qqman/ 0000755 0001775 0000144 00000000000 13062373042 011707 5 ustar deepayan users qqman/inst/ 0000755 0001775 0000144 00000000000 13017117002 012654 5 ustar deepayan users qqman/inst/doc/ 0000755 0001775 0000144 00000000000 13017117634 013434 5 ustar deepayan users qqman/inst/doc/qqman.html 0000644 0001775 0000144 00006636543 12536016436 015471 0 ustar deepayan users
Intro to the qqman package
Intro to the qqman package
The qqman package includes functions for creating manhattan plots and q-q plots from GWAS results. The gwasResults
data.frame included with the package has simulated results for 16,470 SNPs on 22 chromosomes. Take a look at the data:
str(gwasResults)
'data.frame': 16470 obs. of 5 variables:
$ SNP : chr "rs1" "rs2" "rs3" "rs4" ...
$ CHR : int 1 1 1 1 1 1 1 1 1 1 ...
$ BP : int 1 2 3 4 5 6 7 8 9 10 ...
$ P : num 0.915 0.937 0.286 0.83 0.642 ...
$ zscore: num 0.107 0.0789 1.0666 0.2141 0.4653 ...
head(gwasResults)
SNP CHR BP P zscore
1 rs1 1 1 0.9148060 0.1069785
2 rs2 1 2 0.9370754 0.0789462
3 rs3 1 3 0.2861395 1.0666287
4 rs4 1 4 0.8304476 0.2141275
5 rs5 1 5 0.6417455 0.4652597
6 rs6 1 6 0.5190959 0.6447396
tail(gwasResults)
SNP CHR BP P zscore
16465 rs16465 22 530 0.5643702 0.5763624
16466 rs16466 22 531 0.1382863 1.4822028
16467 rs16467 22 532 0.3936999 0.8529268
16468 rs16468 22 533 0.1778749 1.3473271
16469 rs16469 22 534 0.2393020 1.1767332
16470 rs16470 22 535 0.2630441 1.1192251
How many SNPs on each chromosome?
as.data.frame(table(gwasResults$CHR))
Var1 Freq
1 1 1500
2 2 1191
3 3 1040
4 4 945
5 5 877
6 6 825
7 7 784
8 8 750
9 9 721
10 10 696
11 11 674
12 12 655
13 13 638
14 14 622
15 15 608
16 16 595
17 17 583
18 18 572
19 19 562
20 20 553
21 21 544
22 22 535
Creating manhattan plots
Now, let's make a basic manhattan plot.
manhattan(gwasResults)
We can also pass in other graphical parameters. Let's add a title (main=
), increase the y-axis limit (ylim=
), reduce the point size to 60% (cex=
), and reduce the font size of the axis labels to 90% (cex.axis=
). While we're at it, let's change the colors (col=
), remove the suggestive and genome-wide significance lines, and supply our own labels for the chromosomes:
manhattan(gwasResults, main = "Manhattan Plot", ylim = c(0, 10), cex = 0.6,
cex.axis = 0.9, col = c("blue4", "orange3"), suggestiveline = F, genomewideline = F,
chrlabs = c(1:20, "P", "Q"))
Now, let's look at a single chromosome:
manhattan(subset(gwasResults, CHR == 1))
Let's highlight some SNPs of interest on chromosome 3. The 100 SNPs we're highlighting here are in a character vector called snpsOfInterest
. You'll get a warning if you try to highlight SNPs that don't exist.
str(snpsOfInterest)
chr [1:100] "rs3001" "rs3002" "rs3003" "rs3004" "rs3005" ...
manhattan(gwasResults, highlight = snpsOfInterest)
We can combine highlighting and limiting to a single chromosome, and use the xlim
graphical parameter to zoom in on a region of interest (between position 200-500):
manhattan(subset(gwasResults, CHR == 3), highlight = snpsOfInterest, xlim = c(200,
500), main = "Chr 3")
We can also annotate SNPs based on their p-value. By default, this only annotates the top SNP per chromosome that exceeds the annotatePval
threshold.
manhattan(gwasResults, annotatePval = 0.01)
We can also annotate all SNPs that meet a threshold:
manhattan(gwasResults, annotatePval = 0.005, annotateTop = FALSE)
Finally, the manhattan
function can be used to plot any value, not just p-values. Here, we'll simply call the function passing to the p=
argument the name of the column we want to plot instead of the default “P” column. In this example, let's create a test statistic (“zscore”), plot that instead of p-values, change the y-axis label, and remove the default log transformation. We'll also remove the genomewide and suggestive lines because these are only meaningful if you're plotting -log10(p-values).
# Add test statistics
gwasResults <- transform(gwasResults, zscore = qnorm(P/2, lower.tail = FALSE))
head(gwasResults)
SNP CHR BP P zscore
1 rs1 1 1 0.9148060 0.1069785
2 rs2 1 2 0.9370754 0.0789462
3 rs3 1 3 0.2861395 1.0666287
4 rs4 1 4 0.8304476 0.2141275
5 rs5 1 5 0.6417455 0.4652597
6 rs6 1 6 0.5190959 0.6447396
# Make the new plot
manhattan(gwasResults, p = "zscore", logp = FALSE, ylab = "Z-score", genomewideline = FALSE,
suggestiveline = FALSE, main = "Manhattan plot of Z-scores")
A few notes on creating manhattan plots:
- Run
str(gwasResults)
. Notice that the gwasResults
data.frame has SNP, chromosome, position, and p-value columns named SNP
, CHR
, BP
, and P
. If you're creating a manhattan plot and your column names are different, you'll have to pass the column names to the chr=
, bp=
, p=
, and snp=
arguments. See help(manhattan)
for details.
- The chromosome column must be numeric. If you have “X,” “Y,” or “MT” chromosomes, you'll need to rename these 23, 24, 25, etc. You can modify the source code (e.g.,
fix(manhattan)
) to change the line designating the axis tick labels (labs <- unique(d$CHR)
) to set this to whatever you'd like it to be.
- If you'd like to change the color of the highlight or the suggestive/genomewide lines, you'll need to modify the source code. Search for
col="blue"
, col="red"
, or col="green3"
to modify the suggestive line, genomewide line, and highlight colors, respectively.
Creating Q-Q plots
Creating Q-Q plots is straightforward - simply supply a vector of p-values to the qq()
function.
qq(gwasResults$P)
We can otionally supply many other graphical parameters.
qq(gwasResults$P, main = "Q-Q plot of GWAS p-values", xlim = c(0, 7), ylim = c(0,
12), pch = 18, col = "blue4", cex = 1.5, las = 1)
qqman/inst/doc/qqman.Rmd 0000644 0001775 0000144 00000012606 12536016436 015225 0 ustar deepayan users ---
title: "Intro to the qqman package"
author: "Stephen D. Turner"
date: '`r Sys.Date()`'
output:
html_document:
toc: yes
---
```{r, include=FALSE}
library(qqman)
library(knitr)
opts_chunk$set(comment=NA, fig.width=12, fig.height=9, message=FALSE, tidy=TRUE, dpi=75)
```
# Intro to the **qqman** package
```{r generatedata, eval=FALSE, echo=FALSE}
# This code used to generate the test data. Runs slow, but does the job.
chrstats <- data.frame(chr=1:22, nsnps=1500)
chrstats$nsnps <- with(chrstats, round(nsnps/chr^(1/3)))
chrstats
d <- data.frame(SNP=rep(NA, sum(chrstats$nsnps)),
CHR=rep(NA, sum(chrstats$nsnps)),
BP=rep(NA, sum(chrstats$nsnps)),
P=rep(NA, sum(chrstats$nsnps)))
snpi <- 1
set.seed(42)
for (i in chrstats$chr) {
for (j in 1:chrstats[i, 2]) {
d[snpi, ]$SNP=paste0("rs", snpi)
d[snpi, ]$CHR=i
d[snpi, ]$BP=j
d[snpi, ]$P=runif(1)
snpi <- snpi+1
}
}
divisor <- c(seq(2,50,2), seq(50,2,-2))
divisor <- divisor^4
length(divisor)
d[3026:3075, ]$P <- d[3026:3075, ]$P/divisor
snpsOfInterest <- paste0("rs", 3001:3100)
qq(d$P)
manhattan(d, highlight=snpsOfInterest)
gwasResults <- d
save(gwasResults, file="data/gwasResults.RData")
```
The **qqman** package includes functions for creating manhattan plots and q-q plots from GWAS results. The `gwasResults` data.frame included with the package has simulated results for 16,470 SNPs on 22 chromosomes. Take a look at the data:
```{r}
str(gwasResults)
head(gwasResults)
tail(gwasResults)
```
How many SNPs on each chromosome?
```{r}
as.data.frame(table(gwasResults$CHR))
```
## Creating manhattan plots
Now, let's make a basic manhattan plot.
```{r}
manhattan(gwasResults)
```
We can also pass in other graphical parameters. Let's add a title (`main=`), increase the y-axis limit (`ylim=`), reduce the point size to 60% (`cex=`), and reduce the font size of the axis labels to 90% (`cex.axis=`). While we're at it, let's change the colors (`col=`), remove the suggestive and genome-wide significance lines, and supply our own labels for the chromosomes:
```{r}
manhattan(gwasResults, main="Manhattan Plot", ylim=c(0,10), cex=0.6, cex.axis=0.9, col=c("blue4", "orange3"), suggestiveline=F, genomewideline=F, chrlabs=c(1:20, "P", "Q"))
```
Now, let's look at a single chromosome:
```{r}
manhattan(subset(gwasResults, CHR==1))
```
Let's highlight some SNPs of interest on chromosome 3. The 100 SNPs we're highlighting here are in a character vector called `snpsOfInterest`. You'll get a warning if you try to highlight SNPs that don't exist.
```{r}
str(snpsOfInterest)
manhattan(gwasResults, highlight=snpsOfInterest)
```
We can combine highlighting and limiting to a single chromosome, and use the `xlim` graphical parameter to zoom in on a region of interest (between position 200-500):
```{r}
manhattan(subset(gwasResults, CHR==3), highlight=snpsOfInterest, xlim=c(200, 500), main="Chr 3")
```
We can also annotate SNPs based on their p-value. By default, this only annotates the top SNP per chromosome that exceeds the `annotatePval` threshold.
```{r}
manhattan(gwasResults, annotatePval=0.01)
```
We can also annotate all SNPs that meet a threshold:
```{r}
manhattan(gwasResults, annotatePval=0.005, annotateTop=FALSE)
```
Finally, the `manhattan` function can be used to plot any value, not just p-values. Here, we'll simply call the function passing to the `p=` argument the name of the column we want to plot instead of the default "P" column. In this example, let's create a test statistic ("zscore"), plot that instead of p-values, change the y-axis label, and remove the default log transformation. We'll also remove the genomewide and suggestive lines because these are only meaningful if you're plotting -log10(p-values).
```{r}
# Add test statistics
gwasResults <- transform(gwasResults, zscore=qnorm(P/2, lower.tail=FALSE))
head(gwasResults)
# Make the new plot
manhattan(gwasResults, p="zscore", logp=FALSE, ylab="Z-score", genomewideline=FALSE, suggestiveline=FALSE, main="Manhattan plot of Z-scores")
```
A few notes on creating manhattan plots:
* Run `str(gwasResults)`. Notice that the `gwasResults` data.frame has SNP, chromosome, position, and p-value columns named `SNP`, `CHR`, `BP`, and `P`. If you're creating a manhattan plot and your column names are different, you'll have to pass the column names to the `chr=`, `bp=`, `p=`, and `snp=` arguments. See `help(manhattan)` for details.
* The chromosome column must be numeric. If you have "X," "Y," or "MT" chromosomes, you'll need to rename these 23, 24, 25, etc. You can modify the source code (e.g., `fix(manhattan)`) to change the line designating the axis tick labels (`labs <- unique(d$CHR)`) to set this to whatever you'd like it to be.
* If you'd like to change the color of the highlight or the suggestive/genomewide lines, you'll need to modify the source code. Search for `col="blue"`, `col="red"`, or `col="green3"` to modify the suggestive line, genomewide line, and highlight colors, respectively.
## Creating Q-Q plots
Creating Q-Q plots is straightforward - simply supply a vector of p-values to the `qq()` function.
```{r}
qq(gwasResults$P)
```
We can otionally supply many other graphical parameters.
```{r}
qq(gwasResults$P, main="Q-Q plot of GWAS p-values",
xlim=c(0,7), ylim=c(0,12), pch=18, col="blue4", cex=1.5, las=1)
``` qqman/inst/doc/qqman.R 0000644 0001775 0000144 00000006165 12536016436 014707 0 ustar deepayan users ## ----, include=FALSE-----------------------------------------------------
library(qqman)
library(knitr)
opts_chunk$set(comment=NA, fig.width=12, fig.height=9, message=FALSE, tidy=TRUE, dpi=75)
## ----generatedata, eval=FALSE, echo=FALSE--------------------------------
# # This code used to generate the test data. Runs slow, but does the job.
# chrstats <- data.frame(chr=1:22, nsnps=1500)
# chrstats$nsnps <- with(chrstats, round(nsnps/chr^(1/3)))
# chrstats
#
# d <- data.frame(SNP=rep(NA, sum(chrstats$nsnps)),
# CHR=rep(NA, sum(chrstats$nsnps)),
# BP=rep(NA, sum(chrstats$nsnps)),
# P=rep(NA, sum(chrstats$nsnps)))
# snpi <- 1
# set.seed(42)
# for (i in chrstats$chr) {
# for (j in 1:chrstats[i, 2]) {
# d[snpi, ]$SNP=paste0("rs", snpi)
# d[snpi, ]$CHR=i
# d[snpi, ]$BP=j
# d[snpi, ]$P=runif(1)
# snpi <- snpi+1
# }
# }
#
# divisor <- c(seq(2,50,2), seq(50,2,-2))
# divisor <- divisor^4
# length(divisor)
# d[3026:3075, ]$P <- d[3026:3075, ]$P/divisor
# snpsOfInterest <- paste0("rs", 3001:3100)
# qq(d$P)
# manhattan(d, highlight=snpsOfInterest)
# gwasResults <- d
# save(gwasResults, file="data/gwasResults.RData")
## ------------------------------------------------------------------------
str(gwasResults)
head(gwasResults)
tail(gwasResults)
## ------------------------------------------------------------------------
as.data.frame(table(gwasResults$CHR))
## ------------------------------------------------------------------------
manhattan(gwasResults)
## ------------------------------------------------------------------------
manhattan(gwasResults, main="Manhattan Plot", ylim=c(0,10), cex=0.6, cex.axis=0.9, col=c("blue4", "orange3"), suggestiveline=F, genomewideline=F, chrlabs=c(1:20, "P", "Q"))
## ------------------------------------------------------------------------
manhattan(subset(gwasResults, CHR==1))
## ------------------------------------------------------------------------
str(snpsOfInterest)
manhattan(gwasResults, highlight=snpsOfInterest)
## ------------------------------------------------------------------------
manhattan(subset(gwasResults, CHR==3), highlight=snpsOfInterest, xlim=c(200, 500), main="Chr 3")
## ------------------------------------------------------------------------
manhattan(gwasResults, annotatePval=0.01)
## ------------------------------------------------------------------------
manhattan(gwasResults, annotatePval=0.005, annotateTop=FALSE)
## ------------------------------------------------------------------------
# Add test statistics
gwasResults <- transform(gwasResults, zscore=qnorm(P/2, lower.tail=FALSE))
head(gwasResults)
# Make the new plot
manhattan(gwasResults, p="zscore", logp=FALSE, ylab="Z-score", genomewideline=FALSE, suggestiveline=FALSE, main="Manhattan plot of Z-scores")
## ------------------------------------------------------------------------
qq(gwasResults$P)
## ------------------------------------------------------------------------
qq(gwasResults$P, main="Q-Q plot of GWAS p-values",
xlim=c(0,7), ylim=c(0,12), pch=18, col="blue4", cex=1.5, las=1)
qqman/NAMESPACE 0000644 0001775 0000144 00000000241 13062271472 013127 0 ustar deepayan users # Generated by roxygen2: do not edit by hand
export(manhattan)
export(qq)
import(graphics)
import(utils)
importFrom(calibrate,textxy)
importFrom(stats,ppoints)
qqman/NEWS.md 0000644 0001775 0000144 00000001562 13062270762 013016 0 ustar deepayan users # qqman 0.1.4
* Minor fix to location to referenced image for pandoc self-contained README.html generation.
# qqman 0.1.3
* Annotate SNPs below a p-value threshold with the `annotatePval=` option. See vignette for details.
* Annotate the top SNP on each chromosome with the `annotateTop=` option. See vignette for details.
# qqman 0.1.2
* Does not assume that SNPs are evenly distributed across chromosomes when deciding where to place the tick in the center of the chromosome.
* Changed single chromosome x-axis notation to use Mb instead of raw pos
* `qq()` accepts graphical parameters the same way as `manhattan()`
* Removed default `xlim`
* Citation details on package load
* Added axis label options
* Removed `ymax` argument in favor of allowing user to set `ylim` in `...`
* Option to *not* take log of p-value
# qqman 0.1.1
* Fixed a bunch of typos in the vignette
qqman/data/ 0000755 0001775 0000144 00000000000 13017120026 012610 5 ustar deepayan users qqman/data/gwasResults.RData 0000644 0001775 0000144 00000405114 12335152166 016071 0 ustar deepayan users T۽`]vrwN^ẃrJH}QCT%7zTAן~O˟~~_~_ןʟ3~ٿ??>s⯟w~ݟ|~?ws7>ws7>ws7>ws7>ws7>ws7?ws7?ws7?ws7?ws7?ws>ws>ws>ws>ws>ws?ws?ws?ws?ws?wsw>wsw>wsw>wsw>wsw>wsw?wsw?wsw?wsw?wsw?wܽs~{?w}s}>w}w֍~#>c}|]pw.8|]]]]]]]]]]]P]P]P]P]P]]]]]]0]0]0]0]0]]]]]]pw.~]pw.x}]w.61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo61Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6Mo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6qMo6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&om6~xM&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷m6}M|&o߷mMlWj^ky]^l9l9l9l9l9l9l9l9l9l9l [-`K%l [-ɖdK%ْlI$[-ɖbKRl)[-ŖbKli4[-͖fKl[-Öa˰e2l[-˖e˲eٲlY,[-˖˖˖˖˖˖˖˖˖˖˖ǖǖǖǖǖǖǖǖ{{{{{{{{{{{{{{{{{{{{{{{{{t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠAw
t7nݠIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&Mt7nݤIw&M[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢEw-[tnݢMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6mtnݦMw6m;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡCw;twݡKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]twݥKw.]{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^>>>>>>>>>>>>>>>>>>>>>>>>x^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZxBwjWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^WZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWZx^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZx[.^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZx[.^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^-jWKZxī%^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
bū^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z~^lx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vx«^jW+Z
Vxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZ~^lxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWyxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZxƫ5^jWkZ6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjWϋ-t6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^W6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW6x
^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjWyxū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[x[.^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^mjW[xū-^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^~^lxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWxWy.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^~^lxW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{xW{x[.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^o`o3|>>]u\u\u\u\u\u\u\u\u\u\
WUpU*\
WUtU*]JWUrU\U*WUrU]ծjWUvU]5WUqոj\5WUuպj]ZWUUUUUUUUUUUUUUUUUUUUcۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?cۏm?=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aöm=l{aӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞=m{iӶmO۞l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e˶m/^l{e۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mom{m۶mo}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcǶm>}lcm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾}mkm_۾kۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmkۯmg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mg۟mץ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥU]ztGztGztGztGztGztGztGztGztGtmץ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]ѥ]U]ztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGztGХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRХ.5tK
]jRCХ.5tK
]jRCХ<]euK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tK
]jRCХ.5tKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKyʶRSԥ.5uKM]jRSԥ.5uKM]jRԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5u?OWv]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.5uKM]jRSԥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.*ۮK-]jRKZҥ.tK-]jRKZҥ.t?OWv]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZԟl.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jRKZҥ.tK-]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ںԟl.uKm]jR[ں֥.uKm]jR[ںԟl.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]U]ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uKm]jR[ں֥.uK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]Rѥ.utK]RG:ѥ.utK]U]:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG:ѥ.utK]RG8([UeffUffffeD,[fwήwݙ78JeVdDddo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥo\˿q.ƥqNNzMH H H H H H $@ $@ $@ $@ $ $@ $@ $@ $@?H*@ $@ $@ $@EH&@ $@ $@ $Z*"@ $@ $@ ߈
$@ $@ $@OR1H H ?=H H H /Q H H oD%H H H H HI*-@ $@ $+@ $@ $@%@ $@ $@K@ $@ $@@ $@ $@*$@ $@7'gH HTQ H ?!UH H _LH H NN&QD$&IdDEs?OO>a
QUjDՉj$ETQ]zD5$jDԘ QSfD͉Z$jEԚ
Q[vD:u$DBԙQWnD݉z$r%"Mԇ/Q?D
"L4h(0D#F"M4h,8D<&M&B4htD3f&C4h|D-&ZBhrDnD+V&ZChz
D6m&BhvD;v&Ch~D&:BtqD'N&:CtyD.]&BtuDD7n&Ct}D=&zBsDD^DD>DD/^&'zC((((((((((((((((((((((((((((((((HA$R4DZ"@d$2,DV"{D>}&BwD?~&C}E_DE_DE_DEQ9"¿/""¿/""¿/""¿/"E_DE_DE_DE_Ԗ/""¿/""¿/""¿/"^D_DE_DE_DE_D"""¿/""¿/""¿/""¿h_DE_DE_DE_DE+"¿/""¿/""¿/""¿/IDE_DE_DE_DEI"¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/""¿/ń1#& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/& b¿/`% _B'¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K¿/!K:})_JtAJ)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J)_J>_Fe]e_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe_Fe}o킾]з; v'A.}o킾]зvA.}oߢotSNnJM )A7$覜ݔtSnJM )A7%ݔ?M 'A ?@A ?E$Ȱ+Ȱ+Ȱ+Ȱ+Ȱ+ȰVd6'Afd6Afd6Afd6Afd6Afd6Afo$ 2 2 2 2 2 2 O8$ ^~v'ovovovovoK|C; >>>/ | | | | |RMKKKKo_/$R/%R/%R/%R/?x)7rx#7x#7x#7x漑8 Q~Gc>Fc>Fc>Fc>?!#(N"("("(G'`>u@1r}gh)j-7)#5Z'W\uA3B?]>!S#x(PHEOZ)?N3G/[
|4C>xU48Y^`JS>W\q95;ܛS?>
ъ>_kW~&42sryfF=+#b,Ǖ-wr|s+*V|3xxf1Wt'~yRg_x;s?,~fw0c'2&hW$ߗ35;m߂qߛqu{737$C\B-n_{L#gi>7h窺sQ2 Or7ЕK_'Ĵ`C~O<0O Q!OVe*ڄgu0c4ori7^]U|~5o3ž0#1=fUzӝN=|17ϥȭK`_WzۼK7ٲ
wm_W'5)GMOf,䱯6h6={mz1⟍rǚgj)~\.XWjSIn7,lԮ+۷n<ىڽ>?>g.H;u9T*[Stk>سaIA\O(M\t#*>tyܹesLs5
z|Lܰ>;t4l0.wvʺ8cyxr{\oJ?3Њ+Y^ﴷC
ٮ6,6Wys?TfעüYцrVSTOyn8/uG}ztZX˕uz"~>eUgӆ\n߾r)K`'1gZMf9;bz o0#,ϝV>.܈OMpK:Wjn:eP_1,ȓ.=Aw`\L1Ϭ37D=S1{fV)Kٹ|Q.kڮz/,@u: ~D_bQsі[Ͼ0>ϛu<Ӓ/P
ߟt*IwMlb~45gj =-b,_W]njkCtx{-1F[݇0&|ܾދ"gaO~?Ȁ.qu/)YXRO\֖d]s%y|}7Zq>l~syVOcO[FSo;Q[h!zO{r=j5pJ`犟">ZOĪWWs"P]5HOfu9'Yz<ݎNo#y9K3yZf
fP5-cY(Q幾~Vcv^C>yۙ||pd=ps>4rv՝^O}&s9K*5rjkP_*cͲwDz2Fi7o
w|ܟo1>5tĸG{_%Y`
i^*a$>F,qwEJw+n(Rtk=59[x8BDkvq-XRݪAQ|n}7ן巋iӅ2/2~gyyXyy؏LM
mcB\Zco^NK\&czjX"7ZIR\kV'n3
zj>*F9
R+ԅ0;[r9O&dn'K}̛Qqc7)uQ:FxcXqܾRxJ7rNl=ſ@vt\ίnj#K?ᗚ?Oh"~bO>>8[h$>3=1/d{p9,^SֳL~pXn8?*ωoRx~~%`X'}vs-1TW\vV
yJ0y.@}S_*?n'wh\iGvC{mm^<ra/{O9VӃ%xsRk_b<fm^way>lڌm
~̌e