυo٣7աP d2z\U{ <9b 4CxC\EQF/Uq:Zɼ˰;TiqNʧN,Hd/ Rć: .v$4(mMC6O} m -6dCp!1?w}*8ZQy`MwF(vI3 5 3u29], 'Wj'lyx29~G Cy, I48M9Z_w N֧J9INF"cvT 6I2`4r{GifS-W:^BbИXb֠rˆzgFwGH4N?'.?~ ; 'i%Qg<]` z8y_O8 FƏ,fH I,B'Oޔ琎ӌ^ۤi7#Sj6|]|8z |:-+`u:ha;4$yhPX?GJ-frfz7r3ȡ[(˙lӄV5ӻ`0fԲyN&m&윤_Ni{U̅|?֌3:/߉vO9Ј9({ueɄ✼oFs& _=MJ`ϊ)=Mgꖉ@ߠ S-Is Ά3hsMٹ29#8P9- )a2+Wwfu.V0?V玎%_TzjF2BeuAܾdTtlH;C˼;a6.[ҟrx&چ W|b⤃s3m::n",:sHt|b%&C^-i:%SHFZfUdHF27d$#]{[)HFqGIY?#0 i3ltlw{@GdHF:5dFӝta{ 7%& 8,6<Ǻ 45} | |kMd/{"`O Uׅ+rII>%\DH5)  )9"!,hʲ6Mr˘S3sFesJ_L'lӱ`Jyf:QjSt3|{`)tl梫3z`2ߴ%<ڢ,Ӕe|eItp(61zfG* 6i.-`Y+ѹLq\zq[Ξ/laKۻnpxCR**EҐB~|jF)>V4CBc} 8; p-⸄S4.7ȯ 7(ph8*owUZG|ϲ9'[ҷNsψ+㰹k)߀1_N#$ol  ]t$a̛Hut>)1јf\P0MBOᚈDM^J3 Jbc & ˱C4 -jp"p|)ĻQ:14ۺi0!Cnw]\UAhW=j5&k K+ 3a(XB#f=u^ס7 CV}F@.jҎ Uyh EXʠѹ *BR?/qT{j3. ¨2O uK[^ei4J{/ywyeıa9.}3>5qTYV#Q%- RֹũݷP$nF+S] EJAV9~9ju8.*kq Dv~ުj )(nBlМa_PxxɈp)( H &,6 PeR  et"1@sH@dᆥkSDMtidAeQ((]O%~ R2Gy̐ c$X+2Ryɸ77&:cDE.:"$ f{t@,{U39R[!XNćX>³eRk!5]2!նt #R0hHd.&<1e0"T/HakF.h6" #ꙓt,M ]˩p hPc_м>#*>\OFb*@~Vj{D@N$:AHٝF1p:׺+9vi2c.:q_2"z/p5b /ЇHF-MW˼dHeNVU-cD/AYs $'! Dpհg#T;s"0MCIs 7Y37&-ldg%Kt$H(Ew,NS^CMRSQ 0,R2ڪSL YK4&VUD0d.VU%}Iن_E6A$iq-܄谑Q !G-"ܛ8 @rZg9PEARKj.nV I)[UaJc0kTڇd!+"mHtR/,$aS&r!VI~Hi@WHKI0D'Q*2h=%^P'VqHƐ`6 HĜ/ cH9Fa_-nlq$Dy1_%7(49ؐD]$#OC%.ȄWOCH7FG,YI dپuȹB',*TD8!A6\ljb$}c7{55 ,nl}KoG&pWZ|?hm̦ZlyD-cxe=(,by>~*@n0>jJ7d3$"BngS0NpsnsWn8',ks79^70u 3 &Y\6biQjgJ \#Er-&WZ<ƙMrx+>-͆}~Lw>HK7-94yyabaii1޸J@bۄF\.o3JP8v$ϋ Y=0 fq*,5 Z)j%:$GM1=#' DN,%U /Vfބ{BU3` 1ϳBy]fccE~ј,7xFO0Ъ+Pb,~4&q؛bJEtWp[ BKabJŰH(}&HVΜ1W0gJ^J+RWy('I%H%gik'*JM?%Y-VV_ޒRES`ʞb4! k(6@6Z[(X61"+̩vÙ-L ING :W8g~OWʄt̷.:UL%J"g#Y̫K'4B$ƒfTvѷKHu"N95:,yI0_ =WRK5i Y^ZtB}R(qgD/Y m1 a&|l. ý[wD~OU.- ~U3l݁3 rZ K!a%x6'+DlTi˖`}]- O];-6 qV;z*qt=dAz1}/c"UXK?mvV-2oL*M,J"{+ۃ=ޱW =K(#+&rUNO7l D+tw2rU3V[jQvErH=$8,:)`OIІAq?wist? } +z l9&4xT61XyjBU6[?C=7~N8)>d_-0lqNb=͘ M3LΖbب0ZDH˳ɶ;ӎmL)9ɘ=Xt˛`C|tǹc/OHӎ280EI&\ oHm: Mx07XAU~㼁bne+M"40Ar;NڏYx02L 6my'c,P|{,`CÌ|{L?8t9 OZ:&3Ġ0WbQWf\2OrIٶ Tn0ZɍOY'[2̶a4J2՜|w|D;ŝ ZNIPste)KYp̎:vDYR,e)KYz2E KgĪTߜPr`@9Qr(G9Qr(G9Qs)IN3*KYR,e)KYR,eݗU•`wDYR,e)KYR,e)KYR,e)KYR,e)KYR,e)KYR֟/^/@wDYR,e)KYR,e)k#WQ,e)KYR,e)KYRj3 RfҌ Q,e)KYJ-6#1gdMSRG]~|vA6㻃=dgO~<~}~;bZ)ɭdӇ3d]_|o==Pb6sP>Q#lH6_@o66\mġo\D4n_QΟ7HZ㋒t?$%)H1x&?%*dI[\;X&iIq<{ޭ#I-N!9 cȵAڣy-NMK6V|{4i'zl6=ndz?Ys=џ88=$%)i]RJ&'uO7{$17myf]mIO RޚJRҚ>QEI:)IIJR IWJRgB>szKv.Iwz%)zI锤$%=iҢ@#.I{E:Qq%i(iV\3*"ilB6aC 'R)^?CCkfX;OksS>z үY6 H-LkScɃt(7H`߀߄j_DOQ|7ۉy`" \sw&ML&ĚI%"H*,@"qDI-"Z'&cLvv!vJN7375(پۣWJwz6BO|Vw2B➮kE:ps$찆`~{<6[twMvz[џ"/rP V:x=c.R ;ݝe '҂71>_7 G"zz_(hZ4󧍻eѲXRiyt`k݄] G^oحz|gwLzxh-#x vϼShmwwM1snU6z"`]oHSIwZo%~6+<5%EGՂzzzy"+YwjݲMmEƼnEFHwfޘo>cR- + -^x} pݤ3@JU{HzLٔOh%)iMר$$q%)IIJR҄+E%)IIÁԂq)i%IG.I!ko{CIJiUf풴nYWҮ#qS%vhMz:ǽs'_bwӓ#a 7zb\'i)K/!{ER-&u\Wl [/Ҹ DruߵN ݹExfn*P5}W=n=I;z$ _:;h9/X 8Mb){r=;|6*ce]l#`w-כ2E#fZ+w ;vzszQm#AFz$O6>LwCㆀ..ʹmŊ=&O)wu$z7|5mgVvqbcIDyE!eoSavC[8t ߂E$W|{u"lܺn)hO\$ |۶8veӢѲvǧwnt+z"Ғn@8m}ECjn{$-tHx3כ8Zt/M$+:ݢXpӎF` I"/XN>DY몿!|cnݺLgnwnE_{Ѳok=ml=w9fr5:IJR֤dZ!?ow/|ϐ 2ODEQD" H2>0Rɷ6|jTM ( ( <e@1Ĕ/60\ ϯJpe|3]G2܀?]*v F:|}87pOt  غ ڵnrWoP7BDRDqx-&2R, 3T"wjmc LeV10RLG9P1lrd*Mv-)(6T9qsd< hmpȍΐLZ9%}Dv瀻>tz:i.hfdK8VXjb>+E"u^m[BC]Ps"=>:[(hoC!8hR@G;I!ŋ|w#z&س׀eK(%TN-96ŸF&ZsV @M P0gbD1b`"}HWZSҥ[Kw gg#3zAHpu"$| ~=@ G ॱpq Qsa"m!??\-Bƨ⎩Bnryv_dʬ8e ȄU=j Y}&k@,\ˌՑuE6,{ m)ˏWǯ_}1_xZp ^ o xًݭ2~go缕`2=n_(mr{^Oo >vmy0kB ٽv 'R+[$|7̬ 0 8rÿ^e%fUaUHl S CrҠV1X.30tVI~DP~Ga,>3kAg{׺ My(D*t|Hsrd ej3_%q)1{'$'(" RF QWf#J H7oEMSĀȠgEe&FߊJ(Fi$ċUZo"P"ƪ(qɼNqfDdGF%zf@q""""5@ܫFL3 I>Qy,"i ~ Yu,] !C&y\A!""̸ @2p,cjU\S-BT+>B nT` c (xqb ':LA[%}`.cEp(XQ+v•B x96u._MV^8*PD+IO^q\AD iD 'p\4E K:rԙdt埉>>J=9i.XEb S&J5#QGI¼j:OU+~8 *}^d$*iAၓq*0rJs`'j0&b?TcjQU8Th-+MTIcԠ!L4]&UNz9Rm |E.jx/R4M4#M4y".0˒qSEJd!$ Չ. NFb5 3*(4=_3Gち*Q0`hRĉ=Tꈓ$)0Z)ÔJA 34{0b+ɢܼefY SrEdJ% A*C>W8XKa1s+3$agr:2 CP=THD/lSj-U4*#-3 fyyօ_%@)7 +02!K*DY.V,?V efULF+{b)ctUL+eEy\&ȭ2xqGߘJWз0mR_D6 8Mquf΂DmTh *GmNUT׈0DT7)/Ý!n0 * CTWĩ28*LLc"+EI*W2 zHpFB0ar$b*C9R*H#N72Mr}Ϥ< &j8E!8 EY "DJ)$ӯɴLIe\mpAn])D%МIUn$ *Ą= #*f)5*h>a@6uwTB7z u@2 B#1ALp ֻ Z'4BkpVrf]_D590JkHU :%,XKO p.AxؓUDp Ҋ*sǼ3Y3 p+![.aV(H#׵lP~ -k d"+'>ahG"ւ~ iI-T0@e)  PaajI_p-U6,5&Ӹpgڸp\˛KHc8+EL,n7fp73u İ(LalĖi;aౙ(@`wLR7pCLVqzذ,L&q\7DuD QB̮4(i$" ]l 3+&凖E$I k  ZO)!\x„_+R4(Hݠn25jae8rx@v)A(R3(0Oqr$6" r_ʷ*54xBlX"g(K 4U.$+֬'-ޤhh<A,f 0ɡ2C2 2Ah૤I$aix zǦJʓ8* | +_>Lű(ð"ha$z,eHde+9 .]Spđ R7%q@6# %V;)8 R4p@@8dG_pPN*4 HY)k:NPqR)L)LD`; I,3fK.kR- R4T-h ۈGccS}A&HS3A'qX :pɠoeAdOmrDb[ Sj0h mH͠evƢpd "5,"5tj8r͠oCP8D9Yt5ao&dJٝ6)z `Eq$*|+9B5)5̶܉kSmf0ol&k}.A'oexkp`أ#Vv;l^$lxG<\e5˽ X3$|ZJJJ}?.~b ])QaTf059IlRI|i2ĺDubۇYH vai8L64 7@ a+iSٓܬE wnrĠpkea9YIAQ'DwrCdDgU؆\hGx#ZnxD$ZQ[9!GMp. 'V :"Q6BKtrw d-=8k@p˷gz7ۻG55jȽAdC:6 ּI_J d:I ?Ak()NJ#fm@$Pft mdƽ'3=Ұ[d=z=*^|mloOI؟6 =5k=̷lv&]׺Itr$$dҽAR*^'i}غENw7dGiI-"W |sِZm -=dmlsQ^82כֳDEԢq?m-||ŚM Eo)AZM -RkmE'xOI{6z[>N[[6"IGzAy`Ѹ۸fRc";ݘllfE{޸K6 ?mٯW|ykk*~48ҵrEEWԺeۦyc nݞ t~1)mlFLC IH{zg6>>%&!O͸[OX$ɒ3ڤ}&Pq*J HIJRW$%MHRT8;wq)i%IG.I!kѸ[O-mBj2K %)iWIJRjNKeN{T\IĭOؑ-7v=h|ջfœ#a J!N.!ULq@ k%bҭ:ݛur촊$oIaN$!:_]f $yM$[tUrW\֓GmӍ&c.E޻l-w)#-Sg2VVefn`K,^.zSƢ0hdLznagۮ[o[O=m$X"h(XϔiǚnhP3ii-{ͫM뭟6S4?H r5OYokάpǒdBʢߦλz*qR$oZމJp{UW|nYd[q-"q>1]c]vj:--nq|Z1`xgvNg."-=ַ[4햍MGzݲ^NHG=sYjeN7O䯯ypqI-7hv9ݐ/IC4R1֭[[{}VLGI;-+vz }7>=W㮑$%mNJ%;~ }!j1H \~UdOHIѴHĿ<,RQDEQ#aCWIQEQDEQD?jJVDEQDEQDEQDEQDEQDEQDEl4N["("<~H/I)"("(HiFjRDE m sv>GC-C);'-Ŵ戏hZ)WpA-& eD@̷+:5M)-#^u脮c0oūׇ=~z *.q+[S:xd4  ÿ E(P#R<-p6D:|!W|UaSӸoBͽޣ*ww0D|2 _+nt  b!$SL LD`y $E%,Vl]F b|o*_2܁-7 x|D= ՔM*0|ˁ{p_"6IJr*-WpxyrIoVt`c+TGw\plL0>pHY/$<*bwxt:PdrUFVE;| "&\l`a1_.D:GŻ|8~|gb᠎-p ??\-b8(Rd}0:2c%|BF`4c12ceP|d΂qȌUe Sh { ; ?^]>?|]H hwg·ww+}|8Ya'o=޿n FNCxJsGy8m:ᅡaȆE5Z⽛ޮB^ucWOWl)xȜ(LYM"фU M 3V,Afit0p{71yse~;ks}ױ0Y֭YO`φxm Lyp/L@h_}`Qn9t*%O&s/9z8 :#:2bk%X9P;e12cҨ}&,p8 kECzCwX:Wv(ux&¢h5dtڂZ88"g`Wdq2:0!yHz#i&щGN<̕j=0U **' #CʉnqCsiOB(HՃ 3W% 3x,6E e %C&8NX]t}P h aU&R:Vp9X`1}E$ܳ<萲\!?fd%0 tRX qt( 7Ur(FѶ 쒷YЌ6hdnd]Ģ X:u2XʺHtQB  d^D"Yi!B8X!A4!P.8!KB)(M!rI\)Ks[\\M]xlV,I*bS*tk$$@Xc4- E4C B`0@G wk < 7" hU6H0VDNgv|ww!;A*W`/2$Nr.]NrTs !3=r.9 #S|)Q] 3 3v`qfY"p++X&*xP N(/ժčȞCJ յ Wu2ǂͫpD,uvBI"1{sc7D,:|Uq\PK,5L^7P;H)z)d?֊l-ƀS8+K#ͬqX{ +0PrBLD@}D*:c"’q 6tzG@F~ſ"*"DepH0q ni,}A 8Vu[w&D܇($8%R +F<q<\2 mfh(i$Dc)0]@ $ʂCX%d, 08Qk;(CPhB(Exˑhx LrȨ,PKYd:hE`F /y~M܋[䍀ԅD1irQBwŒrx(S%B&ÛWPYHp"f@b BK= @,ĂaT5A2!A.*,PEp 5$9pQ4 Dp;,8bHH8Jp@RaD-3?Vw³oC+#Dr};'yF房*c8S;5H bK  GbI݋\( "*"vJˆ$#ep&HbЈQ9T%XМ2*($!,Gz @Oj( 6!O!T!QJKtԵV.gB"8Dtɀ7ay tl "Y+  vh7Bv{%)Ԯ eb~U1os5Qʆd6Bx &PIa?mpMm"2C"הC#3b`c7%SZW9TXp Bdh]ēk]>x*'n„@EFV%\]4kܝwYn 7Z2.!EjFv8[tQ@tN9A0gVx$ `'b #ỵ8Jt!G$Ⱥ"tYltG$;0͐vUrW%t.>;C(!M Ʃ *UH"wf0HAy"|0wdX<_62wQ :2ܑdZϐdԧL|݄qW%tXŜA bg,c92, Y,c]:wşYȨx*1̽k 3 qeLyWy@a2F9;ɜDc2ZI9"ỷ~E|^:j,@CEPlT[!\oXtsdT񈑾͑$̪uG GTZv@"-Y;Ò FΫD2*ܑ<)Y u qʜQ&7?HȨsG"33CgGsSr vˀCNEWxUh*4τ.`|v pr|JR$%)IIJR$%)IIJR$%)IIJR$%)IIJR$%)IIJRC!MH(IIJR$%I)>+E)JQR(Q=ya@IJR>%"5y@j>%yH)>+E)JQRJ!@IJzdkBݝAJzdR*$TSR(IIJR$%)iBFuEEJ )]͢$%)IIJwnϝR:%)III KDؤ/ XIJzTRk%y_i+$G&9;[g(E)JQQ }!@IJJ\?)%ʔĀDb@IJz>|eYÀT7JSuqxTRKR*I\!ի^ <R3%HHWnB &%=c+uF"HJz0RCH)^!xTqRBrMgJ)GgwcQI;] Hՙ0-GHq^8`F zj< _j0}Ebp=?B*bZxr>_`Pt~y8~_xkb6bnTܰ܁cэсCZPrg|A ;8OO~8~3YN?ݙk՜Og~k1rWgw?No_~˷o\JŏǏy_lmnڎk?Ճ3s3 Ɲp5rN~@_^^|P"O䈿Mb=M5֦A`s8?.+nNtq)j<}w}@Qx?g0ZAp (K@zEC9Od?]D||w/?aOqzx(6• 9Fzӛw ~xLYXw WC[oo?NP/d+p_o pN#+(ܥvzK̈́bhyɨ\o^쁓 *Q>Ne;`׿{ jI`~j ?ȣ.q~WdDX"U0Ԙ|E{[_ bٵa+X?`G^^|PlM:׻5K7~{CM1%)Z@ɗo/>v7g X)E v R nD" 9Ay <3 h5mDv$!c? LT<]!r{P» Y: (zͻpt[ˏBYM,7 cY Woob~%'&K™ ):i /pG uNC1Ot+7bd g*^NF1H,!(fӛ=?mc_0t>3ҧF S XٝQ|o*&MytLu#G{-]B7?s.{> stream xXKo>_!LL d8 c# {6w)RKROUu7 jvWUm&|;kowX}OEb7w+ _蔋uř11j!H$쯱ֆΖ]|]!CGn]Dces(V*خm]ejO=a]!B]!T|Vg+?ٮu`5]#5]ŰƞvvU DAAmؾ8#-xз}K"6:g%IH{yrlivi7qtҐ;f OPuMOл׻v :((agWv3 *b(8!Kj #ὂ<`d?aK2J/}! + @QʈS' Et(D$ZOǿ c꺲ٷi%ν-ؖuix4<.",+)C vTDrI*Ž Ajb"AK黱U1;cϗ!Iz.\ӋhyS_چ"r=9VZC!/pqswqWOa;TёQs8^|% J)Ш;4\v9w-=f %7* %ŹDC\]:u#rVgwR#ЏwTsiԜp'܅2 .}c M_]9_崫YxVv.'=y_?Zsi 6>W"g[,\0\ ;] l\furW0"񒶔B`=zd;mCTbL\o8p|qy szz4_?mv~9#mjG4A$ؑeq ٵG|h`DZMq O2|nJ!ͤrIf =tLUzY]1'2hbE^%Z|ZQh>R׉7}E ڟʚ 5>мW떺C`ů\7*ikԕwOkDgc,&,uFwjF\&w{ܵ{K+faƾʱ$"x:>ZxvFP,34Ovf螰OCxKl:E)ç0 ~c8y3@ }Nm׷;E!8>9{2zWk??::C$R*[Z~x)RzNendstream endobj 1453 0 obj << /Filter /FlateDecode /Length 3265 >> stream xZKs+t D\ r$T6q2΁hYIԒ=_~|x9 Ƈ~A,\, W+Aozp}O!<A,xXBȅvqr%C٩O;(T7;;lp BumnǾ^JMBU< 뮯Â"Uyɺ @@cF =8fOug&[7m[`.G}n\ W=U; @f%]Alqsi6Sd%-`-ia?Y m~!tu몠:lEBD˕"{`ˎe œveID4(fw:bX7c30goO~94fea'SeT+* Pyb`7lazk&-Kk4|9++͊/E$ hc$u | %].+QEhoR٦#r\ M& %Dz\" Lgyg)\g!fS۬}z zfFq3-AVti^ <  ӀO4\@f^s0*I jsG'|',etQG €y/e(qb 3˨?֐I*C{؜deCLw8 ?MSRWe+n!{oȱ+@gi/o-gFLS'd@ξɗ3w-ݝH~[pHsGtEԉ3(f,γbR:RpltDpöTr$>-e] AkL9;`4ZcƲvDZnQ[-x klLg…B^Oy*\f9\%ѿ> \@†Fb1; +\橦 xp@$'jH\_xE9>~]mGR\|"c>O:N(k6uufM_Yf_"-] ^1I8f%ZJ!9!Ύ59?R#nv/VJsҜ㩇c _(iA%]68 |g$ؿkH8B3'LGٱm6@jڊnsZQy9^M"Q?GA(pVh=e imLU dh i2t+}y%QV|X/KB&'ڜex)H&Se.jTAs`u}<)%T|;}V]V/u;Վ9̒]G6&]lH1 9 bnԥYuU 8e *S^m'}&r ,vcxcGĻB+U9!B8)0|PevJ;NzD}Ĝ1h&dU>2}Qb4KfX޾XE¿/4$MJfkcua7As?܉Bǫkkendstream endobj 1454 0 obj << /Filter /FlateDecode /Length 199 >> stream x]M XbҰ.4Fa!%]x{Ƹx$G78;:o",5&e8~j W `+_=rZhҳ%( Q PG쬕+a?,( ,J(҃,"ȓ1ͭEPO2zȁb%U<|?&!w$cTendstream endobj 1455 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 617 >> stream x5KqǿtK*`'t z"f!XT"De)iۏۏ;7wV惬" z(E+~>spL߳ V<xe ѝG!t0<:h<0~8pR080 BL"4^,<. 3hԍ6 40iߢYs{\<y-DwP)eVt0 (+~{0Gy BA( n٧r6!$J"ɉk6w=&Y)EX}[k%urqG:{b^ViZ=]N[y{COeU].<̆9ǶHO4ϓ& ,B%+ǔR%,ө*U%ԆaC$]aM-"(5ܴGg on {gA_}d3-)'E(+b%)fy9n$Aٜ`K ehml e8y*ϗj2 xX'endstream endobj 1456 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 436 >> stream xUAHq[^-*tFeBuk9}洃6»wޕ6IЩ(,:*u(]7Ihz>,c᱑WO2 s8@ twb~;.]yLLL.LkIkS'#LǓ3b7ySX!t!֕M]\"֪@ ڕSUݝ18m m T5 R!utq&ձSj5bHg~ ؈g&?,ԍr Ͳi v+QAdQ%EIwnAʼnyw>-BG֧-to)kFh+Jko?pJPyu?)/k/ '5s93 |0cVendstream endobj 1457 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3086 >> stream xW{PSWrsEV-*j[Yh*>+*# $HDB ^PnZjnվ^9sCl7d&3s}IJ"LPfgU\/OwKt_B!$z)}r̬U9bjwIHTS@Q먧3jzBJ-Q+HUj>EF^JVSkT5S DJI,|94RzN KO|;Dw&8Y=)˦ܝ N V@* ճG RM>YV&Y|5][V`PՕuVK=8PWhWӀ1մ晓]Y^)W%5kNpg8te7+j ;[Af`4K@3oT(l$F`ut&ei$Zh/m!aQ𧗾@ٿ'u7g|?T W-s0ugh&.73.:2yEP8ttKHϜ]A Q!lat6"$?Ox&WeKWnxᅕ^qlR xJg\ng=V~ŵ9zk$"JCSp ??jSt6ijI+,*).VM8C 08/?tuN2"Xm6MPu*Ky 1A[YZK~L"xd2 k \!{6O;H~&#"GVAvlħ-6MF/lO{ ܼ+3q$1ݶxQ]=M m9C| Л(:y"aJMbXZwXN>x]WU:Bs5C|'vZRWH؁ioih0r\KeKHحyy3LPR@#$$@'G@(xu~qƲMd_=E䞣nfni{fCX,A*iC*&<~DOe|[AIدob} zgd'3m*@J^^Ўx -^vO޶P% &)b/p(m=n`.u\,*y ^12t,,A{)>nVnҼ $Gsu5冡L@,76@tY{oxaբASUXmZiG a:ԑ-jAjc=%q97RS@1yݭZ . j2U*Bt0AYxM5h/A,fƋ.cH}j1zY&-kpD fݷi)ڝJƞNukF@YP) (ܧnpNÐYx K1% O"Cr?\%4x"Ĉd竆iRUK1F1;=OG75C{G4"=YI9|In$;+?Ѵhw:b] lǜǚZ\D;{ "=do)[Gޚ#.c?}pw=WWfMՆ+ O9yPF\%rLgQ0ޡQ 5sߙJ;}4JҏB;x {{:x6DޑVê֍1;\AxGDl>~TxiߖaOPiQUg n{w[Scխ[$Zʾ%C pqг!|I1Agxw2l8f},ۺ'ir5KF$3~`n1뗮XW^zq{>!uXBN7$D?<3>Gg7 m'48 Ed+,=M?܄KrИh̍Lh -̭1q ?>RQb"_4=+ tG@ I@/!wrMhPpj_B/ Cz>j4$$E2e'c: rjLǪ0/Y#E}CƣO~e%ޠH/~&`%Y=A[`ømԨ}L@ i4$kA:$7Ӷl7] ~ѽEo6.5amb5/}3%=ݸ[\}B0qYEbHv!KcU:e"ŝTOD7OTb#~Qtvv鄔)G8zƅ֍w۾  4endstream endobj 1458 0 obj << /Filter /FlateDecode /Length 2730 >> stream xY]o\}_q-Ϣ-M /!郢ȶ)Fd=Cr.Jk5`!9g ,n_Ԥ_zy?(G*-o} -/Z)/>]$VZp"ֺ۫ww7jo~}zWߟN+CZcs|<,Z~~/e!Ze~ĒT|.0Dbnf ߖZN;+LRZjA7cR|\JX#ǯ鷧˟qq\~7'C Xr%^auʊ$'VK\0Mا&`$vR֐ IumgNV-"fZMD) v 2 krX LswUl"I"dS*0.dj\V9oXeM5}=\cM")GG^S?(s.<ϥ{ׁI qN]Bk/Qa5Jɫ;I#2B;X{pBY/;U0gBLrk3g`-6/9.'?3+-2w(o,c8Yt, 1Fh KЮ9O yd*B8BwG(P%QqT9L|5&l܈h[TO1 pLhi$4 HZ,^Dw"T(;n_IHHsQ'eqӮL4dȚr#tկ9زuyW+>$n]d,Bؓ94]L'"!8 , B56`eF`d7">2Ǖ-l97$j 1Hej`dW8,pЀZ?XfY:x:K9{d#ۆ^R9쫳aA3V >DkdFC[3lZ>3 Ǎ#[cɢSᎢ`K-L@OhWB^f KDije&P$bBMvRhc,:M k16$ݸ+qqM7g__P愆pA JՆ琐x9%#sHhO>2d${)/bȪsg9o5|NH7>79%:s >#lBdB ì2 4LBȍL'CB cy"I0MF˨]a#)QB(mϷ7>WII蚗蚻5LFWLFWmHh!cY賂f)?/(u_F:Zmu"BOA@pL(7.Ic .]U<ݴBZ'"p]+ N +}…TP \U -j'AE#tnLUgg&>3C6A}$3D?F6E\ Vۛ=B;A!iyy:bBb cP3"MI[̭ي ށY0͚#mT4Z2,Vq̌&w_K y!8$CH!RjZhBǹ %y'5z%QWJ>Nq NBSW,ߴ >MTs/ͪ>1aLe*1tQjUwbydb{BeFK L] kRלUJ2fYz$>rOQnh-s!tjXt2Z},1$3YrJ}eȡmZjAHWZ{]~u\+xJrNMrU7]i֠.3mdVNg r.uV92 %uYT)ŵjib`n6+ &;z )sZNfa10ŘϽ:\T{W\#ʽ/A&>޾Y%fcrK~$7]\:p":zN*ǫw7WnLJ׏dm?<#]36†=:q2endstream endobj 1459 0 obj << /Filter /FlateDecode /Length 910 >> stream xuUMo6zԟB1HI,h袗 SӃ*6Yr,e  ?$6of޼^RFy!a.yIu*-.Om]x9i!+*ɟlZ8Ԏ'3QxyʲOȋ2Hꟾh `xЛg}xOxB$TJS=ɱf`QU2~NsR4w <( (廇"o#:ZjTTHA^яvz2F * ?g)$Ss %e Nh)zFxI".0 #h%Ѐ014b$Mc%unEo9DrLv(TWU.H xϩR8$EINSJWg|.{c&9c*\xN1d%ij!4؜fZyKo2F{ 'Ӵ{ӭA2 ln4-H,qńPrb\UHERF0ֆf *Z!p`\C'y줫Q\[y dGfD)b5y `ΩBfX!ٳ 2'w!5隹C5ZG<*r6n 볝gtxL䣼0]IdMzkOx0VjcފBasg:$Aՙa%R90q s:dq[]S悇ak B,0:6 x3C%|Ut10'MLSd!GV%0= wEL`)?|HpAo*E>J.߉ɿ endstream endobj 1460 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /DecodeParms << /Columns 480 /Predictor 15 >> /Filter /FlateDecode /Height 480 /Subtype /Image /Width 480 /Length 1044 >> stream x  Z{Sl +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q +W0`\q?endstream endobj 1461 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 480 /SMask 1460 0 R /Subtype /Image /Width 480 /Length 50978 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (:\$aY {pzVMͯ\@%x(|H9$-Ӏ j*+m+ohEW`bhsO=kG2;H88 +']6x)PWQYu1M#IW,X` 9 rskX :i-3 cdz'*4|rJXp @ 2F*QEQEQEQEQU8Xm˔!*w`Ҁ,QP3=-&wj[>Mf+g+r2XBE\O4k$4JTA`>8V׮.Z'y 'nKX]WdR-=xyK8r\y(=pud, 4+#wwWVo A\TupAG8= z((((((((((;׷UUH*yր5hVoGo+7 +?7G ~hB fQ4}ߨТ{AYMa?&4*+ZB@wT~i2$w G?MIs4rO,*NcdTTMaǡ,˯ilO.pFK4qJbiX˅s{AYMhQYa?&Vo@V}`ku#szֽ4AHI# hkmtjb[`Hq۷d<@Q@Q@Q@g?赭 %Tk@QEsW~&YL;` ׵'oRaiven~P#RGkhڄ:CI nAקެ.f*@Lc.POz}~UAs4 3@QE}(C-G޾B?w^rQ@Q@Q@Q@ߏ@K!oC  %zK@QEQEQEQEg!C "zEE hQEQEQEQE7?*5~?7?*5~?Q@Q@Q@Q@ڿ/z٬/DjG<1_0ܿl[DI䝇|?JȴӯIg2l ;SrA^+^ ( ( ( %TkZKTր4((+^[eܴsIh v%It몞hi$Qgc5ư]nk˵)-Ŵl1}'ܟJ֔T8eK)uo̳r^})SQS ' 9O 8 rЍVFh䲐Ozc(ImJ[>}C!C#_!D?H?9jM (/]Oi˓m!YZ8#-r3־tw%)8l,}Xׯ&5m=̖#/@rW=8^4dgXҼEu/aX4M)(`zf4NPieZұ,~tQEgOS~?Q/_:,?'(C/hQEgxM;Ao!['$~K\-Ι蚭+|n-}ĵ@pL Waiv2ܓ:(1<'}hFqh3ɮ7Ñ^o&ԟ7W:ts<`ǎr{?͎]چ\9]JANp84tTp:n+(!RP|_H9(/פ__OL~OT7v~OUjqq b-"A5w-yZ]8$ v%Ag 3ץ-qxE3t!WjB8,sɪ PM>mFYHy=;PwEex^OЭdb0N#֭aEohRM"Fyrkb⸌I*d*hA#ϗ?ʪ€ r[Bz?m^qa!=ODI8BlW4Oaz(Cc,I,͖*IBd1*F+RJ0A-̲[ՆV#䞕Erm4JۥjgINO#w*oh2Y24XBKam-h‹ (>/פ__OL~O/J/''hB_vϷ[yyD=qAV "TtHA[JLhc+8*s:];Kt>veԯ.IG\s€{ޢ2|SM7V6ݦBB0<J].5 ?SZuc/pHI Sm@z{jmrJFr@,y<(3zOF&zOFТ(v75!37 r]`tCuou-#$=6sWh GL]/hV^wzmP^Aw*<RrR+vKJYL`3baZtQ@^ y#մ6/97_wHMpoV^!^h*P1-&Ab?(c`Q@Q@Q@Q@g?赭 ΰ jZN?z-hFcK Ԝvu?hf<3tp=f_]iela;q<Î9WU4닍mb>oo8^gӴku1~F_`CkxҖ+Ӎm/Zt_h)*ݼzŗqlYnp6U}8 9֐I-*F % cE8Rm'%mj[ [yo{bcs!OU %Lj8%v͟F}2)][4Q5?;:t)̑4n}Y@SW!zAMP! 0 8&Zϻ4((((ϰ_פtXOS~?Q/_:Т((((>/פ__OL~O/J/''hB(((( ?i^qQF?i^qQF4((((M6$$/2?rżMAi&#O\CkhrM1@5msB[i3x0? ybTRS:tƵTTɆI+[#}[((+A,f_0)S"* g rPy|-$ '$p;F+Tu{7H.,'9;0:3 _4{j}n7g)4ABtĜ+knUA[I0 e7jFp=}r\Stq 'Dg}?_n)/i績',(E+bmV&A eRcDe%C`'Qd K("{KCm;'zd^ U.ᦖ{yīqUQx9ndM"!gulɨM1oèuUY5QgNВ\.Ђwy8-(|;Үi3 īhH>6OW7,G 6|ӯ|Oqi5BeVVf"~ `FY2Fe4/aV$&ƒ-Q|hakYŝYȌY9b{MIM<2' #?-Q: ʥI#BԀAI#:iF U9IK%.Ӆ=p U;dDr 5ҬqDCąр2gh 3Io[uQ 6vNen$,lK0*T+݄\YF?8VY7ZF[$!X!r֟EUT)OجȎo:M@T]ʹ$a®⻍/ķBK%G"M?;1R]prjua )jBɣԇ4xgT#mWY4]_H|q[Hf+UWn8: [I?ca E (b*U xf4 {%3q0˱7#BYh[T0p;arAqlvn9b@6W3캆!c$D*3;(@|3ݓiniN;E\ K2h%ܱ,TKrN=y kd?_©$Z|41A*ˇ%ڈBUFN9ZK(U{S!;]sMhy\19#N}oMI"EUWLp#jh{D|e;Cv p0:xhGo<_j$ Q1IЗ/ :_OYXU T&§2{EoYkw7EWo+TMZM8jџa!=ODI8_פuAEG[:f}|yOB@$ EqR%eͨO4CK)hd:. :WQ{qO:[ݺI\d'<3zErC&2QE#s9*?t㎵o=ε\4!xCmhE JRHb@z:3zEE ~"Bzg4((oQ2)77vbOciÜSxNQ}:Yd9gLRǹc=@W;iR^^^zŮ k%CesӶ*=6R'u"f9n'(c{aNe27̀q]=g!OC_}4M!OC_}4EPEp/ 5n3mJDJ tlZ{amtq%Yo9lv Ŕh!oj2٬V=y;gBFҀ0 #>{&-680p|7f`w!%%SNpo젻]Zs4Mhf\ui(3D񂽜Im.6SXEd˝yy.8mv:{qч 1Ƞ1״ [Ktetr>i<,h،s&pTTRZqn/ok=$bD pJ8'9vQ1&]l?i[(Qr\wvR;8Li:zLYyD7jT\r9Y, c {ҧϋC?%?ߓ@4E!C Ь_CDB%+;6L8#=ZѢ9>Hm 2-Ő )0.F4"Q.O}xgfP"SqP 9tTPìg&aKf~3dz/N.o5&LڪηVX̅󷎸9(]ZY}T@F#]P|I8#DI8#@QEqٺŦk \<)XgvxmkI&Pѐ}Bק9W ]VzQpw ST5 n5c$٥+Fd,y^`WSEekK}#GgWfQwb͏`Nҵ(3 i[Vg趭 (((+&T2$Kv:q}A^ڬS\$6suK$Ea~ϴ7XIcյŚ_5eSn3b&f kH#ϋP PXd@昫+N5ʪ+sddCOF'EfR2dHm.re09' m0_6r#'2qP_gDEY!%WJFAF XmN|Aʧ!F8㡩>KK \.y \.IT}FX HR/IXNvFg;`aT3o q3q4{5ġn/$|bH>edm(0˂y VooeT*̨d*ʘR q9#i,r4Ѷ8>{mx(YIR98!<@ G޾B?w^rѤ}(C-hQP][ڨkX('oSrK+Cs.<ˤ9ێ{) vDλu{}s[DcWf cw#wclc6qU8;b.]ǘKchpQVڧ;5m^QuOw}jУǖ!?Կޏ@%O\Qy>%sZ6?Կޏ@?A?F5+_4Rqw_: WbZ/_:DRAkТ((((>/פ__OL~O/J/''hB(((( ?i^qQF?i^qQF4((((?%WmZKKڴ((((fy)HAf `z(93$zaMɧ}'!8Mz լּK{vH ife$S@$)tT+j7 @#)f>?Ef>?E2]6e .ΡAP@#S}AI?2[N ,:z)`@u$=?_WSteYNURڬX;=䌃՝S*V?)BH`@ yukioq$Wwj_PNaN,J3\x#ڗԮvagݷ?ECDI(O-C:m'> 638KY+? -uK<.?vz=|6xVBXT??~xG;crmet9b0A$N*$s]A#Ȳ䌺o]",r:QSd|90̺-F1 =z_ RQMZc,1ܯ;c1mz玂VO$v&#!ts' ~X9qݰH^ďy,6vEHm`V27/8S}iS#Nt7ip5bWG܅?Zf=2@J21ʌO#ZrEΨݸ1ԁ'yȬVYbB0z0$}ѦMG- i/@{ 纊4hUV1S*TmRapF0<#%wA $o!2PGe9ߥIb?_ROGϭGϭ@د)'OWQjc/Qjc/P+ I~S($)yKyK}ߔ >}AI?f>?Ef>?E>ຖkDXeU)cio;H9 Y]{5ƒ XwQӵ hcIܯ$( O`}(b?_ROGϭGϭ@د)'OWQjc/Qjc/P+ I~S($)yKyK}ߔ >}AI?f>?Ef>?E-,wuqy$j *=",H3Ȳ#{A-n<ȞEh-JT{5+mbȉ$YV5W}=(?_ROGد)'O__WQ+ I~S(5(5($)}ߔ <_}l%<_}l%>}AI?b?3W[ "3W[ "OU j$5X6ɩEow ȭloqBX[r΀%EMp;Cgh<U(((+?O]SEhV~!-SZТaRP \ c LihnYh7->ac!@ffaL$݋UQh6lݖmNj[")TTh}[qnNq#Z֨$џ:] Hѳ}ҲaHNI>A jGN~n| -D"ač;oPS @.CiWsmmywwpo U`' 22 _Ku}}ti$H 3y+*@1ɻp%@-눴+M(7͹Fr>\5l|k%u/Vi$$Œe@V;i425]Cb<[d$)Fs!'aossum1љaCm*~EA灞pmFI u)X&‘\67Gg>vgqM:r ՞%4[x%dpxbXN@VzAT<a\#h t=*?H?9iR,YC̥NA {qG#QiE%F~\mdd 1$`nS Q*n F22z@#sZiv0\xUJna6r$+.Bߞ#q]Z lm>f]IyYrl7wX"G= k*rRK};VOcsm=F4 2K/JdawuFdBvY!@ʩەjⵝFY.)[k"#͇ؾb1e~a]A啀4^a>m;"#L"DYHYxݻSⲿ.oqssp;Y621aQXa+ktKK编1I6Lg`mf5%/w4c"pWfU[@n7j q*&)Xc<`n95[5>M*`)F !ISi ҈/14Zɗc)cg|wִmFIY-Oo)K*,wgrЌMpvz٧LhG rɿ~0# Y?m^qg--me%!"+n:=pVI8՝5 K"ߒ7p:2*cc̒Kă/.1#ۑPkz'IeM B x"'{^_C"P991\ӕM҇@iAu"լ%6EUbAU4;p/Kqr[p;s-UmN6uhI9VfkȂ̄g׬HcFt\wc$pq:+:/ h񋑰.vKޭ,s@SP䗗wR.ctuH-26+וgڵнBTGo8i:Nǡ̪@I !2zv5|Kӭoo bD 4Ո|d.~l-ėmy7j,fAņpj&%˻Ȗ_9-Q YsYeFܠ9!F\-mi=ͨGIW$UCR3tk9贊/WZϳ\y^o睾nڸݻϮyzAU1Xr.KqԅPBR-v1~U,rdny=T`].zdz6#_5QM.ם76l2`i(G#FFH9HJ(@XntRcacs2tR26p%',y5[Ko6&(”#8n_YIhO6XD8#mE*0_@ $CRI%ivX Py:7diR34(-_w:Lf'$A0CL$6jH,巃AQVRK,7Q6y7).8" ` wBw]і_-@aÚ7Ӕt_)E[je13ݰ_[2ndi!hϰuXT|yCt Ϛ2o嶙՚ĩ;i f䐲C1d%VuoI"iI@ZV=: \QKSu%˲_~w;UdUUU  RV%zKU°$Eaض0^‹q#J3nt:e IH>dU $*P[Es}WW/.4{.vcI(qֺϛC?[OhC?[OhB(S/4k^y^3(scvNF+KHncɣY>dPW\JѤ5t*_ֵB䦣a /r4m1h~qxzTM `FC@[oA藭 shqd gd?_kbG2H͉4- Id +6b =j(((+?O]SEhVmwQ"IZq|$D{'/Qwu8FX쯍*2r YY]7m @PI+ũ') )ɖE1 xsTi7ߟ%xP s㊛cU9먮þ\McAm$W3ݕr \ mU >m4[lJ48d8]*aYE)R^E}o>kpfELF`),kEHkK1Tq!~Ka@N -9<J1Iw2M ImBeۀ#qi,s)h]C%NFA +*vlZm >b˵1QY!Rm-Lx ӢSRf3G:"8(E2>]l9}RWQMisZ]\Fb)۠l$y^֗_\u+}LLU%|@}Ly†¾gỽgiu [-:6<;qKl=Sdk7 SXD!1ngs夘b2.cm$GsjRO-ig?$6K$PU*U +A;KqCwxEk%F"(cRQw䂦t O ZdPjHLij"!D_A&eK l4em5m:|s$Q2HN|CwW]. :\Y$Q[Ni#dtvQmoܠ K L﷽OX mZ= HRc͊Jd]ϸvqG*qs G: dPCna0{ Eߏ@K!oC~϶y_iכgf-wm8q_פtEPX$ss idvҗW5$<7JWlhar*-, }H61]דӳ܅8➨f%E% N>bw:uw}qo k,s*=j륿JBw8&ԟKORJ;Kq(}^Xէ1윒O)G s]rI"6[̌~foNքZI]Z;Y0D}:1:W%h>g.嘊nh%sv/פ__OL~OmIuѬ*r' ӯ''k 51^y]W~q Z4P-q`+IlIc gQNmY]oo{D;Qw/nO5@G ^M2V< yG7ly۸w&ۨ4m3RKHZ5S9vP;G-V3ݣif?oEg!OC_}4M!OC_}4EPl;xi4.ݧE%f!~A9⺛)}+ȹqof爉Ҵ?_Pƥi096vicۏcĚơsĪe6r1b3p OJ( zMW:|Oֱ! qW(0A:[j 8젚ض.bF$ xđg` e뼿%f3`֢"[{Wr+*'On1+J#@AqО(((+&;SȌ\#0tݟ cpsC9ՙj%#D2^FA4&)5 #v9m$x«7ܓpC|ޖ/wb1@iy 5͵$7R %v0yh\xk {R/f.|v`*Cw-Ul, !K3 Rp]ۋjo;X+jI @ޠװ#€+Z8hhPgr\Ki Hu1y.X8@݃db(eH6dfX`1m'$:p2zoaボs<gbAؙ-vp2@#Yuۥb kvXȒR9t#?HQZ)YY]8O `ҪiI%ǵ$Z2oF eĶOUyReW˝ < /srM5"JcM,U72xʌO<4Rs4qoXrd9n$a5 Hb8Y& $RE,ͅ,*ÀmOZ> S[,I q8JFIvq6qSeHYm;s'!9'-ϗLlvX-ρŒF >9o3?).sZǑ,k\+$,Љn`b`Pd&i7(D[ !FwuUöl@61Y [ I0qHu?NVsm?6_0l8;׵"yDa%? Tc P< ` tla=Q OF˴(p \0 bic'gXK;P9$€)XOS~?Q/_:,?'(C/hQXf ZCH GP8XZxw|e<ǂ)P6d_UϮ2 (g^7i!@F%I{!M;? @F%I{!M;? ȿ!SC׬qj.ƪ(фq\Rn'rѴjT~D7yKd&$IF}`x9Z(((&iSH8dr;Yg}֗6ꓕbA PүO G2m^?V? ]Cشk͹&L8MiWSĒç4H2A<%i>i)1]J .ȥ@RH.uy=͏?41KR~7Տ?L6d]Rd:399SLV=6M5Ңg9;J|:$$R(dtA"&'[fI'pw@P;Y~,οGo5oc+8' Iue6m4VڽĒ#IJ@L 'bx^FAlU ߓcWgN,`IQ&>lmo"PͥLA`,$8}@? AZ|-v+#W(UےX+GPym8~2v#֋;[i^HdXŇcɥkW8y'bcI'ڠ#ggm4}r<_~<_~>}@?m\?ƀ/W./W..OGo'O 'hKˉUx$IZu^DJ)t,v L%mn,6Iu`BhT᳉aiI4E ds@zX3tyzX3t}r>}@?^?V? ]^?V? ]m\?Ə.O@Տ?GՏ?Go'O 'cchm4^}"}BMJ[ibfuHd$+y;{xbBPrIuR=FoCŔyĄc">(gm18x]1$O\{sW ( ( &g%hs0 sH$gzUȓS}1u,q'@(aB+FPֺ<j\S<"-IO$]k VݕAܕRZjɨ[hrI??tLd)Kt jw` R\;J"?uuŶkvo[\M9|Tz q$9DR ʎiGv&eyEod] 2p=~ƃ"Ybhpclg.A 둂hd-&UP! 9y%u)XR1p @ヒ3HvnY KN]5F0b _Nv]H4?ٚYa;d2љr85RеkYa&*~dhxEh'(Akwk-u+gKskouvD0,TdW2%mIP0π<" {hy$1̲["_H6? j.%mm E{\Ʋ 0@f7uWKbx!g"1I&>ZI9 t @FkJ6ѷŎL)?ߓ@5SDQ~W'yS֭OL~Ouw;_Rp)' zpjbu-<ڀ43UdV#o5q,$&Ya/v@10H.Оvl͵p=hwH"o;H6ݢ)vg9ǦkvlN[9' $;W@Đ v\W?R%C#?lHφXY㹌W 1(A硧]7Wdk{rTW=Ic9WY-J+ܰԖf|NO!I5Y-= ]C* yNyd˦:֟q$CQh\'1I#WWPCv (QWMnGk9Y.V8¯]^!!%25uQ-rsvg GvIvnB ϬjV>Et#WE29T6Jy;@*x(98OJTlveSA3 "$ 39wciؽHcju@ŎA]ulc6Q[iQ# vFiT6n\gŘ+moXndU6 Fͨ  6ڟN'*L-Gn l,ʥO'Lj.%M,J3j~mB:Fd@K1 C1=sk˳jws!!aʶW 9kj7RΚS-PO_H `@=ìmp?Q%fʟ0m_*$:הʭk|]dG$dҫJDLi"ύܲQp1-^I>\R',4lTh.5Q$ʶĶv'q9P;$XTVaQ i],A"2sGS% LRcgڢoil 8cX>#&} w[?u{Y ZH,M[x|aBfLAbWqcW${}og+}Of]Kvef;UTF#͞[q0 d]A.t{a))9n$t%#4l``;uچ3W5oh_H[h!ҘٞE@Bp ǘIګ- HĖ]*,eʱ FZ_ش6 *Kgvw"ٰ.U, ^{,,y!"2 [AnM^K}Lh~}ܰ,r ?w^r_ ^ CN{л̞h\N3VzAVr ڴv·3vC:bx# A9}~{YR3u< ";FIʇMN @3+joK eG#@鎠u9H庹IG8)7'4cH6m$C"t>if]Xd:;JWku!B G1a?quj2iɪe<gb49 H}V!i؋wLcvpYN9%Jax8CHɯ+eo\KK4[(BL0'$.ޡj*y J-G&,!XF )w@nUB`]jƪPH`kQ@\6$I 3jṎ8!q;?n>!{R4 7&dm2Syқ+E2<8,?6*EmfY@NErr@CZhbRm%3}$WE012†m_uw.Ֆe8ikvlp\*2]Y4&YʮI|}09+mm /*8eg-\ăqHPy E5 X,K){;1b(M(~|1A[[;멯sp-Ę;B],9r ; $zMM`?dx#aϖ0\;d `2`ݤa O$.bf0ywumyl{cw%,/'He[ U^P6N=?hVY;. /%$}JZባxgkzL *1'AbפiDVDz>##@8Qp:o24, )EP12/UKq"\J97IN2N$HFHlV<U9ؐ%7&E'fJeXsYnKYoue9۔8C1T$Y4:n煒I&v',Bb5VYZEz!ё/޶eceY]`N aH[;kƂ(//p6me@ j{mom{syp`K|ϱ|@Q٣Nרj]%ZԠI}EԮ<*pWbLqh&?&&bbǼF)T0FM b/.Q[ׂf <gfD$τbJ,*{] ;}.ũyǕvjHfVDf2(Uf Km!ӛGm< y o70)[،UpT# 5I yspݩxfd84}erwyܗntFF Yai*I8EE OF|t$}Ti1OR88wq3*I!mպ]Ҫ62bnxe {X'K*C;A' j,$2 eIc/ca$& N}e X F@AIKAo8AcXـ3@3zTJ?}=?]0?U iK<-뵿Z[ iK]/ͯE!B)nФ?z k|/%44יM\վ}/M?M?W5oa_KOO4&M\[%-df2|xg#ק| XmdE #v A㤞 f첬LJntu^ GRo%DkT,i.A<8sG-jrrm#2eP9WsC?[Ok;I +[+o֎=4(QEQEQEg趭 ?%WmZQEQEQEU츍ܗ =g`> E#A8W @{+*Oo/8\]8pBoOZڪ3jiĐ 3P}zAl{]|qghpgD:5C.FFH+FBssljߡ4jߡ4uQ+IKM̡H7c=y<h t$sojߡ5 kФ[\9 G!>9|~b]NH5Xc!G$Hĺ/Anеɸ ;B@ryY$SkL8Cw6Ŷmq+" \2ZXOXy72yc!$$rh9."%#"Y*{)*՝^FΊU2R;TW:Arm v&vHO@ uu &&5+IrHB#WvNN{ڇڇWV) JFP p#=s8iڤI<%\ lq< C@?ƏC@?ƀ3. =D= gDI.QVZl|k.m1S n&X++(yY)ٷvӌuJkИ#[\e۲M89$c"9|sԓD̋3DķG1P2H @SvKmnm庐.6U,ГߜHR6źkqimt ,7p|,]e( XϣP1IZ5 =;U@S9'_"H\4NUz`fIo 8 9A-f*ieYę8*n7Q7goc/Ly g `'9?Ch?ChY#Rђw %~mVW1ɺue9}Z`cUBr~s6 5nu]TxQ`;fOi pv|NzPXwW-@;;sUopI&Z"f*˨36 d> nE4+2*vŬZ+;PITdAS:-Ɛ&} әdrdٙ/9Ҧ&{iOhVp31P7(<1S:զ32 aA ~.AD$ݴp$O(-⻠m{>tT,:I}z\Ģ521ۺ5 ,8-Y|Gk )ь(>axpi˯B mrf\0`)]17x,C v\V-m$h 3w(6Gm҈ek"ڪw0/#z'R?AiO2mmϘߺgn׮j!o%}+\n|Ϝ 5ì$9Q)hC%PH#PAQgK_anAJVe2B䳇2t?-(Me,U[F@8Lྒ4%_6#4Lȃ /V/.%wWrUKVmTRK_co?Ch?Chy[<_|-ڇڇn>v?n7W; 7G}G}@ϝ}~}~bB[mbf>\䒥qֵ*:Iqos JHC$xuPEW֭:0;c ׂjQEQEQElp 󦈀B Ƅ$2Tu p3ҵ?O]SEhVMm/oI" y{`+i;Д֫wn񝤕`d+@F?^1ζ>}͜hwͷkYO<0ru+庿o đH #80VTW y5jv[H#xslpY9$N0%HPUUnRGfx.!YA# F dem9!jeԭ#m)nneKn୲CH>g2H~@3גZiPYmhq-r͕*%9U;UA bOc40 t&kBG F-)hշ$$*`+imRKI..m[n Y 1/ÕÉH ֹ[K$qt&͹GEayf@5/9-EGyyH?"AK dTuqܳ˗i'(!2WlBݜO B;{AE"cn** A-vS^C=հK$䌐HrMp: mk,pAl_'<[ܫo& A/ÂH8`>rrlbN>BqkAcb0}6]JNteMfdKyf'r|fw?˸Hlޛ[95EP_4 & ngUף;rQH1eI( YerxKif(cI^K7 BLM0F Xt`md,[K{oqI Fo`(C&7F2*ݥbn񤀬z`;,jaD32@BXĄݼ1l-Z;9kZC]ͳw͆F#7^{R{[UHHnrÒb?v >e 7Pssympo.&U.[.=-s7qpGdApWfUVm vy G5gZ.Z`2J3e'N-O&ZX~NC$v}nfF3B$ B#xb̈{W<&SW|;݅"2?,*$`dI6>!iRYwoE9ػ𫑒v 6lPۣУ.' 9'ȉn b)#2$`F ^/^KR8WEӯm.Aw*{~VVG C!9!Ce uēb$ʡY#Vp@"'HS!:8-gKy˅a]bfbmȭ嶟;i2HOv,mDƢMd/7%rwP;jzdѯ% +Gp1 $(X$#;rI ~`Gh]j7<2}N\h ^j<ؘ,H<|vOE$0i:Lwo0bC rBa_wewΕIqe+]< %Ż6nwTVU$v%52,5 K71$}&6(XB- *,F2c&c4gyiwG ꑋV|EFETUGLeUXPgDdg0ܬ|GntKLs|5ayem*+!R6<|z{oZ\E$g4f3ݕ=Y]P(H7#Y }][]bU% `g|B y"VK/8Šr8<%l=moNH㑮,H,T:|fGӚ9`IF ^6\oc34k\Xow²y-#]C-G/~^5 R9e8nݲYݪ9Nr1I%rh 6g Hs܀FIeZ;ȵ+e|!YuSyH_4 N\wq̖4TLte0tڡF?>z ̠sjџ:_q=[fpH#=y5oMq$fvU2dK rXn'nnɭo#4jLM4A } qq]7f1Z 8\# rF sJ)T9l%ez/۵-&a9BF # fX5˷evea$[dwMyWl'>ɮ?f\d$Hu=8oخȱ\Zܲ*J~V\Nyqկl:\Ħ `&02rWhehەCT=Bxj&ɮu5mi!aDps)pݚĽK99%): I0ٛ.I$T}ݮXڪjl&PJs*F}ó ͩM/[HpB$, ,yeAPxT´)[ɟYs%I JbmѰ%;W '{;6ԖDIY0{qq+ݳDV,;Heq*.I`͕1=nQ`v;AR dKwvj7ӊ[_$Ac"y}\`y~\|;7s!Z4/6]ppmy1F:sF6Fwb?ysWg%Z[C,ӗPY>x DH8L1pq[s:/o* 8e{q Ȭ 1$ v$SVH5y$$()=^1THp3E+ʢqGqsV,H +Bi;0hw#JKmb"w\Da)c'm(W~d Oϙa=&h)*]|1~ގ5mEf(r#v lv,O~vۨ6Ɠ~@BAPaK%̲< YPc/$L¼o#wd`lXDдuwvEktUUdڋDl[-A85^"b?w흶I'hZ4` ԝ0 5;G -@H.pF07 @[# oaEo-͵ė By%saD8i) ѤU-56kac:#e%'V*Gs2|܏+H|yH#8I䜌NƯam[[,\Eqqу]fg V#8t/jl?1nQ@(jD[GqC ${H4O,8Գ15+wUB\y+bDbNY$~( h 3ԕk;o0ۣ܍%>I9VyEŴaX1K!ԩ$ Cs^{KȢӬX  3HSbFWbV 1ulc-E< 5}t'eW"Bvm-]tZyVe!VRqFpGrt&FtEn-cpH% bҸ9<#_!D?H?9h>}C!C-]Oho*YB`w63$NfߡM-V}Bm.guqC˅W9[p54 O#*XRIdgPQdjy PAh~ϫef{7y9ʫuY]/.`Z)krR8հeFv-c˚o&[HdkUBoMiV4lG v|4ZMΰ Wt;4y(~`$*aA-G9-G5xVHCB^ؖS!~c Qw+@GJy̲ΆAkx%y~TdX$ 6FMmcvvK-EI~yTqfvgye$mAWXd-̅ܦU(r_% |T Ğ9o|F8͸]8Tm|Dd_פt-KA6J>22=?m^qțbMlf.9 qBxrCV~oq"Kyawsr@sH5:A»g 2jmpXh 1FBVeuw l+|suBpRF,  eYT; טgh#ĥH,2p]^kRRYvC$cC)G`0M;iydk*yq!+=uO x]c w 0K|B8Uyħ aAmQbT5NxX[R&e3:t R:W_ol^UdnUQKCYcUUXŒHR%Jg[}RXcH&D[t  ;B-6!c-tNJ $eqȓipn 2lĘB"}8$0rxP+a nVoGc̗ {p:TZ.(i7Jl9|˅1xJvpۦ0 rۤ (<O#YذWiTb3ЎA#8oo4x) C)I!^<9u%WvSf&[epv9!- o`ޙª-w|WBa߷cT 0>dAg&&Q+*%I;P -,,np;`q*Ưa vef5 я2,0 yO#@QEBIKQ]@{q@ 6[[%v0r:3`z`,e7%̣H`?#Wo쭭xm㍾ԣ*֨٦3>hʜ֛֞!O/Z}Z 8Poip5:٥9_ho4^jڣ5خ$7fcSnV)I<Fӛ'AoA藭㿴.gt6ػG99ܸ!WYoF#G,3\X%%u-oyQ}W]3F{vդPQEQEQEV~!-SZЬ?BZuOLx6% 1G=>bF0,L88ORiɢx)dE*!;}g53H$$+,վNAe¦sOZY+Sc~"u `YIܸx$ g隷L(HR2#FgO#d*y.dP298`I>߸M<<`rs؉ #_!D?H?9h>}C!C4)H26$89=I@Vg#W`۰Ӵ\WPGLס.!i.6i6P78#V)r4lѶ$d4;*:(&2u8@8=3 ZMג$i |H-8jL1FeYJ)TpH~BEP}?~%Bz?m^qo@dwn裑QFr*@9 U( *O#}%Yzqv|Va1:4ȥ zZe(URr C }B,ԷQ`K(9`dq9( ?s^rS5Hk>6,U%#}4?s^rQ!=3?@f9xE))I3("1a0u-&(6a}DUTG"?\gdA8bE2xmʡ*q<:3PG#FΊnBFJpHO Or5aPR[ǂN8dӸw( F &@ cxd9u}M0HiK$AJ04Pt05&.C˝U/BCV4S0;ӟQR?{,^B"A8'w o'4sPmc D' ⭈mづd{VMo0&9qF Vb8xM4 B:^+-e)!A`2;<>aCy- tx/4L 8dWAQx|B (3WT~!+}sPZP"Oz[vєNyf,Rh\-.r H0Q^Tں ?ZwPJG8X0@hkkq\D= uO"*żb>c BsG5-cM]KIjFIV|'UN9gq%ز+8*Fy UkxaXb"K@nT?*^*oZPۯ7׿ VMcuUEdok{*khHe `q{TnT?*( ƭĶoPH;Y`vMm vhgY< MdOFU:og-k=n$H[h,9 lgcQ-ks%̑粖#B4+TPttw6EIbؘ!_]⣎ůi,z~J A?6q+AW㶌!Ks1cZ*J%s˵=;Qx683a#Pv@4\4T<'͇`e8#x|kEch)| [7,F1\vf(((((((((((((((((((((((((((((((((endstream endobj 1462 0 obj << /Filter /FlateDecode /Length 3740 >> stream x[Mo#7W `g,,6aw9hlXHrEeYeDjX,cu^NDnO9H'v򏋓oJo'^Ň9BӱnOu?=11z^vvuyzO'73⯍s %!vW9Km:wtI5;{K4ݙ b9+^i=4n% ,<\grֳUzK-ֳ|Ck}X,uj~`UiAv׋]XTūݚf9]̖u0b^ԋhXWi./ŗ7pL){.pf5c[jlV bXW'Vrn5[]fo̯g7Rf?i9ze{51Ϋ>ĉ rk,l݉N`i~b'uzbRetjӉ:ޙ>XHw`Q2)[H0HTPQJGt_|=M@0$M$Mc/#t]oD ډ6~Cv[{Ȓc*BUHV1RHj "kU"aZ8ƪ+kSP:.81VJ1SH/MWIN.YPX P vgt>ˇ_*FKdG`Urf6-c fѩm*AU"Kފ)e[U"`JZTLUkc/1Ǯ]guS d:]dD2%p%xdJ%\XDL)KK0"B`+1O0LL)~oS#a &d-!*CRΥ *Mn=pR!w֨P=R)!uP扐G=F6rI^g&%lڳEGC1Svo5FOP2)ry[k11EMi|jle (t`#CjMuVΤK2xV*X`GNd5\o/!в&Ku/>FjG]`C"F~<~X.f@t{щn֫L\ϑ N0펿6dxS/sd2'6d ?< v9kTlܳY.w9reʜu$I[d=2'2 C̉TWeN>У9h^>Vx2g]ʩ[bMo̬Ol6tfV|lV#2)CgL21A>B;"%%V(NTfGvJEHR R)SjppT<2%-~Lt3 xX'KsT(iQb %-JQҢS)s8%!Q<6#6FP܏6_Q}tWcj*MJSQ`&JH)&Ԝ糀{o<ݣv}R1h%-R\ZF꛱h1W 6  V̅U]V"v1‹[!/(|b;4V{qd!r̜t }as?`]~ӶӔ )l#MN/z KIKe; pW:fD4UbC&V!#rȠ4Uߕyr2A~( ~9/RNH=JZ:aib]47Y2FJ͔)5y#-HJc)UIYϹJ:F+Ge1)3HK#1iiEt{1BG~p5bi IynHHOT}N/|HfSb߿wCϠ1M?_Iq(fqNRQgYmJ\ Lc[qѺE7_\WjXs櫬Goܒ{R׋,|wVUq} i߾Z9UٳLΛC1o] 2"uspB (Oc z\1Fj|Ѿ7fvG]*6jВ6}ﻏ3+=cA8 #3q%7l#B'kY6V)endstream endobj 1463 0 obj << /Filter /FlateDecode /Length 8442 >> stream x[oqǁBÖ4.--ƚ`.ϽU1`wVdTYJ ,qbd;Nec)n,-9KFu, ?yK-<`^O8;KsGe JXN"k؜%}Glj3^ug{ފ}|XeD%R?>=lxf .,he0giXF`鄛a5#<nL#VZW&dnfaE^xa=Oguy+xDKqaMCs4˘֪3ל ]idbfK`Aŷ[\+6zi%תVl[ŵeeZŵ'23~ผ&6d}f/~1KJV,{mq`MgVGŖvfb CF\ :7OW)WOWgV~AipqwqCmFuW0V2tUx{:= x֎ u-Njû9>xyqs%ri Lg}sχ?]?=^3w 8E(,wa~.;L?VFe 2xK7s+r%h +VePqJE"bJ3+^n\=ح@%WI L%W`9gըR˹ru`[rZŸ|r8,TUTgj 7*|{vZlLV̵U5aL"ƢFN5PQ9-`kZՁ rF5Y-:=s }s giqb2W'`zsbnW%9\4 z)Ba,/)D}N%:OϥoZJNQr0WrQ4RrN\B\f3JNQr+ݾ\\Jzv232NԼqu^ɠ|⋨Nе khrJ;R@Tptb /B[!gpM9kbr* ˩ EQU:}tOW*T%u1'$ UPa  *`h/P!aU1T&^tQgg T[PcaAS*8e眜Q>¨fb1 R72̾/)N`P`5߰ ,JS`.+^NUqXTWXyI]"VĢl#̸ sYUtDE""Qa)3UZt!kOiv vE$$t>|ا!!V+ޏ!/2XzG,"RW8\^T~^Qëx)RBx[<fH<*,Z<šţ*jh(4 '#9ϣ (,Ex qoռ[ HP3GA GAPxDM.M:.$fAR|eT N3DE T"g8 e" |"8DE(DTWD%.D  $r4f(\ʧ88888 (LRTǨNXs]QQ17&0PeO<@eDŰ78@:d[9? 3GO14' < nqf@_5x*C2O'SE1,j̃ S E_ur!άs ^j%J5 .CQ}v)ߟ{ gCagr<{>k?)qJ;kb)j\$$S,ifE%R:ɋ/-,)’laHLT$G4xv/*Ǝ딏5ҍf&\vQ٪`'KI9 &piqp&|-x')N9*$ư)'ryTADEL4E݅T4T$R4M+U4}n +]㸩Mلn4 M=!SN QKhLeXefeR[LjX*$VRLUwZcS zsF_8-#oh_EarEerErI;uEinn^$)V]([ՔҝJ*lfі/*/KЖEETX,V_D5 Ib"JLqdw8H/f{x" 0%D|T){-ڍt$Y7&ƹQ]lI-_8 *"Y/&@\D0E[X"Zܛ$EMJwERAʽ/K%FIY{B"BD$}]K-Y7DURd+)`*?q g]T9J,TNE; wvϩ,5&S%H079atӒ4JTqM ቊ̨"˘a*u4 Gj*wq#]!T؄ފ*6 _5"qF rRT 1LTu HQ! J_ UPTf$UBI$^OWa6]T#JH[oTErU]xPՕ UƉS`aS`d5*UN`x[ªxX),8fa%VJjqc_\MKJq< RDEPDѪh%Q 6 KvJ SR'T$T2)zi&覔')5)+3:+3ʸ 25T1\N@;@ ]OQ7Be[ej::}qZt& {OER OF{< pHّ)V$O 򃩟|/3U& X7 *x<ytj辛Z]ɾf,* WXJ2Hy;fe ),,NN!csa\WyRx;WEOL^mAZ 1b0.hOx-WXo7I uXSA W"!*Z=qAUͅ+U8e-XHj .1#="?y2GQ;+:Z#GxZ{cGkص*ZqvݔGC@#V'{k"9 8depC҈gel8,T|fBs&91<ĵcijEcL%8],BP=NP4FaT'bF2&m9+(ƒA)'h&04.6hɏQA`oL|; pza >aLt yr^(++DcÄ M_6(k0q7$Ȯ,BIGuLI_ Ƌiw5JR[$\Y|u`GuC,\}jZJ մVꈫZL9gitҭVjtW+Vmz´zU7 0(bwK0 nP H?b +օ'Ҷ>%[k0[uzm兘Ut޴kkxX|+Qۊ-_K,Wxod|v^n& (K8x`y~tw)# aEи 3>`aF psr;5Gt&zԋ{u?|׆n/4fXNnuNBwwPFCF{n`.+ƘJoG? L'!wBQn]C?g[}~< 8.ŁVtpOD/^#b/a0 M'ՖxB s'8Q7zoH⋘G5wendstream endobj 1464 0 obj << /Filter /FlateDecode /Length 4545 >> stream xZY\ّ~_2/ x xlJ˛wW88׷w׻{vw߶?~v}ooD"b*KڄZ&Pq6/8Z]|Ҽлi~^-'&FKM|e)5lrH_wyż7~%s2_+x%Ox˓M.,[Bĉ$%NxP,<@$ԄA^:Ь'gx{Jõ! B"5d4͆T U1JeBI#VIpPC4pSjhT"IEݖ6k1՜8k'mT!|'+C?fu8)KNezA tp0P\'/D<nޔ*򂫓A|n79n*LRqrnh*,pR g"bwgس /4x }!|U̐E5yS2eHA-% jhcF7Ĕg쳴<[ ŠRN2L-ôҙ9fDjfͥ6zlI$3P\ 1ZHPϜؙygffJ]figĵ5gz-sMACecӠP8TW yv}XMCc̴ka5!%Rs&D\I]vfa.N@ΈV=A09ǎL&cG$U[tS&cGJy$11vؕ uժ):NHj'ݡ#z2\L'$8K3FЍrl.Bf5QQCwgG%ؑ} jĬ.㙣;8zz5+#^^y`Н)h$!7Ql!Pg'N0L el>St1, ,>&0)3dnʙ}:?|y|sGÑᆣ7L"@|~a#׈oEjjQw23j 35-lT1C:Z4Зgbkz jTB\I=N@B=I mfkذfikۣ62Uđ-6y"t~r?ٖ#WG ;N1NOf"pY)Qz"J$TD.rK/IMk% Hd#+9 o*$_(XPDe^ AWZ-aj2!H<ǾA2)%9$'YYJ d@k t-B̒SY\H~SO/|#hwYQ|z1H(LUAE/QQtW<kOo93~ߦ3U 328~BwUr PzUheK VƅIx_I~"N#J--D L1L)`[2u(Q+.~vιr8s DE0 աdrğ ,yFi Q:v2|^K4 k@m W[c#|c$3Ӌwy *XɽY&"j?x~J~)8)BދJqpʆ60X 68n}<^|*׿/  myՉM'/ʤ*XΧv`TAXCϐ=rq{]RHmФ6O"lZ~Sw2.H3*y?1قi R_c01K PpD:ev/Ug$αA%:Xq@xi_d@@Jx ItC.߆ LaMݙ5#R/}VC㈎W۳I=.W7#J܏dCnP٣Ly@%pVР=hӀ\Z*t[x3.]0^g2Svi&j rm&;(~!pה+gL 9caW&|IԐjں^RkOϞ_%^D'/fggUlм愿UmQ~3"+/ q:B%e0dK0zf}r -)H@0*@ GO"8yKx6T{K83*JJ?SA)ۀbdJ3TݐPx9BuB%:Az8%`#VDކji ĐV txpUHOq;Xdh@II7Z2&dLY€!W#~@U)צ$1Tn*ZS <> *qW R!7ժIrUYD!UII&TZlȠ؇5*c1jxI ĶH/K[u*iz6> pfVF{ֲxADґ4U(a1N;< ' 9 (f}n%Dž^}R3:{ΣEE%,@e@yvh+:GX0\ohٔZrd+S6yG)5ȳKP[pQ1e f4CfTA;KPCč$JdUngʹ5e*g{_m`yIwM ,2,gt| 2Ϫs#n#`x{%T.QTo9tb8Lz1Df C=`VR(ҿsgkۡL&!]wPlÐ˰Iqp\,ټL;B Y<9pבjpvt @pEF2zZ>$nP=a=& bCj3M}JV˧&mF@Jd [(}z`M"7N@ѦQI͕tC^\$[REP]qp/,}O5 gzK17LޅE( tJF 9F;8`kL/B=pGG !s#\ߛ!9sT&2Buag=Yܜ>ED`wMmQ{N)" sU/B vS0sǘJftاXaqiV"Th]' ÐL{kk~ % ʚFŗP{CfFA{'79TMa1pE@(;'.jߛ¢TJ:9%T`a -O#:+aį|%m`F]{NNv"4Pe9ġe),auX%t;A-!18E^P.hy/D.a67]@mP5&%+׹"4ҟC`@|| Q=i}!ĵNd Tv;r)T;:.{@/u}=K/B%+'T `Ӑ%ރw'XRrf'\ ިӫo|+_׻6y 7;hג]~>f(ჽ֗ﶽp{xx>}ݿÑ믰}@?^w.ҷ?=-`"xx7O;r q:/0PۏH;ľypxQ|u;^×Nۇ`񸿽y:<'{ ݿ/2RV<$ˣ}tgƌ5 æi o?7z&?T NkHEIT(Ae~a4Jv~fFG<~?~<<OP3O7O7wr֯ͩ)Y=a|.Ǎ4/D+)E#Mx:endstream endobj 1465 0 obj << /Filter /FlateDecode /Length 3085 >> stream x\n}WN_o"@ zoAXbG#{7Mɡv`#FUiͺ*V{kܽ֯Ý͟ޯ_vo>C?-3:Jxwuw߭?w\`7s?YlJj0ߘ^a \-DbXOϗ(&g]@\^?0TcS`E+G tܟwînvye'ϏeLqҟ ə;B:3.wHDfO)51<WL肜F؈)] Zic-;e J.:'! d,*9sQfM ˼:*rk^\5!9˚$A3 1II>pQZ@c[  nֳ#[cTF"OR|fxr_8,ICDHpp`jM 35E<&Q$ k_+L=_Cwz{yح?QswyOo*w w]:W%W'"T,rq]O˽Fd1,2Ǎ60fYmaŗ#Gr%0@V+"n-4\ "`$Zb~xZzBiWB-ZQ8n ]bP.ցF8~y~=*nUDrcP>.IԨ"J, 8,<SF1GR`bfsXeuqcjBJBsѿ>0>p/]8T-B;q".`% D0hkDς,BR L2k6)҈\e%K T%qeo2KwЌJ$R%v"Pqz^.Nւ'[p),MlI/3E@%&ɱ]Ob(Ip\KMi\82Ctߣm xۥ!j|$hG?\ive#Y sjDq@4<} )/qϏC޲!bﱘt'_<|LyYrfR0'ch"phoch)Z"$܀Zl]B9$lfx dv$|lی^`076Wy^u@OՋsSjA1` k1H]mo8p{o5:`C Wy4 omüMAQi@`S*Bڪ80qMJ 9q ud#bv)d՞b8<nU6&^+ QҚ$[l'ild՚.hCԘb4,[Ghd,[ P!Vd,Uz gO%Z$TDsTOӸtmQ8U|lѡvgMWt RJ9lnȜY>TG@Y*]ލ!c=OgiKzk+0xjkj g?rBEKG*5YbR,E!oN,)UpBU&oRt|"jUONB]Zt','gxYhJLAcٴ+T,+(Q4RXu9E c)j[Tp[57Gu<:ϕ,#ff5*j:zz5 Dh y,1%Nw4Nj&uiJ&0]M\?gC Zm+)*Be g52:Mt0lu#QcƄu`ms(> stream xFNimbusSanL-Regu;m  BR3kfNްc1J^_mh x<ݳ<#m uwvj_5_d( Jpendstream endobj 1467 0 obj << /Type /ObjStm /Length 2365 /Filter /FlateDecode /N 96 /First 983 >> stream x[ˮ$5_;CBHX X̀L/F4 sa7NeZ-nΓxыM兔!yK\yJX{'_7^ac6T>g῵Eq%Ep+-3q^d̜1,H`)N+jÃ, 6^x7yWdX|Fx11iY= o/η&U(Ȧ WV|ʋ/(fz BeXG_{xC+.(qSz2Jspi})ZП(5΀WbZ9NT5뉕5뉗F,!#-m( 3WX⑭%ihh )~[SomiF7L8ͱޒIfTxͱ%-.4I* O紕4ce-bӵIT=`Evq%94Yzb\(4A>hӃ6.0/5->׻wpo?_i|UoK m!Kp~w>Z5χ׆(Ϯ %LJ_})o޿C-t(&^nE.vNP+ μ:b,zVF!L9p pD_Vz6ھG8P ~ #ZSD>Wh{ӄ,/!'0:{*A TjAF'5s|Tg/<O9_Hޟ@3BvGOh*7NvI16Vw:E+Uj"Z偧́%T2 l7ds+Fwh pH׆ۚP?vr9/dĽChpK :oxF{aQE<ЁkN .3tfgE#G":(8gt'ƈ>ƉU(Tp^~M~ `4dKʏUgsL| ]'N02ZʃscaRr$a!3_"9"2;d'F j== t 4=-[!_ js˰D"7L tS*?qҭ[Uve''#ex+ pS2Kmo"!֝MSYsXՕ.% [cԣi\nܢ3ʻ}wɱkrZ1{gثaE;:yW;@8z@"3eeWɕΦW~#}5( *~~AT`΃FE Cgkzn`b5y'=С@ X7 endstream endobj 1564 0 obj << /Filter /FlateDecode /Length 3300 >> stream x]M |_Y .W vf;h>Vg!$|_fGwk>|qOo_w7?R+T[qՙbܦn7Oo8 _s׿:.8م3fk9U_M* T_ /wCvNp87 vx+cG9g2|aS{yZC/N!H9F|zWhٸM2II'a-}Qf1.(7,EY0SfY1l"w I `-.KaFQ윂]}8&U k09|I:3vYNǢ BX~' d6Rm); #EY?=Tx娵蕷,EYe@ˆoASekRKb:5.3nPx̠EDX iѭÇ;]kimxIņ&*TP2=Gn-Bx%虁K״bA g2cB^ۏfǽJn9(7CԲvߦpcɾv1%%wá;Z=l槡QiZԽ.4,ƹ<ʾ`e+iPȭ."s"*6MvoSށŢC({eRؚ J2n^-J S-t*D\,E-?zW_(X!ݬ'4s 9;(U61jRam|^^a-N>1|GأL8k#_6Tw9R|jfM)gT\ ~ZpjxrvIakCoaJhmzCT1h &tᠻm e%GEnoICx3hl]c^!ͰEuR,T3лпjIE8&RҾ$Pfʦ (3%e_~$U| Qx +* RVX%TYyrd )9IjX~I8tfªXŖĵxA Ȁ5/+n_qFUe*"b/ՏqҕZ7k_`smWRC̊ ^+t=me^)r`=F]@>I\b>M)SNN!L(hAEaȳ(%9<uR:PfIds3$+ (w"X@>貜f,%]Aʡޚ;P92KR(X&;L!rE^Y/܍e9+qޡ/E)t@W;eXNJ%d@=)yZP';̲:tYJlI]%bE+4tKR'ГJ@-U|p2@.`e*t2R65&gʏj0): ćqR9lDzO?˧%'>:MϨ@j:^z ҍnhc`nHI㏎3myDDL2;A` LUzG˽U>,fZqpeRT-yԛn91SKeaO>ʓ5svYHs&XVc$%]q= _1Q1|Jƅ.%kqE# Ad̈́^[rR8"` ʴ<M ebg+;cL4,ɒN=ĸx-,Sw4 \eI8Je*AT.f 頬X>r)b"֣dOwq&P ^c? 5S8lu.K=[BơHm d}ƒn6آg̉)ė7sASCY2Zqߊ TtS5=wxTrlOqfA=}5`G9H@a:VE]b:uN!ץrnMɅamdQr@})ƥEeKmֺo_C`ubT~D.ci|Z߿W`bย+ h8I #ei,i2soIR0Ƨ59+s,tqUter7teK!FQ@ioũr0XUWs4#5+s\aGѹy̑rL9l 7\OԲ$ N!aTE)ɨiEsʰu?,J5nxDl *}Lؖ>؂FLZ{,"{a$' Kg)jPӈ2G$2KR#@,tDRv :ЌJŔ 톇9٠,Cx gڀ.n~ҨýtVeh8--Bo& .tIeV.jC *Be9_m;hO.Ith^)nc)zڃz>n;KIJ^'Tvǻem~/YLݶyAf=m],m~ט)0 6+o+}t?tP^ei©V&UPEaIs`zמYg 8?gKNRL-JoƵ$r"fSxn-ܦoba՘s.6oG0t˷vBCֺ͑\>%endstream endobj 1565 0 obj << /Type /ObjStm /Length 2327 /Filter /FlateDecode /N 96 /First 983 >> stream x[M$ WI$EIa !K=1ց>ߧuSha')Եj:/f%V^tI؆xqUKՄcv??0zhcFmK)&Qo$MxI|Ò v-ɜETk#3 {̒"54" H&xi,[p7QfnF4Rp7U7ƇuΕ:ב7M鍎Sb-9G:hYwh6>LJwpo>?~*ߦY(Xap<62)|ѥkx05.ᙏCr}Ͽ??7qbVѡYtpM|tWIl':3p˦k'򁶞! ]]- P DzOxfz9эYj:eЌq*d݂O ':ٶLםoםy}4*O05hj/Zll Ғh2 "݉NC $hjgߊJՖKG Ti=;4X^0Jp\@Tg/;G,8uر]YOV3Y ai* Zdep|E(TFts}^K\4{6huP3nX&?܁N} @'ݠ!nyf\}V:;,;l@'W'D *%2g#Z흠Է:ذ.e?p݋nhr &Gj̭'iqCҝ ;]Y0NnF1@bVj-U1k9 ceȻ7/epUEvybfQyw[ehV B<[UdHV '9[NF6+pj]}/7yD?wn& #G@~؀R(ahhB][g{&4H"r!qVۭ SO)#:Gg ƘBc36;d,rY#5KeTy@ .(Wh֑= Y`6}N0V#.osj VpT4Z0\eECy6ƀLۺ35ˏ'ZDfB3d(g-m+W S3e;Э;8 N":2Oe=!X恲[0ہC puK Θf7gў&*JP&͉Bj*C`3'j-瀋pzrs qN,jp[!O. S  2L[tNncڀ<¯Lr1%(V:"'w[VF8V'뤉"\0Q[%Lt2 :-H0[':1M@+EX:a\k>_n ܏Y]kͶn}ﵕ]9).&75!Oбȸ~o1g5E.ܵߞzkj2hF~axbM%3"ݏ9r 0-Sz!5.:w߅"L32w?бuO]L8/;j%3ӯk` )K#" ԆGXy~J`%JBlWRLd=+7<- *{ u۱ ̭]۶0au=}خI0`\H|'6W:D%/Cendstream endobj 1662 0 obj << /Filter /FlateDecode /Length 3219 >> stream x\Ko _حԃ:@.97#֨-up()J dh_}]M>zog绯wncO֊1Vw{>ݧ?6>/~Y#'09_,7pӄd|*Tc rB5o*)5K(lB Oa_) ImXlu<e8)3x;ejw<-xlqq8΁x r~TPT*jBɺ,lXOumχedo#f0<m@SXqq9ha෈ wl]Xt燸 L]Gh F]aEB29RP&@D 0,G;}òJX`,hd/-һ`{RYjR|2JX51i8LɀfI#I#cb ;HQoKɬ4P!>>L(>]vgȲïq YF2}i٨!wDm~0fW.)x[{6-\~@9v/s?[.&RrD:Own<(Ta09 $51SgJ*KLRLVRF J\eIZKrikee  E{|/t6NGxGeu a˗7_0߼>on ŗGQu.XP E ϬH (Of1x0"EmH P;,E`έ̱Ed-L H!cʍg \g0ݤrb-H\ft|>?,6-]K:SgV0E@ *V2oA1Xj__V5ccbm06AC(#6avOC7? )0X_ޚv3桠|AC[2f:C`R1mfw,e:cf:2Ft ֑I8` si;)og< ƥƻDutkT0PѤ{ԒYzkg)K*(`K2 "l2 ,{qېw%voi85| _TפOrѝ+k!0P[yLǿj \ed1J:ib0Nz ѷo;aF:*i2qG /%(ޖ &M, `&&d$35rcأYXU@.րKluM%Pç,EY!}A'J:~<5YF A=|!/7 YFxg e;A19˜\.QO.%,td.2@2LQE` &.\a /l- Pa3FYm-nJs&Ɔ%+ۜc?uN)Tk̘'&dJʛ)vT4~S hKq"YL)OA{ܕԂ gtY: 9Iх8bU& g"qnG{t,(TsSO0!0ek)oUR)c)XLOsf꟣J;n>)]u> stream x[ˮ$9_V^/6FnlbʐFJh[ŕ-g}Nt->N|\Nffy*oDu^Z|E-)"eyQ Zxs>w͢#f3_gE^X[9z11R{-wq$/f17e=FQ>hi]: [^i:еY0y&#Z^hH'{J_l2uwR+ֵLZ[e׍fYʷj;ʚ0zYa-)-EKmz%<(15%Vbm-p.4bEMi؛gOG-~1 CΑ61#!m͓$-xђa{lD47y5O9O>]ӞdކiZtiғktNޣٙi&MҰ'-Ҳ'G i~W_+|Olߖ?%Z]֤V~ſ)o-o~o鸌ϓ9*X+gG֬+O|!ۿO7662Ms:02*ىhlU8X6VTp71y0;1fLlm0%g3|& |p]tf4z{LNbD_5j*SHHuUW 0I[ȩWڶu1A4BVY:U!Ot |tjĴv!*J\Du}msL,YRԐA5_ nSDL@pbcB@`0)2E8uZ@@Ar p`Q3B!krA@g tG:q :.:`@4 r:dm[ ꐰ#: TQxq4@h6 p ;N<@A!@BD> stream x\M# r_1G `T"@ ȡW;ӱ4Ҷ%5bOl"3߷˃?~?J?1GI>?6?[o>O~\`r^T3!څ?qg p Xz>fJt!lezQ[)݌χݿƷaz 麘7<_;o-0~lY'qgL.A6$ 9c83. d=6 <@L ٚ,s2HiXl|Eu^u=`YXj"t4h&Tf)e԰,)p"YƤa͒56Ȏ%ro$,u)·xN> ̬JClR~!Jɞ lVI̋TM-Mx!Se$ɨRNR`9׉IL̒S^ LO%#Pc̒.ӿw!HTE};#)D)Ǯ,AІؘD! 6TΛ`\t<@*2GhS\5[<@|*Ƈ,8Bܵ#5]l$7@&MB9 #rT;%j2ޮNK_!9]RX>e.} I@n q⩒7QU^>Kp3YOrq585x;.>[P/,)qقzwĴyUM6O]D<[l$o-b(Κrcj3_} p]*i^j9(=TW?4s-4*EbvkNr},se䈈Ⱥl}ݝG:"S1)ޛLw7<9/.l~]LW7Ln?Sp!]G|.?uT@>7K[]2ɭ vߞBm&ܚ^ qrغ NuwuUȧyy3ұ<\AJy* dHGyy)8̱v{u}qr<˨S%jK(G@#S5BZrMYzSԌ^P}s` ,sY"ֱcOr#Hs0`[-UI"qiuĩ(g \ڻn2rD\RYJc` l!o25i8)V2+-D &z>HEܓ*鶁p>}Uؓ4 }lii: OM2P^G-jK&PR]Gj5J<œ,}[zjRq߶+_Xᕞ]ujg`UOLg%GM`od* T 6PE!JmKnSE'YjTTɂY^j]zL]/I|"rM[e+y}:ܨ;G%o!9L"j:L]R%F**^7x?L} *kƚhD:v[A8o|r\TTW<_0M2ÉYާ罜lwӡٶGPb$5?pSz0IO/+ y͞|*{IȴQE fi~\EЉuNAԔ%Im(I.S#-([o+Y? 3+N]6M9y| ,@9 6Ņ洶a2Tj }ykbrZspϦy^z/b!>i۟ij]uOv)l,VTa½'8m_^4x8[dBtTQLl u̱ry._mN4y2򸣰z̝kl#`bT^OGT?xĢY&RᎥ&Qyh͒ۢQ]}u^"I7_pu3 $6Հks$Hm4qvQca ꔑ25 {?:$R/\5H~t)#eR£͆>huZU߾"vFD<ϛ[8@j~iןOnkg:K:n̓-GD$vȘ;,o~],{(%յ[p0/ً;8nXsjuN2@&z+YBlڬ6= ob)X߭ߩԉtYdq}7E1Y[X h/QLXu^WOq o ˽(X- \ݙcfmoeu:ԋspyg@DhvWf6yȘ;xKYX'3L)HB߱v%`,_n;jwC.pG֐+9mS,!1@%p ׾EפX{Ȓ%{>peN[*e$1T'I"]HZ,̚ \䲓ʢS'YBLzKZ"e _# (]Hm2/ #ĺ2_vek|HjשԟeoѕG  x>I'Wn^@7:V3*K܀XF-]eendstream endobj 1761 0 obj << /Filter /FlateDecode /Length 2786 >> stream x\Ɏ|c7 s_4 |=7AbMqX]C#j댖 b"嫨X2g̳?ߞ<==xyR*Ogc<_NOnIJy7^痧aVڮ߿s <7o%Wrՠ*8t}h|92Bsog;Neβd<dRv17i(*De:j!{jD=~Lp jD~Kş6 BW`Lac3>{iv69G%֡ešV֐rahax DQ>J?0 +JbWHIE~ԧe0Vc1-GF^Of:%^&htޚk߼ I 9Q=Jf(#㓄4$\T%ٲn{3OR+OE07[Ͱ7 \:[7AdFƨ"maU+qg=\^HV,HVx0yoiyPhYd9Zm f>YHSi lUUΉim"@1T)x~ㅟp^e H79}96C2pdUƄFnY-q#p ܫ!]xJ 38MD-3H!AYFO5@Soeegy<-,1L@+NZYbwSYCЍ?vYSd21F%  {3#Dy`2&t{%Erq@2 ];9Cɘa%Y,U "!g:P9hj<$Ydd9b 5ȷI ^A}%x djY²G'XYdLT@u*8JUY$(U}7bWTugrޮS{wn_f[ +i q ]k'{(\=LJw? HMm&輚|!N05jQfCgYޮ{Um3ݰ&::7uQsceӜn 8>X5^A."xB/%u[0ɤU0#y^-n6/;:e8#ıåo3NPq m_A'$k Zg3QK*=$60Y8IADikg\@*wVQ"U*p*&e" J7y$|Ǘ q"KlCƪoV= odA^G#06),䳴0L!cZ 'TU# O`N35IN!YL_ aymթVP&d(Q^J4`S {W)ڃrITZ: ԸhU8Z`dYbڊXTQNnoQòKuGtg`5^@kCne)2&NY`QŬR  O2 KHIȦNPϤK)?:LIX.C4))AuX.:n(cR"&+fhN ,m/*[{fIM3YVe ,n8np">P~97PAUxm#ޢ wR7KYX5 ӁUHD8W&{:k(pL=I *cJ$uOZ*2d'ܖH~HpYg7RD\Ht֎Fṕңp+EAv,_RX.<ȓdyP0eZY=ாӁAQHLI=b5YV5|D\ҺԃpNy! N`M]aZ6$@9P g#2FJ5gr}"DY^V㉔8jP֍"^$3 e(}I2r7 f%Vz+EzƕEJijyK%4"pg|_f%9?Z"gyK܅⒞vVjI ~Yyo{V5wb> WC2]Xh(KV,J,Q1pxRO`Lf5(+fQd]&K@y&fG汀e9Uuy=w](xFᵐ,9~qڴj޺)xd}֠56/QOZs{LB(PPJ,ysJ@> stream x[Ɏ%+lF2A$؞aadȣ^htכbE̒ѭ"{輈b(]iȒ.>jp.\6#d > ,hs~1FQmkYbˢ!\7[Ѿ6RtM-ɝyb;zk(jK#[ՓWR.cV|(^|.J4[z ɵnXf>7Dgk%v^I\\i+W^U) @} {6(#umIq,C)#A >W|DBIN,FINeF[w2{_;g䏙T)) ~j0XdoƓ+៟OAkc} j%7[M+DmR+*}k-> Kl#6v`i;.e_Iܦʒ [;x5fYN pG}_?Z|/6lr?3>xے<}ɌZq]\kE@UdՆ`eU bQiUUf'b {y@~Za无kz'&3LV'ZTtF7!9D|6mMH_J.mV NŪ!]ηI tԗjV;8:5~ApdD\v1j"@U5-^#+h:rAg@EfqG\ƴ":#6Ы);*XXM.Ws XD_@x<(ZCyKCQ?iukХ' ]N2Υ6T7ۧ$.1"tl{>  :"Ċ^Eu6P+!p/VR~4\̺݃&l\l! ;:%w>:5;wtmNv;Ѫ1} ƬWQj/'d~>W;`r@-0.v41v,LQr$Qo 0(r8a`vV T9xٱSlDN+]J#3Qp JX'W;)`o=sΩ_-:J(;8D|p$ǐKs%Պ(kP$K8f`35;urHNOpI ts&DmkXb00;sNDq#T5 Nfxy8Q܌|Kԍ󣀃"ŌgBuX.fטNĎb3WE۰ > stream x\ێ8_1݀͐,^$, 3 2VkMVF FtX7Gkܣ??}\8ojOL=~a+9gOǏO?~2up9ǿ<e2bB-+Z a}aZrś`t^®+x삀ϜKz켋&yn ̀=7r0%X;lcwN >4vO%͎߮ʍ& bIO 2K2̬ xNr1$( ˞ގp>P'u_&K풻4~+~&+Xju`3k7vc`\p ]9"~ ݳBuuc8aZ^:$ C1 dWʓ52$![sAuVI.([lg)S&_j,*M,S<">,O.|눊L,YegTPf{c/e$hQž$`l\@FEѓ-37cBMKldj3޵ר1QpES18#.}]#ǾBQf`[Tt_NݤP=ꎐM(Bc0$4w{oۦSĸn%QOɀ[o ]'0hJ}j۴L7{wr` l QVHv}dK7>)s5]Bg .1<fMɜqktI aqN2RlTWϸ\itwOi~T2Vazlh)qoª?|վb|}>Gk좨܋!2@+i0@y%M^ٖl`\tI!S<0 d=(˞i=V֖3/u8 W۵Duv^NBi s!,N)u>IhAeS>U4ďZ k:}뇓!,F=@׈Vpp{3_(x=bar qE[gk+ul,(z TeS0m3%(U,)jAEu櫩boQ!y  urckQHǦ$w&fՅԟZb ]tCۘ@۶Scf,  BΊ,3οc)j[mjzR.Y%eb9(x]:WR,%l07:cT6K %c1=kRM#U G hd*ӹ4L!UɔXur9a V̩SxPk0ew3{PIц,ew3"e.X:{'>!ns;ЁQK+n'.'+Tl،f:hl~6")۾2@ݏCc1! 'ӝ/ˑVleCI8}A_聄b B53`. PrF UYen< N>L4y2O),McFGIX 2wrDME(L: ݤB1W)M3@` TRMȥp9 ˸N^3D7Lԯ2#ad TyK6v*KL>ltuF@\B\g4Ĕ2srTl¹,WS9WlV4K>+ہ[$gh2K n[I\&Zk{QQWYt֭5 /A >jdz+XtYڑo/qlժ];QU͗C-ADC⿯ z o ]Zם2*eFXZ/QE;{]#,Dr,5,MFKNgVС܈Z nؚ ྰ*B{&S1l#"p_dLB0ߎxvػ瘝srtNuBJL&zM0D+RlzUNpPԹ*gQz~2?\WtkZ> stream x'NimbusRomNo9L-MediItal aO  psychQTZDI!a98+xc~Z'{N~bpZ{ώy"IAaIR_k8P%{dW`tkJk'gJlUjojuzݕ~0wXanx|yr~w:VY?Un=^irmrsktv{wpu:ָrSeyg8Pa/bD4*ltsyrvopvzxzryqsqnjp̳3 njmpplsy}~myaFu qy[gJP~>![Hlt``mɥ{mu]I!$842M巶 lp"`Mxv~FОȖn\gn~mglqsmS;4>|Y:pu|x. FԵǬw[ ~YbisȳwU\ ,xendstream endobj 1861 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 254 >> stream x NimbusSanL-ReguItalm  |R3fF{̯qZzvus'k|v~ϓ~\䳰Q/m zv}tsf|_uongazK {@hendstream endobj 1862 0 obj << /Filter /FlateDecode /Length 275 >> stream x?O0w TwZ(bm6AoQp{鼓$pNu4N婬(9MIkq|B >xY4I liXv}Wn=jWebYYYv^"`J )Jj9aYJaUfj۲!]:UU#pm.b?& !-Gg_zS$|+:IvK ~?endstream endobj 1863 0 obj << /Type /XRef /Length 639 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1864 /ID [<9df3d3b111bc4569ecf89fc8269203e0><3e25cee3c231deeea029b5588fa29ee8>] >> stream x;hTA{n6]A-D$bAB%(% A,P!XH,@QŨFTHΩ3go.wO<joޯ\zo.]ZSYYdt,F"Eˢ fݢYtYdthiYtYdt"EFw:ȢsYdtYTb-,EFwN~EGEFwzɢ{"n\\rc>'枉O_Q\c񝸀yC)zK"h&?_X&Ίk>ic|+E& 3L\qט'9iwR\F~Kg|&,̔əs 9GȊҝd .jffdQSn׬Kfwwɬ65&.|N%=o/$ILNTe 8a7$^ =ook >pBup8.>|yÜذοßl7:^,5r\2tKcriedtwiKϳM2*\oFeTۃ5l endstream endobj startxref 596706 %%EOF psychTools/inst/CITATION0000644000176200001440000000055614552034354014546 0ustar liggesusersbibentry( bibtype="Manual", title = "psychTools: Tools to Accompany the 'psych' Package for Psychological Research", author = person("William Revelle"), organization = "Northwestern University", address = "Evanston, Illinois", year = 2024, note = "R package version 2.4.2", url = "https://CRAN.R-project.org/package=psychTools" ) psychTools/inst/NEWS.Rd0000644000176200001440000002241314551274212014446 0ustar liggesusers\name{NEWS} \title{News for Package 'psychTools'} \section{Changes in psychTools version 2.4.1 (2024-01-14)}{ \subsection{Introduction}{ \itemize{ \item Version 2.4.2 is the development release of the psychTools package. It is available as a source file for Macs or PCs in the repository at \url{https://personality-project.org/r/}. The released version on CRAN is 2.4.1 The second digit reflects the year (i.e., 2024), the third set the month (i.e., 2.3.12 was released in December of 2023, the last two digits of development versions reflect either an minor change or the day of any modifications, e.g. 1.8.3.3 was the third attempt to get 1.8.3 released. 1.7.8 was released in August, 2017. \item To install the development version, use the command: install.packages("psychTools", repos="https://personality-project.org/r/", type="source"). Remember to restart R and library(psych) and library(psychTools) to make the new version active. \item To see the date of the new version, use packageDate("psychTools"). (I sometimes update the packages on my server without changing the version number.) \item The psychTools package includes functions and data sets to accompany the psych package which does classic and modern psychometrics and to analyze personality and experimental psychological data sets. The psych package has been developed as a supplement to courses in research methods in psychology, personality research, and graduate level psychometric theory. The functions are a supplement to the text (in progress): An introduction to psychometric theory with applications in R. \item These data sets are meant to be useful adjuncts to teaching and research. \item Additional functions are added sporadically. \item This NEWS file reports changes that have been made as the package has been developed. \item To report bugs, send email to \url{mailto:revelle@northwestern.edu} using bug.report. Remember to include the systemInfo() information and a Minimal Working Example. } } \subsection{Additions}{ \itemize{ \item Added rd2html to allow for conversion of Rd files to HTML. This allows for single files or complete directories (e.g. the help files ) \item Various improvements to vignettes to make them clearer and updated the links } } } \section{Changes in psychTools version 2.3.12 (2023-12-22 )}{ \subsection{Additions}{ \itemize{ \item Added the salary dataset from Cohen, Cohen, Aiken and West (2003), chapter 3. } } } \section{Changes in psychTools version 2.3.8 (2023-08-22 )}{ \subsection{Additions}{ \itemize{ \item Added the key.name parameter to vJoin \item Added function rearrange to allow new ordering of dataframe columns \item Added function wide2long to convert wide output to long output } } } \section{Changes in psychTools version 2.3.6 (2023-06-20 )}{ \subsection{Additions}{ \itemize{ \item Added vJoin and combineMatrices to allow for some basic file manipulation. \item Added recode to allow recoding of variables (requested by Yaelle Pierre). \item Added selectBy and splitBy to implement trivial but helpful actions. \item Improved help for globalWarm and updated various vignettes. } } } \section{Changes in psychTools version 2.2.10 (2021-09-12 )}{ \subsection{Additions}{ \itemize{ \item Added the colom data set } } } \section{Changes in psychTools version 2.2.9 (2021-09-12 )}{ \subsection{Additions}{ \itemize{ \item Modified fa2latex to handle output from faLookup. \item Added more scoring keys to the Athenstaedt data to allow for demonstrations of alpha and omega \item Add cross references from Athenstaedt and GERAS (Gruber) data sets. \item Added a correlation matrix from Ann Zola et al. (2021) showing the validity of self reports compared to peer ratings. } } } \section{Changes in psychTools version 2.2.5 (2021-05-01 )}{ \subsection{Additions}{ \itemize{ \item Added the Athenstaedt data set as well as a dictionary and scoring keys. } } } \section{Changes in psychTools version 2.2.4 (2021-04-10 )}{ \subsection{Additions}{ \itemize{ \item Improved the GERAS dictionary to make the graphics match manuscript by Eagly and Revelle (2022) } } } \section{Changes in psychTools version 2.2.3 (2021-02-21 )}{ \subsection{Additions}{ \itemize{ \item Improved dfOrder to treat matrices as well. This quasi mimics fa.lookup in that it sorts numeric values by largest in the row rather than lexicographically. \item Added the long option to fa2latex (requested by Alexander Weiss) } } } \section{Changes in psychTools version 2.1.12 (2021-12-06 )}{ \subsection{Additions}{ \itemize{ \item Added the eminence data set from Simonton and del Giudice as a nice example of misinterpretation of beta weights in the presence of highly colinear predictors. \item Updated this news file for version 2.1.6 to reflect datasets added. } } } \section{Changes in psychTools version 2.1.6 (2021-06-20 )}{ \subsection{Additions}{ \itemize{ \item Added the GERAS dataset from Gruber et al. (2020) to show Mahalobnis distances in scatterHist. \item Added the Spengeler and Damian data sets from Project Talent (nice example of mediation) \item Added the USAF data set of anthropometric measurements (to help understand what a g factor does or does not mean) \item Added the globalWarm data set from Erik Nisbett (to help in mediation) \item Added the ability to do long tables in df2latex (requested by Lizz Dworak) } } } \section{Changes in psychTools version 2.1.3 (2021-03-14)}{ \subsection{Additions}{ \itemize{ \item Moved four vignettes over from psych to make psych smaller. \item Current vignettes here include overview, omega, factor, and mediation \item Checked against psych_2.0.12 and psych_2.1.3 \item Added B5 and L27 columns to the spi.dictionary. } } \subsection{Bugs Fixed}{ \itemize{ \item Nothing yet } } } \section{Changes in psychTools version 2.0.9 (2020-09-14)}{ \subsection{Additions}{ \itemize{ \item Added the BFI 100 items as a data set } } \subsection{Bugs Fixed}{ \itemize{ \item .dat and RData files were not being read in read.file following a clean up in code. } } } \section{Changes in psychTools version 2.0.8 (2020-08-04)}{ \subsection{Additions}{ \itemize{\item ability.keys to the ability.rda file \item Modified df2latex to allow mixed numeric and character with rounding of numeric } } \subsection{Bugs Fixed}{ \itemize{ \item None yet } } } \section{Changes in psychTools version 2.0.6 (2020-1-12)}{ \subsection{Additions}{ \itemize{ \item Modified df2latex to allow mixed numeric and character with rounding of numeric } } \subsection{Bugs Fixed}{ \itemize{ \item Fixed dfOrder to handle Null data \item Fixed holzinger.swineford and holzinger.raw for two cases (180 and 231) where K. Widaman had provided incorrect values (thanks to Keith for finding this). } } } \section{Changes in psychTools version 1.9.10 (2018-06-24)}{ \subsection{Additions}{ \itemize{ \item Added the holzinger.raw, holzinger.swineford and holzinger.dictionary data sets. The data come from Keith Widaman. } } \subsection{Bugs Fixed}{ \itemize{ \item None yet. } } } \section{Changes in psychTools version 1.9.6 (2018-06-24)}{ \subsection{Additions}{ \itemize{ \item Added bfi.keys to the bfi data set \item Added examples to the sai data set to match Revelle and Condon 2019 \item Added spengler data set } } \subsection{Bugs Fixed}{ \itemize{ \item Minor correction to the cities help file } } } \section{Changes in psychTools version 1.9.5 (2018-05-25)}{ \subsection{Additions}{ \itemize{ \item Data sets and a few helper functions switched over from psych to psychTools to make psych a smaller package. \item Data sets included are: ability, bfi, epi.bfi,income, iqitems, msq, msqR, neo, sai, spi, and tai. \item Helper functions include the df2latex set, dfOrder, and the various file utilities such as read.clipboard. \item Version number increased to 1.9.5.18 as we work through minor fixes to the submission to meet the newly enforced more stringent requirements of CRAN \item Changed cat and print in interactive functions (fileCreate) to message() following request from CRAN \item Following yet another request from CRAN, changed the read.file function to not automatically load an .rda file, but rather suggest how to load it. \item Changed the use of \%in\% to is.element to get around some problems in the msqR help file \item Changed the examples in read.clipboard to donttest instead of dontrun because they are interactive \item Changed all dontrun to donttest following request from CRAN. } } \subsection{Bugs Fixed}{ \itemize{ \item None yet } } }