tcR/0000755000176200001440000000000013446170643011012 5ustar liggesuserstcR/inst/0000755000176200001440000000000013446161025011761 5ustar liggesuserstcR/inst/library.report.Rmd0000644000176200001440000000573212710611033015402 0ustar liggesusers--- title: "TCR beta repertoire exploratory analysis" output: html_document: theme: spacelab toc: yes --- ## Before analysis Before running this pipeline you should do next steps: 1. Save your parsed MiTCR data to the `immdata` variable (it could be **a mitcr data frame or a list**). ``` immdata <- parse.folder('/home/username/mitcrdata/') ``` 2. Save the `immdata` variable to the some folder as the `.rda` file. ``` save(immdata, file = '/home/username/immdata.rda') ``` 3. In the code block below change the path string to the path to yours `immdata.rda` file. After that click the **Knit HTML** button to start analysis and the script will make a html report. ```{r loaddata,warning=FALSE,message=F} load('../data/twb.rda') immdata <- twb[1:2] library(tcR) ``` 4. Friendly advice: run the pipeline on the top N sequences first and configure sizes of figures. ```{r lapplyhead,warning=FALSE,message=F} N <- 50000 immdata <- head(immdata, N) ``` ## Data statistics ```{r seqstats,warning=FALSE,message=F} cloneset.stats(immdata) repseq.stats(immdata) ``` ## Segments' statistics ### V-segment usage ```{r vusagehist, fig.width=16, fig.height=5,warning=FALSE,message=F} if (has.class(immdata, 'list')) { for (i in 1:length(immdata)) { plot(vis.gene.usage(immdata[[i]], HUMAN_TRBV, .main = paste0(names(immdata)[i], ' ', 'V-usage'))) } } else { vis.gene.usage(immdata, HUMAN_TRBV, .coord.flip=F) } ``` ### J-segment usage ```{r jusagehist, fig.width=14, fig.height=5,warning=FALSE,message=F} if (has.class(immdata, 'list')) { for (i in 1:length(immdata)) { plot(vis.gene.usage(immdata[[i]], HUMAN_TRBJ, .main = paste0(names(immdata)[i], ' ', 'J-usage'))) } } else { vis.gene.usage(immdata, HUMAN_TRBJ, .coord.flip=F) } ``` ## CDR3 length and read distributions ```{r cdr3len, fig.width=10, fig.height=5,warning=FALSE,message=F} if (has.class(immdata, 'list')) { for (i in 1:length(immdata)) { plot(vis.count.len(immdata[[i]], .name = paste0(names(immdata)[i], ' ', 'CDR3 length'))) } } else { vis.count.len(immdata) } ``` ```{r readdistr, fig.width=10, fig.height=5,warning=FALSE,message=F} if (has.class(immdata, 'list')) { for (i in 1:length(immdata)) { plot(vis.number.count(immdata[[i]], .name = paste0(names(immdata)[i], ' ', 'read histogram'))) } } else { vis.number.count(immdata) } ``` ## Proportions of the most abundant clones ```{r topprop, fig.width=13,warning=FALSE,message=F} vis.top.proportions(immdata) ``` ## Most frequent kmers ```{r kmers, fig.width=14,warning=FALSE,message=F} kms <- get.kmers(immdata, .verbose = F) vis.kmer.histogram(kms, .position = 'fill') ``` ## Rarefaction analysis ```{r muc, fig.width=11,warning=FALSE,message=F} clmn <- 'Read.count' if (has.class(immdata, 'list')) { if (!is.na(immdata[[1]]$Umi.count[1])) { clmn <- 'Umi.count' } } else { if (!is.na(immdata$Umi.count[1])) { clmn <- 'Umi.count' } } vis.rarefaction(rarefaction(immdata, .col = clmn, .verbose = F), .log = T) ```tcR/inst/CITATION0000644000176200001440000000110112657351347013122 0ustar liggesusersbibentry('Article', title = 'tcR: an R package for T-cell receptor repertoire data analysis', author = as.person("Vadim I. Nazarov [aut], Mikhail V. Pogorelyy [aut], Ekaterina A. Komech [aut], Ivan V. Zvyagin [aut], Dmitry A. Bolotin [aut], Mikhail Shugay [aut], Dmitry M. Chudakov [aut], Yury B. Lebedev and Ilgar Z. Mamedov [aut]"), year = 2015, url = "http://www.biomedcentral.com/1471-2105/16/175", journal = "BMC Bioinformatics", pages = 175, volume = 16, doi = "10.1186/s12859-015-0613-1" )tcR/inst/crossanalysis.report.Rmd0000644000176200001440000001173313325616566016654 0ustar liggesusers--- title: "TCR beta repertoire intergroup analysis" output: html_document: theme: spacelab toc: yes --- ## Before analysis Before running this pipeline you should do next steps: 1. Save your parsed MiTCR data to the `immdata` variable (**it must be a list with mitcr data frames**). ``` immdata <- parse.folder('/home/username/mitcrdata/') ``` 2. Save the `immdata` variable to the some folder as the `.rda` file. ``` save(immdata, file = '/home/username/immdata.rda') ``` 3. In the code block below change the path string to the path to yours `immdata.rda` file. After that click the **Knit HTML** button to start analysis and make an output .html file with it's results. ```{r loaddata,warning=FALSE,message=F} load('../data/twb.rda') immdata <- twb library(tcR) ``` 4. Friendly advice: run the pipeline on first N top sequences first and then set up the size of figures. ```{r lapplyhead,warning=FALSE,message=F} N <- 10000 immdata <- lapply(immdata, head, N) ``` ## Number of shared clones and clonotypes ### Number of shared clones (CDR3 nucleotide sequences) #### -- without and with normalisation ```{r nuc0crosses, fig.width=13,warning=FALSE,message=F} crs1 <- repOverlap(immdata, .norm=F, .verbose=F) crs2 <- repOverlap(immdata, .norm=T, .verbose=F) do.call(grid.arrange, list(vis.heatmap(crs1, .title = 'Number of shared clones', .legend = 'Shared clones'), vis.heatmap(crs2, .title = 'Number of shared clones', .legend = 'Shared clones'), nrow = 1)) ``` ### Number of shared clonotypes (CDR3 amino acid sequences) #### -- without and with normalisation ```{r aa0crosses, fig.width=13,warning=FALSE,message=F} crs1 <- repOverlap(immdata, .seq = "aa", .norm=F, .verbose=F) crs2 <- repOverlap(immdata, .seq = "aa", .norm=T, .verbose=F) do.call(grid.arrange, list(vis.heatmap(crs1), vis.heatmap(crs2), nrow = 1)) ``` ### Number of shared clones using V-segments #### -- without and with normalisation ```{r nucvcrosses, fig.width=13,warning=FALSE,message=F} crs1 <- repOverlap(immdata, .vgene = T, .norm=F, .verbose=F) crs2 <- repOverlap(immdata, .vgene = T, .norm=T, .verbose=F) do.call(grid.arrange, list(vis.heatmap(crs1, .title = 'Number of shared clones + V', .legend = 'Shared clones'), vis.heatmap(crs2, .title = 'Number of shared clones + V'), nrow = 1)) ``` ### Number of shared clonotypes using V-segments #### -- without and with normalisation ```{r aavcrosses, fig.width=13,warning=FALSE,message=F} crs1 <- repOverlap(immdata, .seq = "aa", .vgene = T, .norm=F, .verbose=F) crs2 <- repOverlap(immdata, .seq = "aa", .vgene = T, .norm=T, .verbose=F) do.call(grid.arrange, list(vis.heatmap(crs1, .title = 'Number of shared clonotypes + V'), vis.heatmap(crs2, .title = 'Number of shared clonotypes + V'), nrow = 1)) ``` ## Segments statistics ### V-segments usage ```{r vusagehist, fig.width=16, fig.height=10,warning=FALSE,message=F} vis.gene.usage(immdata, HUMAN_TRBV, .ncol = 2, .coord.flip = F) ``` ### V-segments summary statistics ```{r vseboxplot, fig.width = 13, fig.height=10,warning=FALSE,message=F} # Change the groups variable for plotting V-usage boxplot for groups. groups <- list(Group.A = names(immdata)[1:(length(immdata) / 2)], Group.B = names(immdata)[(length(immdata) / 2 + 1) : length(immdata)]) vis.group.boxplot(geneUsage(immdata, HUMAN_TRBV, .norm = T), groups, .rotate.x = T) ``` ### J-segments usage ```{r jusagehist, fig.width=16, fig.height=10,warning=FALSE,message=F} vis.gene.usage(immdata, HUMAN_TRBJ, .coord.flip=F, .ncol = 2) ``` ## Jennsen - Shannon Divergence applied to the segments frequency of supplied data frames ### V-segments Jennsen - Shannon Divergence among repertoires ```{r vdiv, fig.width=13,warning=FALSE,message=F,prompt=FALSE} res <- js.div.seg(immdata, HUMAN_TRBV, .frame='all', .verbose = F) vis.heatmap(round(res, 5)) ``` ### V-segments Jennsen - Shannon Divergence radarplot ```{r radars, fig.width=13,warning=FALSE,message=F,prompt=FALSE} res <- js.div.seg(immdata, HUMAN_TRBV, .frame='all', .verbose = F) vis.radarlike(res, .ncol = 2) ``` ## PCA on segments' frequencies ### PCA on V-segments statistics ```{r pcav,warning=FALSE,message=F} pca.segments(immdata) ``` ### PCA on V-J segments statistics ```{r pcavj,warning=FALSE,message=F} pca.segments.2D(immdata, .genes = list(HUMAN_TRBV, HUMAN_TRBJ)) ``` ## Top cross ```{r topcross, fig.width=16, fig.height=16,warning=FALSE,message=F} top.cross.plot(top.cross(permutedf(immdata), seq(500, min(sapply(immdata, nrow)), 500), .verbose = F)) ``` ## Shared repertoire statistics by clonotypes using V-segments ```{r shared,warning=FALSE,message=F} imm.sh <- shared.repertoire(immdata, 'av', .verbose = F) shared.clones.count(imm.sh) shared.representation(imm.sh) ``` ## Rarefaction group analysis ```{r muc, fig.width=11,warning=FALSE,message=F} clmn <- 'Read.count' if (!is.na(immdata[[1]]$Umi.count[1])) { clmn <- 'Umi.count' } vis.rarefaction(rarefaction(immdata, .col = clmn, .verbose = F), list(A = c("Subj.A", "Subj.B"), B = c("Subj.C", "Subj.D")), .log = T) ```tcR/inst/doc/0000755000176200001440000000000013446161025012526 5ustar liggesuserstcR/inst/doc/tcrvignette.Rmd0000644000176200001440000010661313446161024015536 0ustar liggesusers--- title: '

tcR: a package for T cell receptor and Immunoglobulin repertoires advanced data analysis

Vadim I. Nazarov

' author:

Laboratory of Comparative and Functional Genomics, IBCH RAS, Moscow, Russia

output: html_document: theme: spacelab toc: yes toc_depth: 4 pdf_document: toc: yes toc_depth: 4 word_document: default --- ## Introduction The *tcR* package designed to help researchers in the immunology field to analyse T cell receptor (`TCR`) and immunoglobulin (`Ig`) repertoires. In this vignette, I will cover procedures for immune receptor repertoire analysis provided with the package. Terms: - Clonotype: a group of T / B cell clones with equal CDR3 nucleotide sequences and equal Variable genes. - Cloneset / repertoire: a set of clonotypes. Represented as a data frame in which each row corresponds to a unique clonotype. - UMI: Unique Molecular Identifier (see this [paper](http://www.nature.com/nmeth/journal/v9/n1/full/nmeth.1778.html) for details) ```{r eval=TRUE,echo=FALSE,warning=FALSE,message=FALSE} library(tcR) data(twa) data(twb) ``` ### Package features - Parsers for outputs of various tools for CDR3 extraction and genes alignment *(currently implemented parsers for MiTCR, MiGEC, VDJtools, ImmunoSEQ, IMSEQ and MiXCR)* - Data manipulation *(in-frame / out-of-frame sequences subsetting, clonotype motif search)* - Descriptive statistics *(number of reads, number of clonotypes, gene segment usage)* - Shared clonotypes statistics *(number of shared clonotypes, using V genes or not; sequential intersection among the most abundant clonotype ("top-cross"))* - Repertoire comparison *(Jaccard index, Morisita's overlap index, Horn's index, Tversky index, overlap coefficient)* - V- and J genes usage and it's analysis *(PCA, Shannon Entropy, Jensen-Shannon Divergence)* - Diversity evaluation *(ecological diversity index, Gini index, inverse Simpson index, rarefaction analysis)* - Artificial repertoire generation (beta chain only, for now) - Spectratyping - Various visualisation procedures - Mutation networks *(graphs, in which vertices represent CDR3 nucleotide / amino acid sequences and edges are connecting similar sequences with low hamming or edit distance between them)* ### Data in the package There are two datasets provided with the package - twins data and V(D)J recombination genes data. #### Downsampled twins data `twa.rda`, `twb.rda` - two lists with 4 data frames in each list. Every data frame is a sample downsampled to the 10000 most abundant clonotypes of twins data (alpha and beta chains). Full data is available here: [Twins TCR data at Laboratory of Comparative and Functional Genomics](http://labcfg.ibch.ru/tcr.html) Explore the data: ```{r eval=FALSE,echo=TRUE} # Load the package and load the data. library(tcR) data(twa) # "twa" - list of length 4 data(twb) # "twb" - list of length 4 # Explore the data. head(twa[[1]]) head(twb[[1]]) ``` #### Gene alphabets Gene alphabets - character vectors with names of genes for TCR and Ig. ```{r eval=FALSE,echo=TRUE} # Run help to see available alphabets. ?genealphabets ?genesegments data(genesegments) ``` ### Quick start / automatic report generation For the exploratory analysis of a single repertoire, use the RMarkdown report file at `"/inst/library.report.Rmd"` Analysis in the file include statistics and visualisation of number of clones, clonotypes, in- and out-of-frame sequences, unique amino acid CDR3 sequences, V- and J-usage, most frequent k-mers, rarefaction analysis. For the analysis of a group of repertoires ("cross-analysis"), use the RMarkdown report file at: `"/inst/crossanalysis.report.Rmd}"` Analysis in this file include statistics and visualisation of number of shared clones and clonotypes, V-usage for individuals and groups, J-usage for individuals, Jensen-Shannon divergence among V-usages of repertoires and top-cross. You need the *knitr* package installed in order to generate reports from default pipelines. In RStudio you can run a pipeline file as follows: `Run RStudio -> load the pipeline .Rmd files -> press the knitr button` ### Input parsing Currently in *tcR* there are implemented parser for the next software: - MiTCR - `parse.mitcr`; - MiTCR w/ UMIs - `parse.mitcrbc`; - MiGEC - `parse.migec`; - VDJtools - `parse.vdjtools`; - ImmunoSEQ - `parse.immunoseq`; - MiXCR - `parse.mixcr`; - IMSEQ - `parse.imseq`. Also a general parser `parse.cloneset` for a text table files is implemented. General wrapper for parsers is `parse.file`. User can also parse a list of files or the entire folder. Run `?parse.folder` to see a help on parsing input files and a list of functions for parsing a specific input format. ```{r eval=FALSE,echo=TRUE} # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. immdata1 <- parse.file("~/mitcr_data/immdata1.txt", 'mitcr') # equivalent to immdata1.eq <- parse.mitcr("~/mitcr_data/immdata1.txt") # Parse folder with MiGEC files. immdata <- parse.folder("~/migec_data/", 'migec') ``` ### Cloneset representation Clonesets represented in *tcR* as data frames with each row corresponding to the one nucleotide clonotype and with specific column names: - *Umi.count* - number of UMIs; - *Umi.proportion* - proportion of UMIs; - *Read.count* - number of reads; - *Read.proportion* - proportion of reads; - *CDR3.nucleotide.sequence* - CDR3 nucleotide sequence; - *CDR3.amino.acid.sequence* - CDR3 amino acid sequence; - *V.gene* - names of aligned Variable genes; - *J.gene* - names of aligned Joining genes; - *D.gene* - names of aligned Diversity genes; - *V.end* - last positions of aligned V genes (1-based); - *J.start* - first positions of aligned J genes (1-based); - *D5.end* - positions of D'5 end of aligned D genes (1-based); - *D3.end* - positions of D'3 end of aligned D genes (1-based); - *VD.insertions* - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with VJ recombination); - *DJ.insertions* - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with VJ recombination); - *Total.insertions* - total number of inserted nucleotides (number of N-nucleotides at V-J junction for receptors with VJ recombination). Any data frame with this columns and of this class is suitable for processing with the package, hence user can generate their own table files and load them for the further analysis using `read.csv`, `read.table` and other `base` R functions. Please note that *tcR* internally expects all strings to be of class "character", not "factor". Therefore you should use R parsing functions with parameter *stringsAsFactors=FALSE*. ```{r eval=TRUE, echo=TRUE} # No D genes is available here hence "" at "D.genes" and "-1" at positions. str(twa[[1]]) str(twb[[1]]) ``` ## Repertoire descriptive statistics For the exploratory analysis *tcR* provides various functions for computing descriptive statistics. ### Cloneset summary To get a general view of a subject's repertoire (overall count of sequences, in- and out-of-frames numbers and proportions) use the `cloneset.stats` function. It returns a `summary` of counts of nucleotide and amino acid clonotypes, as well as summary of read counts: ```{r eval=TRUE,echo=TRUE} cloneset.stats(twb) ``` For characterisation of a library use the `repseq.stats` function: ```{r eval=TRUE,echo=TRUE} repseq.stats(twb) ``` ### Most abundant clonotypes statistics Function `clonal.proportion` is used to get the number of most abundant by the count of reads clonotypes. E.g., compute number of clonotypes which fill up (approx.) the 25% from total repertoire's "Read.count": ```{r eval=TRUE,echo=TRUE} # How many clonotypes fill up approximately clonal.proportion(twb, 25) # the 25% of the sum of values in 'Read.count'? ``` To get a proportion of the most abundant clonotypes' sum of reads to the overall number of reads in a repertoire, use `top.proportion`, i.e. get ($\sum$ reads of top clonotypes)$/$($\sum$ reads for all clonotypes). E.g., get a proportion of the top-10 clonotypes' reads to the overall number of reads: ```{r echo=TRUE, eval=TRUE, fig=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'} # What accounts a proportion of the top-10 clonotypes' reads top.proportion(twb, 10) # to the overall number of reads? vis.top.proportions(twb) # Plot this proportions. ``` Function `tailbound.proportion` with two arguments *.col* and *.bound* gets subset of the given data frame with clonotypes which have column *.col* with value $\leq$ *.bound* and computes the ratio of sums of count reads of such subset to the overall data frame. E.g., get proportion of sum of reads of sequences which has "Read.count" <= 100 to the overall number of reads: ```{r eval=TRUE,echo=TRUE} # What is a proportion of sequences which # have 'Read.count' <= 100 to the tailbound.proportion(twb, 100) # overall number of reads? ``` ### Clonal space homeostasis Clonal space homeostasis is a useful statistics of how many space occupied by clonotypes with specific proportions. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'} # data(twb) # Compute summary space of clones, that occupy # [0, .05) and [.05, 1] proportion. clonal.space.homeostasis(twb, c(Low = .05, High = 1)) # Use default arguments: clonal.space.homeostasis(twb[[1]]) twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ``` ### In-frame and out-of-frame sequences Functions for performing subsetting and counting number of in-frame and out-of-frame clonotypes are: `count.inframes`, `count.outframes`, `get.inframes`, `get.outframes`. Parameter *.head* for this functions is a parameter to the *.head* function, that applied to the input data frame or an input list of data frames before subsetting. Functions accept both data frames and list of data frames as parameters. E.g., get data frame with only in-frame sequences and count out-of-frame sequences in the first 5000 rows for this data frame: ```{r eval=TRUE,echo=TRUE} imm.in <- get.inframes(twb) # Return all in-frame sequences from the 'twb'. # Count the number of out-of-frame sequences count.outframes(twb, 5000) # from the first 5000 sequences. ``` General functions with parameter stands for 'all' (all sequences), 'in' (only in-frame sequences) or 'out' (only out-of-frame sequences) are *get.frames* and *count.frames*: ```{r eval=TRUE,echo=TRUE} imm.in <- get.frames(twb, 'in') # Similar to 'get.inframes(twb)'. count.frames(twb[[1]], 'all') # Just return number of rows. flag <- 'out' count.frames(twb, flag, 5000) # Similar to 'count.outframes(twb, 5000)'. ``` ### Search for a target CDR3 sequences For exact or fuzzy search of sequences the package employed a function `find.clonotypes`. Input arguments for this function are a data frame or a list of data frames, targets (a character vector or data frame having one column with sequences and additional columns with, e.g., V genes), a value of which column or columns to return, a method to be used to compare sequences among each other (either "exact" for exact matching, "hamm" for matching sequences by Hamming distance (two sequences are matched if H $\leq$ 1) or "lev" for matching sequences by Levenshtein distance (two sequences are matched if L $\leq$ 1)), and column name from which sequences for matching are obtained. Sounds very complex, but in practice it's very easy, therefore let's go to examples. Suppose we want to search for some CDR3 sequences in a number of repertoires: ```{r eval=TRUE,echo=TRUE} cmv <- data.frame(CDR3.amino.acid.sequence = c('CASSSANYGYTF', 'CSVGRAQNEQFF', 'CASSLTGNTEAFF', 'CASSALGGAGTGELFF', 'CASSLIGVSSYNEQFF'), V.genes = c('TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1'), stringsAsFactors = F) cmv ``` We will search for them using all methods of matching (exact, hamming or levenshtein) and with and without matching by V-segment. Also, for the first case (exact matching and without V gene) we return "Total.insertions" column along with the "Read.count" column, and for the second case output will be a "Rank" - rank (generated by `set.rank`) of a clone or a clonotype in a data frame. ```{r eval=TRUE,echo=TRUE} twb <- set.rank(twb) # Case 1. cmv.imm.ex <- find.clonotypes(.data = twb[1:2], .targets = cmv[,1], .method = 'exact', .col.name = c('Read.count', 'Total.insertions'), .verbose = F) head(cmv.imm.ex) # Case 2. # Search for CDR3 sequences with hamming distance <= 1 # to the one of the cmv$CDR3.amino.acid.sequence with # matching V genes. Return ranks of found sequences. cmv.imm.hamm.v <- find.clonotypes(twb[1:3], cmv, 'hamm', 'Rank', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.hamm.v) # Case 3. # Similar to the previous example, except # using levenshtein distance and the "Read.count" column. cmv.imm.lev.v <- find.clonotypes(twb[1:3], cmv, 'lev', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.lev.v) ``` ## Gene usage Variable and Joining gene usage (V-usage and J-usage) are important characteristics of repertoires. To access and compare them among repertoires *tcR* provides a few useful functions. ### Gene usage computing To access V- and J-usage of a repertoire *tcR* provides functions `geneUsage`. Function `geneUsage`, depending on parameters, computes frequencies or counts of the given elements (e.g., V genes) of the input data frame or the input list of data frames. V and J gene names for humans for TCR and Ig are stored in the .rda file `genesegments.rda` (they are identical to those form IMGT: \href{http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=nomenclatures&species=human&group=TRBV}{link to beta genes (red ones)} and \href{http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=nomenclatures&species=human&group=TRAV}{link to alpha genes (red ones)}). All of the mentioned functions are accept data frames as well as list of data frames. Output for those functions are data frames with the first column stands for a gene and the other for frequencies. ```{r eval=TRUE,echo=TRUE} imm1.vs <- geneUsage(twb[[1]], HUMAN_TRBV) head(imm1.vs) imm.vs.all <- geneUsage(twb, HUMAN_TRBV) imm.vs.all[1:10, 1:4] # Compute joint V-J counts imm1.vj <- geneUsage(twb[[1]], list(HUMAN_TRBV, HUMAN_TRBJ)) imm1.vj[1:5, 1:5] ``` You can also directly visualise gene usage with the function `vis.gene.usage` (if you pass the gene alphabet as a second argument): ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} # Put ".dodge = F" to get distinct plot for every data frame in the given list. vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage dodge', .dodge = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9} vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage column', .dodge = F, .ncol = 2) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} vis.gene.usage(imm1.vs, NA, .main = 'twb[[1]] V-usage', .coord.flip = F) ``` ### Gene usage comparing To evaluate V- and J genes usage of repertoires, the package implements subroutines for two approaches to the analysis: measures from the information theory and PCA (Principal Component Analysis). #### Shannon entropy and Jensen-Shannon divergence To assess the diversity of genes usage user can use the `entropy` function. Kullback-Leibler assymetric measure (function `kl.div`) and Jensen-Shannon symmetric measure (functions `js.div` for computing JS-divergence between the given distributions and `js.div.seg` for computing JS-divergence between genes distributions of two clonesets or a list with data frames) are provided to estimate distance among gene usage of different repertoires. To visualise distances *tcR* employed the `vis.radarlike` function, see Section "Plots" for more detailed information. ```{r eval=T, echo=TRUE, fig.align='center'} # Transform "0:100" to distribution with Laplace correction entropy(0:100, .laplace = 1) # (i.e., add "1" to every value before transformation). entropy.seg(twb, HUMAN_TRBV) # Compute entropy of V-segment usage for each data frame. js.div.seg(twb[1:2], HUMAN_TRBV, .verbose = F) imm.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(imm.js, .ncol = 2) ``` #### Principal Component Analysis (PCA) Principal component analysis (PCA) is a statistical procedure for transforming a set of observations to a set of special values for analysis. In *tcR* implemented functions `pca.segments` for performing PCA on V- or J-usage, and `pca.segments.2D` for performing PCA on VJ-usage. For plotting the PCA results see the `vis.pca` function. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6} pca.segments(twb, .genes = HUMAN_TRBV) # Plot PCA results of V-segment usage. # Return object of class "prcomp" class(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV)) ``` ## Repertoire overlap analysis *tcR* provides a number of functions for evaluating similarity of clonesets based on shared among clonesets clonotypes and working with data frames with shared clonotypes. ### Overlap quantification The general interface to all functions for computing cloneset overlap coefficients is the `repOverlap` function. #### Number of shared clonotypes The most straightforward yet a quite effective way to evaluate similarity of two clonesets is compute the number of shared clonotypes. *tcR* adds the new function `intersectClonesets` (`repOverlap(your_data, 'exact')`) which is by default computes the number of shared clonotypes using the "CDR3.nucleotide.sequence" columns of the given data frames, but user can change target columns by using arguments *.type* or *.col*. As in the `find.clonotypes`, user can choose which method apply to the elements: exact match of elements, match by Hamming distance or match by Levenshtein distance. Logical argument *.norm* is used to perform normalisation of the number of shared clonotypes by dividing this number by multiplication of clonesets' sizes (**strongly** recommended otherwise your results will be correlating with clonesets' sizes). ```{r eval=TRUE, echo=T, fig.align='center', warning=FALSE} # Equivalent to intersect(twb[[1]]$CDR3.nucleotide.sequence, # twb[[2]]$CDR3.nucleotide.sequence) repOverlap(twb[1:2], 'exact', 'nuc', .verbose = F) # Equivalent to intersectClonesets(twb, "n0e", .norm = T) repOverlap(twb, 'exact', 'nuc', .norm = T, .verbose = F) # Intersect by amino acid clonotypes + V genes repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F) # Plot a heatmap of the number of shared clonotypes. vis.heatmap(repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F), .title = 'twb - (ave)-intersection', .labs = '') ``` See the `vis.heatmap` function in the Section "Visualisation" for the visualisation of the intersection results. Functions `intersectCount`, `intersectLogic` and `intersectIndices` are more flexible in terms of choosing which columns to match. They all have parameter *.col* that specifies names of columns which will used in computing intersection. Function `intersectCount` returns number of similar elements; `intersectIndices(x, y)` returns 2-column matrix with the first column stands for an index of an element in the given *x*, and the second column stands for an index of that element of *y* which is similar to a relative element in *x*; `intersectLogic(x, y)` returns a logical vector of *length(x)* or *nrow(x)*, where TRUE at position *i* means that element with index {i} has been found in the *y*. ```{r eval=TRUE, echo=TRUE} # Get logic vector of shared elements, where # elements are tuples of CDR3 nucleotide sequence and corresponding V-segment imm.1.2 <- intersectLogic(twb[[1]], twb[[2]], .col = c('CDR3.amino.acid.sequence', 'V.gene')) # Get elements which are in both twb[[1]] and twb[[2]]. head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')]) ``` #### "Top cross" Number of shared clonotypes among the most abundant clonotypes may differ signigicantly from those with lesses count. To support research *tcR* offers the `top.cross` function, that apply `tcR::intersectClonesets`, e.g., to the first 1000 clonotypes, 2000, 3000 and so on up to the first 100000 clones, if supplied `.n == seq(1000, 100000, 1000)`. ```{r eval=TRUE, echo=T, fig.align='center', fig.height=6.5, fig.width=10, warning=FALSE} twb.top <- top.cross(.data = twb, .n = seq(500, 10000, 500), .verbose = F, .norm = T) top.cross.plot(twb.top) ``` #### More complex similarity measures *tcR* also provides more complex similarity measures for evaluating the similarity of sets. - Tversky index (`repOverlap(your_data, 'tversky')` for clonesets or `tversky.index` for vectors) is an asymmetric similarity measure on sets that compares a variant to a prototype. If using default arguments, it's similar to Dice's coefficient. - Overlap coefficient (`repOverlap(your_data, 'overlap')` for clonesets or `overlap.coef` for vectors) is a similarity measure that measures the overlap between two sets, and is defined as the size of the intersection divided by the smaller of the size of the two sets. - Jaccard index (`repOverlap(your_data, 'jaccard')` for clonesets or `jaccard.index` for vectors) is a statistic used for comparing the similarity and diversity of sample sets. - Morisita's overlap index (`repOverlap(your_data, 'morisita')` for clonesets or `morisitas.index` for other data) is a statistical measure of dispersion of individuals in a population and is used to compare overlap among samples. The formula is based on the assumption that increasing the size of the samples will increase the diversity because it will include different habitats (i.e. different faunas) (Morisita, 1959). To visualise similarity among repertoires the `vis.heatmap` function is appropriate. ```{r eval=TRUE, echo=TRUE, results='hold'} # Apply the Morisitas overlap index to the each pair of repertoires. # Use information about V genes (i.e. one CDR3 clonotype is equal to another # if and only if their CDR3 aa sequences are equal and their V genes are equal) repOverlap(twb, 'morisita', 'aa', 'read.count', .vgene = T, .verbose = F) ``` ### Overlap statistics and tests #### Overlap Z-score (OZ-score) - a measure for ???abnormality??? in overlaps `ozScore` #### Monte Carlo permutation test for pairwise and one-vs-all-wise within- and inter-group differences in a set of repertoires `permutDistTest` `pca2euclid` ### Shared repertoire To investigate a shared among a several repertoires clonotypes ("shared repertoire") the package provided the `shared.repertoire` function along with functions for computing the shared repertoire statistics. The `shared.representation` function computes the number of shared clonotypes for each repertoire for each degree of sharing (i.e., number of people, in which indicated amount of clones have been found). The function `shared.summary` is equivalent to `repOverlap(, 'exact')` but applies to the shared repertoire data frame. Measuring distances among repertoires using the cosine similarity on vector of counts of shared sequences is also possible with the `cosine.sharing` function. ```{r eval=TRUE, echo=TRUE} # Compute shared repertoire of amino acid CDR3 sequences and V genes # which has been found in two or more people and return the Read.count column # of such clonotypes from each data frame in the input list. imm.shared <- shared.repertoire(.data = twb, .type = 'avrc', .min.ppl = 2, .verbose = F) head(imm.shared) shared.representation(imm.shared) # Number of shared sequences. ``` ## Diversity evaluation For assessing the distribution of clonotypes in the given repertoire, *tcR* provides functions for evaluating the diversity (functions `diversity` and `inverse.simpson`) and the skewness of the clonal distribution (functions `gini` and `gini.simpson`), and a general interface to all of this functions `repDiversity`, which user should use to estimate the diversity of clonesets. Function `diversity` (`repDiversity(your_clonesets, "div")`) computes the ecological diversity index (with parameter `.q` for penalties for clones with large count). Function `inverse.simpson` (`repDiversity(your_clonesets, "inv.simp")`) computes the Inverse Simpson Index (i.e., inverse probability of choosing two similar clonotypes). Function `gini` (`repDiversity(your_clonesets, "gini")`) computes the economical Gini index of clonal distribution. Function `gini.simpson` (`repDiversity(your_clonesets, "gini.simp")`) computes the Gini-Simpson index. Function `chao1` (`repDiversity(your_clonesets, "chao1")`) computes the Chao1 index, its SD and two 95 perc CI. Function `repDiversity` accepts single clonesets as well as a list of clonesets. Parameter `.quant` specifies which column to use for computing the diversity (print `?repDiversity` to see more information about input arguments). ```{r eval=TRUE, echo=TRUE, results='hold'} # Evaluate the diversity of clones by the ecological diversity index. repDiversity(twb, 'div', 'read.count') sapply(twb, function (x) diversity(x$Read.count)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Compute the diversity as the inverse probability of choosing two similar clonotypes. repDiversity(twb, 'inv.simp', 'read.prop') sapply(twb, function (x) inverse.simpson(x$Read.proportion)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Evaluate the skewness of clonal distribution. repDiversity(twb, 'gini.simp', 'read.prop') sapply(twb, function (x) gini.simpson(x$Read.proportion)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Compute diversity of repertoire using Chao index. repDiversity(twb, 'chao1', 'read.count') sapply(twb, function (x) chao1(x$Read.count)) ``` ## Visualisation ### CDR3 length and read count distributions plot Plots of the distribution of CDR3 nucleotide sequences length (function `vis.count.len`) and the histogram of counts (function `vis.number.count`). Input data is either a data frame or a list with data frames. Argument *.col* specifies column's name with clonotype counts. Argument *.ncol* specifies a number of columns in a plot with multiple distribution, i.e., if the input data is a list with data frames. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center'} vis.count.len(twb[[1]], .name = "twb[[1]] CDR3 lengths", .col = "Read.count") ``` ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center', warning=FALSE, message=FALSE} # I comment this to avoid a strange bug in ggplot2. Will uncomment later. # vis.number.count(twb[[1]], .name = "twb[[1]] count distribution") ``` ### Top proportions bar plot For the visualisation of proportions of the most abundant clonotypes in a repertoire *tcR* offers the `vis.top.proportions` function. As input the function receives either data frame or a list with data frames (argument *.data*), an integer vector with number of clonotypes for computing proportions of count for this clonotypes (argument *.head*), and a column's name with clonotype counts (argument *.col*). ```{r echo=TRUE, eval=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'} vis.top.proportions(twb, c(10, 500, 3000, 10000), .col = "Read.count") ``` ### Clonal space homeostasis bar plot For the visualisation of how much space occupied each group of clonotypes, divided into groups by their proportions in the data, use the `vis.clonal.space` function. As an input it receives the output of the `clonal.space.homeostasis` function. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'} twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ``` ### Heat map Pairwise distances or similarity of repertoires can be represented as qudratic matrices, in which each row and column represented a cloneset, and each value in every cell (i, j) is a distance between repertoires with indices i and j. One way to visalise such matrices is using "heatmaps". For plotting heatmaps in *tcR* implemented the `vis.heatmap` function. With changing input arguments user can change names of labs, title and legend. ```{r eval=TRUE, echo=TRUE, fig.align='center', warning=FALSE, message=FALSE} twb.shared <- repOverlap(twb, "exact", .norm = F, .verbose = F) vis.heatmap(twb.shared, .title = "Twins shared nuc clonotypes", .labs = c("Sample in x", "Sample in y"), .legend = "# clonotypes") ``` ### Radar-like plot Another way to repsent distances among objects is "radar-like" plots (because this plots is not exactly radar plots) realised in *tcR* throught the `vis.radarlike` function. Argument *.ncol* specifies a number of columns of radar-like plots in a viewport. ```{r eval=T, echo=TRUE, fig.align='center'} twb.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(twb.js, .ncol = 2) ``` ### Gene usage histogram For the visualisation of gene usage *tcR* employes subroutines for making classical histograms using the `vis.gene.usage` function. The function accept clonesets, lists of clonesets or output from the `geneUsage` function. If input is a cloneset(s), then user should specify a gene alphabet (e.g., `HUMAN_TRBV`) in order to compute the gene usage. Using a parameter \code{.dodge}, user can change type of the output between an output as histograms for each cloneset in the input list (`.dodge = F`) or an output as an one histogram for all data, which is very useful for comparing distribution of genes (`.dodge = T`). If `.dodge=F` and input are lists of clonesets or a gene usage of a few clonesets, than user with argument `.ncol` can specify how many columns of histograms will be outputted. With `.coord.flip` user can flip coordinates so genes will be at the left side of the plot. ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} vis.gene.usage(twb[[1]], HUMAN_TRBV, .main = 'Sample I V-usage') ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=7, fig.width=5} vis.gene.usage(twb[[2]], HUMAN_TRBV, .main = 'Sample II V-usage', .coord.flip = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} twb.jusage <- geneUsage(twb, HUMAN_TRBJ) vis.gene.usage(twb.jusage, .main = 'Twins J-usage', .dodge = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9} vis.gene.usage(twb, HUMAN_TRBJ, .main = 'Twins J-usage', .dodge = F, .ncol = 2) ``` ### PCA visualisation For the visualisation of results from the `prcomp` function (i.e., objects of class `prcomp`), *tcR* provides the `vis.pca` function. Input arguments for the function are an object of class `prcomp` and a (if needed) list with groups (vectors of indices of samples) for colouring points in the plot. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6} twb.pca <- pca.segments(twb, .do.plot = F) vis.pca(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV), .groups = list(GroupA = c(1,2), GroupB = c(3,4))) ``` ### Logo-like plot Logo-like graphs for visualisation of nucleotide or amino acid motif sequences / profiles. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.width=6, fig.height=5.5, warning=FALSE, message=FALSE} km <- get.kmers(twb[[1]]$CDR3.amino.acid.sequence, .head = 100, .k = 7, .verbose = F) d <- kmer.profile(km) vis.logo(d) ``` ## Mutation networks Mutation network (or a mutation graph) is a graph with vertices representing nucleotide or in-frame amino acid sequences (out-of-frame amino acid sequences will be automatically filtered out by *tcR* functions for mutation network creating) and edges which connecting pairs of sequences with hamming distance (parameter *.method* = 'hamm') or edit distance (parameter *.method* = 'lev') between them no more than specified in the *.max.errors* function parameter of the `mutation.network` function. To create a mutation network first what you need is to make a shared repertoires and then apply the `mutation.network` function to this shared repertoire: ```{r eval=TRUE, echo=TRUE} # data(twb) twb.shared <- shared.repertoire(twb, .head = 1000, .verbose = F) G <- mutation.network(twb.shared) G ``` To manipulate vertex attributes functions \code{set.group.vector} and \code{get.group.names} are provided. ```{r eval=TRUE, echo=TRUE} # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4))) # <= refactor this get.group.names(G, "twins", 1) get.group.names(G, "twins", 300) get.group.names(G, "twins", c(1,2,3), F) get.group.names(G, "twins", 300, F) # Because we have only two groups, we can assign more readable attribute. V(G)$twin.names <- get.group.names(G, "twins") V(G)$twin.names[1] V(G)$twin.names[300] ``` To access neighbour vertices of vertices ("ego-network") use the \code{mutation.neighbours} function: ```{r eval=TRUE, echo=TRUE} # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) head(mutated.neighbours(G, 1)[[1]]) ``` ## Conclusion Feel free to contact me for the package-related or immunoinformatics research-related questions. If you spot a bug or would like to see something useful for you in the package feel free to raise an issue at *tcR* GitHub: [https://github.com/imminfo/tcr/issues](Issues) ## Appendix A: Kmers manipulation and processing In the package implemented functions for working with k-mers. Function `get.kmers` generates k-mers from the given chatacter vector or a data frame with columns for sequences and a count for each sequence. ```{r eval=TRUE, echo=TRUE} head(get.kmers(twb[[1]]$CDR3.amino.acid.sequence, 100, .meat = F, .verbose = F)) head(get.kmers(twb[[1]], .meat = T, .verbose = F)) ``` ## Appendix B: Nucleotide and amino acid sequences manipulation The package also provides a several number of functions for performing classic bioinformatics tasks on strings. For more powerful subroutines see the Bioconductor's *Biostrings* package. ### Nucleotide sequence manipulation Functions for basic nucleotide sequences manipulations: reverse-complement, translation and GC-content computation. All functions are vectorised. ```{r eval=TRUE, echo=TRUE} revcomp(c('AAATTT', 'ACGTTTGGA')) cbind(bunch.translate(twb[[1]]$CDR3.nucleotide.sequence[1:10]), twb[[1]]$CDR3.amino.acid.sequence[1:10]) gc.content(twb[[1]]$CDR3.nucleotide.sequence[1:10]) ``` ### Reverse translation subroutines Function `codon.variants` returns a list of vectors of nucleotide codons for each letter for each input amino acid sequence. Function `translated.nucl.sequences` returns the number of nucleotide sequences, which, when translated, will result in the given amino acid sequence(s). Function `reverse.translation` return all nucleotide sequences, which is translated to the given amino acid sequences. Optional argument `.nucseq` for each of this function provides restriction for nucleotides, which cannot be changed. All functions are vectorised. ```{r eval=TRUE, echo=TRUE} codon.variants('LQ') translated.nucl.sequences(c('LQ', 'CASSLQ')) reverse.translation('LQ') translated.nucl.sequences('LQ', 'XXXXXG') codon.variants('LQ', 'XXXXXG') reverse.translation('LQ', 'XXXXXG') ``` tcR/inst/doc/tcrvignette.R0000644000176200001440000003173013446161025015213 0ustar liggesusers## ----eval=TRUE,echo=FALSE,warning=FALSE,message=FALSE-------------------- library(tcR) data(twa) data(twb) ## ----eval=FALSE,echo=TRUE------------------------------------------------ # # Load the package and load the data. # library(tcR) # data(twa) # "twa" - list of length 4 # data(twb) # "twb" - list of length 4 # # # Explore the data. # head(twa[[1]]) # head(twb[[1]]) ## ----eval=FALSE,echo=TRUE------------------------------------------------ # # Run help to see available alphabets. # ?genealphabets # ?genesegments # data(genesegments) ## ----eval=FALSE,echo=TRUE------------------------------------------------ # # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. # immdata1 <- parse.file("~/mitcr_data/immdata1.txt", 'mitcr') # # equivalent to # immdata1.eq <- parse.mitcr("~/mitcr_data/immdata1.txt") # # # Parse folder with MiGEC files. # immdata <- parse.folder("~/migec_data/", 'migec') ## ----eval=TRUE, echo=TRUE------------------------------------------------ # No D genes is available here hence "" at "D.genes" and "-1" at positions. str(twa[[1]]) str(twb[[1]]) ## ----eval=TRUE,echo=TRUE------------------------------------------------- cloneset.stats(twb) ## ----eval=TRUE,echo=TRUE------------------------------------------------- repseq.stats(twb) ## ----eval=TRUE,echo=TRUE------------------------------------------------- # How many clonotypes fill up approximately clonal.proportion(twb, 25) # the 25% of the sum of values in 'Read.count'? ## ----echo=TRUE, eval=TRUE, fig=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'---- # What accounts a proportion of the top-10 clonotypes' reads top.proportion(twb, 10) # to the overall number of reads? vis.top.proportions(twb) # Plot this proportions. ## ----eval=TRUE,echo=TRUE------------------------------------------------- # What is a proportion of sequences which # have 'Read.count' <= 100 to the tailbound.proportion(twb, 100) # overall number of reads? ## ----eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'---- # data(twb) # Compute summary space of clones, that occupy # [0, .05) and [.05, 1] proportion. clonal.space.homeostasis(twb, c(Low = .05, High = 1)) # Use default arguments: clonal.space.homeostasis(twb[[1]]) twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ## ----eval=TRUE,echo=TRUE------------------------------------------------- imm.in <- get.inframes(twb) # Return all in-frame sequences from the 'twb'. # Count the number of out-of-frame sequences count.outframes(twb, 5000) # from the first 5000 sequences. ## ----eval=TRUE,echo=TRUE------------------------------------------------- imm.in <- get.frames(twb, 'in') # Similar to 'get.inframes(twb)'. count.frames(twb[[1]], 'all') # Just return number of rows. flag <- 'out' count.frames(twb, flag, 5000) # Similar to 'count.outframes(twb, 5000)'. ## ----eval=TRUE,echo=TRUE------------------------------------------------- cmv <- data.frame(CDR3.amino.acid.sequence = c('CASSSANYGYTF', 'CSVGRAQNEQFF', 'CASSLTGNTEAFF', 'CASSALGGAGTGELFF', 'CASSLIGVSSYNEQFF'), V.genes = c('TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1'), stringsAsFactors = F) cmv ## ----eval=TRUE,echo=TRUE------------------------------------------------- twb <- set.rank(twb) # Case 1. cmv.imm.ex <- find.clonotypes(.data = twb[1:2], .targets = cmv[,1], .method = 'exact', .col.name = c('Read.count', 'Total.insertions'), .verbose = F) head(cmv.imm.ex) # Case 2. # Search for CDR3 sequences with hamming distance <= 1 # to the one of the cmv$CDR3.amino.acid.sequence with # matching V genes. Return ranks of found sequences. cmv.imm.hamm.v <- find.clonotypes(twb[1:3], cmv, 'hamm', 'Rank', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.hamm.v) # Case 3. # Similar to the previous example, except # using levenshtein distance and the "Read.count" column. cmv.imm.lev.v <- find.clonotypes(twb[1:3], cmv, 'lev', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.lev.v) ## ----eval=TRUE,echo=TRUE------------------------------------------------- imm1.vs <- geneUsage(twb[[1]], HUMAN_TRBV) head(imm1.vs) imm.vs.all <- geneUsage(twb, HUMAN_TRBV) imm.vs.all[1:10, 1:4] # Compute joint V-J counts imm1.vj <- geneUsage(twb[[1]], list(HUMAN_TRBV, HUMAN_TRBJ)) imm1.vj[1:5, 1:5] ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7---- # Put ".dodge = F" to get distinct plot for every data frame in the given list. vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage dodge', .dodge = T) ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9---- vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage column', .dodge = F, .ncol = 2) ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7---- vis.gene.usage(imm1.vs, NA, .main = 'twb[[1]] V-usage', .coord.flip = F) ## ----eval=T, echo=TRUE, fig.align='center'------------------------------- # Transform "0:100" to distribution with Laplace correction entropy(0:100, .laplace = 1) # (i.e., add "1" to every value before transformation). entropy.seg(twb, HUMAN_TRBV) # Compute entropy of V-segment usage for each data frame. js.div.seg(twb[1:2], HUMAN_TRBV, .verbose = F) imm.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(imm.js, .ncol = 2) ## ----eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6---- pca.segments(twb, .genes = HUMAN_TRBV) # Plot PCA results of V-segment usage. # Return object of class "prcomp" class(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV)) ## ----eval=TRUE, echo=T, fig.align='center', warning=FALSE---------------- # Equivalent to intersect(twb[[1]]$CDR3.nucleotide.sequence, # twb[[2]]$CDR3.nucleotide.sequence) repOverlap(twb[1:2], 'exact', 'nuc', .verbose = F) # Equivalent to intersectClonesets(twb, "n0e", .norm = T) repOverlap(twb, 'exact', 'nuc', .norm = T, .verbose = F) # Intersect by amino acid clonotypes + V genes repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F) # Plot a heatmap of the number of shared clonotypes. vis.heatmap(repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F), .title = 'twb - (ave)-intersection', .labs = '') ## ----eval=TRUE, echo=TRUE------------------------------------------------ # Get logic vector of shared elements, where # elements are tuples of CDR3 nucleotide sequence and corresponding V-segment imm.1.2 <- intersectLogic(twb[[1]], twb[[2]], .col = c('CDR3.amino.acid.sequence', 'V.gene')) # Get elements which are in both twb[[1]] and twb[[2]]. head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')]) ## ----eval=TRUE, echo=T, fig.align='center', fig.height=6.5, fig.width=10, warning=FALSE---- twb.top <- top.cross(.data = twb, .n = seq(500, 10000, 500), .verbose = F, .norm = T) top.cross.plot(twb.top) ## ----eval=TRUE, echo=TRUE, results='hold'-------------------------------- # Apply the Morisitas overlap index to the each pair of repertoires. # Use information about V genes (i.e. one CDR3 clonotype is equal to another # if and only if their CDR3 aa sequences are equal and their V genes are equal) repOverlap(twb, 'morisita', 'aa', 'read.count', .vgene = T, .verbose = F) ## ----eval=TRUE, echo=TRUE------------------------------------------------ # Compute shared repertoire of amino acid CDR3 sequences and V genes # which has been found in two or more people and return the Read.count column # of such clonotypes from each data frame in the input list. imm.shared <- shared.repertoire(.data = twb, .type = 'avrc', .min.ppl = 2, .verbose = F) head(imm.shared) shared.representation(imm.shared) # Number of shared sequences. ## ----eval=TRUE, echo=TRUE, results='hold'-------------------------------- # Evaluate the diversity of clones by the ecological diversity index. repDiversity(twb, 'div', 'read.count') sapply(twb, function (x) diversity(x$Read.count)) ## ----eval=TRUE, echo=TRUE, results='hold'-------------------------------- # Compute the diversity as the inverse probability of choosing two similar clonotypes. repDiversity(twb, 'inv.simp', 'read.prop') sapply(twb, function (x) inverse.simpson(x$Read.proportion)) ## ----eval=TRUE, echo=TRUE, results='hold'-------------------------------- # Evaluate the skewness of clonal distribution. repDiversity(twb, 'gini.simp', 'read.prop') sapply(twb, function (x) gini.simpson(x$Read.proportion)) ## ----eval=TRUE, echo=TRUE, results='hold'-------------------------------- # Compute diversity of repertoire using Chao index. repDiversity(twb, 'chao1', 'read.count') sapply(twb, function (x) chao1(x$Read.count)) ## ----eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center'---- vis.count.len(twb[[1]], .name = "twb[[1]] CDR3 lengths", .col = "Read.count") ## ----eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center', warning=FALSE, message=FALSE---- # I comment this to avoid a strange bug in ggplot2. Will uncomment later. # vis.number.count(twb[[1]], .name = "twb[[1]] count distribution") ## ----echo=TRUE, eval=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'---- vis.top.proportions(twb, c(10, 500, 3000, 10000), .col = "Read.count") ## ----eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'---- twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ## ----eval=TRUE, echo=TRUE, fig.align='center', warning=FALSE, message=FALSE---- twb.shared <- repOverlap(twb, "exact", .norm = F, .verbose = F) vis.heatmap(twb.shared, .title = "Twins shared nuc clonotypes", .labs = c("Sample in x", "Sample in y"), .legend = "# clonotypes") ## ----eval=T, echo=TRUE, fig.align='center'------------------------------- twb.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(twb.js, .ncol = 2) ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7---- vis.gene.usage(twb[[1]], HUMAN_TRBV, .main = 'Sample I V-usage') ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=7, fig.width=5---- vis.gene.usage(twb[[2]], HUMAN_TRBV, .main = 'Sample II V-usage', .coord.flip = T) ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7---- twb.jusage <- geneUsage(twb, HUMAN_TRBJ) vis.gene.usage(twb.jusage, .main = 'Twins J-usage', .dodge = T) ## ----eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9---- vis.gene.usage(twb, HUMAN_TRBJ, .main = 'Twins J-usage', .dodge = F, .ncol = 2) ## ----eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6---- twb.pca <- pca.segments(twb, .do.plot = F) vis.pca(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV), .groups = list(GroupA = c(1,2), GroupB = c(3,4))) ## ----eval=TRUE, echo=TRUE, fig.align='center', fig.width=6, fig.height=5.5, warning=FALSE, message=FALSE---- km <- get.kmers(twb[[1]]$CDR3.amino.acid.sequence, .head = 100, .k = 7, .verbose = F) d <- kmer.profile(km) vis.logo(d) ## ----eval=TRUE, echo=TRUE------------------------------------------------ # data(twb) twb.shared <- shared.repertoire(twb, .head = 1000, .verbose = F) G <- mutation.network(twb.shared) G ## ----eval=TRUE, echo=TRUE------------------------------------------------ # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4))) # <= refactor this get.group.names(G, "twins", 1) get.group.names(G, "twins", 300) get.group.names(G, "twins", c(1,2,3), F) get.group.names(G, "twins", 300, F) # Because we have only two groups, we can assign more readable attribute. V(G)$twin.names <- get.group.names(G, "twins") V(G)$twin.names[1] V(G)$twin.names[300] ## ----eval=TRUE, echo=TRUE------------------------------------------------ # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) head(mutated.neighbours(G, 1)[[1]]) ## ----eval=TRUE, echo=TRUE------------------------------------------------ head(get.kmers(twb[[1]]$CDR3.amino.acid.sequence, 100, .meat = F, .verbose = F)) head(get.kmers(twb[[1]], .meat = T, .verbose = F)) ## ----eval=TRUE, echo=TRUE------------------------------------------------ revcomp(c('AAATTT', 'ACGTTTGGA')) cbind(bunch.translate(twb[[1]]$CDR3.nucleotide.sequence[1:10]), twb[[1]]$CDR3.amino.acid.sequence[1:10]) gc.content(twb[[1]]$CDR3.nucleotide.sequence[1:10]) ## ----eval=TRUE, echo=TRUE------------------------------------------------ codon.variants('LQ') translated.nucl.sequences(c('LQ', 'CASSLQ')) reverse.translation('LQ') translated.nucl.sequences('LQ', 'XXXXXG') codon.variants('LQ', 'XXXXXG') reverse.translation('LQ', 'XXXXXG') tcR/inst/doc/tcrvignette.html0000644000176200001440001734510113446161025015766 0ustar liggesusers

Introduction

The tcR package designed to help researchers in the immunology field to analyse T cell receptor (TCR) and immunoglobulin (Ig) repertoires. In this vignette, I will cover procedures for immune receptor repertoire analysis provided with the package.

Terms:

  • Clonotype: a group of T / B cell clones with equal CDR3 nucleotide sequences and equal Variable genes.

  • Cloneset / repertoire: a set of clonotypes. Represented as a data frame in which each row corresponds to a unique clonotype.

  • UMI: Unique Molecular Identifier (see this paper for details)

Package features

  • Parsers for outputs of various tools for CDR3 extraction and genes alignment (currently implemented parsers for MiTCR, MiGEC, VDJtools, ImmunoSEQ, IMSEQ and MiXCR)
  • Data manipulation (in-frame / out-of-frame sequences subsetting, clonotype motif search)
  • Descriptive statistics (number of reads, number of clonotypes, gene segment usage)
  • Shared clonotypes statistics (number of shared clonotypes, using V genes or not; sequential intersection among the most abundant clonotype (“top-crossâ€))
  • Repertoire comparison (Jaccard index, Morisita’s overlap index, Horn’s index, Tversky index, overlap coefficient)
  • V- and J genes usage and it’s analysis (PCA, Shannon Entropy, Jensen-Shannon Divergence)
  • Diversity evaluation (ecological diversity index, Gini index, inverse Simpson index, rarefaction analysis)
  • Artificial repertoire generation (beta chain only, for now)
  • Spectratyping
  • Various visualisation procedures
  • Mutation networks (graphs, in which vertices represent CDR3 nucleotide / amino acid sequences and edges are connecting similar sequences with low hamming or edit distance between them)

Data in the package

There are two datasets provided with the package - twins data and V(D)J recombination genes data.

Downsampled twins data

twa.rda, twb.rda - two lists with 4 data frames in each list. Every data frame is a sample downsampled to the 10000 most abundant clonotypes of twins data (alpha and beta chains). Full data is available here:

Twins TCR data at Laboratory of Comparative and Functional Genomics

Explore the data:

# Load the package and load the data.
library(tcR)
data(twa)  # "twa" - list of length 4
data(twb)  # "twb" - list of length 4

# Explore the data.
head(twa[[1]])
head(twb[[1]])

Gene alphabets

Gene alphabets - character vectors with names of genes for TCR and Ig.

# Run help to see available alphabets.
?genealphabets
?genesegments
data(genesegments)

Quick start / automatic report generation

For the exploratory analysis of a single repertoire, use the RMarkdown report file at

"<path to the tcR package>/inst/library.report.Rmd"

Analysis in the file include statistics and visualisation of number of clones, clonotypes, in- and out-of-frame sequences, unique amino acid CDR3 sequences, V- and J-usage, most frequent k-mers, rarefaction analysis.

For the analysis of a group of repertoires (“cross-analysisâ€), use the RMarkdown report file at:

"<path to the tcR package>/inst/crossanalysis.report.Rmd}"

Analysis in this file include statistics and visualisation of number of shared clones and clonotypes, V-usage for individuals and groups, J-usage for individuals, Jensen-Shannon divergence among V-usages of repertoires and top-cross.

You need the knitr package installed in order to generate reports from default pipelines. In RStudio you can run a pipeline file as follows:

Run RStudio -> load the pipeline .Rmd files -> press the knitr button

Input parsing

Currently in tcR there are implemented parser for the next software:

  • MiTCR - parse.mitcr;

  • MiTCR w/ UMIs - parse.mitcrbc;

  • MiGEC - parse.migec;

  • VDJtools - parse.vdjtools;

  • ImmunoSEQ - parse.immunoseq;

  • MiXCR - parse.mixcr;

  • IMSEQ - parse.imseq.

Also a general parser parse.cloneset for a text table files is implemented. General wrapper for parsers is parse.file. User can also parse a list of files or the entire folder. Run ?parse.folder to see a help on parsing input files and a list of functions for parsing a specific input format.

# Parse file in "~/mitcr/immdata1.txt" as a MiTCR file.
immdata1 <- parse.file("~/mitcr_data/immdata1.txt", 'mitcr')
# equivalent to
immdata1.eq <- parse.mitcr("~/mitcr_data/immdata1.txt")

# Parse folder with MiGEC files.
immdata <- parse.folder("~/migec_data/", 'migec')

Cloneset representation

Clonesets represented in tcR as data frames with each row corresponding to the one nucleotide clonotype and with specific column names:

  • Umi.count - number of UMIs;
  • Umi.proportion - proportion of UMIs;
  • Read.count - number of reads;
  • Read.proportion - proportion of reads;
  • CDR3.nucleotide.sequence - CDR3 nucleotide sequence;
  • CDR3.amino.acid.sequence - CDR3 amino acid sequence;
  • V.gene - names of aligned Variable genes;
  • J.gene - names of aligned Joining genes;
  • D.gene - names of aligned Diversity genes;
  • V.end - last positions of aligned V genes (1-based);
  • J.start - first positions of aligned J genes (1-based);
  • D5.end - positions of D’5 end of aligned D genes (1-based);
  • D3.end - positions of D’3 end of aligned D genes (1-based);
  • VD.insertions - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with VJ recombination);
  • DJ.insertions - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with VJ recombination);
  • Total.insertions - total number of inserted nucleotides (number of N-nucleotides at V-J junction for receptors with VJ recombination).

Any data frame with this columns and of this class is suitable for processing with the package, hence user can generate their own table files and load them for the further analysis using read.csv, read.table and other base R functions. Please note that tcR internally expects all strings to be of class “characterâ€, not “factorâ€. Therefore you should use R parsing functions with parameter stringsAsFactors=FALSE.

# No D genes is available here hence "" at "D.genes" and "-1" at positions.
str(twa[[1]])
## 'data.frame':    10000 obs. of  16 variables:
##  $ Umi.count               : logi  NA NA NA NA NA NA ...
##  $ Umi.proportion          : logi  NA NA NA NA NA NA ...
##  $ Read.count              : int  147158 58018 55223 41341 31525 30682 20913 16695 14757 13745 ...
##  $ Read.proportion         : num  0.0857 0.0338 0.0322 0.0241 0.0184 ...
##  $ CDR3.nucleotide.sequence: chr  "TGTGCTGTGATGGATAGCAACTATCAGTTAATCTGG" "TGTGCAGAGAAGTCTAGCAACACAGGCAAACTAATCTTT" "TGTGTGGTGAACTTTACTGGAGGCTTCAAAACTATCTTT" "TGTGCAGCAAGTATAGGGCTTGTATCTAACTTTGGAAATGAGAAATTAACCTTT" ...
##  $ CDR3.amino.acid.sequence: chr  "CAVMDSNYQLIW" "CAEKSSNTGKLIF" "CVVNFTGGFKTIF" "CAASIGLVSNFGNEKLTF" ...
##  $ V.gene                  : chr  "TRAV1-2" "TRAV5" "TRAV12-1" "TRAV13-1" ...
##  $ J.gene                  : chr  "TRAJ33" "TRAJ37" "TRAJ9" "TRAJ48" ...
##  $ D.gene                  : chr  "" "" "" "" ...
##  $ V.end                   : int  9 9 11 12 9 8 4 12 9 12 ...
##  $ J.start                 : int  10 12 14 22 19 9 15 13 15 14 ...
##  $ D5.end                  : int  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##  $ D3.end                  : num  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##  $ VD.insertions           : int  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##  $ DJ.insertions           : int  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##  $ Total.insertions        : int  0 2 2 9 9 0 10 0 5 1 ...
str(twb[[1]])
## 'data.frame':    10000 obs. of  16 variables:
##  $ Umi.count               : logi  NA NA NA NA NA NA ...
##  $ Umi.proportion          : logi  NA NA NA NA NA NA ...
##  $ Read.count              : int  81516 46158 32476 30356 27321 23760 22232 20968 20603 17429 ...
##  $ Read.proportion         : num  0.0578 0.0327 0.023 0.0215 0.0194 ...
##  $ CDR3.nucleotide.sequence: chr  "TGTGCCAGCAGCCAAGCTCTAGCGGGAGCAGATACGCAGTATTTT" "TGTGCCAGCAGCTTAGGCCCCAGGAACACCGGGGAGCTGTTTTTT" "TGTGCCAGCAGTTATGGAGGGGCGGCAGATACGCAGTATTTT" "TGCAGTGCTGGAGGGATTGAAACCTCCTACAATGAGCAGTTCTTC" ...
##  $ CDR3.amino.acid.sequence: chr  "CASSQALAGADTQYF" "CASSLGPRNTGELFF" "CASSYGGAADTQYF" "CSAGGIETSYNEQFF" ...
##  $ V.gene                  : chr  "TRBV4-2" "TRBV13" "TRBV12-4, TRBV12-3" "TRBV20-1" ...
##  $ J.gene                  : chr  "TRBJ2-3" "TRBJ2-2" "TRBJ2-3" "TRBJ2-1" ...
##  $ D.gene                  : chr  "TRBD2" "TRBD1, TRBD2" "TRBD2" "TRBD1, TRBD2" ...
##  $ V.end                   : int  15 16 12 12 13 9 11 14 12 14 ...
##  $ J.start                 : int  18 17 15 13 20 15 14 16 15 17 ...
##  $ D5.end                  : int  27 20 20 15 23 21 19 18 17 21 ...
##  $ D3.end                  : int  28 23 25 23 24 22 21 23 20 28 ...
##  $ VD.insertions           : int  2 0 2 0 6 5 2 1 2 2 ...
##  $ DJ.insertions           : int  0 2 4 7 0 0 1 4 2 6 ...
##  $ Total.insertions        : int  2 2 6 7 6 5 3 5 4 8 ...

Repertoire descriptive statistics

For the exploratory analysis tcR provides various functions for computing descriptive statistics.

Cloneset summary

To get a general view of a subject’s repertoire (overall count of sequences, in- and out-of-frames numbers and proportions) use the cloneset.stats function. It returns a summary of counts of nucleotide and amino acid clonotypes, as well as summary of read counts:

cloneset.stats(twb)
##        #Nucleotide clones #Aminoacid clonotypes %Aminoacid clonotypes
## Subj.A              10000                  9850                0.9850
## Subj.B              10000                  9838                0.9838
## Subj.C              10000                  9775                0.9775
## Subj.D              10000                  9872                0.9872
##        #In-frames %In-frames #Out-of-frames %Out-of-frames Sum.reads
## Subj.A       9622     0.9622            346         0.0346   1410263
## Subj.B       9564     0.9564            400         0.0400   2251408
## Subj.C       9791     0.9791            192         0.0192    969949
## Subj.D       9225     0.9225            712         0.0712   1419130
##        Min.reads 1st Qu.reads Median.reads Mean.reads 3rd Qu.reads
## Subj.A        22           26           33     141.00           57
## Subj.B        20           24           31     225.10           55
## Subj.C        23           28           39      96.99           68
## Subj.D        32           37           48     141.90           83
##        Max.reads
## Subj.A     81520
## Subj.B    171200
## Subj.C    104600
## Subj.D     33590

For characterisation of a library use the repseq.stats function:

repseq.stats(twb)
##        Clones Sum.reads Reads.per.clone
## Subj.A  10000   1410263          141.03
## Subj.B  10000   2251408          225.14
## Subj.C  10000    969949           96.99
## Subj.D  10000   1419130          141.91

Most abundant clonotypes statistics

Function clonal.proportion is used to get the number of most abundant by the count of reads clonotypes. E.g., compute number of clonotypes which fill up (approx.) the 25% from total repertoire’s “Read.countâ€:

                            # How many clonotypes fill up approximately
clonal.proportion(twb, 25)  # the 25% of the sum of values in 'Read.count'?
##        Clones Percentage Clonal.count.prop
## Subj.A     12       25.1            0.0012
## Subj.B      6       26.5            0.0006
## Subj.C      7       25.2            0.0007
## Subj.D     38       25.2            0.0038

To get a proportion of the most abundant clonotypes’ sum of reads to the overall number of reads in a repertoire, use top.proportion, i.e. get

(\(\sum\) reads of top clonotypes)\(/\)(\(\sum\) reads for all clonotypes).

E.g., get a proportion of the top-10 clonotypes’ reads to the overall number of reads:

                          # What accounts a proportion of the top-10 clonotypes' reads
top.proportion(twb, 10)   # to the overall number of reads?
##    Subj.A    Subj.B    Subj.C    Subj.D 
## 0.2289069 0.3648699 0.2620158 0.1305398
vis.top.proportions(twb)  # Plot this proportions.

Function tailbound.proportion with two arguments .col and .bound gets subset of the given data frame with clonotypes which have column .col with value \(\leq\) .bound and computes the ratio of sums of count reads of such subset to the overall data frame. E.g., get proportion of sum of reads of sequences which has “Read.count†<= 100 to the overall number of reads:

                                # What is a proportion of sequences which
                                # have 'Read.count' <= 100 to the
tailbound.proportion(twb, 100)  # overall number of reads?
## Subj.A Subj.B Subj.C Subj.D 
## 0.8651 0.8641 0.8555 0.8020

Clonal space homeostasis

Clonal space homeostasis is a useful statistics of how many space occupied by clonotypes with specific proportions.

# data(twb)
# Compute summary space of clones, that occupy
# [0, .05) and [.05, 1] proportion.
clonal.space.homeostasis(twb, c(Low = .05, High = 1))
##        Low (0 < X <= 0.05) High (0.05 < X <= 1)
## Subj.A           0.9421980           0.05780198
## Subj.B           0.9239454           0.07605463
## Subj.C           0.8279270           0.17207296
## Subj.D           1.0000000           0.00000000
# Use default arguments:
clonal.space.homeostasis(twb[[1]])
##        Rare (0 < X <= 1e-05) Small (1e-05 < X <= 1e-04)
## Sample                     0                  0.2589567
##        Medium (1e-04 < X <= 0.001) Large (0.001 < X <= 0.01)
## Sample                   0.2130291                 0.2666893
##        Hyperexpanded (0.01 < X <= 1)
## Sample                      0.261325
twb.space <- clonal.space.homeostasis(twb)
vis.clonal.space(twb.space)

In-frame and out-of-frame sequences

Functions for performing subsetting and counting number of in-frame and out-of-frame clonotypes are: count.inframes, count.outframes, get.inframes, get.outframes. Parameter .head for this functions is a parameter to the .head function, that applied to the input data frame or an input list of data frames before subsetting. Functions accept both data frames and list of data frames as parameters. E.g., get data frame with only in-frame sequences and count out-of-frame sequences in the first 5000 rows for this data frame:

imm.in <- get.inframes(twb) # Return all in-frame sequences from the 'twb'.

                            # Count the number of out-of-frame sequences
count.outframes(twb, 5000)  # from the first 5000 sequences.
## Subj.A Subj.B Subj.C Subj.D 
##    172    212     73    326

General functions with parameter stands for ‘all’ (all sequences), ‘in’ (only in-frame sequences) or ‘out’ (only out-of-frame sequences) are get.frames and count.frames:

imm.in <- get.frames(twb, 'in') # Similar to 'get.inframes(twb)'.

count.frames(twb[[1]], 'all')   # Just return number of rows.
## [1] 10000
flag <- 'out'
count.frames(twb, flag, 5000)   # Similar to 'count.outframes(twb, 5000)'.
## Subj.A Subj.B Subj.C Subj.D 
##    172    212     73    326

Search for a target CDR3 sequences

For exact or fuzzy search of sequences the package employed a function find.clonotypes. Input arguments for this function are a data frame or a list of data frames, targets (a character vector or data frame having one column with sequences and additional columns with, e.g., V genes), a value of which column or columns to return, a method to be used to compare sequences among each other (either “exact†for exact matching, “hamm†for matching sequences by Hamming distance (two sequences are matched if H \(\leq\) 1) or “lev†for matching sequences by Levenshtein distance (two sequences are matched if L \(\leq\) 1)), and column name from which sequences for matching are obtained. Sounds very complex, but in practice it’s very easy, therefore let’s go to examples.

Suppose we want to search for some CDR3 sequences in a number of repertoires:

cmv <- data.frame(CDR3.amino.acid.sequence = c('CASSSANYGYTF', 'CSVGRAQNEQFF', 'CASSLTGNTEAFF', 'CASSALGGAGTGELFF', 'CASSLIGVSSYNEQFF'),
                  V.genes = c('TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1'), stringsAsFactors = F)

cmv
##   CDR3.amino.acid.sequence V.genes
## 1             CASSSANYGYTF TRBV4-1
## 2             CSVGRAQNEQFF TRBV4-1
## 3            CASSLTGNTEAFF TRBV4-1
## 4         CASSALGGAGTGELFF TRBV4-1
## 5         CASSLIGVSSYNEQFF TRBV4-1

We will search for them using all methods of matching (exact, hamming or levenshtein) and with and without matching by V-segment. Also, for the first case (exact matching and without V gene) we return “Total.insertions†column along with the “Read.count†column, and for the second case output will be a “Rank†- rank (generated by set.rank) of a clone or a clonotype in a data frame.

twb <- set.rank(twb)
# Case 1.
cmv.imm.ex <- 
  find.clonotypes(.data = twb[1:2], .targets = cmv[,1], .method = 'exact',
                  .col.name = c('Read.count', 'Total.insertions'),
                  .verbose = F)
head(cmv.imm.ex)
##                    CDR3.amino.acid.sequence Read.count.Subj.A
## CASSALGGAGTGELFF           CASSALGGAGTGELFF               153
## CASSALGGAGTGELFF.1         CASSALGGAGTGELFF                NA
## CASSLTGNTEAFF                 CASSLTGNTEAFF                35
## CASSLTGNTEAFF.1               CASSLTGNTEAFF                35
## CASSLTGNTEAFF.2               CASSLTGNTEAFF                NA
## CASSSANYGYTF                   CASSSANYGYTF                NA
##                    Read.count.Subj.B Total.insertions.Subj.A
## CASSALGGAGTGELFF                 319                       9
## CASSALGGAGTGELFF.1                35                      NA
## CASSLTGNTEAFF                    263                       2
## CASSLTGNTEAFF.1                   35                       1
## CASSLTGNTEAFF.2                   28                      NA
## CASSSANYGYTF                   15320                      NA
##                    Total.insertions.Subj.B
## CASSALGGAGTGELFF                        10
## CASSALGGAGTGELFF.1                       9
## CASSLTGNTEAFF                            2
## CASSLTGNTEAFF.1                          0
## CASSLTGNTEAFF.2                          1
## CASSSANYGYTF                             1
# Case 2.
# Search for CDR3 sequences with hamming distance <= 1
# to the one of the cmv$CDR3.amino.acid.sequence with
# matching V genes. Return ranks of found sequences.
cmv.imm.hamm.v <- 
  find.clonotypes(twb[1:3], cmv, 'hamm', 'Rank', 
                  .target.col = c('CDR3.amino.acid.sequence',
                                  'V.gene'),
                  .verbose = F)
head(cmv.imm.hamm.v)
##                  CDR3.amino.acid.sequence  V.gene Rank.Subj.A Rank.Subj.B
## CASSALGGAGTGELFF         CASSALGGAGTGELFF TRBV4-1          NA          NA
## CASSLIGVSSYNEQFF         CASSLIGVSSYNEQFF TRBV4-1          NA          NA
## CASSLTGNTEAFF               CASSLTGNTEAFF TRBV4-1          NA          NA
## CASSSANYGYTF                 CASSSANYGYTF TRBV4-1          NA          NA
## CSVGRAQNEQFF                 CSVGRAQNEQFF TRBV4-1          NA          NA
##                  Rank.Subj.C
## CASSALGGAGTGELFF          NA
## CASSLIGVSSYNEQFF          NA
## CASSLTGNTEAFF             NA
## CASSSANYGYTF              NA
## CSVGRAQNEQFF              NA
# Case 3.
# Similar to the previous example, except
# using levenshtein distance and the "Read.count" column.
cmv.imm.lev.v <- 
  find.clonotypes(twb[1:3], cmv, 'lev', 
                  .target.col = c('CDR3.amino.acid.sequence', 'V.gene'),
                  .verbose = F)
head(cmv.imm.lev.v)
##                  CDR3.amino.acid.sequence  V.gene Read.count.Subj.A
## CASSALGGAGTGELFF         CASSALGGAGTGELFF TRBV4-1                NA
## CASSLIGVSSYNEQFF         CASSLIGVSSYNEQFF TRBV4-1                NA
## CASSLTGNTEAFF               CASSLTGNTEAFF TRBV4-1                NA
## CASSSANYGYTF                 CASSSANYGYTF TRBV4-1                NA
## CSVGRAQNEQFF                 CSVGRAQNEQFF TRBV4-1                NA
##                  Read.count.Subj.B Read.count.Subj.C
## CASSALGGAGTGELFF                NA                NA
## CASSLIGVSSYNEQFF                NA                NA
## CASSLTGNTEAFF                   NA                NA
## CASSSANYGYTF                    NA                NA
## CSVGRAQNEQFF                    NA                NA

Gene usage

Variable and Joining gene usage (V-usage and J-usage) are important characteristics of repertoires. To access and compare them among repertoires tcR provides a few useful functions.

Gene usage computing

To access V- and J-usage of a repertoire tcR provides functions geneUsage. Function geneUsage, depending on parameters, computes frequencies or counts of the given elements (e.g., V genes) of the input data frame or the input list of data frames. V and J gene names for humans for TCR and Ig are stored in the .rda file genesegments.rda (they are identical to those form IMGT: and ). All of the mentioned functions are accept data frames as well as list of data frames. Output for those functions are data frames with the first column stands for a gene and the other for frequencies.

imm1.vs <- geneUsage(twb[[1]], HUMAN_TRBV)
head(imm1.vs)
##       Gene Sample
## 2 TRBV10-1     40
## 3 TRBV10-2     48
## 4 TRBV10-3    308
## 5 TRBV11-1     43
## 6 TRBV11-2    186
## 7 TRBV11-3     20
imm.vs.all <- geneUsage(twb, HUMAN_TRBV)
imm.vs.all[1:10, 1:4]
##        Gene Subj.A Subj.B Subj.C
## 2  TRBV10-1     40     35      9
## 3  TRBV10-2     48     65     22
## 4  TRBV10-3    308    307    328
## 5  TRBV11-1     43     34     33
## 6  TRBV11-2    186    230    223
## 7  TRBV11-3     20     23     27
## 8  TRBV12-3      0      0      0
## 9  TRBV12-4      0      0      0
## 10 TRBV12-5     15     22     37
## 11   TRBV13     68     39     44
# Compute joint V-J counts
imm1.vj <- geneUsage(twb[[1]], list(HUMAN_TRBV, HUMAN_TRBJ))
imm1.vj[1:5, 1:5]
##          TRBJ1-1 TRBJ1-2 TRBJ1-3 TRBJ1-4 TRBJ1-5
## TRBV10-1       6       1       0       1       1
## TRBV10-2       5       5       1       1       5
## TRBV10-3      42      24      11       6      29
## TRBV11-1       6       2       0       0       0
## TRBV11-2      23      11       4      10       6

You can also directly visualise gene usage with the function vis.gene.usage (if you pass the gene alphabet as a second argument):

# Put ".dodge = F" to get distinct plot for every data frame in the given list.
vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage dodge', .dodge = T)

vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage column', .dodge = F, .ncol = 2)

vis.gene.usage(imm1.vs, NA, .main = 'twb[[1]] V-usage', .coord.flip = F)

Gene usage comparing

To evaluate V- and J genes usage of repertoires, the package implements subroutines for two approaches to the analysis: measures from the information theory and PCA (Principal Component Analysis).

Shannon entropy and Jensen-Shannon divergence

To assess the diversity of genes usage user can use the entropy function. Kullback-Leibler assymetric measure (function kl.div) and Jensen-Shannon symmetric measure (functions js.div for computing JS-divergence between the given distributions and js.div.seg for computing JS-divergence between genes distributions of two clonesets or a list with data frames) are provided to estimate distance among gene usage of different repertoires. To visualise distances tcR employed the vis.radarlike function, see Section “Plots†for more detailed information.

                              # Transform "0:100" to distribution with Laplace correction 
entropy(0:100, .laplace = 1)  # (i.e., add "1" to every value before transformation).
## [1] 6.399261
entropy.seg(twb, HUMAN_TRBV)  # Compute entropy of V-segment usage for each data frame.
##   Subj.A   Subj.B   Subj.C   Subj.D 
## 4.684783 4.751303 4.591658 4.539259
js.div.seg(twb[1:2], HUMAN_TRBV, .verbose = F)
## [1] 0.0008587249
imm.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) 
vis.radarlike(imm.js, .ncol = 2)

Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure for transforming a set of observations to a set of special values for analysis. In tcR implemented functions pca.segments for performing PCA on V- or J-usage, and pca.segments.2D for performing PCA on VJ-usage. For plotting the PCA results see the vis.pca function.

pca.segments(twb, .genes = HUMAN_TRBV)  # Plot PCA results of V-segment usage.
## Warning: In prcomp.default(t(as.matrix(.data)), ...) :
##  extra argument '.genes' will be disregarded

# Return object of class "prcomp"
class(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV))
## Warning: In prcomp.default(t(as.matrix(.data)), ...) :
##  extra argument '.genes' will be disregarded
## [1] "prcomp"

Repertoire overlap analysis

tcR provides a number of functions for evaluating similarity of clonesets based on shared among clonesets clonotypes and working with data frames with shared clonotypes.

Overlap quantification

The general interface to all functions for computing cloneset overlap coefficients is the repOverlap function.

Number of shared clonotypes

The most straightforward yet a quite effective way to evaluate similarity of two clonesets is compute the number of shared clonotypes. tcR adds the new function intersectClonesets (repOverlap(your_data, 'exact')) which is by default computes the number of shared clonotypes using the “CDR3.nucleotide.sequence†columns of the given data frames, but user can change target columns by using arguments .type or .col. As in the find.clonotypes, user can choose which method apply to the elements: exact match of elements, match by Hamming distance or match by Levenshtein distance. Logical argument .norm is used to perform normalisation of the number of shared clonotypes by dividing this number by multiplication of clonesets’ sizes (strongly recommended otherwise your results will be correlating with clonesets’ sizes).

# Equivalent to intersect(twb[[1]]$CDR3.nucleotide.sequence,
#                         twb[[2]]$CDR3.nucleotide.sequence)
repOverlap(twb[1:2], 'exact', 'nuc', .verbose = F)
## [1] 4.6e-07
# Equivalent to intersectClonesets(twb, "n0e", .norm = T)
repOverlap(twb, 'exact', 'nuc', .norm = T, .verbose = F)
##         Subj.A  Subj.B  Subj.C  Subj.D
## Subj.A      NA 4.6e-07 4.4e-07 4.0e-07
## Subj.B 4.6e-07      NA 2.7e-07 2.7e-07
## Subj.C 4.4e-07 2.7e-07      NA 6.2e-07
## Subj.D 4.0e-07 2.7e-07 6.2e-07      NA
# Intersect by amino acid clonotypes + V genes
repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F)
##          Subj.A   Subj.B   Subj.C   Subj.D
## Subj.A       NA 1.58e-06 6.50e-07 5.80e-07
## Subj.B 1.58e-06       NA 5.60e-07 4.70e-07
## Subj.C 6.50e-07 5.60e-07       NA 1.31e-06
## Subj.D 5.80e-07 4.70e-07 1.31e-06       NA
# Plot a heatmap of the number of shared clonotypes.
vis.heatmap(repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F), .title = 'twb - (ave)-intersection', .labs = '')

See the vis.heatmap function in the Section “Visualisation†for the visualisation of the intersection results.

Functions intersectCount, intersectLogic and intersectIndices are more flexible in terms of choosing which columns to match. They all have parameter .col that specifies names of columns which will used in computing intersection. Function intersectCount returns number of similar elements; intersectIndices(x, y) returns 2-column matrix with the first column stands for an index of an element in the given x, and the second column stands for an index of that element of y which is similar to a relative element in x; intersectLogic(x, y) returns a logical vector of length(x) or nrow(x), where TRUE at position i means that element with index {i} has been found in the y.

# Get logic vector of shared elements, where
# elements are tuples of CDR3 nucleotide sequence and corresponding V-segment
imm.1.2 <- intersectLogic(twb[[1]], twb[[2]],
                           .col = c('CDR3.amino.acid.sequence', 'V.gene'))  
# Get elements which are in both twb[[1]] and twb[[2]].
head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')])
##    CDR3.amino.acid.sequence V.gene
## 8             CASSLGLHYEQYF TRBV28
## 14            CAWSRQTNTEAFF TRBV30
## 17            CASSLGVGYEQYF TRBV28
## 19            CASSLGLHYEQYF TRBV28
## 30            CASSLGLNYEQYF TRBV28
## 66            CASSLGVSYEQYF TRBV28

“Top crossâ€

Number of shared clonotypes among the most abundant clonotypes may differ signigicantly from those with lesses count. To support research tcR offers the top.cross function, that apply tcR::intersectClonesets, e.g., to the first 1000 clonotypes, 2000, 3000 and so on up to the first 100000 clones, if supplied .n == seq(1000, 100000, 1000).

twb.top <- top.cross(.data = twb, .n = seq(500, 10000, 500), .verbose = F, .norm = T)
top.cross.plot(twb.top)

More complex similarity measures

tcR also provides more complex similarity measures for evaluating the similarity of sets.

  • Tversky index (repOverlap(your_data, 'tversky') for clonesets or tversky.index for vectors) is an asymmetric similarity measure on sets that compares a variant to a prototype. If using default arguments, it’s similar to Dice’s coefficient.

  • Overlap coefficient (repOverlap(your_data, 'overlap') for clonesets or overlap.coef for vectors) is a similarity measure that measures the overlap between two sets, and is defined as the size of the intersection divided by the smaller of the size of the two sets.

  • Jaccard index (repOverlap(your_data, 'jaccard') for clonesets or jaccard.index for vectors) is a statistic used for comparing the similarity and diversity of sample sets.

  • Morisita’s overlap index (repOverlap(your_data, 'morisita') for clonesets or morisitas.index for other data) is a statistical measure of dispersion of individuals in a population and is used to compare overlap among samples. The formula is based on the assumption that increasing the size of the samples will increase the diversity because it will include different habitats (i.e. different faunas) (Morisita, 1959).

To visualise similarity among repertoires the vis.heatmap function is appropriate.

# Apply the Morisitas overlap index to the each pair of repertoires.
# Use information about V genes (i.e. one CDR3 clonotype is equal to another
# if and only if their CDR3 aa sequences are equal and their V genes are equal)
repOverlap(twb, 'morisita', 'aa', 'read.count', .vgene = T, .verbose = F)
##              Subj.A       Subj.B       Subj.C       Subj.D
## Subj.A           NA 2.353362e-03 2.125406e-05 0.0002231617
## Subj.B 2.353362e-03           NA 9.765356e-06 0.0002413103
## Subj.C 2.125406e-05 9.765356e-06           NA 0.0004875433
## Subj.D 2.231617e-04 2.413103e-04 4.875433e-04           NA

Overlap statistics and tests

Overlap Z-score (OZ-score) - a measure for ???abnormality??? in overlaps

ozScore

Monte Carlo permutation test for pairwise and one-vs-all-wise within- and inter-group differences in a set of repertoires

permutDistTest

pca2euclid

Shared repertoire

To investigate a shared among a several repertoires clonotypes (“shared repertoireâ€) the package provided the shared.repertoire function along with functions for computing the shared repertoire statistics. The shared.representation function computes the number of shared clonotypes for each repertoire for each degree of sharing (i.e., number of people, in which indicated amount of clones have been found). The function shared.summary is equivalent to repOverlap(, 'exact') but applies to the shared repertoire data frame. Measuring distances among repertoires using the cosine similarity on vector of counts of shared sequences is also possible with the cosine.sharing function.

# Compute shared repertoire of amino acid CDR3 sequences and V genes
# which has been found in two or more people and return the Read.count column
# of such clonotypes from each data frame in the input list.
imm.shared <- shared.repertoire(.data = twb, .type = 'avrc', .min.ppl = 2, .verbose = F)
head(imm.shared)
##   CDR3.amino.acid.sequence  V.gene People Subj.A Subj.B Subj.C Subj.D
## 1            CASSDRDTGELFF TRBV6-4      4    113    411    176   2398
## 2          CASSDSSGGYNEQFF TRBV6-4      4     68    357     31    115
## 3           CASSFLSGTDTQYF  TRBV28      4     36    111     59    203
## 4            CASSGQGNTEAFF   TRBV2      4    223    252     69    152
## 5           CASSLGQGGQPQHF TRBV7-9      4     34    139     31     84
## 6            CASKGQLNTEAFF  TRBV19      3    125     NA     37     34
shared.representation(imm.shared)  # Number of shared sequences.
##   Subj.A Subj.B Subj.C Subj.D
## 1      0      0      0      0
## 2    219    205    192    170
## 3     22     19     20     23
## 4      5      5      5      5

Diversity evaluation

For assessing the distribution of clonotypes in the given repertoire, tcR provides functions for evaluating the diversity (functions diversity and inverse.simpson) and the skewness of the clonal distribution (functions gini and gini.simpson), and a general interface to all of this functions repDiversity, which user should use to estimate the diversity of clonesets. Function diversity (repDiversity(your_clonesets, "div")) computes the ecological diversity index (with parameter .q for penalties for clones with large count). Function inverse.simpson (repDiversity(your_clonesets, "inv.simp")) computes the Inverse Simpson Index (i.e., inverse probability of choosing two similar clonotypes). Function gini (repDiversity(your_clonesets, "gini")) computes the economical Gini index of clonal distribution. Function gini.simpson (repDiversity(your_clonesets, "gini.simp")) computes the Gini-Simpson index. Function chao1 (repDiversity(your_clonesets, "chao1")) computes the Chao1 index, its SD and two 95 perc CI. Function repDiversity accepts single clonesets as well as a list of clonesets. Parameter .quant specifies which column to use for computing the diversity (print ?repDiversity to see more information about input arguments).

# Evaluate the diversity of clones by the ecological diversity index.
repDiversity(twb, 'div', 'read.count')
sapply(twb, function (x) diversity(x$Read.count))
##   Subj.A   Subj.B   Subj.C   Subj.D 
## 34.55417 23.97224 15.87257 98.03479 
##   Subj.A   Subj.B   Subj.C   Subj.D 
## 34.55417 23.97224 15.87257 98.03479
# Compute the diversity as the inverse probability of choosing two similar clonotypes.
repDiversity(twb, 'inv.simp', 'read.prop')
sapply(twb, function (x) inverse.simpson(x$Read.proportion))
##    Subj.A    Subj.B    Subj.C    Subj.D 
## 117.63383  56.09537  55.31047 354.18601 
##    Subj.A    Subj.B    Subj.C    Subj.D 
## 117.63383  56.09537  55.31047 354.18601
# Evaluate the skewness of clonal distribution.
repDiversity(twb, 'gini.simp', 'read.prop')
sapply(twb, function (x) gini.simpson(x$Read.proportion))
##    Subj.A    Subj.B    Subj.C    Subj.D 
## 0.9914990 0.9821732 0.9819202 0.9971766 
##    Subj.A    Subj.B    Subj.C    Subj.D 
## 0.9914990 0.9821732 0.9819202 0.9971766
# Compute diversity of repertoire using Chao index.
repDiversity(twb, 'chao1', 'read.count')
sapply(twb, function (x) chao1(x$Read.count))
##                  Subj.A       Subj.B      Subj.C       Subj.D
## Estimator  1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04
## SD         5.223297e-04 1.322604e-03 2.90204e-04 2.992252e-06
## Conf.95.lo 1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04
## Conf.95.hi 1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04
##                  Subj.A       Subj.B      Subj.C       Subj.D
## Estimator  1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04
## SD         5.223297e-04 1.322604e-03 2.90204e-04 2.992252e-06
## Conf.95.lo 1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04
## Conf.95.hi 1.000000e+04 1.000000e+04 1.00000e+04 1.000000e+04

Visualisation

CDR3 length and read count distributions plot

Plots of the distribution of CDR3 nucleotide sequences length (function vis.count.len) and the histogram of counts (function vis.number.count). Input data is either a data frame or a list with data frames. Argument .col specifies column’s name with clonotype counts. Argument .ncol specifies a number of columns in a plot with multiple distribution, i.e., if the input data is a list with data frames.

vis.count.len(twb[[1]], .name = "twb[[1]] CDR3 lengths", 
              .col = "Read.count")

# I comment this to avoid a strange bug in ggplot2. Will uncomment later.
# vis.number.count(twb[[1]], .name = "twb[[1]] count distribution")

Top proportions bar plot

For the visualisation of proportions of the most abundant clonotypes in a repertoire tcR offers the vis.top.proportions function. As input the function receives either data frame or a list with data frames (argument .data), an integer vector with number of clonotypes for computing proportions of count for this clonotypes (argument .head), and a column’s name with clonotype counts (argument .col).

vis.top.proportions(twb, c(10, 500, 3000, 10000), .col = "Read.count")

Clonal space homeostasis bar plot

For the visualisation of how much space occupied each group of clonotypes, divided into groups by their proportions in the data, use the vis.clonal.space function. As an input it receives the output of the clonal.space.homeostasis function.

twb.space <- clonal.space.homeostasis(twb)
vis.clonal.space(twb.space)

Heat map

Pairwise distances or similarity of repertoires can be represented as qudratic matrices, in which each row and column represented a cloneset, and each value in every cell (i, j) is a distance between repertoires with indices i and j. One way to visalise such matrices is using “heatmapsâ€. For plotting heatmaps in tcR implemented the vis.heatmap function. With changing input arguments user can change names of labs, title and legend.

twb.shared <- repOverlap(twb, "exact", .norm = F, .verbose = F)
vis.heatmap(twb.shared, .title = "Twins shared nuc clonotypes", 
            .labs = c("Sample in x", "Sample in y"), .legend = "# clonotypes")

Radar-like plot

Another way to repsent distances among objects is “radar-like†plots (because this plots is not exactly radar plots) realised in tcR throught the vis.radarlike function. Argument .ncol specifies a number of columns of radar-like plots in a viewport.

twb.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) 
vis.radarlike(twb.js, .ncol = 2)

Gene usage histogram

For the visualisation of gene usage tcR employes subroutines for making classical histograms using the vis.gene.usage function. The function accept clonesets, lists of clonesets or output from the geneUsage function. If input is a cloneset(s), then user should specify a gene alphabet (e.g., HUMAN_TRBV) in order to compute the gene usage. Using a parameter , user can change type of the output between an output as histograms for each cloneset in the input list (.dodge = F) or an output as an one histogram for all data, which is very useful for comparing distribution of genes (.dodge = T). If .dodge=F and input are lists of clonesets or a gene usage of a few clonesets, than user with argument .ncol can specify how many columns of histograms will be outputted. With .coord.flip user can flip coordinates so genes will be at the left side of the plot.

vis.gene.usage(twb[[1]], HUMAN_TRBV, .main = 'Sample I V-usage')

vis.gene.usage(twb[[2]], HUMAN_TRBV, .main = 'Sample II V-usage', .coord.flip = T)

twb.jusage <- geneUsage(twb, HUMAN_TRBJ)
vis.gene.usage(twb.jusage, .main = 'Twins J-usage', .dodge = T)

vis.gene.usage(twb, HUMAN_TRBJ, .main = 'Twins J-usage', .dodge = F, .ncol = 2)

PCA visualisation

For the visualisation of results from the prcomp function (i.e., objects of class prcomp), tcR provides the vis.pca function. Input arguments for the function are an object of class prcomp and a (if needed) list with groups (vectors of indices of samples) for colouring points in the plot.

twb.pca <- pca.segments(twb, .do.plot = F) 
vis.pca(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV), .groups = list(GroupA = c(1,2), GroupB = c(3,4)))
## Warning: In prcomp.default(t(as.matrix(.data)), ...) :
##  extra argument '.genes' will be disregarded

Logo-like plot

Logo-like graphs for visualisation of nucleotide or amino acid motif sequences / profiles.

km <- get.kmers(twb[[1]]$CDR3.amino.acid.sequence, .head = 100, .k = 7, .verbose = F)
d <- kmer.profile(km)
vis.logo(d)

Mutation networks

Mutation network (or a mutation graph) is a graph with vertices representing nucleotide or in-frame amino acid sequences (out-of-frame amino acid sequences will be automatically filtered out by tcR functions for mutation network creating) and edges which connecting pairs of sequences with hamming distance (parameter .method = ‘hamm’) or edit distance (parameter .method = ‘lev’) between them no more than specified in the .max.errors function parameter of the mutation.network function. To create a mutation network first what you need is to make a shared repertoires and then apply the mutation.network function to this shared repertoire:

# data(twb)
twb.shared <- shared.repertoire(twb, .head = 1000, .verbose = F)
G <- mutation.network(twb.shared)
G
## IGRAPH 44edf2a U--- 3704 337 -- 
## + attr: label (v/c), vseg (v/c), repind (v/n), prob (v/n), people
## | (v/c), npeople (v/n)
## + edges from 44edf2a:
##  [1]   1--  25   1-- 572   1-- 577   1--2671   2-- 765   6-- 613   7-- 617
##  [8]   8-- 616  12-- 787  12-- 789  12-- 798  12--1010  14--1056  14--2432
## [15]  16--1110  18--  19  18--  21  18--1053  18--1264  18--1273  18--1313
## [22]  19--1273  19--1305  19--1327  20--  21  20--1056  20--1327  21--1264
## [29]  21--1313  21--1327  21--2439  23--2106  24--2207  24--2354  29--3175
## [36]  32--2997  73-- 105 127-- 417 219-- 961 235-- 236 239-- 411 289--2646
## [43] 291-- 292 297-- 299 418--2231 423-- 440 439-- 440 460-- 461 463-- 954
## + ... omitted several edges

To manipulate vertex attributes functions and are provided.

# data(twb)
# twb.shared <- shared.repertoire(twb, .head = 1000)
# G <- mutation.network(twb.shared)
G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4)))  # <= refactor this
get.group.names(G, "twins", 1)
## [1] "A|B"
get.group.names(G, "twins", 300)
## [1] "B"
get.group.names(G, "twins", c(1,2,3), F)
## [[1]]
## [1] "A" "B"
## 
## [[2]]
## [1] "A" "B"
## 
## [[3]]
## [1] "B"
get.group.names(G, "twins", 300, F)
## [[1]]
## [1] "B"
# Because we have only two groups, we can assign more readable attribute.
V(G)$twin.names <- get.group.names(G, "twins")
V(G)$twin.names[1]
## [1] "A|B"
V(G)$twin.names[300]
## [1] "B"

To access neighbour vertices of vertices (“ego-networkâ€) use the function:

# data(twb)
# twb.shared <- shared.repertoire(twb, .head = 1000)
# G <- mutation.network(twb.shared)
head(mutated.neighbours(G, 1)[[1]])
##           label             vseg repind prob people npeople twins
## 1 CASSDRDTGELFF          TRBV6-4      1   -1   0111       3    11
## 2 CASSYRDTGELFF TRBV6-3, TRBV6-2     25   -1   1001       2    11
## 3 CASSDRETGELFF          TRBV6-4    572   -1   0100       1    10
## 4 CASSDRGTGELFF          TRBV6-4    577   -1   0100       1    10
## 5 CASTDRDTGELFF         TRBV10-2   2671   -1   1000       1    10
##   twin.names
## 1        A|B
## 2        A|B
## 3          A
## 4          A
## 5          A

Conclusion

Feel free to contact me for the package-related or immunoinformatics research-related questions.

If you spot a bug or would like to see something useful for you in the package feel free to raise an issue at tcR GitHub: https://github.com/imminfo/tcr/issues

Appendix A: Kmers manipulation and processing

In the package implemented functions for working with k-mers. Function get.kmers generates k-mers from the given chatacter vector or a data frame with columns for sequences and a count for each sequence.

head(get.kmers(twb[[1]]$CDR3.amino.acid.sequence, 100, .meat = F, .verbose = F))
##   Kmers Count
## 1 CASSL    20
## 2 CASSP    12
## 3 ASSLG    11
## 4 CASSY    11
## 5 NEQFF    11
## 6 YEQYF    11
head(get.kmers(twb[[1]], .meat = T, .verbose = F))
##   Kmers  Count
## 1 CASSL 283192
## 2 DTQYF 217783
## 3 NEQFF 179230
## 4 CASSQ 158877
## 5 ASSLG 154560
## 6 YEQYF 148602

Appendix B: Nucleotide and amino acid sequences manipulation

The package also provides a several number of functions for performing classic bioinformatics tasks on strings. For more powerful subroutines see the Bioconductor’s Biostrings package.

Nucleotide sequence manipulation

Functions for basic nucleotide sequences manipulations: reverse-complement, translation and GC-content computation. All functions are vectorised.

revcomp(c('AAATTT', 'ACGTTTGGA'))
## [1] "AAATTT"    "TCCAAACGT"
cbind(bunch.translate(twb[[1]]$CDR3.nucleotide.sequence[1:10]),
      twb[[1]]$CDR3.amino.acid.sequence[1:10])
##       [,1]              [,2]             
##  [1,] "CASSQALAGADTQYF" "CASSQALAGADTQYF"
##  [2,] "CASSLGPRNTGELFF" "CASSLGPRNTGELFF"
##  [3,] "CASSYGGAADTQYF"  "CASSYGGAADTQYF" 
##  [4,] "CSAGGIETSYNEQFF" "CSAGGIETSYNEQFF"
##  [5,] "CASSPILGEQFF"    "CASSPILGEQFF"   
##  [6,] "CASKKDRDYGYTF"   "CASKKDRDYGYTF"  
##  [7,] "CASSQQGSGNTIYF"  "CASSQQGSGNTIYF" 
##  [8,] "CASSLGLHYEQYF"   "CASSLGLHYEQYF"  
##  [9,] "CASSRASSYNSPLHF" "CASSRASSYNSPLHF"
## [10,] "CASSYLGPDDTEAFF" "CASSYLGPDDTEAFF"
gc.content(twb[[1]]$CDR3.nucleotide.sequence[1:10])
##  [1] 0.5333333 0.5777778 0.5238095 0.4888889 0.5555556 0.4871795 0.4523810
##  [8] 0.4871795 0.5555556 0.5333333

Reverse translation subroutines

Function codon.variants returns a list of vectors of nucleotide codons for each letter for each input amino acid sequence. Function translated.nucl.sequences returns the number of nucleotide sequences, which, when translated, will result in the given amino acid sequence(s). Function reverse.translation return all nucleotide sequences, which is translated to the given amino acid sequences. Optional argument .nucseq for each of this function provides restriction for nucleotides, which cannot be changed. All functions are vectorised.

codon.variants('LQ')
## [[1]]
## [[1]][[1]]
## [1] "CTA" "CTC" "CTG" "CTT" "TTA" "TTG"
## 
## [[1]][[2]]
## [1] "CAA" "CAG"
translated.nucl.sequences(c('LQ', 'CASSLQ'))
## [1]   12 3456
reverse.translation('LQ')
##  [1] "CTACAA" "CTCCAA" "CTGCAA" "CTTCAA" "TTACAA" "TTGCAA" "CTACAG"
##  [8] "CTCCAG" "CTGCAG" "CTTCAG" "TTACAG" "TTGCAG"
translated.nucl.sequences('LQ', 'XXXXXG')
## [1] 6
codon.variants('LQ', 'XXXXXG')
## [[1]]
## [[1]][[1]]
## [1] "CTA" "CTC" "CTG" "CTT" "TTA" "TTG"
## 
## [[1]][[2]]
## [1] "CAG"
reverse.translation('LQ', 'XXXXXG')
## [1] "CTACAG" "CTCCAG" "CTGCAG" "CTTCAG" "TTACAG" "TTGCAG"
tcR/src/0000755000176200001440000000000013446161025011573 5ustar liggesuserstcR/src/Makevars0000644000176200001440000000002013446161025013257 0ustar liggesusersCXX_STD = CXX11 tcR/src/neighbour.search.cpp0000644000176200001440000001734213446161025015534 0ustar liggesusers#include #include #include #include #include #include #include #include using namespace std; using namespace Rcpp; //----------------------------------------------- // Exact Match //----------------------------------------------- // if patterns is emptry, than use input sequences in trie for search. // [[Rcpp::export(".exact_search")]] std::vector exact_search(const std::vector& vec, const std::vector& patterns, int max_error = 1, bool verbose = true) { std::vector res; res.reserve(patterns.size() * 4); unordered_multimap string_set; for (int i = 0; i < vec.size(); i++) { string_set.insert(std::pair(vec[i], i)); } for (int j = 0; j < patterns.size(); j++) { std::pair::iterator, unordered_map::iterator> i = string_set.equal_range(patterns[j]); if (i.first != string_set.end()) { for (unordered_map::iterator k = i.first; k != i.second; k++) { res.push_back((*k).second + 1); res.push_back(j + 1); } } } return res; } // [[Rcpp::export(".exact_search_list")]] List exact_search_list(const std::vector& vec, const List patterns_list, int max_error = 1, bool verbose = true) { List out = List(); for (int list_ind = 0; list_ind < patterns_list.length(); list_ind++) { std::vector res; std::vector patterns = as >(out[list_ind]); res.reserve(patterns.size() * 4); unordered_multimap string_set; for (int i = 0; i < vec.size(); i++) { string_set.insert(std::pair(vec[i], i)); } for (int j = 0; j < patterns.size(); j++) { std::pair::iterator, unordered_map::iterator> i = string_set.equal_range(patterns[j]); if (i.first != string_set.end()) { for (unordered_map::iterator k = i.first; k != i.second; k++) { res.push_back((*k).second + 1); res.push_back(j + 1); } } } out[list_ind] = 0; } return out; } //----------------------------------------------- // Hamming Distance //----------------------------------------------- bool hamming_distance_check(const std::string& alpha, const std::string& beta, int max_error = 1) { if (alpha.size() != beta.size()) { return false; } int err = 0; for (int i = 0; i < alpha.size(); i++) { err += alpha[i] != beta[i]; if (err > max_error) { return false; } } return true; } // if patterns is empty, than use input sequences in trie for search. // [[Rcpp::export(".hamming_search")]] std::vector hamming_search(const std::vector& vec, const std::vector& patterns, int max_error = 1, bool verbose = true) { std::vector res; res.reserve(patterns.size() * 4); for (int i = 0; i < vec.size(); i++) { for (int j = 0; j < patterns.size(); j++) { if (hamming_distance_check(vec[i], patterns[j], max_error)) { res.push_back(i + 1); res.push_back(j + 1); } } } return res; } //----------------------------------------------- // Levenshtein Distance //----------------------------------------------- #define MAGIC_NUMBER 27 struct trie { struct nucmap { nucmap() { _data = new trie*[MAGIC_NUMBER]; for (int i = 0; i < MAGIC_NUMBER; i++) { _data[i] = NULL; } } ~nucmap() { for (int i = 0; i < MAGIC_NUMBER; i++) { delete _data[i]; } delete [] _data; } trie* operator[](char letter) { return _data[letter - 'A']; } trie* addTrie(char letter) { _data[letter - 'A'] = new trie(); return _data[letter - 'A']; } trie **_data; }; typedef nucmap next_t; // The set with all the letters which this node is prefix next_t next; //int index; vector index; trie() : next(nucmap()) { //index = 0; index.reserve(2); } ~trie() {} void insert(string w, int w_index = 0) { w = '[' + w; trie* n = this; for (int i = 0; i < w.size(); ++i) { if (!n->next[w[i]]) { n->next.addTrie(w[i]); } n = n->next[w[i]]; } //n->index = w_index; n->index.push_back(w_index); } }; // std::vector search_impl(trie* tree, char ch, int *last_row, int sz, const string& word, int min_cost) { int *current_row = new int[sz + 1]; current_row[0] = last_row[0] + 1; // Calculate the min cost of insertion, deletion, match or substution int insert_or_del, replace; for (int i = 1; i < sz + 1; ++i) { insert_or_del = min(current_row[i-1] + 1, last_row[i] + 1); replace = (word[i-1] == ch) ? last_row[i-1] : (last_row[i-1] + 1); current_row[i] = min(insert_or_del, replace); } // When we find a cost that is less than the min_cost, is because // it is the minimum until the current row, so we update std::vector res; //if ((current_row[sz] < min_cost) && (tree->index)) { if ((current_row[sz] < min_cost) && (tree->index.size() != 0)) { //res.push_back(tree->index); res.insert(res.end(), tree->index.begin(), tree->index.end()); } // If there is an element wich is smaller than the current minimum cost, // we can have another cost smaller than the current minimum cost if (*min_element(current_row, current_row + sz + 1) < min_cost) { for (int i = 'A'; i < 'A' + MAGIC_NUMBER; ++i) { if (tree->next[i]) { std::vector tmp = search_impl(tree->next[i], i, current_row, sz, word, min_cost); if (tmp.size() > 0) { res.insert(res.end(), tmp.begin(), tmp.end()); } } } } delete [] current_row; return res; } std::vector search(string word, int min_cost, trie* tree) { word = '[' + word; int sz = word.size(); int *current_row = new int[sz + 1]; // Naive DP initialization for (int i = 0; i < sz + 1; ++i) current_row[i] = i; std::vector res; // For each letter in the root map wich matches with a // letter in word, we must call the search for (int i = 0 ; i < sz; ++i) { if (tree->next[word[i]]) { std::vector tmp = search_impl(tree->next[word[i]], word[i], current_row, sz, word, min_cost); if (tmp.size() > 0) { res.insert(res.end(), tmp.begin(), tmp.end()); } } } delete [] current_row; return res; } // if patterns is emptry, than use input sequences in trie for search. // [[Rcpp::export(".levenshtein_search")]] std::vector levenshtein_search(const std::vector& vec, const std::vector& patterns, int max_error = 1, bool verbose = true) { // The tree trie tree; // The minimum cost of a given word to be changed to a word of the dictionary int min_cost = max_error + 1; for (int i = 0; i < vec.size(); i++) { tree.insert(vec[i], i + 1); } vector res; res.reserve(patterns.size() * 4); for (int i = 0; i < patterns.size(); i++) { // if (verbose && i % 100000 == 25) { // cout << i << "/" << patterns.size() << endl; // } vector tmp = search(patterns[i], min_cost, &tree); for (int j = 0; j < tmp.size(); j++) { res.push_back(tmp[j]); res.push_back(i + 1); } } return res; } tcR/src/RcppExports.cpp0000644000176200001440000000743613446161025014602 0ustar liggesusers// Generated by using Rcpp::compileAttributes() -> do not edit by hand // Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 #include using namespace Rcpp; // exact_search std::vector exact_search(const std::vector& vec, const std::vector& patterns, int max_error, bool verbose); RcppExport SEXP _tcR_exact_search(SEXP vecSEXP, SEXP patternsSEXP, SEXP max_errorSEXP, SEXP verboseSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< const std::vector& >::type vec(vecSEXP); Rcpp::traits::input_parameter< const std::vector& >::type patterns(patternsSEXP); Rcpp::traits::input_parameter< int >::type max_error(max_errorSEXP); Rcpp::traits::input_parameter< bool >::type verbose(verboseSEXP); rcpp_result_gen = Rcpp::wrap(exact_search(vec, patterns, max_error, verbose)); return rcpp_result_gen; END_RCPP } // exact_search_list List exact_search_list(const std::vector& vec, const List patterns_list, int max_error, bool verbose); RcppExport SEXP _tcR_exact_search_list(SEXP vecSEXP, SEXP patterns_listSEXP, SEXP max_errorSEXP, SEXP verboseSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< const std::vector& >::type vec(vecSEXP); Rcpp::traits::input_parameter< const List >::type patterns_list(patterns_listSEXP); Rcpp::traits::input_parameter< int >::type max_error(max_errorSEXP); Rcpp::traits::input_parameter< bool >::type verbose(verboseSEXP); rcpp_result_gen = Rcpp::wrap(exact_search_list(vec, patterns_list, max_error, verbose)); return rcpp_result_gen; END_RCPP } // hamming_search std::vector hamming_search(const std::vector& vec, const std::vector& patterns, int max_error, bool verbose); RcppExport SEXP _tcR_hamming_search(SEXP vecSEXP, SEXP patternsSEXP, SEXP max_errorSEXP, SEXP verboseSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< const std::vector& >::type vec(vecSEXP); Rcpp::traits::input_parameter< const std::vector& >::type patterns(patternsSEXP); Rcpp::traits::input_parameter< int >::type max_error(max_errorSEXP); Rcpp::traits::input_parameter< bool >::type verbose(verboseSEXP); rcpp_result_gen = Rcpp::wrap(hamming_search(vec, patterns, max_error, verbose)); return rcpp_result_gen; END_RCPP } // levenshtein_search std::vector levenshtein_search(const std::vector& vec, const std::vector& patterns, int max_error, bool verbose); RcppExport SEXP _tcR_levenshtein_search(SEXP vecSEXP, SEXP patternsSEXP, SEXP max_errorSEXP, SEXP verboseSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< const std::vector& >::type vec(vecSEXP); Rcpp::traits::input_parameter< const std::vector& >::type patterns(patternsSEXP); Rcpp::traits::input_parameter< int >::type max_error(max_errorSEXP); Rcpp::traits::input_parameter< bool >::type verbose(verboseSEXP); rcpp_result_gen = Rcpp::wrap(levenshtein_search(vec, patterns, max_error, verbose)); return rcpp_result_gen; END_RCPP } static const R_CallMethodDef CallEntries[] = { {"_tcR_exact_search", (DL_FUNC) &_tcR_exact_search, 4}, {"_tcR_exact_search_list", (DL_FUNC) &_tcR_exact_search_list, 4}, {"_tcR_hamming_search", (DL_FUNC) &_tcR_hamming_search, 4}, {"_tcR_levenshtein_search", (DL_FUNC) &_tcR_levenshtein_search, 4}, {NULL, NULL, 0} }; RcppExport void R_init_tcR(DllInfo *dll) { R_registerRoutines(dll, NULL, CallEntries, NULL, NULL); R_useDynamicSymbols(dll, FALSE); } tcR/NAMESPACE0000644000176200001440000000142013414630204012213 0ustar liggesusersuseDynLib(tcR) exportPattern("^[[:alpha:]]+") export('.split.get') importFrom("grDevices", "colorRampPalette", "rainbow") importFrom("graphics", "segments") importFrom("stats", "aggregate", "as.formula", "dist", "na.exclude", "p.adjust", "prcomp", "qnorm", "quantile", "rmultinom", "runif", "sd") importFrom(Rcpp, evalCpp, cppFunction) importFrom(stringdist, stringdist) import(grid) importFrom(gridExtra, grid.arrange, arrangeGrob) import(ggplot2) importFrom(reshape2, melt, dcast, acast) importFrom(data.table, data.table, as.data.table, setnames, setkeyv, setattr) importFrom(dplyr, group_by, group_by_, grouped_df, summarise, summarise_, select, select_) importFrom(gtable, gtable_filter) importFrom("stats", "lm") import(utils) import(igraph) import(scales)tcR/NEWS0000644000176200001440000000001312657351347011510 0ustar liggesusersVERSION 1.3tcR/data/0000755000176200001440000000000013446161026011716 5ustar liggesuserstcR/data/twa.rda0000644000176200001440000251271213325616566013225 0ustar liggesusers‹ì} eGYÿÛM tB„¼äî¾ÝWïîÛ}É&KN† :Cï½CèU¤wéHiJ‘¦ˆˆ Š (ˆAD@?M@@@Šÿ³çû¾)çÞ3ßo–$8ø†rï»÷ž3gæ+¿r£3o¾ÿ"7¿ÈÂÂÂö…#¶±Ðþ¿……#··ÿµmáÈ… ·ózèÚ{™Cÿ¼ýÿšnGû–å£ÓþqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒc4Úÿ\daaùèñZŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcãÇ8Æ1ŽqŒcq´ÿ¹øÂÂòÑ Û¯ú©……/ýþ§ÿtaáU¿µ°ðÈ] ýì ߺ°`N^X8øš……“Úÿ}â,,ì}íÂÂô6¹°°þ¹……Õ´ã& +ïXXØýg ;þqaaò……¾Ý³°°øÁv´ï]¼k;.´°pÜ{ŽýÛvÜ£Óv´ÿìJÿÖŽ£ŽyéÂÂî³°pù´ãÞí˜,,\îÿµãõí¸ÎÂÂeß¾°p™O,,\úcíhÿ楟¶°p©7·ãYíh¿ÃÑ_oÇWÛ±¾°p‰öo^â÷Úñàv\¯íw¹ø'ÛñÜv<µOlÇ­Ûqív,.,\ì»íxãÂÂEÛ×_ô ùY;¾ßŽßmÇå.Ü^ ÿC;>ÒŽöò]¸½N¾];nÜŽK¶ã úZ;Úïu¡öú\èåíøvÜ­[í¸D;.º°pÔ—Ûññv´×ñ¨Çµã¶íØÝŽí üf;¾ÒŽöº^°ý­|v;žÒŽG´ãf<®ÚŽÓÛÑ~ç ¶÷ï‚\X¸@{­/ð¥v´×æ/lÇo·£ý~h¯ñnÞŽ›¶ãZíhß{=íh¿ËÚï{#ÛqÄ‘?áñãvü íß;²ýG¶÷éÈ¿áñ×íh¿Ó‘/iG{MŽ|^;ÚïwäÓÛñ„v´×äÈG·ãìv´÷úÈ[¶ãíh¯ý‘×mG{¼z;®ÒŽýíØlÇZ;NhÇeÛÑþ–#Ûësd»Žh¿ÇßkG{OŽø¯v´×ìˆö÷ÑÞ¿#ÚkwD{Žø£vüç·£ý>G<§í÷9¢½·G<¾íu8¢½Gܽ·áÑÞó#nÕŽöZÑÞ»#\;ÚïuÄ™í°íhÚÑ^ß#¶£½oG´ßõˆöš±ÒŽåv´kòˆö;qåv\¾í½?âbí8ªí½8¢½¦G´×tûOxü¨í:ÚÞþ–ííuÝþ_<¾ÕŽo´£ýmÛÿ½ÿÒŽO·ã£íhŸ¡ííoÜþ¡vü-÷µãÏÛñG<ÞÐŽö¹Øþºv´ÏçöW·ãUíxe;Ú{´ýEíhŸÍíÏlG»·?£íµÙÞ^›ímÇÃÛñÐv<¤íšßþ v´÷nûýÚqÏv´×m{{·ß¥wàÑ®Õí·NF{··÷y{{-·{íõÜÞ^Ïí†G{=··ënûií8µ§$£Ý[¶·×x{»¶ïmGûÜno¯óöö:ooŸ‰íí>´}g;v´cÂc‘Çq<®ÔŽ+¶ãò<Úguûey\¦íZß~QiG»î·ýŸ¶ã'½ñ¿íhïÙ¶ðhïݶÿnG{ÿ¶µûÚ¶öÞmkŸÓmí³¾í«<ÚgvÛ¶£]£Û>ߎöùÝö¯Éh÷ŽmŸiG{·µ÷xÛ'“Ñ>³Ûþ©åñ<þ®nG{ï·}p`ü5v¿Üö~íþºí/ÚñíšÙÖîËÛÞÕŽvßöÎv¼ƒÇÛÚÑîWÛþ˜G»—n{?äÑž Û^•Œ—óh÷êm/nÇ‹x¼€Çó“ÑîµÛžÃãÙ<Ú½zÛ3“Ñ®ÍmÏàñtOãÑîÓÛÚýoÛ“y<žÇãx´ëx[»ïlkŸómjG{&m{X;Ê£]ÛÛÚµ½­]ÛÛ˜Œû·ã~<ûð¸'»÷Æ]“Ñ>ÛîÌãN<îÈ£}.¶Ý’Ç-ÚqódÜ”ÇM’Ñ>7ÛnÜ7jÇ Ûqýv´{è¶ë&£= ·Å£ÝW·]3×hGûüm;“‡MÆÕÚaæŒ3’ÑðhŸÙm§'ã´d´{ø¶vÜv ““q€ÇI…qb;Úç~[»·nÛ׎ÍdìMÆ´76’±Æc5+ÉXNÆîdìê¥ÞØÉcI2Ú}ÛñíXäqö,Øv,+ñ8¦7®0g\žG»gm»,Ëð¸4Kñ8zθ$K$£=G·]ŒÇE £Ý ·]¸7.Ä£=˶µgÙ¶ $ãHÛylKÆB í¾ºðóñ3?åñ“Âhc€…%ã‡ÉøŸ9ãsÆ÷“ÑÆ ßáñídüWo|k`|3ßè¯'ãk<¾:g|%_æñŸã?x|i`|±r|aÎø÷9ãó½ÑÆÑ ŸãÑže ŸíÏ(ã_’ñéd|*ŸìOðøçÊñqÿ”Œ%ã£ãF{/|¤7þ>7g|XÆßÆ“ñ7Êhcƒ…$ã¯Æû“ñ¾ñ—½ñÞdüE2Þ30þ¼7Þ­Œ?ëwÆŸöÆŸôÆ;{ãÉx{2Þ60ÞZ¬Œ·Ìo.Œ7)ã½ñGÊøÃÂxÜñúd¼nÎxma¼fÎøƒÞx50^U¯œ3^Q¿W/WÆË*ÆK ã%Àx18^T/¬¿«Œ(ãùÀx^a<Ï9Ìñì_`<ë0Ç3ñ;•ãÀxzÅx0žZ9žò Œ'WŒ'㉇9žpãñçÀxÜ94{˜ãpKÈ¿ý ŒGWŽß:Œñ¨ŠñÈ_`<¢b<¼r<ì=ŒñÃ>ǃÎÁñÀÊñ€Šqÿ_pœ ŽûƸï/0îó Ž{ÿ‚ã^çÀ¸ç90îqŒ»ŸCãnç¸ë¹4îr.;ŸƒãNçð¸ã/aÜá\·?ÆíÎãqÛ_`Üæ—4n}[Kã–çð¸Å¹4n~.›G㦿„q“ópøó`Üø<7ú7ü%Œü ŽëÿŠëý ŽëžÆu~Éã¬_£qíóé¸Ö¯è¸æ¯Épçãqóá¸úùtœùk:ì¯ù¸ÚoØ0çóqÆoÈh~ƒÇUÃÇé¿Æã´ßàqê8²q•qtãà8ÔqÊ8Αqò8~¡q`¿’ã¤qœ«ãÄqœkck‡5öã<ûÆñ+;6Çq¾{Çñk?öŒcʘŽcÉØÇ8zc}ã(ŒµqŒã×`¬Žcç³±2ŽqüåqŒã7tìÇ8~MÇ®qŒc‡5–Æ1Žqœkcç8Æ1ŽsuìÇ8Æñk3&ãÇ8ÆqÆ1ŽqŒca?ŽqŒcãXXÇ8Æ1ŽqüRÇqãÇ8Æ1Žqü‚ãÊãÇ8Æ1ŽqœODZãÇ8Æ1ŽqŒã|=®4ŽqŒcãÇ8ÆqŽK,,,ݼó;W8æWYk^u[ŸöˆËß®yåC/ø[×}Ö§š½öË_¿ì?¥yîGÎ~âô+nž{Öûîñ£ç¾¬yÊw¾ýÄ?¿ÔëšÇmçOn¿úÆæ±/~àýÞöí'4¹ó#nxÖG&Ícv½à‰×>êÄæ·Žñ}ð³ßß<òK;®}Áo·óêq=æŠmñ¡£öœù¿o~ç ?ýô£ïÙ<ü´¬]÷ÖÿÑ<쳯ùÊnsfóÐ×ý'?ò2̓Ïxùnùµg4ú³KÜíØ|´yЕOxο|ù+ÍßúŵëžôÑæ÷ G™w¿±yÀ_¼ê#¼Ìš<ë“_ÿìôÍnz¿Ÿ>⸷7X=ãÞwþŸã›³ÿçÊW{ê%w7g¿çOüÊÿ=¬9ûE—9xM·ÖœýØGÞÿô·ß®9ûnßwå×¾¿¹ß'ŽùÞÁ?½Gsß‹=ï×ÛGš{¿ô—øßÜë#»ÿù1Wú`s¯;|õ^ß¿ç[š{]ðú¯ÿ«—½¹çûÞ~ë+¼vGsÏ<í%§4—mî¹}óˆ'_é;Í=ÜMŸñ =¯¹ûÉ Ï~ÒËÝÜõÇøé7.ò©æ®ÿüŠfû'¾ÑÜõÕ?¿ûçßv|s—Þèz÷ýËoîrÿ‡<ûIOý~s—µW½ò—}vsç×ýàQo{þ™Íÿà¬ç½ìس›;½÷íŸ=ösÚÜq÷Gwßä¿ÒÜá3ÿ~Ô£/õàæ¯ûÈ7®ý½³›;nøóÇí¸í‡?ÐÜðÁïþè>y¯æ†Ç}äû?}ì#›ü¿£¿ý¶¯ÿ~sƒÏÜã¬[uýæïûé3?pò±Í ný/7½õO.ÕÜà¨[ýÕ ~ÿ–Íõ¿úêo}δ¹þ«›G\â Íõ~tþà.Ïó£w¿úBþÍõ~æå¿~Ûc›ë~ñ“Ç_ëIg7×}æ‡ÿé:+ÿÝ\÷Þ/üé#îõ¹æ:?=ý.vïj®óž÷\Ó~à§Íuvóß{åµ>Öœu½Ûœú¨g£¹ögN8æM¹isíÞjáþO}psíû¼þWºæ«›k_éeï»ò7–škýé×}áç¶¹Ö?Ýôi·zÄ“›k½ô%O¼Ô¼¹¹ÖuïÿýzesÍ·žÐ<ðÍOh®ùÄÕÝõÈg4×|Ì5>xÍK\¹¹æ#ï|•µ+üQsMýÏ\åÎKq¾öÓÞ÷ó‡^­¹&¯ßk^ñ­îãŸúLãîû®ãß½ë^»éYwZºÉɻΓ®ýÿî~“8»W¿÷ïîÿŸÍ5¾ÿ¢³ÿá²wi®ñˆ‡½ÿ GÜ®¹Æ]ÿë9w_}Ys›_ã[—¸Æµšk\ë×|ÇØ\cßþg,>÷¯šk\ráO¯óÉ76WÿÉCžô‰Ÿ|­¹úwßzß_ò¨æêoºî_ÿàùÿÚ\ýQ:ëÃß@suóÉwßñn+ÍÕþ©9ðÁ¿l®~ÔÉ+ÿû™k®¾Ý¿ìsÿqŸæÌï½ñG_¸Rs濞qê·ö~¥9ó5O8ðê_¬9óÑ÷ûäÛ¿üÄæÌýá_<ôG¯nμ٭ô×û~Þœ¹û±?yÑs^ÐØoüÇ=÷yVc?üÖÜÎÔØ¿üæoí¼åûÖ3ÿåÃÝÖØ»ýüÕºà{í·ÜÒ7ïmì_¿Ú17ú·Æî¿ÚËß{¿§5ö‚gýñÿÍs›«ýð.vÓ/Ñ\í];þëŸnû„æjoxäµúÈýÍÕžs‰ßùâþ¬1_ÿáw¿ò…Æ|èƒÇ]nÿ×ãüˆ—ßꤿÿ\cxš{ýàOþõÿ=µ1×{í}W&ÿÙ˜}7Ûõ [5Y~îÅO¹ïmsÙ£>÷¾ç¿¤9ãõÏúøô®_iÎxõ›®qɳÒœqŸïžñ7ŸyYœïq‰w¼î?Ö›3î¼±òÔo¾»9ƒŸû3N¿Âß¾äàVsÆö‡ØÿG_kšïÞýÔo=úMÃë¹ù·Ï_ôÁpVÓüɇÿð‰ßùë¦áõÝô­…—7§óópú_?ñS/øË¿oNÞosÏãïÔœþÔ¯^}ÏþÇ6§?ä6—ý“›ÿEs:?'§/Þï*/=òã¼íøï~õª«ÍiŸ½è³ø´ßoNãçç´7ì¿Âßý`sÚ+îýÏúÙÍâü‚×}Õýàæ´Ç÷'Ÿ;ð¶æ4÷Û»ô†»7§]ì Ï¿ø•kNýУ¾~W}·9õ½úñé;/Ùœzö³Ž¾Þõ¶5§ÞõÃ?ºôNhN½Í‘ÿþ©]µ9ucý®øÏŸlNÝq×ëÝ÷+ß óU>¿ýþþÞÛ\åM«ë¯øÈíš«ðs)óÁŸ]÷¡÷Xúíæà÷žr»éÉ¿×üÚ®ñÝk¿§9ø©ƒ—øÙ?jþÕ›¿²í…'5ß²ôΧþÅý›ƒ¯¹Ý˯û±g7ïùþ‹~Å^½9x³ÿzß{<®9xð«Ï}÷ïÿ[sÊÿµ+¬üqsÊ7Þû±=õ£Í)_üñ»^q½o5§üˉ¯¼Ó/Úœòòß½ÄO>ñþ攇<öÍ›\¥9eåæßÜx÷FsÊeÿñÏßñ…»7§\ô¯~Ø÷žÜœ²í̧Ÿ~Á×4'ÿð·¸íŠhNþؽ.}©»žÖœüÁ×üø“¿esò >ò˜7üË7'?㨻ßç›G7'ó>pò¿wÔ£OyjsòéŸí3Ÿ¸=Î'<ë6Ÿ}ïmš“/~éÿóųóg\n÷ßÕàsñÀçÖßqò™ûšïýܽÿ[ψsóÙ͇=ärÍ,,¼ìFÍ œúŠ£ÿß߇ù$Þ'Núê7oz›»š“>qÇ]_¾æ›“þîåíÓœÄûÇÌüê§¼ñÏ^÷ãæ$ÞWNºÝ®#.?ý‡æ¤›ÜîëŸ=ãÍI{Îzê×çÎÍI¼ÏœÄû̉?{ÀÑïýæO›yŸ9ñ ;>tÑÝ7mNüÔmÞòуnNüÈ‹^ø¼ëÿý+ýà¶ÍþÏú¼úØ—4û?øwÏ[7Ÿnöó~¸ÿß½âÿ½ê¾q~ÆÆ¶¼ãÍþ‡½êŸÎú쇛ýw¹Â+?±íÍþ«Ñüçu»Ù¿öðKÞûÞì?áí?Ü|ÒgfçËÿ×ç¿ÿâ5û/¾úÁw½éòÍþ#îüæG½ïÄfß_ñ»güóš}_¹Ü]>ôãgÍΟ»Áuçbojöýå¶#?s 5ûþè!Ÿ¸Ã½ÏŒó ¿ùê¯=÷±qæ}zßÙÿrµþ›}·¹Þ¥w“›}7~Êÿ^㘛àsóóÿãUŸçßúÜþq³oÇ[{¥‡~3θý)w}«k6òÒÖþú.Íæw?uÔ}úñqæ8eóOúËSþ|³ùwïíÿíüY³ÉñÊæ›pÛ³ns³f“χ0?{çå^ø»ok6Ÿt›ŸÝê k6õ¢/ÿžoÇ™ÏÍÛ]ëe÷úŸkÅÙüïßµ÷¼—Ï‹½7ÏÌOüξ[ÞàVq¾í¿~ìž/ûD³—ϽK§7G\òiaÞóµß{ÓK×ęϓ™ù- WÞúþš=/}ð7Þsìþ8ó9æÝái¹Û5{øÜ™™¯{ÝÕϽc©Ùsð¯~|çÏÞ>Î|>…ùÒo~уw&ÌÓÿ[ºÛÏ®{ùfú—œüÄÞ¨™þËÑG]üÅÏŠ3Ÿ_aæs,Ìwüø^õÑÿÛL¯Í·ð5šé©ï}üõþþ͔ϳo½àý÷»ó]š·ýpó¨OÛlðùæ§é£Çì|~³ÁqâÆÿñ¾+g_¼Ù¸á™§ÿñï^kv^Ûû¹÷}鯚#Ž}ä?í=5Ìëß~ÎY·¸ÉÃfçÏu¥/>òq~ÕÝŸúðÿºgœáWžv•ÿžoÜüíKž|ëÙ¹yç w¼éÅÍ:ŸŸa>æUöÿï¥ã|+\àÏO¸^˜×uý·=hýšµ»ÿÍcz£ýq¾É©7|ÂÃî׬™·N.ö{4;s|æ£.ý¬×\ê3ó*ŸÇ«ÿþó=ï¼Íg‡ç<ðç§?á Í껾öó‡7nVŸóÉ{ò>Ò¬>ú¬Ón{Ü…›U>§gf>·WíÿðžõÞ8oîxÄ£ßù“fõ—¸â³¶?hf^áó|åï÷”å¯6+ïþòÍÞòÒ»Æùu·Z>ùý¿?;?ïcÿó—_ý÷f…ã|u¾÷{^ð±o>;ßbÿ]n~ËÄùê¯?ñ ù§feÿâ‘wÝ%fçÅçýówþáÚ3ó2ÇËÿñƒ«=õŒ…f™ã‹0¿ç _|ñ3>;¿á¦o¼íqæ8¤z~ÜÕn°ïÿö4Ë·,ßjúí«õºf™ó•eÎOgfŽcúónŽ[ç/ç#Üw™Ù™ãš0ÿÑN½è«?4;¿ðCyÞß]`v~ÂéŸ=ö;fv>ûíoøƒË?zv¾ÍêÃ7N{÷ðÌyØà|àrÇœöÔ­8ïxÚWÿú-gÇ™ó¶þ¼‹ó¸]—íâ¸,Ìïûôîsßß‹3Çe»^üçÿÖŸ_!ÎO:xç |ÑÇ™ã´Áù¬—|ü÷üEôù”£÷#®ç¥'Ýÿͯ||³‹ã=™—8Þ ó×¾úw™SâÌq_˜ÿêŸûf·{«>s<æ—þåâÝÞ¸6;s|¸Äyk˜9>¬ž9~\ºÊÅ6޾×-†g΋ÃÌqæÎÿ»ÏK^ÿùK4;9¾œ™ÿåÿlí)qæü9Ì/÷ëoøòÓgç§m>ô3xÄìü׺;|íOš¯Â3Ç­aæø5Ì+¿õÄÇ=îõõ3ǹ;8¾™9Þ™9þUç·ŸqÇ·ßý2úüŠ?Ùê3o0;s½ã†¿sö­—¯gŽ£gfŽ«gŽ«á™ãîþ<ùög}äWî?3s}$̯zë{výöôù™ËOÓk^1;süæ»]fí/þû|æø=Ì¿Ãóƃ^|Ó;ÿã¹7óõ»þéÑgÎ+´ùÎ3çÏŸõé‡üì}Í œw„ùOO~È“¯}°9óÁ™óÞ9_™™9™™oò„'l^øî³3ç3ƒóž³wžq“/ÆùJ_þï=ê¸soæú²ÌÇsž53¿ï™õþ{íìüâGÜáãkÇãóîºð¥‡¼ŸÏºá+þû—jŽç¼mh^üÙÊç/së#fgÎãÔ™ó¼Ãž9ü…gΫgÎ'gfÎ#w>ŽóÎã¸n:3¿üþ~íÅÎÄgÎKgfÎOáyåÄ}ê»ož9¿íÏWæúíÌÌù/Ù¹5_žëQ‡=sýê°g®gýÂ3×¹ªg®oýÂ3×ÁΫùr\W;Ïg®Ûg3×á™ë†çÚÌuÇ_xæ:ä9>só/ËõÎsmæºèy>sõŸ¹N{ŽÍ\·=Ïf®ûžÛóe¸žüKŸ¹^ý+3s½ü<›¹Þ~žÍ\§?Ïg®ÿŸk3ãaÎíùÒÜo8ÇgîCœç3÷/Îñ™ñDçÚÌý•ó|æþ̹>sÿæÜž/Åýž_¹ù§~óå·Øý«7s?ë\›¹ßuŽÏÜû¥ÍÜÿ:§æ£¹v®ÏÜW;ÏgîÓýÒfîçýÒfîþÒgî;þÒgîGþ²çKrŸóWfæ¾è¯üÌ}ÙóË| îŸogîÿÊÍ܇þU/Îýí_û™ûïç»™ûý¿ò3ã ~]ç‹1îá<Ÿñ33NãWe¾(ã>Î73ãM~egƱœ_æ‹0þå|;3¾æ×ff<ϯû|aÆýÚÍŒk:ßÏŒŸ:ßÏŒßgš/Ä|¿_û™ñpã¬ÌŒãçÛb¼á8+3ã"Çùžçù›:_q¤ãü+63®vœÏ£™qÄãŒÍ`<ò8ÿŠÌŒ³çóxfÜø8ŸË3ãßÇù¼™d\þ8ŸOfæ'ŒóùtfÆ8ÿzÎG0ŸdœI3ó]Æù×dfžÏ8ÿfÍÛ™5ο¡3óÉÆù|63_nœÃfæŽó8Ï›·1rœÇ¹›™Ÿ:Îãü ÍÌ çqþU˜˜Ç=ÎãüK™™G?Îã<ÎÀÌ: ã<ÎçÃùªÿGzã<Î篙ôFÆyœÏ“ùç¤Ã2Îãük1ÿŒôlÆyœÇ¹f&¢qçq>矒ŽÕ8ó8ŸŸgÒCçqçq>ìù'¤8Îã<Îã<3ÿ/éVŽó8ó8Ϥ“:Îã<Îã\=ÿ˜t|ÇyœÇyœÇù—=“þö8ó8ó8ŸKóH×~œÇyœÇyœÏgóÉ/bœÇyœÇyœSfòsçqçqçóÉü?ä?4Îã<Îã<Îã|žÌ? ß°qçqçqçó×L¾€ã<Îã<Îã<ÎçËùûäß9Îã<Îã<Îã<οJ3ù÷Žó8ó8ó8ó8ÿÚÎß#õqçqçqçqçqçlþïo}þûWúÁmÇyœÇyœÇyœÇyœÇù7}¾áïœ}ëå«ó8ó8ó8ó8ó8ÿFÎß}ç©ß|ù-vó8ó8ó8ó8ó8ó8ÿòæc¾~÷Ï?ý"ã<Îã<Îã<Îã<Îã<Îã<Îã|ÍßyÔ‹¾|ü{¾=Îã<Îã<Îã<Îã<Îã<Îã<Îã<ο„ùÛï{æ_½ÿß^;Îã<Îã<Îã<Îã<Îã<Îã<Îã<Îãüë6/,,½°°|ô‘ nÿ÷’wÞÙCÿe¼k‡qÖë·ÆyoÚ¹ýÇüÚåîµÆµÿ×þK˯mÿÏú‡ÞuèåÞ§/oßÝþisè›CêÐk½?ôrú”øòü×í¡?~è‹t¯tÝ‹è´ïn?¡ûxsè»ÙäÝSúƶŸwè­‡^ÞþûCß­{¡9ô‘‡þ;ýÈÅð㣗´õÐ?hÿ||ÕZ÷*×ýîC_Âv_íÐÅ:ôJCïpéßM.j÷&䢺î[ÛCß¡ýïCÿÛúç‡~¡o³ßI—Áºî*ê߇>ãÐ?i_Ù]ºqí°ÝËóË2oMº>¾»îÝç„ïCÚº„‡®ý¡ÿwè>ÛC¿”¿]z›NÎn²=ôïåúÍݪò†îuw+¬‰oß”·woìîÚ¡¿tè zu÷¿Mw}çý"C–.²“eÛ]`Û¿Ýtóºßãèª _¯)-µîuíû-ÁîwÿMßïЕps¬ÜHÛÝ{{èÆ—îÌò¡·ú¤C—·{½Andû2«=ÜkéÓjèIuÝ:´ôç=ßkq;h¿Ò¡ûØ=“‡Þgäöùl±¤ÏÅ¡+ÚÝçC_ÆtÜü5{è¯[×}çC/·ÝË»_5ûòöu‹¼»&¥›| þõn3óá>{ëŠWíX‡¶Ž™_.!ð˜LèÝjçÚЖDcõYÚß,_(z@-îîWÍ_‡n³²Xãò>ô‹=p×’;áèúîÝí“p3‹Ž6|ù&Ž?ãÐaüì:ôwºW¨ûüf²„|wÑçÝÓ8úWô±½'.ïîr7y9|’í6hï>ãÐÎÏ>=úÝU¢ßæ{Û>m„Ý{ ­ðîå¦w×Nîïàí¿:ô•ºÛ¨ÅéÙzèÎu÷Ëv¹çû^Ø='ñˆ²ò¼ðͲôMø…ûø¹ õK¥¡ ÅÒÁO»áƒ½¿QÑëÖïðúšæû³év^c]r¹»KU\6¼¡¨ËF>¬; è4×WήôÞzeãšfߌV¾õ²n¬1$ ‹m#{$é§8å‡Ç89>Ýð>19´î»SLÙhu$'×ÐÃ>½Ý_å#dþÂßÞ$߃Cºx8ÄÐrÜE? ¹c+ñðëžöCg+]DC_Œ.Æœ½áÐqžÖR÷ÛîsòUÔŸ~ó–÷Z? î.Réñœf_üÅ›ñcø»zÃ{AÜæ ‡-É*:H'‡á›æ»À§{ÊÁn)Yºí?7òB;'n]KŽ.²Õc¼9 Êuz|:ýøLî|w(è§Bøë:œ“HÙÙÃÒ¢]Æ"ßûî›t§ÿüE¾–o2Îq€Ê_¤;—»snÞýê©.—)>›ÙÆO ¢·tÈM¶sòˆð³é,Þƒõ4Nír«mÊKòHKAˆž‘9zÞè‡ÃߟžP52·a÷è¾·‚HúÞ] fd=•s\Iãl÷—ãó¥$ÞÑ~¿–#Žòk¡'æÐÓ>œ§pÎÞ¥ù¼ï ÿ¶ ÝLÏ{áð‚_ʶÞrÔ= 1Qêw?G­7¤y%UZQ$‰?(†<ô-ÉN6AC› ¸); 0Ë7h‘®}÷»)ÇêC{›[üéÒ[C¿AY!É ©%Iè\NÍcà{è·À¦´;ä’Ý[”åÕûê4̽*ë½-µËlM1Jã ›´/Ô‹³8h¥ŸªdbñðÓ‘~·hºÿ9û»ðPç5ÚóÊ?{#9ú=½H}¼6óß`ÃV‚ü½ýƒ® 5 _(9†ïUp’ŒÏÑ (Í›³§ÏØ$ N»Ò eC%:FLÍ­ðÀi²œ¥‚–¨òÅäßP‰‘*-†ßD™øìSGG‡«)RJÖ(\—À¹ÙûÓßϸDfp=Û%Ÿ½ñ6ÎauUHÎŽä ]l®k…ßÙ=Ñ|¥ò­‹+ÚêÞ’Ö =ÏÕ„u’† Ý_VŠ;‡~EMôÇ´¢Eƒ^ïäµgÏY°³ñ‹Ï+2tÏÕ1”ã‹Ï]Z#Åg¾¸¥øbèqZ é:Zœ¸;‹ýx;£EJÑ·ºŸ´Éx}§WÑð‰‚TRÒ¬À#{”d–Jއþ—²–—{Ÿ%t}»OQKð\©t\L+îN1µñà©S}S5S£Wã¦ýP‰®=ró®g<õ׊דî-T”ZËs9ê /j.Š é,­³îgw±ŽÒ£×ýz¹³~NˆIO~1ÙZMѤ¬h(Dó¼iÌ¿´ XýM[|;ø¦JV" ú§è—.•žC$A¶¡ôhÕðæ¢WÞÎxnj‘moC§HDû:RëžM.’”[õ±Ð­Ûq¬–æåÝéM(·»÷ãmØæ‡I~¯ÖZ§ŽXŽ< ̈]«4³Â¯s^E{¨ g-É· ƒʽ¾å^×K9×ó¶7{ŠoÉNù.ÞClzŠõ€y³×ê3²h”Ð|oï}–ñnÙ)öÆbIMï[NÓwt×~躃©ûÚhcp=ý0 EÒkIàIG‚ö´®S<Á*ôl,¦y%å4sžŠÕ<>·êM\Œ^œÌ¿(ËùÃÖÅý…òÂbo•Ï/ ÏÖI-Æ”IÁ;ööÚ뎊ËÔ§@ÐÊoðóÎåî:8è\fpU÷Сá¸#”ÑYK )iî½Æâø‘$ïtŽÚå@Û»K»åDtåÚr¿}ÂÈйûÔÁ,¤î–GRœk¹ÕþdMRÂmùÍZD”T¶é\õZqjÒÃ=ù¡Þ]¿lJ ¥ñ®"Žê°›ªÕPNm°B^‘„€Ž¡WÚºïž?U”…¼%õ+K˜^®†¯Wñö„Í–3‚˜Œ–ÙJ<âlwI±~§í¾8t´í—ûM‰/?ê.Æ[H íB‹×†f]ét ç?vxS’Ò÷‡û»ô}Õò´7m¦0‹îÛI¡Ò¾B!úÀê˜Æv0õK‘[—á%é÷ËiY@—pŸ£àîTÑû¾ük»ÖÏüJxZÓé• Ééµ>\œ¡Øm)ÝØiâ 6Ó¶?³Þífš:z†b^¥ö3¹È{èù46ÚØ&i‰¡t#6û`T&.@!;ý‚ý—Ñ_;“„•’t {ÍWíÚ{‡fÎÝô&Ik‡öͤöb¥Ù„W±ß•uS bM˜óžRÈ;í- (jYNqP] @—%m'>€´rP‡£«¨Qû Ö#†"%n 2§‚Ðñùx,¥XîAâ—dh“YINWGÉc1Ÿ¤@™Òå?ØKÚ¨•k9Ú†Jn@U Ö£ËúÀ.“Ui¥N4\¢Þ7Æ ¢EXzƤD0v‡ò¶±i ãäBÊr ‡tÅhgOübŒg¬ W:œx  Nl·åeŽdý›ò †Âc~j@â–€ùø¹Ä¤(²B*·úç®âëø)Óê]~é…?œbmõu^ µqñ®)QõåÙWÎc‰°¡¦æ$Yi~µpè_Užå–™ã87]Ø£zÓ$À©íޏVŠD’«Õ6¤­!1=Ž™+U\:Ú³­ÎÐ]ëwÇ©O£R,…ñ¥çô¦dpáïÒy¬=ód) ºŽÉ#&)êà/Ü×g-ûÚB”Ã÷ mjPDD;8}ÕJêü ¡k ¨«[!P)“4 -‹j %n—Cæ­\ÚŠ`{ØÎ¿œX¬^,¾\(¸ upxG7œo# ]ÅÇHµ’e¤°ò+heÐ;¬4‡ë̹#¥P]ð‡Y¢TpDÒÐøÕ  .ç_­ùF„æ`˜Ö¼âXˆßz¹ÞO½Ãsp‡–nĦ‚}C’¤RQÊöòº] -+à2Õ삎è¢z×$טö,ÙátJ´-g¦‘î°QdÐVMµáƒ|OV÷$yV¾:¨$·e‹e¡¥Læà~m)Øvž-4dzÓÚXv§§K ì õ=C‚—7ÈI„NY§ª åDýAœö¨óPûy#Þ º´ØÉZ‡ŒÇÄØ¡]eY`œåmnOxˆäHF~Ml`¹rÈ«éaP»&+)çè ,竎Ui³ÀÏìåYM!Tf.Gó=­,Â@Kož$¯l.m:ê;Õ{µQ—Ú–Íó«2ç…¢ ú³Ìè™ßb Ïsx’n+už¦•×'ÞÙ6  iR¼„z°—[Ð& Çœ aÙ¼T%ß• 'ö³ªÒB1ÂÞ ‚d`Ä~Þ2…;¬tp–bÀƒeé–B£c}U1©§ógÂêX{ÖKRŠ)ém Àaì¡üu–‚~&)¶E%™録ÌA…V1lË×±‰ê•'çÊs;Ã[MüsWšTSاKã.È` Ez–y (ìà[= Š ç¤Í瀂x¦.eÐfqŠ5±ååG\wFþ"¦Z¸¨Ó¤ºR`Bp|;s£€BZ–ü«:…!½Ñ™é—så¼úÔÄ#â)¬ÉÆðQ†%øqŸ¬P<ñ=¿ â>ÄëŒjyè uzŠ»–àXG¨":Ì“ʳ)Áh„j0(§(Ð̆Þp9mNŠ ŒžóŠç]¼‹±œE;al©àþ ÑéY¡YnÕîÈä5R-és²F”ç…Nê±¶+_ÈÝ¿\”›3^ñi1\Xí“×±_ˆDÿfn¿˜È"k;xÈÖL_Š5­ DUˆ6üÝîú±òµzMz¢@Ã1ꞤÜß}¶°á,©¡Êñ`9¥2Ó·,>Të3ä|ŒûŠzHò s°U|ЗRoYÙ¯O?‡Ìuˆb9á@Ou‚ýÍ»S¸V1&ž©ºl€%|.ltMÉY]bž’¡u‚]«˜ßk¨y ʾ/õJh¥mv޳SÕ*D¥QÖÚP§À3_Ü A 8fXys1WPHÂLÌÝöІtMú+ÙÖ&  ÖEœ¸Ãü0 7O?ÕüvyžtÞð¦žΘuA·À×Zè ›d/©• sî­øz ¾p«¯•ÝçQ4L‚¶0ÀaÚÿÁ†ïqë°¬é°Àô ©A‘X* ÁjæF6¡ýd܆75P-2|BïÑ%jó6Ù}½]œß &øg‚x9vV{çá> HÀо…Í`O²#*/"ÌYx#ÖÏ’d·'=¥ÂX›‡’O¡nà`|ÅR&2€`ùºöŽñ" w·ietÙœ­20V´FçOÛÈÞ‚¸¦QWÐsìE,::…¥:IuŠ€EÃ9TÃC$åù`sЊs(‘{é~Ä7¡þåúò®–Ä^kÏåÆû{mê0x™[ºfZo~¹—‡P¯¨E9$KšcîÕ"à’´8=S¤–®³*·u¯ÚJÖœ¬8‹‘Ù6284­4ílõ¼Ý¬¬qÝ1ubênyÐ_ÐÑïY“Çà:×É-\}r„[åðLÎÔÚM˜€þá|ÞwÀd[B¨´áDW‰ƒgJJ‚œxøŽM ÈŠÖRì!öÁ(áUå¦t8ÊCvå„q/h4'ÈÛR­ÖÇ *36„;¬‹è‡–½µF½Ö1þ¹Î €–¤­ú½9Bt¤˜ ÍѤÍ_<²Rýá%Gâ2çìIvÇva 0Ì öN›¿êæJáHPî4órh¹§/Ë)±b0M«bÉàxxµ-¬ ­­"yš `2IGC%MsaÇ pv ;‚ˆDplIxtÌ@r<Ûçz²ôm±2 ñhŠÏýÞ–o®v¢p¢¤b ­›±Ý¨Ö›xöJ¢¡ÕáÐREWcâ;:¼íí«iv¶—dE×H´ã1B8A*l‰'¥žpqÖ@WÝ€ÍA2ûà‚ÄÊ\%…=†XON`Oî+Úî¿êCd ïÐÍÀ¾´,†¥e¼^  i¡ÀZF©ðÎ zr±FEÉP9DM½{}D”ùï)7Ñ[µ^l] ݆¾¥ä˜ÓÎÎÓÒï@KÛ²‡éî vô,qyéW #7»N/’†‡…œ«±¿O¼rKØYSU²ö9ù—@º¦žj…½ygh×1zx£$Xú"F2 ¤æœü)3‰{%8Ë,xP”';ºè1F8‚ºž'i¦#3ZÓ&˜|éV“†M“å3é9å(lKŽ £ŠÑla}’* ïÍ<¬íÎYè¡<£¤”â8YßT6Lcl•çÂ"*5Ä…aúWàBK¡¾å×B*%;’Ð8°˜Ç®XK:uµqE¾Zj\Lb@ŠÌx ïøÓƒº·AZÑBQLfö&Uræ@y~Y)ÛH7@˜ÂwBñ!^‡AÖ¾Â~ϘE¥T0+Qü†á|èÈ2˜JŠ–H C¬`謲çZ¢‡Üµ"Þ&Õ^“4üô˜áw×èPoÄn,ñ«Î!i¯5”w¬øàÖj­…ÅZ$}ÐËÅHÀZ% Û;è&&n¨˜of¬ò²…Ä©¬…uzƒÝÀaq„Ïĺ簨(ÀM³2 Ù=<`m“ÕØ°Ÿ/Ð1I[¡¥?õ”_•Y˜Ñ¡ýé匲J\(ŒlœƒJ˜ITþ*ó¸–Â4iTÞV¹Zâ\Â"Ò¤^¥f]W™9ŠÈÙ'”*IGO©ÞAJ¶k© ÞçÅPsçø¶äqh¼WiȯÌÕC]QG­¡"Ÿ•"n/¨àIL/[s‰[ßA¥ºÒ”Åt63«1,ˆ¦ñ‰U}¢˜ª5xИY0`†¸bf1k¼jO >îܘ&TüÎ7K†ã¦à, y‚ÝCTu¢¥Qñéò/F{Njѳ³@ H›=¦0gžÜŠÑð*×s‹%êbE3¸-àº;I ¬9'A•.œsà&²œdqÃQÈf H L™ EÈ3*¦ Ê:šdànF§Käêæ;:”ôÓ2,¬¨Ó.åv˶‚téT[+¢´êú˜æ`c,˜ö”|ùKC* ‰#¤1˜×`¶u@lây3ì~®moÎ4Y ŽþLÞ/ëBîÕ,”£&ˆV!l1æ‡$Ö²Åo«û:¾5Xs"¦^Þˆˆ>b[Y¢â±$ÀÞØ™ïO¥&Çç°€Å@‡>Q/nTúœ: Íôu#%{QƒÇÊ0îíªRˆìÊYØ1‰"cµ6wRòØt*éÔ'©jÆDÅ9°“x†;P ÃzÏ¥'TªLŒŠ2Ò÷5ÑZ§X`bY‘?-"Ž‚Äa–úS*UrÞ:Ä?WèCܶ)©«yN¦´`#!õÑEŠO’żM»½ÂHN4M|”ºA²­œIí…ÜTÙÆ'n\’44C03´´.U,¢oö2:–£§ƒîÓ#IäC¥®Ý“Œ¨àªŒ•I .FÌÇe› ðEAç–vÄÕ>i˜Ó@}{sžj¼”‡b1íÒ\zȲ*ô!«Ž%‘8q€™w²vÙã|à&fßšËÑåø„œÐ•šú/–÷  éAcñúµ”„“L¯ÕLø›ð‰b‘ˆ@狘Adô0É®O¡W¼D|@Ó¥»’n¥x?ÙEMˆÎÆíaM3_†^ô5m£bŬøEÌèt=…î‡BÍÆÐŒ¢'Èã~ÐRÏ¥¾$fAºòmQ>M $ÝN½wu^sDm+ö¤²z VêH_„1@*!p2' -²¸ÅN¯ 2ðž uÜÒÁ˜*7Z †*€èÖ1B¦¬Ö‚J—Ý´˜œ%$Öÿ?0ÛdbÀ(bu¶•AF­c쟳¹÷G©èg¯1&\0äNåfè—š6’åÒF]eõ¥N׿ÜtRIVÛO6sÓUïYý$¾Æ€ÄÔÆŽ›>§ÀžJLV“UXž•2ªž$¡\°ƒ• y61€L¥°{(¯åÇ$†vHÕ^ cÎB(ãìD6Øq*-)— 9"UŸ~Y[íÉ«_`’¸€:””" a„O¢7 ¢À»Ww¡¬_LÏ7”¿¬$5BVäÁð‘Öâú1žlR¢ frn|P:XÌ›H5€}¹:ƒ·»ù~ß:X¿gÿcP´¤„.*Yí=VqYž•ÎdÝPHÌP1H:]€$«ña칈îÊ÷í~:e ÝÒ+Y –é"þ|-¬«ºqR (þø‘$sÁׄ¡–RÓÅÒ:cèˆwÑ e–㚇‚,L(<Ô‹+,^`\†Û¬Ý«¤q«ÙëtêBP¾ì”›Q ÎЉœÂù†Á œÁõuPU«xðŒˆ‰¡Ç~_ÖBæÍQ©YîcÚ€„H0—œD‚XA%ùL¼,‘G'>½ÎÛvjÉ%/kKvO?v«@v$¥5.‹ûƒ@*R Ñ`ZÝÜ‹bbiTD‰§øtteKP‘IÀt€|©p«IÉQ«oFoª.ðÞרˆ95ÿQ¯v^ÍšëÂZnûcQ[+NuTNÄjáŠNr¹²üPÔ}+E>i+\4SQ_îL·ÈbW²,¶Ê…†ñJ˜è2Ç’:²Ãˆ”pñö/&8 ëÊZ±±ÒýÓ¶ƒ$¢‚Åñ9ü×ùÌué  g°¼ËÚâ©ÀM§> ùV£š~O³ÞOðq¶ý0Æ» ·/öwæ’XûÛL«wÌdªÀIÐ-´°ïÊpõ©ybøåxÈS%u»LTym$ÑáfæF˜ÑJœ³»—Œq'G€ŠpS‹!Ò8œ|p1 cOºä 1yÍÔ‰`Á|ŠÝו|j"ÍZMâ{1çäœÛú&(c›ÙÛI×Î#¨Hn’ËšÀr˽Âà1\)P”9#µ4thê¥@êr`5Ð25Ñ8Å‹>y0©n7?Œ0†>0:À du ^5<ör¿ïåÔB®xˆ Æ_a· jUstKÙt±NÐz4sOgkupR·ÖT°Þž^¥ÊVPÿ8´¶Æm@ªÙ†}±”»9íÛ‹8@s5­7z«#ÄRÈz‹Ý,ªT9…¶¸¨EÎo‹²ÚÐ3°‘W7¡¬z%zy²2 Ј•\"îšv;è—öm©3‡¨&g‚YÖ@8·{†Ë ‰‹8VÇ,[“Dý&å!™ôƒU ,ˆÚ¦‡¸˜-n¥Åm€ÌÈ·ÞÊü»,Šé8*6#Õ‰ å.vÖ±'1 5OIµ%†=RYC3i‰|éá…ÈÄ&Ѐ= ™ÌØ&¥Ôù`ֻϧ͖Œ¼MÌ`Á¬$ÛO=ÖˆØ6f³>6ꣵ(ípjS/Øš1z»øð÷°±Õ«Ô{m¢L((1SéÝšÖs‡ tßÙš(e…½PÖÓ©Á@\Mëc«çSÌ<$´Ù“ó9­‹®pš|pÖ#V›i±bÙÕv$¡T讳ý£ÃÝ—kœš&œU ÑÃÆÚ¢Íõ$åjwçurgÖÜb¯x$2dîpNª–€\ÀY%_.D+²%YJH1ê™Ê¿Â¦Q°­¦ª9F2ä˜>ŸºãPÈ 0du5œ¤ýæ-ÄYI"O˜E-;8=ŠV{&vm4­Û §ÄY±Ý@Í"þkåì:QtWÕÇfòP±1¤ÿ3íŸëÈž¼¡¾ªíŸ3œmËg†i& Ýh&)IÍj8*9²´¸ïuE^ïg!Ü¿\bŒaPê³Ü­¨4ìšî 8?EhÖ¤G…|0#%”ûTsTjIïI¾ _ K<Ú• uVòÖ,…Cå¥rGö8˜Â‹xÀ‰Ø\_Fñ™Ùa·Nº…Þ Å#9óÑ׸ˆ„d)*HðÍŠÂö‘»i3U©!\n3àÖφ "NCXö ,§0IŠ¡ž…ûˆß3Hwy²_µ &Ýç ˜§EmzöË©QÓ© çܨ†aÁÐ2^Ít]ѦJK\¢kë Äœ!ç8u‹ .ïr³ÄaX9oÇP:`@w‰ÉÙWN_›FZn~(MÛ¢CBhûBR¥¡Õy+J•XC&Ŭ똮i^ìðF¶JGô:×)Fce$)EMÏ©>€·õQ½QW‘å€çîJ PB» Äõ7ÚXlñuwfY{iÙ“25·óá´eáÆ\ÑÂyŠóQ©-®Ø“z©2ðÛ63STî÷þœŸ9Î<àtFLÞêת̆@M#WO€ÌU#>º§T«ËÚÄÓ°B‰6ÿ¶}­¥}PqæË- €€Š¤?ëÜ@*XLÒ%ûÙ­ø@?w´l¦v˜^H²€Ð„¿Ä~Ž‹FïAuž]—˜˜Âm̺ÙB2Ý„©`äYÐeà‚ÍÎ)—úZö@Ë‹²z°/ Tdc³¼L³Z=‹§{Ì%Óvw˜ŒwÒËô|¹‘$…_P‘±[ÔJƒ¶ŽiCè‚ïFc¾;)Ep]Ý…¼c8Hpõ>›™G¦ä†;yC&{Äh^W58±×…²bIØ©—oÑVÊ6–ó(ª'aQËMUžõi`óžÑÆfKÑ´–±Ð-'d‹ÁHí`Ý•d¡††÷â8­ ¯{[*¹:ä^,(û˜‡¤1Yg»âHË< «d"› p¢Ú$VrQkÕ+±r:טk%Ú‡¨ÏA+FÌô¨ ú ©N”šÊ­7ùÖH cÄЀÈèØJ9O 0´¯k§lè@Ó^ ɦÅ> —¹S1SSo²$`Ëé^ndJ‚qÅÆðr bµ6H}™Q$=Cû‹V7÷bûXÜŽ»¿ ¢‰#Å¿¡}|³×2q fîf^´5„œÖ“í©ãÒ Ý`î#=;èé«;V<„½¯D¥‡æ!"ÉÓ TÁ3ê±êÄ(tÖ¡Ä(î£NfOXUØÂ½ ´Ùû‘ÖêPñìœI m¶$µã3¾ˆCV¦éåt;‡5L×û`a]éj­§v\£8)_ Šª–tÿ0hÔjÏß=DI'2¶ÝIýÌÝÝo• ûx¸jíkÐÎdN«Åµ;¢¬IT V×öYªÑ£]Æ­|UPåÖB’)£,èPUÑþäfÔ—±*e¯Ø:öJ` ä”d Dÿ‰x’h¼I iµJ¦b«´ëøûzrŒ—‚šé¦äYãÆ€ìÍ3bC”1uNSþ–”)Aõ]Þ¨ißíC¤ôáÎ]Ëì­íXÐàlF,ÃN–’ÊvÈŠ)ŠláR&(ƒ»ßP®Á±vw÷Á3ßô@ÖNöäkéT¡nå;¾­À…;Lâj:[43 Ç‚´<ÓÀ <Öfl5Jd\¹ä /;UQË)Už´z嚨«C@“4"6z¡%²>*â:.\Ô¶8Þ•0·ØãÄ /ʶ3Kü]ÔìTÖçȹ–NzNƒ_4/xúÀ;ÆÙÀ\' ó‡—–fv› *A‰TÅ]¥q¯e*‹–¡4:TÕJ§ÊYð "‡"ÑZXš«=¼”3:£9ÐFòÇ,Õç‹!xwðYLIn·ì%†4|¡cªÊ³ñrˆ%2ÙÔ›[Vt¡ãO<ÕT9:^KZ”˜ªÛØÁ%ëyƪc™pN•IM—p[º²ÇÎµÈ ¶ IxCÕ+J h^nÏØ©ô"ÝZ4i«—y1‘Ñ “$„®‹¼VJ.”½ö„TàŠ„²KØ #hE®’©ûõÞtâ„ÐÀ]¡7íYºóá^^³±LÈ ~ÈŽµƒ è :ÁèM µ+Õ¸ ‡ ñ¦=™–× (kú2…•+QŒábèÜ'A×÷Hˆ|¶Õ´‘F‡º¬às/hÔ*ÐË©¡ ÊÕ2uZö†ƒ ìËPAÉ¢P¶4@"µ7ŒÏ Âåê‹«€ßChëp½ÆUP}­D³¦î4ÄÄ2rvíZû°¬¢'QmŠSóô°A)(ż”·.è™Ñ3E¹ j‘v:ïp§WQßÚIÎ6sb¤ {Nüg>ñÄ9/T£lORw´®.íÎh=ưÌû`¹‘““ i›….r·%<æ.¡[³vµ-?\ p{×D•Ì©"໎£‰]›á–¹4”)®Q0‹,§˜@„.BáÜßÊxÛU*Óa‚•:r¼R 9=†1=Åx GÉ2´hSå€%Ä™i-ó ¬pµ í²k•zzNO§UãR•GŒ’Ýà”ZÊZ軜 ­‹*Z¹Wé™*ªpí8sè©S[^BÒÑ€]¾øäªÐ– ÚEÖ4Û[z̵–ÇÖ@µ’9‰Ábg–-ÌAL.­s`ˆéØóO§¥YÑ\ ¤$%=ðÒ žE’󥬽ÇÔ\ÃÙÇ|®ñ†é …«”¼ºßR¨þövø²ŽyÈmmá4“‘¡Ã™Êb9I”jdØ""Ϲ*CÙ°8: ã¨0 Q]L}‹›fÓÄdÇ¢%³µž¯~÷6g¾7¥Sp-·Ì ˆ:} ‘1ZÔÒki&^b{\ ÉZD^"9)ê‹ÀoG0»´Uí§YÙqGÄ; ¨l Ü£¤I¡ZR-%å3£äQ— D¶™‡qk‹À °¶?l¥Ž·'m3Ýp“2qUµEpt©ÁùŶצW®*R eÈ<©³tz¾+ÅQ:J–s³„ ôðÄjy3On[’÷7+^¹‘¾T¸.TÚ(ÜËÃÙý`ôu8À ¡~WÞ{VÜLô6æ0 e-·øˆÉ.»6$¦‰&ˆÀ­kYlØW%Fæ<ï\›IÁÀÊÎQm +à€D\oÈ•À2¹VîTxKTuÐeÎWÄqP6ì@%·bë# 1æÂaX"¤ï¨¨µÛM$¦kþ ¬3X2£ãzšaåT}qïéW(kÒþ,Óô” ¯¼ô‰µ¼O©Çßz®foX'L× V­Ó¦²©¦JßkèåÂÓZ¯`ŸáîýòÌ츦oØ=Å=)ÎrÀ^:= [Ê-­€„­¢c¤#[DÌXtÒ3”ÃJ|¿º_3ÿ©?8ÛoìrL'ŠêZ³•ÿN5Ó…ŽKq­mæ!+ÂN^QVÞ“ïT ¸K¿:iø*´çñ…A……pI¿‰ð"ôPClwoY)§Ú3’ùXÀÆX0 €tjB®‚u‡³žŒ©Wˆd½-&³·´–w'—Hˆ’O–ârbÝmvˆŽY”[*}‰žiªVjõ:’e3êd.P'3fY\ÂR[L'Z¥çì5Yá$:OUº¯"SÃa¯vÈo¤ÁuÙœz»(%E§Kq†V[‘sÄ{Fñ&z’‚eÀä1"lB‚jwäû†%®¸ì²2s-;,·w¸›”±5/·‚WeÈ›•'TVæÀæQ;ƒÍ›Õ€Ñ°t…¯ÿ 5sc¯}¢(éYû ­ ˆÙü0@1Ô÷6 rÚ3‰áÊò=›á*£RDð¨È¬w"Ñ^Uš#¶]­%ø˜ŽöZÔú*Cxá€&¬ÎÒlycÅòPQY$à4„%ÙW„¦îŒÄ@ŽçÑ;;û%ðáƒhÒã >‘ÇÅpf¸_³•ökˆ`ƒ¢öå„jKäeÓµ9G¿ÙÁ îÄÇØÂ¤Ç Pkà.޲˜¹zØÜ€Cc­çè-$) b8¡wä†ê°RW¢+HÚðC%×Ô¹˜XâÃ=8kb‚ª¼˜<=¦.’0ÅW¥Œ‰µ2âÎ $•äöNÀÃáB¡º[3°JQzT㺭ž–›%p‡m,½x|B–Fòö.#ö¾J)îVeô¥©´1©b¹dm™Ä£†!´­ÀA´©…¡9ùq"`OYíѦ°È5apX£?Å)áƒ8Š.ؤ€£¨ø¨²˜>oX0†í;Q¢ƒ‰äßâ°;0pj nWVcƒÜ›} ç0X û› ¤ˆÄ䛑d¥Å‚ˆŒÙàô´I »¬ 2´6Žï带¶‘Ú½qåLh<CWöö­&)5Ò â3€M瀞žÃH8*(q9V^ÖÊ4q1´›;‡yXVß0px”HHXå\íË¥8¬‡‘èsrƒO1ÍáÒf@ÀY5ä‰ Î˜³ðÝv-3Uu/eÆ‹ˆR10°¬O}ÃAÒö±'²a󃺄8æ-‚N%?[É´æì “<ß>¢M< »5{5·bµ‡Ÿl°™…äd3‰E÷¤ò ,g®§0êÄLÓ pà2ãB‹º´v§™ÿ†DA¹ôß/Ú:¸0!ÛŽTÉûwÆ;X°ïmT5Ò†1ϹbeÔœÚA ¾Á™V+Ùž¢'¤+3‰¤·àAÏžå̇¶HPÞ[¸bËî¸J*mþ|¹®uJŠßî˜]éÞ%̈÷ÑÃ.›™2Y+2Ÿ¨ßŽA=?1é€ìÑl¯——Œbì9€b±Q.¯'šzë]Ç·*š.@Q(·'GÕÕâ2]KÕÅhÆŸ;ÖRmá|%àS–9ò0'N¯Q¨_«æÍš)HjñÊ[¶E×ÿºxð›œdáˆHžApÒ±]€õ‚a‘âõÐ0&E0MV•žnàâËÔp–¨6_Ý‹¡ÒVª æ%fSq¥¹Û!Ф‰Á»ñU2¦‘  ‚¢3`ƒL*1ªÒ><^š–§ÛÐË.©–ðN3 ê=±Y¾œ‰ÃŠ=»H¨ Î× 5Œq°MgRõ-Ö½¶âæåC–_ígØN܃hÒXcæJ/ìiC_°ŠãšH¡Çv=·ÜY¤™]²F;Ÿ÷ƒÞÁEA‰g5 @\W“ôj‹ &éôÀ¾NÉÉ]%Xai8Ä/kgPí »›‘#aW±gàþ—‚»(@ÅVx RJ²ôP /FRw”‘¹}cmá6/åÇO12 ¸9­–.„~ñ\“IÐÀåñ*Ьæx]t½–îü¢†=’©Ogu†+*°DQ¯"uA}¡Ò+ÒðFA¯¥MpØà)êRF¡‰| &ÍÅ™°eO‚rƒkW¢6ê`y`|›ããqÖðÑ¥ðÚÅÄ£#8Z1íœ ‹aqbt=çj¡æ–Íçñ»­“% ´6Ä“è]ØäóZôCÒ5 ­  œàù°öŽO}ð\DÄ£=^yì.e {³ ³{Ŧ—'[L¥1”•m CDà;d|j§X¢0”ˆ¡$@W-Å—k˜²ËªF~éïØ¶\æ¥5$ ö2H X¹´lØ>™òb躕ßL&@¡ÈVT+bI™Ø°©ywB®N¸ ƒwpšùZ‘Ê£­PàíŽf™ëÒ×É3áI³µ¹Ž:%ºB_ß§bdK^‘Ž3±lHÊo¥'0h°ÝC„Á¼>0Gèáë®g ä·A°Ã1›÷8¤v*ÚóTe(DD˽ê/Ëg”ûØ8V»S»ãƒàuç¿X¯$èϤ€Ti1Åð RüÓ"§Î€ª<ë$UòWcÊ‹u{ eqÄ®'K}G~7< ² 4&ûÒežÅ,´¸`s¦4ï è0£Ú’/”Ã-¨ÄË=§ˆ©RiŒIíܬUðÁëɦEº,+?èKT˜ÄI¢Æ7”Ðè·’º!5ðw°IæÊßÝÖôÎCÑF­7¬õ¼Y! _Ú,sº4úÚL²£Eg+©vá`›¯4E¹_áÂ&¶J¸­C¼s‰D¥SaøèAÎA¨Cg}8½°ÜGŽc(E+}|¨:!À%LxÏœÅJO:*o~+j˜üùÆ ðÄÚ^ÌlÄQ%SEèp§¦y ´V›a’Ô℺þ‘×é¬E£øa zpnÌÚE«¯Gµ¤+§#Ÿ"º“ ÆÍlhgBåó=«É8B¶ô5šL†²†H¤¶,Û£e»@ïÕ…èuËgœ‚b [‚ý`ò,Çà ±lHT¡˜wÿÑåLµAµ$³Ï† %Yn£0FؤMÓ‚Ž Îµ¼f?dº4qRËùDÙñDtʇçÕbÞ&®t;ØöŽ GˆûÝf’Ò†xÜRSøiZNòÛN«¥¬ð BûПå®ÑfkÁí‘¶Fƒù ˆº&Î]§¥•)­#Û£ Uˆ·ºl@0¶Ð Î@б•TM.PÎR/03û„Ti‘•3òó&¾]:µŽAu ùžƒ-çØà¾|½'§gH":yKÕd _x7P²]´+Yºv¼Çv=¡9;Æ®$4²Ôn2Z¹†_ìï^Ò%$döìl1á_!#¤WpsØÓæŠMEqë—Òh¼ ïLùìòì0¼-N) È¥\R¨Á g1Uü̸mIŠ[e@„vÇÕ•hŸ.Fÿ'öÊÌtò`Ë­Oš••²G¤âè\c*O1ØÌtñè›"uë,bƸÊDŸácœ­A4°$l(Vùr©É`³‹:vÊý 5¹è8Xpb*L!a×ÞÓqËï?!Ú¡¸û‡gÍ1ðPK.%ÐÙja¯—TÛ '!€cÁì¿ÏF§¬T7ð¶·,ŽâmÎPˆÜU)#vwÏ•ç夆 …w'}rk±s‹ æ ¤õ‰l¹ ši›L‡•H¿`JžñJÏÛ$v®ËmœIÂ3é~T’œ‡åpWDùn¥'ýž"]èHÅtÕR‚8'389ሒ%÷wMì@^蜠dLØ×ÚÒßè)©r—¦x\o„ÓÁç45[ eÈЯJÐØÔšaÔІ‰œèqÇ(ÚtÙÇÑC- ù:þ¬Êj*uP]—^÷ÑþŒ ‘D2ä®Å6 RCôÅÜ=c*{$IÞÁ:.Åv%'ªp´üñeuµÄ ב>fî¨àF—à‚®†Û¼*tPÈXkÛpÖæ+^ÊŠÓRp+Á2X>qÅ4ÇĦKÁÍ!¤šjâ[9É<%I·²TµônJ ÅçWå³–*é AÙO†œÐQìR[Y§‡U70 z¦Ng)ä¶³K,qªïk ËfO½‰ø]Îi7fs†ðYégêRÀcék”üÇ!ñp©lbÐ Œ-_üëÅŠŒE¯^ÄWPÓFöI•ªWŠ#…=™£ùŽ8™ëð;Aû¢qì[\"8‚ÄV€™ 60ô7HK­NÞUm¦ÈË)ý »¹&4Eˆ°”ðÔ2bš»3 Ò‡1,ýî 2%pêi. ­#¤ŠVdŠ¥`TlÍ v]â …UÁ kTè~d®a+ÜI(ð@)*WÍJß4ׇ÷l–1ç¦Mú¤HØwZ»ï$ƒåJCÇ':úªþ¥Sø\—˺!½rÁY´D"ÓVÏt-ˆ†‚$D•N…G|êÞa“!›¸¨áÊúŒ¡û°]×ÌR»ЏÓQðÅŠð:ôA…}hƒ›ì´å›HÏÐxÜ©^¹ëËÆrE­Hg”:ü ûüj’›HÚQ,¸®dR‡V… ¬¤¸§75ãë·ùHØâ0 áÆ{ "B¿²=lqF¦!(†~¯RŠ9'Gtî:›)7HÁ$Îåù‡òi:%º$ <ƒ¹T®Á¡ÆîÔ#(ZšZŒÚvtb²KøÕÌS3)æ?ꥶý½´˜®)²"7gem0>¡ÿUy^Ù¶íPî% ¤‡ÒBSßkÖ+ÑËe{²¼Û€ªÒ{²b*`¹'3l%þ…ŽÆÚÓ‡º`]¨b¤êypQ`ÚëŠË>¹ÒB]9 §¹9¨ÇlE¾×@ÙiO$A+7·´ÁMûŠ•tk¯—žêÀf´À9æÒ·ê¬æ… umô¹´ÚY§qñr'H¬|‹#€xb’ÈןôTI‘œ>µúZÞŸ ÑkQj–W¦UÍBh1àŸì¦V­ÑãÖ|8PU‚%u)૽"•¬ôœ‡HÅö¦F #A1 ¾8ÉtxY·,˯Œù²*’š¥@éKfòëT@ÛYŠ3‹`œt8ilëq‹ÏH·,ѸbÄ©¯$6£ÅÝ Ö#Äç¢Hy„<ä$Uñ·6Ìl¨:nûè…â†Ã»y(W×™“¨®ŽÒc»'ì°^ŒÂÆLbGÉG"»a pÃg©OS=-B¿£²>ìCìY€xŠ„(œ>KkœäÚŸ´ƒ¨ºÕªô¨7,jS^Ãë½àÅW9»YvÜC1o ´sr?ÞÈgˆÎŒ‘LÒ› ê'å³^ï«,ÏqÁÓ΀‹A[2ï^@ë¨_«1“R‰…Áë➪vz—s¤ƒ´äY)²R©Þ˜§¯øë†M¡áÓÝ(€åg ªì£Ë}+7=Ø‡á –…V€c›¼ œƒøHC(º‡rßG);% ò•†Ňì„Ô[C³yßòø •â«ÅL~¥ŒÉ³¼Çúøk1±Yæ@yNIàÄ^ A$^6ÑUö€A`Y_#Ø%+6fù|>>ro¾-{®z`â R£bÚŠDVå|Ÿ¥z¬Ô%Ak1z(8Ų8ã–T߆>Ý"ÞxÌJ„¯=-ki;ØXä+H™“I xï²Z4 Ö2¸/ÿ» 5!ÞÔ@è8`-)ñ^_«}0)v,†7 ô5↢žò.¶AÚAH©¡SÔ†½ vD³¶Â¦ZAËñ^q®éÌï@ €:yÒˆüi¥¥Š4d,s{Š1Nª¡‰‰¬±)òÛ$¯„¼wm,fëþXÞxüÈ/#Ó#°¢w`¦M#`¼ÿ!HuŠâq\^ôy2¦J0)¶êt‡ÃnÖÅ`_('R°cµG`1ñ,Qßlƒ»–½w‡åŠn8$öPåAVŠu¢{«ä“b®XŸ”…^ðà &èñÝF:l•h”Cš|k‰ŠPM Ÿ¥˜g þdå„¿f4EŠãà´ æJˆÌ«1r¨H=1§êà•Kž’uÕôÜ>:ƒFÆÂ°A9h!†¿e"(ª°bX\¼&Yï6Ä?LJÞ£|ÀÐzW¦,A$eØ>ëßyˆ.ûk0-AIä°ôªl@0’u¶"g_¤t¿‹\DlÏýÖ–‚¾ŒáÍWù¾1ˆ3ʽ°.ðÏXs yßÉýËbϘI¿ó^~atjüðI¯ «½Ðö…n-hl¨÷Sù’àœ–µò¦›±í5……Œ×m@BêyPR¼oïù>”Äuv­Àý#eG«:ýD̠笴Ï=1\¨¹äéöZçà>¿Ã¹¥k‰†K…ýC@R âUKài;ö ]X·•½,Ëç`ÞççÇ —CD°ì;Èe,§ ÁÇ6‰5›jÚY,.h/;±—¦³zLKHÜ)Ó"ª@ìÀªojC•1Øp‰m}+Ê*Á‘V´PÇt"\€ýujÀËh¨QR¬]waðx¬)í •~Ö‡± EÖˆj€b`&NOî‘rƒÇjwÔÓÀv»#KÉ8ÐæŠ;´˜Ñ±G~b 2 ƒ(ô`K^€þ?#ü!ñnî_»€"?Õ…6G¹ÝBîÉÃËm1Áqôì’ºº0|–ŸØ+Dt¸ëpÑm/èT~UX.ÖšP*­ëöBźSwi£¸’îfÿ|4‡U³‚õÏ7“'ZŒç‘ëÞ¤ôÌo± €c=ûõ@9 –ðŠ 6ÖKC×ûzi3˜EïzV¹â…UÖÜY—«.6ú8[U)jHõÍÀj?e辫£\ßb²uŒ"¶c±¸ †å8<÷¶­f%¬f$\i56않¥6ýò®’Ï)^ï‚l³zÇùjØ›û5¶>á9EXµˆ^Jm0ƒØêE&ç.Ž´”— àóˆ–;!@¿!Ÿ®Hxö Gt‚º—e4—zQd)©Éô4€ÞX+)+@¥böó®é©!¨'%2+p³HüV:+¤Õцcú™þüïËŒŒ`ÝSza×½¯ô q¢oZå^Gb|¶²Ý Å–õ™•}nš™Ðú ã„àT­p°*ø2±ˆdu tÀ¬ðæIšXë4M{@ ‘E´þ9ë@»zkÑÝЛ »D޽sr¬®‰ð ã*#°uÈùÚU+†‘6U€zÂ^|îÚ^Ûis61@.)m‰L•€g¨ÈR 䤡DÐó(ûqG¡D‘LUù1aÂú[”ïÀÍ„½ öæ0Oô~4É‘¤Ûg'(MAW†Óøîi(Ã]v'šñ¥;‘dAûˆE¢#ü1M)汬ÍâWu®Ãm)¶®v$ˆq¥®pêb`tõðRf6IRhÏa÷Ñ‹9þe ÊXL°¸H—Ÿ–ÿ-K—Ž}Àûà ´žÈSÖƒÀœ³ÀZ˜ÿз±õLs/B]VØÀ@Íc_ŸÌÚmp–ᤅ=1)²x'B_€úžÌŒÈqºÉÄi¹%ÓÔNµiSPX:íAJœ«À Qq˦CŠØW”V3ÐqïÙ[XÐ#TìØÕá÷f5>ãKIÈÜÐ –Òöì@ !‹Ã;PÓ(×ÒŠ¬eÀ Ìl‡fE¡ˆ´äŒœñBIÆ2-F‹d1Уœ»Öy\œå©<¬^†±èûdSÑÅ£%⊨ˆêAY›Ð°2!0!`Ë}á¤IO­ƒ"Ò$¦FKJ⨞I‘T%/Va`%%â@–¯õRbê¢íbؘÅÄ£ÔÒš%à‡òÔ,åY7 VÇé+k!mã`0"ÀðÂõÝ‘”ËÊ6““Ìð\¤ À“$•â¡¡^aì°’ðÔü_s°×çWoYâVkrèÿ¶ ôó¬19LÞJ÷çn·OláÊ…žˆ¹ªÓ<ÚŒ ÌÞֿψõ0KcÁ¤3#²ÀÌ ‘æ6é'Ô‰Ù°$–±NÙKg‘æpqŽcIk9PîÙz&`|»‹6-ï0Ãs4ÏþªÆŠçk‹h'¥Ê/¼AY°˜%øR+eDXš‚£vllr[aý♇EŸiëÍê`‘Ø{ ŒòV²œÞxÐ×V¨’<BvñÁí`¨/i%Œ˜Q‰A„Yøå´³+]®$·"ŠÏÚRŽ(u,VŽ•¨ˆsv§¯Q%k²ª$&“O¥Ôë8 †ËlºÐ$FâV3ähÏ÷ ¤>1ÿð}¥ ï!ƒÒÐHQ9ô\°TR•É!Úݶb}/Q r,ÝëÅòI"ЉØô„} ñ0ªjjÁï$ªÆ[­üжÅÇj1a™Á‹¸•„–u—,VPÜ?«Že±vU·'L XÂÜÌuyjÐZ™D ½a÷öùÙd‚¢u‚§=ð”MOhÚ'B#y¾6#‰DåÕr•aÚ—IA:Hs y-¨él¯¶þ ^”c²zžŒâST+$‡< \ctFÖ~¿\µ6˜Ü8Z¶µ°3/ ®é 8¸šö²§â½F\ëI{\=r_ø[‰uãÂÑ3ˆæ"IÌjæÅ©êa÷ÇÔ§d57¨…(Ô7¶"œÅnvÒü5Ñ®œ«Sûc°\Gƒ] –ȧYÎK`Ó]ð,Þ Ìƒî{XSY͵êÞ²µùY*‚yIŠ«† œ ¶<‚´PÅ?gíÎt¨åùWY46ë®ÖaÕï@…1(6ç# ª¥Z‡T Òx³?‹Œ¥½:}­öw'=©)À#KQâšÌ¨M(…\Öä¾þ“DŒ{‘óC®J{ Ö<¥Y?rî/9Òžèìˆ]ÓÚ%ÜžF–+üAÄ™/ T‹†ëÝÝ%Ù (!14€L/´É7’XÎaÂò߈µS)T žrd¹ó€~ûZªƒB•M%ÊCYÒ–6 JhõÍàx_ã j ç ­‰“;¢×¹`ÄË£‹-MK2âÀºš&„.óê˜ÅÆ•= Ÿ‘_•h%¨$1á§EHSø ‰Y‚x³°z¹A½4I§Æ ä# ™paÝrn‘˜RPµœÙ$/w°Mºà@Uˆê¬A瘚ôAª%ÀwRŒ”ük1µð0™U¯{²ýY Äêò,ÿP ztòáïá}€; ^Æ]r÷ @ýM¥úpÿ :3Ù0K-Tƒ²~¢w àæ)Åð[W¯ ™¼ÎÕ’B”#†±‘='2&èÅ”e¯W§~º3Û©VM‹Y² l‰ž>"õôÏ·f"‚It€©r±¿Ç¶§V/ò¡9džÄÃ+ óä¿©Áq4Â©âæ™n%šR|Œ«ìùÛ[­Òê颌õƒOíƒüé·ÎiZìa(“3ʃ™i-ËÑ@WDKVŒ81tÕwÍÏÙ@¥š§ÎBBàëÙÁ"8] ZCwHô,Še4÷ÈÌ”|9D§ë*mLšKÐ\BtÔ(ëÃïDñF… £tž‡]aYŠ¿†öjj‹,M¼¨Rß*F,u$ÁG³Žâ³b"âð­«â°Ö‘ìjOB ÅHv˜³d?Þ¡ÙœpøüŽÕž©R¥¶“B±¢b3X„ø'”T!ÚÖrîfdñ0'€TY¾$˜–ƒ‚Üûˆ.ôe£ñTaþAÖ+ýSŒÃ–:@fÐ1ÝqjmW5¤PlJżC×FáðQGd¡«°píp7jwæÏe²è¼n©W‰4ªóÃ5”Œ¹çÔWŒÐòLÅ8‰ëy‚PŒ(ëB¢Ö8ƒ ݘ oªÓ#B'BËEWŠ}ч—ÜΞaL¡¬³£Ó¢°+ eÈ ¦P’áæfW´Ó¹®“(À^N޵F.-Sb`×óDr°N‹­†­>Ò×Ö¡[¹MAwIÅNÙÊ™MŽ>ïáDÔœ³ Éîf¦"‰ËZg*µvW_»°’‰tg-?—@äµ¶„6y ¼Í¤ë«2¯€V• 2@ –•E†é2v5tІS›$ÖsÁ‚¹ç®'(2ÊÑ_ÒA`àZÆe&ï¨òó£ÝÃ[eðì¸YìáŽåC°ÝGÒƒvÖìFƒé¨\ï}ÈúÈg„n™rð)fv@e—µYΉr?V“#† J+ ±@„SÒ£ÅK\Uê¢Xv 7xŸÃàøAWàºà·d9Äæâ ÔMTÇ»ÚǾ 7T¹€Y)Iù„Ö6pÝù¥ú®’ô9ðÛ$bÂcEpOl#‰}ö—Gù,%aÇC^®z–ÓÀÕz‹øŽŠË+•×LÒå=£bß#@aŒ\ E³&mŽmÃIFÞ*ÑÙ³t.݉fkVPªUe|ÎØl¶ôw ²÷L2ªêìc¸L(1Ç-Ò“…®4´X¶z`UGM"‰ôKÏÈV\Å]öe%Ö—Çþ™ÄÆû “ˆ3æÿ#;ÑÐ Þì£LMŽ@k“*-X©qOß”÷e”r|ç‘ôž¦žÂ:Tr€M"*VÅVNÌÜ+¼&IÌÁxÌZt=[ PŒµž£PÕÙªÜé¢ð†œwaæµÙ—ïa§­‚y×ZO« AR/hÐè=€N»ýÔ×L±+i€Yej¸“£ œ«Œ÷ñ–0̓7è³I[1ïSÈ#©œS„o5eŒ3É[J%ˆÕBù0ò†˜Ë• Ê©•'©ÆY”Ê,>¥#¦ÁA/Öû°A@a>£ð©ä 3%Íôå,¨ë)°­œ÷Þ‡b¯j"ÅÚ™C,¥($·ä’:Ø—ˆºŽ ¸+-¡¿HÁAwUÊû•}âÇPØØÅ/#r¥Æ-˜ÄCÜöZV° Àv°;·›†¨ÒÄû²J—l)’¨ù¼g? 0úDp—r:ã“)j¤aƲ¼§ƒÇ¥Üê @×Ñ Ã1Bµ@fÃáIN"ݸ#£ë/äC±c1ëÂeN•²È'¹^ß°<Ó¤ÇS|(OH½RÉœ–¥ºóÃjÑGU¦áƒ|±ß›{ð›t©ÙÉœ‘ÌÒPÞ{¨Öº•l†ÎãÇÚ•*–Œ£Mnð9šõO ôUCpeþ Ž…|^EÁ±Œ?yí!ÍŽÍYó7_#8k‚ö.wè!C£Ì©Õ :†f·9F¡Ø×K7Bæaw #F"D ¬Ž„ŽjC®ÇôMn×sÍ?ØÖ ÚÈ¢Z®)Þï|°‰EFݲ ™¢k¹;§l™ná–”•[_¡Te’”4Àòü&Ü@—6ë*ÝÛ@üƒ~G|‡18nЋ§¨ò‡®«hýUÕT”V'¨*,V0EÉ mU~€úËmPêRëTf`{1N98¥E“ŒåtŠc{ÏÄÃ×X±ÑÕ×3­µ\/Ï9Hg@T0ÍßÕ¤@”9ÌC˜–†a¢%€M$C¯ø&"ÁÎÕ°–:ükk¬%1f…À†Ò ÅÄøñqÓ-dØ_‡Eé—'G1ÖÄ ÷S †q\™Š"KŠ d µ›gUõnNÝqüÜNÀóR˜ÿòÝiXÝHvõµ™us½+@y7q;±œ—àQ(óË©*±CG¹žûó qå8z~!õRð†@»løˆÊEš$fŒV—kNûÛÅ_2ê_¤xàas¿Ô È©’ˆ8£Bv碬iÿ1úÈÞ’EgÑÌ3zŒGj\Å_'d D’0£Ï„R¤ÖÆ'N¢´5“åµÞ¯ÌîôUñ¸»¤ú`<ªÎáůésJ€8U2꣊é†òeÖʃ-ôÈ+S)SIÍ5”)¡ ¢‰€¡T¥”€sV¿¯ÅBàšY&¾ª1äN^–äq\,ÏMâz̬‰€âm‡Æ²¡­š͉Ôèê–“ìé-¸ ,¦­èÁks`ýÇû¨ yß2,Ø «ð8m¥^–,B»þ°ž´mõEùÜ«a[Ìî ½NŸWáž =ºž=ËM«ïKXŒªosŽ>‡ù¶.ÚÌž*eŠ’Ý½ ªz¹Ô·§h[DqO¯39ïd"7¬Ò¤žvÓ̘³.«•â¡7ˆèt†Î¨{€5)  ç+á)ÌÞ¢r:–Zm4ëÔ9§ÜïqUìVÙS0`}¯& n^¨e-=†Á OºSeC$Lœ¯ÈǬÇÅ0wðùö,B(šŸ)cYv®+Í92¢#i)ÁúÌ©q~†tàþÔY—'ɳ ± 03!c ll59^|TûµçÀšBxN­ƒ~År¤¹JßÔº 4•–«ðR„¨Ñ;bœô޽±•M¢fj/ª¿ƒ÷ŠŽá×FÈ×­ eNÝ),õNS«ÉóÁxƒò" ø}Pˆh9@YµŽ"/·ŽËè«2<F¶Ã¢Ç\0µÖ€ÊÄßÀú Ž2]bLù' c¾h ÌWu‰´êž`Å)û©D¥ñÞb’¹RŸ¡E ‰?¡ÖæåÔlÁ³SG.¶³/ÄU>-çxJy¬×Idžc!ˆño -aÕO8×sRðîL‹Ÿ©óçX‚$¤BÃZ̨Á3w<Ê:§ñù‡Ì•¹ÌŽ *BÏbyeT·íÊñRß‘a(X=ØMøÉ QuˆdÄR(Ùér"™IœRlŽÕ'o± ÅÝË~)X[Xä:±aÜ9~ç}‡¹T{§Ê4ðXìÄbë8ÿ›dlm⬗Œ¶‰\FF¹%ÄJÖF÷k`6™Ž,ÖǸg[ZÖLJ,qˆó‘m‰Ö°gkáB¯M'Â?…r×ð~øÃEÓ+¥x? ~œлˆ+ê0ƒ1Ž"ˆ”Úö%î–!±6hÁ¶ÏÍ>ªÊÒ›zº´•y:•8`3OÞ ÿ2§Åm›=LJ£Wª"æu9cYGCÝÊúd‘TÌU%“¶/,A`œ–ýZõFÂf 1©›.ž¾`ö53öùÂEbWÁN‘ßSUc㼊’ IËUkl‚YòLo/wz{o ªÚú‚cµuGvåÌwœXÆÈ*ž©µ",^1M— Ù— %@ðÖ•ËÈ›ºh”ê†Ñ%‘]P"ÅѲ©PÊ€‹x/0vðVï±{jj^l0Uº®j }Q6Û˜b>Tż¡­W¯Ð¯õ=%<†Ûb¼ÆÂŠ ¡£®¿Ã:.ûÀ8šà£­¸Üj"ùRÓ–»[cĘC¤®¸ª+s²‡£1¸ 7ß*PJ´q9¼gX„˜·aãŠ5álûÑÏÊ•Ž1ÅêÁ¹BØ(ZI$#@…¾´“Ô>)År.× ÃºS²Â¸(Tú@9 ÙÇ!Ey9VV¡[kè1 Ø£ÂíâL úž p°Š`„Þ&&ó 5&QárÝß#iM]^¸ØhÕ‘±Â…äR-e"­ˆ6uVƤ鞬.âlq@}Hn<ðw-m*”&dŸÓ”&¬Kªêº°y  ;ÈÝ^©£GYy7 ¥YÊDY˯±é©?7¤”:‰«Á¹‡-Yˆœ+-ÄB‚P¾øÇ§¡×p]hQê}ü™ó7ã­>+ï•oÍ@Ôj)4ÌîŠ,5ã{AºßŒM*œß›3Þ»Ø÷œñDu@À>P`$¨+™&d¦ÊVmƒ[tÿá<Ž‹ð!¨‘?wfýYèLgJ(VÈÑÃuÏiÞ_êb 8yíöµº›Ëîd¨­Y–&{k+®^†ñ²„})×@º…Í%!+@ºŸj´us°Lƒ'½ oÑTC*HââlUU ©pÖ‹éÉ@»`-—¸†‰å:W&aI 7ô2˜Dn .Í1Ó½Õ“^/ŽÔ–pRšZ¡<˜56UÉWCÓ`g ”k•+5ê‘dr: ¿’Ó±`àTœØä¶.!íÀ:Òc-ïM‚ÕLòÅë¹Ëj¾Ø=éÌ‚)¬G»ëA&•Ôrռβu¨Õ@WÁ9¸Ç«ƒ8ÄÂ11f¡¡*3]_™ŠÈ¼Š³!I1¶iS%-W@»¯îá‹À:Pó_N§ Ë ±VTIÌ' ‡-ÑÞÆj0‰ò,©á] «´)jQŒª&XüÛëÍ©])À£I2@vM’dõ¡Ké>K¨…dŠÒsIx-R’‰:*Ki¢a¥&­Å$:¢v€.¸/‹*,p ø»B#Rîñލª,ÉI øÍôyGÈè-¤¾AË"¤$çç˜iT:{´ â C}¹(ͺ˜sWÿ±òƒ(fËÇz½øÀž¹—Ë•{!ä\½»ZÝÃ.‚\Å­ó@Šf&ƒç(5¥·b—DZeÚ êÛ›…­´FöCà»¶ä4ˆàSk§fykÕ63'GÂd#½½)Vä;èëž”)ÐÁ»¾¿ÉXyØõ™{n4cYÍW¾‰U¡÷ßiÏ3²¢Ta„úH~ÆÒ›­¨B0œÕò¢«Ð %¸J$ðAœ†Î¥8EòÈ“™Íâ€+½–C=àLNJeÜíE*ìiÉàD¼ƒýô*hÆV6ëmè¸éšCI“ÛÕ|+zÐkB¸fZÝŠ2sFžGíêÊf(}ER$Ù™¬{‚lBöbÉRœ‹»eŸðäkæòƒ¹3 ÈBsq–fð“¦Þ(Q¨Ó "xDJ’‘P(é"M“ÙM»ÝE,ï%ä$j¢mR‡C$‘%º˜x+W&Ê1ZŒt‘[‘”¾ ïÑÖc{™bÕ¬óÄPX÷ Ø«H$Q[¤Á‹#ýR$óâv ÈKD°™QÉÝÏñ(@LM”K‰BŒµp.-HG¥)ËÞ!ÞƒWjgºÔ¤ ;n'C­ùo]âå¡ü]ú Œæ\hy.]Þ –ú²¾…¨'æÇÚv7ÉYô"5èñ\ѯÕ$Zg”ñ§‘ôE.èé2ª¤2½Mã˜Tc¾Ë&|_À"´¬øÐ©hž”K\°®Ë8ÙqÌ9Þ`—z/à1ÍÈ­”Ý@m †_¨Ü¾,_5”\#™Ì¾°>º¯"„”ó :HŽÝ¯º™ïº]Ó6‚àŠU1{†Í2:«¢ÓÜE|¯ZlUˆ>e¹‡ œG¸å1Çc­6rï@rñØÓ&µ=CŽm«`ªç­©Ò‰g¦Q޶Ñ+0„>_as]Ÿc ¦¸Þ®§ç…ÑzßÊ“V€.9Î:À{©Ñ™ÍS~¬‚”ùÄÓB½S0¡:†¢ƒøÝ ýZ:¾<¯EH|1iüUb ¼®45ë‰c¤È[#Ti™í„ 9˜Y ŽäLµv²´.à îL/ò üj€(`Y’¯VÄGJvY`/öÐPe'(sÂ×J và´–y­â• "ctÊüZOÔ ’ékÁ(H€Õ¬µï,¢ta…šgY§°ˆ±[‰ú ЉŸ:U:ýá[ÎéqZ ¶Üw|EÁûBcÄ-u¶IëÙN0¯²ëo…i Œº*0°…-çXYøË¸Ðõ¥ÂRÁ(ú`z§cB¸&býÅÄú3èV-'0 Ü;•ÔÙéP/G1'^éŒPë+Š]bRIµD&¢-ﻣžþ1Õ "LE÷ˆïÚ°4wÃ(Öt¼å^¿úwy :¹™z=…aÌc-à8A0ôJË;ôÀª^ 1úwùì2¶HÚ™û\1àØ‘oõ…ãvGŸ*4øl/&š'Ã[ébn'4ð©‹AT‚(XóCÌÅDþ^2¬™@ŒáBÛ¢T=¹è9ÿ˜ ç wð€2Ç>˜Ö¹Š Kúî·lkê3'fs–ß»ÕKcé1°"A´¡à¢P|©JÙlœ¯ì½Z9n3e«áû£Ê¤¹‹„üû F()VŒ=#~ {rG1Z·Æ!Ìu>,Ó(q/}yz†}i[žÃ쀡ôèdSªx“áö„©éU…³Gâ'"=úÕ YšI8´ €h%åo2¶ÆÕDa\€à9M›[ÝU‚â>Y4Ö~ÒúŒ‘˜*8±–Æ:µö¦ N&¯31™K'õÇÊ”ÑIŒóêLÆH®Y¼–“ܲ“LSÐkÛœD!‚Ù÷Uˆ¶o6Ò.Ö²$\ª4%&.È1bfÿ aQ’¯@Ä2cÉ{ë,Œ •)cTÍÉ\³‚=’0¿ûŸüAGž~}Fçæä–‡rR®ÝÕ(ò挨9«á‡“ì»ZS]Ñc5êùU”•Þi§}ÀJfÎÒ*$B€%@½a(вø"Å ¨¤åyôP«“e‚¬2(Ž x˹òaÍË¹Í žäëbÊQbѰ%›lCEF ¼ö#i­^º Õb¸žZ„£åfD]UFÅýgR¹oÐs(ð›Z°Œ…WUy-V5¼ˆ˜ÀÒ@¤T[çèDÑ-V~Œ¬%àGìˆüaR®Ôªõ*Cï Ttj¾•¬^§­÷™w¨'\RFíâ´t.Ò@‡h-·j7bT~Yþ\×:6„‹»døÀû–+›*J¥q€A`3Ò@ê^ºÚoÌi2«IÈ/\Q²p%K ïP¦È‘ä@T×MÔìå)UG£HÝ+Uyˆu<œfбœíÌ–-j—î¦^ÝVš(8 Î[_aLE« «½J-ÂÈè|a3`6ñB°’µXe×9‡Á$ù8Cu‚CýÒaÅT“ÀÇ”b*‡Y´ƒ·\Q·Àq¹;8Áº•fÛ„«!î€5…ì â)¤1-óúU‰…¡R”\-ÈÅQXÁ‡N3à:Èa5Y^‡J³$fÛ$‡4ЛoÛÄœ>ç4nÀ$³+œP“ÜŸ`ø.Lf ¾®¤ó+Š;zu”~«þ¤ÚlŠÃß:¼üNHjþ¥8}1«—‹™^š±ñÆbAR˧âûé•ò©-^·Å´´Û%Û…W™l0–MlßkØŒü<ájbšŽ;”ø¸•!‡ª ‹û³2¸/“S9*IчŽeK†¾„2j*³™ÈÕ@;“7vˆêt®e"¦ÃL<”*ûpý÷ä`´û8noþæŒùsä½ê¿OðY€÷‹gøîôÙ÷›¦çÑj©pò>—@€µ½sÉ”˜=}d£[2#3Š¿âž„ÎE… Ø·Û XŠ0èLžƒœÜE¯öW· 22ûÎ[ë*¥†?É㟣¤äƒ°†ƒ$ƒ©@вނ«5e襤ªL°‚þ°­ŽR&_=n³ˆÝªqÖ`ؤ/à覽¦€åV…¨fý9ÊJ˧DŸ>Ýí‰YD9¤åÄfkÏ~݆òNKÑŒGj’’»×Ô$C•FCF¤ï`ÑHpʤ5‹Š]³áµ©ðŒ§…VAŽU)ý©²ëQøFõÍM$Òœ« ÷ú œ_åÑe…È‚»z‰¸& îÃ>†‘À: mbyÓ±´†þ|Ø_Îô¸w°|týs 9ìv¬Õ^zÇjº3pû¸XÔ[Á´RY}ðVzùF95Ìî!,­•žXéÏ 'Ù+IïÌ‘Ô|±±’ii ÊÔ‰D#I¥êŒ´œ8ºÊ¥qÛ5—JÐeË¡å|‡¼×¸œ«ŠÖ1øÝ™†"}…¦AÒ—gHŸ™š¥oެ%쮊ݱ©pƒ½×¨šä­×äå™Ä &){ã°ŸºEvA_†‰O:dZªÍTþ:h¦ºœ• ¤@ô»=›rR—ƒ>/ëj”C§XË6lSU|øºkòKùÕ†SH_Æãî Sn–ãêÝŒ³;ª ÏE`»Û¶v²»( bÞ¡TnÛFÇ!gõV•d=oƒxó9Ÿ;9–_뼯ñWÅ2ª<%mJ;é!’† xÊk ÐÆ[Î8 ý°”žå˜f)Thu0BÚbr˜Ñ¿Ö–šK=ZÑí!ô·TÔJyl†x5ãYÊ6 Ûg 1ïÃs1¼Âbͽ´É/ëQ½Êo•^À±¥ÍgÛ³”ÀЦSY†.æöuõï­\cƒª’UêˆÑ›¯[: XKĶrUÕê/L¿˜î¼€ÊôVºp:œŒÞŸÖ7¹§Åa¯rJå€eÒŽÃÕ "ÀŒå­qµ/y6xÍ bÌ¥´ó¼Ï‹H¹j—š=û—÷pOªÖÎ&Ažö ݧ1¹–l0 ÕŒET .i§‰R*6©|½$»² sÐ].#PÌ:¸:8B:=žŠ¹YÔÔÁX/€òo´·¢|Êp G»©wĦÙaê0ï¼:Í-48í•*ÊôRë`órƒ}KÐ(ÈiVK"ßð’ó^aÁ fš5²èÑPóålrTN™ÀŒ7B3ªkzd7Ê@ÐdÀÀiKè&mô ‘Žt廥½ ® —«ØuðL­ÑWÝzj"ÏQfO}±µädм üTÊчí®‹g&©i eIˆÂ¥Iˆ6+"2Î g“‡ LñÐ^H`[`W7SÓqJYä:œÔqa¹Ž ó~¤*ºYÆ2á‰Ê€0†÷¬ŠbÙnaáÀùeñ·$‘…5ØÉ:4dÔ\Ùo!{kŸ¹{Îfek}}"ÉÛF Ex(2½“ƒóüåÜ{€Åi ãóÁG½$” ï0uò)F*rˆ¼m@Ø;i\÷«ü ò!4Ç£¾fio_–ŒT~Æj†ö镜ã´»·’Töy›ÑÁØžŸ$Vd0ó)uˆ0,ÐË•­`9“ct°ÖJt†¬ƒiQh÷vyž¾›Š÷·†*r@I+‹*+èËb„üT:/ôráræÃX)ÕB‰âú iaòçÀõv!Øò=uLüWº€è2µ›ÑV–”)øSùèõØz§“ÕA‰øo•š¯h;Â’8Lm„újä’‰«Ð`òõiç«Ûl "‰jRˆ>ÿ9°[*G—Ëa Vj>I/gp»GH9à«ØÉü µè°Ae²ÒR†HV nUáMÔb•qáE’ÑÂ>Óèk0å4ÿ(!>•KùÓ5|ØÖ8ÀïÊÕ+åúF…|„øÁÏ‚n#O’cðdöV\†œ+Ò4è8býºùGŤ§B¯ÈâPjUC%>a'q·ìudƒW✈ÿž¢tí¼+Iã•€†Z·W›£çGÅ[C‚Ý“Nͯ†c(}"“ë”­â@ßYÒ2Sª†˜¡†ˆ%f_tÒ,A€{ý¸¾à©¾85Ø-¯[…^#kqzA€}1SÖUñšJZ (¹ÃpãÒ‰ñÍð†²9ƒ¨t5í©Ƹ:ÚEÄ á¿/æ˜Tq$4§RçÚ©¡É;Ȥ|O¶Î1½E% KuðMN¼úH¥†ßÏÙ~‹ªB¥šÝD*¿¹…c„õX~Ú¦ýÇÔÅRÅ`®6Íz‰ÔðUc„ŲZ™°.h[DÒàiæ b€¸™'›Ôú´ˆ³²1ks£.½xö‹O’*³žn¤R-.µõpÎwλ°þt²][•Ö¥VlVwiU4BƒVÅ}M:RuªØAÏ‚ev¶W¯A¡œ’ÂU¨#¼ÅôÀã; Â^ƒÁqÔw¶¢©$kÖÃ4Ú˜¹¼‰›;ø¨ø´–õìLE)Ÿ×+L~Iw"Ô>¶×Áx &`{‰e­×N‰þ;œ‹æ!TA[D Õ¢?½rA¯à1ORiFsÜË)« Eß"Vƒ« ”˜•¢‡P4HfF¯Ã­„œ†`½Ôƒæ­QÜ{œ‡€r‰–Ór )a×9Ë5Pµ¼š*8ÙÈI,­)_{&ô«»EZxö8)B± åiWƒ%J>i%è%J>GjŠæ D¿;·¨!sÀÈìƒøLÃ;'¬7)–XZI^§Ìð*j‚§]S´’lMï&H(`âD‰T"}”ºRiݲtªXž»ä»#ñÑ ¼ ±ê-m\´ŸÓ|¹ôõ}tær¨œ”Ú¬ÒËwÐXöDç '”µ*tÊ\ªO|ÞM¤ ÂòEÁøÁ¡‰ÖsR‰TÝI8ÂCZKªS|þ–Rgan^•×kwY|_JW•¾rZñ†h7¼ÑB… ¥*Ûù±Ø$`…Id]+;³³ps¿é$UÝ*…š“¹EÂñZi\Ìë’ç¬4^:‚'¹¥=ó A“™¾lQþž_4œØ°h<<%JßJÝiøðN_Xì¤O¢®Q¹Z1ÉE†ÍIwd0¢­tgŽÞ0d°RRq"Çð±¡Ü^åÃÐ6eÅmb@Ê–5ª¯ÌÇWW(sØUÜž›N™ífxñà@2Þ­Ùð¸’qÔ(è"£ÂTœ¥M%qÐŽÆý3„Î`*û3—+>p‘ö§Û¯˜éECU¤(\^†ê‰ïfzøz?uSƒ—B =>x7@l'ˆ®T#úd9i¬ë’˜À:á˜_MŒ7óôÞ~ØFÈjÄçâ€h@ó^J—rx“H…Ž,3ÈÕlišŸpÐæÅýn#„Œ!û^ã°LT°‹ˆÃHhã±’{Tâû^©“-ZHÙ††\±ž%!µÂó4KƸ– ê§{´ƒ$•¸,,ë”äo£¶¤X =l$½V@—ú{¸1ÂoÕ˜{}F–KåC¬÷YµzÖ²ÞC(X}É­Ï–%}…ƒ©µ•~¤dÅŠJÑYfª(r÷©|¨Vdzõ©YË+X"ö‡ÈÉ;¡¡¡½¾„Adñ“‡Å'bkätǽµëxèœô¨p;Å) ' ÐãÐõXéIÑ$ŒÂ ýêwÑèeŽ“ª¤÷Å'ë ð ¨ÀÄn‚¯êLv‚›ÒqVÖzúÚµ``Š!™â\ÍDn\Í~Þ±H]Éó4UµAãbˆ;²Ò·œW„WzG¢QòõÑãa$ÖqYNœNºÅ ”dywvœ¸éµmOI Ê_†CGÀ085l… ,É®‚òI ˆ¤ =,ªªÉÑ®vŠœ CA *kmV¹Ëô°t­Äô寍ˆàÌ4À`K,8ÌZDÌf¹¡Ž|š%¸}7ô`=‰€Û§ $èFz¼cÁÒ0Ö:è§/ÜÌß• É”²¨;$ £!åÒõA•ª|uaÇa#F¶7ÊeÏ÷â>³+Q±ëwxœ.®®¥<.êæÁ®˜®¦}õ‚Ã#èëàTúðRF»-.õÝ«½ÚÓbíqÈ *©e¹ØUòÂèâ‹õë¸  Äš™¤SL“â»ÔG݈Ù#{i¯Ë4…ØX½f!*ö‚È,]¶GáÚ}I:ŒÓi™A¡C”>`Ž¥áÔp°WCÛiù‚Mòæ­NcðR»:‹')¶û‹J<;‰´ˆå!9Ú¡Š­OÀµÃ³£êü ~bhWÞNÈÒ…á(‘#+ÐR†bío+”‘¹ûù"œ˜L3pEô“ µÿiGIJ)®Åèû"ôÕYÉW,k[Ð{~¥`_¿•RåÂ+f¢.›úfdMDYÔBz›™tØTíêg$îójõÝ{¥ ²> eJAj®¿¬¶m+Ù)É `éj‘0‹©m¤\A ¨ˆñi~(zqýÁRÏ#×>+B.åŽ(”ÃaÚuqX›ŠŽˆX!Ú4Yìu Þ'–¶ëîP½œ–wiwš¹jˆ(²S ‰¹êØÄb§Š-X©(q°Ã»{­„ñ€0A°•`öµCØI멦88—«»ë ±ô@‰MKbç˜&KP›÷ô”M{1ýÄ(¯ê3 ŠAZþ‰Ð "ŠB)èÞcú„h$ŽC®Õ)Çpb¹§šò­µ¢Ò‹jý°ÓYc¯l‚ÆáTbiU9ö:_G é¸VN7FÏ}„á•(Q²HG¿\ìæ|.’¬rLÇ-!…À†˜@V6¬´ø`W`ô`J[\æu!`_](µuVŽ…•áN@ÁòÓ´’‘²‚,æ¥A‡½W¼1_"KʪŠ&,?çQE“ŽFakˆìJ‹Y.X^ikK„★ÈÑ* ôGž°ÃVM}ÈQÍ!#°I ZÚgõ!¶-PÙür¼‹QÕ°IÌ€A›'a'D1ö-&øãÃþ‰Ò4Ø{×6¢p R}2’²X¸D梕 –Çcmê«yþ1»lépÇ[¥i„¦½ ,T7ĈCéË! #/éåÅ+“éØékƲ¸GZ‰}¼´Û•Ú”[Dœ'(ÞÓ•ÊÐÒB6uÅz‹Óº'ރΠl ‰ Ñvn"h$,7ŒŽ°‰²Öfcíä@(Õáz­‘âѰPŠìa Óˆ ÂR®# ¶8ÏUiDH_áJ!Š4…vR´*=ÑK3Z%èw(‡K³”bä;íMè3°Cwé¡ëkœ¯¯M×d)Øø‡^ëÊîˆÊÔ,zT¦jÐפúô@•bÒ«ø9£ Q vVc²P´Îçé¼t cÛX¬1C‰†òB=ÌšdÈÞ·˜ku ôâ“ÞˆÔ Ö)Þän°” ÒéësEs¾ KRpJ³ŽKTé,;nÎìÞ ŸxŽùš†*v·h­2x•Ì7Ú2‡Ñ±2'«ñ·ð=p?¬Á¢Ü„­.BÔVå9)Ãâ‘ú¨÷ ç¤þ*ö´›q¬\dØêÛp8:3/Þj©»øVt£_ÙGa]yk¦š~qîïmžŽÀh£KB8‘ ÁÝÚ%”² QÁLyÊ“€ÊÀfxâØU”â!õÊÈû:œt½«|È*™C‚þ>aW»™S%Ãìo-oA¨ûŽM-¤{0ëÚc,"‡¼gƇŸ ¯ØÃ§ŸÆê?P«Gš¾€<ÄʵÎ:Ô’“S 78&VLɆD½bÐ,K9Aþ&ò 3¼vÖTp/žÎt Lõ'qUNé°Oçt(Å>)áœêT™i,[yØ $é·Re´’¨=.°Ö)ŸêÖ¢`À“¸~×ÉñÑãÓñ™cTGQ©¸n5ÃPJœgYk º^Æ£3¡´ŽôÅ9¹v$O¢¶¦3²²/Ê|·™JÇÖ:ÃÞTÉnXçˆ_ dV³(>íÑîlj€ ØÈ,þÛ~Ld‚Âp+€H–úÚk³”¬FUa¨/{Ȱ¨YÄ÷DÝ”¡úHJoóÜÊ)W_’þ®5ä(â ª¼¿Ë ˆ«MÄò —z–½0U„8/àY¬gIU8¢wYì[9ñ|3^«D%ï°ÜÓŠ‚ÊB±’ôª®ë,ö^ðgÚß;%¶– ›W¸#…0–á¤ú·Jù*)·/,ˆËë…z[¥!;FÂr‡÷4K¨€U²N0SÈ^•8©'@´É„>¨TÂ×rO‡îË!«„ú t¿ç<æÔ$IbT¢¥—k‹ºÒÉi(§»þË-»T:ØÍ-M„ŒŽZZM´ (o5Ó:DyW¢*>$’°|-oÓì¢âx-÷ž¾Ž¢™ïé þe(eÐFÀwe<qL¯5$ß…HЬUêõù +ZT5-r[Û€w5/'B=Î d0/¨ Í?Ÿ€ Eð.v€ŒIç*¡ •¬‹Ž_F°¬ù2ŒO!©`u‰QŒ`áë,—s$›Å\ÉÄ€ý©NšDúŰ“;ÆÇô´½ ¨#Âi~—ÁÊsZŠ,`k-&Ú½œkÃkÅ–åÔR\+uê)»ñÁ<Øp˜!_RT5ðÞ´Ä$Få[%mv€;VZÛ7Šl\bEE ¯YuYâ‰ouàîÔÄL­<îwÉ£˜èšÒ“‘0Jæ×ñÉ€ð­"~„r-–²£‚78±C™ªÆ"mýܲNƒXX ˆÄ O (+œŒ2´ÀëV,K³ íÊ}K¡:dÁ U…ý`6dA‡„ØT8¹Ô;Û™””¥³3ªÿöNþ¢à_¨íx@§ä(;‚CŒ–]2`h~LR– =E/j„Æ<¾ì³åƒÈà®>ÉB* ÁíšâGòá…Ý2.äv“T­´¯MRÉ€ÒÝŽîbJ–2IuñK3¹ûŠýæ'¥Ö[¡aÂu ¸•VÕSS!ôš7X ñjÚß·ã`ò¤žVì›aÆ_aˆ–íÆIǦa„³9µ<¶™Ä²Tn‡)Ø9B©BZ Ÿ#pªøÞ캈œ¢Ñ>nïl‰Iö¦›  !—¸ÔÑÐZLqho\ô­‹QKf.Ç›þïéÕÀ1ÖÇžü!b2ä]é«ÀzÄþÉHó7’:M f áoŽõ êÚÙ¬¶ MûJÊðQ˜SxcŒ¶ÌA`0D³ëa\ð€”!0¼â´çˆH‹4é…æSwÉ£òëÑVYÀ è&°ag Ç5w-jöí2]¾°£X‡z¥GwF_8‘SPZL­éÒXÒÙ°“¸Í%f?i]39}“44ñèüM" :ØBšÎÙÑQÍdëE Y{bšÅ^H»*‚=ø.Y«Æ @ÄéEd´Þtɳµ¬K[<ö&»Q!ž1Ö™N{8YÐŽ¹0š<Ü•Š#poÚ§µ1ìê²=«kƒ( '¡²€_ëKÁ\ðÐA Ü$ò­„cPØoÁÃW—«÷„óu&- lt…FåvC„Y‡.` HW"p1 ¤TÛQ;Lã„2¦SN{xr ñˆŒ³‘=×CX3iƒîW¡ª@'*( …ZóÀ³&H6Â.FГÈÕg•žêB=Z<’.©×¼xW²p[éW¤o&%·YÉ~Ap¾S• |Ü^Õ&a(ŽZ¨)4f°ÞVš‹ djr§ÄÑI¬®5«¤êgÜ>íú­€£¿œ}<@IGóIdMfT<@B\T¹ããpÕJqî”(íÿ0´&lµ1%¹Á4XuîdÙP´‡Î(hÕÇ;írÃ@ êr{‚¬<Ú˜¶{Þ¡ˆZU"Ú£^wê Ùgúò@kÓ½5|Xø€ 8˜ _–+Nfô)¢ aƒĽâwËou·‹å~ùµ¼vÑ5벚ü,= ¬<©6ÆéŸb lïp=_è\þx`Àº t\¨¯eŽ”Ñ›Çdy«þ% H:A ¤mîñ× £©¨q|Ú°¿+ÊŠ:HAZM°; UFšŸ[.ö…×Ùu¢a$ém¥€è0i @tÀˆqÖ V¹QiÆõáAÉiλëÀ»Ay4- Cå¸ò5Û5w½’ HÁòfRX9;C8O7¡p#vö¹ÉN‘jЬW=¹=¬›‰Z6òQûÿ¢H<üË'ˆõÖƒ¨Ãð18ÉU^Ô_-¦‡@=pÀ:à —M2΂uÊudÙÎu‡°ÙïEp Hž`0È8>-vÍ ª!$C'ÿbTjtŽ"1Ží°ò=—L Klr+-Q &­t3`ÙñTÑD@”Z'y+9äb nÍ )¨»oš¸îOZ$ íè±Pñuûbú"õpË£åÜjþ°/)‡K½Ö3o‘OdÄ«T D$‹Kú/Üœd­Â.0Q…o®VÁlYlzQisF¯ÓADáþûhçƒT’,š™÷°\=0Dø©¶™ M.XÎ] ËÝÌF7CÊÐŠÑ ß{ƒÇ†€Š ˜&4ÅòÒU5sÙgvQUb?Š.¡CšÁô©mZ£mÏë¯Z_¨(UxÖ ÔÅ bÚ)87‘!ú»7æ0’ž}\ ärM…Š~âÔéXo”‚ˆFá¨ý0·l°ó0éXÓ^œL ¸‚Ã2}d §Ý\vΚN¿t¼H¬Ø˜Ͱеgäð" ì’+kø á.öˆuéô{†¿Q$-sx°¨ó¸Ú‚•íaH³W%öë×fš/P×3í¿8ƒôbåÝjµØ£½ˆØq(üóÔž Ô™ˆÆ"Æa†Å6Õ€~G¨àYu«YË-ƒà.t0›ãØЙ`E¥*Å~ŠÌCH¡â:øÆW:XL (GPð^ah#Ž²Þ…æÒ„¯ûVtZ° '6tù[¾àº Q½ º6SCÕâŒì¦J)„Iã„US´ ýižIx€!(è ¡¥ª~F4¿45ÊU>Aa¸3õ!*pß±šÓö…æ=\]í뙹D%Y”7·•ôæq¹ô`ÓîÜ@M¾p4ñuQÚÎ ˜À9á7ÓýÃËC½¢ÑÐaçl­Ñ±‹‚¾ÜXÔOÙzSAÝö­=Ät2fYN0+¼1ok˜5sf=¬=@ X\fÁŠî.à’~Î –ÝâŒÛ^Ç ûëº\îk«w e€"~Ũ3{y7†A„3{ p‰±g¢„ÿ"¤lÀ†ðàO ØHÇÑLÙJCPÎA×Ý1;T6ˆHóÁ_ØÅ|2ˆ¨±6©j<€Bâ@A×y\}Jh æ’MÐxpc˜¯7ZÀ\ÉtÞÃðVK†%€b0À•t[­X<ÖŠÎJ¯Gˆ}5 «ˆCr1ÓÙ•ªî@-| É,É!ú2”!èCˆ7×pûÜCB_KQ¥Õ’èÖèz.UY¢r«ZÄŬ=tÙR"°Bq¤õ @:Âkx‚¤LÑ_8‡¶°“šm!¼î¼NֳܰJX—2 BB[ôJp|­QO¥€§@a%\#õŒ›(2üCÔ’!¸ )æ0E³"¡ „>¨b+,YÈæ +’ÍG÷tH8Ó_k@½îˆòewñ¶ÃMù™(¿Sm‚¬Øh„˜è*oY®h}½“ ¶€¾ß΄År7CÅ…|v±â°fÛî¯i@âC•…šôŠYƒ©eŠŠ±¥“x’ï_ú ‰üPèOd'p°IR¥Ú³NàãßñÃ=ÔO:A:§Êš_Ì ~½+ |”­¸¶pÀ>ôé@x$ˆÜ Èņ[«øÞ‹ÌºåD@÷(´=òdâ\´³N †òŽÉ2—&ØJ%E¯£ºoõ“]#Ögj&»D÷¬ãº¸V[Bô±­\Šz¸®ú­)š¯r¿úoåTé£îO Œ]•ÇÈþTF0ù¾Ym öRŽŠÍÌCxõzS³ïïÐâ8°ˆ`ìß•'À ôf’OÔ:¯jCo&™  q5 éZ*ÅMè‘2¤t£^—½}pæžÓÓÿEZí°Þ›ž ïûÀvµ§a]È’Ξ¾ò€ðÃt´‰Oö7 ¨tOó9Ažlô{.á%8@\š¦Ç*¹gé6ß3¸o+}QH¥5´ðñL«£°Ö&h“*UÔ„‹Nï@œtï+¼y Õ*îG)ïsÅ;è$DÄçÎÎðœÑ©QÛ$}!Tÿ(q ¨D8Í]©9‡ĸ2ì—¤ìÐï`'u|]µ‹ Ь‹2ýŠŒmõˆ,¼Óð½e«`½ ¾/ì'^œ ôe÷õ;š„`ðªÝe€±Xø8e9lζ»Úí¯EÏŸ^ÛÎAk`sF¸Ò£:69Þbã›9ÑÓêÑůX“f U0*#0|¨Ù±™ÉÆSÇ×g bc¬d­‡ù›}K{† c:RAJÝÕý>Ãÿ!ª)åïå0ó–â½ÆrÐQ*§Ïø/u ÚiE¶½ùfþº==Qfì+»Äž!å/×0S±$Ñs úZ%#’Ì€) ²K”ƒÜ€ÉÐzÖŠÓ܇{lú¬n÷ÑJË雨É9ðëY/*qÈÓ2Íï yƒ-„”‡Ædo2Ƙ*³¢À¯ ¢?‡j‹ßDÔ PË)X,:‰–øhpÑM_°dßÜ=#`òTèÀ­ž˜5C0MX#(ö*q_hÚe! –ĈT@ða=H¶Ñó¶i–R솈õA¼YFYÎ ½†Mì™6vps`íF)=®gÌ(˜^O@|’Aj*²‹n„ÞƒÏT“,ÒÁè5öºÐûãQTÓÔBx• ¥º~ A²QDœÚs=£³da —aà°ÚuÈ0\¡8¡×LtJ(W È£f`)N,PÛQ —õ®$uL‹*ϤG[͈°2¬6â[3œ˜$w0NŒz™( >»FÅJ|Œñß!þY^-Q宄ñ¡<ƒ¡®i=¨*Æ-Â:$=>0z>ÝÚ âà`¬1‰H†–¢™ìßU©”UåÉ[âÌ?ú.ʘ!c‚¯’¶J Ë#‰TaÊÖÜAQB´B€Öv¸Œ ­Df,‡éÛIÈaÂ=/>ç«ù9(þA’}fY­¦µK¡{©¹’D4ê(÷ Vfª¦ˆ,•”cUçå³.puÝ鑨rjɃ…§a9OX!éäfÆm•AL,™¦$v^Æ¢àÖ™ªÀ Y‹03 „€Ê… fÄk1>„]0ÌÈšŠ¿nl¸9Š UA$oz2|G@L0Ì(ÄÏNö‹ð.2¨ÄÄ—Ä¢Üa&m¼10ÌR$ˆjdQÍ ìrÒªL|ÑX÷ ±"c¯^t½s–¨¶ äå"ѤD¥ËI_A'˜'¤0ALì ‰ˆ¼!rË×Pü¹Ò~0`EF9šÇÖŒ“_’Š«ˆ=”.äîä°±V;)C^à«9é׼‚S”Þ•É]=Ýt[ …vÅ•Nµ²Ri}W¯³^Ü]HÊÒˆ(Òø(/É; |Dÿƒ½P 3B³ žÃ”¼(ùh¦St\iHöZÈ Jˆ•”Å £R€Êä3K°Q¾ƒeHO¢h;§'F¯1.Ð| è e¦^ÐuàdÇ{&6í0XcT=ûBk†e8@Ó×J¿Q17 \_±X,†Ä;óæ”-Àw¤Ë·(±7I]4¨8J®†Tzþ½”øk ZJ°3É]Mˆ}{ô¿(’‹VÓ: ШáyB–‹û‹=©¶ùŒÅžêü{·˜pè5?ªÀÕs Ùï]ºcå‡všps?î༆–Å"Œ‡}°ãóË1«È ;ë´“:åd݃ΪB×]Þ-BrÊbðƒ39GªÀP5okæwW*ìp™ƒT¸•ZŸ_£±•—Q# dºb98GP3û{]!ŠÇðÿ¾´¶Ài4g9å Ú¾Œ1JǢᒨÔEê]#Ù…0¼Ð8œ¸ñ´åWÿœ÷þŠ-ÑÍÈ³Ì ®Ñõá8×Ã7q³ß‹ö‰úÔ‘ÀÈÔƒb‡ÇÕub÷p ¼¬©2þÊ‘7`‹ïëöìÞ;Óýê–•QŠz{g]–‘ÕÒ÷ýÂs3RBü1ÅÈ1³ýê¼ÑÎ{ª?Äü 3j Ÿ¾Éð鈚×k>#ØÄH ‘`êê øT.Ù* &V÷呌¨;¨ÌªøºÒ¾Ñ¥¤ 'N8dK g¸\•ap?=&R´Ðw¢3‘ yÅÃÀò µ=1ã¾èk±³@ôµâ–xüa¤ÇÕ)À°WólÁŠ˜äà _Mȧ.ÀQ ¿z5½N`tD)o<Üþ§ö^âÒF—ÿƒ,Ž£Y³§(ñ\ë_Àìåûw#pÁ ©™LóÌ’ì˜2DJpuƒê0ÑR݈¢/ ­9È,訚{7V°Äí’´}ä§rc«âËdGOpC¶JZÉ •Ù~ øª¶R܆Px—x9b"”'5Ô¶É"_†äè=zW©½W¡ÄŠ˜„%(Œ}0O|Š$Œ°$058²ˆøQFðèË­Î?_îE{&…„ïrºçq_@¢¨Ú £?üÑŽ>ÆJ¶´Üó¨É=‰ÝønÒÔP±Ä»³Š¨…t›’(¾HºØCÑ!ôïޕ—$‰4¤BÂÄL¸p½FÖ6Ì‹v ™‰qƒ‘D¼ OrYåɳ ?¤°Ä 2&ŒìDö¤,F ÿa³6Öv´¾˜Ô%0O/dÞÇÝÐkå¬Ô›T¤¥)¤”›pˆ €¥©Pðêk…)™ZîãpBù\ÄÄP^Æåõk$t q–¢ìµ½y)·¤Eÿ®Z ð<ï±ßF‰/}åçØ2äÌjåÕ¥˜öYz/î%bâª6BvF£Jz†—äþ Ý6ëTx¥UÜ_'Ñbµ,ö•¾Ð0jn€0ILPIW¤¨#Å ƒÒI2ÉžZn“ÍÛŽ"ŽÏ•eù…zP:IL`´ËcÓÒíàÒ8!J‰BiIêÓ¢MÄ þb4ÿ¨865æ}Ü)1Àð>öYàVB޲³äðî„ǤÅq9Û`~ ³^d;‰ X!SƒÑåqC¬rÔÄèÄTÂ’ñ!‚ôÝ}«Ïw ³×Ëb[s‘5 =Ah±þeÍ[S ÚZßÊüXfÊV\&~«ÔŠñ€fsöVBÚ ZVåÒaôà³°oFWÅ` ¢ïH•sJJzâE¦•®7{ YËU=Ô-P\*©ƒÊG‰+£CÕÓ— 3 N³÷>n¤Z§¹Œm梺&ø8¥8¢‹"W«Ñˆ–w:Sé¢XgÀ¹™)Än­°a ×FWÑBÜŒÍ:N?)6Àî{þü"Ú<›y kZ@Êf3ö© %è„N§¾/ƒ ³>"7!hTm–n@)lÝ;ƒ¨÷HŸ W)#ûT‡) h´‚È¥F,/ˆ~’±¬n‹J_¥G!,Ö??ËêÓþ.TcÂ(öPP zš¶ DÿV£RäÉŒo²ö0<" íp«àJLD +¨±^9rªMt>CÝQ‰2+kµ+hpËa`…œWwf±³$ì énû«3˜ÒkDNVlðÓ,ˆ&¨4*†Þd¤ ¨ÀbCQ–ÈlÀy°…8…Ô¯ÃF’¨‘=µÞ|ÞÈԨ劕a)Y±¶{§ºç­GcÖ\U™¿ë½x–´_ЧÓz_7Ä{Eèƒ}wÞU,„䇖ö(ÔŠ¦"€A“ðêwæXSDf.Údz ¼0›L©Áh&Äwè“QèJ lÍ‹H¬Å6`h½4‘0´°eu¢Å£(B_‹só$¬ l+=4$ŽËu܆íóî@…(ÛÚTüæAT|+Ú¤õT¢®Æ¥” í 8¸´C•>‚A_nÁŠÝ&áóRpôrƒ‹äyªàÀ…䯀Úì’¨®§¶,á²s¸ °NÁÇC<>+^žRbE~–³Ÿ*p´œÀi¼dó€Ó§¥Š^5ÎÁRT'ðï.ÅÂî!±®2Žþ¢‰VTJ ÅÆÀøR±ƒøRÑ¿DÏG½ {T_q›„= P¦2aE×Kè.½'µÜïI©G’y.–Ï y`„œqÀËg’2ïž…µô¬–Ø;ÛŠø¥& Gà{5tN¼GQN®2”]°ŸR#]WE¨°ËšYp@nzë 9¿°li3?™M½<¨g¯E½<)¯D ­@~u”²&º§|¸ycŠ{-‚Xtìk¤{crgh¸L²4Û<ѾC<ðM‘JÓJ5KÙã_4wôüÁo0É”z çá¤ÏJŒ& rΆ 5É ŒŽÆ:ß?é{—-79éÑ• eïTÁ—Ý5lѹ·&¼%ûŠxE²4V°'dèï>÷G³5'—q†‹=ÐyáŸ~trkTMÄn{™ÛR¼e @JÄç§¶‹9ÄÌ_QÇ¥úü.@BòŸxLòhPÿ7ÿ¨ƒ=„]q¾Aµ¨È®MèDá©ÔG†y.!UÜ{ß=PÌŒ^KÚš't'zbåX0ÂYI3TxÑO•ç–;ÿÆl+W’ë¸ì&éáÀž^"w!ŒCÙè•Fm«ßJBfê¹Ãº‡[s®f.´jÈ•*«õ0÷gdRgppKÏÕ€ÅE¦è%Qã€ðcÁ­FÇæ¸HÁ«PM øFT<#Á72•[:ßèYiŽÖ-ˆÇã'Ó³L”µªIŠ7ä|ºßȘ‡pènkb6¥ò>>*ßG)N}«`ÖÃŽ†á}Ãû¸H­—¬^O§„kí9Ï¿ƒp‘iEÂR´¼Ìöôk”©A0fI­ÝÃòw‰ˆW0-þ}:Ÿˆ™å»†ÐK¤ƒ»ŒoBz?(’¨©º ÈtÈ“ýÌßä@—Î4WÁµ £%"ýŸÙÊ f¨âMr˜¹[j«8W¿$/ZS±`ƒÜ—ç 1¢JJ?ŃâeÓ¾ŸžÇ|c VíÒ¢{_"³ú7žÑ:ÔU.^`U€\öé Z ìE+Üv)¬R¦†ó(9ÈL…’él•<«4®éG.ĆèFáruÿß裸º[_ÎÜ7²Ò-+ )ÓFÊá7¬ü­”ÈÖ3‚•Y&ªrê75=©Y`kä;»+ k%JSóŽ.?á*!n·l‰¥C¢Â³…µÂÉok©ÌçÖ{žòIìqACë£i}˜´ô—ÁOCûã4òUô Œ>Çzh`•ÿ%€IŠŠ?éÛÈ™WÒ¥ï øl 4ÔrÚUˆX’i‰¾šÏ-yâÖV}-`•JjèµâMιÀ*Ù‹ZF•Öx;Ô?Y®}KßA ·êÚåukL­D¨,žÖfI»±’Rz>â;àûÁÑ.=ËÞ↠¨€Ì¢XUák—£ŽŠ§V~qäÁ×A\©ü;°ï0ÿ]îÈ>E˜"w6BA±.¹ƒ²—`Ýa-wÍ Rœ wŒ17øD%5 ËèBe•f6ïðpNA˜ºÄôj*‚l§±Õ>œ ò)¦sÆyÞ—ŠÇMÚ¤_ ½`VWH o@ÅsWfd 7…ˆr¥÷ìA𨊮m”6·tIIZ†\ÎåHúb¯IÅÖõNp•Ä.LžÌTˆGàÑŽ ƒ–—Cô¥ôˉÄÀ¸[Né«ý©¢{†ÚÔ ‰öûu•.Î\…€•5Ô Óg>Çáïî‚\¦‚‘ º¸G´°TŠìì> S)Î$ª ¡]­/` OÑÉÕ/ä +™G(#(f§©›°Å…8= PeM ÕìúÚ—˜d£Ä>š\_ÌÚg‚h¹ƒ´^%@¥aM”qˆ^jÊš.È5i%…Ýiš¬âSw%Huu“Ù%Ç6F©GÆôià¬pü–Ø¥^é'” »S%“±æ¦ˆ•ÇE˜Ì“Å…å&Y¶Ã0ð¬ ì3rƒïm ‚õøBä&©¶};R3””¦¤ž£¢m·K¦\Ù¶e°©Ñr-)ixàûR!ÞÛr*ÜsW€©’¿ ¯¥»¬õDp-˜Õ]›Õ4¿ÈÔŸù$1Ö¤¼Í+eädéƒÍMvmÌëøþ“ª{iðmê?;#GD#UïLEËOP´xfB±*6©©¹¤ª”’§„ÙϯôË'Eª¿MÒ¸Ù©˜L—‡1©â>üFùJ%™Dôò:IØ#€±uZ8i'ae2©´€è¥"àÒÍArŸL+ëaJ¨ö ?ØÌÿ[—ùÏái"*=-n˜cû Ÿ:Ð7µ¾B´í¤„ù؉‡zé%ùú‰3l?êI#‰gPF¸Ä¨‡5×±XÑAb™Ú¤µŒ t$1 ˆ©—€·ñ(*îU*k²îåKòK0™–BWaõa¬XEÕÁ˜L¹±dâ9-#W÷õU8²«DHºJÿdzŸá† µË!Âf߃ÖbDàÍ>eÔa2b›©Ä±«ý¡#@ UÔLDº[‹CÏt¢XhÓ- Aôõ”@v{z`z–µjמØíR¢@Ô!i¤EÁ`‹_ˆˆy¨Å±E˜„Rûœ¿±wð›D´³œÆÀŒÊ¡ðã½ …Q‰hy†B¡ û4~³øÉ•ª: ¸ìDÝà†Í^ …ó)'0¤êÂÄ’;9`ô¬ ŠÊr á'Jk2IEƒÕÔ6' £—×Sž&t¿žŸ&˜ä¼û*Œ "-i=Î\i‡âù mâ˜üŸ}<ŒVÙlÉ v$Z4º³ÉZªL^e›LÕ7\4΋=.É'¦Ô$xØ©öÁîâò'Œšàâ=*rIâ;Öúà4©¢óšP$ ©®’à(¤)¼¿ ƒb‚Q[A¢Hg¬9GŠJ³œÓ[¤k™þ{µœd N4ÁXàW—¸—¾â~0¿Èh¥õµà&å^+çÃ^bí\só´ g\Å^›‡ÅE`»,ŸœÁ«Ëî*†ùæú*±‰Î?¶3ˆ=ê7ÕÙ˜ŽXÉ®â‹¹Ž¯ úÜŽKf˜ñµeë*qH‰øeÌlàw¸Z<ŸØòÛ†èÄ>Z1–AÅO ý Žc<.YÙelBÌ\CÔ'bÎU—.f®npª4ð&ü±ñó;gH‚KðŒ²¢þßmœ ×FÊíÎiƒh¶ž°P€Ôá†d|³ðÕ«—Õ4.aùä D) Há \ÍYc´Jí¡•ì+éÇÓJïð·üùf «´Òl‘ü¦ˆb󱯠ÈѦžâ(è-õI¬!gQ–q•õCâjFŽ’=Ë^îµ€ kàÎx9±&ÝTH"’Ëuø_gé|HG.`†@(£•ª!jý.…Ð…´‰4 „H µÂ>(°¹wˆÐÇrâ-ë+4Y½ †ZNQ/w_óÝ…©Ëв¯T±<´"“—ÃNñU.÷&¢îÕ§)ô• uÀT…”æ$›xäIUkœ'\ÞUË Oëy—Á.$}yx‰BÉUÀ_-²Ä—[Ë“%¼‹ÙPÍÜA_†ê–ˆ´¤ë¥ÖIÒ×8f× f#@eô¯6¸æåtÉã€Óˆî9ÀäÂìR sU_¡ÏJ½PføX§I¢&mÕåÞ²L(ôh‡~£ŽÔëNÅUE!-ñ^ÑÛ\ù»s«väÈëլݙ憹ñ«…8©d…»ó ëµlmwp’î¨ýˆ<¿Þ"@a¢øª›Q‚öD† º|ì&ꦔüNÅ¥¤:*¬²îM”½©(¢°ê´ÎÇR"›ÞeMúu]Óc¯5ÞAþæ 3Æ *¯ "£Wå;ˆì`‚AÛH3ò}ƒpð}C¤ÔÙç9¼¶ޱVéví0õLO€Ø!¤ªæ Ü (JLÛ ‰®ƒ×­Ä’bÄR.5 ¢ö˜ ÖçE ¶£o©}ßäÀÕ@]—é¡d<¼~E¼Ïmà`JAÛŒ©)Ç©‡Ü·Ð ×î…(ãê@ŒI¾û“h]Àµ3ïátq’6Lë›/¶ŽIžÙ Ga“TG”qná$P7¢i@áÇX–ÃgôÁðG;=è›Ì¸k?Zð™_5É>>6"©15¿IFš¼jå1ÀÄ&eÞB\LÀûç^€i[¦-FAC§Ább>5|ÑŽ ç–þSÇ%mãü°n¯ÔÏ¥¹?._šÁ…³_ää°9V ÁˆD[!Å>qŽN‡mOLUäz9ì½[©&a´y«ÛÝV*zÏØB/ú Vo®Ú®|1GØêWÊ=ì ¾•ÛÌXÏQRžø³¹ Þ¯åÍ[ÉéHjQäÞ ›·ò¶N˜6ìŒV¯5±Y’El^ª»+˜ ½^± 俍^êÛ›?Î;Œ´'éRb¢Bè¼'µ£ã€NïPîITº¨aÄîéá5­/°Òãº'V±¨$F*Ìše¹ÒgÚÑ‹ K÷¸’¶à¬@ˆ0V…¼I< •“¤§xÜUßÌoþ&#FTñ˜NX¼8xœLÀQ5¾Š ‡å´ˆB+÷vu€`³{L›n“)g™3¬ Gµ]ø“¨-`tªL&¹Rß6p­«!Htõ¤Ã }xÔƒ8S<æL½Oá€,ÃÒ7Á® Ó4ZñVlWUt1WO P¢ÛE»yS£L-5ƒŠ«ÇÔƒoa¼lX„ ]FÑ`šŠw ´zÚ+´¹ ƒ­^òI(vÖºDw*'_òXÛ«XFIAñŠšöt+wÂryˆb´:QH—ÏõŠÿC|¨ÌN ºOYTæ¦)Ÿ©ç1FªŒ'ž¡Ìt :eØH¡[”l!ÚÔ|›lô‚UZÙ³k\}l7’@‘O@PÐÚ³À¹Æ•#=”.ʉõL¬‰(±Ê¶¿ Õi@8+‡ Bxe²Ù݉±JTÍÖððg˜`­C±£l¶q"¼ÃH©G]NèB ÝÇ£ …”gñ)Å[ÁÈ.ì1·Å¥Òܾ’`ÄÅ1‡Ð#ù‡·Mgul¶Ø„i¹y\ð5¸iw?£uÐö¨Õ%äù „¸–8aÔPyh¥ë4GbUï`ò(+OAI*4P’ÀRFþáŠ)ü;Dç'1×”Œpzu£ ºPpf1 É/ؤÂ"ØÝ©ë=N‡ð¤•¼×²£„ø{a€p"]ÚI@©#lÑJZúž(ńѻ–Fû4M±Ù®|‡#5 Hð'ÞÜ[í!Áe³“r*|u©— ØŒôÞaëÈ?¡a„¸3NΙ:9vëxùBt!JPpÂpHiœQÑ„é;¤t K¥{̰3{G µŠÐIx,*ï°’ïÑÚØ =à[¥ï2E™Þ›×°:B„©±hH¼TìÕÏ d€öÐsÞOõýj¦Uæ™É=x³–€UÁ«IœH<åR­æ pú µ®-wÉ5œhJ®B^¿œˆÔv^¦B÷D˜{.ñ ly9ôeHܶŠAÔ…Û ˜ÞÛàD )³cS%Xî'>£…—[€"A”`»Êrÿo)÷ü)FC™HDB5ÇŠ`æn  ).TÕÃ\>Äh°ûlõûi$ .BR÷ÆÂ÷å×:9V8”ôã "É\(ù§¥PÏeÕdÍÅ2û»Îª¹†1¥hk)Øy‹º:°y@ô9$[<½× ‹9¹>,äh*Ìû»RÅ-œ©K=¡¿ÖHo±|Í S3U—UÇAt"G¯Ðw  ú™ÅÖ×J!W’öí`,Êw`M6u`à*—!]Ì™WQ {ßÎÄÊÛJ7›1-½¥³#ÝÖ‹F “h…TîøNRúm)š¥Œg’ –ðXþŽN¬¼«ºÞ…­Khkj&?;A"Žjô¿€Ä×X}V*ÍÃѺðÛ0Š"óœŠ"S<;vN²åÂö$÷dõƒÏÚ ¹ Ág~ô ñCŸyûs Â1¿Lr£xpl»˜<,^ûD¦N ­ÀEô“¯n„|:ö :AHË>GÀ‡œœûÆß’"P;XûímXLûÀ<ÃW+m"- >z*±ð$BÕ‰9ê z5ßûÄD5à ÷€ˆj*vbò00‡ÌW˜ƒDYg’¾¨s3IJõ[r̬ښњ÷r—µâÒV.ÂÂ<_jT*yzNî³ þFÉg9¥K~—Ú½ÛŸ‘f¥|õôØ—øëÑÓ'7@©•ïË–’¡~ÂÔÙÌÈT߉d‰. ñlA«äý361äæä´øzÆî¥# èj›‰Ç¯—‚”Uûqâd„°—löö1¦õ©¥¶œ@ˆ£ä63߇Êûý"œI(›y]*!€@aßvõØŒ˜¥@V4ÜÚ+l›YaTÈd$dÆ÷¹ªë) Ìž#)=§HßÇç•¶B¢UoGd¢–Š$ÞœÁÓ©mm½dù =~±2%òïÐ]¾6ó3•´ÞŒ~Ælö+´Cdí "¸LO6aÂõ\“ qÍ|Æ2F9…º£©!ÛÞ¥;ªSBñWè†MgÐÓ)ʹR; ²7¹TI{“8øèIà´&á&ÁmƒÇpÆÔ#ÁÝ ^V·Ê«Ün{é(‰´‘Æ~th”™¿CN4ì~°bm°<·%Q~ž£V,7ZKÅî-ÎE‰ˆÏ,‰~@&\…x`útÍÜ-<ÍFòͶ± 6ÚS#¬(:b<\‘K÷@̹–/=Éÿ;u¶«²¨òAîaE .µWÄnXh‚ªžP¦\-4<ž¡‘JFóÊV¬ÄX»S-Yúï0LÞQ-ÜdÑ%ÕÙó¢7ÔÅža.šUÖ <ªT^ÏAì.Ò.NêªE”÷jOnÝ;¥d¸ÅŸXœÕ©oÈ~…ÕDŸ’7@©vÚ¬JÐέ³.,ÂÕïZãŠJÂ+¹®„jõ”»l±[taý­ÄÈÍ#ÉÐJV/êB|ŽA]¹Xþ–Júß·¼ËXÚûËÕŠ•þµ€­‘<0 ™‰´‹uƒå,'wTL®,+k#%Å¥c=‹'žbÂêÔ &$¦fQ. ›0¨m¨å~uÛ”^6£ùÜ1´ExŠy3uº3öËéÄy¬©x9{Šá|CǪC,Èä’™¼œz˜(˜•¼‰ãË­óøw³Ü„ohi„½ÜØš¿ÞõÒ@>JHU=L““``H¥ !†Ù@/Ǭb²ißÅ ØgÌĤø~9€šy9êåF½Nç0ÎK/Dá"‹”®lŠÇ¤JŒUÇöÓ° dH JìI³O_aÎÆ‡’ÎÖÌ7$Û ¸IN@ë:Ò¡òñrÆ äUÑá Û&á$°ËŽ R+ oWª¢f•ę˜Üa2 íß8°1°œ¸[ÁGÎE@íÓ*h¡&úŒ‚\Io@ÓÓD©§VzûTp|9ÈÄ”îJ ¡—™˜¦ØêÆESÄ.°{*‡ðå¤ë ;#І +|ë}ÜFd)[¦ý3K/-§TT êÖݳAæ± *ý<ÕÖûŒÌ‹ŽwÇœ|ƒŠ§Áîä‚cÝ홄~Wb6]‰sý·ޕUm„Ì0pEv LŒË§éRfIA½ÈÏ¢(Mź-eÝe éhŸ=¢S³= Œ¼ÔÓ½Ty_©TaMËk éaˆÛ[zm—Ûîi¦3IçgÉ9ZNŠ—rEw„CjYó–òbýµÎû²#SnPhž0w+™)õ ‹UúÚ& s^)¡Å¸´"Éïu>$û(Ê6K nŒÊ<ºé k-ˆ¥Ì· 33ô|œmÖ¸ô4_ôìºK2èŽJê%#Ì` K b„)*– ¤Wñ Ÿ×{%ÏË q~-¤†³$ÞÈ΀{Ë@f§¬ï r^-PôH_«ÿ ÿØ`fœtú`×,öÃR‘ù!®r´ªÐž!q5ÇŒ%Yv°˜¦$ÏS’Ó¸9ëEÔÙ[5Q5Á™ŠiZ§<5Cæ|%GXT,õç¡Ïö Ãîíe^Þƒ¼ Æ2V•gÝ›‘›(%W­bp¼§·ïPºN2 !¯dˆ¼æ©NTŒ³%U:aÍŸQoPVlH=Ñp ¯—¨¼UÕ0æv-j™x3XœËJ3‘ßh2˜£ì5uöšžÖ:Ëã@$ÈᩣÓlb‚žZQvÖ7uöš†ýˆ+H»²" ±ºPËP#n™V57Kß$¾ i7²=œµ`äj4ˆ“ƒu°l¹+qšgíá‡nW4Ä%{ìRrµ«/¼%©L™•Û¥0ºËcP56^eóÉkàÎ)R^[2ÓIVØqÓ°¡ÂšcÛJ`_Š``'ó^¡:“@‹zG÷^ë ÄÞêpÇj —²“9º¬ˆ,ežCZº£èw=K‹ö!!ä{hç!øà²ë¼ÉRª˜lPwdo­bãž¼Ö€ÎÏ¡?JÉ´Æ f ©Bµ4«W °ži¹ìzq¾Bž¡À8Æ®YØU{Á+ÁZ¾¾Ã×ÌJR¿fÆàºèŽì æ l+XÄÒü]ê Á®Ë«×ÁF¾–ú ãÛ£ä ”¹ïZ*3.¥d”MmX™¡€vÏ^k!öwp<X¹QWˆ{–zI]—É* s~¶aâ'¯¯¯Ö3ÎÝœ1f»°ùôõK.ÙGh©ó³§>¼ ­æÂ¨û˜R¼ÓA€‘¾îR’«{ûÚèûÎΖ³¤•½ç=š;“†‡²CíÈ1–åŽ<µ.ܱIIjÌæ Öªš “×.⽬÷œ&©f©Ë¹Ò$3cNúJÿ³™ ™Vúƒ/4Dú)zX[ô:Zî!JFâíµǤ×ËW8ça‹bxá0ûÕéû²»xx" 8ß-&¡?[b Ù0÷‚¼Ù‡`±˜*Q—E¬È³hÀüO´¢hç7þ#à¼pT,΀Hæ=‹Y‘cèo])eÓÎ]—éµ·³¿þ,zþÉçB˜âŽs ÷ îl8XWëV} '¾¯Nòz­RÚ³;v% Ò±ÃÏàVÖjG‘½s’/Xn”låRõ|æ”üíûôgvÜy°>@’af/Ie-‹Z c¤ø —´·blB—¦šöm8²!Ñ©=Ú7/(¨àµ•CY8éDoND½Óž‚Ê ì›Qê玭ÖÞL`dRãØàN蜘ón÷/Y?«#fŽÒLÆÆÙ±™4»3¾.¼A[<â×Y¸„ í½u]!Ý€€qJÙé„¢Â87›1ú2Ì>­{Ÿ«#̳rsž¸EYßLÓè˜ô¶b] §ÈŠ=Ê2wr±Qù9ljn"«*”XkÀÔö&õ_Ò”Kß9xö†òm_–|R2¾ë{ÓÐ‘Ü ?…½¡ãå%Îö̘,ý¶=‰¨n»§ï™Ú– ,lˇH#‹&˜6Ô+=vIœ k· ¥n{”x4Í›\ذžê(u>¾|$Ö1–™í«||S::êDKM\šÑ Á)NMsUÓ c0¡¬PÈ<"E½¸Ð|œ}“IâI$mb_›øPœf`ãiËæÜÒgLZÀ…œ}:ë¶è¨5 òJþ0Øò†Eа«çBÈQk¦ÍÝ‘U$~doŠ”0h•K·ËAÇ÷´ß¾`d/ä”N‰º :Ø›ˆWn+œ}¢O¯=¦Ø;L}*ß)µô@obCgO'œàÌãEõÅ…ŠŠU.…UZÑtÐxÜ;Â…ðû”½IG}'lyc¤X€É¥H±œkAØãžpØ+(ö1<­3=ïz5¬¨¦©ì)x Ž‘êŸò"TZ#3NéTŸÕÒs{uï\å'‘V8p$ñ(=蛪ŸÜT먻aj¢:íÜpænôOw4½‘ñˆ oûÐçPQÌL7b1š4ú)¸1'¢›SªondÎAìÒõÈ÷aŒsQÍ‹ÚLmK„F-fòP8òwˆ@¸JäLÓŒF…á_4éì©{FËäw¥"õIŠÎ§=@L-'h¿ìÙÀ'·GF÷¸À„±¦Â¤Ûâ2ª³¶÷ÊHå"hÅZ&äý&A+½Yç+Þðã.@0ë@ÁQübýИ=ÈÌC÷ñí í% 1» ¾Ûå´jÆÄÞ:XЀeÕ .hÀçghIµÒ¡šØ‡"#lïåàÈ»)ÃiËA¤ÌÁÒ3’Ý™: # UðžÞtÑßáH9(eb¿(y‡åï^#O`- ä‚Ö£fã‰PªÇNëe¹u2à—† ³‚ Ñ/dž–ð9П(ÑfBŠAk= ztg`iÆ*’¾Àp’~·>ˆS­D‘™µ\j*ÑÑÒwP±2¨e“Œ€ik&Äü—ûǺ0ƒgéP\˜ÁC.ª= €ùÔ{ãtÉ‘½°°€WFT“ßþ;œqÐîÃÄ#S#Æá(·„qÄ»Dª¸ú¾+0Aµ µoe¸…¯v"äˆ}2rÏ=€ÊôH#€äÕh‰íc¬¥N‚'ŸGï`Vƒ€Î¨DËØz‡ÈôDÔb0‚UDnuËïXq U‚Œü F?Í£áÈ´.åJ4Uƒö•¬ ­ ú¬ô*—Îé<Áh”HJÚƒI0ŒkÇ Õ‚¼Ô!˜ë$Á°Sˆ®òr‹ñÀc{3” KþÍ’Q[72åÊ8#Æ4:/V 4¨¶§ÝrS `ã4%ë‚ûŠF§¬ž€É¡ž8Ú–É:ª+7wþA²(?|(m\ ®FZÃ;T³J|6èÇa¬—ƒ…±@)/75vÏä߈+ 8Ï܈ìYïØ±>3Ü!Ÿx*‚fÒô@yx½3Nö ¡^^Ž_™Ð·ìžYŽÔaABëòžªs¡SLTüÂKµªL([î[1Á (Hb9«uÆV]Lcbw ÎYxÍ~¹*c_†1Ø ºl–q«%Izà+$M¬¯x´; Ý»8j”ÈRAD¥ S»Á¿ÎJ‹àša-T‰ƒÃ_êg‘&7¼3‹î°‰˜/°"ÙjÕl‚)R粂¤¨ca5úeºçAþº&i Êu=!z¬+Sè*ÂZVhÒ¨p‡åT8=XcÇÁR2ÜáÁÊØ€é|pþDß{á߉~YešŽ“”Gø¬ÒWÕ[Œ‰ü˲~–h«‰hòrúÆÈÓ”¤ÉÃÚ™ÌÖ$Mœ˜SB§GÄ€`b/ürc4‹ ¼ØµÇ#ƒTè 8¼œ·IM½ÅI¢íï=õËœ¹ xwj¹£ÆV»“sÒ°ôÓð¦´;^u#¸‚áúNX ¯,l»b¤¯o½»"4É«ÅÖÿ`P3Ñ79ÉÞ½ÆçDS‡8×gZe'mÖ …º=×áM1¡Ž:NÝÁ{º"ˆ†ƒÐ:#Ê®¤ABZ%ˆ=®˜ŠÍ@…S¡r.ÑÓÓàŽ±¦½AxÈp- ñ½Vtf\ÔWÑÜÇC” ª®)#:NðA€f g˜¿_ânÇJ¥ïË•/Ob‰@s5è^ÄU3øÇ×J'O[¿VÖY±Ü52¬ê{‘èiˆA  9áTÀÿR¿¨kA-‹ m߃¨O!‚…¥µž’¿5Mñ˜2Ñ{sèi …†¥T­œh}ªö† Ú¼ªž†ñN¯4.eSðkƒQoa=X!˜8}ÿM‚«rì³$ ã½ÄŠ{+°GILå#9´ÿî g á³yUÎ bv̪v—ô¼w[3 £Z*0É%À‡cy¡**> bho–þ¢Ô¯KË$é_’³ Ü´þ¢Ìôªb¸“¬rDøY«Û‘Lra%MÄÈBÆðV=I$•œxß™¸G ­afÓ›äB‹Ã‘Ö$"­Óm´®Ô HóN;¨OHt¶Käbb¢¥¾ŠSÊZ!¨ØN3 ˜8°¢J†gÉÑy‰ðb}Mö²–¥†óý•£ ¦aKŸ™_x,+²›É+F•Çüɹx£ãÇ‚~¾z•iªrX1±ô2ä®üA|l V<1B{9%ïXcìVêÏrÝôãjkÖ#˜^¨ÿÞ­~¿ÐÆv$Z‘Ë‚tß]o μ•TlÈV"ŒÔuMpõVîšdØàÂØ¤_üÔ³àÜ #D®«1"ޚѻ0¤ÖÞº¿çŠón÷õy·(öq_/a$ºY2¥…ù X’„bj•ÖÍ`Fˆ 2ô\”i½™©àÈz×·“ÍÔG‚bà‚FùŠ®@C +O¥C@„7ç*¿§‹ëÔ;ÄKc3Ç;óe„d!$&geñ,R ›ó Êã¦ÍÐ@ñ^äÉñõC&t£ÊÞ'BÞâ½­Þ?#„Dø‘ßÌ"Þ3àë™ð&ÉŸXb73 Q”†dDd? Ù´ÎŒ½©|L÷^ƒ€ ÷Fp=EC˜cÆÞþ]ÇœŠ÷ô4=E¾ãžDØžv&”už€èº{a­8û̹³UœýD¢Έü3o¹²‰~G0o:êz°Ð ¦­«-9ŒßnI䯊užœÅÔ˜/òó7–Ã$’§³¼´jµ ñÅ$’XÓΛ„”Q÷& uJÚÜ7™šûÄj#ªÂtö&sR*êÞ:üMUÂ`ÓDÔ1)P W¦}t…h Cˉ@ª6û¦³:[®Bv$ œàú+B¾tV3r]ç*E[¢C&þ›¨vk!nò&¾«Îª%ÚiR,s„ÃÖáüÓ,S3dèèxIzŸd#©XjºœËÔ2°¼JAÄH,-#~Z™¶f° ÛÙD´B׃ ×5:9&ÊáÖ*ˆPk@¦åo2˜¹ùtÆmÉT‰¶p¾ Ÿé›ˆþÈbÝ8‡K²¥ *[!DÃR*Æã§» nL•C’úâB¢µ5FV}¤=BAÔM{‚îÆ ÖL«„b¯­×¤{…ACD€ÀѾޗõÓùý·8ö)í]ë"ÄD¥Ãb=‚o©6åÓS}˜ dGº+ø|ûø½@‚v”6éÜœ\P·YQA pjÒ&¢xTh¤Þ#¾Æ™ìˆ·(M9‘O©C±Î&6?×î´Xh þª¼Õ|+’æ´èg°êNã'áïªwPžë SíTòt’‹Ðù`Éjm6—V‰kó²ïb‡>J´°`*A͕թž¼Ÿ²¹µz@$ï0ö-ÕŽOkÏŠã¼”*„1¤â`*?ƒ U"Ž`N—ÊÀ©¸ºò['™CÎ>à=7A’O±>ŠüB$pnÙ@ÂÈ[ôÆP¥B ÅG%‘bÝ"‘šéš'ðj!ƕ⓵œ:F†ÛV=£²z€†Ä뿃> Xí÷ ‹¡0N¿B¶Š¥ÝCd§{ƒe’nä©MÞ!àzð&؉ ’9ÒFr8MòcÀçƒßa\¼¢dÚ b'!líò;œƒD+Â;œ«ùVÝ_‚¤’r.™#¸ÝÐSU×Ó+¹8‹ÜAnra‰‚\ÔLU|eRüS;ÏßÇ>ÑÆ„Ö"O\Í·âŠI¹r»ÖsÇÓÙ†3R3juxmŽ}vœ©À1Èa-Ãs¹º´Ïzƒ>ƒ\z!¹g\ΆÅÙ1a>©AÞë!©8 ¡<$b(ï0°ð—ž,,$Ê7#€´Ü9§€y`÷É+NN¼Œ k—ê,Þ‹ŠJ²õ¹â:äZ8 ƒa’9RÏêñ«˜i!ªøjN·¶ÈP•³ê‘¶’¢Œ€2Fx½ÁŠ+Á,¨[FS]ÉÛTþ•Ƚ‡º…+|X²´zð­ôtô€x9)WQýwÒË;}U#Ù€Ææô¢DÑ‘“—#TjÍ1 …Ý£ÚIÉË)§‚ô#P3«å¾¶­ñ€D‰¸[{T‡Å¥0…‡`~Œ,‚Ô8 ž‰™9ÈüÄqy¦èÔH;]ÛÒÒ—;X‡40Åã¸2¬j¨œË¥× ØJÈŠYQ„$J(eÅ—˜e)9µ- .‹rBP·9y9[^NeÔôc0Õ6ª“B2°*S\+¾Œò¡¶Q÷hJC¹«Âx‡eœYï$X\¥àãs™L’ÇÒa¯Ëg%hyXð‡´ÞýQ(®ù¢ÔèèaÓuË|P²³(*[ÆUp•溜ÒïÔáÈX^¢u3ÁTÖFÄ‘=¸qˆÎ±!t†¦Xe¬èy#¶åìS‚TpPm#R’ñ`øC !xÓë60ïÀÝ¥óðw7ÂÊÃNm#`tð»;1Õƒ_¡/ªR,¯ ßNÁemLè˜kZ/\ñÐzìAx&ˆAßÖ¯Z:L_Î\6DðÇ8MœèÔà1 ÕX¥h–iìè5¾h$[&Ô&0 ulŽ}[²-Ïj(3¸€’+}™¾¹O)ÍÚ‰j!ðî\ IÀ¢AçîðC‘ß¹»WâÒé@è³;-tX¯Dm»2H/uUa'xµÑ¶=,¨B•> ~t! 3DÑP#ÔdÊéR€VX‡~_r1,?îK!»w 0mBmWÄmRº Oi›<Î=`Bü$R•Ý¡=ëôÆx¹_œîºìÆú&«µEû¯EªÜÁëÞ%çŽ.6+{ç^ 9Ý…§‹_mh‘#ÂSwÒç1‘ª º{LÐêÀœ¿»Ÿ s›çg¹ÖoŸÚÐÇÆú¶¦š›Ôÿ!Á°¥ùåšjÌ;”ï®ú‘ÐÛ:·Œ;2‡Ì¦Fk^‹¡m⢇ޙ»ñ?ÿÆÿ²6ÑNù³²ù¿¼W¿^uÿå®÷ò:ý—{êòZý_ž³œ|§<Ñiù_×'¯@Ê—2GyûÓŸE§OÚW«²äGa÷Ϫ%õR©jsD9pÅWÓÏ»H÷ôñùYË×nÉZÞ»¶ùÓþ£ÔÏÏäùOmNŒëó?ýîø¶6Æ0yWÓÚ†?¿â*KÖòï'~^_úy_ ݸŸ‹dµÍ§¾?~˜ÇJþñdüy_–ûPô³0|©!¶.àN4wGºÂ”Ÿ5ÑË}vE·¹"œ>¿âi“gø¼.ó3@j>)ÿËV®¸7Ò>JMÿËö,¯ÊvÿÇ“pÖZCüD«+ïD™?Ó»ŒÏZˆÛê@ÌoµÐÏhR¿y¿ýOÆýÿþnjÓ:>m¿$üïÏh½‡ÿý]¾´UJN,„ý_w¥P|ÿƒèKµ 2çcîyÿCiž6UÐü·ÿ[I7mòïùtP2è?ÀéáYyü×ÏzîîËü:Aøä5|A´ê?ž—Àµ[¿Zôlz]GÔÛÔ qøoÿ÷}'c³e>öÎþ»r¤_Á[_ú킹:¥ÞÑhk®ô!éïÀgÊ_4{PVH­×«(°­íù©yàÿt­EYâïOñÄÉ&ýþý9¹8=2¬/ˆ·=õ-þañ¶UW}Sú<ÃùoJÿfS‰=Ð!øoOò,вæUŒÿ¶{ÒÙù Z}ZwÝë¾m΂GÌöþý•Ÿ¿ðAÿ]ÁOïΟ/ëÿŽHܵlòŠöó·'Á¯HþíÝÞœ¾0xþ¶§^®ðêðò'¥¹-Ëü²BÝÃDéÈ—xWp;­\ÔüøsÌèßöþg§£$‹¿í‰5k+Å~¾ûf¸Öå)Žå§\´eG$8þ¶wuÎwÚð«>Êßö2wkù—ç¿!uá ßï‘]܈ÜAå·M'yKòPXÿöÞÝ¿“^¾0ÞÉ_üÝ.œØ´%?EPü t"štâK¼äßž³Œ;ÙÍŽ|÷çàã+ßOº#8ÿõ¸¶î-B}±ÿ^§9bÈò×½LûŠÚ¹+ž|z“Ï…  &ú²þW•é¶6ÂéóVØ_µØê1Éß¿ìD r>¦œø¥sL×ó/»@æ¨è_žl¥¬nÃéÓ×ñ—ýëøŠ¶ÏNîï‹"|«÷çQmŸ‡FýéIrç¥xNÞ¨7GÕƒR^§»ìqÝÃÍMgãö}I§mûÝqý¯õGkÐò…Û{Wî{ ¸€™f‹êGëxµÍ3=½¯ÞÞ;qøKÊ}Û›ÿŠîá#$ÿ4„Ü‹ðŒËþ¼óçýªÜßݘó R“-[ƒ££3wë"žòq ¦gb¿qOyö«at—û;mÃ_‘ûsî+¯ü¡ØóDQ¹{Œrs\só½Èô…™»¹|7˜áë¶ÖÌyã”ú¸îÉ”æ˜äÚÖÈù+êiù\ŸOΰ«ûÝ*Ñÿ’ü®F¸ŽØuo{ÁÀ}¨nAþª˜xì/­ ÝRßò±ÏZ_Þ[ÍžÌFĽ/²ÕÍéé­ÁðÕ=Ok+ñk[Í]¬ûÞ¥;´Flb‰§ õ*:}—Æ;­zòÇ×½µ‡»¾®|\ïÎx¿—ë®\ÏüU¹¿ü•àQ5›lùç¥øÑqÖ÷m6bGö§÷¤óôàq}‚ÖøóÞôô%©É5ÓûÒ(ß¶yuOXO¼½šÛÀé?+,ÞG_¹yHÝesTb÷ž¸­éÃø Ãçl/ÿcnS‹ûLI‰üÈ„ï?:®aûTÐ=˜k<éÕ›Ãõ¾Ö¸®Â/7j•»n^tŸA?jãëî¡÷:6zÎïV§™#·÷^n¸Ç,/Bì?)v­9€…|ü¦1ó»}8þ¤1Z›ëßg«ÿ]žr½ám¿ˆõþôÌ6pïf°ŸÁOþ¸ËVïðòO#Þ?>ñ¯ïNc/B×?jê×BÐ|êñŒßÿHjj/Û½òµ¾l^§ܾÌfU}XI(?ؘÇt6¶Ïr´˜òþ‹yvLOgÖ,éˆVÚ{åtr‡T~î¿x²`=¦Q™uköª–‡5CïM wÄ©^)N®$*÷™Eõþ§ãzSO•Ç”ž~±6€^+ÑîN\î+z…VØéµ†ëC©Ñ}EÕrÍliÄì+>/IoÐ’~0<ÿbý_мßý±/xÚâ¢ßNwñ+£ý®ÔxW¡{­D÷ÐvüÂ|2OŸ»ö¾=a ïf¼ù€NSvÛNxXùl%霾¢º‚NëÂÿyfüü‹'ý*Vy{nM>èퟅyû_˜ã®›ïôUïu¬-N=vWïöÎÐ }ר<¨iõøÅ2êÛÞ*,EÏóKºÖÏb ›îkõÁÍWÆÞ ¶˜á«wµm`¶_ÐÜñ_ÐÚ|(?Ù Ü;}÷à ÷b^éãmx_ú«6÷fÒb>ËÏÞ @çŽ};]hCÃÐW}ŒꌿkT®ùÁÅÉÓñ²ÃÛ»¼{_ _GKlì¨jø;ÇÜ×÷W3êäžee샫kê}Ñùdµ)ê}¡¦øô‹»ËС»ZÕ V%ºãª–GÁb¨Î¹ÍÚ½äß~:¨Ô¸%¹ÒUõ‹ísQj\qr¡f«æ½^Ÿ~qp´?*¡Æ¾¬êŽk¸šUqú‹zžMçP\òŽÓ_õþßÕN~/Øi†~i”ln k÷tä Þ±GwµMj@?4ÏÍæ:‘?ù£:j¶}à¥Ò±-&UFï¥Ç—ûà»r¦»K³¿»Oâ ãóˆl‡A>¼+…Zv/¢ð?(øÝŠáú$¾«sÞù…[ÂöñSüቻs¨Þü‡­øyzDî¥Âèû·x¸Ÿ|²¸ýáý5kŠ<@OÇjJÿö¬¦q {ú·]évÍ;^ªØÜýaŒ;¤R¶¬VÎJ~)³÷p†Ù(Ž/¤ŒV'/+‡ûÓ_â÷§¿Œšw§ßUu^hþmP —«®4ÊWÛîNŸóщvŸ>êsUj«å¸rž­]~\AóXðú~úÚ¯=ò™ö^÷æµæßé=ÙY¾~·¡”V6Ä‹]àwïf®ë““»ùÃr|ÓÓCÖýãs7LÕɺwØÍy»ûP>"ëv§K‘îkaíé˜ÄÞÊ”Q;~–Qt÷æî§’TÛï_¬eOçž^¡éžå·ûµ„áIU ?‘¡ËkýùÓúÃow΂Ÿ§zÏç¾J že[“ÚÜ…b1•y–\<*›·å§’¡wr¿;"帮˜›‡yðœé¹›eÎÊRú M»Ÿk6Ûßߨñï~’ù;*«yŸ?$¿þëå"ü8·m+ǤÄN§×8ß>É{Ÿž(²/$ëÜ1 Ù5s/ £¿KúC×ÝÖ…üBrñ½}'×|,Køð.s¯ea®h§#Ò}.•ö4[€åÉÞ=.^K‘šC¢Ðï2tù´D^HéšõvX6/}gmèÀšºi‡ç|h¬oQ£;*Ç÷*x—ã;<ßî]ŸWã÷ŽËÞö×;º¿}À±Wõ¼ãacRoiÔ')éoŸ#Ë×{l;÷n»þYIí_žä[_ÿeOß`¶¼?ñä{ÝFü¯»+P}”Ùþ¼ i×­èc¥´­7nîDõÐÚÎwD¤m+4~¶ü¬‰”Ÿ>Ìf×óiÆýó{t:ÝÖ&Ó‡»Ã¦j¾@{:qE±~&È·åîÅ'ÜE','?+åè#Wtw¨Ô‹{4îÈ·¾—#Í]2ô•°áéKÃ|Üøð³ ͳ°á]sþA¾µs™_ÇÕìЉîÕ‚ñóÃiñµÎÞ®æöânõ°â‹Û ÿ$¿« Þ /e×öÖ'[À»â ðŸ!†útr½C4^ˆnFàŸm×w©Äuô|~â]«ì¥JãÊu¹³û>ªÙü—‡V«ûtðü—]}äã•çÿØ:•/6ñß¼“1N[Ë”„¿yNé?|)ê¬ÂÓßÜÓmóس?Ó\|ÇÌ|­;×üƒWñ›Ç½R÷x(ü~Ög ßov¾Swt½Rþæ1{>›Þ¿yP7(6·ófmÝþ¿ã{Éïã» žÇìÿö^ÿþðœÿïQÀj%ÿëÃbu“iWö¿¾7~Z4¨‡ÓCoÒð—üÿ ¿»ŽBn“k%<½‡ÿߨ&|È[†ÜE'מËJ>Y˹Ǹ›ÿ±¾µÓƒf¼"2¿&:ùüŒ9¬dôš%èÊÒ —ÿqÿ€í™“û’¶àìÅó]Oæð¯weâÍS9Sbú?÷ñ[[¿òÿó].ÜluC÷E±Ì˜ËÜãž÷¿|T,s•8ú¥õoM~—ƒ|•Ì¿kOžîEþ/ HžЦîð¼øû{™ótÊÿšD§»›è¬”ÞÓã÷¿«æõiS¥?°ü}‡¢o5¨¯½¦•¨¹þ/?4<Žýô‰[½1®^wCöb™íÕ~á ·é·f\§» çH‰’ƒ\€#øó¿©~ÌÖ |¹@?ÿ®Å¾_•gl³4¿ë“g|‡6µNÚ]ý啜à#CvwçóWݾ¿©ÚöýÄc²‡¦Ïªõtz=1ÿ¦tòA¯ß¿=Í|w7>0%Ÿd7fòWdŸ!Ç  yƼÎãG]{Õmù04ü›Âü;÷ÈAæm`¼.ûüm‚?¼°îd·*ùîóá>¸n¯À iÖ•è€låi/…”ŸT*>î­«ß™ÓAq;ý»µtñšÇ÷·Î|•¬<8´ŒäfÁ÷Rnöùw‡C€¿¾g„f-®ŠòþúÀ«¬E™Ó±Íå¯ ˆrppþõ®S¹®+GŸm'yÚˆ^rþÿ²+hñøËû8y_^΂¿h+ódþaz'¹IfTòËïÎÓV»z-<ó´½6óÈWst§"¹fõ昶ãö#w4ýóN×`xíGfcDÓdÚ¥TÎݵ=>°÷Õ¿´Öˆ¼òm]·ì/‰\nêæ+œÈ}]ä2ŸæÇäî%ƒ#ªBO: +¨îÐ+’àÏÿ˜2¦3Æ}Zÿó.õù’ Ö]eáaõ÷y“üþ£ö/w>îaAÈÕÇût:."¶Yoª/ˆ'žîõ…ƒJ³OAí¡­J BÞéâ‡ÅWã–Müéˆ:á]%Ù—Ü}„üdʕݱOÀ롱YBå{ëï°¶ãÅÞâ‰k"掽ˆ;|«÷R0ÝJCùKú¯«Ί~ù’Lㆸ̇uzÝ}ýÿšTÞVlüÊÔXWùµ¤²T^/af|éím€å¯íO϶kìSãþGæëÚŽùô.ºxðí­L¥uÁ<$„ûŽï¹KAÛñAüx©E÷,¹U?ê Þm{îXÆzÊ÷œóH?²FlI¸9.•÷Ž?}Qs ¦¾ö#³iª6ðËMí~ùÒ̽gÐ.qµIwç÷ô#³^›Pþù¹°ý0«}6¼—óVÛ¬× Ï?29ŸŽJÂ?Iê¯Km> ö¹CŸß=ò‹…Egæù¥ŒÁŸž Ò«çåQõļÒ)6»°WOô§§pêtPÔçOE¦ÓéhµWvÜ–óƒáOŠ’q¤lþ§¬YËž/ºêÒEïæÔ¶¦ú-üÒÆb÷³åîOZô´*Š~ö›?¾ÑÝië@¼|2;X­R_¾é?*ºí:•úÉÚwþ<[úã;k5„˵-7.í»fÏkÍGؾN´µ…úÑ–òÇ'˜9mžôŸK¬ýqg>°ÿñ>mVŸ¥ÓZ8ð’ß§ËÉùG5ÈL>&Ë’ï´Ü»áäKáç’ЦCô1Íçm'1 6=*H›«Ñk±˜gϵ|:"I÷ô sL,æIBóKâ¡f+ð|B¾|é]™;7ã€\ÜÓ/Ìq:.=™û¾=IÜ9ÙG¤_îºGz²;yËuÕ6‡æžJCÇä—žëB[töZäñQ:¹CrЏm¿î @é½£ü…çX«Óî¾|P=zÛ·è I¾{m½ýcïÊÝ+,$ž6–CÆ;aÏÓé+B«fk”@Û¤@7†êA‰ÀM’æ+R‡Û}ö\_¨3wç2Û©_«\K§WêÛ ˆéŽ 0¶èäk²+Rÿ R YtHÜjÛ9O§ÃByÏñÌ„=¤ãb•ùÞ?"ÀxÇþ_wŸÌŒÝ Qü·}CíèÎùäcº¾™£ïʬ3GGûý÷WüQ&¬e:O/É;O¿0îáóîîÉêåZrZIh ܱ§¾ ¼:nº/HþÞ¹qÇŧ7‘ wXÄ®½ïlÜaYú­»‘bÍó C¿ Ž|‡ß¨9$I÷nÓmÖ2Ä‘uw³=moìÀ\w÷¡Us'ÜŸÞd¶ýùà]µ“·Vì§ÕÝ')PgÙŒ< 0æÓFâú‹cU‘„æÚ…ý‚ æVõ¾o›Gþ†ÉæèhªÕlyÈ«‘øN²X1ÜG¥@óÖá8²Âíœ1¾$PzÏÓJ®Îb¯JØ;aÏ/ˆë¾ÛA=4A‹ æü¥»2GÜ•wr£w?íóƱ„|{Æ¥š‡ÕkaÏ máï‹õK³ÖlM> ´z]×7•Wÿj·:Š‹ÞkŸïF¯×Ä åŽFÈïB«›‚ÿ+[“giÖU±áe|uÿÅÖã92J¶¶FkÄ“.ÞùU‰Õ/ìÎϰÃCÂékÿãÁ~)ÎþŒe^Å_íçïM s÷D!á¿oF¬l¡ÏWêý/^Öÿ°í´(ëÓe÷ïUÞ»Áç¹ÄžÙ¨-{ñ¢þð´,¬ÀºÝ¸äKþ.^Ù}Z¨ˆØÞ9/¯âï{’ß—‘O"˜ÛWìŽHÌ>e³y#}¼ËüÛ.3}-úoÊ/õÕøoï£ûî|ýZakS*Zgók½º|÷ŒzÉÈÆfã$áï*³ØZ~¥vú¨àšW«ß“òí'ëö»(íéH@~?½]íøé{ÉÛ¼j•çWz¤§§ÆémÉÓn'Ä|®¥ºÑ^ÓϧŸ^÷JßO_ÝR_Ýa‘= ê>à€Ÿ*›=¾××rTòöô²°¥õwOŸW¯¿«ÈnùÂKØÓÁ,éùô»TÀ!ý]çîŠO¯ðéQ 8¢qøîµñº^¼—AŒµð‹8æýôÆS=$ ¾–Íé+WßÂÔƒBÆÇˆFÏBÆwJÝ!©áÓftPjx.:4€7(wPüI¦üØ‹tTÏA!ãµí{h;ØÜ™_Ö€~•ôO!¿×¾RÇu×héèlÚŠô/cš'1àÓÀï÷ÅvwH`ôɬê>H^_}›v¯CÈàãƒà :°÷úïËòýîô‡%ÉËéq:r7x:ý ;ߤyp_m‘v~{?ýK‹ÞÖ£8¦ÔºuŒ¾ í¶útdYÚÌäóÁG]±¡ù+7s¤=öû½çÖ=*ÿüE®4×öÙ à­.rtœž Gå©×’‡ÓCýˆŽtŸÝ±àꡯóJ ñùô-psîUø³‰ò˜­­üúEn’ǦÇiÓ59(á:jÀyWUÎ[ÁkÝÎ^Kk眯3æ. ul¼›UÂ/ Ýî•ù­_ràfîüÞÓ%õÉÐksõø ]¾SâÎæØlz¯0߉µ‡N¿Ë»¾°¸W£OwÎç‘Þ¦"yçdÁAŒv*âùð pasH½ÝÝ+éGÖs×ŠÉ‡Ü ¶Ö¶;h^óhN¿ò0ú=(QßÄ(&Ïwç°5ݿϬw¾‡9×ÝƼ>ݸƒ¦A[-ïø˜1Wò#›Í£J~pò=Šê‡v÷Šú±A°‰½¯ äk?u‘Ë/¡?»ÓO÷¦ò‹e["ÌÑÙ´êP¼–0øý3ã`­B¼ È7·õVµýôû'ÑÑûzî>}‘ÛéFÕ‹Apz9<° ïùßk*üR5?ç‡víç†÷¶ÂÁLþ~úq}vª†Â§ïý_Â_GRí}/ÏœVÌ¥9}\Öý×}rû"Öÿ×=Ñ0o`“zeÿºñþVzë«”é_qÕ‘’î¿>÷ªÂõ»g†¼{AûÝ‚»2ÛTÅýëwû™¹Âïžêr§{Žú©Œs^=_­æ÷sÛßt§ÓKiüu«x9®ÖùuUåɦ ŸY%Ü;?Ÿ‡¸¿ÝI"‘¾Þ9ÅœõÓjQý"øí“iøf1÷Ê‚Áµ`÷äþiýf‡îá¿ÝkøŸ»†ƒæE*òÛG•!ŸŽÚ5<¼Á^Z¿låçŽÚ@¬–ÞGl+¨´Wã÷qî6|^Û@¼"æ>ŸkÚV4ÓCkµ9Dx~·v8Ýé°/-ܶt²—8 ön°%Ö/çÅYvIJçŽû¹Æ°2ï™[ûùåÜ|Æ*œûtoyX0¸×1ÌiKeŽÌÍU6rek|úÎþeou¾¡é'Þ¼ò&°ÂSùþ¯{OÖÞÿz_G^Êdüüžï|>lŸ \>è/ðù }¶ ø4‚UþîЉŸÎ«ŸŸ;{Ù½R±Ïšò+íþ;·óÈë1I÷Ï­ Ì‹¢áÏO+|ܼ¯h™¸*¸WmÕŸß½>Wvîç® §5Q5‡N¼“>ý„§ ¥í^*í¿Î^~¶a:¤Ýß⦗¯ç¡ÝÿñòóûòŒÇ;Æ÷“`øçÌÅ7ùà=®˯Åw‘÷*|œèÌç‹ßy?þô}ÿ—{½Íl&±Pÿǽ೩îðjÞüÝÆ4ùX‘~“-7ɳÿæ -rz}-÷dfô¡@[_èé¯2­¯U÷7Üüß¼÷(>™@¿yÞ£Zùêä>r0& GýÍÓþ|Êõ¿m­Ï>öÿg¯ë¼j»íÞçÿoÇó6÷óæâc¶BR~QxúÀ²>Ý™ÀÇôpþÇ{*´®¼+yü¸ õÿ ¨ðM{ëXûòì<¡ÖL~2ßõ?߀ÿ¯}6g¶™ÕÀ˜§×XÌÿëY;vqx<úëøiU÷õ¦×€ì5ví?@yQiæ@oýõ:=Z‹eÝëþaã‚þó€wÁÈMg~õÿØ{6 ÷ƇQ^ÿ·ˆZÚÿ¡†ì½”vø­)e¢mMߢ‘Ï·ñÿS¥ycÃ<||?«[ü÷g‘6òF{}Ûÿ]iËÞ-ëŽ|¬ÿþ,«o6ììA‰åÿþ¬õwÙð÷þÉicTæüþgOýÙ¿£üÄ­ NO:-ÿˆ×ÂfãVÑš£^ ϧθC² ä§ò:óéµx0ütm‹<ÂÖOÀ¢WÀ¿“»—Z~×ÉCÞdt¿êð°‚îÿ® X§]} Ëÿ÷¼ùŠ’åßJdê_¸á­ ½Bq¿ö†Šu÷;üGÜ,6™ã#}Œ¿ïÂzç¾öWwëâiK_6ÍŽçYüýd²å/w‚¿?7a7òÆÁþoÀÞ=ªúßTÄpG(¿î?ý»BÃþ“ÿþ(ÈÞµÊÖZú*/þIµóßß9ãwâÿ±yúï;aÐ|ׯzÝÓý÷§.íÆ®<ÖPÿÛÝÄi…%ä|(±ó4¹KŠx§ÛITm´Öãž&{mó¯x𬼒Ãuç…²Â/V_œÌ„¿©øîú{eæàw[‘ö€g„jF:wø»ïÅ£ò¦§úÊCýî¹;ø|+Ãú!ôª ö·'Ç{ð5þêÙ“fUqù°ÇÏ®Lé¾ø÷Ì#)ùúï܆ÿ;<Í×-íüŠÎZ,ßz¬ùÑáéw«î#5ýÝç.b»ÓÆËSøs'mž^ú?~g¶ QûÛ‡<šžòõ»ÇÂkâê_Ÿã‚ãjŒÝ«´Ý½Å_‰óüõyµ6_4zLöüPtþ¼üWmc˜ïθŸFÚybÛæU#å@à/Ú©{s\ÿ¼¬þ—½ÊÏÚ”?ÝÁ¸ Ê¿¼g [âÈ–§Œ¶"Ä‘_m/qõ2?Tºú‹~õÛp4Ÿ"þ¼·›ûÚ“Ôð'|µw¢¼‘ÊŽz䇢Áé®ïràGï¯Ç¥Ø¥O·mUÛ¶ö¹dþ=z¾7ÃŽy=¤ ó?ࢳ9?sýx/ŠæüØ?œûêG[oñÅ:£­wÌ&ÿ…gZce÷(~°Xü™¼§c†ÛÖÒæÁ»!6rʼm6Añu¥xa;öç¹ø`ÕùùGιc ;;Ãɳ}Ú"¿\õL> HþgÍTv‡=SòÖãqæ}m¢ðîY¹Ùޝ/à#ÄÌþG›à—œÖVÚáûT“ܺèxÓç&?f5^;PÅù󃹻’;Õx•_Ï£šcÏtÿÑ=·:2öNÛ~sÇ•F+³ÔuÝüóŽÒ™Uûþ¼O§6Ìô!ã¢Ó½O¶.ËGÿÒ¦E㱸ÿü€TÞ‹ßË'/>îÆÁ:}Ñ3å´·ò<²ÂÞ{'ë¾yŸPFÐÖA¦ûªÉϪssô•¿UWœÚAo›wUÄÃæfï2‡÷®R~…=cJÑÇ>îýGLJÑ=w_öU:Ý3¯ÜÞÃY㕌!ü¨•ùŽ¹è¸‡hÜ‘:ò»qQvî«N[kãn£Ì½gþyÇBÍî ‘å®º»pëQ{.ó:lBǵ _³I¾}%ÌYÑSë¦{€F¨Ì˜ÖAñ_¥Míïk?ÚÔÀ £µX‘·µòàFýTáXûGV£}#+ŸÌ‘±·ÿÑë܇¯Ò¦BpôãîÜlÍ—þÒ£cu€‡úg‚“p½¢îÅšub¿úNïNkœbˆéÿéYŒhcàºq埞tH6·â—Ãa³IÚL‹Ü¬¢Ö„î´ö³Ú÷ùŒ‚ü§ÝÊ›TʃŸð‘UÔ¾‚wz­vLù5•òOïDÚÃ…­?A…ʼD$üq_Pp¥áã`÷a•´:ü!%ýñz™Í‘B̵F’{¹žþñ9Ì][½w[¦ °|BŸŽžŸÖ¶ÿøL¶Ø¦È!׫uwÈ[›õг<È÷ù‹éÏ=ý–[çWf„Ej5yÔ¶?Pù~ÔºVØê_‰­"q:å¯95êÔi÷¿pƒ¹ÿâ«NFîžçðàx÷‰rõÍïüÛÓ‘FÛÞÃ)uíxr}z-Ÿ§\ŸÌW™äð…@”úE‹8ç‘¿±ÆÑDzîT—ãOþe÷ qìž*Ÿ?ùFyM’xµõ´6yÔìáŸóÕ/Ìa_¢í¦½ÚuÉwŸjÁçµóæN%ŸD.ï¿p§¯88¼˜ÝËåZýbË.Ž{jµ­ûNûS1ú¨Îýæô%g©Öñˆ«ÍVN^S…CžAwß®cJâÏYÏCÖ!ã·=÷í° þû ú‚WÛŠi9PÏݹp™;ä€gÐÿlÆG}»Ì*|ÜãìÎà=ì„·"yŽä…_l»Áqÿ±- ?ÜÝq÷Ç2/;coï!æA äÛY阕ïû/6ý/xQ­õ䕨|`½Ú$÷èÓLóÙãìt‡[ðùØyÍ`ò‘9¸udŽä¿{µíÝô8[;ÓÝ»øk®hwñãã®h-Ü_‹'‡¼óVµ§‡höËýýÓiVË1ÿ±Móùð÷ø¢·¤{œ›æ9æûîîöE_»ûÒv(fغ2_pÝ~áòé+#ñý¯ò8{B4öK4殢yØmo3ª9ïºÓáïã‡Az÷_¬}¢/ìjkdqHº÷ñ wO¿àî¶²?îƒO2µwƒÇ/ûWn¿0‡¿Ç)ŸîAÛAÇÓ½bpØ¿ò´QŽ’ÓÚšz4o_»p­kÂà ö Þ×FâiÀæð¸zxçå¸ùÒ3èý+BûõhßÊX+œïˆ»tÓÐ9 X~{WÒÉù ™×Æ“5Çmï{d>ì-Ù~ñ¥μk󚣞Z§í#íw"“ûšÛÞÉ܃ËýCÓ÷Kow3¹w_ú‡àÆû_l¯ËqE»÷`_ëýì=çŽ{dn=ÑÓVp8êk·R‡NG½ÚÜ;_î‡ì!ÞbÄ£.uwåc9ΦѰá±¹Ômeä¼ÝÑW¼ÚÞåÜ^øó™‡JÛKZÀÞãl]•¿â£öB_»Ô™w/ܯ<ǽgüÚmkåMóõh´‚ò&Uð2¦ÞµOG*ÏýÀ­0¸ÊJß÷·ûXkú§Ãðä?ìÓ½Ÿ¿púÝøˆ«Ø&ôvÌuæ!$÷¢öþ|ú“Ë _˜µ(þ'º-¾<äñ‘Oïá§ÙöîôãïýŽ.>8"OæP9ôÉ@mÒúTø÷ÏÕìÃÞˆnS„>l¶)ƒ›«î ¾ïÙ³l`4!{U^®3¡ÀöŠÛ¸_2!;º`o¼ß£ø®ìÜümC޶Új—<ü"7¶e>ì*vÀû÷ŠO`ÜŸŒ]ýôˆ3׃™Ùn€ÓƒF^÷†ã‘x¦)5œŽRÞOw§/ÌÕÓéçáÙ³ìt÷w~í¢·j¤uI]Å_^û—?Û„v?ÙŠ÷Eò•õÐ;ScÓþ{aLú^®ýÂÍÜwƒ—›Í½P»É)¼˜«æßá­ìa–ðªz±¾–FŽšažsØ×ÛÁéá@p:ô¨›r×üÖÞõL_î|kóð½›UÌc i_O>sï ôAj}ô“;n†•7£|Ì&ì´Êû³ïÙjèÛòñ±ðÓé§|t%Xé7¢ðkﬓÙÜ1ìMfKÕ:^®„Ã+ð;¡gCì¿4Ûvæ˜ÕÖé˜{º¶g3«íì§u‚'{¶ƒÎ\eg M^Yå>‰º³8ÛÞZ{;/÷¦‡Wܱmø^^9¯ ¥¶Ó†ÌïîiÑ6Yúcy“¹«‹Rï~‹wõ»—€+Ÿö°ậž|Ûamò(Ÿ¾âDçî˜Íæo­ w—„5¯–%ó…B×½Œ·ps[#à£nw'ºìŽßŒ{Ø[ºzÛÏŽ­ï[ò`ØùÎM:vïf«º™­›Úåüi-õ½Î~Èðqº;½D\=,Î6?ñ/9¢ÝÑžŸÞÌNëöåôXÓӡB¼²8ËÑÖÎýKÈ}÷X:€‡ø×g,èéUÁ{ïˆv‡I}Dþn_36æ³KÿúWZ~·ó×JÑG‰äïvÍüÔß=l]Ow1›Öi§MžéQƒú ÞùÝ3 éôÂÏþÉØë¥€Ìowåmó© ÿ» جõÊŒgÛ8ò&eðÁ>þ~®3ǯûÖý[R-aúôƒxmš³Õ†™—˜‡ñÔÚ8`&µS™Ðl™ÊÑ{hÿxÔØË=€"ð¹Ø!š'ëÄÍ^æsã4sú‚ ØË8á· ›÷rœ¹G¹ÿÑÛÊ)=öÝÌK¨ÇoUõít_¦>4´Úª]wýÈÏÍñÖ~–ˇŒéÖ°*¿[÷åÐ=¬‹ä1s<÷`"¿ün|úg¥Öß>6»¶èÇ‹õoŸŠ`¯"õǹæ åÊ;5;lryztÜïÝŽ÷täÜ»döõáîD¿uÁ>]«Owë§üêßî,ë?OƒÆtú/ï&vù¥ŽÜv®yò‚}±î¬e–£&vGxŸO&v/£éǹwßËolV暑†lk!àóóa · ;׬5ù—©[н†ŸŒé^ŠývW2râ’G‰æàýnº(/÷–'3¿—æÓgÛ$}ÝÃió~:tݵÝña*³?÷.¢û¹±â 8d(¸Êg¼³#:!{s¼-:|qÝí+;+Ê×Ïf6 )ó2~pù¾öµõ“¸z¯C±=ÛÓ¹+Åû“±ÓÎ5wÊø'éÓ¿l ´ÛпìCÏÏV³û©æu!÷_™ûK£Ïy’µ|Q8ÿ¯Ïl-÷Ùâwò{=ý¯ ÆÖq÷·o˜Yίá“??,©óG´ü=pÅWȊ݉îôqæõó“Å!ÍúO?ü§ÿôû¶|w2eêÒ|»øáºûåÉØ1¥9»Ñýã`)s_ï¡óãàOõÒà|Isïf;ú|ÿ—ïës×›äòm¼=~ðMýsî6?]÷W'»ëŹT^ú§ÛŠx[õ¬9¹›ñóÓß™’Íú÷õ\ïl˜s÷ô§¶gM·Ýc™ÒÉxOO7ÿky¬|º..§›{ú§ê?…«¹¸˜.nÞ]{²i6nLùéÑJŒÑu»»øþä‹+.¹dâe÷¦dJˆû{þåi()àƒ˜¬ÞίäûL¶~ó´»v0·¹¾õ"bws—¹ß½±!¦Î]FïŸ&ßåýcÕîcºFyˆì]ô·§¿V?†~ÅßžL¸Íý<öÏ'ú9Ô|­·uy~Vx]òM¯Ÿ@î6•~îêJOÕç.»ù²ûK&f=:ëW,©‹If\çüÓ+¥‹ú±dŒÄ€£±Ô5n~ºî/eàÄ!wÝ8 O£©ŽEŸìuÑ“ªÍŸÎôçz#ûñô­,k1ÝžFÈuJù;»d×_ö“%w.ïÞÅ÷mìùë N¯¼žî¢eOnR—Ý K'WÇÄ<Çñý…|/Ÿ¤»¸esò¥êŒq»*O§¾h=T‡þîÛ}¿Þ¬«Ïüü>åÍ¿…úw²yÿù§ÁÇ.^âc²Ô»M—ež»)>_c¬sðVÏÎûiávïñWm…³êë|/Å"‹C}’eê¶[O\¶Cï’~íדïä­ 7EåyÒŽcR/¨­&u&í×?:gäé.Ÿu%ÁÙU#§‡e{'¸¦«ïfÞ½F™ÇÉšàÌ<ûþùþS™ÕÛýAF©qEvùyÿê»Üßë÷²lås¿ì—£ïêk¸˜|‰¯j<,‘õ±.®ECèGÛRéLž÷‹¤Ü«UW­Ç’ÞAÿé4Œ³úË®ÃýßøöTu»*·]·¸Ý²(sÓ9«­TÛ(n·#ËÉ?gµ£É Ì‘ ¾¢_Ò7'7t³‰~zÞù“™œ~j˜+íæÕþ%Ÿ'ù¤ƒl,Á—e÷>Ú5í¼ûãmU±É.û5 -ëoú…¶ÃÚ˜``¢ž|Ëóû‰p÷LFã<å°ì?Àí²3¬¥?´[®3x©ëNÜ=sqC4óó‡ùVÖ­pqVÝîLn¾U[ž ¾ñº5NcýÖÝX†ý†À%“n¸=Ö(§Í©Ý“ý('×h¤®½F½ïËû9×™¥ßÃO2pm](§ºWÇhÔŠyÑoJ>ö*4ùV&è”ÕwvÁöäÜéÀµíÞåâÌEjüɲwjêտϳZH]gW·Jõ·Kôuï©Ády~ ØÁ(“sëê ûµ,°7=ê£_g¼¿z6®Æ¥Vá¦ÌÕ^Y·o0œÙÀ“]ËÁž(Ó¡\qJÕ tP'×£·!įÚaÕmÉR÷-0Ën¬V³\Ù›Ýn`ݯ÷{±Kº !ï–$Òîpùý4FÜ*k$àS¸éõVþàxû;«aü½Ì;«ØmPñq½¨Í1í«5Ǩ³²þùÝXª+qºíâvö!ëøºÅ>À~!¯¡`µhï¼.çjÝý¡åK>®ÉÙMòÐçÓ”˜¥¸Ñé`ûû/ׯ¯#öt7«¦úOël©7­#0™\×^½¥ïeõæ‚Ó@²ÛÏD¹ÂPð²î¬çfûv7ü 5eTƒG>^ >ï'¬Œ“¾šš»Ú}œ( ì|©ɲ¿«rúëž°[‰×);͘O˜hí«hð{3&GrdÉv:²’ؤ6‰IKî±´õÏùýŒ•çº`¤XúiÀ W"nH:jð‰°~ú_­ÔÅìò‹¶¬t8KêÚã²?Üf_}NX ¬xmæ ãM/¦ëñX®‹ÓI@ EtâÒ”Ž}‡>$Ì9Úé—¡îU»5N‚y Ù{] R×ù·eÿ‚¥SWêý­õÓ\‡ÍîAêy·±wj*ZköÙÅ7íyŸƒÉGteÜ. þ¡%z.ºUtj‚d‚MérÃÕç¢ ¤Á6ý Áw Ðì¢f:n[BT?Ï>È[ƒå¸¿–E°«“©ÆjÿQÞÐBý@ûE@Ö‹Pçë>pø¶ÕnÏiÄbe?ÁB(·b`7/->~^vÛ-§N¿MWd Ü• Ð†@c‡zËþmüªa•êðÓéL˜aÔ‹ûPŸÕ,j=•ñWœJjô¶Ò2of&›G+6èÌ©ÔÌ©Ãò)äà°ªUÇÅî[ì€ÏЖ޺ :•9×,ø2¨ åì°ßáÓmÂÒÔ¡³_MäC¦°OÑ¡àêö¬YÛ<ÊIör‹é<^—ý ‘Õóº¿ÛÚÀ«9(¬•¦d¯Š-ÍwaщÙ¢‰zæ ·¯RÞœ Ê~ý»FÁz‰hÅ_¬_›B“ªxÞ¯lß·Àv$“Í êuÜ×O«Ó‘¨À×QävS·þýpÉf·ËµáR_* R¯I©Z ~Ý"£`Ý”õÿö$“WW­KÁ€]ÖòúlwÞßÕ/ÛKKŸT¡Èë"Ïõoç¹–Qù*ýœ±rd"ì.ÒR¾ýÍþ$¼„Ú$`Êl¡ÃœÖ¦±ø²`qÄé |Û²¦]jÑ–  [  S––$¤Ú&áÔ|º0`.+QˆwºR.&]–Ý&÷m{ÖÝ­þº}YÎft¸³XZ"©×ˆê›×ÈlÈPÚ¨+ŒYô6+eó}>-dá!/Ñ[TÖ‚]Àiïm²Ñ/P¬Î·NUìÚ>m£îCÉl¬y]^”Ä/ÛúÊI¹ÛÎR€| ^dàf¨ÒÔ—ctžù«Ý$ë¯ ´+¢„ŸË~jEJ‡AOqeòfÙݯl˜°¦tÑ]—çc?I^^g:fPüoµÂO&ºAà¯î¦Ãb‰–k¾Õr/Ÿ"Z5+åÝöo쇶ØLõ†¡’áÉ^.-]?ná #ù^¹¤€8w¤-i°"iÍ–ö±ˆ<çîžZhØL!l]t%ìû¶Ü†Ê>¥Ì!b1µŒz ¶ïågÌJ¸Îî¨LÿúßâÔÔÊâmµÓVo@/V-û`Üö·}Hþ‹ú¶£*)ø!†7y1¥¯‰‘¾1;K°©šOõ}¹j>‘ 6‘ »Ofb!¾5.Ôåy_¥l ¨Þ]C!FÓ¾B§ºM5)0õÛ!"ió)Ÿkö¯ÃM?vê µŽ±j|Ô—ê<]ô’_²ºäî‡R®·Ž[Ô”j\;CÁ4½¬}Ó UÕ•+êUF>o®;?ɤþføÑ®sí’ÔKlÙüÚFµß9~µ‚TRSŸ¤®Ú:ÇfÊÏ>ÇEƦæBnWþ®5þÝ.;X».e,åfë°ÖX_´f˜! «ñÿUo`íÚ{ƒUaé¯Úk¬c-27v ¤¤óIg75;êËlÀ$…!ªÀôûîÇl—®`ÍØÆ‘À5%™4ïΓ:~Íü“ÑhX:(ð è%ïdž•p8F[ñ[§8ÿ¹š]¤mê†f-¦ÒР©!>­9GõºÖÑVšË¼‰¡¾2Õ¿i«qÂÓ¤IEö?´Ü7L~A‹ PQ^#2¯‹¦²³AUD]$?¦ ^3+Ò™€Ën:]ж ú‚>NË\[†kZ‚}‚¹~GݨSÙz˺¦QC|×6 Òƒu¸.{.‹^ùê´ÀÛm ΙæCTãHÐEA£Dh¹vm€²mÕ¡nÍ¢GmÍ@n¤Æœú¤‡‹Ô¦Þü Šì­‡ûVÝË¢Ãj)õ‡o‹^•¦Ø±Õ«¨m³>ñe¸,:þlB¿`yiÄΊ„aI-€­ÇÖÕxg\TrÔ|]š®áoMpìóˆ¯÷U2vÔ½êìkzaÙÚÌ:~œhÑ­Ÿqxxç&U’¸h·Ï8×*º»¼Á¾æ¢o./ÐQŒVºA㪮ÂPz º×"C‰ j3«Ô¬œ-'w+1ïsÑçÛF«é±±[!dår<³î?Ý~!kÞy¦£‹n‰×ë¢ñu½Ã’P®¡Î~H®X“Lј²æ@w¶æt˜cIfÝ÷1vÐY´ Š=ÝKj"¢ŠæRéꋆöžì#[wÒ™u R!1€qz…j7l³Îñ +„¤…@ãW6Õò†!jê»NòÅæiÑÝŽÓ„±Ü:mC†™Ø€†°¦×¿¥aŸ-i›s#Vß%'„es K¿–ùo[¸³[‡¶IäI#Ö¡¸hhkI ƒ·õí·ÉÐ vJ=Ûž¬€o¤#}Zž~Ù&‡Ù.¸JÒÊ:ï£Õ:©Œ@Ì;˜8†eà‘eÜ@ùÒÜòÙ^D6å°ì¦á+v­8²~°SÛº.$Ñ'8\éðÍ,a›âmFh†ÍõÊYÁ‘‹—ëd–Úb+݈¼º©×¨ËB,Ÿ½ÔI¶Çâ:m¥½úÒ’Þeò†ˆø­µ6EËÞ΋ 'Í ’Åú[4Ѝö_®e#?FÝ,”qƒõÎú¤‰d{ô°5øši`iñÇ–œúø¶°Ûë̲ûž­§‹.Kkj °Ÿ•rÎßÊÊ`7Þ¤óò<ÏÚnÊ¢{#õ“0[[çd{¬¼Q¾¬›cMª5^G»Ù¿îu¿H­ ýæäð5á›¶h=¿[aÐŒ1½n ÛÖR«µJø4¤cÝÁ".ý«ÿëîÜ[¹É >‚-wÍVV0‹¥t?áÞQJèt‡²~‚€K„O¾ƒf¤ `°ÿ3w”…KGºB’”1\A×ÀØ1Û5º›"T„'¶IŽûÅ©>R¼†@-„ñìV­íuRà (YÌ¡$À·’N퇼äS©™zñ®g_úñ†5Ãú ºC1€h+=LÄÖ¿®¾ìö:±õIçsß­ä Oœ3v!'Ëê«øÐÆJ{n<ÅEÅi>{·=ÒÅ1ôr¼[•Hö¬Y4ÇT” §ú‹®÷±yf `b®¬æøCK´fÖVhaÃÅ¥X®®Áu‡‹®I–ôêHKHO5¹!kLy­jPK¸6\üò¼m~+1¸#ɼqXÚ.‘}•®aøm»‚8t þ,&èäÕg‡ ÚäNcãM/A i°Ö;Ò5öáÚ˜öp¿§¤x÷<`&.Jú’Awߊ´;².¯7Žk ·…p6‚ÁU¢>ªÑEá-y»XïˆK¨“‚lIIô+ýf_Ø—(42É[;­s€Ì+Ó@êP&H¸ñú¤n2Ï"”±ßÚºþz6ür…ô/»÷ô1WSbºÙÔYšv˧„'IH[ÃMÒSÂUÊX ”z^M8lÖQ•dÕ†ßùn8Ý¯Þæ.k)I9º>ž”üú+@5uò $¯&g[…@è5Cá&­ UÖ3š(óS>sp†¶ÌeInbœ´š1ÜfÝõ €álÓBe 68†4ž0;²WQ„l7îþÖ7ë¿ÿÎvŽ!°¨–àÃäíÙÆÓEœ«vð^Õ×ÚÆ£÷¨_nÈÍ4ô3á…3®8© Þ¢×Ä`íîÐíÏúÑdëuc$äú§ì— ;†´ê§®ÉP}µT¤Z)du@§Šªßô¬kãm;}g?®²µ Bql$QÙ‰„Ú>tám_½mxˆºÇúæYˆYh¦9îŸs‹0p¡öŽôƒ’ÎqeýÓÉþJì[w•Á•þÌb 3f½ÖV‹«.²ú7 my‹»LEVD•·K#§./¤FiÓ$tý¬#Ê"<`FU¬×%œD·ßålÑëí2,ýzù¦åZiu6ãBDåŠzeìÔ-¨Õû¦I ˜}ù0׿‘ Srâ0.û«¶ºJM cPçKs¶~ÅA’ÃÝÑñ‘â B:õ5F ;„¥xúìIÏ„KMõzH(“r‚Vn£Û•Ã~!³Qmåõj–$ghžÝdÜÁRä‹ g²k(ç!$.õù[Bxi F‡Fº\µjBf×mÙ4UB"ûpq¿Y÷̧ÙÝj¥C¤HiSÞ4üW `@¨X’\aegŒ†W±\p5ZËO5LZöóQNw¡ï±AïC&íŽkU«0„<ž[Wó±Q=HCÒoWn!ìC5¼fJd³ÎØœ.©^4/ˆÅ„þ—k÷5QiUån@U‰ôa£µÑiq…!…·ë¢¸âBš#ˆ5‘NBcz[`Ñ/Åg9O]ÛRÏ çÏEùýŠ´eãTxš„ \çDôöè.·#=[èù´ %]†ÒËš\ÆEFi™Þ…Qíß­MãÝÄùgùí˜k„jYç Oá´@ƒª£»1Þˆ@Ñ}TvéI¬Ì,Në=Ûhkš×[„p%LÕ\*~‰ûâžQš%M™êêÒ^š| È#H5«T¨X2ø$ü hÔåƒÐ[&wCÉráãÃ>ÂlÍû}½±-iV°¼°|úN¨ÓصŒQ‹RÕç,m«KÇKmWòJÌD†KЬÝ÷~µÒÁ!9“š§J$™,ë¢JvmP¢hKµ o5êÝ×ôö­[€Ù “H¨éaâH±Ð7I‡\–ýþÑbç0õ/à OlgÄ%DXw3a‡g%'ƒÄG‡þ-Ëcˆ'ü~åüåGºÔIàh})é„hcg9fETY'*þr9-ên§ÒaÙx²w3üªAºœ)ÝŒÚÓÓ)‘Z/+%9M™ä÷-âÖq,ýV]4‡ºhu¿<ã ±Üà„ý‘z·žìDB$ƒ%l¸^‹+ È,À.ðÏë€/ÞÕÝ K0Ù —*ý øæÒÙ7Ç›Ø ;vŒ1Pt^7ŽúÉŒOb‰öÂè¡­Ùò°ŒáL&ëQAfA¬ñµj4 I8^¼êj8„(H C§ ¾N8l#K9ë¼²À"+ðÓ¸_Ê%í¹ `g§B× “¦ÈÊsßkž—¼Â™ÑÒ¦Y‚:“/EeÆ•ê<#oJ¬hz;“wPê` a|®„YõýþYVÒšÁÇ+ÆH?¶'Zˆ¨oSœcTI“Rê ôAK úÿjm àŒÎ—#& (ï‚*Ä01òpUØ*¯Î»û»0nrËŽ”²»D"üBËÄõÏ.Ii^Õ.Dy¡ ~˜\„ëψ´®ÉΛP®k¡Ë ]oW—nØ C—Ÿš4V©{Ñ‚vtH„- („ Û‘¨HVý~ß‚,åâ`“uWQø ŽL©º^Á&äc:”u5ä$¸NMݦœ™H¨@³Ov™@¨5ì¼FΫzR¦ùL¤ §%ýõDVœK‘ÆI÷‘2VNÝEê´»7ôË­›‚C:Aª A­ˆgMDvÁÂj2+v¡B%Et³\²ß.)Fg>ˆ.®š'oÎì¦]ÑfMÄìVæbG5Ú¤ê±ÛæMý!h¢†Àñoª0ër'ŒòôÄYÛe»ŒKbs„<×dûäSz{S ÷/·¢Œî340 G”@ÅÚW³X°þËóÕ~Z)Ìyò$Y)¹ÉÿÀfè3At¤ÐÃ+ʨwÕa=ÛyÙãä! ¨-BïÝbИ-f .æ½æÈ·ëÂÒÉÑÌ/fm ŒÏT÷YCÊ—ç¤K-.°ýfòëµÄ×”õFMð}ÔY›Ä]9’Å+ØÉ—²£¯žk“n 12eÒ"’q³ ^Öû‹3¡ R}Ùݵ¨¯N ÀX6y×ÄPÖÂ"Q=Ñ5¿WPÁFÿÄùSGüèvS<+3¢ C3v®ÖEt0 *Ñùtðb]}Ê«ÎõOÛíèZ‚T~˜ÜÜìHýq2#AáM#]­;GÄÁÒG¢#p÷=ÎoZ°®¸“¢Š&Âjûï£u“32´¶ÓbØ‚>i}J;©G$ L€–ªÍgèK´*Öžd,¥~àë€à¥•E/‘=BèpÍòöítZ¬ÞЬ!-ŒÑùÒíºF²àÀúH 0ø³[ôh(u9©ÓbÝq  g€_JadS×#®µØ3V;ld¥,R0ZÑbìªv¦(Fêû#Û¡ˆì±+èxÄÚĺ݃X2quœu!ß"VÖ•ñÔh¹„,åÆ6XÊ“Zö¾F¸ª `ë–ú±ñ 5Ãð–ïÓµS^³Qˆ=kD'ÜWàüÕ÷GÔbG@ù7r¬¥m«®{P‘€,ݬ„ôE‘'ûEåÛ>Dº-¹8.Ôž AõY)qCuòMkI=O½ŸZÛ9‘[æ\fZ¥Œ†YµLÉÌA Æl@•èuUеù8k £è”¥åTRoP·³ae¹ÄSJdŸ—˜¹ÒôcÝHyÓ2ž=ëÉáñB ’v ïä4¡îZÁE»¨`DV&»›^6)¡ß†’f2Æ¥ýñ¶€0pº\­;/ [Qל™Ô7d)Ê Q¹èÞü‚ ¼T2 Å,žsã(HþýRlçy\°M<³ô›þve–©ªá©Õ­"ÎÜÂt¬Z&i-°Æ4(£àܱ†Ic¥`[¬ã q þj5#XådqÛ¬kT\9ÑéWì#鬯.vj_p¢{¼—°ªqÕÅ\  CöÐëRsŸLÙŒ}!õ$O1/%¤tf{y5­'*yž¡#kfxƒw‡Mö^3q®CT(ÊÃÕ çªjÙÃâmߨKDð”B’”ÞM$MT<–í·Žˆ#ÞêTv dõ¶ÆûbÝÐL\¤ÜfG"áÁ”¤‰r^&Uʺi'èI¥!(ˆQSt’ОAåëÆåçÎ/ĵ™"èŦäQ¨®Á?q¦DIËU«žø®Ås@Û·Ù˜&±cÇê´±(;GH3j U~š¤ 5(u»°R“–½FzB»l'yxBf47GÈÔ=d¾w¢Œ0©Ü‹Ù2#•ÀM)VZX¨mu0Wú„²îÂíEhcý;S3\ˆf§FA8.ùF`— ô'쉅sý, xù‰¢­š_âk¡ãA”‘ÌûiµÕx«¹¯Ñòõû§Ét£hyßHt"ŸL€90¢„lg¬X›q°4iLÍ‹ X$L#‰N,nšÃFÇÊ4­L ª™ÒÃ*„€ëØ:cÓà­m)#²žs`a·3‹Š +öÉŠ¢jɃçq'„r·ªIܬ>-ºÇ¶B]svŽÇ8Ö…‹Ð“ÌLàR™X-Ú‹þ¢[y¿Þ;EÌÙ(m\ÝÄùiÅóG̉[Ó¾µSí\Ã$ŒÜâÐ`rf+‘4ƒÅ„A5ˆ.Ø“ª7ÕÚ:aʇñëš‚%öLÝ%–'ëäÖ"ñõ6²Æ¯£f¦½‰ëFÐø]Õ$.ˆ…19Àe œFA å¸PÿÏ0¥ŽH–lÍeÑô[ºÂåìF2bHlè«‘Ôá3¯ªùEÁL‹™@³lAT™ß®~Á>U Ø}}UÓ*´y/pMK¬»˜ÞëJWÂG²¨,DÔdé|—Ýþò²Çè¢Íå’#¬ŒÔÒÚµª¿ôŒ–æ±g $Ô'9€úäÅ]ˆ960Ä^~Š1Q]ô›` ˜`:B+ℯÈ_'ªƒ+Ik‰2Ÿ"ðxÂ'½,禀bæérVpãÇ~Q¹oNÃHü;ÄÍÁ¿õË>©laoÈž ÓvgZÄoŠ÷º,è#áì±èÖ&8‰Õt£ÈëmÖªåEVÀ>§3k7|“ä°mpõ[—#¤—3©èS¬¨Ëøs—S²LÆöN"E–5ãi’L=;ˆH‡–Þ/âmŬ ޲a‘H*úL%ÐÃbWì/’)) -Ð=|CŸ–]É£Fï¿Ú ä5ß_ÐÖÛ&w¥=ìKJ  þ|YH ðt†º´.,h0O9:Dä˜tŽgç°¨ßND=D3nl†HœèìÏa*hvfêÀ,hï6Ewµß7i,&‡áªKøMe4P y1/f纶AýC8š¾ Á…Oþ PQzòDÆ \6 ¥á üQë¹®Ëç5ˆ¢ðž4f¤u†{ #e¤ÌÖEy9° ƒG¢°Îygb€F1¿ðaÙk‹×Gnet°gäÙÆL!õ#å'Gû©öL0fMáÃÉúP;?xb>PW2æÜ 4¦æ(Äö–:lÞHùÃã1?:»@éD|©û„(NÕ±ó†]‰öãlJ—$²ó»÷ôÃÝ}o%™@+6 t‰ R}r «ºj­ê|'³ \ËU=Í É¿«ZÞØ±Aœ°¶eÎ]€o³Ò¦Ðë éq'YÒA?-L|‰å )µH‘@Ãä3º 7IÒ;÷G4aGÃ7%H.p è˜'b!k³.è¨jJIÜe¡fV_sp…•2”ÞûŠ`ëÌGNY]Ùoª›Ì e­Ô“ˆéz_–›–ãfyR‚–V0ÈHu0¤º/ÐÆ¢ÜÓÖ;ìØ€ïî"DoµÅÞ›‹è‰¾àÓüSSvQÐÓº3_å²» er¾÷' L®«°uÄ(hðÌ>ˆZ˜éGa„™¼®7D»°f©,™Hÿ²šïüHÔT¤u‰ÆpÖM¦Ôcä2v€¸øå¬ôßbÝÍÒâPHE¤æH鱦r;ú=a.Êúi<óA7oR7©Ñs¾‚ÐÄ'/S=®É³‡jDºÄ:jæËÔ;“¯j‚½}+‰« ·¦S3A(GÚP"¦¡«)ö~sÍÄŒ‚‚á…Ø×)ìǹ”©Æ qÑÖQ‚dËLæÙEèÓµäÅðÉVD: •£ºtVßÈ„…¯º„3ÌÓ•©xÖ„cBXdðçxtòYD±"uÚàÀ3æC‘Iï0ñ§bmÂ4 ÞØmX Ý”òq]ܳ_Ka#\êf#Ê =Ü89 ®¹±Ô½ÌUʥƤñ#›ø&]€±½ú¸(ÅÕxšIQ·9B©|ȦiR¦zÏ$séÙêMsa_%sì…Œ¢Â)Ÿ˜Z½pn4'ÄŲ€”jèÐU:h>³ŠGuØ›; ‡?Ÿ!…6éäv4†o¥[gÛRœñ)²”8°Î†DÂ5<תª£PdCã¼OÃÊSîDàw…* Ô­ c}AøÖ`ÌÌë^Jæ°£“P® WÔ‚q-g,£§Š—Ih¢ZHÜݤ´5!H|nø  }·vÈ‘¤…ÁÉDL^¥ŒpN± TuY¿©~ZÁKž/?®‘hÀ&2³R¾+ÖÔühÁü›Ó<õ3=wá°£Hk}u&©^ýh¡;þ(DH‡ŽD‚ŠBBk¦­›È¶/Bn¦(к­bz¨‘Ú½nG8Q5°F Éû{¢H ‰É—羌÷ûÖš»§=¦ÔŸb;æBb%“hl$;H!´Ii^Œ ˜Ð¡äûµÍJ¼9§è¨¼x( ?×¼ ŒˆºÒ«_ëUA†cå3,}¥õæ5:¶µ²oÖ°˜°Š,(¶ö½f[¯Ã0 s$I—ˆp㕌2q¾È{rƒ<Î !áë?tØ»¥¤ÛàßoºÚh…jr2‰ÀÜæ)2 ª¨iŠäzt—ä¯ ªJ_¤%ªZ,–ÚßIràP 1Œéœ´Ÿs[f|„Eþ:2¸ÄYD[5XEÝÔ©å£õ’u<¿ÊË*†¢Œ)§hgbh—Ô[þFÔÿvöŸ×šÄ›çÝ¡:ÇoŽŽ›`B n»ý4£ÖЊ éÏzNþ°Æ7ÒQ6ÙK3 õ²–“ˆKÆ jr vv š‡Eœ€°W·R¶ÙÑb£± ·‹ar™„ŒÓ ûëœM‡ªùStÜ·mC®¶`ƒl ±cËÅÌoi‡ˆpù¬uÞ ÃÝ V©¦V 3cìHïk´ šäˆ²ü!½¯úB5àŵxÉÝÀ=c°»É÷“è· ±ÐËîZž^dK ÅÖ}Ãû纞¨5¹¦Œa‘åµå°.0HÀ91¨vJ)u—3A§•( §&+°ÈŠ÷j‹ôY8oÎ1+Y"—U×Òˆè¸DJT²¸@ÏnH•æòꮉB¯ b&ù1”˜|,Z ² j¦'Èf5sþçz±sðÃP)ÞêÍáƒpï—¡â„”òúò»µ·¢»!F¨é¢,`³Oq_‡l“ éç½"ú­{¿ÉZGœÔÛ¤éT¥©þvî²ÓP²!××|]ô8=çÒ•:fÕ¥T¤åU{ðn¸X¤J]í<&†Æ³ ÌzW5áe‘‰Pü‘ƒlY§¬øÃrYʽÈ'ÖR©9ÞC]\-j”f× $K ØhùBDw5Å–8Eމ²¤N!§HªÞ1†>‘¿f„Ž+9ˆþ0“µ ü]fRm'-Sëf¤c­3‚à…E§å†x_«JÍ—&éŠHǨoÕÉÌä*¥*&B&䧨%IWw3%á‹A ×d!énÔ j“kl1÷0ô"²Ÿ“;©Ëgðp=ûšÞ¸æ©®Ä.0ï76ñMºfìs8Ê®ºÇÜÔŸ™,o"ú4‘º|³ªÜúwМôÇë—FÒ¬']ݘPêR"7¦«œ‰+ û ÝJ#‚mR\'RñYÓP?‰åz ÆrƒæعÓjÖÆEAœT­ÿ?7“p:ë:üØC:“þ‡ËCz5ö9Ì›hú-ˆ1Á3«y•¨1‡=¢$¦¨Ù·Ô›·’Õuj=i~jê o:‘hlYã.1¢°^ãm…)½S—õ‹[ Œ”ÏÚaÇ7ä7Wˆ“ 7Òñm Ó„ŠÆõÚº†»ªg0µä)±B½LÀ¼*öŒÌ«§ b@›—L1w…¤¬vHg˜œgºìfÔ#µ˜ÂM©ë*¢‹/¡¿éòG sâ*ú ñ";C¢ЙujؙѹGìaÚ8ã_GXëJ§-51_J×kpò9$Λ M‹uÏf5;Óyi©KØóÅê¡þ­îœÑï¬õ *SrQ"ҼфaQŸTÒÕ|™¸9OàÚi¥:]1è2'àÞÆ­ÿÃdÆSŒé7%Ãx“9NDÂärõD£×_f£!w`BΞls¹0h[î>²vbêæ,Aé‹&©± ¾<)§²âcÓk‡jlÝϘws 4‰‘Ò$˜Vª Ы'  Ê!Q tJk Au¼Ÿ_&QœQù£6aý>и‘Ù¨O™0û¨æÎR½q–j¨4¼$†P"‡Ñ7È!#WÑ׸唋+¢e0Ñ8yC ÈaC¢#“i| aÑCv¥êé©DÈžç}¤¸ê&Y,êŒgøÓ»ô ·"ù°³)é6îÔfj,PaLd/tŒ‘Ò‘ÒNîQ|`˜ØÀ„}Í™ßs]»°uˆ;œ¸xœµ:xöå¼$p*g. Q™î±‰1J–Lïÿ]·¥I¾¿ž¬+PßµòS0ÊœœŠ_<]¦U¯VkŠúД€çQ_5À™š8v—Îl•l#3iç;üÖ«µÂhüBô£×á-7®VÔGð“NaL.‘–`:G’.®¥É ª  «Z~"t)º€ÚËG˜JÇyë&KÛÁYƒ•yg³±«cÎãD“·ƒ`€ÛäpšûDí|Ïvž„ÑBüÓ3Ú]HÀM ®„è=õš›Ä„C㻲v&•9KêÜ käÎZž¿ hâŒù²hà}ÉØ,½zOD¹ÅÙ UiTUº1ö2†Ü7Œ¦f_Ö£­Qæéœpæý´37,P7+eŒå‡åG/ºA/ h5j;…N¤™‡–ylÖ/Æ­˜õ Ô«ýx1LA!ºž•È.×è°è]“ àF5¼·o@¨Ñr¹_­8Òê ‘lòuL…‰p¾µÓ²ùLRn;³û$ÊPzeK’€\Dí¢×+ùCÙ\tÁ=†‰ÜsfÂe( îtiQåe+ JQ´pƒ}üìðoÒ[®ßÍØÍè¹uAEsOtE®ûòé7+Htgq)÷ú¹[ôŒ‘jüœ¼°·²öç«ÃºÎ²@ñ[ìÖ›ÄÅ>ùBOs±öêu±A&Žð»ˆiñHëÖ"U’˜¯¹ :r_q¢É!4ÕYfBTJaT‰þ p÷v${Û“m½ð¾î­¿1 㯠ù„e Æ0S*A•ê ·¸OBf3Ô «¾²œc¬c•'ñvÅI˜% k77›®x¯Œˆý_¯3ËB¿ØØÁFíÚhúBºaWôÜ­‹~‡:É7ìš é<|GŒìG ÚîeÆö°ßïß °1ù €Lû‰ÛÄ ãó®õÏ«Àªï!î×›šùš»ìö䕜`q×ÉÐ{óàã3Ô¤îY ¸ÚûR‚‡D¸ÕÔ]éѬ½¤Ø›ÃºÅ² €P©#ƒà€àlÛب[‚w~a@_„ÿÖˆ%'œjÍ;¾£,X§K¢…¦ët"˜ÌT€)œGêœV§ ‰,ó7LÖ™”ô3)Yu’Lc϶áâ˜AÏ™du]"£gÄ‚ÔOœ;àê„I$;.dµô #RÀxÕ#£• _v¤æ}Hq,Dîˆa]º€ ‹t._Ü_M O‹j¶Õ,禫 ‰"žÎ=FmöªyO7ݪŸÚ?C¾O‡-«Fà­«ã¤ÅP~hÁ2¨ø±@LH†7ê¶2fÿfúšì’Ì3á‚:–Äg¬Äó‰TaFÒ$9AqDó-»„e®ÃCŠŒ…ÊÆÊõÔwfGV1™A¤J¦Ð‘u®~•2‹6m(Äì€Åžº¤75~]­¨áú¬9[¹³ØÝÎ]†3?]ÕGøncdêÁNgF„$Í8Ø(£#¤3òµ".bŽt`€Èâdj±iýÂM-\Áv?lÌÓ¢´R›ƒè¾(©ÃÉo7i+-9°Ž_HðœtLeŒúÍ,aw[?Êt =6ö~\+ž1-jlmûLʵ˜À -êž™h2¡„U[s($°é§1¸@°º‹Cœ]‰Ž‰«9Šøøre±k÷h²D „•û‘´M²h‡“• i›ÐzH¹xÖ3-¬‹Y#NsÓΨR’M¤ãéépÓjÚHíu&­ºŸ ÖÄÑÚE‹wøŽ-h=+¿^˜´2Õi¤ÕÛÄôŠ €Ý,IÞWîʯ}¢![dmXñÖȈԎ cк1%ž¹î§lØÊ£ëXLPú·™ÐegŒñ —m¾h–0ÍAÿ¥!(Œï ËÓš¯û€­Þ8‡ˆï‹Âgœn@+‹îùê?5_êš|¥áÚGí㮹ËÀÎØ'žAúOQŒ¢™åÄÎåHu¢Æ €6×N´£-e°$³­Vg0“ Œ0ßr×GÖ vÎ&ôéÊsªËZ ‹[pO­í;YLð»K¿ 1GàÚÐ þÕ†VÆÅëì\„sk¼;2"P$–/ɱŒH§œ‰>D±7²PÄKTàpUªy,ö½£#%*A¾ë®Ž!2¦b0T9ƶ'Ò#½°4¬ ´»ø¨9fê(ÊãÒ€ì:3õšb è©^Î))}NÝnheD-9¥Þåsç¤f¯ÐT¡æ‘“iù|b$Õe<岺®EóJצ³§ÐjÛwØÛ‘B-‰¿¤qAÈGFÖœ¢¥•ºä¼å…HÄð¶èªx{ù\•YÂQ’–‡Ë%þNqþLrÄ̬ïJ[ ñh7LõÁ÷’3¹ …Mšü5Éo„À-±óòuùVÚ×R¢î°+˜-!‡80T  Ì‘<]%²3v]dlJJ^Fw‡š2~P§ô;6ÕSµ67” ªµ¥o\tÓN¤«DçBç“5eK)Pï±DÅ!Y-­ÌÜVõƒÀ‡À+ ò6öd¥­=УäºS’zœºîP&Vû èª"Áîšd5ÁíO<ÄÒÊúñš&Q7ç°ŠÉ_·i˜µrœŒhn:Aû5q(>b%°Î¬Ó¢“B?Õ±¯‹ñŽˆaÚ‚.e–¬§„.ô;/“Zc›~-8¦E4ŽöLûýl_‹j»QõíjÖ¡~(«ÜóªØŽ àž’ÖÍyÙY®7£NÞBtžÛâÉ&U×4¾¬´œGÂofrY÷0kêv‡æ—.ŽZ'ø‡µõvs‹ÃE–RÊA»¶†@83C¸FÆcÐeC°Žr˜©v=5yª‹Š‚.) ß´5\µ&ÒX3;Õo¯VȲr ím†˜¯t–ë$4¬+pºvÖ %°ZmÍ%p= \‡ºú#ûA´ po$hŒ¨·5ë Ÿ.dÕL5Æ'RHó‰fŠj‹ÀVbº<ç€t‰GGÝ ¦ˆø)*]ܧØ¢®ØY)‚¢½j´‹~K!Z¥ïñÝ:ÑŠÆj3GwQ÷Õ l]gtÐY2¦àõP]Û4bc„°¥n×þ´hŒWŠqÑ8- ˜L[_ؾ';ˆÚ˜°ìýDKÞ°_ÔÞuOí×ë7gtŒŸ6ùÕØjRv_Ët,—…J™̽ˆ X‘¨ ÚÉÖF<¯ä‘«‰¬dwµBkÑèP“¨”ˆl€%YÂ’N†éL­®íÐîh„ÀD¨\ãô¦Ã¸“ÃI3=?ÌãE-%R²• r¨_Þ˜žuwü “rþÕj…J€e­Á¬…3kvH‡E0à—¸_é*5[‹–Ó4ùL oƒ8C0?ɺ/êÙ+T‚ºáD–K$}ÄW)YÚÄç’äX{…én™† P\ì‹Ã}ºbAðX˜!´'°ÀŒ£ ÌH¬L 2E Ðo’A(¤‰©3Á*Òÿvu²{ÞHš_Ö¬<œê,¾>gAœ—³7:\ å&n<ÒLq‰e½÷¡0x™íâF«¾g×™}Œ˜È ˜›ÁÔJ¼?á¢">¿ŒË£0¹ô¢òAÖ]êëŸÁÛÑ…‘˜ÊÞ›H£Bz6>2OŒRˆÃùMx›wFÑ'ÐÅQ‰Ÿ¼^–%Íiæ³Rë(â* #äÔCd±páFÊ—Ýcéä¼5Q®Lj’Ðp%BQ¤kWpåmQ݃Voe¤ÆF˜߯~ 9u«›ëêaÝ ®ìA3'‰L˜ÛÎD“8ñŒž,¶s ì¾ [¥Z]ï™}€¨pé&o¾ÍPxm=:uÍRü‰¨a WU Þ€3¨ÓÅbAìÞæÛ1$ÿneY£ž±ÞrX µ×óiŽ “¾¿!¾âò<¨{~w'?®!{èÁ]bÇh¯îÕÀ«¼ hFߘ–”–Å·—EêÝÅ2K6ÖÚ¯ÉÜçÀäÚ Cuš "ëz ØÏY5YðDPƒØxY;W•_—­W×$›u4,ÉŽS­±"Æyºq#ôÛØAÌ3eeT¿\ƒÅq/« <à*åoh@xAÕW«iš¼i©jÖÝ_½k‘V51ÖÐ’åú­ zec€-jøCKü-[bë.ËÄ{¤’άq5¤ÌƒeФ®P msÕ—R“eªk±~ñ‰³ùlº¤…Øâù@x/ýÀ<În5öZJ—ˆ(ÇüЂ7BÔI´±¾šF&ÐÓEºš2 ¤2ëƒ56^ 9:_l{‰’W͎ݛ”oEŒë¢@ u¼¤tY ï•¬"¾µ ŽpéD3âJ±*D«]ëµW&#D h ÑB]‹¸¨b£er}Äj!3ñj†+¨“WTçÈYk°çgã¼f(›Ÿ©-°‰ä1“NGÄ«Ý8¨lô„#x& ÕÒ1¥ûpƒ /Á´;½m%ºòbH¥Ú$´§²¬ÛPíY@µg……,:¶Õ÷Ú„H9rö¼Ä=€AMÂo¶K½Ÿó‹–k=øi%gÇb²[U=&N(r5,Yâ¾r³Áe½î—¯Ç¯®'š¤¡÷T¸­îª¬ÀmgO•ð……3c½¥Ó&3J."™-ÅÚ:­;¦ =‹6ùZcH 1…·‹xéíIâfÜBDˆE¥²Âäg·*vöÞŒ¬5‡À«&©ó°¡ ŠÀ÷”î$ÊÎXDZbÒ ¤m,%®{̨¬.¡Ì/'ªUÑpIKDR_o•Bår Ô‘ á¬PÃÇ‘(7Rx¡g|b¡`¡èÁà˜‹g"¤Õ,RÍÙ™ŸÈ €V'y6NçˆÔæNö¦8qÁ€,pKo·ºªêta*„(\0 *)âæ˜«Z4>PŠ4ˆ»ÌØ’½Úë\¶’¥ßHoŒõ?¤dnÄ- u¬‹Í6²QÓx¨Ê"ÄÆ~»@ê§µ°“E6r@pÖª%åÇVdL*4?®ôÃ>ÞÔ¤nº3žò\ì™2ÄÚ?ýNNnu/)îÔ ¡úshí¡I÷ßMÔÅÀ6Bð•ñ!…r ‘@¥ŒÛ•$þ!ÖηX?[$F ŽÉä·þ&~~ Ì•·´÷Hpöw“¶`CÐÌ5Ð'ðc9±^²š§8yõÑjÕ q[ R‰œ)³Ú’üÂRçx]´ð—˜£úºIqÒgO2Ëz,àkËëÇ­SÚXŒ:•HcÉw†zl}À/w c@‘óÍà=ÔõÎXjñ=Ù’û4³Í— :Cžštç‹vÿü|u×E¹´–BŒëŠ$¬ÈpžH³3Ÿ÷µ¤­š‰¯Ì°ªŽô‡š3ŒÞQÅБ²Å Ä­Ä:úžèµ_˜0ëÄà³#j²9Ã䙇[ð:•>:›{âœ2ý´íüu™ÔÍ­No3І]¸é8›Ob ÅFu‹()+›g â2±q?7ÄóÝC_céxcH7¨ÍÈêv©@¬ÒMfѺš.ÏõœÖ‘KAE¢±¨ÏBm§VÔ /j‹n2HGì ÌFBõQ»xÖB-…¡Ð-qy‘Ñû¶X|¾mz‚~é.D Rˆ<Ä¢†VÒéÍ“Z úi4¥˜Ñigâë:åˆFj~&JAkÙžìËò‚Q¨ÌÂy=mÂŽP²§ÆbÚÙ¢Ýøh 0m"zÏÏ!¨Ð ŒÕþoÞq\qžìÍÚï±ÏÃVå×ܤ4l­ò(—±õÕ<.6ts]d HáFúspZTÌ$*š(çGBÁöþ<Ó*³5·ôîb-ƒÚˆ.w}-á¬m'¶%U›THÉfdøãØ„¤‚¶u¥Dùçâµ§wâáÒ‹ü œ¶z7Ð>£à`¿µ 4§5x<>ERtmºw$ƒ®Qª£ºÃ´Ü v£&:yQo†±¯êÌÊÁ¡ÎLT]¹8!vÖ݈ªëkÁ÷ëZkö$¬³b) â|]<|eë}g²198×{½I ô¿);Ôs«Ÿ¤À6Þ°‰šý)ÑÃ`þží˜ÔöïgêN ?¹P®©gerwŒ‘I#ñ“‚ºjD¯‹ô¶åuûýµ¾ ‰Á×ÔeÁ ¡ Å£J”xÝÊØRœÑ˜ˆô¶´çï6½H0p#pSBÒ"¦ì.[x¶Áß®ny~Yß®VIÚÓ À%‰÷÷ñä™ðº>䋆¡€ß/Ú¤Ú§©5Eyúûÿ¹Í›a§àúrI:¹B' 9QE& öÓ{C8Ë[ÆÆõ4¬›sG© 1xƒ‰è”¸wƒ?_’¸†ºäÃqiÔåsAÞ˜õ¬K`­äÜ5}F,Ö•Šîæ³¼0( ›D­*ìF´J†{áè\ƒH%Bëë`fʆlÂwÄm8Ÿ¥¢;ÃÙ°­5ó¤Ðrç=v…Y·W¼Ë‘‚lgñÐw&xè-×1`0÷(!`ŽTÊ%"ó+²°×X„ì Ÿ6m,"ôÛyÀ%9b™Óö¯¤7‹š#†Z&\6È®äL(hÃ3OgØ(lYý¼®6HÃLV¬®w[ÿ*òÝl™¾*ðv¼öZã°x4Ãh€g¯$¢ÐÚ¤ãôîu#`ZpGsC}°Üãy3q ;ä»%C4ÈnNŸW×¼+ÈÜèaÚò½ ønÞžã곩ÓúÒ4]íúvÕ:QÍÛpÉu´Sýù§ÖëØéØôÃià 7Åš«˜ŽM ÂxÖç‡7‡T‡ÌYX@›V™= o Ú”¸[}ÏWR¼•ô‹ºÔ*$a.×5©"ª¨ëP`©X#a¢ÌX)½ÿ úiô ý¹H8Ì5qO°sÕH?‘½HÔQØ`ûªl¢#Êﮥû³Ù_uûs•$]Q)[ÈȤʩå’¨i XIä¯ ]s‹#Éœj&sAè¤,Ûìn(ÀãñÓ®ÙÉWëf}Ã<˜XwÕ£§É>v}bF%œ‡ˆ•VëØV[_;±d0­©·{R@Y bflMÔ÷nJf‚¿&ˆFgüLYëÝ%´tÿv†¾Ž4µ¹ÉÐuÒÓäƒÁ…Þ;±všý0b“‡³äåUÏÑÓ>w\º-hŸÛšƒ2“‚jI´3ìQ¼¸g¡“¨S¾»ícÆ›7Éb¼¾¸ÐéZtö}]NöÎ"^ ,²ºšŽX˜Ën]〶(Ë Š}t£qı§Æ7û÷(ƒœ7¥ [wqvÑhè(ú­*ÏM6-J¾˜ÛÝ|üF„¥ÜóJõM«G(\Õ¤¥â½µ`r“™CïO­¢våwýóÁ¿$9Ñ]µnL! زlœTîTnMȦ©/Ñ&¥qç1:Fž=½~ßµ¦.fœùí"†ÉZÏwNÀYè21xŠFvV _Ì\ÄRg;vØJ.£7ùºè3|±I x'& –ä¡M%¹ŸQДú jD×Ð^’8­©gjf‘좯Ý(vѰ!yƒŒð“ w½I…C{Q"3¢ä,Cûùp ˜êþ˜Ùfm÷êâ¯5'lq–Äd«ê‡õã Tý"¥ëÄH¿„Vø©ô†Uæad €•¥ðˆqùpäýʆŽœ‹ÉðÎÜ›³vÑåî)„ýväÂ0²dÏ8×5±òÝÔn>2½mÍ(`³} Iã«! ;(^:/¿dl>Š÷ :ŸÜ=}@ÅØ<3™îÄ€]–©|€ÅˆcõoËÄl¦D´G‘/#з$‹Þë¥=§Ó>cÖ]j,‰û?Z:™„n¹#\g >‡Ñ:uÞ‰ÖÒE»ˆ{[´ÒÎä´X­döJ™V¢D€XÍ û2üÐô3ºóIýãù‡.Þä“VɉfZ´ùlöš’’¾<çoðk_[jµ¯ÄHBöÓæ|çÀX»ýËàDáœV+ xl²Á¹š¹$ú%g,¬$¬·š5“¸gNÔ,«ŸFÛñþõy0¨¼ë?èƒ×tÖƒ4Ôª\22©ô ?åºd„¦M± A3÷W0|Gâªr!Uášð¶ìW§v»…ÈÈ!6¥yqHYòc¢À›ä¥NbMrçç@ GV÷ë´×-›uPŠ¢2:xn›lB`á£3Á’ÊL ߈ÎÄv¬,:T)¥ó4à2¤H/8FDzŸ|4Ìn;ig ¸&¥äŽƒ/\²ÕäÌ™ ”s¢½}—^=Ò+ÄNKp­G‰¼}ÝsSÊó„¹]§]açæ<¬š;; ÙRÈ^WÔäYñMÖI˜=´“š=8cnÎ/ê¯ÕïSïm/@²>›tãtwÅ#v[÷@„û»peý-f„ú)<8&$¼yÇÄö é®G°bíLl¥…ç“(Nàã°9¬ ¹Hr“tÄ5ÍTl„ #Z?)G«£ˆg¼Öˆù®Yœ¢¸ª#èuï0Þ"ìîÌTý "ó[¢‘n¤¿/­|…^÷Ò'M{ä{ n/àL|#ºØêŽ×ÐjÔ–}Þ:][þÚë¯-ÍMfÙë—”¢…¸ø“씘½Ô)®Ðû[ú¦a‡ÒþÈ”@ˆ¶¦V=C ȾWˆÁ»Ôˆ©c¨ˆ‘¹â…Yü¡Uö m×`‡Ée™– 3BŽéQ+¼~šØC+§Ž>~ÑØâ_ Ó"¯éNdŒ@Ñ$`E'ÑùžµÌ¿QˆÁb”´\ì‚0ŠèÞê‚ 4f4ŽÊ‰%yX$ùÕׯ$W.™fÅùäyˆe™ ƒ 7ÏúV5Á£Ö;–†o&Pþ Ú&µ«ñBîÄ)tÀŸ¬*¸‘®E*ÂÒ_M© Ø“Ã~\ «{¤÷‹†.J0ucý"êæÇ$) ’šu$à±c–]fÍ™ kR+V À¬_ÖÝ 8É‘µ£¢cðú’ ;ZWIBIèXÎxîèÆ&ݘ¬L<ç”<áî×\'eRu¼Ž^‡B­þå @Ô}è ­6 qAê@ÍótÔtÑþÚÍÅôÖ#ú·ÕÝdÄR×Í¥{Ï4.›×;Ø(u®cA!6‚|sþeò ‘Ñ*#‰« }ÎÀ)êõ„$À:Ï„™Ø–lt%üCu\wäç ‚u¢88Ó ¤£&¢yú ËvrW·ÿ¹4(P°Œ?Gè}ÑT3ŒÎ,ºmˆ¶v]$ßTj ·t®C¨šÞ_—Ýv*AgÁ&Zï°xç¥3¥ :¾›šQ"9FuE7FÛo±Xf¸:ó±Ä]HQëßݯ?JŠ¥&¤ ÔÏHqqÀ{&Úö†tP›ÃuV‚C<ˬ…:PUÈú?×ïz-î”ÒÛi€ë×ROg463U ‡±Í#Ú;Ö;Ù¡ƒêJ3P<‘G“ý¢â€WÛ#j–ÝOc$d­kñõkøanˆ&jŠ[±C±Š2\®þmÁP¶®ôƒ]¢¦žÈýZ–wÖ}„fY‚ö„õðÙÂØ¦{»É² ŽÒ#wŽZç Ô÷$<Ö«F»öµ'^Ò°¸"7´I°éú[ß7}ÊIÁœâ™Å¤Ó8Å^)ä]°á;Ôœh6–r­ÁÀMÙâ¼Xð9\ì¾n„‹4³é¼`¼{“²5¾Áœê ‡‹’¢Jj †‰3$‘§h¦fü†š˜£­˜,&û{1gÒ¬gjÔ¯pg"­ÞZÎÒlëú„:Œ1²&0UÖ@˜²„Ñ!ôäÙš±Ô/¦ä(Ý(4o·Tõ±Ñ}I]?Ò k|Žð}ë7OW¬TÆTˆ]òÌ”‡YK7¥žTa§Ä$»&áñ ­¾-4¾“á^  »ÊøÂ˜¬ðEµ#ÛSøº3àè+— °¦ê´;k9ªÒûˆ1¦L iÂéƒH­½Í‰4²oŒ_ªt4 ¨aŽÌ$µ¼‘ƒ‘ü¡Ò3¹fï=ª(SÁ²ƒ±1b¯@,Ñ &ºØÈfêýÎQrOÞ癉Zx‹‘ø¶®6îûäÀEB#sLÎ fXÉ­›§Åÿ¦;¢iŒš¡Ò ­7G@‰M”^çõà|]4—81 5ÒåöuIB$,²šÂ Ç c–1ã0ò¹Ý”dàþjhâ4æ^‚{ÐZsX*öÃM øx_A\qTõøvÖÍôš%C¾geZó"Á½¯1ÇÑ(`aé´ú‰¹=ÿê^Á7ï'ÒTþçuµ(òâÔ7npþ.ÌèöÓyxưõ˜JZüu|S uÛ]r^H¿81‰ÖOŸ’‚bn‰—’¥ïüêÙžT ø#óÓ±R¯X>닟µ¹‘~z¹â Q÷1Wz*þ–Î=ÖnKÉ9D²¡bmÍ$Iå¿•N`<(¾ªW+/I1ò¤=ž;ÃÙ¥ô°Uµ?R"*ou!DáU)ÒN´B]7g$.H„}páÖ¹nAû`s¢²äIhp@ÌaÇw”w;w ðÅy†1t†É|w,(*×–I«ÂªD| Þ‡ k)Pa# ŠVÅ]UÎéCÀ×Êô(Ü&â:DžÅ“ºtýþ„ËDO<`°†-ÃÒnÕ Ú¯,$·s Éß6ÉYÃZõ7aÅܽõqAZÇY&¼Æ{zHN'§ëÇÒ÷vD¸Å3»c,—·y`Ô‡ØíÙ."&Ñw*,žqò³øðÌÇ©´;3"ËIáûÁ5`YC‰ÚF/›h„œM ,¾3¬œí ALÌJpó ‡ë# Nc¾;•@Dñ<©–zí%šîw­>ÕH±p(ŒS7–$KG¼°-B ¤kZ&âyšâ „„n'‚Ù€Šq½5}=K„eýÝ*¯ƒÅ…Gc÷qZ߀ò–çÛó՚瘧”K¼úÅxÐjåzöZy‡XjEˆX]·š;¢Ãv“°ºéðÔÌp«&i™É9¼û·=Ÿõ›†ã~ЂfðºTo¡Ûÿ*\ƒ¦øà–§ úrÎóÊñë5~s5 EŠªoºl¤Öìë‰AG >œ=­g ù#—…9?†@ù±‚!Æ%Ž éè}ÁbOƒ+$èŒþJ$g{f¸“9nbƒ¸U£ÀÚ ‘‡¨ÁT ž¸Šù!€ÆÔj-ÙëÕ¾Iýa íûÕþ¹*@Ç4Š'Vr5boNÿk,™ÉŸ4ù ï½Ö7K|Ùb‰æUFZ×à‡2LÞ n³¯¯0/épAšÒê°8 ÔXýäF åÜ5êŽäë¬Ml|'5jz£´†'Ï$H»™Vt‹÷¤‰¾Amk¯X!íY]¯\DaH9U¨â0ÏÏ0½±°”áIÅ›8ë€î¬ÆÑE ×z,õc–º´aÅtëÝ6±äe°˜ÔS„]st¾%B8ÊçâL'º.j@ÃÞ†EU•%Ù²o Â0l´‹Âà5†MnQRH¥î„À9)e 3ö±;ðàIÞDL¤K¤HšF—! ó]Eë10iè@mS™U§á@-4‘¬[S 0`%Å‚?˜ÿCv$Õ8³¤¤dD¤ˆT¦6DìºøAV+Ì*øƒ%%Y2•12ú!_ÙøF˜NÂ÷ÓßÝÌn\À95¢DÕÄ•’£XõHbW»%fI5«óë: ½Ž{³Í€:HÔ508'Ì/L@qJ“b¡'Çê$Ù;Ô®åN…X$)\] nÿw]¯`¬a (<ÐcÉåuͶ *ãmÁ:§_)"aM@À(–1ʯa8Š'›ö>5’'«úDËó€h¬ñNEÊ¥sêœìvCu…‚<ßÀOmmά¹’©j¨}C(…çàk .Š©ýmBÇK\€U¤"E8Dâ@R¥Áˆ½§rÛ1EókÃŒ?²!.Õªar]”A²ç‡ ˆìêR² „F}‹A Òdz¢#‰eq¢+Ú4z•ÉÇmAxê$\Fw%¬ð:о˜a)­À ¨AOÑ«c—ýñOúbºÑu µ;ÍPl®ù‡ëØ«-ôÂu?ûk\tm³tÒm!ŠGR’.ˆ5 ;wÿ£F­ÏõÓ¨ÐǧÌêÌ«¨XZÚ” f*mßL"ùˆ€Båºë±¤&íhM:öT65Gv”¼¡A“ x žâù†’5&³ÊzÓû%UbÇÙðhh"jÙКРšƒÞìeÚ˜+×B0¾»"᪾ˆ¸¨öt¡V‘ž9ŠøžÔ½tÇ!æMî UÚF{×ÕÞ–nÖ‚‰“™'ñ©ƒ#B:,¦öÊLÜ[ˆÏXw@À˜X#Α :°[êÏ,6÷®Ç¢ùIؘ‰a›‘-™ø1b…:‘Jºa¤{› h $†<»a î3©¹{aœ¨æ~ÝÑÄTj‹Õì+AƒÞ“Ú¬÷Ëz?йÐý=©E"aëJ×&bîÒ,€!R·1h‘Uâ[‡5uCÄáE=MÇî&¡<¯ ˆÌ1˜ñ·#šÝ¹L¿Ó ÷gçÛ•äÐC0W[:çw"…§áº¨ñíµÇj s:]ñ¾8³2/ñ quÝøÔ!½†4)ƒýØù¦µŽŸOú¦qzå)éœ5M¯Î†ý±¨UEëíò4Jÿ§SÝ&ÒÄ2‚Æ–O`B06,z…ý©ÕW]졲ÛšB$M럚§WðâL²_FZuéëXYÐsOÕ<óÜ«óurKƒ‚‚{@£ÕwíçºR2¢‰Ë~™k wöšI,ÙǸè¶\+1X<.×Ï\5Ç ˜Iß&ê,¥å¡—@ý¨Ô`#\S1qø4HlhÍÏ-K8=%\[jÖI¡(¤3-ÄèE’§9.ykêÛë%kEŒ9–̦ÎZ¦TÝà:“·YD¢æg…Éø£!"ôäð€ ÀvvÞ‡ìßoˆÐ“æ0y'õ²¾Ž~EiüÅ…0wCݼ–_†ì¼h:o)TÅZL~9ÅGÖ㫃˜¤w> Ü\‘$gåb,­È>‰©«m_K©I{q5Œux…ú§HR;Ïî¬zëtš[æ‰Ê2:–bR:º´»‰£¡fÁ… Û4‰HœøÙè=Cjô:"½»îŒCo´¸›h( q  H €CÆNeˆo—´ÙçYK½Èx¸ÎîmQ x½®±ùBQ‚|NL­!Ø—%xFÁG&ž#K$ÄõÞì§ÎâÝA¤\t–Á`‚Ëru€;ÌPA»‚h’ÅÄÑ]22BéùGM~0ëÍ¡ÝdK啳'c¹ì0ͽ¢;Ä„ÈÅí„È™Y‹™'l©6%45çY;vf ›è˜g™Iúš¾f¨p¦^I>x¿¨¤¬ˆöšN„zÂc¾’6d]‚¡•(ÄFlÚ¤…pAÏ[têàé 9†¾c%u$)«CÃeU wéØ_”5ÌÖÖtŸ’œ1"4ÐgHœ ¡AÕÄô¦ïeê"üÝ)zø»Ó8Â1ï½]¬v‹©Ç€eÝ¢îYqíµ}‹Eóo¼‡ŒMdšTB(t×ç¿)Šì˜ê5gÚ¡éö ‰ªÝOË•c¤ùJFŠߊÖÕªgÔrerH-/n¬D3‘¼S9õPßÂ;ú2šEã0ÝmÒ[¿“YÝMÕš«¦¨óYq5Úw†Uÿö׫IŸá¤ ’D5Š€#å*ilù¢¿ æúÇ-ù FmUMËʇ¡,ª*óãÚLqÔèÓ{ý±©žÔ±¾ >RR ®)Qí‡ó1Íw©­DÖ¡—Ы.U®‰˜ƒvÖz|"Òf‹Éð fè8MIœE¯é꛳„Õ4냎$k"\ŸÊô’xZ¸OW.‹>ߘðfÂD–¶Æä*l¢àûLRülêLÓ9Öm,…¡D4ïx4¤36#¥A{eªú¢M©n‡B*rØÚ-õ™bJmÙÙÓÌøXÍå´\c,¤—-ûÉi“p4éÇ©ƒ(q‡$3âSÖi^È; ~rƒõýzóe7¼ÕÍ!ªVQ³G$mÑöJTˬˆ‚Cõ‚9a–#±ud²] a*µÌBP8 ض«ëLj-)1™Á¢%Y™]4(ñ¸`ꉕâ•"[ÓÚ-kêÑÖ)؇Į UQNß_!ä°„U:ÑYÎàÇ$ŒvÖJŽabr`¬]SBv "ƒ•Sf˜Ù›´i j½Sê,mÍþyÑùx#Ö.ê¯ >û· žPR E¥\¡L\µ®Âà¯.*nÎêF*ÿ’]ÖGÛ7e®Ð*S;ð™˜4· Ì.ÏÄ}Š6ܤÍ8ZGpŸ7ã@Dq‹'î­ÙMÑ‹!­9[“[ð¹ÂJ­“8b'r°»&ȬEqÔÁ(\xfÚ¿Å’i˜C'íQw2Ót»oŒxŸcÃ5Lôè²X$Ô=N£ƒ‚a|4dqUmsÇFˆ³oøê¬+$§&B¬˜vEŽ:Ù÷†‹Z™Ÿ+€Ô‹A30QòɽJIë~eœJï<ÑæõÈüjýSè1ÖÅz¯Í» 1+ž ƒ­ƒT¸Xšö¢¶qrÌÔŒ wã~Oj’hSð"ŸûŒ¬ÅDÒè2¦}œÕÞ)“l‹P®0¦Ñ5'ľr&iœWèå¦Ó­Eì+»ó Þé$xÙý·tÙ¢e»Aõ¡.FZÙ¤Ôt¯,Úž}rfÙ³*½³—¸ì ~Å ‰HP0ˆ5ƒW »§è‰%Á!“ž˜f¢2=jwIËs/,úY+7_s¸}Ç8ìÿÞ7Mõðyùû¦)·ÌڒĪ,¼tšv(‚AÒ‘}ÔÒÜÝš<iì¦5„lT}.õ.Ð?j•踯7¬›L„÷'‡Ú&ö\‹Zâé?Hr*‘þ¾®½þCœYÀ~òÍvïn±L H´În¾-À|,‚†tqmá¢à…´p£¹ÌTh$SáºB{¯HÄ(e´,SÿÈ-n¨/{`÷ã…&f Û-ps«µßä:5!¸êŠí¾ØóÂ*&™š®.:nðŽµˆÝ¥3 ÎQ3xË(š.bRWßý@ñÎò[Ç{&‰f˜>èsá?ë8::ˆ˜¤¾oÃ]ôÜÅG‡¹­¨¡ƒJ <Τ: í(ê*»7DG!LWTð®ë²üØ÷w‰uÐ/>œªžÔ¡v½-Ø](úëÔãÒ¹¿Q(ÂqKÓ¡b²Ù3Ì~Ý–CÏòoY/™ ø!'{ØIN°Yé‘Èj1hVçëÆ@œ„/uvt·Æ •þµbi ÷Ìg&àÑ3=7°¾utZ» µ£ª ÿªáÕQÌÑ@$UΖ«[=ïiWÿBÇC±©÷x¿CqGý¦Ë™Áóè6æÌ\³G—Ê|7i ©á§e‚7•Á;„ÕK|Èœ°Ó™ÜÙl ÂÂÞ:òì4$7)Ø| ÌC$/‹eÀú‘Õ'\Q¥ó_¶ð‚rÍ–N`Ñ"Š•ÈþÕaýÎ^Ëà†‘tþ¯¤*fc ÆJQƒ·Ù㨓ƒ0êìÜU5¤úÉPSuJ8>‡’"J ùnp Š—EË“÷„9ˆÏÐ-ÖMBÕ(n‘H´G¬=bÜ)™:¿y÷rCy݇Ð<=“u‚/é02*^oûðõr3Z-È%¼—žÔ‚aDPÉtnv»š‚#õ&†‡·ó™0¬Ù-Aq§j75]ÅoÙ¿â¢j(!ɱq_?ͧ¾Å8ª¬ß£(QM{) †Ô,Ì>“¢‚šÙ«Í<˜Ñ§H©Ë^iI2»tûBƒšß4©ÜôtÎÿÒ|ðø4-–9RM©/æ­†ðjŸøuó>.o5›ÄjCsCŸ#4EÚ䣧„ët.!\5wš2R]X£†ùýx·•p$ãaˆ5K™•‹kM˜sAR·¸h¥Ë¯ Á*Ô9Ž@j5ؼb7¼e&)ÿîBÑkñZS æ¨õ85ƒÝà ãOÖ¤AÇ`êòṂ‰HiC{ví`âH¯?Ž5MÔæÑ`ó!Õ !ü¾Ž™` Ö ß2“Ú„Ôb.Äá@Ââ`ÿR¤q˜ºkwQa©¾_ç…ŬøÆ™Ñò±ˆ$«Qøßú"¾ë©öêEª³&¯û¬›s¦Ðsqf@zu`µ)e0qؘ «‡ÌyU"ÈÉ< jl9¼É)’ÊŒö‘ÊŒ§‘ð¿§X ó(‹6f€µ ¦±>¥~'­ªÖQoÛ7¬ú¬ZöÐh2µ pj Úl*ÔŸï~Ñì:M ò¾†<€ŒIª$#ærý4ŠR¤R®ª£®/X¡¨+ʪ6s1¬[„0#=¹©|b•éô-¯födåÒbo1…Ñ´%õ„.º“|] ƈ¨ŸoJ¬Æ{Bœ6õn˜ØuÅ1‘ê¹3g¬Õ éFTÄFZIàN²È@n®öe"š¡Õ\¤˜êoEKÌÐê²Hž8À.ü¡ îT—§F‰Ì\|;¹Iþ©·ãKç™Â/`h\ã't9nöÔÚÑoðex[4+Bêíà±ìB<-„|~Çf»(3xáH>ƒ ü“ïDðž <š&ýëSÏí’QúW° Ì~[s-æ‰Q´!FÌf"’éGŸ·‹ANBqhˆ<£Ôš ¼ƒ‰ïE¸M%î-¤_4ˆÃ¾]æ¿.½Ñ§½½œÞP$¯¾3G¯Vƒ”¯ÿÏ+i…+¨9ú<-ÏkÕ7+®@I Ç]†.¨ùxáuO÷$¤ïðü£_o-؈møŸVÌšjE‰FÖîêpñ|Ÿb1güµÌL M*,»Õ?n^œÜÜ#xÜã%ivÃDÍ=j4v©BÇþ¤÷u5!´:ùÓ௠!Ø“ys¬Ý__m”:‡N %e÷=LNf˜PèØ‡hX[ß§‚ÏðÃJ.†¤òI?ÄoDÚ$•¯©ò'*µ&)ËLRüz|8Pr0o0ÑÓ <”·”½ôü4q[´ëžDR3?Ax”=kÝà ´ÓjÚ7:,—O5t@ó·ÅÃgªë,àëŽJªåDd“y¿¿î^KÐݸ‰àH4ÈdÄÌèÿW މ¤ånöÇ ¹PÛïs$E ›Î7À×(v'RfR°*3´‹•šÒ¼-ä„‹¨Êìk,uLÙ7æ·ó[©´½ê¹žÊT{LgeXzƒÐ…ÑH3è!˜Óƒ×ûÀ’Qïº8Á8K`ð~:·n¸×GÁ¢·@¤²-Â|¼h¼_µÆ‘Ê>–~&àÚõÝ`q¢¾`¦ g¥Ñw€*R?|Š´À(÷BNÃ+8*^’â„öL¬–):Ñ"4…„ Jjà”é¸3RÃè:G( ï×$¡ÆWø…lÄJÓšPæ`)|ÂæÙ¹Ž”Blš~ù)ü.Û蔥‹0ú?ެVŸ%Θv-ÀçÎ-PØš\ ŒõQÝnð7k.‹J%‚ÎvÝg'ƒÅ‰$^Ò °±ƒnº'Ü{Ϻ傕"xŠºÇƒDz$2t-Ðib¼äHx¤ÿ_,)Nxª –ü!n£É”\`胑© 8†)0DŸM4 Œ1°Bˆ@#9B„9ÌKZýõ êDä­PŒ€ÙÎ7´9¸Á§‘$­þºÖ0¾–ÙKƧ-„icÙ‡³i@ƒú¦âªÔúEà Ç|î²2óÚÌ“skë«>(ÒÖ6PW €«q € Š”×u³<¬mxK™=Θë—ù\ƒEØðäÍk¾ŽZ!gdò7¢àK}‚ÔrjV À‡zìz#Öw:B1ÊiÑ?60š­ Lj~óÁÓçiƒ…Ì€¿áréôwó!«h¬½ç ¿ùP:¬Õ;/šPÒ[]i"I{Í?á €º¼½‚Ó’º†b¯99§têØÑÞNz9“zŒŸ‰Ä½Ö"ôémQLŒúÇì¾j#ŒÍ½ Ÿ (Þ$¸‡~teò Ék.BÝPS®°‡ôÓêçåFV‘‘HÍcÂ×~ÒË‚.RýT9¯ãÉ·™•dÄV²£F¬5«ÄÜOþa~+…YX Xvœ˜ÌýœCòº?ñãÊòû@"¢‹ì›à…Èý5“Ĩ(Ôd)DÆ‘˜C`8Ÿ| :ú{Œ¸‹zÜ_5û‡†]cÓ›Ò¡§¥EŸ‹¸u®ˆãê %×,¥ó££.\é|z.ªOÌÛ÷ ïqéAê‡æ¶› ³É z&«èÄp~Ù/X+·ä|¾€\aýÀq8e¢!X ¦W”¹áìx·2o´É‘@àN¼U TAÄþ©–éªÃS9…8ÅGÇmIž\ÛvÌ» t{ÔwÑÀdjDV77×a ª.= ß™†åZSªû BCêál 6”Î_RŠÃq"ëY @M2ýÛ[ÑŒ¨V°òo€‚êFÎv :a¿¼±ÂØ·è’N]‘Fçu’ZŠ¡…©˜"EJ˜T‹v8)DÜNŒëp‹ý…²\.¤Ð“:‘¢p OTþ|ì™YÀèΤ¤Ã]Õún&ç^˜¾cývLêßRdIº±ëÆÂ®¢âQç–jÌž"Ó‚L/(À±D š”+¬½ 3„€*"͉6É=X4ÞÉ`i7ÊvõáH¬¾,¡6øc˜0#kqnšSs=ö×"STq&’±ÞI ‹MS£K|6ù3b•¬dð×ì<’7iǦ¤°4s<”&¨XhZr_˾üÐy6ªëZgâ¢Þz[ŽÊs³fÝo (ªXƒ.{ÂÒº\½Âس×j+rÇÃéÖ©R5(“…£‹HuœB-ÂŒ“¬¼2u¦‘ìâ» ÕIJÏL—S.NKgÃ*K}`^ÜÐbj¸3*CG”DS'‚ÝHLÇ$2^ËÌÄ+GGÐ(#3 ,¤0•É)—€ÕßÐMêØKvìàl#zXÌŽ¹\#²jh±Ë‘[ª?'×L!Îܲ5ä§¹0C kÌKX µš&b—%¢¥¶'7o£Ak‰i$¥¶ØÁDÅ>±ØͺÐ';…ƒ"² %AI¦Å)!€ÒG1ç @”ÛŒ«ÛˆžÛ~LXñuCƒ¢u†0=ˆŽÄO|$,ïá^Ýx’â…B™­¡¹V^‘ØYÿ¶®Áš #ü6ý[áJîW«U8Õ.{Ž‹D˜š„RT¸þíÊKR*B»TõCµ449Æuâ±h>MûÛ¯‡Å úöä aèÌyÙÿÅ!9«ÊA" •™áÉi Ï …9²wªˆ÷[×*Þ±ɧXžþÖ?I‚ÛõÏšâÝå˜ÔŒêNjùq¿³¨‚±¢…jâ>/*ŠØJC}§—})ÂÜ\j9ü¢\¬ð Q@†û…hþx®%2ç‰Êy‰ž:¨ jÀ¦|µ_ !.jmkˆ x. "›š•Ây¢Q“7HñãÇ3/…Â?M:”¿š€TgˆSÝW°S“%ï)%Žd“­»î™‘u„ÜÃG† ’Ò$Ê2¬Ç/äy%$õg,z5ÈuÝ^¡h$ûkI(<"¾ÆExûBˆ„›q'Ë`õ‘~šŒ¦ÎƒBJ2ë±"îTQ´9¡÷‡-+LÇ|#­%0šzxrèc(…boèG[:ÂI'Æ¿©)öÀJI¡Ñ¢Ð¨@гǞРVü–αï7“ar혃GcK¹,ùh¹ ÌÙ×(,g@QrùÌ^C™/ìO¾¥·Á/ŒÕõ&..Jüf/)‚ÉÊàÓ0Ž –îêBŒ–,¦OæZ³7õ8ƒ‘B¢LO!QÐq_Z0îGÃ%£Æêìf¢æ2tf¨SÏ’úÃ-¤Nà‡@kW¬fÓ¼S ø©>`:ÏF;ªsô†ZÇ:L˜˜oE0‘U©jÀK€&¥ ÈSréxËrEl]°Îe}p”+EøZͤÔQä\âMr¡ð)f*í¤+¼ßz”ܯ»t¤•o­dÀ.²‹ô ™!$æX’XõKˆØÈ«ªç1cÎÀ4aÓIML¬ìº42Ø”æH¾[‰:Š2üÔˆêè3PWn5&òÝJ¬QŒIÛ[Mëi‹¶ë”2" ©î‘ÚeÃ¥&Pÿµ`?·Å–NÙm–ùêˆZm‚„YÖ"ú!i"Õ“Ä]SˆLŠïÈÏë…R!!!/Œ[9Ï”e)”K$܍ޱ½:æC s|-<9¼¦µ‘سt„–z"P3ê­¼•?¦µä-%ÆÌ üÕuhùø©0uÓ3˜T±˜UWÔc‘jJÄD‡h0à bvžÔצ„J½õO4˜OÙ,Ppìkh ¾ûúk¿¨êF)¬DdiÙý£Ör–éw­Ãú'W„Ê”±CøQ]µµgÉÄçs¤"ƒP(ð·ÑmÍ!I¹ µK?¢þl]P‹e2#ê±’*t~6ýNÍäLèÍKÇðßmû›Òl1‰hÀèˆO*K"!«*dSêtÅ­ÞÈE_/¬¸…iQ§úÛnÙjx4kà$í´â‘®%½ˆyR°%TlD4 "ÊÜd χ*³iÏûV «;%)+ u_CÀúY™Gd2 +©ûÓ9ÿùdÔŠÌؾ>ÄŠ?µ¢Žé¨v¬·ÉÇbµiý´ÑÖ‚tÖ‰]¨«á«ÆÔ`%EŠD =-IM ½›Ï2G;•Î\<#¹9ôWWÀÑ–›¦:ý¸`­«fo"QEªG¼Zsk<ª ¢*Ò“*T Þ"<~h&{óÃú‰A¦$f’NCp|1~þÀf(2Õù›–ƒýaåÓ:";P“HeÆ#c|õSÌ-fhoFƒsn¢{ ”4©á³„´GüÉabF/©;“¢‚”{˜£ËÅFR­)ÖXƒ÷-ŠºT %Z:©œ ­ÖŠ d-r1®#w2;ÙÀ¡°UO—JÆH™&˜Š•HÉqS ƒÁw’ëBŽŸ¸æ9b%¨O,Y|¿MT¸Éuj¨£Š0ì¼0W&dN]–F¿A×1•!°‹®–啾ü€ŠÚ :R­aè‹R˜¢é&Ae¬ yÂlžÕ(s<°0¡îPhy¥ËˆC)™¡Š‡¼Ï?Ü þ 膽Bv ;¶†› p4{ïU‘ôu$æE•Üꪥ¹"a`+5@ɨ™'érØ-w`ù­t(Q`V`$TG—ÍX+ °º Q™QG›cp©S¿ÑòÉe¼^µ3a&ÍŽÌ5ÆÖåµB˜†u­³î•‰”†$·R–h(€BÔ@\¡ – ²<@îÙÅi¹çi[.ç°ë‹Á{¾0Éæ ^>ƒûrÆ]§àlnF'gðh®ë¹¶†*TÓÁ¤P¹Î«Ë§Ð[m`Íff§üž3xZëoEÞ-{OëAË^Sï«hsg2UPJtûu¨é@ÊÊ9»ìÏ©ú²»r C¯ËÓ÷ûÊÓ5Dlº8_ïhÑv9?­ÝcïX=Q:Èÿ¥)Dõáæ‰<Õm¬‹‘!€·†¸êŸ ZÕ $?®Ýg^š¬Ëɘˆ– c˜ÏÌÊ:9ÿ‘ÇuýL:$\ÿx׃ á'ïÅ©ùmQój-f†äQ4«©ÛŽ·j~%¤ŽËG! L†:u—Hd±[ ŠÈG»x¹P³ìY¨ÙÙ6;Çè“-%còÔ‰Ó'ë²scש/;$†l‹–ÉeKMTÊeûBÍýߑ단@†ÂÓZÓuDc«”xqQû0IÍuðÁi•$9nNÃ%-„ži/4ã|__³ }ò5E.Y…½RŒ=ß «Ñ6zñ‹ŒqØO£'üD1ú¦ø;Ю¦Sžo£a:[¾î©âÁ¼Cb^c×ûõp,ììfb")2-ÔWÂ*º™êl•sf5ÚÒy.2V"Qü*öFuuµ‰„T:ÄÑ!T±NlF-qfw"ÅvòÑjÊÈh¢õÂc@3´‘¨­‡¥º¬‹ß °Ã˜©†=|=²Ö‘ò‚Äë$ì˜ 9aËRq%nm¾ˆ TÕÛŠŒÒu5 ÷7hLrq´ö=Ê‹û(¹ˆU ë5KïrÒt —Þæ‡æhzЕu¹¢)T#¸üK¨ÞŽœ;GÇLÛaïö °=)“c¡²9ÙbIRÖ(±¾ÙÏßüÛ`Ñn Åód*ÅB2˜á@Ê­>ö*VR°<\‚a i>1%3N§½ ¨)† ‰×xˆkøÆ®Û9B .¶åá êY¡Ýv¢l§ËΉi¬•f½ Wë%<2µºæeÜL ÄÙ°j¨S/5Ç$¥ä2^™Û‰©¿™ÂÚ1Fzx4y¢X³ï¨‘5HZDE”âæÀ,êfZn&šÑE Â, â>'"ôi‰D#Õ°rr„ m'VªŸ2Y£êQOfá” êÊWØ A£õ(cKœB›)ÎÁ¹C«€êïÖ6íèÔSH4J¬ $K0 ÞÃXwhœË'û·°€¬xn°9c1ñ6Z¬׃h&Ækå†=ýDÊŽžñj…hŒeñÔJwû2®”%ðôK†%1Á7Oˆœe`(ÎуžTBË-öЦ·H„é. XÊŠ³Œ*B·0ug”dò¨ì½ÈÉã}ÎI…Gí csD¥Ð½‘—œÁæµ1š-~¸Ä¡B»‚R{ˆ3ÀRÉËs ƒMìZYœ@Íà"ø?˜X±[ƒÊ7ò2Áºv„ÑÏä¯Gf3˜~·ÅµBŒˆç­ã°»„ýL°Å"›ôõ²AìnîŒÕ×ËCuh‘ˆ5Äà^"JC:Ò¬p¢I©Þ½üÖFüípÃw0II§õo§ß× —šší›.é1Tš¡áUÙrŒs\4ÌVeY›‹Äó/‡Îûå]ÉUײš¦n2êõ6ù­ÈuHf7ºáÐC <}ÛLHõµ¦N#•}‰º"Ü"Ýá0iXRÙfQ&"y´ï.ÜN‚. }pÿ+׫î‚ÎÒ„Qã²ó£læ(RªèbéS ¿Ì…YUú1 쌉9Ú.ÞPXÿ§§ñãJõÍÄ2½®W¤ß»ÜÝÂ,¦Sû}ÿ§Vÿ¹ß´†ˆ&³P’?s´Ëõ+Óý68Bå¯ybè…+¾Û1VsMοiF ˜ïö7¤¸¹`ŸÂ…Ïu7Ü›k;¢ôobŽgÆ;°Î”Hõ\^HŒÄ©#Yo5ÊDªí4÷ˆd..q::§/‰Ô]~X…Ũ˜c¼v(éº*·oæT' FFVÐûA"®úª;ì¾X&>*Çën“3"ÏkœÃFÊÌKƨ+ý?l•P|Þf½XH—¥>¯'¦§­F iÑêLR˜Þ€(]¼iõ›892¦›c kkÄÑ1Y‘`Ú±€ÆàÞ7ýÂ~÷9Ôq ÅVi_³Ãu•B7y.B@ ÷"\ÉJø…™ðþ… =#±øèòÀ¨ÿ‘:­Ôð1ʾk˜\(Ê‹xs ¥ÇÂyÝån‰H©yHIÖ¼zšÍä Õ2Dî—ê{ÖÍæŠÅõúwˆB‘<[î(ê¥vš½ ûnu"œÓ ‘¨!äK´Xˆ/®öÁà™’göñßFl ’žâ û•òçÃEØJ~ÕLHûÃæ@‹öLIC ¨ÀZŽØœâì/ºØÌd ý!K´°mÅl„†RHÃGjãoh1ãcñh3-Zt)_@½að%ÔôI7Vcu]i°:TýôuÕq ˜7õóÛeM’Xê=hȹÃ-ŒéZ=-ªWŠgæ7Ù“CŽ3šß´ò¢¾æl d)¯à ½-]ôå‚…ÝÛ@„ šb·¯xb¾Õ¬wH¥Û3QK~0±^H®(¥‰¥xv>°û 7¢ÙØ5#ìNLÈÁÌÎ,¤Ö\š÷n<ˆFTäk.ñ Å²r=Hä8l"Ëz6»Ï©#ÐûD„qTXuõ¼®ËD9” bä!¦äîšÁ¹î:” €Ú™Ù#õÀ5“‰'’)˜µÇ9Ž5H&2ey‚QWê‰Ðt1çHz!oäÕ@ffб}bþF£°FN"ý*9tq!!´ƒ1ì8êš¿Œ%&4ìrF‡0.à¯ÛÈ|˜&‹Ê0¶† רEl™tò”IKrJ‚”Öö]xâ.¶FŽUk])ÁÏ‹´îìÓRFµ¬aÈ—E]³î÷å^ا0+}íïŸëNZq€’R©N6Ž)RSfQÝ6uÐBe‘bj¢ÕF<¡œz¬þß<šÝ"vwüàK š|Ý~Á¤*¹¢ÿ®×‘k;6B·Ct€uçÀ[bÔˆ)w NS=JÝõÒ– ÈZ‘ÆÒ’ï™ÚR› ¨kªxqÏÃ6Iq¼‰Õ‰)êW™òg’;3 ·Ô ä)ëá1¦úuX[ªn´Ó¤Œ„­º:O;&k]>R»f´Ñ <«l]a‚Zb°ÇˆIÁ „SThc¯þÚ’‹˜ˆFÂëaÇÚ€!e2|\xc_—WÚ|›c!‚æÓ{vX¤Ðð¾§hˆã¤.Yìoµ\؇Kz Ë>êhv|5·Cÿºšpú7¦)Õ¹¼h]yqKÅ]«ÿÇk—9ŸµŒxk…̹HM‘2¾°ñˆ¨õ°÷ÉP©nGÙ2 ;Ýš^ØLs…H3ûÎÏ(ÝT—'&þ¹$åÐæa_êÙ¤1äk"u‰]×vLØj¢ü•œ ¤~7öÉ3ë¸Ø'"lU×XÆ¡ñ´Ø"Ú.´)SâÕŽ’Lrjù77QnÅ02‰`™.’/ï’½Æ[ºöxg9®’û÷KŒ1›–'_3w%a^än`F€>©)é‘–ë®ÐòÄgÖî¬gÆŠDÂÞ¤3k&C¥±Øœ7L€ª.éŒå,›-v`Oa³cm¾4‘ëÚ4|6ÛØ2ĨÎ]“nLONifÍë3ˆU ÓÛ˰Ì2놫°1Ö3BsÁ¬šÆkMûk oëÖIíqÚ—sýkû oaŠ@«¶±ÝDz¨÷Wlõ’ò#©××è• n1vÐÿ¸®õ—wñB­mžÖ oàëXEgOÔ·¥ó:]÷LÑÛÓ¶ã*•Àš"žÉm1%¨º*³žJq(ÚîØÏ­IÀ)5zǃ©c¬¦.à ©› ¹%&ýåê †{=i™i ˜HFìÕdß|]ȉ9^gpØ$Öêè=aá\˜+@d„ê7Ϩ9òg ;ˆÒ шSb¢òe¤ÑbÜ™ˆàs¶yö¦¤_]#Œb3,‘o$vÛØ!‹Jýsk\’žˆû‰Î"®6v¸aÿØä>m&úc6ìoä…L ÿËVg€ÆjMö|¸Ö£šÀS1Úº.&½&÷ã¢ÿP\vÑ\3æiQCqðÆ›ú²â®ñ·Ø/ês >_Ó¢n©™x-n?#ªŠ g bƒÑÄšš@›eƒëí­$k¤;cÛ+…´/Ã7iÝî¨OÂö7=µö–õ}‡¢ý~Ê­øå3¶Ìd˜Ào“µ9îÛ">" )x‹í"Ú_´þwÛ* [M7$D©½éÖ•íf08°¤=–Ïhè°ÕT"¹—HÈh±3ê[Êzf ‘¨£¥ÉE¬®D]ŽÀ˜ÉÈïÞ±tÍÖ S“HM–ßN:œ‰RÛã´‰‰)kÔºôž‘†–¢¢_¥Çš¼T¼¿ ãÀݰõçB÷gS¥@;#AÍÎþ¤€¯ÖÔåïÃ]Áq`bËy÷jü<]P”µ”óâòüß®ÄÌ}G¬.M@åº]¦³²o›Î*¸U¨Õ«ÑՈł:4ÓV¤˜)Sn¬ÑzÁÚæÂ:Õ]Ó>Í"iç4³n(â4¹ïnyS"s²=½æoZ¬©:`^Lw¿ W÷œx~³b0Ÿ†ö7kò½—¯›öçüB–óåéùÿIr±åýOÿ¿OuhØšøËÛù-ú“N~š;«@„¡ÈÔ]R}*çlŒ.s¦sR³Ìû·H›4ÃDCobä0wñâÜEÈaN”bIû¬I0Qæ>Nþø$"º3jÕÉDŽXûqå1.[æ§ëüñ`­¡côƒhðb£¦ŸÆXÒ¥R©mkÍSí4”¤;ÒCŽùg :)vjwÄõøÐZ”CÌx#ŽÌ¨Ã”óÄ[“!œßèm‰ÑÒêÄeïÍÖeÅ“ó…ÏÞÛjÙ Í¡~yKhi"•çË÷i‚’)ÿóã[V5Îù9\#ˆêQŒ~ÑD@Ñ!i¥š¬i ôá›*ŽtÖn¬=— é~5œëÚÕ¹±‹” m»Üí~Ý\aL£æCƒ«[eäOúDÕã| ¬‘"ËobÁîl,jä5Þ´¢š'›âÅlqË…ÛËÚpÓ8ÎïWŠcF+w»s‡wRÒ´¶0è:òJ™ã޶‘IŠŒBFþš ÆrXlí±êÇ ÞIî"ó»é,édγO.³·dTÕYÎÞ ¸äß@õá}Ëaë×Õ‘fµ­ ùhu§aB‘Wet¼X?o§»vBõˆxAk´}n];ÈrX¾1žÍÚæÂ¾/ä0ÿ:&˜ôÖ²Ê :n)]ˆn`=×äY‘oÃd‘ÓW/aÍ¢gC« ØE›[×;z^›ºm„‡ÈÌ…7DŒ¢ªd!ªu^u¿¦¬¶± RÈ(}Ã5ô¨cÚ…3YŽÜÌgBCsóLû­®Ùé»vä¯#f E„]'YjÑX,~V.Ò%ÓD)9Jú¢ÙÍÂÃ!¥Ïr¿¥“ž*úˆŠeuQ™3-5ËÈ‘u”Ô;CZ¡gýÜd©q µS‰‘©FG{´{¶Ñ±ŽÚåÆ,’KO:ÂÝMW²aF§\'>öëÑ‚#µÏýá¯õ”˜XÌH%íbjw#Q䬙+ûš%~Ö•Ö%Ñ9 ̰©=ÖA.оkïº+öG™SŠPÄ)%j3ƒÝî(½ÒPýDc‰YRͰ÷ë"S¸¬)&gvö„X;9F朲»@k±Óˆ”W1ßÊD?ѧ=”a-¤ ¤;ÂChFå cP÷§ž×KN&ÖBËñ„ ){Ë¢UbËÙ e2ŽºG»‘e/‹jqˆ¬ûɉ”Ùh¨6ý0&Ú¥FšˆžHÑjäHHUý@Ü~ú!!×Iplüær…¦â-ƒÜ!·î‘träà»°<ý­_ÈÞð¼üâä÷°á_7è‘ïóuÑááÊyL7m¶ŸÚ†—\LL…´¯Q¿à­ÀüË.ö½ž?®Ô+4¼Ùþ¡g½ÙÖUçÏõ\à÷-üX§UÐîöÒIUUý¢&Ä– ºk ¯ªC¬clçxÎÄ«LÒë7]Pý´î4Ý›À •}›X•yÔ^•F£ˆ‰£î¦ìù‰1o'ÒQkXç(£³[M¥5“±\cÎÉCø¦ô:E^Ò„ÌÄÆcz¥ÄºÄe¬q °l|¡ŒÎºPÓìDwvpÿvØ,ü¡yÛYv?S´’²î׮ƬìÏL×ÓÒÙA½R?Z‰¡‘ïÄÃg@—4YâŒæMý°Š§tI3¶ŽŸ«x í[xR‘+Õš)e`ÍÄÆÛÄë]|Ξû+6ÎÀ‘4r¤§k™ä'máI…ÊdìÁ¤KdæiuE!ŠšÒP ­^ëoØÙ“ÕçƒÃ1ÒÃá„ÊavßB:$gϼsm9fÎ ­sž.eÕŠÿE"°°0̯­»°†v\%cÁjÍÑ>wìb¦kêw­{Û jõÏ…Î]ç±­YÓøàÉÙ"CUt k#C$_‡_?“O]dáh¨næmd7SC9kÉS6<;³ˆø*L9|AôDã`B²&k×Û`Úµv´ìq¤sMzèí0Hñºlw¸µ¨™¡È2c(½X‰lb:ľٷ¬îº CÚûR=?ßR\[Z.ÊJ`9i¬_™‘ÄEEjßò !6• I°¹&màµÑV ,Òʤ=M%­Wè™ ^Ýì )—5•ä¡=1ÁKÒsCk¼Û\aŽÄFÏPšlº±£·8\P÷VDùÅà,*q2 ¢¹¢èÀÖË{fÕ%ElÒxŸˆê§?3ƒ4ß"9еLLkµ5tȹå”~Ý€Ï&[(Uú ¬%ßIÉD?›À ˆE ÀIbÝ „ÎZÂ…xÃÌÔâ=ˆ^Úå>­CýߤM×P•[Ö£¥ƒ7).IØ .v¦TèBõ' ÂÂdƒ/$GGrÔ^¶äë·°Ød\åUôû•r*p’výpøÎdƒG‚t´–\aöL9Å$ZSìq¤¦·š8ÌrÏgÖ:?S;Á‰› ö##'ߨEààРÈä ‰)K žÐ›M`çÚfïèQ¦ñÜ*p¿N ‚ð-l]H›}•QÀ;Ï¡©|J}‡@žIøý0‡¦È”À%A‡=k³4Ô_^¶{§ßÙàÏxT¾¸‡ú)o[òbœA»ƒ'möÜe<*á²ÀÞ.Øf/ÅBÇNe|;/hß™† ê+{ñ“Ф}‘eŠ Ì ‰èÊ WQS‹Ÿ Ñ&&€rúdõ ‘Íí™m{´hC¬üÆÑ&N‰DÿÔ3íW?0ŸÆÔ1Ábëf-ÍÙèØ ¶œ ʼúHZ¡>Ô” þº#ôaoI;ÐG".FÂÀ L6Ô< Zb¸H®o”O-‰h(—3ó4¬Óß‘†qéØÏganiHÁ¥æú‰€ØÛÑO2³¦~êHØ:dÆ`±Ó¶WEŸ ¯9º+èÞJÊÃÛx2e Ó;v}$ ¹q@’uǘ׹#½öÜyüÄ t§A5‹#NJ‰Ø€g~’ñ†‹€£ú =S÷ìš=SFÎŒ6îÙÁš|Πѱ¯Ù¿Ü€É^7zxK¨ÍÓÚê=þÜ5¿5ì•À}l&o©|¨!`™"„tå mœ,•uËÆQW3}2È7ªûjîõÏ&Á1vÚx½ù!m¼$í¼N÷E-uOöY+#×-ùœ°U?¸´hÙbÂÛmh{àc×¶í2.2ÈØi.6¡|pï°ã{óõrª[ìohðèòbe·cήÃN}‚{nœiè”:"e¬Ò?èf[x ÌŽ9@5Ô ÿîD¸äS¼ì2à;-i”„$=pÞŒœý2v#œW‰Á < 3æ$(“È1"I·h ä‚Ï›Å|LM¯îo{S•„b«&'½D¿‚ŒoÓÈ3û̶š(tËuô Úá…}¬e-ê’mÑÜÖíÜà”Zp­qk5ç4W&®ÒÌŠ@L¢&%âöN gõðDµ1ndJɆ8&:¥ê‹ a"ÞNv‡þé‰ÐÓot .o£Ó"Dë`K3T¯ü[îØíO"ÖI¤®²ËÂú]7—…AÎæ+xÔØÄ_‰Å¶|â¥=vç=jNŽYFØö-åFmjÏ7¦¥1‚s%E¢Ñ‘bfP%ŸØQfM}£*ò5º½y§á&·öÇt ^ Jf¨G»à/š1çÉAïÉ ¸©yxáž:æ˜#3¥â­ŸÂ;¦:à;ö&} ¨A¿)è§°Ë׆úÀÄú{``‘\Ì%¡%s1c$N ±8â˜;+¥0/ä "…P±*gJ#L%G—JܵAP¼à‘®LK#Ez…ä y™¨G6RKd£D«s£:õӣοÄ&D•DªàD„©|Ô‘p”œ?°£g:+ýÆÙ,€`6/þ4EÕI‘y9˜Xȳ‘BÅ Œ"žR%Jdæ(b‡&ö–fgQð£Ì(ôÒ@LZHÃá³ý|0€ã1™¼:ÙÛ‰éz8vMvt´©0äšÎ “´ìNgG¢x4P+õšG”pÊ‚QI"úAYò—'ÇDY¤L=D‚7])…/¼æ¸¨¯YŠï•ÉѦJ.Åæzæ~„xsy;¡õE´ê`sb¿¡…D2Že€·Ôc@sâ\ísFqá2Y%Hò¨à¥G[‰’ˆÓyL癈ÇÍM@шíõØc«»·¤è#‚O)™PDE‚Àú÷"çš"*qŠ. °EÖ`M9F OÙ¢ðF B#Ú1 Ëø€ð‡šz3 RÒLoôy)€U‚©»wtª„V"·ÓïÅØ”»%`¹¡X#6u››531ñ‘Œµzkè°>Z„ÐŒhó1‘ïQÃuýþ¼p‰v)–Œ¿SÐÏ;ô,=;©çÖ`´¾^ûæu%3.Ï¡qƒÀÁyƒ !—½Çƒ°»=J¤.Ÿ>(Hˆ¿¼D<Ö”»ïbÐf¿ 6Ïv}*;g÷ ÁÞ $ĹN[¯×a¢ÿâ„þïSgE׊¡é{€ö¸½¨K=4jYI„Æ£{}ÂC×üßñêˆh&($³[IÛ»É êb \K–õ9Ú!%#ÓØLV®/ßÖá H«¡®m»Ø »ìß„xU-ê&®Î/Ï3S|ïÓmÞy|4!­‹Q¡P>…*úœbwïà›¶:>¯ß4…,ªqÏóHûfˆR 2·³R™™¦¼.éžì¯<”¤mêZžŽü¢å­O›ý?ÄÅàýýS«ï¿¿'=ßìÿ´boúPNù¦‹š¿^Ó›",$hüú4ÄRÿE Ñxñœ(_в^¡k°Sgèfý—aÞÀ èBH¢ÿ‚Äø¦ …GÕ‡ÜEwlHÈFÇ _Ü%Ž‚ "ƒÊŠ«eÉÕ͈û)Iž™)è„ùs±n)Y*#ˆã‘452üÐ%Ôí ×x©u:Ž7ª›»®³¬Ê:3S²³îàu¦…¾ @õÛ[OpK‚A°ºÖÛŽ[ôV^»±|Òà“yc =’ãÄ“ÉqŠ»ºvñæM‘¨f9Ú‚`Å W4xO¼ ÚøŒ¡ô‹V’jE7ë.iûîõ+^TTŠ ] ØðF½Z4äF`ƒ!CŸ½)5ʨ[f rx˜¹Ç-šžFeð»ÛKÙg–wÁ zöÿÃÞ›ÀI–eeá/"c±åVKo3Í4ÓÒÐC¼%6ÉI&³²k*«ÈÎÌɦGfÀQ˜™QÄdDAeAEY\‘¿ˆŠ€Ê"¨ˆ#*.ˆ( * ü_dEtŸøÞ¹çž™ÕÓ¹¿ßùÝʬȈïÝ{îY¾ós’è|oG˜ý[ êôøŒÅ2°¿ÎVp60#GØÝË]à >ê€8oé9 ‰EXÌ´ öÍ~ýì=ެåìðèëßrxÄ¡efý8Μ}¾eÌÉÞ‡ :>âàe8ŠŽO9RŸƒÃƒ#*tð {g˜ ƒüGžîÝ9|&Íâhäf”K³èƒ :>8cÀm7Ø+Ùå{ñœ“vÜÍ-ˆ]þJvOÙõ=«HÁªÔó_ßåEùá}¨ÐéQ—–¹ùÇX¬uŸèîÉ^èrÞm-þÉ~}ë¹<(/óÆ9ØÍÛ Zf÷€áy9ÿ5ÛÊiwƒÂÝæ[PeçGçt{öÕsE»·oÍn-<´Ì¾›%P™fFÉí[˜$=ÿõ ¥yÞFçvîÎ~=ëä øü{î ¯Ö³oÈ`‚f%ÅOÝË=³gÎvóÔE™Áv÷¼2×ûèäÎá½4kÿÎ-otÎòtr/‡“Ê~}zt﹜ ËŽ©ìJp̬™[¹_Ÿ½ö©³ãü·<<ºs÷¹{L·®½ã»÷8téþS÷òúûìµ7,ÓáíSù4ãT9¸wœÇ/fúñ^fwºp–‡8ÍòÝÙ•ä.p÷ô¹Ã§î1êqïæ3÷ò|L·vs)òóFDw«gÖˆˆånš©Œ<«ÔÞY.±;ûmžgd}â€VwŽò-/ÎØv)3ÜÙÇþt›c•ºsÊ@”näk7ÎF¹ŒÒ9 êY†e=Îιò ޲ÓþF*0;ì÷rÉðY†óñtȾïѳÇ9^ŸÃãŽç)3ýÓéÃÝ”oévž:âÀ^{Ç\ó¦ý“gwóМ]4tÈ2:=»ËÁ¤¹¶GÙÅîç¹›ö÷˜ÆTÙo¹k8=â U§ bÞt ›õœ°à©“ýcŽ»‰å„:9cÖÙ¬ÍCžgæˆp bÎO9>¦ÃSŽé,Íû¿Å–çÍ›8F²Yb~µ›§¢Uò¤3@Ôá>óŒOó(ãsðÔ1€¹q¸ÇBËðIæÐ0p±ìØàÚ4ݺɴ=::ïå ßb÷ˆ{í>˲JìÝÎ߇ݻûhŸ·ibÚ­låïÎnÞÅ:ÿ4ŽGk÷ä™w™×rŒN3*®ÑÓñ©šޏJfÐ'”5£he¨^µY¹(C;™ub\‡Ü;Üf4×îñ9] BËŽo2Ïí ³rs'Cfr2ë÷`Ÿ{Bû§ÇL³©ýc†qVf=ÔQûwnä×Î,¤’ß³Æâ7ï ó]öÛÛyuûdŸ¬Ý>ž…Qs ¯Ž÷òzçü·¹5ÒçÖÎÁéÙqˆ9‹ÌäöÛ,,q”ƒžž~äVßì· Ì/sÖÏîåη[·Žîå4íí£›‡÷pÏìïß<˜U’!sج^ ×ÙÑÁÍgïåX4ÏfÝ@–w÷,–ÝoÕw/ =ÌLÖÜ©w²—çý:ÌlõYeÚ2ââlf ÖåìèöA"uvÆa[}€ŽÈ¾ÁþD†œ›f9Ú—Ç éÌÉMæ—yô‡v¸w#×b…í…5ã"@P Ïtãvµ•YCÌ+÷8*®Û³ | ²9<=<`ÈÅŽòdC3„|ŽgÖ;‡;<áú€ÛàˆmË>;wë²ã1ó9Ü»½‚Ÿ~vƒù ³®ùÒŒ69GqµÇ½òô€ƒÛ1@YHˆiÓÄèž=8Ëݺ³3†ïì쌻¤ƒS†°,G°yþË3æ=÷÷ò¬[gûû{/çÏöwj³S–.í(»ÊvüÍ“ü+ïä àf ù¯ÉaÆf||9˜efðçnòî Ç{u—£¸:böÑîÑ| µ]nÙ3H°½#xv˜ç“š5É}Ðìçÿœkõvº‡¬¨ç}ÿö™[·ÇQÚqhÒÝ›L›»c¦ÙÚÙ禹;·öò‹áÎù}‚G|ëæQþÎ0­Éî0`Ô=f™y ÇyP"K—¶Ïl®Ý“»yŲ{rtÄ0£ÝÜÍ/°“Ó³$R<§VÍ}Íx?ÿ˽ƒÀu–‹Ë“µÝ:8Îsa‚û@Çü×<ØeÛç)ØÔë>G&xÎ.´„IïÌI¨öO™6w™Iuz®ÖN–iÝNr'×þ­g·#æ»ß>9Ê/ïÛ'»ùÇqJÍÿ9Õžeÿr›ëöñsU\¶lr[û$眵µÌÙ6§û·rª2S4ØPhÖÿ-[¯ÇpI‡|×Ác¶?áƒ&=9ÎÁ€oæ ?g¿¼u”SV37w»'OÍPXØçs÷Æ­{wó‡Ôþ½<ãnöçиïøäÙý{¹m˜}Ƚ# ÍÿîVx~û ¿®nßÊ=£sþšÜ.·÷o¾6¿Woíç¯åæÑñ=øÝÉyrmù»f6Ç=·Ÿ=·¦HésVÍã1¡ø#<_àw€£-sLò¿Z~ç@Îçr Ð<óì$÷“»ˆl³bó¿ýÃÜýÚ?Ʀ„™µ±w×µ—㼉Eƒ³_1\{Ðn0ûÕña¿:ëyg‰@næc{Á·.z’{ÍñþÁ2Èt?)½q ³{¼dhÏ(îrÒý›»7ö–­·—hëœS®ðÖñS÷ÈWmÎBƒ÷Ž ŒôÆí[7Žwg}sOް9o3xÀ±ÜÍ–ÊÑÞ­<œbsÎr÷‰6gÆØÉyÉ?6*Ÿ½áÞ­ýÓ›ç¸Ô%Óhó¼ õٳ̸âÉöŽÏ^{óa6Î#…»OÞF(ûŸÝLÝ=÷Œ çºÇbVg±#†|bãþÁ|skìxvëÆ,cÀ Y³[txÄ]Á9ôàðtïl»seûÔÙÙÂ0gßôäÖݧvê¾ój¦Î5ÕÏ=upx/O8KAçÿfý¼ƒÑÉÑì^j´9ï:éâ<æ1³™<;f0³³ìî~.:ÿÓ›Ÿ›7°Ü?;ÈÁVÏY8ÀL×޾ɣlYJÁL…ÎJ»±¹ä ¥Ï7É̼ê³=î­nÏ8°xv¶IæýÅ’£é[ŸiJþ/fKåè™YËú9pó4¯žýÇ­»wÙ?ÏYe~ ^î9ÍåS7ïåŸÇl?<{|¹íûO=sòÔ½£eSjö7÷NŸáXO^Ër&ÎÚrß¹—CÎðIù^“3F®Çå,ÖyÌ2&Ÿ»áy¤ò!Ïðwxrw7—ò;ÿýãõ3–5ö÷Ï3HÜì÷·v™š³]q }g¿¿Å¾ÿÁ³û{Ï"óßÌÚ>ÌÅlÎ{‰ç9.ÎØÇ·Ø×gî%ÿû™ÝÊ0>Î’h2û(ÛÕw!”Û?/}¾yÂ1JÞá™/wOO½Moï0Hëì!0×ðÌá1‡>¸É¯‡Žõœ9rÆD›ÿ^û7OsµÅ÷{Ýe˜÷ïÏ2Ä9ùìì=â{­îäßg¦)ŽOóß÷æyÇE,};ÿýÑͳ¯7v9šÈìAç ýf4‘G,½å¬…1ÏL™Ã¯žÜ|.«vg\ˆ}trë,ÏövÆ÷9> ÉáÙþÑÑÓ¢õ\ƒæ»ÂîïÝÜËmÎè¡@óÙiföç±±³&ðÇ·–=íû]ao±ðÌÏߪŠqz̵h=Êe/fPÈ›GëåéÞ¬™Sž=ro—ëÜzvãxÿ”ùòg,ñã›w¸;xçæ½<®<³×o0¯Þ=fû¥žÌÚM3-Zo²T޳:™üªš¹y‚Э‹ý¾yÀ]àÉq.Â?Gгgó´œç±'®ãì­– ÓÁz9Ã3sor|š'¬Ì~}ç8¿4wÙvÒϱüƒg/·vosÚgo–'dZâžq%sHOŽûðöËcyº{‡iX|û„íO{ûdvKÌúÉü—?<;œõãÆ-5«üfTØì´=¼»'ç‡pž™2;ù¹v»‡32fæÕ™=~+ÇÖyŸv#|ŸqÕ0ªàìèðÖÍ{Ì.>šnrü²g‡G÷rëûèÖ|?ËŒógï-'¬Î¿üÙÁɽ¯ÍÁû÷NwïqU-‡9ÖË›\ý×ý{rÆ•gÝ9>|æÃä|úìѽ\YÂÙ§˜^ÃçÞåS÷˜6ØGÇûÙ›ä*8žÝ?¸—«9ÊTæMT?cjaÞûöÉÞƒ{¸|fÍŸ9ȱŒž/ˆã{ÇXœyB7N†{vvÞ+Ïâ™í?Jg¿eÁåçpynσ<<òlÖãœi¦|ç0žÜrp¸óÒq´> ÄoÞì·³Ýük8ýmöÓ80æÛ3²ôݸ}kÖ( à‘wOŽoç¡Ö÷½Ì|+äcF~÷øV¶]:7»c è.¢=<'½ÎÁÞOÎN÷ˆ<ÛZx†6Ê&g¿åÏúÖ û0;Zò€ÛYãå<Ëäáñ)׺™eb<¼Å‰op%‡SëÞ­†ùtÆb›‡éŸœ°-¡o1ÅG3Dj"tç&†?¾y—i·úÌÑÞ Ãty—m…|Ȳxží²ùì]óíÏnßdš?Üx&>Û?™A/áYœí³í£÷g%ÌyöÕý¦\ᔃeÏÛ§öÌ&ìrl¼3Y~¥f¿eÊWN÷8fäL0-¡ï²m©Øo<# àÊ68.Ò3öîœ>Ã܇³;» ûjöÛ[7íyÆÏ]–oöàŒÓöÙ­eN‘óµùbƒg8]’¹L³ìé]®•7[ò³{zÈœz»³õ¿²“ÛÇÜko³eÙE0²ÇÇ\!Wê²{ÞÒ!W1³@rëá`Ö•,w’qû83fVâÛ3¹ÜõÞ>9ÛeKòzçöŒh;§«oï>ÕplÇ·9}6k‰”ÛY‡g3\q~Ì9vÛÌÁx&g3֞̈ۖì¨ãÛ ‡ìŒ9}ïÙþ?½ÅpØžÜáÚx38ÿ; 1³%ÁÀ<ÿåþnBÉ×8œ0á|–ó_2×ytö\þ.å,ªsZ]Ž^•«™Eì™z¦[ùW7q6#ØÊ¡âwØŽ(xÿ€ÿ0þ}ŽéwŸ¹Kg·Oø}ŽCè~‰Ä çÏ4T>/NÊ·ßãÀ«ûgL·òÓ<~þìÖÁiž(øˆ+ÐØežÑî]æÖí=w–§ÿ}–©ë™užÏ­¥ÓŸ|ºw”GÉÎh>r0ìS®4æô< Ëûto7w“oÜb6ÂI®Ogž:̓ê¹E{óîQþir͹ϲۑÛ»7˜÷<9~6ÿ8ŽNòKñÙf…ìÞ:>ËCúŸ=a¨Ÿæ¨Îwgtu¹§9;$rHûÝ#FýÎ6|nÍïÞdVÝîéÑñq®Háô(_vÁ÷t?ÉN>¤hά³ü]Ú]%–/e×ÍÑ)Ÿå×üÉ]¦ æäìt7Gæ|Â(ÀYG×|-Æ1£çÎ vp0C9ƒVä;ÊŸ24ùmx°{ÂÕ8dV;)ìe_;SWД19v÷oæ4Øþ)S/³r›ùóãÓ£ü+ïå×çÍ#FYW.à{Þ¾µ—ûó̲ˌ°Á2£3_‹‘ý’«ç:dköàÏg1ÐÜJ¾™Ü/È×d·)¿l¹Î÷™uqó^Ž«|÷è襙±wë^ÞÔ<€²ØûJõÖ½Ü)sgÖÞé.*–|AA¶1ŽÎ° õðìàøÙ{¡žñÚ d<³oåZyßxmº}÷ð¹£¥-8ûÝó: 2¶ï™wÎ}÷8Ï»|xÈÀú¹Öå\{yB}ö ó·Ïçáú*;‡ú3üÛ³ /–œ2þ<ø} B™OîäËŽ™ïqÌ•ìç8¾oÝÊCäoåy«næîßîÃe}Ì@ÚŸ=Ì}›ÏäyÄOOŽr¼Õ³8ò8ŸæKWvoå˘—Ý#†zFŸ‰¿;;fžïýý\‰Á­½å¼Zû>·Ç’ž?ç€ÎñGïî>—¿W'ùup”@ìÞÎ?ß“Ã| ÄÉü÷=¹›ÿܳp Í>cï™üïïæ¹Ù±Mû>§Fžçü8_rrÂp½ßÚÃ5>Ë;ágœ2{˜¿–“ÝùîIþY0zãàèVn¿0ÏrÿÎÍÜëöïåîÁþ­ügÜžUc.ï߃³[³âËä3–†[ËŸqÞFðîò=¸9c†^g‡‡g÷p,ãÝgüùÙ9å7Ÿ=Å×Ý<¼yûÙ{P2#_¾kwÿ©ÃçîÁž>;9=¾·w›âìÏÐ<Ï{ ž"óùqþU9ªíiæ $CÞx ‚~<ÙŸÿWýôx÷,z:žÿXý8\+Ÿÿ_üt´ôsòüϵóŸÇô&O–þsÄÌùÆcøœ>'þ8™:.Šÿù…7¿ÿÑý¾©tñèù·‚ëÀÛ³tïîÌ€þå¾~ºt§¦ž›±ô)#é 'Ïÿ­ø±­óŸ¦¼÷ü5ÃÄï·ü•îÿ{žBìü0y ,/­ågÆ-´dè¸ù‹SáŽà"ØÛÅ}jÁsX~ß¿nØe„»j ߸Äñ…–Ö ÷Ad±ð_Ýç/M#öŽsË7;1–¿z¬T8üwúózBñðÛÇË^|`ñP¼Š¡{%£bK5kȧõ Gâ“6L$ªâصéÏobÂ~ª¼}äul µ½ÿ÷Iö÷#Õ\Ö{ç¥Ù_§¼ÒÍ¿`y!.+>FÑ%S÷cƒ]7vë„hùû.]ÐâÅîg#ýëNbÇq)>UúTÚçïží»ìwök}’Ž+Œ„ó/ûüH§؃™Wƒ‚¥à¹‰Î{G+ÚC¨ù|:8.<¿8–”æòÑÊ>—åEÚñ°€éÜò%,é*ÙÐåÿW>šã³?žßÔù›+j†A¡åPüçØó³x&¸vÉÒwÄíÇ-ýüàJM¤ )Ú¹ÿ÷[t{x ,-êX>w<îïpÍw‘l¬Sµêð¦ŽÍ„7,ÿçy-»Ý¨h$hHå€jw™ÞC>*¬‡ci¥‘Û]Œ$obº¬4\*pù'î¢]ǃx#§Îí/Ú·ù»Ê&ƒBso”w‚&OÇüsÌ¿ÉÒ&£ìÇš§"9^Üõˆc"c·w.,g6Îë»8*¾ü8»Rú29ƒ>rœ ü"äTñP`‘á7°_=0‹ý§Ë³éË%­®X<æjWo•S --/æŽ]ö­g Š.xÂÜÃ^¶:yÃÖ´`CLc…oåðÓÈMg?í ÙÛ™z,µøiÍvuø¸`´këdE⺊ ø=’ ª®9ÞœõÄ“_ìxÎßba¬‘Ò³SÄ`“Ô{n.¿ÎµbcŸQ¯s¤e}ÀØâS9 ?)w9㲦z«‹±xGî­ãÖžƒ]rå…Ä]ôÆýwû —çÔ²/óš0Q1_Ó}\ûã|Œ)0ò.hwj$Ú÷Q"Ä-=ª0rªk‡JŽ#wj¤üSö£ò7Ušðɩʊ€`{ÐJqWþíb•>`êTVÎôǦá“CgIœÒÉbbòbŽ6ÕþŸ9ZÁ”Cʲ‹­1pp9l ÷õËVÇò“wªŽTnóEý–•GÎT %•¼tE€Ÿ{=ÆÂzôžÎH—þ|W«[Õ ~²Øy^qÇd$äl„•j_z~=eŒÕdtÄ ™\ŸWv¤s(*’Í-ßXwz´Úò{‹q¼Òw|ÚÒ÷g·‡‰„›ðbxw„w2P!l~WÄÃfDçY~H›+ŸÍŸ:BM|F0’ ’XùÅ=GŸÇ_wc #£¹Çð£{Š eXèKD*¨yx£TðïófPªuB¨‡ØA•—-îyt†cÍ&¾ï>ô› lˆ8à‰wrZ,]589Ð^Œ};U#‘´.ÑXr]'"àų#™8²ŠŽÜÛ¨×4õ…Ñ^ÐKÞ×3ëy¸b†Í€#>š—(DÚ¬¼>"'˵­s1–CÛ±2Z˦ƒÕÇ”Ç cbÜÌ¡þë’M#E dć2ô–Êø×Xepå*Ð,Š wáü–õ¬6›ëwWeÕìO#Æ‚òþ#Ž7sRÿÕx⻲gàWïN³Ö§«4˜'6:Òeâ–]*OHD>Lóß:ÿ¼1Íîí`¶ü†Œ´™6Ý™<] p·_Pš`Ÿ„â\:ÞÑʇ*Þ¬ãÌU¢WÌ™JŽ‚ËH¤SÈ…˜÷㜶“¸ýi?^ „øc,F#)ûäÀëúPs\"W2æ²¾±&«JÄi Z¢Ô5~Gßõb³š‰¡¹ÿÄñMIE…‘EüVt=eS÷ $?J.g°RÝð8ÌK‡ƒ72ì6 XCqYI‹À´š‡Œ÷…ý XºˆD°DóŽkª‰ˆ˜FÏÙ­ZÊ‘2@%{[RàÐ~/#…½Å…¸M©kt©±H¿îô÷#ñ*â®1ŸÒ~-n•'.{êÕqqûÄÿ¬8#+YÝ*uÙ<:(ô’Îó†DgLPtô$Õ§%Dµç„ˆ·Ým &îDZ¬&9+P}èö8RCS% œÃîät»š øÓÕêV\Ö¥ð­((rªJ ì×™ó–n¶XÂ…C„"'Û;qûüÁDWÂÂU¦*hŒFb°"êÔ[§‹-¼bz>õDôü"VhC±ªÐ¨M4‡¼ 1\_ÕJÔz•‡iNEOD• p–Å0SýÅõÞÇ6Æc]²M¿.œ°œ€$?¼Þ{äqq£X³~ f|ØMÞ×Ñœ¶ÞXx¬!¬•(œ’éŽHª*ŽüØ…ü‡x;²CÃ%àÄ+†Ì¢Š$ÿ-™ª³Êî\(÷ý{ów˜ïæ¨@ê[6EP(cö¤bìà ëcXCMÄuùâ•9ÁX¼p "µ±âóG#¿ëí¤'Ce “ûn#¥5"Ÿó®3x p@ÅÌbÞÝó€¤ä> ß•‘X9xî·î“©. ÁXÝC¢QSì;!–êçî¥áA££"‰Q)OÀêY¨Idî»'LØ1Õ”¨ª¸Råmó©nµMAxÁ&TsÄ©+a¼þÌ*€kÖŠêaž ƒ›H'‚6)Ÿ²œ«’ÇEÕ S<;òŸ5óŸ…Ìj§ ž¹ŽãA±ÄF’úmH‘ÐÅSd$€Ðý8M¹†Ó›Ò¿‡’7†lâR¾•ê‹(ˆÈØHW%©ÆÁË÷²H]”&ò?­KWj3sŒ1k˜õ¤H=Rº¾`š Kkh1 RжJþèC9Ì þAçÍ…$•2¶>„·F!—É!²•¨9ÄrŸe?èª ùê\ø É©ç·üj #•¦ább I1Ì¡huªœËs9BãaŠ.…&’kµf=Þ™Öw¨f`AêU*>.Ÿsèêy°ëúJWujA 4$Cmð&U§‡‡~mO¶´!s²æˆnõ –%Æ-—htɧòããqÕ²”ŽC§šw„MY›a¨pü|øN‘L\ˆ:k|„ÁJUŽrZÕ[=Pœ Šˆt,,ªl‰„;.‡JÆï"ÜâòÒ–L9_ EúɃÒÒTÑFEʲ5ü+ñ´;媤iòÅÂci¨?Ÿž/eõÀÑØâÒ¢"„?*ÄÌ4PQ±¨B»Ó§ dé¢bôÆCýîc{PñÂMõÖu2-v"ñØ"'¬º õ€¢}ƒÄU§EBlîÂYOi„T_4˜çÓÒîZbS6V$›A2:}浸µÅ”¦þ0Qº¹rpðù?ÜZ|™¹3à­9{á–ù*î1nïw—|Ý üÀÅØEw^àñs„ÖR¬Þ›™ò×Zj« n²™jbçb*J‹éë®RZ¿öb ÇÌf÷Û¸(QMR˜T âŠÔPÍ¢¬¸|ÐÞüÙì\¢+ÖS,ÂË£„åü‘D}3–·²/:¦‚Œ{NQGèEt »”,2 Þæ8’ý‘ŠøBažÆÝ_¤løS€rD—%}+ĦFŤ. gèDM [$ßW°Ç¯Ð*—KHž.ÒWBÜHÅAl "¸H+,xÿ…T¡’ <.D´Eà•b´EL 3B4õ׊©[­°Ç¿ú±z`¦ú”§ •§Ä,/ÑîSîÞW¬0ÐÃûÕðxüÉ[§ŠeN 1èq^Dh4ÖfÂTÝ"¼¹j¶˜äiUQ²?†áñ˜µ6ÒÐcøëf],J\C Žˆ¿“ÙØ[êØÂäðïY¥Â^ŠVðßå‚•Xw“‹ø¨+Ä·dóyªüÑ•`C4Æ‘ßõSóŠ —#šJ;@¬þs\lÂï?ÿÑ&눢÷½Hc>Å*¤÷ÒHÃý¥´d'Z˜¯»_€L ŒÖÃÞòí8ò×AûKqSù¬h'K8žtE¤©›ÌT’*ÐÛ5º² ¹,)öäÏü€#éúÆ2!ŠŠéOØÌ"K 8Lܹ%=‚³¤'õvN{"{ŒHÁ¶ãé²Qá˪À:«ü+wÞ&˜Ï'-òT¡å?¾P§ kP&ª!¤Jí <µëŠ«1G¹øýT†í±¼±º¡'Åì?–Åþö"[ŒŒ{Uø¾ ûDC~éq: §]Dà³Ü»Õ‹œrtÛVƒ#¼ e>µ¸bõ«êÈ’]QH£O5h?C™Nd3)Ò8ë {E˜‡ãÉO …@Òb»ßÙªpÛc­Ý¬NWå7°}GÙääéH×™ˆ57†ŠcýùfëXãH[”ë1›x ï‘€í Ãò>_Á¡÷3ðA¾+…±Qêtêˆe¤«å7ÄÈŸ* :ÇaK |uŒÊÌBÚ‹x–§D`:O Ä ´Ýö\¦Øât¹ÌNÓ.R¶k¸Tv¦"¸T¶Œ]LV¬ù–ö˜Œ¾zùhO•ñJINÉcŠGwJh"}y“ŸOVYqmÕé¯o/eé£6‰‚ãM°ËÐzº»!#i]pèÁ5͆/>½zÌS2œ*ÝR²¨?_¨ª\Û`CÜ«ªU9œÂTO+š^<Ðç+`ü¤E¹/¦/æ÷GÅB;šcSÙhARþ×€ÌÑp,…H”•øO]¹‹~E‹ô—¼cø‰·Q\¢fûR²Sx°â,ØP8+Õrzb?¬<Ò8»2ÌX]½å$IJÕw?.Lû«e¾eë<œ½|¿Î¼ŸŽÒc %ýŒy/˜ÅEnl±¸ œñv‘;½‰æˆ’;ÆE†+)¢c#7Vú|ô©{µ(¦ârÒá“‘&£´‰Ü¸@ÜÛ³ u½('êFÃ~N€x 7×-ØWF†ÕMõdþ±ÀÞ)5üj4ž÷ôº8~ú"õÆ^0ñäéXU¥¨Û~ŠÁ•Ts#®ÄqÄöµˆDFV(ð~UõØgq…µVñæø8c¼BáB¡Å­o€ÁSXHçw¢@¨° ‡‘š]x¢K3³Q ©s®#c¾ j*ÆZ"w¹xí•.™©ñÏC»RÝ’—}"öŠtuúЉDÏ蟨Y,ÅV¹NB.‰áåüÎï½D—&1Bz ”HfÔõ`<ÏV]LW,dâí]®Š‹‰áÕ‚• zÐJ1‡Ì·MRíòu[L£E‘ºtRÄf]Ä»òw<àcÜž€ó—ðêpµÄÿ_ ¢ìQæ"“ð³“'Z:ÆÃBœó4ЇíG—H,Ò>ÆÓ°,V^õUÍu\ZS2–¨¯×rT ù«ùÍ}P]_1ÒØœ“a!fcMèQ¦$– ÷¾þEâ^zW+‘ É‰@*¬3ÎVõìµñ]·:ô£þcu['1I&$HUïëêåËòp¡“ôµ>˜ê›ôø]E{gÄ)`*À|/ö–:ds½YÝu-’å/o>ÉÂcé6µuj޾ñ–«Ràjô¥l…ž€þ&5±–&ªà7œ+«ýˆœüsÅÄVËôj Ô‘mñxTes¤Œs—ùy]´†Ó¥ý:G è¹7\X7'Z§þȾ«˜Ù¬?òÂ烬iá6?L1BVªó}• ª†•",YmH9}æÃŸ QAS 9p2¡‚p˜_ÌñêÕ²=Ò¹É9Ò‚l„ k$Bqéþ¼ÆA5œ …¨‚eÊÚ8¬ïÎÞµÄibÕ®šJ(Õ‡:œ&pq‚Åb1s ÿ[÷ƒcâHÙR¹NÑ‘¿Aªÿ§A¡å¬/sRTÇ-öèÕeÀÑýL5é)E0#.Ö?@ZËÞZISðŠ4„¨¡8ÞtJ<Ô5òó¶x÷¸Ñ\†ÛZNrù”pD‹ÒH}{µ™A9G.1zhšWÃA¤éþë úâhþd†.ÎY,'Ô>-G¤&'@2.…ÉEA«]”ýZ·Š &uTìwý@k2º -ŸgU<"ZÐËUA<•}gü¡N}¢O¦Ø.^+­èå+Øu½'”_Ǧj¯¬KÚÆZ ®xÕSÙçƒ`Ç[• E/vÌ 4bbݳ¸5.±ÌÙã'l™ßËÞ¬ŠT/¥ ,_4°Wt#1Ý~Ó‚Ä«ñ?­S&„Õ0&Ű÷ª]˜¤ê¸XÖ©ÒúpC\…ŠÜ\êɰ‡”'ÏZóbšÞ›&Ù·ô)p_©°WP´OÕç@d·œáqbÅFE8Ã$„d¾ÖÃËÉXš‹#û oþÞĉ®ñáêW,ˆÔ ¡‹:æbó\›EZ´Ã‚‚Ì1®”~ötbHW¨I”{È/½Y¹‹ØÊÜ&>®>EÕºL——Oé‹ÞH"qÈx)O›6WÅÄu}²Zgºy ¦5F›6.T¥ o(:cyÉ€ ¶þð8£âä‹å‹!Ö;d¬jTÈ¾É ½tì-­óõO ›$ÓK í꟮*üàJ yð¿ˆÙ(|€æŒW²35Ç®—tÈÕIêòlóh¤ÍþªØoE´’§ð* æòù–!ÑÊQ'W(XY”: ²5?WJWK9=µWñävá–ÔCE6És‡ÓÝT@IªÌnš–‚'­*Xq£7‡ý%CMÓß eô ?Å>RX¸ë‹Ë^pi(GW´%C ĘÓh[¦Q1H»d?&“#ënïÀËך påŠÛFÐx³¾ü“œèdž§Ë¡¾J钤Ѩ(‹­ìøHÐú;ÉTuÜsvÕ°0P§/´zñ¬F1¬­}Q5"_5—y)LZéAäiÛ%T,øËÜ }«õmÕ¬#‰ãÙû-`ìf#—¬ùfZòME¥¬û^É ÂW¨3d«þSh›iy Öª*l+Îj+F%WÈãå—’äÍ©¸<ÄÀX1|Ûò9à´;½ §è‡üÃí/ýQo‰C3Öä•?ôç+za‡I1$ÔôùË}Ñ.;·æ÷’}䱌àd¬ Ñ…«W¬0“l0)OÝ_ªÙÕ­ eSÏod,¹ Ÿh«#*~E1…{3]ƒmº¸ã›Jš¬—žbûzmð–?,µ]W±´d„¿ ×ÕÞÇ‹R² Ç+¡¶E›?Ôé¢X(ÚÓ@*ÝôÁ 5­ecQNªKðݵýS§¦H/«â¦x”Ör¤R)ÞÀK^½Z’-zQâ²ñÊ1êÀt¹¬\%¶ £¸íïøHÔb‘çl¤E"&RG/ý‘UH£k¶øŠ†¢@©¼âcS3šùÐlE*^¢ €².cswÇJƒ\ƒp¹<]@w©/&u(¶í1_DZȤ §~“•ÁµÆ—Ó{T¸sùÔ‘”dk1£Ñ…jB°UyÙ;â¹Ù v²-Z3«kH+R{;ç2¨à}væ¢Èê.«S‘:p}·&!Њ5‘&ª[ô8¿l#ÒÓv-™o"mÓIþà¸(|R• Tsᆵ~ÚziP,ÂV,̳b'SeU* ces"RvÓTZºÀel0?Ö—qy G\¼MØV<=çýý3¼¦d¢65/7›y¹däš:yžßx´šîO† í*¾ {_Û7m“Û£8·h?.Ðv.-ø¾äf3«nÜ=>ŠpZL_{2ys‡?'dòV ÜIëAѺh¯1m¹r$æçÓÂXN±æ¦ ÿŽÜíÆ™(ÜŽ¼&“é@Åk ¹Î’^U³Ï#ëyâ ¶º!)dÿ W°ÿ˜ËMU„ãgZj0{BÒú'Wä(.ñÇš3F.FaR†M2Û2SM_I¶–[ñúèX_ 9›ÒÜs•þ+pÿ2ÒÄiW‹±Xö°s„5!­©:H%S2«HãKèk[„ÔÞé^É(Qg©¿á‰‚÷SHˆ‘²ƒÛ þ‡ØíŸ]ÀšÑº%Å›¨\ÐÎ,JÿªDcøè1¢¢e¯ê¤¢š¼PYÔÅ›È?épDP…~.°%.ºÜ/êùEãË1²Š41ŽÄê6=6)´(þÑêXŸÑ­{µô“¸ -Öâí×Ñ´)Kéãø"KÑ%×A{# ®¦BöÃÛNá¢@«xe )NU¬‘+> W-Xq¬´Æ‹jÐD‚x#&B½ˆDcÁ~V^)&Yº•p¼By¥ž)Ìóhå²`™\ò¡kÎÛÓRÍJÎU®bíA2,X"Óñ^¡Ê‹Q®äÉ,ŒÔøèøÂHù8QÁ¨‹°“_0ШêlVá3#Bž ‰F§h1«¢uµÄ™N«ÕÈ[ÔjêB­â4‹¾8:»gÅ–…ˆ[ µ‰«a˜–d9õæ_ã~Þb9º• Wúä3(‘†yus‰EF¥ù5‘1äÂuâÈâ#±ë]7¸CŒùùû…Äž**mXY¤#(Jq¹1nþ`â@L6ªÛ“ŠÄ{~6âh ìfr!Ò„­¨¦=Ÿ÷+S¿ˆìA{Ù¯âCÒ£Uãñ›»{+&Õá·b?Û#¯þ"µ7Y¤œç2ž$Ûš8Ve.·„|¬(ø÷b<ââbíº¤ŸÄÄìåµ§ZÅ‘{ !=¥Q¤j è„­ä.¶­ê/´Ekv ë¼»D˜«j¤a®æ¨ª/Š-ypi›âl@Z÷üa=V¥~Ô+¡ö#qùÅE.EÚ\í)Ÿ"e¸ËP+dO’ÕYJn£È­®–€->P²IÈäãÖ¸ÿ2¼Æ1¾»N,ô®½pM.—‚pVSɶòÊ‘GÉ2ÚXj~¢uÝ &Œ˜jÚTGÐܬ‹#4 +¤lÛ@§>/­æ¬XåH¢%5udîÄöÆJVõÉŠf؃`Æ(Ô)Іh ߌV¡%[‹ `øòÑ/«¢cät€Œs(Z’©‡Ö({Õ‹ØÄ«„«•Õ ž<ÃèbÙ-)F¬(úTzJW`‹+È{®ÂY³fY¤D]ß.°yYØu0 ß)T¼«#F3/˜-ÊI±²GÃuÿN.Љ¼`ëF %†«ca—¦'ïªäýÅuXgEÉ‚äñRü;*éð“/IÏDÓ5y\¬,5ŽeäÈe6åt”÷)¶½xß¼¢Ýe ´/ZµÀµpÖé‚í[dLã Ö<-œ˜ñõWŒÆZ¨j’ T+ÀòæÒ•27ÍÕh|[tࢤ;B„š7 åÚ„• î<àï õúÕA£ëþD¬5Ö_¬«+Zvã¾ý¾üºïgUMÛ…«Ó£âÅ †cÑ‚t=!AµË… Fš+£t ¯íâÍUÄžQbÈq¥¤ Üø©ŽreÚC' ¾ ÇÊ·(4ª.â‚ê:h®Ô}VN"¢¸ºœæwëZ¤`Ì[/ºÎxN,Ȱ˜*h1ǼxO…¼óX]i¡PïÚîr‘ª9 ž°K(d[bôb¶ã}Že›ƒ¦EM3I‡Oïû1áE{Zû 'ü<^åC.ž'*$›èA»¢•ÝϤp^)Öà_CF0.œµY‰ið}×*£x›Ôbz±Àî[­gx¤.‘HHdOˆð2A›÷íÓyîÞV彇6µ°“Þåb¹—ÁÅÚ¯ý½¼¬k<\F±z“"î£ãKlIxYI(ùSó]é/45>} tÁ*+ç§.…×S§ó ú7©Þ)ì"ië8*l[øMÙ7OVftúFÌŠ—b2tüçFWí7É ¼àÞsÖ¢9x“­÷ñ`Åî¡\½Ž*®çC†h·ÕxÕ nUSW{/^ä—H«ÖÌôµ¿s”ï.œc÷½ªgdÁ^…²uÉêÛ6?¨ÅÌy£-5Fª–Aå÷2‹—›y¼ê² ¯¨“|ÁÕè¶šª:25&mXWNÑ0ÁE:?ØÐ‚&T,?T%­ŠÓz"¸‘—yMû3ŸVÒ÷ë¹8h~%Áªœìl‹ÐD©ž·­—vmñÐÃÆ [óþ{¤‰/Ôi!‰ÃK—áqÚ‹›øs‚Ãýgüe°Á\¼ÃòªþR«®Ž®züöÅÀEÞÂn.¡µ\,4ð ‰Qˆj¡’SÇO÷ Xǰ›…/¯ëCþúµ÷y«ê@]r¡DãhO‰{U}2tú#£‚AS-o¶¸ûýuO…‘ª¡á }½Å¾çï…zTzk-½tŒ¹ð‡Ð”T­&‹¦ö r­êUsGýJ¼ «5¼ VnUyA!´•ûËD«Fáu¡Ú"M–¤ãnåÂÐÔ_NOWYþÉÜóR>Å‘:äsQhŸ7»yù^â/ÓHKË EþVæÃö‘ŧ—‘ˆZÁ>,R‰½¬¼bÍC%#íBf›&Pá! ,ˆ¾ˆ w[¢iE?äARj]8]Ptö20Y9›¯¨COì¢AiÑQ­‹¸£^®®Rä+NWŠÂ\ òRsjµm¡Æj€™ÒX.ä!¯b£¶YvaG…©°‹ä;/¥ÑsTØ—}Q…äo)J_¬/Ë(hòxòö±ø}£•‰.Ö ‹= WØ’—Ï¿á³q¦ª†…W®¦Ÿ_t9 H‡U\ô\pŠœ½º,ÞƒœÒØê¾¶Q±–]Œ§ßi±ðl&ùå\}çŠSûÊ&µd­Ö.XØ«á+ÙøàÔ€ŽÂ!,OP‹¯Ë <ŠÉ%ш^°´_|ÖZ\¢¿g„ïG½¯_ª ]Ôò]ùf5téÊîºÜ>=–ñ_©ŠZѹ¹÷"_êz„‚<ÏÑ…ÝG…?;*þŸE3¦ j _^m…8Ú†…O Tè²"nÊ&hQ¼ÅÉEˆÒ’‚Yµ‹À—/‡¾¥˜÷|Ù&ÊJpEW ƒÊAs.êËVf—Kÿ¯aNð² ®f>iÚbÄN¶©¿‚àrèg.J/U¿ÄéEJ+“ è™÷Mg=)îP —¬xSÑÜêÑQšfÅ,“+‹ f«¤ýÕwª6·hQcoñ iû‰Å’‰éÿr‰P“äämW˜XE4€¯)Ú¨¯øÉè‡ÀF±?Ô¼2ÚIŸÞU ØžZqIJöØ”­‡µ¤îp‘ÿeû1îüÂåeó§ô’O»ȧÙÙå´Ïº|¬'µƒ#ñ"p!u¥ü¡( ‘ÌG/À®U;Åʃk‡ëOŒ VŽËë:S> \K|™Ì¨ÅöühU Gõò×{ñI¶Fî^-ÿ˜'$ù F³Zû³áŠ.B1>'­ò[ zã11ôvs"‘;\Z¸ábT~«Æ`W$xZµ›áÍ]ª”°AÅ:.F+dI½ÍŠ6Á½XÖ °ˆÅâcwÜÅóßËõb0P½%êŠDF­Ä–Wø-0T¸: IÉÔáJfÜêQƒ“ӷˋƫÕ}EO닺}@T öòÜAü@ëV¡¿Ä¶«þ¢õÖдíL†2?ø…ÒþÀK‘¢tªeƒ·(¶F¡®â¢\ËMoÁ¯̸¼i„"g?Pð"ÝèWª£—Yß4YôHwóW×zaji¤ÎO]VCeáê!aîÉ&+öf_ö<.‘f¶0èùRó ?®ˆ.lYëiÉ£Â}˜ ¦.E.Ýú¾ ?O&‡úG—ų”ÇÐÈ™&ïåê%ÇB=VêáÎˬv\Þ‘ïK¼×ƒDT\Ê;é‹Úý4²É…"EÁeÚ(°ê­T!cùGŸ) kvüÿóÝjÉ)_Õgü C»|‹UªÃ}ôR+ÂEàcí¹í¤T¿P‰HÿþOs~=gíTqLÁƒ+µ\Þïí]Ì®óRæ(àL‹F„eªéKlH®X7˜ˆšâE¨`B¾yÊu‘‹Ÿçû$¹@ÑÏjd£2ö¶«‡^ûÃYêЮŸÆ®›ŠX£ÑÝò,0·pïÆ•]J}?1£ïë+Y’ñ¾üÿêbÓ¼y­ ôÕ¤´~¤/ß`u@þ¾º8–yâÝø}îM_¼Ž± ¡oø ~ÞÓ÷–Rá+B÷#% {W—³¤5·ËHGê¶ØƒG.“öôÊ0‰Þ°–“nPƒ)Oô+|¥¥–vABÇã})eã#7ÍP]¢,w?pu‰µWöeºдÄjP¬?øäB=g;ê·åEàQ`{sÏgé:chÿ Ù}>»íR<ÝÕ3hµÖÔ9£RšMùCAæ‡ËÁ{^ˆ/íʼnÈÉÝ)T—Šö³(’²\¤^˜måu®Ž/ÀÉæi¯T¼%VA³ôA2T¾Õ+——RY©Åˆ2̸Z²PE½¾í6ñ¼ôC®­ïßmbF*æY™ôÄ Vu¹Ó—Éç«NŒË?:Èæ£—L›å{]jG%ópAN¤¢N^&×xEË™€Å/~'hù”PD?½I÷+ËõÇÐú—„äQ— 4Jã‹s€êtjoIƒ_VÐtU›ZW'U¨ãÜ¥4¤»X[)}$~»ZÉZè¶âQqÒ‡G´ÊìÂm×BÜ fAˆÛ¦{ÿ'hà(6K} L¿EÝ^‘ox‰ÀûUšÁëºWçTL–Æ%r ‹^,z§)~]ìU#.ÂP€ÑÙ×Pß.õÁ¸Ý!…:y £è"L:«vm¨W)ÙñõÆOkZÉh¨ºDk~ùdTöó'H÷0IWêyâ7¿ScÏuÆö×"Œ,ö#kc5ÖJM¹9à¡U°íŠìjñ¶lÁ+È`÷ËIÕ¿ô¢šHy¹)#Ù¬¶WdÄ>u±¢(Ù‹±y±Âtí­ñÀ:†]B7dÐõ©ÔíË#ÁC*z+¬¥Rt”,€ªMŠÁlâK®raÒ/­¼²ÀѰ±ÅK䘿¬D½øZGÔ£Hþ ̬&B!1¬ŸÿÀ´í½ßâ_ CGWêù¸:‚e'rõó¨ùÉKêÿíÖƒ:?«2é+¦.Š!×+%ÎAv¿õ€¸¥í?#B/ûgÑâ¾Jb¤mÂÉŸ)—L ]Eá@TªpšJ'_ÄŠ1L©‚ã2r‚2ì®CŽê•C§ÚïcCmô éÕÁÙUÎÝ‚­hb‡±Àô.+–(y霒þ3qX´ª­èùX´$nõ“ôAÿ|)4–—\ÍYÙZ±ZäeóV»Ç«AbŠ ý”‡þ¾òìS¬x‚Œ.…®eì>¿‡jH$´µÊ¯>åxèŽË×µZ(¶/'_R–º ‘ÝŠ4¹±›²·Æ›@›ã°mòV‰¦õ»"Àa]¥©S8묃‹"‰Åw¾,\@u¤Ïî¤ 'QGOŠ‘‘H#e]žç<ó'šãô=¨”¹b v.^m^ˆ'lâ{Ñ‹P¥O:;CâþÎ (tÉ—>ÿoÌÏÂç£é/ük®"G M9ŸHÑ1ÈõCœ"OWo‚ðb±Æí– r+èØ©ü)ˆ (¦à…î—æe.ÎZ‰n)h¹+T=ÿ¦b•8ÉŠDR" µ ¾µ0Qæ‹„¸üÆ£«‚$×Äÿ6J†¡B tÔ‡©Ë19å_ nmMÙÏÍ™\fNä2{$ÅSa2$v3æûË©.RØ«Àt-_BØCj â7}¼Ú/baìƒ,µº(…ûƒn•}yíähí2Éï[æ4_P#ÑV¡i €µ4ÔÎíªãl-€Ç¸@ë½ å‘(XV-!i.›Ü%šXh!+F—ïJÔžðå±#³1^ Ëæ¢$hœQØ9[¥ÖÈXˆ ÀÓqH_&·ÅeT¸\8Ò±:ãE:0½ñ¹Æ0RDƒÝ]8Ô/œ…êm…3i±E²"Ô0^±CσèˆYè˜(B+g»óxNO^žÞ÷­ýR¥‰/ÆE·bSÙ_+r©á† Ý(vŠË( =¾,‘Þ¸!AÅ•Б]©ñ² lp)¤ Š^ÐðE8?ôè¿4º|wHÄÑ(È . ™Ç0¿É`“Â@G[÷Õhý.Û¹¼sɇ|ä .%»šrŒÅjé´P}t$÷Á‹´M=V@¥e&wôƒàÉ>ùíë’dé'j¿ŽÚï¯K'K?ÑÈÈë¨îyÝpì~ÿ%-¯\z—(^ú»åOXþ¿¥Ÿbá=—t-üüÄß•ûï²ôñhéªGîk‰&îï·¤!_ WŸ>XºÒº¯eùÛFËwpà¾pçéaùº‰û2“©ö–ogâþé-ß•åï ž.ß•H¸ï±û]†‰°r…uµ¼SÄÕ™ºŸÐòÿ-£däþ~Ñ@X#÷uJ·ä6/«ŒåM_ÿ)ÿ&Ëßny-««©VµÀgG—ªÌýÅá-ÝJuyGÒ°_œÙkËêi8r+$ñó–ïßÀ­à%…´¼l#^¥Ÿß–¡°›GÂ-sŸlCᑤÒs]ú¿XP3 ÿô˜ï3rŸWp3‡Â)«ÿoâþ8-—ñؽ±GÜÜá‘jÑåu§Ü)pþC"‰°çÇÎmçdìþiY:ÖÞò‰¿f0ˆ¦îƒdyG.ß!8FÂEÝŸ$î=8¶ÁX8…7v«¸”Dqò3—9t¯€T:^'‚É#˜Ë_};·Ek¿] GUê>Žâå¯0r[ü‚Ù;N’T8IáX† 5pçÒÚSi,ü4u_g*˜t)oæŸe:åN™ü‘³üÌÁ Ž«F8r–B2QÛFC­Y }ù›§n›mä^™`»>[P‘`Å‚M/Uqª=mÁstÛw‘ÚN‹„s-‘þ¡ÂÎÍî©äAÝwÅáE.i™ü§-HZû‚Þ\IOÜI:Ðz@ËNêP°3S·"‰°Ëá :¾OêöB†Šà £íF‚«%~.Ó£ÄíŠ …Ó›F-Ý拎Ýw$ñïýü»OœKnžÁƒ{(¼çXøÉý°žcþ†Ç©Û¿¹¿À0ÑšDÒqµ¬h þ0u^ ,‹¡p ±–Tpí—0úŠó1ï„¥n[#–ÎÊ‘ûi } ÷H2Ç"aE ZUòvR!8Œý‹7Ö'9b\z°ÒÆŽbí¾ˆꇸ_9v <.Á›ÃàCÅwð,iÇ,l ¯¶[Þç’ë !!Ái–X$EÛ"á„IÝk%÷ #öFø,$GV„ÑßBP+6‚:þv‚‚L¤nàŒ ¥œh£ Iª Å‚YV‘ –=2wü&Öǧ¡2v/Yð!'ÚTP,E„"­:Q1ËO.¯mÜ~|,…ÆZ?Rçô†RÆ#V:Ý|2$oo¦Ú ¹tŽƒú’RBöcà6>S1–Lƒ±6[ZЩÖ)I…°ÀÈí?ª7*¤G‚×&Rb­³~§`÷¤š$ ãÑÜ›_ŠÓª9N/!Å´lø&ÂO©”å–bùÒÿ À‡(RD﹇ „‘Ó¡[‰Ä ?¯0%ÓZ0!¤ðïp¬Ý­ËëaY£A$Rð´@¿ ›+(Ì:·æüµX«#…YêÝÒ»$‰ÖD–,¤$öc:|2ˆ8D‚£*åì¥W 'ŽHŠÇÂ|ÉÈ_>,†ÂQP00%ÌM¢ÈÐ0ÖÂÈ}û&‚.Jüç"÷†níi5Áþ*¿u4tÇ,¦Ê4‘„ .j:XÉŽµÎ˜PŒc­o´Á'é=‡#eþ 2H’mJòD?åÿŒ›¬ä/‡²'ZÈ” ’b7˜‚Ïîù@‘|)SañX $tßÔÄmÞE‚^‘L#X?±ûŠ´É©å¿ƒÄ•‘Š…ŒŠ”È-©qIa$’` úei¢KᣑV¯.&‚E2u›¼äfè¶j$™d{E#¥Q¦^¢Mš îp,¤‡¥(0ôSmb<Ö:U‰dº ø¥Ô‡JwNPpö’©"hÏ<ºX‹zºAªö›$¸\"ļÒX|]ö”ò‘&ËhƒoÂóHOO2@áÉMVƒ¡J±öXØÿõ… ‘~ÁIàs<ÖP¢±Î2à½9 žj#ÉIªÐm^œ½tª‹@gµÍ2åX8¥ŒJ¬PJñ£±Ò*J›7 »i"$Cb5Äiª}^ÃXëPðÉæFGÂ7âûRâYrtìpêOŽz±™zä¤ôwþàÍSí HÆêÈÉ@™$úÏV&2ÔÖeÅmªO, ˆPw.G!Ø#e~DïÆS¿ãÉièDiŠmÌ@ª²ˆ´™kéN¦cEU`~AM´a¦dªMõ§‰6¬™ÆÚä~"aʰ&\J¬0 ò‘-Jà†¹1Oq¬ô÷EwL¼b¢ Ä8âÈdßp¤-(#Úc-ÎÇ¡Á™/'ÙGS-Þt8vkâ‰?~΄ïZ`B+½o)7™N•ÕTÈ É.A!¥‰²žFòॉ2‹”†‹PDýµ¿ÌýIP0aÓ2Ë5+ ÜÑ>UÆÈ—½ØÄgO´Èìt¢´S¢Ñj¸GpFÂJ(ÎÜ‘¾ÞPÁN´…Iš¾”øNuI˜a¢µó¤„|kñ3ÉHé)뙦B!×@›v‰Ü†½?Ímá§h Ø2ŒÊ˜¢‘Î;vàv '†+Ëb¥ZûDÊ…ŇÒ.%†£H[xä`‚ð™_Úœ«±-Su1êP =ð›2Ì÷ë¶t$Tº'jÿxªPÍLT™“ŽÜ–K¬Þ8‘pÅíãUÕ‡qœBPÔèT'À¥Ok9ú…Ê. }ÅÆIЛ‘ÕhýY)R#=‰µDŠº cò”92˜N,” U´ñH[¤ZÎ…HXFJîxÌ‘W  ±’¬–¼‹$Èx¤µ"5 Pœ(‹R¨0Qîìaâ?ç+a¢fz’h0$r“–·(r/ÖËK<‘¶RBˆ³§“‡p)‘,J FC÷¡’¤Úç ŒX°ÅD .ÑjäHâC"÷’1žj8)]œG¡æM¢n‘rݱ2 •drËÁI!Å#eëb¡8.+@»>,`¢¯])¡/ª.¸}å±¶Z1à£jò—H3&j÷XämÑ.‡á@mu—5¥î‡Ÿ*2¾‘tâǶø\ûHˆê Iï¡€Ô›«î+žj5—#èî#{s sT±—×nèöáDnÍH¨|˜j¹4"uUŽT×™JB‰Â·P¢Ü!'9žŠÒD挛*kkÒHMd&yÎc-^%â–Cwô;еïx -¨¦Ê#êâ‰2b/0ñ9Ð 4Öcá•ñÄ'Uï‹TD‘:?PVe¥‰² x˜:£fÍo¤,B8-Bt˜*ËÒ%kQÚœ‘ k¢D[RG~h±—abªeyK& rJ&?R×=Çj$¡Z[Käîh@!#Dh¤úïDª—²ñÒ÷q|£©'Ú˜ƒšrR\G’U(˜ÂÑHqõ¥¢$Ï8µÅéD[ô+5ˆ¹è±:ã4VŠÒ`«M%Í> ¤€:ާZþ‰z7•%‚›Ju¼‰º†FŠ$IfO¢ý>SuD5U3* eĩ֠HÕÛ|(KG ¾_‘H*l×áHž’R ’Va#ø¬ÍT ¨M«æÁ ÔR§Ôí ¨»Æ~³Ñ…H§N”º.],¥–‚Çc-Ëœ |¤8V$ØH‘–k/jùé‰ú@È“Ä#5^G(òŽ•R"-¹½ø‰š(v¬(~öÞ! :€ƒµ@…8õ¸Ý·’9¥rÇ©’è@¢†PøX¤Ü]$`ݤ²ð±…Šv‰¢]ÃÈܽDõO­K!6hméT“Jb³6*IÕc‘Û‘ŠŒÕàþ(ÖÖâE‰(3NÒ(ÑÒ‘FB²b:vGA„âÛH(VÎMê¾uÝd4Örˆ;¼uÆû³ëÞ¤ÜXY0&~|PÁW*å’lúh¤u¤6,##UéÞ–0©À.0ÑIz0èì-¼5@ãÕZ8 Jo”E¢ßŽ”î^iÃ"\ª Š!‹XQ]égçyŸcÎD ´`À0Zuª ÷¤‰öÀšÃX DŽ•ð@‰ŠuªBÝ„ž²9ÒÄŠF.’!Ùšj`Š”)‰ÕÎQ=Á„ûÔ )$6E±’ôJ¾IÝ Ô ÉÉŽbÄ[°¥£FrS ¯¶þ‡J"Š‹{ª.(cóéX˹)2T œétµ|;okúêÜ„R<öG}]¦Júc Å9ÑÄ'RÄ[ )+Y S!>8Œµ?ÅfFJkµÌ¹‰ÐR#Xº#‹“h«ÉÐm³9ÀEZFgɤOb% Óp¬mþ 4ψ!h5rs• ¹Êt¢ÔïR1»£k‘¯öDJF {NêšàÁ¬‰3'Ú&<±àÀÅ‘ºX"Ò–NTz—HK굑?)x$ÕúJÈs‡údÖ³p™ñTK¨«{‰rE‚Ë‹í2Çj–ã`ãƒj;ìBƦ(©ßu:B²ª‡©¶óqªnë+½g¬‡ %Š2/Ûó@ >ÝUC‰’!ú° a¾D‰ÁŠMµ]‰õ¸8É “r‰;´(uçRª&Wc…¤S¢îGup+±ÍûX—“H6¶'£'†j²AK/®„” “i¢Õ‚i¢Êxo»´n"}Ûà±Á-bb­Ýíèæa]s· uÄ€º>@`\©O†–.j–ãXK—;T¿¥p™͵d+ŽµÍ½¤–JRËêaìög„¾Ôª/æîÄS`s÷É7U£;Õ¸V©+ž("¾2‰"ªƒCmOºx¤mÅ*µÔÕwk þcµÂi‘&R}ö0VóªÄÚÊA-õ¼Xp:U2‡ ª"(ÃÃØ]L´}¹ Ú]_¦IjI™xû…y".ñ6J› ÐGÁãZ6ÔÇÚö0"]»Jʼu¢®©”x†iAOÖÓÖWjm<öóÙx“êB*-j¤öCá–K:@Z&".b ‘ $cmÃcðÑdÖ–Ôr1ItŶ‚q%:ª›©Äø[ÝöP2ÕL(ªŽEß%Qsãœí‚a$$Þ“‘öÎ 8±PÄ®à‚óò¦…f(¶‘b¯œN•-‘â‘¶Qø”€ˆQ¤åu“x/%>'ɹ—´ È­¶šD›Ð§:qWk‰ÄÂá,ÒW¢•$MÑÀÝ0HˆŠ-q¥.h%שû÷Õ%¤©–c¢n(œø¤ùNY‰ºsksvó!—‰‘ºkWFi«å%èP2UÃõÔNíp¬„èH}0'îÕ&™æ±¶ÉU¬.È€ÇêÜDÑ#5o›K¤‚Ú“‚­Ñ`¥63Bóá8RÀ[¼u›lx „J´·êÏÆ~î <#Ö6sÓ¯“DM?%u³¨ÄB÷X‡ÝVQ2Q†d4€oorPIìY€Rˆ!üµ©áHÍFo¬í¹’FZjÈd î`3R¹‰yÜÁjº…bŸ¡"N'Zê\‰#(©xA„d¡@?+ê¶¼I‹±¾˜úã^ªÏ2Ñ&˜ ,­Vw«{‹ëS¢nŽÔ¸q)ñ.u^‹V³âXK 0þ§êLX¤A‡¸#”ùe*X¹‘dI6ö@Û9]¬úw‰·ng 8q9³'õ“AzZRk‰º/‰µ«Hí ¸C™"à`¬$rMÇZ$o¬¶– Vr¢-±O¤R@õŠvDëV vˆZë(Ñ¢!Eœï@Ù`<Ž(6OÕ¸ˆbO”P)’&©P+„RÕδLE¨‚ð’)Q”VÔDÛUl ÌHµMÜP•ò_KäH zLµÅø©8‹GÚ5*ÑûHtÍà!O´d…ñH»_d&³%Ð,ˆ!¡úPp{õ­C…ösñX‡“Ôju;ƒá@g{9*Ÿ¼L{#Eæ)oŒ•œIª-hI#"¿XËwÑLµµ¦© ˆ#mäH"s*@¤0è0ÖÖHERâWjŸŽµæŸûõµ‚”v®`•$RÃ'u[h):©ymbuv.]­l)IµZ$jIZõìW’îSwÝuà‘|ÕJRš:‰´„§¢}®¦ðN%f_LôÎRáY&ú^BYƒä¾ HÿT0,’D‘‘8i%BAu Âpì­õî ©¢BÊÄIX¼TÛ½OŠkбlo-RƒPÇ«UXÄÕÏXË *Ýè‘:ÄžhéºE¢Ù‹*ÀªnìªN5$cmæÑ–¡§…aÉE&ÚÀa¬Ì;KNG¬Á𠥡u“æNeÅ©Ö^¥oű.á.0 K톤v€ùŠT 0·Ûês¼D¦ !f‘¨£M±„ IÔvÓ@ ”+:4µ>U±vM›þ(Ŷ‹±‚Ó[à“({uµNl«Kl¦ fƵHµi,)h-Ÿé@.9é'ÚFjYžN´TÆ’u&õ†ÕÐ ]û±œ^ƒRèˆ=ÑqÒI¸ó©3È7Õêô4Rz§RÛÁlŽ&ZÞ$©]U%"n“4Rw®ˆGÚFBs¡’!™jYÒDɽ›ø©@ÔàKE‚:L´<õm †#mº\x‘Ù–ÌF:pë§±š18ÑBó ð߯Z¿#Ò"ü%]ì6•›Wb쑠ȱö'‰nY*úÆþ²<®’-VOpæq¬E}¦Ú¶ÑX¶ŒÚ´ ˜†Ô盺¨¡¶ñçp¬uÆc¡$5,4ÑÂÝ—Q¢™Ö·Ú4…+šª¹¥G’ˆ™¤ÑP™7¶§€KK'nk,Õ6§•ÀKBcŠdª¨d¾é@¸.m_DɆKe&Gâî(  ,Ii;-ˆÉ~ U€ã ce¬œ-µ[&i±×f¢Fø ÔÍݽ+}‰ïH ÷ÿDÇ“ û&Þr5æêÂReǽDM);P{Ýê%“*Ë’‰¬:”ZçŒýQߦnÃe¤`q/B…ªÁ§CeÀOÚ¢;ºÔì4¨ †&þL¼?=j»ÒNµ¬Vaª¦¨•…¢©"õX:D‘¢=Ò‚²cõA …z‰šmDj'(& ¥].a¤j<‰Í<«{öÆŠkñzšÂ½•:§I±·XÛ‚X¶Ö0U§±|éíDŸŒ}Ô8a¬$©òÁ‘Ú[‘àƒcå] °O©ƒïx5ˆô0U¶b¦ 2oÒd¬ ŒF‰¢Í¡G〾«["yëFZ64ÑvÕî¥Tq7h»øH„é"IÝ@a€p^¢:ŸºÌ»5Ö²›‹Õø‘²«¶ÔQ` †‡ ´­hRG-¹šCé´±™h¢e –"`q,|¡ç½p*J\¼wÀ¨­‰û"õ`‹µ±åHmPÇ~NLßñœ¦ÊDu¤è©*3¯ÔÊûfCáPJ”†€Ä?Ò.¬XˆiI!º‘šFq¤ … cmÏ6 œ#ÑǺ&ñX[Ž,2Q¥Š3Âw‰t±‚¯,$=#5ó±¾HE`Æ“:2‹)¾T[gEZ`·Ôl-¨ëz’‰^"-¢h ÔDN‰– TßÊ(»Ÿ­G×êºt êJ¹»H¨Qb¾ÑXѺŽÙN‘v-&êÆ u»MD‘>ª@"!Ç4+:™1ªIK?ª…è®àò¦],¬ÐHË}/u“øb}KP ™„Ùg¾^¢è#àí¢$<¬Tè;3T—9Kα€£Z¦eC:1=3Ö–êGC-ÁNªÝ ¬ìî%j`¡¶¹L4Öòó „ ˆ±Â%Ì[ARƒ«–öU¢1Іê˜ÀHÁîÌÁB_zK î««ë$TL,œgBÀ0â-‰º¦Ô²SM’#Ĩ w¤€k¬©¤ñnÉ’H£Å…›hûïce2p(@áⱫ2T7§RAŽ¢'šT$Á¤Å† ¯R 5õ£ÆcEØØb–8É$ÒT›Ÿ“¾x¢.ŠIü)Ìbu‡Q¤ì:ÔðýrKOÙïH>‘ã±2Ùiª½8ã0Q2ë0U´Ma‚­•ÕùòTIX#‘ýDZº¿o¢eÙqÐR3aô‘²'mkaäîzX©ÄDH ¼a)f‰JiúHÁaPã eMBÂ[ïF7: W“¢)r@>öTn -#m'™x ¨›ëJ]Ä)ŸiÁùR‰àDéáKlRϬXCI\”R©‰D˜"œÆÊÆ„jòœTà¤O”„~Ré¥ÔÛ0Uƒc%#Ž£à‚[‰±¶-ºDM+´Ž‰#eàl(õqŒ”¡R%†{¨A¿ ¤÷>·6âf©ÖIFZúßd¤¬rŠ$ʼXKK=L´,yTª¾íBGnÍ2ôŸj™fâXÙU[rz‡#EÉ"—s•.s¬nžhY;EÍë·¹ü9?©Tb¢ O2‰µÇPˆˆŒ´5]pޮƼ)µJ§Êv`cm˜/Š´€©·èTË%A¡Á‘‚ñò\Œü u¼‘«ÇjÍža¢e‡•Z:JÚ|…q¬|rV &ÓgîÇРIì™k»p µ¹HÝ+l (Zziz›{GIªéZååjŠÜX›aªhºê º´€³‘2E!B¸§ZF¿‚'p$$G+¤†jg$¡€Ôï™$þК—³)®Fµ(5ƒ`ÅH›û—‚Ó˜AH§H$["ùøH‹[”:IF®¦ù•Ž‘j:±3gç@¼ÆÊ—”f•ì²XMå«rü•ƒR\@ÍG^âG;êà ÆSåQ*5ø b¤:ÈX[nšN”·`¨àÇðaÉÔÀ“º+l¬$Þ*{)ÇJ#$žj‰—$B0Åb©§ÑX o”>|˜îðÉ=~!±.RÈÌÍÞþÑú j,l:1o)ð§©o9V÷ËJ|’‘®Âk˜jQ¹ÂNH¤.Råsª½—Æ<‰´ê^J»J-„D­"eÉFZW$Õߨ¤®–ª _%¨|,|»áH‹ðÔSM&šì´¯›Î²#4Ö×å™ãx£DSm¹Û1%Z_qªOÔ<éC…kÇØ‰–é6jQ~‰¾ÀJO=+€OS $ ¬©AÄDÛ$’ ,cmË‹Dê³+]œh¢FD ´>N¼¯k¤fE—á‡4ö·uå΄¡¶]”°8DNÁ÷’’5C!ŽŸªÛ‘ü'UP%±? ïË"¥n{KJ릭ã/¥)¥¢a‡Aä+Å"--ÎjÛ¤‘6>™ ´0óHÇ¥Znd¬°©ü–³šA(R¢9$ÀAZ\³ !i.ü&ñZNµŒ¬BŸ9¡éƒØ s M: PW&,d±¤zâáXÙ*Q¤Â* >öMÇO¢Ó—‹õ˜Ê¶$RÜWâÿÕýé’DÍ, àu =RÖ˜‰Œ^R¿óØ8kû'H¦D]**6JNpfͺ;t§j O:Õ£ŶÌIá.„^.$¡ ^€è;U GZþÍTí8KYú‘Ö@“¸„fpR#¡t íõì(‹ GJ6Æh¬í˜HÇéj]/c-­ªèx €ÔT™Mê¾é±¶´TâØIµ¤òqª¤RvÄm…âzfÅNÝF„À÷1õ“Æø:/¥ÎY¡ÂÑWu/‘M{Eê;P—ÝKº%Vª †g:VzË©˜‹ÚNBµ Ã÷uši±ì©à—©9å“6¨'ÁT†Ú½-öûDKÈ9T»’B3¸DâüjÛ†«yÜAÁƱ¶Æ{µ¨´ƒkË[¼"áä£Õ0+ú<•Ä‚*SIi–$q3J¦jöüTí‹ÅZ´Nª­}Œ"uKó±’q!U÷E4­Œ ¦&NÔ•(r¥6…©ˆÌTK PZ‘KØòq,”× kQBûGe?$1*$a«¦êø@[#¦!„ŠE)˜‘(Ú!3.¢ÀŒ.¥‚ÒTK6Lýt…¾ÚIA&YšàÄEÕ¹g‹¤B9ª€dùX©¥XE+xŽ/a¬ÍP 8èHj.8Ö‚"¤µ&Ôs(v€/9Lµ•¸r'Ž…xäн&GºŒ–À-$Å&þLÃz‘*‚K^½/ÕŸHI='f2Vp H)EV2•XPmL\å±!'ÄxeV'MWb•:tJ8Y 7)Úop.ÏÔça˜ŸÕĽÒÚKÔŒZñHñJ_åR«9ÆÔ¬à‘ (µ1-@K!A %ê!wÆLªuNÜÕö.+ÑâI)'ÞVË‘¶{¸šX[bOО¸í’ÂÄ®œ×¦öPµ¹¨©ð&º÷#mV}š*™j©›µÊ4™*óúëªÔ*v¤Ýÿ¬q˜ª™REcLS*óbmu¯dqŒµ‡ÊHÙU%Ö´9ážG¼RnXêÙ#„𣉢êIpe=n•”ð+/8• ÜÕd˜Se dsK)ý8U†B$ëÔófIÐc7‰¿2ýšj~yOp‰“&Ò®…QËF'êšÅXÉÔ.§S-Á¢^J¦ÚÎé@{űbëeMÕÂJØE)­+µ¦JÆ:µK…‘‚Å#„.âHÙwSJäHáÉŽ'Ê(\¢Š,“¢XoÏBçËXøIêñ˜ ‘a¡ÆtªhDË US7Py¬(@ð7ÈMÕE\‘V Ik-Ž´ zÚÚHA»*„ü)Þ©®·d0Ç#m.µk-XÏb©êV€‚Dq¬¦¹5×ÿ&Õ6 “h>"ÁîÖ#ÕÉæqáé¾~>Iªõæ‰æ;Vw"Œ´­|¥¸õX OŽ$Èfñ„¼—ÉCŒGEj6ÁDÛKeª¬YÔw,¬ÓT>‘žùTë …bÜd¬åNK-FBÒ2‘†×‹qÀ&J&©S^4V:ʉ:†"P ¥ ðD¹˜ø?€9I„jÏt¤¢F±ÂòåÒSuãúXËÅê¦ãc-j?Rc>$ÞK= ¢´Õô¬”±¶=¹@$pÇ©£"²B@™©¢I²Ðe­P¾=Q6›N´}"Ô J|ωˆ§Z7X¢ÌCëR¯G•}¶?g¡Ï¸¿w -:6{2Qö©‘ȸ“©‚KK€%y‰®Ôí0£2²(¶kõ‰6É”&:”„t&Z†¦h í.AÍ$PdÕ wOda);Jש[ºERØ+Rrr,uR墻=Öº¦Ã±¢Ç„CCw´CŠo ©0.÷šø—€¯µA"iű¢kR^q§Ú”ÊHé-IEºCí›H6b,µí©;¥Ê±úž@ ø‰üüp¯M›‰ÔL=Tª#ƪ›E ¥ÉXËS–jXõ¹ÿ›hk~D†êÔ[$&ìM_ðÃQµåe¹ã¡CõâvZ'4‰µø±t¨TeÒq&Íb-˨/•â$RÿãXO=ÖVÔÆ/4eÏ`OîTBt‰„ý©ª=šU¤©ŸµÓ=¦ÚjÃÖÈž(‘1+€¸¨$…ƒ hŠ4XWj4Ö€¢±‹9œ‰Pc¬Z'J¢g©Ã˜šjÆÚþ¶Cá°Ž”ݸ¡Œ3ˆUGj˜ëXÑ ÐWµ&a÷DjØX‰`Bé–£­–/ÿ¹O% h.•º9ø|åâBp¬,Jr„•}¼s±–$6p-RfWha 8’TI³#¹ÍéPÙX>•:T'~¤¬ÏyÓ$ü=‰D#QÃ]"M³8o_a =iñ”’åÔ¤>cm7TZ6Ú®.B61‘°• ü@9®.šK¤ÖõSu5Q"’cus l%p!$Â]OmÇ/8ÐÒaKç­H‡=ð¢|ñ[‘£jÕÖ›‰–âIŠÄBa«Ô%–­„¿P”ž¤êÒÅ‘¶ 1‰Ô=UWíï)•KH:xc5·¹¤³EÂj¡‹FªM]‹ ‚„H£Š4„Û–BìLÝ–>V÷ŽÑ¿gšjm‘:x.‘¤&GÑ@Áë-@[>ÒB:%b©…ûP8EJžHé¦j’Ýa¬íi‹'U°/ÎØO´Á¼DjP”¸#¨B4Ò÷H=ˆ|`ÉHÙ~G(³™ŠÎ ^ã8V³‚ €Þx »ßI¬sÆc-öCÓÌÓ×¾Õ-õÆšcm%e2ÖVJ‰îdª-¹M&Úà¶Äú=rÚ‡ú ŸT[e3Õ¶*N´äYc¬m&q™hý}­èÔu›íÑp¬`çñwŽÕæXüûLi¢>ŠÔ¿ºG<“j&Ú@ËXˤ)¯…àY+»Ç©¶øØß ËǪ)ô‰=qs0¤Ê–)‘Pý.Q}I4äíÁ2T;NCÉóLüØ MÜ1—¡:&&õ&+hd¼¡»d¬Ly¥5ÑXÙ¨[êP>ÑF(&ÊX£ä{H¾ÕpT’çK»KÄ„R#‡~òâB„à0(…"u«ÔòTJ@N´ÍŒ“©’PFªÖÑâ“Ô©–Z‹JDNR!žh©R÷á>Y R,åá%0êPKùºj®2}ÅÊ.ßÓ0U÷‹pÇ ¥:™d Äê¦mÞœ>Á숔äÌ©ÔaEˆylj6s’N´-/¦Úö>©·a¬öô¬,ú鉺ª\CéKt¨òžj“Mcm{M‰•%)`~¾2Æö^Æ-ß…M–x¸¤ŸD>u7e©xQŠÐIv‘ 3ÒÞÝä›­)!eOôñžáj¡k‰ ÕøÕl~ÒU‹4ceç{>:R|o+Ãh5&{±iI¢u,¥ˆŸDœèÜ)W— ´™Cí5FR8N8t†cí7ª[FKDçSE;JïCJ'B@I*íˆm <Ýi¬d±Wã­†î=©Ó[°ß„E8Öæ&¤íVQªeP“r×"s¬,Ý•" }ÞãØM5Ô¶Ç’Bž5"Öb›Àúú<ŒüÌ#Å:ÏH„‰RmÆBgÆN&Á»"¡:^Ih!eË¥PFkíÀ$Õ–‚Ç‘²¢lx-£E¤-B“€Ec-s„'åÃxDBØNj¶ ¨³|\S’IµG*H“LE>­à©Ñ*§T݃(•8o&J̆Tâ>Ñz£ñDÛF‚-Çj ›Pµ•(wNké‡c-;:ß4ÕGÅcmÍÃTÛ=ÀÑüCHMyÈsb÷:- =RöòJÔ‡îT™ñ‘Zé3¬’m Juy1èÖA}âã±’ñòœ‰†Ú á,ÔÐ& L¢¾>ÉXK+4§‘˜îcupX$Fžj‘ºð ‘4Õ2´Ä‘–‚<j™]u[„t¢…#޵ÄobD8R³0 V# v»°-’„ –|¥mUO¤^uša¬]›‘¸•êè¤^SÑPé6E#­–ÆŠ„‡—÷G çʢ«DkCH½­Ó±’OÉïŠ V)HŠ$цäãB§~š:/¥ÎX]´2ðóƒùkÖ¤LHìFÔNµ±©t¢cËš§…q Þ|gª»,!á(• ©RÀ>1/•*#dR²NE%ÏØÜEÙUóú¤‰:¥8PW3Eê´«”JiAµÒ–¢ŠúÂÉ'KÒ'«Åœc ›ˆ@Aäío=Ñ¢±¥BE)Ë–H ÌÇÚ†5ÇѪÙÇdªå®‰’ÕØÐ£‰¢Œ± ¼OýÕ…4¥”Ïœ¬V8ãÿy£úÒŸH[2i˜³}Mü¤|W¤fH'ê6›#-Ý¿ÐéFêI}àoùˤm©vn(u,™ø™"„‚gOR:pCÀ½¡šMp¢ôb}Òc ízÍC%{2ñ7pgÒpjª')H–L´ëR%3Z+(Iü­Æ&ZÂH‰0Ö¢ÊÅf¿m*‘fVOA;pC¦+®ÙHÙÅRj9)”ÙHìR¬#–šj Þa:Ö¦ÜwÀ3Q[Ac‡ÞTÛ˜iê| ©øDŽÕ4]c-Élœ¬Ö96À·™"ÀÊGÏ ”&CAS«I䣑–ŒTbàˆÕyæHK”ùX Çê¬KäÏ'2ö¢¶FP}GeîOlÑ5V0ØJG””#j ›PhÇj|¶Db:Vðdú˜Äc 0P“Ç©¹# èÄG(ÕL H€©Ð·N:¨§Z¨ÁDÑ™Ì rói2¥ÖS¥ËGÊÆ\S¿|¡ÞՒÔ(ɱNâHCÎê£çŒFÚÚj)%£hÆÍ8L‚ñî¶6‡#eŸ”u“BÇñT ކÚTx"=©wüT›+”ˆ¾†‰¯ë¯»Kv#-•_"?D&R>òáXQø p¥2›EbGеj%,Î.¥Ï-k¤ºïNäÆ@i;øò§óxê$þP[Ê—HžHªm´¬T ;”àÚbä;ë;4E~3ÂO(,`©!E¹÷ÙHÝCG2e<¬”0Ž´ñ$X‡D6"uÞJZw¬d(—ˆ Ê¢ÖXMb•¤ „»·DNÊ#J½CÁ ±„B¢C¯¦-"u¹²Ôk¤P9>ßNß)ÊþÕ‚'ûóß6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Û¼4A'žìgss.a&íù¿ç¯|áçöüçy]~žI+“Úý÷~þ}šóߵ毩Îÿ6$ïÝœÿg>/~îÁuÔæÿÉg,>¿3ÿ¼Úü3?wÉßwÈß7çïM?J8—ÙµöɵÖçÿ®“k ÉwjÌ?¿J>cñw-òÙuòùwm‘{Õ%÷¤C>§=mÜÿÆüýÚä‡ä3[ä~¶È³hkZü{ñìé=îÏ?¿K¾smþþUr_d´È÷îϯ’û’ûјÿ®½MîCÜ›>yÞrOéw©“¿Y|'üŒ.¹îüM…¬¡¹·!y=ýÝâý[äþw`ÝõÈç…d4É:èûµx]r]tÝ5Èz«“÷«Ãsh‘×6Éç×É5·ÉµU`OTɽnÏê1û¢2ÿwmþs—¼~ñݺd=·àÚ›äþÖÈ~èÌß»÷”î•YSt_„äûwà^Ðﺭ‘{]'k¡BÖUƒìÅ Y-²gj°Bòً먒{Huê­ÅónÏ÷@tIë  :¶ z¹ë.$:¤ z·Mžiƒ¬&ì» èšÅ¾§û° ß³ :¦Bîaß×qö{›ì·ìëy®mrès^\G•¼žQ=XóxÆ5á¾ÐÏëÂÚj“õ±xF5Xc8ûjD·Ò=O×Q“|ŸÊ|½tá{×Èžè3ë£k² çQ‡\_ìŬ·ÅuöÈ3nÂ=ÆûP'ûŽ®õü»÷¾EÞ£ Ïuvöbü»6ÕIôßmbuaÝwÈkèS%¯©ƒÍÑ!kŠêÄÌmÐUôwX³h‹µÉ=CYƒk¦ûõ5=Çjp{ÌuÔ‰oÍŸiHÖv›|÷ùî}ò9=²Nð<aO4Ég·Á^¬5Ô!ß­ÃÜw|>°éè}ìÝŒúšžmUbÇ´a?UɹV%ϰë–Ú¶MrϨž«’=’÷jÃûÒýS=Ù"ï_!ÿ_‡s±k£I¾+µ:̪3¶PôOlžèèÃØz rUÀÿÀýSŸ¿6;³vnèÑ6ùlÜ/U°CBòÿ ð§Z°V*äý*äoúäo;ä4à¹6`߆ðj÷tÈ÷¡z‘^{t'µ½û°ïšÌÚï‘Ï®€½Òû¶>g ô~læ&¬á>ø´¢çBЗ}XK!|·Ñ?ÔVhƒOÛí¤*¹×‹}\!÷¹ú7$ëïkÖS|»ÜçØé-¸¦:¬ï6¹·]ðùàuAW6àš¨Î®Á9× ¾$=éÜeìZ´íZpMM²F¨Ö#:ºFìÒ:9ËCˆet~X“¼ž>÷Ü«&£›äÞµÉk{p†-ÖI‡¬{z®ôÀnnƒ?AýŸ£:àsÐïCýµøÔw >;çÛQ[Œê¤ Ù›5ð#jŒþèƒMC}Lº®h¬"$÷œú¶rÿZË¢>yô]ƒ¬]\kôþ×Á A_Ô™s´ú± v]¯ 8ÛkpŽtˆÐ;}ÛØØè“×Hl« 1›*Øð°Kk`'ÐµŠ¶o›‰;,â]²n1ž×pØ÷ôLoÂ}¿é“×7à íÔbâ 4Z‡=×bìªãûSÉßuAwÀ¢ñ8<3Ûð][—l’ûZó£gm bEôB=W%¶µí;óïZ_²¶PÎæc#6á¾Öˆþ®ÀYݰë™ÚíMØó!<;ªûC°E[D?×À7 AßR; qøÄgZpýuðA:óê‚ßfôTl ܃M²ëŒmOm ꟷ!®Ú¡ ñµÙ·m&nÒ!Ï—®‘:Ù¯Їhÿc|4„ï‚Gã !ä:äÿêäYWàÞãºÁ§6Nöjü“ì´{0ÞÒ‚çß„8Xƒ¬Íøu&ŸPaâ°5¸÷èÓ6À&l‚ÿMÏ-ŒÑ5àžµáZ©þ§yÆ ‰¹4Ag‡`cR›° çtr-f¿‡`SÖ%×äòe›dÏ7™=Ñ‚ø|‹ÙÏtmUaO†L|³ ë«Ï¥ g.ItÀŸæÎ¯ø+mÐu8ÿ;p_ê°Ÿ¸kiƒ}T?¨ 1s6T`ͶÁN¨‘ÜLƒÙCm8G0Q%vL—¼¶Ëì:¬Ïجt-t#õCð?C8Ÿ;Ìw Á¾iCNó˜gÇ{P%g)ÆÍCÐû&¯Õ„5Fãÿ°1ÿß\VHö›‰Å4 FGujò÷Uò Cb3×ጠ:³6!¶ W\_§ñpnïМf‹¬…§©B¾¨vZÿ¦qíèö6“÷¥¹€è–*èÈñsšäw=Чô™„ä½0Ú€@r½ÔŸB{0„Xa\O‡Ùß°‰(ΣÍäºp¶uaÓ}Ú=Ô†|F“‰ÒïNã±=ˆ¿†`‡7ÁgiB|½º ýõ*‘y/zmÆ6¡>qžuâdU¢jŽøhð-È‹4™ÜMìÖøŠ4æXeîU±PG¶À'jÀçÔŸ¾xÔE]ÐQ˜Ç§X!<;ëäûÔ™½\ƒ|jìµô{õ™8vðm°‹;ðœC&F‡k·qÚ&à:LÌmä.s&‡ûm‚]ßc0*uæLëïÓµ‰g|…‰µÔà|!ÙdrˆÅ7™¸DäShÞ õaΫ:œçßTs¯vEÃaÇÖ™˜NòÀxΈ‡kƒLý•ªÑ?£g2Æ)ëà¯b®óL!`Õ0÷^[§ º¬÷ª9>Š5é@Þ¶ÉäãBøw쌟ãæpM²‡êÌ߇LŒ§Áèȉeu ¦ÑfÖ`r (t4˜XavU έ&\s¾Õí=&—ÊÅ—CÐÍ!ƒÁlBþ¾Æ&su¸—58×~\Ÿè….Ü[Ì…Uaot;Seì¦.ظ/èÜó¤þ:Ʋè÷¢Ÿ×…ü7ú!K ÿñ'ho·Læë f—‹‘Q†®‘à»ðLì‚. gQEÀ$µÀžåÎú–#ß…ø%z.×àœD ^öîÁƒ·èBþ¿ ø.Œ¹†°‡i–‹tÈ:«;üö*±یΪÂw¨ÿ¦âðñ¨ßQ…ó±Ih#´Éoþ¦x»ØÚuXãˆOl3gfÈ`i¨Ò}’uHãK˜#£~aץŽۂ¸ÆQêL›Óÿ³Åqlï&äáÚ€¯ƒN ø‹äÛŒ®m1Ï£{®Íøº!ƒ ÀÜI‰IÕ!FÇÅï› ªKö=ï>uøl¸Ž;«Ç8o‹Äµ›à#µÁ¶ ÁOk@<¦¹Ó&9ÇŒÝHu•És7 OÒÜE‹ñºàÛ†ßäâñ}°ñè™ÝeìØ`šk€ù®0gVtU“±¨¿Ôcbãuø¿6s–6a=7¸±&sÖÖ¡6¡Çè¹³Æ+ŒML÷#w¶qxš[©°ãÀ%WÁöä°¼&w‚ë¸Í`p©MÓ C›±Á+p¦cܶÂäÚšŒÙ½Bc“}rM5Æ¿D +Ʊ?ÖfjÌBÀN¶àüEüGòA˜/n21§ªCL)dp×ÔÞmv1­mf qñ-G¾÷[‹ÁvÌs×a_…ÌÙÙ‚ú¢c+×ß«yÎ.œÝO×…¸]•y^!ƒ[êžµÃø¨è/öa­v¡±Åì÷:SËÕƒü`“ü®1#ô¥›pvºîy0 &ßfò4†ZeòRm¨Ý çb ÎÙj‰Z䬡öur"u¦¤ k¼ ø‚cÛ…L½j‹Á¡®¯3vDYç®\r~ÇÕU4Á~ v&ÖªÔüYru&ÖÜ]Þ‚ÜBâ›!ìCÝD pÖ ãÖ€úŽâ²Ü™Ü„ýFsB}°ƒ{à÷·™š¸ƒçi€Òfl×\ Í¿W ®Ú#:¨ yPSwÒepamÈ¥4,`ƒÁ86˜œ]ó.}Ò„gQ£Æä\Z`cµ˜¸m ôuÈÄ ›ÌYÍA!ƒ• ÁÇ :° ¹hª·« ¦³Ãà6 Vµ ¸å*³êÌÚo0x¼:à «ä¾7™)b)æ¿NêØqu!æÑ}ßvÔ µŸ²6!=×+K¯ƒÿЄ‚:¬åcW˜zlÌ³Õ ]C[?dðþm¨“ájºC&A1ÌÔ×j@ %ê¹>9×i=5âñBWGó(M°Ý›ŒÍÛbbÈ?A}ý*œ™°;°ŽÛ€]è@_ìáĪ©^­2Ï®Éø À»vHIôu lï.«j3˜ÄwÕÁ>ÆÚhî¬k9r­øN5&?2z¦˜¸*óyU޶ÎèpÌ¥´ÀÖ¦¯í35®ˆilBîíØ.ƒ@¬-ú0 Ð)UâS‡€õ¡~2æ ›èyĆաޱvi©u@ãFo¶˜õ¸¥â¥t}ÕÀ_iÂùÝ„º`qšPkJ9#z€ ¨€_Æùé!ÔÄÔàY6áù4@_´™¸q | ä4©90ŸuæÚ: –±Nâà]°Ù°¾²Îà=Zó ‰]ÃÕƒt™.`7€çBLú“ÔÎjAMyΤ6ƒ/Àg„{ëp±V»ÃÄ+h®± ϪîˆË´` Ò:² sfw™3¾ k»¸.ÏÂÙŠ!Û©3¸íœç5ÀMÔà}`³„ ³1æ2ë½ÉÄF1Ycrv5¨Á¡6ÖÉ4'‚]ŠyÆ6àqk`¯÷™Z Îaï7õ¬ ˆMqX :S—Ù†¸RôhâóU¦Þ•ÓÅÀ1Tá½ÚŽ˜s§6a•Ùç˜Ck36t•YKuø¼S«€O€K]ƆÄüÇÙÀù'MRÏXaÖEHüö:ñ¥ú )„gScž{0Ú­ _Së­ÅØÒõÀÍ{6CÓ'î01'ä !N×`Ι“ ,IÈ|f›©Ï­ƒýßÌp°%4&V!6|/ÈsåÔ V§¶FîiÉ‘w ö¥X÷Þ»Æäf:Œ?Uƒ˜—Y‹ÆO¦Òÿ$dö(b’9\R öW âXëá²G v•«cª1±’ŠÕýÓaÖ,årÅ(s¢Xƒ@õ)åÿh@ì¬Æà0[p&W‚e> ƒ+í25==¢§€ÜL!£;àWöHþ­Áø¹.ýÞ"k¿ÏÔ–PÌVìŒ#t˜_Ûáûá5bþÚ¢¤MÄC772vfÝQÞdj\ZPïH×Nί*øeM°ÙB&>Õ€:ÎÔÑ ýDí,ä'£y2¬EjyžŸ6ì§.œeM¦.íaêËÓsžÆú€ ÁßkÁÙ‡µ¿ ¦¦”Æ#¹\ Ú Çß`b)mÈ¡† ~­ÍØ™°ÝêŽ:ä“O©€nky®Aº·êLcÛmëîk¿¬<7E-Ès³6ÿ!Ÿ‰Ær*L̈́ˮÀ8j…©Õ™úI|_ä9ø'ò}6™z²`ÊoÐÅWãŠ#†ª€ÏX…<}“¹/ö…ú®‘:`ÎŒ]qÁJç¸n0q Ä“uÓ†g<ÅUÀÎí@M3Æ›Û+¯2±šGB›½ë·í¨ lÀ­08/Ì75™g\%çG‹ñÚL ®oÔ‡M&/À­Åƒ_k29CÊ'؇/òNÓØVò>uÆ/â¸ì[Lm[ÝñŒ0÷Ôöþ»FÖÅFT|z“ÑC5¨ŸiC¾² ¹Ýœy!øïuÿÕ€3ëÜSºáÐ7}¨ÁlE j‘Cfov¡®ë\zdOÓxO7๠šð9¦îŠÃsàó¨Ãw™Ø:ž_ôúªðý¹\ëAì‚^+ò[q¸®ö¼ÆÄ+ð5&VYeöÆÙ17€\‘ ð¥9}цZðœy!ä¥êÌ™‚¶dj»êÌÿ‡pVa}$ò6™ç‰1¼ÁzÑóïƒýÞìöiéB]ÖMÖ™ò²6áì£ç&å1ªy.™¬GäßiB.£ z™‹uÏÖ`â:MÆ÷ï21Ã:ƒï­11œõ ß—¦¸kõC¨µèÂïp?cÜò^Tìwp>\½*·÷šß[§ ¶vÉßVÀÞÄ8o+à¹Ã*ÏCàâÛàj/C&÷XcêD¨¾®8bøM‡^ƒ<ßc ¾C-È÷zª­ŒüX °Ñzà3ôáLly.½.äp:L¾ {1S-ˆI‡`—…€{ÆºÉ cÃ#w_G¨§±šŠ£vªÎ诎£>¥k°qï¦×Ђ<ò“a]t ìœr°Ü¤ÉÔÄÒ¾}¦¶ñ«Ø# ùåZPß2uÍØç-‚›ì0õ‘½€çHA¾¨ØÇmG}c›É}W!îÚœ‡Qé2댋ÿöAï7kãÑÃj@mz±ó:c¿põòô÷}¨ ¡u‹í ß¿©Ë`ºi—c3#¶¤ÇØ-!SS þ~‡Áaλù ¬¥áøFBˆ;ׯçÉ 5˜÷l2g<òÍ·¿ÖfbU8·›?¯éÀ^!J‹Á½5!_Y=‹}ꎘ 儤±Ïjçíí0ç_ÁR4ÓÎåת€/@n„v°Ü +dðÈ[‚ÁÅú;A¾ÏYpR}¦¦¢ÃÔy·žwŸoÅá!î½Í`Iû¼Á¬WŠ+¥];•ê`Œ…öˈºkI?8œSK¨¦9’`t*A¾¿fÈØuÔh3¸ÌŸ4 v¦ãÀ¾qg— n8jÀ;»ñ3¨w«‹B¾äFCNXìƒÐœnp?Mƾn 1·š#ÞÇåÛAžç–Ãmb̘ëe2u‡Øß ïyÍ3ÀsŽÖô‚<ÿ.Åìb+´‰]uW á¹sq©ä#k ËQa„Æ£w•‹½×ÿ!„Ü%•ØÐU¦ÞósœÞo29?ä´ïCÍO•É¥aOŒ&ól»P;B¹»LV—ÁR…àk5›‚«Yàz†Lì¹ðœ]]¦ϯ Ô¼7™xlŸÑm&Ÿ…µlˆ¿Å¾/®¾‰-&áŠÖ˜\mj™zä^ôX}k zuQÚ–9L̤Åä¯zWãìù¦ãù´=ÊÅΛàg¶˜XPÁ3S¾ð:SOYet„ë™´…ºÄ³VºàGq½‹j¼]舟·!‡Ñ ø^DÀé6Œdƒ©êŽ"dj¸¾á.¬K[xÖÇ~i1¾wt{ž'µ¿[A¾o`3Ès ¸°:˜'uÅÀ*P?Ù[œã1k8p|\/½&ÄÈ)î€ö±Å~nÝ•i2qþJçt­Ay›©3źÁFbãS/Fm·ÄGZ çh]"ç;µ˜úæ`.;à³u8ä·âüŽK³9€ ÜÿNçMj¦²g,Æä{$^‡rì!G¹œBÐÏÔGi ±Çåj£Ž:Ó>Ô= Ÿ*ö«¢÷¤ËÔìu˜¼$Öct‚<7-×c s<• ß—«ÏÔo¹Î£Zç Ä~šaï2˜­®»ÈÅ5:àr± &ƒ£yMi1˜¹V ×í÷¡þ°¾wÛÁCNäè*´í‘ϘûþuGN¼Îä \>_è¨ ALy‹©ÁÂXL“ñu°7Æù8¬Æ)¿ —go;lЊ{Ž<Ù¡c­´˜zUìÉ\‡8e5ÈsäÖ@7v ±º­ Ï JÏ|;ÞràjLüµÍø„!SéÚ?h;põ”k® õnMG|= ò=»pN# æžAž[¿Æäþé3¬yþÒ&ÔãvÁÿ@Žú‰7·×ÜÛ*ôøu=À µ™Ú’n°\Ïß„³1dj*C°½]XŸ~çhÀ:zôB&¹IâTgÎ^·ÁœãÈkYa0Ð Gœ²ÍÄûÃ’òGÈ×Áát1gQw“©÷è0>]‹ñÁ¸^èËÖá½ëAžï¡Îä²Û`váœàxÐ~i0ñôS§ÈáNz`W¶±é6Y/!ƒÁøö¶¬2ys×Yßrä¼8,ưæ¤>ÚkÕ ß›¸Îœ¹\®¬á¸Æ®£Æ¤!<+¬ÄüU…Ywµ€ç®Â×u˜ØB±a8Œ[E?®êÈ¡a~¹…ZAž{ªÅø¸5&:b\&vBÌ»*ز®¼âp¹õZì{C¨ A>Û6Ô4A§Ð¾¬‡„=õšpß©=Ô øÞȳÕdâÐ-¯Îñm6ƒ_!Ÿ¹,sˆoÎï]8ýub¿¬C\´äyX·à7SµÐ[äÚûó×=L^¿¸÷[Pº ×Cïg‡¼W¾Ïdsþs‹üÜüÒ:ù.‹?Nb.Ï_»=¿nú:äû6a¬Ï¯cc¾Î×ÉÿÓZÛuòócdM_œÿâ»o‘ïûèüu}òÝéY¸1¿î+äû\ –¹±g¿’|^8ÿ÷òY‹ëÛœ¿]çë°&h~§AÖGÖÉà஼Ø'‘ûJïóuÆV£õOW·IžÅcD—«MâT‹œÙ&Ñ×Èw¦1KÜÇäôɺYÜm¢×z`gÒß­Ï_»NöÝÈÙÐýØ&:i‹ìÙEžêQr-WÈ:Ú€óþ yŠ}Ø"ÏäÚüç.ùþëdíl‘k_\ÛØÃ׈~þ¶EÖå:ùî‹×\#׸¸¶Øù4×¹¸Ž'çïCq*r/û¶AîgŸ<›…íò$Ñ=²[dÒ3ê*àg:àuˆÎë‚nzð±[PŸH¹ÖA‡Òç³Ðï-r/›DßõÉyµIöÌ6ØÆ‹çsÜÍ`¹Õ}¢6É™Ó#çêUÈm/®éÉùç_#÷e“<³¹ÏëĦYœï ½² 6Õì5Ú/n¡k¯’uÕ&{¸ÏtÎ5Zo‚~yžËѧëä\ÃçÚ=I_×|÷5²/¶áLØ`ÎPìYß%×Ü‚º6ú\»D¿m2õm²þ©®l‚}²¸Ž:y!¹þ±m(c¬á òwÛä³·ˆ Dëû7‰±,÷7[ý½,÷v£öîEzž-öÎØj!9Oú䤶ý²–:üaò\‘7¶;?j‹wɺ¥¶CôlðÔÛp†tÁží“=…µ;ôúÖg¸ÅÄ£h¾vƒ<ïMØw}²ï'ß}aS\'góSp/{ ÔfÜýDÏë>ùÎur][°¿«àuÈ÷Ý&ú qô› ÜuÌßï¹Æu°MB°Ëúd¿µÀŽÜ {¯C¾ÃâùmC|x®g±?&÷¥äûTP;¼G|ÀÑ©m¢Ãè:áülBŹ?X³ûèõk°Ž:ð¹Ô¿mƒ^£þÝ; ²~¶a?mµ€u“Ûä»c¯ç6ØO‹kß$¶?µ;ÚËÉZÝ€üõ£÷rüÿ&ø‹=G©þºº¾G>{°9]È…¯31û³^Ü‹$Ïc“Ü/ôÓ¯Âó¾FìèMПý ßG’êÉ«Á2ÇÀäýú`‹m˼ W»&,å&»§v@HtHî/îû òžôì Éý¦¹øåè;´Èš© ¸EâKÔŸB| ònôÉ ú¬ ~P—ìË>S·F1Óôlê“õÒ¿ûip<”+nƒÜS¬õéC¼¯Ã`s0F¶Aìê>øæ›d6!f|•¬oºnéµ-¾×ÃäY¬Ãë7Éwˆè•uÐý &n½ gÁUâW­ƒý‚>¼×Ñ!ÏžÏ}ÐÔŸÝ$ï¹ñ£6œ=WɵIl¶ÜÇœó ²Îº€Ý$¶ú:ùîë—¢1ù…îyœè€ ð•ú`c„dMõHLw‹±ºAžß~ƒœGT'n@Lb…˜^xžľ·‰ýÒqè®9ë÷å:Ñ©-X›ØãyƒøÛ€Yî“õºNlÓmò=©ŽÇ˯¸±¾M°úf‹¬ç+D笓s¢OÖÀcDn’Ô&ñ×; cGó}ò]¶‰}¼Nþ~leÌáp~[à[·À¯ì€ß¼AÎß…¿Øcpa‹{ö$ù¾!ƒ}» 5c!Äоـ8äñ®{f=Èó&p>öÙ›-¢z3 öò£ ޾{“rS<ö͵Ð3ø‰ùw þÈ6Y“‹\ÖUr͘7Ø ò<7´{öø&ÄÎZÏí€Î¤xŒÙ÷zšø2]ÐÍ ²/q£‡Á~Y콇@7tÁ·»ϦCöõ?®À9õè§žb9hÙÇæëû:Y›?Z‡#Ÿ5~f‹¬=/Xœ¥Ô&íCLp#Èó^Qœìâß}tòÀ‡¶É:êÓ"ï±ö=î‹-ˆƒS»¨Nô¿³÷Æ‘ÐOZ‡:•¬ï`G·ˆMtìô rÿ›ð;ª«pÍ]ЉW ~܇¸6g¶àúûÁ2¿ßÖüý¶™œ ýü ¨‘Ý :µù<[hl¸ 6Ã6ä–»ÄOnÃýÞ"׆˜i?È÷HëN®X^ìÿ†ê:±×Éÿµ!„6=CúÄfz„Üëћ̦q|ÈSº°¯¯2q°ƒ—ëÂóéAŽæ!ò<(êø… ßËúY½ŽÏ¾OÖ_ò¤€©¤6èz¯«î<ÃUГÔ>߀¸Ä:Ä»LÞ™êÎ9ÇÖIÜhqžØ$Ïðq¸§-x>MÆë’ØÏìÛ¦ÿ°5¿Ž&ä.©m„þy‹ä(®‚}»çd°"˜¯Y_©MâXÔWíC¼ŒÚ{=ðgÛðìzD—w˜ZÇ&ÉÁnžd“Éûö@S;nñ}^qÿu+ï™Û#kèêÜ6íÂ5lN¥ ¾4õµûä~· Lñ‹øÆ+!Gq3ëCÞ‚Üg‡`1B¸Îbð-Щ=âÖ¡öƒÈ3¼>jrNˆ?1Ó6ùœÁw O³±rÊñØ"kñäj{Ïê/¿1À.yF[Až („¯Î9äuØ‚æUð·{äsBð+)f€æ ‘Sž®åVç¡í€†Ø¤:ɵÑë¤:žæ^{̹Ö¨qìãSÐØXƒÜ‹M²>·‰ÍDuáu²þ1æ´EôO‡è¨-°¯×Á'£¸þ>Ñá½ ßÃæe``¿ôk$¿Mü0¡zcÁŒ/2û 1é>œOWÀÞhAìò:ø6‹ÜÍ­õ îׇ3¤ gìâ;>5Xˆyõ ~Lñ¹]¨MÙfb WÈþ¥xš«L.¾GÎvZò½±šOè@ŸæªZp¦QBÈØ3=°+÷é1ò=®Cìê*ÄèèþXüÞ&Ä9ûËêB,§ öW乨ڰ÷±‡ööê2u8[€‹èCü“žM XG¸î9‘yÜÏØ·¯ ÷e‹Á w!ïÖ¥å¨ùYè‡Gá¼¾˜¤m‚£Û„ µg7!.Ð#ëÏ´Øñ=x®ÔvìƒÝÙƒšÐÇAgwÁé“Áñ5{°¿Öa.°¤ëgF~ü °Ùú`»‡Ì¹‰uFˆýhÌí• ð_˜Â‡Èßn‘çÒ%ëssî“t!Ü…ýÒý¶ð<ûøÎmˆ™P­ù†\_›©q£vbÜÿ‡ˆ ¶ElŠ`K7@§®Cl© ØÔé4VÞbbKÛP³‡¹ßuÈûl½BÞº 9!šK_ìÅGIìjaO_!˜…m°Eû$o…Áµ¯Cl»=·¯¶ì%ö¢]‡gÕcjrúL>n=È÷»Nöèù~[°‡¯@lj“øÁˆ/¼BÖnŸäYú V²ÃÄ i­_º¼Gþ¾÷g“³vÏá*<·Ä6˜8=>“ÔîõÉkiÎfÎÚ.àò;pFc|kV)6–ãÎïÀ¥¼'ÛßÚ›vrïWÉùÑ‚z±+pžÒxB‡ÁmC±KôZl?ÊíB^ýèàG±Ö5û«Ã`Æ(? åZìË5·×æ>ÑrÝ×H½ÍIRœè“$6Có"ÈÕÔ'1-À@>ù’uð¡Ö¡žllÌ>èÈE­rnpú¾±Ø-À¡ Ÿ†=ªzAž›ù‘6™ú1Z›Óÿ™Æ”6âÃ$Îñ9g¯B®etùuÈm1q½“O 9ZÄy÷àÌA<(µÁ¯’ï¶NôFð0æl¥ñªu¨Iá¸*{Œ¸päõ¤vî£K¦ö&µY[P{°ºkÄQ{PCm°«p¯úŒÎÜ k%„×¶Á¦Áqë°±¶†ãÆ¢¼ÄÔ?¢g­Kåø"B‚9z|ÇM°7Á]{yƒÉ©õ¡ÞyizAžùD¨ÝDÏû0Ú!Y³X'Ó‡³æ1ÛP—°qÝ~°Ì­N×ù:|ÿmÀ¯utbF¶ÀgØ„8ÿ¶ãŒ»FÆÓzÓ¢¸³u&†EcaÛPß…q;¬SA ôñQ¿·«‰~Î5ˆUnŠÞKºn;ÇÝ?›ÚËôYáù¾ ñ¼>Ñ98c;äŒD;†â‡»‹èëk0µ¨GzPkÒ…ÚƒßoB¨OÖ\üáV¯±î‚¸u~T?^ºÛ œ«è÷w!~Ü ò5ËÀæ…P÷IsÍM’G. jƒÒ¾Xëû¿Iö ™_ƒ¼òÑaWɳ»9<šÛ¿yã‰koBl‰æ€:àQ`rgXÚ3k ðäëð¾=ÀT ¶ùñ`™[ˆËín Gì=¬[pñp>?ÚÁ\Ow©ÿ­{[Ø4®q°­×ÀwÝ"Ïì!ˆénvdrÛ ƒúàó÷!.»¸ŠÔõ-έ' fÒƒz ø!4o|0f<k";æ?ßÿ8dòÂ=¢;€ìBþˆî»>äÔÚA¾Ã\k°DÔw]‡˜#õ§ëæñy^MXçÀëÐØwr›ð·T÷¯ÃùM±ÀÃZjfuñóCŒ^Xßvj)6HíÈ:ƒ¡íÃ^\ø°O‚ýÖ ò5®4¦¼AòÔÞ[–‹Éµá½{²Aî+bfPcù8cnŽ8„š­àAÖ™Ü*×òÄ-žm ðÃÀèöÈ3¢øŠçoA]Lξ>¼fq–>NbéÛ`{]¼ ½ÿOËõÉŽú1Šwú4jƒ_…\­ûï‚ß x.éèˆ.Ø£T?v³Ò½\û=‡½Ù[£ð}´(ïC#È÷ !Ί½r¨ÏGóä˜èžè35z Xƒ-¦>òñà^¸§Ó#$NyØdß]!¸³6äÛ¶ˆ>é¼Í&9¶ˆ~ºBòXÿ´1^:_ –¹Š: [:LÝ`ƒ`íHž1b1öŠgÏ&ÄL©Ï¼¨Ã_Ôv˜«&£ËÚLÝ&r@Ñ8p‹Ø¿}À)µ£„x6Ê}õX糦÷¹ŸÛƒïÐ]Û"Ø8ê£ÒX<ö•¦8ÁÁ¿#è#GEó׉^ý Æï¼N°£›G¦º…âB6àL¢¿»ÂøûÔŽ¢õ¡Û7³äëôé³o@­LâŽ=°±®AÍ"åÔ¡u±Û`¯­CÞí´ؼ=ÐWë &‹âÔéû ¯R~vbký ß+jlºSË×}ÜŸ€Æ´‘w¥ËÄi[?¡õ#­ ß Eê=CÈ ]#Ï¡w%1ÜmˆSRÕw[$޲Ebø\ë > ó®mÆï3ØTŠ)‰~iAÝ öaè¾¾Æà%iÝØì]ü7Ú9yžhšsí‚í‡k}ñG(ÿßúÜ6Ù˜c°¯¶î‰á_„b™h=äâY=y©«$nOuÇUXÃ}ÀÈQüØ“›YwØÙ[£8«u¦&p‹YW&þÙcöG l+Š· 9Â+ó¦u£´Æ¥¶{/È×é".qöÚãC· {9«Û‚‘'wlpçEmï®Ã®ä¸™1^¹qö:óÚ.ƒ íƒ_ßl;]ÛëL޾ >3òÓ…äõa­÷õH”ˇú-ȵÒ8 å.kÁÙ™ÔfüÌ.`ßúàa ÚWa t9Å] ®•òÚ„—¥Ï!„¼{‡Ädñ¾-ú…°©ßŒçÁˆ¹oßõ*cëlCÐSsûyƒ¬SÓ£gÃ&Äù6Ö0„€¹yÎê'!R?È×go€Š®èW÷`Ÿt¼.µÑšAž¿´ ¶pìgäðå®»Ï`e:ÌyÙƒz>Z×± 9Gª·8®ü=Öíu™\3êšûíù^5!Ü—è†-°{`Û.>ë1È v™\Bbîôì_œA^µ ØXš«kÂû?D0¿‹ýs•ÄY6«÷¬ãu¦và¬KÔ³›àÇ÷Á‡Ý–ùö6!7øäí:â¬-¦®ô•Œ=ßg0D¨‡·ƒe®¸u¨;Übð_[pOñÕm8ß°â…)6´urƧiBìµ ¹4®W rDsX„.ìVç/ !Çù8ÁûÓ=…ñÉ È3ÐxÿcŒÿÒe|"z=WÀ×Á¾3 ߟ—Öùa}~â»””öRlå Y÷×?·M° ›P;±9?³h®žâw¶AõÉ{õ˜Úœ °ùÉuâgÓzò乞„¼VñZÚ{gî;µ{i]dp*.¬è:øó!àBã„÷¦äëŒÛpæ]#Ïýj°ÌçN9\®yþ¤mˆuv!7Þep6Ø#‹ÃÎ#~´ÃÜ#ÄP„ F¼ùþ6ÄB®ŽÏÇ6ØkØË³Ã`Â0yÞ‡æè¶™ÎM°»7‚|Oà󽨞¨ýÕ Ïúa°C)–¡µ„UR—@å`Þ¯’=Oëhœé`j·™šË‡‚åšà+€EØ‚QŸìgŒ»õIþpž]Û!yï.`Ù‡Ø=AsÛXk°Áà„1F»ä¹²®ë¢üTȑֻ³ ¶ÖжÁßX‡}†¸évÀ÷‘ xå Ͻöò«] ò=µÚLÜ£õaëð,úLÞ|3Xæ¾îÂwl’ÜƒÉ …°glèÄ: »6 &‘~ÇÅÙ÷ò`™{¤Ø'Ž×b0¨mÈÝaOSij¡žîƒ>o@=½®&ÄiάñÚZ°Ü³²Îä6ÀÞYÜã5’ ¿N|ÝÅxø] ýCùî®nmüj·ìVü ñ¨ž¾Jþ†ê§–9 èþß{ûom¿€ñŒ>àÜBˆ«w™xjlêÑœZ'È×ê»r8_×!†Lñ(ëdzAl£'ëÒ þáèeÄOµ!O·ykʵ¼ßcîeµë`GõÀ–ZìÿëÄ?¥6ÌfÀ÷BÆ6X9àøÍ ß·„æNÿÿ8\wäÓàßô;j“Éq÷ˆO‰<8 ?ì:Á¨ÓgŒßäxpÛAž»gtׯ« ¾n©|ŒÜ¯ëÁrPÄÓ¶ƒe¾eŠMáxººŒX‡çøª±µgƒý~)ÿú‹yà±Po,bxÞh‹Ø3ëàÏbÝÅ•`™£ŠÆI6!^²ä{Ÿl˽-iŸ¤¹æmˆ]ö!/Ký­âê=ðú$FJã7Ø1w/߆[ϧë1Øáãõ™ø­/ê@¾k“±½ð=8|ZìËu’+Zü|=È÷› 8z Áoì/Òóg“èÌ䊰´ä9ºLÍDÈü_›ø½`¹1Ú\˜óÞ òœh4†ÜQÛLŽ{àmyÆ`Äh § :ä1À¯w ßg¾Ózç§lÁù¹„çb;Až—†ÆÝ¨‡=»hì¨ ÏjË£Úò}iú gpVÎ^ûÁóuü0ÔZnCN°,óqÍ~ÿÁ2¿å"æÔ"º q£ÛÁrö6Äw7H¬jðÌT/ÑÞù]pÖ”«~r*Øc‘òO#>oƒ‰·S?ŠÖumƒÝºÁèuxf[€9CÞ¿.àGéy¿Aüˆ ¨ Y'ëã¾]&ßÞxI×!}ˆoy¾ï ¯ë’¸W'Èsm0û„Ã\w¬A'È÷ŽY‡ØÞØ<=ÐÝÈ!Â}§ñÁ´"¯]>ƒ=µ_´§a6.ë!.ãjk<¯úx®u„˜À.£—ñliÀ¾ì‚=†Üóد6„³„ÆÝxÜ:è_¬Mí€ÓÜ;rÒ"¿xjëćÇÚRì@ó†ô<›ýMpÕÖœÞGj^#v)Å6õIš‹á Ô”-^÷ƒ¢¼ OËý0֡—+L^Šrùm1ù½Mò}¶ÉZÚ ˜—.ƒãîy~ò>ƒ5¡{=dÖüäò{LÍõi7‚=È)n‚MÔ‡ó˜ê»ø ¿Z‹‰k®3x†±Ã‘G` ê²hl§ ±[Žû©ûn^CíÂ.ÄCÆGëBm%µSÁr¯ÉÄZB‡­Çñzl21HÊq‹ýÚLœs–/  b>;ç߀œ)öÇkAÎ’ÆrûLýgƒÁð÷ue]Š\ìÈíBóv”¼¹ªÔ;¬3¸LÄßÒ|à6ÄZh}Lbõ ÏW9ÊDŸ-Q=Ìø ò=~bš€ Y\­-£}†üÑË Îp•Ég<yhʹr-È÷Oå°E[PëstÔUrÆu!Nq…øïºá*£KúLާÏà·¼Åz°ÌÉуò&ØÕ[ã» ØIʶ7b†×ÿCûâQç­ ßkn“ü?ö:¤:nb·ëpBVŸb›º‹ï2±DªÿhåUâ£uàlë28®7nâ¾&DócuÇÙÚ¡&øëLÞl šsî2ëfƒ©[Üÿ{ï­CŒó‹‚Qº,÷ÒÜ„8ttöÕ!ÆLm!j³pýÅšÏÞ[ŸÞ«&¯ê1:šö oC¼{‹ÄÃé:mA®µë¶ÍÄŽ»`',ö\ºe ü¾œSˆ%éÀsnÀgô˜zÍà7º ailÀ¾i‚Þ¿,÷iG~A¬{|8XæPiùÚùäZPË´¸5ˆûS apN]ð×±ÿÊìçW/ð¬Ðzç>ÄÍ7Ix ü•§ƒen–«¤çÍ5À¯üÔvðÿoæùÊ7‹úß4fFó‰4Ö¼ ±þ>ƒ·ºF°jëL¼|ë þÕÁËPÞî>àË·Éó¿q›mëÂþ—¨O׃e®ë>ñ ‘‹³ ùȇˆ}° þ^p·mˆ¥ÒçµÅÔ¡¶Áoiú¡›€µ¡ñÅèÞÉ­a¿0ÔOË=Æèçµ™XJäyùhmµ™7ƒ|Múø©XcÂõ!O@l¹õ ߇gìš.s¶n/ô»öP‡©aãú¸SÕ€çÎmFÊaºë²¶ës¯)_P;Ès·v‚<µý)V  gU‹©j3yû>ämz€?¡6Ù"Ž…}ûèžxœÁb7˜ó¢¾ÉU’›ÂÚo¬“oÙºÅ`×›€AÂ~]´ö YôðU¢?¯øîz°ÜÛæ{¯ƒn¦ñÃkßÛ¬òFïýù$ÁžvánC­ß:ä)žu‰û®Ã3ØìP/Ès®;ê­6!g‹˜†WB~æQò7M¦v¬OÄO]':k b%ÈNï×£Û·HLf=Xæw ¹M83ºê 8:Až³ÚOÀ:Þ‚Ü$UoÃù½á¨CD›¨ çN°˜£¸Ÿ.Ø0-8 °çb–·;µØÐuÀ÷µ¦ä,ØŸvÁ³‡ ^q°0Á™‚ÜØ[¾ öûãAž©ÉÔ«`Œ˜ãéy>°^ï[ßfrŸ]’û|òk}rm ÆFÆž0ôìÝ&÷e3Ès‹t@×âubê Ø½ _³Œ¹Ð|6­k¥çv?pó]ÑÏ듳s“©á:h- öG ™å‡™T=Xî•Csú/cò-GG›ÉUôÁ–§}ašLŽ ¾i¾C ò±u¦^fþš'û¿nÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆçGÝ x²ÿ=ÿ586Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6Ûl³Í6ÛLçlt‚àÉþ¯Û°aÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaãùA'žìÛ°aÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaã…A'žì÷Gy.͹ÌFk>W3)Ýýó¯½f=“Êüu³9̤>ÿww>Wæ_ˤ7ŸµùßÔçÿ®ÎçÅëòw³ysþÙÕù¼1ÿ¬Åk×T›ÿ¾D®±4ÿÿ&\O0ÿüõùgÏþݘËÚ|^\Gc>¯Í?c¼®I~ßš¿w™|}¯Å½Y܃2¹7kó×Ôào+äy¬‘{2×çïÙ"ϯJ>³4¿½ù뛿W™¼ÏâsJóÏ.Ïÿ]%¿[Üß¹¦*¹ÏkäºËä~öÉ÷£ßñ>‹×->§AîKmþ·TZ°.Û$¯)3߇¾ßöüZJó×ÉëêäþÍæ6¬ÇùœÅkzä6áþTÉßôÉZlÏ\Ü»ú\k§7ÿüúü6áù7æ{¬CöQüÿbM=B¾Gyþ7m²êd½4Èsì’çU&ß©¼0*ä³êdÏu`}µÈš¯]Q†½Ì¿C™¬ èzªä¹ôÈço“½´F¾Õ7‹ÿë]T&ë¯B®!˜_oŸìÖü{®ÌW&×»Fîo™<ç*¹·ùw¨0:‚îÿ:|çµù³\èæu²6špÿš0/®^o‹¬Kú¼é~k5°6¿/ òY=ØÛX+‹¿©’3fìº{Œ. È}[ì݇ÉuDßT@opòÝf¯y”\GîG™|Ÿ y5øw‰¼–î«*œ³]Ðuf½4È÷©’ë-“ûÎ×@0Ï2ùt„äÿËd=R}[‚ïÔ„sŠ>§2èÄ:¹eb àßÎÆÕùgtAÌ{6‰¾¡çotQ™ÙWùŽ r†ÕÉÿ7È÷§gTƒì—y†T7,ž]w>ÓûÒ k»Ež!=û×@×Õ`”È÷ë‚>«‘{V%:­BÖÍè‘58c›pO©oÀžj€ÝDÏü*ù¼:ì»2yî£Sèó,Ãù^&gu…±ãÊäUÈ3\#×´ØÔ6¬€ S!öB…<«5ø,zýœ^¢ú¸Fî}‰¬ªKó×¯Þ 6½ ¸7¸OôuM°[käu °ãð>eb_®Q&×_#{ƒ®…€è±ÅùÒ ë¤NžÍØ µ8Ÿ^NÞs±_陆6m¬Ñ9ë¨ @Ï‹·<÷}šd=Ñ}U#ß­DôCÏ~ öN‡è ÔMܧØ;Ôæ©Á÷Ycôs๿œ-¬§€¬ÁtxÏ£Fl·*èõ€¬ÁÅïÛp¾Dç4À® Àžª’klÂw\#¶m0·Ó6ȹBý2ѵøœfÿ~l™ÜzÏÖÈ¢º™î‘6YË5òÿ¹¶ì•5°ðk*ðÌñ *‘÷['þ½fê[–àٶɳhÀzik)1~xì«<÷¹ö…_Ý$¶/õq[ÌZ(©Ã>¡gB•\ÿâþ>ÆÄJ乬ݶ°c6æïß¼ gý|êwð|ðš×ÀW¢gk›Øžôõ¨ÿkp~UÉYIã5朣¶S >×=³þ;ÕE%ÐK%°ðÙ×ÉY‚º¾ Ÿ_"ûÆcè½§vh“¼o‰¬Ëü\…¸Yƒü_‹¬Mê[”Aw–˜k¯1ö4ÆKjŒ-ºx Ðm-ð?ªà¿Vý¿8Ïj°¶kàß/®·ãðCÖà¹vÈõW`ïà@›Ú ÛD§TaMÓÏ !vS"ß¡ k² vR@ì¢ Ø%Ø/Y—%rÚD'TÁæ.Á~¬’ßµˆÕ$ë² ë½óâÌØ˜ÿ&œ+ˆcVˆîYè¼…níoTgöÖÄ ¨ŸDm¥&<«.CÀÆ«’çÝ¿  û³DÖý]â&MbëÓ}Mí½6Ø|Ø`&æ³÷‰úeÐõurM²Jàƒ–ÁÏoA¬uù¬mxýøto5Éï*pÆïi½]k§k´ÊœUˆe`ü¤ì°+ä~ÕÉs É^«À½ëÎÏ­5°Ï¨Þn1vÚÏô<«ž­“g@uT îi“±µ¾N—‰©—öål\ƒœ@_œ@Þ§Bb¹Tw][añaJD¿ÕÁl@l´ ß· 뵯¯‚OSeì úÿ³ëz¹žcßRýОç©ck@̵¶GƒÜÃ:Ä`êpF×@^ó¾ ¶h…±ÊĦgv…ÜÇ*ăÊàâ¹€ñîι:ፔ¿j Þ›Ææzpïª` ýØ$¯]ÿ ÂÄ“špkßÀxµùÉ69ªŒÝ0þvû×I b»kä=hܯ 1õ2Øq ¢Gk°OË$WS#k°EtYr> ¨À~Ƙ}ƒ¼gÅ‘W-]Êå1Êà«ã¯/V!>^‰¬ï€ø2x>…+ZsÄT1žT‚ó{ lú5Èkb»FtÝ5xïø¹%°7C&ö\]ˆvµï°³LÜíÓ*¬å ¼Ïè“*ÄÉ©oÞ…¸d öêmb;ÔH|„ÚuØ3uÈÑ7„¶óâ¾mÀù[&gZ îõøU²—ÚŒï]'kªº´IÞ÷!ð·¨­rrU°Í°kë[Á=T‚3“êƒMÆž¡qâ5ðhܾ 1Äœé5ò\ðLêÌ.‘µZ« :¡ ùž]r"uÀ§ðìêä<¯üP›‰…T˜Ü ]{×Á¦^¼ö*ùž˜g.Í×å5ˆßT OTû c°U°õxŽ ð#sØ¿Mˆw5È:£~î5²–°oðÞ5Á †¸X[“ïÛ'{s@ˆ«©ÎsÊk ÛÊð3ÚÂ4Ñ‚ç0¾to~]5&^_‡sšêæ6œ‰ æ39{ cLu°‡è~j’ó£vQöI—Ñ“3CLÞ›€É«T ŒöR‹øù5²vB¢W9[sºUÀ¦L 4`pUÀ8µÈ°>L ü;Ç `íTÀ&_ØÕ5Ðq5Ðùe&†WëŒ5&¯LmMb†$öX'÷² ñí2ÄÖÖ ´ñª5È3TÁvj¡ ±-¸÷Wæ¯Û$ñ¤*ä,Lž?ýùï7!Zû° ë0`ò±4ïÓÝ]#9—2ÑG!œ»‹kxòV5ÆæE¼Æ»ä™· W&ëã6‹Ÿû sJ`¿Öá{–HÌi`“ªdU!Š.ŸuT}0¾îä¾[äzi¬¶XNz¾”ÇÁÅMj`?–A…LÞz‰-žéÃó5Ü û¨Nö>Åa=تë[p/: ¾¬ öZòU°ó—Gí¥6¹ÞYW-æ¾-þ¶ :¢ ¾Á˘Ü>ž/5æ{`.g lâø½ÙM8{äÿ(V.dþ¦ë„Úï!¬›5&.ÍÅ+¿øžeÇ3Å}´Æ<ïØøuÈñ,¤Olásín—>Û¬£2ãWÔÁî+1¾/bfÊL 4€ü_™`$ëKíƒMP…ó³s…y†mÐk Ÿi<§ 1lº~*p?¨ý±At1µÑk䌪¸b âÉk v·BtD•É™•Àÿ¬0Ï¸ÄøØó4Ž1¢2Ä›{$Єœlò_ˆÔ‰ŸT¼@…Ùk°o1WqC» 8´:¬Åìzêp¯ê WËðê+UÈ÷ª3¸€`Ìšp}u𑛀%¡~O ìê5F¯pzŠb»[ðœ8¬æ « Ž3$ñ¸5ˆ“Q7 ç+Ågõ`_†Ìþ§õ¨‡ëÌ÷©mS –kšhLœâ¶›9×J€#¡öáyfÀ¹Pl$É6Éõ#¾¶,ØÔUÈ–¨9+ ?Ëߢg]Ë[FïÕb/wÁo«AÌ£Aîe™‰36༨“ØY^WœbƒJL|s »F›³:ce/…8œ- ¿±g{ÖGò^UðÛ¸Ï&†ÈÕ†¡V»„ñ×f¯÷1 5ˆ_ V¨ÌÄãJ̹‚¹”2à"ÖÀ6¤5t®C|¹gbxWƒ=Iu ÕmÆŽÀ‘‹Á®1ûžúÙxfb<«ÅÄZ`;`N±äëË€A«@<ºß· û„Æ@ëöJ°\ËX³ÌÄÐ×ËX òu ߬Ää®Â9_aâY¬½*ƒÛÁXd•9oÑnmƒ~XcpWXW¿Ðœ®)ƒYerÿm²Þëðlš€Ÿªv"„ûÑ#ëü!À¥4A·×wŒ8ç5ðá±&µÌä°+€;®CÞ•®—à\ZLn²äðïÖ˜ÜQ Ά*äa0†Órøzœí^a0uÉ-–ˆßF}Ã:`BiÎ*$1W\[×mìKzfsyœƒóZ"µÑBП’µ1³*ã.ðš[p õ _¿Ü`|ajSpœF&:€XÿÃŒ®_ŒÆà÷×?|‰¹aL¨ ±5û[&øåĺJÁ`| …>½Nôc/X®çïË|”ã:œ#uÈ.ôA‡èéøœ.lò þ›î¯:¿D\Dr‚×`-†pˆá+1±ß Ä^ªŽ³®§–ÃåÖW“‹6>ÿ¬Ó Øúe&vKÏÈ6Ñ×Íñ[‹ù‚;b}þûÎn°ÌW„öC…àš×ö(Ä#0oZ%±PŒ 6Àž¡ø ZÇKk«Ñ6£q•«Až“¬Î`E0nVfb‘U³Q‡XÛâï·¾,`bÅ%8£‡‰î›†#ºˆWˆÞÆ:š*øðk Ö¡ñlÄV¢‚çÇ}R†³–ãÑ©1útÁàP›ä*Ñkub·wÉ:}|̉y„àc7‚<—_•ÉÓcL Éäkp.ãý¬Â³nÂ~-90¾Aç@\#q§€Á– ‡Ð¿œÖs`kت#ãðh‹{t…±J ?_Z…}Ý9u °\n²ñ0ô+±Î¿ ¶l…ÉÝ—!ŽC±þ?…xË>ñÃõm¢w°Õ›LÞ¯Lò ÀN6ˆÎ,3Ø´ c£/îűZÁ2ïÇÄ*Ëp¦c>QoSabˆMržÐgT òõw%&'UÜ]ì䜨2ù'.'†õW#VÏù1ˆ AïNýàFÀãÒxæ%ð-1Ÿ0gq ükÔk´ž 9žÖØG|>-FO—HlºMtmrT_SÛ· xZïUÌÖâ3®/`Ò±©2·ÿË€M¦1Í2ùœ&œ3¶© qÒc pV—Á–¡¸;jÏÖ™ü!Ö…QLÖcs¯öã˜Ç(‘˜Dٱˌ6S°â8ï*ðj §»Až—†êÝ&«¯06ó⽯@Œ‰bÅÊ íGŒSPnÖc[] ^àøh©MΊÁ£„¦º­4·]h~­,׺ÖÇSò<5ÐCCÞ y*pb>³ä9†hL= â¤â8)”ãÆ¡joè€î«±ÄØ×”'cñÿ× ¯¿Æäí°ÎsxMˆ÷V!OÓlV•웃W£\"›àa?pø -±Ìà­è³\ø/[DW–Ôµºy?ºoÏ]ߤ 8Gú|×àï+Â9Ž¹Ø Ä<ÖÀw£÷¤z´,×÷c}‰Y ˆ#-3çyìð2`§Ö ƒÜŸ¥`™¯äÀð–™x]g¡Ã§©2Xôk€=¤Ü#˜G\ÇeQ òüš-f¿s< -ˆ—A/¯.¬€-€qÁ“Ÿ¨‘1úƒ ØoUˆ,ÖL›èüN°\¯±XG]¸¶Åg÷ƒeŽåG‚xÏ«$¿S&ûŽâÃÖÁmB,ºÌ¬GZüÄeªpÖRÞ—:Ä©Û òÜ‹å`¹£úÀUŸS\ñà:*Ažo« þ 5˜Œrçu #Œþ@ä¹Ü«“¬:bÊk £äùõ*€7h3˜ïìc®®9Êkd¬Q[o ì‡rçø,9òÜô\ZüGp04…6ø"~Ùƒ|)ÅùSœàvçŧº¼,s³W˜Xå.«|­3úþk€·hnnèôæ\¨]÷(ãÏ!æjÉoÕßµ9ü»ãï_}Pg°2kŽ\åjš¨38úVç¿«0¶N)à¹.¸ú@ôkÖ˜\}.W ¦\g°×øý“Ør`ÁÐo/ƒŠq‰ä¹ZÁ€Á¶ VïÚ)T¯ÒÚ™™i­#›-ôÒËȺ a-tó¶yãƒÏDÛþ±Si,¨AìÓ…ÞºJζNÀó®ŽOâ¤-ÀÅ`ýò2į賧õuˆç#7 ,×p·‚eîÉàëŠúâ!œ!ÄÂBò~kŸ€ß܃Ø4½ß5ˆMP^/Œõ—!ÆQf0sø{ìÇÐbôÂã7äzCÈG•Áç@ÜpÉ)U˜3²Æ`5+ÌÙ_‡¸m™yO¬S]clšó:ŒYbÝ*žeG^½ä¹[ßWbò`‰÷`ocm ÍG®ù:™*ƒß þ‡ ­’3¨ ¶Zƒ±‹×œúcÓW@ÇamÚx&Îî¾qÉKw=çN#È×N–˜˜÷9%²ÏÃ`¹gÅ{H9ò)þ4 –yÕ)V¼Ϲù‚uâ?S}ß„õ¿ðÙÞüoä•n1çñè¢ösHôÅa#†­:{A5ÁäðŒ5GL ÿ]ÝPwàmh|¨FìºkŒ³,׺¡_€?„µw³]fâ¿”›²yÁ »¢{bñ‘üFàÀ]¢ Su|— ƒÁ*A.¡ÁØOk€¢¿»äë±br“#_‡ü·”ç?€˜*µ‘ºdïTàk€Ò òý ±7 ‡Ai2ùz_kA¾ÿE9È÷±»Nþ>dp÷ Æ×£Üç%²_Qw N-`ô>~'| öúD õµ›ÄG©ƒ][%ñÁœkè€pÀ‹ý²¨o‚ýY ò<=ˆS©yN³ñJç¯Âwky.Î9Ê×G;õ—ÚÁr­Kð}e8SÊAž_ Á`Š1‡\ øz…RÀ÷;¨‘\ö:«¶kfטsµÂüöX¡=GʰÇZë-Á:Ǻß2Ø`‹ïu•ÑõˆßE_£ÌèŠÁ¯ÂõPþ'Ž+ªþ`Î ¬ï®:b:%ƒUaân\¦5¸GÈ+HÏî.`T±þ½ÌœÅkÌý¢qZôëÐ ¾öŒÃ»"žŸæP«ŒžFÌG‹‰ ¾›êñä!éYùó\ö/©›©²X·€?Y'ç| ðÿT§T!g±øœ>±-éÙßó¤äë<[Ažk9»špî—‚|_ÜÖ@3È×ÜÖ Í=õ…xw…‰Ç”COïW ô"ÆQ9×Rçäi¶’b™°Þ÷-§—©¾¨3{‹úë`™§ñeUÆöG!Ö°Òûàx1VJq{M[„ºŽ«'#T‚¼ µB&Gy)®Ö¨ Ï*c ”‚|cƒñ‹Ö˜üràˆ%ׂ<§L…Á™Õ˜ûA¹‚)Þ$pä«9¼ö¸©9ìŽ_k`ªŒï_=Tfô í_ƒ}S ò}ÐË ª,s rØó*“Û ˜gVbže¹Š.¬Ñ È÷ƒ à¾ÐøG ÖÅÍÑïÐ –{‘o€nh0x+Êo’×P^2<ϰ®½˜øÄlk;R»œrdoÂ=iƒ-I¹¨±Ÿ0æ‰ëA¾ö¦äk·¹\å¹èÌãòÙŽº˜Ô5&ŸJ{rùŒ5FsÜb”—ë娮jÂáâ4¦Áå„〾;ÅJ5ƒ<¯Lì8®—Ýßx/hO¢ƒU¬–r’ÔÁÆ ¾/îý2à,*Ll ÷íÓ2gÚ %¸·””î;Ę×× {×Á.FÎÅ|¯ã#VƒÊŸ8`žõoß&¸BŠƒ ñú.±©«pæ<xŠà,š€+lÂýyùÛM¨i¨ÃßS^NÊÕ’}F9÷›Œ¾.Cl¾ öNÁ ×Éúm=Cí¾‡A?PŽlZÕ –ùcÚ ÿË·m2øã*ĨÍÞ‡3ò=4ƒ|½c“ÜÃf°ÌW{·Øý ß[ë×9|T@túCA¾rò·ƒ|±Ç©ù¾zˆÅ¸Îøgõ _[VuœÃ5ˆ_Òœ0ÇM×òµds~V OG{GÖ!ÇŽØoÎÖÀ^„µùw¯Ë=’ˆrD´¬X…ÉË->ï:Øwõ ÏYÃñïU ßPfbeˆÕŒ¶ÆàÃÖÌ ê]ŽyKi «6^êªðl¶Ávéyž‚2c,tðÆg)3ûÖ~´À¯¬19Œ&Y½ùó\èõuâ+Q,K›à–h sb@Õ`™?¿ ˜éä@iŸË|ß ÆÅÕ0Èó+W‚|Íqr_]8$ǾFòÊ]r/h\’~wë ¾~p˜´ß!Å´!†Ò`Ιäàªp×Èszò>ÔéÀyÒ"qÝZ°Ìÿ䊯¼Fò@XÇRaüâÄêŒîh¼æÂVì3x~Ü÷]²ÖJ¿«Ë}߯CýäVãê:Ár½1æn0?¸¸î‡‚ÞùûÄ7¾cqç¿l½éï|ã«>þíÙßg?ýßìÙnÏ^?ÙŸ½•‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰‰É}ÉF+žìÛ½0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111yA²Ñ ‚'ûAøeÿ7XÛù‘ ü“aPþúwå—½-(}ÿAü“‚¾ßösAðõŸêßÁ»ÿj|Ù›‚àK8“ ‚/ø± øï ‚Ïø¦ xÛGÁ'þ› øí_žÉVœ¾;“GƒàΗÁþ«‚`ï¹ xín|ø~&¥ ø°Ï ‚ýKA0ù¥ H³×<ýËAðß¿åÍ™ô³k{Y¼²ïÿAðÄOÁ+nÁûe×ñòìÿ_Ö‚Ç®Á#ÿ@<”½æ¡j\ÿ[™d×qíÕApõ3ù†L¾,“÷Ï$ ‚+OÁö(“$¶>-“Í ØüêL¾2“7ÁÆÏäOfòô}Yÿ‰L¾%“¯Ëä«2É®»ÿL&ƒ èfïÛýüL²÷êüëLþJ&Ùwêd÷¥S ‚vöÙíì¶³×·?,“n&å 4“oÏä=™ü±L²Ï s©AëW3ùÅLþQ&Ù}ne÷¤•}NëÙL²ïÛÌþ¿ùï2ù™üõL²ëm¾5“8“õ hd÷±ñ ™üÇL~(“?“ɧgò±™gòDÔ=“ì:êÙwªgߣþ™™||&;™|H&œÉC™d÷¬ž}—Zöžµ‘Iö~µ˜É÷f’}ßÚ×d’}Úd’}÷Úgg’½Wí÷e’݇ÚQ&·3¹•IvjÙû×>4“ì=«ÿ#“•É?Îäof’­…ê_Ìä/d’]S5»æêïÉäã2ù™ÜÍä4““L²ïQ=Ìd˜Iv­Õ«™dïYù•L²k­dϱòO3ùñL¾'“¿–Iv½•ì¾W¾-“ì{W²g^ÉÖ]å‹2ùý™|F&ÙuWޑɧdò»2ÉîI%[o•ìó*‘I¶*72ÉÖW%{¦•ìó+Ùó¯dϰòÔ\> “G2ÉžE%[Ç•l W²ç^ÉÖÎÚÿÉäf’]ãZöŒ×~6“ŸÉä§2ùg™ü ‘¿ŸÉßÍäog’}‡µïÌ$»?kÙýYûÚ¹ü©L¾$“?”Iö=Ö¾0“ì¬e[|-û.k¿;“ìÞ­eÏ~-{k¿-“×g’Ý»µ×e’í©µl¯¯eÏe-û>kÓL’¹d{v-û^k/Ïäesy,“ës¹–I¶ך™4æ’íÁµLµ”e.Ù3.gÏ¢œ­ÇòÏÏå?g’é”r¦OÊ?K$[Óåì^”³½T~o&?É¿Ì$»7ålí•ÿ‘L”³ç[ÎÖp9[“åL”¿?“l]–³µTÎöE9ÓUåï˜KöìËÙ³/gk¬ümsÉöuùç’íïr¶OÊÙz.gú ü§3ÉôWù+2ÉôYùfò‡ç’­ór¦‡Ê “ÏœK¶NËïÊ$Ó)åOK¶ŽÊoÏäSˆ|r&Ùº*g몜=—ò3ÉžM9{6åLW”?2“³L²gTÎÖyùx.GD²uX¾=—l_•³çXÎÖd9Ó«åÏ${–åL”#"Ù)gϳœér¶>˯Ì$Ó‰å÷›Ëã™dÏ·œ=ßr¦³ËÏ%ÓåksÉtn9ÓåÆ\2]U®e’=ór…Hi.Ù:(ez¦ôk™üïL²u_ÊÖC)[÷¥ÿ–I¶&JÙz(eë¡ôssùsù÷sù·sù™¹ü«¹üô\þy&?I$[¥lÏ—²s©ô#™dº¥ôÃsù¡¹d{«”é°R¶¿J/“¿“I¶nJ{.Ù^+ýõ¹dz£”­£Òwgò]sùιdkª”­§R¶'KÙž,}Û\¾u.~.ß2—oÎ$;'KÙz+}Ã\¾>“¯›ËŸÍ$[ƒ¥l –¾ ä=sÉÖdéOÌåƒ|Å\²3¥”­×ҙ˗ÎåÉtFéùâL¾h.ÈÎ%Óï¥ì *ek¿ô9sÉÖ鳉|Èg¹G$Ó³¥L·—~o&Ù¾)e{¦ô© oŸË§Ìå“çò¶LÞJäç’é¹R¶¯JoÉäwÎ%Ûc¥7Ï%;CJ¿=“lŸ•>z.™PzÃ\îÎ%Û¥³¹dû¯t<—£¹|Ä\²s t{.™.-e{°t0—="¯%’íÍÒ.‘×d²3—Wù0"ÙYYÊÎãÒ”Èd.ãL2[¦4œK:—Lw—â¹DsÉì•R¦J™(}Ð\>䩹dú¡ô[@žÌä• ï?—'òŠLÞÈãD^’éžÒcD2Tz„ÈÃDb$;J™Ž*]%rd{.[‚l‚lYŸK.="]#™þ,µ@šsiÌ¥ÎHMê\*DÖˆ”R"Ü— ÓÕÁÿù?sù5"¿ÊHvÖ™Ž2ü2‘_bä0òßùŹüWA~ÈÏ3òŸù¹¹ü§¹üGÿ È¿wÈÏ òïÉζàßÌågò¯ò^5—Ÿù— ?Eä_0òÏAþÈO‚ü„Cþ)È òcD2›.øBäƒd~RðÃù!F~Ð!ÿP!?ÀÈ?`äï+äï|?‘¿+È÷Íåïòÿ1ò½Dþ¶G¾‡‘¿ò7ùŒdvTð×ù«D¾Û#ßåïùAþÊ\þ2‘o'ò—æòù ù¶¹|+#žÈ·(åÏ1òÍù¦¹|#È7(äë•òuùZ"V!Æ!_Cä«ùÓù*|%‘?å‘÷w?Y@þ„Rþxù A¾Ü#L)_ÆÈuÈQÈ—”?\@¾Ä#H!_¬/*(Ð#_¨”/äó ÈçÏ-(Ÿ³¢üå³/Y4!öÏ\Qî­(¿¿ |Æ%Éﻀ|ºG~où=”w)äÓ^ùT…¼óòŽ ÊÛ/Q>åEO^AÞvy«R>éäßò»/ ¿ë’å-ßyIò X>þ’åÍ—$oZA>îåw\PÞø>ßþäc€|Ì%Êo{ÀòѺyÃûPî>ùÈK’ç^d9{‰ÈëßÇrúåäE”ã÷¡<û"ËÑKD>âE”;/1¹ý—×Üz‰Éë^¢ró7ˆ<óÿ˜¼Ä寖ýßD²÷–×þ“ÿ "»¿Áä5¿ dç7™¼ú7±|Øoù­&çò¡&*ù“%™šœËÄäyÿ&’‘É…dhri’š¼(’˜¼d$6yIJdò¢ËÀäE‘6yÉÈ«L~ÃÈÓ&¿áäƒL~ÓÉš˜€æ3v¾ö±§ÿà»ßµóÕ¿ü®Ÿÿ…×þ™/ùÔ_‹>£ñ©;_RÿogïýŸí|áW½ö«þñÎ[v¾àuoùÒãÿûow>￾zçgî†;Ÿ÷g¾ûþøø¬Ï}÷Ÿø¢ïyýûï|îo}Û—ÿàõ_ÜùÜúóÿúsÿÁ—ì|ΣWîÞùÛOîüúÔzç¿ý¤Ïþ¢?óæµ_}zç3Ï~ùÝ?úa¿²sï믽ü5ßþ ;¿ïUÏ|ðïåÏïü¾Ö‡¯}âÛžÚy×?zäÖ×ý±Üyןý7þ½O{¤ô=¿ë›^·óŽß³ÿ¿þÙúíw|èßyÏýÚ×î¼ýç??yù·~ÁÎÛ¿á=íý;kçíìÓ¾ï—æe;Ÿrô±oùÛÿí×w>ù¿é'¿öGÝùäú7^ý¦7?µóI_ñÙ²õͯÙyËOÿðw<þ®?»ó ŸþKïýŽÏÿ¢ÿßqð~k¸óñè_n¿«þ«;_þÄn;o~Ë­—ÿ£ïþÆ7Oßþ_n~îŸÜyÓßìüé—ý@sçã~ê]¯ø„?ò¦û¤J¸ùïÝùú ÷g_ûgwÞø{ÿÖg}ôû·v~û/Üøþ_ý™¿¼ó±ßù áøï}áÎÇ>ó•Oì}ùÿ·ó1ýïÿÎýéþÎo{Ý×}ß»~îcv>úW¾kãÛôëw>ú‹_û+ûðËw>êuŸTúO£ß¿ó†¯yÛ¿þÕ“ÞyÃWÄ_|Ïýé7|á?üñþ¾oç Ý+?ü?çîÜý¯ÿä~À~îÎGþòÏþïOýÉoÞyî½?ñúÓ~õÎsÿòÓ¾7ù°ÊÎso?ü¯Ÿù-;gïÞI¿òï½rçìÊ7ýØ{Ÿ^Û9Û|æ5ëOýý×ÿý_ý¼Ÿzù÷ï¼þõõoª={sçô¿üñ‡¾óû¿sçôÓ×Ǽw÷…yûè½ÿíß´sòoþþ›ÞðKß½sò/þ}ë»nÞÎÉUÿÒæ×ïœ<ñ ïùð÷ÿôãÓWüÜgæõãéË^÷Î_:Ø9ú„Þ'ô·ü³£»_ò²úñ¿°óÿëC>ôÊÖ{v>bç=ï~ÍÇÿ“;ÿüæ‡=ûÆ_Û¹óÉïzø½7^µsçÚ7õßõù¯Ý¹}§ú‘ïþŒ?¹søéoÜþ®½ÿ³sëG¿ïþÇÿ~eçÖ7üùñÎïØ¹õ%ÿëËÿà—¶wn=ñÊw\{Ç«wn5ÿ‘ð?þî×ÍïÓë^_þ¥ï>þS;¯{ìÿå¯~õ/ï¼®7žû/tçæ|é7~ÒGmí<óOwßøùßþòæ þïßý†¯Ûyæ»í·ýÕG~d癯ûîû ßñÎg^ÿsoúâWüÞgN¾¥ôWÿÏÎ3/û™÷{{ïÇvþÒ—~è½ÙÝ9øù_ðÏíÜøÙÿü9_ó£oÚ¹ñ{Þý•ßú5zçÆÁú˯|íÛÙÿOßûøCýÿðYÿùw}ïÙÙ÷_þÄÚÅÎþ‡¾bò†Ûý¿ÒÞ|ø+¯ïì½å{>rúø•½ú?ÿSÿé×vö?ä+Þó'vözá?õ^ÿm;¯ýÇ_ÿÈ/n]Ûyí'}ù+¾ï¡ïÙyíöß½öQoøÑÿÉ_ùÖ_â¯î|ø_ÿŽ?}éïÞùðùýÿðàÇ¿þ=ÿô•;»_õ}þê‡vvŸøàŸø+ŸüžÝðw¿ûwþâÞÎkÞûuûÛ×Ú;¯ù¦7|͇ü¯ŸÛyÍÑùL~}ç5û7¿±ýë_¶óšú¼ßù½Ÿý¡;;¿òé_õ/¿²³3_¿;â-_÷ͯü›;;ù1?ñÅÿîÉWÿô”ô÷üWõ÷ ¿sü±;¯þãóÏ}{ó­;¯~Ëwü÷¯zÅ_Ûyõà.ýïGw>ìÇùýÿ?{ï(Yr•‹` DPZiwg÷ͼ™—¦ß¼™·;Ò ‰¦8@&S€‰$rÆÆ€‰„É9›h"šøc’IFd„ & DF"ø5÷|§Âí¾u¾Z„¢åÿW‰Ý{_wß[á„/üâê[×ÿÎGüÊ?ù7×âÇßséßýø·þ¯_}×÷ÿ—õã_çc>óïô¥ëÇ¿ÚG?ð!þ†õãO?âO_ö—Ÿ¶~Ü×þþg¼AøêõãÞóמzý]?îß¿Íüšï:^?îÍßê÷¿ò“»~ÜkÿâçßýÚo´~ÜÝoü”OþàÏ^?îÁoðéOºó[Ö¯òð/¿ø§o¶~ìO~î½ï÷üäú±ïûÒŸóƒ¿òÞëÇ^ýЗ¼üÑ¿¾¾ïçŸõÖöS﻾ïKŸùÈ'~ׯïûÂ'¼éo~ùÓ×÷}îo~ÊÛò/­ï{Øë>ùϾmý˜¯¾ïkÞï'Þsý˜/}Ì]ïõź~LxÊ~ÿwß¾~Ì㮬¿âÒú1ýÒ{¾îçßeýè¿¿ã-/>á“×þëÿö™_úzŸµ~ôsõ“îýÂõ£éá«WúÚ[?úý?æ½ßá¿}ÐúÑoñO{³WúÊõÍ?|¯×¹øo³¾ùÙ¿ö¥rï­o¾ëÏÿþ;¿ÑcÖ7ßügömÿüÍ×7_ç?ê¾á½Ö÷þÐw]ºýa¯³¾÷û¶Ÿ÷÷o¼¾÷ß=ñ=^ò¯Ö÷¾öW|Üo|Æ…õ½«/ýÝÿóÀ×[ß»ÿ%oóS¿ôÖë{_ù _ë‡?üƒ×÷üÐ+]úË¿YßóýŸò„/{Æ‹¯ïù¯/ù6/õmO\ßó¾ù‘*Ÿ°¾çÞ¿ø gÜö¬õ=×?à[þý‹=w}æÝ=|ö÷ÿÄù}ëóxÖÍù7¯½>ÿwùéûžøaëóŸ|âw^à®Ïô·þü<çÉëóÿøf¯÷Ò¿g}þÎOÿÛü«×]Ÿ¿ã›Üû÷Ïx“õù«¾ÞË<ûèS×çzÍ_ýÕ÷ûñõ9æéç|Ͻî“_q}ã÷þ×;¼Öܵ¾ñ´oÿ¾ûþðõÖ7¾ïæû|ËW>¡Œ˜Ç7þËÉÿœ'>m}ã Ÿ|ùÞuo}ãß^|û{ã£õ³;¿÷}øÍ×7ôˆÏ|ûWøÌõ—þœ§ýê_}Áúús?óþÜ~Çúú/}êÃô•g}ýçüƯõ·Ï^_ÿÁ—{•WýÒ­¯Ê‹ýõåOz—õõùûߺóìc××ßþo^ý¿ò[Ö×ßôŸó ïðcëë·=ë÷ÿøÑ«Íñ¥þàgç—ÿíúì¯ßõ£ßþsÞq}ö›Ï|ÊÏ_ú¸õÙ¯=á7Óƒ>m}öÿýÊŸ|ÿãÿÏúì ~ñ ¿õ[_l}ö9oñ 7¾èeÖgoÿ¯ýÈb÷Úw<ðg¾l} ëéÚs>ø•Ÿþ§—××~ýþß}Îk¬¯=íýçûŽëkŸò®üò¿ú‰õµ'½ó§|éýÊúÖÙé¼ÖÁë¼Ô£Ö§ø˜×¸ô®O^Ÿ¾Íù“þk?³>}Ó·½ò7þÆúôuÏ>ùÁõÇëÓß¿çYy×õê›þÆ?üÏY¯¾ä!¯ò½z…õês^é¿óîZ¯>æÁ_ðÍŸöøõêq/þêŸ~÷·­WGÿpõã~ðçÖ«ó×ø —åõÕŸúãïy»¿~¯2þ÷ß{é×}Èw¬¯~þï|èkþö¬¯î?ý½^áÓ>y}õöŸþÍ—{Ç/,ã+ÿÔ[¼ô=_·>ùíþ’?}ƒ¿,ã¯üÐCŸ½÷Òë“û¿ÿí§^^Ÿ¼ÙÿøãoxŸ?XŸ¼Þ×?ñkÃß”ñúWýï/þöƒõÉK~Ùƒ>þéÿa}Œu›ÇÏû”{‹¯=Zê'ýÝ›~ØcÖÇïñ±?óêOý€õñ[~ôw=öÝ>«ŒoôQg7_åÉëãø‘_qãå¿y}|é?ðÞ›ýñúøQôì;þ~s|¥|Âmóò룿xÿxÐû¾ÊúèYï÷è¾ú뮞ù>_÷’}ËõÑÓßó³ÿöÛ?p}ô£ïñ²ù »>ú¾wûˆ?{›ÏYýÏwùó?>ýŠõÑW<ñ×~çéÿ{sÄ~rô oÿø_zíç¬Þç­¿ðiß{a}tß›¼Õ·~í¯.¼þw|ÕÞSÖ‡?ùsßí™ëç­þ£>æl}ˆýæðso~Ö»½ï'®ŸtþáïðЯ^¾ÃêMÞèm~§Œÿîä‡_ïô¹ëÃ×:ü&ùÙ‡¬±^¼ø¤óÛߨŒ/}ç3¯|ú‡¯~ëßþ°ÿûeü‘‡<âeÞð÷Ö_ÿàø?ô°õÁ—?èþêó.¯þÛËýû?÷{ÖŸñ2ÿçO'ëƒwzñ;ùÍ?u}ðjûœûâŸX<úoÞù‡Þ÷—×w<÷©ßñ»\¼Øsö¿þmoæñÊ7þVø¯ßû½ë+_ü'ñ„_]_Áþvå?ÿßxï¯{T_å§n¼ñ»Ìúʧ=åõ÷™ë+G?qÇë<ø¿¯¯ÜýcŸþ¿ñÍe|ðÈã>æ§×WþÍSÿä1oþëëËÿïßéžÃgoŽö¿tíoþn}ù}Çç=üwßr}çìåøúõs?ðéëËïùµßúœ×yÆúò[}ÕÿÞ³°¾üÆOyÈ3¿ïÖ—×Oþ»_yâj}ùö/ú™ÿºw__~™/ø®ÿýF·¾ü€Ï?ûÞ‹Ÿ»ÞG<´ÿÛŸõ©ßüyO-ãÏ~úÍã~ksü±O}öW>øÏÖûßþI¿øEßòJeüÊÿÏ~‹këý/ú¸GúÑ«®÷?ø£^î#ßïCÖûØ÷ßìC~ý}¾ãÛ×ûýÀW}µß^_zê®]ý¥¯]_úîwøòïûÎÍñkÞîSî~£_\_ú²·}‰;.þÞúÒ§¾å³òÃ/µ¾„}ùÒ[¾Ñ×üÍ·¼ÃúÒ½á]ñ¤÷]_º÷u?ü÷ÿö‹Ëxõµÿì·ŸöõëKا/½Òk¼Éÿ•_^_zà«ÿðÏ=ìÖÿbýM?ñ,ã³^õÊ|Ò#ÖùU^ñûÎn–ñ}?éSøGë‹ï|ðbÿK»¾ˆ}:¯~÷Ï}ð¥Ç¬/"¼ˆýûâÁ÷¼çç¿Óæˆ}=/ñð¾õ3þûzïoúaoñ-ß´ÞûõWø•{ôëë=ìë{ßüÀË7_ãd½÷¹/ñ1GßùïÖ{OzÀ{ï½Ý®÷°Ïï½Ûß>í¡ÿçË×{oñWÿóAô¿×{oð—WøºO_ï½æs¿ì%ïxFÿäþò3\ƽ?þöNʈsÀÆ»ÿüwÿׯ}Ä»—ñÿþÖ?óÜÏ-ãO?ãÓŸöÃ_YƯûåwú_¯ð[ë»qNlŒ÷s÷}Ý¿»{}÷Güìÿøªãkë»ÿÓÓ/=ùÿ½êúî'þÔËÿ·/}›õÝoòãù™¯ñ!ë»_íGžñ ¿÷ùe|ô¿ùÇ~çW•ñô©?þQŸôíë»/ÿà«}øÛýðúî—ýÞ/y¿ÿóçë»_ì{ú^Oy‰õ]ßõ>?ý¿ö‘ë»ÇÝ…s&ÿá ôyïý7ë»NÞâîÿôÿ¡ŒL/ûÞOþŒõ]/ýFþÎñמûú¿ö¶øSë ¿õº?òfŸú¬2þLüæ×¿çåÊøõác÷¡¯½¾€sëÂ;Ý{zûƒ¾}çÖ…píÅ_6ý}/æñÎßûë/z•2¾Üåï}NxË<Þù»w}æo|üç¬ïD|yçÿ~ä»üÔÏüìúNœyÄ9xç'¿âåoûžÓ2¾ÛËüõW¾Ô{¬ï|‹—ú­/úš_ßùš/ñ´Ï~ƒ§¬ï|ðß|⇾ʋ/Žwüâs^ç oWÆzöù[ýø‡®ïÀy™ÇO{æsÂÿü…åñßñË÷½õsËøV¿ü ‡_~c}ÇÍŸûèGüÑû¬ïÀy›Gœ³y|ÀO¼ÚßÿâmŒ·?ûGÿâCo};Îßçñíßþ½¿÷«ï&eD~µ1~Öw|÷O|ÓG–ñ£¾í+ð;x}ûû~˧}×_ÿ¯õío÷ÿù[¾è—×·?ökÞà¿ÿÎme<|Êc¾àn®oG<¾1â¼_õ§_ôÿå?}úæø_ðü¨oÜ¿û³¾õ]ßñYëG!^xÔÇ~âû¿á¾öúQÿñãÞæµþì×B|ð¨WýˆG­~ýû—Ç~À/>ô'îÈã#äñA'<ñÁƈx ˆ ùAo{ð3Ïz…õ#ßù­^éG?ýtýÈôæûý÷¾^ÏÞè§¾ñÃ>~ýHÄ 6Þ†¸á¶|Õûáo¾^߆üä¶½þgoó;ß^Æw?ýÕô ¿°¾ ñB7äñžËÿíU>ðÆú¶W¼ë}Ž¿÷½óøä/@¼GÄ yD¼Ç|©ïùÝßx‡õ#Þû%¾ê×?æ#Ëø6øŒ_8üâõ#G<qƒÿñßýÍÏzOß¿ã™?ñ‰Ïú†Íñ)Ïø¶þôŸ\?qÆÆøÑ¿ü ïÿK/·~øûýâ|÷?*ã¿ÿ¹·{Ç‹qs|ý§¿ö[þÐ;oŽˆOþˆ}©Wûæï_?ñÈ||â<>ã{ðàKîX?ì§¾ûÜ%]? ñI¿öÛ>êÁŸøeDÜò°ÿúoöw?û­eD“Ç'|Íѳnÿ“õÃÇ< qÌÃÇäñÌÒøÐ¿üܯøÎ?Jß<ñÌ∼ò¡ßð‰¯ÿùOº{yD¼“ÇO|ÒÞÇ=ímùqÒCßåßûAû‚ÍqÓÆ(ô£ïò¶?¿<"ï}è]ïÿEoþ•Ù_þ}þë¼îõõCþö=ßï5ŸýF›ãï¿Û[?þ3Þ{sü…w~Í{o~’?"¾{È·¼ý#÷?üG×A·1"®[?ìÍáåÞc¿Œïñ¦ßÿ¯ ã#âÅÅ1¾þgýé[|Äæˆx2—â»>ãK¾»Œˆ+çã+ÿCxÜOÿî_/ˆ7Ýqè+ÿÏ{žù ôþËãW\ÿɧÜñéeüÌÓoÿâïû†2¢ÞàŽˆw‡Ç·½üŸžôõ/[FÄÇ#âäñ1=>쑞øøÙOÛøJÏyå?}Ó'}ßú•W/ŽO{нúÓþ®Œßõ2ßøØ÷¿csüê—ú‚¬?"^%Ä믄zÌ+!>ß÷çû‡gÿ‰?"~wGÔwÜñ¾¯ˆúÏðˆ<`cD^àŽÈÜyD‘GäùÄâˆBÈS†Ç;~àÿûÏg??>"zÔÝòˆº=~õ{~ç7}Ô—ð#òªÅñÞþ?í!·•ññouó#ÞúÍ–GäaKパ—mŒÈÇÜùÚâøñ¯òV'?ø¤åùÝâˆ<‘÷-/ÿ׿ú÷~ûƒÆGä‹#òÅ—G~¸8"oÜ‘?.ŽwÿÝ—}Ìç_ÀÈCÿÑ#ú3îˆ~;"ßýGȇ—Æ—C>¼1"‘çùñðˆº¸;"¿Þ‘?ßßñe‘O»#òíÅy¸;"?wGäï/‹>ž;"Ÿ/ƒ¼ý~Èëéyÿâˆ:Àðˆ:AQ/ØôºOþ’§>uc|àï½Æ~êƒ_¼Œ¨'¸#ê ôˆzDQ‡pGÔ%6FÔ'ž_ãKÿÑ#åQ/ýµþˆú=¢>’GÔEGÔGþÑ#ê+Ï·ñ!þØÿï;n£Ç—úãg?ø+^,mލçü£GÔ}èu uŸáý+zDÝèþŽÿõ¤u¥û=¢îô|Q·z¾¨{=ßGÔÏžo#êoÏïñ%Q§Q·»ß#êyÏ·õ=wDQßûG¨þS/:âó}D}ñ~¨Gþ£GÔ'ÿÑ#ê“ÿd#ê˜÷{Dóù5¾8êŸÃ#ê Ï÷õÓçûˆºë?Ùˆºë lDýö6¢ÎûB;¢¾ü_ õç؈:ö lDüŸl|ÿ¿ûw|ñÏ~áQϨûßïõÿç÷øôþÙÆïùµyê{<õ?¢ÿð/~DŸä=¢/òÑ'ùgÑgy!_õ´ó/Ô¾Ñ?ý¨ý¦øø÷Ú¯zþÚ·úçµÿõ¢?j_î>þöï^xGí¾àGí;¾ÐŒÿOû™ÿrG훾ðŽÚg}áµûO>þ­öm_øFíÿóÚ'~ѵoýB?þöÅ_øGí·¿ðÚ×ÿ;þµâ^ð£â þùGÅ)üëoñB?þ•â;^xFÅ‹¼èŽŠgÙÿRq6ÿzGÅ ýËwô¢7*žé_ÝøгzÑÿµmTœÚ‹Üø\ÅÉíÆ¥Qñz»ñþŽŠÜóQñŠ»qaüsÅUîFvT<èn|a'»ÿ‰Æ?S<ïn¼¿£âÿ厊OÞ/j£â¼wãàø§ŠGß/¬£âîwã ˨<ÝøÂ:*¿a7þ Ÿ£<ŽÝø¢:*oe7þk•÷³ÿ™Ç?QžÒnÜ:*Ok7îÆçϨ¼¹Ý¸·àîÆÝxkücð#wãn¬Çgƒoº_ÄFðZwãnüçŸþðnÜ/T#øÜ»q7¾(ŒþünÜ»±¡¯°wãnôÇ?„îÆnÜ/Ò#ôLvãn|Qÿú2»q7îÆ2þ>ôƒvãnÜ/D#t¥vãnÜ/¼ãïAÇl7îÆÝø"B¿|7îÆÝ¸wã?ïøLèÿïÆÝ¸wãnÜ/”#|;vãnÜ»q7îFfü-øýìÆÝ¸wãnÜ»q7æþg»q7îÆÝ¸wãnÜìø›ðƒÜ»q7îÆÝ¸wãnüW?¿w7îÆÝ¸wãnÜ»qt|üÂwãnÜ»q7îÆÝ¸wãndÆßøÍg>åç/}ÜnÜ»q7îÆÝ¸wãnÜýñM~ü/?ó5>d7îÆÝ¸wãnÜ»q7îÆÝøýIïü)_úc¿²wãnÜ»q7îÆÝ¸wãnÜ»㯽ӽ§·?èûwãnÜ»q7îÆÝ¸wãnÜ»q7îÆçËø«¯ùOûì7xÊnÜ»q7îÆÝ¸wãnÜ»q7îÆÝ¸wã¿úñWöŸþ^¯ðiŸ¼wãnÜ»q7îÆÝ¸wã b|ÀðŠxÀÁ+>à%ð2Ïûß«S””B 1†(Ïû)IŠqú¿DB ÏŸ÷?pÓÞô¼ÿzÞM"ñÖ¿ ƒ¤ Óårë¿ÚËŸ÷'äÖu·þûÖ$È­;pyª.?|Þß~Þ?xÞ?¾õ_Ó—™þûÖµ·þëyÿ3HuýÞôm¦?n]¥ÝúŸIš ñµŸ÷Mo}Õé?Ïû_·n ÓpëGT—ëå·>.êÿ§Ç±üͯßúIn]yëŽé—Nß)á;ݺ3é Ó§ãÆGã %¼‚pë'ã;ÝúŽqz Ó¸õçŸ{AŸ@JÝ× WýÏ{¢Óÿ¸õ5R¨®Ú/IŸÍô®ðåÓô>æôyWßú9:kâ­?7=§ ÿsþ@Ãô"Óô3o}ÃÞD;ËMÉóÊôÓC~&·~êô)·Æù«Óç9}ãç]‚Ξéþ[júÆíÏžþ¼wíqõšo½ßçýOÌŠiLwÈô3Òü¯ÇÀ“é¹L³ùÖ§ˆÍÅúœU×Nÿ*–‡õ_a¶·+aU½‰iùê»›þ¯-èMÏ»GªŸ}ë#’L?áÖ¿ž~¼®ÿ[ÿrúGRî°ÍåÖ‡?ïÿ›Vó­>ý™&8Þ¹l}VÓäèMüz#ºµeèŽ4ý”[jºíC›¿Øe:×uJ†iëtßóVÒôݧé([¶ëƒúPŸöi™f‚®)LË`mš©KU«;rçÌôÀõ•3ǾxHzrL/{ dôû„mß›Út4¯N÷ÍVqÑ4#¢»”Uª¿Vï øŒ ³i»_/jÝ•gÌ‹ÿº‘ßIóÖmcén¥e*ÞzÓF˜z3åx¶ÉéiÖ[ÉU8šn†Îñn '§Výu{9%"-¹«:`uÑu_þô2nã©èºõ ·Åí&4³xsy¥¶3ø¨Šì§Ÿ,Nô}_MÏŽüên=¥¼áO›ðæIžóIÉ—i¤ÑY[8§§µ<-ð¦õ!XV‹ê°¦Ó„èÍÑ= §˜3`Û7®v½é±$©Vøt45ÛêQ§§-xÉG«NŒ¸-÷Ô©ŒÙ¥¯‰ÙôåŽÓzº!rö•͹”p6ôï|hNéC?9±öÖ/¹õG¦ôoÚic™y²%®Çæ&^„°_g[G çÕ~Êç»›ŠÍóù +€Þo±uMo{á¬XUQ¬>xbo¹Ð¼ì´p„^F!%¦è×êíöÖó›¾Dèe³$‰jÿÌšxÐ0äÖû]Ü÷ló™6«(‹_£Î‚¦˜~Ì=¯ÔLóOtß"vAÒÑ™;«:ÎÂ¥4—ó×Júc\ŽH.•µôû,~ë*#bÇ Ç¿û}n4û§Îã¨u9'9=™O?¨™%OSlŠ·ÃÄRи’ªjq¡Âo|[ÈÓ±ÖKr\ñ'£Ö¯–ßdþÀöÏåÇÍ “È0[‚•Ëòô v~lÝv"}¸_-!³†ˆ!à|¶ßnO(5ÈŠt2ló†É‹NQœÒÓi.NÓJ`˜ægý9'Ub¤… wJ¯Ú²Îtʮ挬m:Ït"§Å U¦h†Iî“Îr ìÝœJó ¶$S"ƒiÓpŠJ¥Âž“§ËÕå;-–{u×\nž^”ŠðkDæOÏöSq.ܯÏ]0‹ï¨­%! ª6¥J/1’u‰éÜ4ÿšµL¦‰çæ#<Ð[ÿ<ÆÈÿ†éC3 ÷çùD‹^õæl³PYê†u§õ}S±@ÏA,æ…0{¹Ê#ËSïZ}Ú Ám!Vï%Ft„ÜPì¬Úf51ä*ç{yOŸ¢¥å\¡.ÿG­_Õ_lûÎ\Ÿ´šÃt÷š)DÕd¿Å #U¥ré¶°Îr^0=’éì£KÅH§¦Ùè¦×–ŒÚW÷{xuÐ}²:J¦¤M´¥Ø¥Þ4ú\Ž(¬#¨%/]rÒìªù‰™"ÈqýÊê@rqæÜnO[1º›Ò9m‚¶púÅÊk9E˜öuü7ô9¬šŠ¶·ô"˜Yu"8Õ‰*¯Ðyê lJôƒ©Uµ3hз•RùëÝÇÓ.IÌùå-³2`ñ¿~ÕæÆŽH%ìQãR&BÐ%2½ª€'oiûÆÄ«{uÓ”KÜѹW—íbˆ‹/ù 4ƒ€‹»Ï~Ó[¢ý°F¢W•@ýozWÓž1UKø’´¿ñî|z[ïÈÖa[~ßϧœ-(o'Öžh ZšÔ+ctv„ƒv'<Þ¬¤ÆØý€ófÇÔÀ7/Ò_m‹êF«’BNQ1…)+á½zGV ¯˜vˆ„Óº[I^Y?ት–ºµØƒöônÝmŠ”Lhˆ“Mœ7osznIÝ”«F±m&n͆«ˆK {ÐÛ˜ªNæ­oýœê¢-”i:ë¡¿= ·\! lñ¶±Z̲\^=n{vSEoe!çÙ«{íÕ.߃Dl1±“ìZ-M³×~•wVQÓÏ[ueœŽqöÈãü;“1CÿL»ºù îÆšñBu´òn˜NÀÁ¶"öígH\x¬Ó ˜,€íÅ—W¶@ú¼ºƒÒ$šòvë¾w÷“êtÐÎ}0UÉo yB'¿Óq¥tERŽÎ|žš¢1·35«°U_“Óß/gˆ.ÆÎµgMÉr*íQ=ô«³ó6é¡ÞZŽç~μ—ª×m'8…ÈlUmjv®T§Ùíüjú›Z)6ÜIôr¢óºƒ3ý'ƒ0ˆº¼sçJ~¹OÓ®òjU¤|dЮvk ¼·Xþ’„âÃú™ÞI³Éâ}ö§Ùíº?…\Û‘¥rh.Ô+U,oª·Ö=&k7=¸ÏP÷ÇØM„„àáXºÛ}ãe×¢¡¯‚ÙÞ-4nô‹§éî¿«‹0seŽ(Eƒ±Þ‘´ªòD:[U³$%r®×8ò”Ù×Baqrrö‡“ˆ%ÛI|-aàâóÚÄ×hP¾¼1”‚ð{ ¥h}´msð|í‹ iJš:ˆ õPˆOÒæÖ’‘y|­šãcAüõSߺ™¤S×: S|@‡×+6BðÄõ2Ržgˆ]:D®‰!Ké=ñ:P›ò8÷—_€ð¥à_-XœD1¡cÐ?.û„nÐn“ÖžPDŠÕÛ›ºXLl“Íèƒ\ë½!ÚäY®¼<¬é¦È–²Lþ¶Ó²¡Ê5ZL’Ê–¼’ú•ªÕ2Íßîl@#úH’$§}z6ߤ’Å,ýìü°)—L»[·ËqϬ£$"8¬¡ž<[Xk9õU¶´Œº»]]þDÅ£T·ç€$À©®âñ ´œî+=ž!§wÚýA ŒIÊâš;ÁkWÈ ÅºÔÌ”D¶PhÑâk÷LÛ`û‘Àó+Å”ºÎª^½à~&«ze+ROÝŸ-¥×zNp­‰{½Çzµ´4—å[ìn„{ÒTÈùöT³Dµ#,¯UPª\8@”ùÔõ]‰ xd•×rb¤Ñ·M¼ Ñ^®%È[D‡Ûhxξä®ê-¥zfÙŽÅp`£6—ˆj&kMñm·uŽˆ(‹-•% ˜ÿ ת¥MÅnØs>ÛdH"eo5QÉN×í@·á„29š"ŸHYIã婺åyF"Q´‘7›WÕv—¬ÝÀ‘tr—3ù]Î* ² ¿ÁRi]ЩaÜÃW]Ù ^;¸$«WMH$%~'/åF† ä½ÜÆÜäî‹8&ó3}¼ÚûNp¾&¡Jt¹Ä¯ÅijÚØÂW~ŒóŒno²Ã a&ÁH%øÜÂb_îßT’Ã,ŒÔ@+õ'þA‹tòz ÷TID-Áös½fSŠF<¹•¿V¬~éfÓ¨XqË`@¿@¤u9Ù†&#ùv—vØM€srB uµCPnîÄQm@îM®Õ\‰B ƒÜ©×6ø«*GÛ$å’M.¦ù ®êø¸„U}MíNaØ€»K±Xx]¬hŸ‘“ o6dÕ5“*ò½±ä«ð‹f‹¹æý´ï;÷úkc¿­ý&Ž3§us“P"ÔF¶öO"‚í,-½šä^­qÝà Õj /ú•Þ G‹•ýôïBÙGµu¼µ³s^ Á 8Ȫc g¨kщ`ºÍè.x6‹KôËÓ{5’5® a¨B $b°ãúqeË8t5Ã9 Gëϯsz¤¥™6ûJ(¥–D‘q§øKÓ¿»%JÔ–©³ÎMM2û%;«ü2ô…‘2Gg g£¹Û )Zß\ü 7ë9µ¦ÉÇ¥%OÔ‡Œg<Þ‚}ñ­NëZyRƒ&?MÌÑìD)žÚžÁÍì/ÄéPè|6—Ç G³v1š9¬ªÃÅhmyÞl2РªÈùh֒ɱhÆÏÑa`BãÌRÓmVPô€×¸¡·alÆ%«ö * ¡ÃPÙN+˯n®fŽfø]}jLG½¥Ïx^ͽVBôáD'áæ¤­IÀÓ ”¼¿lV›œ÷ȶP´2YÓ’”$Ÿ¥LªT¢ÐVb-Ç ý,?X'.)˜®¬—IØ£lÞ«ª]èÔQB À [öŠHØ=+,;¨C¢ðÛ9¿ŸppäIPD¤AéÅ7Ç[Œ]úÉ߬X>ûÌÏ ûØ-¯çæè{¢aò@±æÖM¾š®±t²øƒšÁö$2¨@bYù6PÝ„qsŸF³ŠÊFqX=+<$^ 2ndB¯U…¶Lƒ<–,Šy}{R)ñza!ð ¾Ǹ×EgÖ9Ñöç—S‰3D?HGŽF–ŠkC¨ú¦ó «!Y]Ù—6ÔP%š ª™//B«¢Z k‚Õ#2œ•/¼œ Aï=Ô½*]èZ\mADÉ„Y}/Z;Âú´ˆ±¸rÁ‚1wÑZ݈2D¿4êf5Ü+ÌUb“1Ð-!¾Ps†íQzB¦¡ÐÚ.™UƺIÏLxszÖçt„ o'B:Ù´`Wš$ ñÕ³*-*8³û§Ïf»@Αã¹P>i9§/mÖ%®f¸=É ¶Ó$8k2ñÞ› wù¡o9{¡ÊÈÝȳ ¤‰(÷(i]¥T9ø¥Ò‡M {Åþ¢[)¸\D÷#iö-dh1 `“ìMâfW× Ê'zóFdõèD²€hN›8Šyfœõá®g•-w02tï1’€aaÉûóíÓ%}—ô5ú>¸•i‚—¥WÂUAFÓ taY!;G–ÌT’PglJâ(¼“àÓÊ0r ³S™EðóÌSxNF»Ž1°5qU¯`µ+3Àœ.5³¬nl§ýbá«öÈ$Üã- ¨YúE»ªj’õÑ™²¬·UÔŠï~ÑîžJÏ&Ï1¤ˆ×Éãe4Ò]©yn{ -P \¬¯ilO(Ô”H£v‘ë$2û* E§ÉQ%!‘(lP8±ŒD¡SkR”{§F ,k\ºð|sÅhîÌ÷·Í 2$µ­¢ ÇR»â<ˆÕíšT% ë)<#T`V$î?¦ì6ÙÅ]©þºš×ö6îËUªì†²„SrEpsÓ½œ£/(#¹Δuk=ž¬M±ìØžúû"UßõP§³=g÷Ô¤Žº‰ø@¯ý&¯fb&u"¡Z•† ¯ÂVMÜ«Êçª2Á« Àx¶_ö²5;`Ž>«Àr2bêÝ/Ô*÷ sHâ³áèG×GÃÉ3ɘƒ^*±Aqsc1Õín¤Ùד¡Ø“ùÌ/5Ï*©cÚyW tDKÜ@ÙÄKKÒ9}nÈz¹¾}žËDû¦Ù–âÜœU6%U”ÙâY£à••ýéÉ'Q¡ÁÐÒÒ/|•ª‹NÐh^ c0¦,ÿ3à—SÍ?o5;Lq‘Œesãˆ|ô¿5ãÁ6Þ9^+Ý&¾‘(³öy9YÏ ï`•€A|ÄF!X²§™‰KN)•RÀdš‘ ¨Ó|…N ZÁÐ\¶»6¯bb‹‹iðIcó:`"…þUá=˜é¨àˆÇ©(žÓHiXŠP •¦Úį=˨9$Yô<ÞäjsâÓÌâœD˘QJäýŠ–¢k‡Ñ6Áïê+12Æž|4(þÑD†ÓŸc¢ l\[¶š£o¢žtÝN§aJP{±D±”5•(2”}ßëFø’QÆ«¼Z¢ò³™ª$ê#Ç0P°rk89•~½`c Ø hµÍ¹6%Ê Æ,e‰„/›=*ðwûÇÞI£o‚ôœBßTÔ¹ekÇÛ á¬Ùù&ÊP(„ÅÕJ¨CB DþZG$¹%ÉÌ.¹fzÓÜYì!],•¦b³±u©_o¿õt´l²›¹¶2“q"B4/gÊð³@Ûsð½8é7ÔmS Œ>ÝɆȶè~Ùì]€&cðIÅ"”º7•Δh@vö…q—æ•úײƒ»¥ì 7Ä:qï•Òð¾ÿWi¥„ÔÕØèi Pxâ)Ÿ)ý;…à’B/.?‹ÕÖ\}Þ2—S½M;Bpb"cïLß©ºj!®ŠA cR´j"½Ž²}&k¬éR¿V.Í#P(˜ó`Ïñ1šò[Ó(ô"¥Bd¥ê6:Oþ!s¥y€pùÚ½šàcð!¹¸¸©Þ¬·aÀf+%`'͉"$1¿ŠÔÅô÷"iõ®ÿÜi\h„¿»vÏÙ»KdDïº*˜s´à£…y6{¬í<“Û[tÔ²p’A"¹?‹G8ÛæËúKÔSÊyGLƒŒúÀ žs«C—$%Ï¡õH¯Ÿ»!ßÛ¹v¯ªwßëÝÕ×ôf MÈXÞ<3a$Pædää, ÑÛÑN[õ]li”Ö¤ÿЋ`Ãò…7f&=!_ÿ¼;k}ÜÌ!†;+,‚´™b ÊÓ)ØÞiA·, cX÷ŒëLýf© ô°sf‘œ¹‡ÓÊ«#í5TsLÏZgï{ÌÜ'âp‡´ƒ·Õž5s½ŠvÒÉ}ˆÄ‹ó›nmTÝ‚ÔOxÊoò©"^ª:ÂÎZôD™À2`_BªG™è²jÓDîÝ]™™×3’H1‘´_$k‰VÜÍV¶£:WuÛû¶÷4fõj˜vZ?/Á1N/Z7rµE§S»/××pœàã91Ü¢þÇv‘Tœ†æ}¯‚¢,‘ËˉŽkpÛÐËy­Ú²«jªá”®Ul*p!NÉ-4]Ø¿ÎUìB,y¸ƒH9)·¦ÀìÇ­@¢æÞ/Ïaä;Â×7°Þ"—ßMõØÝjl²6bsà‹´¦Z](?‡êW̘•(ޱ‘:jKfÑ~ž§“Yô>c$l1 ƒBãø'B¶šµ¤úýãÁ*Š!Œ‘§ qêírjÕ“Å3öB‘6gŬòЗ¨!ùö;3¥&¤)±‚lq/)­åÀR¸*tµƒ³³8ƒMMÕ‰CyŽ4Údt[aŠq¿RÎÛÇ}Ý„BƒëI÷«’‰0º$u+I`nDå{µ’/êM݇¨êTAƒ‡—Ë éöVØ-,›Hë²/jÅ”p²ÕáY/t—7‡½MÕúí[áL΋ÎTV5P"sv53kȉl¡E0ÔðÝàð-[#ÂHÕ@ÍŠ=uÃó-1oàÚƒYøÚn´’ÌšäòòMV¯Ñ¯Â)—Î¥ÖÕ—ú¹[j¤3«Œ8cC²¼<¨IFøuvEšE°© È¦“bê¶ÂÒ¶¬I—8|쌨Mè6^®9IÖ†îj µPÛÖ6âŸ;ël:ÏAáã6f„¥‡º-ñ®„)§»æí¨:úàÓ“ðÐ{UÙå¥åGy¡UÚr„OH'ÌýZßFÁÿÝ”£ÔˆMâÂèf¾Ôo°:P`%Ð!¾j/´P7@G¤J×ÓÖæ6v±¼ã±`J ‚ôÈÅVuù ߬gSh*†`²›–®7-7ÚàG‘·lï¶A—M{ж¢¦Ïê0[jÁÕ=h_^Œ†ÊÖ#YWÛ–n•®4Ký­cF\è-¯{Û§¨¤= ]¸=ªÑT—͘» &›à0µŸÆIÈjÍ\œío[¡nHÜ_@m"ãÕasÊ>¨;ú‰üÙ¶üaü×o¶™pSuG•éaî•2I^[Þê½3ð ({\yö¬©ŠJÀÙ}0e”Ëí5"ÞB¼އ+Þü–Pñ“Sàƒh­é¤ÿÁÞì`ðôã€éXòI]õÉ.‘É–‘>™ý¾uµËˆÉ!ú½³r.h•ˆ§ô¶ç™Š‡ lG†§g Eog*•¶‰F¾ýÙt©ñÛÎõÔŽ,(¨cPPÏa¦–(àIÇj³ÆVY·ƒL€ 'ÇJ~@ܰ›#ÏdÍqWÙ¯¢eN…3s$²Œ¬!ˆ¶AcÊJÄä´Á,é8oß*ÃTñ¼,ëódÈþÞ!0*æG%o¨äÄ›€†H‘òc©Ù!½P­0´jmX €ùé4Ì[‚ëDíPé!_20 –k]Ž$Âñ(ŒuŒD2¡  Tx™”ñvÀ&1Pº¡—­|ÇøwŽ:vÝNË7O#€~õÏ%çVM 6õf®äÚFòbc¬¡ ì¬U׈/UnÔDo4osYw°*•ÂÁcu0•R–Ûѽ¹¥ë† Ä@òà±²n’q×i ²ì‘¶ëS®+lõ¹¦mîŽp|ʼL0u¡OÐI´ÙÈGÅCÖ3ƒNzÌ*qÄUEÅvë 2r°Û=Ç뜒4|kÉøn‘äw¯fò&”0øINæ c2±Þ×Nˇ@†Óp8ÊÌ`#é\Y€<_Ü!¼¡Ò)œÜm<:­ãó ÷¢Èz¤]¯´ eˆ#59A€Ï]q¾›ÃpŸé¢±j}6¼•™©UyIÓöwÏ¡X8ÍŽãjÔU5yE2§ì|Øõl„iHg 9›õ£a§_~uéÅ °ŒÎan§L‰ §*˜’e#†½‘ueÆr±ÞäÒþq»†fÁDô»ˆDmî²Â¹ÅW‡T2EîC[ã™ÎeŒNÇÒvvΰ‰)E¶ƒýèðBÕCBõ$s4è†CN?%$‚ÍL‰t~µý# SË>ŸÁ4M üÏ܈ާW‹_¥9â(©Dsûiƒà§V”¸`¬“Ö- PÕu¯ã‰Âfý ¹/#–ŠQ>ì‹À~,‡´ºKÑt¶F’ýýÈ[ãdÉE“Ð _ö¥â(]A¢­ŠI¡›KüÆØxe[>¥<¢"ÜÓ#Š#¶I«‚Î5­‚PôK”ƒnºMfVË”‹›ë_'½ß¯õÉ]ŽÙÊ ½³rƒ;Qý–7ýÁHê)¡¤¬sÆGÕ¤ã*~àL°iß“Œ^ŒL³$@¢è¶åùy¥ÕJ‹q@k0v¿È¥Z.·ŸߘyjIÞ£¨Ve%ýdÈ/+º–77­}¤H±nª™«ŽXÙòÓE¡ôŠL„ݱÆ:© ›¦ýÊ»Ÿ‘Ø j‹ŸOR‚_uÊóiO<\šcæânFÐg›’Ã1Ò¶|¦©OH ÄÓ—Õ³J°õ÷Š(|0H©¾Ü­É”ÊÖ»[ʬHØ€[Ôð®—j´*f¬pë6 N­Ìn¦¬Ø½ÀÍR3šÔϤm5n)¡ÍÀ9uñÏÈú¡6’ÿÃú‚‡F0 ~ øÃ¢ŠjäH©¦ÊÅTÄ ÔõÊ$T, /  ßW§4¬T‚ÏcŸ%®@ž?äš#>ªŒE‘³­ŒŸÏ:¾ó ,’ýW{m–«içÚ•É+-45W¤ÎW›ª‚ž"ŠL¬¤5•þªËª€Äñ§§%þ#‹H7 ¾˜©¸Zôs˜¤XçU äÙš¢¬[«Ûoë™y`̲¸ÕÏÇG²1bs7×a ÐüÂÙœÂ6ƒésqÓÌœ,‚p9Þ¿ÚÊîdLjÞSnùÎC¾f±ÆâžpLq¦ ÔåàÖ¥jý¾ó§”˜2 Ä´]¿\ÛýºÇ"ÂBŽ×´§·(ƒW;ר‘ù-Âý"'•TlÅKÓa¡&¡Û´Îá‘>iº/ø›èÕ&M*^D `S"A“ª¹!yËbDØÐ]%äðP°‰É{àRëÆÀ¨tZâš;ó̶þ° •mGp<´!’ g«d”‚}`ÁyË Yfc¨ ZSÌtá剺Úh#…¢Bæ/Cþz‰S´Ï©…žåÄF+)4‹Þ‘íÕÍ\ß*gu£²n\‹Ì—†ÝÂ6ü±·ÓËö*&¬×³4‘;Â츀½`¬ç€›Àé늋†¦‚ÆÑŒ°9ã9}&'R©eþ¯IYbŒ$’ëz3šRi"”‘’ô{3—»Å…º×–Å)™wð5‰õucg̡4—u"”ÙÔUµ1²4sžb`Ò(°`NlÓ#DËǧïìã uc; í­QnÖÙ³›°uFÑ3Æà'®û5nÃõÍ!ó¾ò¥PÀ=§&Î h">Ÿû¥£ÁS7j2õ¸­ Uý\ÍôãC"To玾¢o¨ÿÈX2m,•Èù‡Â®„XƵ)`þ¬‘@HÍÀØ7Ño"ÑŠBËm\Ò˜X g“7{N1 õVuaöe¶+ZC_X³2CSæ_ C*vµÿûE€ÔžZ¢ Ÿ‚5s:i¶…À7r´Ïã@ëa+„Ö‰Nvá‘Ôi9~<¬¦I´ÑkˆÜiq¥ßÒ(Ü9,²~©)Àt¸é¿y“ðP{SfÛ½ÅØ"¢ùØÅ(#Vx@C ÜO„t+Ú¶,Ñô¸PÌ'7SP_’ˆRså¼#Â:ï$œÅ£ØÎÉ-ÁUƒiŒzLjÞ+ÿ;VÎù¦eûŽ˜|I£Fÿ”jѳإ´U!nË%<“N´ÃÒ73Þ7)þ§ßµWÚ¹X1’v‹âĽãbâtO¡Öb7i7ƒö~«ÝžR‘IôÁx¦øºÃýÕv²áó%MH¸ÙˆTOÿ‚[R Á9œ;„êÈܸÀv‘ycÇ(ÒwGOh¶A©[M^+üY²…¨¾AtÔüqÞT'ÓÑ …Ã@c#IZÇPm¾àæõ9òö K bÃy·ûM<¬%w_ ?;Kº55äs4P&:Ø 5°bñ/^ka´ºïù§Çi+¿‰ŽOL°§è–Ž gF”™å ’‰Ûûñû °0Æ”æ]!=¤þ¿-»zlºÏæ[±n®>åYËRiäH{+ºì­ÁD Åím¬fxËÀóÐ f]²Îi8¢MG†øÍt—"_Õ¼ ¼³FB-îÚðrÅô÷k`&gå¢NŽd¦(„5õÅïª".[÷Ÿ›­Š† Ã…ú)éØn‡”˜ê gŽH@þ#^u8*pgtoÖ®IS2»Z[ñAŃó&®ðÜ!ŸˆX"Ñœ CƒÃsh¨I”êB¥®&¯!4‘Òe@—Z$¤Ò¼õä½w{޽­œ¹ä~`F\\kÒ±”2º£íÈ=/Í2‡¢ôYÕMµù…d,Δõ¾|¸«¡ÄÛZŸ‘[J‚‹5Aí±ÌJÅ`'š_Xt#(Ÿ™‘˜W¦e5 Zè‘TŒKFŠc¦io!òE¸ÞãxœËq M± gèÀ£DÿŽl ÝW¿íß8}‘øv©–Ÿ´“ê…zÍdºõ í9E„ƒ°ÅÂh{øÆ0­ˆ^Þ9QfíûØs›4é»@DñUÒ|»<Øì šÈÝ(ùH­Õ¿º‚ú-RK¨²ÿŒYk¼93YM mLß•æÕ› 'u§{·³Íy:ª|B˜“™ÿÕõŽTÊ€ñ锫}Ò]лùÔIVÞü¾{m9Ñ«¤‡"´µT=ŸÑûåm┼6ïdD~WNy{¢AL…߃º•»“ŠÑ=WÚ·ë#Ds¾:ŒÃ¾na‰ÔëÆ,ã0ÿ ާ‰çNñ1Sž˜j8 ˜g‹‰Lz‹ÍÄÓeœäHBpåV %¢§ozºnÙ)Ûý~BfŒ«éà{mÜ„¿Å€¯Žg§­+¤ ?öl´ÿsùŒÑA@âIú=!ÃYÈáó¹˜üs±Qé³”ÙËQÏæÐbá¶©9Ã]ÔaŠî W¨Š¸!•œªX*SA¢‹¬”YáÅõ™Ž”µ`9µ4zûQ}¬8B$-Yƒ°ãšK5ÓWË.V^4”!<‚mƒ)Ì¡Ù%«nû&âÛ@©ãáqÏLäLõMiìBI%C‚$?C€)•¥D¥°€¬iD ¢ ñ±Üf¢ô {F ŸS )s×Êix+7Œ–± /ÞgȵSY{sìx$¬¬œˆºьҭªÒŠ÷„(Å yÓkì[¼ÿmM§ðÎúkC®Ïq¦Ó2ñÄn U¸ÍÝ”y ! Ž\˜Jº`U‘R/ô³h‹þ|ä,µ× dPmº5•byÕûaç )Â/‰â殊Ʊd 'i¦–5•á諹!îÃÓj}ø›~EÀž›Ò“ùÄ“Ù×c›‚¸e ]ˆ.[ åMUZÍ/ÛŸë.û°ï$ÉÙägÝ–å¿x{M J=Y;q¡ðÃ’YZx¸æþÂ5é –$fãUªJÐ/dS!KXh« )ÂtÒÆã&Ò+÷Ïj¯©¶LéûžYo~¨3+Ó¥„0{Q}«ˆ&¾Þª”>bê²½ QN*Mˆx ¡v©¡?ÒmLެ›¥'ø¨ <º\ÜÚž=T4ù ¹{ëÏ~ˆ²Bã«Z˜ÝåêÂÎ$ GHOù½–\p1´Î(#ÁH Û-¦T­_E`*uMæs³„É\[ Tè ÑÙr<£ÚvÖTódÐGE‹p(f HêcO¾-mà¦3—ä~¦ÜQQr’³1¬f*]Âãh¸6¤L »a”«ðHÚ2áÑ’tK` .fi,'¢Êgá´†‚§“Ò](µ§”ÃûÚ$vuàéÑæ½×ÊV*e0CçtqëIBÓת¾Ã’Ëãö2“¸ÓR»ë©ñÎëc‹j Sð5ùDì‡U/V LꞎÕwRóu„™Ò@] à–tuh•Ø‘d9Jº¯)( ^2´vlÓ‡UæÙ€»5¸•æÀHÌŸÕ=& ƒ‰k.$+Ñ ÈJh±µF¶Ñ§€‚4$Ž…¦<åî¦y8«À‹ft‹4«t ñjt—0â·kO¢eRÚ©Nu¸},fÅVÕ0Ó…"Ýz5³ë+¤äÀH³¦¶>„e ÙÙZ»Skšü¬$Bô֯ϛØ&;àͳ³Ú CLt#¹]ÃÆthÀ¹3W‹#O…F}¬xÄûRø"‘ŸÒÈÓZߨ ÙRÌ„3ô°ÔWª:’ÿÕ¯deÅ` ÇN\~¹6˜÷X¢ûµï†ÏT­ç]ìý@“DטÂúa[²ÜÓºhm†SÂJ£¦4Шbs(ŽD“[ñ[tJ>YN›ùzb»¾þá[ŠªET™êƒ’žË7Œúu fó9p8)ùÉÝ(j[„}ÂÅh"Àîß/jvÓÎê®Ï[ÐΪžŽŸ19V(Ù!Dòè ÇñÕ2¥Â)zååV-“UVFÉ€S׎°ò"GBžËËqLK2öÒâß5ìJ°óËó%´¿Å—¤õl2÷Š@e¬Ê¿K\U8dÚÀJé­Á µpSÆßÍŸ"5m‡Û`ØÔßàíÃŒ¾ÇAêê:ždx\ì0 ›|T2Þ¹¯ ¹øcd¯®æï­ˆÊ€gÀɪ¬–i‡žùD»*ä@yÛnr¡H¢±³-6kêŽúŒiº,@á¤]¤¤GCFÖæéHˆ¸ëïe0ºG oO0;¯À€³¨íplÆŒßHœeHÕ†ã´U-r;AÆ?ˆ˜ßLÏ<4ˆŠðr¾èžÂ«`Ù\¸Ù`Uu2./j.¦‡’ªCàŽP0Có.¹ê«þ@ NúÕ^[\ò* ù‡9{Ór‚ÑO;›¯ãù¹¤ï³ÖMP¿°}­¥U'+ƒq£ù&K0lž/w\â</•2†(Š¡0Mììµ$§vîÆJÌ^±!ÛÃYYcÂH»gMè^Üs¥”a¬cÞÙÙg@­iJuÖ‚hô,ìˆ;õ‘,Ú ¬íß÷ÑÅ/ì3¸wp\ÃM±qœâ÷Cƒ7Ò Ç³v-¥Áîh®`EÞ*l#ÖéQJÒ(e-¬ýü”µ‰Fü;me5di‡­†g-h)U7º!"=”])ázü-ø(—=¦ ¡<±¬­[:p‰B ”|ÿ‚Ñ€7Œ„ƨIvð¡a'QåÛ‚É=-;ž«§Gÿ[ïÕþ…æˆd±Œ~¡YaK;ÕÙ6ûqEv'ÎæجRª~©nx²°q;*lõÆ@…ÓZ[•‘·t,Z5 ™TWGéEE)€6ð ÀÊ‘¼ìu§®¢L÷P²f~Ÿe}e¦ž®(ón±4a y‚yÞ,æ3ç5- #Ï7¸©%yuÎÇÆpâÐDçà´|YÈÊX„ò­R_øHy»_)(ä@É @yàøB‰Ùõ}>š…Äj4Õ|zýá”Í%y†ƒZ*)’nÃ5§Ynœ£ßo…ñ¾Ôþ{Å0«'ãªn]l·5 {àiNš»¦Û&ÊMþZA7#sZá÷Cd$zšKL£¼‡Z,˜ ]Í$?]jد~TTµ©kà›jÉK} ¢à¸ýš5SµõâˆÚRæððÁfÝ÷˧s©H¿Špܪè&H`´t*å”ô‡bbŽ#Ult¬Ð5#2i£D©EBÊžF%d’…8¯m¦ýÒxÛã$€BrÞ„Db[Ñ…äúû{Ë<‘."=GÄžða†Ì)3e9Økµ>}rÙ´%õžì…Šnî†ûÄ.i80Š`óp?Ú®«Ñé|ûvó6ˆ• ýp¢ð“yf¡y‹‹ÏËi>17äÚˆ4ÚÝ•L8^>É“øÊóH…ù¼àô¨U½1Ï f’E0D$LJ”nVøÑ…›Tz©‚Õ;Ä‹]&†m蚘T'/ ÄCrÝioÔ¦TkHt#SŸß  4ü1™,×$á©xIM+Lã®XYz‰T¹. «»Ý ‰àý­‡¶KÏÞ“‰ šˆNKÛOªb­I¸yîR|#ª;º_J üipG±²¼'x¸zœº3å uæ‰fk#ì›(c©9÷$šÅìË“¾½Œhü"tv¤“AÔ£5EÊ?ÑdfHáIj(í7SÚ*HßÜgæFC4ÅÑÁŽää·†‹qKd¹ÚJøÐ¿”›ÞÖúÉov7ÚºE°TLá>¯Ì—¡ã¦R6’4‚ñrBŒlª±ÊõL@Í4ÌÕ¼$1ݪ=XWãb¢L¬5ï ”ŸiíîŶ!UÝ­ª–…Éà|+ÅŸ$ãaE7ë©j󳚾‹Š6ƒ.#iÌšœÈ¤iÀ$ÆóxŽ ‘È¡ Úllæw„È6ç¢å‘qÐ5‹è4‡aqTÑ4q¥•Õ´Ò€Çá¹ÅÒÍdŽØ &Dà@˜IdôTó·œýtácBµt†}|ù€ºÔô¥YßÄ€–rO_!k-n®Qc‡šzÎIÝéĦgB¢¿³æVŒ>;ˆoFÎúÚÜWÙth‹´4Ö_™µ]VÍ–Ÿèªî´%¡õØ[Q%Eظµ­„Öe¼=aU³’~?wCœájoÉèÂÎP86 ¸?—TÞŒKa¬ŠÜÔ dDÉ:â/QnÊ“v§÷¾kðD:$'ÂB&·y‰h¨Ajöfô^ãJ•ý½Hþ4–´À¦{[€z¶¡1U#]jÿÜ91mý¦æ$Soº=Ó%ÍŽèöžd(Íô0‡j¸ªÐDì•FÖèPôK5Ë—°í›˜D+ç ÈÚv¨…±à¯¤³9³HR}xö†•Šä5á[‡5R°É˧NòÛ@5Å*¾€¹ÑYG¶ áÁ*Û4âHoR€2†IDEa£Ë†|‡1ôÉb€U!:h®^TYF5ð¥hPuðê½4±íwÓÿNž.÷žàfÉ8N%aU*“3J0%$DèN=éJD‰ªÝ°| \6u]Éî¦H_f̸ \€ƒê.­,T›X¡Ú¬-æÇÂÐsö: —J9òõí"hξ€ñ…*ÄË6†®FQT‘jŒf§–8}D¤O× ’â$ÿá‡6'5+‹N_‡±ŒÎ͘àÇÓ­²!úaLÎ)¼"îqÅáË!W„ØEÂlùä¥qG-Ú4 šÊ±•‚M—–>¦N!©BÎëØíМG qAåA½¤JÐÜ_Gï~  1|E:¬FɪXªI–wËõ[Çdíè8„?ÆsÞ8éÈå oK±K¤<«ul“šðàÔí¶@ PÁ`1œ2éé†6x ´Ä µ#Ï Ïž"ðjî‡*«­Á¥8G{0m'쯚9ð­-V§¥”"É#ãß<)h3¿ì"Ç{¿OtD;€¼ÖVF1¥!½P Ò…9Su%‹µ XZütÂS²1TJölHØÅ”°Oðg*V‚­âáÔögG˜[[õf 2âÒÜ~T«)‹ú= µŒ­Ÿt}nÉQ&¤´á£ôtweÍa+I§W¼éAìºÚl ¯R)J1n ¹Ûq½˜Võ#aÄ7&¿BVk«­\Á‘¼.U• h•e³â´Ð×yâÛÑ¿}ÌéÇ8ëL„®`ðOñ„Bº¬Èp:dÝ ¢·Z?â0äX¯¯1ˆïq˜õµho rð~eÜš’‘Äê*ÈA¥`ZÇ¢IM¸åàà°†W1¦êLc°A&-ô_•¨#óË3d‘Î7oTòí* e̸©CÇÈ yîn\ϗω†¿ï²üu™ëޱ$lŽÉbú³«Îç[CÂòƒ›ÍjÏUx^qȧ¨€ZFW¡f•ÏèÀvQ« 3’¼Ê¼ ºçê¹kZ7ί*œœDË-ž@*^Ûw”¹üñL/œõ`IVÎ &ttÞ²ÂHÛJ5I—$ìÙX ¯¼­e~ŸS^n²E-B’àT1Ž*ó:zûçÓaÇH`¨¤–nÄü8˜•hͲ¡K³¥7¨nšˆÊ84II’· ”€W–»ÒÜíþòØ ÅÊ­5þ–µÙWRÙ/7Wå ex&ëº "À$û• ïHëv%{õ»ru7¼„i !>'õÍÀJ…aöÑšš)bÔ,ƶú¡†å)§Å3Ñb@,¦ŠAPë¨]øF“ p“ñÜ;ÛÐuÔêšw _kÛqÈÔ "WÝ:´£³³­f$–€Säó'T"‡GÍ;Ë5“L<¿¦ã’g›+¨ É@!ËÊGÁš;Ý>@çpΨbûy#PTIƒrqñÉI…N¨`ù‰«d¥CŠO«ß/¥!‰Laµ¾i“q¢ùö(N”û€<>6+ò.û+æJû™;‘úU=[MÆa{j»WI[™P›´àåÍ'õ³Í9n9Ô׳k>S/`la¶Ë›YYà émVUªyqûÒp¡N×jÈ'80ĶxZŸËiЖ°Ñýá ø’ð¾8»õl%Rܺg8æ¾¶ð¼6JÉ¿®ê€§%sµòI:{\ßÉ–#’7©ÎŽôHØI EY zVúÉ´*°cÚ0Ú1¸ dñkF9 ò1Ó†Yõ±`¥RNáï/šöWÀgvIBº+ ·WäË%ñ> Æ­ßPØÕA\2-Vú5ÙÃ\£4œ‹«´šP ö|1 Ç–³ÅÔ™!{-õvùí](Jpä\¶Ieb±’|ß<[‚ܘ~|åv#Ú%bN…؜ԫ™×–ÈÊ£Yi–¡ÇÔ Ø4 eÑb‹$òþ1Ù:…Üì­ai…'ª}¶š{Q[=ÊçAæÎ¼ŒTƒƒyðPÉ|c>!$øöêL¦hj—;ùôI+¸¤x¤ÀìýI¤ øhu8`ÑÊQà*’ÀEa›“,@ÓË»Q c`A+ZxMà,“ÈnV¤€HÈëæp‚TµSñÏ4$ <¥Ùœjyé²Òt¥Xù':¦$€²zîA½9HéR¦ßEñÎì°u82g oô¨ŸÉdÃ(¢¨ªx'.ugÕ ÖŠ ú•ت ׫…Uºg¦] ñ¼F¡d§ ·Q ”é·Âæ! ÜgIS(ÒœíZÁ±Œ|ÍÓÚ‡v~,'«æiÔÒ°Uõ‡žß2­Ð,„¹Åªâä+tˆýz•V´=8-ólå„Vªºm \ÃÙ0ˆa ï/  l=mÆ™0õ´[»ýè(‚$Pæà›®fç)ân7Ç3BtJFêç,yA²<Ý€:ƒ®Úí/Í&u!}½¦7}s˵f1BEPÀL}Gd³9`9€‰pr~D¹>fâÞëžqœ…;֧Ǟȿ^íEÁôùcG"ë¢zgÔA+…-”¼„áÄtæ)hVÊ V/$1W8ÏïJuøLs·[ú¿ÒêwK¿uTõœM.º—=-[·?o‘¥à`ÃLHNUÞ<ǘÀ¹áØS f¦¾ô}­æ‘_®g§9!þè à œ1ÃbúpïL´#Âë“Jí¯Ï–¢°¢}Ûl)KåÅ“an!ɼ÷­µ“F>Á°Në _½›¸òv]z‚hǤB#Þ¼SÞžw’àtÔãž@µÀéȵ:gêŽÂ¦dÀž³êªp.!bxŠ™PAÛF«üžúÚ^£­v5R`MC3.XF@)2 `F6uB RBLƒñ…°&-Fž 1Yã„‚Êe°e_ ¦i$å{ïø°Ôbà"d÷%È*´€|ì¡MìòiÊPr m}9tE?¯T/>VèriSÂÛ‹³˜w]"*™l¢ž¼a(ÉsX€/\½&-éT ï´ü;ÌÖ$òŽVrhkØ{»•|ÔshÛ%÷µŽ'Ñã¨%o#DZRîF‹¼ðÉY]U"˜½ý-ìZƒÁ*)K.³R6Üz„>ŠM_Æ<÷òùm°Ðñ_•É-/PÄ p(í$s0ç™ 2¡ØãÍ?5^¯^¾jù’c¢e­˜P aL²1P¬úDR)ªä¦É0ÈLÉ ox¤Rƒ>8ìä}î%/.ZË$Ùÿ=1¿\ªÏ®JQ‘òP[CŒœMm.AR¨ ù𓽆O|$"ÁG3˜ˆ+5TÂÚ˹@›ï÷¹ä¦›Ï½/˜¿+„L…]Ÿž’/h” èÛ­‰ï™‹ –ƒ'„®ê¥©ó–ïÆaí9ö@ Ð"'A€çµ’®öÖ:ËWŸ¥Ê8ÕNW…Á&‘Ežêþ7Ü©”Ø<œÏª|iP¶Bt^ió¬ßH>iDmt]øšl¥œÉ›"©ÊLyæ]Ä`ã #í 7Ò2ãÏ@5}±IóL\‹òë–{C¼ò¥ÒÍu™×0ì>¦K±£âK9 ná¯ÓýÆË•}ÈÇRܘγS<¾Ù8[@~Œ^ö÷ÎÀÆIòòçÍG‡\+~Š‚×FzÙM¡+˜LÅPÑT[ nÿölûY@[[DJb´€|\¸ŸWîÓ~1ä”»ѵâ´1mvb&›ýIwm.¢A!(šmƒ%æ³ñ'œã¾# ´Ã“y4Œ™4+²Ig>ÕâWŠäA\ÔðªN#!Æs}UŸ€€X»âê¼õLÕ®6µÛDi`ŸTT¬0б®ì’á_ÄPÃÁ"“‡!1o……(š5Hs¨2óhv8{;ôqÛJ4a%·1™Ü &@fÁ ?nõ68wâf?*¨Šˆè‘DHÝ.Íh~C¸¿n<ÝMÜp2À„žV# °†æE{Q=t5Ì-Xµü†3KGF\$·‡’ §}_gní·î8Áo«'ª0°oýjé3“qL¾Í%èìùj{oδ}ÙϽ ÑÝk&_7Ù+ë©ËïÕEUï§Y—壕M¶~t%¯iVðb¦ûàc}ÙÆv9ݯÌ\PЧ½š‹E]¢Q„¹¢¨¯ƒ‹µZr>S8hUÈXzžuàéúðÕæ¦sd„QF ˜ô‰ÖY *ÝÖ›œV~A" “êqz"4Ñ@cÊ<"Èq­¦*û|m|RHÀäêt‚ ¶‘`F9-Žð¨²}0nŠ<¦ Í6…·Œ¨ý#|ë§!Y„-‡I¤ nÞ¤ªnðX¾û•EW&Š9 ðG2~€’^1Ù)Ý2‘E¥ÝcèR‘Š©TŒ·–,/\Ößx/6PJxÀôN`] ˆW:u§ ApìlÅ¥Îc·Jwaù½Ü*/Çž’þ×m»ŸëÜló©€²¹ÝßÓô^Q«¿ŸMzèÓ˜Ûi/?¯9ðÇÅ èÜÎk— 3YåVç3<“žQ¼M¥1 Åu•éÍÿ³ 9“í-w% DƒQ¿‘—ÈÏZ´q ¹ÙoO]«ßF4õd·xÛðB¼‹Haƒ Ë‚‹®oÒ³• !K“|ÌXyýfp±T?¹:Sx°êE'Fò´^®@þ!— “¹S ‘r½i2öœ®`Öý‹ Ôꨴ°œ04täbÓ˜¡ú¤c6²œ*ÊøèãV³Á½Ýî°æðiZ]E„œ71ïÄD¸‘ð†è1½ânW¿ªJ!/(bÁÖm*K ß/$€wè4Î2_+¢Q. ”áp›0œ&y³¢ÞÎu¥Hçè‚íÂÁ¯Ì“ÞÄTœjJ‹ëT¥ ~RÀ0º\UuÓ¶[#SúžR‚¸˜‰ÞœSÑÒâj&çm8@ žÄzÔÔ(^ 1Þ³™(‚2ž%€Ë™ÓMeûòô:.iPh0¤©Ž÷‘5 õ›-"¯NJÏçÐVŠÆ¤šRö:U½çƒNšˆ+êXTv©Ù) >êœàý\7I °_0ãß>Ç!(ZÔgÐ ¦:èà€15»T–‰ƒëhþ+Œ7w[Þ"×j-¾\$ýòVÙ…}b_-Êli&ó¬ õB`ßG¤‚ÎÊ8«!W| ø;[Km¦5J~‰±Wá!>ê0$׎:;{M‘@›Å”hóNH»à•™duEUŒ=œ\HÔp‚øæQ<´<ÀÑdƒ™ì0½©ˆf6áÁiÊ$,+¯]I±0èd³Š½·‡•èÆy{U+O¢¸& ЀsÚ¢Z¿ÞPð.ðrJjÌzmbá7Ý“![®…%´7y,·âÞ ï l]ôŸ ½ }5êXt1M-LÀg£zÙµ&ÎS«ÉÅ Yý"QµÅU« "iÐRb@S‚’Øòa±]Š  ¨þhúС$¬jãö¼iÊTldÌûÖ/µ“¬šY@«W™¡"ÍÝC¢U‘d»ƒóA'MÅ8¢¿[¢^kyG¶*p‘çRP;h¸;shC©½pˆÏæŸæ+PÏô×ûJ!%³ì|#ÕÚÏÆoeìJ§€)ø” ‘9+{²µ©„BÖ1˜ÊË0«Óºj D°Àùq$“Æå~ªà Jé)æ¿Ltq é⿦Y•¡«?{9ƒç 9HSpeÜA3ô+)ýPj±ÙE*Ãú1 ®ÕÍ#ö‰HUÁ̾Ýk¨’I véAƒÒ·f†‚[£Ô½Ì‡v4/”ÛÙf¿Ö“õi9è}öQªUÍžO%HˆvÜ=UªP˜Þ÷“s-Ji†Côdkh˜Ö?iªX€ï8v!^7c"ͱ†í‘‚C­›VˆD¦ëÅÕ³šž¨ŠüïÃ}áá˜.A»Ó#!ôåÑêV-êÄi¹am„öÈN÷ŒÛOP’,ÙóÖþ¸Ÿt÷Gu{©W1nÕ„ÜCrv¹GúâÏ¡òÇê>ÈË@ÈÐû´TS‘ ¥ Ìhæ(HÑip¬€ock»…¹åZûYáГzÖ¶ÃÕ˜ˆªßÙQ/e©ÂL#£ ¬ZØ1ȃ-AÏ£ð<ئ,ƒÂ˜'TœX=Ù„ÄÈAoñÛkí©ÍÖ3ROùê F¨fŠç!ä[!ä`õ\7úhe5ÃPÅ3¢Âë4ç“^5J#÷õ¢*7ŽÄnbqÆOï‡WEhM`8›wó „'Ve‡aZô&`úJµak] ´ƒ(û«é¥–ÈõÓšãVé7Ò–1å,o ‘žŸlнƒè¸væÔ²?åñ[* ÿ#íjCÆwÙ0󆹒 °Æb`Ê‘]å)TbëÔξÿSµq< h¸žEñ[&~èåJþže²ŠUý®>ŽÕ ØþøòµA¸¨u/3(BÙj¾Ógµüæ¾CŒ¤ÀUŠiÈq3¸þ¬ûu¥%1¥å<=»èÑlú,ÎÃm¹·¾™Üx MѽВ µ»½VÃz9F=ŸÇÄÙᆷçµXœVoÇ"ñ¦ø!*{6—SAjC˜FÁ3$¢Ó°N%²Nt+Ää‚Òö jP[ÚíÝ(ìê¬YÉQœÔ? –âÌ1^‡ Çõ!ýd1m·× ©iê·RXâÉ´zœ±ç‚å>C‡Ò+)A!TsTÁqM“½;OŠ2¥mÞÎþy8[ÓZÓvÄ5ò⊴h‚âS+É-%nmUCH»A•f}S’ô ¡N¢ùå¤d 6&æ‰d<úsÙbSHïhPÒG-§ ýµÕh›ª¡K}aeÚ•Èè·@8,’¯p2S€îkºÒøSB)º&€ #×FE—=)˜bÞO‰kŪh®=‹a²Y©Ôhûµ&Щ©Ðø…Gœë£DÏ2ãY5ˆÎ÷•ª4d®Ëú,%Äðp 5L˲½^è]HH8YԙȨS—C~×âxÝï˜+rÝȸæ~-Oþ»f!$Ëv‡•,–>õÎÒÅX&Ý–ƒöíêgm8ŒG§4ÝZì&év4f™WphN§vUrPž³jÂCœ¦T™ÚqÃe¤VD>Ûû$Šx“àÊÅ“{$¿¾îI ‹Öw‘_ËKÅÃXH€göGó=Ž+M±©ÆTó†Ié¾Zˆ#t•Ú*ýy¢$Æ(Q쇔8Æ}ÞÉYI¤X‹›Äèû ¡û~‚ÜGçxÏÊ@zR×­í‘Ôц{ì“bÍ\Xx¯Â_pEŸ;o“,nj\«NcÛ&Èä ±ä!‰;šl@t×õ ±n‰Ãl:•y­½¿›Æ`çŒSMΔâ¯ç™ƒº.9ÁÍa9×¸Ò úÞˆL Â÷0*(ÝÊÞ–)kƒÏ”‰% •~2ÏÎpªË¥N¥òB„È=Ú-[õ½Õ±>5 ;OLŠv¶!óÀ¡hÏêót£Â,_~¦3Ãé8jT=Ú³=muÕ­ËÄdY{g*^ãg3ðuß[»iL`‘PY?ÅäbVs2ˆpŒ-øh J¹È‚XņBïLJfd5uýnNqdUïü@Ò@ûq9ƒ™·ÐPæ‘Cy@нgÁ®ªýͳ½tVz”Y»ô-[VeçZñèêl»Oñ礱ØtRžúîn[ó¤þf\‡û¸‘æ cwDÈ’rØÝ"ÉÉ lÊpO v1(¿q¥ÞWc¥’¢RQ«b: Yœs€†»Y]3 M³iíõã5$B®N‘:é˜?ȨÉoI¦yŒ†˜km:e‚BZ”µ¬|w§Â~´QŠý<è°¡v2Ð9_g™–'drPIzÒÈ_uÐJãSó*Šû†+֜̅äWÛîü|Æ $:bwb­ôÅôåà”õ×ÌЇ>`š0€Þ ; D¤ â\±¨vRŠ ‹”¨»þ"¯NQÄ% å›¿ò‚H¬Ùh˜âÒÂ,Ú¯qŽÎY½WC@z)ßÞ¦*æ"¹/êÍåmëOºÐ(-mz•‡¦¹¯J¦ ó~ºžÆÒµÌbÞÞ¾1íèO½¾…¹8"^á£6rã>«†Vc2:-Ëþ´ÚYÓ¯Ü(Í×ZR-@Ëýíâl^–KfåÙ?Å®Íôî,î~ÜjϺ㔛¦ ‰~Ù{ËnEã$iHŽhÁùrÆÍ´áï {ÀSüÆ–*GÑ\0º“`ÃpQ¤ú×øO1ê䢺®¦`N7¬nCð^Ušƒs-   >Dç¤îNQ:_X\Vˆ’Ù ”ÞÅÙaà’’+]¸W•Ë4hZØ–Ê…Â’,t:Gô^‘–QQ HÖ-ØdYüÒ‰¯2°'òb®~W.ÇEé°yŠf Ö‚u ̯ºo~D"ÅÕ<ºôØ“-îhR~¤|³»û­OæþxѪÐó¨. à ð)ý­ê,‡è dÉ”„ó”mB{³âñ `¥g‚4X\ŽíÒ©ÕÙ¦^¥¡Í¸>J[O$ËHIœìsQOÑ>f"Cœ; ÕŸÿM…òD‹,·©M(¯IVg“qUÊ+%secðâŒ@Ó%rö pǸ3ß$ Èkç:Ü€OjÁ$+á‹°ÎØô±n¦Fæ]±øo¥ÑûtµÐ?`ЛiçL@ÓÊÌ(tŽt1ÑÐ9}•£ÞÚ¯IQÆJOŸ¦)6â—Cï?NWâUM¶úÔ…£l ›„ª¿TË#j$‘ ¤kz<¼.c–Bdr‹dbPœØw©¸S©ÈT¹ƒy.ñ «¼ˆ£c³ÆÏu¤ÕyI*Œt³pré¶ÓÇiÓØóõEgÏÉt¯4ÝàJZÑÇ@2~ólZ|9T@[µÇ+‰À>yÏ×’ÞÀ<åa¨›£'ß•×?уü\j«’zvöôqÔ7ÊwžR ðtE°~•7H5¥[X?w×S«ãLxa®k̳wó*U¤^Ξî›UJ'êîÔí¾vYjB#Ï®¸™Ë#Æ}ÉþÍžicrÜèó yð7^;k?55ÐÎv=O´6o«<+j;ú’ØÌe­#TYÐñzžûM¨ÓüûR-!ì?NçPš‘ä'ƒ•¨ŒuU ÖhÈœ‘ŒÄMœNLιšÉEÞ´ºò„ ‘ýM…6œûI(œ6߿ڪ(R1ØIƒ”L©Çû ²\ýNt¼Š TDÒ 8.¤hÊ‚ý|®0%ñö<°®Ï´RœÃ\®ï, ¾U0K³ (åäZùµO_¦ÿÒ7êè¤:R0T¼¿×ÕÓÇ8ÊéÜTW ±%íûÈ% °}˜!^R3Çp±Y/<ì£q”ûªEb*'Û?–JZ·ÊÞ°X)ìã–l”?>˜û83ôýJý1tqR@<‘²|çÊ‚!S£‡:çþŒ-]äšÆH}Êù„1ëó«Ô@lãô Á ¬ÐÍ?1‚à+¢Íd%f"õš&ºpHÆlÝnPæ®S‘õéô¹¨ê_KÙÙìÍú¬‹/x¯¦¬ôÞÂ…¶§½¬Í¯IJÄÛŸæí- Ú½q3ÀϲfoH{gÖîZä‘i:-KœU°G©1ª@h iHá]"¯´zm“dˆ¯y-'m< ½^K¦`ÓBõ‡V5ÑkŠé¤@ÏSô!ýròj®¦“¸ÖPk€+BmŠS=OŸ*Ãa„l #ÓqlíÄeÌ€<¤k爔þœÒ$r¦y_º­¾#Ê+#˜‰‹Àíq¹AuØV¨"ªO‹ßé°öEIQœ“&³ÎÞ}0_‹ ƒ ¡ÙJÆcŠF#P'‚ö æ ßìÖ®5`¡UÕ‹oƒ–ý k0xj U™>³ñ^“DHpq1¼¨r CC_ÈöHæÎ’à¨ó⯛žÒ´ÍÄ~WùÊ\ …¢s3¢ýûœ“¥~OG§ä)ðce‚luG üD­98•RdùÌß•ÜxÀ”N¿EC½ÅXÎdrTr‰Ù,³ß‡P5?—~#Ktvùýºè‘’Érm}—àE›{ Ë_áÒ,¸ Ð2_Ò+M¾¨¿lOØ4 .ŸÙ{U…5ö^@•aÄ@aÄPLr=e›v[0E/:äÜt³Žua¸†´mzœçã.–íA(»Ì 4O‘YnT=úløK™ú\oÛ‹S‚C•÷¯Ïi8¥YàV6-‡¼0³Å$ôc½ÖfñêeÝèñZ {˜ ES²âEõ§³3ä,˜XÑRàœÒW³ÒxNÎ î äu‚Mv’å“`<7Ô^±ŠBµ C:dYÄuÄï£"ÆIPÎ^“ÿj­•’Ìm*Dß{Âð3)ÁÙ·{ÐT³àp/¯ÞB q¼Žk‘ô$pÂçdesNN ú¥bÕ|W'8k̺p—š¨váœJãØ(°Rg+ʈÔç×Zür±6\BðQµÝOhtNï+üýO8¨ót_¡n5¤B‰`W4ÃÆNý½™~\g®mTj›5\9.½î£Óú&tˆ¡~%$wF©ÞAhé_(˜Oߢóe.·I_HÝ ×MæL)VÞ[„¾­†`ÔµtŒ€‚‘ÓÎÜol.Rw}îGáªz†SÙËu\}/÷ôÌ×…lø®²ß¦Îaq¡–¯_üÁªÀ2öèöZÿ’ˆ…EÝc­Ñɹª‚àúœ¸Þ٬̖;ûœ‘k\ ÙQ>kÀjÄ 阳F¯ …DóÞé¼èlÇ4+Ѝ}r!Y2ÝœMc´Ž¼U©ò'`™Ø´Ê /f¨”Æo„exṉ®ß+®ÖMˆt?„u•»4@úuc…•0.‡DmUVI UV#2F§²·á¹ËôÝ®Ö R1^ìu5+…@ÿ•“ú‚ê´„ßf¡˜ õÒ¿5q°hoîJÊE•À´=ÊúI$¢!BqéI±psÛºEÄ5#+T–6Õ/œâšÄâlMj7ëQU<× ˜¢?ȠˬÊg¤ § eÊQ1‚s¿9–›u4“GòûN<Ÿ%·"¼pÃÌy,ù‹ŒwÄ?²-¨JÚ4 ­ZçxžŽòä\.q• ‚ùÆúQnNb~tžõ^} ÕI4†«ÏÀ<ØòˆüÖ`‘Óšz¿gÀ^dº„KLP´»PDUîU\ÑÓÚ~¢Qi@½qÖ) ä„Â`×ÃëYKœu®˜|d'mWµ BÏúÙf]¶¸¹_® ò.S è;lé}QMJfüÓG¨éò䬳}Y$šˆ`bvcˆbuÙéX”ƒ}—~»ëåÒ ßÚÙ.™!¬³Ô ±¼—ýGÊ‘â2å&Ä>7ìB Z^ñÑ1L›šx3+ãk%^¾­µŒh"¹d rØ 6Ë2m¸0X| ¡àl¦ iÐ>’{SÕQa§ro±‡ªb¤°r§9j)¸¥…Ó9ø“z…m J0ò0%»Õ…Ž\Íñ4’CZ£Ën­PǺ;jŸÞXVœ2wî×Hs»E´Ù“á÷)ñ¼V¥GXrDeÌí+96Bfô¦$ò'r`É*Ùt2!rÕdñ|À>2ÀåãVû';y–6YˆÆó Àò<¾Òü´Ð ¤}-S0 –t#‘O…­t;r‡"q…`/æ1ÿØ/„Õå)0iºóðh&DçN‘J+ZT­Àø™’GJ‘êù4IH2á×å¬B*À!%Þ6b™˜[s‘lÍ%Å1 (&ÈrSK¢dŸPåmè'5±ªæÚ×ÜÎÀ`ªŠ®±Žf®¦UCÝS+_.Â{¡Ê„Sð3vAà H Gb‰ƒ©p¨Ó"ú«KÔk‰ôþ¸'ƒhM„ÌsÍ¡H˜¥w{&ÏéÿÆ(}*X€ˆQôÝŸE¾’‚Ê蓈ËhÊÑ‚»<´£9d¤„¾UåÐi ‹ª+“ˆÝ-ì{‡N/é¨>À|Ò1¢‚Ô{¨{Íæäªö Â/Wp¢©in/õÏð“Ë}W­?µ¼W]hðKìBÒw<£ÌÄ`i6\Ø´¬ÛòÒîÈýœåhäöº„·ýÃn³é¿°Ü×jUI/µ‹ÂJOTЩ&áY£ò/ðáÎ iÿœ9kÄYÓ°ÿ–z`› ­î$8_°z£‡Ž(wŸ–òLÊvÛ#È͈ðßg&mQŒ¬” Å(2=Zm´O9“ÍA—Žp½ê¢Àá8 ÎƧ¼BÃ+Ü+ÙÎî‘âpNÖw²+Û€ÌQÖ#¬? "z±fÙ8è“/ܺ哬’G‚WLjA…õIòL‹_9w&tI"ʧUëOBÙ6údÆÓÊ^'Ùª[1;DNµgUjåbÚÒ&êA* ò› ËV·ø9Öª¡*JQwáa"Jø½I@©á\ßñ7Gˆª§LØW¥Q”ÃE±˜viã¶*>E¨‚;¦½^´‘›DKe4e;êö%r?xÞ!pê_«-®©1úzc¢ÑËœ,W7*†Rb ?©°Ð!JSˆŽ$ËÕ6;DßW£‘øÌ‘|dÝÕªL¤ÈYé'¨œ”$Uð#¼É}2“ÇÃÖ]3™hfÙB–(Í át# •¬k \ÆPqB,þôº³‡š‹>¬˜F`æãE•¥mV'O)ƒG’S¨ô}ˆj\*\8W¨9`m_¢ JÑ^Ënºƒƒµ` “/s(yy°âk˜¬§`ßK^»”Dt0O+¨ÂRa—¡såiäAÖâî#ÃçËV*øã%ªËy«É„>Ž4”Д} úªØ)"÷×A]r‹\O¼\ŽÉKýõ`ŠWN÷âJ«2žú,w¨ JìœöF…ÆžrtNŒð•Ø2 €Q6Zs`ðF‰@IÍ\i)g5x$k‰Y¤Ó•gΉ©î¸ýº#Ñ2É Ý2œçP™nqRÎE}}Y®{ú8øKµé†rKOìRãùÓ]r ЊYFú-¸±Wi“cI·®àÙA¸ caKgB-‰…-³ÿ1sue8_ØãôΆ›sªŠ!T)ÐÎͺ}ª³Ñ‚ºb–1úº*DÁ î΋™kÊ‚ \’|žqåÐxÖw™ÄÇ“Ü¨Š¿JËDÖæ¼7*¹ÿ­½—k´ºé=p6×ä·î3Ç^’\É Â"£JC†óI|vy+,.j}KdÑb_Héþ Æ ÎÁVøš¥&$²íZPMõ ¾~f®Ù)d¼°_ª¼5¿å¸YµA$XRd%X´¬7b=›%Œƒ‰ß.*µ‘ÒýLª81 ¯K9 ÕÏJÇB²UŒn5€¶ƒ.vuÆU„dtë «Æ>†ÀøÖÖÀ9´ü.ìÕfKµâðd‹|aã_uÙýW3BCÆøõd÷Þ=NOæêIþv{Ò0&b­•áë7Úô¡”³~J¬°HþõŠÉ!tÙêê~ýĶ« þõ4ÒêCvÊÓS‰ô·š¶(C#53ɘvÚ†X,T¥mˆ#Y›® »8ÜV&ðæf•Ïgˆ±[*.¼>SOb­Ž ÆIƒô*Ç Ðhx—”[cýÙ^푉s¥ÈL“3•¦_½ÅB·Æ‚÷š½1ù¾‡•¡U–Úïäm‡-þ‘“÷¨¼x(ÇݶãÌ%tVÊ€2¥0#âER…%K¾±Fe˜¢œ¾'ˆ~A"Q#œÚz(²æ”‰\9Ô,ô9º¯I£·Äç,+Rí`÷»'Ѭ@`¸’b@mÇ­@44?,(Æaz‚Íiѵ³…\1h}–ÞÚ»ÒÊ8ÛÓåv¥§µPù»\˜r9ï„ïeÛÁRò·ALø–š¨‰°<÷3 Â÷ ÿÁ•>(Ê7Óªì>ˆýªðõ­R0M®©P¹Öœ ½ç€×ᜠà/pÏÁüœû×ÖÄÇЋ,fìÃàèáfÈI'ýµswmŒÛÙ{î¬8&9SÜâW]#»µZÌ¥¤ž!Nh´J½7¡o6•G´;Ô4²40w†›3‹$c$`á¼µ×7¸@Eá<,ùð¼©c*L,Ñ­#ƒv}CSÜíf§"§©"E-.$Û´Š¨U‘ºbNI¿Àú¾HaëÏrI$°(ñ¢KÖ'ž`!ˆò \yª¬ITÒ醴ª@ô+Y­‘x2ûE'³<ÝþDk)¸¦EÈÓ,Þ:U½rœºuK+« …¤Í 2ĶÂôê°ºŸÌÖ,Åm)[ÐVÂ[^ÖWKõC„ì³•ß 7C­æ“ZÝ*ÄDôdêÈj’¦LF1P´º.…iŒ79¨RANž<ýq= tP¾2;!†„"+…Pn„£o’²8 4²8—æ¦ÖTä`øæw7â;žÙé ²Í›[öš ›ø¿™GRd„b­dìö¹fü8Ncâ\š_­#°“šgµŠ’ž„Ëc2ZÉÕ1æ,Y¯‚."¨V ‰íÉúRŒzg~áì VêRò–ÿ 3ÜS¨²r£(ìwWɰ@ÍÈ‚KâÞªvÔy’˜‘fÞÌüõ­ ÆÒËFs"0²^…9˜|32”‘- B8‹æ>äÖ¿ƒ2%’ 3“$­´n“ªÊ»•M,àòªy.QP¦”¥›»NóóX#N‚&¦Jü6Mæ1µ| ©ÓŤ÷—vC¡$¿¯o‰ê ÃÁ¾Ó»dl(.ez"‡”J —÷ªv0.J¥UÞ· âÛ2û"÷H”ÅBÈ•*påíÑÉÃZaRˆ*ã_>n+ñGóMýgzß&6#Âþ“ƒ;Ý×$i,UZ²¢6WäšËk’¨®vF2›hZµ%i.F$š—b¤¸ ³Òpq¥«0vPÙH ýÝ•3 (˜pœÄeƒ^xÎU‚ {áü(j3§,¢·¸Û6—Ûï[^ÜåòˆˆŠ•2&é$ x ¨k#ѪW ™(âŠÍælm>4¢èÄHVÌݽ ò`U#àä¥ÈÅ—k»#BÞ4O/û“€&´3ŸImkÐÐ%š6À~ª¬dÆ™Nñìr½ËxÅ冖b¥\(Bé~îÆ•~wò:E(Ë­ºIò>èV‰-”$FÖµ9ð¿M/dmË+¬pÙ*àËÞýZq–+Ô„dÄ¿T!@åzbÚ&ïþEÉpžÅŸ´‡×³lLWB*œ§JQDRhÏÏHZQ¶p=}O¢°Z^_·Èmè8Cžlͼ­hÌXaTâyqž,èõ,a­+ÍÊ@vîAŽƒéÑ->‡K;HWõb£;?ì"b÷›a§ú£zHbß3a¯LÄX»Tr¶Ícm¯í/ˆCx{IAdÏ¡]½Ìôr_×poÎc‘…µw¡ÍvVÒº=Þ‚Ç*ÔAC^׳R€=¥]úÏÜ—O é`-m]x³îKÙ#ù 7oågÇtÿîÆ;‹Š0QûÍyK5ËÔ¢‡17ŽH𴽩ŸaGXu©Hª’È´ÃÎ7^¼.]"™;ß,ïE¼i/R9/È^Åøi'ˆI×®×ð;rÒ€8A0¤Æ‰àoÌ`ÝEöšðLÕZ®úè±kàtCåî(˜$J"±Z«ºª™„Ó•o}VƒP¶V«öø°æa›Y¨f£AÒ•Ï©Ú'¦ë‰$C¬æ á‹èL V·¥]&ôŒ±çÑåcÎ{ ¼wާ™Ë„ (U Qgÿž¸)wé ðÈY¦æ¹§“è]­r…i[%ʲ5.8rþ¾'¹ÀÁ©ÐÙ9qNZÃBºR® (CŸà•-åº Ê(ÔnãLj}"·¡?2EVÕ2×¹|¹À\¿/Ó‘pŠ…Vc‚+—¡ôÚ"Sëy=O4zJQÞý†>t?ÍV,îZ ‘Ä£ÁNìŽéuP‡u©bǾ•Þ°«¤H×ïDUJW!pº½­¤AµT°-½C¯¾#¦c•uœÝ‹Fz 'ÕVè(‘q¼mxL£?žþ¸þ÷#k€°~qÂYVCH·Uˆ„%Àˆü kJÙ<ÿPÍŸä]µ2Áq¾#ц7‡»„"ˆæy'„ ní][_Œí²å²Ë¿ûî¶¡’J=´8Ð+ÛçÒ… žu4BŠ äö'ò¸œ+'«$‹Lùrø=õÔjƒª>çy¯´cUFM­ÂÈNÏ·¸õΜö¼è*þ›Ô83v{Ò9ö¬Ö@ŸÍä„@/*c[1dè{æò7§¥z6Ïy5—Bõ£Õ ˜^¶ßŽ8Û0£Ö‡IU<+!Å‘Ò/f)Y!\Õ¶u}³ª½°Íz›‘« Kw` …sL%ÆšgÕ×…o;´"¥ÑÕ¦]µ“0e³Pÿåsü¾AFh × HG/Øjt¡­D>»'¢XÝ4mŽÙhÝFZÐTÎ5ôL…  IpuµávFlgWçÏ è&'vœš 5¼–Á 'EÅÏ+æXB fýÊËLXD"gqUÛhEÊF öEÚ  µšÅz4)°°ùdÊ.Ò{h¢Kâû3´¨6â%Ul›8Ù¬>æÉšÓ¢S—5÷Ò˜fH ÛDÁhʇ rŒÙi— BÂC!íÈ}+8ŠÀܳ2ü$/ô¢wމiKeö/_ÚÒ"…Aa¨wõsô£VRÅG<Íâ4A̰¸:ëHfHž»:³:óã°”ñ({ÑùÇfèc}ËÉ`!åé- JºÂ=¢ë÷¦²“O /÷ËäËɺx!ˆPú)S~È‹‘kxΕ c2â"Ïc²õr}&$!"d©¦HüÔ`’)ˆOYЪ©rŒ" ѳ@êËÃH/eÊg×6ŠpÏ£ùÑøbÜwÏ<#F(X ©z¥ºEPý ôN·} ›~ƒb^€ÎÃ×# 8­ÅŒMc­ÓDK2¾:‹¡ˆoû¦å…)0u&AÖg&½ÐLÎ)û.õ…Ô±_³O&XZ.÷‹ö™²À3kUw¿u¥®êF£,.=õ+™™.%ær+Ün.WUCËûõðL‘&jò%;нo¼¿iî]‹ š¥-Dá©Ètký¦É%BªÖÇdš GÛ~c•’ßó˜.!Õå [I+ÆC¡Å{fY3¨ÊííRU¢¡Ë…½”ë)8™ÏÅ:ƒ ½¹p±©Â˜šñ‚þ»DdkýþQ'4OéT¨rÇØ%}¢Üœz,›V¿'øŠò¨á¿¶œÀ{”.æ=·u§Û›‰9ºŠ@°RA)kKös¡ÌΙ¡±I ûÃ}•8%˜Eð"SãÇÌ‘ui˜–ÐæYêv¨Ôw©Þ3¯‘a‘ át¾©)âP+¦±9ׇO~êL-œƒ~Ÿ7@0å\'.ˆº>‹F%Œ8Ό険ÁÙüᚘ’Ó8«Kûü`*fµ¨½æê“ƒ«;æbøE¡_p®ÛF‚µÃ·²óœé»•›³zBí™ng5`4è|[,¨Gb¼âûúò¹ŠçLD?™0Ù†«–S¢@àgsPeâ¤u®Í·»XŒ=:ÅÓÐ&ùàÀËøq†"gÄñ^®™$ƒ±)¢ëwš•²öß+Ì+]˜é\5æWÌjê úÞ¬ZUî'k_“Äϵ­QCSô¬Ñs ûŸ_ÇÊö svSnxÓ_O=a‰ ¸Ê¡†FWŽñp˜NNUíâµ¾`:;¨_¦ ðÈYÜÍdþi_Š&L¡’Ü«3Õ  cè¤ÝW·Ù­ò°d½co~Gàô¾Ð(C»ˆVÖ ê”²®2w‹˜Ô9à2(L¹>ñÊZ1=w‘ã Üp¿£8o²2ý*z†çßoCŠz"«e)LAõ¸Å„%(ýöhÁ!͹ȄñÉÉ›f›€ø(OëÞªv¿<«^P<4›Gª0¢ø6ÁY_Š€{Ôw„¡7¨މŽšFòTÐëo G–‚¥Ä%O‡óäÉ'›Ô9P˜ýrt-D(Å(î”/ ’|” HÃîc¹)ßh: t ”pB7H¢5s)å"ËL˜™Þª”!l€D+FEÃKSÂþYq€bíD` H (Ò´Gô‚ ñB20Ô£%œ‘gÊtèÅ×`ÚBÎ÷éw áfz0ï:S¸Ç«É»ÿ@ƒ$Û%»íÆÌö¾ØÌXÍ¥ƒØjÂ'÷ŽÆ+5#C·-62ö‰#6ˆù¬ôZû•Ûô€5í¬;úH<5õºÑ2Ì7 GrÖ” la­`D[éZnÝï«*{„É‚ñ¾˜g&¹ÓËys£A¢xnQ³¦1wr)[KæÚZ+v‘ÄcñY?Îj-o#õÛôlK¬å- Qκ0-„èšn4€Lôt—4»¤4´úCk†à“=À¥õÛ3΋„²U–þê´_Cª•­º•F `çÎ!¬Ñ÷ 5"uª …ìv]°U¤%߉;ê¶M@Áj«·ðzKj*Ú] ‹‚ûßÜlg Ü}o}(+éR2¸Ð+0mtR û|?:)V¡"º×·h%‹z'Ìõ†ØaíD$=×óGðݹ)"*Aà Íw6ÌÈ@Td§¡Ü'&¶ûéìYÕÝEhK)‹Õ,¼ÈëHÍ?2zŸVÓµB$D‚Ÿ;0@JÙ4c^ŪÛG­ª‡lµœÏ¶÷Å0Ú¹ &C˜„í™—i¨5ù¼Îbcc2ÍTÃç´  ÄIJ6jïTëTÓJ`¢G/žZmi˜º]¥¦‡!xHú¥Xˆ*ÊÏ¿!•a'¼|„Í9$Ì~3I’ƒ‚·=D¯t_(k€éáÑÝÉWsÃ0Æd!w6‚n*Ó7ä4Ç`¡3Ö¶R<øôby¶Z%Jl f‚CÖ¢×¥˜ßãŒþ‰ÔôP]PbFÌû!âv O g KbæT¥4àa3Õµȸ‹Yb9 uÈ(£äöÁê*L!úŽX¹c~¿6QtÚP¼gèx•׫6eû±ÄQùVzz¸…ÃŒg W±Æ’‘0· Ç“VûÙÞ¬™§)»Ç\ÉVfÉ`È]m·â|fÇËÒö_ëÒ‰5³*ÃÔ" ¶øÈÊ©qiomÐ">«ö .ý§‰.óç vR IiÀÄ X†GÆ q“KõÝ1ý¸V¡NXú»ÃM§,áç’(|ÖAëæÕ½¡9Ty9ƒÝš˜åQÍk{›$«Êq´[ ØN¬ê¥Nh]ö¤óy“Á«ÓæT ®æw¹Ú$¿%I ó` W‡2“I»Á·ß6c,GL`¿–­Ÿ’F_6®Ø\¹Ý?ˆm0Ž'0@<%)ÒQ&{Sœ?ÁíN• D/j;‘uªÁöç_›sDçX31ÊݤvFr;#÷a8ÍD¢èèA#¬_Ϙ9à¿ =‡@ٛÑÔý -Æà™¹íg„·âl¦ ^ ¶H˜u ­B›ðôº¶éU•yÛJ«ýÕ#Ñ{Dó¾ß…Ã< Á rI*¢ŽÞ5Ë ¹jâ|t0…„å¬|¯Él:Þ_: Paû'_¨é¾±£­WŒRZؤnÇ»ŒËûØm—N²²ÅݦÊbr‚H“ï+ß´(ê%á[%77É2fßB¾´Èm\ó~ÆÞXÔ8&ùÙ³6fЖ©n ¦½1¤h¸‰ ÆM%Ò¿µ*«)'^ßÁ•Î[¶j°2+%}WG'cn ½æ 3*ç;„ä€+?ÐA›¾_ lœ3¥eH†‹4ïŠÂÜ·º/¤²‰Ý®•di§#YŠ/ª=™ÂPÅ~‹{ˆûiv.•ˆJ ÑŽ<%8Ûœ©Ùš©v;BüNT°ÊÞuJs¡%3M¢tÚVsF…ºËU#ý¤{~“œd¤þÍ”MÞ#ÓXTt¬ šó=ˆ>ÁÅ™·0…ñR˜ÓÀô}qmY["Jxª›4® ½\DæCz  jD2RMÛ°f…íFšÒÚÈÒ¨-GÄ)«æŠ_@ÙÒ,¥¦ÑLºUüG!Çi©FØÇ“=é;‹ÞÍuÌ)!:4â#ng£ÛRðä²ÁgÕ•«,Y‰ElYvƒçžBþzägèB‹2šAè8®dòµåBú-iÐ ÄÍ™-ër­TäK•ÇàËjš{ßQÎÒ$|?RÍby®™±ì"̹|>›Y®&ÚiJ@ Iä/W³A¡¬)[–¶•9÷$ûÅ’é}ždÖîM>6ò¸» ¤ÛÔ”4ïääA­LýëãYRZ1¬—‘  $%j^µ¢»˜%ý;ZT ÂÛÅzÆQN‚ÈìD>1 ª› ,¾r8d²‰V–ëõAòå!fV³Ó “âçu·2ÈÒ!ÌÔ­¶ì˜èÊç)=ßG´6¾HiXú&ñŬç9è´úö‘ ñÙê&¿»ä¦ q¹¨¾RAû÷½… bЧ‘gÝ­R´rLš´R•¸çnê.kµi†%NMuæŠKêJ$õ§Ç‡=FÈË~ËÓòv.æ½À09­vÐGüuSy‹l›0𔕻Xý‚']»¶Œ¿âjÙTez™t¥D4h¹÷¦Ì•ÆJ(hfaSº’ 1Lº|e†LIÝSùr™@µ[O·¬—M/.ÀýÚ½‚éAj Ÿ8Ö›t¤ ªá$S0Ѷ\Sã†cô_AÚQvJBQ"%i* â…Ô3 ¨ 2ÌÑÀZL¡$ꈀÆdâ¯%N»2@§ž`LšÝÁÚT4›Óo‡Î„-gû,mC&ª·9*})ý¼Ÿ$3h\<Û.¥2ƒk#{)ï¯ÚªéÄA‹^г fe©k÷²ëàíÀ­3¦ôK(`¯-1¤þ=®& £K/¯]àÓÛ QÙ«qJ½È|¯Cð̤K†jöK 1.ìðwÕyïr`w¡V]|ͽþ~VÖ§y–l¾Ð Ep*H6¦É#Jüª"Qd™¥©BmÆswO±{ eí‡Ò\»{x„î‰äZÎe6¡ÝÆÔß뮪ùP!Šò²ßój% ìç%ëšv!³ç3%à¶ðßß:n4Ž÷#OøzË5Ãå’ÿÅåx½‘¯FÚXÅÅÒUÕš¯ì©0/¿Fk™Î¡›ËŸlüvu3Š Ú2o?¿V:) kœ ©MRA¶ê~@Rƒ‹n˜um®ÆÂ™_«£] vå´`v4+»+–V$Ù!ÌV( XމÝhH±¶ t«4÷R’IhõZ6ó›Ä°ÔMp2DmþgI™‹î™‰_rÁªÔÂ’z³³~‹ÚcˆÖ‚‹\׳6°¢_®‚ÿtǤ[¥Rai )D NÂI¼ÖhpÂ׺µT~¡‘–N®6èGÚ¿µp°vµ]àÆŒ++¶qµaÉgõ‰NR¼A{MÁçž_…òMRf]m(0 þ~¥åêŒÅÊ8¹Ÿ4OAå!œ“ø¤øx¨œ·ßƒÊ·(׉ÙÃí–©hóàÑé"%‘Ã6 °- ,g ¿L?4Á*‘X×3†­%^<Ã6ÖÇS¹„6Yˆ‰5©ƒ“$¢ár\W¼$‰ï [÷À‰åûìCä´73šU[¢$ï7hO_‰ÿ¬´•"<35K-Ñì×lA÷§÷+‰¿/6-ÆüP*¼$ßŸÎØ±Ä(´f€%ÜZ–µGÛ;"ŠH½0·Qš)Kxæ 9Ô ìÜUèÑ÷>7]àMHªÙZíÏDÉñD"±. Q‰„Ü1™R²»·Õ;ƺº`GY:T8Uð#æSáÜpØúH¹QÊá¦Ct{`…4«ñ‰w¹þÙRªÏàÅåÁ]A­O¤»‘o89Ö›«­²fdÄÂ+BVžÔRpóOpÅ~q¼‘ìcÝ#|'Ýry`´>fU¯ØgöÌ.½Z¹Ž&sž‘,>CŸ)ál2‹ìåöJq›­zè$™µ×"q|7R‰œ‘¦WgªÀ΃ÌòÜœÉø ¡ì<'È;cV\.‡²?£V­²ÙaÀ'2C-¸Í àigŸÉpŽ‘¿NÓçs\‚°r¡œr~ÓEïmKÙˆš#¸CêÄ î§ÜÌü] ©O`ºòÓ¡Rè jJß ôA:q©ãm-júO¦éSöµÈŽÓ²Ýí–Ë =X–EM¾[ö•JV.%~w¹fT§ÀXnÂáÜSNºÜêsö7öË•©Öš:[£Ñì§”Ú+v¶bïßF|”²Ny‡þ\©‚« n®‘˜½¹¥äGÔ´º"Û¥¦¬±$¤J†‚(ÓýªÃë•^ö›T_h‡ÑU"óÌ"s”5×¾£š­œzQÏíÓìbdr§}Q}kFÜ DÀwp³†°”ñ’ÃÒ²¯¯eÿ.Sèõ!´ ƒÙ¤ì{Cˆ£gsõÈÀ‚GkaAXP¼ß‡ÖìO¹çB@w»ÞŸÃùÝua~ÔŒdG5ñ»ówK¥]–ûH`ÜÑþîꔣÅ–ý½";Ù¬5â‡Ñ{·–ÆòvwÕ`íE›r£·´/T° è\g#Ÿ/@s”³aý¶ÍÚÎ…¬Ò “òUÝ…~¡f¢ouáÛ—©½}ÁÞY¤¾e±Us{®,,JØß¬ò}àã¯n•# *Bß}O‹Æ˜Mª‚v>SqH¦ã!nlH¢ÞæoÌm*K”:Ïæ’¬Ö`#uÒ32¼ÁáKtA_ŸèFŸmôòGp-›[ÑüýÌë¬vÛÝ;ð:JÊ×úçgëàËs“[_#áƒrÏTIÝxý¬%ÆŒŠðGÔ(²l V{_±FH¢¾g.. —¨Xï^{å¬UP ‰wŠ®¤Ôp¨÷]«¤Ig)±Å\kú‘Aqs#¾¿bJ‰þ4¥Ôy†!´Ÿ–’£ýnú®\t œãöi% «ë ±Šõ(Ó'ËŸI/Þ¹µDPSç›™¾ê ä›òyÂê^ˆY‘ÒýŽDI¯‰¶ÄõaW3]·å†1…Ÿ Ã4ÍAóå/ S¯’>Ðú¸…%RÊàÄê^À-@¸†Ô7ªZ Ü·þdŽ<”ã´õ£"wÔ6‚ú6Õ3²2Áp^ms%N©é\ݰó .ÀäjS W~®Ê×-[w]­Ü9ůÎÚ¼¸–³à“&B™œ­Ip‘¢È1c§€±/R’V<9ÀLe8¡ÂÝ–iý©š+û¡ù/53k‹©„Ê‘Ò'$íŸÍ`UFÀE@‚»¬Ïð'Eíw¼ÑïL¾HAªh• 2"ßP+iJK˹WÃ=nkœs¾Nh8F+-ˆßkGli+1‡é•´rŒÞŽ3ÓûÈ42ÿ¯ñ?êËGô>”sÉ5û56i#d \Ž8'òCKº„¹Ë§ :ìaaR`â ƒ”I¦›ÁâxrS¤wo/wcØúòÀºp›ÎŠU>ö jW@Ï0_†ê˜7€(Õù쉷ø)÷>˜©uÑî ANÏÀ\A„Y«±L]ê5Mè ñÌð ÔzwÒ¦K'qi}áÝRC¬‰‘ˆ jÌþþ^¿¼µ màbîâ4Å6‚arÐ8!»Ïýò†aVGB¼ò@`=šÎBèXˆ !z§¥Òþˆ¤®I©Ä¸®ÛÂI4Íõ„†Á¢ÓÔµ}V==EÌ‘šër2Bž%¡\Ím‚;Ý}¾¼Uœý¬/UNIÇ× ‡Ï½¾iò'F¥Õñ<@Ï"ÜèøÔ®öG* 9ËT¶'Û5x€ó˜(–-þü-ΘÑÑ5ɲºå„[tl/)@€Åò"CkA:Îêú[ÞÛ¥dzÞ™®º4Í.fþš>{B]D­À\¬ÁtfxëgïÕT-J ÄC°ìÍŠÜ Ý4g†ÁK²µD’}û‹’w/Îн¹sè Ääf½/• Œ2zQ“´NQa¯ÒÇHl=²î®êyPsÞú¼³®JH>\Ä Ù D›ÖÛë…ô¹°u_¨±¼ïÌãxayÞ^¨×KÑÀcf. ‚œlÈ"‹ ¡ 3è(<=I–° dHò9/v&ûõáëÍ¡”pÎÊ Û ÃSßù¿î¢¥ÏaÐ$ws¤³-º×LQ¦…_ð`góŒoÈL¢( Â(Lâ]Š‚_ÿt?k ¸•POßu¯•/ë9¡ô}6gX’|ÿk ¯O!-DmçZ©¾`Ô¦:¨~]¢ˆ³×æNyZw#ÂkM3kR~g¦æµf‹JÁX6Î º6c$.Ù=Í!˜N»‹z:}X Ïì.‰œt$–³®?§#‘²¼ ˜eØf’¤2Bdo2—WG¢‘‡’ 6f6('eo!JïaE6&%Ú÷¢¶ùmÚ•îÈècgsfÛ?û¢ø‘À W5K!'ñ½ÚP á 9ÝÍ‚YÒ˜t¤oñµ-qK‘ó;B Cwh9`ä[1(àãšQ9 4EYäɤì¶àEÿ•°S&nR’Vp×1e÷—GÓ•Hb– ãrCf&™MÙŠ’´ °kgaÑ$ÜH\T»eß`È;5‹ÄV d³‚9à±V^ê·1Á)Tµàp/Ê%‚Ï ™™PÞª›C‹°ê>”ÝFÊRëàÔÒ%´~`ßIÏæú,Óƒñ+3«)À2ºY/è®î ½°HÞJ˜R3ê”J^½´_œÖŠDѨ×:mäÐb€–MË O„ÁLìaâ²¥”ªD„¶«ºQóÞ¾8‰Ó¶bZJ„Ñö%çÆ6C¢›ýãRl:Ć5@K¼\ßÔÏ(°ì¤€aFåNcÚV ïžZªW¼Ã\½uÈT™rçœ%Í„n‡¢-,¿# «3øc‚;K¶téÂaª6n„cc†Õè¾1|!G,B„Jª—š2³ o3WÚh:xGäI©¨©èPÞÞɬ)}|þ‰£á.¤œN”EÝ[»ÍÛì5M¦P½H±¢"¢Ål_N'oÁÑbu–4£š€X¤C÷QlÙÆçëËÙ•ZUe 6Š'Αã¹Mò(< ÉAŠq\ÿS PºrþNzÙ%ͬ|â㺰65AËÚä‘÷T}à1ß?ˆ÷“"X  öÊu ÎÅÏîÐ3‡Bp$Æd¡‘æ i>±"Ù!¼/DW5.¡sÝ©­ÌLB:iV‚¶,­æ˜áY¬¿×Üym…p&pyp*ÊÐ!Dv/ 1ët³ï]"ŸÜìÄ`ì.à2Ÿ„˜¾;m ŽN«Æ"í½ìû‡ÛˆÉ~ÔZ‹»#6hw÷,﹇rÀé6'mê†Aúk•†ªw´Æ|’ SŸ=h×k#©‹˜ô|?es&8ú¹°-%ØnïÀX`RL•e….œ” J9NŠO1^Ë)ñ"A¸œÔŒ“Üß'1dæ•™)–ÛÕ‘Çai9”›‘&®>p­Ð¥³’½œw|Ë„´lUDóRSÜ*}y0À~ý n6Ñ`¼Gp?µˆbÑ(¯B¢ò ~b.ô);ª¬=ៈ(92Ë#S¨=ô½a™ÅëêFU†ˆ¹·â¾&óh1DTœ„ú6†ˆS,™~ËÂB¼õž Ê1q„yg±{ˆ!Ø'JS0sDÔù oÓCô$b;e¾ÛåQ•Ѩ/£æ8¨¨™A\ìˆå±xÃtVSÝøòö™+¨}LÊ~n8s¥rÎÔC×ý¯ôà<ÄHj\Ùœk#ï\†üÙkÂÕ¸dh”>â) ˆ‹bj‘=T[Šô÷ÕL¹‘qš¸û¥ùB$÷ðA…³’3!àœ‹Ü…ã‚¡Å¿¿%Þp‹‘á^UȺȡϦ4Ñׯ˜Häbvêt\ZÄóD™÷”ô9t_AËù€E‰\ÄGŸe¦ç:Z¡å|QÉ"É:'qå*l…–Ó.I§dY_ë)ÍÔÈ:Ð'§Å¿€Nͽ â ‹éqö΀Kµ¸v¿_ðe¾T[í}ø^­‰Û[é UlG¿/iqª#®šacÞá`°1ôú|™ô…ˆ¦=Ä… g¯afvÄàî*§>Hä[ƒƒ s‚O¦i<šJ•TXÌòÇsã«ÇÖ& Õ FJJ‹ÜWeS‘|zñhÀàì‚ϱ¦Dçm€„M‹Sä:ϲoVkµ îærç“Ĥ0FàfÙƒ-^Wm½Y{y%rcÞHH,„çzUÕ‰ÉçÌ‹Çniý: ©ÊVÊwcØŸºw…‚§ ŸÕ ƒ¡ Þ|±).Lo-ö§ÝY›jµ‰ÆR©%H˜pg%CUol“¤y_Æ(IÁŠêż/ÖƒSãË4ì4öûjMŸ¤+·_zÚr_åê„©g¹‡é^QØ»Zr‡^õ5KAÊ mõtcÁ#ÑìÎéÓf7O@YuéX]Õ+=ÅçµÒÈçÌÚ[¼’m„zUIkÀÏ£ˆ²Æ£ÔUä¥ì¡9ÏG:VȨ`BDË îUÓ…0—']ejX]yàôMeä$Úü ðòë-¸¥jº³¹‰u·\mLñsÏL^Ã0Ú s…ÿzÓ¶£JÁ–¥N| ƒrTɃaÕh$ì컨¥I£ (¯U©k í››b…VvòÌæ¢ ›ÝE˜!Ê)š !ÚÚôüzÊj.jÏœR› yÁ‡ ­fG¢µ» cmÏpäx{åÕšd¢Á{ l á?®ðÖeï^­÷ØD£5Û RU'7¿OfD!“Hí4?ì–$V7©(Ã¥Œ`èk3;/˜)¤ãÐX‚ý”[¨¼0ƒÅW&h¡…YE\[”nRËöÇRºœ]f ‰E>„ÿå4EËi íž8Õ“‡ÕÄèK! @anÃ;Z!†Àe‘t0û00ãƒ"ÅeÞ98ÇC€DZyÿ¸)åeñ|Âh‚À{»OW /ºbÙ'M Y„Ó¤ÆZƒÚ~1³àÍéÀoÑéHCŸÀÛÐă°pÏ ˆú:пÒíSpß5 ‰¤gÍ7 hÎ2¿CµXH5ôI"n†~àw8sþå:ÈÖ_®fgø‹Dô~ef fæxf2ÅêÕec…Iò4EOT鮎[î`KÇÇ59P gVÆì:ã"óÚ:ƒnøU+(L,%ÿ.QH¹Üœ-dº‹¸YØßa¹S æŽg…ÉHÎÄ Ü#§çˆ Ÿv$‡ïEâɵȦ FlÞAȽÄÀ-¼;µec†0sàÐUVUL³»q;<Á2ˆÕÙE2$é£ñ–y†*OZrD”xØX’¨:ÍÎ…uïÍ47ØÌÏd¬. †DˆØËgFÅè3_Få]Rb`Ð96%³qP¤ÓnD+³!In¥ø Jbø¿.dì`–Z€¼äàš‘%ð6È(’¡ç)}iÁLîgu=*%`•\Óùð&¾C?N¦½ÞÔAíQ:àVÔ©9Vt=‰~\ã']’_í'Ý–ˆÜ>uÞû€úòlDEýu°6Á%Ç/ÅòÂF0ÓÝà€ÅSë¹%N“4šUW3»œT …Uä) !&Šòñ¶-•”Ž…LƒÉ®Ò2î»K0MZ8å/·¸Õñ³Íàö”OˆŒVG‰”rg‡4]$'°y`К¤`%–š_ïl*’$æµ¾,Z•„K¦íè©âEÑÚ…ÎO¿Omÿ\5’¼drå´©8ÒÂö» Ò{£³§'îZ¥ú –]ͳÁå­d«SÓïî¬Õ+fO1ŒCË'W*¡Ù¨J³i9U¿Üê’@Fz|žã°œÂèåª_ìÖ•*ßtöbsGò/.y$¯ã£ËX Zqœ%_½ß*¹øhêÒwà4nËúõlË•—À¡žÍ˜±o§vúý*ð÷’³ý*>ÔÅbE<½íÕEF3BF=Ùt°¼7º}p,Ù3~¶[×ݯkÇzTSz¸^¸¾ßVM T¹–è8¤¸–¦¦±¯qk’bú»6x]ZM·V!kŒVª`õ;1û5þÒ‰³÷ Ï­fÚµBTÚ á/ì^2…ÉÚÛoxw”½!ŠìCW“W©×¤vnˆ‘þäUip»Lè€'êûë:l‹ª"WU̶Dó—à‚\ì|…K ¡±;{/– RWÚ>Ò‰P÷JL`Yêö?Y.T;‹#—ÿ¢À’ƒÜŸ€ýSg/£ÐœÀ¬b@ô÷Œ½Y·Ô÷Í:H®p.h!l M÷•ËÒs”Y>öÀþE›t9–ª‰ ݈u¯¶õ.ÿ˜"Á±˜kÛ….k¯Ê. _°ø4ÙƒÙ6uw—†+±}ÂÜ>£{mùBÛ„GóQbQÚÝcn6+}'8‰ŠÜyƒ‘±u—„°Á:ß´L å{¨€óYÇ^U")?ÛóìÈ‹=].€t‹fç•qæ•‘C½”ÿ|ƒ†S Õw‹ÅŒV0X$÷j¡DB~èõvb!#S­î)p½¢Œ@GIcU/D9Ó+"º, £¨Æi¹‘@mže2Žê;™ÔÚH%Ü ´^wÖå]wUÞգ˞£0«¤Ù V^™6åј¢­5t-’éI´üh«¼;íÔš(, ¬ôlC±a*¹€)vÓâkvfDu¤OœÓùµVa\оX7ñ;³Óðê¥khv:cNáCœ}š5BÑd‰$ODÊcIa§µ-ƒ6DcØ¬Õ © I,="™D¶–jÄÐÙ#E˜Œ1µò´Z½) ðØ庪 j=íÛÑ6<5ƒ¤ù…§oAÐ盤œe? ¶¦#¿É:6$C·l…Öùv³«JC’>vW›3 ßÅœú&-ê"z?ô‡ã¨h1»ITŒ”ûR^½ÙIüÑ~ƒ³R:ÖrÏÄ×ÓNE>}<ê4PDO5¢3½ªÎ8 PÜ@£&bdF€ˆÏÙõήûÕ*!¯ ¦l®[˜·YV¥Qq°ò÷[Ú÷¤˜ÕT¯Å‘¯XÏIØ÷Ô¸UÛ€zbW+ãr‰Ûèj-ØùT¯OvuƬ zg7q?Ù ºGûIýÕR Dqÿ¤*ÂÐ^ß›P‚e Ô%·°Ø—¡–à¨ðšJļ"‹L°Ä!z‰’^B¡°¨¶ƒõ.úʹ® Y `–Z3$‹¨žJx…¨ßîÐWÀ¨ ‡”1-ê³^R‹­—çu\e‰rP©iÁ’1¥6À¤ Ó2¢¥oÖÑŒd‘X˜sÖ¼LC$ m`ÃÆŠ£3à'†Œäq~¹öB`i&`1tGˆqDé[Á*‰†9›H„‘P;ÑZÔô$ž&# ‘11iÏ}à™Ùjèbk¾ª!«-Ê{0•5ï4ËÓ Ò7òö3 æACÛõLBÈXm¯ºÏË ÕßùBú%@=('yº c€ ¨?ekubî"rN#óʪ²ìùaŽQ¼v~íöA©šØ<º8Èã:Æ.šRýwÞj%€x”u‡ϘCÚR*x4›ì–Ý.žPGMöCÎXÿbœ†2)€E±«=„jFžôY BI­¹Åx ®ìôè:Ú4¢Ÿ‘úEi®€QápéFC•Ùê~¾¨4D«Y™sóaáD¥Kn„=`½»Ë‰ lTç!†²¨I’G4ë6fÎÒ™È0}²oŒÖ:AÂA/" ¢¤zSºšBvy%]"TÑ\ŸY»Œ]ŽÖ‰Óœ]®sÆý©&Ëã™&´&7žÛpØ—áý© Ë[ ëF*éªw’!õ8\œBÖAÑÂÍJcAÉÅɶÍDj¦¤ÏQH$óæBã\ ýDѺì‹•óIœyÒ:/yòéÛaè¶TȾ¼| Øžˆ/;¾ö€$Ú »2›^03Æ@>ȳ‡O YêÂa®´*¾!{ýö˜mÛs5€à§I„+ö ¸ëËÁ|`($Áx¢Ä>“½]pJv‰pVûf&0Ôë#šz%Çý…iÂ\>]·7yVK7|åÖ"rÁØc.vÂý .a±Ä‰ ð÷·8 I';Õ>Ž7©Že¢0àŽJtµ±’jì(bÚÊtŽÃã/ljqóIºñëI<~4yR‡sQõK¾³U¼j“J¤~‘Ðd쾉¿jN³›¯…ï21×$cOú2v_!ÝvßúGâsG›—H»5ÄHñwÕ{-QëM3h=E–]¾]}ï9ܼy”:®vm Ö…ùÙ0k>h‰,¿µë”x0ÉKPÀc xÙšp¢Èu(…Yµ® ¥Aûó·¨þGw®ëqH”ÞMõ?øÝÑK¨©P Õ/n—ªK¤»&.ÕËýÞïŪ&b/«Ý«´7ºov¯5ø }¢C2|tTýÌÝ^}@™~|‡èð;z4ÎþÖr‚GKPJè †ì•&‰ÂFú wmY…­sof—j1ñÃ$Ô];Š]mÖLKHÂð@ô@Q9¦.$@±UŸÉÒ…€Ž8áÍ^*‚ÞÝw}w¦Ë÷S¨»6À[ÿ\1™Î·«­(tûÙò\0ÒK×ÌîB+Y@\2¯·æªÊ©mkòt¡l6 v3[ŽôÛªŠ›lù+¯lBmÿæ¾M=nhâHVçèÖî›·_’)œ“JñÞ ‘dè>Óbº¹™•à š@g/¼YWE¥]xŠÃÍV  +К‰3ïæÌ¥- AÞÏg¿;¤gJÔüƒ(døy#™£[R}û¼ÑSsÑÌ­Ï?oX–à¢D –Ùºˆ@´‡ö.iš~Ç´\o(¤&‘¬@p¤¥êP“éú·”bdÐÙ¬ÎõcuîešÁg­«1ʪ‰¢ÚTœ­Àš¡žmó9~ayÃ(%WYúæ³mo#qû†.͆ŠBr7 ¯ï›@2‚©ÔýG V’M_ÅGŸåÌX»éœSîRk¤ÚdîÈçÙJ£è ƒ”áßgÚý&«Ï½wœ ¡‰^vr˜‹K•Ê ­á&3 ZÞƒa²%¹^«éÞ~œ×šý \7q;•תj°îy‘q‰>­KY‰eUl"%²'m¹õÑ'›HIYé8ˆ¹–®c•Žgš¡õœ_U\gðwŒI@ìUª8²=‡«|¤‘¯±ÄFŒI$eRmQ³‰‚úzõÞ®Ýd®¾£ÔdR´ó‡¹™„ÆÙat@e) }RmI€÷V3<šÑ¼ ˆ#¾ªjÔiµ”`Ä®* À„(rF[$ ü')\~¶v]ÖߥômÜ]ß1½;Ï 'ZÝr‘WÛ“<rze1³3‘L“õwˆ“z±ÇÄÌð“¼,¦FœÜ=afj±ûÞ“Ît brz„fxq&a=ò‘…š–x\HàhuÇзRžtÞ…ür܉q»]ªB‚6> g­ÝO„‚0£SIÉ'Ö®!Y›†ñµ(ç ¿ŸîÀV9ä¢%Ÿ>žrFhI´HePI;Åä;¬‰ãÐ: ÚÐ%–ÏÉ¾æØæùä;‚» ·+÷ç(›™èó¬82ÍzV>o¿}ŽbäŽfc-=⯋=÷~Hºé_ ÜQÙ9Å[õÅüõð`À²QB8ºH²OµáÝO´51äû"ɧŸ•ÅÕ‘"ÿd=ŠÁÏ0ý в—Ïs!I™&NÓ:À–Pº/ÞNmòžB¹"4PGßÇsÓa%Rä8QU¸C߂ʶ½ ˜eYq !ÒDS_4Ž›%™’ÄûZÔÕ(Êë§D½ª½îT›;(òh©u±@]ãˆY‘Xç7ОÌ蜦ˆiŠöKAŽÀ»Ñ€_|ŽB{Š2²û€F|_t'á½ÉòÁODk[MÊ/¥&c%ˆbgToj;yg->tÀ+®I>}Óó£¢~(” ÏQ%{F©³Õ¸Fù㨑$æ}V•›|¥åÂö`%C«—Oh&ÁÎô-Îʲ"‡Me_†í¥—BgÆ%K #_Ιd…òä!Zf‚æ#— gùP¡…Tx¶Ï%3·Cš1Udì²hý¢`cuö%hsZi¬ïGÓ L®†DÐvzy$Íàa:Æ%ƒê*A’&‚æLw’CžñàØËU¿ˆe7ª“vàÝ\¬»<àãÃf[¯˜Ä[ËÄ*C÷Þ*0E•\o Â“Pcy« C0Ö’$±Íä/EùËxÒ0È€w?%ç3pÛÒ„máÜ-òå¶Éÿ0.š"¶M™Ub]E,}‹Üƒ•¥¨öÉa¢: Q„² ±ËÝÂp̓KZ†Øßs‡ò¾³´ˆ]årŠkéM̆M];"¨;ÚüÒ,9LÛì¤í™áI#· ÐF.ñe4 C·F”¡ü…”a .;ÑDI„‹Ž]«örÜ+m´ähé_i!£Îî~e ³fù‹_©7sÆXŒe ñ +:²4µœ`2º³ËšAÌžHÇ–;ºl2M$I–žøj!$‚qUÂKßYÅøwŒËMÕÃð6f‡˜Ö ðà$>B„KˆnžÑŒ]6\E8Vî7.ë!ðl=jîDë½±.7‰}fë-.­‹©ø%ó q¬O=÷œgÚ,ËkSO|'ªXuh¬$ï™Y¥yrkRÀÆÒz›p†.VÓ®Ñ÷.N;ZæïcÕµìw ~Q]K2SM\@èku«ôœ­Œz@»Ü$¸‡rÌ>ç4ßßykÕ䓨îß&täÎßì´Óå3SŽÈD+VÕ{«Îø`[ÏÀ½¶ç­àâÑ;U÷ZþùòÑ·W«s†HîHÈï³÷@† ”saìoC{­Æ¥gá“û ¾)iÉ÷_¡•ùý¿ŠÆ™c¸“[:}¦¥5Nz§kMó)™ÓtIÐa[þ1™Ì{–v¡ÛÇ…Eä±ãp$(‡öKb²øpêô;.Têmf”¶H—ukZŠj/Ô^ˆ‹ÏîB]GYŒ¼/ïÜàý-ôÃÒ“¸½t•mèæQM„¸FÖÍMŠI1€‚ºÖ0~ ¾?QÉýÊç½óF¶6P%Šø1Ô=†ÊÌÔ])ªJo­²Ú æì>È[«ùÅ—«Ò(ûz˜™pO2¢…Ä\sç8zê¶—T-l^·rQnպ䭙NÞù"y„g³ò è﩯DB£ueñ˜’1ŽÅ”Kçt)ô[ÜâùY£‡” ¡¿g¶£ƒeúR6Œ£,2|%ĬýÚÍPj’Ùoït.+DWä´.)¤@²3NÙ AÔ—œ½ô´¨ùE“åÉsq/<­fs çdíº¤né1ÐÞ(Ó‡dÔɤiÙàŒö U²¾®þ3n9• ¾±î®¾j xxT¿Å¼;U‰¿ Žö Ê²<$|Ѐ½SÖÖ,þ@<ƒ¿€ö褾3 ¬DÊø'e°‡È¨†X;š,µŸ(õÞ™A ¾]i~“ˆŒ¼'ܤIî‘kê'ªáÍ9AúS©Ñ¥`®ª^£Dž‡” ^ÆÑ§oR&΃0ŽV«Fø}zÈY•b1bX5­Å¡cQ¡/Ôk@ºl`£@Í©_”ÌæM¡0¤—¶å«uG›ˆÞ]­¬(D¬¡Ó¯žÔþtÓ:u!2'TÊÈÀuhÊ8lÖ…µXH–ài`ÊCl£Ä ¼”;$qlâãšÁ—dä3¸¤AT@ÍŠ±ÏIÁ^!i†3M(åÀ’Œ “åŸUÔ_ŠÖ6*X˜;¯ÀifQÝ5ÕšúÕC ™'6ýXÃS¾¼q‚¢È³[LäÑQ 8ž¨ó‹$GÞGÐ…F>C ²hvPw`àÜh?䪔Dë*>«° bƾUh{]n]1$43+X–¶~R I¤wŸh‹–ž%æUŒÏ<ô¿™.WuG’a4 ô§qM4@‚oPJB²B´–©{3Áæ6]%êê)Ëpn¦ðE\hmk²”ÿº»>²>»Ò«"Áñ¨ÅX +¨´§‘g•M#&Kcï<@ÒuÚ¦ FS°]”¶°‚$MŒì/G¹ õfâTËr¨;ÖO&ñÂY&ÕÖA4C¹‘–ˆœõ“¤ÜcÖ¹r‡ÔÖ%C´l#2’ikã 3«M]¢É5q»ˆÛN9š‰š‹wn5ÑUô+'G¯/ô÷‘£¶dçÛ‰V!b"pý‡³‘u½ÒáFSƒp€1k¢;T¬¡Å.‘s¸Á媀 ÊA„ðµÈò~J òRžÂñ1ëqŸÎdù§6–®¦¬ß§w”ö,éÓ¥}aaWût ,B %t…£Nµ#øˆñç¹· "÷A%(°\“o¼•qsœ5–ÕÓ7‰‰”ÈC*û¸\`v¨)Ú¿døxuΚªýËIêaƯ’l8 éŸSDÀ øÜ*u¢rNÍÖ¼ŠÝ ²hšý/#:k¦c&ø»˜ê vñiÏ[ÛüÑk’OÐïÏ^níRb Á‚ ¿ë–ó1nG½“ö‹2¤kd¾#Ô—ÉYË“Á9M2Ybñ¥GÑpEá(DÞ]Òs„¡om•j‹Ó¾y0.¤»2d!êÉ NN±Üˈ̜Ñ$G…ÐÊ^*&rŸ1uo*0¬ÕÐU©K-G䫯:kUª=2ú࿤"ÓQ‰+‚[ÕÊ0tƒ«+µS¢;®´¬ ç̾Rp@ÉWε«C‚îq·Z~e3QéÌ®+UÞIü{Ÿ&Ïá'A\B×)íTX”NQð•‚*îÄÄ8(¡ÛåDåÚà*mì׉¦±°§ÚÕKœ GãæLýý–Ý­úµ×†n¸×:u ÷|M~‰»¶Äw,oLEؼ´Ó8/¼ØT M^]¼p^tVú¿M¢*}I£„ømÊÎ smª€³×µiµrÇ}‹(”+²ÎW¨;¿-X_Êä"·b8öge&AÖ´Àï2w¨‰â¼ãê¨1vÊöÜó"„i¾Ë'ÒÅâåÄö6ú†É#JaΤ‚!:®9pÊHŒ³QÿÉVJ3uoÎäZšN{sëzÇ}(Ë;/nƵCR—ù\‘92DɻʀœÙ²v문«ÀozøºBZP®h—´`J ]Ò‚b˜E–6ƒ E/ºeé °¶K“0¥ã.1c ‹ôYvÜŽ+¿ÅoÁ¼Å²Ô…Ú*vqÝ™«QºÄã¶÷xgS#_3oϨ®Å,ð¶’ä¿RÎÃêL “?ÿËÇÏ9àQfB§Ã;eWU`“ÏmDzá•ÛïkTÄô-i(Û}sñnTŠ‘²ó+ª? †nÔDmྠÙôý œÑm´¤]ƒnMZüDn*Œ[ǽ­©µr'ù^7 ¸·nsM-¿„{çÆ@ EAFÖîžYs8dQÄG³ŸÏìù›kãmÌ2 á<éÌ«ÒéES~ƒ™á§Ï·™eããU¹ +Ö†ûÂÍŠÐïJ‘ÇnÌÝc]@ 1®·Z¼z³®7îØÓáÅQS®Ï,¼¦í™‘¯œ{b K©8ÛðVKÔSÝg~>¤w¬À'xÿ´´MJJ¼çÞaK‚¾A“‹laÍÉ6ÈSæÞJ“¼²ç†ŒxbA¢+h “ïÁŠòÊXr˜¢×tJ`¸ éJuÖÜnHW!äÎ[gM¬RÐåÄ}bI× wW½Ai/žX׿ô)ë{ÌkVM•2HÎ{׬ƒÉÚ¸/áÚÆÁŠê\¿îŸ‰WbrÂŒ íi-•L+Ô;GO›ÚeŒþtnîSˆ‘ÅüPI^Õ8Šd&î A"ƒ/4‡vû'–Ù‰áÑ,fÀ³›B’±¯7GûB¾uOíEBê¬â‚27\Äÿj†­æ1Ù;Øê›B #þ†!öëˆSìc än *ëÃŽ*UT&[Õø|ËÀH#±ÜqTË®H8ã>¦³Úº„”µ\éµ@KŠ3Cù3,1,£b†éŽ Ï©X~cQF¦*r3Çܪ-ù†Tmdy ñ©ÿ”YD]Ó­y6P‰àlØD[Uì×˼ç8ÀmÍ­lN¶2Gƒ©«ø\”U¥±’X>që¨&¹ÁÐêòMæ?Fl–¹ -fMÝ=?7m؈–ÝVï6L×ív[!l5ëMª{¯ÿ fq‹š·±¾d6óî{ºÚÚ~… êè„àW›3 :4N;îj V[M=ÜI¶£J,ðö“g¸[Ð䘶TÚa$i]Rxlv2U¡ÀòÒrØ•Æ\âÌM—q•)¨T"jî_ˆg•'˜ä`¡Ï¯«lTïú4M+XQé^`q¼Eƒ@BO¨e/Zq•r¢3èE–‹˜OšHq²(}¤ýZ,ã\ÓÞÁx’4¾rcÞu¬·£ÝŠ7žo*ExªÃ¼5)ˆyn¨Ê Ë€— ¥<‰bT9¢)*ë]'0øÑŽ`H‚þiï¡©Ö¯I"éòSif°Lh‹·‹žãঢ| L°ÅÞâñ Õ¹=±T‡i/¨ZàhØ ú 3áRÞ]-PGçñFÍãZ%S?eöP·Pá’ýìÛJüësøÀÂL??¦ã†å›þ-:j~1¾°0E×¹û€šx,¤ST`ßÜ!Bp0Ž[pT|ž¹à©óìw ãT(€û†ÛIœ§U­OGsŽó<ë/ó6uça}åÄâÞ¿!<  Mø«VÞuäL,(¸ RìÞPÚ‰Ä,É)s² Áãg›ò‘²M„âêðÎØ=QEáHOÍvd½‰ß }ÍÇ»vG`÷­@‚šˆ2Zú£·R¬iÃÑ}V­LúLÝ®I¥Uñ)ô#€9›4ö÷ö£¹o„2Õ"àYuË“G϶RØÞ×=ÜHWúÛÈae$l_ª—FÖ¦ÀÁ'Y¶@5ŽíŠŽ˜³oÌr_G<¿!LL/®Á$H&^‚ç#é–áÀ_8\9=ÿ¦jã‡5]+$ÉVÐ&£Â´YL[á &ã¸C›þ`ß±ªÍk)n¨Yh´@Ýw’ûÝjŒÍ²à¼{Põ8‚ŒÔÆâÂò+ØÃ¨d[Ÿ½©6ç´ÿ§"[3O ¢ŠJŠÈ€ãµÆÈ³ÍOŠ¡ŒÕ] Ñþo(øleì‘x>®=b•CâÏuÉÍ™JÊsCTbíâ¢ùÖwj7ÙÿkªÔbø¤Tv ú1dhXGBã‚q–šA¯SþofFÇ”™“GÚ†eÍê$÷;KÙ»EPO&dFÆ&ŠÒ(ÉÖçïÚ#f’-wjëWø…q—#ñ5ÉVÝOig¼²·MŸ%^é Šyj)&µ<û%º< ÇA/ªCÚbuÎÕÜ# Ž6åAÍ,ðKåò ñ÷m}ÒR…#”vÜc8ä]#lå`Á8ÍøM4:4û©·´U1f¸E?¸2'ßþÀP‚SÐ9âHhDÎNóEIà­u¿{“^'ßa«Öà€¤uÓ¥ù{¥Ð‰5~èÖ§.WÑŒK²½œé ,gÝ—+*;Ï÷Ac\i³Õ!A–ÞßH ji¥çãZA!{ôÆ|-\Ψƨ1²V‡® ^U{-×·µ_YÇD–îý’fm¡(N®ÝØ-:-ÃB£öËõûv éÃyûumûð°Ì¯µ÷Ž+ÌÄrI°P‚c”]þ½IW–„ ì³ó|µÑÍÍ3Ó†a¨»šQÏWøýÁhÉNQp¿föQvuÊ÷澃jörûCHŒÖÔþ†,¥OVÐZ ¬u  'îYüÁ‰˜ÀT gu¨+‘™ëÁHª„=d¨dœÜïkFÄ>ÌIÓûm88#óÛ”ZWÄíR†OrêR­ÞuÅ-쨗r@ë–¼/nÑuîs¾ÁBé,ö™w KåVñƒÙoëU–€}ˆ½©žM\­²½|BÖön´×”NÂ2ƒ83ݽ€wϤ´Pøw¬EM\»=èW­%#“ ÙZZØ«e§ªÔfã4®½ ŸH\è³ñÍ&4:¯PaB.%^ 9¸ï<)úÈIÚ»fm®…mëB‘ÜDãi[qî†tæ¶ÊÓ…J•&Å>%^–·² uõP£û-/"Sσ‚ô»WeuÞí%ñÛó—ίGUö»J¿›Ÿ·éƒÊ'Å<­½ÍÞJˆ[ ð1PÈæ¿z\-&&èP¥Ì¦Pn›h:´…‚U·Lts“xG©›óöŠÄoµ›¥2Êí%fÜ܆ÔV”@4GÁåß}Þšz¨1º ¸ ûÃ"Þy6ƒ7§îPܲûÀ~rRá·¦zÞÐc£±ÞO9Îgöw˜cö·f<¥µUï¡Z—ǹQä®’±Ë8úáõJz'÷mÏf<8ëz²pg-«m„:[²êjÑÅ4ú¬N¹•ÜlÍ©î#­ïSFW±jÔ†$f\Ьµ ÞËÅëDSµ2Ä:%Z#¹f~ìû‹ŠºIqôó¢Qm’ðóSE&š}/¦Ä6j 9ÅË‚ªÓw=«£?8èòó,§Á á´èœÊ³˜8¬ÛBK,õõlnõ¹~tË·Vj) ÷-VM²lzç*™¡•Ãjò÷å˜ÌÔí½´õ¬Èªè\$Àg[!Iuˆ† w´\«£5Т ‘4ÂO×JªÞœ6»™’A}ˆ×iÓI€»sŠkâ´[Œ @ô/O[=‰1¼^ÕÇlŒÃüô @z–®}ê0hà§®¯h)ØVér¹µP?©Èò´ì\݇TB?\_mzä%»*zúügÁäQ²¥Wm¹Üè5‘³Æoš ,ï¹Qú Öæ$8÷VYñÁUFMêbá=gËt;ÇrÅ’7­º4àA Ÿ3K~–·ÜÕ\B^VÚÁUkœ´Þƒ%;lb8#€s¸ÃÕ }j¸—n+aµéºdfô.G7I6l$8÷åô—H³ûËMCðŒäWEŠ‹TÖ¬¼¾©èS’ŸQl$µëöMõ‘Wuà‡æ^Ñæ±Ä—n@´c2˜œZFˆžÁ?½ËvŠ`„/pS.¬Þ„/%ÙÎo²˜,˜q–´¬6Ô“oýºAŸÑ·x¼Ú=UxÐyxW+º'P’nsµF’ùÕ\‰L@&øSèê<¥2tÀ®Ôk]Í»¤“?Až©CG¹:§qÑWñóEåF*)×àXì`”ËI9œ«ò]7g8™3-íü_ÞðOŠ`³m%Üϯt›“+¹R’'­\ ˆ!”6E«™ÙÂüé{EÆ:8'45ÕV³ðøzC>£HeP@u™ ñ¦„œmÀl¸2¾Ž1Eó º`’ X9ë¡I“½õS3iÃKzöÝU²Ys¥Š r.TÜRîqëË…uPfLjµ¶²Ï’ Ý’ ÑõᦗX;Ü)—qÈÄZ`´BÛúœ•°*Ð’Å, oÆ­ D!ñ·ˆ Y9ƒ‡=t‡½:V@Ø^+4EhÃo=AªÅ~F Á¼Á ù–¢•}7j´|‚i÷³æèF\ƒÖó°²ceä}hQ k&1(±+ä¡©@BӪ봟Ûá$@3™&ßÛZ ô¾ •$Z&E1({°ŸD‹6Ž ªdXpsÙ²3ô Ø3ÉcP AÔÓ„}VYv@„þåÈ/'häì»%Ä8h{P'Dhòa`–˜´ÔŸýYb§¦VÔ!6];¼™%µ"äü•ÍŸõ]øVÎ(@Ž”˜‰U.©]·¾cçñfMÁ7yŸ©¸O·Ü—xvÎ3:²-ÙæßÑÆ¢u*‡…I˜ˆÏ®·¤Ä{…ã/Tõä°b”DóÕ묊Ãú½½Ãy( 4ØcÑá=Nš`ëÖôñyS^u¬ƒ9’ƒâkÃÒ—c¨5Ò §óW̾Ç}W“+’ ¯–il”p^s@ì0YÄ#šI¢«pÚˆè:$Ì‚Ûüt@¢@¢Ov´¬1!dë‹fæeU™ÑVi€æŸw¥Hï»kÒ$QTJCa»l¥šæ…Êñ³c´„pÈ{'Þšâ;(?î7ìô©Çl`ì³r"ºæ„ïÙ1a{ŸÑà;ø–;=¥0`My§lótî„Ãíå*ËáN1ɘÔÀ}÷lÍJÑo“9Qû|ZÛMížë°‰¤=kSo & ”uÄAIÚWG{2$_±2Ì$häÞ¸'Sc{y…ªÄ[oO eæ ´o¬øk]º¹…UN¶XÜ®QyaºôAÌz;Þz{‚,*XÚÀÕÅ~;ä`¦æ¦8lï§”WP7*ž;†%0K[²(S³¾| —«ã¹'¹$­€i Œ½õ L€R2º„RD×K[Yø(õßÒåº4Ñåºnhz›Kßãr6®$˜Ì—3ÃÂO½w¹r2"ZŸ§8˜EæÌg>‡ï›Ñ ^õùߨùS<íÊìEŒj—ùõF/ñmžñ&–ÇÓÖxâg@}’HðÕSt“ÜÊNÜ$ Teg>‹ÞzÜöI2#R\|ë0ûš¦+ÅÚs››ÏÛ‡2[/ŸÝÏn(ŠÛ$4 ñFæùZ©Ž°`;.ŸàšŸ‚si‰¶‚¼çPù¼ï;dËôfD£íZF~¿Â¹xÈ~‰o ¿ü.mHÚU±|)!zv©U`‹—v©0󆾼ƒ^/áÃòît±&)뮄ùºXxéïŽsl$0;\šß e¿·ìe¨Œn-žû:Úo ªéýżg0”ý"Ðù‹¥î£Ê(‹ú& õÑ!Z5hYú ’cY<÷ï«NìW_ØÕ˜2Þ|òô) ÁÕ¾ÕyJ©«Ív¡T•CŽf™o®-©Š]ãV¾9˜y[À…*ù_^КDxi-ßQ/»´}>ÝQÜ✻-•µ½íß?<7ÐLx-Íþ­«§“e«Oú¾ñØùî-JâC¡†È-ï«—‹‘ÔÅ„cÞl‚rMhÕ‹—)Ðݬ$Lð?*íTµÁ·ÖF”ÖO}tëx=Å"bµ 'Ÿ™e«cžPÀÔó¢å¥Û Añ«ñçe/âôsŸmÁ—"&ÈŒÇp…Þ £#Þç¶6°T,Ý¿tUe)… ‘󳫙öLÓÕ¼^)%™$”¤ÙõùF‘ù ýVaªXãPÖ ¶wÀódÑ”2P4†1R¹ ¶S^¤«÷xÖ2Ó tXRy僚´H¥¦p‹y}K¶O£–ç9¹Lcd{ƒ냥ÉÅ“(Pöv»Mëòì)H߇–¤>Dg‹¬,Á¡=Ü—ÄX’~€¬»~1št-™©ÐÃr¿aæÀ ñppõ}™+¼u¹qu—ãHåf•>Ažx ùÊ.”¿¯® Yß Þ*ÀzäòæåI“F·‚E´Úõcñ˜ŽEM[nC7MÆ iô&Â)Fjñvà]—›,¿ìOâú¦l=Ë1èE£“*1¼Ó-<õháÓ‘ÁoW0«zûÔÜÚê2eK — ]öoÖÇ8eèN¥ÞDÒýs ×ø‚±ïm©X_ðrS Üz6¼Îó¾àÛËÛMÅÜpàA ÅúHÃÕ†ÙæÄ(g_nP®v´Á—Y€« À¹4Ã’!ÕíÛ,™¯1ö¤ŒLòën‚j——=V7 8Œ¾Mäª5¯LFC`²2ψ²EfT„,”CI„\zBæ.Oîåå¦!urÊC³œàü—4%‚W³*½!(â”þ#~ ¿ÕBÇ@š½\¸óIŒ ™(±˜VfA©ëä#—*$ g„˜í¯¶G8]1D§1±T÷˜ýáG„Ìõ1ñ¢f ˆ± 7Ø|1c Dο|U(Û©è@’Ÿ„h4äË}’– \È~=ƒÅ™Êñr­¾jŠ „tDfØêsËj«F[Jk Š\ä­æ‚TŒÿ즀Sʰ¹Ì3Mø±šòÑɪeP¥au&1#*$¿F‰ÃÒ €OŠ%£| (é¢Zí¹GîÕ†¾ §mg]Eß2©“ __mçP"UrÁŒÈOêW}."yÎYµ×?©es¤»ÄOjI 7úS4‹ %Ñõ8ntŒ”“>–Äóú`ßyól}‘ºØbfì÷¸œ¨ÙN[”_}6n©ò’ñ[i3¹Õ&eð.çw ìúôã¦ràçCªRTïŒüZÉyVð-æì¶+³RËrÜÔ"X÷j2•„çë"Ð@ŠârêQ©7ÐÖã»'Ø–;(ær¹#}8©ÎqÒÜÕ5ò4d,¤5Éžò›,âäªk(Ù¿þ/Wý‡éˆã ôHÑ€¹¢¢ü_”dâ5XbÊ‚!h®ÿ`!•g4nÆ¢à‹Öj§AIØÇ#b„ç"¯‚ {ƒn˰ŽÙÁž˜Ç=7ìKÉ´³V3t²fœ…˜!æÌ€?'r€å²ŒÂ ¾1Óy:n;VôÜE§v@=@]‘ö™ÌL„&Làxæ¦d`ïeî–Ý! Z%r畊§*cƒÓ˜€`7…°8®¸G’€Ì%Ô™ÐÿdÕ¬³ÍþŽÀÊ3·wØÖàjxUÌ¥H*Ãd+;¯Êh«»ë#S˜‚é z1CîYÉÞ\•BT…Èê?L{G4NFùBí*h…4ɉWd÷D£AðÐßá²<¹iÐ yñä4÷‰ìeô)ÈqèÎØŸ%&F.V7Z¶[o•/$°J=•B¦D*fúÙݧõ)MÚgì>«¦ 4bÞL,wáÎ\R‘;sÔš]´žm_ꨑT %\:Êz‰ÚY²GÕφÛP?‡²ÐÔH®âa-§Fôè›P,áÀYÎ;ûÐJhr=uK”.Ìd­Ä8’ú{›+Þ¡U —0šàbC²ä5L @ƒºê Œ¤öA¾ÜMŽê é­œk*u¨ãP#•L]"Ã’¯Š PrérÁËå!ÆæVþІ½ÏëU…~ݤ»sr&k)“j““M)_ð¥.D]ì„xGŒ¬^†`9pvõÐ{,ÚçKiÜA¶—”¦â«q-%âËd×g'{k¤At'êíu¯´M_¦¸÷2Ú©êÉPz VNN¦VáDS¨>Esyd—jÁªèäÏw¯DZ’µ…¨D:Wcýî§êIéÒ0ŠïS»/—S"¥ùò ôqP$Æ’S©%YhíøUú5Mµ¥” F½»¨¾¦_žh_ĵ•?˜sç¦[ïË(&#$á¾ûD¡Sà8£Û`E óì[¬Ô0Œù¿®Œ/•P]ŽR·qB@ò°p±_h4 óPñ àS9†ö6쀌 øï»çj§¶”\Xi«8è)O*¸ ±,ñw0Óãw &5u"BÛFåËGUPrß !Šÿ&'A¤psŸ»è/P…AÝ4ËØ|j,pYQ=ÿQŸÏÚÑ‚Íaà GÓlÖÅLê³”[Âé4ð…¹6*–P¬¢ó-î¨aàS#\b”vWÔ‚ú5«ófñ ELD™á|foyI¦[m‰[»QZ4úú;#®c’ʤ“UüHÉh[5.J6ÙþyD±Å–)=åÏæDÿŠ N(ŒHVò”!%##Þ§ÛoRg5f…œµ.qSdŠÀËSà(»ˆ&o1ã"œçlŽJx*Ò@VŠT4©Ô¨âR©Á‚,ÎÞ'ƒ£¥ŸÍ,Χc+ú Í ¥—$Š4lD5Çæ+PboêA<Ïœ1äw~ô¬,â€Â Zi¢÷—]”YG×j-‚i¿ ¾æµì›‘’…’„£Ëµ–ï©ö²¨¯vÌž¯Õ?ù-?m}…c¤<üNç jŸ¶»Š óôOëZ–BO àÎi–£"éÖãNK¯.›èŠ{Žœ–*ˆù¯»×ªyò±tÎ]F~Eêƒ6$­ì5’dÉõ©0¢cåH¾I{¦#Ò9zºÒRT’)H’VWiqPât‘‚ð‘t«ì#1[¬R_/ØÃ–û õMºð8}ÅV«ñ?asÁ? ¬ÜX0µY²|¹·ªËIy­RµhŽúM¹ŸÍø² ŽBí$=÷Lo'‰ ‹ôhý^‚P¢ÀËÄÔ{ýšU-Ÿ=å[¬¬`ÑÛŠË´š•:Dä*{apìi9 -Ë%3ƒF›ÌЗ8 s«+ÈÈo2XTî†ú’aÖƒ‹&§ÍÈÕ唌³\µŠÓÂagDÈbҴФÕà$+;ë)Zx³8c7^Uîè ’›e1F.èÝ^ùµ‘²‰GéÌX,pÔÀ«Y€Êx¼NQà6kà¨D`ôЯn”d|Ù™Žø}­6%/†_‹ÞI#Ö™ÝøÄÿ*ì}ˆÕI+ ˆŸB¨ó”ý‘µÏI þ‚|›hSiÅqál]Ÿ r«d@f§rivaˆµä Š“ŒÍy–ޱÏpIÄ9‡MÐF§åiN•§¡~‡hj*“¯¶S Áhi‡ì€ÛW~ÏPÊâ;Ò°‰%À[á<ðÒY‘X™Jà• (wV~£ä§–ÆÐí>úõ¼ê² RîP‹r÷™î˜Šõ¼4† ·MÁ’ׯïˆÒIÀí 2ï<&â…µÿ !òò4‰ö?n̳‡Þ Ý’hîÐ,ˆ›‰U5–{V‰ÃID¡)ÙUœÃia…eeDÌŠ‘y?n:ñYÉ•\ÔM‚d…æQž·Ð³Ý*~ÚmYÎŒŽ7„‡“0oä‚’ IDA¹jDZI÷”vœ˜¡7{» ìì ’ìcwQÝØ™–F-{”»'”È—ˆc¼Â«Ýa¶5ülÏ–¤H‹dÍ n–˜Ö¬þKF˜Gb¤†Ž ëN¿ /0d¶¼ä‰ƒ¢gäOƒ€³œ©62;Å¢Û»¹ÑœüBËqëªå'gP¶·P ÍrG€@(wàâQ™Lèåä‚‚™Š²òMZ¶cDMeäY)¸HêYeTâ"2«Š¨±›SÝhäi,7øs;Þ±•ÀQ 7ªïàV”4ê(Ñ= rµA@S zô,¯óº>‘2®”¼C ¨¨§‚ƒ R%¡‚SÒså£ôŸíQ£ïAÔþ â(P1ûQå3ƒ£–sëK{·7€¹Ø 6õÀúñH%_”¤Ê—ÅQ3Å—¥;šSRÕבJ€F%‡e*e×æÞ–vتиÛìac÷\ ÉÃÆ&ÔçfémÃeõñò‡ÍV–§Übx~˜õ£”Òî½a“Gš’t¥czGUhnxšžP¶>öвõåѧ×BÕg²j1:#1”­rbéÀ¶âKn–Ú(A2Îç€Ê/ÓS’lJhªÒ“5äAcŸ¾(ŠÉ¬¤ùFÀˆ“º1/l!”øRð»æ»V,ÕƒacúâfQäVhŠ9ÓçÉ—ëJóÀE«)Œè¿$Îʤ\n$B>LfÿÜ©/'RàFgÊ—a®.09¹Úd&É'—Ç¡)༛â­ËFNMIŸ û×cÑ;JimÒ0Rq½ÜsqV“‰•4€ ŽÞêP³ó–‡‰ýy•œV=Ìíãу–Ö•H%¨Fß‹˜3ùrò¹c?ŠŒšRÖòàÄ—¢Éß ¹q9óZUª}/õÐ`ôŽRÖÛpÂ¥F=l`ã)è{ å­U‹ ´K´LÚÀ€¡§ÈéÙ)<‡Ý°ÄÅ#ã@–ÆþÔ€ºùÝ3Ñ"À­½¿qT—wWíåQXm2ÓµddØ€š`w`dábÛ¶¯M¦ù¥âräúÊþî1›Uà VrðÕPõòÙÃÆ$"F¸ ÜNl¸<’zv¹ÔÉ),}/^llZÞ(Fõ§X©4€ÃɈI ÷wý¢1¸*óUñT|6òAc7 fF1ÔwW7“È-¾,eæ ½Ì•ÏLt×y2(³±S «CÌÕJ2\¢« @`àEÞ…*…!€jƒCÞ ÷+Çî@_ŽdÆÍ(µæbNlîs7V%j(Å7Fi×âDŠ˜å±-+ïô±³&œhÖŸÜ ¥_ŠËsPWŠ}#Ø+H÷Л ýÊØ•šõr´§ò– QNÜv¥B+gº—M^±é¥µ³ÅTÂm¾€àå"1ä—¨/#O b¸X¤œÛße{óX–¾›I 2jaècz?o¿ñ|KÉUíÉ04°Û{jKÅQ eŠºVᾕáõÏrmàÞ M[bɸU5M’[©®%Õ·êL›Qc‹Ñ“:ßoA2Ý:È~+‹ãÏViÎB’îµ!ö=§õ¸4Q¾ˆïJL]KÍ¢âÄ…§ŒÇ©¦åæ#©ä7•¢»ùM}­ÇüØÏäæMûYÌÁOš*Å=—ß(îA#¿¯ò¦ð}îûâ,¥ž¯€çkŽ·=Õ45IæÔ³gv·ÞÛ^ÛïVصÖÐ÷×TÿàÂæ¨¼MÉ9©4§J·*o¶ /׊ mÚŸCPÜç[9O1Ï!€¨IªZ/ ¯p‰k§JŽ÷ÞìÚHœÅñŠþ¾ú¹^Û—ûªŠX5WûL@»ê¨ÁÊÔ;FÊ}„B¡ÓJÚoy[ZÿîªÏŽ—¯üZ`A½x¿Þ¸ëˆƒ.ýâRíèÙÏݲšŸââzoâb£ÝéjÆ%“ýÄ…†¡rð|¿¦½ÜòZs©…»Wê»]¥¨¶‰î_ÄëJêVÒÙ³ö²©Ÿs¡YT.ÏŒ=œ &âé:ðgK©r¯®ùÕ/çK ÓÖVÆ–­Y/œyÿ£ï.SãÞºînbmkX ÌÈéÊ æÞÒBƒÊ*"†x£×7借S*}…™¥Íœµ´ä bÅ¬Ðæ>MŽ­îW4¶`Aã“*ÚûÌŠ‘TY4(f2‹EZµ2™Š{ÄŸmé É%Ìžµ;^–'ö¦èÙ†N¦ÏÓ¥‹~óúl¦´ñÙvV ‚軤8 ’aH(ì1VÀ å£“´ò<›U“!R=ðy!¢Î®¼/ÇYß±¼w[iP5Ãa46£?/ä eQqEkÉpÜô÷̰cl‘ó 2VšçŽ}^0ðbPÓÍĸ0þyMÈ”FÔQÍ“ ÏŠK” z#‡"TN+çôÑyÖê[›ÁA¯Ã¸qŸžJŒú«ò q&~‘ªÃ¢Ñþ®ï ¨×â Kq×LÅuúw AùÚL:G \.ûµ9g§@m{½ÐÓ™p…é}¤ÐÛ;gºª†wh†Õ]ÚbÐU­º~Ö‹Õ4Ê´‰†žÎ£9j¥nÜEIŸœ6ó"ïÊNm‘Wê_Í=¿™_µÚ´òV#–Ø©´Î4RGÔ¹D¬Ö´ÈT£MÆŸþ$3 J´] ¼¢¼R-Òz¡a%£™©!¤‚ŸÆiª€Ïÿ¦hÙ!ùØÕz3¯ ÷;FF ¾){t­½©' ?rS TNóe5ß’Àb$? ‡9y±>¾jáCj¬•1Gdµ+íâÀÓ Ñüü¸Ý(S0Õ©}/ŸÞÂ) ­Zu$Ÿð^Ý2@+ šà éÔHVs)’0´ÁŒ@™`H¹4»ŸðªjÆ&‘ÿM!ŒNØétI¤šÿª¸¹˜ï«½‰2%b@vi5ó‘M7ˆþTŽH8>\Aé¬ÆÊ©•­j ;[ðj5RÕòyä“àù\cø‰›³iiPKšBà_nÆ ÐéÀÕM£z×Áª/SÑœ°9D †E"6–l„ =jîUº¯‘>¼m9®ra}“‰Ë J¸j³”T¡¶tsB}.ïAíåõM11ÙÞjVzVÜ‚?Ëk WŽ‚»*yC ‹E|Ve2u»oWg›Q$ !Wgë–I„®Vë"äî~7x¬'ú”9™^õØè-Ù“6Ðc =NæÁ—O?iã!ºAÊIEëÏ¿E9ÄÁŸÔ'-ðM•¾™Ÿo.²ºß:ÑôI³tLì [;:™­¶è30Nê$]Ÿ:=]1LlìQKßSô¸Ê`¨¨ÇÅy]²‹‹/¨í‚Ï0µ´È [eD?-f<V2µ¸½È˜¯À¸©/š‰ÞêRìNùãy÷‰•9Ì} Û?®êI$!ѳc’¬JúUÅhG$l§oåï(3Ñ[-12 u+F„XšíÔzCžÜoqr „ô+:dXU¾˜²Ý¡z[œ¼,K2ù ˆ¾ùbèÇsC“õqå“*ëÊ€dêôèA}ówS‹0'gB\ÎD´gBIUG`ĽaƒÍ‘g‚´Ù-¾+.Wî ‚ÜV,Vß-“òZbæTÙ´Gжª;ó”Mz¥FŠ7¨­~üéi—>äŠùøÂ&±â^Ëþ´/c4yžO_Ý^ju«—½’r}\ò!©Õç¤ãˆTìyõÖ<Ø þõYõÃ=Ñù>S#z’6ÍæµÄæ,¯BfÔY¶"êC‚ü•æÎCEacQ¼”euµËÒ|TPò1‰ÍwȪiøR)¯¥šáôµÍÆœ[—Cš™Cì˜ÐØV¥:ª¶åU Ú.«ZnH~cŽÉÇß$ŽÌ–¥ä‡Íù§*ç3àµnÍÃÞÕײ[W÷››Ã Á«õã[æ€ÜyKB^Ei›7À1UË|>®Kö(ù~MÚô ›k®ü ô,>z\ùw ósUâ…Îê;$‡ë¶žÁægvL|ô ´îQ’?¢Ã·–“¶æÈ£n„&wHqùÉ©ô <è¸=ª³êòúÜw†Fç|X‘³uD Ö®UØØ©‰6Ñqñѳ3o¹Ò+O÷`S—~®äšÀ+Léàq°y§{ûÏÇç»yˆÊÒ·5‡úÐïò kÒtôãëJ8xz¬]‘×T¥?îÊN‡Ò=‰=ÍçÃ{¤Y7®—-°<èù¨õöqgŽª‰n¥/ç>­$+­RãmzÛÇ×ðè=¡7­Ò¼-Ñ#Ù>~„góÇ'5l޼…àùàÇ’Ëþø.Á³E|fäù ù"#Ýɲsl??ØÈ£þ•<èCâ øèZYÎG<ß²×#AíÖjpÆ™m'Z[ÊuVW–쑳é!¤“ߢÉ*®ç‡ Ì«Å÷V€<>2+æ +¼ð§xûø“‡-/±?}|íËY\ÛÁMo+轕Ê_Þû Ì=Þ¡o‡$Ì£¿êÅ3ëßÐëˆãÍ"ë ¾­Éo†ÞG–ößüÐÒ~+v>ÀYŸßÌ“ûÌš€~6›xÁ¡ÍN4¿¬Úm‚Ÿàù:‘ÿ—÷2Á;màÃ’Å¿ÍÉŸ=Þ«ß=,^‹Z?ZßGD¢·2»®çwž±s¯ï÷!þI3ùrïfÈ–_~v““8?Lc>ª6ëOŸˆœ?c ¥ž×û!Hô‘˜ó›¥ˆqXeÜ7ÌÂç϶zXïîkqïÉj£ð¸üêÙ̱µiìž· ê³{ØL5 ¯îÀûàM½!¿?úÝ88Ÿ¦HØ¥¦ŸÛpí?{\ØõòÙ˜m‚¡‡¥YúëqXA1ZlØIi¼|¶í­ÕÚ{Ôš‚æ­|þ¸&ý ey“Æ}òŸžö¨ýìÇGϯ¡cÿûÝÿq‹ì?—Â=磿¹QÁV ×õ8q+„óý™”î }ÔGôÙiòû·¬Æ}>­Ön0¾ÏæÉïŸT$Î9›ÏÿôyE{¼g 3Ð'½Þ£Â¾îs\ÍΟHo|è ¼ÒëÝNŠƒ2¼ŸU¡¢¹»Í6¾ß¿—ÅHo`Ï\£¢ÏH ¿ßŸi;:è¾qÞjž¯’ß!6/ÞõÃ5imØ|¨×û¦z¸¢09¡çI†w…A}Yþ¯·ÌÓ|¦tþ?÷‹Çâ*¼›RÈGÃ÷®Õû™ õ³¢ïÇžÁEßuŸýèxüŸOuáuG`oëI8üªþÇÛ_üð$üïï6guÿ÷gh/ÿþã%›íÈÙýûÿ«|7óÖÜx_WTÿß½þ…´ÉAzýßÌÖÞåæ î pþ×ÎeiÆRwßÞäã×!½ñœyp¥VÕ˜¯Hþn0˜Ån¾ôÜ*üæ™ê6 Ü—ƒ×¤|ó?Bù?Jw Ù·*áç·ýTÕ or\æÃ÷ïOWóp{\‹á¯šû;©á'3ë÷ºÌ‡ÀÅ¿ïU¢>äà;Ò_]'Ê¡‰ Ç&¿uó^ÕW×´î‹*Å›æúV'8ÂûûÞh=+ÖÊñ+Ä¿+›¯ë@¿kÅ< }¯YùßQg¾$ó÷} º!i¾ «¼³ÜÖþKdÛß3Á=l˜Ì&c6Kùõt6ÇŸõ-½Úꆫ£÷«,ù?÷èæõZ'Þ‹GýO"WûØ(>_èÿù„ç;¿ à¼ÃÃ?^6ÿ¡¶ˆu.0ùÅá5GiÏÿ±£òºÇß{Íù÷²QÞªGù|Dcê?öD óá-ÿ?vñLkäm4Æ]ºÿ ÞÿiUoïñuzð$­¼îýþïÿo:,Ý'WW„ó€ôßvõ¹5’<¢Ñóü½ÍèÞ<³m>ê'î¾·ZE’¡zþÞfXu>.qý <ú¨[Xôr\i953Ø}ï-ù9\[i&ç‡ÝÁ÷ðøÞñ£óo*X<*øô½m÷üª¤öŠLm“m¾ú{-Έäø{ØN¾/K†oóØ,^anöß{ƒ`•`póV™°ãïïaHg¾(ÁþäÒaéµî$¼Ý ->,ýí¶BâÖÃ;âíñ7‘ÎG%ØŸˆ¹çMùмÞ{‰ä‡¢Àç÷ù×]öÿ¨•¼<ÆþЩđ·÷×wÀêÞ•ó‘:Ã_÷hÝUáUòüüµ¯yhjþõm)ñuYù½}L\3?ëÓÉ|ûÒ–ßTä|bÝÁ‡ú³öŠÏ‡oï çé¾þ%÷à𿨛é/=Ty>íð©/µðî˜ÜêzTfzûÒ6íËç•kºõ*Î/ <Þ¥¶›ÑÔÁ/½ ^|Aü1òWT°×ÒÈ :8#iðzG_ÐäßIÖåu¹dóàÉ™O-ÎÆ|Ýgàoõúå¾9Ùå/Èë?Kä­Î=ŸwÕ—Ì»nß‘ÛÛÔ!¦çŸžø~‡¤㾬*¿þÃCŒøSàÞÎÑÀ}IÇ9¿ë•¡Ê<[¬®_’¢_“/÷?ˆ·Òþò—Ü£Tû%Ñ{“ÝfĆ›pîKZï« à Û8lNàÞÜb;„XÞ±«`çÓdöÏ*OüÚŒ0›¥ÁW|6"ù‚MÏ›&ÿ®Úøb¹¯0–ó›;î¡}ï­*³î+ÇÌ>ÞJ2oåæWûÞ³r÷æ¶ðÑ{·'lËo_Úlßïh¬mÝò§ZÊùѾø< úwÕ8²Úÿýk»@æürþýñDëiv¨õïÏi¤Yϳû<µû·g/Õó¡ùýo{Y‹GÍø³Ðúßžhgs¨¤éßÁ&/´·¢û»¾Ógóæ´Ol×£èµbñ›YÕ×þÆfµmÎ_ÐK_MÁ¿ âîÌq5È·†½;¦pøì|>¨—þnQþ¥Ñ}„ɇF÷¬ÌG V'•ï¾nîußÏ›ÔMóÊïüp…¨oHWŸ¿ñÖ)ú4’zÒ–wÛ®u>U??oÌÐ/h˳XÛ©¸Ÿóa-ÚG~ÚRóóçÅý7ÎùµÀÇIÃôªð>}ã í»M‰;¨úú\mØÒ^)“¿ûwžj€?(æ!«{l¬ŽÍú‡×àêjÿpð>6V,÷|p/9oˆ„ StdE=Òè×u½wUý¼VÍÁçX%Ö¶ÐðЊr­ìg”ͧo<û°Rü:T+¾úµþð¶ÁÊ]žïóf&vlEmA€1_RÕ?á<Óú?’EœöênÍùôójÕó7܃ætdE½U®ÈÓ/ø ¬%¸|h–8ó¦óH)~ûÆWï×<èHt­´þÏ_yƒæ¸ý‚ŸÀ[sæˆÿÉöûæKŽ›‚ÚAEï§o<¬¬•ï÷:§8é|Ç=²«ZÿO©Gêï°êÝ)N¼yHäòµø^:¼qïÌÙýÆ Ï<üÎÑñþûõ¾»ä¶íí˜÷ ékÜÅCvïB‡}§Õäu™pY{úƆxy~¼[Ïn¥¢—±è[9Í›äQúÜrï鱑û=Ç*\°!‡y“l˜¤ãž›äÁ9›Ãn&ÛÞ¾…àž|}ØU`ûP޳ZÅ®9ÅAÿ“Øó…uþ&KaŽÎÝwàÖ–µ½rr{û†qÇžã¡¿·Vy_ï%Ï5òõO¼Ýço4¼yUýx|ø£ëãI¾!çׄ°Ó£ö|ÞhòG¿áò» åÿ“'ðc>É?öpÉ—BOß8ûüéç”ϯ—ÇŸtÄÍ$?^‰z×RÌæˆëäŸT]Éud9ŸßÜu?ÿ¤¹†¯§?=›ŒmìùOsæ?iÀÞùü¹fŸ$óe¦ùøB‹¥¤)/¬–›”þg/î_÷N©/kòÿúDp?¨dÿ«’ zU#øWè´nÞŸ†WÿõiH9¨þ覜ϯ@<Ü •lTÌÏ•é×ÂεÍ?"W9¿6?Èo÷}H ~¥è¿ž:ï&+ùHñàÉ“eó`:bܰ™Z¸7Ðç’ç«6ý“kߌJ¿¦Çîqp­¾5ùÏîÈŒ|ûøö¶^˜ maûq?™‡üØ!cžµÒ|T|ý¸ù‚[ÍÛÇl«ªó&Áãý¼F_º¦lrà8ذtî¸'Ë#œ=8#W¬úa?™-|:èɲÅîG'°9DKÿã;šã Ž^«¦ïëðøÉä!vw`Ã6[íʼè½f¼9FX|›Æ¥Yå Ü«C~º‡yó5 —·ódyxƒ[Mk[gUŒ80ßÏë$;¿Ì0þø†}¨Ç±ãØžô|>fT²Å‘7ŸîÍùátp ·›c;ðV×~ T_DKç7PͺÂ_Làó&|ú(¼¾v‘Øäx™l£²eäÇ0d¥d"¨|M}ÌãV"Ù˜£ÛÇÍQ“•Vç<æ<Ò¶±c&+Gt(••ȱ}fsÍæØ©ýàÆ½ìê?}|-Æ3·1+æêØâÛˆ™GÝ™Néæðͬî»GçÌAžÀßšóác«Àüÿ¨êŸ+Wù•uÎû@vð\]Ýfò§;Á»í³1¦ØÙ{Y’ûã3†ø'Ëä804EãæOÏ[qÞP†ß>þÆkz±´ÿåAå^gY;#”—8¢µÉ–h}ÜŸý—Ggzµ¦x±ÇüËû|~MÖü—gw®—ÛÝ¿lÒ¥†ëE¼ù/úøt_ÿ—7Œu>@»ÿçg\î«‚øÛ‡7(À§ïæŸß²ÓŽŽÿü«`"üó›öºÌÜg ›ÿüÖ6Æ´:ë´úŸ7‘·uö> -þùñóî¥ómüŸw¾G‰ŠÏtîs~³[ýlkxûì€ÂÞ©ÕySžøðõ½ûÎ<ºó/|\¶ªç¦ôø¹¦øZò|¼¸W~ ÷r÷Ò×g•户Ð*Õl^êýáöœÏ¯uÍ÷båcÏ—­/s@‡=ŸŸ^ðϾõ†^ûï¬ìí#~ ç“çåœÜ>»ù¹ó+Ocò1Їhð»8âǾMDú|ȪåÚ¯“ÿ'OóAß÷ìÅa¶ ÀÇ÷°æ{Ÿí<x†èó,r+„éó¸á;§çCþFîIùlÃþÓ–Úùðïš­~~ᯱM_ÿž<€¶ýÀ|ØbÊCïxs~5½…^¥ Øù3›ƒþF ðÈÜùŠÔ#szé·²뺗^SkóSŠò!zH^̇GüÒÓìù³/¼Y•ÓµWð¹ÿάּ.ï6̯ŸmÕ‘=æó°Îö³ÇgøÙ´:ÄÁ3Ë9wÔÏñÁÊGö¾‡MÚ¯©Õxr«»óXræ¯Ïcº¼>³š„ŸW]wŸ=çûÃȽ>‡ÞÁŽÛVúêÙÞÊŸÇïÈ×±ç[1ѽö?{T75ͳûÔ»i vŽÍ‡U¨ìˆ§™yÜè5ÿ¦ž|Ô?jMòë9¹lÒŸ{X­Ôþ…ÝÇg7ãáóËg{æõ$þxß9c¬üᚯo­˜Ïâõ .·yN¼öyrGj›ÿ´Ók[ÄfµKóŸöpºw-SÌÞÞ>úøOjÖZtü¬RúOOJ-OˆBýÓûùh‡}4þiçtî¶RÌ'7°U>'ÂþÓún×ZÐçÛÂÿ~¶Ýô™øþïí@Y1nŸMß¿Û̾¹“Ñsý÷{8Èk+¥5 9¿´RrùU©ã÷ÏúMçOÖõïw1ùùÔf;ðâCùâø`þþ)†È¯Ý°Þ Í Ï¥Eæ|>øÁ—úÑ*ÛºÕŸ:M™‡dß »§µ€òIðûÇÖü8u?z˜ÿÏ_­h¹gÙÿÚÇ …ïÿkÇ&øp>üÏä꣸ë>Q&?v˜ûŸoŠH¿×|lõæãø± ÕÚ01æ3úÿ±™ûØê¼Ë4m ÛpGÿãý„ù((ùïOËfsÉÔ6M;‘ÞTkÜQ•ôÿÒ²ÛÜr‡¨Uÿµ—ت¨_4YzR%|ë­̧•ÿÿz³ev[{ÞÈ(GZµÿõ´ çU©jÝ.óžûAkX 8ù¨ò÷îÛî `î¾dð´B‚#–¿ô¾ß£òMª~«*½„‹üºv÷®ÏôzÔö®•_Òóÿ/¥i´îÏGU·ÿ­f½vv·ø™ðe³ šéØþ?š¨áÌ÷·ýž øk[{D9$}÷¶j@îöçc:{[¬;uP`íïZƒæø;ú;s÷9Åë 9}xVþìBÛªzµ鯺/T=º"M=ëkîak\x~’¹<üržìˆÙæË^òÛWÍÖ¹<îtð÷§,âü8ž2LçG°i1"ñþ¼£7¤îQ§´7™»¯=)ämæwîub¨}¼Vòø!xÍß‘øÅaÚ»‡™Õì¡Õ°Åpký# °¼™]¯»µ•ÊÞ6´Ok¨ßï§_™M{ã±1lWûOhRäƒzÿ¹/Õçü°7~9Fo>øØlrhþþç3f4Ÿ7êðeˆÿ|ã:®Î7íVÞíùA*Z[GßÊ€òS~8Ò}>ÿþã݃:?|ÒÜæ.óé–ÿOe –Èû´ùØ*n}àÀÝ»¼ú7¢÷3Ñ}ÉÕ«±²Ö19¦@ý78Ò¶ù÷Ú-äù<[áùÇݫ޴µÏ&ïkW“g¦É¦¾ùºjð7Å!YÝË_o#]Ê·ªÜ'ˆ‘¿íºî­ÿuÔ½ê¬õ(ÿzï<œL¿æ"¶v|V<“û¼{ð7$¿ÚÁ}ì¼f[wîå÷ÎÈý‹.i«D¼{ë±tsU°ARΗó›‰îуfÿ½ö~¿ü½Õ®Ø}až½UuÎ[Åã%*âÙ…j‹¾äBõæ¤ò%7·5åÊkhôÅï­@Õ/ºeíüX¿à^µ6»V9£ëaÏØnwõú¬\š6?¢×„ÛÒFv_u%>—š—¦ó1ÙøžÙ¢Ô]ð¿*'˜ Ãð*cÿë“úm>nãñ×ç]w}yv›õ =›GÚüAËà¯OÂDOvˆÇ,¨vû‘rÀ_ßd—‚'‡Â_ßâ:÷pLÍ\ ÿ¢=¹7oÃÏÿØ_t5òÐÚùË·e<çó!)É¿h1žÍnùóLë/O$Œ•JôàbtAZåãí]O†FçMâõcýYç8ºÞg‘4ø-¹§€êS?‹u¹u\6î¸cP›ñæ°ìü›ßÒZE8&ÿš^OšƒRúïÚÑkûôêd÷¥-È8hqõøÒêõ{̽à]Dz»ûc"[}|mI¼”éüóS;³ÊχͶèÙaªw–<ëžñå/¹Öóˆ%ÏC*y+³²yƒE·IqÔ‰æ=¥=ìM´FS+@Ûs8Ù`ÄG£ÿñTÞjÌw£·iúµ÷´6¶3óø—šyvo /=ÙÞbÍ­RsØxª™„}Á]çétók8ø¥Õžý|þÂ4Z-·ù’AØš¸dw|/«s|Å;ïñ¥óW\úv¢¿î¨ÙÃvk£¾ð¢4Ëß“µ³û¢«Ø9iÈ6éëc\¹[Ûn“Â7Ç¢°c}[wÿÒZ—ZȾäÀµ™d¸Ã®bfÍ ¾d`¹f4›ÛÄA˸-ßwÏÞj/ßwˆ°soÚÆŸT\þü\e[…ÃóËRÙŸ¡4wì¨Ùíå6FÜɶ³öó¿ôïÏœI³J’üŽ{Ó¥Û\Ï>Ãâý»:q×2Òç*ú;[ýi8ðïOÃý8£[Šm»ø‘žù¿½'«[që¥Jë¿=õz¯¶7G±õÓ_¸±5šÌëþühþ·Ýû|S›|}c†uóÍ}Ýí¾bEøÏr^7úó!¹ÝÛ;4>´ý_ÿ•G‘å ‘~~«x6fØ{’;sÀìì©v}>ï~þ†qGDú·òèõÉ~ÓÎe¯ÛUÙlŽŠ^¿·ÜNöØ7Ì×Ç7VÛçuM2ühõ¢õU4Êx覾 Öï¾[—×zž9h ³úvæ/É<”ްl ¼vð5›·õ€~mCò zmÝ‚CÆWò÷µ²²`;,¿þø†ûšÍÛZøò7ÛÛ<)·~ÅVìÁ&vG X 2xÔΘ J“}Ã=ÊlH¶IäÜq¤ö¼kò}>:V¤ú¯¾0€|«ž×tä€ÂÊú’MÏñnä»л³ˆyw>Û¯žjÇ £6ÅÖ6­^› lùËfgÎ}É*k=ÿó £Öƒÿ+¦Tk ë!3õrE½}ãµ²ž²G;lÓó nȯ™m?ø óV«ÌÎŒ{Í>·.{S1;´ÊÇOµU*z x_`?NïDÅUÖ쥪ØéYwÝÖ÷‹Øç¡‰Ñ`xîˆñîöö²Že,Û7Ìù¨í÷ù!7Ñ"Åü®!ü±åðÃV,žíÛ7ÎçÃñ½ÿ£O¾ÖDßÎóWæsÛ7œ;xª½Û«¬3<ÕùÝæÕ¦ò•Ñ]9>­ÞzÌJný†Ù†cÆpàßž»îì½ûãc]¥çO«±§ZÉVŠ:_½}ãp\²á²¿`áiÞXgçšná›3Oƒµƒ±Å ‡2/ó  a/yÅëö¦5ÏÇ;>â!qÚ7Œ¾`ù°AqÇGwíÝ›/=ùŠ–Ûåå4y£à~ÕDï¼i µÄÛê¢ÇvŸ'és>d–ùÄ5¯z(;½Ínñ@|õÔæZ]_V&Þ¾ñ¶Æ?ßÛwF}ç#UƒÝ7Þ¶ÂÏfɾ‰æDdoͰ¼yQ}®®¶³Ý;„WÙ™èÏíŸZtæ¤ù´"¼ã­¯”ŽÏîêÙEïmo3ŸûÃ=L¬Üqc¿§JÆV¦ÿøeüéÍAÃmÇæ |Ο”‰å'Àç ò6ô§ó!¿†éþë'àH ¶w¬ÛÂüW¿ÿ.îýþúé7eÜÏš|ÿºQ4æÍløóûÙ¶ù­‰úÉ¢þ×·†ÿJãzµxþUsx¨ôçg*ÜkoœÝWüÇÞ?î}|ÖžÈcÿý_?×Oÿ¼}í§³¹Çdú›3×Ñ—~»ü»³)1¸¹»>½_,¦ÈÒèF?<.þxê'nýbâÕçÇÕïë_›ëÿOï—êOæ®ïÝlÇ÷‹?žOövw¿ùíì‹ëœ=/nžcý‡Ûö¿žKI&úÑ/Î¥«›ß¿óÝÙôûÛ­W湟Çþþ¸òƒ,»ÙÕ˾º-ß%çî×±<ß–I±»îåç:(¶øT?îCxþtI©þÊ|¿¾ßkýceR×~”›Ó\ï⺻-ø¤\KWyóï(?u1ÉTëÜû þ$wëRé~}Û¡¸{š“»??}8…à¯õìÓ³ÉßÕ¶IJtuħ§‹uVwû'øèÎ>º.?2È ÏOoýùs1Ä.Ýçz{Oÿ² Pºû›óú¢¼‰±þ@2i†§G.é7ñCLóÜíæÌÏ2”õÕn?sê_ë꼇¡ô®ól:Ä4«™.ÏÕKnLƦαyžŸG]Ö‰‹Ý|w×¹/Ïéê Î÷ñþ<2ŽŽŒ¯«|ÙÍózS~P£õmIš˜¼ eÎéÞåy(Ó}’›Û­íŸÚÁØÏx6º‹[b4jÍçtº»y¿ãÔÛèœëÇ<„º·¾Îöý•!Èv¿êµ¤OŸÛAh›p±s»IüSÄc½Q—v¯ü;y´¡ÛíœCtq\vOÔΰ)¹ýÆÛe]Vz ˜{]í»I(¾‰»/ÿÔb8-×ÃýœürŸõ‹-3Œi¹r|øròqÑÓʧ¼<ÿ¤¼×ìðüù&Ï5™$aÄî ZRW¯ï¹íô¶N…œ;u• \cÜï/ßÖ¯×ÍMíµ²t¯þv‹šÎ%*øø‡6ë€9‰Vê0ín¯È1묿)ÝO±>ä¼{ÅDrhÉV;ëù_Çmˆù¶˜9íÇæº½,0z%Ù{‡‘ŸÉ}ýõ}1”èñ@ô9ßõŽo.w<ÒëhX7Ã|­Û`†½¥$‘˜ñÖÈ9RíéÝù¢.ý ÓuØŸÆ-J(&Ìx8ô|ë3¶èƒûg šËìóáð ùÙúðFoo5ˆú˜ÿy çcT›K»Þ×Pºî†ÏÛá÷çrNí9õ¯õõ‚Ú $N‰5~U‰9‘BK‹÷‡økÓð¾û½âñì• sÎzs¯oÔBº"µó°ÈÚ쫹œÊ‚~nS¢}êµ™æâiÙ…Å¿´Ö…tZÔ&ÔÖ"©#ÆŽÁŠÜˆš1XÅ 6Ã6_kö>Â`Ý%ïö2«¦D§ÑApmÎ5÷~~õº[¦©“ªXꦩ–.Ý~)¬›G‡w&‡0D²u5~ÓÛýÿ]#‹ÙE66ôIϹW&»À¾]ow–4z·­Õ(¤N–%›¤6„ÄŠK3$þ»uæ–uÑGÎÈñ4À}´-LJκªçËÉÅË¢î£Þ^†‚lÍô°ËXÔ4:HÎcÝ«N©¨=)Ž<§Ü’Q&W Žßn(î—ÿ·u÷4¶SéR‹õë;T»g-–´ë\ô:Yi¡ ©’ôSòx^Üã­ôœ*’„Ë<éã© {é?È_S‹Di~_¡XϰšÙ[Uýô1àvq¸ëæ†lŒu§P3nŠnHdFR`É^íËkÜ;xúúCTwð[y~w~ Pýþô“W¼ÁjŠÌÀÑé1ý]+7¨˜öI'.§óí¶`VbC€•/‘1™ms);<Í2©4%cfÝ1+uÌ\Ò'g›ûky?Èáç‚*-×i{Â<ÄÂ3ÈdØ46wÖ/ø\%@KiJW¸,±E-;)â^ôñRW˜qûb;ÎÃMÝ©Œ.Æ5œºÚýÑ-‡¼¿ug6˜'·ð6Êõ:hו?•1MuëÙ²­›ëc†‚ÊÔwY=m½¯±»’.dÛ>Ç|üä¯ú¥µj[ û{rÜjÔá•duŒwñYK*cç“jM÷G²î,ºÜ'_¿êäSN¸:æ¤iê1åÏÖ‡#gY1¡¿;hI^átÝ_a#M1C^ègX­l–° Q‡UsåLÞï…íö“Z¢qçô®`c]ÿ³êáÓupd|'ËoW™c/äû=‘¨Û®ƒ~B”„T]l•b]5«G˜Š¿oSßÌû2s±Ãu\ËÏÅïZ­€WÒ»© ÊqˆêŒ«Áurd?-±ž~x,˜Ô³w;SÊWÓO ÇZ#Jù¥èG£ÅÚa…=Ñç/ãû Tq¶1Š!̺>!³¦æÌ$TK‘ncªrÖᬙd°—Q¥) ¨úe湎üôÐÕõ×íwCÕÃþid~]+¨×ºØõ–y’t8_ç#že ÐíÙ¼ÚïZå¡×e é?×Äf7£Š­›¥ôbžÿúoÎío¤]P$p._éÐiÜúEêE)ÚàVPÿ{„DU* ªÈün­ÕH–¹kNH.Ö_ØßëzÖ$¬¬/¤ b ‰é¢n¦!+w ›GhlÔÁfuª»à!U­¾@/îÇõÅJ}1vƒ"çÄþõ¯û´FÔ³.ì7™ÖMFÕnêë²£Ž"‡µêûm0ç.^Ü5bB[ÃrÚ eŠ~Ùe(2»ý#¬ »É%K‰Ý`cT/ˆsÛóÎn·­Q”½]Þ¾©u |B ÝúZýŬ‘!!s}}¬tÉ +ƒ×xk™î1œúºâà¿×á€&oˆŸÉ5{pw(2øþªBÔö°·YÕqZ]æp…ß=FVlu¤{Õú©%©cRC±öܬµ‹ZL­SU%Ãï59£#Òùw¼¬›£R ,½ Úž7G«êÕk™Cõ÷Ö6„aÉ:"¢Š§h:(KÓϦÄàÁ\Wò¾Ÿ4{mÝUªêŸ2Žt¢¹î«}ÑuP†p'çͲ[Úß×Сô ™_WÙ4““°œªEJ_ŠÉôã ¡VGÆša›¯rÖ»ý k°Ï¤äY3Cµ1´¸ ÐwÊ$Эß6û’Àmñx€¿Ü&–'Å™B˜'í¯O¤"1Ðj´Ç3j~D`–>–6ÓŠÕm›†¥$gW$œµÉ!n=Š5˜¦þù„³M¨x5³ßW†$ ™1Ê‘²Äà{Ö‹à­ÆFI] &@Љ*]ÀÆRM€é7™xao&Ä: 1³·:lÄý„-QÙ#oº ^W'é‚SÞV[’€ÜuûØY½l(·´Ò[ õ  êûí,u¹ÇEŽcƒŒˆ³ç¥Ýûý©eïÿ¼‚h³~àïÏCn˼Oß]ЛT]4°´\ÃÙîw“¨@?ÖÜIž0xw ‹nÉAÍ:w!š[çðÃmÊZòª%Îʤi]}Ú»jØ—X_¡©œ.Ը@ÒØf¦.\=Œ^‡˜ÅgIžnåq&ðRýÈÎkQ kj”°´UÄ— Âq ?ŸÆƒG[ÇêªÑa ß¾è_ø+»`ƒ$Ó­¶'yÀÔSº«ËÔ›m“X0¿Èº¬;&¾r0Ï^Õ€@ã•ËæÙÕ8b >S ¬‡¹ÕÀäÉû»*úÕ{….»‘Þ—®òÈÆ2É¢#Û©ŸÙ¦‡;"lê*§Íº¹æÏšœöeÃ|@ÏÏ#"s¥$âYfJ9t,™¶ !M´¼ì¢Âº?øIù-åXvõsCèXÀ)­õ¿yÖDb?!`XjŽP†u£Þð备îÿw²=Åe_Ì’¢› 2œ=jL\9ß™Ž@á œW¶ ¸YI²Õ™Ó^ î[ ›f•Ô‡°7ëTÚ“à‚`Ø\ê\¢c苚ÂB\ }ŒV/µõ€¿'Dr×}7`Öä#«°H”ôR¦ÉM<Ùèñ ó~‰ÂzÜ‹ëŽA‚¸úÀ¤¬7E‚àØjHUM¦O1,º¯c“ÞòÚ¾ ¥ÐAröÊ~ç㢋2÷­'„k§º5å§à&©_ú\W„H§Oÿº=ä…Ou‡'’óè¤÷®péF]Ø-:„ú‡Ö ¸_ê}/‰²d )ôGxÈoR£,ùgHÛº,Ø;27Ø‘ÁMzÊÚúë”>ä›Þ´~Üd5à–FaþÞ÷oÖNØ5ëð£Æ×€€¾-&?-»_]ó¨OÕ?ß-*v¶³ëú)6wFÇÈÂxEsØ\k–ŽÙà­µ­¤Cæg‰»«èm{LØ¿³9h2¨ä»K+ºÌMô܈f¸"ÈÈÄNÖàH°f‚í aYŠÇ*j±¤Å]w¢a޽(^ý:‚šnõ>O:ø,%l"Å,ဖ+( /±âo¢Õë«(.3 ’Lö…±#€¬ÀD[êóëZ¶LyI$¡ý—A·¤Xµõ‡û©Ò]3eÇоavdËlê8ÝåÐØoº?lø}hÁi,S3EëÓ>1(€'à·ÀP¢C2Wò¬çk ô5ô3x_ÄÕ™ºOâ¾5àé0d¦¸ '=V–<‚t£àúÝK—Þ>æ:’¶6_çÙf&­^Ï¢_ÛkœDÓC·)VîãTLjԼGgaÕÕo ¹i¹v3^Ù°õ©±¡¼Ã(µ$Ž:ø–2åPE. 58ÐÑɆ¸@âä.P¦\ ù Šõ±€#ù÷ÐÞ’±ø ¯Xá¡á¡‘¢#Ç­53¹)ÞΰYç®c¼)8‡¥†5¸IÖ¿"wµ…²T6¶mR)ˆ„ C8·…¦Ï ‹õ‰š#Óò2Ko÷­Šp‰=ÕBKï‘Ò—„dka„;Ô‚¬ÅÓÂÜ k¿Ž)a嘔bÍö«®Qœ¿9ÁïõšòJnHxkíÂØX·aÑŒž*ÜDsCµ}½@꯻˜Ã]Cƒ™ï†ŸWúc™Âs» q¹÷Z¥fI“ÎsÖéÕÍæù`ÝŠ’ñ”¨œÚX<¬¯!ã©kçÓ¸èyP\¡¡ŸŸÍë µF|“"iR™]A€q£º ŽeêîŠj'kùÜe¿P¾!T „•Ù߀ò7¥àÈÞ?OºCñ»–Ê©ò»&Ðího†—>VEMb<õ:ÉȆâ‚Å8Dàt[—à* 3È/‰¸A /⺺C¨B­ð >6Æ:UöÅP£ûÄÛ‚;$©Rÿ¸ ’¬¦J—i!²¿A#«å9"¢ë6¤d7qçÞû…$¹‰u Õ°Z±b |fP±(P -Qá[,ëv«(é'x#ź‘zs]ô´°šüµ›âŠP$½­½)‰«?ߦÁ~¶ü¶•É÷@S ÀÔŸWhK€‰|«—X“p$•¿²"òKX£S¨µ¡¾¿&kåRXTQ¥Î*OšC¥Œ£Å®©ïÌRÇ4a÷K°8nµh}ŸuOu«bùë°¨u!Ú<Óì¯ óeêì…yÝóO$'›eoÑŒ‰´ þ[]Wzó““ï’ž:¿®=۫Љ¿ör‡õ*O0x>­¯'ŸÔ.^6E§š‘œ™÷˜'ÒñÂê÷k¯—K=[Ô´¬sëÎÔ)îþ¹EÝC«s`p³BÙ\wû\ƒ,ÀUù J¤ÔÎõ-² R`Ö™hA¢fJ!e™3:Ø+r˜ªB¯¼ùºóÁ¹kg6Ž~fÑuÆ5/èhÐÂ)ݯv h´‚K3ä[ÇÁúE­¿ Ý‚}³ ’+Š0,ºžÑ«sõ»6ˆ è8wfRC"WTcV|Nà€swÁ¢M HÙ—ÀvŒž¸5Yµ¾æòj¾|·âô÷ê]9ΪÎd“Ó¼¢v”ÔQ¢ÓÒ2)]‘4Y‡“#›‰ð¢ÖCk‹L¿‰8Ÿ½*‹´×©Á¨>Ò'ªÿŒ§† f µí.º÷P´XæoDE)(¥H 91ª!ÀîÍ~¿BC•I+Õ²,­$ ±ÿ´é›]=FK”s Èqlµ}^Öé°Gþl±¨Í´,£oì[ƒõÕ u Ê h,Šˆ.¬ûzOþx!×Âîˆ6)5”½ál ϦPÈß0ãà—¨É(ÎhN¸dNˆtJê½Ü!0>«3Ãí¶¨`¸øpa”)f$ XžÝþíÙŒ!¨P Ê–d«”;¡XÄ2ªµEª“Þ|$¬êÀ © biCdСra[—M>Â67øS?äEãM¤jéaiÛ«FôÜ!|Fj Ɖ¿ÓÕ¦e‡LÙ]c‡=}2æQ¸|zùÖìSê6¸@PÓzÃ8®âßAN0)h™R@éšÏcqHÚnG´xc8í92„8eà&;IK¸Œhn¬UÅ×”ö’&¤k{žïÄ¢ýØ'Þµe…=®FØnn‰éÖce¸>ìð†f¦på³YT5µõߤ1Sž“v9Œ”òæw²¶œR Y•6³¶sÃMÊ:6N‘]+‰A<ëú\ ïU“.Ð+‚ÙÚLDì¯5˨þ¢¿9›¨…ùbdqQîÌ §rÝ?šÎlÂL*FF޲DLßx]`‘ƒŒÐ<3 œX½Û „!;Â\S &âøBÖ][ãHë¹îí((ìA‚GÎöû|Z@jç.r…аðž ~eϦõKÆ Þ×XUåAáNðG&ÝñÌò:Jl5àкŠV·!dÿ[q,JM±3p,ý»¨9¨®6iýz¦ñ†%&Ò/P‹Ý&Ò@Ps£æ@Ôdè¡³ŠÆ KÌý• @bbLBf¢'SŒ'Ôs@m^`$ä蘆Р!—ÄòÖ8²™[(N¬@ w…ìÛuï@¼¿&>j#3Ýa¬úšG g` `Ùœ,)•>Þ€gÉf‹Ñ“²ÞÑå²Å»«#‚ÑцŽ1håÐÐä\³mõ-Ü6S‚uñÖ¡QÙ$¤ç}Ü/X’² „ÇAÜë:cnÕå'qdc U3‹£: OA«¥þÔ¶o™mº¼U‡\Þ˜ªËˆ±€?-ˆt£½ú)ßt[ŠŸ þrdÅܱtšn»fmª; Óê‘kÐç®ékbËp6ÒØ‹W{&ÑQ§ôLöÄ2¡¯¨îHÈ„îX†{×?E¿iâλ²·ë?5ˆK‚˜(Q>`U‹ô=í+ŠêXÝЛ âh†€G=TÁCy8V¥[HÍ\sI~+Kiq;¡Û’ZÍ·¶ï,0Lõ4rj™(;mDÂØàݺ…E@B §©&lI ýÒõ]ß/ˆ«ç~ˆÂÖ*w²’"vîÂ@ôäê(‡„.\+ûÎ2±zB¾ŽO ü>1©÷)›Ì…–Ïò“W)Ç‚–ƒÉigY– ]G­‹P”ó{#ïÔÙugà—\C/ÚT‰.ÌÄ3® L™ðGÈ‚\ш3"!*„ ”cGwõ°udîÖ‘pºegfcŸ«ÐÍ%¨q´Ý¬àßR’¡V©l$˜Du§ŒP»Q{!x”­Ç'ãH= žyª5"²$±Pƒx•ˆ²÷`¬YP¢ F€y¶{›sFr@ŠŒsΜs“[ž7 ™äʧæ—õè陘 Á™Ùl â䜹yðt’j!™ã=Ī/’4¶l²„éæóåšo¨ÍÌ{ç#ÁÚ ¬sÙ‘k5.Y4¾ñõ¼£a”™D圉XwQТþq<2ƒvŽ3Ùé”4R=¬vjÑ—ÓM˵·ìËŠ{º­ÞÄDöÚSЇ,¥+i­Ž¢µc7°’iÇHάz^`m †„[4Tè{ì5-HF›ßˆ}(rô‰™#9L…Ê|õ]ž¦‘ê_^y³½S;x «tDRÏ’œÐ}*(ácS¼\èo "*”#ƒùÊÆ>…ÎA%©fFŸã¢"8@bÖžÕn07qú½á}* 3ô‘²¥L²Á÷Z¢E™6“Nž¸õ%R'pÖj3Þ6!ÒJ¹_­]ôžÕ¢3ÝMÉw‡§µ'¨iZ©%쳚Ýw|ƤöÁ_!°ù¹ öø‘1gk”JHåui8àû³òOƒ¨¸DÙîêÈ‚M´Óçs›;¢bëI/½ïÊÀÆÑÜu«t¸^â2î0@íëƒÉÏ,æ,c]ã‚b bò‰ûe T 2ÊÄCòÒÖi½c* Å/P`÷ÍÓRÏÏpa7âÏÀ·Æ ü"ÞÁȱ(xp~ÛŒŒ§²SþÍØ‚šPMŠ€yk”³á·ã™—Ò@œöC }[œËÈ©#ùFùu Io#¯ŠP¨Å‘­ 6JZÝvªœ=ûÝYU1 ÚŸ(B'ÐLm…t«[ñçu§XˆÚD u?ÜÎI%N€6k½8,ZQ4‡€&°e,X «©%ù;v;ÒÙ®d £§<<¾_•wˆH"ý=îKJÒmCÐqC)‘ê“§âˆÑ“ƒ—‰N`©gÎ\1‚ù>#>Ç}Ý-6Öã•É~I ÍtcqÅ„µY@œP^G%Ø“®X÷läÎ]{*·eÎ/Wc‹ƒZ`v’)Là—,ÿJ âÎh†<-:¨«[Ñ®×ÜÑŸ±¤ØZBSÀJµ ž1Òcè 1ø¤Æ¹3uƒ‚±ul"VÁ…Ï‹ÅñºS?±®síèà,©ê0—LëÃÙÇÑ”Ègmb‹¨Ó¡ù\ÕI{€p5¨Wy¢T»QL‚1שâ†gj¥c­{%Í5Ë ÊÀ4¬Õúp’‚E[ƒ2ËóìØb›E)1‘¥ú2Rõ»¤{tÇ&‰ÈïQQmKö·"R¢¨‰L])"*6q ½é‰ˆ44I2©ÑI]N†a¿1×dõ¢ü^Ë%°¸j„i³ô4š~¸‰¾Îtm$NÛE  ‚Ë®ù€NA&Ô4é—q'q¹­`hÏDpÓÜÉÔ”1å3á`$!ü'8ÆFV4ƒ7/ëT£~ë<Ýÿ‰VZŠC‡A/ÀŸVäŒz¡ÅÖ¶©¿áñ|ôÅÜ ‰$ëô7Ô*–ýe$A?ÑïX…%ˆ«H°¨x0¡5­Ýh1,f&á58"&WSÔ’ˆHKŠÊ†¿kJÿÏëø×ÆÀ1– s(é­ÝsOLÿ¹.Ö’˜Ô\ŽÎÞŒà\„#³¢’¼ë9ÕŒq Ã3!v·Rêúî ØäÉ1V7aï@\ò’v“÷×Í¢c(2‰¸ò‘Ѻ¾ ×ó‚ÓºÄ+g3` Xÿ6±êT`K䆀“šÝE Å%®»¦ó kwE;”ueÉ u(OúxÍw}à×5i$W§ËWß7ê¤frõ“]Tµ»NãœÐ]¯z Qߨ¸gQ3ã׈’1"Ä ˜ÑÈúãÜR0’#|h4T ºG‹•]À+¤Ú»½ éÌû–/7§üELÆ»¶IóEÏØ:ÙŠCÇ”p)Z”;Ó1ø¯s×´  ÁÕDÌ }GÓ«çÒu2ñZ5¾°À™#´ÿMÑZTáÖ'iýZÒõn}º3””L…Î!5ZŠ% “":ÉÎ-؉ÆÒýô™àH¤24A-Ë6XëÌQ],C¶+LB¬b•¿þZsu¥è"UV|c-‘aZ:®'Y§ŒRÚÛ²þ*<Œt²ÝÃ6D¤»s„›û@!ÜpÃä:Ï(Ø1:RêhãÊ¥ârÏd†Dóƒ¬L•§ÆDû‚#aÕTïZ›\Ñ,šHmúÓé¼LMý f[üõ¦÷€2²LÚ•‹S ¼Î$ôåšñ’$Jé·Ó _)‰Äš ì ¼3Ð%²Óx¬C6¸‘AÓ[u¬Ùë@ù¡Yÿée)½nägFÒgôb¯†ÕÝOZWŸ•릇~_uw„U90…É.ÍЂl3`!,ꇰŒ,K„¡}Ûh^ï¤Ä^çhS 5I¥{L&ͤPШnrἜvh'½â å1oÃ(¶mòX€öAÇwMøßìÙ¤u<×ÊEϱQmVʧ¼h]!ãâØK?U}~…¨#ní$Ò”‚\\ Éu£ž˜¼÷8\$WR82GýalaR=Ù(â¹îaÐ)GÒfB…ÔMÕçÑW§¤ŸÙ WzÙ¬‰ÅØA½KÅ”4uÑP€Ò| œzü9]¬taÐAêàE„E» G§§©óû»cJŒÒ~1Õ…‹&¶ÙiÉNgO'äâÖýé‚ü.Ù}/’nî«4¢÷"@5œ¿álp5ÅGñ¾ÁÇ3S´l„W@xOc5d-)2Ø.D]7«÷ÔA±z)\ u½êV´ØB z›/¥¯‹}Ÿ>æ^atyÙé®Õ îݰ ‚‘3—ë½»çÌè­.õèäP*ó:ÑÛkè»ò›ðÕø¬ñáVèo†š-jE7+Ä'á î_xtÔé$wEOŒÙB-¡×Fu-ÑwZK¤ Ü®ZâÐÀ&¹.°@ÐOzs°¡¹iyíÍãY®­Ó‹±›¸!üwÇ‚K?$¢±ã“÷544„00É9 åÆ$Š^ê³S&Ä!Q ǻêWÒcbsFêÈÊžïlÃ7x4L£¡X“²8oÍ£Ó©žÅÕ>#¯¼ÛÛ}'³¬j»uUùàõ¡ö­9ݧ©ö°}7¾/TŽî1 ·„ÎŽó“]Ù5.¿b§¸ô”¬zuƒÒkj膈ÒrÊ‘ÑçLZø±UÁ<³ðCIØuz’õÊø ¬Ð}¡ün‹Œ Ü™Ð×C"Ì%a·#9>ôµÍZ½m€DpAúµÈrŽR:›n°+Šš Aj,€ìâv‡ÏoäÇjÊÖ#-èY)Ýý›'sÛ76&ý"3ʸ¾®g¢"õ…žÌB$b!„4ïõ’/ ´}àOR…j$p#&N!¬¶’PðW(jTc˜‘µs×2ý9)æèÞfÌ °æâ€îA"*Ôü³µD‚Ø‘]½™'èOxí?¬_×Ä&ÞõŒ$]ô¼U=Q«6•_[yÞy{˱_jˆ•CºÝ$(ÓnÚæâ…I§9jõ̾ó­Öº™ØkÉëÇdJ}Ì€îmx]Ý‹oAEH%»†8'³h乤s_#.o :Ö/eɞɄãu(´CQ8–¥±×(ê•¶KÑì[8u \Ó ª™!]ï Ý]BÆ©çbÍë´:¦Xª DÕ(„Ê›+$~ ›È'ËLÏaz5‹K œ­ŽR¡D,ã0ôÂb%³Æp7Ü‘ ž"62&ö›Óñ¢I’a©Ž% ”0«¤>ëê¹, 7Y”lÈǵ ATvž5cëÕ¡fø<\ wÈõ áçO=à&k†Ç¦@¸SK¸žq‹ |bÍ‹BãíÜ€9ñ\fÜîè Çí3¼˜é,GwE(ýàØ„!-ìa@—ªšRw㢧kr·¨?Ô^û¢+—÷ãÿü¬GåW†ñ5nÙÓ­‹FÜ}×Tó¸wŒ­+ÌGÆù©¯m¸£©D}ñ1GI•²?ßn÷…t>íL­‹QfB„-ÐvÝø;µˆ÷™E<q.Z5p •¹~ ð˜@ãÔ1ABõÈ‘'«m…v€¥Cæ –QìÉ]à —+ôN]vÁÀqy qQ¦Ï^ ‹}ßÜš0iwé7ç}û¥ÁSûp‰DC²¦ç=Z5Äã ÁðmGCß»ÍÁ!O½-\„æ´¬Âøƒ÷Ì–Š÷ûÁ±î €©íp¶× „ü%2aço «œM£ û&1“¢ ¼Ý¦ÔBL1ZÝ9Ã,µ# à`¢—žÉèÌw‚…Nwª½œýÒ3ê‡`€÷Gy£ÿîm/¨v½€ê1¸ø[ÛR°è;<3¶,Ï»LÓAÛM“‡‚º>nþØh™J¯,X_ÊÝ㦕ŽÉ«MWBò-2×øU©Žé&V›Z™qê†DÞŠ‰w¦OÁ£Ç‘³ôÀE6ë˜ÈUÀÞ`õ­ÌÅX“FÀÂ`7HP%Öyó %ƒZ“LüSqûÖÆb—ç‘\URï'÷nnmœª{DáÊ.Ú~uB•€Ž ’z—ì˜õsVÚTWâ&¡Á­(Èö95Š`ttŽ,+µ“Md7®û«Á„²ÍfL(á–ÍŠÔïH 0wbã§v=ˆî„–‰Mû6a1û¸šê°a¿¡\Èäì"–Û|Ǽ‡ÓX6œ Š6;3bÈ1Õ'ÕY’Ë×KÒ0_@hh6HM!^0uWEqªÑ,Ïoî»UË|߬2Ý9ísf®Án!ˆ+1z‚4àrÍø/¤¯e£Ôb‰šw§«_ ZgðÏK¤ téÂ’ØÁ÷ˆ¿ÊåÝÄÔIÐÒ>{Æ“H3!kú™¶ÜýH\ÕKnDs¬ñÒfCkéƒ0a(!$%óÒz|Ý yM)†i#'WP^¤a>MìTjðœHûŽø$‘Ï\˜µõZ3òMëˆ ­˜JÅŒ}¨Oc›ñzÚìÏ+Q„†ªÔ=u£S†/¡ëj¥|“fñ¥Þž>¼¿I¡°K½_Ô.¹©£»¨™×Ϋš.F\+×eZuÑå…IèIM•ÕRƒÕä4$õmCÙKÜœHÙËvpðu‘ÇSK“¦;±¤¨Ša f*JÁG@Å@Ò<êÙÉã¸'.¶„² „C7:Üû±j×`Qh0”ᎪÜyB²€ÚƪRw‰)ò Á] =uÒ¸RgŒ‡,´§wÎb2—§õ÷íJ?ɧYõ4HÀ‡Ygø…7V›Zʪ³sÍúUoŽË§‹È$ô2Œzù`¢‰x<5u ÄÔ5) l>p“ì‡!ÅÚ²TúùhùÚ–ÚL¸kMp³ºé´/)ÉRVVa¦?uNÈÉÛ®  l*˜ÂæBo©Øô3i š„6ô¥‡~®#€ ¾ƒŠMÂŽDROÝB¯Y«¾'Ó9kÓ.Úûµmí¶Pħ”‘/ò]DÓП”U¢Ã%!ÙÑ…|¾ÉÖàu]Z™Íϳ{ä.{€Ál&q`Ôý•¹cÜ”\d’Ú)¢)P7ªSY0H¼ÖÕŒXUi°ì”9ç˜ü[ö¢ÏÇGÇ%  û ú1¸ó¢Rh©¯v×Ö¿ sgG>gÄNJ kë1A›™HógÇlüüLˆÝ©¾_™«Ûl„sÒ:`½Ë ¬® ¾\uµÇ'gïç:è<¹éº‡8@îÛX‚ðð¹Øîà›{ ï'¬IY :ZLaž1«›Dóvy奚zyxÛ1–M}Îê5†gK´Ÿ¶œ{šì 3THàŽÖ‚3AYY†Üb @;_otá^ðhlµN,·[¬¯q¥×µô^›“H²CÀlѦH`WÞ¢CvôØ•§·¸—8íc+ÄP;*öÙf¯SÈ~¼îÇXH+½x¾ìvœµN¢cåR÷ E‹Âò´Ïý¶žüÃóÆ×ô/†ô/d}:¶4QÐp®dEûîÞDSÔÜÒBÜ•0n—['Xˆšì¶ƒO×8û'9¶¡ÒQƒ „Îܨ5 b`"ÝBìÌu‡82ÌQcê‘6¬qŒèÑD¡,4ËÙOðéºQÝVÿ­#Ñz¼b±¨fwö×™•|$(qÐA¹V–~Žñ¸II¿3 õî¬[´Ûa±mbµOnN=ús†8õ˜YÐéøñ{‘CîÜ4$}pž¯vy~ ßZ,fV¼q]ðTÁÇ0å„pËÈ屆2áןVÈÉZ 22´;Ιù ä“(è— ¬»œ _pÁ„çÀêÞFf@KšMu9Z§·f;Kº‚»«qĵ$'zÃLÀ;Û›9 ZA£¨OÜë:çÈ+lœ“®§ë£ú+Q ¥²§IÚjƒNC,êïZÃŒHÊ%bé<önåPl% õyÁVÌL÷«.Ëàµsúæ›y/ ‚ŠëÄŒHÀ­Jô4 ”–¯Ñar(f€Ìþ…èý·°ñNÞäï‘?¿-ºc\7çá–³:øÀœ=…É5âöì3|ö3Ã/zQ§”Èi“ª¥ÄfPŒÉÆ“&ž0÷ T­~¯6J2„˜S"¾#2o0·+"*9‰yDdˆüªw\™ÎxðzÞé"Cºe²9‰QÓt¼Ñä‚ç(D[›“i± Hóö¹ `ìá»s¬ëå¨W"jµKZ›D8š„ÊήQdÔÐh—#:êÖëqpP¬i8?çrLAè 3à­“ˆ¬^i^©°iQ >26j½\@S õÊ E¶3»(ßùR—fÚ¬«uýcº?ðc“Ò$r¢è™ÛÈ–ú”.äB˜Oàp.•[)õÛt¦Õ´;U^è g¤²Õ[Õî'?4T-„VYm½ôÐǶõ«: ˜XhK^rµ¾<¿¨{©ó>êu•éU´`•N·„—*ïidÝYårB§tÁß4pþ—Uá"ÒhCD.Ï·ÛBó¿¼–ûÖœ¤ò ¸¿Å^}Òk…ÌÐׇ1E ïK3ó®‘Ý­ê\ ÀqÎcJöóV­#à2w5÷ÓI"­osf¢FR¹È˜cÖŒ¨gªò–zsÖ 2Ö¸¥š†nß§àXL`8z÷NɬìêOk1Jê_Z¾´dֳ̉*ô$ *Ý4DÄù4$²±•R·U ª·à/I­ÿ"‚°ÐöL xp ß.!lÊ 3‹(êàê3ý2³jq}c¬„­T êßÄã/PtšΑ´²ê*ó‹R¼j–‹ŽDoõwf†òæêîú$Çz±I{õÏ_6R7žÍ­n$¥Z’ýÖ°/Š}0¢éSˆþ ˽¡´£¨¯íў͑Pü¼¾g­ÑÑ‘ò“À~H%ØÕ[!-];Û’ˆ:Zgí}EÒO ¶~OfÀ0݇#êSÄL4üLIM…I¦qÏÄ:®x>!Ô_š|È޽'QEìtÓ¢¥ #»‡yd÷;0ß)aËŠC/bgR–=€H&0IÁâ&ì-…” fÆF ×q¹×ÑÝó £»ë0"G´‘†x!ZL\è‰õªbqÛ2ù[^¯Tk£K¨2±óqG.Pçi‹]’Š]äÀ¯‘ûI¿“oÍ|Žëy¹ÑuÁ:l9‰Šõ-OM4I‹hQûÐKeI¼Y P[füäSâx\a2ƒŸY # s´(”b†ì™í„´Ð00™ @êæC¶G‘)‰dÛķk!&IcGŒàúÛ‘¼&D²«ø‰³{)2X@ÚðÙlœ›‰¾€!j®.`è¨ ›@79:MxÅM(+ÔA#Œgpß’ˆ|› Lå'—ÌþfXxO¥R“¸ù•© X²¡Fœ C\ˆ©³púÁ¼8‚Ó«Y|¯9ÈÅjo›zR1©**Úc !T ”ŽÈƒíÞþ?n~8×dU§‚¿6Uä:g G~‘mö~ú0[2£#I‘T6š&¦Žz¦\s*+e,.“$G˜I‰TU‹ T-tUÖG¡‘2•Hesp60&ŽÇ$jݰ tý³(íFÇ´ñ9Œ&wf$=@#ÊÄÅ(è‘ʃ».DaßEâEhYÅ0ŒÔ’póp©\I4Ì‘'…UP]`$K}m¨ð)$.!¡dIþBu£f:[+5i¦“$ÌFB´Ë†ø Q·BÕŒ Ï ; (í:è³oi¸Úþ´¨¨&QØØá«B„HÔµzÖ§ëÐòÔÎXüN[»ƒ‹þFèðO­ßÒÎvaM¨ŸV¸?å$1ÕÆt›usaQg±Æ3«õšS¬÷OÑ Ž”¸Sd¥èDƒ¬Žµ½ u¤*]k·†ŠJ•±ñ'#ƒžV½Åžœài°Ô_2òÙ)ɮ݃gú4àö/Øu¥JÌ™CÁ±R1xz^\ÔQ1Äp±j_à­æˆ„ºu! ü."7£E,È<&Éc±Úžyí0Û»Ñ!ÁrŒ®Ó±ß$µõÉ:RwV}Kž°.¯€â5f0ÞM¤þï#f>^0Ð#»gÑÝØ·âbá0•gì@ðÙ÷LÊBz©LK6Öšîoëc6Y=Ð>`ŸÍÁ¯áºyôúmGt ª/óÄà{RUëæ]g/¡ƒ Ò×GʳFoºæ¹­µ¯&tWd€ºèDÿLn“É 607æ².°ªÿP„D«ô årf827Qïôu&'wMþ´h¸•üñV4³ÁŒ‘ä’u£%õyO#W©a\‘.×±ÍÏ[  Q¬'°ø—æÛ'ÊB¬¨,r¸D´niÛ}$XEÔáÜ}ŒÈÿl¤áÉ)eâö çàÕƒ‘í¾h)q§—LÞö6c«"],mÁ;Fªe$iºÍ2S5(Óv·‚@ àˤPWf-PQJÑ­R3b^kîDu ™ñ5 7…«;VÝŸÇ¡™2ªÕ&è/ô¬ˆ“ji¸š€*£>¥fÞ"¿6›µÛä-Ä—q õD'}2 á°O¶*ÿB‹“‡{L€Z÷û“Õ8š¦3W†B1`þå°!¿ïBº-ˆ‹ªæÅ-Ä‹®£fÉbEF.;s#ö9"™@¿GòÛ¶Îü´ #)>/hÛ|­ÓxÑÕ¡v3ê竪tÄ©µ·ûí)ôipÑ êö ÎSÖ ìøõé:æ…&Ê8:Nž¢c£ ŽíÔé‰ÜÌnÐè(ÞcP]ê;pmÓ]wädဘA`fŽ¥"@X/– D³Ñø Ùƒg]¹ûÝfÔ×4Z§K/Σ’/7×RhÔjÐØïN$ÿRM¥º¨qæ."í.ð5Ùaä^c=Øüû„‘{ ,0òk£¿kLPÚ߯£ÏöýJ@ß5€ð¾»6ˆÐÃÓý¶É »ûa³e<©xÜ3+‘ä¸ýû\ÐQ£UÕE4HpЖîRRqy(– |v‘ÖH\Ôˆ¶3 .7µÑÅ¡`õa¬e7muÌÝKC8C[ÎS:ºGÿ«F © Sg)?2L•/ «UÇšè®ÔT„Ô'1ôÃx¾Þ•ªÈ®®Ëuö×­G9Ãf¢ ­B@ƒ¤Ö(+„ "::ð91ð¹U~¡-½ßûÛ-ËSh¬À¨û¬öΛVĺ&iZmƒŒ„(BŸí®cÙ=¯BŽ|)G_m95@+¢Ž!G<â€Úµ¡UõÞ.˜î]Ü‹ž¨²OÆz|«¿[3ë½áëˆÏKØJ]ƒðDÝ*ìox5‡ªG5ÉÝupíëaÛÙ=!©îgÃÞµ"Þf^öDv *þÆÊq FˆßšRQ‰`[Ý~jˆÂƒ:Fi©*ÖCL4´ùYÏÂâN¨¢bçsÊ¢ãiÉÄ©{HûsD=‰'G‡‘m×hIEœhH·C@†jVν F†úß{¥ÛbOu£„2Žëô]ÐŽ0z§E«|Hã ‹@`z BÏD8‰•r•ÆË¹+‘®2Ï™yœrçÓ™˜ ‰~ƒˆÂŽrW— Ä5cXíg-ýÅŽ’‘¸ØHðõåPâ Z~€‡¨·õøAЉ ©ôéÙ.]^'ϯ¡q6…Ìôb†Ec.â=^½ÅŸ™õf$׈b‹Ó™MS]é5»ºh¤ˆÔƒg€YUÃü¾fŒ—ýÙõ} òw6gß JT[â™}YCÜ;Øêb=É_T#ô€€¯Í!ñ‹¼+~ šeåÚÔµ0[ìxs7u(·0U:¸‰G€¨h‹áJ‡û–0K3As$ëùe‰ïQéÁŽRÅ[ù‰€Øº”H«±ÑÀFHJÄ…Ô™›ö €ï̦R¬å"dƧ¯§×¸@c²þÂ0lÈPk\t ÝS(ÑÊUÔ–*%ZЊXMhXo²w¦ZÁ6æÖEÊ(·~½„ì±Ðì,CôÕq#¤Ó˜ñ³ô'Ìâˆé@ú ™9Y¸x´7~;œae퉹áen±V ’îz5uTÍKS£åP¨ƒOÜ™ðêì>]ôAR¼AŸµÝê½GCŸe·ŒuÎH²p—”±ú’  ctÜt§eq§bÖ+¢ :'™„U­o¾¿Féœ Å¡(R“ß•šË+àô[ãáSÑâ𠈫%h½Fæo špÖ]ò¡¦kÝ'í¢Ó™¯ËÞê¡”)]µ§VÝéÆeßøNª»—ùßÎÃiÉÏMÇ~#ñQý¶&ÇÑE¬¶d|†N+[‹ *â—ºâgæel&•ˆ˜¸Äô¬ƒ3úŽOñNƒm¸…ñÆms܆—ÄTˆL 40ÏLǰÞLGú”â››°OiE5˜(å÷׳–b°¶Û쎱xŽHßßc°íS"l‘º»”™‘]gD©”˜G@Ú µW:H:ר:³·#Ç•¡‡˜ë3Á?†Ù9»è~k6½H¯ëJý<åë,¿<Æ~QÅ›²æ'* —ùät…±Ihá;GšŸŒ3\îÌH“ýõÒ 'ÀCvÝÞbÒ Å0&0×6<¸%99P´®#ŒåtG̺»’—MS„CbÈ9¥€GÔ” ¼¸z6"ä½9)õ‡†˜Q—¼YÉ…a<»º£Ö5©¼jñ¯M`MWÏehÜúºÈ—½Ôr'ƒÓõ‡TS¢Ñ¢“Î š±N)Wƒt›ó‹R°)a÷¡ïÖšê>çê{%ÑÞxꌫgãÓÿm3Ù{úÒod'xz»¿®aèÍÖ›ÈSá2Ò™–’J¨n^Ý;>p}‰T¦z’³[³Í†”êõ‰/1+IÕÙ30½X%0ò¶ó\(>R'¾:\ ޏ©>|ÀDpжCP¼A½/¹îk1§E‘‹4NàØã<$H™Ý€‚ì{†˜ I/B¤©È@9 1²SÒ&ä¬ 3”a¬í0©«¿{!¼Îá‘ôm´ÞíQÛíÉñ™©’Uš"ÕÔ©K¼.UËL\C–ù…™a•ì<‰)³~!`ÌêºÌßôyÑ»Ôξ`àcº*+Š•çk®‹¾‡ú ·ÛÔ¶áÜ¢ï,œ²ÏøÝ Ö¼`Ù)¢õD8¤Þl¥¼bXOu…ŠcÊK#ùë&YÄ5¡†²8[ù;Ú†¸™¹h:Ã5y«Mz¨.úˆ š2£7±|phÖ]VšæŽÆ"™T!ûä;ÅHL@Y¥Y§  ö)@k ¡6õ”ìE5ßK´)ý`nãu¹ïhÿ’ÙjqFœ žê=hW–ìtÐ`çi÷ξoè'§º±Ûwík¹»àlTöƒÍD.ºfE¡¤0›5mñûÜXØoª™UÈ3ÊHÉÁÓ;€³ËOÕٜʂÝ)|hùqÝ‘3?v7†:¨×;ÉQv±SkC :EXMF*rBH¥›ÃöWks N5Á£NìzHÎ ˜q¤º€Š¾ðȘp¿nˆLvÁ2k8Ù‰"xi)<Éš; ÌoŠDõÆä;«_fƲnÃ58FRC«ö#õ|¼Óˆ)þucàm¸Ò£aE€x˜ˆO+ÔI-þãÄG)•ç…„pç¨5Õ 1ºj=õO2gÁúæ¯gl¿-3Æ^—úõŒ˜»1e,ÙÖ•E°Ì¾£Q™(W"‹°°C±¾:G“ Õ1 s”¢în¤+)`E†d© ~Nx'ÕD•`a¦‰ÕO¬@#°ð”V‰>ûi¼Ìñ D[Gä\PØ£Ê 3#14hL ÔFs!ô7ºdn- ‡Ÿ´,8ÂxôwMê”éH®‘,ôª,Mt††üBhñ•ë9I꼩åi„²A!êû"¼ %‚# G,ë™3‘FYsÕÿš_ä/ ãJÕÓ] ´DîXó8ÍAM Ä•c¼yUÂD‰(ãÑéžmé´æî‚Sþm±³¥.«ŒZ•¥&b7Ùý/í°è3ç…Ö[õ`hó­Itºœ«’éz@·ŸºœŠ”±µ ¦Xt0{£Á§š×]_¡[ÕL wcGª¢OzÝÀkÕ ÙüÕžÙ€6¯vDñ!¤D%Ϫ&¾N Û­ee@±‚àC‚zþª°W°½mÁ¡Ë^çîhyþ,§§j›Ež†„ W oœéï¤ìâBG©NÆZ訋èð€âëC²•é41jµ^i†#ÏýÅz9øaÀè¡%¨·C>;Þ#5!± NäÎý <мwnÑðЊ‰›@D0#\µIT0’— a'ƒá‡§åŸ+ùÝ&IhW“cAI¼P—û®é,î ¾-$ FR@0…jÖ-„b5’u¦o#rœ Þ°¸ô” J$f®ÛÊ¢…̬;ù›¦s ö› †%âjšÀ–Š&‹¡N‰ÄûN, ؽŞBÊÃêßHþ@]ÞŠ.ºî Ñ`õ¤fã<‰”\IT“ÄLç0—€ °5‚v]é Ò=Ê<Ž‹®-…Q ²}=šÔ- þtò‹*¼” \ÊÕ‚WÏÔõÊHxŸÀ¤ÒGbfyG¹ÅbÐ,i)¸ÆW&òæ‚‚‹˜ÂuH5bMiͺhÿ–Ú¥}÷¿ÑÖj\°—ÜŽ²O2’Z;lƒÐ(Õ06Åk=Îúz³»wÛì¨ë‘03"?Žôõ5”À^È·ž'Іþ¶º=»ûÒMo”wÑ­Aâ QK"u­¥{"©A&Ô|B´inˆs¶Ÿ °¯Ì“õ~µpr{}RnJ˜Ö"Àøc;–š†Àï:G5ÞLšG"¹aâÜ“–x×E8¹Å|ÓAˆØÂõ~)ßÅùSÒ…'9_ÅÌÉs'J(AùøßT’µxE²…GxšÈ{? Ü 8j€†H+¶ünˆnf’À 8ø¡Í‚I+ÄIß­ '鹈¼¬CO¹Sô[º,qê®ûD yËvHKဃ&Õ¢¹*‘T" èJ­šÌ»ù#gƒ·$.ˆ-Ìhð7ÍH´ëC`¸;‘c1fýÉ¡€ |Ã{×ìófU}AÎרE›…S³ÑE_ðT’.+peˆD]h]8!e(t1A.*®`°(R žÂæê±°AZ1&3¥xü=WàwÁéþNÈò½¶üþ \y¹Ôb½$È€]—1‚=Ø-óÿÖšîñŸÿ°•Å£G 㯛—DçˆÆˆLÃˉ¨…þÒó‘XÝ|[Áà.pºISÒº® 5Mª"çèÊg­ü’¢äçÄ+͆~mÄ4˜§þ=õûËuA «9G’×6vÉ‚øß! Ô]i¹ f”u¶Ài³Ê&êüJ{¤¡‹ßw$gfXð^>RÖ­A;ú,ƒtI¸‚.q£¡Sg™9)zêÖ©¡™/§XRrM…IØ‹ïã°@à ÜoiÚ|ì¢HXïþ¼+Ì9ÄnØ'6"ãà€h%u‡«Q rΓ8µ@¹Bù93¿Ö[ (×êt´e¹ S—ÀTù{ÊWM¾Ë7Õñ/¤v_âLÚ™8¸«˜Õî•LÄpÑ‚âŠhXA\ᦄt¤ 22í¸'G³¹ Dè»ÏÃuCv¢úwÝïrByÀ!1Ò¾EÀ'šÑ~œ’!zæ±Ã’G°·º&ýM):4ÊX‰ (…¡1AÝé<Ĺc& xæß÷—™­]1L¹¿“Ãó}Špðë6£?¨Ô»ÐȺk…wœjš¶w†)eºI•1 &F^òŸbð‘Àïjò5-ÄàÓ–¾0N¬4ÐÝmAм÷ŽëŽÌÓj¨™©ZI¨ˆ—uÌ“¯î(‰¡à£»‹…õóœ“4Ñ–{À¾¸S$XI¬ú”вÔÁm 8á©É¥ŸQrÁסg’—ÁŸÌrQ°°"¿Äx Pô)y<G}E?ÎÃa`"Œ}OÅF—»É_ä'rÛÐz®g²'b8u4eâì·f(pƒÀÁ‰”d—y¶¯!úu!Á“Õ•ÅRï,h.’øR@‚׌B0ãɦéSÀú«u_ˆµƒ—¥„:ŒåK½r˜dCMŒð¯—‘j°Oñƒ[žU; ± „S¿è*–`º!Å 5'öÎÜoͳ»x¯e1¾­eF[ˆ¯¥÷”„ðOö㜤|0^=…Ûä‡ì ñßüg!®ÂÍd£ÄäènÓWòÉP)'÷÷¬ƒ}u ŒCváÄnâDš!WPÛbßú»°.tèO,Çk†xeïœzÌÏ(‹&K9„ˆ†x@$_!Ášà$Þ÷ÍŒæ.Áéßn"â#Äpƒ¹Ý‰ökãsX,ÀXq›^tI¼Èf ÜÀ&¦À8’SDD¡˰ðà1¤Ýt±¥ï£Ô9ÀE^˜ªŠ+9µðq¡~ñ†l‘_$ã‰iföb-ç>ø—¹F˜T8~iYQý†ÕÊŠÖíSp:–`ïz¤O®é±S Í§N8×­ëDf1uV²­kŒ”,sMêŠæ³0¢ /hð#·Â“M‚Øšù+XR ò Öõ}éÙ§…«‘ö[ÛúŠáÎ`³56£B–Î0Ï<rˆÀÛœiH#‡¬AJõ”ëÌNÔuÉ ¹ˆè®”äC^ÀsZ,Okȫۻvt¥_tÜìl5ƒ ž$J4äò<)êq­E)¢‚FæìÚÿTp;zƒØ¥_ôD‚þòk 1X_—ú[ׇ#ø©Òä¾Q蘒’›+ ?0n¢giš1<&6víjªé)¡‰‡±„Öl3Cd‹.Ò°íx#!úà‰ˆ³ËÅ£I€ÐÛ:D8—Xl§ìšìø%]|<ñNµ-e˜{Tšì ³(åˆîQ>Ä;bØˈIÚVêó¾@©¯rW9³0²ž±Ø³uD®X‚.ƒÃÇ4‘ÄÀÙ ˆ ó‘U4ëÓ8Т™GÓAÇøNãb¬ýjã‰e£Í¤|8 ˆ¹r™˜ðмvË{èt9b K-u-ãS3ï5t";]<_g•cG˲t%O£ïAT1ˆ¥ªÑ|—VI—ÿ¡õ!ø-Ù×פªž×>.š»q1Êo!uà·€!fÁÖtVVHí·<%Cxïšö¼êûð|ÿPÏ´ÞŸyøèL áâ5‚ßVë—Ž2º’ TòUèSvГO´t.©íxÚ˸ˆn4ë—Ðq4ÚÕÅ0³Q¦ ùØÙžõ ¨ ½UK#*¯¯Ì3”© ãdë`fÞ\‰=qp®„pÕþ é»àh@iOÌ%3yÏÑnâS‹ÔñAJDè1±b©i°;b¦VO¬¸Ú™"§Ø°•ºa]ǃ4•ëjáÒ=6AûÞü´R ïM¦i‡1ìÉÆâ¿ ÊV â‰WlBÛÈ)1Œ ×H$“'m™E±#1K.éJ¢¼ERW›E( ó|ë™ø/Ãú‡;µ|6Œoeˆ!1­ F¥®îcx6²&¸6c$?!°¾+ m*wÓ‰·¢Ç¶s\ßBñŠâ¼À÷ý­_Ðúzê”ô_+2»ÂÑzª©\jà»ôܾ>AÖ|(cÿúB"]ŸIÝÍ;RwC³ŠvÑ%¬á®N=ZÒ¸.'EEo^X<‘ (™i= ^$¡A°ú¯ßŒ©ŒÙG¬öæréáæCC böÏ ³7@mõÖ‹C*c2äë±þŸ~LÐÛ9ZÀ[Ömÿú$¶€x‘hCF^ Z´_Ô!ˢˆ}ù%ï* 8sº.*t”%£ÃÎÒ¬€qu¥TZK›ãź®ë0Üí ±&3Q‹ Ô… aq×!Ø“6[P¤îÅ$/Që.ÜÍnÒZKƒ?™¼zÙSù‹ÑGR^6qpƒvüˆ†ýµqdêâ“»$ämókÑ£n#{ ;2ª´$^çƒï¯"Ú¢Ýq“µP^MdsÕJI¾EÍr 8#8ȪB]¸5±92Ô§í®/µ]F-­"¢J#›øj;„ 59‚H"¦¢G*Ò¸ô¢÷‹¿þ¢¾Æ×Ÿýˆ@ä2DÓ´Š4þB«[ Õ^"(º]'Tås~`ÖÚ¹僚@“Q[:ì:L9-\±:ïß" !ü×€x4 Ÿª2 …³Wå~¼e08íÂé„83Ôø]éEcW£UW]¿ˆÎ°5dŒ‰RšG¸Ò¸-e¸`lÚG*ù¬lî3±/‰hð‰ J L}DAƒ;s Jb˜r‚íþfJ¸)™ü¦q± Hšê6@TÑ€,1ë&ßqW\- gì¶L¬‡2%bÙ^w÷ á>Qâ€}J3°æB=v#hk qÐ:A­nøà".Q*5hÒg²"Rd HñË:b‘.$iOª„ å%Ýmé«t!Iиé{‡â¾w®ë `;!1h‹Ú¼š‹3õ7l€lçQxÛ<}-äp=G_žx%zïnÚrÿ6¾o®¨d¬ScÆ•øâ4‚ÛFøâÔiýĺ™ëKƒÏ×eŸmÔƒ ìq3T>ÏßžÍy7e~ÓØýÓsmßÉ^n‘÷kýµ¼5ÿ²V}/@¸»º‚>[C Ü"×HN¶ð˜mìX§ FV—BþA¨—T‡¹!ÕzHm~nÔe,·FÁà QO¾ÇÆ©ƒÄ£ž%I ȹçåÄ êBå«[¾VŒ4f.qø `ï≊Ôq™Ê³É£#xêá}»-(sa»“»b¿Æïuý€ot]+žŸ£3ýÍ¡ýDHÀ/‘%a?ÖË)³ŠQª~‘øší°^€ëýp%X!èÈl-‡‡¹‘„:$eªÑ’%©‡33PeÃEºÎ®ù0l‰"Ûk ÊðIvtDës¥gÂïÈ/rƒãÍ^dî9’¸´‰@tÝZÊÄx;iÕŒ[‰¥#¨ :2bÕE«‚|Ö¬˜´“aœ™Ñha~Ýž:JÄŒ«N²­G’§ÃÄ5Ü5^±™»áås¸dN ƒ”#!ƒštÖtª©bR!F®&Ž„þZb£>¥3äP¹nK7¨ºÈ¼¨«-×#×RNu2-úÎê@º¢ÍÁ|f"6£CbÑ<µÄR”ù^Êv:þô9’^žQΫ8ê@δ2lÌ/©9w§û+Q‹ŒDj¨y$ÊLlJMðDO<2‘ñt#ìʱS% é®Üp<]c$©‹R~†öŒ"ª”Øyv˜wÔ'‡·™S¼!Ka@ÿ“:]HÛÔ“X|îúx˜B¼Òf#’\Ÿ-„ê|L‹vu óIñþЬ¡{qŸ°³ˆÆZˆLÛMEkMhï² ±ˆF ¨ƒNÊìð^bÀ®AË ”IÛL"׎I^Фª»2$ìÌŒÀT°¨Âî²ï0•I D?”¡ƒcãÐt<†çôÆùë¢ÞG¸ÔÀíy~¿J;; æ¿ö M‚²RpT}™+J“ÔYÿœoߤ“B-9‹l×I–F§„fë ¶(Òªq)*î3%Õ»ù­HݪDI¸ïC ‰Ò°¤°kÍt¡)4ÒI¬›Ýy¸.Èt‰Q ¶`DQd€0TRžx#uȶ$)6¾8õŠSðåΖò°Ûú¶6 Ü•èæzgOæ²ZH’!ÇPS>DËÐHÐź-Éß?`0Ô?€]$ˆ&¬|þr ÔTxâ•hæÕè™ùk²?HÎéÚˆ3\ŽÇnÇXC?,­UW´C+¹>öÉuY›§Eg!uüØ Î…â€Db„$>5¾­ºzù:“ËâÆøŠÝ+¬©cþÁÞ{â{ì¢H!ùsq›}bp¬õUäOÊUF]‡ ›Y¥™u+ÆrŸCÉžz´V”Ë¥Ó{›µ qCÒaËNjÌ¥]XÔÆOâå¤ýs²` )mµá´è®ÕàEænÑÝ61 »a«±® :$‹îFˆ°—^ÑÍ÷¡gYbdiÔ)Lqœc½¥.Y´B–¼ùÅ5þéC1ÿBíÆE†¬ÏvÒ©C@ºS©>ÜCîX(w4›ÌLŒ¦Ììª Ô/yX×±ìLæ8ar©}i`Yn ÄÍXˆ¯†»3¸YW¨óÌî¡^µ0:QލW/Wvµ¦ îSóùÖ½;ê•1ErU ñ=2O5ë0An¼9‰0ô;MuMe ›Ò ûæØqŠ%ö ‚ ž¢®ˆ‘sÁjBe˜µ^ û¤´¶´•Ù˜ˆüḬ̈iÌÒ­ªÑ;%J“ ¡>çîNä¿ëlà–æ@žhŽŒ`C<=Ê…àgÉn±62Ò«ÃORÑI3T°ñ=Ѿƒµúb4Ø««á6Ìç%;gt)™r¡*¿u"½«{uÂoíòÁ÷HXªñSëÏ£¤É;Ò¹ÓÅŽ†ØB²VHÓMA!nèeÀ‹síhF0%3¡‡®sݳÒYÙËÙó¬h{Ϥä²h>蘞\Ô Dñ‹êTZï#vÓ‡ÜÉÕqÞÀÈ *ZjyMÿÑÈ$e§DRód‘ŒŽÀBÒæÂâ1~/0ÒÿènII‰2q€N*Â2ÒSö‡M¡V§ÿ²yéÒu˜‰cï"–caZÙyIÔ‰t‘§„ÝáŒl©|fg¡d(”d¨Ñ¿&óßQ -^k|¬ˆLRÛ]žw/a訳úŠDÉ:¯OÏA|k¿a|×@ Ïoó»FýOvï(·Ÿá‚Û4vyú–¨ ìj¿¬ ŸŽvPõ¬<ÝÈïH¸,üÆÝNûs˜ÜiÉ¡FäzMúp!’´>ÎÞ –(jÎy'Ÿ7¾œ“4®uŸø|ÏG®‹*˜¶™€jN„§Zi!3騆¼Cæ.çM`Rmõ~ÝÆ5žÀP‹ Sq •‚àê† œíu«?é®"j Uìh¶w®#mÜ2ëîÚ!Î Xšê¾Šä²œÎĤ î’pΚµoOØXó]çù5e(ü[ .{0¿Ü`çIÅAjPÙ-‰;OpÉCýí[·è&]Ýc:LÔe¯Ba-é¼QpiÎÄÔØ2‰ˆFµG1²ÔQ;ÈÀŠ.G&2Ñ£bIp˜ôDŠˆê ß,º­Ž³ñÄa ×[ ü8Ù«QNb¸Í ÊÊ8ou¼IÉÃÄL ¡]Ȥú+BØ<YãÔÃøNÃLlÀ¤œ6óEGÜD¯Öå!ަàY‘º{ òÝ>U÷$e«QkD.A ;¢L^ÛÁ'g3~ýBÛ8‘„Ñ’¿û‰]‚ª©15ŠnHD¢BzÙh.M «=•ïeímà#´‹Dõ­8Âl+–¹Ù9 kOL¹’W »vÑÇéäÖö‘U¥8À;*‘‰±e’sñàØ÷ΕMêú·È–ÃVk»˜{g™Ñ(6…ØÚ÷ÄüSÚ¨äutq ,Á±ú±‡¬Ä“&ñåJèv7lN7Z–nê^IöW{÷*j”ôsÔç–ý¸ 1ú¸èórL/ÒOßü¾â¡{ì¢;C°§ò:ó@ŠÙD@ ËE‰,×¥SMsñ|МDáï?e•t¶dÈ5gRRÞºåºñ(w"«-õ»ut{'¶=¼¥È|-®v«¶Ù{tÁ UA/qô®¤TA¯„è õfëûÌûÏÁ ]Ónœ3M~ÓMoúëu3è·%¹å“Pÿ‘_,MfÑ9!q;-RÐúÒ5YëˆÊ‡nHÒêSÊ7íº!×Í-,©œc‰DCª£8ç*O8õ‡v½LcXô8Ë´8å«J-$Y–œX{Å­Ÿ—þ6°$ë*“Ì.­ì=Ú@àÁõízz9:}X;4Ü™F ¯pxðÂMf$9«O–ဥh4Škfʘ‰EôQk»ˆ—(PE|i`Iu², ?Sò'³ÍDøZðy…j &1X/O3þ¶¬;Ñ/Õ¾Æß“ûvafY¿³íÜ…+u´I2G šzG0Ý­ÈÆ™ :Qú©)¼_ðÓÂõLÛ<6¶z=w°ý´Ò¬ÐÈW$ˆúY¡Ê"¢nqÉ&̆½XÍ€Z¹[Iu¨¦ƒ7X¯^|Z¢ÊJå¾ý4…>£›O*W&mî˜à9mßÓ-’¬ÿ:±j‚cÊ1^t’\<Ÿ®Z 8)©v p½PisO'ÃÌ\ ]°þšˆÕ¿Âè(T¢#Àû:ê @Ñ„ôu£nŒ¤òà´Õ9°†“¥`‹lù ‰ss$oÈ$Oê'ÒàÇ¿¶r)tí¢^‰˜&«<ÔÇz¿P÷A2ê“°è!ª ðÞ†`ê1Vd$÷„Û. ÄY)G»à8œ4ªx}6£t¹7jí¼¨4ºF©×woQc³ÏKŸPb$Š9Þk`Ió"šæÞÅ1R¬1z›IQD$ˆy&w#@ &êèÙE ƒZÐ%á-•«Åjˆ ð¡,Qd°‚àð†òpžÃ,Ñ/ $BŸqi2Ý <„‚„…R<Ó*"¬dÇü±¬!~N6GR™C0ú½ Ò¡Ó †º3"ƒCB8=Á†20>x㢕ôC >Mt‹þz]-~Ùd¼úR¤§¾ûr»†P~‘> økP§âPõÓG„Ù×¸È à°"cPH¿t+iŒ ÿXµpâå¤p.aßÞ ùÏdÖ×DOUx©^Å;d¦TJܰLFs¯i• žà &r­À³9í=Ú( ˆË°)À¸ŽÞï”g€°¸ýt9 (nÕĘ¸'"¶*ް ¹·^'ƒ×k90Œ†Ð$ˆqC=N–a.rȨ$¿3Y™ÁD a:L²8 õMÛý‰Ò°éÒë“fÅPÔcòâ_ÓhY™­¾™© ËcuùJj÷ïIy©Y7Q§´©¨Ö’$€•br32 œ%ÞdVÂâ‘9¼,€É€Ðkå¬Üñ^Rhl`özà±J…ô‰ømü@¶È$ßQwŒ:µHµLª‰2ÛÅœQŒêa{GÇq'úàI¡k𡞑¹ï´/´Tœ¦‰©œíhâº\^tÑr­a‹åd#ä¡RÙ@,4•Gæi\çÔ;RI„„~O—›„AC‹C&»Ú½f¸Êë(r<—{›+²§ŽÀĽR$¶åÊ\{˵#æu¥0ë¹â€˜ iU’ʆí:$kkÉ?3Š~î©™ºqŒDÙ×k÷Ù7ò(!ãR‘v@M/:Us©ãŽU×2e]é²id†tÔ†ÅÆXð&)'B•iª¯’ŒÎ@DÎê&‘­ëÔº¨£îkH€† ͼNÏ#˜:”ºðgïñ²(Ô¾ä? R[Ö;ßwÒE'Ž«A‚ÎÒj2Š5Œ®¨p'Dß ¤ŠÐÅ vèEòp =3úè;"D\˜´Õ~·Ê]`¹B|î` ñPΧ/2nCaD“2aùGâ»ÒõD-R•©ëÿPî,)lÜ‘ ÔåŽ*hs¼ ü¥Cì§=Z–›F=¬õ‚ö ’œB’ì-¡…4-ì‰ýt$(Ë4œ­„³ Ì–£ƒi3%­¯P/¦ë†“¶f.ÕÔMH +Šƒ!"ãzèJ Ã@JÁˆØû‚_ïì¢Òd9´\CX ‚bÀ½Íh°£.)x%O~ÏÊ`×Z©…”îD !ÝBë°H_(|úAyÔ=[™ï/~ | ŠÇå¿ÛwtéHé†sLÍ,uiD´Ñµ~w¼ˆ.·‰Z Û]oPÒ²9 ¶vž‰Þö®Ý®ôUã_x¶!(i•šeLˬe³5ø¤nCûo¶Z…ê6}¼€ DŒhYÎãåŽe%Ûßþâ°Û V³õó¢+¶h nÛ nDZQƒYŠ}†æÿƒ„Á£ Þž½«7wÁl÷×ópj&N‚ ÕžÞB 5ƒQœ­o‚$091¨‡,Šš)5ÅGlÉZ¿~´Z绎)éýìþÖ _ÎuKdõ‹ñvÁ¼ZT)¸lC“U(ý4މ¬vP Ø–‡'Z0ã¢Úõ¹×cJæšü¦^wÑâsMME_:þ‰ÈK¬„~µu­2†h¶6>嶸!@W}ÕÔ“éGä.|çÌ¢-ëûºõ¬N1OÌ&ï1{‡*>¢ôp«%ˆ*:HÖLh! ØBøDg 5õ‚§–šWïi5Ö1½¾Ä”ìêØR„8xà˜””xÑ`èÉ8ânÞ *ŽAUrî Õ3Ê[ÉùêXi„¡L„½KØ"rÙL °u¿L,ö™rñú|^uÒ™…RÓIøNS>AÐŒô÷‚_ çÜg ¨4ÙmÑ’“+“ñ>©öè. Ž`½»° ºŠdM‘¿–ª¹X˜ÙS*Ä÷µxZü¡>ª¥egPŠ}èàΊa R×Qõè(àF8é¨åhöÙL1ëe©M§t¥€Ápª.i6B #¿»@)ežAñÇ1}F!Êø×Ü5íÉN¤`>dˆRGî »äÎMæß‘«3ÕR™„Yj›sHÄ+`foÈOè\Mš |“˜…ïŽçV¬êÉïšt%ú(ÂFÆÑigª¼Ä™¨Ý8F¢3öIyΦ1à;ž#š5Y]ö6MÀ®î8£ŠéOÄÌœ&¢ÿ_nΆEÕJ&úù·º&ºHPR©Û7:ö®Žðõ1z4ó}¾é’Jb^´÷xG¤ŠgŸô=ó3 õ{¦É/Òµ9+¤J ÂhŠUÍjŽF32~˜4`´ð‰g6cÞ”N$#/iD¿Ô3ŠLÞVÄŒD•Ôä“L"¥ø@ª¥õ”è€&ÂZ]¦Ôyˆ5К¸D¬à,•!‘²lr„bÙxF‹ÃI©×0tÖÀðQ9öÑn7¢¬SÄw HxS´"&ž ’!«9/Ú €¤22AvNè$9o ¬#—H‘ݫ䃯Û4xß©75N£â&âÁ!\xGÅœ¢ÓžÎÆŽw‡ææs‚ÒdÝ—°A¯¹•ö\o3™]tx±îë÷¸¨aˆ®(œêöë ¾V ÊÉHŒ›–æ/@°;{¬×Ý- `¶þ°60¤Íø®«¹¡òÖ«'2ÀȤf ¦Õf’¡í¢&ñKL°s‡Ò6Zö«]KP‹4cD‹Ð­ëjŒ‚6Pj²&hc{ÞdD±Íå]"wc2†"!dî= ¦²¬ª¸ÀÜÒákD¢ÇŒ87œ(€«º²uKõ{Ö|EÆëZ¸th}/ùªI‹æã m5þ\”§‡ˆJ*Ö¢p­MÜJ^å¾\ª%ê%½ÉHQÕ 2ö€BKNÃ×Aœ+ßK£Ónä"Ž”á‰Úç¾o{gR??¥NÛ9jQŒï[­W6in;µo®ÀfŸGá·­ðô+ÿ°V-ººUB-ë—fæSH¨œ[DøkLfCWo«zKzÓ7y{9ÜÀjV¸Ž^ xˆž¯ôî ÙVÓSÏ*òXãPü†˜|ßO‹Ê¸¥–ÜÌ.PMH¸EWåx]ô\Ÿ¢Ë(”eÒ| Z ·t¤’YJÂ`Ý·ªYgÞ€Udž Ó< ~[ÅÕ!Ðг2×Éf¸:Ÿ t²¡¡¸™:Vqµ»˜/¤6KŠÀ‘•‹™¬”ÏT9¬~_‹E…Hè´Á ä5y¢Ý^|^t†¨‰;“2+§7±»ÒZ·­dê À4’Â]Í bI Á}K¨Ä6 ¹ÈôÕêì`<ö Ë­º çÄpŠ—L™ WŸê+ýzjÚâ)EO`ΤâšzÄ§Ê Á´qˆ¦ 6ŠÕÖ¹&è2X8óñÖ«2ÍJÑ% ßß{ =%}Û·:ò1ôyQ·4ø›#k–½¯¼siq{Öi)µÐzR¢ë‰‰Öj£¸/Î_®e¦nœ†–ËL´Ð ”ÊDÆÊ£Ù³%#ôY‚yj«­†~šÉ›ño-9#¸<¥ÔmzÓÜ¡BxOÊŠ!ªI×à¥XšŽbk»WŒÄôû¨ax"›ÁÖî  ½Ô˜,8mã²*ÕpR–c]6î3ž –y§„Ðc ©ñ“f±ÓÁ'(ß;Ú²¨2~¸¿ÌºDl­65³9äJìÙ.z z{VqÖ†e5CÒ†ÌEG²õR&|áÜë⭃¦è´j}¹ñ벬q7À঄érÍ—Ü7+X­}!ØYÀóZµËH!5ô†ë¤+È“RÇ .°‡@žx̲¯-Z­.8€óîÊÓß #ZF­LožÙÏ)]ö¥â2”çå)vnáéÿ·@K‡'Ô¯Ô‘†µêCø××W÷ë ÷EÿÓ/ë.neiîÏ›_V­‚e\ù{D†®YgÛ©w®Äé‰Ö„Eze©åÆ"'N'¡ì«>ç·†Îu†f5˜ûÐl{¢·[þ D\€*Kòvó à¤ê9¸Eͺ¦¯HÁûÄ< tòE#ŸømË›#V€Eé˜/ozøˆ1n¥È9Õ>úŽêäÛî°Ð5^íár÷n¢c“çüÅGG?_—_Ïô÷E)®xÅ<ó/·³ìX™¯é® <õóÙ竨inyŽÃd}?ÒE ©(ßqÁ`Ïnü²‡˜5Îüýv»/ØȱFì‹æ¨~0áÔd›Ç+)÷S¤4o73вìýºßùáÂ@Ë>GíýºkD™Ãh;Z˜<• ,²°˜éè§…cðWn8;fê.†‚¤ËÁrüäÓSƒ«ãe-']^/w€|.‰Ù´K©ÙëÞê(8¢ß SÕ¯#ŠÍ F»èz¨ñ!uZ¶¼HÁ,Ï„Xž#V¸dd~³c¿P2Ô§êÕ9)¾Ìªa+¾YWú|¤Êæ†ö­+€ ûO†úÄ3ßõ¦ ˆã•Æk¡¹@•¸]eþ„†ùÑuzºm^†X‹õ1^É=::©Nc¨ôÉ'/XÕ¾9†}=YV-ž]¯7@å–«(cÒöš –´Ø˜HµÜvìά`–ßlg†¦Îž¼ã"Ö5ļ!°ÏFæÓX×[Àzp‰© É g_E‚“Ú1s…¬ëû½ëÈS”¦°Ñi» OﬧFì Ix@$ëÕ= ¹Ê„Ù*4¬Õø*Ä™’îF„Ôõ,Ü©äÃÞ|ÃÁïÚ™1êU‡3uÊõ,Õ}sÝe;t½^CCϘM€Ç· F*uXλ&)½È%@Ï*ew¬gù¨ädÔëñt[@ݱÉG ä“J1è@Ú™ ·Ó@¼5ˆu¡¸hÞ‰µfb‚+A1²¸‘Ôçûiô®Q÷9`➉4e“×`ßX¯ï Q… Ýä°¿wˆ¥ehp¢¡ÐÈ äx'OT!VßK'ý.ûLcÍÍá³…§i¥Ž@¾{)8~¢ÊQæŒ×걨ø&#Ô‰™žªµ¸©hè±7q„wä ŽŸìuZuHø.§ÜÊGFeá-ë¶D]­øl~ö¥l¹&žºá‹_´ºÈÇå9Б~ƒ»½ø…¨Fꊽn„·KF iˆ" `¾;ý[åbœ¾¤ÌŸ¿_m8NÛùSÕe®—~ÊFÀ|ÛhµƒŽîJLN÷g\¾A·¤LN÷.´·\½4 Of»T¾;{Þ…Ò"“ꮪá÷Ÿ´Ò)qÑ6;å¢?cb¾î]fkŠº+ô7d^ ÌeVÊ˦‡ö/«5é kê­cÝÆ‚öÓùåÜô-ƒ¨îê ½÷ÎZ÷AC –Ô]ÑgïÈnç)žX`J1\£î¼}k~€W˜žomµŠ«©:´¿­8gÔ>i@ê¹xR^¯ØC…åç&Pí½žË?¯*™TBU¤÷Éï8o¨-nÝë?Põ3“n­ytbÒ$ÎØ^Œ&õï4«&q"æÇû’ÓwnÑÒ*‚b©/sa0}ýü>^meô»¥R¬¹Fƒ·Û ®Ì!‚3ÈÑ÷ ÑúçÓà绸cY»õÝ,±­E³Á'PaT@X™ªKL£%—¯ÝÌ ìÝ•šÜZé€ÁŸ¬©zèPF£ ÿ35“!PøxÉ->Úôrw¿Ù’:àì¾cwqxƒÎ'OàãÎô½!µ™Zù–1^˜ÜJ¢í6Ñ›üGüFg;Ïjú²u©JóÿØo»]xÊvùša²Õ‹_ô¦—¹÷ˆÂµ]Іªî;¯ÛšGQI]¤¶W"rõÊuLÁÕC«ðU{í©8H—æ-äX$ôȉhÝCqƒn‡™ø·D0¶_`îµuyF&Ò] ¨Üv#ü0åP¤¤Ath“e÷[7YöÙœDóG®-râÆÓH'(¾R6ûk±`[FÖæT:¹š yó&ä‰s‰·Œ¢.ƒg£#Äl8Ì#™%¦®DV/õvQÚÃù Sçp3XäÎ]˜I™<\Œ¯¯-%"û4Ü™+ÑHåE,{¶Ñö¸²lJÌ“™ê3OiSºÈíH[jŠŽø0Õ«ÌIdZ`×È¢ø¥ß[™A£¬n ±¬/[³ƒÕÝhëèŒ$P™ë«Å9a©u!OQÖµ=P{I¹×[ÍT¹_çµ²±\MçÐõÊ^júÆ&TŠcõÉzq„¤ aF-"¨*JV éÑ÷ÊïMÇ À÷XF(× í‚ØþQë ¬¥rÄ$ûÁa…P°ý ÆA‘©Ÿƒw$VÌe &ØÔâ'ƒå>3©®P‚öŽˆ‡ˆ”9^dšÎL좹—£±”uX½Ÿ#‘a®à5©‰8ti*¨“¨‡1Á.w*‡>f ä ÌLs†¿U)qÔ‚Šæ˜HêÒŽÑ7œ!ºÆ–éÙl°Ãb%ÝÓCgçúŽõ-M̽kêÈ€L)³טÝ»\&0~‡EMQÄ ÖPºŽf†w4â+nÀRÝ"ŠÃê½ìíD^Ü ÓïÝÊV«[9~Ä‹÷W-‡Ò¶jÐ]©½,º²)γ$îïÄ.«œ¢ÕUtGl°Rz!!¸DãoñýÒ_Å¡†Fq3Tô ±{*ñ –aÂeDí“x‡kcÄï’AêÐŽÊ@˜ˆ)|"c˜±ò?ã=ç{@K®µ²Í. á2Æ¿£­V]çªR_È”qºïOúÙêTwZºw=-špŠó]¨Âº‹»›|÷ªœÞËu"ì\ŸTy\¡Šój¬€óJâýû&ؤ÷ƒ®m»8,VÕ]» ë®w]›*ï‚ß_QBí튮›Ëp߃ÓW ŸçϸË.à…jmÍU·€ë¢lÛYžö²ßÖßÙ5¿97zÓÛWþ[;'ºÇþc+ ûœý°D&üƒ„v5Q$zW©Ô¯­ÿ"©±üÚ2‘èª~QþiÌ9ù`ô™úëZ&éJÇ ïââU"…¼×€!:0Øü¥í3Á eQ«ôI\˜Ð_l­‘—þìµ[þ²šèYwYÔü­uZ/u>£'Ù=Ö}©h5ËokÄûAí<ÖŒS ¿=Àä¤D.l¬‘©€ õÆdcì<™`•L}[M½ºëÒ4â»7žn(#¸þúGuî¯`ü‹í¬&×ó–ÕI€Ê}7Ú“'Uu#¦TêZÞ†ÉÀH³DÏžµj,J Xå]¤:ï®qŒ„ ÍDVýï.þ ¶@ ´.%’DfŒ ™Û•½UøXæ ÑH‰k­Î'¸Ù˜ÁöÞ/¤{anuëÔ÷ÙÖIò‹>7âÒNdf³]ëT—B ±§ÓE;×û?Ǧä5dÉÄF¬fµ‰êž§B¤¿ÅKK4AÄFËT<Ý^Aœ¤a– Ø»N¦;QÖnY&ʤøŒê«äá’7~¤—sƺˆltä·[¾‹âé}GÅÓ¯&†\p`G/at"Ò1‚³"µÉk¦ åï&fNqS4\<Ý܈¶M™=F¯Pü(L8 '\ÈI#k9™ #¨„È}»;}œÔr@Ý…˜„c„ÓgªË-h H‘鎽–ÆZ¨Ï^×_²‡?Ù–r$=‹a‘¬´Y¤¹hynŸN‘"RŒ¤"\n¨ÎJ{–‰½txõ1_¿.2š„EÙ‘zu´(*]C³{Û´è|tDÀ¥é ­#G¢E©á#Ôƒ»õØO s$¤R/58!΀WC¤±¥ˆ.»4£uzs´–Àâ ßf¶‰½—d)ÉÐHHCÜkØ"ã®1±uÇ w}Déü\îL˜}]êÕó%ä‰Cb´Ž!±ÎÔLE›æ@< ˉ½éX/¥!âïšÁc‘w"“”:Fˆ®Œú#v µ<0ÉPa#I*zð‰c‰ØIsÖìæu®c}šõ:§”ÈÜqxœSºâ;v5ÌÁ½Z$fú·10z–´ÜUAU·žN‡k¾Îi”0*"Ê¥"›Y‰ƒNOÝ•uïEv˜8 ôWÏõSâ¢j´¢ñŠ2r8G^)cqAÉûiƾÄÝ€¸ÊeÝm¸{1ìT|™6WQ"`ÿ&SM*{/¦ à»×6AݽIhð÷û¡!±:­TPˆÈ§€ñãÄžŒ­ÓÀ:%»ÆrIGȰ^‡-þ¡É1NCðÐãª)OB=xÁ¦"{b"ñ‰b³xŠÊV’°¨ÑÙBqWbZ·ä4dÁ"€S×a“*wd&÷`jÞ4±È-5# ˜ˆ·Ê51ù+C䚨è¾q}OÑ[J“%rMdëQÅ.b'šl¸ƒ”~Œ(¾å¢>)Wa'òÞK N¬1ßaqÕ7‰¨íH?ŠtÃ&ytýâ¦ñ&-º½(²wöý0æ‡Ã–øP’ô$§ª]·ñœG-ä?øú" !Õ` ôõýi¾-ªk7øÙ^;G¶R3tsÎvœhuG /eÁù›ùÚÈJ„"ÒéfŠ×›a3#%ŠT‘4Á®H­ð U–¼¦ïµ¦*QsS¢ä$ž \Qè¾X¢²¤wÅšZ÷札¢Ç%wØx ļ_‘$@µ-bnêØw‰É@JÌð4\Ðð42JGÒóÀD|^PØßzS›‘®bgü½!⼚2P5_ào aÄTRJ·¨¹æòÕ,W0‡uó­¦È×åù]6N‡×¶TÃWeÇêGè{ ä†RC}eǪ­q¿_mÔÏ;ж25¨ÕÄÅb_lɲQªUQ+`Yüy;BëpÙš¹é‘|N+M ˜ö}K–çù" Ž«Ë»>]CG=ß­F"û>jæ6–‡S}:ÛëÎÝ´÷yøm­¦Û›˜°<ÍñßœKÝoÞ´ßÔGpÝ®‘wZv6‡Ò”^u@þkK1.1 ‹SáÄ/kûjÄåÖt#$…æˆ0Õ0 Æ¿/ê1‡X÷‹EõÖЮõ ™Ñ·ét®ÏÄÀ[`ÓJžË{tbñRªP} OzWR]ÁžÞ¬ÉPm+ÕtÍü[÷̼žabf݉m㌽º„î1Ò]Ôc%Ïúþ²%¤½š*jוB\W’%ý;fàþêö}\=þHâ-åˆn4‰8ÔÄY›Ž‹·ƒ&Úœa¬¤~ŠÞÆéïÖ,|VFó&£KOT„àXCn ¦åJä†k·è÷Ö)£oé9Î.ª¿]S€ó²ŸNº–°ûC4§}ßPatËžäV× hºõ`íÛêSõ}C/±‡NÄMT³¯Ø ú‹»yßãÙDm^Ô™Ù>úpÅCKЮ@‘çö[?k5Õ´=?–yß+F;Șý"jBlŠÈW_ÏiOÀ¢ÝQò~s6;¾æoê—÷iþ›ó0Ú¥<·ñžgÀêDž»hn‹>ž~mré}J†é¾ÝãÂ8œóÍ!ͧ­fCõq )_õ×r]~¿~{S+FZ™1x’lkºÒ•Ó&l7°r‘‰vÂÆØÚÅëh§P’½™ôkF.wa hÎÙŸUÅóôp«kk9_¬»—Æi›•Ewð7ÂE«!ùe`mžFtcíºP/k(ÒÚ®“N(´ë„”|}wŠƒåk®OÛi^&áÒYAý vña!Æ-±s–\ÝpÓSF¸q¦¬—;oÙïç.Ðöa=ï”Ã×uCÇÚŠ³ æŽÆ<5à§mWq‹_8yL©¯9‘öÄUGqþ†šS ¼M戅õRh+H$X<½\"½ì:l‰;i¦ s%¢¦[¯æ]3ñÖ[ú #GIm’ßϺO²Ïô7t{L¬§‘©å#mÀÔÕÿ.\6%—·ËéèåÑ -P~äÿùš´ï"ž­ÛgÈãÔ ÊaÔw>žï†ì°Ùö ü‘&C~¤Ô¨žÐ‹tÓˆ‰½3·‚ýÒâh‹¶ÆÏëR&71ÍÂè Õt¬YÛÕcƒ±¬U:I̹Ñ}uO³ë½Çæ¥ÌÁt#÷íýHÆdv»ÁÙYö”£»’f±#rM0°¾c ¬{ò'[ù•t@›*%ôÅFƒ,)çYs^ 8÷?msa?2¥PpIÉ’îª/Ò’¬èÅ ²”‚~(ÈË­—mÀ¡òuJ d¼ë<¹"iS¼ÃNøÄ^ðDåÓgÞ]½9B¬LžßIJ¤yYêÏdàA ëÄW×1hP˜ÃYÄ©AÔF{ž¦laÙglòæãIZȆuîºàP…çeOÕjc‚â­?ž‹¹P.§ÏLÃ2JüÌœê¬WͦzõÊ «’¿Í·$Ed™Z!kí›cõœ¼Ò„#ûÝyd÷0ZÂdë§™èÞcà¦Y¤]ås óÐBjb-É@‚6¦\ņW½ZØgër%Zž™5wëà ‹ÌwY,Öts·nT#ªv:Ï“~`-Ô«Iø× bÙ×v`$Jœ–ª`ZKZ:ebìÊ’¸æf MÍ.^gÍþH]³0näÀšÑuÙ¦liI£=×! mQ™$0f)³æcM$Øèf‡Twäjškë.5&FÒn5ÑÖ>@cxZCÌ­rˆäw33Í29ŽÈE6i0Äš*±Æ_ãèŽè(ÌÆØ wjšuÁU(¸Dl¡J…oÈ"ùèÇ&sÇ {f‰ áE®Ž†Ìõ&àžôOÉÝA¯5lMfÊ¡ÖàÚÌ3yóµYô=H@0Àè‹1R;ŒÔ¦2-*‰÷“]ôº¨ófPqí¯ QyÆÔ«Î•»r_ÍännØDôù¤u×8a{Øo´’»t¾]5fƒ¢°W÷3U"ÓT¥‚bÌrñÒ£óWÝ¡›Y/2篌„.‘v0DeÔõŽHáÓûÈrq¸Ck[,œtê.¦1Zò#rÌj†|ÅzRºàhH9Æ`=úÐì)ˆ6ô|=#R•Ñkò(€)‘?M éfJH Í»ºT˜KW±a=³§2¥Í’Éx–Lh„¢çt‡¦íèH+¶~Zr­›FWÅj"T½sè ƒžµrq }yWÿÞffdà,t|ìŒÛºlÔ×/!áosE¹ÝÒ ¨Å*±~ržH‹sÆÆ¥éPÁ‚}ûCù"´žŠÒIB–lö„O›ƒ#„ØñV°ß="—Ø$ ª(tÛÝ8òÞ´Ó ÖFƒP;» ;Ž8”Í€o©‡ˆ²5]Üõpó Ç£G~ˆéƒ<”—á {2îÞÖ…6«Îåv†à.HˆÂìZ²îM×›âõœ…Ú¶À+Ž·hL‚kMð=aÛ£À¶èc¦ ŽWM‹ZµWk¢ÕwJ‡ôî‘Zé‘:kÄ`PÓZEôYRKD]ÓšuvºmZ³ ü½]µŠ6?ZiŠ饤š,i;gQwÝ·uƒÝÕúJ œIë˜Ñ_ q*+RÔGÊ)¶»#imgt93„Ž,î´@u%-´§¡‹"…v ³ïÙÎ#R]kº§upíˆÔè©.yí”7yóyª'…z—mÒsCzú»â ­|ØæWº´—÷–¾hèG}—Ú5Í ú^»ÎMƒYôÜíJX4ÝwŽuCÙkãÖ¿;,{2k ëÙ¢úÛÚçÅMÅ•®¬îogð?+q?¾o6$ú·²R¬nŒZ¸‰z §dW™vŒZ“à·¦è³âðö—iÙwÔ‹:'šÌìn¦¶+ðkŸgA½2£nòó^ÀÖ@÷~º›N‰ÜŽ»=ô»õ„{úåߞݞ§û«z뉩ϯíÛCÐíô—&H™ÜmôoŽA47ý×{GZâ%‹u«cJ«]͉þ«ÈŽzÖ]w×ïŒ<ë®1ÓŸ{6¬²[)BŒñZ7„hUà!w5Ö}vâG–ôã›òú½:«ÄnÊÅK.­°ÚÍm.q}‹‘ù¤)±.w?Íž+̶&7t•=ÃSü¼jpR2lð‘’gSpÅ¡Òk†$:Ým6…Ù»èÈ\}á(j דžvõk ½Ö害›Cë‰×³.ºSðÄ¿nJ=ëfדDj„¬ZhWðêƒ×¦g1’¶èÿÖ÷%¨l+¥ [4Y¬ý~¸Aíçµëî.  êd¦þuѹ+ôE~nJðÁ!VÈÈš1‚2N!ÜÀﮎLó5¢ÍÀÆséÎHz¾‹¤±Ÿº*áJŸ™À2ÓC­]ò5æS­Ì>¢³Î[ß9ÝÁ÷Øë‘ËâÙC:ø 'ÓÖe'-Xõ¤ožº+“êMí­ãz™µ2ëeOšª^ ;ØÞõs¾¼:ÙYgÖw1pëÃûÂ̹`1Œá~¥®ƒwòvêV• ºØŒÍŒ0žëe†Æ(9&v'õ­³ž|4ôû;l·Æ~dކ]ˆëàÏùô-g6&s¡ƒy.äOÖ±Óm£¦mÛö-$B3…j‰‡B¥nÆedý~CYÉçÀ õ$gP;£CìÆ”N‘¹žê OÈ)™{À§œRLjçSW_=Þ.‡48àèËŸ"®šBݺ!_ÝÂÆD:áõ-Ä~XGßÌĉ±ø˜¯ËжN6çaG–FCê Uß\ Ì¢ç‰m]Ü“ídc‰ côw‘ñ£}¢Ìaƒ‚³¥ Fª5Ù=š»5}\h1¶ß%Ÿë. ™v¥ ê–ÈÝ3i§_ï´~AÞdß…ŽÈ(ϬEî=“€­‘]$œæ!PÁäÓÌD›MŽjÓˡĤ‘;£­§ÉHZ¸B,ƒg+gjV² ‘ ï¦Ì„V©ý^™™eaé#cŸìHÚé%°&{¡Oa(ƒÚxÖ8—š,Þƒó”m™i§cæ„Åv¤\“zÊt6¬•ÜåŽÍûÔ‘YR ,y‰Ï"²Œ#µÑŒ®§öœ®»“!™“evämš+›Q«œ¾_CmUëû!¼uGW¡Ã¶P›ÕÀJÓûÑÍ{’zJ›3RP€Ï߈䯙d läa$WcgBãÊŒ”5¤²d¦:Þ¦¦ÃQ·¾¯×ü02xДØ=L1{"û­‡]£Ã×Ün/Мú|{!féX8Ø×å*ÛêžÜÛZ4nmGØÖ·B8Ø¢=§F§žo¶ÞëùæQöYpÎ9. šp­ódA½«µ ‰§zj-Z ¡Î²P M/°+X„:Áü,`k‚¸.z -à<®r\@ß#E”©ÊÐí¶€nÈ8~¹-þ®Èù‹)êþÍ×Y£b àá⨟m¸¤¢ê«(vÄvbTt"êZ¼uÐc'Z¼Sž¹Ò©UãµK©uÛWÜW°‰Ÿ˜Rv$-Ú GUkFonÂz±¦¶ Þ=`ËÛ„¸í;kÑç´#]α·\¼$¤cÆê-ÌÅR H0ï#±4õ‚"Š„¸—9ÌŠL.éDß —¼†eˆ@HŒuÎ=^»!cÃýjˆ2@6·öc•´¯ÒRÒýÐâîˆjh8 xv¹÷)edаLX ytœF}GƒzGj@—‘áë†L^qOq„ïoB¹‡¤å³ïlàϨ§bމ?”;ò›¹3“Ó¯¸^öþïVò/b?®A&Të@xwˆý˜‰mÝÁ‚8J7ôE!zÆ2ØÌ@€+Ò ‚W,"pŸ&1ý„4˜G*¸:êÑZˆ¬AÄgw#ZÙÊÖ‹÷é ‚·½Áß´CÄ×aÓ¤Þ+JÄE@Ȥ€bEÀ ¡#þn4FÅŽdäëº@$Ï46Õ)Üi§8Â)ã²$"ê>kìMà=>E¦bá>x¨Ò¶†Q¹ßõ¶Vc@<µk°7€é…÷Ã)k | šóÖ¸1*.  sÿ:†±øÔ0F­´Ó|N×E Ýp9™ o©å ´ w㸺V¨Ç¨%Ô0nrªÝ.?€qÜ#^ó3ÂQÈœ7e“M*Ï-xÏlŠv!‡ÀLÜUÌ*Ôä¡"¶ ®Y´÷M}‚ïŠz\Ã1hI X!ß™:Bmæ ªCŒ !%7TÍèˆÅqŽhœ;´8îG¢ ŸÈýð‘‚êéëA­îËháoØk€±¯'Ì!C ,æ£R‘âQ¯áF¢@Êõ7€4™$ˆýsÔ߃ùLáA"2£ÆTd-õû0&Ö:Ù Öåœ\!ßíäíK¬È6*Ø™%Ð1QmÂqö¹ÃÏIQF)á‹‹–†ßˆÂê ”*ŠF¦” £2¹tëv¹Ö÷ëÚ}ž>M¼âŸ4§ÑœAp¢ÆªúRVqv½t&÷•´à¼ÑLÍV{Ö÷eð‹õù9Æj÷7Qã0ËHnH{¹Œ€wïCZÀd–=,§4ô=Çîv ï6}Û„FðqñéI³^ºMáYÓÞØ¥<L›ê‘äÝiÑEÆU ÃÕ@Ô-ºÌ÷Rúh³´˜ñŠûÌ?ucžJ¼x§Ï²_-ľN_•Îÿ²v¥uîÓkí"è¿´Ì<Ôcj/ë!\Nç8í§üKCðÕWU¿£a>MÚ…*_Ü›ùÑhµ™Ên¸þóéÎJyE ÛË?ÔØ»à?ÔKž¢’JèB& *éjÆzþÞ÷§Å·¶ó† © S ÞUqÆFá ¢šÄê`_Ôù¶òƒú íªe¢W@>I-RKliêy° ÿye‘X’t?ÍÚ®G4ñ‚Q Û®–ˆ`xqbp¥>9Ã`4‚Î ‚Å4F'ÇhE4ìó5VìÐÈZüG#?)5«¥"§ÞÐë%úQ ßý¼ú«Ðϧfœ‡Zö±§Ï%ÞÆ\œÄÜØç³u#Ïœ"÷*¨QUa^âYÅ>_¸w‚>ø}&‹/p¢àfvŸ.„+ñ¨[Ï…þ¾ìÁI»†¬×»„°0_BÏEZš!1ΓšÇåN‹¯®ð¯d˜×…LÛÛ²Ï7Còè"žãê´Àüå ±ÓÒp=?F çñ«ÛmA¯Ž8ÞV_ïÇßøõ Æê¹êóºqD2~ †YŽë·D7¸NS÷{b߄ч`R|ˆôÓ)l©ý‘d 3%/TÅïèVýÛE8’DOäÄ`Gu« Ü¥P!‹âs™¨¡P˜ZU¶ùt]ö®Ìè¨@a^%!•zó_0ä·ÓLÙëütÄL=š™`L³^ÉŒÔEÇfêܤ².±KžB±,ÅsÉ.Ž¿=Ò¡Dr'"7ÊÙm{ÇúNrÓóA;úú‰HÆÌˆ‘;É=[ &]#•^¢e—ƒ'(ªºys‹9h¼†\žéPÕ‘Îd¨l™ÈÙÙ™€cRÃtæI1 !Üj8 ‘hM ¯›ŠÀÄB ’­9ŒsP.ß'x;ͼ~f"0Lg%N2°¾ÎûŒNõÍ»aÙ'JëÛñy ›­e?rò¥†ˆuÙ¡ƒEs°ZȚﮎµDÇ„Z\ Wvùêg·Ï•(ò•úOÚ±nm‹ÞðDtÇ÷‹Æ‡Êk°ø8"³ç-Ⱥxï k”fP«%ä%RÚŠ„Ï–áÆ„V2Áµ–1AœÕ-ž!ÙDÍ7æA„CqäZqB¨© Á¤øŽyøÌÜ|¾•ü6¹Ph¥†êps‚®™¢îÞ šxk\¤€©Ý.Ròć#F¢Ô_ŸGš“‡CY—{`®ºÇ ‡€˜EŸˆf/ ¸ C])°‰µb˄ɷG144"Š¥².Ö"Ö¥>Eph_gªCOIõ”ÀqH"Þ È°$“ž8ÙŽxUÄ+ñŸ(3Aƒ U“87¸kì- Œ\¡Ó\4™©ÂnWÌë&-Ó¿ÔªW%àÐH6.±ƒÇÖêÃqÇ{(c NJ D‘åPÈœ”‡CôŸÉ>1 ˜É±«Î$›«åP^®v±Ã{¨§=™ë62÷¡¡#îshŸÕ÷;]#y›ÍeªÓÂ%"\ ã+ÌRC7ÊÍÁgEŽàS¼PwŽŽ¸÷Ô«  ŇÏ!I1#¼ãv´÷˜O€"¤L}¿ýÀaÁ±h¤•èìG³€£ItY9E7´W±~3;¡0Œwq]M,ˆÈôиÜüS” ͊ʺk´SñûúER ݘ/[Ag‰LBu~Éz#@aîèÐýò{¶Ø÷wžðž@7|Mêà +ùó*>t&QÒð?v¤‰ À¥¦Èˆ“¨‡/‚Q•H–\ÎÏLGzŠÊšù×ËR"ó,ueG¬DfçÖŠAʼ%rñJþÈ PΕ!¨®yÌ‚P)0o•Žà̺3н‚µŠª%¾°"`å Ç¡KÔ¦‚`YÚ;‚ñŒBgÒà3ÈÅýÐd’Iâ€w·Z_à-¹+ÞåBæR.#ÚüäÎ#@PÈ×DRGBq¥1”;=Þtv`<{‘SÖ·Ô[bÍ"B x1z2ç;b\TdcÂ7-$pèù銄ÊzOW¦îTð‰šUàcŠ%69\Ô%ɸÅÔÝÀ¿DûN½i÷à_OħÇ0o•UºG«üŒ ÙE‚+uu _‹éˆ«Íì’[j\ïS¶ˆèØ‚(vЏù×Èê>èíB€×¾¥!Ãtj)нtµà4< רMúd¹jäƒCçË‚+®ï—ñd•ßÕz@5È2WøºH>- ã #ñªA4ˆ Äf@P¥@>g4ê¦HýHù¯ àɵ9€O‹ˆ¦‘ªê.|”φ×{IóÍAô•Oˆâñ=$d7V¢Œ\ëðïG‡.äsz«û¡!œ ´J‡/¯|JV_¼FP2ôš‰ âÔj’½få¬W^0zøˆtÜËq f‹ÂN#ŽsÑ ÍMèHN^ ÈÈçÜçPt(ÕOl©Cbˆ "âG¢Uè?ío߯¥^Ô¿7O”J1¢ÈT“C!ô^Ê –Çè:íÑd;Dx ÿƈï#9âw4ÕCEýß‘­sH×FDÈY2¯¬ðëÕ:²s,!m:lì &ffû{‘ƒUï%‚DÒ×âÕUm6ô§QÏ¡Ü]P¾W’–㼚sÖBQbѽ(±Ð¥öûßMTæÔçŠ=]cïý–¦ [½‹J….“)¿{~QZ¼6=:ËétÚ¹%1Ô›¤2î—ÀªL¥!n‚ <Û>䨗¢Ú¦›X|QCÕ©ÖïK¼ß¯kDÝj½¤‘}f4žÃg´ãÝìÿ¢(ðïÊè28>,Jj+ÄÛòÜÏøn=£÷x6Ÿ.ÊJ¡æmVŸ‘´o/WåLz~ÁÅ »'ù­à÷öžPu»zú‘ßÈ‹ÚýûàÇ>Çñ“½G'®§à eFwu±8öOšÑ¢³ç_[Ç&l’ý²:›yÔë÷—–š# ΤjìFþί֙;ÈI<Ÿý¢ŠÐí_œð–v×ödÇyé4~Ì{a±Xm6äœP׊ª0­²]±0üXý‡Ü1嬻èÁ#»ýCÌ3…Ôù`zè!4Œš )kq×öý„ßí@0Xþa˜Fú "Cç ñ#…Wk]72Ͱq,ìoˆ*E=žtŒØÔÒlah£Õ€g'»À‹ªïvðÆ-0ºòëh- l¶îqA}5a¡˜Ë‚ï\àj©yxío·®¿ú×oz.~“µlÂùº¨ÚÄ6VaoÞ,Y+%¡GH“lM:áMÉl‚W2Ç?·ð‡BÙêÙJ¡c÷h:úùX'S¨rub†÷#GÅ|gÝå .ÁÚrÈ]öš&me“½ (˜øÝƒÓŠ_u‹¾S(›»Š.Bß\t|Þ õkFj¨ˆ–ëm‚½äªÄ–þì½ œe[U~ªêÎçN5õð&á=|ðàžáN2\Š×Õõúuu[¯ª­gQ^DpJ'FœG¢8ã§DÑ8‹ jDÔ@Œ¢ITŒ‘TÔ€&Bÿ÷VßûzÝ﬽ö:·ª kÿ~ë·»ª«naïµ×ð­omme~üý½‹;Lߵˇ»—.3LrÜåúÉ]x`ïýìßÝ:¸ï€[W“u÷>Žn÷àAæ:·ÆÎ×çl¬_Ø~rc7—‡Ž  s÷e~ûàî=î:·/ì±ÐÆñ™|qoÌø£ïï<¸Å<ŸKû’*¦Ûþ»_&hà ìz_·=¸3~øÙnÓS µœ0ÏqÌywÒn?g‚¢Øe˜íŽ4)Ç„·u~÷üŋ׿¿­ûŸª¸ß·Æ§W¦™Ðäy^ºoÒ¬'û<·w2ÜJ×÷ãþvjy„ªØ¹ûZ–¡ðððˆë(³þwÎ=ppùBŸÇzãüÁöXy#“âΤ#sýãÇvŽÂþˆÛûûûãÏÁõ3Á¶\ÿ<®Ã‰Íé€rŽ— 2^çÚ{ ‹wšx ©Þáá¤DƒAr^Ù½Ä}ÈÁÿí­ýsú³£`Õ~†ê룾—{ýtuÔŒëÛçêò7~ìÙoïîr0Ö­ÝKlÃ¸Ý çXR½ƒ½9Léï²;Þ&™o?ÀãUwd{ràÑ >f+K|7±<¶¸ÙÙÞašèm³7xõÊF—¡à{`‡ÃóMؘp“¾fÀsûÒ!Û-oï<ûí-®óáÄädîr|qØÌ­ Ûxgw—ÃOŽ×Ì™Õ:Jî\f˜ùö®ðY.ÉÃK×» Ñàå­";þöî… Ìïðâ¹=ŽÄðÊ9î·®œçè+'=Ž pç×nÒ›¥œ¬µlß¾öæÇ{õÜ^–Áq¿Ï ^Ügú;nÁ‹²wyñ*«Üٿº·/_âÐÛ—Æ›in9>/1°áKã,³N&ðÄK,ôÜAv±¿½Ç/N*ˆ¶³8áºÄáÈ÷ÏqÔ;»çîCÙÉgïÞ}pñÓðàààZö¸¸Ç‘Ž·ëÄ)A…·µwaÒ[ÕÌS×µlg¼­Ã,•Ô„{'Ë9œt“`~ö`ç¡Þ sŸíäw™¡›Ô>e!”“–>Ü•\–kBªŸ%®ŸAl¿¼+ õÕKm–NpŸ!â»:ÑX‚´Ý Wöä. ãäú£í%|®dÀ:‡d&t¾Ú=غÈQr ¶Ý£÷–éxQêSxèV99þ²ðÅ݃+{Ü5ì±d‹,1ãÑ~Ì\ÃÖÞVöïí9IðÔ÷².ÃõþsÛ íÆv¸ÿàÖN–oüÇÀæîþ.C•øà%=ÜeÀ|‡G¹ó h”¥y;Üá(÷ÆJì¾l¿¼Ã=†¦pûÜy¢zn’!Å;žôeÈ‚%¯ÜÇ€¯r¤}縻8ØÞá ª»áãØze€¶û{{ÌS?båÉ<ßýû8âËI Ö ìtR z˜ýÜ‹àáEŽqgŸëhxeë”xåð %=ꪘy»ç}6)²É>‡.³«äÜ…£šx¾Xˆõå t.C¾üàeî»—™7ñ"-¾È¯/rÚèð€[g[{ܾÿ G¹³Ãtv¯3®‡ãÞŽsÙŽ{ûW˜ï\bîmk÷®‡ã}0·™¾¢[“ƃhüÖØ·É‚\'qõ,lzlËmguÔÖÁe†<©ÕÉtv¼2±Êñs·ÚIãÚ+O¦ä$(›yoÛ>ùÌ_»4^Y]}éÂ!³J.2ïmRY”}f“Þ{;X0©LÍ|îΕí+fÞñîQ<“!¨ÜÞÝÆ“w÷p›%°Ý¿p9ó..ìÞ}™ùîXse©–'aŸû2kgòÝísÙŸåöü¤÷1Gfy0¡ŒÌ€“Ïïîf©(ww/MBÖX rÀPgŽŸøÞN¶ïå„än÷Z¦Oçø“:t½Oç•+ײtÄçýs´ßî{€é²¹u1K¨yTÔsw掷öÀ^–×é\¯>x OÈ­‰uumË@ö/cû°#Øò^†üðzn{\n1VGé§ÄOì3@×{9‚µ«WåÕ‹Û€ÞîØÌ`Üv9¼Ý‰%%¨<ÜÍ  wÎe!r“„Ó"s{+Ë„yÀœ÷¯0ß¼<^‚™;Úa˜w·dH/÷Ñ,s—ff™ÿ¯ãd/sÄ ¡âƒL ÂÃ&…,ð”&ßÌR>À!©wv²àîÃŽ s‡Ã\ï0¯xÒi!~ä9¬è%Žøq¬Ö˜‘æ„Ú.ƒzž<ùÌ£Ûbðæ“®™oîì2\©;\ûÅ+[{Ù>Wî½7‹*½²³½w·á•¶A'…3‹z¾r.[å°u~Ò¯ŸçîÕ½lkÔI;sGûW¶¸÷>öÏ2¯c›bó½8~Ëñ¹Ãt½¼}Aé>°“ÅÞîî3l“s/ûëL[Ø#ÜU¡|pù 1¾˜Ý“|óëL«Ùñ¢¹ÀI2ĤãÍ@à'AÊ ³èÙ9ñ13›ë§Ö¶w ûØ2Èþúö%F3l_f*<.\`^ñ¥û²ŒÇ[jï*¾÷I~ŒáœôW‡·9þæÅ̹©ào\ïâ¨ç WÓ”vR÷…‘»;—2Êÿ•LéÑî¸péZFùïŸ"îë½w/\‚Ê 4÷µL‘ÄÖ…,Ed–Æûúy´•á …a“;zp{÷Z¶/ö}`ÖÃýóûxñ‡lkÔI©næ’ööïÞÉ«ï>2™.ÏŸ›¸–)Šº{g³N8âw2íV÷³œƒ‡ûè•ÖZ OÝ$ΈèÃË—Åx¸õ`¶Eçùv2Ü„ç>Å{÷³hå«YDùQÄpP¹¸#"*wÇ·–ùÞƒì>¸Aùî2ü‘“¶s[ˆâ¾EåîL <€Ô=`8 ¯f¸E'ÇnÑ;AÐß¿»Ïµˆe¸"÷8nÌ,òüwê÷$÷s‡ˆüDŸ2íGï˾ó±mž½·Ã,øðá=¼˜E™o1Ï€CÆo3¼©Ûç&;lÏ›åßœàgî÷b¦Š`ò=D&îï^È´ûÆ™öÁû³×·¿Ÿ}—.4|¦GMGÓ4»&·¶˜ö¼W²¼Ÿ WéÎ.ó½½,OìØ:Ê<¿ñá—©6¸rnëÑWÎe×ËÞA9=ñö3ë`¢° ƒÙ ;ÙJ”­½ËW3khë>¾Eqµ~.ów·˜V¼[hº]ç9exS·3ë~¯º‹cü\²í’/³• ¸þ¶ö·˜ƒºNžËù­Ìýîf«v¶³ï’EÆïïâ³Ú¾¼—AÕ_º’厽²Ÿù“¾c™õÂT]ï<0¯OÇÖ}ñ~˜å»q_½6¿g®·F†óíðÊÞØz™¯XÇW®eªg¶æ›ú^öYnÖƒñw'lɼww†ëu’ÙÇŸÛº8¶oô`~[†×]¾L[åƒ )ìÉÉ·&üÆó··2Øøý½-$vÝÍ ËÑ;¯»öØÈùòN¦Ýó$´‡ßÊüâÖÁÞ9„ËdPïÛ;óûuü­ »"ܽ·®e>kwnÁL>ëÊþ5h¥¼›iÀ dùµ£RÏLKæyôüî!¶[žð­?U¨(ú)Õñ:?G7ÿã>¶Ò÷ç»0ïìÜ…^®­ý±6ÊdÖŽ²¸ç`që“håĵ¯pü?lï^hÕL·çIõØþaZrDùºwÄmšE§O8ÀÇÇ#ƒußÚÛžô¬ÌÞÏ$—pe/ ž]›B®w˜+8"¢Øá>í¨Ñùv]p¼ð®U}ýîÛ»¼“%=jâ¼3iD”y:»Û{wï08êIµä…=†­uÒßoï*GãzuçK;1§¯rhûë1Fž§vüвí¨'ÿqŽçÂÝßaªŽl÷&·‘½Ü‰±óÀ¤s¦ö}ç™~Å«Gf£¸?v v3é¬Õi\‚+'ؾ|ÿ¨íË—Æç'C«;^Eç÷2®þõÿØbÿøÑº{ðñß8wñð¢ÿÒþeæ}5M¿{²æ4ðu.\ör'\¬—¶àþÄüÝŸ¬«9›ðè±_¾w'ÃŒ<Áçì^¸º›-˜‡Nß »“†dÌG]Ø¿{÷Òîá5f•œ»ïò¤2ÉÖØÁ¯ÛkL»öƒóÛã/óGl¤;wg/÷Hçmí_cùxwØöä[Yðà´õÖV¶}øø®¯r é êöe†õ­¦úQ«DŽÇu‚eÜïùˆwwç"Û.}B0Æòñîí?È‚ý÷ö¶ö¡lí:¸ø0“Ÿ¿þý+;c½‹ßkH¶˜`ç¾ýým¦ˆaç½ö~/ïñ|¶Örîû'mf8žÞÝK ÿóØbÚßáÀòÛ—ù¶ô—v&}˜ï_à‹*&µ>Üs¸2ÖÓŽçyù"F¯ƒÙÏ_ÄØìh}Z„Üìu0ûÃ}”×ÜÁÜsûz»·‰= ¼¾“^¢W¶·®e×ÏÁø²9úÁØþ¿/ ú»slÛø#~ã,È}ü4w.ngx€/Œœ»ï> ‹-&õg—÷³¼ÁKæ^®Ýûþùƒ½Ãó×2Ecs~ko? ößÞû£ýòÁþƒW3¼““œð~–Çv¢’ïÞ ך6ÛË@z÷¯ìÞÍÅ/\e›É_Ù?È"8xH²XÒ $ð"zÉGßÞÚÉ6–ž0?íleÀ®“Ò©†–÷êÖÞÓÜ|÷àà€k=¿¿ž!gü4ÿí-¶™üÖÖ9¦áûÁÎ>Ëw|n»™û¾®îg?äðʽ÷®e¶Ôؾ8ä>äòÞ–Ð}{bDd?ûÞûî¾/Ki=¶d~úÒ…½Ã¯dÑW[,ýò¹ÎqôËW²dÏãï^Ì`Lò1Y è+ûYæáQ«@ÄþMŒ‡mî»—bèIóJßy~â eð¾ç/]¾/K€{uow;‹Œ¼zp•Á¹Ž½>Ñzuÿ¯T¾ˆD¾z™k˜¾»Ÿ§]¯>àÈ©yÂéƒsWÙï2ˆì#àƒü[-ÌñÔ–ÉÔlOŠËñ»û‡ y÷âƒAß=ÇÑíînïN€3Wñz·®fѯ÷]àÞ‡,I÷¤zfûÁ9õz£p¦~aüÝ ç2ØÕÃl«àæ4÷˜EÝrøïC }¸3A6fÞ;[L›úÃ=é=95¸Ú½滓k¦&a;SÖ~„AßaHÐÇZƒÃølsWv°ÇÖìs?»Ï7™¿ÀUaì°Ÿ»ÃÝÅþ9d!»þݽ,jùðòÕËL-ÉE™~xÀ½ã‰…‘]Õ¢ñìõ^aWÔ•s[Ìn—©Q™˜gÙk¸²½Ï ·w' ƒìú½|À=ßË[,ù.WÏrñŽìyg—y;,=ûXE]÷Ù»){e[bè̞ߺppñ\FGm]Øe´òÖ…+ eõÖ•«î`5ÕØ”bžäÖ¤Y]æ }fÿÚQïxRò™ÝGùÜleÅÁ¥Cæ9\¸Ì\ÙÁÅ­ LUÃÅ‹\ýÂáN¶&lkRiÎüìÖþA¦‘ÀÖ›Ñãï2ûø¨wOfìlí3ÔÝ;Û÷ Wê¹I&:óæ·w¯2ïx{÷ó†&ôÙõ»}iŸÛ±{Ìžß¾¼Ãì¡í˹¿vñÂäÕû¸°uÀÖP\/`…j‰ÉÊɼù#„ße†Ê};ÓêalÄ3§ÿÄ´¿xž¦ãï^ÜÞÆ59©¬ØËœ“ïî0µEûç2ZãÂáÁyÄ~UKleë¦&õÙwqÜG«mò ÚØl5ëÎÁµŒu÷áöáµl}ÞÖöþ5Ôrçw.Nˆæ¨§>}ÙÚŒÃým'Ѿf«0÷vïÞ»–±•/Þw©ÍþìØ6Ú9w¦bãðâö¤ˆ>áʹ:ù+Wv/OÊ“çŸúîþ¹Ë"rbî\Dìö!¥ó"óÍÝŒÀAЂ»Ú3ÔÁØ8L÷ÄO9w8˜~¯4ù^ÍRÏ“¯¢øž¹¯ãÞ=ñÜÿ'ÿÿÑoGý¹¯†Ó¯Š“¯Ò¹ÿêÌýѹÿ‹»ìG}HÏñ×þsviåɃ{Rúeôð…Ï] üßõ¿Ÿ3û›µ£ÿŽŸXžIÄ>Aù2Ž~6ø?_²ÏzþïÜøàé—øcÕ[vÜãøoÇŽ¯™ûˆà‡ãùg?÷›Qoîº:º›˜[ ókm~AeïçèW»ôÏ å5ýðg᳚»ˆ£?¥ã?”οÈ]öþõ +åámÀþfWXês)é²Ë€[ðŠçðüFxÇrjåú+HÆßé±/ž}è_§ÓÍÝ$ì9îʇÎ7V™^}串Š× ÷ßD™Îë÷&œ_}ÅuñÛ¿ãVÌC ò+Šù{R¬0imÂ;ìÀÝ%juvý/¥ÎÍ“[ÝÏr=õ–a—ïÜû˜ûÂq'±CÛàã6¦|‚s¿áþ”عiðJÛ.óÒ¨ÂàNwÇ—¸‡³J:«Š\'öõµ2”žwÊ_s´ÁÕånÍqç©ôh™ÕŸðžáÄI<š æöPV¡Ä޳–9Õ2Ö%ÞZ2ÿÖ‡ŽÊ»‘çÕMö¦ÔÜÿÉÊ »Ê˜9Ò<{ -‘D°;âŽ``w„ó,r®˜ÿìÁ7à?gîÁ3¯0_w z;qŸ% ÿG8u6÷(ñãÍqÏÖ§#vù¼«ì¾JRöŽ]2”,§‘#YPêC%ÜWõU¯œû2ºÇm19 ®Èm§‚õÑQ ÙÕ“ÙµË]±x2öRÊZƒÌ¦v¨`çZqº)ì†È¨1×OƒNqéÈX@¿4ã‹»_œcÝG‚þK|z#u®®yÇvè8i}úÆád$îÇ—8^=ë#D¢a8T¼$&Fã6Îçž)c8DyÌbò9_OO­'·["õ–rÙ¿‰ëÈKS÷²ÜëÞòÀ=§?¦xtôr8n‰ÓAÖDm\A'v›DCñ§=ª7v˜Iœ&Jv3É®‘¬/˜UœQOˆˆôäå—ÕÒ±èèô»…5Ô"ýÙ’1®Ô'<1Lämk lN{v•ê‰u1{üMh,ªì<úNÒ§ïXÔì27óD¬¾.XéÚzº>¢†qNµÝsÛi Õ†y Q—W˸7ü‡j8¡ðŸ.ƒT*ªÐDÊ{¤ ý!?WÿÓH;ìݹ² ‘àãÍk´B1¬—5áó儳„‰b°¯€_ý‰Ç8îˆÇi¬ŠÅúc·¢çÂJ=Æ}¥Ã{„€Ô¡(Gt@ ÚKQ—Ä™tò)°FÙ|e¬1•«4’´ûP}Žk‰4yVÍ%»¾§*=E! ÅúU©”[Œ·J}}ŽDò¬:îìB¬H[,£Ç5¸'Q. Ý3ë[ÐŒ[;}ïDc¼pF‘S[9Bó‰BËHÑÙ<û+v[Ã{”)„ù38{E}i›fÂÝëºïÞFÂc–Í|þ¢#Ñ‹4æ–úE$])‘,¢õ¸·bèf^)zƒÃ“È:ž±B·$Bd6kǤ²_ÖUDfyÈŒ&9ïÊ¥F*ãƒÁ‰çŽguvta(a«rk«ët YË?ÒådM$¯E&ÙÓ—<é§.«Yø#þÃØ›6Ì“WhDñÕ ñ,Æ_qBIdÛ)õnx´€<¤Ò§o2–-û\§W¯qú"…S¯JCÌǺÒ"ð˜d‘:Œ§ôTç& dë+‚¼,b¢ç}c‚Êë‰.E¢AÞIHQÞNõ¢œçJÚËáH9^‡_ë= P ~H> †¬b¸“{˜çPÑÀŒãᘻ¬ÝEƒxª2»Âq°Ù–8‡¯À¡¡2Grê ÝÃÂ{£“±61åp”bíÑ剸0ÈÇžœuü¨7–Ï™¾ÓL‘êÌñ{¹¹Î=gÆJÂefµYiRˆLH‡ÿŠI—õÅ•«ûܶ2š(!¡˜Ö/IzE®ˆ³×³áÑÕC­.êIW‘¸I*eÎâŽ9M>èJ6*ãL긋e:RB0—§”Cj0›,.U%q]r}&†²oœæ~äsG…`=—u+=35:_„¥“ §¨ êé;ù e.³RÔO*3/«²“® TâŽn²ÞOÚQ|Û;ûWãã`ÜœוÓî(ƒé¬á Љ"w %³&œÚÖËJdŽ¢¡ðºÒˆSOxCð>ù;V ¸¼ú0vœ4¾p"§¶…pg©cœêU"Mä/9EÝSÁE4ue‘j_9|ˆdpO´ØN”õ*WÁw¤"qã>2=ÞbÔÓz6\4íÃÞB܇“3¹Ð@Þêbþ- ã‡j¿sQ«Yéi¤+ƒBÝ´¡&–Jx^ÇJuéK&ä+áIœÎì á3¨¥\yº@¦M, 2¼?§ªdòYššh„ŸÓ\œÓæ=‚Rgò‰…:ǾV¤óEäô†?«—#ÀÛÝ~-_㩘—óîÜi+ؽq¤pîåÚ¹MoŠUv´ˆ$“~™Á'öåÞ<ûÀ<‡Gøkr9Ê«DD¥¸Átå ‰lÆyêb¡(—^ÔѨ}fG&¡@Ý}Àq8[±$È&g×UÇ©’¡r-¸‹6cÉëN¬NNÈÎùÿî*MÅgF§výe]¸Š68,rjžß±D—©îÈSÉå ,0:5Wõ[’çôä >Ñ•ľ¥-^T»é,¯Q$7px"Î-ÈõôC˜–„ýÖ×4'‹‡©è$<µs½¼ž”_­ŸÃYJÔÕEžòV¿«ê3°»b@ +S•¨!ž…ì/vxqòÏ*0QF4.R+©p$zF5ÿKϪÞ#ÄÓ²>CO]ñTÆ:w?»H]Ì“]èuþ"]0Õšö`XˆM³ÙÆDÈŠ÷Oåò·¤0c’ ¾åø¬ëk«“# ×Í¡%}…@êðºƒÊÀ[ŦÔýî¹&éÁñÉ]åÞÈ>9eȼy’x9ð” zH7òq,øá9}UîܯŠBCÆ]5 Õü¢O†x7Êcw%N&Îl]šßµö‚߇RèBGù3ÆV¥sP"Ãìºé¡DïÙÕc ¶“T#ŽÈ„ÄìÎQ9°<š*{ÿ»9ýØU«'“Z`UK7ãÑs"€Eðd^z>&.mý¨ÿÕèN!¥(à,5TXt"È€FB$Ëq˜ÏIê÷WsEE<Ú,_ÿÁ|bÇbÍâÓHj’°‘·»fo²¦|„ïB¼Ûoxjß—2Ü+¹Ê7õ§P/OØ×›ÍK•È4¯®ιi§ø¾?gíÐÊ 7÷ rµ­pÒî:|…ã7™õ2ÝEž­8‡»×UY¹â29[ƒ0™°¡šQÀyŒ‰ Owß\û‡‡íØæ›ö%nJΞfJT= ò²$“r<\ávÆšN–**ÜX†W”ñ&yê7zê¼SC¢ƒÍú;Œ´¦vÝIs)ÉÍÓÔ†å êå ï0¤LIh 2]I¹ŽŠ°@`„d⨇47;ÿMóö{¬áã熘·lÒÎu!þkrHD2þeÛL&Üô‡³Õë‰ÆAfI¸rªÅ#}˜3f ¥…BôÉÝï#ïŸÕxDCü›º¸N$ÎA®ïôP»ªL0çsuªºÕ`b\=¾PBD^{ÞqšG.›lR N Ö䆨 »§št äyr$É0'˜T¿^T¥Ô©®1l®Lì³äŒqx½‘8GEÍà V\ŽhH§s– 8ÉÜ «‰>ú9 Þ¥.Ã|àÛ Œ©·ØW*õÉ9zòš8ʱ³¦D"ƒ§Öw//!p.’ P.Êeph:ι:'J>¨Â¾LU±!ÞCŽ,n™·eŦ1žòJË. ``>ÙÐÔйPD·Åcmù­ ïU'Gª0ûÙæô£¦yG!ÿ$¡£“4f¤ø?²ˆÛcù‹JüuIB×b=#Û~5çÚо`æÈ×\ί†•M“" ±•#±"µÀª’_ˆ?þ/žÈa‰UÊÚQ5«Š§.È$ã]‰’K¬blGze¹q9}¢¹?¯@Ç(⎿Íäj;Ú¥êdÈñ¿Z1Ïq7KJãì£×®ÿèõ³ƒËòä*ë¨ïüGº»ë“u"Gt‡þj)š óèÑ'˜Ø…ÐvvvU5HyJ_Ä<ñBÅ/N’P”ÁÕÅÇ;Áj+y˜ö3Ñø»t÷Æìë©M&AdTå ½yŒY³öœ ˜ u$Ú$c¶/jœŽ*‚Ìyݱ?|ìG[Ež”³„ÈW7JÕ q™äNMy˜›02“¿ìåfu”^§7r¤¢¨èëν<<ÍN~>¥sÝ@Pû"#¼'ÕÑ”¾³Ë7'ûäЗË]µÑ—kªù ^rBHuí9¸[”¸² ‹ zÊíŸß¼UëäèÃù0nì>cË….sè1ØÕ©R-®>É•êO”« ÏkR”¨'9Zê8y™˜H¾ggø]=]ugª ò×h|÷ög0:êx‰_­ŠÆ“ƒr!‡‘G‹–üQ&_ÔÉ•?âgªkáη™×u¼Ñ@hZ—. GùŽ-zh|¢n\³@%á¢bžPl듬"‹©íGê*Bˆ?¦º{º‰1Oª\ÿϰ¾õUI wËqEÖ®¦òKYèÈŠ('Bp¨à—ÉUÌ»`/ŒHŠ;*ʃø.U$Ñži/s“ü1áÄ‘47çëå DURjÊPâHÓ¾îøÏF§t=ÀÈüÀ¿s­°ŸÜ|Ÿ¡,mnw4ØK¬íE婵¨fD+¡æŽ·žeçJÉ¥èJº§µê ÷Ü•s*¼žÇ ÷ñÕ*X ÕõH‰hxD ÀW½Ù‹EÀ;¹‚’J²ªa>2~ÇÍï¶d’en:†D›ÞàOœE[ð:*¹¥ýè!n÷Þd«A©w‡æmºÃÔd›òh@š÷kü¶Áçé= pA>7ÒÌ-Ö看“ä)ÙJsopYdßêäcW*N²XkÊŒ£XÀß@ÒÜ_¤É¥úŠŒ\·è6¹râœc?)åÕ¼÷Q'Áûµ/q'†2ú² Ì«g Út±í’¨1½Ü©anJ3Í¢ºz꾡‘*ä½XÝ€TiÆâY{ „äà£gF*í*jïtµ…s[Þ̺'åchÕí*¦”$G‘`rÏñÓ>†A1ñ›˜³/Ÿä ˆTæs¼9ÒÜL5¤Žª„e®ìæà ’ äDÀ© Œ;™Â˜3!X/6 ›ªIð\†öÐóq>÷1O|@ :ÂfRW[j5—×îAJsÞ–þ4Ê×@XT]2ù«“/Ä-!{|…_äO¡ËÝÄu! a^U•7d(py¾HNÒâ“T•§9–/Ë”U"¬Áo€ûº¬Æú_n?8G6MæªXøÐ”šAy#¾€†ˆ—ª'PQȼ׎’½C1ÊQ`äÏNx[„vò£ôì±&¸º‹0 ȧ4WÏ,b…d‚W‰Æ÷hÎ;ª"sÎ,®>¯Ì‰»ÍÃRpW¥‘º^Ï[‹èëWíϘº§½\ Ã<¥´Q?GMR¼ðâWt(q$9¢¹†Å ] Ï^>LŸÿà‰ûr$ñ|ͪsRî©©.È ”ÈêáZê üDÆâ(á³ÒW~‚M:=_óï(w–B7äÁ©Šœ= £NÇǶ ¤”+”+ŽK%“‹(F,€»mv Õbæ°iÎq?ž=_tQÙ»Á¿yÓcP.ÞX¬vã D½$˜âÉïL¯'Ú˜wâu–Œ¢ëAåi\å`+I<¨±h‘"E“ìãívw¢Í“¼É:Ї¤ÉOE!„–4M¬Z8U‘÷+yûçEò Ôx^q·ß±£ñNÔQ”§ÆEîîëP™¹;ëåú’15ðqÌ/tÜÛ(U½öô¬\®$Ö3j¬Žø%³´ª>$Wm›o“Ú`æÈ-¶_£i#±r€W¾ré¢!÷¡¯‘à‚ PT]Gú æíÑèiŽmëéå»\Ža"ÇãšûLS²[I†pÅŠ”#§ZôOB¯*¹«ƒÄ…/`J5VN>¢(Sæ‚m}>c‡qw2«aš{æµ’8n¸T‘áðZź{Nãž¾à:™¼m‚òÇG…b]â5Qa9; ‹†xÒ=Fwй›F¢ 'ç/’Š2Žå.ê­O/H]Ò\ï\áQ ÄÀbŽnálþ(QcÀ=ÄqµJÝcäÌ‹rräBZ²+¢s¬Ì‰?ÛW±{i)äOꄒ“(‘dͨJ#³ªb±¦'P?´P‹ãœ<”áö…xôòp`ŠMµ$صwY²%uª#¯/¿£ |Ä]-ZAæÞrŸêîqŽ~ç¹Ð% ¨E_Á#­„`iÚÁÅ'hn©XqríE(Æ‹NyÚGzþØü»÷Ò^û9vy=±:{M3ÁœGZ’j¥sÐÇ ´dmýtáóZ•p¾.Ѹ½_´Ä ZQ¿—zðq ç( õæi]|pž’K…¥£`ªøú¥{ÈnG_àBŽWŽòö\Á~o/LÄK_˜ŸË­“7ýƒT,¦n+£áC¿J¸Q-‘^NZ½°D!ó†ã\…»‘'×;.üC¶¾¸HB_ß”ZWŒ–Ëäâj=%µš+Ý!ZÔÞè=ã4IÃbL{ùM=) Q‘&÷¡aoJt½‚Y¬Iê+&Z˜È¥.h˜¤ÍÔµôBi¥Nn•%voòcpW^Y‘—A/ZÌ7‡ü²îëQá9#™šì^¾ÃPŦ¦¥È;fbS²W%ûµs©Õa+Ž­$U¶/ˆú ´åõEu=‰±%gÓÖx?n4%ÊM“&Ep8 štó3L- •mÑ:ñ€O”hùœoÎŒ¬–˜¹§ ?fÔã4åL羚%XꨫÉðQäE¹ÆbÃSUcñ£TMĘÍéB`eÙr—ˆú¼Ø]O)&½(”–úí ™À@Ù¿ÝáZÄ'TpÜR÷¡¢}X.2NÎTT¡èX]à2¸}åQ^¤¹Ð¿W!±'C¬!òÕ)¹ >ÝžRH|sà ¼sRàÛ–ÉXt䌎,d² üÝm˜%z¾z¯­ÞÔd÷Ä~2U‹XuÇ¿ªŒ­|„G?U_ù¥kp®g c¨þY¶»èîŽM:ÄþÆQš ôÎg·‘¨: ›jÙ[ãXôõ"Ê×¼"G¢Ti,Ð×@ß°JXOÝöjtO¬kd¬dÐ?[©Ù®?)ý0¼/é1 ”ôWCmAŸq,Gx%Íï¶øž˜š“)IÕQÝd(EZâü)8f=½xx¯ÁžXÒÎRâ['¼j¯*=äx,›çy+Q}oé8‹¼î!É-Ð4ÓUuHA›¼¢26éÎ+(@¤‡%ŸŠUÑ1ã8Ǥ7÷Å*ç<ÌæõW7 ÷ó%bM¢’Ö'í¨£K’AÖJcIÅ3«ÚcK'ؼ¤Ü‘Þvª|­BkÖ²he-·G{ùÚÞ-D&å¡îÉ$ËU„ߌó'&øúþÈ_טäé6£Sö'ƒJöß3téCÿù߃?1¦à¡=&1|Ž2îXÓúŠÇ²û…Þºb‰Ò*îŸX<\ÿqî¶àbœ‰ñÑäZ¯ãñèUwŽ—0 >Ÿé¸¤ø 9âÞŽKŽÎe^0G¤!Ú£yOd!>›+pq|„‰RRt\B­k!˪fäRÂIαùj9#©Î§«<dz'à _mc2ÈN]8ýèk¨íKª )·=S‘Ÿ˜0‡)<ð2$‹?ˆ<~:ÒcT«á.~îekCÉQ4Œ;Éœ¹ËXÈ]Ô¼t]ǺHW‰Æ´`›u+kÖ= †2±·`w×øøUp9˜ U0lýªZ¤Ø:}•þ•åë ©Æt³X¤ÞÂiƒ4RPžÎ-(MÕ¿W® ³Ÿ,XF“HÇ€º»h2t›s©êej(FýU‘Z4Ägý ¹’NÖ4‡:AÖϼDÔBáœtq´p…ŸžÄÚ_¦H ç{·˜7·íÈtûϦdw:gerŒâ ŽËádç/ƒBhig‘ø”Þö˜G÷)3Z÷PݪÓKù”_­yóæ±ªÐIYEê¡ÀŒs4ÏÎÔâtu±„E(b5îA™‹ÎÑ€EA,²IEÛB‘zr;b/¼E8¥¢å8‰‡’<öRÅFnÐïBÛ—ƒ •½ÔŒWtT¡]µÖBôŸV÷×j,­«ÿ^^{}Š'‡ÅñØ%jºÊnΛøÓ ÄxŽ;uöâ~ëBT$ù*±”‰o”>OS1m©w¾Ü–º¡“ç;ùËÇo4RûÄQ‡E'Q+t¢]üeþ}Ídª‰8«}€x\ÅùJò#»ô…Iþ^ÏùªZ\ð=i¤]÷žH÷BÑżÝ|£ÎMFˆ)ÎA}Ca9ò@Fù„º‹|¯¨Ê[‚Ë<¥T£NÔÜŲºð†èûúbÀdá2^.w,Ù9ó»dãú#œVæånÆ1ÌÑï7Žuœú’ÀüÕAâ³ÈÍÌ×cúDM8ß²KE笫}Êqêy,X|屸½4ü¾vï|Á¡Æ ?´<—Å-7™ò‚môüð'áNå`ø8ׄ“‘ÙÃØ×¶¨Á̹x½“¶”]©¬7©» ¾-?ä#UVSqÐFMÃZÎãÕÉx ¾¤P›è&¹Íû:Ð19±™Žü˜ÐóûÑbØÜD>ÉPÓt÷¼I0B©OwëT&„ñq¼{@h½<Ûù õ½0ÅYy»¸ùùåcmË3ß×þ|¯ü"Ž“êeOðÞ1CÂÚJ§Á“‰÷å'Ê:Iô¢¾:WŽ8oŸ¡T‘iÎ{;apêñIlT`Ol=bÄ÷&$Ëç}rbe'±èõÊíXW©æß8‰ö?ÊöïùH!40N)ˆžÓ —3ò‹€ld2ÔE²÷‹ššú¯ÅJã ¤Ž)7¥ým/7Se~¼G²XÄHŒI –»7± GÛ¯ÈOZš9˜{yÚî*A!îÊ•ãvOÌGSà«qqÕû”6³CÒH‰aQ77êå0„DÐÂÆiûÎ"€óœ•¡jPÏä¶xZ†p¦7§Ëqœ ÿ/ƒzÚ—¥í-¤F*,Æ ä ³4BñÉT2ÐɲvD½Üð1—{bMäof=j²˜\´Ü Ø@¼Xn,Þ?Ý~Ì¥“F ‚Ùµ‘ø˜G9g矘[/%Í™c:ùnGzF‚…Î7Â*I*˜:fÙZ®1p5<‚/[×õçu€l”óȃ8&Aˆä€<:¹›[ ç(ÏÙA=Õ˜#¹šø,{­ TYùžý‘ ø×%º(r4øô±2œ|C¶Å"qbFÝß‹4yd[ž •pÔ¨—7Ӛæׇ>N˜ÒEO!µpOmç -`Ý6kÊç•a³ÅRb<ýzÿüÖôË)‡ú0GvZƒáòµŽÒ4^ðgæT!ÙœG¢ð‡óî«ù¢÷üG¿Œ¾ÊÙ^×–.X[ ÷u¹Zбó†ÄΕ|ÈI5ÕÍ]×èçù9FZçbUt Ê݇Q.ã”´ÈI(•ŽlîR²#ïÆºÙÍÓõNª ÙÕ‡M,~ä 4õ¥ˆ9!•þ]+ù Üuîž:‹DgF÷,˜gY¨'´¿üèÆÏ®Í¾žZ^‰jèó•!£C°æÏ9)<4LþÆÁŽ&•¬#5®#Ïl§ëdñc0.±Û%eI rÚÇ:ÚfUìÚwe2=¨'.à ¨UÔ²ÆbÅ“@A©®< ö²¹Šó$ƒ‹5žã{iß‹_Ò °Å¨Ý†N­çã9Y\`®BK²š¨¹îÏl¾X&]ÄA?6ëÓq[Ûi‹Ò nçQ$>’©4G ¢#Þ™—©4¿ûzsÊóuQQ%u.XÙkü-6ŽübNȹ‹¹¹»é\E/–¬a gÆ‘BðNÃñ湸Z¶H}¢6g\JÊëœ4wü©JcÚ¿XïçÍÙ. ðäaZ}å¦)ž`ý5Ž~vú :'šɽØr´{÷FzˆB$TYD}¹[J²XW«“!-8©6° 7‘ŠÿEt=±ÛáZªµ$à $7I24´1ïÅKtµVÃÅ:òæ)iâ8¤ý6Ÿu» ˆˆãͯµæ´Hþ®3JŒ‡ò-~„f½=>Òãá]¬ÚA ¶iÞ‹‰ò±ò,PñyS Æ\Á»| à'_(ô¸éT˜™¡”íœ\ã›ÞþÐpSnNI{¨k`¥zž5-&G,£=ýrÆÜS÷¨ #O¥êO Þ¼†"¡qL%²ø‘ Å°º4Ž+|ÖW7›êëÂ#¹´ÓñÚÔŸÈ×9»=²­MóðÚú;avŽ©Cø/5ÔGŒ»Ú‘fŽ:ÅŽ.æ¢ Éäïó«swääƒ¶í¯†¶Þá**ùÈ,|›IŒúÝ”Å,rÀ AˆôùÝÄþ„\5·èIš¯Qœ— F½xü•‰Ç'X•j£”f´™/¤ËÙ²÷8´¥þÖe+RÕB‰£µb…a$¶ ÷ôSH•”}‚»î£ÓPTósAC:u¨ŒäÔí²öãdyu)|Ü"Fö4éò9ˆJG4:M› í)“ðF9Í* Òû ´ó¶?8¶]#8%šBôÈé"9:]‡Éìfa„}@ÈØÎ…ðÊhz‰·-GkpF÷Ä9÷TY´OI|³ÓZy®òDjÂ7f_O© :(%½˜3Ópõ|$!®ü‹Þ1º™qÒé˜ú1’ØŽ²&—nÊÏyrsdÇes‘aÆ Ú¯“Éuƒ iñ„¸´ÑM•+Ma ©È®S½‰˜³$P÷ˆ£c•rô c Czšê9ÁLÇ 0ýä`&ŒeF¼`¸1=VQImÆ3ã÷Õ«*ð¥½U“ úI0Òy•ÑÍÃGùа2ù¼³û€¢³>«ã§„‡èJ!ÇÎîò9˜o8»(ÝêâÜh‰Ôµ=DÂɧ!Œ‹ƒw‘Ô|¾º“äv‰-‡ÏeÁ‡ú¼Ž&ù+§ró¢Oõ#ï‘ë+[Yߤ4ïM‚HKöC°üdªÊõ!óg~ÕQ¡m+¥¥%{4 Õ’Gìë“-¨Y¬v÷xß :uYÅU¨ž'2qü®›–‘çªa3w;€yú.ØCB”î-„CKÕuý‹j&%¶Í™kJ†Ú8õÍQGÇeÙà/úÌ ²ˆ>oÚùõaãüý¼OªôÉÛùÎïMÃQ½“WANïPÝåÌËò»À^ÍÌ•è;T!Æ<Û*Ï&:~üÖWû5ìˆõ­\®]—:é+]S‹ã6¨péšã¶ˆg¨Aõn¢ÂTœ±Œká’¶G.Þï2G /•œÍšŸÑBfbn”W¤æÅá6ˆÃ¤‘7ÁÍ·&N‘\‘1N|ÌnÀQ®(óIv,8~TNÄðÆä:9VšîÚ7Ùµ^Ü2=‘éqH}sqTø!}I÷„rLla‡*ääh Ÿ ÅzFùgsòÈÇõŽÕP¸§Îòuܸ‰ÜüyZ 'X˜“Õ ³Xµ¶7yhôâ.BϳX4P_¯¦1þ’·ðqø®<é7ž£­«"âËkŠçιPp Ë 6&s³)rtB•ª§9yÞ 4 ÿfŽf³R«„|I6}r¬Ñ‹êŽG¶#Kξ'…/ËUS²P ÛºH߃c‘¾ø_ŸhÙ[¤ï šF¹Ãú9‹Ù”'s^Õñˆ°nÊö8N §¦°JÈéôõÝMÅäI ۢë#V2êF½Å”»ü™‚Lñy'táW \d<=V½“‚–—ï—19r°¡Ç ¶Ôðì¹=¡¬S²@¢PLûù+kå2+Í©×[ÀÓ~¤`;\0íƒÄKãYÀrQC¬èúà *çO³¸¡š‚.p¿™c¶j9?Ãq)\Äó^›{V~¡ô§ó~ihñ9[#•T±¶Éq¬%ì\Ä€>‘há«®ká`ÀM ;ª¨clÍáY6"ÿT¢¥âMK.ÔÜCÕEàæî~d°@ùh®N.jP[ DuM¬iŸÑ×}d¬€ËJ€‡*8NoŸG¢XnÏäD›B¬SÑ@Þ¯éÜTAÎv^y [ãXJû¤ vœ†ÿë,¨>%Øêdêj=©šøÄúäƒéøäòÎ'a1FÊØ°Ÿ<|Èp†"cïèNøˆA³óØ1yÛø»éyr°ÉÉX2qÿضKž–Ú¹`.ΔyœröcÔ:pÇéPËE— âÜóq„é;Lz©VŽkvÆ®ö¢‡)`M˜yÃf±Ÿ;óJó¯,Ü£Ûñy›í äxbz!Û›Ÿ=}¸Â°K#…ñìuse¢r§gµ` %_{’§Ø@bßuÙÈ p$éÂEU'L¼[<©B†Åë@ó6Ðay{æù­ -¢XAèá÷rñîå5Þ5€¦›ÄŽuœ2Üù²ð L=;²_hI·ÍFröAûÐâòvGz7;Û#¦}&›žt‹shÚ–yŸ‰êKo›6ÅG§'/õ7NãÉQÞ'&Õcx—é|p3`é’-êé}~ÂíUs'΢ÃÞfޱÀ€—¢+‚óO2ﮦ֙­2ÈɈžê°E ±7‘«#;¼v“ŠÍf½ˆþ4Ò”øûUcþ|à1r…ª…9ÝÞšþ$OÙß[(L'ºå‹B‚`C©ú\žm|“£}7§ žg@Ÿwdz«v?Ô‹±¬ä¢ÒL5gœ¶„D`<OÂI$sPÚʦ£ÚO_¼w—/A˜ªu“D*ǽÜêȵF3zå2þE¸ÜNª㸱‰“¸² öÔªÊ׳íÎ8_>zŽÖ-vQ€°u«ºÆÛùž¿¢0e(3HFþÎ-Žº9ÒS¶A“4Rؽšþ ŒúOŽAh™;z›æOÊ*Ê-]ƒ_Jóƒ!Ëÿî-×Ò›õùúaåkä{2mc»Çy,oŽt»+7<=ÖwFÊMCª_”Ǭîà`ù3.ù"œÞ†?阓£XÖâû¥oŒ=—â…JþnŽ#y<"ó“vô<»>,ÕWA¯y°±Ê@a¡…=%€5ÑöE÷ß.ßqíD3Q7›„›}²Ý©FÙ^–P,)G¯*ÍÇSìl “KÕæìwS‰D=ÛY×Ú6Éo9~ƒŽþñÁ}læèX侯•ýRwöPxBÜLÜ̾~D7Q•.ZàN´x<Ì›¤}¬ÉÝiÓÓSº©ŽŒ¿¢M¦˜ÂéœÑ«kW{ê§‘¿nU¢Çºê{Ñ\NÞ¯¢“­¥E&…›?¹¼’¯…ôÂ(ô“âÐ?sŠhKp#GxÒ[„žvŽm<Ÿ¼)-Å“or¥¿ƒ5§y]Ñ@žÙìÒ¥kjéIø¥¿Þ$…lÇÈ=u´4A±¿›HžÝãÒ ?mt3’W'¡Ö׿¿df!ZÀT Òåô×ùé2œ¶±É¿¦­m‚Lçt:÷¯ÏsöÎIÇÙÙg¬ìœ•FÚýóH±òæmZõJVyimŒ)wÿr¹Ñ›ßôPåÞ›?ëÕJ¸¶È;‰r E$Kêj/vúq§‘Åž6ðç1ãX_åï,›Y¨;\^ÜË ¼®ü T7)[“¥Ì"ègú7Gèø,ùÖK®#}±F‚ëwÒ9ô˜ßJ_¤nÇ{ lÌisz9GìR› = zQ¯êd"nÒù¤cl9¨‹{'Hàáˆk-^*åVc5§©¹G1üw>zÔ“ êÜ ŸG“½ ÙÖ\½ t•ì|_ËžG’¿Qüïÿc`{¼Ù<’=%QÏk÷ׯÇ#sóðL|°úM¤J&–d/f·F£ª“ID= ƒlN›øæþ8Ë¥³jy’¼ãRܹϲ›ÓXü$Ë*ãã”Y:‘®L7<½ )££þ±aÜ‘šÇÀñx.yƒ"Nëdذn%Æ¢Õ•\2¾ïOR¤‘2ĪJ‹KtI ñ€-Ú+Å}6±jGÛ^õLz³iœùÚ[ ÓïHd\³ON?2½âóaµQêµÅÂUÇáu]¤!}¬9@u.ƒ,_™¼‡‚78‘ª20b ý$Ëû™ƒzx"´Ž'U. gobSÞñq+3ó–ßÇÚaŽJP‰Úe!œWÎËÉÓ‚t¡Wÿûˆúúßt‘¾èOE<õ¤z¹2Š7õÀz$¼||ã­Ù××mÂãux5å¸á<|¶ìpA,çØ€^éç`dLޝ€Ì2=™xÃâ;!8EFgQ²£¥X*Ae†Î®Š6Vᢛ),.½åÙçlNÜ·irÑ`O¼¥÷qM GŽœ$ìzv2)â|U0}ÛØÒ†yò©®@yNN”’ þjçzÇ+áô®ž®dšD¹§®«p|B8é4zÊYTaQ>$³J‘éëåè_ðÈ0¯ÝüŽo>gê‘ïÎæ=©y{5$oÞ¨¢“óx¹³ž¢=8\®¬T—!Üü¯¸@ ´>Xœ’縔=zÈõŸN,’ÌšTÝË+RTÌå£ñúä#•r€Í7Cû[7ß$Xè'÷!–ZòsÅ©GÙÅ뉧å¢]>voš\TsZÙÊ•z6È—ãg Jç Z uu<ØÅÉ´8ýpk3x³‚„:?EÇ#eÌTà• µG”a4¿ß¯®ó:q nu¼”SõR딜ý~ôÔߟTÔ—^Ñ¢ŽÝ ó ÚApW›üÉû»ô­Ý?w4ÝŸÌÿ_<÷ô€½?¸/™û¿4vÿ½¹‡qBÔýQÂ^õäÅÝ?÷ƒIâþ*ºÿ/êÎýäÜWñü-Ì]f·ï¾½$rÿõ”ÿ{G74ÿÜç/3f¿:úµD¸áAÏ!^æ&¼WáÌßj<ÿ)áçt;îS»ìþùGI¥û‡î…9ÿçßqÒ¶…´ôûîÇ0¿ ç¬“ùËŒ„E;ÿP{òè#ç¯+voúˆ¿ó¹ëÊ~"lÖùW<¿'æn'N…g ûSXRi_Ð}aÄÂêˆÝ›pþÏ¿ 8qî&xdÒn’¶«[UHj8æovÛÍÿíù¥ÒMÜ gˆ :y~ ÷œ70ÿƒ‰ð¼æì‹ù˜’ÊÜ_ê¸÷g,hLø½¾[¦Â–I¤Å»£X8%…#f~Ì/·ûd‡‰õ²Ù0}§–‡•Øq¾òùÝuÜ›nþ#ÓDø=AßÄ}…¦`žeOPZ}÷±fÄÐùÀæ’ëóÿ & ¨dþPangè|!ÝØ}ZK«ë> ÀøH„,œSó}þÇÂÖ?Ñâ¡{áà #®©û‰Árºo!ÔæŽpN¥÷‹Mý*?û^ÁҎ݆}WØ!©ûyÁ¦K”s’hm·ùCqþKê9¸-mI_vÕ6ùÜÑ××±~=Gì.dþ\Ên´ìRŸ¿9x²=çó’läT0*ç7r,¹‡©Ör¸&Òƒöš>‚í6ëQ"‘Kf÷q_xα{S¤©û¾»ÂrƒÏŒÙÏÌ#qâ^7© u£È¯˜§RðLÔ[¹Å’Óq›©óöq¤]ˆCåSˆÝÏ.”gìÞý]÷†€8Õ†uæMðQzn­”ºG0:Êkþ)n°‚WìÝB\/åÝ1NÏÅÂC‰_ªïT(ð²ún÷%lniÝ;Î\ngõ“H0†n-ž¸½l)^&Ÿ’Ž"„é[ÁéÐ}æFÂÁ OV06jÕ“Ê9Q†AAǬ ðê:¬âðÚBà8IÜžî@´L#!`iCß±à0I®nÒךº‘p¯]§:²pŒGεѕ‚ ÷ší¹5XWX³©°lvÙøN·Ä½•ÒŽZ=ÇÎ?-¤ÀÿеZ#BÏ‚Üík2‰¤z„-.f„µÝM´É!)@6tŸ]Ö­œŸšܯ.Ò ÒþHŹÏ6) )ýoÁhH$5uÿ5XΑÒ•ÌïŽà«‘<‰…H0œ<‘6Ö,Ùq‰þøü–€”oª°¤?£;êX³ 3ˆ(òÇ“¤Lµ«Œ®6Zî89[*Qì„ìyÜvLª6º¤C+Õ¾­ÈÖM¤G ¦Ž”Lï)…œa"E`„T„ñ%÷í¦Z‡¶ç>…#áŒÑosøÌAnÁœVö…ga§I¡û Ѳù— Hÿ¥îÐGê>2»‚_¢ˆ‰ øì_úŒÕ ¹’М%ÁE)8A±päK ,_ÁÀì ŽBÒw*ÖTX]C÷—Bn>–ÂÒI$Å%†nÌíÓÁãŠÝçPßm÷ܯþ!çÕWD³š¦ç¼³¡`‡´¨XÈË'î QWá1gB¢Q¤Âƒ”ÎÆ4õŸ3>mÞ÷«IΖ<ê®Ò+ƒ¼r_îÈŠ„Û–Nwx(æã"ÌF0†’%ä°Ø™÷+ÄŽ“¾‹Ð^\,S-F"V[‘°è!6)ø ó¿ úOJæDB8º ©+<—Ä¿r|±°ÈyKzn?I@¦HQw(,<}ÁìŽ|Îüßî ±|1Ï*ågc÷ݹwH"è][Ú,r‹©€òK•VLœº-¡Ta>gOÛ6G ¸¤®°SS!·%þSÚ‡Üpdá˜-6X,„!dëéhÏŒx¨Mä ––äñK¾',ô¾"—îGÏ p}G€‹ÙB:Uò"!3• :¤Ûsï\!%/$»!<8 vÁPKú^š°©•XÀçI>¸#¼*(0ŸAædG‹ñK…ÓFræ¤Pr*èYû !rÀŽSgŽðçê…—'viGí¹ ÛPúLiãE¼`!®® £0‹9h§¤‰ûÚp¡”щ„›dát•*y‘]ÆÄF…ЇHRB¿+E2QªB€5 @ŠŽ"GÉ(t!ø/nS·ÃÛêñb¡/–‡¤MRwMWkA ±Æof<å¾;“FZ´3Ž"jÓgr%’;¢&,.΋«K`Èèºñ!w-¬®$QVîK˜“H qh#¿" ½«ƒgEå>ík lZ\†Š[‚ùÈ6ºÙj¬zJÒ)¢èᬅ<šIc…§à5$±"¯Í8­‚1(ûÚ 1oÒQ⣻‰–N@ª<Ž%R/a‰I@ñ¤£ FKÙ2G–!ë±ÔÅÿ‰–±d fJ´%2‰·ºT(ôÙ˜RØ0í+ù¤2´4U23¥}­Y“hÖ“^`Bƒ=¡¸L*lî©©ŸÜ%Wâ3ºý%‰6e¨†ýE©ž`Ï9¨k˜£Ù­r“’ë/Øê)>æ4‚¥°Fc÷½IùËžÂøb¹}¯ÿÊેjv!¶,•a¤©–öIJœÅ=훓‚x"´O*Ix:“ûèìk²®@)Z%]5óŸ€@•€F Šàx¬%f’Šã¥ÚÜ8wu´Le,·¾—HÜ‚uÖM´È[©Ô\z?ô!ú#Œ!1Ù©µC-—XÔsª†îÿ¦ã¯ùðúÝžv+uS5]m¬– ª”ŠÕÕjQ¬‘v…×*dŠÒŽr/ñ¡Œzé(øÈ¼¸ÌD`–ê ·l7Õ»Q_´q0%ú4–D²ÝMµ0ÿXK—P<]­—ÅÎÌÀÀý”ûZ„c*UMv”F}ÜÑòæHg›hY«}‘„‡–ŠŒ€^W*Њ´…2‘‚ÉÒW+å\ÓD[‚÷µèʲJ^J1îTKý™ÄÊušhé@Ó K3G tGËï(l_I›&ºâˆnÇœsÓÕdÿg¨¤‹ bHÔSŸ©‹¤"‰dHŠ a’‹;ê²P©’?QGåö»:˜/ÑCuµÅCmácÜÑ®¯¾ðè+&VWHö©Èæ$ÀE£Ž:Þ&™@]e˜´ú¢XQ;ä«'âZÒY ¼2³›ɬ)öÞS’ù¥‰ß»g̯¶ò-Q—Œ'‘–W2²X`èièq¢–&Bip,¨H@ùnªÄWGBlD,òìæVŠsŠc”è@Ú’i.ù¢h(ê( âDÎ…¶èQ¢ÛŽü ½”ð¯G,løH2ô#--³õj1‡¾–VFì#$Eiª¾ŸŽMÜÏ ¿öZ⡲©­€:Ž­ÒíÆjÖß¾Â|“˜c<­d“Ø¿¼F_$hàD[È.‘7u¥*×H ˆŒ:Bs¢H™ç–xv$ ’Tõ´ËÝT›@îiË{J”h¬npÇêÆn‰zÑXj…ª…q4©2¥ßí)j>f–HfðÑÕÄjŠQ‘Z2‹Rm7ùnâ¯XeD‘:)—(°'Zä‘'Ój™éºîIîØKµv‰D§¨¯H-SwkkyVÓŽâŒd⩽…@5©¦NÎÛ7‘¢| + G~ü »0•©Û•Ê«†JED¨w¼ë\!Vßoq1†AGŸzßļü@ ëC_û¸¤ .µ¢s'¥’Ti‹IΗÐÁ(ê+™i¢~nø™7–x±Ì"O´HN©›´£ÂHè'“/)(9?QÇÏf%x\Ž@Ïþ$eŒú¹sK¾ŒºdÌũ֭Lµ¥ÝÄ_jì­{´UÔѶ¥J´oáºD¸„$ˆ´gš”3’r±c.ežuV5U0ç2¿&øB}-}ŠTã#^E]eË¡y€TŸ*ŠÞøFêFvµÌ§‘JíC?¦jûIjè«&Íu E|PH©\üJâáM\Ü>›£5º&™j›DJÈ©!UÜ×VÁˆdÁ]íÿEmW‹4V" !‚&t¤2ÿíÙG©Tm¦¦R” ⥚ue…doK왩ºÆOìÃ1P¾HÉ#骡úZâÖHâ‰c~ûÚšØ5²§å‚‘:îI/]ÝDj"&õlqôðQÖHÃ"?dº$9ê@Û¾@\]-ǙĆ.1ŒÄJ ©´£m¯H Ä~ÝŽ2Ð!ÙkqGÉ!›û ú§œn’„fttŸö11$‘½6ô—JqÎŽ²ÔZ‹µ\Œá*D$EÕP kh÷’Ô%B[¦!rÓÆZM.§R©‘ž"Q·*‚>ïMÏ’-až’ŽºeQW ŠX‘„DS2ТºEŠžò£iGiÖ m7»J¿R„õµ§n¬&¸ìvŒe篴ôZ:}EÍžÏÃH¼$úâ횣/äN: fa%’’¾¶™Xš*ý‰MRJGÇ[“TðèfEФî[’Á+Õ‡ˆ:îh5z¤®A‰5HR¯[—„6‰š› Ö´bœÃŽšM]>vµÀ¥Då‰4 ‡ÁØ÷µTŠ)KHßTÛëQôûŠ‚_dBH¨Ju4±´G$_P¢ð´žì–1‹:J{Rß-j‹èÄvxR·™ž¢0OB™øciªë§Ú~Rœ*NÜ‘DÆÜ×’`ª?QغRÏ;©² QWþ;ªênomV$ø¡‘¢qµ@Kdå‚U-Ñ@HKÉPÍÓ ïï'eýbu Ü®6•à ŸõUËèÉi$ ¥ì X›.NúÚ¶ñ@‘‚È–Y¥ÚÎxR;úKÜ‚7è›H¥ŽéB -é({§&ʼh’*ù kIG]Öi?Nª ’‡Xh9J"6¡¶ÐÞ°«]¾ÀKj×#„¬$‘l°“I¤µÝ„¦‡¼à—v%vÓH‰NÕÐû8ÑVÀªÒžÅ%ѺIüéPQ¦ïå+—Ζž‚{ÌÛÊ5–H”ºÚh¼T¹$‘õ«ñÂñ@Á‰î…L%²µÎ[*QæEÊÖªiß8ó•så éIÜ=Â‡Š†À)@Å©=m[hE¦g´_Iíd¤ÕÓšmÈ+Vûž lU6ЪnÏ&Uo¨;÷¥nUÚS7¢Š~†Z cªÅé%Ú¦ºi_Ù ²§g1ûMbvêzIhH) L(]-ÁTÒÑö’Ž”¤{€H‰´n¬Ã5öhT±wO¹7<Ì•¹T[¾"5‘°ÓŽ2µ*¢§Œ¡&‰Å XŽXïÝÓˆ)uM¬”ŠûJ}.áï¢X[#ÐS6¸‘ºÁõ ÛÞÖ¨=mfZj|'Þ I‹H ©2Ì#Å0$ld¤ŽcÇÂ)ÒS@Ç8›Ú}?‘Ts)”ptÕ} †Ê2d‰³¨+M? +,¦tðp{cù©¶e*”_Jap=WŽäq&‹5LlѰבšK¾£…&J„œ]µž•ªË“¡’ý#hI$RÁÏ”è†E*âÛóï* 9è·diÈ<}1ôØoMûØ¿Ä>‰Ø:’VmäNöÔ¸TðµÑH´Þ¥ÄtÝW@q²ñ羺f®§%KrðÂøêkãX™uƒtWÛ9m Þ©‚&Qtv÷ž"ݾ=)u[’Zvu´MÚ#åbJEppG,N|LŸ ¡ú-‰´„.Rå>O"ÒºFjNÑT‡Ê”ÚŠH°þXÛ8Ѻ{"êk¨ðÍ|\Œ±:±ž¤Z¾Ô®žš#Ö…:ؼ\­úO‡ ê,.\Òs†s‡Z-RmÞ"êh+ɨ§«V1±ºö%Q€€¼™¸®°Œº©/Ôí)›½=É„@±È9P/Û®¿É!gµH-$LU¢e”Š„Þ RHNèö”$‹5p†‘~-ñiGbUŸË,‘ºj;úJö¸¯Î «9a$Øi’øC]Þ¾p‰ Îx‰¶_-쥶}±„¼I%²¶²Š_ 1iûóHœ…QO‘÷x-RÉ”d%I|‰ìùÔùz¤ŠÊ|Æûèø™À¼©ÒH%ˆÔàçHXj‘ÃpÇN¥ .Å¥¤o’*y¥º©0ŠÔù²d1ÖëTÍ”¤ææíêM¡(;Vd”½îTÓ,…¬œ¬¥YŒc%Y7v›Ömý†‹î õO©²1«”ö’ ê"Scªf8PC€öI§ÄZ¦æ8Òv0’Ha:ŠòR&MÕÛ%U$9{Lâ‚(›”IAÄ®`£H¸åXñÀ8åÖÓ.0©lJBè'Úî zææ¡’Ñ 2d]-%õ§Ë|ܲRûT‹‡É^¥ZðHÎ: §j©ØÃ¨çw|ÝTRê}e&U$.еkY€lG]E¡ sšLºæS²Q7~ªg rC|þ·/KR%L@âÝè¦Zú¡Tã÷ÒȤ‰¿»°7f”ªË7cÁ1ÒSC5¤fÃ"›xªeËO…â)ž4T—„÷µ†C·£ä “µ±¦€ÓÞîë@çÈNdâK´IŸX“`"¾K–T0к:jÒV5Ò?޵„´‹AW;)T^ ”ˆœDÃ,ì‹PI±&‰2)U«ÄƒÀx›jëº=í®ˆ#uÁPG‹‘–(á¤Õ!foîð™Ô©³;yÒÑ’j¦ÚŒB¤¤TptÁö5€•ˆŸµô×ÝTË %¥hëÐMà+è íC$Æ‘yש¯öø(™‡ÚúO}3!uº_<ËÔÉš•*~Ó¤ÒMÕ,&RWÕÏ›ŠÕÄŽ©Ð$Ad÷•HaS¥õÔMüá>d¸Tç+àÉ$:b)Ø, ¦ !õ†Ê– ‰”æ–€úR|ª€¥2ï­¯®™í«&Z"ó4ÕÂs»=­ ›ÄÚ:´(ÒòŠÄB"Rj‚'Uw ÄiRhµ«nš(Ùð…žkR;QCÓm§V‘éI ñHÔ19ÉÜh™~ºŠ »/Ó û:R—ø ¬ö©d†ösrèyºF}ØK`|:ú8ô"Þ,]_ÑÀçK æRK;)æ)ëQ%$zÀºÍZEá[Ó÷·^òw1O”Z%ÔÝ #mÿL±‰‹¾ž*Y°W}¢­ëŽu(^ TQ3î¥ên¥ã#Ù¯Kíûv¥*F©Ý@]ˆ)õ·ìù½N_ÆXY}2ôwþò–ç ±¢DÉ«½ÀHÓ YŠùÊTEk­«E¾%…Ó)°ÚûŠ’Hô“J&¤ø¦íÐ’\F‰R§K¹"a±©Zùqqv©«Î@åéiK°º=uaR¢ –a ,e9P¬aPcötWÛ"lœt!L”¾^¾ °ÁhaBV,d·n€t àÍÞª`|ù;'KµÚ’f*ËO¢Èi0¤ÊB¤àƒò§êµÉï_ì>PljÚb³T{ÜöÕ×®;!@.4G/}V¢Etб¡ö$‹…ABŸÿo2TrB$’ÞÑfˆôäR ²¾ÈNêךö•ýk݆˜g”j#ÔâÁkáêqOW¸%Zb2GY­¿Z6Q¢*…Þ3‰hœ¨±_QGK{*ÀD=u$ ›¥îñ•t”Ý"1y¬lM+Q%H·¥>¢±ÿûz_Ju_–)ªSM‰–CCWÄ ”úN˜¶€Hˆ%«SK9K6¡š3Xâ‹•¼oqG[l%ú¤  Pìk©’EÆýžÒhÓm]N¢¦—k\:ʲD¯¢Š³åk/!¹?Iß[Õä«8L%ª¯í_šÄº°”£w%¿êú«ç¸=,X}-›RW[&OuûÚæWbɼ~ïiû¼uµí¶%{!(ñŒRdÅÑ&Áw]q¬ a¤ÈKØßb_Ñ¡?ëëü-U|$Cm›‘TÛ‹[à°×GY»©‚ðÉÏ + Eº©öÕù UÝQOÍŸåÆÝJ'AŽf‰öÔëik2"é Œý97nuÄÊ.ñqO›Úka†¹)¿»Y€×Em4d>?PÂÁ¥êÀ®¶ã™T©¦Ö=jmëXð:¤FŸ‘T ;Ð6¡ƒpˆ;$ßUÓÔI1¨H*FšU¸™<ºBÝ}2ô‡€½ âR°D a–Š«%ô¾©t„™hqªn¬.ˉ{Ê,I’j™}#%ƒIí«ËúêþÀQÞ7àe‡ŠÔ% RoÌHÝÐo¨m†“ªõº(Z‰û[¥¥Šœ©?k ¥VCR¯‰T™ MûZc <š.¸º6-vP«YŒýWâ!?‘ªéxSÄÛËXû@ZXÑx"{cv¨ì‘ÅZ/QÈŸuÕd¼Ù)u¹¨Û+ RRÏœ®7µ&”÷{ãøQ¢´¨„@èPK üD >çÞäb|-ɇV3ÞD‘r‘HåœB8>íkù|¤ìbÜWÂl%}Ö»›j}{©”]êä” ¯+Ö¨+o›o© ª›hÍ(V'LÕ›#^0[+™¹©–ó0J´ §$÷DXrݾ¢˜Ý×ãSÊT‰†E¬MwÔ„Ž 8sPK½-¥<‰¦¼¹ÚMœZÞ}¹³’QßÏÃé©àêvF’—¯O@M ´Fjù£Œ‚ï*Y¬ÓÒU„F©¶ãKGËL®>ÜEÄýP[»t 6ØÕvWL´íõ¤r TƒUòæžÄ¨Qªu|õ% A¼.7HRÏŸ*5“úÚ¶8‰âR» §gLõÌÑÉ‚¦uOkôK(SG+qÉh’jãºå×P \JO„Ž1ê¹£g=E#/¡rWª´íi[m$­ £™Üˆ–n¢®uhu…i憎±’¾¿8ßK«ÛO\X=m7ÂXI™.yD‰¢zÖG˜,9³’÷— Z)±:tÛ¶BÌ-Õ:D©š²§ ìõƾâÄmÅ”Ýr{Ênc[-˜‚ÿ(Ò¨kö·T¨^"5YOÙzR´ :ÚÛ*á#Q¤8v|LJd$H¤{ÝžVåõ•ìR'{!—$²E§^¤A¢=!Ä`ÿPY§­·Ó¤(hi&Zªl}Ï’¤çÞu%]­˜,O´E ‰†ħ‚âx¨¥IÕåb®|¨ìð*Rµº‘'‘$ õUêG¥®W©º±†ûUƒT¥Ö½Ò~Š…Üÿ®S²Õ….Õ„j³Ø¶TYæK„^Z‚·¥|ŠŠì»ÉÆ š)Ÿ%(A¤ú“¹Ó¾¿;:ó®ûJ˜‰ÔŒCª%W”FBvBÂ.u5¥§¾foRÔAª¹’ˆ§S|ÁÁ^ä#y1»©²¤#HœºÚ>kRÉ~,@œ% ¤£ÿª¯zHòàÝÝ*õæKúZ²4‰7Êœ¤¼vOK…í»ë¼î¿Ð¢ž{øº Ù!Ü&%Ô„ƒN¤ Üá—žÖ ‘ªæ¢ž¶OMì6BÓº{½ºÏ½¤°$€€˜Y”jªz Š·]¢š€6‰þŠ×ÀœÔ²ác¢Æ E¯é@Û;·-–Pb©à$Jn¹DÏj¤ç©O¢Wêø§†möZÒóöœò©¡õ3l‹(€²Z,VQ{ŠI³®‚Ï“y’©¶ýz”h#â}-`«³Xÿ‚ÒÙLÕ­ž"Mš†A±$ê:æ®ß’hüZ'©¢B2²$ÞÌX ˆˆ„ËLƒ9»ì‰- ¿7P¶£hëðc–ËG˜$Õåu<õLÑa¢”ÚÄ}mp,Š•¡j‰·(í*šÂrÇ¥zFþ.Ù^4}GKƒ)†–Õî¸ÔD¤|Ó R}TXQ¤=ÆûZ”“Ä ’¤Z pÔW??M5£¨o„pr¬Àøƒì±6±$mÐ(QúI_ýŽòX±ˆÔ<ÉbŠ^‚¡KI\‰Ai°XŸð¤§e/—8O¡J’jÃ]t´›j9Ê%_TÊÀ Uà"Û†P˜™*PªU“(G¥4±D½K4‘Ù@‹ŒêªóŽ–×"ø ‹³ù'¬áÎwSÃs Á=E¨ChZác¯%í¡–P2!Ö™ª-ÄØâRaóâê µ©ƒHb‰O¢4ôâ¡~1T÷Å’¨ý%È’pPE-+œ”$• RB/z)¬”ªÅ š«í+Cˆ#­[žô°ao°¨§5æ"õ‚N5(/‘ªT“ÄÚ~:ÝŽŸ­ÊÇ&Ü–$S!QçÌ"7bu¨59»Ââž—¤ »Ê…bû`Ec÷¹êu…58†B+QrEIDUbzAxRC1‰‡MB”IõÄŽ·ïkç,1’ÄêšMlÌ!1ñÔ´}}µÓÔÑRºôµ”®î-è÷iPê ½÷’¾¶-›”gHÕÅÁ©¶§Y§]³Û|\†q¤Etce")E,Åô»êÒ©ÖJjs*¹¿É@Û³DªŒŒÔ©óXȦ]-ý”æøø!$ÆgÉSNÕDqOM}ÞW°X lîr]o/X0%þ\¯õÔoj Í¨‹øçT‹Ú­áDèJ´î·Óºº •|*´8¢ú±²)š”¸I¤n ±¿A–¯ÛH·§ŽœÕ֣Чy¨î~™*ñ¶ß@ÜÑE΢ÄßZÐgÌG±6õŸjÉàº=…›«E¯Øå0Qwh!»}-üEM³õ´ú7UáH†w"é•U—øB$eÕ÷Ó¦IDlÞSY,P«¼¡²®-Ò#­R5ÔQrÝ;Ú£XI:ê2t5›Dœ'@ªDìJ¬³:%殤§¤w$c8R“ HœÂò“xÙ“žD!DO5<ãùz„J:èlºŠ÷ãg~Ž]h|οT-’jv…v˜j)Þò= [ËÀ‘m³¸ø¾ÚÅUWù'Z8ŠH`'0{¢ÒïucmùV¬×úBÊ,µÝÚ»©ö3%#©Î@ì<+:¼úŒi©PV°…’TËL9 ¾"Ðá%£s¸>ï_¤ú÷*ñy ´HÚD8ñDO+ÕÖþ ÔèûDKS>Ô—êW{W"ªS´VóõRÊ4#uÿ÷Dñr1tÕ…‘Ô‡f¨ð¼L%î"½ÔM—ÜÓFK}$FÿÁBˆ/G“O‰Y«áRÏ+ÁÛì*›½ÅÚ~hR…¿„§‚ùÑ@‰Y"]ЃQd8KÔtö4Ö–²&Z^Ï®¶K®dv…(V_Í’š(Ù1¤l«”5•P'±v×E‰ù“*t“Tá±ù0¡ßµš\ 8ç¼ó¡–\"Gn¿£MÖIKlÚS—›DNÍ)ì W?_síXÝÔK,òèäm×êå OÕí%Ç%V³&&‰)0ìÇB U$Çj ’&þœÀEÊt”‡Œl2$qÒ‰Á…Ž;»ÓMµŸ)=1Ò­_FÉbÝ5E JG·‹#-r&îhË'buv#ŠëA$­TKµ!…öµœ\01V÷‹”b ] ,>Ôš´-Ó©ˆ’\̹”ŸôÒ®¢M˜T:é+§ûZÏ!?é+5u{Wj펗´)|)p¨¤"È{nèEª¨´Vÿ ·DúŠ0–‡d-ê(#@‘ºÙ‘ºà`Ì2X$}!uäu°öùZ˜‰dRÿÁÄOˆÄ%ØûÚœ—«ŽºîfRÓ!fÓíhU•À,…9’ž’ŒOr(|‹ƒ§‡I ;NêµEê–©6W¥áò¥%2ä8U¨DÏZàJJŠæ->N$…ºŒ“?Pð_úº«IuFé(Ñ@R4EêÒu¯IÁ|H;Ú@b¬ÆõiYþRÁâ‘й5v]¾%‘º­µ¦³ gFGn4ÑòJ<¿¡>v(ú<©"#ìƒÇúâÔTÙR*úL%P€Q‘*Ïô¬"©†tÔ#æâ`£v7ÎÝå#g»ŽnâÏø×ÄÚˆN:p?°T[½&aíDêw¡-y¢íµØM”¡Á¯m¿› 7—jã¢Ý¾LK=;n’ÛyêÆÚú}É&¨«âTÛP¯Û×å_“ÒæŒ.k+ÌUŸqÙM”q†´¯ &‰‘n©çz_¡r½ÞÀ¥!QæHÌûRŦ —÷í*q3q¢ Éw¯Þƒº£¬–€T”¢’º§õµEJb‹4%ÐPM×'‚å{Ê ™´$#¾›h›¨§mÎ.–é'Ф¿7r¡g(HJ¿$¨B¢X{° ï+Š”‰‰Iꉛ&:ß\Â)ˆm*”Ê@juµ °ÓXAvîS)BK©v*Ö⩤~õa³”*ŠF}89 æ×W³¯ •DèRI·¯ÎýGZ®‰ª"’uC-­Ä@MF«­ðJµ­Ù‡:ŒrÜѪ©ßØCÅùåE8F¨Gªî–ò©¶ªR*ØÛ;jQ¬¿d_]ª(èf ƒ®6&ñ”÷”¤pÔL‚ÒÅê@u_K‡(†Ñ¤ìM¬ÌL÷µ1§x¸X©|GÛº¶§m.%…è“»Im‰_«§`Zñn  ºS0 <õÊ?I´Ì’Ã%ÕãKdlíK5§§5ôÃO|*R³™Xok 8J1 Ýׂ%S}¢¯§%²‘j$Ë7Öwï©ãêÒ™)3u‰ºv ­ÓŒÕ¸|1^­ŽKL=RðWŠÎ'‰6 Ü•êc{`¿ï+ëõ´¨bxµªÔÎUbÈêk±'úèÕ¬zXbW½»ÂóŒ‡Ú Z Ðh©Sué=”E f‰§ VD¦¶§·J5ÀMGʆtÂ]"ÛJcÿ=¯•ô¢KÓ4Gãv¼º¡˜Ôè(é(.Z°Û}-B#¡{ô@ÙéUêXÕUSæJæBWÑÃv´@Ö<·ˆÕQõ½/zJLOk›1 Ü-† æÁl¥tÏžI”ÿ%ÖÓi:qù ARÑ¡¥-±¤dWù_9m2Ô²¸÷ô>èµÄÖ•r0±¶È&‚úR̲«[«‹0E*!Ó‘$ÚTƒiÒg^¾XuݴЕ+V?ÍX{“ÖQ"T%¬›˜Ðî¨+ÿݼ3qª&øJo»Zæç¨ëûªIå!_F+ÖTô{;¸O†ödji<Åh”ð•@"…&=vÛ¡QSÈ_õ´]»êv®in?&¡¹h8ÚÝO*U“z4&}%µKG]{¡vè¥TK¬Ï"'ZE$E·$C)ÜQpwz»‘tõq>éìjƒÜÒ¹ŸÄÚ ¥Šï Ñ~Æé’ V"5ŸêP}JÕFu%Òp1:ðD‹uŒ…´WÚWH ^‰o!J´\ ÒOFê~I_éÚ¥êôHšªi&ûÚ6)©š1Gl‡#ÁÚSmÐOlà¢O`tÔ¯(ÕÒeKé‘Îi hÖçOó¨».IW–&JŸ4Ñž|„M¢nîöµ=E% Pâ·¯l œ °goÄ *͇êH½š-hsRÌ8¸Ma©e UÎzÚØŽ2“$Ú$ˆÒOÞn_[u‘*Y{Êú[©i lr OD KÈ(‰™Uª°…ƒ³+¤ £¾«äuìâý8TÂt¡ø[B˜Çåc³&2ÐUm¤ýÊU»äc࿦cà#ù(w ´ñü(V·1êèW¬MùIPé4Vš‘÷«Xl3ÐÂÉ%žg‰@¥§ÝÏÝDQCåi¸+µ I´±%"”DÝÙ$WñÌ}>º!'Epc…9î‹x‰G¦Ð×­ÛwnM7go@J(Së©\h6’'·-ܧ3-û¾yíÁÐvpÙÇÚšh¼@Ï®ŒcEÿ8_·²¾2ÉÝíûÏ9¨­1$ØÍÛ’C­ùK!CækË'é¢8rçCºjb/¡ª#Zôµå_}-Á•!aÒHÝT%R:˜D¢/ÐèhQEâ:ê¨;X§Zð˜ÔÈTªÇŒõ¥DÂÛצ‘Óaî÷àÛ²êfä"OÕÃ@âž²jPdÚM«¬”Ê¥E E¤æé“wÚ¢âDÝ0Cl‘Ñת§4É]±ÃÓ¡-å_¥hªî–öµµmú¢*©ƒžÔ¿¯í>p$%^%Mž‹‰éIÝ­…å Ì$ËLß±³XE•øÊ %Z‚)x ]ÙYj˜¨¿’J7Å· ¦6TóžEî°q_Ñ[Ô‡KÕDÝTY¨õ´ 5‰Å±ÛÑ6Oé(ûëI‰‰Xz¨]ÍQ×dj/¹«¤ÚÐttñ5ªjï†Zʨ¾Bëy«œ»Z޲H°(_¡KÔÑò0 æ“„öN#!k1AR‰z/†kŠJÀUÚQ”‚q9ÿDB(³.m3öX Hv`9™Ã%Õòô´„á©‚™Æ7¹PûÚ˜ìPáq~x¬-}Nõ¥SCÿe2JJêÆÛ_ŒON2l"wÀCbíÜ™4ÒzCZÚWÔmø¨»† ±òFB|-Štk[8êŰU_ë­H¤a©À3:Pz$iWG„µÌw«€¡¶Õ„ÔêY‚øKle³–æJàƒ—¸â“ŽŸSØhìªqZ,gM ©¦$uÓ-Æ‘"vÁ$Gþð6cŽjÚ/sÁ`¡šE†ˆÅ:‚Ò–²ÐbIðÐÀòâ±8ÚApW{úÝÀf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›m¶Ùf›çæ hÁ]íñÜK8–ÒXÊG?qýëæTêc©Œ¥8–ÉïÖ¦ÿ_Ÿþ»<«ÓŸk0¿3ûüÆTÊÓïUÈïצ¿W'×Q#_—ÉïÍ®uòûíé×Uøœ¹¦*¹Þ*|^ƒ\w•|îìwÚäû³çQœ>7úw«Si“ûšÍÅéï6ÈÏ–¦ÿ_'?’¿Q'×Q%ß+ïÍÞÕìÚBò|f?’{ ÉßnM?¿FÞãì½VÉÿɽÌîyöwkÓ¿[!÷U ¯J®aöœfë€^wÞüíÙ=×É}á¬çI×]cú>ès«uؘÞS\];³ko‘¯g£9½þ¼Ó*<2¬ó*y'-ò7ÊäÙ‡äïTÈuÈÿÍÞCÞÝÏò,gB×{‹\oöK‹\WÈ\GÞÕì}4È:¯‘{l“ÏÂ5]'÷T'÷1[ÓE²¦èÚ)“÷O÷Ël]Ñ5_'ï¹N¾W$k¹D>gö CÐkT´Èž ‰>©‘ß«’ýEßoHžw™ü\ü,ձ鵶ÉókÀ(Ï¢ï£ú¶B~¦LžEiú7 ðœéš¦ë¹AöîËy§!¹¶&y~mòèúkÁ=rº¤{Ž>×:y§ôZÊD—4ÈõÈóoßk³œí“üLÖj¼ëœ›ríEØòîkp=²«äóËðu|oö|Jdí„ ›ªpvÌöD žk ®£NÎßÌØkt/á;,‘u‚ÔÈ: vÄL7”aÏ7™³ßköA‹œ3!Ñ=³gØž~½öè zv–‰Þ¥·L>×sþn›ì-ºéYP ë¬Al‹:£ë Ó¨ÍV‡û ÉÏ5Àþ :®ÆØ2ErmuЙ ¢wËŒ-S#ú·ö$ÕYò¾ ‹ðÙ òŽé¾/ÂziÀú*“ŸmÁ¾ Éß­“Wà̪€Nž=;jßÒµS}Þ„Ÿ Éß Á> Á^«‘½]ƒw’Ï®€Ý»EÝÕdìm<Jp­3ÝÑ"÷Ú ç(¾»ÎzQû«JÞsöfÖplÈ œGhŸ”‰þ)“çÑ ïƒ> ±Éè~ ÷Ð=‚T%{…Ú¶Ô~¤ge›¬µÙÙÔ{¾ çCüÍ"ùÙY/erÞµÉ5Pû¦¶`ÎüžQ‹üµåªp®ÒýW!ϺvxÞElÀ6œÁurN5Èó-ƒ@í±èÀ2yǰGJ`k—ˆ¾*’¿Y"ë¡ ¶tvztmø“5ǵ¡Î/€=Q…³»AÞmƒ¬ç2±è3¯›²ÆØu¸æî¿z=„÷X‚}ÂÙY€s°º í®2Ù'uØoòN*`Ÿ´Éž­=Œï.„3´FörÞþL‰<ƒ΃6³fê`»ÕÁ¿¨;ÖröNΖùE&žS‚µP#ïú4eÐSuÐcÔþª€ª1z×A…yÔÞj0ç{tv¾‚ߊñ®2¼7ô;`ûWTªFü­*œÅøw©-ß"ë’‹7Ô˜³œ¾÷2ónŒmKcmè‡Ó3¿ ç@…|6K¼“Îç*Ñ_M²ëÛj@¬§ ñ† sþ•ÉS‡s°g•صe8# —ËϪ‚Þ¯C\ˆê¬YÃ%ð/Š £ëŒ¯9{%°Ê$fÙ€ë ™xNöJÖgö^tR|œØÅ4fÔ‚s÷t™ñÿŽgY¿!dôF tl‘‰Ë”ŸŸêÓ:£wªà»”Á—m€ŽD¤çSl’Äj°ÆÚ°®CˆA -Q!{,dâÇ%¸Ç"è’ì7ŒßÒØrÞUÖC“èž2Ùw °‹é á]·É:lž¦¶c ~¯AÎ&îo…°ž¨ Ù›¾Ê¬¿œ!¹·  ï¡Lì»Ù+ux%¸Öø=ô½Õ˜8SÎáùýœíôþ[ð~šLl¹~c |Å&sŽ×À Á¶¬‘û,‚ŸMcŒMÐÇuˆÅÑgÞ¿~l‘ìzž—ÁN.ƒÎ£qÖ6¼;Œ×aï×ÉùEsiRì3dò^uðÅi\»ÅäâBÆV§q…:Äã+$wX…¸K‰GWáß°[«Ã*2çvÎÁ:c[×@‡5ÀÞÅçU‡õ[†¿Bl´ ±Ø*M¸Æο:œ;-ð‰ð^›°ßàVÀ¯©Âz£¹MÔ˜q#ès=_†ŸÅüµÏêÄŽÆXxütºÆª°>Êp.¡­R„óm‰Ù‡°¯1VZ úó$È1·Éûo‚¾À3¾qŠYëeˆÙ†à׆ —šdT_cqã«ÂÞ¯߀æ…älÆœHâÎt5 G_…gP{Ï@N„$6Vgô&]œS›²HÎ>êó N©0±·*œcèÿ6˜5[Ÿ° ñýœxÇ5¢ë«€±(ƒбÛ‰cTÀÁuPxLÁ!”~RÎÙ2ØÑ˜×¬ÁõÕ¦k­ û‚¾‡"ƒ3¨2±›è4|Žt4@4ú¹ zÏmŒ­4á÷ŒU†÷^ƒxu tiï‚ú¾èo”Á&m’çL¦ÌØãðÓé}WXjOµ£ÑL õ™ËD硾®Â9T B147TƒxKâ¤eÈ9Ðó1=t]˜ükö2õïÛp~q1Ñ2“®A¬½û¡þ]ô ú®hÖ˜÷Mseƒª’ýP'k£Eôq‹Ø#T·6Ék0>u‰£ž-@« ù *£ñÜ+8â5øý œƒ5X!ÄKðwðÙc¿ ¶9}~ôü*8âܹP„s²LÖH ìž:“w ɵµÈžiÁ»ª2ù†ññŠó˜{ô@ ° ÀA5Ÿ¨NÖYö Å¿pøÁ*Ä%k /qÔ!&P!¶?â=j€péľP=V„xNžsÎáè–"`B’¿kCž’â°Ú`óá9Ós«Éœ™!ƒÙ*^± st-Å…L²ÎøÂ5°¡*à'UÁŽ › ÷¥þI~¯ÁÄ[ °?Ñ+0gV™ñ‡Û€5l1¾Y™‰½†ß,3˜±Á8ÕaŸÕ‡T»¾Æà7‹pÆQœc ôY±ÛŒŸãòñ8|j™‰YU˜¿U&~úÒM&^2ç@ 0Pxö4™\{bèVŒYâÝ“ !OOã~ˆM!ŽSƒü@Èà0×S‡Xæ‰BøÜ"Y÷ °ß*ŒK÷]™<‹³WBØ»-²^«àÿÕ[Ϫ:ólKL£ ×B1ÖeÀ•”™x[‰à3fga‰³â¾¦8§Ù=­AŽ©ÌàW9œ^fÔ‰tRür bšuØWˆ¡j“gÔ€r~ójXOP…8vÖ\ìÆ*øœÔN+0xíÄ +Ìþ@ÝNÏðÑÝ GÞ²ë¹ÁèÝœûuÈ¡Þ`|K,B¼£ÌÔZ o±„ Äi¾³>"ž¿Ç=ÔàÌ ™wÚ„i‹Éã—lbÅCò,WW‚¼5®¹ôgAˆ[¡Yfb›uRçÀ­û2ƒ½¥1Œ&øoæl¨F¶çuî­ ø¶:ذˆnæ¿çcÁ²Õa͇DÿÑÚ ŒE7™z:èqWN“b  v®5%ˆgWà\-3µ5&.Œ8‡2ƒ)-À×%°“«:02Ô÷+ƒ­†¶y8$ÌÔ 6U‚ú¤"œëôüj=Ð"ϼ uV ÐÔF.@¼ÓoW¯ýM}Ìè´!*ŒÏ2¾Æb*K¨Aü ÉÄ>+ –£IìL´±9<Æ;ЇEŒ&Õœ^®ÝPbpÝe&7]ƒš±ØPT—•ÀßÀüµ¹éýÔ!÷Nm•6s¯5°uk¯2qÙ¬—Ä‹°×«ðœ î=„¸dòJ4ÎÜfôStKrÉuÀ(¶ÁÖÂX1Æ‚Bæ]„Pc‡¶LboœÍHýdÄÃUÁÖ®®ºÂØtˆ­ƒ^¯8| øÌ X·XÖ‚«ŒÝÑ`üGÄÇг§÷UŒÖPb }MÄ&aÝW˜Å]¶Éÿ7Á¿i8ò—5Ø›˜ç|Ê2³æÛ€ÿl0ØWî¹ál)9ò=TO´I¥ 1îø%&§Cí¬ä1ñ¼«À{å>§æˆI¢ý^ft]—M&6ÞÌVÎ_¬¥­@,ª~bH\q–ì¯&¹W®¦³ öe0-Ô¯+0±Œ|¼:`9Š€§)®²ÈÄ)Ê`ÇÒ3¾ { ÉìŠG£±ôSS^‡Üq•ñU[€‡¢6L±5šBL[|Œ“W˜wSabÙeÈ»Uá•ùÈ"Ô´pñ¹œ§ F?Uç‚_€¹nº>ÛD”@×4¡Ž ýý6ä+Šàï•áb|Ÿ‰± Ð^¢ñ³—±¦©ÂØøˆ÷Ô!†Þ[óŒaÀó64ÀþÃzŠÔ¦…`ãTOÙ‚sñ•!¬¿ óÌé½µÁGªVÝRaò†4w_ƒû¨Áß-ÃÅáÄ*Šë¨0u?Jãˆ% ç_\G•ÙÇ!ØsuGÌ당gÍÕÇãYHù/ZLÝ4ú¸ø™5 ‹5ˆ{.2>U¶kñ™±^§ñ¨øI#]ì¾ï&趬Šén3ñê«™zÞø9 ƒ,W‡¢º±>dÓáÇ׌m ì ×Ù2¹ ¬É«ŸÁÕ÷™ÚŒ œE&/q‡:Ô{b>©LüÚØ@eø]Άj€†\'5ØGe&ŸØdl« c—˜ƒ*ƒÕ£ù!ó+B,’ãú¨2û·X”2c7ƒñŠs¶– 26<5#ö£,ÔÛVÉ;n€=ÉabšÌƒµ0\œ9„ýBmÈ2èŒ:Ø&!ä¦ÊÌ;j1ušu&6_cêBøÛM‡­CÏ©2óŽ‘ãëš#YfpgG¬¢9¯¬¿¢£¦“žÁû+3ù×*ÉõSŒJlïSëRtøämrV•àlj2ø´+L\¬ çmΦJåëA¬D‰QsµÎ-ÈáV˜Zí`²šß+8ã:ƒí®1ë¸ÂØ5x—!¼›ØÀUÀzaO jŒ¨^kƒÖdðµmÐ7%¸g.Öç²E\¸ÉÄÈš`çáû ‰oS…ÜYÞ_èX‡\ÝxÌóV5`ïaœªÉĩʌω>r¹£"“AU æ ã ‡L<¸ ~ÛäW‚yÞ§(‚^â8Wаî0ÑpĈ(Ÿ Í·‹Emš`D$ÿU? k«LîªM0³UÈ«–!Ú€8Pΰ©wÌ-çŸp5reoLuO ÎBåEDìcòþèC„{¢ç®]äJÄøÚáÀŠ”{kékL KrêˆYi2ö&Å©¢íPbôÖø•¡ž¤ñ³Ðá©3õám’?j1õ].ÌS‰©å þ rU!öXgüRÌÇ–‚,YÈünÈØQ%8ÓêÏ}…¹‹‰‹”™ú»:ÔÊRûªgp“ÁQV ²œbœ¯Y…s¹É¼gäõ*1uP%°•K€‹©Àó§ñ¹*oDŒ[™¬'¬ëns»ÂÄâ ̺GŒ*rPQürΗ²Ã^-€ÝÂ5‡ÌYS`ꥪ<—#(8|VôñÚA–3¡àÀê”™ó }“?åj°©ïŒùœ:ìÑ œU!nŠz±HÆÇ¨:êî¸u]†z‘³÷«Lr òõUGýÆZ îíJÄlÕÃÆÕÑ=Ô ²|ÄÔ®ã|¬a ±»6à8,ÕQM&†2y§:øØÈTÚ犣ë)©=\Þ$>]b€e°ƒ y ÊLüŒÚŠ%À¼V˜µäÂoÑq•©Äs0tèij¹<|È` ІÂþX„¾Bübj_qöP•±íC¢¯jgnó½08Uì¹Wv`g(~¢dùe9ü^© n@¾»ÄԊѵR„8;òYÔyëƒç,ßOõMêj±V©ë¼9à"“cÁÜæ«€GœW0*Øs§ÊÔaMµ)‹A–·=„š†S;„ý÷šð,Š#)‚Þ-óý.A–+{7T™ó5{AŠ…•á¼ ¹DZÃÜ„óûÊT™}ÔdjÂëA–¥âÀá·<>Ë©Áó¨~°ÊÔE”ƒlo[š«Åû¯2ñ®î¥îð ‘#¤ÎØ< ƞøV5môúA–Ïù:ëvºÈä<êp¦6 n¹ïžž³-ðËÊŒoueõ€ïÛPqäÑJA¶‡öÿäjú+ŽØW;ÆÕ|`ì®ÆäËà[A·„P³…<0e¦öÐÕâêKSôuâîXÈRŒl‘ÁÂpq… ËMUeðG3,(r¯ .=ëŽÚÓ*«¨Y¾ c#‡@•Á•Ô¹ÚZ0ßÛ·IìÆ “óÅø:æ“9â&ä¸({ ‡ ŽÛ·®2¹Çc‡×‚l/iŽK†ë^uäëLm‡…Çxɽaž¨ï·qîØ‘U8ﹺôç›lP…‰o ÷B ðhv‹ækš ¾–»¾sæ×ÀŸÆçY{ãT æï`ï«`}+L—.A­ «¾q!c—bŸ%´Ï§90ôáK Πçb‰ÊLX9ÈöÄØ—c¥xfÚë ùÒËL®·Âà:ÊÌãl`9~ì‰Ùfpv´g_âl”Ç»Â`‹+Lþ£îˆoÕ §Übžö »© z–ÚãÆæ°©eø{Eö¥ÊÔ7ž£­Âè‘  ¥8ÖSëL9Ç›àÛ–á,äÖlÈì§jÀ÷ hùj ¿ÊœSUGü¯±&ª—Q7…Œo[bò§¶£û'„7ÇG°÷Äquãù‹½K«€ù+Ù^ˆ.Ž2cÆü^r\ ¤(`LjÌÚäÎí©­Å|t…É‘`BbHǹT°³æì©1±0Žk¨d¹„+L}upqE¦ö3dp%œ?2öXlØ‚#n‡\#57TüYÈ`ƒðü-9bþaÀóîboÙ*Äœk?s­ äÚż×ì3ÚLž£>Zâ¼§ãp -¨Ûj1¾bê=ë€å)ƒoPgê犎x]µÉ¹„Ü$XØ`b%ÈÁX†s«ÅäS¸xE•©¹Ã~„Ø×»åÀ™JX_.\w؉t-#~² k¨giüÄ·™|Wó]päÿÚ –¯dyÞkÂó®2q}®¦¡Ìä˪ÂýÔlF•ñ·ÚÁ|oYZÛÛ|wp·Ô¶©€Mq¾\}ö8*0vb-J|W™ÉWTùºC6 ûCS»£æÉÑb3Œ«–˜³ÒuÞÕyèÉ7`¯ª¿kLÜ4„X÷L°Þ¬ì¨u/yìÎïŒ[Ýᇖ˜z½ªÃ-{ìWŽóñØ[’ö$F[±eµ€çž/ÁÙWdjŸª`ÿѾ[X—Uþ»dû_W Î¯5Í`ž?¯± šàj‘)ÿ}mòÔ'ÂÜÖ4ŸPfê,BÆvª0q‚jÀó’ÕH {º´‚l¯€Z0ß{7r=­1†)­Ë–ã~‚ŸZ†Ü·« N´d9JjB=XÍQÛRaâÓu¦žº v ­’8Cð9(' õ Ž}Ïå̱çE•Áß".'d02UG¨ {¶8‡S;±õSóWgb¦¨']:Øu^qkýªà0§S;{µ7 7Jy_JŽøGÅ÷«0+hÙ~X5¦f±ÈàB+L 7—Ÿm2µ.¬×Bî7Ž¡âÀ—Ö7GM9psY"ÿ9àù“ÊŽXz‰•À×ù˜_ŠW¤¼—X·­.Û‚Ãùs=Bª 6ã’¾w O\¼ì¨7CÞÏjÀ÷GœL-à9j€WÇ{ÅÞÈsPdâ!ã÷pµß˜;-ƒÝSa° G-4öÆÜ:­ƒ£ºÏô–#.ÕrÔRîÅvåªmÙž‘¥`¾ßsr‚XÓƒœ­aÀ÷z 5`¿.ÁyEù©["X{ŠéENìkÀ嘸þ›.ÜY;Èr8Ð3ºðuý5Æ÷åxq(Ï>ÆŽ8Ì{ƒ©Í¨0ñÙÄKJŒ=ß ˜ÌƒOær/؃'tØo¦æ¡x¬õjåmiÖíÔìVÝá‡á; u)¡€uæâÁU¦ö¨ÈüêG¶>cÕaûÓ}¾ê©Ã¨<×yÉ î ë¤áˆ4˜œ]t}%àyiAŒï®É;>=½¿ ¨ ßœæ(Nóüôáôç×I¬j•\ëÑ)³çvfú³«ägo!×Hkšn!?[gâE«p/wM¿¿>ý»Ók öñYÏmòýÍéÿ5§¿Ó†˜èÆôÚW§ß»•Ø:³{™=Ãy^áôßtŸ¯‘ß™­ûÍé÷7È9r–Ø«äÚf×q+Y#·N?cò7nƒ=1»þúôZÖ¡~aüá™ ½Ì÷»§çÙir¯§§?;û›Óë Éûk“ë;Möe›¬±é϶˜øyœCÓß}ùý ØKd¿mïM®óQä^Îu2{ïÁ<¯àì™·H®nƒYÛ5òûëð,kLÝl{úÙëd]ÎÖëíÓõÓ„õ^#Ït=˜ç“¡õ´ôž(}¶—7ÉïO~æ²Ê€Sšý-ÜŸ«Á|oïì‰5²–g÷¹:}–!Yó­éš8EÞÿì¾O¾§zí:ùŒyÇMò·fÏõ4Ä:B²ÚÓõ‚MGŸé*ùþùü3Óß ±¯6¹ÞÕéý7¦?ÛdêWÉ¿gÏòñ¯“µ´N~¾A>Ÿ¾ïæôÚNó½¹g×^'ï ûÐ5ݹF®o“è·&9è½ÍìË3ä=ÞJÖ7å†Y%kaìsjgÏtn“è 6Y“ëÓ¿W#{¾A®{•Ô7ѵ€kf¶‡BÀHÍöÈ9G[d ‡d¿`oÈ&Ñ™”ó©çÄêô³+`ûo÷Û$ëérÔ¾Z%ײJžÛ™éï¬óý—©orЉÇ4ÈçÎî—êÆ6Ys\?Šâ+›ä½¬‘û^…w¿1=#+äÿ6Éý­Y¾Uº7ÉßÜ€g¿>}TјÆ*y›`£®“ý{–Ü?Õ#gÈ{i‘³qÜÿÑÏ3y±µh¯Å69Cf{öŒ×ȹ±Fö>µ©ÎÄ^lkäoœ!ëufcÜIÞuƒ\=ß×àÚV‰mDïg¦¯#{4É9Ý{¯L>¯ ×U!ë`ôØ*c£µ F‡Ó!º¤Bô$ÕÑ•éŸÖ‰=¹It'ö©‘¿Û‚µÔ;köo<›U°ÃiLdö,]C4~uÎô бäÚn!ÿÞ ë¨NÖz›¬º')—é*`ÐÐhA¾iÜÃ*9·(7ê:ù¼3ä÷šP7‚½ŠhŽ&$Ïu¦cn'k»IöAÞïFåm˜é¬[Èó\cì,º¶)&oè¦J0ß#© z¿Nž=;›ðóh l¿žûuÆoZ'~Ì&<û °%ÛàÍì€Û p øw ò,ÐÎZ'kâ,ãÃÜB®›âkÖû‚®‡:±UÛçkCÌíÔtϬó½šÁ|Ïî5&ÇÐ çÁìí:œómrN­AÍvƒ©•¨›¼þoHôÁƒ;=Cth l)š‡­5Ô ×GívŠ > çÅØ ÔîØæûÏ›¨Mîa|Æ­ÄŽÜ„uKm´Ûgë÷l0ÏCØ‚¸ÄmðY!œQëäûmð“©Ý{–è×Ù¯-¿ZƒwIÏžö4Ò"_S;  ëÚ> øÿÑs°¾Ï»n¨Clf5Èö—,ƒ>= 1IzöИ×iÿ çöhŽDÝ»÷×?k•Ä5š°Žéo“{¤û’Ú<³Øô£È=l÷ЛˆÚ—kÄZ%çH>ô:ÄY6‰wš¬©U¨qÙ`°Ñk$>O¿Gß'Ñóx•Ä!èÏQŸp“¼óMx‡m¸¿SdÏàY8óÑn%kî4y®d7Á7©’wÔ„÷ñˆƒ7Á£¸=Ó Ÿ(ÃLÞBÖÉù[M&³ 9È9›ð<äsé=à=Cl—:ØF³¸úD¶[B,ù4ãŸ4Á¾©AíQ‹èö5ÈáÖÀVß$ë¨ zzÙC4¦Ôdtæ9föõYfOR¼Ã:¹Ï6ÄË©ÿÔ`jNγcôoɯÔÀ†¤¹„Óslþªóœ@MÐã›ä̯ƒ®]'ë¢ Ÿß†j›œ;-°«N“wtŠè€Ä:6ˆÿ¾ñ·Ù^| Ô™Q›ú•Tï5a ¬ߟ¾Ã ñ‘šäßÃ]œÃlÿoÂ3½Ϊ<Ó Æ:Åà!(&õs>£ >mêÎ@lz|ÿ‰UQœX‹èbšÏ©êÀ„ÍôÇ£ÈZmBn} |ŠSá¾×}ÜLoò,!èêGÒ<3!œqä£×Áv¬ÂùßýÚ‚ØÅM6 WT…³ñ0›ÓX}°N³÷u`sVÉšy£mo}âh«€¡X×5°9Ño?Eüg껵ûóQ࿬3ø·U°P·`<¿Nü¨ø4uÈ±Óøq‹ì›U’ ¢X .^…|â*¬6³«`WRüIpòtÕàlŸÚf-¢Ûš›«@Î×÷ËÝ 1òSäÙÌÖÀ]€X;õí:ÔŸµÈ»ÅþÍ!Äú(– ±ÔXW,ÈY²¿Ï†a ðmMÀø†d ¯ÃZln£ç$+¬€=0Ó":ñìôYoÿï äS7ÁGiµÜ;€æåZd­¯»ÁœSÔOCÞÑÄnê`×o’♩Ó"÷Ø„<-õïWøž5°Óڠךė]ÝÛßó4e/j“º¿„`AÏ‚¯ÚŸœÚ?5ðµÚãÁŸ@_¶Æàú‘7d-Èr¹ÜAô3ŇÕ.ý“¥¶ÕäÖOMßÇmà»6Á^œc Þ)=o6™üò„$Iïû6á]Ò|ÂìzKtµQOÆáyEð±Ï€?· uMˆ×É: 9©v­-FÞófåkÁ×T—Plè²—é;lÃŒ>öüÿ*Ø ¸þcçPû°ÁıjPƒC}ºäÛßw¬Iü*ŠCo‚ŽkÂù…±UÇ9½ ú¿{º ¸ØäZd-Qµv âV¡^£þÀø6d>#šcª0ŽY/4g}r“k'§1/äOn@±dûßÖ/uM³:ôSÄ=¹ÁUУˆi_›Ú#4μIöDÜC›Ø5ø?ÊÝf°ÐkÁ|]oê=µ >~èKìkIc°5øÙ0 ÔV= :œæ)Ú;^ü^ bÊ!¼›ì5X;kA¶':=‡›`¿†ðý*ä#Úƒ¥µ:5Ð$~†ÄûÎï£`ýÒüà*äï(þ¬9¢u8÷ÚLŒ­>ö ¯¼qÑäBGÌ 9©NÛ<½îuð«Öà:š€7X…³¤ ¾5­Á¨‘ûZ‡øÆ“ªÌûÄžUâ7!Ÿ¶ÉÄ¥[L>vƒÜ÷i²7Á—Ù„üvì#Ä!ÏöÃãÀ¾Ä¸m›è‡M²žZpn¶ƒùÚÛ:Ôjq\cÔF<¾ÌÄ_×A'n÷A×ÚH!Ä»és ¹ÊÔÆ53‡¹ÂUˆµµÜR p$ Ø#4ÆB>‹®§;‚yŽÔ5²^)Æä,ñYÖ 7@ïk °íà®2؃ rkLú4-‚9Çü$Õ¡ë`§Ö ¦°Ï«5R!`j)Ö°Ì÷7@žzj×Òžc·@mI‹Áª¯.å4è§5£ß»c}kZÛSd½¯û|–ËØ$·yð&ƒ«k€_ŽxÕUÀGјò)È™lN­vð-Ú„\[tÅ24óS;¦ ÷Mãeø^Þi öð±çh¬c“ñíN“ú™­Û`âÞ!à¾iÍ#VI¬© ñÕ“óªÁÚi@ýb-ÖCN9ý0JãDÈÛTc°u5r¯Í`¾Ž~#˜ïwAs­%rNž&ço‹Ø}·BÜþñß7 þâ4èŒ6©—Ù$þm›ì©`¾¶—æס>c8-ˆéÖ ·ºg~›‰‡…€} !o0ûÿÇÙ~‹ ²ü5˜Ÿ.3nÊcÓ æ9SpžÕÜtÞ)í 5{·B^opÂsr ðÀ-Ø£4ÇÖ€ºŠUxM¸þUð£VÁ>!Ò{–rÂÔá¥X jgbÍjgIƒ¼;̯11ùUÐ !ƒ­~j“ìÝ6‰QÒž–mòÞ[€»©{¸œákä\¿•ÄÎN;ºñ}¬[?Ï—ÆùÖÁ^—°8mâ­1¹u´è;ØŸ¦Å`qÖÁ]»Æ&ê ^­õ*P_‚§×>Û{EÈß`ÿÎ:Áè†L J lÏÄKªPcS!yýSä]"úñ'4vÚ µ‘ë`‹´aÓX⩠˃²çäj­±nÿ§¹… Ô¸P¼5Å?¬–p#ÈÖ ¯AülÑûèïÞq£5ˆb-ð*àÖˆm± >1bFÏ’÷µ ŸÓ‚­¥ XÁÇ@íB‹Ñ‹!Ù¿xÔÏØ}_c°< ·Â{Å~γ{|TÀó^Öȹ@í†Ùß¿âPm²VÖÈ>¾âôÎý,øÛmø}¬8ûn bŒk`ׯCb ö1næò4àlkV}ÉMX‹MˆÉ¯26]_-ò¼×Á¯Z6«ÙYß¡ñº ر!ÄÆêA¶÷hp3›¯ëeö³·ó6¡#» Ø*ŠßÙ$²Uˆ¯­1˜±ÔSܺdƒàNCÌý4äv6!¦€ø«ÔBµ€õ9m°ÝK؆ÚÎ5¢Zð}z6VI<ŠÖ¸77@óÐ!|ûucÝv bókgß kj=˜çäÄ~5u8S[àWÒºù5ðqï`r¾$FIc4׳ X[^#>æl}ÜBε“ÛXŒÌ:Y¯käìÀÚéuØ·Ôfhó¤ñêwnfÏ:ª7jϤ5€MXskpnáºC<åÄYerù!¼gÌÕm®¡×Ûb0ü!c¿ÐØçcÀoY–6Ä (/BeŠw¢y!ª¹šš¤ù×&ã—­1Çõ Û[k^êà›×`Ò~ÏUðéfý:ŠäoQ>ÇUÈ}l@Îs 0ÝÔ^½|ì!šÛhLs'« Æ  õEe¨]¤:gbZtÿÑš M¦F#dtÜ*ü»ÍÔœ þm29[ªOo½»xJz~7¸ž&ì!Œ‘b òƒco˜FåhÙÞîu¦ž§Éèbj“ß:¼ ù¬&£—Bb_V˜º´§hOYz¿ˆ­&ìèÆæÔ?¹j]6™¼*õIÏrÖ÷9N1˜Ô6Ø¥Ô¦Dûa•ùÄ œ‚¿…<¬«€]k‚Z% Äõ?öEb”u/Ú„Ïm2gÍA–S¬Mb(MFïµÁÿYß§É\crÅõ Û“mÑ&஑ŸsêPkÅõ»k˜â²6‰‚<íU¸¾W¢¼†\n{ ¯‚}Õ"X휴Oû 3–àaN‘ß öÏ`êÖA?ÒšÓ«y:ày6ÁV8Mâ„mˆ‹".æ,Ä Ï@ü¾ ˜¬5ðÖÀæiÞ²~ÔÜ„8æiÆ'[%ûlÆw‡õ„´gý:\g ö6ö4ÇXfÖ9örFÞaÌÑm€¯vŽÆÏ× ÞOýjó!×5p÷LâúåÑ8g•Á[µ!v:ÈòÕÉsnïBc$4—wšÈ­pîÌð’·A¼Ml“ì™6±ŸVaíQΟuˆ?l‚m9,Ž·9ú7`Ý· ¶¶ ØdÊO{†ÑM£mÀûá|ªBã«Ôw~4œáˆ%l†‰ÖJÌr›A–w±A+ü8Ð3«LŽ®BžYl ì²FÖN‹Éc„°¯K0À!k}Ý‘jV‹Ö\¯‚@cÔn¢çú,ûXÀ¿®Ù^%˜ë¨‚½Y!¾Î*có6ߦÅ`2h¦SS…˜‚5&÷Ù æùÕ°?ÐZ­±§\e«A¶Çù£ >‘{‚ùškGX%gÚiˆ“7w@sâ§Éy<{ŽO öî)Àø¯:b¨a0ÏÝ·ÆäD6á|[%×&˜çi1u0”K ¹#7Hî÷ `)ö³Ì÷ióüï«°nÐöÛ€5Ò&¹ÐÕ Ë‘MˆÏnYÞÖ&ø•eríˆ#¢8<¯W™{ qÇ5°° ùÎ5ˆUTŒP 0—”¯ªÁÄg[¤N’öJÚ€{áêËš€Õ¨‚}½ÄkÌï6˜:Éø ؃©1#ìÉK{{Qì ­U­€^ªBî”êÖ³`?•§~Ï-S›àvÀÓ·É~ Ø_j/œ!>߉ÌjÛó¨<ÞœýTç ŸßŒ_­ÊäŸdÌì˜'Àý4‰îšõZƒÜøN7]Ò¬W-Èö®fƒþ}ÊM¸ Œi¶§gÏ£I.ôö©N˜éÏùSÈ÷O ßiÀl®BýŸF0ß·ŒbÞס1„Xøf0ÏCˆ|Ä ˆ/Þ±©è’`ž“lò_T†ý´FâØ›$ïp;ÙÃëPsÔ ²}lŒ]@õ bÖ@¯=ŽØ ¨Z/ÁÞoȇNó·uÏÙZÿfíå¶d9~Ú © úeêÚ(Î¾ÅØhŒÍKyBÀëµá4A‡Që¶×‡] æ¹ØÚßGy{hŒû±QÿºdëÁÛÁ¶_[cj8±î½çÁ:ØyMøóï ùÙb0ÏE· xì½Ðbj7(žbŠ(ß| °@«L|x°á§HŒº ïùq€ÿk€.žé¿"ø(ˆ#Ð^™¢û&Ò!¾bŒNVŽrJP¬Ãìwn»`ƒ|î*à×áo®1˜Ü+ ¨å£õª·¶`=ÈòÅPþ«6Ä¥î"?=pi¬qÃE]ƒs¿ö­[¤ñ{ä¹\?£áˆ«¬1¸Ï:ìm“߀šÉSwŠœß«à[n€­»ÆäõhϵM‡Ø x^3z?uˆÔ™Z¯ÓÁOpàuð¡±n}ý6à“êA¶o3®ñ&Ä–°¾Šö¬11}ÚK´Î`5±çR t9öö¦Ü¥xo5¸&ÎÆþȳÌsn }‰üPÔkÂûŸé¾±ë€+¬BŽ‚ã¤µ{‡ÍB¬¿‡¶)‡˜q.T ~®ÈÄgg÷2Óµˆ]ØtĤn%6çYò¬†ù»Ó€Í›õó¦äí`¾g ârÐFÛ_h•±g5(·ÙþI³ÚúÓŒU æ9Ò ¿ÆØ{´>…ƺ(/öÖÅøÖEa Æ (¾° 8 šË«Yþhìç[²¼†«A–“„ë©Më˜ê°§Ú n¡Å`CЕè+>0þ-'Ä^ß«LΦdyÚÄo¢}„Î@k­V™<ö:ø-Àwqu]4ÖÇÕtÑÞè æy»èùQÚ/ìíPƒØ`•Áü´|4õ¨J0ß{® ¹läɤvéø=!àu°žy$š€OYcÎ'jëWüOÈü<]wÈ݇A¶ÿÍ/× ÎÚlB 쯵 ËY>:„Ü9ö¼®À¹Ùfî y*V¿³¾Zö0bj)¾¡Lî“Æ‹(wG•ø£5Æg[%yãòTgß6Å"͸gœº’SÇ8ð‰ÃÌtêmD?®“:µÙú~bå(£¾Â)¢NAœøTí#¼Îä§A–?¦±ä€?Eðm8ÛVÓb„.®£6£÷g¸¬›Ù» XAZOóS›ŽçÙ"×Üìý&ãÓÓü` ôÀÌ.:Åà|‘/mb¿m°ÉhÜ*䤱–gjè=° vÇœõȾ q/ìGº çäF0ÏIÞfâT-ïƒýi±okΰµ Û?|ö5ÅÆq{°Îœ!¯ŒuN˜gÅxM âWØG'Ì@ r«mÀ?4žÇ±é¨¬,&b-›`/6ƒlPìeÆñXÒ}Âñ]Õ‚lÿ < ihð³÷qk0Ï¡Ô g­Q¨@½GXð ¼§6àþêA–Ï•ö2_ øÚå¬9úwî€G{ê ÞçðäÈ?¶# ²=-Úp†#ö{UÒÞÖ·Oó ³3åVâsÍü´'NæžàF­4ö‹¼5˜ï½¶IjCfX‘Éç>‰|.õi\ÿ,ù÷mÁ<·î,¯|7ÁÄb<¯¾­é¦5‹§Éùy rò§És> g ò P?`"Ì÷YuÔK¶ ÎYgbË\Œäé`¾ïÛÚ4'¿d¹#ï"¾A›9ßi¼® ûsµ§ŒÖ‘­39GìÕ°áÈSc®|v–>>Èrò >q6[Òb0m”»¹è1ކ}°9ž¶ø$a­ÝnƒO¾dûWÒ@|ôIËð^›LŒŒ~F›ØØË  6ÇZÀsѵ!žÚ¼À:Øè\NZŸDñnÈ«Gk„¨zü¾‰ãQ¼r¯Y~ì A병¯´>ÐZå‘mŽy–)fè1LL|ö.Ì÷ÚZ…XWÈÔ­´ü;Ú!àhÍ÷iðó°¶šÖˆ7‚,÷;Ö‚yŽ˜&`øküF0ßS‘ö8Cl>­_%6Òêô>VƒýÁVƒl?CÄÄ#nŽÖúÌtû-_¦1ÔUO±Nbøˆÿ¢x\Ľßd¹ª7Œõ›Â`¾¯Ëz0ߟ“ò¯b«»˜8C p›Œ¿Þ€¸jò˜-ÆŸ®ÃùHë?°rì£&Ôe¢ÏKsƒXwÜ„xHr=€ç{n@üfƒìºvNó¯A>·@þ=û›e"KÓkZž^ßÒôsKÓﯿ½<½÷Ù3+0Ïueú{ÅéÏ–§ß¯‘ç]™~¯2ý™Âô~gŸuŠÜw#¸1fï©LÞW•<ëe¸®yþ³ç3û½2ùÙÉ¿Ûäz*äYצÿ_š~þìß•ég5Ès]&ïºHîs™\½–ÙçMþ}šüÍ2yDzÞJÓë¡÷t yn5ò–És)’{Ÿ}Þ \C Öø Ycu²~ ä~ äóK°æVÈ3k“5V$ï~‰¬—2¹wzmEr]%òìg÷[™ÎErMMò·—`m,‘¿Q ³@Þ;]GôßKdí¬µ3Û#ò̪dïÍÞ'Õ'³çV‡u¹B®e…|F@ôÝÓU²§Và³èÏœ&÷2»Ç*yŸØ×%òn&÷sóJäCrô3KðÎW`ãÞ¡??›ëÓ=5Ó'²–kD'a”É3-’Ÿí"ù¹ ÑSË —Kä{Uò|©þ«’ç[#ûev­%æù.‘Ÿ @wÕÉó®Âž¦{¸5ýÙ ¬iªûrŸËd½Ït>~¯@toÖY•¼çò7 ä3Z°Ê̺Z!kŸî‡òôÞJ°ä]`Ý䚪ӹIÖ ÝsToÑó³FÞòãw¨¾ ï¬H~g Öݯ%¢Êäì À&™ý|kqôs™ü» g=gé¹A훸‡œYKdoL~®kön› [*°÷WàÎÞéÐU¢OKdmáç-‘=€M´Döà ¼ÓeX‡MØ_KÓk¢gb ì’`÷”àÌ­‘ýE§HÖÊìïWÉ™8û^|½Ìü~@®­El©%òœ©nˆ Â5O~æ,œebDP]DõÈ yö°IW˜3´gÐ2cWÌöDtð2yß Ø‡ô=ÏÖhÖC|/$û‡žUer_käoVÈÏR{¢2]Sô=•È»È;)]°B®;€wMŸ)=[Šä¹Q=×€õ¶ Ͼ{1 k˜žÝÁô^Êd=ÖÉï·É»£g0ݧeržVa½”`o”Èy½׺ ºq®s™±{+äÙÓŸY†=¿û¥DüÆÑ/3›®AÖ=Ï«äYR»µçž¯e²×ðSè^«‘Ï©À½ÌóY;¢ŸMõÏìÞBÐ×%ò3³uV'º£gaü§ù{KdOU‰O±û*»¯~Õ÷Ëðªä^+ägWÀÖ¢ï%„3©Àœ%h/ƒž[ŸæƒÐÏB»%€ÿ£6æ*ølTçP›vüMzvP´ gi‰Y³T_QÓ"Ï}Ê€¬ƒ"øYh‡°ß©mX!k#?Œú·Ã:©‘g³LÎ \ÿK ã äºËÌúž½—&ùšÚKeæ<¦ö=='‹d½`ÝÎtuÖ^Ö]Ëħ¾KžÿøŽ+ÄG¨Àï,ýMý„€‰=ѳ!˜~n ô~¼ó|œë!Ü{bT5ˆ95 ƵLtPìÛ[W‚çŒ6JÖ{´ÀFš­[jóÐøaömâKðw×`ÏPÿ£¶yljÌþ} ìÅ_¢¾Ë øïÔ. ˆN®Ãþ^†½Hc%8é>-ƒ]Q&ë/„X³ Íˆ{( gÑ ÄÈî ç]bZÔf-‘3¯>>]c!Ñ[°#¨ý„6ßYà دæü˜í§6ù™ùìyÿUx6KäýÑgûº¶aöi¶hövl7ºçJd-¬»g™YƒK`®À™LÏý%r­!‘ØÛe°‰éÚ¥÷€OAõd® c]³xz|tj“T§1nú0†P†\Eltp6”˜Ø^@þf™YÛ47‚1˜e¢7–‰GϧüÔè®"c£.‘=WcÖ_À؃Ëà/–`=c^ý¡Îêeð߈·/ÁÞ¥9 ÄôW]³û¥ÀÄŠ$WÀ {Šæ©hl¸×Q†øaì°ùœ29KhŽsUÐAEÆ)Á{o€-³BΆ"9c—ÈÞCû¬¾d…üÍ:ù jÐXf•¼Ë2“s+Bn¼ÈøÆE°ÏšS(BLwüÐe¸ÿ ÄžÑ'½ ÞýôL àúi¾ˆÚ 3=}+Ĩ½¸ ù¥âó¬@ü©À¼ëÙÛ5ˆïS?šž»Ô6¢qä[ÈóY‚wJãX›ô:[÷_‚¸)Æ8KÄ÷º•ÄBéþ/2ñ•øÅ¬_ÌïÒó³IÖ~‰¼«|ôÝ(>€®·*Ä9ê$ŸQ…xѲ#^…3ubÌtÏÔȹ‡±Øe¢ƒ— µ¹˜öulÊeˆ§K/0qï"ä%KŒ>-6Ÿ{ l”2ÄËL¾æâªàG-3ç6}—Õi¼«Åä'i~höïÓ žc˜¬ÃóXf~¾1Ïe8ËGÂQÛ«>Sñ)êÏ.3çy™(C +dòˆ”™³oöû›à_¨MíÅÙß^#k­ 9—:ñƒ*äs–À¦)0:{…Ùÿô|/‚¯R=À~*}²ÄØØÄЋ$÷Wcö.ÅÌ4ˆ]gG΢èvŠƒ]†¿±Âø´£óц àìÅkª0vlü³"c€‹(@=Á ؃ˆ%]f0O˜kAìÆî#X‚\&æVq*ôþiÜ$„¼|±|.Œ8±%ˆç•ÁÞ †W%×CsõE&/3‹½´ÀwÁz’ÙßZ%û² ~ÖÄ·]G×~žwb,°WV V„±°k©-Ó€œ\âxuò{7/Öqw·@ޝ˜‰"ãY† ]sK ~»Èäñ³ÀZ— —W€XÉ “«Y‚˜õ ĪVIÌbCBÀÄÑõBÏÙœÛUë²ÌÄbgŠqí+Bìü2ØeEfÿ” _ìÚƒ7ÖL\ezRÿ/€˜TrûX‹€zóxS¼æIh¼ ±%ЫˆÙ,m‚ñ$ZçQ‚xJ|ªbÀ×RgQ`ðÊôì-}¹ ù+Ä.Ãg®@žk >3 ×^²5Ë`“”‰ƒ¶_üÔ2`Œ©®ƒOCãgŒõ `p—‰íGÏšÏ.‚OYû—bÇʀϘŠë³^&>C“ÉTa/• 7ˆññ%‡Rlt‰ñù°æª:ô«X…8?ÚÃ5G¼‡>ÇS`oUȾ ËGk¡hÖ³È;-3÷ˆ:´ÂøˆT¿©yߢ#X‚Øeç–ËO+@Ì ëpkŠ|ÿø³ˆñ,€¿\br½EȮڃ¼ç? |CÎØ+¬C¬ý[qà…¨ 0øŸ&¼ç%ÀŬ€¯R€Ÿ+®h |o7¤8å ñ[BðãhîfVëw;y? ¢317¹Â`P±Æ—Æ+°ú4_Y…ýY"xÊ"ƒ‘X¨ÄäÇ—!F0¾Mö=ÇhNƒêØr­± ˜˜D›œ13iM¥Æè“ƒá(üdϮﹱFŒc–\0µQ*Ì9¸¨å©‰XÔ2ƒÍǘ[ð?®¸.Ö¿”`?yÎ¥_¢>Ý+58ëB õ| ά¿üà°M—áü-™¶ìÀÖ/1'ôW Œ½ë›Î§˜¸-Åj•ÀV_dv^.1×X'øÙ*œå³uq`áVÀnúÄ2³ÆBAëOVàë"Ñ?M°Õ¸ÿUÈ—cªð\eóxVÄèŒ~[arJeð±ªdѼJ™¬Õ%Àr6À§¤>U òqˆÂ\jÙ‘—(ÃùµÂØÇˆ×CLQ‘ñŠ»^†8è23 ÀÞÄB™9kVàw1OSað!ÁP߻ϜêðuÈÖ¦±ÊÜs…è¦z0_{\g0Ü>(~u°×h'U`!fkî+LÜ Ï›Óàk.O1²Èåpµß˜s\‚÷Xbp#ËŒ½€ÝˆX|ÊÑ"{ªÌóP,|…ÁùÑ\&õ¥Ê€½¤{«Âøé”›9mÊ€GiÙzð"àaV þ@÷ —·[f~nö|Ï€A±œé… [R„}²gzör“ÑÇï-ži7êÂh½d‹ì£ Áó²dk±Ê°—êdM &ëÜk€§-ó\3ÙXQaÎße8'BƬ€ýBóuÀ: ®>€uQ€¼6¾CŒycÝóÏž/r¶ 2ñ_W]^‰èbšÓh’ÏAÌñ œ1w;­ ØfÄgS\t âþ 8; €Çq”?^tøàÈiQ`jèz Ûz…©%(ÁÚYf0PT­‚ž_æysðL_&ñ̳aM`ÁôPgðå [+RŸŽÖŠ×‚ùeŠCžá±®³Iî½þd@Öpè‚e&÷u+ùL¼§Gnƒ«U(ƒ}Zì ­'¤˜×ÐAÀózÍ®ç4ø»Ôï¥9ö6\o¹ž"œˆÆA‰³£½\†ÏØ„ü_âlK F¦JÎΰ*%òl)oÉ ÉÇÁ¥ØÒ3)BmÂ&ıVÀf+Áº]aöOºëQƒ`¾Ö$¿£ 喙¯ñwÄK.ÆëÁVÀ†\ ²Ü2þóCˆ)Åøä2cC.1ùIîk©ÅØÊEˆÑ!^cfCÔ ž¥êˆ•á½V‰þ¢{k,h*$˜Dä'C>ö åŠ+:ìŒ%€‹+Мò S±öAìÍ ˜çU(2˜–eˆ‰ GÞø@äãß2ÿOí1Ä_¾‹«Ý£x£"Ä=×áÚV‚yž™bå2ZØ Ú”³çÜ Ï E|”ÙyÔß¿DÎÁÄjJä¬\†spâUÀ‹QÜ?Ö-®0øÕ üL™ÉV˜˜,âˆW[U`0à”'¬ÂظE{¼ö^ ü‚8à óàꀖXû³`3L~g ¾.ÃY| ï.0ø¹"¬Ã"ä#Ðg[x¾± óB¬UÑy á÷ËpUA'U?Kó²&jP7€Üp3}Ió»4&\|•ä)ÊA–o®ÈÄ—ª°f€SZaðc3¬Y•øªøÃEÈ #F‰î‰:;¯1ú“ÚÔ%¸Ö‚£Æ!pè´å–ἯÂï®0vèça¿.1y‚2œ×EÈ•ÐýxÖ(­ ƒùú´Rà®ý/ƒý¸/{¹Ùh¢Î¬•Ùg?š¬j?”‚,1å(,€Ú ²5hU‚(‚=xZ«Q3ÖRìdbZ rUÀÎ ¶ë›fx_¬}ºrle°¡±Æ«ð<ÈŸ²'Ö_•‚lÇ£°ñè°wè>ZÜGp¸è ÿWfbâ-G–óÝ8³–ÿ:`ðŸèŸ.CŒs—u8;ðl¥uK Þav­kÓû[…8)Å­“=_!>ÆÀ‘·ëZWÿ­dk†*Lü|ÎZ0_ïX \sÈ7KëK(î¹Ï~öà2ìá"ø¯4OV&þól½Ÿb0õe—…Ü¥°•QdüŽÙš½•É–!ÎC}j÷4!ÿLqz5Æ/åj†o nÔâœ=ß+0ûbì'Z H¹½B¦Öb¦n#gòL+ÏÅqmrœÐÇY·º ¹Ù L,”ËÛ-ƒ ÖbräËL<ªÈè¬A ¦ïscO {¥ØÀˆ‹S‡àÁ€/ 3v{0ÏKëqŠŒ½U„Ú ÄpQO…‰ß¶AÏlr®Ù:òÉí‚,õݰ§H ìYjÏPNø:äŠñZ0Wt`rf»ÁÔe`c‰‰ÿàQ{‘Ö`ÌJå ÄXÖ|S›qÇ%&®Q‚¸ÍÄ»ë`7,ƒ-‚ËßC`…±á9üO‰±] € -1û>`òì%‡¿0¾ð2œÕU¸Ÿe°– ±BbEã=[ë`¾ŸÀ±ç[Á|=|bÑ5&¯v6àëGéYŒ¹ºø´P9ÈÖÛsç_ òã·û¦9†•éÆá†k°7±ÏÉ2äžjàaL{â•Mð-ÊA–ƒžãŠX ²½8(¦¨Âø°æ>JàÇüV‰àÇfgçY°ckêªõ+Âó¡‚2Ī‚€çÃ_böL|Éb­¥Ä¾v¥vX |–³|ÒEÀ {~‰Áž¹žaÈëŠ16ĬÙ^eF‡˜yÀä]‘[º@üÄ×PÇ®ƺLÎäJpƒÇ¹Ñ«A¶WÌ <£*àsf6L b”å [×[„8Þ2“?-@\aÅA(›ŸÞGƒYgKA–CqÒEGì¿ÀäæCÀžÒÜ_ pÿ”‡¯ÿW›ý.žóµ¢.’å€ç“æêâ—‚lÝÄR–™šjï„ðœ0µR²œÛ\.'p¼CŒƒ`ÍL#Èò,1:ˆÚØ›dƒøLK_뽹ɜK q= k0.X/^`âã?ÆZÁ2“›Ý˜æïg˜çu²¯›$æñhâçÓÚ/äÙ)Cþs™¹ß"Ø%WAüŸ—Á¾Á½’¿q:˜¯Bû!$6F-˜ï%T;«ë· 6UìAÊ{Ø€Xb@¹ د ÏDZ³hþÚŽUˆÕƒlÊ€Ñ!Ä¥0Ö@yñ9ů*ÁyJíïÀñ.iŒ®dy骠#8 Fà°‹(‡n‰9ß±Šê¬MØ£AÀólá]И{…9ß—ƒl/§BíÍDëa©/\düÚeÈñcÞ.²½¡–àÿ¹ÚŒ¬‡â6E¡¦±°K †?Û™ò`Ï­²#׿1kÄs/3zsKÓøoìÅ6¹ÎM’/©n¹ 8ÎZÀó'V!OñŸXCÕ&ç}ÌsÒÔ­Ì:¦ÜÕ˳Åq­Ò\LÁ`Œ k(÷9ò¤-3wÅÛƒùZ®‡ ÆF¨}W&ö(ƬV¹Ç%ð#naâ®+ÏÙýN—˜ý¹˜5ä“Eý±Â`©ý\‚˜ùRåßÁhì7„f®ˆú›Å [OZ xþ”|b勯ž¦Gþ ûnQ„xˆ£#K€ë(‘gWýWdtÔ ¬=äü¢çû:üñ·ÇTý´Øs®¶¨xîZàæ s0ytŒyQÞ:±ŸîœêÀ*cGQÜZƒH™ØLuo/_‚%õÑË»®ÀïÖÀ-0q.j«ÖƒyþÊ"¬“B­i,“gq{0ÏÁ‚øÌù;&Z†+òéÔUaÖW×¼ Ï+€\'ŪpöV™\B1Èö¡¢1ÈRå|YÝW ²5\ÿ-0yè0˜¯yBÿ¸dùò+'¤ù†%ÈŸRM±Ë&&Åå麩Y±å€¯ßãjÐW˜8þ2<ïæ¸~oØ›¸ÌàtéZ à,-YÞl®ö¾ÀàqË žãn@ß‘»—øò&OÈÕÑr1TŒ­@|v‰±Õ©ÎĘhÀàv—ד¸ðþ#>¼ÄÔŒ,1y(ôÿ—@çR׆µ;;kN7x£ª€mª2~m•`«+ Çn'{3$¶-ö>«ƒ]€OŽ}´)§N=˜ïÕ†=YÏ2±©0˜ïIT$û«ºu7µ[ë ŸÑÎ+æ¶öy™Äh±×æ?J$¯ƒù Ôgˆ/G|Iѱp½!F€œ!EÈ÷üH!Èòâ¬ç AëÏ9¬*¾_Œ£P¸D0!Ø„ Û'ó?[…ÁÓ<~pÕ Û“¡èÀxœ݇=l1ŠdEÆFn:C@û.3:¨¸{PÒ5HëpioÔÕXxn$ŽÛe‰±ûëA¶ÿp•ÑÓØÃp†õàøT&߽찇ðš¹ó«ðœU§Y¾)âØÐ§Bì7­÷ LÞ2³—–ì#ÞGÉùU!fU„u±L0›t‡Ó¸JHðw3cؤ4ŽAs>eò»´ÏQìÖ[k%ÈòmÔÀæ.M×b°®E¯ÆaÎh̨d9ʱV²dù]KpžSîšjí“Ecg%ÆïÆÞ9EˆŸ!§}‰Á~`o.?‰g<å7ƒùºò2¿‚lÿ7®_.Å6+µÌÄvQ¿Ñ8íà‘÷j‰Ø°%&S¼Ôƒ³^bò˸^¸šì€Á¯0þÏrå·Â:Åèæ ÈÁQ{èï ¸ÿbtË æ }Ïbå ¤gL™ñ)N…Æ+pž»j6'Ã~Ã\ÍhÀä3‚`¾¯ï2ƒÄø/ò ,A^9Üæ¤'†õÓ^qÄ’ñzŠA¶9`žÅ¥‡€![fâìuÆ.§¼ø5»\`jÏó¦ØG’î© Sƒ¥¿ËFÿ×XÞ2–_ËÏåÛÇra* (¼q,ß5–ïËkÆò5cùâ±|ÑX>w,Ÿ2–§Žåñc¹e,gƒ`eü7W~o,??–Ë¿ËwåKÆòYc¹2–ÆòŒ±tÇ’Œe|¯+Ë£Ærf,›c©¥Ë?–?Ëø¹,¿k,<–ßËoåW§òÖ±üÊXÆ÷²<¾åŸËOeüü–p,ß5•oË×åÕcùª±Œïey|/Ëãçµ<~6Ëÿ|,¯Ëø¾–_8–Œå9cùı|ÂX>n*;–Çr8–ñ½,ß?–ûÆ2¾§åñ=-GcyÒXÆÏcy|?˧§Ò"2~ïËã{\®¥:•ÊXJcYËR,ý¿±üß±üŸ±ŒŸëÒ_eü,–þ?"ïšÊå¿å÷§2~Kãg´ô‰¼},ãçµ4~VKÿ~*oË›Æ2~nK?Kdüü–~b,ãu³ô†©üàT¾,ß;–ïË¿žÊwƒ¼~*¯¯¥¥ïËx­-×ôÒ·Œeü^–¾i,ß8–¯'2^sK_7•Wùê±|ÕTÆ{céˉ|‘/™ÊOeü®—^5–/Ë¿Ëø/·áÒ?ŸÊµ±ü³±|ÞXÆë{i¼‡–ÆkvéSù̱¼|,/ËK‰|*È‹¦2^CKŸLäŸNå¡©Ï‚ßä¿2ò_òŸ‰üÈo3ò‡ü‘ßùOD~Ã#ÿ‘ÈÛ§ò6"ÿÁ!¿òkSùU‡¼äWò‡ü2È¿Ï!¿ÄÈ/zä<òfFÞòó9äçùY7 ò3Œü´R~Ê!?鑟PÊ/ ?¦”uÈ¿ùF~X7òC‚ü  ÿV“C~À!ßï‘ïä{ò=‚ük…|· ßå‘×/ ¯SÊw‚|‡B¾=§|›R^›S¾5§|KùæòMùF¥|Ã1äëyMNù:¥|­Bþ•B^C¾æä«sÊWå¯\P¾"‡|ù Ë—|©B¾dùâcÈå”/<†¼ê„ä rÊ¿<ùüâ ¡þó›(×”v‚òy'(Ÿ›S>gùì› Ÿu“ä•',¯¸Iò™' /?†|Æ‚ò²GX^zå%'$/>aùôù´–O}åS>ò¢GX^x“åDùäG@þé#(}äù$yÞ#,Ÿtä¹<çC@>ñƒ,Ÿð! Ïþ0‘ÿ É?ù ÈÇ}ˆËÕùØ1yðÃH? åc>ÈråCL> dßäayàCHö>Lå£?åò? ¹ôTv? å⇩Üÿa.þÉ}ÿHeç œ7qʶ‰ZÎý#’{Mœò¬IJe²°<ÓD”‘IFža’[žnr,yšÉ#.O5¹iòQ&tšÜ4˜<¢Ò7ù°•žÉ‡´tMþÑHjbÂHbòa/±‰ #‘É?é˜ü£—§˜˜ä'›˜(å“”'™˜|ÊMLþËÝ&&¦ò‘&&&y‚‰É?R¹ËÄÄ$—Üibb"ÊãMLLþQÊãLLLù“GHkbbb¢Ç˜˜˜˜Ü$y´‰‰‰‰ +21111ù+w˜˜˜˜˜|ÈÉí&&&&&&7Qn31ù$Í ¸«=ú…ßÛþÅo{×7޾ù®ÿøŠ·¼ï‡G_ûß{nð¾ï½úÚ}w<öž}Ù×ÿøï|ã{FŸÿï¾ú®ûÍ{G¯ü™¥Ï}Ã韽ü;:w\úË»G/-=í¹_ý¹O½äw¾þÝË¿þ‘£OûÛÇœþºÂÿ}ê7¿ú¡_hß1zÑÝo}ÉO­ÿùèïºçÞ‡¾úKFŸüßßýªó¿hôÉ·¿áüãÿú{Fýû·ÞýÂÖž÷™·Dëñ¿=çgßÿ^|ß_>ñ‰ç¿óK~¬4úĕʓ¿ã¿ÿÆèÙ¾å×~ñi;úø_û›~çWvFÿ+»?õÖÏyéèãŸü]·\ùäÛFÿäåÍô1?Ð]ýóoøìýwæ?}CÿG~ãq£yìÖþÒÇŒ>æÌÒÿbóÌèc–ÿa黾mtåk^ÿ/ÿÄk£ƒÃ¥îsÖž÷ßÿe_ùÀ3Þ0z`ÿÎ/ÿ¥7Ý9Ú{ÿÇ~ö¯þ¿Ñhï/?á'¾ü——G{¿øÊüªw5G{?ü¤7=þ‹¯Œö¾fôÙŸüÎ׎ö¾âëÿxÿ×Þ9Ú{þǾäEÿ÷ûF{ùöÖÙßø©Ñå÷=ôÛ»ßòŽÑåƒO­ýÛç-./ÿåã~ÿ—¿ité¯ýßÿî;oí~àUïù«ñǣݧŸÙ÷þÈ™ÑÅn¼ô^ö›£ûß·ôCϼå}£ûßÙ¼ûÍßÿ9£û¿ÿóÍßU]øí׿﷞ÿK£ Ï}u×ß5ºïãîü?çÞòäÑ}ç’Wþòáv~êžÎwÕÇv^¹ÿú»ŸöžÑÎ Þpÿ;þúŽÎ¿ÿ=?úìŸõèüŸ|à)ðѧGçûcçË ·ŽÎ¿þѯ{ÞøzÏå=·¿küœÏ_Üÿš=õFçÛo}ÊÙÖmÿy²þʳGÛW÷ø§_4ÚÞÿ²ù­Êhûž÷½ãÿ}á¿m?jÿŸ}ÿG}ýèÜŸ¼õ¶«Í=:÷Ã_ó§q¥;:÷‚‡îùŠW_¸1?wcé“>å×Fç®þÂ;ç/Îí¿ôûš~ûè\ûnýWoÿ¤Ñ½ïý7l|»G÷þùÒ3Þ4^?÷¾í_uúŸ½otï·¼êcÿê•_0ºwÿc¿ýbð 7æê“ÞõÝ_úoFÏúýíßûÞïýÉѳ޲ÿ±wž1zÖÂoþÀ[~iô¬kw~Û«Þ¼?zÖ+Þñ²û–ß=ëů:ßyŃ£gí^óÅÿíGϺ÷µOO^ó¼Ñ³–~á‡~òÞ¿mýðö[ßý=_1ÚzÝë_úuÿ5£­oÙß~Qm´õœ_ù“³ácG[W_ùïy×w¶¦ëb+ýÃß½íî§Ü˜ïýË·üA2Úºã=‡¯ý©m~íÝŸñuýÑ3ß[¾ôÿùÍ£gþüÛÏ|öúèÑ3§ëæ™/X*ý‹ö FϼóÎÏ.üÜûGϬüá¯|üG®ŒF¿ò ¿³ö»·Œžñ#_~ßoÜÿ‚Ñ3^ÿî¿ú¼¿ÿÔÑ3^sþŸð£/¹1?:yÇ}ü«³ót}=ý}»¿þ¥ŸûÚÑÓ§rë{×wžþ+ýâW|ó÷ݘê?eðÑÿvôôo½öÓ_=¾Þ§?÷o®>ã+yôôƒƒà<ëWGO¿ëSþ×_<÷·GO?óÖoÿ¦SÿuôôÚ];çÆëûi?rµ{±ú¿FO{á=ŸûÝ_[=mõ_øã}öÔ÷ÝòS+O}Rvþ©W?ø#­§ß˜¿òû/ÿØ“/Œžú’‡¾­þŒžzîÚkZ?ñìs÷÷žö3ŸúI£zÓ[?çìÆ¿}Ô=óÌ[ÞýµÙù•¯}Óg¼öFõä—•ÞvçŒ>jõžÃÇÍŽ†ï:é ?ô¦ó÷¿ñÏ~ç þãhø­·|í ~k4¼öŽ?ú¯¯û½Ñð%É—}у˜»ßÿ‘Ý'þõhxæ¡ÏúŠ×üÝhðç×^üÕ?V ~øošÏøÒS7æ¯{ó_óÞ;nÌÓ}8xÚ]üÖ¨?îm£ÞToõ–ïüí_ú¥ßußûªk/ùìßuÿäî¼íÉpcþíÑxËÿñ¨û–×~æg|㟎º?ùÛuéÏFÝïÿØ_úµå¿u¿åÇ?õ?ñÞQ÷ÚKæmùÀ¨ûÜ{ÂÇEáÆ<ÕƒÝ{ßýqŸ÷·õQ÷Î×ßo=gcÔž38§o{Ç7ü×o{’{žê͇ç×½ç«~ÿg‡£ô ¿ïÝ»¶²ó+Ë_øß~oûÆ<Õ³ÏýyünÌO»ö¸¯~ÃÇdç{~÷ןúÐÇÒG ?ãOoù„Qºô¾_|Æ«þé(yïþ‹þÇðEîùOÞ°öš÷|ú(ùíÆOo½þe£ä-ŸòÜ¿øØWøçŸ|kõ›Ÿscžê÷ä+þ(øÖ'}ñùÚè{wþðËGÉ‹_ûÑïýú¯%S½ÿð|ïŸÿÛû–QÒ]Ïë^ôí7æÓoúßýÖ÷dçéy1›ãé9ÿÙ»ÓÿóÞÍÎÓsåáùm¯Õ•g¿q¿iéIÁÚ›Fñôœ‰_÷ÆÏ}ðó~E?á+õÿûÅÓs)~ArKiï¿Ü˜¯~Í›¤øûîùþ÷¼ðÙ?ý‡7æ§í®V_ü®ìü¨òsžó_þâÆÜ~¨Rÿª¿¾1OÏ=œ£÷>úÁçýï¿EïøÝý3c{åáù-ÃËŸ|¦tcþɯÿÛµÿPsÏß÷¾×þÜ¿lÞ˜§çifþŠú‹Í??5Š®5¾îÍßy‹{~ñ§<íÓï¸1OÏå‡çé¹üð|ï«’—|æGÑô|ަç³s®¼ÿ?=êÂSž;S»¯óg?þ˜Wü»{³óﯿõ±/ØuÞöÒ—¼íö‹7æé9ÿð<=ï;¯û²Oþ±=ûðü…Û?ñ„ý÷üŠ×Âoý“ç:W?áŸøï?5;?íìÿý‚§¼Ü=ßóÊï~òŸ|Vv¾ã»ÿõ›>ïÆÜŽß÷E—?ÿƼô5߯|áè)ïú½/þ™—®Ý˜§vÉÃóÜù¢íÇfç¯j~æ›èîìü’·þû³gãÑS¾pã%_ðÔÑSÎ|àß=êÁ‹™ùÉø‰åW¼ùàÆüΗ=ð¶'þ“ìüæ{¾óñ¯y~vþ¢ïýÖ _>zò ?ñ«Ÿø›Ÿ—woyç<ýUúyõÕÿ,^}Íèž©=¥ž§v—wžÚaÎyjŸ=<ÿóªþéGüœ~žÚuÏçÞð½¯ù_o»1Oíº'ýù}ý·vÿ4;¿ýµïzï·ÿåèIS»/3¿fãU¯ûŒ¿÷ϯ|ûoþÝ;ËÙùã¾ü#¸¯½ô Ám¾1/ÿìêƒ_ô„‡ç'¾ë³žóƒÕ=ñW’7”>n¨Ÿ¿ÿ=ÿì_ÚòÏS;Õ;OíXï|ðè¿xþòÕüóÔ~x>ó _±öÛ/ÊÌw`ÿw_ôÌ—ùç©?¹ð<µËsϯÕ[_rí˳óÔžÏÌ/øÀ µÿ-îùâÿÄ+ÞøúüóÔ_ðÎSB;ä{ßýÝŸ÷þ7ºç©ß®žêÏ=ñm¿®Ÿ§þsžú=ÎyOxx>·ûù_úŠ¿ÈÎwýÿìýK¬§Y¶'•Ý6Ý÷]÷¶¯]î¬{ªNæÉ8'âdž¬S7®«é–VDî âd(2b+’àa1 ‰ b” $ÀHH H6-@È#0@b , YBò ƒ`À!c œÿ^kí½öþþß^¿7«n=þÕÝõUg~ßùýXßãoÿþíûÿù~ô{ÿëŸþ ÿÑùøPó©ðø¿ÿÅÿòÿü“?Æš—mŽšŸíÿËÿùÿñÿý?õ >j~5Ü5Ü=þ“ÿ±ÿëË:mŽ—šï}ðQóÃÍñÿ7þßðºÿ[_^þkÿ“ÿÜö¨ù#|Ôür÷¨yf=j~‰h=k÷øúÇë_ôßÇš¯ÂG­›í5ýÞš‡GÍ?ø¨yõ5ŽŸj~¾{Ô<ý{?j¾µ°{ÔúÀòQëáQë ßÛQëðñ÷þÅ÷ñÿöÇ|¼ø¿ý½¯þ¥Ÿ_|G­—üÒZ‡ùÞŽÿ»§ÿõÿâ?ÄZ×Ù=j=j}ëƒZ[>j½ >jmõø±ÖÙþÚG­Ã-µ^÷ÁG­ÛýÒZüÞŽZOÜ=jýð¯}¼þý/þõ‹ÿË/ï¨õÊïëx®õÍ_ÚQ륿´£ÖW¿÷£Öc¿÷£Öoá£Ös¿·£ÖåG­+/µþüË:þTë×ßÛQëÞí£ÖÉÿÚÇôïüÉåÿñŸüþZÿ?jýÿ—vÔþÁ÷~Ô~ïì¨}ŒïûøíüÚµßòksÔ~Ï_û¨ý¡_öñLûK¿ò£â|~iGíýÊŸý›×ÿÖ¿ú/ÿÚÿBûs¿´£öíþÆÚÿûÞÚ7„Ú_üM;þXûž¿²£öIíŽÚýµ;j_ø—uüHûË¿ô£ö›íÚÇþ9j¿ü×õø÷´ÿsÔ>þßøQñ¿ò£â~eGÅü¶ÿyÅ9üÆOñksT¼Æ¯íQñ"¿ëÇ)®å×ö¨x™ßº£âw~ëŠ/ú­=*ê7õøÏ)Þêwî¨ø±ßø£âÖ~뎊§û]9þ³Š÷û9*ñ·ö¨xÇ_û£â"[Ž®øÌßù£âDgŠgý?*¾ötüžŽŠþ]9þ3Š;þ­?*¾ùtüÀ£âºOG=*îüt<~ü»Š“?¿ç£âýOÇ_òQy¿³Gå_œŽÇ¦üÓñ¯yT¾Ëéx:vGåŽÃQùO§ã¯è¨ü­Óq~üS剎¿fGåÃŽ¿!G垎¿ä£òOÇ_Íñ‡ÊÛ<ÿ†ŽÊS=͎ʯ=GŽÊK>ÍÊ»>OÇ•ãŸ(ÿüt<¿×£êœŽ¿]Ç?V„Óñt\:ª®Äéø»uü#ÕÙ8OÇ_éQuUNÇÓñCލz3§ãé8=ªÎÎéx:þ2 :H§ãéø7rT½¨Óñtüm>þ¾êxާãoÔQõ×NÇÓñwú¨ºy§ãéø›tü=Õ)<OÇßÊ£ê;žŽ§ãéø«;þÕ÷<OÇÓñŽª«z:žŽ§ãoÏño«îîéx:žŽ§cxTèÓñt<ÿæŽÿÕë>OÇÓñt ª+:žŽ§ã¯ÏñŸV_€Óñt<‡ê q:žŽ§ãéø½Õ7ät<OÇÓñû:þSê3s:žŽ§ãéøkwT_£Óñt<OÇÓq~ü[ê£u:žŽ§ãéx:þ†Õïît<OÇÓñtüÕÿIõA<OÇÓñt<OÇéQýJOÇÓñt<OÇßã?¡>¿§ãéx:žŽ§ãéøK9ªoöéx:žŽ§ãéx:~ÈñêG:žŽ§ãéx:žŽ§ãïÀñ¿ô?üÿÿÄæt<OÇÓñt<;ŽÿÄû_ùÙßú¯žŽ§ãéx:žŽ§ãéx:þ¶ÿCÿ¿ý{ÿóŸ|ûòt<OÇÓñt<OÇÓñ¯}üÿ~öo^ÿ[ÿê¿|:žŽ§ãéx:žŽ§ãéøsü÷ŸýOÿµÿîÿëw:žŽ§ãéx:žŽ§ãéx:žŽÐñÿóÿo~òÍW?<OÇÓñt<OÇÓñt<OÇÓñ7èøïýþ³ÿƒ?üï}s:žŽ§ãéx:žŽ§ãéx:žŽ§ãäøÿþ¯ýG~ô¿ùwþÑéx:žŽ§ãéx:žŽ§ãéx:žŽ§ãoÜñßýWþÞ?ú—þ…ãt<OÇÓñtüõ:þà?øá~pùÃüS?ø½ûÿ}SN|ÿ_9QÊœ3e"&f¢ûNéþÿÝÿ¯ûÿâû—õ¢ËûÅ™ïÏ¿ÿ\q8õþ/¤û³Sù+÷ÿÅþ7rJ‡Ÿàtÿ×'²üÑûŸ– Ëßq¿qa7–§ßÿ»ÃNº¿üþï~ ¥áÜû»¸ÿ‡ósŸ–sùp?å9ÜÁýE¹ÜH»š‡ÃYÝ“—×r8£Ãááo͉»‚ŸéþO¥´úvÃ7vSßÉ :¼£¬_ûðÎå³çÃof÷6´RÊ2JüØ¿±ÌòeÊɇ?SÞÇýR>þ,=Ë™œ{ø'‡¿½óVÏê_,¯‡Ëï––yø¸¹Ì˜2úËŸ,¿F2 Rw›7‡ç:¼ ù¸eÔ¥$—Ï>ñ±O•ôíf­Ÿi2Þ#úð–Ê”o˜ÍrKåõ¹/t¸%y±÷ÿ}øÿ‘ý)Ë ¥á³^êlNrMôWõƒÊÔWS¸ì0ÓÊ:Æ©ÜÉtÞ\»/|½uÃZ 'üÀáÓÈKÍ2Y^ÜýÙ\®åòä<ŽÎ²˜æ²Ëí§þ6d ÉiØ-çxž_¸÷®›@Jº¶¹ot®í°z–» ò¢w#÷Ú/Pn,[ƒ|pY6ãèpç›-&—Q•t•œ?çe[£20ÄÆÍ%•})ë¹e~õçÊ/^Èá‹•AV¯aU¦93´N^¶¡’ËÆ +“L°2@ŽÜ{yqe`éú^[>m;÷A÷IËÿ(7˜Yfv?‡ô£’|R­¬•ÊR§'þ¨í¡Gÿý¥[‘³Ž|ó%@(ÿsüÝ2,tÌ>…¾ð•MY†ÌdüX_K z4`Ø.3ç~œ­WþkC›üGå Ùßw·Ö.Ìæx¡¸gþaó-·—ô£–ÅHn騫¥ngb¸¢KQ\Ö+Êâ"ìþrú¨ÝÉá¯ÆÑMÅ”SÙ_ø þîe7Sã*‰Ó$*àãË@ï·lÉeA:¬ÒuõÈÇt–hw™ÑÛÌ2=Êç:2?ÎjðÄ“òi[­ËÒ–³„ôYãèØÈ6¡ Ÿ(gþë•·UŽ£›_IºÊÐ ¶Öm–¡_{w-=¯‘üá uñ8öN.mÑ-»V…µ¯—Ãð¹Ýµl,)çd´]Ô©‡·þ3É+>|þ,q:YjË“=¿dåm{~Š%¤È±—ÝÕëè-ÁþE}^ñþH­cmø]t“~þɺyDúþv>¬ŽVÙ†ó|^9;\¼œË–9ën6Ý®†U ­/Ô<6“ŽàÝGŒQ‚n#MkRûÔ¯œ *mÒoHºM¢žÏú° ¶ŒNX‰ ¯¢jБ%À*µK·Ãîmýe©’p,Žà,‡Ú=ëv¨ÈÉÎcᙬ™‡8´=v_+±†òE?Û§©Œrtƒ"‰§.å­¼W[¯´bËÉÐÎlÖ¿V\<®WYÃF$Œ×!$c®Z.»¥¾Œ«’j‘~Y¬ûÁ¬#nT +UôZºÚûŪ,e1 *Ó.3 ÞÒgceº ’¨ÖÕJnòA*c÷$Ÿ.Ü"»/§ÑWít Ûm)Ïò®Ê,ë¼3Dî.Gâ‘8îí+ýI† \øÖý¡{@Ñîjøx\ x­Nq´~ìJYR/ÒÕ®tvˆ 6ÑEÒ£d<¥ä/6 à4wû&Z TˆÎäm_Yõ"KT³”q3PSKŽÃÞ«¾m”ñõRq<§¿Çàlm`-óµR–†ãî\×Ì´l÷åï…Qü¥/éÇ¥·‹ºÉ’þùý¹zîw(ùÎÇÇŒ{-µX݆Àè‚`t Å-³ 1m Â:Ý…½ÏÈ2†×'8¥„‚-ES &0áû! =§ö#Òc¹W›\à5ûÍ"•añ‘ž ç¹é²oEp­ÔÂÑHAè%ghR”ÍwвU௴ ç“À­ë@qLËØíø&Bâï#Â’$ŽÚÖr‹öˆ›± o1';úëÍš°áV÷:j5ÕynhÅ{|ª ßiˆÙš‡`*ç8Ó³€:Aéùйž­ûnþ´oÁla`ýjYaÝû~qñ1I)tZ,ÁPq­CÍo¤ÕàÑšÕÕPêÁ]5$þ‹¾œ8ŽŸô8ײ¡E·Óêýò1QšÆÕ&bŽP_б¬Ú`W" wkf uÎQ-aƒdÎZß±çCj• ë*e® .cåý½)úÙqç) Ÿ&CYZ'9‡¹Ø•@v’Lc ]û7KIE¶gNÞ¥ë¯/¥)D¨ÀG{æó¿Þw½µW”èP0É–‡àÕZ¸Sz°ñ>qÕ-BÒ„@}òäRÞ}‚³-uáHñ§eæñþð—i_j"¹UÔõ|\ç»:ˆ¥qŠÈ®ñö4døs›h™dÈ{[Re¶mY„ó+m6ˆì¸âp€—kQG€ ½Òú|ú H‘&½q“¡lú±Ã2X ó%+kÔjÿÄZ- â÷ÚZº¼ŸèªÅñ ÷›ádªœû1»×¿ìV›CUD¬Pìé2rÛ³I’̔㨿ð9^{*wà~¦ªÂ-ÂÀê|ÈÖw 0ÕMî2'YʦPÍýÆ÷:,’œ+C¹Ò”·*!*«oáÉßšLÇ0Ÿ =›^BF7$­G 0í¡–á«Pðý5÷ºÇý¤_Pû [Ôw—³Êõ‰ó'†Š[î ™cA†óþc¦hM¬5íH¬`·0ABÑUGjßÖFZd ¶Áj Wº–™€ž÷eO½$F`ÒÝÐ 8ëʧÎÎr€ÀD ¹pÉR±ñEÎ[· )o/€Ub ?pqlˆVVà¢sÈû¹ö š B®ú#@gvå7¼±«Ã Ú^.ÇHs^zuLÉÒHËAÄúݼ»¼ž·–ï|~>ìSà’RPHÑhÔ%ùÐŽÛ×Ù%öž¿öö1!Šd÷¾û[öÄHr¬¡9 Á®M_)çI·ç½E ßmY¡“†¡úê•OV›V…ऎ?ñZDMTlV½*Û9Â=iãJð’km[Oë™f%‹c2~äöŠ‚É<Ö;–ÅGa£@?XÇË-…ý˜®æGí®'`ŒušD@kƒ!ÔO-È›ÞÑKgâFÜ·Ì¡~iªœ(Êïû*&'}‚˜Ð¦ýÑPÌËchÐa5R¶¤@ÞM›%@JU×q"}øÄ!e¯­K Õ=ꑜ¸ŸÐØ„a—ð²¿1°K ™ ‰­ËÈŠ‹a&e‰*P #ÀÛn×P‰”lÝoÉX‚™âqg ×¶žÆxqB£P'’Ï»—zþl»ãÝëZN6é?”nSõ2\{jH.ãSÛ{²õ\ŠB¥”ÖÄDDÅm®ât)-|Ú‰…GŽŒÑ81žqŒèø8‡¡N*Ç]ÌÆdxÂ×ÏPyÏ\ èué5/y¤´ZCÈ E50ÆAªA8Ö(Sµ®2Ô×]ô»PD®¯3)FØY9eXrÖUíäÛšÂÌJn¹ I¤ÒwÓ§ñu‘õ[W(ŽÏ]Vþ50±W“ŒúN‚±ä®ˆÉòñX© šFª‰qE§›wA4T£¶ÖkÂi‡j^ ½úpz$@N;0‘îÁl°©iëU ²q°È”65”#Ê–Ól*”Uœ3¨ˆ­í^&±$©âìK·¦ñ‚ˆ"%”žQÚ=ßVXÀ@ ZZI‘ÓŽãù0=w—ç"%“èˆ>FÕY'&„ÂÖRŒ”“@=Y·ÔÀ¿ó$B™Ãl\Å©$U]å-aC̦9’vÝô™ƒÏ(E…’ë!Ô‚zç×NÔAþ|·“Ö†EªjƒŠÇ‹ÊS¼èª¡³·k'hßáh¼£>¨‹F€`¶ é¢%´V?ÍðtjBÚÊÆ’벞Å>•@TÊh`SKU…Æ ”úòþm\uÐ1äs>†p]²µ…Øê›c¨B€ý¤¢½e­p:30üFày^tD®„Xª³ I¶/ .±ÒdØñ¤§ú‹²f™mrÓH}Ó‡ªƒ&™9-aú`¹~†,â6Â]HÆ^vêr`WÃwÔ˶Á° v>2bçyŠ—‰›ž0™çxù9“Öôn€–Ó+SF2Vw7 L±¿KjUuŽsœ§»ÛÑòë­dwpHfC˜Œžê YW4ÔãΤï#É‹¶ÚtÝÄÚæÝ¡†|·N%ƒ4#+Î;”BJ»XƬ£’6èÂÂsÞχ {‡{ €µ¬Z~àd7j_×ü&*îž)à˜=Mås#½aã¦%¤)±;±jT"ˆTƒ:†/©ý(ÖY'«#Ñ"NMæ™mê&è<ˆ DÒ”Mì#6i²øæw:!¸þ|¤Û12¦‘¸+ãY?NðGž­v‚˜|¬M›É¯?u;]y_""·Fü7a‡•ðJª&Ù<-§\‘uÂU=W$wÌÜ/"é² Í‡î½øxPVü‰5×ë}}MIW}@t-¾‹¾ýÆožX7>\†8ÄŽh e ‡ëI¾Œ].ûÊ%.‘“@Ó“¥‡„,’Ñù}’O #vª¦Ý‘xËL› J=jÎ^Rçƒ9³¦»»Mf.Wæ=*Y¡Å§5Tt8P† aÞ˜ŸX¡&“uÝ/¸iÍ,£Úp‡DRãÓ%Kï¼ ½ |ZÏ™QnÆJ%+‹0È®ÝËY1ë©a?úu›Ù;™¾Ò®`¢Dj«|Ô®€”«»ÜXR¼¡XšÞyN@öD뼘\&Ϻœ”´»ŒG̪6ó8örD/´Ù¢ƒª2±Ž'¤+6‡5Á9þ±Z¥\è\¼ºy-ØNê[ŸŠõ^tîóæ¬ê­Åèe6½”°$øÕ/ZÈœ!§CÁ€„̹‹.Qœ¿¿Ž!xBÂc5ßTŠ"¦úøïµ³&á¨âY’hî×BqéÅ“¬3AŽÚÉ6˜}àQÌÔi´)µ1W¬6¶t>éÝ ÔÝ*xeùØ‚y€VÃ:6` °è]ÚæŒ™bBç•odÉnOÊtƒ:Aày¾÷&Úl€kKª.\I\\KÒFtÃäæ^ÄiÁ™l}éuUš.%Ä ³594ƒPØ$ãê»®I½6õÌ '°©Ë@¤Q w­ÍÜIà$Ô5i^Z…Òœ@7&ž9:[àyYç­ uà6©4,Ê–'qƒYûÀõ´RŽ&íí ñ¹@zùÂã„%:Æ.|¬%|®C9ŸŸ¼pœ/˜Ýdm/,ôQø:ä×Pùñ”BM WÍûÑ„pšÇ I7©Bœ¶ŠU æ’ÐØÌ‹SÉ’]J¤™AÔ¹)¯¥M †¥½Ä"i#/ Y·–Y†a¯tšP“Q¬IqÑkµ¢Œø¤Ó-Í®RðËÊOa1´cª„MU­5˜…’Èȇ‘o‰¹WN},ãhœ×oφÌÐ(³ý&­DgDPãÁ(r°ƒ:—«â&¥àçv+Ûê) ©^“›V]á3†óéâ) n¬5âõö­”¥(…™ÜdT¾^‰4o  gÔ·ü'Ô¹õòIêS6Þ5o –<2¬¢ÃyÍ×ÉVÝÅ2®¥’?ÑcͲ#ƒM¨†hIA‹Ÿ@o{ã"/a¬Ð~Ñc0i†Ï¸è§‘.óÇ/ Ý j¿ÜxfÄK|‡VÖ*j>RyÁ†ü‘Oet9P'PU©ßo€ka|~d` íæÆ‹B‰Ù¯6"æboO:ð7¦lw5ê˜"¢è3™À™dÍ‘ j¹ð^Шºäq+¬j ŠiS¨%J$ßZév¸×Á·8Bn9áÜZ2£b5DD<¬¤©ÕʼÜ·W\¤ù—é#FD4ÊN°Ì›˜Þ0QÄkü5YTçßèÓ¿V5zÚÅ蟜{Wò\c‹…ÿCÔߪ"Ü4×¥•-$P¨Üœ€Ò¢E•AìÔæGè’*PXŠ 2ƒhAÆÙöû…èYF, `•mÚíö;e­©"üW™J¦ã·Üžø¡‰c¢•)›L0X3`| X@©&kÏèèg=~ßíÄãFå^Šæ+RyU¦§ÃIÏÞ\ÕQ„èS‚R‚¦ºhC§‘­(ezÜKUⵓ ™S²Fb¬‡ÁæsZm0`{?8¡ªÄ[˜0é ƒSm¡÷{tÀ®÷¥žÒDeÑâ/™áD®² ï¹CmÅ1–GRn,{YD½Ú4µu(qBò﵊„Eÿ¼s×@G•iëG4œ®+ëÕ˜JC’5#t“eíj»Jž 3Tˆ3pŸ¾+>ó «ˆÄk/ÄiV7x5_pÎê“2bãá{ÙõqMAcª¬h”KÒñ5iÊ£.‰c;.OÉ/A¥:Ò¢¹Ù¥ßyoS¿øÝEØ– ¥×iûó‚Ša Çᾌ6»Ñ‡èžÆ“³Éœ-íý¢ªê†€Ž5 Ú H_9ìÅ\w?© Uú]œ`F$6º ½ÔÎI‘°º£ÇæY«gšrÇ öôqÍÊ¢8ôG.ŸU0K8i?„*GÜdW¸B3A½Xµµ»@ H 1Ëà à €ÑÎ,'áM!¶ÀlÚ5OF²`úO)EtšÊ(kNŠÐA Ùïžu国g;Û†½âÏ;1AÏâ‚ÉÊtÉ‹`~fb±ª|ñ* ˜0Oˈ¸šjMö ÷ r[úS.mu;Ä 9/q|$BC†¼@ëP‘Ì'ÐiªÏÌ`;, ®–W;}¶ˆƒ0VùFÕ%IK ¯¡wÉ-ûøôZ.ˆv§ªLCú–6ÐEN$GbìI+Ê(Ý ±JíÔ$Dƒ>ì£Ñ¼1RĽHüïó&$¥æ?fÍ¿¾lŜŠÏukÖu‚ÜuáWþ$bh¤éGJ+$! \WtíÍô º‘µ¼!ËÊR)Ý͉ŒÕ¦Ù½&c•Œ›R¾ c·NO:!É—†Ï@^ÒÒáãS; ,Øwa÷ÒÂy&Ø$®vX‘¹Rc¨2"cR¨›Ò ÓA›´î',âŠE;=dº¯Rê„@¸Hw£¥Ø£ÅMƒØùž ¯¾®1l°3=K{&ç®?¢{öñ{8"ÞäìÒ·ÔÔÁu‹»•½è ÿ÷xÓv sX?¼¾ª@1–›9/¨À‰áåŠGÔÜ!⢳#$#KŠýB 2Ęâéf`ãykœ5„DÔýIw)ÀðKr‹5@k†pЗµï_" Ô†9«’/Æ»nN¬R&Lu#…²‰„‹A}´†æ€¤C½N‡"0Õê5P»%€Qfsx]k¥`bœw8@‘nœÉÊX¹q?8ïQ·±íkhŒQµâ"Óž#¥=¦ñy§4 »À¶Z¯ÖÌ–¥´F+.¶8CU¾q{âD(ÂC$U>tñ,lHd}dü†¸*n–ÇssxÜŸœ¸µ‘Z,$£Ý¦¨0]Û|suJû†ÔD¡ä$_+ñW^‹L+zHšyZ•¿î‘Ê®/?ùjG¸[+ž¯ÆkÈžs ¨Õµ[ Æ­ˆ6Ó’ªZÓÛ‹¯ïfØw‹¬ñð/?mÝ:X ¾–Ì6j."‘9ÂQuÎiÆ/'²aœPjYù–;7û _¦€ÑHâw°"eœe6­ÂÓªºg5‡I褩Õ…¯Oˆ-Û*%/ª†‘/¸ü¹’n0YgÍ•1’d…r Fá$ws4ÍGÜ«:%2:Šš#L¢¾öô¥‹T®š› O£©!lû°%;`ºªéÔú‚ª.ï£%J(µLÚŽuC/[¥ÖVçŒÅ%„IPªìîÉǺu ÖÓUDFTÖèF"«U*[[ïM&à±>ó6ãIj¸“~Öû™3’à]·X×Ù,7è•÷Ä8èá]wE]ÉÓEøn­6MœéjÚKÑÔ»šwA¬’+ö¦ÈèëÝ©`)ÍQYç~¤2BšA (¦2tq-=‚‘ ÅšÑ9¤xnÒ?a›s¢JyÖÌ¢e FÌ«=uÓÑ)FµzЍë%:YJ9ª¶4V(a†•ºê±rúpp9WÅü€ /ú¦ZlˆÌ¦ÓÓ– ;ŒTl„h¨¨ÝHs  Œ#g ‹/9× ôp˜XvƒÕ¨Љ•~'Vž¦K]õd½cû|Ë:ž·Ÿ¹Búþû¿éÒU…<Á‹çóáŠÂ®£¦»aÁήÐÿF:C¤ÿbð ñŠ'®0xXâYà™ó{TSÀöŠbáÔMbf4ÞvŒ<²º¬zýí¿™ª¡¼hŒ¾Ü0D/Tnpf¥O'°ÐÄ=S€Q•°uòëgŽì½ÿ»_ts¥ ‹d× š/ñHfXÔc4îWÜ$*žX5$«ê'Q5f£¢­‰ËTcÂEhµ¤ïVq‘Ƥ™%nÈ öHZ,`´†×gÏfë‚|9«}2«Ìê&wŸaurŸ`~zíæâò[šQq@ùVÑøì}ÖBòâ­U*øè^rãÃOi‘/X`ñ úz´ŸfÔƒ¾¶x2niË|Ö¡"c +ÞŽâÒÖ 'ļ"¾$ö„ZÝ«±+¬GR­U0/8×Ñ…OMs hЧè,gÅHÆjÉkÖON4V ¼æ+F˜ IßK+BJ± ÒØ€Ë™ãáq‡r\@Œòž œº—ƒH™nEAìl>?³Š•“8¨®Šq÷Ú‹Mº,CíÒ£Ë9 +=vȪ¤@H%°CEËXí,t­œå3¨ôJ*ÄË0 ²VìA"FšØéF-ʦ$3…6Ssö*ÐêÔRnq30rÒðöwÏ<Ø[ŒÕOž§]aÚêóI‡@4fn]@b¶¢Rµ_S!“}úÉ›¡;/r9‹ë<ª‘qíšäÉÛAdç5r«$ÝýÂ4Iƒ<æÄjf-Ü„™—6 ÜÖ§¦MxjF ¼°«Á"…¾‚½š½W7L>ëE4©3Êoi*HbFF×Ü­Y÷1•,ºM1kÍÁˆñî }'¡]¢¦Fv‰HMþæźÚuˆ…BöçMgs_¬Ävî.‚7tò®¶çÓóI©Ú݆ñâMߤ)dE«…Ä‹ ™³ª³ƒÎM©¨\@UÈ)è¸vÌdÐ&­švŠžMçúj8LcÔ´lÞѲ6÷h[x8ÔÛU^•RõŠÉŒœ ŠÎˆ2":£r'¶üîÂò?õµ -¿@bFÑ}|ÜA•âE¡2ÑJÒMj_?õ…‚Ä»sã «?°èÃÁ;¨_žs†^ç)8°AÜõÈ¬Í vðiLC -"PádÉÕ¦ˆé«¡’‰+%$Z+q˘¯K9ðä.…#õ+´ŽXžØ§Ú¤yØuNZÕà"$ÆOMV¬ÚÑøQ¶˜vÊY×­QC8aÃJQ@Uæ?lR=T—P&¡[:9ƒ=‘N+¢k,ømW¶b³À*™¶og\‘­¬|hÕBè#г…”~„@Õëå((àÒÛáqµoš#K ì‚‘eŠWòØW›‚‚‚ù”&ƒ±†Ò‘Âr Jɦè9×?ë+– º,Pú»ó¬Î5gYÁްª«\ÿ, h\¢[ Å´ŒÊ)„Sòf™7“äy‹é«6‹'‚¸J¾ãm*°_ã ݆X ›/¬»„á6%¨g^Üê-BéfR\Ì»Z’Þf¤Q[ÑÝr°µÓ£Ôì²7éÃÙ>K9]”°F!³pûÝ150ŨåÚoÝrµÜ y9:½ q ÊJÝCÜ!“+ÊQƒMû}y°s/±5»Í¬`ˆK´ä?­ [IT¹z)ãHòU„æpÝ¡÷Um.RP{b“S8+êæÆlԔр&\¶jÎì<'Ê+ ‡@gÁR2Ì$”˜äåRTU cšËâ…—ªâã^—"~Y±à¶$i$Ü¥i¹ÏÈó¥|!Ùè=r^7MðOCíÈ\Ü¿·[ïëb›îRãÊ÷ùL01Ql Û 1Ì¢nZ‹Ä<¡z°—„J‹ÕÔtú€ýº“CáÎ]dwn?qÛ;e³#š/NûÔ]VOHŸX‚å§Té«Q^D9[;ñÉVã€ÝiÄJÎAÖAæ¼Ä“nçÄ5Õ,1s žY¹Ÿ9ãý¦¢H ¯~ï\U_°»–„‰ìaŠXÉÄww#–ÚH î»Ù¬Ï¼’YÀ2rÎI«Ð*ǘå5z]V#)¬ì:»¬ËMNŒÅ/i3µÏÇ!®XU{zy©ú¥”üE&C‚u‰ ‡“±b´É á‰ÆTdûû¨W ‘†$P‹nÄN‚Š4ÏAII]~2î4ž+ü}®oÙ9"|… O,DÂVrÂhU½£Ê,Æ0sÕæ„SØcB ð áŽè}„±¦Ê”æ”B*§d«jj¶ÝAo{A 3Ç^gf//Îu¹.ïnû«•·•á¶¿Dý1ËìÚgXò–—,…²§ª¿QôÚ+f”èÑ–*ܾ¢üú AÍ…ÿå5Ç­³/e†ÊFÒeîê‘o\#{z×0DÅqTeFv¤u"»C¶˜&3TEPév¾ ùEËaV "  qÒEÜ£¬¶µ1Ú…öœÏCRYÚ+ Z©ò|ÔyÞÛ½})02g° ÍF_c˜åîP8¦Éð¬å -8”ð+Ç ¸`…v %CéY¢ry]lòm¼qÚª"m"FA¢#¤1Ígï#§_” '-³…ÌHbWæ’E³AMQíÀBéu®Ú¸ÐZXeè`Ž…ÅÂØéÕ‚ Ö|Öþ4ü —°k ì%^b:!Ѓóæ¬<¯Mœ{ ÕÀxº´®T;ȲÚr!Õµ×½“a¸ä¹¤ÔÌe.U-²Ò5¢òÔM}ßT…ø…‰…«]†+:(œV´P èÈ«l¯,Ê„˜¨ƒÂÁÞtm@qZÂ﨨>/2‰b±Å^Ñ| N—ômbà¸^¿+¼«RL™8ˆ&j6‰£%y ÃÙXÏ'ù¿B¶Ý%N'ÕvT…è¹¹‹UœB]Å^¦ð"”´ §©Ó€’¥_Ü#ÆéÅ1‚ïŒoWàe"…Öæ»“myín½ài] š&{†…·o{–È \÷Ö÷—Y Áj±‹5žªæ[ÒT•T«z=yA϶¤{‹ØàZà”P*Së«P«.C£IÓúÉ4*"¿2ÀIÔÏÔ&ÿkO;—•R.ÃJLHÕ£8öôÑA†mtbCÍ(–ÁY¢HüÁ¥Ó¸t/ÈÌIjƒž ‰:W¢yI×$û1Ú’#Iú{|go1¬D\»kX›¢Æ‹I r0I!‰ql£®u´S4€kZAÆt¢®Œ­ ýœãÏoÁúZ‡¼®l#Ï i4ãZøŠ…”à²9¶ÕlP”¯ÌF°“Wôêe©¢ÈÜa£ÿ )t'M)V‚­R-ʈHBN£;sBùÄ ”ÄL"|¸Å¶T~¶ù[v¿.¯?¥ˆÄµ§Î:(Ñ.fLÀE +h¯^÷••p»yßT#nZ¹°J•¡Õ3Õ¸VH×ÜIÛ@FÇêQE„f&aú”÷5DÙlAý‰¦t½ûåG8†k–÷€ŠøI³dOžÄQ FçÈD°?¬ÉìÔ%¤4D‘emåɲ?Ÿ]ù°É_îgŸz¼=Xõ çñ¯¿Iµ„B"½šÅÒ†}ñ{?ä?wTÛilâ]µòŒìy÷“mr2:2iÏ,¨w¤Ö£:àîy“Q°èÑ/SyUÎ æÎ5ßk †±ž67®xR“ÊYÀ—-¥Æ*p–Sf^ÊIA¼ǼJ4­¾«ûyZÐS\Ôl„® <…ÕJÔ®¨1¡Dª«±±Ä bYçyé©W$€VT^Xé³×~ÚýQ-^´‹Ÿ  -ʵL *‹€x(]?Í„hGqüb”.Ll üS²¦¦rKÙÀÄ0•1½±¤U扨=›£D….ÛjþrDìYñ¼íEØW;cÃvX%Üá²—›y¡ÃåDO´Ý«1'äM¡H!Z0´h¢½ˆÇUïM¡òÔ hSh°$$¤ )¥7ãë¥3YÔ¢£eé"ÂÝgI£tq¼”0]BI¯ÅÊR=Q•¬?%‰nŠÕ.Whž”W.:”3TNe«-c¥T¨¿qÑg£¥Ò ®ñ'ŠÔ0'G"àýº‰øÓÊàŸSnUPD¡$“[RQeæ g±J[5}.ÛØ´º«ïÎZÖ¶òÊR«òù¬¥ÂÍrò¾dׇº™Z8Y‚–U&Û£îWÏ2ä}Ñõ)Áj_Vyüp*%\ä²Âò0 m" …á?©N÷¹ÊaÌÞl²~±¬„m9œ(Yv ØÄy×îgý¼[MK¥„hÑìS°…qfæ‚iM ‚ ZˆiëÕ‹dGLòƒ’ÚÕ¨ðŠÝ«˜ÄJÁÒZîÔÈ?‚"¯kÁ¤_ÃÛâ'%ƒµ‘Ù.ÅÀqÇù̹¢² óÆ ¸÷×Ò1„£1å^ÜøóÒédtZ$}\'ãÿct¦ˆ¾Þ ÖÅ(öŽÉæÆ1b¡D6ÚVÞý‹Ʋ ç0Ch”kÊ,”¹?÷)AkPo=/דã×Ú‰6$0>ºvðúõ_Ø6ì»,Më³MÙáhÏîB(W#ª $j´Öd½ávEyL¶}fÍV!7KÒp§CÝ(…×.b®3Úr® ðÁªqé‘+ ÂKÉÖ^Æ<þtuÔx¤9ÑP,¿•®3æ,'URc|Ì×ÓêË átTÓk¸5=\P¼ˆ1«€Lžî+ 1j‰ É9f4FRŒðî–°v…ÎÔ:½ Ö~ê©/ Y E©²ºÍ¾Èm'¬_0@âÖ÷ dKï –Pó>JÔ¼Ogh_!Eû*º"0ÁnÌ2“Z Qž ½±Ãá$Ck¥2Ýbà7T&gÅ¢êå#W}‚~bÓVD(š¾ ÒDo=S3oÜ™®›®8²qyTP5E¸Ò®y õ_‚ ÔÅ+£ÀÌÚU›²+€I(F‘v®€EÜD â6{g¡›7L·zLj•]Z5¯Mªõßä§ÿ™Ó%ùO;I™48¼û¶µ¥'[aе†d1øb|Ù×ð§è—W/ZÒGS^ÊAª!†•¿Kâ€+Ÿ.öelH‚T<«A¥æ}Á Òi-e³=€ <’+j?I©,æY ýó‚8¶ u,x!­ÄòU÷*J£.»p4EŠ—½Ÿ9¦>JÞ‚=ÈÜ,FDɽ֌öÎvõAÌd‚$öœï`x"˜R$W9$éÂZ AœÍ½p¾Z~Üà2AXzæúsŠD§@Öþ#oéLjÃ{ÊŸ}‹_¾ýUçt­m„Eãïþ"èåŒ|îˆæ0Hm÷zK³ÏUUv¯+ëjûf– ô±¾/˜ÃÚúü¼„‹ÓÚmÎ+»šEë `.±K‚¼¯´íŒÓ¿$€†‚«Â­ùkéN‚˜‡ä-ª÷0ºG.'ZŒ'olꟄµÈ€V‘Ú=WHKÞÄ\ø½^"@GxØí#"Ý-*Ç'Ö¥GM®èRãÚR»Ë fª¬[Ê’ß Åñ¥T³®t妰hßw»ÄG öOÓ;™XisD8•›#”Åæø6ÅûP +í?éMå âj;_”’–;¼'7½¨¯Óƒ¯­¥‚ô饂 bŽ&ÈZDºZ‡Ì¯xJ"#Tˆ‚9á©™”›×¤Ò ðS¿ì‘nØIÍÌQÕñzW6œ"®R¥>,•«Ve ¨œreÆFÔ£”NÓ ú6]ÏûêÎTtM4idŒîß©iI‚/Â}Yñ›ŽQï3=?0yŒ›ŽÅ>/·rD²-²pí1ÃX,¯”²xQAê‚Ϥ¯QÔyËáÖ’Ub~AH)Ð^¾(:¯f8$T˜ÐžÌ%E&˜+–IOÆé¥·á$Г^á·rÈMð¯§Ù [éŽÉœR¼áh$·¹uA¦8TáG4jSɘ¢‡æ8ü»4 öóÈ‹ÆÞ#³ªÑƒˆ´ì߯ØMZš=YMÎ[©x~â™m ÙÀ0Ǿحƒn—-{©\æ˜-¸]ÄçÏ¿üŸdJ“®ç¶õRÁWUÇ2ÓÊ2â´78ã¬u.ûå¦ÀZ™•¤º Ö!Ò×8ãÆ´p6'-¹WÔÅ„+Ù6âJḬ̂bS›| ºp$Ó³EâÙ‡>†ÐŽ"ªy!)×õtª"/}0Ù̽&ç–‰4mXá»+u ‹G©fiØŠî<žEÒPï7—(Œð‰Db|ƒÌªŒ1L µ¡ðv˜Z"öŸ*Ù6â€P³”¼êé)J‚ƒ”`ð™AL]—Ø$E8”…-×> {1ʆ`)”Á(€u €ûdá+>³°?›¤ö±¥ývL+R­]=«ª™ù¡N+–`S±ºÍ[=já$£ÂÅ©ñm#¨C 0DŠˆL„ºd1´p…®¼(B-®¾ »Âôãa”µå¸˜›ÎYëi¶wÓtneQŠÄR Ô`¡à#}°$©}¬¥lb4ï±"*ŒR9†• Gïí–‚¿†R~3$r‰B eªXäS·iôþÀúô¥RÍ­*˜“U~?…`"S„¹p¹.ê¨ûsšƒØJÉ”MhßV º¨Ðn6áŒCçCôÌböÏú¨15@ÚôŽþÁhoTVä’]¦eAïJ¾Àr§š Vý¬d5fLU¼>ðÁôÅën]ÁU2-6.šxÉúª&Í@W?-Š$(c‘Öö;ƒ<-ÔîHÄ ®fm¡j4Š&ÄI(«(±z6¯1°8ŘSã4±w’*¸š1Ñ â`[óæÓËëã$  ¼8°£# /p%¨QÛ¤HkMEPÀ -ywë_ƒwöÕm/ýMz ›'Y™Ùt­v“$)¶±!¶Í‰!v­Èj ŠŽ6Y¢Ö>),”†“ôÔJr°ü.õBÜ`'koIvôðKWy¶ì|›@<ž¬[´¢½kÕ ;³UÊU†ªdY"çaæUçC ŽÜƒéd¤ÕäIàÀä‰s‘ë˜fˆ·¢$L1 æ9aïJ¶Îòf±wÅ÷‚©,yð°ÅI¦l4Ìq$ݳ!½?͹A²‘F~Í;µ˜´ÞkðšYŒü¿vH1P2¬’>!Èùjç¼¢‚OàîìµÝœžk cjÑ,ÞL­7h 3˧-YAºV—ƒ Úìã ÂÖõîáÝ9…C¥§Ù¢BBíÌ‹|ZÒéT!mª Éå_t./óh¢²ÏDv (´2JH¨ŠÓlœ=u¸-Ýä%½¿. ](~ÑqýSÖ TȦãÑ› ˜æ8Ò½ééƒ=³KðErÝ$mY9­X¨XšÖÚ—aÎÝ«3  xy jć[ŸòŠÏ¶"êò ôE¨ gsVøöºúzÕ¯OœŒçϰ~­pVÁßè„ðÒOà˜èB™^Ûä{ö^ÜpøbE•pAŠÞ”áô¿™"F±ºq¬`ƒ9ljStiZ«‘„c±:›wy?\“ãÝÉØ.mVEH“’ñ>äâ¤yáÊâ˜÷0ŽøLªÏÝ/ÒlÙø™©!â ndf9¡àd“1ýÍíN÷+ËçnN„÷šé^hÚ±îÈV]=Ú‚;sûÖþ>uŠReç"Y¢Ãõî/ûn,+hÓ…»ñú?tR¢ºrÓÏrómBiuu°ñK1Ýqp7‘Ç„ê$µä!`™ë©ú[f#! Œ‰2®²OƈÁL.{,›ánWöŽ| 6}é».;;1Ó¢Ör2w3DưVLD TÌwº1PÁ>­xZõÃvü’#”ÎÔ©E]JùaÚ×÷ ¤Ƴºц¬En†PññË06PèimÌÔOÙÈ §é¦¦ªØ¤ÜñtlGbÝE‚=N,8fQàÓ¯cãY•¹nFŸ%çL8ÛY?¼²šo‚Eï*ŸO€ëj&Eì0¡»îÃl­W ÒÒöBö”Z*÷=r®zéË„gY{7¸‹‰`?ñ5ÙÌÊqDÅh2Š*nAüªP¬òMÃ,Щlà7B¼´PZÂ=kÁÂ$'¨viìkD[´OºÖVÍŠÎäSêÇõP [õ}=½oo…×h Âk÷›ŒÛÔ¡‡ðò¸ eÄõ\^²8TFuŽSšjó¶ÿÝ íN©ó-ñçøZxëDVk¦Ÿ÷´:ZÒñ°_ Q,‘Xú±ò”AIµë.ßQiyˆÑ9Ü,SêBáU_Åו&®š“X ÝÁ+r+»jzPÇíA’®8iY´ÔMÜ´°çQØ£&ø-î¥*—£ !±{íÎcxWIaùIg÷Í<µƒò["-€oI峡-‘U¦d›ˆ+ê.Œ Àl¾/¹‚0$ƒP¡L—€šõ*õŒ¼w6$C%NT”ÚŽ´ÐL¸ò °Úu5€„U²p±P§†½Ó=J·vJ€qÓ…– f¿c…dM5wÉùü“gú¥"_Þïnfúónç5N¶)þ¬¿ÑjdÍ´AÙ d:o¼yXV–Pm»i]c–|É"¹$_%#_À‚‰xFÎy V#H¬pÝ›!QÂñm&”*w¸˜™þ¥B ɺS+‘ aq‰«½$ÔD¥íVhõQÕ¹–:½fÜ2Uµ ¯z‹SÌÍ•K3dx鵫Eû‹[ìƒÎ(ÁfõZYÙ„5k—ò 3³W>YÐ:¬®¨°¦™ð[Ak.;oà ÄÎñmçzl‰Lr Áx³èž¡æÞÊŽ6Íã(üIÒøë׺.¥q¸Ä­ò Èm)öã,th¨ä­  Äå÷A) )M„qï…ãÆ Y2‡լȩІ¤*%4ƒnAJÁA`lL6¢Ès¹h¼›ÀôÄÅŽsMÛ yg¤:€#¼¥ß‚(›kØÔ @îÉùë$Œ Ç Q&ãðL ÞDæ}@:(EiòZð›?*Ó)œ‹ãWrZ ¨x.•Ÿ‹ç`Ry&Ýî[9ó í»‹ÚY70÷~ñGžƒr$ϻX‘æÚù³¤,ÞŠ aVC¥AÔÃÇcÀ)±Mˆ~óD»ê–Èl‘ñ„1¤J¹"†+ÛÕÒ¬ ¨¦ÅIuÖ2ÿ´«ÔÃ7BjÕ£Ní—äQ«s fNüÈ#5_§]²DåÎ+…3i¦¥@sIѸBh/ÉLŽl[RšÄ–ÊA`tIÜ Ýù²Z°‘¡H‚ƒÕ@Ń•½è©…;×jG-!v7å…þ[µÔÃý„YA$›W°‹Ëb>#sž{,ð¬ŒòtðLd­ò+R*h2ÞvÝÑ¥fÔí tlÓ(Œ´Ã¢¬‚£ÖíD†vE*_ôQL‚5×½ýŒìÈpÌœÚ]v;Âü1,‚™–ôf<¾L[1–¿Â3,¿kÑÞyJ"*1„—Ð6 Þž@….=ܵFÔXnÉÖѵþ€ÝVšª‰Ë‘¥I Y1X &O¬ìP FÄ+¥ú¥5,û­6áÞï¥ê/%kˆY/ŽÕOßK L>`zT­ÓKçt~Œ:ÇÚ2€æ(ÍñC®6`A\O”¥ú\[^ÊüÙœd!P¨ ÑÉòs^KëB ²h ÈÝ#I&1Â_8.òî‚úQÛk÷,}þ^“‰Ý ß~Ô`N{¦@N°K”Ž3fgsœ^—R¹\w”V,× þŸ—y7ª^d”Y\úIˆÆF'JUŽ r5"¥¶\æÛ ±,_ÄD¦r'1<ˆ_Ô A¶z…¬à€+ŒÓñÉKäôœp}5l 7uHØÕ›È$¸á"Ó;ˆ©ÔB–j E]‘!"l·mÎ ¢¤u!àÀÂ1å)Æ6X§8eÍj}ƒ0ߤ‚•Æ’3ß…PY-ãÖÙ²q2(±)å³à{wüô²ù„üô„|A[M)°¿˜ydš™"äØûÖN ×ÙW…‚ýUÿcËÜ\©Q,äÓJÜJ>÷ôˆÀkVÉ¡¹x»1a#§‰j\7­Ñl•©>Bôúö¸…˜Áë×5¥+H@OÁø‹õnL¸ØÑP°nðt•|<ÂòU$TRu?HÆÔKÛâ:çR)Xa¢ ‘qYçœQ%ml›I=¨Ýć®œ)DJ ú@E« Åó6º®P,O3iH;Ý>ˆ›Ml)cŠÄÅmåá„ÚÓêðÑ¡Z“˜ÖV5X~ì?ˆ=e¥%(–2¶`á×:xÀp³FIExê| Ó`tDìjûQ%e@¿4”PÔiJq#§ö$–‚£˜ºYÏ"ÏæÁ6Q£Ïfhb"‘+Jmòe•Y›(ìÊË×ÎL³× Aóþ¯ÿTu¬Î´÷Ë?©}íã+Ñ™Ó&ÚªO{e2¡•Lˆúí@m#bÔTü¶3öJ‹½…ˆ²J‡W¹(^ú¢s/åT)øCž\;̥ì•ê‹ùÛ›™H ˜ßî¢TÝ€®¬…ê9å~“Úw¯ˆ^öEÄpœ\WWEB@ç¾( ¢£Y\èe„ÔL]l‹ËW±-9.} i¦³pôÕÕWQK3…س)¾ÆˆâTq0 ‰ŸW/,¼P1 ŠaAèúïÐ* ÍîÕ‹ÎÎ`¡ HUÔ$ÀRÛ(Î02ºFMzCܳ Ê€6±7Œ[(ìI¾@—ÄAÀë¤b vtêYˆœ®} ,y0;½+0R‰œÐ7cÖ$`u×2/XíS¶Ÿðfúj FJ!l­Ú™D4<“&ÔÄVý0!-. Ô¹C{AŸ\»h!^UÓŒ0œ¢¨>ê,|˶<õÞYß¿òt[ZÅXtÆgIBGË­Êk^1Z­IþB Sמ9Kv/ø™LɈ°Íÿº­™¼ñÝl »î;[X«çºZºˆdTèì0´Ì@­¤g¬«·)ÿ´+ÐË9|À¸!É_à~£N ]üTS)ƒI” ÚWåwiᦚ<,2€E·× ”Må”[i´j*ͦ3³—?r žªVCG‘´ËVª² ¢ˆ–0J¤5;¬Q)ˆ4„PÚ0„úô6ä±x¤”…Ѫ—%”‹¾ä°:U•ÉD+›Â€D6<êìgw:E-Ðø¨=Èʃ<ÓsEWõ†<ï±®£$šgƒ\|´Ì2DG –¥‘$í÷p?ZÃ=óLŽ×k§ kÁlzYagèe-qŽ›’’‹kÛUªófR_>b‘µ2«P3Bß!¸6bÿ Šã,e–ì6n4EC¼ÜžÊæd8ßS½ŸgœB‹V.YÈäU± † ­¬=8ØšP#?Œ«l÷k¯š™` Ûט薛u•»ªÉ³áüÀÚ¤mŽAl(ubCðZ)„»ª*<ƒ}2FB;Ï*FËï ­«œš›Ô惈A¬.¡žšG°òˆYë‚窎)Òû² ˆ  :8‹D>iLÕhý?÷o¬âøež×®ƒ1þwfÿYï¹³¤´C>½@àÇUð¯ÆDÏBz‚ä±n–E @àónã)#zAê…Ücu·yÁùz„M10®74w€:8h`/•] ªN Åë+sBk5±½F"àñÒ:,¦˜bJP.ë ­‰m—oA\Qâß0¥÷l«r iëÜ*ñæ”. 6k ‚€%•§j¿qHÕèr5¹‰ Z&ˆS»kÔ¨³¡0¹B[xE¶G­Ó V‘UIvÐÎ2›;ÈKf3@®ÌÝ‚WÂ6œ&? C®¨Ö 1_PÛž«iÏÿe¥:Ö(;\AQƤ˜W =BuÃ[„ºÀ7Î:oA>·Ý= ×u$¶NALD¸)ØbÊ%â„êŒhá[Š_³¸¨y¡€½%@AÄ´AvR‰ (QÕ n[„VÞ°6‘Ú…  1x¡°rÓ.$kE.ø‘88û(ˆoФ£–E=ˆÅ>ë`c¼Ðd2b)H,¼Åë-Š®Ÿý&á­W€Fig­î¹æQÖGÜ óŠU.ášÈFvLxØ“Y{ÎA <àÍ3-¢Ç ŃԶÊß¡ÅÐJ†ô*ûÐÊ¡±aäA°ÇÁª±¯rŒ;g-Ï• <"[Ì‹akT‚ÒÙsŽK…—ƒ}hŸÖ!Í¥3 kPú^7¸ŒÐœàèÔÆéìT|t\òµÌ0ÀpóbäÉ´ÜoŒ¹Ñû ØGÆc¼ñ ¦­Ì… ’¢>s®€„¹z¿j­„ •J9Ï뢯›,Ä[¹œ¨ê_³ ÿ|Ð×ÛçþÁFu¤0TÆ/>ýý#´¬}…°#µ°$¢™a=ÿg[I¥k¢ZÐOŽãŠØÍ±›ZR7½•† 4:­º³¤þCK*;•ņC²kÞ¿|‘zUÀñ¢Œã¼æˆáå Ò’¹ Ck¼)¤êw­Ó̸Á[Ç…3H,/Ùä©%/ |®Å[ b3a–L -^¸«:šaiB•³Z°¯j‹{n¦³Q¢zä¢ÒºàÖlù6qrj¶&G›W—äÌB¥ ëc@$'š6Yü×I1ϳcjÄÒ$]i¿¶5Žo캿-qÝ‚¥;rWe)@<ÔÎEÌMD'd=&NqAÁ¸ ¨Hê†Fu&ë¬÷<«_“À"v±ÞÔ#„„vƒbaý¸nÿ0G3Zí[àZ½kއ†?mš³*•mk¬°Àâ¤BçuJ@ï&kŒ…%b’„A½1¥î¢4LRÂK(Öðò¡¡\¶ÍJ­Ö Ógô=tTHrÞô;'߭†"¸Ç¹ ±¦óéÜ[¬Ç2a9NzLt#ì~œ7¸¨,{ÅîŸzáÒj^´ýøg âJ!FK êw­úFuRë’Ñ qÁ ªªVlI០O7G!ù)8gl²a‚aA™2 ¥«„e%ŸNÊíMÅ\‚ʤ͌§¨®™ÉÔ‹J;L\à¾œê•«è œ×¶4%Œ›®7Þá8ÃwArˆ¾îgÞæ.©’ä9ûÚc¶×êÕÆ‘–¬”,jmÖ¬}š”ºR.ÌNCx¾Ûa¨%ZU…{zQÄhìT–qÀ!F¬µ˜W›v;ê­›8Az÷f'Aœ3ÃS çd 9ܤ“9hèz—êÙdj]³G›f‰Ü+Öà µX"Wu D›Ïª§ý£â7F0NæÛ ýuʬz^1ÆYéõÂ!?ž ‰N†”~.z!m„ô° ’EjŒ°€>'ýõPŠßéµLô¸6¤×¢ZûÅåÝÝûýd`““F˜GÆÅÇ•‰Á¶…]œãFæyÛ  ”[Y¦ßêl¨nO$FËLY6„ë ÅÆ†N0ê"´ëÿ¬y›J¾€®3PUÜðzÕYg‘¼Åw°Q‚ˆf7ÃhRy–°«pÓ)?U×Â5JœÌ>D*¸Þ˜—Š”bìUUáQê*Œ™xfKó)‹•j>À¢6–¼ªŒÐÉO ½©E·u¹Ï8Æ‘ t7¾¨_û2ÉU-jfXtPÀ´ÂðB`òfVHÛ×,ëQÃ.êÕbÁ ¡ö,ðxQ\·»n‰p¼/uÚº­:VÐ&£iµ¯:B*lXÑ¿XìQËtÔý9$š83’=j­¹2yQ€šjÇ”xʾ` µ ­“µ÷²PK¸}=Çâ- &Qc6Eí683D«‘"XEHþ&úÞ©õ[@¦¢¶ ­@)êöÊ1Y‚6Õ}‚bÚ\ɼž^þ|øf:îNœ\5t’%dÓ6™ðÂ3Á*”MÜPB¢9Æ.³ê‰ÉV¿MÇ`?S «±“ÔÓ1é&ª)ì¼ûPõW&EûQò;êg˜Ü§¶œû‹\›Ï»Yðyõ— ¢Œ3?ñv+pgýÚ9ë£Ì·}€œ£I¶ûlßÄÈ&·©z‚`ÓȹàÎ{ÓiªÉº€H6Ý o¿?ë‰Ê`šõ™Œ-ƒ3v8×&'®`îIöÄ4g!¹dÚêqéL½h5‘… ­&Ç IÖŒMYH@¸o”½ž¦JK€&kÑ1nVcß””À]¡_B¤±ñŒEÖÿfùn ]7PÅVÆïÊ>¢Æbâ´V DÙéŸAkJ p{a}¡T­ôù„‘ F÷†(`×&ÔB™]Í$!Ç[g°ŸžWˆÊ´àö“$;! ¬E®qrd†'2>„‚½ÔâôÓÍX†€UWˆ’ áñ½ÐC³8ixIdD8¨Fd Ø§p]ôzbÓ4ù¢3WbÌ$¸·hËw ž`yÑeQó¼¢ñ€7U1Í)KC®r{»Ë'^{¥„¾E‚UÈ.Š|m‚N%hØ[|Ï=Çm¶JŸ2h5ÒÝ1%,yδÎxn4‘âØ_×ÎtÌñågCüs|düØfSv®„G‘FÑH*ÎÆ~njt©î 2¡„“¥ÁÕ®MŸm)9>Ú+ü¥êQ¶ÆPÑÏ£¶³,@'Õû_¬º"Â0ÙÖ„RŸÅlYëÊ¥Ri’]'®|ÖhqÝEÆ`p¼5n\Òz-[Z0‹¨º*ȦÄŠ£PÁho5_¸/ÂR$Æ;0jü®Ò¶„:e~ü%B`1Ozèg”“"£ÈÊå¸jnYÊd€Jç¿9‰ÿ@¸N‰F’Ê4ÀF2ª @¿oLÓŽÒbf©šN gËÐ} ­ ‹:Ƨ"mÛÂ9u-êPJ‹šhÒçYÒòÍIµ¸†JkæÏãa}´m„Œ«Ø+F÷¾ìà¦Éb· ¥Âª|¦\²5|µrŒû±ê ‹'”…3×ÌhÉ•5ö›Mº¥eÈ¶ÚØ$ˆÕ´Å‡4ó@EYSZ”@;_µ½µÊ'Ë{†BÜ ƒã¯Z¹ÔÀâY“QTù·ÉagŠÕÖ¥$Vžƒ:g¨³îX S*† ÎŒ?È!äL dµp#L’’A^bË$læø:ˆ ráp¡â|&WÚå©7|V˽¹ô¶ÈJ,0Láœ1½ûÊ!Õ:z¹´™ƒay>t‘‘ükž6œ{ñÊXÓ šžÓî~}æ#.žCûŠË‚S–““³¾ïÀ”Žu?ê™(Çò³[¯¼Ê¼BY¹õ¥¾Òi$©t—ɂС¤¤«%Z†iTÖK\v~Ñ Dw¸‘d¨@3à”L” d•ví…±+T¢Ø»3o”ÖàR2]\ ¿ûX¿²Ä•4rÛ‚ª„ Ôí32Òž¥„*L FLvZ5‘¡s«Î$L ‚˜³Žpí¥1 qQImµ*KB&šPx¬Ñ@' Å:ÄJnÄŽÑ<h@¿NÛé³Yi¡2Õí Tg‹·Å í p¬7}ýöè1.}¬’IÍ È£$<R8Jö¶v×ij>ÀÙ7©ìU|ކ>?2¨sAlßÊ\wèØ¯üe·U7$!Ô¡ø¢’²*k6ÓhHÒ¡ºÛƒ4‘­Cª«M`-©vÄšë¥1”¤Ç?ï›#Yý–P­´šŒãì!GQÖ)ŠèŠŠó‚Úx27ô„£ü y!9c­k«xƽªnIêü¬r×ÛÕUP÷V÷Æ$[gÿUÜ.) t uðRØfH—€Œ‹1­õª+%\jÁìÆ–$É„’09|(OÂúFªB÷°GáåÙ3äñÐÿ²m%üæMs}»n̛Ů?JíùŠaܘȶӮätÊ CY™ç õ©Ûk”®¨†ÆŠÚN«i7IÓ×Ò®½8ÔùH<+0QrªÊ’ºÌÛ„?™ÕU1í&æGe_zD°g0!”ëÅò5g ÖËHµÊÜ´Êê3OUß³œµ7™z×ì ¶šƒïFuòYsE‡hh”ÅÜBåUÑ.+£L ˜ô\„ö¥ÜJHšNJú°±“ü¨kŠz-½ut |X;¦‚è¸íf‹º(×uw#úx؈Í;G°ÏsÑil§˜ÑfJÁ@ ‰RKÖ%ªOŒ5mÎu³#ºI pÖªZ9Rï“j0Œt=μ|Å,•4eêÙõ‘ãHï,5¿èì·H@di¡ÉT…2ÄXÝ 4kWטWÅÜÁ:ýÓ#Ž"&´—·þr³`­ùSõy0 qˆ•n\¥t½W–°œ©Z„Òö¨¬%¸d“Þ s•¯»ÅºÚW ¢Ü²)rJ°ë–¸Â9£N›2P2œ3JTÔŒEÔ à ¶ä•xlŇ\# Ø [ ¶Ð*Ó¦ìRTEµf­ÀJwá;WÞb1«5h"UäþsZ±„b^ö³eiBaV3_Q”U£èRÏIðcóNMk to¶æ!®X…8+ ›¬jwóÌKEÿÕÇ;„U)Ý2Ã`¹lŽëP›F‡~Â)_lh§4E(ÈßÉ HM™ΛJË‚Ð_—BÖ]Mìá.¦TŒPdå†ê…ÉDÍvqNW«¿X&ˆô‚"ö.±V á±ŠaçA´§XøÞ5Zx¾ÑŸ p?j’~uoæD nÖ(ß+ íõâj€ ‘dµtqL”lže¶‰ŒqÕL…~·K\Ýš21(ƒ˜(™¨}Æ“nç2£ï¬5ðCîb'¯÷FŒ³æ1dñ¾UI¬\ŠX 7!ÍÀµê|£øMǧ²OâiV=÷©Çlq8wFšÎD#uI’x¹RDa§XUø R0C–Î_x¯6#ß}Ú^µ‚ëXÖíf5z&Ž%þ ã$ÝŽƒÌ ÖQkÜ"—(мTcL”!Q=1„„º7£ð!Ã" N o©{)蘼œ(kèÅ T¹D™¨Y‰Ï­”®÷ß•g’ÏMÕ†2D¾V¹miÏÈE¿äÒW–UÈB’½ ýz´ØAFÿãÑùLËš UªÕ*¤ƒ»’2U#6ÿÉ‚Üp¼æš¼d\e@yPÈ>+ÇØVyíëÅÈ_2 ?ÜW¶µ™¡ÄZ=Wø¡UÏö 7!b–¢ý”/Ó÷|9¯IøK-(t *H»‰Œi¶”2æ¼&ùÀW|C)äOYŽÔ¡{7e¨'3`LöéFBbó£1ß À+6¹)Ä¡ÍKÛÜ,sFcM+šV¬¬Ëxq@ª!Kë¤ÀV@üG&.t¿¢71T.z÷'°Ÿ“õ¶#OÓòæP(¨êxÇ ³jÎÕ/fnN¡O÷:Ÿ%ð˜õ“+M×þ]–>_­úšC¬Ô£„q«¸‘ÝÇ9ïÛã푆ηûoèùâù]¦v–xrb´Ï€ómíøŒ>X²šæÍ9¼¬ñÑåýGý ßü¡Þ,ÃÊX‹ŒZjÜA uá¿0™gæé¥÷åÚß›f«7¾å¨¼ N¨<’DBÔÁDoÆ…ª2À4+¹Ýl˜ óº›->º(:E±úM•ˆÎ¢¡ –±¼f­tÖi ..è¦eÖ°­a¡Û:7]ûÜ -=véhùØç‚BŒ†á•ÙÜ+p([ÙD×`<‚ë±Î¿Hs® ?Õš+¢ãW›þ+Öc7ÌÃ$`£“æ%ŠuÒy@ð”T‚¬M‚Ý‹ÑqW5RX*|u©‹öm"PzŬB®„¾Ðb€ŸÐÝÃ9¡ïªA¥d1ƒê¾ˆÑ ­ÎF ‹„½–®¾‘9Š¢ËVÄqË Â­Woð;/Äí„5Ђ­WXF*½ËÌ+êO•÷fLj#,?H (ù\vRŽŠ6Œ„}%kV'ЏìS£ ¥X×!¶À÷=@,ªç¡`ÅhOýiR"×25@m×±*‘IÇÕ¹žŒ†Ë'ÎfÊ•[rDúÿt£@ö˜œ¬BjkšÄj!1/w@’ýõ\æŒá¬q‚È[•sW }êÒ³(czÀµ ñ…eƒ°ågVö©ç%¢ì´Ò‚s Á“^T5yb@›¹yà\Uø\£Z[•Üʳ³EVKuXIsY&c7r„<H^Ò(>2ÙÏÓ€@¬÷%TfœµaÌÔbê§=ξ,Fˆ)f?s =›ê TYðk"%ÝÏ6íìƒÜÌ•Ý7Ì3[·¹´SÔVÐ3n¥l7!Ž•ÍõI  ~<þUŠüniìé¨Þ‘Þ…é|?ÝFli­d`¢ ê˜-O¶ßö«„¬T0;×í°‚J{Ê`oÜ «•3£× ¥Ey ç[ÉÒ!¶E ò«#N4§ÎXýåúˆ|‹*͆åWe"ÈF ƒt,¢hD`2U7˜J6S5Õ­ÔÛL\D„2ûP¬ìШ²å‡*œNH2PY¨ø_ûËyÍaÉ÷͉ºŠÌªIžíJ7 d¡¼g4W—)À°; ¯k Â˜eeî$áæH V+×Ê\,×™DÀQ‡¢C"d4‚q=Ålé ÖF_®5°€Ôˆ(0C‚šœé1¬Òn8bÃxxÁÉ_å…WÃÜ…*:X jÏ´~*ªÀâ”Ktš>Ç#ÏDf Äü°z^e6Ä‚Û9Ô¡®ëNÖ b?±àȸìƒf8yÁ¼ücMRç/V0ò‰9¶t Ô˜f*Y9!lšÌoeïÔŽ‡ªL)R0’ .3Ã<#B´²;&ã1S…k°YýU ýëªØž§"ž­”&¢;¼ŒÂãµÜN—˜´Ð$ÃZ®X–X‡üu²õ¨§V°=Hz"u&†H* ]N€xjFÐp®Ü¡ô¾¨,‘W¬JLp!àÚ"^ô–$a⩌–ž.,i‰+öÄ€Àø,Rm®ï²ç.ý›úóÞ”Œe¬¥©–c2: ‚ú„Ò¯‹Tõ\AD·©ÐEJ ¡E*½PdÈñ}(…%õ3/5’((¶¤º„›?÷.áIqj‹:†^— •`¾ð²{+ _lפÞ6ÿo¼–¼ðW›6f(ÈáÙp®°ˆà­ y¨›¨t7}7fòßlà•ðu.lÇ?`Ï—* ç 8ªÐWJP_½Ã°ˆŽÌ-âbô¼¨ëg€CÃõàij`!J­à…ƒyÈ(¾W¨»Hç g# í,:£~ЍP/âÉVÜ#GU¼Ç]­›a’J]²Ú …²FÉªÄ `’Ešö4©E«$2:¡ßˆx¥}ÍtyQBV(a¡JýCÍ3ÕÕÖ8@(ùÉ áÍ®à8…Ki9¡´/…V5]rVËÐdžJƒqÄ׫œR‚R ´iÄc Ö´1Ïò´/)c#шbÆ—Šaa¶6âž?Þí ,ðùÎèB±ÄÀð*}ÛÑ’®p ~r_vL@RÜÊòPu!›<úŠ6ú% …ó.H+§“ÈÅ…È›– ±Š{Dc„Ù[-eÆåesªþeó>…w1…7¢ÍK Æ H¬ûÓê´Ì$¹‰Ó;|º@íЩRð¯‹Ä7 ÕÕ׌«Êé@jÙˆäþ1¢˜ U!R6ú=ûodxzÔPÌü¢\ÍÚ£²Å§¢Ý’¡°ûÓ&¦Ìj  IÃ8,2ÊqŸöbãVTÒ˜Ãøâ˜×;bo¤‹mâ*MÌHÏ©£€/HOÁ®Àª›Uu˜l¯JfÓZ µ]ŠÔ¤{_—yÅV{ÚÃŒeoØèQü'äÙZÔ0T¹Í}0Ä“¶»&MgfœQ Uæz³[% úô7½‚pž ë¾<šBøV,õ}^¡ºP ·úrì/A?íð“û ;)>JÙ(÷ÛÒvèþ³ºA¦£ÿöé1©ƒwõÕiœsèärÛ‹o™)RWøY§4šs‚,Q7Ë^ÁÙÁ0Ï¡\ºn‘¢å<'¾ñsY¦¹‘ãP±ß›Q…‰møÍ³ýÏÆÒSFjŸ¹)-¨àY{—H[ùÚ)û \PcÙúé.Zvµ2%Ö|r5LUå6Þ/⯬{[^Pf†¨Ê)ÁòM$ð iþ4AïyV’Êp =qž&µü¸v¯ª¯$W áã4. -…ð¸Š$¡r3m!æá#PÀšY稉€°u/§%9&¡5`5Ì–¾ƒÐ0í½.:RËÆ¼BÝS,-hj%±ÉÒ÷¨~奂uR2ÿRÌÈÌäYhE-›ÒŠUVC6ᨡ¤Å´Tûãj®U¹BÀ'·î!ÃÊâÖŸܮ>,¤Km-!Íÿb)©1 T|‘9¨^©lzšÁ÷ði*£]mÉØJ¼êer#}„>" A[:C6mô¨¯àé$œáˆXÕÁñ”¦ò‚•¶¤dpÝKYS 榵¡UN¬Q«àÁ½“êïÚxZŠó2g–{ˆ`Î'dö]]½'“R¦pEÀ!ŽiUÔ®)[Ïëv.£„BPãã¹ÀÒÖ:)¥(43Àœ&•‚]Ê$6DÜÄJ->7” ôHÀ¨©Ø£ÙôÝ’$Õâ|ð„ªäiÎ1Zù.¼‰º§*†fÓQºè‘¼‚œ;ÑIÕ #Íj )´0÷^´.š#X~«‹¦psñdQ¤†J–áAé'BÅ–Ÿ´´µEãSn§d¶4÷>¯»‰”é³E£Öæy­¸qbÃ%¦ùÎrÖ³“GþCª!V;ò¦PÖÏFôI"-U‹Ò¼§}í>)òF]v£òÀ¦dX*’˜Ïó²ÛQ¼¤êº…;ßíjøkXŸ•„¸×m k‰‡hžß´Œ*@í¯! XÇRÛè÷½ch6£úù ºÙˆ˜Âè|©ïje~ÓBÕPC#ù (à¯Ò á×}¹—Vä±|­7¡’_®¨i*ö“ »¿ÔŽ¼ÝŒîlȾBGê“­pJyÉ£ŽÍ?~¥P+XNñøRµÙÚ|=} Ìâúˆ¢cˆ°yì´ÏÊ€e¨vÁ¹Y.€U4R[§t?øì«šÖª ëUõ AŸéОÕyê´#Ѩ›É"2³®`é{eùñ|° õÃé/aŸ'Á¸•:~Q×À†³\“0[=#•BψœèŠè„ê ÂYð*  µ/³rI3 ­kS*-:úeÆawU«šÝìªS·%ÀE骩<±¶å Š|[uþÅÏQ¯ˆGÉ£†IUÒPP {ä(5 ž_ðp°‹[üÏx±±,Ý09«Ú?H·UŠ…©;×&½<¼6©¼jú)5Á¥ÌZZÅ4ö3$%éhÎòóhå3#ð+w:ã‚ÿˆëåÆN &€'í‚¢VJ„Ç bàF×?Ë2¾°uõèÀÊß”ÐAP!«˜|¡Ã Þ àz5Š6S^à\7žJ¼ÎT³ôØñùŠsJ ¼¼¡‘0AÊËŒnJЂ=è}D³I!‚9cðò–>gæˆì³m¨žÚ¨WZGjLâWõ»C*[IÌ1#¾`ó×0´ò@.Ö0´ÞV:åEü1À«ßĈ·žbD`@°¬X Xs’>Ô¼VzÑ« 3%ô\¤f^I?Vśֶ¥V'6eó±cöD°!ƒö&bŒÜ55“U'¶÷ð‰k•A„võ™éô¸*8;>Áޏ¢žñýuúî·PÏ;×ôÄ€qCUU=þ0gyo šÇŸwV÷Ϭe‚cñÇG†-¢êÜ4ÞýÏǦ‚L%s¶onêØÙ¬\†Э÷ÊLj›êØÒoÑYlI¦ž(Ù#kÃ&aµÃÛA&xÍ!b#]K˜ÓP@WVIÞ4dDªéu"ð÷“W@¾’g³!Å öÃèÃÆÀçO¥7 e*®¨ÓRùÜFy®/e©¨Ó‚c†ƒâÕ:Íš…ÆÜ¸ã¬éC0WQD í6eA ®jœ?¬Ô+Æ?élÀL’'½De@ðêq/Žä<›8Õn€ÚÔ™·bŸ ÄQŪ,j°r‘C«Ug ¢6 “)¬Æ¶›­K¸9kÓÂP´ÚSL XKdª#,Ü) W^°0©0µÒ0C´*Š•–´Ö1^i§T5†×Œ< )à‡?ø› 'Zͯ®0~¸Òe ¯‚“9qÛrµà¥žYœ†UÚ{j`¹YŠ7šv‰Æà3`?íw¢¥ä‘Sx„˜UZ£ÖæV¸5UwfÞzˆ¨’‘® ›!éáÁœw6MŒ€ï´5QËÛW5tÓf,ò× •uÂi *\}·`SZVR#b¨+`öÆŸ–´™ä[µ0iâ"‘N¬SUO父õ(CâP«ÄÂrÚš ¿•ŒC¥gmG¢¼€[–RðÞ›;##"¥ž-N « aŸI{¸Þö†Œ°üVBqÜN'SO×îÃlò=èm8J0²¿C}ê­¢àíÓR’iº´Z ˜u®–á\ô4ªØÊ)uÃ̈e¸3É UâV$®x4Öh¢*M597W¤<¦ÒÞÿr[ñ åÌ èl)âD «|ç¼êY•%f ×kïq•âìÈr1¨˜+âq ¶Ô~Á}Q!¸>'&ù+Ý=i℞UÞ”6'Ä:C ºäá—üµ6ò¨²‚rÂŒœªn:(¬b¦95¢™­ï‰ñÛ| D&š“q: ž†)%16µIJ =f¸™hZ¨«_PzN—Ψ1‘Ý×ÝÊÜÇàÖMÕÄ%˜G nAŠpïTq5EÀꆥZx{³ -V/ímRIö¹LúÆÏlgÊ`^ìY8Qð3õ-̰·}=%Áй¹à¯üI/äéø¹±µý¼Î»ÉúxÑ·¿BvŒ+TœVv"Ma~=r¬ÄõšØ'ÅqáÐ&êÎÅ´£…M"Æ X¥’€"2çÁùÇ^ð9¨èJªø@›[–  ªÙ÷XûœHŸ/úꢷmèg HOª}#šCÁ·V û9yl+3¤uÍÕÛÔÛ(@Gδ®Õ,QVû èb«¥ü¬Áã¸äjå¹ÿ­2²ZÚ¹¥‡“iqn§æ`Nœ·@Y÷Œyñß~k'd¥ çc*‹IUîl'f4KQ¡FoŸz®¹P@³itÇÊ·#ìQùê¸î¶“k‘ž £Ö¡nç& %âhéÖ;͉­ò¢–ޔסŒ\ªŽe Y)ü¬÷:wùäµ½`ú©pÖò+' KRéÍâ>˲žiI‡OØé‘ð íHÕ¾¸…,«Í°*¿B"ÔN÷{­Çã¥ü ÓÈ®ý_\îÚ ’¦•‹G ‡ØsÕÈΈðÂu眄3šá€T«)¤Ébáèwrm ƒÊ%GWÞ}T×zì ba‹Vß³¶y¡'P‡é‚@ ›u%„4æŠm!Â*ã†jH°°É‚q»m#¶nˆÀy ËÇõî·!¨[¡ÛÐK¼ÔÛPäÞ©HJ=åá{Yd$jo#ãòðµ²Òªf¶˜ãlEâ‹ìÐ-,Š#e‚‚B3r«¬$Êc*‘x—Í䇿äá ¸;¥ðÆWAª2¥UÜ,³ÌijÄxÿDkx-©.‚‹µÙ|#`ç\mFB½¿ ŠI t2–$ˆ›:À¾ Z¢Ce•¨Œ r¯vuZô9È:È ¡qfQ?_확ÄÓè“Ýù‘ƒþK9/Ï'ÔCÏ!6¨‡#ºHÿÏ-ÃPë鉢Hmˆ™"eB» ±@[avúŠÂ¿,BHoË’'aa'¡þR¯gT«É°lµÂ=g:ä•Ϥo WS ².û@Ôƒ!f»³T¦ãF›¦ÿðÒïËU³10|•…3£Ù_Žîe5„€ö{Õ·xÔëé% ‡g“ rÍsµóå…þºŽL¾V0ônp3!@†Í׃íN[‚Ughªéò ÃPGá)5êÖ u¤Ê—lÇ€6’DÄнBºLvâB«]˜Ö ¶$ #ašKÕ°­ÔõcM =¸”X%]g׈¹q‡GÕÏ J gc Ät änËþèàê:]Â.†y3â¾*4ÕÀ%U¦1bn»Aûßøã¾fË•ó¼Yໃ1Ûù{9ÒØI9ªC÷p&Œ/³ÕÚÓ@“Ρ¹ˆ×yƒþÌe©›ÆŽ‰OL5v8ƒ¯G»¶º„ª=š_äÙ‰TCÃÀ§!.ZÚ‰å{Ì`?íK× `ÚþòG½ÍÞ>ÄžÂü/ÍVU¦±, fŒqŸ_ šò7´4 ¯nµUý#;_€Ræ1¸’,ÉcàÆ×Ô¤Òc?"aq&"Ž‹ô(ÆLô_ºéôŠu»¦xå=ê{žoº;'´Þ3sä}ÀܧµÂ—ÑfEZh*õžvR1˜µj»‹Do&~÷×CÁÊô¼míp€lÐædìyKΦÚú/ÉŽ²òÊS}Ö°0(›AÄ!ƒ=|HÏK¶sŒmÔÚWÚýâOFt@×~Ü,ÀÈÂAùñå'[6 ê±7óLj±7/<öBÅ[ •ÑŠÐD’ÁË3²|@HTvÃ3J+Ý;þõ°Ø´—Œ~—4|ì¦ÕX3¯¨b6XYhFÁ4•”Ë×¶œÜJ/./õx[/nYã ‰µ³¶¢£e‹ƒW¨CµÄI«ŽTÛ g¼‘V¶ÖzXšÿÚ—aU_ÓŸ²Xï/‘ŠŸóÃëº`#ÑÙ»-ý†x¦bë•á&p6šÞBB`«Oï9¤R;"»BËÂØZ"¨ÏÌjC t! ½(WÈô†ž2ˆ£±Ëª`F³A×ëQ'»,p½«uŽKD¬¯†Fî[íG†a0ýú;j—ÎʭצZŠÀ{W¬1Õ¥µ¿ŒAó7ט› •ÞŒ`tÞ:LLÔ+Ovølã5mùˆtUÅ Pcëê÷I¡ë°rãàŸm¶ s-…ùe€ºï’Éú|&6Þ Aö*&8ϳæ²wYÄÄÉêé`ÎÀ'9ÐËìúX î`Û²Q‹ƒ¬ƒ]2Ò ؃a5°+ìr^Z¥ÝŽ;«óާn…—uwŸMš7?õ¶À’ÍžÒYV;ŒT¶×7Õ’*ðM°uvn·qP­ßì•.ú’?à-ê=.Öô©Áòlj_…ÐǸf˜®X'5¡„ù^uLYR.!Ô-mØïÁL0úÂ}Itæy†ê„]…Jã稹cÃ6c (íÏÿ¢ gçÞ†0NØÌ*²§5·£}¥f`9å~QlËl‚e¤Fª3ÖRs#ìŠ;=þ·þÂQa5%Ù¾ºÛ¡¬$) $Ð{ëŠÆ¢â°xiÛI„8·@êü ʽ½µÜ²ñs‚øç‹ß¡îhߥJºWÙ+H¹­CVˆ «ptö“Ï/ÒÏʱ GŸ¶oòb)XÇ>ß”¾iÍpZå …DÙz"³MÄ.âd`Ì“¸U€Ùí? o('Ue€ùÒ×qI´ÚLÊ BeJ6Zf(ɨÈÄ(UKÆ6sT!ƒ]µšv“ó¤­Ê5tY䃩°­wêyå])’"-x Ti5Ð\‰iÅ¥ü†›"ê °ÚQÊ”VøLš b¼ª>ò‚ö YÌ'ýé)z°2–L· üæF×À×óíÊpÿ´+Šaý:Ò:Œ @G¬(CJ¤„ KµfL擉Oaú‰Æû8©(9y²Ð‚DbÕ »­${‘`Ë¡ü‡¡ÎP gñ¦7z'â¶’2ìXRû`¸‰:dAÛñxPI;%æÀ!«[1&˜§ÖE¨E;ç¼0"Ù¤!0s®ý¾„èëqjRl€Pa==%¤§`¦ØmÊ»Ñç´âŸô-ÌV¯ (}xNXÿƒJÑ«5LOÒP®dm ¬Füï}ð¡Ô3ED ÕÖJ!)vV¹R˜²¦r†d°Ð}ª’‘°uáïÞZ§¥¬ÔóŒµN•Q.ÀÇVôÝ.ŸÕmdå#|6,qØ£]wMÈ ¶žR§v„ŒµSµ‘Záwe£ï/°ãR‹ç—Ô”E®ûòtʈ_ÈHt³èkÛ\›!­Êw¦¿=+€ß×[šÚÙ•*¯,R u«û>^R¡ÚYXÙq¶ÁèMàª(¸œ<éf/öC•R'‘‚‚…ךV¥º¹­^¢¶fBÝÌ\uÙbž†á02¬zç\À¾H-p0-ueU2d¥«ºÇH/¬®ˆÂ"t ›X²èö3§y—C]Ñ ¸£WEä?º®,áZ|•K{2åJä..ÐÍãfíÉc넜»ØÛîo·,**,‡õî›XÉ‚æfЄ@׺²èsH wÍ­M¶õk‡TSídØÍlpìŠ4sɪW8‘‹^x–(qBýöÌ/Æ$¥é¬šÔ6F»äH[âqUÈ‚†”±öXkwôXlš-)縥ÅDs4QØ6î!܉¯>Ó°ëœÃðÕä[ò¢‚&a Ì}¨ì=‘bšñ©‰u3J?sÔàju *¥ƒˆ)Õ1ÙÔûgí³JÆ£¸0]vÏH<p2^Ýñ3B’Ñí^s¬ÐZKc‚ªøi!ê{+ žwȫ꜉Ä,ŠIºXLÛ–ÆÒÅ;ãÒVé1NO/u/ˆ©Z³RG˜B *Ã3Ù3 (Ý[£b#ÒbTPU˜ð›!á ¬°Jq$·™ BÉœš^´ò “=™DÿÍ¡¨"£:Géæƒ@Eµ?ÁV·Ö•Ê#§GŽjNÅ]:™@8Rµ«€1ÓË/ÏYNûØôk7Øî]çÝ0ÎóN«Ûò8.e[²sñN`f{'`‡¼ ($Ñ™ú¨H+…]ä&©¿[k»ðÆÕATá»Þ *tj‚ª&»ÿB1AÆNMvä[¤ÕdSñúãAæf’ 1RÅó¤Ð£Q…+ ¥Òìcò û…ðƒ˜?ªjªÝlÆN:úwÞ[]5FHŒ"dËXHÌUü8R‡ÿÄiÛÈcóà SÛóJu”fs¤‚j*Íû«Í¹ î¦ÓüÜ[d‚üWµ¥ŒTP«CÓΖÙÓZ]UN™±Nº)ÌXMƒ |ÕË(þiŠÐ±ÒrÅLšUHÎdÓ ²×3_mÓTqßÛoþú>ò*`œý¡Ÿô;öTMÕ˜³ÉôÐK+,³Ô—Í7·n_(1‡¾km̶ËÛ.kÏ&Ê$W·G”ã—`ž¯+}ÁŒñu»Þ¿¶òS\½c@¼ÃúE·K -ïs«Ð"«þõªåŸta0í½›Q:GîS'KþMÃÖ= ÆS(ë\@¡`˜Wq rÕ²u´¥}ÖÕw$ Œë6}c«¹1  [ë+/ûƺÌÂdRã$Kƒ8l^\oÖ7‰§kðu‡FÇ`K¨SV5¹BZk¬ç –{®Góœgmåó¬=£þ.ku#g×Ü–•©o-³""Ujï‹>ˆŠ[ÌIòK©RüÓ9ÿÄÌÊ hE>nªòæ ƒ]br†É^<Щ2Mœ3ª•à²ËÛô‰z¿E6óR'·Ôq5ÕÊçDõ>y ôBìDEÀn±f Ž™D©YM@ýeU…%¼hZc¡ðY×—U¼” ¤Ýb}‘8[VÕZ¥øŽ«¤¦¬œWº¬i…ɪ+,U,È,¦j¿Ò—ŻŜ•€ËŒ^é˲š›ÀÔ}Æ=6ki#å•ß09N¬ŸiWTÐvWÊ` ­“K0‡·^±¨nkÂÉ(ß9I¹ WVNW9 *^u¸á$úDZ}›uØF¿ÅE•ÞŠùΕ rª‡4NšÒóvT—åpŽ<ñW¤8Òxè‚p}ÃiVýª& üa£CâÎ|éQu K³Bê0¹Og1¹"ž+=@ÙTR…{8c:’Y{+®ŽªÂ„tvk;#D`ó¥æ3Ò"—1†¥S‚wG%O‹'Í«Sl3'ÂE‹” åÉ'²ä/mxG8´oŽòN  ègbay`é¬5RøEVó„óœÕéyÍïr‰ã_zöÙ,'É^À•Àüí¶Ô`TšW37•&b d ì«6œ¤ ìûH°µ'gPè¡U\ͯ㿞Œ¡ž.2CáÔ–X*Á–ª%•Æ«îeD1\Ó‹•›QH,ºÃ3rïÄ ©jöÀäÍô5òMíª¹¨QM°F6£”Ù1AB>íÄу×x¡H™Àó¥½6`j¼Ùã´iå¤b ÉNÔ T^^hx«rT°2;ÀFBÿ.R¥w’`ã_*ËQ·ù¢Sº!D^Báÿ@¨·( þÊ ºvMÅ­PãûÀg²?vçÂÀ ÷Ý^9œùÆœóÀ®Ð‚4 ‘Á%BP޹I#@†¸ Ü!—"í NDÓlz® r µ¢Ã·ùMἨHñZ-ó”Giøøx^8)Š@B—3Q  ½-Œ$U–}wª29ˆWϽu#pIÈIr{Þ-ŒnFv¼É6rnÓ0j±8¯ßŒ¢\æ3õ¼×«äàuhÌÆÅY³å©%”íŸ;s zGê{gÎú9Tnïýk6ëíYÍgë©@ôáåšajùH)A}ÑÛǘ™P„Û‘Y•aQî[gA#uZ6¨E”LÝT©* SER Gâáƒx»^#3jÿ+3ÆE¾iÕ"Nš#”çèTN1 A"´äU“eÁǦUsf©=h¥Wº°F¼Sp bÿ›Æf[5Yî3£µë’Íà¿÷yǨ•è—r:Í~üë}Ö á¹ª#…½žÏ|ÇÃø,Ä1¿—l™k †sl9å(IÔù€–p/w„‚DûK ²’â’$rœa ±»Bµ@R lUvæ¦Þ‡ˆ´c&JÇ”&ª»Íh€E‡í‚æÍKRø²WgØÆÁ„ÂRO•ô7+ŠÑ…^Ïl~W&! ³Šç³ì¶±iw-i\’Î]™`‰î®0Mü7(cW $ˆXƤoÚ„eÙGÝn4”öäõ0ƒ¨8Ƽ]:Myü†`Œ`ɵ9i) ¸$/@Wl?FºçÞ_ÁD°ñqWáþÌw¢K¿3% Ôò稽sÙK¡fÈUL¶Iйtþu³Ê¡bòå 퇢tšÎ‚ç(ïÂ&L (–f¶™Iü Á?ÔÍ‘v:xïlÆ[Ø›1]ÄGˆÚäŠ ´Ân4ÁN„÷ÚåÉ¥;©Ö|3d’êK¨Šß;«­M¥˜r M]4‘z:eݲ‚ñ3`8,/k½×}ÒÐÎ%dÒÌ‚t„ X"­ÖÊÆZú"Ô“3#šݳƒ´H0ÈDÒ*¤ë#…ºŠo@á Ì þ»±1º?—Úô9¡÷ ©#mÐT7Ö¢(v¿%úC¦¤AÉšSJýLð®¶ÿaG6gtà[TîàTG[ÙJæ!¢¢¨>Šd< é®­¸*ˆØá\HÈÎEŠÐõ\Á²¦àÕLEÔÁIí·ï쓞Ñ=[ú>ÑV˜¬ÉÓô±WÖžäñ1vÞàje|k´³‡Î+î*ÈìÎ;àw¨ ¡R6³ðýÜËj¦°]ÏÕ:=€pÊQJ>´v¿ùym@* ʵ‘FÕTƒDn²œQnÜÃpŒd—ã?ýÓ¬tÝZºÒ¯Ž}ã­ä=E½°¼Ÿ€œmP8 2JµgàAƒÃ€.¤N1³ýfó1We4l¹ÈÕ’3OÂo Ί}…e-‰A÷gŠ*êÞî#“fK ò‚JMô!vIÉ"HcžpJÞ³÷ò™pÏÒ Gµ4˜Uh{¡Û]f¥Ö‘ánwS™•n+PưȀsUß­ _Ϭ+ 0`³§^P¸ðÒ3°C½yz§¼`k/¾AŸ¦æu‡OiQ‰Ä>ëÊíiI3jRA“„‰][Ò£ûþhB+_ÍÝSšl¬×ÕÚR+°Ó[?£8•‚¼µøHlš´á‹xâ·{P¨ë‰—ÌÒ©ƒ7Yf)‚ÄoÎ.aY¼UšÇ#ãž°¦Taò£aZaÏÓíÜ ­¿ßëÁ+L÷!Þ®ÜRªÄ Õa’-LÕ ;è×7äˆ,±à‡s+{év,˜¯`‰Ô ZÚä”0á’º¬ ɨvl;’²?õ¶# 8»‚ %2º ´+TÇjWáǼ“Bñ HÖ=¯8õ¨N ˜ŠY³!ÔdÇÄjÊú·€Qiïeõ±‡@V†T…2B…þ Œà¯ÆÂhÅ»éùUÓæµ}”ÒŒ3CØg;‚ä+Ï¢¼ Âx6íJ É(óA‘À“«èá-Õ`‘VEwð=Êi ÓŠLV÷b5š&‰}Lxa+14?ZÑÚøJYBÆUÕ5VÕûXˆ¬cD'ŽÐGÌLÜÕÚ`fÊËíjúo.¾ ³ÏñȧâìPÙÙ5+(GЖ!ûa½!HAhíÂfPEÍò(c.' ùÁhòÔ~ÐîµpRZðaK5*ÔéªÂt€ö¨þp¦œ¼&“på+9dãСX°¤ó7£Â BÈ¥^lÆlö‚e¡NyEO†«ôè.CÀZ;œN :>ºö' ®”8¡bNZ¶“ŠÛ$—¹ìqÁ Þ5I?cP«Œ¾ÈdžxfT}“ÑàR^ 0€u±Z´yNæb¬32?ò Ô*Ù¢Õ¤ªXa©~Ca01ã¹S»H JP“§†\ÊhƒL€´(¤íý`ò‘–„` ¨‘œZ Q®z5¾´ZÉeè«z9 L€ŒR-ËMðžÌ¥® »¸‡*í‡ÈdéÊcò0­Ãá¸(Á’/Z ¼i8†‹B±-Z1†}lXÛ‰ ‘:ÉyAn%ªW] 0òƒâ{µ§PZðþ1LÄ׈`üR/ÑŒIª‰¡P±Â`m\Fø%(ëu¸(QŠœì½Ü ‚c“Äœf÷Un%/ ˸0ÅÕJ'¡’19/Ë­T-¸ð»É¹’]VúÜÌ×H»ò±W‘00‘yQ«Jþ $_rFñlz¯Õ½+Š/ž-®¬Ÿ]àH&WÎ{a.@ÌEÎݱuÞy!‚3‘ÝùPËL²ç–¤YþÔLÊ$¥ÊŠ”ÒôeAÎbC»è°,°ñèPJûÙD¦E€Þs·HÄZšXO·Ø³^ x®_£›öT'F‡¬A± J*#¥¡Ÿ÷ñ®½Ö,’T |UžÆQ¡ Ä3C ³ÛzK뿪îúÚµ:iƒý¬y øL¨°×üEÚfmõé/ü:«ƒr̸٠RdÚD ðÍØåP¹Qà÷Z[5WÿîÙ†ÚAº€¾ä¨D*¤(ÏŠCÁ”xM ¢ïÆU‡>Xg¦bjã ¤¿®Ê–‡Æ€7c©|ŸŸ9³6¡ ò9ÙØš£Òª‰n›Zl>@Í*µØHÈfó#Ü^´ÑÀPHA ÜŒR勤(þ¢ ÀL¦© ¼rKRIÚ*2?ÑW^ë9 f4Ÿ#µÈCÆùu[P«79hbU£]•è šÃ×·‚çÓ×.âd.ì•{j:¦ð¤Ãüf¨y𤩖Õú˜'ϸõ=é$ýXÓ”ùï8Y•É ·»`bÍÅâ­¥.ˆGn€Œy‚T®: Vi&/¹DŒ{ 0†-U#ü‹Ð4mˆ|v €Qc–Eø—oÜÅ@«¼(×¢£‡×ü·2¦¶M…¤¶QHý‚&¥¡«b!ì¿•Ì%¥‰20¯\uÌ% •áy@P\mcP1ÉÁ— YËO®*NKW`QÉæDúI)Z”×=ü ÓÀì½Êò ÐÊ6Ò ®>b2È´ù¯yòЀV¹Ð pÉ$)& xåj#¶$À'(唊áHÕT*X=#ýÀ«NzAå÷1Ç.‘^s™lÙ’R‚«ñ ®³ôWØ$ŠEÈ´ÌKøŽcmÅ:µ²Oè¥R_eŸÜ f°3_¥ŠËâÒF¦‘“SÂýÐÌßrÇ´(<×µJ3qì$ÚÁØ2.äd:Ž„WœnÊÀáÑ–í0ß<õšeÐ3ô-åh©zèÞ â©tÒ£î0f`O"ï鸓öÀ4“¤´ Wbç²o£X°ŒUƒX,.·\ÈuÍž›¡´r3dBZ˜JÕ{€4ÀHk{ Ñ™ÂQèXCƒ(9^1˜KKÎe"î†á6X32Ëb\¥«" 0 ÞÊô°Å’V@uq”ÝãnZUE½0e7}±©‹õʨœ-¿8¸+ÞbºŸ;´VV!8Øu-¯AÇ$ A (Qç2õ»@AuI0uè{'ñ5È  ™’O1D«'¤cí‚(À¹¬îóöí§@Ì#Ê™37Óît‰|°Ó©ªGN¬÷Êéò‘¹ZÙ»€ÓEÅàauÞO]‡;ÌÒ.l“>&â4:¶—„ ¾ëÏ«GgÉK’S}>)U` úvëq \©l°þSc… B fƒ½ñöІsBmG.%Pn£wÞ2°ôš~Ö%^Ù¼F³cÍ5 h$,´ 4*/0~È/’ó¢ÁT5´ZÑ:ò™Ô¢©na‚›#7¾0«•r$ã»ññµ`¯ Asãc[VrR‚ ÉêrÀ -I0MÕ"󒱨åhÑG.Š›Ê›‹,°›EÎ×0cRÁªHÙÊfªòÖë••!® ŽÞTK2K KZ»½d˜5dP\{.«èsT¤óŠI¶Þ ÔÒ1bë ½½fµ„4ªðrEª·#³L\5ü U5—gòÃëMõ{Oš[™Ž»xâ:ÔŒ=`<<ît"!ýã®fW:€+Î^:ƒPY£¶ ÁL7Í+¸ÊK¶7úæº×UrídÖ²;nº%[4e®:„üÂ÷0c mÞ`‚5J$^2GÊÊXÅ!ØšÍ0¥2û+Ê„€±3Ò8Éë}¶ý)ãòLÖ[Fů*YeYªÇìª''Á;.ˆF™,¶ÄœV°~5UðUÞ~ATÓR÷ÚËèH  ¸á{IâFD[ÓšT$«ÈÛmå{ŸÓð 1½·Gw”U4öR7åÉ!Zý‚%Áò«†täýîQÙ1£wÕlºŒÖaäzÉ¡¤Ñälõ©WÀ¨º*R¤€Ëäj' aÐ P£¶À#×ì@½´)ËØ­ëëÊ“4x´è³ „ùo;ÜEBeoœ‹)ÓPC$ÔLÂ9¨¡¯c‹< véR`?¦§"‹P‰}AdÁxÖ‘:ôjøŒ™&¼‚. #ÓhÚ‰]›kCt¸ìg,Œ»P©¶€'7  Ô‘"r¥sl^À"0rÖ)‚oÔäFcÃUJ´ŒÂ4ØqOA0‘ Úi]l¹›æ Øjš‹U›†Y¨ÂO­@é;]ý¦öwóËQ² ¯Ž+üèé±½Ÿi"„ÑÎ¥¨Ð!fƼ«Ñ0f$a%—† vW$gˆ,¦’€ài]³µpcá±Á @J(; ǃޚ°ò[ï´C—¤Q,†ü ja½“O½(_´VwNpfaµ“hvÊD¢®²•ȹ&Ì)ç@á=WÌê¡¿[me'8AˆA÷ l¨êR ‘>ò;eígæ€VÆtâLEóÖCIrfè\¥ËA M)ÔÛ@I …¦Ãxáµøä»Å.wD„ª9©tŠI€”Ÿg©ËØRÅ -U¸LR”¨ 5×(URФ.½sly‘zZ%»Šh~ÓVŸð©ê’Öo@ø ›U©‘èEIÔÁ³‘†*ˆJ¢V~1Æ ó5Šër¯;²Ûšðå$pý¸Á¼ªYÖ1ÓÜ#@õ˜ÍìÞ ô‚ÿ°‰Iœ"œPÜÿ:ï„@@‘z]F–tŠuŸqÎý› ¿XÑ©ó{ WÖª  áóN{”‚AÁ:²Íæ~ÿuqàh<²XBm+…Ð$&;oê_9â±Ç˜&“¸mÀ¬i¸xÖ–âÉ¢v¶‘’›•¦9çä’ùãÆm•úæ‘ÂÔŸèÅ)\¬€ŠiQJÚsTÛ rNÐ P-Î:%¢,3 JD¢¤U€PíÅ pWvÒj åµû”dkc¢ïS”' ¦½‘¢p“8ýxè}¶SÖ(¬ƒñy/bªïQãüó‹)ɰþü™7*àeWºT-mÍ5q? ¬©‚$neç æ8 bjQŽ“¡†|ZfI \bÙ¸ëÛ¹Ò¡¾#׎Ê'NW0´((nÝ•.Kü©ÝòR”\¸½ªÕ¨ „ &Ü¡¹ò*š«œ37Ý.È`NüÝwŠG„9˜Yž„þÒ†™½ ÌD JÅòÉ •Ð/ù¶ŸäÝQ’z=â¬õ¡¦Ã¨á¥²Ô½3d´gRq,kV èy¼­c°,Rx)´&?Ö;£Âc6I^¿.A„¦Ì”—”™ìÍ0§àŒù@PÃûJúÆ1$z 6{Žm ªÂTÆ¥' kÓ¶=$‹È‘¤R–0v,.Añ‰‡G]ÌFhßߣM(¯cŠFsÞüx‘MªÉn WЊΒ³ ľG_È¢H ð‘ÃH©#1¢‚”…ƒÜÓ£ºõ30TER,Xc‡3¦çÛÉ Q?P§prB¬Êáél}BÔž-ãh¬êüÍ ¬5Wà¿ÞÆ.äD—pE“¦>¤Tÿc§ø@Á§ÈÜê΄¸è4 D¦¥÷nQ7,…´„ú´5»I©AĪ4°QМ‚UÑ•€›¶!‚à¡-ØÜ“…¹.È‘ø«š¢uhòuéU<›É×|á`3~‰ö(z!×e·×V¨œ$ jq%)ãþ‚*DàY%¡÷n XK2CÐá•R•–CE¢Ò7Õ§¨ÙxÙ…¦Ì CN§Ê¾™ºÙ$}ÎÀƒV‰Ô `¶|êŽR!˜¤óŸ64AüÊ$S¼)}š-džðbЋ ÁPºÕ@ºŒ$L“©ÄqVq•KJ!³’lºO5™ ×ê¦MEè{4fiínÆ…6õ »Åœ@},Õ‘‚ž-)x=¶$TJ #v€¹¦0Àý*Ñz*; ºcBõÒÜ YüUœ@hƒgkd­aÛ>6Ià(ÅÑçE[·«\D¤3ešØn1UŸ–ifQ«Y÷áýÐý∊pÚYK>ñ¿œfVQj‚¨tÏ»†Ñ\š a“û SÜ ¢ŸÎ@ÅÔÈt6­¼Ù^Â\ù sŽR#J€}_Sîžütùáœ;k•~Q™<*yÖ±P•Õ±™ë?î«£#ᣞM_Ò!Zù¨.õJÝ®ÄÿÁn…W72üTÆxÚoîÀ¦„)R=uîž²¥µ ŠVyãŒdt·ÝrýW[ÓSÕ8à_Õ¸š¹¸vî­[|µ¶—´Ñ­¯·‡ÛÚ+ ÈÜv­,ôl (sÛWTŵŠÌÒsÚø¢ÿ8[„Ñ_4¿@£¢bp´/zÉNÅ>OyÓáÑxMpÌaÄÿŸBÆÜFˆM©ÔÑD;â)¿¬kg™‰h÷(S³53îÓ͈Aû7ö¬ÖËv|4QwB!S7ŽH$¬á%|fë‘-ýžzdÕ ÀI7G°SàïuýTUäs˜ÄÇ>ÖT‚äw: e–ì=Ìž¯·3A„µP¾ï ¨ËÁ¢ñ£À—‘ŒÉˆ×S}œ™¥¬ÑKsR QÑ#HïLKù¨¹Z´]:ø;UO½,p¯yÊê/RÏ•Û#»_rõl CÐÌ2kµ´Ü þ"ª‘ÖnϼӚ½ï+x=$º¬€dÀ}µTs¹šÂôL«,ºìø€5ÿФØaÌÕÓ™â¿ÔVM©–‡x]¿d.tÚw’©—¢kÔ8SÐ8̆Oœ½ïǽ(êt;„>$EЛZÂËÇ`Mã%1Er¼nX¤ÍÂdÁ"rh SŸAË7q|¡Ñ<Ö”T—gĨQ·à³È»ÌÌ%¨8B®ÁL “s—~>äí–NТìá’Í_“{­6«W0,Ì—ÓPØ`¦Õr26Ô-] ²±ÄWòuíB„Y%Hq`*;ˆ Ži¥,›øµõ#:wÕÖJlš0›ìN†’ÖÌR+¸4( Œ‘¼&*¹(ÙYjp"üŽ+a3£†“¥H‘–l0™u–ÇR[Ê*Τà4𫚀‚pÙ²Ù$Ü3³E¬Ø7WŽÿÂtž0tÒ ¬5QlpYZ|Ì„š×6ÿAÔØ¥éEe‡Ë&† “Õ­aTmÆ 8 Ä @…å‡ÚyŠY*•.#V«­èƉ‹êÉé@.áí5q3CaT1(Ù'§§5L“Šà„™iÍ“‘òB§hÙ†îÖ&͉¼„‡•¹ ›ß<&"©öš $OÛÆ+à\-Åɺ‡`JÚ‰ àÖ²›§äP9t'4hMÂ-YÅ„ž\ôÌ¡†1ÑTí‡D5ã¬éAµB!gSÊ©±8ç>¥ÂgC¡¿Ò`ÜÑR Õª1ïÌ *ëÄ; |ïÍgBƒ‡¹¦°÷ÈZñ)¥Œ¸-nhÉÖ4YxMãH1úUeÒ¯\ ÐÀ¸t¦õÄègª*èØ{7»zPÖó´€÷.t¹8¶ÓM¤2^#%ªwÐ0ÆzUäfšÕ´èàN'L]\¤„î Pjû)s<ð7“æ¼Øû´ÖªºÕþÜøÔµCB=ÆO«>\pã'M#@ÍŲåQÙÍx ñ…ÍêÂÌà «ïnã°Â¡?DÅÿJp‰¼f@󣉚¢"‹¢> •jhnuá)‘sØæQë.œAeÅ1³b‚R‚„J“ÚÒæð´Î8›û&$€Ê ¶Ö}Žãw?_§?îð !*[•Í¿xm ¤Ø«™â¤÷ÜÉMw³sOHF`𬤹‹Î¨ª«ÚÂDŠ©¦o‰Œ²ª‚NÖwZ×B [ªR#ê›ÖY„ÀàsóÅÚc 4›„]±™¦˜Dp?É0 «¶>}:–ùrVô·ÔfMh;°û‚m`ÙAmöNXu2=Ü–Ú«­}ÔiõNL¸³©[[ ?ò̇ãÓð#—þ*1hü¡y=‰#ÿþŽ°Ã¨Þ]QžUýM&¥—ÙÔlwјcªê/[{u£¿È,õ°bÏÕyIÅ A¬aFýÞËMšžÇÌ=®†Ö9/ç~ÍMÆs§Ð‚jó²8e†æõÚg‰ÿb!wwÄjžôz*±š?‡9VÌ&î$Dh¸YZ1UŸšÝ0é<ƒz1îDô/Öq}\#弟b¢=;‘..xÖGž¡6ç ÷3ÎÎJy²dŸõ¾4ÁY¥Œ«íø=l§ÒhE¨k÷¾Ì¦„v*»¿¨ŽF$v¬57ŠÝéþj[éMÊsC°%O}ç>i}“te^€šéûª¤1I†°$d{;lQJšB\F9æÔÜw‚±§‚ÇŠK )ç×}¢ùñlðÆÖmœ•¯;”D’½Ã›_´îmé9eÙ¬Ò®€ÌF‡l6Ù¢àîL•™*G9U/…ßèlu9>÷MÆyõŠÄVHÇ®Öךð3Il@øšh]5¡ˆ£ä} r¢æs¸‰]mLk@¦ltyUšXUæ0h(»•}í KP°uyÔ•ß`UBÌÖ+9(z‰e–k`à ú/zibÙVVÄŒe·ˆhu#tZë1À¾J¯RÆi²ïªÅ‹HÄ›ªOLJ²f7þÐ\ö]¾CޤýÉ¨Ë c~œáß•Õ(gÆ+Yüë@2N`MÊ]£¢økh®,qaz¼ÀÂV 6e°"Ò躣ׂÏIr7ÈUî×4íHD<ëÆ|ÔÃÔ† Ã8ÄhŒLÝž,rÎGè@Å9LÞ\„hêÈÏUÓ}ŠÝï±ÂœâšÐæ"’ÊëN%¥ü›„©ü× ­ˆ¥Ê\k9FÒã­Vó0¿GOÔ\¤êhU™†ãE ±€¸îdزV(q?‰IÕ¥óhuô™ÌÙÀ\zkK<,âfØ^$‘7ˆ@7»á* ™1¾œR`sÆøÒ•~dúT™Ö<Œ¤ê^NC ‹­l MñÇmÊ©J;Ïwî-“ˆ¡1DPÀ3=nµp“÷ŽVòÇΙ±0øãÈçqW½`Î\Ôeðmlû¢§ ¡Í+[ Ö=“H´ªáßпEKW$Ûò&YÎp…B(Ô¼Š?Ps_ d·Û(Z´ÉØIr†¢ÿRq®ú ØÎðkºU]uAxõ“ˆåõwEßj„‡6±[«láG^f]ÿ9FP"¹+<-c®„ߣ†Q1täiYóú ±±}=²‘`†ªè@̡ԋ¾Ƨãi!!xQòÍ8SYÞ9gœÿ§@<œ#’m“ÃÇ®¡÷p£¢ÚDøZ}L1¤i4梦¶Â͸ <‚yÉxƒRZ¸+D‘òcË‘*ȼb¼Aòä2ȶºâqjç¦Ô½³¡žmpªêùrŒú!ÙeèŸ#•½¥êlheÍüsLWcÏóæÌZ$ÓÝ_´Ígÿæ?òJ!%³Ø|¥U×xM‡ÿ´Çã7µ‰/µ',»ïªNRcQ9Y¹T)µšA²ãv#8"TI ܺ5w“JÈJ£‰qß_ØäË•È ¹Ý›^M.+wå:¡u°hÏ`æ$ ?¿ÆzèÙ ¬¢ñ3PÒ†Õa<¥ T¿Ù0{2«ôtü^š‹yÅ clç¹TµApsIŸ×X$laŸº!Fåo.³hòã%<³’ÄÃ÷ùy'\ŸP_†Ï6}eôè¤`)W, L.^ý qz‚‘wxÝwçÒ ®ÜŒœ`ë›V¸`›5SCŸë#ýºU…R^ø%ZqG›¡ET~jVç´à-£³Ez‚I^rzºî<U"?jØuæ-†ãƒn*AÊÜ©È=^þ¥´H¹¨êïYeüge¿ët  ä."m¦%]lJ+M6J˜ËűX°8—{®RÝ>囌ʂÐR(@ÓOú^wðÜ‹¾ HRdF„Ô»rž ‰¾G%RÇç`yµ$£û ­œ'Ùj_½µR‰JP&_É*Uç#yЋE^3`J¶ôà3,hE8.¡B‰ Š„BDdBŒÀñ›A}/&9zKh ßI\"ö˜®&2k5 æ¼@ˆ]I2ƒh!F”Ãí­šáOJ d•šUETë¦Ù§dã˜Ò ~bÔÚõAI_[ž™ µv²^˳RËÕÖ«TÓ½Iœ8ÈvEÀ£Fg%üQ䯣e[,£zi«9ZBµV CÒ!:à”¦Ÿûaß•TMÅý2ãÃ&@*Ä;M/5jé£fÝñ‡sêk:G Ä+…˜`Gža•¦×jÆQ8h³m…ØM7‚êx—½©9èš“›˜: ×o:(d^…£3¡AÒ,,À²3!o ï—˜<ÚÊÄHKªä„¹ˆÈ*E¨ŠžŽr>$Œ•¨.;X¬ PŸÙ´5@S)¡ Ã7#ÐPôô¤ì2ØJ¦ Ž6LSøi|•´ÏW)¥ƒ%® ŠWÄŸz€a§ÓŠ©T’d&þ–ï1S)qw^pü1¸'ö"Õ^fòH¢2תºõrÙÛ¡«XëÓ ì¯û!i¼Ç•)ÏäI°™WI ³ÒãOg4Ê\31ìQ‹ž&’¨9žPà$îô°NÂoF-'ß2®žïÒûht¬†Â÷¬Ä7Rΰ]Õ-)"µë·æ…„‘ÅL`!³ƒ>e.°´ß†Á$lR1mB퇴ãsœH7c̘ÉðÕà˜±Œ Ý< 9Ýåã·¬ÃeGÄ}Ťـœ/K€>K«n’7)vP›ÎágªÉ1CËÒEéÙl*§3f]-4¼ v„)[i0Ú¸î°RË&1ç§µò 8 Úxºø‚„+A51Ù ä\‰ðUEwD• êÅ:o ðE4o ¿†½v¸ÙÅþDZ¶¼`J‹ŸË*¿{í0sÄ9¿p=0ÕÜ<|d›Qß/6´}€¤VCÔG" 6ñ3ÈËHµd¹_Uk‰ˆÕzðJ ½Úâå¢çdÓ뚌_ûY¢÷É8¦Ú#XHœTµÐ˜äãˆrÈ76ÎĘ r^F@ÇöÂõLä{T¼)™¤?wÞÝ»ØøV"÷«ÕÇðõ<ä~1‚®‹à;ÃÉf¶¿î˜¹b8ç;ó¬Œé|„,éÞ­-|âÊñAqÞ«(E\œËœ{XÊlFž÷Žwï*r{<0-šúþ_œ+ò8n% ß#7ašþ´D¿pŠÅn“k>"ÏûÕ¡J¿îÈdZNë ?íc¢Ý¹ûS'=4û{gž€2¯æ>ŠgÊôQ.ÉN¦ò ‹Èµ¨/Õ‚RlLáâ¯F %¸‚Øÿ§Þb' i‘ Uœ…a Sn7ÚϬ¼ü°`v{D6z‘»å‚Xƒ¸þ֕騴õ0í’JûÒíˆVß°!†m1Å€¬Û1_úU·'±:ú(À|æÝã1ãü†ñÒjÃ??ëÖrI¹ìY©àgccù¯¸iò…õ9M—"ÜÂÞÐB•D±2¼ÙL7AVF6¸ãu$#$eiÄbv;+ÖEÍÃ…AK ¯Ñ‘Œ¥‚‘Üj_D—÷xÀÝôm¡g¥XµöÆoßFtм7#'¹™I cc‰ü×jrB ›¼Ýu¨UFJx]}ÉØLú¼±d™¡j ;Ûú>¯…5[sŠ9Ÿ5MUV·S”Âaí?Õ¸ ›/ׂ¨6zQ2XWjŠ&3J” 1*ÿ*ØÒŽ˜N%Ø©Š²¼{Z±·2 ½Û1ò•Ãè縥zÝe3„ö òž–½–Ô¦yU Ê9²õ-¯3ëL°%hÚE‚vŽ—Ó²mRf„Wpí¨÷p0síÄ(ùº ¬ʲã¹à·§(bÐïÚÓÖü£Øþj^ ®Ivñ™¸®{æ3E\»ãÅÐBÔJ•Ží­¼|Á¿DÆÚ_¦Š™³\š/a]+MÀ ±KZÇäìOV5C›Ú1gˆ—( ʰBöõ±FÇ›Úæ"„.>^DȺçó }]ÙÔŒ'hJV¤å´0¨zbV!óö±G„fˆÊò¸¡ä µÁ˜÷Ýièž „jÕ‚sW®:KMJŒß•ZCî.ÎO „÷;mJ9%¤n5$m­‡T!U¶ qÕê»@.Ò"<ãY+ÑôÎ] ÷µ18«Ä¯±[[Ó=[öú’ñ¼¾°çÊ•'WR'N-ß{å7ŒkÁKÞR,dü7RJ«Y“HÝ2U±´æF•¼ZX“­f7÷µqe\dl…Ìi…vH¶MAŽpFð³ltN˜©pI†ld;Ç+7ŒÎ*4Sƽ õЬò¬n$}Ò@- SE£z>Æ´u,NHšÐ~¼D/®:±ðhoʲèêcW¥%?1 oç(âzœñ]5à –$ [¯Ôz¼é`W$MôV¼¾(¥¼èÜ•´x¿ÝŠâÌ 4PÒ‚©ôòý¶²±Iê¬ùí™oÝÑ!7MiÃìâªEØ!Wžé–ج>ç”@ ܲ9!¤gí©ôv)P:ƒc—²æwÐŒªÍJ¿öÚ.Ñ [Š&4@©±Â¢5qôs\Î,,«2£|J)d¿<ìrœ›ŽÉÑ*ýÐ fPÙ|裞҈eží;Ò6…@§ËÖ£C@¬JB,Ö`¨“x›ÁXsy#0ÕN¿•‚©VÈŸcÆÉ !ÿšê&a‹F<×ÚøÈ»MG+ʲÒNJ‘o ;ëˆZ¦ö`b†˜8+Å3¤±93e˜çÊ­†¸ÓH¬2¡¬ÚPcܹªù}&§‘ŠÞ 5#ÐÀYGyDðWeňÂD>“º‚œÕh ·Bc^ Ýj¡ }Ô¤©€´Œ1F¤’ñcÚ”&Ü8N×G&„”ei°Öˆö³´Ž³¨¶VˆƒW‡é«€(¥„­‘EOÝÇp¾¥|S˜Í©‰.d¯¤”Û¬¹LL\„#êCH ˆù––IƒÓƒ´\‚1•¿ª öÐŒRg‘É#ÎyPÚg”È×Ü[ ~±;‘Îë1¤¿³ÑVC7ÃÃFkYH‚ºÚÌl'„ñþj ‰,©–W² ´Î×™–†BìåzºY•ÌG¤È¿ç »¾)1*`MQûà:c4g†n¹pΨÎÂãÌyOààìháüá­dÖžîئ~㢥¤z®àó d.Mºƒûç­Ær•÷—³Ï›Ö¶¿!%õÏûQ&úñâòYgO´à[Ûšzöp¸omÖ¼$íQ>¥%kÓjÇË·6mô+©ޕV|kð°]]o·9˜BÜ.ÒLp¿ÌMÔu’¯Ù>øKÒ7[¤E;XZ&ÿ‹Iü²ë/q¬ÝáÎVŸI4´¦†YKa·òº×3S³ìEÚ4­Z×HV¶Ø\X,°Upe^â•gÖ‚qÀ‹zŸpXFÒ¯H\´0Ip«dLçUU¾ à×ÝéA“ï.ŠËÛmÃão¥•ýgzâÕ¨S‚L´Ÿô//#¨Ç­xRTõsÜö{¼q¤÷‹ÇÕU«¬¬,Ç›3h)¾ýÞǽæÆ¿ÙNÚ93snìÐIͶ£ýg˜Ö¬W¨FGhi]"Þ6ÚM^s&Ψg¢]aó%¦ËWC¯Œ>‡j,“„έ9 ħ °qÉ ¸ÕS¥†“ø3WÒ4HûÖ´ÅFb±O2µ1µç«1ŒO°AF…ƒ¼ã7ÉÆŒz„Ks§g³‘ß3îþ\E`WqË)’y"a¿¡¢„RÍ›{Õª-D†ÉÖÞîÌÆy0?¸Ú"Á¾×ÙÒOUáÍËÙÔ|¯-|Â]¬™uEäVšàÚ’¨‚I瀣Ý* [Ć„[{rÒ +J»{м ‘ š5‡i{î„ 7èh_ü 4–®Xñ½ÖÈ —Ñ1Î¥ƒ—3<®dë”ÙàÕ+8/9°ëR½°îVxìŠáW^”“(eD8`i¯<¹úèáëUÅ®ý†nʘ W7x”è¸üM«"£@•aH°P@uTà´&õ@ŒŽçb½òäd ˜pƒ&`çúWS-ᆫv5V|¯%õXˆá¨U`Y Rªõ)f1 - P˜e.@Ax´”$GN Ïsc(eBG‰]Aà“K*Ì9ó²,†1{Cv­ ¡\s/Ya¡ ~…îh€ôÆ÷y&Ü®X=ÍÑ“œÄŽyÌMÃö‡Î‚SV>ì«L¢?5Ñs{8>4§ØtÖ EREÅÄ’‰E‡Ì`W¾%ñ '9@È¸š‘¢æ§äHÌ󎕳' SÌÝ•Œ:Hõ­-1Êé_¤ˆ)G0ì¦o‰á{)^U~ý¤'?XgÃ2:¶QcnÄM%v§kƒ’r`¹M$¡N¦è½—ÓaãV)Žd]üÚéµv)?˜‹ÂÝ•éÊ ª>~ðÍÈó¡jþJ„z2ç5sëœp}Íè‹4XWÂðÑñJš°=ìV½¢E’–ܪkûñd.7ˆdUWb齋Ãú™$WD—TâZ›CÖã‚ÎòF7bÙv:5mÍýð²z©žºéjÎÄT¨U a'¹¨ãÛ–r` PT+œÁf|ïæâ‚Þ Ç hýéà’ÊÝLÊ DA]wÉxáÞ®Y¤ ÖÙ+ªDV(UÆXEwS™oÊè°ò×®Kx3 ]ªÝå`>i‚†SU¢æ?¹`Y.ÐH ÃÄE ñ^U1KuZrû;µ(Œ‘1£åpÖʺpT˜GVµFž £ˆÃü×WïÊ¡ÄÔþF H(#7*à3ô™HÆyAÇëL‰•NÌ\$¡®âÙÕRg¡Xs,7í¥X¹ÄËo§ù¸T;«Ð^0þicç¨Ô”¬4G Ÿ£©ýè§­šÏêÉœbÿíOÈJlœ?Ë‘¨ìZ ç`Æé J—dPj…1{.(‘mZçâ†ì²ÚfÒŽ8Âî\«Fæâ¼ R›Ú”eÁèåõ\€:¯ iÔà((_8Ç_ΨtIwÎÉ4K,kað(PîE½Cf[ÏŘC’(z£„™ÂgÌ]âæœÁûU‘SHF­8¡oQê°sAûVÞ‚þ®ÚªF MU1”¤\CFÇŽ 0!)&þ±¿kärä5”t%–(lµ©©ˆ‘D$ £;E°·´¦rüÝZBK1ÉLÃÆ™Á¬¥¢½3>UeY”—ɽ¨ìAŠ%\œkT<ÎÈ:<áÜ,Ÿ™4‹T‰áØk"1Ÿ´²_ TY>î fé×0ATQT}ƒ±HRÃã°¥ê1QEÙ‹èc£s/©?{íÄD†I.Ø}ýšs•”°ŸÖ>%$È2çc‘wV“s¿{²ÊXú^ £J€|ŠY—Fâ;Ò–›niõÄ(Þ=ïO–WlüóÞ6g¥=wœÂ/c•ªX¹E} 5¤8–.Ÿ,£Ýlç¼ßex;w> ‰‚yMMß[G絯·P¤£IˤûÓZc¡i1á'uE™Žˆ3'º¿ày°@ &{q¼#±ðYíÕÌ&rÓ•a-äî+Ù¨XR “‚üù¬—´+„ìà¬r÷ÑYf ¿íZÙŽ[¾_ÚyQs‡Éëú‹¦}¶ßÑþ±Ë`÷¾ô]Ä`h†ñ;?íê¥9›L‚À£O½ò³TP =xº%ég¶—Æè?wö Vdã”$a*ÊCü»°›¾íԫˬèºH¤Õbî2Y)l¹Þô9&R«»Ý"bí¾h8j¾¡fê7ÍG¿Ywò5& †Ëƒx:–ì5aÅÉ»°˜¤‰’=&+âkc˜ˆÀÃr°–²PðM‡QW Àt¡“wѳ ÏSß'Ê'½éÍ5X›±“õaõü,ÆË ÿ=ÒjÛÊ­“g kƒ yCRÆüÜ1æ¤îÈeç3™þŒ^E†ô¡SeK+ÒݲÉ{¹£Œ²X{œqg–ÒêíÉΈnn%W áŠhšTyXÁóÉ"ƒH¸¡uk8¡¯ÜXoJ» ÷ýëÁÓ èšeÅéhÍ ØB¯{Û¦¬Ë5ú"H‘Ÿ”‡É“¨æçÂ/)ý:ŽÒ®]}A”“²A§i’Ò’ŒŒÔc–Ä’û¦‹­ª§€ë³Iyè.±°°hѽ•@ ÃeÂÇ^sNÑZ&.¹ƒê®G‘uaÙ }Q*p$®]t(ôwøãJJ!B­ð€•i!!ЂŒ Õd^X¬”.6»µî2ÑÿÈÆûPìô\ÀÚSõ:- 3±Å]ÌÏeÚß¹H6ÚM U£zõ”_ŒAaê“ê¼Ã¬¦:ábäWrõòžô‹²èíõT¹F ›ÄS7\ÇŸtRy\Ç8 ÓR³ŠÇÏc§Â+r3kš+ §ë^ˆa¿xVŒÄœ¢]¯€"ì ‚‰ü5ÔÁ‰]ˆ(H^I¬–= -_ÃM#CŒSt²¼ /àmW!b¬CedïqGˆ”Ï(¦»vúÀ(_>¢#6”|,Œú¯Ò!YqÞÐ]Éþµ"K÷]¹ÞL(õÌ"N R B-0>R8«),Oc9³×¤Ezv ÜƒÃ^)a·2²¹‚4D…¯ …çÉ‘…on¼[œ"¹ ›¸ ª‚»!2®Ò²1SÆ×]1!œj.]›¤F5È÷á&ZÀâ *Wç=M¼¡LC\~C ¸H‹Y\±T¦H—^¶‚ªàU$òUJÓ%£GevÈÐî=¤l¸á2 Bðp–¨4F‰ØGõWà«h•â\}ÕAF‰»‚°µ¤]AŠhÜOú+TZ«Ut®~vÁÊà97ØJÝhèêÓaÖ‚pÿªgÓ$Z»’9/ý†P‘%Sé±:³áµ„´…ž‰½R½qu~æ-îçÊ—a2”o¸îŠðˆêaONµ&Çý¸pU픳¸+Å;Ž]ÁEùj`/Áò4MÊ6Ä‘\ahmï®…Gº+Hûòáü¨Rq5R’q‚b9•a„Ä.›J£¥N‚P47¹¯ d7°+Äv'¬M<òj¤2ñ¨Õ?2„KxäÖ1Nª;uÓ¤0Ì}ÐÃ*"€œ*’½³à>ti]Rq2¹'(çW@.F–颊Ј­n“1f-ó„B£˜y"îOO)eDo£ Æð‚ê½b/RãYüÍ*…!ê5êðRþ+”ˆ¤h¸‡_¼Ü´’§ˆUw:­(ÀdÂ9ü†ByI_&›À¥óêN 7S«*°FK–s¶.»ÓmïKg«'nÓ8êÒqÏ8‰zÑTâBz ‘º1†ÀíþôRïÅÿú’` ¼ûÓ)æÿ\ŽR­¨èJ£Ü¥ý ÁŸNË¢+˜š‡fê ¿HVaÈæ&0 Ý´Ê‘Cá„è xºvæâÙäUUé!Ÿ¹ Ã0ñ~à"ì*0´{ëNs…bc˜’Ò ü5Œ¬>­ôç2k(‡f¡‚kŒ„Û?7Õ¼úøºu±ÉPC̓ŒÈ/^ Q…<¥‰GVX/Ô]о¶–ƒçϦ†eh ÐI &Åô8†öÚ„ÝC™ð˫崔ãÏMȘl’–ˆÞ‹ <"š(ªà˰¶¨‘“*&"í Ú¸^†I­ÍÇzj®k±vI©¢@Øá³ì© =ôäÜ ªpᓃRÓ‰øûÎb"Öô©²“)Ö{¡ªžËºï k”º¾ršæƒz®©cÝú×fa;½ßdüBÉ2ý Ù§™N;—ÂrÊE‹ý3¶·PmLÏ6ä 'T– oјªñ˜l:èß­¹Jð~“®º7Òé«)SðÎ44É„éeHûm"jÛ‹Ä0&2ÄÆ›®^´o¶s㹩R„˜> 5ž]Xø,ÉûÕ`8#zfýi—Té< 6j=·ò8Óý¸œ‹Ô¬ô\’ˆs^|ødL9˜÷†ú'95s/`µ+º¡8 S!­I&åõ>L ö¨”j“È(ƒQçý‰ “ñpNœ%Kö#«îD¤Fˆ $u,–8oRp󰉵4XµëÂnÒÅä›ó^ÆCöéԈJ@1G’-d@ŽXtC¡Úû±Óù þ49‡Ã½Ñ3tù÷ßc=q:·Ïú¼rª aÙÜ\gBªì¡þË=OïK«¯*•q¤y60g+ªeœÙ+›Z šf©•n:ÓúÈ)™Xm”ûã#-¹N–³¸¨Í‚þ3äíÒÑ ï#[è÷WâõÖí;ÿ>å½EÿŸk€Çþüó~ˆYÆ,ï¬$¢’aŽÜ§z²XöÖ?ö:ôV±s`…•6z{TJ lë§ý .mq ¹O‡n1²A¥Ž2}p¹æ@"›îÚ¥vÏ’‚”}w©"aÓ²>H&+n¯K‹ØÖ*+ÿÊ¥Ø/üê£ÌNS‚t0œ1.6–œî†”£,Þ µ9jª¯€þ‚¢ „ŒQYo”ý‚®A««<­éƒXpE_"ר]ÖoôùXíK¥îÊ z,ÝW“¥Áu>j—iY磠8tLLž¼Õè½|Þq¹KTŽ´?”¢7?„ÑÁÁò™…¦T”O$šeH"A÷4gX37–dØà¦Q€¿Vt¹w8{öYé¡×ŠÈR&%šC˜0uæIm½HHSyEŒ³Q]0tºÞ„ ò…µJºKöæÛØâ±Õ¿ÂB,Ò‹f,þ’@»aÙ6n"V¿n1C ØYËüÉ_¡hY.K {¦¤âtyQžƒÉ^æEõkïƲtbÚ+µƒBL+ú*ã„YG\ø³•ï¤Rl¼4`Í^!;ªëÞE;KñSÚЋT¾iAFÅDÖclàõÀdf‚oo!:µW Šiw%+½…jöŠBæ-ÊëIË«»FkE3ãÚ+R•®®½ÿY¹Ôô(é%›ÐôÊ-(¯WÍ"ÝE)¾»Wþ¯h䘌JQàê!rUG0`º7­„%孯ВNIm£(qÊܹðA K˜’&”vêþQWl£Tá*/µß‘à÷xÑÊ‹ðz46òÁ;¡g[/±a¤Ò3ÚÉ ž—‚¯›´hÖø¼$‘oÃÀâ[¾ÇBèÌíiGàöÉ  gùlÝk’¥öW£xïIO"1Àßôå=£Ñ¬›çd²?©½cYÿyAP†É”þãç±/"J.b$9A-„oà±ÈI‚a®<8Œ ¥÷Û£¥†BʺW&ÄhÆPb^»+#ˆ˜Z¯ ¶D$PXj%˜KÑwÅW/AÃÚ/›•¿¯62˜ ‰SUŒöÄ+gwµ$üQÅBPJnÖÖ»Òìñì%hXb‚m—âBr ÛãÅ»je(èÉI¹¸ˆö”ShÖDkòª 3:®Ä›{í ¶–*`’-0_õ|1ÀõþÊuä1þèQ¹d”(q,¯‹ï,Jéè)˜ ”Ä:j0YÍK'tr¯Jš°9(WútMip^|giÝ­ÕÐØžÈ‹ï(‚‰ºL(Z“+ž ñò¨ ™±Tñjˬޮ¼Í”±\5³5f^{“VÄŠì¼w#D$Eà™X‘ïª&8f0m#|Ý妾 ÎsƒŸd4†k€]‚ãYkN5ªæ ÌÁfÍ®pJþSÜ.&mTš%—³RaG(qöWTö>*¾£€×%Á%7°"i<£Ž!âåWCG˜Ö$š ¢ø ꤭T¨(C Ü«MÃ1øWˆ.(’b‚K°¸a…öRJ  5eHDj*§T½I÷f“ÆRÓ¤pìT!‹YŠÚIyä(ûȸ8†Æ<Ðe¿Tôoú~°»]8èHu¶É~¡ÒMEK1™1A,û|MF+Žiª„PW¸pÙ´N*¡$‹ "£•t&&+'_Øô ¹6ƒ'#÷à:êø¹”y.뢇kIëŸkp3“nÒ¿—(”ªT«¥¼¬ð‰Hc%J¼ðwíÄð=H‡YÍq“4+¹&4‡ªiMN¡„` ÙE M笓ý2= LÊ‹¹‰ÑTí\á5…ç–ž-ë”ÉOš¼gTpüă+´·ªéL$UÙ[>–·j›E$T[}±ž‡ºŒçCwDüv‹*I»Ê Õî òËN»KˆB¬ÓŸ=Œ~#L»‹§R~ç½)Ã~Ç ×îšì\½v¢X–ŠÝ#33ô“4f÷»%U»‹j@;{ní=4Áy« Í3·s½#št£Î‡]2Ð’³šS(:G™ÞßlÎ3h·z¾Ýާ%çnÉÌŽGušlç•!§>ð¨lØLtN@${ËL_Ì,´,›>Úzú©%Bªº·IüdHHwù'ï0›?©<®Š^;¶èœ9#bÞÍÏÎIäã¯îlTœJ¤™ÜÚL"-ëý¢ˆîí|gUz/M¸rNnm²ìŸ djÚ¿û0Ëùq®ú»8.ÓQS½ÂcÅéêK :‡\ñ£Þ¿þØ«üÈ…‘HÚοÿSÙJ™«Ï¯þ‹¿ï’dJ1Âû«²ïóýûþ¼d¯Ië jú/úR™šË. ýŸnA6öE€¤oÐ)*³u;Š!*¯T=«²­ê]êVqþ3/B&œðG6¼% M3{S·Z}áÔbDÒ‡0bÚc@!ù^\ù¾éj«Yª^ÀÌ»é%Ÿ$„K1‚µIÂU%92?²YÝæf3hE@/v›ëR^"s‚„iIºNÔwêjƒvnz6éò‡v7Nâœk³<®¿ßtRœÓ’”\Å++á9FêÜ –·èŠs3`½ŸU)qEaÑI‰>ñêuÚÓH»p+AǨ`•¥°ëÄõ}á½|>pû•ñ¹y|¾µâCðÛŸmœBE.uÞÇøÌ[¨dÝ;A¼ZY”À4ìÅø«$¸Ê&Qé…H`+–"ŒH´´—aˆ¨ù:4\´"ÓEC‰£HäØEëÃeÕd@ØAP«v=øLlÂ^ J?U?à”èd‡Z¼= ‡ÒʋРI°›C¥Óë±Âf3ã^û=0/¨LU—$õ¦Áô•¬¡A®DW$°2!ñ¶—äËh„ß«ë‰êØÂ3©ójF§»%éyYfÐÓàð‹lEgP0Êøí`Ø?(Ñ­ŠÿÙKÎ1Dîzlxò’tb5*—0‹ïÊßC/’Ò±lÜðwÒàœ°èõº3:RŸÂ¥‹$¶*r¤Ñeð„Yw¡âÀÃE Ddp«Ï¨*ÏD±ø É·&õf¥§D¶À‚By™ŒÕ° Ég’å!èz襭*¦%‘Æ&É·,”—U;~&ùˆ"ߪUZÃQ÷iPo±*Ñ1¦¥f‘k‰9ÀÕ¨¯„çÅ=Ò,¿4rP3°5©7ó±‰pOºÒù‘8âÈÐ{Ò嵘8Ú“þæ’(ͦiûxP.(wk¡Õ¦s¸à=v<º¤²0Á4z<îÏñFûس Œv:ï"=vÕ<>ä ýüxgç éä*•+f±<ƒ–L` 1¯Rªõ“H:¡•ÌP9€Æ‰ÕŒyV¿TeœÒTÆ]¥XšÚ]!3ÒéªåºàìÓÏ«³ê’([–[’<&á2,e&.IYT­`³I@ó¢XÆ3•Jh´»”•™([KcbïJÁèŒËõÕH†0ùDVºå’<\©B.JÐ1áÂF ‚’ùAºM¦³²v/y–VDël}GÇ®]ѾG õâÖ]Æ„t*l•)ƒ#Ñ$Ã%Ï(uc³z:,gPÀ‰:VÉH\PN{Äøê“Ôôta~H€´rWI[º„탕r· «f™¢Ò ãµ]Ú÷yA”‹W#€v<®jJ™VäÈÖäáX‰š¹jôÍ›`V\ ®0KIX0ËjYñ»raøäê› h©‰ÍÃߣsÏ…Ö]2½5˜Žeîj€lËo,ãeåDŠ+Œ¤“ôÔ •Á‰@- MIR…‰zö ¿+ª¤d7 ÂÝž®œëmãk‰%Õ:Ö¤©8A‚‹}ƒº«š€³"£uץ첟…ÀPˆü_y #²Q\¹e=è­©2‡x燃ER´×<ì º€ä~ðÃüàò‡zÝŸ0½{þöý«üŠÒË·ùKýÇÄwï^¿õMJ/ï^|YÏ}÷îí³7ém¾KoîÞÛ?þÃû?ñæÙÛW{ñmûgôõðÏþìþ¼gùmzö6¥ûóòÎýÚýÓ=Ïoß?{ùî…ÿ‡oémÿÿ¸üÖ7÷7ûêëvýïÿéË÷ß½³ñ.ç¾yóíûû{ø&½òGéíûÍ­ýÉá.Þ¦«ïÞ§o^}ùÎÿå—Ã_þ}¦»þ¾~ÿðÄé›—wwí¡Þ½?Œ‘·Ï_Þ½k·ÿâîͳ”îÞ÷—ëí¿}ï¾Áý[yóåý]¾Õ}˜ïÞ¼£÷÷¯æÙËîÜwéùxîý¤»÷/ï‡Ä«ñ1ïßßÛW9õ¿öŽ^ o» ™ç÷£cûJÞ ¯äþÔ/éþ¥^í7Ý{¹K/^=ûúM»øð ¶ðë#ãêp¯¾ù²~å?¸ÿkoÒ«WoîÈ ˆû±óâí«/Ó«çý@ËéÙp㇇|1¾ÔéÙý»ÛþÙ»w‡ýùmÿâÞÝåÍhºÿ›_Þöôæ uóëû{O_¾Ìý(ÏôÝýmîþ‰ò›ûUäÍÝ×öþÎáK¸ÿÿá¦_¾í7/ßeÿ&^¾î™hüÍß¿Ù/ÞÝ=o#ð÷KÄ‹wý0¹ûzóz¿,¤¯¿z³ù¢÷CíÝ«oï§÷/ßw£çýóaHÝé×éEúî¹ûúp˜'ý‡þc}¾~6þÞaàøoøLÏ|ºñÿIùœÏèÙÛoÓË/¿ñ?üü~|»{xð·Ï¾¦èý£Ü½¦¯úQv¸Çôâ.}×½£ÃS¿}6¬§‡{º;òˆÏŸ¯ø°f¤÷÷ Ywí«#ïÝýë~æÞìáaÞ¾ê¾þý{ÿ&ݹW}ÿíß½î^áý²üõ[º{u؇߾O/ûåëíÛüº{ ïߌ“JÖä¯^÷ƒìþnÒ7÷KŠûí?ºwwãjrx’o‡·}ø‹ß<ý¦3xø2ÃhúÓÃÍ¿¾{ÿõaQ´»W›yyXýÞ|õæËwÃúyÿ w¯Ç¥²,6÷#Ý¿­Ã;ÉÛ!8<@yïo^õôõýó¼ïGДOÛý¹?9\úåëûÛ¦oÜõ÷kÏÝ×ÛôþÍëq9ü£²ÁÿÏŸ½þ6o>Òë/_}ùêewùó»¼Ù`îwþômú®ÿv‡Yqd3º¿«û{»ô¾?6ŸßÝùú“Ãóúù—ߥW~ÜÞñ}äЭ.‡GJtøhoß¿xíGÉ—ã‹:üöýbByøºÏïwönªýQ‰†Þ¾íVãÆÝý’õì›Cpx×/Ý/‡Ÿ?¼’g¯‡9]fú±Íõ~“zuÿŸq)÷Á»wïî_ü«n*Ydþè>¬<Ìn (ñγ¯ß~ûÝæ3½{ýêH(öâîÛôÍû4 Þw‡l\\î×üîŸü©ìâïSüÕ›—~Û¾?ux}X¾_¿t—‰ÿlœ´vøßÞG-o±õ³Ô}¯ûðhø^(Iè8*îÒv ¥:&Ê–òå‘@ì~ëJoÇñ0Q‡;ñ]~ó]|”Q0®ÚtdÇÉRžá›#ËìW‡ˆäËoúµkø¬:£Ÿ [½8K¾ûòÙëñ³üqyˆ×ùù«>ð»„ûqðêÕݗݺ;ìµå½Ü§éí›aºÒ‘ˆêÍ‹Íò¹/ï?}õrü›÷?þþ«´yÏRÆÞ»o^IËáÖ_>ï»,ò}d~ضÞ<¿Žm[o_?= Õiäc3h tJDÓ¯>‡`øÍýÕcèzê—ÃBuxÐ×cØZ&%ѳW]´!Kåv¤S~=nñ w?tR_oçsi¯^ ÛŸ½Ýî]ôí³nﺭwwùM~9>Âýl=¼ƒçß -Ñ7w¯^A³gÃø-7AÏ6; ½׫2ƒº—U¾Ôæžæý ÒÏÔíô+Ƴ>J•eâþÃÓÏççÛýÑþý†ê&]ùé盼@"™÷Ã"y?qŽDüúÈ­_n÷œûMÁ/Ž¥ÕM£?“—ñþ›Mšô‡¥H´I Þј­&Ýkz}$ͺێ‘p½íÿê¡BôõËoÞlë'ï^ñÊa2Ý?h÷/ùí»gÃ2xwwìâ»qѲÂÛ‘êî0ÀÞŽU™»WÏÆ0üîùëm¬ùn\ZåÓ½9R&¢·Ï¶kÆ7ãL*Áòöw^§7ý,>Üù‹û¨r[ó{ûæ«avËç{$ñÿáa«+uÚmÈ“^¿?²pl+]ïÒ0z‰È‹ûœ~ÜW¥à1D!Ïß¼>’Xåq)“h[Pxûf—ìaŒ‹9ñ›4$†‡éü"m^J½¯6;É‘Äî¥vÕ-P‡è÷Ý‹qÏ8ŒèqÙú)U 9\~öîÝÝ«mz(Þ÷‘rùõWÛDýå·4Ê/Ò·÷9ÅøåžW¯Å•Aõúõ0Ô, êNÕ1n·ïÞ>{7¤¥?,ÓmÉøeíj‡;ã7wß|7æPwoÆåd˜Ž…ãa•êßÝ«çÝgúƒ²“Œ1P™ÐãÆþ&w_è‡Ö^ùîëoèÕ7¯»ß9ö¢ÓÝÑát÷j¬R¦ûœtLJKŠum*J÷¿õvÌÉKöwìÇž¿:šÝ¿ÏÔŸY~ì>…Ù,@÷ÏöÆõ›qøþqI_pÞ½ùöm÷W_æDŸä=FÔ‡ÓËWïÞ½yñݦJ^Üšï6ÅMÈô·ï¿Áë·o»Q~7Æ÷_úía†ß©Iõµü£¾uøÂ;Uƒôvä~™ßn'ò}"¸-xlòÀË?þݰ„n«·‡]ä5½ûn³ÓõïûÊÔ}¨?; ¢÷_Þ¿Öþs—(+½;”_757GAiå×w‡mñË1¤öô¿{xo/Þ¾¹zûݸa–ÝæÛíÖv?qò±RÜýë嫼xÑ¿×r·Ý›)…´×_òô†Ž$D/¾ö†?)Õ€7ï·1íatvãç÷ùþl—û#%M?µDJ_CìÝÛcËM–?•ts[¯Ðò>v?ÖOýúhþ~1:–мº?*µýMÿ³r6ñ—_¿z}÷~³;¤7Çö­üîî«abÞΛ7›’Ó&ó+Õõ#‰óÝÑelÓ9½{—îŽV_¼~¾*w_ɨh;¨ËH½â²Cæõ}°ÖçÂ÷é\7Èg /¨4O_¼ûæ»´ãc–þçvùcÉЇû<üØv¦aÜû×›,=?RQ¼»_ìÓa4 Å»mùó0öÇöx©Õn†íáSŽ/Óž}l·>ÿvŒjÃóí±JÝûíú~·‰ý¿óêHýì]Þ”[Ê–¼s‡È«þ?õ|,ro±Ra<ð?ûjSb|ñîÍÝwãz“_ßûð6èxî~ÙÞæBo¿~¹]´Þ oýïÜâçï|öîÝ×i›o}ýö«M¼]¢ÈgGîç~OßHÙA_nóšñÛ6Ëoû[<4,øõkIøÆÅçYº¿ƒ~[,¡¥íXÈߎøÒøýæÛ1>ûò믷EÓûo’7ƒîPKÜìioÆîÆa4l,©·¿é×îûsóë×›I‰TŽì-ïïïiSML¯6©ö»g›V) Ãý°+½z‘Þ½?¶ ¾y÷†Æ0ö_:´—†µ›^¾ìwžÒÇz÷ökún¸ÿûg=4f·UÊCéïHüpt¾~ófø*÷ñõ—ۦϛ£Ýçï7¥à—¯_|ç×;IîÓv>Óýr·ÉÓë7/_7$Fcró{eïÚ›çX0wèU¦÷Û”àåÑôë#@°wß¾ßÞïÊm9àÝ×_ ͳ?9¼Üc1ßýM=OGfÒˆÚ}8óœè«£qËÑ æÍ×wÃ_.›ôÛ#¯kS3þƒRÛ|¸·GâohóËÆ¦Óu˜áo¾‘–gHtß{S÷[ïÝUþnÜ(ß}™îG¹ÊT>’PUCÙ¨^ßÿŒÿP4Äl·}Cw[À×»t¤OñuKy÷üÝ×/¶˜Åû':^®~5¦pTÆÉ4m+®ïžmÛQ_¿ï[e·Ù´MK‡®·‡øñåËíCAý¼ÍÛ.=õê.ííÝ›»±›q¨×¾yw€º XŠû‘ôòÈ 9L‘aøaYuï7Æa«.«mÊw¸¿¯îî¶úþ{©gѳcàÐûSÞCœÕµݾîBÉRà½{ÿæýãtÐ᧾ܾôRüã€×oÒ&J;l Xèù›7ÃÞÝÛ©_lîûŸýúÍfµ9M½»º_¾k_~ýòõû±\ýþÍ‹!-iÖý(ÝæžÃrSîó7=¬è>?”Ï·m`úò†î€wÛ,îï¾>†Vxy$G¤/ïGÿ‚—>A_A¼ÏÇKµ|LkÞ½y‘6KAùço&U‡ˆx³Dݽݠ3½å7W_}·iÚß½ÙHK‹üØzôþÍ7GZÇG„ïžñ±`ëë#ÅåCzÓ£Aéuߌ+ à³£»Cé^¨£ûç¹{ÝGPe…Üʇœ°ß0^¼ÞB#î÷ð»÷Çz¡_¿}s¿ãoÚ¾ÏÞ|ûâ>Y݆dG'øÛ7_mwy¸×Ã:ùâõÛc¡HºÛ&r÷AÀ‘è"o¡ç÷ÑEº»{h̽ž‡ÎØëgc7{Øe¤‡4”3  gGJ2ï^=OùÈl}{¤fÿîݶÎñîÝWÃâõC­ƒç½yÆ/¾Û@§©ãß/-oFØÞÝë÷yƒÅyqw´Áðîý›îfÿ®‚¦Þm£©̽9¶Ñ¼;VÆùÿ3÷oK®ãÖ¶(º^Öœv•/Ue¯uÎ~Ûo;"c;NJ©q{D R'A0 ÐÏèÛ:”e'ÑAP™Ãs=Ùƒ¥Ô… ÷ÖÛ…PVA0qgsœ'2µr¤òBì¿SAóZ€AóëšžWÛ‘q€°Pé¤Þ#C±í©:Õ„œÕûÆÔÎFx“›Õürõ¥¢aõe¯ÏÀ(ˆ'ÄA«±æHÚØî dùúY[¬ÕEšÐ|è6HkvÑȧ6@¯Œ+Jü.7$Et®®ã]ž÷V„0©†¼vû9-^ÏØÜ9Ó(­%k„xa­›š›êNOÖ)†ôµ +?â…ËqÊt“±†Ø’%5´>£7¥m6[#„n—¹9@›Ãlxü g˜ €4ÍÛÏXrd|ÜßÒƒÑ+:‘ cÏÖ‹^Zµ É5dÊØ”BÖ»|p6ÜITʼ• àmÆ÷á|,Õë—šì7Þ…ùÆoø+ º4”Wu"µBð9ç665™â78炾üçTÉ6ÚšIå,Fi–å®j€cÂ-_d ë¨ BÍ žLrUÇù‹Ý„6Šl\boÍ îf8J¢žœ-i¡¸!ÙD”G4!Ç~‹&¬5&.¾:jÒ¥}P‡ó @¿z¼‰âÏE*Sg…Ÿ’k"±ÑD:ˆPÙØîÊVp‚ÖHA˜Ö²vljÝXöÔŒN±1ÎpÆ©Å5aÙ5îÔ–°x ²ÉäÏÕœ¢ Ü)˜naûÎW‡p¢£}v)"çPã•P¹• Ñ«nÌN)¦Z26lG¼N&V<ï*µ½#¯•ÝÑ4—Ë ïCuj—jØzjt§5.аs‡\ô&[ßd5Î_f†ÓÈö£øÇÀ¯är6…™zo·4Ùgª ´6= ÙçAPJö$¢øQ¤²3lF¨í sNâu)ØbÓ}¯1ñk⺧'&H@éôyš‹gî„X`^Ƨ Ù¿¤‘[F:OÆ-®Ñ7øõ£¥^K&¤¢§˜WŒ]ÎÆK$Ç–^Íxï" È«˜‰ükN^ 5„ïMؤñÕyW®°1Œ[d3W¦šX)5%«ã‹VÏèÁVòc{hL ˵!§¤#{h;a—ÞÔåÝÔ k»xNZ –Åc2©ù×ß&¸è衺N¨­× ÃPôž˜°}’×"¹.m¬½Q·¼Á>¶ŠÔqlþ”]ì?|WÉS칟2^Wüäãé|#x›C:¦Ð)I=Èò”ëãÓò™†à ÂO†±­Ï¨Nw¸0¹øº é‚©aÈ2¿#Põ]ëõ0Œz9dao¥DÊoÑ¢¸ ŠÍô æ,‰îËûæ£ÎÇÿ±ñD'§„ÓYíõ ã :¨ L5âꔯÒv“âÔá©§>Ôb¥÷0ŸŒã¬ñ äOé{m-0jᓌœîžxÇ6 “g¦f‘ùafÜúh¼ '…e™Ì‡òoAñÙ5ä\ €yºåËtüâZao¿_z”Z©V´Ö"à÷ ë<ÊïÒÉBgZx‚C˜NÞdT§+8¼ˆ>Ïòe!³6~VÀý”Kž¯ µæ-÷œ&ÚÎÆvC úª&%ëf~9Ã&8¶¨pÚb!×dŒîV«S3ÈÜi 1XQ|^·lØÅ&œ9ÕO¹ÌŒ&ƒ6 ÊtZc¯]®Jd®’# ÂâÍ&;!՘ДIÕý˜›2µ-*ï%M œÍи3þ© ¨c‹k B÷Á–#|7ãOji¤¦-TxÓ ¿êžN··?ébZ1/§ŽÆºkþ¿j›k¢B¢¶,m=·=79R¨ü€uƒ'õºõ¤ÕÐñºÂö5Ä­Î…‰WDÕ#áÇr=“Žôͼшe€ë¼¹¹/è¬YÊôÔ6j‘´¸£ûˆsö<æc¨–°ÕaæŠ<ù´ol‡ˆ˜.£\ ¥&_£¤-aÈH;G;Z¤ ¥R*1è{Ê¿ýëû@ˆVŠ DBO5ñ„ÓR’ÂEdšsp3–[ ¦fŸbYäváAÑÿ×;ýð‚ žiºqÉÐ NžÓZ‹@KÛ]Q:cBN³HÝÈhªñ& —Mh…° ´%J+¡%®D0åüó÷Á0wD“B6ä@þvp“nÎ2§Ð®ù~«œ»fÅñúÑf 4t1°‡8. ú4ûº ôvþ$[™6ãÜÖQZÏ$½âf ÑI)¯Ø©H½Rî{˜8Mg>ÇÉX¼ïýÀÐqñåè‘鈬­Ã-}Ê6ãß^±dÕ¤)ž<q‚ÓDÞ«(@¦@vìØz&·#›ºäô…D<%•OhÀÔ°§•´¯rVÜÔ"û¾UhûÁ†ìÿ,·õfíþ4f‡Öá œÎœNþ»lûŠ6]ª3W²* 5È0ÁËŒ×û&à<ØiOÍ‘,J×€Œlç $جç"1^ºPN³8}1C©&bþò*°è^ù–xK¬ ìSwnoyóÏÔÓw0¦’â E¡æhŒ ¯ðN›ç·Eîr?”NéÛÛÛCIÈh-¶¦÷»ªcë…ét—² $né„–ž0r‚_¡ )­´7ræ^l͈Eé°Ü’&'¡ÔQyËO©HH£SþˆÒëf§ƒQYuUg(ê8Œ”{Î6y‘¯Ï'ÔÃÅ.hne"uš=cù.W\äWÂçP¾c$Iå9àÄV}u$4K@£#‘õ‰B."·ó½õç´e"`e/íü¾‹ý´1„² ¿‘øÞãÆøf7œ›Qç=e™[ aç´ìã± Ïì=³A$ö×TcÿÂô¼ö“'ÓuËVÌVë&ãc¤mò¨q/7Í 6íÈzÕR)XƒµfS˜¸W@Å[bdÈBÛsÈP¯„ØãVÛ”6ƒ:Žƒ T Lž6h‰¯æ^: ŽNŠ72dÄWÚ+'7I .*S¦«½Ëý¢…nÔ±»É7œ<ÑÀ(™‡è›Ê‘!5ÒÁŽB‚”ô€5ØwçÊXXºÅqÖ]Ý•hiP«æ‰x{ÌGmömï­¦læ×v|†ïtg™šm˜ÖÉ×Û_SÛz5PÞ§ÅÈ!eKÎÊfþ î€t¸àái²]‡@lr“ÌÏÌÔ,¸6Ÿá‰rìoóÕèN!½ VºJꚬRˆ”¥¾^)x²C`T$ïÉÖ㉺sLâýž;oR|n<;è¦Ú‘ šðKñŒ‹°-·¡fLj®ª¬Jrv2q¢rî-÷·´)_g¡]Ý÷ä5Nfå­e!”ÎÑ‚ß/¯«ãUòÃFo&—N$\a;BUÊçi–²{Ù䜉µk7;Š9Bƒ»²÷˜£ôÚ¿MüIçÊ„ó¤Ç·ìöŸ4ê=Å/ˆþ¡w0Ö ÁMßæF¨ê=¹†•Á¡!.vWXŽ7²koˆ*ÌMJm†5Îi£2»±©iTfÑÈj@ŽÔI,§ˆã**îÞ׬&¯”NHUÌiRV^Ývr"ßž4†ómÞÌ  Žh =r~Õ«ü£×_RÄ¥8gâÊ!SwvÔib$(t}Ö¶1F‰×ýø™|~p,FÒòùŒºÌdñ²;wV:tÃWi Sò—×þC1SqÍŒ°‚c§V°*¼i»?Q5ƒ'+cë±%„Š@WKŠñf“IûÛÓ7óÐbQŸ½å½Â¢àAHC]°0˜š‘GCuÌ)ÄZK–ÊN„µ75„Ë#ă 1IͱVhÔö8qEëêC9®¥5>àø±z3 Ö¥@?ÏlUc—6ûv$¦q¯Â6,cCx½á.U°ËXV¡]yÁ«¡)BÏY*Ú A%VJÁ7™èÇ_:XÓ_ÙHgP‚'q*ÐÀÄ3dePÍopLÖ¡R!–ÙH j1½ðCóª—ô&nž¨…éäæúË…ùm@Ûåpnç_ü?¿ë \˜§BgÐÌÌMB^ÐýCyº#{°7NEËH¢wÄIwïØ~ª¥#'DŸÑ&‡&þ3®%ÓÛJ`ÞqᛓF'>ðÁŒ¤ïø þ`ß,¼l%M’Ë~Ì‚ïÎÝF‰íDAsÛÙ ê-•¡Ð(®¹ù¢Ÿ¦†ÑÀ£'üO¬Ù£ziVœ^ÙÁÆ…ü`'¾ `¦NÖÜr“Û«A`Œ%RM¯u¶mZt„ Ùsý³¬Ø±·ÊýPšF2˜2kY›Rs´@–üË«¯9¬yjÁGºo%›#c–ˆÃ!ÜÑ£BQ«x"Vª†Ö ’#®rí¿þîò¬Ÿ²ø s5dPHB2%£ÕCÜf‚eµš3îõil"5óº0ª²¹mCº¿Gâ'lÌ0Âb+4 0=sï!Í—JVí¡Wš/¬*ÆK’š´T…„ê˜s7uŒã¿4õ;½i¼½ÓŠÌI ?õiH¹'ÃX»ÄWu†*åóÄ‘ÙðÐÐb`6ÓÍùéû Üobq¡L n‹é00 ›go÷·´ß묣l¼‹§õ¡ãîÁ.Åd';nÆ-qá›FÍÁþ+Í|"@é°AŽÍ0‰~Þôóä5ñ ûÑ–ÙÒ_Sº9,Ï–—Ô«\¡¯¿ Ï$TGl3{€|¬ÖóÖp1g‡u¼ÿÀ¯Òµ|«Ñ_ÚH:¡ÊªéìXÏ*’ ]þæ¿${îÉ<ÝÐ̉û Ê”x0ôÄËNÓhC}VG‡Jxÿ™­„ …8­@ŒnïZZ²·§[:7F¡3-%Ó3òŒ—=¯¦ {›9Íì§46È/¤oxÃw₆dúvÔ ›c§Ølލ¢UÆñ—;Ð÷¾hõZ‡q½W×]D1ÀTÔ=#CxR%*0ºq}¹Ækœ3v Ó h$*"Yì ·"2æVbɯ0‹þQnðz9('¤:i \ÉÊðXœ'Ö©úŽ ú‰ùCø“;Cã)1Å‘¡%k[«©¥±hRØh{ƒñªÃñŽB–žîœæN»Ò“|¸|xuÓ“5ã|¸TŒîqŽ.í"5x²F3׸QA¡O©!KäÀ­ •¤ØtЧI¬,Â÷×qbqËFãΖY~i ¾„ o¢°ÈÚo*¸qÎÖ<`PH!kGK¦+±6" fw">ªÂKÍ‘å:ÖÖ¥Â6ž®]NÏ5ôÉÂ6o>6¥­K‡ ¿]ˆª½r-°½îÈú¸Ý=лÓÒ¤!5†¶nR‰w: Ë$r’¿ÂnpjÎÒ7d'h©kMбÀ„†×tšuNB¡'u\!-d¡Isï³+›Ò¸Ý -y\a>5X£«üYOÌ`˜œ¶à¡ÄúÅQïc«CnûK²ì:Bíz÷Í>y·dMiˆGpá“w7û"z¡$AœÁÔµAõž ‰²ô3QÃD1Ž—Ë ù#S7—„ì™ Õ=â3íäÀæJª#Œ÷$Öé¼ð}¯Fu{{š´iÍå D½Ódᨛ:,Çm-º¸8Ó.@\d]ïF–5ç-¹2ÜúãÎPù©œU¡õ²\šžÑhÏØŒ…–ùw’š,êïßU>å‹oå$ì%ŒP‡D_­‰,B7¹« ‹²q6”!«FBŠÍD„½áÄzªFr3õbH9Z¹¢›¥œŠJ xAÒ`?×úh̤¾:zU3"²hŸÏ$6<Äå’h‚®naÚØ1c¼$ !wi챘C¼XÎng‰•P¬WØå>ö.çVJêY¸»âÏàÔ‘aÁñtÄ&ü¨¦ÍÒUtй²)DWCu“4²ƒ=ëBc‚;Sð`$@ðà4B€ð‘n1KÌ9í82gÞãqÌ–ÁeØKës»•Îd6¿ŒåO6ƒM[$EËÏGÖ‹OÁŽä^ £3ÀÙˆ‡Ÿ´=w7\QÎÔ6ïÈÐJA›±"gJÑÏA‡ÍL-_OCl‡ƒ#â™gXd0‰N—‘*’Ý\dܼÆùãwÕ2Ãè´ÆP­Lo¬Ïg¿¿¦ˆ²¢Ü ]VЗ|3-™®ÿoF I“IºßÇ/d‰Œ%,r~rˆ ÇoÄü…¸ê1‰ÐÐS·Ž°¯õ!ùœ#cTËñË«_$mýÀBÀ»0Q¾_¯qKžÅˆ‡À=ñ²³A‚4°jéÁ³ei&á3Çx:™Õ?ñìbþÊÜ9Ñ_nË#±81=õ,3ÎÒ(tSƨûù&õówˆx¹o‡¹«ƒr9Ù¶3“¹(2ú»'ƒ+¿…ðb(Ü-Þ:GEØ)VX„/#{3¦˜n„\‚^ÝV`6qí«“Åh¦Iʃ¹d ìŸ\\\3ã(KîŸ{O~«8ÏüS´"ü¿¾'13†Dk‰¿"r¶É1Mdì3jTÖBÊ #J*R Æ7 Úó—ÔXP–{0|Iz ™×¢2­žZRæ8ãÚ‹æ01^VǼãºfŠc‘w¤Þ–õ÷ã@3™2*ðÈ@—–_DÓï`ÕQ#Ñ^‘ùªc±2 $–a6ÛéŽ6'R‡1§•îx!X|¯ÁF*ÞÐä¦ì™Êyh³ñD8M@i5ó±(àÆÌF¢‹‡í®÷k²6 :ùÖ´vž¤¨Ü)'GfêÂkt•,ÅrÄ]: )O¦oYBI¼VM®'ašðê‡Æ$† W‘‘æ%—ö¬oﱎïÄUšl3<ŽG«ˆƒ’¶Nƒ©"®`ñ\uo—YHÓI¹‚8÷FŒ(8*jâ^CZra‡a¬ 9²^ê…ás÷nb¦~2ª‚£#…Hâ³ÞÅSŒÆ±©¿2h' ·Yyu’­Ll¹†=·³aöøÇñÝ Ë"í¡ª—íÜ,‰ªï!à“$„évÞ¬§ N\ý2wðûžÍ”1I¸ 7#áJ¯È/U. Ùë5¸žì(1¾W?-Ä ì‰ ì G&SàII'prb^ÎÈt ñauŠWË5¹1u’ÿƒmÜ$oy²9“»N¿• ˜în‹9,˜Ù0/€ØÓìgütßÔÛ}¬óÖÌ 1“?Aò:¿ólbL½ò”Õš5m£‰gl^­¦îLéØ'Ïö/,§:FQå–gY3©TÃh$£ë^µOd‚âQÄÞк:sËþ\[’L}uGÌ xèØ ÈM¤Çù¶š„oó%´›®¡~èl*)»I3ÇASW®.ý +¦a MOÉI“’p•üñÎÝxфի&2vs?€>7Ž4‹fR¤,çÚ,JìÇe¤óÍÞmŒc¼Ÿ«&>»Ë>¡~7íÐ@n‹pO™ï¾¸£1dGìåXn1K¡9g±•¸Ík¹x7eÆ×IV¼ÇpvÓ‰N›5•ˆY.kB ZgÆ^uranÐLCŒqÕH¡ŸXçÉ•œ©%›W8'<ó„×$˼®uHE¶O½¾Í÷)ñÿËç¯Sãa$ÛCH›~)<«µcw#J¯ˆ³1tÐâÆ£Ø€ÂPKϱ·„½0YZ8/qx{=(Æ_fw¤hÜÐ67þèt3‘9˜˜qht2²r¼صkEuì i-Ü? t †àÙ, ¦AW×“ËÆ!J]šìfIvðËýkƒÄ,Ù‰ÙSß߀o”¦û8VVô4 ¼Ú~tDýe"eaø­[T{ÑD¦ Bx¨àãQ$&ÜWŽ`Yl¼=+—;s[]Ü?ßé$i‡ 0µ=Ýëp‡Ò$W4Qù­Xƒ$ÊO¸ñn4$éÈFŽß°÷sÜ[šÈÞ¼‹MÌyYó[¢~Æ/,ÁÖ³oý« 6ãÚC2§=[7‘Oøì½Î[þ¤©Ä"Ú™ÿD8Åjþ’›'Ww„¾=Ý)%Ñ^«Æã•¬\ivSúŽ}3Ù¸¸"_†N „ÓLï!ãQÜ,5C‡ëjMRY   gs*®=°(jâÚN¾  :©ÖÎ1©·Í³Ÿû¼"Wê8ÿÃÿŒ‡n3{”x6OÄ 9V÷Üu5®?“æãÀÑP¸KZG)_ųyŠ+2yu¼ð­(ìrŠk…ô˜!lò¬<™PTMÓÅúv|}vd±Ÿº¨2^’a~@FQÓSOÒ€õvBN²¥Ù5úmË@Ýáù€±*„sà8çIaJZC-‹:?Ÿ¿ßÞ®\?}WhC!Ïö ýAoo›tSj>šškÜ™²-ç—$ Tì§/ƒ¹Í‹·W‡ s™wLrë8ø6¦uÌ€ùa¤i'šÆ7ïq•›xêfÐY@3XmÄëLÚWÃ]µÚ†X;„‘26ª!›ƒUŒ\èmƒ'd`k¦ŒÙ‘0šöÉÞ²ú*ÞÊ*uŸÕ1*!3v yÃR‹+I>†Á¼GëñšÊy¢° s¹t„ñÔ¡L,ø M1”T’C”í82†z‡|—øˆ·þ|³ú£,poŸ’ß$ʶ9kRwþÄö™xÓ5,©¿$º‹!²„ø»žŒm1úAÖ|‰uÏJY(ÅÀYßßRIyÓ™<]Á5ÄHü¤°%lÇ`IJŽ D£ØÐRž€8–$Z¶Á0÷À¸Ð+E…ÛIøÓkˆa†O\I1n$6/¹¬…Ôà ˆ+±nFÀÌ}î`Óåïöë÷x7}HÂÓV¡ÎÌq:.¬æz¥…·WC.å<¸BÆØì°x¿…•4“¶x‰`G6@Ï̾øºí-™îéSKºÏ!öØèág4s¡ÔÌǽ#6ªÊ£¡Iì¿P(Ú…³¿^è Ä”n<Á¸˜2œœçu&zÜø¤fï×9b>˜EýtZUF°ã>Myºâ±xUú6_Uþz׫YŸ#™Ø4NæÀ†Lù¬a°uÛ:Æ|j›[q;Ç&6#£ùÆ+ípÞ2YGÞ7YEåø‡ç@¦b>ŸnÙOœR=¥ô&ƒhf 6†Z "D8Æ]–xè  !¦öDž•ÉÐFW$3HX¾d‹Çøò  ßþó+ÅD8¤2¿¯Ùó|è@œš‚?a‹M¤ï)¦.ïòV÷' bžéðýÝ#‘ê²Ç%Vtoˆåtë§nhoù¬§„£U½7†8|Ÿ:rÔ¤i!T ­íðU>´pðð9Ä,>s tfØžõ•âlt ãÈW)ÒRsîÖ›t`gâVÚ6Ì/–$u3‡¡xEHÔý1ýy-ßòÖ²ŒÐŸÿï¨Î s¥L'³¨²±Ÿ­½ÂÞs­wÜÏgGþ(í›Zýïé†î;7pZc·)¤AÆ·¨6DúötË5kiÄïXÍŽTæ­zòÉm¦H›HgŸÆŸÙcá)è,Nh¤ÙÏ9lY"MF=‘°ÐC0x¢Ì·ÂA(üÈ"1ĵ8PxGzGmIá=5–Wrbš’{`"¸Á1©98jý^Açöš/ìÓˆ&äø‡¶Ì-´‰9¡…îCþ„¢D@[C²Q^Yð9(“’¿[M«t&s¹ä¯mžŒB¯-Žý/NºÊ{²Ê›ÀØug=Ñt>Kúȶð;LÚ2?ÒxnDüĆ.XuË û`^“*§9Ÿ ü:K,R;B½5!’z|ÈëÃ{úv4€áÓãŽÚ¡ÙµÃ4afƒ…¿œÉC¦_y@5r]C^¢ÝõèÓÇ|$F4ê®øÔš'¯Ù¨Eæ’XM‹qU£Dát™6ܲ³ôK’(Öð I$F 6-Ú­Ù²q—9Æ†ÖæâzX:îÓRhnƒœO":1ZÓ°f\ŸH¢¡:^é|l2qk N¸ÌçÆÅ¶}n¦”s¢­Ô®ù÷íÄÈî¸P± lC7ß;•³GûŠˆŸgŽiVINÂëÍ[©øvý-»×ÛÈŽÃHÜwZäFÒyhØ@A©”g¢6ðt>Ë¢'¬àKÐÂê©BR´¹™JT›ÙŸývOý°gã0+"6Jq…37l‰â9<¹ YE÷Ê Ùx<ž:¦ÈÝÙ]q8Ü^‰>5‘èñ°sÂ4mG3 -ƒW¹ö–£a ŒPçyW­=cH·mG8¥Žì»J³OK:[2l_žqB¥ïB£/×"ª¯Ö| –æD*³†yŽˆCÙ”æ6düýž Þ˜C®‚ÅÚ8°4„ýÖBpŠÀãsýuŠ#È2˜À(­û8™¥è3'LöL}-Â{jÄ%x›KtñÄ€GôèØÑžYÆ*œÅßÍ»Ùãã;ü¾±:9û_uñ—î–ñ2ãåÆF5Å凇Þz™»ñÖÁcrŠ úÈR³›¶Çdš  v -¯õ™C•cA¼„½,Þ'X²1¯ÿ–å• › À¦5*ŽÇ¼’× h“Ðv6¤§î?ã•NJg"OÉ)o¦ýúŠØžŽ§Æ›É¡B*ª˜0³0CG1㎠ã¥9ËûѤø¯w“b"³÷k¯oì!ï'„D|ÿ,©ŠXyšæa4ÅM< áH£<»3ËñùíD°d*îQ|=Åžûˆø(bælxd'?C(ý²bo$~> S›ˆ>ßi¢ä<ûúLê©'满§X$]…€»iIîƒ99ôŽeXE`¡Óà®­ìQn"?8?Æò [ äÌà-I¡C=èÔ`Päx%¬…Ñâ°Y¦gÙë¤æÁÑCTž¶'’ñVÌ :LJNè&®úœLšóö2 ÜYÄp›Ù7x˜Ý6) `öWHšyhŽ@ÿ¸<…Þ´$;AÑàuYµ\wËA9¬q¸ºãDPTK¥Z'ª–¬Y“º4G¤‚†iBØóä™ë#áq gšËéœ$”2<‘Œ38§ó,pröt›l³=Ep#&Z¶ŽÅ|RhO§+ÂNSCü$’MEþTI†õ/{|…x“CB2+Ö#ð¸1@Ül‘ÛMx'Lü`‰l—e=ŽWƒdOµ#z‡›&˜Œ=›ëŸR`Æünû黾´æöæíÿ–ú?7Ú‘…Q_g¿Ýid]¼A³}ü×»ŠÁB¿{W» ™JªåÇ•á9ØÜZŲ$Æ´Û*HõôT7l‘ÇadnÜb³üJ­¨ãÊ¿’L÷CÏ<7•½Çn’½v:jæÏÉd{íwbSÂEÀIü´É!¢xâQÊ ƒ²ÄÊ Z“L3RzhX/N³ê&¦Yu=®0x­ ‡y 9툿Ï ßG²p5 ^rŠ@ögæ7LENãA—ÂB%ÒWloFd¦,‹º¹Ò\ Ö\ ˆR‰ƒgVºÈÌ:_—¦3âjq‡¿¥CX§u,‡ÁÎMnl¬æ¸Ä“ Òük ýO9£Õní $sÍ­hSÎM…à‘9ÒD`cpäï-; Ñš*£˜W,ö‰U+k,ÃŽ%y¤Òà±t2M-ÀáÞM@›bV¥ÎЩ6+~4¥X †ÍçÐ*1~Zׇ•XðM.ŸãIºåÊ5þ Êãìϰg˜Å—ÆgµuÈ8Jcùœ™zñ?½ú8äsñi‚ ‘*Ñã‘T.qÙÉ!¾´/á8>½seVwØ·«ì<ÿt7]Éžðù†"Ï—=)ji§©oš¦†D-¤KŽƒCÖïÕÑÁ—Wd»‹ÅŽ"­ét>ãŽ, SÐ(ÜžÛÖ“×RCubºVE †É“è˜à wÄŇf€Ï`ã§vÖ`´­©C$›{3G¾:6Ó ¦_¤S¸1ߥÙ¹E‰šwñª>§a3YÈ&#;²ƒôR¥íìzÞ}qrûJ; ]ûÛ]ñj\kÀ*ç¾=Óìøå0¯3ÄÚ,«ïÉfªËÊ4œ çÛÉõiâÎPŠlðYÂíØÑ«s¶E³Ãß¡ÑÌØAœd^Û£¹Ë]ÒN@… A-aÂù@ôAqIÑ,•¯%ƒ1âl(¿#$ýxk3cnË2¢Z2§ã3¨"–ŒDïGM:ÐDõéoÏg­r"Sq™'ÊáìH²Mƒ²"«YL¨c?”Ížc«Ýe  ±€‡Isht>Þµ;R“õ®3šØ²ñ[¦Ù‡ê¬Æc>ýI·È‡4ýJ¢áâ5=;sËïøh*Ë,FÛÆÐì$mh¨€&C4ÈbèP™dFæ"à˜¥iðÇ|¹»£”L¯äb«ÎvG†¼®ç%¦0؉MA|dg8wIëÙZJS›¯xâ,—Ñ:£*Xð|«‘yÕ6è¦CW†ÖN„eÕ¡ŒBõ ,ÖcîâÝ"j%¿Øg(X\/î–ÏiΠm÷¼óÓSèooîßžhtG½ã/9Ñü-k<öít²pwþ?Öœ[©œfU¦H˯ÝÕu@D¬—ªÆFŠð“ãA GæÃžQbf¬RS×±ZÍ÷4ε g’j6Ü0TnêÈê Ei¦aN…݉H»ÌÄ&5bÊ®çuΫi¶zF«p†|’Ào}4DSß0šJ¼?É÷”³hÉ8iF’ ½¿HÜ÷ä›i¥Iq)׸(™®»6pÁ×.hBkad•`Yyî7LŒ21þŒ#öL–’a¯0mØ{Æ¿§:ÿVç%h;*tœï4n13‡J"æY¬šŒ¹ÊfÚ4OŽ¥_:Ò@kÍíÔ^*= P°ÁWšîó^ÖÄ?ÄÅû,{ÝààûuƒÎïÚ“ƒéÀYÙL’SÎ~³5Ox)¯Ž@ÝH°7¡W3ðRv ÎÞzƒá×ñ[[“Ûx½šÃz²úž|Å{,hPŒ97ÖLuÓ=™b÷tRp5Lñf¼b1pÎ0qnË ƒâÕŠåh¾‚K5Ælì¶VóêWæØ„§ 8°€¦Æ¥Š[*ø)  õЇÀ¼Rg-y‹,#ZÅÙ3~çh\n ›íÏ4ó ²4./D~׿@©kYäj:… ¶WfÀÂ?LœÏ8ÚS,&HM=á{Æ%À/º[QåÄ“g‚°$¶9žXa² ¥žl‰­wèr3td›Õ®S7ñý›4WsËW»”í{®É½!A$šH¢âÝ»Àˆzy>ò]EC°#-¸ÙûÓµø;òÎøžÕ“³?‰™F3›¼DþY<úÐç§[3÷ü7çÁ˜B7I+.t.KCT‚Ãf³˜8ælOѦ•ŽàÝáì· Å~{Ëñ× å8îAÒ]ÀRÖF„¸ÉÖ”:fÌc\r9oÎhíñÌPFŸm“0Hö†¦[ªò†}¤¸¿À:BÊ݃]$ä8¸Jk嬲½ƒÌžõšÇ…™˜Ý[bI!=±¤PÌçR7G–åa ejàžrW™»ú ß»%øÀ¨[Î<a2ÒR-Òk˜UEŠËe{eêçräZ9…uÿà±;Š¿?ÄËÛÌÖò'þi¤e«¼_LŽ‹½ºí¡Ê $Ò¯ÉgÞý4¿{_9nùûŲ¯»åÝFžhòó÷·4q $|W“±Ú~J_øí¢{WÍ;ÃR78¦kù5µ&“:ò‘•ä{‘‘•£Ö´‚aÁÔànÁ¤YŠxxÅòëU…ªXä=' ÙKBß•å«$[œ°KiÊ ¹»*’y|Gi¶Þ_D­¼êñpÊ{&‹ŠüJBÛ¹ZƒË‡™8ÎSž<&G•L©Ñé³£Ó3Æ\”‡ßaŠ%ƒ'v† $ç…ûÀ(>ÝBÖÌq<ÇÝ4ûÅÞq¹ÓÑç¯ýó?XÙ¿cÞ:tZoL¢™èW3<¦güƒÞ¿ÓÆY$±jüÜ2ÇívR2§-ÆT9ŒÝò “ÞŸ'·]::wC;rç;7’0MÝB™L€Ý=\Óâ`äVåþJ8Uí8ÂÀýÎ]0 1}¸I9µl -­ƒäÙ{8ê‰8^•%äFß{Û¸Q³¨aÍ’Å‚÷Ì|•82Ñäq$áur»&†-è8™)Cšyæ³µ„ÙÃA71Â%£{›+±"it&gxØbR„ÄíÙ¬2~E¦wd-;¨ì 0ò€ ÄpbFÈ쟳v$ÁÐ4äKò"ðjB“ö:ppgí„Ðt×áÛ\Ðð½z–Àƒ¹ß!Z ¦ É9tP¹9‘žºù-óÓ÷¡”?¥¥`În¡w·9Z üÐê ;¶O'ÿnÇcF<•Äk`\°iÏ1hsí­$Æåô.µðúÐ<µS:v÷Ï ßÏ7ðáÕ­³Wsc5·5Ðowòl|)Ä÷këp– hv¼ž ¸|5œ£\ŒWËq]“¹㺢D3n'uè³5ö–ƒ!HUI-î@ ÇŽòeÍ÷µcNgåÐo2~ÛaZê¦ãp¡Ý1°,€@-c;ªêwšòà<3üÑ„F|¸X €;V{¼èÌáF±eÈêSc¯¸ö'Ëu8ÈfL;‘ ¨wÄ™:cÅr«ø6‡"ï샼°dÐ=Ù’,ë#i4ôN戈þIió±(þ"=5èz;Nâs™R¼×qµ'd3¼Tïäl;"1ˆÿÆ¥%p8óõtø:âòÕ…'ÜUL–>%{Ïp…C 0¡áÒ”} ´=øàyë²’>P7éY"Gú¸Š¿e¦Ä/¨µ(ª˜dAŸ' ˲ŒAƒ1ÐåßÞ.î†JäˆD"¶È^ qDÌ· ÍG3TY¶1=ÁáÔɘ[Ž*§(b…sУӄJ|\Ã4ÇT%ˆ0‘fê^4 ¬™¥™7öhXû ¯ Q¸×+æiݰEX‘¹­¢ÍŠl¶ðÛâ‰'VË̃¦¦óÓÓ ÑyÛ¥‚b>vñgݲ:XF®P…‹±*0Óæ a-WGŒÙ®=ÑÏ mîÀJ˜òÃ1ôº# —Ølè šÛÄ‹ÍòÉ÷”mÞS3þ¸1!–Ô:GÐÒ%ju ±Š7„Zµø aæ15I þWñœ -²¢‘ÀÆ °Í;vl1¬§‘&(̦¸ùåMxVŸs•Z“ïƒÝ1.…s ¬Ëë߸}æ_5ÍÙ}†_Iô÷¼~½_ÙÀ€-m¬9‘¹&Aa‰9©Õ6pB;#wÁȾ{ïò5îîèìÉX9Ž…]]uR?rÖ÷:OI[FÎ$P‹½ÆR.vkù«ã~ä‡IͽWëf:wÝå†Á>9:åÝ[áCè©må$Ódá3šgðt@Ý†Ö $çÛŽô_ÂK‚=íJUqjâq‘ꌶÊOŒ¬ê55u!ä,ÉŒ×Ù1uGttîtñ·|·õO^?å1”±«²ž[‘ÆÄI[ä ÙÿóÝW¨¶!s”öäñ cÖ ,\’ÚôO’ŠžC‡SËÂŒiÞåØ9TžõD`çYâ¤"R<Ã>¨‹— Õ FÅP{LñÂåp¤Ñ±ÎÆZRz¿eîXÂËwÆ ¹¨¹¬!ùGåV~Ä…Æô(î5ž°ÍÈnˆ+—n‘0µø~Gâ’£HJ{étŽCÆýî„âchk゠ܥ ûÓ€“v¦'ñDVŸoóÊ"n{'i/³m¦=fÄ):4: $§¯îpй‡(±mwoä,p! &C6«òƒ{{ËþA¾jû6é4Þ[“îßœ=11¶uOß/—# ûäà“ùiH&W Ø "õþ Üë|±þåîx!i \òYóžü=ꔂç .éŸkYK0OÁÒ4DÔ3ëæcǹk˜3ég¹©AÙpMƒÑËÝšh˧àrœEx#ï"ã#qо£C°©m@½§èw,‚½V·ˆñôü¾m`<•‚¡t¾o}go¦s„>=1]¹#QŒ¦g¦q¶¥8&çcÔ §'Ø_EîF‚f¶œÐ).f=© ÍuEܾ!èjÍ$NÒÊ ŒžoÏw÷±Üs:ÁW’¶‚ðêZÀ„‰‹^Ûô·ü„ø§k,¼‚§®ùö ùÀ÷”=hT£X\Éö÷@lB·ó Žs \wØä ÷'?Ö±†óˆâyÑ[D7à-oH—í´ñ§µ9mãŠÍp˜rîx ì½æž À÷.?Cqû­‹¿ L:ö=1K+;† "«i·´¦C÷ÏÔÈ‘½Bfô²ÈfްÛc¹ܼ¸·= eŒohØàÙ3ë’|eàðÔ8Îû£[Ÿr|dR:3"¹k:wËÙj!–¬„wz²ºK¹Ü¡ÿÉYOdذi_웤ӺB² óUñÚ÷užÊ3ã"ƒx­:1¯õ¸˜âo;ZFMZ>.ó)Q!>U„šÛ(D’Å_˜MÁØ,ÍÊ„wpɈi;GÜaæKK÷VÁ¶ñìHsÈ<ŠXv_ðHŽGƒ¤8Ó1^9±Q’af+mÛ6À?2>!e ŸbÛA™Áê%e¶À§7š°-SMFä¡y=qf9Ÿñþ™È÷•|Ï‘6Ó³•ŸnÙ’gðx–ÅP¤3F¯]o'ì×c8Ýòá(W—ž0ø– B‰%–ŒyÑpÀ2IŸƒFw […[²‚×Mž|®GŸîÉ`ì–ê ƒGkÉÔ}eÝu|”s[üM®g=g\ŠwTÖ#ÇSr„ZªdLùíõ¼2ä’\tkõ)ƒ¶U§²ynFà®['ü펨šÉ3QY¢Ÿð±)> À‘ù%…æZ(“_§¨ÚgåÍÐß{Â*Šíhíî½<4•!ä ÐxØž)¶|Çd\Ú1”[¾'‚*íug¬m‰¡‚qVéÛüâ'ð»Õ§é˜5‰\½º É 4–Q6c½wŽ”ô°ÁLŠˆ¾,³zÃã£N¨ ñ4³Ð'Gõ†Æ¾zÏϺ=O·l"¬§`©èËý-_÷¥Ò:ÁøÒyœ¨Æƒ=†¶8ÃlŽW’‘hBÇÂaÇ1«f;™V¤]v9ô±´%û(m™#Koˆ°8tL°FSé{òéÊzӵȎõk¬{’5¯‰ñC«®ñÌZÛv$At€ó9|ÏØX•Woq±’2¶cå€Ê¶Á ÛK“C² { ²32Ø¥~Ÿ–¼îœ þ”PÜ8™HÛ#¶•€AøÎR A|N››NˆôvI$ë¼Ã»$Ð_Ñ€^ŸfeÈÝÓbv¿¥]ø˜ŸB2Rmëf¤‡¸ÙÌ›ç¸8k€ùš½ÙÐA° ^böб_8]òè©»‡(Õ]§­ÑcyF¸`8úJÂ}“G ´ÖæŒ.Ž¿»a8Ø—¥TÐÄêÞñ¶}´ î“䥹|úÜ6žë¨‹Ü)3k¤±uùà[ÍØžÇëêÔœräŸ<Ùú®Ó™´š)¦Ú]+!rÄÊT ‚¨ÕGòaè©%mÇ-G½ÞsÐ\`æêqä06¤n>ÁûÊÑ1'Ë5ÂÍ^O­ÃO‹í'—‚kþ¾÷ ¨[žåq{¾¹ti)ÿÚÍW‘½†‰âÍÐܵ‰Z‹4™Jà~ðŒÜ¯Xò‘8VË\†¢·­F}¸§áOÄó[Ÿ Ò¼&«Xš39KS£¸²LŠŒØÃØÍù‘X ÄºñÉYIhq^{µÌÃvˆ¿%G£Ã½¦™d}Ž´Èîz™`weüf¡¢åˆ÷äO°k²9Ê!ô=ð¥;Rø­y"ÔšL;~ÌNëÏwkàS›µ¹81ž`ƒÕÆ-ಠQ¤HvEd“qÆFˆÞ }“íßzœ])ig§68ÿzwù¾Â>þkRx~§—ÖÔ¹åJ÷º^t)8Nžúl–è̸;ÏótÁèbRl‘ãñRSºsR<ù›B{o7þòÕ5-AÔMX²&´8cZ8÷Ʋ̶µõèÿ”ÇÒ¡Ÿß&÷±ö•|dò»aô…¶WÇÌVˆµ ”¸ ʶ2a/}´–ðcAp˜¯–†-w4H,L$±"ž}¢¬ šâò­bŽé-uo›'’A¥“0‘a60Yš¸*(¡’製cŒ¼Ñ)fÓ+ÇÜrit·—aü?å:‡GÛ‘é™ox–†ÌwçûÕ+_1“­ê#Ér5Ó ÷j#Ï"ìŽSÞÂǯä|^)¸ËB£U8QÓÇ–N«O3S+c2"…%ð: ŸS¡A^iñ­T)t9÷Esá }%8É@Œâô&ìË – ±x OÎŒ·Œñ×€ö„²©‡æÉj: H¢¥a`Á™ÅzkÂ\w ØÛìŒsW65±ÏEžœ`ÞPZi,£DówF>]“—jñ1ôcsB@—hÓs`!Ä;Èìˆ5?¯mN†€HdÐT)bYžù5t75éÊÈé)^ª¶œ¥ _ÕÆ=p®ëÁ—9³˜ñÓm¦NãO–s’2I/Údoúë=Ì\æz‡;¬‘*s‡‹kc`h‡Œa¨ûœ<Å”\D—ÂúsÉO®äŠô$êx¹ÁD#t¶ã÷ MÕšÔt$vø ÆEΰø¬ø™N]X£ÓO ´ˆ¼†Æh‹Ó!žØà«Ët…Z,dc«Ôò+é÷S~(ŒØåB³`-´©~%"jÉ £0hî’zÆw°G*O;3g #=_L´€¢Õ-‘Èœ%Lôtx¢hÊ, ÅF¹!Ÿ6*Îè™ôûd¯jý qØ3L¡%‰´Ž”J"°ÅHµx”Œ¡„Ívb‘¿øZkÏ·<šÀ¸¶ ·\¾w¦+X;Ï<›YeS?g™ìÚ  £eÒt%©; Ûˆ¥æÙ‘~ £§ñ·+6îiG¢|lG”&VûeŒoÎ.õvÄR;ŸÜ_D? P™Ë¡´ä 98ŽÅû;ŸµŒ$d—„K€En'¢]p—ñMŸ,Ë­Rº•òŠò~Ã2‹µB;–K/b1¹Â*sË΋ŠKå-7¤:¢m•G()à3%T¶& "Ô€”ÝÎ?ðïwT"$¢?HÌSn©3`3ûÛÝðÚZ“'¡Ý‹ž“Uú¯i@íÇl{âø“H6ù tîÖk ÓÈ8?ó“ K=‚¸°ÚÓybèyѨT‰7ç „™8k‰Ñ´C0-îg9`§-2~dÊA¼à±w Ö“jÐòÁ{;È™·B~yóö?%sfv”á3?ÝýÙÕÛ eíÛw~u'Н»¡Dâ‘%9NhGsÍâËfšÊ¼±3Ä5 "'JÑM¥ÝÈ û¤BÁ`òè–_÷HKc%…VA&‹r>X-«½}2"‘™K{B¨Á_,Q¬¡E¢"ÃÂ;è‡ãw§Lß3MkkGëâ¹É'Žñ®nÎ>EH»Pö9ÂmŠOŸØ…ƒÍE¸ é¡4$ Cµm«1d9Y‰Ôxç6ÐQ¤ÃºBIˆÿ\»¸¢O­oG*'"˜™µ²mãi š¾0¼ÊÙ'´’$k"S‰µ¢Rã•R‹uö=ÆX ;ŠÔ¤Ê±¨è”e µcë;‹¶­Â©Wn2ß& ­Uymžž@Çë–KKäè“ÿùvŽË´Øœãä.õ"èÀ;’?ŸF2ø3Š(z… Eü²™¹×ä•Ì =°Â3hVN¶–‚[ ƒÈœ©Ý‡î1¼Ê»³Bˆº%ÂeÕÂWì#ñÓ£›  ‘=?h"\-³”‰£ñˆ_ÞR9 >=…àä•£ MPä`ló`€Ûùܥ͘x†nYkK¿àò@E}¹\Ÿn™æHb†( İQ# †« ¶>9$£)´nôhhL‡¯S(g¹1\úŒ¬ºúÓ]ç–CŸbAžÃ—Éý"`êB¦ÎèÌH½ÄÕçɆDg&}u^(Ë,‰ç~ž¾bÁÅeÀs:èë]\ÎP´ßÍ|3z;ùmB#¹ó’U°–lNl&Õgsbk4Z±€XLXdYÝœË|~¾—ëç<ó¥×ó?ì΂Ò3·4 ¸>Í*âÌ ÷§ï9û&qçgcÀŸdø~½ÎTfÒ«)ך :¿:7Сr¬Ï-öÉLͱw%)¿Þ]\¶¬Ý%ë é¿M¸„ì‘”’W¹ŽåÈd€‘ò$EØÇ½JêöØ¨Ë <ÜD“@fÇ‚n4 JʎȦÁŠÎ: ¼Ëo¢œSêø ÇÕZµ'(5Óìx$ úÔ‚t}ŽÅ¦jUBnßnriæ-³„}§bCb¦)×ÂÅ[É"MZQ”g! þD†¦Â[%ð#×ÂÅ{"ã܉„ ‡žùªÅIÁWzØ6*˘o†x±¶“µãm¯ €9$åFw¶è­cBŠãÎôúò´#³Pvx),³ofâò.c! {Ú±²œ¨k´šñGJ¼7góù–x¶zæiÓ³8yË£5–D,^AíÙY7Á+‡øLÀÏH€f\C HUdé#FŠþy<Ȩ—;Ý2ƒÄz¨çbOƒè—Ÿ¨†ÇÓ˜—œ &‡‰ÄT".Ry-è ƒÓXGžI6[Šä$I‡îN=Æú„2<˜Öýénš›T™édCÐ×M'Éz ?79PdcqžÀàa,®É÷“‰b†*ïÆÑWM áãÐyîv¥•eñÕ2續H«Ÿ>JÏ v 8dpÍÐûlOy¨×[’3e¡Š #VR“uPIY&×ÑüoH†ÖxÊ I6n§!®ôó*LØòyÕiF3Ýò(Ž3Lvs7ÏŸ_¿qVsIÀÍ… -ÐO±lÈÿpêòÜ0š!·'u!ÿ^¢}û ÿ”2“3ßÑÌîþróˆx5;ðŸßóøá`­½ŠÝÁüIþ5míOær#ò_wƒÍøå•a@e¾Î $Øö¢h1–'ÔªÜÙŒesìnÌHre\ÂD½†lð $ïФœÌ,÷«cWÓSñ­¥ùÈv Th™¸…û¨·“ òsHo2T,ì¡Ò5É~vlž>įŠÖt–æ”ÃrÊBãZœ9ËR@h–B3Æ"®ïIX9²sÖzæ’Ó²){g±Ê¾ÁzçqõJ4ŒgfoÞgWfœ'É×+ú„³Ž5TþÊ GQ3¼©%‘ "K@Þãä‰<Å3_ËæØšd´)ß)g9¯õÙâÌY_I\LÇ,á žÏ”|‡ÙÓƒ†@´vºâl<Þ8-8Õ É…9+_‡miõäp6®'æÊ $Ürœ1vfê&¶i6Z×ú–;¬H;€¦tˆL]Ë3¬ÍP<Ù® öd6µùƒ¦ÁúñL,dƒCÎCÓÂë.!ÓÀô;žà7Nq‘ÈÐÃøØ¸œ9‘Ä·XA âÙk¬G ò(†u  99@ö$Vy‹Âc~›Ëùˆ`u9G1¶6YM.Is-dµNS>íq[Q³¤9A-„Ñ•…Õ-vŸDN¼ñ²s*s¯œô\eÁ¯Æ…[žmîsCÀ6Ï6Ïïóÿˆ÷Gw}c®ÏGýÝ<݈5¾Øúx–›#ÀÒ±YðÈ9‡Žh{Dü}:còÈ™凧Øî;üñH{LÍü §`ɾ‹ßjÙv¾e¸ CR)¥QŸ›Mv;V|—ج}²„a¸”n+“Ž]u81Ñ·Èáp¶– £aŒK Š:öÄnÐN¹©ÆI¾w\ñ“ŒÇìx¹‘Oët¾zVyú3ƒ1 ‰O'èÅ/Ýc5kj2ºŽW¼ƒmhÛ™0!ò¬òJèu|Ž&>AÂ"H¶â)~ I'’a( Ô™õŒlQ<©€ˆDψ•礎dÔ>%-- ÔYÇ05­¢GYe?±®E‡˜(Ê ü-Ì;R?/¤ w† ¨àKÜ™½´kPÚ%ÉÈ·”´ÐŽL¨+4ò¾ƒ ÈŸí Kjìl×ç€$|sÞÞ ?Ê\t|:ç÷zÊs7 AO1ÁX½á4Û\‰XÛ0]¶ñD­tòêtE•½g‰RŽð*M3RjƒG0—}ù`aáʨ :ŸÞ .èX4Œhx4És” “&M¨I|Ó‘Ù}{MÜlG“5s¢Ø+¹¥Æ.Hµ ÑJ©XedV’fè¤moy 7éx0+è…¾³ÑÒÑ4X¼Û@¯ Ò³žÈX>,à£äHPT\ò×éÓ pægä ¢;@ië5í*ÕFFõ&x ÑÊõ$êü©Í…CÆ"É5¿ÙH?`ÒsÈ<__UBÙÛ‡Ët‡þ•WH©T ˜tÉ—è†Áÿè¯óCƒoòOп2–åÆ-uâ-Ïç3˜Y츴ÈèÖ´žX7é³1jŸ«à…-6Baú˸KGý® Š8(›¬XÚz4NAá/irC߿ݓžäî´!þãwê,¼>ÞŒáD\DY̰i¡<0$ÛxGÊö¤·Yt5Øø¦ÃÖPGÉ¥"á^Ž¿úî­—Á¸ÕÓìlטîxúxí/ -€©Ç"ß69™0õXO‘˜ÔÖ¹ñUÆËý˜“u¥í>é[Ì›”‹‡geú‚ÁM·¼$m,‰¾¼¦}ØGÃ}9/¬­h,É }ãZ&¸¢³¿á7ž8ØÀrY‚¥~OgÚ@ÖH%{Æ­`¼Ç’R‚cï Ó\lÔi@ª”þä› ËpqK| V¼»ϯ Ç™ h?²×2ãxåNdŒåkt ,ŠÉ×R£Ðš/±ˆ;¼¢Ë™àœuÞ´4áæ)¯˜¿#6°¹t­³C|ênùµh¿÷þû Ýl¢ýç»(/…öæã¢8€ª>mA03àɉÙÄþÜGjuF% Š¥ª&ªx%4 Š×ÚXléüD¤}ƒ)H?±™FìÆ¦À‘/ïYµÜXz7²È½‘DÞ„ñèÈp‚eÖxø×²¦ ÅÌæíCËì¼G ÊÒ&Ÿå%Ï888)ëH,u·L€ŽDêt¤Sp'° p& DYŒ…Õ(6‹‹Z ô¤'Ö SC,¡hH³–Ãí*nÍÐeü\MF1í8aÌl®H@:VûšÔñ Öñú˜½*ñ¦sz…’6wµçyp†1@®û) s_‚»|¦h“(ûùkŒV·¹•hq`Çýš¸’'úD©NAryL†R ©Úç_ïVoÍù†Eµˆ™VêpU“{ÆKåç ñ’§×©§Ûü¹“LìÐ=Zì'pD•ÞÇÛlú+Oý®²¦è|°V`g©ÛªgüÓs Ý‹|Ks3r­Ûx™°Iˆ{˱!‘‚>>9¤¾ŸŽ4®0PÎÌ]íß;vá—=e“¾zpè÷ýJZƔÄb!±„а“Yð-ç,«c’@©â{:èÄ «øVSÎrËŽÒ>@1.t`U›(ÁY½žètSkæåÃëõ–„·Ž¹ŠyÍøéÀzdûÆÝŸ9ñ[úÏüÙⵤ¬çÉ¡’/Þ¯´^輻™ÓHSR#£òhÕÜÕÚ5#»Æ­7<#’ôYC/êݬ •ž•ôí1þu®ÙSG†7{VÉî ÔeÓ£Ž_hõ¤°=zŒJ (WÅ8Ò9ƒVEjl íÈ0#MÇWÆ.™Ì¨)¬#^ A$-@]æá}ƒ,&f «˜'[ü¢héÖŠŒêâžÌ.†–âþ`gÇîyTs6’ Ø’tÆA» dEÌ£Bï “)qcn¹sÙ!…B>tÞ•áT–G¥®˜ÖéÏxÈæx~ÜÇò¡‚ô?À­ó"»v?%Zyù‡Ù/þ£`ær?[Œî;¢¶wß^C­sã.øØ`ð66RDA$wNŒJƒi¨âÏ´ÜaLK_ßS¢Üší—ÆÚ°`‡îâÌ‘Œ&oy™`Mä{JúöS¼nÐùˆµnn˜Òõôýr¹Þˆ‰°>:wË 0Ä¡R–ÓTb´Û“N€þ&ýõŸ .Ѓ\ëó=ú¯¯ea¶6Ýç ­G9¤³â@†ß¤×”ä{ÂRª?{ìÍäF¾³ÝCÆO†yµ 3'9'ïc3˜ò®¬îÄ”­ÉXZ¶}zºao¶pX˜W7lg:‹°°Ø~-¤­jb+2±6IÔ«¤y:k&øœ ²X®Î3w<—&ÇÐh²‰™öÍâFÝÞ»‘ù7Mê `ħˆðDŽ!d~"aHîLÐ;ÅO-³Lñ²`ZGt&©!Ì*ÉÝË¿oÛ±á×0r— >³>xue ¨–™®´vÐÏBÓŒSŒ›ÿá–Õûq3m¿çÐ|rÈ; £waY¥7,->€WÀ¬™ì d¯ Eüó½:‚™(SÊY¤:ùÎ`td-K£å¯(8™?ç]¦c: 7± ÄÕÂYR ËùpäÓ'ËÆ'Œ)¿ ’·b9lP‡1™¿’ˆøÁ¼×Ò#œ*Ò½Å_÷ßüfÐn@GëIßöI,‡’ãâïg±×CK΃ê¥+Qâñµ¾÷̲§Wì ùmq™™Xÿ¥(1­eC1Çî3Õ‹ùgN€l}GÎzÛOm™(á­%Ä?I^‚ZÚìëð¼›–p;$±ÅÕ°õ F†ÇãåxË{wý$fšÙÐäMg$Œêæ»ÍRØ&ÀÑ8:¶f$}±2"ÕÍ›(# 'ðtw“¾αq•! K5’©1éÁêGÔ0ѽ7É»c"ŒÉÖ #É®T×ËxT#Óì+Ce1lÎØ(T)v5C§ñj¦Àñ\toûž¤/ d›>u&õ2õ’•êoH0ºhPÉ+ã]ƒŠÔ³ tOèídж¿x„:véÉÿ1ωx…É®Ÿžl¹ó {t ÷’¸ì÷Ɉ¬©©£§ÀF2.»†œéêš7cˆaë9H°QðÄZ?40† S‡Æ3¶ÒÈNtFÔ&Õi´?u¤év#±IÅߦH®½&M÷DFÑ£'½&M<1Å Ó£Tå²îþýHÊh<Ÿ¨©]”¶hf61öàœç-oMPº`ÛÔ/sŸ­¼x½·Øù{I៥1… Úuv9ù_DU6â„ ähMUM¹i—¹ÌLx÷²y[÷üt·ÒÊ2Ú&³UÈÎòoé)÷tŒšÒßË, ­ðï<¸IµJ\5Ó_¸¤Ÿo±ÑôêdÁ‰çÎØô¬ñ}‡ñ—Ÿ:UµÈ¯Ž~` qøn¸3«ÑôøÔ\éü6ŒÎš¼ø%MÛ—ÂUéqjK ÷tìLžª”ô‹ æ®qÝílJ¦Êäcª­¡‰UŠÉÁll¸sr}j‹…òüÊ Û#ë–½hoÝXê¥æŽ¬·¦v ñAšWVÉWÆ1­»yJé ×Éi çÄô72¶¢*Á¨×ø>¤·öý”_‡À5M,öâ°¡ qSaÖ‘´š!Ö]“† Ìa *G‰:K3k£\þ¸Ý›vҀߜz´£ðŘ­ø +nO‡±£v$W am^°TqE½~…úw‚œÕÀ-1ÚxÓ¢%†$Ê3iaCw¦ƒPË·£nˆ‡ðؓѯÖ,g¢ë¹B±7pNÏ8né;v&)Ø¢| ÌÛ¸Ž+ëÁ±ñ¨k¼Cü¦iGisniª:‰‹Á_,ª/ã\##pöÚ&܆ÒRl+Pu¦½åOVlF/ȺÐÝ1?ššöŒ.%RåëÆy÷e&Öuû†˜QøW F*­#ᵦ9c—hú€)]A“ܱ 2bm4iÝ…ðVñ5ÚØMÌÏá;é<5ã­Nñ\b‡Üâ•Ü1È€`(±°gô\F{¥©Ã‰LºYTüé q&YjGá{j§ð$wÒÈCPfJIïhÁ˜7ìÿ’)rÞ3ˆ°"ï¹Ä‘ ¢.4öCÆaŸôu'BÕ¡¨ØX?4‚ÿïE-y]Kz½–ô„ñ’Âßz§D>œ=âûéͧ%6-ïï-¡Z4§dKneÞÃy‡ ꄃl ¹ÉÞ¡ÒÉr;ï”茼”cRäÌ¿KÏißæ}{Ô-»‡®&3|–¿uº3=gsy9;Ìâæ¬y"¶À¸ÃX#a-,I§Ó8Kn½5MÞPÎoâŸïÄ£y;œìùvçf¸Í‡½ÊŸr¢¯˜PÎûNÙrfÑ©¿Ÿÿ•¸sÎ\§;‹þ‹sùð[ÒLzç’¿&xî5v|©7u-ÐÒàW]—¿Ät*þçîcÜœ +Dïx—d÷Å=gD_Ì)Žeô±ëØñ¦£c_—0×¹+Ï/ÉU¸acܸòÝgyYÎ_ìž,í~Ï+i{b&òË+b‰Ÿ+‹ƒ1q쬄 ƒÍ\àAÈ"ÇI[)!…Šz;æI¢¸²±¤ÛL "Nìzf£‚¦há!SƒÔg1^d¢Ê©X'+!¹çkê×µòÌ,ܱî^Êofj߆²­»s{Ã(ÃîI«`æH2vÜÜÛaé’Û–dF{…Î}<ÜEž-3¶°Â¡y`2?ìkl÷Ý5oÅÝÜÃüX„>#qBwÌǼ3dâW‚ Î¥EÌËæèMž4r?Ê£´µ3tš®ÔrÅR¨Óg"ÐóÄ"[Ååž,©»m'òi]˜H“ìIƵ`TDjWNÇ|׋êqµgŸ]yYñ i×Û}"^…jjY;lz~{Ε0Ì ¦còT5Y:ËŸèÌÝ1?wo™ELïGÛø¼Á¨ÄBå µÔ ÎCg$'o³eP¦2QÞ½QÏëü¿¼NÅà ˆ÷ž 0GoûcbçqÒî@ÈéŒ1ªµá˜¹m¤¸ œ[ǃßaH»&š!dÁ•þ, kïÓšc\žˆÃ$6Œ|fïI¯7PAt¶]þézÄÖ6¤Uâe™åÅDz˜Ò½#\ì–¤"…–Ñ®[a3ç‚'W W‡d kƒÑ=±þ ‰q×$ß<6>8cžTo1Æ]Þ´äÇÂu—ªaŠÆá/2ŽrÆ• ¡å©g¦Er€XI! ár±µmGŒ§ÈmÊ @ctKO þ"Y6€Hž’oY#’<%wS' L¦¡9h8: ‡æÛy"°æûD¼g¥aPÝ‘!·C×ÿ়©–á54éš°ÈÅÌ!oÜ,Lä\M-!(V=–銉>:h>ÂDrNÙ1þ¨¼xúS2­ˆëÿˆæŸ=± ºž3Õゟ__vžÛ±krp¥»"Ò¡ŠAã,@J^p¦¼Q!Î-Å’í¨QMf}¤º©Í¦íÀ«ßLw­ò“ÒMþ‰ÚͰŸ¾ç_^&é§ln.[ukÝ1¯è~KKßSà<öÞrŲäKŽ`ôëïT2ªqÖâç¨î"dÖ[¶jüšÜ"–:fV)þ*·ÛE?]s,åž-pš<Ú %ÀGáë¥92ÄU²vhFñöÈ`;u€ÔÈñni¨n¯`à™Ž»L7’È90Qw²„³`·-ßš¡¾¡ÈIDŒÃAZ×`'eŠqP„‚ÀcưˆÎr„‚¨p¡À¼aô0N¿\'È3óÔþ•#g V¥£š 5AbÓ·PôÓËŽ¶šqúÛ¶' îØ|Mõ0¢…ø‹±0aƒýo,9οіdª)}dªlížHZ…„ ê#p„ñ âVȵˆk'C3<­ïz–w!H±Šè;«;™m1…Fë™f"Þ½ä^´øiî÷@cbã<Oƒsi$# ã‚2á ŠdoGè ±¯37@Í|Î7Ìé[sCã³äQ=_ùhÅ+“Û§ómÊÁ’;ÒN©©EŽøÁqè®@ÉŽ‹!Á9iÖ!þZ‚¿!ºŒ5ó?gö\¯FÆ9GC6‡sDq01s_ËPË”4P×ÛÀà‡ ™£e_‰äÙ"ôB{L ùó¸ã±FÇô~"ƹEkaÕ%Á\°àøq!b ¯™6ž¤ÇhK¾gHÀbëˆ+À®byw˜z|¯,™¤iráOzdÉÁ tFµx´¶´¡œˆõì…$ò ö¾ÆH° ’5±…侨ÃZÀJ´ ߯mŒÎÈà#™>—¨õãªçB†1œð;+‚³(‹E„I*8†°0ò¤Â0Ù6sRG;Âg܃Òr1A7Å.x†(w&S”‡pž¼ |à!îú4æ¯4°é•?æöOú)မ%²q9y>ó8ûcj‚ÞT¨ø®¾Ï) IØih”~KõÿÓ¥9Ý(~ Ÿž$D;#$#9´ÉMT}!OvÙ£sÏ&”»Äëé?x¢j°- Œõ8á†ízÜNM?R˜ 溬”K¯ e]²l¯¦ìv¡rÔÄZÌþ'Úï'€9:Ç4÷ŸÉ×å0I쎇ݑDúV<ý!CEÜÛ §&wª#&h«¨íòŸ™03üÄÐÇ/N8β7¹5JO˜P4mQ²r”Å\™¸ÏyÒ'/?rNÔt4³ÕÔ^bÙ ¿Rkb_'ž’ý/wƒ–#]y丟h¼ùÀX܆™©I±HZ™ä[FP4ö1ÐuÐB~'&bŒ·î[Æ[÷g´yžñ]ð>±€ÇÆ8I˜¼Þ)B¥¸KæÉPß]ðÓpjx· ×"®OäèÔ›¿¯£”’@˜Õd'f8ÆÌêÄ]š õÇ ù¾^“f^I·ÊÞ—€0ñÏ™³3ýš oW~§ |VäiÖc~å…Õ zgBÃIIXäZ´¶ín9£eæZ¬ælwÊ[[5]Í“½Á?0€ÁN,#øW}~ÞîJf9Šö{lñaÿÝJXý,MFØ%دŽÌ-VôØÚ3íÍzKK4êm Ù=´Œlß136D€š=.¿ÐNÁÔi Ažnü #‹×±ÔžÛ®>°–/©ÌsðB5Ìt› ìO ‰|Ì[Ó>°ƒlÖßkL½tÄ™¯e„Äuß» äVŒO¸f;~¦u8ZzÕÒûük§í-¿iè('øíS{ˆTaP(ñ*SôÈePWJf犊j]²9¾> =Oø0¡Ÿ|üÎÀ-ëÖW»œø®¤Esîº×y0ZhÞ/@ŸäqG&^´ü>è˜ÁƒPìoó=Å£åý¾psçʃRyz¨}Ôƒ €9îešŸÓ­ˆÖêXâM`—ŸF9ÔôàËg.šøòå˜F›‚ØÌf6ñì Â@ÎBüA9€1{£Ÿî‰±™QŸïò$¨ùÆôÓ÷|W’×<éÛ›wþÏ´%e@ˆvÜÏõÌrýåµ}¢tOéá¸åê$Üè S\TÙû Zà÷ÑâƒÝRÄ­–{©çOçQ3¦E%úAÜ]Ý-ÇW:Ó9F?4¨¿¨ÜO˜=ÁljYñMªÉ[®ôêá ¦ž‚ -•Mx!\€Øúö&®i5†³jC!މ„¯'‡ø"&ÐÛ ðÕ¯³7ä0´°!¤(W=à«¥9a*–<®Å¯| ®î]˜Ì“4/9Ä ¾bÚA'r¹Gß´¿åŒvÁ¼q_ç†øù½ÞG‡Ð@àÍï‘Âמ5ž2bùy2 ʉV"ò)§cú㦱չ´_F,jK›™Ž*'î‰9èѶaú„X1WÁ¦W0q®2røSš¸†:ù»†Ä1Q[ÖîOŠY/ðjOܨ!>{Ý –j.2ç×=áFøÆèväûÊHcték{ ²( y5±ï0é|¹TJF›ìÕrևɮÌàÉ{×ç÷zlÌF¤%®A6 ¼Å;ÕЕ Y¢Á÷M– ÈÌ1cçF3!‡AŸÎD類âw¸å¢ümo94ßáéû-穈ÃàÓ-kpã* ͯÎ]‰VƒL½ Inö¨Ý­1e×HLI~0ƒˆáÈFö’s+VéøÊ³&j M}óÛ€¨LÛü¦˜ªƒ}yfÿ˜Mü]ÀÑB@1³‘ôŒVAø¢\FŸ v5ÝÑyÀoNl~—õæ¿è”‹²^£Œ1]yÑ[2ô%*ÝP×þ‰™O0²)°‡ýó=^þ\¢:ÒŽQ ye;v3“½5$H™ŽáÃè§6S‡¥§ØÇå%—øœ1\©î[ÞùIÖ¨ÈP „îˆñÄqâ;qÌ×ó¼ñÙ#ˆ,b)›,!'Xæœa™Eb¢ Î@ÂÛ,‹ À¼IŸˆ«ˉV@v8ìL,ý%¢„GYäÀÍ8 >ø[X¼’û¡ &žª\|¢!EÜcU¹Œ$ºŽ›ÿ¶Ø{\Ú[;G$Ì(fB/E×ç¦ùDA`‘ Ò3Î8')A2µ`œ˜ËÄ~Ne€'=è6PwtùÊúSÚèÞÒ£~J,ò<»ÎéÛ,†N&‹î_ßRˆúííø÷”vÑö*6g˜L—hÕ³È~uN§xÊ@ÒN˜|ùõnµ¶¤ CGþ¢m,&YÔvç´b†Žñþ §6_ŒRÄ·-qÓHNÖþ÷¯Ûêî–í<)œûÂE1¡U퉆"·ñÁ=ì±EOÇãЋÛ¸`ˆŒÅæ¦I‚/%sÄ‹®N›WõwWܼIUòù}LO\9ü@q§Å0†ñx(á—{}N^/5s癦{êî”Ò5˜[Gðlj¸^ÈéltÈ&P84$I˜n’òi.^iÂ" WWÄ#së˜ÌÕAÌžé›xjË‘æ‰ÄÓ²?ÉGÆ"ˆ½I\;¨Ñƨ l‘ó­ü‘¥K4 èŽE·®áè­Bp-µäMô¹ áú›ãIg$¼ÑÚö6_£Ó{ærËy¨cIŽºõh2jÒÄGâ%Ä,Ûvƒ£îÄ×1ŽvLL˜!ðƒ¨šØ‡8ëL"ÅÁ¿™Ÿ(ˆ‰8„=F5í_L—œ[óÂks&,3£Š@Ïdâ˜O±r˜Èk5±€‘£mæR•ŽÒà‹4C+KlR‚s”¡D¹SñÞ¡l&"qQßir¼ë4õ‚¶äW4SG®ÛØ2ñMs%¿M #ú8Òôúî‚OK<Ú2ÖQGdLÊSQW'0™F(Iê#ÊEbì«Öû+ßx±NR„0$QðsÛ‘©CØT ª5ÆÄ;ítRÝØË ¬<ƒ½_ Ç'Ù·ç9ÀØ,1y-œƒkno»q9§½Ñ·¹óŒŠ5±¹AtÌÉÝæèaæ{†å¥°éŒ8–ïb’¸š= ÂpÒzÄ+ q,3VM4.`c¥Ì"\”Ü&óWy —‘Ö¬œ©Õ„|ñfÖ.d¯l݉‡ìùé–±´by¥3nW“s»‚6>K‘™ºf~DÍ‘Ÿâ ÐÇë5‡Gs\èßÞ\T÷í…úcÚßÞüÉ¡ó_ÿþ_ 1ñfT7¨þÿ–N§’2utIÈFôa¿I›¥:…â mŸºáFeq:¢ú-þ‡a¤z¹³:jª¶vàVò¤]ܳM<ªZ±¿HÔ»ØØÆ¹&÷ô¹[îxPo½Ê2 S[Γû˜hæä6½°×®9^ÈçJÕ!\昜×¼/xu¾tFŽ Þpî³ÌRÁ*'JzKÈK¶ÔËá>¶Ï„jfO ö ͹Õ(à“Œcoã¥À›_«;B¿›šx•ÂèXìÓáŸe^Á±ÎÔ l¤ºËæäÝgëhþŽsÍ c=µJT5.m!ý-ÇÐáH.É…É£µŽ(݃8⛘Sjd0BDëÕ1ªŽIr Àñ:7Z7¹ l¦#¡ o‰9í]Šƒ8³”1TQ :£%¬±îÕ„Â&Æ8`©š´Ä¢¥m,QØùs@K™àí@ÌnµËqÌ&FJbr´e&/Ú]v$ô@þÒçI#2Ü(†–Mbæ<.‚e¨F¯g¶ñ Ñ܃ç7.º¦Ò“O h2bÆ»¤õc@\;Z‚dÞ0HÖÐ ®Ì”f‚_¿é énéûÃ]×ë•(÷˜!ugò‹c‘D4›q™¨ÉV«í-£J¦MvºAÀuï‚R™šŒÉÐ=ùmñy9ÝŠó ¡$Ï¡PO†I4tá±7#¤«É/BBÈWÊœ<¢DfÙAg€@e&f3,3Ln‘¿E‘'vbØO°Œý噣ðYö×94MN3 =ážiLn½{Ã+[g4«Ýà™Ï³,ƒX‘_ät¯ñÏI PpÄ‚F~%‰3€÷0ŠãNß"ÎÇÌTgÁÏøˆ_I ᦥR‹_^3‚ßÔk´—±ôéh§˜Â²³¶ÍÑV\Ö+X 1㣸ú[Ä;õt>æO‡v$¥º=..eÆÉIY­³û3U9ï΄yjq jŸ' +p¿§Äs%ɸqw’ ²[+C~—uÈ©¢É½Ía©†$AµÅù¢u7ôD^ñŽUâºA_Ù¹sI:†°™"|@e‰ACžš&‰L1·ӈܿ¾E3j’ô¬¼!†È…sªÏúp1Ñ ZR³÷KÎÝÙýÒÁÒÝÁ8ud’•1ÜEãž$=¿ EÁZÍ ÔâN,áTmUÓä`˜Œ¯ð{¶=!hv,RŽY­…©!ÒÒx}1íìl<|ºfl“"ÔØ©‘dØìVœ°´ ¤Wƒ\¸&ÑÝ‘Q‹˜ù™çño e;Ó C5ÏA5Œ˜r§&ÃÄÇìÆÅ)AÞ™\êÀ#Ï÷š$ÒY¼—Ä> ˜ÊñƒZôÈsL9í<±®ï¯=¦ÜoÎëÅ'N¨œóÁñý ^â䦗£ÂƒìÛù§q³`îï±|α^ÍT–îY›R ç÷¼l` ¨œáJäéÆõý-´í±›nðÄÅ꘠!n^xPç–žòé]˜nH/yQ‘ÿOÉ»3§ ¦ž¨ BEÈ© Þ€¡4ƺ[÷æø«!†F‚›3\Úôø–ò5Á¸þ¢‘â_¿¯Ã9³19U5Lˆá?%oP/îƒV=цk þÓÄà~j²ÔT¹ŽÇi®ìüͅî}´ûÎ5ýÉD(™Z·¹†Ü· S×?WÔ³ëtá2ý9ñ´…ùI\3òY„ A!57Õ§³ó"¤µüÉŸŸÓ„:;;ŒgÏGJÈIž„ ª®Ù.(€}Ýô>‡â1 Q\ZÁ PŸ>Ÿ09ÐÂ<@øQ—û5 &ÌÜå½..•¶s>òÏwwÆ\ïá7ÆË™‰.¿ñú¦<öPh‘9©´ïÇóÜèožtñS²wÊ)¤>›$ŸŒ1:»î‰1úöWü¯ï&.€ÎÙ1ÜëóŽÓ^TÎàü-­7q™Œ•£îÒD4:–_ï¤HMÞ¹ž2¥Q[úñáD•»l¶Oú„é ±3"²½×T…SN!gì2;‚Ô‹:¥'˜^_–Â08ªB畉º6:‘_^g)˜ž{o}2ç¤*ĵ_Ÿæ=õ_“iî1÷»¹£×–@É"B¿4ù›ˆ]^GZÁóŽh(‡ ¨-ýÉ*¼ë×Àû_»$í1nýljbFÎdåVÔCðãSCGq!C¼mK’lÍ ‡`H,E˜ÐSâÕ…‘½7šÃì{;ÄÆêÞrѺ“²$Ž2Ö}`H÷×”ßk(cÖ^X„g)•’Bl"Ó‡Èø«Çtþ‘ âù¸ú|·$`Rëîz¹ÍŸòô+•D²æ¾÷æDqb(JÍíÄ¢$CC^;¦KG½>åÚØ»‘#ÀgÇ¡qÈYŒG 4x=²Ô…¸*³£±ÃBµµÑ%k\T|j1CƒGT æMõûgÍ þ3~_Cs1dí ¯ícß ]Оѡ Tƒð«à'å7l¶11‹K¯ˆm¦Têg÷Ž¤Ð˜ÔÆâ{R’s|b |¥)v“¾)9U8Y™r¯«;ïç%±Pˆ›³ §ØøJù+ÁÍ-÷ÇUZ–²eî ýH²Pƒ&¯ÔøJ}$Ù²Ú0+NÆo§‘˜%ø¹ÜÉ òïG8C×â­(›|Ï¡á|&8›ÆOç[öžr'}â´W× 4¼×Ô™N_($yzH¼ä—˜Œ»ò”“hWc’JÐ:ÊÄG ®\HV6Ä À’cAcÂËÔè+ŸG ?«¼ú`—¤žBHÀŸRšű PXâµrRsCHÍâÌ’nGˆÓjB VkFŒ ]Ý%h0…„!žØm[ü~­Çá@ëðØÐz4*D—™ÎÞe¼nžÓ¡g€´ÆàÝÑ$^ש[N§nju^'ÛS­,=>¾‘ºåôÔ¤ùË-‡ñb3´Œ£ A< ‰¸¸'à0°Òø ×-û°œÉÙ6ôjK@çÖ9öê–¡­¥°iPôW†–‡î´DÃϰ„wOùì!¡’—˃Ž@àq<ÑW7W 7F¡#¬0k,3\½Ä›˜Ú“@ @ÖØñÒS5ªŽœ;BÉ:~–EüŸi?S;0<:Aܓᬦ–à Œ:Ó„©ïØÞ:0_?ª@€gå:óf®³æ"z†kfÏj³guGÎöfG“CðŨ!ükjaŠ­ÄÝ~˜¦aP¥Â!‚Sé V®Ã<áj³d"f*¦_G€› å(›†‚ÔSÔ.²d"Æ¿¶ß)´:Q¸ÉP(¸]0AíÉQCc¥fp©£`2Î0ïìô–Yxs+stÀÊš±§CãÌÝ23t']OžØ:ˆ ›ÅU7–å}K Hâ:Æ„p*ÑËçQÑ`jbE,¶äî뙉D“w·¹ëãވݑ465’9›¶ä¶ÑgCÀxåp jý„¿=u¢ùÂ’ öü lyh(,¡¨ÙŒQÇ^˜Ýub ž'hµê”ù¸7ãÍp'æ‘ðÖ’ÛÆzä+{uYàŸ¼g/ðAný„óÕX•ŽO7óûÜpV4©ŽÅ%õÒÌ€û ãùHÒº(‹œ0Á Ië²ÄQ$É1QQäli«ô÷6ÀëΘX&£F4‘‘ݲÔ1ú»ÆS`Œ\1Ú^“ó7M4aìâ³ó—´)™cÌQzÞlc¯GæJƒ¿m$N5=aªø~Š˜H«\;ój2 Î2r}!b^Áw‘á¾žçø—ð]Ú1èü>z¸–ÉAž›lîn¿1Üûˆo”¯÷5w4º&mã0]nìÛ#Ÿ[VÉÈ[MÇXÞÐÁWN»ÍÍîÇ1Ã[¦uXITHƒ<òøÁ­fÓ…X=+æ4œ•ÅxçÒ=êàâ¸3ÍÉö¹h@:>úËÇåTæ¸l/ê¤Ûðécƒ÷]c[ÛÜÐ"»sLÐY>ñÌd›DÝÝÍfÑDW6ºO”Þ‡¸h‡áŒtýäÜ$þî|$3a$¾!F’¯4Òõ•Á3ã5wï1 _ ÿùû6,2Í è&uêHyèÌC¨ËŸÆ4ÌžzêÙlÂ3Âtšw»3ÁÎã•gá~½6(q}{ñà{£&¨¾`2Gž‰@bIÎÙì•øô6…˜TƒôluìÈ'X£egr¤"‰ñLpöЋoDæá¢Â•M»Z±3E÷žN³£11Â?õ r9ýX6¹ñúìH £3Á†ÁÄÜ™†‰:æ ä3NçA43ù¢5ŠÌÀo™‰y¯CÉè2ë%_§1ðê©Ü;I†ž>Áâ $ZÊWñ{¹ÌÞÇp>ßàî3ÇËñ“R/¿ùý«ü¹µ¹±BN>‚5Hq—ˆBbln鄦§c@«9–Œm..GlãAâ„r¼¤>~ÓÞš÷u"ÙhÖ÷¤w`"K…<3`Ì'ˆq  ÿ¼×Hó6,·KÛ4Ma–@–),åü³€ÄÑX2MIĹû3HV<¾Ò‡l?HSØÉO>ˆ§kނ܄®:¡gs>4ÒÈfW'Éqo"™<‘´Ä½ O² êá|Nbféz‚yÆÔÆå4wB9j6ˆr ™c9ä8’ÑÚé×¼üéPW¦M°=qò†8¨û3 ]œ$tqÈ~XfcFñ:1m+ù¡ù­O¸\ =>Grk—7 Ïæm!&\]Pø3» qµéÂD†p¾=µ7ô3"^9qÛv·üÂYk’‰ 9dT™ç•…}æO߃¿Ò.@SN_¡\Z  Ã§Øû }¿rÌù&G™AŸxsm—T[ôÙiñ˜Fä^¢H ®‘øµK¦+¥a S“<ñ!MMˆ´A7ÿغÞÏYôíé1†Q¤H¹T¬Ïîø~“pšó× ˜+?žá÷‚§¦œÓq"Ñ‘(ÛñœÓÆðèwšxù<†÷FЧ€ù.ó óãWœg2‰O}öùõˆkbƒ1‘c"]DM¼4‘q†Hf4‘•ävïI.‚QÃȦ?]~®:ð®•cèkëë‘xÁsÞ1¤ØCNOùÔßæŠˆ4 ˜ì A(¼:<Æ…)w.2nÄCS>ÊË„¤3Áô¯Q¦à Ä2ï|“Ûøé|Õ# TŽ#~¯Î;x/˜)s¾ø,ýò ?{ðùLËÐÒ˜Ðä?;Þ>ûÙó3Ñ™î)»Ú±Nq·Ìã(øRÊ…†ÍÿZ±ŸT˜|:LK*¢fÐî4¸dÞ6Œ,Éâ>3 sJó=nÝ îç­9员wuÔÙå“€t½ÜÙ™þ®1èÀÔK†6$P‚È}ä¡$røÉ0NÂ5™zIF¾ÄIî|2ñ7­ õ1ñ¹âCDÇ^m&:0K±µl䨶\G5æÜΔúÚÐ÷nfÉ%V@yü×{ºùȸ¼*X°fº»;)"¯Ò'ÏdaúL³7¤ï''vjGC~åÔYv‰År†ŒS‰žaÉðç­Ê_Ù”s6D‡£Æo2$—sx“Áµ ³E­ùl±»¯ôìãω>ÚÆ'ßžF6-TªÜdèøáëH¤[®ixoá kÔhÉ71ùRó×ûHï˜Íÿ^u‚O7¸cõqbcÚ]O±­Çäacžà#å ÆWç² ¾uYå•FŽì1¸Ü3â>ˆìað” o"så$Aô„°ËJ‡ï«ŽNw8È9*6!jÑ{¶°D"gƒßNGŽ×xùF— îã$Ø9:´d²0}¶D×7¤Ð"ÓL4ççÉkÛ¸Fæ²%ã;2T3.=—ÙùžIÓh2 G:"µT¾e©4Í*….ObiCFx­'¥Ð†!`ê1Âu#¦ÜŠ‹"¹:c‰…D:G=Ñ=Êü²â:@FæSH.õÔ0¡ÖÑv½÷Žv…H`¹È;ÏÎÙ‘þâ£'OaøNÞN³×Ž,ý9¹ïà•ïœÒÑ–K­Ä6ŠŒSÙ/VN³OëY$‘n<¹n‰z‚Ni£´t-i逾‹I˜xpHd Ȧà-È’•@¡æå×-nËWüÅñ舟ÿ?étì ÎîÒ˜¶£Gõãß;3ß:™,ir­…¬i®¬$p‰ÄœŒr cªt×[œ‰¶šØ½ùd¸Û½áÌéÈ´>^; ó!ïã)ÈG,Ww=“ƒ®ƒY£Q$†Âf 7Ñ‘ªÉú»?¿âj0‘5,èÚ+‡Bº‘É æ¬?KL#Ûz2JoGr‰Û±“†|¾ Œ¼2xçs`Ž“»“;q𥿖»áiöl÷ÅM¸åkˆÕÊÞ0©©é!zÅÄöRKëí­Ïxí8è<Î¥3öéœÿygTì|3òJJ¡¸e"*\>ÿt{g£Ózˆ}‘H’]‰péªqŒ{uäXOD|#±MnÍ*Çl1CÆÇ±{»âÈGuñŒMÃâa² 0E¨`üJøž¾’‹ Ù:6'åmƒcëÇô,š'¸#¾ŸÃsšlÛò'wû<žD­‹€ ¢y4:Òˆ÷޼UK"rNDÜØà9Ð ï+Ÿ†'Ù8šŒßõ™\ê†ÈFÔâ8Àµ”¥÷¯ë=Ž·m\ãó×i"nÔxNÒ4yÞ´¾ ãb^ËÜa4Þú^åÏV;^༴=:eBe(£lÓwŽý^×M78v1·lÌ{õ0·6ÚM¤qÌ+èb“½*À{azO|êAnZ˜HËÈXgSdذ7(6 ™ 47DIïk>)'£ìØþäCýЀ±b¸¢ús2>·…Ìn¿4oòo¯ÌÀU{õùúùRÿó«ÓMvÈÁul],Yg×Q2ßò±¸Ï¬Ÿ“¯G®5—6÷€¼š1ssŒ¥g6)O‚ç­Š’!4¿†2M?{?ŸÁ •t>;oF˜¦{cò#S“‰;ÎÜK²ë]öéaŠÕÈÛ#9O·7}`šå¿Íi|¦oo~éoR½ÅîýÈØo „¾FÅ/˜¯¯mË.7œ') ÑÄjÕpË.6ÁmçQK*ïÍW?wõ©zê5hIãƒÔµO—[VȨ=ÖDk0:bNfp†EI8=KÍ¢ˆD3œ‚wDÎzêrVn‘*a –Â6ú|ôb©¤˜á¥7 #o£ ^õ> 熚£E-¥ŒòÕyaämNþœuǯ£p—KÑïÇÙùï( ©’gTx7:ÝÜækiŠ®jMg3=[:nº“ÃãOÁÆÍî– ¢…³Ìtû @/V÷¶éȾÉ8)2i–Ì±ð§Æ’¨ R.8UO–­¤¿Ã¬êUóJ$¥çÄdŸñΦ YëÏ,Ωe³ãXxkúêÆ“¨¨øÜ6ŸÆÕ4âjPtB>YÝÓá6W±N†¥SÉ»ip,p'š ÕA‚Ñ=*Š™„ŠûÅ ÍMµ?ɯŒw8û9mgØ©Š¯ôäöi=Uö¶¾kûB†¦ïñ{›áïÌtqà/¾!óLðoƒ$Ù#. y3v‰·ñ²BK‡|™WݵË&Í’ì’Xä÷`«€£píl'šœ¨Ž|æó[>TˆÛÔ Gœ¯ns Æò-ŽQâщFp¹†h±ñ—q–Œ¯n`ÃW¥éØRoÒÆž‰çi{Äq’@èø˜xkìhÃ~E7ÀEÌçÈHË4]üðýHG½GîêÉ=D™–5XfF ï#dš#³ \qF_ж9YvÔ‘÷qÚÖý 8r§*™ø¡?j\µÉ}¦-Ó½Š%º›ÚXÖ‘ê@=Dåb skG]iGla€Æž¹zÚŽŒóUçÑœR‡`•"ÙȨW“@*¹QáŽRÞs•­fe>¦ñiÑÇtÔ#ÑÞÆ“ƒ1`^‘Ð1Åè3 &aú_×1®¿’׺؃ƒ­6lô¯…²+W|K‡ç·U|4}vxŸ âg@¿, T<#QĦÌâ]=xE”ÔÃ}ÊýŠÁµD}.¼…{2Y{³(2çáüNî‚«§ìÍ-c‡3œâ|eQdŽh¦S£ o9Šé©û±ÁV›§ÞÞò'¶õmP7$oůuËÉP~ŠÏÐ (G­:ß@%Þk—©£“й‡Gôƹq8!°2£Äµ·$§ìÈ¿Hºœfðx}ÉÌÜ’¹ñÄ´óS“gX¥_ÄæÛP(Ü#ÒÈY:±d½îL´ÉÞN.ñHh&atä¶‘ÇfælbÏÃÔ˜g±:2£Ø‰8“Ša#^wïØÔz`±kÊÒ<%k”Õ`è(§û H†…× ï鈡­fWSC5ùç䣎vÛ;¼ëbçP‚í1¡RöÑv^Á™2œäØ2Îѹ׷ü=í5˜|-Êhp·MG¾öŽŒzq<˜Ô ‚a¬k’Åtî×JFŸ$Ì-˜ÿöŒ¾¤!dC‘×`¹kîªqtH0Z¨Ü||é‰ß¨XrƒZº!£^mA)ì2Ò$cÝ+Žu5¡L?w"êá©1D¥@õ=5ªÉ¯ïPÜ_ñÞðGþ¯ñ>Ãs:^Œã{gq4‹*c™åçT¼Ç™?²°‹0\(­½f!|p¯i‹#zÝYT<û+|çv:ιlº›éA¸^^åüéµÉž£x ®Ñ@èCž•Že†­¢´F*‰@‚¨´Æsz‡÷æÏ[%G<ÖDõÛßÛüœê©ÕhoG˜ÓÊÔkG—¢›lÊìñ5 “5‹E3Ÿk‡l I‡<¼}ßæf»ù‚”FÊ0ó5䫺x0ûAc ƒç`ó¸8ðf3ßötÍó[“ôÖågBúLUë\Œœô³óª$g#Vç:ßä’êîè!0{MöÜü$:ïü[§ooÐ?Ê úÍ·É€³ûçɶýÍïü£Lc›7ÏοwóêI%8û·{3ÿA®Íí_ÿýÿówN-&zêÞÞ®—sf´6¾!à¤Ïæòìx¯^¥Ëö‹ßî깊­¯¬Í¤ÓÆÛqISMæŒòÆÞñar?ü?ØÆ[ú×mËLÔ CÝ$›Êyò-ÓÇ*å i8< óv'®Ÿvds÷æÃXcíÄ޿뺉¼^¹$ó&Cãú!«Ñ²¡ô¢^YŸCëÝ †êm/DÎ[®/—¡î Ì ~¯1Ê\ÑŒ40¯êûxÕ8bWL"$ïÄ.¯hÓÔµ“Š|oi$ºä¤p…W›®Uè ›ž@ÂL-ùj vÅò+Ñ89f¯îØxÕø‰‰mÍäK'´)K*ïà Ÿ/!Ï1Jdg˜ì7®£d¢âUfCd­Ø÷~ÍIƒ/Ø"%ÿ>‰6†(¤…©AÆÙ¾ T8m"ßÄñi1×'ã³|Ö)%|—çç$ÃgzÇÆMݓÓ桜âD‡¯–ŸC¾ §uæÕX²§Œ!ȵŒ é‰jµÏ-¹hZÍl­yôh\›É%Åq—g7Dë 3ØŽ ;UCÊÂï á ³žNQWð‘Rn’g^{&=´~¼,=“ÍgË:>˜]€Y¾áå¢é"WGVkòtÎvÌ¿:îMד»ó XâiloxÑÜ•MÐÀz:Ù±=Ý ŽUéöû?RXn—[.p ¡;]‰s´·˜x˜êJâ^í,{‡Ñö0ŠGO$‹ÑYÖå¹oi®>MLšFzmžQêa[*ؾ°9”Ñžf‰žÈÄ_‚„qâ”2Ja6*FäœbŸ¦hriÓk‹òeêVœè(¤åGý•Ì%ƒ¥_ç™<ܳDÔ4ÛGv,XèŸÍë›q ©–qé:º|v' ,’î)‘è«Mï³Ðµ§ Ar%ðìxû¤³#aÉä(“;Mä÷2 ŽÔÚP4õˆ¾2΀>[ô0V-wÙ9y6%|œÜgqÕ ×m $=UB1<^¡Ñ’™¶x‰1q·cvŠ%«0’Ùh¼­¯dŠßÑiûäPf,oò+ϯ¦\„ÎyÂ$èzš©ªÇÜÊ#áh8½Žß©¡žáį[ÅMÚ..p~[*ëONOði­¸ÑÂokGG®EÛë‘Mü‰ãwª?ȼž²$†Äã#ï+y,ø¾=Ù/R‚=¼VhúȨˆZü1-®žb‰‡ûÐ+mÞ!ö“ÙБ8’½E$ùu³ê©Ã Ø`Üt¾åOìÐ>‘£"½çótW¿Ùx7ærËFk!´8à‘&”LâÉ`O8Š0Ð L°,Z„1Ð+¾‡V×b+ƒnæCsëØ/¡¯ô•X±ß+0ï˜"þ|!c°@ò'&“N3 5ÍÔ=>›ápT)Î7䕱¬wÙ©3ž¸ðÌËäÃb6ÍàqÆ,ë.œäx8 ÃÂÞ*fÛ†å’HÌ3óažÒYBiðL¹¯Ø+©AeáLü ô‰Ð2¢þ‡Îñù{ ,ÞÉ¡%zçв`[!Â#-ãE@蘿A¼ð•Ϊ‡cÊ}ÇÌFbPÀ (ù0NÉ‘î‹vŒÀ%Ö}<§&v ඘1E¼ðÌ{K4þ¹pZ–LlDÂNÀlè®!Iød öÛSÜ8š¡“§C¢zÉbàã½Ìß³ü^}…5D3>VäiŽ=.€­µm“?Gmã–Ñ–V€ xω0ZZ±ª‚rŽ8\NC¼dTeáËwš0Edê OGGè8©RÊïÏø` “)yBç—8Yàn8Ùö–³Ž”›Úåwí)wæéž¿©Üñ%Þ žˆh8ç3àÄ„9=‘_{’_ë=q­w˜-kN86í l.2ýÓïûMÆÃÈ—ÄõP(õטñZ{Û ù !­N< t] ?Jý'tÕw¢.Τïù³‘øDrOø ÓE#‡cD7ÿcþôÿ)M©ð¼’ÐÉï Ç6̯¯'²þXG£C}|!ëЗÌñœ{`&tðm“Q qŸoÇ@tðq×°þ8£6œñèàsÆ×+ï#£\Ä…Ø!¾M½Eù?/±å7|{pþO~×o·‘”»ì!ÖÙ¹ÅÊj.ùÙ]/‡²…ýçûÍüv O®ø§ü7&(azû‡ZõŒä‘Ñ]ô÷DgFÛêó\þïÚ[ž7ºù'ÆK›ßrrÑr“3ç§ýtw/Ïlt.î^å2ý¾Éþ*®ÍíœUbôl†ñÓ=ª{c­âN<{ç|Õÿ)Íõoo’?J›övóùcZìæÚܷߟrZÉÛÿÇ÷øö­‹¿ëÚG ³gôoM4G7‹øÛ}ædîþ¡³Êê·ßuÌБüvשtš°N^™ý ƒµe½º.Eqs‡×XÍ·Ug ò2~½[g.8üíabKçn$îÛ5Oî|KIƒæüö?mSðQÞŸâ©‹%^ΞülK\ãíáÂ^ñVlçõÀkŠ€Á”‚d¦ÎX!b›ÎX0¡3húùKBØh/~¹[õöžX'¶a¬–Vl3‰à [*ZViÈ÷éŒ]°èüHû€S²ßÙ.ÈÊIþÚìøBJÔàaü~CKˆØT=M·ùâÿË]Ùãó¤ÞÄ62 R»ÓùìX$Ö=ù†mZç=¢ì}ÌFè)ïEèÉ$„pX&K|Íå)º’÷Ï Â0þÌ/ÊÒ7iÎ ùHßZB?Ôø#ˆ!‘˘É2Šî)n'­#fôÁŸÆxù>28iÊ3‰¥ÉIˆ½ 8§Qá‰ÍNíÀÏñž|ÎŒUà Xer æþjš àCnm51ºW“èñ{O~àŸšDèÂÃÊÅ 6çkÄïÌÒÉã"KÙ4²‚ GGúÜ[?‰Q"Œm5£ÍÄšˆ‘lzGstO™: ÏIh9mÆ‹R)ï¶?õ„½Ôö]? g(îêgä™ï˜ùÉ='ú:8|õ='ãbûÙ¢Ç'x-œ“¸Y¡än6tCÓ¯Îb3™sùâµÂÈ0d|÷Ilnü ŸþâÇpÕ µA‡ Sîoù _~åùŠ“e“Ó0•ʧq’Áμ(Æ;íΜ8=™Ë§–LQeO4$³Œ§aÌHX Æ0óy£Ø$7n5’*˜ÍaM¼k gÆ7ÎdŠvÁ)ª ž}¯-aÝHzœ(_åÈ/ã-Kq_uéɧ™­„Ü`â{«YŠ{c‰g„óžá;2®÷`°°XúvPăab~4·^ÙùÕ†±c$SC*š¤zÍ™4ãiЧPŽÒóÀx\вXÔÉ^4ü¶„šˆî̸ùÉI?MÒÖÑëÃQ@î³v”$]p/ÐŒ½1´Ž¸z òÀb<€gL»Á1‡ abRr§NWrÖ ‹0" gÌ Âù’å„ìFÊ-’â®<<…icÔà‡1ø‘°!B÷d¦Ü½ ®öþ˜©EÓÊezHtæï¿»-Ä.âüÿç—×ÿú?'§Âþí?¿c òÝóë¿þ3ýë{þÏôÚ—o¿£é?¾üc÷;’>ãÛÿ¯ Ÿ ¾ßñÿx·ý‹Wß;ýóÛÒOÿü:ÿ¬ýç¥W§óó9{펞/~^â÷üüöÈËçxä »ÅSD¿È¾tþ^æßsX<÷ßñeáì/\œù›ïéGýþÚ—âÛ-|0Þ¨ŸÞ'?ùÏîˆÙMÏÏÒ;ϾÓü¥JW7ÞYñÌ~½â¹æ¦'ÿñÛÒ-7Rñ­ñDîkNùúÏˈüz¯¿]U>-œüùÛÍÏmv†ø7Yº?f?{áù8ìªTz‡Ý!9l;•onÃå»i·|!³_ôiy]ÿ×™bÄŽ-oÛ–µÅ÷þ´xî>—~åç q~òË÷ÕËóÛ¾T­ ì^žï°D--;ä_»o…Õzq©+ž1ö)Ï–Ðå%%h_¾Ñ|õGW­>õ_#Ûjòè¹îNâ¿ðÓÚ‚PXRÊû".'Åõ«°J,”NßV*‡çšgþ¤Ö®*›næòJÖ/‹¥Xá$±]¸+é )Þÿ|Š‹7+- U׈}Ý/‹—±–^.¶7nLók6T ·-Y5ö» Uäê‚øðåÝ-ÿ°žèrR³Õ¯Ÿeö¦…¸æÑª*P^ªš´Gî’}åö‡×÷ÞÕ÷’KËÔÚ3[.Ã7ŸÃÕõ·ÕÊ…z}m-žâú¦ ô¥JÏÒê.îÕ…¥jÝÜNGýý]ÎK5?ð¯6Uug݆On®Âu)ÞlÅ ½ gõé¾zGÞ†-?¨…g³|kç¥C~½|ªØUÖ›ØÏëÝ8ýåŸ+yz‹ßöK5h]qÎÁª•åä…CÅÛnåÆ/=Û¡Ë $}¯å6ikó³x6èÚ±²û>V ’ëèKu U,“æ7øJÛÁ›Ã/…öÍO,­ÄkÝÿ §ËÏÀk1òRÑÔá*ôY~ᓘu ¥TûU*AvI?oŸì•Ê‹}卿 8Õ·M`ÌËse½«†·óU«gcå…Þ¡U¼§ü} ý ¹ ¬´]Ÿ¶”pÂ¥å£|¼kd—ï¥$`Û2)“Ö¾Î/ϾŠÛ²Ú §uà%[È)ú²¸§íâÑà¸.Žªmxó^ûK-í½È—ºØ’xl]•÷õ‡šUµøF+ãÖ•}âõkì¥j­BŸn±–*ÿU²SÍêØUJo6ØhøPM‰]`e‘%¿ùl_˜ÖÉ*Nïöíå1>uá®ø–Ë'`¥V^â”ÅY»çŠÇc}Õ[Û5÷× ߲É-“žžÓÒÂ3ûúšâ]³|eé ô¥ò¹ÏÖçMÅÛU® ?ÿT-sZcg.àBË ¶)lÑïgµ {$qjðNÖ&½P­æ½÷ëåÏúsý;d™H柊`̺Xc…±aPÇ:öüŽœ÷HËäŲËÄf"ÞñÖVËÖúÝW€R·ŠË åt¹ ]ú÷¾JÀZV2,üõ ɺ€è¹Ò›d…]ñ¥Ð¶~}¤a¬B2 ÿ^н6‘pÖh6/•ˆ4¼ôP½è­ßý|ú¹öŸæ0'å,—‘ŸoÒAhå·0F]'¥-}WÞõlßUX- †3DðËjÝm`ô+¿`^³×ïL¥âg‰®ô[çü5#ó}…¡B±ø\Qø–$…E[ŠÂG”„4ÛÈ­ùCõç{«{o>?~9Êö.+KÄâØ€ö'Ï0ÿjÁÍ’Ìsa¨½Eø¶XÌ.#/…Àó†î "õR‡>ÂU®øù«ãÓ:ðkÞ_óØöÉÊéÚ¢±ÄêJ4'(î¿Ôtàä°ö×4mµ—q ÔTQ÷ÕòsPá´È1X-‚Š5bøø¼ìjød~PÖTþ›ü;Vnë¿ÿþï{…VêoØ Vo¤¯•î–EŒâñje3@ÅþëÓ…aõ‹€üŽ¥¿]ŸŸ¤x5‹Eq].7EöÄ×2úúåC Ýêéí|á]ÛËZC±&BŸ‰]=Kly³]“of›fË þÚGŒýÊ{Kí3¾nz±²À­lÜkÏǪKÜT÷ÊsBËûHåçí‘Jn_%™^/…ŸœZ¯n=/‡wqŸw+¾½[¼îv÷«ë4«¥­yõÎÚ}®e2UúvÔ˜‘ló‹[ô)ŸáNû‡¶®•½`un­¾ÞðV›‰­ëÕ(t^6€ÙýVµ`¯1 6Ùëkú”Ã&ׄçz)òïoô—û¿²{²nø¸¦ußÕŠ‘.‚í¾+³Ý{ é÷˜–ýUöý›-øêTtßi‘˜Xæ¥¶é§øz™«_a·61ß:ç-<囑7i}®…>W»÷í•Õ ÕÌ õêÜÿøsmí½m·–^³«Átƒ`ÿù¯_^õýÕ —–¦Ãƒô…aΧ®t…÷ÑÊÐðK‘P¿Û^odÕúRÜIA3ÿ×aƒöc±¸Ûœ}Á~áçUó@º0[o¯þgõ$v“n°Nc·ÄT¡oV]¼.o¨Ùz³b­´FúY¾qמMúY»i.«l?—¿ùÖðšeûÂ-Sí-’ÖwÍíjǬuèúÂÔ  ³êž•˹Ë;Â6CõñËR‚Ölâ¹ù›T™‡Q¯T+oW“ªìèyubVöQÝÐ’ÌIvKC\šëí+ê¬ ëå{°Z˜«ZPûòéÁÑ/gíË~ _ÿñPØÙ6•)éË14EÜ ¬n^œn=Óµ‹ø_gõ¾F"QþÍ?moŠÎÚ´­JÂ>§ú,yV¬”fïêßoù¥Ø÷6ÅHî>./5¥ÐöEæ}UGI¸äV£ÈØ­ŒŘÊ̅ÖL…ú½áÝ—e±z[óëØ8•ù¶¡2Û ‡ÿïù¢V\ÛÊnpÛ=Å*3Ê"‡—ç*ûõJÉk™ø¸Jn7{”¾E­W}åM ¬Š òrrØK@ß?o8Eû­L¯+á*/MÎ*Î˧‡ê·’NA_•lÉç7Á·ÇGV'¶…G3+WËmyý¸)Ô¡¾˜¬vJ®˜D?o¹vu’"ÚúJSEÜ”ç]Eß.W±uÍÀU$y»òúRM-©è|ž·o%5Èc¯{”7`›U X‘ Ęk_*g_å>l~Þ0åÛÊ {@´öR=].I„îþ¹‚PXŠßª§Nýövˆ?«r+êólžÕXµôçJ6Ëês¹6Ì)R~˶¸ ¬X+”—ÊÒÙ#Íîž5»‡& 5“ŠÅaDÉSyë¢ø®|ÔyI´ÛÀñ~®®Nêɺs/ r5¿TÏ&6t] F'Ÿ7öËT¯Â-¹­JÛh_°™\°ß\_¬Oº…íîeq£÷òq²M÷s µµr³…#X92ÜšBT1,į0:]¡ä.Ôeéuö9õ’º…mï¥D~lý,×hˆv”š:j¿Ù‡rmˆ[÷ ®_žÌO­šË-øŽ,_õâälÀ+¤ÊíÌ‹µü°z©ÚOØUX|=¤ ýRsó™` 5ËçŠg¢bè¾psPc«Mô"»¼ba{^³ÜÈçúôž>fÑæj1.­¦ë+íóf/µúÒò}©•BúÉáoV¥‰îºsÏZH݆‹NʯC…w¥—Ó×WÍÉ6Þ<–›k&ØEªÛÆâôsÝ £2¹k±º­OþzY&&ÕÏlØ´r5Rðó–9lÌX{-‹¬Ç& /…îå¹ÚücWcê[/Òýò@C›üXÌϨŸ|]‰![3Ë$ߥ0²]ë·:'ÅÒ Zs'mA•?š¬ÐVeú¯âaÏË3–Oì$|æeܶäç*éÁZ\‘S¥ƒ¬ÊÁ~4.Õ‰ßêÄ )ÁßÞ•hó¥µqØ.¦çuÿ>†cLÙXC®MR+ëþM’™—jCÆmäÚuzÏò \õ¼Á'?Ó³HHÚßé×]Í7©õ·•( -W\ˆ“$Ô˜Š&Á¥þg-žc mø²­ùÙÙ^÷›Øë/‡jîw½×új–ù§Ê:ieì?;ëÎuwü`6Åïê¹ÀËÿ¦ƒ˜ýFÎæas|÷ù=Á¾[‡;YÙ³__HÙux_—¹ß=Zrïwݺ*mtL¢kAî’ÑTq ÙîŠZV_–à ·P¦+ý*܇2ªâ#2å ó·BzácÏÆîs­ùQ¥KEMtÒFKÌ¢˜{“ÿÊúW©×¯®ê/U sL¹ØÕ¢ekÉ%™V…ßPëæUî·‡Zˆr™/½U-S¼ƒþã¸rïn¤¿ý£z[z)ìm3»ÑÝ—×ãðÎ1áþ!­â‚g]Í^iô²i`ù¥ÒF‹þ÷7Wuuàô1¼ºÊIþ· ÜÑæÜgr#r²õZl) ‚’è"L~(ìx‹íf¾ª¢¥.C*³³ü××ÿVŠx^eN½l—q•ý%·d’mœgWȬJK™ßK¤Î—"óü0?úQºðÃBémõ ű>m [, $Ùr¶ ¿–:°…Àšba´ {«Í€«ANÞ»fö½Hì®nŸ«çò¥YõËó&W•+Ó{Ýb> ôz÷?wÕØÍË(gY<»„v«ÉЍç*lúa+îÛû‡çÐU=Ö:A¨Â«ÿ°Áóƒw }ól?)õ¸TU®öË·ªm¯¼”FÇÛoÛÇÊïÁþ7"Óéñj9'kÃÄ}Ø¡í~ u¥»¸>Wl”ëÏÙîË»¡-,áõ‡n=~Å ³Ê}¬¾Ý*Pkîö%ŸHŠÁú‰)ßì  “ó—CaÙ¬Ÿx-ðØrv×¾~ÿ­ÚL—:‡Šm}ã¨$k•îÞ]í¬‹d>?Äš«Ý’v•ÿ~劊 ¶$@Ví§·¢] œRŇ9lÐ<-ñð>ÏÄß¡‡—e·O,9_>=DUú¶#(ÞèïÓ€mm<ÀªW‰¡½SÖÔëjÒåVµç¦J›¶¶ÅǼ=ãÞc3»Âe\sÜúïed½2céߥx£ü“«¸:=|Þðq/•3Ð yJKc½ÝP‰Úô²lµê8{äîIFÏÿìw•fÙ.g}Ì]5]Ù6¾ûü¡£‡gê…*‡7«<Ó.ª›«{š&±q5*³#êõp›Ü-—Jç¢nc_pœ-;r#ÿ N¹ÿ¿Ï¿¯H¿<_ÿ÷ 1k¬ªÚÖœó¿ršäÚS6.à ïÇÌÕ}Lžõ&‰Ò:ëé[½¡ßaW´dÝ2ùM#ÀJF…wVõ°µ8-Q.6X‹pÓŸ*ÅáFƒ†—CƒUû=tå]V x³Xý¯Ùˆ˜2ϕ朅Ùúa½jJ¸½õ%ÝO55g‹Ú žñ¾È~ÙÈ¥ü¸&6»›+{µ ”m£D›÷©*=þõ\›!P=g* ¼^ê7mV”ÈýRéÂ]Oy[WöÔÞn‹ºk<—O’½Xù RX£˜­GðÔ¹UoÛVdƒûOï¹6d  HÝPv_[&Õ„^¾¼“Y5 Âça_Œ¬Ù¿ß\¯ÜY.ã_>ÛZ´¥ÿ'ŒåÁgIºîYöüPãþ.Ðx{@ÔVS¢š TÙÓÕuB ¦²Ý  FìU` dUÑ{ʲtj£Št£¥m1pÿ`1¶ÔÊUÙÀW&5ÏcÍþA[Ò…Îr•]½NÁ|uíqKºBW šlòÜXÛ̉ÃA~W~­µ}·›r¶° ~Ú/§¿m*KQ>ë!U+Ðú—3ã/xÞ[Uz ÔS•jý:mx¿¥‚ßoV‘/q.7æsW™l,Ç6¨ô×­¦—B,ê •¤•aÛnq*|pÜ_Ű[°vz@Ò¹ib³êùUÅ%x„ƒ·›eyxµ°ˆ~°^®ìH¿=JÜd†¸2œ}H/U‘uô1\ÐÿxL®TÎP¯Þww«Ñ¦‹Žèëlšg²%æwf®Dœ=èø^Tu?"ìÝ^£}Íí^¶ÃtI@ÞépTË}xù¨êuÿЈð¥Àµ]Ç4÷†RTÉ–Š8Ø¢„` Ü]u-{\/‡9¾Ëçuc9ýR/«Ú$oY„m™U¼%õbÁ…I˜ó˜×»‡ònòûð¥j™¬ø¶ëóÚ¢b«œS½)ýäðAÜ#¦Û 3ª‡G$îŸkÁß­A\Õ4ª²bÑþ¾Ú ¿ ßy~È„·ÌN]ñü~[þúfû÷ð!.Ë‹•GKY¶ÙåÝ£¹Ú¤¤õ?/R“P,Ö«%ؔ机!N/oS[iý úÙ¿ê#Ìj™^.WµÇŠ!©„¿°ûG½ÙM Ae¹éûV·ÖÎö¦í’Á :î†zù]žœ%ãçÍ÷ê5ï/°ý;û±]­cåf½BÜ+37 ŸÏåhO_Ìgë߉ÏÏ˦­i_j¼1Cçð°½]Ák•ÈD¿ýã½¶Ée㥶BuûW“ÕU¶åú@ϋǽäÛÕÍ%µþ_Û] ?:@é×¹ á¥¦.,ggu Î+/•N“ï¾÷ïë˜h•çq‡ÓKyWÙ4GÜ`Vò±jÙŒí!Òë§#-¶Ñœ×Xã?ˆ º,xx÷rR9"xÜèeí[oa˜:öõBñð€T±ô¯Ê ,mlÉnø}X-=õC\ÿòFâöaéS»™Mç·›º•G–Áµ’¯N0þ5ªŽCQÚ­Ö tf÷í]³l¢!.:Š÷×zÁ{£]Ë,éŒk‹¤ñƒ*äŠõñy Y˜’ WÖ\תÝO>”ï¾Òï¼Ë¡ñ&؃oPqûå2 ÿè {¿åæÿº®Z{³Š íÞ½åÌ|?öûjw{ãWçÆûò®VûPƒÕ®¡ŸfÿT¸¿|[Þ£¾•7e2–]zÔã.®J°³\TuSgìSY?ðSŠ·áömpXÜm¾Wëib «:ÑÝ—e«ûâ´z%[áã iôöúˆÐG‚¾‹µõõ==ø·­Ìô•ýð°ÅË|Û®özA½Žn‰Ã;þA6¾CÁ ãåðPk:»¡þ|¿¯~_ïW´­Šž·«a*"¾‹–™U&Wÿ=F ¸Tÿ} ;ÞÁ‹ãB- ^°HkwÖµÝhyóÃûºÔÕ4”’ ªð¶Z³¾|ÚÖˆyËá£êçÍIiè_Þû—·R‰¿(PÆWåÈ ¤ÿÙB=¾²m½`|ø(TX ŠÕÓ´hÃ…ñ †YëÖ¤Ÿ+ÇiKõî Ò°%·Îᣞi³qØ}©œÒ”áKehðêýÿ­Z£³¼B~ÙDúV¨²¾ÖÚô”Bé?ש®„Ÿ[”ë7¹ú)î·íŠ¡BšcmW´í{_RK ‰º²‡­~®˜|Q£¾Ë)ßLåx®eVkk÷½ßˆÙ,®äˬ¥ .4[±Û}%Q“«ñ!*àú‹]¯ubmi²šÙ û êf+ïjyÈø.Õÿþ}3£ ÌíÑ7½T)Ï¥ÎvÇû‡ t…ù^1½TÜHÛƒÖŠ|˜¬®ð­~Ç,úß0Šý¶%=÷åÝs¥§}~Ÿxêãû™ú¹Áš~ï¯Úàn¦e+õ´³i¨GÛ¡‹ž£‹!&ï-ÔkNîÿ÷õº¯õñIJ¡]ÝÐk«eöFýãì¯ R¾ê…3ˆÿ ìü|ªÌì$L»]5k˜JãWáñøoíæVi_\Vªn,¸Š,­Íó;EÎ[¥ÿ»wn‰ØÜ?âyÆ"-¿½Kü©ÚéëáX°wj5žK´×—ºy÷!ŽæUµÌGU.ê´IdA) ‰£[h(ï9¶Œ€Ð˜œ]…ž³tÿ°º¾nS­š´ï?½[ùYèûx¤c9|­ƒˆŠs­¼±NÑ´@×Ü/—èûú§Ç«qòIÅÖ`%ž¦ÔLÞHWÈTWV±w7º/KõïÇ¡ZËÿóZ¶á˃ö‚ÕæØ/¿Ïõƒ$#[;^ÞÁm?U¢êYÚÄÙûëÌ_íCfÖ+jØ•fòeÃÆ·ÿ°»ìåÝââZ®ý‡Ù•Œ¬?¿ rü´Ü4¼×§qÕ<º€ˆ½o¬µBaZ‘È-ÊQ/¥âìAoÞ€cÕ¶Rî£V'ûøp“÷wêÂÞ¶³©7øw}D,}9íi÷¥2Ç¡°ómFÑ׋³µ–|Å|õùQ«ìw¬NÛr&·¢GXj6—ÊØ•ŒÎÛ"BZ'YuU.!Õ´½uW‹ºÇu›rí}¾©ËÌçÿ²u<¶€µÏ·äÃÕãû´f½Ï{Ê_Üп·[–mÒ$Öèí,Úêw³‰\ÛÎ?^zjñ/÷BºíQ²_ÖG–ïy7)Oç[ß(W?䢸ێ‚qòC)òþPE ä‹õK…2¨†y·¾/iàP9 -£Ç¶^ JÛeŪúR]êÕêU—†ûJÆçeØ61ÆGפ›I Ï5ò¥‡'JµÛô£×Çr>Î|}¯ù\®Â ëÙãPË¿ãV«é†hò»¥^¶OJ«%¨å,î­¿3¿üô€wÏR Á…êÖ\cj“€*‰j•¹yý® „~þ0ó‰õèâbúÄ×w„÷>ƧÞ_°•xK÷Ín2¿üþiÙD“lEåìø*QÏ:÷s]8¾ß¢y®v_¬#L=VÔmµRx0wgû`·Ô2mS¦;µb‚XÒ–Ü<>Êã{³Ç\µîîËÿi#²>‡1y¿Þ– ³ýƒàäz•3(ÞaÑ\ö:ì€[7˜äôÀ[Xt?È£bÿaijǞ…õ{yzø©Ø λsº„-=5øñN¶óÒ6™ulõt~^Ÿh>”—[jvju‹û­>°â>Ä…ô ÝGÌù Oë4÷òW¦=ñrDñ~5>xi"Ê×oµzí %NÍ]ù(w{W²Z†NAûç­ÅÔû£Ã+ìKwÏÉʃ[ÿý1%õ²Ù3†® „~ãË~W÷ Ö^»ÇëµÅw“Œü‘¬=»õl™º*øÛ¸o>¿ýþ!Ñû’¯ß™åZemE»ßçcµn´]²[s‹\PòI®ÿ8®EkšŽëË;) /r¼ßÛ.¬ÊœVò§Ë ç’nËZ\>ØXz…oõ!,‘¼dýºTÁ®¹Ì¯J¼;bj÷pPÓ¶„BÍÿºeÉzKîÑTô Ýác ©Õ\´b–Üçêý~6?ÌE÷ÿ9 ‡:<_ï"NqµÞálbkbqÉ6ø[¥¼ýÇãÕkà»rS¶ “ èÖÒ÷Ü=Dvy`¾D}é¯Þ ‚Çõí°5GºXàmXs ýÝÆ-˜² ñÈ¥¾›¬Jlm ) ù½W•úZ¬ýi´_uå#­Ý&¹Ré^˜=s¹ÌâÖ^+U¡ìRãc»Ýïù‘Ù®+õ~-»¼» ›}—ß²@‰MÌãÝs¹L^A ³ûíÛ†ívI¡üQ–=õÁ5. kðÔ×rGpØîI]oַ¶}¾Ý^¸°4#~ŠÊºŒ"[¼±×üÙöN(zþ'µ¿¶¨o®_~D=ÿ¨1æ&°iWž5­Þ„ûzÀûð Ĺßbžð¸Uz UsKlЮrÚ¾˜Y7–©í5˜]OyÜ’˜ò¾\åÍ9Ëå«X~¶Õ„|÷™`³½ê"ýg£YRm£°•µRFÚ6RR>&“m±8\z·ÙXo$ÔÏ™kgË5þÇ‚$[XïûÒi§ä”*o”b…½=nt=åé°«?•‹oŒ_l…µ©B®»q ñMÕIQûJ]ã&,ìã0ص¹Ú®Êáð£C¬þžñÞKE{Í©,|]/¯à’ËR»î«ç{åï¾ÙùðT½~—Ô81ûLêãÇenïd…%×÷9(zÔ³hÕ k_«ªßžkQö±xÎü°YÿÇ¥$}l¨FåàfCY8þy#›¢2}i½ø!êÏ’úì½uî‡p®Wщ•pžÝÆރ׭۴ä{ãýõòBwõ:ÄýÚݺ‰B¹LÿRÏKÜ×ãò/‡zòî¢ØmkÑ[£ñz,.nÕö òµ?D¡W"p~¨¬¢ ÖÈj—½ü£Ö,­,«üeÓ6¶ÓÇQfÈ’´U–ö(¯{Å(½^^R5ç_ ô¾ü›Š©ÇUše4}œ°ÑOø#Û“ÏïÀ‚vUA€5ÐOI«³þ`ìjhî?^:Áž·Ã;K¼¬„“kÉÿí=ÚæÝ²l‰3tŠn"[è™A}‰Ñ[.r¶)’*Læj}ªf+U­õLÆõµ¿nºQ½ñ.zúC ¡M[øÿš%S»Ù9ô6wß?Ô&TYòcí´L¨¶\xù´VÚ¿ -øH%Çû'‰ðø\cÞñ gT7æ{£¨¶þë¹²¨ûÐ0ÑN™ »iGp‘;müv_^_k°µ¨ØêÛmTvrÁ>†Éô1C¦-lÛí,À¢çòÇË‘1ê*'wn¶+|Ü «·ØZ_5ÂÝ뺠®šw±oW‰vl~üÔw“ßD±_“EÔ1Ò×Ùÿ5Ö?ÿó£ÙÍWj-*äÛ6»¬ßOÏÿþ×â»Ä~*[†íª}ÙJÓÞ:æÓüº½›–¶_¶Zå¦#ªj‚^>}ÀLjá³76EÊßAªó£ŠsÉϱ€ß£4`Ã’÷¥Ðoãþ|ú7LGþ=v½0êi7ëEès‰Âû¡™c«† «Ì6c§E*OMý¿eö¸>Iy×t²^•óoÒ m"®¬ &4û°m[#ŠBà[{:;wë¸÷ÿžÓº¶'6ˆC¦4•öÛ ¨["j+Þaƒfùc<å6·»O)~ü¼?¡<‹¨Qi/¿÷Ý£óuŒ^tÊ{ ÌÞ{FÝ}ïx;0¼´{¯Í–·± ?Š«ñ Yx,Û?–1 ü[ÕäÏó®)»ô[;êÇÝ¥D¸Â fcYÿÁÏÁ#ÕwwáËCD¼—ÇÑú tSyVxŠk¡¢…м X~ +¼Ÿ«Ò&Ùp­rša²ÿ?¦ ùøÿ|ŸŠïߨ6àÒyø 8d»íîÿ!ÏøfˬÏúßÞfBT.W9â[Òˆ_ÞzÔôFŸ?TuùÑyHXÆ>jÃùQ}Ôí»ùé뎛+ËÂü?XeV1ËV8¯õeá–ÝnK”Ûé(¶Í¶™ùø&ö®½iu°^1ms[Ž=&¸q¡+ùX×`_ž7[UFçîåïåyC#½Þbê4×Àúï»X~µUk½‘ÿ¡ZÚðo-„þù×;˜¡L!~·?èÂcXå²…ÝW³$¾‡ÀRT®Ñ]»ÒWj)¦a«IØš—Íwÿ^­-ʲ×v©¾p>¬ Ÿ¶(…–\P—GC,c}ÿY‘ßÞk6ZF8Éi[³Iyï„ì‡í•™ëQ,å.î6tK{@4UFzß~,zóQÑ[ý}ˆcE>¬2…| +ðÇz‘ÿ÷¡B›7º’s2²5 MzÔ,ácXèÿ–Vèßè¨ó‘¦é¥È­z·54Û,k¶Ít‹ÆB¼ÙGQHÞ‘žfiÊT]°ðüÈËç­uõì…yË;yˆVïÿ¸ÚF໥ä?z¥+|<˜<ø˜$°<â_ë+ žâ[W•mŽo+9‰ øüXò6ùÊ{èÒEôvåRÈ´Ø`ü ¦>|èãFŸöÖªaE³þäîß ©n!àlGÆ{þq*ÊÍÿ½`ú»D‹ø`åüjÂøÂSôËLïºÔCÿmö*ÊJ¥xe¤#uÿÜæãþq3Ä­k>g‘زÉí› gá鬴±Ýë8kðªh$dÚñ¾(¶w xJñ ’k¶Tµ™C©ýPˤ-¹ôþØ­XÿÝ®ë™áñ ÉHv=?@lÿhãljPöÌû¡{rš½L"+jCQÈU>%ïÆKý¢ˆâGjß~,žðíýPDÉ xƒ™ÇGÄ ob®­ú>þ¸?l™½ìþ›&?ÝFYÀü`m˺Iîó&Ú–»«|76…­\·úÝHt3s`;Ÿüó£®êPªy´’TÁ‹û×?ïêÁç%S0D:lõbú` µ†¾Q¿n½sÙ\ùóí±-?‚|÷#ѦýƒèïGøÕGÞPËŒ—ÅIõZèv…¿Æâq|tVªW5 ßÞK5Þ-·ûÇG˜¦}PÌ\-¾´ëU8Pî«“BWL¢Ëƒ¢-fg±ølù¼²/ч;NÖó±Ê#¦w3N6=3‡ Ç^¿…U´Êw“aï|Yߺn^ñyÕº~½8Ð'3;ÛöGûº­Ú]=nòµêüDb¿7ô7ïñTÞnõü'g>¼'ž(ÞßHÖ8"­Ý Åöðßž©ò`UZSGmûê>æý3á?OU¡ Å ôÃCÞ ”‹ñv•4þ­˜ñã0ñwˆ×ãîyõåÿºÇÉóV—¡w„Ù>žáºûòQkš¼WâôÇÓE~zìcµ?ÊVþG€õÀÆ¿‰/Ã;›çª8<º$gf Ÿ‹QzÏÿ} EâqM…ôømYPeqPÃÂËxR‰ß«ÈÞæòVßuØÕ&u|ˆüºÌöÛ–bþãU ïGsãÿ>¶ÜÿGÁ¿¾â|·Ñåº]E^íìdnêMÿ =HÕpÒ¦ žUo^ú(ªy;ÇZXu~§Wg.³uŒþ‘Øì#.ﯶ~\õµE!ùÞ¢hJYB$Ähgÿ¨x8Öö%šáþÝ“U¸ûÚŒî¹z𾸙W¢À‡Åª«ì|±†¹C£æOÐ’ÅsÝúcÍîÐu©Ùv×Öºñæ{!«þÅqÞâÿ ~<.—‹“2m}[ëòAßÿV[ëÒ\ÌŠ|©øoó÷\ÎhØš] ¯™úÎïß…émøO}AþX‰^þ«Ç óljËïñ€tðÑHŸûUŠUížËþÝÁ˜ÿ¢ïÿ»¨ÅËž+mÈÜ:ó_Iƒ»j=d¥¬àaääðÕïQ|] qØm&3³|÷Êà¼ý;ó?>’É÷.ÒË_ÇV?Hü›ÊDÂ;ÂVçV´èÃÓ  £Çüß©Ëüœù9ü÷ï&šïwnòÎoOUoºÐkn`(®m[¹£àÖõ>ÊúË{‰›ˆšÐß{ã°«ç?ìðïð~üMÎzç¼%eæGÿ{|ú.æ[ÓJG±-7|ËnñëÌáÇd€—ÔÝ«üîRë¿´lÉ ¯ð‡žã;/ÿÍ‘uÄÝ,Qz–ÿc5ÏúƒžÃú taÜRÅQ]“r¬Œ½«j9×€²úáùæ¡Ý£€z«©Òv2»!jà¢T^šÙs]Džw.sõ¼³Ï¥ÕÁR_¶X|.ľ®t3+dãõšM-Çn*PÚUñIwk`ß­Òz©ô8©Š ý7“Ëvˆ±ûÇ×¥udÿ£žO®z¼­]ÿv›©b¿%Wª›¼¿Ìí«> Ôú¡ñïq_ûaÙ¾%ç—÷óêæåWW#ô ¤ÝǾ¾oìúèàw•.So!½…HÆÒ5©%ó¯¿ÇîÁIj•­ìǸRÿ[,Tþã‚Æóc³³någÕ¤ˆîÖÊÀ¸ýýÿñÿüòæoþkÖüþ×þíí÷_»·›ÿzyYþ×§ù¿ž—ÿ5ã ?á°_þ„ýçÂ7›Â앟¾^ùörþ×aöÂçÅÿ´›¿cáýKßy?;‡êßzxË€ý¯Ù‡¾.¿ÉüKϨÿu8Ћ>àí¦þ_³ž_Ýò¿v/ô£gï8¿T䜗ÎÝóòõ8TßÁ‡o…Ó5;•ûÃòoÿ„/…Ÿðeù‹Í_¹ÛþîP¸ª…Ÿ÷iö í¿Ñ»/СðÔ}*üØù5Ù=/ßn‡Å;`þ…Ï>,_ƒìÏÙüÀs2«@²5äÛò¯ùJïDòößè­ž^XZ÷ôÂw÷iñK×°´^ 7ú~yYÍÇÂz5ÿ×ËWú{Èc<ß^ŸØIÁÓý€Ãò¥ÚÓ}nöŽde[¾µæëòü™/zóeçëòÉÊžÒ/‹÷Eö¨^|¤f²—ÿ*<_ûÂYÍv O…Ò‚ïÒda™Âü¾Ønôßxf»á|ñ%ã·Âûª\mç+˧BÑö¼¼/[~æßÿÓòÝ•=o»Å{í¿…ÈO+¬ÊûÒvþ¼XŽ|.Üô¥åéeù×,oFûåŸ6ÿ1Ùýµ°°|)lú_ ïùR[›Îy>_nç·höí 5mé¡~^~KuYéJÐlí<ЋUMûåWî ÍÊüTÏÿ.kk¾ÖñÃò+³ïù¼¾tãÎóm¹òú¶¼¢|^^5 ·â§}á–Z^z^ µJa“þZ¨L÷…ªf_(‹K5ì®ðÊ—åË6/·¾,W‹ß–OзåÒñ°üŸ¾._¶¯…>ès¡€úV‹*”j÷š3ÂíÝré•-Á_é»àMÿRj­ö•EóKEøTQf°»k¹f>V²}vÙ?/ßy/ËÏçåÊåeùg^>‘/ûåMaþþ_ Uìóò3üò¥¶«Ÿïrû}í³Ÿ]+ŠÎÒø¹ºäùVÑ;³­ëËr ´Û6Îo…½xù×ê ³BKüRQËõÜür|z©ÝÕ¾¶®oËpøVÙAe ÕsEYNö¼B«[ÀÕ^¾-¿°?úPè¦JHSé†?»êVâe¹¦ùº¸úf0A¡þ|)TIËÿéPXn÷|A$]Þ—Ú%‰ß†ø”~®{d¿-//_*ïžùØ- ¨%Þt¥^öPÀ)÷…M¦PÍÎ˧åÒ37ì m¡ÈnÈýò(4D‡åºäSáœï ‹ßËsíV‘õJ¥]¿ð4?×VàóÒgÇ;Ï5;+$>¯«(]¡é=,:ÙĬÐ:Ío~“²ë±«}”æ?µÐz,Ôñäé)ôþÅæø¥‡ 5ærÑú©€x–Ð×BŸûR[Hì÷•÷W¡.Ê‚çÂàKå3w(}åRù©Ðt=/w˜Ÿ =ž€¢~Z¾ÕŸkÝO‡Ú™Æá¥0†Ù/ß`/•5Á¡Ð¬eç²O—>®°PÀêýrÁPØ¢vˈþº±zYÞ̾6¥Â˜„/R„ZµRùð­vJu(œ“l™ûZØO^ }Ð~½_{â2ˆøK弿ÀIØ•¦J»BOÄþ…έ€b²5üóòŠ^D„ D„¬j{®­¸ö‡J4æ°_näjËÚá@'(, ‡ÂÉ,‘e8Mhm$´/ü·O%²ÄKÅc†wéüÿT¨&J8óseÕ¹p½ yáÓòXw¿>·Z»K¥)å·Ú)Üa[PÂÉÓ¸ÐCá^h¤?¯ä„|ZÞª>}®0Ù— ¤„j½ÊÃêâsÅ‘t&ûÚYÊaù–Ü}­Í ¸L Bût¨=í—ûo‹wÐ×ÚaÓá[aÑ,ÀÈ/Ÿ ;c¡ÿ/|ËoµÏâ¡´ì—æ¨_–{‘C‰ú\ý„^¹{®l™JõíK\/m,òæ¡08ÊnïÂ@>«Ÿ7ךä—Ò(½À =ZÚÂàâ°\{Ï?­tÉ?íë ¹O%ZìK¡£}® ‹±6๖ïZ‹jz®å7~®Ýú Èü^ظ¼¥1~¡ž÷î‡ öî¼\ší ‹9Øñò¹–”’a°ËeȧB)³®½Û ¬Ò}á÷”È9‡O•ÚîSíXfWÁ}e·Û®‚…‹µåçÚ5ð¥Ð¾ÔŽ,ö…¾¯ÄåÞ®­êJˆã¾@ã{9Ôré~NQrp¨%»,ô –ÉÚµü´¯ìwŸj Q8mWÞw…EøÛò+K-öîe¹×ÿ¼üU^–G»çJ†dµÞ}©œ9—pÝC‰÷RMÐ)ÑêJ«°+îWÇžlQâ¦T¯"%p½Äq(±¥÷õ$Ïϵ¬çªé2CÀ^Ö7ì3œ •è¡T®/¯/‡oµ¼Í’Œé¥À!}9¬7¤ÛÕêžk!áOŸ+¦©…œ,‡Ê C©ÐýZ ÍF–‡B{¹ÿZYCî ³´]a “1\v•CÄ’žñåPÍ?ÚWµ´ŸC…þ¬…¤49ì6#½Û¨cõóòçåÕ¥Xð=XqË*Òýa}A$â—eü¹4ˆ~®|3þû® LÛP¼ç:èì[->¿ÿ²È[*àÿ‡‚àk¿¯˜•üûúJxu‡(¢KÔé‚FnaÙ[‡2 ìß/•ãë’*u¡– ëý¡’±ÿR;IȦˆŸ zŠÂ€¿¸TVA¨mZ‹}õ]³¬X,Ü3/µ„…)¹…å6ƒž+FˆÕ½ó8ÔÊ÷‡ºÆèPâlú–ÒñSãôi¿Þª°ŽíSÅDbÌpøZ[½Wºv|®Ö’” ÷]õl· éÿV¹”¾Ƙ»‚³äzP›î¾ÔV¬û†öµpÆ–i{E¼c¿¼€jçi³$myy©¼¿Ô hKÜâÝK%JðR0xÙ™—/UZ%éð§ÂZ˜V¼|«ý×®$‚ûRM¤-œ±zálÉ•¨~Û}ª^×3u^*I†Åýã[…FyU»[&Þ•h¤ ¸DTÜ`·QX!2îÔ§ÚQÚîK퀬`г+±u^ëæ/ëÆõu_; ,ñˆ¥+d¹] =kUtÿRä¼TÃÙÏËܰR‡õ\»,z®$”/Ÿ *þo‹%i¡ÄÙ6ÆbaQÝÎ}* ß–[ãϵhóî¹–;YÔ0š½’A×¾ðÍ_*N™Ç”¢e¼ÄK\Pk­ªN‹«AɪgW+FÛ—¼¯[õ¤ÆÞWPÙ·,] &H¥a]É1ç奒iS”4í:a_«Ç).H ¯úZùÛJ²ËÒ¨0l>|«”¾íJÊø‚΂¥9'»Jx %/¶ßËeùË—Z¡üÃ}­þýs¥ækAK½jÂX V/´ÊËeɲÛèg¼ä6Zâ~ª-Õ«,1VN»¯fF­ßa™hð©VBZ¤'íjEKEÓ¶Cµ‡Ð¾–X_\¿Öâë%÷n_!‡!ÿs…A6[’U#û¯ÕÕyÍTøÎ…¶§xã””‡J¨êP£é(쪫Àü—J ÌKAá‘ßj[Û #©5›úTÍ/É.ÏçZÝóK7È0Ç}%™éåsµ‰ð§õéÑj}Wï¾T»3–„(…³™­>¥•°T7VÉÝ—J³ƒBÿ¿`ʵM5Vƒ!¬ еýçZÕUïù¹Ö²âS-Ow·«½K4Ñ—Z¯× ÈÛ=Æ-&ìŸ+8~«~ã%cÅOûŠšiÕtªVWzïë<š÷Õ…ã§iïêl§è³RÂJÝÿ×ZœºDR^£WÝ' X~a•Ú—ºÍçZduÿ¥¢C&ù×BÿWXŸjaÝ—Zd j{ùRçºûR;%ÙU˜äVwW€g—=£_^Ö ¾¨FÄKƒ£C5¢¼_FRJ7ÛËçŠ{Ìv[G•kýþò“º/°l?ÕÚb¼|©ðì ª¯µËPÑòk¥æu¿«$¢—T܇Bÿ¿ZM°Ùí*ÁìR|¨.º÷…E°D-YÞïK}JaI)0Ø÷ß¶®_«Sƒ}áÜ}ªp©[³ª© ëY1Ø8”Üò [Í¡f;Yëvõ٠ϵo)kãó2ó­Zq¹¯µ‰(R6¿TìâˆgÈ©EZV©TûR«{Þ«\#ϵî"EbBI,Uèt_jQ±‚b©$ðÜïjëì*3½uÛˆ]­åÇÂfQ0"×îÿÏÞ{ÀK–Uåâ§î­œoèî LÏôL÷ôt¾•n˜ŠâáDA ƒ(‚‚ 3#戂âÄŒŠ9£¢<ŸňŠðAL¨þuëìSµÎW묽ª™™amØ¿5Ý]·î {¯½Â·¾ÕS#+¾„¾Ä á3ZžÊ}mp 'DÇ)h½_œ_u7ÚÕšrb½–ætøHjÁÝWT–xÌC ì¿wYðè‘úá wò9X÷Œí@Y?%PBQJ¡O€¯Ìc¤å+–ò%ËæP*âÞ÷;Þ}$°1÷vÕ6 £¤riW Gþd—§¡èÓy(ì·^??Õ¼«e‘W7Š“nB R‚Ç BÕ)…¹¥€Ë`_›=íí(ߪÄi××Â!ö!P_9Í`GK;Ô—â@}­æ E°}sKÁ´é û@¢m’˜ÎD¶S!!Óøµ=¢J‰5XÄáœ$Þ$Â@‘(ð•5IÜÙ}AÃ`оP®)ÖFCe¥b_™ 3`Ò¶*yáj¢™¾RTB ?7’ŠGFêf7}Á>ø…Jœž–øs_Iª¨dTü@K¸8Žø¡¾|b(Ôïä×Ýì+ÏÜ=máÏáîÄ÷µq b!!Þ4}À|ü”Râ·§l¶(òÍ-û~¿§Å¸‹Eûê¸ð®¶îZðCFšŽëÓy$Ø_=%žGê¾Ýè’û[Ôö… ÷¬§d$É>5}Ûh¨N‰ÀÃ=m-úP¿*U–“îU::{êRhqK n"Õ[_ý÷¶ ”íiûŠ–î^ÒNõ‚ë÷´$÷žØØD‚Æ”¯Ñ@ËI$‘‰î¾’2c8Tƒã…Ÿ“\°¡:¤{ dþÎqÿ}4šR„”%êi;4­p½µ½üìÅ0÷ûJ³v ¦à¢ß#©ùmOQ—œ©SB«yS¥…Þ—¨U´¤Ab®g¨èí Ü „”´XXÔSR*„¼‰Ä†ÛÏÿà6û&¹¨}-t¨f<*÷ANòÒ` ”ƒ»:Nûá¾’òµ?TÄv|  CmSÄ᎖OBê%XmMìî2ÐbÇÅÊä]u«2{¤ö•¶R˜lW›ú”*vú=-5ŒÐd.‡ëÁ—.¨ù½úûŠî;ÞWA€3¯gW›@×ó0 $—ž–ãPê“=ØQÄ(|]%J: )%¥ŽÝZP¶Ä÷¥&s i9ß±ÝÛÓóé{GJ]ù$ྕ%6è¨ÓÝžvWYr&Õåõzê ¡=u5¿Dåss%¢ø¨Çy‘|=ÉAáõ9d-÷ó«ÎÔ•’C¡do¸£¦ßÙѲ ‰Š·§!I@æ^O[®8ÚUÒûØ7 ¢rƒÏIryÁw½šœI îIðñš7§¯>;ÚÊ9 d9ؽ<$ Δº„íj#¤òié…í+S¼b£Í¾šðE*ò[ƒ²(v¤xôzZðähW½ä´8±žüc Uk eo_›w•A9ÛTݼ×Û(l°¯ öFí¥2‰€Lð!}uŸ­9èiñA#/Ѻ¶NÐE2mƒžV³÷{Úe1Pp™1v쎺%ýi(Á÷÷µmÏwïóVûZ(ô„üÓHÝ&Jhö1ÜW4¯¸ÆÔ! q(x©}…¿ƒ?ØÞmj¢Ë>p†vc…»Z,n¨å?èíåk!áíò|FZF$FRw»=y´Ý‡Â…vÕí¢öÕZu_ûou¹ð`ßO™Î ¶ö´uí¢¡Ô×vð#ãZæT 4ÜjãØ½ÁåUËêù†ê€Ê@{èŽZ§œO®vKH‹¡„쨄äÅ ¤‘}u²)¸p#i³ µØ’Ų£½s1´¶wyo Å=PÛ¶bhc¤]Ò£¾ÒÙ“ÚGHEjv¤¡²~A°t‡Cmµ7в— (Y±½Âž–ËXäÞ[žá‹ê%l ¨¥òµk,§Ðœ@CàÇ7ê ÙÑf¤¤°‰ÔD¢Û(Ôµuº'µÏÔ4%ó¢¼€™:3Ò·#ÚÓ’oõDƒÌîhQÃ}m Ó^ÿ2!l]O¹s¥Âr¡U‚Oä'ß{ßÃßóexyÝhÄâÜ:4¿£uo¤y¤íº+å ú¥/=ØS<SOM48Tt"õ§dJ€ÈHÝLpWm§ª‘œ’oÝW·Ü×"´EXgïò–¾„ÒJÍ.•oËK°D©òhå:>~ýᎿ*Ñ_¾Ñ×òþK€'5]Høö´-k%HÁ@Ýnep äå×j%±“¤šdPh°!ÕÈHxö¾PV?ÔRýìkIz¥æ1ú}E¢aÓðˆ†ZŽÌü̘€`´ø€Á0ÿÜæ}jö±þž¢>™9é¥ ‰¶H Œí)˜)™•w eÅ ÕUfj2ÈÞ@['ÅÆ$œ¤ºU„Da·«-(”•ÿÊæH=m§S)XV™ ‘Põ=õÁ½£Ýe"œì@Ë÷8T0R{k.†Jß]‚©«Ýó^_ɧ0šP vü¬ÞÊ9‘DF¨s©¡´uƤ¯®m‘b­"Ô°¯å]ë+6¡ X©u±Ä‡1ÜѵbY‡þL‘Ï»išªx«®é¾ò0 -ÀôNœž¢FÒe¢XÝ©x¨u(DöReõ÷p¨íT"‘ ‹Ѿ¶ û®¢˜Ýoèî+~Λ•N¯¡6´¸±R?¿«mHÙßQ€'|ºº?TÖøwàv{±”Ê*çö•Å9Lj«Aó¥u®§h…Âø«r°£Àâz™árú9y{Lö”qS©„„©•èbú=!†·&x¤¶ü)HfGÎÄÞöÔ…‚›+!OÖÕ^p_³@h>T¢8Äö½{JlÑP™åš†þ€øÙSPNpÆ{Oõ2…¾~†9ö\¡ÐùNÀ2VÆŽ¶æDÂ%ˆ…Ê{Jw]ªŽÔÅiZzx±~W‹Ã{¡ ´õ(£]E­—÷ ÔöÅèkáiRà·'@_&²]ÿUqê|Oáføš J¥<ÙG¢é™°¼Á…`Ý@ŸeïiS_½‘6в§ÀG¡v/9›¦•†—–F«&†‚Òš;çœ\LáÝ‚p…•îjÙ&´íÊûù¸ (áñú; dƒïœJ]{Ú6êkU`oGÁÒÈWzûZ?vÔWb†C¥’íí«ûæ3¼^¹òî ÇÂp Íu䛜’-a ûêj â1Ð2Û ”u£²²Br2^úNn£ !|)v#–½´…;=uI¯¯Î6 qè¡¶¦Ô>G•.›» 6L.¢<òò U}>G‰]¤¿£Í($#¡§c÷FZdÞPÍxî´uúC q†€Ò\V¡šÖG~4§Ð±½·«pï¼MÕzZ­œCœã‹öÔ4E*ËAþ)6Tór©[¼ö÷ÕüŽílOÛõ×¾¢¿/Ü·£è裫ª['J»Gbûëõ'  ž¬èai{ªôZGc¨vlÅXæP ‚rê=uIŒº”TB· œ«¾=9TóÖK9)M?’”¦ÿZ1HM”ÔMIFro 9GŒW8BûÚ:ùžÀy±¯¶è%…¡’Âÿ@ÝñjWlb¿ž2z>ìûûöHÄ™L8YÚs{ ¥åEÃôøýžB±ûZpK„ÅÂêíi­–þN¾ã'R·CgÐÛõ×l{óæRË}¹_Q§ç—Pé"øTêF¹«í²=ÜSÇ ¡•#R™”ÛA=új:QÁû ˜ý}mèB<w´}ÕúGC_‰ôË÷hÀZ˜ŸûÊN&»þ0°¯ÜF¢lìiw¿ìk·€†bjùÖF¹(“$-ï…ýj›1õvµ ÀÑP‹ƒØWšýÅ’DS*ñô êfÉB[Ö‘¶ïT?WÏ«µw_ ½HèžI%&y5o\Ø`Þ†’ÒZlIU_ ,ï @©¼X •Úïi)újÞžÑev¢Ž´e!R>m´§Ü&ýobÂÛTj´§}Ѓ}-{‹­«v.ƒP£ßÓ½#‰1Lj5(Q+ï(¶ˆ/èt_²çGfû¨€ÄŒËH‹PÂp—Ñ/Õ‹sî÷•j]BVˆ)7mw±á@ë¶Joû‘ÿŽ¢´Ä[!0d‹‡ÁNîjÔ¶Hƒ®o-y Æ‰÷ÔÖûÞeúvu&mpYÚ%ÈA_[–së¾¢ƒ¡¶X‚ ýò†þê=o nm/e‰( 'g,¸IÜ‘$Øê D@AvµÁΡ^w÷µ¹]5©ê0_ï©ÉYv•½ —«××ö‚–’´uS´‘&|#°x zÚ.bR¸~WÛQR­Òñ&G>1÷§ý\ß|_ËéßÓÂåÄ"æ¾Ò±¯uz‚OÉcƒï\}^Š!s½JQwÏ©mâ"}Cí 'Q_ßÐ^Ý´D•ïiÑ#5¿†ÐNU¤Ììk9¾%nÕA_Açïó‹ô„¼RÖI:'š$ãA ÓÊ*îþÊ0ªo8TP;2ì“Bàkäÿ)n îjÒˆTJ®…LõŸ@ÞW¨ú_ÙÛN Wô5S¾Âf†1¹úZúPj‰:Òª$ѵÙUbš$ŠkiÑôÕ${ƒ²Ÿ©?ë ”ð ÉÞ\VK\‰@ª“±Ãƒü…2Òf†ÕL\ûÊÅ6’`ö4‰Î5Tò® ôP’¾–ɪ§À$1.ª¢K“Dj”2ÜñnøJn §§ ]ïjÙ}ÕåÈÞ–,^ôÓÕ”Cá[$€‹>V-¤M%”|‰¦‚ßÇ2RWôÕw'5‚—Ø;GBw¡¬Bª”"ãu¨a ¥‚”%>‚'ÒÛñòÚx#Zl¤'eW¤†j)=-Gƒ¡–kZÛÏg ibËÀê÷´}5õ4àJæ÷Ô$-BmÞºD±·ïÏ“z#-à §¬PHM´ú«v¦á쎶“‹Tî)A¤ãl YRRÆc5æ`)m2P§Ôêj,1?-¹ãZMº«¤Éì ´,ú#R#žCC-úY²%f ~±ƒžF¡Ž¹ ÕQ1"ÚWP¯øÌ›¡Ày9*ãû#!M»ëå.dN åy,“$…Ù—êrûÚwRby¨á4åòoÃYodvO¡^„Ï^r²áÀÏZãyÛ kØG?º«(1ö™î+KyGŒs_ÉÜNþ¡¶I†”¿Ê)äföM>8Oh­!4¬ªù÷D–«¾2Ü<è·Ú„Õhïò.«aGa¿¯æß“î(z5í¡È¿' %%€ìPÊDö”eiÚ†BRÝÉHj³«êH¤"ú^bIÜ@ÛÖKì IåºÂâj5DÔÅ’d_bj"!ýžÁ*Èi¼™0‰ŠV|Í=¡°¼¯eÉBŠ¥²ï¡.Ñ®¯Úëõ´?§jºË$BÈF²íûÚÞ/ûÚ[ìkk„ÁPÀHôgBS_©9ûPÚC-%'ïKiH”)=©ö¾¶§ÇŸ÷Ë×Òª?ÐÒjŠ·ÓÓ‚i$Š€áPÝJWŠö ';Ï*äé&5º µ¼bý}%wÈpG›„•úÜîù½GÉ7ån@[ñ:;ZØyoO Ÿ©¾K0¢üç*Ñô5d7ÞâÆÁ@1ì©Ãmš–ØLZ±¯ì‚!ÑÏH4<h_ ß¿a$€wΙþ@©Õ%ò6©ˆT"’BZ@² G{—Wn*ñÈ‘‘š¥Gb‘ü‘œî£Jé#µ_"‘è û—Iˉ«ù°IC L°¯ì©8PÇH˳®×óùùª2røbIþ®¿ø [ô•®Ã‘g¥‰Ìúj>DãV[9ìi»< ‰d)å%TÙìk“À}‰LoW›EëKçl_ŒØÑ2èI­Núùˆï]ÿf0^E]žGaÔŽP‡*u†’Øü”¼(åÞ®º2hoeVÉîºÖz£T} F¾£’I,Dƒ%ÄA@kK¼M½úÑî¨ãR#’%øm$Dëwµ]ï¤ÔP:üÔ¥¬õq¹§¥?ì*(s|gµ„…—øÍz»j#Rjò)Õ*쩯EH”è{JJÒ`_Ëå4JÜÄòžº&l¤5:úZÆáŽÒ<ì«)Å$ÆòžÔ÷mOI.;ê+CFWHd€¿±£ì}#ÚçmµXNWø|“ÙG,5Ö–’Ÿ{ZÜIÏ—¯À!§¿Œ·†F` ÝÕ›úS)C'•e‰9fô¬ÍKäþ£eF³·¯¦uÙWp¨ÉÁV)ôzÚLžš-Zø duå4âð5éÛËI 0E"_‡e3a©ÔQ¼ éÿᎿèÕ˱#‘åô´ˆ‰²§-‚ÓwDöÔ~u9¶í+©ºD§ÖøëK¡Ôžº½ ¾¥lO{ÆŠ »ZÐaoGÙnZê0\½ç+_TóiZ(øÈÁ$JÁá¾Ç(‚Œø)i}W,2Cå{¾#‰t«¯¬1–¢gƒEþÒw J­)Fڒ잯j0Ì ³«Ì/ClH¢÷ÝSPÚûÀ°»ê¸¿òïö¦¥r‚–ùXU/"O"Ë;P3%k1‹CEn‰q†v•9C º-’Äï)éd$˜˜Hð+›ûJS§×S§Ã$öÕ=e* 'uqïû_–·PQ"cìï(âcù¨ _Ép_Íö»ïï.äe¹îiY'Åòâm»å=e½–TÏ6PÒ¶ô‡Ú‚Cu€Þž¢‰²¯x¤®(Ùªw´ÕÁêþkR1Ä 9Ð_æ@‰4 Èó}mr_RK`@ŠFJÎQ_k© »V*MöÕ)Œ~Þ×:€9¼Mž1Ãü³¤è¹å3l†ÞIÆ;Оk½|e)±÷uÌ{ÒÉ%uwM#…‡j¡d*e<=@ü¾–Œ®/+Ärø}-²kW‹íª‘°b·äUJýÆw‘}æ”íç¿-©ÿò`¨=õ$G¢[’ZÌJ4äHÓyÇÇjÓ“àÚiGaG{ª{‚ÿž'e¶ÔGè¦.ð †Z$yN\Îw«¼_“Lò/õzÚö9ìÏÌ¡©‰YùbëÃ=mÕÊ®‚…À[¼¥©óv†Ê!Ôó¥DwG‘fóa¦HQ°÷µõF꨿Ԓg4Ô–üôvhg¦sŒPÛ?ÐZµ£Áå5ÒêIƾÎB aF~d¨/–*Iu]# «¨Ð)Ð äB²R…‰Dœ2Ô^²TØ>P³+ŠÌ·²VÒÈâË(Ée¤Ž§ƒÐTMèôÊ`qŽY%œÍ>jõ=mÑU_¼í ›³¯åúh‰Ý¥>ò#(6*± RIÑ`_Q7(!m}EÒR»!8ðÇ•½ôqû s¼ôµM(z#eÂdÔ×–ŠKÍÚ$V«QþbØ÷gÁ<Í0ÄcAMv(¥ÏEÇBªÕîi]#!k¡ ðe7„wßßUíhy8GBùÐhO ¸‘ˆí¥ÎoC5|L‚÷{~]æ+JPÓ?÷FZ‚3É{ï)iCu#úœª0¡s··†j°£]m#E=œ·Ëåöæú»+3w3¶Ä¾6‰$µ¢—ÒA’'#±.+O1Tð¥åþ@K¥2TgÄBÔž‚ïuQ—ׇZªý“à8CzbÔ×2LKÔÚ£Ëc*õ//æ%%þöµ¡Y!œåÒo—ÊÏûÚýƒü‡´ëG­x;ïj›ö÷”+Zê­4Ò6Æò[Óo¨-ò—â1B DÀêJd¢=©c­†Û[u7ØÕ&F}“ƒ°“}æÂp¨}Šm 8 ùžõž¶ÍƒÐàOòu{­‡X¡î)×h»èÑŽH_!íi>¼€¦l@R´¾fAR}èH9 µ]òF{¹Žähôµ IÞ$Ø™ðvO™³èïèJn¤¾Ñý½üèüH»Ëöµï%³¦ç† Õ jâüžâM¢i¼/ÔŸjÀöB6·w%)5À]ª²“ íRÿ^ç$ýÛžB/ùŒR‡©Ë+$vÔUÛ}%Öb$±IöµÉ)¼.öRèkýÕÍŠŠ…Ëg}N÷½ü#ŽI\õ~?%ˆä‘ìiY¤*j©ÜB"˜–à()˜Ö÷“Ù2>‚ĺ¯(-ñ`:ÂC_2ØWœùù~ƒ)Èw#ö´‡AoËÝ×¾ÍÞ¾²Ž@8&——÷ÊV‡¦çïX2²£DHÜ©µ¿'‘ŽKUÔB›ëÞ@[å§âûâœÔž¶é‹„H¨¹ òßc~âf0P6Š9=$îìáåÅAs¼xP}¸£í¡‘ÓÀ)hѯR«’~O[†Ø©{Óìh¡3=¡ßE_M­”“LóáÓ¾w‰f»/”òJ0}'‘öÔ>÷PA¦åã`îç¯8)L4Ôví ´˜¾þŽßcåʼ¥ðmÇtÉH©(wµŒ2‰U_Ÿï8Ð:Ÿ°›óœJš½¯nÃ.ðTJ_)©å O¾¸¯Q¯^^‰ÂR bôwÕÝbwµÙc±à}G['Ábwµn½>…×ß×ößê¼ÔH¤¯´°¤\ÕHÍu48™ Ð#¹=’ã¶§c™”èÉF{ZÒ¶Þ*ÆÃjû‚‹¡~>XMè;²¯|@RQ­€…J¼o}EœÔG}*UiC!•¢ŽLr ì©:ÐVžHËU ¹ „©»JοáH@nŽ´æ‡è5Rö™‘Dê—#m JÁcÜ‘}m“ô¾@*1TP¬Ò£³×SR`I.²”·YWw´ —×tE*É”:ÉJi)>8ð‡g8£±§%A,ÝÑe²IEobDpYžOoäËLiOëäõÔÉb¸æ@Áχü‡ÊF1ZE$sGjæ(éßį|lð°§m&öÕ%m*8Ô’V÷vµ§Ä¢«=m³¯î©Ýllut{`WO} ƒÜ¸¢P šC7ëÛóýžÙ·£uÈùÂŽº¥•ºÍƒºÄ°  qKyÜÁ@QÖÍ-±|•¦¦y”šÒK qÉíkr™>FÅž¿_ßìÖ¶}ª]Ûþ@{7ûþò—æ#‘fuêZâÖ’ šÁe6—Õ>2Z^j—!pެàOö´<B,h ü˜r-‹ÌôÚ¾BG¦ÑPkŸKµø#¥‹ÚÒâ»J(ÛH_¡ªïX×WJz’뻊¸ýjð´–NVb8ôÑ@Í¿'u‚’R#Áè8ðûóÞ½} lÙ"µ«•ÈÆrpÙÞZU©GË<ÜSbtÙŸÔ¬`¤áCdžlO‰®ßñ÷£ñXŸý¡ŸYÐ[±#4×ÝÑ–å •5Nb©¨¨Á¥º}-*£§¦†ïí®Ì/Ä=Z=ö«¯4`%þ')t.ý\÷äíE`J¡7‰[}¸¯mǰ«¥‘ š"RB÷ìªÕ’¾‚KXUuÞ®6XÙWWÄŠE£ûŠ7ËuzŠª o|e…„ª”Ü•öï(ŸÆD‹Vë¨qØCE¢Ï¥í÷´ôõ"ÚÑža€LÊ÷wµ>Ž˜NU·a¹tF±a˾¢öO8‹‰´g_­Üµ½fG}.fù#EÆœ;C…Ô·ÄÍ,¹6ƒ¾²Ñ´TâÔï+­ÏÁž®®^Œ‹ìçû!j7?ú~Ì &é@kï÷zC錔•zBD`¤|\9MùïŽ +Uövò«˜vµY¹¡¶MGoGË\.„¡"©ªt(è~¡ÓNN«1)É{¤"ÏA_‘­gÖ“ºû|Îûð…Ÿ$Ãfx lÐ,ªú”s”Ÿ}’FRöN$”<ÐÞën>l_Ñ=×›VœqŒ·¹§èò²kçPÛì 7P‡ø¸óúÊÆ÷9¹&æˆÛSSÇìkÊH^†B@­·§Ý€Xw¨ôlGCmšµ¯î1 ¨äðÁ÷´Å<¶×[5Ä ùvò›]ÛS¸aŒ>2 ‡ë¾–`æ@ÑÊ·¸¤«6¢¢oÛË×]ú’V‰¬°¯Áß{A/ddG[C/’I8격§&hˆ€{}!D¸«-0’b;=Á)—*ŠŽL†fO]ÕÓv¿ÁBPC õKïR { k¡÷þšõ´U*‚0ƽ¨]}¼h …2䢪å˾¥nsRq¥T7?R"³¥PÕ°¯Í»ª¾…1öµ1­ÁŽsÁëv¡e€·4^AÕì£-ì ¥£=-êaÐ×öØ–j/ú»Jòz¨%YE#-tBÁ Ë-§e›x ëÑS† %ŸPôç´ág ­&V×Há{m·¹‘žñõ@[lØ—+ÉÒ4³bžöPÛKFêÖÓô™÷_ÄÎ{Ú¡Éæn~ K[k ¢4¶ŽtH!/©½·@cÑëkËBÔˆ©Nj4Tàè<`£‘‚ Þþ’ÎÍ]…2–ªÄ¥Î;>·ZÚ;¾·«ày}ìÉ£¡¶o³X–l8±†@y)u 8m)²«äì—¨ z‚'*õ'Q§}%Ì®·§ PŽ”,RRZAëï_fQ[oÏßAùƬ•#uG—Ú‚JûO[cpàï3ëMÖ¨C‚B~ ¨vñe–‡ú“¾ñ‰@AÓ=Ö[Ì,úè{ŠŠrÅqq¤8“PÑÛÓ–O e,Q¸Hda‹ôûÊpß@jú·£Æ© EôÔ$e’m?Pžµý¿´þOâM— G{ÊkjƒZ‚­íi»K €z c.á§G»Š:+ŽpWG0$µ?“:¶ $¬R¯=)ï3’øC$.eeVK è }=ÉðÝWF_¥24‰’KÌ¡ ¥7Rwh©u˜UïõµˆŽ]-) Äƒ´£íÃÐ\f·5M£¨•v´µ"´cW˰¯®gê°”8©¸E@Cõ´%쀹·›o« üÌW’ßæK©ItöR%H_[VÓJ`†{JƯ]%µõP]BÑ×j(©/›È²¯,Š ”¤øžDÉ3*üG†‚¾¯,#Bz}éå÷•vw_(Oʉðù¨ñ÷µðû¡¦<ó»%]ØÓR`¨C%Þ–&F gÕÇ*„ªæþ®Ì'éÛ¾šÃXdj;$vào6L²;$D]o_‡D»¢§-Pï«熂âHUÃ\k”Ÿöè« Ž=%‡•š «¿£m÷vÕðð]-0W#gCm5ÐPÛSjçny)­©ÓãHà:ÕWjŽ—çõ•¡HÕ´ÔAN@ªi‘âoÑ¢>Á×J~(q!IU—»—B„E¶«-ç‘ ’ #U‚ ”8„@×H ›æ‡Ò”’úù”#øPâábª9­s¼¥‰£zåïúƒlÞˆÞPx#e½lG‹z‚ï©«cö\™È€–Ê\ågù¹ ‚‹—â,ROâÁžŽši¸Ÿïùh%äPcù'"åd_Ñ“DhGë+¯ ”1‰Fb é ¥Ú𬧠ÚZ:û‘„>ЭX‰ƒeGËv'Ôõ…ä‘ÄF} õb{#EdЪÛiHáå–h¤ŽuI<˜R›£=-zu'Ÿ ½ Ý|›†Zj~©·Ÿ`7 ×Wª¦‘¼ ©!Go¤¥øÊà¥:¬Áž²ÔßÓS‰Yƒ¾‚;œÉ^ ý…\tPâ&ßU°VúˆçúêÍR3bo-Dy{; v!Χ(©z†ê–ŽîNêM+yèC ÔCJ4²tV {Ê´Ñp¨2[éÇöWmAÅXž‚ç$-©@±)é) Cê¦4ЖßJa©i ,; °Îœì§ 7 yÖôF_M§-$7%c}¨m=¨£ÀÚg+qù Ô(OѸî)Û‡Ôí%¶))y!Q•KŸì«3RØo¤8Ô?wÀ¬§ÕÁó®ò -éF»êÌ×PÙÒ»§îwÓSS]Hí#¥­¡vïOstƒàt×ým`Ò¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mfd´‚àtw*ÓYq²9e'kN¶Ü¿×Ü,»ÏþwÕÍÒt¶Ý§³ã>WußQqß“þ{Íý]Åý{‰üÎ*ùò»îg«0kä3u÷¹*ùýéﬓï¦2ý¹ ù½uò½ ruòLÒç–þ[Õý]î­J~ý\zMu÷o%x^÷gz 5òüäg›äÞ›Ì}uàZkî}ÑwXw×PçK®Aî¿Mþ¾§¹‡¶ûÞ"³êÌû;üs—\w…Üg ži¼§&yFôݧφ[[-7ÓuÝ%Ÿ¥k_“\o“\güºž°VÓwXuP#{¡NÞ¬ ú®ªäÖÈÏ”É>®{«½[q¿·ÍÜo›ü|ú»Ó¿§ku½º×è¿W`?6‰.ÁÏ5˜=ۆ﯑µÔ"?GõG þ®Î¼Ç:yWø½é5•ÉõSYƒ=R†µCuB ö`ÖX…\C‹üþ\{zßéûn½Ò†u]†{jß[!Ï“®ç&£ÛÊ ¿«d¿4aMÒ}V%z£k„¾ã&ÙãuÐçu2+äYáu¦ïµ÷_]\‚½^ƒs¨N>º¬ä¾¿gSü¾¹þ9éýÒýˆ×RýGu Ýw x‡tÍ×É:K÷{™ü[Üoƒ<ë œq 8 é3ªµX#gM“ìúot]Va}4È×aOÒçU#{ õGƒj·6ÈŸë kñžKŒÝW¸Aì cµ`oÒØM >Û_½BtCög ÖY‰èv'¨Â¾¨€ž¡~RtBö0®û:ãÛÐÏ5?˜ž9eƆnÂ:¤qzÝtP¿£Lî©>)P½Gõ[‹ñwªðþP¯uˆ=Cc‡T§7Á¿«}Bí²6èÞ*|õÃéï®@ÌÚ<%°-Käüi1~#¥”ˆ~hÂ>O¯·~|Î× sOô»hL uj âHMÐë58à÷:Ì»«36bžµw¨Õ&×Õdâ‰uˆEpkµÁüž*œq5¬ÿS÷Viƒ¬» Ĉ°ï«àóÖ]S…œW“Ø-b#ÕaP¾ñ’:ìŸ*øéE&Ò!ÿ݆ç×aÞ{›ñ­êàÛ6ÁÆ+Á>¡zm‚&ÄÔÛ Êp¦ÓÜD‰¬Ç6Ä©ë'êÀ~¤vAr[U&@cìxç團Iì•*Øu°·p¶5ÁƽÕdòŠ4ÞQ»¸çÕ£e&––Æ”ä ¤ë¾ ë¯ÎÄÈ1ŽKß_â¾M&Øf|ð:䚣?[†uQ‚¸Æê §*`ÕÁŽ®ƒž­’uÜαƒÛoÂù[ÏÉsT@—ãÏ”Éþ®ƒ/Ѐh“9Ç+;+2yð&Ügtr…‰AVàü(2ö!=;Šd½5`­w!nT%:sðÅ©­„ñé"ì½*|_ žU l:´©Zä™—ˆž)ƒ]gDènΆlÂZêª3¹.Ð$z° qÏ"œñ È÷VstEÞe r ÈÕsô<Íáú(C¬¦Nô\ôo—É×tà÷`®¿%øžÐÙeˆÕwà<Äó}‘:èzjï•@×—+Ñ€wˆy.Ÿ…q *œUÆnh‚_Ü[§ÁØ r&㙈gâΨWh죹m´ÑÑ?kÃúiÁﮀ_ßfòÕ &vBÏÝ"¿®@ì mÌ:Äÿšà¯ázK€u¨ÏØÌ±ÿë9˜‰2ãSU`ß§º¦ ú® ÏŽ¾oz—!?Xe|˜øÃuò³%¸¯2èÍ2ùNŸí@^cX5°¡Š°'š°&P×5™| ÆK+`”™3¾ë©Âøqx¿%xÿuðçªpïu8ŸêpfÔ@·R¿¤vF…YÿUøŽ:ØŠè» [„µIõUžî¯Ø! ¢G+à¯`Þã2Õœ<kÅœÆBkð®*p¶a,õc0$Uð‘( ÂäÏ«HcÌexÖœ>¡ö*ÚW-ˆWOSeÎÌ*äëàÒ÷@íê+–`ŸÖˆ}ÚpzªÆì³þ‹{Ä·^ÛàïÐ?WÉŸ[h@ã]MÀ—R]‹±#Œ­—!æŒ9MêÏ—çR…?wà;ª›)ƒ_UËÉí7 ïUcö[öZr.&&ˆ6Mön‡ÉMÔAï6Áöj2ùM<Û ¶·±±2œõôìè09·VNξz£6!úuÐ[/†ñÍ2ƒ©A^õmô-]ã4öÞ€XbÖK üœäÀêLµÊœ“ æýVÁ®*Âù€g*õ›ºÛkÁù…Xƒo@Ì¡Â`€ëЄûª¤ÂÄ9d/¤gitO~†æñ; n®k±Œµÿ°±è2³†Jׯ¹vw>×` àž(Ã9Ö„}ЀgÐL@“Á@U‰ÎD¿¬ÈÄF[ f«Â`H ±éÆïiÖîúî«p½ °Z ?Ûß› 1ÕEæ6 U‰áTáùåa j`‹b®ºÆänªp–”ÀmÀ»©ß¦ÂØÐU°Õš fsÒeÆ£gbÞ3â×+L®¨ ±•Ä|ËÌyÑftR•ÑÔl1þ\ƒñmš°.ŒÏMuP0B5°ÉšLþ›[›MbÇ”,yöÍ`,ëRšäg+°O€Ám2±†"ƒ_¯À=WÁãΆ:œ4Ó`âk c€~Ú4>Ûo3gF °'tí–_\eâ˜UðÕËL-â Š9{¡ñÛƒGÂ<_þqÏ´Ž§•ƒ…i1:·*Ô•àÙcì³ñœ*óÎê'¨€þ¨0yŒøw5¨¥ª@žm¿2ÙŸ-&Õ„8bi¾¬ÅÔj >F}ÓʉA5˜º±2ÄX='O\Ï©‡¨M\‡<>Öÿ –†ÃÄ`ü· ¾<æ‰ñûÊ jŒ]Pflìfc%5°‹à+4{¥z§Lt?µ7ʬ‚½×%:¾ º¶ k„Æ3:`›7ˆ.*2´_±n„îÙ93ЇGß± 1n¬íÀ˜|ê'Ûä;ºLl ú󇈅©Îk2qÐãµ—^5ÅQ¡ÎnÂù†5“ ˆÛ•áüƺa¬¥öx ìîä"ªP«Z„³œÚdh—•À÷©3¶|“Á Ñs«ø†ÄôÊ šàËW Έ˜ÜNŽªBl²ÊÔÍUàÚjL=s©×ÃÜWrWM»£5TEðp]ÖÁ&çbLÜ™\»cÓU8ó¨YdÎÐì©؈E¨7Ä3´Î`³K€Û,Â9ˆÏ¶yZŠ}i1z⋌6rñ!ª9ëõa |®ä&ª9v#bV¹3· ¾w âñU¨æp±¦Î½ׂ5·MØ•œ8zj,ÓÓ`bÞM¦&·ÆÄÌ9Z!ñæ6ØÂUÆ÷­î¬ÆœSM&/C}®6ø„µœø+bEš`C–™ŸoB ]ËmÆ>¬’s°ÅÔ¤ –¡DžIê'ƒ‘æ¿»©ƒ>h0y£ÔâÕ™Üs#ÇOÆz‚:c›×˜g]'XŽ“3®˼U&~R]Ý`tâˆ[L-a^ýC…©ë¨çÔL™}¶.^S°' øÎ ƒëÆ Ö!cvöZ‡ÁÂ5 ŸØÓ6ü|•‰7áý”»U…Øn ÖZðä-°ã*Á2× Æd¹³®ö:w>cÍz•©Kj‚íµ-ãU…ûãj _ÙbðÜ}Ö@?ÕS °ŽUÓE1 %ˆ3u™wV=Þ€=Ñ|b |BÌ…V`6¡.²Î`Rk ‹jŒŽ§XË6<£ZN½ÊèÈ*ø #¡ë¸ÈøX¯Ò|õ-*€oÀ÷ÍáèÛàS!¶  ú°Dto♨+ð«LâF:7k2uÊmÀЖ˜:WÌ4˜Xb b¢-¦®® qÌ:ø¨§kPO^a>Wdð0˜@ÜprÕœuVer %âg#Fý¡.“×*3qù&Ô'–@µ˜wÒʱék9X6ä›k Ãß®À=¡ÏRƒ5Ztcâvõœ=T\| ê Šä5ÀæoæÄ¹±&›ÃêÕÈ;m0±³&ØÝeælÊ×™8R0¹-²V:Ì÷V|{‹`[`6™8D‹±é1'Œ¼bU·]ƒ³Ã"Sû²•cãÖ<ÕáŸ7!Ö`Ö"‡ÀØW r¤U&ï†ö-Æ(Ëð}U÷Ã|R p‚ &§FïwÉåRllpÅ5ÀQýÖ†÷Ú[± 9ºìåäæË ¥vE™Áu!.ˆ[·MˆóƒeÎØf5§X¿kZà[ÐxEÁ>U!÷Êåáit r1UÆo£umm°ÛZŒ EãYMˆV@W™:ÑSã@súE‰±ù2Ø-\òHÔ˜¼I%Xæ¢ê0¸Ïc¡÷Udp"·XÁ‚7™¼0—ƒ¨@ü=/†ƒgGjSw]ÛbpâåœøWƒÙ MfÝÕ ¢ÄÄQ0gÖ[€«·«Aî´6 Ö©7»Y&~I ÖEƒ±#«Ì³G^«:äè+Ìuc­rVû–®ÿ"ãª2Øí œ™4ƃ¸Y|6%¦¾¾Ntvòò]¦n¨Å`³§ÂxL•‰É7!—ÒabHeßÑb°%ˆùµ!oBïó«E°‡«L /®Eä5m7+©¶4ƺPX‚ÜG•ñÛëÓ@{“«ƒA¼,ómÕÀOë2ñ«:œ/ȉ‹g ÖÆÔ ßœª%&¶XƒõRÍ©ùmîÂx6îã6c/¡®¢ùºGÈãahÀo0µf æl¬ÁùÏé¢VÀóiUgK¹Š0NQebj­`™Ç£k²y†6ä‹Bíú~ &žP:ØSoÓÈñS‹ ÖªÂì‰*ƒÉǺgÌKÖƒe~:`7k`sÕ`=!æ;›€÷BʳÑfî©Áij¸=Qfê iÜkËègÛàÓ n£™çÀ¼NöItL“© /1¾T5Xæ"¬A^¢çK r0´†µdùxZL1—ól0µàuÆA‘âÈÂz@žjätªC¬¦ 6 —{n2¾#ÚÐ;xž"÷ òÂÖ?1¯ˆ-ƒ½VƒZ¡s†4™8õ hn£ ¶~°e\=A5'æWgtQÎ ÌÏ"–¥×µÀÐÍx È ŒàmÀ„´s0b ðC8&ÖÆµ|B©ÿDî ÊÖÉñÝ»98ó&ƒG¿”âk*Œ]ÝÉÙk´& ýUjç´™|)òÑ· –Åq€Õ™ßA÷I ÖN…É9Õ¼{ÉÇæq…Á×m0g] ö&Å?׃eþê¬Gê˵I|«˜Ì2S× ²<-ãÖ`Ö%Ö©Ð|y‹‰a· †¤,sïÐ÷Ùdð¢e¨™B¾§Sy)Œ×µ™Z¯r°Ì×VgjŒ:ÏûQœ{‹ÁÔTL/Çë—‹ª˼:*3ú뱞µ’³‡:€Óh2ë‘‹ Õ™³§ÎÄkãªåœ¡MÀqs|ŠUæL©2µ$&~E¹P‘§¹Kây &†Ð`|¸Gª087§Üdò æ5!nÝfj¦popد:­B-)Å6”!NRgj¹³—þÞ"É´ƒ,np&&ÓbâMõ€ç»å0yè_ãþ@¼RƒÁ¶"×âYK99RÀó{¶gRÎYgM&öU‚8N|UÌ©žãk;àc6Á¤×ІYÝXe06MÀ0wàü 5&oÈåF°®ó5e8oJ Þ®,÷âø.‘÷¬> úzþ¾Æœ u÷ÚbjJ9ùŠ…ç|b¬(’÷T„'Í«•`ï!Ÿrµ´˜3¾Ìཱ6®ÉÄ‘÷¿˜Úã_TáË9µ¾UˆËÓßµN®µSç[gìþ£¿Û€©3jä;¬‘3¨þ+Å•”àg n¯ËØIXÀåÚ Ž¯û¡Äì¹&ã7ž‡«K~Wâ];Á ÄÕ°.ƒÃ·˜x9ÆÊ€ÑF|Qð¯Mf?#×c…É¡¨ º¥”ã7W<Ÿ©11‰2ä©+€-­2¸3ìK…œùØï¡gy ì{¯€ø'Š?¬Bm^ìùn°Ü»£’óî9Ú€W)íVajL>—³»L|™öC(²‘ã“ /öê©þõå¿*Áºç8\°.þ;æ®kLM—·-2ï ûâT™škšÃÞlí`™¿µÌÄO‹L¶”ƒcàúF6\í-^cr„ÜÖ±ÕS\_kßhþ qõ`¹ß]ê;`÷a¿´sb‘ÔnéÂùHu~‡¼›œ• ÀG#ö{š´Áž+ƾ ˆýS7Œ›sgH0Ou&‡V –9%ÑOBN¢R°Ì5Ñäž%Æ·£~å0*BŽ¢¸° ƒ•käÄu¸~ñhÐl öJ âp\}zÖ÷\±vžC™©shC|9 JÁr¯œSëÄõ´,AÜ¿ë¨ õrÝ`™Ÿk~›Œ=FûCÕÁö@Žº<Ìkòå`¹göxC=Ž‹ÖŸÑ5FñMƾnË<©¨G±E;'¯‡9 ƒÅi0g%'H×&òâ5¬:Öð!ޤçnƒÁ¾µ˜œ1òO£?SdòXCgy lÈÔ…¡ö¦žSû¹Zg§|@¦V¯ÎÔZÔ˜ºÚÔ3×o\dêÏhl³”ƒ×Åüp›ÉcÏÎ< ×›"Ï?­Ùþsا¤ÉÔFQ~ŒœGˆ§i2±~ÄsµŒ}ƒÉ;¡næú(¢/Ö_§‘S[Sx.#.Ÿ×dü2Ôƒ5Á—ª31èzŽmÊÅýKðž*9XøŠÛAnæ£'¸™Çc”ÇóY xþÛ¼sÏsìËE1%°ÝËÌUbl£z°ÌÿÉõÍÅ>ÆXë$Õ;Q>Fîžãbçr°Í€ï÷†õ3´ŸK9'öÜb¾ŸÆRòú\aomÂùQ†XE r ;Þbüæc÷µ¾w3b,š€yBÝŽ5-óƒñÈ ƒÑár!\o[š‹Fÿ©šsöçñŠ6ÿÝ –û ÒYî±,÷7çjËL½F…9·il^äßA2×k#¯Ž± ö ò_5ORì̆‡™gës MÈË#ß>å+çø3R.ºA°>ÔWÊË-5 ^ÕbbÄMÀ.çaò¥ü8ÖMÕrÖX±—óú/røûmæì‘jV¼–ƒ¹Ã>R`™w–ãl¤g0åÌÁ~-UæÙ`ްëºÊØÈãÛdl*ãSW™xföF r)uKÈqMb\» çåò¬35158WkÃs¸ÎÔÍ6¦¨È`z1/Kñ.´·ðœž&·Mc/hóÖ˜³„Ú›ˆûEßu:W[ƒ6u%g­P|b‹Éïµslä<îIGÒ˜‡±¯i¼¶’SÒbòsX^ˉ´˜Ú–rŽ}Åa›9z§–óìYÔ øÞæM¦nŒú}m#Ñbâ®58'§óôáûß`tïQ÷߇ÿ¶,8ç6ƒ,ÿ=«®&ûì“ Ú‚÷Ü‚wÚ%ß·,÷™n’¿§|/[îï?sÄýwÇÝÇQ²~½oš¯Üpÿ½Aî=½îÃïØ&ïbË}÷îû޹ŸëÂþÝtÞv—^ëò^¶Égj€7í’kIïáhí!Ô%ßÝ"ß™ÚÈé{؆˜àøµœórÃý÷v°ÌQwß³é>wyf'ˆ?qøw'™ŸOù ·AŸnÿÞ‚Ø]øÊ-÷ì·Üìºï£xÇmr^l“g± 86äèÒû=FÖíÔ5ȳ?Mî¹éÞq©Ï¨þ:}W€Ø&÷Ò ÏŠîÇ+ÈzÞ$ÏéyÏäg¶Á¦)ÕåGÈ=w»Ü%ÿ½Ažw—\ßÕî÷7ÈuŸnú>6ÈߥkŒö*Û ×˜®¡6s®P¬/ÆaО½šè¡*¹Ç+aýnÙ%û¿»÷îå“«¾ìuÄC´ˆN§?×RòÓé5 Ërt!ÿEõ\òBò^6Õ;‹î¯«ÉÙT'gÔ&±gºnÿm€ý”žëLjOŸw‡èMx†›§kæÔœÕÉÚ ÷u%É55»>½ç«ƒl½ô½…çך ô˺A¶%­÷¢ûîÑ“M°íÒó¥ööX¦g÷9“+Œ^mº÷²Iôù&è‰M²ÿ; F¯ ¸í ˆem÷Ú$¿kžáUD‡Õá £Ïs›œiÛäï7Ýw´·º,óÏÑ<1Í=êªîw]5¡éï­Y'öÂ&9£€­Ek?7Ⱦ?Böjªw¶ÀFkƒÝ±Ižwròmˆ m‘3¨Jαf°ÌEÓb0…gáÌ«;w„¬ƒc/k¸gÒeð]ð—G‘â§pö¤kü(y¶²¶šälÛ$ÏjôûÆŽ¢¹™í`¹×ùœ‰µ`¹J‹è³:yÞ-°ƒ¶Èþï€IÏŸù]u¨m“uÄá|R`›Ø¢›îwÒXçbCнFkÚÁ2ŸçQÇ@±ë]rÔ:Fö½æ-ØW »Ø&¶ÅÏ7ɵӜk °ÐLn£:¸XãÑ;Gˆ^­>u;íß%׆65µ?·‰-„˜j l‘g‘~þ8䎷™õÝ‚Zà 2©Nß"kd“Øo“õÝ ²-m¢Ñ.Ý"ë#µYYº®Ò=Omîfæ¿÷_½Ð!ûû` O‚ήÖåÑkí`™W¼ 6vºÞA–S¿,÷Ø"먺“úË”£Ÿîý¬§&ƒ-­ÂzL×[º'·ÀÖ¥6׬õ±ZÄ^9 k{p\ þP0YuÐ'4Ò%çÁ<Ã.¬á6Ä16ÁÃ3°Ãœ!é9~Œ|òòv‚eކÙ§ðgª€¢X³Kä[䬩»ýMíÀ#`/¤×¿ ×q¯-ØsÛà«Pÿø(ìÅ.Äß·am”Ésª‚í˜>ÿt¬ïö9N®m“\3ò6·˜l‰ÿµ±\`™K®NìUäßEÏÑ#PïÝ"ºä(ù]à¶_'õ½Ûà'u@·tƒeÇè4Ê'±,÷—ïÚ_¬KÎj;W!>X…kÌnDÏ«-°Ñ7ÈÙ‚=mäúë䃟m“{¾£u°5Óニ¬ñ.ѧ'r0”GÈ÷Òß”ÄP;ä¹5œŸÔ%çɹ–mÛbÖPâ3È“µA~×6¹Ö-ð™i}z‡©½Ùûzlc[n‚ Ý…øGâUçˆ]±AtJ9‹šàÛ·˜ÌÄ.¶ˆNê½Rc0f˜hó¸ z“®—Øn4^щÚàmˆ_m:ßðJ²fºN!±± Э›ãoÁúªËœGMò|è=¦úì4¹†Ĉ® ÷²¶9âé6Éš=,÷ñ£ý’:ƒìŸwƒü¾ &¶Ò"ûËõPõ&ø 4ö¸ ç æRy"Xæ3Ù\elé:Ô;tÁoÁ5´,óãÕœîm‚ ×u¿AbŒ]¸öMbkÐgÖýŽý+«L.†Æ`¶™x{öÛ&Äe)OæqÈKP_“~O‹ÄNºà3Ò¼@Λب-ð3:—Ô!ϾMöѬ™4þw ¦8•Á2~ ò_ °íºdwa¯uÈyGÏý«ˆ»IÖFòuòü®}»vK‡‰e6˜Y›¼ß.Ø4Mò©ßGñ¶4ϵq©j°ÌZüÂ1ˆ}·™¸ý&‰M"×]ä$оh‘çG}ú6Ä7È¡qæÃ¿Ä…7ÁO¬»ë¢zã8‰±R[±Kâ¶ÇÈý·‰žiC­n+XæÍkBü»Åœù4IíDªË©/PœÍ÷4¸AöQr¡4W|’ɵÐ{Ü–û)m’=tÄåÖh } âÊmb×Ô‰¯Òajœ;Dw'ÿ¶Mb/ÜýÛä]¥ïv›ÜæË;äÙoÀ³¥ñÓ:±-«L,e‹ìyÞ’ëÞ†8ò#µp“œ\ÏÏÄg·‰.¿ì»ÄɨïÝÝÒ?cYÓä8¸Û°¯?Ý&6ÁÕ÷£¾×¬käÄF· È£4ÁNí’=|8o›§ÆÄ\éþí@ ¤y“*àû6HÜ Ïß f?¶!?·6~âõ4îLõâ6¹äo¬“³¾A°/;IîãjrVo0~{ƒ©kl@.b›Yç-wNv¯²Mô~—±åéÙÙ&¶2Çk¹ ö@©+©Ë}¬¶àü¿®‰Æƒ6 GÙ½Ý%ï¾ qî.ÄÄÚžZ­jŽ‘>Ãôš¯_¯,÷ÜÙ†ó© 9¼œ§mÈQÒºPŠñ*C®¢JtYºÞîEöÄ&±9·É¹Õ¼ õÍ[€E8AöR0bé=_EÞÑQ¢³·ˆKk¬è»Øp{ab Í`™ÿ¤ÉÄúÛó@lq‹ñg7!±Á`/Ú e Î\Žc´ÍäÆ;A~ŸòÔö9v3Ía^>|—ÄPš`“aާ >þ&àÊO@Þ{¨Õ ¼ö2öqïÞ©8]®î ë»N“gA1Dôìî0øIޝ9&ilµ ×Õ¼Jj«¦1ŒÔ/8ô›n ²}ŽÛ ÇüQƒÑ ˆá·A‡Óu_󩺷øˆcä] /¶ñìÛ"þâºL|ºAü÷¬‘Ãë.8=´ážé¢“hÌ‘;:àsw †Ô&>!µêÌúåjk±iò)ˆáUÜ=¤:ãÉgl“{£ûpp›`ËoÁ:jÏÙaü¸è'Ìw×ÁÿÅúÀ6äÙ(®±q‰ØA€‹Üû‹æ#LÌ­IÖVƒ©%«¥ ¸ë èkŠÉ£9é ro‚½ÛÛû 4]Cýé*ä]9>±*è{ß½†ì“-°E;€ƒ9Bôù&ã£S[ ãmõ`™³†~ÇØ´ö}Ì&øÀ4~u|á 8(öº ög 0:5&&Õ…¸â뀙£yïMÀ×QµŽ{é>¾‚ø¶ÛäžhìºË¬‰`¬éz¢öà&s–µ‰^n@þ’ÆŽαIôwâk Æþh€ït0Am°;šÄ>k-¾Éäò¹5X…x檛ðw4Çß x>Qšc¡õ½tn’½u±+º€mAÜïOÙYbt›°o·Àk€ýB¹ ꦳­€ç’§¼°Ïñì¥9Ó©C Å ‚'èóùÃ:ÌMsÍU²F6¡^×rÈ!&†®'š#¥q¤`ÈÚËoC>¬Âà{RôjÀ춉è̵ ¨o³AÖxbT¨Û7aŸ¶Á¿¢9öMˆ…"¯g—ø§˜ËE,­K£<òìn€ÎÃühÞñä,Zd7 ž‰™Ôl”kÑ%φÚÌ7Aì‘ÆÐ·à\8 y.ø« ÈCp=ÍhÍå¡ãâe À³¶_¹ùšß£½"ïïzwt-l‘\eð£]ÈUu@ŸÓº…6Ä`›9çÀ&øRˆµLëœê°w0¶‹¼!uðý©Þ@¼Glç:øŽô{7Á×ê26vªn»‰Æs6׺ͬŸMæ÷ÐZ“&ÄϸÞ.]°ajŒÎ§õBÔÆ¥±]¬yÄž–mÀ/\MôÚø94ÆpŠñsZãkÞ¢þjžIl/ŒSæàä°ñ À¥Ð˜M“©å¥ñFjst` lÖbx@\¿ ë» ±Cz†] ûµMös‡±0vÆ0¶ÀÆåú^cÜ1)mÀ~p\GÈù|5Ù;uÐWà'Ûõ(óž6È^mv{bt½lCܾ9óÄ1ꀇ£ëâƒË|V-ÀÒÒº¤ô¹—‚eÎÁ 9?¶Éû>FþLëA³­Cž9Õ·u×·Mžyì–9«[L¾¥ö]—±O½Jq¿U&^¶øô*ìÇ6ÄÛÚû>ù½j°ÌC󗨹ì’gr„`´Ž[áÁdŸfjÇš€…næ£ Ï°Ep-°ó»°Ár?¢çh€S‡ÚÖ ¦~1U°ñÚ`ŸÑÏ7à<£±ÏMx ’÷Ø$ù¡mx>Ø/`?n¯cë6˜Z£“LNgƒ‰«q¾bÏ6ÁÆ­‚ÐïÝ`â'­`¹—­1ß» Åà‰¯`pn›`_Ðþ«IþsAT?vàÙ$úœêWšlåÄqÛgÝ‚< Ö³¶áŒÁ¾ ˆl[¹ 9H—«N­6c|¾VÀ×pcï‘äø’\äè·.± Ú$‡¸ ëªA0`'á^èýç·Å`”¶˜z&Ž?| ž× ÀtìW bYÈç[üµùimIZ·x”|¦1Ã6Ô P\Ô6`M6àÌØ‚\ï6èÅ+˜˜bìê;¶¡F†rc´À >ï`4;à—RûïH°Ì—‰v6æÅÛŒOÑerz´¦£yXʸ‘“{íæäð6!ÆFë¬)§÷6Á Rûô±ÛupG‹>ë«Lþ&£ËÄãh<­ :«ëã­Gƒå¦5ÆÿÝ$¸>Š+o2g Ö‰s=Ò³ìJ÷]÷"8…Ô¸’œ%‡Þ{+XæÙ&6S“Éý4A×ð¼OÌÝ ²|L-æìÚ„³†ê–Œ„½ÐšïiB`òMÀ¶À¥kíDÀsŸwÀi0g[“ÄÒÛw¢ýu1ÆT&ïâ*Ó ˜­mòç`¹¦ûœ+mãßÿ‚Æò¨Mõä’ÏØ³ x‰Äžh®®,÷EjË}ÏÚP§Ö%q¾ní%Ó†ŸoΠ¹!ª“®%º¯,÷þm¶{3XîOýkŠ­;º õaÔFî0çõCëÄç)“{;Bή£D·¢oyr2ÃIcT ÈE¶!~ÙŒúf°Ì©Ñݵî]—Ù†XFâð[Ár?ähªËÜXTWëÀZä€C dÖî÷-°ukÁrŸkwu%ÑÙÔ½‚èè#àǶÉ{ïö{ ð¶èGv™Xv›ìí&äb[phß´ Z#{½ù€V°ÜÇs­ÛL|ºE¾s‹Ñ±íœçŒýªÞûŠâ‰ßHu4ÅfV‰NÚ„Íáb̲,×B§5ïESÚ„¾cÄþ@¬Æ•d]lµq ìé‰%t™D|Yƒ4GÞL$ý®n°Ìý_¨5Ø|öí0:½ x»äÏkP[ÕdΜó»ªäY·³Õ…÷¹ þ1õÛÊÎö£q¢mБ´ž„úÉ]ÀCÑx_‡Á¯Ô™øiü½cdoo0-ŒO·A´!žBŸÛø\0ÕÓØ†3¹¿1¿Øßi‹‰wUÁfoÂùT ø^ß]ˆ;m3ö:·é0±Ðô³%²·LÅ$Îs”賌íÝföNrKGÌÝS[€èÀyAÿÜ=}’yG &¿ð=O·\Þ®µ ˆKî^ab `¯6³ˆud?¡O\atJ3X®É¦±³ üîjåªì@ rßÖ ö¬ú,=÷¯$¿ƒâÑ)GÕ1&±MÞCømÈ#Ó|ï)ˆAmAìŠúõh#a<c±‹ÖeòmWW‡<^+Xæi0q¾:S·³ qžäóÃC¹Åäí6˜œip&ˆl0gÇÃ׆}|E°Ì+Nm–-b7%k÷JbpXÚm&Aë"‘«f |û`™o‡ê®M«Ú†{lAÍIÞ-âzšPÿEëoè>«1ñë:àXê̳¯ÙúhÄÖ"'à 8ëhß„÷kæ9ªL FÎi¬íh€MÚ ²|xM8;èùW¼Ü6èË+àùw[FùsÓ¸TìÑ#°76 þ@ÏŽ#€ÍîÂYß?¢ k½Éè,£?ÅœkGàܧµº'ƒ,oåkhB.$­qjÃÙõú[€ÁFlkÔ!ΪÉä{»àÓœ`Ö,å*MßIž%r4Q ÕUTŸ—ɵv!÷L{b̵M°ƒµ`™ûÐZŸÃg|œ{éßw!yÄÀgŸbj<7ÁøGp¨‹ê–†âù±Fa“Á'¶¡Ö²“#[°6;PK±:¥kªºaƒ©-åj€0ŽÒ`>ß…š.Ìwá éÀçj`k –yU±& ÿûºv˜sš®ÿ2`_¯Þ…3£Å`ãï{«ÒçGûËu!F{”œÝ91]´i¶¡¶£ õ`›€+¡~èUÁ2¯+úôßÚP+µï—â=hÉøÍ]ðoŽ’œ ú"¸×Ðokæî &öÔÌÁZtrjYº°î› fû”6wŠ9Œä9jß¿ž1ô<À¾m&.}ðJ”kùh°Üg•â¸kä<¤6+âNÒ}zU°à#Ù‚³™b:.oÕ%k»Cö÷&àuŽF¯>µ!¯†ïÛ$¾r’pü*G!Õ\Övañn°\‹ÞÏUpFv÷…1Õ`ä»°Þ7ƒR‡ÆWºÁr/Žc°®êL^¾Å`i=ɉ`™/¦Åà­6 .@û8lËõ½Øg’Ú@Ç!þ„5e¦¾µ ˜ã.ÉeÖƒ,Ç2Å–üÑÔ6À|à 8#¨íÛaì'Ä'`>c3G·pù‰&œ¹›Póu„ìcäç7L LJۀœF bh”—¼,¸o¶ Îø(‰_IbZè÷ÑÚ±m°Í·HL¤ 1©.œ#-ÀOu˱6*ö­«ƒ €v9ÖŸ[c“Ásoæ±¹dÌÁ#†½¸ƒä—1NÖfþ½6Úðð¾1wIuzž_›©9¤|j´¶ŽÚm¨}¢µŠÈ=Ž\VmR牜“Ø«¹Jtø&øß-ðÃ0ïOûÔÀ&¸šì¬n‚Ð${¦d¹ ·!IcöGÈš;EÞí+sâð`/ÓþM°7º$¶Ü]€>&òpn8d‹ÄIŽÀúÙ€ÜÆ!ßñŠ€çê|Û-ðõ@|d°–ôºNY.òS[†¶ÏVÀ÷\F{žÖ1Ô‚åZäVÎ~®3Ï~“9Ÿióìjc/ó &_Š6r„¶ÀŸ®0yýÁÜ4™Z;z^–ƒe•&±—¶I¼{‹`aÒ3ç ‚[Û&kòÙ/g!·AcÝ›P[¶éöxÎnŠ¡ÚfüÚ69ÇŽäàâiνËàª6FƒÖùm“³9k$×Û%öU—Ø“ØÛ¨ gê&øà-fßtÈõa$ÆÄ(î° k•òwAoQŒ6ú:ØbpMðg*Ár_›Än±V¸ÅÔˆpö\Öj°!5Èç·Áf£ùò ¦¬B¾ë8àd·@o¶sêáºð.‘‹{ a-XæH(CÜ­õÈKC¹6ð}!g1}vǃlϼMðŽ€N8>&íŸqŒ`(·ƒ,o/Å¥%Ž䬎@Þ¬¶+Í=ž ²5ÏmˆãÒ~T‹FŒe3X®•o18ð<£:£³¨>:d9²0?³ï°ÃÔˆ6 F`ìÞƒ§÷È!†<{è+ÑsääçÚ`3pö}·Ô7݆¸j ðµØ×¹ÐšÁ2ÏƇ)n©Bpö ¨QLû o<—í1XýÓLµõ8^‰ô~®!øcZï¶ ñû­`¹çHþ½xÔM/Ü»³ ~\ŠOß„ß׆üo6Ù»ø` 0oH}»sfÓøËQˆçu+Ñd°ˆóÁØÖ[u˜óå$Ä6ɾ£±š;ß ²½Z(×VÀ÷7äêùЇ«ÃóÛÜ<õS±6¼ ñ‹mxÇm°¹ •^Oº÷2>\—É S žï À³7Ⱥ?6ù&¬ì¯n°Ü—~#XîW‹<²ˆsÂÞ¤Ubg·óЯz¹ë‰úøW; 1,eÈ£p=÷MóÀ]ðÉhÜ5Í! ²õ½´ŸÅÄD·‚eZgÖLüiX_[pfaâëà{6sl[ÌÃnÀ=b|‹^æ$6à¬CÌÄÄnÿû•až 9Uº°–;LÖ&ƒÝj1³ ñÖä>¶a¯p¢XG!w² 5D]æ<Æý‹1,ÌÝb>ãÖ÷Ü –ûÊ Îí0±á.ĨÎmî¨É—3‰8š&Á´@GÖƒ,/!æ’¯,Îâ‹ ²üW“ßyr[WÀyO{ƒnƒ?p”Ø9XÇu öÇ&‰Y`/¨M¢¶` W›U'¿k â‘Ûð=éÚ;Mþy5º`Oo$Í[`Lfâ -Ð;m¨j¯Øe|싈³Ïå³Ú`gÐ,W7Õfê¢7Fó최Ú4¬+®>»Îœ X[‹¼†4–Ø…<Úf°Ì7¸±®÷S ü2kË=^8¿Æ'NÙ>XQÏ©áêÂóèË\mMÈ+µ\Wt6åè0ñÔ“;ª~)]'Ç™ZBÎ÷käÔ>¡½Ú q³@k…°ñ/4_¿â~?ê^D?u—|S’®™sD÷4‚,/ò6ØÁ[g¾’¬E¬ïØ‚4â³6!^²ItõKOÃÞ?,x6ᜥ¾ÍßnçÄ^ÏØeêx¨Ÿ×bbŸ]Ø›U8_¶Ã×ÜÕÑ Ë™p2Xî§Ø†ÏÔ™xY›ÁUnä|¾‘£7;€%Â8v©ãx'òâft­´à<¦9à3#×9ÇWÙat búÐÖè˼­-F¿c®xt|›¹WŸë01Ñ.Ø÷ ¨7H}°&ãsÓ{«ƒ½± ø‘Øe_Gët°oQ°³uø^äoçØ iƒÉOÔ‰M؆s{+XæIsoðk#@<æQ¯¸ :|ƒñÓjÁ2;úot=VáY׃eŽ­J°Ü[© ë*å!¸’è“n°Ì9Aq¢4'w„¼ÏcäsgÁo¾‚èóñß6ƒeŽŒ.ØÌˆ‰¡¶öú¦ñÉÓd¯lCœt‹œ Ô¶:y.‡Ã^4ˆíC|3òêa~aðp[`;t!~Ô†øf‹œÁ¦³y±.Øô]ÆÖíB!bãºçØd°“Ø×µd¹i°Þ¬,÷l’ŸÛ†khË=¤ÛLíö¨¦º9å#€¹ÿí`¹¦ëñ[ “k`vÀ¢5ôu?¶ öÄ6Ô#Ö˜³sLP#Ø\@•äf±oRt^7XîAUgj=ÑçzÉ6˜XÕáµ€ïU…¸5ÊOŸÆªŒÓ€÷8޼Ãn°ÌÜ̱MªðçkžÖ³•ÈÚ* áágö‚EÑ+ƒ,ÏöèýKãi-ÐÛA–wàät¯²5Ú›°÷ÒXHl-ÊÜ‚Ó ÐíéµÝ,÷Þfð4›7Ý» }Ðv¦ú(ƒÝ¢vù6“[àj‡3` òÈXO†uô´‡7µ!N˼>]¨ã°<´78µ?7?…ý“°^j“©w£u×[ sñÜàp#mXs ¨o<,ó¬`ía7ÈöW¥ýŽ› o“ì#ìÓdâÿ©}r‚9C¨íP'ym´3P/ˆ8¬]hƒKqéuFÿmÁùßq{•úŒÐýÝ`¹'ú‡4öƒü2;KknºLü™ë‘š¾ï ™ôÞ6áÜj31*º®«p>×à̤ܕmˆnƒ®¯« ƒto— 6vFÎÕ”·± ¶Ý“W“œU|]zÆ´˜\çø4]8³{?=«ŠÁ‚§ù šn]å®é˜›— g•ÚQW€ýLíó«ÈŸ·Àn hÁéî/¾/˜ “&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4iÒ¤I“&Mš4i’ÊéhÁéî‡mذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذ1A´‚àtמ„ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ 6lذaÆ ‹A+Nw§²4Å`1Ö§³ædÑͺû·êt–§sm: î3éß7ÉÏWÜ÷–Üg‹î¿ ä÷¥ÿ¸ï\'^wŸ­Àµ5É—œ¬¹¸ë,¹ïëÀ=ÑŸKÿ\q¿süî€ü[×½Nþ®J®¹L®¯ä~w|¾×\%×Y$Ï+ýï¹ï"ùž2ùÝé}Uáúé³[#ß›¾—2\˺û»*ù·5xvrEòóéï]‡ï+‘÷’^ã䳇ãJ¸fú¬jä¹ÓõQ$ëþû:Ygm÷êäsô~ÊÌ×Éz.Àý¥Ï§N>»F®'€Ÿ=œé¼j:‘{k’ï-Ãï)‘û)’5‚Ÿ©Áõ¯ÃuTÉ{hw‘îã*|W‰|×á¿o“÷¾Û¹^zß©hºHïî_|Wé³­‚Xƒï ÷™þÎ ùÜÙ é﹆¼uò÷ë°ïÓ¹NöÕ3uFGÈõ­‘çZ€ûKŸ_›¬—€|g“yö麧ú€îÅóŒÓ{:J>[ ¿³LÞ]ü¾<ûuæùãÞ¡ï»IÖBôQöröݯô÷ÉýÑu[€wwøÙM²~×ÈWÈgÊnÿÕɵÐuX'Ï'Ý“5x?ëäZÖA—rƒ>“"£ñÁwRpk:€5Ppk©HÖb‰èÃα"ùÙÙ_Uwßu²îë°þ×á~êð÷ô¼©wIm‚2œ_e¸Îcd­×ÉX‡{/À÷—àÚr¼ç*ÜÓœkDï—Èó_‡ïÃ}^†gÑ`Öv öÁìsª—ªä]6Éš>æ~Wî-`ô Ú)éw˜}Y$gr@öt¬Ó"œEò®©}·º¡ÄìÔž¬‚N£{7€wŒûãj°½RS#×׆3±@t| ðÎ °©>ªƒR%ë¼çÑy'Ô^,µväؾëd퉎ZcÎ…€¼Gz¾¬Á=Öa?—àý•àŒMHíû5rnеÕuײFžUtÝÿ¢‹qá}”ɵ¬Áý¢^ à\.“çY {œÞû³‡Ð{ô÷·œ>(3ö@z¶¶xÞ)ç[È:/3:Šžƒ8[+D×̾+ÃÞ.“k.2>RôØáØ"Ÿ ȳ Ï  k,ý]ø}xÏ%øÙØh¯›}F¼®†{6TÇá,’3¸vÚIxÿØ™²Î«p¯W2ç9½WÜ?ô¼\[©L~¦×V$Wßœ>‡2ÙÓe8qŸ­åø´F‡ÐØB…øÓuðÓËðþʰNjp®VÜ>¬ÂyLÏì-ò»*äË9~UìêKÑs¢ v Þ+úîø™uðµ¨íVclò³Nx'ô{Ëð¹uÆž:CtÃ:ØÛ ËnÁ×/’u‚qƒuâS¶Èw¬16N|Ö ¹æ"ø %8Ÿêà7¦×Ü ÿV…û‘üÏ#°æšÌõàýÁ¾(0k£ ±/.悺¥Î¼gŒmĆÀŸI¯-}UÆ·˜ë¢çhƒy¯Ô–]cÎH¼—€è¾£[ D— ­€³Iö3Æ2é¯Aüc±[ÐíExnã³R›­FôAlÒ"ùÌ9þR‘±ï D ]#¶U â°¸_˰÷K9ë'µq+°&ðX/T×¥?·ÅØÑuçãà:+€½Ñ"÷Ü{¤N~‡ØMòLÓ³ë*ÐõÆöÇó&`l‰uX[œ_flVj»Á_ º£ϲ6ú8‡ã¸»ç"‰ÅãÚ+Âï¡>Äø ëàË”A'•À.)0ÏŒÚ" °ùÖ˜˜8~ß:è%´íjð»ÖÈ3mºµ²FžCËý}-ç \‡÷‹:½Àœ¯%òÎê°+.Y"ñ8ªûäü©0ö|…ÜkU™³¤1pŒ9`ŒoèÝ5æY4ɵ• –´×Xa|ªÇëäç*`ÇaâgEÆWÀW.0ú¦B~7}O5ˆ9¤?{”±#ç¯–Ý¿Óøi™ñÁ+Œ/Ló(eðçªÄ–ÂI‰Ñ…ëð^×á¤ûî(øKuˆaRÝ_ƒ¸gì´2<Ç5°ý‹ ×è™0ϾJžQ‰ÏoA cyW2úc‹éúêÀ½V!GŸi ÖXö]ÞS>[r±è c+Pbr¦hÃ×És+ûxrx>¤öXrxVkŒý€Ž¡ùž&¼šoÀI Öw‘‰ÍÒóäòû‹ð~ËLŽãˆë°Ö †QÊÉI¯ƒŸÓ"g1Ím¹¸Ú5F§¬ç`øŠ £ñ½ §]`ì`n/_C÷aìqü›²[weòŸD÷ë1¸nô“©Þ¬Y¬*bÍ€×^w_eìÜõÿ«ÀØ©¥Ý\ ²¸Ãt­´ÉÏt‰¾OíÑø ²žÐ-5âŸpž”@÷®1¾äZ6ê²2ä PWry£€ñ½ê€a+1:ˆú6+\›åü®"|÷¾ÊŒ¾M×y“±oK`›®Ã慨9Íg;€¿£û›³-Ö 6Ò!ï¬öBtõ;‹`oT‰¯WbôkÀøÔ%°UÖrð/œ¿Ac¶ b¯• Þ¼ÎÄhh90¿ÆÄ¸üX â^·¯3ù=ú [ä>h<¹F|^į>ˆž7W0¸6ôO `—ɳ¯Àù±N°ik#[½Œ¸º3Y'1d\{%&quÅ›Á*AliÉÏÕàÌk1þC1Ç7_ƒ{Äx'½·TÿÖIÞ¹CðlE°‹ÖaTɽU‚,óz%øŒ½bœ£Àè™ |÷kñO)&;€˜U™ñÑ‹Lü¸š§¬0¸ˆ"Ød à|O÷]#àq·˜«/@^µÄ`DÐG+2˜(.žRòø|ÛŒýWƒs«6Ujw´ÀŽàùU{|9'K Ã9üAò¨%Ç{_cb‘–>µKŠDÒ\s•<ÿƒ Â|Ý:ØÁO¬3¾x |ôóÖ¬`9XÆžSQÀ^\ƒ3³}ÊäýR|Ð5÷Pdò7k°· Ÿ£û±‡ñ‰µ [ƒR²Ø×*óùu“¶xµ5 R„{o:ÿ0}ïˆ3Ößv‰)¡ O}ñ*“תÂ*Á9X[pœ¹X³TdâÿkŒ_1u.®U€üB0"ôþêcƳ =㯠²µ2A­(ÙSelÊ5òû×ÁÖàjÚ0ÞSfò±£Ûû±ñ“uðW×Û¾6Àºóª÷Ä:·²ÃYÈÙDÏŽJNL¯y›5ÀD¬ 9êØ9ÛA¹Æ¬GŠ]®3ù«r޲±Í6èí ¼«œ•`‹‰g$âÃ1öQý‹g^üäüq™䆊ŒÏ0ùqôç§½Îàë$gЄ¼câô}á=Ô‚,w9cŠp5²÷©ýAñEeÐuXsÅ [ŸÄa†Ò}µÉÄg&oS`°Jå`OkÕê`÷6@'u™|C±JϪÀXcö̓ÕHŒr±m1^}”ñm°fªglÁë¬C¨@î“æè±N€«_átJìöy> ò»jÄ&¿šÄJ`Ï"f£”ƒ\¿¤LÖeîÃÅ]ÁÄPS_¿˜“WF»£×³>A‰ÁzÁv/ÙúÐÜ?3Ò´*YO¼¿c«pVÕ!7Š1®¼“cà7¢08¼ØøE°‰ªðÊàgP?sЕë î‹Æ©«é^ƒó¾ø2z·I.¨FôV‰\glêôïZÁrí0W‡…yÉ5ò³Mø7̽s¹¾2ØŸ¦xŸuÆ®Aì[ÁS•¯À¼WŒ±#^³q ÄpS\ÍÝ!ÿH öû‰ [/Þ Ï¨F¾sì¶5XgˆA+0ç^‰ùì:Ä–*Ì9Ž8€“W]ûó±4w¾~w‰)V‰XãôÇåêÖ ®Pq6&ý7ú™«™X$âÓÿý^äs 8i TbãUˆó`Þò“3¤gW0Y¸g® –±Äk»]grï˜ûâð4¸Gæm.¯ öFÉ-•Á®/Â~AL;‡£«[³Jlß&øEmˆOѸêÉÄŒcy­:YwÖ!† qÇkp¿ˆ×ÁØ:êWªÛ Œ¼ñ¼ø¨ë`o[(}^[L^¹!Š ×Û±†5°iJpîâÚÄø r T;¼~Ö” îѲµ ëLοë¦,×g—˜\ý.ô©ýVeâ³k\»Mmu´Ï¶ÉùR‡ø"='ëL춘ƒCÃ*ÞË“Óåò½œ­Œ~h“¼CZÜbb!ˆS*3˜¿:ùû¬±FNn0½î+áÍ»žãûS›7=;㢱Ñ:ï^Œ'‡+ ~]$6G¹NúîËŒÿ¸Îä}ë 9LÇ:ã_pž•?ë„Ðï0غ"ƒ%«Bþ„Æ “L×Xôq!ç~Ösì»:Äèc\e|Í"ƒ «Ù¥€Ä–+°'KLž¾˜ƒA+@~‡Ã‘­1úºzŒêõV°ŒËF¿­,óPàyròÆ4®R`lþ2`¢è^m3±àجe8é–ÞÓp¶P¬ç:øUˆ(1XSZ;Œ˜ˆàc*Œÿ’—cAÌgɵ¬1ùþ “ÏCü#âðkÁ}cÍ&‡¡‚e,mê5É^MŸU7XÔþþ̵A]gt/êTäE©0x̃¬ù5.ÈV¬â:ƒ-æèkÜ Í`Á£XcôPð¼95æ}ƒåZûuˆ×¯A쯚³F{/ý‹ù°€±¨Taü׃u(ƒ=\&ßÓ%öWØ—^crçkL<¥¹ÐJ°Ìr¯ ËqR=‹øÂ Äs1ˆgÖî ß{É›àwb]Æ0¨í„¸KŒÅLãpˆÇ@œt5çÚ‚€ÇSc<° öa!Èò,Ì>)’ýQ5ÑʉííÛØ—Õ`™ÿ)–¹°Jpެ1~F)Èǘӽ»g%ý|ƒ‰_ÖÁ^X‡ØSÖW÷R x>Dj7ÕàzALcWÅ eÀØ%%P –ë8.‹"“ ĽX øÚÞô­ËÃy‘‰)¤ö~rë€kD­&ƒM)CNqIˆE.Afâ´i>°J0#Ôöh’w[óèJò<(f§ðØøcs Ö«{»ÈèŒ9× €õ¡62r I­ðu"4ÿ^Ìщë`Os eÈ파qczn2¸“"Ä£ÿ—ænnÛãëàC¯Aœr â.Ôn.½°˜"ʽZfp %æ\«Ùš=\«ð{ÊL|²˜£/©]BÏŽ¼¿7-1¶[âªe¥ÄÄÖr0]·™ X®×FÜ&ò¹r~]1àyb8î1ü<ò¯¡ÎÈË)`\³ÀÄøÐÉANü =ç6È»kÀùޱAŠ!¡ü6ùî `¸h^±˜¸"ÄŠ$ÎHë¥Ö˜çlÖ-«û ó3ÆG¥ñ° ày, Œ¾^YÉÁzD÷– >¸,xx¨U%ë¶Ê`„ª¦ïüÀªV›Vÿ»èb“ŸKsD…`¹¶•âUŠÌäpƈm(1kšÖÂ'ïc«è?!w#«·˜3Ï•€‰9Xà2œcëÁr-Ù:Áý̹Có²e°õ0W†xQ1ësŠ^ƒÜzb½tí×» ñàÅœþÝœ'’Ch“ûM¹ÏÙ¾8”«¤ywÜk”“·ä×À™ó cIij¾k”æpMaÿ6 æ9 )ž s§ë9¶Æ ŒS`°NE‹ParáEæ¬ã0¬ÄÀ+Lî»ÎÄÝií]™ù^Äv®36Y‘±ëŒÝëÚBANìqqç\ ²˜jä•áxßÑG ú¥,לR¾‹ô^MÖIÁ§á»ª€¿I÷J9¤2“ƒ¡öBƒñoh,ŽâJÑö\‡œo‰µ"ç:ØLt­ƒý[b|6ôßJL,ŸÚ]4f|„‰÷Ó8)â[¨µÎÄç ŒýR‡Øg¾ ¹¨ÐÆ)Bl£ð<ø&oQatá:ó»fÍž_&|WC°Î`®ò¸{ °ö(:õ…›Ä~ª²Bb0T/'û€îïZ°ÌƒV[½ ùøR°Ì{@÷L™œy%çÒ`ðdE°×Ö™tª{ ̼|¬«!æŠù0Ì1¶‚,>¾Ìœ 4öÈq²Uà”h0)Mfo…gU%X4ÌS”áK9¸§"ƒïXgöøZ°Üÿó‡£p,ÈÖB ~¹œ(ßV‰™rX³f°\“}xjp^—É™ÂåF±v¿Âض”srGëLîa9?Æ6+0vqÑ>cÿà|Ü|Ë5äݤ55b‹@¶H<¯×S=è~mŒM+ÈÖã5¬ òY”‚åÚNÄyaO7ŠÕ©|Möä¹p—È{ˆ½V‘ûc;XæðD\X!'×MÏ“ øpµ`¹^§ ÷ý@iN.cFc(W’gV†Ïp<ŠÜyÎqÅ®11ŒÅV‚åÚPÏT øþY¥`¹þ²ÀäC˃]‡¼w-X®›®Ö‘‹û”™ÜÝË[Ä/-å౸zÌcA>Ow!«‡=¶K` #ÇkògyþbúýGá=—stÖ—qœXŸ˜×çž´ßHÀØìe·–÷H.b¼7Ú_œö)*äØ1WÏUl Æ) í V‡\ú*\Räݸ2Xæ7º |ù{? ÷Sð,\´5ÐOX›Us„rMÓúƒôy§ŸoÎãúÙã³¾:X®ãÀG˜µÇá?hz•Á áŸ×rìpäHÂwŠùVÄIbÝm5'N•ê¿«H®{Ës:ûo­{üØ"ƒgãj„8>»uÈŬ1gÝï”S¿ öjr25ÈãÔƒåèf­O]‡ÁÎï2;(0Ø+Ú mù"ƒ} ÎËõlÃ>Ÿ5â‹­ÃzÀh4U"q Ľ4‚å~óÀõaŒµÊÄxQ§ ¬)°—ƒÝ.‚@>²ð|o Xk ¾–«ïGn¬½Gnù"`=°—çoÖ ŸÃåNæw–!OR xNMÌ™\5òO!Ïq¾Ó:“ã8±9nƵ Ë[Ή‹œuŸ+^ÖR=Ô²ýâsÓ`ô[r¼×Ù¾+k€£Hc˜ô¾ `“–|l1Õ’³Ãªð¾èYBcU&F±gâ÷1·ÙœÖ]r9âu&—ˆX <“ÊLì»ëóë$_Z‚}Øÿ½çâ0¶^€x=_êàz^UÝ\ –{|àó[_ ÷J‰øZA°Ì³@c²uÈ Ó‹ÏûΔ!αÎäG¶˜¸y@0G©î¼:GG¡ÿŒú„³#×¾ïÖ:èñ*ƒ¾šØVÈ‹€ýR€³ãããÁš0ö(ö-‚\»÷N%Xæ{áâd%Е´×b‰‰ Tk˼Ûëà'r°‹å€ïOO¹À&G@ûUÖ]l8–kj¹ÆòÑ·äúZpyµc_¥z¸ ñèëH~—ƼiÿmÚ[«æî‰«]o2±Á5rF¬œÆ(·Î:É­¬C^c9óëû–Éó"ç*åu©ް,×Àaÿâbι‰õéç»`“UÓ€ý +Lž¦,÷ðD®ùø”ÈÕ€ñª¼±ð\ât ׯ±'Ä¢¬˼u$ö[œ~fíÃîÙv§Ÿ˜aGý̧_|ò³Ÿ÷¬ÛÜ_´ÿâsŸóìÏ}ösn{ú³Ÿåþ¶þÈ[Ÿô”Ìç:³¿Yúàá9¸ø¬ç=ù·>û¶§?å֋Ͻõóžw볞|kæßŸô̧?ëÙŸôä§?ÿ½ü˜‹Ÿuë³æú„ÌŸ@ÿTzÌÅ[Ÿõ÷‡Ê'\|îmOzÎmóOŽÈ?–0 j=æŸþ¬çÞ:»êç¦ù€OXþËnüìÛžô ú÷³g¸þáÃöâÙ£=ÝMþ¾øá¹]êÚSžtÛ“.>õ9Ozæ­Ó?}hú“[Á¼ûãéîáOÛ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´i3™ÓQ‚Ó]{6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6mÚ´iÓ¦M›6m.æt´‚àt7þõ>Að²ý xþË‚àÉÍ x𛂠÷WA°ógApñ?ƒàĦó1Ó9ýìußÇÿ-îõ#ApU)¶ß[_›2ëA°ñìéœ~߯-AÐ}ðt^˜ÎZtí/œþʙοžÎ‚æÓƒ ñOAPÿ£é|ãt~zÔ~u:_;/΂ úþéüÇéüËé|Ýt>t:ÏMç©é¬Lçô*_9_6Ÿåæã¦³?APž~ùg¦óöé|”›ŸÎµ (Moiúo¥ïšÎO›Îé¿•î;§§sú»‹?:ß1ß2ÓßQ|ÁtN¯¹ø¤é|Èt^3Gƒ`}úŒÖÿ}:ß7ïžÎwMçôÙ­OŸÍú¯Lçôw¬ÿ°›¯™ÎWNç+¦sú{׿q:¿x:Ÿ2Óï]Ÿ>çõéõ­?ÄÍés\ßÎÑtöÝ<éæô×Lçô­‚`mz kÓkXûçéü»éœ^ÃÚŸNçÿ™Îß™ÎßœÎéó]ûåéœ^ÓÚOMçONçOùcÓ9}þkÓë\{…›Óë\ûÎéœ>‡µ—Oçt¬}ýtNßÑÚ—OçôÙ¯½h:¿h:§ÏhíYÓ9}NkOsóÖéœ>ßµOÎé»Y{ìtNïsí“§sºFÖ8c7§kgmo:§÷¼6½çµÁtîLçÅ郵­éÜœÎötN×õÚt]¬§sº&§¯z6 šÎé»*ü‹›ïsó½Ó9]c…¿ŸÎés+üß霾ÇÂß’ùÎéü›é|‡›ÓçZxûtþ›ousúœ ¿1¿>¿êæt ~ÙÍ_˜ÎŸwsºÏ Ó5Vx£›?ìæëÝü¡éü_ÓùƒÓùýÓ9}/…é{)|ßt~¯›¯žÎWMçtM^áæwOçô¾ÃÍé{+|ÓtNß]aºÞ ß0_7_;_ãæô]¦k¼0}Ÿ…—¸ù"7_èæôý¦ï·0ÝÇ…ç»ùùÓyÛt~ÞtN÷~aúî Ï$ón~Ž›ŸMæg¹ùÔé¼ÕÍé>(<ÙÍÏtsº/ ŸAæÝœê‹ÂT7>•ÌÇ»ù)Ó9]k…é:+<ÚÍx:§{¼ðH7? ætßææCÝœîÁƒ݌È|›$ód†dÞßÍûMçØÍ©ž)ÜÛÍ[ܼÙ̓霮ÿˆÌátN÷B¡³7;0/¹9Ý3… nžwóìtž™Î›Èœî¥Â)7OæÌܼžÌd^GæµÓyæ5nN÷káj˜W‘yl:ºyæ6™Óý^Ø„¹sz^:ÓÙvsª S]YhLg}:k9³ÊÌ 3ËnNuLa f™ÁbžÎ©> þ™ÿCæ»ù_n~Ìÿ$ó?Èüw2ÿ æ¿’ù˜ÿâæûÝ|3ÿ™™S½LÏ×àÉü7ß3Ÿ3ÿÎÍÿKæ»sæ»Èü[a¾ÓÍ¿ù×dþ™ï€ù—nþ…›î™&Ì?uóO`¾ÝÍ?vó`þnþ¡0ÿ™3ÿ·b¾ÌßÏ™¿ó­dþ.3ÇÍßfæ[`þVΜÚ(ÁoäÌ_'ó×ræ¯æÌ_!ó—sæ/¹ù‹9ó`þ¼0N˜oöÌŸÍ™?ÃÌŸ曄ùSÂüI7"gþxÎü±œù£Šù#Ì|cÎüáœù†æësæ1óyæ sê³?à™ßïæk™ùšËœßç™ß«œ¯æ÷\æ|•r¾r…ùŠçw¯8¿K˜ß)Ìïæ·¯0¿-g~«g~‹r~³b~“b¾ü2æ7*çí—1_¦œß ˜_Ÿ3¿î#œ_Ë̯Yq~õeίæKï€ù•+̯¸ŒùåÊùe—9¿tÅù’p®Æû’˘_¼â|Ñ ó…+Î/Ê™/Xa~á4¿à#œÏ¿æçßóyw¼í2æsïÀùœËœŸwÎÏýç³?JóYÁ|æ8ŸñQ˜ŸsÌϾ“çÓï ù´;h~Ö8ŸúQœ·~ŒæS> óÉwòüÌò|Ò4?ãc0Ÿx'ÏO¿“æ§} ç>†óS?Êóñwðü”ò|ÜÇx>ön<s'ÏGßÉ3þÍGÝ…ç#ïFó“ïâówÃùI÷ ù‰÷Àùð{à|Ø=`>ôc0?á8r7›¶DwÓù £ùÀ{ø|ÀÇù ïáóþ÷ 9±™™÷³9›ã£y_›Þy›wê¼·Í;lÞbS=o¶y‡Ï›+Í}›w›¹góc6wm~\Ì‘Í{ÔÚ¼GÎÍ»åìÛü¸˜=›×sǦÍ`^²is…yѦÍ`^°ió£8ÏÛ´y'Îs6m~œÏ³6mÚTÏ36mÚü¨Î›lÚ´ùQ›§mÚ´yœ7Ú´ió.3OÙ´iÓæ=xž´iӦͻù¼Á¦M›6mÞ!óz›6mÚ´ùq7OØ´iÓ¦ÍÛyM›6mÚ´ùq4¯µiÓ¦M›6m~Tçq›6mÚ´iÓ¦Í{è¼æ.4ÛApº;þ¡SþïüòÇ_õGßÿÚ¯úï¯ç7ßðsOø¯ÿ=þÖâïýÈ×´ž1¾ýì½?ô¿ð§Ç_yþ¾ù ¯üðø+~ú7þÙ{Ç_þ7•_ú¥ÿäñ‹~ðC¿øWõUã½æuïúåàÿ_ôÔ§ÿë¼í¿Ç/üïŸxÏ |üE/=þžkÞñ)ã/üÒüÝSÞöžñóo¸á³¿þ=÷?çKNüè—¼à•ãÏ{Üïî<ô÷¾hü¹¿òå?rÛO­?·xð°¾ýƒãgî}û7´Þ6~Öëñi§^|lü¬×üòïüì?tÇÏø×oûÍ×îtÆÏøµoº×WÆçÇÏøò¯{gåO~`ü9g~éÅï;ö¸ñÓþ\ô«ŸóÎñÓÞºõ¾3×}Þøi?üö{]{áÇÇO‹O~OáÑÏ?uóÔ'ÿÉÏ=x|ëè•WÕ^óÅã'?ð™þ¼g}püä`ã·þxûïÇŸù¹ë¿ù‚—Üwü¤'<þ—êÉ_6~ÒéàÞÏÝöø3ÞÿÚ7íÿãkÇŸ1~ë#>ëÇO|ë¯|è+ÿsüÄ7ð3ÿþÿgüį¹ðì#ÏÆøÓûª_ùÎÊ_Œ?íK>é½ý·—ÆŸÖzÑ/¿, ÇOøÏ?¥óëÇÆOøúÏûÄ—âÁø _Ÿûù“çÆ?üôèKÇÓ{õŠÏÆøññc>çßμb!ÿ÷»êYÇŸòmðˆ¿ý¤£ãO¹þó^~úÊëÇûÞ[¯={òÊñcÿþÙßòeùãÇ>ö;úœàsÆùâW¿¶ù¢\ȧ½¿îÃ/?úÓ¿â{õ˜Gã_)¾¦ð3íqüø¿<ûÞ?Þ?êð)}Ƨ޵õê¿{õƒ_>~äûº7?ÿó<~äk?ýa?sï7Œù¨—ÝûÔŸ¬ùÀøß¿èËß=~Äß>*~ÅøÁ7U.þãø»ßßð§¿7~ÄÑwýÖñkŸ8þ¤·?ó½÷}P{üIOüâWý¢­ñ'Ýø-/}æÙWŒ?ñ‹þ4ü¼ƒ[Æ¿ÿÛôÖýØøáÍG~ðíŸ0~Ø-ß{Ÿ½çöñÃ.|ÖÆßúœñÃÖ~æô£¿óªñCßü-¿Sø·¯?ô'¾àuççùã‡>óÑý“ÿvüÐÚÏ?eçOŒ?áÍ/|WµñÜñ'|ÑçÿÐWßþÞñ'\Ø=ÿ¿ò°¹|È»7ßÖºæ§Çyó“?Ü>ñã‡üăþ|ÿ?>yüïo~ë7|ß`üOÿû›oþÐ÷ŒüÇ¿øš§½ã«Æ>~øâªãמócáÕ>ŽÞÜ\õðƒqôEç>ø]ðãèÓßô¬èìÎåƒþûÚ¯|å_üÐøAüõo^ãIã½ísòUýÈñƒÞ|åï{ò ùØ—ÜúG·xÊý¿÷2~à?þîãÿëU/?ðõ¿qâ…'ÿmü@÷~Ø}à g_ú£ã¼ë[yîk7~À_~á¥Ç<é!ã¼þ ·|éÍ3~À#úŸÿÆ+®?à!Gõ'ïÝ?àØC>£ô›¯‡ùyÂówÇá/ÿÃ/T~ï¿ÇákŸßÿñi~Û½ÿ©úß7?ýQôÄ/½0ü?Ïü«b0'ïxhýOþeÞü+7ÞøÎeyþ¥óµŸúëãû>Ńòøþ¿õÏÿõÎöŒïÿm'+í¿{ÙB~ÕßÿòS¾ù9ãû¿äw_ù²Ï~òøþŸ~óûnýö+Ç÷ð;_úî+ÿi|ÿÁ×]ûÔïúåñý·]ô}ãÉ}_õçúÐñä]ýžû¼õÚñä//¾èiß×O~üK^ÿôïÓxòÚ>õùãÉ+o ßsÓ׎'þíWÿã¥?ONíàW>íöñäøÕoû§ÁK²úkO{æO>z|¿ßÿ³Oþµ§¼c|¿_~uóªî¯Œï÷ú‡|ßw¾ü[Æ÷{íùÿúÓ^:¾ß+;Ÿö¾û~Áø~/xÑãÇ÷›®òèý?8¾ß©ëZ¿õÜÇÿú7_øò÷>d!Ý:YwºÂ?m<¾íÊßòÁñxüÔïú¥xíõãñ'œ}ëÿüßñøÚ/xÊ·ß0¯¯ÿIø¸Gïûî—=ü½?rÅø¾otõŸúßãû¾êsÞÿ]¯ß÷{?ô¾7}Öø¾kïùÀCžu¿¹¼Ï«Õxõ‰ÏßçKÿòÅûÂÝñ}n{ÍÍß{êÊñ}nyó ÿù‡ß7¾Ï…ÿå'¾ø+Æ÷~óÿÈ¿ã;Æ÷~ÃmŸóÉ_ûÂñ½_uó©Øûôñ½oûÚøu·”òqGßò¨—ÿÎøÞnÝò†OýŠÇ¾úé yû»ÿkíƒò¶ç<ë‡ññ-ýïü”×ýôø– Ÿ´ùø×?q|˵ۿû#›ŒoéþéKËÅ“ã[Ö¾gò©?Rßüîs?U©üβüã÷î~ü‡Ç7¿åMg쉷o~UõS~üÉû ùØ¿ýOü…׌o¾åsŸÓ8úôñÛŸsùÊ~îÏ|á©…tçÅÁ-ýºó\¸æAO}ûÁø ûº7o^úÐB®=ëyŸõg5Þÿ×ᥟé¯.ä[¾âÓák?{¼ÿæ‡^¹½÷°…¼õŸžô¾ß5Þï¾ìÿ»âïïýëÕùÕW¼q!ßõ×Å+òò…|Ë3¾à×^ýØ…tzaïõÿñOÏþà½Æ{¯üùøõ×|h¼w[û~ãuß?Þ»õ¿ñ^ñW÷œ>Þ›mχ÷n9õK×<üã'4_²wËB¾åÄoüÑ;¯^¾äCŸýe÷ýšñðÖ¯~ÇÅoý¤ñð±Ÿô_~ÿÞxèôÜ’¼ùÏÚ—¾ãßòü÷üÖW<ðOòøS¿ôOßÿæ%9øÀ›~ôÏþíÉ ù®=£÷êŽÞøÒ‡ß´o©þÕŸ°>üìï}Wÿ5ÿ¸¯ÿæGÕ#~!_ùøÎ_üÏŽ·_ûÛƒ×}ó²|É»¾ü«ãÏ_ÈçþÐ}ß|ÊxðØÝÿšÇœ>^’NÏ¥Óǃãÿî¿®¼n<(üÉÆ×=ñ™ãþ^ù;Óø¤…|×S¾rïMýqÿÏÞï럼=î;½=—¯œœùÛÍWæK§ÇûÏ}ùãÞuôA yë㶦—²N¿÷oþÁûßòëo[ÈóÏúŸoü¼[–LJ?õ¯ù–…ìü×çÝû-Ï_–…_:÷òç=~Iö>ðïú»÷^–î™ËC+îäߎ{?ûݿ߷ýÆB¾þ3¿ú›_øƒãÞËþéCã?|ÖB¾äÇú[^üˆ…|î>çÎòÖñ…û½ýȸwóíO˜üÙÏ{çsôÛ^úªeéΣ^篿öþïxʸWø~û×>(Wî|à~ïÞ™ñλú?¾³‘/ÿè?oûŽoxïBþÖ/\üç›ß6ÞùÙ/ûû¼ûÇÒws9Soï¼ä;ÿ໾õ>ãç~Æ×½ÿþ×.ËÇücỿãoÇ;þÑ7ÿËs!Ýù¨–çï³óŠW|ÝBŸp˲ó[¯}ð¿}ò²,|Ã_ùêÁ’¼ôî× þî;Ï/MwÓ7½ÿ}ùò ¿xÍø!?¹ßø ßøžW¿`|ÉÛ¹òqOú¢É'—¥;Ï/ºó|.}Ÿ+ßðý{|â÷.Kwþ_¼íç¯ûîÎù|ù¸KôÔ÷çË[þ°ö/¿ðSã‹×Î ìñEgG¤ò»?ÿ³þõ7Jã ¿]øóï¹æ·ÇÞðõŸüÐç½l|á¯øõk<¾àì µ|Ü¥7>ü…é—Î^ñÊkôí¯9ÿ´¹<ÿ–¿û÷ï¼i|ÞÙ5¹òö¿ãÞ9ñKg-IgwþÆùk/üØÿºÿ£—¥³›Pž{÷¾;xÿ;ò-oë¾þ!¯YHg_-Igg-Igw-Ig‡-É[¾úq¥à…ùÒÙkKÒÙmyò¬³ßæÒÙosù†û¿êÓÞôh¿¼ý÷¶k«üò¶OùªŸxê;Æg=xÖÙƒKÒù½s¹öÒO}Ò¯`|ÆÙ‹jù–W>à§Ÿ÷¢…|ÙŸyò[ï¿,oÿÉ‹S½¼í~ßû³/üÝeùØß=65W—ÎÎËãï ~î˯ΗÎîEyÓ»>øž­Ák—¥³‡såºÿçéï¼´·÷ƒÜü¯ yÛéŸû¥—ÿÌåËÇþxïsÞóÅ«Ë[îûýÇî.¤óÓsåÚ£_öÌ÷¿u.O;;~.Ÿ+]?—·Ùg^ýˆ¿^]:`I:¿@-¿ðËã?:ü­7þÛ²t~‡VÞèü‘\9Õ²¿ý¦,Ë׿£òùš_ÞþÙ/<ñÔß[ÈçþÛû~÷¾É/ß“+oiþé Ϻ—^:¿éFç7iå)çO-É·Üüú·½uG/¦–Î_[’Ïý‹úüá—èåcŸö%_|þ yóþõÌ—×ôÒù¹Òù…«Ê“.¶²t~æeK矪åíû?ráå?à—Ïýµ“oÏ3V—Î/^Y:?yeéüæ¹,¼ÿ?¾ò!/VËœ­–ÎïVKç‡ÄÒùë^éüwµt~¾Z:ÿ—.n –.¾à“×»xÃeK—XY¾þ‹žý Oý¹ñõ·—ÿöà^rùÒÅ7æò±×¼õög5üÒÅ;>jÒÅM.[º8Ê%O¸xËÊÒÅg>jÒÅ}î0éâFw¸tñ¦;M>¶ø¿õËþãΓ.>¶²tq³•¥‹£­*¯sqµ;\º¸œZº8ÝeK߻ä‹~ÄÒÅ?béâŠwºtqÉ;Lº¸å-¯uqÏ;LºxéG,]üT-]þôc%»¸®Wº8î&]ü÷£&]yeéâÌky‹oßáÒÅÉïtéâæw˜tñô–¼×»?í%ÿõgÿrçI÷ÿ˜I—7¸Ó¤ËCÜéÒå/î,yµËÜáÒåIî4éò*jéò)w´¼Êå]î2Òås>fÒå‡îòÒå©îrÒåÉîêòJ—»Ó¥Ë×Ýå¤Ëû}Ô¤ËÞÕä.?ù1“.ßy‘.ßúQ—.?{—“.|w—Ç\~úc.]~ûn+]^ý.#]þ®"º<þ]N:|À=N:üÂÇtøŠ»½tx»«<âp&÷Xéð/wéð4÷xép>wW¹ípCwépGwÒá¡>î¤ÃeÝc¥ÃÝUå–ÃÝc¥Ã¹}ÜJ‡Ã3ùQ–wxw•›Ïx·•Oùq#ÞÓäŠÒáQMÞÁÒájM^žÜpx_“w²txe“w1épØ&ïâÒá×MÞµe×áúM~Œ¥«w¸ÇKW?aò..]݈É;Iºú“ß²ãê‰L~”¤«‡2yÏ’mW_fòn*]ÝÉOÙru‰&ï¦ÒÕgš¼kɦ«35i’•®NפətõÎ&ïY²áêÁMšüˆ¤«ç7iòî(ëŽÁ¤É»”t¼&MÞ‘²æøALš¼KKÇßbÒä!«ŽǤI“w t¼H&M~\IÇWeҤɻ¿¬8Þ4“&MÞ¥ãí3iÒä]_–ï£I“&? Òñuš4iòî/KŽßÕ¤I“‡Òñ ›4iÒäG[ï¶I“&MÞáÒñ¼›4iÒäG]º>&Mš4yO“ë®Ï‡I“&MÞí¤ë7cÒ¤I“&?>åšëceÒ¤I“&MÞ¡Òõ¥3iÒ¤I“&àúZš4iÒ¤I“÷(éúΚ4iÒ¤I“&ïú2pý¯Mš4iÒ¤I“D>÷3¾îý÷¿Ö¤I“&Mš4iÒäÝM¾á‰¯|õÀ¤I“&Mš4iÒäÇFÞ÷Ã×~ÁS¾=ø“&Mš4iÒ¤I“&ïòC·üaí_~á§Lš4iÒ¤I“&Mš4y–ÿïq—Þøðþ¥I“&Mš4iÒ¤I“&?ŽäÿÜöµñën)›4iÒ¤I“&Mš4iÒ¤É{˜üïÛßý_k¼hÒ¤I“&Mš4iÒ¤I“&MÞ#å½áþ¯ú´7=Ú¤I“&Mš4iÒ¤I“&Mš4iÒäÝD~ð-¯|ÀO?ïE&³2‚nœîÅ 6ýï qtø¿éÿ'QMÂÉTFaN&aNÿ>Jþ<‰'aÇî‡NþHÏ~hú¿xú£ÓÏO?4ýñ8žLåô'—?;ýKù³§gŸ ?;I~ùtL?^Öd’ü§p“Ã;˜~fúÑÃ[ˆÈgOÍ>;ûåÑìƒÑáŸf?ÞÚìöÒŸM¿xv-‡Ï`2»†xöh¦·0½’(s)—æ—â.zrxaòø&ÉÎÿ̿ƒÙæÝÁéÃG‡‡5ûíž{ØI?Í^îìãÓ]ÜìÇ_Ã$Žð’.$—LJÿ8™}s4ûâÙMÌ.t*!ù¡›È*š}ðð¦æ¿äðO“ÌÅq‹"Ye‡ß.Š8tŸ¾‡x¶Lfo9LŸ§ûNïu…‡c2IßD”üêÃçÁ½pöŠŸ@òÎÓ×7ûz]7.^y<Û$“ÙÍ$kuvÿ±°V£(­.>ÎVY4{ѳ'†É³ ¯kñšgO0>üÈáËNËìÎ_fv)¥¿À½£dá%×s¸×3?›¹öD;LuÎz<[|³M=6ÿÏ^«ø(—ÎDÚn#LJÏ'šLÄåœÞêô/£äÖb§Òfw‘h¢ÅÇg/5N®$ӽͮ%vhñéãɵLf<ü§ÃGâ%¤/Jyä_†é=Næšp¦yŸGœ¬­Ã‹€_à6Ááy÷ÅÙùCœ½ŸÃ—Ëê$}EaèWãÉgŸ°_qž_ì¢ÙCŒ“.Þo/Ù¥d¹¾£Ã'5{‰òJTD|¸@—n"R¨êÏÃ+IP¨;>f—=Ó=±o!Ý”þÄá­þš(—éÕéS‹gZ!¹¾ÙCáÎáÒ_ØNí®Fÿ“¹q¡ì'‰Ò›ý†œý:¿µÃ-í,‰DW$Gâás£¶Å ³ ÂC%3S4‘Û_Éé”(ôä6èv “5šjïô‚bV$Ûk’h©Ù17™mË ]3×/lÙ=䫸s ¹Í{O7G8ñž›ôœ³u%GÃLg&k ††NE ‹`g¾kÃÙLVõLmê¨ÙrvW1‡ÉôùÅÉË·|2µ/ÜFŸ¶wË væö`²g‹@aõ³ç‰{šßxbþ€Ï^Áž\6“Ük—ÕÂØŽbµ±}z¡M’73;N“-Ç,ïKD9ÎÈ™ªŠ}+kþ[wÜì,ÐMéq0³6f¿#9Øk=9Ñâ…θ”q3ÂÙsJ•iäLýDÕÌVæÒ©ûO³™_±ÂR<ü±Pñí™ã`v½©ö ÝÞ›ÄË×>[°Q”ž“pq40W2[ò•¡v§Ó_Y7'ÕÍ:ïãð/´gzœhÌ8ôy* 7Î=ÂÒ»15D'‰sâÛdÂ®ï“ ÓR{ѱÆh¹D^ðáÙ2qO%Y@ab`ÌŒëÌåì³þð÷hϪsé)4[”N#Ê.Ä òºfWè±×Ãä$ jï†Å²™©Ô‰ï%_»J)ñV¡!÷ˆ¢ä*Â0YÎE ‹à|ÖHç‰ÎÅIŽæ0$ {’Ü z~‰õ1ɵÁ‘¼¾|4 ¸®Ä±‰|[÷dª·&ÑÄçWžH¯g2‘=,X-‡Çu˜ÞfÞ#9:Ã3ïÅ»¸2‡ÄLÓ*×ú û"ñi¼çúì™O þ¦&é}†pá‹eâ'd\ÿ™•z^ÑÎÂj8|¯“ôò‹‡÷1™™³ã*L'é>Ž뱆š#ô\F_ÌŽBßן¥ -9¢0Õ­ìž-BQbÓ…‰Õ43;CÙÎ:›=ŒfK[¶‰·8s4fÇW~à‹„I’€°ÝiØ&Œ×_^N4Ø—XÑÉ(À}ˆ°Ì^\˜œ§òOžHÍ'e2IôÁSÔŠŽ“c0W'‡§‹8åû¸g¨Ý¿ZÐ=ò:ÅÔ0ò§³Ÿóqn¾±f«È9§Š½˜þy©döâ$ñVb9NyS$yæÊ âÄ~'9 ÒÍ~ßl…òƒ9K Ì(ñ£=6ø%âi…35è"Gò~a¡2“ý¬É(\"†ÅáÛK½÷Õ& f•†b@ü Ï‚•žC7QO.d-¼brv…zÏoGŸ&ñäYÈÃéàå4‰Mê#L ‰³™;+-Té³ã³·.,ŒÖÄ@Óœ;dç&–j&æfbƒ¹iéÎÃYliöæ}žt‚³°†æœ™çÉ’}:SúÒξ>‰š„iØËÂÏà šÌå\k̼êTsyL§ Ô–H”;_|o& ˜x>{Ã\a8ƒ8ÿ^Ÿ1üfoÑ%ÁfO–ÜíÅEô#‰…Çο Õݹ4H—XB3;6‰FÅ̹×Ë*ÖpÕdrÏþ°Úé4è'JÕ°¤‚Y"IZz÷ÉIêzNÃÓ!‹+ïÜ”=<ãDÑ»TGn>5M)x#7b,Ñݹ/ì÷|Ž“(â'‘ÒïN–eyUõpéÉM:JÂ$ÒÑ:Wó“ÄÔgÙ¢D?ú.îDf¥ÍTïcìÌcè3݇sçTÇö×§ábã6w‰¤ù†NîÙîô¯…T§FÒ÷^O ¦™!å%ñ2Zuâ5áš8y#ÞÀÚ5‘`ÍŒs‹tK”duI÷V’“"þâLªXÿb±ëÓÉÃN£É„âlFj´Ð)‚ÁñÆžˆ¨Øùç¡6šùí‚Gqw(j¹ùÖY`³¤ îNªü“XÁÄG"ß–;q+&:0H<|ðGËÂ[ “P¾³0Kûžcvõ®ê ë¾øÍß·_ÈžI<èp™LÒŒºÍêuM(±G/,1`cÕ¯º€fÆ–?±‡Î ô&$Ý[ŽÒ¸¾èÇQ¬÷·’cÖ£NS?|¢]F³Ç'FŠ&m¾€?*Ð5ˆï¡ ÔPóðæ9ÒÄ5Ñùn‘Ï-¢‘÷/ü®¾yÓa8ÑN×eù©3¢‰ MæU(®™¢]á³+fÕÓ³_PÊgö¨{nuäjܳÔ(Såt¯£ë?Ê_tTSMT.ê3:Ñ(çK…;{òE¬éZ’õžL¤Ô|Ï.2­¯.YÚ³P“úÛc<®=¨2NÎPäOš SY3“ä|OÎøùƒep8‹E¹ ™Æ`q'p—ü ¦5LcQ~° ÉuÅ:ÔVj÷ÍPXIRÒì=I`yQ${Ïçé'g€×l9¿È«%îÙÄŸT ìl(ßI:»z2ÏÞ%ù–ˆÏ9ªÂ‚²È«Xå–ž[¨´ÙÓL‹4.Ä$ùÉ?Ÿ1*Ò(«n¥±$i”@1#Im²À–8M»+̪¬ÞJQèꀎ3jÄå{:£Ô½*ñÙŒ‰^ô*ߥø<‹/.É›Ü!”*D%?SÄ) ó°..⣡Þy»&céçìÛ«`öÙ/HÜ šç¿…òF*Áéù6CE8ðì"À™`sõ.µ"&{ÉbkJ n$yò0J²À¡/ºÝ–oLFÄ©6à~ר‰'Å4÷çFþ$%ysƒ§©s«ÍwÌÍ[ñt¡öb¼Bxf^± êpŠJâŠbéÍ)#÷bf/‘L»~MùÂÜltÕ:þ¤ã™9Æ'LàÆ¾×µ®úÙ§J„E‘ÂÎ?›‰ÎNj¼@ãqÚäÃ¥y°'©âšÝŽ?@Hls¥ÕuóËäWÊE ;H/n•F‘ lH­•¤¢Ë›Tu^Ÿ²Ô*Œ”ÊûwX/|íz‚•Ó¢2ö"ÎdÑà“¤tMð&Α¨™«Wò©ÍLÁgälâ¼ýr‹$û÷³Ù‚í̈Œ‡›:«âʽ)ã9%×$ÕÚ]1oNæ¡Ö\ÐÐ\yÇŠí³Ó+Γ4¹âÅÅÏw©{E‘|¸ž€lB®Íz::ôQ bÀ-' h5u¸tŇJƒh X×>N°ù[g€I›$¥ O¨»Ã0Uï¾ÌôâˆNŸo‹dâq*(M¶òf^“Á]8L:³([‚îAd¹/÷Ù9;™Ðg²ÝV| zì4ÕÅI)—´Ãh ~†HÓí“O„±;Êü%ÄqâBks“ÕpRc4û=~¨æÜÕô$ãfÇsêDÉ Ð"ÖàD&Ê-˜¦Ç³L ±C£&i$4ëãDۨѽQ¬L.¼ú0ô…[†®»L!€?)AYéRLÒ{^°ÄojjdNg_Ê —'JÀ=šížqqfÊ$Šdà&zÀÇ~;íÄ<£èÙà°4ÅLi²=\9“g%ÍÏÝÙ“Tút—V ¦úYãg_Ÿ‚>¼Çú¼¬,ò»nÇ3eØ:% |ð<è¸8ræ‚×hMóØ.%: H vv¡Ž;cnŽøV9Tះ$Ð1¿…@ìºä°Õ¬¯s˜°Ð–°$è°ØoØŸ!e)ÉÎÓ¢"ç´È@:ºˆÄ1¬È vE)­MtI9%HkèM®ãô,¾…Ý<'ãÈ͙ώÑÄ5ÔVÓ„‹*Â%ßç'J7‚Çæ¾˜}0“(¥úÏŽëIiUÂ%úT‹[Ïyí³è¦Ëâv 'Ò»a)sAá\[û:z„É? ›¡¸´¡³‰£™DÎI÷Pg8Õà-Ç U%¤MVÖÄe©ÀÜ,ø”è½dOÜ#µÎLªUÔFÝÄÕëß²žoÄ»Ê[ìÊá @÷¹´ŠBgsš~ü+Ñ âk&ægäö’$ç$r!WÎUÜÛyø‰PñÏ,ߦ§'†®§æ†’ÀøN¢ë²t ‘‹‹/½—ãü¢÷%Ä€IeÑ ¦ú"dê3ñæ%"I@Ö¶>IMOÉŒ 4F:öZ>NéQ⦬ɡ‡Iá½­D‹~|ò|ÁŠ`ô˜X™‡®]…SûQ³q¨b}#ì±óõâBå&vÛd…š¶EAOy‘ÍÙ׿V’†¹#Ezãz¦§‡j ú*9vWàªñ;<¤Ð$œë¼pè9ÏxòÓ¸·2Q sŽcLKZ¤˜q_”ÁånƒÓ¸æGc,Š_—ª:W@™÷L—ªïý` Û‰´z7tDG‘rv9èYϧ—Üñ¬K>ž ÞÔ7bÕFäNÆ\Z»DÁO\8\¥Shü0Ùòs^iEt2öxÀ4ÐFñaŸºžºÂØ9~ÜÇD#íQ¥®þŽü´ˆ(tù¯âpd sx•âwšV£«RdÉk Whtèrdž0Ü sØTäkt=)TeQ'Þ°qмp…]Ð+R«FÑÄ ¥|ÎÞÂŒY`=ö…“.e¶å¢“Ï ¾z˜‚€4…é–P¦ùgg¶5j4§÷ÐdÏ´á  KÍç;!`šÙ\ÊZÀ”_8÷«©[=‘öbýéÚ/*é‡Wëj‰žHWC8[5!ȳðCJ?jöìÃh`Häo4y|^ûúIÖ\µÐdeò §Wr}è Ùž3Òg}e± «¨ÛЦíµ­ g÷êi1x’"v=èLÁi‚ÊçæeqŠ)ÐÔ™–:‘Þ‘‘ÞÈ{¶|"˜úuÈ¢»u"ŽøRùóFY®Og%(°“ÕRéN¥Íò³¡®/ûÄËrrnA˜OœÄž$ô|çÛõéõ»ŸØ9Š„fgwê$’hAè˜ðý¡ÄeZþx¢1R­ o¼Ä>¹¹¦hŇÎC‹\Æ@Ù•ÔÅ´dom^]¦ÏT ÊXäÇ&ZðXìì=¾[KCQ )Œ€Eùjè*nó/¹·œ± £’éîÌvÙceO¡´;€Ž·Ká:÷—BÒ)…Ö¿Hkž]ÓÀxÞHFbMÕ“Gfj½f·ä«ö[è¥ä!ûÉœw7ï´"6 ºzÎcä¨$g9ÖUM©¹F y˜KøíIJm•»Ì!† †K'ovéŽx2ÑQÁÍ›’ç<Ñ RÒª¢Ó™h¼–-#aŽ'‘ÊPô«Ÿ«Ü0Œµ±úÐW¹BÀÎòÑ{bîÁz~õÒ-©!WD:¹Æ¡‚jnAó®Ð–l¢¹.õ&ðåHÓÈ[îQ»“º«n7_r* 7)ëø]Rz•*{‡Tøñl¹\ŽA¸“3­’‰'¡Æ8TeE3<Ê€ÃÙ9uE$j¨$aÎDc&Þâ·ëeêVš.øO4Ì|g3dî+°GÌ”{‰­»ßyƒ2]©h¨BR/:³&̹«î8Í–å† .œ­Ó¦¡žsv .é;Ã2ªÄõYªWiÿj(ùÀ1H(…儈 ájí ÆŠî¹ Jjɰ¼=°®-yAí7Ì~ß!vQ}|èt›¿EÊâÌɽ۫§=:Õ…-RwPØ…ºZ-¬ÆqæLtÜ"§—xnU hâ'J85Ú¹á=w™¤}Çdd ز“ÈÛ}cÎñžÙ«wyŸú‰åB8‰m¢tbCWõ©˜Α6s=ïZyÈ3)}`Réè?ÑnJ Ò0œD—&uUµiq…˜¦ÿÝÏvM³ó(¾ãÒ…¾%#¶®Ãì$Ú“Ô9Īx¶£ùTç9â DQ¤´-¢ZþìÀMŽ….óê³m*¨xj6§ÎÿZàÅÔÍêæ]»Và¾×\û‰9VH]µîÒ+QÎ29‘Ò¬GzýðrÈ3WEé•úË|Á¤—¢æI‚} žh‡Þ×^Lº¾J~Â$ªC•Šy›yëèXÃãHŽvOF6ƒ2 £h¢aÔ™}"J‹áµÍÔ&¹0Òu–RØTǼq~^ö^‹rîb=—A%*"Žc]+Î$Ý0ÑÕž…I&e2ç.’³)¤œº¿4ö(€‹´ºÁÙ*Dò|½:Ÿ?ÏrŽF”œU—â:P¼ Ñ•6K†ÈÉ…)¥ =ª:¡ÏÔSyªá†œƒ*(€«ç3+4Táuo\à]AñD—^Á@›¤Õ`²Ë–*¤Ù£”}»´Ý²Ï“cICŠÇ®'žl’£VöxÈ’–ê™Uf ^³tNÃïˆ#Å ž“•‹ñ”*Û^X/’;Nó>FJ¨í… °áòÁ5Ñö­Ê´a\¡N5TÁC`­äïÕó–L¹Gç` «ŽÅ^ è²Øá¦¼ 4R£h…îlNű–7Tâs²Qßx…¢°ä—]šy—Ÿ8!ÄH¨™ÄŠiNrW¹-B¡Q±¦Ew–AÐ[‘àÎG¡Æ2èîÙ7‰ÇÖdC…œ/#°´C ¸å%_ÑùPs?fÒ’¡žÛ9rü —?ÓÌÛkÕ†2AãÎ"¿‘vÄŠ‚‹ÈT9t”Øf’Øñ <ßKxq†¤ýÖ']ƒŒäÌHš_zI„Òf•Ž‚iáóLû ™á9n\tÐo˜Ã "ÊŽbW‰ÀX`‹^=Iq•?s`­ãvIÒÄy©`˜Ó4÷›·ÊœEÄRv[ D¬!k9ár‘²ÿˆ“5tD ¬"TC²]u¯ÊfFÚl54.ݹî%XY¶uGœœnŠþèaêòD®Kµ Ó³=55a)|fR¥½s|w>ge×IY²½Å$×)’ïNj¥•ÍIu¨›¹*ñë <£ñ^9Î:‚5_N@¤WjtE«–NV!©sµ)ÿ¬L`à’KÊâ–0ŽÕgD˜֪ɖ'sïzI«-¸}’³ü2zMâHß'9 ¶hJ—°²H]îÚòÅ!Y–"7E¤JïSD[¢p㉠NípŽŠXZ¤P67,Î-_xþx–/<âó}½åtñ*&äëNf×ç=ß’ÚÉä'ÔmÐÒú´8¥RÌ]wg¹ÛÉ<(©“¬a¸(|•kj Mj˜b«=Àå•ì~G¾©t”f;lƺPI$¸‰Y˜`9Ÿ‹KÌîE”äBJWà1)‹&ÛïζbóÜÚj”‚á<{£‰(-Ú²(Ëȉ î‰ Gš6 'æåàž^—éê~qyÿ‚5>ŒD?"e›\Få…sŽü åØ¥4,g³…›q¨Œ×%1xSIV×jzyÍ &!0¾—éÕ=çÖFã.ey ­¸VÏ~YœT©ÁÕêt̺—ÎÛE (V lëyº}ÄRŸEºPÆ¥ xœpMú‹m2½ÝW¨xpK6=~ümQ5‰àÄŠ c/Ó½‚KÏ>óTäU¤ÅüÒlº®_Jâ—¹¶Ý+vÊp=¹tïËÇq¨Æ¶LæÀ>×G:_ w‡È7(oÌ]:eîOÝ@]‘éÿîï™ú)±Fäöæ ûZBßJà­ØN€ùÆÅKsñ"/}íø§ëS‡e J¶³ðCǵ°RmÇÓ‡+žaîþdÛ¥}é&±2û)úÖ&AT]›¹ê­‚É´Eã_Lo‘~Iz*&ŠLMD•B(uìÂhê¥è á„ñ‡ïošÛ|3óLçÞ„iþDyÂ'{>ñKUAH"9™$‡ §žy)c±ºÓ£:»ÜæIW¦7?ƒÔ!“ÔOV·xH;’G“Pk‹TùTŠÁð1½-ç)d%ÍñÆÍÓbo—Yò®zèÀ&7©?…®=£¯Sù‚46Ñ š¥”RJÙÊSmZˆø-ÂuŠf¼7ãD>X/.·¹/ÊâãP¸¶#˜a‡’€€÷d;G=äP¿“êe“²¹­T¡¶È+{´¹ÈÆLw­Mr:×Kq³ ÖÒhí¤¨FÓzÚ±*Orì­rc3 ódï([°ÐDšØ ˜ ¿V5@<z+ŒÒNÍ>ŠÈUä…Zª[׿w:±¤â* U$F±¦Ê—"eõÌŽT`2á£[½q[R*Ã;Y2”„è^Hé‡Ådh³X•š‚œkªþTɬ‰C¥‹ðÕiDl…š|mË­„L?NSJ9kôzÉKŒ‡³àú4xâU·sã߇$ö<$ Q1žDÓ&ºN¤ÙG¬¤š‰ôí­Ó\ozª EóNw‚™{„Í éYé²ãk–Ô™ \’Å‹¤·q*ÕxšœÜ)Rëæ¥Y¤Y‘0ò‚FtæJ"ÔAÃù½^VÕˆëáÝBÙB¦xÞ<çæ¡B4QCïÒ6Iþ‚,ÚÚCÏíÚíhaÔ‹ü_èÍAÆi¿.ß•ŸÇÂOWž­!š¤;ÞÉj¨Í(uœT@[Çä’¶ÖäYÂ0V³†ól¶§à'ƒ S›*Ñ*´Ó$#U=„‘Ë}ø”m8W¶®©7Q{¬áë(N¨ü¤6·2]‹1žzž:.IE¥÷¹%®Ð¢V ŸÓž¾ì÷ÂÔ’ÜÀëIÃ^9Ž~<ƒfÊ{O½¥’ðh5Ÿè!×m'ÖV4é-O"a•žÎ+çAVì¨ã:î…«µÒ˜Áá&Þ,úaŠiÍU'˜0ñ+]ØÃ°Ê”Š©Ð© Ç@œ‹'‰¥¤€,øhêxÞÿVºäãTuç~#âWÀð'Ý ¢ÕÎÁ$¨^–ó‘ö•:wp2I™‡tŒr¡’ÃÆÑ¶¨qði*@—9H[`$Áëà¸øŒÿbNb«bʘ'­;¡0šó™8PgyžËZÉ]ˆ?,޽<`Ë„ÒêѬ¸l¦žV‹+Ç~FÑEÒ?ZÇ>«üSl… ¸‡´ü% •ê„7U¶Å®¥k:ÿl¸DJ@’”à …¡‹(…Jq£h‹´rSyOVjŸ'Mä•*®àï½sW¶†šØÆÉŒÍ¡îp0IbùÞçñ9û²_Ÿ,ÈÎ’rUµ3S7a¨).>C‰‚5Áþ3Týkâ÷g2ÛjŸËÝX§³¤è:âØ0ežó­²¹®Rÿš4ÑRpë¾7Lƈ‹üúQ’]Qtö|å5.ãk:ጰxžÛ‰UÁ`zB­ˆÜvOyæ¾9NT=I”ö$wFŒ‡ß”4y‰]û¡ü£á&ú0\¼Öoô¤´²ÚWÂ’®+ºõ]v=c¤b¯ëIù…9Œz#ûôJIrÕàŒ¤Zm<Ñ–ÕZÞ¡Ù²N´”’2_k {âjM‹ìü k¡.œ5Û‚ŽäÏß*/ &«z¢Ì©2ÃÐß”.…ίÈñ3Þ¨'´Ÿ …¡Ëdk¡“$¸ÚžRPºe¢øìRà ÁNÌD[]-àñ†™Cl²C*ÎPÎaDš3û«4%kz‚KJY¨%ÄXPO¨ËLâpÅ|¤#•¨ûoÄwE‘ŠØ9íÞâ‘hAλsU›ü}˜Ê,…Šq•Ez¶ÓÄæŽm©×G:OÍ×Ð-#ÏS?—!Wв2-`Üó^ÞÄž³BÇý)ø1¢‰¦€ñô<`®` F¡%çòæbn$œùq¬n¯®®–pKÍsXŸ¤5@«p’“SŽËÌÛ_x-gf¥ o¹£ä^Ô …:­l]¼ê˜Ù!*" £UûË-¸Ê”lò ¿Í5ÀÑÆ:æ1m/áÓÔ*M5xµ–LÚq®ùÑí§¨bUãîLjŸ - ?èõ&–Ÿ¢Q )‡ñGè´Ô»âS­8'ÚÛl(}”ZZ ÎY-‰:zG±z_-+nMi8’€ÇwóggÙ"Ç+7eBú±«Êœø ÓVðjh¨jyÚ¥%øïJ5Zñ±¹í\¿ÇñÄ߇/QIG¸ÙcR#€çÄDÞv!‹è޵9Oïȳ„Ùi…ÖÃQ¬oh飠”tsþ®rú†ioÇü7yŽBÅ«$ÇRVK½!Æéuk^‹ O¼å§)×}¨,³š—Ñ*;ÅsõãeršG^÷€q>]séO>”¿V¯ËtÇÊÿÜñLîTÉæu- 5Y6Òìm•öF)@Bœé«§Âa ´E÷óÜ¢°ßeòây‘©¬©3…àÚ Ÿ‰ÃjÇ‘n¾¨ØðC Î̳X³†–«ó'‡IÏj¹:Ã&Ñ];&yŠÐWɧ‡wè¯ú$‘ñ•XŸ'±·1Iù(ð7‰8ñ—W^¿ OçZ¦0ˆýäIÕ(8ºðTp¡7Ð(X#Ò”»ã°ð6J+‹âPWí0ÇǨë_K[‰áNš%)[$$PaÅÅœš£ü"?HçÔ¼ J4ñöe9™nI‡¥R‘$àÎÈ¿iæ±Ël°'ìñųK¸^I3›Ï “ð±3ðWàó\Xc±jŠØì$ æ±¶Îgâ Ç¿ï­n"ˆp©ŒHÝ’;L4r¤¤CJ×¾ÒÞ”,ú§íx5Xñ³ ~ž}x’” +»ä…±Âû[X݉³©¬Œðºá™ƒ(ѓ޴’ëÅ&b˜Üá2™§Š¼ýI&“”r*”JtÒY+úéá‚Ú.\¥½Í‚e[›gJ½íä_\²NÄ÷Ÿ%äƒiëh¥ä}˜"¼‚ 2Z¡AR¨ mžJé‰]•V ~¡+Qf‚\]›’5 ½Æf†,Àcü‚o*®æ³CF×a%€œE|o°h’žRÉJ›8¨­Ï±Ý‡¾9 ó³žcº—^ƒëØ§Ž±í,З¡ËµÄš`;™üO47„|^Á¥%óo+ççô?z ûb#R¾Þl®pWàÃÕz¤,JNUAZŠ©;ÞÞM-˾¾ŸnŠÒ\©*]§ÚÒÚ‡KÖœ§±ëŽ£$ÑŠ¼9¿L‹vC6“!™Ô'²M\C•«6oÖ.3x-8Š„î±c QÐo:Ü´˜÷J«õ•‰× Ù¯žýœ¶x!ŠÕêl\¨'v^„Ô½N´¾K[Îû›Ó9Õ§’̹*•dH*{à$¥{Òe‡ÞÆžD±š*}ÞžQg»(o×hÖ×5i´2Nª<Ù³%fÚ3v™#RV„º ¬æNŸZ¤¦%žß“b½d9JC5]:äj&¾\M†Än–'÷7²H"Zþ0mÑ­íÁäØG}Ç¢ƒ¼Æs”ˆnO%Ɖ⠓dšqá­_Ÿ—rÒV~*}%*O1eŸÉÙD{YÔö,aºr–yÜ:r`Y…A°?a3R0«fÛ99lŠŸÔÊkOTƒL8T×2oÞ_QKGœ\X¢au¦3H)S¿å ¢ªÈÄÞ™PÒŠ[S³–6»ô9‘™0U¼BÇáÄ2Lø+<ìΤ¦÷ÛçØF¡®ÔXÑ%fÕ½VðœaQý½ ¬¥ä?\O•šøÉE«LÁU$ó̯¶þ22CYÔ{‘^®+½÷ƒê/f”g’WbÏ’XÊdeôä'\Ä@YŽF¶÷$öžÀa»R‹•T½©«ÿɵiP».»æê¯” "׸s;ª]vr¦ÌÅ jѵgâü±|Ex*åeLƒŸšV€®&MÃ`«Å‘-È3r×çžÚ"Eê=Iwð\tÕŒ‘çä²åÙ« ' ‡_Bq“³EI 7Çkª{ÌœºieúÜô¤ëd'øŽš³¨ç¼?q­zRg3ã±¼4;ÎÔS属Í+콯í4òz‹3ñìaøê®æ´„Zó†Íº´Q¨nçBQž„ôÒœKJzAé¸d&ŽœÖGtœ²³E‘rl^ÊÉ9-lšÐ\¡4sªç“«Àg²ÝX•D0s×Ì[,:·£ãUxcfO\ßbÔ埽çä|M'+DÓ¨*AgêJ™\0gØ&ùФŸg\¦Ýáçcò;5‰&‡o‹d ãúEÚЃn9Ay9¥Ç…óê»E5W•︴ {ˆ±ÃOx—Ð%ÒËÚuæ]s—€ÚBÿñqÙ±2´E ”ç"%¯%‘†îžõ»ˆý®ÐƒÝú¢PÏf6[ì IA~þÿt†òpâcñ8]xú¾)p«)ø “Â%©Vä˜Ò4B²|bÇ<§!žW»“å;Œ¦Ðo¾Z&«î;^± –¦„ü+ô-ðO@VŽÑÄÇYL`pJoGZ6ѡ娲²C9ii×’Ø´šò=ݵ¾ãó­­ws}‡ÜÌõžèr™a®ÔXÛ$PÈäë‘ëiK eßoÝÙå‹_í–kÊC!`ÃO…`^ý ¤Lä7á-TE~EFäI{kå?DRýž48ÕÃ_ ý€Wl1Ÿ’òÆŽÎÆ³=¨.Y1J¦-T]0Øsjóc¤2OÏeý¿0!ˆüpâÙZq°[îùxÕøù¬}ä-,$ùŸ¬Ïd ë"oö34 ¢I£ß”˜ýóôb‚nZ;¿]îéuSï’F~phÂ7zï÷4-IÕ")g’i;ѹ ¹Oê26ššNG¦é¹É²<³—“÷¾n#ŠCׄ»³%ǘì‹Wíd¸E&Άó—°2yõU´Œãñrõ8«¥õ²Î•s+ ·]¯wHÆ  /ï<2…2süg«(³äö”Åà)þQÉwN°1šFw¤_Y¸ µ®sØ'®Ý$Ý«Q!R‚YÐUƒäó'E RЇ‹¢´u€'Â9IIõ\®.XR©7:BçP.»1£Ä|ò…ƪ¢«¤KOèÉ€“ÏjÐÁÙ~*"c]}üœºÀWEïï1gÔȱe‡4Šž:±ÊŒdF/§m\VèA¥±N߉çÜ…%-TbéîõzpF)³)ó2¢HÃA9à(Í,{! ê>—që uNÏûd8žMÆ2±Áâ¹:òT2;“-ôv3œ·-O”jr¶M¼ˆ$q¼‚¬À½æ;õN,N¤8–ÎyÚ:RÇe'“HEÇ?o“-´¤žfåþêëo‘“m¹eNÚU/Å¡/:ðÚœâT¥ß/€¡²Ú+ñÔ’‡åÝVçIÛŸä-O4iPŠsQÿC§|¢p²rª5Ò4 šW¥Æ\Ã"7»R.ˆ‚ÏT¬ØuUe~ÃEÞ_‰©š¤4»¢È™—äJÎdjélPG>3O¥ýUãä¼ ¬“´•aZ*u¡ '“É ‰\o ømÔèíwïtk(1f“~*Z!ÿv>ž­˱ ™2½É*¤Ù k\¼°;üÍÈÒˆ]·mépj’¯Ìkc\–jz»éÂ2 Ü߈æB¶Ò~>˜‘JZáÜrÃ\"ž2"«ë¬æ5ד4K!wE˜7°H¶Æ¦œÓyi{Øf‚åºrèy \KÕôSOTO4@ ɸqÑ—=É—ˆgÑ´ 9Rá2|Ä"Ît—+©nÒðµ†v-íæ«³P#gâõç 'îhœHHùµ#I™.À'„eiZÞôX¡mA¼JkÉgU=Œ”¥ í\‚4ñ¤YÎÎÓÌŽž-š(˵R|z¬bêšãj´iljËMEÖ…4@® §¥Å=Þ5޼ y¢ŽÀµä»çìrïw¾©Ì˜YxÍu5bõÐñ,ü*Ÿ“*áEI¶rN}È,¢tÕ¨´s†W;œ5¦\˜4\¨¡ó’é0^åg¨)F: ƒãÞÚ¢ê%t±ûÈÃovË«”Áô44N㿾’¸„ÅH$?=Æa¼˜n…ÑÜkO"\ùhÞ²9¤æ¨Ì “j uú)b•Ç ‹¤‡òÈSa-Òœ$U GÒ›¼”OEžêKb\O'U³@¼IÓœ bKjè´'Ÿ=±¨Ñ÷5ëˆeÛû Çu‹&ŒYM˜6G5eC´mKì¸Ù4Æ‹HºzN¿ßÏqc«0ÓÌŽéË ƒ^Å>;G⎓8Zîœ4FÔVãDÎáJÐ&ÚʈÉÜØò)ê•H¥©+_l; œ‡zº¶•r‘I˜Â’kØ3BgÿkÑ”é £©’L¢òÚçÄÌ$zVÃ3[›:E´uõ¸<7, ¾çq=5þýذy–Èg&‹¼9S/ã :VO]XûbÆ"L®Ì¸€qW ž Ë¡Tç±Üu˜ÐµÒ5¿Sí™sY°T¬ u$T(±¶ÙF’XÂZ߬+uãB=-‚Ã"LVi¹œ^ÉNRhL>]UTÖutJ Í\“z<)9ÿôa®X]Awºv—º á ŠKSø~‚ÐþM¤jŒ%Ò¯xÕ2ûX®ç‰þív Öµ‹€øžðÅE¤>t‹A‡~Ê𯆚¾F€³šL\èHÌGeBɉ¡¡5PâÔ×ô®ö³€ŽWë‡är™O%UŠ«Â[„ÂrNâ3Ñ;Q·¤OnNߌÜ]„š`Ð1(­äØjƒ_Î…LÌ~ÿµ§Ñ¬H¡ýÞe{w7fØhuÕ³b;=/¨#UÀç[šï"-ËB±¤Ì7ªÎ0 Ë_é¡ÃïáN•ë=äd•^Š0§à¼\¬ë‘¹a/ëŒên=†~Ú`&ŽºÕ{â¹Î¶¸"4r.› 'a¤,°I~d…‚Öx^ݬU‡‹¨‚žó4»Uqf¹†œ*øÀ™Œ_•úÚqì0%Ì®‘ºí¥{²Ú¾~Žit•*ù$È«â+O߯òãÉæ2›~åÀ §ÍC5äD=Eêc&Q(ïÇ‘þ«ªþ>mJ¤QÏ©ÊÐAýãp…VŠÑDùÙ$Ýàùì‰ mú$ì‚Ö×Kßu™œ}œ nò ö‰[Ç?£«¡ù¢A–´8v4Úc°Ô8ij©ðæzYZ<‡ÓPô–ÝÉÒêÌK|6/AÙ†—Eƒ¶àðñ„ÁñOª$Wã­.1?xná§»BZÊ'Ø OÁ!Œ]q6C¾;J[•|ÀÙÔVìJÙü‡JÒÖ^W+M‰gtìø®,SmÄ;å2Ñ‘/Î?®O&2,.Š—hÑ'~ªþ>  LFIìÀÏÒ˜`X|qéëÉÎTÀ1ezú)‰¬×ÝOämè<£;ˆ%óú8 Xä‡Nwé«uÉÊp¯@[Ôy§lËRN-MO$Å%$[–á\âBt¸$¯ñ:óÛt}£ÞœT(†±'ì|S–~;ÙŠˆ}ê h*p\ë@§ý$ú$𣈑%]”®j˜örô•©;.…•67õ£óé©-z7dz‡.„ ´f)uÀ"´‚ך-ÿ‘¯ X$ô]C¼y·ÝˆègG†*÷á1žè1Z—–Ù΢”lO8]X‚è%'£è5]È‚ºWAž‚fMz䨿/üÍŽÉþ²wê塪5îä“ ŽVc¯ “*•ƾ”©N SÀl¥ÈÜ\  ê«––ΛBk\‚†Iùª}„„çRKÍu»Q' ø?ÖI+a·wÓ’ ¯¢ŽN|½Ø»ˆó¯ÐoÁqüé`-‹jJUllÞ+B×É~NT¥­ì}]"æz>m(ìx‚vqrüÒmàr6×Qö9á7_7¯BKÍ7ÞÈ=|ü‹Pða¢PCeŽìb–YÔ„++Ÿ\Oeœø|ÆNœýÔjla ³½ãPõw™';Vk²Ç{C¬Ð1iãš>*Ÿéë´z¬…d S4v¸ƒý*QÂaèÜwMädÞD)Rª¦©âÉ6Îó®±ÃÜ‹'É©lÏcÓ–¤IŽ]ÖwE_d¢s‘Ë<Þ:Z4Ô‰9þ9”ƒ RvV:5i‚ã ¶ü´¶Z[šp*¤šTTŸ/÷p¥âªä¨UÎ/”|B_©8£Ï-Ò]qry^‡ŽJ€ß+ n×;Û¡¾4ç…µŠ}([É ÞZ Kš÷@UWðÇÉk«7£”/UGRæ:ÑDJVÅ´NYÙÏ6…W¨Àf³§Ÿª_‰òšIE©¿4?tI¡W4ï—¡*·wÅUÞ†B$.˜„Ø‘ÀÙrõÌ~Ÿ2òÇžÈ^f~8åZZä–¿GŽSê·Ü/ë2©pUÂEv–œ5i·”ªŒtmï¨ã»J=üN¶š.ÑG+öÃ\¥‰æÂ¯O?EÈ’2s–[¾åq–Fr’"i•î'/,Ô‡æ“3}â\5/‹³+“Í+;w7à]r”ÈÚ*ÓgPdÇŒåD¥k㤥2÷µC)ÓôÕ‹"¥çÖœF,‰•å €¨K:q¥püw¥ØÍœ÷s|Žþ…7>¢I0t"ÏÁ0\ô NpxI²Iu¨ ²üásªvÅêÌ­ƒ%­p4ñÈ­úŒÃ(Ó9KÚžË|¦í¦,•z×i'm˜–$~¨Ç!<>Iñöj×RŽáÈm!L­«’ÿÌK_æ=·|ÍE ôP…&<‡ÖGèĆʾÈQ´}FbšLôµ¡sŸg²J5©ëþ©›9Uâ“7eÚQÄÊÈ´©žýqQÙ«¢™Óq“„Òj-^ç]²5m•"§ã”OÊ—•vV8ï¯Á¸»ºLOp`‘óóbžZð±†Þ…|*ûN'þF“„ËÈËKë>;‰"ef?uÖ¼aWI/[)nAEy?8ïÕìÏŒ¸f¸ú8e˵;®ÎäØ\‘UcK±æˆ®&Áx×™X“,ÙÍîM\…ªÒPèa']W«†;§Ê•Åê’ÊÙ‚Ú¤2OAy -T&ªjƒ YÌ›kk¥¤Þ›-‚8±Ú¼Ñ J\ålk_íÅÍž“É–xÖaÚKÆO-žú4¡‚ô)‹È‹V㡚,šŠ…Õ½9]².L22®c·¿è–öNTs-ª¡#ex|¾b¿AšIã͆ôOH¢¢ö†2ÓŸÜq¼J­ñj?‘†Lr{>:îÓY'Q÷íó©60®|S‹C3ZÓdzöOfûlk “¾'¿Éëݳœ¥±½ŸLÊö–Avï] séð¶¡OÞœ/pNZæD8O¤éÓ ×¸/&(w¹êFuy= ]Þƒ<Â|2ÈVU¹Z •ÊÐÐõ,’†ø½†ôúžEC£[Z¢5MùÁ€ÙN\¤ÜxÁüàc_ ¥bH›ñh— ¶k2§ Ó°N;lfœ09éL…nr²b|öý¡cýUDÜ ÅªªŽæ†D4¸ÎgÉ;#M‘X¶aY¤¡À=»ÈqNæ²ÿôŸÛÓjšˆ99¿²5_ᱤšþDúöýUÙႈÑç«“ê­=[°s9gÙo¿¥Ô ñ*ðÜIBR¸‚ã¨Ò”¿ƒDV¶bü¨¬3Ëͽ¥âd‡(jAoÊt¦Js¨_Í”»¶Ày¡^©ô;R£:&ÎßUt†˜=ûpÞ;Ÿ8c Ÿ§G$«A júŸÓÈKåmS‘œ°ŽêÕ³–I‡XYž;wYC't6ÊîqèHd4M#Ghâ…^$Q\W9ÜH¤#-(×ðµ„QZ2á¿^b¨¨U<Ù°,ôÂ[õ·è´&³~&IÙÅ^BV^÷£¹†°Õ&m\­3ZüÂzàâB*÷¿—µ„‚:òÚA;v ÆÃ¸³“íÇwÙ…r« \ŒPhÌ£èÛÙ.è$&úNà¤ë%°Œ'þ¸ÐùER>Ôv8L‰Š‹ËvÀKZLNtÖEOÒǬÂ$º µ÷œr3éÆ4‰rOÛ¥Ÿ˜¬øH*•–XÚæcWõ©/fHȑ╳N“$‡(ƒòÎb³d%ËÆ¼üA—LÚ.®ë;3o‚†D‰¯âÌ´¾‰x:ÓìF›srÛv…&+48#%TbEæÕ‘ ¸.¢ÕÆ»‰ûî0ôXͧ H$"üO-’¨~‹yNUúËkN.iˆ•Z4ûA³i*ZxΚÕXš Þ“¡•#º¬žƒLj,ãy½€`ëmÝ0'‚HBpŠæ·aêš&²Äî”Ö*¸|§Ðusï>LtÃŒÆ8ëèó,ñ«¡f“ù¢F®2Á«Lv²°65|bø«Ò;Í=s×&=EEpÖÝ%á×UÈN#w"F+e±wB5`FÃ4”ù¢ðWò©"]XØãú¦k3sf­L+8u/• y:réU¯jöý‘#'R…×"×1@qfŸÍš´QJ‚àk–ž!÷ŠcÅûço0ô2Pea>Æa>*S3]ŠajºzWb°æo,ÆÎfG³Ž>çê SöqMÆoÞ-WóIÜzesÔ4«ä‹õP²D5p'\ðBNmîçL˜±ªõê¼to¢4%']ÉW¶¢LnCp#Y:Iá¿t§§Hƒ–ÈuÊMºE¸&À«k¦\¨ì è‚|s¾o©Aœ2¹)Ua¤Íº~@º®æ7±ß v $ÑàêÁ||6Eý‰´ËQ¬ ."¨ž¯´Áרœx+¢‡ &0‡­Ñ·Âé/Š' ÔrNTÁµKÔDM(¯SM^—²6Q¤l,t‘üX„|˜šÂ>èmZN”· ËÙ~ Ó+#o9Ã)R+ã*k¼QÂù!¤È­†îÜQ˜<á*´® s®‰wú:ž¢øÜ—Á`Ù%ÞU‡AtUYB)ú¢h’ÞFÃôx– E !¹MºÒEF>ÍÔe˜œ£Tð)°Kø7Õ-áP¨‘ó@uë¸"´L).–¶1wâW)‹bÜNX¡ä&t¡{…÷ëT8Ñ5ÍIVù*} æÈ¡‰ÆËR’¨Û(-‡Eê&ÉÒyŒ|GÖ'” q,SŸÊîä¯>E{*úÐó' böD4-DÕâ ò™'³MÂÈO žð ë:›§<2ì9k¾ä\ß@Ú7xüði,Í÷Áëz&´ì™¤Üò©râH'ÍÆ’<Êd•š¡]Òá#Ádž ‰Áì’°üÌ›‰W%½J›ä΂"JhÀa•J¸å£~.å䜤µÖšdL¬–4`UÁ¡¯™Û’Ëpn±’]8!Ò{d)*Q (Mªu‘®³ªÏU<²„+Ü%²TE..ª®çdœûpa­•pˆU•ºÅ¶"7nä˜Ï}åÏÀÿ¥ƒJ|BùY·æ´Èa…«|\ËÇ«v„na®ÔVH]ž»’Ã:O-*i.c ŒWT<Í{C«Œ.ç8¥UC«¤VÔdQ|¥á…I!?‘‚Ff¾ˆÓ“m+œðÝŽhtPaޏø™²;SëxØÃ,K×K$é×êƒY¤|c*K´R7©ù+ô•jôèRç)ÁA=™í<%zêsS+ôŸÎð™²Y®“YˆO¤ªIK¹½*àZb$TÚ®¦({ ÌþF‘Y–]×Q1ûâGN§8È$ËŪøë K®1IŽ-ØúEM&«ð%†ïê="çmÒÌ´"CAÏCרÌ}¤Á‡Éª~g^–ˆ6GõØyî|Å2,W¢ÄWP`œ®;%}_›8ÞŠÌQ¦yZptåÎxUÁÓ$š„:<ÀYš­‹þÒþµ¹‘$IÓçÛLWvu]zf¶§³*2Á¸ÁFFVöô™sv×Ä!tB@‡ BøgðÛ×ÝUínnúZî—*‘Hèp·‹šê«Ï«{û— …ÍÕ{$â¸4„LsÂ&exÜemgކ%È 6–‹BŠpJhì¹Ç¡%…¨.xdÉ9‰Œÿ(4¥å}Ê­d×[>fÄ"è:æLÁDX£q»gqø„HŠŠš­(Ñ&e……ÓqµW±7îlîl~ó0)+}•úÔJßHªD)u!ÿˆ˜S­\¼Š¨‰ë7ø-¡[W›AÖð¯qÎÓ±‘ÚGÒuD.Ìš=‡š“à.%wP†»F:L‘’5J²êÝ&iK!fB¿$Ï…Yä8"éƒ_¢+@Fs¬­élߊlU—7m@8;4w˜/ùŽûÞqZ }z‰·5ö ¼S£@€OQ£UÌø&šžÞ4¾½ŒÝxá {Wôè• ÁÕ£%6 ÓenbîxhN†t¾ŠTç(>ˆ0ï–vDÌKƒæ>N¤Å]¹ó¶Üž»©.?œO;_ j%1Òzrîcanc©©ßƱه´¶¨E¿q}h…@ÚôãÅ–ÙCØ‹JŒé!+ÝÑwOfåÐ害¾<,ÏH£—eþVG傘yU¤0B»ÎÎRXýß¾]PŒî )8‘Yµ¢¹ümêۥܑ¤©¦–+ S%8¯=6h+m’º ޏ¥³wˆ¸Q-/™ÁKEöX#¬ gÆÇ1D#Œ$G"ÁL[(’fZ?)v ÖÈ…F€ý¡Ø•#è•×r‹­Iþ*mR£I^ ùºÜŽ*ó¯©ã–a2Ý_’ÌŽ¡\=µ«×]%'Ô['Ö}¹Ë´Þk°#Äçìïuhž­ÓºÂ¤°ÀÜ–€Ñåb,¨§Üx'È&|O|N““O—²Dë6Í`s`±àP%¯•æÝ Ë®j´³€Š…AÈU$‰•+ó,E²@o­»ÔÕ.aj˜dÀhö)¸½½žFO2ÜØ¡bˆÀ¸®Ïc©&™Õ÷NJ$ÿŒ›2xv5K§ïSÑ>˜˜em¡ÝÂ|aCh-Å«›¯ ..Iý\ÃMuÁt…¥C°â~ŸÎyçüµ!]þµg\1ﱡ¼ŽP,£µ¶§ÉX)ôÈ[­V‡µ·Š´r…¶’ï®\ø·äôÂ\Ì,|ý‘y×x—kaToS>¹w2f†v˜o£œ®FŠÈǸM£Ž ­¢îD U÷6¸ i¿K£ìSRÒäP8³&[µu;&¤¢[%°7ý&Y˜¨ÐŽl'Q¯ QÓP3÷HÌ$z7†Tu‘ŸùÐ7hÅÿ?ÍmpòIÊS> ñ•´ ÓÓµ–ÖÇI¨ÿ“±ÌÅ×jKNRtTЗåîæåì„;l¶{…} öSýû’ïól°È·ðq+Ö£M1}3œñ—êgïB8ç¼KNß˪Ԙðo3ÃÏf~âm OÀ ×>óD`»Š‚n+MÑ$@G]”+tm‘Öe'°¿7Nê4[­ý°“ Wáe´;[~ÎÒ¥kiÿ—8Õùù[>ƒ–éFM±2zé×|k¥,”Hû–|–óœj—ýêW­£…wõ6Ç) ±b» [•?,ô›8ëص¾¤¥¾$>çbYMükåZü×!®«Åå¦AÍ+µ*Ð76—ñírSë)ù4ÍG…õĤ†QKK€ñdkS/ö90Ì23DÁ²€Düä!((}Q´úÓ[›k7YrIË$î3ìTÀÄ(ÅÈáCÞºNç À7*Ê’a>“‘„,E‡Ota¹Q kvÕô°í ºÉƒ}ñ®>¦4 ZÛ[Á_RíÖΡ±é} í•c ké´5^óTÂKDÛÀM?0Öui)Íx "G^°}bHÅ‚µ.q)œ‹vŠlЋä70¼7$€¡CC決^f‹úÅ4ìJMòÍ$Qˆð ß%›²uBÚ•3û$OAZL‘/d #s”W`¼¶NL%Û<85±‘Y¸ÚY lcòàuAÐciˆÝYAñ|$Ùzô9eêºæV6°ÄŽ¡ˆDþ\Ð…²•í«´éu=ý̓kõüù?BBΖ©ÜÄ*]qK„BüÔÐt”ëHí±a‹íkS¢€ †íÜÆVc=mJ)ÛYÉ`ì4Î3XAò!:æS`ä*'µQñ)Ñ×c‚ËO~eãØöé ÉМ1jìsŸ’¬ öboŠòجÅþ:T$ZÐsÃÚïôŠP@‡BâáÀˆƒ…± ERÞŽVTçH Ü•+F€Ô€`/J<_ml»’û‘Z4ƒÝçˆÒlGÙÒFºAß‘F%Ku˜ºdtG~@P$š ã—hh(ÉÈEhêD¸ZüÉôËØ^Õ(GY8%˜¦C{ŸÙ-vAš°{'ø"åy_éŠæòOí§ºŒñ"_B;hû  A‚WFu©Æ{ÍkvR"0ßÞÖß×Åñ»hòWíkßÿ(‹5Q9¢/¤þm7ÛzæÒ𠨹j °ù*ÓÆ·Ku¯¢=lýÝüG1”b+)mŒ¸ý–oäN <¸²Yý7^»¤UWÙöµº  ZnÞ×Ëà6# w4EÒUòJ¹Ö€»a~¶<ä ÷&A‘U"ÕÊÞ £XL†Ûp:ï0¤â>¡¼ã/Þícº»}”ò}MÖÁ¦pƸSÃ@uf:ÞsÐÎwµJȶJt1ü˜k ïiíW|pïϲ…0€wä´žîôRÀ KÙ:_RÈV²Ce Šz|ãŽÂòž|¹1`€g´íÉzä3,ÙUØ“‰%gøÞòR ãó’áE¼¸Æo‘›q¹Cʾ{}Ä¿KDˆÒÂð6¤«,jϺ`“J¤G9í)€çÃ:èÅKŒ,Öí0t°,?CjöÆ '‹ë ÐÒ#hÞã1-­•ÓÊ®ÎÚŸ³‰B°»òÿ”"ŽiÅX¤ªG†œ(âÄoI¼ {AãÊ*ÒÞ%[\V²rð.Ò_Ñ"2eWQ&qeŒå®KYÞYÿ{_òöGVhÑå—˜œHMáT†ü¶¬õ8KfáAyíeÄ7Sr3J] ë`ÖdžJ¼ˆxâ6+Qä&~Ÿ’Zf&u¸þ\(G À* ­;¤¹yB÷ð@íFQêéº|'9`n¶þ4Ñ÷ RÓ-³I`ÉGÜ2e`X)?0ÎO,q”áÙ”µ*ÔsŒªV.±G¼z‰o?fL|ƒU‡ýšÇväédÝq9hû–‡Ê[VYCô|_[CÃ|w-Ô™ÇÕä¥bÜ;_n°l%q£q»¦¦t4@‘Ÿªûl”ë…³ÄÞÒ 0 àžyµzô,+;  Mk?X3£k;8X 0—µ¶ÚâÖ?.ÛŒøêR¥Ë:fE“<›Þ.•!ÝïòÈ vÖÑÑ%…kQvX”sßEÚÚbXø"‹à!–`2º“Ãà+÷dù4¸ú§¦¡øHÿNÁõç­ÿ?÷ê¶÷|i× ¿EÈWÿÈÅx$âÆRÄJ1ÄMG¯P©ß ”vt›ë{>ä #.‚–ýMŸb×KÓ£?&FHeöSü®7Ñy5L} ßø<²= P©[œÃ‘R´È0ØÄ5½ß¥W £«(Ž%• #“£¢hç÷LøFhëü*­»ü®8/…ÓÁ¨Us›9à^¥ý>cö>Ü×# GîáC"º’?û˜8çjˆX 3?Æ«‹5¨óB¤†ê²j`¤F3žùÈÊ]cÈzßx|½¢³ŽãLjÁ Ò@¢Ç"-j—kà€¹É:“š !æ&´žäû¬XÉ’5“]-껬¡¥å}&l†Æ;;:cÝWòfB虃•ÒJHM h_1Ô ÒªS¾ËzóY¥²²®%݆âá­÷¡bª‡hZzRä Û ¤1¸/Ò(“‰a¯æáCX¤t»_+$¨®ÃI—ìs‰¦7!œð\‚•8ü GËl¹Üš³WAl!mC8ÿÁf ƒ2âKÀÀ´Åz¡C ^^ç”W5ô±!Œ×—€*Ùo¥H´·˜¢,C7A¯Î» m/°T‡ö®ÒÊÄssúW|/䀿6­›-0hØ{(9øz®îu’ƒâàTsaɬo©…´Æº$ü'8EÐÚV>D)q$åâ<ïX4lˆ³.È|‚Ó§ ¾ºBï¨ ›‘vMšG¶Ç"Ï[TgûzðÆõ+7Åå!ånp!Ž%…~W]w:êaà•¥lDÑ;*jìâî)1þÖ÷Õ¥ˆ·\éÒHér,”žwõ,ån¸ß<>™½-.Hì‘gIª=Gšeé1À$q†;je„†cŽlqYSâ¸É|áܸ'ÕuÞuÙ>"{Á ×ã³7±ºÙ6gޛܔ†Oµ(æu´k ×ÐT(ˆáÑ"7^%{¼]Þ?9‰µ­DÆ+g7ÒdKþ{²7ÕÐåßrj#— Õ¹ËO´5ò.­mùÔ tò¡vRvºÃ “ø’6‰QjD ZŸŠ®#2-‰”c0Ã|¯šÜfNP˜øñ^-Vn djzè2«-´E߯ý*š[a v{Š´_z@Rœÿ¢ªt$ó“Ë@ÞŠ«ÂítöM*1n16T6@úL@®}½žÕ‰›qºÒ GóMRúT vUôüwY¨û‘c)›MªÆôø&MŃɿCÿ…÷‹»™Ìª¼GÅÇî`ŒR]`uv5Ò±…¨Ã`~’.ö`ÈPÅôUiŠ x»ãN#ƒ$“¾ÉQçÇØ"YïÂ&÷•ˆ}} $kB^î’GRóIS}¯”ÍÀÝ6ÿ©”çµ0v2ˆÍ„%é} “–˜KZ°,©c¿ÜÃ=©ÄæjUEò²¤Àz'_Ý!”S¡ ™¡eyÝXU,$ïT£µœQZ‰[ßf d®ñÖãó·.>WDr&9}©ºÅ,^ìHٱ³ٮ¿M€ ›õsèXí\4X¹ [eöœŽg¦ƒ# š2ÞëPéYvFm×ö ±Plâá#U¿£©ÔܽúO~mo’œ Nö.q"M « 6.ÃeªáUÖU¶úƒ®"N/W9šu^§Y’Ð]Z~¯¢ä£ßW%Qÿ–Ìv Pzý*ÕC|ˆ¯ÅaSw©gØò¢:@Z^ HlI¸*J»T€+›¡Æ VÁÞ>I™ž£¾å¹ÝÛæÕa2që]4pÐhoÆ:‰¤’+(©'-¤šÿ”m“0_ý”øÛ[wÂ2²)q¼2‚Ù +©jÕ‰÷f¬x©)Ù‰ä°6aëöÞâ³'ZLöLŽÎ,osýVíö$¼£ $BuvéopÀ6ÅéuÌK"z¡•p“¸õuÀit§iÙ#NŸÉ£$t«ÒÒ.¨ä|³š³NÇî±t?}r\yÂD›„«ë•rú>PU»ôߘŽËËqb½R”N’æÛûÜbÝ8"•­˜[h­-l´ì}0çH€Ôöý-í'à:/Ë“å'ʘ«O wP[Ì#ñ—+¨zpFH†„ÁbØæV)¥›÷¹qQ{5x’ÏÀjó.I K§¢·IXÁÂê¶ÚxI<-1:à‡·ü·åÏòb´ŒG'¬·³)nànË‚éwCmgÖ™©5—ÄëØŒ óäs "!v=×Z&=s"K¶“ýƒYt¿JiÐC0hE¦H‡yx”XC}Oœõž 1Pn¸76ú×ÁóPxº¯½'·€£W ëÀ0!¾ËÃuõôïéý^1HµÄ³ºeïÒnZe}k…p :ý·7¤ŸÝŸ¶ôÛ̧ƒrÄȇ´3dò>^Ÿ&(ÕQj¦ÞBðKÍüÝ_j&é\ç‡zÏÔü!Õu¦Žš{ º†ˆÅËè—+Í~C%‰zt£œ× ð¤úìŸi­Õ ¯3;¡ží´è³Î.Ðè:ûgeXŸå4«FÉ¿ÎjÃ2]ù€Ÿ1ìiÝQN\U¼tÃ0L“†tŠ!Ö‘~uÖÖH­½€úTõÕLçå.á†3"—K p°iÁ¡Ü¤{B«“<4E¯…p9$ið'*ëÜ1ÉB/´Ç’ûZAÇxº¿å‘°ëJ@áZƒV'5TõÛ…ñèiøs& Ýœ«ÎtVù#[ã$edÜýc0tn®Ù©«áÓŠÏw©¶L·7íw ^ÀxEX]c­·ùX‰96±$¹Ç°Ø€³Ï2¿Ã±`éÂU°p äh²kí´ñÍìdNr\NL²?;É–¡ï¥' y`ºí²àyØ=„ìM«™û:ˆoǪâºÀ’¬—-ÞdN(š^¿¯3ÜØúRñškí/²òÀÎcT¶@0 íTbÙÖÓ—%…7Ÿ-Œì¤¬„ÔøVT~¬ÓsH}èTµJ÷á`¾å § OÊ…×=7óI].w™òšº$ml̸»ÒÔÜj`üÂgnâÜûS }Ѱ¬w¡Xÿq·‘"¬ÓK)öý)±³£-6¡ê Uø)ûKìÞÕÍŸÒ¦?÷ šËÙM28£Ð¦_DªhÊiì|“%(QmpÒ¯ òBÖ–jH˜bYkÝ[”à´MVZ0¥ô;HíÑ(¸vSú2Cªè5[Ê÷ø9Ý(Û÷7´²WE{©¥ïJuû9Aí1ÓâsK ¡”zÖ¿ö͸ÊÂ'rêÒÁí¨ä|,øeÂQàC´‹:+¥–Ö(ð1{:X™+}Üåj4qêêP k£{|Àèµz÷­öͰ@lÖÕNnͺ¢¨XóÂÜO9OöǺúVkKQ,‘JÄUgG)…˜Ô*6“Â2C¡*«ÅìJœ#ÆL,ˆVFœM!‰l|9WH Dè¾æø]VálŸ»RΨ´ƒ4·×·~çÛİ“NTmµ3 [SDÁ hˆ`‘ ßulÅ£Q™ýšPQ–2hB@kÙ´å:ôœ8±pšJJZEÑ…/›'à÷¯2‹Ê…#‘mÈJb„’ÕR¶úš‡»£¶.ob µÈfMÔ0œY[kd'by³õgw‰üybU ˜ óº*wSK Ù¿ñbÚZŸ³Ã=eîàzÖÁDD2 ¼ð-TgY"Es 8(þ’.d‹œ›¿¦&"‹JÌ n1™–CÕ±¶· ¢ ´Q=á·v ¯éLЩ¡f` ØŸáqï¯À\¾½±(Ób|ûu‹É-«Ð;~Ù+°Ù!"Oi^ËD6ÝàBú`èPíòħSñÜDöàôº‰(JôŒÅuð&ob£Q¬€Çy q3/3 Ù‘ˆL4Žì¥(é·®ýÇ…5ÐùÄM/ ZPøÝcý„‘ŠÉ»œOxi"«ü;–3)+˜1}”±±Sz¦¬Àø\K^TÓyWz[mQW%è•â Ü n$s´\õÉ?zÄs«ª¹©ÞƒÛ¸ÖCÏÌüD+È%0¥E¢-Úp΀QÔŽ¾–ßeæH/ò ´át€82¤¥W«BNI¸VE‘0¢TÜFЍIœ÷#&SÐNÿˆQF^؈E§›R® /T_—‡;Ž›2˜‚ÕÀ´C¤­à‘½žã•¸ï‰ß«ðC=û·ÊU~—Â#€7…‚ºUæýTê%Jm9Á«dß^¨”_)ÄÒ&c¨.¬nW±ÎÇ6žÐUˆ4·ÉWqGúêSü«#¦›<ŒÿϨõÇ(&‡óÎÿ™»gh„ÕØæõ[ÖÅîßà)é×d£±Î5Qk ·ôkžuäå[]e_Óp‘TÎú¨µ}MP‹ßt‡W|ІÎ'w1ºPwùI¦'(KGRû9ÚËY ¢9cÕðŸã>Kå»…Á÷9%àƒ¿,(Þuçqܹž³ÐÕ¡»L i¶¤È7!²Y¡¥RŒ›ÆÚz3¸6fË’hë{þÆð:˼IĘÇiž™“"pan Þ*/Ã0.Lá·‰ðQaÄbmhŸ2G^Ä©ùSÆ¢GÆÃMEµ „?790CÖíÝd1ª•‘›ÄeÂ"Ç(/¡é`+unòF%9W¢ßƒ'NÞ‘—ÕhQ6s6\Wâÿ wF¹tAzfàŒ ƒ$º|b‰N%ÎÈMŠPé ¦3c½I~…»·¡¬b0! ¼ÙæÚûáŒL\¦ÇþÆòTpxö•Ó»T7˜ÙG”õѾH"+}¡Üá$…q•n !ËÈO7Õ*R,ih\?;²|Œê‚(!ê ÒÞ9y-ŸöÛY£]ÈC6q/Óüz¥– ¶#Ó°'­îÑœUàêq \ùäýÐȧ»ÁZeŒ3ûk’@ÝŠîhÄáݤ xçIZH>ì]ìGFpòw×+Õâe½£¡µE æ“nIàò69Þ(Ýlî~›¦@§[dóz›JúÛy’¨ß´™å€ »–° ½c*`Cdc\.phº‹Ž't$í1RVlTÐkÜœØ ‡™×þµÏ9î]+„ý’ÑžCX‹¿ÄÖ‰š,åHàsòœÛ¨ôÛ>vÊprÿnÑrðÜ—2$ yOzÍÁ­;ýè?@'§ÛxîLä9ãg_Ë—2eºûM™à}úñi,í:¸ÕˆCoü,”/¼‰iÛT˜U‚Z÷&N¸C7FüàxF£TÄ*S¶Ç*#¦vcõf¯p-y°5 qR LÑ?w¤<0Ë  Q¼âèŽgª(¥Ò ¤Ð$H êžæ1&<â$LnÅp“–>TÙ}ÈkXDã¤H}‘´¸JfŸ€ÓŠÉCn–ïÜ[ KVCWó.fkÀJ²>”gÓ[ã '^ð–°Kñ¤ê) %â$Ò1ìð¸ˆK²Ìðëk»ë2B€b×~È3Àui`Gнœ^]²T¬ÙÃð r¹Ôe¥´qþ¹+®·6tÛµæ™p!cMi“l8Ý»6¨µTÉUÑ #DT;¦ñMHRSÅUT;iÆ„}P[@¸ø>ÉÀc ]OSv|„Õ¼ü:4/ärx‘YQÖµ§]ŽFèhêÄ©+&KKÒÐs–\«Š´½Å9-MÉ œdz —âºZÎß—“|Èk¾@V³ÑÖƒ ,7 «™  M…&v)õ˜i5¥É…«ȃ:(!ÅÃíÈ»Œ‚˜¤‹ù.À” í@ü;¡¦©b†I DÕÇèx¢“ãI¸˜v¡¹–ŠÑW(ÞÛd#‡ @(HÎ$Áö’S#”sÆ󳵤M•qÀœB­a˜¢5¯cÏ"z©M0nÙ_¯sg.uŒUê#Û>†ÊùT$ãrA+4~Ì¡xy <àǬ¸oQcÖ;Î*[lPf¢ÓyÏÍvÈråÉâX_.7ŒIž§Ý üYÅÌ•u™£ßÄ(Rm)=T– ¡ÂU,·_åÏþ,O:Ûµ¿üsÔÆÙR þÌ5²ZŸJ?y¹;­­¬ª?Å d@V¼Š]Wÿæq˜Ë̼ìgþõHæß“h ö ’–âˆI‡)Úø-’ñ¾C(¤ü-ïã ÅÔ$þ#7ßYæàòå–·\Eù»¡ÞÜ.Ýò/QcC˜5v¿_3ÕŠ‘Š[Ñ×øn© À$1@=ÔNµ¹r#=ÔQúlî²t­Ã0IUŽ´°¬¾œ¶mgE?Çò å´Ý€º1oð†B劵UøsÜMd8ÜßùmÐ(°AÚ°íšímŸ¼ÑÄcFÒ­ÀöÜÛ`¡Ýƒ¶#ø›²&1v]‘e.xÄÄŸò!”»n"ÌøŽn\ŠR[çŠ /—â–8»KßHË¢ Kª´÷4öº2˜fæ±¢À¦[Ó­$ä¶#­û²ä“»I,Ppgi·=w$Øù¤~‚ ü˜[ùe³K7†0B¹ã`xIÇæyôCŽrCÑllªÕ‘ 6rÄ“ܺ²ÁºCƒŒµà¦[ÔÇ«¹·`Ågt‡ÓºéÊ5óBŸŒÒÚ)ó€\³_S1‚žs¢ÒÃ}°ÒļBß?é‘VcÂ<5­àoW€N-1ËCé¾E¶‹ïüOWnï-œ4Üßå›f—Þ»T±!(Þ&ÍI…V¥– V²ŠýÇAl<l BåÓNèÙÀ¬Â„¢<øä¯ëj-'IT#‰c ‰¡æ^>ð^»"°¸º¤¢í¸–g8ðÛÂNµD¬ç’¢ß«šBÐk?M 2~l²l>jËp7qÐÔì#7Hr­°–»k5°Å½‰‘ê•ñÕ8S¿ŽáZÍéû:N™qåW ²ae§ãZ $§ãÌžVƒYŸ`¶>’ªŸ¿R;A¯†oe¢…ÝUô|ÂJTïók)¦W9¶z4 XJö‹«ÎžW¿Ü(Àýgz§…ˆ„¸Ö v¹ÿÈóŒNç´ÿÈ›š-#²¥úk¥#ʿĔHm<:@Î\Ä‹= à»&ä žp†ÓÕ«{þ^ì¬9+f8}fÔZ‡²7¿C­l×)¬Ÿ fÔ9D}$-àïâK2C§>FðU%kA£u÷}Sãû c²íø¡#íQIÞ–Ú@a­7¯ô'DòP†¿Ô OÃþÕr;í:¹@Ò“Àö…cÕôŒ°¸ÕHªè³FþKž‰@Ž!€ò6ÙŒŒò…ŸrEEI‘™X–‘Øš•Èrt“ÐÜ© å¼¢» ñGÀw)%–¨Tïßä8dm:²Þ$ó`P9ô‰€gE±œŠó!Xž< ²®Ž{Õ‘—M—¶.ó=d0bHÑ wÃ[ê§eþ>¼qqb”â|60+ćFŠ^¯Q˜ûEF82ÓàÀlq$cæÚ%’‘æ#ª6rëñ¦0A@ïÊû `3*±$„èLææB¿\S`)¿RŸS H޼ÖÝ`NœUC­  ûèÝø°Œ¥û©ÛÊPLiráðc®>UH} âJÿ ¥gk/a‹þ3Õ1­> U”ufkïùCÌr¶ôJE}9íËV 2÷†ýU¼ò/ž,I1ýö>‹Ï-©s%©ÅÇ"ƒýU¼'–FK3Xf)²Ááý±[vŽËDç}Îh#±ýåœÃrþF÷0Ø$57òKzçå˜'Ké®Ë h?D ÚN]?pîx—n¨.n ¦I¼Eò!9O¯½sŽèžc}‚ ™⽊yYŸOÓ=oÃyL録µÙ¼íƒ5Ⱥ–KÛªŸŽ\L d]«”AÞE¶®çÞßx _Q¡õ:mfuN•Ýõu¤·0Ÿ48ÀHÈãh²Ë,¿€ÕÅ3Êýr+Gûy“jlÊ?]³L g+ûØ+çæËY¶ú|þ1Ú¾VžñáDÞþަëÉè÷XUµ2>9&áħ‡…"»?-Li-[œXEâ‘AÒ>—¥/çjܲÒ!çŽß|aŽ-—wΔX1 ú-%fðò ÆoÙYÁºZ±FN~¿¦Ú`)ƒ²1ßbÃå7uºs%ƒr•ËÃrM¿äÍ.HEq²îx´Ø{XÕ©f&CØ.ljÖ Å/w!*ÕÚôÖúR¿6ÔÝx÷Á¯|ÿd_m!“àCŸû’ e5ÖÑú¹¨ë"™Ã…_Z{5ÍœuêËÂ3ç (fº/e_ƚɰ¿GÓ è>EB~&+éPð)_Œ´|îø”-ü”›óùSÄ]°ìù"¡A˶Àòñï&sãLu9+¬¼|Š…q¢ã­eÃßµhQKúÐ݉-Á§8 ôgzR¼šóœXº/LOØ·‡•n™8 ®$I§mèÔÔ£:¼°ê$Ò86 fñô1ИOuŒaŅͬŸn¡[ê&Ô‘FV^‚1:(ýJù „5Ÿ£0w§k¥5øcV/ÒT4\Oo}pK‰ÅjýöjXÒh”Ÿ .8Xv.ŠŸ0ƒ ËŒ@. ‹—óz³^­bLbRMãžG‘L®à*‹89£DdšèÞ0ÓÃ×µ¯ËwˆÆÉïS†4–*d lüÞM%îöM¼ƒm–w"ITHbÛìrc $êrŒ¶Ë÷!bD¢„,Í©æöͭܨ=ßÑœ+í†hVT±DEÀï|«¼Úß9{åÔÖö611±Þ¼‘µ³–·žæŠá³¢÷XÞ%EŒ¡ "’0ˆ²À¿—3¢êœ‰8rbqÿ¤,Q3Ó© ì˜E RÔÚ5ð.¸Uƒ]˜%Œ„ëÓÀÕÖFBYPdà¬YÏ÷M€gÓf=ˆ²¸ÖI‡Z>ëÖÍ9Yé+z_¥:G-ÐŽC”ÚðrˆF;Çêu¤a¹þ[½³uºBH5Õoëú¿V«òýg©ZN¸MÍýVHÍÈoËJü#Î@1ãÖ(ðÃß2,”ù½x¦ÒqKÒy ­ý0<˜O¸®ªƒ r½,ú>¼+R35à’fФ\¶#iæA't‚n3r‰'Á”NHpìsê{ª`¾qêÖ¥sAM) hR xXÄê:|›5v“j^HÌÜf‹·Åñ ^„½«Û|âh D~p|žDAE.P!‚w¦/PŠJqjŠ”õmyCîÉ#è6Ñ÷Ô,  ëJ¨Eö2ÒL'ÜÖ˜hÚAz?¯t4°‹Ö©6 ÞÐtžf[5¦ÊýýÁ®é¤g[Á^]Á4×Ölr7k³xòýÑl¢*tÓm^ Q?æ©O !XÙÞÓ¢23ŽkÙ܈É&åD¢äôC´I—åoü`Jy;¤ò!ÂIaZ- ›ßç)w…H»4—0Ž©eÕUO6—GYâ YÜ‹80ì)7~‚~NîrækŒ7`ѽà *—#1Ô\±p£§Û_®8µÖ^ÚBâ •GÜ^ wÝkßWA)èßi.¥ Œ›Õ=2LŹ˜G ù†;Ì×­ÂHÒ8ÉOq•zµw}»k÷.§l&,6äŽ>ôA*>Ya—+ǃV`ôÚ*0¯Ñ#Ó "¬5¸`‡í›[Ž1‹1–™FR.†RÈÅ®w±T1_ë\¡·1¾^‚â¾u'V$ïð6hlS_ÇJSk´ÏÐc\E¼ZíiÉ­›ˆÈÜÏ#äÛ¢€A$XðµÒ4ðÖlÀt¿Ž;E!E¨)Õ¬MÄùbc`Å-?` gí´íay”e<4µ®Xˆ<²œ@ uÄԱΘi­˜KíªJDÆ@òÛ¡Á[9Ûú{{·I˜f‹ÄWZc”½ñäuñá¾âazÔ¡Z‹ðUìõ ’£c½Ž|ð"q)«Í’ýÖ"ã ÂÒùâ§´RÎ%íbìs¦Ú9x¶MêøpÜ–³`‡ûŸ+ÏäoiF»zMžsÖʆ»ÙGß’³Uì⎤ù¥ˆÉÜ•qæ&Ó¹ðþRBBé, .¾ÆÑ É)NµÏA©Â“#€‰Î]2¢­+؈Uø»ŒŠØáÈ—´¸Ž8M]E-ªF@-q¦¦@COxm çJT j"ïJT”ÞýûÅÓ;ê†c%U ­.p·¹|F!Ðm|Úç|—˜VK¬4䂯mn4c© Á'øðŒ…Û·©øMuHyÝ™”ú@)/‚5ç^EXgV(àž{ª/¬®ø·•f ”#áÛ\ ”X‡ÐNÇÇ¢t+%«T ¨4 ¢Šµeâgb¡”Æts.,ƒ79†•Û1²1ØíX lhè¨4΂YkvXÅå¼™È&6à¿<âôÔJèÑëNã9.À¢V͆0¸µâ÷PH)†17¢OÀ|_G~B…åî<,²‰8Wã“>íˆ 6Xu…ó-œìê¨ÇÎ_´æùǼqAë¶ÖêcŒ6NÚX°>&Ü  ;äCìÉ5qW¶²Z:GÅr^`³zïkÀ¾…@é ¤ÏE}ŠÔ›ï/ÇÊï¢dlëðÞw]2FÂP»dúW[XVê>Z óÈ_ì5qàbB›ƒ³„l>HM !´´E—êko/ˆÕL¨Lߌ'aõ¯ÌÁ`Ø."Þ§¶¦é‚ç)Œ|¦¸Àõ JšnWw÷ë÷Ÿb–³n¬"£”E!äi}{6yA‹·w©wiŽã€µïNÔ öÖ/§–ÝÖÉï-O Pߺ'B³Îj1iìñX⚲ܨ!ïι‡ïÁè:þÁIoT„Ѧí'Ä1o=çÊJvÂ=ø¸Hž»=WÐr²ŸÁXу à˜¤âÑ @¼†¼f\Ç‘®“ò˜Ó…mqxzt[Må½ù(U**½Î[kWÃÌ×Y/øzÞõuâVÚå¯+Y½úï¿ îSÒ…SGSã÷\%—Æ”¹J»°×W//IGï‘ú&»§s`w‡«¨/¢©ð»Š›7U#ŸvU å Û5³WÑòGjÄÚUÿæRª>d~s^áœÁUtåK‹ñ²ÍFSô|š´&™þ·Í ‡‚~‹—m²´.ì…ê´ZðZQÔ!.¨w±%Œr#[)ïRÙ¢úÒrž ˆ ô6[˜zŒéÙ¢÷CNމ€sÃá¹;Ì¿‡w!sp[X;ï¸ ?tf³Ù¦Ö“t1'hs´CÐ)¾‹UL:Ës­!AøTðmM—AŸŽ,œZŸ¹ÉêÁlà(Ù¸ü‘;è}Jg›ÈѶ'=éËóÔ%¥3(½‚R¹ž{Ò—’¦®%0ij]‡êàE8kdþröÆéHƳžEÿƒF;ÒÅl‚À\5(íMí'%0¢Á§Ö¹23)Œ3WÐ oïÊ‘áqå>ÚIζ†ÛX Hy … M Ô¡Ü­÷´SXݱ2âï#{¥eÊÄ·aií‹%e­Hlýg…)!ÌÖZû£?™€+â×™EG°Ôbÿvâ8‘ŠpV5+ãbG(SíºY´ÂÐÙ4`ßQß ‡Õ}|!z«ä¿Ø¼8dß{¾§îÄO÷0™ùv°s–ŒxÞÉ­>)Ç£ü´U¬ÐÆŒDY·q¼dÁÕ}HÍ‹•‰ˆÖhÐz#šÑ·Êe"…½Ue»ŠP!ñ°ÆÔN.i½R'â-õï²Â´žæ|›(ýÞÛ„~¢˜·óÁÂ*4Ü2¡s‚ Ûʦ¦Ìj@¡æ> 'Üÿ<°mb© mœÆ†7®«AÜp{¡QÈs€Ô9iõÉU"ïß”Jû6¸š£;ÞþÂñ(Eý (¥Ä·\@E”buÏulµ÷èë°Þj²JqCÎǬ¹Ò¾¡ÐQ“¼‰]*Ú{Ï›χÓlJñ}O­qþÚ­}ðíŒu—Vp¥sœAmM-§uÐh"Q‘œ|å,i+ý˜%nDÈMÎzU|<Ë2ìúøšT}2UhíIÿŠjX R£L“Yùcì¬D‰š|Šý›Û])CXüÀoYç Â)ØûVQÑê¾Þk|7 u…15¶q¤ŠALŠ› uO+ LÐRŽƒ)§Ëš¦îh‹!OÏ.$|@rÁ…›¯¹L‡èªVKļ¯iˆÛîp¶»;™>LßZ·ß¬Oí¹^r%T§LxŽ"ÄDÖ~q¿ÏŨÖ"†#_Óã›Â…™ñ%:3P¿´B´zŸc .ÅÎôQ.)úÉ­·™””ŸƒÈ‚òVRuô˺j¸{ júñÆÐ=eRÏí1ÄuÍÔæ42W¼†ï…b’×!5v m+Û;)»zyÏJh>e«›ÑFì[‰ëËÝËS7ófER+7!ø¼Éº«úW–'Ëæ$Ú O·ÇBuS˜u€P4íÀÉh³D>€V ËÑõ²Øq ¯xjPƱIãŽ_n‡Ô€M8q­|ƒ¤/2€gŠ«FYžDᦫ~ÉÁ6•BåwQ°îg;@x,ÆWVC¤ÿÜwSØœ?&K*à*ü1äu±±žX{R§as„|H!¸Ug8øÁ×;P3Ùò!ä½;êƒa,¥š›Ú'vWjþPìœáŸŸ¿ÕQ8ÚÊð’ ÆûeÐÒ®ö<ÄM;HÄWÁH ¾ÊžŽ/ç±€ôøxÓCÐjÔû)p÷¨áºÚ¢µÍ ߪÉeÖéRÀo7P”–µ”Fˉ]Mj¾UyËøj«·‡´a T(šQ. ,'ÒD½\]αtuÎ:÷=…‡XdÂêÐq­ÉÇêe òèø& aw€{§¸ÁÕ©„w —AËR\ë1R‘_S9„Pý¢º¤¾c¡µ†²ïÒê‚0Þ¹-\s&5úÄS©}ÜxK?ƒZÑ¥‘{÷»k¹ÞƒX$]÷KÕe,þ½†ØàdR¨M«Æúédœ•š ’ëÄø AT9¡b6ë–c«[\Üët-j8þZƒtR#‡|×Á |oªÑ o“î(Î|´»®Xi&,.¾Þyƒˆöðøe½"|­b˜Éúzæ ‘kd¤ÖbýÏŒ\Wä°Ã¦qÇ¥µ ƒot”¹œ¦vF~7-hšêw) M}+†Úâ¢×™úÓªµjÚkÒ˜íñª0k•ú¾œï¨ ZÐ…jiqÁÜÔ­HyÉÏñáÌ8h¹þ\¶ë3õ'?š e¬WËT)è§úNþ·;êh—ŽÐ>ãdKÿ#9;/„?êŒÅª ß‚‰†e!^ßGý©Ý…´ èjü–9‰ý|Ûá5ò5¤2\V©Ïž—(ŠÔVÂÆ¢ðÅöÙ‡ £E›Jî ñ(–Ѽ+Ü5;T£BóßùÔru ´oˆŠš»Y”2ø{ˆÝ˜”Á_ÜciˆWµòã†Çs@ý8î¿ó94XnŽ‚:ˬ{Z5h³ß+ÕV[¬I,ŒgMH]~/Ü o›·QÞ[s&BT¤5B¸vg„]•Š—ñÕm53‰ÁÄòi3_gÍ7x,#zäqÞçg­¸?¼§0¨Ü®ûY'Õ-Ò{Ê þÆôÚ;釔Ë)4çSi·-© ?E§@Ò­ÉÓéSŠ{2¶«ßû“ñ’&¤Îrp7)|†"¹w)t5¢v3׃PsEQMtø®–—†šà¸NãCK+•†š&Ü'h—Ò^à"ösrNWwÁü\ŠÄMð]6F,žÑ²)Á&&‹ë÷hÖ–i !ëíÓ²Š(E âÝ™‘íj•ºè(•":чD¥B|³ãÒs››¿#]¼‘Zeæ´ ¬ ¹‡¢ð;>&½_DÌŒ–üÔÊó!œ]ì]ƒB—p9à  >$ JßWøéÔnDæãå0%ɬ•D‹N+‰f’ÔÕ`ÔuÕ÷ù¬îðì±ÌG@Ùyº“Ì·Ü:NæcNÚêÆQôÜ Ù&Š b\ùR¶çrìF$ òÐw€´‹-ŸšþØ#ët8÷OCVœÑåÚ¤¹ê;´;S·Û–üqÂà5Áž{O\5¤î2Åê )]—‘ù”lö¥™Ñ¯É†WêêK£~ñ¹{öÖbè$ʽU>eP!Ù±YÄÝòö(½¢·AaEà4Ûhâ'!ëP@»ÏL”jœ+½³¬Bo×ëRâe$L’‘ðׄ j¼õ‰{Spgx­=J®Ý.æX+ƸeIÖS#.F®¡iYskÚ¤àÒÛËÃý:»·!‡¦ʳ^9*;J9%4Ö²F}Ôä@éøgk÷«,ÐÏý&t-[—Dšµ< ØS+—.‘:ø›Rš×! Ø ¯½*PÚý®|ý_µ[®â™epçªè*-ÏK´B^Û¨Õ9^Œ•*kì1Øzç12дð+WÁ¢œû±Vª‘åYŸË/”Õ•¡ó£¯·j½òCõ£‹~€k†Ö&ù%gËÛ£°d|Ë‹¦¬¸" o±²šX¹ ”XKÛÛ9^AkiÉyÙj˜_–õ|œ|v—Jk¹#GÛÉç–‡„ÀÓ"•aÒœ¬´ÌŠ?< è äÉ E?å ^zû½˜†À§ø÷yïùÄ_¢^ù%KÑç„´¨È‰Zdä]øs»»¢T(ø\æ Ÿo©¼´…×Y|¢x9·‚õ0ï§À“nõrˆnÄwì6Dh½][Ú—~{l ´¸\áµ£¨é4,Òm¸¥kì¥eº·v¤°@ìyÓ!õAOˆˆéÎMÝF8x†¡YÜU†®¾I'µÉY%Ð1¢®2Þëåô)Þ@Rí&ò*ê«QyºV_Ф™²à&wÜ”Ë6Qqä qjrp+ ,HÛ¡M§ã”ËCme~QtFï°«”+0¥âžž@G5•Z5V:s´Ž¦=Û×ìæ–JµJåæ4XéÌ,—¦Q)û¦“Y•ÃJN‹]ÃÞN‘úÙÀe-o£„£P’´·”ÙU˜d6 iÌ,Ô"´ Ö‰àî?áF-ä^ÇžDPíÙªŽÅÊ9m;|É ZEã–ÈþO€ï# Ö4Åõº[O¥öo…¶]*ÃîuÊ`åkÇõWŸÔ³ÂF•¬­>™{*æeæ[Ÿå“ðÇÓDÂÀvòícü»‘‚Vô²"•V…ÎãÄGµšØ÷+‡–I(,×ï>Ä *ÊÈËU-'€a°‚Ô—¸ÉÊåÁ`ö‘0#í¡j»”¼÷;7¤L —3Žw<éÛ1“ä¼¾MݵrIÙ¸ ¡Z]• §‰ï䩈š½±3"ÜÈžPp«&ùã€]N–ÂÒÀÊ×ÚˆEß ­\ÎÕj±<Èéhmñ{ç²³š¥I#Ø¢ÝÀžŸ$e³ß›#ì<ÇVñHg§«W€ôÔà–ŒB?‘ÓT֪Ʌ¬VŸt´±-Ëò}0tþ·‹¾€KzŽ$}EÎí­·šf»•újP ~Z+ÅÞ&• tÒ ÔOm•Œ¡¾Žm01’§±€›òuÙö x¹þYÄ,´–»&ÁEÓy­A„Pöí(šÞ(yf Q¤ÞpH'j’GJ¨T`Ä~™È£dLMβÀs`9êJK¾L¶‚:;»óZ¢»¬=3M59÷üšsLZL`]¥! B¼4mÂU ȰMmi%Ò÷§a4&;´5‹·a¬ÊÄK‰\zü/5`ã:‡VøOQLÉ ÄÚ2ñS¤ãnœÉ_åxÑê+y•<@2Õ^³ƒSlƒ¾vÿ‹¶ew’Ô*}¼ÿHöšõ #–œ_3¾©åô+R^ø5ٹà ¬!}+Þ`WYÕ¥‹Ùöýè/±j•Eýxñ9ì÷ôÞ»;zã:9’þJz—8{—w‘&–èÐÊ|€žHo[m:{yÜ-ÁŽËÍ>9Ô[ÆMœlŒ‘©w¹E'~ŤƗDùî¬éÅzÀ—l˜¹ó¤„Ž:)ù·äF¤˜ÿsækOp7%†nÖØSu›6 ¬Û´©ª§ÏG‡>gwæq%z{‘%Ód›IÚ¤PŠ6 ä­oÊ+ϧîÂÿÇ"Úêvó)5ßÑZC¥HIt`•œ…üU~­ñ2¨æéúS~(Ô)áFVÀ ‚âÜxX µ‹RTóôY ¡“ö&£¢ùBoj8Uc[áÏÆAŒLgiÃòÇK¾û8§›w•ÚLHá&´¾,Ö³h·™/våñ´,‡2U)¢ÍÔæ֓ƒ°4xŒ›$щìý›”‘×ót7ìéP$5Æ@ܤ8; –Ýdˆ:…Ù(5`4ì©9‰hOÜ'4ûmâæƒ=}摳8ò(IÊrP¹7lwî3b§¤Kpê¾b!§t¡õŠëRIÕâ*JûÜÄps×ôˆ"¸4&hIýz?ür¿(’$YR(uàúWC«ÏÇ8óÌÊ™æÐý˜b<4F§%u4n}ÈÏ&úþÐ -ì1Ý•ö¢v–øCžFê?Q×­í¸œB.¥ŒTÐÑÖö”‰ˆ7ŠRA›a¶ë ùôr¼ºd¡ÃôûÈ_ ö*£¬!Ü–GIýˆ)­¸ý#ÅÇ´/‹ÕTNf‹9⨆ìåïƒéT‡ á™W.ƒ £ LÁ.í`qá{Ͳ´œc÷®œäÊvØái¾U¶«f6éL;°üecR†äò¾o×ÊbE@Ò¨mבC…깜- ¨{fýÞžå«W—ÔwIû¯D‘~ç[bÉ*ÀYêÖ÷ýw•c ZŽQ[©bf¯ØVÊMB9çmÄ‚ïo£-U;"ðÚþøÖ•IqÚÞ½Þ®'àä&[°|g`­md]è’¤_–q@¶µøò%pÊ W…vÍ’pê„åQ u¡òï€ •£Be\ׯS}6Y68ôM÷Øoc%REN†¾| Hä_GbtÛ¼21쳟utȾu² ]EÖ§Ë“ô§:5@èM³]Ó¶E´*‚9šjU%5X•Œñ†~4­S9Rúc•óÒW!Oª½h³¾ý̯ÐÞ~?¹ÞöO~[×®þ •ìcHÈÊÛø?Es3Ÿ7§”yý––¢¨3MÇ ‹Ö’øüe©½:1~K‡1y¹(·¦úe¥“ÕšD¶Ë1­(¸´½ìäk¨ÖyZ;ñ”óŽk¨–ó;]Tjºï䙺f,×§ÌÇÉÆ¸Žk“TÉéä Ò}0`[ŽJîŠÌZÏs¡³c—¡Fš/iÓ‘ ö5Íò%:€ã‰XÒ çK$áÓX¹câKfOFH0q&~.ÉÚZ~㟳ò$•±¥êçde³ä[%¶}Žb~\X­6£µ!ç?êÔ¥ ÞÞr›´˜5LüS%O³Œ«˜¬<5eÄ;@M4Ë-Û§í¬jÝe4éÎ0@AðŒTø"ÎÄÚÁÀ Eã6 {¾ž«¨û¹œQ„‰“=ÍIåZǤOC Éíñg¯a¬õ´6Ñ32x#ž‘‘O2«ô‘ÀML)tû(âæ"'Œ’ÝéÍ[ WØÜÎ¥e6¹§áØl5”Í?¡:\¹5¼ËcR^ëCš¦p/DM›ô‰Á¡ Þi\³î­@à •i»*ÀmVuñ|ŸÔ¬¡ôvT³¦iˆ¿Es*6íÃÆ:p¥–ZùcÏÏžêpp íip%ó0˜kl§u¥d™?´C””âŽöaWøCU¯:®œà,·ÉåcèHtR=…{°â8 ß ìÄ„¨šÅ›P/¡rW";µfz™`IJñ>›ŸðdIÕ£S°{Tu’©•˺ z ­pÜW†x®21S5=q½4uoÂV6ß¿<Ð= Ä[Û( ŸQ‰ˆ@1´p}mO\tîÆGo=¤]çA»Eõc\á5@ ìÇšY·ÓSßZŸÅ]}°£Îz/þh­ wyër¥ë©Æ æÐØùê£Ss3½ÈEøP (E3`6Õ6X-œ·znTòê5´'Áê Â{cÝ9$ˆ°} m7+6:º—Ëñ6gzŸ àžeTÚéºEFÊå·¦©{{t+À‚•5¯Kn 9œÕ~`Ñ÷û"/7Î( ’¹0u ÕܰFR–p^Ç2f‚³k¿ŠÉ¶Äq¹p}º\Ež^žZ8•“8ÍU’gÑë+·§(h (}¬‡¤W3/À9½êxª¡%-µ’mxå{5[ƒûU¦Ü«O˦am©ø Ý-½!ãB&6O7¿v6 åLZý#kLQŒ4ˆ2â× ^A‘²¥ÍMˆÜ¾¥'eFõ~Ÿ5 M˜M†RûÓ2²ú}Ô~­¹£Jü’4¬+N_@cøµÂŠdT;Àš*˜° ú.^ñ¸ÉæKÄÚ·!÷™©©;øA‚a0°ò]⦇c5xŸnŠ™^›ïeÝiKÀšQÛéÕ­¼†Kau¡àmx3²þ1¶ðw÷]¤»ïKʈQJAíñŸ#PŸ6œ­7üŠIÑ·G²ÇÓ:äï~ñÛà/k٬Ǘ€|‡ôÆz÷ìeP˜jŒˆä€œ½oãô÷Ö¡²/ŸB‚r‰×ÃX[ÑÐHá’uu¹í òZ°”Ç%ô@3T+ÔN$”"‚ÎÔë€ê‡Œ,̸#Ø0Ê?Y£û¶a˜Uñ)ñŸ³PºíSe)¦A Gû\mP¤¢ÑQì,`ú³ƒmOëïdÅq¨.Óñc&?›¤ÄE° v-3q·0#T®”A)´ì:MÐÉŸ‹TeïfËxx°¦‘GHÂÅcVô‡.Œ Ú•ß„ñ¡µQ]z).7Xe[ÍØ1„¿ÕÎè>ƒO$[«mðX.V?±øW&1Ïå¡ÐÍwPZ|8«†x›íP£¹=ÖrL és|ŸjSÀþ%}íbR¥Ÿè&¨ŠQáßaÈá[¯ü'ªapênšTpwzwžè Í,Ó£—‡BÑðdé%è5ÏurŒFö„1Í*É>fp)áO|Hñ‘â ÿ¥M¤Cë‡L|ˆ]zd¤iñ!~q €vŽf哵h)“s –¹Ú˜Ï‚fÏû´$¤+óLƒ¹80u(! G}h‹…BAî¡}ïûX7Þa@I(XÁ¹ ¨žmÝ]Ò‹E—“´Âð·u2¬ÂU9.<¦}tBÐä΄\9×¼ö ¤YN¢‹x|ºÓž(×à :+!ìŽ8´*«C ƪa»k…”îI£¬ rÜ}ŸP°9 $ÍÕ ¡¥Ù&ÌU>¨¢o•£$jz•¿=v ‡ô÷‰µŸ•ÂèÔ=D ù˜ ”{d+¦laÅ6æçBhóÙßž'ÖèÄÊä596&Z"<‹:Ý8YúR†˜b+¤ärÝr†KSÍŸ¢DÈ %‚þXÓÃâ_çtR–ÒÄW;Â}ä«ÍãmJÃl/oj¼ìAâ?FJa_§Zje@ ôó2½® ÒÑïKÑG‚W @Ço%2 †2‡R %¹VØ¢kÅy<^d)óuÌ¥£õ Ðû°1±¬‘òã½ÖM é gódˆÏò=š#Tÿå½0P†ŽI~0*òñü<׎ú²$m‹kÍœ3)BÆ™ò4où™QÅDC*Ö g³ë˜'ÏÍhÍn?‡7þ·‘䤡¾Nà‹"\(qtzÀºuŒÃ¹3F¨±Æf4͈Ø](¾ý€}²"×ÈwrF/VæÎ^yú» ®ñ®Âi =ý¯Âôo7 \y¦’Ðl“¤´n«Ì¸DÑZú®R…Ìúºwº¬¼Ú´ˆZvàÖ û)ý)Öy%×LnBÏÜJ‰û•ÏB´)FáºìõÐÏý%Mj§–î¯)iÌ[.‰çïX{Å¢ÿ~–u¾Ó¼iî{àþ¶UVî ‚zq•ïr¿+ê XÅõ®`>aî·ñçt·—§Ö¡eQâ]DÒüÞE±WêéÄ';—Ö¨¶,êYB1cƒÎ]²¸¹¼ìÚ²Hø(ŒžHÝÏ3ž€ Õ›|)Ø)8nÍa+,}+êþ’†¦š ¥Eâs áW,;Ÿ3c4tJ/ü³ß¸µç!ÁËI,)HsóŸC¡Ù²Ï Gá­\ÁçÌG’õ¼1VybÓís }U4€äÉöÙï^¤ ÄDVŸcÏKò6±ò9 u´[ŠŽZN4ÓÁsVÞ( ³ôî"pl3t¸ ÀWMRf`Žt.ÈG­Å’uÕo:²v|GLhèT¡;w‘†7fK„çr‡IíCFªMT?„ £ð!e-$&ôIdÂ9bÉ5ÃÐÛ1@w$[$`¨‰µŽ‹Â”⯨¹íßè>%Ç/ã: šèS„w%—yåû”õi­`!fìâ, s?å TàÁÝ$õhÖ õ¸"5Z£·/ì37e_ÆÒc§&Ý­dþ'@{ãO(/êy˰ìR˹°Æ¢Z6¨{<Í–ìF¯¸ÏM…úœÖíÐ×éH-þ êô^Ô¶(óŒwÊ 52+›#¤Œÿ†£½áwåÌà%Tù&]TðqEñ‚ævZÀ§Ë|µÅ5|Öùåu¨é~Aj‚ûã ERú‰™÷4A¹ƒü ͈Z€Zç4"À¿Ã8:NóΚ îzèšbaM¥û„G{d?Û3® Y¡ö¨buïH\^ž…õb˜>ý)h »IZá 7ÌÊ$OÇVÇ=1“ð»ït`£èi%'à>Aßîj 7ŠKbŸ2¨ò6X'ˆÁöÇ4yªŒTÓûg´kAÐx“ȧ§Q>4Ò?ަ½~HóûÚ%-¯6fú¬”ÎŒÔÉ‘~HM\©8ÔJÚ`s¹É¯ç?Aͼ.{åÆŠá•¨Í¡u¬ €œ¶"„¶Å‘«>ÉßîÀÍí8%»ä¿ùÀSÉzÔÖˆ~X34TJÁ½ûˆ`ª!-.{2¶´Fg{atÚ—xš"Cë |’UQ|9Æ”ò+”ê3+ Ëd–ð¨Ö›îʾ±H»5£=f¢^_èFs‚ˆ5‰ËÚ¨ql™f±äÓécXOM¿H'{í%ù©iˆŒç=Jh3ÚgÏPcë^D jt§Ò”ÖaѼšhl¼øòš?Y ªmŸ¥Ö}¸8eœ× Ê´Î;·•±L߀‹³\dnïÚκҸʳ îmÚŽ‰X5rz ¶I´ ³ud%$|-€Ð¼Î°ˆ“ð$ÍI|ãõ…å$#µÉ*Ú€øÁ(tÆÄRŸj*&VcJm‘™rS#:ÐúÐ:FFùÓœ:2˜0ˆm(5ô.¢@#æ¹.›V“u™e¥1¢2ÖW?éл’²H‰ua/4™ÊMƒ¯]Ç©†ªH÷@ª½¼^Ç; FØSÞŠÄ4é©£qCö&2±ÖÉ«ˆÞÜÂ&BÂÙ:ÙÔ2RC¾T¦üÓ?N)«“¨#­ø§ÃÁÛH2J7LMÛ Ô#Xd'C´À t©ã€+Õã‡f@õWÿD’ͱþs4‡ZëéO©y 1 =¥•Z2^E áõ¥6ÖfêÕ×û*`AƒÀ©.Û¹,àvªDæ«ð¦¬Y}üÿžk‹ŠïùŸ!X¡“R2¥ÿ?y’eQ‚ÈJ³šØ-‹#úÿFäôõoY\¯|âA¯ÅŒCаmÔç[,:äðÖt}Ôë;\ñ¾Åôs*[‹ “b ©é¢ý+¡ˆÞb¾æÃ„ãWУ4ÑtḂDÓI]´=ÚL·ßôz¾’#ôjõh, o:Кwqã!½/H²ô¥hêÖŽ<Ñš#‘&P‘rË"8³Ï¹h ~·Iâ¹ìLb­+Ðȹ]°8 .±ï[›âÈ¢I틜H€ãÛÄ`”õݦºÌxõ6MwÉß´·±DDPÃ’ÔÛÈB1$P¤&,=b¢¢¿‰óp±mh7JÛþž|ûáI1³ÖØN¡ã/¹Fšñ ËfÁ˜Éè€áÚôû ‚Øtÿ”ºzW"wQ÷5wÒG–O鑉ýÝÛëWüÍ}ØRš'fé-WI»OQìFb\#ú‚Þ¥ÎA¯Ÿˆn"í®vÉöö¯¹ÉšË 'â­õb1rÓíü<Xë.sWK™h‹”Õ#7+P´ÀŸ ™©ÔK¾)Z*!y@Ô}ŠaüFç·DIæèò&³ ½vÈ ¨IÌ„ #¬v‹Œˆ A¶_Öœ…61 ¿CjÄ%C…[8Ú´¤$Øù£%¼Ï~Ô³8š˜’Ü~Ô 6–vÈ/Ù×½ãY)N_Q$„ár£E@~é¹´°Å©C’.2Jœ™¨Š=h;>Iª –ÒQ9èn’öüY¹Ä•î‹E»Ó#ÚfÔ‰ß$Ò¥W7K·›,¯F0máw¤['Í Ó»Qe3÷’xÌ•±roq>Xe] Ž…Pn«EâÍ)’ÔR’¶±|ô'ucÐ¿àŸ“{ÁÍÓ«³út¿(Eûñu*å!’ı%ÿà¤n Œð}¨»Z*ÂZ±=D!ÀJNÙm‘S NÎ2ÜÔ¦$ntð}D]J’j-‘ϲÚà"¦L š G[u5.} ¬ÂÄUÔÍŽ~»Æ¨ª‘¸Êpý’imû´X]â*·ƒ÷n YqL[ìÁV—æ±²óaðO#”ÏêBó¾ì°Ð¢É£3/a%!ÀФ Óy}¶ *=ú‘Í@@R$jâKÄ9.תãÛq¿°TÆ.¥ð·ë.Þ-5•‘ÌÖ ËÛ.¥‹ë3Ì壸ehª¨ÙÐ|Æ=&€*3´@ôð-Œ­t1óB­›"¾Oœº`–#-°Üž¸,S ÐV9…0ôV•èM.Èà˜N¾U—Â…Êvp( \£|ŸÎ÷ ;tjG5LKœ¤\UÛ0²{%/‘f©;²{]j í˜ù]¦áÄÙ!‘xûù6M5´5no“BtŠý„¸á:1#8!ß(~¯án %¸6&üGL§9,BTy^q¨ý–ì †ÔsK¿±–P¹‰?­¹N³h PHz#@ýéD xÆ­Ý×Q‹¨ ™È*ï:5!TnÜ©ï]*i\þ^Ú-÷òaFä`R*ÏIÍ ¶%Ä/õ×ÊlVMû”¢ùë´íëÊ Ô‡XÑÙ¡þ4RÌzû'ù™¹÷ ìzNqHŠQ¥ò3ò ˜¥ úÚo{ãQ‹bøò:î¹2­Èåuª£ÐF9'†ŠS°N’ê2à’²Ö¢ŽÒX)ý˜ª³Þȶ²$%*Q£È %€„¹ô³›Ö.lü«4™/É#B@äVj2S³èÚˆ¢PQ «}c‘ú«P@eâžYW+jî*nª%C”WÁ¸Ù74–3åU&Ô&.ߪòÑ0°¶z¬û»ÛfiZf}q[÷ÍRt¼mð-¹ñ­þóü%ë1_ÒzH… 3)•¹Îê*þÓ?–-Ô£åÞo±Ì“=¹-¬qüG,¶Ðþƒ±þ‘4÷.É=¿ÿ(m\qÀÙ?rp¥â½…ù•̓ï¯qÏ õñj#Gæß²ü¯VºÏC:”yék xH»´öÑ_²Âﲟiä“_³·K; Ðór—©T—11ÚŒé†`Fð{—·7T\‡u*ó; ˜|³—ºÝ%2pPJ®ãÞ%ÕLÍ]&°¡sŒ9c[å#vfjÅÓ7¹fâ@Êe´i—Žh¯Å7Y¸&:gëAßdî´€r-Ò%k׳,79ñ[w(€I+‚‚2©¼¾”N1 ü…cPc:tÉ䋚]ûÖ+ Z ûO(…Z>û ØZÐˆÚ ÿ—! ¼~. E£qî‹òB&2ð‘z ¢N—Üõ7”‚aƒì˜ãj•=*c؈: ‡Xh 2ÙµTQúæí°ØKÒ¨ñLõiŸñQB`¬_صäBmfp®d×§·Ò]@Üeû éìe!mM=GV\ÎCF¢v~)€9ÃÆµˆé>Õ7»hà‚Jf:yâÝü ÕYô˜c%Eö ¯’tâþhd[×MAåHd›Ø!å¶8¡ù67ƒï‚¼òzˆΛÎîZBɆÜàêukûþyœ+Ó£wç"Ö±À…C­ñnå¹4%AЮW^uƒ¡€…¼AÖí8XA­,t,ðÒ£Á}ÐÔS2 êŠ|ÿØCùDˆøµd…—Èð ûÇØXź“•„Fõü$#‡•b;w+çh>DÃ9¯|à‡äðùD‹²ÑpªÈý#âÉ#P £¼µéÉ[nΔ…>ɦŒÑøå”ÌòäULá’V³°• (ï‘vƒJð5o™ çº“DJ jDÂDM¢¾V ™·õcR²>º)Ê—C2G¾¼ãA:íüí=ºt)HÖ%ö9öÂ÷NËo‡¼cÑ  ÀŸÁ8š;ÂÛ -nX v×8,‘áä’°•qØch“*§ÜmÀy.ƒ°Y#cÛh=w9⤬Úû8êÓZ PÞ¥˜tÓÆI¾Ë\PÛ£ý]’ß׌Z{Šï²¤6|k ÞÛHúlYhº¦¾MüÀóðÊXyëã²P–|-×tÍ}®ˆ$_«¸ Q)/Ê>LJæk šb_GºA)Ï)°­‚”±¬>ã´K[»¸ì±»¢ì–sA­Íµzä{Y!×<VKY•ë83ص,{nQ®3JDµN×èÓbnÑûUFAJãü¥u¹;?Ý$<à¦G‰Qk]Ã:¤”6®((ÞÙ#AsÈñl-Äe¤2Àµ$f³¸ß¸øÛº_—YQFæR‡vu~]±†m1jãM£µ‘ºk‘ØèMX4™J¯Þî›Q&D‹oBÖ‡vŒõ—öÚ¿4©°{•4ÉŠh-ƒ²\P«^¥\QµíæëúÙ7¾P?fQKZÊÑÕW¢T(ËÅ}œÅØÚ=J¼KÓÁ":Ûƒ&nXqiG”ò³=hkƒ˜¿Æe:«»ÊUžG]óU¿JØdTÝÏ«¾5~öŒåö \˜¿VI©×W)·be!|e³,ƒ%Wõñ¾ Ýfþ¶OÍÓÛZmþ溲—ªcU³ñoépr^ÎèuȘìnÿ‡›µÿø[z´§ÝV¨ýšr#­“"ÕÐ_sÖÝÔ]¯°îþ¨oY$Þ0”TüæñÌT[í˶a^^´l,Îfq‹Õ›ïR¯>¸¬vÜûû5ÖýZiv¦ ¦@æX¬×£7ßç\= þ}ÁôQƒ³ë.Qû9e¦\!»Ë ­ÆúÒÏ–8FÀzMõKh²~„É?ïKQÈë%ýR~yu·Gšc3&/äÁtSí"öm.PêPÅRy²S£ åw|›¸¡¹PHH^õ2k>zÕË–¤v¨VÕ+ô¬íÔ¸Ó&þñŽÙ¦˜ÕËF1´íÒBõÝw<+¦H žXòLçÈ¥¿¢}2 Bd:R÷") Ç)Ó„bYe…Ì'†îYÝO/V8ªy ¸Íó• „×Ìï%êY,Pà±Obî—‘ŠBì×pëÜ&˜ânSxÉóg%‰Sw³ªS¾ª´X™Éå«Jƒ8Z×k¸¼Hdiƒ Š'$FMHr ÕÆ09H`É”/·éîylµR¾©DÖÚž¿ázœpدòéAmd¤§“ÈjÝöú1 Ê ÍÊz7ñ§Ô­ŒQ6Ò„ðæ˜¬- yTÜÅÐDˆé¹I׆h]%²N˜g;€Â4EåÄüQY´qP×ìØ8|9êXÂı“j㦠*:w#vmï÷y·KN•XXÊÈWPÐ w©ùGcÍ >1bT¯ — \ònº^t—D–Tã˜@?°íúþyÃX¡¼¾)zÙP$´3z%§äo(·¸ƒ$¤VúPÜŒâw"öƒ„¤¾q iL3©™ÊWA yzNFvN_ȱÊ-¡Băï°B%²4m±FƒÐ2NeòHL@ÕPÛ@œÂà­Sˆú4?’€W×ë'ˆd©ü¼òJŠ5?|ôJ!N,H諸§PÇ} ?6GȇȬ€ªÀ¢p7c¥»øµ>Y?”¯AV1©À‚ê(>qàdcËì$P…É‘³²TÑ€ S’O £ˆ› J©¯{ŒÝµ†m´c{äÉ„k»y?q™7ø½sìBœr;çñ"K}bõ+l½yZ ŠiíÄ+ؘÑÏŽZÞ+Ρ"rVÔ^0¶¼ï`àjZeŒ 4Áõ!ÆM_è P¬!†AÈìaEc± †‚%ínaWa2b €¬VØs÷Ñ|3Žh•Üzý>Ò&† mûrÇ“æ£c{6…îBh÷H4žFì*ɰ_Ò `§ÉÐ\ç¸lµ Áx—ÖÇéõ¬>Æw‘9½¼K¾‹99¢•Ø»dm—21Hº:5N±- å·‰ªT¾{íè±â¬ÐO$ ¹;A²¥òRØø} FPŒ°”ÉðܺW€ÜCÈÞ5Ú¯ãœ"ºeq¬´FbS펲ÐSnŸˆ¤VŠ–bŒ°cUHa™]´‘­±¥.rÊ€ãÁ¯º¢X:X3€Ï×[…Á×c’·Æ}uû{9Û‰ˆn“¢{`µ4„Š&8& å¾fÀ×Òò  •A‘#q¬Ö®ZøDÁâXVòJ˜æPmÔ Ö*vNkއ¸QɴĦ±õª$Lõ¦ööX1‡ÛÈØîÐd _ëmÔV%•¯C/¦°ß_𳦠‘‹ê­5:HNÙÙc-}•Q@”Z ï¯t§•¤¾`¹Zí ÚTégÙRTär/ºü«eDÄ(¶lâ\?¹ù ¥”ÆUÁ lJwÙnG~Ž.Ÿoš(lšP šX2~ŽÏóùsxƒÍ(ëgw‡œgY[ų«Y—{Z®E’²Õ¶¹ã¿ uÄÆ¼âfÿ5¾‹&oˆë:WkZ•öWQ#¬À§Ö®U‹ü;Ê'ñoÑ}©Êý?Ù" yJrȯM¨N®oSÿQ(–Gªt9F×ZŠô¡ÿZ°Iòn€ æ¯Qa?x€cå¿D$æ~Éå_9´Ð,XF;e Åpç[&õ 8ôg¿¥ïÚ†ÿå¶Ú¥µ3ŽÇ0ÊI…Ý]‘²ä·¤À¡ØÛúè/‰rÁèX’ÜŽ¾Æ¤í3²dàk*µszJYKù5ÌdW{5Ð ýšÌ;î[ÿb:a¹¢‡Ñ”ÝTåV@å´vfÐRwJµvZNH±›È›¸…}.9‘³=½¦ñî ¥6á›QŵW”‡rw¹/1íKˆ"9 ü—¦`þ‰Íµ§>Kj‡/I[±U Çø—8kj¬ÿuB,럩7Y ô>'c“’Wr}ê³C‘ú5°,}Î:O1Mäg/x¥=[x?—~5[ås~Ìa®P{í r>OÃò@Ûá¸IØïcá¹fÝ0ú!§Ëî4;ÒùÒÌ/. ™†\1¼ ÒÅóLîR §\j±RôÖÞª·ƒKÍ„×.µºá>ïŽÑy–_V–¸ÝF1ÔçÒ'¦ž8î”iîFé‡(— Ž^Zòk¹Ô†•<=ïÉ•²ºFyøB8*©” r‡Þhë+Âs ΧøC؈–h\ó)á?ÓÆ©Õ½)V(±µžÝ§pRMH>• „–H7I7‹;4˳‰ÂDE’xð&Þ±Ö´›>¯à£Ó¿vøËöëdé½1xoß&¶‰ât2 ‹§½r9YLzïصFèÑ‘äªZo)„eûØðóO(I¤£Ó.Huv³KXÐiRtZò"B–¬éÀÀ’uMÖu2lžlˆNiSv /”G€ýÍŸPÆbäèp‹¢›òLd°O,¯Ùhœ/N-™}-=Ó@Èèl 9G7_\¹>S±A#¡Pé½Kiƒû}ÒÑš®æ ¦ìàƒqáèäV«@`#dàÅãÖì°–ŽÀ“>±h`\J‘“³rm$XûË2oº¨ç¼wõ}‚]^,BNJ‘èH ÌlÓÓt è(9(ð'ŒÓ©ÉXœ5†Pš‘XßhÓÃI'6½{¤ñÇã •U=¬i­á˜!|ÞÕ›ÎònPq`k=ÝLꤔ‘Z…›>¬>©m­HÆŠdñ\¡‡)ÛŒÄà Žã–­´)Dò~ÆJíIC@g š½o:NÚ´G"# ]¾ålsÃ(Lò6œÉdÛl^EVYáÔs§5£§d¸¸Oê2k¨µk~Œ¹edýÕ~L#óÛàéÚµܶRR½þCP)ðKh¿iw=ŸLṦ(nÓ¼5÷ãé.Š~>Äôu aõ!´>¦pC˜÷!Þ‰-·´ zyí¨16×X™{÷_¦n‚“6r9‹6EU8×R¨`t„Ò }ã$kUÈ1Ÿ¨äM:ºœO`^~aÛý! è¹v»`Dv7xˆ3*Û\" DµûÝB„q×°„µ°=œê€Ø³xï ´°<Ä4'Áö)Ã@JñT|Mx2Êu\ ½\ôÈðoWŸÚ”D. øéñsœ<‘ öuŠ…db™6à÷Nb;À1%ʃ ›M|y‡ƒ£¨¤ñî­Ê€ƒÀô4߆#hÅÁ½HÚâ> 6$:w$þ]ØånqÆŒCxñb!-ØÁ‚Z#Ýa‘¿Ä…u1;š¸r6æí]›Sl±y<èÕ{7Ž'z8ùAf—· Q¿ •^ï C,Õèªy—Sœ¼VÞ =}ʺ¨ØÓGçl©jó6H®åtÿÛ”c›ÕÏ·q~U Þ&ILbn¶üõÓ\'®ã£5â7Á<$©¶ëÛ-»|!ž¸7”©ºNŒÉâ‡áÓ´| œYÔÞhIë+ÞCÀ1ÈÞ îð ´ш‘ò‡qË¢1Ð÷:Ö`sMO¼4¬Øê·7‚~ÆýUÈ£C£(ŒÀÂî×—ÀÅûծɺU^ÇçƒzihÑX(jYôÝØ ÿ†Ä »Sz-òŽ5ÔàÚy¹1Jh›\Í`›2‹úytÎ+o+·Üz5+õl4[y£6D¸½Q)¤ Qmá½¹ñ® Q"4ׯ¯âhX®Ÿ‡®9‚C2o¾½QA-¬ì¢ÅJ²»–n»Ný&Á46oáM²ü6w·7¾‡PIþM KÇ»7‘"¾ÞÝf-«ý:€¡…gõ:ÝQÃë(­Ónu{Í©9eñÚI5Ø-n*õ:«{F¢š"ºb÷/1B¾òäáuº •^fÜ…Ûtÿ¹Š5=À7rRRîpuë¹ä¾B1{3J¼JÐ@âã KŸà9£œÂQêÂåh p_!í5EÕ-í*¢Ê4÷‡Ÿã™£d¯+¤@~NàP>Xi„e•qã=“÷Š¡pýÏþä{R›ú'º m\8R/4½ÊäzõpäU*k_ù¹kCêo‘«áÃÊÝîÇ$®~Í¿G¦òõ?ô×ÈŸ51ÿ'ï&岯ÆÍEþ3c)Ké{ø þ·ˆ²g½Ë2"º>"²-áó ’'¿+ $Uº°×-wEÒY¤€Ná­ÉÑRÃþÁ˜ÉRø9º@û/ù¾u•}ö{­])Ÿv?Ç‹¹÷C,ïµ TÝæ?Lë—_;ÞÅ¢J©µâùù6ë–qJ¹%4Àê…Š9¹T´# ›fÙ$ñŒ²}m®‹ ö¤KŒ¦¬kšvœÛ4 Ž¥ÎãÎâ^''æZhFpuMq…Tîö¸-"2Ü_ɧ̙«š9ãÛDu¤%¢Á –VN°¦:ͳ4›‘åõö6mÉ¡a+ ²9W»tt›¤z¦†7šeqÚkîº.4êE1…D]ídà ÂÚoÃYRÍo…wþ J¹’;Wô«ÛôC]^y>!ÓÕ-Íä¢õÂmãŒ÷èõö².£,7Ð…Q˜Ò±°¸s„·E=e3·êmæöÇ`ÑŒ.q.€¬l¢Q6ÎèAD±•fWÌåLÛŽîd÷mGï5÷UP@×õ)³vô§{3ùe EÜðµ øS0M°¤Y—c•O%ÑDŒÙ>Á¯,F¾)’mâØ¾Éö?%«»o²|ºrn2¢×›æ!ÌÕb±ÝŒB-Ái‹ºEÝÈÂ'´oZ^ 1²6xÔ5* }ÈÒpîX渓žîh>æÆËA+­ÚÇ­Å"«ÌI¢t 1;¬¶˜SXdM¼}ÑеUxrÐpΆ§.wpæ 4œÓc…›v£6x5>:°†ítë3Ìêig¢6éjÂçZèDÖ mjgÕÜ8xs>ŒÕÚìn-œÛ²ÖnÒó¢ çü¶ñßJŸÿ%óÝ‘„ðÆÇ˶K ˆŽf#)ƒ0J¸}¼áÂd·ùöÔþ„æ§dé¹v8·õxïÑò†"J>æþ°–½îÖ²c%2?Ä›‚¤ùò`µoˆú•} ¼Óô¶´cb¬bÑžiDV|ƒ­¡5Ú™«6Š}W‡¸‹ˆgË·…ëÎÝ(zrñþßÏ ö°PÞ ï• %«Z²·¨Ét âÀ"†½|wTG“-†×ˆ[xçûœÍÞ;¡'µ3&m¿&—ìÅ.‚‚(ˆü> a¯<íïP[ ö£qU[\½!EháíêÞ´Q(6îS”hÅQQ /Kš!7;×Ö wüZ…[Rè¯t¹ÉÙ×:Ü#o ¬|¹é¸wŸ—v+sâCê"t– tÓ-'v@Ô¬ç@F$÷´b‹žñí è½+F&ƒoU™;FÖEIQgè´¦F#¼ýØ2ª¹÷¥\¢;¼!{f‡ˆè·sà¤1DƒvXÐ’!@"35´ðvì«K2¦ËrÙ=´?´Èm°7C_­Öi_ÁÀ;~é·Y¼…Wc ×äLµY¿^@N/Y„"1¨ã§bg;…ö;ë„×LeÁÛ™‡Ã¡¬;Ã,kù˜‡ne‘ËR¨šQØ+̦Li‘{óTïb””¸×¼‹dÝr|ý.ñïÓ–óŠ+¯ÔûfBÚÝà²i½ïýúP›VøÄº2XBC®•ç\Ô½+Ïç·Q$‹Ý³o‚ û6kE‚¸{W¼çë`)®Ò4å|A-ÐÐ[µìçCb©Á*HQÈiZ=ûh¸cŽÀ]Gî²®ïBømîøÑ\8²†Q¹‘:xg* Ù˜²ÂÈØ!¹‰µP#5Éðß?F¡ÊIw­‚´yã†#^v\èûPW÷aì^·Â%mÍÆ[ˆ·ûQƒ¹0øž4±˜\Ëq›e”´÷µÂ¹¬è;˜t¾jÕgcìnœŠb+œK ±‹1þ›Hkk­#˜A†É ?7}6Æ.îæ’H;$¸Mã3Óù›XÛ«mGç+­{=m˜ÖïÅÞ²•:ôZ~u_ °Ñaq·¡dB|dÓÓê¶Äãç6¦Möµj³Ã2êéx[”4 Ú¡ìÀ¿ç/ÝÑ  ò:š=º]YŽð€îøP¯á.[àãΡA· ´cHÊ\‹Ä9sÃN…`³qânf,öžÒŽØµ|MÎS|HÿŽ¿äA‚…vø™%Ad†äCšÆl{æ~ŠKò pãS°8Zk;*ý•ÑEÏuô. \Tn‚PšvNkŒà.sÓ™0„ÈMÞ´¯¬rÜdÝ ÊÍ$Ghm°ƒ]ÛL,k·U]ÒÞ×ö©&ÛEÕãS­ýå@Ûµ0°¡h…5`s`œ¦œÒO(·ôzfQ—#4•°:Zaƒ÷²šÑ\LªÒ&q3€,?ù-ø_ªÕl  ˆf7!LÖ=«ÁÀ ~ºP2g¼õ2ˆ?ÅìlÞ<‹º¸úO3šbÏ Ö(aú¼Bì¤ÈöýrΧc­ûîÑÓ\N+)Ü\÷KN*¨B¥¶z×§ðgÅÀùq§œ9k½s>4¸…”N ŠM"ög:›rÕúšë=ÎÖ†AÊèêãLSxY¿9Hõ;è j—LQgq\Ì´|£±ÑÎ!WhœÙDRß!bgk !Y¸MÚÐÛb­;ÿ†#ðõ´Š³Qe8†…G¢÷D†×DNn‹?«Ø [è~Ц­ÇhJ#Jeƒ«¨ë.¸×æîÙÀßð1ç×'Å%ä„b'ü'°œsÒ”!ÑVøÇ ¶X´Ö°ë´fGh°‹Û‰€ù‘\ÙC²‡4›´z‚ÆNó!ö+ÆUᇼ¦-Ì¢© ôx¦Ò¾³Ù›H]噪bãqt6mùéû"ÁoD+JßðmLO¸\×H/Çúzør·¨ZoQõœZRD ­Áœäîhø¦“-Ô~å&:jOØa^ÞÜò° Œk¨½–ÎO^’ 532QFi¨ÝONV4ò‰úÃêh€uœA…u㺓>Ü4mY,üT60 2võ]ÐÐ\uÒÙe¤ æ×Ü­:.WdÆÞgñ¬ lñl48=Ø[Ò`ö¥îØeñþp—~EŒŒ§I4‹LJB m…ç ió´llwZua‚Ó£ƒÏÝi§°ñ¾àTáUëéçB î±îkÉVU8½œÍ¤.hMÝQ(¶B»a‹õ¶;Gh°_V{!Ôë«e ¿r…ÆŒfÞ¢~&ýáV,¶'—«.ßcn›‚¾þè=¼×¶²è$й*SÌv8»ñ…XkÓáPŒj“n*TÏÝY`ã·9È;83¦vÜð­¤>eΓ.S\ÅÜYÓ*hët;ZáÃåÐÖ|B8âEK6c³Íêi=QÜÎl'gþޏ,¥VÆX{¸s_–‚Ÿw¯  ùò ÎèmtB¾±Ç ^ÆÚ >‹æµžºÊÕß‘Öiî7¼UC5¯ù$®3}–Ø^l11ä˧tÔ#™ÎNT~lµ}F5A µzØ÷XY´Õ[`YºcX4WmáVãžÃhë4¿f‹z$+1Kq¢XQ/cZÙ´’üµMPI^»tÚ6˜o7Ùb­ôÊÂíÐDxÀÛØñïE"¬kg+e|QAô'¶ôv]I¾1¨ê"eO¢kù,!ò3áà^ømòB¾è$(üs#…›w'm·èëB±¡V¿—òÄFžqMÄcÒµ¼kä9$¡\ã8Ò@+DqSû¤xw‘ÊkIМËkT¬CZÿ!Ü㛤:ÞLÿ¾qS^V˜½I¾­Bß÷À¬•¢cº”(ÅB¨ûÚ©äÙtn=É÷:éÚ° uþ/b_ÌÓ×j+(q®Âm¶—ƒÐùo ®z2£WHÇ:ý äB^È|]òp¨¼Çè¶AúULVj¥sâ µÈdp‰ËÖy#nè×-²æUp jÏö« L.0´¬4ºrÖÜékdD€F¬£•«:K`ÅçðFþ?êÓoO®†7ì׆­„R¸x•H%ëh²&\V*±8YbòÀŽs’¼fÕž÷OQá@òeflªù]°¯Â—5Ö°W±#Âê˜~åÌV^æUDÁ_ ¯ÁÈ®ßýßc¦ñÚäý{B2&oõõoj=Ò¿EQÛZÄøcÞájŠCÜ~0бJ5ÐÊêÐÍR^òßÝ&PYÎÿOB°ÑNÏÓÓžð¥}ÌÔöDš(Фä?ò>çj¥œ—ks“û-s+>Æk¼Yý·¼17üÓ ¿ëÑýV¦´,/Ý€¼<ú49kÛÑeû[¦³¦æôÓ¿ÆS…òv·!á·¢ ¬t§ 7±zŒîðÍüVÈ…Hüd|¿e#œxØKšKÚ#bSk·H(„_âBɲ̢Ú_2EýWÐ »hÂÀï×Ôþˆ²€?ù5'XsyJÌô}ÍmnXùîúØV:)ÌÀežÔ¯YÅ¥¯Û:ן^_ëŒ`Œ}»ð˰è߈Ì}í̆°D²pä×VÈz—É›xð(I¼™ùa;5H2px—ªÁ:á‡2 ³ÜÅç”&ð—ÒuÅÕ)çxíõýµè×9[úæ2þ9éá¦ðG>}Nf-[h‹ËèçH9 `;¨Ïåöªåm5ûTﱇô×j´"Bn‡-³%4¼+¡Ãb7]kzÞmΠêläîvÂÖ¬³d ×ãåÌ†Ž¢=ûSP„TîOMà©>Sk’±`Þ³‘4‰=a›µ“ʇPïY.÷»FsK19@CO/8#6ʉ*ÍÐ" µŸ€\Öú$jalz}ĵ+éô<=‚]\ëõ)3Ò”'íÕ(\í6Û‰}!Ô'J ã%”„½¬Þ±(þå Ågv#b–³h¨k\va÷àúž%Ì}¨«µßCt ‘ð ­&iäVýR˜ÊáS)ȳbŸÒƒÀNIEÄO^W’—˜•³â,…”OJ&b—(¡‰;<8«]Õ£Ù‚v?7jèpØõµÙ%[k]¿¹ÓÞ$”Y¨ðÆ35hÆ«ÂMdÖ®Yç+dËo2D “šæ7AÂÏRœ¥7‰ñ#;{´|7åñV#½³Ö ¸Ã:š4²X4þ˹d»zË}§h¿ÊŸà˱žS/ÊæXÑ'è2ÕS¡ÆÌ¸nrˆvO¬Aˆ?áD‡b¾²þ•ÉÆšþ]fÃ.‘Ûcå¬ýz uEº>|Ä1íªçÂŒ²C¶×µê®,eç¾Âús5ÏÁNÛkÃ9ph´»mXÁ#ѵMá´MŽ!]]õ\‘Ìð‰ ÖGX¾²ë¦“'àNƒ÷È£–ˆñ'tOß7Õu§‚ ¨ˆ»Õ¦Ú=ÝôÐØ¸ÊOtß÷;Jý¹–{ËëéÇ´û$ahäL~ÂxÑöÚçŸh¯Eÿ†êœQ!¢û¹3G7ˆŸUdŽ®m¤™Z~".‚éé_÷-2fõH¬A#yøÊÀ&ï>9"òhÜ‘ÖÀãÊè÷~B1÷ûì€Ð±úøt9+Ì>¡—üzÑ}SÚæ@+CLjÆF{p6døËIч½s¶ž‡ü£#ëy¼GÞ·—k¨gg“¶Ét<«ÐT,åb.‚íX¯‚'a{Áuj#ÑRÒׂ+e7æw!¤cgô Eý!ZŽ¯Ò„òÎãO0§µ¥ÙÄ’¾ó´B­€¸=cô¡Ÿàh˜ý Ò:§Ûìþ9­Ë«¶ÖЩI ©pš2Új[ûl€T€¬Ó¹˜Ã`p"KíAû12µ…réS‘tK,ðeñ¶Tëø9HOõCxªÐCý´F:ïéû}rÐ!6  V kÓ‡Äd@#\A¢$«‹êèlÙ)ìK¥©ePwÞ8 Ü^½òËtïοÒZ ;Bs#]¯‰ïJ³ËÀ]ÎY %1$¼´Øô>Êù,_ê}öZ.àÚ9†BžË\C¥ÜBÈ+­³*,g³0÷u/)ÁÌùrÝw9ª¬‚k4ãÇ—Ï=\NFͬ»6õöa×â{»Ï—A|t9•Æ—w};Ÿü!ò ™-ÀÔâP£ê¼”Á˜D!¸ë=ãßá{ׯ‹C'§÷‘ ëö—®þª@ë}’ÝrZ5€žÂ€.)µ‰;†<Œs[¡±Õ‰!5kgqžEW:é–xYœ Šq•VCCñ<=Œ‡ç@Ra í)bà›ñH êä.×B}$»\A,"¶©@9JÌA^îrEÖBà·S $ ýÐnz`LíÉXW†úg,]##«A%è—yŸ%q´#޶†˜»Ü`´ å—Eˆ+C×i Î&—¸é‚~VD)ôCù†yA|9\ _nÃ>ÜCç.¥”“‘¶ ä΄ŽÈ̃JzQ3Jñ Ó`Çå†÷sq¼{q‚v>F\«8q£ŒšEA@Éîr–¥w¡½Š¾¯y/ïâj‡L[«Áþ»¬)®÷}çö«ZÛ»|ÁÓ­Á˜]-äÞey?²šh<¸ÊEWêôï‚Ø 8¼ó=bÚÈu‰·™€«éÖþ6”¡¬ÑÂ{ëùäömŽ>mÙcóÅܳ Œí·akŒÝ$ÚÍýÐ]Ë ™'³ E9`¹ÎuØVä¸^,„wB‰àâY.€C¿VËÍÀ“Yn¼Ö ß˦ªíXà:kb×’~eÄ(&pÊœ‚ªÂ<¯Fl3ßìÔ:•¦œÛuý1¼Ie¦Ë6×&'ñ‚Ú|oⶬöÚû&Ýã[ÃñM$³mDö·úË}2oÒæ€¥ÌL|ɵo]*.Âï–rtÍU÷u¢ ‰:Á`½ó˜š4ГtûÐ{ãêkŸ—/4Òª.ª8$î‰Gˆ_k©Ö«yÀ4‘5ôNä[$‡€C¡'±œB P¹›’¡Hdð.A‰]zwIÔÀ¿1Ç׸NPIÙQÁÞX† ©ÖjzWsª4w%ÞzûwñΣu/Ö‡ÉNÚãô$m~ü9r^Â|¨ï²¼žkã•J{wiåÅ*Ó;ræ'dç§‘¾€»LT€ªCï2¿H6yÏæ~¨ wú,ù"ŠË[ü9öîú{¼ó.ï¶ãïÅa ´‚ßÅ%]ßú.÷\ÜÅk0Ó£Àñ™–2éE°HŽWBQ _ ® 5X Gç/ñt`i`¶áOS†–ØQ²Êûs¶µhH«û9³)0¡1µ‘Èù•oi¢hà‡9([‰(ë)~-aÝçøøMF‹Ž×(x~N‡²öfœÍ3ïçÂZ“ù lÊGÇË— YŸ Àb|žb£4ö§Rl”ÅQo‹ÍFÂøa†P)øˆ÷2ã6`U}A«"$H[n†víÛHª¹Èëa¼—ç:ƒëvÂeêDaËršàíêámÞt² D…õ,ù;&wÜžr=7(Ž(µ•0RTç#'Ya/ÅÚÕmÖµÚñ—´áÚénC_)íø#we"Ûý¡¥ÏÃv²¦ ¯À%,èôúoÏõ“÷P­È¥ç79cé°LŠ/—ó@ŠêèƒPκ…©2c/xR+œÔ•i4Ò³ˆ¤ÕzäJÖb„oOIŽ„áœíŒhNµ¢€SHpß:ï.­ñ„ȧ°êOÛä1¢Š†¬¼Ñ|òÞ_îÙÉ[û§,ÎW^g±žé¼q1°s4ÃŽ›ØØtY×Ä1àQÄ÷.3x”…o̯@Š´Ôró=Ô„<œY˜².DmÝŸ¬É' eˆ@8WXÙ|z“¥@|Bdµ­µ–[žãR›A Ë€x*Ó –ñT®ÖCRd3â^6Åâ?¡L܈ÎkRj¤D.¹ ´ðŸèF.)-«’äÙä`x‘eVpg†I!ƒ›ķı(öÌv¨â €<õb»P,”CW0,„°N=¨ NºVˆvÊ&þ„‚6ÑMÑûÎA—–í‘™¹‹äÉ'(Y‰££”îÂ︊“âûçGi’¶Îò Y©ºí‚ñÊ ñqåèTb~(¤UÔ±¶Ó·éè¼,ür6•¥Øz¾ žƒÎÂZt\Qte9xÃ@7®³ Gã,¥V(‰}‚÷øw°©ŽøYFt`ßdôeñãN,(ÊËI0•EÇ®/@gÓÒ¤;žcð7è?Ñ{WsytTϳZJà<'CU¬5Æ:Ý ‚¢g؇\¢æ ù Æ”m –€‡ÈzÀ!Q ÅTe ²ÞNTº«@`gTbf Edq"ÁÊPMa.alÇï0 |±Er‰õ\ ®ˆƒW+Ÿ¢>F‘ zBL-ó1nZVý ŽodäíÇXöf, D"¤ ø£}™Fj§+–/Í÷*&áˇ04\c}óEð¢Vò%“žÑ‡ÐÉEîAÜsÈç‚bAû´°KÚX ñ<Ó‰(b“J;º™B˜Nyµ\‰è ëÝž¡V|:‚!ɶp¹A°¦çˆq%2`!ˆÊtÒ‰EC(tÉÊm\)£‰.ý}õ~tÉû! È²KPŠØ¸’þF¨ÖÅRz;\ÞÃN¡Ú}0ŠÜÝDklc‰ÀEÆf¥)«xŸx³s˺˜"¾\wPe´Bt(ï#râjWNà?rI¤`%ãOôؽ;¶/Š20ÝÄg<¤ -¾œÎ4 ¥ù°‘ÄàãÇÅ ?èA² ]:¶¿(„†c. ?fõu|»ëÊDHD <2øÆ µi ÏÈ²Ž¾˜ÜbÂ23CQŒ¨c]€D¤Lçˆù®FÜpŽ„Ð­ b¿ù>nŠãÍšBtIs"Àv8º]t_PKŒ&Ï9¢r0” .F‹/WàÞä–#…B—@dïûÐ2Kq$Ä ò=!ÖBÀ( aÑAÕµ^ft¹Ã5oFEA­v²…Š•O ‰ÒN˜.ÊÕ ›¼6®]GÖVDX$žÈ×Z»2/-ÿ 4£…,ºw5‹ú¾Pe$kµÍwe, Âòº ÛX7ÞyÆ‹ƒf·Æã»„»³tsp³tmÅ{—–[ɼ . Èóœ#ƒ¨/ÞeR.Nâ+wߦJ\Rt®]’#ëK默Ïn©ü€P‘îj›kºšeÆ.Â2Èo£Jª–tŽoŽ©0^ßF³A·Á9ï­lV_Ì/!ƒ0ÙݘöqÉ`DŠHÔqÍ^ë„@‚n:ËøkH±:%¨@f2bâûÚ÷q*W¢DÈL"TѺ¡%•õuêYebNHW#÷ JâÑÜ,‡]«a”]»žWFÉäŠ ‹€?ž:¥[|ËèZ%…e× ¡ž8o#ð~ì¯Sœh”ˆ9L|¿—¡¹Mqε?“£4  ê–ß…vNÊ#Œõà&$á|gBtYšÁñëÚŸ!2“±¶ƒ Äέ2ޅІ“2m©ƒÌÄô"øZr4@ˆDË,c‡öÕ=+: òÉ£±®'ǽÕCsL/R %Ë’ŽëDäŽÌ!ï«ìÜÞ êAŒ ¸†M%¸VT—‰˜Ó öxb„0‡Þ„‚Œ_#ÛÐÆ_XÛ˜Åo²h®0ÞFs“¼™5Ëè’>¯#Éö<{œ"Ñ+™Žµ¾ÖÄÄzä+ ã•pl{eŽˆ9màØU ‘/$¿üAí¯Cµ[£›Cã*u¹­¹ ™¡¢«Âáwçú¿kÊ”«Â2ÎÔÇäU†X ®buLk¦_¥«Øú|¼ KB»öʯ¦½x]Å=Ÿ¦ fò «ÜI·’cüÙMYí¹¸ÕWýs–º\›Z?%‘«+6_ÆJÑÕ ã§à=¡Ca®ˆòLGÝBð¸ËH"A*Ò5ºŽs‰j3x,/wÔ;ºFý!CY­õÚ2ó*¢á2]£E²­a]¥$‚;VGQ¸ª5gÝUíÈ«d d#Zj…¿H{åú}íÈë{ü+?vZ¿ñǤ<¿eó[ÿ1S;V~Ýÿ7÷×2ÜýλÚ>úûT¦;uÒÈ1Ôù ‹ÿ3ë™æ¼-DH>õ·ø hÿ¡ª¸B*…¿º´å´þí(†hЯ…‚†„=H ý×Rÿd_ƧØoÖóZ¼Ø´Hÿ/IÚ5zZ˜sÄesÃ6Òß P õá¯÷[ÒžBz2rá“vß’vãÂY‘•ÎÝ=w¤\õ—„^Þ„ ¹a¾/2í Ö–í¤Â·Uk:ÑW¹¶ë£‰î´cîü’É9”‘Ï~¿¤Ëçh(KM^¿ä“ÝP<€¿æ–ë®Ò@úšÉ`„Z`P9þ¼aŸÓöÓ¹+½ß´U(s'i€ÃÙ9Îf¬c׸KqØ ÈÀŒ&*³,!Ôn3¡híbz™Ðq­¡f¿»Œgîvd©²ç¹âhíºÚkÇ]ÔêaLïïã3ˆÓîÂï=ì}ï=CÔ,¹4%e»ï GQÒ˜HÚ‚µd1rmù95ždŸã4’FpìQCB©/‘­%F,òÚ“§ÕVR½êK\#a3^tö%ÑèHçV9Õ.×)D%æ—Ìl ýR˜A õ—tÔ\~ÔŒ[Û‹¾” 0¤ÓãK(qò:Ýäç ª©9³Å-+'šÏIئݒä_VN8Ÿ%±ûqR´›“äGà–ÄÞ»>Øh,•·%6QžŸé‡ÈvÍ‚ð S†T¾·Å0 ò¹¾–ž¿Äz#!ùá¤ð@ñ6é*oЮødØ E)tNsFo}z¤à*«¡~‘\å+¶”&„/ÁÒŒ›õ¼œ_JZÓËÍÝEÍU´ÅÓ²ÒztŸ|¨KÁ,’Ÿù”„ÇÚÅgÍðSê»7q ânâ½뉹ɉ@t}K"~“ij8¤èˆ¦Øë|½Ôue@‚ÛMPÆÓ³“›ž Ê 5öó™m„åªnRé8EÞЈYÞ µ®0 b”XrÀüNXdc[­•~ ¨©êû„b¡ ñízšYË,ŵà1¤UEÙTHÞ„¼·ÛUû„#´õ`{h íQJG¸pË™…Kx±Ì;-öËDP$íhºÂ…[ðqˆB‚µêCN™>¸e?ù•¬ú&Ÿ …^貎>¡º HKÁá”´œÓ B+V„8ÒT~GI×Ã?a¸aß|ï^'°È`þq¤5†ÁˆÑÅp“·ý‰gÛXÔ‰8r¯¸©kÙdž²IxEÒ®Ë{V®%ÊÀ8(fyXç‘rïÊ&8|êÎQBÖ¨TD n&¸Qb ë290¶Ç¡†-Œ‰ñm–|òGæ ‡U8ZŽ[HCJÆöX×{¦™Z$¿óP«B×]Å}! QÂãŠL' Ïä´Hrª‡»‰»G™ê/"\â#:Œ©¤ÔsWnrPM®}vñP$òBBã]WOQ]@/N\¢p@§æíÆZ™¾ß¡øìFƒ ΢‘e$¡³V÷ü%mcÆØ¹¾è…#§b ˆÎŠb¡Î}Â8cš†k“vãjøœ"ÀêSú ¤‹7û„rÞÁP=YâvŸÂ´Vc'aMU‡åÍbc7€û(û/ïƒT8]øœà)•-vƒ¡•G"}‚­™åç£ÏGçá°Í,BŒñ±Àãì«yYË °¬¸÷ qæc*àe7¥†ªýc®Aðuëœ >¦HƒË% "me˜›·ÆQÒ Å×+‹Âè‹¶æa.¾ž‹&Íé“Àâ¸û¸5A?¸W¦´E–Ë^<…µž¡#™MÞâóÄšUÚÿMi· Œ¾œ)‘"¢„‹Ú€ÅY‚\ÓâqÊSΖÒãüëòh,B ÓL@îrmQÆÅþ¬™@m¼Óhø|º„!™^.¦’ÞWeÐÍ0ÈärÎåDI Á#ºË•˜yxõÜqX îHÌ#žfZ)ò …á-Ž»‡—êÎâsÕXÌ\ì}¢¥Ag'?@/ÜÆt²ëpLŸSÊ¡ ½>Ä It»r˜ñPê“u^Rø“!_ƒÚd@áDBÅrJ€¶{Ëè/¦Ø€áòÊáË—f9VMÊŒLMË.:ùˆ‘ñ(y¬ Œv4Î_ zMT’5~*-zŠª;˜F ®ÀlÍ€¾&nÒ ï].z ¡E™ƒ»œ`Èti1ùÞ5«Ž{![àÏÝéÖ4x3ƃë{è†ï]á»G¬†¶×c­B›uÕxs],3¤é¡¸£ã78’û}š…ò÷QòÞQº0"¡…i¹Á#¥X*×r‡~{HtËDBß,j ‚GäËIù,-ØQF¼PzŸzO(ÂŽsÈÔîÚ ½&Ìjì8Qj×ÌB§!qzøLŠu u6ê½ Ûi¤÷i*—;ÅDò)ëT›°½Ù¸Ë]“¯p¢ô@JðÉ0ÚQsÆP‚*Wô“y‡QÊšŠ!Øå,Å5«1BµhyŒs© `dFM¨6Î’Èd­lØé|‡á*\7ˆL ¥F 5mäx&ëÌl6Ñ$Rr{ç¹&Æ÷©®7š½‹r‡2ömHŸh1;¤òmf<­lƒ ø6P&‚ mœ óÊqfH¬1ܵHÊ?ÿ¬Al‰8 ˜¦cüZDq÷׈ +Ä)AuµÏj8µ¤D¹UÒ‘&€²6¤=—b0 ¯c?&A¯ü£t I4• Œ_—¢R¾ðÏéšh›‡:æuküòÙ†Šøë )Ãáë S($Ñ; Á>\‡Ó6:Ö‰€k-´Ö?E€©v|j`=Ó¾„€­‘Ëúѵ¬õZ'Y1$ÑjÞåwÌÙRè·)îd€ŒZ’Þ±—&áß«¸ÂÕœCþÂí=ȵÑéfJªœØ :Ó,éjñÈ=°•³@‚þZe0ø"c14;ÏJßkÈ¡W‹°HïK'‚Fý9C#Â-—_O}¿ÒXA½ Ž±]úJ½¶bž)‚:"P]­b¹i#†¡¥”v7é;@•ÖTMÞÜr-™¯U7çÅ›Â(¤ß$LÝæÙýMKŠ7é„× 0Ûë¸fßL ¾æ7¦Eù8#cÜ«´uŽ»jWaŒ\A„È’FÀ°]e…OF>­ùF[³õ*êän®òâ†]™#WIY£ :ä`F(„_Eòv€~É0gÀ³Îª´¬ Á›ŸÚ~3ŽzÞFú\¯jήBW#0p9»µÖ¢ó«€T¶Í™.”é—!=«EÜhVWØ«\î*¡<kp5¾¾Jô4—TñÏ”.T6`dš¿Zr†|¡’¦«O4×Ý«ÚѦˆzcW'-þôÏ:Ù|:?Ç^Ovýáüœbƒ¬]µ?EH½Æ³þÉímИÃpÒs¤\ò*Ó(±¨¤üÜúêõ*´D4N`¯²ìýÜ¥¨êxÐ8;¹2ÓÜUáìRû®¿'›1ªö¸þ÷-ag¥„öw_UÒëÃöGf©ºê|åIýèÏË«cúßÜë[9ÿ[ÔÊ]Kÿæ=vë®DåÌq!ÃCý? ‹ígé¥a¸©ÿLY®‰v™Lácýï$ |7&.Ë¢–5ñÿQÈLéYh{Rîã?²©I\l!{~ËSІösLÏÿ[”ü±Š{Èz£™A+e¸ý·ýÞþ‘ÃV¥ù5éÇó€9úñBBæ×Âb\Ä‚oà’5\ˌդ é‹Ò¥Ž€C Tð£T3¨§¦é¸\ë7¨æ[ÒFï”ÅÒ±ê[‘éh¦‹žÖ²ì’rcb¢ð—X&ë²Yî=þ$u=’îZ~5¿ÄÉòÑ*)ý“²tòX+¸¡Ë{Eºé ,GÍJ6š«ZsÕ}’ÏÔ#ðkr*³l`dÏ׬qÜÍñÉ~õí&&†ÜûZ ÷ÀåkðÔsÆ"ØÃ¹Ë_ Þé]•`,owQ}Ð7Ö¡øW§„VL»|RŒ+N-.°±|`VBšâ.²ÿp0DvaciÃŽ»˜ G°ï^Ü,í.“~*åœbc56ø¹øí£s\»`Ðò¹DnŸ¿‹Í ÇßS Ó”K±¸®½c'æƒÉïÝmpÔ&ÖqŸ¡©Ž{Ò%¡ß]*Õ°X\¿Uè>Ü3od¡ðß—ûy¢ÔÒœI^â¾ý%Y&¬!r_Òî' NÚ/ wAqÈõ‚;Š-¨ïWfÛÆ&ÉŽÞ$\ã†U ,´¸@|É´@ÆqE’nèlcà¶biãàŸÓfµæð³ýºsl¬%®ðü?dˆús úgÀx‡®C£ësÔT¾ ÿ­¤Aw9޴ߨçpÌ·L×Z=>ÇóšÂqà`ú9[ ,“ü\ §YÀÛTxÝÆvb˳BÌœ×Ëà´Ê‚iηÉÙ„ô$âî”|ˆ§²èˆÆ‹‚™.ž$W•››ËmÊ1ëúKÚ«‘ˆ>ûêü–Ð4üöfE’ƒ‹)lSä—Ò›jÌ>DN]‚&Ä•ö‘Û¼QÛ’Î Á>/ë1œ¾ºM4Q .£ó½i‰\¬;^.OwÝ5`½Z ‚²a¥[¯&åªmê6îJéF:4†!BƒÛP~[ê „{À?ÄŽ‡%¢'¾1ôjäùä A)>èB$+¦J8ö½ÀŠŽwk îOŽÁ.MÆfÛ:1Û¾ÍB9w WÙ²C6rÉF;ÃeI˜ä½¸Û¦ÝŠ”Ã˜8`݇š æ š¤ë‚PÖ¼¸²PÐ@œãZûµHnŸ2Â,â9ò)Âþ[íšÃŸR124/>¢dYVž³µcÝ·×ÉOÒ½t€þ”dtø ¢ÚùhðÞ(ÂÖýOÓF1ÃQx§Á‚“â]ñYßHµFÊy£›ÈÀ1pjšsá&=8áÈh¢œh/õ!ÛÎÆQÜ“oRHê¢33o#ñáÀr=`¶Å©º/‰=ç F÷R¦¡ƒlò *ã÷p©þýåÜPoæ§ÿ„qbwˆÎõ/èâ6çÕŸ ²mò ªé³VùmdûF v—*m[P\|‚â}‘¹$³TOÍ©0 Ð2ÏH˜%À*ø]9¶Š¸?|mÎ ®ËŸËO˜"7´cmwJœêý,-ÊécU£2fx“]pÏ]1ú»c”¸ãªVgFkÎÃ+œá½*\¹˜ÑÆy•‰¶Maý®>¾oN‰íè›2~2=à C°O(ª¦?Ï’àÀÃPàhQöµ'ïwÜgH0>j —÷ý Óã`lH#‚´lvÊëdª;ÈJ¬§ïXkºÅí§e[’ˆá+ƒSÿ9'\ÜÝMl°±Ëµ$«ÀØ'TŸÊsvîÕ8y¡~÷¹½T%ì´¥ŒS†7{—óÜ—­ :Ú5µ5X<’Ñœ±´ª‡ÈmÙç9“8Nu|‚e€(K–ÛÞ:Éâ¤ì$rþ~Ùs u¿„ؾþªówxz¾¶êåRkøl($}”iBG+(zueZÝñ;x–î*¡PÎl2S³NÊ´6}”i.#uÜ•¢l%ʆç%Z;šÈŒ¶½Ug_;‹J¥´ïîj?« t5^9Ö^BÜis¬j¯W‰2ÚÏãD;æû‘¤æ"–ä_’~‚˜?íµ=S¼î0‰ˆ€;ÅÛq{ò å—ˆµ5ñcirÛ~åS®©ÌHó@õ^ã,’ÇøûÓ"æe“)ˆú1ölqºÃÖvö1îýVF!xíÄ3ÞJ ‚£esóµ’ ž~m±0úCbGEHøÖ‘ñC@Brõ>XÕP…=е]ÿj{`HÉfN{/Ѿ•kÆÀSŽ®íðÕ1*cZ™ËÓ«‡éÚ<Ã$¼d”µ&ЇD½Ó°2·Æ€¢€¿&¿‡º‹®ÍÕ)¼é€Ö c.ú¼«âg@k…‘cƒÛ Fy¶Êン¶®…¤kÓš?wb¬aSŽ 4Ê¿¦&(–J€P­Iý‡½Uî"FÉàÌŸëZS€ÕAy¾÷ 2¡ãfHN¬p°²x1l³æv‘ý»"$|OuÒs1ò°0¼'öZÜø5)(a›•;ûw²ÖÿšzQî¸aF˜p*~1ЖtÎ6=ßN1„‚uk¯§GDéC¨æTÓèé] ݾÚžºË9¥$m6$oŽ×9mp× ‡Û2&Ìëj«vNJ6®µ©µpš¶à>-t³á?ÎÂ4ñ­*Wh’rlþrC côfS÷P8±ÆÃ¾Üá” |°Ö?•Ò¢ÌP~ªGˆ |ÔÄ¢_SÛù!ÎŸÂØfmºn†ãòx÷—ó‘‚B+Ô†Âñ4œêD`¦ó®ç¦ž`¦ã|½P€»_ƒk$­¸–»Öê¿÷‰ï›˜0zŸ¥ãàÃÆ”w]hªç0ôd¼×›V‚˜e lò‰†NPtd´ ð¯]>Žé–­ÅÖo†/Wž›Ù4 2Z(JÍnR™æÎ¸Éc=~ÏÐÇR€.WȈ ’\Èv…q¡t¾ÏûÄ©Ý;°¯¾cÛˆ¹Û˜LïÉì¿KZi¤èä]0< •h£¤ÜÌ» Ö¡×HO¼}'Nê(ìïܬÓ( ½ cE+-íŸ]û ¾M8ÒËZ·~¤}9@up²Ù ²U ëÁå…X2ƒ\‰^Þ&Em?ír@ÑÅ. ,@éÞêš\Ýzë—NJôËOëN»íœŠg{Sª^fe;¼XÎ^` ðxƒPVæºF®|Êúð°uL¤í©Á\†dºîZmµ¹Äй3aœ£e¾mÊC7mþuz-ô½íí?pÖùIÈüë¥ S*^\‡üª8‹®#sA'­­‘ÓÙס$žA¢kѱC‚ŒÏÙT o5ÈöJÍÆA­1érÈ{ãFÄö‚–ðÛ…6’Œ!²éu´À%fwÀ;f¿]ôˆž+3Œ#©#ı',ÆÝWœ–´oÞ1ägFµTä·iÀ®>æÍ+á‘°ÞiQ_¯S“4.À4ï¯U¿9È8Î:"óºv!ƒå9Oý RÆ3ÎÙþmQÈ4=1h«´ 3œÝê€ßæ“/`{û¼Ž<œ@ YK"Ù–Âîe²sÏ'z }f†<ê¡ ðåàÌ„AbºØß¢ô‘ö,Z³›÷ëœÒæîû¬ùÇ®ç® Òmsì,'#­‚?ÉÚšúÆõ\ÈGù7ž7J‹ÆÌ|ãÎå†Q×}¯} ÌRûÕöëÙÕ_'æå­míu¼ýˆˆu‚Ûþë9]K oYœÑ[«ÑUTémž¯ÒÐÊM5ÉéËkëK·–uK ièM›/¤3x‹!n  vU8&Q¶ ôJ»2TûB®·‚'w!?>ÚN‘›Ÿìí wvK°qÃÆð+ b D—HþÁIB‘Ò‘Œ$%w\…h~c{ ¸ ˆLc\à³F%_Ös)õ³ËÖQYÓ¶âÖHÞ_?Å3f=Ìú)""ÛõqóÊgZ£ëUÒÔ-\åP)+{â«øÆV_Ø«WmZ<ï„QÛ`–»ÒÃêÝÿ=aXSýª¿ECØMj°nbÈ:kÂbÿþ1‰)ykMÀÿ;=Ž-EÒ“»îND…ÿ¿ÝÖëN«$¢î'@Êø1@.TœÂZwþ#Õê.vlÆÅ¶$ÁG¹ ¿e}C.@eçê³6~‹KsD'Fzç! ä5–:£ˆÑ­t+ýG3h*ðÂÏü×$–%â ŠQÿæþðr´0t蜮¿ñNHuxÍ?¶ä6]pQ~U› ´7S,ÿUv´ú,oKU*†èž—ãDØ„M0NsÙ>N~Km°–šx {é·¬ Üñ[qqëêa1Çð%B];BN6£?k¿AIãøƒ|"Àï×Ð"e]G5´²}-‰1Lãæ÷×”k¼¬ x—ÄNCMÍÓ}öA~£¨ãP@íC+Gúl:<9óõõTé]Zò0T‘ÌÚaõ,ŽØõÌVy!q»Ðy!Òé羋éT[BÂþsÀ*Äïà.±fíF»´¹³šˇw‰Ì³ÁN¬ÿsN¯¸ü|êŸmçMîÒ¥X߬ÓÖºy46ë^5Ë0a7#ñµòg¥fÒæ.K{F´øf÷ü]’ÖÔ§—âìE©óªdp¤mŒ _N\ƒ¿Oy¬(ƒV{Pãô­Eý‡µÞM[ì÷Eý…Khw‰nÝúÔ ·® qWc ?îm4ÈþL$„ý½Q®&/Ÿ_rÀÝR‹$_<‰!ÂCÈ“öK:ùâ•n«¶{NïÈÀ$ CRúXlF 1/‚î+P}Ðp†¡Ë³5ùT&›c˜ÕbàPã´†Y¨<÷96Õè)ísÈPrr‰õÿÍòÈçHbk‡¼ãÂè¨ó¹Ð+º­±½Ÿ‚îð6¼âØ·ì:F˜ÁÙò‰%c›UÕ”ÿ­1ÖFò!fz‰ëFö!¬Áã6:ñ;e¡8Øoc¢ä’t_æ§|^Õ y7í&|«Oä6ñ,%ýnÒ¸)Cñ‡45£´gvpâÜ=ÎÊ^V}Ís{O44i`*ôé¹B_@ÜÈõà…Óñ "†Y×íÑ|UÖDÍͼ€‰ ¿}¤qªZu=ˆ%­ãÖçv×ÿmTÐZÂCZ¯£9ŸœÓ¯¼ÊnãÓŽ£U`#‚Q®W††ÓNÚaËà½Yl°Þ“LÏáí\únNŠ ×Sø!Ï|ì9ù."üò ´VàØã|¢1=‹%WetOß›4uÿ%š¹ZËÑÇmÞ}b±àÃÈ7qu;[Fz ‘ómÑ"Ʋ·E¶$VÄ™›qÚ•B̺EšÞ?Åɬ۔6ÂO%‚•-ÄÏ,s²mòóS´¼j·@€‡rª$ÝÂ@èAņ¬­Ÿ’t>ó„åSé>f¤ÑýÉ hŽðdÔÀ§Ô€ 5Ûâ&êÊ¡“µ¶‚8í&ú-Â’ÑP—úM`#»Cµ®¦ønb¹6ªç¯(·”¨S÷´uª!AÆM ZlœÝ¤A„hŸ2o¼µ¸B“¾7‘‘‰ÖPá¦`‚ÅCü˜ü×Ì:ÜÄ…#”n,Ãb‰1Oùr¥k¨ 7‰OŒºv|£¸]@Ç1¯Ç*bìúy:ïÊ9övê]•A|æö`(6Ÿš[:Ñü¤&ªñ„Æ€z·êÛ6¸š:i¨PèrˆÂ'vÌëõŽm*có)G %{7!!ç½H ˆ1È¡ã@ø„s©Å঑3›¹Š ñè ôë\݇´·‘5tC턨ô›1Ü<÷Ȉ‡ä¶® OPS%1¦XšZ^-c&P¹éÂi[±S¦}]½ƒö [Ѐ# jd¬kÁW8¬œ¡%Ê`sÐ- ´¥ØAë>ü¿K·àŠ}þ,ü;h’YX›"ß„AZ£¬ŽgåpóRÓ&KhÑÒ‹ÙðQPkcŒ€øL>á,d4?ž‡ßdÀ ŽNä.0ƒ@„zø¡cý'ŒG¨€aÎ×ÀQ|SÈzÝ–œ2­oƒ–~Gd# ƒÄÙö Ùc{CÓ7'œÌåR8í ô8U]Р®ùNzðæì< tbÇoËé ìY9|îúÿ@Ð>ƒÄ;F¢K•Âh~/ZîÂkWÏ4òþ>AÝg²qNô £0ü?¢æ¯lÏš˜!ƒx¼ÿ¼R'°r §´9!†ÜcHDcè´ÍàLpê¦íJÔ`0ó‘5ò“Cí©€Èr ÑŠKRQ*ç&š«hú h”$Ÿ@Ñã1pIÞ£rñ‚íø„#îµff”¥â‹ø¬B]´´þ˜f?,Æ7,FA|s—T%Sk»ùÌ@çÇê¤ÙÊ–«A~¢[‡#… îL¶å 8–ŠWM6æÇ˜ëIšäöý˜à,øâ4•Õ4¬F;™$h‰¹> áÍMæcºY’²V ñ;¸Vîücȵ³,XWÕ}ð‰v ¯>$‡qN‡5Bô1”À<}ðd[jõ”–¹·…Â÷/‰T…¿;0È ³YÓœ†ž§@mõCî'`þ”¬½ûPÛÃɶ`ØÂb}qt×/ªkëzXŠi…0Í#” –D<¤ó>ì>¥ 3ã\Ô`y~¼wà—ùÕþrQ™^Ž!£cpX{Ú¾ÏuáŸJ>qðsgÞfòè}æÀLY[tl²4B±ËK&€k翚{Åùí)üáfdž¯åhC\ ÂåÜp‰š%°ÃDöÖä_bhO¿wnìcÃ5ÁpÀ;7ôØHå Ö¼î™M¡¤ ‘Ùä=x´”2L/﹂" Ã…¹ ßbK*»N9ô÷!TV ÿö%·‹[`,¹™T8ö6°pvµ 6H4àøˆc†÷¾¤±ÁîHR(“e´Ÿg@OÍÃ3,—R £*õØwhØÃ%ª¡ßNÀy%oe‘„661^ý ±(Г§¶ Çdáàå´ãɨ®ÙÄvèFYÔK8ΦN%â©å}ê\ :ópRbä Ân˜²µ˜¢k$Y·Ø·ï}Š—èÍ2¬o}¼Óžg;ý8Äì]|9-1¨Àšc]ðA’f¿\óA[ÛÃ:¼[ÛÆ£µÁn†“ÌX¸ï '<ÜÅufi)„qDëW€xÚ™%ÜÆb†2ÔÙã% O“Ûw(tÇ­Íjgv9äIç/çiIõFÂù}J ÀBŠã{ÔFÂåQÐow~›ÐÉfi2Ò”^‚~ªÒ÷ó…$%TÃÞgêì5…fÈFEµ`ˆ)Ö k¤K_¹&á5Å„"-?™¸Zœ›tØäµ‘#(LÄé°š–`â唲54’ŸŒïœW=—sªË—ÑV¶áør%{ç¤íbàû(¸|•’]*øì!k)ÞåMwÍsÍ»„'­§ïRU’b·šu' ‘frÀPD¾£wn¤ÓÓXD¹ëKÀ»0rc¼·®iéq|›å M«Øð6¦‚kaȾM‰¨íuåmÎïnmºo“h]˜Æo]Ü…ø½-¼Å5k×L9šÞÆÄ?K!fËßC“a&¼MÑ”æ?²ŒñÂþUë §}pÛÖ׈däw°ÊÀí/ŒqÉëx¾´0 :¡rD; /Vg¥žp­ §IáZjKC°îPTê¯U°E3¦4‚Ø×Ü8Ó\Æ#ë e‚ж¼»Aö:ˆK¡ï5 ¶´p¼À‚ÃE«¥†?À÷R\«ÊÔuÈþiÒ¤¸”YµXE‡¥8~#›\ÑÚ#4÷a÷` f!ãl*à{àQXOðnÝj àMÛÑïJ®ƒ.µC)ÑšÆñ7»ËêFئ‚·CðZmû;ÓïÓy[[£X¹#dÐݵ¾AD´þ¡þ«H¶;¼P çÒk‡èf+À‚CkØ‚ƒÚ;1Ûíǯh‰åAšÅ9m˲NAî׵ݷO}ΞÁÒY°z¡D½oÐjÎ wÓ ïM9Nä·9Kì~ 5 ØùÄî«’-W¸V)ÔŠ¤ÍÿN¯UÚ*&]Ù7½¸Ür)G¼-Ëåµ²µËÕÙ*¡ý|I\©{'ÓhÄñàÑ‘ßÆ 3Ø·LñZe==€Ù®«{!g·°ñ«œb°…q‚mÌ:…œí¬dqâc#!õì¯ÅÞ›6W´¹´,Yœj °ãkµ‡ö5bÏ5Ä×)ÊN²Š®ÕVX'3!qs<G!•ó&8±ôg-<{“`mM –¥º7yv}ÑyyåÅ7¼ÇÓÖ [voÜV, ^ߤéÏÖ"_*ØM¾ñãV;+ĵ֛Ȃ˜DßzÍ8ñuFÀV«ãåµ·!‘Rh¯Ýk²Ò“ ~7B°p•HÉ|¾oÕ†–Ù…ÌÐ…Œ¿.4­¨ã*Rò(åËø«î4ÚJÖ}WáÌ饮ՃÀUày´“½‘™W4|Z¼oVÐ…œs\ë>¸ŠD+Dm{ãFÙåÇãÑ_™ ÑrDj†Ö¯vUȆ—Lt¤T¨·Qc³õNDê(\(Ô¤ü…Râ3xÑ©ˆ5ÅëÞF¢Â€}ƒ¬ÖмV/°ž¿JJ‰¸+ïe'¸§_bÔ¤d{É«šÛ°§Òl°¦¤©àÚ¹Ä隆k¿úçx„7žÎÏ‘ ©õŽÙÞxëçT!oVIÑuëÕߟ q³¶•'ýS¤.i¼Ÿ’*û2³j ÷O¾ íŽÖ ŽÈZXKfI \[b{¦õlÍ+¯ØlÃ^E%Áõ7õ*^UÍZ\þ*•z ¶QÎt«aâD ‹J²’š‹"s©Æ”~•œðìÊ_ü{´Y®œtõ{~Ì,Z*—ü{x5Äm0õ+×mLå;þ}\9ögýªQ2µÌ5Ú¥”iê!‰/øŸA}elñÿGØÂÊ»ûklV<Áÿ+G]ù^p6˜7°ß2¶›žþC'§µZÖzýí°`‘©LÇßþGñÛ©äɺÿQr-7 ¬×Úø5oUñ€x9÷kÅŠu ð°ò…Gƒã(1ð«ÓXÍ‘Š‚ÍN~M[®HÂÝcÏä ­®0Üå'¥ JF.±N í¶Â•…ø[´\k&ƒ þo‰~Ôµi¤ý*qv"`›Û ¾åu|Šˆ â[ÞMO¨ãÕäëç×oé,àþ¢e›1B²æ[Ž'Õ´µÍü¿$ð*VK ¸çü’>`Íw (k)›âA4è/¹YŸUŒƒ€<·´K¼t„£:tA‡u–x°¿do’úQ±JôË‚g«p£'ßÙh;mxýäVýc)獵û ©b+=Ç­l&ÜîÒn0ŠRñß§½Á¥ XúÑö¿ü—?ÿ—ÿòþÏüù?éóù´ÍÉf^îùŸÿY«ó¸=^ž‡ý÷èßž²ûãôo‡ïƼ±ô§-ÿv4êpîÃ/˜~Ùð2œÎ‡íã>ùÎç9iòòø²Oîép2/j8D—/Ù=Õþüü†ñ>Áé·ãa[÷6úëÓó{Þ]N/û£¿òó„y™FUüˆÌó0ÎøM߸ÛL_ørˆîgºôiܽ”ÏX7÷§ôeO÷®žÊ‘zŸªéåŸwÛûá’þ©¿ÐOÜ]¬¹Ÿ^É9ú^“¿ÿ¿,k?>ç#nºµaÜ“<ƒù_§ë¾_’ÇõOó”9lŸÆøéÛr^MÜ_’???èø¹$ïiþ#[µ¾Üï_⟵SÓðy9Ô)*˜_ëá!ê4=­—íã9ÇéÎãA:?A3‰Kþ+ÏjxΧÏ<©ÆÓ÷ï—ÃaTôµ§çì§NÓýþ8 v’§]ô¦û²Ã){¤ó›Þ«ŸÓõb»76ãôj‡ãý%ûÀÓ½©tyâ¥Ád÷0¯Žçruœnm°Ó,²Ûè9ηqšö´ÍE%Ob¾ø8ýŽdÌcyøn¾O/8ù%ÓLšëñrú>ÍÏçÖ_V­såùLËy~å‡ý)kÿ<ýüiM»d3pw:næ ð”ŒÊév‡Q=¯+™î°ÛL«ÂôS² ǯN ÓÜ4—ä5Í#j^…“õê‡y!“›naw8ûË‹y>ÜÇKÛyŸý¥?Íikì%}^ó8=/ÅŠ¯ÔN=_Ša(—±Ý´…¨Ãé1]‰ÇÝ÷éGå ùyk§«Oñ.2˜d±œ¿qŠòmÑØiµ2ÅËλl¿™Ó)Ý–Ÿ>ÿœôoÏëϘŸe?mËç¹=”ÿ6oÓØóq jl¾ùæ[ê²Wžó½òÏóž:LhŠšÓír?O¼Ý´w%AÔK,ªóO<»ÙnïÇ"Ù»GS,•v«Næ˜ÿ?M£j<ŸY¶ls§ÓHÅ?by¬óWÇcpžmß·ù´RÓeÉϪ…@µõpþðqÚô’•zž“µèazOcºEÏ!ñΜNÅòu~^£^¦1ú\lÓÚ7çûçh8N«¼yÚ?fE‹§ÝpÉþà|X8M»Ð%‹÷ÏÇïf¸dÓð¸Û•çµ{Ú?œòõaYÈÆýsqÓÓø(þm?L«È%{æyÚÚÏ!Žœþ”ÙÞïõÇ=&ËÆ_î«NÉOžFØv|ž˜"bRϧry˜"˜2ŒR§íÙæùŸç­¤Ü‡¦s‚™V¾è–—¥è4<_¶ÙIÍ?Ùr—1»Ý]ŠsW¾šÿa^£‹«Îåè|YÖÀx þ•ngaù™ñË ³r’8móѼL{µ×ây/ãðý¥<ËÊcÛôñØ<‘µ Í‹_:Ø]~Ý´6lõ%>r,ÃÌækÈ´ÕŸžòXåËÑöÍá9Ð6Çs)â5îŽÅ¾^î­õècoÎÏÙYw^•‘0…D÷cz*Ÿ— ]̾%°-cØ)¤É‚ù©›ü`5½¶ýpš7ë1Ÿv›ïŸós²Ùà>Ÿ÷v:íegÕq“ÝÒòèÎs*©Ø¾Ê+§¥ò1»rÙ€¦ç4Ý¿yÌÆgV/[òi˜Ž{ÙåZfh±ŽÎ{Ö[äç™iœLÁf¶ßUfÙtceVeW,ÀKTñý\œþ(½dóг|Íùp®²é¾Õ±Ü'Nµ}ú”¼·?QÈ›ÏÂæÙµ»ä3æpŸN·é³å$P'àß–áî)‚ÓãzOÇC>⦿üb² á‡%`»Ägã©’ß9AÔ¼víÎã>!æn¿¿¤aÅœt(7ŽéLzŸ>ߥÍ`8n.ùìþ—åY™ó¥˜óöx\n-~%/ã8nËô|Øg_K †gsšn09Ç×6‡å0¶s*ÆÞ0ÃóàoSã´=gÃÅØÝfc³@k•;õi:Ó¨¨ˆþ´d3Šh޾ÏÓ,»”‹¯É¢ìyõ><î¦G™fK<2…!QYÎæU¬-˰Ømž‡K±õO±púØ–rÊ8ós;_L–8þ3ðLþˆ¦sÓó~Š.sh_}œŽÒßÇKú¶çÌÙä'™¼)Ó]ì0gÎ9Ãq:•ÉÁélSÛÚåÙʘa3=ÝtÅÛ‡ÝË%? ‡tø# ÒÊú”ÝÐüÙiŠä“o_Ùë”Ý?_Š×a+Ñò¼¬&C»¾-[M6,ç%ýñ©ÌJïNy®qy¿êTäv)…s(ÒÈÃù¸ÉÀ2ö¦?V9˜ò~ç“Q~,]B˜2W8dzÇG³É'ó|såºJÉØsú£—´àpœ"¦òùª9±Zç ýpŸ¦¡[fükëÙMžÊapwZÆhrp›çšyÉÃÂ%ˆÉWÓ?.9ñãK–›—úJø{øn.YVã\äµ–TýÓKõf+ÂüǦJ_À˜‹ç½͇²¶0eX¸«Í¼yPÛ1ÏUÙžéШÎyL¯5=ˆþ°lQÉÛúÃRm5÷vˆòf(]™ý^¢ôÝ1ÛÐçUäå˜/åËzç°$Ïj({óÓíüúŽyäK¤Ìéq·/Þß²‚›é–“§·LÞÍáû%YQ¦Ç2fïnyRùyhPÇ—"Yy>¿”Kìg”£g€ªVÙè1YyæºB¾I”'¯(MÿÓ2ÅÕF]ò°b:Ê™s¶âN7iž‹'7ÛÇ,òšÿÔ©ÈèGõP<çóSõL¡ðùùR$¯‡‡ÊZzÎj¸¹ •W¸–GPäb§Óteêþ…¢q;\²Øx.@Ï «¤¨å­²G³”/ó“ßpOeî{ÿÑb>?Àó‡–qemŠ¢²ßô=­æÓæ†ì¼O;må9Ïù£êévŠ*Ë-ÓžŠõi9c§•§Óœ Ï÷Qûh‹üÊüµ§Ã%Ý´—¹›^çdÙtí6 •cóÎîòqRݤ–HhûP(ΕšÜtññôÝŽ—üœ=œ¶é@›gé÷J‚g[&üçÄy<'—ŠQYtÌeœó¨)òÃê|\9GuªÔ翾›NHÉ`žWïç!-Åýaù{y¹xš5¦¦rQ¥Ä|ß]ârI'Œ—,:<•àd{|‹ep,+VEuèéóxÜÆaxÞw)“ɧ±2êæ’_.óZ$Ùcü#­•éä˜ë?ó8ÊOçiŹŒéb¹?÷ãÓP)CßíwSP6ÏÏûówS<—ùn³ó6=çbGʃáZ®f™Ûû,96ÝûyÈ“c+ùåé)åôóùñ©(‡-ÙÖïyñŒ¾)k_öT©-rš|¾ Ù¿ý°ÉÛ\Ÿ³¶-Žód{¨XMe;°µ´´ª­†r šßæóó%¿òœ«ËþuþE÷;sZ²²P¸˜¾$ßѦ#_qçŠàFÙ)LL‹ó’hÌÓP Ù².íì÷Kž?ÛºîÍ©¢]¶ÕÁ‹Ý¥²KÊ4ïîmQL«ª¬—WSËüœ‹ªcUOòG®eêëCYd(Ë,y™N™fm«ŽóÙ£Tlm¦Ñ’¾ÅùiÍõûbÃSîÃttË¥8æ{ëp:§»¿Îok÷¸;Oï+×ï.#l;ÍbU>òûjþëôËei<—5®s–üû3jŸOYœ jy¢‰dÕÏÙ•ó‰m|º…Åq;AêCºµÿ… eP¸E¦A^Æ¯ÓæQŽ»æÛ-ä ê”¯þiÖ©²3àP™»C~†žEEª’˜EE{õR”og ~™˜Jq<˜Âß¡82œ+kÆñ©ÜÉòÁö×ykšÖ‡rÓ"ÝÆ´œêÒ¾ÜW$sÓÄÛ<§‡7™Ë½w,C¬-žÓ-ÊTd/Ût~̳`˜]ÕÌt·¦Èõχ¢ühkËÜi[Ä)糪¨* ‚é7–ºkÙϧb‘™‡FÞ^0¿Êê*­\K=…C‰nf7Mßba˜ßêó÷š†`:<—"Y|0µc‘H\žß°¹”ѤªÈl޹ÚïœçE—¡,hó4œ/5­Æ±µo+u'»Íu¥ó¯\ŠôùdËåIKž}¶eyUë1Ëí|£8ì‡zWJ™.=šñù’3÷ÏÃ%;ÙC‘À=eZÄ?±~ìr*R]»í˜OÏýùñ~¼Äáœ<<™q©l»Š†`~Æån÷Xîæù¹<.Tb‚E+¦ò›_bм82ýP•ůç]E{·1û²†w.³<Ë>]&¹Õ©Œ•–çQYô§÷[;EïËõn,¤*ÖÔ2œçg•ml¤6kqÀñPéŽ:•,ÕËsÖ[R;.?~?”±Ÿzù>Îr‚|ÆÍJòm¡n?§<¸˜·ç¡|ÏãîÅäý5G¤‰Só<ŠbÆ6_X¦[/êB/ãqL§êR(ŸB¸ï—\E?ÉŽûÇK.ÍŸÏ~ÃáRw£Ù•ûÂîP9>žgíM‘Ô*)ÆB¾ôÏ L¨¨BÚïS¼TÛ€ž«%£íðR´l²ÔÚrN5»K– ÎsT°U›ý%;{QƒZ¡ø^TYv{(’<ÕãßÓ鸯´Ê9±? ß/ùV»¤n…^ÿ=Í4SÝa_‹ŒŽsβÒL°}(û+JB*3”ª˜Y¿š‰"Ô0šã÷óEåC6—»Ìµ·á¥ržu•ÄÈy¬%"ó(fV]î³ÕwÆf_ø ùÇB=¿Zs¬)׿W;ç|Cû ‡ãöR®Â»³}>Ÿ¿çyÛºòuØž‹g0ýŒáé’ÿÞó´39ƒ*KûYøPË9¼ŒÃCYž‚á§ìA.ÿº­d §P°²JÅ‹ún2qÙýÓãKU XlÕ‹(oS®­ÏeQjz¥…ŽJ‚N¥²YE*Ô¼;DmÑÉÀZ[(cjÁÝtCOù¶HÚü$4Ùòù4ÅôõÅn¬töL'ÈJ…ññXTSçzE¼ú,I’êÙpš¹çâ ´TnËnðé¾ªŠ‘éW„,ç)p*‚¬ã×ço`Üì6eAÿ|¨GÔ~[ù[sé´¨ÕÒ‡§ÇôÁüaé =$…gu¾Ÿó¬—ô¼O}ùDXr¶|ªY–CM›77Ü¥‘B~R¡hî>kaŸã‡B1M¹ÃÑY¾YÀc+mä÷¶²¥OgªBHý”ý¥9S‘±ùìPIÄÍåÊ‘~:Ð>˜‡K`/B·"0¥b{ä¹Lé¼;™MÖ{IGƒÊX2eævi3ΗƒùÅU*ŠçR4ŸûO÷ª(ÞMËà®<À½Œ'U&Èõ¸ßgÛÀ|"6Ãf:ƒIKU–¢”­ÅSùZŽéy$<-ZåÑugU©^R§‡á’ÉÕôÁs1½§mv\Ù™j&礞ËÅa;æ*7RÎUŽ÷y nZÍ1ù9K6q;íó Þe§Søåœ´ÐÌw5ïezá4§{¦3¶{SœÁ§Hv¼gàqûðPt·½äqÓß±©®e†î ñ2Ÿ‘—°¸¢?Í!ð0æð éŒZ,°sØv|ΩVU Î4Å7Ù³ÿA)Q®Ö<µÌéïÔTósì1·‰T­Ý¶’„™qRcŽŽ˜Ï\S¤W—¶Â©Òíx,ÿÚþxªÄEçóþ–f¾Á”ïºrΟÿ~r(ŸOõ§m}^<úªzUÔïªV$©µ›+õ2<š¬@674Yì¡r4ΧŠÐ^ŽÑ@Y^êŠÆ}«* å0-}µ7¥*¥¼—¹^oò’nq¤4ËùT$Ÿ§iE(¦²wLÇ&å˜?P‡Lt¡ºýÓ…”¥ìéRu*”§qþ×JOÃôë‡J{ÝnÜÛKvú𛝇ý%+IÍj¢c™¬-¬Ó'+Ëû6cý¿Ñ;ù§9TÏŽ¨sxw¸¤+ÅŸx@•GÄé¹äƒw® ˜¡’Ztå¥äÇÞWéҥ7ïvyàrÎź?«=ý§yQÊÔ­s¤¿MW_uz:ÔÅ/e*ðüx_Ö…©¯±Œf*5ì…Xtܧ'Š]Ôßæ¸µ—ü’îã~J“©7=ïÆJ½l~¦ÙœšY4EbèœeÙ‰¹¿TvàÝý8äYðá㯔Ö6ûiÿ*¸Lçý÷ïµ\àù¥’Â~²;›G¡ó«ðÒÅúÏ‹ˆªÚ>§N‡±²Z ¦ÂQ¹Ú½ï®8P cÞ)5§ÊÔöÜØV¸¦x4û¹K7—XÜ?•ws´ÚÎÅõJ»’Rû\P±lm•Y8š†³¼ØüL=}¥ú*KR™fš<î_Hg_®¶çݹ²_O»XEÌ{oÇ¡­˜Zö,¹p\œ‘wEt9²cå‘.)›Z 1Ìpƒ¼oæ¡`ÝÍñ±Ш¬ÆTšÿŽ¥È%kEç–Æ1ïÊwçñLð8£žÇšjZâ÷„åT„Œç}mocȲ'bšiÇZ¸0|³ÂýœÒ.³'Ïåù@•}m/Ó>Z9zׂ*Â¥é\; áËKη˜B[Âæ¡1žÊâóô*«°ÙïçW‘‹DÇS?+ìÇJÑì´ßebǹ}û¾Àwþy)sçr“^Äïãã%'¿V»ô¨¡¶–ïZ¶ÈCžNx<^D Èôo[]Ù_7›K:;Íy“µ.¹Üt¶-¿|«yÚß…ÌbÞ./¶”µ>Wà)snQvŸ\E¿ZžbfàfžYy{š*‹4S°;«-ãöËaÚ£¿§Ï{9Œ‡Jòmºuk*™yŠVó:ÅÓô OeÊì¸+ýñ¥ûÉGþt'à¬hݘÓã¥èRûû bçi,ÊSür.$þK¾ô‡Eõ‘ÕyŒÝMàþRHæŠN © Ô`y\§]µVƒ¯.%Uc_ÇYœ·5ÜÁ® ØÉEZ$†A.›F`•6[ö¿-uÆ´2¿Ôdû¯sÕ:œï•yÊÅ,à6žwÜ<éŸý`¶ôy‰žU^ýQãñ\ ‡Î•ó­b/%¼|~˜óñCívÎa婚§SQ‡Yt˦üêþ¥’BœÎ!…põ˜'ñá* ô9acú‹µSàyGKÙn<“æ/e²»¦!*Ttµ6¢ R Ž•DouÄU‚áRu:m¬EnÀœÒÒàôTN—LIõ|_mHã¬.eƒTE/t¨$f*øÁdœo:®§J#¾ÌÌâ|¬>ãpÿ\™-*OÊS‘¹\8ÔPž«jòóÞÖÔÇ'e‹V¸y©=bˆ)¢;—'˜ ikŒÇ236-·•€æå|.èŠgSÁR^&Û)ÿS˳Žõ¹r¬=§)v/ÐyŠbjÚ˜cY··µ”è̉-)5c=¶;T;#‹²‚:<-i¶¼@yŽÛZ·+D¢Î]Qg]ÄÑ•Pa8¾ÔBÁíP®v/ÛJix©*™·BÙ9’ç9X9B«ñá’ ±Õqxx¾”±Sým‡¥÷:ŸZ5A×<9÷—c¨Ž•‚ÛQ¾$›ò<Ú+)”å ïA%«ˆ$xÇce²Ç¡g »1oüXŽ_êq¸”‡2Sƒ’j"qS±;©.¡cå˜V‘f*›ÃtÄI”åB™±—T|Ïó Ïã¼yðW3Sˆÿ½R½>MÁÉc¾üÍ"íÓK~ÐÝϘ‡Í%_JÒÓüÃ*ĆŠXew0E±àT›hNc…Ÿ1—õ˼µŒ=^²‰S‘È“9Õv½Å µ°YœsªÒ ¬ÆÝ®”]L·p¾¯µíjyùéTVÁr §Zëñ©BT:?Ô°ôû!K /QKYß«5ÞϕôïùP)ô¨—|ÔÎÜ ±/Pö˜cRûuaã¡^?ŽÇZ†f;G€ET?L‡¡—ûL-¿Oiíä8Ž…ôg.•"ªÈ]§¥e7^²Må|®á%k2±Ñ ‡s^'äºlátz¬H4›øáý÷eÒOëßÂæ È¥Dùœäª$7Óµµóúî8EØy{Á¢ÅO…ôÏ´è »òx{|ÞœKØê Ž5½³©éÿUUGM0·bSw• Ûpª)W+ílK[jY<•£d?<>n‹Ésª¹¶™Z'_± ÌŽXçË)Iþ.~sÅΰ-ã¶ÀØÛBh5÷ÆeVBÓ8­´a©Ó®r¬ží©Αø©œn§¥‘7b¼Œ•ƒµªq“jÞµãò¶¶ÔU¦å’5OŸxñ<–4×Ó%ok05s§ù\³k•þmÓ8œ5—YS<•t©µð{ñä ùðù¾Vÿ¯eÎÔK9[ö‹Qlñð÷‡b¸W×¥ô|ÕÓ%ÍUÌqaŽWî(s,ðç<ç´ãáa®×€U»¢y’bÖ¡ŒYçx,ÑÓNs¬T-æ%¯” 'S£NËx­ ~Ü–G­ÅV¢¨éV?‹ëW34Û£¯æq=XUa –±ÇpÞ•“t?ö=Ëa¥Ò*V.wU¼¸ª‘±Æç‡\Fª² çÜzd/Iör~.…¹ïyöÒ8l2¶E«¦6)aNxsi{¨nLÍcÜÕ:@v‡š,cûô\9ÊU†[›µ™Oÿ¸9î.EÇÛîT”ak†l•øËr7ã¡H2Sx0›ÆIñóiw:šŠCì®ÂꘞɡT«õÖ<½=ÙLI8•ª?ùË0^ŠÉUÏ1>™Š‡ç± MÏã ˆá§Éõ\¤ú÷Ó¯ÙÅ”{ç¶+åç³v]Å;PEÀ¼xÇ=ù÷ÇÍ6Íì ÙËÎ>Õ:N+d•—³›ÎKçKAà8TúYïkuö¡Ú&~_R7§% †¬œÌ—–´Ó}²F=Þ—v§2–Wª8†óó&?éÙ­Š4oÕ™ ip8—Æàô1̯b:LŠä2÷ùšKšÛóñRªhOå+:WKmçR‹Ê™¹¢]ix¬‘SÆcéâiÇòX|¨I­·Õ¢Ö©”l˜J4ýþ¼®<¿¼ª«ãùÞ¤ýÓ/x)O M¼Z‰š#õ±p¾Z¬v—"Nµ&w»=”¡ ‘+ í0TD*CÍ Ínk“gú‡¢hU;ã µ.®±¬Îõöœ)y>Ušð*D¬ì¯þ“Þ›—â%9iÊÀh &žt†Q'©ˆÉï´}ª2ÚžÕn[öâ/ü¥ :©J‹9sÑ塿XñTsÿ¬yƒÌ_Zì÷§a,º wã9«¤.ñn[VtÊÒ}a𺨾*`ÖŠ¦è<ÎjíÇÔUc{( £ÉD»Ã±Ž)>ÖU´SxxÞ•Øi å’`§Sv…„}1Çy;¤ÿôßçl÷ù8Η|]4¢Ó)e,»/§à¬vôT§Ú›¥áq9³á±3õ>¾q|ÜÉŒ¹ÈýRJU'ÖPªƒ9ÖØ65Ðô8§SPþ*—Ž2ƒ?T„õOã¸Ï3 ®¡‚T”|Ã®Æ ¯ˆ»ËSÈð˜&ŠIô1ììS™•"JíùXCËÌ÷µÏÕÁsòL™Ý&w ŽÝ±lg˜wÒ±´›FÄKáø½œ%j¯ÓNPy›Ó4?›²Ö½{œ¶ù qœÂÝKÞ˜xª5ìw5¦­nPµlÆ4‹ï|š=ý²a³d+æÀ3Æ4«T5YÛŠKØ£*®35‘kåàûTñe8ÛÌÚ`ŽÕ/ç Ï<­qø2DÌxɨ›Fd%Iº¤ZÏÇcÉÄžö"/@-¶B­jIõ|¨Ê†N5ÙÐîPC1<ÆJð¼SÓzU˜Í›Êª0œjÚ¼ª§ê®VÅÝË´JU5;SsíjaÖ°WßóŽ_õø|,è´çiãp¦[ ×Z¿Ê®ü7[3«w¹‘ËîPi:gråó¹¨ÿÛŒÂ> fûl* ãb×þ½H~ÿ… éæ¾ìKŸKýCÍNÑ«QÐ,+ªvO»ª²ôtœ‚£ÂZc&é>”Üãéä;ìŽïð\ƒ™ÓÉÔ °fs>¨÷•ÊÚ¢.)ÇZ%<7 ÅÑn[ÉíÇ—C©ÝŽ…ˆu–œ”1ÓX(ÀîO¥²ß‹Bë fÎ…s³ñLÅ´éÒXâKþº°ÇOÇïu+Òí}Í\øx—ÂÌfVEœKXè¶Ú9­Oªô©™£ïjÞlo²¤ÅZá®Â?8?˜õòR6úïv§ v—B3Ža¶¶Ný,ÏOÓlMi‡V±Ó¶^ëɘb%[¬]«<Ýû§ZuyZ¤fÓÑlï› ˆ+!÷XÛûÌó¾´/¥œb$ïæ>§jÇé¡ô)zÜí%?•NSX=_ ùûæh²“æ"˜KÙ/ÞC ¿˜1!/çSîrz)»ªÎ5Ócuz>æCi8WüE‡¹ª0iWÖn¦E"EÜ›Sáû:¼ÔðG•0A•ê UY§U… *Í/…ŸuÍ•HÖeïÄ)Ò‹S®Q—Ï´Ëòk‹EI 4JRyi p¶ÅÆ’ÿÔ¥RœFƒ‹Æò1/#X;­l{}ÉÎÚ—sêAºñÇ•Iûlʦù?/O©t¿]JÓb:­±™uøù|XÃ)ÔÑÃ~ Õ/¹â´HÛóó¥$ŸmkÉßû²`LKÅqS؉ ûZÅ –¼A]Åá|W« š‚=¹l+&ë[æþÛb¤ç|Ù–«Ô kŠ¥‡ÂÜpÜ]²Îáh¼à-¨ää—-zëÓPR$×öÍã8\*æweM‡ò¸ûKEòTÊ¥—÷¿­°wÕ¾‡—|À‘Ò·’¯ÝëDzMú\ݪ_– ]¾jÖüÔì–ïß³>^•­_ÇRŪŽ÷¥›Ï,.-YµS“©ôý¥íÈ\d.)ª( ™?ÅÓSÇãìhjòpzN• ÐpRÕ°SíV$«›}v ÎÒKÞx>«M…Òø\ š£.qkU1Ú²ê­2sV±Ì1œ«Æá±²2˜‡ºv¸T-:€Âkd¬dMž JtŽ¥/ÛPq¥ÛËã¶”««S ÙE†Ãn‹ŠuÍ»ùT6>ëD ¹äArý€y˜ýºÁÑv,Ö:ÃŒ/¥œrú¢CuP>»ïÕæ›ÇZOÎlé]ñ]\FÉéXxZ¼¾×Ó³¨Ä¥ÏÓVSzˆT%ïvþ>ŒºÀÎÚä¬Õ†âÒLJ2Å\;AÏû]I/Ýײq£ªäkGu[;Ý({>Vl‚Í>f„Æ”DSFÄÿ¼ÃVâ•®°ñPš2¶EGú®RpÛÙáQeSgw(mŸªîƒÇns‡zyÓÁ¢ªÊ9=9Iãþ!Ϫãiî–¹d#ø¯KÉÑ›ïù™Í«®“3Uæüt,ûaæ|öaÚ§jÀy²ªùßíS½1|ïkQÃýXµÁœFd¾‘/[C5[n·j¬åÌÆÙ0·w™§²Ú]*ýbÕ²ðøXmÜÖêBC­ÁVûŠgÀýPAÕ{-N5UÌ©¦0¨v/™ bÆ7å?nmeɨ7?–’ÛéhPŠ¥¦½ü{ ¨²/Ù®5ëÊÆÍGS9GV4Û’Jx_È΂€ìŸöe¼}.ùŒÝ%óøŸÈC9üÃ[FJQœîgsx,¥/]þÓþ{¹ûü…\úvß/å.6-ý%+ˆ‚ßK Ø"ªÞ¿Ô¼æ¤K™GOª&Ö; e9úò‡šÍç`Çv~SôÝ,ç1SV̰RC¶ÛÕHƒªà*ÃÔ©Rñ„˜vefÎS÷‡Í4šÒ<3m½ßO—üù2¾T aÕÔù¶Æ™Méò^6[½ò´+J3”F Q¤T œ ï³-»ñ÷/EÃèp?f W 1Æ<_Ò=ñ|ÞEgⶈ0ç>“TK rgËiÜì“þlvk6U0ñ4]¶ÇùŽ’wNÄb»SÆñôÅ/‡ŠÑð|Ø:ÚM5Ϙøb4…=í9Æ\r'õóyæéç’´Ú&÷/KìVï/£KÃYBQºê {[íŸuëÅn8ÚŠnsú×CÕ[e,Íq;fc¡N5Ùµ©‚žw‡ýÃ!G ÍŒ“ ÖuÚ‡ŠiòXËÑW·ÎZèy§î+¢ª R \Öbax¨Ð®¶ñ¬Ƈ"—y>*ÿVNweËÓÞ®Ê‹ÙæJÖy¨ÿv4³±×!=Ý9ådÎÒ§»ä0Œé?Lóc›ö[ÎÕò ˆuÞ¨ì9·v™…gõœ'—DcÝOÝÎ6Eyع¨—*s}&ÌVõãfw)}¥§óL¾;.}9%Kb[™!Ù•¤ÆýÓ¡’›þÕŒ•6αB€9Ö“%Ïϧra9ïjí|:Ö¦úx¬\;癪S½Âºž»BJÔ·:+¸Çáô2”¼‰ÒÔŽ‚äZÝnWfa†š¯›š›osÏgUd©îë© ò_ÜN2Îñ¹Æ±ù^–7†mÍ­¨ÂûÚžJÞ×Xò×ÔÉžMq*®éwÅ÷ív¥íê ~ “‚QF†awÉ»r^„*ˆ=ÓÎv5mr›’…ºÐS÷DZF$›ÄyÈ]»‚íZ™¢Ú}ÿRǹjíQO§ã¾ æ¼Ô.?ZR¤p6å‚57ÏÃ¥‘œwÇ—’Ò; ke uÆdU‹—º»Åö8ì* ¼çš»zmU˜>]3¸*+ÓX nÔ4QK¬)˜¯TˆŸjÅô«ËiZº/… ððT`dÕùXÃETµÁµD®™>_œžÙmiXC˜™JX1¥\K- \Yr¸f×8¿×Z‡Y™E«4¼¶Å:eò ûŸÙ­$;mÜW°3»ÇJfÍ” íû[Ø€ŽÇó6+¹î‹U*Ð?ÌýDÛ˘‘kMîB?íG‰té$/Eœ2§WJ)ÇÒC¹«'ÂvÛa8]òFÇé{î7µÖyæ&n3 ½Î’ÚšÍ âu~9¯‡²~:/“•|ÕP·bY²c¥–º*3¬~ÃYUÝeÍX±À›–5UöýÍçŒû²Ech•­æ//e ~Z:Ê…j8Ïdëüé,F’•ÞÃíã-¿m(OSp÷PÉŒU'ÆŠwÍy¨ååíëâVš'ÙvEÂÁ,V¡Ù‰†\(3A÷œã)r§Wz®˜²ïŠHå¾¢/L™¤«Š«ÏJ®¢æJYi„©²–ÇíPšÆsa¾«wùªúƒ>W¢¡s!#œÿ)_ löý³ÕtÞ•6’™ÞÞv~>W²ƒƒ9îŽyS>uL˜ûý%/ìîÏS`]ðëØ ·bÏDj"°9žÊޏ…Ns¬­¦9}ÌS~‹¥ÉÁž²¦íùŸÕîûË%ÈæŸû ¸â<+Êd¨ù¸ÎMG¥ æy¬õ˜jÙ´ŠT{Elº¹=לüöfzvÇÂ)ãTøÓ_+SèçZ[+u åÌ`s–«å u÷`êKS%…²­µªì¾WB¥S¥)nQœý+Ó*´gSI¡Lo»IÚÓ¹ÂÇU*QJq:öÅܯ Ìž*Mu§C9ÑO%„t·5™jìÉÄüáôxŠV¯?,eíVö 5ž«"·]Y;›ãµjºmo ÖèL[,辌`Ì!'µâñPW©W TU΂J~élûåA×ì*I²]eš›Z§âS…Õ±*äÙ9WºÏslÜŸƒ9WLV«j3UÉ«•eÂùR4›\'ÝrºÓfl ëlSØ|Tø0»Séæ7û²†ÈsæžÞòt¿Å¸œ‹íÇq¨—ÚÔñ˜e0—YiwÁФšæ»-Èß‹Èå¾,Ý ósÍ9GÃiº£ù˜˜Î×iߛ›÷(¨ûs5ù?7FÎÖ”yágj8›¥ÚSùçÇmmå°Õ¶ˆá¬ªeÉa»/ü…çŸ3ŽãCÁgšåçZ¶¯J¶cM~:ަ’•ÛW}:ÎÃC™'{kåçéì]ê–מëp¦§3kÕó8É<î+ù·ÝãqŒ¦ëÚ|>É¡Tj<é¼Ô¸@ÕÍ¥P¬Î>æ¥ÏVªŠ•Hç¼­¨Àp!¨+LiI¨PiFØW* 3<¼ˆžˆe—wpWkš‡Š·ÍSå§Gú\`ª’a,­É•À9÷Z–Ål—côCѽ›ŸÿæÈf_ÞËÓ©HØ©|5!âb¡UÚÔγ-þɼ”]Cº8/¼‰äþ—¨ô×9ÅÝë¥ÔÛy(r~K#ñ°9ÜÚÜ¥Vaf—è¡Kꇮjô´ _+ëî|}É\§¡âZ<˴Ƈr!­£/ä_¹bNWÕ¥ªVŠs¶(€Îóù\‰ÁÎu_íø`J¹Åv¬€'Ë{[ÀBµìáy7VôKõL£ÝV|„Õ~%^›mû²KïwZ[÷Ùjéy¾.™Þa΢–«ÝË å¨—¹¹ ¯KžÇZýô¤ ñ²K¥måã¶PpḬ̀’©UáfAôý¾@gî‡B5 ßw—lžç][?,£³ø§±à¯–î:fgŸýxÙ…åìŸæœaü›–f»Ó¶ž÷PÕŸÇá¦â&8ícßsžÔ"ƒ¥xƪNÎ…ÝΟ àPq†UÓá(wXæñt2¹”üÓö8T¦9u]iåžcóR¡{ªV§=°¦ÛŽ&¥âÓa<ß0œÏ•þ°éW+[ijÜ`ÌfÐ2ãóüá2ãO‡Jla‡"¹AS0Ï¢¼Ìè®<¿)òKº¦Fvº¯&ë§h° ×N+˜ÉN|Óü^ëoÛ— î]mØÇZ7mMDUËç.}xEÇÔÚㆇJ›eÍšTf³Ô45L'ÿm³˜3æQÇýS)®:>T"›J/úy,#–šÙcam³ä¨Êv¥9Ékrß‹,ìþaQ”ÐÇôíÿaN%¯~>ž(Î?-'Ì„™57}˜Dà¹3™LkAuW'sÁfnYÉöŠz¦Ñ¾»”­»Ã"!½d#š`]ƒ*$K6IÍå‹ûB >7TŽÇ‹Nò@mö|ÙöÅÃã0ÖÀºË7åïlqº´õ´ÔéXú„-¦ÜÓo;]òj>ä_J”öy·[]™ÝÖÅl3I· •–N‘ÊÁuºv¬4çÎ9íºðĘŠv:þðåTUQ˜T©zS´ô½tñ:f°sé 9T{?T¹ÖïÏ5 àÀšï—2;nóvÄ5°üÙÖN|µ…íù¨Š’–:UýD+­˜ÓbYTu‡óîP1«4‚Î-ß•Cèæû¾èÏ|:O…®þ<Ø/E¯–«6£T¨¦ç}^^SÀ×üN5êÇCVbε¦MU¦³g7Šh[þoÓC8^ôöôôÇC €ÿë2›ìq.E–l˜ëI§¢Ð4­6ö4ìÊvMZUžó³ÂzL8gxLÁñ&ã¼aŽ““ÒgÓ;ŸQŽsœ‚Â2M6í†•Ž²y,<Ø’çÿ¼}¨›öª4•Ø=nlÅ-iÉæXüóB ßok^æÇ‡KÀ̱æ¼Y)iÏ©èçÒ÷| B*ómµ5t[“˜™])µ›¶S¢ð HP¦î§…w¸dòÌÀ»ÏªØó=¨CÞ–F•]Ñ'~®ÑNÎKìRÈCN«®=9þzw‹£Üü•W%´ç—R˯މÜÉÕ0 ªT‚˜š%Ô„(íKØ×œûžâšLDc·Û±PÌIÙÜäö\³aŽ%E~n{Î%mÇšx¥u} É‹U°fúXšVê‹»yïÎD §AÙBˆ{*j„¹h™r]iäxþžl?ÿušÕ‡C¼,ÎY£Ý9?º,ï›é¨v)AâºÈOey^ˆkîzC ^Ý/M#Åj6ï­Ã4áMaZRfŸæ¸lØ ã¥HaMG_ûX“f»Üñq+IõbjÖ>v|.>¬ƒ¨AyªôGót*s[;õP|ƒ±ç*¢ûe?ÝD~?oõðT .³ó–Ÿó¹ ÇšŠ¡ÞA?ç×òúäÜV_ž€kÜɧšUí¯/üLlU¾yáßNÕŽÅ/ååóï4ê¥,oRƒø6ûCÛ‚î6/HêxÈšYYª’JúMŨq[ÀÝæ—ÿÛX*¤F[@z9Ÿ.Y8Õ(kÉÙ~YŠ ¯"šžé.“ãÓ3Æ‚æHnÿ_‰½Wóá']óñþy:)úa»®Ç|¶ª£ÚÇçÓKÙƒ8«íjIô)@U¥÷Ò|¯ÇÂ1OÛ¡«™çiq»äé·ùPw(—‰:·qØÖüžM5]^M/NO&èXÊ&†³:>fvË¡î|δÿB~˦ÀÄÝ«ã&ãîÌ¢UÛVtŽÇ!ç|¬2Ü·å`·Ç2IJEÅa¡ÌU¡ݩ–€;”}v¬Ýž²ÐeŠ/ ±í~x)?>=çç1—$Ïê u)LÕÎ¥÷lÌ®ÐGä:|÷y,I>5¥®9V¼˜+ýPs•´8Œ– ÿió.°Óã¾dr‹ÝaIZÅ+†z)c¡ŠV£> êðªYƒPaó-ÙeK̼ºÊbXô8%Lkú—'U^?ÅÐj JŠåi:®Œ³ä)ÓüÏ’§Ñ”gÃát‡±H"Í[o…p^ É̹ÒÙ=ï÷cÍ ~ÿ\Y'§›x<\ò³Öì”Usß× Ã8ñ¢)éY½TZ vªÖµÛVå‚ÐiD?VZ•f!LÉ«µÇ½©ô_W )ö/%Le?T;Χq;K¹s‹ô§š”» 5ç®ÑÖ׽Т·­€‹v»š‰R»h·ç¡øN»­hÅF[k´ªža¶"”¨©Ë§^‰ï*>áÊT%¶‡ñéRtK>*âÓ2EVíNç¶Â4¨¢.Ÿ†b 8ÍåÙfɈdßw?VVðÚg+2eË”à®ìN7v÷½¨Áž·%w-[él˜}°0Êúƒ>ŸvO—hoù¯:™(%BÑ܈I_î_©÷òÁ’¡z¬Ê.¦³YYðÎU”Ep1Ê+¥Ýý°²˜.D÷ŠŒâå~(êq<Æ"gµ/å˲Y9ýÍ•í¡P L²Þeº}0yˆ_¥­§=¾ŒçØwbÖ´S QÑ}˜Ýs¥é|Ú»ò~Õ¾¸HË_Öœ÷CUûvÞÚáù’×,Σ®à0¦{¨B2æst•4çn—î–ÕÃ㥰(;U–Ô9Æ·™˜ãe+"·H‡ëJúi÷RT’‡Z²o8UšdÏÛtnW©ƒ˜ç·§š«š{Ÿªuò?ʦ³)b>UÒ³h0oPx*lºæ÷:\2iþœ™ÎWÇs‘ñZúв,ñ?Ê.·¬Q5ƒêÙ 2ïl;½TþÍ«²Q¥å0-[—4þÞïv‡ã%oÝ«²y~óPøx|x6 ¤°fyšmÆýzœ—±â ùJlUékÇj;þó<­Ëû\ëƒÿ3s`MI¦œ'QÅšlöš?VÙæp©pcÏ5 1³«[æbOÇÙífWk{©º±î;$«X³N1x.Ôdç by^Bþ²åÈ”´íûc¥Ì0…>ûr=Ù¾T ªºž˜±ì8>–=°³s`Ùî:Ö*°5"¼ÝV–£: ÷tå%•_J+Áã˜J`ƒ¦Z×Ò±Ä =•® Ó¼¸/Ú Æ­Ùfêó<Çb*Vo[UV=†J[EE)sïË£IX›–ô}i4U¬ûŠï®²‘GÝÉtü€Ó,£y>çù€ç‡ñ’äÕì«j†纸>Ogü;tQëª ÝwºÿÙ›-‰g̸ߔP“¿p‡a¥£cÁ‡Ö–ÑÓÃö\]^·Oæ<^jüµ0MæW•l&ý²%²ž³/9DY°·Ï54d7óX(§ui(—\²*"Ã{;Kö E°9Õ¸Á§]å¦#Ü©j[o*ñí®†Zš–ý}µ_£FU|^œ/¹¦¸!OǶìk=>TÐP³×"ËúöqSæ­ý>n.yïgA£^ reÐùÿcïÏz\G²tQ0›{ŽØUç^ô[¿ÀщIîÄ&ebÉ$P$AAF¿½ÍL•âZ—-Ê}gÖi¨€(¦sk HÖð CŒ: Db¼VÀÌèþ½n©XÚ-ûÕØz_W¾¯;îŸÛ¦`ü\¿xÐÌxKƒÑjdlº†xýã° ”ûê¸%=ð@¨&ñ¯% ץŸ†ÄÍiw¹Ý…ÝnЇFš¾˜‘•Gʶæ ; oÄrîa`9©;¿}2=#Ê}¿ö ˜nLhlÛÖðF‘ÛG br ˜×UH9·/ÎÈäX{¦h; ´gªÞã×´H©ÆEf൭ÁuÔÀ+º¡Câ *dïVÓÛ¦±»c=š­|ôÅ“ŒëtwÇ6Ç Oj*/kKLål¹…µ—ÓŽ«ð4@ajÔ-lAmÀõÊÞP‡ÁbÍb` X38sì@yA¶F]Kz­~ÃÚ"7·:2ªBÞ˜ŒÃÁv?fGáúE÷Ô¶V;q£‡þÐóóô3­T{÷g¦Xð­­å² ¹pÛ]Çj,èZ½òæó fãe…G[ ŸZ ‰¾£ß€Ä®RùTQ­³t[,Š#°À#—ìNmß÷dðÂ! kbBŽAµÑ-Ñcß”’·Zkr¦í_T£gl]r³ßÁdÇbìFxLçj¹½Cûc7Q¹/ànjë[z´ _yk¶µ…`èÀ_~âtȉ«²@Ͳ4·­\ -9wPö1Ð?Xrc-’ž°jõ ¥Rƒµ°Ð_¢ÏõÐH¾‘v RBgÚ²G^ß´@d£/ÑTÔpÃk:Ë1Ä>.a¿Ø£…K&\W{+wH›°‡ I{¼£_U2O¨®\Î Òž<¢“'ƒT߀مK]Ûó¡!à8$ºÛ—g— %P’ó`_í€iH™´¯ €ÕFò‘EÍ“¼ž9Kjj´Ÿ v2"õ$mW€údµ;pu澪ÚGeUƒ;=}Kiæ¡Pr!¥Ú‹&]Îtö†¤TH%i}3p\Ü%ùž Inº–ëÖa½=A qØs{ª¡ëºj1%çÛ·¼g’Ì¡&É5÷%—©ö­j¢7ákrÇ‹¡0ø]{!§§ó©½ÐtÉóñɶpf}õ[HRåÁd[ØŸ úY{’ ýq ×­å½¢ÚžQgýÚ+ªŸÌ‘©v´cK‹Úß_ŽÝʘÖX}ê-uÇvïb"jøÚ·¦iKæîÛ„PWƳô«±E-§@hî‘oiŸ.Œˆí2<ë®Ñ àü¾ï.ãÑê¢?ºí…_‰ ïi«ìÚ·BªP/# A2Pö[æ‘2ÀÏÃ:Á²m½f'k1!jâP "A5pÕî~@m«ƒ[ÚX¶Soù+Ôw*ÌÀsB¯™ 0Pnt'+®'æf‹ öž¦MöpO–¿ÝÛ¾‘;ïu ¶azˆ÷ó>Ôßìîçp!…ÉÚššØÒëAŒWìa:Ü=£¬ÊË¢Pà¨tÇwË©ˆxQ\úÞGì G2ôy…W‰dÜû½ál ÍúêրݜCÉüÎȰƒe–ÀÛuÃŒ\ýÅtOÚ1‚ß+¬3§Éj ÈÛb[B£IŸÔÈ9ÙM¬º5\Ã֯ƕÙ_˜€»?ÚnÍa¤Žsß`ìšwNâ¶]%=Ê ¥[cÕ¶“!ø?º:žÞœ‚oŽðÙCyUÁD}æS¶€|[ÁTÒ·Ýœf*}ë)¶ý{°E*Uåñ䨼¼ß* ¨îvÀÉ´ ¡ZzÈ$‡c ÒÞÛ @=¼Ù&·Óm"ÝšcÉ>׸øˆ×HÝêŽlª}„:\ÜÕq ·j·üWTwþL…²öÐÄÓ‹šmd‡dk¸p²÷³¼ƒêtÃÐ!<>ƒ¬n€ä‹˜$ÐÜg€™·‹€Aæ]# !ñŒ>Dê_^”Ñu*Rh†d{@ê@Šç;P­ëÀ>Ì‚*O&¯Ûƒ½p¿c™cÈ$¾µH²+MÙ ×F¦¶Ã¾nÞ¦pÍ^(ÿd«ÙuTˆË4Lb‹àý1Œp.ðÙyu”’.°ÿšNÍfË}þ åòጌÆÝ¯]ÚS]ÈsøóÕfкÛ4žÆ„Ũwaç,W‡¦8¹ö1Y0 ë *Vßðlâ*+:µ,·µôMs"*RßCÁ0¿ñïWžÌ É7 5¬_º)[—Ü—hèºe‘]Ep¼‘.™0¸+šãaÈM»ÛQþòï¯>ª êˆý%SÒqQúJ)ȫɭ·.éè£þSZÞ&<{Ug EÙ–On¸Œfq°æ¼U!“fí-w‹õ…ëó™v_Mì¹è„y±1°Ólö{ŽfŒg·­©ëÙ7¨ùNn iלÛ!¾{˯»`×ïÔ«ìœ{—>ƒÜg„üµEë[˜ÒêvÑY” V¬wàüü½»e†óóMÉ{ a'gW´ÝÏܪ¥dí1cÔÀ F]Óî.Tú¶i\ˤ|6]Í2›ý–•c½JO˜­¤‡[/øH·ø¤ð»Å*Ù%—øð?¼²}Ùm×V¬l<4ÍîÂ-NËŠi5@MÓã&Ÿ¸ Rç FyàúSnó?/4hÙwn§²à¸Š =Þ—]¤ÚT¯]\òÙÕq¢¦­O†Y„U<™¶aˆÇ¶HËkh'½‹† ÇêVMçâKšx…fÀ éϦ.þÖwSÜ)©ô`gxàf$*´Jo»z ¬c6hÛU-èèÑ[U®¶:À²‡ï,ÜòæOÈÈ»k™¢í€b·p/¿`ŸhÀV{ Óó nø»Ó0-ÓpÏŠöéœCíæD 7þìfsÚpGàCÝÒdž·³m˜+Á(ž!K%ëÝõhu³^ÇÎpÅ3P/zÐÇ.º×ç†Lš'72.Üí ês_\È]ª‡ðË ÏÒ2ôB&‡äfa * ë±I£1:¡`»òÒiti åÁT=è/ÓtÈ…EqM­ €Æä΀5º5ãMúúF†ÎÝ1R#Uùr%ésÓ«£ùÈ·Ô™£TI Pšó¨Îþ18̘ަíÛ§¶»Û¸‹ÞòxÇtÀ½pkûãJ#ðtV/úz,„­›sÃýú²3 4h6vƒØ4…ûè}uVð•Ë‚y]£ÚµýÖ°½Î­U´G{ax`bÛ'Ð"ÃÐì¦hŽÔ\ܶqw“ÚIìÛ€Œ&´^UÌR¦Öu£¯HÅ×°pÛ_àSiêËx ¹ìÛáâ)ßcZ¿(Qbºç ‚$zæÎ5“C ±î¥òÐêÌ–—†ŠÜu-Ú5-,ßÃ^¼Ç^‚ý`HÚm+  Ñl|ŽÄvc‹@ÒE³2ÉEwîóñöOî ƒ¨€BËðH,ÚÚÍBV¤Øí ~½n&7ð¬9ë±+ÀÞ_µŒ±Švy?l©^¼gRuÌF8HÚ-òáx77¨+ëót‡¶ gÔ›hAûþʶ¤¸<$}Õ—ºÐ—œ´êËO5wnDAN¿Ô^߇ª š ø™V-œö]Áb$ Í4 ±íÀešmÝ3kÜ¢«˜Ù’¸ÊOŽýrÝ  (ù“%óž(†Ø~WÑ0`SÍnnƒbȰé% ¨V@»¿µáø†ÇÀe·/Ýã"H=–&^iM!Ž"³' •Sr<‡—‡dÜŽ`÷¶Ð´'¶ïy$jû¶¸‚†ÛvöUËÞ¨°³£¥$_ ÜŽßX8×vȬ   Qq~ª/ô"úþ2VQ«+òVóSK1Þ-é`ÆRºG* îîrd&3^¼»Œ 7çQïËã—˜°ÔŸ^@Ñ=Mä;|Z)ø3 ÈOÅÙ^˜WŒ¯8MÁ½[á'ÏÛ‚ò ¹w«dF5^7lgž.Úó]4Ø|oãŒo.j« ÜG\}OC®ðùmuä5¤«ƒd{aþUm¬‡ãCNŸ‹rë¾áxFE¤¡³¶ÒjÔ©*ÈUpù'f/™1l ´uPæ®Û!©õ¡?±¶c”/<:÷šÚ."í™åièk¡ÖÎï‰L„9Ü_IPRºñßÚ’ÛÈOðÔú}é%˜hˆëep+C7t;Èõ!Å€°ž›qB¡èñê3pe*?ry·+ȳo«|ù—q>ö=jq‘@™ ‡cäì¯ÒpáÖÞ=]¸BWÝ2ðý5æ½ sƒ³% îþ0 ®”ןaa ’×2( ,QÌÕ7÷sì¾ÆÓË™DKìñÂmbúØ.6<ðWî€ERÒ ˜}€65œ貿»UnO"¨XŸ÷ÜÄàðtdÁ]ñÄõ±¯r"$PÚx~5)W52MB:ÚÕ– bÉAVÃ>Æš0òíÑÓÎF6‘ú­Ió:âZ¤k¤e.µMá=C´ÄÝ92@½èß«Âû 1¯ß¾©îP_¨•~\Æ®é«#}¯ GΆ qC÷¡â¤úr¼Ì}yÕá Áâ™E†d÷¸š6ÄÐt‡Ÿtx'lÆUe«gÿ¶ÁzÓ´L4ïjhÝŽaAšïœyµç : •: ”ˆÅVu0ný}8è“aÊþP³<YM8%»§W––GVµ}2¶DÐÝÊ«_"I€4½ò¦Ä¦îˆ¨.+FkZþ4Æèºqƒä†«òˆÚs×0{ æ g˜z(p(4¤è˜ ϰb®\”;Á5–½Úú@Œz‚±(žºTµêy[±:p¹$/._ôj”Êm âGòl™„¾[@¸ew¿‹Ã…ÖTƒÚôñÂ#ÈÞ—ƒØY ãØªÃ¹áq¥»!¨µØÂ8Í ˆPöv› Í\ílQ•|]‰ÅŠ!µ§Xdàæ¿4“¬ GIEùŠÎB;á܇§eŸPöü®Œ3+fº+µ<¶uë(ÿâ`踡t®ñÖ>îÚÚrï[nìÀZ–îÛzVøôµ¯‹b=è‡by‚ŒÕ¹Ý^¸j¦šíáD‘¢mÃÑDƒxãr6H{©‡N-%‡B¹5rÃef-à[SqµÝ¡€»aôp6 =÷fÏ–åeÛtr‹ f9ó®kÑÁ“;d›×A/=S7,±E7‰Ú )ºgÄåYm{d°p <Ë¢3o! Êžs@Þ[—ü½- >uÜà9˜­Ò2 a×ôuXÙÓöB•–¼Ÿ •·Ý)~ìjÈdf©©c¦U¿¡¯Ús‚”7ý#µÂd+&ý0ííüJ[7—ùɫđWŒe©¼qôîrsþ_î-Må">{|Ú>µöe¸þ? þôãÇÓà½XügxrMr‹nS˜3|¾Ú¶vehÀÛV?Çí“=]X×xê§¼ÿý@‡×w_Ì€0hn‰ojXøë¶ž?ÌÂÄ@CbSÝ+Põ%V9o»*Sue»¶@îaC·1ÛâÏ*°[æ[)mÐqâXÌÍ€:ɶf¢ò®Î½ÏÃnGûïW‡6J-¿rßZ.ØU4ÓÐ_¼[Ó_(mÍÓq<4 :_T½0FT× L«D0­34˜h â‹ 0r;z¨-U%ˆ\äV ›ŒæÌÏíÔÇ l¼»1Œj•}[pÎZDYí¯-@Ó»‚ßæ{ßì ʸ1 Qe<˜80 iâòÒ|pÜD`Û Nr½+·@ÖË—ïYЃ”a äÝdZµôŹú”ôÜÉ‚}{sF@·ÈÚçq¦¸âÛÒôÛÍT;]yûvëš§ÞRäÎwÍÓž÷ÍÑVC—3Ð9±-ÇÄ À/Ø-  “‹4¼ZV´l èÐÖnÄ“PªÝl$dYìK`=ÚµÜã[ÚÉuÓ”]Ÿ‡ñWRd´ûêt!Œ?k¹Ü zI{n"U7;ôŒÐ>µ$4óHšË¨?êAô7'>z³Ëm-” \ÐÁ¶–k0dê3Ûpÿ QÄæ©.<´q‹h9Ñ5Á„D0€‹þ=(•ô ÀæË4¥š‹0޾¨.iå~>â ç~¿b ¶.´4¼üü^ÎÍÓÓ…K§u›þÌ \¶æB &ãÆcÜa p®Î†~] a†ßi@w5<}Ç"›¶NœfçEð€‰a¨u2Ü• ˆvCÄ·¡ƒ6¤ÜÊFÇ“÷0Pi[ÔXÓD˜÷mmîBxr{ÁGÅ+¡¯81/×Á]¾àÆ_r¡7¯ÀÃikî"@a¤èwmËBÓ÷‡óЮöneÂT<;T1j öl}õ¦÷A .‹âT†p -7¶ t@f©U"²} èîCÕ G®ªB |tIù£í¸áG (ôÈÙÁ Y6O e½ÄÃîK I‡ÊOnüòx Ø¶ˆx@ÑȨö´À®³hw;i SPíÁ%Uè:÷å£Î‡âNW°ÎpÈ+9Æ®¦Ck-É»Â^(@p`Özß®¾¦‚´«˜I}üq:^HègýÓ…p‡“ÀÇp²á݈}=¬Ý˜´÷Øw‡»À…Dez\.ÀêWç–‹ä±`>{ FVUŒ)CµOžOßÜ<’nŠÕåÈ ûܶÙ©¯,ëÖ¦½@Tu6\8È}î÷ ¯vÛƒe1×µšmŸTÍîÚvÓhÑíab4rš —cvñAå-ý8Ó/óY±±S.¤EÛl¨oî dÅà”3­}àßÍ`/4¡ñÅÆ¶Øq¹[}½X&+˜›mã ,G±”RnŸ q…Üs…»9½õòÌ‚€*'FU‡ÒðZ|m=_ã0 «Åûà¨U꡵ L=ôƒë1ûÑQ GòÖïÜHhè#yðcâêÍ^ø¼º÷ð Mu†@Øfz„wÌÃk 5~üÄä4[À„Â"8é°…ºH%Ô[ª˜?é_& ÜûèT"ñæòФèz oÜŠŒaòp4ÆØÑô%pôÔ©§úÂ$š‚—µïöôƒ–À½N@  æ õ0à M›'Ö¿Þ‡Š“Üw[o¬²at¦r8r²tç¡àÂD¾6΂.—ØÆPéæÎr‘gÛ–€òSbcvþö¡CæMGà 8ôJƒ^Ù• OA½—<î¸yS Ñn~2‹ K ÅQXWÆÐ0†ÀÏtïÜs¯ÅCÃq1¦­Jö™.ýçÙœO½Ù`ða9-­{©¥¦±ãfÛÛ ëJ´\yÒ³µí¿*â £¿}½’qq(µ J= …£æ¼ëI;@ú/¹RSœ;zèMC74@Y‰áÔŠfBmÉlÁï*Oƒ{Ãò1„Âònr¬ªÐ¹~ÇüŒ«Ã®¤I¾gR྘ÉñÇ~RÛa „ÚÝg…ÙYs!Î'ò?xŒ+ èj&ÐTÛ– ¸`Ÿ6lIÃÿáÌeÎÌå„‹D žÌBΫòBJÿ{¯ý:Öð®ª7Wÿnywpç^$ BC½i½PüøÙ‚ÖfÄíÑ…ç´ßòÇU¹¦nAÃ._Ƹm᛽9v%âÎï¡z¸ ” b“ÛĶ,°ºê |ºkÚ3°þ*z[ƒnƒW÷Ü4K(ñðù+cv4ø·CÓï0*Æk–âûÕ¦²åúܾD4¬+àƒå*œz— ŽÁȪq y:%|Õ1;’¡,]>_P΢ë‘YLàÃûê®8‚ ,º"´U=ÌBö€Îø—L:»î`ÿR Ö²n z¿CE ?þÇo÷Û#O †ªxBí–à¯ÍïIS2ñ°ðãmËܸ}_…C·ÝÙámúÄe=¶Ÿp@àïsÛXºm:ÐéhMß°@ìSÀ”Cö«P%Á­×苪HÍÀK3¿µ¢Û@…‚€»{âÆ¹°qº0àØço>–ÄxNšuÂ>×=!¦0ûJ(ÌóÍ)Öhà5ða¨é¾Û`NÑÒ˜Í%p݇ Ëv®P‚À¸AvåÜ)ˆ@9Â1蕌ƒ~Í8G0Ã1­Tfãz Õ†Åê}‰:/è&‡ö“ÓbV¡}î|Ñ öŒŠþܰÖÉU˜eè3‘ûÞÛ>“œÂgFp··em¿ –ô:k^­ðpu„_Ú‚‰á×M[ï9ãÓ´» WÝo\òrÛutoßœé”ñ ñ‚EÙ=è€Ì—OG:á—ÂýmQyÞ¶¯ã‘.¬¬íýS‰1OÓ3{d¾úªâ%{Ug.Wæ£O—ZÑŒÉ=y†×©¼Í°¯mÓ”ãÏÛ÷ Kv „îFrw9#ù¢­‹ õS|"€ópÿ¸h%v~¹ÚIÌÎP÷C†ÿ)úÆl‰”k7W]æ@¿·Å½Ø†Ë†â äé1ÉÑíÖ·ßö§»7;o@j<ǯðÁêaô¸¯š EÏP+>ØnàúƒÂî6· ¾º%¡úÁ½‡Bl Wqpçû} ‚ø¡k¹À5(ß™‚CÞ½¾4J6ü¾Œ:¾"¿Ÿï‚„óéÀäg]ì4@h»ÙZÏ{¡¯÷0îø5^ɨ\ËêjÏÊ‚j·LmÛämqF€Öž€›€‹Ë!âé°?€)êì¾T0Ä“{Î5Ø ‹±úH8ÍdÌX[ÓìzÄ/­(2o{fêvìÆ^€sdñèU؆÷¾ì‰Âû¾öRžxãv!ª;x‰Và͈”·†¡Øû¡âê_þs!NߢÏõNŒò¹Ùo½h͸~Œ? ¬€ ŵÍ\¡qÕ¯N-²ƒH¾i EÓ™&¹ p^€úÛµÚƒè·g`Èàï$ç6PË·py*Çé;"´ºë…µ1 %†{>¶ø,ºÞn×6 yU™SÉÛ2•˪€zHgÀ“tá®?ù+•y1GF‹ºëxßµEË0nZnuuê,Ó)ê#U› úÇÛ†k®¹IÑÀH›%!>œdIH(ü°ÔbƒTÏ6­Ù–ô•œòuÍß,l£$¥kS4ŠP·Ã"h‘Ýrî°C­š="&ª5Tå¶e0 =e'{ âÙì3ûòÀïÒæ…JhPøjªHÿÌÊ/eLñ ±5ª¸Nߪ¡3/Á’Ï0KN,­rQ£Fx…3ùEþ¤ß‘Iêk»Ìô´ØÀN `­lÅṀcná«·Œ­Úî8i¡uÀ2q†á¯Œe- Owc×Ò#Sôhö, ÚqÔ€¿£8¨¢ã÷º¬v kßTm³iÇ×R·4tÏÃíÉÍåv%¾R`æ©â™ “1öeÖáàz-^:šæN©:3Á=àŠÆ…^ ï^LôüšÝv„ëú|MŠÉ™¶ œ3P–DµÛ_ªíM¢äžYïv·š:Jü ]'ótº0ñ7…Š£»å²;ÿqý9(#2}YÂT©°åÞ„Ö^ð»ÃD{ÄlQ›Âçu@öµÝ®m7åmÛ"GúcÞÜíð‚ɼÒ&Í^O4 »’Œ› ÌôÌàñÜj¼qØ?µ=3†úÜÕ«ÚAîúݺ5êî‡ j‹œá¼(74ÞhPoûD´¨‰QCQæn×o˜¤»øì«v ªÞV—²$BÕ¶kž·x°'hërŽËxw»~eáV’A¹Íä0ðPœ™lH‡§ k1¹qaNL«ù »¸ÙÆ›½¡ê¹mîFwX<*Šg$i7E<6ÀÃ5$)L­&T¿Q¨ sl‹LDl ¯¬ówÓ7{$ëlJà%7ø]‚¥ }‰tІ¾Á90A š;%ôë:þ‹}2Á“*OÀæ X¦@:bŽˆTݢ摅Tëºà"Ò¡ÉÃ}}ñžåßVûU“Ño|¤6°öÓµØÍž|u8ú ×JÕz@ιn-¶GöÚ¾p!Ã…Œ_ï×Ô1²¶¹Ñ¼o?}Þ~³£¸EiŠE=Y¶†ÔáÝI¿#EÃÑ ®µG»ƒŒd@|–ªiX>Ô5‡®mÑžE<‘¾?ñ >xÎp«»SÅR´1tª]ƒø@j»Ø3ªAä&ûí×Úbœžb5zeÍ“Ž·Øê`&ËN¶M?P×c¼hCªïÚ ¹ó¦ovDûúvÒõã³4¼ûcÛÍg”4ÕÓ…fxf{$“ÆcùéâEKm(}>rŠmHŒÿš.Ö²wÏý`]³éy“É4¼™b‘D$’’Ü#Å¡ª¼Æ)):ð»‚å>öV3O t8c¥Ÿ¢iÇ Cê[‚ízu¾'0ã[çóÛHcQSJ ÷ªJÒ[¢`êWZ÷8ýLÝSRúp´#êKHj˜E4¥„„•òŸWƒÜÚ‘EåÏßžÉ(Ý~OÚÈÆ…EmAkèú䱈ÑÓÔ?Ôc@ûÉT9^V)$8!Ú⸆¶ua÷±q£¬‚ø®Ò Xé>\Á–׆׸_e<¡ºÑ`Z î«Þ ]§dCi¹£ )¶½ÇÙi\È/CmJîŸSÔîuÔ[d¶ÞuÈ9³…Ú÷» Ù”ŸÑ•™éï_“Sú žåÚ±¤¬ƒê <;ì,Q¾q„T¼ GRמQzÛƒçÞã¶Ì@Ýk- ‹{ô4Ûr˾Íô•Ùôô®û³|LÖÝuŸZög:&½ÝUù 3¶µÕØJ;¤¡. ºPQ¿óÔêbZtMÁÙÊœk®ÖP¼[2)ÚÔÖî¹YÝ™–ÒQþZXÇo(Kê"ðÍ+à„’ aQ®Ž? =oyù eÁ’Ö ‚,º›hvÜm4Çì µæ’€5ÍÔ3«bº¶Ò³¶…jHœØ¢“¾éÁÞ¾CYüÉû¾ƒk'~CÜ3âšCUÍà }ÑŽ ¸d©á¹¹Ù"—Vo K+nͦ åð×ú¸ÉJ ØVù‹jMt{퀰CÑ•jšÖ²V§1H¹ƒ¶B"!5ꩆ®&»ŸÇt5;D'l-§•™c{`ŠÅû홬#¡‚ѱ“…ê#Ó!Þl: / ²iZ{ ³cÜSÅ­>BíÃtüsÜ-Ÿ¶0ÐôÌE½°†²ï¼Eû]µ-‹­»îáÛ–h2ûNùng/´¦ã†w54Õ¥§”²@Wãš|×Ö(ËÍ]LÓrÚ— Ÿ\õ> “ǶÁW‡VÔ®@’º/í pÇ\P!¥êÃÙ¥µ\zc6{nŒâUÕÊŽ7iÛòT²æòµ¿º¡ê€×ÓucÁ§9WÏ÷…PxÚac(ö‡:EUw`í[õOþ՞뻵¹»]gY-¤0¶dêß|Ü_Q|àÓu<} òiV´iÐb ¥.Ƴ‰lØ~Û@¡†©à…–3¢…†qÓ£*DÔõ¼U<ÈÔa£ÔÅæ;¡âŒÚ5„®MkÛÞ}‰ê½W/`õ_(ù5øŸ#`û3dú¡Ï-º-leWYÛõ â ¾šØã¸•]¡w‰p¼¸iÝŽgQí GDÛ[¡\Ñ`D¹L©b¾ÅnD1¥Ã«ˆ — µ ~¶èêÐUtÙEK…#&ëή¶kC1ÏÂlåÜÃŽ'\v9Œ¨a½í¸:ŸíˆuƒRÝ1þd tÜÀ¶©îÙãîNѲMßp­EO¡'ÝMæ\Ë™†çÔÌ3èfC­EWº“¼ÛÞW€€Ù$êr@ ŠCkÙ32úEM ÚÐçÉñŒ( —DrŠîÈ“b¯©Ê…ºx'v>B°Z{ € ~Ee_µ€gZÿ@LÏÎnÙ Ùïx5Ã}Ïðdȹ¥ˆC§ÝJd* té¢â3@áÓ¶´^xµÃâšÕŽƒ—]îO±0_¯Ò¬<Í èCí†hÙÀ‡ó¸»Íú3hÂ#Ex/øË˜£G FY µÛ„Yê츦ÌèÌìø{MËý5* ý¨,šÁ0†©áZ;QÆ«-/»@¤Ó€ß¶¯9P¢¦Ä×€l¡ÏÈn±ï5·**Ò¹¿‚°]€0V†Üs-JÒ律=^ @\NþÌ>ËX¦iOŸª¿ÔŽãÅ ®CßÕ[Rñݯۑô%dè£ô%D)¬¦²Kõ\?þRŽÜ¡iq“Ö}ö(†03aHñÄØš@Ã{ïÚ8*§ø aL³õî?OügˆTººÞ[ ÇS '·~6Ã…¦¢Á~}pO€ñ`ƒeûÐmšÓ…¬‡&ìùdôV¾¢€J#û¶´ˆ†ëצ¨LÃ_íÒ‰¦-¦oXÓ=”Ž6Å…ê¶Ä´öîG‹Ø×¦ª £ž»Ex êOž1Ö\€ Û®Ÿ=4.âa¬q?Ž*K•€Ñ@^Ï ¬âVÔvÏK4Xv±{¤ñjElƒ¾\ïÄ 8]ƒ>!°q²vu¯-ÊÀG|jÊÍAQ–¿¶‚ŸP•»3+ P;¶7 @ú÷׊4+ÜxÒ+ÕŒOÎbò?öf[Røjƒò=(Üø++ 3óPjPÞó 0ñŸ ¨áŒ®zeh0Pá•.A¹ «ûB3•]C… ÝŠÝ Ú·ˆ-ãWCxö°i:*&v3Àƒ!‡¦âdøÀœRk‡á ÃMÛT0ã¢V.ö@8`xë ;>àž˜yŸm̉)ûõa·¹0Ù†Îx‰k öÌÕˆÝÙÊð¢_ ìÑB.Ìq4;P ³~DR”„í<›—½Ò€Â@g€KwW"×”²þ*mÇ´»l`8XÌôœ6™+Ç‚»J»·óÊS€·0æÕüjPÑ1ˆ.÷-$Ãû:Ó-+>Å#a(Ú¨C‘¹ Jgñ6ƒàdµ÷]qâ…«–¸€f %5wÔ¶_úòóíÉPïÁ¦­¸@ríqᤚež6{.º|¬eCkïW¾“óõµ=vø£ü,-?µ€Ûo€+vÕ@)e†x©À)›‹… »RÃ)6;^¢ñèJV~Ú³’—2b×ì©‹ÔµÛf*¶æ‡(3Gìššðóƒ*8÷ÙîHnŠ{oe¹W˾㨚};t¹cú‘¢Ú¾!rÈÃ@æD¨1àŠ%"Ë \^_‡rmH(*=gfÒ%)¹ûFU¨a8ÕÒÚÒÞmM§ÑÇ»{є䛺¿ÐbYÑCÿYÄLœú’ö;¦âÆ v†8Ÿù3ã=í³×²!ße‡a4>ù@åróoÙ\þ Íú_a_o¬ C9Ñ78;vMÅÓ?Ãb»STl8à_jZƒþÁ倈ñG0=)6ló å¬fÂJýøT7¢‰¼†÷iOï¶H>îìÖnT†òÒS¨üÕ âC¿Ge.÷÷¾b†«S»—«ä8Ÿ]Sï¨J(7•íŽ+Žy‘€Zñ`mÇ`¾{ À,ʱÙ Âñ fËÕãlœ­Wßî€Eç€ ,Ö‹#˜´º»¾6ÒœzÚ: °ší™n6{ú]·‹Gz@1 ØZþjSìQ©g¹DÁÐó‘<jdMÕ!eº¢9s=ê`²cŸú кî-~pƒ°¸Âƒ[éŸ k¹Ë3\·<‰—sW9´Ç’‹ÞÕ "Ն瀔ϳSw¶=€˜^Eï:hXZ6,g •R^ÙôöÈnB«“e²vÓu¸ŽÌ,P6¯‚ö¨ †ñ Ò¡j½§-¤/}= „÷†ª=aøJïgž»÷¥µ§Á *ÐPî;ð‹wX²®ä$þg†-RŽÐ5TëAï™íCI3oTæÕ¶}¿J"{¿ƒÐÏõÓÅ…jäžyÈ’Ñé|K½e`¯Á]÷8òž@ôÎ}ÓöBŸqaÀkMï6O·HŒáLuSÕT‚Ùî„ÇQæbzƒ…õ{y]u¦â~Ûb «ŸÄÀuÕ“)¨¨"dƒ6ßg £ñ¸s¦yÈ Õž‘˜^ϱM¡Ë ÈõƒÌPO•᥋ª%*T0K¯o¯ÌBÊÜJ„mªº’‘I¼Ä†aúìUÙ2ÖÊÐn ‡FµW38$NB’ƒH:NÃ)*/Òè3‘’»›9'Î,êÀƒ+z*Zª~÷íZvæ†UnxxPQqëŸï®y$ïnР­ö`€Uý‰“ªƒá¿hß¹.ÿ8"û" ÿE.pâŤ=€11µúiZZµª‘èpA‹›ÔOµ^+L;0z_°LD±eîqv8QÏãŒæÀí²¬å#õÔV«3\ãð j-è‹IRÙ‚úËÐ  …èÂVóÂû>+f×l ÿ¼ÞM¼±€êK ¼oîïkÝšC^×]ËÁÛÇPÿ\ÏØbp'år瘮¥b¨®eîi d°~ÕñZZÕ³káØ7†w§ª¸°R•ïÞmZÓ_HõÏWœi=@ñÎáéX› ÙÐ<öÊØÚ=¢ YH¯ž [l”|t7ßðZ•ûþ®Ù‚ðã¿« .êKQ)&ëûUÍ ö%„4ùö½"Œx)þ|1™²¬aýÑT@ð³:ô]G•ô¼FVÛîÔüõá¹8¿¾­ ò (ö¼ÖȸºJ2m~T-‡.y=üzG,®º;†\M¡›#ªµljm‡ÌSÌÍÙš=@踑ÕP*÷õ´±DüZˆ9‚¢ÚÕÍãb\ÊŠL< ƒŸ6®µµ{„q2ÛnÂSº80Rš'Ö€5Wlô•nù¨!~ªBe²}€X0X•öÜ,;aíÕ¶±üº7{; FôÄÖÒí±àª}e€Eµk,׺.\Ì ûªÍu¡´¾«h.J•ýÙ^¸3†KÊ9›ƒ@×µêÃeŸ‚-ø…‚[Ïð‚¨ƒ—ôbÅ£+ßž—÷ê²ÙïΜ«åζH.¶Ûpvš5Õ–?lEYë)A¨‹/ï¡×î¸ÇÎ(ä!U c8î,(4]{n´06´Ø¯¿ú‹øq\úJÏ÷Ï¢üÁcs:H_alÅC4žjXxô>i@駇쿾‡À°óPÞܹAZA{`]ÝÎ0–i€ñ ¨V8—EW"YÛV¡ãÒÔ(hÖèµÕ¡-A™ó€Šµ{_!g3Ë»mð_L§Ù/vI<‡ÍÇDþŒÏ¶jðîj€šSÆØYo®TR-±a¨QAÓ–.¿0¯—¡9¾?»9S§kÿ‹«[Ä×îiîêË(6 4È 7vîÇòâ穤5wòX€“‡b €— ’Ó=·ÇÙk¶A‹lt…ºòw,‘ÞPt{[Èj7€EÙ¢Kjßò*x¦ix .DÖT³¸/K^ T5Àµ}p!‹lÈ]êÑg"faF¬0PȰšùQÅE‡Ï &ÙÈñ¤ä¯téF¦ìYS!i¡•Ѱ©@ß“¢[.޼mx}{ß¶5C~í[F A# {&ßîÌ@´nZÃD¼Ú˜\î¹Qy2Ïý!Ñ«Œ²¡F>HÜ\ZC–‹~cxM²u«# ù‘@(x¨AQ¬xÁÊ‚¢CÖ`7N,/” ƒÅ/М8œ¨×1©¤žó}rNÏ™˜Ì9OÓ9èÌkþyÇwÐ4@ÞiÇÁsÅ\ùs( ¶@à™Öt¸ƒÖ“cªöyr2þ<;T hèÆê†þ¶ÀN"@4?¦)8­n€höÐ=LÞ©aI<1i¨ªúÑ^ƬIžbTDò„¾„â 3¸iXYq¨ÆÙµDI?¾è„Yôœ§I§£¨YvîËØ)Ÿ½zÒjªi˜ûOåºÃˆe|®ÇBW>UfÚW…zFÁÒ mûã2¬ò¸¤ÛQå­M»n;.wžÛŽÚúŒ·<Š3¬$Úü¸Æ¢Vn_éoþ6O—~ê‡#Í«?¯l­/«üyEª»O²Vo^Ù6]mW òVu7»¹y×nn蚦c— ˆÍçr˜* 6°PØû ж‚ãüÒ„Ï·\Ìj‹œŠöݦ 9¿ŠtÀñÈ“‹»uñŸïƒß깞¦¬€R‘_2Ôf¿;¶%”®×ÖTÔÏl«m¾z€ô¯ºí±²Ò®û•ÍÝ_9X:ø ,–[Ç;PÉ3ÛÒ‚"\¿ÃÚZíΠϥ]ç6 ê4¡À]#$aq5z¿÷}y¡HÉ€¡ã ,d­7ÑÁj‡­¼™m}a_÷,›žó݆PæÐê~Tí*«}†E1 \Ë_=ǦC–ŽŸ]ÖÄË_W:ZV Îb\ŽªAØ)kl\˜j ý–J„šóeÞ’ ~÷Kg â:zÖ¡©;v˜òb$ÀÖBYíÐ$f¢ØUe@­ê÷a×w'PÄk-`šaÿú3bÝù²;Ð. (øÕèµw²€¼ÓZüºMŽŠÞ­Ÿ@€Ë%§@jË@aîzÇGjÑ!‘5/Ë…˜ŠgøZÛ#Áï ôv»ó½Öe Ç§Ž ~[[/©°× DlZò0a^ ô»TÁf‹¼R— ÷a^@;ä\ÕY.¾î‘†¼øêwÖ–­0~é:¢O(ÝBï¤m¶@t|°{[0ô ›}†æÊþÔ3cm»ãå:Ï­g%¸€Ãl¨y¸^µ êà¼qe5ÒzÄùêPÈUÇDŠì\z°gTBÄÀ¼‚â%7¿* "-m$CnÚÒÒÒY=´É*a­ˆa»Éf·\‚½i -æ|2Ïnˆ§nóŸ‰ •O—))r߀XðžÇ±±ëôdeúvë-YÅjhùIßp÷üÇýñè¨>Z&Z•×BRÁX._`OÓËäcí+¹¢ƒ‰¿ûGÜ4»§íÅp<_ÈZ·^|‡¡ö|÷²î|c•áùš®//LKþêÖë½É€.ZÙ6GE‰î_ú“gÏm8ûÓçÎ gyþqÅGÀÚÚæ©0µç «µxœ_·à«?®,Ú΃ Gs÷ë6~j/$é ÿP<Û Äºè¨b?=€ C'‡½#0 ‹ÓyÔYT ô%B¿4Žgn8oPéÍ ªðX7ûi<'›”ÞÜc‘÷žß [nL `fî×s‹J“ø_pþlá¥É-—Û·ƒû|æuÈX ¥Q^ï[ÌÆOÆ@ù2oÐËXž/Ü4'$›æ‘ÜÇæBïCÐ’ØœÔlΨ4éµh,²¯Íœ¶5,ÚÙ®@4Z÷¨NÔ)É—³,,ÚyaÉÓÌf‚Ð ¹¸S‹7›Òîy5´h6ªvC_(rÎ'ú5" wÃÔ7«^÷¾kÐt§wP»Í î³1¢ Ö׊eÃï·?Í¥(gð<Юá…Ì`Š \â­ÝÃú¦§m]ØÚ®Ùœ.¼Ì\õÞÔþxsܰ¡ú½×äjlfØ´T¤í*ŠÄ ŸÃ`†$Ð…¡D[J.îîm@¸í`¸w›?»cÅA¿q4 —~eªMJZ?Z Jpç¡{Éd€2ì; kï›< Ç?v%ôk¬hÂs=[”ìlcývh`ñu ˬ,³žŒ•$moí¨Ðԗ ƒbkÀk{ K§5 !ÐM`h„¶lQ ¹ßZË ”}ykìŠXà³]{B%ζDeVfYäÏ|E•"j‹Ce,+ç—mHåšo^È`\«Cýð„(Pú³`ì](ÊÇÀ\LéÁ猤]5àÉ#DmmëÆ€âk[ô]ÕR¿F7zw´Ô‘QñµDŽmU³»ã®ÀBºû@:V¸-z`›×Y-)¹~kHu&àKí "½€Â…Ë*<5Ä™=\sdxm…ì†fcO6³Ü|³ŠMv§Öí:¤)aŽçSÇ<.ûr³Û]HÔºÿce³ahψ–>œÀI÷,hr³§”´prW¹Ü€’ÍÏ\Úí¼s‘ã•›ÊrY»í³qýeEeÛ ®E`<78ÒÞ)ø€c´%r¬,÷ ÞiA•}h\~ÎJÚ0T&‡Uö!HËYNzê }eo[P¬5ÀvbWóÒ{*ÍE<Z =hÚ½ÈLßõ¥Ez ~»9>ʽik££ï«³¥ciÓ#öý©f'ÃÖR¥¯Ý¸ž@9Xn¹Q€Ê}igFÜO‹¼½ø^Ù¸«(g:]…œÑßõ¼EàQ0À/äŒ>s‹ ®ùp ·4ì~ÈÖ ÙQµ ïVU‡†‹)îx€ƒ(;¹«Øo·CwdCÑ†àŒ¥ž–é|'¤äó½¶eKþ3kË ®í‘²`Ý•)ÔmuaFD]Qq¨ÿÁtÔ×ÄûÞòFJCYaùuí™xµå “Œ8Ps§ðàZ²£z÷Sî`ê™™æ;~:ˆ0€þ2EޝAmÁO=ؤ%ðX %ÿ-+³ÛžCkýÆFKê à×ÐF4@[²ä®°Aç’¾®*8¤·èžk<-ÿ<L ÚÆrÓœÙïèÝõQýÏ¡š›à·@{ÁÅj-ƒåîyKŒY/} àö,[íªmÐmI»ªð,:ÖZÙ±ß[çÞêÀáÞ{Ï(ß?é3-MÃG lyêæH23w®E­=—]¨¥Ï0x ™Ñ=0]?î3øgIõ:CªuÁs1¶³iKsiÉx.OæB¯ep‹ µþÙrg\SÚ¯^Ípg.TóÕoßÞÊ‚À_¦;3¥Ð3Ù#¿\iT€¡c¯v¬—äÖrЧÞ˜1Íp8pÕÑEpWëKÕ\¢ÆÓÄ7{ b=”=EJ\b´/›K;¶r©êeü‡ÍqKߨ¸Äˆ\j[u"áVñÛ‰ä"hjðøí1êº1—›éóéê³3V‹ØÝ¾ç×@Ë™åí®f9>=®‘¥Ëü(ž\ziÜ¡eÒ>÷§²€f„ilñÓA 6<ð‹<ÔǪ´;²GþÖ)ŒvifúõÚ˜1À‘§ööŠÅÝ#Ã?x7ÅžiRÔ¦¨vÈÜ'D\.A]¡¶9¹‰=^§ÿ¦-íÀºn×öLÍ™ïWe݆à'®vÅ-²Z m†=E!Á½tD ÚÓSÅ‘Ý^.¡¡AÝ¿·:Ø3’Ý×5¼ž}íA%³1%¤Ù0_ãFšÖ]Ï×  œ°}rÝ)Œ Òqi‹¡iÌÓñ|aÏËMí¸éøëybçƒ^lá½FûV0úmO=?}Ø›ëõxÁO¤±©}Ó„ ›=j`ç=²ž–Í(Ï@¼õjŸ‚$jÏl_2åÏß_qÉ@¥µ;4.å#1À…¬}DEÛ¾ ˆ€ü£êÝÚ@ëÃÑåU@÷X¸hm·Ðz ª«t?mçµåIr4PÄ­ûÐ$Ûã«xO°/‹ñŒzê}¹ýpB"¿Ç<÷ à™IQ±·[¬0ÂaæR'®kЗ»ïöïáxâ_é}Ó¤žÜÖG %ÒÔç´óÜ4óþ¬A× .Ÿ5O^Ùœr5‚ï×i.N2dÜä"Ží…ÝA÷!»'¦ur%o_éÁm¨ÆÐzýÅp‡×N •ÿí}/ŒË 7¼®î;þGÖ}ñš?H‚øÐ€ž×f?Ð(7h@ïÏÓ1 ÖQ9{¤/ë‡øµÏr b¬gu<ÀfüÛ+ø†kŸ¸p‰÷Y® qö¹.ìÒÆm¹g;´Z[¢>¡Aš*AŒ”Ë Wå– çzͧÙüôès=x†{§iú¹Åº™©ú‹]TD$ t¬\LQ<ÇÒIcBkEÛ¸;AI;¦M½U÷|@÷°ÚNy±oÐ}ðQëŽþ ë{¾ì ùÅçimºfïšy9¥§)u妼0Íš¾ µ=wÜŸ–u¡ú¡ãú µ­+ï‡>&ÕÞ÷Ï\Èú`]ª3ðî– d©drx~Ö%K7‹Pì>Ǭ0}FJµnѸ):R¶Ðw±GÔs*@GÁý~@£èÑgº ¸;¹¨–›CxÅ>³+x]›'¿yÙSÀYØîF0jÛ@…ˈšñ „T*έ:Ô²:#!æÊfý|¾ÖÇÌò,>{¡øb¬”CSO/èíÖù›¯÷¸mÈ crzhÙ†xÇ…ÎÙ?¿Ù(­ûšÿþIÿÏÕ;m8Ù®¹pµ–ÿûZãvK¸ÒÚå^ Ce[qñÊ?Xýäë©d=øó:¨-ã V¬'nÛæØl€L¯W—Æõ;þx’OÈôxMÎͱSÝ$º6ü·ü`‘Þ…÷mÜÂj¡SÞ¾3uÑž½]×7OÝ…€nB§Ç› s‘qÏç1cÔôO?\. GîÕhU¹šîŸ Ð: ë[þ·×•íSu!«ÑkWÌ¢þ“ƒ4Ÿo)özþ€¥Ã«`;:úbþ`wHÉíßX*½ÊMïÉAörß*› ºž¢oàun4í©:ôv‚ú¿u ÏèM¨ÿd[í e§®t*{׹붛Ë.•Þ”Û#£I™¾2O»þBûsa¯¶ü| 'œ+¦T= Ö¶…í* ªüî4Çž_›[š!¶˜R…ú$~ mˆÐ £*máôÁ¢ìºÝ0`>a¡]Û¶ç‘PDߢ&Qcû¦äúMî ÑgEø5´ƒ0øü„wlܰ`j¤¡nßÀÏnËõŽjØš1¥Ù'HÓÀ>`oª0­6g証*ìÛlŦA_éã_¨RÕáWãY‡[°íh‘'eÅÈþ´Ën0Ÿ¬9².m ™ ›ç0ðæ–§ üºƒð(M÷_e´ð«ÝÖD‰c‡ú®þtÛ•\â¾vÉï…›”vn¸]XßÕ´õ¾b¢õu…ü­Û£]€ÎòÁº½x€îÏ>åOW_KÞS þÐ@bНÍ&@4óYüõ‘Òv å°áÍÒk«è„U¾¸l÷Ù#ÕXsÁÝ\D)ëìlY^To›hLíL DùwÝ™“…ËŠfþ,lWyÔ? „aúÙ±ˆáXÁ'T%  UeMG±;‹œ-û}[ßœFW‡ÚvÞ$©ê(%gh4ã -t nÌœ™¤W®"ì« ”Æê¨ÉmLÛð×võ ªý°5xòþí@+ÎeàNq+ÄÕÜœÀ¥È-WÊ+ÚÜ_hÊž»°‘Ö ×vÔ+Zä^Zƒ»SõH)¯: à‚/Õlsëœå¯u‘ßGTéˆeË^ëuÂø<®AVæÏî0åÔ"í/ï)ÎègEߦ›»a=Q! ­ïó‰ͼ¹Æ–{š­Ï4€Æ—ê÷D³î©QínŸ9¶´fì÷(Ƽá'å¼xUÔãJìWö1«Úî@|³ä¯óhÈØ5âZÃKø^ˆ”5¸<+(œW¼®²-Ú<±›o‰4 pœl j÷Ü\rJìŰÙSf«òíÕ@…ó’àh`ÍAÕ@îX¸c0Dè;`ˆÐm@w®;ƒ¾“ç§&‹?ÉÃÐV¼uSXp? ôNm+~n3á÷³ß‚vPï«ßL¶×ÊðÑëã…ueà[¹ß~! “PÓ#MÏhåM³~ l!ŸbPó…àCZógòM©°¼Z7[HãÆûo±&\]gÞ„k{À¬B"x`e¦Ù0pvÔЂF_Û€]ÁŒ%; 5ðÌ–7 kÐ ƒ>ðºŽÎßÄ´Àuל7%ý½@,Ï Î.«wì;:ÀسÐ;”¼™þ<ö€ ã=½Wûž»û‡?# †ØÖ=sÓWll}Útì‘ ²ççqoOu0ª³ÐŽû aPO5{oÛ·Å…4†»fë…ûÆÒÃÞ\Æ×â‚oÂÞòì$’ïûSGæUaKÖ(´%÷½à.CÍOu;CäöÂÞ ä'®æWpáAÃ,'Ü<¹=ºÑ"UE[¦´¾«eIÛ‰M<4hçÓ½©ÃŠ  ƒÊàXcÏ7 ;j\sÏ‘Ú[¼•ã›cŽöòƒtdŸÚ ½÷O¬iÇÆ½žáu¢Z€Ãø–z^Ø8 gFþÙ dÐO¶æx¹y€þL¿¹×ôý…0Îú§‹u=¯¹=aF¶öŸ~ÔÍþöÄ7¨/·ÝF'ÙÊÆÙ^Ý#Úv»¹ÐzÑ\ ÜÍ“÷ÛOO,Ûç5}“íȲ™jR–Cç5x©¬¡›Å¦1FÉC?ÍÝÔ¦±'Ëû~!EkP›²mÚ=ìxúâ‚m¸1ÉUȆy®y¦š‹TkØñ,mÇ­˜¯^È¥ }8Îi\:ò0ŒÔ¹ ì!èPÞF$¡GZÖ‡æbÇ~CWÆ]ót!ËAè_¶ ;ìYW%f«…ndÉÙpÖ¥ÿ=` îþµíÎuôýµ1¼#U¬+‹m³]ͽû^ðùÁþpGÓÕëù ±Ï< ºë/ƒšôüÀ}TÂçŸ,7têÑn¨ïlè.ºPˆ$îW2™·WÃèöt¡¬=/ÄE¯ý¿Î°˜‡¸’Øà–ü œv!©-°Í~× ff±Ù½/î˜aõÍëifJq%Ñøå—ÓÕªp™^©)‰?<¡±¤×iW$¹b¡ ´PËqÄh8‘ËT¸[h`3®2¨{å^ÁŒ7Jæ5nbJü¾¹,kjÙÁ¸í…Ý*ïÎìh‚=7ÝñˆØ+Ñý®Ý8i9°ÆôÀë¶ÂÚ‚×þ67¶Æ“¸j¦ 5¹M`ÎÖŒšåå¡bÍ8Ïyë»Ë¸±®Ä ðKKŸŽõ$6wB‰šŸ6E÷d/ìY»)Œ—æwü¦º0bhå® ÈLVn…8\h«4l?Ç í8¹ºEÂ]Á ª7Œ¹ì]€ Ž^Ï©Eƒ÷ÿã!·îÜzxÓ—^3ŽÅAÊïV{Cú’þl‰¬³Û‚; [DÒ²[H³Öðþ‹KÿÓ‹§„ño ÒÁP|’wœ,”ô•l~'m‹üjØG=bï ùàÀ¯çìÂN ìVzQKÞ)`ßl@]ºW8%••°Ruià_T¶À¿È…Ÿ°5\sÏ•BÇÉŸ¡¡k°fç-ˆÙk¡ñõpØ™ÉÁKìQ˧v¦E=+sDsÈÛ†w+û€ö¤O³÷$Ömù+÷[òÜ'~¶= ó=ù€Ná4Ew–ÛÄ{t7²&GwÒçb-ø¶ü¶ ³§i ]³ê³âDñpÉ™zî,ê˜vÈËW©‘À¨)qÏH‰î¼Þ3Y‚¹9ûmA`ˆQ0]òØ!o¦¶8ss/ÊÎÑj? žØMI†¾‰8 †ßp»8§4¸hèðcc‡ ï'—¨Ã»{zê™=ºWúï© “ß¿ù'Ôý¶mŠ é«ûÂ÷Ó~e›  J}^ë*O¶ô]÷ƒöž}¯ŠwŽC6¼»æ§m¶œ9æ²>ÞâpqgOù¢ êzÁO}¦»ágÞa>”À¿ç°ç:¦%RÜì-³¶.ÎÝyàdË |î[Oâ¦îV[ÎFóFª€ÀY «óDDþ$»NïdâÂÚµFÊHôŒ¸…çn ¨“‚&mƒüí7àÖ h~âÏôÙPÏ¿tƒJEÆKTúêêVpòê`ÁϬš†7“+ôí’VmOµ5¨AíÖ`ÖH÷fÚsñ0èEpI%b÷x{_ìzÑ´ØûÎEtgÄŽ¶€§ºÝ"\ÃuD«0EÛ¤Fq@â¦0–‚à kPw¨Òz auû$Ç 4€«ÉÍе†Ídà¶÷ìh¦$Ú‹»=«|„“œ`ìáýÀ=w;€» õÜ}­*ÕsƒNzÓ?j´fëœìZØÊ.锩ƒè2ù™õÖYY;{î¾¶ób`dQ5G[]¨Æ°m¨¨Á«~íŒ%{!˜ñìø··‡'*YZ[Àh­›Ö’Xå*w}d_Ø#>ðZ}'puËôVûãùt¡÷Ó6ÃñBÚ‚¾„HýÐ31Î ì_Coikôlxûú¼+™`¥=s¾(G}çJ~έ\µçN •^nA~ËÛëe÷ÅûÉQ。OÕ7˜g¥°_Û¾Œ/ÚaZߤ÷yÓn-=×6 Œ žx œY ¢Úr!Y`p.ÿº'þ{ àWè@| ~[ôç÷ oÍ÷H˜–·ÃY¿9œÛL´ú© +FÅŽC ì­j'¨€à¾à÷ÏeŒì½{>§í00žy(‹2(B û^šŽµÚ{I’¹ï{ÆÖ^³›3~WÝoÖr!P¯ÙO`ES{(-ãõÞ-v„ËÞc»Àãn+ʉî*ïJ 0]Ó]ÚñëêãX×mßì/tüµÆ^Æý|Ÿ·–T@g‚ïçÇ‹Á—P&£Ø€¡b§ g.K×GÿÕÐx…Ë­Šq‹ßWÄ(¨€&gP÷K4Ž @¡åDi=ØLx7XN!Þ8cüFO\¿œ‰<ï®bž‡Ã gæT8l»Ù›µe÷Üß°>À4nX^STÕík>ùõóv¢%@ïoÝлŠÿÜfLm­gIË×úÖ§ñP®Dëò§ÖV¨]?Tn‘àíú 0§jxº°^úµ¹c{ÄPÆz·~zâ¤Õ?^½”Y2:ã݆*¯­‹Àîç7®),7§hÑ—ÔÊò¶Ï¦½´Ll× ¶'S_€Gá¡åEûk[¾i¨Yõk»þT€ÏëyÃE[CßŠ× & —¾AÊ­WÑ܉Ξ|Ks“«‡`‡ÈÉýpŽ%'»$”Ó†‚hn½cf¸¯^Š˜„¼{bÃ"x)bØ‚›1ôúÐVådi÷{º'Vmü¦÷çêQÍEýœC¤èКßÑÞe¸Ÿn¾Q »—_Øö‰ô øÚ4¥¹ŒÓí«÷¥»÷œm‡Ýp:³Ïw)¦é0ÜOkšÍ…Á:\öúƒ5+¿_»î[—p÷çÉ Gæeym· ðT [ê¥-‘°êÊ™úÎ 2D ¸3mûÓöd¸ƒ ¯äpöîÐl¡®9`ÅÚó”%â({f9§Ò¨”½=xÇ¥·\ÅwhẄ|ì*ͱ…?§Ú¹×zçSDFFOçª3‰¡Ð‡„§Ã±>/åŸ]<šýœ}ߣ¯Ü»ˆ¯c¨ÄžØ`óáuÃ9ážÓVâ§S• S[háé·ZcI†õªoK æžG¼…8™sß!]Þ¢ÝUÃ%%–ëuëe{¸ŒÃÍß¼šÍnÿ+ûÒ>]OÞÓb€¤® Äч¸'ÿDå¿}ce|$]ÞS#EÜ®„g+®êY=PÚpÙlyƒ4ø™_Ïg¡íͶàÍ>·žk °¦‡€&жi|)8%ºl¡zRƒëñž62ÝY^(K^° mj‹4¶m‰À.íì8Ć /mC’ç•TÍ•v-jÒ­dס…þŸGä9é…žÀx¢3³ ¦tdŸ*GΪØvUnñØ­+\=×›EWµè>ԇËîƒ9¢1Ù—-¤½oå|ŸÅ®@ÔeÛVüǪ݃ ŽÒ Rõ°w RHÞàWt»~€¢xPº†<·²8ƒ+«Zô‹«Ã‚€ûl@)2 Žé«MÁJ#º·çÃÐU#t'˜@C€ëžÁç–{ôm/ôd`˽±6c "Œ›=ë(üÚ`às]‚Ù7Œ0îâH°%ø¶Ú65íž¼êR“îËo¡«Ñ)œÀ‹Ð„RhkjåÖêÞW×(® àu*x`íöÂF_ä@‡+Ä…ëG×H?„zÁaðÊž“¼'pm‹Ð œUN²ÎãfàÔm/YÇu®Ýêt®AãÒ>uÀòµ¶í€5hX7µõ;Ôó=# Ä®˜>ïÕƒ5Úóõå„I8ZÀe?²/¶Q-@Ï×e €õ^!MꪳüÛ=ðƒê ˜*8wÜ Ô%X·ÝmÁüÛñ+–ƒ ÒLPþÛu{(*€s(MˆbqâvÄAÀŠ‹_#øAÔ#BþǺíÅ`R;(J0ÀüöÌ­[ȸ²ßD¹Aç¥éÏl2rÑöHÎûÀÇÐû“óÕ!àö{Â?ÓçlìÛÝÉ{û¾å‹•1@Á‹ú!¡j> MÝrv¾é‡¦?šó˜õ^S\oy àf„ªá+Û#ɽv¤ˆ9j³;š }Ä›£ÛÓè]òÅòKÁ¤DJ€0tû æ½€ˆï3šËˆHéŸfÑm©5k±ßuGŽIhÛŽº°îmûÄí–¿]ó!Îøoìñ” zþöÚE†]ÒŽmÛ“p*(}Þ'ç´Çì“å–IRû*+@{¤n5”õ‚Óñ»àZN½·Ô0øÚ«d}ñ éLß»çýóÆlù9€ hfÊX€pI£ÏïMÜk²žõP"z:§ÏËúöÃÐì;Nm7`Ž-¿æöİCq-î—B@&®<á¸Æ»›¢ÇÏÐuàÜiÃqnRãÙn×2I aQì8i™W‡‚ÝûàFÆs_r\PÏ e=싚+®ÿð{? ËFÈ5{å¾ Ã$ØþBîASðÞ{×z¿€1F¤©¸)ì€ÎµOcCYß·çzàçSç¶@XàÌ´Å©²É— ²MèôEËýeÝ®Ê4Ͻ©íisæßR¥„@³«™{m "RPµã'úå:jÆ v ˆÎ`b~ ƒêÁh"eàÍÈo Mzâ{ë[ù7£ÔN»KE´Š–øËÖÖRe‰zÛl/ãn¾·¡!g|ÿtÔ»w™ß–( œMÏ0L³à@‘ýø®ø3 K@âmˆ@0}WIUÙ½YÈíœýì·lª§¾Ù×ÍÈ·ás‚>º ÚÞO‹{U·_v€Eü!7°&€û§¦ë|Õ~ñ¿* œ§´¼,ê…ZÀˆø`„î^)áGo@mÆ ^ÿz·hßn<ôŽ?ðR¨ g¯ýñÚ o¸åma˦.z2ÿŠ?¶C*aB¨·Önl >ªØÛ†é,üÁ”íEÿPJ&þr¯‰ÀÁŽü´ñ÷}Ô1xDØHØÁTn\¥7t¶Ä·¯Ï>fØ Íí£ÅÚéÒ<̶߇ª:U%‡3 ½ß”I¾ÚÚ „o¸Ù¿©¬ÀW}XEä»—Ç97%Ô·Ù›~~uh –û¾­ðïòª;K~¿2€Z®Â&^Áa#áük¼û(×÷~UU°@Þ¥ uU\Øï à ž½¿^srI … GS²æePg(ÎÖÕ†¶­úC \ýÁÏ‚f뮇ÀOÂòSs˜FÝìú¶€*…{ÜÛøÜö»Î‚ÀyÜïqQ%†E¸o¸ôLÑÝ»“s»b¿¡‡s»3=4Ò:wskK{œ×Ó¦G¯®ZäïÛb†cÑ 1†× #Å(¸uÝc¯©êBµéÎj\ŒÝERìën£-+àe[l=|Š?Œ.èÇš)Ñ Ip±/1þ¡¨;þ¼ˆV ü}»àdŠý®5PŒ¡ÚòG€•Ѥÿàå€ &Ýî–Ô§#³æ-ÌÐìv¦ÎQõ·ø *÷ƒÝoÁ‡¸QõÔ\¸{Ý“à`¼µ½K…† ¼\_ÍôZ‚‘#¸qòT^JªèÞW\ &hùÿxòÝ"{R”»à+‹Êz…®Î_=q´D½ùÑÙ§ °îwfP7ÓÔvg[¤óÞ×èìh€{UÐÚÞìw=0v‹Tq†atÖÖ°ñ5Ÿ½J;Pl®@Ëѽ¶Šî»84Ã}Û´H=°%* u¨‘©p4ìíA¶?|k›©,X¨éÐì{ Dpl@Ùå@7}0¨½>˜j/ oôú ¼¶+w@‚F\fØ­ˆÎ¶¾àõùù5/(h» k û‰K‹ÓáNÂ_<ô-‡¨g0¨íΠ‘n\ìÊŸ…9–äbüÎÍÿ¦í5ûm½×\b㬯zÏa%¯u™<€ß4%Ž,@TÚfËU7‚Þ==þ·\½¡m‘VDS#Gߨ`³^9üPƒÂÚ•ù³C^Û7Ï8D0ŽÔçß‘ç ñQRt' éPt–ûwø¸8ø¼AŒcÝ{œp5W\ôÅa'fSo{¦“c:8‡à(1¾9ÈžEÕvÐ{©yìûó™{rì{¤Û±‡^ ¾VÊïþE»Ó¾E÷Ìej[ æá{¾CîwÀÿÀ=1àášÒ‚u²ëÀîT€_ƒé]rÉMÇ›ì8ukN6U»$ ŒêÍfO=[¯à:jïz…Ñ{a¿¢*íŽAIŠkq¤ow]í9 ÆýâÓ0p+òöÌA.a÷b•¡zºCˆþØõv;¤æÑ> ì³o[àí0ØÍiCPj{²OGJ@2f´îö1ʼš3°æ©òâ:ârM>·-@l‘ß¶Û WÉ€X;6Y¯Ëúø>0d0ï’ÎTöm-!Çeoo}¸EfÛ¾XÆ$¬÷$¢M¹å ™¦Ú8ædÐ Ÿ0Y·à Èžyh‘íÀYC ÄÃà¦õƒA`ž²Ý2a„¡hðooÃ)-²¢o¹†Ì„Hÿ©£x -ÿv $)~@ãv ÃbŽ@zx-$f"a½¶"õ (nÇÀ˜‰Wô%ðʰ[ %ÒÕàâ»îÀ-Z8¡ŽŠK¸ØÛÝ2 Æg>³G#ùP‚A»N2†aIƒÑxËçfwBž÷›’ëÒxQGŽð©ª­è€nò­öÊ5’Éå¶6äMÜäJ;ÃqÑ |UôáÞ.AÐè(¸9aBé v“+¤uS…¹IuTX¡.™*°ô覆 ïê°«¸OÈ|{ÝzlEΘ–kFíûÎò“˜%ˆÛ¸ØXò²!@¨C`È–{ Õ½G¨[më­`A½”ÞÐqá;¬¥ad2Õ@¥H\<Ôr€m¨çýu¶à|²gú$•yraÞ>2„YLa?‡‚¹zÀâþl9¤Ä—’JÓá0ï‚E%<è³ôôŠ~Àª¾m«-ø‡Í¤Ía·ç¦ç?åѱ"Û¡ßc`U]»'Ú2·=µÕ†£Ó†a×<d(Su›ó~Ë}c¼ØOÓÛ ·¹qS¿:¸g!ô²XÌæ¦nŸ,ÀÙù[r_ÏW ®¦5UW7w=cŸ[éxô z´µ­v?N§ —©qcë \_®è; Sc½`ÇðdîÂûf²3ÞÜÉãx¢<Ëjƒ+ŽiU8Èé4ÊïcM€Órƒdj†¶Ù³Žd8_ìè{Øí§hl¹ë˜ ‘ïÕÀ×W»¶ò8ݱßüwí»ªAŸã‚8¯ÈAe…|·áØjÛ¹l“?¯ºñzþù¹^ïqQƒ §ÆSêênÔöÇ ».Á®ž¬/«rðdE×ìËñj¾ðò´c¸1ßMêìîBŸcÐUo9¾ÍÛrýص—íh×{•Ç)øïò¿·«[‘[¶Žn;ãx»²°L‰#àçäbä;ö}^ܼ·ìúk»©íÉ#<ǸI¯¹ÕþnHî9žîÍã[s¡’&ƒç"qÿ Ά†ö´y¼†GU0)ÏÐmh´ù{°«F‚3.ã<\Èv[è©Ôqñ²Wó$€’»"NÀ‡”›}eå¾”û5•‡¦9s…–湤º¡âW¼žw¥ ´H"¼^ ̪w½ØÈA«5噣©Ú}nk¸•…x¬©>ÊBÈÌvà+— ¡1ƒÐшüºˆlr:ìU‡ö $¯vMqÁ3ÂýA¹}Ûµ%Qʈƒ†í›î¾‘Ì][òÝÔmôGEÖö‡K2cGØÃÚ5†5« ÷óó"¸Ösá©ìVÝÁÞØŸÝT\ä«-Ï’èâ2>SlHÃèzv×"$¿ANb;*Äñ[pª]CaN5GšÂô¢9 à¬[Ö; nÕ/²êàÉbtµ÷˜'þ¹ ö‹¶:27³îlis>Èçý8/LæîÉÍ— ›Ý»²âHÇ}kìÓ…>M7Ú§ AwyÎ À)¶¶8Ŷ¢% ž E{ø(Œ¡|λºã3Â)n@ª;sä À€o_Û(`¶@$Ë"TŸ­˜ÉVè:{€ÙjØô Ò-Mk¦ð °PÂ> Bb™áÿ€¨ÓPApØ$¥:¢`»®á0ÿCv\ ‡N¶eËOÀ#Jtñ=°zr›;nGôJ ¤š‚_2´rÉ1B ¢WÖHá«/øMî ÀSP K}éRL rùÂÀ†÷†Õµ¿Ÿ`AWsý;Õã8°NI,úŠÿ¢«mÃÀ¡·ÿ@°¼¹Ž5mË!t=ü¢àÐYP¯&.Íù¹jXkÔo@o/ùý,ºªç @í­ü†ÌÂÜòËDÜÜNÌ›{4–ö%Õ°[йèåÀ¾È¬vtÌ÷@æÏmá={šǦa00åS»åÐÞÚv݆¾½¶O†•]ÈÁW°³0)± \ÁÕ¸JVv'kv—j ôÚjÛðùî#v—ö=˜GžÐZ\¾ÿÐõîC LËÜ:Ûrü_Ó×¶w<5={ûPyÿ ºXÊ Rb­½A[›_RP»°Mj‹ ‰ÕáȰÃÖ›ÀÑÅê°¯Ø )Œwq§ `Û˜ ³Æ´;Âíøúchê‘á eLƒ2(™ ®xfÜÕÍÔ†¾÷Pê°ÄjnÞ`Žl ðJà j¡þE ˆá{wórÏAË3¸¿qÈ¥-8dÐE,–g×9~‚óYš X'‡Ë MÙÓ{5 7,ÈÚ`“W-3 ‡‰ºs æhøo €˜Öƒß ~¡ÐѶáð6ϰ¥µ]ɯeW²ï(öÀùìœíÜM­VAy¬ÙÒ÷ö”¤óõU“<ó xæÅ‰?Kô‡¹mÃTß²èÁwt5¿.* ¿×ïÿô™.úÞ–Ã5‹xï_ 3å P>î«–C«as¿ßrÕ7Ï!§saÓ°uÃw±¹#Üy ªt˜FîAí& kÇKÅÉo+zKÝßêa`Ëa8Wcð¹<¶ªXèU+˜{#ƒfšf ï 8Ì’‚-WyóŒ ªmöąߎ¡à:BæUƒfv-ƒú$ˆB nŸ6´-וcÈOÓ0y¸þx¤§(8Öj¸ÞËZzêà?JL}®`tó{`€Ä–üUê²W7í‰\j Ìòšv`¨Ècu¹m„»JÝÿ /IFìæÈ½ñ È’žZ*ÿf,•+*oììJéâfúÉÅn?¶¤sw³¹œnÑŒv÷tº™¡Ÿ®ƒÿüîÿ¶‘íSoK®çåšÃ°i,zð¢ ~êasáJq>¢íŸ~œ.P)Îc (ºð§1ÝÆå£ßùg(¸Z¨;çÝÚ¦9<Æ ÛŸ~ow?êã…\\xÏà–1wÝÜ-®öZn çõÛ!¨Ðý Bö \l±"\ƒñ‰æÔt\ÍÿC;ñŽ1ÞÒ_îPÚ¶j9J¯rËPËÌjÿ¸¦tð;|µ©ÀE7mO%Gy¾èÙÃŽ«5»Wf0ÙÄÄåB»Ýk'Óå±e–ƒ ÿxU¹wP¦GGo†O nj‚ñùjdßQ±¦O4ï³ÇÝÂ[/ÚÃeçì¡Ù"XÞ0l ,Ü0\cc+D˜+ ‘Û¬yXÛÃMƒÏ{W?K)¹3¦=0âé [,.Sçƒ+_`°6·LJäØvYõÅÝçjçÅÇùçï»Òî k`P† °Ô €>¿¶u¹)¸k£¢ö ÁmkÑõûÆ ‚ÏK? EðzïqU3w¯‹´Mi¹«ŸíŸ Áó÷ßÃkÆ J3¸ôš~¯Ÿ«mÁÏ{xk[óïu¿kóÃBøcÓ1K8aˆ~RTgê2x•ÜlŒÒTÛÚW¨üd߸%åÀåý*·$8£º†×y•W¬¶—€{"µáºPÜŸÕÍ‘A¸¼T×ÖTlÏŸ®9îÎKxÙ3:‡ëämêò ¬òÜ +Ï ƒÌ¹ Î/œô´ÞÇŠ«†æ BE|ž›;Ø4MÕ,bëÅ캇v3=EŸP §EÓ ¯ô°ô!¡ ¾Ò[dóW·¦Æ¨È}å¡;ÑÖ¹Ûkj¯Ý@ï·q¹’+,9»>|vÄ ‹jCЬ 1ÂuâCÌ‘£ÞâÎ)jJˆæ,Óíù=© Ÿ}¿E¸Ò}µ÷ž0Ëð°~=¸ú¢;½9€g;4\í2Ô•¡çc9[$ÊØö &ë¡•g޵uñp.l6xXÁOÞêÂÕ.=(™¿Ú´U  •EW#›Éêз†áCôV°¯¶Ûsã?{lŒê1«{ák•×vcP¿jÖþèV¶óáéBAµA¤¸º”º*ª§ 4mºhLº¥ÊC¾^ra‚¦îùBéÉîÈw¿‚h k¦ûEÌzÓEO%ÿ€¼ ®½×ÓOæBµé¼’?GîQö -åÒ¥ºvš=ü„Î"L¨§}QdÕúÏQ¥£fLh×"óN„2ÔÇ„V.z£,6}SØÅ^œ[„dô®Ãe9ïªGɯ¬°¤’æQšÐÒ“V _Ïr¬“; ‘¢A`Œ+pãA0цj8;0ë¶mŽ¿kºf˱dMY@ÃH·s¥A\´èkí„Mçà&M…´6 R·Ê¡UýÌåÈÖ}ž±ën§9@|˜¯(‚kè* D[•2} ¨_ÖÉh Á¥w㣤/‘9jLõ±¬9j,TëÁx€¶­Em¡ÉfƒT{d(L§¹‚a×­ÍkzÉ‘Œ»ƒʈÅa!‹–Ï ¡)™±üõÛbh1üàXtã·nÓÙwÜನ®z”ä*orÆÏ¶ÃgVuhÁÝqa˜¨GwZ6~=s¶çšîµ|•ÛwàR÷hì\tíó= hù‹ÔP‡¶â¨èàz‰.ÿ5 í¶Y0[‚7»“>Ùß”±4¹-Q!úc¿ØŸÝ"Ôr€6¨æ Î=UoÿiMG¯Á…±[°£{4ESú³OMéC-Ý‘Qí7¤YïZnêö€Šc7}úϬMÝÙmS0ËTÓï|É’áË-À„ýÞ !Yu?Žó¬‚Õn¶ì®äh‡Á^Șôöª6P&oµºÝÝ9µ;~wŽ^Ï€®“ÃáÂšŠ Z}>ð×nÑk‹¾¥ÚPaåê~ ¦xâê—~òO¨íÓÎÿâjÇgË…cMÛ2SÛ¦Ý4^N~çÜkK®ti92ÓÛ¼T*ðb:‘}fW0ßDÿv -C~ò`€ï졨Àuö̇ңgK3;#,ß¹*uç݈ú#ƒÃY ¤­=ô¬A¶µ5ÐF´Ý|f°}'HW·Ð"ìnY•\$ˆÜyEy èÙsIMÛ"ÓÜðˆµÈb6&™Âi4F›#x%ð"ŒÈQu@x@ØHŸç á\Ò°þ‹Ø°ñ6ÀÜøˆ®Óm½¶ÇlîÆù d\µG.ýY•á\•à†¸¬€ëWV°Þ£oïá7%G#w=GQz ŠžµÅ•.{pCŠ]SwtÆ;0–\ €Ç-ò=Úýp*‰D)‚þö%éì+°2ô5˜†›3¸¤ R#m¶ =»åººà«]æ<ŒmÅŸûnr³£µÁð8ŽÄ.ÐRYœ@N)œ†Æ>Ê „+ævÜ5ÀÙ½’Aè‹kaO Ô•ê•×{4Z½ËîÌ¿¨Dâ°!‚ß000uv'[6Àö­ga’²º¥v ©ã‹÷öížF¤“[ %íEè%™~87ôdm‡’}{më8Ù6[ÃU>ùö!;Óu°{º£gµS{òòÈ<Œ‡Ök©3=eÓ2ìn ­ÓYì¾¢ äv¨›Žéý©¾uÞ½‹ª¨_£ sa ÑæH¢Èð‹Î§ [~=×N®¡m¹±qsÈžmwyª+;F¡Ÿ9ðØåJ„u5`Þ^N5X QL¯91Œë0pl£Ç<° ŸÇXµ!8îR\ä¾ÙR,çf¿k(Vw³#ÒrA2•ã6;€³ìV÷Ü kê²[&!ê#FŠE´5dzڮâ¯CØß¢*9–˜K8º`‘cŽw‡ÜùL·éº¥®%Ò¯û †MÁeJMÉßk8{0@âÔ´Ó[÷ìêÐ×µKlì™b¶Í¸[€ó-ÏàœeÒ¾t«Ð‰Œ Ã¥dÝ%3L¹[£.¼£Pÿy?ÀóXâöîsÏ%…‡CÓ±çæ ³N÷þ ¤_-w‹¿Ãóq˜”l>oÃp´Áõâh»–;fw-ÇIw‡'Cæ‘»ù/—ý|2ÝÂQÒë+‡žáå+ ±[Õü;ª®asß m#ZÊ_؃ç±ï†»ö¬'†‰îÏLvÊ ƒß1Ô¦%s°¶gÆðÊt s±s²÷D:ß®záãquå%om9ÎÜ¥fOý…­ãmu¡nôUùDÝ»­š ™—O]SQܵ›½ù¼ ¦N>ÏCª€Cx[\n#ÿ;º¶»0®Ì‰9Û­9’÷stAÕØe†×^Z†¢¶ÏÜ Ü¶üTwæ¯bcKäKÒz¼. NèT¥–¤<0ùGC•e½V6=UF%߀L?QüúPšÜt †n8¤½*«3ùÆjCðØÁÕ„á×™1Õ#¹J 3µa²>xüºg÷Œ/µá2ÅŽîØ´pÏ%7ìg›†Áã)?æKèR0™â½ÑµÝÒ‡v•C 7º¾ÐSõxÖâ±~uø,sa_u__¼ãKÝ0ê`áNÆjé>¾cØ}X6ư[jX^@ásà$ÞÊ«ÔïíoùHR·ËìÕšbá*=¼9S”}ÃÐúDsýóU}ü®á©!’ÁÈ‘÷)Ì6rât©F'Œ»©·'\.z©G¯8?]¬énú»K;Üè ›îòÏøÁƒ¥ne‡½ÞHvØ­rå~`ðü?C+º8Là髯T߈úÔ{·ÙY.ÚTO3ºË^iŸ}ÅðØWÉa—;ï.àª}ußídÓýÓƦ=÷^Ew´E¿Jÿ@Hñ!˜8BÄ»=4W+a&ŠÛ^ÁýãªxÌ‹lUß”5’5vé`Þð«Â›Z¤¶v¶·ÍÑ’á€ëjÖéôÎìî$¶ì®Ê)ø–3&Âw uÑ€¼è ) »FXïx·iÏPÖØ=`( ìÅÉwD‚oönZ$þ¹í¶ç‹–Vm¯ÂÆ‚Ï÷ÂæŸ›–;÷·¿ýïïÍÃÞýŽdñ×$ ý#Å~ ¦ò?gÿHn?:ýë¯_Â_øáßrôGøÌìyü™S—þ1_Œ¾ž¼Ts5àºsé3SÅgÒ{Ã_ûÌ^;ºžl9ñ¯ŸÃßùÿ·ß³›ïŠÿ¼ß$é)…{…—ñEe+wQkqd%dd®j¥¸Dñ¾Žþ _Iéè©'kô©×górûOÙÄ*†òË?tO]žôK’…≎¥8hèO›·l\?k­z/¸Âq¹‘^›²a#.]ÿ=åÐ%¾;<SsUþ z‘yL?|4øøFùk`D)^ÛRZ¨5ûÎDØsg¨ªÜìf„OhÂÉ[›¸bJsóu퇷?½q­^&ÒÌy$PZ¯4á ʼR9~’Zåž>G—cƒ¿ä5ì&³ðùbú”.4!½8¶ÑÍT{²bÿNSøW4¢€#f ¯BýÐ#˺ÔiöÊñ'À—ŠÉ¦°.Åâ*çò‚>:2ÁñèÃ9Md®áŸ šzðoºj/#Ûl"ÎÆ”ý-F`Ìþ¡CäµG²šÂB$bA€lARíùÙœ@ç.h~ñć`ž(k†SQ¼‹‰fûEkýb:h˦ž2ŒÅGÄç&¼PÍedzñj›FÏlïD<æÊ¥`R(”¼!¸&‹Z¢ J§¦º*žŒlÈŠ:`¦°Â¶¢IV³» ã*…«("\i¦‚ø¦kpñEàEØõø‹¾$—¬•SLœÒ¢G©x‰jh‰U‡Øîˆ>Þ˜¸¿¿¾›¬‘ê5ï‡Á}v~u+VáÖýFËúl6ê‚B,@cd²¯,Ä!À£³dÎë#u=¾¯Õ‘ÇøfÚ ­kÆ)ªÇ«7Wi¦_9úI`÷Ï¿-áJ¢Úá”uC~çhwbº˜ŸOoÜãB#ˆaÖw\«°Ûè Z0ÂûÏë5]ÏŠE!ðëFk§â×­¦ëÁ/Âv™«‚*T‰Htiäì^).O´$’…ºÕ3Q¨À{ÁBn¸(Ë‘ê¸?]+·>4ôVU<ò+Ø‚Ÿ˜Ši¢) ]¾ÂMÔ"&ŠjÉdê.쉕’Á¼"i±PZ˜o"yAl’y‹Ù JÔÅB xŠKyqH#C¤O<þ®•ª’ŒVýìE³_Ì [ø5OüŠ©j<(Á’mp¡êŒ_<ٚȓÙÑTªÀ‘ :“€å›¤T@]EVÔ»ó4×ÓëKªèDêÖ£ÏÑ”©a $Mæ4?IuðùB™ÿebèNtycöe"ÆÇ3:QÞÞt­êèFW¤ ²Vn0SOU†yhžùÔ"³ŒV¯§êã‘ÚJ¢Å¨N`ODlTú|SNRu5ÖšrO¼Æœ-甄J}}¼-ÄÜ‘’áoaH\Cš—(vh­léÐQ8±dDcp}=¿½*.Fñ¾ÏŒJ"h1ßÜžÉÕk¥eÏét+fÙTD(/ ‘~Bd†£ˆ­Š 23óû È Ül7^R Iƒ@8Zއ7 O¢ä‘‰ô?OfðW’ájw>5„L¬ž©²ƒçäÚ­t­ &´ (C®T(¶ïbÈâ¬!­M˜§§ãË}XC”[­'¶*>™\úf$‹’*Kûé¼(¯ú Ä»Ì.}‘rÑÍ–wõޤ‚´HÄe±mS˜µÚÚfvçÓÒt…3}˜ê˜DªüìEÞ Q…;Oæ³ §€ªË(è^€ÄGŠŽ‘..è¦,ôh'±¯š'ºi¼\mfçâ2Ÿ¨†3xT¼õ0Š0ÒÌýójr-‹ y4på_¡É†ä  ½c::SeñóRŽ4—k©²°‚ wã§)P|æõ'gvMsE«ZÙB«Ês›ÂI¼n’h;u¨JAOÿüS!Eª1ã4L¹¦äÚ!)¬xà*Ëõ¼0¾¦ªExÜ œ^W´Û .UQÀ¤B¹šÕ”Éjñ‡œÌijf‹Ùø—·àµ%œq2¹ïçª&>L Iuè#ÛÝnF$7ŒL0– ¨R+e?uTêù碩&¿¤ºÄ7t5‡E5»ô–ªÅŒœBUˆM¦àG ýòýÛõÊEÞ Pñ5]Ñh˜×õšjaDûx³êRú2^+^¾á¢áL©k‘êîQ,K%ŽCÙUní(WZÈ mª§àÚkª RÑŸ<Pª>©ðc™Eia˜ÝQUìª:Ì053˜zždFî:VÝÈ%‹DÂK•0½ë~ÎÛ-ñdF—,Éй>\šÑ\×Dwt’bíP™†M©+/÷ ¤â¤ñlÿ.“I*CBÚ(…/°U%Œšñžo,ç𼦃‹D—àŇžbLu^QB¢å²GsŸØCTýd­ÚàУ™BnÊ=å;è|R]v*Nqp“ÛµãìÇAÌ¿ÆËùºÑõ"uU„nf¼W:1;n‰ÓËDKi¶àÆx.+¶HL8SmºÍGš±~–ÔÃXê+ü=¬\_ï^ªÃXúCî\.³¥pûú`¡.4è ý³P³ÑVŠ÷ÉŒ-$ª-VxeÿÐ 0‘êçX(7¾«æÉt§8Ó!§gÄí+QwFÑú³{º•`0ÌœÓE‡9"Ab±c¦ÀšV· ¡æ‰Ëþõ¯¥Ô%õ&äP1FùžÞÖÒ7å+ÒJ*HÆL‰dRò‘ÌßN÷!Âcõ–øœ«‹CËøEÇÍTüñýu¸Ž?Úڎ½óÔ—»äWuH¶P≯âŽ|އ 2w1NôJrRÞøßß4ù,èÒõ211ofg"á~æX›…®WiüóåÞ¶â¢aBµ4öMZJÐôøøvC˜ 2ÆP°Ù ²ODþ,UÆã‹#ê"kŒtÆ«‘ºPï®ÙËÝô¸t×@‰ÔÜ@\ŸÉTå»t¢®à%º§ ‰款ü—·’šij øË{îŽÁžE ýsù4 íµÂX"¾þ²¸q֫ͧëR«íËyO&Ê ËÉààYC˜Ÿ$iþûÒüthuP\‰5"uù݈“Ø>´V+ûÐ÷KÙ—ž°?' RIÈÍGà‡æþÓ°CÛWÒvñ Ñ7;—š­GæãëX”B.:GÕ"²fð3r>Ó¦˜¼{¸·F!¿›Ò’h¥D´Æ9‘K sPBÛL~Ž ‹0«~ó·…š*)lÁÓAÅbwK ƒÂ~NqÒ­(zo'%3ÅMo…ö-Õ0šL‚M¤é[‹Ä±˜% ®l¿orXeÏÑ# ®%@fË|ÉxYy4r¿~ýó5S™]ŠêÝé é•ãŸ2m‹"¶•º×k¹%+èf³¨2s«‹)hsWqV« fKX—(Ôûù,}*–dëð"£9^i°Õ0oáñË|óH¼qW~–= 4Ó•ÂÖÓ%·|‡+[ÎyŽÓdR0~žÜ„F~}ö˜ÅšF5Ò\%r&»Nï H=5–•Æ×±ä}îDºP5@ÐõL)ítÖ÷EEy»ƒH›,Ô i*ODy˨onÆ~™éìfeP'r”lº°¬™½cì—¦\! gFŸðÏ tfï)Ž£0E;^ršà,gš«Šu:”Ut¯¡ý²)eiÖ@Úcr[©Ê‘ןžT®pÆ*M7wäÚð–¿æ(&½SõrN-,Þ¡øã&4&_¦"8Ä8êÉ]=(¹n§˜üÙbnl«)žkÅþ汄lUãl¢ß¨&‰ÞwÜàtžÔ›"|ŸZ¡ß>×FÝü—;¦·¾“”ÌÐ_Æ%UmK¤dà|L AÞÍfC,4#1Aé™ÉS­fÖHÓ¸fz ´ŒÊl¦ÊF»¢?$²á£*ºê„o®£ÖZ×uGüZ¥KåØÿë¯ÓV©GòéÓr¢y–Ì,ÓR­Z(84Q= ŒQ#Õ¨ÑlÅmD½ÕUô¯‰ªƒ.aNïåíÄ{¹º§ÄZ‹µi[‹I¦GâmÕpã4P!8%ú®y¼h6— “Uœµçtà d0_Ä•0æ)  ƒÉ !Ê\×I?%ÊM—tB%/÷TIc•Ì)Hïß­U¿†¥YRzeÕå¿–Ó¿àï³BG!LRÐ'(Ë+׳¼¡“ÚÇÜjîW=ßM0þó¶à!BÐÌ_)Gu„)'¾³&[”ˆÛ~ÿk _oÉJŽ~Tž©êKÙMgf×oé°M‘µ•¢ë“ ?¬ŒEE¿háfÞ–=ÍW–µðålºøKI«9®±Ñ(8[ª˜4‘4ÿöþªoÕ#¬Y®,?ˆíu¬<#¸q©ðzµz\ìJ ¢&— ÿ"Y«É±ÃJ "šÅ{ŸN*R)3U5ïº:¡I6¥+ÉGŸ•°¯t¡±_œ zÉ"MUí$bR›Ü_ » )‡ñÓs ¢ÿ½ì§M?ȼљ‡™[Wö“â˜T ¼U—Cs]MOAj:·ÙRÛNÕ4âãGþYUÏPWœ%¡«n¡Üsžž“²¶àⓚÇhANfÁu3úMÿœ FU{þpGd–Éx5Œ(£Èň Ƽ`Jø-xrã¿_¯äµ]b¾Œ×·lÆú¦„ÊrÝZ†äHô¨EîZ­ƒû[Зúá*X¸â;ȩ䵳¥–ÑPˆ”Zç–Ý´Ý9Q1)¥” ˜‹‰ÌkZÏ(¼L‰/.TO7&´=‡+žÕŽÓï·«êì‚TÍ?¯%ŠÚš3CãŽäé;©¢?élï׸œºôœÏÑÜö`“e1³üœê)Æ/R¸š lL)˜ž)t$䯳Úiªèžæt,êS‡t:©H!^ÖØl)?rÉU3‰I¼/T »£%$ä’ßÝE0¸Õ¸¸‡–¨y/ÿPÈR ‡‘É\QN‹Ôx’™¤ªJªêWz^¶XŽ{f³tM5[°vJU]à8Ó:¢ÕÚÆÓ|ÿy¦>9‚Ÿ›¼$ŠÞ «ˆ¢7ãþ²q©_ɤE­*Ož‰ËÒ§ ° £Àªtf^Ô(Ï{ÕÞ`æ–ݧE'Rã¦ÉBA–/HªâFÇÀë\E5™mÏîEš öpŠâÙqD-éBØ#¦YØSÍ|´ž u! }wNˆ´ß´òçüHº:ªZ`ú†ý5ÑK¥É¼y:]×)”-æ™"¨%@ËÌq»i¹øð±º€‚B,ºj=Ï3EXFØ<Ùt“7×)¤T5žM+_jU¹þv®ï‰QØ~Ë®Ús`K*mØ…ŠQ/*5ÍxútDcñß1øT[`–Õ›R¡BÌèæk4ÊèéZ! ëÂ?Oøn+ko‰K-ÕŠoÖÏŽ»’KÕ€æŸïZO#zQáyµRxÊÓ­åŸU*‹i0Ç·L̬” €êù ËË©:ÝŒÑu#Ú*‘[µ07í7MfDšsñl¸góÛmóAÙÉã=Ô™oGàEJc…ì宸ÛÀUjÍäÊS5®5ºt¼Òdún½x›"nT÷SjÄÅrZOmò¾±~=]êÊGÙëÞ$9Òd‹Â&µ–¬ò3ŒWf§`‚b´ºÔªå),Šæ•%¤%j¦*k²N…äÚmDRˆÏvkM•t¦ë–‹:—IA¥¢»Ú|+ 1úùrO4w#{#"¦åzþœR-2]i%‹»6â9É«>øF F²Lˆz¯/wÏ]3é> ÌìµxÆ4º»_/$%‚Z™ž·2à2£ %sx#¬–LŠŸ'mârdÓ^%­t†Ê­’–ª”Öãòl3žÂ¬r¥(?=#ì½› ®'âÑK— ôsOå0.w™DN°"‚Õº Íj@frDŸ?’$¤Qh|6Ñy|D*to%$‹´v«ˆ<÷@³¢M˜D"ƒOSŸæ[´KJjEäy•‰x8_èªIZ¶õZ‹Ê\Æ‹ññ…/¬IV³Q劀+ŸMkVf1x?ÌÄP x“*€ræÉ¿(伯~Gº!µ˜Õb“lÕiÀ',^1mWHÆf4±V—£ÄÐFÕ¡¸ogÅš)Ê <î H‘§:²¬éöN:%É5¡¹…·¹4_ÑÃPá »ÒõY’¼5•Ô·‰îéaá¾|:9[2±ï:[ª:Q”DÄ&¿’Uë@¹J ‘ü#îç¼}¹i¼Æ¹þ¦ùÝ5zpªÈ RâJô±X*WÙt8Šy¾hÏ3Mööþƒ *W1K—I3Hâ.®SsL(¤àÕ=ަó¶éø(STaUÂk¢m2œZ+u´ðVù Xêñ2[rëžýkjŒþvrNÏ2É d¼:Î $ÏÙ¸ÏÃÄ<Ö3Óa+;Ú¥›j§kÛ_i}®fÊ:ä3zoèr¿L3ùꢬ9IY6?à1=ÒTWâÓ8ÍSR^Ïë_jJÃb‰êMunX³MD}–õômVpžcj+ùÝ<”t,Ä j¡B-ñgŸß¥,}_µz¶DÊÄ_w±E´¡n|¿ð†µbV¿­¿«AÅ£¹™ ùÄ…ÑÄ.½X¾O™3QcHf“ëÅø€†pÑÆàêîÜl9ïù’#Ýï·¶6Þ¡ì:»4;m–h—éæHª×ÞÑi+ªýCç6 § °z¹¶=¤㙵Çâx)qŸRþ>‚¾¨DÃ#µ15ÚH Aî@«Ål¢ÑÛí͹ :sùe¹\$ÌÞXØ}#fVïKú·ú§éJ‰6¤ËEM™9j’oî`fŠŠ}$Óƒoæ¯*h7T x4u¥Öq¦[cczœ1ÜÍjÎVY:î ÜÓyP—4×Ú;a2²çu^fH· •=½ëÕ]Ö˲ŠÇ{ÈÀ­µ»¤‚r9§µƒ¢íì>k)ÑWßMØW¡á®nÍg±Á-D$ÂG+˜]wþë1v”Ì/ºË€¿õ „ðÌDÓ“l9[(”¨ãK<*W*€›J`"…\Æ ëé%ñ`nÇ¥4¤ãÂìsà×BÓv¡Åpgj`îQhwµ£J÷opfW©ÛX«øã÷à5gf4÷î]³I±9“öTÏ^J“wESMˆ,K3@ôª‹6#Ûû[›Rv?‡ˆ+¶ý9®vM! ç’^Eôq\š/yrn¡ípN7àãEÖY©¸Ô6˜‰ AçXüç¿6+½v­€JÍ­i¨ù[|­”êIÄEX˜äÉKßU’\¡/$Õâ¤J|’Ñc“w*C½É®ý-úij[ŽHÅ“|-#MF1uœŽEBžþãJß’)3Wu)MÞ§’[†Å»2 ¥"Ú'Ì@ãkÎè‰63Ë:éBVF¥«È\‘ôû‡t°/*UŸ½,û^Åôû8åb$.Ëè´`§äëß—L öÌïrѺNÊ[€÷ù‹«…Š˜ÿ?;›†át_Œ÷bóXÍ7Éïq¸·#¶¾³ºª¬ªLA§$a@užöN€G&ëåKÕØ<ÜêP•„=_^>õLmRßX›CŠúÀåɼ6™¤=9–¹ÇÉãþ]ï‰Êz/ÒlÃZMã!Ÿ“ÌØtWZô,Jâ;{5ÜŸÑùørwoLšßGÉ¥/?©œg¨äɽX±¡ÔR¦÷VÞŠ9½ ªžÉä’ROwÊŵ%ß:á5|>õ –Öp.•Ÿ6 Ò…–¨{´”˜0)ÒÙ¼(‰m¡ç´D j\À””‹ÆTVô`ÿ8´6DÄ(tê3 ®“eí{yqïæ"wccæò§ÅäÍg|i:Z±,bÚöîÖï ¨‰e7×Wf 8ßÝ@:Ñ8t«ãàšüÝÀ2³@ÖÊêá| =áï¹Ú*qdãêÇ zŒ^àÿ_“ì$*^ˆ&“]ßI1W®±%M{§¦7W¼¨ vÚ(ù.™½˜ZD®)MkñÄŠK bÄ1$”dEáüýà Zèˆp‰wICJ„>ièã*S.7Ww(Êóø§*®Ï8‰(LK…è9p“ìNý¦Õ]¬Ú;ÄûeNνÁ£Ô8ÔˆþM1.ç5‹fâ÷U}…ô]€uy]>«T;«ë©…1ü,ヹ »ûˆJ“®©Â0ÈÎÞCmú}˜ :ÛÛ:zÓ¼úœéEïÍ‹ü¡åúÖ» µÿ1£·£fQM5œÑøŠ«–RÙÎ`È-^¶›ÄΈ›æ†Á1žÛÛ¡Õ’5•h67(UíwˆõÍåA§ù{â¸wy-¾IÞøí}”ûb„iiÕÈ“÷‹üÞ¦pÝðNøª(êû¿ÇŸ·¹ö(¨Òáþî!{_áÌ÷£¡MÂqž.•¥­óìrDÙ¨»Å?浇‰h´A•H ¨Æ¯AÉN&×üí* €ln 4Es6m[·'Ž&ŸÖ"ú-|&Ð()Qk[u2WÇïÔ1>Såß“ÏJU Ö `âýQÓ€¿ïŒÄ[rÕ7ÔÞ©²ÜÝR:hãÂÙò9«™‘§´Š¾…xðúßz óK“0/oÿˆ;–&óö ÅÂ2åZ¾PŽÁd¥vÙ})Þús úŽàb~‰Y°>z/÷ËŸ;´ªÊ.àÛö 1LBýÇìÙê Ý+};ìg·›Þ‡åû¾Ô³ÑâCÉÎ4Z@Ò4"(üN’³”D;giÄcª}§V½ÑÏ6^.œPoÏ”ècI§×n–÷fKs´w@™Hßj|G*ùvÄßGžti"Þâô s¾°ŸªR¾zTª·,»øôjtïPñ›´í›-¸öIUœ3Š.Á´XÞÐÌ«PÇêÃ÷Ï åçÒÝcÑï„hŽÂ2›ÁØxßyó÷Uü…,2?³$€ü&ˆ7ª†½[ —©ù†ù=¶X{×;-ƒÞ3ÑÁ¼‹ ù†¿ß±c2 Ñ`êi¦ªvÿ]ô¨xL‘è‰tꦫ˜ú®Ô Ù™úóéDJôÖ¯‹Ø[DŽef䌽C2™B$*[™ï#dÛ{.fº½aAÜ8Ôd&“I֜ѢÿU4H 1šÞÊ>‹ú®˜l"u¹:Ùžat<ß@xîº;ƒé¡ØÄuÂî]nß‘€§:Îñz˜/´s··Â]éðù:æYCt¦ü,è’úŸÊl³EÄK$yœTÐïóJØoò@uUgu3«SõFÇ…{´fÌZIlÖ̳YËÁ{Õdæ&¶B¾8ONpëŽ.TD‰@¿'yÿ5ùç}E¢»Dç{ÅE¡ÞìV¶z‹§Þ⮀|^å2tHW¨4+ 3ˆ|ò¡;gÒl{$ÞW¡/ö÷–" Ùw•]ˆ°.é+§‚ëßG˜ÇT“Êjü4Ä â½ÍèÖÑæB$}™ Ÿ¸«Þƒ‹`"ûA‡êPêlh-ßôÓ½9÷6Ý!?2XXýcÞß‹Zè3Õ`¸ß[Æxæ¶?SX(ÒµN4Bs›:÷JVý»¥­bÜ-Z‹Z&aæ¬*7~Ð8?¼§!é¿+”Õâ“ïNë¦ÿx ×k{iª×9@Z?ªŸ‡Ö˜›Ý-î™T’Hî»ÊÌ÷d¿Ãç}«ï3–u%E•:‰Kpãšé}Râï륳N@ÎÞ¸‘ì•üCâ$눶K¢ê—¾Oùï½8oë;Çúo7Éú=Ù;ÂØâ¦m4F€xl(ªñ=äݳ¸Ç”-¥–Ý)¬$©>'+â”éI‡±ý_¬r®ï*t½Eú\ÜòU:½é}ÒÃñ§&JŒªtxï½ ‘™ÅÛÄ.a¿l¾Sˆ\õ}Kèq¿j:ƒè£u_§$ìDÙ9‰ye[÷ªJËiú^‘ÍlRñIz²ÕáB±{ Æ€ß_C" í‘E Á—iÓmŠ+œº?îIß Üûžiò;µBß$6$P#fÜÕY–ÖqâM~_‘'¯îì½õ¸Ÿ®x›–©ªÍ+Û¬ŠÖ;jïÖþ¼ïØVÓ+:Ír—ŸKGЩsý¼50y=çgüî_iÕëêÏ-@ÎI@0¾yx‰º|;/z"³r¢ú³ZÒ¿ÅIxêtWýB¸ë,î[\²Å_ï1!Š/Ñ;Së<;§™ïµ­º"]”EÑgÀÉgãuE'€y³ó i²ãå›z=‰…”ü­iÚJkÁj}†^N6yýsÕ(þiö»¨ê*èÝn"Ûй^¿dÊÍ{+&L´\ÃýT/…¤KœêqxUßHœž¼¼íÿ~C9j¦äp’M¢Ûˆ(—1–ù݈—˜€ˆöï@¯Èe$åLâyܦ1™?KfŽëŸ—uÿ7®P´·ˆÏ¯î©gÅ’Ü{±!i®ö±S WÝÏ,{¨ÜløL‘b)"|ãbñ½¨HŸ-ï ‡ßq]x¢÷ÏbxÊBH7马XåÙ{eÛdýˆ`ÛôùÜÏ¢Müõ}¬‘BP*/ï"s‘ýzô—;Жôçû·Í²Ìñ"¿·/*Ý¡`¡tÚgºø¯X¢Þ¨åû&=–{TDÂÞr}<‡‰+Þ!z…ßÿúûu嘋4Sw¼ç Š‚SÕ·ªµ0"éròv£b‰î§®fÚñÿß;&bγ¯‡>ŽGÒ’‹w0äÛ¯_âJb-‘g`º#5-³qºô¾Ôô9)ä| Ûxôirϧš¬j =ÏZ¼ R‘ŒÅч´ÐÐÊæVWÞü4òÜôŽ“ðW0Qò™Ùú¼Fö;h©ü\òÂÄžšêœ>åÏ&ulä«ÄÜi²9¯ˆ˜ü»IdïÆº˜p§£5s×?ŽM„¦°8ZÁð\QQX)lSîwéë““õþZãwÀ༥ñçû·ÿT½â·ë­þ,í«Y¸uÑ7ÆŽ3uͦ;¿ž"Ÿ ¸‰lk‘/Þ .¾£[óü7Xkÿ»þTð©„EUËÆRA”%ð Þ¡“ô.œÀëÕ-àÕ)¼=î¥K½Ííç­ÒÚ’®~ÉýÏ¿þ~ !æxŒÿO"œ%L„¶síöûf ³ŠzW1ÛAÄüæì2׬W“hì9äŠùso!Œfzñ‚4WTÝæê6þ;yÍ?—„ò¸˜A¢OòVZý|Ù‡WÙV¤¯emJInn®:õxéeDSóFNï3œãÙÈtÍ­˜Sˆïdæ^aéS†¯·¿ß®°Ïê‚ð¼A. u£„aV7.¾õ&‘æïܼüçѸTúawºþa^î=U‡TÞÕ¬Ÿ4ËðLDkÄTîÍPËwàûIý/ í=G Wû›0Ó›°Dµ]l¾ÃùÝ]w¶ÔºGÔabÌjÁ úü3J=oýû_¯ùv8¯@gºÒ1d@_çÉçËTÞ'… È*–ïhL2Ç€þß¡êö¯áÌîÏiE§þ½õ9TDPùì.˜1/œýÄ‹œZŸã›×tWä>„áÿ™ñBûFµƒQ¬"Ôºódv%JϽ˜‰E^ûóÔ9ïZßW^ïý‹Lïÿ ÿIœÓ…øù|mi^ÇûŸãDKm_ÿ¯YÏEÏ2¢Û j#oôUº“ê"ûοA÷Þ°wo˜ "ÒÙ‰3 KEä¬ÌMfKŠÞEÖ˜D)ëÊÒ? ¢µÁ\þ[ éSð4±þ ¶žT%߯Éñn`ÆôZ,])•1ß»G¬ò9ÎßPÌ:æ¬cKîóÔŸš§¦‡ãÏwêE DK58T¸ƒ±Û2K4Oø­üìâþûÏwÞ¡%±ë¤ºƒº5)*«(<3mˆå ”ׄ¼‡®s”a6±&@lÝ̲ßû«¼ƒiÐ,ªÀÛíig¥üî÷ÿàÃDÚx/WŒˆÔÅûu~N1þ~Eì79šË¦‹ó¨ñ3ˆæ(ˆlyÒõÛ¢¼§÷EÖ£©ðí¶hý/'¿µDŸjé€ò Í•3t–æÆj6ÇnÈiž­þ¯t~Sz2² rþ·N™¢ª¹ÜÕ^üW* ý+\fÞ£ñªs¡Ñýë,¢ ,÷¾ö€r%n†ÎÁ;æ;QÇÇô¬«­¿ï°7›d¸ßá{ùÆnò½n:ÿCþü…)&¥r ØÅÂÊ)¾°¹Jü]r©Ú&…+^ë¿M€›­¬ÔZi¡v‡ÆÜÝøçîSÿ3`Ì"qî~ ž÷F?ß]Ä}çj¨®Œ oÙâk§˜Ï{Áõfxs•Ä•HJ-ÉÑ5ò½Þô-5ä³yZï¡­º<òò§­ú®ñûPf‘tçˆzýlÞW2[‚h<”&Ô¦[!Ï3Š*wž8½|ZÃ_dGäB+#[ªÌÑÞÇPôçÙ=¬ßœt-îÊ•b…5À}ÎòX•9—TMî#ŠÍSPî”u@’;ïÆOt¸žœu¤})CÊ·b-Ÿ£Ms?)@ß}(z…$/sžü<4Éœš¬„¶›k¼º¡’ß½ÛjþmjRijž8þ ½z•Ã$¦@ïgÃùÓ «‘XÂã5µVÓ¬ÏHG5›Kò³¥ß_ÿ„ Z®÷ 74Á€„þ»êïâ« ÍÊbÿ4}gæ”<'”ü2ïQè_mgùÓ:œâÞª]¨ïµ‹ò»+{Å[›“*`ïR ~SKô}hÆJúB˜Âóxÿ'50ïÙDF9÷ûTVÞê°}O§q¼ÏýQŠé¾8Ïoù^MfFIA€É‹fAÒ[âÅã™÷–½K§ò½·¥8ß‚…î ‹»•/ÏïáÈ®8ãHZ%«=ï¼3Åë}v,Uõ=Oôr%€.‘þÿÕõÖîÞ=µû‰3¼ýýËäþÕÛ’ngAiÚo§‘0ª 7‰°B6cÃy[þ6^UøÒü¯lŽ‹n½èF(ñhÕ–ïɬæ 5äÚ\éó&þŠ8 Gôo×$b«ò?q,±„gáß_®.NµZ(®Yà‚lñFÙ„¸ÔÉ …:}€td_d<ê½dÀŸ_Ûœ2íSG¥34V•á,×Üq—v¢X¹šéú—cJg覌Gsþ3|¼Èò-œ#¨À¨ådÌA-QbZÞ>¦ßU*ª"#{(ŠšECÓ¥| ì"½§Óù/i« ñtžB·/΃ u éÉÆwq5£ñ†]à»–L)@ÌC/Ê%˜û Ñ_/ï¥g823Û‹ãnÈÂÏT5D./³k[*³aíJ%Âcæ s­3eûó7)D¼ãž©ïÕ¾sW÷ýeèǛſ‰]:GRGj|ˆærÚ:A¬S›©Jàß_WÜkÂ=Ù|V<ˆ8.½)æß/Ýø^ª÷:9’õlºÉÜšóÛMŸçäÿŒÞç[@€‹*i2†RÍ‘‹¢ gõ*´¦„q`òNþ½³Ð÷vòüžz7#Ä95õ٨៱/O >§+ú2!„g4˜ƒ›(Ô$æ¡ÿT¸ mÀ(fÃÏžÀ™êq«s\s©‘¶ø7uÊ%¤×<¯1¼8fÿ6¤×TKÏz›Ûºß}§­äÿØðdÆ2‰˜§¯µý¥|ñÆîꜯîƒÂ½M[ð}WhÊ-Òhõí¶Qmgùà¥U;Es9{ù>šrÌ&ëÞU~º3šëä£Qz.ÍÆw³Bx{.üÿsu¤æÿ©þqð“4ä=äß °š¯Ô;½Â½àJíìÂ3Ýd)ôÉåüÍŒ µ*ÐL³–X+$y›‰û{ÙŸO9Ë¿÷ ¹Ñ¾¥cµ3ÞÍp{¹zQÒ¨çøJLJO0œ#Á¡ìY‹˜éB›']âÀ,.òŒá"zÉ`„êW$Kïs4Hg­éYÆÓ ™0Ôq9ŸÉáÏïÚƒÞÛ¨øoûþ·¿ýïï7ßõ_Éí¨û¯,›þ+ý5jÃü×rôOëÑÛÊ·¦Ïå£ëJÆ™N¿2_Êø¬à¥\¿}ôo#„Þåã¿’éo Ÿy[Pû¯Ñ£oKø  søSÁÝËà#}FøãÞÉÑŽ®ptí׫I:};F[ö?dô3— øÔÀýÌõôe-דŸ‘¦Óc7~Ír-L£|ú*G·2½mT#ûç/à×L¦éhø$šaff& äñôËRí’‘§“O|<Ç3LºíãUb97ÒÀ\NN2JWÓ!›|Ò2º\)—J2±„a*¬㩟Mÿ´TRÓCv¼À’±°žÞ0¤Í$ÕjzíͦרLøk<ô’Õ䨙-Ó çøw‚!“ƒp1} „õŠlš™°Q­§/EœÑÂ8^õ2a%¯Qi.¬5kaUÊ&çÕx&Â_ã/ÈÇÃfYäpƒÕ9‡¿L¥—é˜c™i—¨t¡Ø÷báÃRXˆÆ#'.ZÚCÈ¿%ÓkÖóô€#¢ÞˆÆ?a™Å0Ç·}¤d„}™¿„Fú·åô¾ºLµÁ€4éIÜ,MåD¹¹MlÇ`¹“¶Ò|zIÏŸüµ˜ž…âòºW6½4 Óu) Ì|->Ùt9ñ˜yò,<­q˜ú2,…±!Äxã»>µdCH„û¼ÐÞ¢e6yòéÈj¥ÞÄ52M”ÑM"̺DøE 'EõB¢‰V aZg/Ó{ä³0ÍÓ?n-ä Ò_)²ôX*N~Îô*5ŽKÇ;аâ3·ñ8É…ÁL²—édz\LßgÉ?k·\¦™2q 3>–Aa[£<‰§nàÞŽ‡C®MaÒmMAJäÒé[4‘ì TW’Æce9¬´õ·\Š[_¦gÚx5]*by°pdÓÓN¨ºdÒó<]³J„K–V2•…K?Èñã‘6•|1½Ÿ­„\ø·D¨¦= ¿u=]äY ODØ*&fäx€Z¨I¥HR Éq`ÿ2Ø«k+B&Yè*°â@Ô§ŠB¾NnIaðÀ…;™ #lSBD¾ÌÔñ¹4?…~¦ÏÚ" ´™vGK… „X¹r¡d²þŸ ß¶¾;™þu¹´gæðnò²ÙótESµ¹“‹%æµ6ý ?`z9H„Õ'Š™ºÌ¨]F2)ØY+·Öl:(ªŒùto|“—Rà#ŒQÒJ…_*ä¢ÙôV'¦°B¸™ -C’.„X~=³® &çøÖ’8HŠS3í\ZfÚøy-¬¥‰&ÚfTºÐ®ÈdâòH„”0²S1ͦ»°/Ó©½°k-3åø&]\×¢¿N *„ê@ª^¥&€”¶î¶oÏŠ„Ôy…d„ŒàD3IÕÜñŒÉÒÉa³”n_®­ûK-©rkû±ÖžTO[ õiÿzÅK¼åó0<Óæg©°- P“TZ³çé¬HHòHˆ´64¡}³Ì•P ©©•®”!IZõü_¿U±°‚a™ …p)ijØ™°]‹{VO‹c þx$fjØ…´-•1ñv#†¦X iIþ¢MÏ–™,0Q0Cè2‹’çÂŒ\h¿aŒ [ߊ¥Ô\jæt¡lŒK-&qNäŠV¨ÔA‰;—6e=— ÚôYýü3%@ ]™ÉËtâE[ëÊ…'‚›‘,Eìù I•9™ïkmÉz¢›.¹ÔÐ^ ØÒD¨D =¬D˜Õ¹¹­§w:MI¿B‚|žBø…± 8SW†²|º þ,ànRuYZ¨RfBx‘)\¦iE¢jܳ4jq ©:-…¥S@HŒˆ©^hEË…¢‰ÈLÝ xžÌVÂæ™ ;à VÀÀ̵EŒ³ XªŒz³•-+”¹I<9 Še!µÌ…5]+!+Ë…6¬•­M2ºÒér&$j™` Ej½FJ‹p"aE¤½z¡ì¤1\P³ÌZÒ ­Is.  ¤å'}ÖR…”?ô%ì–TååzºØ¸TãӨƣƒŠÂï…a)Öp_tÀÃìY XÕV~—™¯š B2àlzÃ_hÙ‚|]®ø|öÈÌ-Šv’…R>&{Ñ Í¦é\DW”B!=IQ2›V2¥t¡Œ4H–«&bI³Qê¥/ZÆ“ H ­èy¦…EdŠED«¸5*œ{¥·‘YÀ²Tý)/Ú2Wž+»Õ&M§—›ñ8¡ ç×Zñä!›­bƒæ@ªeTäZ¬d>;HØëe®…0¬”ÝÚäN0±D’ÅÛ°HLÃ\´‰>¸ÏŠè6Æ'“òY+5 tR¥´EÒ‚È„V`¾ÔŠ© ŠÖÉRA*ˆµÙr%Ô/VJÝ í÷T³«)ãNªÀKJj'}Q¤`1VZš ªQB_EÉ.5 ð¬$)Ø…R‹ ys% ^"³Ä{8hwXiË•’ß—–Hí’d­eIz.|¥@€±LIªO´ª}K‰Ò·š[œC«Æt |¥Ê’raŸn¹ç‘„e¤r¢ödZk‘|©è½hÅ&ôöby20R5xl­T÷Ê2EÑF(âŒÈ•H¸Ágmn+‘2Me>V}Ä/È¢—k—²4S¨rÅDL– xftÙ–$í’T+b(öó3…yS´è%ÈᯧÛhËiA¦Åò Yµ¨Ö(Dp‰ *!êä ý–tu\a©Þ¢2*[¤¢NÝÔBÂ’šfªQáŠa3A¨DQh¡Ù³²˜™fZùµu‰Ô•¸ ùZAcÀ›Ñ¬#.E„IsEaµ–$׎çiÓ•–ŸK‰àê®B¤èõ%”ñÅî¨VYN'ØbëïYYªKÕHòå4)j¥ÞŸ¥ÀJ­N `m 1Êg/ʉœ ¾\Ý?J5B)ÑÛ¼P.ò¤² ® Š’i©ZÍUH{$û oñ¬£Œ±Eòge˜"ÐÕ"‰BõK̰ó¸M´++1…–&T(¤jù…d¥í!¦Z@b.ä¶™Š9±”ÆÔH󥨕®ã¥²(B\WË5g‰0³k­¦h“k]©0¼³T»RH5d¥„ú1’£ÂDl£ (˜¤ :{THXÏ“tú"Ÿ•n"%ÓNjé ‹Ëªí KÚ‡ù{Ïc ý<±OûiÅÄ×Ú­Yê:§’X¦`Ù ZQ=¢…Ö›.×(=keóT¹ŸH¨IÑ;JЂ³D-fAÚŠ¹² ´\i퇒¥ѱÌthwÑ)õE)e h<'+EI auÉ”°2‰’“kQâ²-H;© ¹  œ­µm-I.j¥ÕµDm‘ ¦B¹6'ñs-ïFÚ­Äb”#Ñz– e`Á¬1J‘¨ä(ÖþÛr¡Má$‘#Í,”Ø&(ŒQ?»­?“T ””êD¤ÂBK$T+0ˆ›®´­µåªe¦,¿‰ºiÒ+ŸÕÞW+­Rš¾{)èò-§qɘD’–2~) Î3-ßu" ާÁÏÚ|L+¼Ÿfj@Dª•”Ê…8o†ÑÃZKÈ¥†d•©%Nò;¡Î{@‚›ƒ¤$}ȳ¶Å¤BOGí/¤v€ H!rBfi¦mÊå™ÂòAur5v;UÒ±S©œþ¬X cÞh‰B¬Œ›\Yƒ2ùBk¯ªU(MÒ8PÄK-«E2–—l‘røœ®µkb.¹/çZõ)©#/ÜgAþ1Óê¢éÅ%2±º·! › F¯¢<ÁR›d¤*1S;*äjj®¾X›¨™B™šh¦‘XA¹êBaym*Kôµõ]¤%É|qbØN×Z@«h­æ j-®¥¹ÄýNÖ [±(q­“G¹¶„ª²Œã»ïŠ4ŽWŽÊ^Oð!#ºR&xŽLhˆFÆašj!$B°<‘$ƒIµžÞ¢Ô (½ù ¨çÏZQ±/µIKu)•·—B!ôY'z-¨³&©b¥Œ4—j]RÉ :™6Iʵ+§(S¸Ö¢ô%HäZÛžp®"…z¥àâÅàD8ëŽZT@Ìj‰“eª°ÿ“E±(ÝK© ²T“¤9"¨^/%î•ïurL¦ÅˆÔÚd¦'©„KhÉtšB¸ÖB³ÒD+ 3D\e×ÚO¤f¯V21fû2×"iWj`ÐRˆ<Z^¢ôÔªUɴƧԛ])…Ö$« Éf]@ߥÓ†™Pº”À*éZ¹5«7éBw[%Æ”Ô,](Ÿµ´c‰žBf±`Ò¡6Ä|Qú„M¤Â1„s&Ä͉Äâî’‚•DÙÑÒß%ûe1ë_¨-¶RjºÉmé­ï´/Ôæ­.‘€bºÖJH ¯¤`³Pw2-ùm©5TyVÛD:}7Vr×ÐöC— ql0%žµŒ´m¦‚n.ìà”4Yju ÕRÍ:‘4ÜwöïÖZÑPÉzGÒÜ”(ºYªMŽ×Ú’º¤“<ërÒäYÙÊ8&i®5ú™À_DðPÂZå÷€+Å­fON¥ö, /µN5ôRÒb–ì7% QÉHDe#$8WÄ1”Š Â| à4‹ÇóÑ7¤ÎÔR ™Ba,Öaœh­€{þ¬hÇ›~ ­ÖŸ´Ýç’é×B‘%Ä]¿ÖZ«§$Ñv¿Ô漉:¤Xª¥“WÊ\@2È—J<œäs m‚…°ˆ\ 1‘dÛ>àÔYÕf‡ÉZÉ’JŸ]”q, ½(úT V‘iã#ÁÔSJC$ïŠL 3”€ÌBÅ&[hAs©±Ÿ,´êXKmC%œkRá•R9o¢²ƒŽ»’L›€œ$Ñ9R¼Ä«òQ¸ó‹B5 ¸Q-ÕÆ…-Ž$Ó)¶TçxÏdÍÛ/jOƒ ±Ð&2‚ ˜„ñYªñ,ôpBZQ°Ó̧˜2 ßI»ÉJiÄ.±l³»|4¦¡@âËjYÉ'y¡•PÎ3µ,¬0ò25Œ&QÈòÅ|·òÅ]ЇA¥ej£ñDj>?kaê"r[Â\O{¥'k-&5U†J(Wš/µåg©[*ÙѯµL§dúCò­ìŒ¡U÷¡s©¿ÒŠ÷/¶ÿ†3¦\—®Õ˜‹ä>Y*Ø:ŠôbIxU"¬¿¨Ej3… BädZ¾.n Eñ?Ó0…4׆˸tR *—h­$qo=\BÊN%¼Z¦ÖX^(âä¾]]9JZï.i ŠjÌ+-À6WˆÑFE3Õ¨I[$W÷­ÄÞÁJ-°þ¢Æ¿Ä³¥Xèy/—IúK„^fjœëZë™<+nMå$ÏZi…P‰žQ¯ER4˜dZeø\øvMµÔæÙ©„LZ¹ñÇ 6â“*|‚n¦vœÏ³¨+*ÕçJ{èD ï ¶'IªF³¿hË„ÔvâÇÅ¢¾\]Á˜À°J¸ÈY±N¾T,>±`'M³\ˆ+Uóôj•mÑsbìÍ39šPÈc(¿ËÊ]R‰=OÕÔã…ÒÚa™j»q™¶5+ €l¥Å|æåo¥•Aº¡‚Id¦ub{Ñ:ÚO¤±Qs7ü™hD9P=p¥ž¡©¶v»ÖbÞ&„cc7앸ô ¥º’D˜T“Æs­%JPy–¸¹ÖJN( HkYö¬-™$jû€•ð¼­Cè‹rø&Òæ¼šÆ kA’)¹TR«_ä!¿hüe®öÛMµ ÉÙ³bµ‰š¬©ù‰ žIð4¡u'(­M¬Šª­!¤ÝZ¿Þ¬upŸ Y¶´‰‰¨š“(cÛ øcLx\ D³…Võ>™­. ª8jÄf.QŸµ÷\ô[Jµ@楺OµL@‹Ø4“ð„(t™Þã“ÍUG,#à²\)‘¥Zvt&.µØÑ•Zéc­ØÉâ^êw•ß½Ú<Ÿ,„Ú«´{äñô'&²Vʆ­”žËY¢×HÕÊzR´³Öªð§‚ç³W&éCKèüLÏI’ŒÔÒØR˜œ>«a… %Av)ˆ‚JfI¦M]–¹B\6æb"YÊ-•’º%yû¥Ïê´3ÕnP’´Lž+ð 1 €F-´^ui|3‹ðãs-ÊAb”,WÚzwºŠSb*©Y®Õ„d$0ŒP_J^a+­ú‹ZéCXu3Pa´µ\kÑ\B>¢é[ÅvRAEÂ|çÚæíR¶I´qM¾TÌb˜|IÎG²&Õ¿2UCËòùyyŒ­‘>kcÆTÊÏ<á¸Na¦ J%ÆF’j„–BÉ3])ä⚃ …*ª¤:›ç$S2ß^t¬Á\ïɵÏÒì‘b\¢:%Z]û¥v­K¦ ¤t>ÍÕAu,6Š‚Qc$™$»ä­µÌµd¡ôå.n’d¢¢oÒIUæ\-ô.YfB†–®ï‚ g‹û*FÆR‘beò¬E~.ðëy¤õT»%ÏZÓ\AÊ5}V(Å÷½ÕdÝ S,D¨&5]GI›Ò…²p)yQ }Ä\éF³l)3m >[Ç7~¿—ZX½ױPòšóLi‡›¼7d¤Ú^+Åü¢FûISo¥5ø–dIõ2ÊI¦ÕÛ™cµG¹ÔÝPµ—PÆ(e“‰k5è›NáÓçéºõr>´Á4–¨[j’iWm)Ú–:ë¢Øeª‰O¬µ Á'8W“dRm÷_RO­"‰d{!!~×Z­'‰r˜é‘â¹–ä/‰Ð‘XCp>HŠ~HT©Oô£Ój©ƒˆåBKåÈ$‘É—&×J°¨Á©úËEñÝLÛvþÕ}~´b"ô¢]¦U¶£’'P»Jµ:ð’qU¦™‰úüHµTÒ‡zÑ"n%¾—¨•êBÔd¡–¾\¨µ™×Ú–l¦ D7—µ¶š#ˆáI1Iï[Ƥ¥¥ MšÞg§²T¦yBö™e:]*iI^ ”uT•,ÆW hWkû¬]…´RBl“í:ÑzöJ݇|­d m®”Ë×Z£Ñ$S—%vôB­Îª.‹Jñ¼X³zÑòГgíU‹~(‚CA&(?+‘;R~’¬´¬‚~„ÔGÊñ¢<ébp~uz¢©ÖE,rMì`cZ!Â%E G²VÄ1è“Ä”–Ã2µû·´¤ -ÁêIr6³ý… “$û5ô{­¥ÔT®›þZ 9ëcU&Qº:ˆ‚£Â¦™¿¨¹ñ¹Vº8](d¯bx\Ɇ -çµ£Dæ´ú¯¥ C–*WZ i%Mùl¡Å øÁa¶µ_i§¸4 ²gí*/b/g—¢†8’‹Þ2Õ^JšjÝí¥G¹ÖÂÓuX”ƽͣž>êÍN´T´%.˜€š’iÒ'x™Æ¢«ŽóÅÜû5OlJR|Km¨•k…÷¥ &S+¬ª5$`™-%·µI.•M…ë(úr‰OªÇ¿-”½÷4¹Ï¢Eº·yvg‡L Ì„k¦Öٓ؆ÉZÝÂÊQ¸$v¥—ÌJS­r`.ä5É}Tnñ¦g)Ͼ`û¸ŠôÐ:)hŠ=«7lµxW¦µç–¾.—Lÿ„Á ÉAe©çBÖ»i™åg­‰äJÛœ’ßìYëU”®ÕÆ8E.[R QÀ©HÅ0±Ä%P9%ZÀ„_PÄÈ,úœ;Aƒ9îY¼ÒJ@ ˆ”l‹hJ¬¼ÿ¬U&Z©³#‰ÏfÚ]ܼ×s·Q'&ÏB{D]v–8c®ŸQbª­—v·e¦£ÐJ‹¤¤ë(fåZº•$å™ ˆhA½g¹ŽƒÒÕÈ—˜™vª­„$q»ÀiŠ„†ãJ˺]+$ÂbþK­——ÄŸÈ—Ó8oadÏ3]Ì!-˩ڞXÔÛÏNàvF*ÑÄÚŒNVò,ž@v'3iZÛ/Ë´¨3ÒÑ”ú™ú)gŠÕ=R-˜,] Øîg­ ŠTaNR-LTR33‚Ÿg³&€gµZ?UC€©¯“ÞUUN…ð_*‹KlR?RRDÊVJ€¤XBHµõ´ {eÞ¶Z©õÅ%tªt8^kQäù2šµO·à¢*ª‰Ú7aš0³Ô./ÉRño1c)'Vu è ‚Ž…^Ó‹ÒC\ðøË$†¿ºá¢/¿ª·±§ŸkëɉP»Öi¤äjÉV©@.耑e.Ñ’Ñ“LI] ÁT¦ê̳8W)Úî¤ÒDÑýC’Rpø¢Kc©ž]0)s–Æ­$/¶TËsIØõ\cíí0H‡”£Jj¦â=“ª¹–1#U –i| ä»ß2®X'`Zcë«D!ʵlQ1û‘úBX—ª¿]*éäYÜMÔ¹% ÑTQz•nAAöå>l€4D%b‹DU–-íD-¤¾”öÞL¡†ChL´üõ²?±ŽÈZ+<¯·Dé¥q³RTh¢Uã$‹ãÌg)¢‹þÚ&¿ÄµÉ¤æöBëNŸ¿(%š2…êWt¹|Ѻ øðL@d¥ê–‘4UÓµ’5¯Ú bg’…ÄMÔ“…bà€|VÝjªñRo6òx)žxÖ– 2­æ–ÓŒl’ŒÁZ­˜¶ÖæŽK £-Úú‘ì¤6M®”´”¨o‰ÐÐIµ`"í]7Öd­UÆHŸ# +š¨ER%#{aà,×Ê Çr­M¦–j÷g©ƒ"Q—kmÒ =!5l¹Ò®­âf‘h¡4’È¥ l­ö –êâ™ÀHÖZúÝ‹’c ’ø?(QÂâ—k¡€—ÝG½J„§š* !Ñ‚Fé |µ$¥`*+yuˆ©ÍÀ´JÕ’`˜Äç“Á m3JºÈò·5•⯔ ½xA ]ʳšï²ÔjJ,Q‰bÇŸGKXRmÂî:Ìiå¶§{zU€ÖKiÑž[zIÔ`#‰å,!EŒ†Ô;NÔŽ//Ê´åîðMªY®¢Òé¨ë$Dh˵Š6ÞúÔ›Ãr­Í–ê²®ÄjЦb˜,´ØÔ¹I6Ý(ÕªNOË᫵žãr”1+ ¬œ¨Õa_´ÄC2”èÉRÙaV3ƒSm›M3ɵ2qÙ‹–ºŸHiuªN²Ô®Ý©6xÍ^ÔE-;–-K‚MRÀ ¶Îé·µâ6Ä,ïÒLøK´"5úù¢ÍâEœ:gHÕ¼'IàBˆ¶ãjùºdzÄe‰ö eêŸ'é,J¸”s‹ÚïjªÑò>3%I_Ný¿×ZÞ˜Kbz’¾’h%}ûB Ä[+`eѲ’Ôt‚r…ŒzÌS  J:Y+m;*U£ÕòQB"”Å1àQGA!AδK¦(á>-{)unÓTYɺ"[¦ Dà…/j›‚çi’€ZÅMºÅ™Vê,ϵ(ln8.=KÊ=1Èb"x¦‹H†D ÝË“¸]p,äh1ëhnõ%—*aÒ‘À…™ÄåÊ•úezDšäœ¦ZWÞl¥n >kÅX$ÊûB+L*Š_„êÍ‹’´T—>—°T æjÃaÑ]&Õ:ÕJnp¢Å¥PöxXƒHj+ņF²RÓ$Ÿg ¾FW¦æ(­µxKµ'Sö¢6tU×t‹Ðg-ÎLªËê½¥š ªX* lb·JrXø*KÁßBnH)A"$@’R‚ æKµ$’ÀŽY+ûÒ,âŠ6²s-°>F{¤Ïj §e}8}†åB¡‚Ö›Léò&©µ ãPäI ûT‡3–ÉSWÀr®§Ô¹ŽS, q>kµ–—ñ‹Op¥Ìbòl:šLSm÷o ¶TêäñÓYL×Z !»QÜ’ËäZ™ H+Œ F,ÄvÌ]°9IÕ\ÚL-ê½ÒJ.J¦ m,"¨]g’•ž†h‡ê9÷iüJ ùÜ㥶ë=Õ>™žk-+JÒÍHÒiõ’µ6 Ðwk$tsšßcû'™ÿd’äkªÜj_´<ñ{)PÒ.”¬î`ÁÕ%i©š# sµb¦ô—$ãF®Z²I3µ¿†þß„å)YÌ6u‹‚’ô{–+ ÓZƒ©d­5ÇÍž§5ã4ψá¡äÙ+lìùR½u$ñÐ8&` 2X^±Fµä´¢nÞ&K-6YhÓ]‰Ÿ£å%ä Ôn´t õÆ$½áTmˆ%¸¦.Wê¶ø³Vo1SJ1J˜'麤&ò1ÕuY©å–¬µæÑ¶U éN¥VH®\o…‡“d¥®a…ŠéèL’/^ß×ÃË'êµ:"JÕåÚDá†.J–} £k%uŨ  D}¡jòr¦°FŒ5‹Ä “Ôj$¡D!Î剿‰ƒvË•2Äõ‘^âo¹ºÞu'½}/eYzX»¤t-õkS5³A’2M35‰t¡íæË¹æ1³uÁ8Y„G©IÄjØ‘d>³¼O7STæLµ¼w‰t)©x$z*ÝZk™‘I2[jüFþ¬í­î²Y®µê‹8³-VMÊ-Qã:3¡‰ž%J3ôLË躯á( bH+B X"cM˜V Ò¿‚'bÔJE¢zHõ8É‘m¹Öê1dÂ@I§)I™RÜ]J¤—©–Â#ZÑ¥JÊKöG²‚q¾Š«ÁE! eý#Õ×wj$³ÚàCrÿ!ìa 8¦ç›dj5ï-çøEÍÒ”Øjkí L–Jm3ICNd5ªMÊÒmé2°cKÉTŠŠJ܉¶¼,’7ôEq©3)°]– µ£Ír:“X«{E™ZµV²R¶ëlZoB£VS®Ói©ÛD¡ÕÕIü›dÑ-!ú%)¢\ Ók÷åÙ}²^™VrËžÕ4Ëì>©g 7¥‡pID&±î»Ö{87ÉWl­äUHÑ£(B«€—©" ˆñuRµ]}–)ùœ"-åùÎâþ*N…%e‰Z_K¯ß'€$lA¢$hKcCïa³”®YEÏê®–°ù&KmŸ!IÕËØZ‹ÍÌ%ÓL©%€âSµp©HNl“r®h&H(м±i_œ-ËEÃR³â% €d•åÚN{’©-š€¾D³Y È£|=ÙÈšÆÑJ:%Ë\Û‘%ÎYàM‚ÁÐBÙ¹’ ’fzŸÀ% ó…¬}¹Vû¼fJýû,Œ+2­å“$™²rì¥àõò¬eHIÀIH:‚íåâ.± µøˆ° ¤‰CªÔHŠÍR}}­nïà.A¬P°Iʶ,Sʪ+„¹Z{]’Žwqͤ2ÔÄe‚ÌøY ²O•Z)_O´¶/Œ%Îú_´•X‰%˜¥Z¦–hý´RS)- N2ºP˯ˆÔL+¯/eKìŒ\Í%˜¡-¼ÖRsIÓ'ÓÚ#,ÕÞ´¹ÚÓÖò%Æšdé!µ$ÅLe­¨,ǺҹÀt”šÙÓ¥$IÞæù,˜¤…-DR9EÛF•°éŒL;SsÁ½p™i£”l¥õ’dÓõ€ñ¯LëV•IUgõŠ¢æä™t/Õ×–êË\)•©ÚCRjßd©:¾xÑBÈ% ‘”IØ·e¦,?ˆáï³°,}J*X€¯µ_'Zš/Ôy·ÔÉR“ë—Z¥É{á2ùœåt÷HFïY™nåJ{)‘¯¼ÐÊÉ'‰í<J/õûòxMa&WOgOÕÄÇT[õ[fZ × D-ˆ2lD¾ÔÆ´y¢ Ò[>f©Ò'_GÍ,bFÅ’«‚¤·˜,´¢Ò™šöµÒ2CR­lbºŽó'ÂAŒZ‘%QCÌ™°Œl­Na—“ß½TÔ9çÁâógíj/(ó R¹ØDi–µÜ2ÓB^Sµiv³H ÁÅc¦OK•ü§T[š•ŒÈê¾V(MÅZ…¢ÁÄ]áã<ÓâV’uÜc:ê\™jôÈÐ+—Z™Ô蕆Cª‡•pí’^ÉÈ–jÜ¢V|)YM (åZëd%i¨/Õ¡…c(es‰´–ÄÊÁö¸Pû¾Lß“•¢£Q&LZL˜”<‹8B¡I•eÚ*¥TOI–Zçt©¦,µ –äi­fP½hë)’·užiéÆš_’y&H"s-Üb¹R/9ê2S¦Ùe‚¢sª<ƒŸ®v޾Ót‘¤)+µhÚBa„Œ~y¢ÖÒZÍT›' Ù4IòK5DBw,Õ>…’Zä‹·Ìf'Ñ cS( ¥BL$™m“5áEIþ]ªÿ‚‹\Ý+YJ²4é´bîRËN ’=u²Œú6DÑJ©P&›¡'þ¬¬¼MèåGà)zq,Hº~™¶¾:”T´µ¶qš\ØDؤ dñ9. .$ºe™h;HùZ˹D’Õ}®ÙZ'óL²‡gÅ’鶤B‰i©÷0[+Û9‰@ Ió¸à… = j´í$KŶ:Ë#3[+Êž1)|²v­ÔI¦`I¢‘= LJ] ˜EZf©V)p©ÖÉÊr0bÊbmž+ñÒ@”ðI$¤Ò…¶‹N¶“µ¶> ÉfdZ¼ƒš?£S”)—UE S`’ „é‹"›Žá+IJËË]åÿ‰ô2&ø*úEIsâYÛX‘@L‚U€”š-s…QmÔ~y1M[è"W¡ +•=ħ/ ¼%á.µùör¥ô^”$ž’•VST*ÂåJb¦DI%é¦|.`nº@3œ̌%†.©t¾h11R8Ë´ã+Õ*[K͈Lï>•ªÍÂÔ,’fÃr¥Õ¥Ìº¥TxZ.´Zž‚ÔM*)\IþÉÉ}¸LÃõŽJöJа4‘ÖR…!hô.‰Ö ºíIzgƒRðï}Q„WŠ==á>§Ïê¿Zª-—h¤Ä)×.a™€6’T¯Ô…¤D-МeÙ5‰.WwÌrÅ}ü°Lû€&L¢ky¦°MÆ–dAò8¤½Å"´àÑ!51µD÷Ë\ C°LJÜU<¹…Ï8S+b‰Žs/ZYûDAÔC-ÅÕH]u“”œ³…mFª"Z¬êD¤ *žµ Ö\5%‰ºÚ¯–­“tò­‡Ÿþ¥j«Üü>9.©¤!iä÷yã&jÖ¦XËÔn%û}7 µ’A­š3¥³Ê—ZŒEšjõµÉÓ{žž¤K¥Š—„z_.Å#a–ÄZŸÒ˜.9Õb_—©V‡]2ÄÒ+ÅJtùBI¸žñ‰àH—’\¢°öd+%ì$O´ˆ§µ®Á=ÇË[ˆ±+ ™EUïõtsEE‚!¾V+R.”bIÔYAˆi@.…5-Mµ‘ú¬Å&‚ßÙJ€eq³0ÔW•¨.ÏZÏ&µàU&Ègùô\‚‚l:y_¦q¤hÔ60WLœ™4IÑa¡ sóµšw°Rl¯1,bö¬íkJŒÑ•ÂR8Eåá”:ÐR&†úØ øi«¸µbS´Rbx_´Ô”T©ð™ª+R‚¤C( ö3…øJì…ÉJKn—úi¥MŠþEՑ稞GÔa}Z®™)KÂKÁdc© r-LY2ƒÍCµ²Y’[B’hUs%ñüYÉO°dÎ$ê½J‹/ñAöîl®®~´­®5î|æ…ö–>,MÕÝYªÕBÌ×j£×µé»T+Neñ&VÌz@ôWQèú d[®ÕÊÈVZ\©h\¨¶n1…KµUn® Ø…ºšÌM–qÍ{!+½Óz=)(V`WjH÷BK©ÈÔÐì4ÕŽ[‘‘´T‰™¢¿V®…V32Óº2¥™¶ú#j|.´êæja QŸP/ž«ï©Â’èEª–0‘v¡¥^“"S«Ì.Ôæ‰6“v¨¥z—Õ£$CBIŠäYëi.9NH2r3ŒAŸ §Tm5“jUÓS­ j²ÔZ©¦ZÎý„Ì´P­‰ÖÔê’Õà2U¨QFIÞ©¶Ì#©%djʉPÝÏ„õB`BKÍ1¡i’fŠQ³¶ŠÙùZK*D+_´Þ$ŒZšŽb¿Pmþ— ËT–*ª B6“kÁ_Çu²c*ii®–‡—gS©¡³Ôtûåt¡®ë>«E‹_úÒª)ï¨K€Ëx^«‰Øxi ̵b¡KAÒNÈ·g¥ !2Pdœ¶Hɦ‘‡¹²M#iÖ¥Rõ¢hÑËtv/d,”¤w©"É1&ç)„X«µ‰„HšLN£¥V8JI‘“f}ª°Í—ZóáD4-3eÇFRz‘š4ÏZ¾ršiÁ·j)u_J¦wB©*{ÑZ®½É„±]¬«-Í$)|VJY® ËÒE\’Õ·×ZîÈÄûbuQuþ!Q¦$¨e²RZÔHþKB[MOE–äQ3É?y1-2õ¢F¡IôIJJÒKJ‰Œ^)RáIKRm¦ÑI”MPQ@ˆ'’DÛ%Õ f’h›td-´× -ˆ&Ï´Ú)K5¢C„È%Šý'e\$q±Tk¨,ÉBH")’Ò‘¼tXhk¹’Ž^®ÖÉÏÔ éJ¹ÙæÚ¦ÚJ-ë#¹ $жpTè¡5ú’ ø©Ôp“Š k%á+×¶#&Z6Q©( ÏDœç¹á³¶%dkÒÐÈ­!x–k£_‰d)u’DÛ`“VUZÓ1‡T=L3µð´^ö:Yi=âÒ”hÝ€òµÀ¸^ì\íH9CéF½Q‹QãR]?¢úEn-9ŠÉ³º$…º™Þ+×úŒ¯µ]ŒTMÈIÕÌA:Ñ^Åô–jëÄeª5uÎ58» f™iÅÛ¥á.É)I4ž$S¶Ý¥Ö¥dV°RÕp¾¨v *ÏZŸ IÉ[ìû.´â|Þ˜æ©È/›®=&j’Z"8b«»@’ð‡Ôö•ÄÉZQ“Aeûg­‘¦4r^´ÖàRék¥p@!ªz¿KÖÊ*Yö2Ù˜”YsÉÂjßa"ó8ÑJ7‰ð"ÁJF*=àê hM«­šÕµYI^òÌ$FÀ H•ó=Ñv„…O¦p‹鯆²)¸°‚†$*¢öØNKÎD؆\ ¸æ-µÎK¢€ÁR+Y&ÈK†RW6]Eýac##WÊ}%™RAYà•JÍ©w(ùùåKm´TKVåj‰# )æÂTj½rê±XLRÚM…X­v>XÅIRÓÍÜhys©¶®YhIng)q ²É}ìEáäæâú®UZ°~P{‹ ´îLc`-«¦ZÝöEܯ'†ÛȤjüR$‰VÞ?{V²Z“…’‡Õþ|¡”I’¢¥0/3…d”o–i7AÈ÷E‹ÞÊs…ûPœÚ¸¸KY¢r¥j*|v¹A¢,äÏwÉ­ ­’LðHµýÞ$SÛBH ~é± åð4Óê­ ¾â ›²º:,±`D%Ô\«½¿Rtæñrm_]r‰–fgªÝ&Ò;{¢¶ÚB¹Â§ÚfR–(áÁ›#&¤E—¬´Ò˜Ùâ"5»ØÓSµ6iª²™šâ'ºú© pY®ÄöJy‹h~›Ý¥gh•D%`•$œ«ÍkÉ<)bÉZ Å]V¾KeM'¿³­— É'KÏ•K׊-Tø3­‹’WNµÞ ’—¦àN•J“\1ÍÔÆÕzª¡„6“GEÕÇì.L‚žK ¦@J»é =ÈŸñ׋N´TÛ¤ZTµ_³Ô>¹“ê‡Ë²QéKÁîdyg7}©•ÏÖÚF¸d_EÞ—ºÿõýoûßß_Ïþíq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|ÇÇñq|GÇ¿ýíÛßþö¿¿»ã÷ßW÷ß§×ÿýíõï¯ç¾½þïßÝþõŸÝ_ÏÿÝý÷ËÍë>Þ|Þ××ûëü¯¯ÿöËëÑŸûíæßþþúÚo¯ÿþú¹n®å—×Ïýë;þúÌ¿þý××ëûûë¹7ïù뻾¿?½¾ö—××ÿõy_o®íóÍçüõ¹ݧ¿®ç—×ûts·ÿýõy^Ûç›ûô×¹/7¿óËÍ=ÿtóÞ¯ïý~sn~ˇ›ëº½¶/7÷ûëÍ}úúúyßÈkÿ~óúä>ÿvóo·¿ïóÍ·×óñæïoä^üuO{ýο¿~Ï_÷÷ö>Ý~ϯäú¿ßÜ×ßÈ÷ߎßÛïÿx3>ÿú=ïÛßþùæÞß¾öùßÈgÿJæÉ·›{ÿûÍë?ÜÌ:†>Ü܇Oäß?Þ܇o¯×þáæ| óïÓë}úBÆá·›×~¾‹_ÈØúD^÷éæw}$ãò—›ëøzóL?ÞüïÛçò+yfŸoÆÛ盵äÃ͵ÿJÆÒí8ÿvs¿‚yøåf¾¹9~&Ÿyû>“9MçÁïd]¸}^_Àzðáæ7|ºyV¿ÜÌÇod|ÝŽù_nîç_ãäW2N?ÞÜ»Ïä~º3·sô+Y_è\¿][þZ#o¯ë+™ _oÖÌ7ßùëÍóÿHæÎ·›ßô•Œ¯äz¾Ü¬Ë¿¹s»~~¼ù=ßn>ûvýrsüró¹7ý÷;Ùgn×ñ7Ÿý ¹çý÷÷›ÿýñõïßnÖ†ßÈZüåf^º¹ïoîû·›õëÃÍzx»|$û½¶ÛûL÷ OdL~$cçïä~ÿ~sÏ?‘ùx{OoŸùí|ÿësþ/²7| ñÉWrÿ¿½òvýýë{¾O<ï7óëö>üõ™¿9~»ùÝôÙÿ57¾“gõ‘¬ë_ɺt»þJžý70¦¿€=øvoøp³·~ºÏßÁ¾øõæÚnïçg2®¾ëþtól¾’yý̇¯d¼~#cûËÍoúHbR´¶}&±Üo7ßó+ßÈÚt»'¾yöt ù¬Qn¾ƒ>§ÿëæ·ü~sH\ù™|þÇ›ßóûÍšý‘ŒéÛýåËÍuýìoŸÉžŠâ’Ïd_úDæäígݾÿwr¾€ýþÃMÜñ×ÚöËM<þ‰<;ºW~$ëÇí¾ñåæÞ}¾ùí4ûp3n÷¤ïdý¹G¿ÜÜÏdNÞÆ<nîÅí¸ù|³ß¼o¯ñ¹ßÉ>ùÌó$.þ;¹®O7sþËÍõ|ûÏòÜh.ò‘ÌÝ_É}¹n÷Ô7ëé¯äy~ùÌ'²/Ñ5ý3™§4.øz³ÖÞþÛgGÿýfý»]Ã~½¹Wß@ ÿåf]¡ùÄG²>}¾¹æÏ7×ô<¿¯äw|¾ù-·k.Ê/¿‚yûùæ÷} qÔÇ›gøá&^¢9ôW¯~!yý·ÿJb ßÀZúÌçä~ü¬ý·µú#ãŽùÛ߈öŠÛçt;¦n÷Ù¯$öûLÖŸ¤–ñ;¹—_oÞ÷ÄŽȘøHæ×Gr/i\ó÷›œù‰Ùè½ýtS§ùFæÜßÉçÒ5‰îÕhM qóG²Ÿ~½y·cúÉKnßwû»?uñ©ó|$cãëMîw»ürºÛåÙCoãìÛøèY‹?û÷+©™Üæ@_ÉÚv;†h|þ;ˆùi çö3¿ÝŒÃ/dÿBòÀÛ}ëï¤&ôË͸ø@æü'²~&óꯘõ·›ññ‘ŒÇ_É=üJö·ßoæÒW°¾~¼ù·uÉÏd¿»­7|±À'pí´BãÂÏä:>“µòÉM¿“µëvîþFöœ_Hm‘Îÿƒûòáæ½_ÈX»)!kë×›8äw2®½©ñÞÆ“ßA-ïv}ýLr› úùfº}F¿ß\ׯ7¿é+©-Ó¼ó¯×þNÖýz³'~!ÏçëÍsüvó™ŸA®Eëa´.ð䃿’ýâ6WùÄ._I­àw²nþJÆü’“ýBÖO:ÿ¾:ð§›±t[Sº½g__s™/¤~~»|¿ÙïokηõZ“¸ýÎßnæðm¬üýæ¿`íûDjòŸIú;ɇ¿Þä¼_I]ä È-ÿ~ó¾ÝÌå/7kçïdN}!cïy.¿’½ŽÖ¿yûÄ¢ŸHë ɽu O üõæ7ÞÆe_Èúúåæ^ÝÆ-¿çyûù¿€˜ùv½ü;©-~uØOäy|sì yÖtN}"óúˆÃo㔯¤öCãÚOdŒÝÞ×ßHïìvüýÄV·¹þg£~µ¥_Éúõ©³} ÏàÙÛéÚIë£_I~s»6|!õ›ÛX…Öd¿‘ûü+©m}!÷ïÓÍžHcœ¯¤oøëÍØýFâ;º>}¹ùì¤×ð‰ìá@œðu¢§÷™\×ÇÓZâ2~þâÏ7¿ávì|%y×/ ?ñm¢grû[#ëëW2ÿ¾‘yö ‰{èØü…Äë¿’gvÛŸúí&ŸýFê"ŸAŽþ‘ô£?‚=÷2Î~ý€Ï$6ø j\nâ¥7ëÜ7ÒßúLú¶Éô ‰Soó Gû@>ë©ýJâÓï$F¢½ëï7cŸÖÃþæåG’'Ü>§_ImövÜþ~óÞä~ÞÆ´HœòÔ>ƒZæ'Ò›þBz»·yÌoày|&÷÷3É;>‚šáRcøJæÒ'2Ç!yíßoîß’|#cûpnªVû÷›gó øÜo7y2­ý>±|!cò+ÉM¿>ëm¯æï$7ýD~Ç×ÿ_{o¶,Yvœé­=ÏS çœÌ¬ÊBT“’ªÍDÓH+^¶$ÞCDµ ²&Ð"Á{½Y¿R?AC•`lÔßþw‚àn–¶òL;ÖàÃï¿û2yÝz¬o¡vÙã³.Ƶâ[´ÀŠƒ#—°¿ôu?Qñ¿6§æÑB¯ï'æD¥b¤ bÕºXõy Ÿu’5j ‡]Ž¡†=ŸDïõ†G1=7š=ßáóÕˆ¹t~'ÃÉ™à‹öà:‹¢þPÝß›Xµ…=œ`×±YÌïMX‡qühxNÁø&ÄPbäØwxj†>ÔµXdÏ”ðM:³O¬qiò€-pÑFìP_Bm÷%yä(¦×K Z›©æ«zãK6È7÷x}ú½9Kêi\_Á_bþºGŽ—:\óM•É…6_þiO|‰AÎ7íRmpÑ盜€ÁpÉZ§ ø µÉåéëö8ßëõˆQGð‘Z|®Îè™ÆpÎpÌfc“ˆ•4†#7b¯í~ëŒçX‘á{ÕØ#ª_w§ý7š³Ì˜ºÇkœåÖ+ø‰Š³T&Þc~{]ñ½^žqžò¢”—9a>ƒe˨ fÓà<†OÑ!Fm` ê;8š¼õ!çªGÌ3Á·±*àÊCnLPcäv˜¸Gi8ÐÌ NÀzˆÓwðz‰g:øë£á8v'?×œÓ L|7gÆZUX{æ'Øú ¾î`ø˜Ó‰T¬·5¸×¼„žìÍyd®x•óSbmZyì0]ẫá4©_YËÜÐ^-ÐmÃIÜYüJóš·ã{ÎÐûbŽN~g<áç’KW!>ìM.Tm—>§Æ™%ôy¾L‰gœ N[Ãnéš,†[Ô™ø¥6<æ{o¿´6ö´18õ`¸¨ò ª»ryv꟡C.µ…<û9‚W?™\òŠüÛÔ§ë̹l ‡¯1Å8is7!®X$g·žÄSŠ -À,'ÃG™Nlñ Ýê¸+ä‡vÈ’;Òšx 2~Bƒœ þlƼ Øg“áW#`Œ×C¡?Úgq+ÛèLì4cÝ•ç4¾=1#μÆd8%äõwˆÝ:Ãa)aFè“ý7Øæº¡E|_C?9][=ÐâLÍð¿*øà­ÉE †G]ß`Dþ½1>ö,Ïɘ`29êDÖ™ Àt~˜YLÝ‘æPgìWƪäLµ&çÒá}j±Ï9{-¸ÃIý„Ë×µ¨AêÛ /sÂÙmM^묤ƒ¾f ‡Æ7õ‰ë ×·‡®TL¤5<±>ç(k×àoèùÎðú'ävFœãÚäm;“#˜~"_¿5:w1ú£ž§û¾6¸“{öÑÄSÄz“áóv†÷<›=1£N‹õƒ±?øá#8!ä‡ZääÜ™oW*¶Fî1‡Ø.ëoFä¥KÄ„ŒkFÃÙï¡?ˆõàñ°ÖCõ'ýRòDã;¶snŒí›%&M.lÏ‚ëÁœrÍzØâœLòÄøÜŠÍ¶¨aЦêpõÊ~³6ój ožü{­í¨  s¶G`&«1˜ †M>u`wÂUéÁ+Ó3S¢oç#>;ï(Å#f6ÜúÆ<+ýä±S ?¬„î#O±2|z‡—W8¯ìµ:o.ærZ=tÌð¶´ÞD9æ%x>©C®¯÷†S¦yø¸1X®Å„õtg¦Â<×éØûƒ¼Vâ¾®ïÃx²oX—Yã½Ôª±ÖºFÜÓ™\㈘u•ýIý­AžeÁYm ×v‚Í m‚Ÿ®XpuR_H{ár(3ò§äŒMÀoœá ¾,óð£Ápczøa5ô€ö5Qy6ë§gp6ºž×Áìí|ˆÑÄ<‹Á=;“3á#xÝÙøfÖUuymì-k©ã_º³¦õEmòuù5Îp¹¤=&÷a]>¡×a+rÜzæìMrßZS2˜ò`ְƺO&ïÍž:üý!ùÚ~µï ôz÷?e0\ÒKŒ¿EÌFžecp­ñ õ±ŒñäÕ–žO¿c45M|xòâ]ŸÁÔÔ6°çh€¥X|eöàd¸ =~o¦Ñššæ¼±ÊÔÄ 'u”Äœ–svkä ˜×Ö½×ÞÂhê Ù«ŒÃ™à+õð!;à¤#lÑ .¡‹uäǃŸºüP‰8³?©!íóÍø<c’#ØŸÔ^׈%äë»tì•¡<„ÒÔP x^Õê›¶˜cÖƒf7Àvúä{a,&ïúÙpœNò±ê§µÐ«œ]} ö¨ î>Ãv°æq0¹ÃÎø,“É{’oÙ^òdjcã 8ÑŒ3[Âo™ ¸Fil¢Î×hðµ?µÉy Æ/#†4ÄîƒÄ+³áÓö†›¤XûšŽ½±è3̰K ~~f‡ZÓÖˆm]o«9MW÷Õ`ÞS <¤c_ÇU_y8ÉWOÀe{ä+`@ÊeÑý qy{‚ûõfo©J=ÒîRmlî?©—3]šü[c°ÌÑøZôUÄÛjHÈMÑ5{ÿ &¶w|“óÖ¡Æ”ñùlαrœø»#ô?û‘3!×Ò"¾a*ð#¨£zSûÀþ¡®7 óZôµ¸:?sÿµÀŠÄ õ ×ÞñœGëŸi ÓOázñõ¦.\©\mæÚ'ðôFäCÇ/ÔÚ÷¦noÏa†סþºCݹ:äа_]cj“Ùïo<áKŽÆÏéLŒ;šüª{½Æà„áÔñ¬õ†£5È< Ø{|ÿ³\XÂÏÕºý&ù^/.¯Ô˜ü!çÍíÙÁä\S×BlÊÕç°OªòQJð&ZÃõN¸#Ê{º îv4yú;#0+ò±G`¬ƒ©]c¿›ºªß}©7k üÛ þíløà•©±vŸc2|×»;Ù£3ü¶ÑäN´ª‚¯2šØŒvi‚^sñ,}¼ÆàJ½©%Õ=JÎÝ`j³ØoœuÚ¬mcºz–˜¤ëc5œp¿;Ô@ºÞnìçðY=£®—ë„_éØo>C]ÜâuÇf}Ë€ÿXŸ õ3pÛµÐ.ös8Ù|RÇ1!–`ÏÊþ¤Þ¦3Xÿˆšˆ XD»4&ß?{¿³ƒýq¼†¯5 Ö.(ñøëɾ+ÎV÷¨î;aÜÑ¢æ¶IÇ~5¸5¥Éo¦æ|„Ïíz¡°_Ú̾5~b¥ÉuÖ¨ŸK*†F,x2qOcrì½Ë»$ȧ›D7騧§7µ3#â­{Mõ×b¸îáôK, &0œä^'SCßâ3”'yƒÑì_®™ú0½á^kÄ~Ûä0ŒÆwÒ±ßToÎñxÂiMŒÃ^£©ªñ·ÌÁõÈL†7Y‚3XŸðbã“ÆOךzâ¬w½qG‡q×ÚôܧoÀ:ÏÈ=—ˆ›ª“ç¥?5!gÚüYŸ­]…ORŠ}®MœÛŸðÁ;p;Ss¨½]™ëZŒ}˜°–•Ñ#;u¶a<Éi2‡¶N/¹ “É%7àˆ°~ƒ…ûŽ\|‡]‘#É\¯r+8GÜë졲;Z0ëxÏ€Î7ïÝé`kÏriäÜ6éØ×©OÇOµð^bküåkåj÷4¿S;žÔw‘§ÝÂ_£Ó™Xk@íêbâaæ(kؾ³zÎ>Ä`0€ù§Ò`ì«6~Á&ö˜ ‡§wÉ÷çgr@‹ã™sŸÐ"wgLÇÞéÌ;‘?E}3€ÐáÌ7&ßÓ$ßïÎõq¶£ý7rWÃ4Ð5ŒÅ©ÓJĬæ«3xë»x?D•žûí±˜r;ig>¤¶½JǾÒìyeö }õõGÔ‹*=žð¡ˆg ¦Î§5þ„õa}<ýãñ(cÊy‰9ÚÒœ·ÁèÕ9®/åS&c«\^˜øˆó:œéÖÔ¾èçêŒ6™ùQ¬ßõQ%7@û¿³n±7>Èd¸Î/æ'Ržø6£‰Ù[£+hù6ê£5¨ShMIkrÛU:öv}|jS‹åpÒÆðø:p¸;ä\^¬3L—޽IËt¼'©KÇ;ˆjø§ûç(Òñþ)õy×tìÍ>Ã9ëñÓ§ã}"Œ•5™š€Öä—fèb¤“Á0ƒÝÐ>Uéxä€8@¹JŽã?.ÏŒ\ùŒ9en@ã…qªúôòÊéMל`«Äɇ«À7cì=™¼Wg|Å¿VâMfO‰ÞÔa&uw¶ûn à п+ñâýÆø¦É—'¼þÎÔÅ2nhÓ±ÁhêSZpfût¼‹£1\Ö µ?}:ötnq–µÞ^sì?¥{‘ñêb°Hwû )Ÿª·†ýT;S3ÿmáËö'\~ׇž½ÑšŸf>Æ:‡¾Ôjò&3|ÛÁÔ‘+O“x‘ókäì5‡¾˜ý<áýwâN1±Ö‰jÝÊb¸å•9s³Ñ-£áÄ,ð'ƒ®ð ÉEg/„Îø®ÿÐxb£7Fo'<öÒ¦=^“¿¿g6û¾Nþnæ ˜{ÕÉ÷‚cî ‡Ëq±›ÿö$&amû`êjã—ÖXëÞ`gý æßž¯âƼC¸÷¬…ÿ<›ùÐø¹41H-zµ5uŒÛés÷°“•©OÖG¥É/´!6Oü]ò_ã¿÷àÒ3__÷©ùGÖWi½Ò “÷MÎð±GÃCka›èWލqÓ±•ÃÔãÿ.éx_[›|½uÉlÏ’žïn›LíæBéo'\‚ Ø"k­Û~kƒ”»GÌ€½Y›ôÜëˆx_—|Œ6Öéñõ¤ŽŒ˜\cbØÉpV'““qþoóÎ×pbJ£¯ÙOÅåcØS­7õªCª/´žà=øí+¸<ld“Žwæµ&9þ{s¢Z3?Á‰×ΦF—yåÞÔŒ»^®§S)zÉÝïס¦ AΫ25¼ŸrHÇ{!êô|fs¢Ÿ‘œ]Þ3Ö&÷ã¹5X® ñÜÞÔ7•ˆÛêî3ïQŸ·JÇ>¦:¿º'ËtìÍÓ]ßÀoŸÁMvéxõhr*%tË ¼H÷m…½Llb‚ßß'ß r†mÓŸ-ø¼0ÉÎðÁ\¿ƒÁøhæo6øàx™bÜÞšœ†ë™²œèaÚº>{j´éØó<ÁÙ_7'\æ¹Òû:‚5o®¶‚˜Jÿ^NŒ±GŽþð üg´ÆùWl½Eûäïé“ï+ÔCïµfNFÃ9èQz{ é¼ï~gÖµ3µ«½©½P D×—÷£ósòþB›ç¬ÖÕdœÝ—ښح7xÙœž{Á´éØGqû%{Ò6Éß}5™Üë`ê‚y¾[S›XOLž¢>á]v¦V¸2þ[mêØ?k„­R.û|±?ksR¿K.Ý„ØÁõØÌy¬Ág®QCP%·”Æ8Szî{´BG/ò3Ö¸œíŒçš$vÖÜ¡Ë5'xrcüûÅø£‰ÏFÃK &1¥ç{ôÉûèOôÓ„×®aó{M'1ï çÊÕÇM†—;á÷Ä ƒ©çru4ƒ‰+—ô|òr²ÏWÁîS=žä&S;ËüÖ€z¬Æp·].°„o\îåhrÂ=öX}R?R›=³¦ãSî='øQ3¸ÏÄÆ‰³L {η'ˆ°Çvc¸"Ž/§~Aeøµµ©/sÜ—Ëæ]ÀíIn{:±¯Ž/£qö=Ò±wÒŒük“žï½§_Èø¶>É'iZšz¡Až±e9ɵ»¾‚´/guPî®Úĵá@vÆî &äî‡Ò^Õ³áM0wÆþâ®—Ìdr—¼Û¼5þ„æ´™÷ººA}6ÕåóI¬1J¾_q:WË5¡VÎÝ9<áçMòýÚY{ãêozìÝÞð¡à Õ÷\N¸þŽ£Êúàþ„6›¹¯Ó±×¼‹QèÛOÿ­“ï±Ç;¨ÃÕ6'±lcln ¿Nk5ÛN&wwÖG{­éû—騛Äq·÷3“OO®Ç,5¢|¾Êä©¿„©Žé¼¯I÷âæö”Žwn'öx€?9¢Æ£ýBœË»Ãêtì©ÉÞ5¬5f97Gñß¾TûáüZÞ—Ç|h…X£9ÉËŸÕ¥N'uÇÌÛ5&OÈsÜ"ïÔ|¶:Á_ãã;ß|LÇ;fÃKdϺ 1ÑŽ÷ötàøP¬¦6Úõ*ð|•áL¸Ú“ ÇAlÍ~$§e0xW ½ü7¬‹b[:Þû>žpƒpŸ·fýÙ÷h‚?3™ÜKiìLcrÕ¬;9«ÅP¿¾J¾?ik°å^º»jzð\ã;µ†Ë]&| Îc Ñlò”38g®çÁ€zÇ)œŸ?¿^žãÈïVè4å9~ûøúòø÷?þ»JœýŠÚÎ}/~õã¿»|®Kzî‘ÔÈçX¯ùùgsüÎëã5/À®¿»‰/8Ês^ä}÷5ù›ÿ½<~~“g~y¼Çþy´gÃ:íkpÁ×ûÚð<ûº¼Iüq=v¹‚Ûwƒßt“=ö"±ó¾Ö÷Çÿ/÷¸ˆty<ÃÛãÿ7Y¯ëãsïçs3±ò7ÕG}‘מ¯µÏÙú£—ŸuòìWYGÅwîð!·t죹ʜ^äÿ<Û€ë¿3yú}½µ¯ò~Õ’Ž÷^íëý*çbALµÉ~×=rIÏ}.oÚäì^Óñ>Ýýy7c“ô}69OW™³}Ÿ½Éï5¤W™“7Ñ%ú;o³¿¯ûM^_÷ê ˜{cjÉFy¾}Þzù{½Kîòxûãg3r~º7WÁ07ìíÙŸWùW'ßÁñ¾b_LÀù 7ƒk½“Ï¿‰nZeÍ7è_öd$ÿh×18—+ÎòЏø^¢êw¹§tì/¼‚«£g¢•×f}¾Æè—ÇxǹŸÍ×w™·ü%}VâÑj[zYŸÍp?> ¾Û­ºÊü¼¤ç;²f/Ÿs‘ù»Ê½ÊùídŸ“±š\ðfò‘ÒñbÍõþ þ„òL¯rFWàÞ-ÖñEæXû£ÜÒñNÈ«ñS4çµÛÀ»ìƒMöÎ]ìò*Ÿåƒè´Ù›ÌÍx’OÞ€u«oúú8³®ü&:õ`“áÌÀFyß)ûgL°G“9«Wñ‘e·W«ì§ü†Vær2œè |çë²ÿÞGyÏýŒh׫üþ kµŸ¯‹¼ŸÆá7蟋ì‘Yl‚ÚŠçì ðfp«vKïáx}ì¯FÖq}ì×}þ÷çú„Út§/ÍZï-=ßO¦ëRaýV£[÷½p}ø÷ªç6p}o²6ÚÓû*ó©¸ñ"ŸWý˜w⣰WH‡8hÁ¹›asvݪ±Îføz}:öÊÐ<Ó/¯sžý"ú}Ÿg“ÏpAlz“½ß#W|—yéetœ®ö@lÁϯÐáyÝ7ÔßN°AŸŸñ¯äµ7Ñ#ìÈw²·U_ŒÍ×3;cÏLǾ{ƒœ%õ®†û{yœ£[z¾q÷¯Þ?SÿônpØ^öédòšz^ÔgÜÀ šeÏ,ø¼“ÄHWø@“ØRõ‰ßVø2wø˜‹<󚎽ºZøGøg‹øÎ-bíOÑCÿküèz!\åŒ,†Sµ¥ãý7Ñ5/ðKÑÙ»ÿû×Э?“Ϥ½+Ĥš¯\$¹>â–YÖøŽÏ8ȾS\?ô›Ú5õˆ…O2ßœûæz?ð}4I¼§õBÌ¥·ˆIØâ Ü ö¯¾ÈáS¯ÐõŸ`7?LWmd¸ã/¿s0Ãn xÏAtÒ*?'Ç©‘õ¤íeï[§^öúýñ|×tì›»Š=Ød/4¢?V™ë8†ò_ßdÝW“ßàú}ßVãí779«ÙØ­&{ ìÏû 5sëó¨ð5ô¦®é l÷E0¥ În5c*žvCLnÑ€•g÷jrs®~B¼0â|Ì‚× à½ˆÁ¾*WÙO»nøZþn=0ÈgžLn©•µÒørý¢竜S»7¿Ë /Ž÷²*ÞЊ-}Açû =;‡[%p•39aƒÅ\ÄÖìïýKØÒÙpÒ:¬í„³¼ÉÜäl©~ cö÷SŸæ.ŸiÎÏ{‰Ì k¯fS×´Âßþ6ï êDg–27wóú¯ÀÇzÄ=0Évô*çx‘gÚpþwlò¯àË ëée¯¯òõqõ ÿŽ÷'í˜ù+0Ü1BnÃ’Ž}ƒ7Ä!Ä gðÅ4û1ûìh]„ÎáŠßUüfßCûbßåó\£nÐy+òèŠQ´ÈCÜÅŽÝå=5÷2!'1Ê约c!=÷Ò÷Ù÷Öw²Ö—} ~ÍÕøm±mj'o’?¹ ~¸§ç»H6ñ#œ×&~¾çÔ³°¯¹ žeï4€c¤=VùÝ:òUöÍUžm3ºl3šZÚ±Ï~ö¾•=µ™3ÊxrLAsuäÏø(w临g³ëÙÒÊ™¸‹=ïágÞàÿµð1ì/ö*zÿxýï_ ÛÐamøü ÎÇþlïû\dž4. ÍM\¼"®˜pæ'ãoˆ É;_$<"7°Ž:ïå!¯O±Ä»à›|ï"ñÀ™Cæ•V`îžtŸvŸõrί¢ïSŸ<Šx3xÜ$>ÁŽÅLà Üà9^/ûG®ÀÇö=ðN°˜+âaÍ‹Ž˜óùv;öÉÄ!Ì­*F¥œƒoqþ/¢O7äÕÉáÍÈÞ9²—yÂ+ò‘á*)ïæ½Ø«7`Z¿™š öêYõÕà:l¢“ëÜ$&_«iºæó>ˆ \`_[øð«É͈áSoÁ;“ZyŽ+8‹è,rà!ƒ|JÏ÷{Tfu‚ɵWé$ÞºÉûßeÝ€ë~Ühï:§ãNôïÕ__ߦã…ûç“g¼"®ºÀ¾¯°±¼soûàîž ÎÎúüÑäü>>æï 9ÀWÌ;϶úTÚ/ý=Ø‹~R\t1öj–Ú×ÕXô&ï¿ NÜŒoñI0¾óLûÍØaCþ„z¨®Ãû¿ÃAœd«~Ôu¿ˆýÙdn{±Ÿ3Öƒ_wKÇž–|CÓ6ù|3°@õׯÂo¸‚§° â;ñQ_ ¿éU €çc‚=ãýZ p¶üxâŠü[öheÏÜNbdµk/ˆC{ÙoÖ÷:rB\Ôâ³MÀv&øøÚòC~d?wÄÛɼî9Z|® Ÿ¡ÃY^P±s¼Þä}.‚§Ü Ï4zÁ.ò·ãIí[oò¸Ÿð#ô‰ö½r÷ÛŒgìûྟr)útìƒ0€?4K(×iÆûüÚ?GÏqƒfS£µ!~e?6öàû˜ž{nµ½öç·žú =¿È\££¸Ü+ðÆ‘eÏ*¥ñ þëEõy·ô\ký׈cïò{³ø38ÿ+ò;+ü ö_™¨þùdðö\ƒ^æ£kQ_5–¾ÏÏ{ñ—þ§Çÿ¿~¬ë&¾µòT®'¶ú;­±î ¾Ê~n?Á?\L}Ɇ­E̵à¬î¹Ï=Þ¼U¹_!¶œŸ½ïpÅ™ä_ÁùKðs‘o8˞뀛µà9.‚½5fOÏ’Cãü¯ý²€®1Ï"ë½K¾šø|1\Á9ÎIø¥8y+ø"¼S­Œoÿ¼_?>Ç*Øí®ÈqûÏ¢xß{ÞªòŠoòŒÄ+r®ê¯¶†S½Á®]dÿiœð"üÍq«­Õ˜á |°Ñä‹{ðÛgœë1AžûK¯à“(6yAΑ˜þ‚úÅÝ*ä³ÎðÇ+¼Èë]šÅf­À®“ç¼È~ŸÁ­âš2—C¼îšÎï,ío9‚“÷*ûbŽ¿‘ùxƒ]€Y«í[ÄÆl¦žcn1ˆíÙL®LñX˱π¿›Ó±çŽöü >¿æe/âK_en&Ç®:x¯k6kÏÚšMöÉŒ¸àjøêgõµ¬ùý.gì—ÆŽÄÂ:Áóº–;àµ.à _ OdvÈ{+ÏÈû$>Ÿåodßí±ý;伯’sž°ÇWàÍwð˜FÌÉöÈ®ƒDW͈Yµ&wFüÏ÷Ò|É]ÎÝUlšb==p¢sº{ÝŸë›ôÜ3|€šåµy¿È úL{=ì\•±Ð'`¶àœ¯’K½›8^s¦' †s²Ê¼‚k7ìWcÙëµ žù¸+°UõoÐaäÜLà9’oÇ»;³»¦cϘÎÄ¡œÕ}ø£/ÀŠÕ/}C Å*9øÍpqè''ˆ u²+â¹»¼ç›èæÎø&äŽÉ¿›ÀÝ^ ¯v1˜ò{àz[:ÞO<ày>Š>×;åGÃu‘ÿïä¼OF¿N¨«ÚùÄ;é.gh’óÿ?ÈzÏ¢_.ý¸¾ˆâ'3øýêËÝ ÇIkp/ˆÍ5NÛŒ^ÔZ0b‡}:öï  ƒÏÆÆik&GðZY£|ÀXb ?f2üñ ¾Ø}úù½þV¸E;_Mãá«`½Ì¿«¯³ŠÏÀÿwØ·¶©}}5µ…蹋©›ŸQ»ùŠXˆ6·G\Ì~²ÄÌ/&žc~ár‰Þà÷*¿¨ŸfFœ¦¸ qüÿà.ï<Õ÷àïçuqÇ\nÀ•c³Ç¦¿„ο 6à7*»3œúÎäF6Á®&—áê¨gð6{ƒqv†§8!ÇpOþnzÅŠicàÛ þN9½Ê‹/uaÊØP¿± ö»ËÚÍÀîÙ·q؈ó[Ùk¯Xƒ õµ-|ÆÞðAFƒŸ®R÷:ˆONºæ¶/ä/ˆ äWÉŸ.¨YMý{:l&ÿ2§cÿ¶\É+ß!'ý^Á«Äó7‰é¾Bç΋þNÎë Ló çy6¨µ9ê©“SUŒ½f/ø§gëì©îL0yç}:Þó)=÷èÁ‰Y×ZÀÁ)™À[L¬2Š ì Ç£MÇ;u>ÈëL°ã¼ÞUâàäÖfÌ;û”¬Ø³ànê?h^fC^|158ˆwpjnð‰¯¨Ëé៵éxOÄ’ŽõÜì‹Í;‚³YÓ£þÉ žÕŒµ¸bŽ`Y[:Þ£û§Áó¹^€êK5éØ3F{ÐŒX­eià»íX×{Ƀ½GýÄUÎû==÷)Ð}·"ç;ŸXkp)ë½Ïº‹Ø o[ë7ƒÍ/ˆ™VàlÁ‚|EùÅŸÒsÝ<9‰Z‹v9á<¾&÷Ñ–žûÜÓ±wÛýÒ‹ç€+òÜÚS^{w)WC{q.Èq¿ýÿ ½wMÏ=8´Vf_ïÀôˆ‘ì{çjkFÔ¯ìzîŽx|@Nƒþç =4b, W^ÊŠ\O‡9'†«ñUk¸Ìk:Öa·à+›ù"­ƒéL(ïâRüwLÏ}nØŸ y”±9÷t¼c胜ƒ+ôÎ[°cž/ÈI-Ø+/¨“½ãwî¢÷W[]QŸ§¾Ý-=×K/XÿÉÔ ®’çï€éߥÆñ[Ì¿®ÓšŽ½|ð÷×| o•÷š`¿•#~}œÛKò}>‰»Á¦/ÈÌà–h}Ù*qþhlç`°ü|1Ýs#ð¼<ä;s\‘sÚŸWù òÕZÿy—Ckx®Ø“ìß 8øÄYäýî ®còß6Äè‹á®‚»¼2ûjž¤3¸šúaÚÿèp­ÞÔÙ,à LàļÕsF-Êt/ñQÀ`8!+plÞU>³YÅ·æ}ļïçÓcÝÁ‹xŒÿUlàŒIqлødŠ…h­©ê/Ʊ›ìÇ_šÚ8ÇWØÆÉÄ^ä„3¦Lü7ƒ×5ÈsuàÊ«Î}E®ê*gÿ»tÁ<ް«Wðó©›è¥iÌÈš» ç—gðæ•÷ ,˜ÛAð‰ï;¦cï`ò—ŠëŽ8·-|ÿ¯Ä‡]Qï¸OXÒñîŸKz®WgOàþ¡sö¼úWý¦¹Éýg¯éXÏ|CîvnÖÌxÂ^U}}œ‘›`WÉOÏÀù­+¸˜ÚÖ˜®ÀÀVÔ»éX¯K.¿æZ™ sM°rÔ‹ýIÞg½y5x?ûè(‡j¦B®.}§ xíìý >ïäUlEë#æäï>æ]š¯[ v0>ê+0‚ ¹íÏH»Âz¥6ëMžù%ýÔ¿úMbªKzîWò³ôÜ?ç*ç]ë“nÈ+ƾáw.ðûV±Ç/«Y oVÔþm¨¼JL¹?ˆ\ÍsNÀy/rÖîøœ³ñkF£VƒS­°¬_…5.úµEzv®X‹Íp‡gÃR^ô1¯žÝÄ©¬‘[ ÷1á+ÎÆ”Ž÷²¯Á ¼TûÝ·¦.CýÕúhKÇ;Åõ|×éxÇ´Öt§è=l-ΧúÔ?{üý{ä®^s¸™¸j¬ã¯eïíã{9—«™sÆhÊǹƒ§>”Ƽ䋌°å+ü!Å´™óÛÀë¸ÈëÐSÍ x⯨AѳóspÍzèBò²Þ¤n¡‡^LEyö7ø·«øxŠÙu¨]dŒûŠÜ=óüês4Âif¿uÖ)ðyèˆ<°îíûi=Áv:øã ìp¾–rÅ/ð?YOr­Qîï–Ž½½÷;3¾–}û*xχô\ï~œmŸã÷é¹ç²êÿø‡\í=MÏ}9ÖôÜq6\~Æ>;žÿËtì|&¹À7\€ÛÓ†Œ8+l÷ ~∘üŽFuîzAqˆo±ö+0EÍý<ú+læ <Žç¢5>ù +ê~&Ñ?Ôi·tì3ÀÚ¦öp4|Z—_eÞZø×͉¯<ÁogÝÏþïã^Ñë^hkhífojôN#òHpBZ©?ZÓóayßõRZÇÏž^«YõÙþ¹äp%µ—ÕΡÆ#w³w/Àõ/’Ë{Ÿr<yÁÿ»Ç"ö¶AïoˆÍ{ÑÍã~ nÌ Ž›á´ †+}MÇ~‘+jñØ#‰wÀïÆäï¢Ô¾ýðõS ðùîä àÉ_L@›Ž÷Äà§ ÈÍ]aµïI |moŒœ¤qï–Ž½Lv~¥ÖDí=d4èv°fF®Ñç×û+Á¹µ.Wùj7±»ïœ-ånð¯RwüEÎåXú>·ÿ.=÷ÀeÿN˜ÆL+x¶—tìQ<à|k.z‘\dNÂbüàÅð¶Fùl¬è¡S¨Óæt¼eçBiOó±íŒÜ6qNÍ]„?»ï×~ ª—6Ô¦LÈÙMàѮ駾e öu¿œ|§K:ÖÐ/ˆo6œ_y“w¦O4¢‰zg5Õf¸šüí¥Áϸâ3ê~ì cjp—º‚K4[%‰=„§t¼ßõ‚xz”ó´ –˜…ò1ûÄìÿEªÞÁTáoÜ]¬äâ´’yAü2™\ŸÖ|ìúí~ìKÝ×$†»I>f“¯÷Xà>ÆúÐsWÄWù»}oªÎÔû^®‚¼¦çžBú>wáèÍ'u2/²G.ð¥>¤ç»Ê&èß6м¹ |® p¸›Ñ»3°çñÛ œù>ßj¸ãì?Úñ={3µ0“ÁG/ÀN´W÷Ý|.ÅŸÉçéÒsíøö°µj§5Ÿ´‚Ç9£NDcøO¨}ÓñÞž6ù^Ç|í%ûÕõxMòúoà)§¡­ú™©%Ò;ÆpWø’ ~‡9­9¾EÎï¥d¯Áì¿xÔ˜Ž÷²ò~¤ µ+ 8üz—žÖõìøïìäßûûÿüý%ü¥]§ª­¿ˆº™zÁ‹õfôÐÝØÛEžuGJyÝwáhÝ$w}—߽—wtFz·eÆ·"9ã¹Wñ?7ã×\À9Sâ¾_ïÀSV3¶àO7[OìôEôÿ ^Ü+ðÛ¾Þ·é¹G‰ršìÑEþ†}&£Wä œ/¥ã}7¬“qyÓ<Ì7<Ϭu655#ðµ:kMϵÕß$ß— G,1?k@|}ž³ëŽZ8+×t¼§w@ž_ýìÁØ6ûõ²?u“Ž}˜Ùã„wžkïö&ŽvMÏ}k†t¼¿»5<å'ì9¯#^‘S½‹nx‘ó¸aÏ¿<Öòù6­™xKÇ»~n0C=—ŒÝVñ…ö^ÜWðG©Í¸šzO}¯À•à/ÄÄä¿Ã=[P׳ãSè¨7ñ½/Àmså={Ú3dÄ>æ}ãì5s‡.XÓñ~7wÏá ÞÆlø€¼ïpB‹œ1ÅTÛô|'Z—Ž}s[`#Ìõµ° ·ô|ßÙˆ£øÒŠ\Áˆó0Á'$­ñ k¾ä½è—ï:þ&8Ë+xïZˬ~Á‹àÆjC´ïûÿû gþÕøæÚsL¹*ûžz'ß'u˜/&G­xçŽ}¯àch}æˆgWœ’÷˜ÿR8rì‘pIÏwë¬ÀÑäõœ_¸bg0ˆ öäûõ‹äûŸ©?NL\mÑ_ŽxúÜ…}ï]%>WÌå[œíù·Ù<Ó„œá˜ŽwwÍлô‡çtìÌ÷þ\öþx¶7!Ù!®œ;l¦NQó“¬óÒ÷iqî#}2zßÝ%À; VĈôÛð¬µÚì1;!‡rA]à$˜1×s5ñãoí6¡ÖoMÇÞ0bJ½Ët„ŸÁ>$ü…ùV]'½ dFNµ?©_£ï5o›à[îgò#8&k:Þ›0 OË>o ðíKÕ¥÷%¬&Ïíî #^©=šWÁ¬ñ Útì±â¼téùÞÜNò_‹ |~Çì×›ä÷új½GAëfî¢ÓY§«ý@4y3Ü~ÕÏwÁBß$¯°Ï¿·z ïCz˜Êûwé¹gÍ€œÙÕÔ¬â/(·Œº–›ÄOWÌïþ~oxÞg[qfÞ¡Ãüù‚Xø½`[z¾“½ËÝ=çkz¾«v„Mœ ΩùÁ;béoá´ð“ÔfÞ±·&Ì÷}‘ôì =6¦çþƒÊOÑýò­œ'b/¨K˜M¨Úê9žkz®³ÁÁ\…Çèî«`­¸ú›äŠö&o¦œ˜ÉÄëûóhÏ Õ¹î®ŒÉÔ­¬éxW´~Î9rƈmOÈKÒ'îMŽˆ=‘ùÖj1yÔÙ¼Æ$Ü¡ÅpÙ¿ë"1ÞŠØpÿ]ßWØKÚpLÏýø4Ö‘—œkPÖpÎÆ&öÀlz¬ù›Áw<¬îÓ¥c|Ƌ؜ýgߤcí)?'R®&q7íM¼aÝÌæ€Ù{sNíî½ø,_û_iOæ}¾6©£¯¡>I\iZ‰ÆøpŠOðípYé.°i»_ô1=÷3ßù1o⻨}ü„ZÏÛãw>¤ç¾ùáɭȇNÀ²¥?øwëCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBþ,)¥9¥ïÖÿúßÒŸ$ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆcŒ1ÆuüQ¦”¾[ÿògI)M)}·ÆL„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ü$)¥)¥ïÖô,…üÿ«ÿU?þ+ÿúÿåò;ÝÿšÇïTïþ½Ï¯Ùþø/“¿¯åï2ùÝìñºŸ¿~÷øy#cóøyz¼÷þZåãgÝã5ÊÇ{Vï×ò¼Ÿÿ}ýø~ñø—?~wxü+å92ù»\~7=Æöñ½Læ&¼~+¯¿ÿ|Ï_Éü¶2¥|Æìñû¹|æQ毒ϱÏå ×=^;É|}þûåñ·½¼wûøý\Ö«gÙ׫Å>ɯÙ>Þ;ü¿–×-0w>{’5dM÷Ïä5Ù{¥yÎR>¯>cñ¯ûüÏŸ¥xìÏ$ó®kžd=÷gÛס“×®e¬s›É÷tò³Fְœ6ò I>çþÜ-Îi%ÏšcÿìïÛ`^÷¹Ös’Ë–ò{ú;™û Ÿ)ÉëÝå™;9sµü^Ÿ¼è稰Jó|ûèÏ¢û¾ÁYéd ù,úžƒ<Ë`ÖZ÷ð>o5¾ŸãëJÖJõšê‚ý|ײ;9Oûkö²· è3Þ@Ge²7öFÂÞÑu©D×ë™Ë0‡tWfö1uB†¹+e=U¯—Ðÿ¥èÿÏ?ÿk|¶Âì± ç«ÄNX—]§^ ÎD#kÉsí{$ÃspÍjì-}ý¼Ž×Ù¿ÎNÎN‚n(å{Ÿÿf–yâüþ÷‚×.pžô{ì†Î ÛŸ‹½ïp*<Žùizg×U}<áó–rft¯”Ð1ùÉìkša/íãElVý…ýÛÊk”˜£ v'É~+ðV? 0¾ m_‰gÔ³›Á_.ŒÍ*á³TƲֺgJØàÜØ3§ÛCg´ø ê‡6Ø“ã$³ŽæXmWaž1á9Ÿ™è‘ :¿†Ý¦M¹^¿y‘ÏÆ½¨>Ò{ØãÂøÏjzø&ûZÞ¡[ufù¼Üs…øã/[Ð÷h$©%öbÌQžÌ[it›Úâú0‰¾Íðš9üℳ¯ú»À<•8³¹ØÌÏW†SLF·¨/YáÙ3c[2Ä]­œÑdôy.v77¾(Ÿ§ClZÉ<èžØ×÷=>û‹|&ž¯g<7{ }Ä„9¾WcÔ¦ª>É¿G]ã,ÖО³4ú¯0:¿Ä³Qïg°9Î2c—Öø™™Ñg¯ØãWãgÆç.åõ'Ñ5ßæ=+Äy5âjg;œú¾ª{2Ì[+g°8ñ÷ö=ØCç(>“#Fb̸ೞÉþùçÇ{pOèyîLœ]À'&æ@ÿ€/e¾œÕß½‹-Ìq®º `0û/3û¾—÷mE/ô&¬ ãè¹iä³”æ¬eø—ð÷µœ©öƒv£06iÀ¾­ÇꀹV²Fɬúsú\ b;â«ÃÉYJ‚½æÐ±µ±U;&9[«Å”À’` øJnâ¥BÎ3qaÅ`>Èßt8#üÆg ð‘þq†k‰óüaö‹üí¬˜>pfl|klmŽ˜“˜û>¾â¹t=Û“Ø­‚ø°5±N&YPæŽgÒxúnt@a>wŽù«N|˜®õ øx:‰GÒ‰ÏÇgªEW4Øk¥ÁÀtîò7ÅIÜêôvfÎABü ö­4X3ó ŠdF2&S¬¡;ŸK"Cüž ÎÜ«(G–À€w;õ†ße¾¤8Ñ×ü‚òDÿ%yþÉœÉ ¿·ã]“™¯ yÅL;±lniö—ÆöV21J ܲ’uëa›Ê!ÿBΣ4~R!óñùï¾_Zá Æ×Ì^(Ä?£nÑçNðáÂ`jzYË ñi¼Jc|‚ ùJê¸ØuòúØÇ-öe…ó\`]éãh¬WÁGÎpÖ ì·J^“6‰z%ƒÿTŸäèJÁn|½ y†Òø+_ºÑã¥è™Vöß,~ ói¹É”ðûtv=üQÎTØ‚ñ²âN½ÁÓrè¯÷ØïômlcöxfæzŸ»‹<súé$§©g3ÃùÉ{XcÚÌÄÖê·ˆ#KèÅfjø)j±Ç °YåÓð4¶mpŽó“Ürmb›ì 9sâ¿=br»>ÎÎ ¦ZœØ7â,‰Çªn>ÉW9ÿ¿}Éõäž­ddÀX2“ëÖõÈ æR˜uÊÌœW&ž*‘ï™ 7jY›¯å|ºsE;£Ø@‰¹n±ß2ƒk•Æÿ"VQž¼÷YìÚ‰ï^ñ‘ {1þ¼s“Ò_xŽÜìûBæ¢>™Kç·×‚ãçÀª˜ß,‘êå¹j£ÃÏx«Ø° v£ýRILFÛPâ5“ÁòKÄ1ûg¸ø…‰'œÿ”‹}Û?û*¾«òžœO̼¯êºÆøîŸÇw†#R›=”ÓnL¾,¿ZãvÅ ¯ë«8½ú Ì|0±@Éù—¢-Óµ~1zõòˆÙ3£¿+ÉdÆ.ñÐWè sr+tq޳”™c”r-7y¨cJ¾~`u’·å~ ~°=þöÕØæÌì±}îñ[ƒ©MmøY ŽQ ßž5xºÎ=âœFòãÉì‡W’[¬øJÌÎáéÔ}\ãdbÉ7á-5E•’CªÏ׈q9w_+þ{û¬çô}[KN¢6±ô€yhcèþjñüÄ# w·°Mµä=ˆ¥Wæëþq ò“Ú¿ùýÊs-8TûÌ¢Mž³Ø¬¼@¯‚-e®Ü˜Wà¢b Çb-n_-ÿBÎ:øÙÌ#´ˆ{]|_`=W<@õb¸°OÏ5¦Ûé™7ÝL¯‚kÀ¹èNb®,=óýã×1_æòÁÌûæðs*ÃwÉG¸ÈgÔzfæõë;ô›ã@%ƒ1ˆ\ž«ŽÒ3»Ö#‡þuz®‹.ŶŒà{±V‹u ƒœQÖ:®Þœ¨ÄúclŒ¯–™‘ÜÅÝŸN°VÇ-í"?:!¦Ð}0¿³J¾NõLwp­¿“¹+ÒOu¤j¿ƒÖØ›¬¡d©Öš'à‚ ¾ã«{±4ö:çEíÛì„ó®8c“Ž5v´ÃjŸ¨ÿÓ c29Q‡å|©¢2¹ö yŽ}üë>²¥Ÿ¸ÔKz®Søe:ÖÜ5ÀärøÒÚocÏ׿¦gžé”ž¹ÏÅ G­B.‡:µ6>U ŽãBÇÏjá»WƾçÈ%b;:œ‰ ûº‡~%g™û’ríÔ†õbç;“—.Dës´Ð£ÉK—éØÃ¢¿$3ù8ÍÃÖæü¹ÎÌøŒ…ä÷õÿ|Íûi?š#ŸÕÎÎŽ…ÆçÆÇd¼_š}•›×JFÿ·&—©ë»ÇB ¸‹äôrÙåc®Ø£eÿznWcÝJƒðóÕ&/™'Ïçn±.™|¶Ÿ˜}Š“³’™jJ?qü]»PN›Žý!˜7*€›×8OŒKƒ©e’Î nJß(goKÏÜdƆ=0‹ÒØ¢ÖèÎéd/»:’˜z)ÏXCçæˆkò?™á°ÅI¾ÀåéóÎë.µ'M½ìz€hŒÌýW˜˜+~•NpTÚç >NŽ˜y„tò,ºŸ'ñ“ä{ˆ‘'áòÿü„ýY¿JÏ=Þ§çdÝG£‰3È;нBXãNri˜ß(MÜ×]¼×zìcfòÿ¹áõTÈ•&‰EÉ)/ 'f¾uüvòÀÈ_(ÏÕéX;Táy\=ã¾÷¶ôÜ3õÉàT]ú‰9˾mÀ½IçOÆ_%¿Æ>eŒ 5ýê3ÎéX§Fžûkz®wÍS¹<&ùÉøþ|×\b%â–ê¿%øÐ•ùíuW~ƒîåñºý¤½FY‡ÖàitRnæ%7Bù…Ì}7ð•;ñ FèíÂsWa¯tà'Ê ràv쟔 vÜ<ö ±’ÚäýØû æ¡:¬•=µB§0íO¸-|徜«çÏ ~”ÃlÌž/ ¿£4ç(7ØªÚ°Ìøcɬ“ãìç鹿O—޽6Ô÷`;”»RIŒJ¬37¹#ݳZÃ[In9FWžpë\üÒyÝá;3ŸµÉ/!ÎñÛjyW£¤~WŸžûô_ÈOçàC•¢Kä;ãçïã«áN$ƒó$Ø\ö¹Ñ:ñ,yŽu&<˜Áø1ÃÃΔÀ¾œÍ›U¢ûXò ,¡¿.3ØÒÏ#ÓüOýW§cߣdÎg­$îM>X‰Ÿ¯Jr™ÛU<©†O_c à3j5?¯uÉè+gËÉûÜëú[£“tÏuð×_ îœàŸ¹¸%3ëÉ:ebÀ‹‰kããVÉóßû“cé»_$fÓZ¯EôqÎäjxDtxžŽ}=0ú÷‹ôâçÔ8ï».éå,бÄwo„v³4¶6¹,ý›Wc'KíL²—²t¬÷ËÒ‘ËZ˜\XnòQY:òÖ©c•ÅœCnò ìV¼«ýÊNø€ ¸kaö‚«WëÌYtý]”/sÆ)Ì \}ee°ÄZâž<=÷ôk…ГÞ÷saÖ¹‘uìÒs´ q°êÞQtx û?"§=a2ÉÕ%ì3>‡ÖÆ÷Àè5'Ò‚C@û û¶Ï^Á¯éÒ±ç£b µYWr9J“¿Or8lkÈ·c‹8Œã±µÀ:+ØÚäˆ]ïªÒä4Ôr=8²LÂÅã( ïµ&œ’¯ó=Ó%â£dbàìäìÖ’ŸpfFì!¾—æ*~föÞ˜Ž5 ÄŒÙã²F¬1žä鹯¶@ÎFß?áŒ7éØŸ¥0kZ€W˜]íLj=Ö€£þÊ[òõk쉦ø0ñ ÇÃȱþºN:¿oé§Ú3µ±|µ=ö6{Wpo±&¬6y9×_Øq`È`ÀXb:á ¦tìýçz˜;Nz2ñ9ûº±Þ‹=ˆUf‰y.À™µgp N†bÀ%â%íõÞÉß«®`{ÚtìOP`^Êt¬ïNˆSߣ©€ÖéX£æ8<¹ìÅÒÄ©¥áú”øyiösüù*ªËÞ¥cÝRiðøÏ¯ûM:öðIéØï¡‡í#ì¸ÎÙ‰ØÓ%_§Û¤c?.b¹9òvä|4Æ—ÛõšÖ±‘«S$_3Ë»;r³¯´^þK¶³2ØJJÇšú>yÌø; z®4ºnÀ|¶éXÅ>8ÜĵÊÏk4>Ξ{Ȳ¿»â½­üŽî{ò¡:øÍ¹‰)Ù;ªBÞ]ïoy¾@_ÖÅ’ôJ<ì+l»âFŽTƒ'âêRµF½KÏýà’á9¾š«HF°›ŒA7’ïqÄzâÌäM‹/Øfr;;ƒ_”Ð ™ÁÙ+„¼£Ì< ç¤0g¾>Á™Õžïûj~_›ÛÎWÖž{¿Ö‹Ìé(þágöW8ä—W )EWrjĉؗñO‘Žwª(¡…Ž.À{`~¢†½/‘+ëw•Æ÷Týܾb;C>ã;Ƃʥx3¼¾BÎxm|pbŽj_ætìQ¯\ôøh½’ n[À—å™FƒÇ”†¯ ýÈ\ñ.ûî²Ø_¢Áç&o­2ù’Òøá9tYntgaâ§&ùÞ|W/ë{¸zåÚpÞò“8{6&ÿß§ãý ÙIüÀ8¬JÏ÷îïõsÆZÿº£žëm3æxÍËôF¿eK Eû…7!·ÓH¼Xãµ`<¹ñCݽzEòýòØGÁÕsæÉ÷ÉL†GW¥cjn|Ö”Ž}•¨·Ëô\Ù‹.p|=Çåܱéñ¯—9§1o<‹Þ©ä,bŸÝý*zŽGØÐÌð%ö÷ÒžäÇjØ­Ll7ûGNÐ_¥ÉÝhxò³ru:ö8,M¬Rá<îè v¾8ÉŸå§/±>U:Öú'`0uz®)jÁyÚý‡¯÷j_×ú?}Åyg.£4ù.Æ¥º÷+ì-Ö%ÁU+£—³Fg±o™Žµ•Ìñ½Cœî8ÒÄb\œ0&ß;47¾k‰9$ðz÷yxI¾†JÏëX3ž’¿…ûSûf*¤†¯Z[BÌ~dŽx&3±í—°nµ5½±=Õ‰mt¹Þdx™Ñq{Ng‘˜(ûÈúM½›VùN;.½¥çÚ$Ås·ôÜ+eŸÛbMò{Ñslë~×P•ŽuN_§ç;o;©Ó±gHaøZŠqÍà#4à.±.™ùìwø|™ø¤áLð?Ç(MΓ±ã6Æ ™ÑÁìåÉzÍöËñï_}Q™Z£[²ô|‡¦ö-rø\–Ž=9”R§cÍsüZ«¬¶¹MÇU®nÛùä¹Á1 ÃÑ*Íße†Áš±ÌàÞÌy‡KŸ538kúĶÄÕµŸ[›ŽõCÕ g53ÜÖ¤ä&§ªy3Ú8öƒÈ ¤2ûÓù+éäKƒu'ìgæ út¬?JÉ÷j-f&¾Ï¹½H¿ŠöD9I«è¯9=ßÛa?ìw±uÀàJàÚƒ¨ÖÉþ.Mz¾çg?zç\'ü·2ûëà›õX«ÿP÷hŒÕaÖúó|0ÞÑÂ|iœN‘޵·…±9Äé*Ãe"Æåº4ö. ^Y^ieâî‘Ã:rãÀ/+ƒÝÕéX÷œ¬41*÷Æ+rxyò÷Ì”Æî°?¯°Ïö!3¹êûìÄÿËà;¥“Øã-k9Yçµ?ó‹É·©N]S=5Šžà=<ªs;ÄC9¸¡ÎÍN𭔞ïCcüð%lC1Aw4'¹W7¨\ŽXr…˜ÕÕ!•ÆFwé¼wkWŒq{”öÐA™ÉQ’»·¿çE|öYžõkñéûôÌ¿W>ÖV‹î¿¦ç:)­j·¼`_wÀ5‡1¥çzâ ûl¯ç¿Q®e‘޽Ì¥î‡9ûÕ«®¢ÙHŽ~JÇZgÖ÷fÈ™'Á“ ßk™x×PgòóŠå~~½¯€Í³ï¤ãäÒ.v†³û S:öJОËöÍût¼—k¢‰íê}d<£z§»ƒ93åÌ‘Cõþrs‚±ï ñŠÂÄjí §†>3ñ¯êÄæû¿æ0{ŸÜ rêt¼[ØõÇáýÄÊpýHÚ“<¶Îa)þrƒ³žOÇ<ç|MÚwÚ¤Âø$îŽhöÏ(N¸Š¥á‡µàë¹>î.¶má“•ýžCG—&gs·­Ì¾ÑÚÉ1¦«-Ì :K¾çó*-æ_}„ú·N¾va~èŠûc~Á“Z±!ª£GØ ÝgjÅn4ð9'äÿÕßQy/¸k°“`AƒØ9r3ÃלÝ-ÀŸ´¶@ãöwø;ÅÛÉLîªKÏ} K£oÕÆiŽ¤Ç¾Ï`{ÆôÜp5È‘+Ñs2!¾ÐxlJÏ}©Útì÷ ¹…>=×îzö–Žý8Ï£@>G_·4¸â0¬Õ˜²4X{ Ì-3üÚÿXïYþrn|‚q^.D2x̸rŽVf|×àNW>sbn¬gÏ¡ÿrزÑäÀssôl5&¶£_È{Šãïð^®> ë¶ÜýHr”žÏÅ{øfr/éáïS+ð¹þÒÝÍåI®1P›ž{€—&wW§ó{Àsp×’á%çÉß#@,±LÇ{RZð]É™ Ÿ;¥ó»Y‰“1>Ï Ö›àÓ†—š.kIrø-øÌK%ó^rç›Äœûüß_ßEOf­æô\¾ÛÅ)=×Ïé½*c:öLfýÃh¸q¼O¶Ö:#Þê€u¨žlŇh€)§µϨ6˜Æ˜Ž÷‹.‚·Öˆ‰{ä8”3¨ç’}Ù¾1¶¦BNÎÝOW¿¥¿§¾R÷µ†¯xMÏý‚µ¬úìII9´…àzî¦ô|¿qYµ½øýI(7¸±±Rb3æË“¸²…ß nQ Ž=«‹;ËkwÂ[Ó±çnù°øA£p[á**ÞÖ<®Âö&÷C}vƒ½w¼ñ*k„’Á«ëtì—ìpqæÁ^Ò±Çj ¾o™Ž÷jdéxÿmqÂÏHÈ «½™ {]¿Ö~Rÿšö¸Bì[€O˜> }ÝÆpz˜Kˆ{ƒ—'|¯KǺVåý7'>®[kö8Í Äs£ œRÆ9#ðÚÂäÉ+“'r“”|íå:_9ìgýZø!®ÞB}âÞähûRnp¢ ¯§Ïíø£…Éu6†csÖéìîXØë639¡ü„÷¤ÜáïÁ\dîö3·ŠM^Ós›¯ÅÆŒé¹g ëØ‹Fî¹/ü~þÇÇ{®?þ柰‡ÿóûý?üþ_~÷‡Ç7æÏßø/ÿôûÿòûúÃoÿ»ÇwûÿøÃ¯óô{ËŸ¾søÅ·ÿð«ÿø·ßÿî_þá?ÿðû?üö7?|ÿÏ?ü¿ÿòÃïþᇧŸÿúû»ßÿëøíoøóúï¿ÿ¿øÝŸ¿ú»§¯~¥_Uÿý¿ûÍã‹æï¾ÿç?üúŸþðçßü_ä‡õ¯þV¾šþþWßÿöwÿüßžúŸ÷oþêïŽß\ÿßÿá×ÿY¿ÿ§9,þ¸û ÿߟ–ù»õ_¿_þñÏxücÒ~óë?üúûÿôO¿þÇ~üê¿cÊýéþ÷ù¿þŸïÿ×§¯þ·§¯þÃÓW¿ú××Jÿýÿ®NNÀ.atcR/data/beta.prob.rda0000644000176200001440000001544212657351347014302 0ustar liggesusers‹í] |MGÔÏF-µS{ѪZSyY)þˆ5ªbWK+ˆ¢Iìû’Ø÷„ "‰$ˆÈ¾¯/»]¨µ¥ªµ/mU+ßyg¦yÕ~‰ïõõ3¿çÎ}“;wæÎœ9ËÿÌôé4HUfP####ScåSåÒÌDùÏØĘ̀´BKpžâd>aÒøʯU”¥Z^¡*¸4¾õ(àÒaLmæ˜þij'|ö]W]; —*¿fÝ:mSç~¾0cØŽ&G·´;æ3ió‡íð~ƒ/ß¾…xÌ4yV7#Ôs󫔨猕‘ëª|_î&&éZaû=Ý\Ž>AÔ²KñT‚O¥äºUºTÇ*çqýv_À§!Sïe¥½ãZ™bsÊí‡_ø—F„Ýi³VÆßÂ}xTÙU±À¨]«&½ï`Å£†žÞ{÷`¸™ÙGÏNÇ:×v“þx#Ú)Û»ÀrIï#çNÀ/ÿ·OK q¦^OÛtíÔ­ª;¹yÂ4¸}·Öˆî°·A̼JaXñåÓ‡KŒCJ¾“«>Ü…®.‹³2¯`ô×C›Ù}ŒU&÷‚ 4Bкº³<ê/…oJäÓìÁ t>œé¨±® )Ç¿­ò¹øOÚEJ)EÜœ\'+×U¨\E^–~ï×§ã‹–-,tòº¿[jå-tÊ[è”·Ð)¯z.o¥“·¦|Iž·ÔÊYiå´KÚhåì´r­(W‚å´^P¥Ó`•NƒT–:y+¼µÌóªT¶Z9;­²­dÙ·XÞRûO-[þÑJ»¬•ìWÊZÎZk¶–JYkí¬vÖ®pÖFûQ6ÚõÚh×k£]‘vE6ÚÙ´°-œµÕ®ÈV»"[íŠlµ+²Õ~²­î“í´³ZŸ¿•rñLó±6ãpþdË%Þ„ ‡š|îS»4¦FOþ1òË]˜ÑtkË”r·á1¢gþý=¿cÚÒf&owO€ûŠÒ&—Œò±¦×´/ÎîÁ|+³VUÚ¸Þ?-~7=ç¦vs?´;p=¯n5Ô²¹úSû¯¤­‰v¹Wru\B,÷4mÙ_å$ï÷§÷´qJÒ¸y¿aS—ÉóÏ\x ïÅK7^ôú‹(ßôoÖ÷2*Ú?¹ý§ÁéýáÞ Åt‹µYXT¹D’±¿–¼ËŠå[YòÆzj¿È·.bý‚®ŽhQ~€YMx-Q7òØ¿Ùϲ\‡ÁgáµB¿W!àÞÙNÇ«ì_×Îvw­Î`ÆïŽÝÞ¹÷Š©~AÇP/,{ùRþ²£X×âr¹Ú§aþ˜Iaõ3·céÏÍÆÝøúKlu:w@‘ûÿetgâ–œ« àÕpJß5{b{ù”oð=–ðÛ°é@¯r‹zÃÛdê]Ê{ý‚ŠvÏ<úÖãóëcnÕï’N^7šã\[³bâ%,¦qôºÞcmÿmmßÊí¯2m'øŸ)ƒ ý†ï¥þ.!¥,Ýœ ÿãsE“ýÚêTð1>|ð‘ ⯻~A½ïŒ¬·¢´)fŸï]Sù4ÿgõêÒÙ¥øÔ[ýoèú†þcªÑL é•4ÿØ}Ó½¡ UÆBö2R—±·L,ZÊ+ y¥’W–òÊJ^YË+ye+¯ì䕬C%ëPÉ:T²•¥îëŠâÆ¢´±(l,ÞÇX¼Ž±xc›×ßÚÂ"©®è'¨¸oO´=‰¦B4F¢§#ÝŸGKòôôäÝ•¶_–ù©TþUCCˆÆÓ]­éÜìæØ7ß=k†‹üûÅ7¯„-÷ýP.õB"ÂGpò¾¢¥a¦s³“NUþö]F¢Ý†ÖMrfFËÞgmʴܨVƒ°+¶:»#—ÀM³®t ­:ž_Û{Äg‘l·X§0‰eñ2¸RýÝ÷ð(`Â×Z,c­ï2ë®ï°ÜöÙî ÔNñžB4›âÓXcp1MÙg&×Pº$Š.ð/Ñ·Qu5&Ðw_K"Éz¹ß{ŸjÞf§lwq±Ž…4Å÷Y5Ýû+ǰòûolT]y•±‚Ý)ûAü]Óbzi¤2‰q%Æé$ê§e¤Ê‰q\Üý ¨Pæ‘è'¾Ë$7¯Õ½¾ýXª BD@ï]Üï1…Æÿ\ßBuã`õËrê/ÁOŠû=FÒsÅüù!4G“*)Tí׵ĉï"DÓiT¯ý¾”TªáC¶ÛgóÚÞCÌG1?ÆéiÉ·ÔùÞ£_Ó8|CßÐ"Ð7"é¿D$5ò3¢„{ÚžòíK­H´*ÑDë­Oô=¢ ‰6"Ú˜hS¢Í‰šmIÔ‚¨Š¨%Q+¢ÖDmˆÚµ#ÚŠhk¢mC´-ÑvDA´½ Úò(ß‘ò)oOy{Êw¢|'Êw¦|gÊw¡|Êw¥|WÊw£|7Êw§|wÊ;PÞA“ǶÔùU*´ÀÞìæò‚¬‘0}EÀã3vH=QñÊò塾~¡Íý H8Ù5Ük§5bzL\ÿÝȈZ}¡ß²É£æiÞmÿ· äßïžlù¨Îaðíºªíù ‹±Õ¡îì)kÛc]بOº›å£úºWt‡"’hÝ®ÞÌx:{‚oª=&ôîu=u>F×ÝXvƒû Œ8¿¥ªûD 97òëЂæè9'³‚kA}IÛ;©;L-X$iSÓmw Z=Gk½ø~»k¿š|×È9W—ýË7.©}ܶ?‚¶úá†WOÄ]éìjvÌÉù f¨ƒôe»~¬Øc6Rúï·š]q÷œ¯ü~7D~’ÜÇÖœöõQ©Œà;ÃÝòsì`†ôÍ9cà³ãÛ½j`kµð)mtÄúí.Y˜…•¿^Ï‹«O»1»Þpù½¦ö¸z'¢àsŒ¿jôÛîåàLùáô=ܵo<± )ï@ýßú%Ô2xAÔÂqò{ÕÒ¾o¨ßëKã8¦/Yšlþ­,¾x4q%ëPÉ:T²é5‘~Q•¬Cº?M,e–²KY‡¥¨Ãè_K5ŸÜ”òeº»Mvž4eìx·Ét§”£ùX·Éæ:iç;1®,¸¦là”¦§˜‰ÞA\Ø‹‹®â¢Ÿò[¤Íp‚©Yæ8ÑzÓg]é†ãÛv×÷—c¾ßWñ«æ5nˆ,æ ú¤%NsOÕ'8Tƒd¹Ã?ªµ3e:NÐúé¼õ8\œ~Á¦Æù>ù³^îú™ÔÎoˆf,sÞt WyYî Ù…43 rÕÐØ#t %N¢"ÿš›U:Œç4ÒÙmйÛÔ‘.Îã§ŒåL?™ èdޡе}¡ë®…®û‰ëN–W®í ]w-tÝOž3iütsñnœëx(ÿü®Û€‘.N“EÄÍ2£œ¦8™ž¤ü½‘ìLJÒˆ}#ؽB°C Í…\‚ „àFG¤õvxäýHŸqê‡1]ÌLrS× œæ`Hüû~Û§{cû°‘lTbC=fü™k̹½~ vkl¨Fÿ‘„ˆF;º÷^ˆ=¥ùdG sÞwïƒ(²¹ºá²Ò~ó|$p–Ôqä^ùÌáѽ³¡>ΪØHîÔõd+ñtá“[ßí+®„S¿8ÿ±â|8Ê¡ÆF¤oŒªÁ:ÄYdcP4áæ»gaëí:¾3>>µ™ d[Þ8˜á?¶Høƒ°u;iÃ2ôÝÞÿmB:7É)í‡áo°'’ùõ/"œÆEÂùøÇŸEGBÈE ÙüÅ|<Óy×Á´…˜D6ÈÝÁƒf¶=ç.á;‡á l†™E6ζ»f#| ÑIlÖ•ü©æÝ~ª{q4^’.¡üØðâGµ±›ÖTa£°ò5é»EMHšøvÄæ›WáE>±­4ž¨ûÞo•öÓDÞïPHZ-„×ä8dÞfœ¨H–ˆa®J;J0ák>Ÿuô 6’­UØàƒ4p&}÷ëÒHÖ :zŽÍ<˜Ã;QLBlÙêUL({ i %Öï ’÷íTz¢ø²WéãÆ\X‚OHßíy] WOD²åmé&$ÒøI¥þÊÔÈÀHå"§«¤iKø‚'ámëÙczßÂB‚Ý 8¢€á Z Ów»ÿiB‡Eeƒsë9‹qtcØ[ÇØø¶@d°n:zñ½ìÙXö ÉWÀ—±žðæìh‚ä׎ÿ ~¤›¯ŒEÔAºmì »>ˆêiÌ$I¨ æD¾*!†O]ÓÀ³O2‚i ˜½;¹=“XGZKß«ËG¯J8÷9‘F|*·ô©Í5šnEä/œ±#M£óËõäl ïò¤/…ÏRÀ=…o[`O¾¬ïvÿÓ„Ä#ÖŠdØAlÙ+ŸŠt’7‘’zk€²ÂE¢ c\Iˆù™°Ï"þ)Sh<%6ÄŸl+¾­ŸÎ[Wà¥ïvzÎðù·³èAY_-ÃÒtqXó½‘Ç·+á#N›FNöÐõÌŽ‹XZÁ‚˜½ Âzø‹€ eÝ*¹:^¢¯ ŠPbún_QfäÝ9ô´ò˜à|ù[„iV$‘å1ãÑÒßãß÷G,µÏ…÷Ž_Þ».Ýß1ã |hÞ­ºÌ'¶R ¡úôݾ¢&²„LFz`tÙ &"’ö÷ &Kåñ¦boVD8y-öŸãî„)ê¿2U°Ðr" Cz5ÕE«f‚/išþLÁ|r‰M¸Èˆ(â¿=9£FÝ?È|0¥]A’PcëµÏËqäa¥pžVÂb÷\}Ö_ØIhÚC¬Ù_%à2YŠ2úrÑDÙ^ß﩯„ƒÊêlå<ò&ÆfŸÈ»¥*“mLé¯Éôµ^Ó„Ç[™¾Úé8¼ˆ/ t¦°€,ÐÖT ÕB‹hŸÙždLã"…ÿ„œû¡]Ç!ˆ©ÄMõàúSë¦Èbá–fó‘ÌŠ5ðÄ~ °FvßÀf¥ËJ]4§¾ÛûO2ø2=Éš€ÿE6"~@4»#—>HU:e¼ÑXÄwúÒNYúR››¨¸ËIÑõŸa3gC½±s|~½×Öb‡¦ßôݾ¢&äͪ…<(²ˆ‰õ,Ké¥n?!úÞø±J×ÀïàÀ %ê±,ø>¬w[?•èü•4ÏHcÕwûŠšÀö”˘ͧK_$>­Æ|!È`AˆÍR˜A£ÞCäPÀ¨ÐðÃÉR$<´{°ú©µa¯óØ<úX‡•Ï"“©©áÒ²I–ŠôL•2b–â¤=W<šå:ô·óÒR¶äBw²´-¥(Š•Ìï1ì°¡ö‹HHœaÚå›a£àÇ Ñ»¿C7`U’ò²ø=’ƒOJ#ƒÖ±TM$6"h~ú+ÒÒ£¥`7yâD ¶¡ë_Â3˜4’»Ä &y8„¢l2ó3΃“L=ÿi1Â=û$·±©„½ÜÔ?WÊOËÉ¢¸žôÚ8@Ö#,ÔM ¬¢+ñ‚Lò°F3üB¤ùò­p’­VÝ<ËÙï’å9€<‚b]_K-ø0µ,ï®|¾õ‡nÂQ>¬ÆÌ8¶ÑÒ£‘}ˆ1êŸp˜ì;`3BΧ]kù‚-Ì_?"Û¸:Vëjë¿‘Aˆ ?¾L»#’äŸ$²{$Ÿó-ƒ™…"<¡f\è‹sШù_É 1"Øôºtþdˆ¬Ç@Ǒ䳩í™LvÃpòø¤Ñ¸:B|*†‰Ýn"˜ÆÍFòtˆuKn¡ñ¤é»}EMˆ±c®¿ûÈåûN¸Êu>•ƒ6ÍKRdõåá˜2jty\·g£ªÂаF³±Š¾ÛS܉ä¹Ò­´ ‘‹*"¢Sw“þ ¦u;ƒæa|ÂçÖ˜s!4…ç,ô¶á†í‰Fìf lˆÔG ®R ‰Št¨ D²á`ñÉdËçêzUh¦“ô¨ û‘Øh!h¾=WŸ!‰ÇÕ«wq«ÝÍñ5!¤Dô¸ˆ¶%„ÆKŸ³êÅöf=ÿz[ñúâI®ó«ÌC‰\ÌÒØÅ¤]^Œ³Ê["=¨{¯pëŒÞß¡1amõÒè@ÃH2º8‰Ðéi +»y­vDù/2ضb ‹9E:…r,”»…>€/Eõ‹èya§_JþŠÞ–õØ:xaÇ ùGë¶àÃ'~å‚´äG!lu2¾äZKz©@t¾D>v2}´±( û™w¯þP9ŽÒN¸ì ¤"X£¶öC2Ù Ó9pѱ„Üv³=$'’~!‘D:ˆ ƒ›_É4n2y'Öu5­O'ÈÞÍRmHú–·“Ü(üƒ´ñœ|~kÃêÝ$ù3ÙC‘mž©:8©(»&½4‰7–H3¡W;ëZ×…¿ZèõºãÇÀú »¸úþ2ÈŽ.ìªáäM ªË<ÆÈ×°ì#»êÚ=×v#ŠÝWHž6T¾#âI®ËLåÛc –ìjš?ù´ËI-Žá£õÍŸvg »ÉA†Þ/"¡#p)ˆýÍœàlwÌ7ˆÎ«Ëfâh~¢~‰¥¨º0?Ûã!ø‚s‹Á¯ïö5Éõ&Æ‘"ü1ƒ¡ŒJ§y”OöŸ¨`^{I/ øãaLç]‡$âPà7–’\9À0‡"I}4‹jL”þ›\ò«ŸÌå$½gÍ#MÔ¤ÔãçP$íº¥ïvW¾÷xHùŽ·ß ž"{R¸;l&Ò¨Ÿ„¼˜Æâ&–CŒO§™ƒp4v‘ü,"§ü5þüçê30„=üÈ^šA~sa'ˆjîŸ÷C>my†;À$b\è[+&"Uç¢ïö5!ìjÂÅ¥”»ÝxÕ 3d²ÑÑó$ŽQ¤F4éõÁ$瑟Pà}¶‘q…F®Ôw»Š+I¿ym0,"Z£)R.ý WÜ‘ÿŒ9÷#‚y»a7YÈõj9ƒq6^-×÷•$'5Õöëœ~áÅñ„ëOëTonY„RoFeÇiB »´ÀÙ±@ÏøÇ‡¸™© ¯aFžÔwûŠš$ž×‹p—á$OÇÒüá«ôÔ_x•‡²J$}&Û4 <Il+¹›X\BËÄSä0ùž«ÏÞ°äFD_NäÛB!ž"}®NMã)Ÿæ•°¯†’þàO~çÕÝYhÔÛ2¢p=á€^‚‹2= ¸1~äWgæ ›ï æfqˆ¡ˆ¨¬o˜£¢$òíêDlu¨‰Ÿ öņèÞtŸì@†¶žë&,!ÿ©ØuTø sàŠ©Œ89B¸ƒ“d§ŽâpÎ÷±‰"ïE„ŠÀÑ?ÒwûŠšmÁ „äÞ•‘C~¯Ž‹~QK¹B†tŠÔI!¾G»Nz“ž±…Áïï•Á«É^ò%éÆwDB6Ÿl |F ùß³HþKæ[-d!”ô5gñ%¿¢°7 <Èb²ó˜?G7!·aÙ¦]."‡âv—;.¤qõáSÄÒ}µ¥†Ãˆ¸ŠðBè·œÁ“ü°B^¤ˆ:}·¯¨ q þ4rr5Š;²ÉïNvù“„G{Ân‰£xrÚ%ù¹çRd¡>ÚTœ —_oyCOØÏùËi)?g’=ùá sÈEþùÔZ\Á’ëTPî–»/"ü=Ùd=†Švõ’‡…ü’ÉÕ«I|X¬sbç 5­o!„[æ8Ï3Òž|×êô.§ëºýbpý#vJH¢qQ“$ä~7LÓ@dˆ½YáÉ$ä‘ß"˜…œÚ _ÒkÅnù/ÿ_±?«)@èM±´ ›À©f^Üß’'D“¾/v\Š ƒ•4êWyìàé—ÜqÇÀôuÝDúÔpDÖcŽc„3)Ñm ’hG—Lâ;IÜ­jŠ`ßáËPú¢h8Âs {ä.V•@ fÝ×w;ÿ· |ü¬’8g¡ ¼¼Àß%PÜW\BNÅCM¾~ûD²‹í#¿ë¶yß´%üB~Äï).CÖc ëBL|%”ìóÑ,JwLä’?YG× ÙÔŸ"î[øúfû_•³XÓ¥|,ìÍé,ê;z 2h§²ÒïÃø–S¿J¹9t3üô{î´OºéÍþ ¯JÏíØÂviû;¶´ÕÞ±e€ØW–Ÿ¦[8£uh«¥î™µ:§Òêœ,«sþë_w«s ­å_ž†k£{v¬Î£tŽ’Õ9IײpóÄîÔ/>Y÷ðcÕ+OÖ=Y¥ûfÖÚo¦sНÎY»:§øê½«s"®NaƒyuÎ˵Õ.l«]¸•va;íÂ/9zWû4ç—%]´³¢ÿþéÐZ‡4¿ä¬èýOƒÖª÷o­}ôŸÇRÿyG-ÄrKHuD“ÊFP!ìf£Ç2ä•6›D(/Ï& Ⱥ8j/…è €š b©°ÿ{!ærk ±™˜p‘Šƒ·vÓÆß2(ÎùEô…»é—ûoì U‘7éOvÓ©0kí¤Ò|pÖfTº0u”<¹”†EË¿yñ®¥5›Ë»8»‰}À57Ø.æ/Ù—K‡é;š;˜w¢ÅáÙÿ½¨ÜE€tcR/data/twb.rda0000644000176200001440000256176012657351347013235 0ustar liggesusersBZh91AY&SYÝ­ÿ>Aÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿã_|>ø€è 4 ” èz8Öj³R©SDª @ JP(œæöàr.ÈUÓº¸Í›º¨* ûul3Rñ´¢Ž÷rÌar‘²AäWsÝ×nš«€=Üks¶ìÁÉÓªt9¸4ê³3ZÖª¬2’©kNÛ¶R•C-·lê… C©7;j)TIG[ZlZÍ ­ÉIÁÔ¼à:zö®à¬$ÉTòïX¬«ÕjîÙõ½`-»‡9H”„õ”vÔ’ÜíFÚàQðïR©^ØVÌ$94*í(V­m—­'{5ÚãºlÖé{zÓ—L«'p¨°Í¥·nž$Ihe®xEpöu$µ+³v¤P{ÏpmJ†;Úw†êOãžíÐOZï€ð÷>ŠR6ÑVÆ\wÜu]ºVèUR*˜ì£§z;½-ºîê\ëC»Ž•ö ]i Ó$šËz‰E5 eBl¶€ õÒ ¡™š!ñô*IQ^Ú¡ Ä*ª¡B€"Q(•SbåÝV;ehÔµª ½ô÷+Í¥ZhÖWmTª!) \2ª¨@pÎ*RÄeQUUJ›cí…P…R»Ò\(7sH¥D*TF”‚ á`WT¨¤Ð ÖvÛÞ•JT$…)äžÛyŽ—4 '@7jUhhjÕš¥)AL´ T•\twEÕ1`}¶¼öÀ2*ŠÜ£Ï{Üóàhïo³Q@}€ (ˆ@b|tôÐP $R”@Q@½æá*¥)T *€ w\r =@Þ+9ÕUHP¡ZÝ€Š¤îÀrÐR‚JÃD¨+fiÕvÅPÏ,xwq$*…ë]J SÛ%ÄÕ(P‡ PÖ¬²éÐà ìÓÓ=aä4ô³`xÞ [-ó¸^ öÓÞ˜p‘T…Èi•‰Và‘>› h¥€È@6ŠT‰`€©R@Ð4H€P>ØŸm,H)W±¥*€î€(åtj’D1‘ ’££T4Ñ ]Øõ€/wÔŠ% ìÄ#U³0UP ¯Ýà ¹­ôìd.©;×E¹Êîf”¢©ÂÝ7¾nª!ñ3‘wT9e+&•ªlë¡Ú¤ªQ"•*)"„¨¥ðé*H¾ÞôX|¨sˆÕkRÔ—K¶ô[ªBªˆÏyëxÎ ãŠP‘ÊóÀzi‘‰PXvt((J„¤ QTPè4ª¡¶{½Å`‘J¡…ò„AK°hðÖk|¹#‰*¡)${¾ö¯a¡×"QèíçB©7w ûˆ 4’"%XT`@ OB"AI0”ý“Ôý'£)=ªaQêh@Ð4hê ˆ= Ð@@ié¥%$H#H2i`M=Ó&&FŒÄÉ£2b4È`FˆLh†FM ÐSÉII Bz˜š”h4È€h@€@  ™IE$ž“5!€h d ! hÐÐÐ!UhCS&˜ŒF ¦Hòh0ŒÒa&&˜ dhÑ“F˜A€˜FA¦š4 Œ4424Ñ“M Fƒj04B&‰¤HBzj€44¦ õÈhÐÐ@Ðш3G¬=~½°Có"‚‰ûr€¨»þ¥þ@ £§È˜Â †¡€HÔp$ ¨jX… LTÕq# êØ$O3‚Õð„¨æ°B‚ëg‚ ˆµ€%<Þ„Pó˜U oÊ k˜%5Ü Š‹ À©*/žÀ£.½€5üŠ›IQ6€H)±`T Póøe@Øð„Šƒ »&H@6\ 0«èpH¯þ`TýÀŠŒlØ…]ŸÊ¢ÀªÀÑ€aÑàHTô˜ ô¸=6@ôø” §(VPØ0,‹ê02¡µà•6Ì«¶à6á]¿ «¸(n(;Žæº n »°¯©õJ¸ð¼ç¥ èS{õ`4 ñCÖo ð†þ)ë@=r‡Á pbpŠp úôxdN `¼Jû8¥8±8Á8Ñ8ä}’Í} ÕOl¯¼‚Üp¼ˆžå=Мb¼”€*û°=ârkÊïEåP÷È{ð9aørï0¼Ê<Ò|áðÓâ!Í8<êsÁϧ@=|Pèž:EéWã?¦ù%>P, ~bH|ÔùÉÕÏ~ôGé'VŸL:Ï©õG­¬?\~Ãö_´Ÿü}´û‰÷G®¼>ò}ó°?b…?~0ìÈþPüÁÙ‡h~týj~“¶OÔ?­íû€ý‡r?·º?wï_à½Ø÷§ñ?“ßó?¢ÿPþÇ~Gûÿ‡À<Â|?ñOñü$òóåÿ£ýŸðÿ¡þ<ðÄ<_ÇN¬ò<Ÿ(òÏ'ý¿òSå”ùO•åy^Så•åyG•äžIäžCäCäG‘ã¾7Œø¾)âž'ˆxˆx‰â!áøo‡áøg†øaឆžá…áx> ¤4šCHi4ÿý§ô§ôŸ|÷Ý÷}ß=éÞ=çyÞwÛü;¯ÛÜŸ³ôþŸÓÚ½©Úö¡Ù™ùÈ~OÈ~3ðŸ‡ðö=buç_÷~ïÿ}¯µö­ÖŸWê}O¦}>¬êú¾­êþÕ|î¤ùŸ+äü“§éú~Ÿ§éΟ§éŽt§Kþ¯Òô.~çÿæýsü÷9ÎsœçÄø>Yð¹cÉåyS•9^WÉåyOuî½×ºäy‘öÞqþ¶ö¿ããxÞ4âûÞó‹â½ïâN'‡=ofo¿Œü'cø7³ïo__Ôîo[·mŸ3oùYåô».ËÑ÷¸ëÚ÷Àø©þÞÿ¾þ/wÝû¾ãYÿ½aÁï¹ÞH "ïó~g—ãøúM&“ás˘ý} õx.\ùûÖ¹»ø¿Yø[WsÊþ§°âþÞ—þ¾¦µæþ–±ò»¾áöüÇûoiôóÎÑÁzÎóQ×;n_Îò\^`ìû?S„ gšëðûH>ÆÛÍÿœ@¨›}Ütø…OÝÐp>&%õÿ—* ¯ÿ@ ‹åxú~AþrŠ<ä‚ñÀ"häM'¤ýUAU?D‚¨o_ëþaõr‚}.?¾HŠ<$ ƒÝ¢'7(' ª'é€ùpˆž×M?ïý1**.« ®ß ¢)³@*¨ìp¨žTŠ õp ìò‚ì0ЇOðea oP¨ë¨ð2ˆ=| ºô(ùQT7ÙL”D÷R¢P¡òûEALP§mŒ¢ÎìOÙꃙót«šá|¬åÐH³žÏ9Ξ³™aÑJç­]©,E0ÅÛvmf5¥v…9Aèvu ÖÙ öa º2 ›cq“9ž“+“¶¸Èevºy(Ïd“&aÈÎʪíœ] ±”6‚] 0«0–4©[E=ÿÇ ^^Ǭ&{©)jÙÒˆI‘Ò ÎØÜÌJ½k´ñ «¢'¦‰›JÉ(ܵÃbq:k‰²…²¸©UCk9:Bz´OC‡¤OÖÁŸNÙ ëµÛXv…dJÛVx×4T ¡ ´(gj¶-r¨¨„³*ò¢h–‘`‰Î¶8ÚžÔ•D™ ’ aå‹6,ëvÃq"‹³aÂ,Úê¬NÕ¹sŠz¤Q"é3dØtÛSm¥UN‘GFÕ=2-Î,;g!‘rOg´±´EFÙW¶mÒöºNÈ#SYªfÍh’+œRɶñTØÂt’kìîlC¥g½µÙ¶Â†Ìd¶wjì± 4¸q[XvÚ£9슼l·dQxÖЯ&Æ“/Ñ+Îâ½®WU’Æ­4²$ëv)R ž°©]«´\= PbåuÂòäWFL¯dZ•Ö\SuQœ• •ÊŠHë<¢€‘œ¹¹»[S²Ž7.Lôˆ›”y!ÛfÔìciQ%ªÌë§…µs¹ì9äTÊ’(¶.qZ,*vfS;Á3*)’CM£g“hÙ±C ®L²éK$„¥.’2S"”*˦Mstl»°õÌæc)P‹"æDz¤{S3ŠÖ7"‰£.LlŒš´ÌLvpÚ‡4†*k¬M—³§U#É­YÔ.v)‡gk8fvvP¨,Yp’å®’AAÑ=ÙÌ9Å/Kk)ht6³;Qšqlng”Ìò‹P¥Ø±D&¬ØI^YÛ'/:$š!š­Û(Ml9l“M:Æ¡IâzyÚ“ ›&E趦‹e%Ô›µÆÙ΋[’li©X®œµÛ[,*”Ò¼Q):§¶¸Í›™É¦Ö­¶^É"ÜÔEÝžËÃŒN—$Icarê-&å:ÖT[lHyÃ8m ¬l1ž‡ž­FFº—µ±œ”fËiÕJºCiÕ"´´Ug:¹ën^(ÛE±(:Û‰fÑ*5¶ÍB½i§ î‡=8—•%Ev˜{gšÑ–í²Ä$2´«È…¶Í¨¢L™qräDX„ƒ9Eê7+³¬mdZ,–™aß8ÊyÖ6hŠÆw¬µ¶g9ÕB%˜#d\òõ°ÉSœg‚1jZ‹[ :´»—Eˆ’Æv$Ìk–³‚Ø6ÙM•U(dbÉ…‹P£˜ÛÐëTьհì/nª!pº›mª¬²ŽsŠKh6‚Ѱö)C˜Z±=І¡Õ®²R‰ÙYí—n‚³¥ Øš.yî©&é´³Ê+™µI+¦Û¤rÂ8Ҥڔ˭,ÛMr”0:É…² iȤóŠDf×1˜—i"™lŶzÉXRÂ:¶Œ*hvÍÖÛ2g"«H™3™^^G·9æV,WbÚ•\òjv¡ÌšR¶,-¶\è‰ÌåYÛ&{rêTÒ¼–.3=—äÂm;]a)VMˆ\7hÕ”Ù܉¥Ù².m­ª—jT]fѶT]c; ¶j&‹—R¢£¬æÑ¢Ì´l4Â&•Ò"™’4YÔ°"ŠÐm³#&E/7ºƒÎÍf[µ¤‰”ZV5t屋MO8‰3O;m¬¹u²­ucCÂ;žªZU mFâ”S˜Ä¶‡µ‹ÑEÈ9°Šy§&‹:k;vŠI\©œ9É[n„´*çr±”¨bÎ,*nt4&•rZ«&±²š°ÒU+E–².ÆS,†«YjB³–VL„Í]³sm£1)/P.eЪ:uªÖaœ™Ï"jëXÓ¥Â-&—*/B¤imhj…f"š"‰˜^RD­¡T±‡4¦q DÙØUqµªÅ¹3³vzjÆ~Ð*÷½ãl&¹Z*^\çª :ÖvÎØk±Q;„žÚ2fe؇&¶F³Ù6Û§œMtÈ\ÒÍÑ“jj:M±¥TÛ§<©jÞ:íQ½N#F=m¤ãMdºÉ½ìDòô™”®lº2—/mZæ ´*¥ Q#=uTÆÑ6ŠØ±O ½AígBVÚÆÌ%®-¥^AUé‘ÖW,6C-<½•%Ñ ²ÈÂLåI#F²nÈ/;kI5Gb‚¶vÝËžÂhmJfµ¦ÚÙÛ[©…¶q’‹6vD”»"ôцÎFÖĺ­ZÔóP½6ºÎ @µö»8©L”íË +$õP„™Xذme{EX£v­Š¬„µÌB¢¹Ö²Ôó¢í3g­Ë¬ÙR©¦“8xtQr+ÙŠÍds¢G-´ÖIÈ~’ñ{d[ uQ]õ9m”vÂÏ%“†u·hÏefUPdœ™ÎË·;EˆZØSlâÅ8‘¤’6ÂÕÅ´’¤ÂgXÙ%5‹¢Im0³ÙÉT‘°E]°çê²¢öÈmÍsZ,C‘µÓÚwX\[g—A*½]“$á¬Z4šn…%{Ú! e]VEêvÎíH’T×2.MSAb^ű2âdÖZ¹¶QŨÆD¶ß2zä‹ |Ý»ò\¨d¯3DM°¢æËT,´Lœ¦L˜®Y ãÝtqa蜉TãŽx,¨RÚƒLÃM]‘£ ¬Peô휴dº„X”ÉI#ÆÆ…QË.aE†¡-¦„l“¥´î.9š+CG;m)D¦g•t\ê”#K2UµD»]«•A3³ÏY°³š·g¢³®ÑŒ6dÆÙ2³ŒëºåC<³Êrä˜xÌöKµÙíl­ÐWFŒe™Ö¶{=E†UW[]}<3rŒêÏ™>se5â­è’$Â(µP‰Y <¨.ê éZ…Ù·anÆÆt©«F]W:ªp̈éd’7$‘Ý! "öIÊõ“ܼÜ·s:u!› Ä‹9ZÎÌ<×.¬Öz7lfo£Ä“ÎçÝ­e3ž«©`V‡# l¢Xž0•DìµjÂÖÑœ±F¤º­¡¦L9Ü.¹™®ëBÑU©  R òX­âÀ íC¡GmË»mÖÚžœ‘sa¹Äu¶ÊZÊgiÒ»eG§„Å-rÃgCŒîHmÚ{uŒ3gkW#Ú¶ºM®Ïk[".×9BÊD¯œÃÈ+¦Ñ†"íA™306ØëOd VÞR¤¡*,V)·‡º§¼Ìít‚îlΡtˆ1+›‘ÛÞ÷d[ˆŠ•€¼]d$ClºmXÑ»±Ë*g‘Z´g‘ÃA—1&JÛÞ¹ÛuZ¨·‘ 0âS2OT2éL¹Ûn•6#EÚŒjÖÖÏm1\mA:ž‘tìdSÙå‰JˆmÑ’'f‹—žMU´JV»VÕ¢Z)•ëFÍ2©Š‘!c=“+θUÖ¶yrZ¹´]µº6ÙxG$#„kl¢ ºž™•3CíоŸ0ÛæµêC ÎÚ.¨Rí°Û ææÉQ–Ø1Dö48K9];FÚTÐ.jse]`ʪ¹n‰­†Ù¬Ò¼¤’µ\¯òfWÔ;¡IÎ6p¤ƒXT«¡J]œ¨ŽÎsêЫ<̉©C"É<óÊë¢èîbE‹ñÆÁ¶Û ‚(¦ÇϸPÒ˜?:8_ÅaW“”Òm&œ¬ºT$FdEÎBq;g(áC£•té Œ)´¬È»eœIˆQPÚL-B‚„† ¢ì»*špС²  "Ë•Á&ST Èl¦ (—H eÀ(¸S(ËH¹+†61œ²ZÊÆ 1ŒmeW,âL B#œáÊé«HÑ.APUÊ%ì ¸³:wú:9ÙL¦$PrápC”Ù*C%blÅÝ’¡«@¡‡ø¨6åeÉ•¨–"LC¤‘@DRvU [YW",Î'U¤P]¬dÄåPÈ™™FƒLà’L¸'XˆbAqR;.Û.™ÒeÁ&œN& Q(ŠÂ’eRatÔLàQÌ9EC"HN]9Ì8bA *¸$œVM+“MiÒ¸‚šM”1 nPâç,Ã2©h2\™ ª)ˆ™‹È¢JM%ÄŒM RS09ÀæäI“—„+3„EJ…DE¢(!îbDWSDÄŒ6r…$­(TB#Âàv•^{6Ó¬µŽƒj#@!ÈE¥K0ÏñÆàä™LD•5TIa0«œ¢ ‹„p¹E&frM¥)RRPèBDrS’G` 9LQФÉ&†t¨"+%EËZPEø\G"4  ©d$‘v\.ÂÊ628jP×¹ç …Â’ç"+”Ó‚v]…Àˆ,ÉêÈ®ä,‚æl«ïl¸+6QT…ïB  ÄÊ aIPÿÔX‘Nð*ýß™ì"’¯ÈÈÁPøNò”RRiCp iÓ N’vM²¢A‘94*™2”´Ί4® å.PœaLI iÓ°¸á4˜ØàÔÔ‚… TÃJ¢K’ŽT¹"T(àÛ.$À«‚CNÄà¤iËÈV¤$D%ÄÙIÆí•2Šo8µB d2™FM&Q¿cܪŒGäÇ5! h23˜Ã‘Q3DáTEvI± J˜H)¥¡²Á¥¥¡¡ &áº(B‡÷"UÀ„[öý潊$¡óƒÏa(T ?r¾#r.~Tª/ä&I„ CLPHj´¡©1ƒ )ɘL€È~µÍÔeAFGˆáA %!M#U`^±â u¤¹Š¬âHàP ÐèÄ 'ìC²œÅÍ•}È!Ô"fµÿ銉ÄÔQT –ªâ¨½Z ùSâ}¦êŸ¬T݆& ؾ‰iu&~°G ‚NO)§˜C%íPæ¹§ò¹J¯_×ϳó½Ä8éÿä'Ëêµü´Oõ:@tà\ ^‹í©´€¶9K>éöVn1T¸[aŒ"„òFÍŸÆE1’ÈèÄ wFÀGv¡£ JF BŒ·Wó˜‘ù…Uþø7‚ßz$q|ÞäA s—ñðŸT¹€?#+êYŽw¡Ã­d™‡x° š¹ßE!ºæõÇòz?Ö»Deô~âæLES±YQ0€þ0 ")éÄÒŒ€ÆÍ5 «<×O6d¨¨¼¥– ‡¸úêÐÄ+Œo¯¬øaŒ)‹k%DÇy€ñÕÔðn)’¡‘Îä˜@tÓõ`Ûå>þH("ä (Œ úÌ)¼áÅ•©r8MUÆÕÇÈ1`$‹Ç:ôy™˜@6¥yY‚¨;.0†G³˜ ç¯Ì¡öÅ}8AÆbŠ?[@èö•¼| š^ÇžÃÈE1Ñæ=¾R|”!æWŽÿ†áúÐ=rf h¡8ïCŸÂîpú …tÝñ¥ã/…”pgAޤ‚iÆ5˜Lê®68ÕQ0gŒBrÒ<c"`Cú$¸ 3Ì"˜@Ã)šPCWrñ+‡¨„øøWS:ÐÀ‡Ñ€çåý"¢d"™a½wç= þþ÷ØuÒ˜òb¿D' ÇCç½â·”_uÍdî\ˆ"i ðÈ(÷ŸeüYBc¥¥­Ëú&4¯`!Q@Ñ9*‰c¢0 sæ3€]sÈ€¦HŠ~à 4fh*.-§$O–bÀeÓô¸S#ßÀ`ÉÕöÜIù?   t{oYÝáÚ1‡çÊqÈbAÍÍÄœ˜¶ŒƒÀÀŒ”ÔE7°àÍSÀãÇë;˜‚[žÐ:DÒñ“ð"<ùtâ déXÂÿiÔÎï `ìq€>ÓTÕrÐ4!¡Úÿ~H}ÎK¥dˆ‡`&pbÓ¾á;Õz7\7<@n›ÌA@Ò±½Ã¥8¾ÆÂ‘à“ààNïN ¨.^ƒzOwëp¼8Š'¾<þÃiƒø .ÐQø=è?–‡¨ÖOB0™²b×ð&œ*?áº)ŸÆ³X 9ÙxC$Áàí8œF" ;™=‰=Ö~î@*˜Æ üˆ¦Ül¸Ãˆæeñ@Öœ1ÎbWXœ|…4F÷‰>j·[„ÇPTa÷2pîDÙ±ÕPÌ0˜ñþÔú"ðø\qÓQèƒu11}tŽ2Í{sÇÆØÉÇöè£ÂxcÊàq…'²²D#¨tHjþ£ðªcøìc, ¿æb1 g\„`Ĩ¨±ëc¹È0¹Óó¿ëð•øÏ÷ï¿àBpÿjÕ?p4¾A‡âÿEL@W4ãp$øÎÆQÂu’˜ßpõåFC‹ŽÜwî3gâvSÞ|§‘¬æeqÇ«ÎÇʰãa?Í?ã ¾ïðèžßÉáüÓy×ïM@ ƒwí™™ýó+¯φN?€ÎÒñ€î¬äÔŽ#¥ AôÀ@îKŽ gƒ‘<ŸÚ"‰üÌÁÈzi4QY%Ûÿ ³ تyéÿ+¡Lî?Ë I‡ó°ë°é±'N²dá2“5À"›ƒ[“]`ĨFâ!‰¾µà¸\tPÐ<º|w²!ƒ/óñþ¿X.ÿ€ð7cö¿ëûLZ®PiøCÒ^ÅÐ+ÒtÞ µ 6@áý/]ˆÆ—ë8ù˜upG~G>aOÉŽ*gfÆš9Àd“¾æyrÐ q×{ƒƒdà1Õ\ûë Œc_ÃÂ)‡‘I~ÜaP ò#€Ä£}ó'78U\ì%7íåS Œ }øó€·È`Ä*äšï ËŸÍ)Ê烾 ¾²5lÑp=ävë±`ócŒØgÅLG|3ƒ×Ì3|á@7ˆÆA5Ÿu…ßKþÎ0œ~T4ô6{tÄfK¢²U]+´0ö]$ò§òÈn²öh¥õX:>wlŸ(äð÷˜ ¦ì¸ÇÒõ°d*¿_’%‹)Dâ@ÛÏælÞ½ÜÈ@rÜù˜~SÅÆ?˜°¨/à܇âb^©cB™*£Ñ·IûŸê tAµS¤ëø?ùùýÕ_ç(£ý¿ñ<èòl|ÆN³ëð²  Æ×Cžã0ã„9Èc*‰‡å¢€c"™F¥ †öðRUú‡ë-ÍÇ=˜¨!ñÑOº¨t*Š›Eóˆ"=À‚@Þ r (uP]" :1@w U6E9T;P<ø"ú ÷ +âh¡æSÌjª³¿züH©Ð€¦¢"œâ(j@!Õ †¦ªó*ª*¼«ª€‡½A5eWŒ|ʤP5uSÈ<Ò)£P5€Ca5•CÛŠë@'Æó`¼!çH­¨t¨:àŸ×E6ð_:+ô…<ò†Îç€ypMxS`×@?²PÞD<ðÞ!¯#Ì kà‘C`@ß6<6 }>}²c¯_@¼‚›"›0›(›Øž…æ‡þ/2þ©ûÙ—Þ!³ê—Ñ ¾¡´'³ѧn¤Fž•z=0¼RšÒ?d ©è—Ô#Ü&ÖÿÀ6ÄöHm£ÓÜžÌ6ôà‡pâ‹Ô&ä¿w7›Ýw^µ7`;@=Hõz Ò&îžl7wθëi»§$Ç«ÞGàô= ïo»}Zsæ6ÑŽÂ0Ø“FyóG±†=hÃd4nÊ0ô!£> o‡$zèMô}£¿x!¿ØðŒà="ð éGÒ›ùéü=9¿®ÒùµþúýÒÇ>·±=qìŽâpG‚p{t§x¡Âð§`úþ,á»Î>éî·½ìÞa½{ è8‡x!Þ#xÞ7‡xÃxù†ñ»œñ»ž©ùª}Qê½W©wn%âwS‰8ÐÝÐÝÆ7Ctöîéßî‡Êw@éMÓtMÌãMÏÜ÷.0Û»Hqf‡‹ôzWèúWŒí_óÛ>—³ö_üç û?ñµiß1÷ãÂñ§é¹®?Ó½ÉÈr|æ ¨ÚN”ä©îOÖ{®ÿ¨ä¾ùüŽKöm»g»êöÓ©òN¿±Û¿y·ò‡s¸wî㸟·ªèΣ÷uœ©ßò¿³vùž¤üÜ·,rÇzrÚO—åþ_¿íwïûËoß×~ú{ÿ÷ß7éÞOÛø=éýÎWzì9^Ïzò÷¯ïù¹_ïÊþ.ó•=O+»{ßÂÝ{ÀÜÿFãÉíþ×ö¦Ýîûåºa÷ž1±ófx÷Ÿ¿’<þw#Èô]Ÿ7Èê_ã–íNCürÜ~¨t:ïæûã«Ïÿ®3þú¿zèx¯cö=‡¯á>f_ÓÑ뛿ïø=Oûà7Ÿ˜Øvퟰӹž[ÏûþsßjþcÑ|^³iìw^‡Ñ}-K\ù|fšr¼n÷éû7mêôã_G©û¶í»þßëü¯3û¹_“ÉöÝÖÛþÞÿó{³®r|g‘ëx‘Âj¿…Úú Çqâ×½ðsçÌûÇÖúy߄Ӿ÷‹ËýO¯z¿×÷9/sô'Øç6Oïø/áËvÛÞ¥ðû}Gá»ý›Ýn¾ó€Ôýx†çÉ@‡ïû7·ÍѸåúØöqÍ_–uÁ[ÌrÎxTÅe1¸€!݈ü¤Ü?¿ê75@‰²AP àF‹ ‚(!Ž‹ 7è$?¥aR¿Tá‰$üj˃މTýæšxOž±D²…¨EAQpÜíƒ&riQÎQE;Ïró@±.¥pÖ&DÆ]brJ¹@®@§P‹¹y…(ZbÆ1}eÄèAæQ}i𓳟%ƒ Ž£aÞ_ií,4éñÓ±;§‰ÝHdjŒ€2Eæb¥ ’¨t‘RC®Ùª¡ºfò[¢ ¡~ÛÏ|Âà¨<öLh©ªeJ(­³Éæ}$°;vD…\‘/¹,ƒ¢y4‘WFl‹FÝa¤Yå—ˆ¼ìË’ÑL"IWLŠÏ^Tî´8z²"ª©ÅýÝs”²Èѯw*9á’NdURŠ´NsfQç,P¢ŽM©û{ÞTȧGQ/&¬ô#Q\Á4Àµ O’Ó,Äu-äŽ)Íiª:i,(¨ª¥h%Xœ@„5åZæ~-”%,í¸Âá[ö¤uM\<¯Fwný·±v,ÕDÄÓ$\VlNºÞZŸ­bÈ3cX­Yij(ZIuÆÖ^ò¥¸­àÌ@5ÐB@¶Ÿ…Ÿ·ß{zâYZ¤JyºÂ΀F±¼xÅ·[ÛS’#ǽ¤ô#°á>®Ä÷ŸBzÉl Ôõ¥uQ@ä¬X…]K;K&ÆÑî®ÕTuP­;•Svä”ÜYÉ›·B²¦T}·‘xžÈBi}yîò(#|§'Ïד}¯®z“’I¨pŸúùôG0íÊìüŽq}¹À“ÂoYëdõ¼“ÂNIÓâxøÄ$úÝ“Tu È29IN¥ä/-ï–§]`›ÈWh5!ÔNƇӃɼéÆä’L¸òo!õÉäh¼ïÇóèú&ëó^D|‹Jhþvàƒ”–Ëy‰a̯ÆÚüm9[í¬ú¤rzÅEFç­]–M*¶^°­ ¨@B¨"8uûzðµ žr-g9Ö– Âñ  ¯´¼æ°3œåXòKX‰¼ãÓZÒÂB–]~×ñ4­,m•Ú‘:Å6˜†Kt®2¢Tk®ÖÙ0=]ŒF}¯){a?èö‘Úß)íª9J¤ó¶«`ÈÅ«rÜjÊù0.ó \¼Å°öˆ†º(ÖÝõí>½’"la¶H¶¶‘$ÈÖݹӲâ5hÈÃk®/Å!¬Ð¡zËQ‡D¿!€,N¥¬° µŒ¹8b, Tš’"ÃMΉ²åÛÖüöûÅJ´H—m­Õ€zÐÀRaï´ñâ Ÿ1ÆMHôfJct9žˆù3©ó¦HzÝ6D“CgÜN†BuMmµ•MAù@OœðT¼( ÇÌç‚Øø7¬Ö‚…ÏŸbïnk[\á 6ÊšL½ôúRu"9š—P«Ù÷­’IH‡¦ÕV!¬˜Â@5´-+zíÃWˆ›]#ZâJw‰öŽ…Vg—ç·}yïW-â2#2[;¢DêtøvRE°aB¤Ÿ» -¡ ýe~/ð¿&¶è™ìXKû]ûx#WšÓŠIqwîmTǵ–žÕ.Šö¬Ýfy¶ÊJ°Ž¡‰YckFÛ ÝµÈ®n¶Œg?Å÷?Gßz„¶zz͹¦›n@¹ŽÚe˜O´²=ÚŸË{bõ-ŸYš½Ÿ6*îó+¹Ø•µ.Œˆš2£öòùG‰Q×/Q´¬ßÇXôÝe§íçybŒ]jŤöw›É½çÞ°&…(?O]a—­•©ÜâmY·aéØšÍÈæa»É¯hji{21;mû½Œ‘ ÍHx¶´ZþŸesž? ‘_·Ïaþ¹þ³¸_JhDA%$ £¢‚:àž5z”²°QÁD Ô@8üc÷~Ô%h*Ÿl–Éü}j¢ïoÊÊže‰Z¹}yÉáŒô¹…ìànþ´w·SЪÚðƒ`KdßVoäw<Ê7•ž¿ÑwM›¨OP7…ãP?ÒJ¨ÿ‡¥óª€¸r"/mÀ¶¨Ç¢ö á¤ÙÎê+6ï}7ó7Ùƒ$™°¤)“çj§ßÎöö0‘a¶ëWQMªcøçìáà ԛìeò¨Æòçh[õ•-¾y|ØÙbé° ¤a/ê÷±½¬×C¿quXÂS“öýozþ«õ3/€Ñºe„ÔÇ¢@ÄÔi°Ôà–']k¶íÚÂ}cʺù7˜«zúž¾&ËÎP<©É…’tã=Ý´‡«âc_- .$ÊõäÔ„’wʵhž'0Ÿ==ß<&øìy<‡8ÏG‡s!;rmäºÄÝm¹ÆœH?/ȵPÏŸx%ò^!ŽÎM«atâÔí}`ʲ±Ï>Šo{=/ š"më}Kß#uCŒ–Ù§'È’4¶CŒÜé«\[ûÿ-ú¿…™ HN“.ùtáqÉñÒeBM¹Ç ¹ÊmÊùX• 1&˳D˜îIÒÓ ]IŽý­÷¥¶xiw^”½ERŒ(Ò*º¶'}M< »yÏÈÞ{Ö>ú&œOñWc„œyÜœ‚8'bw;ç‹mȼé'bv“(“âsÎ$˼ìTNÄ›B(¦¨1Î<ó”ÛÎ$<’&¤Ôº”䎤ѽeŒƒÍ¸C©7= 7j¡ê^Ó’n7‘©¤7&9ÆU1È <àêÒ`\Gí¼¨nIó¹99˃ícà]” N79Ûf‚IÛœ¸7JnQ(Hê]sÜ)Èù\m rãsŒID‚.—Y»³ÎÉ5ŒóÕõÚÛwDg³´Hâ¹1|w½f£E (2T,ö݉lÖÊOáįõ&ˆ9*Jƒ³ŒF!8 ¢V£Þ/;Èw¨M>ëœ(°ž‹“N7–ÛºÉ!žÉËÙŠÉÙá@\riRv\#D.Ääë~ç¬Ä<øŽ‚! s‡;qø,÷h¨2g+=ezÖtEGVh˜Yﯸêd‡ó?Ø(’QDð°ËN 2û ¶¯êñ4Þ.“g•£ë;„Ûùt™#åOˆŒ®ÚAûy¼¡´g£Îš¼óZžÖ:±ŒÄ!žuÎË„²ñ–ѳDj†¼&%<ûÚzPä¢#mK¢JŒîtE®ú¶§ÉÓœz›Ó³˜(oåÏnËà»í¶´–œŠ^‘wíôrŠ>@•9¨'I×CŸ2Éî‘˲åî÷ä“iÚPyÒîy Öå@ 4ãÈ.“yw8ó½Öʦ<†ääžNyºÀpì|q¹Áɧbô )ÎÍó´íç“Ýl)“£/܇’LxyÜí—q—eƺ72nt˜’w'&‰6“5±¥w:qÈ[iÀ¡È.Ó9Bp(©Jn Á¨w!¨©hÔ ¸ ¹ „òñ:Û¥[7£{Ù#:·!ZÆ¥HË™SZˆqFRõÖÐŽJ_Bae"Fê¼6Ô¨­¢Uå$E¬;>ö‡®²Ã’'%H"›€É!S'º¡lö»u’ÃÞ±õÂÙo$#í6éÏZž :/“ʯîóÏÄÞn½bL#§iÙr8~_:^´e<’²Þdv<É0îÉÂJC$®YQÉNUwzPUÔuèÓ}èù=]Ù“)ŽL§Ç‘C È)æM$‡œkÑ;‚²„ºÒ_d}™·NÂñÝÇ]çç ×—mcZˆdÜ•YÂhb„±–Ïb"kBùÜV\¢l¸§ ±8TÄ› eÙtí9÷v ÉÈ=áçN\.$Gð‡;Î89Ç$›‘tŸ‡H¼„àü8''67'áÆònv÷ ÇžvÞ@Ò:žFä“,„Ü9=§«QHÒP‡# ‘É30Y)E&§ ¸&L.ѧN'ÓƒÏÔۓɧ"bE…À¢…/Ïžã‰O'Ž‘/~žïœ3ãµéñÓ¹äõÄVäÊ}<*õ½÷ïmß }võ›×šeSzçyçv®Ïã<ëóÛræú¨3òcã¾Ð?pI¯Bã‡ué÷ANÝòO|žt]…@Ïyï=ÑÎ:q8ó±çÈO2rãÎÜžrì $í'Ç„Œàñè•÷ˆPêN[ƒdP¹ ¨Q×X]”Úé®W,íÈY2å7 ›“çG«ÎÞ@º7º1W:Wh@œy ÎnvòiÆ9Ûœ»¤nmƒÕœI­ wbR}ó¦ûY:“¾:b”ËøDéI@zòKlÇu;åÍû®²Ì‡¨êèŽCEÖu=IÈä.öæH/r}zh{lÆÈCTéï}žEš§¸uÁß&LÕó}ê„«ŒùóóÙá×Ïȉ9 éUêüÇ}ñy£>s•ÈU1ݵ䥇­˜ñ&YLŸE÷‹7>ºž* ¯tä­ÂâO/ì¢ÅT“Ï£hÉóÛÔ÷Ú;²pÓò9×-·“Nø>qÎÊ¡ò­°¹JÛ·Éßm¶…P*^_‰t}}öÛɾ§×‰òHü°Ðg'žüzyCÂwÅq´t™S9Cêr=ë¼åœž…œy6PZ8û&8$ rwXtÆ& NIØéã¦ÛÚÜôFÙÔ¤–Þž¹“ …ï„·gm!¬éâ‰a‡‰&$§áÞ$÷®"@mÃŒñ3Z6Qö[ÞbÅËTù¶ŒöoÏn\Ì>¥Æ1²UÄ’a×£YUÎ| 1,aÅ^ò“^”QgÈa*år®qnˆ¼žL™‘Uõâpúw/c‚5›]®[Ãâ¡=A¤”}klíQêgc6Ò# ‡™Š¥›Í{Þ.ÛlLCf:rd¤HJP¤ntæÁíîÖ_' Þ‹ÎÑ÷G[&<Ú® v–0âW¥×»¤ö³ƒ 9ÅÝŽŒ$@ë%XÙc Ê"Öeº^Ðë¦g²RF³Ê‘$l7-êÇQ cã¶$Üà]óšm/À ÌÍ6n5œcG—(D¤¶ IH7¿ Û[óùù¿>Ìý~TÕw‡‰5Zæý^ç™7ŸiÃ¦ÆÆ–¬”Ê#[OwÏä;‡d4‚<‘R•\¢¬ÍÚ,¶AÎØŒ¹—hÞF¼Æ„!JGnË’2ÉrÛ#«¶µ§´vb§€Úq€¹G’â½ÝÄ5¯¼u#´c˜#Õ½HÖ¨u²6)fr¡{Y`EyTy=Y‡Tg .» WðceÖVՈтʒ—z–a£Þ÷<=_n˯„}qãæW—½öw§ˆFöòsõ…­‡·oÏJØYx·Ã÷ÛμDÊYm´[b¬l¤…1g#®²7jŒ·+®XЖ¶ƒ#>´š ,Z9g×1*NçY5£EbÛºÛB¨ŽRC(C]Ç!–ZŒaQ´Cvˆy>÷½QãMwÖôù–uN•2懲™µoS˜WÆ’\MXÔ}Z=r6œ:¹m«Rãa²ì6#a`µÁ ¬‡8z N]ñLxGÖa3Bø|îAw™e€'ŠúãÕ±“—¸\žC”Ïh‘3&ÐOJ’Då½Ôœ¸«"”Çi¯dEÀ¸ó½í’vëêõ(y2ÏL™öƒ—…pîZJA ÜR»”Ô¦¤ÜdŠ;DÜ“¤4ãJ’9Û˜U®-™Æò]‘¡ü¾šÍ‡ê=]éÅ+ÎHmlg]¦`Ûšâ$£Pî­¤£µË±6@Ù'mý6ñoçÊúž°!ï]£Ñ&Öû×Þ/[baIÞ»"ù¼ÄáÑšzÑû^Lߨ¾e—êg{ÞðO(×W±‡:¶¢» N ´fÖ²;hw‹'©=CØÑi#xŒ9µ]nKÌByBƼ J×YêŽóî]îE¦Á·8Æ6"r¬¼„ œƒl‡–5yæÒYŠ–¤«V$©f•ÖèÌpX˜ÖÂ[úÔ×°‡"¼­•¤dõë²ÒPä ©¬Ð©ZEH;D@5bBE²M¬õ÷µ*°‚ù¦¦’Ít9—u±µ–]¬¦ãuúÆ3ÏÙWñàä>8Î<ÎÓ—;éó·;Î2ï8ӲϞW^I1Þ±¤;ˆäÆòèw&Ç“ÎqÎ˶‚GÖ<˜Üšq§nLÂäÒ…DP. Z¢ŒZ°`“œ£H’™w“‹!NÁ ä¥d÷“!®Nç,ƒPrSv¤+%Ü¡©(L„Ôì)¹P90Jâ‡#Ôì¦Þõ±Î<€»n@îŽyTP¢(ZUƒc)_ÍsnšÏ*Z²Éæ.̡ɰ§Íå¾Äçç±>o±Ÿ}xø~m‰.à>@ÉÀ U©@ÉPˆÎk[Ì Â•…”FŒ»R\Á+j—ã}÷Ý1l³ ŒIh/R>[lÕ†‡½x‡6ö$ ‹Cfzzð{èß-³Ô2ÛF4J°á"ä«ml…EmŸz„£Æ¶nÉö·¯ySÑ*+¦”U–ö%7Îö}BYy-­—±Èϯy½}NÉ«ïy0óSäëÉt©¯XÌ‹"h¨Ì9ÝÓoÌz"‡½zŽÃ$ÎÔ&·Œn&³J™t:K.Ó£jL´]›{w)Ôïª2Z3Â!Àq-¥½³³év±®YRsQVv‰Ú—“3(5ëÚGÜE‹lh°Õ­Lh±mk{óß+æ–¯«3I$Ý£:êªÖM°¬”×Û¦½¹Ñ¼Õtù0’;nÌŠ™9GÕBôž(^<ž4žØKlFÛG·^dŸ4Ž=Gƒìq}ç¾ü¾|Š+íùãóêò¸³p´Z¬Zµõ÷ßòº}=vKø¤¸¢¦¼Wé?>½¼„LsøãˆîªØRû˼Â@€¢™ ã§”$HIZ#9Â(§(f¢ãÍõò|»ØÓŸÛóÍ%ñxöÚ~ß“ßc£öÝ#¯BÃ$lßXúøˆ°ë-Êw‰Ôç±Âýz³º3Gåµ/®TUeúÍñšœ×ÄKeÓ]®¶ÉD¤­O׳8Ö}qÔ‰ñÏ¥îÙ~xÖüS…,9'ÊÙâø4cŸ‰'ÔºÞûo";}¢w;ÌùÇxäÀÈ[ö¼wÀx蘉?O}®ú#…?TzˆZï"ñ92y=Ñ—.$SºäóÈ.]§ðë\½úA×.{«hÐB;c=‘xñ"tð˜$°o'² ".Êwk[Ô§t ˆ,#UÛC¾÷µ¹ö• ¬×b'rh@¶šÙ†u*}¶›ä#?m¥}tóȘé.V\gÞÐ>×™BÛâ1ld©V}Œ‰qÔ„1®©‰€1ïcéG]ûm½¹H{Lj^LÂÉj@G•]ù}Kæ+¤Õ£v’z5“Sctò8m Us DÕ1’|„ö®/~hpŠd%7‡&a¹3)íáñÇh‘¶[&Þg›ÒÌå>ñ'Ÿ<ÍÆdå–‰ëÑ9ÊãN8EÆ_81Ý ª7Ä s2C"„{Á‘¨Z\‡“Zh¤ËPd ]NAHòÈV§)€ònràäóÂ`ò N¯ËÑ9j6Å[|Bq®Äå6¤:€ÔÒºŒ²Õ«’‰¨¢—R®À.œ)"âqÎçÂÓƒ«iÁ2ü¶œ¾w’@'oŽÁÐ1!KÈySJÐò$2C!]KÉw näd«V¢C¦¥#Ÿ[ñfÔKtö¾2Á–0åõ¸ûÉÓUKXpì}éïµúëYHÄ”ª˜uì£ ¬rǵ~»MóµÅøšMli--%Ò§|g^B[KkŒGOY,Ù²¶Ô•.Ûõ· ½¹s†üÙñëIÇgƒ‚tålUB*ÊÓ[79Ó[Š)ë ¦&êX[2Ö{ÛNWFÔ&ÏÁÂ8`Ûn¢8î)FØ—™åë{¨0þOäöñü“Yü`°¦|îQŸ¨È¬eÞAˆ…1t™À;¥Pú_¯ÊªGn3Áú#ìë‰7½ªÞÞ|\NÞHí¯ý}®yV9­Ö%ΟD=Ç{Í{ž8ŒÒ?7ÚäÇ9Zõ97Ë•ŒZCõ#¼¬vüpc³Å9ŸqQ…a®d9;*äF¿Zã*Çgƒõë®±™\†qôVâJÚRÛϨ‰¬åëÛÇÈàñÔ§¢Ô“Íz¯~™Ôó—ç~Õ^üïϯW×3 wÚ¨)Zb,%fŸG_{æ¼!»ê|B~w‰ÞG´?zÀܹÔê^AâJ~ ê܉ê‡Ü=¥R É»Ô"ˆH Ü¯ˆC©5!Hj!Gç0)=æd@§ˆ5Ä!¹ =Ù+Ô‰ÞEu/Ïâ<ù×;kνýuÛY“ßÜCéGåH¤ƒ²Hd2@²BÜ÷&ÛÛìë“Ì.­§4é¹ìª¼hÝ(®„—ªÚ²ËØV{.k7‘Ñ<ÔÄ,„ôSë öFÛ²º„Fç£ñÚå×Û8Ñùº?»ãj¹ªcêü/{ö¾Ò¸mGíèôCφÒÄÇâ¹[Ȉ¢æ\YÔ¥loНDÁ,ˆs×±4'‹4~ rKe‹4ιOxURykkìÀöVž`bó¸RÏoÔœ™qäµTüûݼ…•¾Ä¹:ŽwÆõ½YLÖ9Ë㦠t|¡88::“)&$ÛÈÐ*í3/Ïv7‘O&žpC´vÛž ™é “Ãôt¨§jî^S «Ê©…Öiß900§ó·¤ÙSJhGdzÆËÚ§¦zZå v…|çzÝ.äÄ™y u‰ØË¡ Ps…Ê ehÇ&`è=ÛG>’뵉ƒñ÷¯Ëbgí œLdDœÒmÒ*Xóo`—–!íŒBùöÇ,´m7kB_˜‡ YM¹°£POê?}~²y;FƒÈÒfc:,É›Hñzñk.·eɆžDCnIøi䔆:’%Ç1b$µ¡´†Ök*fm‹…vÈ_ghU#Q„YuÖÙ§ñþ{Ûëß0둊"‘¢~v÷b³ÙYzÛn¶á‹•0°ïÛ:OUäö#À”‰À(¬¤ÊR¥„Í£Ï×Od{üõõ èúáéc}ßdÈD„=6I!4PQ &ç=+‚†|™î=<NÒ¦@‘O&t<ÊÖ7݈r^@äd<œ–¨Ü¼ BjF‘ÌÀF€äêP䀡>úÀÔœ€-cHR'#!“ËÖó‚@v“·<›’J@¤2W Ô©¨]KH+AŽMŽWHnTóäÆòI”hÛ„2W!¥5d+’ÜÖ€^èüC‘ÎhÖµ¥u¨R‘ru d-N’)zw²ôîÝÁ××ñßKª<é‰Øî¶“à7 “„@¥F…GP"d-ºÌ¥W ÉZ¥Z!È TB‘ZE¡E¡@)F•(JQ¡˜ä»\mç 2†$Äí¤ç.œ//jà^$Ìš(3Ñgt†y˜^ƒÒìNmñÆÛB d Jˆu*™ ƒÉrC r`€LËUäR¨R ´…*ÒªR4¨™¹(¥*€ˆ§ \”’ ^NH)J ЪR E¹P&B… ®¤PhÞ:È*š”G`cm—ây܆<šõ25·C7®2ŸEËä<ñ"›]•TâPÕ˜"d­<”L‘B…P)”ZTiPi@çãȲU²®$C m"ãîC<ƒH`äÛeØä“¦qÏ8΄$ä •&'ä 9C‘Cr ·re!3=Ó´ãϽìg¤PÎI8È ;c9; NxÉÓ!"‰¬Ö’•P™™ …"B"´ª*£¨¡7Oò;Ô)—rŽó¤8L¡îƒÉ¼í¤ 4’Iɶ\ cœ=äç¢ØíKÌâ Ž“ Ep ;=ËÒ)ÈäΩ ’~$îvœ/3¼‚é]¤ó<.BHx\WÈ¡^2I`ÃÜÐ[ÝãzµŒöI\’.æëN]Â%p.]Os6œ]9ôyÇŸ ²ìÕ%¹¼ÛšŒ»Ú “C‚vºWŸ&®Ž*ž ñ'e§GF»kL'&…é^Éš»jÅÙø— „ËY¼ñÍ0¨¹pÖ•(žì±Ø|÷œ¢ÐÙ±ZIW#ŠéÛiM®7<%O£·›"`òd8´ödIšÓ:r¸'©0 .\(¸òiÛ>ix8ç.ÜÖß^êp£1™,ªe6<„8Q¾Þ0Ì{FDêü×’‘¥}K’L’  L§JD§rE—½¶Á(Õ„¶GÖà½ÏH›XT¥&NÈ\Š")Ì'Sœª9£žJœª €\¨¢.—…ܔҨìLr¯j °5È×h<ŸÖíwÄ«K"åØÇÊÝ1ø|àSyÞNM§U¤'MÖY7V>¸òñgÓÐi8êp( o;wRlI4¡Tr^Òt@r¦ë :ÞŠ Nf$™ ì™ ÎÂN=fÛ Ô+¨•AS9g s¹+\/)Êq!"œ&вmgn]Äc„ ¯]“«¹CȲ (".\ìõ­sÇ=œH¼(‰Ú¹Ó¡L•ÎT-zàñèòvL†Äg³ËΤáôQwœ¸•}…ÈéÜ󾎆 ²"#^ë9Q’G"ÐS §Û”V§”ó´ð#Âð"c °.Ø$î¤Q2éy€N$*ÙvÒAÀ »BÚC.P'l);(=BfðW$Z¡P(§`­A)aöçK`K¾e]"Iúñ·ÆEä@ý=h$/@¦6L1žÏ(<‚9ÅTŠ;vüÛ”«ºóø÷Äíz7!;nwÊØÆ™ÝÒ9Ú$˜° IÒQô›3i¹Âò*ØØžî<—ß¼éõ9¨ËJªqµ§ŽÜ á°õjÀ›S\K†ŒTâºð°æ¨pÞe©Y~Ô“7¬ÄÓ‚t§AÜ*ðyv²g„®Ék¤êINÙˆ¡2²Ò9ûùáöú}b°¨ª~{½»ÇFÙÞbmÜBKºã¢DæL¾ÛçËìNÙp. B€))¨2R•r(W H¢Vf"÷‘Ô/y M (´£@¹&J!’ ’(d"Ð&Hv+´";€r5 -&ä Ú¶@ä-)‘Hj%5(nw"Š/XMƒÎvX@@]Î @º“PºÖjWRŽ¡A( %DÜŠ¡F…AÔ¦@›LJ@ …²"N0ZÆ0Ž€6!¡áü¡†cÖhyZ#Õ¯OîØ“n ® ô˜1ÍÂO˜úÚ¥5µÁ?št™àÇZ—(kóšÍÓH¾b¶D‡ßÄ-íHå=ûGàdü!Ûlß5êF¶çlØ™•þmÉaA=˜³9ºfTÎEéEÑíh[1ÑhNuÜc4…¼Æ"t!)h^µ!¢’ìÈZr&wVA ÌñQÚÆÒÀ±½í›Ö5õÓkhŠrõm*Bž¹ö|ãË{RnÆ+ ÍfV«ÊØ´½-mµe”¢ÆU{o{"Šc2e—3„ÛR*Ó§5„6ÙÖÖÌ,ÆjÛ™ÇEYD“rXÔ„«Z¤µÊ)µÛÛ1µÂ$Èø¼a¹ÄzŸWìýŸ«ŽÊý‹ñJIøyA*½i!é7õØJzª‹ïê½?©>1ñd= >{bfZ )»´^Lùí ,á+eÆŠêä\ŽÐ™Ë¢Ù¨q`Ú³©¶ÖZÃ#!=¶¶Ñ!“øúãÅs|2cªÍ¦á*¡¡¸õÄÙê)NÈmÛBÉ(æyRº±.Šw"Êä»°ºÏŸ úô[Vð½Æ—t )q/~²Â˜Œ˜ÆË»˜7~ÇÞÈz_®eµZR¸ÀÔ¶æE M’7=6HV­“jœÂº%^K6æF²Xi+‹0™!®—~›!O“5QGä6òvDZÉ}}‹çáÐa̔ءµ²VÈ–‹P–Ï´ðÓŒÑRñë|S-ëÁÁ|Á¢æRÚǯj.ó™*6ÆM:Wk¥a²þûȾNõÌ{Ýû$™Š>µÕ­ú|çÅôŸbüCó_>ÒˆŽ®¯?ˆyï²"ID„„Ë[˜M%þqóŒ‘û>~»ÔÏõE®FòÖ’ÑI, pñ!€OavιrÏtç„T'9Jë*Jç¸Ïôúï k¬‡˜Ðo©Ž“ń鎧u‚LMïhƒ6ú³ç:Ö¦R…z½@’ˆå[3‰Y ~"eØç ÷‹’ß§;( i'nv‹——¡åíld‡°ðI…ê]3œœÊ:w(‡#Ì”N«u.£†îœhAxC!tný=ïm'áßœúÜ3§.îã™P,„3;6ˆLNóÞ‰ ›{dhRôBg’"I0´gÏB{äÞ…Ü“9¤«;ÛÞñf«³…êÎDEç’¤Ñ"iºM·dQäÞÛ,¤"§y.[[ tò‚™‘AÏßž÷²‹‰ÄÈ()%YQލ‘‹š&]vÛ8º,ŽÏmpŠäk²×'Ñq›Ô¢ñŒi~£Ä2 ÷²™*\Ú =™$ží§ÚßÓÕßQ}½ç”t ¤ž@9Ãèò —‚áè!Â"é:AdÉk9ÌœöVsm@„¯P’bE3ÝHb^ =2IQgÌmŒ//M©+“:½ÉJ¾½¹ârc*rJu¹C[À^c‘CTyÞÎ\®'“·€è‰cÜI×¹Jí9$Ì´½#±…¶gmo&Îç.e´„36‘‘¶Ig2²½’gÄEÈ©2öŒ¸…÷mÎzÇ»pO“’v´íËø·—Ä£{‚ä¶bvkP(4»˜aÒï'“¤y1zE3ž{T-µÒÃÆT‰ñ¸´,žÛ¦{”ÉTmóã©I¾D7_¦òèy~Ûatâš·‚ØbQ»QÔPò:…ä"×U·Ê2‚þ&¬žr컓<3·!g g$–-öÀ§9pºsèÓ¶$P.‚C™ÓÎ$ ÚqÇw`¹²ì³² ^§"ÉÇ„28¤žL0íl©žR£=Û ´O#„žÆeÕéFÜVfÀà˜rÔ–¶-ÀšÖ÷êbÀœ¢K(œ¥Ž h/ Èa¥*¶Üë‚ <†×yÊö®D\âŽu1æY$K2ò@‰9¶rp:ÇYÒ’a:L+žœö{I)=çŒ'j¸_ sùü±Î÷ë½ë‹¶òTm+81>·¼ù8Ô y‚Ê*!Ôa÷£‘w;œ.Ç6¶µ¦ ž)hˆ»é–°Î(ÝˉörÄ@Cóø€Ô‹ó)Òx¯/É!t´A…άïA×4GÂp‹ m2ˆ!aDšÏkrnîÛKš(žY mþbÏ_FEï2fÿWøýï›>âó y%§hÆÖqª‚§’­Kç!ž_g£UÓVÝ Ñ¬þ¶ðñéï˜äòJ™!±9 àœä˜)¢ 0H2Ï—Çxñó~ú¾2¶Ñè%€5Z-#o1~Ÿ¯r@!7Œ¦Q®YÒ:Ñ(Úסð2ã¿›Ë=è\Ø r°Ëõz-¤L …üÚêË!#ðáþœ>£^ë_œØÖU¸çåOEs‘fRÁRˆ<þ“<‘SÐGL/Âê ×3É_Œ¸:ЖP‰U~ždæ=eúº¯~¾Møôã®÷ߥ@rARõÇÏ8Ÿ×,ΕúwŸÒ'ÅD<ZÔÌôÑ áWet}ý#Zò{^à*Ž:•9*¹ž&yÏ;žõ{~§R†­»,òy>ñ²HPP?U7öܹ7Uéé°òmº$èÒUg‹J1d†Ì */öÛÂÏv~L¢: &ö“)ËÕLðˆ".qlÛ° ŠøK›®«Ç (s¡ÖíêšÜ ”-™ g¸îà[$2–ÚK]ƳïtÇc§bÿIa¥%Ô¶(À²Ë}´z*––¢ƒòÊú<+•º¹¶µ¦Ñ’†N¡A  ÌF†`¥óçï›’€ºIÌJ…Y•%^P’£hEAWU"å™ß_><(žl¨ŽL¢‚¦0l©+»wZyÀtêÁ¦²üäq,ÕÆý^÷½D°ÓK® \ò 0šà°ºõ]í¥Œ2ж‰È*ˆ÷#ξr½ýÏ×Èg è^Ì™î^Ý ²ã¹·8N:¹$˶åQ5Ä ]r§8N°@˲yå}r…íÙD=© ¨B.ü<žt¨xz…9%FXªÎrb©Ûöý`=¼mzz ù…ñéOÍÌbP¥;Ìu²²2°íqÀÌØœs1ЄâêOœi…æEä”'‹[‡=Ö•îqµÙ*F-ke^Ìð²6|yÏ>¿Méëš'vo°ò„yç÷1Ýc†Á?ŸˆÆ<í…Úq ouŽTåI1!ÈHr¡—vÚr!ŒIºƒs‚E!¼ë½×mªžvÜã1Îç•ÀêT54¡jÀ܇©w ÉhÀ7;b@ÁÎÒX8yäçyÁ|©ªhD¡J„üÀäGR”õY€jZW%Ô@©¨P,ŠP kX‚ýümýö³›»âۯܹLôyÂÝU"®LLœ²·/ahÇC*²(ì¦Ê;£mónCÞ”ËA Hj2¹“[vd×ðÐè.óÛE®µ"ôk"¢H².¡„fš4ݱ&j Z´Ùbœý>¼ŸŒë±DÍUSTTöŽñ©‰JJJ(_¸ô)§i&IS.ÉÈç(d“TNNUNˆ/ª{óö¾õ÷ã<çoõ߬>zñsö7DàòL›„äÁˆm<›iÛeÈ%E2 r/÷ºmäþ5BÎUu§vÝ“0É«©Ø¬ù莲$ <@R± ~ _àô@ E9+„ d9*Jàœm‘Ûœ˜'“±8\*¥)Yd¦JP1@™,‘Ô¡ã¶&¤hê£ 2Pê0Ž8¯;>R–¤JÉõH6hFŒÅf r„ ÄúUóÚctð‹ýgos…|ÏæS¦;4xç¶w—Wß(ãs/(D³ÜIùäp3ÑÞ¼w¬ K“ÅÌïã_¼Z );Â@ƒ“ÞS¨JWr›Þwæ<¢=q^VŽHÙAœry?gƒÉÂ5åüû±î8¼ÏÈ]$_“£¦Žt‡æqëw5ò½8<YïJËêFa?SÄpT-ZP]åDxùöWêy½ï|š®%*ߪ‰9¼¨Ô5«]«®ó“‘0!`P3Œ”~ØÓçïa‹³éô_…ð”cƒ†} èã²À#žã"1Ý.MoÛï¸ÈÌÇ®ª£Å”GpW'ë>>Y·ŠÌ§Ñ›w×6™X$„²Šõd£¿Tô±§4Š$IëjЦ©‡À{=„Û0®u&4nBõäÓÌŽÈÖF§2Ó8&2ד\,`G`|9U£Ävtk±–>ã*«Ü;çß‹¬ '„BK°žÒ²1rüoÍ@5m…tÙ .ŽýNë,Ð2p¥`ìØpF˜<1ÒÔ+>¶ èÓijMg. ›óÏ57Œµ˜î|5Á}çƒMKC­½À.uõÂރ©åÂ_[BH®Úê1¼öþ«Œ‚jE¹ó=ŠÀ£žÖc)੘)ûŽ~uYÉÙÇ?Àq“Eœc™‘•'jóyMJŸÀïw‡ÏŒyxy§zóëïÚ ~o^3¼]ïÌšg@£gÉkŒ¬`lìÝÆ4C8àpàŒroVú8辰ôB›óηÅ«¬ÃUê;ÀóãAÔüѬË%¥Ê¿1Ÿ{øÙ“xs¼Þ±úÖsó˜ï)ùõ݈ ½.ˆÆpp #ËO@dê`O¢>õ$€ŠåÇâ²äüZ%÷õz÷¾DÑô™n`EO" 4Ç0¨Ø\zÌŒÎ<…„Nü9ž¦²Gn꺩Á$ƒ‹é¼_KO’’HÑACÙêOt9SÑÀ6ÂÒ`3…†Ø³R;2Ùe&-¾ÑبW‹•”"V€–¯Ií}/›mb%Z’- L(5lÛ NŬ)(Ú6ö†Ž7¯kÚ(¼Þ'ÊÀ§½í¼µ BQ·úVÌRñ:DœHÑKBfcÈË|ÀyÌW©y îT põ" òiÀ…"—pš¹(dŠV „)i+Pº• ®¡-¤À|­°ïž´Óïr=.¼BlÊæ#-«\'´ ÖÙæ1;{~ß½ÄÖ[Â,„#TÅ’ÍhÊþ­ïfF"úèÂB!H„Öľ)­ûÖb$=™CÞˆÏZ›iÑ$¥´-ŒŽÑm¸È²l7N{,݈”ý½™¸œP¶‹Q¢r9,¯µ¹šn5 O˜é‘¤j£û»>+ ÷‹Ó娻ީÛD… Öa5´Ú¾¯>}jŬ=Y‚Ú[¥“[ûÚïoÓ/¹jo1ži?W|9Ì1›¬«Üp¸¾Oy_gYÕ)QºØjže‚Õ¢Ûößû|ÂCKH¿g’‡×ÁëÖÙ½u€Þo–&*–ð'ŸÂk{wÄø~Ÿ÷­|Å;¶ ReèѯÓïo Üít²ã}Ls¹Ø'8‡T'žÏÉ=]’AHBz¬¦“J‡äâëBúÈ ¶ò!ñÆø‚™E0N œ)ɹñï&CÈ/ì“k98TLšëbwÄØåqÈ)²ÎPÞè6H (R„Îb:w9&ε+%ÓmunÔ4*WoY< QêC+‹Ñì²¾šsKk6JÛlí·žv}èË =|ñ=3'ÚëÖñŽ<¡¯`}]l»ãE®År霶,N.Í£XmÉ\`@–TV­To%,AºQñ§= ­k«e¶Ê,›Ì"&¨+Ü“iÍùñæ§nØÔ~²!òÇÄ™”úß[|°±õ˜—I‡#ah–Œ§S✠&£ÖÆ=e¬ÕaIµŒ&8—Z­PŽ•+yÏF³KŒ$–Õ ÆÄ³Ñɤ¢gl$¶‘¡.+3R$…â¤l¿hꕵKĉIOf ‹ló„Ô´HBÈà Þ8S¢O!an²¨Hcubœ•ù{xKmÎå1ŒÓ ‹êõ{Íë‰m¶tÆœÞõÅ<£™`ã«bÊ}ý<Ïq>–Êø’Ü®åZËÍQ°«54d0eµ•v‘šÍ-²0cBQ"Pжõ¶lÑs? ˜¡ >^ÅÉ eFÈ"N‘j¢‡~+%˜l°Éqùf‡kßÓNÆR(B ÞÛÖóçÇíüwßNë] ÉLæ+ó*ê\FF¦Ö14%-#©MÆ¥tì‰Îß±Ø>8<˜øà»¤'©¾:Á Ê4*B0–xzÝ}®LJE„²Q&&P/7µr2ã 5Ö\[ü­öYzú²%° j^ÄÚ]Í&ck‹/"›JGˆA Ùs¾×õtg‰¬ot ¨)·œ†‡"•ÈÌras§eƒÎ'm3·&Ó*Rä™,FåŠJMK¹h vEz$I7Q—ð (Tì (r(N>tl.W¾»Œ‡9šŽð¹)ÔåÔ”ƒ;Nª‡VÛ &   %)H¡ABR”„ÉLÈ5.Hdd K«'P.J<”ä©Sq’ Pá#B€2MHrUÈ©B”5á Dœ:N`F‚ÚBX®ß§qùõñJhPü©Ó\Qeü`e`Ú•«P/„"X[¶T6ØÃme’"Á„IˆˆÁñˆÏ´ôDi,ƒ¢‹çÞ~øÏÚH‡OK=°í–4Qˆ@–7 ƒ½æñÉßm®#j? 9º˜Gíßn}ÎÔ°4;¯ãì=ï§½£1¡Òöå™ìØAGž“9Z¡)JL©*Érš]–¬…:!dÚvÛã°y7Ç);l×ÎvøšM;NÈ®òy÷®Îäœr\[rw’w&õ`Ý\ï8çÎØ™1äĘÝÝÀ žQ{Òv{Þ=£û•¾»ôØ­LïÖHKÂFZ@'kNh]fÔ„uPº×N¬Òˆç”f]u[lg˜Ë_ÐÆhQ_ÖqpÔ,±´„ JmI öïU±²¶~Ô‚Ü‘Úr”Ó1£ ž­•?‹üÿ·Ç÷zAúý°¯~ÏÏ\ÓfJ –\èþ?¾2“m†¡1X6– ™Túºöq›0Æ Á 7æsATÇMgšúxÉ \ï»G;ÖùÏ_·žõÚU¹×S¼"GQwqõKÈ@‚p$“ˆ"«ãY¨Æºë]¿}™ÃSߌ5(4^3Ì;§í=q4 -ŸÏº0 n×ku€#)]bn µ5¡?©vÖ&;µ0°²Ñ–!æ©fçkhssm˜ésº?¿ãå_1æS/m‡2Ó¤Ør’©³æO^3R*d¸ÛãŽL¢˜óu&;"”'%äPj 2yd 4¥žî:ëROÔLï¶u}q›)Ý9:tæÜëL´àþ ¨kð.)ˆ·“OŸc>Ò.Rͬ%ºü};%¬•Øp»‰¶qkb^ø}¢\Á«ê=¶¹·îg§×ßðmï¡•¨˜ÔÔïN2yZžÆm BP‰ÖË¢Ãg\C™E¥,-D [C±š&%†Õ:§ÏÇ·y‡Éíë/ç"k}»&…›%¦B`4Ø#06Ì"Á…––,ͤNÀ$I&Å蘱r±„³J±ïòÒ…ë ÒDéu§ËJ c(5E3ZÄtÔÒ•AQLDDQ4±5AST”ÅMQ4TQDÍTADILE 5DÃL’A DUÕDEQ%´EE4RÑUU5SLLDQPLDTÅQ4RUILÉT””RUUUQE$‘Ô±TU55TTUQ$A4ÄA$QT”UÐP´ÐDUU MSQSQTDPRTT%5QMQEACUTEPTÅQQQ 1TÄLUCMÄ”´”DPÃ5DÄM1,Å1MLÔ0SDKE…DREÅTMTÐQTÅKATÕHP$TS1QAEPU!”QSE KÕDÑTQETTÌ4‘%UËTÉÕICU1TÕD°ESASEQDM-PÑTPDQ4TES0U4•EQESEM5DAMKTEIMCM 5PCEQ5434!M-TE-L´4•E1U4-SUU4M4ÒULEQI-UTQ”QTPTÐ@PRSPÅU•%ADU0“ TÔT44S5TMLTªóÂä4êì?¹öƒ7¨Nš((mhÙÄ ËDG,=öž/ÆüÝSqÓÅZl}_7ª­G:¢×ÝCÁéÉdl¢ 0y&Álد¡<è R?lkízÞ÷²1‚‚Áô¹xý¦G}ùÌ?ʳfª9¸ý'Èô—™az[1}kˆDH‚§hŒíƒ¥fù-TDšôuÉšÑÂHû˜€t‚Vípå ¹’|˜¥3áØ±›·¼èù_Y@d„e1þ€Žš[1„?Ëä|»½½é§ý“RT5-_`õàêù\ ¼¹Æxïs‹½SâšÎ`5\Á]·…Q̪ª©„QÈ÷"§ð»øOæÿ?™¢òéýT'T"<—#Ç90«‹K»Z^* 'v@þ({3üR{…åINròi0l7Êx ýyÚ7ž¶)e…—‹©ÍÑ—‘l˜r¹3¥U>x‘MO’X£/ñ»íóß'›Ø´ñ1æÎu¨‡nŠvêÒ!kÖÌ$ˆ‡¬Ž7²LÕÈXµØJöÞ}˜GYJeQZDÖ·%ꮯïÖñ½fìÕË´Ú…„T"T…uf™J±–ºØ£Þƒê÷Ö¹1)˜ÔµtHeIæÍ¬J–a\&Èß—o7–Ú ÚLpÝ-lµy ÊÑ––<Ú2Ìßyö:ضѭA«ÏRØU [âš™d©¹Ø1€ñe>2¯qçO—YÓw‘æ3‘ê¡jѹm±zmìÛè$½,ã:ÛÉ®ûxô¾—š±D¸ÝŽ!…z{3ÌcgƒÒ÷fxÓ ·g§‘îή$\iA­£¡ì~Š’„Ì`Ú%â HwÆ^jÙkªSV(t ;Bä“ôµBCZj²õ,“kİ“I&ævÿ…@Øöé£oˆLe8SºN ¿õæo×ß|y®…áÍ)œÍÔ6Òmµ#»N6Z3ε’|ô "šÊª™ëm¾¹é‰èt5*šÓ‚Z‡RäF”®`mXuÕuŠyØŸk)c""<“´‰'*ò®ÌŠF×í /5Êý½<†J’HÁ&Ïøòç²Fð–tƒh¦á”#ŒS{7´ÏŒVݬ4ïß‹(Å í>¸ÅÚ¾P|÷ëãx~Žó»‹©…R×~{—]ÉñÇ'‡^Œ½)¡,ži¹*Ã_îí¬ñ)÷åܓި¶ x˜9RðµeF¥w;Û’Ö71á<—ÉóÙãÉžòî2vAAT¥ ™Y¼ÆäÜ¡ïx|×){8ݨÕÓ")b"DT2g›n›£.]t¸çH]ls·å£eÆ@™ìŸk®Êw É^Oµ¶ø©äÜ+§Nðù!ç&9«]ePœ…9ÛœN3ÝÛ]`’Lr=Çl§ÆDq$¨yÞt©Â Iº°.òÎ}i7!ȺE\s¹Äé?y0>÷?=D™EËÁê“<)Ùï%ˆö(…Ï "#µŠÙç.-£õX§ÉDÖ¬eÆ3̘a1¡ç•›’ÖÏQ¤š\𻣀§€¹\[hiF-¶Š­Ø‰3Ä›4%ÙÁ5ÉŒ™'¦yF… ‰É1ümâaò&¨ÙÅõã^®»6ÖÈSIkPˆÅŸÇÏ®’ô˜Ôfeµ«:Å‘jÃ+ÚÖÏœf<Ò_YôgÆŸ<“tã7ÀpDˆ’ÀvRÜb%)xI¬Qby™8w8ÒÕ¦z3Y65™\^dô#zÎJrÎÖÙ[sNŠº5­¯FQ=ä?î=õÝäÄ Nô"v»L$N˜îNÞ¼“¼O$æ±8¦ÑÎÛ÷âeÅ ¾cÔê­ÃBPä†C©É0¢à“ðóÈ„%w~"w×e/ÄùÁ¼Š“JïÅmñÚWë‘wA’•Hòɤ5- ¸“R× ãÚðpt âw"Sí{Ç”• ¶ø9ëw®C.éwXYÃ[œÉÝò{æx™åŸ£"-¹8Bæ>';’tÎÞIÆSAIBK©uÌQÜ R›œJÛÚ5_³¦^FÅ¢Ò[emñŸEÉr§°eh¸î#HøçöþÂ{¾ æ¨ÕS PëBæ›:Cøèõ>Û!"ä@žC“.“ɹ3Öó¶F­Èi7;é âx Øè‘'O|/uõI)Á>4Þ…ÉH†ÕÍX”¹Bá!ÏéUõ’fÌ)¨Q)nµÊeäϱ•Þ°¥».”‘L‹ÝdUBF¥lã<.EPÕ`\,í «QAG+ƒ ð¼ò¨]”É)›Rª2B {x^PyQEy'ãǾiF! ¨"Ï·ˆ~kz9ÚÍÔ2§j)i„¢šj†€¡ R‚(r"‚¦:ÒTÍ…ÙWCNEDWœ(åèûë{ÕQp 0.Ę¤Òª Œ¦ ³¶$1!!–‹ÎÀ‰Dud¨+ +@*P€9R+* DE 44…”JR&J–cB¨<Í•¥@É¡L‡% äØ6lIPS.DU*TQr%¨¹]Ve!!‰  |ër…Ø]çnv\&,Ìæm0Šˆ».$4îN£•Û‘T2Q”S.2åDÔ9i…5- `Rê5¬’dÈdã* 0ö®ÉÑïc…@Ü È ¹nÈMC©B€QlN“aLºyEœ5)ƒ än5%P«¥$h…ä;‘JuR®¡NCé2éäÚC‚C(ap¸PLO&“aväç"ãmÏSò$ðáG8Ó°>‰Ë¹$‰<^ÃÄPJŒ]“!¨é ºTÔ 0è¸ñ=YÂð(.™ÂásöÜœãÉÂnTnNÇ&P k fÖ90NUPÜ';Ê8Ê«¨… œnz Âj‚ÎYQ|Þ`Z¤¢‹±\j9Â*(ª-ã)8«eÀ¢™@]•Š)ܦNH–kK‘ÒP*dršNyÙró´=hêÙëU¡¢^¢e¢È¨‰Ì‹krª%d6‚UG³fëY#NFZG0º—2ò#W¨{{f‘„å'êì„’ƒå³äïY_E0ª¡Òë¢êÜØ—,€()U¤¥Ôd”¦JPBê\É(EE5Is5¬Þj(Ô2L£œr@¦æÎå+„)l«Ì)Ö'Ia1!ŒNØÔ¥)@UŽ,‘UUUj’‚&¢ªj‚ˆŠI2ˆì¸UܹŽé9¸K˜4;)¹Óΰ¹Ê ¢š¡E8R$EAåVQUû–…!y1ÈrÂF6œcÉ‚V„M@!B B¹ B4… d99´d䃨]¤Àe6PË!yî]ƒSå;¸™‰Ù„Qé»×0¹ 7®Šggbc7‚—2° zÀš–0úzÂÑ-PÓu´™míŽN¤\fÌ•‚(’[ÕƒW¶±€aj‹+x¨<e¯Î q>óÃ)!÷Ût5-…”h$™MOf|åí²¦É¤[XҨ͕èõÖöœÃÓž”;æ²ÓÒ¯‚UõÛ3G²Òa’Ìž¬•tëeⲸÎíj.Ñ ”ý¯zËIŠ)?¤7>©¯+ž7Ñ„U]³>sÞõ‘­iÓãª[ØQ½%,%A“ø>=í"ñœÚã8{§C8utÈ.g–}í»¼"Ì•*HÙ ›ºGSÙ$åȹt¼(Š èéèHO:ÛÈ Ë'™å¶0ñ‡Î{&Ihey{'dX¬ô#ôgŸJu{@¾{ȼ¯=Þy@cÛ³žâèéã!÷ÛˆùYì›@¦E3==}yÏB^D̾·¯P¤ög‰ë-‘[¥â393 yî…Eùé@òiÇÏ:q•w¥´ì4|yË*ç’vœ]c„Qâ4áë,0‹QžPtí‰På$Už´ö‹Ñäó”–¶<žvî‡ÖÑѹ#JöÞô™’rg¤3ËË’E4G|Ïž¾Ž‘•~¼%]EžÍÄþÉrÏ(yžÏÞƒ™B~Ý]ddh¼ƒH$¹ai%IÅ.áŸ×$XÈ/é«+ãü_Æ×±û¼´Ò%H+Gmˆ†hv­‹e3f.#R·!²KX@$‚;‚³ ×å±Vöö`~}cŸYëÍ?f|Ðf®12 †×S Ai5Ì\¶°edTV”Þä²Âxž™>ÓÀËóÚ;7ï3ÒÁà·ö<„„÷ŒCIó‹¥÷okú×ëâ¿Ieühö–ü†J~¯™õóig®9ߘϥ¥¿’ÙëÌCŸÃ¬ÆÒ{çßX{Ü¿sÉz*¯}ÑW3°AIJbbJ\ÀÓDÜ„ „h(ˆ©l5 A„35uŠ9´!Þ’›¦æXP‡ YJžUš©JŽC¢je$­"A‹—!E4%á"—qWYÊ•"") _€ßŽõõöX°më|#s(+%´gpÉ81 ¦¡Z †-’a¡úµ!ëáñA˜¶‡Ía=߻՟T´o 2ÄíÄ  Í#Hêfb`Vff.rùz.I¾–&4ßõÖXþ|E¡f$§4ä9D‚Y.§0,Ló"QÅUJÑQV â -2- â˜„X*(„6»‘uj&yù…éuâ—øû[u`õî‰:bJeˆxà9+3ÆÄ&˦̎™ãÞžöfÃ¥0âÄ -y ÒÜ»lÃT¼,½þmO–^Qäui°YÔçæÙiF_6VÐMAÀ€ZÈçÏ$], ¨`" 8ÔÌ)â7©zÙe Šëˆ¦¹ùøãˆúƒ+iöͺжœXKû~i½æ”¥ín kÃyŒ‡äÛ HÐb,–¶Q(7±”üô}ñÔã\žyD@çWµ²È‚ßQŽ!D¤¡U D?e)!q.Ú@@t–*S-±öa…9‡ˆ—äwùLºl´‹G%²¶S‚È„€H¹|v¨!vÙ²PJHhˆ+.D’URÌ & ±›M(œÚˆœš…1™—”˜„o+²¸Wç¢}¡D_õ2«ˆ—û×±±)üÇÞÞø‘yÖ age” …©z܇"˜û[.S'SÎ {óïË#1räœ]‘¿wï¾~¾J\”D$¥!_¾?>|[>±…VÂ$”ÀÆ000j7yýÝn:ˆD¢±L„ÚGÖ£õþY®ãßV?Ͻj@,­§’$ÒéËïcãžÃíC ¦x-B>‰1;ޗĘLD“’IIØ´?â÷:׿7Þòê\!ëRahW•iÆ´FiŠØV»ñí÷ãï}ø¾ºwb#<šì-"­RKïcFÁŸ§žj<]¾¸$'Æ+ë…[®v%âm‰Ý)Ñ{²½Û €Iɱ­dÕÖ‹s=7ómú×ÞÀé%¬VÖ@®°–ö;[9)gÊé;½—ÉÀÝÁå×vC#©Á¡ów´ó½PãN9ÇPŠg¡IØÚî4Ý2œOdéPæÆÆö â—Ÿ¼äô#󶱡!>â2Ë'4DoŒ\§½o׳™Ìøj¸”R0á:€6‘ VÐ-[lD,âÛ±Z»f%ç;ÍÌ,Dâñ>´ãðÞÒ$k~×Y¥ þXœµ5Þ»ú¿$‰Öø”‘[[ÆÑ%‰¨ér\¢çƒ¹w8Üʆ1Š·"îíuÕEv{”Ê96è{$jQG¦[(@hKm «‡ ®2Ƒ슙.u4e6±ŒôŠQ· xâBÂ…•…5•©©tí¹öm8Ht¸ÑÛD.q•¶îu ·k†w¼x|ú'%‹“II—e•…¿j>ûë|õZEsìHž,¥wS‹ŽàãÁëÚJ—¤*Ý/,í±¥^É2{Y­e-åá 0âÂR[¯êæZyž&ÀÔ>¹“õDZ){Œ_[®T6\@96ÚL]=N~·Ÿ;Ð%)Íb¤ p£•EQH%DQT*(”"™M(‘”#@¨!M*Òˆ:¤  «S¨~x\5<('êÏÔÄx›o½á:Ò¢:C œ¡8S‡"ìˆrJãi6ç«£n§=Å—¤öÛ¤Pñ™IN*ÏOyÇV ƒœ`GÜ`99 ÜíÜÙö̤…¹b<mµ‚0mZÄB7®©‰¦3k‘….µ+R½³å/[9p³©³Êl ÔëJ£À€“Wz°%·µhÀE«al H ŽxÐ…b3Ù„n‘á-  zñn0’=¶avÐMjaÕ­ªîŽ“iÝŒbvØ“` FuX'w dý!³ w-“¶» öòxJÒ ú6$܆ÆRfBråËøIWå·œ")PŒ7[®°é‡5mp"_‚ó€‹l5'›¾Ý»Úá$“–{3—wCÛñ›v_5ø¢ÉE:–kÛöüöüüŠÊîÈ“›d°g·¶¥ôØ[¸î8îÖ)ˆ^lBª˜‘оK~k.©ªh¦–¦-T‹,µ-% E\Ò ÃT½}³Ê ?$‹û–!úùÝ¡˜ˆ z å!Xé&¦£íŒˆ¥]sU¶ ÙO¾=Û°[3g'šÅĤ*ªH}ë>k=±±!uÖ˜b‰V´Bº6Ùv bC;TXh¤R”Œ¢•ÕÐ’Lm²N·}ìêc=¡arE6L Å:ʳK}»mŽp™%Ѐd*d©’ §$S»pœ=¡¥VšåûJ®Ñ…Õ‘ThTˆWQ!OËs«ëdRJ¥„*šk¦ZûvÐÃBE•"­—*>x± :¥¥A.„cÕi7 Óç¬E)ÜCÍ™K,ÓœeÆ Á¼àÆ“P ìîFÓ—4RWœN!ù±\ËrÅrsÁõiúûÐ>s’´ŠÖEeE4 ÊÒ ¢ô ¤RÖvY$¨h’¢t¶a²ÊLK1 @‚T–‘s ôCÆ©Qa‚D‚\¤ °²®i³Ê”%Ëju¶¥¯9Uԣߕªg퓨‹òdÂ5R9 RTI©á>v!¦aYɳ*Á5 4èɧæ^½iæj¬Z¢hbÌIJ:%¨Z‡HæEÂÌ­‘Y’¼ÆFon¬eä|—™t¾yæ…A¨KM"+fó׸‡­B‰#d²é—8‘¨O;(ÜÌÈO= Ðë!ùíõ=î¡©ºv°C$=TE=›s Ãm ,ªCË ì¸ÑsÐÊôV¶+¹RD…56…DZaseh~7I)j®BÖGžÅ‡©éi˜¦5 •ë¨mvÔL7®Èö« å }¹Ê:ÜwP´êCߎ4 ½x‚QüÛ] ËR•!ãMô¬…L0ËÔ#9Ÿ}dðWÑø¼š–”4ÑUŸìA—‚4Œ–ÚLd.£gßi3çÛèJ1l­¢Kú1¸ëR•"uNj}ù™ZÒ£ËiT_hÄ––À‡Ib2‚VÞXˆ…ýi3ç³æ¾¶ÆÍRn¥Ò_Öc˜ œÕ¦Ù6Í9[b-;S ¹×~Y÷ŠU-³´8›F®)†«Û=¦¶ÙeÓ­´‰h«,] ª¶Ù65³]k¾ÙyÍèXê©E“jk-¦Zl¶BÏÄôö”=æÏËc¥¶Ä‘»m nk B•¢¥‰ÞÔ6­(¯5[*ÏkŒs^`ŒÚÓR|Y¨½=õåÉö‰Ìh]Qœá‚xZ~öñ{bUÛ”Ò¤µW4dܺ"æ·FiÖ­µ¤Øœ±×_^÷• ³˜tl¶lÉѹÖ]Ÿ%ï0Ý­©URÔàØ6ûw±PÊMy‹[0¤D¸ÊÅS\³ç;½Œ®†'Scl-\›nDZj‰]8ÍQ[gnµ±´l2¸I"¨)D¥ߟz§›Ôa¶ÖV@Ö8¶`¤Z‘¬Q[mŠ‹ÚÚP®páñ#Ï”å»|»¬yÓ°¢™d 1!— ¹Ä‚åÂí!ÝNRNsGÔ!0»É$õñãyÄ‹‚v“¾C (vx¨â‡*üñ“>^¶øãç[Îßê*ÒéÒ ™(P (nu¸2JMËAA@R44ÒÓÉN]¤9 D'!2:J´!2Hn A@”­)“OH§ÛtYvtk.sÆs8Hü·ˆo.Ʋ¸Õk*Ámöy³*±­µæÒ­âÔ%R#.ÒøÝïTKiégâœÊe+-úöÒ¥€v[eÈ—Ï#ð~ßßm2‹×O;§öЉ6M˜¶Óð¢J4ü«3¿gYa‰X ‹8¤u$~$ú•ï*ÛlR£1¢×ìä<-yì™ÞM½S‘„VëE›cõ¯^xÂä²ëʘEóo¯>'Ú[uÚËJÑ6±i¬h‹ž‡…„öCç êóÚÜŠC‡Ñ—wC×ÇÏËV*Ú ‹È~=óǾ…á{z'Õä Ø—”3ÝöÙCäé”~¸B=9ã;R §t‡e@ȇã¡Ý‰&=ªKoå_}k§”J-°åLîÃ]TB»³Ë…^2¡œög¶Ô¦èeµž%¦¶ôg^ü}¼©RˆZkÍv¥“CvnsÑ­–³]z‚6Ó‚0¤!VQªx»´Ú{+Cdß,Cúø“æ¢÷å±'ã¾}ëˆÖWbÈbMÙ“KÉz©<ªW´g®‰|aËUTù‰~±Þ+ñÍjÚ0¶ñJÙQ|ã\¶õD¯ Þ”TÆ}Vz²%±¬}vº ¸¨e"¶«…ræÈÆÉÓ¬2Ö¤K3ØÔ‚[¬X‚¬ º Mª5;.΄]ˆË´Z6‘IücwœBߟϾ<7©Ñ%}¤ñh¡T•!,$jÊ{$Ó ˜Å½úï{/ÀaS¹I ‘TîòNËæC(“.\N>¡ŽM¼£¹Pš‘­E²B„(w*ùÛ ÎœLãÞ|†òmäØS†à4›s€PÊnNkR)©2L”¥Ô *ƒ ä ¹Ô 4)„Žá•È ALs°r²ɰ¡‰ÛNÀIÝ)»º‡¬®·æ¤Ö5‰ÇÖϽèÉ„NJPÚ¥¥åe·š¢ë»^¦‹¨ RËÖ](ÌaIpK}çœJexÕ-N¬NIW˜ž®„&°sC¡Ž¶€œ‰ˆ„vÒ$$mÖjÝ"½±÷½´³úæÐƒB²®Ô5°oV²Ê‘å¶¿—ï½ìè^"°éÄçNU ëÓ^}ß#áƒ/]ç|R )ihâ+@­jžv˶šf±z¬hJãï{zzž=´·^̺ʼnÖQKlµ…eÛ³n‡£\&žÒ1ŽkXÃ×­û{Ë=²JЖª‡$ºÄgg6æžÆÅ²9¦²éh*J² $¤}Xì] Tq73[Pæ ¡iãÌõX2{9–æeÞ(ß%`B\iµµMp7ˆ³@ü¬áºï96ÖÌ–¤±\™ä¶Â|O¼ûx i@¶Ø¯®ÆÅšÙÌ¡«-—§­aØHìâ-1œåJ‘QG™ìÈ;϶ÖÓIklü¬;íèm¶¤§è@ïÏOMi7Ça:ÑØ6ÛUa<ħS“aÇ6 u‰X¢KÃR4_ŽÌbnZ²–ѶœF>tÁK´‰7L=mõO{œ˜S+…vbÙì*&èq³6C%c[C;UW"5MÏ,ÎgPÖ-[kZ£ ïxѪY‹D–ÚZYJ4(JUkP¡|`Uך§5U-(ã4à i/²Ì¨¼OkÓ uvÆ—°Ò¡Ç·Ï;É9çvLgµÑ’j.ÈÝCÌ$Ú¶»WFÚíö»^¾¼kÖ4‡¢ÞÈ6+\¥°f3?Dž›ã|ê½j+ÂRCº¤A"™±K-ÂØËÊ¢a#ΔMl–´ûxôóâ¨ûÑŠ_7‹}.'¯blŒ&Ξ¶6K}o²íH E„S–uW‰XÓ7Ê%¾Ó9öÑw·Vhx”X"ÃôK!ÛÞfø–Ÿ_]l* Ÿ¦]>+âY`¿W~)=0?–ŸYúg¡ÇçžĹarí¥sØÉb˜q_WzSÕ èöÉî}¤Î2•-arÍ·Kú÷òù¢x¼7ÏÞ|JÚ*wí{LJåFÅ%Ф°í™zjmlHWYbÏQ‡·Z¼Ýˆð½•Ó>Øìb­z‘J”~c­’ÂÛ)ØRŒz‹´w­²,A JwFŒnÔo½DÉÕG[›ZËç¬Ï’؉3“jZú÷¨ó•“OEd®>õìöIžw·eª³™u˜I6ÁÏO ªŽv—Þç;]nBP\(s!!æ=w³tŒZŠnªBm(8²vI$%ßX^^Dóz öAIÊ{‰_Zr£¼É¹ºRsÎE3’Gë"™U<›J×O41¥SHrÐ2l.j æ¶ Z„g'|ž×ùÈd‘E2:ë‘!vÉáL„Ü“½{ËzéRH j›k´RèžYµ ¶¤^Óu]‹9L&6,U2"O9êM¢"á¢K4‚{•´„ŠyÂâB»¶çlÖk\6ÒrîMÕ…ÊÏ9tíÜ&¶9Æä'4M&'y󺃽iC´‚‡½dwy^tÝÝ€Y ¡&^æä' ¶!0¡õ ‹ÁòyÛ`_ŸYEÓÅ\O±ä‘Tòm„•u+”@«ÈŽÉ¤_ÚÛñë?sØÉ‘`ÁW~&Ñ#æs$ù3$b^Q%…DòŒTë¯_­ìý6ùÚ#eA±§f´º±ej ÌTRUžžZó:¬ûÄ÷cYê•ß]¼jp§’Lšëia yY¦E%¨×_9}5áµ¹µ—@ë-;n$×täÒ²òk Ê!‰ÚLs·&eçW;!2€;œP4å‘B9Ò jÔ%%B&¡Ôƒk¡¤\€5*–c@nL¹rRÈB€¤  TÈC™ˆ9 ©‘ .0¡Î<í¹÷p¹^8{†¬Â*=Þ÷²ûSjs´•r¸×X¦ìÎÙ7+Xv"m°èÏZí)O*¦Gki¬Xq$}›Þêêï%¶…Òb.ÉRh«užm”¨'¤t›¢Iœ8EŸ$ƒ¡=n²“£LÒg‘àóÆ=CêÈ­I•çÌ‹Ÿ›Øöm8C*µç·^dzìOla•r¾‚}z±ik˜Ø¬ºRvIÈFq» £!ùó›ï¬½äfåt}yóôxТ^»­¤-¨ªÛt‹ž¶Üd&G‰äN_%ôq|ÇÓÛjQdʼۤӮm½sØÓIÙIÉ“2 Í:jÈÛ%Ë–é”ä(ë(à ,u¨ÓG0š€zvØ­ÒÜç˜#÷½ØUéj.ðÆèÔG’± c¢ZHÅ<ž=îÊŽ•[•ç#Y­m{”O«›Ñ2)(F¸I½æm%¢6Ó¬ ƒh¶µ;lZ’®Dõì;l—›kŸ*{ß&’Ø–¸t ÕFÞ@°à(=ñYõ[o­O<é†Ú%ëm=ÖÝÖ!'-ÑÝŒcoˆ7ºQNò&@<Þ9¬€5¦¹Žàû36²ÏŠÆßkïzm»-^aûVÀVÓ7qrU.6E—¥‚˜þPãL uê¿§ ‘–Ŧ*ä¬q©fpËe.^™¥ãKéõíûêô¿MsiÍ(óüÛ™E©P`ƒ:‡K—$$¬nª`¬SwBCq‚j`¢ $ZQüºé£§ÏYey9®/Óë'‚©Òˆ—P„)" $3#Qt†EªCð¤E'߯{RTí²zMû]ì<ž°¬)|£íæGßïzûÙ¶þÇ’¤ÇÚ}lfO¶;{Újjþ×óÙÖúý˜2¹ï׳¢X‡Ì}+½étD(Â0ˆn 80¦{0 ro0¼Pj"T˜!ˆË£³7"ت‡9*I&Ü™ þ_©ôqù~¶ö÷çÜ9°ž©­e5‚/ò&=©?WCø£|°¾Z@j’šb ™YÄZÃPâLÑÞ9¹S,ÌÌ©‰1 ˆºM†· ˆ*l„£- k9 r ÄÂ@î…ñBè¬Ö\ :."”S¤æ„Hs%Èõv] VæTDg½<þ =î§–rí¡Ñ Ń­0SË$¦MHA)„)ÈyPlƒK½Ã°²B4 Ã0ƒb!µ"eDÀÌ:ªF—èœö9Ë5Æ›4×û4™Þüûàuž™Ú|O9Þ=Ã{9ÛËŠ]+½uNñ»_6ÏdÑ€Jh¬ÄM§J¦Ó2  ‹*EÄ5Ï™ò k‘“'ó¿¬þ¶ÿ3ýiIý{X%ɦ×y‡uzŒíVtµ X°å5š£YëeÒ "jÄÐV#e?¯ûÚz^¾P¡Œß_s@–ºµ³Öãn¬,Œ:VÒi.6!¤Ûš¬l%ØØ‡ótîiº§Ûhõ:®‘|ÈO §™ìÍëFúï<瓜rH(iÊcœu&…'ϵ´5ïm6mQ¤Ú_T‚ú0¯m ºŽr°¹6‰é¯‘L¿]óå¤D/6¾Gd/Ÿ½ êÉÉü"yó‘ØçArŸGr»Oqs§n^§?d9O*ú †ÔÈé¥å%çü­ ¢¯hÉËùG*>Of9t]«€º‡e‡r+¹ Ò*†]„TSeÛŽR»®/w0ð›e7 š€i @Ò (w• Pí ¹ ¥PÔDšO×+m+:–ežŒl,Ûm«n‘³•´®™ttí…=ëQàÒ9ì6‘!6e´j^tèØµJ rJ6Ñ·¯æmH®aílr—³[¬XÉê3Þ©›³Øµ«ìmíÊbŒ™#$g–3ÒºfšPæòu‡é¸5àHµ$’ÛʹÊnÒ(rMG3¤~÷ ŽsÃ…¢]:WoOqW24Èô¯OæöïHmmrÏ<îè „·œNS’rùÕmÊšW:©É;ó8êß'«(yØ^¢Nq8äDReFaIÄ€ª ]yä'†ÇŠ7ÄÓ¼ïQÊàé¥Bgeۙȩ|®m¼˜\ "rTu ¯)ËÒ#Ä#¤ß{Ây~úRšÝ½¬Ç )È}euµ@‘Bô¥´ZBÔØ«Æ\¸½™ÁµµÊ ˆ¨€¤ä0ˆð¡R’rñ&Ò䃵ë¸hTÜ€Ò£H#•T² ¦K]Ý&@ÂëJ(½dQ^&õ%2Ó ´Ñ"ª‹Å¶î“hTsWJæ{ÄÉ<‰ Âð¼TœÜ£[j›I™(ªhví¯h_$ˆÏ“ê<¾»»lb|ùì‚‚*/ (>"yúë@)ç=’|’=zxP^~—§„º2GgO8$Pòo¼[ë人‡Õé˜óž X&2 Ù³2¶ÙÉ&®è¨ónIËê¡s¢ÚŠ‚=œè‰â¯8—Ðë‰ãĈjвOŠCe FÇÊzö‰V"\:ü|½ïlˆÖj ƒ“ZsõÞÒ"¼ú6M·/O4.×[ ³PïÌ{Õ^r:$t#ÛBä¨ö„ü¡EPø¯‘*r!Éc*“ž×P–¶êäTˆs éÏJËB"m‘õÂê2 ¼ ݉c3[,³eÄèk¶5ù^åW|™púž¹RÓ§]›´ÙÔj"¬FYåñ±7Ð÷½7›VF7ÛÈzõKÙtºcí|Ÿ=ò¢‡’%'bNI•1™§"y/\;Ę̂ÞïµÊ¦ôHC=K¬x¼Z :X…÷®ò °•y ½·Ñ.—Ť }—Æš‘­¤%”…Zµll‰rTèÎm#I5%¼Ja ¬ÑJÊ#¥ölr³û}·?+À½iÅùà´Š®rôUBì›pHH÷#™¡±³Ü%$ãYЯåöïtmO9:,ËDNvA]}½ïN©HÚÖlì_µb&}Å[öÕ~·¾å%œö6²ÆÌÇbØFØWž*W[6ˆÅÖ].fÙ£(©³XäÔgëô׫Í,YÆŠ­6Ä&&"MT¥…³;bOÁ™–ÃuàhÄöxŒô’³ lZØÚ'b ͹Û*ÂÄ:ü÷³ä¹ó^¾û¶ñæ®GF¢Úxȱõ„Ì—¬ˆó[$N·lê°ÕÒ¬ÕöÞêl„ô$øÌÆ7 ”²ÄAh„–ØrÂÞ¤†¦Ë²Le²)u—0£aMLÑVÎÖulö©%Ò<í°Quc$î©ä]ŸK8ùÐ|­8òO ?çySï£y7¤´üõŽÞ¸±‘Iý'žW‡ ¶ë›`+bÒOŒáZ’ôÈÛq&g³š¸ÅG;d¾O}é>/„ÊÏX†•g.—/3Ö³jj» Ç5SÍœƒ§\NÅÛ1ìg´‚ÕìY†ÏjÚØ‡Y$qQiKSÔ#2š)wJ”K](ŠÖÖÖ^ÚÁĬªXË’±yXÍ»èÎ)¼–µŽÙŒ6š¬ò×_¤ö|äÌdV0ÈÛ6m‘(L©(4ˆy›\”ldIcKmÛm:ÍÉÃj2mÉ45O¶æ†•!,%Œ98*–öÖ¤z± Ú%•aX·’^Àl¡!+J…V}¦ÜKmØÈØ‘ž×¼²õ+ñ1#._i`ÝjõcÍ’xLy·¬[Dê¡\DIï=i4åK¡{c}w´­tó›m±šË°Ia@Ê–5›qX©\ãƒZËTe8ÕÞg ·æ'Êψ†’íˆDÛXu3M­`ÄmM©¥œ·IÉdo_1yn³HUXÐÅ®7’KY^Ã1ŒÆçhÅSžJ‹Œêا™t¹ZZÐñ¦2<ÛU±Þ'1åÜn  œd0Óܦ¥hª2u É —Dd‰#ÚWS©êE¥S'RrÔ¥)©w:¤MJ´†@™:;:tà“Lé0ˆ °i@ ihDÉ7  ÊP›’Þ s@!© u¼”Õ@ä©T2@d#’¡’d©CÔ¥»M7³âù;Å–SƒJÚ 0ŽEjq ÙvãnµOpƒ>´? ýé“­j±¡Õü(=¸h5Œ3tÍŸ)¬Ð¥ã‡×3,¤‹iÊD:Ô(‚XÑ&ݶ‹Iµ:2¨Ó{¾ü“ß+ïð¿Ò}ù}`ú‹ø˜rÖ7-)Êy  ½3ÄÛö·’EKÔƒÄi2›L‡Ä<#ĤÑŠ’ÛY¥²š{6l…¹)gJ✘S2*}Iô_;×kûN’Ϩ¬Búö‰3ÝÉÝ:}³»ö%èKH!N¾ÓH^>©=¬« ›]ža))h@cæ¾õž×{¼¨‘y-­š§m¬cf¢&6íXK+¡{óÑïÍ:fVûa£mªÚMs9š†(¥gŽÈd^9TÏS³ÚÃDþ7fôõ,Š™µlÞòöXðE=q=í·¢i¥³'jß¾|CÁ!õ¶%±!,[âžÏ®°ü´ÒÔôxó/1µ#íÄBÐâ#´øL¹T’y$+Xø†²¹ØÊÑ; “;9S*"$Ȉ*(‚ŽvA‰Ñ"ä­9EÂã.ÊI&ÎAEÊeÉ6]E°ƒ³òA ¯¢B¬(.S.Er‹²T&ò•UQDE2‚"®G ‘]ïw"ar¨ êH)*™HaL”DTDÉE5ERE@cTT•BPT“E 5Q6c”E!DÁLCM4Í–A1¨É"ˆ¤ªj‘påG(¢Š'ZwV;ðÍ Q#[œ¦d’(Šªh%UAL¸zr ˆ STÕ-1U- A…%TTµTUMHÕTE&P‰ JªˆŠ9\*åÀаMD´30E 1PQIBìŽ&vËû©õ=~8Óɧ%÷¸5±ú/qúzúù³I‚»¼äã×´‡OKèüÒ}…ìƒÞlxú³û2|?7Èú§'mg$ð¸¬î£2Õù§×åï0¥-æÙ˜SPdÂÚ ¶Ú£³ÜOt¯wƒ=µÁ ~'H¨‹ÉÙÉž”Áõ5æ}k’ÁÈTN*ÛœN&7;iç±ÎÂà$›.Æ“nt•»¾wvZ{¸çŠŸÄ  O« ~"GËPe-D¤UUÂò«4‹IC†‰Tp¢ÎVšY\.„3é%t¨ªŽY”tÕD¢ái´„#%¤¤²éÅ+ :‹.†t䬒4¥D£*@¥,ºIÓ*«(¬™f+ Eš´ÌÂê‰Ù©¨™šÍ´*jJ!’K,Õ%YRiaÕK­Z¢d¢BIs$¬•-B"”¢Ùql S™²á,ÈTJÊéQ¨H‡J%-†¤œÚJ,”"J«™ –bXDq.”Z$RÒ…Z+J«Q’bIIV‘hœÓ0(ƒ‘%!H©’ËU‘¥Èº‚F²¢ .f…¬ºed¨Vhai*))Re(JÈ‚T gT2TL­kBºYjF"J a‘SJÊ2H4 •;"¬ålª¥ZÉ6 +–¨’Ek4TŠ"ÎFJ C¡g,KDÙheДTР‹F¦\³Ú2ŠLÈ,ÕTåZ†Š",ÂV$’vsf"T’V–©ET™‹BÙeb%d’™Ds ¸i©ZË…•Z!UIÒ5hšViLÀˆ¹¡.4$²$B´1 ¨Î„UJœ’%+¡ÚUrÂÄi…˜*œÄJA¬R9Å B**¢êr PæaXB³iQE! Wje#BÈÊš+"³(@â¢I¡²’H0–$G9™ÀR"30â0ëUMI$#«:œC*”YTD*VÈáÍ9j­0Œ b¦¨€h™r*‚ÃPŒÈ¤L–¦¢ªÊKJÖ˜‹,R¡UĹu0ЫN›24®t%8‘Q’!Ñ$#”‹JÄJŠé%$Ä“¤‘p®fQVg¬éf¬ˆª éjÈ“(Ž©U­9G*«'"¹D†Í"¹p¤Ê°ÂŠÒ’£ZË*C‘Ì‹2ŠŠ,Œ‘œÔ£0‹VZ›-iZ”Г”felê…\ЍÉNH!Ëš$QQA ”(•\¢Tê„Y™‚‚UHc,ÌÅ"ªÊ¢BLˆÐ4(8«(ŽPU%l¥B¤„©ªU¢"2Œ0Ó ,•E%TP‘QÂ2LLH²åÂá'; ¥M+,, ¢åkN!Q@™,Ž¢ÌÅ %j(Q&Ê ¹q6YE&*BiV)hZ•Q¬EJæP“jŠ–UJ•Z"­PB²£•&U+Bå‚eQ'NQΩIÄŽZ!j¦\*ŽieEJ•"¢Š.*Vˆ†¢V&*¦­:ejÌ$«µHEL-Z2¤U›(ˆ“­X”Y”h!ZF¢d„Ar¹aUÊ)9aBIEDU4Î`UUWT B‰DÂÅ”EE@DR‚'B¢åUIm ÒS9\ªQ9Td¥e:I•fAa,ŽQ´«‡0ÉÝ…A}v¶-<Ö†Œ¦ƒ¬Õy¨ÑëQaIeêI~¯ñ¾¥àÓRô›¤'YsVm¤MŠ·Œ®¬·åŸ£ÐÂÐÌ0—ä{ËÓäUJm"¨ý®ÝlO¼ûÐàžâ¤r¤!•,êvtpÀ$¹Yr¼mXÔÔÊ-¥IR”‹ ŒVFs·a¶±=k$W>BJäÛ¬…½µÖØȵ*Ö[pº«Ûò÷¾OU´´ÀOO ÄèK­[V·›‰4²%Ë  ô 7ø)Üœz÷„î”ío$ÏÆcê|²–”éñÝ@N‰¡#”ù7ˆò¯d¦G ؼ‘©´?D’“ƒ°¯Þ÷¼‡P»„Sƒi6Ê  aD(ZD(Z "Rb(ªh) š ( *„¡¡bh†ŠZZ JH…"Ѝ*††Š¤¢©((Z¥)’‚˜‚Šb¡"¢(Š–‚š B”iX†© (i ‰J h bJ¦†”ª¥)˜R’‚"!¤ª(‚Š™ Pˆ  šŠb ¡f©h(hbB’ŠH©(*€ ¨¢¢*$"(¡ "j‰ˆ’ˆ¨š  ªh¦¤†&"šB¨¦† ¤¢‰š*Š¥¤¢¢h¦©‰†ª"©ë ¢Z ª*¨ˆfJ(¥¢‚*Š”¡ ¥ˆ¦‚b‚)˜‚&$f ¤i¢ª‚ªª(ª"Y^^ã¼;ÆçxÛE†Øª±b¹ÈVk.k6™Sk•lkY'tó,"µ1Nl´DÛE ='w ÆN-ñÆÁ”lP <„pˆË&æjÕ­;ÞŸh3ð´n±»—j¬ñŒDõ.ß .+šˆv¹A{'ŠS*~n˜ÄT0bÂo3‡VÕ¼ÎìA«åüã-á½0?¹>j9Ï›Òzw£ìeéÀ&œX4&½¢óÆ ;^ÃkúvUOŽM•‡kÁ¼Kú?m?ñŸîæ?ÅQCø”v·äbÌúÕÜÏòˆ…|-,Ôëg3UÌß×þ7{¨½¸‹3>¼Öga¹zqk{7Ê+ÉÈÏ’Æ¿XÙétjÑ?ã@î¾§'³õVθ1¡:=Ü1 ÊᮧߨÇMÁœÛ†[î«c£’|Òk„üQ•ðŽÇ¿ž¯¨>¸²þ=Çš¸íe^7ïÒfB2Öð‡bL´M{7ñ.+Š‘q_‘[Ó¹'ä¾ê¡íhPçè»ólð¦8N’ï‘\Ì*vl² ž`<íº4º1¥“&¥ÁÔ]zfRôÓ1‰ú·\o¿­Ù× ¯N !uÜƸ€ÁÁ]åÁÙÄ>í—ÒºÂJÇP¨t“>¦5™AG„]ç1ï)¿[ˆÞ_¬kD—b*O…g©f‰nr_Ýêhj:…-’œ%ï}‹âÙ ,YCï9k/æe®6Ž˜â!å!ð§®SÙž+†Cz"ë8¥É#ꥃÀE5ÂÖ`VLØ1Lß3äò×\-‚ ß YÙôFÜžµ¦2s¥=Ac\ IÏv¯]èK¤‹Ÿ]Ñ÷çÖwB+žx‰~¹®õäÕs*²Bu_Ó%W©@ï3Û£IÕ.\ÏšZy‹cbß«¯#&¢ß0îóÄ‘Á X P-ï*9T4üÎŒŽy£Û³ª[Íë]}G:²©„}ì!éq$G.1¨ï«âÖEän`QQËÍÈ»t<⸴Q#£ÓúõÇt-¡çPÞÓ÷é²&5Ÿ‘g‹ÆK÷ïÎûÕ‹<6Aâç`èâíU ¿™Ï71rÃIy!M ;ÝB|»ó&ôÖMhô}ž'<÷ÍL™:„¬Þca¨ûzŠÖõÁV´"ätƒ×¾4×4C¥(qsgWõžç$hö~´9dÁžùá@fIê'”9¡ÐïÅŸ7˜c¾þt¼–޳áp9K‚IÀãŸȪ˜€šæ£p/7çSq[ÈPÇ|Ô}Á¡&[” Œ²ª…ÚRn=ªÄ#ÉXcÄFa·pN3Ÿ‘—^'9Q¡!ˆe„yFåDR°Ã+æeÂÚPÙï/u¶4^ˆƒN–NåsUÌòÇ=:œèß2 |FoGžuÄÐÝNH$d‰!L1µt&¸d‚bÑ·ŒÝ»edÓ^ô4ïJµÍÇT±'‚5é`rq‘îÕBÒßqP¶•¬œwvÅ|¬ŽoäYèò[çשÖõƤ7E?YÄUVù•žs]åb¥Ä½º$À9TñÓC‘Üß"HÑÕ#ó·U˜Œ;…ƒ‡u"ëWØÏ>ÍebÎü@ABh3I%‚ÐIQÀ‚‹")f > 9´*î1dµ‰¥€GEf–p¬ãdláÆŽ/D3“‚“Y^:Ì ;ÊÑìR$î~¿}{±½_Úþ„ñÜ~âIk­Tî|Ç/˜ÍçQNG›ôƒÄnJs3×Μ¶Ú‚Pì°6Eh $žd? "7_<ºrŸ^Nwæîu®F¤;f.k7óoO*MÎOæ>£©}O ï—ˆ=ÎàÔn+ÌPêÎØêÜDLëf€Õ ê=õœÌ<aÞpª×$=¡‚8@hヌ3Å (ìà”X2Ç/$ AÁ*¢8!ÊÀ-Ž›!ƒ²'M¼aêXp¥gÚ†l“² A s#©=öÄêyjMzÎñÛ¬<ÝOVíPR°Bg#p(ز±´5¬©¡*ëê)Ëpa‰¤+¥òîcJ39rÄ*Ô±•Mi¡Ý#‰¶„ð±0z|gLú°æÆ£ƒn (OªÏ%ý¹#­p–¹Ò™Ä‰#M^’ˆ†²gé¡ÉÉùJ·T)ÈÆÜ.:‘˜¾n²íÊ««TyXÌzrfœõ6BiNÐâ–4p“xÜu"œÛ¶Bë»òê3ÿÕžf7õò¥kÿPéðíòÍ› ¨€ê‡—=ªiÚYæ0j‹¥`Åiq§e`,°ã½¹Ëe¾ÿÃFOPjÅûÓü4¿½'ïï3ñ|úÍÅNIËâ!Ügïð<ÛWÉߟÞÞ;úÇâ[À þ{&§ÅyǨCî÷ œ‘û—´¤í>crïfãñ.HSõ9vŠpRd»”í }uŸpî@øšS#̧$Op‡ˆñ*PÍ•/oÆ6kÂz…7wí‹ÔîOqâP{²âDÉ ¬LïŽE)ž,MN@&G©ÀÔ)IÉNð™¼KÛÎ/!´9êr§q„¿KÔ]zӸܩâէľ¤ï ™å h‚sáçcš­ŽÓÑò¶žD.u·UÉÝ@ð‹”„IÆÞfpN³.&l=Ì?&¡œ.5˜j´.ÖŒãª%Ï&êA2`¡$‹Ñ ŽPpENßr/% <µ˜pâ!A£‡¼â áÔÇu;Œxõ•dži ý•¢1É¡ü’Áµ­@ä®·P){TÇ ÝaÅЀÖ¯ß÷D3¯ÈCâÍðÐOí8ë!Ñ8÷×É ܦ²W!jdu꓾iHÑóÜsçuÞG.Ƚz,€ÙÖf¢sÄ㨽ƌW Gf_tóÎ¥Ž"ý¨å~‹$o×:U9¤ýwêcëˆkRuYmâ`i'&Y7YœsYÉ£ÃÌE˜ÁX…„2WÞíÁLqPòlÙ[lPL8ƒŒ¿nK ’tÍÇ®ô/&ÂâØPôd~2C3ó(A<Á¯z˜¼‡-›‡:[}iæ‹Òø«‰ó=,ñÆ«¡(ò¦V¦"ø »QƒoîâOžjÏBãDG®¦Îrï1ÄCŽ¢$ðUñ›>—ÚDˆ;¸aœ¾ª\¦Ñ| ‹(æVG0P‹2ù °ˆã•ƒÒÆ>Î9Žû[3¨ ñWHà÷µ¤8#- <8@£-ˆDЧê}Ëõvƒ— ÷xÎf|kàFæïßÞÏÁÃ8íÓÏK ㄉ›M£¾ÛÎV‘Ðúxé : 8‚$à3àôøÉÌ¡êÖŸóç-ÍqKk†(ãàhà #ˆ ‡R;“!:M@~3•Éí(î@9"rzGÄ"š…u ¦gs¶óyªñoÞ¶}ö×:ævÕ%Àr ‰aÏM%¨O5Š2}ÖLëŒÄn2ˆn©³%Á$±U±uP4DpdÖ·¶#'l˜:ÜGª!\ Öo9gèÂåÉÉoêñÇuk2zîhà÷Cªwø—šÚˆz‰±ÖÑ«´Ri@-¬Á<»ÓŸWÇ›Ë;\O"+quž»ÝhAÄTùýñ›Ø6k.Iõ€H'GFÈ óE¯¾ÿ…'yyYùHeF§Â^¥@äàAÆ|@dG!òñgµ†Ma© H‚‡¨F åÈÜ”xƒ\0<óCRõªäv¼Îä5&ã]§$Ü>ç5žäóíŠwÖx;^j}\Ž×hû“SÞ2> ÊŸœæ>'ÄpšîLõ†E=å>ãzÀùAÈ 7™–ÞAëqäò§áŸ*l(º:^¡ÔAFàr Ú•ÈL‚‘ i{Èî(ÔYˆá!Hu¾!Ãó‚räoÁ½@d™n­F§æ‰7âN¥Ômb”Æ»éO”ø>o3Ôû€ÿˆïëΔù‡æO|°½zÑøñ¾·¯Æ/jïkPD=åñ!¸çsê7‹ ){܇Q™€x[ψïµÔ|H~gÌêZ¥2 wóšÈ3ÞZ“qçÞ=]ºÆ‡#Ìö‘êwRœ}`xÉ‘•û1>{xÐ6aÈrÍȨ9çÜžo{óˆRdÂr½«Ä%Ôäø»A‘¸{æ/ÄC¿xd Û­£¼«¼†\²2w¾¯{ï¤È(Nßvõ͉5:ñ‹ä9G'¢(ˆ¤Îï9ùêz‘õâ3~aêSJQL_Œ ÃX«]f¥Ü³BÎ8KÒã›rÙXwCs.æq.¬IÎb&d$ˆ¦žDULO“OÏ(trIÂ4ì­ÄÂÆu*…ý]°ª™ä€Ú€¡vEVó3ŒvBRÏC—½Ïß-`¢sAˆ¶yÍ‚dÐêƒâÖ €Ú3U}Å §½.­_1>f+ñbú=ž»C¾lhtùJèüu¨d>ݵëÊx7Äæ$g–ûÌϦãÖkrã{Ò:¥ÇyòfŠ+ÒÄô‘p3(>¹áˆ²ea’FHÖqq›Ú€ò«ifsõ2ÖòT—ϵ÷KEY#'…}$O =®íQÅTUÝ(VM¦b—eÀ„e)´2nbQNH¿Kƒ†sKQ +(¤Ÿmã´‡IYO‘q„qνô¸Œ›…^+‚>‹æXÍ"}5¾–M™éqàDtцÛÔ¬Qdã'U¹"˜‡ݱ’™b<§‰H‘憧;»ªž”49W•k̨™Oþ¤1yÀT<”à%Ä4‚8üO;PiGm\ö©ûØBŸ«ç=U‡ðB@Pö¤’D¡¥Cƒ)ÜIÔWYÃ.³{ÕMæé#¨Cªàç½ Àú”êG'[¨Ä™5±¡ŠÔ/-l©ý˜òxûBŽ÷ž±¬~@?p?ŸôÿE™®"‚ÿÙØ‡-ÒPÅPE‹M×*ä3yª^NWFÄŠóž•hª®\†æbJvÈ:yéèEæª ”Q]·[A†¬ä$um…Xjžз//aã$Ê»FW’ÏBªƒ˜åäVc;)RëCq&Í˹é2u¶YKc2Y´Ó"ñ›HÌÌŒŠ;ÚõKÃ\4Hì[µvšÚ†{%;\jþ ¹«Î4Ðö©mþÓyÂ&eS25Eèɨͨrš2·5¶WmÜÃ4H½)QR#ÍÂs©QPU$‘ªJU ³)µ•š¥Õ›0«ÚÙ k”]]5´âa«—7*ÂJÅÙÛ6jé‹c/<«¡µnIìš®]jȪ"è,¹ýJz†A=G(²†ÄLóS§l¼™,­¦¤Û´”îiEhÜ´°çK°Œ¹®²Jº¹šG”G”fQU¢G¹t×9'´ZŒÍlh¤,Â*¬VZRºÌm§/$“]œ·$ŠŽÌ6“<¼‰.ƒ-H™ ºÑvÖys*6²Ž‰æ­·(/bº5Í3<æQÚ3’R¢¯S¦Uä€Ñ*FÕX€- dȵÐëkš¹LËÙÎqm´ŠíwejÅ £8U‘³ŽEnt›l¶‹O*<’,ŠîpãICЄñ¨]Bœ„ích¬ð««‰6ÍÒdÆnÈËì‰"†dç‡UF”„t, ÏvGmœjR#”°m W\¤$‹Ö®jyEUTœíO=‹;•Tx4j[I³väXaIØ•ÔTL(Ф„ª›’8䇙W‹K˜H[:p›‘¶Ý±ƒ¼¶Î™L”åÅÙ…UTuYÙÉLghVÖBÖWS†¨L$šÊm…¦åŒÁ—YÚžUJ‘Y\š‰1Ï'FF•QÍFÆhÙ³Î]µJ®`Û²g3™—§˜jb3+m¶v—(똉—žgh!2H¦–É-ÓÍÓYÖ5hƲJm¡^é!y^ÒíÒ¬ÐíV×,ÃQµ•yEá -@ÖE4ÍÝRŠ(º Ó Ò¹!×BCŒEGL"õ ¤ÎEÑU­5¬ò»dÀòò£2h^³m‘Ê]ŒQ0Û–öܦI”ç¯leTy]²éi'“Jæ5CrkfO m‘UÌI…v±èD\¢* ´ºAä…iI•Z¹Eìéx]K©V«M­*(òò²3U2OVL½#)#¡eÍD“!VÚg)QG=+ŠQÓü6U×·\Ѻݱ9…gh×mhFž^Zìg\œš¹Zèy#iÈ+!!1ç…lÌçë•0–ø¾8ªààg>ÓÞÕ¯lxpÈ d@gz÷8Ù¢é·<éÆOG‚/´³¹ˆì§wP0ÈÙ̯tòó.=),ÙÆ ùxî#Ç>Ñ­®N0<6,¬»Ë¹=Ñq€¡–98ê2û,’G=;9å Co#£gš+î‰Âï|TÈý9x$ <Ò²<…Ö•1h}4G„]úÔ‡Dû¯#zÏ1Š"’ƒëéYFÐÉÀà³^:ß:QõËë*=fæt_|Ž£»~ÝúoÞíá_sWïîvíûŸß„~Їðà ¨ÞëôO×Ñúü³ÿMôñû½ŒhxÓ!"‘K$&ÁDF¹]qW&ÅÊ„ÅG¶èpªQ´ígk¶.eÛq ÐO[Zkc IÙ^È/ @ȼq!—œ»XùÝÞBzµÖòȦV<îNBè £NÜò¦âC=Á“Œç'p  (¶êf©sÝÝçÇ&Äà4ìb@âCŽYYWÔ‚<½ÚØŒ`Ú™]˜Û<é°é-juOUdW•Ù謥Û(¹±†Ü…Ø.W2)-«™"¶6Æ*6ϣϒ|AYt$YÜ«Ôô3ÊÄ9ÖSmr*uÚ²aÁ ºÙëJrVÛ˜Km—ùnÚ°'‡<¢ê'šÅÆWbbXÅÊ"ÔjS#»”©^M¶å2*Ö­§eÒö“7K’àS&MÅÙkW#Û1h$êºtì tjÖ©5±˜pòçv…é*Úâlmh2t×'œÊ×£¶R/cYsœ¤È«3¶ËÄŸáܨè<*LŠ)=[AÙ(ìõ Ï=´p²«5L6…SmŒ(ì\)rI=TÏZ”dÚãD†WÉ%ót¸’Tó°»pÏ2sBÏVÇj6ŽÚ=’sÓÅ%´[eéåáN‘]ÑÙã­*äÉœð„¦ŒŸ2y@U™š†…SÌáé:JùÜA£ÌÎ\Öœ‹R5**%AM§…6Ø%äžQúÞeý_<e3zUêØÂ bg MkMÆ£fÆÜH&6Æ6Ïrí·I´:Í£)=ÒÔu½»¬\xRƒ:–)D‹7*®M».¶µÜ¥E¥ˆË‰0쥆µ v‚F*³+„Z¤‡a±ì\éiT2 E…  C  »bqi¦ËM3šy’)Y™½¼›Í‡SE.n{ºÂLXŠ™2i fTÚ&aË\##B4¶v¤”ÛfNŠÎŵډÙ+ŸÍaZó™z"4–+bDÉŒ˜Ôºä]g*Klhn\ÂT(Ù“m^•7 ½…bÎPÃ’C3Ó$;#e°-B‰Æ.©Ì[dYrDr›A’M˜É¨miyg’‚ÌónÛ3§MOl󮀦ŠgH/2™ÚÙµÙv6kXmŠÝ«u×%‚3¹íÉ,/l™ËuŽž3dŒ&#YI%ÅUÕË×Þǽ„Ôç´½P:f]XÆ7g­ mŒjÈÚqÑ©Ÿ9={©[T“M¶íª6¥¸M*=Ä®»nß›Êzõ8+FÚŵÂ"B¥³„ˆ¹6‰ m‡f$–ŠbWXÊI¨ÎJ*‰ëYì*òf×^à mi&¶'“=:AͧYtOXc*!å÷œgäèÖçk#ä<å]Î<©—rÊZuÌlºs¸pô)—ú#/Ô/SŽ$•ÓšÁÝÜNÊ1wk­²N4HQ·ONxùà‘}í`ÏϺñJ¡&¨«e“#¶DÊr¾L'•æ¾ úªËLµtÌáZ^aÄàçnråáºb<ãžr˜]¼à] ¢ÌÎcºEì†IY¬ŒËÄ-–- ½š‰èÕ$/*‘ktôòNØvçHç³µ¹k³Ê¼ðBZµmÄäåì¢tU=ˆS&É"á«1»Q<‘”^DZÃ,@N ±ä”‚<|žCÃç(æîÕÆLç¡åã0òì]Êçn£;¨r< ÀÀ/”ZE¡ÑØçônÇê æMuûf-e\^^)Ë +bÚ‰lËÄîP¹ý¿–·òr3+”Øiÿ3ÅW~Ü­r?_î¾õÏqâ– ÆÄ‘yVbaS÷ked{RRY3+m`bš¨‚fºsjaîb­2Ò"¤Ó©ÉìSfÜ£¶¨ ¢Q)©D ‘¶äVMH¹*ÆSn«¶6­•þ·Ç¡ï%¬Ñu8UNF²ì EPW(â`tï"žp¦Èå@äÌ‚"‹‡ÐNJ¶ê0 y1!ÎqÎSy=Ð(¸}Cz‚CÈ,’.y'Î!ÆÜà“Î]‰ÁæqL'&=è0#­‡ž²t¯h%Z³&ínFÔFÒkV”® m§?‡œ»Éî’”ÖùIΦ]8hb^”Q¯d®uÄör8—¢nn•AfžÝ«J¸Rý؈F…çÑ„£5bq‚¯J<®[¥ ýüxþ~ßyQOHHBªHe4º¡$§NÞ£¨!Pip.9pr¡¤DEçNæThSk2*ò‚¬÷4\¹'§&j^)Š7l£Ù&GD¯"t¨.S19'­.á6»<ä­dÑTgb™áA+#kœÖû~¸ƒ©P… d© !@0ÎÞM—I§mÎ !²ˆjJ\¤ –B†¤Ô‰(•„.¡]¦I¹ Œ”(¤• •¤ÂdêL•‘Ô¦äÈÈ nÊ(TÕ¨¤$Ô®ˆ t.¬”)r]NåÉ6FJ™"ä¡Af-d ´(»€JQ( C¨P›‘$u J[‘QÈh$JGPƒ©TrGWqûò<ÏcK]r¶»làÆsú| ™ZXöžFùú~ï·ß—Öd^gt ­Õ‘‹–À`²®ã­‰õÈÒ+ê/“ÏÝGÁ‘– ùžÿ€ ý,‚ŒËñ—g63Ò¹å•Âdûm=‡„2.0dç]K$Êò‘Û YÆ®VaG "¼Ý´¬‚Ê‚´JÊí«‰2윻”xR—û#n&Ó&4¹“•v­C=æ‹^𣋷<èBg#¤ÉÆä°ŒKÊèË¡Lôö¬‰, ³ùMp6ógq{V$ê ha »ãPvcÕ’ô IN<é¸ ÄíK§ëï{ŠÐÈÊÚj‹š1eÌ3¨À€b6ã“¥¡¥ïO‰X1¬lqˆÕbN?‘Æ$xt› Ü&pI#,ã’ÎÐÎh‚" þ!ùÑ ¾ª¡ùV„ðl¶†aŒ½¾•’&¯êă֘×<‘|öò@Šô™ÈêDB—ˆxabÕ24]"ÓÀŒm‡æn¥µ«´ìt™åY³¦£ «ÆL“EÚ-ˆg2&#+Š*‚¶ªÔ¤ìûÛÝyî«i\¨Yë–³³ÖBS7÷¿WÕûDþÿËæþ»ö?Sß;Q ²‚“Ù\g•¶b+­³œ¶k,ÀÌQAFl)m,lBmHg©,U’ð(È0"«K@JÈÏÚãCçÿV~m|´ü$,¢/L<“M(®³»R_¨Ç¯ˆaÛ›„EììË›6‡£¦vÉŠ%¶r®dY3„Ï2¸ÅÒU=¬1² •M5Ýü?_»÷ÿzÏàõ¨ÞØ@Œ$d6²ð+†°!<É&sR<Ä4 ,ôÆÚ*yW0öí¡s–]ÎU«-˜”‘™”?ѱ‡lµy:ÛQIaÖèŒå\¶XÖ¸Ng§´[˜žuZÛ&lît•†vW²邈„‘K%<%Ù]3è+☎¸DŸHlú ØÖx5ªU·1Pˆl2V4B­q¸®t2pˆm"$ZE aQKŒs]¸ ÚTý•±çcɹd’Ay19BvºÌNQ\=Nä“L‹8œ½Ôàä²e&9¼Ù!%ÕºjÛ¡áU”Ì‹[]ž«2áz*ž’¡\ú7a¼ÂTñ%¡Ä/OÉc[…TÚÚ.9{šªTȘQA@S.Ò(ä‘AW#”P$RT]Õi «* ƒ%…˜]•Dp¡89ÒeåTjc ¥k*2•Eluw ò¾n[…zÉ$œÚvÝÚ1Μ $1¹1÷B»'SF»¥èîÒò[im¸uw)²šL=`Í¥h´M]0ÕÉ­Ê£&ÑÊJ„<(ZÓ:áTC/c"!Dâá‹´ÚÙs±µ8vÛLÈÂ&LÐÝ…{9ÉѬÕF¢JR„¥F”ZÔ(Õ Ò.¥Ô àxà…ÚÙ r »““¸Žv$]$ÎRp°¢LôÂm­ÓÂl8t“¢áNì'(fÖÓœÂ(í²ÝtœêDg¤Ú(Ò¬jlg°öªCUÓÏ:-tµ3«§ÛØ=­tÉT¹Ñ; ¹À¬+s˨ŒÆ5Új…9y¹§*êsh^Âg„Q1"ÊÚS<¢¬ªWq;$ENv¹çš ¨3…T&ΰ¦…!7"Ѝ´$Âm± Tös½a4^×y¹Pî7]v‡FÍ4®ÁmÛ;epˆÉDg´ºSPì¹3ØL™‡–µ Š<Üš ¯]ŒEv«%$–Š®\QBÑ4¹Ã–cVÛÖ<¯¢ekÅ›mU ¹"3#&TÛTÍßhñæ$±´bE%d¹˕blIŒ–'š´_=½/¾ôž öŧ¶¯xÞæ/mˆ‘åms«S—Ãq5ªÜ–u¶h¡G SÛ¥”²¦¡YÔ9~÷€SÉä5œ/&Ãs[CcmÖ'<´¨Å_kGrܧ PØZQŒÄôܬµ"½¨Ef ËÕmˆ¬Ä·fIL‹v+²¼),\dÏBs\¤î¬íÄÆËÆ]RÇØö”KÛvBEQ4m‰Ûl»5RvxíGÝÜNH·X4ã&Ñž¢0ªjDE©^Ê­­„ÈèÉ©9›‡‘xT®Í³°0W ÉR.¼÷¶khqÁSµBBŽ­°J]NP¨NEœªZReq8Uô#Êd¢æŒÎ®Q’¶%Z­œä„Ïv‰g­±™Í˜¤‡œ]ÓËÛy=ŠŠ}R‹ôKh’¥¶ÕDkÀ‹\j;•62ƒ®F&Ðb6æI…DL˜{"õ*jÕɬ=rмa;9¨E•…g‰hÎ4‚yy¢EÕWZÊ!©L NpÉiª;±§çi-ØØÊ]ÝÜáÙvÜ÷XÓ¹ÀÄ(rat©‰RC«beEË—î;ÉÜõ¬ÚìºDÛY7JÐU ݘìåÚ Rpô Ž´d'ºx$$ÏC2¶:®]VäÓ—=ª‚nŽF´ãªe×8c4¤”:0¾Ùs纞Ϋh2T9+£¨Ž«¶ƒµ¥s…ç[“¼÷ ¤§Ý5 ¶gn¹PQ{2Ot+„‘fíŒi§ .=gÊñægŒô¯aX^US°Í¶ô_Ü÷yÒß]±hék+R˜^t™A¤W™žèxklçt+ªLÉDñ$åÚr$‹gH¼“E“[uÏL÷g¸$É  ¿!/­ä9 rùò]nv7«zÛHg¹Lô± VÒ³ž 3gà*ÑÍ…Üà‡=’/!:I]¶@9@'r`Svä9Ç’QY †.tåFCÍﲩ¨m<ȹâÇu—U…‹e‚éIÈ«—!È” ¹pÕ=ÖzÍ$'t°¦S–vä9ž@ž²‰Ù5 ÁSÏ>³‡‚¯“'“Ï,“ÎŽµÆÛw- ¹A¢îìàDSc¡i@9Æ•7t2.Ä‹±Ì£±ðq¡v]¼âDAr´7®Üàç“/*éRQiQMWH’\´aܼ+¦Eك笻œJ’ºL¢ùÓ†­ÐAÔNQÏ¢à]Q”Lɉ“.ˤ}]´¼X§ vN“œs!&ÝI“¨@Ö¥§!¡p…É+nyqɹ’L‚ìyœj²‰N CzÆ“&„ •  Hªäš„¤ÈGR ”… !ž|~Ï»Éó<"•RJ°Wæ6!¹LÉD¨½äœg®zÛUÊ¥R)#MÒò‹‘È*åpŠ"l(9(€RŠä¦jË¢¥µ+œØ.’ìÏ=©^7RšF^ÐJó=<íiÌ»Dg;\¹y¥W¤µa!ml/813ŒrmŽpcjâÛ§žS[CÜèÉÙF{ Û.í4*Lkš™ŠUè©—-µ¶]‘gYÒô÷l\¡È*&“¤9E4à•“§àîƒ(bL§Jt½N`LR¸OÁ³*Ì„!T4\+R¢ôi$ÞˆPO@°žãò»CÂÖ\rr±TàÜáyØd‡rb’ ,ˆ˜‡nžk…;uGÛnò):Ø‘C“œfº4ä2"-“ˆw'QÎ]Ýl»O8Q­šœ“Šõ2³—.Qp¸U˜i)¦*¥¤)È[àæL"(9K×(î!ÛDŽ!fZ^%L‚"•d6‰wj7+Ä!Qé\Ñm±›RHfBuÚÙÃÚ2ŒÃ'".zz–É1J  W‰4+³• Ö•dS¡\ÊöÍsüKÎWÐ]"ÖɳVÎËlf*•‰ÖÎg8«v´TÈÞµzrñM6°Ä¹%Wc„Õ²m…]˜]DšÙììíWÒ©´Ñ·¬}²sˆÂäÔFt™d‚ËZB-Ô¸Ã0Œ¶Eà áP2UQ¥DÙ4»ƒ5€iÇ:T:•v;¬¸ (c‡;r2혉7;jÐrs²åÜìL¯W*«M'1JOs£r I$äNˆ.;Õ½îrqP<‡çe6ÊasJPP&N[„rZVe4€6ës¹P9Й{Ö2­ÉH»„ÖñPšp!I©R•]B@¹(R¥”"® ÈQÜ€õnQ䢙";€Ía‘©9 ¨Ù1¬*’©L˜Œ²s>w{×=lýÍŸ·o®•3øo3©Ç¦†EpÇèæD‰nЬiÖòþóY†3ŸÄæúçä)6R€´‡gðX‡N§²Åƒ•-“̶–QªÔFEèqªUÕ ©wC;åfÉÞùœÆ³s6êâ =š©?š^x»ßWüG×rlåž=ySTEy¯gš—/~'ÑõÜ1í=(< ‘1ÐÐøD^Cî!è䇵ñ!ÌDE¬ä/+~ó´¥é­¦}/s&`°S.ø·3ìˆ!Ëàfäóéq¥=¼ÈÌ—n´„‘óYëÌÑ…”ÆMo£sÕ DeNj£køê5Tk“]/RóÇjWÄÏ!Uåî]ÇŠóÅüÝn5±+×›¼äñ˜Î¸¿s»hVBàiÑàMy¹¸ÍTïÊÐ×¹*x_ŽsK/¼Ôu0ì£,±ú'ÚßfxÔm)Óï^ëesç/Ma@'’)¡‹$ãgÐÇ£mbŽ8JÞÊ?L"PGG²¹6pÒÁ ih1&M”q6‚kdd°fP³ƒ;c|kIIã¬×¬M@Pšó‡‰Q»QòÄŸ¢ “ßÂÎýÄM”øæB’~šyüv>}¿';êN±$“¤á I»“©üõ…{‡$ܹÞÇ:Ä+öF£s™õ ‘ÔPP™;œŸ:Çrî¹ÔRÝœÀr™O™M/'"„ä¦@ÐùëÉÔ|ËñA²¢8"ƒŒhŒ „šÄ4h2w*¤úÜÁh‘~” iÍAâïÛã#‹ž&8šï½y;ÊÔJ|\jÐ9ø{­±ºÛ¤¢·Ã?KÜÉñ`¾xŠ×˜ö;¸œÜFÑÛO¿|8\çodqÅ×3Ï·›;æ<§—z'•³ÍêüU³:¯.3'Òá  Ñ' Ÿ~æ=#'³Î½{QuâóqéñÖºª/Eiúç‹'œ÷‘Ó¤)[ܽ¹Ìh@¸•hT¬ÔJ F4dŠ!ÏʃHtž üõ·Ùí>VÔ¸:³¨ønI[õç“Æ¬pfäò Äþ/ÈÕÙv®‘SŸK3¹ ‡Õ,Ê cà?ð‡úàþÑÝú­³HÏS3Øx±ˆ6è’Q0§O(ˆt„òi†™]È —s!<òl.áË‚rŠ ™q:LwGîå¥ÐM¶1´nMšº–åbt.BLŠgZÒŽ¶dQ§’E§M 3†é¡fs³Q‘ˆEE™ã²°áí®^b!u%-[g¨Á‘2XŽ›1ÙÍÕ †³¹V]¬V‹aÏd‡²lÄ£˜T2:×½¦Ë#ØìžxÃlìô™¶ÀªCÁžž-/I‘Yg'(IœñžS!‰Zë‹x6˜$DÑ9YÈ8v^^˨]EpÉd„Ï@ön…©gÞ¤uÛŒÁ³ˆ )ÖÓ¨Z(@ÎsXÌ"dȽ;K²M±PÚd1ç½ïe“(ðÓžhê˜ê¨I @³:S¥a˜1©Ý£&MBTõýÞÞñK¤sÓ¨ÎÑ„JŒöMA™S6ˆš¨NÊôd³Šì«¡EC9Lò¿D‹Î¸©®'ŠöÕÚµ[Z{:‘ÅqŸ“·>{°9·C¦Lµˆl‹±¥ëé­ä*,hDæ¨%ŽQPQÌOÛg®åKnŒN޹ÄDœ¢ûÖöÊg¦¬áë™.kKðÜÙŽ´¯¼Ì_X ,åáMRj6 „¥Ÿc¡G³W¾Š®ªÆ-寧§…Uéå3Ü̉*ˆ•­„urH‘"æK;[ld3Ëͤ§És´‹Q@-S’E'žNn„\®N:*r:I’³†ûÞ<úг-U˜Ò›&6)IžäfHÔÊisÕV\ŒM²˜T\Ìí¨Å·Z[X©vöïfMIØ\ÅÆÊ¶JQ''$ˆ•¶,c ­ÜŽÙϧ¹é'S’r.Tž3µÝ2"H¤†Ì²ìîÛ5(/vLƒLÒ…)f1ÞŒ¥åÅ­‰:kn=hv¶@™|èÛÄ SQ*"–·V–urÚÄö®Ï[axQ*TÛV'ˆØím¦&$Öêv[Fæ—¤%L„æV§M;·¼KëÕ  ¥tö˜—”¢ «!&MjRÍͧ—ªr2ô#’®YùzõvÕ§90g’¢ Ûj š{9<~x…½Iüçø‰Tf wÜu OÆ,æµ9ŒUѶý½d…Az›…-–]UêáèüºÞòåÜ nS—X¶mw¼uQ²”€KZ± ![KIœhLS¼Ý‚42ëHæ'Y{¬\ ¦LLìnŠì;0#Üg¿§@)è}lÊŒ;¨bÌÃ\fºìbã3Ö®TÉœÂl0c\Ð5¯OIÓ̶g&{‘í4ážÔPª6[ló›¤ •È8»&iè*YÃ\+Ø’z‹³«KeÒ9èM‘C$þxŒ‡B?Ÿn2OÌòʯg:Öì&Qȧ$ƒH‘ÂL<Çã¿ÏÁÔpó×\sÌà $T¼gŠ—+^xpôX•xÖ]=‘TžµÁž6)¨ëm֜ʈ)&©È¹*,Å®ÍK™âç¡Ì’r›Bòö6ÎhšHs•œ¹æ(ê"I±íÕT„9é^‘sžÕhG—œ­“únØõ‹3m<_F=yM’¤Ø¶ô^§Ú’5rõl ENBŒN_[·“"¯ žUìûYuh$ÅOH ~¿¶ùåÏ÷ÏlËЈ¦•¥µÔÂá£SŽQzêDLºW)ú}€ðŠ.÷ïR&úÙÄÀlÕȈ¦I Dò’Qq«dˆ)pJ8î$;ÂçË€ø O’µ÷¸Éõ1ü¿_ÄŒ'òW©«eS‰±tõ±¡„AÖØ§aÒÕ—0ƒË«ŽCú ƒ&hˆ¤¨…Ál»©HS2"¦a¦Š¨[ùפ{³5 F±5«Ì˜„žô&£s„Ú™¦ví• åvŒFÆPT'0Ë]†a™Éµçxþµ„‘mc=‘tF‰XŒM«6DÛ ™åç©­HÈJ±4#µÔâü§ÈùéG˜T¬-¨ûm}®8Ícey#M¢^°Ü²ÙwgV¹E ²î‰£zQrM«éû]û_Í¿ŠÉ·ßBÐ"F¡ 1¶ž¢0Û[³Ö¦K[µÈíJ!&g7Œh¶Ý²J›29JœT»œÖdÂ¥ ‚T–!ØEVØ %€÷ñ63G’X^4mD3´Z¶Ò³Œ÷:S0™± Š=F}K­œïļåöÛN‡´Y G%Ú´Y2®]–ì"-K¹vj5L¢"m:3ÎŒÒÝžªm% ”HÌ‚ŠðµXÒ´^ÍvD$©`§]eK˜xÙ”³¾>é»ÝirCŒXË]ªaÎÛY³hÏXMIb¡›³Ö©¦J”£×²W…•E­¬ÉIsdf©Ã…j ã‚-$9…iPVœUXÖSmm¦Ú3…á{I1%dÛ¨eÅ“BfÙíí²û‹sµ kM§Q]" (³çÂ'„|ìì-¦"ü½½‰çJa¥XlY®^$7Ûzañ¶­‹s×3p[HÐ 2ë2CkΗÊÂ[Ež\ûDIQš´nØÖKk_o<ý}‰–S$.䳯$¢Ò&´í1T¥J¢%d«,"Ö…ªE¤Q€=N+L¹ž—”vÙ\ZÄ褬æ+ 7n„ZÛ9ÕUšLL¶×3ÙȘ_{Ç„|ºÃ«¨ZÍmVØÎ϶Äy†cÖÝrOI'³Ìlk›”#Ze´K%Äq …ÎU=Wœ‚k´VjŒÉ¹tclNUÛnþþÞ‹Ù·BYyƒb¦ØWf?fWÄÂÜm4˜dÚmßšQÀJ •ŠHT PŒµG¶5Ñ›fxkU¯^ð¯‡9͘Ãu”vp‹Ö¶™í”Ω¶è‹£[Q¬9fYÔ‰¶SEÓˆw.eÖ†d$9da“»®p;iÆåp€ƒr†×Xç`]°.¬ V”5BS© ¦¥ÕH¦¥£%C!u"æñr§-”÷[ape'ŒdA J\ŽˆÐëŒ-%ˆpâ3ä½ui4Ú!6ÃØ™…ú»Í]±>öµt˜‡ZÔ+¥Ü·VÖ6µ‘ÅlC‘ºar»cfs±¶°©1*’«y28NaGÖ‘NQ \•TÒ*’lörQºÚ6Ö¶r1êxɦ Õ:‡H]¬™%U1N…%•¦C%’„‡—±¶g›œ² )0}÷^M=ÔÆ?/Æv/eÐ#‰ ŒÞª‡©„aþ{š1,u[üºê’ê‚O™s<7À…qC=ÖºëôŽ6„evº¾l~Uæ»5iwžxÔSóqGçǬªÙf’Ž÷È~ºóó‡‘~ã’ջ¬ó€ ¨~•ÿ\ÑQLZÏÙ¬%Ê98¬¹V±e2‚‚é„Qw®NÊ9ZŠœÌÑ#¦Vd\ªÎÒ*™Eu$È S"( äDŠGöWM )8¤W[,Y+—dEarŒZwáNpµH¢ˆ¦\¬É”UMS‘ i\¥$3¬HÄd¡ù¯$éPs3X·P*îwð}sNQÓá¤ÎEHbA.†nUT*žH¬Ïêö…šagÉ”q@“#Ïø»Œò¹«Í…žÈ}éy_ Š1ȺȪ3,Ì&RWS._<¢<ÒeÓ—JO·kcŠ‚ò"šˆ¦FéU$Éœ…1žyä4 ²ObNy²“‰œ¡ ”eÒC"“¼‹ tCF²“H,û­Õ%JB’U;TÐ.V‘Ë*%橲ƒF«› ’EY“[ÞârQM=OT”)8(·½ïyB¡Ê£Z*QDê½[¡AQ^\á õR’êÝ×e"‰+NDr¨ªÅ¥šiPJ]R*iEQm(Œ9\Š“9+s¹åÐÂ3QI¡(˜IPFgeíìg2I=M 4”ÔÉiš’˜æD”/ÌA¶&Uaˆ¹èÓNâ‚oGZå“'®ANQÔNKH¡R³dGÉçhè_2¼O¶ì2ªTAG¬ûñ½AUTÉr)ÂB Ò/ã· s35²X’Ub¢)ÎDpÔ¨ÉøâATUÊõ‰A(³"#0QpHJ‘¬ò¨ªV•)®™5Jˆ#œ–¡Î*QUëNËȸҰªä]¤z.[~Èã´¢¥J"#•G+”U"Š%\*áCÈrª¢ZDG(ås‘’t-£4e0"¢Í’§3(мšyË„i&*‘G(¨ˆ„ƒ™Á2 ³6%®‰á! r숢Še©Ò#…’a4›öõÊ(¨+¦Õ-B.ŠiQE$Y)£í= aÉ[ ‰•«= ãødáb©>ñÁÉ—I5dqÉÉ» Û*¨¤P¤Êç*"”4.f’Jl¨âE ºÕÒhÎï™ã×y2¥ŠE"E¤WT.¥ÏwaÏC.kHJ­J+ÉsiÍIK]üÐù´‘Qmi^’瘲®8ks¡"£”uJ‚Zj«(¸RI©©³¤œˆS¤vD•ÐÊ$’äÄâDTÈŠ.P\HºQj©ÒI”„f*GeJ¤)b%bˆER‘‰Ÿðœ™”r"‚*É.‘t£,$YFHQÂ¥IŠJvTw™ʼd‘v%t  +ÅÊ$&\ÑdAShYË$.®Iܨ59DvQh§(¡q‚E%„I%ì5§ïçm×ÝÅ~û¥ƒ÷ýñúà™[Ÿâ–¹nMBêæ‰QrŠËD:]*»H.Ó…QE5— "+4¬ÔYHt¨Öž’ª°ëR¨ÎÎ5Npª)ªUêHaZé‰E«ö³Å#$g8•¡y窴ê…Y²•d«MY(K YÒ)2–+.’Q%FY4%-.­M;#T‰@¾¡pÔM\®ØÏJ“eÛ$$ÊŠLŠœ‚Ï4J,£‰5ªDÔæ°5±ÎÆ ¨2u d ”ÈW ’Žá¢… @™” îJÈCS©…B”CQ’™?Rº;÷çÛwY¢ŠVÎrkÝ܃ +5QŠ™–©vŠa‰ýLˆ®QAz…-h&ArŒD“$ÈŒ™RtåQvU“ª(õÂ8y—s¸_Ååì“%TYœ°Îbd´*4³6Z†Í 9ФFg ”ÛŒÄÚÃf$AT ¨aa¢QÃ1“#X¶JŒ¦‘QUD…¡E2ˆŠ±H*ŽDD™G.¥‚F"W ¥r¨º±J$ª­ëKÒç )>¥EÝ\ó…ÍM¨ÌÝ¢´dGϾÿ~þ?]ü>JÌŠ’,ªä\#‰’ˆ„$™üÛ’”E• ¨iEP™ÊR“T"!<®Û$7*<µÀªeQR”0 ,šG . t¤ô€ª$¨ ¢"ª¢H»Jí’F QlÙ´®%È¿­Óû‰áNm#óv&Ñ2ˆ¼BO+t*ª'ÆÉÕ§U”¨‰R(ͤ\A0é‰,ä’ª˜IÒ®YbÂï!gœ*Ó‚:(fZ†²åêÂò’CS³TÍö\£JBôÒ]C9Έ•¥jÊ¢9ew8!ä“HHˆT)•DtîLrgБEr¢ Œ¸WÔΓ-*.E´íP9hÒ.PD\¢‘*cκ!@‘8* &R¢p¥@.ZÕ,à ;#;C G샙AADBd‘¨œÖ•Ùv‘q^tò“²äEÑNLÑ3 ¨nnÓŠ•y…ÜÚY´ªê¥š¢f­<¢áÈç(êÍ'!ÙG°¤,Å@¤Ú Φ$Z!jÉ4æEˆtº´¬,±i%D’tJµ…idd™›$¶TQˆ‘I=N|ûO(ä Ñ$¬Ï U0-̪Ã8'ä”Z¦V‘Y‘IdcZB%¢ˆœÐªH£#û{ŽIØ(”˜e¤ÒH `dùwKX™(ÐH¬2ˆ'¼"/ùq°ÿJþÈ]ËàFoõº‹³;ÐÒg<]ð¶ÃÙÆ ‹!0\KYΨ\¿£'èÎój–$mLX\*ê%ªRU!Äã)9©'LŒÆüt £¡„–rê’©« ¡+‡ã#•æT%´Î•G1 …œÒÅ¥.$]8Q›S"Nœ”A(〿‹¥cž¼¬¦CHPE•\*æŠBÊ( )P¹qùE‘Ýk*Êê‚¥ 'CD¦”X´ÅH¤š ýŸŸïÿ_¾¡õb†aE4N*ý×\EȽ ¼Œörw9YÎÊÐT( ¢+§ SdL.;­ÎTà  X)I :ç—Z?¦{Ï^ÁT¥`ç~—êŽ$ j¼Aó=5ŒÄd©‹pvdšÙs®ž­uÔÏåô®ö·¹Ôˆ$.6„æ:7(÷LÖ»Zé-¢uØl䯕³jx?ŒÁÈCa[ò©ÐüO}B­T_"·z{÷˽7QErLW Ú|ª©6O<½ê3ðñÄì\òÞ½Ž‚Qðìö6ðóµt¸qeS2 Ò 3QÑSg«Ë£Sæq0“¶¢˜ã©—/UŸD(¬¼Y'[«Ü…´òéžÝ'Öœ´ÎN^sò(^Õ]ïr6å ¨^,³°šæ—[Öú¼ï@kˆÔw럑¢8Ï}Ú5×Wåõ‘ªcq uÜTø„•+sG†ðˆN¥´²ã>œÒ¾àAâY³R‰û*™PL)Y2mr!©sÓœírQ»gn¥?·\©ä½Höd+¬ñ‡2ʹþÛÎò,µ6èvéY„WµHëšyÔ;}é5uS´¨º–F·gøÿWŒž>³4Èâ)J—l­É%²P£¢ÝvkUmŠY˘šk"•/;n³[÷éóЄú4nбmœêäjFIÉžÚ‡³jê–’%ýŸmÞI“‘Ír%4äZ5gm ËÆQ)#QjÉ4ã[vÛDëf‡K­kyérµqëZg]£2ŠZÖŠWš´ëõ° ¦¡l³C‡/evØÔš$ÈZk…]·nyQÔ.Í»l[h®º”v´Š‹"ösžLa6WÚÃç25)„lå!Æ!KXȦ¥ÍÙE–M†ZPœ¦A›nÓdE³¶¤GüŽõíV ‚|úУ2_ä ±®ý½U1lÁõ‘%ÖHB¢ˆ'9T”%†}D ŠüEÊ3"÷³1(‘üœ»bé÷²žˆ„TzœíFª±ÖÂ.—ClB3—Nš—K{Þ=î—6\Óa䨦zŰ¹åjÙ‡ÞÃÏJ¥E"pCˆï¨ë+›§Än¹ÝGµM<NÛ-ºTx´"®Q™š·ñÛÍVjYR¥B'Î/kÝõñ>÷ž 4V9´Jhµly(ÝŒkBÚ×£çÄ¢[t‚Û¿•|òªí’ÈH– 2BDB Vuß|TúGç??->º9Œò·³03}ª §g¿¡jü»sÊÎJÚ‰píÆg.˜´MCvzˆRBÉÕ²žVUWÉÖm42l½¶AG‘‘S ½&B{9ñÝ»[ ´NAFÒÀoßнïwµ…ú›Yrcû/;Ñ’Å3•“.ÃŒ´TKÙ,æzƒÒëɨÕ*™´K¶œ8‰ZqŒªbžÀ¬áâJØFv´æ6wïívé‰ñFˆ 9óÔÌ}4;ãPÎ}kwšÃTqÈ—báf%”ºM”zü²ò'f³–4#óAœ 9i-\8A‹›ÍuCyò:û‡ Ð¯)@à7AR÷´Æî¢{B#u¸î{„wŒîq{½q_Óå#ÅM¡Ä¨¡­G¨çw¡®æª‚•Ö¸ˆUq}SÈ¡ß3]ßY*ªÐ'äÙ™ö•O ›ÙÚçUE류š­ˆÕ¦œÑÐ>œ½$M+WÛàÍ ½Ø×bR²P”¦!1ß‘0¯¥È‚_—¹´$s׈¥½@ÈÜ@ÕÌ*§$ê·‘G“ÆÕÇåQå,hio±9AÑÞu˜ç‰ê–—X–:`ûåA1<ßQÝA÷ÉènmÊÅów¸3cQÈ0Þu¨\:ÎéQÛeW›Ý‰% gŒ¬§%œùCÒ½æu:ˆà¾dgWN{޾¦äqËHÝ©„%íªb ®çk‹ñË—¨,MLTVïëë>ãXÛÞ«ßÖo\çIÛ©ÔÑr·ê(]ñãuY04hjfÍÅœ’E­œÄ ª7n¾ \ÆFõ3œ¨ãwzâêõ¨h;8ÉùÛ¬ùÄäÍß Iæ^ç<¸ÔY "¡30Ä«ˆL£îE]QŽZáç:Ƥ‘±ØÕW)×gD•Ä óuŽ7­ë4u¡!1EÒUê^ äJ¸´Î‚.s©p#€w·¹q¨{t`jò&^MG®âqç-–†s;<0‰¢æm k™…ÑĶ ÂÚdr–x‚½:‰™–Ôpc&Gt˜œ‘R O5³íÇ—£´yaÎO&³ÌLj] צî꾞·Ûdih9ÓÚH-íFms<v÷¾gæøŽxíTsPÅk§Í mÎõë*OàúõìVnº?6‡µ.‘"¥ õã~üϺ® ‡£1.î-È-‹ Ç251ôc9=8”ѳ&&â#éòÅOg“Ce½ÔX;æ9[9‹J·êOÒFÔ0¶•ˆË ž_5õWѤ}­ÊæŠÉ|ÌPÒ´^HÎ/Z_<«ê÷çÊïc”¼…Õ§Àòýó•ñšõÌߊ ûž®ö·CrGWkœÍïy:“3½ÍíY´—ž¯2åÖÄš[]”AÍ:‹!Ÿ+¸Wº]ïz9§p¸‹Å®UðÛ~ÌœqbOW¦ÍÑÝD;ºb4|œÀŒµ¡2óíy_C,dóë! %ÎõäC­yT§¯\*àѸàÚêå!\èˆ4v8[œñZZgL>"¨ç7ê¯:Í-R…Þîpc ™ÑÎZÑŒq…$ˆÞµº¨wnåÜ/sçÏr'­q™)?¯!ˆ D®S©ôs×^¹ŽuðÏ? ù©â~_qÑ•yÌÝqrhzºŸ>s‡¤;æ¼Þj©]r²Vò3lFYì5½l]U%dÚj"·Qãz1:ãžs[ÞxùÃ&òµÎÄ@F¾(ïÆ:Ï¡,pQpºéæQ‹¦xrbœt˜ë×g“w/¾šÔ‰éyK>ú|Þ¶³5}ŒóU9WÓß]qîý ¾ï²² Š^g½|δ+®bÂâeM¡±ë3ë¿hä|µzÎ/ߺõæóhç&®vFÏœ  iÛç¶çšÎ¯”nGC‘LG‘W°ž@®Ñç[ÏÎiÖ³sÃv§^ü׬ö|ÕÖœ¾‡\G„ X“yï¦î—Tâ¤*q4s)éïRuu[Šô>¬fuÝ÷î…‰âhz™a>%à•˜Bèñ¸}è^bTyÔñ:öóÇŽjB|ð˜ O‘ŽÌuãÔTõ¨ñ:ù: ÷ß|qž+S·Ê öæ9õCP(Ž ßLj1ùs¨¹Ï©t>+æõÉîsçk®¸ësÁæóö£>þvýùBý¬óò#ŠÌÙ×Ë“Ÿs®¸ÍðBÞ¯ÐâìEq:Õrw|²Ö$B>çYÞ¹æùVyKKž˜C5ϼÎn‘„{FDYÔk;Ö¾¼ã‚èw1Ÿ³÷ r¹yŸc+‹Lªò/%¶M¥°¼Þ³q1scÚY?†·°Ÿ 0ÈÑQ/f8®ìjí.UìK ‘·™â½óQ2s÷yõ×ÝË×û/=_VTïPc·^¨I®'}môs{Hp©íù»õÌè9|k/¨âduYg$]åB•Ì_WÜs°i¤®â·ILùÅc}6+|ÇSWyå뮢ìœÏ u7O–ÚÝGÖTžkÝqÊØç§‰ù—Ï+‘\Ì@³X L³KT§Tfh““q)Œ™QÄÎgž+b»ã<¿8\M󘡕¤r·!Z,ïCøš¯tæg åÅ™$¤‘K*ÄÏq‰5Rèà 1 ˆªÚ¯yO6\ÊkÄŒ˜O£–Ïå¦vŽ)…ž}5•K÷ÛûRçø9±=Ù'¤È¥©D¬Èæt²\¬„°Ô'qƒDô=³DÈŠìÎÚqc ¤žÚ`¿±ìª!¨Ÿ9«­ví\ˆÙ£yŒÈ“ ËýÌ‹óµmÉÚ”„“ZÙf #žs,klÖÆˆ¨(–‹`—6Itâ…Ŷ5ÍbÆ%i'lZ¢¨H¬ÊYÓ—¡Wÿ…‹^ìöXnÚi£„^^'BIÙk‚ÛZ•í¶s·O"®¤\6fÍ&S*ðCÜæê©LµËœ™uÚÊÏgghΈÃMŒ9r“„mT‰Ö–– bM´†'ll:€UMH¢9*&JZ¯?GçŸo~~…÷èrÇí®-JÎÒ!i’Î6¬òòd²ó+°¸åYªdºˆ].RXlN³f)x•SmØZF§¡"sÒaê!‹—;ž^$ÈÖÛaɨmYcW£ù¶!›’lJÊ4Lsm}y=EêϯgØ[‘Ù—,lФê]®6¹Û¬Fcš„z…r' ØY“C¶Êlebv“~•ƒòºWnQ0 1žóêù]ú¾7·WÏU™º#pN¨‚Ûį[¹S¨Ê9…'YŠÅ ð÷9’uO “4YìÚíD5$&¬óZéT^¸\P):°óg[*ñ²0ÿÏ{ܽóœfÐÜ4gšìŒ‹3Pæ±A€5 "ûռϿ}|øë®ÔÔ”æE†ÄD ‘ßPBH p¤âcPLIlg#·Xefê(t]®^¹GEÏ<ä°Ä0òŒk"$ö®Ë$‚mûÚÑ©0¨ˆª*ìˆ"A$…$›Ñt=)u²›˜Û<º¸Ñ(½žåêµ¢‹÷>A#æ±"¢µ›çnȽ%,°‡U+’”IažÕ:R¬†h¤fuÐ9F„¦`e*Ì+Ɉ¶»FÆL’-NºaÃØY•I+Ø Í=!W>"uÒð‰Ù×ëñßÄö ,̨¼à¹44‰¯­è7n#É> Â!iEÆÍ pïŽ]ɤ9Ç0®ºÊr•³©IaBg¸´ ¨ò%D"*‘4“RU*€)H€ÐS* QT‚JDÄæcüÀjhANI3²(„PóŸSÊ""* ×ZÇ"å]” „’¥9ÚGVäw"鄌t[N$êpÑÔ60*Š›]m!ƒÉ€äÁ¸p(åÙÀÌò£bp¦Ç#h1÷÷ÛçÅGz¯‚fb|€ï©gÍ¡æ—^ˆ%Ã[Žº\ÊV¸ú‚áÔí;U>îM¥—÷™DH‰j »˜;*"æWb­¦{9$”­¹¨XC":Ø+9Fl— õY§³Û{ÏÈÑ¥…þþ•0‰CH7­C”ýÔù.¸ô~6…B_ežÅs£%ò¯ f¢„P@áœ!¿êk‹g‘ åÂk^U@-²•?quîj3’Z¢Úb‡HÝ5 ¥Bb•AJ¹†LCp®e]Î2Vi¤ÛƒFF‹ÍãÎér¸ͥYA2Óµn]m…±…7÷ÊP4h+!Ԓïԧ;ù¹ïƇu,_Ü!êù rV%a<4Ù6P #rÇ÷?Èý~ÿ~ÖEÕÎe¯à! ±óë]îFÈšõ2< çê(Ln=HKëQ÷~ã‰ãáwë5˜]Š×Ò=Þs3ž drzƒO4ó›ññkÁøÅ7ã¯Ìj@á»(¸x‚ŠÒ$‰Ã±Üá”k3ž9xó磷xr¡Ë#]²‡d›ŠI¨µ›®µ}låu‹”@]²¬Ä  '¢"I²ÀöGÏ[Ýo|Ã[·æ³­éwñé¥n ªwÁõj¿P±â£B=ºUðÜ“|òƒ/ô—Ä1D=åT2ªu<=Yçks~nwºwÓÉòsƒ¸ùêk”†JBƺõ]w’O+[l¾ ~ªn¬BÜn‡) Ï£áž&'½g×Q®3Ç-‘»\!aŒºk³23ÖóuëÍ ÎµºÝÊ9¸³Œœîr`þ+Gq_Od÷ ÏqÔ ÷Ïy ê àñ’G7\æ½!ÆuUø2ÂÌVÆTÓýz×’Ä"»Y«DéåèVI5Hºt©•pÖâ"¯$æîÜ™EÊ…Âå“i± 5êÀ*›í¹ÆU舽»(—^ ñÏ·¿Á¹||¤¥ÎKi5ÌDdŠ,ŠmZ¶ýc¯.Ê.Äà…’0¿>A Öò#¹ÒWæÄ²å¦\¬DJZ©'Ôóˆª$¨Ì¬,M¬öíÆMD³—!D +¹î"‰r)3‘çw風š :ÈiŒ+ÚŽÏ ¸\(wÈò ä<›ºq-.•ZªDuU(âëNx0ÜíÍš±:g”͹—“iÅNƒ=‡‘Š•Q®h­Î ²ím§rlÆu") ‘, T™é1NhÝ™¸¶Ü8ŽªWªe‘R»»ŒlóÃÍu;Ú‰#z¸Ò#çÈb³óˆÊ犔×_[™…„{N„©vTix®L·f¥§o%íŒÃ½s¥‘LæÃèñye&L‘-½9^Øß¶7&jD`50º_fà,h†e X${–ƪ¼°<Œ¼å õ]>3ç3Úß|ԣȊ/¾Øöf£{_SÈt¼žnN³Y[ŽÕwYÎÖF½uèD pH‚E¯¡@g(ះµÉµÍ^w ÔÓ“Õî):žÒg‘¾³Äuñ½}U—˜rö@ueñ'æpõ /̽zÀøŸPqµ)Þ{ó>`ÝuÅÚŽæwŽÒuõƒÕ¸=A’÷†šÇ,+qTà Ä‘V€¥Ádp© 3D(òM€¹¶ŒP@i¡$dåu'©ü^ˆ>|wÕõïÞÞÝgÌr8öÓ¾~ßí`ø”üOÇlõÌv­àïçÖïrCâÔ<Ÿ0yA¸ÊºœšÔ:¾ã_|ëOÒ÷ÜwQõu3Ÿ®ã¯US¤Fiü°½^7ÒÏsCÈWQQ5ü•ÊèæÇß¿ÉõnóµB!þ&~£þN v——•aÒ»oÔ(Ò|Ô<4Õu][ÍuúŽ• ßGÿÏóqùÒ#ñ-þ™üÏ:¡4ÿ{þ3üë4±÷$óÔF?‡|À‹ÚþyθŠïyÜ×fîõ®¿„x3ªç9 øU×§¢)õAIPANà2¥™¢(Š¥i¨")) ( h˜ˆb™ ¢¢¡¢¨ ¦$ªˆ((i¨”¤š¢J¢&†a¢Š¦©‰ *(ˆ€ª¥©Šš ˜") ‰ Ѝ)Zš¢&¨hª(¦’–*© ¢˜©Š¨¤‰ˆ¢š(¢€ˆ(ªhiŠ‚ "¦ˆ¨‰¦*¦bˆ¢ ‰X‰’b&(¨h¦¨(š$Š‚¨(¢†¨¦¢"Š˜"ZF‚’!‰Oï]ó=êxíÜÕnâ F«z–QÙYy<#‡p Ï’,7Õ7Ï$F‹R|+¢¶Vùæ|}R–®z¯#ùO×Î.Œ$ß_Ò7Ôæ¹Þnáz÷1~ýg“}GuŸy¢3ÅsÄAˆ2Æ:Ê©£= UKÄÔb6'¸†¦àl˜ÇDhð£ÔT÷Íl©Ž4ÄÃàåW#99 E¡ü£#<>tÈáyÇ÷t‡‡¿¥ìð9—¹)>D?M¾Ñ\ÔúбÄ;3û¦8*';Ÿ:âògmýÛž‘êî+ëuqQÆî§ÚÍúõ6cˆBó¯ôcÿÃä¿x jΙ¥è3¼¥òSýé¹z€¬'ö¹c–M­ÔðçÏ5©àÔ1jš¥ƒÁü%þɪþw÷´b¸_ÉŸØDæúþ‰Ò[Ôñɉï.ø¾oDJ‘/Ì®/Mg¾—7ýÐïk"´9ìj±Å‹þÆÔ8#¹§ÞmÑ’G[Ë€u+GÜÏvñ'Í'ÂÊ~¦˜!AòbÀó>8¹îÙÙÍYA2ÐÞ0Ë#leáê7m¥}­ÒàŒä+k¸¾aL:X Ÿ3ñˆ<®Ÿ¶£Y]Ï£…¹4¹šµwy‹b¥JZ]Fj6±³'|V³°4/ù›¼c,àœù¿’7\‘‡´ “¯j7N¼ñ׿xv¨k—}8‘+’"”%ÑG›oÖ–2F"¿\À×|iN«Vƒ ‚1ÚÌîMŒ¯Ï¸•L#cÞñëêG[Köùã'™Œü‘ŸKÙ›éøÔ­r§˜óŽxŽ\ã‚›åOÞµ]š1R㥞íÉ«éõ5ž’›Ôõ˜×êÏâäruh{½÷Îññ¼áz|gìÁܧªú„\@ä B- /¹ý!Ô QÚHÃ8ÆÂ9Ô­‘ÖnêrÏ3K¾óŽn(8{ô@䓨Ó#¢ÆNÕœ !_¦(É~, ,/²'Æ7À–Õ‘ÉJ:Ížld‘³åFæàœr}œsæáû?("?#|{ÃÑ•â0‡«UªSÂ×p,ü#çûáÀ:®{s4¾j\ÞM¹…|ÅÚBNsõéýH±ÀŽÌEöøæèr¥5ÓX˜6ù>âY¤•·KŠB¡z…¾=NÄs¦7ÒšRTàÏ'ŽMJ°G©Ä‘Ϥ'yućÁ“ÊßÕHfŒž{÷9 Aký¨`cÆS‹7{'›Ó·Sîû߈ÔDucVÍûcœkj©þš4í- ZvŽ?ƒGó*?PpüZÃü×ò¸þì¬OïP ˆ#ø äóJ9=Òáå™ÇŒó" „N6•+Q¢„苈c’Ȉ߈VõhG\¨&¦ˆÌ¼žˆ½ó± ªÄ ÇL6ážóžnmohñ#žç¬¡Ú“‡‘-- µ¬:;ሦ²q”H:!´aaÙF~înOòª‚ ¥˜ FÜñ$†eR”†ÈíçH×ñgËðŠ"¦3hyu˜ëkz­Àä†dáx–ó®µ#FÆU Œd„YìDE)Iq”5 &ÉGêž²Œ ¢ £ '¥†RâcDœ>–(ƒ.¢ #&5=ëÛ›<ß'Í>!µ”7Q“ƒñÁ‚ˆ“ÏspA"»X²+Ñ—É *é±,x'H3Ùõâo\|÷k\a²2@d‚9(ùèüó7«É4š†í Ù⣌ ‘0™öÅ0+µ“$pQÁ7ŽHgf@‚4p˜Ñâ4шQÔQ„qêÉíçhëó7ŒC ‚šJY•EÍÒD1!EAE,Q%U1^±rR€ª{á‹CEMLAAKøƒ Ša"ˆ¤æDÔTDU1CMUDÄUÅQCTÑ_™ ¢bªšª ª hŠ$)¡£ÞdI1MU̱1RDÑCE4ÒÕEDÔQKTÅo2h ¢H"¨˜&ª¢XЦ&¨)ˆ(¨ˆfŠª(ˆ(JXš(("J„¦¨/Ó ‰’‚’"©¤ª¡¥‰iŠ¥&"j*hi>¬¨ ¢¢&ª*¨)H‰©)iJ ¢¦¦d"˜˜¢"*ª¦Š" ‰„™G$ù½ÝïúpxD_hvC“¦PÎü‘=¡Ä N‘}(<4R9ˆþjÏ®s¡=îæ8ëÎUÎ8!2FäãùÏ¥¾v–FHÙgm Ï #¾Xì–v@d{ tD’F>6G¨ —.Î<ŽÐ ËT@×KEëå!9^5ÚCÛå¢7ÂÀ6†4p6p0Ž:9ª)“šUK­¶T^Í"Vþ&Iœ³‡Ë§ŽÈ¢Ê$⣑†»c>×£YïÔqµ³ŒNÖ,£Šj2‚\86pô‡ ¤fÓBÌm Éå'7ÎgYÁvf¹|X–y¨žÖ;ŸW›Í¯!ÀóS=ó¶ç/’3Ïq€;8qÉ’Áñ­|çQ»vX~‘ø·Îý×;bä#KH‡D``#Œ€ó±«ëßVgQ’wÒÌzÚÎ$ú h2·ÚfÈçrðÈ!mD¬l‡•#] Àß(Ȁųç}@F¥@ l„ï¨âôC‹^Ž É“’äõÛc âK+Ä2|8ŸkÓ[8ÉNNÓˆéÁÀá«'§Zx>ŠÙÏyœ\‚´jU’댾HœÀi„ˆ2p_•#³ž2ÈÁÈ&Û÷™;P&NÎ"O,:Ž rb4¾æTiÜoÊ>%§9̈´¬S× já¦ú™©[:<Ä‹;ºÙnåH–º¾àèÎ#Yþt(†iW zÔîîÆN-¯~@éÆ8à,yÂÇ$ uµïw}ñRDz^ô¼#D,ëb;6kÄM‹Y8ŠC’(ÒXGÉp2‡w=@Y'ͬlŒlôÕým†‚ä#…‡ ©Ü{ydàtG­OS:Ke 8N|[„qê!‘ëߣÔ`ÒÇY·ø"hdù ‘éq)Ñ™æ+ƒÆ”œ!«C%’z<I.ÈÛC0•!„p1¦±‰‡1k†øTÇ 2îb;Ó“ŒNO‡°`실NÂçQOãïLŽ7ÂÆ‰âس<ÎV1’$àJï¸ÀDh´P² ž-ñÚyÈi)@"0ÊŒŸLrF(à@9,ZPš †As#%K“…KD¨ ÌðE›CÙ³¨žD­d²ñÌO‘#šY.:.ÎAÀ}Dn§¿\oïOŽù£)Hácð–:¥ÛƒÀ‰ñ`{â¼[Éã †P$ìóÅ»´0H¢9ͰÎÎ/+'â ɦä†`ŒÌž5T0,ëŒzKóobä°88Åwa¢'㟂BÃKdnÐô@℺:„98-ªí (\™=O‡¤1²Áô³Ò£»@°°xAÙv°…¬bÛ}˜Ì—†%²δ€äào+ k߯/šÇœuበnøKêÏkT{â«ç\\{¸u¯oÜeûn0:•hOÃ,#ó„Iö¾RÁ}ÍÌi|Èÿ¡Çþ¨Ÿíÿþ@ /åÀûç çúÓüâý@ýþ‡ú<€?nu}~ÏÓ¯Ùë¬Û+Üæ?`ryZ~úÈ¢ â—ì=×tjÇïúÖ„çp¿ƒë÷ü÷~gŽ:ñž¿ƒÚÎÕõÞÿ½ŽäAgu§î¾oZ§|÷É%׺󗛎+fhÊøWò·Ý"5ËèzXžc¾Ç]XïªùÔéqÈGÍ©6{©ž}B+'+#Üùø÷Øõßbqª[®Úúò¿œÕ|û‚=ž\Zîg¿/»YLÇ×aà 'ÍkÏZ“s[;~ˆëBtãÚoD^ølå…÷x_ñ¿Àcø½²¥ÿ¥÷øþóÿ/ú¿Š”½|0ÿ4þç÷5ù~Å­eMl’ Äí ’ïnë…ûÎóÇøþõG÷o§O¾_ ºE[~ ùZÃÍpF~Öýj—&µæÝG•èÊÇ-œùÕÀè~õÕ¡9 ŽsQZ•]pN'³N ôWS1g¢88Ǧ¹2qÅ©9,ÈãAB#)«cgžãÜc Ä£¤’A, v®G°ÛÊ+ª—“yD%mü¥Áf’¾–¹Í‹6{«Ç;Tpk¶?Ÿ¨{>ZÆ<¥²<"|XëcnO B&J'Ëxð•ÕÀdzKj#J…ĵ ƒbÊ’ˆ³ªCoKDºö± .¥èÀ> ð¥Ñ uÒÇ^–O=xýd!ßœk*E±Î–,Ž1µÞ›§g¦ƒ0@ÑÈŠ}±½¦)JFùAõŸ[ €’ÀÑí.OÍñ> åó™KÛ¾{æ ÚÊM^opl8㣒6z8DM)#“£5Wœ?¦ù5¥Œcxc‘×Ö{“]aÈ2uz¹ñ/Äu'Õâ@Éôqd#ç>˜ ã<¡žJÀÉÛ@xq~©‰ãÎõ=uÔd´±ÁÂAÉÅ®ÞøÞãFÏe–‚æül=_7ÄvñhÈ}O-Ïã¬ù¹?3³¬¡Ù i"ck£,Ii¦1œYÀg´/'×|>äüÃâ[ç9xõ‚QçÖô×Z?1“ïÆu3æ=¥ïŸf¿:øÑâ|Iþ&Ì_qŒrh€8pgÎ>÷Ksß¿>ª`Ç%gÐ'oÖBÝÏ“œÅEælÇò!t‘ÎôÇ09ò1ñ¼Æ^îGÓž¯Â Öió™çkŠcÂúõ/×Á¨ñg^‘ßÞ}˜÷ ^ ó¥É?‰ßU§ÇjB õñ<õ­9wž÷$y˜á˜>g‘Ë´‡yýxj5Ñä0|;xã]ÑŒåN¡ºYf¢gAªÇ6¯Šp\<ˆú®ÞÞõ}Vïè±É"OÉC4»j{óÈî.£;áÝuÏz©é¹ìT•ïÜHæºÏ©áñ5ÍH}Óõf—n¤'†ÄƦG4ß=åäïfäô@ä¼G,ȸ{Yã—¾Vˆ¨O=vºÌ¥ÝwTmf¸áõ¯®uYü9­qR=x°D¢H•Lv_v‘ጡ®~5álï9auH=yßQß66b༃ˆ¯}(áTBô–ÏLÔ„ ÀÒ‚ø‡G^º5ÌN ˆôV ˜8ŽwQ…˜$ˆ$žÖ4ßq†pODj“¢(¡ˆFËÊ¢Z÷Y|Êôu+woÙ: ‚ [¨4A¬µWN‹09\Ãû™ÏzÌÉ8}¡_ ôƒ²$=œ0IÒ Ò ’ Y!âÜÕF¼ÇÜ~.§y`vùÄÔV°ý9íúÕ+ï™y%X|-÷Ų̂Ž9=ïlémç¿5çºBv Òž¾â«=ïXê½F~õÕÑÞ¼IÄñ=st¡BÜ}ï[ º`y®cÖ£y̶½“·0¨ÏͽÁ÷÷p Ï0µ ³õæg®5¼ÜAÔ-sȧÇ×Gr.îážœ`õÛïš_;®úêûðÎ|ðÁ\ôƒ¼¯}q®î²ä€å 8dp»ó™} Žž5±¢½,!ÐzúÚhvÖ¿ò0øcÀÿlÆ?±Œýyž o¿®½Æ×ÏˉY<}æ§ì¯Ìó—}#tYºî3YçS¤Ž#2Ýo-óÏ3©ÝÆÖõ®$dÕšî#YáDEgñÏ4õ­[2GË;b)ˆC ZEˆ–©]˜/£z?„ô¾ÒJ«A×W“Rµc‰×7aæ×]-úÎæZQŠÝR„Â9+¨o˜wBc‹íÙãz ˜ÈâGWs­wÔ\%®\-Vodg2úïz¾(qǽòjYàêyâžâÍn£¢<¥×5~¢ã]tÖ¹âÖ~·™âÕÓ¾b¶BBG.œ¬¿^o˜ç¹ãµÇ¾WšÞ”g®¦`ú¦uëyŽÈd 6Ÿ­$»¡ý<ãó?¾|Õu¿Öp¢—=Ò‡ÐÆý¨ÑzÜ?Û8WÚa?ß?£ôûþØ??õ ú?Ãù^J¯ãý)™ ô¦ •Íäeßòˆ×óÊ6¡orŽˆÕiÿ&¡žzáG%СÎäGˆ*(Ç|ÀëHE+ÚÆô¡–¬÷zuIëúlU_®3XGD\pÃÍÎs2ëÈúX’ÒöQâÚÈ<zé¸ñ¼¸íñŽ<Žo=TñŸ}§¢g›bˆg5™9Öp²r϶Σ<(E*:/W.N4wsc®÷9Ç+ÍD¤5 Âäx¢¼ÔWI‘Å¡g‡<¿ùüó\gŽøçœUÒßÃu>‚ÁÈ\¼xkî?©š¾XMdãž%wÜi.¯¯3ºŸ|¸¹³yòõ¥ÞÕæ8…+ÜŽ…ÜÖ»ò7¯>*&ç±ï˜¬o)›ŽØd(ï× ‘-¿ÈέúN¹|¥ÛÕAYÛÃ;¤2±Â§wÇ1eesÇŠN–˜ë\uæ^\ï—Ó\—ϳªëŒzYÉxºŽmE[]zo¢îUAñ°б¿FKz1“ŸyŸ„M 2²ðy^ót„cÂëÎê5Z¼ÔWJeT™³­p(ì’;?¨Îó´ÛÛÊë*¦™?oŸ®xùÇtŸZ­WÔ÷Qß j8Œê^2‘í=!ÑYÉŒÍÎ9ÒÁ!%®¨OÞûƒÆu$¶c®ý+Ï×­oÄ,Ѿ½î(讳ٵtw¥Dr|˜Ï3àÚ•(_·}ó²cÖXÚ\KÅ{ÍEêúž(kecŽiŒžH{Z»´9jNˆ™+¢øU<†Î®91P²z6~Ë2B#p8Á¨ä¨dªù„ •_Åõ óÝ󯊾R,¤¾µÜ‚@DÚÂ%JHòzõµ9;Ø>>+¢ˆ ÑgQ³<Ž<1$^Q<³Ž'ËËç¤]æ}!t8P#HsÐHïÇ¿Öf6ÁÏÌÔÒüT\þ;ó?'§‘Ä _¥Â|EtW£é!² È:#êød‹ß‡ÏÍðxó¡Çr,8õÜž«ôõ¾jlðw¥^=r@Yöì…K1íàSLÎçÈWŸkFc¢Øæ•û`IÙ­,QÄ™?Ð~÷éÖWGó"$cƒ’¬±1…£ ŽL«ÜIÈøÐÜŒúat"â>/'§GGˆ@÷€?29({”ÜÚÈ@Üy€|Êäjiùù…CÄ n^ÐR‡ˆWÔªz€¥MÂ=B&B ½üá»–ºÃ¯X}œz0á£yúÜizî’ni½.=U˜é¢Õ‘d‘¯Jâß¾cPˆ¾³Ôožúêyà®äÎHdbÌ>óÅbŒ»35€Æá±fH6ï¬æW$bÎeQóÝ=ipp$o3´½Ú˜G®øõ3áIxƹñUì‰õP2sRÂ"»J’â[}õßc¯Qä ‘ºÖã]ÓûY#$Iv¹Zï™‘Í ø13nûõçÎi#À-òµ2Ç3Ÿžýnò¹µ¸Ägyqë×;-ʨ֢ìÉx9KP¸étwhMŸU|W&¶:×£W$µÚ},_ktR!÷–8<>Q1?*©À4‡:Ëç„9Ü8õ›Ýêc=æ9ë’ý°·<ÀpãÇÑ\mzµ'ÎÍæ=wNH­<ð&Vœný¸â7±¤‚äK‰Që¼H¿ vìÇdo[æ+HàÊÆˆñÞêa6}0&h¦(>󮪋œÀ{ó¾c ©9_'©õH¿{ÏZ¸ÆOp2À號K'¿KÇœIÄ|õýª9~Ÿ4«¯/ÒÂGÞ߯}UÌöác’‡Ýv\Ï-"!‹ßãþ»ó›"Îwôƾ½ó©äuÈÆõ?ÃØÀgL¤oóçõûäû?ƒD} }gëïôŸÙ<š'˜Û|¡mƒ«<Å`êÔœ—R¹#eìØz„H9üÛ!%Ò ÚÃ'žˆ+·7ªŠ0°VWÏZt'Ì}~ÿüwÅ»ëÖÑ7½bxùÇîa³¯Æ“•!©NÜÀó'x~d-âuÙz„8ñŒ2vEgóŸDò±ÞCñ‚‘áÄ|âƒqëâÄ‘‡(pQÀ£ûËú@-kœÄ€HÁ‚ËçF`(vÀ$‘=æFȺ:íñ.ϯ­ÓÕqœðµ]{‡o…ŸIõÞùìuûÝò¼ó¥åW†M÷c¯R÷®ÝÈã^mMæ$òKÖ¤ù?w´YWDß9óS·uKåÝW¿\Zõ·×¯•:óA{GŽfÏÖ³Y«ãÅ­žIcæüŸŸBýóBŽG®}ww(üÈ!óJŸr~%¥’ ú‘O˜êUñ'Ä‚¦äGâõ à9 ¯™W Q)PÉq”ǯ¥"Bà½òž3CQæV9‰³3ÒÊòqÜ|¥|Šù×½ÛvHù•ÛY’¸F2xsê¦G8|¯$ïŒÎ9¥G1°V̨“ÜÃãPÄVØ L¡áÇ–€ëE^s§™øÞ=d#ÔX£;Y`.ˆ¢ÍSn[9ã-;—îþªea@ +¸;CáT ‚‘¢8æ*§Xï÷ñ"}G®ú¬pYp}@Õ¨±QRýfñUR¿•ŸËÖcGžûÝP<¬]^£~Ì}¯?ŒÀ9”Î,ˆ8 à¥KèF<á,ävžQ›ú¹ÏÅ'tF*¸õé`,®)οëS²Ï8„H¿'ååýú^ünž}h§’ÁôsÔÜ G-§ãÅLùõ6dâ·ŠóŽ#‘­ÜÛb¹H‰âw8õ”*å¾|žD4½$E b" ú/²µõîäBA‘í÷2C–Ð ƒè_iâŠúBHðÃC%B€•¹å¯rÈ3( 4IǤ0eòï+OÇ[ßQ˜BmPh##edŠ#܈ Wˆ ´¢…#Œ#€Ž0ZK›]£È² Ã&Œp evìŠ/c’ë†N´sR'ÔÀÏÉf!¶V=`ÙùXàãddâA<rdMz˓ǽn³×hÈók=¾c#È\±Ü7 ó8Ž)1×ÓÀwZ„W16g'êö«êÄ+r€AüsÝǯ4>gZ™àŒ÷|zòñ5ÓØ$zñ¼z6Ö“õëŒsùS‰‰1ÓÖÉŽ-ëüËÅZëY=/Ó¬Sʲ×fz“¨ö—¾[ÉÅ4ÒãÊtBÁÁ®½/«¼z€Ùƒmp@ì¸\Ý8(Ùè‰"4|=B®ÞcDDHk.Ñä°@ÑX“€²™ïh/1ó^~=|lO<²D>#PùÌ¡Ï×>n¥;„äùÄäQNæ²NGyçwäþãt.ù_›¤÷£ñ֣Ͽ8äDœF®£P) ,ŒD€9Ö•÷nØyƒ¼h;_­¸u9'»¼r±‹¬= Ç'j1ìê.¡VæGiqhûC–‰ ŽPáÍõšÝq÷ fy;tøsÇéBÙûˆÜnʞשžšªÑÈ@SÃy­p«! œw¬Ï°Œm½zá1Q <-œ+;;ajë5Ïèëël}å÷% xùºˆæ–ÎHF¦XÐc«ÙÝë+ìú0)B\:Ü}oyÐ¥&ù¨Ä™é+ˆTÐÉd)k†$¯¨}ÇÄâwÏzTto,6«7ÍD‚#9¤q²õuަâ&H›#ƒwA¬óQ]¼2 f‡äô¡Ë²Àá³O²"3;ìöqÃD‚Jª¢ª(˜¯ÒŠ¢ˆÝ•£*(«…Sõ2 ª""¾‰\ Š™rµ ¼Ùß¾ UË•G(þþ·ÊR‚4âýŒª((¢Ô44PDUP^{a¨ˆ¦¨æáA_8aUUQ3Š ¢ˆœ°J5H”\åTD\¹€S#D‹œ9ÉS•Ur®?6QÎ9$A\ˆ‚™DE_ÅD¨å'Ø%G«?¢}{)‘7BþTŽUMM3ÔULDv±‚c’«”zÝÒŠ*ƒM"¨¦t–UUU“ö§dS'4å UȬMD}XÔEE14D”ª åUAyĪ»)ZJ%f&))šŠ(ªÈɪ¦**(&‚ŠZiª&š`¡)råË$ª**ŠªåQ©ÎrQ.¢¢‹žŒB"¢=EX\ˆ¨"Š¢ª¢.U(†‚"˜¢s ójhªheëhh‰Å´éEkC—T?^éÒ²™Q©UÕ&f1DDÍ1ÔÄJdêT\;(ˆŠäwD ª‰D‰”Qrª|ûÁÊŠeQXªHš«–M W ÎC¨ÑR¢ª#•r'êe~·™fU’’Šiš¢rÀŒƒ&d¦®p¢8QDE«I¬£… ‘DTsAI‚µ¤²³.páZ„¡‚UTU\"*‹…\(ˆŠ …áIP„UÓ¥\-Frª4NráI³”P­3;+‘AÈ‚-5ZG(».QX¡QtÈ¡'áÜ'V*!²ap¸YÚˆJ'(ˆ-CK «¨³6 eE’SôHG­¤Er""ŽL‰P"N‘UUQÂåfPGóyé—+S‰¦V¡©rÖmiTTEG*‚L¨Šª¸Zß>{¼´²BšMˆŠKY86õAM2A'ÑXý?÷¿‡ä2(Ò›CÏŸ® },Ã?´€&¨j›ð¨› ¹&Ð~5 #™¡Ôµ‡ßpë(Þãø|ü#øÜÕÿLëôþ_ÔþqÅÖ?yT:”Y¨ê¹Ê=edA®æmé@{„·SÔ¡"'XÑ£UüôóL¨ãÉÌŽy°ã®ûÏ$\KgŽÏq}Î$Ž«¯‰YÚ1‹´ Œ¤¼3•‘Ägæï9®#Üê…ˆTQ$“a+[-­±.¸©/QµCÕzã#ŽùØîÅÀâñ”ÞϨp»ÞÉíI¯Ýz¾ªäA[÷棃Ä|óç!G~7¾ùCËA¾wß[¾<ð20y_9¡ÎC7:ægh ‡—8»>ºÕôMÕ¼wU׸n°—Ó\º£`œ¸ñ#}¯d=Ÿvïruª5ý☨`‰iäçÍ?XžÐFø'”;ž¸çVxî~¥ß‚OÈ]@DÐßµ3$dnQÆyªB¨Ì¸3ñ/\ÔÔü»¤è¿}põòÆâv¢pR™¨ùÅ P’fuÔ‚!J¸‹pøÒêíñ¨ó>à—ŽžŸÂþ ƒ×¯'X1–€uïÎ…NÂõíÆ:›xùÄ™Ö:5éh¥>FÑøÒÞ^ŒïžT $³çZ­ß¿˜³ÀÓK”º;Ö¾þg:úŽ„ØÚH/¼²àë¿qžy¿U§•ŸܧÏ×/‡1ÑC¯>[ xàA":ûõ¹’&Âåïê91Ã4ò¾’Ô_»…¿¸öó\ÄèÄ'=)€®c'3k^{Ùë:ç\t–~º¡ÏsÌO€Zô¨8üD‚AÃ>S1øõðDOCŽ&-…*¯wÎÐVÞÏúÞ¹ÈÛØûËÜœ¡ö1é¿=zª4=k§ÇLOIa1 /Á\‘Ldä¹Ë—>иF—}x÷ ›Z]‘ö\ ¨ëzõë8£–úùo~½uzî{ñóÍW—½(ÜsDïq¢uJ#ñ û¥¹Øú]žLÏ\À+·u¡á Žr¶7¾¯,W=1˜žºÍkwW“ï;Ö²J£]ÜðºjÛáäu®÷Å®øî¸æ—ÔêiR¸LšVœ\ù<¾ã» ‰ŽW¢<°íú¦ß]Fóáæ‡ œ3Ïiǽ®½!T5ÂŽ3B»g]dœPåjõœ×yïKƒ—:ÏŠ ®uÇ©CÙaœ£ÆÕG¿B„ñ6~nF¼_‡Æ¨g­·güyîžqkÏocˆ°Xüúúõ¿•'¢#bs[g¬¬uÖu´wJC#Œ»Keø,K R¤>Ý>YÀm Ã[Iu1²'¢ˆqÞnÔ5“õqïóÎøáO<;n¿Š)G!…̸8Œ¯»ª.‹ÄbÔ¨Ãâ‘ê¤2e ðö¢/…\äh’<º¸ÉÑú¨0 ÷ÇG2«Ô¾n{QÑàèpQhBž2ƒ?uÍäyÒ‚p,Ͼw×!fÆ$˜ÂöG@ìO&ª‘õÏo4G‰?Ÿèò‘¯\ô'“¿ºúã$hðq—®¹×Jnú?|ï6¾.£s[r´ [¯º‹C?‰ŽÛ ¹+Kžk&Žûñ@£=ù:”ƒ‘ät‹½­PçyŸœª¡÷_•ÉÑr»j’2P=,y™gµ¨T3Ìï‰õZ-ž‡ãÎ%úâ`wÆÀ{9#£èènï©+=💆¡0Û Œ¾oÁ9Bؾ™L.8XÞÙmtÌpQÏH>¥©ë]×wSÓìúáÍKÆÏ¯!™«cÙp:îß²Hçˆ÷)ÚíF¦5Õ3yÚç×ß\ýZ׺©–{ã¹'ÉAž»ÜyU©U×ÌóUg ÙÛž8ž–WGU¡=º Ó×P.1jœ±ÚÇzÏYR:Œ‹"kï%ž5¯rªÛ"ö‡šØxĘ"£;âe(ò|z‰˜Y½ã’dâ¯Ä <¬,å?D.—{Y®,Æ2à Y;9"§.? É8$†Ëñî'wTg™¹:per`Ø\}ÔÄ©÷‘¸ Î;bÏͧ Ë2Iæú纜šqãîz®dEéȪn «Îb(*í­fu—ŠÏ•™“ÛáÔë‹õ:­Ç0GP°«ß©˜í¬9}“læêX!uRÁsS¢A>³vðV²½ÇIµ5³ÏmŽúÖà®rÖ¾Rw/ïâÞï1²*|íAö'>N§ÖH‰ªPK¤èK…ž~\;èæŠê¡wX=uyÇ{{ÎLBðï\ëbÁó‚W/:é¶g¢8yÙæuH*ƒ5 êœq¡Žbh‚Ï„NÍw#š›ÅgΟ>OLË}×¢E|°ò«Elü¹‰~××qt¾³×=Þn‡åO±Ô±0•ó7«ó3©Ÿˆ8™T§0¢â*/v eúÐ8™Ç7¦„K–­|±‘@«É~‚GËØõ7¿]Ã#×Y¸ïë×]E˜_Wç¹uÔG¿5—Wb9(神†‡f²†ßeDIÔÃ9][qÛÌ ’°™é²·mD0Ì!¸Mg§&ìo¥£¯³ç›3ؘ…áÃ#QÄß+Œ¯>zçÔÆzP÷›C®/Í ×F½ñ÷¯DÕ\×Ýê±*º©‘^ÊõédÚÔ8úÔóèØú=5¡“‡Žâ|˜Œ±ß«õ£Þ}FµàB³^¾ð’±âöê²ä³áÅ­ªÎyï?ç?oýׯù,Ðr.Võæq:f9¥è3U9?¥¢Ô5m.œ¬`Àc/Ñ ”ŸÐˆ¡YG$Héÿýµ&qˆ\@Xø?ÀÕÈg­<™çµy”2–4‡' .ŽZ çPñ“Š aózµyìÅÜÐ÷M !MÖ~$5 rTqƒ|¶Iô@ÙÜâà3 $‚qrê争ªŠ^³"<æKËYãQCåDBW0ʼnÆ0Ë B¢ŽÈm^{'mæ£Ï¼ïØÐvNK– 2¯Œ¹ˆxëÝæZ÷¬ZøôhxTñ­`RŸ¼p0x‘Ç‘·>O«²$(‚%Ó²#÷•ŽŒÎ┈8à¦Ç„ &:AN³ã5ª¼ëVhÈï¿­ ä”䛿%%Yãß9°:-N¥˜ ¯]ó½Ôð’‰ðœ4SˆH« 3ž^îDõó\{Ðd ;Ô™ÓÖt„ëÓ‹ËÙ#„‚ŽQ#Ó‹B-#üŽ|U%a‹'¯+Ȧ1¸ÉÀ¢0¤;«u×½¾±£®`í?õnyÍ¢|Y?^-v€·Í<“$ò@çÞ£wc‹<5Îp–èÞf0 §NÎI³€¹NÂ'$Í’ð‰@‹bíkg$iW²`ñõU‘Xõ·ˆxÂhÉDdìâaH*™ÌP®Ë…G Šª'éú\zÊ–ò,q>Þ ²6L"G½ DïïíÈÎ}ñÃÀ04~%ìŒ ÉBîµë¶ìÁÆ ŒdÔšõ‡hüÛ—´§ˆý }ž|àú÷‹âóÔ¦ JGÄùËçCÞ:øÏ˜}ȵˆuçÄ I¹z•¡ G»´å!Š8“€8 h ŽæÄx¢ªý¢æDDÜ™~SÁ¡S”xC.<ïÓ“„«5¨×ØØëµçgÝz•#×Cz÷V"q ãÌÁ&½ò¬  È½R$»W™ Ž` dPæÙhe®{ÔÙ\ëƒÇs5ÅùÞ…g¸|A&©YB~ ¯»Œž‰ð¨«ƒÞù‹¬LË{B·õê9¯›áüÉñC‘)¹ùs'uêƸ¨©E‡>Ts†Ù<ï®"®‘˜ kªõu®ÑãÒç&óÌýOªÎ£¿©æ.º™ë{ƒònªòQà£.¯šèävOÂ(ˆ“ŽZŽ÷˜&íÖr'àžÅõÖ¡s;]ˆá“ßdàÑ_eŒú\ n_KÓÏuÄ"8´w¯ÕÄúäÁ2,¡¤Oî$MK›ªºR§cÎ@]Ëôt~“áëÄ ù¦dÀxÉX=ÝEJ$ð¹ˆ0a†›y›>ë—dz­×2õëÔ­‘V$Ÿ#ÙëisjxÑùs²#¹‘g‘\ €Y9ëï—W{N2š——ò8ßoCžó¸Óß×Z9‰à{§uœäúîoµlÒÁ÷Uáà‡m6qÁ˜X&Á‚Ò^$D¦Iž£Ñíáq¤ºo·§$M‚pa "OCƒÑÑêUG|DuXß(çZZR«­Uéõ¥Åg9ê >ãSå$rõÜ ™æ´õ8¦³Õ3t™kNµ—4âQûâê¯:Ž"N¹È~ªH6£¤Ï„N,_(8ÅqŒHé8ŠqE¾xWÚ^y½•‹8èâA>i‹1ÕñÕÚ†üŒGšYã® sÂÕ!ÙÆÁ)²F ÇÊ%ª9Œà‘¢hU8SÄrDAL°Éà=|žËšÝ¹žhÇ<®ö_ ŽÈ“[¨ˆñaŸ^¡À² ŽHèü>wæ÷ßUÉÅ-»#‚iÏSÎ`Dw7¿K¦šT_u=qи&~«ñVƒ=zã ^y¬”Ï­J­˜»ùÀ“Žh¡£p#ˆÎ»ŒŒ©¯F ŽÈ’ÒñÏœn¬Œ®¯Šãc`ß—¼o†è× ãJXD ÚøFƒ¨CDY0eàžÏmIÀ’xB ,ÂP»#Yî㯘e6u(W´È¡Mñ`H„ÞÀ<H‚9<’Yë—B8ˆnH@ÊšÀ'²¶¶w®(@Ç|,2v¦£ äÙÌHÁ”uȉ”I "0zBËûD„qÙF A+@-(8`Œëピˆ‚*®fóç5ÕÖöoxÔPÓQõ£½ºf+y“ëzÔyǼ蟘˶kNH{è3ÄQÚC~±¥ê:€ä‡i™~¥|Áæ¡íæhO™Pø…}°ÈÔ¤ëf?x”ŠÄ:@ºCsͽñðDíçÃÆà"vh°x8XâˆÀöq$AM&|^Á³ˆ'ã¦F¢O>¶xfœÚ­j¾wo¥§¯&s§G?*Žù¼×»¯Z«Ð(¾TA]}{³×·|÷²Ä‡Î<Ò÷ÛÜìÒÎ]l¾8ÉÖJå}žU½®yi B*EDt¶ñÈâ°‡KG0•1zŽ U-:î}c1"ý! sxàðBQæø÷{´ƒê™ê¡˜ÜŒK¦DžË?7ïc£;ÈÐ$c‚08é 8ÉÆ¤±½UÀú Q8ÑÉ³ŽŽ2v^õ˜ÄÚ²%;½I~.IòIæñ9/˜7}ÃëÞ ñ˜©Pú›ï2ïÄÛZ_›(x@ñ,ÑŽÆ-g>¸a“îëP%¹l»*dd –@E ‚îQ€>5¬‹f é,YÇ£Žáø4_kçíc³{CÝ +ã17&­^擨3Æ'/Ò:ù5£¼¯SF¯pjVµÁ?u~~þ´‡ Ô}úòir,Ãõ”¹çOh§ñzŒ Ëóã‰óæ.ÜÇ32o¥_¨NÑø»Ê„¹ïO“‰7?;ÃâÉ>/kó‡¯Î êÍõªu˜‡iêê<|àVºÃ¼š“!ç}hƒæ ɘ~u…®ú5‡%L…}wÁMBú‚Ì@=ßž{ÎÜòs·‹Ï×"õàùŸˆ;ÎKŸŒqñn´Ž£PêÝ»éÜ”ää<®Ø}Gç× ÷'ŸŒyIîù—‘ñžk ÷¤;þ½Ï¨¿µû5æwÑÚósÈ{‘=‘ÚäºúÁø:îwÒö€;ß–J'éŸ×.¾?]î'´Î=·†IÀœAžD}Âqј#¢É%‚A·Fô¹ú‡Háì²LR(ú<`°N¢\Nàpa8éõ4&XàŽ'<Ð „²D˜ï¨Ô‹å!'¶<±† =é 4e¢AähˆïQJIA&zævDŒœ2;åI2Q¥;`ey²X‚«3¾²màär;4$ŽAà¸]Sfql‘‚@$p(‚ï1_v&zÍE5wÏa]GaoÁË^9žl¢ ))÷e¬, 9ƒ“yÃ*D‚”H %.c(pC í'Ä('µ Äa~ÈG1…(D2;4YÒ]Âfí8UDE3(?foFUõßZš¾îÂ÷tã(/¸`X„É8#–„‘N9´~½¸+²žf{² ǽ`}ÈeõeCñ&T_X+DURµâ¯Æ±O™:Ô~™‚5CœÅ5%1DÌÌÐ¥% P´&¹ÑÛ ¼•ï ¦B -ÈõøÐ|÷èÐ= JT¡·Š…>å;J©È ó"¾¥Ô®rüó<þÏ[;›ƒdGä@¾³t'±'†'Ó]¨ÙX'PÊ\#zû÷·ÔïÅ•÷èÍyÌ(*™¢¹dùóÛѬ¥Ô\Eþ+u¿e1kD0Éà‚ 7¸Èª¼æ>k>|øáÚvs½ª(ÝžyïW›­=³«®°ïj Цüæç ï˜Va›ñ÷¤îo•+JPƒCñB%ÐÒ@ݳ Bš¤ ª¤¦•ªTJÐ!’ RHH…(44¯‰WpnÜú@¹yAóüH»”¹ŠHö„JC hBJi~g!kµ×?>>ºíÙ««‡kñ¤9̵õ®£U]`"ҽ삊¦—ĘT -%!BP½¤2¤)ÈîvqÜ´¢P%#@™ 4PѼĤ)R¡Z¥(P=H£’ƒBR?ÅÑ E2!I@ŽåŠ’’…)„"”¡)ê,À¡§´™ #**B„ª¢ó†KMÖ8M%!HQ”RRÄ,24=@ƒ«H²r~c— W´(|Â(üÇ]uøÏžý)æJ·™)ïW×~ûí7K¹Ëô³—F %ßÏs$’ 0A5 È>1{Èr ·¼À¢ŠCqU%çr}H¹4}Jä]î¤u õ&[~'Q#Kä€0Ž=ÍúS}Ï^iÂ7*O#aéñ7ñdOò9"é\ñQÂuôþT÷€ð€=ÐXÀñÏ$úËãžsÌÔâAÊDßpÇUÌUÃ^²ÔúóbD‘HêÈè÷ï®2Ì<\¡DA&—^CçnÎ>hÉVok@cEs ÆñÔbËŒ÷ß´œ"©¯dž-UÞrîk±|o¾¶=®#åàà^—¾ã€ppFR<+!þ/ÌNôJŸº’µúûïP\®O1 ëJ8¤-ôÎøõ›«,œœYÃ~žméuœ‘Ù²ÑC^0É €1¤5ÂòP²8ÈP­ÂÈ&wlqIð²H#ã‹Çlú ÜwÌJñ˜ÑóŽ n7j(¤J0ä”Ä AJ‘$>'Tk7ññÛ¤Fšh 2)µó ñlšRøñ£pŽå2¹ TÞc,œ‚Šw™J]~u×l;GPPQTPyŒ&™¼ÎEFa€áôC犋“Ì.kë»Ô+ò.ýÛsæU}tù÷B8PŸÁ[ã¿?×õ}L’å÷×{5àŸz2;ùfpÎd’9I”8;# £'ÐÉoùŸyœÌÆ®_Sæ_wžˆ7û?["¢‚˜©Î°ÈSyŸÎŒäçlpªº3Ìhñ%eDT³ß:œÎ8œu¸ŸÆOÛ~ïxé‰uˆœC‚kV¡1'™ €J=èÖ³¡•ó…ðŠí`QÆ»]œ¿im`¦D!¥) p @ >’ÉÆHŸTÀ£Æ¬Ì Ê®ê£Þ>Eu¿/€Ã=éý¨­;³z¬G ü‹ÌáñôÇûäoÅ5ë˜<˜À³SÇÙ ˆù(Ñ+%ñ¤;Ÿç†4åk·D.7“5ÞøxdeÂA®­ó9œ´z$]¶,UÜçµõcÓ\ê—ââEóž£W¬æÊÏo=åsFã‡ÃþÜÇ6¦÷#בŧ-W6^dN0Zò±ŒhŒ Êíb8ƒ7U#Òà‰9Ì38&HÆ oºŸKÎ#ÞuÄ õ"ÎÎ$\}@‘×µ‹${HƒèâaF–ü½@_¢<¸øqÁÝ%. e…£îqÇÉ»“ña;ò¢‹õóœâI!è4IÝiÁgåÀd‰®³;>5)Ê ¼û˜gƽD/o²EG³ p¶A#—DI?7ܶœ~åø‘¡ß>tù‡'%_y‚”~ßçïþ$O<ÕÖþ|k]ˆ²02qôrq²ÿ›„þºãS˜3oÇŸáþ‡üÿÏÀÀQ4ð @D6˜DE…ìL¼:Z'þÝüïè× ?ÃYµ¤$Uoö‡3’RØQ(bëYÎÌ™ÊQÊ$OYg¡µÌ—ÌPkUãÂ2kÖµbyÊQ*Ñi(m¥2¦5®ÛbcCq1EÛ±ŒS*A}½ï[ÐÖxñÄ8$ă§½ë°¸S(¸$\¢žtut'0Ò:Lwu"ÙTÇŒßYú®U&¾v>¡'¨Ýë~BxíÒÓ—æcsHt’“¹·§—ºûdô yS99Cš´º”ç )•r'ßG8÷1wqš Å“*y4ý{ ÞD­”äWnVôö%WÞÚgÐyÓXKQl¶µWmi…KbyГg¤’rHpp/r±$+DQ;c)£}ŸÕå÷O¾=>çÞ`m5©”Ñˢ͙úϽnJ6¢¢h^„Ún¦q9ù1©e³« ²Â¬h‘#§.)š¡æƆ2ƪ|Üd²Ö6"VŠÁõA˜ŠB‚†‹Zv¾õá«ÅógÆ¢ ›/Zb“Û©D´‘Š\6ØwÈgŸTTøü½©‰Y“Ö–ûnÔÑ„#S:’• Yì·m³Úb1 î‘›jg&ÒmUÖ2YQ‘¹3ªÖšÏÞ÷†ö¶tŠÇ›±ž¤uK©h]ÆmY꘬;{^Og:–Ó[0)°ÅÕB[jXÎGCt‹ÔßkŸy#&œÚ·Þ_k¯e‹ :ƹ²ÚÓˆ¶Øy¬;[jyÑ—Ñ;Ù2ÓÛ‘Ês qõ'“ï»·‡â@“?c/Úòr i<®žË¡rÄò5džáO&vø˜ó—.ø™£Ý;=iä—ä“ o7jä·)¹V¤ÔC’PZÀêÔ-1\ÀwiÙZç&“O½ñß·]ñÁ<ù<œçäoŽäÇ;nM²…âÊoì.PPÇËçìI>T•ä½o;”@o;s¶ï^o=½¬ð½ÙãÏÚàòœ4ü¶Òce] œBg³ÝbÊWXÈf$ p—FÄjÉl9AKÔ[*-¥†¸Ù±ƒl×íó‰=oßjGµ] ÀÍub›;+æÒ-'9î¯8Ò/;sE°.‡s7S;í¹Êä4“°Í$l¶Uâbi0^Ы sã½à}Ïnyz{34Q%—G{`Ø2ÝÁÖS±@°ÙvDJQrý?Šd~ÿÐg÷ÜÈJcKxIk¦A,r!Ÿ{=ž£m¿Ž,4óí`š—E˜I'ϽUÍqë: yaÛf¥m–Ï =·[š#[Œ£D(·Šp×™Yí!¹ÎmÈÊ/M@ñL]p•$P5I¨Ôd1 ^BJájÍ GÑ<èõyHE=®É#¢“Þ<úïrv*¥Â8dhA$Ç$éÇ8„7åÅä-çfgÃ5¥¡l>÷!ÚÑëUzœ(}Þ7ÊùÊz¦£±¥Ì¬N‘Hxœ†L–#çÞ!+ÆyW¾£ÖÀè?’ì‡É‘„çyÚMôCÝÉ&ùëo%^sÖÒód­wqž²‹†±õóáÞ¨y$™2Hq[9phµ±j1Dç³Ó=<â4´¿F4Kä´aÒ°…A+9!lNÚœ—ãï!¼àçw“o;IÊî¬s—eç˜\U·&.ƒrí¹Æ\f»ˆÜ†\H§8Rt†ÊñîÇÇÉñø—R`:Œ(dìœag‰òq“Äù»SóµŒo¶î€zÌ×Ô&ò¤ âð ¢Ísî‘®…Ù 8lšÁ$7ŒÃgñ¹ýÃÓ&¶Ä*1¹F“XB›VS „Û0„5ZFX%¥9«/+Õµp’"À°¾×’i½€É2QTÐQHd•AAE U"ÓBÒÐRRÄP4U$Å1U´U1%-"Õ AA@RÒS0UMD%D@´Õ+BD´%,EU@RÐP%5T´4 T•MEDEEHÒÕD4M$TÕ4”ÓHSJ•HQE4ÓJ…ÑKUE%#DMPPQBPRÓEÔÈÑTÑLÃE$DCCRÕTSM!EÅU4”ƒA@D#@PÕ IT1-R”•TÑBÐÐSBÑI1PPÕ2ÒPÐRšj3 üþÎú ?>z@L »áš+"-b×*1¥M*¬~çÎOåñìßWׂTXL^T«`$©D¬x"IÍX¤­¹ágs ´ç0ÇòSB_+}ee#(š[–a’˜„®†`PÍf YÑ’¬aeŠ[²Û©Yd§Oâ¹ im_nu]’»›ÐÖðvë½ -Ä YdbÁ(X‘"A—Ž#_d6ˆã6líuh÷£ÅèHÂmŸÖ´,žšlŠÙ1ƒå—I›.ÆÑµ2:®xŽÆ»” ðo ½Hx î\I8U2ï!ÉïXÐéˉܞLyÙAvSɬ´˜$ 7“N<†Mêöçe\ñÐÉÒmtöѵÏW·“Pµ$ŒÞ²¶ºÄ/•°/-meÙL1C·^óÅ…Äa†KZR]lËrÚžrÝŠ6«rï×¶C&ëžbç¶)ª¬mÂ&‰EÏ:pþ6„õ’s®„Ó³ÚÝB¶ð[ZÆ$*M›+ C€Ð*؉R•Ej0N: SɹÆó‰Ë…Ý@«Ô/ÄÅÖ UÊ|ge1È ;Ãq¢h J䜒ƒw ÕH9ãU% ÈæZjŽ@Ñ•“.œ||ì*›“^·‘py $!;yÆç ± NSntá@‘E ¸ êÀ¦>8òbwÇ¢P%(5;·(n… 2B@ž~¯½½{BÝS;?^EÞ*/µàsÞ#ÕƒmV£, ÂFÚQÂðú´Þ-­õá17“r#ŠC´º°²•½)<©ªR©Uòxñ^»;ZÀÄ2;YÖ-ͨmÖfÖ´38Å­.Øm÷·' <›£Õ›£Úsµ[´j¢ý;Éí†jl˜­ Ùj£­ò:õÄ×´ˆ†ËƒiØÛ”¹ë¢À ¡q8ØÜí'Òe; g‰³ØÅ9âÙEöÂãR2¤m Q¥h²ÖK¬tÂqØf ùo¦²ÊþhÍ÷–fÚKµ‡4žõ3Ï!у š!QÈÔ¥”}±·0J¨ÞiZ¥8Œ¼’²¥XG9d±l¨°n¨™³;Ú’äÝŠÍshÍÑ6%ÚÈ+ÈÄ–\_eŒ>/ ™Am€5Âinoe›Q¥ KH,ª­­Œ6¬²†„—…Z-°´’³-—vW+D®†¦\$&wkÖ³€X?Wµ¹[Z74ÕK6Œ¢Öq¶frëõïo ‡g pŠâ5¦¬îÙ—8w,ÕIs˜Gau; éÛ±°Í±ºAHÚÍ@†{G½§µN¢znšHeEã;%­1‘ˆD7m˜¥)HØK²èÐ:+CWCXKSEvÛ3Yœ+çÙE©5ˆy–Ljgëužm98*j*Sh«Pµ£ŸÍ»µ›K)[ÁðãKÃ|'X°½Y®™0kx&b…!`ŵ#Shé›6ÁLË F^¶)`ñïT;Ñõ1M?5ÕV9 –†éPs*¦¤Â"hh¶JѲîÎ{”†ÀºaÇ?krÞQç=êËèþ³Gâ÷WÚãªo«»^ [Ù-e½YQ²ZÀö]er*=:S&Ø´ôÜì}_{Œêm¹y”„FÏm¢Í?c&BÍéL²hɤ§#PÒÖ¥§¼IËÆõÎŒ™ÑÆ(·å<|‡“r)&Qt‚t ·½ÇºÆzo®$3ÞåÃ7:6‚ôv1" /Bú5gЏ›R.pûmîEìWØÈÓ®^åÎÍÃ|ÃçÚ¡ÉóÄöVOk8NÔ²c¹¥î@éDKúnÖxäy&té\U…_#’©yîžдL¸ê{Ø;Ľñzd–ð«5SÙíF´Ö0Km®TÙˆGf,š{\ÆÈêŒ/›Ã{ÐOeð#çv7‰¼zzÝWÄÄ5Å”|íKgLkXÅv‘ÕQ|‘ï“m6è\ÜüÍâ÷­Xk3~·ÇÜޯƃ3Ya,µB¾ºCžeK=°Á#¥§×ÛƒyQdi(Î’nÖŸ¨3mïN{Âáðf+rK³=©rhz´E£Kñô‘å©v³†Êñ#É­Ó¯3q¡TÅØ([\bR„Ó-ï>u@˜cjåÙ(¡ŒfÉj*¨”Ñ|à÷¾ÞìޢƓe1k;-;Ï™õ yÓ&ÙREÆR+¶Z4I¶É~tÚYêà°2qaeë Ø«-hó+oLÝ,!MUÔ—$-ÒÕ»;(…´­ŠR1È`޵´”oU ±ëÌ€]±¥™§.iš,n³Y.©RÕ‚Ke# E-Ü­#;Ftùµ<"ø®M‰2صΌns¦„ö/SR²Œ^HÓŠÀ*( ó6͈[hjŒ.¶èÆM˜ÚÖÛÞÞª•ö©ÊZ")-#ñ_ˆú™Šk¯IzÙÐñä/+óÆßcMºY„¶ÚY 4ä°ˆã]DÉYß½;·¢B¾ÆAMúŒœa ^G¸üzxÏ(aîÎO7½bÛQZË£m ™š…Y…vvÕ71{ÑæöÐõ {Ïjö²:“1Òf¤$ºó[FÞªóN ù¤Ú“æPÉt„¼Âí~vô?š_¾—¾ÄãIŒcb<žçÇÇžmÙ‹'Å ŠÆÎ7½‡’Å¢¤lÆ#Ñ{’<×Q¢6†6zôÖÆÁ±\Ú ¸'ƒ¡­Ú8>󟿺úñû»™û("¾#éÙx_ÐïóXäÞóù\q ’F'…‡p¼¦LùúCñæ}kÝnfû é.9ëÜ­Oô¾kžu[…!÷©t…òñÉø˜=;žÕÄYô ÖzŽ;Ón÷6hz¤Ì*‰d£Ò@›ô«µ¾-öB óO›òây5Ì !²×̉á=ñ×g¿ ‘ÒQ‰œsÝ6wsÒçš|w1©ÛËDp—+—ç^Lu¤,Ý•ˆÕmìȳÓê:¾&òWzÓÀ—¸¥%—%~$¬wÊΉQêFÜM­Ô œò•©ÌØ1”.”zóëÔQèè† HT¯l IÀŒ¨#¢ˆŒëuì䊴¤ vª0$ŽâPÄ„W)l¦†:8A$G£Ã(#ι˜Ñ žš’îiæa¨;çã{n°ý$ÕÏxö¿…o Ž)`[† Á8;Q¨ YDC|/U’ä€R'ÒÀ úxÃhH#)Ip>A[~¯aIÕ癞3Ԇ⣛ÍjêuçŠ;sñï>îÝ»éíŠJ¼ëZó¼Öð¤2JƧÙàÉÁ%øð u0;8pxXGÖPÒôO[Äí<Óua÷gQód!â~uçYq |Ž, 8åCÎ ‰ÚóhÔ"ŽØ™ô`“”!ªµ² ˆ "B@"2FlµÌo]­{ñ£Tkï5wšÉ~%u[ÏsøŽ¹ïI’k2óƒøÖRQã¬Mf'PRDHåÀöB¤/ñ×r:ïq8(!L/¿‹Â+(‘ÞQÄŒÌ@& 1?H¬ÖúôïÙÏÖ“­óä±Ògê„1ÃúŽï;x’Q ÝâÎ\”¡¤¥Sâ …i J ˆB†”¥F‘ ª¥‰¦¨i(j–’¢ ¢š   ‰¡h¢˜*   ˜H–’„Šš +ðV'$Žôy#’Ð×È’*¢¾§—ÜB~tõÄ«¯ðn¿»òPHNoœŠûÆò§8$'„î@òSŠÆò(“4)—cß ÜíÎEÊ ”WÑ‚g†9Ç«.y=•UQÈÈ|í"g‹í²§×1( ÍQmUmlãP³A˜B£y™Ÿ5šÂ¶*†ƒ;oî·ˆöÙQ møÝîßnÚÙi6¸Å¬w´éý'Â~~SÕm@ƒùOŠf ÖÁjãôö×鞢a¤QöÀº2bJzCÉ·èV°‹Ùçm‘˜‰H8 æmÖ@›å€Ù`A´¨Šs"(‰0¾t9IÑM)Í‘Ë·Ç UëÝe>8Ò "y+Ìœît;s€¨…Êe ¯@i0¦>!çy|¦ƒrò 5 ›…h$4@”ªÐu*”»r Á©@]§à4ì†Êmøé)7 (—’®@XÛN2›Hýñö:r¨“ ’¢"Ÿ"UÏ¢Š(¸¨=Yæp ª ¨®ÉÔ**÷ï?}ä\ŸŠÄN»É*+¶ÓªÙMOaÛsØÏCÀŽzQüôŸ}÷z½c"’·ÆlÈõ"BÍwiB\ĵ¨VÁ¬6€Á¯4ñuÑ7:íb5h-mNA~w½ ù7yï8yd”f˜P©Eäz¡Ï{JêË\¹LÄè5¤DG•T¹EËèð©æq0ƒ1:A=«svº\ʼ°´éXh´ð»* ²í‚pÇI\õ¨Ñ@wá…<Ýý~ïy¡P~büÒmÖ¥OÁõn1£%9)¸*ï;Bÿ86õnÖ®k ö$M{›p—t¸P9v ÚûóϪ£Ìã.0¡¼€)€²!æq”U¨ äavääœUäÇ›Ðâ@QvÛ—šV…¤ZiNoÔà,À2Rj”:…9“%\pì #êM…SH€¸ CÈMBR nMÊ4êT¡]A’›—P—%]”j90@7“S@Y<ÀˆäÎN™é›%>-‰Hª"·ççÉeQ_¨AÂK—>g´NûH'ßXr.ØÌQNº(Úž^ÃΕòX½ÎÌ™•Ûö¶yH/×S¯•­I¤‘EÛeSc̃ÐXBªOÑ×ÏÛû?}÷éïÃ~ûßÙ‹öýÖ%OÓûÑrq¢ )‘n`Ф°àeˆ²„þpê˜Â¼zŽòÄ)«+ÞeïãgëÍvzéY3 £1j¢2¢¿ÝJÞšÞ~cŽÐé‚ Dmä‘ PU+@Pø÷óÜXu:‚ìéÊØÌöÄ•p®Ô\Èoßìi·[Ãþü:âÇ›û/Ö#þóþäŸóÿ›ùÅÿþg_êý ðµ¯òZ{áÉòçRZ`’`6‹4c¾°Ì=spÿÞõß¾ózÿ^°À5åñK=x"-€R¥;ôü?K<ëCã!C$øqá Uý­˜¾¾rÖ{¨•Op Ê!fˆJ T[e `´žÎ½ûñátË7Öר½fÄ"gzÜRÛn¤¶žÐ%ÔsµÐ´Úûy–ËI‹õûï_>m>[|å—Ñúí4!šô`H‚Ô‡[]©¡‰ œ)”U0˜RRp8’pªž!Éà %˜PpÊ_577)B$"!&(Ç÷QÅîåÆXU¦š±¢V¡õS] Ùõ˜W~û½ÏáOÞÆjñP 3)‹¤+‡–äÕÜ…0M[,³{Åõ§½øÇ_zgƒP¥ãLä|OÇAƒ<9Ô…õV#s“TL'§žl; >LóŒ<ë5M°úú{B¿£¾e!Ä„v­ÇûqÌÊm0ç¾”©"V ©qÖO[û5Ç›>µñg«Î‚y±¾úx!‘6Àˆ80Q'Šˆä‰Tq1£&‰ÁÁ²5T…N-ÒrRƒ‚œ¥ERÄf„Ø?žS‹ ŸÍzÜMJN÷QEåÅ0ðà¡}üâýñuèVÐÿŽôö”üõë>×Ë®¬ßÅ=÷Çx8Ÿ.Áv‰`„°„Iüd `¶dó±oç¿7ç¯êd G1cöZB&LBÊÄD)˜ )zTÐÿݰ€p™Â»pÄ´’RFÌ?ØÙ2PH„JÂŒ!J ZÀˆBòqJ¢h$ÑØ¦ H2`¾Ú™&a„pÊûØæ®¢ŠPÊ vðX–®© ª ” ŸÒ„ð­ž®?Ìe:ŸÚà–Б¸·‘ûz¨ˆ8´pJýíhÕ„~ì®G2Þ•5(R9r7 ¨iÜŠ¨‰©T 5˜²ZæÆ 1&¹9—””2’yI'©§×>Z>lÉìõÄ´ ýˆÁ]GäDyø¿Qš_“rR ü·(ôñÇpÿLBó»ò'ÏË_ð}úés_¯ð’?ˆ?ǯâÇó"%ˆX&$±¿áÝèñ#o7½s5ÅK6B©Ødr&mgT“rb؈b¬½.:šÛ“8sNNvÆØç`99ç‰*9ÙL&7;cÎ]´âçy ¼ž£—’ÏÇeîž „ó‰ÛÈ’W·}‰ÑI“=äï!ç‰à÷£¦qHÛûïïÄ}þûüšþ¼¡Iþö¾+üÚ¿ð¢9DÆ'h#Ž–Ÿ2¹ë‹àëy IßOy¾¿¹Ôÿn7þ sþŽ$ú˜xV¤‡ý¦¾ QÇןú!wíGÍÀHY“$ÌOt«!úÝrøÍ«|iJ€±ñG q9%pñ× Hõ(pF»[ Œÿr"4Q¾#G†¸>ˆ|, ï’Æ;<äæW?{wv¬ó¿»Œz`}C"œuòÀpL ôÇ-yÛÀ}]ŦÁ3¥'¥‚vrC1y-’2}ö™’‘à Aì€þ,_æ;#yÝ ¾(׌.÷Æã§¾~)$z[´$Ëe¢,¦¨=®ˆäðo+²'”ù+Ù8Ž‘GÈ 8B Ç“"Œñä܉~œœz?'ÇÙï»þyçÈËå`#Ù~ãp(+ÊÇàá}räž3˜Ý+<$Ï¿(??_£ûô?}~Ú\Ê( Å–w8“ã]èpé1¹ ÂNÝÕ%Ù‡#m#ŠçbÊ%)¢…æXê»ú»{`;úê²^ Q–ý¨ö•|LëJØõñ¦éC¤%n±aâÒë[†H¨\ê´42õtÌ“]%Ú”yuÖf3W£Ýç×ãäÞ‚bèœ0äÈ ¤¨Ö•}}¬ðm÷ÞyKZEÛkÚÄÙ5¯¦ûÞ´˜’MFᣢì™ieÒ—•l·7·X똯X²Tf̘T^5Û¾ñ¼ñŒ£çÄó…ѵ™7·[‘FkÎX‡FíU“WK©Ï0XH¶wr¨(NLðöÑû£ù·ÇïT%ž~%€8u--8Ûh$›T mbäŒÜNNl-ëÕ(:ãóÞö‹¤ž1iðËéÚeaè‡ÖKt3RgP°ý¯)t1^«e{TäÖÎ œ²·LövÏj„HrV•,3´ÚÆÕ”@èQ% °ï;Îj_ÒšÃt¢‘”cJëõÏtìtN‰Ü†©'`ç.ܨœN ΓJS¸Bµ!¨ wêB†Jd­ ‘’™¹š…)AÔšvdÆçc“s‚M”'(mÐêP¥¥ Û+sU1» °ŠG†š ÐI¼%ùýuºõú,ŸÇßÛ²'ïïïSÔ.{ë^=F(´‰% eÄ$S²žp¹ª›­’õz=I7›p¯ŠÏjœ¦ÖÆpA¦™†ÖUÔ,g=­àÞ¯7O»]»‚KN6“?¼}­_l•‹š\$cÜÔdõ·¨Ä(¢,@š-2Ñ5£"˜—®êÔ¿>Ûo%Ñ ·õ¦=ëœ#tšÃÔ#ß›J»JJωã@¥‡¬ÈާlVMˆÃaÚLRò,g)†TÏmá%g*®Ùøb·ßžäfÊ&È/MƒZ Î °®5µ Ë‹²ñªˆ®\hÕ£a¦QsºBÛ÷Ý“ÞÙ+j+…S«oï¦7aŒmoÌgUKªð¦"wtuî–ÙÓ„ Ùì% [NËtÉ.§>ÛÅêi ¾·dJm˜I±‘³ž`ÝãX|Š¢½µ‰U 1tЃ**=²ÛÛlÜ4¸˜×ZÙ@<5…·¨øÞ,=å¡bÖ•;×µ¬mH4‹cHÔ3d°=´"ÛÎ=#èÚmäÿû¿÷â¿ sߤJ×IyE,ܦÅÐêÍ›¿–=Ùýÿ^SZæa±;Q¨CpQ€‹ds|) “%?^áÊDþUùpbLG¿ÒDѯÅñ÷SõßqGZó@òýMÏž¢;Òc<®DypëöQE<YÁD‚RåÖÙ¬K‹Š&bH¾ÿ_ß]ùò¨ºö»‘ÐyɈm¹Ö]Œ-Å H,D8õÓï×ò#@ Ç ,í¢·ë~{wÒØnj 'jyT!>É»±f‰¦,†X+¶ ƒ‘1dÐ@á’¯ÏÇMq~<>kÍ_Ý=[ÑÓËÇâ›vžå'Ë\ÒåI¢æA2ê¶D{8üOÎ1ΕOà3О­~gK4½G:çŽnü|A¥l!KÓ®£žÓsÆVH­[Gk;6"WFx™#‰g–ŽÎ:8 þ\L뇮\Ρ>0ªYëÝs;¡ÖòÑÄoNaçÔÆ<¥ª—š‚to§#7޲ ðê¦ÛÊ’!;WµÉÊ4±ž½î<öÓó¾·ÌŸQ¬u£XõæëäÑ'¹cŽwÉÞVmölçÕI4þ?sú­&"0±7ú—i_ë?¥ï}zωk ‡@gÖ0ÚÖÂYÂ-¼"ðÆEBhµ‚7¯¾~}äḋîýéã³Ï¢þï£ëÚ]cëÉ];;) ŠFO$ƒá<ä¶`Ú×yúzšƒùnuY¿¿ZÌmˆñÓµÑ{5ò4\sÌÿNxýÞqÖò5“Æ<˜{˜ýa~‹%ß–DGê œ¯Ùô‡ö£9ŒZM¦CxéO‘N¿?ÄÏî¡ÞwêÆñ”Ãßü£Œgê¬ñ,4Êü?’™‚‰n½øí ñgkA¥ŸðŽ÷çå~ï¿§b éax¢ ô±7$° ÁËB d²14RI8Çí8dg1aœ6P–ƒÛB@Ç6¢$_õ)Ðú»7ÂŦÁA-Œ[ŒHI ‰&/¬—JDW KqúÄO®4#Pf±­þÉGüIÓʽÙ'Væ6#.?ÅU@ÒTÕÔi ‹R„EsNª$Ú°rŠ|Ne) „ ,¢ÑË-Bü*Ý~wÆ`S:c8ŸÐëÕ±Zy€œ q+p¹P “Â.mkXq‚$¤ –Çæ¡ÅŸÜÓ³QGŒªE €‰fPQIµ->­EmºÂ)Y]¨‰H0‹Ñ +õ ™Ž\DŽ6aŽZ:A‡®%ª*H¦’!¶x†! La”hÌFeº!‘Ýá° ²2rDDµ7ˆƒûÜÀF…FÈs!ÉxE²áipë4Ý’ÎSý'#0,Q(pÿ¤C0ì‡øÎi,Oa v°Ì‚.’ê›™JÜŠ7Bé`,•æjV’4fæ±¥bh6ˆÉ~ˆ¶ ü¨†¿¥ó·AÂd½ —êTãw@…Mâ>áÿv“M6¥(c÷D<ŸØùxþÐ2O…‰„‘/?Ö€lÈåL*Ý‹ƒO ~ ;˜))( NéFH’jD¨%œÜÍܱ2³6xüÛ˜JÏ, \˶Œh24ê!¦i™ýr"ƒ·Ê?ÖhÜtàÖùˆ‚…D²å·„HI¥Ãšb®BF„[8`†>% %…MŠ‹q&=;‘>ÔjÒÉrV“ý)ÄÎ3ÜäUZPévàýÞ˜BË ]¡EYÂÅ!v‚Dj J–e4°Á¦Y¤šn‰A i’ŒÿOÉó¬ç:L§n Lî…R0Û’¡±<©0Rà„_í×nv 5•§t¨U:P©#œ‡ÅÌb‰J3R&IÛuž•Õʼ â%”"«¼Ë$M &ÐÖÔ Û",ª+ô©jZ$AfX‡6d=?\O’2T„&Kq£ b$…ŸÂ¨U«’NURŠŽ“ÙFP´É$ ºº³Ix ›õ,E)†šhÒ‹#ñ{µ?UuKpìôx4) ÐÏçOªÍ aI؈_3(ÁSLQŽU‘Ä©+âÎ(“3P¦YkSP~ùìItÌû÷õ§¾›òÑûóñïx|zûj†"ff%¤ÔÑÈŠ…Š)$PE»qû¦b:?Î!”WæVïÜ@<1ÉaÙ¸`æd3’‚ÉÂ3…)d >#pH‘$@†ª%’Ìþ‡×¬-”öº‰±a÷¼þ·‡ƒ’8†¦M¹ýÙq™"ÁV¤4"f_‡E÷å/ä·ôëVì›óÞõš×ÀhJfÿÑIÿ„8 ѱ”6f!–Ö“ŠÕ¹$ê3n„U<(130Dº‚¢J’íBROï±Y•ýJÍÍZF!~ãS—f8JÊ\Ã* ¥ûLïc¿¨òeþKí~Æ›™iÔþï06•™ƒ‚m¤Ã"2H‚‘J¢Ø¾MOçš³'QŠD:sª’Ž2`õ¦ï'˜ƒ´¡ ڈ —e&fš”ÜÎåডÁÁ*b…:2kSŸã?_Y$½N.(m~çgL%)g¥ÚÙ‰6½_ÃÚ¨ÀŠä7IW4ñ$€¡º€ä©ê&f !þ°œ¢Åm)*ÚWùæ®§—œÈ¦ÜaT%Ó€`ÄµÌ v9QŸà†ŽHšJÄë æ®"ÁT§úQ$J¬þšÌå ²V´¡FœÌ|Œ8Æ~s‘VbFi¢ÃÞ&`)^K¤¨KÂP„*ˆr!'*S èÔF$Ccï[€3j‘ÓjR-°'¢šCåTU¹ˆÀ*33Ræ‘jP`á‚+ÍHP©°¢!³‡ú™Í|4IÞcƢ؅íû´ýH0 ¦È&ÞRàˆýWçÔÚAREý¬(AQRŒ$É,²Cº"X™?ºEÁÚÜblŸƒèÄ•¬D1X—`ŸiIåó°Ô,@2MÄj«˜TP˜ >©"¢YÄi†L” _×15C“Õ¹B™¾5Ÿ¤"§îDô,Öžëæme™þ_ê.…bÐ×½î„âÚˆCff_3©€MÛs‚Ji} ùãöÓro±öäñ ¸õóíGóE&xºAS±”,Å#Š2Æe± ÜÍo£xlóí»Õ¯¼³ÄþK[÷–™!íùÏíÖDÿ`ç µÌ.ŠÊ‚Á gúÙr;Û…í $évl/¢"¨1ü)ÊFÌAE„˜€ÐàÇêd5…-éí‹-+Ì6Å[H‚”~J*bÒéÙ£Ÿõ?îoûÞÇø¯ó¿ÄìwùÀé3m+&4¯ø›ý}‚G¥EF">üþ¹Þ)-?cúïá!ðUÈÃCÿj^¿Êk9•ïqë_Ûùu™‚޳yy>ï…èàµýÒ1a¶É)”J(–h”rÌ‘øýžñò±S$‰ùýŽRõÙu¹-«ýïÕþ+߉‘ãòïçFÈ1À²°QJ¾þüõó™šõ­ùçZùŸñä®ÞOÜ,V—7öß÷P²ùoéóø®3·»ã¨Å1 yÈ˯.ºãÕ㣗ڈæóçåÞjõÆŒæqÖñ95¡…i?H3¾`bV£˜í):[8rDÈå_®+Xà‰$—¼¨Ni¨|' ¯SΤ2$‰¢TIJW´Üýò¹8ïX!ÎÜíÌÙÜ$`ÊëªOïvùÎÞsUéNxô›¶ ¦· û(°abyQí&a‰£à´Ã…ÄÁ¡6øºh¢ ’úíAg' †u?U=Gœ!Æ[ó,gwYÓÕóC™lë,oï<ÎN2w¼÷×b¹Ê §ÞgWÊV w¶åï_|Þ*8úùêúärˆY]Eîj|ýç3—–ºËYHõW|KŸxõŸš …ÙGçÞêŽsŽŽyênÀï9ÉÔLÇw⤟\_¯>sæÏ¼ŽêvðÇW*3éO·šÆûšÙÍiFwQà>²!úåÀÝš‡Èb—‹+$q‚H$AOݵè’o”áRe} ‘ß©…Dw¢QZ''å~"EsI÷â2*^÷mdÍÖnMTdeUQTõçF©"êȨæEÕ•S}æSEETùÀ¦˜ŠêʪïdÈÆj¢¤›«!ªª"j*#¶9IÕWˆÄ¥Gå+¿JD>°¨þªTS.U™ɗ¢œHÎ#÷™G}µÍ ¦"¢_•‡iÃÆeUT´npš‚¨¢Š ˆ"J*¨h€ª=O©uD”›œŠ0 ¹qŸS”Â8Fer8Q¼NÞdÔ‘4”õŽ-DP×Í^w£Dž³ÄhJJ¥À³±**åË‘*P\¸¥ª*"»NZ²®öMQT¤%AT1ä”D\áÒ¥9ä1U ,^g%ª>£"‚š¤úÌJ…Š’(ŠBd¨Š(  íeWVM1LÖó( ¦¾$Âhˆ(Š)Îf?³ÇWõ—ï¥H¾d–'â¸Rçi³Â> V〻yé|˜úŠó͸áÛi.ÒæFb%*…-Y“w· (91£©A#%ZÁz¶ó<Â&ó±Ôwño»Ìo`¶å§ÛzË `ƒ€ À¹ Úu*o˜œùÞƒPÖfôdøŽkÞ„q„qª¹$ëÎLÁ‡¢ ¼ŸŸ«—1ÁÑuI;2–Îm ×ÔHÎüllך¨êû¨¸3ä¾!oŒ­ÇQ³î7´2–+$J²51£³G;sêÿ8/=÷«±Ê\œx|#¾ÚÎäjz¥ŽÎhÓbUõ.‰-vˆÌ¨aaß.3ïW1uŒ³¹˜s̈؋ñ(\a[¸Ð$•D'·0#%4”1«÷XÐA²¬“+à˜"³ Fºë¹åçYLœc#2Ü~pÈH\yB-×"ʦ=>9By&ÄbøÝß|^§ÚëU\ž+t—{r8×ÔÙv–‡£´£9‚Ô|‡ÍtÒ†QÅΦ{1Ô^rG"£ÉX£ó•#ÀÆ01ð¡ý¥²üµE'RÀ4fۜșþæUEu£DŸÞsGXµ®j-uÆKJ*ÑLÚ °‡@FZFÙAøÌÍž}³ëjr–»bÏc¦CB3Ú%ØÖž_ÄöT’•HO)Uµ½0°È‡«km†¤˜Íš÷³éOÔµÊlE{)îMíOS­°‹^"Jv´ÄÖJ(r•gü~Í4¶[Ö ötþŸ®òÏP¹–Ö÷'uE¤¡dVÒ?Š4¦L#+·VÓ‡/^|›Öp ‚ŸoM,]ÒtPºé×d6³<¡„¾Öžæ¸ó«³ž^%Dv4¸³›½šÓ³Ðùå™àÊŠd^-´…¯%çöŒ?%Íw­VŒ¢QJ´ñuÏSóLÙ “¢}½­[ÇEѨ”ËAAL+ClO ÛG:Ì+¨É„;c©øVfÈ„+ªõ'JA‰¡uRdP+4¦ISšã#SÊrÕöÏ/¯é'¹]CÈòíjéÉÖ`5E)2¸œð‰LXËeì©Óű…µ.‡¿NÊyɹ[EEä{K]œñ™:ÛqšˆûJéia¶Ûbâ-%¼ÆIès<{u‘=´‚%ù·˜õ”Tq®Í¶3öí‚„y{=žãQ(ŠzX\ÖØí¦Ïa{RбhUUDun§¯½»½ÕY” %q9]Ô#Ô•ÚÙBKä$\r«VÊJ9r"€¢ .“õR ë(Ê{-‹Ê’=%«ÄÖF²õ:R”ÖR]L Ø–µenêŽØÝ¯Úܾûo„R(öŒ$"‹¨æ¤×ê¼WÔ§Ñæe´V™—$&±jX«E!-" s…XSk—Éï*¬1P2´ˆªÍy”îõ»ÐïuŽpcáF”P)EiPR„E¡P¡F€@¤¡@i¤¡F€J)T¡hi( ¥B„R„ZD‘bhT¥hF–šEJ”ˆ„h¥J))V€ j…JR”JE))A)Rh( i¥B’‘J•hT¤¤(…i•¤R–B†„i…)¥„)XC†Ù@ÛM0Ï :IµÁ N¨±±þ¶Ç½qÖöZ{LbÃ…%!}jecbO»ÝåÙ±—øãÌ™@òavQCÈyqÎ]!¼é ÎÄ€”Ü“¸;ƒ§D]ø¬ü%"y¿eéuŒ¹ÚÝY „¤Ç(Á…– Ä¡z׊½vP,)‘ŒÙ©ýkÏQíŠÂÄ-]ùg{e,Öz]ÝÒpXlÚHv»vüÖ÷*hrÖ*gFªí«#’R" `&&Ó0‚”Dê0#ÊXZ½›V4QÅÍ©{×öÇÏJ{Y¦F>£•ú/@ý ´©‹[ÔU uó˜fïmîÜ@Š*y¹Öé±:›LÏaS1mÆÍv'JØ’Û–¬‘«hÈ–º†yÇÛ ' ½[:d÷½‚íÓ7Ínæ °-`%V‡61i-U±}nÐ#«ŒÛƃƒKm[u£-×¶Àu[Zñ)•[,¯“ŽSbè¾°¼y„ój{2Yƒ.ö\ä6/û}ƒ2¹åе‡P'Ö°¸.ËØù½¨²&Ío 6(Ͳ¦¦!¡6!M™ a%µ”Æq¥ØÛëPϲâѶA‚6UžÙ0 —â/jR°`„5Ö”“igÚ¦½aâ_Rç·é'èú‘v)ÂÛvÛlZt"ön¥­l2Öa´›Q°ªŸjñ%¼ÛlùjàhÓ v[V°\ï_A g{Ž@ñ[†-Štˆ@iy­‹wK!@ä ƒ¸PÛ¬«vuuÔºî¡Àc“c`Ç&—åö¼>¼œhDQú‘œþSxºû‹9‚æ0: ú„/Ä»Œ€(¥ÚþûŸ^Ú¿¦?§Ã”ùxl¼¤åÄ®Ú: äóÝ“ºCƒçƒç»!ì–q÷­ !ç8•±ÞavÙWÉïD…[k 䀴%¡ÆÇ.³‹ *ìñ V©ªæI ¤,h¶ÆtÖ7(jê‚{²CÎeúöŸmiš’yrȦ¸Y6…äÑÖ¸Ú\ÉËÝ¢$„•ÖüÞ%'_4žÊ„3+²'Ë¿›ó¼Rß é2ì`\ñm „QG]{Í£CÉ6”ì‹Ú+lënÌb¶ÅafqØÏ-íe¡eÖŒ°mß8$:™•–¡â’•jT°B5·8hmZ^m“hŠS/6 µ »-̤UV‚¹±Ã/2ÊÙlQµèIU•¦Ókk“f2‘'Õ÷C\ù°‘x·‹F^TMÊÝ-†VÒ¨Ûh{lTÙ×cP\Ü_x²Ôùªk;”#}WB%ó÷Þþ7ä—é[(E` tö³lô˜H¦ÎßY?gçœ7ÃÍhË1Ë2à ²æïƒ]­ðä~ÕϹ÷ïy¶7ëNP„6Ž0fü»>|7(º+žº(@ùï&}t´OHë‰;WdÈ¥.dìB%"0‹ÚÒQñ{p—7ׯ¹ÊÅ\(Óõ½ë}¹vßQ«çã¿c±Ð "ÐEF@ mî*»OéAÎ!ÛÐrå–ÈŠaM¹—˜ÊŠ‹µ®ÞÞPzA(QNUî]— ¸¨ÌÕk÷£œ«²@•œšùžaˆ»Ï!8PG.µI¢±”5hÙNÙCN?‚táyŒIêÀ"`P@hÛbev6áN•îõ¸;Ê6a–Ÿ«qÜœŠ¡Ó¢&Ÿ“ ”nQ•üzÞÀîƒïA¯[}a<Š);z÷§Õ23¢¡¤=Çr<“9W ¥«f²Ê"´ýdäyRôÚìæyzT_=ÖF¢XœØiQYެ"‚ƒ"€rDÔªˆÃï¾z‰ˆ‚ÖXDA‚-, "“ª¨ç¥¤4’Ö’R¡ž—V$(kö½ëß]b˜Hª‹†Y衵ÙÌ5Z ¢¢¥j-±¨Ñ‘s“*¥¡ˆOátrP­ µ0‹îç,Џ‡ù~ä~]àÀcÇ .~Û‘„†²é$Ò.…‰QZTˆÉ3PTˆ A.¢Êfm¨`Yzç(ŽSœ»Ê½`ýItŒé×trpí:rŠue\ºuBè¡Z1ŒLÃÕŒ?/Ô|Ì:í‡úù7ò]|VÕîýÐü²\œÈ¬My©Ém}¤tC\’q˨™SÊó‹•~U«ÊWÁÐq‡%ûç¬ÇíÚÕ®úìu¶z[Ôµjº}ï‹3Æ£x9u§õ˜&8«×•ÈÕ¸#ƒ¤ û7=qyÊ q?+DÊÚ=ï\EüÎ:®>·ÅfÕòó ~0ë‘q¦w¨f—LWsªÏbÏêʇîðý#Çé†|~ßw?w¾Ž×Ì_Ð¿Õ ÿãEýåW€@ôƲjÙðM_œÓûƒnªÕD §•Ãý²Å3ù±«cöÌ€3ý¬ €¨À ?àÇô~ùÇù_ ýÌVÿ¦"ÎÈäŽNÎ$ŽŠC²4IÀd@98¿¦ñÍ-HY QÕňó."+nþ± 8Kt—ÏHAÚâfA ¬vÖK"v±{(ë·e‹f:DÁƒ`rF88œ88Љ3:!Ð# át]¬ÊB!ÎÝBevð,âNõ¦tfsGSïÕ||e>à ãÇ’?¬GoW^sO\MOÍÕÔ›‘ WÔ& óÔn@ø»Çh@íç9?›%½úë¿]—3ñDõ¿/³W<|u£ñÎûÊw/hiu)%†Fà)Cç¹ÀäàbÚGÉAçoP¯HÜwž®Ìâô°=ʱ¬°S‰,àžËBÔCr¤¤±O-%2‰àÎ}´a=qé-éqºÊ×wÃ" F2F*×DO*Î|BZÑG‘z¤ÑGG–R 3ôG¹äæ ² Ùf"”}ï—"ô‚NˆÄ¼IÜ NlÙë¥òîðc«Ã‰C$Ò œ$±§¦X³Ý§hE[qHzÒ‚k†•—z‚Ñ•‚F¶µ7¸££‰#ÑÕÌCAµ=qC&h¢DA'$ Kâ8˜TÀrœÄ $éã%H\ùõ;¡L²7ò;Êßo÷}ðòqdIògÉç¾óëúœ\Ëwò‚`ŽÒÆðGß§ÇÍ2`-ôÄJ“'½1…üˆªéçJ œÒJå8(‰#@ŒcS.ø0.×12‘›ÁÛf"~¹÷öµ}X¦a`m|Þ~¥iuÆäs¸D!QsÁÝ›’4¤IJ©op(|°«¹b ŒÕD³¹ËcèÅâ 1—r¤Î4DÚU!ýF{Þs’ùÃ%†`“Rƒ#g$ ÂRòœN TˆË¤’4(£ Å¹Ÿj³®jÏ“‰£ŽM}® ×/žµs„dd¬+}¾ É´NHó:x©ð‰jóZ©2GãYfV2F‹M”½tž‚ÏHcïW¨Ó+꺠ÆîTªp> å_;íýÕð*ý8¾’¸.åaCÜ7Þê,‚z6ý6QÉÁ,á/u¸ˆÁSNR™«‚9–›q¸Îeb£“‰#&³>õ ™ÉƬF´X’1E î Q—B¡˲aÅC;!Mù•(™ªY.¨ÀsVöu°³¨½c& ¶ñ[XÃÎŒ²Ê³wÆ´ïRj»}HÏ4¡BA_£ÙÙ¿ež‰9!‡%cŽøcÔTG:ê0¨}™2xåiï…¡7²—K$9Ã9á®_†N €¸I¡€Oư;[ŽKAçó‡é= ¡äŸzÆ¿çç4h¢0½7Ê‹MñŽË Y^.‘2'”:õîæo¨²Ÿˆ3ÂŽ-_uYËi–˜BiÑܾ´¸8;! åFw½â%aðºÅ‹ `Dzq°aÓMMC·ô¡é4ÑS½ë=¯šÎO4·ÿâ0?È—û¾~¿«üOíýôâZ…ú/ÞéÖ?gïäÑþ¥Õ®Í õÅ…ázC”#ª•1Dù˾œxmÿ;æ¼NÆÏLæë¾,>µš+Cù%ë{/}r¹Ê˜orÞ’¦²?—6Uö½8õ[“ŽÄgq£p®B ÿ7)ïc‘Z‹¦7/”+jµ©Š(ö¿£åóƸ$ h^VÌz];xgžkÏ¡çwÂu°3üÍvQ=s¾ý÷Û‹È‹hž«ž¢öqcHåcÑÑhGŒ}Àã\™¾bÁ½÷är7¼d¾|޹¡Ê¡Ýº®¾!èøoÐ9O¯×«ƒòã¹SÙr2“Z÷»Ÿª·î‡I©| Q–?Xõyt¿ÙýþÀcü×°þ×ã`/¾Ðþ_æ?Å®0àÓý°ý}ýÈ…ãÏÕû`Wôå†?ž^š‰9# Cã÷ÞþÈßãø\H×ï¼vú7_Ñj)·ü÷ý{°,ƒ–[æ}æE–â_:«ÛDp`w¼®ýËκyé êZðÇQårÿ¡Ìu#ŽWž¸b{sm –9KIv‡mŠµÇ¦Ày&û·5^šëj‰â²œÎ#uýØïŒÚ##\ ûJ\D%öwääÆtú]Ôj2ID3˜]e ˜ˆ uAŒ¶4qía’A7²‚ð«ºêã^X ²"ÚSg¢°&¸aålƒ”(‚{4Å’Üf9y»÷<1×htFzC¶[;Þ£ï!öÐføK{ò0¶¼Òv½j$J†‡®3[D,¿T„Nz‚^÷KÞæ¢Ê œ-, •tƒÚ£ÆÖ=]iÄY«Íæa\sãÊP´sZÌA R/½Ä)D,oK¢¼áàr\ë›Sk—“R±1·ctë’‰èÕ¡$d“0„rÉÌ«¬",]sÌã¢<3´ˆDž×.N¹\‘«×³Ô÷obhVV¾ÛÃ>ñÇR3Q—¨š4qr€öOyæx^G¯K£ÙBÈDŽÊ„©HB ÝrwNõ™[ðE÷ÒÌ)ê¯ÍsÝç¾o–³4qÙÉ›ç¥"FH®e‹×tÄ åG6ù:4k¤¸™0rÁKrõ1ÆÛ6="ì™ìÁÖÕ…co9T],ǽ»‰ÖÐPºŽ¢g“¬­ ¹,¶i&=8[§UylˆÉðâNR㇑ȼ r±£d ŽëŠÝÉäà䬓Pµ“ÅAÀå8<ƒ½(Óx$ á•D1“wNK<%ˆ"%®3Ô‰Ig|æ±ßžy49;:<ǧRÉò~@‹äÔ®'7Í©Íåè!†Cjå'n.oÕdâ€98Ö`,ëº^½F^úܯœÔŒŸuEzXôŸd@½xÃïw¥\çZ‹· µÙÜ~¹¶ $ëaЇl¹$ôh®xçjq­¡£œpº­q4J•ôbʼºÉ‡%ÄŸ©Ñ¥“ë3æç“^_‡5cïJ³QR £=ü÷R!ì­ÇÜò¢¹@pqÊBixè–4dÔ&H(Ú¨@…ÕM7îWËKFt±èê;a‰ ùâ\û­“¤8%^ÍD¤Ëç¨xâfØ‚@'VÃBIœz#F”¼›ÖuEGLxItjö‰c¢5sqˆµl£ƒ[pç5ddÂVŠ'ÔÑê4pO'gªhƒ06iî#ÊÛ—„dÑÇ$œhvØÑáfwßw­,#Éèãu¦+…ↂ­`LÃÆ¢ó0ŽåN:+d~{ç¯w\|q ç˜á¡‹ ¹ßºÏzƒ\ :8´88÷ÉVBjcÈÕ*¬rpŠ/âŤrro¾žÎv¢ºIçoå×f³ls]TM•ÙÆÎL”wÜ=®¿Ø8œ©„–Ž0/Ïiuò âN1fHÆ @wkµ)Åh®Î¯,ów[¼Ç“ší'‹5¹ówß]½ôž ¥èøý3Å},U¡%û},2ùÏLa„ʯq"/?¤È:”Ü€Ô ²D2E^¤Œc¢ „IÂÇe5¤+çœ[ú±¯ÏjNÉy@õ­f987pˆVÀ“‰A¼#­.öeä!ø­¢à,µùó1‰8Þ O¢õÆ™ÔÙ”9Œ¬œ½—›¢ÌqY1º§Ñ(jF¢z>¸M1#¼üËQu¨w]#ކažÏq½">WvªcЧÊѰý5”ö]'Z +˜egmû´E×…x,ƒu4XçüL¼aSÕàâ<æF¹½jê”1sÈv딎—Ôó¡¸ÍÉ×=ÿ%è~H/§_Xœ.IÉ€«ŸÏîW›ûÀ ~°«sâòø~§Ãu´wÜà 8ø9ÞÙ!æCÝùzòG,á ÌÅ1ƒ ö/ êw¯õŽe§–ªt>¿Ù®v[!lÌ_îÁ½¦ƒLöˆç}ÆGÀ;bö\îü~™ELŸú*¦r™Îv,c[ÙÓ`é‘Ü~îøÿB¸/5ô¾àœÉîNÝÏžÿFŽ•¶iÄÏn&œþDÌåÞmxÞÛ®yLp_AŸ,Ôs]E UšÆÏŸ‘ÛÀC)/Ðî~ìóð˜âgò27ï÷²O{¡úY¼–h;B†ì{ýçÌ!œ&ýö“ªÐb%Ô_´z´ÆÆ;y@ëâ›î£˜¹š¾±´õõÝ‹Ñú¯ñÏ)žý‚¢oÛ÷æäw:ÑÉùnb™ž*¸{-k¡’¨æé Œ±2ÝŸX7ž=Ðô!ÞkH—æUt³þiO×KgÐ ³ùŒ§·Gxw$q|ñÚÞdà3ØuŽ‹cø>ƒB=º¿hb ñ”ø¼^ÌùÍÅÌCÎsMö§•þΫ¢MÜüúfLjˆÁµ?DEW䆅qòQ=×–t­oárÑ8Gƒõᬈ!ßßóë²ÔËß<èÿ½‹ÙÏꧪÊÊØµÇKçX~€9Þ+“SýŠ<ùŒ|eC<¹ì÷¿NxÑþÀ¼n°EWèzÃŒ:þqNëÊCôéF”†•¥}Ü¡Î#Ñ'¸™&­ e±ù=2Ãøïn:çœùÐo •s²Üö/ t*Cöz—ù?¾i›§ï¿”1gÐÓ>+éŒ[ã̸ïóØàš Ô6ÝEŸMPÛ5;Äj¿ƒ;(@ïÏ1•÷¹Åø3,9žº&:XLµUSþyS9² ™ÿœºŠ(>8þÞn+¦à£Ì®§ªöÿó GI_ú/\U^%Öhq©d.}FÈèKÜ ö¥%Ê ëÐ飢ºo ÿ¯fpàý9;—ô¶~^­ö±ó”C²8=S²0ö=x»žÉgÚ±ñ ]·aC½“Öâ(©Žz­Èø™8ÆU‚¡Çû Øé´ ¢ÃÊh·#mAUà‹‡âýùçÍ(QAì“øs¹õß´ZþÔzCmâ¾À Ùÿè½§¨hÕ A˜g{'ì ·ÅLk,^ÛŠ@zäµ_yýsú¾Q´dEÌCKÅíö•rMëpñº[” ùޱúÿ ú9¿uÆÈ*mX‡§ÕOr(ñfX‹Î|_ëĈ iå±Pßä&÷ôQÛ|= ÃøZó^ðÎIÅëœ>P‡­@铦ܕxÝtUOB—)ê8/­»ÊmŽèi¨ ž£O†V}>„g.ÓÔ¸¿«Žƒç²Úu-£õ/JsÀ*m¤äôŸ-2ýp~ÎøËäôœnÄ@Ú ?mwÍstZ òƒ;ñ~~ PØzC„á„òqÃsϱ~¿l¦x\P>2ÉZ^¡·žjiïeËðÙìàäö>ù@ãòÐË5nZÚÜiã&PåtŸã­4ôý^FМøp\æ`éyvkü îÄô`šŸ©^«ùæ§Ô3Ñü<}ùQ@Ò•_Ò'¾Mÿ€ô~‹$5GÜm¥¡{Ó8ƒ)<ßàê±tÝ'´õåQ§Þü‚|ƒýú5÷h0( ó=8'é PÎNtχÅS€×½±¿xâªnI׿ ñG{ëŒàÔK7‹õ„á†qÙLøß—©<dϹó‹áÁöÿ§µ<ÅíÝïêf'%à¡»8W‹÷|³à~ltuÈ]·Jí‚>ùß:Àê&[ö{¼ÇS?³Èï?{§èCóõù¦²*§ ê°ª}là ãÕS]´#ûûtgXþ»îhfíZ'7Ür[—êè6`7‘9Ž8<ç8ã½(u»í•×( úC'dżÿ}ñ>Ëû”ãT7×»Cû üpzÌÔ{s>Ÿ§ ôŒþÚŽ{ @ÃöÿÑû{  ¸uü°?8ع]÷…÷®ý ÷‘ÆËkâò˜€ÝE6$û;"Œ”5Ù™ÃÅ<ðïç¡\—Cùÿ’€aÌ Ï?ò?ø=÷}  ißyýêf&f×ïò=9Íñ!3ú=Õ8s¦Ñ!¯¯9Ÿ8L°ÁüqÓâ8¡Æ¿œ7Õê³Îþ/Vì¹Îwpe(®ã¯øØíù¹FQ´ìW!Æ^—v÷8“ù*9Ùl“Î#€@]ôQAÚxqæœ]±Ùðâý]èþ¹¡ÂdŸ>ßÍùýâiš_‘—´óÜVW|™3‘{w#`WXæ{ßkä˜úÙç·cÓ"j{’<§ïâû,øç„ ð罿äÙßoÈ €Ç>ñ¹ïéÝsGÌþâ€ôÃÍkVxs„æ¾ +Ìaûlü@éûO¨È_¤n ò˺üì§+é=ãŠôrS”Pöø÷؜ɮkŸÇQкwýĆOÍ5ÓΈ"œŠžèÆCòç»û"€f}cðißP{^±ì¸ÀLÔó>ÓêjÞø?w7nìAG-:¤oš˜øäÍ«sO=è{LÁÑu9DÉß|µ^#éoI²{lÐÍü>_&¯˜õ ì¼…;L*¾càóÁž6^­U¢Ðï@ä&9çwˆ:bvæ›QCÉ}ö£MAÖ¾‰˜GÄ"Þ[’«¥>Óúåè{Ýÿâ —ÑñÈ÷îi¯ÿêœ`mžävÌþ@!6¯ð8ƒ\øŸÔÜßÔŸã¢d½cûrÓsüà‹ £ƒøXÁŸ4ˆäÁâ¶ÁP6Cæîe†·éyœÉM¬AÙ]¸«ØéëÚ™i¢ø ‚ûC±LÝÞ)È•ü²Ôß>ox‹Ì&¥Ð>?ÒöÝOÊ1ÃEû7cîÑp⌀ÈàÏþåáÏ'Ú‰ÊA®ý|”?O×|oP Â:~Ž @8sˆrû‡é‡Â:-¬ÒŽ/váv³ŸMÌ\×ëÿ ŸÆü^›Ï&´yϽß~]«iãDr•]œúü?ä€gŒövãÎýÄô{' ’wëÔˆ{ò0ø?A@çp™ÆGèèqÙCJ;£OPrrÓ/€Â(ò}Iʼóç1ºmc,rý!öýžÏðü_µ¯o½«è—<çžôè}Ý“‡~çö×xï æfo¿Ëq_Ø¢lÞRŸì‚* !Ùpc›å쾉„]Ã@Ÿ…ååMÈžÑìOä}ð6]t6G;º9¼ Ÿ6,ða8ëynôE²p'ÿmÆùð5ãdíx£°ê·ï=¡× 7áiÞ‰S㟧øq`»˜l9[×R½NûËÿ ·yíhWí‡À>TcjKÇ OnûW±7Ìá|_OŸ][3[v”<œeÿϵîȲ¶tÛuå^C÷œ˜9þäéxã«:^¯˜Ñ~~õêBk_oÿwŒ‡ø÷‡"ª&8^ˆôZP 4þAÌd}c^Ô¸WD'Hc‡V½æ3íã~]ävlwY5#þñçu°ðº¦Hy­èøb§žOO¸d œ“?´›©Ç>9ί•ü=°£²}ÕØ6ü·îpGÚßÓZé1ÄU|_4/¬Ü¾êÏçÃÉC€õ`á¿÷äõ€!žÇzߎC¶Û΃•J9'÷è~îÝñD>(úîä{:ïr( çƒcõß;LÝ>[Ôd?ÏtàË}¶µüq ž:eüüøÇø¿é@ì3t^û}5m|ãhNó¸½Ošæžc¢;>qDékÉÉ6­ofÕÑN•àv^Ë2Þ‡– Ñ©nê ‡%ˆåG—ë2ÝGÐ9(€¦AÓ‚óà*ö?ÝxñOëÖËÌT6Ýò´:QŽþŸ×Æÿ;lÕEø'c͊晾ãhøúM˜ ‹´ (¯I¯ó“¯•Î3¼öZáD8€‹ î;\a ¢ƒÓlÇ·Í3yMGíÐØ³D6ÅíÁäžß‡ß3³³Ùf ÿÜ·Ô ‰›Ÿ@ÿjð{ʧ.f{óA Ê@Ä?™~^Õ…óXÊ‚ýW$ÉÔ=6v²QæSçŠn)¿ù}X晚ž(Po÷æ!‘Ÿ1TïO½«|p=)í¸Î© •3 °ÍÐû?ˆ\¯ÚµQ ?^9>üýŸ'Í<&˜ª‡ÓÎÝÐ}ΚM5c¿@DìµPóöhÁ”ðžm"fÅøE<­iÈä*AÙô˜@W—íŽ8hŒXTü¢@»D5ÑO6í¹ F¯”‚ŸU6vÀ!ÿ_ÿ1AY&SY¿H·zÒuÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿá…¾€4@ ¥Ø@€4@Í€ª(€(£@PƒT(© PdPA€R”¤€Š§`4)(’T"RU%/F$¢QJž†„UŠ‚ 2k ¤BM‚¤ " %R„€QUm¶ÄP€DE$ *„(ªBT¢@$ ª©)ªRAE@ P •)ET¨ $$ )A€DJ¢*©@(U@ˆ€$(   >DED¤|}ñRPUQD  B@*"¥PªUQcªÚ¤)WT€æ[2€€Ð hPM†ÌÈ-¶Ù•E ‘@W€€B (€) JR’‰ 6P €  ¤@”z{¹÷}àAèÑÜu®mÐ7`³Ô‰(ô7žó„¨"CxíìŽ'GM•”IVÚ5†ŽÝÊ’A½ëŠ Ó€‰Q¼Á >€ s„}€·Ý‰ð×èPB@$Dûª2‚)à"M ¤ÔÑ51”õi44h Ph€  h Sñ‰šdÓRõM ©ú Q)MDõSÔÄhbÔOT”¢ ˜BhÊhõ&ÒmLA¦Ä4i£F™4ÄÓi‚dÂa2a1hÐQ“&š™LL4b ™hѦ&&Èi Ó”¨’žSi¥?%OÑM´Ôò˜§©äÚ§µO~•=“Q•?eSSÄ=M53FÒ4žš)µMé“I²™‰4¦õCÍ&É2m2ž‘ê™=MƒJ<)Œ§êjz†Ÿ¤ÔÔ~“Sò#i§ªz4ÓeLb Š‰LBd Œ€Õ=&O ==CFFA6SÐ ‚a¡4ô˜Ñ hLžšG¡£FѦ†€M‘¦š¡¦„Ì‚i2OÿËÞI!Ì¿ó#'9qe›®Gì7ìë¶>üYwßÒ>º×ú¤[EmtõíFd&BJ^ª}nv3ýú§Ù“•#p´[éH’˜«@Ev*¡­ 'Fy8Œ©P„ùò )$lÁ¯qÝ?D=,²&î"íˉ܄ð=Bqh½jª êS¢´tuEÓr㕊 ôndªJudÅ¿JΤ`³½·RRU®‘žÀ­JŠ:zÉÍ/³ª¬T½6 j50$Ã4Hª†§¼‚y8l­ª°¸é’·äj°Š„ʼnžswxJâ ㈋ÍÎ_&ò¢gö—8snÄhŠÔ.¢ t[)~%µ¥8ÔuJŒ0R¦jdh‹¢D*TÄ~ôîSÖ¨3Z£PâvEÍ‹ŠFnrPª¸†f§*h|Û/È–:†·ö~–òý:«ñþ]®nº_ ®¤H‚m®¢²ðŠgW’Õ^ó$Þ¬û—N·†nCI¢§áñÝÅE…‰Æ¦Ÿ„(É£d+Dã–=Ü¿ Þê%e‹ê&‡·Qû/7Õ±l%ºÕÝ*Ü“S0wr"‹ý½óUkÓã÷¸N6_Êt†¦hzSè=hz¨Gf¢ß1f‰A¬êfû±F¡ŽEÒlLAo%Ï-š(UŠÈê"ª•4c·7vïåVô¤×M°z– œL\bJ*«¶<„ua6€ÑÄã„Lj7t½cÞ¨–ýs<=B.‹‰L¹2àÀåÄù­Dvó{âx02 U}‘„n$qIÍȃÏPÑу:š©¢C"¡CĹjµÈËt“¨Ê™¹#—°)­ cê k·F;æfEäK»r2tµÊ%a¿‚KD]fH¢5z©aÃýz¢j7AV0ÖÏñ5U…%."ãKÜ.òÝoOÒ¬[ë=Dj«o[6+I‹K’…îhƒº—Õ,×åÐÖRŠQPï⃴°²îðCÀã‘>U\DŠ?§>å‰}˶¿‹Nšm"5“óm÷ìBùëw.áå ‚Ô"!ÙÉ÷æ ÝND4Pž)+GÔã¥ÂïR¥KjÝvØÖT_q»§Pwàü-IVj­¼D‚Q ̾B¨½3$P:Ô@&¯1NÅ$P¼Q ¼ÓˆR)õZ=^¥; Šå»­d*'O\Bjz")=H3J‡¦Á»DÝFüXr„:vaHµôñ˜lêT®õSI—¥Òd÷nk©0H0Ò¯¹®óµùî|ÚÖ»QÙ#Ä“p “3åUEþ;y5­>”ž¹¯¿5åf£Ñˆìö`“JHÆÍDÆ¡1yêzg5c,V¢ÅÒ upýΰyñTê–pîŒ-~¾‡C¨=îjˆqYB«$Eóç}›/”øóßRI).ùeíê5¾,¶ü´€j͆ lËTÖì åÌ&„§ hË®¦üß¹–üß*°›½Uú°fà/‘WøüÉ‹kªË.ÞP²b¥šÉ«TAÖ˜™šŽ¸ø ! N*/tµ ÓÓ…¶Šs*¯7&3«ëmóÛž_t­­¥øÕšrõ>×áÍ ‚rL)e„úM/u1]•WÅ T‘ÅÕhQ¹¢QAd‰DP¬•K˜­\ºÏ8êíQx »ÞÝê±æçQ›ÔJœ´¥u뮀ËiA˜ž‡C­·gW,Æ5”¦ª/ âC„L†"qêêFJ"ó"ÍÅ'6tÜÎúèu*TI ( ›6I„ÉÑ•B„ñIðqÚ{Éye—¼ƒÞQy/%ôï‚Ðkä>Vå Z:Ó¸lÀ7(ÀPûÒ‘2Ù¡¨}«¸`”Ì.øá3·)Fæ·ŒU*ÇAÇ L E³%Ä܉ª¸§6Q¥½;ÃqC"ÖŠˆ·õ1òT&÷Ëcª”M}ÍœH©Y‡Ž ®æb™q»¨ø™h†_ÕÀî½Dtì›òSáä_ îÙê"2dÊ<È©/ÝeQgiC‹i‹ÓT¦Ú€´îUm;ÅÔ1Wq¬F% ý­,”žX'µ‚Žã2“–‚}* AŽDö•.ÔRo§ ¶Œn|ªªÎ?;÷£­®Gíœ]L§èjì¿vÛç|ß§ÆnùñK7®¶ƒý¥£Y ®]¯$]¶I&zÍš ‚ [ºòŸšLZS°×s۠膶Ï"cÔ¥YšÜ(¯˜ê’Ód›œ…M¥0öj¦ ¨(†Qéùtå‰N¡L4–´Ô7mwo('dmbr;Š„YµÄ•"¢A u@†fdÓ»P/nÚÚ Ê˜Ôêb'r"¨¢˜µG /Ę́£¦ <ìŒrOe@f+µ'*{‰hädŠkŠi^UªBtc™ºæjj¸„ˆå Wé§Êš?x¸ó!k.‹Õ°ÄYÑÇÊ­d—©ÂŽ«(Îä1å\,/(½%Mõ‘ç.…"iP©‚,”­p¡7Z±6ˈǥOòjº™_!ßÒ«žB¡ 3ºô¬PgEwY>] Qíódg‘W Ô¼–=µRIÊNºŽ¢|n„ØÌûå›ÅšÏs!o"óy¬¾ž“,¥¡8œT´t[ˆ3Þ_hÏ3UB`ãLš)¹ªUIŠ ËŸHnåɸÔã‚”¤é¨E2c¸Rd#@Â@Űú.$‡ÔÜõ]ýc±‹,iïwž3‹¿u]®ûZÉiêK´})õúj®@HD—`VDÓ_Z•I§¡l)ŒRA™:÷æ½_š½òPÜÉòØó©«Mƒh+¯FÄWµVÍþÛŠÝ-ù¶C&F-F‹tu Ë¿nè^E캚jš‚ /ÜjaÎï6^s˜Di¶}šâ£â,î>Nõšù*.Ûá£G5Qß{¡}ÆR›•X ,`^x^KfO/B©=ÅÃÜ «VàÍÐÜEßXmFQî(ÆýÅøBÃ1}hõ\¬­8» „äß‹™¨äxL†ŠÄãÌ90R%¸¨,GÖ4ÄA_7`WxƒÙçãë±¾ùž}ë§hIêÈ1Gë¼²îŠôÎáÙëó®ºt:Gh!~ǾóB{ª±µ"ŠÅ·ßÍû*Æùœ Ü¢PtÔavܪE ¸žæ«†µ­KÖ)¸ež‚ßkre©½Ì“«¢%"wQÈmQ ÊÖ¼‰ÝVŒö¨É#` Ïœ¸7h\iä̤C,,8æhW)DÆT&]½îu}w˜jNCŠÜ@Žj½b¼NsPƒÔ¶‹˜™ÃÝ ËèXa;^œ{ît27æz>zÎ÷,½W«Ž§¥Jo¼›Ío†¶*Öij=ÖºM¹©š™›‚„ƒ0«—*¦èL‡ºêg"3 œ”d'­EÌPwä@» uq"ÖòìÈnÞ›pÔÀÔjB’ƒÕÄ<“uzÍ{qž_ÍŠC†ŠP Pß•®›¢"xHÜ]póZõ̓°(愵»Z".ÞîŽ`°Pt#<º¿«qŽÜsÖUwNüŠÑ‰=r[™Ú#&ä;oßcVtWæl¿Ÿ£·£Óû½»ñô󤶞Nãg$p­ÆE¨x/ Õ5a"ËM®Òáçw|8è3¤rP—2ù*55jDpE™§6©g‘b WH6>0$Ƥ²iöYdT›»Sj1G–øk«ñ#z«B%58TnumEª–I‡Ÿ-ÏËŽ¾9ß-mzô÷V÷‡r¦hQ8ŒÉΧë›ÔÎÇœ/kžjhéá¥:ílìÕ_9§"†þ·OÌËä ÔAèÌÎÝò!Jî¨LòyXXT¬>k©‹ šIxWtë§É„T=¨Â éH;”ÎZwÒ¹ó•—uY9(բܑäTFG$C¹È jîæf-Ýé¼”^ø³‘¸9¤Û䟔fP‚8 ´7N‘²èÑúJƒ(IÓ|S"޵ælPá“ xõ­e ³c©£²!æåªBaX2,…Ôd}CõGQ¨cI ¨Df¯2èøp1/À„¹¿œßÅp~:ê¾þ®Çq­l/K}ÄÄ2Wtíö“!*oÇ>ˆ²B[ŽîåFÎÍM¿•ýêq{68íÀwÏVðÈ•ŠŒý·E^'W[oöwÄù_¨Ñ§êzËÝʘ¨Ú™À”Vdb9,å‹Ëí-VŽˆyÅSNå‡C4»H¹JD Ò® Ūà<å¼­ïóTæUí¦v…`nâ $BFÛëœ1žÊµKfò4%¦…ȈP¼&û»”°"X«US%Õ°éJ„òå-ÈÚœÊʽ0(K]—fŒUŸ¯¯7®fõÎw î÷ÚäáP$%˜ô ‡k¾°É†1r…òL— ]xj+Xéb•DÔ(]IÙY B‘§Une”‹1¯¥Ÿ*iž2&¿•|¿\|Lç{½»åÛÞàïvtßJA8#[Ô_£½ql—ÅKZ‘”-˜Û©Ÿ»×s½¡³–]TÓêìáÓæo{ùßãxsbëµ°~?PΦ¢óW–'74hÀ¤õ0âï©Ç é) ¥gãF©²á·VRå^êÆSÚƒZ¯}îcÖóº¾ç6UÙÄÙŽF‡o"'Í)ÈNiÃÇ«¼7/CwZ4œaŒ¨©¤Â`o¢sŠc”Å?WOôp½ò§ø“Ç;ò¢h£LA2£p*|h‰3…›£D’%ÉÍñˆëê«zz¨ñ"¡9˾¦3ÔåŸ7½ÊGºÇPEoÄçÂÌμÍ×eôÓÜîV t…‡{ï½Ñ^G2yuUt§0jõK$ò¥¨:ØC½|º;Þ¹KS¾ûbs—€Ö¾o'3ð=íx‚&æîåG1Œ*ú‘Úªq™:2õ…£¨‰Ô)=EÓFd9ó[¸ÕÉ‹UN ãõ[}º 4£Q]Ÿè)ÕIΞoôéSš.årüÑ¡6Óè$ßeˆK&æYN{1Ì”lÌ«È\¨á“)~µzƒïÓÑH›üçc~%ýÛ~dØkf L¡ïºà•$‡ëƒ{»q¼ª½,=ê.¢©j"#:‚Јª¦r •ªƒE_-eäÝIáõR¨ÅroĈ´¶ziî5„ÓK ± ì8˜«¯SäYžÖâ°ÂF›×&Ìšë´»Á¤Ô!QI¨ªD\Z¨æŸG §>MF`²Çz}Æâ †JwóÆu£½A#dòc†r4 ™5®^ AU2”7 ¡ ¤Ðˆ´ãLʨ·åͷѨ¡͸R¼~J¬[„5nXÖ¥OâÃï¶ð®ï³É“¶s%Á<-à šª£ÝÜÁ¶ ÁÆü}èe¬*n=÷¸L‰‚}ö5:Ý,¯ÌW¹^æwòÜ­¬qHrIƒïÍV±É6­Šg?Wr­:)8£hn]Õ\©´ 0¥zT'®Dߦ̌é:pê$«3%DÑo“’gxo—Öˆ›Å’‰ªpVNÁÜæÕ˜1KsJÉŽ¥hÔÛ‹y –(Sͺ‘[¾TͽQ…O(™¸F{‰"Žƒæó½rù1Þ¶î&ÅÕUñÆñ–j®ê¬ jn»†`¹ÛÉÞæ·»ç-Qcƒ|bÅÃ:»Ü¡eaQv6Ħ+ jUš¬xÜLTàH•Ö8br¦{hº4L:R ©¤[$LH˜ ÊÔ$ÜÐzÙY†ös*êaÍËÁB«í[»‡NhaŽæ&æÁÅU ƒqaÏR'®xæ4fAï.æ·{Õ” …çn¶’·ZÏ´Ÿ¼%6‹© œžH‹€¨ÅBsôÜEvêøp¹KgÍïѸKGâ·û/žùïÇ®N÷S-ÔºrÏ)ê^Å©’ªzt’d,*ˆµìˆ±h¶T N0£¹R SÝ¥#Uäyƒ.ç±=Ý]w†ñ’è¡.Hp{‡‰dG·¬‡ym¢Ù"" ËÛò¦L¿­Gsº8 *›PPÛLoµ­V„hê1HBwÉÉ–f+,G?]ÎÒ'f™&Ùçir§ßs­1…xò£òwqK½HÖ¤ºpf7. —¨Ýã›t$ÙÊÔ Qb2aMUoQSóË×Ák§i£3[©nmucÎ÷©7k²È“ºuG”âAçÊšÖÖ•½ö„ßFŸ3CDS´Ôk½8Í.=i·­‡†Bǵ¼â˜#ÎiÛÓf¦7.m!zϼÅÐ,T(½-Þ BŽ…òàpöJ:V’aÔwòýÆêÑשµ\õ‚ A¡Y*½)Ô äÍÌŽR¶ŸåÇ'/”PÄWóGåMÐû¨p|Žp§HÉâgçå$”ص&DÎúAŸPÓ ­¹«¡=ÆyZݬ£iêeïT8£3˜ ¦0KÒëx /w¡ŠÅÇfê.ìO6…ë]ÊØÙ×|ˆÎja[©•¥´ ö§j-#ÛÈŽˆ[}q2›o]•ºžæõ ùpB0‰®>+¹¿Í\ù½o¦wêçÇãvþ÷.H¢vvsÉ«\‘>ZœŠzñÇœîÖ`ÞŒo{Ê›"êÜTÔH SNæXZ‚¦Š¼÷µ¾mCA£±“Ry…„ámãµ7Z­=S5)y›:n Þ‡áÓÖTó¿¥Ù›ó^N‡;Õño]¤È‰òEjÔvðY­j ó“&háòlÖD¤÷förâîf[£¶êÛµc#qÀÞØº®åñ*Â䨮‚x®Ô÷ìÇpôãÏ|ªÎý_¯]˜ÕÞ“ufcpÏff=_ç-¯9÷TvUx°Ï™™ßç]t:t^n‹¬Ÿ,]Î ¤";íÀ¥î7$Ê¿†çËr »X8¦ËgùÖtvçÃmåöøÐÖ;Ðɨ}&ö«ž];P×[ðërñmパ,‚ʘPà‰/!¾1/d¤Õ†Æõ踉kiIî#rkwBA¯[}0¢ Rר@Ä+Ç&BK`ÎkÅZ¿[²%nã5Kð©ûU]Èïg=ò“ufeLj!õ*LŒÚ.\ú4 ŽÍê«Ê (̸´#³MB tr hÖÓ÷¯pµ•ÑÉ“­ÌØ‘v͈§qn Çì•]­ù~~Íé«Zùú·b$ç9z®«¸k0Æ …‰î/2díÛ惸ˆÕLÓ¨sÉò²/(²d(pDè@P!¥1«cP½ª"cRAÂ7Š&bµRŽQAß⦮®á¶¸.²t"¤îL‹Sµ4kÎ]MCQ[¦µgL<¬’ãÑïq)c[s}˜ÖNs3s2&æ﹜ÅâLG|’R“‡©7å‡Y‰˜!.܎ݹSX¥Íúú›âÙ×7z7Z3ƒ¸Š'K{¹†KðŠil]Æ« kÉo%Þöíjébê`ħ©ÝsWÔGÏ2;²ø'N3RWs43Zýº¢gOn6"{©’qS¶Ôô¼j¨òB¾û¨¡4ËkLÉ·5 Ñ5)C…Ū—4K99Š3òÖÿŽ·Q°hœp`Õ:På#¶ûÔÒÉÄî#Z¬7z©tK(1&±ò¬ºV¦9 Ö³¸æ»–W©®Iá0R¢ ½ë*„å•9På-C=ì`‹º)ÞSUmfIäÀÁÙBD¤%pwÃæ©e™å[åó±®õ©ÒBXeàÕ‰ë&´ðj{—ÌÈÕMu™WF´Ô8CGJ¢ÞXžoxTëú§wi¾†ÆO×ò]žèͤlœÌnõ;K*O^8¥Ò”FõVï.rsï'îEÌ4iË‚r"ͧt"Nb’|ÏQ:Ç1‚})Þ¼3x"†ߎ;++%cdúŽHãÒsê:[——Œ¬µ±èèÑ»´RÕTGF˜|P²"qêˆz»«§Veeë!wúVj—ÊRŠÉt°ÃB@ýð Va£JªBga±bñK2ó½ß£¦ŠèXHî‹;ŒÞª5t«}Ýóƒ-bÐttk9¸ ¼=X»&§ÃÍ[Ö!JŒ2E¥ºÃ¥¯GÅ³O̹:ïX°\î.µ¡llªÙwÔ8ÊÇN•\ɇ÷˜ŠÅ?wîbw®@ô^Ïws<ªªÈ˧Zˆ¨S/ŽæC:Z[¬1GôFcc4!woZ}áäÍ$7ñ½^ZäˆëÏE ‡èg+„̦*…ypZdl¢m¬×8¹™°=Ì\¡#g7<.VZjtÄ ÝDb¨Ô{”b—N çjë&©ÆžÁWk"†Æ–’©Þ-+Z„Øá¡ë¾íl/F~¸9HÎ?P£Íɘ}›5ë“Q•ÍìÉhsy—"x¡¼­f’HfâT…Òº÷kDý…®Vò…»î+¹ª1 ”!µ¸Ï¥-Ž6jß­nmzÔÊßqÃjÎ …h TnE€Ps-bl¨ÒâÌâIJa(M9de(h5¤É°£ÁZ§áB*}Zç@OhknŒëÏJëmßu£kì÷„ü[ãt2sPgT.Øln(Û ×(øK¼é”©E.¦·ŠY74ul>:/ï’`jÐ7ùç]óŠu­/ܶjÆdfÍÏä &ɼëVjæM…&×SßHÈ¥V ;> *á©ªÅÆND<4øÙh#tUÃPC-Fà)iÚ°ŽkÕ)±á–Ãë„‚um–(©ÅÔÈ*èJA2G€Ñ°A.Ñ=uo$e³wup‚Ç6´ôôAÂ0»nrœj­A»ªt©±Z™®r÷rîÕPF6µ-T¿dEÓéÒ(>^UÛå_»÷Páv©Óï ûòJ‰ÎÖ_϶®;©“.[OOS ed¶Ö@Ò‡/U+Ñ]-øXÆ¿]wEòòÖ´¯ê+¾óŽ$¸Ñ~HØúÇd)W\—‰zš‘t¿+žyu.c}ŽØ&®÷¨g'G£RDi5¸ßN„3c^”‰÷q3ÑðmÌœÃ,»¯IÕî2=­wÎ_1_¨žçÇäw¾Ù3.iÅCæ³ÝhàUPâΚ68g'vœcêš‚X¬u EÔ‰.î:‚H£;¼¸Ì¸ò÷s¬¶¢õ;Çu¬­RŽɰiÊ— £|c†eqjh¡4”E,¨¼Sv˜gã¸s¼½ŒVuÓ¥|ÐÍhK‡iéUü•³oW™­oC[ªH¾’UC"'o[v(ëVë$æ?Rzã–iî°·+W·L§w ùd£P¡v,×W½§š«w1U⚨ˆp6mˆo¨ì©GyZ;¾{]”Zç|5ÁXIbÞqâïx!PU†Ï6ù3§pEP§Ç8)©/R¡­…STg"2áA}MëŒq®nÎŽŒ}À± jޤ]Á…Dbš:¶Õ{p Hû»ëßvëÒº–·ç£ž¦¹±—§~íßÑbó_ç£ÝvWpw9~ëÉØËÔæ³†B‰ÆòC¾*î£Ê“Ýøù=÷½g~E¤¡C÷aoͶ÷½Ü?  ˆÜªÏµ“~ã1Vª º÷z!ù¸îv–±3õÌiY—4ò“0Éb82/·fšì›ù: -ÂÀõ}ûäÆyÁ‡œ&« ÙÖÞ°‡98=Æ„ûÖò˜æã5h÷y‰vmY¸©NèÅR ××w”s™ŠB#w‹8Y´jn.þ½Á»¸ï¹ž{«˜£ãwÛft§f#Ó¸^…²Ù É»—=ê"î/Ô ŽjòV»§þ³Ý¯l¯K¶#ŸýªVÐñó–kKZHk¥Piž©ûåØ3¡¼fj–Ea)Ú•ìšU3ÂÖª°Ít.ÕkÇ*Œ¸)çƒz|Ó¿ rýø®y‹=j¼5a2„r—jk\V'l`ï™ï¹$ðÙÕÄs`¸%†fªÂöгS•%”q ª¢! .Cò„ c,N’—5PÖ1®#ZFz²•° ÕâÄäåp¢¡¦DÕ‰Nùz6EäÄJÑW° Ù»r Lç>1ôA/<ó`yÜ,|'™°…ò!šï| PárÏ,€*¿~ôRåCóHzªHʳ8Å3'ëœsêôÔÏrdëi[|Ôî;Í&…QÐ350C=›7õTLK¸‡­@ç"qV;Ü!¼™.™F…:3E]ßQ{÷1lëZÓª˜ð›~I#ZˆÞâ©{^óé GdÂŽÖ¦^Ÿq™RHD,¥35p`Z‡EgyòçÝÆïelU’j\HmB ª]ê-4Àrj¢!W[TõZ –·ÌˆôR!Å…¸h;æ©©•‚Ú’æß†üÖb’”ä³ÚOcf0Õ÷>Ís|ˆ" œ—¤SòÐv…r/\î gšˆ8Ì*RÁ#£ƒ}äbRZÔF±:ÔÚ†yuÊÁ—oñ”+ÅøÏU½doç¬gÑä­²4BöãsÕËröò.åÖÚs\{ÚøG Të7w˜¯€àÝÌN¬,Œä?u¢hRÑ.ccr7v;ÂŒ Ñpc¸ôjâw»“¹&‡Å ]×.É\=úå0qkG¼aswxK¹ãî«“U=ÓÎû­·Š«‹ˆ9¸®\SÔš5"gÆ¢ô/*c™§&Ú)k­sR÷ˆk@¢™É˜„l:)K™<šÚïªÁl¾^áÀñfA&Þ[„Æ)j~”w™WŸ8'ª¾ â­úS=ãÍo4†áwK‡ ÞP^ßñ±~WçC¶5èžãÃä+¨·!JŸ\UÕÍaëÖ÷57.gÅgxdQ¿MÄXÜ¡“<—sôóžiF>’œÚ¬‹ W©-<{Ò„PiVôñdéê7š…±ö2cP×+zÅ£ƒ†È¼Ìœîþ“æ³cÉîu¾îò»ÝÜA7 Š”²‹z31z"''#†·¨`ž\nJʸšyà cÛ;ÕpL-îBÅ~—r%¥¿@=ÎNæŠùYÛô9¯9Ø!Ñ¥ÍÍÕBƒ¼ÖTú[Fi…M{õ‹ÇÅ[ô·® 1¯]Ò™ïCaü¥$S}ÝúÚOUKOU¿‹ZM¢È¼õ>{V{¼Â„Èõ)祈»‹3éÁ'Qé#6ù±ž¢¯oYÎo J,§Nõ|øI¸bb0U‚0º»eí‘ANåÉï ˆ©Ü£ÇàT9Δý‚ëkÎdü¾9âÖ½åá´6oƒw® ïAk=Tjtòc½w½‹¥’b“gž„ ä葚Ëo™u*¾/€©ÂïonO*~÷%_r&øÒû1cॕ®¤ÎbŒý.ô¾»Ew¥³šYH\òÿkšŠ{I,cò¢5óf¨Çw1)ï§ònÝÍ ¸ëñ­Æˆ!Ñ€SμRj®¤]k¶õîÈ­¤Âò7¾üÞ÷w3ºÖa t §¡z»QcEúõ>E‹wªØuÉy–¦…]Gš×y9“´’ÖÔLæ¹!V-ΧԨêx­ï›Ÿ\Ó‡Ömt{1G ÒÇs¸±ÐIÔ¤w4·*¥¾ jâ®^`ÝùNå@r3|ø–§¾‰¹Çásò£Czú‘•ÝdB5mú^_5We Ø:Vâd7™32BŠˆ«å¦_z»ÂNõ±»'Ó©‘ó.¹qs ¨~ê#i*뺳±ùJ&¢÷ø¶Ñ†é}n°GÜüÓÝ56K²¨…¯ªÔ£‡]eÏ7EÚ.OzVÍf¬maEY€ZY–]Í•ª%ÂI%_,ÌÌ«ÕÓŒŽ«µ%v¡öü#ÏS›9»|Hw·ÞŽù‘­oë—•›Ö®F¢ áI³~üɧ¯#ºŽ ì¬ïñåyæOq!Äë9¬®Ï™âß:›=÷z«ö±ùyg6*†+5±–üɯ0ï/Yø•H…U¼Þ¢²ò*¤è¬\æã-ÃøuëÔx·¿6ØÎìßhê“>dey*«"@´d“~oÅè1rBäqrÔµó±ìË;{Õ#ƒß¢,ò׳ª4‰ºŽžr\fo÷—Ê«»×}ÒÜe{©ôjF.¬‚z¢´DAãÂ(VÞšÃfÈÔ„ž±” G¦B(“×” ÐÙ}Y~,õT‘’rs_‰®eÄ6ºâJ/+ÁÁ~ÐAnSît=rA…ÙÖ” ÚQ”ǤƒÃ{C*xCe>’0•—TG0XÓoNË»-e” s(µ⤠pô¼7ñqF½¯4¡ºïÛõß©Bu>G”´pê l!Ϥ¸ h 'j{¶6wB«Yt(ˆŠ†m%‘[[Ê6’01zAÂÛ›¯˜x•,óÒ“jN â'&m¾WLUf ÊÉót¹P±½ÞAY¢ÔÖ³šâqx± n3-&þ‡®ëSÛÔèz¾ç“§©¿[œîcJ8E’µ3ô¦À¤¤E8¶²£w3QÅÁ‘-;‚`]ó’ìÏ«ë –0yáÑr™"ƒcI&``š¼V©Mž½Ű|º-ħ¬ÞÏíiA ˆ —¶3ß~g>‰×'Ú=Ç{4ØŽgu›+¥nϲ-Eó.h ‹‹ÚõjQ¯F!e|ÖS:¼êã)šBU&.SmU;`ÑòÖsˆaÅL7š‹’½ •TgSª.¬(P›2ª®º½F`¢¨ƒNJúpœH’¸2_"(m í5øu$ÍÉ4›Ô;4~¢^SšÖ¯”··=Èh éïòëSß7½o¾üœ›ÛŒs°LÌÌѹQÌÅcí2ð%šïS:‘3RwU^ž°²¢?3nT¸‹ÀD¿+ñV8µ®oâšJÞwŠcHF‘½q«¯\âwC‡)i¹ŠbùÃ÷ݽI½é!«1ƒ¶=ê;µÖ·ªÑ|š2©EªÏî~k•™V,&„â a9Âβڱ0/ldÁçåm%t³;Ðì‚§u¼]«¡!®²”é†4@ÇzzB´61kç{ÙÖw‹dêkuÜ÷'V>X¬Ýž÷v¾%)4,'n· r<8´2àä8ÆY{žõÃî Áºc°a.ãñçys¿™°Ý¡[¸+±13Ù+«²!fq,“êlßÝUöS—®ã¨£®äB¬Îù3Õ­VâÛz’nrtóÞUcqõXèp«îسòÕl½3ïÊÎÎò¿eŒó)º(2‚™uPY m®Šà— 2 RyL#!¸Eîön=Ÿ àîŒHaµÅU!nôp }(ܹn|÷3ØçÝòßb8óÃd÷­;¾Ü­Ë@âÄô,idAå Vãe²„qbË ˆÒYìð¶dZ¥1£¾0!95=3¯9çL¬r67Ћ¬³sy‰‘-›6kzÊ6q )ºòåÑêã³ëd2N-À% ñ@Ivõ4Ò*ÉóS©Õùšžo»ð-v1f Ìyy¨qÍJ% è¯æ0lèYиM«f'áÛ*Xìy¡;¹’Ú¢xgL‚›/UPGè8¼kUðûF ©#¢¾µPõ·0…1!CòìÇ$TÀÈkŒ5¿sÜå©¶Pâ^X›XùÌ­’ðõ‘h2[m†-ZñΊ5ókÏa‘<Ù4-Ï£Šh6µ®ùùå%Ê „5H!†Ê^3e°T CIаGí±|a,r>5í% ÔË2ÜåbÎŽª âvm¤ >­w²Ô ]ù…ˆ£ Y‚¶O—ÃŽ”²›’Äõ|¨Öˆ“+!ww‹# O±ïcò¬¿Ï|ðòÖûœûì¸}mâ­˜Qõyã7ÚGó¬ÈO6¸b1~<Ì"Ëí^w|ž†™ÏZõ®-‚°„ýë Îý¬n-wäц¨œ™!äÍOíoñ O×Klf;otŠÏÄ„a©7‡ç›bQ2"RÖP³)XJ¡SÍñ§^kC˜ÈZ ,GˆÌÞ®õ Úçe³*’ÝWn ÅPsßé¸Çúcô¹!q~úS+2xô½ô¼qÇÀqd㢂>±àH4DÝ t\·CÎŽa~Öîï&!J‰h$É(Uå»üÕ‘‰nã†ÈÙ᩺¡yMÌë—:+›Ã#›QœONØ‹ŠY§ÊÔË~^uÍâs8­4®DÌò¡ªïK?~5SØ#5Ú®ò·¸Uá92R“Œ£Í…Ȭ»?IöA1¥I¿P z„Ìc5ÀYó"ikÑØO¥€š¨Q[ZµjÜf^Cï‹›[³ÖúoÀ÷>OgZü¸ô1҃ߜᒠ+BίÏÑë±ù~V|çcžÝø0qTŸU«sq ß3åÞ;˜­›Ñ­ÏÈùGÔA45ß9W"g«©uk6¢jq`§h²€ìÃÆZã‘Ó`Ì “‹áÔéÞ‰Žóê÷<•g[ÍnlmßqX°ŒÝ¡€šW' ¢IwZ4ï.ã90´ÊÎFꘉ´† õ­O[>¢*ðê|‘îí'–¦'çÐó|óˆùõ­ùÝ‰ŽžáøuÉ –§ƒÓÚÇ®õ­¬„M(ÀfD¡XXh6b“–Oï@H¾BÔ!…kƒaed…™ÙB ƒ{Ö0è „jÍå,“8%|4Ág½~¼Ã~¹n<=í]ý¬ù•'FÆg7½w*È‘•!í¶¶µå•𔸺PëM箯`Ç.i8ÎÙS\ùµú]¾.˜ZÀ/dQÕ Ö¬Š5“¦m ‚Øx-òÜ`ŒïQ±\ò¦æþ¢}Ks½C”O K¾ßx„”ô]jouË}Úl‘$¡ã@ƒ‚=Ö©zï:z£>+N©±P‰¨¹‘Þ  …^ùx?ŠºƒM0Ø}•ᓽÀ`HeA®Rf\v÷ô¿g.þ°|Ç®ŽÊ…Ó2“6P£|´6ŽÓ4Ïk„´ Î>ºg‡ $,tv†°ñÀ\@À@F¡dô‹ÃÍ2æ¤(;. á̘‰Y,<'23o@»£Õ½m×¢ô5"òœž/æ Û1ÕÌØÆNç »©0Hôv0w!SÀ§·Zš¸˜îª)ï—R¹­ÔUwÈø|{¾7ÚÔ¶/sº0R[ªõëçá|¥újjumï:OŒSbˆ@¯la`–1œË…ô|±:áY¡—@.Š—7páä¤Mg‹â^ìa®¼Åd1Í‹<¾¯qæU'Âö…ʜ˃³÷¸.u©Æ{" ‚: õ¤‡˜ ÌnîBtæcë¾FÞ'¼ã§O'“»ü¥¾'™Ð øÄ¼GBãƒtË5mMb•X@“ËKÁ™šÌ>ñמæk«èî4é9œ8$¨™ÁJ’ù0éjÍqúÔ¨×Ö£Ã{Ùá;¥q¥'èqˆË—Bs´Ù—ÕœB9/g–²§× {¿ƒ][«Ðm`è<£Æ¥Çrþ£¬uÛ¶uÃ#zË J‹„Â!5[¶iÈùKßkÑŠpBø’%/E†”´ Ws¸¥­W,mnäþ4œÍèn¢¨DÃÁv”;'ÌÙSÌ?³Q­Õ˜öQ~Žï›½åF} @¢¢ ˆÒƒD@iåè•r¶*Š= Ý ›ÕzÖ³sØÎfo—‰ò|KñZ~q¾à¿~_¨æßª–(¥ß"â;8y©°ÌsG¥“U\³>>Žün3cXsÂ_šç½pÜÄyÍw½"B£ÀÙaúí\Þ±ª“…Å=<òˆ:› .µb¹á Yf Á’ú,˜…hU…_&Ñ ‡‹+ΩMÑá‚[³itoÂåp_\åóP˜ –D4ì-¹çW4­ò"Ƥ. z6(§4¢P¸Á˜hYBÛÒÙq hÅŠÆ•Q‘h.XA2 F,+ k\©§1„r|“ÏsìwÛUÇ^Ë žõoÝÚÒû›žNDÛ•±}•¼#yå|N©èÈDÚè AáŸí¨ë˜h=P_·âïÉcŸn å‡B£C»«øü¤"Ât¤©žJAL‚Ðaݦ^øÇ4´ñ‡TBiƒÃòŠûw®•_p½®ªÌ iÊüҿΣ&^ì1õ1<ï¸= L6…O6-ŽÜ(Í^ØôµT,‰êUžÆ#ƒQ{G[VkŸzŸ‡Î %ËZ+@PmÞ}_Êħ'`c«áv-âumã€áA{YP”õ×¥ë®ÛÛÛÆìG?²­÷&Mˆµ)­À¬ÔÞŽDW¨†y”Ö¨¬<­‰º«“%‚mÑ—q|W3IÉM‰õFõÆÓ Cs_Vº-¼Û7¼¤ï¢YB :k21¹.z=]ÞëœÓNpÐá^âc`ïU}Ýj3ÍJcºƒ1ºˆî“©ÚïW/œTŒ^g}Ï#èÅÅNÏ|æd ,(×|<Åï]ÇV×:˶Æ)1äM¡ï—Æ^þJ`0ÚÇ[ ì UÏUp*²nUà½óS÷=¯¯™|Ó½ “~Ž¿Õbõº|KáTÝ1;ì¤Õ†-^em0Dù­tQAP `89Zg×1®éXt¹š«iÛ —¯WÖÓ>$K7ÔE]‘Ú’i„¬#[£QÝñ4Ȩw2«æ Å0@xZ¹!9™½41Þ*ÍÞ.éYÎS“F«0`<ßyWݽRëpŒãDÁ—¡W$•P>kñO¥q¢· ¸Í“ ýPP0÷/†µ¿ÖŸ Œ›!‹a¶î¾FüÏ:Ý–‰k*鬨L7‘º{b¤NºÏ¡Ï­ûhàöAª2£Ba; ¦I$’4ºL~,EâÕËÊ–ºìÖêC†ÎEOêŸÖÄ»+kFE,šîö`kÖ83QåÐa~õzútDù¤EËÑôÎ>ÎÖo2n9ö¯" 84`÷Y!iѲxÓ/‡Þ}~3#=åsO…‘=è²N\B·&h\Ú~뵑<»üùßqÌÐR4`¬PFær$õÚÈ"¢{-^³¡ü»ÒÐÑÕôH3¶/jv`$Y-RY,ID]Mtu©¿"T_D±Éç=[+g?•}‘%ã }åÔ1U.g©h\„$ƒ3‘õÄ$ݶ „ £ÖÆæ\ˆ©›ÜúͳZ æI÷ªÃ;]að©Afë"zQMy÷­MZëÛõ`µ± ËÓÐyÕ**öæžEDr!Plx(,ÛœEA¬ÌT²ª ÀÝMQ^tàýU|åÐE>þo×…Ñ—gЛ"üÕœC=AȨŠ#W_fn˜»&p¹ëî­Ì× Fù‘gÙéR¢®Š™Sïôibsõ4ïæ¶Ò/ÐÐp‚Òxý‡zÌ£™úÓàüTZ@ö°´¸Wyç—zo˜"åëáˆ!2Qp_0çˆ><„¢Íe@)Jò' ?MÎ"­² ®­‰ó—ï׈/Ç€"N€p{Æ$™Ønä¢g 3ºÁïU㛞§|xE©V{s“v÷ %׿ys,²«G³&%2ìˆÜiéÅžÖŽ^Bê¼Çdr¢"ñ $Ð5>8Úìò»¡1›e‚÷1¸£²'ƒwÇ"&âÝ“CF> }äÔk°†Ÿ|Ž£5ž¢P#͘‘oõTðÕï…â»ÆU×rù1éu9UÜ«¼Ó—©ï61f<ëÁÔÕ8QãÝX²å™ùRF§G‡Þ»’íÇV뇮hŠõƒã¿ªõ ˆx¸©.©¹#æº|Y4ëh;ÍöÃ/‹ðƒt š*>÷©ŠM*SÕ÷ǃ"½wÜ«û8;0Œ…ѧ¹ˆóév.ª ¡œUÞëSž%ÓƒŒ :ž`°ƒRî&Ò$°Û‰Ç²°‹£ƒ×O+uüƒp¡H™ª†ý4H|ŸzCëk!D(Ù^ 9$Ђ¿Éå®ôˆ`Ý×rëìîŽ:ï͆t÷z*òGÄ•é.cô›^Ó9[b»»@|[X÷Á\¦ù P'K¯¬6´ÿ-iŒpJ ị[ø+«õ„{Ü’èö±(d׫äãå‚ú¾;`ù§áç×a»0qÀp¡ÀqÁ‡}µÌóiªˆ"··Ì}3, !`‘ú|ʤŠCãA²($ÔŠ¬‰Ãc§ÃZ¥i5u‹O !£X@2c €ñ·# ^Ñ…GÂD¾ÒŠþ™¤F¸’ZBÊ4­‹àÌ„äÆtöÝ`(1'y ÒúçrÅ 3ÆÜï—ÍaËnþÌY½‚仯ÌH®Bbc„YË‚ZÊÐĩDŽ=nÖLm«‚¢Æ0åt®äÇ믌]ÏZ9ÃÞ¢sS=ÆÜ ‡[õ"gŽ/N‘¤’|ß–^öÝŠ÷ÔT¬dÑ@ª8D¥³!]m@j]J/­3àó+TÙŒçd%sèi§vä2(Â6<9†T”\P@ðV? Î äÝ..ô÷¸ëÑ.ϲ4ɯGò‡yãZ’L‚g«"&Ùô$9 XŽÍ̲4=ú{Ï š%Qí~-I»¨r¶âœÅt’Ñ©¢Ï´"Wãž…C´T->½w!ÏwGD›ïO‹ˆÜ̧Wm…–’B™ŸUàVóÊŒÇ2>»t?QGž¿Nk³íÏ“+‹dìÖ8ŒõŠ 2ân„T*gy2"e\ÛyàÄš¿Î¤rp¼ënΜ¹d%Ímþw««û¾äPÔ0$‘LoŒ_·—¯¨ÏµCƒáƒì:'E³g1L.²€m~^TùFob¯|úîôH¥WÔàÈ$Kð[1B(ØÚ“&”3Âúœ^Xˆ‡yÊ>B0U&EmESQ„ Ó½P«v·Q$Y£Ú9ÅA™Š» ñŽÃ:å‚WáW乨Xp3`äC¡¾wÈ  ¿'{ ³:qˆç-Ý×÷¬Ñð[ïð>‡Cgƒz§bèsrÖÔ€hfÔÅ€X¢&ÛÓ#ߪ»ÄU„Aɼ€ E8÷¸$™ö[^«K­?¦†9šš ÍM °ÇË s,BE2u™n»[k ÜAoÓYë±U7‹ïÑyx2[ɪj§±ÛḘm,i]××êwÎO¨±%§³nÞ–ñÚüíy¾{†ÍX§Õ5Ùˉ:Í_•Wr}f£òèjn·'Ÿ…Fq·öIÛËQD„!¿^‡0©Ó“Œ5ó… €§ ‚eQôE»]ƒ¨±ÆflêØR9«ZrǮä¡âí‘BNl69dÉú±§†ÛC{A cëÖµ¨ìãS¿f÷-i»,¡ŽŸ´qg®Lï6L):“ ƒ‡º™‚4!‚¡—RgèÛ?“Á½ºNü6&ï¿uéß[²§•˜|·ÚÜŒ=c<ý}¶ ç—B|yŽ@8àŽR<ÈB.ìëçˆZžäÁc‡ˆÇÔ+òVú“LÐ’^ 6²Š´V±;vª¹£UíšnÉiÔò·#Zø‡º`+”e ÑßžWEÔßZ¤bm&ì°Ú:>ï­„drmk^I]Ÿ¨¸êÊv)²¡ 0‰ƒõÑOµîqÑ#^¬;—Š8^E&à›4ë‡=]6[6ÝÔ¤¤ìzüjðSä¿­v3¾=™÷§¥-%Œ>]ò‡¾îàa]½™D’wú“'3Ø^¬$Àæ*«fÎa ™7 &É?;gx´ÈÑD)°ª“îV>,«Dt=J™!g@Q•ÉSH¬5š©À=M^Ç V¬(5š Ñ›if2¦o„•ÒMÑŽ†Q©™) .ÍJPð®±Iý9¸Ô×8Á¼q]ßåæêOíöã@6¹š(t¢ÞŽ?GØee÷Þ5œËÙyêÀ" #y0T‚6|ú—ÍÔ êpìy_O!Y¾öbµT ä#J E^YÆâ)?F¸±>ŸsjûÍ@ÎêÞÍ@5:N¤|uÉäz'8~Gs5•ÈXRÐ5 ¡@òIçzp9œ×^ Çdß à¯¶¯ÉêýoäzûÅ_‰s/jˆÑ#·ÔI¶ ÃüÈE#d¥óò²4°dF‰È]QB>ûî5w،ͱ1h¼.Œ€iæ¨vyUæÁ}arx§ºÜ˜½§ÎÖú˜Q¼¢OQÇ/æ*¨SZÁ¹¸¼»tÈ5B*°N÷òV«Ö Üê5ëšìßpšK;q£ÝnîI4•‘>ÎëÁÁ.òEÚC¼ÇÙ†WZoUM™Sä3$¥&­6 Ž’["p® Ú={¥Ð¢´mƒÚí A²²ˆË=ú‘†Ž/¦³¶è¢ °Ì•ªÏ§ÏÝÔâ7Nñ@<ér„¨—:I©]$£Y‘e“tA“b§*…Šbøe0õöѾl&L}é)hõä‹· ø5ð¸ìœÅµFb\³¥ŒÌlkŸ+Xiá¹ú’!£Å<¹QUÍýéV£¡JñM¬äª ÕCÌ¡"âW‰Ä+¢Ÿ<îu1ÌÊ‘iî­sÔL¹Ù§…‚~±mã\Ç– (UY8i«,*˜·í’ó­_^m‹QyÁ<ªÞ M=jn=cž{áObâ@*c‘>æ9ð'LÖÂ@Û{‘ðv;´ûõ¼î•‹Ýžù÷8n|ä“Âfçr޻Ͼó4§p‘}&eÁ“dpá0qM|¸åvÖ+Þ¶ækE‰QF/îÅ8ÇY“©·8P‹$ÁŒ9ÍV µaTg6ôò¨êÍejGQ`¹‹9 #c°‹As¬jÔ,½“L\lM\ѽ¬™“«WVj[UA\ìD¥_}óê‡qé÷=ÈŽÖéD¬0ÂÎÇì jqïZõ ¬ÅÛ‚¶i•8) ,y2G°CU]jŸ Þ.Œ“ä`z_ª–Æùà°$/ ‹qÈò™µ¨ÎI5u®‡'bŽ,d™;k Y Ð«`.f ‡½y2ä"Û­;1|;ªæTF♹–‘´‡8ºÐù•o1fÁ[Ú‰If­äø°WßG·î<¯9CϤw“ç}ÒÖÞ»\‡¸“WV;ìM˜tIü¥ {|ß¶k…÷YôclÆ4!¿/ø4i!ÏÕdý0¨OGŒ*ê›ì¯½«Ûä6ØßQ=uüDºøã€ã€àã !×¾—âè§®ýy^èþª„”à°Š°}pŒ}§ˆV@Ú}¶ º¡WEkÚÝ9@H_B™#X'0 {QB°$ŸFNò”ö¬ÛbÆï*:ÍäK[0•aP·¨a>ȰÕ`ëØem¤ùiRã—Ÿ9DQ•@‹’F<`H\q׃êI„±ºôSų:ƒÉ Op·j8å¤ÔJ‡ÎÙzul`…E´9 h/g—Âɽ9åÒ ,̼9£²»q^Ú<Û“¢œ é•.ÐÎâY4e)‘6‡IÅMÇØéf±€²]5Î/kO:÷¿mž(ˆô°ñ¤äðTèQN¶UÉ膆d;+G@ÆŒ¨5!YK¦TÇVЋJåUÓŸÐõÃÎW4ÏÙ— -0í,^iOWQÛûÒê7ñ±¼ƒ­Ð`‘ôe^Ëꎰß`ú±=¨ä~gXØi9‚­ˆ‘öXF í*‹B‘¡3¤»ûãÉ-u…¶Û!¹ñ3Ö¥^ýb¡ì‹UïP=.p)ÓFOSíWżî`‘˜ ¾£[¨‹æLþ}o/ém-ë|õ‘ÞÍ»IȈ4‡ác jU²ÀŠÙêØ@–›r4#«•ÒÜß"«œrüžò´ô"¸åU‘ËphÇ43;Ä1rA>FÞ \À’Ä‘Ê.ˆÑ,‚%½©9]^ÆÌªÛVt«#ŒýF½ÀEžé¼mbã®ÄwÖî Eln²|¸³ÙÍ.>Ï v¼M®%ãô”Ôo•™_†"Æ·÷¢³äÇÂÒ×ß©Á]?JÑ9NzÔÏ™8¾‡œÖuB„söáž4æƒ^ê\.ȇŒ9p¬%P¨‹~NP£ÉM¯ã­@¸©¨Šp?ÑGÏ‹öåöá}/Å]ÆÔ[¢+èÞòz>–µ‡›[˜8 õ©D=0ÎËÉ õæ(«²Žé^âÀ7y# Ž¥Oðùú>•‡š›'(L $-!&¡à,ô¬–0 ã( * ‚¿lšíÄC}ó'Ü Yäòe”a´«- «ƒ#)–Äöíèž×ìµ4ξõ9+[¸è¥”½‰+뛡 ‰f ¬2}4kñKõESãz¾Ü4zõó¾e^=„t ¯P왳îÿb¸éXøà~ž-EÚq¤Ç·çtÜ“¤˜0’È@‰¸¤h¢D÷Ô]€ïtñeÑŸ#±'M}c”°Š>yÛÔ¬—1)úÝùìMhóa:•™vn†ÖŸuNÒù5G âvòÐÙº5Þ1Ë…£Ží¨ü€$‰«ãœ,p×%…9Ïݪ#fUžNSïéyzÍYúôƒ åÝ]aO³±½úõ£ºw±sŽw•Æn(¹•´`»Ê0ìšL¡ƒ*Õ˜C õb“ÂËm‘êÂX„[IZgÑösL<“HLalÃÛeehå”Шe`2ÛgBÙÙ46ºİCñíeÎA´0yeîþç¤ÃÐÖ·q€%Ž·‚]ai!ñ‹$[±KÍršÅ–§ðÍÁ5{s¦g{X†•….Ï‚&¶Ð1 a±€ÞɆ‡ ©íúV0ÑT©­â˜7½š¤s®v´Å«Æ½tööŸ ZP½÷ |ŶíL¨àîæ`Ba ço·h¡,VðÖª,Õ, ®UaqÁù—ÞÉ3ZÕÞp0 4һؘµ”AïaMÇZõ@žýkŽõàn:Ñ/‚ ·:)ô€ã>Àò(Dš¨ò>-£Æ£ ¡O+ãìYÊß)'²ÅV ò7¸YËðú} kèÿWÖûeŽù½ª €ìŸTO9²I(ÑÚ\±˜F^î Á’Ð.µ7Ó#—f!ØÐ«x¼mµ¾o{r.M¨5KHè¯ .eÆWíwbZ¼®)¬W±XÓПъÆ/) øb€Rdz™O¿… :ºß7¾&ÐW^×ãïSÌ顲´Yb¢HFO± bƒqlª¹“Ñ®òòÜŠ–UŒÛÌÖ„œ÷_«<šNðøJ èD5E/¼ó;«l*îbýO½>žèÒQ1ˆàØ@İ$!}¡Ó¢`À͆ezî$Á ÌB{cÓ„†Œ¯êsióß;ÔX´™Å ” BI8K 1É()â´“§ ñæç¾ò»'O×~Dâé{\gpŸÔ#]}_wÑZ‰®r* A2ƒ%5û)³5Y29L–=Q-«“èÜ.Käs½Mç­þòîúôlõôC1°Ú± ¦{ÊÁ{S3c8ï›#j6HàHHÛLôÆáw2DÊáñßãïõÖ«d-´œÖŸÊÖÖg¬B K>i©ùåLlšQ`ÏP4·"§#ˆaàRóJ欱x¦”é$šþ¾b+¸ƒ„7\Ü‚zb¹ z‡=áR -kOhMàeVý¨ÍØ÷:©î.nb¾Ÿ_˜á˜êØ/×Ð3±èÚ¾&ë­ 8ýxy+&αü¹7庒Öýê(‰>HÚ¶¤÷M5ø÷Ý &Ê:é[ˆ QõDÇê¿Î®«Øj"‹ yÅá‰áÈÊžSõš{ÚÔÕc¯>æ§Ï«ÎbÔTA¶r\útk^iF³=ãU½ß¿%²’üŽ¡®´VE0I‰g @bÆNhh< gv%°æH I}KÓTqnñaîëµ£ëÓîn—ÉØ0Q("†.F¤!n$ÆêAÝLF­F&Ò©$–lîfe­ë>ô9q¾«P&[ü|Ëš¬’ôµ2bè\C yºx{§µ!nff:0·Ì%˜àsd£{Æ --CªvðK„ãõä>Tpyƒ°­š6iï\zŽæ!yÂ@‚‚àIDº5˜,öñÌt]à…•RœÙ‹å¿Õ(éWÊWá†)Ø«‹wÛÓ£Îÿª>µ¶”nao‘[Sž¯Ë•7¾Ç&#°û!¼ó&Ø{¶¬)âºI>-‹…ìók QÑjÍ2mS´!žÄU‘o^¡…˜‡èw%íÖm¬ï!½q^%}ŸYœÊ“‘jA7â[¢Ï†©s!? Ô`Á Èº*VÃ?»ÀZÌÇ•ްîƒã;™XP,M«‘Qspùù›Ï'Áð¼yðcw>K·01”Câþf:NÚVDNÙCÑ4]Øß6Bû|P†ÿO¯ÌDpº0öü0ªŠå’Ú]‚n6`5¯/õ|÷Úæ8 /Q¿™ÜKZäe·'®Ùê¹{ÍÄÏÙ­YÇu¸І¥¾M½ã¼#¼ÞÉJO6¢‰¶/ŽÊʤV aYN×Ëøíy¬io3ø¡>‡Àn­PÆ.‰b•`2e@ÃkÅ2ŒÉ†´È!`Àû"lyiV-ùß°xI"ûñGeç¨Ö…·Õ*!…¼@Øf«< éÕ",2e iÊ ç¤gRÏ»Lû¬ÉmÜœ´„T<ºÅ¬:k{Ÿ4ß=¸<£³bb|=Ttª‚š{½È‘ì0#á“UÙånòŽ-ʬ0£y5‡9ÌFª%’­^ŸÑí5™. }“ç~a¤ŒíWî‹.Aëj ÙȦ#»^ŠÅ”Ÿ’D1¯–½;¹{¶‡‘‚ ï·ÜéîžÂ•DHƒ¯ÙO#ZŒ…«‡éßÊšô¹?õ«#‹:(Ÿ”7Ê4J™ü†Ž|@y¥cG4 xL…€™—Ñ Y4¸º7¬‚O‚Í9_zzuœje z°¢¢˜(B˜›],$*Š(~ ÕdWHŸ^þ§gÃˈۨö[Goïj4r×q2"y }ÄÝQ”!tú¿äW;ßçæ£%…Ûpt`(d ©#U?&È®sA§Q×.i‚&ô”[hô- ÈX‹Ù‚z%”‹—¬°iÁè1¾s|zúe¸ïV¾ˆ|óReÌÂánú¦á»ôiQj²æèkŽS]´¼M§o)w`OZk³“êANŽ%p³ÈÁ¢¤ ‚xf0€ï鉘ÇttY0ÇH™+V•Åd*[ß*Ôž¸£~ÒAã‚nâ.Úš"€Q:â­þØ·ªlz¡±‰í)¢3!F5Dg`1’„r>Ú¹Ù Þßod·6ï*ð¤8 jÎzÙò\Ž[ŽÌ’ "šlk¹aIL¯‰ÚWv§?bDÐð}DÆf¥Iq7‚&óø³ °,%œA!óÕgK÷æØDd+ }” n\—¥t²`Å´ »>-·¬||óø|;y’.S}Éò'ˉ¨Éפå‰ÁLPÕˆ;tÄIx*Uµ'yF& q¬Üü¦òÐqDJ¢5¿1 0{ÕVÌÄF D\PF–‘M„• QC|þK˜Žöéz%ˆ2ɘ-¥œ&b2R9p´œ¹‰ûÄã|òoÁÀ󳮿ú¼.M/¢èŸËìþãòqéì©¶ß²³çcô¿^Õ.ÝÃíFÍÒÜçp²Ì“´¾aäGé`—·Hþ’ç±RìÑCG‘äPàë&aÈç×»£QXPï¥e[äîO/[ÏN6ËÓƒÀf,¡T@ê³$O`¨*izfZKÛB¸òY²Eí¢#pÎMøõøAùÌèØ§Oµ¯|x2 ðFil¹Wì×Ö¶Ÿ‘NÇʹZ/ôQêÛ“!¢1åu»±½…šä\M.€êÉ÷DÉÐ=Ü Œ }Ò=°ç Ëx€-ØÂaÜæ.þ¹;¾ÌïV_{Ç«gÛRc’ß•ÓR±©Ï©­G¯²m6ä}3*âcápm-¡9د%l?Íà¤m^vn×¾h6 âú!#ñjàd`\ÕNX‚º8®Ï5‚ðÔCÑVsê~:og]úk ú'ñ¿Oê7û€ÇÓÆmò3Z€edNIþnBèÛ‘R?›¿„Qõ[Õ¦mò%âš_†@üè/ËÄ¿æ?¥ª±ãŸµi~kçìw¬w¹yÀoÞÏØ$ª-¥dô»0Áw锯#Ç(w§¶äÏO MTD~D›zŸ¨5·é×?­|{~Kl¬Ï.n` uÎ×ÛœbžërZFT"-z_w»rëÄù¯#°{Pª3Tê}d÷^e~MÞö o…NÎÁfc'$BÉ“fo `æ2!ÝËí¸·zÂjןŠpÑ@ù©œ¯=FZ6Q'F œz¡üûÄæÖ›ÓËoÅ€-'à>0‡5‚¬‹Øy±/]NfýzGoÀnºžZj¹0⟫{ÊoÞ1¤;õ¾8¿ÏZï‰I“1Xœ×¥¯ÎóžTzæ„ýrt»ß?”§„AÈÕ³hÎÈgŒ¥Z”#WžÉ@fU¨2,¯5Û"è5î½¶„ÍXu•¹öa¦§ð)\”ÇKæ‹ögð47‚·M£L°¡Â©äp€Ö(R¹+=/+‘_pÿ)oó»<àæñåµ¼’ûíV?/Wï1\¾t>GG|ø ÐX’Ý^G¦Õ³vCõÖ  ëšW>zhƒ~ݹ?6$gόϻ²âϋijÃeÝ‘¢åŒOÈÞ y½RŠÈõN½Fe;Ð\ >HÍ…f¹«â*ùÁ÷±–R±¦í bF*ÈÍ`’ÅÂõìwųKÚ[Ö£Mv¹«Žæ#üYòÑufšc]ÌžzÎ rï¯ñów{¸KÖ½—r­™LJI€-"fÙÍÎ\ ϲ‘]?Yß`†«!ò (ä¹\ mt²RDgÓª§sšä.ÐÃqaBí€k¾Ö+ºƒ"7dLĦ4ž„vb¨> Çj½ý&!€™ ¥GÖCÏQÆUqȪݯ’&ÎÍ€·›=­lœ³Üj{{ÝáƒÅÈ00ûÊ€å9B€ˆÀc´±4º+Ø·{¬sd6sq¼ žyQàlÑFe✔[=Ê_ —²U¦mԨش·B›9¡U”QRL´£î¤xÔƒl,TêVh2øŸ]«‡°ÒÎïqG–uªÍ|Š›Ì=¿¸õY¸óª_TN© f<´¹á½&™³508lù|+ÂA‚cÊUùæbϪè¿|Ÿ8¼ežüìý]˜ç‘ê{õÜÕÂò‰| /«Núü®ä˜"ÈãàÔí&{P¾Õi¯IUÁá­>™ÄT2¶µÕQÐT rUeø:ò“§±ÜI=CE£%N«Q c¾ìfÊ= ¿„³´$:;Y,ä†vMÎZ3}ઋ,0\Þ¢ØF¡`̦&ØG I7, ªr¯nlÛaÖë¨r>ÏØ8=C”nGÞ;¼t„\4±Ð‰\ÔM4•CR7SKš`⢠o;|þdÞ:[gñï Û/ჼE÷v{ð}1YüZƒcãÎŒ/è^‡3éÕìÑéFç`¹Ïß6‰‘! ФËL3N EV Äš˜ÃÔëÜR¯fgשš¾Ç0yDçÏ&Þþr=©ë›IׯÒË£ƒk³WðÁÎzŽùñÝ ){Z>Þy–=.;…ê\Å\¦¬6Ž ·¸pŒ¹eHY‹Žµ¨¤SÔ–MºQp èêî9 Ü› c—»f{áç`®P*eq¸¼úõÍ<Þ}©ÛÔI¬ù­ºž2Ç-ßæóÅ•Ì\¿þVšçšðzT;ñBôh ¦Š£v¬]¥ /s|^Á®ˆì¯‚ù™ËNïd^ºê˜]ǯ^•ß9‘£RqÙ¼ û¦>qe ¦Í©]7^z£P÷rñ}Ù ñ7±¢äóiú£>Lˆe…1ëã:~!hP.0¦ÑŒó1ÕjÊx;*ã챦žˆGØ‘‰qÕ±6u€Êu(,i0MŒko]ÝÅN¥)ÏßæY­EhšìTýÃõ/½Z¯=vÖ ÔVâᘧڠº U¬ÄI¼ž…M„ªV]„î0Ö¥Ž4®²VšlûK6ò0cIœ-’d’ÿÅU®úÙ¦olôs`›@ëÍeµÑ»èÈEU˜¸¤ÒŸú]úW¼æz=l¿ ºô|”¯Š99s¿ÏŇhcAB¡ç™Ÿ§PX°à‰AiÆ5RÎîâ F(1éc%hVˆ¾Lßz1»ÍZ`‚h"(òÁ!h½#-È#-EÇÑ{óWDžD•3Í …èÔGQBð Å0t!$¿(\å§¶È'FaÇ_Mno¢¸JØ$bn7æ"“‹ÄG“Ãw<{Z.–çÊ£@ΔVìcNfA¡X©ñöüoõûŠõUY|ý±ä§ÀOÃD{úïÍ…cÓWŒí“Ðyo6á…ûÂ2?‡•çÁó¾óÍ6—ìVÖ×6põ¢{Ÿ»Z”kxâ-°×k‡Ä“ˆo8µ¨*ð1ÍΙâÔéÎÙY‹­šŒªÛ$ €ÄXÅ“ce{-=…ôYI"¬5î$ÌX¤¹Ê«“ó3«Ûß½ô5o9úF»×I™óú½K¹í_ÏáôÞµÁßœî´Áî v)Lª»kœ1± 42)2¯‡wcjxSü,sl%}…!+ˆ{äŸSŠ@¹Û‘WÆž†H‰êL<‰°?%Œ‹B†Z Ô×`Ê«+ wdÀ2ÚiÌ( ®uÌ/‰Š€å!Œþ×C£À6Äí"Pðà¾ÓºAxtéÞª{iZèÓ¾©8‹Yl|jËúk:ͬ†·§›44¯µ6ýe&ê‡rs R·ÞH!îbRl"a5g>Ü>¹™‡ö¼˜Il~å@½ê£¬T¨Í”O3sôA͹ Ï7DmSº©Y‡;GÚy1äå-ÍVŽMx¹ åF’ì.u¹æ§–P;„)])ÎN‘ÝžeFé,ø0WɧKÒm1÷}êá9ÅÀ¬´Z«G" `3¹®¹^ì ÚïIx6ò„¾ :¶^Ôw²‰ípÝ: þ\”¾È–›#寿Ïâ»zâž½î휇å0¾|q7s¬¼³BUˆ?•YuGê{•(iFô¥åôê»2þ²àY)(©gLnJš$>„ö1…ôrÖ¤XsZL•†ãŒÉüsíßÒöfÐdÇÚa=8‘àqpR%iù™m!ÅÖD¸à8ã‚Cªå‡œ¬VIF«2œjlω ^{iãPs”Cb¹]®w”ÑUI_´ëtÍNµk^Ä*02½±&çW1ÞüîB_ç~m&?!m£r3ïHx.p<Ö˽íxf ±µÃònG 2QAuâqé¨M­Ðë³-ßaŸÓ½[NsŽy`¾{Þúõ "AWÍs ê¢Õ¹KÞ÷Å=¹1`ƒ±šæbÕ+›Õ¯öIKBÚW¨²T^üc}Þ%ïsÍf úÕ 8Ã.IE¹%¹ù@ÅA˜‚¶ðÓn:g«Óâ÷z¸¸¦g-{QÉü{V·?T,B;ás:ý©’þÑùãí¿¯Xm ­BHh  ˆ!JŸ±†YíMØT…Êtoô¿ë<Þ ÁTA¡U2@»Ù×¾ôy ëSû%CöXêpaõéð«m`}åÂZž"ʼn@¥ò¾á T ¢LÜÈù§Ì­k?+ædŸFX\~? Ê×¾î:ݯ"8&dø¾•Pîí÷ü’ÆL Ÿ5`¯D¥Cè`ÌU9OÕãß¹ ­ÓÞ½Ñø½N×Ož!êt¿CÖ‡,«PÍ#:¹cˆbuˆg6³bÁíÉQ"Ò„R™é}È%E¸Ê ]ça¼ñèá¥'Ó­ò|-bDaFÂT]¹eè÷Í­’õ|¨[Ãyñ5/æª~:(FügõLÞ;^Qõíö(<õéô+\ËÉzüJ–cL“û•7ëöüÃò÷ñÈsŽ¿]m1ù¾ûðo*NÃã]˜zŽu|Ï~oƒóX{|fªb¨²äÄkÄzÃv—öº]:ï 3‚{úO†ÊŒðòn×Ëý¹ÇÞ´gô:/(8 A:{;Ø` U-!Ö];W4™ÃcA»î¨3süKºµúäñÉ2+]IÜ›'§%:&´åµf£§f:ù»]/ÉJdML›è4„ŒßŽ'|ŸŒ•ˆŠy,"Á)¾$¨;p!$´Mï ׬Sµ•åíelÔ¹s,v!wÛ#)šÑê-r®xð»¸1À¡žH®0F¥1-¡@W 6¬-dû2t é‡|ÜWe„ñb©¨ÕV¥½9¨ú÷k›åúg“¶öÍ\W5P6wi/žû›ÊŒ=ñOPуøå3Ä63'}c\Ö´€±“•ý—uNù£Á²3ß3ЇEÑ4:±/‹«#ÁŽál …ºJîÈØ‘·g§f</D+І JÓªƒwØ1ËÈŨéîŒ ä­6´Zâx‹\'£dl™èC1'!z9Êš„Hð²›Á9yC­ ¿ÊZ˜ã\fYDl›§ÊŽý=“å=ó¾MÉ<=g”ýfÆÖ¸·âî##‚ñÈžlšÎ±Â]ÄCBIHÏrŠÁjS™ Â¾_d/›¼[ªy ”ÝÙ$èMm$×ÄìEô3q„§³µs ?jä“úâÕJfóŠâZB¢>HCátèK«[â„ îÎÅoÝaÅ¶ÂÆeH˜­†6¨6 ’r1G¶ û¦$ñžt vß\›ÐAÙ¢îî\”…l®Þ!eBÒHÖÌ™d 60”À8]`x„¹ÊÉ#5:ʤ"®0gt,¦è,ãg46³b)éïæöö,BE®ÇuTí³}ú×k;Ÿ®f¾_5S^ì ÒçÞ‡z>ߢó Áïq(Í#gunum÷|qÏ*1uSePŸ¨ý«^Zè…s›°¡°#ˆÙ ™òØæŽ– {¦a¨c³ÄÄt™žuˆµâ~¬z±²(y٤ؾ8>V8£¸~)›äUæjÑÍ•‚ÿ0–ôð+¼1¤éUåUóFX.!|ì 9¥»ÖĽñ÷×¶¶j÷_;e\¶ù\õ¶H¥0Ä­‹—q½Q ¤MU‚ÀY!›-ʘ™ú§¸>ÀŒcJ‘8AFˆ$¿pŠQ„ ’Á…ÝKçòcÃêǯC|à[JŒUÞ½ ð’Ø `ðh7œ5L¾>cZÞnöl{UlzôG¨·36}LJ½ ÑhmEÉ«ÏP£Ëgk€­d2/0p«$Ã>Í“¥Øo6ÒØ… P¾_žz¿;ï=>¾1ƒ`Xþ!Ya2¿¦®Ÿ—çøýþÆ¿Ð~9/MàþÝeªÖZИøk÷8ô{‡Ð¼e×õ°Hé …¿ 3Yaß4«"nNãBÕ׎ꆸ2П’§Eg&{°wopñGç𮿠†u>+f§ÎáÒÌ–©G àŽoN§o©#ÝæÃjm?œD$÷œàLÉ.Bv$n#›mI8O-Vü{s,òɽÝЇOØy´']U¹Äçú**EïÒÁ`˜X.Äê íº}2‰´IF†\…;·‡4jAF¾jŒâ!R\°2]Ƭm:ãMZo£Û^¡?-ñ+¼¿!ÒïßÍG~¹ÎP´®Õ¯T6áp1?t‘I5D”i•°¨ô­˜vðyùäñc¹™zs–¿]fܯ"^1×Zhò‡uŽHŠE5cÉÍ`óZ}í7ŸK‚«@=‘Ô*p‚Õn¦CÈ£’ÙÂ(Ò«¶ô°áñJË®Ë '}AÁJ§CÅáS }m4·ªæö‚Õ\ƒócù~}Ç9ν~K´ßªmc4öÓá¤942g òS4æÎØõS2hDXá®I÷£¸#Z©¬$®T“ꪎ@!q²Ú´‘ [E[ þo"5w¿í¾ÅÔóÍ¢ùuÁ2Q ø`|”) :YÙ¹'÷&_¿þ'sÇq8óL²‚Ö1 z†H^c—âöo;•æ…¢5¸kjmèñ”’ј Ä>¤cøz®ºqÁZ½ÁЮpË[ÎX¨úÔšeÕ}6\VµÖÚÞ3ÈBA„d ŸM`ôËÑЉÒÛ tG¤(Gqôëbn'.qÒ­ÏK‘KìÆ ÷ý2žSÌ äG]ðùêfkíë›àM¬Ýˆ.·„¥‚"¿J’QÝÍ¿8µ6©5*»Œ)ø%ñ·ç™^åJ© *ËZ)eY@´=šøTPçÔ(KŒ,…”Ñ‚Jì¶£Ô&•¬Ð¢¤–{\ÏŽ÷~Qð\Ž0>0’:÷Mζ9) ì9×9¦W¾þÔùa €õ¬K»LŒ’™H’©[2Ç A)ˆF`ôBÇP'.'<øÕ7%£±žZú: eF̘^²ÆQJ2uª1J€y0+ Ó²:0¡•÷Òœ,XWwZ!pÂhðd $Úájɦ'†'  d¸‰‹}žþø«ègÌB1•Ã9>„ Æ][·¥ø³_·¸Ý)‚0ä•¿uêÊ2¡´À ®ÑBç{'Æ(%ˆj3p@&"pmäÒ6üÆfŠotKYë}‡[âú{¼?°—ᯗ¹µËÂV#’Ǧ?gœ~]9à íßм‡|ŸâŸ”ë¢|AÞ\1ñœÙ»t×ÊÚÛ“-%‘«EfÈœ¤¢;‡¯Æ–"ëƒ+Û+½„½tÖ,1•/‘$²" Ž”XÙ¿m$@ë’UõÑYK@Ö +4“0éÅa§wÒ°êoå°xL^¡ü«†3 ä3„ µ,½àµ:Z´šž3U!8ºÖ¸&6•+´¡ÄZðÏ`+¡ÉunÞì…½ò4-Ô鵸unV–[o“5âz¶,6±-nhÈ0aÞAÚ¼“¼’ã${“|-D4ödÚZnÒúŒâhkÀ±Œ~ÄÜt/©UŒ3ŠÙ/Û@¥ÁYAîV‚‹MM¥rÄ¢V€ê±¾]Q‹Xí;ï<0ò›p^HçœÚ¯^kb|±:;Z:ÙJ žßdeêÉCäd÷ÙùÑÿÊhŠvU`ä½{Ö:’åǘ™OLèDŠÕe·³h6ø ‡ò™À˜¶ÉÕüq8€Ç2jÑOž”ó !aê5-fTöŒ¡Ã«ôÎù²ðg•3Îùù;½ÓçסgÔ%Œˆ›“­{÷¼¥·>£’ާyõbå!ÅGu.èë5îçë–+¹ŽÞ »<çÍÄeõCâ2(ø°Õèß卵k8÷éPPÌ<9/v¬Í;§ä°ò$[ µÁiœp®Ö¾á…±Dóq©S ë‚<Ö£ wN²+¹1|5ª¸Înt×@uÇpjÈζpCV´U]›ÊÔïD^¥ÑÐÁVåtx|KiqF\“ï¹Ê½ï{´”¸ÞkPû½[†5Ué+²o‰%/ÍCT·­=B›Ötº»’0A²Ÿˆ {Õ8©À~ 'vk ~’Þ¡SRk¤x8fÁ$YhÜj)7ñ#(q9 zK<>}VGÝ9üŸìkeÔpAú«Qáý5¿×H–8+}h[¢,ýÎrÒ|͘4'öö+tÞ/Sv‡lÆþî²t“üß  ô–}¹»ëTS½Õ~'"3šsøü B°çØæ¦B}’i ÊÈO$åä¬Å8ó á–Reo¸ü~Œ`1Ô¢B|J%¥úË__•‘9®Z•uS§òÁ{°5*yÄò]“eöC¹@Hm›IºÅ2:€àÂynϸ g308¸ý &‚äD`žÞgNTâ 3ÞfÖª0ÃØh÷©ðµŒÚ“L CÒºö‡’OŸ%³`¦Ãh—/YÎAtÔWòø‹”][¿PŒ× 3Þçd<ÄyÞNyGAÑÓ/CÝóòÄŽv0ÎA¸1{±;H*ä´T/NSŽdÂ×/–mžqx‰w¾|(+¦$RY|[ÛÓMo—ˆzôc^‡nU~n½÷_ЃòŽý=ë6Êò…ê£Í§ñép¾&³5ë/æm ˆ¬ß‹ÀÌÙ2Œå³Vqô¹¢5[õEºIÄédHh/}œ°b±@-Q­¶,úÓBÙÈ#j9²|C#÷ñˆÍ윞×78]±³9­Øf•Ðʱq;%ëEè÷óÍ¥«6ZèØ‚üÕ#E°f‰~±9Sµ$&WZ9'`¬‰#½,¡,,}n‘Yš1Ù‚Qâp¶/ÊânvŽ_jWT9¿¨…%„D€IFOG²¨½¥7®Ùj+¼#ZØèK®#Kõä æþþ·Ô”iïR{­\¢£¼!vj„ƒDŠÛ«šµ=—»5ªÞÞÞ¹ñpÐí°Å‹ô?Ž÷'uÝm ¡ Ô¸úXy ¦g a”~ØÔ;pêÍLÅÒÛ0ðâùà 2z°0]¢Âè­«©ÞJÔ6d¨v5CTÛ’…¶œà”fÅ2²4±ªï¼—´=Ç…ó»!ãT`ùæsÖiž÷ïɾ]g*10ˆºµóïðGH€#®—sõ6Þh êeIkR¬“r¬›¼á4Vs=X:×7ôKöŠê%ŽÏÇ®(âEžQ‰”tx%&±IÀvÞ&z”•ñt²—œ@ Ó¶)¯PHD Í-‚ðð¢¦Hó@ÿe¢j™s´©À  ¬ÏΖµc_HÞ~ÔO*7?Ò׿ ç—§Ìá@K}%¤Y’Ù"SSº‚Ò˜ ! MÉ„°-!ð×üT²1éœ50Äq uËdd(ƒŽ8zp¡÷ô¼L trȤ—Ò¾pc˜Íî ^,ýÂü«¾³Z[Ò sbÙ”Ùö\1 ÂÆîÆŸ({=°B{-fêþö´`Ù„|MèEÝßÈoyÄ¥<]ˆLqætÊ7- ¿‡\j­³’ØÒX¼'*cl‹ÂèѬa;*Œ‘w¯.JÐø²h˜ôÄ0Wß]DB ¢eéæVamϦ7_“iˆ’hsÕŒl:î3‘ÝÍãiòéD†ßÊ)m9ÅMEÁÁQ©h‘Ëj›J|:oßǃ(tU¨§Ãܤÿ”£ÊD’MÃ`…Êxl˜z#ŸM\‰µnÎsõ¨¸'½B™™ùUÜ'¨´– ÁÞôØvëõ ^|nIjÅhXWw¿‹`@AÐnqml­óýéë[Á× ]n­¿fÍsú‡—èÀ¿_¯ìü>¡ù\ùô¸ü¾Ÿ?¤Îo^FF==òKþóol‡É½Ò¼=Q)Ž“Òí’æoyÄy,˜ÙK yƒ½á¸9ô×-Ï¥÷ÆAÑ˧¹õ¸b/ÍW… Ù—–•éÕáFÞ'ż­'3î^í{¬Ø\¥š$ ZSŸ)šŒ=ÿ{÷ÈÇ3;»"¶Ÿ&]IÚˆ{R¢ŒJšß¢³ƒüŠ'÷L¡aEŠ>DWð\½èº.|—·ÎK2Ñ}¥CHH<T#‚láÔ^],8îߺ¡0œ…m£%f8««æKÛ)Z¾Ëɘ„5Ã+8dÖ”Iar„2Ù£ çÊ^ŽÂ‹aˆPgò3‰y‹ñœ£À« ¯ê†”4â*dqÓâ që^¤«èíCÞ8´^KÍ›i°’V" -¢n‚½­b;D¬‹Á±~|¦æGżó|äP³œ#âÆƒóŠÏ­qk”´þsÇ}§·(²Üß*r´ÍK“­E U]‰ØìÖRÏ+o7V°¨)¦W2†9!&nÄÜZ+F´ÌéEëÊ*ùë˜×žÊ1Ó“•B­!µÐ73sÉ¢Û$ø"MT]êàhVpj¡¾_öpp«ˆòû±nz—s½jPð™ (I?¦ÞŒór³17“.ÝB?‹é‰1–²o•r.*/™<ã×Ö.êûväÅ$3|õRõsq¥÷r})Z”âon`ˆp.Ÿ„Y)¶žˆ­>¹t Kë=GÓûҰҘ̆õ—µÝU÷žãƒ9f9 ö5wZ¼Ž« À1F²Ñ!;9Ö(XðÎj7 9ª=Á;Âå%jåït{bElòäCíRš˜)ŸÑl¢»ezQ¸©éµ¢{ÌS¬8©oGMŽª´Z âqcì"š3äÔatß؇¤ê#Bê€`z´bV0‡üOÒ3ÍŠïÑÔ]Ð’FÙXYÀF›o“jÎ=?×#¡Èwû“Î2?XZ/q‡U þrŠ.áT,odP›zê^ ‚áëòÜ Z¾§è›5ù»^ûš‰sù!ã*%£«£a_ù"¬³öDƒ@ݽ~wȳ"zl`¨ß&tú“†€kÈKv«\§|Zbˆû5ÊÚÚK%ú0¶èŸé”Lc œ ÖMÕ“–êÉ–s­™:¾-£+1”½S¡{X!Ç«&$í®–UŒ,A­h}™ ¨iÿFÜG3}ómUð]‚û|Ò¸‰ÔÔ³gÃ}óóUdÇn§òCh_kÙ²âøƒ”ôV¯}n¼RÂÃðE¹ÖájEÛ‡þ³ÝY3dG+tLc„}?GV 9sk3¤8=È™•ò¦±Ò–ªA^à-t)§k¨ú`[Š@ÀÜo÷Ƭ퇜§ïZòyž«i=<˜ì°xƒqŸ~YQœj9Ç£®‚éɆbD ¼™1†ò—ËC·„0‰5@>GJIiDso-8ÃÁÏ‘&¾bسÊï2-Ýí-œ¦¤AÎÇ™G µ`@•ÁÐWcsm)ppAï[©âJ5´Õݬ©7âbæMUUixÒÑC Ä BŒ#ØYšú¼óL­rDG:GuµÌt¼]SJIµ+Q®H(̽jöAØâÍ«>:way4HHÒ®ÅÒÕ•m ‹#¹ýg™õ‘~H*ñ/1=ÒqÖ1Úˆ¹èÉC½ µNŒ±ç˜d¿Ö¬¬–ÀUôemM„ô(}½õüKš9lQ9%¨Óœ&hRŠø´êœMÄ|uikø©fé;S2EæÚU–çH$M‹3Êau Arþ+‚M˜%†=n÷ထÅKU#Ø…aŠa°‡…Æš邇 (:…9+K9šþ|õùŸ{ý}<~?¢·Ð|_¨Ðsúß-_ºØüýØ`ýüŸ Fñ;ïŸ6®ŸMEÛ;þ¾õÂ&Å 0!QN¼o2-û§©qúYõ=b耡åÊÍÇ6^Ä,Éõ‹Á/7„ŸÖÚæN³š}&rT7Ox1ÌçoOó+Ì?;“Þ÷ g0pÞ‘ÕøÜÌ]~å:D[°–oêk—“¾ÜgzË<7»¨„›í÷,JŒ CGƒIý1sÎ8æÏI³N¶ÜøÃ$÷Òscc0kª‘ ÇëË Jøq·Vxž[GŒMëœYŠa†I`¹³¢æ­ìi™¬Æe®w"öÕݱuxŽmiÌÜp˜‚»¸J¢X ”ÿ:Óùzw ñüåoêpvª¼åÄ9lúä|÷Ï]ž1£Œ&võך·„&LÙ_Åòå+ÉZZ9ÕœfEÞYmÙ㢳Û’G¤Úùn©L~ÀÞ= ²Â^¹í´ÀÏ rªÂ;K-3îÅÁ1K‰ @&ŒrWâ)ÕÎ8Œ‘gºÍ}`Ö ´:çà\ìw§²çXOÙXÀìU!óB‘¯É°o]¬xœ8!Xv±à•IÜŽŽ[ ñ›wL .¦HIZ C¢ðÏÛËâ¯ia—Å1ó!X/–¦`I¢pNk( ÿ¥‹›ÌEÌ|Qò¢jÔMKÏJ{VÛ˜ v¡QpÌ©¸®(«hòŒm½)&I¸Ç½ »ÍQG6ͱ´Ï%ÎàU$ËÛ!WõÔ«Áœ‘¡/ûÏßãg ªÍÊô@0$>Þíß‹‰ ß³KçwÐt ¾þÛ5¶R"ìŒþBà§¡OÔWéNræ6»ëå²Ïçóõî?0çmñîP§êÛô~K6&ñvŧËVru„? Ãí€:ÁtÙ:~fÙ¡û?A¢ÛŠR?ªm±®Ö EU—Ks4†äØ]¯!‚\oî¼±KyÅXšþÅùc\Æ1k1ó9SÍP9¯ÛU@Å„+…F@0ÏÊÍP|5˜>î®B—B#¢$ ¹Ùgê~D69²™*-[‹ß¯Œ¤_é{RTY=zó3½ÒlŽÖ¬ˆa‰%SðÜ©KAð¿†À3ÊcÅù.Ÿ°Æj×î|æ÷šÓó_QÜþ+3‰¼—„äý9Ó7çàÈ`²#Ñ”ÜD]Ôœž­QÌn}ŸSó¸Ý‰ŠO3$ÀŠÿŽŽ]…ÐC¹Å;ÐMKÅ%éŠÄÎV}=¤ÓËÑב~ÇJÒwü46~g„ë͇÷JæÕ½mž™L Ž<9¿xðä‚»Òã2—à_Õ0oíʤ­Ï*„¤–ýkž°º½UÈ leu àLÈÆc¥¤7KËËõ{úgá¢ÆÑzÊl§…c}LÕ¡Jö¶¡rsO\0ŒÑÖ@‚cC(ϵÀ‰«{2íõ‚–¸ƒ¡Lóóô—e€+ n…ïkÓî'©½àŒ^K™ÊÛm5ð~63AÖÙÅnhm–{ŸH½»Š·Nøæíé2Bã)/(\CíƒäÁ3ì2'5ìmÌãÉÒ bh,tìîjM ¦ë2fþ"}yÀu`ikµË ß¹i¾"…íUç’°$æƒNy‡ qÇp³oÍ•/oÇõ¤‘뺸ó¶ßO­K·à‰É.´M*!K‚›mËí6l5–þ†Vº* ϦRäC@WDÀ@/Üý12qû>Ããíü—¿·ìï}wŸ—þ-ëêfåuc¥k ªÄ)ƒ¬Kø±ËüÃhÍþhñïy¸ñ/l•žà]5@Oç²èoV·9e/ždfC¦x²ôû××UD]êÆ#Õ´Ž@Åz’/¸ …­É™'çw%k–BÊÊý êÂAFVÎ=x¨[lz“=›e‡?’XÙ’ µn{m¤3¤;q(6|ï?jèxÍk „´à oÙ¾qy@·ÎU®a¸_¸Îy¶Ó‚bD„.8Ž1rc|‰;üÓŸãXè½ ?/Œ;‹Ç cF¥nCöBx_xˆ/·Ä}!\\ë¯}àÙX‚==ùõל²[Ûê~kn½SÇåw[Ö‡ì :o²›1~+ãÃçÍÞBþçßEóŸO‘tkä9×y™µè«QÂɅΉ\>9‹Ëºø±!e`ÁD§¤Ovœc¿¼]‡¬RËÞÆŸ?¤ü3úˆBýˆgiBð£ØªôDzn½íêàù‹U1{9r`Ì -æžËOù»ýú$Æ=Í=ùú `B'êZB\ùOÛc!\q$;ñsc"X{FÈ# ツ†º™zrê7~þHª’x$9=âû b-{|ôiù µ ¸žþßTü?û{síoßó¦_o’—ƒ)Öĺò}(fß”ÇÜ|æ–ã§%IÖAÿ:%ù„‰ÑæßÂÄ&ÖÄ×™;g³hLMÿ3PÎØè©÷µ€[Ö5ôñllƒÓ(êýx~üÄã›õÆ÷N7äØá·SÚ†uØ»fo÷µ)jˆ¢½€D8ã€3hæGÏ·N¾í\Üfô—Iè’ȃóû|sìOnËUû°®^ÝúðFaÄ-ݵô\IX(üÓ[¬x¼CŠzr¬ oAu#/’¥±W@usd¶´Pë²j¬Ã8c¬(ö¸›[ôW†3¦ýŒ’‡ëR¢¹ Ñ Ûçú®-ŸØñ×íü‰==Kéî¾¼û;©ŸÛà6¿[þ=Èüš;×ÓåŽçë=ëóL‡Çv=WÝ•€HšÉ棟ÔÞô߀{§}hd¢rÏõú(öóѯŸªî7÷/Óñß(ø ¡ÕÇŽ8〠ësn‹òm‰÷mÏÞ{öyøô¯^¾Ÿ—Ëá>d£ûRßmož-k|­Êy!™ÌŹñ[ò^~:Q¿]ü‰À|&„…½›,6½{µ˜OŠüL_ä‘ïNÀOßðKÏ_ú}¾¿ß/ëåó/Ñýþ}]±Z1L/ãëò â'ðUk{‡Ïíøý9ïQãâÿt ãŽP?´}‡Ûëù|üwòû'Ïíoå||­ùwô_¾¾>^Þ˵müçwþ?çôßçìõ¦7>½ªð}—¯áüõ¦>¿‡Ëéòý>½OÓvïõüÿ_ÄüÛÇãî6öûúk>ŸÂ ãŽ'æ?\üÒzÁ~Ý¿§}_ܼ7¿Aúõè‚^8úˆpqÇ´°~Y”~ÒWÄþ½o\ð~·gôý–úüè¼yÓÝ ¿ãŽ€õü±ooÄôøøö_>=:ü†¥@cV•·Y!:uŒàºÚйÜîUô+¨ÑBûR¥ò=º«>¶¾` aoD Lúâ•TÅa­Å.6+mÇ$ÿD.<–Ý'â²â'™…æ¡nhn”yºN@΃ÚâŽE.JW §&«ÎIçIç©näóäå(ô9Püú= =\µOGI.^â9ŠzPôÁÌ—§WèSšªõ æéú!úQêSôëõ%Î#W<_ª=U9ù¤¿XtêåЧD=dºèëÖ§ë] éKö¯`®™:qÔ'P/cŠQ‹öGí+Ù/g^Ò{Yí®¤{yþ¡ûwU?×_ì_í=À÷#«{¡û‹Ý®°u±ïî¯z÷ß¼½úë«à]|ìß®Å|îÓ>=à÷®€ïžüК#FéÀOð“Jxaâ&˜ñSNxÏŽ@ê<òI嘺¡Ö>hyÁ燠ú'¤úgù_Pu¡®õOX5áë»ö ˆ{>Óí§¸éï{æÉøˆ6añŽÓ»¾Í½þùÞ}£í¾åÞßxï§7ÖýþÅøÞ…á·þçGz!F]ý¿~X”³¿vϰûíùÿ‡uÜýîíÝ¿ý}7Ôïë¼wÎëÞßo~ß_zßoÛæúïüvoÛó~o¯Áø.û¾wÎùö?gÙöÔ}AõQõ}_9óŸ?úù~M¡³vfÍÙìÏ…ø~‡à6[Ùïûþùîû¾ïº{§¹îÛíìM‰±Ø»‹±Øì6 ëëõúý{¯×ëõúç]®5Æ»]®5Æ»]®uÆ´ô|ÿ?ÎÖjõf¯Wæg—åšN§S©üu:—S©ò+ÆÓž/‡áéO|O…Ùv_Áì¼7ðüƒÔUØà¥V;ÁØv}×Ýv»ñC¶í».Èì; îw9ÿOëÿN¯¨ê:ŒßÝÿ:<Þoêç¹í¯>s»]¯Í˜ù3Ï”µù9^S”Úž_ºî¹þ{îy¾oês]»šz]æñèÿ¯èvŸ;ÃóÏ•ÃÉUVrZG%‰ü²”ž$Ýâøy?‘·ãû-NÇð8ïÀã»ÿÞöû?míx¯ÙÞïw½7Kܺ‡Éú¿Õç¼s´üª(Ÿ¡Š’œ×éò|×§á< ®ŠíÛ}]·dds—k·IšÍcM—»šç9Í~ëèb¶äT2ø®Ctû¸™‚¨ ”>¨e¸ãé}ÿTô§"(é~•žO“¨Ýæ‡s*¨ï;Íï¼æ¼>§]Uéð‘ó~V…*<ߨgx™`ˆ«áÁU,Î —]¯˜€ª³½Mf;þßf/wzØäºébªqÙ¸£¡æ¿Æ[7,UTLßCìµu)=×) "w9 ˆ§ ÂJS·ëtR3µâ´‰W¡Ä’­8„«‡èóEJ‘éwú)% •*<÷ÛÑP#–åº=5$EŽ¿·Ñ!EäùÌ’#“óú)^ƒ"›È †E Ýx½SÕb‰ÂŽzóýsQ V£Ïh….IGÙÈŸ“”“ŸÊOÝÉK´Ä¹\_'*f+‰ö1TTñØ•*¯ÂÆff„b„hÄi°’³1¡2 ÂB“lÅ#‰R(h$ÄTb Й “&A$’(b¥2F™2C$a’¥”Là b(™¦"6i°•‚*$,ÌY %’3"20›$HÓA4ÉfD‘˜i$0bJ1@D”„‹#A„Ø‘’L™¡#d Ì±E JL’a0Œ(X±³(Ô™1”i#B‘Œ!f6€ÔÂ0˜„‘a,›&D2!(‘#Jh&2f$,™€¤& $”I“ D’Šˆa™L “$ H@S$™›#FY0¤!“‘)cQ2 L 0˜ÒIQ213DLГ2P& &JP¤Äh`€”ÆI™$#2Q DBR‘„0h)‘‚ Q’H1“Q”K$‰ ŒÑD$“M&e1"MŠ!%e‰…ˆÐhe & ¢€ÁˆÚHˆ1‘ŒQ„ÈdCF”É Àe!C$”ÑPF&I©‰ 6Q$ ‰£J¦Šd™d™CF6 12D˜’’J1&£e ²iJ6˜d²2e†PHš0b($’Œ¥DId6`I-Ñ&0ÃEƒbÄ‘Fˆ¤ÌÌ£Yc&ŒTň4cIDh´”Âb#lD„HDÄ%Š@$!D&i*4ÂJ6*0DÑ ³3 "cƒQ‰"£a(Í,¤24S,†„Å2!DLJIƒ XPb4f”’š2ˆ²†&! ¦fFÑ&Ĉ#@„ƒi‘"‰I£Ê P S,’14ÂPƨ’ ̆1±™hIA€Eb@H™#MZL)¢IFF4ÐŒd„ D…ÀB‘4 ,˜Å¡†b™˜„ ˜LÉ(“!‚R“@‘²¨’1 "“3Áfd‹$&3 Ö@L *4$h4ŒY‘  )#La‰“$“I’$€¤C%%0³"™¤™¦ŠeŒ“1 ""lEH4X!’$Á!!L£ Pb(²‚QÀÆ(‘4Á(ÄIIC"†™ƒ¨LÈdLˆÉˆ‹&4e HŒADˆÓ#4H(dd³(¤J „i†%1$4È0d†fE& $4€bD“ˆD1bdQi"$Ð@¤Ò)(Ð%Ú"dPbd‰Œ…™ ‚F"Š’"4 D’$AI!¤’ 3A±EM0͆bŒBh)™2fadÈLÉ”Ó)-2" Ðf"$L¤¢ˆR‰ FÌ3#),d&,Ðh ÊbLDÌ"J)IDS,–H„ÊE$!£X³1 $ai‚”‘˜¤ B ¤!H¤¤¥$H"#h#RŠ!€Ð„ÈÓ"XŒšˆ ŒÈÓ …ÑŒ›4’ Ã ÐQ“ŒddiM!’e‰H©‘AfY(̆FƒBb”fFÅŠcD‘CMƒ"m&¤Jm¦Œ"bd³a‘£Ba’a‘"3È™Œ1Š@ƒE<ã)¤ ˜ ˜LQi4À„’""6c YýHȼ‡KwÒ•fé©·H@³T)µ Ž›%Ú1¿¦)KŨcÖdÎ63SuUkQR]²Tâ"ˆtgð¿~9õ;xûÄbNh.ªGñ¼N~ÅÃ××ìÒ¡êÁX(t6šCväWw…ß6îîMíNùSoE·Ìïå& ñÁ¸DøŽ~Eø}kCsv›óíE½z¸|‘[  ý7Û/Ï“â¿#¡~ªÜ]}EDÖmÉ"$±œb[ÙS b^ íT}œUÇòÙ_þ)Õ¥v â݃|Òï§bWs2QD]Õ›¤&)ˆÊ›šî׫û”é-ÛY Q7æ€GòïêO¼¿_çÁb±¸}Ûb©pÑ7LA®¢¦¢¬ÑÙ"\2¡ë¤â D9sÝã v¬ˆ×Ã¥#û×âwsW<|ön^AðÚj¶ÅW|äNÏlŸ?x=G'çK2pG˜ÝbèYdD•RØE,dÝSG ˆûÕ׈14xyd1y© :רšA]‹5Iò¬FŒ)$~‚“Ú'9*Ž8D7FYg¯>%sëSçμýò;ÑŸ>ˆWehÎéÕ¹£n‰LÒÂôŠëì;÷´2bHׯœŠ›F˜¢PV¿DÈ£KO?:⩳Ðuûà QæÐÍ>ü°“jY}Q%QvßDhÕGBâÐLÁx؈ééSÊ&2$,ÙùM¾E§ Bkµ›=%G±Ënøh|Ü–ü,Ü|0ÕB¿_›Ù5Çr>ü›ãÇ™ïŠ#œô>|™òú(¹ªñZtb–  q@·Rõ7Xg Š *gNƒ=ò~EóÂnòä1Q~ûkU†ÌÄ4ÕbuPÒ§')t¦š9+¾ïóïߊۄªå¢;Žß+};¡·iv!•p ÅnÑ )´2ZÔ@Z2\ÖùíÐø™ø„ÑŒÇbù:|ÛíÛ§˜gðPÃi|®¦AÍ4ÆD µñDüCÒ¶W÷I÷«â«5*›‰‘¥u†¬ÝÐsfÚ'¥1TlÅ,CÊþrúKóíôGÍô_:韡¡óçk‰3ïÍ=zo¨"ýM€Œ?™\X™w\˜ïªën[ª¿7GÒ»‚™¡8!4§Ò/)BºÈ«’V²§"D¾µ]]àˆž‰„Øz0]–›ÊH´R6‹êL™¢àrò¤J¶® ÉU–ñ"l„ÈÂ`LÄ éVeEŠTò&nAjèeõlHM󢿵:-^ïŸgÜôn[h–úÂ}µýê|>p}uØ»Kõ9¦ØÉÌ7î|¯Ï«ì’~:üûñ`øþ‘úgë O·8÷KöZúLJ¾,÷ÙÙfŒy‚ùñ§tSŠÀP­¦*ük„øþqm÷à0‘qvWRŠh¨L¦ô2:“¯ $Cßþ,'d ~/ÍÌQûðä|=ðÊéåc_ŠÖ}Ó#³gË«©~Ÿ­¥ðK¹FÆãü¾NI?ËSëÈãÙ軓“íÁO’ÑX¤nV’€ã­Q[ÆVu½Ë¡QÒMl•?HÚ3½"/šÔ³ƒº bÖ·sËK5ÌNcÑ uè*xn±úÍ!dQ§iw\F¶áÛÐÎikZGéhÏÒk¶ºº‹;¸Xo¡Ü;ÏY4Ê2ŒQ2Æ›Dk1ºÀŒÓEÓ»JT,Úy4p¥,é{g{5rÎôŠiኣ®'<8 7LœR;SÏK–geÑ^r`oѸ…†UnÜrƒ9¾T]Ùc»¯†Õ®µSH£X£…6µÉm‘÷J˜£Ð©t·ž–æXtÇ¢±ù07T!Tp­S*ûíÔΩd­·"pæ÷8Mí(ÀY@LQRvîn„ò¯×6ÓkLµh@WÜû(æ Uo›ñHõq=Ь²´€l® ­b¥ÅͯÑunIT¶œ×N+¹g¢Í·“Mž“&´L¯Ìu1SYz‰§é{œ¨9Æê QÁô¢.–I3y®.Úm[NIœ²Èjõ¤ £¤R¹£+Ú JÇž$íf|è¢ b‡R°â…Ü„ï¯;tãˆ.äó½ÓJs‰Çͬ…›‡§:‹]&u…V˜ynjJÈ×=ÜŠ]pªŽouVy^’ÙsÚæjÑDŸIÏœM Åf':pÛm º¨[ÓfÄÎåNÎ:±•Ž1_>ráí©–•´Ñ›±f ÂZ|nå×Ç9•#W2ÓU]µUZÁ:!m1£¸«*Ö}\¯YÕ ÜÕTÞŠQÜe–ŽÞ¬_›o¦W„ùÕ]ÜÖ¹’U‘²ÝºAv¤è J¢”î‹„4 §Z’Ùöžc^+òÊ$ÍšÄ\íš¹.´ªÈ,Gîjz¼Þ² ƺ\=n¸]¤î²¡¨ˆÚç+%°²xQ¹Y}*.$Xî×[×DiÅ&9å(Æû^­‰Çí ¥½g¢³¯œx™5bgcJjJµpOžh9ξ¢.‰œ{¶‰ÃM+åQ_sm§œ)ê!ެë…wsÍúÍ}‹e´Ù1ÁÆ£¹Ï "ç=l4µµÆ=¨™°ÜR8lì@ª’h7äМV UЖ4Ð&a&C ‘b)µ5®°XR¦­D ¤…³:ÝÍ]D\úÔÀÃ,’G'Jªx‹Š ŽÈÐÚZjV0Žg…2wŸVi¶F™¡H݈%|ž2,rÝ$ºÀ]´ÜLäYWÛ>®8šžd”„ë=¦!iIáÈ A±ì¤»­r–»4!çé†Îêús1£×tç¼Û'WÖµhzÝ-Úê§–T5p ãÍ\ꣃƒL±Ù&©w«ž£0ÚaØ:YÌ:LßUן7W@Š&Öab‚­[œZ]‡r¦Ž@Æ$ç!Øö³¹­Ù’ÕçÆ,£¯wzû„îè_YíæÝ¾”s'MYk#M¾Q4)¤ã]ÜŠ­ ¡ÊZºR”YäaH`w1ÙQˆY7c=+šZ·Œ”Jçæ¡î‰ µ+!ÒË­GHâ|jX Ð±ŠnŽ·Õp rëô+j{N›Ú“:ç@D²ê?֚枬Ož0ÄŽÎëܵ³³ôƒ&e"’ØÈýeóQ;,沈…€¨ô¯‰]} èÎÏž‰p!ɸ$Uî©Ëc(pihŒt²æ"ªt‰l˜"¹ÃbÌYõ%ni\œ˜.vUë%¢NN]xc1Ž2œ@Ñ3|äóÀ5n²Ã²’Þ›•ëêÅ×Jdëírì‚#Ú¢X ‘ÔrÖ²ìõmø‰H†ú¾pÛLâ¥vÈì}Gª¼ú319†‡hDÐÈÕ¹Ìù¶íí,"@³:ÎËX»LÍ©£ÑƒíGcoG<êƒh‹;Û" ÈL.™ÀôyŠÁ“Ž´XJôF«©Q'D¤lÒÄë·efÛk¹«ê#•žÁ5ìc~¼.íeå3Î7[Û¹î×›"Q0™•GÊ%£Câ{!Üç½KÛM¹°£hX8³'çtDZè÷˜lxÚåDÞ ­¦½Ÿ&³™4,m†«N׸UæDŸ¦ËU†²NÎq¯ E ´lgvPx©¤Åy<ì3’q«Xh4±×ÇEy¾—zæìRAmëFž^ ¥„ô¢`¢±ÏNRåtvβrÊHË5Ics]½e 6(‚Ç~ÕJð4 覎§T%Ù>k ¤|³5±ÛV$ÌqŽrÛLª–sóKªgh±‰ž› ËÝ&S:š·\ZîÌæö×jÇÈvœæ²1tìYÙú”•Iu…­MY¹ÃÌsB±œA·u™ÆäSàµo"=–&’¶e½lÞ–ÄWÁµ<œ‘VØÛMϤŠW#ŠØæ]¬OYÊ‚)¢‡£]Ý pÛ½dY¶’ÉEU2&°Q¸Ûféa]×0Ùg)S{XR-^ZKzÕ„S9-“lg4Qž1œ‰„h®Ž?¥õjÚbWFçIygGa«¨4"Åm5}g›-Ç « ÜÝ­níÎ;“¾}×]^#~³CqVw[µí Þi¸Ë[6Zë+qY3Ðv£Vô኶EÉ*N+]б6¦ÑeX™'5Õ1‚ªºÛ·º]zûØÍ :©EQç%¬}'£¯£zËt„máóÆ³ªjÖHÛ‚““tô&7¬æó3o—Fz1aVE"ŒèÛj$Á³›²-_IwqqK8Z?`6KEKˆâq¨°/¯4í»&áXî—Y£»U–/Œ„ªyŒLÑÈÖ‘jÈ|¶ZÕ¯ÌñgV:Û}–μÂ1ús‡nµÛ¢Ö'Xì@Kk…âÅ]Bb Πܢ¥ÎÇâ1Ë#®Žef3âß!áq|ùù?vd|ÅcE­8šÖ§)h¹¿jNÚŠ~£èéSÑE† ©×£Y§×¡Èg³*i=A¶CÇjF'ÃL͸ø››Ö½vÂá>eå×Íè¬uE-„b¡8Æ Ú¤µMva7« £Úlž‘Ž©©Åo[ܲ|øS´ñë³UpÖï(ÛEÒó厎]5õ5Þoi˶®QY@¸¡­jÖÏV™†#ÄÑOJãClf³Ê7ˆQ5­lœ’Š—]vŒmçHßg*ÉÅIç$Š={³”§rm*mô­âæªt"åÍø÷m̨¯ÝQ´<ÜgŸfª.²N‹³3B2 µ'z<Ÿ4r£u« AgI¢×E³–ØWw,·s+NévpŠ˜rÄã Gè1q¸½Z) 殌zE•Mnšµ®ÙÍ4°—w(¹—ŸfôŠ¡žÍKuî–Œ9 ww.åÊA‘âG®S] ÄZñâI›F=¹õÔõÜCºd!<=[ÎãCa¢×*dõZ¥×²:4Åϸ+[œ å]^m³2TN4¤M:Ðߟ?AfÖÌ­ÊXZQ$ Õ«7w.4æÕMÙ]l¤ZÄíX«Î´> „ß]P°ÅPÓç4“Ô³1¶Ù Y]çP ßg ^”®¹Ž¢ŒY œ%yñˤ`¡j&kšoU¹È“í:¶®‹h¥Ó´Íðˆäæ¡!Õ5E‰ÒBtâ½)Ñ䈙»­vbŠ>©Ì÷’•¨(+M«â ©”„ˆVÅCN°R ùÉ«5LžLó‰è›ëžër­œBB Ž’ù±re•jS_ yõd:9žAUz0é±Vñc檜û³é)ÃÒô•VÄ+S7g;Zœ+³Šfµ‘l Æ(!Z[VDãÃoÅMôÖ™vX[&!¢) 2“´ìÍÎÞR7ÞäÉ ÜM:\:"añHcvÂƯ„„×ÜÓ‘G5½QÎi5®húå«Üø›‹5kz•åLЃX,Íž«dõr9”õ£Mâä÷¥É¥DXÛdžs;$˜òµ¿hÞbކäñŃÜ??M6Ô/«ð›2o=Zd5·Â±íÎMw¿W=/ë’ Z!3ºÞ½òï×÷Uó}hŽ”bü—ªÄiD(qLUKº ÚµÒVm5ꌡaóïÈ®ï–}±nk£\•CÏuø*+Tüù>#¿;+ñåøÚñÍ4%ň#‡äÛH£ð¬+K o9´³¾?œsóâ½rÂO–SŠ$ôÐ<µSîda´ ´5ÜÀ“QBIÍÄÔM> YdI”BIKª´ð„&UÔä՜ǓÖ:¤Š"urQ(4z Á.“¬=3À™àö“}uÓ{è“÷ÎS4 <<|ÕU[O<|çÃ>ÍšøiÍg±QcÖ¶y"ôõ¤pðFÐ&&0ËèœûšB<|.û<Ï,! }0uóø$Ë~¹Q\ôá|=V´‘¤ÏRÛða¢7šÅ¢ùö*¾f‡$>79Æý·É¸V&9VÏ|}ó¿Kð> Šš&»êÅQÜPÒ˜ÀY ŠŒƒJÍS˜…yФ†'6·ÊÜD>N>&|‘mÖ¾ü*e¯íd©8Ätç èôHC0ÞdÚ*¢ê¢åá¡5óïUÕï·Ÿo Akëð>|D¹wÍpeÊK»ˆìuÕkéþm»äµ|ù´òbøBãJ/»_£Ÿ:e¶Q^Ís|«Lùl¦ö_ZÕtmèsèÍ™¹#´>ﺜȹ¬î(Ú¬ø«ûºÏ/¢PøKZ3õPÝ Ã"†ùû$>'>·~?±]ÁHÀÝcêá ®ª`¥mе&Š’¢\Õ1iR¾¬¹HODH«dOFf¥ÝÌÝ•o0ÑI9gHNˆ"^DU*}iòM¬.cNÁr¤j Dõ­Y›°…#“f©dX>æ²>ï|ëO_ŸoÍe•ϧÏt&ù&›]~< ;7î¾Úüù9Buøu°å>Æ…eg4ëßNû5:a¸Iå~pQ1Ùñüøº-ǾüøP;›“¬±¾7×fžv¾úæçôsæâIñP§ m+]dÒ‘xÛ*/Æ1PŒ+2`B™²ò©¬ ’È%u4—V’TtzÈ"4†d*‚,¨]9¦)å7K2æ3Me9W ªVUôùÕ½ÈúßT?FŠ8ûÎIóì6½_$'-ʉÄBnP—eŽEÔ›IÔØdàûûËMžh<ã­¨«iò辪¨Ê(§Þ—îñ„Õý äø¯JÛSwcç,Vb¤I€òÓpíŠUp‚RsstÓ¿7Ù"®´ù|›íûêwKÍP!ö¦vqåW I©‰U‚*:Œœ"êM•Vž­}§å>»—m‚ýzú7ÚuŸŽþ)2ø>0º¯’W»§ÕGaÕÑÏŽŸ¨.ÓóæŸÏŽXSä¶ðÞN­éö|¶'·Çãªø˜œ8ˆÕ–aFÛ}¬_'Ê&θ†DhËDÛWŽàAp¤ÅcH©Bæ°Ë.ãwÌ×uC!¬ù«â>Æ«HôuÖrX£stò¥ÂêOG)>ªÐNÐTKù§×~¡v¨‘ïÉÝr#½Úþó§ÄaL8nä]õ3qr.Ô*u5hºwLµH\‰‹–•c‘ΟYX»2$„Q6„ƒ‘Ï? Úz­-¢ûò>ÛkùÍZæÚÃæÓÙôo¬àê_‡Qùñ|}YÌìõùÌçè›ä›å#¸µ¯ƒ´ëÇnùøŸÏ¸ûi+]„ûùW||ž;à¬q™—¤ˆÐék‚O1> £'?OT)Ö˜ˆßÀÊx‹‡à‰‚®(œ›i›i‰òbè÷ã§“#\~ T%C&:OS…Š0 B¢,…È««ZÊ¢%³écò(Ú$lI€!|Í(Q‚²/#@’âóKð_>0_Ÿ]}OÈÒÞúýˆ5€ÛB­1A8z~o‡ß°àõdœJ5u!eu T[§Ò¨aC§'6ãã_BîøUóM/¥çdÝ^WVÕ"äõSmÒ•n YsaÅcÌT*$>üû~¨üi/6]ÛáF ä-kéã|±‘Z•FR˜ÇX«UWu¦á“4ÜR!®üõµw|QÔ]×p+ò|ŸcÞ£Q³Àmµãëø¾òj÷¢×ÍÅ>×PvºúW÷ŸÒo0@óRÈË]cºÈ&NV,th+ #hÑõ›½VY£-ž¸ûÏ#\6M}±\Ú-ú¶ÜÕ^\¶Å}¢Û‹^îÛšßqUÓò¢5ÅZûyúüiQO­?Çåðûz vuh?CÞL‡¾ó< =ä KÞ y}ª©íÝtfŸ-~†__Zf=çšóûbˆâ|kØ÷#„™kùùwÑû 3È 8&Ï¿~TòIcßEä¼ ¡@ûŸûñ©¬³™2á4%Ý%EK"ÏVìËŽš"?ƒWØ_!:!†üv|Š _‹á÷Z×Èå±{àzÅsð{—*íáÐŽSʉ|"Çò ö=ĉ¬­Ÿ]7ÜùÔ¾q‰>qr÷qŸeÝsì÷äfç˜ÍñÃ4—à—_É«Rµ0´@˜ÇãåZ¦|ø¤J  m m¡nD‡çä1øÉ¾ÄŸ9OÇ:©ß’‘Ž`Y»]JEôlT<«¥-·~üì»›u}Ïç¼ãî~|о>>D— v~æ%`ü‡ùeð*&{ÔÍý4j"Ap¾‹ ½¼– þX®‚1äÏ1|ãOÕ¿Äqô_:/ÛO/™ ‡“¼‚òOñ¥î­{!CÉp§5æCïÛV·ã[kSé÷Ÿ]Rǽ!¡&'Ū ûº$ÕâÅj-ñÌ‚øsXO¸oA?¶ãvúM§ÃçÊœªâ͢͸IJh+*!£$;3Fh³r"éÇ)ï¹|7|樰þF+– ~k7 q”VSHÝ£‚~pƒJƒ‘jZ±")NTM,Fq±-’æ"aBÙʺ€üç’ò\%ä¿6®E#åú¿Cô݄ş¤Û‰¤’ñà‚{š‡Ï—åã-”K6¾üø|ŸÔÒ„|hÈÔÔ~​kWÁCã±k%áw}É3t%î‹çI0Xª9JL‰ƒ U.0ÍEüµBò¯ë9÷o®“5w¯Ù~ß>>+ðåS‚bù]§Îóäóø¾ü›}n>"âÞ¡·ykêlÂk % Ä…8¢I¤EGRÕÑqf´by:}ùk“žœ¿Sg§Ç›ò±¨˜ÂätŽ\j]SÅG !P@“4X¡¾––Ç[®ñàé$¨siK"U€2…P2Tb•H²•RK&VUFK ••UÉC)I…X$°«!FÁ*ÄÄŒ´ÚÚ©ie–l£ Zµµ)ÎJÉ*U/+Š*z,’F‹lkk~žm_Ki¶½î«cmD41Q£(€M*°PÉ2œü– ´“$ÜÉÜçÅÓ¢fhÁ¡sEË–¹$Íb‹5nš# Æ‚ˆÛýª¸U%£Ën[–.•!cræ2Z¾wFÆ¢4–þóçkÉ,X®jäUÆ®h®UÃ\¹nEËs›W9Üy«…¹­s•\HѬQW+²Ü¹¨“4Y1ªŠæåDQ&ÌÁVJÄT}<¹¸oˆò«ýóãkÃI\¸¶-ží¯6M¢5Š"s©5Š(ˆ×1·5Z*5͹¹·"Úºc͹X$Çœ·1m;¬jås\76Ø£×- £W.hÆæÜ­}Ò(ÖÂDTj6*"/-Šå’Ù AE®\ŠøµÊ¢Š-¯*¹±¬U.îRî×1r‹nlIæµËyW-Š4AlFs[š|uŠóW ¢å¹óªó^îªåµÍ‚Ûi6ÆÔVå·›^[–¹¶Å¢™ŠÑª¹jäŽZähÑXÑ”Ú-ËW5£mÍsEymr±´IGš®Z2rÞj¼¶6¹š1™Ãž¢ÑE]SÕLª5ô±yT˜‚=Købot¬’ĺÀ8Ø)¨€=¦Ëw/R(9x¢H¡$T.„±ƒTüÅÚîî㬚?3®¡š¼æ9É)DÕÍsô-¹^îÑ«œÕΖ±Œ_¹ræÆó9TÎj,÷sQ®œ½îµæó\Æ/.ZouÍ“š¹&¼×5Š*HŠ-¨¨(¹UÞën¼ä^÷W›(Ź­Ï{Ÿ¨Ø×–.X®\Ö9nhرh¢©›EbÄjå¹V¶å®˜Šwt×¾u«ÌXÑùù·4Z ¤‹£oÍms'ÑtÚdkêå¹£n[ÝÕ¯;ºæÑƒE¤Ûйk…¹\Ú,XÐbÜÝ2jEÎQh¨ŠŠ‹tås]6åȶ1Q×+œÛ¢-IAªæîík›•‹•QVç/.ª1å‹sFÜÚ¢ææ±¬h1ª5wv,T[•ræÜ´j5m*1ÕËm‚ѱ±=ֹܼ¨Ö,EQ‹EXÚ1år£b™Ý»Ýn›6Éh¨Ô†ŒXÆØ"+›¥¢½ï{^ÉhÖň°myW5EF+(­æÕËaîäjæ¹ÚÜ­Ê×5£QnîªÊÜ£h.W-°dرŠÁ´•¨¨¢Äj*²Z¢¢ÉÌZ¸kF£W›š1­XÉZò®š®[”V€!l4A-.*1’¤í¼Ä<¥—¶ `cÓå9[â&5(Ê¿o­ê׿ٯüµ¥oÇ2E¿%ÂÑŠwnFHÉùŽXîh¤©”`îíÎlEŠ PrÎëDT“ls;©Ý\Ú75r£j1Í\ŠF‚˺ÜÖ Ë•¢ææ¨Û–á¢å®›Qh¤Æ2m®W6?-]îÕʈµ&HË¡FÜ Ûºí]1cQŠ-F’ذk°[»·+”d·6Û‘£bΆ¢Œmˆ­Í·r§w,bŠC×*ái6+šé¨×.mDcr·4„Q;¹j9\×"ˆ²Uå­æ®mæ]ع¬ó¦1‹bØæÛš.îÜÚç—#Y…éUÍ&¤¨ÑÈ騱lX£smÈÛÅÝu‹Ø£\·+±P«ãpÚ‹Ø ƒZ5%cDF‹صyr£TjÆÎëWCQ¢ˆ1ÑOæµæÎsns[âÕälUF¬QnFÔh.sTmEñ«–¤¬h¡5;«•%Wœµwv-£EF¶5®W-%±<÷ªæ§ur#D\Ö<¼ÔV)+F¼¸ÍÊèbÕÊÜÔjM¢¢jM`µ·+r¬U¹­Š·6¬V>.y\´Y,Zå\-FÅFѱ¨Š±kbÖ6ámFÜ©„¸‰'+ T`itŠÊTø„ Ëi¥ôÀ& A=@ `Ò Ò„<ìQ©Î"ѱsc›%Ïå³Òä_u\óoѧW9«¥G"'·Uåæ®Zæ5Þ÷‰î¹mÜ­ÍUÝs»Q[›Ê¹£bL^[‰h¤zëš ^\Ôyyæç5N%çN\Ù-wh±AE„1¨5¼·J¢Á¢£\Õʺîßá±¢ß^Zõî·#ã[–/{¬kÎ`‹F¹· hÑtÖá‹s±®V¹RPlc[Ê9\9ç#h²n[²ÑWÇ7™ó«ËO­ñ·”[ű¬î®Vß&ܢɫ¥yµåbÛÍË›wvó͹wu\¬W‘W9oÂóÊçÅÊéÊ+2 5Š ×-ʄוº¨¨­¯¢·4˜Ú+DVø×Åyô{ç|•r¹W»¨¨6Þî6Œkš¹dÖ(µÝÛ&ѢƒÕÍ;´m&Ú-rÛsEÍÍFÅ´E¼Ú湫•ô÷½bµË|^TZ4j/‹‘¨òܶ5;¶ßÛÍQi Pm‹F,mFØ5I·šåøµÃL¢*øæÑ´|Zå´\×5WÑsljóZ娠­F&Ѷø×5hÕͯw=Ôm¢µËnUEŠÅsr¢5ÝrÛmÊ®ZѪéW4Ed«š›»})+o5ˆ-Êæ˜ËBÒ”ÒÍ"e®î¡$¾¿­ý~jòˆ¢-¨£E¬mÁ¢ÆÆÅ£hÕض(´j£FªÆ£mZ‹m´Vª,df ˜•fRY’«0£mF±¶¬j±µZ‹XÕµÅmbÑZ¢­ŠÛ¬mlUŠÛlm¶ÆªŠª5m±ª´m±mµ«E£j¢´hªÅmF«‘AFÔ!E£EƒmV ZÆÕh¶Ô[j-cm£kh«j5­‹hªŠÛE­£X«±jÑZ±µ¨µª6ÛbÛQµŠÛbÔV±µÕE´j+kÛRUlV£UkckcjVˆ­XÛVUŠª-¬Z±¬VˆµckE¨¶²mmmµ¨1¨ª-µ¶6‹EZ‹Z «¨Ú6­«TmhÛcVƵ±µÁˆª£[j6ÔTZ¶*¢Øª¨ØÕc[hª*£Z¢ÕF(´hµF­ѵT[AjµªÝ^&މ¦´#ícE2ýC«ÐÒ9œožªkò±X߀kïùÆ·J·+š¼×,Vå\¼Ý4W(slV(Ö5æ®QE¶ ¢“%IË‘MEnWXÑwv-råʹ&ØÅÅ£V¹r5’Ƽۖ„ÑÆͯ*æÛÑ^j-sŠÆ£j¼Ý6*-¨Ú ’årŒEF£h­ˆŒ•Ÿ‡ª¹¤×–æ“_à9[±ykš´m&Ñ‹›nmI‚6 G:X¢¢ÕÊÜÛkEPÉY5ÛQ\±«†£b|í«›è®Ê5Añ\Ú,j“mKEAŒmr¶äj™hÅEµÍt£Q&¶l–Ѷ6¢Ñj5ËrÛ͹‹FÚÑr¹µ,rÕÌE‹ZŠ´E%WšÜ¶ÆÑªÆÅ­EÍQ«]Ý£k›Õ‹Zwvüá½ûßé~Ÿ¢ËïVva~!½‘UÀ@%‹"{—b6Ù»üެ d·ânD›QFˆÕÝØŒFجmbÆ6`×5\MF²k–¹W+–‹•ËQ­?o/(DF±1ŒråE&µjÖ®–îê‹›nlcœ×6§v5+sk¤s˜ª*4ww*+ËcFŒ–#bÄm*åËQ¶æ¨×s§v®eÝ´W-¶(¢¹[„\×cXØ£j"¢5EQѶ+}Öç•Ó\µÊç6”¢ŠÉ–Ü-h¶îëm’wn–îê+nUÊÆÛr×5‹EXÖ‹ZL[3h£W4E¹±Z“Z+nm\ˆ¶Ñ¨Ûcm¨ÚkÔhF±¨ÚŠ£lTmª5µÚ¢0F²²TŒá`ÿ?!Œâ¶ûå"¨1O.Sã’¬’XFW¨~†³ôæ&°« !ƒ]“h¨¿Ô+s&XÕóºÔV¾.`£Òår¼Ú½îá«»ª#Q\Ü­s[—*樱gu\×6¹EcX«±¢6F±£X(ÖÅZ*-£hÚÅchÄ[–åF¢£mj-ˆÕX±幵ʼÞm%­6*6¤µcóš±shÛk˜Ú6ѶÚónZ¼µtØÖ-±jØÕ±ZÆ­¨¨µÍ¶åQh«Q«¶5´hѶ5EmF¶Æ6Ñ[hµ‚ÛE~]ù}j—ãY!l+´ÆŠÎO*U"ã žÖý»ónµzþÿ­»ï}þÛš9úÔ‹o–óî¶ó^r´W4\­sbæ®jŽk›n[ð*òÓÝß:ó[Ã@W•y¨ÖócnW7+š54Z,kbÕ[»·5æÞ–ÛËw»\¶¹Tjæ´hÔU5FÑm,mÙ**¯*×6ª6(ÞZÜÚ×6ÕrÑUTV­~¹ZÚó[r-µs[|U¼ªÛš¨¶MmV"ª5h5¢ØÛb,&‘-~ý'k‹ÁÓÿ^¤– Ç@ßM7„Éj¶ûÌ– }õW5r¶-ÍÑ£•\´Tj×àkËssy¢’×-À¨¬jÜÛ‘­Q‹QlkEb¸mjæÛmj¨·/6¯6Û­j£j³Š,ÁY€ÌˆR̈’a(Vdf 'ñt\á4–0Çþ1²XôU‡Ð^å!%w’R; ¶r²YZü–£ª7å·-¨Ú*üµ·–ÅåmË•®îÚ¬UE#V5åk–ÔmFÆócV®EwvÅ­E[j+m¤Ì"Z03 hÈŠfDZŽŒ!»ÓŽ“o!-¡aé#†+]"­t@H@!Q±h²múªæåsFòÕrÑF®UsX«b±lfU 1 ÌL¦e(`ZêÅœ7HÒ•¤a‘ªVUÕoÓg±®F¹­Îœ×1­9ª:}ªæ ¨«skÏ6±«E¶¢ÔV6Öå­®m±ZÅ«nQVÚ¹ª«rÛm\×6ª£[Fµb¶k0³\Ó¡Ö>cZZjá2 Jâ|ÉR!¾†ãdÖäâ U@ZŒ!5‹V5±­XÚ¬VÔ[mLAf†a(8/!ѵ5ž“ħñA2sQ%Üñ_D‚^¥÷RPK`Úö¸0ú]ͨªÜåµcZ¢ÚÚÚ*‘™A3*Žçh×Wr›QzíJ‰j Ðù24“á·ŠÖPkõ혆dX@UUhÑÕHä&¥Õ"€¡ÎGl~®[^d¿ä€MÅ)Æ ¸DŒDH@Œ¡Fbfb?F‹ w¹‰oR¤\T‹A­¤‡ ðÐÅÛO ¿&yMIFÃ3’³%3*Œ¢–#ü³4—ùNz_XKÞ^DZi²ŒuiÍÀvvX€_ …tŒAc®+»yÆØeÆøbàH0TU‚;¥¢ pC! ÌH¦e$‹+½˜1÷¨„IÀP· øTަbVÀm 4;x·¿ŠMQ+!a0Ua$LXÄ!=·€”`žØ#sär²‰Ê…€¨ dt÷¿rb§~f2–§¬4~‰KøÌ=c·Ðµ‚ü–#ÏÀÐÖÆ‰{#ÿ²šýE¼ŽrÒêš–…\.RDnòÞêKå*~P™ê’Â8»¡ —ã#ËCÀ}â-dTVêk¯DÀsŽP”C»œ|Ê ÛŽd2~À©4Î$ôg@jÜ6KŒ˜–%O6Fs„i˜Ý¤xÒ\^`H­8½ÀAjŠiüÃ1Ýò‚tíàê¤UEJa*L·­tuRÒ\,#øÈàˆÞØO?úÊ …ê !RDïǽì¿~oAëü†} ê@ÍSäé¤È4M¨«.C€`]I/TD …ó}.%+ Ò%‘|#>ß‘YAMAQ¦ÓÄpxé—e¶íz½ŽúõÒŸ[¼Ñ¤‹wF ‹éó½ s¯ÈØØØ·+¥´Fˆ^®†M}:®†¢Lšˆ²±±Ac\Þ^Ê4hÔQI*1F±ª RF%Û5F‹ê«š1dŠ+ETkF>‹›5…1­Ƭj ”kma›QdÚ6,D ò÷uíÉîÒ™‚,ب';gí .\0çlí»W5…9áç|Âdâæé#¶[Êz„ý÷Ïœ8ÔrJF•ç{{³OxñuΜtâõèÝs$‚ˆQ! 8†›óŒ9 LµÈ¤Æ£Ï4Ú`ߘ”Š9ä¤óž›‘2!Ûè¥q’F×zW{çÎñöû$ÄÂ$‚S&I˜HÌdÆ4ÒFŒ!ˆK"d’‚‘$ÈÊC LÑdX$™&R‘D0‰”LÉ#HP‘&F@c,“"šIA"5À2–"“`Á’3DaJHHb” $I2 ’)¤fˆ¤&LÀ˜&h1³LD JB@ ’Œ$,™©#BI3! ¤Œƒ!…´˜@"4YH‰’ "f c #,Â1 1dE‰J†@ˆ–P’f¤BI#`±¤ØÉFd ‘–1 ¦”i¦‰Ñ³142É‚™%’d$‚ d ( 4šL¡  4ÒR”h"A€!ˆ&³ !²!dŒ…4"Ó©B ˆ b̼ŽxP1@OЀ‚mŠ£hƒR4™$Šm¢i×#µ»@I‰²2ÙZ‚PHðÜäã@ Fæäîó—Eç»·¡zKÇ8ü„VëóLT÷¢Mz!(Ó÷„QO:ß ˜ 5" „BpL Ë›Çe˩Έ1¯ÞcwwǼåwO=éîäŽ.^÷Á¸PL="N* §`›ðÚLb2RJ˜©$vøR¥l¶•¿I¨ð­BhPq¦ÝŽ?¸ëm¸äbª5h÷š<$+ ˆã@4£qiøÆÀm ïd,/Qxš&ˆÓà ‘&غtˆO|xDùÝ{ç»Úï{Ö¹ŒkËî®Ù6ѰbI’I“B'_—¥l^vÖ¯‘T|ø÷—ÇÏX¨Ôl•ŒF1±‹Hh´”hÑ£"1ˆ¢‹Pl”AD$F! 6Š6ahÔE£F‹QJ£V Rd(ˆÐY",E*(Û42cFÙ–"¥ l›FÑX‹*J#Rm”Ù,cÍF)H±Œ‘RTlS X ¤Ñª(ÔR3X±a6-1¢£c£AlÔDXÆÅlccR@bŒEDRh1Am1¢ƒA±jLU‚ÑhÉkæ’÷|ÖŸ$DùÏ–ç%lžòhaê&’#`˜·åîÉ·ÆïuÍÎSçn:w— y±y·%îÛÍÈòÏŽÞ[wwtëLcÅ„…%‰ <¨—$|ï——«Í_µÊ¶ó[¾ß2îáð—ξ{Š^ꮘ$£m±1!¨†O7\/¼¨ (xz ${ÎR!Fì+¾-PŒ<:o9;¹÷wš<§º´EÊÜŽîæ¹snowÒÚµ}«cjÑÑ\ÆÔT×Ö¯¬ŒXEE’¦H”FH±ˆ±F4d”†ELÆÉDb6*5£$À¬Œm’ L@hÆÉ¢ÌÅb3" S2h$ÓP˜¢ÄX¢¡•Œ`Š“A#nÞQ0hª£FŠÄ‘S(’M“0Ñ)(«Ñ´ ió· ¾U¶Øîæ¹¢Û›W4î¹mræ¢1Tk»¶Ý¯’”`d)ŒdÄI°ÍbŒF„°FH(±I’ ¥dFLLÆ@iiK)H‰#`ƒȲÙÀ’hÒ0¦l†’F@i(I0Fb›Œ$DRF (Ðlb6(ÄIe4ÌJ##e„ÄDƒ ¢†Fƒ%1†,”˜‚Æ!$€ÈhÑDÌQ³¦R’H2ÅÉDX±Œ•!&ŒÉ… PŠ¢ Æ(Ä@š@E,R˜h" IeMˆ¡*5 d°K$³4–3+bÆ `Œôöä›%±¹·1µE×-¹F! §]rS%)®CuÑIXÉkš®kQ­¾ws\ÐêS·wvk;¨¹r康/–¾ µ4T!Š"ŠÆ¢",hÚf(’©)6,”F‚¢´dŒi"£A¦4(1˜ÅE’*H#XÆ0Ro_.ë—;ºà·]’îwvÉÐÝÛŠ#k…Ë›Nq›¥×]Ý..‡wdëµÈÁwnvç ¹Ë—uË»—9s»³œ2îéÎ-Ír£]ݳmóUU¥o6²he³-1c-Ú«îÿ§þ⿈ׯÓV^옞²;ºAÓùö-ÙñuŒÌ@@þ –5C{‰‰jzrI¾Í û­+})mÖÚ]^Š•ÎI'12…^œÏÑ—ºäKÔ”!Ú0×dP»pÛÆKùq r¿Ã}ªs ý@ÍHo>]è÷’µP+\nBÿb=\ÓŒ†(!B̤Z‹’©E6(­¢ÔU­‹m±µ¶5cY””Fe2E4_b‹_¢öt…òçM§ÂP൩^UPôÅ$XX¥k6Êb£`¶ÅŒÃ0Q3múÍm«k¸ŠLh"6dR›IŠÑŠ ™,¢Ð(Y(e ÀÀ¨µbt¹J«³ðMkÎ¥—œþ- fÏFÿ‚ØìµµÕmjÕ÷ï*R”˜L“$a$ÄÊ¢Ú,TX4cEdɈ¦˜’jHÁB›±ƒAˆIØÑ1Ëkmb¢¨„Õ¨££TI¦BP([€Š$R6Ji!$A$Â,‹(“ –`­ËŒ’ű±¨Œ$Øa¶“I’Lb6’e DT‚Q“€MAØÒ` ¨IA”lQ£I¨Ñ“`ÉF C64¦TR”QK7m¶­K‹hLi•’H ´QDi1ù¿Ú5šZ–ld‚lЦUdª1HȪ³JS"’i @á Š(¦g@À6ЦXd ©ýŸ wéGþ§ñUø‘h¶(ƨڱm±¶±­±¶ª¬Ijˆµ£m±BD•Š¨Ú¢ÖKEX±%Š‹A ¶+jŒ["(¢ÛTT[Q«¶6ŠØª ¶ŒIjúþÍ®öªÕ÷>ú6“)2,Rh”Õªe!cE%%‰,E#JˆŠ,!EPƒ¦¸Â\€Å{ˆ˜Ô›-ÖV!íÀ¸ ·±ÅUå(Ö(Ƴ ‚0A’”hÆ60›‹Vµ2iŠhÐHŠÆÑj(5¨,!„FJÑmÖ Š ÆÁƒT)¨Õ%HZþùÿÕO¾çÒ¶Ûo»ú oËZ‹e*ÑT6ɵh©°C2!J±A’ÃV-±‘ŒÖÚÕÿÚ¿”gÏT=äî 9~ƒÂŠ4ê …×Éqƒ:SF1Y¡- ª(ÔXÛª¶ƒk*¢ÌÚÚ-bÑ¬š£¨¤£_“Wä¨KD&bªÅªm“Q¢R•Š¬Í²eŒ³ ÌÌc2T¸o½÷N§Î8asMI½lRl\Žçc#e–b©Y“1&`¦b«2„µÞecKI²PKÈOæ~®´õláê_ ßiØÂØÛ)¼á¡±ÂÌf(̦dbA1S2£0fa„ÌRý":˜ÖŠ€½ª>á iØWæêÞŸ%ÖIr†'~Úɼ&Ìýifßùß÷¿3~Ci³FL›Eˆ“Tj6ßšë«“\é¹s»»¨Ûr-\–›—`Ö4kK®®rÜÛF©5¦lbæÓº6ŵÎEFƒQré¶€¢-%ˆ·5q×EŽlUÂ4–¢“wr¸ë»0NíÍÈMŒÆ«¥W*+&+9h\ææÚ\×Ý7$JçwrÄ]ÝMˆ¢6ç0R»“º¹Në‘`Û»°[ŽÝs¹qnVáWw%®ë¹®p¨4hÜ£rÎîX‚¸Uͨ®jáU͹ÝÛEÀÆ $#ÀŒ£ íº„¤ö²q?¯iÃʯÅk_‹õïÃú£Cñ7n·tÜË—8°‰s§[šŠæÛ››hÕE¹XÊh¢¢ºîàîŽfq7iÝw;»—8iwuÑˉvÝH]Û!‡wMÎ)¤Ç'\Ë«ÅÎëœëºáÎnë®ë‹ˆîî5¹njåÝ×M»n:î\Ç+˜ÚLS×GuÑ]ΣíÂçN¹7):êê@J×uݸœ—w;¦ÝÝÈàn»·qÆ1H±1!qtkýhxäîgIA¤Ï—’æ %ÃúÃû2å ’»éGÀ ¿B ô1"| 7šŠ< ac D¡Où+Ö$P ¯ÌŒy·ü7H ÇÒöÕYüè 5§·_¦ÿdË3ÞJÛoÎg@rò䨠T ïå ï-7·CYÞ’_õ'Óè ¸`ˆ«¡Iä¡xÂ\NñôDÛÂü¸\…G‘¤êHïàìê;”¿«ˆQ°pJäTñ*¹é8{ÚZù>i>^§´CGjO嫳©ÚÃŒ—qG¤Gš§>?¤¾º·Ôï*¹u|Js¡×Ç»MõwRúH啪[³§«—æ—á\})mÑ*]Åq•ö“l=ÜyqÊÑzèãU·N8{Û²¶ÃÂVÙ}ÊÜM´Ü[a·žLmï‘)-ôqaÃP ñŒþ5ƒ†qƒ­+°#^š¼]ÅMÉþzܯ-73UnWñÛ§æÛ§†óm¥ææÖ1ͲcŒ8c“‹7dijх¸î–á‰-ÏØ6ëŠfÜ-‚Ø-›rÙ¶1Kl6ÁmŠ-‚Ø-Û`¶-‚ÞÙ¶N´ãgî.1ÉSj¶¼•µ¶¼¼ÚíM«ß[[ÎI³›;ä¶m_^Õüï:ÙÚ§µZ½WUª÷ V©»jêêùg–y»‰x­³uy×nãx¯q\kûìnõ_•ªãÜ»q ™ùfâä·w'¹rmÙå¶›Õ¨c̈aËчÝñå¹¹cïù ñ|o…ñ¾_ Ëy¼ÞmK[Ckjõ­­©jZZ{»—rïr8Ç!yÈZä7RÚÚõÞÛåòù|½·»Ù{0˜¼y}0×ëó~1f*ó†¼á/7’ó‘´0¶¶å¦× yÈÚÚ¶¶¶æG#v6ìÒØÃ8L–{Â\®VvE•†áa`Ün&õ¸mîôÙ`?¦÷¾`L'r¹eŸÝ/™ …ŽC/Éæx\O{aËø˜“S¿åº»,gáäYí¿ŸÏºíO[ŸýüÇ#­¼ù˜]ÛOÞáKÁ×á2eÞïûuÜVNÀéÊü–KïÊþfWAW›¿ü|fOëé¼;Æ3!û-7½ÓQûí2•FåÇ}Þ[ôî¶7õþ¹û¯5Âèn¼^aÙUd08o§‚ï(òY×ÙäÝ:ìWÝóçEŽÃ゙ÊÞ|obß[/g«óu-uLï—át¿®-Óçu¼?÷Þ9Í‹ÐSù>.7Y¹ý¾WßöÛwªðùV˜¼÷K ÒYìòîóÁt)NàÖüqaWçqV"¯ˆ01„c(Àèæ¼¾ž'´‰H«o_+ª¿r1Òÿµÿ:ÿ×L5ý‡þæj,ÿeÇò†‘Yš[cOCR®:þ§j)”×öëWÒf[˜ýþ+î;Ð× ƒJö³$ŒNz¸$¸Ô„ “§ÑŒ°­>­A•ÿ q»V²F埪ˆÑºJ‚"¬ˆ*Pêõ‹–á+‘Éû= Œ,Ÿ®úðä¸?oM ¢=éG† ʵl#Ôd?“’5ó³Î(Ó~ý¿³8ËúGû߸ëý¢À„¨¼’g¼.="6žýWÁY¨×‡böFžBä)Ï£ëÅ0[f3o§+À¼wp?sðýé‘ÐìèýÓ¾íÛp ž–X™Ñ}O» à]úcê&"ˆ„€ ™d ñAêë|HuÙz=YNd!z?…^@dý¯ÁgœD„YèA”5åì-}ï¶÷¶~øÓÜÈܵ¹jÙŠSFB¦ŒHfU^/5™J>e0ƒÉ—¾Žé>þëˆGŽûîUøb5%Z¿HûT.6œB Ìšr…þOd2èž¼xàô:'¢õÚ÷íwjù ŽVŸµ¢œf̘Øã„S6¤6„д>)ÿN€á >ž ÈùÿÒcŽ\DG£íµ.®áàpE ªµ>Š?úï/x•ÛÉÜÞ3Œ¼-Ö¸¸tÓ?0F||"ùèêþŽ,“7ÉÜä&KŠƒþñ$pBæ².\.þΡêˆ&ùÕÛ•úo7>_·þGͽ÷ã¿ZÛç}ÐBŸÌÿ¨â=±®5Ùz £ß¼åjý럯;mòŠz©i¿‰÷Q–V•q+féâ:Ýp?~He$>×÷ ¹1Õ Ïß¿Vík|lg‡pÙE6Ñ)cO"‹(9qFM¤öÏÌ”Xýü³ÔNBO¬•&5côŠÆVׯ ¬ØÇ>Å?&Æ·áÛ8n°ôðÞ!SÅ`¬_-ž¿Î'îß⿃ü}ñ€í¥ˆÉs9¬Eºª€©P‡œs„ “K"ï ÒïTÐÛùqþ[ÐYÿˆ¥îÿ¸¤ÀïuE GXçzPçõ÷ºYôºTœKØ=hŠ7(tˆ¯Ç¶:&;Tzû0@¼úÓ_]:ÐhgUðɆ, ç‘ðÅfƒûˆ„ÃzQá‹¶ü=¿'¯«] ˜ €²:¢=ž†ÈG®ÈðŽzè]­pô¸ºD!tÅ~6çÅ\¾4ü®Ûy|X·ÚÕôZ|ˆ‚ ÉH‚„©u ¢)M-hЄ €‡<]u'¤uíwÇׇ¨ø‡dÐë¨K¡GdhŽ:; ™$dt>@#ÐëÙåó[ú‘$1ú,. zeHºpA!Ê‚¥‚9ËÖW̦`Q¢ªàRUµªî J ê`~t‚¢&Ì =$†–€ õÃ)QÇ“ŽaB®TùQ…Is)L™ ýý™6dº] ›9Ó>ó-€7Ö2±ÜXfåU‡¶y¶!Ç\äÿ?ÇÜýsô?ØöˆbfˆB€¢èÀ¢hf$" Oè«äœ}@äãÖ½Ù€éEò€r–3“Êõ¢‘¶¹ë4º´Zcø™Ïá‰ø¤ƒ|÷ª©SƒÊ'²N³Jæ¾-÷ê¡ï•8ûŽÉø½š©aY¡4—¡†{qF‚X•¸UªþzCr‡|]}gî¾€G w¦ow™í†ºê@AètHA#¨=uѸ¨Õ}¤ï;ÈCÖªÁ•G±-¹$nl‹&¯Þ‚„?Mƺuð¯¶þ£ÏyR‰gW²“¼€ˆÒR'wEHr Zz0‹ç7ʭ郳ê—QëÓFf…½“ÞO®Œ÷ˆDü¥®Øç>¥â+ÊÓRCãG³®ç‡ƒ’†õÍ8Ñt°gÝG2£2{®ã’5Ü"ë³ã“'¾s·¨ Ë·½Å"¾|zõÕ,ˆŽI•¯MéI·nog}²¨ ½;Ä hði&Y;åÿ²š žr€£}˜XYHªöm±ëG•¶Êß"Ëè ÝVWÔdú¥«ÒŽ×¶´4™óz¡±sôgYnýôÓ˽ƒ¢« inz!"ÝîeiT+v ®#" 7—úŠÞ Uê ]RuKð²f«(w|_‰VÐ'O›;‹©ê”ž~ %fºj0¨Và¾=ˆ¸Ô÷°¨Tú+—NÜ×Éš¿—Þc'›h2û-÷õ {>¾Xv¡õ>›œõtG ’wˆWUî<â¹üžkX¹ÖíÖÄrg–i2;F“xúüŸË«X‚H-˜|!·91 ÐŽŠˆ­».é+3^j×§¹ -#Ƥ–aÆê†¾˜EÀ`Bö†TEÌ.šè"qŠ ZcÊ œbË}3,ÿÀÅH·˜yRY%‹ Ž,wé!øÁ:ýMO5ñë}íšuõrŒDÁQ‡ô- 2­Î-ó=B’˯ÎFöFx(]ÁüOÉZõ® =à4#n:{Ç{^F·ä¾ óœÓ ^¡ù“W_œãJC§ì¬Ÿ»Fà’=ï׋bJ¥ZùäSÎÍç­èT®œ·fµŽ«°¦¤7Ú‘? ó:õË”¡ ô#UëÁR½OOŽ–½'x®ü_7:ÖA¸îº8ÉO.á{×fæ8VÞHÊóx5ëç'eq¼½Ô¼åYÓ°ŠiPí8‚e³­ê*÷u±a:é9 ù© ÐWáû~LË1 Së%ú>¼'¾oU=Ãd„RƒÅV¿Þµ‘ÅÉÒ<«žûaÏ#¨6GÍ#[è·×Öo;=u2€°@ìÇáA£×‡¡£Ôº'¡”ºD v@£' $õ®‚=u×Ê÷3­zI1߯Ùlnãƒ&æ‰w6«Ã(þ¸…JTëáaY!X\ëë®Rç;ôŸ¡×Õù¹´Á™”d°l„b·6ѱhPØ£3”H"+3}~Ë»ìüîü§}ÙBûìqHêç³Sú$e~ɘ‡ÏIJêQŒû¬©Të*M)˸uAA.`—<ðøÕôyÄ&ý*%x¬xãü€ÿ‚¿„Nž>aè^žþÏóbaàýΕŒŒ(HBŒ@ר¾ICÀØœ¬ Á*ˆr+r¿îÌʉˆÂÁ2Ÿ7àpÈ8Ïí狈pÈñ}ÑL‘ØÕŽC€b¡ ä›m <}eŠQLõxFi!ÈÑ‚O—N²U••Š%t# ›xÄå}3³Ñ Ó„,סyQ¶ÉõwPßìªp ‡Î˜uï=cèht¡Qe*ïþm˘ ýÞïx‰qê/d¹XÚW¢ý.\—ú+ôÊTHN™¨Sü ®y¶Ù’¿˜Ïò1"úè€èuàÞ5e„€‡‹ÿñJÀ#+Ô'LNÚ0ÚóL¡Èò²°¶RRc=V\÷ýógüÇЀýß—ÿ/€Ñ ”I@ŸÉDþŸ§çßÊëñm…-†W›©’—ÚXz³£ø?“T„š`xÐÅ_¢gÔúÔ> HƒüÔ<À½p·*†+=÷[¾.$H}:æÆ™S(Y…󫆊Cˆ`¼¹Š)CF6ýÛ}Ï·¾Å}–ÅíoÜ9¤…½¯QÁä06l¬ñö|=õÛdl‚ÚÈC÷n8„£ûdGe_¿8àu$gB|‘gÒj (ÈLT)Fc Ñ©%(2]I²¹¦¨ì0)õì³+|ÜœR{†TŽÑCC"BCÉÿ*41’à, ™{"ë·\|•ÁÐÑI»ÈðŽr<€5  ±ˆÑ´<=",öe%úMuÔ(?f5)M’¶a.ní>I*åÉ$ÙÒGûÒ£ '͵ñŒåÖÍC„€§á §9Yÿâ?pþÀ?é ~ÇÉ=þ \ûý ¾»'@·ÌÕ„¾¥eû!܈d]Ãîcš²Ý¶?šHÙíø¤Gó_ù¸à8ãßùïùRð©zÂþ[1ZEƾÆF¤+ \+ì¡ct›:Æd¹QŸÉ3âû€"µÒšxùŸFˆX¿ÒÌjÂAu>.ZàýáÚ÷KV†¼!ÊØU¨ŸåÓ玉èmvúëg á=[¯}°}.†º6A=v`øDü@lˆ Q䀅‡Ž$@1›Àü鸚-:“\0üPY‡ Zúp;¬LÿK¿QåÅú{ÜÙ»P¬ý½_»¡Þ¨?š`LpÖ¤?ª>3ÇáejC$‘Ó!tOtú`þ8Ø’¨Ä}érûö ñÄŠÍs óz1n±w¾fêA¦î€C ¦0/rïfG‰™¾ôbŠ&`ÆkŒ<¯FB†LŠÈSˆ×–†,Œ—çÅ‚m‡ 6TGSȦpìøufÞîJ M¼kíî#;Ò®½c¹]oÓ…/ˆÊôJ¼4¼eÆnÝu›ËkE½kG¬Š›Ö›T¡œ#¢ÈÐÝï¢zkíu0Oßz o¼¹ëË¥µ”žÈð ›5Ô°UB‹B^_þ×ýïæÃüˆ5ýƒ€$³Ô<ÅäùæDíV(^yýk§|ëºeÖ6w‹œ²Îç”I7¹ûÑYlÙaß„ôf9ü ¹‚*^õÌîN”Ò ¾Ô`ÿ‰"&E§Ê@Ž s!ZP§Íj@Þ׳£¶«JçÃ^Gðõg­ô“P—Q¹cDh ‘á¶1Ù ¡ÐƒÃ×@Df¾.z×­CßÅв9®>Î|]ÆØíoRGÑó4»€€TÃÖ¼,Eqü³`hô÷ ¡ÐitЃÐètOC ÈèWS+Ã…Òá»ùåý×Ó#è‹ûqÜ DÏÎù9Ïʉ™ádjéLCÜÔ}Ru‰ÆøHNBì˜Ñ÷òDãÊ߇ÓÌþNJ5Td–VS§*UƤd’úûNl¹…Ø T»ÐB&3ùG˜´ÁîÛýŒÏ¤¯‰çD°º@¸M••у ¤R\ØK” ðd÷£¥$‚@:ü‚ÂÖ)_¢þ8xûJÝâZRd•9MÆ Í©«€¡22 $è\Ïp½ÿþ Éx´T¨ƒ ޤ‡´Å{±ªíu|võ?qŸ²5jÁH/ ±Øk¬j<±¶C›vzïß=ò¢+]òþ£±¤b¥vÑìÈÔŒ:Ž‹«¤ˆ±Ðë <Ç%?~BfzÚ¨ÐðB„AÈ ãó(»k€â+z$PÊd2 #öÒÜ>¿ÑïªRQމ‘Ð=&\Ð6„ODÁJí>劽1²ž÷q0z~Lóí}˜>¼Îðã í„|/¸!½P}eßõ}o_ƒéßgÝúßeÙ‘Ý Yƒíï{sçÜéî×]åíDÉϯG%2J5ñ»#s£s\ ݺîì˜Îw9LØ;~.®Ð{·Òë«›"F(ÏÈë¤DX!ˆ¼vtb’ÒdŽnC6.î ü}r÷b¹õ[ÞíÜꪟ £'Y=ï¶Õ bÆÌ‘\ ;ºE¶G;Õ¼Oñ¼8Çïqý }7élúþ†ò…6bŸÔ¨`,t†‚Oà®ç‡È²ç÷uÏÞ§uÐë ]u×]t}(ã!½„öi˜auÑ#ø Ÿ¯m÷ Ç!wٜș•w³ûæ>íÔ„Óˆ¾ úë‘• ô-ó~“ž:¹±¥B´XYÂZ]âï|ÑõlP•eóˆæf Pcù ñ7¦q ™.†éIÜ¡Žº¾³†œU D!¸5NÊ/•UZ4ºÙ4Àêdí’> /]ëŸJ/ê!àð°P÷ï'ÑH¯Í,ý_!M=-}QŠ@çé æ>ï9nâȳàºñÌß[¡”̓WÉ¢öe ¢cMß8½ß¤[O%ÞòÉ<Ø{ÅŠ4ÿ˜NËÒ7Ññã$fDÁ˜Aº°T .ü÷qµ×éµ[Dj¤yœAßì]ŸFŒw®î{ȪÇ×»“hùV°È£¦g+eêœ[É\ÖÞ~=ï]ý-õž¾L€jžïµ¼­FƒÒšˆcOÚ¶`©ýsÉP¡ ••#·õTçØF®„« ¼2-/ý}pütv˜»³,…Ê!Jœ¡þ%ïàÿa‘ü…µüöVÛiAA$GïcWØú*-¢×ÑšŠßÄ÷o´…<ÅäÏ?â_Ÿ€Kðbç¢ûmH‚úzd’_?mˆMûލôÏDþ³DQ†˜ÒŽÿr–ªW¯1þâã­öÇ•Õx€õ-3ì„M ˆ$8t!@ÒêÅwèƒhñ.†Š*µ¿L¿¶ÏZ×ìæ¿A¼¾‹õ é例ÞÀÚèo„K#‘4¸îùˆùJ‡>¦ûúïÇ­{;©ÃUN&·¹8*,à›ˆG¾•w|3mé¢\÷Rï× ¼˜§ëÔ8+m@ŽÈßR¨.2ç}w‘‘8JÆ×·ç¯Q?K6Gq€¼0+Æ'Ǭ‘?¯qóµãh“ÕÚè3Ð$¾ë–'»\Æ/Ÿ^Ûß{±÷_gÍÙö¹~F U@fÁaHĤ gÀ+ …JØ: }õ_‰¯µ«í[—ѵå¼ûZø-¿?ìíµå§ÞíyµÍ\«ì~6¾±~>âwÜïÇ.‰êX—§§Ìí¢x‡ÙëÏK{Á ÈFí>òÓ¯‹èÀ²¯ŒwºÝEä ïÞÆ ô9¶sîv@6WÙëðéõÑ:,? tÚë®Ðìû,öEGíPZÒ“Ò?DKC® {"H~Hë¦zø‡BHgÃÐð³½Úzëì£ÐêÏRz«lU!ù?mAèA믪P@ê_] ñ¾î<Òè d¤‚^ÿãÑ=®£&5:nÏL¤º²ËN\º i„úÈ\Û@ýHÄûzìÉgÞü? é)£çu}î·kî{¶ú-oŠŒkð.U£ò•¹kE·×¾ç«‰¾ÿºûùÕÉo«›Im±Z1­¶Õ÷Uªä–Š´j¾ß»ø}­ñ´mlkQ¬—Ür-™¾Þ·ko‹yV¾÷Þ︾¾ú~/¹ù‘õ¯³LÆ“ZމôHèG·ÞžŸWƒ¡¤$™#©¬/ÖðÍ뮺èažŽÃ)ôb!¦¿ŒÊ»[À¡Pc1cúqÐà·æOµ— ¾ ’ï† ([ê»o}Ï_‡Ýö/+ÌüNûº,û®ßbµÔÚÆÅ¿\Æ¿Wß^O¯¿+ò~Ÿ)×D“Ð"†ÈMº³Ó#­Æ?•ö§»%I§Øê_ƒî}Ÿ*ùøªòãÑ‚>+´; ~½NV·øº˜h}g®}WÔ_-Ý\‹€…Rèpõ¥‰‚D—2ÙèéTƸR–ú£ÖÛÔ~HdO]h„(F1ÒŠ2T£Y2[úçÇUØoª‚Yfücv^ü§_çùÐÿ‘óöûrCèA°õôDB#?—h€"¤„d?!±‘ }é&Bâ?Q!¿Í¿ZS8BàH ì ‹_7­d™/£Þî¦mvÄÝÝÄMÊÐjO‘Zo\íG_çÇázÝ!.§£Òkª=Qé º\.²FDg«‘üb=´7^Ýé½Î8볆¢Èû ""¾£s’‘A•×PhŠ?MV‹ËˆêPz¢ž™dKÓë Te@%’éÒªœÒªª¥:d(VÒPŸ„H@XA@=tO@îFÇÔGñ5pâoÑòvûdg¦FÍbYÝ@ÌPB˜ú!üKk®Rg¨!Ú¢Âø‡£ÔkLÊëDG¤>ª<ñö=ãá}R ½Ü ݯ]ÖåÜkùWn§L“§4Al\Au}±õZ{,ïé~¬ ×h?kȲlé3Ló‘©~*I¾øšüÓèÏ'ð: Žºôz}OÎ*—P=ñyHújà‚HcO´†I$µAÈõ}Æ4=ú‹Éäî²Ù}ñZŸZʹÓ`“¥r×H’ TÑ{],ö™=t“F¾½Ðú÷à{ÝË2±»íõôùÍ!¿)ËD”Ab1b¾Žü޹2‰•%Êó^Iž#G›ÅTUÄÄ9{1fXÌÌÓE& Œj, Œl¤ˆ˜Ñ$(“4ŒšÌ¢abH¤(̤Œ%€ÆJÄÄÁ LM‚"2fPÆd ƒ&‚0i€RXdJ 0a chІI"R“E b(²[Œ…dÀ‚X‘I (™&¡$3£325 !‘“"`ÑIHf±B)ˆ±I02ÐB $D‰&`£!‰””E00BX²`£ŒLÓ1‘©6fY„c$X‚ѳ2)b`’ÑbŒI“h¢Š(’Äh¢Š 4‘0h”1ƒ`¢FlE–2D‰ 0Ä„‘2LÑRc²"±HMfÊJlFÀLÐ$`’ŘfĤ(„eDÒC!‘£aˆ4T””I¤” #%&DÄhÅD%ŒcL¡’BÑBbP‹ šÆ‹Ò%’H F%PFÅ’HE4¢d”PTRX ÆY™`b$‰$LX²E1²mŠLhÔD… Ñ²‘bBL ³,A ˜Í¤¤#L EŒf”b(e’50Œh¢”щ† 4TFBÄQ±£˜¡¢“F)¢l`ĆR,Bš4!¢ˆ*LPÃ’HБ¢Ã$e¤$32XŒI 1i -‚"@¬$”I™A,"F’É2 6,†h 2¢Å1PbŠ0Pi„DBQE‰ ¢£™DÌÀÒ¦$("‘6E“I¡%!6H³*M ƒJd¢Å $£(cDAdÆ¡)„D‘¦Zš!–Á,R,j‹LKDhf,‘ "Å‹³ÔÁˆX1€bLCEŠR¢‘"™)% !€´›bJ$‚0š Š&&4¤Š"’Ò””D˜ƒD˜1€4È!DÉJe”“Q˜„F)’ š1aBD‰6B$hbŠ0†Á ’C ¡,&a¢ƒ’!),cl2 ”!BQbS! Ä%“ ‰˜f±%Áe˜Ìl‚T2CHh3 M@Š10’,i-S"BJ1DbL4`6,2f$l™ Mˆ2H…R4"dÔF$)6L"‹E‘#š„ ÔDÆY(À™„i)£Ic3ÃÑ*?ôP´äÌ|üFŒdU^Â¥WAºÔš˜3zUs,¥Uâj’Ôêú/’SY©•U´Å*Z2’Í0DàEM °&œ’MvDŒÂM™Q˜£1%•PÐÌThTMg3 @Ê ¤¨Ñ‘QÀE„SxŒQ•@(Ø×Ý.%Ê\¶¬ˆ1“nŒÉ/1‰g °ºàDô4pŠÒ­,~ú°{¼$X2›ÃQè‡3.ÓÀ2cÒë© ‰þSÜÿõ¼üι_]ì/RJ—¤Ø(“Ìb¾1[¿à¹»à ÕèBÖ™{œÏ ÑÛZJϬBæ{Ê4?J•²{ü<Ú;“”Á‡Oµ$ÔC¢{‡Üª¿œ–,óõwu;È¢|[æÛ•¬1 ö:<+@™ù $æööŽœÀdÑ R2Ân£æ8K– dæ-a ~¢5R@© ¯Mu<ÈŒkO/—3¿â·=±T§išÈª]‘Ãü*x‘Lxáî"L%,ì©Âå?xœ7ñùŸ¬ò¢Kö• ó÷Í*Ý<±¡qº”#Y„&Í—U*tTÞºóßËüýCä-D-]ÇkòœGËwÿ­þkÐÐ}ý_ÝЀ¿/R`xü)\+ê-a5ùLÏìuvíF_&.¸zÍþí¬ó1¨aw$Éß¼Ÿ/@x[K0âǨ¶ùÐ\èÜýª–µ-vw^q«›É*fN@q8+æ m‘Y'€U•à }RU­òùyæµ!6Uîþ ´*ÑYT00„ÚÉÒ où#ü,yê$kÍq²3É1€Æí?äHá+5ú²Wíƿ—ÈŽvÁ#g¯çZÝ.]ãìò}‚íö9Ïļǯ§½ˆû{ïþÃoÀØ«ñ¹4V£X¬lU!¨µ©,TQ­F¨‹Elj#Xª’ª61¢5Ž ‰’Hy»ô†ú'¬4Aó¿B Áx{íyK×|z<¼]êfÒêà/ )ä(ä©(õ¢ZáŽå k¦|õ~Oó$·Ö/§€û­¨Âˆ*ï%(ÜG“æ)ÙëÑc}½Sš8é¤ >EÀì‹•× p­[ù‘êzìÙôå!J`‚z·FÄŽÖdCOéù¼·$NóÀãÔÓ'b è‹ À{Ò&ÒBn´|šü[L]½¨tY>‹üÌX}®žR“w_¶Ÿ}×ÌæŽ_ åyW{·ÎU¥'ØÞ³Iì_§ :åø¾Xrõ)¼„?Ý¿r[§Íù›`µ*ëôõÏ÷:¬ÃÜ}ÏýÙÕ„¦ Ìèû—×waº[×ÜÎß?Üq¥™bÝÛÿüJG€…üµ¯ì:u>zñ û·,G'àMÿ#C"Whõ‰äÎà@ßʱjÿÇìlú—oêZo;kÜ#ÏG³1z2 5ú3:ï«bb+„&i½9àfÔ{¾“§¸·Õו¹Ó™sb›`ÐÌΊ•}ìEK;ëà¼÷Eê4.ÐÁƒŽ½§@i)#7;ÿk Ô}SA›pà85G%…­»É‚ê+²O[+2˜ÿf>«»á<¥K‚CǺåá\Ö¥¼šþêD*ÎèÝ1GÕô•}jKUãõ\ª‰UÏõXºñkÜLÓªÞ9Y‚L𸎉à¸qµ‡ÌPƒ…yU.©éäzs¸éZXtµ²I0çäÛá6|$(›ÏùÓ$’tÉB|·Y]ß©]U ´=O “Ì‹!,¼#c×SG@"þ 1ÆŽpu2b©  ‡|S“´Pã:ó¾åzÌz?´ßþEl8]§õýGÊåü§ÖèϼTå:%z¯ceÁt¡àÑj­jÃDzCÙItE½]?nùK@n¨Ü!dýYZõAg÷œÁŠá Nà7 ß­L½^+é±ì ë>Ë÷#ÞŸêû^sY<ýW£ ¢ÊIH¥ŒÇ˜›-…¾NÅ7ŽJ’U?ö­žóÄ È¬¬÷Cчþò7®ÖZÛ?åu£çŠž`Âé×?"Kž+w\óÕñ=ÈJ«AšîêC —ªÓeÌÒNK ÿ€þü}×fMžg·jmçžözÅXwmÊñºœ=.¶úN ©ªóNù(y¯?õØ é‚Ýÿ™$÷ÇlIóSJm•øÜ1§¢*LÞòºD1¼w71j°}Çûþÿ7,yßeûh¥wÜÛV¥TðŸÆì>Ž•PòzÌN/»ø|Ä=„vBËdVYØ‰ØØ«Ú«ÁžZÏùº0ê¤öç´ë*õý +ðõåÏ|î„w’áTŪܜƒkëõ»ž+L§¡õÄó 'Í^¢ó›̃ԟTXíÿ/Îiéss¾MX·"u!HpÍØ`y2Æ_i/©¾ZÚ}õöÀ¥àꀪ8‹è ¯I€2É£ž„óqÎøß6™%ÚÖúüà¹Õ]§òîÀÓaøDz„/Ù><º~}1§LO¾+Ú:l¯œ—ð²J…û1qÖáýÿ÷íú7[?Œ7àTÜ’XÜ.C¸%ßùò>¿Ý°ú;ÃKÞG’e«w«¼ÿŽ˜}}_â€þÔ<Ãòè #Gå*H}q+vrÃgîò[ÓíÃ9á´ ¹]4YåÇÏ Þ—vÖ“ô¯ œ Þ&WyPÁ<¡­Ðöªa.å ¯)rÝm‡õ¾lø¬"'Ú¯?•Ç8úU­Ïç¾C–ÀH_Hœ‘ÿŸi“öÿ˜Óèï±s‚¾¿¢†9òð§¦:~SÐf›RñìyŸTì6ÞëÚÓLžÓCkwø5ü°òÏá„hŽ3 ò¾OHOdaìçqàÌ|\¿×Pmöýަ­í–¨S¾Pl3_ËJ |@:CÇæüíF¶‰Fô“mÀþ*‡^yÑ9¹KÒ@=ªï¨3b7‡-ÓvåQU¸Zz¡â®xCéô¶Ì@ú{i2AˆÎ к“tß0;ð«@°°°ùÁÈSÑ)_zu1E¡°.*N¦¡ü}ç5ÓÿKLŽÆ’nµ3À>'æ¸ïU yÚ vÚbp×—±3'DˆPmýã¸>³Ï`'N†eÝ«‡ ÁïEDS#ãèzÞSÜÌy<¹mÉ1æïƒË—+ ÑmÅPUaº‡ ¡ù¤9,Eøìvx )GŽðÙCÃt›]—3<Àãú@ËÿÓG¸q‰ºi¾]u—M.Ç¥«>÷Æ=TFat&žÒçF›´™;hÃûû*ö¹à ;¢¤Òæÿ ufÃíïôª—^f^ëqüÀì}ÉßÔÜúî`÷¦½xÏŸåÍ·üJ¾¾ý}—?GPê=ÿ˜Øl?îlù’öpw«È¼÷KønÊŸG‰ùð0Uó\rªŽ•ÝqŸÒÇPœÆC®ô¾`/U3¥YÄx®ªì`uÉÎü©Hioûÿ½h8;Syœ³·Íä‚ýŒ8b?)½²¸·ð5÷·ÒK 7k‘4i«ÁÄn7ßVˇ ùöøôîIFÒ¨ªçs;ű6Ñõo܈=ÒLy¢·£ËÎ3‰ÒM …Àéx`ìuA:Ç™ù9^ZRq<& Ád;Ôø@ƒÜ7šå7•Ò¹>2XTå<Ÿ'¯ÿ¹ÃŒzz ö„æÒž÷Á¸Œì´IÿCþÏ?_ì÷þ´ð$Úl«áSw~#÷y÷~þæ¼ §Â@ÂÙ·µ½óåR!ˆJA˜Þ}‡_ÁãKÍò;)µ¨²æþÝ?°Ì N/æÚù|(M†A9¾O§Ûò†ŸÅÚ¡ÿ² jÃ|žú!tèÅ˰†+ÎÀ#©57Á¸âj’ŽCô‡Nö~¯‘Ú.ïŠ@=ÿ¯¤ª°w]C°¾tÚŸ¥pæ$ f™ìƒèô„xes0òBeqÇÌìOqd`w1ÆCfŽÌâf‡/,°†®ûîtû²½RsÒ„œ>>Žd-xTû·z.ËrÚ þÁæó¼W¢Û/Ü¡ðiÈG©’†àƒzTsëå‚·c K9ÞØ®þÒ¶t€!éàäÑŠõöMÒ|ùòV…Câ'ûoö*®&ž‚ßÌ -?¨$ƒ)§õ· ßÍ¿º0âñ´®ˆuVÆ´ £È8äZ² /÷Îw{æÙ@MÈ×w.‰`¡/ܸZßȽI5á"Þ(";q  .¿§«°MoÓøD}rg9?/a‹ù>¬]Â_ÚÓÑÙ¸OHzùäÝ(½F©É]œ›×™þV$q^ö\<³¢7­ÉÃ%™—c{ó'§¨ûë}Ëy”#…a¦À<^CÀ8Â’‰Úî“tGD9µš}\ìßϽ(x”J\eU3|âŒÛN|ªÎO­”|{ž²´„DzÑÙÑÍD©‡¿¿W¶0®|a²á ˆD·1Êà!…J·í`'þµQ§£¸„ò9V³Ùˆ¡üÍÁŸ=?‘i¶yÂÖb^¦ÁÉ@òJh* Ê9ôz‹:ûüƒÖ ÅKÔL}àE>P$e‚ð*!âк,'ÑF¡<ïçÅÛ/ÜG¯¿×QúªÌ`]ƒäæ@ÄÁ ËØ~Töf/xòSì÷49Ψ…«¾‹¿(iäI¼¡ˆ ‹9ׯœ–·>”éÇØpDzî›`Ù¥óèÿÌPVI”Ö`ò4©A¶ËŸÿÿÿÿþÿÿÿÿÿÿß~!ÙæT0; üšÕ.åÿÿñ˜Îß`@€(P Jj4Ø`ï€= €¡Eh‚@ï€ÒÆJ§'phÉ `Ðâø}÷wO»Ø9÷Ù(Hô-kÀBú• ­”J 0œå¨(íŠ==hÕk»¸©Q]˜ª¾íÕ{Ýóq.,(*Jùh¾·‡fÝßXÓÞ*òßl©Ôõ³˜Ó†nÏ—Fî£Þîj£FÔÆ¨Ämf‚¨ëM°¨—sÓyåUtÑn„¬îf”*QJv2­e%YïU°ï'eðà7=zh¢CÄÒ^žöúvÍñ…öçÇÑÃäôíYGYÔä%Ön†í+s®o]ï9)<ÝÜn×¼|;ȵ¶4J}µ;ŽãAT×ÜÝ÷¹ÞJÚª^½ÁÝ­6øßVÛhö&mkk4ôóÏA磞y«·yŒ$…@Þ°®‡¼áJºn €ÀŠ¢÷=… ïm8œwŒn°¯€À{Á)B¶™46ÈVçM}ÞBJ¤A{λ w-×v:‘ìºç«³ÕØXÅÎäõÛ“eœQ’Š*÷·½9Ç8;…èô[7®èåzî6KŽš5½¦JPR °ê•ղ۩κ÷ÅT¨¤Q  ÕB¢© Uk* ‰¬ÍDT¢ m¶Ù“D4Yºí[YlIëB‹¾O{jÇ¥Û×—¢´zmi6ÈES׉B…J¨ª½ÓÖóÅ%á=ÙRAR¤¡c¬¢¢Qè‚’UZPÕEB‰RE(P¥tmî4–£Èg¨  [U/RU¶i* Ž6F¯…éÜÜÃ$“£XZ]…±ÐÖ…%UJk€låvÔ £}Ðç/]Ð((¢¡=UHðÜr|»˜ûÔ¶¨@€ZÚÀ%GZQP ï- ÐhQ@‰_l@P / P€¢•Tì UÀû¼·ú(—@8>€zEÇphìÒR h€PŸXô >*¥ô4Ÿm8èçÐûÙÓÛ ³Îô9îÀ^€PõÜöá|2¬×vér p®>·å!¹³el» ´»f04P½ºK¦m…Ý8u—vÛº‘’H§KNâCׄïu€¤¬óÝ€>ìƒEƒTȃAéÏaä PPw†àÜöj¢îÔˆ¥Í#6 íâðÙM @Ô‹¹Ö°u#ÈÓè[·vVCF@^šMPÞwm$Ê”¤À/xûwwR¯}>ìrÎŒöÝóÜtÛœ69¸£x"ÀJ@`€>€>ì P D Ý¢   ép(Z:Í`›j€h"Š;¸4ìë»D‹ vu#­T€Ù¬U:î7:νš€Mô¡UìfûvϹ‘ {­{œ^)omöè—@ñ w×)Jz•WÕÌäçn‰R¹V÷o{à ïzQNôÀwÎö³Ï äÒ9‰ $%×N¥J¤J J ˆ”=Û•±ðûØóà½|¶ú-ÀxñêÞãëÝò}Žúû}mvÛ¶eQ"k$ <÷— ¡w½wx{ǃÛ31O_ð¡Sf'ÛcX€m;( •EŠPH¤¡TOmô(W€D(^úª(ßj:Ô3 ÷„óÝî{Û‰J¢¹ó»Ö(»hR‚µÕ¼ï¼äúßè€ ê  0ˆ@ 0Ôñ A""MOA µ4jzb ÓG¨zšhÂ@„ÐÓÓJIIЙ ¨P@  O%$¥ ‘Fƒ@@ÐL¤¤‰š*i7¥ hЀ OT¤D@" Ð4É“C4 š4hši €ÓF€Ñ ‚H„"%6‰ÔõA¦ƒõ&€õ ©é=@ÐÉ‘õ†G¨õÔÐ4§©êzšÛô¶~”/IXŠÃ0Mm"Y¹Ióc2¤LÌ*pæ3­‚8É‚a¬™7•9Ûûã>¿È1ÅWŸ³oáõ³Þ½1&![d Õ2¦È9va¨ŒÌFXE¤3N  d7•H…fDH¸ÉNåLÄFSÌ ”ОN ’hËX´±A+ I¢ˆ$-©+!¶MEªdæbªc%ʆ°‚?Ìãieþ{kÁ¯â?iSß7Æ@˺sâ†Ìj²RÍTÜM ËÎc$‰š›jó9©´sm*b(‚JÍ ŒLl†!zÔ IÒe7U…f܂ےê®N™5 &E™…q2"S§4*aCS3PˆX‡šœ A(·43BwVTÊ¥WU ” Ø&žB– ªf ¨f$Uɤ&T6å(HANf$©Šh›»7'4–[to(›µ9’Œ°“Yeˆv¢&\ 4$”p\K j‹…fRŠ»2ò²­,“j †f*$ºª¢jM„ÛUH—œÛ£HÝÕDبLÜ4â²ÃªÊ‰¹¡2œafF‹¶T¥ˆ5-•`5"2ÜêÜš!ƒeXN•§YJ¡LCê*œ¥˜‹†îì •‹0 䙇ˆIŒg-Bc6UDÌÈ£-ñ$±9mVÈ4a‘"``Þ`ʬ¦…L8Nnµ9hŒ«w¦F¥DÞ¦âZSœ¤¦F]TX¶‘ÐVؘŠ}ößO½ñCìMM.þ¾Ý¾®Úf*Ú¨V[jQƒÜ‰¹ éÌŠ·(·u.ZT ·’"CJá’^pœYÊyzÊ"¦³˜™sÍ$ˆF¨E’ ! %Tš‚+1@˜ ;—! ÌLTT…ut¬ÓlT³6¤BKp„¸V˜TrTfn"QlÁY™¢cTˆt@b¢jCŒÚ¨rÝE;(MŠEZaK‹AÝ1(æPqeàç3 pdænœRqs•“R°Žrƒœ¸Îœ0I‘ ²ææÈˆÍ\MH¼åС6¤±FM3!g1¦Ê„M‚…Tfbš\S–$‰eØ7”I²Ò‡±šS#"#0ˆ'%«+ËÍ’Ä;XUhÕ)eUh̃R̆u”£UFµz éìV¦ËgS—;Nì³Q²Éfå9r¢7E&q“³£Š´*¸‚ hä€uÔ¬j©fFXËQˆNé†q6!»½N4Ò°–Tóõ˜š’ó)u°eüGñfW€ p˜‡¢ðʦ‰Ã%˜äá£9½Fªë*Ÿ˜eP‚ÖmâÌ‹J›”ðâ¡ÕÚ°ÔN-¸ª¡F‘! %7p,eªWW/*pK”Ha§˜vŒª‹t‚¢TEæ¬Òš¨¸:¨dšQT3I’mµ˜³P@›W0•‰¨i§–ÁN´Â9IT96ÞHE—‚K2EÜãNƒ.µ–éËŒ6b\Hæêq2-1)c Þ’4ŠLÁ1ïÌý½mþk¡æ¾Q½OáN·³)Ý8Å%¥¤bŒ„<Êl‘ NÝ<çö»YrôÄÞg|Lw|tŸ¼wHO gÂp$Ÿ¾–?Xð~–Of'Ìn#Hó%ÞyÝÉ:ŠDÓ:N%õŸ7Ç[çMKç>¶u·©÷°÷¾ž=¥ø¾ƒïç°]ïn ZV€ p ‰ •œ—Eœ9§jsFÈ‚pY£d9Ôg4Nwxë†ÕÕàŸdU÷‘E2E γýW¨©¦©#@è‡H§GyɪY˜Æh[¢¡´CI†Q bFLÔV‹˜‚bVn¬»˜¨"dÜUÅÆ+9bFŠ Š„ŒQ 2*­NfØ"^†Æ‚Cˆš-n¢P2– ˜æªê8.ŒÀºJ$ܦÍËŒœ6T:3)A KH9H¥gMÚ¤P&V(]¨ÌMVb», Qª!À— 5DEXÍÀµRÖj±DÅÚ`¼¨"b*j®¡ÑD0Â6g2‹T¤P4“º’Æj*ÅS–, …—D¬—"óji ŒcÇÀøGƒÅšf„8el©õ^s@¹ëNä•M‡bNÈ YéÃÊ4dȶ‰ ç@™!GR*QL„h6ŤËUO,ä˜{k&r Å¿ÍDòRUìMKÄôåd†^S&DsDÎa*él63µËË’šÇ¼iìÚRL‰†³\\CÂ8klh0äÒÜIL#E4=«*І¢3Û[PìZ†¥zẖXº’IlŠVå~ñîÓ4­tÏ™‘ÖuË\Šg:«k\HCWNcJ&°†„`\ÍÃqh"êJŠ&d²=]<• ĩȕJÊáØÉ‰µÙÝšr®Û§¬VYLl¦p–Ó™-´%…fDvÍ6îœò<в(¯=²Ã«m‘4Y59K;EˆÚØv Ú[µq}d}{5d!îÚé]\³ !-Ú±WcmÓÓÄåM¢4J®RŽy7T‚"‹DyD¢¶4ÍDžÈˆÑ¶1¦ÀN@))(øÚÐ7-¼ÛhBÛÄšRERõÎØÎp±YÕ¢ dK#­4FžS*ŠIPí’ȲæMdRЉ&ÔEmºTåe”’¤ª‘4]Pá"e¦Mg,clÕ.¦ò•­¤Y6Ýc[bugR"ë––.)ˆ¡z&W$®ZPE¨¬»Z";u ›fœm´TmZì©VÓ¢z[µÛ:v¹BU˵l:ib'&GkÖ´ª¼VÚ̺Wk¢QøÃn%ƒ”W€DµN R‰b$iÐkYmŠF²ŽliÍe3B.ŒÒ\g&Wœ›Jä R.6‚Û˜…¤µ(Â\™6^¦)ÆŒ3TgLÚSCÖÆ'´c ŽÅžÈÂH‹ÂÈ‘ L‹Âô†Ú®Òh-akNæM Ïmci3‡2ÐJ’®±96z®UصÐh¸I³frꋜÛlGd¶sˆpÏ"²FÓ3–åk6mmѵ­ ­Bg.WfË¢Ûv©¢´IÇU¡²Ó‘ º6ººéá4»™Wn¶zÍ“:i-²P/X’a5ا›WM‡c+•±U°ê3’YšPG ™Tª4bÄ…U¡\lÖŒ‰•vÊ/:íEU$¸±Fåm¶3¶Ê´ÈNÄ9©¡Îœî0á^puZ¡Ã^d¬ªŒB6ªá®ºhxöáËœå6”(YÌ$=eˆžDºzVÙÅl<ó¤¦!¨¤¤„ɲNÙ£0˜{MÆfqY´4¤ö©!/V„£VµŠ‡U`ËÊ´ÆWɶ‘s†g¤èFͪÔTêeIâgmnRåVgWrò/¶}ì ê(bâb½º‰.ŽÝ2X—e¶"BZ>eÖ¡ç#§ ÓtDhÉ(ÑØG“.“] bê{V˜I:±Ä‘jô1«š¨…6ÎíˆÖÓRìl£Rm±;g:žS93‚SQŒ…7lðË›9ce«iÛCb&7X{Dk8ºv’W“TV$]P£¢ìÆ¢W&r ¹‚¨Mct˜Œò$'eÆÀ»SµÚшMvÝ@Í­2ZpæÍÂNw µ6…³óš¡Q½n;dtF²8”ÂNvnÛ[­Xé6Øf]‚bÒ*g'Lꜩ±´†ØL,„š§ V5‡¡G­­Ò¨©@XvÍc6×Wvzä%´a ˜6™æ¡›ba–‰T®m¡ç¤bEK:×BNG75Xʳ&µmµ¶Â›\Mª'ElàŠtÛTí°fZk™‡’,ã3mR„ì¥:±H¥ÒdªÇ;HeEŒS—Wh\¢:UÒœî»%UŒ”TEÆ1žg&ÓjQÃ"ÂܼU­Í9VJì—h%BfÄÛ·tʬ¬õ­FÕ©k-ÏaÅ2ñ«¶MÙ[l35jë6’ÎÊY6­tœ•Ùœ"*r‘­Í[l*9)'VŠ`^^Ñ;m£:{"–³ÂöÖ£ 0·HŠô–§QÛ¶çnµ¡Å“bÂNžEÀ‰©ìêéÎÊÓvÓšá¡Í9b¹ÒÓ´¹í On[jQ­¤”+6Æ<£vGgq®M„Z5°h±Q§[U²º$6²ó™1RâÜ%mË=Q;Z¹f6ì‹Ì¬YF¡«×\¼šóÑcvÖug&-Œò˜™¥)c2ª=µ• …¬‚¨ÝºšÜXâÃK«c°–Kæ<õD§¢sµ¦M¬*!8Å¢Ò“ªgQkf̃œnFLCÐÃ-Í$¨«®ÄÙŒKÒ#"ôísZçhzE嫕ЧD¹¶èÈÄma”{7LÛa­…ìŽ'™62cf«‘[¬…)e´ÆÛOE´šM—‹7 D6­r‚Š®ØÝž¦™ZŠÖ6šX¢d\ÊÏ/ˆ—8ÜB¢IóÞòGMJ/¦å ¡5%ɱZ†]lí³‰-£iÚëÝ ÷º4zј­—=&®³·)¢ì#]µÛg.±c¤–Å”]1m5‡4¢m ä\å—l”¦ÆGm5+AU9ì™h´i‰°"áÚ³sŒö*s$‘˜S ™^ÎÍ„Ìç"+µŠ»Չʮ¥ÃÒ夜cb$k9·*ëFu²K ºŠè]ô¥L$çp½;/Yˆ–s˜Ð¤l˜•±a$µ/(­$°,ç°Íö÷""« 9‡jHîG•A]-H”ëp‰&1"¼ˆšŒ’c ó¡ÖÖZz´Z¥s¶EËr3ÎŃ &vÙ§&­Pˆªéj—]œ*/Vr,Ή]¶z¡j3fvÒâìšÒî¶Æ Já˜Ý¬K­©ªyzÈÆ\ܨ¬’:-¶yw<6Í#Sµ3œ6ráZ³Ëc nBRjÔ«’yO;{]ô^¼.‰kQAÏg³Ï"7°í¡É“,2 µ²gUžQv+hr.ç+µVwJ8ÚÆfLQ;Bò<õ 1[¨é >}éOD<‹› <͇¤ÊÈ»›sÄôäÎ¥RµžO&r¢,ö3Û¦Îá7(3scbƒßPDU?TDUAŒ»m€ÇùÐÛßU$ƒW7H"®W.Q`£™–"‹wv´Q®é»\¡˜#s¥µÒ+W;¸RÆ×+»Š®XDkšÚJär¢ww]¨Ôºì0MÍré]6×*ÆÚJ.\Š.mÈ´îÚŽ…DW.KœÄR¹!B`‚£,S&Q:ÚÕmÌî:c\7#QË©ŒM.dè6˜×74T”Õ#™*Y‚YŠeää2H…2îÿQlqï›M”ÇaÄ‘Ò9Ê.EE*Ê ¢;.RTÒj‰k*(‰Ý§rjåFº³Nê5k¢0V¹s;¬EÍ&Ó‰DÄɤQ ÖÂé“IadÒ¡:u£•ÍÂܤÀ[…Í‚¢IÙdÀHN"²å•K˜´˜·5”h­Ëº´‚NÒh\‚íóÄ|{ࢎ¨AYU&’ÖÓòò¿mŽRâ–EêªfdÍ¡jèN–µÖibF%)(p¦ÊCˆpTLì²M@» ¡€pî{ˆJ‡³lVÆDF[e®0M ûÓï¾: Dã^f³Ì¤8oÛ×Û‡äô³àø³å޹ñö¾7Çc¬¥ï-˜Žì}}^Úñnšüï§¾½{ïO$ôKc˜?A‚Sï¯×NI'ŽÓï¦|ËPÄìQžõññ}ñu³âëˆ{Lm=âù÷Þ—|ûW†}^>ßo}rGïyñ¶óóÞ–Çx©ëcõ~=å¥ß1ƒâÊo+¾eÓéíîûÓï8y¤°ÛÛÛÔÖ“×K¾³çÍKJÒzý â{Il÷ާ‰CT­–}ìKïcÞòúogÏ‹÷{ß%²ø§§¾ÞIß5 OŠUšÒzöëiˆFõ‡â}µ-¿Î}í~•_¯¾Û|IqpÍmTR4fc»²”›<• hÙÞÂQªÒÌÙrSƒ‘&!åú$@H qòÜë}¼ûÅ{oÆv³S W>ïõØÕô"ÛA%·† {Jý>Šƒ^öc zë¤^ÕÌ^×Féã¬l`¡™&ë½Í^[m°mM±Ì0NÝœâQG"ç:p‚¢®ºê#EñÜaÝãÆ£w¾ÛÁIiI5Š'¾ì,F(Œ$hKI"J(£ö®&‹=÷^ÜÃA‚ÈB½vºkºº±Ô’—Œ{Á-Ó÷¦—O|ßwÓ}ö·ÞÓzUõÚy)æ¾Øô¾ó¦>ôÞuú¡if*J…!Sš$YFÊO {¬¹ ù½)(Éyëz–’,mQ`ØÖ„¬9hݦ-™È—01¤E¶J0ˆÐ¢Ê¢’^Ût>¤¯l&=œûÞò,Cϳ/³’®fé#Evm3ƒÀXTRØb€µ­‹>Œøµï PDUÒxÐ[ChÑ\¼(+=µÊ!Aœ¤z$÷®ÜºÚZ9L›04Ð7>g¯^ŸO $ìÙ‡œ·¨Uõ¨!bmS7g2.wˆÊu´EªN!c›ªÅ§SQžŸ{'£Ë¦ÖÝÚÂoëÇÃæQú!*EÑqžÚ~{§ÏžIÙz»VUg‰6Æ×tª‡;5§IÎÝê|£¼ÎæÉËÑ-•P2N槆O<›ÉïI* caA{[;J°ºÏd“´F|ÚæƒÏIYîJæpûÜxA0…µ®d/C5Ȥ¦âªÊ ¹ˆT;’H4 NÖ^uGhõ¸€«¤<’Ž]¦®ŽÝrs°™=o{»µÞÛB§S9wx´ôyPçæ6 ö^IHHj%a4i(0j-ŠÁ°Y#gwÁ‚(ÉbŒhÆ 6ÞVÕ®ëîÜ×6ƒ]6‹\¶¹¢€£cb¨ÆÚ’‚ˆÁ`Ý×hæ5r A#sI¢KsW.Z¸DO.NîµT¢W.U›8‚ÑL) N¤F@‘uKˆX5PZ %U# …š¤E‘G+–+4³…EÓ-¢®h£lF¢4˜‘iTO@Š TDPó—WÙU¯júZ!CQ£Z©JT¤F’¥¡U)$QuT?ËÿDýBIÔÚ"‚H© ÂŒF%@"ŸÆTÔxd•AAˆÈX6-ÆŠ*(1a,%F$¤216I,FÑi’¥I…,b’-¢LZ@Ú4iHÚ Ci6BE 24²,’EŒCQŠ)3cE±F£TdÆ -“QbŠ“%™bŒ›d T”‘“Z Šf’@ÒcHÚ4S4”da ÕAj ‰*!þ‚¨ ÅÛÕoMFŠ¢¬mchж5F±­TV±EQª5lUÑXÔhÖ£Uh¨Š+X­µ½{[EF€Ðk 4”hŦb‘J ¦†€¢%à ¯þCB™’Xc-P„QM0%F"Õ*,i*$ÅQ´m2,Æ£Aµµ¯W½EcY4&Ò$…£HŒTiFÖc ѳT/@꜂%d¤¢˜¥˜ Rت(-Z-FÛb¢,khÔbŠ6‹ËÕ$ѴЙ±­j&#$&̵¢Ñˆ”£hTÓ©ÄMW•QJR…(Ò‰B´ŠR D‚(ˆ§ï*ŠoBU%"Ò„²PZ£XŒF‹chÕ}Ö­ª÷(¨ÇUìë ˆÿ ÚzªšÏÞ™ÃLX])&ÒlŠ‹ŽuÄšs´–1¸UÀÉ®WÅF-3tÛš‹h¨PPÒ Õf§]Ý9®DcmHåsCÝ×5ÝÆÅBk›mÈЈ"ܵȹW:™ÝÜÔäˆ'Š´eÓ‰]&«5´€»I2)‘ÈâTÒÑ%(’¢-F"Ûša‰„Ê ¡ÛàwaFh¹¸‘:r íµËNuª "$Låš™UY] 4 0*%fˆXY™Ó#Š­µ„AM:\“Y›Q!.QqKe'C2H33LN´D£K+¤–¬ËTº&¢$©'K$‹4²5­%H+ †™&q@â‚0@V?® ¿À‡ÿá]@?” +þr( àU@ÿ䊫û‚"?ÐQÿ%Gú*¢Ÿ÷Ñ?¤!þÁ@úb¢ÿµÿÂ?¼ óÿº ‡ü?ß*/þaýWøýPSù" ûûñPý¨óÕ÷û Gû€SüÕGøˆ/ñÄ?Šó‘/öâí¶¿]ûêeê¶Ûmeû…|®Œ¤—ôÿÞy®TÏZÏ*#µ•1-É3KÄ2JˆúW™áÈB$µݵ ÑB$: ’¤µo$åQÿ(Þ·»Jª¿,&9“o)@•*Ìïv]‡©^¡®¤ÙTØB„(G3¥L‘iRœýo&ÁäŸI &F¡„EcW9ý½ï9¤Š¹_[z‰ã¸óÁIJ²¤Á½ä¢¤}O+Î1«JKH¡êÓRª×|™Q\J¢ÁU Ëz'$“ñöûÝL¿$#ä”Å=ö±2ªŠÌ?VŒË¢¼ç—½£Ï”ë–g‘TXØ2.Re–šˆ¬YHŸw¯c¼DYç¾{qáÏ ß=†–®3_ø-¾ —lO,ʼ­ss[FïÕ¥í–J”"VF<Çœï5\£ÏN¤wco<â=5öú稂$ºaû¤|±WÊ®‹™; -~ÞˆdG·ök[þ^ù÷"IT4}—³ù—÷±W³1tR+ËÒOñ»Þ±q0áÖl¥^wqK.f.AE–¢uÀˆ©šb©i{ó°ÿ×}¾ú>Hž+“ö$̪NÄ¢ê‰]£¡å^±ýþóS¸¡–Î §®ä?ÃÕЩjsjªkbˆÃµËµ °áTrz÷¤D*òî]úßËå«úß”S¸á JîC¢#yÕ¦a²läšð³˜Ií}Ž3Ù ¸®”2Lùž:@15°„@‘;˜Ÿ °3Ùþkçï§×sAù^U“Œž½AžRyB½»ïÊzŽÈè#}ã }ö3+‚™ãøŠôÄldÆ–AIâv»¸ØË»¿2¾'ÏË£¿l8?k°›Ðdl<“7—"†ŽYãë…=§Âk E„Pï~~ñÍû³Ú -)¹¨Mh‘2䆬Ñ_>Ò“î–Œ»l4B”âÖÊkt«ŒÔôaûѧر—QlTFƤúñ«Ãm¹.yš]½ô|`‘y¯+³“#†–' ,’¸ø0yûãí>ˆÚè·6ÃoŽÇl"¢ËÏRÊ)ÑêV'~Ô÷Ÿ+´´BƒkjÑÄ~w–½®b+rmÉCóìôÁ¬»7\*`º! (g·¶˜“fD’”£ëq sE#·¯1·ªXż׊óIá5Cw±6[2X#ËKRs ztœ”Ë͆ƒyµ´×G'I\,„®› Ê[†£²/*ìlø¡|Å5z”å1¡s! έ9Ågs§²{[©–[¦»u°›©Ìm¾g!1†'›‰•޽¹²Ú80ýdð’{×®º>zbOk:ßFW–øÄ ‰LR±ž1A®‡Ðg² Êyâuñ]eén´`Ï®áÞÝWk{ÕÞì[*Yj-­4gS…¿m-æ®7ÛMõûë‰ü,ô¾ C8Özüì^²™âˆ¨½wañ †D"º@ƒ —Èÿÿ¬¿+»†#üw².ì ù)ÎÊýU~Ô÷Š8Ö`U“*nTm÷»Ïø?ž½Ñû\dF / lx#x,ÅÚ×}¶õ„Iixu$ŽU¢NÚíPÍasÁ[Þ%ÝÖ€ÂÑ^C±l#°²|øÝ±¼ú”¯0QJlÐnæÎY9SNCHäi9Á'5€ (¿..¶Ge˦I'iÁçc¨çÏÇÞ'¦l9$¼7ÃÌ:kž!Ï)hKlëº}É$Ñí„þÿäzÓ¹«Î=ÙE¤a¾--ɤhÌÉãt… ™šî.Qh»¸+Ó›ô×HÅÒåâˆÛµt‚¬â–È÷·ôÂüªäøœ–5þ||è%(•¶ö¶1ˆÃ…AÅhkI„N¦¥a¶E¬(XäYÄ¿1Ǩu _žØ°•ñmµÝùöAõ:rºÔ!š:H›jnÎÑ¢ýcÍáÌ‚Wø÷gÓ_Ô¹Xõ P—5 «œÚï9™Î9……* }äUÙe9†Â­*¦HÔŠ‘i@î>ÞÜøûtþ‘ë^ýÇ+2œ“ûÔÆfÙ¸–οݤÚÂRPŽÛ%E×·{ÝjïBG™í†é‘ÔŠ3‚H©½u±šQyuvÛ9t†¡›è‘ߣQö=es,+Õ9|ž÷¤Ë^ÓÜ””¦Ñ´bJ+M¬)‚ÖÚPÊÊèÚäNTk‘_¯=˜tÅÙÈÚ(ÛYÎvÖr“›;#=1ËŶ«y•Íâ9Ãvé6hØÆ-Ó³”Õ[¢eÑ]œ;X'¶–õ¯)§0ƒíw\‰/ü[a}ŒÑ?Ü’~³Ëõ9žfÊ™UŒzXJÞ‰JbPë‡kN=?ÄåõŒñüú¾ƒ{ù-‰?ƒÇ@´&¥‹…켤æÑŸë‹|ì(ªWÚV‚ÉuÉ2 RìaL,õ‡üë„Çö쵟™O´[ $+mGNæ£íýÚ=ë*m¸¹p“ \ާ˜]ÅGá~ág?÷ |±ùé"9ø³çñ«‹¨™‘7ÿc„±Å‚™!¥²¸qm"@®¿ÊØè½Œ§ù½cC=oH*X’Ú$Ö°ÿ>ÛÉ”«ïÔžð×I y½ù—¹Í×T[3°í .Ìæ1´Æ ±)Ô\Zé ç»&ÊÆÖOox=äÖæ*<%°jLo¬“O¯O‰xŸ=hBvóÈ¡"žõΘIÄ’Ç_Ê_‘õäD[Á9:R:˜ìœX¤ÎC”?Ñí¸¹îPëL|b·S‘âz©NJÅ4UPõKE“Ë'w6NK°FÁä ê1!¹ÛÎÒO |õ²žpOOÎ÷¥oR G;I’´›˜› ä¦Àl™ŽJÓ@d›ÈRd d«@)±[d¤»9dPìr/M^׃²^1jå´îµí¼Hì§$¡äË’PQÔ%˜’œšnNó2G%2Sp)ÀdþË‹äu8„ÈC·jÒ|IßxùÄï;爂W¯n™OR¢´böÏ’©öÂf¶!^°í ’!á·®‰Øqe¸_Ù¼‰A0ËCˆG+îÿáÇkôµùHHÐCi³’þÙ×jÊK:‹ÍBɼQ¹•$PÎ1ßâ;©)Þ=lñâAZDH[mŽkš–h‚D*9ùóâ+”',%¥íšÿÆl§›®U…:Ô›|ø§¬µ¾¸¾¼¿7Iœ€èk?Ÿ¾ûiâQß–åøÌ¦¬J7±÷¼`‡×½$YˆS˜'. æL¹tœa_žè Q…N ü'$‰)ÐõËÓm=ÞGòqç¤ ÛìüÂg²e_;²œžå8u`ŒiTê¸ \:xÎÁ$„‹&zÁ;ëÖçÈ Pɰì¾7œàw+È4´ì†n rv–… äw·WWyÊ]âd&ÔR› ±²ä@ÄäÖ/'œÃeå°¹ È tÜ(!ж\”-ÀÝÁ(iŒñ×\OÜë–§˜ë˜Ë‘uTAˆIÏ¡C¿”qr»õ"‡çäÏ/½;|ͯ|ÊNàè’S€ >³ KèøåÊv“ÉŠTµGÁÇ8ò=«í÷O'zÄŠB`Š1ÍXcì­wTgŒñWL¯O'µ’o]EëÏÓ´„7¨jÄÈ¿3çIüOžù'‰îóÙÂögcg\/uŒIÝ+wÑíw»ÎÒ¡&<å;ç‰#DŸ+“'Éùù;êù=<§¥9§ÚÄöL™¯·½tð§ "(H¢•{';cÙøÑÞjc–èÂÙ({É„ç‰Ä÷äÏ{É„’£}ì/y Ï.LzãÔjé¶ÀM–xŒôÉÞõÞ|̇“!= ç#¶“p Cò¼úƒ.Qp¤ÄÓ_yÊm|´üM'&½m8}aA|¬‰BC} ÊÛnßR#á§Ð¤üÆŒùÞö<öDx}ÍJê“z7×|wÇbEIs‰'Lü(<ï'•ÉÞ®2ª“§{É<¼¦{C=?W„>3TB"=91_2ðǽŠyS1›&1©Rc¼"N˜ã‰›¦ûïÚ~?qß¿Q½}¬ ¸¤¤ñqÓWn¤žÖ@èO^¦)™ì®â†vr9NuÙã<.ˆÏœùö¹ÑE½ë/ôñä:N’MyÂ÷ž/ElKGdíïm=ëNSËâ¦óçœ(¹åOŽ˜–ÞÞ¡Ó:Lw•HaïÙ˜ çœiÜéÇÕumäòn¬¾îóßFˆù¾B×)ä$ùQ}7HIžË |åxòd¼7>¢°$ѽ3ˉJµê‡¨FvžØ6¦âreJX–uIóÛ{&$5/ Þ¥åÈyÁëÌö"'sÛË0¯[eòmG¶q<š‡ ñc°½êPÞŒØÈZfuˆŒ†ßFÞ ±ËAâKN¨¾Û¦¹gÆæ™TJ9Úy «k‚sÊ8rFx¹é~vímoÅ佈[>.Ž`Ù6§ a6ûÛËÞU ÃÂ𮾽áSùõîSÔÌ.ˆÈ4¹ a%MžµK“ ¥´¶Ánµ†k–ÛNÆQ%%®JOdʪ?2Ç—øç·Ò&¿‰¶Ëb„N`pÖ6—P”XöíÔ»ï(©â[#lÐŽyäγ;¾Äo%æÔò<ò îTC“Ü oqg}óN¬˜Õ2zÚ°ä±+ZÂbö¶˜«vs¦*ɤµgP«4ŒwtñÂÁÀËtÖsµµ¶÷§ÓáÚªq&liúóëË•\hQ4ŒìF†¯½ï'•›YY$SkmŒ$—hjí¤[vår:ÜË¥T†TΪ٧on»ÐÄøÌê¶Ø]¶¬SÕ²ÕVTT”‰)jŒê¬”Úëay`Q.;‚µDÄf²è¶zö<§t&¢v‰–Æ5žÉ‘ìÏFh›2èl1…˜—š1H (›ÛoÞ2ûÒópŸ!¤Âš˜µ%ˆKqcÓ)[jÆ"@¥VÈ޳쎌T¶Ø•eógÚ÷Œ©BiaÌ9”mAE-öµ7²TF3%4=ZevÆÎœµ36’Vv•í;¦H—‰_YœÚÚ÷›J˜‰d˜;Ð ø²é$&YîÛéá2ãÈRåÜìU;.fdaÞPÔ”u Rdm°Ðl›¹²dÍÌsö·(5_ æ¯m]J¥9.æ%½jxñÎpS¸;— Ç-‘Ë’˜E †™ƒCCC› s—†±V@œ{ŽqÕ…'³ßÄïõ}¡Õ¶Æß^<¾åÛ;6¶ÄÏb.„¨5š7µ6khÑâ1%"a~¬)бµÝa0·‡­–Ë–Þ#KêírS l}ã ýO|·Ôáu§tW”z”)˜ç9#÷Ëi«}#H¢gXMÐçMºE¨‡5Œ" G6mV¥¥cµé^¥w›^lN¥E†OÑç ûì}☲øH>³«—­ë!OÕÚÞû3J£•P’(²Ð(€¶-€#aÀpŸl3k´ÉÇXÖ‹Í6E« elµvu§‡z~‹Â‚>r©˜Š’O3»ŸV&KÓ,à€ z HR«Ò·Ñ)­‰e´HLWY±Mkm^Û?zSÞ+YÆ•)¢•Í»¸2G7är”Ø\¶äœ†¹¤í¼éÇ;92îõЉédwq Ì “7 ‘ L‚•¤ÝÀÙtÞh´®HrJ3HlдºHì¹€»PÆÆK’QNMd´d&S…ÓT^ ¦N»ƒi<âCΓo!Î܇8|À(nC“ÈdŽÎÊœ%Éy°P”›P¿'Á7„>:|‚ìyÞLz´úïÞ>ÉðŒ;§gXÂoÚ÷¢ˆ”vSs­±"å´b›E‹m¢Ý,Ç?·Vùõð’å¤÷Ói·ÚšÂ\®eFé’4*dˆBÈZy*)H)@ rU6P¤¹mXq[ÕóçëÜZkïä†o2¤«¯“Ç¡/¸P:Vì¥íRѽë{7ÄuóiÅrös‡ê×"{—´:tã"J©OkÛˆPC×Ùáxm…ämØÕÅ81ÚÙÛSW†ðÆÆ¤ÛpèacÏ m¦4Í×¢xÅwžy$ gDfrÜ>Õc!íùýëêáú‡¸‡)J;¬¯=2âŪ՛-¸Ö¥¾±™Ô ¡š].²-e—–·(Ös%­¤Ipæ6E˜7“¨ÿ6)ÞÚ q&²ýéu§¬°¾¸Ô½X­ I[(­@©S–¶Ún=c¢ÊòV1‰Ûlê–Å 6öS¦sIŒHÁ‘0¦¯·Y{K¦+ž /×:ðƒJ”b ãëH’Ó$>;m–QÁÁÞ‹ÓÕc}ëq˜Ãì^¸#l¦%UÊSÆž÷zzÓÞ¿áý÷xô'¤mB6_ÕÀtkÖÎN³‰ÎÓ¯ã[§Š³Áç‰ ^ïwRhrKtI’OivT|Vs]6çJYv)Ëc0íP¥âdÚoIë|t/˜þ_6Zuð Â2XOEŸe×Óhy‹­¨B0ÖV5.('²HPõÐôáütLOƒÏÚ¿ÄÄdzè…%#ÒÉ=œ†y?“"÷ Ú‚_}‚Ðj>®ò|ü’©ë¹’=@g¼Š)^/M¶5&£Tß+˜ê’”+°›n-+¤P´ÍckkÇ*ñE«¥y,îàÓ²›*lL@ì›¼èØŠ"ŒUŠú6ôÞ)6<Ÿ" œ—¯<áBp”ÒlŽ@Òl”îÛ Þ`m‘’D Bä¦CÔ9&@ҎɹŠl;d&Hlr›'%L:“#h•ª[zÅÜç3œ“LÄ„LRÕE³Äa}¨H‘˜ùìÈ"¦Æ¬¼èɘ¶~¼÷ó‘C “E‡vÀÝ#Vé‚6ÚÃâQ)Ýïfv¶„=f@ÔèqÜxI€ÖðDÙAJRužKLS=Õ$ÀÜãc€^ã€äÓd6ß{kÍÒ›¶ÕjÛ=lŒÉFÝ™+}Z¼¹½{½ÝsÀÖFN<ãÇz¼NØ4@Dµ†\ ™‘×ÙKì¢*G¿ªwEkÓr¶v"WòCHOüD3#I*øFöÅßëøÿ‰ÐÞ;(ä½ïNócHFÅ1G˜÷¹&‹ÚÀÆšÏ7ò1Éë_ÕO›^BHrQ^£—vî¾*?­!uºÈ‘‚wH6”NÑY#R-Æ £~ò‚ †_s©fw¦'ÚÍ˹]™]÷<èúù¡>qEø;<ņAÄÅ}ÌuuáFÎ) ­âfëy¯&à7˜d´7,‘ä胻7ŸK.8|Ê;– oÜí]´G^÷>×ñû{yœ gõîÁúE$à<éÌ#H›€ñO.I°Ð<”/lO§ˆ9*ù”ÈÔ±О¡HǘçÎ'P§!ÉF’ ¡öÅOyÖ:„êW™ >a0£Èñ&;‘ B”9#Ü€P§´™2 -¥'$¤Zwñã¾¼Ü9úÞýcíªInTêAáA™ ⃄Eìh?Ha/cB\â5&OWkÙW¶ÙÃÕºÝ&ÅÌ[œ˜ÿbǽº-‹E¾¬d¤»:ñ­‹j‰Öÿ±gHOÛ{ÇçÄËêæ„­ˆÃ9æŒÑ]•DUâ,¨æÌéK4Á 1ðÏïx<>W‰ŒþsæPDQåz¼áÎlQ.õ=í H®«R¯Ú&„,½‚6&ÜëßÖ÷äù_Ÿ]Œ‰;\IÄÕLl¬Ž×gy.óü§+Â&ç*Xš•f¶­\Fßc_XøømyŒl Ç[O²k~iÞ½ˆ¶Eˆ¿©yÓóêǯžga«š³ÃOæõ Ò¶Û sšT±¤¡Óš©³r$~¶½:C‚Dl%"UGøá8¶É©PV²2ß·£èOk¥¸*Z¨ÀïæI4Sx¬âÆ#5¶{~ÞËÍç/íÛ>ÚŒÚ0µ†)Ãg[&ÔQ ³rýãao[5²È©NjfÙ-g­Îd,Õ$ë¶RÈÊÌÜÇq”ꪂ€ä÷ ÊòäÒä…!H.K%R- @lÜŽÀ;J÷!²»|ñîàÏíûò'£¿&Xý>BóöÎ}DµµÚXÚF]¯ ôï[ 6FÓ<œM´Ú<%[FQ8×j6iv2•ÊFØ[äMEí°äÅÎÔ$›-°ê;pƪ’°kÏ×D´†´*ƺÌk 2 ±Cý„ùí¸„ÖE¡¡vpÚH²/a¤?[(U6 ”A” Aƽéø»ÊݤDÚã%!Y†­s<Ó³š2U±Œ5­bºÝ¿­´¢ãÈJÈs&ÏŸ;{¤Bw•ÄéÅ,FT†CAK±›†@Q¶ÀûFôqý¨Ç®2dÖ\x’nkj\êŠÄkÁÎbì7ÎyÓJÛHºäbLämˆ‘إΒR‡š<ÞŽòâ"䜇!ÉØá\¦$˰J¡)Lmræå»»E£sjÈîæk%aì^º|ÞÍÉO1|ù_4‰xÚ¬<Ö«?We¥½Ní24{¡_VP¤Ÿu~½%† áÖ„a JÁ`‹,."ALÜÆklq@y—–4±R5«-­¤ ü†á)2 €õÛ"”b²é6Lalå‡Z®°š±SË£nÍôKàgÈBm­):ŠËÎYRMbÛg±£&Ö’¿¯ú/Ÿ1eÌL¬ -¬Yü·h©üµÆ–#ÖÛ(ÿ6eAu*dã€g_ÌþTcDXëËôﵟëWºü~~þƒýºFþeË[MfÂFÜ™H¿~Áçn ÞI1Î$îîĘó!çä\ ¤Õ(s<… ÈwwŠòƒ!ê’ri²G' 6Cgla )]€É³%2Náv©9’´Tì^,Vé´Q¶£ÛÒÞ- Hì•åÈJW¹ZL‘ N ä£È6ØȮW%É îv 6DÙ:“Ä MÈz©M“øœyí®=­€$ü‡=Ùù ‚ð 0‘M>wU±(j…g¥5…i‰Ùº¦ÐaÌ¥¶'"‹„›ïszÊŽº(iívr*ò X6_á…Ì),b[+y‰5R FÅá©2Ò·YÜ–åÅl¦0ó²ˆ:ZȈ`Š*„þ϶úUù\õ ³=ÚW#ºÄnk›œº£kuVÍÕ–j4É‹1ŠajHubÛXSЏq’ ¬µ×'ïïøøÈðŽð|FÊì…V4ãe$PªyÛœ¸$SKs lÁôs–“¨hê ç|pyr˜ºõàç>½¿4çåçãÙö‡Ñ“¥‹$™œÃ—̽ª[Ø&Ií˜RxؤtB#˧÷ÕÏÊòɾ:ríծع¶l¢“˜åã—”:CY¢?“ßÝûŸ„õeW·&ˆD“¤bchþ^è‘8E p–w†ƒiÌ®–~15³ëÖOkû_ë‰%±0”ìµïj¿}çWºÖܼwHÎÁÎÆ' }©{I×zãÁ8Ùq5àç;$1xâmÌcs(ñp¤’°£’즼®CsEÛ)‚CG¾^h:lºG’d”"œØ¥%U]•6)EÉ;æ”Ð*rT%2 (NN@£H¥´% R*””ª”(”‚”¨”*ƒB¦K!læàÄõ <”(9ɲÛ¸™¸äàÈ"2M`S­lÒ\–Ì.`‰²ÉJC’*Rò „AÉ SaS%ÙÈCbVä-P PŠ)J r ”¡UMGä<‘eLZ QG¹Se^H4ŠrB‰µZµÊ¶ä*+mZ/E·Q´œ·7wE}*Ñ^9K1b IÓJP­Ò ÒRRxœ•hP •ZD¤UÈrAr\€Jƒ“uÖpå¶›/7N¥ dŽH)’‚ˆ…!W0L‘³u¬Ì\“l¶ƒ`È6ZÙÝÎZ–BM*d|ò˜YStHrµgÖÒ§“©2êleY2”û€ó¹3éM&©…Á+³nd4R' „n`†FÀ‰B‰B@ì#°Ò†B xw=ZdÜ’Nœ,;LóÝbtkp¸ÏeIxɵ“²;‘W†R@äzÄà“ÉÂÔ‘¹‡ ä¦ÈmE%;M4&Nî)¤»d•¦âQBJ=›µÜd$ìö˜ÉÆ žÎx¹¹csÎuÃE2÷ÝUs*y’ô™É´ŒÒßV éOYAM©^V‰àÅp)äò/ArB¡HIœòHjÚ˜xÚÉ*¹U:C=Ù*˜ƒd)w1v©9la¸Ñ[ra@æA»¹P܇7ZLN³j † Yæ…ý^f|„ Âç åžãeéª>.~0™ÎPO[9ùïrˆü¬åU>zó;ÑIO" ›‹«…ç_<Î< \JC…qŽw8¼ÛÈ¥&T-+ÈÂM×tc,mÁ2#\å‚s©=6èo'$ Ú5|·+Ù×DzîEñëÏ–zA+º¿l‚œ[qòyɆóÆ»Ç ,ÄñÓ¸Œc.ézîæAÊáÙAZ¹²:¤Aá’ë.žó­GOi©!UQ-”r—ó=AÒ_U¡øéß#ovµ:y¼œÆ´¶º 2tä¢Qå2B/ãnZ5AäNQo†½/ Ô¡½`Ðd¥ml9 ©ž±Vnì€Ð§:p¦½}½ó´âBp? |õ!  MFQôrœ¡œÉÄœdóŸz**k¶¤…QU!œñÉÙãPBíÏ+3ˆ’ÇR8áÅK…=èÇV'×]”ä>0åSÝêÈè¶pµÍ<:S<¦zxâM ¹+HåäN£³väÜé4 U¤\s$:v8ùåîöº_A•Ï)ªÏ€¼¼mÏ ”O!U{Ÿ‚{ÎÅ’y5Äò“·Sܤë?"óL $\„ ”L…È  äd)@E°.F†ÎÊVNn1+°õÈ)(ZPä!Ò$*…A¥¬Á(9 å„+«J BsvŒž¶€âÜÄÚô¥!âE°Ô”eœÆôµ¿W^À•x’% 3évI÷ë°½¨ž‘ôVÀdž/b;®îg.3Ö\4€¡8Å@ò2\6¤62v62 ×d‰H·ºç¨ô&‡b~$[÷ÌvPDüFinêÁh,Ù1Bç¾+àõ Û::K?¾»‚tÌ’tàø€ÖÄàœ¡&ÜðîžÓ Es~o0yÓ›ºÙÜ t³7ö£Oßšk3>Æ”˜ö¸Úé!%Ë“h??çøü{‚µà¨©.W6‹hµí­¸» 9"ŽB…!æTØV”Ù•iG$ê”N§#’#É €J'ë ’BøÉ@(¥<Èú­Ákd@È2S`$¢…ÈÈ6 ÒAÚƒaØ „Ù2\‘2‘i6P JB”ÛHI’VORÐ#HÒÒ…ÑHõ"R­&B»"ì‰âDê.£e!)UZ z•¡]îD2JF„)í2Q=Û÷ü˜d.ìÓ¸¿bò–O¬ýiÃ&y–pH$@›:ýÝc-$¡¡7«,nr3_ÌnóuÃ’CGõLq¿ìïÿKçƒüôñŸ<³€Ì¹ÄñÛÄíK¸DlýáfPàÿgº©¯Á I@‘=–ÆÿM/œçÌȲ/y³•?ضòút¬×081¶·¬Œ§DåiëfÏbÌ“Æ{6º5•'æó òµÝþåÑÎçF0gŒ†«BöyUy®«­ä2h} VÓI ]ó¾“B= eŸ’N2)"òüñùîñ÷ß/£×ÌȧÇIð¬>bvä j ½òïD:–dãÎF¡PˆÏ´¢þ{kç­IQókÞØžæðU*1pí[YÓÆ×Cˆ:*<2;vT³j \¼L‘I•ݱs.nDʩ͑É8J¹—.çtJ®G„šIË®ŽèZ¶ÝAžÀÉ…‘åµ—ƒrCÁ?Y[NÖJBÇíΗ©• Ôãì{¹}i÷ùö4ä÷Þí¶ ë –¨Z4î jäîÁ…éËÓÒ$'–CÞ· #Þ{—¶ØÈëtˬ²nb´{Ž2²h/«¾gy0Ôâe¾]•Bvœ¸‘I§;<èèQîŽh µžÏF w6ÞNHWrOvŽsh/â'>úåï~§…å2#5róËö¸ÞqC §H{¬¤ðŒTpó[(½™ã!óáôÝ+Ë,ç!žruÆÕóïYóÁU;Î ÷vòaqç‘æÓ:{¡+©ÍÄÈLœˆ‚ˆ„É\ŽCœ^÷ŽØó"†òH( ŽL.Ó¼æÑo’é­âÞ†Šô¯àìñ‘xÈbu°’#k”ÉÖ‚yO=ÄüøÐ¡5OÆv zjãŒ÷~ÑâaóNš˜Âetɦ¼Ÿ¾ $ûÑzùt3­Å†îÚ2¢á2 ÛQ´»²2°±±(wq²ÜÝÍ?ß?>‹Ôl}›ï²‰ÇËŸ|§np.óÏ!êâ˱«»&IéS±®žˆ…}n{ñòõètæ®°¢‡5ny‹qƒI·t`œÌ27ׯ\´+î„éÜŸj<ƒY®´%AdQyÂ’rI—dw;HÄ Jçª ãú½Ç“'¶Ùvg# 0õgÄä›r6ŒK×ñ7ÝË~9ñLJÒë† "}Â?%XBK²<;#é ŽOYA‘ýòY—¦‘GÂ_¿nmbÈ䌞 éÜœ w£úc¨m˜…†Ñd²b" áÆH2kI›X[F$¢@´Yxßéû{ÂÆDm‰ÊÙ*õM„Û&­’ÜdMužÔŸÄޏ ¬¥Ë‹jLÚB}å¡i@)yÚ0¢0á/‚r¢>×Ûƒä®wÏF–xhnëûµ;b߯f‰—÷Ùz>+–BÀ$£X½FT§¯æˆ²ß1kZ62A'' ”p[KôÆþö>p‡öokšf—Ú¬Q‡gX Ë 0ÛD°’l2I?ÁÏßÓûÒìøõÆ'…î? ¢…Â& @kolå^qšä!Fj°2dÊ/¸™ÛÃ)/°‡*qPyÜÞ¬ ;-…‡(´³½Dþb@Óoø-Ádúz©Íë0í´+Ž¿k×™ºæ qèˆèóãì—¸¨âç‰G…ý}CÑ%®ZÏã i(ãÙãÎ8S&²F\{a¸÷inÄuÌÆºvrrQðü=vƒÚx86|ûÜŠÕ2U¦A°yCøh–AË3ýòm˜Y‡SΗhéÉ çf†…n¸È¯i"ŽØ‹S' Ø*ä¡Å]þ»òyOÂ´Ž²åý1¥0†xPk…ƒæ²:çiåkSyq]ÏÏ^Î]5O“’ ¾>ãÎÛJ!NJ¢¹**;˜6cÙ'—A,vN“T.Ø”RxyI1®UB±ˆÔ¿b<ÃÞfÒ®Ð.¢r¦AO··Fm¸mFíf?irTä‡pŠR»Rì=[.Y'7ÛóïϽã¼ßd°¸U:!~é+²·u/r¢¢ŽAA9Ð záϼÎêŠIšfT‰ºyv¶Ý€Q¸vTÃq26ÉJÈ“mŒ’{Œð4-ÊÄOúô™DDTœîWœƒªós7¡¯1ï7æïo$ÖpQ&m/KÖtò'f›ªÛº[Y95n.‘’Îi»;AÏ[H§ è±±¶’™;&NÆI²9´!«”Ü:^é—œ“…Eò^ýc=(ü"™^%{¡<žqšH…äÐçÞþ³NªŽXVwÃpFíItÖÖ ã ‘òª—?YÖ}Ÿ:¶qü\tx/B˜¦±Ä§D4 x™Â= $à…†âÒÄLùcòä±)2ƒ4Ó8dC1p†’è/§H‚=œGÎ8ãóÆ"8~ÌuÙÔcÒȈégì9Hð•ð?gˆÛYÉßWí×qFuJxåW‹£´pÁzü¯zÅRáQÙdˆ]+3úQÅw] „oÔÏçà±×:â–;®h¨ÑËîÔpåáṏ5$n½DF®Àƒ¢y_7ê¦Åsćï2L  dO*O¾›²8Ò™B¼‘u,/™‰ðûð\ä" Ƹ¹®êÿo7ƒrcj†½g‹ ¬½ SHS:;Œæóî:u¥ÄpÀ»@sœžFL‡?¤e©#˜Ž³;4D¥ON>oÄÇzæR†×'áðôn};ä„8¦{ñoQNÈ8äŽæ_ççy[ (Xàã¾fœc›C‚ñÏ’¬ÛdL°gs‰Šm ºà(cÚ÷qf½¢ñÖƒ`Ž–`,u+‰Sñs»ˆßëUK C;û7GäŒyÒ­œ”r†ªsï1|VfGïht@•~ýà‰Ô%'Û˜#Ô§©êOhOÙ¡«ÝIžq=^>L;•÷ñ†îg1*‡˜câ÷ëW¾w{ÃÕíAê ’¼HrCm˜=KÂSí.¯x:>Ø™ý,±ÑÉèœ\$qŒ2ò™ˆèœÊ‡™ç-8œ˜*ñór}ãê2ç3Þ‚óC å KBHD#éFmW)§p1%¸#“ɺâžØŸP°;"Úß“ÚÆ:µ'vqÙ¿Õ¾sÞÑ8#6ƒµ¸‡ÑN(‹”H£Da›æ_p¦ˆqÀPy&œSà !(Iioh3Ñè€|†Õ<8ôg=½¥ŽÈìÉ ó¸Á#£÷Éî';¬jqáÐï0Œ…ó²z2¡Ô Tõ‰„{Æwã6ާ Š(·=n4”b@$ ʦûý¾¼üQÕ¿¢} –=V½ý}£#à¯Ög¯„2zcì‡ß ñ'’p í—Å/ÄÙhJêrF”(FïvEØT( O2ä%(PPŠÐÉ\”¤JGg!—$çÞñãˆ=ÀÌ´‹ˆÒ¨ˆQ`ï„EJ|ʪä"PŠw&M"+°ªC!n­ÑEûJ¡Ô/Ž{øÎ*>üàl¨0œίªâõ½49(ž>Aˆ)~¤W×x†Â6ÉR„W-~BÀC¤µµ†B¦ÄuÜÛ·)ɾþOÛéüòÈZÎô'Yã ¡9JBu±”ô ngªÐ-θí/bybª­ÿX•º’£ÅbÔ±€ ¬§úäÛ'̺ZM3,)jVP“×C[ @K‰ŽD‰Á»ñݼYØî’< zõÄûÓzÍúõrUÜ–#k²ˆŠ¥œ¿Í-Bž…=”lì8T¢b²µZ/­‰•ûèÏTy]º‚õaýõï¾óØgÒ9ª7½ÐžöÃnÃC·ÖÄž®x~\ú·“ ¶}`óƒé ÎÛ‹œÅwÆ lîÀù‘y(wd÷'˜ ÍÔ»( )Ô ì&ÀÁ°(ù…:€…! .±Îœ¤©¹4„†¹Á¥êäf712Œž Ò i‡`°Ý\…ª¬‡#dË!¤0–„±6ÈLÚ—a6Ù•ÙJÈ6ÈÉrZ@É)ä÷^BEUQëbM¥h%‚vÉ6¡Ù\•³(2È2ØÙR¥JZJ¤ š v 6) È\”h•ÉÌÌËmÜ(²ÖÄeK?¯Þ‰°ÃÚŸÌ·P@„Y qu®t‰:ر[Tk”B"K%‰)¦|-"Øàÿ a{söý÷òÕBðÂÙh£aÖkD$Ëe²8’T2l°×öØÇ­‹:¨i@‰jÚªBðûÓÞ\Qs(acõækœô/è?{Êšmµ´&­Ö¹\qªjF(6.ƒòåé!ï:Å*½Q¨GUUÃHk:°±e„ø¼ðxm„™o_ÇÇÀ ÛE’™Œ âSÒÓKõ—[ýý±˜Ÿ5´²ç…ç³.¨šþaýãå=ð5c+·ÆË3ShØ»"ºKi_í>_ÂÂ8¿]äõ;¥8óßÒþ_çêQ,­¬ígù·§¨H|Ah¢2."ê€}‘¶Àª{S‚Âñ …ËglãÆI4ˆˆò"*6L‚#A ÌfL¤Ê! €ÆFJ LZ"h£@i$’4šD™1@D4˜d’dÙ)‘bXȈ¥"¤5 EF"$؉1D0Ì&YM$BY1‚“’0$’a(É&¥†„˜CKHÀ¦PŠhŒ–†I‚Èi‘‰£`’BY£dÌJŠM“$ÅF 5P’’TŠdŒRFJLB%(Â&hÈÊ‚Q™IHLÈÄ¡3)"DaA`Œd°$&4=uØ-$Mh°¥&Ú Ô!D&(É¡ ”… FÙ¢4¦B1Š ©M$& i,™Š˜ ±¢ˆÈÅa„jBÙH1˜£)’I£$D–ˆ‚feD”Da(†E ³*iŒR`І‚زRPbÅ2±©4”JEŠ’ÆŠ2‘ ¢i,PÂŒ%FÆ”„Ò2ÉF,lB–Æ’ÂE$Y0mŒD™L’Ed10ÑdÑFÆ‹!¤RAëÒòàPa aX ¤ ”[k\q]DäAÈð³óÕTê#‡¼ën"T஢£. ×uaîBkòÐ:†.Á!9é÷÷œlÅN¸ãUCѹ™¼u4Å~ÝDFÅ’!ðàwÛþ›œUÎ;Ò”p \8là`c'0ØøBhFKÌ!–û„6?†Àå+#+†"4þ«îšÑÇj:Ì×àÚñ`Üüã:õ›oltds§å…žH&Ì¿ 6¸¼ÀŸŽÄõ"ÎÈ:JµŸˆ@h uÿîÀÆ"kŽL ºã­× ŸÄ(kê:ýQ?h{¨‚¨ðDô_ì ‹ßîþO_L—îçšú¸n±™–æéTTªÃûµ tÀK Òã,³¨Ù9W' …Až‹ïo{‹A«m¬ªšÊÚóí—µu¦6sˆxG5¶+<°»Ï^¦Yš=„ÍÓµwºbOmÙìӄʨŒô<)=Q‘§Q£Vw"Tñ’ô¸‰9ŠÓ©mµÆeÕN€líaKÅs-·²zñçÍ `Q%¨š{DÌ%-×OϘ$*>Ù,ÉI®C,zý·i–CÕCÄRž©¸Ù^„/1r¤Ä#Küÿ¨¸í’”=i ·¤>¨£Õ/»J*qÔã „µÙVv^Z…!Q-#ý l¤ÍIüÌrÅìá>±÷Âû°ŽÏÞðëÔg9áêca¿ŸoIñ«õPˆ§¦ ³Ã®:Gã8”jÅ=OãHs)SÔƒ¾ŒùkÆÄÈ( ™J½= ®$‘dÚœ®–µ—q†FU{=+ÛKÚ—WØ„ç‹Åž¾#i}„Æ×Zå;$™NL^½ø?··½õöE?6ûxô_‹»#½Ö„h¼ÛÃýi.— ¬uØîÅ8óÓù<*g§ä'2,‚ü™42[Q›WˆázÊ©ÞBdÕ¶_¯L}ì¤Nñ¼«@"pc½oE½@í Ž¤N-”£³1ÁÔ“ã¾ûÌczúðc»ib$”DâCS wwÀIà"ç½ë¶•ç¯÷x÷Í6TÅ,…_“YÜnAQŽæÂÈ;]1@-‡>¬ìI@u‡¼ÉèS8lÿ$Ч JBy™ºA´ Þ‰>!¢ö‹bÕªX-¶ÕŒ%’˜»FÅ(çM+œ®µËÍÆRÑ9¬5VÖ¦­…ÈÖ…‰±ãF]ÛV!-ˆUܯ[-LF‘4]s5I¦í]´g²›GºÈë hrØS€KÑ;¯RÕÔp’ÙU±±0„™n°È§,Ç6@dØ'D:•26S¹EiD7®fannÖ…–Uíá7”e«h®q²<ÆÄá#0±rL2Qy ¼…Hwn¢ÕG–,d8¬¤mæêÁa Ré3¹yW‰!Ô)œªfÎ4r9c ¤•ìæÜítNF]«Œýèuå3•Q\ï¯xzäõØd¨ÂbZÖ^ÖðœÛ07¢Þ¤äN`BbD˜œI$ŸiCÞŒä÷®žÈvL†ÑÞTé“ϸ2g‡l¦Iîý\Éî´‡Ò—q8'>#sQç-!2G“ÞâQË!¤¦&¨ää.nê!›±’i@R‡!%Ö¹ÆäÊz²—©å:C¼•5v÷ U¬["€õNºíÚˆ–Œ€ ±T,¢glÔ£³Ë ¨®Ä÷¬ûÛfk»X`ŽJlŽ@*ÓÅa®Ï×qé­k|Eê$Úèi«FµÆFÓk[]hÛ!<åt]~ß¹¯c;´T-®‘—“(¢»C›¡Å(ícÃÔĵ‚±Ë°uXðð­žWݳ¡VJcc.(— ¢¶4ë[ KKÕ¶ý·÷ÿ Pýõcþ–ŽIXJr/k €¯#£h¬­m¬DÝf?Ÿ}ñä¾ur\»>¼êm°”$Ü«“5¨Û$iRs¨œòW»=â‹‘{W*=¹ãcxÆžúÜÓFÙë”ì{×Áý^‰>'t§Ç*ôž9Ÿ/'RC[ Þ<@êbwhpvWµ¼oGqµËßZòôê ©‚t™|š­·"âqïŸ>xÒ“^9¨/K{kÛÔ¹¹¯NOYï´{Ð}¢=åN'”QyóÁ=êã$…ôH|öO'|üå~z¶2G!³½Á(¹/Ruhô|‡Ëú=Sý^ýâ |÷äòr‹CÔ¹%±“NÏWRœ’ ¤\‰]äЄíñ7#è$Pù ‡ùž:zWFMSˆlGÛf<®”ÂŒ7n¢¼jèÝV÷tѶ‡øÞÛ_ûÒoë÷ñ$þ$FœS»=•—Rjì»l×SBEëVÉ)?¥iëý‰#ëï³ND ¶mQ’ãdd›:DÍ9ÎâM~¬]ζ¤vݳI *P¢ÜT‹‡´ç8»ÎõUÞ‹ç{Ú\4ÒÀôFp™aY¡£]9-d'§2¼½´×1®[º“fæ²Á[¸íU¶Q;;) NÀ6xë53·™N´°’ù¢L¼4…²Ât&»MkA)Ø”T<Ý‹%V²5xžÒml2î+tXÞ|cÎɈÍnžÔ®Îs)ö²Ï‡c&\ñ– Ý]˜f­²µu;KšI‹Y?¾øNžò=(%ëV›ï=Ž¢Nˆ’OÝHrn­V\sñÁ¤Ù@ò ô¯[Ï꜊»ÑiÎNÌ2,ÊW ÌÄÉ¥Ùå6)J?¢C”žóüúý1ù Ïä ÷eúrkóµÏò>A{ò+ÙùÎã´†„(H‚šÄd&õ‚äIY<Ì2¤£%£©ê¥v‹©Ù>{­ãÒ£Ñ]Ýb«Åµa ˜´9)‘OpfÔìœë] —. ±ÃÈsä'Õ‡êßm‹Ò«†5F¼W‹^ÖåéEä ÈZÚóìCó± ]êO’^BôÖÎ×Þݹ¡¹¡zdôcJÉ„iBE–f¢6 &Ä×;ºá®swtM2 ”kI;“p‡h,ˆ#—>L ªç˜˜ò¾Ó’}Ä—þY=G") K0—´X‘áîxl³@4 q”Ȥ±‰-±Y˜Ûsn%y5ÊÏRX©;0h‚ ;•ä; Ð&F0-)H‘QCJ9.J4Š™˜ªR¢)J”¨ŠìZ®Qj¹µ±h½-n€d™H4)²"l”†C HЪ®HÀ&›eQfc%m’î84lèsGtT.w8œ §ÒÇ×½Þ0.¨96S$6à d °kd&n&îIAÛ˜‰²l¹(íK–aˆQ’2i2‚áWn@Á<“8†‡l€wqiÒv66JJŠrwqÙ“%2Ûu2G3 æ ó˜«I²d.ÎHl »ŽÉ@Bp]`Ò± ¦Ü’wX…°®B9lf°¦Å.BPSÈvØ È2NJä˲­ °rØW$3˜Ð!@ ÌM…¥2R2'eÈ3XÜ€Ná dMÈ@)ŒddÓ°ÛNÉ•m&Í-¸dPDHNÒl¸XLŒ€¸™ÅX>2!Íæ£B¦‹­±¦3–š¬·1 q0–ÊkÝÆèŠŒ¢“—bM!JòÂSd(h ¥³2NƒóÄêƒd['xa1×Y@5r™îò_byÌg/(drhÂ22DØ6B¨Zv\ˆ’ŲmŒj9·,mçsǨvW;.F+¶¦’ÊeÅÃBçEy¥Í)(œâ‰&Œ<îøï½r$&½F¡–KDÎgSªlôìíÙ¹MH–ÆV¥Ùf,9•ŒÌ’!T¥C`sq ¡G* ‹ r'!¤\‚³0”¡JT¡(¤T1êáÌò""¨Ö$™|ûÛÜ(ìÖÄe~Ráw9]"ˆ¡5­¹²hKF1]ÚäÈ6'®êJ#@ÛÛ¦PÅx®hƱ´GNÑÆá$0îÜ4)Œ!ˆñÍŠîìbÇ-Êä&äAU^HPÛq°ÆE“3 Ç7² Ü"!ZT Sdws$rQDÈ…JÊŠ ”2PÉhj‘rÉAÈ¥¡ZÉÉ LŒ•7wQ 2]?«³íQéi„å_ ?¨óÂøf)'·¥w.¶%Å;‰%Í¡’•U B5vä–"LíiÔµœ×]=œcD[´ÅÆz--;ÜŽVŠ÷n3»ÍÓ|ûÞomóv³PÃò×\d¨iAwÞÆýfï—l¥bèæ.u~ϼ)½/ ¥:Ñfî¢åÌ35&±wuD=2(¹pá'žÇJT¤–ˆ¤¡ââÆ…[Äláå—fmI¨®“krˆ¢º66}æö‡Ì>¸ó’nsiIG¯×ìùïŽáÛ™]!ä]‰§„í;Ýî•zW;(Þ×µêoKØf=¾7Ëþk6¦_µ]PÄûÔ¿¾ ·{iõûæoh¦½YãÏßy¾~LLyêq„ë«åÿ¾³-õ†+DTÿ×RK–•’qfXUž¦ƒJÒç¾ûÕ+}´¤[×ꎬþ}.ͪfpÎüsÄM+Î?å]T•ÿ&÷¸˜HˆÈKN"L ÓùnÛÞõþÐï³Y=Çítò‡2eD´Ñ’"H—gŽ¢u$½c$õ,VÌÚ†šW ¸pƒ$’eˆ§f`"4 ÆS¸D>§†7\Ì@õßË£ööë¹¾AÔ% A*&.(<Ћ„Ž ¢„!39HBF|wßÍÛ\Kï½æg÷Ÿbý¥¶jçím§½ÊÚ™M’:­Ê컾týóÞ‰5˜P´ýeƒÇ[ ~?mvâˆYFMÜ¥"‰MĆ3mPQ$"Ü!cZ0m- ³ëïÕ>›Ýç±?××øßý’$úWОõz€ڂ…A„ð"&§16sX†¤g3'$ HˆA¬Ì3™€îjJªª‰tC°EMÒŠ4˜"R à¢P¹uH,°`gìéñó´<ùß?QõûçãGj|›¯¹q Ât1gfTq,à 9¤Ì–’¨`š‰Ú‰Ä¶š9Û–I€\°a² Ë“ tðîî‘’Sl‹LÀ!D–I­†›¨x£ïí×âæÏÄŸ®yñüÔ4ŸÃÐf´—’_Û:XÃÔÂX½u÷ïznúߥù¼Fx7ôãyãè¿_6zÄÓO`-,¾%&®þOÎúÏU•$¤á´?â\Ý"ÉÅm !W8µdòDY¢‘XXÛÃ$°Q‡ SÌÌT’*ÙÓ@âAR BRô~¹°‘þ2:Ôµ©O LÓõH&/¯Æ“2¬l'¼õÔþi=ïYïU߯XwÇû~x…ýüq )¯‡®A7 `(˜PÈ„&rj¨Ôc ù´ !V?K9‘—¯1[RÇ¿ž=ý?Gë Ô¹•¤ÉÌ ÿ™wbJ¥•È‹¤p•˜tÁ¤áCM A†PDâx;ÎMY¥jâ“EÑ -s˜˜¢˜ž•x1Dp‰Ãˆ15…ÐdáCAŠ-ŠÔº­[M8…Š9¥8m°Äº¥,£-±¨—‰k!'ñ¦¿®xVöšÍ tþ\K=É buKFIJÆaB)C£s4Ü$…XÆÍØûïÛǾ'¶ÓK Dƒl? ã×tnì´! ê{R$ŠK7¨ÈºA0p¢ûÛ~,}B–H@c!óûö>”úϾ³Kåmõ»a)+gï_høii¿jDýó¥·ö˜ÒþüÍöeùÃÒÍv/~-Ò}=/cÄý–Pþd"IpÞÜk5,C¸aÝ-¢e£4’•…‡çɘki/~ú¿[>ÅáÉgÛ–¹Oåf/¾ê3/3*¥rÁÂ8H¤™A"n.$È‹¦Ü9DÔÙ@âS3d(ŠLEe+ŠXS¨a„ýï¯Úà¤ù-š{Þ=èP)Ó±) PEÆb&Q$" K´”Eþ:xà“߃í˜êééêC<ÇOéÞ>´$ød$x®Ó~¶o±ç|†ÉôÞI5ÛGÑÝúÏ??G¾²Å6„„(ÔaJµ1 šx¦.fRM€áÔ%†0`„Rݸb ±|MeS§ˆG s“¥Öd å¨ ÜF¡UdÀ*ˆwéñ’T–ôÚ}í ü»YU êýï§ÚC¡QYi`Ñv$í©Ð éI ÚAÛFá Ùö¿Á7ƒŒ_oi¢Q"Gó1ïSÄOÒæyõÛ5sãÄžõ¿PS!p-D&¥Ð€Œ±¢`Í*P%©Òf}oòßÛ÷êVÛ.Œ Äõ¾°5D„¿gb$7æžõCÍa×ëãB°xõÄ\zX~­ùýT¥;è`˜bÌæªbæ–£2§ ÒÂ+-ÌÜÝ¿’¡ë3Å”ú3mµ‘–úË# áLˆŒD¢Š!(DDj’©4Ã"#g0¤I-\ ÍÊ”‚3 Ã3ÌÖšQiY’a'FMUEá)B0 HıeI=Ša)ÛDL¥b¥*á=,Ö"‘#-1YS™e¬)¬Óštâ-À¼¤„Nô¡g€¶ -\ï·ót¼^ßf×›ËÌþdzþÒúøn¯o礼› È‚á5\ÇMRFȲìÈ0̦ˆÂ£R*`¸S!†r¡É 8áÄCU–1 ²I6ÙÍÕ˜¨#“1…' ¥s0¡H"]0e(Ò‡9¶L”.Ð-I·ya¤$͸*ÅÕkû>÷(¯e‹Ê”•¿¶4#>¡±0Y¿žíüß.÷ï$ñf­Ÿiu¶%S!JÕ*&ª#þPûøèü°ÉdƒŒ"R&›kMY³f¶‹]©Lj`­mE…x@”§UæÆòa kÇô÷ŸWˆ³7ô¼>ñœÉ‹ÌmnH¦36ÃÁa4I „Q|iH¾rÅÉC(ˆ3à¯LþÈA¡ìªÒGÖ%j? ‡B!…„ÆLR0ä‚ ™•0ê’”ê 4á jmÞâN)f\P'é@QO0D4¡SˆÍ¾»âÛãJÏ«ÈÍ.Ù˜iál´°ýT0nMÃS1„¢ ÊH¢@N#Z¸1e¬¼ïÏoÙ€JQ€K,AE†Qµ"Dˆ?‡_MA#), P#ÂÌaó\r Ão ÌñÚk?[ ´ïÍÀ£«žQg…áA_Ⱦaº¿™Ãª§dŠÏYþÎ"‚@8yTa#aS0N ¢Cß=tžyðžVTni ä"+deñçèÿ–¶t¡?kˆkä¶ Óna2JÂIºhÙþ;vYO¯Výqž.…ù?§mö_±M÷>û¶šZff•ø²ä/ù—üÅÿ=øNé)Ò˜î°9ùG;]EbH¬+þiÄs’âШ$BÞmí0ÈìWM挶J>·×¼7Þüåèaú5ˆÖµ ÛÖ^øÛ,FP H놻¸þ äw¾üêÕ2C¬ma Ô¦È<3†¡°Rìndâ21@²µñà·ëÑÖ™™™”Nìì¦È™.H¥(›'/|çÞK©$³… %{¤Sþ[ÅDˆÔS ¼×#^Öb¶zU¹*Mõ•}ípò/) xºo;—:b]Fg§]WP‹ÃSÞÖYOi0µÖ JJq üÐ[V©}W²@HŠØ-±iq¦¤)zÌJÞTõÒ„uYVX‘dKvGlóÑ­ïÜ‘!z‹l¤Öv¦TQÎJ3k\â¬<ɇ) P‹b zT¢+j“Ö“´é¥:nØU+¤$$êdÉImuu&wòÚoC©Ô¿{~úTú¤ž)`D!_oovz:%q¥ÂF”Šýìù–ò*ÄkóüÒÏk{Ð0ÛüWòž-—Zeãteδí³ÄLCa[—Š[jÍ–¹‘{¶=Þ"Ñ•2èq†æÝ;:2¡! ©ž¬ªìXÈŽ 92JíX¯Þ f䩨n4̰„…¼¯Ô°ðÿ5CÇ«.NÒþžÛs?ozWªF0RÁµ`‘ h“teX´diVÆíD&Û 0Ó±­¡´Å­S´âF4nÔžôïű–¡ìµFu‘bœmí8-ž°”¤¤`ÜÑË)I¨\aD`ËV¬TñtåÛÌ‹‡µ´Tb—¨ ‡D¡/U‚ÚŠJ³ÛA†ë ›4-¹­ª´"µ"Ô`@¥°–5µHØÉâË…zWL›·86ý¤SsMkaЉ3vi>4HPÐ b²aÍ÷¶[ÂÈmÔØ˜¢Š1,ðàØÎtàÁ5­#Õ¶Ûk—É<„‹Çž 2¡ÊÐ9€”Ò I›ƒÓ@Ro1å^/MÊ1x·*ñsEF£NÅ9(ry©h9¸¡“²íÉÜ M‡7Ø)[pvŒ²C­ÄÊ.<‡žCnBôk¬¦ò».Él÷! 9†Å %b´kx®(­âÅʯŽê©Ü“’rwN-‘'iEç3Í™y!m°­AxVµoZ«)'ãLdë3XyÃ3„œ[jF‹uj‘ÚU…—muüž¾~ŒXÈV]§«èEâýëQx©beÓal°±Q©BÉ_Ù‚u4Øö<‹áš…½ÛmÊ,:æn­®h­¶VÄšµÂ¤·ÍŸ}â_“Ú¥ô9Êö­YÔ6]-«WBÕT”m§4­ŠÊX§$ÖªŠ± Ȭ@ŸnûxߟϽ5Í’%Jû>Êo²Ä]Îû!ä!zØžwδ›çNy÷£'ªëyÜìsŽdÞ_>MÉu§UÖÊ ç`çH¤“ËÜ"¶Àæ’«%³5›jÒ¥óG°ÊÛL åP^Îpí$ÍänâÌ5I™¹†•¶”F;ÖÄìrtá½ÞµÖw w‹¬Pžt§L=ò{ö'êå?=+ÊââV‰âzÚÅBÌòŸP4ùèœÜ–Ϧ³’0ž'0$Y_[q<‹Øúî'ß‹ÏGS7ºåHÒP¢Æ~]¢Ë=õô-ÛO¶`„ ó,±¿,ÅмÚËF³•VÓ‹±Kù÷£Æœ˜Ëg'Öõ>‡ŒlÅav‹}¥×» tâíbá¶KIHµ‡í°ÀöÚi- [kZ#]‹.ì]hÔ-ä°…ðêó†?­Ó ´¬l¼+d~öqZK֞؎(^a=±§¯µÃ@‘¬áƆϟ9嘟©pm Z©KzØŒ`VŸÉbWi6r¤ÚË{dÍktãV¨sšºÖÙÒë:½hk–oÇóÝ‚{(Ú|l›BÙZ›¦%ÏkÚ¯br¬˜l0ÚQcTzðÒ\s³m¡,­‰N]«ŠÍ£ûùäï©|6üœA Ößmš‘C{zöE®Á|û±H«ÅÒž4¼¦4¥]}ãÛÎ)–Öœ’ói„´´—„,<ú;Ó^ôé:‰6Y±{Þ_Eâ"èEÛmö=›÷ÙÌýOž=)ŠÑ¬‘fÔ-…‘ž äC wjï“o¯¼’\ôäR-:Ö›Kíƒ19±#!ÖÂg`Ñ–Ô>nºX(«–‹ã7TœÝᘽ{C×íìb”èJ@6Ãn¤PhUȳ#y®qá±›[”ÕWa1%ghÍ’0’M+„Z×øVî¡Kaagòæ_Ÿã>|¢‘¬),¥¬aGΛ‚ëêúûùw{è°ë}mä'ΈD©Ô¶8³Äžî䎎ÿýðß7ö¨(#—?ïÿÚþ?í£jÿ‰ÿv=JRï(—fÍ¢´†‚_™=ëVèJ5ëÞ¯/BD¥j6þüB#’ölÛ‘\ Ò€U–§QjDó./kÞöFo_}ÎbLY-ƒof/¯µ?c0Ùo½ãj3â¡«1m¥>®DÞtFWD,M‡½`x»Öi¬ÌKE~Kza‰~Ù|Ï\Ã,kt(äÊÚK, rYñ„¶öºÝ*i)vC hÏz»¼ßiŒj+ªX%¥8)+y°¯³´ÕlÕ«mæè¦rý÷¼øÿ!ç÷±ºQKd™{rŒ(­ØezŠWæñ4øŠµÑZƒ9…1£¡ßË œ¢'ŠFkÊÎьݗ]<¯$m:"±¶‰™×hÆfåŒîÓ°šf§²ëNÚI¶„Ó_kW¬®œ‰¶eÆæ©ÌÖ‘$Ù­—e2> S2–5´L±3yµ„eߟbY~lÈ©VwÛ—9F—”y˜^8Ëa[ú³[†þ3/ëdµõ)6ˆ Žv 0ÞcR·ƒ€âÀ Æ–Q8Û÷—x;ÄbRÚÑ]ó†¡-œ¢Q‘xßÏmTÍD·×8Ôܤ“S…s-•Š;õÍ÷ßi…oÛùüŸ™û5?ÊÞ P£Œ:œY×¼ùáW»²g”«qäl± 6S©ê©]º‡‘z0.‡u…ÜÊâWš@Q6P¡i€ ÈrC’;°‡!6:¹ È2hrC!¥^@Ò´ŽfC+’ää©’QH R†Èl.ÈäŽÈÀÐÒ†Ø@9#fe“ŽBl§%•*(ÉR„g…^P$'ŽÍ‘ó#‘vÍ‹ÐÙõ¥/Ú³|0>—{; Ø•–ZD Ò°íïMÞÁÄ«1ϼÄô/«NÄy¡NX°P§Ùƒ £!E}dµS*–¥(ZZ|³L•[-KV¶›Ëö÷½=½áBmTF^,½=rñZz=ZJ¢‘óÞ¤JݲlI{Ç•ñzÂho3½*®,Ñc(_kÓ1x¨žÈ«—N¬®ÞÓOS­)¡¹u⃠KjYšÛ«)BæµØ1«†ÛFôzˆ×Ý&¨ŸM?«Òmm?—ç6ߟÏ`›B¶¬é#$"ú^œL•¡!ªÙoª×)­à¼4d²¯ X«ñgŠO*ší»}m'vh¥rmM™›(@¸ ä&JRpOÁÇWK·+º¼›9›Z=’óK½É‰ÚÛ©x¨;" †È®÷ƒSÉr³:Ýz/Eã ªT¹™®Œ=ÚɶO]xxQsî\ç &aå=]Ÿ ­ßcá;É1]=òýìyãÑ¨Š‡ç aõMkSE¨ñTõìk,·Íž½ñ5Úiµ Fl+^¬Aî˜Êë_RŒDVÔÖÁ XŽÚéˆÌx‘IÍ1.ƒá¯LãÇžIëzí-Ï-¥´u³BÅ²à ©*ä,д¡e¡× øžlŸúo¶Ë€ZØ{ÖObËiâÐ9þ(˜Ú+ïJçÆ SnrN³¡i[Tš%^ïx=ÁèXkâ ï‡Ûíõõ±òWÆí^cêyñõ+€²#J’«žˆ¾¶õNôyƒIRáJ˜r@¢¿QãÅ!®ÉŸ¶÷šyfR¼yö[ÒŽJ怶à •-Ô}ºú–‡–V{uH½\ŽÑknÍ¡­2î²ZÍä½õi‹Ó5+XE‹e‰àÚSr)3ü±Þ(_Õ·Ó‡ÅÖˆÒ‡6³;}ãÑ6¢_üÏOzø;lê±–Ï›ƒß3í<„—‹%ª6%ÅrFs‹&1*ê+Q·«RP‰V§ÖSM*¥QSn±jbãTÍ ´®K;k,0ç&Ùݦ…‡[RIkhÊXíAäÃH\DU‘$m„h@ZEkŠ£¨µ¹Í…ÊÙ1˜Ñ®vÔªY2KMÏÞ¼žaÚÃ;jÍBW`¨Úë1;P¶þ>ÂÂym±ûä6°”e€·öÍÁŸÏY ëÑ¢ãV"JvÈf:“Bê!­fH£5ŒZ!Ŷ´~gi±û-NN€Û’ØX°’ ТLïåìÉâ1v s6ßÑüoª<Æ2¹C>ñ¤‡ÅP_ËŠ®Iž‘ïµçÓK{yÑóßY¶>öÒ5"õ¢ŠÊP¢Û¬ÌÖ±©ØßµƒëhËW͘öF3Ö p$¤ÓYÆõ²£#%ã3Ú¶Ûcei–ÝmÌn'Ë«Íê¹÷=­º(­Êbh3³nûYöÉ—©+šqޤ¼\¥´_šM‰ÔQêx“Õ™KÒCÏF±’ÜéÅN7P×·¼úœ˜G”mllðÃP1cT ,ña´Hb·UÞý=e·jœÚ„Cׇ)ç§y:%Zr/U*¼dùûÞøöN±9@ËFT™0¦¹¶‹²gœ—vØ“í´]"ñz0©’mdÍ ÛB=ÂR)l¹ìmdm‰ÉÜÀz(C”^Œ¢¬´J9nH‡*ˆÉ¹Žó»iyÛ—‚à'+¬&67.yzˆ20¶vºU’S°öxqQ=*jS=&ç&{= /)ZÊdä{©NëvvwZ‰W:‰“ÚFC#¢v„ÌíŒóT¥ªm»*jìö®sAžÂ#žTy‹ÇO/ ´Ê.©XѦ쇨åï>HU¶]êÏ«Œä ­g&r/(ë!Ž®væaÜ':Z 8„ßgßLm’òï—fu–¹8FCµ;¹²ì¥'‰N¥È6v wM¦„§ ‰ä9'N¨ÂéÁu!Î\Iù;Éò|áï´duͶ«†‰ì!+Œ |tó ¸É—œi7Tõ²ê#;D¹ÎädEUM³‰ÌNRÝ*röl›=#6ÓÓ­¤FcùôVžÛí ³1€!MoRÛF¡(UÚlCP¦Ò„„Bb¶Æ1ŠÝ˜h§Ú÷‰ï,>•ìÃÎT‘¦µ~p/zñµ†M‘¬‰$®Út1»Lµ‹}o]óW^}®³±G‘ñç)ž»N"‡b2£D)A¸»©´éÒÌR5òǽ粽.xÃ@Q÷pN2àSÈw=M³’äyƒ³„&@´du›#‘›ƒ° •²…™ @¸J˜J»lrä¡E¸.B9ÌPr@:²ªvW““’Дl¦â´ll-4l"#Yœmtï¯acÒØkd­"ò,Í&c¬zý÷Ùï¾Ûy •pá„ôlSÞÁ­Õ»²Z˜Ñ¶£,áu*96YéiM] Ö]q4 RhD(Ç›ZÑHA®R´j²)«µÖÌ:^µœôêÌç¯G•Þ.ÂLÚ AvòîY9¨zÛÞª{÷¯"žW¾\ö0³ÄãmÓÌtÉÌôLŽL™ž„k9‡%Ùºž+ìy0Lß}áQïÑá³³h^¦èÔ(¼m§”ú.ï'žRÍOÙ‚÷‡paLÃ@êjXÖóv{ÎL‚­T; ²vyxÚ&m§ºCš¸PÈ:uÁž;<zsÞsbô}ž ííÝájÙXE¶«í=¬Å—Ñ–1)Zë„3*<­Ö“æzÂò&I ÃÀ)Fxíµ{Ížéëf%žS²ã´hmuœÝkw›Ð·M<øöУb)K(ɾ¯®%ð_4Ìïe´º„iÞ¶ßjk KÕ1Æ”ºÈC­@k ¶ÐÔþYù}¥¼Ô‚ -ç”-B¥a?Y â ¶ÁXŒb5–ËHRÆR°ƒda›0Bð¯¯ïyž©×½p€f ÿ€(j?ŠvÜÙ,'³Ó‚ ÛGóÖ¾~× ÂÞDÂ’âÓ½v;T‡¯Òóæ¼—Xœ³ž«¸Îç2=„œ„€êTž“”ä×va/ÑçÏ^lë&œ"„z•õOžë×áþ¶Õ+ôlÃ7mUµ“'ñ2Ï2("×(ÿ>Üz„VcÐaíjƒ¸Áœ¯ÙÅ÷½ã§ÎzzAȹO;¹åjÏKª'wÚ;ÛÞ»¶,a Uyi¤£jÁl[ < è—SúÞ=óhSšï¾óè¿1î5fØûÞÖLÒRƪBÙö¤Ë^_¾‡Þ²Ïg§¤f¿Y]æž‘¶ÚÆÆ/«Ñ;B¥Cí·a:ÿU¢þ1¾³ir(‹”Ÿã•õzFµ†ÖQ±öʽ‚Z2/B›JOO vrs,HHdQ{Œ¥q{Û²¾DЬç²g'l™S¶ÆÜžà臙["ä(%(ul€ œ”9.É›…+¶A…B<æD….À´¡+—™Ý¾]Í.NÉÒüI3G±—]’N; ÿ£ÚÿwŸ?ЇŸãöÐ_ÊþÂ^ÿ+ü¥R 8!•ýïð¡2J Ü»RTŸï×÷D^™3ÆH˜•0U·hºË¿ß=SÞ·ãjßC{€õ—IâP¥£ .Ä90Òb,U *B»mH±?o}jLè߃‰`Bµïxó= úï½4V^æу™ªŒ@ƒ1fQ‰‡©OJžüËgÝŸ®÷˜ wO ð Y’[æ¶öñ¦K|í¾Ï×Ôø;ðÌ~ßL—ä±¹Hcûé§óõtü@êV[º–å²W* áJl8s£ŠvdIœÃ³Se6΄ܶMC¬‰sq ¹¢Ü°ÜÃu!å=ïXÀÑ-º¾==ùäÖ{×RúüOês(Š2C¶Ã΋ 1S R[ÅL=ý[~%?yþV©ô,1µöñâ¯&¯Ú0Mx¿†o÷…}>½‰®Ä·òÍúû[ðQ‚‘ˆ—ý¼ïEó§Þï~7}4:¢ ¢Š>‹ç̺‚Kë…1|DFÆ2Ká¹HõI¿GbV}ë½4»R8–~Ó~i ñ-ùû@5@u§ÓÖ·×úõO¬´gI ,õW˜Ày¤aºnÒ”RPËJJXíÓ*xLÁ¦B6#ˆ‘X¤A†Ih³Ùí?\^¾Ëí=¼˜…•ý_¬½dø@¹a±  $L¢êD&'šž&ȼ‚\ˆ.F¸ts¶ÖØ[JÿO­ž™ûÛf§k<ËOÖ{ÓÛXŠx¼BXMý¯óë÷Ö`šœQXfó¿–!‹é|O{Þ†¿ÂÁºßÎýç›ã,º³6¿‰ûß¼[ºýù=WYâÍ_FA!È‘j% Jn.D¸Ò3©¢(Ñ&W÷½4…¾±èø|ËcßÉ|{æÄ<í{v%…¬an%?›Ãnó©¸í,úßOye—QàÆDìtÑŒ6¡®R{T†´vž²Â~=¡ª(ýr—zŽË)ýçúÿÓøþ½ÍG$ÒQ„cl#¢Ê³šæÚBg,RŒÒ©mš…äcD8FX¼6Ê(–ÐÜXzm¥ñœQezÊ^Ç•PÕŒÙÈèmgѵ™Ûµ’Ó­Tï÷[ȯ=–Qc&عuÚ¿Ûm†ïçÒzI} ¢ôàç ý‹v\qz=àäïXòiØD jºÝ,Ñy–1¬ ¶‚dÜ¥JSÅhb@ÊÉN 7'Û­çN]¡Â'Ç“ây¨]§œtÀ³¯FSžv’@]•uLÁ¡ÜûÄI¼ãš—ÈH) Ù;ç]ÄùÎ5ùî<ŸŸA;y5G“HcÞŒ«ñˆsç?9.Z¶Ø”…C'wïÑß uõù8ÏqÛd›4.È›"¦H»Ð'rP«Ü¡H!Ô«B­'RÜìpd´ †sÝ^·ë,ñu±óÝ”]lãs¶ŠÍÚ“T‘¤œc?홟}ž ó©©çhÉ0£ÕØ­#u¦³Å¢NšýNïl¹zyd HæòO_m$[â2%&Õ.·ÔŸ^©–!¨I2¢šØ\öšsÒU8g”í‹=’W°Îrr3´¤2‰Wa º œç”áCÚÈI×ÛwÏÈdh24¤Š®t™tã•ä]IFA¶AI’øÜG“HÑ“•>vÓɹæë8ä Ö.¶)‡ ‘"4¨NxW„¤A—;Ÿ¯±oe(l=¡l¶Ì¬JWh¶Z¾¼>õ©WU©‰›sÖ¬µZÚl›bÌÍl0C…ÚèÒnW ‘¥êí6y †ÜB ·6Úƒ! ÜB” •È2t“$6ÜÀv–iž8ÈŽW†¹Ô!’Êôk•]LÊÑ´õ©y&Œzöûìg~g¾X>w)ë–îáD(ca™Ö¢{"UÈŠÆm׿̹DEˆRAw‘Kˆ)—}'Š”Ë´ï'$ë¬*3ºŽCH¦÷AÎ<œì.#­ÌãÌ=äó—B„ð«Øg³òoM¼Î'”yžBBW Å—QÏneK]¨$Ò.Ÿ$ŸgÉÈIVòIË4–ÜÜÀ‰¡,Ç‘n9õ‚SÃë¹g!• í@eÛm]KÙþ®Þ³º¤øXǪªbU¹Ui¾L®660ÛlmS¢Æ(k}½ˆe¯ aŠ>­xtï9s6ŽDñÓcb±Ü6iMŽ÷NA;‰_§¸_„N’pyó²xœŸ„ðv_G'­OC  D…–2wÌ£«··bO]v5¤†×Ô¾^nض³gVŒ'ÖmÑY[^@`,²ÊÐ ‰s†vÅ‚—”dž‘&-Ä¿Yç³ %Hô‡´gbç«iækœöݪ'm”K±œëYrY'šÉº,2o2pž}´âÌí¢¢Â4ö‰5 ÓõïG˜NÎ’$g$˜¤‹1•¢‡IVck³ä÷„‡Í•1…ÐĶɉW›2¤V¬…³§FDG/0khUW+Xœ9]žÌiÆRÕ± F{E–o{Ú½E—ÁÀÞ”¤êœÝÛÞ\)”ò¸êÇÚ†õàôÕ Mý\N[â¤ù2d'²Ìz…,QÀ½Qr!íŒÙŽ×´É¿•â'>¾óêéQz{Ìöþ‘höÄÆÔ.tìêEã|õ»Ð‰«‹D9ârr*Y6µ$æ5:”ÏU¨OÌy<Š:Ò4Ë¢ªÔ'$U+V!*Gk‰,R¶%b=jXVÊÕ±ƒu'´ÛVÔGJ­d¶ÙeI³óœÙ<*y=£¤Ê9'­°•7™ñ®ËÉEÚÆÁV(xºFÉëo^rê+ÞÇžñ{\,YÕúÉ’¼MÖU­ÔYúìAåŒUwhz(eÖu¶,jÛmmi^YìÍKÜk5$Öí¸p캬 hJJœýž×ï]Š–UV³ìÀ†ÒÍ€!‚¿Ë’ä¿4Á›ÍÞ,æÄ:5=˜A ã ®m¶Øq‚}8ÆmcÖÂâŒoxWË͹„´/kª5÷óÞâx'ëá&/êÈ{~0C|-B‰6]Z1·nÓE›ïxôT‹|]`}kêµm ÙA—×°hœ«Œ9›jÚ…·bn^XFÀçjFÀÑ ™ÂŒ„/ÔežötuKš óR7ØûÄOÙûPÐeRÓ¡ç bféúØÌê®òã9·¿Üºµü?}R÷õûøõæÏh:žGô½žHoÅ~_¤â¾º(™Îþm‘E'H/I#$:¹@;&NÀìRÜ("Q ñG y+–El´†ÎËC°Brä!ÈrÙ— ^£©B…Ù6^ºÁJ JÙ(drÙ(\†€i@ÈEgnLmÕƒº„C—Tž½Ðª* æ&y³¬bMÙgOwŸQæú&Û«qÁÍ—ZTl©·%5XQ‹:Œ°‹óoYæ•Q¿{F Ň…ÑIFµ`-Û¬·m›ÏoUz‚ˆœí¦\î°¬$!*—ÙvÑ™È{×+ÂŒÜL„ÉóprN¬ëNL©Þ¥8Sɇ[lG Zî“‚““¤)jõ›FLO†zÀžg/š²S!3;r©1ÇžÊ÷²º­”ˆ Yjþ7§ÏÜp|z–IÐ$”ÒbM·Þùô!÷|–‚ó)ë¼]iè6¬£HâÜŠÅâRð“jFÜùv–-õŠZë막m&,bî%bR'ÎÆ$öêÍhÁ~.ÐÂmþ·̰—X¼ÎH} 9±33êî'å×'Ç”˹Ø Ø)8e.fƒD™=NOFÔDe¾­'¢ØR2ųÙT°ÍÎ92×ò¹Ò-©úLÃnQ´QiÕ‘ù<Á¹ühm °…srg¹=öö¼l ÈõÜ=9,D‡/;C’J¥ÐÜB‚áh£œF™ˆó®QC!„eçnlF,F‚Eçq’F¤Ø±¹¹Q²HÌh’“šì±£3o£4h" MãrH¦D$c!±A1&o; P$“%’’ÒcîšHE&\íˆÅˆB¹ËPRI %“s¦ÄIC  Ec3— 0‚/MŠ5ƈ$Ðb$J’(ˆˆÂ&RÑD˜zîn[”[\ÜŒIj,h´¥6(“rábÐQh‹åÊ4•é·4!wvÑ“L6#I‚Š,hÓ4G769sZAþÇvúq ;¤ºhözr Äðd‘ÎmÏ#Õ)õ ÷<ò2/g!¨Ù…ÙÚ~Ò…Þm”ýåГÖɉ0U—ˆB0•½ñà1­ {Ä[>=Ú`[D†C.¸2HÉ.už¸ÉMÜ]“c`GlÝ-2 ! x4óŒs« IËÚ—Œöú÷®“­…6Rq!z ȵ¤zÉ´pO~x㤠Ϝ3ÉO’2 èâ{2¼d6¸Æè2ñØ3™yBzfde‚„§P%‘˜ª)¥ÒQ SMœÌ­33–ŠIheÆæ'wnºÄp9*DÔÌêU YËV’‰ Ð:f¤t*å&]RåJFQÅ*ål‹¡BÌÃh±”UXX†eÈ¢³ZÕ"¤I’©Ù¡EI¡ ²ZгCQ5.a&šmi²Òˆâ GB Ò«H‘B:†k1N…ªaBÈIMiJt’T,8–QI‡2 (Š$13¥Î­#C,PÂ:ˆ*H•ÐÆYbÒ´ÚQQVmY˜‘U\Ðê$V†—MTP¥dZeÉj™™œŒ,¸dXUE!È„QK¢hl³¡'S2Ð L-¢ed©jˆQ§$Ä2ˆ¨Ð¹’¦DG#,ÍššŠ$R¬«Q#Vjt¬SQS’i‘gXRt2@©¤¨,;3$ØZ’HW -jŠaI˜R,•…,Ê!Eg QJ’©Å…`®Ž]q¦ew,D:)×Ds”'N¸WYM•iе•VF’¡' er*6ªT¢YE©*…¢¢Ê0éœÔQLU åEW)¥šÕˆJ”VaHZY%Y—-UJéË[M ÂÙjSLÄÄÌÉ:†DšbVAŠrÈH0±ªÒ–°¸sDKUC6uH-­VHŠ–˜Z²¥$•¢)•jŠ ¨Yr¬+"ŠS.!Ód*!B‘“¥ÐŽ\¹ÜwLS‰$•UBaÊË"º¡¥Y¨QÕ)6E æ–IkY¢s%—ˆ’‰)H©D¢ÕM¤˜TR(r-Z,±5Xr¤Ã•%²tÎêæ1"BÝÝ‹ºtULU9ÒHQah%@²ÎXG*g.Y‘œ@Õ!LÐ+B«’j*KYK‹9̆•Ý»œËäJ(²BµS4”)9Gg5(åkTYP±+:F§"Œ4“—"¹i¥³f‹FPw'!»®Fîr]d\ÓK‰Vˆš]YI¢)© îÝfŒ“'s¹:w:îq™E& LEÝv„’cB79wp¡éÂîÛ—#» .FPÇw7LQR‘Kj¦Êê”W-!.rŠ•T›+ š”sS0«–aZ³–b‹.I©È¹FHPu)N„¨ªê–…²”Ô´…#9 †©j¤RRBQU&‘ZÍ¢ˆ‘”`‡ *Z¨(£2"*ª¥UTŽBrʨæš©(Tr©¥V´“R JPÂ2,æ²Lª8J–µ*Fhe²ÓHE*)(ÔårM‘RZ&rC¡ÙDE)s4¬´Ck‡£¸\/}âjsw«æ|—Ї_ÓÆãÔ{%+‚g­µ±µµ Ñ<¢þ} }ëëZ1âQ„[=º @'ŸRú'ö,mZU3‡øR:[ [£3ög¡ÛÊÚ¶&7O#<²§KæÅ 5fý}óï¢÷µä³Vä ‹Í[`~ÞÒ*UÓì½)‡i³—h*ÄNKfÎ ¬U‘$U…RgIÔ Åï•Ñ•!ÞBc¸;ÆÚ¶yBr[`È–´ÈgƒÚǵŒ¦ë3Ò­ŒöO$¯•éàDñ®Èp½jÄgˆø§É÷×w™âŠ_%&Eì&e&²OdÞØÑr‡¨êšuÙ S×Rç¤1¬™:eõä->‰îòbeÜÇ1G`ˆ”¥¥ZÖŠh±·¦·4lU’ÑhØÕبÖ(£Q‹#Q¢£lFˆÔY 66ˆKEQhÂQ‹FÉ£k°lÙ-ŠŠI¨ÑQFcPbÂm`dZBˆ²A¨JÚ5 Pi4!D!£PZIRT˜!ˆ¢£$F+IRlÖKDIˆÆI¢TfIP%ƒF¨ÅRFЄƃYšHÒ²d¬D&6)"‘ 1S1©0hؤØÑY3&2™¢ÑMŠŠM€ÒdÆKȈ´i…$”Ɉ¦†Ò3A$ÆhØ”Nåö}â2^¹÷M±­‡¬² kx˜’á =•Œî“ް„r: õíóL…§Kþ=F/¼ª ù¿›¬&õ€“±;¼H&È© ¶@P€dª‡™¡E B•Sº•@;…Ö~1‚Y‰0 ·õºk"Ö¬@[T¡)U쯽NZRXXƒ€ãüUÓÿÿ|ÿ¹¯òà:è}½AZÿ1îÝ>²ñüç·¨¾#tŒ4?ÝPäÕ–AL(òÑ×ðìo:ˆò/ó—Œsk]z­ãÕÃ6pH7ã[î®#bù—¡žk‰ô`ÿZÿ>óÕùÖ‡÷ËyÍ!§Ä¸ÖÎWA½Ê:÷>¾Wå*<r¾<áõêÇ~/VÙäõò#±ÑÂ6vÎÇ>㽩u_•«Ùá=qç3gÅ*3˜ö¾ñ2¬ëÔy±fî娂Ê$²`5îåòUÚ½'ŠCóªî§‚²ÓËùÇP*ñ¼ÌÁˆFW§ÉBµ9ù^¢t·<ó ×Þ“ÊÔ<â(£q*@Xj>œçÇb,Y¼Ó ×Loó}FùO<,z²ÝÅAçË|R¡”$·9üªÍ69#Né ÷B’eYu®¦qʦµña5¨7åÅB(áOÍu\w—¼­¾rÕç}±Ï^˜ãÅ?mwƒ†Ñ<õߊ³F½øØFÕAQÌ”JƒõãÔez×Ù㓨ÇJYg&Pph˜ðbªž¯s&÷#qÄŽÜÉ8ÑŒÀ´ƵIXs1Û‰GéìÛ{/…ɳƒH-!DQ³Šé.¶ç({ÝÍ0‡T'æ¦æPÚSiŒžLÀX$â!\œTR­Õ8×Î+FoYÌ“õ•ŸQg=#©úâ§«—ÌЀ9t£?7·r Ï,?sµî8>¢o­vª·C$OZw<éY'áøo(„ëÎ"¤uÂs<±­M™úÝ%Êྴ^øïÉûç#¯œGø ó¸U2½D³2’CÀYÅ~lÙbÆX‘j~w›âÃkG¨áªÊ²ÞgóßÍÆŽ¶B è“Áî1Z•Æ­’£{­ëÅyœëXã…ˆˆ]ØžVH4`Mt×(8@·q¢”&A}7ë®b­~<ë.øËA£÷Žs|Ðå¥;‹<ÌÐ5U<I.©Dço4±Ÿq>_zÎÞuó|ó{И\÷»r„Âå¯u\õîûUåÂϬãƒ#Óˆº/Áî!ùë'iPêã1•åó®]âôõ¬Gºc„Zò;Œ{ׯY³ÇÆÎsñöG®=<ñ]¿=rõÏNHæøŽ‚ËŽ=Öo¯<ÛŽ»Ùùï{4OÄi'ã³×¹d›ëWHϪ×Ëî·hD÷éñï™H놳5̪TïÔlúê˜öVxãƒ$ÇÕ@ë‹Îù7³¾6, Èæª#T¿£_lHy^ü—½ýÚº–9)ôæf”s;‹æóŸÞûþ‘ßÍï* û¹˜cŠªûÎg¬½ÜÀPZûA™œ9ÞxõwGÖxgr܆}Ó3ƒä®buÌm¾á™ŽàÄT|5—p{LŒ½ ›:8>Õ¼vq„vz6D‰iâ¡Ê!„ò}l_Sx"§Q3Ü6®~ñÄöÿ6q¾! ‚PD1Ô+Ž]ËI˜‡n8ò¦½u>êÓÞV‰žâ&Û$ìõ"4Fs Ç émõ¥œýC2µ+GRù´¹öõ¸¾ºˆ0V8Pþd. 9§#ÔSÚ[(`ÙÛÂ4ƒà)ÎwÇ~žù®¡Î@ ~Háâ2x‰‰èÁ1DúŽª|cš#ft¡¦s5ú»Á>éèçh§ZdzÚ\Õåäæ<íwÎÖ­©ù RÁ&%°K-Öä¶„M±Æ³Î†[š± }dçLO-²i/Iº`Ö58î¡LÔ‘°éPüÕÔ{:ˆ¸E}ù—ºÇ·‹m¾· ˆöU)ž©D‹9OÙ<Ð?¤@’!ž[§HBü©.=6(O_ךÀæS«§êDóŸ8Ž˜„W®JAÈÊà©Ì%î—IBl2Z (b)Þ`J"Ê\Å‹B“‹”2–LZD‘ƒEM,b-°%žÍPV±*Ø-¤d¢è Œ(3Œ¥d #9Y4Ók´áAÒ ImQ%oM´°ˆ âM™jH'(¥FHÅÃçq=¬ƒ¢}ãdn÷k‘¿ÜíæBoœÌˆ÷G¹°þÐH)ço‰ó¯¿íøáèñÀDvÀÉ L*„ ¬bN…o¢(âXª‚WÇíöpHyÙi`\ iHТ ö@ƒáp$ã›åè‰EQDnF¦³ÌödˆHÁ  @ê9Áøï|÷ý<“ýšo¶qøBõ:k;›`=wçPÈ(ß´‡¼îå˜1¢¦(àIÆ/-ã©bá nÔ$bK„1ÜI, ›‹7ܰdŒå­}ÜgYgMXÊvB*·™„Ž©õ á1;.çÕŠ"››´¦&"!â©uS»®D êY‚RG"'E‰Š'ô½š99 Fc®*¾ã“!tð/K~šc–¥&Ž^:æv‡u]ÌÂrµÞsÞ¾\ù±; 1ŽÊ2ðÃ\ V¡6‡ñU.šÏ,Õ~²¢éß Sy”d‚GªE†w9î}^xûÎ}n¢²Æº¾~€žùäàäe(˜g‡Ã%ža^g·ŒøÐädlµBlùéý²û]w™‘ˆ8ÙT€úqp6hŒAƈ’06@ðõ;Òx†„äÙœ©7ÖçŸ:zïC’x´ ÷€È|YÖl”ÙËd£Ïœ>¡êvºÇÄx€=þ1üHù£ÔyëÄ9Þez¶—g v„î>¥9 ö¾/ø“ÌdplÉ¥ÈÉh6ÞâúÀÌÁ2‡˜ñu д Öû%}wнÆÙ÷€öÙB…?°+æø‰=KÔ…'ŒÅ$cŒrC#údøF&W†N1êOIFþÅxº3®Šíkbƒ°œ-¢ßGqɺÞÍÝØz#oÚßP'[ ”™•ïlS–³ÅÁŽ·ç:ºç…™l{cÃxÙ¥bçÈÓ3daŸÄƒ".:€{uGuéª)Œ·<Ô@DŒŒž0H©qˆð†ÍyVë|Ä[Âü‰›ë«™C¥¦¼Åy –Á>Ì KNx:i8b>9±Ëìšp7¥æåñ*‚æ3Ö~iÙ1£¨Öú«P°úyýi‚ðI:«ïÛ›¾0sâ¡!ô"È7F£ÎLú÷¦$Ðâã:ϪEõñïH™H‹ ˵EW¡ƒ²ÁÓ‡‰÷<0‡%§D9îz› ªéËÙ [=Bµ•"œÇ‘1”4t:˜¨‘^®1þo0yàIÓ ¬ÃÃi ( «„Ù“%A2AHvu03¨$ÉdBq_Š¡vÇ´õ>ˆ¢ —=qepòxvò…—ânÝ#ÝÌÐà AÙB'0aB ¾u#ŸJ²•Û;ïÖª.È„þíΊûÌÎO} kŠ´*«v¬#òüˆ¸ ±Zb÷PQñÓƒ•´ƒ– ´vTÀ›íÑÀ¢,¦þP “ñg²Îa“Œ‘&µ"w!óÀ‚H3Hd“’Ìž4°7ˆ²N]¤÷ílç•ŒŽŽt8ŸD(íã’=±šX²ü(ryö†ÎHLù0"JÑø@‚:”IÁ¢ˆ {B RÂ?½;„\0N†ô¤ã„8ìS=¼PÉÑBì…KH¥Œ°£ÃDz8,€,ã¡ XŒ.JN˜èý/›Ø}sf5|ÃhüµŒz)ê„y¹y!ÙC|†@Ç'à‡Ò õ9 ´ÄûH©²‰¤«²~’ƒÜˆhA0#ï uö¿ž—V[B#¦fˆeËûRãßWUÁä!õ|çNI>¢;:î¬Æ .PU~·ȱÖsÄ2íKêâÞÃ÷´/aÛ=!Û¡ì ´ým3 νJ…ÚÜ?'ÔË<(|08ŒáÄ;ÓÙº ³ìãZ’­TÌg‹@Ò=Fn^N¦dÌ¬ÚÆøƒcV‡GYÊHž¢Dãaùöž8#ß^˜‚;š×ª’µËM hð@‚8Ò‹«Ž’4ƒŒAD‘môŠ2G=å¶œbˆãK ¤ÝbgœN³:¾%=¢ŸsOÚSÇÕñë8^o½‚T<Éóõ¼žuñÃ÷ãçaCô®ó‘K{âä'—Ô€êk’œ®cL3ZBN02p =JÇs•g‚Õû!”Ô‡ÝÓü!ñŸŸ­»òQ!#fÎ=–qÇ܆5ÊÁ òQ$à è»PóPr“í9P9ú†ž§®brL€ø€ÛêyWp{OˆZÞïŸjÏ|Waê9€÷#ÔÒ;”)Mž¡ ¡ë1æá»†B¡ë˜RìQ•+Ô¼‡Ä™z“¸§!rê ‡aÈ^¡È ƒ;ÃdÉ~3ydòÙîÉMƒ&ƒ—q±ÌÅ   ƒ«$9/̦Á‚0Ž’0G–ϸ×Éâ(‘å©ÑgÔÕ¡çHŒ¤ˆ8è¢0|@xн±ÏXžªÜ=¡Ù®OÄuÖ´&ÝWH •蜎DcÞÖ·—G 㢋µ&ˆ2Ä9<Ÿ˜äeõ7ÎxóæÉ ½}bc¨úƒÔÑï¨~¯÷=óÞæŽâ—7e<øÃÄ95ãrºžGÞÔáÄ’D§Ñv@ÉèÁG'úÀùž¥ß¶fç¼Aê;Ü_7ˆÙ9#Y­Úož¢>D>í艮ó^Lå¼»“íK‡Áõwž q×UvÚæyt]Ö‰3*a5YÕÓw‘ç“ΨèðA–5\™”Œô=ßáß$â¶)”4G0„ÄÏ5@wÒˆõ•”´G&ˆƒ„`ÉÕ,cmBd ‚ÈÉ©î1£–†ˆ•%å 9÷A³rÙN:P¿q"}"“ä€8#%žˆæ}_[[²Qm)„̧F3Þb{«ƒöyžJ3ë•\=Ç\VhôXŽL¥'½˜0yÑÎTýÒy#<¯\ûýb^XYC[¸ã3Èèi}À2n›§\mÅ yh¤'°zbeœ±ÔCåˆ28D°}Út¨rÃ’g㯚#!¡“Æ»O<,wÇáF^Q¦&-äãÊyxUÜY¯‘0%(8ÙDo…'Fžo‰r‚á22Iä“®òÂ8U3q³dPµG¤™Ézí†u4·ú±X±iZâ3žK¿"qºS{1Úc¬¡k=ï3.Ê ÑžÔÊ8õݽ5âÂéh ¶Áú‘$q+¢g²:€„ebeÁ O%’+ÒaDÌ´gbØ„–gÃÄナ8‚v3 ÇêÇÌŽºTdåg] r‰a&ÇLø£¹àL!2›8rðÔW¥‹wV¥NÒ‰ PæPˆðÐKgGtòTóC{œÜÒŒšÖµ©ñeÃÙδó;ë+uR‘ÕwÆæ4oW,p•N(™¤©‚*z„kÿÌ zèþ¶°Â,‡U£Pÿ.°ó ±rJ¥I‡P¢è%¢)LáÄl¨¢º¥ü×W»»¦hœKž§($GÖ‡ºË¹UG5ÛJÈ4ªRŒ,Bˆòm"’‡'P-G”`1:ªÆ3»"´ŠI5Ñ6¤ç•B\’#þg›Øº1kr/ óÈ;U±Wm[%öíÆæÓ±µƒ g9p’(ñ)K(‹;.+h¸¦ÍY5vLÆØNÆL‹Ó9Θ[¶' Ú°™‡c’U'H9‘Z/Q;¹¹ÃÁ#Ï&EisqP¢ŒFMÊ*v¤s"‰ÌD­;8¹åå~BWÍêLš²æU™¨R¤y«,fÖ¡FetZé ™ËDÔ5aí¬ÂöLÔë ®…%ÛLWKÎÛBÛFIëacJN]ÍÌm“‰§8¬ÆŸŒžsÊ9… qM†Úy ë9!{0óŒ™%Ÿñcf9=v{+;žyÉ%×I²Äܯa5/X¹H®g8ÐY!̉ŠJ,¹É³nJòÚÌ/:튡rÞM½v¢ê%U{K´³œëhÉ Z°ÜgÄ:¡¡jZÆÎ*'²\ôiChL©\JWºF¶§b˜¶Î4aUìô5Y¸Qq“s”¥¹yF,µ&¢{DASb3b^yQ7:ݺm4ª#v,¼""Š Y6‹VQ);c&í®Ã:Ę´¦–•*{V»bÍW<¤ä&\4:b¢d]³™Ý¶ØSanÑ Xн©é6.αŒÈ4,¨««º¨šDF¨Š:Q¶žÅ—m­œ’ÃÎLáDÚW dÆMb±¦ÓmÂRÙ!µÏ=šë1››;+È̤m‡3+2f]:ªÒæ—M×B«¶Ù…*x¨„%Ck,ͶžhRÍØpËM¬ãa2#Û*Ýš±¡Òó¨Ad'r$’5‡•*NÉ[vLŠM4g®i•¤2·6‰ì+®6’Û2e«aØWŒ©´(a6ç‘¶Ö†c  ®Û*MÍvÒ&v`nô¡«R9Ûk§.•iЧ9“¡ÛºåS=*è‘nUÒ›u:³PÛE£mÉ:{m®ž…27B<º—jÑ%Ó&3jnØ·O(I (©91Õ VK*£0¹ÉÙ éVG›^‰”¶V¤X‚'E¼À;‘RÖÊɬ9EˆlF+41R&l2#;K6K—’lÔCSΤDj•UBØm”ʦ¤¶M41PåIUÌÚ´=;Tœ¹ŒàjQ«=]GS© EAÊÉaÎZ‘Ûâ(…YÌ**«®³Q¶{2Ò“TãnÊ‹Š˜ÂknM0Ëlëuf4ä²Ð ò$F{ ‘FÎ1©AVpèJBY–ÒÙvÅ6Úµ¶yé˜Õ«žS•–¶Â.é„Pr\«©ä\$×dÔ,Iβô™êΔReQxÂmÒº–VWEÊ$ÏfµiuÈÊ«m×b‰TÚÄ˶ܼ´LSh6bÚÄr浉„@h¸ÛcXÒ×OjEб›™íXEžÚa—…ÈC–…N²0ÜêÕÚ‘&ÝvUT³fyÛf‰™ÉžUÔÑ#©ì”EmÄ /*¢j¢’¢"W(Ø».‘QÐÛA=œœº6‡=œŽZS]* 7aéœW1jÊ“×!2¨æxk.%5Æ­ÙèDU+:§‘-°…pèœTjÛDi±‰VѦL†a4\ª9ZI1,õ OMœééáXÎÌ"fåÌh6‡=ˆÓ¹^˜ˆØºrí”m¬›ÛhL*öKR¨cc æ êÉNÆs¡3nsš¶ºEF‹„yyUy¢ÛvêHÑJ]²™Ú*ŠŠŠÑ›Yª&Qx³^L6Œ¤¶»d¥"vÉ6꤆©s›B÷(šØ–faœaQ¶ÙèsÊ4”®ÝÍ›0Ò"-+«DòöE5R¨Õ,mns"+ΉUEK;0‹ÓdÌ=%¨IRå ©V„Ö ¦aæÕ— 3 È%©-FKIPˆ£–…$” Ïy:M‹‘Ìm5­ËÚ.ª¦‰‹¡Z•J™ÖÈ‹Rˆ£Rá«<’¡ÌŠ.™E¢'®E3´¸nQyMØÎpáª{L\¢«Ö°¢¸§–{)ŒÅÒ’ö5¢'³g™Ä˜B¥åE J<8v’»i®ª¢T¨­’!ETS$³­¹YâJ^˜bˆciÎAë$Hå^¦¤Ay²"<6JDaad¶¢Aë0rvU×[²ŠÍºiEm"4I– •´æ‘¡BEéæ¡–ã:ÝŠ5±iÒˆ³Ô’;©ëD0®¡agH:‚NÍ]ë¥z̽³"êk]çžq/ ¼òÜšBÕÎ`´Uº÷YO ÷4H(÷LŒ“Äó‰EÏ+c[kR2gr Ì«¢ítˆ‚;P†gQ †Š\P<š‘j9Y‡%ÖØÚ3ЉUÂA˜¡Ø— ¡v•ìÝD3(òˆ)D¢ÍØ]ZÊÑJ •E+ <ª“´®³„ÖÒáž®b©‹&9ËJŽ)yXIUyÔÉ"% JGVUjN¬ª¥fF^EEDœöd—=PU·Ti#K—12«VByy5ÚØÚ5®šÏ.§…†N¥v'§5·5Ít,ÆA–M\;X^U¬mÚSh<ò¢ò"("Ñ=Ê"I5"ˆ¨¦ÛŒ¨ÕY­§ræžHvìŠdlFA*ˆÚf«9« ¶É0̬ôÍÊ*«$"jÕÊ*‰i «ÓΣCÏ:Û9P:3ÙI!ê ˜dž\óˆ16ŒòSUpáìRÈš¥´dÙéulZ«ZJÑ…*M¬*n¥AI!RX%1®Y,É&ÆÌÝ26pò:‘M›UÉc;µƒ2H«ž¹ã9)”°ÜÒ 9êhdW™”TÍ[J‹­;:éAÂH™ŒŒFnf4\Z–L;iSVl‘–$é^ )ÒãÓuÊòB‹Eˆ¤¤YV-Bô.ºFXbåjí ÖdÐÒæÊ2¥\Ì*)¢qTJÛa˜xÃÙºu9éê.~KÞÝ™E&{RºQ•HÙÓ¹Qëc3,Ê!VCVfª¥—YUååÃg‰U„ª3Üd5 ¥H":„ØkBó¨yáMK®‡™É„y.ÐÄ–šdLµÒ]‡n…¡^Br{+ž7s]œ¹S1S*”4cuk<¥QQåu.K²¹’iœ¼—3§wOJ[ù>}פÃ#FE?ŽŽX‰I†Ë~.æÐNX§qÏ㻘JûÅù¬¯‡9šŠšTZj –²H¨ªN¥Fˆ)`Fu¨F‚V†aGœ½¬4¹„K¤D$ä…#ôîSµœªÌº¡W.ÍRZQÂP(”))mSÄÈB,•0„ çñwZuK {­ÅQNÑ”M¨ŠFF¨Hš‘j+LŒ±­—–„(³#…šË§óIÍ2–‚V¢"%’Y††3MæJh™‹5ƒS¤FFVdrŒDþÏ<:ŠJ±YÒæ¶ùÁ;”³Zq$´-z'‘•d% ‰~ÌñdˆˆI’uU¤Kõ¹^i°N'"¬ÙrÙËg2¥…¬…"ÅYV"j™Ô’¿—ºÒ5¥VDs+I*O*”-/_l†%i¹Ì؆gZ€],BÒÚ¡Dq*®]@Ë¡¡u,°ML- +SB#¡-4DÅ9FV ‰+£‰bXdjhœŒHLIHBÓ­.&kSDÒ¨Îe²¨ÐÌ:¥˜¢…r’Ùb¦mS#‰ªÌ( -C¡¢šÕ¸k6Šœ#TŽ,«K–í~½z(I‚ª*ihhJI´ÄS1¥"VT–´”¨ÃU:¥t ¨ÉR$¤ÔÌÌ«a‰V\“9u ¬ÃShEVV¦ *"Öl¬ÃChft9’JPiþ±±£b¤d‘eºIŠj)¡tÉ3¢59]U¡—Y&j¤hBÕU ”³,£1«+ Ò+2YYäJe§ªU,ã4ŒÑ)C4$¢B$Ž‚Ð¤ ihˆ”'œ«~±Ý2Jƒe¤óµ$KMDQR ÌŒŠ¨3™­0³gÏqS)U“)2ž×³e^zF”zg4DÈŠÊ*ª),ÄIJƒ S'(”ÒÍm²×I2$0,ê*u¨EduJ“-2)JS‘¡E…t0®r"UaI…mL9T¢bŠ\ÑLŸÉ㆒ˆb"ÊÌ”0ΛDë)²#"ŠË4-9Ôæ(AÍDé(D™Ö›SU¦•K†"[—ØœÂÌÂËB"\çiÕ’U¦„«™¹.F#w(rè.nì… ¥R,’%†+ºN¢Ói ™²J¤+P2T0-V]UA%",K,Œ$ÐK:Je(TddB„«DEP’çLk"23šfWEI9HFÕ1V²“$$’ÕÌL´³œéXPE¹„TVJ*YŠ´MªÉ(ëBŠ«J¢ÐÊ´RЕÔ®" aœTéd¡UazXŽ¥ab6È¿{X¡’…ÈC3D²V…‰h™ÐÕ¡R¤Á(…ërsdr,Ó-*À´:YE -‰]!$)+ÓÒ&¶!VE ©4ËÒèQj­B¢+…D^¢æDZ«ùRD—ã 賂ƒ'«$ú!E2éÐ'¾¦Ý¿SCïÞv0#U™KtÎp5àC}› ±ã=HÅ£¨€5ò5ç5YY›`þÛæzæÉé ”»çŽŽz|×£_‰k@¹èCCÒéƒÊÀ'ß?[îI>qrÀ’vx÷²Ì‘é.Ž?Gáé`œ],Æfæjež!fòÆNr°:µ4¬‚G¨^Φ†µë˜m2å¾wÅ cW̘yv¬¬'`Ì {®3¾£¸ãQ÷yD¢$Ïnbˆâ¹bã_PÛ†µg<¬Ä:K98dÉaÎáés”6b$\¶7ó~ ÒÀ™¾=ʾSqºZ8'žT‘מ¹ÁŽï›€5¤5Q¨Bö„œqâñÆÃƒTÃÞ¥íø»hbnÂîÔDIª€U`q؆^¶ñ꾤%elR‡µÆˆmtÖÒØ‘à”éž¹9-„F²ºé£´Y‹[LY"´„©®Ãn£Ñ)â‘D :õœ´lldåžsÅ# 9ØÚ=F_;­Íf(ÛaeeÊfL‹Kœ.k#Tã,äéÎV'g˜p]Ó ½§kcٖᆬۤåSÎLŠ/aZ‘UšÞ÷-Å⮜,K„›5cL ËËÒ\Éœ!Q··ŸMÐG­†  I61]Ê]##hØ%Æ0ŠÎ7 Ók76v-@1Ùa 9pe× Õ\’WBÅ;’ÆÆÛ ÍêS=ìÎeÒª"3†gŒâª¦ Ž»9ë.U†fÀÛ,÷dåîL›’jY±m³‚g£{bL¢dæŽèI Èìc2tˆòõ¢xG…$é•\ƒ5µ!c—R+äÚt¨rcmÁIjuÊ9ƒÏ™$<µžuž”SZEª¥Üw»sá}m Žhëøx_-í…L7=2ÔÇÛbibWÏiaWÞSÉ/³fž‘T^Í&GdrÖ·T ¬l"áp˦&…È"mHkhI]®˜³ÓVD\‚ÐÂ(Ï×>ISÙܘɳEå4ÆrÝ;"V˜µ„)iLk<½Ö¬Ý#mÇH¼9i4Š r«PñF“«N“EÚäJeÍÓÞñ9-°.åDRz}­\]†çmm¤už´"(´6‡9¶í£Ïc>{s¨Ðªò†‹Bò’”H¦ÉÎmE²Õ¦è›n“ Š÷{ {ÖUºGu(i&éIÇ™ä*“é„0,zi5n˜Þ+œ—Ñi()Q”êÇ$îBÓ Ó/ Ë<^ÙCy§c`‡%2ñ ¹ž•2g2jÒ’a!¡KJÌJÏmtðK;÷D t¡ØÎm Qx%s¨Ô:^Ö›ÝcEGD–ÐÐfÑ<¥llI žÈìÊeŠj<ݛѾpéâgÜe{=b©zHL„åÒÒcæ4*Aí̦]Èü‡J¯#†®R^QO9ã5 „Ûi3 ˜Az; …‡H’m™Ir¥9†KÞ!Ióç{̼õÏ[I:ršL²,:ËËrrm,Îy`RXõ¨?±ç7yïÈ÷!ŸZÔ~H`î[Èd·é‹9#ÙCôF¡ tyáA$Ü‘÷ÅÝÚcqˆ†¨î‡(ÍD’»k¢H^—v=÷Dn®óf¨u鼨žvŒÁáD ÷éÇDC¬y$á宩•9Ü"ó© [8™ÝOgr˜M‰^×;±bE+iEW’”ÎUwtòD’WBz…EÓ—)+ÎbccU›2²Ž§öhQL³Ü³@»“«Cu¹ÚTÖ»ˆQáES¤²£þwÑР.UÛuã´8‰8'”ç½óÎ&vPR=e-(ƒµ¤óÇäûë•U¦0êr’œŒ‚ØZ2vsqÁìñÓÜÅÓÆNÕÁ¶°jUÖ°¸fsòm zö-q¥Ï­“bܽµØGA·MÓ‹Û†F"º~gPŒ0<ÓÔ¥èq;g*ÕÐÊ+" ˆM)M¶5oððgÂ*úžy¤‡FÜÅóçÞÂ8TyµÎE5k‰^a9ÒWОw—.¡§H-B‹§I˜ˆÎÓ‡­2]ÁÍsUËxwlTXfK•ÏI&y{hÿ# Š*äå"ª2zŠçv çDЊçC7 a¦^»"eÑ%›§ŒærO:$^²kZÆ*Ó!R) rT(”2šÉ„v ²JWdÉ2ZT P Lƒ%\€ØCZ6¢ª"ÕâÑV5x­B¡°D’á"P(BR %(æ`4)’©…)H… NªVÂfXÁ›;)°&FNA°›Q´HŽÛ ½â¼¤„CÍ’Â4I°Ò#Y*! d)B€l¡’›*®@‘“fšºäRɹ莅c›%Ùt9G-MYç•G‹]ªz] ì)VW¥¬Êñ=ÙÉ“[%t}VÊMU¯T[¼cR-v…õíÕO>‹Z»jÍÙsqEÂ9âxZ¹]vÃÖÑRk‰åq&…ÙÛ­rÚzŒ:[™Î½̗.{.EÒî´€¢Þd,R+qß­HÀ›U°Wj~Èê+ÌÏŽ[›~/ÇyÑPQQ44êpœÍs–Ì“˜VxZ! c—š6uµmËYUÖ­g4¹¥Rð1´keÿ%Xk@IKVš];<ò{wå,Â9 H–ÚmžS²j˜"Ârµ=[̪øj´–\¹Éæê°‘:Q×qµi)NmNB0ÝDºhV ‘nÎ<“¥å{ZØ‘äÉæî¦(§ü^7kZT#Ëõ—5¿wê†}(ëSóz­ßvëN9^ ðŽÁÀÆÐ\l¶áŠr¦tÆY‡³Ä˜j•çKž6¡!„¨!ÕbÉ¡ì$C&Öÿ&0ö¢<ĘQ× ¨„êܪˆÒܽɛVr ¶§#Z¾žJDú‘Hû*=¹yåŽuC¦ ä^yG]GYëµDÎy;ˆÊþ~ÇíúøøRÆs¼×ÃæFý™Q¿Ú᳂CË<{ž2‡1o6·ΛfÎeUðÿ5.{uÔî8‘ÌŠþ)ûVNŒd÷š yÑàÀ=•iQVŔ£„ñ~ç^7,²ÊŠóÖ I±xÃgdê2ƒƒø¿“ŒlHºöøêÞÔ[òè@Øéà c;µë+ëîóCOƒ*={{q®ÊÆñæ_Éæ¹#‰˜‡˜¸òaK³ZSCøÜEfø˜2{¦ÔYˆÜùa­Xš—.Þ!w$’'ö°Të#&ÍZÖåEJ±²=­mLÚØ¥PUå ÈêªE,y ƒ– @æ½Å„ä~äò(¡ÝÝ)M”r (y˜%†.ÀHÐ…Kµ*l™% ´U!FH†Hl#!°d dŽB¹ d;#û»ƒ¹‚rË$L„É$iØÉÌvW ÈÍÀ !6ZaL ÙR” ¤6S $Øsp\“$rd ³Z¤¥JÈ,³6ÏÛŽQEÉ=k"¶Mصڇ³¶²æ"cn*ç¶Š^-&-¥&IäÒŒÛMH0–ÎÁùò.|·:sfäkkRL<‰ÎW˜k„•3ÙØ³˜[¶•›11¢ ËÙ£\¸\õ-Nq=4¤©¤Ë°mZäF'•£³;´eÃ+˜ÃÌQ£nÎ(…«¶¶®Xyí+Á¹érR)v…v ÷­æD ÷^ÉeÉ2•ì›°õ-»2›‰•Õ™X‹„S%•—¦ ¹p0Ž(ójvß®~Ü ‘Þµ¸5Õ;¢’bÈÙÆËdœ­9Ôëq™í˜f*Yº‹µ’ÅшÂ&Öq6“v5§‰ÎÎ2j5Òêœét&Ö¿ŸÏõoãüý_ÈÎ݆²•Æw2µ¨L“UÚ£Ô°ÆbưÐm¤Ä#·2_ác{lY«çeÿ6=Ê™ól¤\´Ü÷çd}uªå‹/¨nü_ŽüëáÏe/×ËÈ49#‚ˆ #$ŠîÛ+Ûš%JnÖÄòQfê ”ÖÜ­›mB#ΔŒîÄ5 !¶ÝÎVFxšc³ÆtgZF{$¿Ç&¿Á£|Ê•i sZÒ)*5ˆþG¯úGÊ¥DŸ…²Nnm§òŸ’GÍùwÎGjf%:‡îQúoçñßž‹O!{uÊ¢«ÝÎãݨYŒÔ <rÜ}ûûýÇë!m‚p:c[Ü8öOë €1øFüM.AIE9Ìt‘,À ÙšÆré$¡T9Ö­Îä’ —axS›i*í¬µ=®•œ†J¢¡¯c'½ ^„åçO9G§^Øó±mÚÆ2U¡Ë§[C©äG.§ŽQ:"®C’V‹n­aõ§ÑÍéxé\ܱ͹±ÍpÁg:J¹¹g8K´j"4A§u¹‰êë–-AR'sdÆ6o]¼xÒ*±\"«ÊI&vÎU+¤5±œ­¬¼ò9ƒRõH¯&xï˜yÜ’Š0k»™éeBGÖ-ŒÏ/ (‚!'MÝÆÅss\¹³ˆ™E…UU¦$\­Z³S¦ÎYÊát"“…×»Ýìr:tœ¢‚*¾x„«WN…³Ñ.§ª\¦Âäyº4é9Ò`çfƒeØ aÈhMÜMœ‹p 2ˆWÅœé (ˆ( N.,¼ž:ÒE4y-±Ù†Êl ršÎÜil×­ÊõH¤ƒ“Õ¹‰Úr™ES(¨ì"•4ÒU‘’æÙy¨‚dS²dÏ Æg¡è{k´Æ„¥ˆoÙ‚dAÌBÎfšI¹ˆ1*d»C¹FJä†À¯t©Æ¸QLí±(¦Œ’†0ìç•¶œLìAcPØËFÓˆÒGî$;ˆ­$ÝË t,ÃC*2i¦rÌL”·Jm¤B'%ZE2 %$C(¢Œ³0slvMÍÜÁ„ ”Èh2È`Gd@ÈÙvÙvTÈrF–’–(3ªHF(£›s—x»SJI@‚ Œ€”“,D„¯:ê,1$e$ѱb¥dH§Ž’ ¨ÑFS0¼ë¬„À!0ÒcY–“f$hÚ€4ØÔ¢"‹`ÖåºhÆ0 Ó6ƒÄF¢ŒcRhÔkcT[`hhDHŒe]–$6 )¤¦Ü@Ø@ DiPV€  ”mÄP ‡!Z\… ,ƒ Ã0h'[¥2ÙÓˆ¬rny]P¬Îè·(¢5É5â‹É¯²H¸Ë"Š«²™«®ç.Ùª¬÷&RÑLlRe*‘y^É*¦(×&®Y%±“U\‹$ôœÎr+©a&ÒÛëçsëÒÆ´XDнc óHÞmNr‹ÌgVÒê^Psr}îñéjR±. ¥Ì]j²ù rm@åYPªPO T6T„$L„‘DÉ¥`¡5U(C%Q6hUÐdB„hU¡6G$\š6\Œ…C*U¦Ü6…¤QÒ‚€( ¤¥1¶,XÕŠ-¦†Ä¦‚dXÆ@‚¶5EªP R…”@¥)M•Æ-£RÚ‹kÅ»J#bÁ±mÒQDh™´ nâ‹@´ °‚R©‰J´"¦B®H%(4‚Ê ¨RƒB©B¦J©°†ÈˆdJ)° l¨;eº`)5#Ý.G‘IEv´Y­«ºxU:@ŠÏ¹q6³¦™{cªç0ñïnSRÈ¡óßz6E`A&’ì¹6ówb‘vÄàÀ“U3—“œ-{ŒN\¸QQÀ½ë(2=Ã9wRõº^E5; äŠ(C¸ *Q •%Jœ‡a( €¬„ •ÈAË7Ü J´µã:ètòêÊÜê^hœZÌÉÕÜÃ`hØmPÂ\Ôap ˆ1 vhq<˜¸¸^Ú´#DTðê™å×0š¹Íµ‘«nÏ …‰»Ê÷PDÇBNC¤ä6S™L*صEˆe´U£UF°- ¸¨d¥%- d®JHÕQZJÆHÚ1™±¢¨ª6‹ XšI¨’¢BJf™$šD‰4$‚F!JP™‰˜Ñ’‰ CE$DÀ…ˆQ(’RȆLcXŒ²hŒÆ‚„Š“)%Œm0ˆdb j )2T`-4("Ʊ¶BÑQIÅ6ѶÆ-XÑVŒkb,I±Œj…†ÅE‹HFÚ-‹Š$„0±hÖ£`²kT`‹$š‰"ØLj-¢Ö¶MlTkTZ-M¨£T[X±¬lZ¡(KcZ4QlVÌ©,Z-Eh(´m¨ÁfQª6 [5¢Ö´ZÆ6Ö‹[F#lD–J6£i*C0É1$L$D( ÈRf• 1°ÔÉRI Œ¥4i‘dC“`±IE(5Dk%µŠ±U´mŠ’*‹QmbMZ4Z¢´Z¢Äm‹bŠ4Ù%•@ÑŠ2m£hÆÚØ¶Š°[¢ÕhÚŒmQTDjÆ£kQkThª-¢UEEE¥’Ø"kE3j ÆÑ[EEhµ*-«X´V‹j5£`ªUiT¤’•Ù0•æqÉäžõÁ ºiƱ§&Âá% la9¶Â4&f.[%&Í HƒJ™é$˜äÁ8ÍW]sºkžmÙr®]¶K¢º{æ÷¶Èe™†ålišfæÚ–¹%*‹²N,鞃(sÕƒ˜r7qÙvQ@'lH2DO]w´®ÎÖÛEl/&°ÔŽ:Ì”G)ž“”„žÊ–›­š6€œ™×¥¶äZÈ: âyrdÄ÷m=e¤Òô¥xk ¥‚TV‹s¥NJ´å0™l lŠl"9%CJ.B(l†À› J £@» †YKkcld™»‰ÔCÛFJ¦OW äò,ÂÒ„áš„çEsDì#m"W ÝC¶Lõwg¶€ÖÓµÜë²vm­Ê ž´då8È®6;”$ Ï"Ò™%aéJ '°ºrMH9æ •l8žu´¨Kì›–.Avr%m§¶-Ì’ôZÂŽÖåyyL]E-·g‰«klnŠˆ¦[v«µhq)p€ª.Öx]*¤/[­N^&Ü’.p²r=ËŽ¸B5&GA3¾|çÔÏd^Èí‘BäG”E5–”åis§¶êŒ)Šh¡³ÓY4iqœS-SʺfØ”Glm;c$ìcREW¹Ï&7EÅæ,º¾»sÙ¸h¹ö…ì¯Hé¶ÙYäQH×d´a¦v‡;-<)Ó&ì¥*X¶=â|${)ÎÑ:6áfékN¬8*EN¢Âj¡Uj„Pʆè¥:…ªIR%¥*ÙëLÚŒæÑBgbêlIA+ÔJ)‘Z¹b-–,ÑžÎT$Z¶†"Ó©3•5Höˆª…—]µ<ÕU½ɥٌn’­Z—¦íµ®5.ÆwOIC#ž^žÉ„ÛXç œdÉ:';´â;Wr5ÖŒ½ tºu‡´gŒ!t\í³ÝŠJaèEC\:LMl^¬ÉŒÝ;6{ ÈÎM˜éÑg…$ŠGs§++ÒYTÜèK£¥Øo@ÆòíÄÞ^:n±LMò´ª%ZÃ.˜†‹Ô3¦°íQäëejAŒˆ Ä¤‰ZÀò›;[r›´[©ØMõÉ%Ùéz5Ùyå%Æ…M8Sm¤gWbEèJ-±ïôâýÑóß«(RÃȣČL²2B¢ù숖.Õ${v2G:•Ô(Er£ØÛHeqrÂ:*ú}á_k9Ê9Ù"eäŠÍÙíƒb{;D²ÝÞ±»Ø.+`,kµq?7<¹½ È.f¤„2‡!Ï7ÆØåC!F<Þà|ÝÆÒœµfxÂк‚x“‘ :Ìh aÉ2š Š2Þ6Æ®dÆ6(Ñ^7s16%¦ 9&Èl’åÈ $ªM#`ت ›1Mœ2t™9Œ.zÒ.¸·9»g™åQÂÈYPN*3ÀNèç‰%vçÏ&›C¤‘£ÁÖ…È2ÌBdE§,às í"ä'—…E5Z3ˆ¶U$ÄšB@ç(O%[±NË’ä”áR”4;d ²ì™Pa#º`Rä8ò»r)È£ÒéØf(tA=.[¦6KrÛÅðh1cÆÅÙàU¨È»\(g»8u½gÛÊG%YEU•]¹9Ù:UÌJDkƼ^O}rl˜O8Š‚  µíÓžíY ‚ÌMÇ6¢%ŠD(ÌË´‚š¥&h X†í››Žî#U.ɲR)mÑâM‘ÙW'%wî¶."rîq-… Ç$”™+°; ä….@d Î@Ò!²ˆ›¡²£J†T®@¥(4U Ñ~52ÞniŽXîáš.´T˜IžS­ ‰žŠeÐõ(öWL.ÔŠ#¶Q9†²d¡JdB¹  B޹¸g\Ý|톥âtc ÏCHò«Üˆ‚(èºYN¹_V<0†iˆ°ØÛ5Ów\\„Ø¡ 2AØ2G$ È pË 2Q³`3ÆN2*åE˸’|ï7‡9æÆ ^±¸¨óÙîUIÛXbDžœ™£j¦'BÓ”†×1-qB^H²èF±fÂ;bw6ÀÉ+vRí·dž3]±f¹u9C«¦¶úÙñ,èòÉ¡mÑ^ÚˆÂi<Œ9Й-nÅïpv{Ž(U¥B€¤y9 Ù†! wÈM¶M“s%ÍÂÌZEL‚Ì rTÈB…]Ì(·!i£e(„Û-°«YÛs62sÝŠâIÂf¶áI³p¦p®L!¨$ȧ6Ç(‚Vw/,óÇ$âó)¹Á”7•Ò¸Ó•ãkr-¹Qm¯‹‘’&ÀÕ@4»9 Rì\¸kÁoÌœ¶5Q¼sbs1h 26”rGÄ"„CaZE€P9H¦H(Ð)HÒÂ; ìæàm•%¸l›Y†[lf ßäóÊú.?DIƒ$ú?‡q?¸ºœÄãåÎ`ó®k4 iË?%ºæšæ‚НӇ]ñßœí åUA<-—t"Ö]‹n2à]MwÝïf{Ï÷Äù|›ª(‹ Ó»š3U&ÞúÞM¬AjD,àŒù¿]ªÝ…¥ï𑣯©½½~µg…“ßz"Yλt¸u§ß]ëUÖóÁ{XQËGÒÆædréæc·ïX¹«øñæz¸ïùžºâ+šî¢>Óîés÷WÅŽ»ôßæ •””‡\ .­ÜܸÄPõ5q}ߎ1¯#OòkcQLH;#‡dç׿¼wðùžý×uÕ¼œæúéÛ\?|G^s¯{èzÍxŽÏ£ëYìÑ÷›â8‹#!‰>ýu¼„ ·3–0Èà 4°*Щ–{8E–vQí ÖɳÇ( ÚÝ¡“$&€?9ã®>Ð|I±ã¼ˆØÚ³=î¡vË'$ä:wŽO&Á:Äzñ‡#Å\“ÇXœ»÷° ‡¨ÈJn°2v}§$Ù ä§{‡ >cdÛÌnáÜÌ^Cï+Îaêz¹#È0†Ÿ›9žgÔÅG¥ãá\ñ¯µz|¶ûò¾I›ÛWÂr<}xáÇ“Bø‚ë{_ó'‹¨ôû_jû—Þ¯¹}í¼÷ÜXÛáË`€ó˜H}s]`õdëßUö‡Ä-œ_>œÁ0F¢ƒùèÅ+®µ[ 9µë,åÁZUÆš>ýí‚n[ò3!@!oŽo¯zÓ9:¯¦šê楑/¶©w\üÔ‰•|÷| ~½Xæ|ê\üáO/¨Yé•ß›³¼ó·ïµŽq :Ö¦ qŸ¹ª’uÃ÷AUr 8(^ê ½äû=kyÙØj8fDI6›·ÑocÃÁÖ.Æs­Lœ‡`Á_"¦9ï9»»ÓŽoq—ïpKôk::<ù\Þè6‚e$¯31=çøu­UçbŒ–Î"ÈæBsß1Öîï[*!"/ðϺ¾2´¯µôpöãR3-BÃ/¢ÈâÌÁ#¼Ù €0ô£_Ñw1bQ;92]¶ŒMmei5iÝÛ]ÑG/ù{œ¤å0¹¯$˜ä“N&RšrÉi2F“ (M²#”áx’zz@íhÙe5m\®ZêÓŒœ¦j›µ«8g§k™¹G³ ºµ—·8ºËQ[A“%tÐ)%l‚®eìœíBH‡h]ƒ¨jÓ#Q-´.z‡µ „nlå53Ô»gFÓÔFuŒ9ÚFÛ©¤œïökÊmžÕ á†gpâ)æï¶4Er(£D¦7­ƒ u'­V‘€§D‰Ð„mç+_Çóüvø9>}J—nWž™;32fjÎrYq•E[µï{Íå^–"Q{Ta)ÚfgbPQTQLŠgŒ©×÷Þ|ÜÄtÈ/¶qlnt³Î]7I©sÖJIÌÌÖÙ]ý4y})¢UåÖÜ,޳‘æºR‘WRh×\.ç‡+©†g§9ì¨ë¤“WÌ5ܤœëyÏ«O7^Ëu£Øqš.žULØ R(Tg;OkŠV¶Æ±Ž^ãú·š|ô†J›&2<õ™ÖúòïFæ²I–Û&zBÑR›mÊeÜÐÉ!“-wFâÙܦx™éU,ÕÈÔ}¶@£6TÎI³c¼|ôù½ŽÛ]˜Eâ; ã’Â'!]Á'uªÂó‰ØLެ5ÂöL˜M{m‹lN*Tt[C&m´¡y'K)[3´4¬%ÎK ®ÍÙP£î޽ÍÙ•Äb¡0è%®G‰2Rk.’TJÛgXtÄvG³Ô ˜­ˆB8U¡L9ζ$–tJQ’AC5JŠJ̼#¢LíOH¹3³ªç‡FÒ2mU\` f·–‡¡Ä)–Q5²¨¢­MZÔëTá^œ÷j2YÄ›².Öæ‹mšÅvu.hº+PÖ|Ÿ9ûïõcÊöõ&A– ‰f½~:â[e&(×rknײ2ki:IS±=vL›lJóFˆ,ʹ3œ’о|¨x’|¨,9jEj\°D¡"dÏ)'O vÛg9 ¥È¡tEU²ñµÔ¥2{lʾ]=“8£<²K]›`œ(inØ­d¹ÈH«ciáI5mlA\$\+‚^C ¡Ú¬”€½*)´¤­Šî’M0¶ƒh^2šìʬdm——¬•®éÕÒªë2Èg¦‘ï´‹}dm­±vÎê±®ŒKÚÃFéXEáG·U;Fd¹‘Ô\î^^™'‹ŽÜÙêÙÕE;žq;R«Ý&Iá™\†y{¥ú÷¯RærÈ.Ÿz7z×F¨×1W0à 0޾L¦SÖìË£js•ëgE=í‡yéʱ_6Of쎗<íŽÎS[@êUm]--·OQ{cËècŒÙT}q½ï;0óÞ®«²I2d´I–aBZœî˜E’åaÍ.§v“:Æ­¥R–v [‡©2¦WW¼[*)W ªpš$6V ¥€J#?v™7;Ž‹Ò¤ql&£¥9QC9ýæÿŒ‘ûU¥¾Ê‚J@D¿°¸ÚÊMÜŽys„^$2¦r#Ä–Ë»a%)³²:U쉆EŸñìøðJÌ»ieMµj„—¥ëHè^«—ŒÎUr(½v.дcÊp¤ÍεÏXEÙPž´Lñµ™ ¶[Ïlê¤Y¡³›ñmlB*ºîÚ^H¦Ñ9í¥åÕN\¸• …Çt+XýÓÈj/FNhÙ¹Ó‹!)£;&vkiuË žÜ¯c]“­d„R6ì虫Ɍ¾¬½²®+Ÿo;Õ/Ybç}§…©ô$ê‚æAEÈT/W´Ù°ŽÜHG´‰$"Ãm Q>ñü ÷v} y 4º)•8\ò܈¡oëãØ}³§¶bvµX˺Ӷt<“OB å{&AëÓ?o<ê9©™ái³ ;\«Šë­ƒT‘ºSN6C:µ™ˆG’ë.ÏXÌ Ü+'**²VÌ&¡ØAIhÏwF$Ëm%a°¹Ä[l;“›ÅkFÂë,ÚŽêÂIÎ÷­äÓ'•ÇZ—ã€äÞvjfv‘EøSÔˆ©#`EG¿ÕÄœþçãéøH ’© ”LŽ…žÐíih´.W³Üåiˆ‘sM˜Dº¸ó½í“&f?¡þ'ï|—×6!Q@Dê»”Q{õ•1å6ÊÈõ©‚HT+¶Ç/øbH÷(qYýðûAºÔyº¶?fàUW*…!P¼K!¢‰ °Þ”×2"!8uºÃˆÎpÈÎÛjéÃ’IMLA,‘¶º*GYRLÕÙm±sO$öѹ^2NŒ×k\¨ºž•SE¡š¤SšåÖÂÜ¿ä}½‘]§—[(¼¸Ðˆ¦L‘)~Žšnò4(A/s·ÎˆTõm]4ãú~ûy~4þK_H—±…ÿ]&jö5 ,âŽZ—a­kZFÆÝ—³lZ¬ˆã)“&{fžr•Ö3÷‘€`ŸfÇšæújk!7‚Ž '•‚Èq¶br<‹¡åh§6Ii¦ÉµÎe,í0æÔóÆëFœTcFšæÛûïh¼öuEJ¼B%ïoyª[ÆÏe\Û³vå5±,êYÎ=ã#¯#CråÝœYžŒ/k`ưØ6"¬k”jGx§•ô»C£&4lЛ§N-…?¶Ý§Õ‡ÆUrh'#a30êÖÆ¢E–¸ÊÆn3´ãXh±g;¾¼JdÍÉnƨ™“*šÍaáÝš„Ñ*›tm J=SÆÆ¶U!L"ay£ÜQ‰iè›axËÈÄ.ÖÅœ‘¢švMº91Œ¦Â=©giL­kwka¡ÔÃä7Þ>Þx±]²ê†ëW(žÑ%®Ól·jCI“)ž#+&«ŒÔn,a£ ]Î5“Éï{iÄeDh6Ø#HÉM«7±ºL¸DÒ×½ŸL¢‹ÞlÝD Ša…W‘]R㱑Éb¨5±4½6.y6iuªØÈÊÌÉ’mªŒ•`¦Ûvs&rѢʻdDQâ¥E µ9dÛWKÉ%@·%¬öEÔêíXmuœ6¶´ä¡ØTzÌBÝk=›Ïd±4SJÚQ ^ÙJ³7".EÓ³ Â+„²×cI/gn¶±€ÂË`ªR ±èÇV>ÏYc1²1¬#Êò¨ê›°“­…¬¦zÞן H¹˜œâžíÝc £atkO6ƆÂç×: 1‡‡.K³±Ùì‹•,îЬT’²Ý]‚Â$n«- K›Ê0ÚÚØÌáÅ^ñz¯:žKÒ"YüžôÞqŒ=–F¢ÖÒÌšp‹Z3‡-´% #µ£iÝuΤìãXÒ}¬‹ •ì•#‡§MnãbÊœOs®ÉzîNC­!äÕ`<òr¦“q¶g!\…hȡܡȳv œ‘ 2T(2Èr€¦•ridRƒd¥]…vÉGa(¥È(Éd6ÛÌšœª 4ô:Õƒm«š!Cc6Ô¢ÙëhÆ3.¡fÆkd.Õ²¹F6ÅUvä'.º{b6‰3ÌîŒBõmµ­™J‹uÆØu’E®”kl‘®Æ6V³¸]s¬ ±ZЦÖÓ‹©•+Ó·“Ý›—¬ìZáˆPÜ÷)œ«¥Æ6<¤Í Aiž³íÑuÇò\‘î–/ñ{Ç›¥ƒÆÎ®ÿ‚Ž8×ͽîÍõ‰€Ùá~§ÏðÇñŸèýܾŸ ¾—‡ÆNNµÎ®wy“'æYxùÕí_ó‘Î}¿%kŽãÇR?Ï3çz!rǯʂ;ªï{å½ê»ÍíïˆÞõ¡ž|!Éœs)Tf ]©´º#`t°ý·µ±31Yƒ†N‘‘ TÁÉÏ*VHi¢Åœº)r™¥¦‰•a´Èá–%$Yà ’Ú­pé¢sA…kiVÔå\Œ’¢Š –H©˜T††³B<ˆ‰Éüˆ…ž‰ö0f<î¹Ðp84rç3ºÌgi™Sm2ƒýIÇ$æ"’R…FI"VØÛý[yâaUf¢‰™W˜õÞŽE<£ˆI4áZ‰Qj* B’E˜yUTS­ ±ÈåaI(9BB¬Ïg¤¢ìêÙ…m¦æ)âdâ}KÒ60³P¹-j^åÇy´(«$$>B¶'5. Rq!ê󼪂öwžxO9™UÚèLÞŒö(•$^|ØIÔ)É¡C&ÉÒ(I 9LŽPDoëñ(îdñÒ•n¤W4*+¹Å0y'F¡ÑZdÊ…]$+½hG.Dw¨ÎI&ÊQ(,ä&mVAUœR¢Z>¾Xáð¬ÔŠ£V¢©ÊȰµ"ˆ‰DÕ’ U+Pª?9ÅK¨3ß­¢!Ed‘Z‘+I8†@YF{¹tŠ»C´&‡¨áW5e˨*ªªUI¨e–Rs„Už26Ê ‚ØÆy¨zHz=eyîIœÓ #U9Ê™‡YΣ—­o·ëù>wëß^Oª$VM"LBÌ*¢&AQÔ9×ß¶çtHé‘Er¹š¨bmÌL— ˜rl‹))¨Ìp¥sš#D†B•ÎW7S¢U‰œ¿‹sÀ åB &s»ºG.26ʯG<Ì®*PA\ª¦j4P-mg9Òe5S9Us&:ìtÌ1tÅÉ0TmŒVú­ã^"Á2A™$ºwŽŠñcsÜå Í㲆)9¥ŠQfEÊTˆ(RÊP¨ˆŠÙM ¡2‰¼’ˆä©$ß§õ}ÿ‡ù~¿oº}Ⲍå Gwû;¡áÔTJ¹ArÖUYÄ“¡DÁiƒ¿º^QT}@¶a ÓÚäO;]Îtäh2™¸ç´J"·õÖI¤ša…RQ Ø·VºÌ=A+ N[“äHy‡)ûÚWsÄÄ¥"ˆ£ËÕMz·É9®šzèJ•jQ)Œ‘Š*È$Õh’[2âF#»•ÁÌV’)3†€EuP‰Y¸¹(*É:™\4îÖå’5Ã\®F΋·wD\¹tà˜ rçS”Ï !áã"ðéûa4½ÑE XU!$&E!µT(¤Ô¢®*Ùa{¢T]epîµ\+ "•‰Í¬Ö3Bú×U ¥‘bœÄ1eŠ&óÆ]¹èPì©Ö,RÒõ×1ŒbŽjéÊ6J1œNˆöë÷üþûöç¿cÔ®Ekìó#±´ŠÓK’#§¡d™UÓ’¹Æ¹t‚"Lša¨´èºº2,nnvn[›ùP¯MÉÛ#Õ8ÒÖ,å²á)–iJDÌæc=G6–Ó„…P¨˜ZYVa‰U kN©bJ‘k®EY”™AMîb‡Mjãšz¡¨“–Eu‡Hª›À äºbx£lç®Iê„d™R‚"”þq#¼’¦ÛÈ´®BòE6Q 9/ h¤]‘2EØ „üB®ÈR#±ÈG`…  P ”ê9ì*d™"ln´äÖ1S2QL kn‘Bb‚UF‚“ÝÝ —.G"(6D$„Ä®*J ‘¡L¹}Òœež|ö3®¬FQž*ºUm.†¦v’UQlÕç¸_v»32ÐÓ2ÂÕÙEZr!2W! ²JC!¥20&V*HjjDFT”hœ°®ªE B–¬»t´…ˆ.\“"¸’-¢¨.iB¸-;ºæÖdRùÊó‡Ûeꆂìã é-¤¤Qj«I+“»…9˜Õ"µ¦þÓ¿oØãäŠ殮DQ¥¨m5ebÒfˆBd]¥B¥À•eVfÔHLM$9«4¶TI$"1%¹$QËò\¾Šå½9 ²šBADgJÎ]Q;~Î%ê(Èä]¤‘CÍÒæ…R‹‰G$7÷NGÍ:‚ý­¹Êäz„¤™%Ó9IÒ-“B*uLj‹–”RT³šjR†¨Fh\0Â%C B,…#BCD© •µ •ˆdUQP(É—±E*²QvxΘDaK˜XÍš"fOi†‰î¨Qi™¨´“´åX@3„A&b‰ 8]Ér#¨‘d“J䢬KXö…žIQ3Ò¢žNÉ¿¾Æš"˜Ø2ÙÈ9)ÈÒ˜Ž—‹F±ã››Ç‹› A;Žîw¹¹…]Ì"îa$Ú Æ«%nîÛ’08r‚Ñݼœ&’ØÅÇ2bÜ?UÆ+¤†uÕÝ:.HŠ4Îî'"«!9$!ª%' šŒ¯ëiSã¬ç>jXs #MëS’ˆ’WJ©3"ˆ*¹EZ-N³9¬Ž¦‡.¬È–™dÒˆÔ¢©E…+§ý8 Ð’š-r¢ÕçºÎEÉT‚ZQrg9…¢jIÍA ­Ñ,‰ Y.uü¯]Š«¢sèÓ¼îè]³$÷¹½OQäáè¶’@º'n£YNaEÂÝvæG˜›ÞîT$®‡¿oÇö_Öü{Í»~'_KÍHüLýB¡Eóö5<ÿ2¸Ô‘ŸÖæQãªê3Èǰ ÁÁÁ"ÈD‘"?§P.š´Â.š!b[iYR¦b¥$"+Z¬¸V¶%“Y'L‚æ…4éd""„…GžI$giÂÔ,¶eWeªv$ RX”÷['TÒÅ8ÈìÝ÷y$òÚê\"±‚ E#€B@¤ FÐEÀ ŽÐ®Fíݹ˔P$L5[T(ägN„¾Ö;¥THþw°H’C[.Ò*çõ·uI9QgTÐTNÒ+S‘XI%t‚ŠHiÍ TXTa EŸ} ¾Ú{õ¹ë(ÿ9ß}Ý þÎ[_^ ³¸Ò=r„“9U<>o<ˆâóÁSÓ<»ùùïŠZçc•¹ÎyÖ|{Ø€ôǘ ”©³ë1iE¢z Y’tžy˜, d»A¦3Z•$lÒÉšÍ.2Ï“©õ˜‰2ÁMÀócÊ®sšŒò£šæ=q¬èj†±']ÞóyC)Ÿ9޳šŽ4ÔõÂ=æyËÐ:Õ$¡š>Oô¸>¨¡¤¢\‹ßšê…Þñ¤ŒE·–ŽHz*í}ŸÕ!JøËˆ|VõQ‡ìß5 ±OS5’(rx8»ž}½æFsŠçŽ«Zßým¥²,Ê¿'׋V-‚_Q˜fuÓGúùÀ®5Â>{âi±Â¨ç¬½Lä%e{Œ™&y†i%uÄG\(¾,Ù“Ë|ãOIG^×Y˜wžut¹#cœ¢÷·Ôb™ÕÈš<}ÕÔí+×Þù:ᎳÐØ;ªšÕ‹àó¥»ÛÖú(ý«ëÖ©ínÏ1x´»ÎžDÁß¹QÖÞÆ|v´pŽu>¹›Ýš‘"¼@öLM•xvl~/¿oô&ÅMáÒ™kŒÿ—QÖ\¡:ô»”'¹¹„'I¥Ø¬k7Z3Ë3Û™Ù!sd‘5ÖW8u*èDÊ&I´jTN ر(Ùþ!/ÞŠ5¹ÃÙ ‘“;¡7;¤¤ÂÄåÒê]5Êg¿Óèóè¶DD—¿‡êâ’‘UjDG¥eQŠ/¶vœlÿŸdçÐÞ]ʹí,¸¿‘Úªi,’ºåæ²k.4ðÙ±:­aJ¤`Òµ1í#Ú™è'Z£©£iäÌT74òëwV 9L¯EBÓÒY,ŒÔJI?9z3²ÙËÖÙ[;Œ¹Y{d‘’ÔêYìá™mÅ¡'[¢œÜŒÝ®Ñ =—+‹¶ë 5¦Ã³§$Žl¼Æ…Ï|äH,!’šd‚ íJÏÐé&q³0 ¾Ë‰,ÓPCòT®­F·qù®§Y”…;ÔäGífг)+YýGïA ìbxÖ»c1¦¹%jn”1¦È—‘ X¶ª¢V(«ÈçÍâFUqâ*;"ðïç^¥ThövÔ-¿l™«ÈáÙ¼Šme“iˆÏ {ϱœÙ²t«iü·›Š4 І‰a¿ÛM§«ëO$¢/hšæKe4çpæÍTÑ‘,1°í”Ô{Ð;Å‘Z4P„ow8E—…Ï=¤ºÊ¤®ÛR%lHŠ9t"(eë;'õÒùh#h´Ó!´I ¾¾CÂ*B@Içí¡F/pŒƒ3£UéϽBžï=…/öbÛvAĹ?Çï[C Î+¶#3(ßãÆ÷©“&q]=œˆÌ*ãdÛ6Á³tòª'®ò8IRéÏZ”^™É=—Î]ábÈ´¥‡"Á÷ŸÌú@!ëbZT®ªÅ­—r×dD”’ꇗ)N—§[¼*9ÂZ¬$b@ÈSÔvs={e|ʈlP€ I`¶ d²Òmgzºùø«óû<®}u±1Ë×êT/œ¿¹ —çÝÝ~ÈŽ5¨âØv ¼ú¯#sBcóŽ¿q"̃oÍGQÑ-÷é¥ÔA¾l‡+gøô€‘“¬˜O6L7œÑÌó2óš¿F¢·tüû¯+zÙkŸ8UÈ=yÏ[_Ä£Ñëd¯DÙMô8äkP73•vn¦£õ+:Ö²‚Ê;Èì™Î¼Öº®GÏ^ÝsyùQ±^rý31¿{¸Íz[èÇN¬ñž“›ÞþkÑŽl—q™7§vD>£M³ÊìùsJ+Q1ò6ýPõ6Ær{ÌŒj½RóVO`Žî¤ÙG§Eˆ¾’,ËZîDÊøb v ‘as1¹÷b`f˜ç>‡ cféC’g«4j³]]z¥#:g¡ÃÅoÖ¤žík!\ó„êšø­­Ÿ5=m«ÝŠÛÔ«®r½œù³c+îãÎ~_u]r#™}ÇÌ…ÞtbÒ`•ÛÂb$V¹bë^ãÖQÖr3×s÷WÝpöC-L»ëCž#¡óŠ<äf¼í/•yœˆ« –È3ç~ÞA̾*GÆ* åIâyâ½N¾êyÕ¾&÷خΖ£ë˜Çg"³!qî¶M翃­ŸSFÄM@Ž­Äq¶äåêçeìq¡Ó{ên—+žão]VGnéLgª¸­Ðë|ç„õ®) ßnO]éØ;=k„lð7¡¬>ÿ"½ü«wÍ‹ÕĹémÏ­ qÁàq¸¹ýmë>›Û‹ÎÃãún{ïr7ÉŽ".Αª‘¾¿Y¼]Æö:3¶¹|äEP>W#Šú³Þï^·}yaÄ_ ®ds÷«ÎVêŒjãv&ÍM*÷Y¿š¯Kó\ÚÏÑÞ¡žhn«²ÇšÞö}¶f^vó¥ágc“F S,Ùû¾4·bõ£höA§¬ŒÇr·‘Îd›H);rʇOš¶wz?u»juÁP–FoSóqº•gí½]Óy¦kƒÖˆ|¦ÙíÖ„ê:ÞóŠI_'y+TE¼¨ûÊ­æã2S€b{2ú¸ Á†þiЙ«>ËívGƒÊï(>/—§€–`ežeDGzW­å_ï~Z4殎½wœ‰Ã\F·•3ŵÄqSÓ÷Y¾}å.ggœb—Ñ‚¢=ŵ+›>£CÜì^¶wÇ;%? ²¹ ðC}™øU’O¾i޵«g­S“ÏÄ8Òz6DA,ƒÀÑ[Ë ß§1q¡Ž¡õk昂4Ñ9[?NUÓ¥«nÃâX\Ôˆéh$0‰ˆqË×,mQ|ß©04 ±«eß ¡ßŽá-l¸I¯[šž©‘ž¥j]ù]Mæ^¾óÆÿWËܪ—Ó{¬/\ûjohs™yDg/²5WFuÌ™BÇi¹yf kP÷\.l qoƒd‚:„-$hBäè× $ ’p ÊX4n“Œ˜‚±{B«„ª1DrF$²*½1Ž8 ‘EûWªb¹C'•e™bw=øÏ‰:‚Œ»¨y:{cíßz8ü"¹ H ³ÁNߪüÕV»ÞˆŠ­j¦`øÈTÔöðÉ5—› Ýd2ˆnLŠŽæhu›6"t8Êš‘¬é51Cò°,®Pøja¢ó¸‡™¨æ½‰~g¯ÍU ÄñË·×ÒDêG~´%ke{­Nö&u•áÕ쥑ÄÍîx#× yUÎa_vÎ’¡šŒÂ¢&ùS܉rŒ9P/Pf(ppP¬Äá&È í}5â÷\{Žœ_ÏuÕ/*ÅßF…z·&Iî/!QÜ·†N/c=ðkS¤s)ˆ=Bž8È©¼¿Yæ;)6t±ÀæZ ¤ðtH$îcy3MKöªxjôwŸj/Âò‘Vîú~ˆåÆõÕŒ­äÑ\˜<+ËósïQwD¡î8y}z\ ÕO5£ ÅŸ=yuäð3ß>½g˜”ýB×®$tz¾©Rݵ5GNeîÔ\o^®§UQˆÉÖ￱~uT#]5Û§¾ßyé7EÖTÄÑÞy‹¹ï9ë/žfw‘=sŸ¾øëŽvy5©vØÔgq©½œöG*ë™s—'a×®¾ò+BFˆl.V»öÝ”7©¢vûï@Õ‹í=ç;™×(Õl$¾N¹Z›âŸ>ndŽà®øöù'®üó‹– ;õ3¸ ÍW/Ù\ûÞòŠ8â#Áù×=ó>ë®~qS;ÜUw뺭O+UëTk5h9" ò»T:wÎVçôo‰˜í¨ïk¯ÎuoŽvêÔA÷/¡ ]G»cßÅ¢¶Þø‘s ƒ˜åsy›WÆä(×S>ºäÄt_\ÀD(|D;$u0n2˜á¤Ç|Ï:âÖĘÉÝ)ϼ÷©üÒÝ žûËç<³`9êESKdœíÕgLß±]ÍáÉÏp9Í7ºèÉç×ê¯óκÐß1Ï‘[˜²Ïh5ÙÇ0¢˜p6DŠ8Ô׸àñúW™/‘Ê Ÿ©ò…ޏˆõ©³?ž)ö†ˆ„ó:­Rž:·Æ?®½ðàç+ÄÒ™k/•¸<¬—\0wðçpžŽx'¤÷¾àk<áÚƒ±ú–Çr¨ð<Üç´¯¾xq’ ÛÕ™6Yz©éÞxÍk+Ô›ªâ¿twC¬òwY˜â+›¬›VyâGGýßøç©9¾:Un &]r¨°Ä AùÌO5·;C|pik#F3)|1sî.Ò8Š#$oœñQ:*ùR©/'=îù½]9‰æãÚ:çq÷Rw´g.­Ö+žªêÆdY­è‘õR²ùº‘6®ÕW»š¥FòÞJ3› ƒ’DKM#¥šeIÌÜç8Y4ïß/R¹¸Sáhã^óί[Èâ71É¥ëy‘=Kã\a—ÔZÝçhsœë%I^¸#­^dÈmÊϘæÀ†&Ϙ,ë+|7ôè#®} òwÌ#¨¦ÙÃÝŸYÍr}z×\eó®}/dF8éeܯ×-Ü[@¯¼ÆŠšêbŽz=ë{‘52»8…h~pÙ^]V(‘Fã†ÎO/.\ó¿wq©Fó>Úàï½ä¯ÁÆjn ýû®÷á°f³­š¥“lT¤Zðjt]ǑЌ×4«ô©£ ±d§öùöm¸Ëbæ8”v@†<>Èk‰ãžùU ¾ B¾ù››#Îc<ÝÈDPæ”  uPÎnyïZ«ñ{<òe&}˜ˆzÌ󵪬úÞ¼•yIùÇ;ʉâV yˆ á¾³0F@d.›®‚“¢œ†"ý–áz´"'­Ç¹˜0u¤üŠŠÖ ‹OT¼Ï®”Ú¡ÆÛÚwP©ÔLSÔ\K—ë¬í×£žóÛQ’Ù2Ïó¯Žá('|ÅÅ:°Ÿ L3ð‰r¦³R³Q> ‘2Ðæ2íjÑ…I˜R™ñÄ.ˆfF»­î…m3ˆá(3Ú瘭Ç=žÏØMKh"°Ri¦‰JäS:™¢N–•盩j5v5™Ú“¿Ñàƒ{6é]C-„‚ØRꇙÉd•¤»"“Ä™ALÀ¨â¶Œ*,]K4 ýÝçÊ4HÈЭbp˶TÍpólU‹h ¶óeäFµKB„Ž•®’Iæ|›2$›c9öÛ™¥fÉk&›vÓÉh7:ˆ7!Ý¢µ„.Ì+O æ&emlb¶ˆxQÕÊŽÆÅFra…^hŽÐ[l™. ¯-KZT¶+*dÉ–d] I­®W<Í%P‰n0¡’ª”#¢ªP%4´fe^<ùøï¿3 ¬Ê+wLÍÐXyjèT„¥¤Âë¶«8Ù›;OXØÁT+Tô«Ê¼-› ó<ÔÚWC‰%DzB¡æHI Úæ°è‡;Bfa™½çÙÎ=2ÉÍθ©«m©3Û3”jµ«rÎ:ØBdlƶíÙ‰ &i¸ROXÕO²£ËO *j5Ò6hÓ¿1LJºd8Yá*B”Pä´ÐD99D$† ¤0J8"“(Œ ¯oÕFoãà¸ÇWѬÍT${©½¯±éšØyA>$0 5¤GÉ&J¹ :G¬QwDºÚE wC¥,¶1•{@½ÏDN)T^ É>¸ÚŸ ¥ØRfWU $„5°4Wïùý¾Nß(RvªT$Ãõs €Jr¥½óߣ۞¿ŸÉ:‰hÙƒ+Æ ^ç³r•ÝÜPKü@p¸EÙú÷i*-.eGmŠ3gª0î]“"«ˆ…•¡KJ‰Ú…ŽRšH\²¶¢Ì6›u-1"µÝdr é,åÃD‚ ‹K]d¦Kg°Y%t0¢±T¹FÌšujvFÍ¢Òš‹G·m07 ™%ŒØÝ¦H¨g¤y쓘C:ˆÍÊtö¥jGb ðò4ݵҎ‹Œ•²ÐlDQK»ŽEn.A´u˜ŒæW=Ù^ãD)\ÞMÎQä?´w>›Îz†e+bLJ“§r‘6™×SÕ0(ŒèØ{! ¢ØÖÙžWFîg¤YÖAE•Ðð–Uå5WD7/e+“m¶¹pç¥W±¶E&ÃjMÇOWK¤!]9¥„Y¥‘©-ì=–ˆ®ÎLP¤ÉE’MtO"O\ÃF4¯%\‰—8tP³Ë;]ˆ†žf¥¤•ˆ[gWQ\¤+Y밨黱š+ªgn%AÑjW•U#*Ó›,Ûcµ ‘R‚¶”–ɵÛ]“j^Ò)õh`n¸Ñ‹k-”QbA (ªO^¸1ŒÜ§U"V°‚¬#BfMÑ«„‡ jÔ›Q«C£$9³EÛ[,™…Gm8Ûµm[±®Ê+ÛIFV‡B’I.n&P‡’®öÚ¥×X°*èäDlÖÚW‰–evÓ—…-]EvV5Jaqeq­L@‹#4BÍ5œ˜Å"¢ÎÝ-RZ%DK»)ý]Ï5wë7}õZŒ¿¼k{‘Ç)dLÔ:„+TñÁßœ<‚ I`œz_73òÉG£%ç·ŽÈä¢/¤Ñ†Žm~(pqgp‡ÚTc:„ãðŠë­Fsïk³G›¬ÓÈÊŽ7O²4p=wê¢É’!ê1>t­íª Åñ AÙ׈ëq©›Lƒ ƒ‚ølŽ[xß?¢ñÁ×gNw×+dzõ¬uÒŽÆÒ]N„Ç1©Ö]¢/=nj֢g©ãéÆ ÀDa0N D 9F?¥·"¤ìaC2ÕYVi¸”RRP;À‹-.?fê2¨¸ €| bNTfJkKºÃIXþ²C!;páE1Q·›Ç8xM^+…â®F¢ñ¹ h ²ª !À›l|æ;!yÛG¤S²vç4ů Q™¥!È‹œ§!;ɼ—ãÝlcáom=®ŠŒ‘Ëp“$Øvvtý=}{õ½üÕ=D¢×Õt6·"wt­Ë^yÚnd9(”>;üjœ$¢‡±ŒŠ( §¸vÒM‹,2ªLÌ]‰×(­jŽksQQ§w5 j¯[kZ*µn¬jŵ¬mj URX´bŒ·<ó‰ ÅF*ég\E¼v#¼q.årJ]œ'w\ŒE„+¦ªrªL’3 [`iØÃ0ÍÊÈ2P2d6“KUçq±m¶@J-¹´RÛŠE4iP¦Ê8'† $€Ë$ãªåj~{~K÷¦0ºñ³Ï’Ž~RÙ·i×B¨Ji¼œ"ØÓPÃ\+|ýуŸ·¯Ú§«'«Œß^ùÞñððA$‚pnv$Ñ“(ªŠ5Ð`d©¶ã.ÖpÍå&“K £ÌÝZ}þm{æ~$سZ¥ÿFÉþ¥ò^%w¶Ò£™åNUd7jzF¥E¨æyÛnËÏcRQ¦s´s'' KRÔLÈáÐë)ÀI` (¢ˆD [lqÙRµ½ç$Ù ôWrë$ÚuÓE,èrå‹% …hy¡b'«ÚÊÒM‹64dÚv¶ROè\-”PD´^°•è°-V¤^ÑiµB5:3Xt ÛQ#l9kv8„ %¢Šl„QDÎ(ì ½¯Ñäw×3ÅfCbW;"PÁ u ƒ„0ÛÇçÝw±o"þô2ù—•Ë¿˜ÅVP¢ó¶ë÷ý|×™ÒžŒïMÛ*ŒZŸ‡›í °. TæfI€WÛÌcŠB æãh~žDúçˆâq[ÕÔ~Ÿ*c™d‘J#FµÂhk¼‡àA'’áL„¨6™ɜ•«/1ewç‹J@êþÙÿ÷üû¾ïËw˜‡S÷º„ëïÞ•õÖ;=á†I™˜`áà‚G0Þ:ñ :H…›ˆ\uÎfg”>ïOÖ}[3SVAï6FWý{¡¬óÈf¤ï‰½ê÷Þ‘ÏC†µ¸y04DBµ Ž®g¯Â毞²5Üù3zÚ±Ÿ&rdÞÒÏß=G?5¼ôN7Èë^¹ã¼ØÑ“¨Ë“¶"±b/i•º®ÜïX$é°½j]sBùq|×F¡šzm'e¤ÙÑõúEÍeb3b¶ÂèȲ,ïó>Ñ*ʧ¸áw4B¹$&¢Rs²¹ŠÜºmrÛ¦Åyݼ[;®ˆ"çEcNYÐl›&Èä#„(5° 5Ù…ÈQÛ0¡²êΗv6“h¤·n$-ɵ8Ðë»(ñ­‹AÍH<òçŒæ©Že«û/J *"{ zµmr¸®T£®ZnÛ`RPÏ$0’ým(/–,нVsÎ…,À¨’·2“(ƒe¡vi*—'’pñÈs—¿Ç¿h…*Iذ±£b›˜vÏ=›¤œõ©RAª™-ºqÃ?Ó[ŸD¹ž*R¡P¹!Û5¹±fØ xËVÅ’§éÙI•G4sw'æs­.K—9.WäÞ›^ +ÓcrˆØ*óΪ*¼Ž_¯—ãùûzž¿·Çßõµö6™DX±E¬o±Ve•Õ»™’죻»’9&Èé °_©¤)°VI‰T$ ¦„B@õÏŒ‘P³šG$š‚ Rç$*vЦѩ5„“³Ä%U&Jºì1-Æ®t¡6ØÜŠ//tär+œ£=زõ¤hR@zEÎfCÞ=åD^rZ$ä{96€ÏvWä:Ðgl N±F“²àMF¡y@y398ÈÙ&nâ䲨‚`Ê—'õxõ×Ä=ú­¸~Š0…¢¸c>bÑ•r!_'÷P7U›ÇÛÙ¯Ëc6È?­ràTdñ]ØïÁÅï¥>·íÓæúÎWeÃʽsúâ·–xO$zIÁá^¤gC0ýy¶ru¥½Ø1ó™©úz} Qýír~V´;ÖFB)*»St6$~¤o5¯¼-«À=Æ}UÒ³Ðõ>̈±#–óâwÞ`G"tó=mq¨œç®£“½ç‰~"s |á|­Dx³¾÷c.¹¨ÕWeŽbæó5·Oçܼ‹¨Ž¶¾o½ &ÕÂÐÖº¬çÞ·«Á¬úß©¡wBQÆ+îW+ê–& ³N´<ö÷uueÞ©ƒ[ÜÊçÛš«ö}óBcŒÃ]–4°yR6¶{çÏQ£.Оß»¹5£î{3Ÿ¹u¿5’Ø‚Ê\‡ðÀûuæzµ?Çq©Eò¿2÷_Wsªdy½"üÊyê n#u>¯O×Ý(á‚ò‹½u#ƒ3TÌ×N=Í–2Ôžû¼æëŒË·ò‡|qùïY›UËr!®ï–s=iI2TL\c@³AyiÏ43(ßÈ‚OK/MÏMIù+çLóNX> ´ÔmŒ|5•\¡dÞf'›»‘DK†É!Òf=Kf‰±$IFA»R¸õrZœË‚ R¨Iˆ©ãj,ü5h¸šÅ|0K—sòõš”@ù„Q6»ß5èŽHÏwøŸ $IÇ$Kå÷zc³ìBý "Ððô\!¢=Ò­S¶ƒ'æ:Œë›Þ=þÝkÞ`dœ“ŸX§Dõ'P_§ß÷ë2NäØï™°r— ÉûIÔQêùŸŸ­ó}¬y€¡>|@AŸWœvD(ÁD20Žœap¤—”ÑñÆG~ÒŸhîûÏÑ™ø‡c`î=|ãíQÜNGæpº÷Äê¥äø³¬2ngQ¤úŽI±êM>|ùßiËïwÇâÙkÚõ.Ù?>ø>ÖÈP››ÚØ|IIâ?Yî=KÔ¥=BlÅæÈ9a£{ÄåFæÛžx?>±=àêO£Œ#£> =8ÀƒÑÃ4G>Ð<ýû¶„ù·ß>˜µ×;ãkk]O:®ç¨×GKLñÆçrŸY3š?aê:*ŽGÊS§3§ìîõžµúž½G®¹îã|©¨Ýú±îÞx¤ý!€0þæ1‡Cô‚ž¼æ9¤'•ü{üõz?Ç —dþšÅ|ÓfZ‘káÝ/â?¸°Æ} -ûþ8Ðâs¯'ºðqœæ#" }­÷S®ÇÕømðÅ+”j66 F„¶+EŒEE¢Š1²D I‹6¤H‘±bÐThØM$c’¨¡”bÉf)F¢ Ñ ´•>;p×蛑$I‰DÔ‰¬Q’“'§#" `ØŒQILÉ(’£üÍ\£! X”†J(¢(™J* ˆˆ‚Äš ˆÅ$&“a!M Ó@¥$&*‹a# J3d´l€‚Z,c$¤…E%€¦` "CI±bL†ÄTûï±óôžzõóïñóçÃLJÏ„×1 …áÆsâÙóU=-Ç;ë‹£èåws+çì¥öøÉó‘ÎTÆóH òÜž{”Nb|Ï›7–Üi‰kvéÜ7Œ·sí©Óâ Cçw¾¬Dtð+ƒ?TÚ "IÚææ#6~xèƒzÜ4‡ò࿦MÀ—zªÔ Ï7õoz…¦Ô­ëuÚ˜*üõû›¹¾zž^ùŠrú„×é¢|)ºYí8=ÒÅXê(+Ür^óÎÐ_£³™ÿžÀÆ.>‘ìklëˆ6ƒË+÷Rë>sŸ1æ¹ç\wœžI<,޾/zŸ\Ð$ ×H*Q\ñ)Ìs=Væ0. ‡Go…§œÕW*¢ÎüΣ~qóZÜo?¿âE éûB @à÷ÌïŠ÷=æ]þœf—¥ìs7ìätEü.FΜoÌN'ç79ÕäIù*ŒÜÅfÄš¨±Ævs!äzÞVËâVJ¢éYVŽÒ3ï…7<-0™ËÛ΢¹¾`r@¿4ç…Á‹‘#‹â<'U01ѨœËó„N­OÏ‘£ÁÞ“ÖKÑÖü›Ò£êœ©Þ˜ë>Þ5TÆ»6j)¶Ï;[îFt 0`èçJ¥+²³9­›U‹ äÂZî-ÎTVŒe ÞŒŽÐ¢9:÷‘ÈÈQ¦o¼ã„ÌM˘äöDe ð°ß¦' ŽlûõÊ:á)pò‘ ŽøÓTîj':Ý’M,|4pÈ œaB8|kº‡71<•ÈrSïæ<ßÂ$r—¿Iƒ¢œwÓ¨4p\öà“)‚ðz(•áà eñ´9Õ  ”Ðä³ ˆb1dL ?†¤²0(ó+p8g£é²¸B ­€N$/Æ,‰#&*3>êc¶n¦(ãFuN®¡sí RY4Ò?5ñxÖtÏ=çÊY?9ÑgcƒîÔŠZuПUò°ß·§z@"8×LèŒ`ˆfl¾ –#8µ6£>ät}›(‘á¨ßûì`` cÿô `LsÃ^£%þóáç2^±NðÑõúS9æ[9ú³Ä´Fk.‡mVä3žëqÞãíîuw˜h¥ŽŽ;yg{»8¸þ+Ã~qxêïSí-fdŠ*G·6•íTAGš_ÒýFÜ|§ëcƒ•äÄø–f\%Ô_?Ä ‹¬‡¹ŽO À6ˆpðfŒ:³;œ÷·yž ¼NÑÝÐS"½S?Æb¨1*6™·ë­rMäÓ,Á`³:Gž¸’:¤Ñд‹ÎxÒ‘F)ê$E)úãÈü[fûXL凥p! ³‡ü®,ݨÀ²Œ±yBއWé繸ç#³ë¼ïƒÖ¾5±Ãïqáæ(߲ꥅQ0v{çÕîAÑ9\e:ökÅ…ø±§»;ª†‚éTBÖ¸š‘çó«±éf W+„uî|ãßÄôË$¥ÕÅÅebÁÄ‚3ø—]¼~<“+Oeá÷ÄQnÁî†L}[ÚñeÏ(,ô·±¿;wç×½¯·¢ôp|ßZu™õåF€™¦x–ãˆöûõÇ$s#‚=( ‘¯ÁÏ}÷Wåçs‹œ!WóÝf­{yÎ…0ý—NMe`\ç$-l:cؘÀ©|ÃÉÀXI mÐ×ÚŒm+í¾´ÞÒöBŸéušžLö³lH^ ”H÷!‰½VbtÚ"û2X{†¶˜?”ì„y÷OyCS3bdÁäèñZ+ßÇ#ƒûßÞªhý„Å,I4QÃ%)ˆ<=nO¢$¯OéÉ­Öõ>Z祽 ˜’ôhÏ3¹em9^+7K÷^ŸDZ„"Ó-x§r̤@õâƒj>®Ž¡Qä~¥êëš™‘CÚ‹ó¨&àæ¼Òùvì²Ø~ù˜¿{ˆ*ës‚c¹•˜+¬±6€‚LÇå~R O¿ÌÌ’pN8AÏñ×W¸ÈgäâN1$þ—eÚ¤8aå²ADq©Û‚’|‘'Õ?´±'ŸÅÃhÑ‘É@ò±ËXé!úK’±“„B´àäà½H’à/f;Ôa2¶>m¸ï-€I8ƒƒë{Üãæz#mb÷Ûý‘º8ôC4@èãdAá¡ôã‚'•€,Ac¢5z\É tÂÁ8Á"Š:Êá,u(YÆ9#ÑÂË``kêäVºCðÇ~S,ÁisŸL(ôµÛÒ' -«€º?ÀàÕeÉHQÌ6ÅZ 3ÉÄœ^–»@y’…±h° G=휅ùS0˜+¢2Fáw”1ÉÉÀœ¡³íw”·ÃЭåÑ2A42›¤€ÈÔmÑ ‰è¬Nž$ß‹Åh-®Òðìã ®g‚*2ÑY+²Íùës¾Ú±²4Y˜,, 20 #€O$GÇœ€@Žü|e}¿=ûx>.Êw®{œc{ÛÀV±’ \ù’£ÏŠºRFI‚ ãÔ+ }¥+°z€AHd÷2뵇¤8<‘ÑÀ‘ë/ ‘C·¨BËa|,ö{ÌãÛM–QàQ²7ÀBx†ò‘Ä6ŠŽ² ÅcœÀÉÙF;XõbÞQœ‘d ê^E#´4Ù$Ge{ ujòê;@tÐÒø™Ìq©ù¹x¿o œ5¶7s:ÏsZÞýßFM ƒå« M%ÁV„yÀšÜW6Ê·ë¬Ë‡òaôV­oŽg}("+w;|éyÇ7ñ£…|L»flPiúõuzÒø€á.äºü|Ðó·¬ÉéðÔ{>´€«BÎJWØîFop0m =o!àuégPÀ{öø"Õ¼T¨ >²ï=P$i!v/0^Øà‰!,÷ΫÍx×]úæyä ”øóÚ’"}f4E¤‚ÙÀ”8á{Ú÷ïÍN¼F!8 ÊÀ$#ƒ×ãeŒ=‘á½!èã‚ÍÔsŒœåQ¾>@ŽÞvòŒü#œ{"¸CuΠYûLÉÉÆx†9:ìC©C‚(~–<¹xìŽD‘RÖeÍ,T¬aA‘g{BLêû”3H𲘹—Áàg~8…[vFÜpc’Ôõ¬çŒoµB¼3`¥ç®ê½ú³²(?¼XÕ:ùò#Fù¥zRû`|9÷¾º3^½çЧ:îäFmŠ{Œq œQÍF}¯³[¶M>BNJÒúGg™HÙËï1\Ó„Äôœ…ßÞsÉãñ£Ô•„}œu®ØÙ= .P“³¸Cdƹ(M¬ð†O]œ—ÊÅó¶8ÊLå>rÙsÊæçˆ`É¢„ŠçAâ ZGL˜$ÕF9•KhõÌ29ú àYÀà²gt¨÷Ê’9„"%ü#£rÞk¼Á8fJPvqÙÀEJpÎ2~@ßÅ€$ãä 3ïyŒpEûXÚÀ£²9;" 8õê˜ä)í„ÂÀ…Ó÷Ú#x8ÉdĬc£„pý ¸O›ˆß+eœ Ê$ ™6}Ñ£ŽŽ(㓌židè’ü+$*Ûã+N^^6D´:”G¶Ùˆ¾yŒ:@&±Ù2<8„+•„QÀ åÀ$uÝî@¶°‹|„Héwk'Z_“R#ß1'úAög>ƒÎ/¼wÕç}èòs¿>‘Êzµ>ðw§ÚñÞmÔœ“¨ê;'HÑÙÅœ2%yUÅŠ´9 QgÑÀƲ†,’KB8Çô8G&ÿ^wù;>µÜü×»Ïl'>õø>¶3º|àöœ¸Ž©3Ü×®w\o£ïßQg9šî«¬ÖŸõïÖz&¶ýp`8>©`#àJtª3Ï›õÞÞ‡Og×ÉïŽsæ~{º\Xeš4¦ o¿ÍDp‡³£Þý¡ý;UÎhœÂ“Éà r “ŽˆƒŠ) ºL²ˆÇò8шÙDMòˆG¢ õ(`œhŠ#ך©=u®Š'|ëQ%œ¼z…ÎéÒKQŸÉTªVM¥*Xùk7ç1ïGC¹áLo/®s[ì~¶:ôo\Eæ¸Þ¹CÙ´ •ú91•Çž¢<}ξjú½óÛ]rzŒO2Ã\ÞýUz²Þ­ÇVY7WÇýÒ•Ä>dúàÈájõÄŸ¾o¾¯c×;àt˜ô‚.MuOÃA“½ÌC1=9gS¿œDlâOÔ†ùçÁÓ9<ß_9‘äÄÃi×éy( tðÉ0¤÷Ê¢ =úaƒÂZ(Á˜–D{«~o4EHî#³ŽÍX¶{^k¦'Öòç¶èœL.÷N=U¸DrGÍýª¬Ü<–ÁïíñsD3豘ÔusQˆöÙ Œ _a|ûp#¤„’ÄM'§f»Xóã}œQHò²Rñ!ÁÀ‡Ëî ƒTúƒ81 3‚ˈÒF1ÂĔ֥A“èQ–OD3ÉýŒhâ0<+œC:")"IÁd\â½,u×:Æg Ù˜[÷=¨gEerYÃß­¹$öyòº§/"çÊ‘&8l”z<¿>Ã:ðî³U‚qÁê|תtµ×+28Ì>.œù/ž×]osÔ$M ㇓6¬Š×}Î8õÝûßáå½uÊ“õCõÄw™NýsÉ;ã#·¸ˆV½ŸÔ…âëox€ó”ÄvÎTž¬Ø}žìjGfœ}ïæz›>˜óÆ(Òåä‡Õ®Áq0€ÑÖªàcC•ˆ=™3ëÇÙǹ÷˜Â1éc²<édã½BÉ}ý¸ûëçÓ?7Ð^‡¸{â°2ZðϨœ•+µ–/°ïŽèŒQÙ_^„idƼ¼¾ëbÍßQ“O†ô£S®¹y¯;}lÖþĦ¢—GƒÓ·Õu/©Ö³ÀŽyAë¨ê´*B •tw«.]˜åî{pKØ®j²“U@@ž=ÇEh­k7I 9Žèæ63Žåʃ½EèŧÝi‰Ìœ|„ ^úYÙBMN¤•\ÉYd^漌S•tOnÓåòÇ'’øàªæ_Ÿ3:š÷w~^Ÿ_+ÐvÜõv–{kâºÍ:|Dn#Öu~gJ øyçr½k_ @7(h‰ øt⺺ötEAë=w±½j³¨^¼+>.§Ÿ{O}ˆÆ9õë¥Îê“ùÇ‘ÄêçwºÚŒï{—©BmïN wÇ>F¯ž>-ð½i3æà #KnÜL®’ó‡½.kD5³%ÆízýÔ¢Wç^¢5-Iy;ƒìôÅœdùÜU¡¥¤„Ë!ÍÄÈz„ÉP J  WoÛ"÷ã³í¼}yÝö½‰¬oZˆÕåçAQ4ºz¨# sžª¿\äq#OÎê`ŸÖºíc½ñÖ„ùsÖBåI¨Ck/nµ«™ 2*o£b¦û…+žúêW‡œˆÏë—æÄtb¦¹½$vS]“^?Ñ‹U–ÍõÆû¼Þ–—ŸŽ™VEƒ…¿ý^øW¬Ú¼ðãӹ츤Âi’ê¥uÉï«×«ÇuFyy¾+“8—ÇäTMóÇÕ=|”HÜÇ~>¹C/T8â´:#‚;íGiHÐ;ô«]ž=ÄùcÆyŽ+Í®|@wHO¦`çKÑ}‘åMÌýD·–°þžæä2 cßÔôF‹ê>—F¥NNiSϽúà éuëÚó…®ÒEï»È©üï=V@²9øýúÈÕ,œ’áøAñ{>M°— ¤ábÈ'Ý8Äl!Óœ`Åz˜™g £%v{Ý<JO†;"t²Et§—1¨4¸hßž­zâºìdodAëºý@ï}Ì®–œõõÎ'ž¢/…\Ž5ûkJåknOço¼Ïo]BD#î|ÓŽu/>(Ž‘­¸†¥c]§Ú¨“ó¯29>Ͻ­é8#eñçß‘Y!ü[ÔºçåˆÅ ‹‹2F³œ¨d{>¯Mܰߣç°w¨‚ÓÊhk0~¬ù.÷˜Œ}§ÎPïéã]åÚ Lv µúéëLoQçßYƉ¯šŸ{_qçËíæC´³ÏH‹9jIHw¥»ÏØÑz´5}ç­].¹xÑé*8:B—®¹Ìpæù®4…7´ /FÈŽ5¨F½s=™ÙJ8áq ‹öó!Cî½SDî^Ž|BÁÇäLG%ymî—>åð·k™öÄ‚5úÌj^Ϲшïk|@¿zˆžÛ¢ÞÜ‘“¯jÔåé‰×´¢DÆ¥´9Œr|H|óíü’·¤}WfùX®ò¾DãA:õ¾ëV=®‰^~üÔŠXͨùMb¹fLÝ„I ¿‰Áð‚q{-;ë©‘4qÞùzŽS‹'áëà W#–VþÀv³<¼VV˜vòI@Ÿ‹¨B.‹gÞºèF¤,œQ "G;‘Œz>ι¼Æø{<<RÔ¯=ûXàñw:÷ÅñW˜•g-"/)'Ž˜œûÕ`g€ƒ9€³HŠå£’ÑÊ”yÞ±£Œar#ÞûJ{Ç!(êP÷ƒÔ­?0…Ð4¨dõ/$W è³Qí쌛¸R%LjT滕ÚФˆ×Jë‡ïÒ7³~Ôw!aŸPë™v»vÕ´Êü…ÏRƲ¹ ‘‰<ÇŸ}-Ýk‡ºŠåü­TqóMñçÝ--‚È®{Õ>9ÖäNŽðU÷æ|¼õ—è∳®’ÒëS ±Q#È\g¾M óçˆñŠóO~|çdÒäç1}>A¤¾xB~_ι±£ó›e ¤ ÂðÉÖÐ6PŒ¡ëCòº;ŒdÜ&çìÇ"†;?™8v†^AxYÁ’N븊G'êF3}µ=üçGÔüxÇ’ ddììŒ}€2dâ½¡ÉÆ<„ø€ÆÈÁ¤Œ‘„z(çjAÉŃ›F³ à‘Ì,h‰Ë-¡ˆ8†¨³‚@‚/kòÉ[cÎj‡†1ÏVb ž¸# “†pô½:ì÷—i‘[òÕÝ7¼Æ}]Fj#•§Å¡¿ZæøND½¢ ʶ+‰çúÓ±9Ý81éÈ…ÞÃèõ¯]•Ï|g™àÇk¼í­i;:¾5ß_yYötŒü×uñk›®õáP>ó®âõ¾ÜwcßêlvWCg@ÑsëM¿Cõƒõ‡}JŸüAøõl+⼩²)²PÞ‘|ÈpЀ‡P‹æDæDä€ÉU ”Dö JT7Ë'ÎW±Ò’ȆWž~ä_QÒC€B].Xè†E/ÍCE*bÎ37æ[7ê8ô#˜ý±gfˆã^R}VøÊ¼îb’}¸Ä‘+Õ·à=Pôj!¢C¯T1ÅëÃö<ÁÐ"û(“êµ¾“ÉÎv° Ž“!‘69Ò¯ÚÂì¹WÁ°ž¤ïz_¨êNäíPê¤_2­¼D¤rQ$v»‹ëÛc⬟~,£Åíë9¤Z“Ž–}7Å1¡Á–¼¦#`ø¤ødŽÑÆ]Pïu‰ýæÜÏæT`š8ókˆ&Iþz"Là”P1Pô¼$o›àêä8î.Ð$|ͼAðĘ·zß<ãC#â#k˜È`MôäìøC öI[s¨Éó÷1‰½j¶ }·jPÙ©Ùí/D{¿“ïñß9ÌnPBÏúpØðxL² öÐ:J2Ý,läÑÀ’µd ð‚~šÊ6°ˆ%$ à‡Ÿ‰È8‚0ˆ:CÎB2d!’ppñ×U O†ù, =’!² $òB8hå\¬ ‡”#¥…*H“­ œ1'ÑäàA,ÃslQÃ#ô…ò®êMÕ é 4q°Ò4C7 žLéáÇnˆÑt á‘,Å}ê¨ãÈÁ8ÑÙB$f‚tƒ8ÈßoEe&dã’€²0¡G¨XÀ>é‚d­¡Ý,KdOµd{ 0rÏ›—¹ í†yÇ“øûc³â(ØîNûs}~1÷“Ä>¥É{ùÄäý£¨(J(^A•˜d½n> =@düt}yÇÏÏœÆ=¯wåjõ×ùÚðþ½U‘³?ŠN B}ûŽe>ôýÃÜ@8öBú­œî ?IŒ˜/öâC¹ßãr}HC#‹£Ž¡Îäq*$<#†Üuﵨ‘gPþæ[8£®`="góÕŒÎìz•ôó,ã40ˆÊG”šT`IFÀ@¹8Z:œÈ7˜§q>MW%âµò”H” ƒ”¤€¸CGˆ@Ý<Ÿs1 K¨ÑàõŸb"®ßãvP8õ~»š/ÊCã–°I!‘£¬„TèÎTÊÁ&©ÇÝ 2`€CA›µŒ‘DK,d³á!WD‡m`˜Kq(lÆ&ÑÉ‹yÏ—wÁUdxø€`Ò>õsHÔÀŸçQ%çIwÛ·‘õó»ê²ˆ£‘Ê¢EzíÒe÷¹.¹ ¨.ë’ˆ”£ºà¢w}+Çkèû׫’¤‰ ÑÎWâዊ+Òàsuõî‚(‰̦îÜ•çvF@ûzé¾îë „`®á&Þ<ñŠ7¥uç[uÉÕpNn‘2 ÍÇ(êÄ8hÑæÇP"/Þ;‰X_ÌÁ 5ã¡î\è’jÕÈ–õܦ1€Ï]Ôdüºâ·ßž$‘ ”H»ã9EÎUÎjw­#ÂN’J DwÕr»ç%¢ª"-J¹«.I5YüÁʨ¤=w@fÆR“_Gž]`Þû™’fs£rÁ †PÌ¥÷.nt åçŒü:àëÛŒôÛ—1p»·¢@‘™]åÞ:$QyÜ&;¸f„ÝÆ’çc9ÆRFJassdÒ)IÍpAÝpHÜÅ2Ü×HÙÜ…ËjáŒÞqÄÍù+°¯Ê=®Ž$Ù7ÊñÉ!„ó·<ìù^^ut¯NÉ”ˆ•Ís&<$¥“îÝbÇRç&æSNâè`¸W 0P`R$M×M9Ñ®\\â+NîÓ*°‘s¹ÝvI",Bú¹ L–1´cH$%FyÕt3»©PXo»®d¢Ï޹é]‘™Hƒºé©%$I%ˆš.ëN%D‘ED©(Ý ÄŒÜ× ‰,ËbI2EW-sºåÝWfBw\£»²&Âl„»®guÒîé4R›(fQD]ܾó®I Ñå$;H¹U’}\±O ·1nvnî.S4FÌ)ÉÈf“'§ëpÚ“3¨£)×2 9œ]ÝÚ¹½«Ï9¹šˆw\¢-¸faI“LAM}nëNfŸ¤a;éÒQÄA"-c@³‡Íqé¾I%£ÉÞþ¼pu å[Ck¡ßªÆ‰>elŽìOÅÇäÞô2͉ýµù ÔØÔ…áørUZ…˜jˆ¿uU8÷_OLü!½‘ ¼žB+¿“ÄhŽkQˆ8Ï9Ò™¾ß|åøxhó" j$ÍÄ¿Ó}(ã)öžoU8u“÷ªÎó{q3™Z1’·¥”}Ïp8hO»µËêñu|7Ìó—Q3Píûc9$BipN k8ÀÀÆ01'½\0øJÎõóQ© <¨Ž'[@xpLå¹#Ïk ô ã¹íþ¦æÏ•æ”t‘Á·ü¼ï$^,ÝȉѠ}æ5UœŒWíªDÇJù†¤±ôá“.Žþ}à'çˆ=¦õr‰örEœ‘=¡…ih²lˆ"²!ñ Hƒ‚ 9ùo­Çïy©ªˆá#ˆ#—£éÏ1ŠFéb9–:ô¸Q_’º_Ù0=žL¸„e/ñ¸È„zK޲$±L¬fL3wÆù×i馴­ò ;;æ3»ô}. ‡O›@$m#ÐQ¹:ׯ\جðÂÇ]Æ ¤9¤xé„y:,‚<óÎbžß¸Ö[`È^%™‡ß¡±s."øá ÷ß_56 -:"èqbëz¸"u„ `ùFUº1êcG­ŽK'tâ>t¸KœÖä é­Dñ½Ve ë3œ±ïÔñÐŽøÖîë;÷¯ÉÜNLÅ3[N®½swæDƒë±}diq¯ÕÄQ}=µÅ…ª\{Øð‹â+}¯Öï~§$;ãÜ×& Èìæ¡…áòÜL©¯³³õæmb‡iYí_~dÇ•‡Ç !RKw܉’~×QzÌcCËL=÷ÇªŠ¡“Òåù^ڡæøK_|ç»»çÔ†+¿½äÇW–åߪ÷玫D+Fèç7m F).Ôq,hîu˜¯.<…Yˆ x^ÌAD£5úÞç“9çãÎÐÚëÍõUÂï+º¬eËG ¢:ç®üŸ¹‰!éïßQÏ ½|âu~ëZ“¦APºšî<|ßî¼Y䃅Ãõõ#ó=.uF½ú^ˆÆ¹ö|ãrëïKÖ~o”$ú»CŸk™õÂ} ¸;„:éRÇ®Ek¿UÄMqœÃßzß7ç\чåÂê¥ɇÖy¥ü/CŽPå‘È3çO˜BÂëæ„ü7 »óLìO~Þjc窇¡ï1 4cŽ>|¹ñ…åØ÷:Ø"x{ûãÓ‚H$+Ì”I?Q逈’H%8'7|Í:²4Æú‹’¶¼ˆÀû«âþhLîÔdóNϵÁêî¢oÛcé´Ÿ®ñþ×TyOMãB>¬!Ò‰xÉÏlK*zçâLèIÏ\LdôMñ¨Ž3òÒåò¹Èñí˜CzŽõ|õ™B¸(BÏÚäñÆÆlO%ñ luÛÆ²¹ÍqŸL÷§?¢»¼À¼ã¥%Å_ëâ fc\­E»fÍHp#¬äþ}©ã/‚eùzÇlЕâ˜Û–@]7+Òœˆ„’@à P˜Þq£{í‚esÌq …ŽLç¨3?ÄECi¨å9u2ž›d¿O¶îP­±÷¥]®.Ï[^—®TzH¼ëƒûö¼63œý¾í]ùõí}ï®zÏyøë›ö¶|">p8ß—êçŽxßV/ÚÖ¥reûrzÛÁ<5\Î’eÝÎŒfúZÐï”"8´©æ/ž!BZXX ïo§=ëŽo;˦žÊiaß9${(wÜßÕ‡ï~«­ý>sÍ8©óÔuù=ò8¨ÔpáÄnê´UòY'½1zW¾¬Z‘,9]¥t^£“šGì¯b8õŒô†ˆ×_^`,–Ne]÷»ïB¸}ç\q(š ÕKuÄ:Õ'OƒÑ—Q[òñšôEnq“Šä!⟷gtí¥¦'ŠùôL-DqÉÇ€šKçµÌkÚû˜î×ÊcQð…u8÷j'p¡eDd»€r“å k(-”®ìf+ àQǤÀ úC¿‘‘®ê!Cm ðâ18ç^÷Ôc‹QÇBëŒúP|ÓÎfâ{&];Ý?Ožw9#RPb¥°xQÖe˜Ê÷‹ÕL3µçÉÉãb‰÷×gÊWë®õ¨ª"U늈Ѽh’3!O;t£†™ÎšAÏ3ì…d|RïPÇHvjŽ_pÃÎx®;žªo™eãEí{¼½ûÎýo#Ýåà{!‘ÔO9#БËé~s¾í]mLTáúoó‘$³ÓÖ}³P#âû˜3“ôä"Œ­ê$ï[^iA×oAï<Á6\çS'B*Ÿ¿-é :6^aùªéA¤ˆ˜<ÒêëʘñbÈü=ð!ÑÀk¬ñž¢äèâA4ŠÉïuû÷žM‘á¾yz8$ð‰àëYSÉ}šùhGb ›Î›¦hÅnï˜F¤cZúG†n^7½êE§‹0.~•ݰyÊæ<…ˆRg*Åziô«¹W&Ò Tu‡?œ0bþÀÆEò¸aìdTDu"ÖŸY]¦ŽP-ìp¤×>(˜Ëf‡YöÅö¿3³:uZ{”aµß‘Ít•Ýð û…ÂðŒíMø‘cªUSÜõ›Ÿˆd’ÉñFâcÂf3Hí%Kɘ!Z+¨žúbûr9qß;9…\W¸ëÝ,^tqª¡ïrå+µÅyµrøç»®(%ò-ÉD\Å:ÂÏw`«äúˆÚ÷í ö±ª¥²‘»áðzˆ„U3!qËÔ®ƒ¦ÎÜ\N1Wâוcçzý×gO™e6¼cOsÏs"v–yƈÇ$s+£‰_ŸÒÌþÀ?µ!†A v{!Ú X³n–àpI‚†ç‘P8¢@¯ÛGå±HrB8ÙZ@.GµùÇCxçLÖ»§ëkå ›˜qPn_}©\¡7# D£‚›`„ÔG3s×UtÃá!Ga¢I$’FJY¡“£fÚ#{ã—×y³õ|nrXòOIa‡ÌOÔ¿=àw ñÞí†G ê6 vpÕ˜¤Œ¢g'Œ ,´CK Œ20¡2iv\}æòñi_‹=`ä]`d´‹JUJ>¤GÄ(˜#²&uƒ̦O¼®AIê* —æ]‘¥*†©>ÖHд9#V`†B´…99Pdy߯˜^òa¾w!øJ=Jh š:(@@Ùp¸ÊHÐK¤3ÏÚ©'²‡ˆwÖé­¸cF}n­zƒóç˜êë¼vÁ!ÄA€ÈýJ’=-_ÂÔq}ÌcÚ V Cdƒr ªmáßH2/3Œš'g>Œ„Ó8À(î–“5 øˆÁApAá¾#A" >fc›B7(Afde®””¥ ïÍž%è9¶ÿ_µÉQÆDÆ òFMSbco†‰À$ñ·ÎåŽ^£KÔûüçÚ €êJi=FIÜø{äâFP@šU×UÚ¶€Ä$°Î d0³˜Ün„j‘³8Õ,}y™·ÛÍJ\dóå­ÚîeþÏ'“ÇÆöE*zÞéu#ÍNpÎ ð’$¢`©!ô¾˜…' _‹ Ã|ù×çßlf¸õžIªõghEƧ¸±£€4qŒ#ŒlàNN=JÃ8Â1ì«0pHg PL Ò¢`2Ê´°=¨'DH+K+2˜HC ÀÙGñ(èsïßs×GŽv Ž8DH^þÈŸg 4L?-ŽýzÑ ßGú˜Ì•νq8èìBÊ䜦G½ó˜õòßgÌÄ´4tFGÆcµŒ[]¤=”O†XÆZ$ƒ¢ÓÎçRJ#HŒÈ$ù[£BÆ ›ZëÜüQ1ƒ¤*:×$s5Œæ•ÆWYâvjŠNàËeósÇÆ§·x¡ËÔžyˆ¾ z0§œÄäú”îêü_™Vú=1U鯫áo…_ úªß> ;‚©›Ôž¥|Áí/w‹%>þÅÊÇ&9#$ ’@ÑC\eúÕ¿ï£9ÜMqÖ§?¤†§ÄÉ røŽys8±*Ðã›×UÌ qúÜfþ»÷"Ft<±r»jÇg¯B¯“úüøt±Œ¨åjZ4¹˜¯ç’–ë§Íëó©ÉõpyæE,ª[뎠âJì„r@ÕçS™¦·9$yõDLkåH{=etqÍtÁŽ_5Rá”·—q4õ5Ã$è Êåe­wQõcS^7멯ˆ´~›üãp=IÞ´`W¡×n‡uëªþßÞ»ß~g]z=ÇMcÍ.$%¯®1D#Øâ .]n5‘{k&Lå¸ï¬ó{Åw«ØUz§ò‡Tì§=„‡FyQž„Ýør7ôùF"¸‹cÄhgWPM¡}!—@ á+‘ƒ?_ݹÒb9ZŸÂ¾v߯.ü™8<~Eu«dÁó•Ïã|3æ»æ$qº½Uë9òêtÈ"€Ö.õ닟wqV |mŠã¨‰•º¢1yÝÄtuf ªHM°AÕ¤ÄZk.¤ílà:ªrÝ4Ô(% Ï=<œh‘h“¦=yÓÖpù8Q®ÊëFp-+´‡Ž ÷R‘0ŽäG®ç"b æTÀèÏå©Å̎ΩA({q|÷HÌOŸHõšãYL­Æ—ƒXuê´û´Ò—»F ñµF„Ÿ6'Ì®L_­Y;Ç}ÙÄfƒ¶¥#„’acB~ñ²ˆðÕÁ 5ÉÀìàÂ7^8à’=ô¥ ˆìÑg·F·5Êw×L!ÅEêXi¸L}‡¬§!)#ÂzzˆxdL@ˆoO‚%³=pë­Q˜ºê†¢ÝuÖµ“@Ô¦IX—´çIžZÊ=j4¯JÈð¡ Œð¤’}Ê$n—f¿^¼ÈàÕ‘ÑÝKÀD-lÌÃâ» ¼œIùR®ê€äãÔó×ÌÞ+Üæ×ó˜K|%k€Nú¾íÝ”3‘€lã‡Ñî,ê2ÐäÃG&K Õ¸Bp‰‚€OK¾,O\Tnq«íБÁZ"%YbQ,Éáë^UŒë¿]H²':}Ÿ×|qŠÖ–Ôo3ÎETÎ}5kŽ8·ú5¡+Â8ܹ\šâx"Žsê‹•³p‰äú®K ]8"´ÈÉ%)²"Ñç?%s7o˜väêÒIà÷/£­Fýí²Wçq%opMs ›Wv$ š€„.–f1" õò"jŒèŒYgÎ7×’}ÀcƒïÈÇàH6¤siT&=x_â1É@?üòU¼{8@â3—Š"N Á$„}\ª8öD|#8z—õÄ`ÙìG¼¥}ýfÝãçÇ4ÉøŠNI•Vß˃“òÞgùR®è‘GOïøåí()ÖþôùOáùÞâ^ˆQ]Ö‡{ïZ>@C´$ 8d2;9?£€ ‚:RƘ=ôÁÛ*/ÖÅ«ícöŒ}ÿ;ùEÔÑ^Ìÿùe?~þåü2ç|~ç^è9Wª»¨Ê˜õë;áÆw…–éÈAUÊ*Ÿ¿ë.áû2Q.=öûñãùSU4GÆ+³È_Z> óAÈÉ=¤õ¸)¶@ùÌEÙ2¡ø„9ÔäJR™2îïÖwæ~ÕæŸ§4à'˜O^°’Áâ&óãp»Ì Pr©\!?\Ÿ2Ÿ0=Èx2>ÑÔH=Jú9±ö”zƒ¼Áë£vúó‚îÀ=¯›>Ðz ”¡ êNF±'#qÓ#¸öEG{ ¼¡†D„°.ãÎà—ß9)É~¡:’Š/|Pñ?<0M•õyöž`´žsB8|ÔѬnŠ>¹áÇk¶9ÏçÞC³VÕqšçÚÏžþ]c¯r\è[ÙÅ‘—‡Þ€xTKYAbHA¦›,»€ÀÒ,î~š=Y¬ÀjÎg‹É0œÈŸ+<éñî.O9úÆôG[ï¼õ\“Á†(éï©_!œidÕõÓò;‘Þ}î¶€æ9š·ïÌÑ‹V!F¹”ÈÁ8ñ3_ˆ`L{CCÆ1^â¸3ú5 %‰"JåÑ@Œ{á`_hl÷ŸµÔ=>0u ï'[ˆ}u‚óôÄ(ÈOSù“‘Ï8|Iæñ¨zæ ÝGwâ}ýc÷ž}`u&ÏÞCï¤ó Õ¯FŽ1„;õÃ'³g‘Á ñÈ|·íAe ‹!–Q €NZÆÒÆ=Ûî³MaƒëñQÀY ƒÒD"-¬a (‹:jw¦1FÄø±ƒ-`ã´3R^–1ðB»c¨^O¨/«ÇœêŸ™Ï| ‚½£¹ûstýld‹8ÇÞ€ÙA"0ˆá}Ï^ã9@òÃÙ7åÆÂŠÒ‚0¾, aq€&SÄu'%õ9'ß׿Øë¡É7ñŸ2}ËÔæñ'™2}_ø“æ~<`”œ¾¤vKã Œ¼ÎË·ÅFGÄ%uÖ'´d…>ò(àdùé ¤(Áœ®Üq hãÂÅ=G‰ûÀýK×¾À|KÏc>"½áyÌ}°êOi=¡iA8J?ióž¡ø•ý7{ø6 ô÷ߟ·×é|yä?HNuâÓæ;ƒÇ¬V÷Ž~1}ã õ'ï4'˜üFÍ!ê~¬¼×¬h_Ϭv{Ô;ëÖ‰°Wâ9퉒ž/'xD€ rûpE"Î5Ú¢cMé´:#‡$rõ ä õ÷Ï7wéy„;“í™Ù d©æó/8}GÍÝïc™»™ÖíRx߃ðzWމ\¿:>]"ér…ÃGí~^õüVQý/<þ::¥}\$u§ê#t³)t±u !Àêu1¨šœ/ËzRÆ0 ðD5ûtúPæ‰a¯­à•—œ®«®`’ ¶B9ç‡Áî½Â$`M/L GtÂo °r ãŒv…BCñ k´2qP@ŒIDHËòqȽ÷@„û>Þ¨‰3‚8(à’Ç$eÍDqN I¼#‡=OS;Þ``@$ƒ€HÀÜËŒ`dôŒiã Šb¯¾<$Ø=üî³V@ûûgÏ®…ï¾ÿŸ§½zƒÚû‡«˜(‡ÛÜü\ ½w§H¾ž^F"*8s²áÊU} úOÕøü)´£FŽnc;®Iò·ÙçÓßÏ»z×Ù!qlýÞ|žZÑX$'Ç…ÑZH€Jv÷Üš-²¦¨å‡´ŸÉG¶zDȾ÷Kìv}»ïæï÷¾ß]Šë2B ñŽ{üšsÖl*EP4±gÄl÷†çZd%4RÇœLëý-&„øÌP¡|É’Äd•¨Æ‚¢ÆÚøUÍÙ1”‹1Sm6Tûüø·‰T fè!í!ÈZD¡õ)Or|Â!ûÂäù©ÈóâÛŸýR”û@ŸP£µÞ2hÔ+б[Ú*ùksXÚ*£l0N0Dlï¯*«¹yÏbDð‹Jˆ­°3 ¼œthá$çÄAë(eCÀFâÕ05 ÁIÇ+sç¾âû—ȃ$z\ñ\Ï‘>®¼‡æyxÖ‘QNZí[žÒwÇ"h‚¦ ÷Ï­<@hä÷ÃpnPE »ÇJrÏ(B"²£åæäQN‰øÂì‰úÄþŽf,­V×›½óíû8¾ÓȘ¨i îÊöÀÉ)Dª\ÌEõ˜U¯½Uí¶¼TmoµW 5ˆ(•Þú—æUä€PµmlTjŠØ­Æ´jÑ·¥®V¨µ¢ÕÉUFÅ„¥JM—$@¤F¨@¡• ’‚–…¥F” U{“e6(¤ :ƒ%w¿_]g¯^9/ì,£¤Ï‡Ž€9]ÆH‚28Y2dL¥%'´˜Bža\„ Ö&M*R‘d£åÊÁF¨Úضû[š~[9ëó»Ï¶ª|ȇ™@Zº2i3’1% RƒÉ2IŸÌ‹ˆ³áunmk†Úü\´UÚq„p<#p `jr¾’/2»ÊóZ÷¸Q1옶ìS¬~Bv@õZxôùâ¸@2º¿Ãç™ÆˆŒ v1ŒAÆkšß>¡wWïLx;9âØæó—ÞQ¥ä,,¯|ç˜Æ¸˜fø£¾Vü{¸ÍœÉdd1ÁÆ06@Dc#JR’ róoœûóÅ­wï‡ÞèŽh"  N 8ë…Æ¹ÉÜïuéN×uÏãéqÁÏž§QÊ>q§óÒšõêqŸW~§ë¸Îf„Ò <ôµ¢¯‘¸ã¿ƒ<ç1 IDIƒê5JËÞjEÝ ÍÇÉzu®ÞŒ™=Z’!K ,´êvy4=ÅoZ:yçö_>j”Îx£¸gão#áÎiÈÛ– ûýiæ?7ÌHÚuøü¯wàg=¡ä¡{$B4öIg¿Î³2D?K÷ù]Í{S •â¹Q”ÉÇIs«xƒ>)ÜSJ× G ­ë{ŒtGƒƒ½<Úžx`YÚè€N`"µ-ŠŸqщ" €‰#Ü0övñóv(i>ÓñÞôz‚ñÈxT€œXDÏu™y™ŒQ¨)"ðÁ$ì¬(JH™›{ͨ©=ðùüg¯Yw„ÑI<|ŽŒ‚@ œt%pD¾c­®X¢„2dã^d‘q‘.p=‘\Ž8âìõÊêsùoãõç‚Â9POá”ú¾½îUOv¦Lp:ž?TûHƒá¿HwŒ8DŽ@‚F %†m_ 挖‹ÌeWµ€_å㛦/æóÌ£ßÍ€y‡’#HxùÄv¡¡  ¤¡]…9ã³z‘( OàÊ›”l¢—Œc² |8÷¸¨ƒ„C 1ø­ÍùlžeTAÏTÔ49û7ó¹Ç üM Ÿ‹_I*$/~;“ìï˼ß>ªà|wP_sI´/VüÑÎ]!õÒ~ðHN—ïH¢ˆ~ˆ"$Œ6¼+iq,b ·7²$“‚M.&ïUŒÙCGB®``à¬a N% H$¼»Ž¯\ëw¼Mn®þ}õ:3æØ¡¢’Dr¤°H$Ó{Ûy8@–NáŒs+§@ê[@?_™/òù§l¾:ÃÖ”¼üfÞ±~£J*ùÃ*– +’dˆuHÄ4Õw–V_]Y§w[Ǽ;;ý®9@dàrpˆ=kPúoûî€ã¹÷bÍuéyJ|Ógµè³ÑLìä… ¢Ã´.‘•^W”96N@,¤HõÔ=19c³ò± ù’nÛ\K‚wH${hÚã¨×+P¨ƒÂ–=!è²,ð}µÄ¬óî±ÜŽÈÑÄÏ|¸@É eIã¾³l—¢ÀéC£¥íàJ8’#wÖ;Êä§!>ÓæêP:…ä`èã|sÛ¬¬{ŸMd z#àƒwÊŒAÇ\fF`×H™Ê ³ÏL.5ùœcŒc×­÷ÂIbþ¨•ÿADº€«ºö-¡Ð¶Í}¥w«E>Ó¶‡Ú÷¬ÏUŠÍ#ÔØpÁVXÂÞ¿ímöë=e¸[ÖðH²‘Œ¤«J Û\KØï¶6B¤,ö)f1;lÍ»Þíñ•´—Þ‚ëeä $ 6øŽ+QÂ[HYJ{\MÛ@Ú·ZÝ,Z¨ºÇâbXso4E’¼©[jÓ­¼'…5¯%‹aã)Û_FÂü» [ì÷H*7˜‡rhÛR/:»|ÆOXÕm•†KZmÚë·æ0õèÔ5Ë#]žÉ$º'¥mvrg‹EûÖ;Îx‡°òl[©:¼l®Òö|Cnô×üÊ$>²Yty–¢Hå e Ö½ùÁ)÷½¥^®³öŸDò'‹kfš ‡f0dU‘h>xÉÛ]Lo 2nLIÑq¼ØF¡QÙKž ÒR2ë¶© ¼m|A¡õÚÉ,¶óNŸÓ˜Oö¬—ÒÌQ&&&Ö~lÁ¯Eã!ž®•Sš¨Ègß¾÷˜^ï‘úó$‡†ˆŸk……3ØTvj÷ÎÂ=yº}Ði1gs9Z#x¯ṯ…{úžÝE“ß› Ê5^Àa?2®òtìy¼œ·“µ¯ÉßZkÓħpFñ^+ÛcÅêbôáx×¥lÏ‚W¹u<[É™èðž—:ÉkžZ`Lm”„]©Ó©¿‘3g(ƒH‰: •R€Äe~ûÞÖA¾s+̓㠻ÍÙIo/xÚåõ•5â…”rVwui"í ‰&·lf“TYΕnÝ4F“+Ï^ ºÍ†ó1žRÙN-‹ÂÊD,´‡ZÌãMm•­A¡jL.ë%8kn7×{$–Äh^[Ä9”I ™>wžuÒn ýñ·=í3¤Ù¯YC^ÒeÍÙQȶ¶%q˜Ñ°¼šìKs ±‡*P‘hVÛZqºSVÃ3Âí¹äчVɶ¹°&ØQGR72í&ØE5™˜®\ëmdÊ‘o{{Æ©>qŠa>vBúÅ›U²dÍz<ïD7­™I‡Ùv!6Ú&²\Ñíç{¯;KæI1˜†TNºvŒ7/J“Á´.~ WJ· $í‚;ïFEÏŸW^{zö»ÉŽ©ÜkµîǛݎYzS¼w‰ãÄ)Ê ˆ:ÜB»¹ ²…˜ããôÞŠ°˜]çs瀤èxuÛוS9ì™ò Zã y7#ÖÄî¯!ȹÞI'â:œ€È· 9.ÎHrNóB|q¹ßÖÇÄùèõùÜíçy1%µ½,m$XÕð½ùÖÉŠ½q;]ì}dPò‡‘®2?’ôJRžÚÛN…vÜ=ß“‚†”9½Ê¡Ôªì¨R ’‹H#r¤SeB…]„ €h¤@ U(F'P”½´¥§«¢ÈÝ ‘á>÷lDö/e…8ëZ½)Å•+ Áo½¬J74ìTŒ±ylˆˆÃÆÍ´ƒåÅ”Ù6ÒF¶’¥‹ F3M2°˜WUÖÛ‘Úõzñ‹2ô ØøëØ-ÆÙ§YôHgÝòO/uâï2lÃŒ”µ3mšÙ(P*ãNÙë«xOv„f<TP\øÑó:2¹…L¬¢ëê<-wêåiÊ·¼*qѧá $ÛH`êÛU£œB¯å=ÚÞˆsHfNS¹åJáyJlí™NKM›®Vè™/>}ãÕ]ïð÷óxû ^rÔšš*Õ¸F˜Œ™w*/]õvT_h3Ëdù÷fô›aíÊ=˜'¶¾|š§‚¿¯·¯iGå{È9–jãó“qÕ%ëALóäçN €9 TœÈ3­Ñ-Äæî®Â{­É!”­Î Ç!¼‡zÀl$vDÛ’4;!‘p³0Þf½ïm*)© Eœ›¥4,å$4ƒaô˜Œˆe"‰&#ó˜ö{´E3WÜëοG»@È4øî<øê§ñ¬þí{ßÝkÙÉ¥èt:­º`J ËCâÀsÉø±úÊx»£Iu*ŒÝ44•(Z(iiŠY¶J£E&´Q´hb Ô™2jˆHÒc”Pmj5‹cE)% Éر´j-A¶1"¢²DŠdÌE£Y*ƒÒ(5%RFÑ¢ŒbƒH”lhɨƊE‹¤Ñ#l‚€ÅEA± ÆÑ´F2lDT[`¢Q‘£Dllm2Ñc 4ZKHhI›i-ŒFŠ£R4&¢ -‰ ,IF¦b¢€Ô„‘¬&¨’¨ÈJ*•¡¤)(J Í5¯;Ÿ»ó˜ýÒÅÊ]WÏË ``9âùÄ4ž }ÄkÎ|‹±«h¶Ñ¨U{#” RElÆÝÁ®i¡›´”IªVD‡ÅNƨ¬=³…i'4²n˜$¶ÃجC‡]¡¦n¦´ i+#˜­ïM‹5[Ö5ÞëP{ÞâZMU¬øØóË—)MØÑQ ìn͹‹m´3þ&Ñ>Ù’±—;LØè)"øºXB[i¨~fÄ¥Qï ±u3bÂä&©iÖÔëmYWrRÕ±·Øéï$‡ra#ÄŽÈG9®æeAŠP Ö+ÛÆñj#nmoMRM#&NA¶ÈVÊ›¸Qd…£±–H .[÷žì®®<ô™$}¡ùòâûuõät*‡)á <ÎOiy[Þ­åçêEù‡Ÿ¢´i§íµêG˜B\ç¬K”…%Î>d÷Ÿk”H[ëîGŒÈxmfL-jÃjɧ±³–¨–EÛª—¨I®ÙV#ºÛµë`4¹¹¿WÞ²ÉäÚ f¦±°âÕ¼èo^w¼PË8'bw™ È(¡7£Ö'n¬oì!È?#x—¨å²Ò4r2ä†@wÌG’r±h¨æ-â¼kxæ-{rñiÊuȦ&efL½J¸Qoǃ_.bôÛ‘½+•½®T @´ì'%wqÈg'ay˜‡9‚œ¥¦šƒ-“'òOqõpwžFù,µE2P¥‡^ \ú5±:âvIŠ X²±ZIKÉœ:4ZËhËbSÌÒjè4n„`ù͆©ej‘¶l*mkB¼k:s¤ ˜ŒAjÆ¢´—ƒ²Ž6M{ÛQ»M%ÙËkX{°Ý[kœÝ„ÙÓI&Å9.Òfryܞ£s´àÀt!QŽ^ïzôú918$0¸1¤Õ .4ÉhÂD^M¡ñ6qÕÑäñâóÙÔº´É”³-vsfÚí£~¨iJ‚)/Z„óÑá7¨˜Ù7*³ óÛYÓZÔb.uV,0©ßlüÏzú‹ø—’=Nê­XÛã ÖŠñûWWÞϽNš´ŠZBÏ2ƒ ³Ù*SYÔÅ#cEVfÐÛXbV§>›u®ë[»†FÝ«°%IE(ˆÒƒJˆn×,÷z¸af6X¬±–Ê‚œQ±¥FyÛ¬- U‰”Üä!â]pÒF(òËŒ^±nÓcKa[}kl ´gŸ¾õÖvªYéSf5©´–iÒØÀ¥úãJde$hʪ©JmtX&Ís:Ù5“XÊlåØ+NÆÖ꜎—ËÚ챡ÄÊîzeI¶žÆk&H§SûÙ˜˜ciü¹Ð¯5²1k/ÅÆmFA‹@‹Z·Õ7~÷ ë‹'«V…é¡¡ Z4l»dýï:ðñ¨žƒY¬â×v{r)K±ŸÉínµœ‚µte×nmTi\ÉZ\Î*eI ´:Q퀭, •›K)6¦yàBÑ©mlS‰Êm…,é7h´3¨WU$:šãE<îšsÎU´´Lež–ñ¯-/šœœ• K µ¶âåàâ6Þž3c굤 õ&(Ñ™¸ëG™’õ%H½£K¸rÛ²Òǽ{dL˜Ewc.EtåÄj ^Y‘–]zð§„õœè³ƒ"ûÝ#Î=…ÒâJÖ1Šž±:Ÿ½êÏMïiKÖ˜uŠØÄ«g­šh3øì¸¥…¥jÛV+eN´cV™”Š«&vÖ¿'½TãÕ$_¬'³ÙáW¦$C€á -eS ©IU‘#Œ›”ìœd•)Û&z¥õ±­ýl 5÷²6ã‘"6¤‘$Nà‰Ž|øÔíµ-YPÍÃɚΫPñ¨Ì‡}\Ÿ'zæÍUÕB𶲫dT•¶ÊVm·UHë¡Õâ|Ê;×K¹‡%Ë£a5°ëP‘–ľ³Jg§IÍ•BWµÎ<$·Ž¤,}¾×œërʦ&fyöÊ£:ciþÿa0y-ÃNžÛÌöbåœâÄaê…ŠW[cúlxY#Ö5r+lÐâ³÷ñ›Þ¼Q‰Ú–ËÅ}Y©ºØ1×,É°ÐÆªm¤Öɶ)ˆZì®ÙÔl8 š®ÆÛÕØëj%¬hÔHK\ÄÅצIR%÷ÛçÂ}OĻ׃:-#©ÔÊ홞-ek$‹RÀQ%`½i|õÚôOhî.Bm6´&v›`ž¬"BÓD„*ï{M ,)o†ÝhÌ N¢r{Ö/X¬9—FµÔ,—\ë³Ê=¢úÚ}Pá3Ó„oQ¼Qí,i0T’ŠÕ¶Ø+n{ÞÓÆŠí‰…Öõö¾>gG—q×G¾£\£‡²³Õ×EgmÚñgÎI‘Fý¬ò(ˆ« ñg«h¶Ø± <åÑ9tÄÚci"L-²¶Ö¥[¶$¢U: T h2Å8¯{LÙ­X \£"öæ6ívd™¢Úc,û~|kã Iö'&r’íjÑk:~Ùôø^sÖYdÖ¶zjÚÓ¥k;;™ÒVmµ"nEYç}xÍ}šÙŔƮv³†ÏU?«}±š¨CÍY[Ê€[Dcü·j(š—rþÚ=¢(„¥Î%h-„ ¤iG9;Q¯¶÷),÷ª- Ú¯mŽrƒ•¶ën:†³qµ·P²ƒq·`.Ú$.”)C÷½ï¤¥Z™áø¶3²#gµBØ” ®Ö ÒKPµFZϵ5&"1ñˆÒ5d¹°)jµ¥ )0i^Q@©j%€R0 ­/ 3%æ†~WÃëÖg¡aͧz3ÊzŸ†žÜÄÜÅ ¤l·ãm-lhEâ²Ú’ÃT‰ýÞÏ“ÚyߨìŒÃy†“9Ãv6rciWiË6¿?1õ†þ½½¯õYìžÑЖ[¡H¤e ؉kJýmÒûÊJ7Ìѡ՚á¼6U(A+i*ÖYíânºÇ‹e»KøÉ yomŸKBžƒž‹Ô„Ia*ÀµÆ‡Ð{ãËa–ØÃ»%3¤ÖÄKµ©G&Ì8Э|õãØ´-šÏ$¼ìáq¶1Q‡$k§hq85 &)a-‹cqF6K®"„¥Û ÃÊX1z…oÄÄ –Ch¼il‰D¶ÛPƒ­L©ç¼óïWó ìm‡Å+=DKèŒURÆMh5Ì6—wïHŠúó¥[Ä­¶µêæ^6}\nõÃuªÓR‰<ž5x{6ê#&=wŸ#-OžªÙ–bŸœyçcv3 ¡*KöÀüÄ—™ënvÔ\«vµ¨Ýµ­Œ®³¥uÖ±F(gèïÝ7µòojôäQxÝÕ±C²I’;¹K’a»¯"‚š—&cS´eõ{Åù64c}S]Õ¶![.,ĵ·aPˆÄ&;“lÝdÄœ7˜DÔ8–èŠ4å2^¼ù÷RÙØ®_0º²Ýl6o6Ç@%ѦÃ73ŠÈ !²"´Š aQOmÑk¾ñvõ´$ÒófÁD"Ò›lliq$ç"mÆkelÈ–c¨Z2o¼qÁÝÅ’ëÒ‰ †‚j¦$™$2CAãáûëÊéþ_YŸ†²³Hàšföº JÁýþ6–&ÿ”ÌR}ÀO©Ž²Ž:(MÜ™& vÌ1Óú:ïž+±ÕŽ[/’6³3¿{£ºSM"³G¹<ª¤½wÖâF’ë,ÈÑBh6gO3Ӥ޶Ä@Ôó0&ª^O3xàïyó"zÊÅ¥ÉóK“mNzhp¶Ä:Šýqëºâµ:ÆÈèÑw¨ð ¶…Zг£ÑÄy^iÍ,Pl>ã§ÇÞ¯³û;”py]i\šž "ι޸ºéÅ|~⇠lû~Þë+&$âýóöGeð›]ñ®öºÇõ°…Ùǯšˆ/ÄDè,&¹Ú“d—PêWÂ$ÉÁ*òБ;1™O´:hH†Á cÃÙãkP‘k–”2p âã´,|¬rFH ‰¶XÄ5˜C²:•ŒvE§­ÍŠ(àÐ¥« uóÇÙŽ#[ABÂ$òC8 ã0™ÀÊXƒ½,pƒ–Øå”7ª‘ì²6jP$h>$ŒÊÀp:â§ÔàjVˆƒ”ŽŽ0‚(uŒpd³”gˆä“„hwí0H(#'‡²ðÒÉÇû—~• YDzÉ>$%w7#$I–«q\êï´ÙÂÇZoÑGÑнÆ;^͡ђ(jæ ‘˜,Šé:áãxñ“Á@d 9<{§‰´ûX°hо›$“§Þó#(ˆÉÄzCÑøA$‚q²DAä×HIÑ+„"0zXfHè…ÂÁ CHöež‚3ÍDBõæ™™ÆH¥^P ŒRöÇšRAœ¦HÇ'{–H®eÁ(H\7á'Š=§‰4@¥ •?2…Uy è³IÌ!ByŸë:OÂ)9O+!õÅ»ßÒàxê_óZxï㣱ßm²IŽ’N¤ŸÃP€ìãƒ9B»Œý¯¼O«µl‰G²&åÂ@ír»È«»•û"&nÏ/|Ÿ>ô  <Ðcl ÞzxDïÈyDêy;4ì£NQ„W-€×pÇsžh—*4FW"(¹Ïõ{¼›ÃQ¢IÙ×_ϳÂû/ +wM‹­…!íÙ!–1öKrpZ™ž3ç—Ͻ¨Æ]:ᨈbiêØÅ.K܉’ysï[ÑéE9Qµ¹G•¦v¡[ •±«BVÊ#/C~ÛCÕwPÿ=io\(©Dé…TD¥(ˆbÿ23œ²CA6°Š$ƒ¨x‚A‹ÂYÆs…r–^唿±ùòÌ[×ÖËêžÙºòˆ……Ê=¥Ž@œÔí”}nL¼µä91ñÛ8FÆs2¦‚”):É]æês1¥Þ±z9Ôd”£ã9r†ä>'!~±ÎP\I<„Ê„à^L¿: ¸P]°zð¶ÞÞ65Q½«–*¹W 9“BP”+É’ì‰È2y+’§U(†ÆFÈÐ!ü^ñ Ù¥ È$Dë0„(8$„ KëÑ´Dª¢»rcÚ㤇(÷Ó“"Ö ˆhÊ0,ŠÊ*ÆÖ€O汆²Z¶¯B.g—<íÐXºÌ§GÚÝå6&Œ§€d,pˆ5ÑÓ¹©0ñöNL¦Øro3ê(ë·sõý^û¥¯áå|§«‡­ ±œ,ºþ%½íÉþgWóÓ(*÷Õæ&ë£aѨž žI!ߺ¾§ÑêÕϘ)]{Ç´9 #ŠëÙAÑð¿öX´¿ÞЉá(ƒÇçüoÄ?€GòdáˆcúFö>9â‡+1KõURöP,Y)à%åSù770‘ Ìÿ©iì4lÿNçñ` {ÊÊUý¥Ô§ŸŽÑ5ÙßÃkçb_U¿V(’ U©Ä©Õ5ƒŸo2³’RiƒøÙÌ6”¨±¹Ä’Sʈ€%ÊH‡Åݾ×÷XûÞØ³Éæ Îv=ë¿’®­™• @¶Ýåq6…T‹MÉÙŠš„ XL9ÿ ‰2r™ƒÄLJÈI¦A1³p*_„˹ˆH+* —qDH0¦ˆÅL¨É¹¸·&È‚%(bê&E‚I_ù¸WªÎLÈÑû­±ä]¨ZT3Ùf ¥íðêàÛ³"wæhàJ§ÚhÑ~=¿óI·ïÚA´ºÏ我ü¡í5çRÏ‚âKtdR– FØ)ⲦH‚)bƒÂYˆ"·Gö”`£¨ÄŸÖnz«¸;Õäÿi³õV£þgüç1ƒ²Æ‹þòœÿ{úI#Ó-ÿ†!ˆÀD.&Â9 d‰–0¡FXXF[4†Á¼ÅÈy&\”>}ÓäÄ‹&¤sÃÄê² y2¦T‡‘á_tgØÏ¼F׸ðú`S… „[³ÜOdÂbôlaLs¼œ›¦4úz]È,’S(† ‹h–p+þ6´øMÿ‰ó~ÿµˆ„~¥gú¯ÖÕMK,Т#ùAuÿ-‡q0“Ä(Š ˜PBh‰’¿˜ÙÅ) mSW9Ü94Q0bͤšM’Z ¨êGû|Hg+%²€VWúµ¹”ªÏ[ívuÐÔúúÔ–Ï\aнMÖ˜ºziÝ¡„¨`¸ÂB^Ž&J!vâmB & H²Ìa\¨!9s5Th@¯ò˜f  ÚFgpÆ$LP`ÿ1ˆ& 0S}¹‰" °ËKJöÂàŠ˜,”Ã(¡Ã@‘$°…„ žéKÚ¸ŠF lbK¶Ð2Òd4X ô)¦÷½6õÕž´ž ÂYâ•ß·Ìþ‹2‹ 0—÷Çûq Ñ2L›j?äÿƒÏßïþ.ßø~?ýðCÿ;?ãþ°9å_¥¯ïdŽüþõ•ïaäüŸ×ðKÑM+!°‡ DÏ,¶?¯õõŽgõïîëÕ*³ýfB‰r}0ÉØ›_ÃÏðPö¢?»û±GüÂ1þð yu)ZYþÑc‘-‡2j4ÄÌ©y¢“6]m•É‘mÑ©µ´Å–é™Vb%RVÈ9˜((¸2ìVš‚IŠÛœs°)“!\„R‘Øþ=Èv!¥ ”ò±"Nà“ÄêtìInÛv³“§#äÞ…;Έ3œ)Ù;2dd`¶Àê÷R‡úxký/ô×ú$I³Tÿ¥þ¶³Ÿí¯ö,NcïN`À#‡¼ÀMªr@tØbùŽ]ÿ©cZÿ¦ë±6ž×Kð ðF©ëÝ‹¯ø7Ä{„NøCšLÉîçUìš²:…‹IŒb%d™\YàÂÔ…ƒ¹Ìs~D“­K‹Ž¦qDQžKäLŒ¾ÞJ$ΗfÇYêdœbZŽÖN*”y“ð¨#%‘Ò]}¾Î=”EÎÒ./ÓÉâºÍ„±ÑŽí `ñk{X ‚@”Qpšô„‘ŽV;3ÙñÙ>+b©›#“ŒŸçÌÍBÂÒð³¡ÑQƈdŸfO^Ö‚À,[ƒg“ArQ’Hîmô…;!’)pfÔJh†z•ˆ2j,3ªo>vªèYÆÊžšvy#‚ èñ©bt‰à†A„8"]0$äá+H½7Áßo¶ÉÅ©`¢FŽ’~£Ž4°3(zói£Î|ÕT¹¿'q#×;£Ääž2Þ“¥›_R ¬†@ †q…i%~²s˜”d‹³’l%9PrL¸0¦ À¯güŸOHQ øïåÿFdð_Pu mìõ‰K¨¤U¬ÿ1ˆpÇ{3@`Ï®am„·F5[zÀQ Ô,L±³[TN¤Û,ÜÄògŒ¯JìCjØ·J;$‘‡u¢Õu‘L¨·šhÖYN¹U˜˜ÎbÞÝM¡©Ìç4£ .žSV©ÃOÍãì ’¾Ð2½ó‰b)‚“M‚’Kp BL6Ä6+³[‰Us¡³…ƒ`Læ·d1)?9w¬í±˜þ‘Ò]PžÆÔcfÅÏj¯ï·~×ÈÄfØÃ8De Š8Àdciaõ ÁÖ½}ùYžÞ2 %¤I´K ¦áÄBE$}—íV[-àæøØ¤¶YƒwóúXÕ¬,Ée Ó·"µ×6šåq½§ûÕ£ÙºOjÄñEÎK§2Q´ÍcE§ŒäË Ù­‹zózÚ3‹ÕÖEå'RÚÖŒ¶Ùsuж7ëu-Êúí 7LšÕyÏ’¼'|û±sãg¥hRdD²±-6¶èT»h àîÛ“‘öž ªØ2ZNA–ܹ-!Ä‹Ü&KIT×R¹$#eM‚#eØC#eÊŒîªæÚÆ¨Ú 5-¯™%˜"ä%%9dŽE9-m¹Êcbpr½˜¢z_{Þ§ÁÔBÇLSD£—øý¸?ÖâþŒ§ô®dO¿è÷è~.w¯í¨wyèN{ºqEl"¾?Çìø%H$²+X %k ¸g$ò¬æ‡‘Ã9&dTzaã9É 7lXÛf¡M.ûÛÝQé‚z$Ù\욨ÎÓ·i¶Ã‹ââtCésŒf-öç¿Æ{ÔŨ ¤’EBƒ1[}¼øõi·e´[¶±)Ö=§B^v³±H.28“Šä-d²¥ í»—¶Ú”Óª¢ÚÊ+0<ú#׬0µmm‚á‘O챦cÔä  ”Ì~¶óOb™‰60ì¸m‘6Í% ‹+ÚÒõ_Îa¼ßm³*Pl8zòP`œRŒ¼…Ô¼õlaq²í®¹y:FïŽ÷&ÒVtL™1•Ñ’¹c?çÿøo߯Õüf‰sæ!ñ uEY"‚„ºÿ‘̻ۗLßèë=ë– -Þb–Me•”$Ö0Ö\íu1Žºk*DA†Ù`Ö0²Ë’Ñ2¼âžkƒØlÆÓœEÌPÙ#IrŶnÕDÄ8ŒpP‚+ß­*çjúCZ@‚’wÌóéš›Îàâ ê@ЖOóÿ—ý]ñøüÖs iºØ²Ór«m*,.k£q2Ù…Ò†‡ÏÒgö¿àKT èèBðdÁÞØŽj´I­²ô‘´e3ü|¸¦¦!àî£×6xA}{,´ A0–f&1n-© X…jh^ÏvöòÙî-€Š‰0Ð" ea(Aß?ÏßCªYÔ3[²&š­l,ŠÎ¯gV&JWuZWšÙºïôûeþêßFešN²dWl[¬ò--gŽÆoóÿ t«˜ùù§«ï­°$Ï-qkŒy¥[ü0"s©Ä& ž gT,ÜTu4$¬)?ºcŒñ{­~¸fyÚÞ¼1ëô¨uë^ vQ6ÈBÓØÛÄñÍò±fÖþg‰âR žgôÇÑ^#—A×<Ô“;»’Ó—˜ÙMGÞŸ0'´Ù?‘í88$‚D –ˆ´ú™4Gð”u˜£2Y%"ÿ›ÞO¦×FŒ¯N¡¦®žË»VX¤Ïúh0…ÞšîÛבMÅ,¥¶‡+BYüiÂé[.@I XH‚‰$ü/?›‰HrG zÔ&šP,4Ód$¾¶ÇþOô¿Ï.Íÿ3ü_ç?òÿÍ1þ‡úP¡]ëKñWù Å!ãŒI€?ÞrÜœ\=Ân PTÁ#¹‡ K%µ‹‘aþC.L– ^¢qÙPcf¯ÝººÔÀÉUFQÁˆprÄZªT`ˆ33þHUNE$ƒOÅ"ê›WýùÕÖX±‰B\ Ó‘tëžÝA]i½…!–J0ÃE‚a\‡þõ,TéØ2‡)Õ2 ƒ?íÇúñþ§ëý÷³þÂåòÔìQ$)HÄÄÓˆ2MIMQä®êƒŽPb=[E|w.âIš5þ²Ï­ÚâÿcÞ4,¿Þºk@õqøçý:²?Ô©ŸÉËÛÒG(ìæf¿Õ"pFm6I?D IµJœˆp?õ? dÙUm»ÄD6c˜ª„¥¢_¦à&8 'ïQ˜R âJ?±3;Ûs¢T¸ÁèB”SIª‰NRˆeÑ"Bdˆk”bMÐጋ‚Y6[ˆ†!Fc7êXDAê”Ò€‰Jba¨²Ñ‰HœŒ£R¶D´‘ÁR+ýSàþÛUÿ¿þé{˜Lý¿š®Çþž÷ô~z_®k½ŸfDz¹Ýš,ß)¿àï“ü¹þ±=þ7(/àüñ bh.„ ÿ7“ù~³DÚ“PÍFpf=•«þ3,‹j„e1 ù#ú0¤Æ{A@Ρ³˜DÂ∙›†G”Õ)ÉŒC‡xTFÀK'ˆÄ«þ&`£$9WûõC ÁNÓE W¶ãããÞ³¯k‡¿#$F§-’Ã%À¢$Î8l0õh¸}µ²•6%cMÖÚ5ôÓ”j­‹’C)Ɇ½"Žš¶Ó’âaJ$ ´Žfn$«e»&Œ›¦(„ %âáY·`º.”hYK×ç ÿ7–i[üv·ùy„ö/[HÂ~%m˜_åRÒèÇìòŸ_¦šO›Mª>»#Ç‹Jo‚Û©§ôãÓ_âä¿HÂ\\´¥þãa©H“«oâ̡ԡ›L)}×7WÌÛ? E18ÊD“Ç$™KeNc([ß6MWóïRï® õž«()" †æ\TÜ9)ÜÌ"jŠæec5D±žÛÀ…ÿ#`if}øÉ1:þÿæ_W, áÈ‚9pá‚¿×&²ŠT °Ã!ADQâ.àP6b!Ó¤„ÇLÚ@µßiîß';1{ãq¬Ø­æU8‚MDrÓ8“Ã߬×/SÖÝ T6Ö¶Vâ„™EÎ*¢šñâ^¬\HE) ”Q(#¬¨0¤†˜nȇˆÁ9htÔÈìÅN&𠲆3DcÜH• eÜ92Gº^Îî mÙQ,D@jJœD¶‰)êÊ‘t™’É¿ûœÄñEee¡ê)aa¨RÄ8÷“ 4r³˜ §tSfT!jZÄqI ?¥Îutx›´iM‡áÑgHè²ÒØ‚¿è[dE*%\}ª$Qa )×óÅGü.·Tå“J4[!GóRh"hR ú/ïDI0‚8B„ ÈpŒC̈T ÂKPà3qýÄ9AW¸p6­ÁM5Eƒ@˜êîEÐ!"ÄÈÄI)rŒY-Ë!†¢’ÉþÉš½Í ”‡ó)ÿa’f˜ Yi¶d§!æU” œPpåCG»7 >÷±¹?,eü@‹¸XÜp!0"  Œ¡&C˜%O“QZ .47e%(,\,d´¿Ïš œLw3 iQ8lzÞdÎi$`¦P…„pqräÀXKêë6?ÒtsBŸàßå³yÿeÑ ò=4`Vÿ­(% 0Ó©–II=˜“‰)„BJÜÀ£B¨‡YD?¶Û]Fк†2÷ïÍ'ßJBÌÒbi¿¶Rßä)7ÓgBf\ ‘•-Ïׯ£"*óX0ŽŒ~C¹o‚K˜’pFN,’ѽ(1 ²ÚMÜ-¦ áózvAO8–¥)Kû5‹$¡ÃqâÕF•€¿ÀDÆ<=f?¸Åf©Žä"Oƒ)¿G03ËE•™D± p[D‘3’6Á…¾ðVâ5ÿ)3dô·üZŸ²1×÷¯zÉïG"ËOïän”³×mgëT3*öL†#6ÅÓ L LD±2!´CùNí ‰ã3Oöÿ:b?ÊÄeäu¿&ÿ§ñýèþ¸ç¯COq Lˆ„ CXr ÒRŠA?/!T±™¢¿u@LÒ€aAÃd”ð¤ASS%o‚\Ì~÷B…ó˜‚J8ú9ƒ*)¡¤"LHŒÔ6Üâw„ÄIŒL·ŒåA™A\j¼Sÿ-˜ä¦2[~ÚþL3$sÒRè$B¢¾Ã³ÜðÎí ‘)DhžáCRæ„ ß¾T ¤Z}-¾M X†2Ý(’"`S§ ›xæf(—Ô¶qDÈVDT†å(Aû™šu$‰#%$PE¡( Ì`¨xdŽ#²ÅaCi C3©0BÞêLŒ±W*HX¼ÈiгD7NM7ÍN]›°åœ T@ø´ BTñFPTäÇZpC«˜ÕlÍ©Z³&ÒÑ GJ“¢á¼]£ \xàeI¬åï{7y;[”°¸Î”¶˜·Ï÷÷¼ç!–¡gúûç'õû©>³ãhý# €ÝÌ™pÒbªh®Í®JR.ÿcÞè1þ&f^,¡«?†ísýµ†õï˜%…õµþ­ï¾}o¼Oq,+$Ÿî¤òw™‡ ÿ¾djCÙ¢$Ih°tbJÄÄ¿ÁuÝ*J“I”i39ž¢¨‘¢*Šúõpd E¨XfT2±­7dhÔ<ÃÈ0sMú‘üêCÿ/.Ä5´ß®øv`’à‰W+^êäh$V_ßl\4Ðz‡CE´†¥!%ˆ?¤"é’T «h>ä9‘Yˆ˜’¡œïò*Í[Ò“”OðEÙ5þ8ÌzU?“™›$¢×é‰ûX·ViH(—éÉ™%R,å¨ÂiæP-N ·0¿—oFpÆV&ÌȽ„o*£ ’JI"B%œ¶q³ ¿¯{Ú^ yêÔ”äÔ ×ùu"î‚´‹„ Ébqø¦¹lÉÂT~ü:I†e¥Rm¹-Ç툩ƈôÑÄ™!”$¬T…G 1 à‰jà)”%L„ %´“@¤Ê˜Dð ±ýïÜ»^6ìl°.¶=ý4õ§ÐôÓ\4ñä9bŒR•M0æ&Ȫ€›°’¨LÎ’ÅŸ7HÏSÛÛ÷øßqã/ú!\)y¿ã¨ùÇû™£AOû±ŽÍËYP{ š(Ó¨Á¤š2 ù0ÈEˆ˜ˆ8Ÿñ¼"e@@å¦ $Ïò‚4JÄ.%Ì¿¿ÇÏô=ˆT?í¯Ö—e Pÿ½þk–q2¶üîÍÔ ûôîñïþ¯¼ÿ}ôú_é«þñüÿ}9š@¦òвÂÎW¦ü܈ç¢BGÍ‘+l­ƒ Þõ7fNH£ÁF’ÀݱùÍÕékÔñékÕò7ª€5ù ÚÆ­t´Ç;CótÖf=R âsc½öäÙÇD “ŠyÆmgß¾ìh]Daì몌ó\k›Ôþâì'_7qÉLÙtYü‡RĮ⪫«†f_?7¼°3¦À­y6G~¶G©±'ŽÈr½øq5Ùqzåa޵yhvõÌd“×FoÝq¢¢¯¿k²Mí1?‡[Ämë‰ ¨×»Ã|e=u­G+“¹Ÿoê*ZøQ·çžoÌÐù¢0HäÃÓÀ+Ø_‡žûó3â! unrcézquçµXèG‘Ö÷8ã?åúkÖó¯T+®_áq›ƒïÓ¯K³žy: •맆۳®E-N.Aü{‘D›>»[ ÷W^ºë$g4=èÏ7cP&Uãr²ìLó\Òöõž‰ “ó'Ohûo_\}CÊŠú²‰""=üóOˆ}™1P*ªt÷¡TùdõÓEÑU¸ä¿lÇ–{ÝhJÌ#[@‹·1úЋ°Šì§¿Ž×æoRùr*ø\6a`(§æî„QuÞ»„ˆ>{™´>ï§¿^ž8{W,H˜´HhJ†š ”EÊaaÅÈ 4ßO/Ìܽ0LûÛ³Y…2EF#E, hÒT‡¶âÆú¶é†d44Q¢¿-zn—Ø’"Écb0cb(·ä¹ëÜ÷×"1ú&å!°’Tüý¯¯D¾Î®cP§Â抢¨©1¨¤¯¿º(›•’¹®š3òët”øî¨-~+škrŠ S»\؈ÞuÙ5|whÒjyŽIHÒR~¹™rO¼c$Ø¢øk¾«Ç4ZÚHËnbÄ}ÝÆŠÂ>½ÃA#×n”^ºö¼R5ÒÅãïƒçôôÎAþìü5OîµÚ—þ‚ á’§òQÿ ‚ŠP%"ñ@ÌP?çˆþó€ Š§ ©UO ªbJˆÄ Œ`"¦@숯”D=ÿoñ¾ÿ¯ñ“þå_ˆ“ùBk#ûÿ¼XÈ+H1˜ŠŒ”ð›C0¬/á°à#Ý"™¿·\…ýûç`£ÞkžNˆ$ÉÍ5¹G)kûÏ}fŒh¦QÙÂ+JpÄU¡ž”rÓaëAÒþý 2p‰#©Md°0{æ Üýw€q’Oú%óÇ9æ¿ÃÍ͹Z߸™´½RíG>– qD¦:ˆ³ïs˜}@ŽÍî!té.± £wgŸóýÎÏHrÔž(Ý=)´ý‰ñt¢òôƒû|‡2«Ù¡²\¹h;G1}/n4½w­Û‹„ÝR–´"Vø¯nm—¸Jˆž·9~ë§hÿ.6<¯äèS3Ò‘GÐB *8†õ9qK5+#·N4O›“Ïgª‹Ù÷9ÉÑ#Ñ9r¹*‹* 娜\™kõíáòo&Y ê\¤éRQÓwÛ®‰ÞEËä= ¿ÛqçÇÕê‹í®äIîõQYl…D%ú©zSÿ,u&§_íýÞdÄ8 i|üÌÒÚ„g2j1¡þl{ÒõmÛKÔµ‘_Q¢v„}ç;5}ïv/£&v–FF0ÌmYmH¤£Š-™²ûqãßß]•>g2I‰Íž™U®Ö±L"zÎlhjùƧ™ŽV¦WF5uì½»GùëÛpò8i´q<Ùß™SÏɇåaÅ„·ÖXl¤‰c 6­èCÏú?Ã}¬ù#Œm±³Œi]j³¿3¥ê©D­vgf¶“"Í]oñëÞ2ÿ4HÊ@0+„#W™ëu @YØdÃö6T#ÝuÉXVÛ¾õ%Þo sä³±ubË`Dé'9"vp·–‘õT(Œ'‡#˜I¸´èEÖÆR²º!ÁYê%‰çE¯Vöm3^Ý à§(ÚÁ*m×KW±"-¨,Ùœæ2Ù¶}·`T›Õ#`•‚û×"kãô¯‡2}ÅFN]<œ4%$$žÉÙì2ÍþÔû{ ;Ý/‘TòqÌÌôÓí²}?þ³÷òûÛŽÏ4Sr¢ê ïñ[ÕÃ’Rþ‰¨$Ÿ«·,2'çëíé>¯Ã€y>*¶?—Ù{ûËýr?ws˧GÞ“_ô¹#ïUoo>kßPü¨(, ¨1ÛÝA™‹–þÍÀ ¶ „È^èI$˜ý;*k©´@ª"³Ç]ÇHhÚwN.鸓 XRO'ºGuS šTf™0XrÑ9 r\+0B‚¬„i2' r¥È „³7s7J•)YÊ9ó*¨ú=Òó¥Ê“(äªeF K$ÌÑ(I RJŒ±:}ÖUÈ«,Š ¤‹TÕ äQI´UNtB̈̓ ë•T]iÚºJºBFÍÒtvÛl[ñü»yó+DS§.&škçk¦eÙt©RŠDÚYkùAïhVaú_°Þ¹ë(”)d9WÑR™)î·;Ìä¨wöhG­ “—Ηtj(ý»Ž‹LÈJâd]ïÞöÛ`|„_]!ÂÂ0Ž>ÌÿW£Õ¼Š¡%Jº^· ô9Y%’Ï-ÿVŸ×»`—±^†…"µ$ˆDeÂë»Î¢œITå³´<"¢P]g¶¾Ñ”QP ` B Â(hz;1ÇÎÝ™82ÙÏ“D©ú}‘¢?‚gŒÆ7©‹¬þ£ëÕœg¯Èýó7}Ä ÈAͿ߶<ŒQâN´¼?Ì®Rë£Á2{CÉåwžM]òôk¬úy˜ª÷ª«}xCùÒ‚¦ñáGß=GTûîxÊîÔyËhdõädüåq˜÷׬t$œ’z_#žëyÎè׆ë¨<êo•áÄ_žµ<ô°;ö‡}!Á=°‹H!á@©ZÊÔÛ}ry<ß k—©ç‹ƒ9BI›Ž=¿õøÀÀÆ01Yê'$O^_pˆÏB¾OOÑŒ òd¼è,fw¼Î×=Ç<.¸ßY=ME¥Dt×¼¾ ‘‡¸cªرç"*§Ôb;HEÍ™2³ÑÇdY 2r`& ‹9P ZZ$ #Ò Œœ e+Ñ®sZZ­ÄÂäŒLËÃ…ä èü`ok[ Ý1zR@DZåí¬uP^1deÓ²7;õ»Ö/h ¶ÙÒ[+ää¼?5ùŽúï352¼…}¤zïó´ÕFPC8Àâ–XdL7Œ#I¤ÌŠ D¬cPÄ•FÎrû§#9á`G`íc$ è¡â¶½•ŒN1„W‰N à‡'¹Ž‰ž©?WN{R÷½Áss©Dø/~Hâ}jFRÆÒ›4☂,0m‚|h€HO’3 çµë<¹ºW RJ…Ê\q/£±e…Óªò㌡£²úÖ6X"àìvÂhYë;¸s¬1P8`òþ‘ ŠKU­!”&\XábzlNub át¢½í‚hÉÊÆÆt¬žTÌf;žZÊÛ hY uL\à8ôÄD, !ž”ž·UêEsé>þ!– €;;6`ñÄÄg¨ù>k&:÷·UC ƒL(‰©èÍ3#Y…ÅâH’1²(žHG6jå¯Op1Mc‚Z’…Ô  —ä µ9µV§›£ºaJDz6{VFíw¥2ëäT iŽa¤RÛRø>¬ƒU´”úÛÐÝ®át`£°½Ê²!%¡&XÑ#)3ŒÒC¨Vȼhºö؃ÑW¤Ñ\×­ì+Rˆ×ÁŒ {#À®t²FNt`Á‚kžãŠ(Œ¨LjtTÀ_+_†ç·Éx¡õ,í.Êð#=r¸«1¬¡«¶ºH³W:ôàäPáFxØõq#—;Ï‘F¦¸©¬¬Ì âÞþçáâqÆ*+º™Y1Ñ%FYùŒê Z—W:ú…hØÜn ´ê3&$B ì„x2åô_‹CŽÝ¤¬±7íIH6h|Û£G“héL7ªë©¡P·ÖþVb‡4”|"ˆš豓iNe\`×j…­”2‡D D¤±¨3°%ÈckæÖ }B» ‘]NMJåbãÇ$}øÃ :ÔYо˜'³À.UØž`Z´o" XË`8oY¬êf7bæT¯‹ÑJ’AÑ[Ê­Q«éWJL™”¹C‡ˆá}¨8½Ž®1ìß4H~žf'HsQÙÇ“s­uj9Ë95Ä?‡ƒzFyU¡hB¾D £ža49.5žÔE#˜°‰W5-¼>¤0Of‰Ü<‘sÂG¡¦T¡& Ɖ&´À€½Ó¡œç·Œ{㜭ó\=)Ô èë]íó¡×¿¼E”ApaÃEzøüþÌê5ž®f&µê\®`¦VgQ*c]¦•RF Ü8޵z½Û…‘%´òõ/êÄ8àçâÞ«KñcƒìÞR†Ólpx8“£®ŒÈðˆjd3€À,¬c zxÂÏÙªSÊÆuŽõ Nr¶@ÄkLJ+²€ÙG½.í|«>ù cׯ­ üYK“ Âfúº7[¸á ô¯›ÌTFýôñ¿õŽöÄøÝóŸ«Ôs=uêë²›~v‡JŸÞ&4ìïé ïªÈ9áqß•¬oÉò24}øß/W°½ªÔ öµ•F;XýµáG7¨Ð?Oë–2å‹:"¼¾ê?PŽë¨ã®:ß5•å¼þ³WIänneùdP)}¸QKÑê hÏ/ÈÓžù#Gˬó4QÚâgÎrÅç-ó&wÕ·;q¿y]_Q³Í*uáœ!ÏN;ž|Šëu–¶WæbÏož¯"¹ ¶"êïÔ®x}àŒû|ìÕ/8øÅï¶.Ö49(Èäû1žÃuÓ§ëÔòý©Ïj]<˜âñÖg³³›l÷µÉýhdú®ÎïLq׆ïÏϭ￟â‚LPTþ²£ý…¿oØ¿9¾°ƒ€8åìÿL `>ù½ÁEïêý8ݬ_æ0uúÕ‹–Çö{GÒO»ó¹¸AœRCC‘YÌf—ñŸp?Ž}䓊ÏIK×*AÇyÌÿ#•߈ö½. ¸oû9ê) ›3ÌÄúByHuõz~äFŒ†@ß “Ä©¦_°ê:›Ï<ȯÍÚPÈÑ@žÔ†¨ë´=x…(ûÒ"~#ŒÑëßžž2dâøÓ»ÕêQ›ï¹˜ùÎhrÕcÒÙ©\nby®û(Ie±Ìjœ W[T3ŸY³ÍŠz8Éâ tsÊÜÁžÖH©—záj{¡u¢ãÓÎV6uÉ·”„4$œ/2®1ÉÂ5hÏon„û‘ëyvbL™hŽôÐ'³&ÈJ<Ú¡.ˆeç[ŽÏ6¨”ÅYLŽÚ:"ÈàBžWE‘Üôø&ziõÌ5éôF{˜Ç';Óñ"ùo\2öq˜®çgS|$D”;§¨^(ßßjHGƒUí6–(è‚–"ŸmÔí¢!éEzCr,k.H’)ïMÍ'^< ëÖxçË® â‰Ò$ptEš=À[Z#¢GÛ\#ßxìÌÃ~½1"/—Ñš„ÊúEt°(û6Qß~$!.)H8“ã‚æ\}ùèâ¡hîQ2R”N C&ŠEQFÖæÖß™«}­é^À~`Ù†† iZW`SѱŠ"£Z-/m®j†”¡i”)iTø„É?‹lmclFI–1Š£$ÚåFÆ£m+m66¢£Qh´‘˜cF¬Tm5E¨Ø£F‹ˆÅPUE¤Ö6¹¨Ö-b"Ù Æ´¦b£VбccQŠ‹5Èj+èµ\±¨ÛQ£Pš´cÅsk&ˆ¨Ñ­´cbÑh-™ˆÆ¨Ô›`Û6²mŠƒmAmEh´…X¬TmDXÊ4´$J R­(4Œ¨µX üct4lh,m¤£DhÛ´Z4‰-IQ±I±k(µ¢Á ´Ê¢ÖL˜ÑZ#ThѵQQI¬hƒTFÕé[›E~ÕThѱjJ¢Þ+ðàx=g¶? !£þSÀÙ$\¾ ,ÁÖf{8Dz=Ò›V–M‘'m˜ƒÂ(Š…Gɇ©žýëƒp6y•‡d ßÏ׈fŽÃe*\i¸>îžT¾á>ÊyBḎUÀÛ—Åf¶ªP›@6…‘å­®ïÜÞ¶9ÚÑwîÂ8XwÏzŸÓ±¼èã’,‘£ÇQ& Cn“òkf^'B¨nÒÂ8å•—Ùò®P T2Á#Íj!€ÊóàDÊSÜa«Ë%Þü7¨ƒ¡¨uG@䈵V‡+…ääŠ*´ÀòÉβ‹ŽÜ `u+g’¼çŽ#¢,t@ˆî PãK4±r¡d²FÚÁ[q+ƒòÞdf 6G'¶€ïŠa|\uÃÄš;!GsÀtyÒ¡rÛr…OlA8Ü/d^V5H¸LQÉ[=v†ù@wë–H åp_I©cFµè8ï›åaH.϶:x^(=iFhzâGLcÔ!s|@ „0`Þ££}./¼…ÑJˆÜËâ¨óÒùÃy$Æx`;â`ï¾cág2”/9Q{]™ÜÐäÁùE¼uÙê%­zôÀŽNH`rs˜d‚kJmzíê'½2\{ä@‘+‚=¤%«bhÀ÷AMô£µ©±*Ï–‡‚Ò£€­c½C;TFøŽú­Î¯ÓÏ…&v†J4½¸rûa‚8m¥û™ò¦»8y:<ä.OBS}G² —–7˜©PFyVG§( ±t„¢};„(„gÒˆAž£É‰Õ¾ZÂêz9:71ÌsâÑ)®3GA /]DG¥le ò‡ûÄvy8ì‚Fac! #Ò h)þ‚3úH¢}zõrÚäà=åöCôVŽ>Nü€ŠKÏ‚guN’92@žò÷rËOe«AÕ< t†ƒÛY=‘˜C£“G‰¡_6Ì×ÓBR™D·ß$Œ#×H\é‚Y ì†{Ôî1Èñ²EIü¯87üXŒàYìãe !'¡š¹†wÖXÑŸžêj}ðÞ¿_2øñy¬çOÂ:8 ŸÑƒÁIF—¶±K4´hx9jN9 #œ¬ÒÔ–;õ¿Í@¬ã=´Åõâ4†8ÞTõ¤9Q‰8 Ž?G¯[rp4p1“Œ ¥ŒLéæýä[Ö¾.¬¯qù§zÐ<,Fýoc22GÆ!k®Ü)Æ2p,€Ë "gº*©¤<ëÎ9œù¸®fßQ xÃ}vŸUÆ¢O•{æ&üY•Ýõ!ëC×|Ê~£îdN‹ãÉ•s1%íz±–HPÉϯ¼îc&ûðõ¼·~ñŒ cÿCýXå¨#ýACø@Oæ §ò„EÀ#ü@Aþ€‚ÒP?½àEÿ抿ÏPGú‚§ÿUE_í*/ùªÿ˜"¿ù˜€Žñ?Ü!*/òÄê¨#ý uQWûJð #ý¥EÿTSûÕGý ‡ñOüb`T_óÕÿØ ŸþUûhо€å@ÿJ€ð€‹ÿdAãªøò•û`|¨¿Â*/ÿÁðˆ¡ÿlEP?–¨ãˆ. ¨ídU_ë€!ü"‡öÄ þ`þÈ ‡ðˆ¯üQ@0DEøAA?°(*J‹Š*§÷b¡Š€**ÿ<@VøD_òûÂ+ˆÒÿTÿAT-©jþ)Š É2šÈO·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ à€% ‚  (U )A@ $‰J€ ¥QªQ@¤H„RŠ€ E*U% ªª(¢R€A!JPTÖ@EB€ P TE(" $!B¨¨€Q"R€RHD ©( D€©P!(€( P>ãàÀR(@8 @@(  ¡"R’P`@ œ}RI(¤’NÀë>$H‘"H‘"D@€vq"$‰D‰"ör$ID‰Dˆq1$H‘$I$H4dID‰D‘ôÄ‘"D‘$H‘ $‘"D‰$H›¼âH‘"I$HddID‰D‘pøHIU$þÿUTÒ€‰ú“5 244#L˜&˜&¦L ‚`À&€M É€L„À*J˜ŸÿïÒªŸ©Fª==J~¨È ©¦€ê©ø‚„Ð4$eå=MSÁ!! 4©êz@4ž©)J'꟩CQ¡£ @€*’d&@& 0eO ™0†#&šd14ÀF˜FѦF¦h4À™4d äÐ41ˆFF&IäÄz†™&ÂeOÿÀ # ê}§š>óªÍmRqÇetÐÌn&HÛÌDÏ qpû—±OÜ¿Ms(«Êb®¬U"~mø =·™Íoæµ °ÖÖ†µþµë>ùó£ç|ç¢9Àc°ŒËÅ?D|îÙ§oÇ~ù‡zS™ê©GDM¯Qó|{9´Ú67…d“0¨¸†¹t÷V,”"{zøkDÁ h/´íg–R˜u0àwW“¥àª'u ÉI‹fùÆf`™®0Îs¼›æ7€´^f¤·v¸B£29ˆ0·Å\ŠÅ2êî˜PPV1„¸¯2bX} àŸ6â[iv2šg+cdâa¯ÕW¾¼èºÍæÁÚ õP%¦ôCÎ<'‰ï‡†ó9ÎjevF7°v6ø8†!Þ¹˜àšIžÚ×d˘Ñó}ïg¿‡ÃÛšAóê|Þ÷ÞG€úÄ= Ìî ÅŒ=ÈòïæÓTÑøÆÈǾ¼ÆaÞ©G øá¢6‚ñ¸.n©Cìç“Þñ“¹gyîÆxW¥å…ÕÇ}XT€‘ˆÆC߅ë¹»jcÍéeË—9€1òwg¼Áj%.¨!‚#'&ó„<èäÎ{ ° TãçÃÕë¡«Ì€÷{2Ïfàð“fs{÷╨·í«ë}Úæ±¸™1GéìJ.ËxCæ% ÷Ù¼ßÚ5/¯-óÜóš];ñ@ùß’’|YÁ…Y¼îk¦Ý£›¼;Qy7ÉÙéÚ}aá„ éÁ!UÏfˆ€x#Ö£DõKe`ê'¥OîÔèŠ%fH"@9pÉS-¡Dãx¦Eg0ÅŸSÌ[ß¹9zçÕäxüs=ÌאָåU¾d…G RÒƒ°Á((-cC ïBnÑFG8(ÜDÛÇêÀ“¾¹×YÏ>·1s7¸S/DI"›é»qɶҔ7Ƭ¼CÊæRµ7ÆöW„p™BðùÙ€¹áñ«|g!]­¢÷ÌÎâº#ssÍÚ¼tE­Æ‚üib£vÙˆƒ“ðŽ…‚Qá•  ]é¦ ËwPo8àMA¸ÎJþ·¹¤!;TÖÕBŒ…:X4v(Ç0Õ8¤Ó(ƒW (¦ ƒ$°M6Jóìf¥kdâ\ %– Ìâ—ÑÍÎÖÐañ"°I3O €fƒ¤='/ȶ…è–Ùœ™õ§&362àÂÐYŽÑÁéÈ‚«i ‘ÄÜ“¡_eÿ·”â»'˜<;Ö÷ž¼yWp¸yηP†„#LàK…1»Lek0¦þƒÀ‰Gñ¥ aåÁêKZÕ¼åüAë}O„Ù¥‰3L`žSqïc3»¿8Gu”Ô›-¦8µ¿®o<Ç®npUJ½1oqŠ<Í0\E×…Á&7ýdyœ\£»¯²ŸÂôx½mMía#ÉêoÅ}äïrU­÷Ò Ö3϶øqȱWì¨VÕ ö°ƒ±±¼Tó9k´³Äº‘~µËU^¤âÁ­ã‚$3À…¾1Üõfå¶¡Ë“Þû<ÐÙÛÄÔ’qJQƒd27·ßvs¯`úA.yÖžüÚtou3…óƒZA††„#ZÐèÐÐ}xûñpÏ[‰9á¼+&?^žwp2O"ƒ¸Þ lM£ÕÒ&îÁéUwsco¯0s—üùË +gnMç,#oãZô·Æ§lc¸Döÿb/¾à÷ÏÊLØ÷’àA&}Ù²;ÄÛ-DSQÕ32sÅò^cÙ|aÛÖŸ‰Êýc<¨ˆoÎs³ß #Î#YâPG¤±–($yɯý V½¿DËâÂtG”_M ˜„|n¦Ém~˜A>zp¤Ù>ðmp:TÛž”î>zÚkÀÃ+ÒãõàÝ8ðÅ6÷\U©¹L碠^Þùß…ýúï~Õõï>£8ÃE~ïõïÞæÐîÜØW<û²`žÕ·Ûƒ"V×¢hECêóžm=;·Ü»XûYi¬p‡S—p^x¸vR¿UBñ‚Å;„À«–0Ïâ©’ …ÕöŒ®©’Âe°húiˆ7ÓF)„R€Î&Y| «-‰Œ™– æ^Û¿\ßs‚ÍÏAGâÆzò¯£ü'§™‹‡¥`¯ÍæO"ÙM þ7~yÎì×[Ï;ü"™yö„mfÐÏœÌ*¼/ç¼ç)9'8û†L­Y±ÎÁ¾#„ŒÚDMß=ó1.¦¹ÍœÂm%án;¼§ßÂü+ÕO„ç|¹ëjÂ…†'WªØìèV~9AwmŒÙãQ iÞÍ{›;œüä.G9œÁu7¿*2ï’]îN+Öq±òsÛŽÆhÞöUâûżÁÒêˆGDè°³˜ädL†f:–˜ù½ÌÞò¹•ƒ»´Äíg`š7à®VPá%,ÜLE…d ê\T°/ŒêFáiå•ÔEJ/V›A£Plß›Þbø¸nLàË&Ò¹¸fd§¹GªÃ]ëÈÙò §Ž’ ™ÒßñÞaZcß‚Ÿ3Ãs˜_3’Kø~9›|xK‡÷›ïjâ‹ç×Þöùêïa)Ï|Ã#7­3(s­ï,´”ƒAÊKg¡TaÂUKðµ+,%&ŒF*±Ø¾ Ç´¦GöòýT Ëò*o·úvgÝáê ¾vŠ#'7Ç0âHL_Rá3h”üVÃ׿ÅEÕ™Á¸%̵ó˜8°Ëh›KÙ8®ãÏ1wñwëÐÞYL·—Ïyy‘ Ô|©ïT|§—ðkGG$ØoÒ£ËãüwæËÁÖ’í˜îfLõˆFºCL…;}öClß8ñwÎõ¤ck½KëÍLïDŒú¼{éËò*—¬Œ?¯+‘ Ó‚1±h!ÕD'=Ðö ðÑ!îùRFÆÓ£=`q,À^Á;Æ0s¹Îo›\…ímÄ@@€fdå¡åÚ¡ÚP2†ŠTjAww?Ê@dEû„W‹|‰·' HfÆ>S.2}¥ã6^äøs{ŸVNþÞQÕ;ð‚ýw«‰ß|¼Ûç/-Ý´)´FÃ%…‡&¿…–^ š˜šháiÚ" bšdÉJㇷ!X *cžÕE£H˜@ctt_1/I‰‰,Å[—éɽï¶÷}8w¹êlq/©rpøwGç}{ÁÃÃeRá4*!¿C-$Y÷㺻ØC1s^Éì<ðp¾f'òà|«¾ÂV‚Á²˜bªiE¥#9±LD¹ƒ€”0pNîEFc3•y˜Ià›ƒðNg6¼É¥0 oå‡ÍŒ&fUŒ¡ë^iýŒÀZ‰nÊÖd2÷Y”i” ²Â‰&"ò¸KÀ RdI©c.þc–$V¹dwUvµÆ&•%©ÈÔˆŒ©䃨ᯟKÔø=ܾ—}pÙžÀ½›Q…?›Þ"M^ýß;¹¶½¸<Æ¡óqp²7ƒjŸ“ç'˜¾^rŠ<¼>ó4Á‹gŽZìáœÃµ±›(zÇ*—[òå}¨Æ[aˆQQ»¶ÚÝÏ7Ë9œE®l´vƒ»ÚOtCº‘¾&ò¤Àî$ëìX–"‡v:K„…hdeD\06eÙ!žìMõ.Èu·¶\+{=ÁëxНTáO8©G@£*Ͷc˜Ñ×»iûÈeßN^T%ÜŸ[YÍøçJ®ŸB³'fJ;99àöŸ9ݯ ûÉP±]F®fåS©7 ša`Ë)ЏR)8:&°?Áïi#‹=yA ­‹¶Ù=‘Tò؉+ôÈF­Îj~ÕóFQ(ô»›I1óäô&¼ÜËx¼´H‹+ÎS òÓRy8BxSƒvy±½ñÛÏO;NÝ/s•tàýëÜàô ðï^UVâVHòÝD x€{"£+‹ÉÐÊOM—~è„&þ¾{oßÛ°|;¤"ìõ:‘³yõà¿{õ¿^I²džØ°7ê|¼ßpms%á.ލsâüQÍï<–y: ª,ók?7ŠGm‚‚¯¨´*L ä"R¦¨iLZ¼60a‹4“w{´˜"Å´9 ÙÕ‰0šnÎÙ|ä®ÁÙíšÅS,›mf” %àðGh|A7ãU¬6mî —µô`ßVã;ñ8Wx¸×}æà_1vy= àE™)8:?Z&vãáÍ™ÜNYÌ*ìÖ„„UtðØhpÄ‹µ¹àV›ï¿}ïHê;o©xó)àÊë$Žø½Uk…/¯,‰‚9"eX Kq*‘¨5çðJ-†È‡½]ô÷‚+ìýÅžxö¾Ïl$úhH`j‘nE…Èᘨ´%›È]ƒÆ*%“Éí’,°›¶|ܬàœôŽ)2S2ò̸֪“„{‘ ”¤Qbh:ŒYXt8X<“Ø5I¦a @Â"Žù„YHt,"ï.Ú¸µ«”Ø®ú¸O×¾óß>oëZ@x€Zß›¿ñWó$a7E÷Œñe{Îzç;Àž± ²>«mÆŒ6,¬Ëa4‘S®ÙJ‹â Õ6GjoÌÉÏ»^·DƒÍïÝœÙÇÇ=}váóÛ}Íúß0…¯9"*! p)LB .ww‹uÀÀäJôgªÆò¹q‚½±7¾JÓ+«*Tô¥Œ˜~¹Æ8ñW âœâÏ »ß*ì¼Îæû;œá;puo·ÑÞ©8D>MŽŸ<+ñåœÞÑÙ–ˆÒa2i8PM$+Q¿8C}“:/„À‘ÒäËt'›ôù¿¶ŒÜIì?‰ÊûR=äíR7žö/îö{Û°û+º¨êz ¾ÌÚ¸=—W‡=£æÇ·3•{û|ž®Üø'±çÛùôß>ŸžÔq4I£ÉãúJüÚ?ürc-äÞù±ÌäÕò‰^]å¾ÏywÚË*v·iú̾7Œ¢\å¼;S~oŒÃúbžŽæ øómÌiì]dµ'")ÐÍD˜1!½“¬´e³×{¼óÍÃ^Ï? >ø_sâX:•ì.²óƲss¥OOvàÇÑYˆYï<Þýfeþ$ža›`",¢&mL$(Q-!„CyvH£VRq¹êž­Ïn1 ‹mÂÔ›tž=Æ|Ÿ[Ÿ9y}Ó¿Ñî Þ=¢AO»³͹µJ¼‡xþñÉG§­¾%l Κ{“ÊÅî÷Çåi6Ov‹óxyFÝç866Vþ¶¨‰K×kűóÓf±¹97œ‘"/µó¡òoá${Û¹^uÞ|Ǿy·´³¬#óÉ8/®"ú| xÐÚÞÞqrn$˜ÞÓ)*HËsCWMHÌD“9)TM‰†xƒßÝDkˆ;Û~ù¿\Þo®þyÆvOÒØî`Mû»¶ûÛꇿ<“³¬}Ú·x³›æ 2²±TCÁ–š™)!œrL¤Ìt‹Œ1µ“Ål[²[•ps†A"2u’AŒBÈ!˜B8´¤b¶Ê7L.j3Þ¡p7!¶5[У`ÔözÁ®ÔHh·¾Y´Ðß9=z[Ó¿Šú_£ðL}ZíÚWÖuÇdÚƒ~`ƒž§—¡ôNªR g|Cܧ—'ÖÓ×/¾?]oœöùI—¾ëƒ)ß½³fã«4Îfw½îàÆ¹µä8D0–s±äñ.LЇ2ŸiÀŽ$- š¡ì@Õ ÕzáB:Â2˜€‡ƒÄìîA”R¼`€`FX;—¥˜ íe ^ ÖÖ²L-‰¢˜¥7Ÿ7âì}tðq=aS— úñ}o¢s£Ý~T„3˜©˜¬Âà·—ÃHݨä™M™ÖÆ< ³›91IË#@Ⱬ)>ZG4Kgg¦n* "~«üùߟ9´Ýò¾vfx^·¿&5¼÷› 4%EIÎÕôÄ8%3”‚1þ2ó&5÷‹§Ì˜ŒÜªk%\`¿¿“—$ã<\ÛeŸK§›ÈÚÙx³’3¿]S–IœË ïÚ@ž-ñ@§¹›Y‘%“òÐñwÓ ó'á#´§Þg²!Úãi÷(¯®(Ñ •é¹õæzÚ»ï2!f©óoW™ÇžNw’RIÃ-·»ËçÒdo3{НKng¯~·G½ëÙB/£/ž\(ê>tñnš¡é&Õćæow7ç;œó­’Cùä¾ù´&¯£IûA¼x—žÃî¤6Í]ôrÀšI[0‚ô,ŽoƒzJÉ.U£u“SÓIئEL’Ùþ9•ÔA){T”ùiòtùwÕß§³wCÖm-»ƒ¨dÝ Ü壬d0/×n¥ P¬\€ËhPP-¥ÃHr4p%2@/B­zdºdY(ª3y’pážPöGK4`"€I$R`Ú562˜  ¡œ!„”€ä¡aƒf²¶åmUAx#ÚÅÌææÞÇíçÙæëdÀZ¥²6m<#`ÚE®ìÊ ülÉbåŒÆ˜Zz)u p d”P67˜zqlIJ@R!P (·Ê3s0{ž1ño Ñ\êíîàLó’õ0Ë`Ž!éÐÑ¡À„Å íÑÑaTÁã ÛM¥ÒõÔž~Þ¯¾`&8Й×ÌT¢¶dyA+NK±6‹„öÚ9êM˜J{;î7¹útsf>»{‹H—ؘËç,æø÷ƒ×תD[°yrÚÖÖ`Ãs'>Nä+¸Èv’eèìÏà‹gÎ|¼TlÒ+3ôõ›ÇëoŸümóý·a•V~ðX¯¿ÏÑ’Œ,ü?sdžóÎzËç{ ízx îU›>¨îKÂb) f‚šB@¢hç¼YVÆæñZ¢—'<•äΧ ‰’Ëb—g"JDêQ†Àå»ß6k¹î©ÄÏ dþŠyùrõ¯^ÛùÚG§íœbYoϵœÂ´ç™—ÑêĬœNݤ Íò³Ô6âó±Ú9Þzö)‘‡Fþú9áÙê (‰ ´­¸³µ± â™ÙÜŽX:¢{ó CfCjί«ˆ-eWÃ`Ë0ÉÆp‚ÊÊ¢÷a %†ùçטÇÌúø''o¼]Œ™µ¿ŒMÇZ]Çû͹æ÷Z¹›=Š­Ö¼ÁÏ'¯{°:Ä"­ ±2ylS‰Ð¡ŒÅ ñ§QÄœ¬Œ1Ë;õžÝ¼ïžy”Üß§•C°êß¾Ît¾¾ïJWÓËøl™}ù·Ôw‡ÉíçÉ}©óc™¥ä•* …»s¢1ªa£Dm Á5Š]ŸbHĸä(Õë äbk“H„‘éåŽ±Š± %XZ&éÏA‰†24Y¥Pb#gf‹·Ð½5E"“”B`•ÊbÛÅ¡²±f­YF[è”-›•a‡ÃŠ1ìÓÈ*äÅ´ù JШ¸¡o4o’ó jg–±m‰ˆ¼œ ad 0W^‡¬p­7Å„% f¼ëD'b-<%ä.Y\BæD ñËÓ³sÜðᚃ«ËqòXð2-„‘“.9Æ×£.Šð[§U*ÆL2WL³Y 8Úb]ƒÒmœIÙ¯+!,Ö Å4:Ö—<Œ'.Ü@®tØ ælqÂ3Åë}Ùy€AÖ¼(ÚÙ‚ß—Àµ­hkZ»%­þÜŸ¿Ê6îÜgŸ¯¸¶ÎpOt`mËÒÐøŠê¤Ô£…ƒQIˆ`;=ÚËÍ­º Ù_80’ÇÂý™éB ּT3jà¹eLÂ0€Ï°œÓ¹Q›nÊÏr³^¶:ǽˆ¼ƒ·ÎÍ#ÒÔ|â¨æiÕ_$.œ$ã.‘èÞ®  Já IT Ù3Ü{ØØÉ6Q$òýpZ7ZÍã8=ÝÒNÈ6 ÕN*ØQ˜ÈÌ ÄG=3C bÇx;}e"çŒ ÖÂ2‡8¾yGhÛØöשã…x;(˦¯¹™ ë[á7(T…çÓç×9¶HÚ‚ˆîï¬óvúuìŽ8ÎÊÚ£sÑÜ`íLfdXàÄ`¢žsL¢(bBÍ‚‰¡Ä óé1ž±ãõúó<Öû¾T…Š6Ê}Ï_t2Mß'Æ÷‰÷Î ‡Åõ ï²qÓ\mÛ%äÎCȾ9>Ml|ÄO®ƒÏÇ»ˆ{ë[o¥¿•ƒ# º”è–¦hdp¶Ùc1‘’'+T¤ê]X—Ì#Îý:}_¥Ç~wÞØ!ïAÓëQeï\—ÙžA¹hç ÷ׇóßXMÝ|÷ׯaàÛ¥{Þ×6;wë¯?~yЕqɱx­"ÐÅ42TÀ>§FÇ/ §+!MaeÕsár¯*•µ92CA8µF¤FZb„æIÄàjÃ»¼eoÞû¾ú{ï•éÌ4XÆ0•Ýãi ÒM³¸èŽ@{ËÑmÆy«Ô¤D”ƒ'By¨7%º á´±;¤S•ɺÕíä4¼\±JF<ÀA£ú™‡wnO ‡L@ò {µÅDp‚&ÆEƒ0ΚրH»‚†bÆÒØÁÜ’ ¶ØiF“=åú·Ò–-)ðH"yÉMðÊ!:Æ•óoâ°«™4x°²JC9apäH0Äáa1(Ú;1 Õ(Ç]å4!—Ë Z ;2RÄaeØè×…„Œ…a(©Ü™‰£ ¬Ä“‡d¥q¨…n¥ PÊ©^("ì¡Ùr uÃLdž¥ÉÇ-æ`PÁ žLÖÇbãc0û›ŽÅ ´hÞÌ·°ªfkV¤"KÚgWÀåÆC)€Éeøs¡†Œ‘³» ,Ù”UÜ Ö±^ÌÚ@Œ˜%ï.qÖY=¸t$çØo­‹Û/ç–Ž­XÁâ]…i¸dåŠS8.éupŒ"dDÅç0@‹#‘z&’•êß4P¹pŒ ¶P¢4ïÒZiT¸£²!U!F‡8‰–t àö {Ù¦€ðˆœÜ §<@1¤‰âˆx⨈Ž^ߘ>9×;Kg¼ íµ @_Mž4õy¼‰Ú¹»’û/ZhŒ ­£o¨·‘,d· „TŒÝ]ªbÉË€¥‘É@sšV@$ˆ^oC“Œ §±t|ž+<ÛäÛ`1¨Fgý¼òøÝkËóð¼ú](ôßÇÏËîô5­kZÐÊB’ˤ¾ú½Ê Ù$³äïže­ç<|ç8ƒ”÷ø»3›ïüW _.ðƒÅîË'=1éåÈ"|ò ø8÷ÌhU™,É’^(DCD´;¼ñã$¯9T/"q«Ýüü~9ƒ®x +\Ù–œÉ[t0ï"ÒÊTB“Uyñ¢Rš’„$If…™Vš=9Dѵ”K«ÙØCºŸU`•!h)W–‚eC7•!K#W@g<›Y–_!ÅQã[Ì&Üa8α¬´Yˆ¡ÉSƒ€ ™3á ´ðc!ÇŸ¿7¾{~ne†ˆ/ÉŒ–Î~Ï¢ ^^˜V ˰³ Qzš©®ðpÒ<²gå7n)æø2>1«Â‘cX,%†"”ÁJÙ¹!ÁºÑ¢,­Ô;ØäN –—›$JˆA´ˆ¦"æ’¶ç–aKÀ{Ô³µG]-;ˈ@‹ 7½3>ÈL¡O†Ü67Wn&ã#›±R1±|3º‘S7†ˆ›æó£¥uîFm0¶»¯Yä>Ÿ­ë{Æå"ÉHâj¦%Ù£ÛÊ,Q”‹Þ´.òÜUŒ°aÐ6Å*ÅI ÀÄ‚*Mîñ>eœw›v¥Þ;J‡'XÇ'ç†OǧNÏ£ïhÐùÞÕø¿Ÿœ,É5†©Ôá*³!· °»œ¬¤EýT!Ð÷¼F`6(†&^.º´ÈŠ´LÌ9@ 1(›GHÊñÖvÓ98, "¡Vç)T,"r3#&Îꇵ@a ÂTÁ( ÜBz¸6"t/BÌ‚£¼`Q‡;9 $Ö”A‘Ý»„zÉ=°.L,Œ €x{Ù¦w!blíH»<".DÀ(„W‚ø–\c ká$›. ,ÒÁT¨@)±ƒÚ˜îUŠ Ƈf9oŠºxb ˆ|hÇÛ¸}ûº¤‘£Û|¾rŒ#G›OË ð6â0ÅŠØ‹ lÃŒœxÕE^ÇÕxF³FP†¥—3*0!JG§j1C•–{*9nažÜ‹Ä ™ÊXp†„JfæûÁ0(>Oƒ€{–6E4ÅÊÚ£²œ­M®tyÞèJ„i›yxX IÅ;»KãHl¯J„sa°ÍâiàÞB ÍDBáxMŒŒÁ ¡§ ¥½(að¹¥ „b5«±G91L$å°€ðƒ2C´Gç¬e&KNÇœ'ÌÂÄ0å†õËç‚ JqŒ7/)†;„Ù\Àé´ßž^¸ƸRæfòÔgÅØ,Ѹ/iP˜=:(_5[cI, ׺oămÔJéQqX> L…¼šð|tÙ E.¹ÝR{÷9—·>1øÜ<:ÏÅdŒü=ȃÇοSà©ÄV ‹w¶ò†²&|G-·¬cpöliũȋÆ|4çž—sÍßÀ&úg¹2À|^§lÔCð燡Á­^™CR —}&í-s6CÔ¼kˆÊ¼a‹‘…Ó#ëPd‡N•«øÓ×xBq­%‡È'sÝtêî'wàôð;Þί¼»žï¹wÝ}ÿƒ:»{jÖím­kVÞ ãǨˆ#k®½sêj÷=¯£úuòãC.û,Ü=÷ƒ¸=/O£jeçÒ—3¼ž2ÑH„,M‘ߊ‘X§0p>EÞá"$Ö@¬p%È„@;™ ‚äú³žl .„˜bˆÈ Ô Õ‚6.x­0Ð$ØÅ½º LÍiãÃC;£ˆ ©’¾ ¨.¤âàáxYdð"®•)&Œèè¬AªzŒ¹,Ê©K&‰48w2…mΙç8¦3kc0Rô`Û|u½ÓÝä¡ÎN¦À@D-aëÃde°–ΪqD§f~âôVuh $’ØN^—/ju M¶;gRÆ:Ò¯áeXc5 =»„I‡5f„Ê^æp²"2›º=ŠFpÃH@19x%|ˆ]ÁÓ¶Ø &¢Y«éâÐĽÉð„6ëpnÆîÂxVÓ±ÔeèÏy0ê:p LÏ.0+œJ0Œ—ϯ)õs„U¾(}Sîa˳œ;/“O<‚³"DQG7Åë5›>/ n`[* ãi¹& #9„ùcñ¾Yª•8…á[ʦ¡ù‚ø©JÍž ÊAÙ©]ÕøÑA”l‹ ³Ã]@HÓ£¬1<¯4¹Ê´´$àòŠޏåRDcïX—=xb‚+¥PшKævðæ(†\è„1³t a‰ÈpfqQòÀÍmO’áPÂ9½V—QƶQ.±q¾v·çZÓ<}a/i¯àÇÃôFc,R¾«k·åÆŸŸ¿ Ç3Dœm@^10oÃcæi p'$ $$0Jœ°KíÒ\/«’!‹}7Gärĸ—ò–QÇ,4Þ—áý. äìâÈ1§Ð*¨°;¦Äº1&È}ÏÑù67¡úm=?x½‘„3õÉê1# ª„KÆœ-¦´rÕ[]ÑSx‰a/tNk“QA<m\l‚HÆ0î@FèJCo¥ã|åàg\f³œ!“3®ÕØÖaMn ‘Q£pÓ—{B‘TàH3ŠÁ@8h³ Å¢\še,c./S–fbNC‰x!Càrzââ·õbY 6“‘$–M²O\º»©ø£(ƒ #†Ç¹•‘xÆÝQ´¿*Æ¢&yÑûhíœw ‚dÉHG\p]Oa+àÎvu„ß# m§•,Æ-meíŽÀKŸm« â)Ñmˆ¹iÍnnTÌ^yòÙŠ>+¶±æ%W<$)x-Ë@–J'¦% ¹C´ºU‘¿…/é³ËcÉLº:Ë lñ¥…A$ÙÙãjÇJhî¼o´iì&cŒ +'E¸s7ƳÒV^ õ¾S˜-IgÊ`ð,A ®û뾟¬Èn;¤ÐäߣíÁžGŽ»ðãÇ€%ଵžG¾&µœMvw3“n‰¸B`ÅTû|Î~!æós”xg‰ÇyÌéNÔõ=‹™5áÌ”Ú|ŸO½Þ/|Œ÷›ß‡³Ï[1à!D 5^nÝÖÅh€–íÝ”Ð,0püB}÷ øÄ,Þ …JUºÆOBɃ‚&¤²²¶7C˜q0nÛ"µM˨3–YlaÌìªa²òseOU#Œ@ Aï·DÇa-C-JœhÇ 8r(Úõêp•0ŽÌ¤ZÌ¿¸GzÏÞ}^·ZyWA›—‡\kC? ñ ¡v,<äÏSêC…‘"ÑJ!C*ÚÄ¢ûðµ†÷_  <ö'Ã@JÆCVì‚Ykf)#E#á Üð˜v{¹Â¡ŽÙ¹Ä Txç ¨WÐù® TòÇT©¾x—йL=-2L+á÷“ö´éɹ¸lVg±4³öbÊ0"Ì8&8+J!a Ñ¥5-ANhgÁ‹ä ‰ÐsQ!à銚&sXX::'b¤ ôÍoÆ3¢az AÑ-6".È3OµE¥!7[þ5pö!ªžʤ78šRŒ1©r/ƒqwŤD³¥¸¾J˗«FN´º9ˆq–‡BÛÎT Qg0H¬ÐÇŠFvSQ (Ô»Õ`…lDªàfÚ[TTÑ… Æp× º,ާ KOÓÅ7(?[úÍ_Gf¾ˆU" ˜´´ßlÚ^¶G  ÐƒGDèèè­?_Áîloæ7ö@ôIíZ;_Ã= âçµÃ³GÅ">Kï½ùä¿‚î×€Ä'=sÌg kï gZøÈ¹¢!‹x¶ÚÀ‡‚C@s9Í¿×sá8ð8{nK˜vXñ<9‹¡EeD ÉûB!9òfÓÉåCJ,ОÑ‚TŠ¶Ø§ X|:ñR€¢ÆN% ˆ€ ·&â@ŽŠÕÃÄ9À¬—ªöï Éâóœ?DW3Âß ÉfJ®0® $âdL¢Iª¼5aMãv€ä$ˆXó‹df1 0ɱ°Yü0¾ïö;ó|<>yh{—máý`‡Êœó—5.QoBN »-^yTyjåhÀjöê ‹ŠW‡jú§™]E±ç µÞÁ â5 Þ¤{h«‘öoZÉAe4@ˆ=Ø™PÞ‘Vx&†!I@¦ Xº7–kºr¡ ˆÓ"Ç€ŽùÞVðœ"ñ;‰~t[@àõÐõÎ;lpOh3Ï7#Í<‹3m T:ƒÀŠ(µ±P*8- ¸ .-Û }<}í¸¬ZƒP"ã<áØX¼ Ê Á`”ßæ>¤™Âîѹ">ù]È9…\aQ ŠG”dó)ÁÅ쑈ú¹â½³šk­`Êæ´}6£Û=k`¤öä y—ïBËħƽùºçs4ªŽ2Ë’øgÀ‹.e—¡d…ÝXÏ.b$ dPTøt1&ñÏ$LƒÝû¯ÏWW|OTǾpŠåf&|5›¤ePèI`%u›yoán|E¸¥ß{ë£?DŽÎ»IDõkažìšþå‡Ö×jÉ6„H}úCf+s? '„¿Pü øo`^“0­Ö6fÞB‹.¥â“Œø†¢hðÐäAÞãǨ9 ™ƒ:zˆË¿ANRIH§ª„q)÷H3û1|ï&¯H&»‹ÞPÏ¥éÊ2nîDÁЛ‚Š t ûðÜ]˜ñP„KÁ0ž[“’úW²oÞŸèá±\7< ùJç‚×â€9»d7 A +ÑŸœàÈØ¾{¾±û¶`cwÓ]âö¶7öÌß–Ì,ÀŒÙ•!4¡KÐ7ƉWž/Àã$(~ê•@A2ËÅ5¿?WTé{W<2"é hÈŒúe¿€à}I+¬a±É€·¡Œûw~sÇÒ§Ð!}{TŸ|‘ù¦]ùø­ÞÖ«’íGŽÄDËs%öáßj~ÿYp×G×µô¸ P“È|Iî:PpkòCßOAô&íç²EmšDC¡ æ|Âw€{_9+Ĉ ”6l´k±aG–Aª@rts×xUAæF±e6˜£CQŠV`0¸5¸YK`54ž¡(8R3£9"3‘ÓŒkCždè¯gW$™UTqx¢F-芢ÐËGK½ÎòneÄjq$„9dEv…ÞY &8,X%]–ÄÊœ’¦ò×d‡:ƒbi}äUu|鲆Ï=óm‚â7Ó„öfeÒgŒÙš‹u !#Ï…†|.é­*à‡jeÜTö\Tì¬P²ò¨ææF Ñ4ò±ªBÃ¥S¡ ä°ƒP‹s„|¶w°˜¬ïG$@àùÆ–'`.ƒO [ð[f§4eŒÍ»ˆ’±ž¨² —G5áéòrª@èP¹¬pë}»©ÆÐ 0rë‘OP¦ŒW±âO L‹‘â¢!B!¼Nƒ—€ÕAê3 $zÜb“ÁÀ«fiYݘtkP¨lœÔCZÆßCÊŽ2V\)ÈÖ#9ê&в_aq‚: E£ØqpR9`àÏ)ûûØÉI#âaEÎÁ×.õ\[˼¨1·»ÃƒxÉ¿„ŒïH¢|?¯ ìQŽüë£Ì±Æx„»>d4ƆÀ^>4A9и_“äþ|¢ïmˆ B뇾3›ê{f‚íw7É™ÉGwzªç=$x{½ÇJbÇPRFˆÙ„£tõ¨NHˆôÛFN…GÀ™Žnå¿1îS»·á·óæûÁœäŽ-­^-Ù~o<Þx?OX”O ëÛØ’ßÜÿ„¨âfMJgʧd_O´'b·ì™(j!ï߯z³‡©á´(Ý÷¥¼Õ{S§»U -,Àš³6ÝÍ !Ò =-|gÜçek¬OjA gÚé·â–ý¼ôë­ˆkc=éÀJŒ …¸\E»¸Ðn•‰ôL$4²@b;XÑ<¸c 8miW/‘#4ÑàfòE¥œoY ±$ÚžSi7!#¸'­•+ŒÑ+P¨o·{  Ù&ó»«f·/i#½ÛÈëF¥1©Ø+šNíÜE”®Ý¡ÉQYÁœ°áô2Þ2ž)P®ØÉ´@ b"jŠ„ÊY¥,UXV&«‡%>Rzl‹Q \hARØH-Ü$RGïÖyŸ”¿‰yòÑðëÚ_Qðrá‰ÏØÎ\B=…„m`ÒtPbH%A#så–&F#º4ÖHD¤D}×cÏšªÌHq´Ó6A!ÙÄÜ¥hÉ9c{˜}ý<Ÿ_<í+îayôûhzPŸ<æ»Ëœ]“eÿf+“þ íÄxV]“IÖÖ~ãÇçµ áûh^øæ7á=÷ïaâàãèï]aû§+Bì(Yà!еAšñªÜÓÀ !àÕ'¼yU˜Àâ‹’°5#òdjPa×ÔÞý.Êà=§öaXSóë:qLëwÕTôtÌL›n²íFréS.¯Ð7 â–_(·•Mnà ²C©û7¾ ‰š2~¾áõž·«{ë<ÊØhƒ·‹›9ž’ƒš~TEepS:ªQ“ôgyÉ@ÚÔ¤³S¬®^¦ñ2¸‡&—Æ8ð+ÉðŸ=.|»Þýþ˜Ç¢A@Äú2ÎׄJ*`Ù°T•É@A±‹Š;þ'5„^Í3—?OS3ÐÍŒ‡¡ý'g‡ HÐÕ„ˆ„zõŽüÇÝÙŒúáÜúëO7Þ·ï³Üé÷.ùôp¯|iѾÔrq ¨wD¾ý˾¸ Aðd[»A áiL Åq ÒjްÁ8Èé=íKá]#—? ]7Ñ¥þ<“ø^¡#ïsñø'\æ \‘Mák`&¥.j¦+t]5˜S£õ,b¸ ±t%PX@3+#j#ÔöËHK7lçÁ9g(™Q 1Ù"+ À†q·|Šˆy|CÍ!»«¿\B({{wW$àÃɳóÄÜDk“G" ™^ÀĹZ¹X°~±¼-Å'\‰Eßg”!äš'‰ŒÔ©ƒ öÖ¨ãðŽ`Ìçé"èàN;óÑó`ó b|2xEP $³a)»åˆA†ÀB¥R×άÀ¥€ÝZe.øñÌéàðóH¯gèW T+ûIÖÚ¾%¹;é•0¨_[`Âkj`ŸøÉMˆˆ7¢èu¹6v“ß'âûXů nIO¸_u#S°´ä,ÃÀyÊ[‘—ì6ñÈç'âÎ ¤»ýOĦù‘åýô@¹%eéŽ|xðaõ÷ö±!8©}hÏFEÚ°K(}6•­¸óó_‚×àN\ %ù0¼’Œ+™X>øÁ?>Pþûà5“cu ôKå<7wªæÇ;ÛŒï!QãRe…³S¸ŽH –-÷Ç\NK:~ v¨×cÁææ¯ƒ".0àÜH{Á•˜ƒ ­tÁßJmðÌÛý‘ó3™ÃøèN"õÍ ¹eºÄh:ÑðÆ·R ƒføÙ „PÁ„‡x›]ãU£‡½gY*ÐHàéSÒ®ò<†Û~iÖsJêDzÏ€%ßð´ábeÓ&†eL˜:Êݱ  $ë¬Ô"ì_(E–Qñé&µ#nT¬ ÃégS®ž‚€rèùÅV¡êE\etónL¤Ãfd¯àm AX··G±oÿ7"a!æLdÆÊ¨ ,Ë‚wù#F¦9? ¼Ó¯ÒQ~6<ð¸6LR€‘dµî§ˆ"± :ˆ-j`ü Nw_¢GÎuw^{?6·ætz°&…ƒlÆ^ïˆx‹Š§RU¦¤¨–ïÊÞ SåËÑ^ƒ0BÛó®›M["\Ä$L¢8W‚pæÛ-²C¯F–C™÷(í„=n9<»ìñ¤²ÞËFe£¾p®¯_\Ç·‹±³½ ˜÷ÕË.ñÆ ÆyÙâÅÄE°Ïž®c7›¬úísw}Ǽ6ü×êq@IäN›êÝù Äâ²|qÉ¥¾¾ªÎõK(Ò©,ä¦$cȶôSÂŒF„Î=ýu†*ƒ /$ (žL¼ŒJd{™32hX#_Ÿ]Bè@†o’¡¶±j^w½Ýes¾ËȈê'‡sì‹/¿ha%ßxcòx{÷ïΛœö¼ Aà[Ýap NhÓáÓHA"/Þv ï“bøÃ+WÝý? œÇ´}wå[++bp_§6cHYË aB~7|±·Ãå!Ñ/Q¼{ÝÜ9§sRÄÙö<É|vjÙäÝ2õì`ŒšOÂh'ddÜg”Û8ÊÏ’o,bÁ‰•ÁS¹±¼„¨ª?tø_ oLM¡0h-0‚aXŠ€ƒÚ’/L#ËYî‘…G=)‡¯ J&@ZÉPáG~˜ÀF‹"õ‚bÈòQb 2Öu‚'ŸO÷í¿ÎzoÏÅÒ¨”›ó½ à\ñîû2a)"ÀË•.¦äA¥L E=ÁÍ)$,™8˜Q¸°ˆ#º¬!yú “™ù]ï=¾éÎã˜fB|°I Á\Õ ªÕVdœ| áÇĺxuÈÌÈ0z²‡s}¡F°@bphzx‘e"mÅö‡Ï"¡T_!¡Põ½Œ÷[G|¡‰ù^—‹¿ar'5Ò(, tL)åuïÚí@ ,y,§dSWPœ„\Æ ò$ ²Õ€`fÓ}k/¿¥-c$'îÞr Æf2ʪäÙ‚ˆî¤\ÏÜ3 sÉvZÀôÔøi+.!…šg_M'S$ㆦ«ÑŽN¸kläY¶ƒQX Ha©ƒ„Ie#ɬaÔÙ£í<’‰ÅI‡%¹Ý@>“”‘ƒÈ›Kº}B‰™òqÂu/éIBs°4ÄÔ 69$ È«ƒ!žª³†¥aY…JÉs€^>Ð牴ЂÐq? iÆPkÁ5P!¡C–¢AÐÍÞ±N.îŠè%*¨‡Ì  BÄP %À‰%Áò§Ùþ(ËïÉG„ã $kÎ:ž6´“\‰Îg¯oåyÅú¶tb~€cÙ‹HŒ &\q î¬ý é„ ?“ûñsŸVo$¦ÀíôŒIÀq}fàÅê³Òð—³Ø”äúbl»á*øA.ˆXR5“ „‰½`z,ô¾’°Zå¦ë¤Úq›ÞÉÔøå}kسFOIÀ02ž äž¶¼æå×Zï[-[hÉÈ0:,©‘œ‘Ö LžÅ™ÂH=.mt‡¡„‘;|"F²ã‚Ì!+jWÂØ 5Ÿ* ß`“š¬<š}Oä{Ÿ3¨RÓZ1:ÊG4Yb iÂü_‚é €Ä$81‰ $~$Ìß=¯„z9ÅVÝZæyùªZ|þ+ë­«z¥Þt›¿6üõÖ÷ÕŒ® ñP&êü Ä–ÞvQô|Ú s?åêOi6Id‘Ââ^³&SÍ•|ÀÂÆ™^¾.ûô²dz­×úG?Gȶ/ã20¢–„=«QIx)à¸,(ƒОdÌé¾¶(αTj´Üý)}¸õ±õ ÆqïÙ(ß^Ü„œüþ¿\ý¶œùÕGíѽÇâ°(ˆBÔ0éðãvÜAï9»‹‰|9ÙûËß÷&áý=ù­Ñ&äדžÐô²Ü¯Ü¶¥Â‚ü$ù¸Ms—Köx «"ûG·ô®r䃿f¹"6uböÜm°TiESì'"–øÁ/xsøÁi Œ¢/¦Ð4–yY“ö&åèà²!‰V3÷ш¬S{É&X…d™ù0Uwp¢A9}£”GÖØ?9ðãïºÖßÍBrq꺨4ç…a7RQoˆ…_d7Á» ){ºSE8Ú¶u}Üϳ³1{x|8Ðë1±x2?t{!Ôá’™9A;aOKˆÈ”4†£Kò°(!·ù˜X0¹ÂIrk³ñzÄÚªˆfaŒÈÜÆ"a=œ!®­š™Ì“7Н£l¦\à•& ÔÖD†TÊÜ»p17¤z"ôå2¨â¿%½!Ç\åUCw…C‘v$P*b¡ðR  ŒA©ôÂåÞ’äó2¯â_¡—ÚÁØçŒóç9¿ÊW€|Î1‹¿9 æ‡×éØÎ ¾+µ›ÁÊë/•v§Œ&y˜ÊÆÎ’x8ÇçÔxßÚ=õ±ãÞÁ$ü(áîæoø`ÏëÍþ¨;øØ¹v37€kéÖp ­^4„㈠Ýñ§êÝ ‹;çUÄFc “*öhvñû•¼–›Üȼ)ö©U^V<ì”»àÁW³ßÑ…6ÛfaµÅŸÓœâ«Ä„Q" ÊžÌ\'m,ŒÆ09•fÜ/ðkR"ñïPîå’ç¹VP6"ÑÙ;_¨ªáƒ.³CÄÕ›}º6xÛR–¼bI~&PP1ÍD9)‡2/nQN_F¾0Õ*èlÄT0{tQu`ߦ—¤fKJ²Ê¡*¹^±î¡…ª|!wohQ>h±¢Hˆy¶·URLÛb é–*¹§`žÍi. 6GX[E±Zв‡}ðh-q¿:ÆÉe'Àžøk5 ‘Ê"õL)g7Ê7ÑTË/i(âFèç¦J^óP¤’VD… °1š{Âr&¬,6DiBsA™¯0”ÆP„â:Á> M>ŸiÔöñ~0 3ÚŠ8íÿ)\/gðzÎK>NT#BÑùÏ^ÚF¹¬]Ø*Êc¼Ðfxìž¦á³ø¾ÌÓÜ|öaž~d)`W׋Êkƒ ñQ¬¾Wx—¿Ÿ¾¾}™ýÔî†qˆž…ÄËñË "'оa0ê~P1]àÉ•~"‰NZÉPé% .±®*v!¸Ì9êO"Ló,%”7 ¡à²îF/&&—"ÛÙkbú+ºË W(º¸x*ôÁ!0ZEÜž£ÑÊ󔯒¢8äÐDOšzVqÒ–ö"@TH Æ2ÁÎW¼Éû{o7°½J\àÅŸ¢ÝÎ~yëظ™ ºPÓ›£¤'¿Õu9ïÐF+§Žò¶w\hn¯<Åœýx¶¼ò:°²Gwç «ê8GÝ ³áxs·»ì›¸Æ13÷o±SÏœæþ¹Í½ÛDRz‚? õi’vÓƒ#©ñ i)éUFOšcx€2î¾K7ÏçˆáœðW"œù×E.PŸ»$ÈÉfW÷¼óôÎÂH÷Þúµ¥×NMrŠ?Ý¹Žœ¼)  iTK$R§sT˜z`&g%)i$¯ªzµ} }o˜……/…¼¬–WÛ®C× "!ÛKLJ¶÷4P!'ÔJs$ qzN4Æìã^’sDùÉ)øè¥°V›ôÀª RŠÙWèJŸ\!ÒØâôäÉ©SîÅ›7¹>Óð§œãêô<ýÝšvÛ"° ïrþ‘}1 ëß™%O_ó³Ì.»6¿t2,"¨·ÁªeHH܉}P½)H*2ŠèkÞQ;frþÉ «‡ _b|Æ$C†ÀûCÈÀ€‚œDü7…æŒowê+ÍÇ‘$»SÚ±i5XdpˆÕ€‘#°A¬iÚŒÌ ]<9,’šŸ§ dËZԩéA¯kèY<^"„•wvò8 ü Ø|@è¹ç$ Æ-b˜€vûŒÒ™  ”/ "¾H˜žåÖUÃd†G$s1¢ßDbþB‡æg5“ö_"#{m¥çÚ‹gÜM4/àê2:ÞDÉÖã¹Ùü[oÂ+(/׊EZíG†[ñßy±ùKœzù“ÔÏ{^Û¢î"I‹=Ýö¡å3S‡­Så=¾„Š!zé2´EñÚ-Èf:\ô!§eÜ[!ðT@J¨c2ÓÅËÔûe´” 'ΰ:qˆCÔi^1`Z"Ýœ”6¨c±þF]}Ý¥›k,dïøUˆƒìïç-ð7|Û73{­ïß¿2ÞÔ¾¾Ý:÷O8eôðaÙ@Q–ÂZ`|SùVP"å±}®Pƒvgâk2V—¾$§À/SÈÔ¦4¥\ª¹Q QÚ-8½¹*eÕÜ]M 3ðÇÖmô_9±PiÉ"ÏU¦]«ì1’LœìjX”ØZü•}ëK‹ OH™ƒ!šh´Ôìh¨bbz„jèåà †3DÔ®9Faµz¶¡#î`Ái>Ød¬¾r4XC›àP ™“ØôåÃÙȆ ò¨OœD›4ìHn¦²É ´kg51Å…ìvÂ!£Û YæE0£p¨I–ke¥èëX5†KVP–cP4ë«î7×Ûé½Hl~k„Ü ý;“ÁÚmDygê;–k6¢i=œcÅ>I‰©V`ÌÔ5¨¥{ųKE™Ç"Ô0íØ±•ð—ô,ƒêÚr'ˆ„s{…–Ó¤Ám¦·r`ä0—–š[¨b 8Vú±Ár^´vá=ýÌcFpüɺ>’‚YòÙMÓ<‚‰5 f#D_º»#±ûbR»F‡ÔEɧÄõ¬=¯"ŒÇ¶Ð%VÚ-c߯áê݇Í>ŸÊ6Âf’“[íã€ö_¶u8ûFøö¶Ö­ìªÖ¹BS^*:jmfaÑLÄôY £ýËÒ%ÐÔ1ÕWVÚ…!ÚcÙÖCÀ¿…žzöLƒÅ(º„#“AæÚÊ44žGNøˉØ8Þ ??·÷ü†¿‚??Åæ?$5EÉ£é¸ý3Oh¤~ª+qqjÍÑ^ûNˆ‡-Œ«PWd›Vð‚‹D¥éOíç ä{¸Í‚& öã‚F ³ceQ^Ó·pœ¹­ÅX›¸VL f ˆQaƒÎŒß7¾©jð`ÛŠáŸrt^l/¾NÁûú‚.®(Ò7yÆEôäüŽ,Õ°ªBjcGÝCÅŒýÏ{¯òžl>z(O«2Lþ Çç9Þóq!ÞõôÃ9XäÓt`o˜ _E…žŒ¤Žàxà_L³xµ+JÏ‚·§R9yžñY|z›ùCçàÜܾœ3åx ~8˹3òÇæÐ‘s"ú ŒèËšpjƘšùòÀxMÕ°47BÚ@tí Eëûˆzê­·ç!r†ûC™)¥)KÆÆ”OÃ,ú;´#îÏ̵‘I8ZQ‚{J ܽ±œÉð@qTCäD]ŠJ½‰[´¬¸ø. ‡ðç¥Eñ½5ڦȊëóP÷ã:>2¹ëR\u ’ó>º§,Ì­€à „š„ÁA \Hµ<¥·ŒwöÎJ‰uv£û9ë¿Ti —ã^EqÅ‘ýäe…Z‰÷=ÑŸí û‚Kàôµ5óƒëø©ƒ™ä[ ,«ŸPîlñû†yù3'ŸŠ×Çj=Í[}°È~šûö¡ç®„Ç‘¦Ñt¬`ÆI“#º½ðlð9"ž¸!–È¿R²Eõráó/fOˆ6 ²( Záùõ ÷àöÇ)Ù[IÚEnvŒÉ˜ó>s ó6Eù 0Šã鵦Ë2ç_…Ÿ¹jÌI)”%e<ÚO®´?)8, ÑæK"†¨Fï>4¸ÙL ÈGjtÁÆý„!ÍT@X€ÄÝܓ܉” æ!r¶ô.’h/‚˜/B>šéD>¥EŒ0 Šˆ“áE¸_ ú©ê GÜÎ4&¼òA­òEÄ…™ Wפ¤ rªb€RqC“ï¨÷2Rs‚?‰dÎ ^; Ž…n«ˆ@QU á@‘nnÀ l@Ÿ·üUñƒ¯¾ƒÊ_}t¼üïH=Öä¼K‰"  D/’ÂÃ#Ý»ÏOje´0ÁÝ!ÉŠ0`%ˆT[ênË©Og n¯…E_ªO¶r’âX’¦&š‚ú)dÖŠB‡"ÙFñ·öÏÆî'É‚PìtTöO³¯ Š•ô2©{*¶RÏCDU9^³1x—ô4‘rsÞ@ЉCn`žKÓj†±ëG½qð³Jæ0ŽB˜hèkt)΄ÍìÉ%ŽÖYµ— ©†;¦¦.7,:SCBy—¶gÀÊ¿bb—ÇŒŠ`¥ÑRêÐ~¶£·Ÿ±ˆu(c[‚B¢"4>Ï®0Õm€¬(—Pæt…|ã¡fÝ¥©eäVV„Àç¸Mn0 a9~îωNÔÔ’. «‡Eäô„ónTqN†.pHúäÑ™P€áFü)µH™–®ç/)MèóÒø§LN7{ÓcS«Y'Aá!Ÿ™=ð(àJ2Y)HÁ¿ê%–<£æ•‚Ü€ýü¡éDeÃ.ßOº?KCYß°ò嬅Gt¯~Ù—–»L cA‡EŠ3ãb^dø¯%zþ>Bª½gèaCÏßùAÏÛÇáV9 Š¦iGáÐ2õæøÆOª+ oG¬àºˆ+uúd„€LÊb]@yá|E#¨@RÆù˜ ÇHÄ=ÍI¬Ô¼ås˜t½f¾OTëSHŠû ]˜ÈŸEΕŠL8ýA{P'Ã`PUÁHô¸>Øh Õå ÝÔúÒe:ÇáëÙ<ô#ž]ò§…@”HN“‰åXØ„¤“a&v*Er¤‡Žý¼ÝËÞ”MH°jAòK˜ò/èEw 0º´’¿±fsaGb¸Ž0Iq0ç,d\}ëN2Ay‘<èΗÀâÊVƒòE2ôMBfâf1ôÎcGq‘Þ³ÖÆkè>ÚC(Ɖ@s$ qÏe]½åŒ°•m!q;àvb¬æ·ú;§ðø y¼§rß$}¥ƒ´¬ezQS&—QCІ QÉ,å`A„I8],*-•÷e(Ì‹_•4¦J¥iu‚.#åUqª :âÆýÜÇ—é21"ð‹•d½Š/ úKçÎâ¿ÞY?;ûyÑôqГ-ì¬~  šãPªuGƒ,$áYqIëòÌÂe ËɨÁ ŽGz Yw?2¹YåF3HÈ‹žH¡õÍ„›ÔÉ´³3V`å±k–D*&Æ«¬¥˜ûÄàq0— ÐÓv"\“±·vÂ8îœíJI~Tü®$,Š×Í”àÚO%dZf ÔR ¸+—lñË>¢gªI,a<´3YÀ±pŒ¨µJêÓcî ö†«"!“²É˜H€àœÃ¾µkøJ5cÙsÞWÓûoF2XÂ"kÑxe*¥1”¬x”>¡3MÀ1>còLŒN„iàÓ’óà|7:ðJ1¦ Å»ÇG$$k€ö±<9¥qQ¼D>ãÙÊ+x_ß7ÀΘYx…Ô ú8¡LßL£®4H3®] Ž‚ÝEœ[­@‚ØÞÊ„Û4l­èà@ÇTB”f9åfC+%uÖ|"ú.X+g€õ•jxR÷"D{<WÚ°ôïÄÁçJÑÓ€ä\"ƒES4dVkøYäCÓ;ñ‘Ý3|cÚ–ø…PÈ’ˆmç1ð7¤¦Y ()UáDЕS‚ˆãAJ@á1§f¨' '<<Ö]u™ŽšÂ³\O•³€©G½bÂu¿ÎËhÔæz|Š‘iw’ ‚ØâL‘Bê[©Ã#‡·M‹%ï9d¶:S,à­È ;Bú´v7]z)Pò%çï’®W#¸òßDã~±Œ›™AäS;ó•"àì‘0X¹(©…•2ÑÉ;ç[âšà WxÊç£Â*‚0†«ÄäšwcQª* H·¹ãoq©Pi‘$¿‰s%ÁŠÜu?9ºÆyyL³É†(2‹šo¦d1/_Q?@<ýÍDxöú §›vúuIq'§÷Ò¾¿Ÿßñóƒ3ý ×ñ:ôÿ—sçõ«øõïÈì=´¢Œ$÷Î}Kà•CÈ`‚<ßœeì?X Ç“P‘÷㯣Dˆ=`ôLÿCjØwr;rƒ•SÖTI¢Znþ2fôx8ÁŸ—Æ¥ùš >&̈±˜Û©ðeœZ>kïHá^µVÆH]?+JØ}Ù H?µL”˜à`èLø>° Ñ` ‹Ózl"g[×XHÓÃ^„æñ8ZPy¡Ú%úÂ8gšòkÁg‡TÝ=n_˜S N²ç€ s|@#ˆ[¸ßVeTd/Êè¬Er™8É( ®è´÷(s0k±ER[ûAx,ó—’a´.i’d,Á¼Í…¨+)‡Mac! ‰‘4pPnLôÌ¢æ¥@ÁûZÁÈ-*¶-ÀÖ"ÌÌMà?™&'%3Æø”VS­füIƼ9Òy”F~ê'qêA\h3"´&|#±‡Ä²d˜8zíª)¶È,_HØ·œž%)rCDÃie ‰ýËÁ[k€2¬3—‹MÁFAýø„^–’™mî\…“-ËLÚ¹(©[ hAÇ-S™‹`”)- ŠÊ4°Û?j`  D²æ¡-k…Ò®á2>«LߢØbz°®Æ Ñ‚¾7sßXÃäsu¶àÌg±zÌ ÕíEÊ…ø¹"!‰~‘Ñ¡Iðv!EQT {¡—•çñ"«„ÀAŠ­6î'œ'žfnÐVU’TÒF…âAÑ™ŒV Ο †çfyŒf­ø6P$‡7¦$ËP®¬:\ªÜMÝMlLÖfÔ¤w§z ±‰1"ŒôAk1Ñþ‡Óô¹4Ü´ÜI ¹q`üeð3Liß ºbˆáŒ€Ø‡W%?“GµÍÖG>OK¼?”넌KuŠ‘j@Ú*HŠhž…\ŽMlüÕ4xžR”~WÑ„Ðd_6D°‰ˆ#E"dd [.€&Ýw n4#Õ\VF×2CƤ~2|O¬ÉèpY€]ÞqË`²YÇôKÇŽý‡¥ÇÒÆB„Åâ%…„d‰•†kôDƒü¿?À¿o䊿”]bÓzÑñöåR~ZÔ.ÇòÆqp œ<ˆá­æKè?§½jÔD~÷p$¸øŒÍB³o—ÏK‰ )eþ¤a Ž£&‡=Î2Ì2ú †ÖV[ Ù£‚ïƒ s× $ ¼ðÉÆ¬dm ª›4 2( êp,LáE âªm‹u ³#3|åc `8¯ÌêþS®ðdb/IÍJßd[¥>W+ÔÁ.0¥Ä¸›x˜#ˆSª8è$©û ¡Å8öÍDþNˆ8ñn«„,AÞ¨øÅkÜüÞ¹ ¢K8¶y¢Pc€`g B!í($‘b` Ï]«AšB¹.9kF°‘Yî£EyÇeÍ>}³nzè5ÆøÚð7±á!! …Ë×±þ- >·ôòóÄ&xßFO Qpv">I’¤QjI±_Nâk‡›èÕ™!¦wQ “"$Ã2`HÎM]ÀZ$è‘50ƒ\Ô˜ãèÄL’$Óu: )•··Ô" ¾OŠ‹³£ààuÃù5?RµÉÙà[àŸÖ#¢ÀüNk癆_\”ÈŒç¶ÝÙa¼Í@_’'F´:ªw–_2Ù 7¶¸ðh´O}Ž?IlfèbÆp~ËF_A“oˆÎ8³Å7èê[ÞÑ£? —|ÁAõÁô‘8 ¿Ò,áH'¨!HwÈZIjz\³ûrg^Uo€È¢[\¨U‡…ŠÁŽÄ40­PS]’æ¬Í¯ !\¾«G¡~X°î0æ GÇ/OËðûÜ>1šº?H +X0udêJ“£.²ÉbÑ‘¥` ‘g=/T eg˜+~¦ãœ‰äv#a!F†Û¼€‚‘¶ñÛ ø’`7ÝuÂñ¯â%O››£^W‡Lu# yU66•o×”„Ù–ñòß:ž7 D 4@ddh$ÜKíNœ‡íó4ö8¥ÉJ•†Pnn\шl‚VÇ.¥ áöµ’ý¢õdA­5}ŒþJ÷¯ŠžP›:Ou”ŠÜ¡¦ÅÌž Ñ÷5 ÅFaÀ)ÎD#ˆBnUÎsxd¤<FáÛ-â2ÔÇO]ò•ŠÄý}¹–縦Ў/-ƒ€üÞ±ÊKŠ^p2|‚ªWy–ê¶Fh¨_n'Ùò2Òü–†ô1Ç& IÖ5’PX3T‰{YŒw4ÖA’+†GâR¡§‘F!A5?I26m~ŒSx~öÝäŒEWÉ:Á"âZëF‘˧l’1† d2ëC¾2ôn’ dBmJýAygF3%t±"¶40®Ló”t•dÝËV „0î$÷2aTæLcX¿¡„«xiWFD&ß8|«ÉÕ^á»U¢Ž Ý_«&! Ì'jÞHˆ;%ãã Ç—æ”®»m3¶aºÀÂ÷øI.Tº-äÛžL÷äqÆã¬hÆDÉzé&jÓÙ&´%¨œRØE£«âo6àcå{9±§!VƒÌ)–lX"(›%2]%Ýí»9„36A¦.¹?<(?]wPy7*{Œ5XpìqÂ_"ý½óÍì…šÄ!àÐ0xgßUy IüÇóý”$7 ˆXñ¯ÇðHߢ~\„I<› ™þGðáÖß‹Qý‡f;/µüÙ%ûÀÇ ñùºŽ“i‘@>”í ¥8Ÿ¡ï2øbÏ2TŸÓíËrëÖ½ŸI>ÚÁS-·|'ó6Ç\m4>² òÈÃxä3ûÆû~á>E¼ôË›ýþÚÇÉ~§i®Ë×ãß–ã•rë®øýþË^ˆýŒ«á6{z!-¬pßMÇÁDGGåø|à{×'‡ßÂ(ó´ÄÑ­jÿDô¼àº*ý TG­mU`þ¯t€>y‚J¶·#Ì%¸’T·C !ëñV¹x–uÔR°±JàHç,(ðNÀ‹¯¦Åe‹&|`ÏfA¡·¥ÎhÉÁbTâæ)`oðîÏ(„0>0¨“…ÁÇÅΩF‡Ží(qï‡:~(Óyg2C³3ژĎ$ÅÉUСHc-Ô{cדZr£‚Äe±-¨ê`q,ÈÌ–³VXˆ13%VwŒÓm|ŽD†è’BHQöÈ¥IKÇ\ª'Æà"ì‚IIJ 7 »ÁH5~îÐ!vðB¿“ _{0íúbŸ:öå‹A”ÙÉiK°ì'~„Ž’"Ecè}•X“–ø!½†F né0JœT9= (ŠQ,1ƒ @ÄŠ‹W¶^^•$ -±Y%ASTM*¤/ >UV®~½³}õ|- dš“…<.T]Y¤æ¼Ðtô8­0ÙªhQcÉš·¼lÒŽäZÆþ0#»| Ãb*ï¹7ã%`l3Ž$3t´C‘!BQºG†U¹+èPDâ±cïx†MÉŽ´U?IQ„6Á%„™î,]΂BU¸ž8^7›\äKXF¤T °Þ„««ªµ£Èã.ô]Éä ÙTàß ñöT’¤×Žï ûרSOhîÁ…så‡ðŽUAE³ÏÚ—ß(a€] ÝBìñË6— fÕºŠ¡XÎÖ;ØÆF)0ʤdö°¹‡„¡Ò( n>=ñÌ«ò³»× Ÿ^œ#acÕ:¾YÍÝÖÈlPF©#õ:Źº(JàÂ;OÍOÖ@B6Dš©GPesf@¬Á êy;¯¡ui…ä›pŒê”9_“qW Øs…fý'8W¢\ÎÎzÚh74‡ãL„`I]Â1òJÃC•G:g¦q°0fõPèÔ2h9«u)ý'dô🠨BܸC08mcRb¨Ä}ÁqóoC¨öSáˆ1ß1»Ìòˆø‚—AËŠ!:YÂInŸBV>|“܈%msyÎæku;b¡ÉùåÕš@ÙO9ŠÑÑŸçXó³ÕÐCo™¥i <(#:#¡JÈeœÖ òÄj~2oq$õ"5=5Åß1»h€ž„º(Põƒç+½‰‡Sµã$"±IÛÜó¦ÍÎ`ÈÂÀá͉\pFš='/„D/…`Èã>ófu¤ ƒ™_]»S>³ã¶`"¶ÞrÖÆmë}5úR݆à±åÀ¼ût …긜 †Ø…Ð ’ëºNK)B†‚;Ê1ÆNʲxF3§EÊ`­­@V)]{«O,€.ŒÍö¥zyG•²w'Éáë1ÆÓÝ´#ÙkL¤˜sÚM%1ÜÊìsªðpR­l‘ÄWƒ4ÅÔf6òÓC8¤tSŸCî…±cQÑÍþáíó¢Ÿ=…øv?¾©:çàä©Ì?|öÆ-ûÄ&ÃêN4Î2-ÊbtÃùúÔü˜({ì¿Ü‡Æ¡QÂÛÛ’ø€~{T%UÈÚ*EU8ލ„Õ?ÈØŠ1†<Çœ,ÓoÇÍcž}êÇ^µâ9põT>Rxc’'—LqÅÆôõÆ¥‚(TaGq9âxUÍ|?g 2ê9ó |Aøƒ*ܯ ÃAa9×*ˬeÚ] 4D¡†•èÍA­.Çû± 8Q’öã×—°¡!®4g#Ó¾©@íé`mªŒýqƒÕ•-.hÚää/¼µˆ3¤(A› öl ì‡ì—Å+Tþù{Û²Óœ7æˆY„1qÅ“…j—¾#ž3GE}l­›1¹Õ°ƒZ-33ßzeY¹„tÍ´Jñ?¥Q…X×ð¥pÂ0…-,ú¯Ùõ™1Ó¯ërÔ;DqŠ@#ãÒ.1‡çÌ«º§§<Æ/J¦bQ¥%[Å+…:Ê“1¹ƒ G®IYÞÀ‹+åúž5i$ð#–š¢žQ3Kõ=(K#–Ÿ†­¶77Σ£‘Yà—›ÅôÍiDððrù¾~]î€×ÝèœCðÏÒ ¤c9¾ÞúѳV¹Ñá'©újRÈMÅzl# ­”€ì8¨VÝø^µ£,cl’—&8VÎ2n§Á¸þ3\w¿(õVKE÷Ç;œ^[Ï6Äꛄ}R Mr¬!Ô£v£ìŠ\J±ÔeÚü#àÔò`ø@.‘4=…¨ètÔåj]23Ë,¢À8ˆ† øí`‚çjmC¯|¯„Ô®2<6+pƒ…ðRª9 ¢<Ž¨ÑŸò$73Î 5…ÃûU*sÖù]ˆN'J·P@)È”K3C=†%JKÈÖp1%UË—æµLç÷‰ÖiäG”# ›" Úóø4Ñ80E²äü§yÄÝÔv-ï¦óÞûÝéW¢#èø Ë2ˆK yQsnADlF¨3)I ! ÄdmEU(aš£#SíÚ‰øÃªXPäm”Ø?k¬AøXÏhrÌù*Á-—3èb°µ×^}*hÈ´•E $!}fP$Êí$Š„$Ñ+$'˜'‰±”¦g95_kJgñÌÛK„¨= E¹`ËX`ÛUëËZå¼V@s¸DåÇÙ¤W‰×í ^£X $„)URdÒ²Ð8Ä‘lGs*úrïΦM/C„Jh¥ ü뺳ß%vƒAHM«3áß.¢¡l ø%ö¬a7’¶§ÞTØö Ȧî<xäN,ñ˜$ØÃ>ª«GE'j7Ń뷗ÜGømz[ùÉï%"]NI±spM(åÏä’%°(.°ÒhÙ”„GO¦®ÍçMô¥Á6ñ"(>të¤qíåF¶&ÊÇÖ9W…ëPœ:JhQL¨É›`qd“À–¯¹–å̽.E €‹Zé=Ø_˜®¥_JáÄY¼ü#|f̱~9Â`žY3J(¤OS©1D¦ƒºúçn?zÝÝÛÏ2¦âqñÕ9Vÿt™<bP`s É2ï¥UÎZÉ$TEØ€F\¶.#·gNÔ“t4‘´WS¯G}‘2íLM?ã¤þ¹ÇØu±Në$|_Ó̳/7ão•šF©ì.ÖZÚVWKFØ:¢rèdY²1‚Ã’ªáÈ“aùú{Ù‡!×´ƒÑuÆŒÒpÉØªÁ8MŸlý㤧f9®Ü…pk^ûÉ«þPጒNÌ?Œ>¹YÆG_PÍôý×aGÑùD^ñ&fÂôΫ“Cf¤¡£6^™Ô'´@ø7³å¢aÔ—ÌmÔÀs­§¾šÄA9Hfçå´Ô8Ô}Gg°.õRǧ853SïsÔzmR H9)&±V3r@ÎdÇ™7€¢QèÃ* +˜#ÄÁ.ÄÒuæá)% ñ6Ǧ/a7 fÄ1ê‚‚E—Xº¸¦GîÇ<˜ouØ ÇÄžÓ%a¬9™ì×ko¤fØ|ùÎ5›EÆt .CdeüÕfj´E“ÊŠ¡¿Ë³pD2÷?MÁö/™2d‘fZõ w 5ÙÇkqk4xy ¿¦ <§Òc;-}÷ò¼:`8n~„ì[˜ÎÃÚ“íƒ\ô*r0FWÍ2 }Öð#pzö[gõ¬Afðv~ø(äg‰qö姯/ë…çÞ2Þ ŠÉ·|°Ç Y¯’O㯴ýqñÊ϶+õÏ¥üñ•_q÷ÇLßxòý|ì<Ç&Ø$m@kˆî½å,Œ÷EyÆÂŸæ¾‡èC1!S¯$ÔB\¡H(Bâøqô~ÃI&m²Â·¿b9^WßíºÏx²rÄ?c~ãÊ7Žvgו½ ¢œ¾€lÔÿ•´?ºé1¹È0^oÛÕeÖë ¨ä°åÝ IJi‡ÁX ËÛ¦†Ÿ±‰ÔèýÝx-‚Þ@ðR8Ø)ѱHýë˜'‚÷N¸KC Áž-ùx^>*—Ë¥Hš3‚ô¿°òÛ)¿AŒ”aã©dëO!wCæ Qó¥^rþ¿ÐñΪCb&(悰Ȧ—ù;!t'"´ôIWíù<‡l®`á)È,¾ìá*FÌà\±Zuü?VOï´ã„㟿â+î>UCõà´5™ä@öÌ­|qð@ÀÎòeª°EQñãÀx Ó`ƒÝ‰ˆ_‘A™¡ü:CwÎËÛŠq\Ô°…Ç$ܶþó‘º.mK<'㥂$îÊz´ qS‚aŒyb}¡:)—,h®@p<“¤|™ñ'r.7y³Š³™{»ýYØ|´.Ô­ö®¨@Ø­K*þžÑcÆh…`´bá@•…~ÔÅ}ÖàøžrêÈÇõþÈ?aü¿í_wŒ×ØíÄ»üh~ž<Áˆ×éì_¿…BƵÞE¯ãÞ:ÜÊ È `XºØ~í§ñ¥ÿkµ]‹/òÙ—+æQhú~½óöÔ}Ë6Ó×Ýáãñú^BĬ§¨ß\¿Ç®ë¶‰ý3£õÐkôÑó‚h˜ˆß™ ’/¤üªt9èŸãÉëp ›ïNÂÀËL–zPÕ†%Ñ Õð'‡#•C$.³¯P; Ô(S‚ÃK$)Ƴ;Mãâx©ÐK%~É{• qí£¡–qÇHŽJÏŒd³È*8X™×”LŽ0€(y‘vE÷ƒ@G¾xßîöÇ$Øýyóî}FîBD`µc2ê]³å@•—¤èú7*é]DКw‹éö2>sŠÚGê›æ¢x,è8׿0b/ûŽÏŒ–l³¯GÕbr+‹5b¯PJ8TB~ûäq~õ\^’ñ©%2‘¿­O‡ZyÕ7¡É4’€`|xðuGˆydW?ó!ÌSÅò[㵎WEÖËÔBþÕ®¤ìòZÚ˜.~§¡dÞ÷=->\ÈÁ„>_Ÿ»Û`e*›ÐòÈØ"EÒŠ‘WÃ^«ùQä|çù¸ç×ÇO–ü2a×3ë¡^\O~ñoc`së1³Œeþ ¿æÁ¹[êkbq÷‰ãÁÇïùÒ,[üCŸ¸È¯Ïäî‡×Mí<[zt¢í‚~Ô ëss¬{£¿Ð<ç±ýë[Ž©Aþ‡çÔã~¾ƒŽ¨»ÉÓŸ˜‡ôNh _D\Y')›Ãèr¾ÇœLئ X6ȺëÒD1쌨Ñ)é2u¨YÍv@P¤ß9Ø` 4ƒÌ0JøòßÅxn}$¼RP‡C'ÓF[ïŸk¼E”ylžÚ(@Є˧@>œÐTÇàŒTAObÇrËa~L9ÚWát4b-Ç»67Ë50Pqer½?D$ÈM(g9/i.q¬|2ãÈó‚çt$ÊÈ)xPB/ÕYN2Ò€%+hG.QÍ©EGÃÉõÎck($¡­1 ËDGÖÝÃebf´ƒ¼å÷k' ÌEü´!¼¥“š¢FÈÃÇ€ðâ_—h€°6 h`ëŸà/fã9séò¨rèX,×8økóú]øãÇg½èAHKÒ\Š =º™m]#‹œXŒ8N6ÆXPÍÀR”@„3WÒÁ±?uÜT'¿­ŸÅ>ÔUñ÷¸ÇÓèþèB¾‘R»P2òúÛ×È:zQ0µÈm1ìØa œnøaPǾ‹<ï÷`‡Ÿ›Óìk,òÏÍ›ûÙƒMJoê%Ö+ãù…¸àöš?¬}µu×>vKî ÖÃX$M‚È‹ñXøw£>'–LzV^ï¯ÜÝçÓñ¢,ÎOÝ’#Ìz]ÖÀºAož6¹Ó gê¸Wwœ6< 2G%Ù—=R>öø±1ð-@pFT&¬GÄÕnÌÌ/lQžÜ¼x~>™-}éñÏ·ŸõÂÆ7¯“W§$¼?uMì<¢4¶kÇÜc©=‘q%ç$qKõúí¯1XÊþxöÖ¼zŒ{µM·­}Íb¾Úü1œû)ë!QÎ&‘~`›U·…Á¨˜ÔC$A3ÞU䲞[Q¢À]¢·í· ß“5dz¬}K {ü1/g‰NEH¡oº†Ÿ¤x|‹§¹À{‰6톄Å4.ä¿Á¬ÛXUuÇñÇÖç¾—xž]·³xÑÓÂu…ûü¬Xê0u℆½Ã‹¯&Æ>¾-ÿ4jpü= zUÏÏìý‡Ç%Æb¾€×Òäß½ïËþÈìB$ñ:vÄë@úÊžFšÿa°¥ðO ÷Ÿáuˆ|ãýÁÜXÀxž¾Ûdl§ö¤Ñ·÷Ø5»¯²õæþœuø~íñóçø6°Ÿ§·î]¢Tþ)ùŽ’ÅqíZ뿟µpŸ!ô`>˜>_æ+ØåJËíªëïÜã?^À˜nˆ*‹Àx—ÏNÚýÐ ×è¿Ëû/·ñÐqçŽÉ#×Ç>ëÄþ³ë¿â×Û¯®@±ëé'¢¸ôoü?¾#ñqøñà<€3ýhÅ<é>㟎? ùË5ýùãëùW¼uó À–1ü¾ÿ4çÔÎéüž¿ŒÏüIøð;–Ûn×…âwž'wæžW{yß›ö»Ï!ÚÖªóo%áöw}͵·{ÙÛíõù¯o»ÖÖïµÝTұдÝ?IÔµí ‹LÏãã%3ìZ^²ð(õ-c=‰%ésøBlr$RTõJ^®#ePÙ€õ”­œVÑ%ëU[MÕJÚè¶É\'¯‰ì"mª6êM¾'±©ì•7 MÆg+r)í(nr½ª¥ Ô¯mUíê½Ä[µ-ÞMárVòOtVô-î­ò­öô[ú\=Ø{Âp0÷µ8"pipÂǾ—¿£†.B¸â•Å—WN98ñÈUÈŽI9:¹Ir²åHå°PG.œÅ\ÉsC›WÀW8> øW;O‡NysåñâË Ÿõ¾8ècä'É_*¯–:*ù‰Ñ®’:[¦§N:ŠùµÔލùÇW_<¾„u•Ö×ѧÒ>™õÕ¿îuÉןYõÇØ_eäìí_n¾â}Õ÷ŽÄûóðWá;'f»CñWã~OË~gç»[¶]¼ýÓ?Rý±wrîŽìý·î®òïgï?ƒ¾»ûÀþ7ƒá_Éÿ¯ âG‹xÏú?©¡ŸÚþóü^Aþ|Ÿ*¯þÿkËókÎÿ<ôÊÂó¿ÑTGæÿÌ`§žïßç÷<ï4ðÝá?Ýä¼Éçh_Øò|ëý<¿7Í—ôó_çʼŸìþÿßÑá¡ÄÐáƒC‹ -48ht-‡Cý_Öþ‡ŽñoÄñ#Äðü'ƒx>~ï{ݦï]ï{Þ÷—yÞ;˼ï.òï?oí~Ó»îû®éÝw=ÏsÜ?gì~§éíûÉøÝ§Þûß{ï>ÏÕú®·¬u}_UÑôgÉè~; è:Äsÿs¼ïÁøk—ÝJ þa!Uå¸ì\f?û¸?ùï|œ’{¬0ÝÞF‡Ûûomý7_ÅÝ7?gìýŽÝàíûo}Þí;Oíîö¾ëkî{_Íù?ßû_éún§¢èµª• åáUð°º<&Ã¯âˆ¸ì ¤ã4?ׄpŸÇ¿Þ?gèí½¯_×Í'> §=Ïhü÷=ÏsÜ÷=ì¼LÏ‹¦b(~Mó°úZ+"ª„ê4¿¾ÑŠ¥R®?ŽíøLç/’ ©Þöúæ1U¥Ý~0¨¤ïÿ‡éñꊯ©žÅâàôÜj¤ “ PŽÏÿ°H)Äk˜¥$9 ª‘ß`”PùøR¿v¨”uxUT‡8+êuÌzVÉ‚“LÁµZæ­µ­}[jÛ_‰üII1 ÑF ˆCi$²‘F2Y5ååÎyyyyygÃyz¾;á|/…ð¾Âÿ°y€ €@ €@ëõúý~¿_¯×ë÷ÿwï°’-–TL’-& “2–@l©–ŠL™ØJ)D3BÁ"4H@ÈÐ’Ê„ 6&H„A“f%H вXÐËJfP„bD‚&bÄ’I0Šˆ¢Ó0 Àƒ 3J42Rm™a!ƒHaDBH”"”ĤÈff $Œˆ– Æa‚P"I Óc!hˆB!"M&€Œ“&…‰1 ±C$ÒHYÌÐRb$bŒDFˆŒXÂ#"ˆŠ Ši Б‹2d4BÈb¡„šŒ”b0‘)†Ä’#HDRP0ÅBQ² ˆˆb d&D014‘ “P„L¤6‰C"2 2˜‚`Ò0CII€Ä’&L&6“‰˜i…ŠŒ@lHFSd bB#K Q’ÊI0QBP†&„‰C’ƒ0Âc`†RfIB3 ÈhhYB4hÄ‚Aаˆ•‚¤1¤BHY)$!€±$$XØ££0”h±©PÂc JdfAК‚DˆLƒ"d`4&M" ¢•Âa4A´"D%i,ƒ!J“fHJHÊ#L‰(±…¦()c%Ѐ2E’$)˜ÉHcDQ"dM&šcfH ËÅ&""ˆ&iˆ&l&`1lƒ4ZdDC4ÌPR`¤„(ØeAFBIH“P„IJ)D£D Œmb1 Á€%3 É#!4š™)˜$˜M2X(ÅŒMdËJbÒi3˜Å$‘ A`Ä3mÉD c%’Mˆ¢5E„D‚ÀÓ$HM˜DA‰2HBBÉ2HJd"ÆFXÉ 2bŒ„$˜¬cD@`ÌË ’‘¨©š ¦$6"ÈDdÒFÆ4`´6B“dYD( ¢#&&–)˜¶ H† (I¡(ŒF”Ö`EAƒ&,²E1"ŒÒ2ŒE&˜XK$dÉÈfZ %†1É¢M$$ÄHÈ"ŠL™@A ©F’ÌM h°! ˆcM$bDD J )šˆ&›¡„¢Ì˜T¦Q˜ ,Àdd’QI&@lLÃ1“H#1P‘¤BfHÅD$³L£&„ÑE$Œc2È‹,†L“b@2ÊQ¤f4bD,ÓC4Q¢6 f,J(1Y±" 244B$À¢‹@Ù†‰1‹‘P2 Œ(b‚#a”RlH‘ŒfQ&’f ¤Œ@i € Š‚(¢Ba¦AˆÐ”¥L´‘ˆ%$Áƒ (YE4j†E1@‘À!J(’M€) 4fLQ!@X¥(ŒÊP5$RL‘" ŠIDc,"3IÀ€Œ” 2’2À…(lA&FQ@3¦‘FJAšH $‘FH $i˜Ä’0iI22Là ¥!šJfɈH„–Y„ÒbQ)"HR“b1€£E¢1,2JJY™©fLQ#Ñ‚‚"i„4ÍEdmAŠNS°èÃçbÌԆ횮fR2çM5WÞ Vé¸Ö°q‡¡Ws‡w8œQom%ˆÂñVÈy¥ÀöÊC'7™„‚Iîn¨H#S!”tµ´ÚSˆG´)ÒÜ’´±ÿ$Øô.xO›àSÒ•~Ahêô¢ÙLjoE#­oÑáI V€`ê%£LhèsŒ=‚ä䦫¶>B[¬¦Ÿ8õªD<Ä  I:fD‚%Z´Ú‡L ´Øa›ÉDŇŒ@‰iJÉ©„Âú¦‰;,¼W©“•U·O©’FD'*ÀFȤJÆð÷ka½ó8 ßy:agdx˜ÙÖÊge’N‚Œ+…ÄÉ*ª!#„CÂé5¦Öƒt• “ Å4ñíí2¶äDâ©VÆ3‹áGgrá\¯"Ùq\¥é’8–€qظQy—ö\xVAeŒ%½47Òû! ðçPG]vXøZŠ,FÉ¡H†“*®¤·Yv4„’;=;Å“.òBŽWÈ»¿=öŽUl%¬ìé¡Ò±ºÕ´ØXf(Y¹ƒQ Tl´ xt‰51ÜAGmÑ)G¢T:r[dÖU˜LO1‚um% â-Ö©ÄÒDH…²å µ%ÔÐ@2!VXED-‡ŠSIÇ“Š´NIded¼NHó#hm V°©"z!¢D(‚C‰ C,`À‚U¬T“¤Š©ZGUbAˆX­``ÚhBƒA)BH²² ,1+pš…4‡!J970RÄ-Rrâ°”q’ÐÂIOpæQ)‘‰Ò¡FµQo- Ä ÆËa0A)Š,„ÛH‚"€3'¬…h<0–±Ep”‘RÙ²DHc 'E-X‰,˜Ê‰K.+jzc:8IeÄíJPD8!K#‘ËD$#!lV^„ލÜÈmªÕLÃ2š£WedeµÌUÃ`lÁŽ9 £¦Û!H <¢êJð²¢.š#W¬KMÊ¡J\Äê 8‚h,!›©RÓª(#ZL–)]„KpUÅ^ôªˆ$ ¦Åm‚½1\Z7T´æRnŒ@.M"’z$ÄË7%¦†p¦ËÐd±¬¨ÙŒ˜Œ)2AHêâI¢fff0Ý„r¤è5Ɇ´13ˆÀ2%eÃ[,-bDÅ5‹Bb¹YÄN°ã@•tŠLâÖfQ4Þ$ ­†ˆ8•M"1«1 ,A"hãC^ ’ ©eè ¨¶c€JœTܚą - "­Lê”D¤&j¤$’]™)%r¡fQ’eV䍯DÁZºd6I‚Oº¢5“ZÀD(”Ù¢œc0å&e”ƒI™30SÀÈ.!Á†@ædBâUi¤byap¤*ÄÊavÆ#B  Á‚ªÃ¡æFQ& Pi E´Ñ$³‡$Ztâ…º’Æ2Z†b™‹…ÇjÖ2 « ‡ dF0ÂÛ–4  BLTÜDŠ…4JÔd.1J kTTP©¤T’8Â5$qéóŒ¤BiÃ"M© µ—,„»“K.LT©#2»ZLÖ$ÈìÛ`@Àa¦˜dêÖä©0ÜL¨T’J†3ZAšE–‚1ÚŠI A5ZŒPkm¡¢ž‰ ¢ˆLca«BÕ©ÑT2PÓÒT²Õcµ3,Zœ0éÁ(b D*D$Šia „MEÌ -Ìâz•K (‚„±ÃSTXUjjE4”Œ\+If1* ÚÊ-ÑDÄr@é"1ºkÁ±&¤Ó¢rØ$h¸ŠI‹`lѳ ³ITò8ò2H™”b4»`$p´^d &Xñšnšix@ƒsX©ãyX.X …bŒ – XÝLÙ™\-d&LÒ‰âÂAiЩAR‚ Æ‘/ ©CYSkL’N­¢…iâbf›Æ´N±IC¸G1A)`i (µ.9¥q1ÅA&M,U´Ø©Ta+¤¢lVÕD¤«A*ˆ¦Ùhê&éÖfevëÖ%qŒÊ"EbÍIXH4˜¬Š8ªT’m,¶L@Údši²ÊÀP†‘–l#¬uX(+2Œk…ÄV¨$­$ËP92ƒ@ÓH“1“5jBÇ (Ô)dYË3k&ÛŒ‘mƒU!xŠdDYD6•H¶ÛX1Ôô„Ab±”ÕF†¤)„íPÌ·0ÔÎ#u„D@˜¥š2F£—$ÝZÂÉ8¡xµ€ã8YXðÈJ%ƒ¤Ì9s´á¯2†¢Ö0ÙˆÖ™p±ŠŠƒI@RD Ç !²ÅŽãc1\˜paO#­jªX1ŧQ‡Ž B‹3-¬Ó€ÇŠhÉq¸¡d¬lˆ˜ jfI„ƒtÊ¥aE)‚ãÕk*B+LL©«u, Ì/ÙuƉ :Äš¤Œ3¥[YÌ,ɉTŠ5½ôÈ "T¸‘ é'\Œ½,@˜“±Ü¡£"ã@Z†5¤r,ha”‰ V(ËF\ÈÀ¤)…ŠŠ¬ÃcÉÌuÔŒFb±Ëf9(Გ餳ªY:©°`¢M2±·€’MR  q ò báÕ!Æ7b³N$YFÁˆ°Þf`9n0ÅÖeb Ö±4&*Ò‘rfL˜Êr–`FM@™Ih20éT(@€é0©xV!$˜‘ µ‡+Ì65$PK3)¸j®êƒŒaÑȸq2“¡² y’!“Is†E« $Lª’((›…4Y&' vš©rA #6¥3jǤå¡fà-‰–³Ue6ˆb”Á¡BLTí²ºÔ¶”A†”\xîZÁX¢a,†š-#5"ycIF‹I¨¦B‚ `C‘É‘¶k¬’“ åº ÄÅ R)`Íd8í宀™’ h ÔÑÕpZ[¢– bÄu&chHQÐMÀ\ÌC ¯%² E˜Q&š8ÝŠÃ4Mi"œ"º™a6*'‘T…F2X`“ÂÄ!¦‚ÄYaˆ‹´Ju¬´•Pr&åµ¥€«ŠÜ*a¸ƒBb¥”CÔ"¸Éă0™¬ŒÑ.¸­åZ``‡PD6ÂÐ:¸ÓE¬ ‘’±2Õ¢ål5†2ÐŽÖÊ#̰q² qàk)1‚‘8K.ÂËJÄuH¶³, )ZEèÁd6Èš¢ËU¥¨ëB!byEa 9“ ‰ByˆÅe¥Ð›UIµBœ-ê-) ZK Bf IJ*] Hè8Ô€u ÙFÁ+L*‹¨65Àª¤‡„C¥Q“‡hd02`b£+¶ ˆ:$@«ÒÉ„ÂÈrì‘Ñ[(A"%C&Û« PÐÉÅ\9 T地)¬ÈÒŒäÇŒ´0Ç ÊÉЂ…iéÆÜM2ØXÐÉ MÒ™V´D%% Ê]%3™•Ôš$àRHIh¡#Zd&bdê4l³NÇ QÈÊp7 (J µ°"IˆÐj°ƒƒª3*02RrÉ!–G*UFSÅSVÜ6[Q¸”àH6°pTÛp%¬/+eЬB¥¨H=#Û !aÂêAÔl¨cEÆaÈKU•©¸+°0ã®:İÑÓÒl’+ ³”Ó¬2c!Áˆd5`¦†]DU¢ÕEBÚ%ºÊ@VÜŒÇ)K(†"pj&HÙnh®àË55‰ºd«"¥VM"0““x ¸¡‚3GNHa(MLÉ‘å!¥ˆ( 'B ̰Ô2”ÊÃ(@Ô‚˜Êi2Ô$†%Ój1\ѵXâ0Â*l0ÝŽ,¸$jåDD*¸Ôf–"Ëb•‰MbV!“5*92„’PPŒ‡1LXqË‚Š4CÕQÆ¡’TX€ÂN`uÂCqCµ 8q![cŒ•m1Ul1,jK‰Ð…f²fm‘9% ¸rÈÌÄÑYRªSsT RHʪm¦q­6XŒ(ÈÈX±Ñk# J aµ*»Àˆ‰ é4FîÒ¡ÓDŒ°Û‚[pR£) C±i3ˆC(èºí)J-Xp# ©Ñ\‘ Ak- DA#k˜®¨¦Zª ³–”E°éE£(q34\:6Ô¹`Š’Æ9¢Ë2"Ê9µŒ¨Õ (ј˅Ü. I£—H´KI‚4Äa‰ Ž˜Vf¨ì”a™’X+liÝ][˜ŒÆ\ÌȪG HT1cLÈÜ Šp»3ԉ؋­Œ‘Ä[©¢QâE8Ê›i¦S ŠKiHJ1-$18P˜CÈÑuG:)¸²‹X`ÄN£)F²$ÉÉ¥V‰h䌶 Š@´J¯ ÌxŽ XF2@¸‘”ˆ DCCH¢QS‰+¨HbeÉJ¡§ZÅq[SŽ\Ž˜œÉ3ª@ˆ)–õÅÉA"£ÇM©D)@²0õEL¤È9 ¶ÈYŒå”ÓqiCŽâÅ0WªiVIQf ¬±´i`Ìtªë0aÃc˜šT,Š’Âa˜Ž¦ŽœËmurË ­Å‡`È…Š&¡9aMF±˜ NDÅb)¤Lh,Q•a€A@Ñ I¤ÙÒMZät³hE!A#%˜dÒz+T¹%3 °É‚5[Æ Z´ÅvÓ˜µ²˜P‹2ª±äah„† ©#(¸°kŠufŠÛ‰S#´2H©a PŠZa¡‘d¬\t‹Cd Y‚ ZA2á&T†Uz!;§LèEBÌ4“h£ 9‹Ré ˆQ–3!1ÆbXTNcÒhDè+‹#8qªiHK‚R-Ì‹jU"Z °’¬H‹”˜ 2ÃvX ±Œ9#§J ÂEÒ:ÛD&&“z­H–#•È.šlÒLé˜iËqL€Â\b0„1ºÚ/Uœ‘•#m²¶7I9 ¦‹¤0+’‰§--Ö†8• ±e!²1`pë%¶%ãÑ4R“(ÒÑVe2µ£¢tÍa§QBÃN¢ˆ,PFÛ(§ŒQR W^*à*$€%–3¢mE& ˆ"„xe”Anˆ®31’…Ó9a ,ÁYzeš%:&‹‰Ç29‰™¬(Ìp:[k"RK¬«ªÑÉ•H¢¡jm‘¬°¹b4¢ÊÒQÙJ! 1ÓA5 J0ª¬(!ˆf*p¦„ bMÖZ°¢‰K*jÔ‰qÒÌ-€ðæum'HN»Ul·™H…„$rÄSF”h`2šE0é‚"-墪(¨SBh€UVæÔ£% ÆÄ¹ªHëv è,@Š”šó1≣e¥ˆZu1âMJ0茔D§Z§1JJ^™³’2ä%8J0²A•á œ$*"‚ÅHR"ܪ†l°ò0NŠZ ãF©mã¶W :iF¦$C2§®ß¥ 2ˆ¦ã;R#˜¬°Ø(IصJ* *Ú‘º¢ ¥• „E ŸK=Ûƒ‰mí„DEDÖÙh K{2Àš­§K!íO|ßF!&ßw®Ý×ÇŸKÝçšDû¿sÝf²ð‹¦¶V¶xD< R €KâòM÷—ß5å}=ÛI¾êå_EÈ´Tj^éî¼=çÎéñ»Ýï£ç°ëQ•ªfÞGÍé‡C… Ë›¸nÓ”gj› ,ÌDmNm‹€p½íâ Šì­Öù‰FI ég‹Sy^¹º±BéŠÁ8U!lÔ€Œ#ÓÙîø•åYÆ^« (z̪¬LK…l¡PÛ¬MÍ;¤–Öælc°”¦ÛâÓ62ëÉ¡mãVÊ@©qïoeÐéÆÁÓB4ŒH-–ñsoLÇX)-e êTõ³¶·Ž°­%òÎo|Þb=›`(³–iÁlビmQQ¦j<ây„®.a0aÖÈFmpˆv [ˆ( ÊÈ# ÞI[d8‘¨ìî;5%@XvîRމËj‚ ±pî­Œ 1>1¶n÷T[0ÌAsbªD®¡·ÞâiÖÕÜPs™wVðv»DÈc$’QšI¤ÒdcŒ)I’›32Ó¢(Òd¢4DX ‘J”—ç?ƒü ëòú>Ï{ï}¯ž}ê#Q|Þó¸²È­P²D77± 2§ ! °‘\%† F£ôãág‘¼D1NaGÔZ®Õ“K¤›lˆ¢ñCr)¼Z¦“Š(Ä(îHfΰtÑÀ£I™8‡#¢¸øwB(];ɵœæs0¡‘ŠÇ`ÇÇÆÆdaŸÑ4UpÁL 0Œ(˜%0ªXV¦E 0R¬,%U0J0©E&¬" Â*0ÀCˆ0¢0a(à VaUX 0a>抠ºS¥Ã"OÕ0ŠÛRTvøV­Wë*­ûüªµø¡£fRùƒ] bÈQŽmÊ6湨Ô9ÚŠnêånk•)c£ªBÎë\Ù‘®uÝ\Æ-! µÊ¸ÂE¢·wmF+šÜجQ¹c\±¨´GfåOî:¹£o.›£cS»G—…ågu*0mW7#i"ɱlj’œãI°hÑEÃk»¸îÇ(‹RîÝÝ£»ÝoI†#^nj6ç4Y6 Ã[%й±®÷h«’mEJŒj ‹‘À²h£DÊòÞî«›Ey§]ÍÊ4g]«›I¬X £yW*÷vŠîícZ("²g.Ú)£›\Ü×5Fѧv£]-¹lW5;µns¹mÍ«šÅrй¹®Z£LÐ…rÜ¢ÚMy¹³Î¿·î×—0išŒš4måïuа–ç#AQU‡uÊCl–b¹já ´œ¶é¶.WØÚ(Ü®X´lh±´†>+^^kcch±±[Í[œ­¸[–ºZŠ‹ÝI¬X¹[šÁLl4üo?䣆¿‡óº¼|l +^¾ÿ·*6{®wu\®[ÝÖ"7œØ·5%q2kbܵÉ,m\ÝÚå^mÊ#^]6ÆóWš£^y®o+”œÜ4ATW6ŒÌ Qånl‹^k›&¢ÎíËc÷]h‹yW+ÝÔDZ"ÜÜ£gvKFÜ’Ñ«•t’®g]¹s[šå)®mng»p°W.Tck^š+š(±,E3+qî®lQ°¯]ÞmÊ«Ê×-ŒXÛmZÛ×+Ø6Kn[\Ü®h£6(ÑŒQj5ŒTWÙmåâ& Š6É[âÜ+\Ý6òÕÍIc\Ú5Ê‹OW-FƒmyŠä–|êóyj661Sço-žé-Ź£nRFøæÛÝØ¶“swurܹÖd(®U; Õæ«–4U#B½Ü`¤Ö7$Ý5ynhŒV"MŒUy¾*ò·–.msk›\×1F·(åËrØ-¢ÆÒhÈnVåJhÑ­ñ[ʼ¬UE\´U͹¹i*‹\ºlk-A¢Ôb±F£Fª1FÅ æÞ^RX€ÛF£ZåÊÆ¢Š5ŠŠ-¨4îÛrÆŠ2F±¤ÚŠÅµsj±0¥™£¶Ü1«°%løOw‚cÁ®°ŸûM÷ÃSíÖåDûöË®771Fwv®tÄZ*6}»ZéAææ¹®Uñ\Þr‹EŠÇMȲîÜ[sQIª"±¬_=ךÕË¦Š¥Ëµ&’Û•Ê6åËwutÔj刮WH·–äTBi6¼«”jåÌV‹k›sT‚+ºæÆüWvÅE-ˆ&¼ÖîîÎmrÄE”ß¹ŒcË¥bò¼ÛÒ-%+EËQ´l‰«éï{X¤Øîãn|õÑV-ŠóUñm¹o+rªw™±£hÓ»|o6€ØÙîÅy^fhÔEdÜå‹Ë¤h(´UnmÌUFæ¸XÕÌîÔjXæäQª,‹´Q´yr㻚¼¹ªé¶-»¬XAQŠÚ ]ݨ‹_;¯9_rÆÔÐZ*4l÷m®Z+s›FØÉ±©(²Dm“6 Šƒj‹šÜ,Z,”kD–®Zþ ®h­Ey®UWÅÈÛ½ÝW7*,hÑ5ÍË­Qk!’¨)(Ú*R·-¹QQZ6Ú-mråEQQª5AmyshÛbƒcT[FÆ6¼ÛtѶ-£Í­Ê1¬mÎZ5¨¢¦w”‹ï©†~`ÿS®ÖuéÉd‚ÎfbÃÁ“o¼·'uQ\¹ÝÚîëûü/.mºcsUÞíϼ½¯snRUÍïv¹^WwZ/77œ¢À˜·.÷V鈒ós–¹·9¹Ê6^WMyUæÚ{«››IØŠ(­#»âÞî¹Îr4F,kãwu¸Q¬[ÎYgλÝÖÛ^W îÞw®·+¦BŠ¿Í_Në$•WÆécQ¢¨¾Ë\Û\ô¸FåÍQyUÍón\¹ðÕåyÍ·+Ësó…¹­æ¯#E·:÷nšç5pܵ%£h­ع·*ÜÝ*æï{¯W-|÷i4ôíË|y¬†Ë»ÞâÑQ\¶å7ÆÖøóWž^F±Š6‹œ¹~Uæ±Q«ËèÛÊ51Qo6¹XÖ//§p[ÎmÌE¾5r¢-®UÁîå^\^íš4F5bJå[–‚Ø £WwFŃl]ÝcljùÝdů‹•ñµÝÝ6ÞU®[Eѵño[ÊåmÌbæ·±|ZÝóµnT[âåÊ»º£Wžl&ÆÛË‘°‘‹¬}wÑÅQ¢£W-Ëmñ¹Ê¹«ÎZ1kÎ&lj*Þm¹V4mæ·,rósUæ«—5F-EE¬[wchÄmn\ÚÑh«È·,U®VåµµËr¹¨5\Œ{ºÞ[p´i¦«›’cºï£W–ò¶]Û¤LY²Ì¦cŠ*ýC­kð ¢HÈ"ÚŠŠ¢ÆÆM«U¶£¨*Å­£Z¢«h¨¶´VÖÅ[QªÖ‹kQ­¬m¬mFÖT[j5[bmcmb£ZÆ6Æ­Q­¢ÛU¶XµѶÔZ¶*Ñ­h´­£ZÕª5U’«¨´ZÙ-[Ö¢ª‹V¢´Uh«Q­j‹V£kÔX­TZ¨­±µ±ª±c[E«E¶¶£FÚÅj+kcm«Õ±¨¶¨µ¬UlVª+m‹bض,mU¶£m±mEE¶6Ñ‹Q¶¨Ö*ÛkjÆØÚª5ª6£XÚÑZ‹TkTkV5ª6Ö‹QZ6ØÕcµˆ¶6ØÕbª6ÛX­¨«mÛQZŵ£PVŠ1bÕ­lj£V­E±cU†XaT§HWÐëØÉ"†ÌIú]–úŠû7-ör¼¸Z,U^k›bÄTGÞsÆ«š1±[›]776·6æ¹¢ºZ5åp´k›¾u\¶1«—žlÊ]Ú¹ŠæÜ¢îêÜÜ­±chÛ!KËs`Ñrä[–¹´Îh·]Å{º5“/uÊ+•ÊÜÛsQ’Ò_6-ŵæÔæÑŽW4clEEFׯ×)îªåhæÜÔFˆÕÝÇ-r¬›ˆ£h¬msW4Ër®ZF+h“Db®jå´ËW›¥‹ƒT–Bוr65ñÍÅlkFŠ3ݵÊÎêÜØÔiBŠ5·9bÄa‘IµräkÑF£TZ®mnZÑQ·7r×M¹Í±£j6ØÕFÄ[\Ûr¤´hÑl5ŠÕ¨¶5EsW"±k5´m£®m®cj¹¶«š´ZŶøÖ媯-·6¯´ßÙbŽkæ`*¥ZŒ‰†\`È„ah¸o²¾£"(Æ «ì寳šKlwvÁc›sE¦k\®l±hØ#N둊MrnUs^[yhÚ÷NÖÝ-¢¨ÛF±Ê*¹sX;º‚ 6Ä´EbÜ×*’±±j0hÑ«»°jdÍ’’·76ˆÖ¹·6£cb¶,UDc®”—–á«ÎV*-¢ç1b®[šÓº×+Ú+ÅowVò·6 « 6Ñ1®s[Qc´TWšÕrƪ61FªånQV6Å©+<Û\ÛlT`ÖŠÚ#PX«“Z5Qcm‹TRX¶£[ÐkV(‹lkiçUÅ·š¬þ6ˬs™t«™ÛsJªš©‡ÌDÈPbÎ*8¿Ýõÿðl­ÞKíKÖ5,¹£`à #ńņ,(رAi(µ&¾òÜØ±¼¯*ò AwºÞEžîmj,hJJ±¢ØÑ[EhµE^W6ÄîÛ›jK›sm¹QktÕ‹QT[IlTs\±k’²˜Ö-£lTVæ·4[bƱnîÑhѬm´XÚ‹s[sm ¨¶,Š£QjKm‹V-¨Õ‹U±`Ö¨ÛT[Q±bÖ5TZÑm´khÑ­dÖ¨ÚÔcQlÅ„V, ‹ ¤6Uô•#~ª¾åpxéQIÅi}¶3‡aš¨3¸¬î X,0ÖX±Nqî¿ðѶ‹UåÍ‚¢±µ|÷[Ò*ŠÆÔX®\Û[›WKtتŒkÐlTV£Z,Ur·1`Ô\´j¹mFÛÛ\®TË%Z Û•\(¶lEFÅ«ÅU¹UÈůŽU±bÖ£żµrª‹[E­[FµcTV¶66¹­˜øS ¤Å‚¬0“ %°Ù5+TWéÌvµSß§ý-µºÕ­÷ÌU‹#mÕÊ6¾ý¯6ÞEF´kFŠ‹lUXÎ]XÑ­V浫nQXårEspÖ¹ÌkFµµmQV*¢‚®U­«m¹¢¨Õ‹æ¶Õcslk­mµ¢ØÛEµmQQ[kFÚØ¶­­FªÆÕ‹[Q­”Å…Z;²ÄŽÌÂ,0–!jü3_4mo-’ˆ‹Q[L!Q‹ *Œl*”ÃVwËÅ›¤¾Í ñÙùYÛµÊDþ/“;‚-bÕѶ±«l[V߃me4¼ ‹RÃI†VxÔ±1°1k¥VnC±Ç=}´Y8*^q¾u‹~³e_‚m¿·(ÕÅ­ErÛsQmUй[UËb­¶¶ü%?¤ÿs0©ñ2c)cBÊÂa (3XU)¬¼löë)cYQþ,Þ2†»{[oêÚû(¢Úï§[Í·š­rÕ+HÃDÅ‚‹Jà F_¢ÅcXa”5-á†6=UhšòdÒ±Þ©ˆVECk«/ Y{ÎD—´v˜¡YR¿ LET¬œ9 F=FÓŽDÆàõYb¦×ÓO3‹ÙsTü†–&& TÏ0rxf¢lT`£O¦Ÿ™„Lz¢™¬$ •9§—Y:5ÐüÑùÍÏê´ø£dƒ<¸:žöÖË9) …¤áV‹µcÁ®a+0ª1âiU“€ k{~D¯™%úÍÇCÙaCÏMœÄVYÖÅ‹«=R8œB¹uŽ¢ƒ$î1é~Ö¬–=K®“º†ÁV•‚D¬¼‚qw8ÄKþÕÎÅVMeaHL0FUV¡ϱCM,"ȪU28É«E¤yÕŒB’èaç¬`Ú)β¨·…j:ç•ß"õ¹²pJQªÚ6«“ñî9>K¦³OÊËT#¡*±ƒ‹ø›K2?Âb(j9ííñZ öQk{%)‰®U³I™ê~¦íîmá”ëpRà²íCNÞæ?ëP×¥)s§ÒW]‰6|*áó$U¤1¥®á/hYˆµÖ ýþô†$󰥟˜ ¸ ù¦%hÉ‚½~׈}Oáß“åW²ŽŸ€Ê_‚¾¬¬)ž‚šSÕc#þE4F IÚÌ%Áp¬Júõ0-GÐfHJ˜ÑðñÀ±ýaVºaJ*Ñ>xXGÄÔ±)ûXWk¿â­_¶õS8J³Œ’Ò—Æ>Ó³5¼Jûˆ3t¡‚±ªúóîâ?Føp«"’`pø2A„])U½b–BC>Å]Wݪ1'þu Kƒ¥_^WÍ6mÒ\+åÌ£ZóÄsØ.ÒXV€¨Ôq.ÕO'xª #–Õñn¡ SE’Ík÷èǿɂµ™ Ê’0Z4D13°ÜʯM“­X'àÁ²àqü!ˆÎR­*×|ìtÎäçìî>,óDÈdac°`Çbc±VÄÃ$èR.kAate6±Ìé‚ÓÓFûŸ>ç¸wܧϟKîWÝlT¥#4³hSI“1@¢Cf) bc0˜’e £"¦†I3e$”’D„D˜”   É˜É`ŠÒɰfPÒ( D(Œ’™‰I ¥c"b0Rm’12…`a’(Œ‘IHL’l€F‘!2”ÒI“"†ŒLSa¡ bf’ˆR’S™3"(ØQ)FÆ‘³„L‰‘D ±(¡Q™ŠbL$¡)™" A4“ ¦Hb`S14ËJXÐ1¦AH²)¡&Bab‰ÆD˜’h)”ÔTD`hÚ$Fd(‚,‚Y Å `LÁ*20Œ”Ì`2H(`¤Êe’&f‚2A !"™‘I˜M&Lb(È ƒ˜¤#a f1Ð$ÉB4’‘$h …$“ ¢”ÉK&Yš ”‚dÉAhI²$C“$$X’ÈIT–$$$I2!Q‚ÁHŒi fƒF3I’¤¦ KH¢d’¢B"É1bi “IA° ˜Ä³i¥%0„±˜&ŒÈ†M$ É&0D’P̈…B5™‚‰"˜ÀQ5’ I ¤Ä“ 2&d·ÓÕæ>5÷~ﯦHY>Zyå>ïÎôD'ŸrõtmóoŽkžyä[‡5ã.[Ï'¾}Ç{çÈîóà‚"UœÃŽÑ:$² ÀEv£Lº´Œ`©Ì†ZL†+"dÉ^<ÌicŠbB‘Ñ IÖ‰Ñ#Z‡Aª-^h6åh«–+»µÍk˜×-nV‹k;ڱWºú_/{Ï>žkp£–§>å÷.ÞmôUÊ+Ê墈´j"6ÌÆŠ±i(¬lZAhÆ5bÑŠ#k1$N¤•°VJÂ:q"›c #û‘”o›sË—w—·Nö÷Lj—¾zñë®’CC»]B“¯¾E¡–LÉ#)¦”44™&bQ$†DBI&$ Ñ1ŠFa,˜D ƒ†c„FÅ’ Œ‚I1‰62R…0ˆŒÌiDšŒBd…“@d¢FFh%0ÐDbH˜ai$Ù0)Bdf†$XšQCÄMŒKh1™2bc2’!$ÃDI4¦’ÉÑI¢&I”‘f0I’ %4`€Ä¢AaQ‚S2¦b3!($P̘"‰$ R"”F4&XfÆ2„“É…‘ ¥0Hh„„Šf’#` ͉¡™™¦ % ©‰0‹0„Í˜È “‘ ÀHDÀ$…)%$˜¢l™²%4dF%) J,‘$‰‘‹ç½ózrw®¾Ž_àçOŸ—½Ÿê7|ëÞîFKFÜ-×ÎãÍl`‘ CF÷{Ý’j]×|×¼„ó\%ݾ{½ò¼½yî¾9å<íx^oO¦·7Б|÷­êŽšŠÙÝ&5æ·Ò šR©1‚‹†J1¨Ñ´Ð‹Ä`¨(ÄQ­(†4lR&ÔQ¢¢b¤¶6Òcb6¤Ú"4SLRF5L°™6ĘÑDX¬E$clUFŠ1IIH‘j$Œ[3b*--†X“T‘‚Ú1Ȇ c‹b4b(ÑF,XÑccjB Òb¨’ر’£Eb(1°FÅbÀV*"ÔZ a5’’£Q¬E¢-“Ilh¬˜¤±’ £b±£cD[&£Ii˜’Ûãã“ÝwÍWwZå»âøŠ‚ï;DW¢=/{tÈV¹‹k¯øÕÝï>Zøž•·§›{ékUóﺌŒ¯¹·Ð‘‹FÄ(Ö &„’0m&’’ÉŒŒØ‹Â,XÑŠŒPDhÑc!…,ËšIˆÍ’¨a$I`¦V#F4XQ„M&J4‘©*"´ (Ô–=yš¤,Ø|[§ÊÕ®íF®k”m»|°¡F ™`S2#PT@Ê („ɈÖH,È£,Ñ)1Q°JlÍ‚¤D4XÍ(d!¨¬˜˜DÆ)ˆDÄÆÈ3b1F(ÈȈĆ,3L†F ÒB ÊM3hJ1A$hÌ"(Š0˜P*C³DÙ*2%4”$Xƒ ( -¢"À’Ba4šMc31±–RŒš±‚Š“)CŒbX’A„Áˆ“41…Šl²$°RDÉ–0$™DH“$ˆˆÅQ‘²%‰ IQŠ{ÆÌÚ gN1w#»œÉµFøÎræï•ñ¬`ÙJ1,F4%`£F¢ ÅQ´ÁX±k"ƒIS)-Hc”l”É3Di”h´I`±“)Eï+ã¸]sQh;¢A »»·Y‹sn뫯›mkR¯ ¢ªy‘0~^?6zõÌ)õ…æEXZA+Hæñ¡øô‹/A¶cò{ŽÕ—ÜããäæómÓ*ïæ¿ Ð1Gü<õs?åø¿©æz³å\òÌö|9œÎ|gɽçÁ÷~Áû_ÆÀ÷ÙÎsÏ3?ÙÎg9ž\Åž^EFQ«UY¶ªû;éöû}¾ßo·×ëõú€nnÄDDDDDDDDDDDDDDDDDDDDDDDDnîîîîîîîîîîîîîîîîîè»»»»»»»»»»»±»»»»»»»»»»»» îîîîîîîîîîîîîîîîìDDDDDDDDDDDDDDDDDDDDDDDDFîîîîîîî€ffb""""""""""""""""""""""""""""""""""""""""""""""#wtÝÝ݈ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ‰™™™»»»»»»»»»»»»»»»»»»»»»»»ºnîîîîîîîîîîîîîÄDDDDDDDDDDDDDDDDDDDDDDDDnîîîîîîîîîè ™™™™™ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ¸€LÄDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDh»»»»±õ`Þ¼€ÿ :½S)ÞK§‰Õ–iñ°£A(Í4…SN÷ÿÌÌç«Õï}¾ßo·Ûéíø»»»»  Þo7›Íæó$*™ÚTªÀ’X!žvÞÕ«U}¯¼¯È¶µm®»3 `à bŠ¥€¬*‘…aUØq|7¯×ëõúý~¿`ãyµ«Þ@Oã:µuõõõõõõõõõ­ @д- @д-s¾òªªõîîîîè^mk°Ùk€®€ hZ€ hZì «ÀÇ9™­v;- @д- @д- ]€ªðñ™ž Ë@д- @д- @×`³€9ÌÌñUe hZ€ hZ€ k°ÙÎsœÌÏUW‹@д- @д-•UUg2ªª¬æxªª¼DCû¿Ü¿w ½ï{Þø™™™™™™™™™=yÎsܪª¾+9•UUZ€ hZ€ lªª«9ž*ª¯€;œÊªª³™UPZ€ hZ€ g3µUW@w9•UUg2ªª¬æThZ€ hZ»Î‡qU]wwww@sœçK@еÞ¹ÎZ€ hZº:sœà:îs д- @д- ª¬æUUUœÎÕU]tÜæUUUhZ€ hZ€²ªª¬ævªªè ç2ªª¬æUT€ hZ€ hYÌíUUÐ@ÎeUUY̪ª«9•Z€ hZ€®UtÐç9Ît´- @д- @д-ttç9ÀtÜæ@ hZ€ hZ€¯ ò»n«Ï5¶®«¹êݽng>Ÿ—¯×ë÷ž¿_¯×çèÝÝÝÝÐ>¿_¯×ñª¾­”±±&µ­ME$4V"¢MFÅ¢~ µ«_µ¿ kešaiTZͪ߅ú{ï}ï½÷¾÷{àîç<;@д- @д- @×@Nsœç8tÜæU´- @д- @UY̪ª«9ªªºè¹Ìªª«9€д- @д-UVs;UUtÐs™UUVs*ª©hZ€ hZ€Ì÷Ý«ÞU]nîîîèw9•UUg2ªª¬æUP-w`®sœhZ€ k  è 9Ζ€ hZ€ hZ€®€œç9Îpè¹ÌªhZ€ hZ€ª³™UUVs;UUtÐs™UUVs hZ€ hZ*ª¬ævªªè ç2ªª¬æUURд- @д- ™Úª« €;œÊªª³™UUVs*¨€ hZ€ kÜüµ¯YóÏ/ŽÎffg—3ÛÎfs=¼ï—§§§§½ôôôôø ÝÝÝÝÜyfg–g—–g—–g–sË<¹™ˆ¶ÚÛEUø+ú'äÞûÚ߆5m6›3Ë9™åœòæfs>/Ýßyìö{=žÏg³Ðî€=ÜæUUUœÊ¨ @д- @д«9ªªºè¹Ìªª«9•UUg2- @д- @×Bª®€:sœç9Ζ€ hZ€ hZ€®€œà€;œ€ hZ€ hZUUVs*ªªÎgjª®€:îs*ª¢Ð´- @д- æUUUœÏ{Ú¯{UÐÝÝÝÝÐÐs™UUVs* - @×tZç9ÎhZ€Ug3µUW@w9•UUg2ªª¬æ@ hZ€ hZèUUÐNsœç9Òд- @д- @еàöuõõõõõõõõöpÀÆhZ€ hZ€ªªª³™UUVs;UUtÐs™UT- @д- @д-~ÍÛï÷ÊZêÞ…ujñšÕx˯«Àð<Óßzzz|H ÝÝÝÝÎqäŒ0”VU†Ã¬ë‚Å¥R#IÈÎç|xñãÇXàsœç<ºÐ´- @д- @еÐÓœàw9€д- @д-UVs*ªªÎgjª®€:îs*ª©hZ€ hZ€̪ª«9ªªºè¹Ìªª«9•T @д- @дVs;UUtÐs™UUVs*ªªÎe- @д- @×AU]tsœç9Òд- @д- @еÜôv:s€ÝÝÝÝЀ;œÀhZ€ k¹-sœç8 EUUœÊªª³™Úª« €;œÊªªZ€ hZ€ s*ªªÎgjª®€:îs*ªªÎeUд- @д-UœÎÕU]tÜæUUUœÊªª³™@ @д- @еào'|“ÕŸcòÎ}óàs33>åééééééðþžŸîîîî€áó™™íæfs™ÌÏ.s3ËËž^YÌÏ^{s3œæg·¾ó½ï{Þø{@ÜæUUUœÊªª³˜- @д- @×EUW@w9•UUg2ªª¬æUURд- @д-ttà@Í @д- @еUUVs*ªªÎgjª®€:îs*ª… hZ€ hZ,æUUUœÎÕU]tÜæUUUœÊ € hZ€ h «9ªªºè¹Ìªª«9•UUg0Z€ hZ€®Šª®€:îs*ªªÎeUUY̪ª¥ hZ€ hZî:Þ ÝÝÝÝ@Í @д- @×pZUœÊªª³™Úª« €;œÊª¡hZ€ hZ€ 9•UUg3µUW@w9•UUg2¨ hZ€ hZ////-/Üò÷Þï»îúýßw}ß`7wwwt½ï{Þ÷½ï{Ýíkø§@"AitN´"cTa#Qh+\Û´[\NînTîµËRÜÉFÑ¢·*é nms‘Üés‹ºíscDQ£ÕËE·6¹´\Öü~#ç¾ßo·Ûíöû}ï¨Å>+4- @д- @д-v]}}}}}}}}}œç9ÎsœðñœÊª hZ€ hZ«9•UUg3µUW@w9•UUg2€€ hZ€ h*ªÎgjª®€:îs*ªªÎeUUY hZ€ hZ»UUtÐs™UUVs*ªªÎeUP´- @д- ]tÒд- @д- ™UUVs*ªªÎgjª®€:îs*¨€ hZ€ h¬æUUUœÎÕU]tÜæUUUœÊZ€ hZ€ ª«9ž®ÕU·@»»»»§@ÎeUUY̪ª«4- @д-v€ \ç9Îs‚×jª®€:îs*ªªÎeUUY̪ª€ hZ€ k²óï+Úé­ys9òþg9Ï,Ïs9Ìç¹¾^÷Ùìö{=žÏcâÜß//‘ú½^^¯/,æg—3Õ™Îyyg9˜)Ä»uÝteÝI:eÜÁ“RšÜwY¹;ƒ½^^Yêòs33œÏï=UUÞ€=øßç2ªª¬æUT€ hZ€ hYÌíUUÐ@ÎeUUY̪ª«9•Z€ hZ€®UtÐç9Ît´- @д- @д-ttç9ÀtÜæ@ hZ€ hZUY̪ª«9ŸãÏÏÏÏÏÏÏÏÏÀÀÆs*ª©hZ€ hZ€̪ª«9ªªºè¹Ìªª«9•T @д- @дVs;UUtÐs™UUVs*ªªÎe- @д- @×AU]tsœç9Òд- @д- @еÐÓœàw9€д- @д-UVs*ªªÎg—jªîîîîíÜæUURд- @д- ]@®ëý]õ¿ n­}Ýu^+V¯Úñ{kWUÓ»Mqöe¹YûG1º^òbÎ(g1kõO òÊã™ dµAcµ .ó9µFj•šÔ²|bG.°Á‡ØÅ©QÔ²-kleŠËÇøý5UvÕ]a—lê×­yƒ©Ì:ž ]ž~K?ìEŽÇR¯þPxÕU¥TUJÒ-ž…åH»JSÂT~ ¬¤ºÔOCkÌ•:Å-¾#ݨw s”¯V+†’õJ­Þ‹³¥kÔ^ªCg ‰ñb|åu&éüÔñ=d§¤ƒm•«”ú5‰[ÚÍ œ­j«üUkq{jZäzéZkÅuÂ×êõulÞ"ô©}´l!Í“b‡{SÿÄÜôÁºÇ§–ùG¨-¹¿ lŠçËÔÕÅSÕ'n=]_,l©ïªÙ¥þ%ë ÀM;š¶‚áÇ­W†­¤rkj¼jmtúkl.}=t¼©ëãþËØú6ÔìÖÝWè}q©ìWGÊÿTÜ¿­Æ¼±ìÏÞnUð‹ÚG¡[qö§Hn‹Ž·YýÛûÛ {…¼MÙ7«w¯-7…îÏrqy÷x-ìÞŸÝog[ãªßoˆß®bß×Ùœ±žíužñvGíOzv·\-ÁÏá}ÂÞ‡¾»¿sîü÷ëWòœsíqí È;lä?!à¿‘ð—ë93 å6ÞSã¹Y×y®Xù½ìœ·ûýì¹g+¡¹^ÕÝrÎ[p¹g…ËüNcåó/±Ín}{š¹£šxw3ó9§µs\×2æokÌî-¿–ì.]Ñmÿ«É¹¹ÌÝ·5r–ßÓóM¼þ×5·9®kïí¼Û›ùNm¶~noiúÎc•ýû?Šî¼^IÈlN?ãñÿ—‹qÆpÐñ›£Œn¼W¦v|^ëĺí׫â:Çúùû—¿¿.åän>ñîßïpû¿?OÓ¹}Ãpô^Çä÷þK~ÛöïEÞzïó»þ;|ß=‡yû7¾#Oú;ñÕ{÷÷¾ßWÝêžùÛön—vÛ¾³åû ‡…Ú¿7ÐãõžŸ#EØ5Í£NÓ{ÛSØúÏašÕ}6í¹o¿K‡èúüײÌ÷¼ŸÞÏ3§-‹Ùú½³•SÁÜu,sbì} ï‘â]ªÆôT`ß ú¨aÒÃëpdÑvnc¦wŽßò&•Q›¥fîÕëýNIÝ ‚/Þ1¿>Òa§Y”YxÞø±O¨v+&CD1tXl>«¶‰%LMU'Íá2|v ©ƒ\˜x–Ñ5)½9ño`ÔSÜ:ªBeù¶Síbô}Ö-&šÅ|l>¶ð²"bû¶ïÛ‹Së.ÇÌÒŒ\µ(ÙÕ÷[GhzÌ~ÑYºMü}RS#·R0ìå‹*&ñÊÚÿ1²ì! ŽO_•u%,§™SÕsò®­HÈö‚5›)SJÈÕŽC¼Un÷r4ž¹¾þ»R=¬¥’ÎÊg|Ùª2söå‡ÉÍ^sÑèzŒäÆ›”Ø?.&Ÿ®2¥e7üŽ·aä~™X좙YÌo¼ú±t3 &†Ýíô˾Ù¼/w³V_ó™’³ùÿÐjjÉä}°Z¶¯ådê÷‡R·™4‘¿þŸµÎ'ƒ¼·%{]ÅCJÔó>­Ã×$J½dDna‚à 0`¢Qf6M„D2%˜A6Q"‹"Y Å$„hˆ‘ƒ2Š%bB‚€CbJe#L€ÓhÄ‘b4D@“bÌÅ$1 ,Th˜¦ (6HcDL’A”`$‰ɬ&’ FhÅF4šŠ1C- “i¤,L¡¢FÆMˆ"™ LfLi"“KTI˜( FИF„i* 4c0J""ÀF3#2SfXE6™&‚H‚I6MŠ™% щ ‰"R …RI“ š4PHI&Æ™Iƒ2 ‰1S 1 I&Ì¢M“H`"1a”@%0A‰I‹ÄÔ&*@d›Ô`Û2 )(…™¢ÌÅ E™£D`3 Š32BH’)’̘”bCPi €¬@–5¢)4FÁ2™cX¥JŒlÀL–ŠP£T”F,F„¦„¤b„`C%F6RRdLʼnŠ$¢‰‰R$¥!(ÉM2M-F‘4±Œ$D2ƒ,¡!1cDHP@Í% Q¨±6$ e K%2 €Ä ˆˆ#HS4ŒhL €±ˆ"A2Æ&¦FX"ÒÆ‰"Èd¢(¨5Êf1&˜Z I™ ‰–0˜´ÌDChƤ¢‰(# É Ò`TÄ©"‘6L™1$ELÐ@‰K"Y‘¬FH&’&!4˜4’hÁ¬"F6L”¡f(Å I¢RIF60B2ˆ‹LÆ¢b›$ ‹IƒE&f“&RÊIIF•°”PÂd EÆ™AÃ2(Q(ÔIŒQdÙ`‹$ÊC4 ‚Ä‘€É@ÄÆ"‰€Ì‘Pc†!FM0ÀX"’1Šf ‘HÅBÉ $˜eaˆÙ@ÂYˆÑLŒ Æ‚c CC!0’E$Œ“ Æ(&E(Ñ¢dR2Äb"$¦` Ø $ˆ”ÑQ)…#EˆÁH¤°”™DÉDIF@#DBcd‘$°$e3"L ÁS²Sii3„IH2C0Ë0„´Í°@a@0I&e$D¦4T˜#°ˆšF”Ê#b,QI"‘""4‚$„”¦‚ILÊ"#&#FÉÑdÙ ˆÑÑF0b,l³&Äb”"4¬‘¢F a†a……ë‚<¥b"qLTö •‘UV"‹&*¬PS £¬1°Bâ0ë*ÅJ±*1`JÓpHÆÁDÆÀ#$ ~¦DÓyÏìÿö3F+_ï¾ÝQò[þÇË{ÌÛŒÃ.«_f÷¦‹¤ûZªŠØ<‡úx³¹Ùžÿ)0ðÙú­.Ï:*×5Ì«õ*Ê‹Iµ?^êCܳOE"&n–oaÏäï\^óâPؤµèð¯×n‹¦Ú¥z»„{=“d>‘&‘¾»¼d4­ß19LUÐ^‹Y‘”V·_]øu¸Éð–I3Ÿ›Ž•èû g(­¼Ôû]¯–ær…íú]Åá2\a“W ÄÝô¹¶ºžýs|É·nrhpZ±«¯¯a—¹™æ¯[—fÉíq±u]ÿg*ë³°ûô§#¾ékõì¾n‹ø²â×1¿PW¤˜¾kÔý=%§FÀ5yVbYžŸ7këZØÞ:âô†—ÂþÉ·Ñ2xWo F—¢ÞûE¾k¯Ó<}_¼ëƒP» nð§Ó²ö†Ù£ŠÔšÿžÇc³ÛÚt,îY2õ^§™×èùwQ£bðéÆP»â´•âu«†ú‹]«E†‹¦v9âó¤M’ÿ˜ÙEelb< u¨MojÆÒ¬S7È\a1¿"§g†»,õûòwûÀ|—Ƚ¨Õ|_sg9­m\ºÍñ4Ïì~ð³q›fûJÕ³7æ«*YVàþÍö&î6Ü{ hjß>öèzºîxdàþ>æth9íÇ_ìkToÎeÒéZ›ûÔ5õ7´KË¡×ëõÙÅj/FØ*ÜM~î_;DÏ#=yTxH¹ÚSHd+#`ç¸ß Åäþ>ot~ Eé´¶zõ¥Ì°Ö-#ér”ëZ›PdØd÷?Ä´¼µk9O!h4þMŽ—4Z~´µ¢Õ³¼“1ÔF“8ϤµuĵþO¹ÐU oªG×ユ‘LƒNääçj½k΢ŸiÇæÓ5çÈr~²?²èØ*ŽoÇ|Þ·ºŸË¤Ó8¦|izد*ŠtlŽýµ1U•ºç*â},–çâ zLÐ÷¾Å&±q8ï¸â1&{„ü}cj: SɇZu”â~+s«E›,õYæ£Ò½/Ý÷âÊ–W¯áåΟS©úqÃUš—Y÷u–¢“õÇõáþO›I 5¢ê?C”vKÑJ¾–¹ùÒžµ˜™zopò“£ÃÌÎuY¤ÍzJ}/¯1êù~›ÊÇåºã}ñjµu˜¸¾Îy¯ÒÖW…%Ž:?qðùO}Ð…àüó4¬çbWŠnáüÍöß5Ú¹œµe¸†D¨ÿAÓF@Û>E:×äklŸOç¢c.£ÁÓ¡ÃêtYŒø²'ÃG3x_÷¹Šžš­úC7à Êg[ç L­ªÈšv6 lÜ^Í\ÚôºŸŸ¹ÓÙU¥í‰ý–ÙøY ³m„5dÞóÒq¬¥£gpé(yíŽFDdiê®WzÓµR»èp ³w§ÔvÝöUäÐå¹Ý_k-·”̧®ÖÃ_‰ða§Ì0ožÿ‰ë¹þ×V«ÜJ\DZã}/_,zÜTŽÇcÚ,…“_¹é}}12†¼äLG¨×ž€WGMó ÈÒçb›6}´'ùËnÂzÛz™ÊÎvÿÝ3Λ™E”ê¼B]‚hì;~=O¶þð.“.7mJCÇù%,zîB'ãícÖ5_£¡â›ÛŒìÕr¸åLüM›2iŸ×n‘8—£ûYU¢½{•æ»ëœfÊ™GôŸ2elnÚ.‰©ê±«×º¿ðV®›ÖÍøüœûì};eÇ[úôõ?ÍÖ&9¨xŽæZ¾è‹"²=ËFóx¬Þ*á 4ó'¥NCˆUû¯CÙ7þK/ÛÎÅhü˜ì\Y¼Tª/Q::hdºÆÑ±}Ï‹Ò*7Ì›Û_Ž¡{ujTSØüy1Öí¢|ΗZ%ì2g¹ÿÐÿX·r—+Ý e5¹¥V4Ñwo‡Ö©{•j çNšO)Ï×§ñ‹•åÒš"ÕõoilQÛß»·¾ Ö7ê=ŽÿÏq<(=S»Í,ѽý½þü‘ Ù”kiØ›†¹zÿÂÊsÝ£á5܃¿ç“ÐÕOáV³_‹fU¦Ñd™‡É«G'û:U|nÒ•ñËŽæõLËò¨9ÙQÂâ/@È­kÞmïâ¥>æ¶C¬™«zãëÏÐ2'ªýñË},¬×‡é(u¶[¸Ì4‘£Å^+ð2[ì’ñËÛ¼Ù¼v¤¬Õžwñm¶¦©}2¶4÷—¦åËzOnõïsä6ˆÏÝ”Fö­‘Ùx›º›«Žî6|Í\ŽÆf'gÇJÓÚU¬³Zž¡*õÿÞ:L‹#³ëÞêF³Oõ»)”çÊç ÁÕˆVCé¨w{ã«î9›¸¡¶WF}=!Qò*á ÖÏÅÆš+X÷55Ó§à¤N‹&4÷âyû7Ó»ü—€žn¸Ügc¾=˜ß³÷AÑMågýžáÙ¹¾²u$^ŸÓ­ªwßþd¿ZZ¡Ò§W×S€8š£~ü½óÅ ŒÎ_Í–Ík*F«ßE[̲§Lé]çtç$-#&ζ¬ï¿—Ž%ío…ÁÅY©šõsÄyˆ¾ÖE‘»ó“~}oMÊ:ÍÃB í½Ó&^dök;վ실«T¯ŸÕ§¼lçÙn™¥ê¯!QÕ\G¯°ô“{o»º¼ç¤àòtΜígoå-{~õ¬÷ÂfinBrmS[}Åès•f——#Þ?;Ò©é®'ê?øK¡uSO+©¬¶‘ï®\n²¡(õ>§6tœä®Öq›±™±ý] ßW|ÞܵŠ)¬OëþJ_?ùÖQ§þ¡/3Ÿê¤ärmc’µvŒTV¡¸í9F9QÉ`wiü§§»º=ÍÓÛ×Eç(¬ÁT'¢Ïû 4.,ørXù8ÔËX#þSŽÕ 9ùõp×…~(zG{†E6„\I‚šeŠ×ô_íŒ:7µ¾y'¨à4vgœ[Â#G#L§Ä©F³¶c¹°öds3 #:Qqgª7±Œpéy]]cÌaëÆ«„¾o›ØcÎ3Õ¹j)¹Mn »¼¢Òôy´ÀG®IÅÉÿEðð‘¼kký:ã…6P •zÍâÐÌ?-¥A»ÍãŠònR*†W»Éü9Ê‚8ç²=+‹ÈÈ‹H²ÿÑE“y«ñÿÂch¿Öÿ¿òRŸñ1¾ŠCp„C%ý«€ñ‚åý”vùzÅ2rG줡õœù%÷Fn:!U?éà¬!¯mÛ•¦¢÷éY=ß}Š3/vËË|"—gŽ X°“ñ Ž ¡ólÖ€á’Iq†_}ù—t#CAÜ^X”C„"Dn«(§Å?ý+Ó'çMŠÅ§öá/sãÚQ‰M¸¸×$ºCâŽFß™Õañ%õ2>Á;žq* À»@B£fó AÑX­K‚ªÎ:sqæ©VH¤ìÒ ,¸AŽ` ”˜3í ';Ÿ“°¢+Çlu“1M`¯Ìèù”?øØLaÄO"~?Ì\%O­–¹õÌIú€VÚwò£¯€ûþã?Š´Hа„OøÈÍzV»ûæ‘Ã0Fdcø±Ø ü9 A÷ž$LóßYRR ï}î¾{Ž¥÷[Ýö¾W¹Ü%ÍÀ:êƒJf-6Çl.{5M’ç`>ê’””%[ÍÛfÏw ´Ï¬½žíÓ®î§ ÛÓ˜íYØ|’öà=¹öÅï§Ý{Ûa¸hB û²ÜKß>†¼ôui‰>ùÞë‰I_/{çsè÷¯¦¸˨õÎ÷Üñ"o¾³ÑöÅgu¹«w;³§vÜÈP©$Œ\ж­±®W°ÞÑä¡ŽŠ ]ÁôkÞîv¼p;aB„Ê»egÃh×¼P£×B¨Í€»Øwjð2"@ ÉÜí†q°ð>‚”ªª*JP }eEHI Mj¥ (¡E(%£Z5#-ºÓ¶°gÜï½ëÛuƒ™MJ¸8qÉ»íÝ·»º“ZÓUI"ÔUBIpèÝI´ATA%NÌ¢J„ÏFà£ëWÞÔê TT„T¨)N @ð6(zgR’vÈDk‡Þް‰SlªIR{xãJê¬Ûs·}uѽ¸Š½´½†Š A¡xzqåfU#ÞPí=¨@;Јo]7€yq7À ªt-š'Ûî`¥€*9 §]Æúª@>ƒ@½Ý‚…Š(ô2è (@h@)BRÐ¥”ACÖŠTœ ©ö¶è45NŽ@’…uÑÔ€»Û:yh€5ð‡¾õ}z›0ÆŒz|‡ ¥¦;Ÿh¸“Ø ·ÐeÈ>LÕªù™j8€î›%”\Ö³;€hO£]:S­\ô»©\Ñ)ͧ5Š·z4z à\`œ}ð ͬÕJH=h Pl˜Ð 4 Á}}ÙRIUPP¨‡Mˆ£lH éAäê÷à}}ãºÖ™ è4^€w–éôîÞö¼Ò¾tZÕ¼ðhF ºûšu£=nTö÷™ëë.ð¯`€€nÀ:è@€@Ð tÈ€Æ  ì÷>›w=>4ÖŠ p!¥±ÙT×4À.Æí0Cp±vèÖÈ ³–ÝÕõÞPT(NÍa»áÑnöz/xøB¢H[Ü7Þn×±©*T˜õ ºUl÷ÞÞêuÈÖ[³ 9(¡¶<š(¨;Âïouï€îîð6õšÍT€…J6Ò—žxï„ EžMÒ‚««p7\‚h(˜Û<€;»k½ØT¤A $¢€RE P"(hÍÜ$Ë`ú 8Pª€¾º4«b›ï)ç½Û‘ÓE*PVïê*•ôuEt¤{ÝÕõ®šZcxÀ!" OADˆŠjf”Ìd™š„ 0#L¡¨Àõ4§¦”’’!O" =@õ@€ O%%$$2¨ÐÀÓ „`€¦LM0I””‰ÔÕO5@ OT¤„Й(hšÐBJ$H BÂb4Ú2bmÂi¡ê2i£C@dÐÄ@y22Ÿ…TEüßô?µäQ Š à*((PQ?¥ÿ)þ–ÿü_ñ¿Ç7ô¯{ëüŸG¥ô^•}ü›àø¤8„¥ýf×ùüŽÇ[»Å\K´D ÑE2S1ˆÍ2aSg&Jü/ÞÄúÍ­þm*1?g×Çæ{u ™Ž) ÄR„…f®­%Ì5, ¦m̳˜ef„Q¡B2 ˜XÌ©T•@M2Ò¤…Œ¤¬Þ±”²c  Ê…ÒWMÄ\ ƒI „1‘˜æ.±V ¶ ÁÀ)#‚Œ¶í‡+.n)ÁüUµ6¥u5Tª Ñ™™‡+’bA’JU72åS&¦¥ÄÊ(A)T´íâ³ùŸš[>×IöYë0Â[LY4µÒüozûï_¯VÍüs‹'èOÑ¿µ”IëÏ g¶÷½ ïaD1B]N\Z‘ Ê IÂ$á,P‹!Ó‰¥›ЦD†°PdQH $HÑ(Ã;BĆlÊĪf”Hœâ /YHJu™ë¦¤¾|~›ï}öégó¾3}¾£ä„bQzúým©f £ÿZ]­‡ìÿ7‡XÑÔþ²ßÆ'Úï|éJ$ñ)>.²fÄâ_ëðSó~úžÀß_z ¿êF~%æÏª?©‚ fÄFbbÐA‘aÈTÐ-f)…4ÄœD¬KË2³jä(lÉ- h@‰B°A§)À8#2ì“wZ5*Š!±Y‹»NØ2…5*ëTé]\HJJ"§ SÁˆ¦×ú¿>Œwï0&Ͷ´SÍ›{×CJv¥¬ ’6 Œ[“BQÅL¢]1Y™7E°ªƒb–ÛVÓ*¥²*l¹*P§p†i‰o6¥)Ͳ aMTaɦ)¤ ¡.*›ø{|ÙívﯼLt¤Öщg¬÷¼žYOWÎÞ÷´÷ŠLËGõÅ?hSÚ/µ`·oš]i~Ä3F/¸:~ £’ÃËy^Œ© %É!i†7!Ä0j0©K‚H”ÊLи&!`© •‡Fúa ‰>Ù&ú/[3a÷Ûçß}Iõò)æ I0p©»%Y10Ð.Ëh™šÎõ”3Aµ-%ƒ Œ¤õ>}üô¿Ïç¶/ïçß{ßZ[a=3´ˆk‚ç¬:’Iì|{?‰—è<')øô€ªê†>Öôš>z|bpu'Úíf|À”…Tèbcâ_J“Ęøœ‰áÙ¸I>]ŸåˆO ‰ 1Ä'ÇO7_?›èÄåã||î Ô’S„x"wuäŸ*N¼ß;M K_ ÞíÄ[ü|w›Ò’oã6ž·º’S¤›ß`>x>ï©?,FüÛÉ=W^ŸÙ‰âë%Ô×í&z꜒=-§KüüÏkÄ,ø±,Ïñ»Ä©-¶oÕ0~^Ï4xMï·~}òŸˆ>‚UfATÉçz´_µ#ú§ñ•'åÑú®Õú©ÂA)VðáCLd!’j¤ •‰ÎS$ø}t:§ïyòu;¾³Í÷ÆÝ‡}óûçg@¶BEäM]NõVFQÐb‰ÌÄaBGFš£5F š*ª ¤i"˜¡Pµ™¸4”ÜäÃ&X‰ˆ„YUQP£2]Xeø ÊK ÄýOã¿~ï¿hÚ­dʲˆœH$̨ɈV\¬›°‚'+'EÅ6j2²`Ášj„ˆ D*Tj *Ky¥n¬âÔã`â‚$„R"âªZ¦!…1‰F¨¬—‰$á\Lº¤K0le yºRCó¼h~Ÿ}_æþ÷±¼…˜'‹?•wtl¶J$‘vïÁ.U–Œœ,æb-‘p™‚ÉÑE«EˆRÁ‘£œêæÑ„?æš0ø!wó1þo7[?„”h|zæ-[f§$ÚV`àÈTs—P(„–(„¼¬Áj“”3Tê‚™ác17 L°QÉr¨²˜A˜*Ñ š38˲éU(”?ŸY¥¿{¼¤ö½ôšDøîK<× +¶/®¦lÛiÜC£dAÅ4h±)‡r EbE[ÀpP7–Ȭ¬•›–Ël'œ{øŸ}¬Ûï¶³éuÆmb{d$eä‡%f›»wEÐJ™*’‘'$2E42ÊÉ 5O&H"B‚‹H†¦^›µ_„÷½ì”ñx¡ýâø>¶AïIBå´$Ò¹¤Õ`\ª"©C”ÖTQR^ 3*A£N^s–&©r*XA,™Ä:‚ x†4°ŽTFb¬‰xiƒF¡6âŽHyÄÖñ8DNUDUÓˆÑl- ¢›±“fJ Þ[#+pÈ…ƒ”ðpH‚¶òBFàKªõ·÷Ö‰¥©ßjKyV\¤  ‘’ŽJ$‰2pÍRJ*"Í ö‰‚ ÉŒ˜h‚ʳ„ZÊɕ矯ËÉûø×­°)/ߦw®‚O똦n.ô, A”A¨TP•% 2•'På8¬«›tÈÑL ¥Ô TÉ4˜2d˜ÉS”&f0MS, 30íSV[Pa3 A‘bbFdÓZIE@¡G´ÁÀ&Î0¨¡Ñu–I8_¬Çb~'ÄéN“âëþ«êhþ¾÷:P 3ú÷­–7¿[^:ìtN«Æ·Ý/œ«ê95õ|~;Õ“¯‰Ñç~]Þb%)(ÒÐkä/UmE´Tñ×-ͱEk¾¹‘y…¡)z4SOyš)訡¡-Ž„ÄˆßŽãñ·žî“êuìžÏ²^Zúß//o`iħt¹®{÷X¢£Ý\ª6ø[§ÃG&~J”æžw>Î’ìt$Çç{3âR-³ß¯xûë­ðåÐ¥!ü¿¡ã%'KhIÁñgÇï¶ùyÏÏ5^íòL{!Š££¾÷”S¥¶¡ Ë,¥f”ts! Jˆ¨À…¥üù§¬'šÃ¯¿¥ñ3Ö ñbK)üòаÜÊ% ÍÄA‹0qDLM›ªk|ßßozŸÔt<ýHI“Ïü›ß;JæRîä4§–‹±Ñ¤=ƒî5Ñ¥¬|·ËÉæJÐp4}E^B¹B>HttûtÝ £ÈtS{‘×Ô§@0¥>lÑ¥z ‘tGˤù¾GÕÑìèÇÌ4'²â=÷kßÍ@ZDBó¯°c@ÖªëY²Ê‰0P@¸@ž”„ñ.õ>·ÂÏ¥âÃSëv„ £ñ.T¤ˆ”˃U&â ±P»AUL`H5ªP€’E™„â³NÅ«I›l² ”žñ»ùnßÄšõ}©øõ¯¾c²!ÊUjÜÉI«!Ò›•7™YS#?xùïÍ}Æúöã`ˆü("ôˆç(ˆ„„å6âÉÍ%—Š- §&¹Vq-•](PlQQ$ÄìÄåXU–rò(fæZ1ŒæˆŠ…L“97X¬˜ Š02Vo.ÄÕÀhˆ9XP‚œÆlH« ØP ÚP±PÊŽIl”s,Ä[¹±"^l•c&¡¦`Ä©›ˆ N)!%•¤uÖbŒÜ j¬±’ ›NLY‹©ypâ’D„,-Œ-X–Hƒ§p¤¢@“˜8L~rîÇÎÕŸ0(yw{ú²»áö÷íj\ÄY ’  ©ÅMLâ·Šš!¹ØÀÀ~ˆë÷çý¶~¾>ûë“©*]D*7]šÖB“ŠY”M´YŠÙUÖxy¶2+Œ´æiɲIµ™TIY†Klª¸’-²Pl¹©yäµ$9ž3%=­¨•˜LÅt%XV6b-…x6»hÚCt‹ÛbÐeÒ˜NÈòdÖ+r‰¦ä™¬iD‹ccg®¤·nTÂ=K"œ¶‚+)‘¡åáSñ4ùm£nÃD¶Î•PÑR, h±VV:K¦‡³nÉ8i–Ñ„œb^•…æa…dØ›v¬›<¹Ý\ÐNgšM*l]•ËjÂKÙ1ž˜U4a6¡×Ûfɘ‰\çdƒk;¢&XÙ‹’v6‘^xŒæ6Ó=U¦0³°¥m öU#ljª’¤2YÎ33Q›$DhWRMr‘Q‹t.pFG:záGªÑ·]QƒQN cz•‚ŠØF•¶lµˆg[¨{›N‰Ï7õû$¸‚‚JHBØQ)VŠ¥€Žíf³‰^CPÓ v’ÔfÊšÍÚ´…Ô»%É»:ÌÃm6*]ɦ´¦w ¶³°â'n—6Ê©¨˜´¢r8±ŠÅ.Îw4mq…[kcâå«1Dà–\çFªkø?>=ô|ÊÃ’Ù {vØJYiÎådtlõšÙ.jz嬵•ÕV*žUÂh§¶ºíb/D@»l;Žq†ç5YV\‘J³âhl Ò„%¨[€å8FDÔ5±‘{$…0Tôju¸†ÚDgDhí¡æƒž2Æ4€¼Ø ÕHBhÖ6Ì*½¦D"¢Ôš)§l[j)aƒ:³†ÓˆÕ[M$G54U©Ó= Fv”‘Av¦È¤Ò°‘©Nű²µ­‡cµ—Sg5‘¶…E^ Z KTŠÐ«Ì\è5´e‘®lÝ;a‡9̹Åf#-‡NÔ˜%,«*¨*µF‘9ŠÑê½cvQ±l[eÉ,:º3¨RÆæfV‹‘vÎ¥Ñ*º‘t\é͹]—4aFÁZvÔEºÔ¶Yš…ª„¬‘™é«[®µ§]rô+g¢M£jQÂd“/;K—n%Ò"2$½v–Ðl:UÒîØyÜ™°Nšê¶¬Ý ªM©ÛB¦æ!b*Ûbee+j#dšb¸Òí- sNäU+›mŒiÛ-6b*V§UƒF{\ÙYxWp¶ªQ$º6Ñ®ÏleÊ•%pì*Ë—´aq³m"²8y—&E5IŒÛ43:éu$4Й››2+XpÜÛlÓ¥Wknh‰MÓÙÑ%¶ÈÎ  «fÙQØ“ ‰ºxŒÃËØ#mXMUS<ë*6êj3k+9é“i’m˜k=¶ÝªÆÁ¡ÖíCgrÊ2º ki›V²Ë³Û]RkCKBËÖÝœ9è×CrJ(³“.Tk$¶W0ÇXDÛªÎfr1d(¤\S¥å“k»Rò•Vì*ŠeuC=h$—ìÓf1‡;2aZ-\[ÎÐò«¡¸Ùu”dÁ£6d·[’zF­­]!±¤‘q­c=&‚QišRˆ[†æ‘¶žµ°Øª6\´ö2:ÎíªÆy2³¹‡=j\\¬[]dÆ^ì•pšµÛ-Aknn¢Œæv"FÆÒ&“ ¶ícYXtÖvg(K[=7&ÈÚ4cvg1gl–MF»F-P°H¯ ÉV-câѤVÅ#‹‰X˪¶ tm3%ÒÝrBdqeÓ.ÒBi‰Z1dqsØÓ­™nÆtŨÏBc0«(ı±Ú±µ¹3ÚmÈmi˜ˆcªÒmPº22„X¶sHJì´›9´D$Õjì$–EÔîSn•›LÒˆL‹ÛljÖÈç9«k¡‘WF1fm¬ã ± ds´)±µ.íœe³6XÖ$Ì´U.»v*‡W.Â`tl›NFÊc8u.3k ætësŒ]u¥é$¦ÍFÖºyµ´©kJ’nØÎ‰…$(nUMº£ZJ2º©ÖX{eIí3;­‹J¶Mi”ÊÃfâLã8ÝbÚ1X¹ÖÊk;l½rÄ£kt[6U¢q­Bµ˜bmÌá–\ fÖG§­9Å9Ù*4l»…Æ3S·bÛFÕª[±н“$±‘ÖR,X6WK»\’¢îiWœkÐÎ##j§W,œ<©j+bĉ•KWhEvFÒØig6Ì‹ §VÔåÉ9†›Tã/bÉ,ÅhÆM£aÜÉ—&‡”FƒËG˜6óÄ· Vµ²Î¹*QsÆGZƒK[.ldΦ¶‡/;N›c=li3B¥KŠ2NIEÄR×8¹X+8Ï4I¹‹k<‘YÄ7Q¶ÚÊbkKŒŒÒ‹Åu¹ ØÎavž‰-;ÛiŒ¢Ùiγ[9KNÅC”´lgvº¡JaÂU°šÌçm(‹Œª²W ›‘^ÅdÐ8Èšj²í æ’¥ÌÄ»vc\¼¸Ög*Î캶%]™"åÊYÔdG ›,I—fÎ&¶;gBa¶Ú:g:»#šÛeV5‘Ò™’б„rZÛbª”ØÛ« ˜¶3ºUÛ\dÖ±<(ˆ«arjJÉCTíD¥5gv°õž¸v2†’ÃtC2baun‘š«Yеžg!2vQMp‘¶{NB&„wBk*fpˆ˜­›6›Y¶¤Ë—D˜r¹fH²â™[-´U­¶³¶“pŠ¢„ÛYö]Ò\ÎÙ°m$Ú.l…9ÃN^¦ 8KQt8vÆ:­³:Ú{nµVu3m¢´‹ÒVŒ]Ñn*ìNì3´&µ¹Ljq‹ ctéèR6Wsµ±:LíÊbHº{ (îcfÕfÔëj….fžªR3†IÆ—ghqg¥ÍE:Hmž«iL-³Šn0$Ú覡nÙ¸2$VÂíÌÒ#dÅb†k;K’Xµ¦])³»3Ùm“<. ¸ˆÃgL’SƒE9ìÅÛ[Å¢e^PDQ™pö×,˜°îFÛ#Ó±%¢­‘Ԭݶ‘ÍÐ¥4ML=˜Ã;c uÙX™’ÛB’˶a¡¶Ùn¸ÕÔ¡ .¶‹•{]‹Vm$[)±Jfä¶Å®ØÚµ4ö-£b éέÙìêÝIm»m¦N…¢¥Vº(vÙ$¢’&{-­’"›—gY©M­‘Î0¼ÅͶKdÄÖÂЕ­RjKmʉ‡´I¤¨ÎäQI•çRЉ©EZ‡lºC*áe„nÙÑžÕÌ肌aåÖzÜ4ZÉ-BJa¹Us“µ­vtfÚ¤Ú¶…^eíŒ6)›th°ö(Ùɰ´ƒ¡SlfÆÆ³°KFˬl°ˆšÛ¥›]"ËÛlê¼€«ÃeH²­‘HƒÍÛÛzŠ»7AkiÂÜêÛ&¨Ñ†„qˆJ+n݉‹%¡ä²JF± œˆãvçlJc¢L—,8ØtлÕP޹Ît¤&ÒeÙe³1¬3Úyçv¡ˆ¹—°;bI{Z2HçÏVLÙÌRÚÅ É#ƃnj‘°›[ªÌ6Ú¡¤ÃUØmœ;MŒQ••KË­·d¥UëmS8ÂlºÛ¨ØÉmvìmJ™±e-¶ª­9Œ¦ÎÙßÔ“¯ F'k:ÛbMЬìC(ì£5,dDdƒ#b¾.ÖXJ0вÛ-;VÆ£nXsØz¬º²†í¦"X5Qf4›µv¹ÃWlÙ¹¨„Å ìŒ5tºÖM®¢¡èD„œÖZ–Ssút¾£Â-˜ã®8ù@QFAEOòÐP%?Î|ŠH jU{-¶éÍq)–¹®T‰\×ÎêæÄî Á¥4è§JP†¥]PèåØÀe\ÆåEʹÊ×M®nYw[r¨²b±ëVÊ ˆt£¥(4-±-d¨Œ;­¹RîºmˇQ]—h1¶3!QP’$D ŠÐQS°”†‘Ö©µE™ÊŠéªPwüK\[™ê%„m9ZàgucX'€¦rÝnC(w«ªþå¯M¹›I\éJLMÊäs¦¢JácÖ1Q8­1Rˆ¬2”l64'iØY¨Õ˜œHLÊå$$œN$DlØb”vEp­dPœ˜*Ê HšM3—iÙAWHPÓ´š–R¥Ë°JãIÀI¤“Nä"îÆ “.ÝÓv88ØÑFš(Ä¾ÛØŽ>|L1K%„¢R´ªôcœLd6 ªåꤙåFHB³ˆ›£Ž¶È„¨*+™‘t­”©R!•R±+²à™È¨ DJLI¢‰U$¸aªŒ]‘Uta´¤ÈÏJrÄøùåÊ|tb|¢H\Ï)#u×MPb(ƒd®n•F""æáŽ\® F¡²¶Õ.k:îºQƒV.î«•Ó4ëE §dE°É* d›º×6èîg.&z EÆâC¤( Ššy 7%ÝW `F¡+ræÑMqRÄ\9ø*¯Ã'’šGrÄTj,lb œÁµÃp¹Tmssnm±I¡t T¡¢“N´J"ãHT+²ÕªË‡ÖÏ4=!i(…Of’”&@š#J`VÒ±lQ±cs¥QÍc𵏤 V…t&uJ4¨4ˆm“‚NJ¡ ÒºiƒC¸¬w]`]Éž›Ê è‚·¡ÓJù¥¨$¥ª** NînUËS5¤±‰A­RâhC)”ÀªNTʹ£QbC—+yêÖ­íJ <#ä JQI¡ICJ !2E¡MŒ ì…)LÃHèM»;‰h ç{w7­±I¨dª,¡W[4%ê(?B À úx‚R'’ì Ð9dJ¼DúEõAñ’RŸ$>2?ñ´dT@þ¸"/ù‚¨Dÿ|øøý{ÈÀÿ,¬¬‡Q*ÁE†%å8 ³+èxëñᛘ߾÷}­—ÇhMÞËë>i¾='‰Þ×Ä9§f–í7}s=!nbÙñóõ# bX|igßmí¾Ð?‘s„o¬byÂaxµy³Ä”逳Åe–ÒûÙ 5öÙ½„ÓOfnôgšDwÞ»ÈmµÙ>=öOS×oTq Ÿ}mù‡Ìö›ë6¡£~ßlÌ.¶-éízmá1¯wħ‰>e¤Lâ{·}Ö|Þ Jß}õIm»ùït2Å-QUK¶Ò`£Ù­·¾çáÄCV˺ã\ywùóí=]‡¨ôxž§‘y^Uù‘ä$¢DPÖÙǨhD qÄ qR>)º±^îÎ5éÈy/²yŽ®{ @ü“OZ¤zCÎËòÂ@Òù/(h¤ëÈ—˜»´>E'ÈV»ä]ë•i“çß”†(Nyx¸‹x׺W¸{½xïW‡o½IÔörýï?;ï°çÒñíèûï|kð¿4~º8=!}|w´ÏÞ‹Y÷¾ôΨ÷µ–‰ö±ŸdúÀ1”¿Yó½÷Ô·éQ3R )UPÜKmÌ@. –éUB£ …%½ ­ß>ûï>÷ÈÃÄuÛï·Ô>¹`Ÿ CÚî×ï·Ú}›ãìP·éhïXšR[ˆmv¦&l¥$[É/­…Èuõïk÷¥ž;D¥LO¬@hPÌžiè}½~ÓáÖß·Ûé­Ð ï{K§‡¦¬x„ð‰Un»[e/®86ò¥h6Û‰R1¾ú¤Ôsªu¿?=ùø_W õ3fLàuâåî’ŒFÊ5r!!Âí ³i¤iPL’J‹ÆN6€diLäU Ì„šˆ9ç`]ÌÕSõïoiò‰¸}wí"È.Ó¡'¹q8H¸s5=6—é'ÉjìS“ħ@àJô¥&xm„RfçÉ®…Î}iÇÒC¼…%î4´QKH·¶òÞyÇ‘Ðï#ã@ö=}b$ß{Ï­o´|oY†üÏ´³59àô¬_¯13®÷¼žú³il.K=ézo^R„bÈ™#ÚÓ}ïl³ÐÉ ŠU›…E^©[c «ËG@г™yûÖEXô[‰ą̊"æa‚k~·[:[¯µšý|:›ùâETpªu‘ ¦È÷t;½yÐAçq‚)©"/Nh½»‹Î»$¢öqXA3* Ê&E0È&I2Å24Ì“"¢™sß8œú ôk"æ—ç:D}o½I÷ÊJ/·ß6o5¶¬¶ÐöζxFË3Øó1ñ}õ·ãï½}}}¯cél ñÖÕ›>¯­ø“!sP>÷–ÖÛÛIý‚ùjEr’NØËž*Èã8Ssvv2Ùç•”qšœ‚¸nÏXheÔfjê´aP^ÔsD)‡¦‰$”pÊ‹ÝYk£h¶ÒáFÖsÚz6ÅnY2ÝM¾ÑÙ츚Æ­BÊ4âÛTŵhgkUt.»B\ÆÖÉ{u¶Ùué¡Èò]eV•&XmÛcw4BªòOtOT©¥6%D½ÝÕHÍ ˆr“¥¡W) ÓKPy“ÄtÎ¥×lrö{jNd„ žÍ2’Šd¼‡žÙSJ’¦bV‰Fe’1w Êî͉EÖ xÕ½ˆ•YgnTfæbNY©­µdô^¥¨KÎîIÑaxTs<¢—@¦Úƒ ™]²å©Vôy'w»óT\®2™_‰'R¼w¡²PDÈdL""‚®h¤”ðpLEØÐ^`zäUETU<ñ# ïMë#枺*FÑ EƒÓ¹½zíx”§ž!¦cvêjš(ŽÛŒ7t'-´®Öò)+‰ÂåDÃâš±8½y„Þ{§ ù2{Á$9éCÙQ'½6\¢®Ã[N“h@‘IÎçŸ ócŸ)-šTAÍã( gSJL,É×q#<˂৭44Ò:ª*ÑTj£E¢Ú-Q­F¨¶ŠØÛm%¢j ±±¶6ØÑZ@€4 %-‚rò"¡ EðUG“Ȉ‘°ØÍ",¨°” LT@ÈÉJA„R$BJÚªóÖ”ÚƒX ˆ„˜¶£[Fµ‰2D•bÛc) 1X‘*¶¯Vÿ‚¶«zµ{1dŠj0d°[ØŒlZ6ÅÑmb6×·°†YÊIH´Ë4V£j#Z’¶ˆªB©@… 4 @³*R¤ˆ„Ã@hˆd…5EjXÔ@$£3-!F´©¦Iªfª¡QõNSÈiEj€)¤ JD‹‘@C‚µ½UâŠdÍQ±[*¤€¤*…xTä ù]'-aIŽâ.8ëNCZ²°dÜ»LˆlQEÎîµÃˆÁ $œ¢âAqY\UT“r‹;‹˜Ô\åpÉD\årÜÆ¤ ‹s»¹p % 2K¸K…Í¢k(¢I‹…2PJbIÌnXÔ;µ\Ù1QWwX9¨®iJfMlœy")(vbDŠFED4(4hšlšSHi€Qe˜QˆUÓšÉfJ !±Aˆ¹¹¹ÛQ´hÝ\¢ìu »‘ µJŒÀë"SeÛ1LªìˆÔ9e AH¤‘•—T‹*²H¤âGLM š!aÉiÌð6<ŠŸì  !ýtPoò‘P÷ö"ÿP÷UU?Ùÿ\ûtý"ªþâ ÿLDë"ƒý ÛSý„Q?ä"©þªÿ ô@^þûüYþûúqóþžÿ;ÝLIáïš;§¯.ÚäfkïË$¾»(4@fxµÅ¾Ý”ËL­OOž“zèÓJCQµª½‰ÏúZô@5 •™ZEPUrÆO—!Ó ¡)ZÔ/JÒ‘=€¤èM ù´tÒ«õ(‡ûÇyÛI UŒü“íD—®ád§Jq$©3x ªR^áƒØAä4tˆh]RQH¯'ä¢kHGF·UD]{Ÿ)¯­¢öÊžH››‘^šêrÕd“ùH¢ˆ‚‰¾¶…ååVúµ]± ³Ö²»œ²Ì¹²S*‚OèU1,ª”µmvˆFδ78äìµ3¦HN´õiêm¶*ÞŒ¹¼ñ[‘t³Ò5R‚+#5Yööå¯m®Vj–M ’ûIUÊïEâ‘EdP…Q+¡VsŒ¦m0®`^\ÐI)LªÍr=ª,Ô,Ò ¤ZEË<Àâª$%êhŸ´ÖxíÉ-üø£¾xDE>埥? Ê3$Àâ˜IüµñD)]·9IŒY¦° „å¼F3 œÇ¶{ \‘¢Ä-¬XÙJ/k±)/]½l+År½×O2Ýëb¿{ÇcJyïð×YHÞ»{`=`t¶[5”õãGª’Ì–"w;dÓçÅù½½|Ü›,m,uÜ&Ú§::ëZîèt‡>@¾Cä¢PiUMÒíÝ»»:éRïnQm /öŸåxLüžÈ×I_Vù¾E>ó¢££T‡æ©†tãÏŸe÷»gåÑ;ibÙû;Ž ‰¿¬ö%ú¯Fkk¦B©žmcÚ¸]ë$”F{"š³›Jšèxýÿ{¹O¾²ð|–;|9ùîøCòö|©:’yº'GÒÒbD“&:S¼tñݘÇDè É(‘:K«núøîÞ²IæÈ‘üŒ'ç®íõÅ›»ñëÔŸ*g¹7¬‰?„—X‰+Rr{õå²$â4&¯p΀ðƒ_$ù=Qò4'—’üƒäJÓ÷$ùÙéÛtü-äëÙ x^Ñä¾Ç°4®—{—ÛMäžOAß[Ø o¯˜=íìùJ|ƒ¤(SÈ4|ºOf—@y/°‡½ƒØ8“È|º<:QÜé2îO¤£ŸQÎúBMz襥-‘T/™öYä Bý÷½è{×ò§ËíƒíØ0Zt5é[ëY¥Díw½½ä*ígd».µ%&LìæÇ½{Ø»l7d²Ú£DSS‡5±™Sq˜P£aEóïwœd§iI˜ay5¦¶®ÙSÎ4%ÒÒH´ ”Õ.ö󼟚Bx¤ 1-µ(ùÚñ¶–zį7*Jñ¶‹~½yšKj}v'à;Ù¬taABíœm²Lç³SU h²d´¹Md&kHaËõ5ž{ ¶Œm#›8p›WOO$.45º…caj¤·­†²~gÏ{ë 0ŠÒ·Ÿ³Ö˵ìÜKhMb–RÖ^Ö–Õv)t:й[Ó§†$¶Ø@&ª|rÛ Û¾»_Œ_³5±Ìg°ûÝD³yÛ J…²’Ô¡AËÆã Ú2„ÂØMJ¤e‹f#¡1`„¹Ý¶Èâ§»(£+ö»×S>ÓÈô—ÈØºÁ;Ì}Zt‡ÄÁß"ÔÁ|_Õ©fzŸÂÀ4À6(É[NüûÞL1­‘v°‚gNc3[×[ø–v|–66Mò ªÃ_'|#ù{ÑåO½fdé…®¦Q£ºÞõ¼Š·ªm-äNIœˆR2Ë ±5±×@VÉCT°h ¹ÆÕ(ËÕ…)mó.!lšãÞÞ÷óôÞžô/ãñ<»I‡ØÚ:Èío e)lYieUT|Ò§:{~kß&–ï¨IÒÜìÀ‚ëó³àÿ«ÿ#wƒñê 5¨8Û£Ž Á#.ó­Î±&˜nÉÓ”§A´+_Ï®uUSÒw­¸ØÖÎTUÛùü›ì<“OTQt#/_Äí FÀÛZšHï^ÄÊ’f£¾½Ï¬*²¾{*‘EÔpœ‡ëãÜSVÄå]÷ÖÇ5}õ¹2—íBôeÑAøB\ ¡B{wj“£ÛÙ:ÒýZ}¶úå2 .2ü}Öß+˜`û‹=ë|ñã¶²O¨äPº•D><ǶG,-°Ä¹³ƒÔ»ï×Ú}eúÉȬV,À’(¢Ôo]ÖúƺiöSE/@iKaÕäœÎERIÞM"ƒçJž{¾‡ÞÞ›Z6J¶vê5°°Š+&®u‹ j¶2f®±L1—„|ù*-”Bu¶LëGׇ2¢[ï·y«ê=•½pµD¥9„G\E£I¦|ñáÍÍöï½CÓW‹&ë3m•q,šFºÛ3vë¶U¤~¥OHÉä¨è¡tt€èdSl‰¤J†“J%"†”GB /@­(J¿!G¤UiGŒ21Œ¤5?îÿ›©õPϲ9¤$bµ,u Þ5kŸïïO”†–6òÚ-UÅK³ì,e('mhjÐ’’‰íGS^ÄÀôñ<‰ÇÐ^<ìP*7Dó%Êß}{k_– Ý-¬jZbrȼ×iÙ ƒí›B¬,¶~ËßÏðù äý!kH§]¢Èyñmlö8€ÖRÊ*Ї~±;9í‰c9ìçÎ9²íè=”õ¬ëеMüìçÛ ¬k]a2ÐÖR-ùíî½¢Þ°[/Ù×UˆC¬—W€izÙ½•Ç×*IyŠÎ’GÊ[íÖ!ZÇŒWÞ°V›Á·Ð{·I ¡ó\³}¿dð?–‚@™ICI–!Å|ÿ±»óýñæÀ³Á]u…ÉüÔѰ‘±Œ¼î•5Œ$ uJQö=¥Á]°‘žt¸ê'jÓŒí7[v™ëWçÖ}g"“w.Ñ«PyrGå…ßê1¾|…TûîÜäjȪ‹0ý+:`ÖA|1¬÷§È¬úÿHØ[Ϥoþk£örŽãA#¤ñ¾ÅǰéÙI">ˆúİ¥M "OWqv&#Û¬ø§xñòèš-c·h¡Œôês±õ„¯5ó)â!«Õ½³ŠØvϽœB$ÄR LRÕ>còˉôa3cYåFIÚþßw±ê2µ~¯ ½Œ¹2¬B—–“Û 2H.UC)}GžóÄòä&4ôtqæŸ'äûÇËtžý`Ä“ÎùF;5±çsï@£â|X ¦’´ô퓎ÄIAÖŠ(d$%{ºL„†WˆAa2vÐQÐ#ÒdMRµÐ}DçŽ+‘6ŒëìöÑ`)ijYkYáݪ붘š~« æ#m‘}Ÿ[½æSBÉZÆ<¢ÀÛ©cJºGñíã۔ۨ糗¥ëw€§ÛÛðû{ô>Â%®ëN{»HešM! rl¦p.ær€²I 5 ¤ç«’i<ì.…CÉÏ“n|ù$ H®ÐâÏê“ÇÝÑš¶ÄÞ§=Imðœ7íÖöq;±Ò˜îÄIMåw:êvY<„Љä=Í9ŠJèò“ÈèMVžŠ*ºóHøy“¤®…ÄŽè:hi£¶²tõÒ:‚¨G·@èM Gç#ìžKä­Èi¤ò¥òÈòh<“nä)è çû¼†çW|@<Ýatš%ÐP´…*h}“qthF„"_#@M ¡ŒB†K q…;–s¶ÍMh­¥…³øWµªhÊÙâS¿¯»ÈP)Ôõêúðf¦eûrâq´KæÐKí¿cö~ýþÊXfI”ülä0š“ORŸ¾.^Å{]Uííì¨ v£÷M˜OGOr„ÈÒöNÎ¥A>€S¤Ì=ÓǓϷ¶µcÚ‘3,µ,¾Ó„š”)?­£4§0åé‘L!œÛVUÂìÍ»Ïä')Ê* m@¦™Ç}ì3÷¥óñè_ÓÙkû¬‰V€ÀÕ0 J–MëØîSü™B ¡<ØC²¶x˜ž'¬û}âð•¥ÔS¦‡¦{}{Óê×gbè×|VöÆafÈy¡hˆñ»`Ÿ®œùÀýëIUë8Ò'D}hm”hCލ’x¦Wï__'ÛË:Ù)‰W”DjMakv9íÚ8:ò’øH{Ç›(yPÓAN›m³ì¯5‡Tºò4†“Ï<ƒY. ä ð飶³Ü,‡™3õ·Hpýw)…!À<Ûy7«ò ¸4œšvAtåòrb­¹Ú DK âI¶ŸcOAUK¥4ÉM+ÒR5£5íÓÞ8¹ô÷æš„@ï ·ˆ[­F<Õ{“ѻτEwQr¹;}ââئ²—LÇoózÂ}ò„úƒ«b0ö-L%–ÂIù{^xRŽ;k]vá¦%hv (¸5=n®âÝÖPï^|™ôWwǹ¦4é2ì ¢àó‰9ú‘{—Î*LöC=k‡Ô¨ ª%õ›µ:óÙÚ<™<™ VI?LƒˆT®!óΉ¯VæÉ“-²‘ufl˜–6îüMS½Ú=¯riªŠ>Bš(6Âs!BR6‹^˜)à'j4v“la@1ƒ¥nzžžj½ã!>©½dò¨ùéèÖæ?4qòº¾Òú’•…0ÖRTË'HHÊ3>xòeý~n²{ä<œŠeÉçoVÄï »Ð UHt¬GF€úž„¼òà§Aˆ»]-'Ôh¢ƒAK ò>G²>Dz¾ÇAKN€Ò-%ÞKÐÒu»-IBth„+^È÷o%ÅÒûžOESä}I¢º (i~­/{—ë±äÒÑÓ«Ì'ÔŸWRÒ{¾AŸ›vq44ѯn•ùõ—ØWÉ ~Hš^“ê4Ò½y.¨èMB|ƒ@y&Ÿ#ë°¾Otµ§ ®–‡¤ÄOc«­8‚.¼—°’q‡Lœ¾Ch{v@‡Ó9÷×t† óÆNŸPhE= ÏNÏÛaxò=Þ óÉK M{7±"@õîñãÀ$ üǽsæ/|BÐ_>;$zóÇ“&CÉ«<{hãQÊtð !ÉÏ9O;È©·òNêm-;#ä=æ;!„7®kñ¡§«d÷²»¸$)ò4…'Ô"wO¾·Ôêu§BË)Ý› äUå;¼œ¼f=Z ‚œFÙîÃI÷î!höö¢% ‡¤ž’=4éz€¼ÚèÑzÓ”<žô¾wŸ%FÜì{£nq¹DœNįYNpóa Iò½õ$êé^ùçŒëÆ3äéʀ׆×YŸgÂMµPW²y/6šJŸ]ä2}ôIË•Dtg—…“„xRM}»»Êº„÷!úÎL›Ü÷™_b€ô®Êuõó|ƒÙz4Ÿ>d¡½ËäPRÓ­‘å²âG#O‰ÝNž'RSÖ½&8×Eð/g§z>×r‡¾Ø^ø®ôyÛ• Y!U]Ÿð¾ãȨ›È.Š ?+{¥Ç“ë¬yI™CzÒö1zûׂÉèM¬Ä1H˜˜î±½YzXNZtbzÓªi}´‡š|Ž“¼ÜE”vî<¼Š_!":zz¢ŽVWÑ;Þ!ãÝ´<ùסô¸.lN˺¶ÈwBÏ;Î<ãÉ–Ö@Q×mÞ˜·ß!*I ö€ùç×{×Ö|÷ aäôg‰î‰·¥Ì’ªyFAx«Èm ǵËÒ{@âï&Lñ ~½í3*Å ¹ ½ôwžõ›ÔùâAzõis%®[J½#°éáJt¦Ù˜³Öcì¦:XtÛ8êR.rduľÖ9LÂoY3=~S­½ H§·–‘Neàå/|›Ý“!ò ^¹®!“ªå}±æAjhž~—?Qàs±´‚Ãо۲^†³Û Zë]tÓðù÷·ÁïŸ9«1§äévùà¢ÚbUŒ;YRRa;[×g¸S²I5/ž2Œ—Ñ“')#©3òwÉÞô" Âö žÏ4²À$ñœâi¥æÐ5™Jø‰Ó8‡3§xµ’“Ä=ûo%÷eù|ìUî ²žËv¯'æìiã‚aË z'~)=l¶øÁÞŸ­$×Ëä‡yƒ¤:4h§¥ ö!~^C»{ PkyåÁÓÄ{'¶g‰T¯ÏËÉ>ýzrQíg<¥5_¬^}úÒo Tœ¼_V¾Aó?'„÷ S¼½{q>Œ†d6Ž™¨Áê3Ü3Æp(ö½W‚™j—e":€©H6]œj—™T±©3Šõã(ó0žòä´=HÎuìuÂÀ™–Ã~û[+¨¼Ä©/H"r˜ÉÇ)6Ÿ):RK¯DæýXhiÇÑxûuóÌ\>lš”¸{b'Vó~%¾Ù©~¸dÒÜ˸ †Q« œÎ*Ìí« XöÈ¡»q®¤ªq+ž8ÄÅ>â}ë›±‰ÁŒ 6îjOxòºFz“ÇÑ#ëÕÈŠŸhÌE3æ\“0β.‘óïxÒ~o&*Oi‹½âò%ì0‘2 |‘Ї=²!ò m /°?%Ø JG®#^ÍÝhÛqSœ•a2$åÂ9Û]=®hRQ¶Ûlµ—ˆÌûPCòònI ç=G/-kÄyYk^¶1-£×=‹ ÌÚbögaeÌ,U9è]—j‘>cÓG˜G%¯XËæÊ.ΨSv‹±æÑs>Õ†eYçCÖÎ]ÆÒ¶X¥±º'nÃ&‡nÛ`|MÉÄ·yhµ 7lr‰NȸDH­®2<+ÍØÆMvQÂ#W3[Lá!#7 8`·mZõï;u i-$¢}§¿W—ëÕÚˆ©3Ä­@ ‹BÜ´Ú"LD·éÛÃÛ“WQ°« 5*ËÖÚK>ƒf¼¹{#~±z|ȶÂëš2jÙŠ±+b6Dŧ·b{mB­k¢ûO)+Z µ‚–…¦iµsSºÎÒÕ“—!ž™îÉÀÖ5À QvWNÈe× —n­ÉÉñžIÍ·“•Odò^‚Ÿ:ÏEOTiâNÉËÓ3 ’rQ©Ö’&Ž´Bm”ÔMt‡AÐo o8ò¾´ãH{£Aä '@ô==y:¦š¼ÉªA§Htht¢nÈté4Gl~9'IÅôÊ‚•–‘§ÄÖÇ}cƒ ¯¶ )Åî¤0¶b"'»×7§¥$¿)µ§ÊýP|S¼E’ ÄP`Ð:RxºÝ¬ QŒ¶÷×bà½A–±¿|ãµëb3tjÈÏVö¼¨§dTO™ÛaÉ #õ?'·ÔX[ÂÊYì¸Q:Ü£iJKsRÂBôZBáOš(f{ ‹â™‡ÏÛÞ/6ÚDIÚ´„Òľg©:IÒwÎÚ‘$¬E·ÂSf±Ál[r¤ÄWÌÍ)•¿}ïÒF‰!sj©ŠXX +m—Í`O­ž&à>º:®½M eƒ)uíe±‹ n%¥vKJº,é`r™-›ÀHÏ;amö³K4¢X%ò’à3t–ëXÚÏ{6â{öôЇ–M²ô RhtweÐéOdÞ+ÓW*ÅPQ,mîç'Ù%ÐhÒéWÙÑÐh=’’‡HQ쇧H”š)t»dI’š()ûƒE*S즅}÷+MÖƒäi Ðù¢„k¤ñ a<1ß½çz-ƒ(ÛB±snVÚ"³uÙ=¯>ÚŠ-ÏÛzémµö§©"rt˜éPt.Ž—B ô*t :F”„zî:ã®;ŒIÝV…,¬vÚ™%&Ì#IˆËšÑ™0ë Mzƒ{ÐÐ÷™ë§½Ÿj·1FŒßmË‘~Cï,Ñ 6·[›n°N°âÆ)!­û0'FÛ=)ÛkKÇÄuûÎï/;aALˆÌ39[wŸ¨óÉ‘~Iìð¢Ïß^ÕS¼'åwÞéßJ»~GÞ#ÈŒŸ=*m®»’%#¢Üå³ ’ÅÌ©G­Ý<‰kÂO‘eË5h¹Þq¬Ñ‘›DÓA-9lm 6V¢¶%—[‹uã½½ééãP(¬zX7^wa Ὃ}Y<˜Øõx–ïueÉl»o’Gx~IL2^¡ÙSR¯8¶ÆJV¢¹JVK1¨PjO* Z™Ã1Ð(CX¸ä‰)%)5 ÖÂ[&xœç<”ÆMÛkU Ím^“£YE”¤ñN÷¥ñ5Îok³ÈY›u°ñI¤vÓb¦¾Ý¸þ†ú$ñwÏ.f—Ö²ŒÎ_ÈÞðá͘ ¬~÷x0ð¼¸2‚Ž‹Nòb>™uÉÝwãÜf¥B¶"ê•D§u „q‰D‚’T¦Çnë5ˆï¼ã×Ç CnÚË¥·),É;lC ­œY24_›$ s0J"%·1ÁèwXLzkÞùûÞ ÊÈ”9%eàä–?¨‘äQG°wÌ5ì=wgÉò]rCÎgK5ìr0ïDîž/ ù3>}AäÈ¡äžÉä6cÌòäWJ¹ìô–X*3‘NËšeùpu‰eèóçuœº”î 4:©²c·ªÌÄ& v‡b@”˜‰:€Ÿ{xîÂ=¬c®pˆ/ ‹®Û¶7½¢m“Iì}IÄ×›{|—¥>óEÀ »d½;s´“ÎÚw;ö9NBûŽë òžü{—µ…Ì,þlÌ'éz¶yBVx˜ÖXµ-µl"Ȥü]£>/ïXžoTu¬ì$‰£6”ž¶—mÐB±¡­úƦ‡ÎÞmÞÝä'Ñ=¨/Ï›1©Íj°ò&×* ïx2žÎN>PEµ§S¯òó|Sé¤dÆ4ÊË̉[(Ã’R Ú§SŒ#Í$â^”Í™tÖ½Œûñ¼]¤¦Ë›bÌfYC„-¡a V>Ï0:Q_Y8;¤Ää=i@ï1ì-Q ØòO ùõ€è;æN“äëQÕt‡BtQ¢*8Ò=!¯’i¤¡¦žòp(X¶ã£íǽ`Äàӥе@è)O!ÑÑ@”ÛièÐè¡CAò$Cä>AE+J>ɤ}´t†€ 0yØçõòo<‚ã—ÙÄz¼œ9LïãÅûÈÝÉùqUc¹ÊK4úý_ yõ1¥;Óë¶£Yðà¥? ñ!’>Ìtá}‹CïÏg$qg°½ž¤â†ÿ>L ‘$YÞ™ä.j@ÉÉ©$ü·&TþËÇ}osšü¦Dýý«‘ÙVo”ÀD@"N y?ŽoÔ:;¿”þ>øýþ¤>vÄ(þp]{Èÿ,¯ op=°?Ò‡§ñåü±Ðy+åû~0‘ûv¥:üH” óùp{+õ!÷(ô| ¿PºF>£ zCF”ù)ä°¡Byÿ,? "éB“êtR‡ËÉDèü tòÖ+ðÕ|¯ºÞ–öj×Ê×·Õjôجmoµz~Š×³Qì}Ø4~’HÎ@4 Ò§B²="¡Jü…|_Ê@"Èôà`~`bÈÆ>‡c£÷ºŸŒP÷kºŸ`b=ÓDšÛm¸£ü¶Ð$®&N/Ä*IN^€Oöoõìt÷S ‚r@á´ùÚPÝ%ÄØ;Å¡k AÓxƒöÑdÛN…Eçûï*a>9nÑ"ÎÐäæ_:]êUS‘yæs»É>½]‹Íª/c&=[ûfe¢'R`R’¯?j2†½H‚£EC‹¥‘²‰VÀÐ/BŠ…óŸÏo¤xýþx//_‰MŸ`Ò'ŽLjX ae‹E÷ŒïS´ÔÃ/l,µM8hŒ½Ù 2áÊþåÞÅÇ´Ñy!X’2QNC«Þ´:7°ýlM¶ŽYh4Jœ€)/?'G½†*é&Ī’k£uoi’â)-!mÙ#‚…‰„,ÄuózÔ‘!x¯'™qFÌÕŸ6èÌ‹ž‰©ÔÖ1æ<Óyq™Ã–¨±dІÔëcËTûÖó·,–,C­ bš¨ks„ÁŸÙ'½${ØÚHYê¼5'єǚ†Ø¶ÆîÄŸ*'°.”:4iJ B•tŽÒ=Ñ䣠$èêï_l¶ètZsѱdsN±`]–§q¥K(ð¤ñl¸‘>Þõ#mÔ™È-VÛ%V)ÒAä/ty _bU}^S[=«/NrØb²8ˆLêG%ª…ÁºŠîU Gãì^!.VÊò&ÒM’51 ºTRnÍų3·jüÛµ\*Œ^í)˨ɸh´#¼t@Ù>]íHháa IG A‘þÇÛ^³Ù XH<‹ÁPœÉuŠ+—N–`ÏÓ-ôáX½1ËkÅsʇMm$å2|äHhÝO‰ÝgÔàð‘'l¿˜j§ç¶ †•ù¹WYÙ†ŒRâÚ±÷´Ð}{ÏG¹tÕD!AH… !CК-“JuМ‹°.Ç­w¾DáV|ù÷£Íw@í¥Öë\ ÌˆÒ„ ‚¼'Cj·Â9¡ÅÄŒšæ¥"I›ÒÈK ‹/ùOävþ[öXÊÛVÔ#™£³ú¤ñýçÐÝuö)ûU#ëÒ’Ø…´m°Qvu'ËÞ¥»Ø˜Êõ„O¨×yg…¬m¨³ŠuÉ‘q‘8Äíª­-·]®Y`Z”¢¨©BÒáÃÃ(õûýìPnÙh’X$¶ÒO ¿[^ñÛ““žVïâñåǦÇJˆˆI š 6ÿ•œ£XêpPšëX­‚‘X$&g÷²Ì܃ȭ )LB LõšB„/1¡zz¯ Hq4íµûÀI· Nóƒ÷B}îí&µÊáë×UâŠ4`­Í‡ùë}§×ÍÕÛ¦ƒ»/že~¤Òy#‰Øó/Iä!äôP‡ÈSKäÒhZWÈòIIÄŽ‡Jy)ª] ô”y(C¤ùö}Ùùiùh OIнhZÙ:€O'Ø<¥î÷¹ù²›eÇ“c‹{’v“º@ãÆÒ$?%G¼ùÊ:ZeJé¶R€(¦÷A®Ü Ð ƒÒ€»¶•„€J•(iPH•]²Š/@:t*=    DBBš@)¥i T)PÒ®•h)4T]𢓠4£Jš:'IÓÙ :I ôåGXLò“!‰éih+‹jÁ—÷™è×°ôÒœ‰ä*” *="4¦•M©ì(bUàUö4Š¥"4‚Ž…WB‹Ð/Jôª«/²ÐJtˆ&‘¤A¡¤TÒ ¦‘ )¡i €©ä /½ò| +IÒ%°šJzBt ËnmíZÑQ­­ŠÔP҃욤…JT–­EjÅmb¢Úm^½!#ÚƒØñ >¶'ÙM Ò¨ÑЋ¤ht€bíÜ´­²è:î>y¡t^KT'ƒIÒuIÐ%;m³M²ô¯ÕÐ=S¡â4¿PG”X¤QT—ѵ O/rqP…R‘¡(@h^€ùÒ”€‡B¦‘„ZQ®€TÒ¾^{E=Wv(2tí‘ÑM7˜ìS¤ÐS¥ <Žƒ§FŸ. ‰:Ìè´IÒЧHt”몃§N;—B³ª MÙ¤4N†„¥ÑF»²´­°íatRÄ2é9Úsœ¸* ÅÒ“fW¦aÔ*ò,Œ¼Ñ èí åá@$_P¯lÆît:Jôç¾w¾¦ƒZ^‚…ëIvC¢ºt ` W_%|©#æö:@öBØÒèLZZS£A$›]„2½Ê)iÐngb5å\ÑÏ"ã×½=Åš¶e³Íg•«u*#1³»>M§‘oR§:†3=§…ä·ç¼”d4„AE°‡²ù ä…¯ÊÆ9  ŽD]ž€ª92:ÌöCfîŽÊÌ¢Jb‚DY¦QtJò—¶ã*B^Û¾E“×H§–“FÄ"öŽy½wMŠzãÁ¦z]43â[Õ”d’Qg5’TäW,Š\)7"ç¤Ðl ¶®êv8È g ÉAK缸¸PD;y÷Uþ&âUÖÏQqVgQ fÙ¤>ר¹óý?ÞÎõ÷ÂÏ{ëÜš¿.ˆt– oöìƒý0à ‚H ––ú6°Î'nÔ›a×Î$•KrðbšÒ%e¡*¡Õ±’G÷'^_¯cÈ,†~ñd‹Ìå²ùÚãm”ÿIËÙæ"›$‹—/×O•<¦AžQ¹‹™e|ZЉºÏù깟¬_[±KNhīךg©‰u‰3ˆFØêBXŠrœ±ƒÛm>5Ô᫳øòŽ™— ڑµ Jñ,Y=¨NÙ[ffÔ:—‚ñÄ3]£2:·­²Ç¼³Ök:Dª[g¤‘Iã΄ÚÂÇE›©‰ŸÙ]BÄ‘)[)KÖŲ–Ååa›“f1"J¦°‰˜xo{Þ© –SÔ5dêE¬ót6Ú6Ør®¹s¢UŸ9°¶JÓ©)mäA ÛÖó Wz謆ÚÝ3±ŒM>|Ljù xÏg¹£!¼”Ü…ìbg¡¢aã%¯Ù ?,¡~Öb‹ÖW=ïFñoêŽòfZ'ˆHyñ8ßË/¯.9t8j²×èÒ)\‰Ïàûë>à"³Ø³^£:ŒA3颔+6BzCóÞw)ç3iMjÔÚél™5ØzFYrè™* .Ùº]ùn<Ï(¦|Ô©K*Q½¥«3eƒÖÏŸkf)Á[Q&èâê°¡<6#±†Â÷>Cíßo82îT’‰f½Øl´!ÚÞG†<¤Î۔¢©­¶Ué ái‚ÂÀ]ÿœë>L=Œhþ›„/ößBIIÇäqwêÜæ,T¸SfB|œÌéÈrH¦\¿½ Éæv® PíRO[Zh6Ž“§+ ’”‘$F'*ø˜šæÚfh?~÷¦ñ¹µœBZ;'EºFÛLí5TVR†vÉíL Dà Øe[¤1`øSA¬<Ý×61E1RâB’Šnw5#‰hPä]»¬s‹šÊzéWGåj%Wã8yÊNAHÓ%h*“hÉ‘íM— ÄE|“UòOg ÷gKçœ\]ذ&ed­ä'Žf<òx”§ ÉçÊœŠ=I³ÖÓ –qÎìKnþ÷¸„ ͤ9Ù.QMΖe4!Ï\W}x·ó±*pu‚|‡æ­y‘U9ÑRÂ$§4F1PŒ KY_­Òiímm[ZzF¸Êñ=u’éQœIRã¢&Au+4O;==Â>¯SèçAÓ›m„Ì™»:Ò†D‡ÛÈyð+uv)l·gÃ[íÔ¢ Ä&£»VR-éˆê¿¯ë=!5øî‰Ç,bx¨¼kÆ¢£Ý·sÑsÓƒ’æÖD[Ôè[ѱ+mÑ´ŠN³‡7žï$ëÏB+¹íAœ’ÌŠ9Èf†^"=²c›{[ŒH€SWY{BBµ‡õxó³çe:»¯¿èhé KU¶ž<áœ<"L"äÏjïÇ!玟œ¯Ó/I+­—ÛXHEÄ<‡*f-$äf!'ê'ŽJ@N{çM$ @&dH@Æmµëh'ªâõcÕ´KŽÉP«Í/Üi>£ì…½´¿.66ö2OÀ§:É‘I]ëÙ¹Tž<æNqž^QsDÈZÇ9:‘1Là‘ÎË8ñ^C¤[v|ô÷a8ó6Œ˜m¢Äbb0‘ת±‚ÙSŸv—ÀښǙt4¾Èh¯|çç@ó)µâÃ[*™¢MP Å#ì=²…‚“Ëš9IÄóªÚj×X97 )¹Ä†w0Iº±Ì“€œ()äÙºN}v@×7#jÄäÉh´)Óp¤­ T/mvI½Þrnæ›byHyr:Ã=[VÓ…O×¥^É/›Œ„ñµÂ"‚‰7K.¿;ϧܟÛûæû²¯¤Ëé×4¾{n•õrñ] Þ—dÍ“ióÉËÞ{–Aº),ÄÄþæaŸÆŒ #j'Br†ÑÊ*™ÈT “Ãï@—ö±óßÇñÔ¯wâfç»!™ ¬¯r\ƺ ¾í”ßNÞ@óñçåøï'>NqÔ$0 (¸nIÊNZƒò¬eò.S¾ï?oçü?¿ð+£Cø|#²#ú+ÒÄPXý¦Lçú~$4}Ÿ2³ÙtÌýŸc«ŸñÒÙÒ_àl°AÒ›UkœÛ&ùŒypù/] ”r‹ÊÛwOz„öe2ÌÌØC!Šž­ÖÑ,‹MY•Ûm*¬êÐ`‰N÷½í-–·˜x7øv3ˆü]ù¹ÒÛÜ4M“šÒO ´Y!¼’6Z£Ok¦â[j@e»¶æ–– 6 ì a2„B8ÔJýÕT› £9±®´‹Þõß×ÞJóžù[×ms •™ÇžµáŠ‚’e´i ø}ýŸo(òqäÐ~¿y¶cÅhE!ÃIAbò1e=D¨BfûÜÅøöFÓrö¯ÖM‹Kêú’GéÇNkøñ¢â}þOÃáðϼüŠg±š›ç"¦ˆä;ïl—ŽZf‹êAtc):xü&¶î÷뀖aæhÜó¨_Š•s?95ƒUYÓ«4~F|8ê‘ï6G´'C${Ò''  Ò˜ë¬@‚ ú8äZmÎÊÖìÂpó¹ÁÐݑЈH9Û%®)m¥…Ý{"íÒ[ ãCÕ"d?µ+äó(öCÏgû½vs&WæyN^WF×Erdì™–¹Œ¦Tì=­×b+߯¿½wß¼îâ ¸òri?‹xå3ŽâySú¾~fTŽDõÛA’ÍTz¶ )ÈFôˆÃ‚ùq3ªå… - Êg¥{3'9»bÉW³;`_ìüûï}±£91A/rÐF¸päïçÆ?N;­gÙàìá†CâߥãÞçšåW*ΠPÂEd20È„@±_‹÷±[Vú8Ãò<ü¾ÿ>7=h¢—ô”òòDO%N”ge òàÛÈã¯áº«½yrý;ã‘2o ÓÖ“iÚMDÍÝ}=Ó–<ä7‡Ÿ8•ÆFpsõë=bCÈk¬,’½”'~ÌŸM!ãÙ¸ãü,UµWÉß‘è3^=L·˜GGà<¶'yÜ0@‚/¯Êº:¼Ìþ×.8q­ªkrDOíußjõ¶ŽïqCì¡ù{×SñƇ•«Á€±)s}hÿ³r`dÞzµŠßX¿¿‹¾Å;ë£#˜ƒïKâíbŒ}5,@SÊävôC_zÓ–;!Ϋ<ªŽ|ÜGáîɃ¶¿‰¥  ŽÊ²I#,AÃÕûÍÝçídGJ™_™ýk±/bC«ÜÕlóÄ>í``F³«‚6Ãj¡Ê½t󛘋ʯ2Ò·’+÷ŸsOÄ; dîngÉìÆB ±“—ÆÚÆ3ˆo!yqÙNu J'àÍÄÜ 1ŹÌáÇ„Qp Ùm\`ê¼v\›{Wycöó%޶-mÈ4Vst¨ÑÖ³¶BkvØÆÉ"èÅÞÜÐÍ AœÒÃ…ã1û¬ŽÔcH`z@ÄH -Ô ýʉúvCÈ}”~¡> ý(ûÛ ð=(!JËx‚ Œí&”°'ø‚$ã −#êI8ƒˆŸälã'E“ú€èäã£ÏVœz@’2F4@¢šE2#’€2̰1ùH hà¿R8ï(œc£€>sï´þß§œ¾JyQä-&ƒÈ‹ÏÞãf¸ã}Éì²´ýJt©òÚ_¨÷ÜýÛåŸÏ{Æý~}„K¥7ñÎ ‰Kl–ˆ–Aï0E73²† ‰ HJL€ÈÇì,`äŽ1³€(ãG0—¯q¾å‰<"È}4óˆé Œ¹ÀÇÒ¡^¢ð$à  ˆ@Âísk~ È'Ž©X:†ÈG-v„÷Éh\PDtEœNDœjÑ/…®kI¶PŸg  ˆÿw×#ûÚOìùçí*?©ó“HÁ „ I¼ÔIüÉnÚdÿÈ”´YüžD†P$¦C ’ûcÝàSí‡2»?¥ô›ºŸ—»m"›[}Z×K2*økŸ¹¶ådDh)ä'’(P­1$HÕ”òEÒšû…ê‘¥¡P û„éèÓ¥…)"iQ:T /°(i D(ñ :P¤P¤C䫤UR„Ò.óÞU<…O$D(N•S§+ò1€Éå™@ó=ù!ÍŒÁÙDo}çªJˆ}”Ú]òÂ>J¬„ú„t«EáœL{üüõÔo½ü~>~èvUª+~LQɲ ‚ !Ãý¦Æ DÑ&Q,8Þ×£Î'¿Ët«ÎÛtÕ¶ˆ¨¿ë«‹ò˜1"R çq5ž´X++Z¼šæOŽ­¤½g‰k}·m3^ã݉ óÉä,sÆ'Ù)£§É4§È:E=zz)|>ä…òòE×BvÈ%°û*û>B?$4Ð ì¥^•èS¯c£ûiCÈ *•éÒ¥Ž”=„M"©¡öBŽ´#ДÞB¯gv«— íOlÐÚÙ.!¦ †’²ÁF#MˆQ¿‹ìI/H0誨ý>q‹ÛŒ/ìû5y%Mt‰õŸ]xÖ7/b«¡õ}K‰Îu®A¶å'‰}eÕß^Ý ]JzÊ&¹¸kl`Æ \©oµõ%"$-7’\áÆÚ&vú–hæˆÉ¡µÒeXª© €( µìˆ !D:€Ð‹˜Œ)“ÌÛ³yKj²NÄéÓ©:I$4ñä‡h$XÅSÍÖÉ­Kok™<´js_] ¼öùò彋†fö0¹J§;'ž”«[£`g"–ÌÚ¨£kjöÞôŒ¥R lþ}£1Þ->f€Ýlxíi6n,)FÄô@utÐw£":…«6Uª$µÁƒ1ŒSce[™ìÕ¦ÝÇž2wÈyÞõô§’¶ØÄBPqiÔN>o¯É;ulm·TIõœW±™äxwE¢ï›çßyè±i{VX…ŸùûZñ[Ç» f·b²R³“F-÷½éëBÅA4‘\mÇg‹\m='dÔÈdïé_mP5ŒåqQ”ÞMɹ˜VpâN!Hi 4ˆS t–H'e ‚ÑÖ6«s¦ë¹F]¤M5K)í‘ÿž§kêx»Ç½¬žïôŸcïjmµ/æþôûwïH` fWåÆ- *£e—ýÅàÿs#¨WêhXhý_¾ùß_¤´ûQ[úÙ§æ>›¥%JU4¤þ[!6}¶—+lkH2Ãí¯Æm!îìMÈsªœ§nI7#ÙꆠéÛ+Ðñ$C@èÛ »h¤‰R€ù"B‚-Ñm½.–Û•ôµºWCCAHR½ Ð!A@4/@R)CJ¦¥J :GIB4½uÔÝ < 5;y$ÞÔëûüÞqÒŸÒÇùoî0~¶b˜%‘…[0e…í¥¦”J²Ï Øl²Ñ,† ¶ ÿ_׊¯×_’¿k "õ!)¦_éwø÷¾=9ld£ÁMEY]Òë"[O_ÊɽµmØÐJ´¨[×Ý~_,öšBBH˜ÖvìÛ–ê RLŒ½¤: CËÈê“È~Ö†ì“ÐôhJž÷G’yAÒÕ#CTÒ´††‡HqI×ËÉ8- t”&•éS@yyù.–ò€"=)£ÂV¼~ð{ ä.–²¦"„~@“¼têKx–}ìÁüÏxô¼þÂõšZQ¨64(OdŽ#yøbLJÊ²Ñ ¶k1?^½>ºK¬À¤UDÉLPç{Ö¤ðØu"ÚÓ%Š«/Ig kX?õ×ôÿ“¾‡_P­©Èõümƒõæ ÞK˜ÿ=wîrÍ©(`„Ia“ƒú‘²°ý,R@ƒ’h¬óLiÓ2…Ÿ¹™;>Úþ…=ùžïm=– „Hèñ†Ñ’¶Á¥+á®L“-ª7ì¿[·åôúu¾Ò CÊû½÷2Œ0l6Ée³k¶Y‰{ç¡ß$ï¦ùˆ£ìÞå÷¯°]çä÷º ‘ô¡G{ÑõæÛQ굪•æO½}CæWKÖÛ¿ëûçU<%ßWQ·œš½ai 9Îw ÂÏuÊÁDb¹båºîµ„átš¶îçqý›Î} =t×[)òWä£ÒWžZïqB‹aœ†VÍOéÏŸxÇ»G˜‚Ëдö؇sôxO„µ†ÕÐUJ–Ô˜‘†âÜÚ¨ÂØÏµæ}|¡mZüX@Ðí¬AÎ%41~\5¢ÄˆB#ID+ùéüoU7çR¹‰hýëäñ»ævˆ5Ù?{Îód¯¨G74z¿W–šÕ¯R$NYædšÆ‹J3jo½HsEÒõáÖÍ®ÇPú'àÙ–ce øß\@†µ5·O’W! Ÿ‘L\Ky Ñ!Ù›»ý±QÁADDPEßöpþ‡ô-õ%ÌŸKÛm6ÛZsˆ^M½aX›o;Æ@É“…à„„mN,¡í™5dI×|çÈéZD¡¬Ý[¬Nxͽ>±ÒmEë«XûÅ©{Æ´¡Ûê<‘|0o©3Ë믃+ZXGêÜ;é·¡q _ÊÍE<î­ÒÆlX¼˜›µ’À”´“òð$ðÜ\…nÓÉXÕ_¯×÷ï'Ì_–hÌá,lƒ#)5™,LÏø{ÛÜÏ]™ëFŠÃ¸~Œ'’cõæ0™n½±u’ÒØu)I@ýf¬0œ:HlÃÒCËge¨g -ÎH†µa/¼O¼¨­Ø†ÛJUg³œCCœýâñP«îs‘êêRÖŠÌÛ™Ô9¶Ø¿|y1>c"¬N¹}¯x†ƒ¸ËgnúÞ@€[Ô›Ù˜+]oÖXÖâjÅ…z2¼¾|Î_Űš3VhGc_«Ï¯]ôlóä`ŒàËI OãøáEOöŸmRtthÓ­ quÒtPô©Ò ­À§IÚ»=Ò665ßž§@4:˜IÛ" R‰ÙPÆ1.¦º4;ö—¶´àN‰e¶H‰È(¢Ýaôxn±º°u¡N³SÇ—œ¤J˜Ò: ndq·=_i&çÔM”sÝ lie;7k¡JmW³×`”,·-Ãú³ïZ²d­¥b¿á[½å'0þ&Eã>£jdå0òŠºp».FëntΑŽêK%¹qSÏ$áÏ#¹’AVØä:‚t•a(beŸøÑ"ù9IM.“߯;ázlå¥5Öš–%Jë÷LïaÎf5iŒòå¿moÝû.¸…9pÑîÄŠ¡"Î'i4óQÓ±ûç·ÖÏ^¤Ÿ µ‰åh@'PûFôvO ?&07¯½ûî7×ÏÈmIª£!߈_ld>xøeN^ï•ÕQv^Žó4Ÿ=Ý/± |€Ií#DÛ4îÖÝgijrèW×{Ñ5äÆQ·Qbï½úø“Èü¶]ÜÇÒs¹Òª'›I¸äDœ8†&'Ĥñ;ÂJrHW 'qö—=Ä÷©C'YŒ‚‹!' ¼ãÌãȹAÈo!'!!Ó]t‡v*Ý+ìËìÑÒ½.„×M±¥òÕ =yæFƒ Õy!Bèêœ@C^ÀizƒBù  i£ÙÑAÒ©¡ÐºiÒtžMAvG®äî“3˜JÖ£ÀêÂBi–ƒ0»«Whœªò‰¬–ŸÜÛÞ ?W¹ñ¬ª¸°±åqn‘¥Ä°MËe /V6ÊѼ0,9žmKƒù÷®Ñï˜ÁVZ/ýƒP1~¶R–ÊôdÜbÁbÚ@·¨V¼ûTÈò‰«ïm#{[mØI:¢ý©ã,;zÔ–šöØ5‘8"R{84¤„y¬bÈ1%lù¼6Új[‰3Ø2VXJkR°¨ÖmX9à[Õ”o6½-,¡nöÏÓ·Ä~?}ûCKÊšé»=mW’K³ñíç‚bc±øžü{Á†Ý™.ö‰…òqgóJx}J.e1v>÷ž/«ê{Tµ´cm¹k6pHŠK+æë:åZaXÚç$ÛmWµ+ «+aV, NZÆì.E‡QeëY¶rR¶)cMöŒìë׳ޥB6¢µŠˆÀ¥Ö„5¦##áC‰@ÓyMHYaN/­bÖ9<'ñk 59³.¹œôÏr’¦œØ¶Æ£P½¶iw- R†Ë“Ž“°ƒ\‘(Ä,vÓ '£Òé„t‚yÐèDöN…„5@Я’é;Ó˼7:³L‘Õ9¦ +{^¯Xs…ÏæÙ„¥kÉp gÛŒ`÷¤ETó®jzÓ#—´\ŠÃu÷= 5‹MEB䯋Mh¬º"hF”rS°Î´šËŠbÕ¦a$Ý%k3œj­¶eåT†u;œ¸Éº†·'3¾ß'Cõ“=™’I¨U;$ðfL÷H>>¥Ë§[ן'Ÿ3O·„½ãØ¥ÞáÓÅìZÛ±£>HxÈ)!çh˜xPµØ£³ÒRÐthn7I§{¾¯%>¯H=ƒ¿ 2_GÚï í§cÔSŸOg˜“~zʪP³Ð± ÂÒ¬Ròø¨ÛtíÖ¢í븅ÛllµÚ¥n{‹¯ék ôç®»g‡]†§Wã<Cr;pþ´1©e1)ÔcX–­…¡ßÃç>ZMpDÇs"(@š©›36wm©26ËÚÛ\Ó~^RÀìJƽ ký„Ò6Œ?öŸßþÕI«K¦˜ÔhÈ™;pH„!2Xl"‘Ö5ÆÆÄ´3ïE—mKÓ1´“‹fd°ÞÝfðÙ¨SC7%¬"fvwÖóܾÝÒ _­˜…~ýcÈNJöˆsÅ®>½&§bb|bM jÆw½ž:Gl'Èö<…Òy G°ô:çJ}ùd ¾äóÁž=¡IQîÀ>KHtéùÞÏ“¯*O ö!»;¶’¨½Î”§@y!CÐ…­IZ ÞÇCNºæ"“I‰Ü„‹” 9ß§¾¸4ž£º2¨}& ¸>œyÝJsª„“í—¶>Z}“Iä÷jzO è/7KݺŠMh)zç`:¡Z£5²še˜\ ¾õ€ä‚MO³ÒÞãKE'vò¼ÞϰtûŽ‘Ñ¤~_$èOcAòO6©4¯‡E ä?$O/$ö+@Û%=='’¾lŽì/²û= RDwTÖ…„žÝ‹95uJ͈¶-lkY®j-Vo±ÀpY¹þ?Ø~}÷Ö¶Å£- ˆ‡—=±v¬wĦÕo@[ͱŸŠk;Ùž6]*’ÔêÝœï]ûx|­sÕ }»ª}¼a£Â£ªR‡®¶ÈŠï¬+Ÿ&æZRA=m·O1õ¥'¾]ØzÞöm«.»r´Ð¯&¡‰˜>¼ûÍ_•©<ÕÙ¹ËA ѵ¡.\ÆÐã&T‹l>¯)«^͵¥4Cy,ϯŸÕÃW9PG2X€fá¢Ä=º~SLBYbÑŠœË,'×C’tÇ1é“v { ²7垺}“Ù Ø.Àõ£A ÎrÄŒTžON¼^ÊòG‚ôäçv¼kÆÔ¾m§».€òiùy³¦!Ð÷Üä<÷†Ÿ >^AäºyE'Z¥|ºJSØu^ *ÚIùYL]nZÀ¸>œozÒ‹ò”Ðb¤6¨+ÝÓÚ,nQy¡3Œ T4+Î4X ýbtךߘ~ÌÔ–mTP©fQ¨iIÀ¦PS5UT°Mîöñò}ï'¡ð–6tìÅ[lÓSt!Õ <‹À‰(æ2omîõ:ÎE6Es—(5¹A)¢ÐŒ–„ÛbIEîUr (§/ª¹±±¨Ñ£W74ÈÝ×lj‹MˆÅ›¸¹²Q¼Ë¤ž5ÎPVƹ®m¹…¤JF!@ÐiQt©¥V€…Q"Št‰Ò‰JªtÒ ”Jt‰¡ ÒÕ•MŒ„¤*›±¤âEuGZN“HéZZPN @Ntˆ“ŒÆØ0væ]AJ 4庌;»9ºæºlM³‰–µ‚ µHPi]Rè¡®éÑÓJP=¡Æ‹(«B¡J@-6È=R4ô*M&Œ{”騼\âZwchææ£!¥Òù;³£¥Ð”¾Êê„®<ÀîÇM°§=#KÐ%¢“BiR‘4ih¥¡í€)ò|’€(èö‰}’ '‘Õêµr¢·¥d«sšÑFÚ*„<—¥(Jz§¤Ý„Ö%éTÛQ£¦ì “@4îG¥t#¢!t:J;`K@t/J]Ø)ê… §®å¨·#;tsnWŠçƒPšŠ)"‹œ£xÜ׊çsJˆª#×Î &OXó¡(Ò!:p¦¨ÒEÑÀvHp.%b¸mÍËrÅVñW-xYÊɘ¶ç=TcœJôײ¯ñˆå¸q½œ/nà{SÔYèv£³Î‚E6‘ìP);ž hË·;H)•v*Ü5ƒFØ­ãnhŠ/£†JŠeS5¯]Õ×qJ^BAß-r‰äœº¡÷rðÅ0DÜè9Ï0ˇ jÞÆÏ‡"ebÅ6c"‚TÚÔ(èÂež‘J‡¡¡éíHt€P/Bô!JRP'M.¤!t H‰ò@Ð)ä:Á{k£yi™7œi /8&f§w9ë›sž(²<ò,/Aê&bÚ²cm bMšõÝcR ’ñFM»1…(IEŒƒEÍÎôÞxë¹vÑÞw…8LÓJh1MB°œèL¢8ä',â™\©Ü]|äâ]‚ª|åÒtR)ãm²KF€Z4Ž‘(DèiE  ….„m“v•F¯£kk–‹Tm[ At €tRhG@Ū%VØé)'HÝþWlÃ×u–Rxž¿"=çd2}·eA×BCÌñí_zò>9›²q6èÁ´Lb¦D$¨Ä˜nÇÚÞÆÙ­)B'˜¤÷²ùí»…¶Ö“3„¡±¶ÚYâÓ»²CT«§fL1ó7O7· “Yv¶P®*$QÞ\{I߉&‹zùöûбYÃÚI¬’·@0Áô%ß{ëW}fÚ.v…BxR©± "öH„ÙØSqˆI ­%ÍEÌ!-‹z P6äžO{iåâ†2+–aT:žtà94™N¢L™“!e»¿?#{áÊÒ®B:^‚ˆîäîÉl¾Ýçi ž“–dSôûóì|‚ñ½Œâ–­ …èd° ¹q·Ú›º¯!µ&ý0éö22” dÕÛD›6|÷µ³dPž¦óп|‡³¤÷ܵy-V¼-SÇgv®Ó1Ùì„÷“Êžž}ë‰F«ZÙnÔt6Ã×IÓ@U·©ß8Tã=)G›MafãäÎôׇ’|W+æ²lñ“—½qêéYòNx<3’D¶ã25´Î•ÚK ç >°&ó‰(N^ôeÂù%ð¶Ë vé¤cµéiѨÄÅÀ×k”ëYV–¢Þo{†ºE^°œ;iY3“&zB¬Û`’O0¯ 2)ç¤ ×gÙÅ®Èfžòol.^ºT2mI=»—²m ^Dç\F²¢®3ËË«8{Û ÒTPÏdù0žB|¼ÏÒ%šÓ¢M£=2½çÉäPH÷)')<)kW]êsÝä-’äP¢ʆIžå2¶º=ݼš®IÊ{3+Š¡›×=%³’Ö£$&xP$'(™ìö«.áÖ«»ˆ@zܱmq}ĉݭu§HÃÛ=)2Y4{FÑÙàœP¥GÝÊS8²>³•Rõ¨vÖ"ÃÓܱFmIBzBg³•Q6³‡Œˆ“ÙäN®ffÆpH¹ãS®!'=½£¤Qd_.Ä¢|q=A”œ|døAäà mš× 6ŒùSÂÀ§Ž…$ÎzNÈeû<ž®ÏFˆ{³Q‘d^'§}…ïhŸáï&{ÑÖúæë§6ܦ iTNE_~n2‰õ2BÈOKʛǻ4]wý8yšiˆ6 ¾gªI>0áWöü~‹^>ò}ß]§L}ÆåD@^Ïe6ÎÖQȪ¢i—?Ó×¼ƒºË9Ðu)Ö«³+ßÃ'¯‡“Bóʋ܉ÝÚ9yçJh ׿]E¬¤^9§®×A ˆ± tã—@„Q#uuÝ`Îc 9;«•sy׉(ˆIÍT£L2“a´Iˆ0¤C…Rá( Q‚âkÿÜ…ÿ¡—yÍ”Ql(µœ£Î,Û’ÎU­Ô˨N\' „q.&Y›²Ìubhàš—& ¡ pÑ—?öàj ÍŇ "eI)ÂH¤¥;Sÿoy¬¡¦ò5¡‘¹3*r­…Qfeô>Ï×ÈûèlŶ.^¶¤,ô*–jsvdÐ*\Q,¨e˜ !…³l(™D2- ˜‘yS RB`ê¿ÜèÙ<Î*FYJe³Q $°Â|]LÄX¦–´Q£Ñ–±4›wÂHD$ œÂbnÛ‹å 4mI¸ Ìâ ¨É aŸérôý‡ªÒ“õ©#u~õï&5þz˜·.%!-›ïŸ¯kóh‚¤ˆyA :rZ·‰‚¢ @&”É‘*1Ýü¸ÞŸU, ¹~Ìo¼ÿ<Ñlð8N¡(Y*®¢•Ì ÅDR† "eQ.Cj’ˆ©¨$&,šÅdÛ«A|YiOcØà›â”‰ë¦Òi¢Ý×Ά[‚á žK(äÁŠ¬Äƒ|»Õ,Øv…C‚& Ãr`S KXŒÊŒ¬ÝŒÀ˜ÄÁäVP¡7)•53h¦à’¥QÉÎVXÈsPjMaÕ˜»MWn[ŒÖ$ˆò3)b¾&škæ°ï×:.ÛZÌæ¥‚),YP$ËPåÄIbåÒF¢å Ù¬„dR–Ø  Ð“2$JrQ&4®r$Vc—"È“‰V˜“ŸÛßC:Émþ ÛÆHX²ÛzÀÎa¤ŽbªBR™DÁº¡h£œ§›LTÈefœ(+-A$°ðná‰ESEè63Qˆq+IÂ’Š¢pxÓKšË ŸÇ¸ö_®¶ÿêþœR"fpf]F(h°¯5gV±œÉÕE¥£D0Ѩã"jŒÍ(¡“B3Q…TÄÊsN°NpYfêªDÕe7“ŠKFˆ2 b*'+V5œP¬¡Qqˆ`Ò“0.‚" ’HÀ‡}Sd¤§§öoã_ß§z=X"¨)u:¥ hÚC$³-T©³­EÚhT£ju)ƒ`lÁÀËH›ÓÅT²h¢HBâWR³§Fr¥Ùœ8‡×]f¬)í©ïç–ý½÷ÖMQûïš”3—Bí˜èXAiTI"ÌÊ0¨HI0œ%´„`’ %cÆ’ÃEŠÛüzø-á1­„ÖÝ»çÞýOë1«0Ý(QÄ©QrÉEP‰- È…r£p¥CjXL„ÄJΔÁ"NÑ@ˆ+˜ÌF›Á0£E´ å"$Cªœf¡NJP-%Pâj2H›(ÌàÛ j]¼™O-‹5a`f Bb ›’d‘Bj…SÜkDïí3ذ -$ýo®…ÎÜ€{[&g…¡÷Ï>k3Bú­…¸—h'(¦Ñ+DiÊ‘3.a‰§.h¡ûs.o%'ï—³ãÇÑ.q°É«•—T àËTÒQ¬¸9¡D‚ €‚¢ˆrÙi´XÊÔÌ\\¡FIE¢ô‚"0‹:„‚Î'&Îfš@@4*(Ç‹¾xmš¥·à·r¯ßX„üI~ÓQÍ*›B«¡‘!a%d ,’AMë|G×éÕ¾|”ׂøû¡†~Ê" ˜®±sTÑåš$Éxm–©bbH ¥q àZäÎ ²}wß•vYFåDK$A mˆ°ZA‡MH2Ù!ÍÎP„ÄTðÌ+²¡µÁo3Ø&Tf¦©M+A'I×þgçðçôðË)¢ÿÉËxóïLÈÚL$aŠtö˜ªˆ²ØŒ˜Ïg³ï5¯=G„²f0Ûa"‰(snfg^Ã4I6/Nîé$þÌYtÿÔ0õDñÑ5²Þò7N¶2ϯ&xÃ`Ô›\½1l[šÖ× b´™°Ð:.«´D;¶„‚'®¿yÁà8f+f‰hY¯jý¾NuQ"·øoÇÂù# þ{ßÇ×ÂGìÜ©¾XÙáx§­ºæÖŠß¿Ûó¬UäeØe&öƒrƒÂ ¹B\­?â·_D‘žÖêKÀ¯ûß¼Í o‹ÌÓh¹þoãøñø|CÕþ~þ#B…£üs3Ö¤:Ï7C®+h‚ÑÄ!À™†s’>µS›îmMTö3m”¾9ºTT]ª‡Ò£˜D¦ËX4WÚ6®•µ ˆ©?Ç™ pÐ2ðàä s ŠÂŠ""¨¶i³üb\h‘i µ €£IXBT¶ÃÄÃ%šwÑÁë°ñ[)ý,žkÐImNã%žóý(^ÿ2óçˆy&C!®Ö]B)_˸]Ôäª"L%YIÛëéâX^Žªò7öàÿ1é€3cHý¶šíòüGà÷ÒÊÞ«ükwžîéÝ0Ž v|?áŽß§D8Ê!¨ †f}¼¿$PEûÁ~]sÕX´ôg93ÀСèKQêÏFÅ„ïÓÞðåDär9*vý˜Gç¹yoºÙ8~Ø{EíeèªÒCJ0%äª_¶õÞº­o °m Ø[pì§- _î/'sO&žcoO=¾¬°å-jsìN½gU:S½ËòGØ¥6ö­°µ¤ê„í¨¸y]g)¬o˜Òר_ÈD{³œ9z§)%ÚWmˆØ\lr`Ò y®991+ÝCÝÜÖ$Ï-³ÖÓ÷Yq¹7ö~Ÿ´÷˾ÒI18SºÜéOžpyòÐls‰6Üã$i¹ç©ÒÛ˜‡<‘)Ú¬Çtg¯›=|ó·:ÜÈ$k×õŽÄµe^%´Ü r“ÒXd4ÚØdu¢hRú"Ó”}*5·ca]®Íl:ÅŒ´%g¾tͲz-1ü9|–3\²F³µ‹&v%flõ©1‰Ëïô~Ÿ‘{ÕÞÐikž„ )—la­V¦×Èf7YàÉ®c!9à­§DÏÕŸSÛs˜I,:-wë×"¾ôkM.êâC=¢?=>ñ-ª—¿"MxES%& b•Ø¡x†Æ4ÑK“Z£@•iJ0^ÞjÆ@0…Aj€Ú«j’Ø1ƒŸíf;S&ÞVÆç y0sƒ5\—\ŠÖ;¬»(3#HCÊq“»jZŒ†u´Î(kÏŸSëb_zq¢CJŠxDl•óX¯u°ÅlŽ´iS´€žk¨Ø:ѺKÍA[V) –µaj+ç3#K õñ¤Æ)Åè¥6$¾¯{6+“D?{ÙGÔ°ˆ9V¶qº1Æs‰º£º}Þ÷…nT±¤18àvÙ ExiB@â]·IG‹WŒ™±bÐm² PG5(”[™É— Ó.%U¦ms/2Õʳ¬˜8¶ÇERtˆbH:@˜ŽÊ¡ ÜnOE”“ÎY(Ë®¦’0ËRÛ?—•gÃátù³äòîHd–+ñ[3êÒO$©öÂfJ„FEzß}ã™Â2I,‰j„Rö˘tXyâä´X^Šê•‚—˜}®åíqJ“:u± d Ê‹ B¢HÙ´E.—#/×rs1"Ú]UXÛ„  @«Bê“çžr…LP™¢žc‘5’5Ðé"jnöγÅb3H ³¥uî%âšjÁ8Òl“ò@- ‰äŠ'È=•yĘˬåÓ˜¤"”¨'Yª´ëâG#I"J´Åªp¼RÀ¨Íó³Dð¨ŒL¢RRÛÑÈÚ…Ia™‰‘üXEܲB‹(‚$~±òxCÂ’Q4¬_GB¨ŠõQ8Óƒl)Üp©ç9…F•eE¯[+QQ+s®bVÄGÛ{Ð)áPT𠤦h«E0¢1kd~q‚E›¨R–R"ˆ[$f„a‘˜Iu+0¨ÐÞt#Å©*•euMGÔwK ÒåtR¨Ï"Ÿ9“5]* 2‰'´®hhneê–=ºÉæ{)H¾»+Èæz Z¥‰š+:ÅikPÄ3i`l¥ñоþÑß#îÒ‡U5QкDH…U¤˜iXœÎ–¦JÐô*±[J(#ˆ·5ù¶E6Ûñ»$TAçlôÃ9ȉ M>ysÂTK z$Ãr¬ûiOÖ³ KÑEç`˜©FÉr£¥=±…TXzºŒÆõžÌó\õôY(e¨Û²£Õ ¥+H¹eQä[+ KB|î}ìfYäY­K”QU66´8gc çl©šzd}¤Uu#ÉH6˜Ó9Ûf„BvbÞØõï}÷’ùg‘a•žùΉk÷µT],×â}¾…¯[©·ã½÷¯ï“k>M„›ÊX[&ÝV˜Ù‡Y†ì"m£k)íE[Û eŠ-±lgѼ˜Ó3Œ¼™jÚJ ÖYA£lFƒTáglBmM³N¥d,RU””«+çcBÄà&¨ f8´#„ÎiteJô¤ˆxu.¼,°s¯j"ݨM.o%„¥“Ú“Þd®õ'âXR[ð=}óRÊ)ë®ÛÖÏ~¯Ó׋­¬©¢ud"3)L%c iг g++bÖØÃgkBÚÌJhöÙ"(¹¶DüÛQ3z°‰¶ù@‰lbÚ‰qI¥³F¢R2ÓaHÍŒö«òɽYÙ¿}±zœåíaM,ñAüÊMf«‘jT¡BV·åöóß*¥ç þÛÎgȰLíi\ÉM(¶™%¶dzý¯>¢õ“m‹F²Ó¢ÕµÚ"Ò®ME°Í®¢»bß·¾fß› ÊKaõÇMeíÍKH0_¼÷ãÒ{ï¯RLuÖ[ûM5®¼?_M%ÕŒö†·G^³ꯞ½ºÏ¼º0¥ÈÂPYB3(ì*9x\˜¶MNí Ö°µ²çLåíYéTØGVѵ”65‰6rÈb]ºÄ=PŠ.£)«[:µ¡–ß;^,r¸‚Ûj…°¶ÂÖ±*µj4ã© ´@J]½¡5éjQíÅ2æÙ÷¯{8b%,›;*\;jök^T~)1t\LÚd¤miÌV$– X‡ |8ż Tw –µ«Îxë—?$óôEæ4½!Iª4Ä´ÁÒWH§N:ȥн%"44jî·¨ÜF'^µ»;ÏRµæ¥2[†g{Ù³ÚTh׋XU‰95¢yf\½….’ªÂévÙ”¶i·ï³ôù­c[N–me(Mr®âb{$ MæöÐx°[²V’Ø/!äôx¬‹³Ú¨Þô>¯n˜ÒºD‡¤’›LÂ×Ñ—R\Ú2$,?g×3Äûë<'âR?[añuÁÑ*ÛDB„ä%±Ö}·¦ &´Ì8k'ã‹~o–\ü¯F$ï6ç¦'³?µö»Ê*ƒ?2$õ$þku @ì¨NZ’“¬úôq°¡Íq“Ëó{\t‚÷›äú¾Zf½ZW’'+nÅkV¶£TleRFn£ÚWDžµdÉ<;c,Bá0ŽZ4Ž[:RKPòóYÄÇOfIù κ[V^5š:f}¦gh?Ë%'3ÎQ®™‡—¬ØW‹\d REE3Ø{²¹,Ær«Ê*Ö2C˜ÃÍXjÆÌ3ÊË»3 YJÅ åv‰­¶2ªF­„O–%$¼õ‚6Ú¨D?ÚÁ9$6Üä…©H|Ï3GõèÂ,X@jÓ¨Z2Û=q i Õ·õ^½uü;b­œY0Ì~hí|´úFèEª2ŠÚ%±’°P%s; 8Ù2`06Ç5”¢VË@üÛ¦v4Їaëe()A¶56RÒYf¶×Çm׋KšØSøGMð2`e†ëvК_Cg—-†Æ™˜j\ï±o oÍzï8”­X£šÎËu£dy§šž¶d‘bÍN¦Ó©Æåp›G—Õ±³C52CH¢´*FŒé—Q6{iíT=q®êlba-e‡Ô¶â§°FMºN•5m+gOÞ²•î›E‹”Ï(»$¥ûúÇ’Æí³„ØÆÜªêÖ1pé@ê£ý©°ÙYlóX!¬V4íW];=¹yLKKM#eªIlX¥²ÇëïÞïSå|F9¶,§¼µÒb žg›)1j_¶mÜÖÝÆ1Txˆ”¡õ ì£Ò*„‡p¾R#YÎDÊöI#<)˜±)·›Ñr§´l=?k0^0Ÿ´f•fÅímã—í†ï]vÒjŒ²"PNl`ÖóYPzTUYª=¯QéiI ©*Œ‘µ‚%Û[ÿäYÿFûï«BTE¨*É? %YV;øT·Ï€tU—gK¥9‹`$¥²ðØøó½Š¥9tí¹ÐíFœS]Œ*yí­“5kMª" ¿}9|"K¹Ú¢ÏmÌÄi¶ ‹õ§Ž Ö@ÞÆ\úå]”­<>ÖÉYKmíìLûÚ7Æ,º…ÅÏ:$þéŠÓëšMâ³6°.03ތڔVÒh¨R6þ÷‚ ãt¶ «á4¹¶¯}i, Y4!F|çãÏL%`p,Q”9l a›¡uˆžñaŸ53#§`Û_ªõ'¨ÍÐý¯¯,ÊgÚErûšØÍ$Yæé}Xï$õÑÒÂUaUWTšÙ6,í”Ïj’Õ Ë"»f—¶ìáŒ]xŒìL¥{),±í·%Y`F]œBÎÅÐó:³+¨ÆÛkkQê4õ»´J1PR„¶Ê/\-Ö[ ©Ê^µ.̬΂Ë!e½Ix;c-lÍ`Jþ±â³[Y[`wÉ®,¸HÚDû/fÊ?¾ÏÍö _¡#b[lINIzZZ ÞßÕÄÅ>¿Ð éR‰Ky›fÂP´-†FYü‹VXÖ4#ø­™¿||Ëõø½{’ñ-Ðëgqø‘ïF"¢M®ýW¦Ù‹ÕõŒÙ°Ø<{xKßyãÈت‹~´Öh7©oX„ÛuZu#IB¢Æ6} F·½™A»ˆÿt• !ÿ‘æŠ#!ˆ {¤8ßÒ»Öì³ûZ¥–ÆÍüb^óé‹Z•{Ã&ü¼xµãc­À1§á11Ä¥!ë¿i鱕®S kI <ŽKc3µn¦ùw½ÌGf£×«ØÇœ ( R%4R…(ÝW3¯[ÆããkaÍÑf™àËÓ]ÅØ¤iE: V‘ÛDy7;ÎÆ¸É;Fažœät" ±´‰8³–:Ï,ðÌGTã cQì]qŘ`ޤ-ïvé]5×åäõˆúë#xrÜ äˆ…ÆƒgšFê¾8—ó~Õ>IaH„“Èg>ëNœ†aêÊ oÚï—ÓŸl®-/L[" ,̽øó{ж_Å÷ßn§Áéz|ofËìç0Œ˜Æ/™_xñ‰ãÔ”‹X¸¿¯Ã>ˆV2Ù­em¡e0Ä X‰+tÀYƒp Ë,_6$Éß,7¹iù@7”5³ýjÊöTter[XZ²vq ’õ‚óYl¼B¶x ’!«Ddõ‘Ôž­sˆÏÓšvîßGŸHŠÞK¾÷‘÷ëãðwЋR|éåÅ—.¢Þ6ôi2¤˜R*ö&#¤ÚèÚÁ ©CíFâÂß7žz=+hɤ­F=­åÚ$ÑÁíf~}®¿}¹…ãÖ"2Ú4–e´ÌØÂZ‘XÒøÀ¡.csåÞë;sõxj[bæL3hÔÖØ­ˆigg´O«´Oœ·g²„¸iÏ/%(½)¢‰dÙ5©¦,Û#Ég´Ð@ƒEA]]a)>9'³cbÎae Qh¬¯í¦ 3Ñýëè“{Íž)ÃNbÂáëeN)k7·¹}}“'f¶Ì˜£&ɱš-abrú»[E¾^ÝHj‰ –YSåh½¯½;ÔI–G&Ô®!ê^[SºÒö0¹Œ/ÛÆc¶V0bÙh´Z²Ï1ÛßbÜÔžrÇÍÞOt3Y2¢Óót<ßh{fâ"6§0aÖ–1VTñ»•ßzo}ôú2ÜÞXZYí¥Ú,²€7ÏcÚo] Þ9¡(eÖM)ÔNŠúɰC>¹|ý‚•XÔWÆØÙKh„UÍ~bÅõ÷˜óFÒl.¼Ö¨[ QåmˆŒGTxÐj ²²ßVm‹ãžÛ!âT­cÕ,gXØõãDGºÜá “E-*¥µ°äm™Û8ɱRY%ÛV¬fßFTL{u–D”¢@Ÿ”°º~.ÑÛN-JÂ-bÍÖôo'±­]£Ëqf*\K[!ß½’ÓÔ‘–ÎÃ~;ÍùOÊýõÊêåäcÛ¬\¡ç£ññ¾ç‘'³cæÎ%UV›(CÌõî!5 n1FeFŒô›ktÏu{f|̳-r„ÎÏ:28‰8´f®ÏCÝ›mÊjánÖu×rç""Å%x±ÆñãÇp…Ax«¬Ó/q Ê›[FLç.…k]v')Ž\½X"jpó©S:¥sÄÉÝ[;…:N^¹6Arg¤=Y=\ˆó9 ܶ§$4Èãl¢¹:A²±µ§Þ·'·/tš6†«A oW™Ue.|îÙ¬X´Ö'Y÷ädúz>Iˆ“è÷ŸC;”E4©.tŽÍE”IKU ‹¡gj¥%‡jíÞ¼“Kl$˜L'TÕ”m3µ}âÔÞùö¦R¼“_=lžÃáÖ6Se\eŵIçmžá3–»X§£E sI$˜1³Ø¡”&AMH,<ÐNÆÓm9˜Æœ;b¨éÃÍ×aå’ÍRyî··|üà“ß51+BkJ>Â'A夶BRbDªJèR”4uД Ò)Ð= ¤•N… dЇHtRF„¡Zë¤~B)@ù ìt§²PÐÐКtù„Nxè×ca Ò°°‡yZvKñ2SÑhÏuÆ»ˆë2CªèÚÆ´MD“«M¼áW•M\£ëiYd›^w<‘õ„ˆ­g­Ží,²‰Ê[P+*"ƒ£kP,™ì=Ê·6Œ#ºYmŽÔ‰ôl,=+Ǭ»š3Vzú“Éx·6ŽP‰Î‘R¶Ã”ê»k³ÓÒ¼r£aÛ¶Æ5·Fùó¾yªBG:Sµ‘ø“•šÐè+eD¥Š‚Š•ìåyuKØ\¸Ö'q…á -wcÑ»Ñry*È6÷¹m{JHtè¹ô쇕„%éÉ9;2Huœ¦Š.…7*u‘V-;KÄ=;keè×]h¤)âzlÎÉujÍ®UÎæ"ï[O“k|¶;V$\y'¢ƒ² ½k¦NÏ:ݵamö{ů¶5 «N,Ô­9¸zi‚Àž#̰‘+lÖ:LFyI*æ¼ã>¹©©ç­ P“‡×÷×Ô+÷Ebr(j )áЭL®ˆ‘ÆÊÃŒŒ‹¡£Yɇq¤2]`v‰·´Ý¬¸Û¬›Z@ÏÏó_´XE±m%:â –[`Zùf—ÛñM3^V¦±¸Ü3#.Ëúx÷)懶Ÿ·Ø÷*ôŠý…F–RŒJdÙÕµqþ}ãÉÞx&&(‰ž$<é(§_uï7 Jârå9Å@¦E4_õ"‡žhåµß${~¡ 4*РŸ% ¯%ië waéJ:M44B×’é¥<…ï0y ùÖ{Œ~/ zö::ÒnùÏÈ´7›ÙÑ£ú?ô¿èûöÍàŸðWýÖÿ¿ðú „IýD¦Ê1þ­Íµ4o%'ß|ýóþ÷¼þÅûR Ö¥ ü±0„‡ïoó+'â›62ðöÜwïœO_Ƕú¿·ïxeúBÿÁT“QjOƒ3ùt`à¨Zïéï‰z¸!=§çOÆs.ÑkJ?cS“4¦uT`_¬ñÞ"û]Ye³Ç;LFØDaÛp`SˆVªî"h°%›©†jÉÖ\à”RÉ@µj*¢¦MAD‘ 9B}HÏãL|z%&…-¾}¾lñ@ü$ýùÛО'ëîa¹ùÆý,çõ ÞˆüüÏÛ÷Ì7àá{3pR‘´«øÚgï½°¯H¹‡U$í¾b¤2¾ I÷ݯ¿µùÑ Ûù˜}h“ïS&`Äc1UTQf*e”DiL)T­MÒŒËçý´¤!¦X, D"AÈ[,@ÂI´\ pšMæ\îBf®MÄ*!–Á-Ñ*Dd‡Aµ)—$ÙÁŒY17zÏk=¾£¼I¸N½¸K¾÷¼Rï\¾Ù¸ñeoñŒùÏ¡ýA½õµ¸Û0Sã~Þ1([º?Ѧ°üX}óúPì$RAæh›RÄ; ¼1™D‰„K)ùúUR袚T9P)AÁ,CCMB¥ÀÈúö„ïÖRoÖ}-¸ WçÑ+)‰H(FÊR¤¤ ‚æ‡ ¸Åt^¤ Á?±×OE?i³“ú »k<_zøñFØëÉ6½´»µ¢1´–yílº‰æ-ã^EŒo½xø¤tüÂ~þª&`Ȉ€¨ìÜ\Ä%DT-1.(¸PÄÁü}_ÊûjM|ÙoóöŽ[Wù¯?ËLþÚ{}Ïï#Æ-ùôûå<Ÿ^ûììO,iÔ°b”Ò™…3˜˜ NÈ»T]¶Í ß:x¹°‰ï¬Ò>õ÷¶­—‚;ÕŽùQ$$ä¸$‹§¥F\8sE¼MSÃZ,ýõðMûo­¤·j$¹€OO{OùŸ—‚ùý댶%ý>͸,%øÝ ºøö·ß4¯½»ÔÞ·?ßwŸÓ韱á¾ðmtuéúÉŒúÌà‰÷©/õ.ÞòýïÎØSë}èRR[ÑžYÁ×ÌþûÏhÙû!õ„Ñïæ{Z”úíýÇõŒOê‚l; »sÏ7jïòG³éw{Y¢þ÷ûßÎ÷å.’g«ðÈ»`ø² ¸”CÚë4œk.k`«l—¿Ý¸g›ëTXߌËq(›bŒÙ1¹k¡*(}î¼ÎÕ%U5Á^ÊO:àNaÑ9|Ä•£Bxž;:cÄšOy3Ù8‘U¥šävcoµëp#–EˆÒr]zë‰Ä'Í“ÂÜt¦ ¾Öc–òwœœ¨â.>C>‹•CÌ‚òy< 'ƒ'Hýæ@^êöœ%ò7“.9<ꃢìãȧ“ÉäÉÉÝI8%89$mß;d‡X{RmíÑÆ» }‘öP¥h@З°¡ìŠyù ¿ ùt#òèèU=€Et(‰ä"üƒ¯n8é;±õr¬¬ý·Di²NRÑbÆ´m>¤|ó1/¢Öz­°á1M f¾°žŸ\i]—ªžÛ`‘Ûef4*uíë@§8cS8vÝÓ¿Vpú‡Fj$S ž’ÓJI;] ™‹RºÆ¿i±{kÉÓBÞêt&:c“²5ä$žÉË9kº¶6ã$ôê·ºÕÓÚ€YÏŸ+æ–’G™åå•_±v “³äÏ{ Ë*âÌátƒÚ›™äzDSiD{!ÓÅùíäòŒÈÃøÏuJ‹’rŽvDÍ.Pó¹å;k1ÁĆ C2¤Ék)ße¸xm‘”±Îš‹Hµ™Š»í²üC4µÕÛæ£SÏ‹qïB2ºÁɧ’9‰¥$ÄIÍ*ØU{¹C¤·r½.€(U h<–t”¦ó%t¥(4wwÖð£¤ü‰úîPò$Ž¥­Žío¶nN 0Rß#sסC"ul¡lüIw¼Ý%òòw­"H»°ñqË—.¹È‚ ŽswiÂ#œ;Ý×J Í…6sÜZ“ϼ÷{¹h‰¥<®ç.â!ÊcÝ …±3tñ%K&ÅËÊÛÑÆA4r/¬8Ñk»"‹"¬#{ÞËêL‹Á0™•¢“"ö¥x^†‰2<ž­äòiÞCÜøÛÑ(˜ö^±*d6‘ôt©ãš¬@æÏËŒB „y‡lH¢ÖÕ1h‹¶æŠ6L“"’3\¢ê*¡öÛÛmôíÙ_  k”ò^ñeG²KDŠe~S‘çHfõ#”EòÞãO‘ ú¾IÕ LÁ4´o1‰¡Ñ‘:T“'&+ ñN…ýVâ-’ª6ß±öC’]E>®¿ ×Ù5®£n+P¶Ëm–åÁmŸ–z%[ ê^ +®“2+}å9=†B{³¥äy3E‰™*¶19ɇ†Ÿ1åL»ÐMXj"S¢@ ÚY7´ÛÞp&;)Þ·(|ÜçÎ_0Šù$#èkš'L@ìc NÑ©méæÀHœåã„sÅíë³ÇÉ­ýín|ã VŒ¬‚ýa2óä^öÏ‘¶ÝW P>Á¦•:O*G¡)t¦”¥.Ï@²PõдþW‘I¡ GÉ-“HëÙ( zGÂPèPè@â:£¥héZèt@‡B&ùì¨t)yšt€}„º&ò¸œo „Æ+BR º¤NÐ:@ÐÒcU`±³×[ǃ· $… F„4B'H#B ¤)>o}ü¾kÍçw•ïI‡õõï§ï‹Èea<+2,ô›‡D¼bXJ3ÛY#A.8á’Ù1PüþŸ}_3æ´2–jËán,%·æö¨éš^-‰EüuÖxž†Ð¥© .9†ŸmPÍÞ0ï¶sPŠQN¤ò/ÕÖ}lñC½iâpOÞ41=ƒW|÷Å<&ƒÈ5mAò ='OBÓ£yƒØÒ×ÈÑðƒÙëAÒh2qÛAÂ'=‹kræE9ó¿;ãáüúù!õÔÛ&“e.…rl8W²æIcm©Q‘2ís;WfѾLjöë£JCQ£ €Š ŒI€™Îl`±l&ôæ"AíÜ’%Š4bîí6¯KwŽÂ0ÝÒ™LI’"“9v±¤Ä MÆH lQ¬†”" ÌÄ%JA‰)- ˆÒP…ˆ¥ óºDB¨€d´QhŒôî=믢ƯMx-ªÝËÝ“eÒýí§ÕÓ;\g“I”Ç$òEm}÷ó§/ౕúµR4øÌRêX2q1µífzED|FÒ«Tj;²h+l‘&!i´ ä¸ò=l¦ ðܯ%Î…j2›keé:¡h(JèiÐ0›sPHTc‘B@ÊeØË”Ç2'$â:8ím';í<›ÉäQBC‡5½ã½å¨4™MÓ—˜¢E%AXbA²æÔ ¥Te©‰e@Q­"‰’(Ò-,æ°ª9G E5‘Ë"é2’£4B+-¼œnRµBÊ¢£L.±@¤°T¡-Qa¥EHu4 ŠˆK%¨*Q E+Y$e\Y‘-eT‰Ì4:-:f54…,É"­ʃU’UEÕ©\K9ŠT*ª1hDš™:eZ¦Jhk )8VGMb¡rÌ©+*N²U” ‘e]"K¨Ug(Ùk J’ŠI ’2E6aX³DÅH…$Ñ*T¬*“ MRŒM•šœ!‹D"¤­™ÕDÑi²U*3”„™t«$4Í&†©hjªª]B5*E°–F¢jjÎZ""´ 4¨Xq"#4*艑‘˜a™TFi•¤¤’ŠmDª£Qš¦D©j¡s"Îv¨Bi²•”­KHÅ52¤ J²Ö‰¢†…&A ˜Id’"sB.¦ÐÄ Ä‹ 9i› SSZ¨’I˜QÈR ®©r”$PÓºlÀ'wŽwi™ 0‰¢Œ®R*²’ª4ºÊÙ *%ÕE.dg)$E4BŠº"B’jR¤!f•'"BÕ3«SP$ZbPj¢¨’A%”]i*ë B"¨“"±,C#J4‚ ‹ 0Ò)RÌá„FP†Ì´ÅTI ¹³LL¤Ë¨Z‚¬,ĺ3 1el“ÄUUÕ%h²6˜¢J,‚©3 "Q+™J$’baª’U²ÆJ…ª†‘QÚ‘˜´‹UµM@©0Œ0¢"êÌB¢Ñ,ŒJËBäª’Š–‰«+2͇DÙl£0ÈBæ–rªéªHm2ˆÌ‰¥-Q"Vˆ˜«JŤfˆ–EV‘QI¬ÓfuDÍJPë:U‘Q‘©j¦‹*%bQD°ÁBÒX¢¨-èTTJ!fÊ£P’A]i—f[6B‚DJ,¬ØŠ!ÒÄXWBBŠé%’HsB¦ìSuÝ ]×(Hã9’¬²1ÉVœŠ…k"ŒÊÌŽ›Z¡$UJµCDÒ-h"ÈÂ+ ĈªÐ±¦FÕ1RÔ”Ó¨fŠ)ÊJµ¨ˆÓ@½ ‹öƒÂãO`” ,'a™=3ƒZq5ÓQ~úÏ’ÍM9¬Õ‹TAQ$=“;ªIëS+ûk³ß aú<ÐÒÍž“-ã@ä‡Ñ"'ÞöÏÆû=>ZálÜYc èa¥FÊJ%D­¤}s•¯¬H3b`ø“K¶†Ÿ6ÏR£Œòt8‰ÉÄiÕ§Ìf—lX­a«² öÏfé¯90<–Oh ^–9+Ïæy¢Tõ·a]¬:È.rf^ž_z÷W1zÙ£Är«±ù0 xÿ†ˆçŸ† q0 'ÙÌw(Çl.«1ÓuôåË&¹œÚ ý™9‘ûÅÏ$þÞqÝþoÈi½ªƒáºnTïçÏžg;ùñ¥ÁðпšøuJœ<ÁÜêÙ|CyЃnry)Þíušž9Ó» b¤I'ÅðßRÈéÛöt ½ºŒNÕÔW³?#„pÀ"ÛÑýeÚ®^ƒ;ÈÜihœòN(„PZ0`BÁI6¸E”;€ã;¡ÂÃ0"oWTåI$Í6¹Ù _îfVQâ‰ÞjôÍ7•|ê(H×[`•ÁÁÌÏgR#màc9Ë#átW…+ÊÞj´Gäiƒ71¿Õ#`ü~×Îàï=³Úá#FÌÌY˜P¡‡’T|“­_'£¹êºŒ®“¯fglõ2îµ ˆSý_õBóÌèÚGŃÑc¸É–»€ùÍFpJ¾D´ xúBâ ª£¿É®¥^s…$[å~DÒú”Øß³ï¹ëdh Ë&×\ˆÄEæ -ÊØ“¨qUû1œ¼†Õü:׈Щ¶”œ‰­;±òòDz¹Å‘(h=~‘–±_z]®G‘Æ‚ËÀßÉÞ×Ïoz3êÖë”&Ð¥½êX¸Í­†©ìä›(Ô^úˆ‘õMM³ÜðçãžïÝÛÍNÒDuÝêû«c¥îtDÆÔyqØ=âö *»p=9µ›üµ¥øl›—×Î)u¬Dk0þò­ÌˆŸ×ÎÔóó͹(@³,ù–mo³ôΣj.~ú+ýäÄuoY«çY,·Õý|™=ÆîHkUž¤píÍÀ¼¯Ã åì*œuÒ8Ÿ:¹»Œæu¤?l! îüóÎú×Z=óÛ«ÉGâÉFHcçîÝßäò;Ÿ—˜Ò—^ÇœÝöyÅÍõù'¸’ê§Kö´w­¯›6¸üc;Ahûéôv—ãòÂÄð¦BE¶Z£7<¡ÛïJz2!kµYqÖ¼Üy úÿÏů҇‹ðñßžX_:¾ ¤ 1¿Ù™Ã«â³îMþkS™™GS§GñN­‹éÍ~ГB1¿ÍÙìõιõèýT׮п4Î:&Œÿ*3i:oÞ: œ4µ‚úu>çÊÎ(ùöàtp:¥c-ôEµôª÷›ÄýßÇ\öñDVë5=HÌgÅZݰ!eD K9÷·£¿{ßqخܨõô@`\ç5Tíº@¿’” …@¢B5|®Uû¹ñVa÷Ü.Cî5ÄjzÌ€oÖ'"Kév ¿*å šè!=RJÌ–}ß•ÊïX›^LµŸ,wËÔ!`zÔŽ©a4zñÔoΙÑ×Üá893hÀú]$3¡I ¢K+ºêfê? ñ!vG ×áÆ¡ ®gÉz‘.t¢}ö.ß—¼Ù‹ïìŠ/áz×Abu-Ê.Î%/«nvGÏBŒÚ'ó3•¿Ô>Ýù<"!¼¨QÜJ·[ +Ð],æ>J#³¦N%¬ç£ÖÕ–êô¼jØÁ´3+é³gdŒAf U,3ŒG®u†pï{òGòÓ8¬® PÀ"µm.ТH ƒ*šP€gRFÈ9©ŒhøþÇð’“:,P½Ì¸•ÿm€úêŒaÂGEYãm“2¶Ü¨’¿Â¶fôøî?ªø³âæÈþ³ÚÅS)œœf†¥Œ+8¦šDQEx€ã6Ïâ0ïá1>;Þ¼Û,ÖtÍI' ‰(Ñq³ÙÄ8U¢z)¬#ÚÙÈxĵ Ñn1ˆáB2°È†b5¿ÉõŸá÷ÜýÁ]7d¶:ýaé") |J>) H£Œ_&ˆF $,â„gÒšÆN`ôq’ÈDtdãg¤ÒXp‰% ,ŽBÉ÷+£‹jˆÂ;ÒëHQÀƒFÊIÂÉ…OG4°(’titiÄkîï×óôóäïÆ_¾Çâ+î;ûmµ!õä’xH“¹×¥?)ýÚNÐ\Dì€2@®ôðÈ’,Š$‚–Ê 3'g”0Hdh" ¢‡]”HûÒ˜¹ûŸ¹ÑÑõ}ÁíП¬½%T씇ԈÖñ›LÙ7»Œ ¬³[}Ø’ã9¸œwr[¨ÍÙª·=Œ5‡Þ–¸We!µÓ‰ ëZ8]äf$¼3<8 a<ººÔ7>ÃÚ1È ;@ïWˤÍÅ͹”YnT¦ŽÌIê“× ñhçç'©;®ÍÆÄ×Hop¤© oøÀ®¹¬ŠØá줄1ô†/ UEù§ý§q†k_ý€1:åm„ØWñ|¬-Š# “ŒxF>JãˆdbûXG„8C6±ñ 0NÌœjÖ´¢‡¸Œ!œ"5hYˆ'xD+„#Š8Hä…€¥i c\L€þ7ç~/Ÿ§ã‘üöý/Ωè4ù‘è4”òÒS¯ÊQö@Ò‡ô!úŸ´ÒæšwÓ¾Ð9 ó±2I¦Có8ÙÅÕ ?»Cú¥Œ\6;M€0· ñ¼Uâ¯Ïר·Ã_¢«åü |µãmô~~Ö¾åù%Ë'KÐù/K¤ßžW£åúHÒ¿_7ËäôySGÉü~Ÿ:ó{ä~$Ðôýe>_Qì{å¤|€òÎSáC~0Ò»ÌÈCïñ€ïÓ|‡ôž“äÔ~p£¯¨OÎ4T>B” h)¡(^¿˜òû•5^ÈüŽ$¯’†¡?+M{( WîC¾ñø¢)AäžÇJí'—‘ ~ä~IúÂ~±ä}ÿ&ï° I¤?¼­Kä I~*P’ß]üŒS€ís÷Zc©æ·»"팞-|ª™ößß”GÞ‘{pBžjø!j»rF¥a²½Œ"h~[ ²2qYƒ˜ƒic(#Ÿ§¶Œ`ŽÎ ¯9<ãº_™ð~(ò’ðš^¡ÉOÛ̑ý^câòÞ–9¥v‰ë¨½Å¨Oœßœ{ 7""VuòâtûëM)9µF -‰a¸FŒo£v7Ev¤ûÊ­P$!M“‰ˆÕ¡s<Ì¥26†­×Y±²µ¥ˆ×ñhÎ÷uËù¥¤6¬²µúŽów!k?&7ÕÁ4rë“2g„S…eG JïÛÄ]^Æë3zœ=H¼õ@ç¢þ n¿>Oÿ{=Þò8"„Š£éZwYå'÷N§éä w&µ¾…_Ïw¬Ö„uøöoõ†YT’žùÝØ”Qi‘Ñ•TfjvÝùÇY2ŸÂäç*ž<~ε¬Ðò0εO ÕL^ªÜ÷x–8j¦!tP½1pø!£¨Ö¹Œ¬ÙêjG¿¹êSµug;*rXˆ’ý_žvÄÖf"x¥@ÝÜ×f¿"kš¸"èUò•‚Tö4»+h &TLƒiú[<<ïl‘Z'ÍÀ'ïç“Ê™S¹`$é–á!~’éùw;ê!ϫ𒼛õKð´×¾­d¶PùK+Ëd:°‡2¹ß»÷æ¦ÎD ssY« Jî£i¡ßtôuV óåç{å¿Gó[wñ~;öùí3äü § §'mȃG_̼ 8FÆ= ¦¦žÕ $àrh¼`JLŒœc²G) "J8Î2‡Ã'Lœ{žãAÅ ŽÖ‡z‡ Ô§ðµÝ×sóÝïcÞÖïáÙ@öäŸÐ”Þ–ý¥%P€R+H>@½@Ò£Ð?‹È¤î’08Æ0  mOÊê¡íª-Á‚¾hvc™³ÍAsÕ„`¥uÉë–NœWMLü¸ö–FùÔ U4“‰û"¢…˜æÓÔ¥Ziʲ<÷Ýg¨èzGG\7’8'ª%þ¢ÎµX¯™á‹¾dFyñ3G‹áp–J ¬ DkµËDÿ3å¯Ùç^½·Pv‡Óùæy(}á¬Ço;KµÙp-GÚ—3ÇsÛ˜›Äعüï݃s©Öô d.Õ9$Ì\öþÎOÙ¼ý‘Ðp×O×öŠ(ÉÀDûÊÉmpºÛ"¸¤Ù‡¿úG»‡¯¸~ZüFÈþàû÷@¾þ±³€Î! ›8ÅŸÓé²ÈDŽ¡<½ìE~›{ó¹®ÃÌš?/qú@y}Ë÷Oé&€üOâCØ|½÷/’Âëòƒ ªzþ_|¾GCA÷õŸÖüHün[ôZ¾ü¯O•~U¯†ÛݾŸ~ñÍU÷m¸l_•µéѱ®o¼þ_Y¢„?i=:ñ.”ý¡_¹ü¿0ލt£OÝ¥•.¼ßxCAò%èý{#Ò>By tŠt/ï)ÒûrŸ%ü{“ø_´~~}y¼þ>‘õE\ÑͶ"ò7”ëUÊëÌò½>ó+}¢ÀÏGéÆNÑÊîV ²õ\óóÂ~ÿ3ä”é?{äøZü{–¾ä4Œ4H“$Ù¨ ðàYœ¸ @@1lk´N*c’“€HdÉ„,5ùþÞøãœy?/FþãÈ(ÒÁÊ ‘…¯^Gá€Ö–É3ŒÇ}½u½:Erú¶÷~Uì^Òô5M“¤ÐŸ´|‡õŸÖö>G?¬!Òùî~¡<$=“{ £ï~üê”ý¥}ŸÒ>Aú|ÉÄ%>NŸÏ»ç€:f<€œH`QpãÃæNuµá×hKvSÄ|TëèÜÂL‹Iîµ—-‘ó™ÜÞÃ8 2 À?Å¿*â”õaAaò\é/;ˆ¿PÍ…Äßžg„jÖ ­-ºÎàäS4Ñá ‘DlƒÅhZMNëêHÖ Q4l‚»ê4pH¢2õ3U…6µ?r30¼¬¥“nÔ@1[yr\]ÐF§¿ñ;½_JÜ­‹@nUÔTg§xª ®©ºä=,XΓ›«ŸÙƒ®}®jèÝ/´«t{„ο¬ ¿È~E£ðøà½ŸŸžS2g[{?Õ*±Ã°ôÑwF}õÁpµ‘—íd„$ühé.̘¥$YG[¸¹vjizâ4‡‡²6BBQMä‹ *sñ;È"Èk-Ú(\ I"@YÂ"pvŠìÉÄ|+ Ü_¦IÒÄŽ7+"áÄI¡É†q†žû‘ÈãÞ²èÃaHä©ÊÔöÆÏ+&Å‘dÅË“ ¨Ogv`U^«J9:MDô5rjUQ¥ É)šuG92«ÚÎ0®F£RhÛXÜdÛ;³‘+jM§OèÝ­µ²¢Jó5H/ ¥àèµ-—¸„·8ÖU' &T <–dE™ìæÜ܈¦Ò#Ê­SfVºQCm‘Î15µkNrŽË§$“ÎÛ<î““E®§h5KDÏN{<¢‚9'•¬4ì«…É ªtØh™sÔò,Ì´gbØ“PdŠ)¹çžg­H4LõÃ8Í´:2g«8f­‘ÙÚÌ&‚7SBîc+)·B¼­ ¼mm°aì™Ï;nÈ%&Q¨„k&XšÕ—l›Km–^w%´ u®‡.¸!aä\Å Ú²ª švR Y³<ƒªˆBˆ•-NeëmÙ'UvÛ%‘Lô;c%/g…쮆҆^u&V¥•;"¯l—bèu<»®32ݱÛ‘µ—£@Ö9ËŽt£¨î71Ò$ëuûõOzÕ<«Ô¥ùmzS és ÀuÓ®š‚éz´îŒõg1Åe¹rg$=Š&Ér†ç¦xŒmÆ4nœ©$©ž! ‡)@#¯EíªÛhžÅI®þ½yF¬óHм&MŠvÍ¥TAr$Ær¼¢ŠŠ6°jy®—žCYìhh2d$5µ¢T•Ö0½*fæˆEXRzqšˆ6Û!P¢‚ñ¶,Y´«³°ä²K¢VWš •4SÄm‚C<#E˜v‹.L *ò9TvÁW ².‹¢™;&y4Â2¢®c9"i$ÏTkNçc<ŠgˆF‚(ƒÏ.ätñΘ²^MÚ60itóË-ú;yóŸ!fmÕ§»ª(È”44(Ó]<ÔÎr=Xr:´dÆnW];cjZº»bfÔ*=º…W%‚ ØPDyz+…TÐÑåÏB †g‘UQ*z©Î¶ÆjiÙµÝ8³¹9Z…jÏ3Ô&a&\®ÕtƒFr‹A=©Tt/.Ó h&s£é!fuRCJƸ¶mª¥%r/5ÎÙ3ãbjÎz×DÂe&IÒCž¡ Ô3§]µ‹9ÌkiIQyx¹¢'0¦»h̨¢ó«dp(ª°Û`¦$DUé.’Ökƒ;˜z+Iq¹ì­Pš°ñ â‚ׄTV´L åÈä„®Ê×tp ç8NLÇ ð.œ¤„ÍZTYÖ šµËœ¢½¢&5œÕ,‘Fp•#΄MºPM¶xÑ Ðe’h¤½j`z-Ô+FÜB4³6ƒZH% ]t’TͪTŒÙ•1­E—Q ik57Ÿ'8\‡º4;Y"xYç•\Ù2lg ÍÒ³Iœéˆ™èTMDƒ¥“¤ÍJ8ŠvêÚÑtÒÔ‰QD6Ùr]¢M£b öÌ#Å5Úâ×ZÜ©©ˆ21“I´/ ËÊ“rÂ42D‹&°åEN¡ºäÌšžEQYÚGEY2agQkhÚÍj£„”Km¶¨ÖÃŽ‰ŠôQj^V]»"Í‘@Z]’Eˆh¤6ÆÏJ®v… ¥ádŒåܳ[FImaÑ›\¼Œ’‹™FIr²©¢AÏZéímjL–³›Fª…U»2æUAYè¶ÓÄd…:JäØSe2Od^yÓPs§GZn±Ež»´"ç9³ ó¦¹rt"Ì(‹ÑZ!Ï‹ÓÒBÒE3“PÐIº{c¡0ÌôòWuµNÖr#³ ìèØç¥uvI6ÈgDr[e©ã$™.™JçkJth'¤3¢LÙ®¥M"ª,+ÄFÅ6IQmJñ‘ Ö]ɘ^§©Ú)aÛU!aš%’‚"ÎEUåšeReEÉ-íJó¶&’.J¢¡ìÜ©&y{í»yº\2*jD^P×4S©^{=9­Bô#IYé2t[BõY0¢¼,m…<°«S$QEËÊºŠƒ0鮵² õÚ'‡7%Å”žu0ŽW<ÃEEŠ) ³¡uÅD£˜Z°’E:Ù'ž‚ ÚÕ ÆB5s0.¤Ô-O[Nåh‡³³J44öºUr‰&g°½’ˆ6Î\Â<-³¸ Ó,)&ºÑ"Og¶Î =<£¬‡FLK,©SÊjäDCBì4*+M*®‚4²²OPN’+BH «Š… !C#Hi¥u3uÚ-‹d]ˆÅ22’8gS[9Œ5×JÅY(E\Š(äP’D¥-,(É p•ʲ¦C6Ý‘QQE‰`QæHˆm­HŽb¢ÖD@TÚÎcAÕ,(‰RÒíK[‘U$m=…\pÉC’‰QæwWX»6Ê£UშN[RJ ÍÓ[tbMbÙ&êæ·$ó"æ‰&ÎU³5¤Xw8“‘Pdʤ³"Öçd»[:0¨’Yž›„I•(^+lð¼¼"¬Ù“0®¡fa¨Yéí-Ù.D±‡.‹´Ã·dÛveÚβ¨Š"M+Ù#=ŠëŒ8B{£;B⹩ÌL/ª$-¶y… ^žkŒ8VZ`³Ú¡*\ÒR«Dlí¡¸LÂæÑcT]J$•] ʉœç6ªè«¨%^£¥Q] È¨©<²¼((èu¹U¶ÄÏf¦h]‰±QɶQdà´€?] ÚÈð~v»›~'ˆ8²Ÿq÷3H˜V@Y•w#j»2$âÉ_ÃP ‰$äŒ@ìÍ|ûU䇤†´„92\?ª2ÑÞûýþ½ãôx9ßÊ*È£¦”pÌBJ¢f‰Ë•¢T9ž[5:&’/[ÎE‰ËT2BÂ4¬Ð3EÂ$Št°Ò*H*Ö•ÔÌ.Ó˜[*S*XhþæUzÕ -¤¨’” ¨F~Ùå„e~­ÎGtÒ".þ©ÎªxäO”(dQIäh–›øÁ·E RNÓ©%Au­U.AVa••†›C +L"Jª®b¦h‡” Šýc<9…ŠSC 8k*¢)E$í*‘.FgT(Øœ‚ÂÄ­0Ä+HÉ9§.bQA') ²¢ß«Ü»TE ÄÔ‹©„r‹4D"Öj…‡(T¹EEÔR6RqKÓ,ÒJÌ®’wëÑÊ9DEЂ’¥H¬âJ„ˆU¨g#-å%2Ù %eE³%DMUId.F‰Ã‡")8D¦Ñ%¤Ejb"*…vråDl©R‡æœîsE5K13K”•ÄÅbg*È.PiE4‹¢Ðº¢DBJ…©V˜]’¡H…rÐHIª‰%6’tZÊ%H­ÍP•4HÌT²h”§N„EÕ*¿v…G¦¡Ta´š(š² PÔÈ¢9¢É2£P‰¨–}ºQC–… ˆ•U†HEµDVQVitM åM$E £U²Äé´Í-­C¨”H«2£4ÑYiaÓ*¥BÕ)f%Œ±5£LÈ­UYrHNaš¨”rÌ4ÔÅB£$C"ÅLÚTBsPª¥ –D©˜OªœÔUE"PÑ'òÄኊd†­DJÊÚ%–'Y&¿KŽ£ôè´‘B $ª‰:Ê*,ÊéÕ6-¦DE¤Ê ‘Š(Ã¥aš#*”±Z!mDJѨ—#jh•Ì% EZQ, 1®¥T†¹*V¤H„šBþLe¨Vδ)N™Va$œ‹•¡³eZ¡+UµJ…øçTˆˆÓP¢“ÕQ2TÚ­DÎJ¤•ª†IVÌ•jŠ"†¦˜†ÔÕ5‰ R'RË2•M£çB.z"Rˆ*$Z-)-:Xb([H§K6ge„d”¢‰©¢-Q ™jH¦Í¦beZU&©‘†¥Rª…Eš©Ã„”µ,É$5ZÃ,ЬŒ”Ä–ˆ~¥A Å ½0õ4¨«*¨Rêʬ¹kYI¥…š™K.d”•Uª]±DÄ‘2MZD©©—Bæ-0A5T“B*P”µØRj’Vš©"D¡D—0ª¬ÃKÌ¿š4ªBŠI Ž™T‹LB’È£¢™Y¡ZвRÔ­ ”j*jD’TeŠ¥´-¥uC0Å4£ IAd™¤´–eÀ.딸uÎë²0ƒ°…G.˜ u‚¸fHJX’mjh¥Fæ) HE!ifkY$FÊ´ç$¨¤´²)#a)+"a˜Ra–•e˜%«JÃ(QJÌ$M$Å9ÉžY%º(dj…bdH’*–Õ4‹™—*‰B6­jlDÅ*åP¢’b††Rª„™†ª’T–d´"Ðä)©–„še"æ>v†yd¡Y"9i©H¯ãl "/)RÂҢ̄‹4Bçí¹X’¢!jd¤¡eWC‘ÑI)" ‚R!Pß´ñžq\w÷¯ŽÍEeý«iG§ð£ÞPÛÝ_4¢( Y(ÁîPÀÝÕ©2 [™reÆêC8Õ¡d"7œßdN3PÑ:â´G2@èàS X«éȵPw¤Ï¶Yc®* o­±ÕuÔ^w˜qºï|5yîqÕD#[XþÝ'áÙ|Õ~G‡G5ãÅý_NáOé̲£¯J/ãHdœL[Àƒ€ö ÂéàdÅ!.½_LwüÌÎKù=¦Î~]F[¨Ãìpãî| uXZ;ÙÔ¸‘0ávø.®õÓ¥îÖa ö-%eM¶C@×QÕËÁ#뎥ô‘² ’6r<ÓÔºY ¦!BÙ92yiƒ+÷Èö—DY@³×q†‰Ððàÿ‹Iãd],h¤ ø@÷¥þ·ƒœªîfÎ1ZžGðâ=Jo¤2F¦˜ÂœÐÓÍ>Ή8ƒáÄúX¢U\ùš½ ˆç±&hÚc³×²m1ïqRí-vÜ-xâVš!R!õ‚¡cÃÇyÞF+h!âòÜhÑâwñ3Åt»8+Ç×éCæLAÚ[Œ±Dä-¤Ksgý´¿ˆpžmÙÀ>/‡ ¯³7ßÒ=ÒøtÇó0Ïç_{ͪü>Ò˜üÌyYÇ÷˜ŒþçìoÅÑþ-z|=þ¬yµ£¬ ŒŒc` ÷ýîA¤Æ‹m°šA¢BZC“jCe]¹vÛe!´[v…EËEwÃÚv“);…]Ä ²Opg d DžQúîó§Aº€'8kŽ^aTÜ’©5rq¹Äã“-4¡ÐõGI¶hR’”"Èa^îÏuí¸ÉÂm°/E«;»dÒ¦A ¶SN6PÙGR³B.$«9Ý55"äÈŒåM6m·B;k‰S¤‘ÙÈèžB[ec&Sk9JåPlê(ªQuik8LRææÔîÒ+²)u™ìREYËåÌyé1jÏêC<ªžie¹bÕ¶ÖT±„LÏ\ÄŒ8z–.!µDVœƒlÎÅ¢èªÓmL›B"†×fM¬±g4]Ú¹W²¶(fBJØt¤çõ')ª(†rºº˜+a1dšn„QæÛ­·U ™ŒiÐ’ìê4m°ès6cdXW—;¬‹(å¥dEtt‚U”LµÖ×:c%IwU8Ó’^2ÃCÏ:ˆ]«[¿ýoxÞPN…༕lAiZƒ+ø©GØYTÌ<õ»h‹CSª^KÍäl-¿–c@z´°«{º{Œ=©6îÔD²Ú\˜ÜÈê<ï{š¤]Ù²Êβš¨ÐBhGJ ¡4!JAÒ4µ ^€GBH›²¯H…B§J&š Z ZQ‘”Ò tE*¦4¨šDtšGB´¢šD¥W¡t J7yæØ.º Û¶—tÌÖñ0“¦+ï{Ôx‹§MªÂC#¶¡m+#¹dÔ•¢mvت²YÖ—°›HâèUlá쨯—4J‰f4Dí2ºÆv³mµ°È”ƒœ´èEaV)M1œQÛˆuû®ýëßïI$“÷ÄܱËÚ2ZÔ1=ûx¼øÙźÖRÍ– —¬9ÝA’µ³ÆdËL–ìOS*¦6PÚ¶Ä»)ðÔ?ÁI³VZÆÑâR@,•Þ­[Uî§œðvëjIžbÎy˜þ[y}=8vXJµ#Õ¹nÄgE‘%¬åÉ5 ì&ìájéJ”Ú¨t#%ã÷û·˜®Ì™árEѵ°â9I¥¸,âžRyÙq*vr&u©ÚÆ¥é«1¶ -YYæ6Sk–+ô´Ð“ž«Ζì÷p™‹ReCug‹E%Є«FxØŒ ½!Pн†{±¡ Èd¶w*ÙÛ=žèrdµÃFC”É ›lô„'ž÷šAdòt„‘®Ê¨ƒ”DuÒnp]b¡QÃw“.œBÏ:Tî9Y.E\¸%§…ÃÆkn0ã]<±Y6zCVs«4ÇexG”Êò®FØ$ Ü@8¤9Äérš–9cE™ÑäµÅèìö|äWU')éÚL8{<,2 UÆAº É´ Ùá_lfIóÙÉ$’q3 Ô/UÃ{Œœš‚rîvXá½âÇP¸òOnéEu<¼8Ø2²B9ýn‘ô štëO“E']/wslš(RMCÏÍ·¼§žõ0ÕÙã6¬'NÎf8l$ÀNNês¢W¡ç^F%nis·åãµ=Ò¤$ç…67tb%hºCk&Tj ®5À¹œQ /zó¼€ù¡Ó ¸—›„G°™'³“$öx«Z‰)l,æ—œÚ[´r.™<‡‡Ý#ƒÎG­”Ò):pÓÖä·`O™1zÚ.3ËÊ4½&DE25Ъ©†W=&~|ñãÔ“DŠ*¢ìY!é=í-ʪñ'I>ÖVBz£¡¶Ìƒæ=£ äó•PŸW Ù&®–™ûB_;—]%BòÏr̆W²a–Î*ãr¬\‘)QÓÉÂ=bq:ZÊm:BƒºZK¶"’†˜î䣧IÛk»Jm·5“²jYå&nUç8mÛe´ÎáZéåWœÙ¹©Ë0ëœâ[-"š2Jy¼ÞûÛ"ôû“;ž¶‡n³¤šØâEÜöujìÊk»‹Qª‹\«•­ÅF‘_+J uåˆê®¶£9æe¶è“9,ô˜°k–¡Š+kŒÚ %»6 ô,ó“s#½uu:þêÍN_zëÑ÷µ?Í"@žZ»-(«9ÅU´¼#ž¹–!š+k’m-¤S:m5v1Êí‘.«l²H˜Ó©»Ròö°÷¥µØë™>ØUÒšÚU»K­¦汕‰"ÉÝv ‹r+—-éròh®ò$šC‡IË@¦9óŽñ\Ø¢½.o «”lDAÈ]^‰1ÈJì»s!ñÁ8U /3M'³ÔÞöCÅAä™ÓáÓÌœUÓ•õ¼ù ûœ.©•Ýãºí‡nQÌÕÎfQÄꙤšNwc…¬O\£C¶Ñgia½åÊnh%¯;‘èg[Ik‰§ nlm]c¿šãÌèëL6ËÒ|€î ïi9ÆPçrIжIÛ)¹À=Èc„”uœT s£k¦L(äüxÛÍcŒä! Æ6¤ÃfήØÙNU™9yž™ÎJƒbí¶QFœ:t™^Ì;KœØ]£O÷iè„ K­";n€:é¡N„i…éC S{…¨TòЂôè<‘iSFÞƒƒTN$ Î ‰\€´ @= h¡@ *©B=“ Ò¡H¯H•Q¤¥puÍÄÅML³©E4²L”,Â¥t¤²™ÈÕÌ]æJljzIÚ0Â5vÚvþëÞ}c[B”eZe–z§Öì7©+e´¦ØJ¼ÅÑzó+•çÛk¨Û¢»[ak <¢(¨Û Ïg»=”p &Ée¢màœZÂ)®tvó9^]›]${·>‘ÕO„ (e¢@’&Ô¢g§¡Gn•G ¤²,ŠBôB» aT«t±’¡Ѭ{Ñæ=‡&ÂK\/©ó ¾©2¹ììëT–ÜC-¬wFÎ]+%æÝ¼ë½n=+Ó^çJVÖsµ)<ÖW Š’Ñ&1PãíW× ¥bWÎ¬èÆ‹dºÒDÕªûÔÞ¥}6ÏdnÍlˆ”ÈäÈå«Yvm„ÑL[¬Ï#vê¯I­2êÚ…¤½^öp¼VÊKWdÆçoQåó*ŽЇnEÆqM:#$麊¬›oè÷|×µ¥cs.l¥¶&ÙN¢LS‘ÂQ*¿ºŸÐË÷%Y¹q¾ÜyVå"să䡕 O3¢êjò&DM:—ì ¬¹4å…[ ŠÖÎæg-Ž†Ý±¾$@Hqï;bM”\ÊéfNÈ ²G Ïó²µ;xûß7¾µ{1­ë1×ôïYˆ"ÿ_áTÉÅ=Äqj7ìÖLY>Ã7˜í^OO«Œˆ4_Û_uÄ3»÷>J±7°áp‡÷ïûïÍ[ú׿>-Ö™3’ˆÒáÐí‹b‡¡3„Ì $Ü*< ®byªš—ve¼zÙËÓž± mh½*ñ=ÆC“J.$  $“c“y-‚ƹnšÖwms!F´`ˆÅ¶ÜÆÜåâÚòézDÒy)¡|«dŠh\¡V Óä6çÎæ:Aè<‘ö<'ÉzE®´wdN¤zÒ)GNJ¥)t­ÐHOBœáLe1;¸Á-$˜g&hÎÖAv)zÛ˜“Å–…-•×&GY×74<³´ëgdI“+¨A9™TY »b$—‘â‚ÚíFq„b¡6².$d[jÝÕ²ò’J»cCžÉb•0+¡dj¶•ËËΉ&CiÄ(ƒÛ]¹&3)¢ªj“M‡ªâC=­‰ç7ȦˆRr³¹Ç*Æ`ºÒ.ËÔ*+$Q­‘Û9¨­­áCVSBh3ÛBöÒæEá4vMNŒhì#ÅRy!ÝaBR‰*G(ÓäK•Ç8lÚt8'}ÿOðqãß—~â !|ûœ˜ƒŽ[,<&Ù, @ ™ît³…{ ¼¶˜YF5k$ÊšÚÕFžÃ‡,A.CbáG™¶-lí«­fL‹Ö³ÓØLòÚÛb[«ò2L2Ÿl9WS©…‰uu6„–Æ6MZ–éYcX3&„¥åB©XlN1²H†Îz‘Bèy-ºÊõ&à‹¡qf¡G-ß§^¦E£ûŒ8AŒ<†_HÇP†ÔW÷Õ9ÆÔ«ÍÌ9k ÛgŒªŠŸÄgqª½‹Ÿ]Í1¥fÚ¨3].–&©ä Š]¶ŒÌݪ%¸¢#hÙ²I` Èl3„Ñ,—½![wÛ)Gõïñ䌯ñÏ–¨l|Ï58‘x(6/å¾êš^ÊÎìä~—²m5IµCBÏsm"îq<†©LuXÜ›HÍÔrAü[Nå}ePŠyíï5YÏI òöxÈâ¬çµDg·˜w¦Rˆey'iI Eѧ1„Ú °ìî-©5HO(flTEYãs#ÆröÅ5)'Hª"ª4 KE+¡Î”hĤЏÃQŸ¿·LVKdó»DEwuÍFîãW5¹· £hµëº“`¯H±aRšÄËœ®QUdUí]#¥93°³FÁ›)ÒIæNq+œš­3”Ë‘\|{¬)”.s¦Beê’¨ç:çSssa€Pîæ®\Š.ZéŠæ¯à°o(DECçecvØ&v»²w/q$K4b£y Æ·Žn\ÁÙã!hîU-p©™•E'BP6•¢\I ºxSª9y(½uõòdV!@~ÙžtåÄ’Òu!ÌšL4 HBÅRñ;\d^Q’£D4Ä4ÓNÖÔ½ìti¡òtÄ™¤iM[Ñ¥!ÙLsÕ¹æÁÔm';N’p¢å4È=$›FhÝ]PmvIb]µ2ŠX¶Ù\m#™A›e5* ¨.ºÜ<¢‚(™¬]:q!°r 0˜¨Ó£=‘é&i)J.Úd'uMŽv*•U4’t‡Ei@:P:4½!J‹Ð(jh5»dÐ¥ BI¥Ð-‘€jÙ-t·-ÙáÛŒ,Ò:Èh‘"ÜìÆ¤¨‰¦çL!d¨ØÈÐ& »¯spÁÈ›OJF…‚$E Q¶ˆ’Å¢ Ñ¢°R1‚À…CcF(±6‚¦Q¬°XÅŠ6S2ÔIUX­IªÕÆ5D]çš“¥¢“¡Ðè)¡t"дÐ&…J€Nƒ 5¥J:Q(Ò Ò¥(дè)¶d»¨ˆ¼xáxæNë”çRx8L‹ÅˆÞ9sÆ-Ê¢"•¸'&ݵ®‡D!®žU„c1•åQ\F4jR‹†¤F‰]²lîÔ*jpõ2O;b¢±„]j¬£©³*LÑ"Ч(UC®•£ÖÓ^B3d,ƒV–¼—–“>Þ6sŠHd£­º9À%#“©<íçr(#°±Ž¨¥¥Ð ºZZ@ KÒŽÊšQ CT"’ª="‚ž šKe_%R–‚•ЉдJt‡@½= P¢èÐ "ºsTlÓX*4+d¢4ELÔÁ!j-&™ª-ÚÕmXÑVMQ%¨¶+¢ÖRh­-%Ñq F»º¤‚¢Ì˜H ÉSf]5SBªhUÐô ôôª5@i (4(šM4(#@šTД…‰HˆhT ]*&€w[¨ˆ¢tPPk!9æÜÛr¹ùTóç#…fQTxzƒ!ÙÛApã`ìöGc!“Qw GH—c£§¶") %.±8òO&$ Äæ}ÏKÝÜiËŽW)Êí9Hdùè8 Â"”(R“›a4¢iÒiQ U¤ê‡H)J:B–p’ÌàµmÌœã×¹¡Þî âL ;µ­"¦a‡M™ZkN‰ÉBZ;'dÕÇpI™rŒÓ‰Èåkap·LwO…A´=(5³ ´® ܹ»Œ‚J©QÔ"\ã:l/ÀÚIT³OŽI N2™®î ´WW-Ñ‚Ú1Š-Š£Q¨ÔhÖ)Ýn[Q‹%¢4¬b£F‹FñËE.í·MF(¢£Ú(ŠÉ©#Y’P%˜ÅŒcEFÄD “4PcL)# d‰2XJŠMa£HY›$Ó"›$™¡&$É"X ¬Dˆ˜ ’Éh Á#SJ)ÁM#J#2„¦d¢„’‘€Ê²3i™"f¤@±@„2f„„™Q$4YFI¤ŒÉE DÓL† ¤‚Æb ‰ˆ(Œ„h¤Àͱ¦T´ÊM´X(4•!A¢#fIB„„ÌÓ`ÅE¦ŠJDÁRDc!H”Dh“AZ`Œ`h¢Œi-I€€Á¤MJ‘,I¤ÈÈ™QcD†T”…A‘ Ø,XJ3J¢ ¡2`ˆM" È™Æ(ØÕ¢Õ$µÑŒÃb&‰B LÍшÉIS –(¤ˆÙ˜“2Èš4À)1"É’@†Å£E4J&‚$È£!´U³5´U“V"«Qh´(ѬZÆÑ¶5E[ØÖª,XL[&L"”#M ,F LF¦BØf0ŒŠ Š$" Ñ’´i,Ób¢¬lE°ZÅ”Ú ÀDX (6JJ’ÐF1XÑEÆÅˆ!¨£&±$”¦H‚ÆŒTTc\ܱQ‹E¨Ö#E´[ÆÚˆ¨¨Ö±j+XŠÐD”j„­E´U‹lUb¬h£E‹TI[XÛTU±bÁ´VB¢´k[Qª¬jѪÔmQZ5Š­¨«EmQµj-cFÑ¡qC]Ò¦@ž+N<§.N'v½>CÎPò(.9ØÈrkÖó2¸&òU•¬#8${× #êÃDª:¯$"=Èö¥EF¤U è7§Û×®Þ¸¸dëÎÖ2M˜û–äBÜÀÒ¿A̧_ä{2UÊÊ=Þ³èÔÌq ÐoÓFŒœ—"ßÍõ>d•žõòèEU.;Ù^LFë-†ÒÓÏŽaYŽyx ÐøuªÞPÍi©£Vææ»Ì ú{µéñCÇŠ“k¤"»šÇª,Å÷˜†[MR@…}ëPŒÔ-D³sù(Z¿GÎ~Ô3˜*->ÈRùPâØ{ïÍûZïYÒŽ:>I@ó§ˆGåõ:0³ñ ‡¶7íÍì@:‰àýõCTôàtqôÉõ,H(‡ëx'¤ˆFN:! ñÉ„pɲô¼mȉñ×+îñ|ýú÷G¯žÃ2±'ÎåãDU¡“ ƒ(bÈfÈÔûžÞJhþXè„¿R>À~W·ï{³ˆùyæ<ª¡òýÿ|'ë|‘ù²`ù/Km×GËF)¯Î_nŸ;>^l5§ùadò=Ÿáy/ÔsÐüûÀoÓ‘÷{²?¤ºûúÔ!ì|šSÉN‹cIE:Ÿ'÷ìñol^åýa;ëÍ£§²tþ%¤þ~—“ì§Ô‡_$òz}úÝS]?$ýÿlõóëªß ÷WÙh×°¯M¿VøV¾4FÁ4½~QÏ}çî³™¹ûk-ˆÈ±œûz•|;×/wÃZ–.û?æ3ïÛèLª=÷Ÿ¹ÀïQŸºû½Æ{ëb=Ñž§S®r•Ãóá®Asù23î¬'×5_my\éï’+YŸ9ß}¹Ìf’ÎBïï#ͲqÌ÷¯#Q[ÔoN½<^Í?•Œò‰oÞeçÕ’½ã·§ÑˆÿNut:ÌX™üC’ ›ÎG:­A7êµÞ~ß]gëß][eE ú»”¦¼,B†™Ì›]ÌÝ–b‘ÑŸmu§xVwÈý‡2?ÅsdÅVÔìàUÍþÞ•›îr ®U¢01Œt&?Ò Ä÷øi´Õ§U¶ô lí…”’ÅVËÐåeeŠ8ÑÝžì= Ùtµ¥Ó݇¦´§¶N‘)4•ÐÄ5GA£N“CM*y£‰ÚÀ»3 uÛŽÂ"t6[’Zq ¦ÞpâgÅŒ9ÆeIìæóíÞ"Š;Ve‹—²ÓÉ.ŠKˆvXvÇ™ìÌ> l4Q´«É&{¦ías¹t=®èDD+hS¦Ck²£§•é\ÆZBE´i“CUhØgNt8Örö¥Y¶³ZiÈÃev˜ÆŸò&χѪfM£rê¡h¬å5[g[t)£ 8šIFa[mA W8Æb4khÛN­gµ¶Oïõ’ZcÕ.)cíÛm‰6¡Ûk²\N‹¥lfJØHÊ6X¸P«µ K¥ÚåŒóD;ÐæÝdûA‰ö'–l7dÆÛI«;jvÄ‹la F{$!”z(TTâC&z®ÀíÛBó*Ý´WlôߪA[ØZÛ.Ø·JH¡:Z›< ¼ãÞöì¡ÍþFò+èaiQVê`_c%¦”†â|¼ÂfѼsñˆI‰- ÁZõn&Ý¡Ëv-&…„=•žazÝÖ‹½Y_¤²6ŒhR‡$‚äZ=Ò¦óŸB^+É8X©2JHÌ,1¸†¼[0‘‹*THØ—fD£S»K&hPoäÉ2(#Qç²/zòº¥””ÀB™¯Ì­ë¬ñµ˜hV¶Ú=§xü‹B«PÂúžwø[2Ó)XÛ××µN+~p6…áxµœô„çš3³’èÎ[¶‡zɯbrrçWHI •â—–õZ’ÅÚ­å™}ê ¬%¢pä‡kR6¶»9ä¡fLÉ=3T“–M•vºd5^ˆuO¨yõy÷a{iy×.¡ê'©,ÔBI¾¼ç¼†ÅÙ6),ݾ¡ç{H$ó†,‹îLùåÖÌÚœÊ*©˵•&³»¦A(Y–>õåö¡£D²+Õvx³K‹&Ñ7z<÷š/bâ¶^h3•*Ô䌧¸\ñ–²íRSÙ.ryi_½ï'¢ö…%CâìÍcÑÒ)½ïy¯B©f5CbJtgdœíÓ­b,X\g)’SHòS¬ŒÖ¤ÈWY-uºØØÖæ30çfË£JHO Bz AÎígdM¶p´!–7<°ˆÍº²ÙºÔdé UjÚL¶WTjÖ¶ÛR¶çcr•BHÊ» б‹khg„b2,+e””h5YHÅLi¯{×{’|œ,=»V»äòžeŒ¢L+C XgtÔII !ŠÕsËÖÅ…t~Ú<—£”RC3Õy*^‰iÑûmˆ²òKŒ¥¥å±‹/$jïlê±’U~õï]&Û™ îG‚ÞöOH²©kχ¨öPg›¡ÕŠ%n†¬ç7A£±…ÌéØˆ& Š×´¢ä ÚíaÚ‰-r÷aϽoD÷ïþ/ò~Ðò‚ÇîUüCFеY8´‰i8@^y6n•ì—B°×òÛÅ튗å8á&ØLËVFÖØo[Ñè§¶‰ÚÕVC\YºÅb#=b§rä­3— ®Kzöºõ•JéÊÂî‰FåÙÍ“ex"¤’ € ¤CfçB†TäxtI8G<—"LÏ4iç]üô®›Ø,ÍÌ/#Ê›EôOz…˜­2éI"h{Ã#] ä$ÌšÙˆ)-Û¯ßû«}ùæÒ<í.ˆ[tM4Š›BîX†ÚPDËÔFÙc –’¶_ÙMžÆÿ™ÛÕ¨”ÉI‡Nv]&ëL#Ó«6ÖÊ&¡jS-×ÛÁ¨–¼Â»n´çh_¬.*}%8ž†¾Ñ‘ö©RJÊY.Í6­„R4èG[b6U–—%ÕY’ M´HMÊd’ À,žõù?[?²(0¶¼„þŒÚQ»M9`pD¼Ôx:‘sjr2µz– D‚“xl"þßšÂÛ¯wØÿO—¬iïqáÇZy×åóír7ç›è| ŠI¦Io 3BjÛÉœö³XMMZ&ÍÖƒEÙ«&H5ÚÆÎ¢”ZH´­ý_Ù{¾~êî—Y›:°Jå‰J,P²VVòrµEFÂCmÂÆ6eäÖJ*µ“a¶Æ5¶t3 \¢äͶ®‡×nóŒÞg.púö¦²»cw‹ÍˆÃ¹ÙHÖ˜j^÷¼±yqN&Tiéì2gkhØÖ 9Ŧ.˜ÎFÆQê2:ØiÔLð骶ߛˮþË#ðÄ{(ìF“ípž¼’g«­51„™e’uô÷ûõæËïüDî7TJ'Ð’ÓîsÉiÕÔ’t)^Þ{Eê–7NÙÏ$ñ$6¥© Û†ç@†š¢Á £-ZIaÊ¡œ›[6½7”dG ã8ˆK(¨âäWŸ­ïlb“]2b—lƨ÷¯ùɬ0.™®\bqk&ÉœafÆ,”f*y4½‡q—çBY#& •·1…yóÈ’§[lA!|îÓD*4–y,ÊHÛZ¶"öΦc+Å‘e ƒmD¨òpµ4}pëïë¤òUµ]œí&Òᥫ1e(3èö¼äٰܽQœ™„ZRͰ»iZ%äR­rð‰™ì’™»3ÐO1Ú¸ÚÈlk]H–ïçÞ{ÍãV»]9Ó`”‹šVÚ)°ŽRÏê¹ÛNÕÍ&¬Î—²;Íë1.3¥3“"C¬æ<ûÅ${MYÆbÚTêm­ŒZ10¨ëLbvW IYÎBë“ Ú­vh?=kÙl§W½“h²Rœ ð˜Á¶Î±Q3Úm‡[´mjì¦ÆÚ·@ˆ‚˜„Ö«["NÅå[F’Æ­R2Ò ¢4„XŠauÆWN,6SY¡m¬ÆÑn‰H¦Lb®Ú•m›c<‘¶-3g’Ô5•*„Õ§"ˆkh¶#dW6Î:¬ëtÕɨÄÄCÎõ±1<ºêFÕ’«ç>a½jœõ`Ör»l›±´¬šëRdÄãä½âÕ ‘¶)‰v'/I œh'2aEZÙË#T²ì¤¸£hÍY†& K‡6¸Vy¤Ç(d3ݨ ]¶¤ÒtZÄ= ô§šQx% M’t §¤€¥weJM)Ò‡E)J[/JP”*ô‰Ht½OH­J:é)i7„öâݬíl›5VÖ,;­;iRÒ‹ )J ¥ciÖm¡ÚìöQ¶¥M„É™êºLæÒD^]–د c-‚X@ /d3Ù}ê3•窱g°efεAmg/±íìâµ¹0ÓÌ‘›”9¶Øq/Ñž¦¢¨¤fÃþ¼ý>üï¸þ(ÿ?¯;úhäë»Ïs•77ÑÈ3F·µB8ܬ:)Éá™âý‘­wþPUý¼uçD,ùÜfMž§¡Ú3BÌL;”Ö•V¹ü|δÆüøóç+Ìï^¡÷;z­oȨcñß1¼ùÜçuÔû«£ž¿-ÞK-b“«ŽWEŠ@BVð1Œ€öþתeJ‘s5"‚s•QV¬4º™Dhs“çr.s˜ˆ²IˆpŒKYDV–΄" •Lâ„JŠÄš,~|ÈH‹$ËMôsŽ@RåøÞ®má:Ë›‘G”béüpJœg„m¶XŒ‘IS{uGG`ÑÓ‰AT’«2D‹ŘP—LI#R½CLšÛš•Z•º•&JŽž˜¥…ÔhŸz0žJ”fÊ¢æ—#KB¢]¬d\%ËD¢ŸRE¦dà «¼ÃŽswC…×@ôIª€DŠÈ£·Çºó®£&²âÉ<éE¹˜aIxóÛ¥yΈx‘BAzJ—ª•%‘ªT*âšHZhR!&ê9ÂÓiÊ=.Òý]ËòÔ}ë7d…C Êr!óÅ™IDEF'Ñåñ‘}o'VšÖ[M.ie…hQ!*jšna.­£uL¨¤Â#…ˆ%k:¡¢ŠEEIªê`E¡TùÎd’³¹É™L³ -ŒÂˆ­R|á^ìˆøãC}‹¯àÊq_+›Qbµ8±9I-ëB‹Ñ”_ï~8åÊúZeYH*Ãhd)bÈ¢Ž’d…e„†9ýoã¾?@-ZU¢dY Y¤ˆS뻚¦‡e–LáQ ™*QIE¢Gg4Å¥R‘ÕEdR‰(‰eœ±ª¯íg ˆÍ,ŠR¬ÒÍR1P蕲bŠßÏqÊÎEt„R‹ ¹˜'+Hüë’aËR„ ºr9AtébkàýýÁä©:s6¢%bY[_w<åFjЄÈL¨¤É3¤%fBA ËšÊåLÎ’Y)WíT•ˆåˆŠ²:ü¬p8UéˆLÖ$¦s¦š`FFXAW2º|ð¯MEª6©eµKœIa2+—íºu ÄJ©M ¶Q4¥+ 6wM¬ŠD"IfÄ3P5+’Ң䚂uS*I¡Ä2*B1ÄÄÒ誳œåef¡T“œZÕ+Љ”¡¦qïÒŠô„ˆì¹j!ˆ…FE*•E[DÜ­©r¤´<ª¯’vÙÅÂðF³ÆšWІ!xöƒ*­RMEB”Ó. µ¥–³’EÐésš„uU)ÔÚüÏá¾ÿ}pü¿Ÿ¯ÏÕøüý'ØÃ% ,¤£RÍšÄÖ‘¦…2àD8\Üˑɹ åd¹År(6LÑ—&¦useæšA®TQ¢ÈUVbþœny\{c*DTY³rJÌè)²³ý.Aá%!´‚L#ªIbÊ.d°ŽÒ1J‰ ¢ª)RTµTÓësȺVt2¹U\“!6Ea‰†R±9[% DDˆˆÎ$!²ˆ¨ìrt)B•_%:C¥ºéèB‘zE ZÈ^…héL´½ifI£jM$6 "lJŽ' É ·w½=Ì£¼È»bJ² ¸\,ó‰;%Kd–)šbI Ñ5TC²<ÎyÌ#RéG[åÂòH’Å0æ¤Ò€å²‘O¸„á­‚Bp(AÜÝLé¢„Õ wAÎS#®¤8+œ¹©Úp ºO‰=BÔºv¢R\‚´ ²¥¨Ì†°²Ee*I"ÌÕŸD®+¥öÙ‹¥,ÜîRhUQv•Ý[©YÇ~Ûçö?§×ÛérJ,B!Q*L ¨£JZ´Åkfˆ³ªå­ %:\h(4éü]Rœm™¬3E.­'Öq((³<«ä'‡´¼]š²ˆ­Ìe$„XE˜­+´¬9ó.ÎESŠaqdQE)-ŠVÔ—ëú{Ï­ ?P¹3jQ‘䨒aéâfQG¡êmB¨ª¼¦ÚDиA˜t4©09T¾»¼š÷»ð²HU‡^ïo™ës‚³¨7¡øh^Wí@a¨g¯¶n¾tÏÓòùïɸ ØêúZ¹-ŸÍ,Lz_—SÊû{Ös*Š&æ>›ÅÒå¿7ÕÆ µô¾¡‰Ìì'R"¾Ó©ñ«2\Äž}óbóò¹|¼Ä\f÷ÖóÕï?•lë¸ØÔ?Ô"òç³{ï¹È|˜‹Ïúþïæý‰üÛ¦ÈÄJîÖW—&u iÓÙ\åF‰D! ô™W´Hë ]Œfq¥eµ£l8±š¡üî÷²mZ¦”LCgk{ÙO>1‹hEŠnYFRr³£E)£siu®mI5XS˜D¨¼”)@›^ý¼ª©þ-Žó ðÕ^ÆëaQ3•3*æNqÃ’£‹ôdW¢¢<‰J¹V,Ùµ£ ªÊ@Fˆs±-0®“§2ö£i™žÛvF¤%Y¸S¤v5³—¢¯(5ª ßœèKl¢ØK,ZƧSØLÍ¥G —DJÝCP‘ZÖ6ȹE‡+löô{ÕéFé›UŒŒ•;=Yz,b¥˜^u‘{e5Ž.}s{@¡â‘&ÑKmZ ÁrÏ=ÃJ5CÊ–G/w;ªü¿kõýüë7Ú8 ÍŽãuh9»(5£„þ–­Ÿ’ ýZˆÙ³’awã‹“ü¿ï~TnõÊAÕú¥¨ù 4F­“Ñúý-Õ“B(2  Àb‰k›Ó¶t› Ùzå+¡Ð­±…ë!+þ¦cšKå 鋜;>mÓŸêýþÞúÔY‹]¬b,Iƒ-6˜,4‘ %†;þ+çOY7ë×êy‡Š&æ.#8M´·ç½éõbÎ "DZ2¡Õb2ÿŠâš¢Ë zg1¥îÏm¶/çÛÃ(T­p׫ ´ØÒγsWlm•×qßÛb‘>,˜0Š¥‚]6!ý«ÈœúW÷ûûSÏ»þõuÈ÷ÍÔHýÉåjOÕð÷‰*PÉüÆÙ:Ö3<º%þ´ñµ¼z5+,LÜL.myÊ(§h…<å¡M9ìì’Šgi‘¢×²m¦ÖÆ‘J‰%šµ+ÜeÄÂBZ¥Büßëü«ßC¡OÂJÈ0ãÅ6s½þÁõÓý•øùÂ:ŽÂkRj¹v›"Fþ­íHûHâPD¦Ö܉™¤K:M“0›…¸!y,`H$’AE‘(‚}Þ«õà›\þÏîeŒÏ7ˆ2Ö”Íñ"+¿«ù+Í3Ä"–:k̽íNc-FåDÌ ‰•Q H1Ö¨‹?šÕx®úbFÒ$œä,·RD‡›cy uŠ}yvèë/¼ÕÇ^#r7®ïš}V]ù÷P<°Þê»›=©y‡i-ù½Gî ^EosŸ:ÄÞ³}t—s—YÐTHÞ¦üU¥Ÿ—ò$w°T½‘ùÞ-ó1¡ p‚Í Ç"ªáYïãѾ]ÌêªbÐåòo¨°(I:… CµOí«Ôš«Ži¿w¯iO¤yóëá¿Çخį>㹺¾¹©Î¢«.þÞg#Í&iµ’ÿž£1{báw·ÈB fÕQ¦ K¶™þZ&—Ž«¾{Uq=ëÝÏq<…;”6ETFowrFÇoßm¯Þ÷ÑC]mË0šJ£kØØ"ux_ÔyíÚžæÖJ´s>øc¼òÔôtOìw{ÖH˜WçwͯjÃøÖu<:T¡:ZéÇì¼ëN„é¡ç´"~íaôZö‡>ÝÂÔ˜uÓÂÚå¸ÖS9ÏÚÄäÒA ýÏ*k<­AŠÍ‡›&c~¬yÝëWQêïóÇäPu0пXÎEŽŠûñÑîw®²S] Ïq‰Ÿ»IØë#O³b7q3©úlÀ»ˆˆÑžA-<Ä™»¢­3bìr9âÎÏ‹+©òpÎnKßk$,êçÌä{æ\£ž¡è¹ï†œÀsÌÿŠôâ|SsšÂ‘Ίô¨(O|y®öú«´vú‰ŽCöø.:Nñ¨’“u»îVõ;ÒÛ¹·»Š…ãšÏà ØQ‰û›ü"ηÔ9¸'²5»î²é^æXŸ… \dÇ4mÜåPÝcù—ß‘Ë1û[êîö¶{êìïIVG‰Ž:š‰þÚÆŠ‰žÎû»î¥õ‘=ŽH¢I"rgÙ†PyB H@Eí©i©Žÿ£Î(k3û­f¶ú‰‰‡:Œz•Qü3e^õEó,ʱ¯±°êz±Ï¿`|3w—š€‚ùŸfMí’ ˜©qö'˵Ö`$5lðÍ|¸¡6œ[kUïZ¾yVX÷}k¯×…ÅùÇ’9M÷+òr& u“Z#Y•—œ¢kGŸš©1Ì«ZÑšŽBÕÕ-}Ž£®¹?"qgÇÌþN<$¿Î«›ªÔ±×ªŸ$ ù®sö*›¡Ä:\›¦"bù6Ö)èšùòêr¸%Ö”ý¸Ö­çZÚˆTÎA¿ß'±¾‹ÜüUì°x°>…€üPD” ½ ×ÉCÞ¦´H¦‡)Ýß½e…ßÙL¤„c^krCBm"&zk9cÓŽ»‘1bÐë|N9âc£ÓÚ¯hîN¯²rî¯ïЦ«ÞPœ}•ÈX1:Z Q¥Öe?z QG£ŒgVÅÚ}§_ž¯i^4`„F~¡ú>UwîﻎÖ<þø­Éö>w“é ÿ?—©»Ic©X$os~侀?:bÒ,1Kp°ò†"SãÀg\XE‘€HФ YÆ €KGd ž‘ð£Œ]®#z©`µ¸ÝH’ ì9‘(QMBû– tdØMï5&u©šÒŽ>§t¯#tãÓnˆžÁ3œš÷\7ª·¡¸”{;¡ìÄG6Fª‹¹™[¬‰Èµ¯ªÈ\Ï7$-÷ªþ9ˆÁ&rL‘+\±®ióR¼„}8‚/ÔÑëžuVµÚØÚ31±çãšüë_Ö~O¼wó:ͺäegçYÁÒýÚµFÆ~j·¸½i¨¡ÊÜëWUu¬~ õó»ÊÖv糌ÈêÐÉé¬Y펲•^!{ûŸÍç6f³U/GFº±ªLÔ½æô(ÿG'6¦.^ÝhÆ ]ˆ„ÚŸ;î³Â(zÓüþ.ÿ7X³Fù42ø??aÏZZ·ç7¥‚#{¨©YZLgª=ÑÁ%ë&ä ƒôŒÜ7sùÞºgÞgÍ{}ð¯Ã›Só×g˰CüÌ|ãf|™Þ´u¡ø{€G/ñ7ðjÈ..¯Ö»Y<•Ÿ79ãᎈÇ!Ë”ÿ;eÄÀ_xƒÒ]$ªû9Ê›÷u·¿¹‹B+^ý5fûï×5Öb>?È몞]ûùSåš¶² ÖÜêýÊíM.6dÜE4ü¹Ï“Ìå¹ø®<>e| ß(.÷à=ØŽSóváôú¤ŠäÜ'•Õk¤‡_“Ô,òÇ?f½‘ÐèJÌýüÎ}ÏÓ¸=r…š=× ™L£ ­JÕµ ¼-wÔân½¾@B=ÞeÆ»>r3Ä$b¹Š¥!áÀQeÉ#–ƒ®«©™EÆÏ5ugIn+\½igÓ¼ýóSô«æÞb³جâóö)™ùÜgUÛÜûhÅœü¨ìuåv}åå/ÚÏ]nüì’s½Æõ+ò=¥;XfàÃÏfÖ ª|cìÑö0ï(v`zbÈq|?<§{Éós5PØoÝ/±–TÔŸÈ+öñÛ<ïç%ìeLt”ûûx‰^ZôÙÓÎú¯½ld_ìWYÖÞ^yu ^r9®cÉ¿ÑÆf²†’Žn»ÍQ›¿ÙtFMi|NüÝs5G9V¢à{•æž|í®üeG‘®GÔgâÔE±|×¾Fµ;ü1ó—`ù§“<é Ìg+=çZƒmfÁËÕ“”QjÍ|•S(À²{“Z¿¶†§WÃAú¶còãogT§h͆~™uþ˜¿™^Â×Byû Ê“¿ ök~{’Eí¹¹õ£1N³½ Œ¼ùß9¡˜ÞS3õ êØÏb$ ;Åçô«^$ZÕ÷4)}R(Ð^.÷îófG—£SÙï;»žÜfFzî—R=ÎMØvCÌÜ#¹äòM:•lšw~¼Üsnãu¡}k7ioQ²¹Àµ™¾^w–#Í•# ä¯Å¾|]B¬¡ÚáåSM3ÃÌç†R˜Í,|jÊ7³¹“æÛîÞÏ]Á¤c£Zëy‘p±åDA8ËÑ÷’GY^¾·C¿mçÏ3鵟2;Üg³zÔêØ¯×„êl¾á5YxÐ?W…­:èV‹…Üåü¨îf‰±[¸Þä-kå!¸Æw½Ÿ% ÔšªÅ‘ (À„³48¦¡IF5:Q8 õ›ãʛ̔4<Ý56ôRär›—%Œ°– ZäBºZ¾ºèÐ=Ýe@•€æ`3ÝN®¹ó3;ç9›¤õ=gVnç]ëyï{Õ&y/YòDÖÛ¦š+¥1¹q!n\V}9Œ©¦†¸…É%o!$™‚>ÄZì>l÷ªóWßU¸`²ûÍÿ›æi—hÖËýî4»Ðв)Ϊ'Wlýý©Ž’ø‘0°úê}ŸÓyL%×V~«¥üoÍü/•ïßm¹Ù6r%3u d'"‚‹“k”+n”Ì*<Š#M£Rªl猯O(¥› ¬™U„×DÚåt¦ÑÏ=¦žu’QR]pôÚeAA¨äAÊ1Jꜷ[•8j„­fv»¶Ìó‹¥µ­R,šFйa!РųCˆÆêN‰Âdˆ¹£kae›ú÷» ÞvLçh%±µ8FyLf2)«b5Oòv_k9‹UÛ­rÑNN;ƒ²c c×½Á|x¼  Î`"H&›‡ÊUYÁ¨E5v×vÙÙÌöÛ'ø¨q%z†¹Œ¨Y²æâEFvY öµ%w¢t’;ul¼çù½ìˆŒzÉ“Tj£š âxXaD*åEf±„²:RnœµÄñv…Uö†Öyž¾~°O†sï3µÄIkú¬ýýðï|ˆ1×rT8äÒlR*X’3*¶ž…¢è-MLœ¾Ô&2©¾×õÕ¹5üˆ"?­±&ɘy8ˆ^#–¢¾}ëΔ§üÈèìÔ¾ ó—ö„|éõˆBŽä|vYÚZkÆó©ìQÚ`T Ñlp† ™Ú€-í^ªN'ŽL΢ðéŽ1Üd黟ÂþSÇ™°ŸÖúhü9{<1ÐõNiïožtkŸGœzŠ:ƒ`ëJ¶™¸«Ï³¢XÄ‚pI8ý  ®$pÜF’J¹l_Àåâ…jôÁ<¢sœöäZb&rÑ«¼ëÆ·ˆ´XÚ—9`‰Q$!8•¬l“¶’E]³[„Ó„wha´º«ÝNage¸“<*‚¸XÈ»ŒºY+­W*§?‘ýl{ÖX\‚íŒMõîä‘Lªj²»y S=“ÏeszQÒö4t÷g‰$îºXç7ñÛNØ×Çöüÿ?Óïoˆäjúüa긗@߾讖±äëžj¼ÃÄ=]4:PèSÇy÷íÊñË®ºL ‰¦”PÒ i #`ÒÄÕ•4*´¬[h)T(@:(¢!£QEÝÑQ& ‹çI™-%•A(¯¢gw^¶¸m²5àÛ–K…®G3»©hÑlqvîL@ è«0j¢Ñx¶Úå´X© ¤W¡z M(QÓ9âÛ€1&Ï@¦Ä˜þ¿üUg{}Ì>5ÅÉÿÍú5¯ë>f«gòì{£Ïäb°·¾ufüþG{û¨Â#Zç¹Ôn¥ë°Oæ3° ^OÒBæ©©#Gæöšófw&sž…DlÄTÉ‘]rÔ3ü÷p¥Þ‰SCg¤t„¬ö.Â:QÛaê9dR¤ÖCT;uÅ;rªä2:Šó´âÒ(Eef‘›ªOËçòÛÇÈ‚£ôcíXÎÒ:ÌÛˆ%‡ld©"R´$Xš„tÜíV´lljG6ä&ÿ#íáMdÆUhδ=ªº³kiyÇmŒe¶Š‘-dÔmejÕÁ Á6²¥±µYtò²e¢†XÂ)¬nÄÒ@¶¶ÏsæéòÉòwSÞ«…‰(’ ’Q Û`†@Oa>þGóvûèOÅ6ÈíaŠ­[ÈGïìÏ]!øt÷µ=G07æEù“¸ü˜ßzùÍèTõÎÓ®~ÝI=s©ë¾ó]"ªŸSµZäëùñÞ³¦¸Ì!ç¿üc2vý(ZÈÇ„F ¯í9T£2Äÿ)ÎP¤9ÜàþäžIŠQ÷Uý?î÷Ï­ô&‘wyÇ•Ó"ó»£}wì>ý€r_L0ÈT± „ @Q×í {]ŠÞk~Ó7ó{ß|¼Þ@g¨¾§3”‡Ôêë­u<;T𩥓æ|Ôðjù_Eþc;ÿ;Øó*nDu%¡ü1]ušóC'9 +HΦú㻳6_7•yõ¹^ä|ûäEÖñàÝÉ#šþ–úþg0<ù¸“Žv˜•ÞisÈ3÷k7ºËwËôî9³‰Ù¼øÞ”~ÒÖïAƒZÌþyýgμÏU`}3쟛Ìä¿·EF©@nâôûöÕÕ*pc0'ïíO·ÜkO†;˜:qd:G¯7YÕ½éè@æsš-טî®yv¼¬ŒÚJŠÙ’Jïzøê»›íMQΡ߫/\6Æ÷wÞeñgq™ÎMt•-MUArS@é- e`‚ zXqn%³†wù[ëPò:=G½­“!ßQäNÐ{¥ow³{Éfú«Úä]_DFgssŽkï^¬þ¬2A0GG2pMQÀÌ!ˆýXgRŒpäâ/›cQ èáƒV‚=¯¬ËÅK²; Yg"ÈÃÓxBÁ3hˆ!žÈDÕzÑƱ³ŽŽOG8úY8 ާ¦6qp„5G§Ká¨X‚ õ‡y(Q‰XqŠ8I¥ ‘d 8À³áŒ¬yOë?"¼¼†Ÿ¨iO%>ýÏë?‹ 4±Ÿ«£Œ •o¥YÙc$#ñàbH쎾ãæßV”ú¾àû½‡øíߦJÄ}ÞŸ*ùn{«z|«á·ºôÛ}Uòù^ÞÝcå£eÊM& GÖ I¶°$`š#8ÆÎ#Çûy^V¨kéuV:¦(™¡n|4ûù|:2«‡©û»ïb¨o´7óÿË€1€[”¥!Ȇ¹ùRØ(îúfѪG©ü:Ügz–b~ éÿ-Õ²6?<å²+_è”GóÂI$Œ@ âŠHoÃrÆ’#b¶(Õ1QX j4i,j5T’6hجQQI¤¬*-¤ FɤB1cDEi#)¦¦jJDh’4&5ÉQRIŠŒŠM ƒT`BŒ‚`’ÐQ&"¢¦PY*#AAF¥-%&Åc&ĆI a1"MŒ˜ÀdDƒ!0 ’,c3aÁ ² ¶Cƒ´ˆ$àœ”%Iõõ\…d)9~\DR ô9û÷íwrû>çŠ;EK¡p;X'³ŸÎDé|Ôüãø‡š gvº×o£ÃÁ,²å”:ÑP­L ¤`Šc+P:5TéFûO[Bõo4“¦¶zz#¬ö˜€@ÞD~Gg³Îµ@xû™Zú¾ >n£êVw«Ž»šêüŸ;±^zúIe ƒîfá.Î%$w\¥ Œ®ïT®xžÍwÞ½£•×¶½—1½ýŒžÏΑݼù§{‘fG¢7Ú^9zªÉÁ8[q2*(É¿=ÿ‘š­ÿ/„YÀìöcò~õG†¹óX¤"HÌ8;·¯—N’Ù»®sšÏq¬µGfp£ÿì0(†4?£?·?¹¯3tÿŸzÎÏ:ëY¯"ú÷Ã]ýw‘®»‹"ÏZûu$2•mw òõ ÒƒggüûÎ^µãáû]rÐÙ¢‚Ú,š_/‰bdW½fï—¸Ÿ#{‡SAX±ô“‡×AdëõÃÇ5§]û§Ý+$h6AüÕMrçÏuddŽÈÊBx´GPÍHƒ¯¦`B=p*A{¸dwÄ ºz°¯ãÖßdô‡³Y=N!ùiŸ…bTµ^Ô 8FìL71;gµÜ[IzpÉnëÞUÙEu•<àÖ·;¼Öiå^¯gwÔr‡L í¾¬:ìi'Ýø\ï t¦6µ}_š'\þ~ؽ¬^mõ´>ú¨‚;íþg¦á²‡¾©…ŒŸžþKE‹›»é}ÙÑïŽãKÙ—-“îS‰`õå#£ñltuè=v•~¾ïš–ùø'-Ò>Biu@¦œöï~ªþ_ŸåßO'“¨|üYQ C$A†ƒN0IãLœ Ž=´É„ ü7×—×H3¢7{£í, 2Æ;ˆ v§++¸çH £‹ýß8nE›=„;8‹B×Ëêñ¨žCƒ€Žˆè㤱 Y잦À +žÖ¯£æuLŒQב³GÍ«Ê]o û›Ú‰|í“áÅw¿O³c5Ë KãÈ0£šòª×-»,u†ä©_Ÿ¼¿*#0‡#l6áÆae,fÈ^}?_oa×÷wäõõ­¹µmòÖ¯m[óúÅu¹‹øòïÒ †êC’$dãÀ4ìG4Ãï(ÿøŠÿ$U?ÒEþöÑT¾¾¿]¿?/ÊþÌ<)žÌ}üœAÎ^Ò?ü7Ú'‘ÃË'_ßy1%dZîáÿ\ÕìÎ5-ãG«Ùt†ã9@“h#D‡LÔ¾ÈÑ8h9çø^ÚèBÓ;Óª+“þmŒ¢y1-»ö§'±­*Žõ¾º0΋¡"³¸-æc¹R†ŽLȆnÞ\å>/ *ªˆDŒ iLS0ã©øº”wâܽH­SûlewÜtvb7s9׫¥nÇ‘)ÿHt>Ây þÐì§Hy€4ô”@ôê”(Wä ¡¸P“ù Zú¬üétG?<ˆó¼±¢|ë15YZkö£]@³úwG¢É$ƒ¤ ÉÇÒã­X‘³¢¼BH‚Š=´"þu¦É]éþ:fÎÔ=ZE,w×®gÝFOʽþWå G^Ù¶{§MÔ µ¥ÔhœB}áÓü¹±ó( <¡ÕÀT÷© §ª‰Äf¾F#¥Â“Y•7WMñCýèo›à·¬UÑŸuO©§›<ÎkRã,o>1YýÓ°¸uû:¹žLÎ^, Çþ®<¹Öaëý÷ûÖh®¾ü×_¢£#ºC»ËŽ¢²¹Aø™öS;A2ÇDxc?Æ?‡R»Ñî951宨…ýrÝ×àÀÆõÕ³ûzzì…ÚG…4°H8?‹ÎBú´trÏó8Dfp)¢pLßæß“…† ÁÒVc¸ 3¯.µGôÙŸ?}i4Þ?£»¯h{¥ciÎK‰&6ýø£_zÊÖzéùGÏÉ­uØ’m#Ãä ¦úˆ…÷~B0ròy#S€¸V|}š88 äƒH1“ÛlÚe/µäÃq+Am&AÊFá’š?ÜÉ ›(ã‡KÑ1g¹F¡§ßl0uHlàDF`AÆÈXè€53ÔnJH#k7 g@³!`”“(ö„—XÌY‡4#å`\>ׇ“Žd[_) ¥Ù‚©MŽÛkJƒˆÀáþ)y~g'ö—ž,1¢<žš"Â8; IÅQf£ž 8cj-a\Hû? ×™‹8ÖœrGö@ÉÅé#(h6Àa€P CÎçYî‘<»ÚÕkò%ŒýñßkäÍ-œqçó=µ}=cIìãÅö±"my܆}XÂ=8ã„ 8ß®ëiáú€³¢’Iƒ/OBÆ8ÐÙÉ 2,¥¦ÎÎÐ#–؉ßâ­÷[[ßDßÉd$Jµ8Ð~IHÚ‚ ötÉüÙ¼Íðèb¢¤‚ÆÆÆŒøîÈ„#îìÆŒd ¡£1,j#E ô×_ur‰ Be $“E2ŒB`"Æ,¢¥Ò’eõëtS30ıF"!Á˜HRR‰ˆÌ h˜†É‘–ú.F@ÄÍ,Á¨CF&!E/׺"I$iˆ'³v 1 ÊM$1 %Dš5Šý{¶a €d,A&ŠRÌ¾Šæ(©&cF&Y ’hØŒ‘¦H3dÔ˜ôæŒBÈ( Pm2ÁD‘Œ‰Dj €! ‘&eŠMƒR%,E‚4ñ×21IƒF”Ñ(ÒffXH°ÊXLbA²¸'º¿ˆœjÇb`aÂN{L›éÄ ä†@у‰QÅ­ç|œñ`œl G»Dã£1³‚qˆÆtñÙƒ‡yb6Pb*P[÷—¿áü¼è~q†GDòa‡¿XdÍ¥+‹!ÚÏÞMÎ=8@D2,YDŒ";„F𯏰4–±“ì÷|‘k/ S!õ§³ô‡üÛvpø½(ZÁ ÏD Q¢„b­È °‰:©™b»b|Õb coÊCOG§ˆ}öþyE!bìàc¢!ìä‰j_": ’D#‡"Žô± ‘Ùr¤ìàX$ûÚï¼¼kA3úU…ŠÖX’° ØL¿)MüWì²:>Xû•ž÷¬ÿ)JÀG¹ñ„F eÚ<ýcòUXAed”åÍý`ébJþ,9–Oæ¿'žgÈøe‚=ˆ»Hþ|ϨlîU3ÑÒ=, ¨Zñ œbØ ôЄJçP;ö‡f/iŒh“áü<7a ®žd¤q;€ÉË dõk²ˆ.Ú-êÛ0,­_ *–5ÛY á`Ìj0(Œ,ˆ$CA’ª_Å‘ð哦>W^1Gt±U—Œ¤yÍ´~1´û+åb|@skº,Œ1£Ž!Jë%°x‘€ÐÃgJYÞÜ̼OÔžý]ùšŽµN"·Öb“ò\tlàtCkÓè6´Á÷¤ªàu¥QN† õ‡'\žÈü#žÜH]Vàc¹h…ÅDùõ÷°?“¬~WǹØ}D‘Ú'ÃQÀ×¾¬YÀ“ÙD}#®³c¿¢bguòz6Eóç!iaZÂvšžðÊ¥7l U‡ª ­ú„÷hdІó¬Ñt`ŽÊ#Â:ê7ïc±c,>“z\0Iê}`h³~úÆŠùLI=öS8Ú„ô«ˆ|ØÖ·š oe³½¸×ÊäË!jØñ}±’2Ò#¼•‰#álj!^¢”y˜ e‰6{>ú…Â;Œ½7ÝÊ Æ–^#öH Vò˜øF4d“Œm¬AÆ1ø‘HDÑZ>øy[,“³Š 2H–9kÒË o_Ûá8Ðø†2F8ÈGÒ4[Xì“dÙù–NŠ YÀôŒ‘¶qgùüŽÈúxp3âûž‹ùÙ'ÍÐieüôl|¦ð±¿å±Œ˜#'+ÊPþùìÙ¯ªx~6œȹáq¤ž·NëGgψ%ÇdpŒétpŽÈÉk«ÿö1Œ`?ïÀcÏÏï^o#ÛðÀ-ÒŸôŒöeÌyFaH}ùpóïîîetý÷x뿆«´ÿHó;óçp{oØÈß«¨JG°,÷ÍõÔ)ó™)$>åÑ ÔCï\Ϋ¿¸ês•¤ˆ6º5t;”X84™ßòGŸßSÈ›º!äC«?;í |Ï‘Ü瑟î–âÞ$*õcG],}´;4Ð  †G§¸@zGçyrGr£ßÆ4úî1áå-Tò1R¿)"ý"L|Û÷1Ôœð±{¹êDÚ¦ŒþožtèwñÁ„ߨNqäõ¯¬¡\B‰¤R˜™6 ዊ7 jt5”Ýmµëëêñ­\Lj¥ú­Çøï,L¯Šm¸$NÆß§ð•Ú÷8šÏò;®þëœë®ÔßÅE‘×Z×:T3Ožå‰ëƒùóœ¡Í^Ùñ¼vø_ºó¨ð‡“êd=¡žøñ@èÑ¿‹ßâ‹_–‡ÈaæºKQe–I=7GÝCXR~™²Ö®Ïd#ù{tVÄ ïÉÝÎÓ!ÂÌdê$õÕ¿ 8KÓ×2)e iNTÈXÌ ß³“)[ñ€ò™ÑŠ"$&DÖØ¿O]¯Pá8á²^ 9´4q¬­xPÚR¯ÈsÍ@ýžg™ÕäÞ›‚Mwë•;oá’13Ë…*R È þž|Ÿ‡[¡Î,œhãƒâ¸ÕHÙ³¤×YxDp šYþ‚ ŠÏ×­ž˜v±²ú‡ÑÁ>m!öÅ0 RΘ¬¬j¼~g/Äv‰óEdÁÄNH8èœx@DQûîØâž¨i¯ 1JX——EtÖ “4"ÈiÝ­|Y'6ðþÜB;¦Å8z°,†H<5™üŽˆ~,p†pa`o[x‘“™\"O•"3Hœ8@ËãÑÀèàdŠú±'ÑgÚúÊ[Úɺ˞-œoÅÑ@ãéyÄÀÑÆ{Cd#<ï1‚qˆ8fÎ ¯2vxG†Lð‡ =8g²=ké£_uëëu¿E<èü¿Õ·ÚkÏ8Ùí×èñ™ÀÒ@FŽÆá I-*BŽ$âIÎÞ1ø‘õø>»cí¢CïöMÞ€þ®¨ßN>å½hŠ#Aoï;ï~4 ÓöXšæXùêîP'9ü×ß+o/ùž1Ó*rô:qFù!Çz^öñÜoÎÆ‚‹G²%tÿzÍbGijúû¼Ø7÷á×µ>ÆwËÞøâ3­˜P¯×;ùÞ=ív­¶Þ>ÎM®Ð‚1y§‡ê£ERÄY@Q ЇkC ç!k§ðãŦ/‘‡”Þº™´DÌÕvÝõ1ü¬µû{é?9:èÚcíóÔu¥Zîk•Fƒ;˜¨unú^ÆŸ4²©ÿ7— V³-k¡2¶:!áj?hkv9EǬœ®¯“N…Ýj±œ„ÿ)⫬­N;KÂ=ÚìùÅIñ{æãò¢+õŸŽþU°Ô’uÖêV¿>W!o~÷Ê<=\ÌA J?m_ô õâB8ñ63ö8D8}Âïë5üúï‡ñ…¯¹1™õOÏÝî2†•1ÂacR8cPº•ƒ¤ºßYŸËþ=kðŸ(X€¥ä~Tjê‚2§‡3½]B8;Ì:ü¬{ÜŠèH³CÒ>ç/[ÌP ‰(h‹¯ÔZÄ­)(õ•‚NˆC$«üŠæX\·>ïw2GFÀepˆ"b^Z$`Øò\¤†pÓa¢±’ŽˆDEhX5öDœh¾.e¶fÀÙ’Ž-¬`’t½vôÇyêc “86B~÷1‰:;,ä´H žKgµ„HÉDc'…é`M Î>ry½äÊS×R/ó¸÷ÛÈôëŸ5îàjêf{ê«Ñ={ž—Ë´.ó]tÁÌô榋ê£ò/œÍÜÔk¶£Çõ¦@ñmÂÓÈÔAøù9É,ÒÑÕˆ­eVYFã=!¢\ùœš‚ιÐïîççz^.8?¡Ã÷ÁÑpzבÜö×4º(zoæ§›Šðu÷Í Ô|XrbVOÌ_‡•;ËŸÆàpDî¹7=+÷Æ-á|}Ücd[õ¤¾TDXmyâz"o¨ Yè×~ c'£çh‘×jI!R²sÕG"#_&úÏì –÷ñ]|ÚÖzÖY •žÖÍÒ%Uò@ªTkK>ÕÉ£E_ô§§'9þgôþþ £ÍÇ$^Özžj›¨»|ýß“fÏGæzÍ•Qö ÝÈ›n&K@ÔÄÎ äꈓC¾Å¨òÐ6§0+jxŸÌ°qÈÈêDåi!·¹ÌÙ9º·:Õê,žà¹È«¨yÛ£¥~4ggf7ÉäÊÎ\Du‘8æ´÷KåK®mO\“tË9Z¡ÍR…ÌÌ-jAígzÉá£ce{3žÃïäÏ|ðÜ–ºßq=ux2!ì7¯~C‹·œáý¥¡r9k›}ûTc´ÝEDN«[¢Fx4WÕ5?u1ã>Êuä@î“ uǺUVˆ†ˆUSR§n"Lî™N 4ÖÍÈYuòFõu*Lñê$…w…Ú™å¹$Œò /Â/a-£%‰g^Môoçë0bø©¬ÐW¤2ü¨²î{1šsÖÁ“ÃEÍž rÔEuu»‚û‹=hP¦£ZX{2ÊÌ.¥±|ºB¨æU›5 sS­:,›œÔ\1¸@Ê:#}®£©Qž´WP¢~,»¥J{]šç{z#:΋‘ :ÕPq‚7‰s!•ÖåV© 8†È;|‘ ƒDQãn5åÄoÅ}¬ìtñ‚ä÷´Dððéaxµwæçʃïyäž9Äu¼suÉ·Õº» ¡ ÆÜiÕO9Üæ·ò2~ùÔs‹+®”V&®¿"‡G=õmãt%ñ*JmųU[ü¯;ë<¢×*C3Àë¨/.bsG¨¬ÞsnKYåÎù¦*Véu }vã¨\y¹§ÄìS‰Œó²ìdÎT©;\ù2l‡rw‚jLðàÛ?‘©¸»€òVž)©²uc;®F,õXd`œpŒe 8Üä'ÉWKóôÃÒ¿‰#ä‚~R½-é"‰CîWê`zCóý7羯7Ö³G5fÒ¦§òŸØ¯‹9é £ïÕHøø;KùÅÃŒ`‹:Ýpsïs ¢‡õ¨29·¯Ï½w#-óø±ï’j?uàê>_Ö¢¾AÑüïîD÷…^w¬ë½û­@ãøöçyÃò—r¬åÜÙGÂ:htÿ®C—H³¸mÜÉüíþþWäy¿¦~-»5žÙˆyÄL|÷4f#S£ÜjòÅjô=1M|9¨~d(¿”´{˜Üû¡]]ÒüרQ>göW²‡Üßá‰ÄjsÿáÆ1Œc /™lwÈ“ñ̇]뺺·ó•›žÎ?úéõUä ­ÅÆ»¤Üî'$牜}#’±[‚rµ.a‚³¯ jC'F÷©{"é~ž_ÏÚ™û¶|;¨~O]Q¤T,uݼêï2ÍgB0ÕêHÑ@%wlFÊ…ðÐóT²>}B¹Ÿî1ðïŠ|óU"m-*ºdÌÈl…^1êzûË8]õ|59(ÚÝ(üýü\ª—pÉCµòÇ¿™3Œó,}Œæ~S:úe÷ñîõàû§BfØëçNwæúŒÜÃÛqÔ–ÏQ,eø»ßZηÍȳ\F7]ÚÍçÚåÆÇWêpŒÖ {Vhæ*wKÎoKJEÖÍ [¯9åÐõ.0uèâfMÇ}j¦ù]+{uœßúf¾O}·sÙò Åõë×x¯}ñu˜×S$€oˆG{œÇ@õ:½œŒ5Íß[×'\ˆ<7{럓çò×á|]r<¤ {·µ›„íÑù; * Žà¦{ž»q{¾ôõó|#EZÙ]Åë> éëœ/‹%ôú ̱ÐcKæ¸þWg\¯Š‡™Ôs•‹{î»auÜWµÎ‘}ÎßÅCáÇ›ãÂÇÍ9„@èòÌ}ˆ8M<ýQ¢W„uµÖ||ò¼¸ëªÐZá×ÏÝÖ¨ÞŠ)ˆ7ù·>¡Üe™4wr±ˆ›Êp¼î±áÌn‰<èrþœï€¹üŒô–ŠÌ¯?¿š½×¿:‰×e lá|ãÅ7ù¸¾ÒhoH+ªxŸ‰=ãÓ(‘ýûQð…Ñß_Õð®Ö ⌂ÎOÄ#ð­ÇI~üb°Mü_žtý–÷ý%áÇ볈âeJ]~÷Ô»¡—­¡p7×ß(qþþÚÏWŒm¯ëÀ¿çO‡©tŽü}òŸ”'Ü4¿¼ ^þX¾ÿNDD˜_ÊÕ|ÐdD§ ÁêÝ%Åtrÿ™‘UÖã„2b^¦G^4~œdä’7^?ÈÆÎ:øº8Úð¾FÛù”;/´²*ù"Öª]âZ²[¬šyOÅøÉ÷WwÖâçM¸Ju(¬§â¢Õ[—G*õ\e†‘of?%ÖTø¾÷245½x£Jƒfhé£ÛÜnlE§Õ_‹ß)†¹f=ÓsÒ—LWÛÞz&¼#ÒÍs,3“’(à%—ÃoŒÒìôkaQ¹Põ²ŒÈ’9h€J#{ïîEÀ –2@î–#¤&$”Š£ÂŽ§ó-;½±úuÚ߉;ùót7qÏȺžFö -¬N`æ“™©¦Øý^ß¿í¯Þµ|6µðª/³FøjöUéoå”>H'GÉä—J úZ)Oä½€N‘Ò~$èû•ü@ ÷¾Â4´º4*ù $`` 0$„F=WïßÙÆ¼Ìßצ†Wçw±XhÒ¯ÆÅÜ^³j•õB-Ní=cÏÕŽŽÅ!˜ÐŽ :BLú±‰&Õ—yÔB¼u}=*ê4K:e i¢aÒ¨è#׳îv_\˜òj „†ˆMOõ/'FÊ~}>yÞzÖ:¤È^‘ú²BVd€ˆÇ4…Žj|»Hò³ÔxÅ1÷H_as´Ÿ{˜3°èÜšî;=œó_<º“ªù˜ê¯†4«ÄÒZË‹ãbå´i3’Î&ù¬ø»S샖·GÞ#äXì“p¥,ð¾üÔÖhI™P‚VXìãdm×p+S6&»¹¢,ˆâ¶rÙ%~Ck®÷0GÍ ò»Ý\u×ACJ\yan UÃï ¢_Jå~N}#†íYÉŸˆxhƒæXî(è¼$‰ þ”DÚ•Ûü:ê³€Hƒ~Ãu–<«ƒ×-\ ˜v‘‰—¾a“Œ3‚GF‹ëQõþx>Jo¬§â~㤢ŸÎÁ)BÒDSÙÞÍùc¯>`èθc'Äv†ŸHèá‘"tPÀúYöËQ´·2>Ò¢I²8Æ:„䇑0>‚I0M¬o¥„u”ÃŽ…¡†p»êª`å,DAIôŽÀþŽ­`{(ù©‹"OfºWÈŽ¢Õv>g´{ìç”doå9¯Øï¹(¤ë}ÍLés;«ºÕëòÞrH¾Ä‘¡åµåÀ^èÌâžÜ ï²wیεÇñÎÕñ/f£H¶sŸš®º¢Ñ³&€pN0²0ˆ$`~Öi~á>¤Cä'Oòvúš?¡ÞäJy(Ò‹õ§°ü$zòDz4¥ û~>¯äý°ò@FΠn Z™óçnæ»þff%×ñ) j%ôqóìWæ±V¯ìzc¯ŽTÿŠ‘ïO×âÓF¿z²c›çæãÙùÏá tÐ+¡UµÔ¢Œ—hD,|¬]Ö~\“‹ai*åLó¯^½'Òwãù(>Ò"ÅípÄßM÷5©¨õËX€dÛ_’±‰1ÐCoë¯'e|€üRìßȾ:“™Z2/O?®CGð×– OœùªÇÄ•¯§t¯î}yÊ´VC( =­D0rq%œ’ïYœpèÍyQ¡ñvCÉA¤{zŽå ìâ!(oÈjœ*ѳ˜PQ¢9ÎëUžó¡Ò\︞ßÞI`Š\jÿ,ËC Í0ÚOÓ³‰#ddŒ˜&åÄ75S;çÇ‹8ÆýY5HrBàW{LÀSìaöGÆ8ü4~Ï n}ΩD–E«„=*£²ÒóP²óÒ‘|L“n:0r(†9]ËP/ç% Ïs«†PÇE?tƒ#çj4€°¸­ˆAËñèÕI \`ÂdÍ¡~xE\M1Üëq¾OÍ|¥ådÏÅ›¹FVå:ÂßMÞû‰²ßLTë7z$D›ëâd}wäÌCÒCÝËÇ„,tB®<ÖÝD¦:)€VHEðÔ¸îĢǧ}f¨GaÜc³ŽkÞAǨ{h–}Èýeý%z  +£¤@ÓШSî].•?X¡¡pgâ:Fúlëà)™w+}1Œ‘úX ˜<ùÇFõÓÑ,vé‹ñFŒöÌà”ˆß‹€Çtó ã¢Hm,d„tæÄŽR‹U æÐŸÂ!ÿSr †RPD {N uäðºAÏ>þ_)!hÂZ¾§¯Êw R0²—pÏ^±ô¹Ûv—#®×dthözypGy."|XbzÜO~f'¾˜Òžwøü0}+|ZˆÆvæ;b‹rÙ÷("É<’I‚2Ö#½ßȃúÇÛÏÒ()…ç~ž€û~VŽ”ˆü§¤º7ç:öw™?oÛÏ>s£î1|ƒäW‘õøÞ|ÔÓù^öŒÛ]?]©½?fUsŸÉýµ=ü?~¯&úèBb;K¢ ‹2qôý!G«¶ÞÖ!ÂN:æ^1f²±'8+œb¡ #2¨ácÒ‹gâ~qñ'èJNµz ?ÐmšB=å`3á –:Ÿ’à!œ"2pH œIƒ}¬xDÕ1;C²0 'G m³€Z0¯ßÅ÷Ðúå ù;ÖqüÉß9å“C¸´;üÿ¿Á÷•>$¢rDîÍàè:4Ÿw|ËìŸÖè?IÛó¼´i hc8D) ‚G ƒ¥€ÚìÏÜü,/<…R …åªüŠðÑWq4Ç•"3ÂÀã_ð‹>ú‡Pqû¾û± í•ö'ú8|óÇ÷l¤6|¿“^¿—´@D†B6Â<”Í]n¥‘í£³ß{‘g~G¼G¾ž©dƒ˜IÄ"f=}ßl ÛyÊ_HD鈱ù]s‰bz‰4’%ÝW4ð¸Þ~?o=$åÚ¥Êç\br8Ik©# :a0SëÜÃ7‹q,‰¹¸réRAcsndÄ‘î9‘r§­¢¬ó‰PSõ¡r¯­÷mȲövç6#˜æ (ˆ~½ÒxºîëÛ®‰`ˆËQ\w5Í{=/2zír”¢ŒéÆ*.熄ÆR#29W5ÍÐ4¥Ü ³5MŠ.nV-ú7 ’ñ±±È1J&d³»q75×8Ž\*äZ‘uB%B™t„NbT]%ZEÏ6áQA;®ÅÎ(;·îéK#ºnnˆQË®îÁΆ®NíÎlF6åL_^óÎÎë­‰00Èšå õ[š“Î:œé"æåÈÜÄA‰‘Ìœär•ÄKSÎÜ%dÙ}zäo:¸1AF$‹& .Òj,_–Þ+ÆÆH´‘Ý gç9o+ FÀs…ËrÅß=»ÎMh”ÓRKIIDvÁ$à H–dŽG_F0,å×2#ʨ’Â;±Úˆ$€Gˆ#&nÐŒš• s ÕNŒæ¨w—w§Çõí.S Jò«šåørGª»é‡Õ}]’;Ånûih[:p/ä ¦«~Äb‡ç©ÇK{Äx¨™ÇI}úÄš ÓS–>üÍȳÄÇÞOW,ªAóÏâu$œxüPÁóµËÚUQš‡Í:Ýç:$u¸PP1-äá%ü\ó Œ ?½¿cXý OÍy8ÇÃó÷שr5ùöè»úºˆ'( xˆ¥¶Àuã[,.Pèâ„!ü6C…-ód[ïÍDy¤>˜Ó¤gùíNZü´5Òg’pN:Bž1Ð?ßRÁ rÿ‡¼«Œ³ë§YXP€³„pC‚:B+Ù¹¢’ˆ²ˆ'B 1a¤U»T‚H~÷ˆY¹>Ê'®ážÔÿeyÛØ­³ÖŸšÑ—róç5¬k©Œüê1ÉCG­gáSx$›ä.Dà¾~D´2cÝ@ƒáCƒÍÅ]8¦UñHáÖW’½{=u—öµÕØïéÌãr‘ö4ü_\±üçŽùŠô¡ ù'ªÉ~Í4+KQ‹ îƒØÏÈ4Òoëðºa‚ #)`BŸŸª^";³ Hîúy8Ÿ}hZü´t/ds;ÖÝä¡q›ÉÔѾG¡Ù’sJázE¼QÍL¢üš‚FÈÞoÓþQwÈ›]|뿼ìWU®WU×€OÙû½¹€ïHŽ6ؾºê,wýS4úû=gŸmâjEþ?Iá¯$Ú÷f>ú¢bª é}©\ í¸ã‘ÃÇíÎûÖµ#zæGE€ÇyäjG†Ý¹yÑýã’oºÑZøªŒµùÜN™U2[y§Y£ûa—í9.†¾h3~ë0_œL‘·ïÔ¯Ûö¶Åk[÷÷W1ú§2ÿwøc›ûS˜]œ}°ó©ûBÄ|îÿkÚù¼êÏOÌ¢FUOçîÆ»ˆ›iü[= JÚ]+•É绸ÔsËÓ6Çê¸ÆRç}=¨|8ô÷“ÁÍ\8ÏC®‹ÖÄ“rDAìùÝ^w®¶¹K[·û^ç—öyƆ³ïU¦²vHŽ»ç]zgîöÏdðöœ¦ï¯¾õu-„}9Ž˜¹ •B2–5¯g0H$ ³È±÷Bhûä=i|ü½{ªnóžVzÍkï)Þe(5NÇžX“ ºzÎrŽe¼©7.3ðæü>%߈æO ZOî¼ÞŽ–ÿ4µuŸ«J¨Ž«@tTËYöd·À!2q™C:"ÉéÐ8¤ã|‹š­?ž×ugŠí~ ÕÅ ¼kif¹5¨ûï\èæãžwïÏkºãÎüùÑ¿Ÿ3|Ï=„¿¾êcß2Ϊj™ûU^÷;}W6Ê×Ûºï_§ÜÞt?'®EYüÜñÆç»3Mê´yÈz´M&_/}|ŸÍi®ŸOFíÅøñNóÄþmù˜ÇÊÂ4ßR¶Gš^^ž+ów=ÑïãNÝx„«V­wÕh×\ñTuÓ¹¸ë|ä¿Ý/ØY(×<˜$3+²WMG»œëôç÷¹¹yÜóçuýë¬<‰öûwx7(_}S´SùqþhÆDvGõe/™AÇÎÿN¿fÇk9‡+†P‚‹±§-šÉɳT`ˆh B™™P%}âÜW’î)¿¨ãß+ZJIìç§1áyC|¥ Üáú#•Š °`£Š<íWkh‹ Ÿænc­-%›Z]í¨Ì÷ŽbD/šf:’cù¿¾Ê‡ü‹ä äÇÕúq:éÑ ¥‡<·%ƒ™&v¢tI­EF,Šùó]ŒÐÙ#¢Á\+…õ—RÎL}Kí ¾µ°Èèà Q·ùA˜§e°âð¢ 'ŒŸ!#<*Simt`4w{JsYWãË9„úë >JïÄÂÆóävYžŠîuö5B0g³ºW&„½]u·œ >úÙ"|à÷½/Ÿ ÷1ÍûÐp¼µ3”É(û·Ü)’òB¾ÉÝsÏãm*Zy•ÊéÀ[/Ÿ7E ¤_æ÷2’:£c3ãð‰Ÿ;“&*8ÙóY:ŒWK.Zæavƒ5Ò‚jfécfÚ³ðŽÈÑÉëÐæ28ðˆ“8#/r|í G%ˆ,_¼bO¿Õزz+CêCâJ#¨®,yÄ4AÈÔnD“Úùh€ì‰»ò?! #^s®¡ë¡×}üü­^KBø¿“ÉYîŸkñ¯"GéF>üTfeßz+»œdi:îã9~{âœö³ÔLþ×Gb?ÎuâÝÈóñOÏÖÃývwù×_²Þƒ¤ÖÂ#Ü坯þüë:›×.ª=ËÈ<cƒô÷¾„_ìN«-¾Ï½EŸ™]–Ðg:®áùß±?:ï›4ŽJ•šGe<æõ<Þ¢»¯ïÑ|÷û®§òtµ˜˜ŽjËR_*œÿŠ5_cäÀãphÇËô=Èí¬Y‹šª˜þO*ò³+¼íß®ƒ‹Í¸ DÍƽ÷_ÍØÚ;ÐX¨CÈ·Øœ‰û2²öDZÙö–jVP‡k[‰:€z¾LWÉêž_RŒ]wžæÍŽÊÅt”SDhØ}ÎsU½½øµ¾ÃÈÞ,É›#qåÌà­à2ž(1}9›'v®™´?¯œ%|ëI´·ÞxHñK¸'S÷\‘ÐnôÄw-¢A$Áƒ\ê¢ÇŲ(Îwü•ßÚ¼uã…`…އOJ³"°I/Ïs™5”,D!!ÔekÎþ~èpùÖ|ëœQq×­ýö¢2¿™­+±‡{h˜ï®ÃøB 1D8ÚyÓÙ$Ö»Ç,s´{X²=>=f(µå5Ö˜ï^;$èôüŽmС՟²óS¸‰ß=íFs¶£Ÿ¼T¢VãÎþŠn$¨öT÷âL¢E’y)¶ø)Ÿ7>+öÐá;™ÏòSóƒ‚Ï£=¥D4‹*5¢ø¸÷æÇ|;Ì(V#-Ø…ÐP‘ƒT#Ëœ¾ø5DI‰QQQÃÜÏG:Þu‡j%{©9€û=žˆáÞᎻGjwøû¹˜ËÌbË·.µµt _Q¢¡r­{؇ªTóß±ÌÄ)ÎÖë¤Ï/äxuÚ_³ÃÜ稼Gêî$_>õ_'ÁãÉ”=õƒ C¼tOïJÅÌ—(Fãz´„üþj•ÔBî8=•è•ôNÑ¢NÅå‘'Èpÿ¤»Z|aiaBúÅë¯ëùy×|ëC§Þ~½Çõýfèóíç©A²?f+²³Oâß %þsâùxkWÍ@'PâÆDü<ëºï›ZY ƒ3œß«åY"Ȳ=Ô\.lx:åLÙÊ¿ÎI z{éî."¿»<µV¨¥ÞcÖ¶sž¹ø·öq ‹þcéàýX“‰ ‰ÌædcFN=6p%,CL  ªÈÖG.ŽˆWù9çV1½$ñ…áúz0G 4AÙG "9×õÓî¬ïúXóJˆœp­ QB=QÜ`ëïݤ7ל×í;ÛOë{Çqß7í?—™¾[¥wåÜ?ΑëÈüPu쟴Ÿ~ýñ£ñ.’Öî:6ÄM/ܾ~žqòu_Î÷s.?÷‡Þ+îücH” zi5\¢O··°^ËêÞ4‡÷ü²Šþ R‡È(€4¦“JÈ:(~lÐy(¾ÝÌU·-¹E¢*Ûìøjñ¯—Ú~ -jÛ;Rqˆ8Àð„p ôàŠý]ï'‘òt:P4{ŒÑçÍÞí'¿·ß·çûü>¢½“U ÓLÈWbËä;zHÁø}ÞAÑT~Öƒô¯DΙùïrýŸ»Iî¯Ç¯Rï¯Ê™Ñú†È„§„Ã`u“Íë­ÞA…¤Rıü#dI'¬·Ú¶1ü) R‚¹‘ õ 8߯¿?{–‹ð¿Ÿs§¿šO&™Ê,Êš)nêÐ~ÛñÕ$ Y̠ϸՓê¿:øýwßãÛïÌH¨æqûûL 8µ„ªñ' •Oðã³ÚVmµøAâÖòìÔ/¹éìèÖÖ5)ýýÔb ŠŸC”‚ à“ûüq‰"ïñÿ*šâþ{8¯ÚÌa\¼­ÏÙï©«k'y€ Œ&¾ÓúqÑœx³Ôp#ôÆ a{éŒÂ–ð”0’‚8ÓD‰…GD˜#£Ds+øG›BÈ@Œœ#Y]ÂÃÅó´‡g°qyуŒ"µˆâ{Ý0+€T“!Búµuûüsº¨Ç ú‘ΰ{üùï·Zãð’]ñ`p¬Ñ ¤° é‰)ýßg"ýíökË ~[•ö -ú`Æ#Í™žÏ3[^€$bHÑÖôÆÃò iýçÎɤýaè£òù‡õ/çcù¤(~Gâ}—®‡ó“ßåÀ~Pè…òý•z[ݯÕú*÷^ÏÜÛÓVôÕû•~²'ßÏ®ù"~³úÀñP~“äÙ~GâSê_dÞ.;ôƒ_P¿œòXÇÓŒ6BÀÉÀóŠ pÇÑÁûãï8Ò˜A”hi‹•Ûîî滿ÏÍs¿ÊŒþsÛŒ‘ü¡×ÎyUë9—:`2Gá[áEéúK^åæn¬ä„u¯µˆÆ7áoï±Ø“#_˜ËC»çŸ»÷ßå¥~ùØoô’7çØ‰UlWÎê·εDõ߃ÂDž/@hž®)®×¦¼ŸÈ×[ùÖuóc!íQÙÄ¿ÉÍLÁ%c¸ßÕµÂÚíg5W,dÇ!Aéó¸r>½*=E»mv:€Œ™C6ú"ÑøN^¦L¨ ¼óâýòÅ|2t>ï.®ó3„}ˆª‘DÊPG‡b2ª4Ôü!Ãòï—ZÞ}>k1—!¨âÔª"~6¡»b.G~uèØîjø¼J‡«ºsäwø‡§½w'É}ðŽþ@™AàҸÝkQ©"—,q‡ÔɈ͸œíâdvÇçÞç€I'#›p /)´8 J™4éÈ-uä@1ø±ôˆ"=úàgóÎÕdßšÖ!Áy¿ºg»ñÇš íÌdÑ®‚úéHû3,é÷7®WJŸ=檼½RïÞ¹ÚÖUu§B¦ª}1Uý(ƒçzŸ'¯žk¹o=,ÍšQœÞ¯ŠàÃÇ…R䪻hŽù¦ yqR3>.†gÂ3•ÔyÅ2$ù‘¨ß[¿Í£—7©‚G'lIá©‘‘–#¤LŸÃJï5P#´7`× œpð€Çâ«Ø(.,Ôû›¶Î9ËŸf»õ‰8ʆG¡f+ÎõÔ;u¹s®Ä3[#Ço”Tf<—0[üˆÚÑDvøáúœmâ¤xðe"Ê'ï›b2;W?Tve‡Ühï_~ëvÄ8€…Þ£å#¿=úYàæ¤›føG棸š–Åéy^{ÔßšTG`¦ÙøkhxÝ{=ñó]8Ï­àÊS_Ãföt_™ã÷1×Ê£gw§MùÍû«q[z2RÌ!.^OéyÔÜ^9gk õÔ þë¯DO9ßN”æ1n9E^c;éþÀ’3iXŽ0‰î4.jw6µ6b|ÁÜ ŸÍþWÞèâ×k°¿’׬a‹0ñéúFY@"Ô|—LGé±õŒ§±¤ï‡pÒs'Çÿw˾’Èçߊí'ôA²;>ð!9¥ŠHzV–$Ï«žÎ”Ûή…0›|.Ë{+Å=îÕ÷[ÅÍ~¿-~ö¿-{?òJ;òʇ×ç‘hÊ~í R _×òÊ'Ô©FŸgïøàøH|‡ñÂ@臸Aü _¹£ô…ÐÉQûŸÊWô¾¥_Þäù²}I£óüBôÓòR  'âü^Ǥü?yGö”þ0{~Q¡?èÉÐýÀšPüçóºhO#J?”~Rì ¾~œä‰ kò¯Ÿ~ÅÚ$îžÇ aîô†ƒËC t-- R{IߌîÀC÷/’R´”¡õÜÿM)ùÁü’ûü–½Ÿ¹:FŸáù~¾o¥O}H~ :Cõ¾B}Kø…`ý¶PÅ{~{oª­~еú­ömz^íW~§î½þô0 ýé`w¿¿cDcttf–¸A“™÷0¡(/¦`­‰¾ô|T/âÇÓÙcI­ Éêw¨‚:ñ…HPÙ*²6`,—ÕhâÎ$³Ÿ×Õc&¶†Î ‚;#¦J‚V ‚>ÝdI2jÞ ÀX$M!ÔøèÑï1žýòÌŒíhè‹:è(ðþÒ›>Ô]cÈZ‘ãý9ï߯¯k¹SÕ:sˆ\wû¿ÃZT¨E‘­)ñlGYÍ×ΔÏY™7ŽÁ2¼ïŸ)VÇ—­<{úY©cÏůΩûû¿Íj‡Ùù8Ùá±×ãï̼}ÒÇêC­r u+ÓÖs€O¤"Ìzœ"  Oß°9½¾ko®ò"$£Ío:|ï}3Q5ÎG›ý9~ô Æ7æÏQ]Œü¤ *ùluîïg*¬ò jw}ç†ðjåy]Tyý€cn뮾<¥‰(€6@ ¤XøGÓôd|XÑÚ?PxGKßäBCG)ˆü8dÃŒ#áz“ä¯V$ëêúþ:ûüu÷oº‹á¾¼óÕ~Šû/dùæ€ßÇ&—îGÞÁ_œŸˆ¿C'Èü—»ÛïÕͳðú9ìªû½þ½_u_(Øïá6PÙÅþ!Š 4>¼r-I`‘úÖ(…yua¥œcÒ*XG­ˆý"’ÉÑÙÙÆ¥DIÆ+a ̬QÆ ÀENÚ<ŸçüÀtþ‘ ù•ÓGâ4þ$ö¤üäü¼ËôˆVý £ëë?¼~²uoÛßÅïó}î¨ßv~áh¿ŽWôã çç€gó SÙ ùô!ñ>ßð H›¥î«xÕø_ ¾_f×/Û·Ã}羊ÓúJ~·B%øƒõïÇ/í/°š Á `Núpq†hàbˆîPZÉX‹aàá÷Íp¿´þ!OÖ?(U?iü êFýð>ȾËúÀ/¾^›ìGËõø@>¶ƒîS߬ûâ?/3 ùßXþXè)~ãò­ûß ¯M{1WÙ·+Žäšˆ„òOŸÇ½’=Çì_$<–“ù#ö”>O„Dá ûà‚2ã¿ê~yÖ‡uºýŽêÀ8Äoy…bŒ[èªé¤“~_/Ùò¶ý–Ö÷m~æ·Ýû•}Ö¯àZývÃÏ68…¶>U~F"+âøÐÖ'égÙ–PD†ÂúÂ7,G…¸>0¬âNÓÂúìÆ’K#Œ#áìÁ˜RII:KÝ0À†¥üíA„K†¡ap‰x $ÁDq, 6ûãjM˜íK ĺX² €I}^Òñþ³ì}™88‚$ñì¿a°OªÆŽÒ  =y•‘$"OÞåÆzÜ|µùc DAò~v¨ ®ŸËƒñ~6 O¸Óò5DM­CùŸ¯›_ØÆ"9ò0 ƒ¹9!ù!B ýLŽ–¹‘ŸN»ß½7Ÿ¿µs&"‘ùùïHo…Íùvdú~<óÓ^ytÌ_Ç×nÙUOÞ…=ý;ùñ³î%Z!9Ä"Ÿ“÷‰ß ü'¢3ùVG²ýUûzúùw³¨~¹}—}Ý}×}y`¿S ø’B5äÄ4 $qaC(’B'×íǽ¥Çí@¨*ñ?~ËîÇçèo—ÝÝ´_YÄ4SŠþì`šö²¼Q’Š#ê× o²¾‹xµP·å¿Y #çdò ?xAŸq—º·ºÞ2m ÑiMŒlV)g¿_á¼öËøäâTú…)hÊüBIl:„!¡ZT()&…JJ>K¡J A zIûúz_9ùŠ Rÿ;{xPÖSíúÏß_v Í!fHh±´°–0;[ÕÇ騑óßcú‚êU3\(\ùy•C;P+چő'å¬Öa¿fyÂ@%ö|yÙ" ‘éé_—¥Nô¼?¬N?t!ÃøûãîŸ sø±æc&§Ÿ¯·ëù÷ü~ŸO-¨Æ±´‘´QX«‚Ù*ñµrJ¢û¶·/Âú*׊KF±­´R(!0¡@Rû{=V¾íU\ÚѶ±­E¬Vû•Ò… ~P¢èXJ£””*"R‡ï›cHô¡) ‘¡P¤W÷€CHд‡¿?<¤ ¦€ýv·×æûß_>KIûFüüúóÏ¿ÁÁÅHþ&…¤¥NmÊ+ìÚ®Y1%`Д´ˆPÇô²@‘ ¥CZ¨«V5ƒF´jŠ* ±´hÓ*1VŠÑUjÚ*ÅhÔ-d¢­Ê¸ZŨ֯Ãm¢€»õàNš¡ZB„7ÕµéµãnV¸Q‚*ù~xÌ¢ú¶æ¾¹£^írŒ%¼mË~‹¦£b‹}U¹oÃrÛ—(‚¾{¨Ð IWó‘?’öƒó„üJ?œªô šU_ÊGßß‘/í)úÇÍú÷Ô§Ü1Ñ g;‡›HÏ—Ù·…Î_¹Ûî†Ô‚øøõëzF"…ó×JakÝé|­z6¼îÔ†ú÷}×FÙÕH~R©  B€)Wîµ]/v®mc`ɨÕõZåDàFHÆPã%õ™ê×3÷zÊGùÞfw«etz>˜#ò¢àad`N1ç³ÜŒµË^2ø9ØÔ¨ß‡?&2"|=GaˆÕ-kDÒ&‚…(@?„€Å8ðÿGÇâßo{÷îü„•Z\Šî¤Næ ?PëªßT_B3óÏN£goNé ªù¾õÛï—áfL×ÉûU×;ÙÔ, #$éQB9åX÷æ|Ôiž>)^}Í™"Š<ñ²z?Òùêo(‚ öG¯åêý½ïuzUžì¢~Xe5Ÿ“''V‡u$ìÊ]µ;§’Œu¦ ÈVmÓ¿‡¬¡mD•±å ˆ ”B'_·S;*)AˆÚÎz¾™û ÈáÀæýc³SatÇçó§^\ÒëÄ3Š@zT €„ Ç}!ÑÄZ ¹HãáüCÅ$ÁV i_r5™`ÙCãŽVÝ@#!à‹=Á’0‡'N«§D€O’ „úRAÆÎ6ÐH°àì¢ 'DcS`x© @éu!õRñ¬xh‡JššD%'°Sl2!u†(†’ï, =ˆ‘“q•†;*—…u–#’:¶ú‚Ù P’ ðûHnPCÅ©óÓ{óxuÐÀ- õañ†pNA{w2‹Q£O•ÖyÕÒ>ŽÌjH«øDßf»õìœÉ>®©1ß»éÕúþz½Û´XÔkF¤ÔEg®ÕwÓ¥þIêói¤))|¾Ï7ëü2|¿?~_ÝÊ/²÷_/M‹¥úw$ ¯MËÐ×ßÏÕ绘±-ã…„}Óº+Üîžêº2÷œL~¹¶OÇÎáý?Ïï:+ä{ Óí¶^KÇÆÎ0vpXQëdv‚$Aüÿ?xý•YþÉ÷ù_r3¤è$PÒÇ+ôñü^Ýý)•“çñ÷ß`"ˆGÖ%Îy0@ô…•Ù ‚I$q¤$%‰2ÐEŒÊy6ÐùöÞ Éh¬ú¼Åé~ž_…ä‚Å{÷a÷îV÷#‚@GÚ$xB8ñ†I#‰jßç$Fiÿž÷ìc?x™ìà{ßÎãERÔ\Xd,IìâŠø‡GêHrPÀøpð€޾¿—_ ïοs¾%hÛÃòHŒ ñFyä~ûmušZï8æœu]gæ}æGf2QY[ÏT³,žõÛÞ’å:7ÓÛ²˜|3å\Oâ±5qÏ2îãç“áášYí‚Cmzƒ/¾ê˜<Ï]|ו¶?}¡ÛX½Ó8YÀ‡QɹKÇßµNµõ½Ëðþ_"×c:ë_[¯:8‚1Œ}#Ê,luÝA.ç¡[J1Nªð›Ôï„Ïg÷°4ìª rU$EÃÎ)ðù›˜)/Ÿ*'+pàKÄw]Bê\˜Ê‘Þt£¸òýÏT™gÓzå¸uß±z]l!£¤`#fÎ7ÂÜäã7‘óeOþ¶ý~¸OhÁOŸ0‡ë¬Òt ò—‘÷ëñ€iCC~0Æ0q¬…¯¨}½pF£eàp="uúúü|ø~9LÁ%ýÉ楛ü6Åã8wùŸó^þÿ¡_É¿:‰Sf›‘çõ^a‹©“ÖsÆÏÖ<ÜÊ%\¬{ZïQäiâÐáгjjAÖ]6;K DQìMµ’$JYXƒE¡Vž±|gÞ¦´Z”©M_f'­’õ4!E¯*Ëωhì„úÌ„¥„=ë¼½v‹U‰]Ôˆfå´Ë‡,ΪS.- Rͦµö'Þfà Ör›T=„ÆG9]–åM£ãã™ 1“¥)Òø¤›ž&TEI&d½…hš’Ûl9|®ñ49ÿ•±»-Š' –<Õ¬Ÿ¿{˜Éš­´dD½lŸÞ®‡Ð*Ó!m,ú+3X@žµ&=ð|ǾúÏѱìA.lDcžÎ£eþ^ÜŽ/ Sü™¦Í¯ëŽÐþÎÖö¥ç˜ÏKa¡±„«-¶ýªY}^œ~x‡Ó팋hŽÖÝÙá¬÷I‡!ž$žé L®¢öÇ_MÁ*B¡ÎC!ù‹'´ã=Ò©’sÜbäÆcf« Ç.RÉÛS@…¼€vRêÂ<‚5ÜÈxRž‡ËK )N’‘ŸžyæóŒk¢Ö79ÛhUó½-ÕÍÞÊ‹·¶sçFeµèžÌ9 ’¦K%ŠÎ6ÑOÕ‰›ä$'hˆåâÙ÷§<(%ì-›‰ Ò•·»ÝcÔzä]>pº«Çнw¯æÅr¹z%Ûi‰Õ¼œœ·º³÷ªpH:[x!—¢Bxc÷­˜ s”83YtïŽò‡ÁʵÜHr>Bfúóܧg'”×tðúQi:*Ñ¥¡-ÊB‹²Ÿ=µzU¹aw¼ô^MFš-Ý»€)|…A=»Â"õîhÚ5KO¶ÇÏ™qöäÕ6¶PÁe"ßXĶõÖW›eR©ë½î¯›e·Š¬Y‹¼WÞ£ºkZa±šÓÌÙɘ±˜6½a„Š—…óqi–¨ l¤,U XÛ ¥u”ÆéÙ“S žµqv'HìVFÙ¬ÆqYB–ÑÊÝK_³sq­—‚‡JKl¢Ò²ý•±µ¬H6||ûÒøÌcF0]·1Š%£`k[«1¤|ÊÙL£$¢ßx‡êû¡E«¯¡Gl–÷‰ÁåGXtÆËZ1TƒQ#L%TyyÅÉg¥F˸¢5‚ž»k(ŸW¾K_TQ­m-­WÕš—æýó)O¾Ž¤ÖYâž÷±Kœ^¶ÙzÜkÉ0ÒØÚrM´e—µ²óÈá+”6rá5XÛ©EP$㑜†ôžLåm{¨]í=={t/CÑ×Ol>Á¡) i=—CIï¸èÐ?¤]¼Ú” éMtû*ô×7‹Eb ÔQâÔx<óĤèè:^©hR—|É¥½qÞÐ_Aß'ç²}£'øÚz¼;®ÑÄvzäìr‰IHy#Ò Jt-R®t)¤Èé¥::EèB•it«Ò({ä ²ŠP  @) !ä-§’¢ééCÙÏjM S@´‰TêvÑ…‰ÀXÆ hת h’“+Dïæ!Ÿ)%ª5ÛKÕ¶­»FDIJ•²C ÓØ˜ÚSÞ[‰x ´¤N…šòël´ âÖãE|ûzÅh,•9…s¦Ç›ó °;ñO½æ]T¡8Vo”3¼ª(§ezͧc«n”Ò‡²'GE-)¯"žëLv°·©:±%¶Ïo›ïzûÜ5áOáß´³Ç¢W‚3ð¼k"- KÒt†lNÛît•~óÞN©ÜlvŸöbÉÔGø§JΤ…„PÐd“‡ü9ÁtÒ/Iâ3üÞ^Lï óéåó#¹?™ƒDuëŒ+‘†ç6¦kXû¹=“(½Zj³íw•|OU<¤ô<¢Ê®°iÏKÍäEst.zÌtÇNº‡Kî¶Ó’¤çIɧF†©íФ¤k¶=ùƒ½È{s5GZy°“ÆM¢Ã‹hɪX‡BèK°Ž>]:úãáß·rßG¿£ï{Ùø­Èõh¯Û_@ú'°æËÖÄ%Ô*Oѽä™jJ[\ml5±KÌã„]&’Û2òð eÄ,îLhéé<“¶ä[s”ÒbL£'+$W3‰8Ez]¯Rs‹Ñ' OÓ¼¯y“½¢äÎ1>&}Ažî,ÊC"A*›I¢Š{3Úè¦Í¦Š‚g”&UW™‚l„[% EˆÏ¶NÔ…ÊuSµ×^®Í{~>Ì)*ÐIÈN˜ù <ÞŒLé¸èÞIM8ää*g có·Þäöƒh$C'v{hÀ”gv`JÛo%lÛ{bv pNô);ÂJ!§@è7wsÙ)© .ë¹÷±«Ìð®¹NÃ9î¦ÛŒòñ ZâT7Ñ ¸QN<º9Ç8œ¦™z Ü‹ŸRNq¥$ž„E\ì ´ÄJGÖËÑÍ”g¬Ý©ÏCb¬d¤&–Bù%þ›øþP¯~oÚÿkDaÉ#°JÚk;VsšÛaz;=UÊm&u²•P¯*µrÈúé=ïl=I®Á„Õ’*Ó¼—¤½dý½ìMáYH¬)F<²Ù$:Ô‰œË¯û?=÷ß$­-‚ÆXʃ*Å"'›)`Ø…êXŠZdý½½×¬2‘:?kÆGÚÀã¬fƽ»Ú›†ØÊ<™tY‰no¬§xIÐ¥ÂUgïvÞ²Îç5ÒisYz[ ˆ!jrN 6Ãf¥ÃæÈÇ“fŠ?}¨õÛ¢ –ñ) z€Úq>:éŠþ«±:)ˆo¿ŸÏá¿O~dÁ¹AŠJ¹©’{5aß­°¥ûýsâ“Ë6"CbDl[¦C¤áGDðeN•EžnX"Eˆ²dEÈîlñB0´9bÑ'=Å8øç‚d”…¼×ž>¶k)Љ¨wåk۠ȲóyÙ!óvPÑp¡üžϪûíÃæyA/6Õš"•$†JAsû~ÛøÏ)ðYä‡ü¡ýê=Çà(j¿ËÆ àé¸ÿ>kÆNš¹¦1!Ìfφj)p…òÃ’¿‡¦im£û5Ù;Ùþ¼l\²|†{<³ÝòxG\Å}êÆþÏ|šy•ãÑh\P€( ¼“é¶ñ{Æh¬1f!óÛAêDÅß{ܹ¼Â¹ÚH|™W^-´®5Œh…0ç§»ûSߦ~>ØÍSÊXmCˆË'æwI'm.‹J~QÑQÎjšÑ¯µéZF|ÛvûÞ1×»8\Ë™Û-ŤW2ÄjÑQ%m:Xk¿Nò×åöìrKT V4©ütviÕhŒòlRnVœ m gRÙ¬Çï¾~ž[ko daÇk6þ=|KH×ÄÓ~zàö·ÓÂx•÷¨zÌúÌ:—Ç´ðßr–×m¯­‡€õRYKma`•ÏXlGY±-6%ÖcÊ`Çĵ•­¾.)>õõÈsQ¹Üã‘^´åÁ—O%[¨tAE#ìtt¦šSËÎÈžCäùÒ”ZCÉÐôHšIIClomÓì¡ì‡“JCy)Òt)¥/v‚¨ï2éyL|}ÑçrvÒ¡>Aw}X÷ÃáUÈIö×I‡—ümåö̬8°RE4qC ZÇ ^)¥œ4.÷ô¯Õü~ ÔsÈŽRB»žxãˆjýlÛc!lRð‚¶+KÛv·L±?Ð}×ùù¾ì߈l·z6±›¡iß)ÌÖå—¯¬uÖ¢JËÅhÞà<”)O-%RP`¤Òm,E²Ei1I´Q¬&’“c` "Æ¢"RÆD“E‹Ij6ÁDTUE©"£AˆÉQ²–,RU*,Zf5PUDhÆŒXÛHQFRŒl™( Š,FRY Ò·5 £Q& Ñ%%!£hÖ„ÅŠÌÉJm€© 3$‘`¨Ú*+‚Ð"YFE £!“`L £JH°ÊÄhÂ!‰*“bÆÓ#b4d©#RˆÐ`ÔcD&Æ$Ú4PYš2lRh±±™c%ˆÖ4Y&DIY“LlZƒEED$’ÔLhÏóÛÔ£¡ŒŒ tAêÖÛ*²Øá¶YOðÐÛh5b$Z•”/þ&€6Íbó kiV‹,^ÿAOó[¯¨«ÄR,¡Î•óxŸC2å,]ж’»g<¥‹c#k#°½X«¶Óì·” ˜|{+ri2Ý´Ä ·’” Ôo~QÏ~ÐÏÞôÅÛJm”Æ«‰hp9*[Û#_Ÿu÷Ñh…Wgfg¥£LOYÂöŒÏûD¿¦¿‹…*ÃùçM k?\µJ-ʬ½æ5Ӟɱ\ÝÇ~=ïF=F²ìnv$ß=Üo7qÀRtèM¶‘Û(õ÷Øò×@y Ñ­] yØ‚¨zº(S¥;°†‡èéÖÛ®ŽPœeŒ’iÈØÆ©šK°­ËœöLèg‹]coP¢žõ‡ºc Ml=BWJ/RÚ°‰UˆÕ¼J-…öRb õسå¾%¥&ù}ù"óõg¼«Š0êTyq)ôdóT{\º»MN~öyå^Ì^Z!'ä}tôß9›/´¨ú,)«khËm°KFsÃFzg‘9Zå_™÷iû‘ÓG²è 1!Ð}Jhz¥)ù_8 »!G€¥t™gÊw&!燑p²LáÎî´;)‰8åwÆ|‚y¾çÛÈ=ƒˆ@V)ÐÉÐÒľKäòBºM y!N„òŠ<•£Í€)^”ù:B„ò ä'°RKĽ# ¶ç4L%¡ÎÔnÙÝ2˜Õh¶¨Æ¶Ú,*˜û\á=¥¡Ùvrhp¦FY^Z*ÅÈk5ØÊÄóœ)dê–¨‡(Á¹•¨¡ki-—NØcÏ›Ûe”ËŠYÚÛMTF™‹;9%v-…ÛhqmÑê¸ëIteë*B‰è.€û\°J†±‰ØÍëL™C©èθyî´dÚÆÎÎ7V±@8IT­ë-¥}žmùžõó}šŠÚ2Ûšò=“«5ˆäŠ,ð—ŠSÚ/Þ]%kX`úýôøûqH'1 N°¨O˜ºË@(JQ¢"‚Œe(ÿ6†1øÍš+œ&à ëžS¦"A>¿mÅ´-5¨p‚”+c»~^W™Þx)õû J¥`˱Œ{ÂübñOaßw“ÇqÞ¥!}œ&䊌·, Ž—.yÖtôN­«MZ¨’Úžió;q- Â©U±J}®´¡/ÄZ nH›åíìP7ˆ²ÚOˆ=å½êk1š4©•Å–Ê, HQK-¦×jr¬ʦS&5.q˜zw×MãH•W€ ‰,}t+*„Z”[‹ ûÞ¼Qåm%ˆ¶Ë±±JHö!x]§!9ûÛyÌâ̶3tOnرr›µµ¤žµžÔ4EŒZèÙ³±9quq—š¬êÑó²ò¯¬ŠE«È!l€ØVÇ× / l[¤võåõW>$q©vÝÙ™*]ѵó0‰â•VôÔZ´áµ#hÁm‘#Ø» {[Ó‰J´ZÛh¤ЭæÚÞ/¶ÚÌÉšÖÜ÷ŒbU„Æû:…—Ò ËŽÂ|¾º ÀV?X‘Ésí¦n­BYyˆËÐÛáEʶMN3®›K«BoU,k/66Å‹ZŽ7×>ÚÇ'[œB^¦JPa/JÙBÛŒM–ë0­9—š²*”ðˆÉ‹­Œe'µöšñJjÓ£Úºé-« ÐëCJôë£o?‡€²m>‰âO&[¶2:œ„‹2 ~$9¨'Žò,š³Ý-$雟/YwLHT4ªN~¢äŒÔŠT|äf¶ØM)wëÄŽ}hu•ž&xYâLœ¥¢ºK¬Ì8EmnSóm»Q¨Ýg‘Ób¬W7mvmœAm×4ºZ ¿¡›^“¥b•œ:umI2à«hrhÛ­lQhØQ7ç»xhª"«ÚHõîw¡ÐêØª÷¶¨£ÚÖÆc~kZ#æÃ¾ž°B™¬Â%ðén¤ ¥ª¥©ŒbhÑie¿çÞÜQj³ªÞÔ–§™“B•FR#R‰œ>÷ŒQRé{;9¡Cg|ûÞ§’5»C“B4ý°yžÈÖ²6ìÌÊjÈ!kƒsÉ5)-§õ§Çå¾õZiÛ‘XMÃŽ:µ Ô–Fý¶ã‰f½eÛïsbS+CŠ­—7:Œ;EóÙ5Kö›¶Kl-N¿µÓ-RP­Q…e•ìSõš_xÞêOckd)3,e‹æ±>ûÓáãµ€}|ÝǧfÕ·Z65Íóx§É:uYÙÝuC‹d"¶ÁÞ}4<d¶<‘¬KP‚*J[Q¼O˜Ã||8ú2U6¥W¨ŠR±tÙ¢?>ͧ[}£Û%!ÖÉÆêzµÖ^³Ñ­FŒk*óËZ}]Où#³ˆ#zìëü’wó>$=3ižŸCî%SÐ::õM!]-Û`OfóCGí}Ï]®[g9±'›‚voê~jõaí`œg£§Ñs¤3Ô¹Z¸ö&;Oå/z˜Ý×@Ñ B¸ 5¾gªG³¾"ºhZþq°HzLö±ÕÀüQ½™@)`}?Œ77ìü‘×zεOByì|á{ÙËNȈ¼¨ù¿–âz˜É¥Äˆ…ÔDö{ÊÁ`¡àqÖÄ÷3_¯Þ_YÏ_7zýÒû¥n¼1<×>ˆYúü!ýoˈ-i1£‰"A¹øÖQ9MçÉR©÷®‹£à>guª•ÖÜ„sœÞ$ï¤ÎK°!¡” {Ö«ɧ£™ÌĘ¥£J˜ƒm [RGYåúzëñ?ÓîQè÷ö–GDMG>ÂŒ°‹5ÉÑ#Dkií{ñþ×"´]aŧßjþÖ(y¿"äDþ7{|‰ÉìáI.S¤€³ Lë:#}œ‡]²–‰Ì3[™쎹½—u[ÈåþX½@G²ˆ³ÑÇè'r“#ú__w|©‚Èg'øÂ4‚ÅœT†Ùg‘³ôÁÁ3ùÇ4‰ÁD´ˆÉ4ߦ½¦&W†¡e |›šk(t@êiàl£|  AGLu,É$ÞS£š^ôꌠ:1FK?ÃŒoä?Äñ †<8î¶ç«]@ô¸@#ŒÚ ©??¬Hs¾žr‡$‡¿8óû&>>NSø®÷ícN³”KêEìóêx3ÑÕ((ã~”YıgO’kΖ(Ž}ãŸé =IÇGÙìÑB„8Á2pÈD—;xùk&È“™C¢Ž(äÙG’‡‰*’RÀÉÑ3(q–ÚHIƒŒA_‘Î<;˜Wøté;½=ÂO?}|Ä¢ øqÇ ê É– ‚l¦¾’=…ÒªÌà“ ©21Úq—æcúët``‚ Ñ`‚ÒÙG¶¥ð¬y*t§+„ \²qg ¢@;XS[Œ#DIêbÃŽZN$ìâHmíÇ‹æbK8À¢0“³é˜¢#)Qµ€HÙ„ “gþ„Ïmè‡í>ßÂ=–Ÿ¾ÓÒSì&üc¤ûó~—“!(wh‘(Š VðŸl=ÓzöV_IkÔÈ`ëêÀ@óŠÁÇᓼñ³„@ÉQÀDZH}â €LçLlãHg'Î^¦lóJ›X'³$ âe(ÎÖ™#³£g‡¢Å8pŽN4pˆ¢‘E¯~ê^ £Œ#‚FÎÈi3"–Ša`"’ȰP8GdaƒÂ$³å^f+™zó:ÃzÎcêqLŸ4Æ÷ô'^W½Îþí†@«<~ ïƒïÊž¶Š}wüÜq!C*˜þØv|ù¥0*ÿzö¿jý?q„ú”îCä(è‚€¡òB >@®‘)@¡ iÑ“ÆØ±ŒƱm‹&Ú6¢Ñ¢¬kEŒhH'ŒîÎ÷Ôü÷ÆåJü•„nŒÇJèOŽLƒ7å9>~Óë$’ ü¾Ë¸Ý&†„zS^l)çè>Msbñ\ª.bæ“eèW$¦‹S´gFÄŠ ¼½iaoB@›ÞØËÊ6[}w¯ž^p¿-³ ÙÒmb˜lVXH–æ„8fRfK­” ŸömÁ»ÕPÊ$“Ä™ÈG×—Ðy'oty'É ²ï¾ïxn:ć[Ii†µœ™·mìÛrù0ùÑÞMè„ò‡üýžËóó¥^‡Cg·bk“6ºåQQÄÎLŠô[ªçÞ<œë.EŠÌ%J ¢ãðÈ}¦Åµîì¦úZ;s`ù.é¡)<‚•Ò/—^yƒ S 4ƒˆ­#¼ÈôƒÕSäPÐéhB“¥;m Ð+£¡¡ZÒ)JP”Ð7¿Žö|‡É×» hüJì4ÒPhÐC@û! F€O¨Cò{t@ƒ¥<ö ¤¥ Q:O:ÓìîÊ:ˆК4¤èH'@!Ò”:h…òN€éJ_!(@‡uÄh݈µ9j:…PQä…uŽqòÐù•r¸V¼’uHç ÜêyÙ]F¨\aÚ2¦%—’Hy ©‘G™²mmvЅ梒µ‹YšëelhØ‹m OE´Ïg…í ·gHEˆÎ­"iµžg±S lîÙδ 4p†¶(Ê\B5–VòX0´-êžÔúÍ>ûÍ™‹m¦´ÔÚfkꌱB”–C¶­ÕŠUµ¬ÕV )JD‰´ªDYõ—bÙ_h¡¬%;Ͻæð¨2rw[sPÑvz%ÀKûRûëÇï°ÿ½­h¡Òä9H¤JCú×ì—Ê>Q8¨\w_Ó×*¡ë_͛ӉF߯ß|ü¤t7Åšì÷‡M'K®ýðžAyç!ÝŽ E ó°è¥ (öÅ’¾wpéR€Ý“H”¯Ê BŠ@§Éò„iÐ>ÈyÒ‡’è×’¤ h èJDò/%=‘ØziR”¡B‚ìbgm¬yQ†l¯-˜—Õ%¦—ú}¸Â³Þÿ ÜáKÎS·òÙDÒ©{V&.ÌbEQÝ\]7©é60ìmµ¡Î,Ô³–þéþÿwÞ!?©é$ ðg<d¶ÎH ~˜éeûùéÌïhlQñ˜/ÏDY>ÙôÆ „~¥û:L…q„ 8»D`A½BݯÒßï8²‰¢ r·ñ""B¢C²38I äžMæØaáÑLÉ¿/9¯c2CöÛõ}›ÏEc²ýwa˃ë©Ó¿¿ßí½>÷Ïë\P#n¶%°á©ŠDWÉ«3¹ž´Oÿ½ìSÞ>}þ/ûUÿwÿþòÆÿÚŠH‡û'vïÿÿ¹ndð­‘ ˜[Ó”`¢¥‚ñ!HxRæ ÿçDJƒJƒS+hz¨úfêºÑÛÔУ=Ø÷üX“áðƱr¦ZšQuDÉäLT›!ˆ2ã2"j"‹Ü9Pú3s ÑI„å·&˜ŠR%ýý|Üxúᇋǯ¢R{‡ÎĦùÏÏãÛk{àºf>ÉíZ߯íâzïç¾ÎÌ-ß.ã]kc#oÚ<ËÞóë=nöÛÍa4õš!¤¾&ÿÜ<Ìòd¨ˆˆL°›…täÒ0—©ªÅ(¨Ÿÿi¨˜”-£p˜©OËDJT¢[%HÌ(õI»rjCÁ&C Gˆ0Î3"ƒ‰Òƒ‹*Pe…P-L2úÄÁ3ܱU">|ý’ÐHþZ`ˆ£„Ra'€Ü1IÜL—TökPêr a3%ÙÇq„!&šH³…ßMT< ¤Ý*râJ"T{®ÙÚ¢ˆ\ëÖݾÞ;ÅÅïŽúÅãÕO.½JL—ñõŒ}ã!0¸ßAõ™E?ïò±ÜP’—í¦‡þݾ÷ƶþ7ãç±iÐþmµ««÷%ʼ,–EÿðZ*My–” …Äø‰öûëLB|VËëv³ÚYñVœ%Á’–MM]„ê• ° …-E¦ T„Õaÿ̬‚o%º&ú(YkEà“`“ZmÙÚC¸ÏôRª þú3ofÔSšªÌ]“hØÿs Qì)Z€3y´N,›Y€FmQtf£þî3ÿas–ÁÎ\ÊÂÄÊóBs.œ=ÕÐâB©Ì"ÛI&þ'Î<ç5fѹ3Dÿžüü)'À~¿»Ø?ÐØ4Ë-§ö4gnXcC*tâAù&K Ý%FH$‘&Pþw¿ÇÌcaüÿÝ®ñ¨Ø1¬þ+”ÛùëïíÎþæxe´i*¬üD;hÈmpˆ3P”5F I˜@RRD)M²ÀŠF4¤ `‘Í઴wö#6eëSøfS¬Ûá€@ê­1=¬.fI™Ióa¦CÇcù{YøÚxKl{ùyù{6ËÕ>«úÊþ¾¥-< hD‹«¸r¦P©3Œ[lAI‘²KIãã ¨ÿƒôÿ¿]^ Ñ­¶6‡ý¼À#ÿw_Öy˜²µ03ðº•$‰)Ð.›  [A6ãm×þ¬ãÿgßî·øtçþ ÿ- eÿÿ:ˆ” U9í´gU—Ø›%sÙYK¨>Û<ʽz•ó&§½“OBû)Mt¢‹Ð ì#Ð>M Òø Сì(ТòN ñˆ(¡:^‚ÛT>w¾ïi :W=E¶‚®ËÒwc¤ t´QE/C†"Hÿÿ»þšÿ“þùÅÿæPõÝ­¸¤5ÿ.”QŸùaDßüµ364árÿtk1ÿhw=@ÉÓR»K}¼…§>ÏSÉÉ÷8ÿµÖGŸG»g)×ÞDÓ!¶¢¯¼ÈDjH©ËëÕˆžÅLäàîcÓDAà®1÷M“ò n=^}G¸ÈOÍTlâɹY;‰%¥ìôÏ´ÔÛDáBþÑÛXëêü-¨>”xFíg¥:ï¸ÈMyk9kqòÝÆ67>pHúƒ;ötu®üŽ#]ô¨É$K¬àÒ’{é QiÞ®±f´¹”vW¹òúÍpþµÎe6ïnS–zA§M‘?}ù÷W]ëê ut `#Û c”¨›tÀÌtÞå‚Akù£×8.°/˜†>§Ó¢9YZ¹1È¡¼Vk¦fŸ»€ð)¦f"“¼ÀœÜµÙ±GH\ú€á"Z) ÚÝ¡“³E‘ŽˆÀˆøÁ¥ÏÄ9ht@ËCÒ2ÌÂ(‚Hð 2@ùÝ?HK…2°X’>@/Ù܉æÞøû€6ðÎ$ŒO¥q£žþö9 ûòÚï»ÇÒ+gZ†ò>Ç>îè”QÃÙ 2HÄ"0è4‰¼ËJBS@i(O.6WÈt¥&´ 4Bop‡O!*¿ÊÚo¨¹7|‘‹ÎÖŸHjLP„?[º*lXœ“YIªöÝÆEòFbI5…«¥°¢¯¼{uâ“Ú÷(ô”’ÞeS^|ûÚÔ+ n™n¬Ú«F4cÚ{ßoŒT\§b!š»#JPÆ™td™†"èµÃk:ƒFv5JŸkÝë9ëNgçËé<õOHÃsÊI„GrãXŠÔª&²¶Ö •÷·¿+7ÉW›DT·Õ1˜–_Òê¡m¡,ÄÆ]=¡Î¢ÙØq g'ÕКZÙ€èÖ£H-sàdÔ4‘¢˜,4۽˘cã>li+­´ÕʧdüKÌÞ²²mi,=´Ú~&š’’ÍÀ‘“QaU”pŸ»ó8¬“±È)Ç6‹-,-¶­lŠ@þXò7¢TΧmFÜéµ¾­í]¹0½2¤3¶-htÛïì÷Ò6©^YÑYgr±jy\Óbò*sT€{Æl˜ [Ö•Ug:Æ6åÛO4ë8´ŒÝ™Ùµ#[dQLªFk"eEYÔÚÙ“&Æ—p–ÓK9ÃR=(6X—ü þ•/®›YSª7VÞ¿‰á Úþ¾½e¢ °)*„P›l´I¬ Èÿ\Ïß´õ·+_åŒþéÑE~›0FÞ^zãÒƒƒ›wü]™Ì÷r9U?ª¹‚mp«÷bì ™ia‚ZÂS@•6ATé¡£.±’þÊqr­Œ Àc,Ê”MI•ŒÖGÂb{‘%àfrV &„° ’Ä:ï誉4NeZÂRJ %ʨáBfH÷yC®æ²9Wõý¼|ÇÁIŸŽYk;,†Ãû~=TŠ~?¯nÕ¿-h¸Bž|ËFÏÊC]M~åG÷có].v`çÄMñ öoü~PÖkú€Ç•øh‘Õ7A¡™2„Q3ÛȬ³O**+Á&|q÷Z°?Њßâò<ÚÓü:‰óÔ~.3û*>ŠÚgׂÒ6¯¸1nZƒfþ/™;ê /›ºš€¦C©bÅEÀø}pL)öÌ-~)ÌÓqÜ¡}êök8'ß¾ï䯙ʔ:¾/mc#ºÉüë»üžõñ[ö¦èöIQ²=ü~ÐÉ¿“o3fñ·xób#Ú€F¥èÇóõV÷ª>ÿRu@¦Æw÷c˪ö³=©¨+6íÈkVéÿ_±Ðzˆ–ß0eüx ùïüuß_M ãó§í‡~yå{%wÚ^ðÕæ,¹ëV¬›&¼¿Ó(Û_"óC™S3¿žŸ*CÓOEèÕ4mÙæ±± 2‰G åŸ×øïÙ…|ÉþºT¹ô×b1_?-°wFý®*|Û_Ü…¼>qýÇ÷ßýŸÑïOîî¶þó?Ïù?ñM»ë~Ë÷©iÞ·úoÑmÏÏëPߨªÅÌ–!"¥æå̦?ï©sÉfE3:±(Ü4pd¢6‚™ íåJŠiÂj›P\)J¢ƒÉbM¤Hš±ÿNÿë^n–rÛS1"ÈqˆM÷ùŠÍË$n„mRtÍÉñê…ŸÇ©ã~¿Ž|T*¶¤B$øÃé0K¦¢ È.11hªˆ´’¹I»ÚmH–{ÌÓÔ·âϺùž3n~Úzïq˜ð¸V3p/·½Oóz½qéÿ¾þO{ìÃ$B;OvîÒš!OýB2MCu‚èeÅË|$iõ¿_ íêxÀWÛÈyïQûBë—Ùõ™¶…jÿ•—Ħö𡇠.æŠ+Ú˜pS(‘G]r™2‚½ïȳ¿VëL¿Ó*kþ ]þðÿÉÏïrõÿY-íË_ßøG³ù<_ûÿÎáëþ¶}Ïø_çß²L*NLŠÿ© ‹ƒzŽÊ!à̈éL)hIªR©õ¶D„?Ÿò<øu{RÇTðÅiCÅUTFº´At"CRICRT“¤¡ *‘0‡ôY5£ÒÚ0N£2t–n ‹k!´‚ 0H’$˜¥†®ªvÊ/ Ѩqd$´Ã".bd•&–LB³ðÍÚ¬ÑHKwú7ïÇÏÉë—òãú³AKW56RF‘“ˆkýÇ5NQˆÔØšL²:ÍR…NâdòYƒwÈ©Br-0ñþº«û¬“yDhŠÎdÅ=ÌZ¤Ñµs3pIÁĈ2Í)¤ew &p†©Z©GFD” ‹-¬“\pÖ Ḛ(Q˜ýÕôg9 “-@k?\̧PÍ×êâûÆxO __>Þæú*^{ǵԾ#2öñï{ÎØ M5áÿ—þ7ëû³–’±q4Á!åYÙ„d€òÖaSÿX€N–3óõ^¶«pu' )R–?“†_w±™‚C8îu˜ Š+ uˆrɱå^"V*²ˠP¤{n%ê(Â@î à¼æf£F ©‘vQ–®¥“U.›&&È›…SUGJæØ8…F!é[PIUQ2`Ë™Ü¨Ž¯ÈÄ éL7a0@„”¤Ô<Ý­zÕ¦¥›Ú&ú}ýµüO–ÓÚm¡TXÖQ£÷—_ìü”Këù÷¿Ê(¸Bæ¿øŒN é½ä ÿgõ5iêßà†J‰š›}”äH̶Ò9¼ÜÖ/9FL ËOÃí¿: õyŸ;çóO­û þ­„&8º·¸‹”œ3!Iý†A²¢Ñ4 i% .•TªpŽÝÀÐ* N 1…ú§(‚ráø²ÿçR «ÞÓÔ¦qd"C¨Ä’ßÂù»^Ë­ÓÒÖ“Øõ§–ýL‘Ib—þu„æ,}RbQ¦è·ÓIJQ”&#ed;êŒg9IÈU1¹sÿÓ*)k"»º7-É¥5ºlÕ¸‘å±&I¹(PI=A‹i K„ƒV¢>Ch1'û]8¹´Œ5ÓÛ’øèš#45u“D5JâAÌœº4A“?+T¦qZfJŠ†Ðœ§ÃM3EffZ!N¡–R‹g´æAk%3¢†LpÈ&á R ÃZp‚JY)^Iµ™–}~Ó0ûè—Én†ÿâÙõï"¥È" ¦™$ܶ¤²ú—ì†q$(ÊÌ.D²d å@F ¥3j 5¤¢Lˆ‹ðû³Ÿ¢˜ñ(ÇßÞË÷è|n‚[憿λ÷ëÊ"¾´Å.yÑ6„EÂhA‰Y•!Š(ÿ­P¨”)È…¬JË…]UhøttL‰¨¸†I$”’#ýËæ`8Â%NMrS¥aqä0$ºÍöùïãï‰ïf^ö®²œÊVüN\•*J àÅÀ’.&®‰u–«üWúšÕ³–ÍjÎï?–Ë){§õ¹ºŠT=Í´ôSYø‚Öj dbÄb!Á0Õ¹7M¢&¢‰‡jœ¹$É¡Ïõy˜TàÑñH R,­>*a(§ð._>ƒ¢ßͳŸKíï¾Á5§hSŽ`Ò"jæ$%&\’‚3'.®šš¤Ýó_¿{Ã}1þýYêBú•MR¼‘ûß·ñîÌLÉ$1%"ÞOf0Ï$€HLfd¡8Bq©v¥”šº–!HÖ^&gè"Éœ´'ıU?؆·3¼“»ÿ: 2I„ʨd¨·‰Ñʪ€°êÌD‰Z*¦YE™f\B“Ï*]9 ?ð£žFÍ™Àv 6öu.鉸\@1fÚ%û“䲄Èò“ªAÒ’IEÄ"ŒôBb’ S?Vç )uj1”‰j[ÆÕ4¥½Bi)SwQtÍÜ¢T jŒ²]º…š ‹BÚgWš$#öñ&bNLáèŠÀ52k&]R§>*“Tžd N¦j©K1‚@ANI‘2&DËuj)Á¡[¢%êš?“m2þÂÁÌ·˜gý Vá?±¶9*Æò Ý('Š0[‚…dq¡H*Ÿª ýC&ˆ‹Ü0Á.E”\:pJTöZšV.¨ŠÁ%ƒ**q ©ÀWuˆ0˜†àú”“&["X–™Ù˜œ*õÔæ„HLÌ5|oÀK¾±ïíõãï¬oÛíÞ/¬Àܵ$¡r %Ê •[¶õîç" IÉn¤ Þb¡|0«Q™ŒÀº3IA,úûïy¸SЩ4̃^é¿¶¾¿{èâ0ëãÁ’ÿ˜ý÷K!=>±)|¤ ’‹Ë,m!ûÌxž¥ëù÷½ q×ÄÅÍ´”j¡P™!ñW´œ7p32LAiõ—Ü^´´7̽<µ:ɸ–[¿óbYÔfHÊaÅDÓˆP4Èn¥9-ÊAˆJš!j6ïR¬ÍT“A¹dÊeˆ«þsö³ï­/ôÌ{ÖeT¥€¡-úËäûë£=Ë󷛯ø}±&í¢ ÐÂ$¤œ;ª¨Â*–“‘-©ÇüÅ›©¢ÆO÷-‰Ùlå>Û£´4™d‚a”D°æE&\CqóÏ×ò~Ùrûë)¬ÞÚnºk›œgÌô¡€X€A=6*¤oÀÆN\©ˆI @Ë¡m†Réfbhî°I¥¥!Pš—ÐÒ·S¦–""î¢MŒ,:þf1Y ‹C/¨ˆ„ŠyoR!œ}ÈB( ßbfE÷fáe cRaœZÙ²"\n³µ°*דe¡=ŸoÛ}YømÄó¸×³ˆ¾:ê_¢è¾zùóÛÎZ>W¼F4˜÷WI4ˆïÖá ,hãr±ô©B ña/Ê4 ÷ç߀~Sì±-ûàÕã]|/ƒÇÓÍ^}Q|÷ „þ1t QÛ­ß.¯§¿UàÀËóùëÉ£DQ‡íÕî¯&ŸÏ¿u4EE?ÞyÎÄWéÞyÜèÔ¦žßN»ÊåŒ@Qk1|VÈÊû‰9 TÍ ûK}ÒdAcQh²Pöê½Õá(Þ»µ~ÍÏd-tÝ/žì\ÛsÅò¼jˆ1§ºïÜìÒ3Û«öUáñÝ-¿ Âö\Óðê¼]”$–š{wiç_fÞMõ\£$†Æ½.B —ùôr .Òïv> r€R÷y1¯+šé%Õ\"×ÂfWÖÉíÝ©|:#‚¾½Ö'¿rÃ~?kÄQX }¥Š-Ú÷}ßœ4‰ò45Ñ£È[Þäb|v¾|í}—ÑÖ [áq-½•¹i6_ æ1Få®TF—ϯ1¾z—.—îW0WÃw¿èüþ/¿îüý¾;øš­«þ5Uo᪹¥¤Â€÷ŸÜ¾y!þš¡þ|(ôŠèl"¡þr"ÿ¡ÿ_þߨ€‚|UØR„ZQT§‚Ÿé¢ƒÒ À°*¢}ÈÈ ˜¤ A2 ôázA¤D ÿRÂ1€?ôW uý~ÿõcü‡ôí_ê?Ì<‹EÿÁee°¸ÿnFŸû€ÿá3¤?ßh·‹™ç&í²á„{<:(n"£þîD8tú!Ò@ĸ̋ðó]䓃;œ;VEê>G_!ðg^5š°*|ùùzo¬}]%-Í”6§¹oßõð÷÷ÇÁèá4û Œ¢ íÄEͨȉ §Â'´}{гÎ~DuUFzHÁb6¹·jnó½ûõm®{Ö;ÔsRSw*c\ÿžª¼a¯Ø ý®¼˜®’Å•¯yI#eZ÷§‡;S`”Ásž· *‚ïä âÅo¾1÷T·«GN_Ôë\n°Î8åc ˜"e3¨¶N3.T:Š˜–ÇÂÈïtÀçðÈäÐõ„¿\ší²|Ðî± LmõÞh’~µPs(Ê#äS€ÏE¼C~—£œÇ0 `cÿ´§ßðîf̱±ã­XrA%m-ÿN¾;Ñ ¬ ›_øuàšÚð?÷; «fpæ–'$-ŸMyͱ(ÌF"ÕÛó]çÜŽ¶úœs.jE‘ljRÁoQ‚Åí¬Ü¢š‡<Ó9Ê: _Ó&Œ…#ý{$Æ6´Â¼‹Qíë·(«¼Ö„L(w•“è' ¦ïëýŸ‚{ÐlB£³.ÍHWø,šË/$–´Â[´E] ÒfLÏH—;aqC’/%L þÛ®qŒá‰%!©Û`Õ¥Yzõ…±žØCVÀVçHG¥ÑÖÆP’ôüÏxõì¯F‘%œ‹²‹S›e¼ê63sgv£8®_–ò‡’ǹŽx‚â$çcm¥¶ŠÕj+h­bª¨ÖÄP @ªP‚´ˆR¢€R#@M(”©H,«E¶Æ­ŠÔkV- RAB«JªPPJ‘ Ð¥·Ìk¢.§µ½g-»í0z“ÒÆ“:GûZ}~1õï‡éå …¡awÚ‡¯…ã¬÷ëbzK}°oPÚr ¼C—ŽóÂçyò5¹4›Èº±æ©>8‡¥¡ö=|”òù yÞéé%f³I”ÑêÞ7Eg_m°‘%÷ž­™‹ ±ä¿x&ˆsfûKX ôLöeÊ$Q©=b#éλMЍÔb‰[YK«ï£xøà¹‘öØ%{&ÄS°¼Šîe¢Yý&ÑCe’ÉfO%ºQÝ’ºäº—‰ßXs^Ùn›­¤W%§’›?="dð…¶O®—ÏEëT}v°1R¢tGˆB§¶×¤uPòz¶nË„‚¥k­r ‘œÆ–ÎûçвCgm& ¬´S©¬¥‰ê=ï>öijΰÊ2øÚùžÞ¯‹ Oi%é#iËr¼¶˜”p¦´ëb>Øqwš³X^K"¨ºáw kg¾Yõ³ï?9%¥%±N¸£3*¶Ž²›¤EHÅÒäÙ5³cÑ(:ÊË—ÔâµàèžÓDÌöFB–r\ÝtyY«nK F¸avcEÛž’Ê3’HV²p1`A˯cV¹¦–Ä^µ6[¥ˆê×íc *FT:‘`‘ƒm•mEzÛ[ìf²é‡[üÚ9 /7¼ „ÓÎÁÔ)p[V±¶-«T²“ë7Äól*Æ2Úy…pÁ=‰ûÛ+©‘Yé*óÛòïkÉñIÇ©Hÿ+›^ÓA®Ö¢&GF˜A@NSî»íþP·äkßf﮽>Dü‡ê÷2oÃß“ß+ŽM-×IQòçVž=8Ñ¥ÞáñtAú Ç}½eï¾xù¬çgóÛážûs`HD^×íÓ£ìg¸¡]Æ BÌ¿Ÿù#`c `yaYdRÜ´'h|!Yï° l©×°ÎÚRH”Ùx­#âdAÆHïPÀòS’:§Üµ“Âú@IôçÄg£Ù­‚<*BÒXGq§ý]f*¨yXðð€<”6E?AAï=³Îª1äÜp€þ^?.hà#‚–:#dwÒÀáÑ%<¬ˆèÇÒç!<ЈåEGÃ#ky ÆÒö€e[@aœce'` >øZ;8À죌–åñ}KÀ“Œ9@Ò®£9ögŠÆFM˜"ÈÏR~ÀUÛèÈ_´‡G‡¨Š (#ÏD_í¯ÈÉ»‘ˆZe1ùì/sÒ° C'ÏoÉW]ƈì÷˜"’W1Ÿ²(r„—O÷<¯Þf#²îÀ÷}ï}dfhi&ÉžÕš¡ñ„íÿÇ¥ÝfÉB^™}Ûúh@ícn6ýH‘¥2ƒàÒ‘G.Ñx? ‘œ§¨ÎuÓ±¿âÕd±W(3ûqE`àó?ºäeo»š»`¿$¼˜hKÅœ©Q+ÂÌ~M˜\œñN؇.A"ÀEXXï¹G(ܱ¦3åÎPÒÏr2ãq0Û¾–5Ô^fȳ (íVT—}=U Ÿk=AÎ\!Âi íYÙˆ£–5”Hó™8Y^á µyÇ €A³©îçzòµÎ–óüìsˆø…9Éü¸¯¯¦+ïOY ˆ¿™êæw ù~¾¨òãöU(˜²5 Α+=~æFŽ8@£õ>žäÛdÎÿKŸ×T‡ÏˆD"ȱ/[¯cÕùBC·1«´.èÝŸÝ=œšþqíCÕqùH‘‚3^Êqæ¬PµïlAÅ™<Ú;8²,‹ÜÏ×#4q.ûÌÿ9œÉăî»`M¡@öFI³;A“AU6;¾¼ö¹¼"6PVJÂCA³Ñ=縀s9€=•úß-3vÚžŒPÖHÂõxFšílf¥ï7›©5—Pö)ä ¥NgªF‰æy3:ëN÷=^zë9œðÜòc*Ÿ“•ÕŽç»èÞ¯ªïwÑ¡Pš?Ý¡É9Lcìg¬îð3¥—ÊŒ`± oðÝ{´NzA’l£-Û9»’pNÈ]!“M AÄAIÍÀ ©lntÉ],T,në¥BAÛ˜é”Ò8fˆScF»CUÅz9rÉ; 6…Îv9²Ú'Š8è’TýC@å^a”»S¡årú¡úÂõ¿;Ê눟2øk*„&ü~CšH*‡I}â÷yïåszc3nüÐT°c¨^O>&gõw.ë¿çLzl¯Ýóµ›î>_~Qß§-Ô–û~Ì2GCKO­WäôÿG"(cà;ãŸÙèu ~s{ä³\<+4å7í,ÄEò¸Ç7”uÈÑ“ü5óµ:{¨±WöúŠ®Ÿˆ­\y®÷q΢©VcÎÀr­w[šŒ¸Œþ~7óòb`jú~_óp~زîƒûêN}ºæ÷¶:ß5^kj~èDZÍZ+Ê&gZ·­OÛ]£_}ùZ×V=W|Uë"ï4óŽnF?5_22óžu×ç^Q•+¢ŽçQWYŸ‘Öµù½™Þó›¡ÚFÆó¯¿rúZ¯3ÔõÁ§ÕG{˜A‘Q«P0ʽĜQÉ íõGrÚüæµÞ¸!^÷žÖ{ñò.ÔkH8Yæ¼™ò|ê<]t¡®“G’¸É1Û¼À삹_—C¯ˆ*Wâ¡<.ž\òë¿üÁŒcÄÓã›F£ yåg6O¹@YÀS8gµ¬íŒ]_ÈükEÚÉFQË&éAÇëÆmßçõ¾k…46Â}‘3Ö]å»Çz×k¾ºÙwúo©ß_Rí0xru:<ˆ¼åäØ?×5˜Óî9²9 !ç{.-cú¥’¢Z·|†Ô™.:<”ûwê@¹ÌLÒî>D ÓTøQ+˜ÒM]±á˜¡¸}¡Óžú‡Ãp5&ìWzABÃ7:äÎ|YÊ Nε\áÎÂÔëùCFAß¼gÅ’vO:QœíFŒdälŸ/Ó7,®ØÎ»v[ çó·T}ö:"=ãx;ŽLÌ2IgmêO!ãP+¥7D¸Öã‰]«"ÌD@âÀ½ˆî!£Ä¦ð°O´¹Q|‘ÜyŸk¿)ûæãoqï­_ÛèŒØíäàG«³®É˶¸½|„ÈNJÍ<¬jÕ&TjÂkFŽAѾ+ÉÜŸ½@ü•³Ž;C¾#3ÇêF´Þa(UHxGŸ˜ÆÚÜ­£j+QmŒIIª/Ù¹hÐh¢’÷mÒ#b­ãm^š¯•AX6Þ5nj4E°[¹UËARQÔE,Å&6¨¶4bårµ±[±F -oÜ×Ñ^+øW(«ELÆLmE¤¤¶4Eb‚űl•KEQF 5I¨#¢Œ‹ÓW,Bllm¢°E‹h£m£llh«*(©(£å«shÄ[Š Q±µF«ìÜÚŠÔkÉ‹`Š#FÑ$b2Va5‚4bˆLÔUŒAD Õ!ŒZ$Š*" * ѯ–¸VÆ @ÅŠ6ƒ1µ`Ö1ª0j“FÈlV,X“åÍIQQ¤ƒÑ±FÆŒP˜"¢´m,”Y4i*M&¼tÛ£cElch‚ȉ¬h‰1XƒT†´5k¢¨±¶(1#½œgÅùžŸÈê`Yá¥LQ³‹„$\0ÇÈbŠø’åkÛÆ«¦:ôËïZcÂø¡ 6F8Ó0®&P’.ÚŸ™5 fš8Dhˆ„—ÂÞn&’ "ù«ÉÚÈÝ­zî—<öèdt·8ª§Ô§´-èÿ2¦ôÆ}^ëªÒC‹uÌÒDWrÁ’2C\ш>ˆÎ·©Ó•DN=3âÓÁORÄf’bŒOöãˆ[X[ËÄžÿ<˜Ê>j;8â'êFJ!¢²f\GÃÑúFˆ”†‹Ÿ": ‘ϰòDœd²:æœððñ¡5«—‰¨DÂ-„c´#vñÔ!¬ƒ¬¶;!ñc)vw¶Äg¦.ˆ¾Ùk»k´” ³H*îSœk ò靖¥ÓXáÇ„dÁí¡Äûƒ5Q7È9‘“¤ìP ÷­}Ë…]¬˜æþ]JA’šF,ãDQôµfRŠéâÒA¥‰8“Kþ²ù›ŠYõ8{‰ù¨?×É“ˆØJ—¿~<}•?;!²ž[ÝkKuõâ¥J\Ýîõ¯¯›ÛÞ´Ÿ5V\á _ñ‰¥u»û÷s&Þr´_*L•k=]T¢¥`'¿rÞ5MíŽ.Tª~GÈu2/ç½Ͼ¦ò—º¥Xéõä7Üo(( ånQ?+_>Õ;"’ô£¿É“©G£ò%í°³ý#~K'b¿_wÍý¼ßÔ±³Ã¢e ´1ødŽi¥ýH㸺Ê:(¼üÐý­EÖi×uäk:[ü(Õdœk™r`…iúºÒ®Ö*?‘Ø ùžúŽŒžÏ]/3®*D>ˆEÒ8 £'}#„lžâ`k+ÒÅ—(µØÌ#†¤»mßB¢AE Ô<ˆBú·‡kœÎ®qÙv¶A,‰\OñÑdk¾Öhk*O½ÔPH ã$N>Òýê|©¬ÿu÷ß3mä?‡L}úu2qÊCD6çÎD|·øD}  æá›™€4ÔÞ]Âè„FK8DÚméˆý!è÷.ŽNmdïâõYdcƆzN<œbÎ2hˆõc# ˆÇŸŠŽ:á’1ÞYÆ>#Cá%ºÁ§WÎûnrã<ÓëWSÉk¡ð¯ägs'>·ƒD'8pçO8ÇP€@áÅüéâÈœ[ÓŒdŽÏ„ L!™ÉóU}¬bÈF»ËrÇGig­k4Ž ËäNu×t[O>gÆûGȼ ÈÛâ¾²æ¡~|üýýþ~ÿJçúdiSßæÊÜ?¬ôÔTüB ÐJ‡ò_¼'°#Jàc²Æ1éÅ‘Œ§¾ä.â¾L¿O³Õ@´²¥1˜BH‡U—3“˜·óQ?ë(Gn¿}ªá};4peþD#©`YáÓÐäHëîóQ¸€þjuSª T14£ko\×÷Ïoÿü0º§üPÚESúâ ÿ¢ þú(ŸÝ©ÿìU_A›ù?íý”æ?´¿·þÛûo/í-kýùZŸõ_âçý3úÿçmuþÓþþó“Ø¿.eV黿Íy=ú¨õ¨â‰_ìîgr[ú‘ßýò¢7Ç03Í{Û÷ÝÆæN×ûùŒOkª„Ñæ¦'Uš½üñµOæúﯢ¿åÞ~ß;ô<ýµß_ãÞ_ÔESû Ÿþ@TÿŠŠ§ü±Uó*ªš ý0ATú Ÿî©€?¨¿Õ_ë «þð"/ýÅþˆˆ?Öþ¢*Ÿäˆ+è?×UTÿˆª©þª¿ÁOꢃþŠ¢¯ù€ˆ¿íƒýè('úà ŸØSúÀ*"öA?²*€åÿ}USû ÿÚEü´Q?´û(¢¨«þ*(?Ù@?ÒA@•üDYD@?ÊEÿùŠ É2šÎÁG¨9·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ $‡Ðh  @T‰R¤ R@((B¥J$(D© RªQD ¡%¨ª¡(DH P¤”  T P@¢”H•H !"ª€(‘ *¨ H¢  UHPP ‚€ (   *€«ê(@|>¨@(ET¥$¨(¡Ie††Û0qÊ «A  ­iB€ë  c¤”€ Ø@—@B¨9 ­)mE!J¢©*÷ SÐ*€ÃÇPMM+K4Ì@)Ü Ó@h€A hT€¡@¬Ï\y‚ Š€„(Ó 4 )PC h•Oys€ ˆ€ABA@  R  IŠ ”©XBè¨PÀcîp ;©R ­÷€À2øªB…PRŠ¢‰E* !EP(* øø(©ø‚""Fž  @5<""&¦…Pd   Jy))$©DÓF€¤@z€Ô@h4OT”¢*G¨zySj €Ð)RH dÑIíý0¦§‚aFÔÏA'¦SÂ'’f†Q²žš'¡¦“d &"{IšaODÃBm14ÓSÔd؉å6IêcTÓÅšm53Q¦ˆòQ“Lš Š’d'¡4ÓM4Á ˜#™ 0=£$Æ ‰„ÈÐjz¦ÆDô&O!‚dhÀA‰¦™14ÓL€šdÄÓh OÿÚÐÐPwt{؇4È-ñˆÇZb’ë¾'°ØÆblºÈ²F««{íÞ®r¨¶¶‹d­FÍJ^Y9“×±õ1£6Ah€É„ó®L(0 z|?ÉwlØ›]‡¶‰KG–› ¥Aþ‰ @$ËLÂ)0š• 3‡3×Z´W^Ãt{9‹›u‚7&#·ª?3!œ‹R.•z‚uœ8Ã`”˜né%R"/ÎÓÄj>>±dí j²9W?> 6|\Úý°znýàðÜmŠ9`×OQÂÈ{ä“j<&×7ƒ%”E³ÄÌ „ ,®ì@ïýÇòwÏê×Äû·Š^6®¿U/fýuÉu}T2Ô#«Þì­‰{oÉ1_¾N¯ÍüΛâ/‹e¡ðϤ=/6p¤x—XU/—`S %²°Û9ó»çÇÍÃFê‡í†,æÛAÜù÷˜v@+ fŸ-žFN’ˆ¥|½ý&|æûÌÆÇ ÆpaѼ”…fÎê ¡›²6’†äp¯LØÉw<ã77tpšÓFÕo>®üAb?œß#­}]Üλ>pßËîDÏ_еñ¿ÐîO<Û™éŸ~É•ÇÑ>e”üÅmGƤU¢ˆDLÍÄÜ(ùFHu«¾Ì‚†pDrér¦pò|¨D‡¼ž>ujàýUZ>^>x9VÛ1 ¼)ñð ÞáßKs£•„®ìP:aP™@ˆ ùÏ'|ïyzS{¾0³øE§«7Ão#9{œá™œ&¢á‹rR†C÷Ëy‹8 êèøFzèò×l(‡äª xdÊOÊp‚iñ>LÏ,ySæï3…îÇ.Ê202V1NÝœ…I€Z‹Š&ï—`È6§¯ÅÍù°|»£¤¸¦>=®…5ÆÃ»A O‰úG ø½Ý{ðÄ㻞16p ¾ú¿ÆsLn]F™÷<Þ,ßœ8ˆj•rƒãLü+™öÑ<ëêï€ö<«~™g2¼=;™¯w¢o‹ìïcÞÌ_‹ia?1îðíðëç<æ,8¹‹Òd^˜ ¦k˜?1åE»'m÷÷ËñíŸsÅZ—–ò÷Qmò;únw/«¤.Á‹ó½½·8`ÇŽ`ÍegÕòotm?ÁG·:èrp±8¿rä>5ùkäÙÁÞo{7SJ磆oAöPÜ_„:7âý—Ÿ[«­ø{#Ú wÕ0Ìæèb¨W&ýž®½õmsxk?<›­L¥ü_Žúwž<ë÷­ÝìúëRm¦Öy–£×v<ðÝìïaô5ÄU˜%Cç1Öœ(4ùÃç6ÃËftÆÂ)Š$FujÛoáÙ;=xų‘æþ{ôŽû¾|òù@‚ šÈˆKÔ¸±Ýß'{JÉ#å1–RvÄûXÓ1…pf6]¥­õPà£Èæ˜|öíØ;!›šyoÓÍå„¿ŒrsŠ Öä&üì/›ý1gW{´ô5 >ybÅ¿/M¨£,ì9Þ=©žq“ú¤æ=œ8³µÌ@1ÖÙ€é}ˆ‰}©ƒF’äå)•[gt£’ @C3@apNn]̈lJG0x•‘Ãù€ŸUísã§äód‚œœ™roˆ`ƒ=!Nî)¤µÈ¼¶QÅ·wygœ|î^æ“Ê6Õ8X£#áœæðAÉçFcÚ È‹›Ž«SšÅG8‹È–S˜ƒŠ»0„9f}ñÝ„àŠèœÞðÏ,~˜÷~¿O'91Pû[óíòsG:ZÀ±°ûä–ñlœ¨àÈ>óÖ´4Ã;Ðù7ߺ45¡¢ŽÿdÖ††–øõ¡é€ëCºÖ€´£¢²¬cî cÔµ²ç•qVÙȵÈÍHâE’þóà:¹z𨔂yDÄvɸ®,︊ ½ÎD›G™D£ï5ÉROUf8Ú÷›æÐó›ß`ûwž?ÐósɈ’Â×ͦHžÙàéÊɈì^rÖ–tà%F ê°îlý¢ƒãñã7&ý^&3cÜœJ•æÎÔTdÞ÷ó £™UqñÎ~—Ó »‘ G×€=m`äú:£ëÊöv<¬ª‡fŒ|ÌžzhÄ1÷.Ø™ Ën ¹d­±Ñô×&q‡ÇpäSO&FÜñuA$BÀ_;0lÌÙ<¹—™‹Ê†ýv|=>l¤¯fâÏŠ3wëB§»îá;“r1ñw'‘tøie;„e™ËNÐͼhíŸ7åßœÞ:Q\)¡A(žÉf Õµpy¶ñ¬ÿÉ.gªy3{¾ wƒ›á‡ ÜÈO ›Üf•´ðfü/;·—Þ9Phîs›v߯uûƒÎ`m^øqÕsëî†~oïd8´Röìy†ëÖG×Ýï-ðg.{œÝï>+IoÕì¾pzïA)•*~ äîxò(Zô¾˜ùã»]Ü`œõWÂÖ·ÏÈJ;d•Ò!ós<8÷qÊ›ôîå8ºöÀüÈwÌ©NÄž¶Lï0" °VÛÃË7y_ ölƒÞ®¿Åï©_|DCÎ*Ì`ßdz º2‘™G{æœØá€HøwÆ_¿S0N/"Odéˆo¯^{½c`î­ìáž\|ÅŸ0AÙwê¥44ƒgÏNˆð•2Ì‚Dèt­DDÏÝåÅHÕ,ËN<ƹá>,îp½/´9ÕÌÛH±A2>²d³*JOˆÔØš1£”ƒvYw¾yÍÞx{øyÌ­·õÒgbfid åŽßÓ‚Š6(^ŸG€\’Ø0*˜²3Áº¸°g…Fªx  0w3G3,›DTLˆµâC3ÝÔÿr@›C^ýšl¤o˜üÈþSnÜrN]Ù·‡j®Uó(Ùã¾_'œÞÄ\úL{qÏÞ²ìñä`øI"¼=ˆofæ$~u|êb³¢­ðX‚†Äˆã“°PF1D)uŽª'] §3®JÅ…åj©a›R é;£ñWjŒHȯÅöóéLd÷j‹ªIZÛD|AsÖÇvB'ÏÃøöÓðŽ…³j’'>·OŽo><ì´^\·ÖBcÏ?Ž44Úâ®G«3:¾¤ÚWŽ`àø×'{÷.·ž:üçIFõçŒtM$wšhg%í˜ö„ÛY)–ïîÖöøx^Ε«•’†ÍüúÛӾ͛ÁPxð¼EeI¨ÎËé ù9¨ÏÛTõ ÑU.z¸wõ¿¡»ÀvÖ+kÓdÆ&ìW3믷Öw}ô¥ƒ/á!Q©Ÿ)Ú¿01`Їè¹çV¿…ó~?™…âG°‚¹=Û¿·ãçÃÎírnR«pæ}(ÜÚ{36ËŸnîÊOÇrœv`.ÔŒJÏ‘A€µÇb‰×ØÌƒð£æ?§æL8 Z-ùZÛÈiodôüÉvžÂÞùñnŒSŠycâÛÐ¥fñ˜·µœ;£›¦onl’†õâüˆºã¾½z ÑÅЪ"ŽYÕJ^ 0Ý– Ì%ýlAÌ&r”‡ òðç9¹ótØÖ`N'×—V«ÅÈë7fñ¢ XX£¥ãÌÔ:$Y8¾HÆ]ðÖÒl ÈB•ÒC’Ó¢ö43\aÅ.jïÚmL miH¶¯r]Q¶æË@\°"2 Y˜†4á!*n0¤Éw§œC ,O*QgM"@$ïQ¥QbA'…7P[y¦i( R„…Þ.¸þù¿~ïÝx@­ž“édí ö޾[Íïq{ÔøL¾}]…CîÆl=û'>Æm¬Á›ÞgÞ7Æ68E÷-Vp¸›â¥¥8Ã~î%Dò¾GóëÉÎwÓæN­û”¼K¯k°R¦pQG’òUš÷¬ºŽ vîfc’a<7Å<”󇋧ÞcZß>¼¾oƹ¶e3Ë›;VÙu£°Aj‘ èL4QlâÆË‘e¦9pR9¹¥¢©Ì=8Œ„è¥xÓŽ'ç¯}ðþŽI¿‹Ê<~rk -©ÙÏ“§høîã°6ò1³Æ·(é Zäæ™÷}èîqðMg™d\Þòïª1MQO+ v ÇLˆn‘Tì}µhF¦2t÷:ùËæs¶m#à˜°Èe{œÁ+ézÅ(1Ù€µV¨3ËÊQ>v`?/¥“:¼A Ña½"ùææ`ñìˆå©ó “% *A¡‚°XAŽ÷x^ ‹b3´ÝùŒ·†šÛùÍñä†7­­ó3xð-¿„$‰ü!Ûx6û™žn ŽhíM¬Ñ´ºpï1!æ)_¤Cº8ûæòq®H±Ÿl«fª¥ñ!½Ñ›ß1ùœâg2r{‰Îg­® ‹Ïç„8O|·»Üv Tƒ‚«<ó35ùèÎ.wžË#1ÉÅü<¤JÏ×ÕÞ ÈŸ gÄø–F.Ða©\`æ”\~Íà7ƒçØ·¿uÂEÙdÙ±ìé˜ÊaöL¨òxZ|ܨ@¡ÌФp±¹Ó€¾S3¨0ñÑ2œ;ÏL4tíðô$´óÄWqc¥ï2†U™<:bQ±hQi PxS8E+iFvéþ¡‚ò fNTãHsáéÛÊLö’¼¾'ÌC{jT¡Íœ“Òàæfÿòç<}8Èr®vn ¸`!ZmzøB~ª;åïÎ/AEm~8:8"ÞæÚ àGs:1h°i½£ üù;ÞèÚÂo©‰Þn÷\{/1Ã`fl‹nÌÄ r1’I`$¤Aº¡Š!FIÜj'6¾Žo™$ƶ¯êÞ§p7<˜­²ã¼îûÙÞÁõÑ;ˆ{ºD—wÔ9â¼ËjFN=é(îÄá@Î^&;Ýö|y¶9º_”’ʯ3yÞk¾p/öGœ³™5¿‹Â%Ø¿i–iš3£©¾+o)ðN1&#IHQHí .ݼ]ÐÛ%ŒÃÅ*¼ºÅá âŸ4N€ncN î”}¤àÛVf4Õ=Š„ˆ¨™MhDÝá"”²@µc‹…¾LÛ[0ŸsŸOccÓ®]–o“:Z;³rëÊù›il`ú¾qk®ðAÆÏ¦5³{ôÿÍß9ÆgÔž—ÞÉ{v-LÞEØ®>üñu놅.s×C&ǘ‚¶°±5 [8Jxq%TªVPÖª0£a* $®úä•a¨ŠDtŽ&NffzFQ‚õ˜ÛÛI@»ÛÝÈåà‹zßžÓíPÁ¸w<ËqœVŽÕì“®‹QØ7ñœÀ¶i@ø6±Hr…ß›™ÑÈcø¬'­÷cÎçX#weñ EÚMxˆ¯…ú¸0Ë8:¯'Å^Ι{˜ïæ?ˆwç®y¹ƒ¸¶ºä™ÉÄÍhȉ¶gV@èæ®@É,`Ä”)1s•¡ q5 uwÍÄâ1¬¨xˆÊIêš”Ï;ãÆ@±y•Âã®,fD,'˜%%V#il®Â$ —¢hW³H¶u#L^V‘N‰æüžoÑ’ƒö% QsÑ–¦z'â×¼à¡p5H¨­J"ñ%;0v&tA&9ÐÛ3¬29CBÈÂçWRAAÈbÐŶÄè"Lb€ã9Êø­Û”á‹b"W—½¹1s™~[ÉGÖ3¬ØÂÌ¥A á x%UÌáÁw –¸ –¢ìvç|¢CžÝ«=QtßœóÏK[iù{F`|/§™³¼¨Gx|÷(>÷Å'-èÑÎÄ|½ïeÜÙy'¡ÞAì83q¢5P\à©Iò’óé±|vkß¾üO(óžÎžç†*oª×Š·;Nþ1žßω޿lò¬Áê~ò„áÁSíüØà$í^Ìs¹œ8æd®2®sÅ¿%™óÏ}­®#4Î'†. 0æPϦl*ƒvØ))„¾‡v®áR˜•N¡œd@OáC,™ÖÎHQ²LH*øuø|åÚ‡>‚3öyÓβSœ2O 5¡­h¸ó¶äue¯y‰A% “Í®nïÖðÞŽÉÁÉÎ0aÌØ¥]…¥odÒ2ïŽñCµcáâÍÛO5×÷ºÏ}ß;¹¸gè~+õâRÁße"!y¸·"t¾OUÁn-ïP«x¸`,ÎeœP=“ÍÍÝÅ%•íºr‘ 2.8{óbd¿G•OT‰—v™\мù‚S™“(C(ðpÉŸ\órÉ®Üêt#“\ªÚC„»¹Ûeêz^Ö Jb™µP&BÀ›Öf\¦ÐÝ ª 1ÂnÉ!U’(ÄÀåNòK5"â$J'ÍÁ³x>ý™µ™Ðþ`øx7ÞuÀå­£YðÞ.cb"qnÈ9VRSDÐÐmÝ÷lfó`›ˆt0¦+5b`Ë YKÎG9¹¯7{¬~ïÙõïi&q†á“ñë÷Ü —ΰ9‘¢î¬Á(BœL„î°y"†XU§s•À‘£¡¡…%쑈*åÂ`rð´jdCfCJØSh&‡Õøùå‡=#Æ}­_vn·Ghµ²¶k„`»×˜xúƒê#½ožN¾Ž£õ½çq wØŽr…ºK̵4{õóÉsÛDD®ÇdˆÏ++9Ê‘/ŽÓ­ïG¿O=í›çÝÑVÊ ¨óîW‡ ó~žÍù´‚3¡Ùï©áXƒ=¤‚ž­E§ ×.âèo*³W2ë @™‡¸k$=ùyÍóƒè÷tïm™DqóÌ›÷{ïrßwâÛ[;\[z´HoÏ›Ùܸ(3uE}9xÐïD3Þׇ۹yÎÕ„ûßyÄ{ªl}vn#̯œÄcëyç×<æÝ()dÐÑ‘ÜÁÂÝÄÐØ*)®M‚•û=3²°0¤*²ggÎC£Šó€Ø¦È„YÄ»|/ÊlûL[{G¸%T¼ ¢¼;Ïn>óê‡ÍÞ¹åóÁ9Už¦6y‘;3±8:)HÆ;‰Œ}?žvÅ¿9]ñ‰Ùn+•¿3‘DK~x¡åö®VÄñ‚‡9çwѶ»ÇÉ\åÃ*´”Ac¼ˆJ¸8 Ît̬D‚ ã0‚ b ²êÅ:£1ª¢‰Jc8HÎÎÎÁߥƒé?oÀ͹î{ÇÓnêÏ‘ƒÜéCÂr¢‘¢IÉb¹{¦l¯ù,ªXÍe 6áA2Láããù­óòÞ!ù#:¼ú?D°ç"f)‚Êê ¿kç.ö³Û<–0çÞ2ÏÓ.»ßŽÑ>¹F°lLkY>]"J‚ÓWƒ–¦Cä´D‚{à¾x²L9²:|jqcÞCÕ›qûüS¾ÀXDš›*´»— ˆŠjƒŒnMš@ád˜=õýþm°ž®_#´„°gOVLÚƒ c”XnÐôü=SÌÙ@‰£B²9âèñƒ(šR7½#®IˆóÚïI±çXkY³2µ|§´ M ËYÅ‘Z<›LKÀ8È¡9&SêsŒE—XÈÇÛJ΋¶—¤à4Ã#-ð“Îdæ8::ìcá‡ïG@‡nïéšûqŠtjy‘î½nÉ #¢Y³éÂ-D²D¢?‘¤=Œ¾ýÎ{Ýþ>_ ½eÙ[a’Û·‰øWvžþ?Ã]#9öætw~‚õí¤b?¹Ÿ;Ô\<>‡gkúAì+ÔàúW€Âv0mÊäéú<÷ÎäßÑ”@=å•yc8w$PËZ•ƒÔkUáe)t´àÏÂ댒üzùß/34‹*øó¿GÌÝÞÚovZ¶Â[q­à.\GÉ Ë|–ŽÇR0g|šëÍf÷ùï Ð»¾?£†{“#c~–˜]€Ì¢ %–klsðlsZ˜>Ân"lªø˜…0c».™ÆvþžÏV}y6d×Üd{y¸= ¼ ã9ÆÎoâÎCðîæ"^yâ°£ðwz¿³Üù’“ÅŸ¬òš,G œù‹e®Ô¨àæi”Œy}qAiaÅ=`TÖu§r¸´VÀÍ»Ñqšv†GìI–ÊiÚ1£‘eíB\C0‹×Ú ¶¾wñ\NmMÅ–Q’|ü±Dá´QÀµ;VTD vÀÛň<À˜":VêE*bPcNij¬Bº’¹Þp¬ìxGf²,?ya$$’jìÆ tTP]XÚ·¤ÆP!&É+x*‰‚:bí ØñWå¨n¨äÞÑÄ Ø¸e¨ñ«X¢ÝâÉfaÍU…{¡²f•8&*T@hóÃð³´~°Ø÷?Lò…œ}TO8ÐÞÁMá%Î`mpêuö2JÔÎ$‚@+Q & p§# OX`%›•!¼$Þ]­RŒ‰ÚŠ…ìEdmšH²7*kqN @ÊfK0èÈÖö$š©€'4¡,2†*PfÊ)ð*WPl´½óaRϾÜ×·o”×Áäƒ{ùÙ£ '¿ó…gm}x“âÌéž …{Â=Xv7skõŠìÆæN NÍØE5‘FHí&’̼1¸LdÕäÝǤA@¦.Àø³ €¿ œíŠ6c”!qàǽwîó ÞT_7áo¼[Ô÷4S¢#`SÄ&a†T a`Õ…"è³GqDAR9k¯sš ”4p H)¹59GÅ+!13±¾Ö`ÙÜ@’‰Dª;Û>äò#g{x.#,®î¢ÙÉi¡Â2h–J¨¨HRI‹@ Ü@'(&'LTÎ8̽P¤·Mš¤†eZ`\ÅŠˆ<Á BÊC†b0ÂϦgl*’“ß-›>¾¥{ÐG±n‘߯oyµåßÌøEV.îÙêÊp±¸hJ™4¡%@uŸ‰²O<½÷”tg¢†IûµùÎ1›áëñ貫;-yÌ«Õ¤Š­H ¡ºEìÜñvá·|µ°N¤¨UÖL²ÈBiu(Ì;Õež.-nEI.˜ÆdM1`Y³t òdšqÉÀÓ‘Z`rǹ#ßÉEŒ[@îØd( BcríK,xɼØ-BÖJ_"ÐÄBO±Q9Â$’ 8®ð§ÃR„žQgj„MžJOA…|˜Ó<*›xæ”6Xí+ÁoZÉZª’¨¹qÖ""‚y£|cZL¦qš…:7À‹’ÆS/È©˜űYB՜έyFÄg¼q¤;mðÆüþPc?'óq¥Éø¾æ€Ð×ÞNuÿ_§ƒ“fŠ$üÍ#9Ô¦ÙÌie0ÕD†Ç¼)0·mÉ$>ÀÃ9¶Ö ?O·ä¡‘á`°ŸRf`-Tlá„UY²œÈ H1ɆÙtÀÑiaç³Ï>Jvgg1sˆfÅr58pÑJ;dŒYÍà `vódÄÛÒ2+h†iø¾Ç§ ï¬"%8þ­FgÞpœäÌ^Ñɾäfeåâ­‚¼Š@ÊÇûNûŸÂ÷ß%o}ðçÕ=±Ìäkâ=émbÀë,½ù¹çÓßP7'‡Ç/‡ð1lõ5Ôºixù 1TfPAQvƒáIzn¥­4ëx2¡&Ȫ@V&R¤TÝZoŠè¨.â†ù&c/v~"ˆµs<~m} ¬ïèŠ8ǘ6ö}«št·Gª+)(“pQÊí9™8Í™9ìïblj¨y“5t«3% 9ßJbbAÁÖ$jÞOQFG"úЍ7iY“q|§hwÚD.{Î`¬ä\ªëL¼ˉŊ‹èÓ, † *kç/vzyaúù‹ÞLÙæ^w BWöÑzØ*#¿˜¦~dƒÝõ_|Ȇìò0xs½Þ²s0Mà¨ýåóë'ÖÇ|ºã>Ue®K°ÀµÖ,[BªÎãoN Š¡s&¬Ì!6³Pl•Ê­â+¼Ò¥ Ó ¾•³bßf…}pŠ+a“ÑŽ@kƒÝ,Ô÷´fD’±PÛ¸£‘ ½À(bHˆ^‰‡À°‰Š à†•íÉfùPPA¨`ƒ¬´E@á ‡ ÖÑ[ª€¥`: ’‹ m *uIJÇU­ < A`“„H Ša–(b:5k'x8ÒÙ41+‹Õ]UZƒÈŒ)‹n.bë‚©j‹”5áà@np½‰Í°ƒ+yFÐŽG(®ø"#S8S’3©GëV@ùÇH,઒:vfFTeg3 @ Ê!Kì뇣ïÅÖJƲvFÂÒ•Ó¢ n+µªe1.P–ÄT°^Οƒ‘ïÆ„î‡áBæÏ=ä õÝõ³ˆs¤ò.è–öø¶÷*{ÏÕ;õëð¾ô9 Ó¿fWE‘R@Éð&χE2Š’Èè&\h{Pð¼æP5W{c Ñ"ê’t›ÃQ>ÚÍ%»ÛÖ‹58L’–i@×KN¢D:|àlÈ»ïIærŒó6¸çÇžúõ¼ _øº‚®"-˜Gl™Ø[åÓÎmÏJ:Ñ®ÏYßdd^Œ'²p[šN4 ©—R¸{ÞI®2ÙªWµ|V8VJ8­Ûd†V˜´j¦‚ÈLâV´¨eÌ‚HÌäÞ“0ºâ -Ð]q¬‰²€½Ô1‹‘0о%Òmˆ`28Ö ˜¡ŸzÓA.«F«J8È™,oÉý8æ+|NøŒ†©9äSh&u^›#I1šGÂì‹F­‘´MŸ*:ek=;Q´w'ãPÐzpqh¤Â–°9˜•*¦J®)m¯º¥­Ç˜ë¯œ>} k@_Í¥Cé÷F|Øûg0Þ} ©¾'Á dЦ"Ù ÀU€I†–wc ^©%lLÔM Ç8¡S´”Ó`,µ£:"‘‘eÐVðÁ©8æ(W(ÌŒ`bRWê:‡ru|¹ÚâšôwkÔ3«9#ýâÝõéw™øŠ‹9WF,"6¤óD6¥UnA £rCR!RJ6Ñ@A\”œmJƒ(Â$»ºvÅÒ0¨3QdHÉâ•XÖ†)Äɺ+>åÖ†Œ¨pÊÐt’ÉÎÌŽäý› S¡ÃÛ²ˆb»ˆ€‰²˜ø7~Î!à72Ão€¹Hg8Êb[¤§ƒ§™VQ…%¦·$¡bôÔ "u8S1C0ç[µ±ÝäUŽÛŒéyÛî–ìqLÖVgwÉíS|ó!=§tn“ã¦ïô•ãÞ;а~<÷7êÝé³ÎáÂíùywÄõ¼­ *½‘Ù¢`ÌÔbTY;;;–¤Ú7ˆ½DE™©³›¿-Ë8Ï9BÓ»%“)×jt–rõâ¿ï:3½-]Bg¹ßÛÄ*‹¼ô%1 âèШ ö‰<P¡¼ (œË„´C¨¨#ËÀ4=TœÞãS¶¦¬d©‘ blàÆ­H$- ")ÎÙ€„D9P{š5 4“9ÈK‰À51¾ ¢J÷w(xðLã·s£KÃÛ ¹ö¦Ãw PdêX41ZÂp2·œpñ›‚¡Âìö«y=XdH0äv|œe§ò„(êeœÆõ}¿-n žŠ{›‹ìñâ©/©8b7ž¶¾?;Ó92cj[Ed TD¦Í^H»TLƧ«æþ=Â1zÍt<å‚0“îgV¿wã8à H¡Ù‰ÕÒ<ÒeÞÄQJiÙ˜ªP`!qf2¨S‘Æ9·Y®Å³›ÃàHCi“ºGAu &Ûù¬M´nTp…ÀŠŒ‰3£C¬ª,¦X¶DîXQ!0Š·‡{pdTÚ­nÊ¥³(Œf"d´‚΢,@š™U,b€h#XaSTrÖ¢{Î/w,ªu‘­Íív°êHi âbY¦l’0‚°…8ˆ@ŠÕ=ªÀ8ö»Ú†)’’¥¦¢9¸  4d)ÖœEGŠ3mžUc]òo‰7…™…Á¡¼)"d çˆÐ°¦Å1,N…ûpµhÅTA;ÅØ²Ñàç^7kˆÆ³Û¬o!½o(Úvµ”I§6X7“ÒF_c7eHCŵ–´{GÐË™mb¶p9˜Äš6¯GZw ΕmÍ­B¯LbLâ”ä/ç‰C€ÔñHŽÀxUO§¢ "ÙÒÕÁºÏIƒ¬ËÃvå ])%É»üsÂêÄõ”ÞÉö™M)'dȲ‘-c²JYD-Í{ º´“±JÑMÛQ;é£%Ìq¤Á^”i3/+ }´3vƒ^éi u§q¨­åÅÄ-˜MSƒ‘ÁÝÞ1zÆ£–Ë$mÓã”Çpà{nÀÛ€íÛ°vìØ;¶Ft¥ƒ!ÛÏ3Žá2àÊØ ƒ¢q8WÎ9ô®ûÚ–ÊÆ!uÍö'ÄùÄ—s:)S'x¼Ú X;,¢É“¨!«´ÙB•¸@‰òã9æT¯0Ëa†¼ót|+iäoc—ÎÈj5Ȥ5aJw‡¢k©,Mt‡%.û2p¸`âc›øŽi¤°Z8=a tÀo7=µu•ÏËôE…3àkËÖw{ô^_Æ}y³'d9æÙ)™ÎÒU‹º ¸kÏˆÕÆË6fyÒèáòzAÒŸ9ZVr8fCLÙ[CAÜ»fš€APà…Ò˜©äM5l 5µHRp'Au\P¸‹¹Q˜"›Ãjˆ±^–ëVÛÓ¦‡§Å$í0òlB@j`'°P%2#Æ)V& L[;`BXg’¢ÂÅò2&ÌtކˆEBdæmß‹;KÊF±âlYy«°˜˜?ˆ\Üb¤õ…ÌNM¨×[G—C‘5ˆƒ g¤XÍÑ[h ɈŒítóá †Y¢ìD.üQÍé¤ÚJ”ð-‘Á¬:‹wä„€û[Ü š¨X͹eN†‰M(;snrúÝ[èRË<í(F]HøÉP²P b²£ŠqelaëµpêÂìùƒmb´«‚”™V¤ÎdDP·šÚI–b p/nK¤Èµ‹ào{$œÔV€²V.ÛrðÉB™(È1%.¡øŒaBœ–aˆ‰ s Ä;Š<ˆZ2Rƒˆµ°¢Da& 8R•&Ñ-‡Kg,Úï­&eÀÄ)“ÁLÁ ùI‰a”¦=ZöWsx«Ot]Õ±×1–&ᆇhoBm4†jV'«Ajmª9)½I‡5À•RPö å4‹’ b°€qZIóÓëH g²€AºØœ¢Å¢ãÉE0“ Îg’|CR¬çÏ0ìšèœbÎ̼g#œ `xÈpü‘‚^4ü‰‡C+Æn)‘áÅÔ»f(’ÁãEjWcPtï!ˆâyiì܈‚rc‘)2ÀÈV¥ƒ[½È5¹ › æEý"'Y7›ãu%–¦…šh1’ ʪ»zX®HàÀDMˆ²ÖŠp„¸ £ä)\ä-HÙ21KNR½•µ%•e#WIL‰Íbhœ*ìØŠ…”†’@‚ݯiPƒCµT ´˜A¢-kXR© `¨Ô7˜A¡¡‘q;0¬mÜï ƒºFGC (㈠É貑Œå1ÂîQ”ó’â\ÅJ›u­^GR'4PЮøÇr+ržR±¬¡Êçµp›^²ÑÁ±BxÒ-aÝmÔñG4"žÈ›qÆ sç½uÔ”ú<_Ìû`Ý€;uÁv^LSË奋:°*2$˜â.Uu‚µNì-.¯¨'i4Ñ@Ñn  `ÞÁŒ ,p, ï$)È©'•¸™K;©€eà¥Ä,@ä#²èæ(ëMx(¸7ÁavT°É&¤7ŠÄ ;Ìy¼?˜“·‡ƒé5ÕžTA¼ö]béw,ÂÌu¦iìZIÂ… %æã¬jP–È*O‘sevÎŽB {d8fQ$좰<;år¨ûÔË$wmèÉ[ZÁð*öî¯CŠ9A7Q¢€¼jdL×&‹—ƒ ¦Lr²kíoVÅaOYàžÍ³°k lAäA$Û!˜Å s¬9£Sg9–0ÄeÙ aš“7+ÃcD&¤“* šÃVß8»²»Â@´¬4.”Ó¯º@܆w1R̓¬>A]†H/ kj·Í¼Ë¼Ÿ惢#S<IA=´.hXˆeg pÀáÈmœ ª±‹1aDÖ|±¼»Ácàâ– ˜RÔ ³éJãÓ4ˆ:œ¡`–Ú˜D„¶}k)`³¦Ã( —&%f¸'(ªÖŠdàfAËÂÑÛåùãvz.+1£‘»àAŸºÛÁZñV(›Ïÿ0ЀnðŒ²DAï¹á5“ƒ³UT,9©®S—n’ÂN!eÔ¸GTìMÛ˜QpðQ“¡ÊbÎñ¢LK€ýþÌ¿Ÿ-m‚D}ž4wgÜ OÃÆ8po¥ÞîuìZâµð~3T5H‰ü~,4`gˆy_Çšü‘²ˆG‘Å‹üÇ´WL 3˜¹Bª"N0÷ cC<:­œ¬‘턞²u0ñe`ø™X´sªIØàä{šî¶Ïe£ š`L »èÕÙRE"ÏB£E ˆ„Ç &™,­ê`òguÄ`0JeÁ²8ñš@€¼Ù* î‹d‹÷w B0áœ#ÛÌ1tÀ¯’@P.¸ÜÆLè.Sü)Ð/†[…DÎ8qàòÂnþ®·‹ë‰øqvì½’ Ȉ÷×ÀÈŽVuÓ𘈓WeAŸFgáùnëÉQõœm9PzP›LçnŽ@ØÅ ¶D¤Ø#¬=²2`ÒÁL@ÁˆÃdŒ˜O6' Œ|2iäñ¥ë=¤'ªåù†|p$@@LJaH9å ¡ 8;Gj!x¨`å!¹§ÀÈnNð£†sU0'<¥”•eB4N(¨ŽäAì^&¼…ëÅøï—øœåc°eèõâõN*b0$LeÁpyq”’[<–.¾5Eƾ!ÖÁù=zpëÎŽíî/+î —€'}jxøîi¨wèYï„(BvnFøs‡'""±sD®..@•Ô]{%°”™ª›‹*>´Høã+hÄ–c&ºÆ$EäŸ(9X&ÊbÈ…ÒiŠÉÓ PM ”J#Ib*g î„rá²Ö׳ÆhÂtàïŠu Rt6 •쪹‘DJ\Íã¬ÝŠ0< œ³«Y ¤SÒÜ…‹JCŽA±.m#…<`›6¼•*ÓŽp­H©9°5f1É–ƒX©sÁ+àÁ±Xø›“®¬— JãØ0»2mØrè3JÁ^Uq\/mko• š‰¤¯x-TÑ EL†^rÆ.¶Úê{S¬`ð9c7®&r2™«áwf Gã#¥ΖƒbB®/T´(ñ@0M´²’ÒÖ‚JmQ"ÜØÕPÁÕÜ‚€EY¶A»+|2\XÙÁ[]–\nWxí²@Æ!eg²¡‡ñ|ozÔ6Es|F¬Ï“A~ ­œ2m³yÉæØxDTs;@†RS¶lÍVÛ,‘!#FG&“cHÎYr!©]³¹ öQ¡w"eÊ öA"ûwr1 2IÁ š1 õ˜¬P]1Õ]ò¨JSh'†b!#Ë@Ü™²^tÇ =\¾q‡P¨…î™­ ˆ°„o œ[Ãâ‚&ÙÁè‘ù?kÒ›dëIrd®G5 “ô½0~}ZÕú@q¤zÓ:ùÆCWOLpº ;,älCHK»C©Þ¹>œÅZ?°ìÁÃÀr N©_d`~íŸ6há?^ÝW{WnôϾd‘¯¸¼XÆ4O†_Bȧci‘+›¾$Ї,õ^W¤"¥Ü÷ƒ,lÂvšÑä¹à,éÂr,E¬Sѳ‰AhÏ5“4–Ä«´!¬*Ý2»uID%§w%£@2BìQ…䇈>,2•¸v_Ðy‘9ɼm˜¾èúK{ß…ÈÔÄhfS»_JìâJ¦ì‹>JÜ3­ò/Ž…Ÿ„ZÂó ;2ã0 D™ó4¡‡A œaZw)$MM,tiC$°ÌÎêB.™„ ’ÿtðNvy±P›-OÙæOŽŽ—┎ïvEÄ©Á;™‚cÑøëË^G¶÷¦Ü¾…´ÛžlßÌÂrUcÜÖ_9\[*0Yö>H¤oŽò%”اÞ6O[Ñ\a‰=žu¬çïc«»‡Ÿ…÷5Œ‚Â1l âd¢pèûgzÉÜÈäa°B¨ddðÙ}¿Q"¤›,‰  •îNZ|(,9³¡¹˜“íM(ƒ¥ÒÈòé47\h„{,˜þrÄ4_Éüo}Úâ'—§î"°©™¼›?«æš>]ïKÁ]Ñ“xyžlšnëdîï7×Ãó®n|XõÝxÀF+‚uŽÅ| ­øó YÂÐ wœÖé0ëÚ 8ô™ÔGt°@•Ößáˆ`‹*c¬Šˆ¦>ü?¾~8>Éö«¬i=óéÌ™~{Þ—(ëœÁºïð\òu›æÜO¬”«›ëÖBÄ<½ð§ð|Aí¥Ò9… %ª1¡=y-æ.‡„ Z°ÁƒÀ+#‚" ÏY qâ‡xÇcT = áHâö] 9f2w—O~øsj& ¨&dÍÇ€‹Àf´ÕؼG9ÙêGÄíüI4©0¦€dhv®Â÷’àËGêq‚0¤°,¼[=.bC‘\ÆpeU4hg‰PIó’W2h"l̶ò]¾,Ã\t® í*‚@Ù>Wœ >«nª›ŽzEY­>Ø÷ukM{Üw7\’³îú}k£à\-D´¤F@/@+uxUCd.6wUÀ¾Íñ³º gÎB^úµ¨ªóL:w¤0ã†DŸÞùQTÚ¸M%·ÊÕ Á’Á»´DW¢q–'a“ &´øIËjíY{è²Ø8zaã6¥Ë× +E ½`ÂIf(Fƒ)ͼGt `ʲBiK†áÁÞº~ >ç9ÇW¿KÍååjw„m äzº0s¡* #9ë-§šÖhix0fðá¥L ©ñ¹f:¼Þ^°r”c”¬ *DR(l]jG§„-”æåÌ›.çùÜÎgw[gzYe•œ¨›v1Bdc¢' bСiêœÐ©’[õ¼Ú«l®Ÿ8çžn͈yj9sÌü®æ ,+“¢1É*ÔË|rÉCUðŽ˜fJBà “Uãj‰7ÞG´É±àÙ‚LQlÙܧ #êVñ_3$:¨lü´V%É3¼Øô°–’XŒÌ‡|ê=4‡¥€¬kPBvó©ÐýË9ÆÂÜÝ'¯¨ÃÆëoËäÞùÅ8ùB-Œ˜tfùeÂΉ@ë‡ôaë“+]i´v «¤·—#ÂåÀkmÎåˆqçâ3ÝÔí±R.·Ÿ³:lHqôÎB<ä½ÞÙ!‚ÁîÏ^­‡»ÎK7Zk›ûL(÷pÅvS3tÄ ¦vNFg¤0k,E9  ƒž¹¾Ýlqs>þ'<ïÓ ¿|ðEÁ΄‡)n„É'1Sƒ™¹0BÒ?°‚Ó;ß3È:yær¯“ðžö23<ók>³*ÓƒD&%mY Ñ€˜É˜iXÛÏ/†ÅpDH|4ÔîL²oC²ß”ÅH° ÷,‚lVÉ 0N9ƒ¹ÆÁ›Jê–PV(à¦Qly‰h”wQDƒ6XXµ~ÈÈ;³οÖÊ:ñ OIÆÏ4kÇÝ®óñÎ÷{$‰P~n¬[ÚB¾>Ù2É¥äãZhttŒ»-»ö¾ôƒƒRQYE8=lÃçÁXEêÙ¤I8"3(ðD.ÄɘG¸¦bhU‘1$¯ %~úTÍÆi͹ :Ó‹ä¬òP˜ÄÊÂdßÙõìæ{ç"4$ VxѺ².p:QcY;’@ïç‰À íóš넞 ˜ÒPD9á*¶ã†PáΡI#<ßw|äE—wX(£ qAŽóÌ"œ-e¤P3 +Àó#‡a‘n|û5ñüÅðþ•²TdìO/ëÛn´øvîèbæÄE&<Å Ð…ç¦Y+HÜÈ0°pÖŽ0BÈgȸ±#ß<Ø:ƒxßY\jD»2JZíéâgœrœu=­¸L!)ñ(&J/Â*=ϹP¾/*’>3úyð–lk¿yVð1Ó{^úmq¿dºÄÔÓVW݃/nÀƒÂI¢1Â÷Õ‰Å{66ÌÌ ‘["׿cð^ Ï‘ëàÓ•`Tî@ÎJîèÜB‘Êtc!#± < #œŸŒâk#¬áɤ0æY¼–ó’GIQk³¿~0»ÅP°²ÖQQ^ø‰U±c“…D_g œu“K×½Wq㤮`ýJ=ç”+lW¤ä'rU#HYPAÛ‘§fCàáxÖ©nxààâƒ=[q¹xæ ¹§WtFÙ¡4$™rÂb ×tŠÅÒK ¡ÆœB„WžðÓÕbØÇ]ô‹ÎnA-ôÍlV¨lc3<*RIgÃăLáËÖ}zñ13f"‹ç\“ÂyeçÁ÷ç£Òá˜RÖD–9ø$NH°Œ› Ñ;Á‹¼úP¨äúÚ5ôä¾·Ðûõ¿>:šÄéû˜s'DÊw’C Çu‚rîNV"÷ÔÝWÈQô•NÂIP‘jïæCûqz'#ˆ ¡6®n0ÀìÊqå<¸2#3ä  ÎÙD‰ÔMIo”²F®þ˜ã‹qœ™öC€ET2è=„ó#ÃYu-JbG9$€îó¥9ê Rò‹”~$§w¡Ç¤Š-½?Ö±ê]ùùç~ÈÍDzüwמcq ÕW7v.ÿwzvKfázFdè»/iW|³jKpJà8"À¨Ü±±d/By™6‡B1ÉÚ*b™;ç8ÙnÖhž[v)›Ô+Õ›µ´â)`^MЀLh¼ ÜŠ™‡JÜ¢ÝrÁ±Ýå˜%g9Ê`˜ijÄ‚¨!4íµ…ÛwwsNÇúç²ï‹g‘Ñ“¸éId²À©ndýoì?¤œÛ_޽¿¯GÉ[L&ÚFZººÙ†ZýUÆk ¦a&`&,l¢$D\îl•~‚ø°<눛–n-œÉEËalÝ9‰xcu!™%Žpð E”‘ )Zœ»¦HÝL„S¬!„š€†;;SíiѤÆñðŒp|»ç»Ù}In¶!üØá"ï‡ïÝôжL†Ö&-Hhfâ‡@åÑðÈ ÚJ…m5¥NÜÐ@XÄæ¨‡à€œzXR|˜Çè+mŇ+Îö¦—Ú—‹§ÓwJdºÀ”à•žð$äʤԠ४a “OgI4%‰­ „ÞÏ"+‹´Ä‰_Hmé+,âÂHB ë*–*,vv#c,gǯÇ\&|ZPÎL8]užßL€„]~dF‡Ë1æ#(^Рvo¦\(A Ê’¸;m_¿ƒëlrxýUÐÇi·˜žéàG÷n‹¯$„Í.R­ˆ+&fôÁ$j¾s‡ó‘Á¨Õc÷¯Ñڸш}>œ”¤å9E˜¾È.IÂeèÁètúÔ˜Õ|K÷$9ô†Ã=ò~]ûÇ}f>HH‘³ì˜z_G5œw˜îÙ’à4ñàꀱ̃RùUé¦èRp›Çf·‡A—æý>ØŒ¨zçByâ9b–öŶ94¤ëÂq"X}‡Í☠o4ƒ²*“Á‡‘r7}-tBœŸÆ5­«ämOÚ/ Éì;`Àv?#ãê¶°&P„xT¯^¤éŸŒ”)ŸÛ憾Á åòâ¶Á”â«ò¤f²E£¯ˆU% É/{Aêþx) Ö²9wåH‹Ø|Ì#Á:öLœ%_YK¬ çB„ªÔâ:ÌÖ²2­­^±z¥:}¨˜‰à€K²"õ,’7$Ôl4TŠöÂ>Ê“InÊ—c€çÂolºÛÄö¤ÀÚI&u´>s”[«08YuRãBšàñVÁc nÆŠY,Ka%Æ É¼u1cPA”½ÆùÞ‡ev‚[SD*&ðH-ôu©‚g!!,–0ª¹|Ñ^Q°Á¦"€XhF¨#tƒRÒ²*¤8}šñËŸ$Aê(kž³¼ÛĈóÂqßzqx×§Ëq!¹Û}À¨&ÕÏVg o›Å0~‰Ÿ9àŠŒõú«€¥<òó¹¿ÛG¥’9Õ¹T‘+! Äb $‚¼÷ qÇ$G­ÃÀgµ¹G02¬¬ pþšýPAþ{6JôÛù£{ùúóv–Eý'³çɸ”^)úcÌ\☯çá͈°Ð™j-Ö#‹¡¹îg¼èM‰ó&éäL,Eîçgd& Û>¥Ecªª)/Žì1ÛAÖÄyEÀÞútADò¬€¾©BI“ix€UVvl˜Fùž¼dzÚÏêi¸/ÝTï§~x÷„ú\ºÁ#ÃÁ•"'§ë¾l´8"‰õ•çÚ=uÍ(¬\Ɉò$â >I ¨#å;‘f, ƒ"rHd"Jˆœ”ÉÒœÝd`ªˆpP®î¼“BäÄàÁ4Œ÷s¥¸K–duèË>;û9»ü_¬‚cžµÅ’è{³Þô‹,Âr~Nq`ľ¸Å\#t!q(¯U¿·Šóo9bgš`Oψá®f™ï¶“HTÍìw»áœ?"ýg’û³ú[à«ÉÃK!äþ() ªï1 ”á†WæÃ¢îhàHÐ6õ¤AÛ‘èHp#ƒD ‘eÙÕä2gÃC[)mI™‚Ó.€1¦I|8º°ŒŸ~Ĉˆxœ!mñÔ`":~Š–Hö‘ýt×úùõEߌ?í° ØÂ·¾âR£’:;Ó¨¸ˆÆÀˆDWÙ<³°+Ñ ¡rY4LO lO±*»ÃP®8G!ß/·Å¡ÊÒ‚R±¥ A9Ô%SÒª)ƒÂ÷he²cT' eÜ]`H8¢U[½,fŽ¦Ð²ÀÚC`q&#Ë"1(€i©My ,­ˆžg…›àPÁÈSQË6§Ì9`CÔu(|l²>·ËÕä¾ç”×xSûš÷äTï¼×:‚ZJYrØsSÇDjÒa-.9PateÑý}zUŒò‚h¼¨µwWrU.Є}¼2 Aƒnˆv+äbà¨Q8jï43œa2f6(-0M&Àtݤ¡ÆÐ°4xSnÊkk'æ†]ŠHÚ… …OiFÄI …9ÕÂÃû>1Êóœ€ë µØ¢&O;ƒG\â²Ýf ÍšV ´Þò•ñyÇWâ4ɆÂåB ¡ CF%× á’Åb»Ò[å8¤ûºÝc»uw;nRòC‚W“&ÓÞ£ ×Ì-Á¨)6Š®Ä†Ï¼§ëhöc2W‚çK‘ȯçt>:Ÿ;îYKè/„ç¬tVÁÉËíc‰(ÎÐØ™Eo3m¶üV@Ü‚uè–;äËX$ >¿ËxÍr>.›€óó½€­­:¥¼&†¨yÁ,eã‡ÃèÇë+z½þueÅýÿü; ù`üœ¹ƒ«“%pa[8˜-XÙ¨­#sñf £ç©ÆÜúã «{]1ðM“oPAqdr€Ø8ÖK¤cá8Æ1nuPi›ãZ—W½ÝøzK{çŸGÌ9ã6·×–1Ò<–LϽÇôGL@®„â|&Îp_[*ñËð.©ô€òüéÀeTàúéPÈÔ¡ Ak|ù­*{ðü®ñ#N¼x\ÌqÑ‘š†y*êÉ.Ä’AìÛKÏêãxetÕÎ>~Ïž[ÚE‘0F4 6n‡Q°ghrD"vôA¤‰™2Û§²ªƒDÍ>^”ók„%HEbv%q”Žp3ÇÛ–”Ã9ƒd,2À͈‰4D4c ë•àsT'7cå®âM§#A8#2/W&ù.ÍDQ]7ðÖø–ü£}ÊŠü6tDÁÂ÷3„2d>(UŒ¿-cæg¬û17£óÝaiøD£’ÕÔ̇XñÝ|·¶µ Œ°aEͬN]„£Ì­@© ¡ºt†¥n‘ÒmÛ,®¨B*8ûB¸…Bª™>ãÚ5îÂe†Žž¢BÌ Ú D„»‰Í•°²‹sí¡„I}Êž:r.ú­øba ˆÉ‰ŸŽŒ:¦6½ù"Â9„š‹¡ãhÑbäPUÜKmAƒ%½ ªq%0N Å‘²$)fBÝðAÃd˜ôµuË›XV3U¼KØäûÁ"J }σ¾´>p|σï’Á1·“x?R:&yú~žløx¦è«E/,Âí”lþÏ$Áƒãïe2.¸š%mwó̸ßYß:Ä|'¸V™zÍ0‰Œˆ9щŸb Âù`‡H#–zHU00ó€17Ý; hÈàÈJÇ•AW3­‡(K^yòB¯¦'žP™‹9ïEÊߌL a.Aløä¢yBCOŸÞ|Ž z/Ý}?½ø-ý‰çp™Ÿ»2s›,ô½4qbŒÙÃ%.¿T¿ oD%¡!4íCîjâN|\šGc8êULPx_b¾%MWR†`(%ÅiÍÛ¡4Šgh¬ÇÆQϤÛÕÔ&ÔÆÅ‚Ô‘àÝ=D3Ú :àOlh€ö;MWKÚ&„•ÌÈÀÃÝû³½äÛXÉÀ/ ß§µ=xÜí“®[S™y.Ãûâ›!î}íf—‰~ôÔ~ ÿß»¦´Eìâ±F‚¬á‚ ô˜—€hÜ×=õ¥ÍŠ›[1Ù“B[€¡Ê‚ZP;«úÜà¨hÑ„!2^hÕ×5é´é¡Æƒ«Œ`)¾õ´ô0n[LþBCÆ$ êX²(pè;%E¶04GÇš#SŒj†˜È†ÜÓÁ‡J@®¤.Þ])?Ç•pFÁ›¸ Hl‡³]ˆ¨¤q>Õó¢•Lµˆ ð»@™pPÛéd ÏÂR<{‹¨.šÑ„¶Bš@qðŒ¡c†Èæ‰Éú<àA€Û›0ÃÅ9œ²p®£kGM8„FhY—•”Ñ5È­‚Ñܺ ¨bŠ`܈QEÄÙ{)~Ï@-½ji‚%àQt$èÆ'™ølLc£ q¾MeD@‚» w™6,4¨$¡L-éÉzReêµUÝd¡Ó̯:3Í+¸:W‚P)ÖNdø›hÃÞ<•–`g‡+Õ+¥÷;:™KµÊ÷ÍKÂuß ]ìr#Uø|@žŒƒ"¡($6oPí²ß²a$qˇ†¶¶•ÝNÛ‘‰uæ{u†w'¶íÆ>æ~7÷ûI)‡áLwßîèËJž–!,[ZE¢îÆ–ÝVƒB‹»Åܲ.€O½:VHäà&‘·sz¸h»9 ‰ƒˆƒ;—aVC"ë–ªÛ-g Žú$}E !ÁwGE`, .tÞxmÈFOÒ`ä[ŒÞ|÷âÝȆû㢱@pwcÛ¨(º0™‹^܇C3§Fí©Ç&G`ˆ"#”<3,nœ`ã¹ a2̸90±ÀÞ)${(÷5T‚ƒ5ÅHp@ýbãP×Vä†.?ëwšáÞí¢£TdwÜÏо[ò÷†”ÕC+Ã#ô@BpcBL•FrÙ¨|½g²#?-žŒËCMpåÊÒýoìýw¾ø†”‘UƒƒñÂ$2¶X_›ÈqâÆ?wáB~on~ÎaùmߊÄþ_ˆTgè»÷Œ/…Z¾µ~žz&îù÷·Ä1í Î. šù0ô¬\ñ|y{¼=U¶ 5m”±°;¡òêˆùl˜¸•ÚÒ¢–ôËξ¾–Â$K¸—(lá…BnAcƒÔŠr<‘wDóÝu®áð“Å8šmr£ÅìÒl|ªŸa¢c£[§Je1„>ÀeL7"bìLå²ä"­QÏDk¶mˆxt¡Eú+òªŒu…Þ• 8© ÛÊsÌHŽ:©ì#ÏÑHÃŒ®}dó~.B†íæQD‚ÉÂrI`›éì0`ÒÒ4ð£9FΪx+j:óÌ[êÄÞ¶tŒàY!~_®,þ¿2pŸÊR$ÜÇÂ@pì™á •’„’ËÓ5â„ED$° ‡m# ˆ€ñ‚ƒ¨Â–AF- 2!¾ 1Á®IN¨Ùz¢Á ¸‰Ä´.ó\ó>¶l °=bÃâÁ‘ûîc[ä”g.™-ÙÆ~ýI_ÏÍš68‹ƒaò^ž;ºé$IÎU1R 0ELÆÇ±¿»‚F—¹ôåŒë(ÅišÀHÛ|»Ã™‚¸’¦X2¬*§¡|{yQ!÷Ýûò,ÆõµAB’$ ½±`K˜5AÀ®|¼Ü`.Â: ˜ƒŸ$V#1ÑVñ.Ô$7‚‘Éš³a Ë´Avqqò*O”¨ÙÐÇÃ[©eCg>EÞ@{2 ‘Ëm\Q@] ùd˜“ãÝ,Y:`ðÙå2²‡œVDTTû¯QË|—"š­Eb)Nc^È:E ?@=Èiø_É™ úQd_¨ºwÌ…soó6Paa{ú\Ëx£Ä2PAÑA‡-q¥“(!)…u ¶ÎNã‡dGNÈdh× Œ¬Äéi€Á %Šònâàvò¶Ù€/[CXoŸ“Å•6G(Ug|v vôÒg0?Y \]R,$^‡ày`,±^é^ ‚ '(Ž2æ‰éÔòÔ4qß Ê3`–_l«Ÿ~Zž \_§Ÿ3px/ÝÚ{ÝÖï™ òž`™¢`¥I4D ´ì¸6ìs©ˆL<Ÿ2:r,+$÷V ½˜á»¡ºªÍðW Nˆjæg çÞ&±™ 0Ùá<’훡מ4ݶ¢ü%.òið£rü±'ކ OèêÓˆWõiËéЩaUMϲì ¼@ˆ`EÂeâ£ó1Ý—è P$/m}ßÊ/ ¯U~¤( ÇD[‹oÝÊx<_µÈò§¬äPG†ö—ÂAÎy”d³eUð%_v ¡×|oÛ®ÌH½ÖAP5 (>]I¸‰y}°Mƒ=~4õOÛW‡XHÏ=ì¡àoÌ–µá‰•áLX»¼© @A™€¡®Dh‚ðÙÍ`ÀPqÊÀ·–€ÀS¢seE4GÅ 8§‡"{ñD$ÄñëïÝïk4wÅ%‚€ÀF(~™Ùá‰äiÝ‘7j/*üÈ.=†Q5Ôl3x§)J0Ó™¨äšt˜•y Äš hXêÁ„  7Ljæ `Ë iòVøWu?ªh†måkS¨¤/À¬Šeé¾Ã=ûý=xõ$[ÈeLMDS.N¸Õ8Ô I‘Áu2L0…K.×\Ôµ&*Ú>+Ñ ä¶9)Æ@iA” ÑIÈDnHÒÚ êä^ LxDÒK\ã"1ûÕ|òBvŠh~zß·u}ªyúm<»à¤4eA†ç†y'6æþ9\¶JgÁciÏÞ{¥…ƒxÅ+׎ç4¤f@äCß^TôIhhïÃåª 7çäËŠtÈÏöá“|;Oa ¸‰ûG…qò´™p.³D¬Ú dR…@l7¨?uÑ„`ðo”‡l 0VˆMÁ$··Nö|rÀœ•oZl†vŠGhŽ¡Ï–áԄ⛇1>Êœs µF{ƒ>$v)¥ÌðsäfB)öÈX#Ò9,ˆ :éÂNÁ"† ^ì Š’©© T„rF¡ä cG~#kôuúa›b2@&`` `K¿. ÄJ>_mÅB‘rr]V(e›•@ Ãç!*ÌîT-YX…#I¦Óœh­QäÐN'±9¶kŠi •1„ù –FH‘Ý2Æj(>ó.„&¥3r›—‰nÝñ&d‡‡y?LÀÑŸuM÷tKÏ}‰÷¤ˆ&*šš û‰!åäMÈ*#´Ên„<ˆÔ8ÐìÙwŽïÍÀêdžT$¤bâE§¬†§}ÓÕF‡FUž3g´ŠÑ¦¥YÔáߺ°aöt_‰ß· =‚ÄÑãs) Sry;Bw1ª«$øæœ€oƒ2,–Q™—y34ÜÄÄ<€žP¯nа’©z:lçƒ1ldQ1€òÍ9÷Ï®•C¬`Ô»¶MÌ5Áôé(©Ý˜ûÒCжŸ/ÕÃà2DÐÄÃê<AC ‚etdb‘§ÃOÈèq…mYFL»`%• uÙ^{5õ‚>±3> öl+.XÙ†«i¥¼¡Þ›´íd†TN±ÊÐéz…Œœõ;ìƒÚXÏHôÏçêQ=†HKrv.è°Çи ±^‰hBÔ}›$IšÉŸ†m÷Úd\ú47²"[8Z°rÄ(ââÊ8ÆcÀ¹Ž5ŠøY—!\9Ïa¬×¸];Ã"R`·Éùz¸•R0ªuÆ2º·.p^—KЗàí¼~O˜_|iE½pœ!h[¯Hñ¸D¨?Û׿ÝñîàÇ…gù<1A+„ šoñîw‡æFÞz• ¿_Œãù*\ëˆÉõâ$_Ÿž%=ë‰(ø‰ÜŠøÊ„£5wßñšo¿ùÇþü»vìÛòøyŸ>:áI¤•–ÅTùgp«?­G†ïk[ ºVC‚M¡X&&çòxA¡Ÿ›: þ|•£cÇëû$}~H×gûD~?s¿ñÃm3¿ZMÈû ë‹Ây®M*>/9Âk>4€eQ€Ÿ>QаEî“ÉwË… `ÏžòÌ"[ȞȬqdeNF`SõUÆpa®PÄr$ë€M47ín˜œàŸ4/ô=ù­è÷~+&9?ËÃXqÁóD2¹|-䊢@Õ œ­ >†P}íóuez©¢l`¢+>Êá~Ò­|2õåÞyæP§#«B‘XQÞ—–ÑÜe¤˜Ì¿QMeRÚ M¬äéYÙCœ-]yÜŠCæ$øÌ‚Gš èÄ Ã?J]èÌJ¨–ɶŻ9N&/mD‚q—#ç IBph^-€ËQ^P'bÕ-J'`z~æÌ.´rÿ@2îî±­Z±·%ß·¶&&Žõ溌ó¬ä¹ïáN¯¿3¹5nŸë‹ÅQqŒá ”Ç“PÑá ˹,|ůYQî·ì¨ ¤ˆÈÉ„`Ã8˜à¤¼œ‡%+3½#à_œ½éAÒC¤¬ýŒ˜Z O-4Ö!9LQñ/€|þÐ/¬ š ~¾·€Œï‘õÆLVþgz‚¿²%cˆ<Çñõ@ê!…~v¶Þ„ÇЙڎ´XmýùiR'"2ƒ/‚ \(£ªq'Û‚âQ¤üaÚgÆœˆh~ˆ {ë*9Ƙ÷¾c? Óô† ÊãÌbäÿ i’ã¿Êê3á = 3§¥=á<òê©i­Z‘ÝrIs­¶E5–6H•‚|EN|ù'ÓiêLXpÑÎv×>eOègyÐ.­‘ É™1^!¾Zò‚‚üøðª÷’ÄòڲёèaP&²ÜœåÐ@„BºeÝÖ*˜HÀŽƒcx¾¯6yXÂÆ1œ3e‚·.”ºÁ‚`Æ-˜ºyÁå °ŽkHWüh Ax’¼f’8ê—;}›ÙëX$ sΘÎUís‘†f5Pcj]$ΨÍ*ñd"à6&£ó„¤‹É¡K €²Ër+~ôµ=^xéíÆt·3’]ôÎìD)ð†vM~1Ý8¾J(øÇ*fjÑ™eu«­ø-6‚Ý ÞÆ!o^ U ¤RDS˜ðWš³¥ÏrÔžªt"w*YuûóM¦#(à0¸‹eV7;Ii´wM?Èš|vþ!ÖDˆ0X2^înÚdê—ìàKÞßW9¸ßД턜ŸæÌÂxЗ%Îí0_߆˘ãø$Ù}óã<ë’à4 F $zkvDÎŒ²Ó†vÇÅõ¡·B¸Òáümž*6 +ol™U41D¾äã÷ù‡ë ºÙKYéJ>¾Ÿž,û£Ž¾õ/ó¿KÖ&|Ȫªˆ7Þuä15žf~6Ÿ ¯KŸV~5 ¿\ý;ûœNŽ# B¢†ÐKÜEœ%t§ áéÏîác‰&àïªHüCŸÓôàËó(fÆxO©…Ç€}Ufõ{BvæzÁwõ/ùwÎ=Ìy˜ l;épzUðÁÞfétÍ™×*ªYÓ©0Xº×ߺ<àŽ# Æ–½ìG£#Ë{wÓÅ€ÔR…>8U|)nÆ m¼F>§¬H†2ð/&Ô)0<‘ðDÖH$4`¦ø~ÈÌû/ ™ã•ˆS¼.êÍ"g½ \ø–'×§v^# ‘³¼‰ ôåêuv‰$F‚êT*Ù0Òø‚~[¾hDË‚2u=\8ÕNµh³µÎö¸â]ãGÅó½Ü€Œ†;I^Æ ”ÉÐC”Ù“BÁ #xë î-ªã"˜!!Gå˜Æ„ªçšR=<– “ Ò5mƒŒ $w;[ÕöÙaCÉYÎßtܹ °“6ŒÂù¦œÖzƒã&} ¤˜Ï±¦è܈½|H+8uRž_„¸(xª4ƒ˜egc4•c•'Q³¨tëEl„ô@dh ƒ _4Ù±o CEâ›_'7ânT ؼ Ãõ ßfÍGÝJ×FƒÎ¬ÎÁ_â_1 ”…Bž”­S$n0ñÝZÝf!S’ne€È aÞ‹ ³ÎÞÍ£VÎ% Fù01 ¡>a äO HÄÝW§Òެ(¨¿]e@u«™o›n(G¯=v޲FÁz ¢e3m+6‰¼!~²ñ‡;¢®LDxÓ|/)9Mç=2à~“…g>ø°}€«ˆc¡œ»` Ùòž¦³éak\Üê±rÖ“ºe2šãû(6`‡K4S8Uç“G`g*`>ŒŸ´!‚Læ"ŠbCÃ:•Cü’T’Ò¨¬6ññဉûà¹ìÐ y¼#©Æa˜FUS“~`@Œ2œµ.ë=ô©R<*§¨±svü:­¸c‘)2·çæDÜY€•6µƒl‰L‘Î-M'*BgˆBï. &Öõó .¤£‰(_ ÛTé:ÖC.ô)”#/…5§äT)ö”}Ǽ9œæ¥‘#d0錸1p/Eb • ,}¢BÇï÷Ør™ªY_zÁÃÀ3·ž^Ó”ÓÜYœ9u¨øp5QzI¿Ov­¯³_Í(bØéIz ôžpÃ.[! UÊš­9t€hJîÜq]~5aaNPMl;ÏG(ØÒÜ䱬°äc„DmkE®Û)?f†3'µ*5;NµíÓsãkÎ>0'ÙÕV ­ñËøƒ=QÖÁ!D±°ƒ€Á¶%O²áI :Ëã4ØæB“ÝžWðù^~éúä¾¾PÍ¿?·¿ç\G’ðš ãu.É9ËŸ·wßTæ4"É H%ŠË`qA5uÞ@Åu^ÔêjV‚Š˜B†—Óœ¹eR–…ÍØGY‡vÄŽ]´…ªTó'Â1³ÆªãÈU3:*,ÝÎä@aéóë×ÈLpDD8Ôº»r^6ÊŒ7XÚ™y°‚…—Xþ.Ÿ»´t8P Ii[ËtQ G2ÍûE‡ð,` ƒÜƒÖ±§çEç^~Ÿ®†@Šq‚¤ÏÑtÙŸÏJÒ3¸HóœW`xÉœŒ ¨\DÄwu͵؎…cåa‚Q±Ô±.dõ/¡ $Ê»¦½•éÜ,*‰ÂˆùÇà9±yæцÝm¶Ê. M¾*,\㼤 ç3vÑÙ`b©Lƒ7L¤ @¦ŽL¹o­EIÀ âz6GÖÉŸ­ÓÇ… ÷KçÞVsÉg9S®¥pº×† `渶5pɦá§—`I-‡åèëßDsܸë'Â$BääZ¬R7'÷ãR}Až@ÅÉ΀½0“ø>ç!w®Ç ãðtU*çx!Ú– Ñ•L §móŽ$MJ9CóceJ'´Ù:sfÜÍwêLÄKrüò&®Y;ƒ®™§ ¤rš‚6Ížn¢‡¹p:¼h—FÄ,GH€‹FY…;ùeR•æ@…§Š!uÐé‘]Áɉrª3j†ÅæH'„.\ð\>­Ðt{ây“Ö ²ks•ê·h ¡ÈË䯑GI„ˆeb³c*V² ùPR‡.˜}uèÐtú ÁÓ';wä É „N:l¯O&ÌÊ­Ë—7AOC*ɨÖŸrÁZîÛÖ«¯¦¨Êd.Ê|%›ÈdŽ'Y)/ÅZw<étEŠkq++Ñíøct Â×– Hƒ"$BnÔEƒ9çÌE­§^KÆñµ´”Ù÷. hQ¾ÐÕ†=qŽ‹‰b:€Níw$ý'ÌUî¬-¤ÆÍ²±×+7ÅÄŽ°†–01-IIà飽@Ð'Q®ý@K÷ï‡ß샯î=ݪfÍ«0¢Ï±M–ÞËgVdø==HE-[Ê-A !"2Z”u»96ÉÅ]ŒB[²L¡¡9*)ÂY÷:ß8ó~q¾xHT eMÈ3´(’zçÁõ4¥ÎO8M:Âa…˜<*2¡ÞXp±˜’L:Ÿœ†<¾cèËl¹vD—“ÕÖ†íad«Ô7I %L-ÀÙ¶ pETdT#‹ê(ìz‹ß弦JŽVÈÕP‡²-ï`˜aƒ]òµèÔíò4je–Y^SZãÔ}:×Ë}3W¾ÉX|©w¾¹€B<¶»=Û}'Jhñ©ŒgÜah>€à× g¼mé¯:Å<¾M½þßÏ×ëù‡çù~YÏâÙãºô£ë>#â'¿?ž*Ù|­' ö&ý5?EàO!àé/— ¾5{&Ž•>…tÜOÑ6}šÄÙÔ¸_±•c¥Àžyóã{ÑžËc*š=¦Ëˆ=>âëµJ¯êÕu†±›ZÓt¯¤FLñßÛž@WWG 5ƒ‘yToBJ)kcáʰ¨÷íøÇM#†U²ßé±\Tíí^œ±Êöh ñøznG ÙDX*1«&å­Ê%‹ÝŒ‚è»ÖpÁóGUW‘_°WËóGÈ-ˆ]õÄÁæ8Èõ–3XÚ”;3’ŠìOyìåw:çß®zEO2|±6ÉI#b®¤Do²01BÇKÜ^‹L[É?y@ü»®'&^9# ðù`à¥4A.™ªmŽ{ׇziƒã8Qv¯_‡êûÇ|8àǼ¶Ü%¿.SŽ Ñæ¢mCד')âŸ2œ6\´Ùe“ ¤CK%ËÏš&“Q•¿XP‘ÍVé©åÕH~eð@ù1}”c$ªîÖ*rQ•;sô3‹á¤± ¨²ÖföÊž "*Ñ«ÊÉ¢øGÏsÎ01V c&zŠ8Ä €:‰ELéÕ÷b r«ð>†Óhîf}ÛÀªå½wH,Ÿ­¿J#\¨…xáé/‘=#g#Þµb"­g¤èUP¬¦AÇágÂÉ”1ü±ø¬uY’UŠc5õ€r:6°·Å“Ñ%;Jº°`Uc¹(‘ æb&@äIÛ¶]ļ8lO†LÜ´˜ ,é)9¡æQNkß’8ïÉ/q9ÏOÒÕœg¨=Ä_Æ ä€ÌsÑ蛗ȸ º±aÊÜ™í&MÙh´ÑÖA\”’ÌH„eÛÂÚm´9‹aäSº–åu î>íh MÒrªŶ.Ÿ ŒEfýÅ3—u‰ l`¼¦î€ØðAž,­]„Ü•G˜uûg¥|AŒ‰Õ±°§ê¹â0÷oÒ(˜Œ\ƒáÕ»æ^)D-AP×+üÚPÛe‘&b&¤uCÂ\úÕjÖ0›k(óM¢¹*É(ü£HšH€±‰c„ΗCÀâ¾jØ"\Þ@Ö[”F"e”à´vÒ".he:RhqlsÁçÐâ}u<Ùƒ—¾¢Ç;²"®ãÆöšØQQ^ÐSÏ[05qœÒq’ÒÃbž­—)ÊgOu} ¬–Mp¨\«Šú&4=m2…Ç‹Ýta|r¾m8Â-9Prî5¤»Âñ¬ iÜç3Fx’xá ÅüáArQiMà»ïæJÒðr\'};¬éB ÁåS«8ñp'”•}òï±#äòЮ»ýfèrÄzPIb/*lþ£ºöo´’ þÒK§Cd›cÆ›©‘ü±!Q°Ù­â7Æyh›gECÞ)î{8\?훩ÂN•7x«øêƒ©=ȵŸé>bd¦ ƒ>Ç›EïsËë»PƘÎ]zò/м±s^YJS|9ôȶdQ¦^âGÜ­5àz²Rø­šÊ•í² Ø!!…ET4H5;u¡ŽyºpPÀbÀfL¸¿\¤å&sjã+çô“üFçˆô@o}cJ \äê Xüè pïSFU”ÌÓ3™÷\‹Wv«j3$–’\9R³ yÛZŽ˜peF'¼; yUv“nXi›+ ,i×Þ¡õwl³ÊÒgüót÷Áb¾CÔÔ÷õn³ÌÕB©½0ó¿\9›L”SÖTpã"l»¾ÃÝêF o"ÝßifPys¶ìÅ¥ŠvÁÙ¸]«*¡=LàÇ@2ÀlK,&¤Ð‚¹0/¼ÔÒ«*“!¾ŠùL1ÅÁmØ?/®P£ã‘gUwq{Œu ä3Û—±y ­Ñ ½(éÛ àHeetøYê ©¤)Ðpº]”e’·ÆS,Â%²)Ѳ(BSŒœºugrÇ…slŒ:Oa!k•‘– :He÷ìÐw4në+ku2æ+«b+%^Iì6!“•^1«7Êïu!¸Ëô›½âpHÒ0Ûóƒwa˜V‰#Lb„DrÒÔÆ¸8…|KLÁÌ\³ˆ¸¸~8&A1ëÇRÁÎm8âµ–SÚ0T´üf@ãÜÝ —ˆ.Â䣜© r«Š hÂA&p! YÊÑÌò vܦ¤-åÃa1 à%UåLrq¼ùB×!«-(}Ñã\ÏDQ³„à…!­DA¼Âc5+ûÉ*SÕS&°™„ð h¹ñ+Aªêç´òúÅ+dèLxS6SR ËÁúI`ÐØ Õöƒ3/¶63AÓžX‰aó/(£b0çë:™ Eá4Ù2Æ&ÆLá.™L8t¹ÂÒaO#į-br|mÚ—6¼ h^$Tº3ÜñdÔM}Æâ×3FùNvk$™¹çùNsÓÉèãI€ ±Õ;f—@#bÊlhÌ}<_o2•.E“+ô,™@iQCJÖŠ¦¤º'¸©F…D}lp‹PXàdOz…¸âv*š|¡É$8hÍ»e¸O7÷T™èNsœ*¼¼þýLGáÎǤ/VÃAž;_ilâ ÷sœ©Kc1“©ÑéM~p~_ƒëÛþqP¦ûÙŽ5áÓöq¯ÝG)V±a+"ÔC[²—å jÉçÐ<ýëà`ÚÎܳz@¬«xÁ|í`"´kdúwüÏ [åØó‰- jmlªO+<'Ó”<b±Púh'û”È15i”µÂÆÑ„W+rìIºä,7™ <ÏÔ“ðbT9bWV늚ÈÁñ³4æó£žsOZëð(±R ™Àã£y60á6ìÝÄ9 3¯Ñø¹×-ÒU}<%KsÖA·Zv€ôÀL _–ßP€Æd‚õ…¯Ù6/†ÐÛ¦õ„Ê>5~RÔ#<×àQÜ`AÛ'#Œ" F­{øa¿x¦×Î2:Hg"§\×(ü9£³Áèp0€!x^Ð0ék@rˆaÆ+±ã¡Y»}Bä¡Ô™å ]z=óe”¾/@¥Fc8Áï‚®`G™øGïêþ9‡“Âü“œ¡bêïâØ¯º“näV £4.Ü­®òh íc ÀºÊkŸÇ>ò5ˆÄèMsl¹C2¦¨isÉá—$jV!F›e†nO‚ç¾>K2Fĸ0Íüì<³/šÉâ;Tà …EBÉÁë„lBŒOf¡¢0»fîhÊgØ»ˆ"–‚¾ šBÖFW-ãÔB 9š46'¬­% –(+‘èfNPä£Ù‡nò@.ÂEha”cœ~êÊþö¸ž¡ÏXáÇUÉçmyS»v‡rŽ`„{±Ðâêc/§y‘$Ì8×Ñ]ÓDÊn‚.‚ô0¾i½rZ°óñ­qŒ¦ëk…‡3oy/.ÎEƒ¥-aoä½0o‹~?q0ìÿ•¬ÞÕ‡ŸÉûçÖÓÜK>…“¯è>>XËÇç÷ûbÅ’ý§á/êY–Þ@JX|o*4=¯IÉx^ìã„åˆ2¡î`ðF5K¶`âH™W²á:Á‡Û?”~ú¼c{ÄàMÕåG‚Ð` ô߬yÄ|ú>µ¹{»ø~d3.|ƒ™«·©”Žñs±ÆÔ„Ù¢Råï»ä«æs~ÅCIUö¦ƒó¨iA.²óZ:" ZóKø«_ÊÀrd—%`}©xxÛ3Ä€¡?uds±‡;-"3çkƒBôgB.dÆ1…Z¶"˜€×@CqåJ6®…˜šdU΀YªP:RrUÙ„À yd=I2ùHL[ƒ#«˜K¼8è€Ð^žê½’òö·5ˆ‡8Èȱ¼ `z82F d(À-b1-X~º¢Õc‘ßh»XJ¼xÌÈ fAΙnA‘Z­ª¦ ØqG”±`'>›|q +FéhX´€ÐˆVòâ²Hÿ¢Ã:€Š_åü b#Í–+¢VVî˜"Ö|÷©l5|Ò •öÊ…—%bÓÁÚ@((£»dáàà‚…D³žíò•ë†wªÎgN$/¡‘õÑPÜ±ë‚ ¡¼ó4…ÝûÄ|ÔH=)p‹¸Œ>ù17Èo4ÌôdO,&Ç}4lB J±4ÍÊ™øvf>+R$ôhoaÑѱ,÷æ°:(%ãcª #×LØaRÈÂg[ÑUÒ¢\‘!6Ž^í”L¢¥ž˜€HGÚI¡*¶lS……wq3xÐÁò‘’xB¹IÕÔÎg¡5 €Éôæôö#¤ºkc§yhEYo²ÅìÄ‹¡´mjåæÐ\2Ƽ«!v4ÐëÙ`RaÊF^k´Ô”;<0IÅЬÔ+-ÈÇúÒÅÑ %IôFtùƒ¼þÉÖG™¦-ʹ‰ÇQØA”“=?)Ç8…¹a˜ÌЬq€ArÉY ›ã4òÄäÄý×LjàÆÕ.8•€¨d2ÛÂ]ˆ:êˆÊ\ÅóÅb0d±cPð ‚Šb„ 0JæL9V‘XCÒ c½RYãÖœ)ˆ9Ò»y&6´ÞªCFû-Âþ›¾Pÿ=ÀŒ9±å›¸°ßv Ë ¸ñ˜`DBrn{Òm{; ʧÝ”›Tcà»5Q纈â ÂÉ@cfÙÖ²9ç¬ïbÒ;álþmá6γIËñÏÚ'íx$ü};{á•OÞ>xøÄ|wúüÚë×ã\oS“ýÿÆqôN?‰ã‡ŒávmÏ€¯®k¼-~óÕ¸UàÄß¡¯EpÕÒÂùFr(ž ÿNºÊyþèøŠ½‚õÇ4¿¡-(íÞ†sÃccõNøÊŸ‹¡ž„Ã}ò=ðüçÌh3†±IÁþW+†P8„@æ¬ÄŒÇ'H<ã½ü£eÖ“"à—"b®\ñRÍ H3g_¬°b(B¤C¬©§†ç¼°÷²¼Ö ï*mnieÓKóHO£“(õ‡ —ð®±É‡zÔH x)8T6b6ÓŒ›ýØýd¹¨93éAB”¬½2.޽þl°¬Y¦éÌl`†%¸Šfë”A~²l[w¶è[NøC2/²U[%H‡5ÔèPy\ßTÍ–Ãèïòe¿nƒ.?GÁ¾ 0X–K¤ í¼8C!™™¨„dѪÍͰ¥$"B“Ú úœÚ¬øËé4°$L§ØÆšUÉð&{¨$+t¶%¯kàäòFƆ¥ö䫨N»ç¦ú­r$í‰=¯=ÙLE‹‡»Ž¬yPEÏëõy\9ÂzÓ8wC-wSr—7fw—ã¬À±9Œ„„4á•!Ø m; ƒ+}Ê…G¯h¡CMÂÚ©+ð¨ÃæùyAwdáL?‹óN‹q*ŸKãM¯¢„‹ãÀ“§„åŽÈ³oN„bÈ’ÜŽ6Orþ:RÙßÓñNtuôÌV¤H³ƒ,I†+ÆCoXÍ–P&™Ñ YìC¬*š/w´ýŠéšGÅ•>s¼cx”¯LØ!øÙþÜÇd€û²9ù‡nŒ„z!.3Ô:?•\ëHi“MšZÏÖ 85éòõN[-L)t ¾JžšÜEsXBÏT¹F|˜«À_$ÛpxôF¤•.ØpÙðùÂ3iêá;}èZ1`Ìž´hï8чq¶éK(c𼑳óV* ;|&ˆŒõ. ϳc) `RZ³°òKjvVV4ƒÐ "&pnž5«—¬¡aÎØÉ$\Ô7PÓ%H€C>ÝUÆ:ÆŠ\ˆ®éZW!ÀÁàtŽ£4Ø@l]…²‹œ?ÙY¼—æH7t=Ü-ß"v€Ó,Ù,P…UÄ¡LÚbVÆ9wthR†¨’(z62.$YX{Áêë9­â™¿k[AŸŸJ>ÀÒ5Ö…yÛ“¢s6<3+Î `«È ~"ó§0#Ö [¸ŽZgT³üWõÄôå#‡½2ô#nŸ™FÇnÁ‰à4lÒÐa‰^ ¤âÇ~¯k¬e^»å­87sÈv˜D_G›Íä()\{Âá©áÝ›åu* R£Š ³‡+'ß`´URű*ÛÔ±—ë'ôVl7 ñoÛL!kÓoM˜äMRd•]§\.1ƒ+­`|‹¯làµ3“à™ôn¬¤âý;¾ØÑ…m!‹Tѳ˜@ïÑ¿–ÏÜf1̓Ì÷âØ(öÝ[ðü²ȇzƈ´%ñG¨eИ1Äòy~„ha²ýCº a-‚àTrè »Ëû¤^±ÅY#xú¿:Öyá´¦v=*ê\ññæ,ÊMBhç_Æ$²•ž‰LPË¢|¬ŽjPÐŒÉP¹$¡jç–@¬Šd¬$:}^ œá÷ÜË?Wy¸ÂŽÓ1XÁ¸Aî¨<Êîh[ÄcÙÙŸ‚ZU{ƒ¸.b`¥“"rÁ&%ŸDnÓ„it®[õ ÞRAÅXC&[¥uBL&aduy6g*±ÆáµÌ6pZ7„ÉI=gÊnïæÙ”}“0<ó[[Kâ¨8^ nIÝí@»÷ˆú{Cú•˜Im9ÞFK }÷U¥’ÂR$šm óãíëŒÑ—^1Ô÷gÑpÄ~K ….¾®åád% Ö_wí•äuAÞW37БiÙD˜ðg&õ:?XÇ¡_»Š²e‡j@x@WvçAÈr“@÷ )ü= Y×e¥ÐXÁË*2å݆cð]$9VJ¢‹mi’‡º<ÂK¿Ï%›`ÎÇcVæäØ ½Ø»°Ð Ÿ—S&»DsF&d§[È82¡òÁ›"Åù”‰Òpƒ+æß€|Á‘êÕÈœG‰¾öBÄмY;²©r„œó¥¬î²ÁÑ}ZÒÛôóôôßÁ Tücíø§Âí½_åñ7.“õ ¶§¾wr·çž%T\YŠ'GLjŒ(Îð>æþV'd“bø‰¶;¡‡À‡znã\‚ã¶<ñRß ±ŒÐÑ (ã®jxzL{4æbõŠèxÊ¢i,Ë©útbÕ-ôQ`*Ö*Ïrdî).B­J|+…F1N'Ìy‰ã†3›QÄ}•Ž]_{aA£ÇíïœÃɆÒÄ9ï\ÅŠÑäGn`ÑαÀfËcu³qâT(ƒôxá1V†ŠüÞy0¾]Ñöym3g,ÓúYܨYŽåHñÃHúTðmŽËð x–@ØB¡É¢—[Ïw;îV•_ ŽV]xèqáÃxÀ[16/(å"ˆ`œøYb_I C*'Â86zn®­ß×Ò;ˆqæÌ¾•êeƒpK6ƒŽ™Œ–Á1åÝ͹¤ ÈòÒE'qäXy_àÏ[cö鍊Ñhø3Õ?YœÌ†[×ëQñ3 ³b´ÇäT+íb5<šEÊ9p°Ã…ùG 7,í¶óL.@^|œày(5ãK丕É:E?<òå–;«´å¿7ßMªî«yü&;à÷¹Â·ËP‹–Èîè\)¿C\ƇGÛ,Î͇Lð¤ï@šð†Ñ:G³TØØ2¼•ŽøƒÁúŸfž ÝHϸñŒþ=ÜC•µˆ§îÆ"nÅžäåPzîŒ6²iÌ(„ŠcæõËáÂU½JVøâæx $h&ü!StÜ04­‡âÉäG&‡^­I F[Hg-¢5ßíS0a¡Û1ʳ lÿa+Û²T¸áôáˆCvü´¼—äV­¸¶öoÅCY"&]ü»o¸§ËÏRÁï ‚sƒmóíWîMX ö ã—亶x»i)zñ=X2«t´=q‹`ÚÇÕ 1 „ª_ó|´jh‘…w¯×çÇýý¡_áåXz?Wq<ýï"¦uzû`pÈÛügÃɹ¾îÿŒ$ì\,˜ý“‡.ç›^±?ÉÉÛ‡¤êJ‰ÅÌqJ  ÓµÂõ5õªŽ Ùc;—¡çÀ~°X¯QÀˆÚH›‰üÚãêðóÇíâCÍ'W,CÞx€ÞI{TÍ2tò˜ÒàxÍG‚a&$ó\Á%V#‚ó€PÈì£õïÅÓù¡«×‘~tG÷4 eO· ¾Ü¨d™û¿é¦&Ž b½:–´$ù}hž(ñXØxi· 2pCiKkoR¦EÈs ý³ZiæÅ€r­CïÛõœqãZüþŒøá^þÜ¿BêüT~õ¦6ë†Ï%I 6žX ˜/#3Ü\°áÊù™´\õB¸?[ÇÚIÙpŸ±KøÏ`)Ær=ìº|DÞÉ\ÿ×~îÆ:Gèø°‡à[õúãòãã;ãø¿fºŽ0AÅ{‡Tóá1†×Õ>ýÿ i|yÝÜç—9Èý'ÚÌ¥u}‰{×&u7 Зåê|~±¯"ù|sׇ’Ï·souøãÂwsý±¨AÞðT ¿Ãh ðF ?hñ¬8¨wÚµþ;®õ€ÒÈ™ŠyÄJ9$7û Dy•p%½ ~Z—–÷ÚôÄÙ|ò+Z[{¨O5³Î6eDôb¬^h‡È’o }¿’Öê=ȱpHãr£VÇʄўÃó‚^s-÷&úHGæ™:M}XÀ°vÐíÓþüüa$<–O-ç=~-ôl—ßÊU†0ÌÄèÔˆ¿K3üüàü¶¿ˆ}L€~§×ïøü?íøÔþCõ¿€úTgøOºý½aÿV/§è_-­ŸÝQ(FŸ—'Sü—®~îߦʴe[÷/NØ'Æ/Z_Û Ý½ïÇ|ÉØ“õûºë¯C&'Òç®õ„#爕¨'>;ôL¼8‡Â8`8³É•Ñå”P?!!G·nÀ»vælEæ6¿nDŒ¿h†Ei]1³OÀ¿v0íÛ°îüŸ§éõú}á>Wó?̵m¯ªFn½‰õé¾!ïÏEâS™X ˆÐë¥ hû@ªU~¶__¶ü¿Œ@à°¿åx_Óå§ø;÷1ñûçP›ï׎yx† ÁÛ·`íÚÌ¿qý =~wcÆSuùŸ¿Ýùnÿ~óçϬ~_bjöçðCçžýav«âfJ”i=³9¡ŸÝݽßé1ðÁ´c¡åÐ;¢r?JqOÒ©þLbH¬ˆ"ϲ¯âÚE"'7ÝŸïåòìLÅøO¿Èš>ØÓóþ¹÷ù÷|oíõÂïýZòÿ¯Ð8ü«óüüþ,+úýŒÿ?ºý¦j?j»üG&Ï X£Fà]»ü@$§çùŠ­Ù¦ñ“&Pì±ág÷ ¿¬~ƒ·nÀμgø?__§ðÿ+÷OÏòü?.Wíà÷å~‰ôü?Vù—G3ªûÛñr×ò_§ìÉ ‚ñ£ì"€;vìùc†Qžëùo€ý½üü|íýï¯wø~'ûU–NýÇϧê~Ô§÷Óü킌_´{víØ°gø3F‰AúýÿAO—â ø}>|}ç¹Oпò?wÞ:ûý£Ðþê01qÀò)ò#Â~|§K©Y(&g)òõ:¼iúdžž™H¥Ôziúe>)¨*  ú%zíØ>xóÞsŽKGÌyMÉéùç<ç8çs¹Ü⌣£(Ê2Œ£æœÓšóy¯7˜saÌ9œ·—Ëy|—’ry<“’òNKÉ94MDG äŽGô÷gãñøçã¼süœ`ãg‹ÄxœN!Ã8\½Þïw»½Þìý ÎçrnMÆãq· ³¶Ûm¶ÛOÈÙìö[-~¿_÷šÝn·î>ãXjõf¯TjµZ“Rêu:C¨5¡Ô|çÎ|Ÿ'Åñ|'ÂitºSK¥Òét§¾dT]$UFM?#܆w9™s9ƒÖèz§¥éz^–S)çäÌo3¾_úòÏ+ÆÂø´X<‰Æ8Õ8q¸¸#_ÿ~ýáðOÚ÷{½ÞøŸ w»Ýn Â< Ç€mŽþî]î÷rïøl{Îócvî®zËŸV ªs€‚ >È„A50PžØW/žããè:Rår¸û÷ ‚Ý.>ÕË4\³F\ËòmÖ¼¦Søµú·‡Àì; é`Ûù5ÿòþðØl5nÃPÚ@*` Uø÷à ®±k¬ZA„Â|ŸÅGÍÑsy½ejóXþ}Žþµÿ«wnßu‘¬d+>¦°‚І7Î×ëµ5=G›0‚‹óéhj/­éØúé•P6—iíun@yÐPêº{²‚DÖwýÿÐÚwÚ¥Ì}Þ/1UUôyž÷4‚†K#´Œ€Š·ª¯£ÐÕ[~«bXD ·?•÷øžDi*'GŠ=¿Ýzîkôô%='èd$G5ör!Qõø wœÆ×uñ¼ÎyIGñá÷° §ÝÞ²QÚt¼®j‹ü»<”¥ZìeŠ*WÚ¤—û~ç:U®ÄP­–„¾Ž.¿ ¢Nw*®éd*.Q?“á1"žûÑåSÂP¯´:;šg OmŠ’–¦H}Ì…ŠR7X)^/ªøxJŽ(#wÅJûJ^ˆM¾Jû}ñ/OBMRï¶ÊbyU€ìq6ÑÄØÌaÃ8Fˆ¸ÄxfRÍ4éªlTä#‰ÕZ'(i˜…•·BM¬L7Òc*1A †8é.á`ÂŽSs Ì9,lDâ))£JµºÅ$½BI³$ª"Æ$îJÛ±ÈQL°‘´C++Ô¤ÔÒ2³"L&ÌË“Y&FâÑ1ÌL,6@Š *U!D5(ÞM "–ã%µ‡LÂH è“l¥HHÁMJ¦ FGŒZCFêD¢E"tŒ‹D"ˆP¤Ë–FÌJ;r²µ…†ª¶— Ç-‚#˜Ø„¨›T¢r1‚°]Ì­B[r—Al˜f ª…RªH[j0‚ABD-RŠÄée¨Ðw3*cŒa,Ñ"C‚\9‚šÐm7 ë ÒÖE8®dEh‚dL$ME§•2XAL)PdDƒ:¦B‘Â!ÂŒ'"qb©J‹S­ù÷ß>øÉ¼˜ÍλåÛ–PÌ¡¸©‡T!ˆ& –D:8 "I3L¢K¸Ø¦$Á($Á¦Ù&Ó/ÛÔVÜþ{ïy5÷eØÚ¯^óI `²ÆPÚ)U" ÅDèca¢0äÒè $ŒÁBËEƒ+b"Žc{´X¶½G¥³Yo}½ñê·Ò;µù_Póö³’s“Þ¿Çóðb )D šdÂ+Æj’ÂÁµ(…ãBË"2±’ KÒ„†Vhê0‰F½-’bÄdD‰ë Š‘,p³”mX¡@­%cxDišiZ"*“xQ"bgN„Óq†M¯tŠÉi%¨I`ÐK´“EÇ&=C)3,Zf’ªÊÐ!ê¨Û N™C‹H«ê+ƒ¨q"YÔi±¬Œ7%Qdo—Ïáâð1xôëÕ-èÙ÷¬EŸd0ÐÐfEs¦±ƒ*¸E0£¨â‘j}¾+Þ(Øõê¼~x“ï¢EÖ‰-ÒÆÄZidÆ;¤©,²ž¢¡—ÐɬŠÕ t0®`dŒ#¢Ó@Ô"–ªTÌ(BÈŽ8q ¢D‚ ¬9*h„›m™„F0†C!‚&D@¢Y ±4Tˆ  äR2 ¬Âba¤i È’%¬P7l„,²6dšš©ƒ…Ük1¦[8Í1±Uª”d(–±0Y•–£ ÓXŒRñ*d‰:ÒM¢K8ÕéálÄ!H¥‡2„Îej2Gh±5„‡$qaÆ¡^Gǘ AÝ•™h® ¸™Ë6ózÌÅ +X…h#th,ÝaÈé`˜¢L —kN7§C ˜œ¨'¡jÒ5 ‰Ã’C. ª•éºOá16ò8 †@–‰$bmœµˆÛ¤)…†`!Ac¤$\mŒ!¦ãjDY@¤RÈ4Ê܈ê°é‰‰#"Äk̪P ºr@jA²ÅM½XÞXÖÁYÌyE¦\Iáu#RÑ6Æœ*-9 :¤ÀÙd#Ô 5m¿)óò©Ü˜Û׿¾ï~ÁkQ ‘Š™5khE›d‘#a”mh=DA a:Ì…¨pQx„"@͘DˆT‘EID§1â©é6Œ’˜ð³’¡æAzµ*ꬌFÆZÊXË ã)#„FB¤"JmÚ[&™D±YF%¥IšPš¨AX•UF[‡*†Dv £ˆE•8Ñ•šš f6I1 -1Xc…¬²hæÉEFé’$ë E’ÂI±2ZJ5E6mÂL”†²fP#m”I©‡8Ch‚X(eƒ¬Eš”2B›…°©EÔe—dÕ®ˆ¥ÆœÉ‰ –BžŽå¤›,ƒsxdÄI4Ä0ÚÜ‹@Jˆ£YMS†Ì“¡&ÝZDÄ ¿/>µÑ.Õ}O¥o³.ö˜DØ Ò‚´S©,2¬$¤¢4e4†)PF t‘uÊ1ŒµYZÇ&˜²ÊQؾ*öØÖŠKl¼o¯“á··Ôe5A 8a ’ê,&SÔ̧RêÆËÄŒ¬3˜D’Þ¥3@ÈÉPÆa† ‰„‚8Q" u\‰ŒOÄ Ù`X¢GD¤Ý/3$¸Á:JŒÑŸ‡½.ö^R=·b/ˆµÞö‹ÞL¡GÑ`BU–·CŽ–c $ƒ4X´cqÍ$ËH&kÆ¥Óo=“ÝuuóË¿™Wdν¾T¶Ê ’W{í꫾O·ÎÌäß‘?Ù)yHP0VI 0LT½b…I4’µTY-1¼qËz‡A5Ž:f6me7¬mPƒ‰#¥MhÖFXõ U”V© ]I˜Ü Š”6Þ˜fˆ­  mÔ12’!%™AÖeÒ9 é\c×ê ’+I†@Ü):›ýŸoÙð_D¦b¾ÞÜG—Õ¼#^û~žÇ¯;óíŠoœþ¬‚?þ£¥DD~üÇÒ„ û?³ßˆwâO•×Õ¶û¼¶/ª+íkÊú*áôrûNˆ!1éÂFÈ`æÂ ½ [Ò&ŠèÙQŠBŦ¶Ð!“&(‚°RS òi†sqÈÖç*¦©ÈùÊ‚°­G“îØ¬Oa âî"áÂ(“æCóB}ªû\~•2"¿Ÿ1ø·k#Ú¬u³)Ó|sk‡tär´ ¥n)ðî-pàÚ’Îò0Is42¾QH…4Ùml†|jq‰R#‡HènèÙ¨=·®ãu,"jm†Díäú}Ÿ=õøîû~_í_Q¦Uˆ­bÔGþ'q ÓÜwíúµwãäÏ~Çæüð¶ôÒÕZDèåœ<3Ã…µ¦ëC[ãU¾µ¯Æ?[ýûíßAIRb1Iˆ !¤‚c@ C)¡ŠXD1‘ŒˆÆÆ2!& ‚T™&ƒI)˜5&"&Œ”c,Ä!B$0P‚D Bb)$³D¢Jcc´"BY&L‰ )¢‚d±DÈÑF$±¤D ’ CM(Q±Fa"™(ІËƈ›&‘a(4Y)&fS%(¤› )3 Šd£’¤ÀfL² Ì› Sc$„‘)HAŠ¢JT©„h‰€¤„š $bŒÄ2F“&F!ДE ThCd°(P’F2Ê”‚4DÊB™¡4™&ŠH‘”f dC*aE!¤ fJ2RCIŒQ†&ÊRšF@fM"J4"E&bcI"²f)¦1D‘ˆ¢H 6DaL™ˆLb‰™’h™˜cf$A`Š%M$R’2?Jüo¾öûÏÆgôQߧׯ¦¾îhî°lL†Ö‹)„UMçÄ‚3*¦N+¬Ç‡oeZç7/¸ÜÍóhXˆüXŒ5Þ“áp©ªR4´âèêɸ3ȶދš •)Ô>þçþ ø?×￈W)wêS·&ÂÆä®„e§2çVã!™Âj–¤ŠbR¹K¤¹!{;sÔˆ¼/OV!uTä.ÌM]ghØÆg&¬É ³Ë»¢B¤›Úa-]9-µ­Vb^],É:¤Éµa]ŠÛ •œÖ]˜Â£¬gžÆŒbìî&HµVäæ6NšìalØQ©VIEäzvÙv•G¡¬F]´ÚÈdÓµ¥*9ºØraÖZÓ.i+eÔ˜º ²eΉ£2I¶ÎÓkvÒËJ¤íg­Š¥DœäÝV#6#f3³ÄÅnLá‰[ Ñ:6sJØŒ¼Å4©©— [ ¹J”–Û FÈŽÄnÉ‘Y¶nÓ†eeÓ®d¤ÚÉ×(†³²¼ÄSnÍæ%6O*éF¹•©µ™nGj¡µŒNg›´»u9Ë©^yg'ðž½èvʹuÚ°ÕmlA Ô£˜Û”ª'‹l¸m1;:wlCA4”äʘ[¥ÐÝb„¶ÆÖtší]iéaйCQ9$™–ÛdЇPˆÐ›l‰µ¡ítˆç¶iÔlb¶ìŠj“r¹quµ¢ìäÏOgØÝ™4«fÔ+¢[l ¶W²ë§A¶ÃLYåÚî¡¶!å¶0†®yuɘ‰VH3’в hبuÒ:çù–;Éåòa [NvéÛi&¶lá×gÂ×LTÜ©5B+’mQ’å0åÐjŒÓ2+¤0£;µ´<³<ŽwqÝÝÝÝÇm*#JÄD•ˆ %F˜(˜$bE©V1(a„ˆÅHØ`µ¬ÛVmEe«e¨TZ’-Z,jÛ[m­bÛMU>^*áR°¥Vê­oäëð‹_kQ‰6åÐ×5Ûº©Û±µá\¨Ö6îâŹvÚÔ]ÚÚ·(°bÅ«½uoí¶µ·m«~Ÿì! ñWC&¶wccp×1E’ºN‘ aØ·W.î;ãÈ'‰褅âE!%EP*™pÞ«müå«Mmµ¾žX|îÒ‹’a`;¡k®¨EyZ„R²Q\4ñZ¿üúU­oÉ€ímkTÓS”bV¸”ÄT}œ)32Ö×VÕ¿D~ÝÜgwkI†ÄlhƒF£Y•uê4b‹I­ƒ— *ú=ÕáƒQ¹rÆ""ç 4TÍ€´jåé:E »Wø;ŒšŽfϹ±·zï,sW-ƒl‘"Å##–»$Ú(Ñ,»ªéc&År¹ÑnsEFÚ4b'v¿lõÚ5‚¾79óÝ™±FÑW}:×(ÞmÉÜj6)ÝÌ%ˆ¾ŽlDhØÖ4-ŠÅ½Ý¬€’çLr¹‹lkšÜÚ3éÚáåCʧtß^Ð{YåS“μÍ[”b·ë_NÞ•|s5Eˆ-Ón¨¢ Ù-¼¼ÛË•k¦Ç9Yw\Ñå\׺ê‰*6ÝÝ©/+¦Ø¤åÌj 5EIcDQ²\Ûp±²hWéªåÖ7•ÎQ­Íƒ]Ý£EF‚Ê×4bMFØÑµÍp¹nQ ´$Ñ®îÜÜ«>usT[E[•slDhÅF5V1¯+˜µÝÖŠ€Û•ÝÛ¥¤±£E£E´m$î×MyµÍE‹^kšÐ[r¹Q‹^ksR[ôÕÒüNü­¾ÚUµoÅÿ+Õ¿vü_~¯Ã¬Z_-rÁE‚7-Újá¿TÕ5«¥¢x9à®ïû½î>ù㾋ÇÓÊ¥ò×4nzÕ÷kj–þñªÿ¹[q¸ƒ{ÅgʉØ*Á9Ï –,b1ødr"wr“29¹’ç;™,÷Ç(èC—ª$:¯wT=Û˜Š9nš¹Db÷»y¢‹î»y®QQwd6ë ¼ ÜO€ÑÜÒ‘åµËQEéZå±1‹s–ܹ¢¼¯/7àuÚ#o,ùך6/5¸Rnjä[%®›ÍbÛ¢¢Ç77›¥{Œñ=Ã\dÉʪ‰Qš»»»W5¹[s\«s%±¼­Ïwk[MbÜÛ—{«Þí†Ö-Ó1sͼ‹²‘´Eyʔܻgv·1ÜíËr¸jˆÕÎE\¹1lÖŠ®nnG9\ÑÎÜç.scE¢61©1¢‹D»®U²W5Íøvæ6¯5®Œ›DZæ´W1E¢ÑŠ6¹µ¹Š"MÔAFÙ,mårŒ[ã’V1¨¬Tlc^Ey¶óÊÛ’jKb‹«Z ×5ËŒkÍçš Él\ÕºæÞQo60ZAk–ålUEDFÁbرhÅŒbÑlkAA­fîµrѶ6)–-bÝÜJjósF¯-Ës†Ñj6ÅkÍr5ˆµycn[n\Ú6Àš5bå·*“m¨‹Q E@)ÃN"…%U%%!Ä@ù̦ûõlYöv5´ûÿw×_5¼¦m}µCqkƒÉ};”÷lKB¨b­L L`ˆÁoº÷º£sWÝy²Mã®i•s—.†"6¤ÚŠ¢‹w[•ƒ»WC— ŠŠ4hØ5ñVæòå\æ4TZ5£j‹PF •T–4&ÙMa1ˆµÍsNv«âÞx`#šóyå×1F#YÝr¹µÉ5IQƒFÛ•·(°î×*ç-FÁªåÒÀE £aÝmÍAªMb4˜¨££R[ck˜äbòóys\¶îíhØcª+›ò5y“HQ *6-æ¹´sW6Ž]šøÜ×+”š(¨¬^\£ïÚºF4y­Ë£Z**(ÚæÕÊŒDmEñ·/5Ò XÖ*ókÊòÚ1E‚1ùsy®Qa5Í®"²ŠånQsmÂFŠæÜØÑ´FÆÜ·f´jå|m¼Õ!XØÅ=ÛnY"ÅXÆÙ$¬s›\®[¢ÅE¨µ|UÊ*£ÍÓcT–P[GÎ÷®˜Œh¬V‹y¯+ÌUF cEh¶¨¢¬Tc&Äjç5h.[‘Z5nkp65OurÞî6ÜѺTEj65ccX£•®š¨±ÑV6×-򾮵¹«–ÆÔc[3‚yºÙh@#NŠÃΫ³—ˆÄÎÀŠF‰oé °…–øQ2‹ÀHÁ4°/ÄZË]mlÛ}ß¾îr×*1±}ûy¥ENrloê:uÎWqwš¯ ÊáF÷sð]™·Ê:ê î^P‰ãä;çŽïzã;]!ž×<æÉEÇ›âܼÕÏræÅ¢«ã“Ý®mÒ+–‹Žº KË&E =“'NsPyâL<¯$ñ½ÕO{J¡Õî9¯76¼®lm¼ÛsQ±aî´îªóZáÇ6v£måÏB /( Òtö@ÌãÌk›77-‹`ÛrÜ 1¹]ÝÒB¢5ñrJà5pg‚s=ÀªqzÏÕË‘v‘ÉκE™8Dó&Ú¾ b+Ê/‹\-ÝÖ,o+âô©î×Mñ[™/7,VƸ\´mŠF×{ªÞh´c^XÛr76-®»«•·+›QQYîÜÔlQµy®š*áÓQQ’cV*¯-®h­wÎÞo鍨5¹ºFÜ·>-ÝØÜÕhwnbÉ^ræò¼±£±ªƂŵŠ-y®Q[ËÝÛÍE¯(åyW"ÐQlšónlclkâø­ï¨¶Üå·5ñmÍjø«šÝÝPWÆÝó·›ÂŠÅQ«Ë›FÚM|W-î¸Æ®mÍ«š­ÂÑ͹T„löZæÜµyy±njéjæ­Í­Ó!mË]6ÆŒ›hØÉ3›FÜÒHÍËšë°iy®5©në±³6Ų–¼«ï5øO¯ôŸgÑL`(ØÌ-&6ÈhÚ*1¨±d¨Œ‘R‘¨£*0X­¤¬T› £Z5hÔV¨µj+m‹hƶÅkh¶ÛE¨Ú£UlU¢ÖضØ+cZª+lZØ­hÕj5µ¶Š´Z‹cmÆ«h­bªÆÕQZصZ-¶5Z‹±hÚ V+VÆÖƨÛZ+ÆÚÅmµV-[j5mØÚ±L´ˆ«j1mE«cV±X+mkFµb­ŠµÔXÕhÚŵFµF­h¬X­£X­QcŒ[TjÔkmAVÅ­E¶±k´m[Z*+bÕ¨±XѵQ´QVF,kcmŠÔVh´Qm£X¶Ä`µEª‹Z Ñmcm‹L£V¢ÛhÛUVÚ1d‹hÖJ”°cE±¢¬j«E¬ZÛF¶1¶ÆÚ¢Õ£¶*‹TZ5¢’ÔVж Z-µŠ´kŠŠÅªÆÔj´[Ec[ÑUkEµIª¢Åkµ¢ÛQ­E¬LbSŠÆĪC÷ë°Ø§¥fiP±™†s·‹Í$`öº94J˜ímªïÞf¯Ç>ïW7Ýkp¢£hÕ–æØ×-Ã$HU_…jè™*¢±¶,%¼¹åŠÝ(Œš-6£ X£A¨rܱEbyØ¢£ca‘E¨¢-æÜªø­pÚ- ¯6®k–é\ÕÍ\¹FѬkãr±£ãsF4EÍoží¨Žå;¤@Y ÈBv¤›ºzV¹rÔÄîäY›lhÛ˜ºm¬V´mEss,a7.m²[ÆŒTntÔmEmTXŠƒRr®i.jæ×-\Õ(ÛF¬TQ[F¶© X¨Ö‹F¢Å£`ÛEV#lk´W*6×1mÊ6+\Öűµ¨-njæ¶@ÕFErä[âÖæµ¶¤«cVwUZä,`cS XO©Üf»¿!á‡U³Ð±ŠD‹2ˆ3QmÈ}@Àú™ ¡=ÝAi„iˆF`¬˜ûÓoÚÐhÒj5¾-Ã\­Íñ¼Õy¶,Q´h¯ŽEQTV+›n•’ѶŠ(Ú ±µEy\4k%ÍÍbÑP•‰"ó‘¶ónflU\¹Š‹jåÎmÍ„j‹$hÛQhÑ­ÍrÔ†¢®šæÚÅ¢ÅbÆ«ÍÓEгÝQW{¹Wœ«•nlT–-¢+Ur¹¨µ¢¢¬Zç1µ“[±­å¹hÔ•¢ÉV4jMEkFµËjäm¡#m\ض¹­FŶ-bj‹j6-¢¼­Í¶QXÚ±µ¬V¶blOËÌÿŒç—ÖR0ð…ü’òã%‘“&Oœs*QɬgãEÞÚÕ㣘ϳÈz¼µóFŒkEFÄk+£Rh¯¹Ý±…÷]±¹ÍEF£Nnµ ¶6hܪéDcå\ÖŠÞîѵæ­ËZånZ]Ö®QQ¨×.b¢£Q­Ê¹lgqr£Fˆ9¹` °m®\´ssr×4lnîØÛXäm®\ÕÊ5ˆÛsmÃVûæÜKj EF×•ÊØ¢Ñ¨±±Z+bµ;·,QT[[F­cµ´[rÕEZæÚ±¨Õ¬V*Ѫ±j5¶+chÆ1Šï»øÜÄ£Ób¤ül.ªÖßÍ}M÷U_u~oLÎbØÓ¸ÑOׇ¹vŒ÷*œL2q sbÑ\¼ÞFŠÆÅŠÁ'–ó—…s^kËI¨Ôm®W¥¼Ü«s*ò®nj®ky¨®‡”mr´Z5=Ö®TkѬjÝÝk^msh¬[¢ÆÕç4W–å幪5c[¬P\Ç…µsU¢­s–ÌŵjØÕ­‹j‹›F5Žj5mr5kE®Uk’V£mª5™jŠKK»q˜ ÷߃öík×ê¹õµm^¶Óú¹hŠ[Å'è§gêoURí€Õ-~¿(Æ kj6¤±´Z‚ŒUÚ?Õ®^mͬE\×6-åºlh#[£hÕk&-бîê-ͨ-\µ²JÆ f#,JÆ(‹6* °)mZ5±mµ¬Z¶-­­´Á,bŠ1ŠEV£¢ËTSŸà³p Vt­¿ »VûUøE«•Ë•®[\­ÍÍQXÆÛ›jå¬Xµ´VÇ.ÆÖ*-´X-bت«mÕ®UnklZ¬jÕ£mb¶Ñ­¶ÆÖµ¢Â“1qcU`næ˜#Юæ7DFÈÛ±‚*â¼°$(Λ˜!0„Qh´ü/V¹±lm±±lZ6£mЍ¨ÚµÍsE¶Ù,FÖÛÚÕbÚÚ`£`‡Å] |—y½Üî~º&‘’—®§<ݳû[w2÷©ŠÌÅ1†› ²2Å]šÜ·5ÍÓT_sº±ªåUàjŠ·•Ò‹hµ¹UnmV·5¶*µhÅV6Õ¢ªÚ*²V£Q[F(«î~?ùƒ¦+?iØ^òÎíð$F,Û—ïªïâϨürh½˜ŠØâ¦07lFX*ÆL ŠˆBÂ*© ´– N *I!tÒþìç±ÇÕ†ƒ÷¢S™™¾÷äÎ6Û}ìFü+[–Ú*Ö1Š£cD6^›”ÎúâpËÆ:=bœßî~,àgxoÁ?ÕNÕ|ê3æÚûÖŠÚ6ÛUFµUkîb™b¶-®íâ|†}ZT˜æ¹fû›:WÇör™ÙÐwwúfú”U°ÅX÷Å)–sZµ¶¶ÅZÛj¬[EIŠ& !`*ÿ_É|ÄKËŠGTÈ‘ Ù¼?ŽYœG„èµY ÇøeC( LKž'æÒJ.‰®ÿÚâZXFvïgŒ Ç‚¤&–Ë…4ëÙ~5¡ î€_tM™+ä­Vˆ´Q_ã•OKâì…ëqS ü£A°ÂÆ*˜Ä¤cHÆ(Tj8L¯‚5hL+X”bÄš„pj(Ó@SJZ'¹ÀW%Þ}­&¨1Jæq¦1D&0ÃvñùÐäìÔ7ܤÆ*q _ƒ*5R”›LJ+VÌ£«ƒÛ§ø–QQH{Ï„2Ê× ¬Ï3ÅÑãÀI»x),«^€ÉML¥³Ë>^Bk§ýñy£¢— =NáCÏ€„YÈ*ªŒár‰Ž&hJ5àî¤ -ðÒAŒ¬Â@>ò@"ªJ{˜ëS––"íŒÑÙ ²—€ékØü<ÒÏ&·d×uýV€}ÏjyŒÒÕî¾I˜6Ë÷UÃê²M®ªU^ÓîséÄax/x¢G•‡™ñ¿kr­„ûµâòVr•V›Wm<Ë>œF†E‡)d+ð"$ (2dÒÐê¤- îÜEmQÕ«r›¬³'×`p5`¸ŠÎ¥TÓÙo|Ž„mð? ïúŒáxº•Ée²™Zb NHTª±ä!Ÿ¡èÐGYHw¹ÿ‚@wºò%&€ ‡ ¾3£Z…6'“5·Ú‚¬âk½‡ ˜73+…~ uF:Bˆ ÙrÐÁprŒÕ qÊe+Ûçÿ¹šô6 ¸ÂѦ¹Óf+ÚŒ¬õGõ’m–$ÿ2ª±3ƒÆá 5w7ÍxÿO¢¸+–ÖjÒ³ª÷ìd0Cx!Ç@Ìaã@í`<ÅF¢nŒýÿ,I(Q¿³ÿ¶|gàÎÁÜuK9|W˜ëá‡"À/;èƒM·ˆ6·’!ÎÝâ µYîö0ô¡Ù²LO+ûCüã#%–<2‡ÐÏ­d¨ÃŠ0\ù"Å4æùI3ÕRÚÛ^s„Ñ’Ýl—˾/÷ˆÞ·»„°( Ó˜Œq@\YLU<ÿ1É ê)Ù0gJ£K)º‰‰íï0»÷rÉŒí`ýÎŽ#[uˆ ŒTb¿—‰·?—ÛfƒK‚~u"òÌÍ®/ÜÚ¥¯qŽÓ@çâqy|ÌhÔ©÷J“$ððìü}#êK£ò™ï¢õõçsÖ¢­‚yê¨0 ¤kŠ@/Ŷ!Ó°²+D*òwwÿÚÐãyñ"=ú+’ä}mEŽ??E»x,à$gµÐÓ…þÓÄQ )Q?¥ÿúû¯ëú±üÑ‹„"HŠ©gE)üÉ¡>×¾¿W{éóï¾’hÁÃ(ÑH BQ¢TRXØÆ(Ù$"CcP’$TŒ¤Ñ˜¤d¢"JI‘(B)@”ÆÌ‚…#IRa $„fŒ)PIA ŒfI`€ÀÌH"[$lP %Œ!ˆ± à †d1±HXdÍJ` ”“l@Ä I4ÌXØ ’¢B(¡$f²²Å‘4D`Ñ$“„ÈJP$a‘&I0²É#JhÔb1&FɈMˆ@¤RJ1‰#DV2[ÈI #$J¦ÐI!ŒŒ””DF2€Ñ&’M!¢¤£@ARbA‰¨B£B ’hÑcILÒh؆FЦ%,IfEL23&dÙ„™"4™dY#J%$‰c ¨’KI"PZX“„d!¢Ø Í3Je D$"d4‘fcM‹& h˜šBšA„0H“dÀ@¢624‰"Ê%#1$ÙÃ213 e&¢Œi¥$i$ÅEŠI™ 3A(†Pa4Q&Æ¡’cCBdCi¦i0ˆ™&ÄSI" Ѩ’ Fš“LÅL£Ó$’I‰¢(”¤ƒ3d‰„Tc$HÃJ I46B(˜"E$Í$"b`!R‘ D›D`ˆÛëmóêhQìu=¯¯µì`2C0ؼ>·•cjHÖú("N‰Š7„2Ae È’Y2ã œD޲Fm™¢Ü31 kPéf WNm¹¹¢¢Å·6Ú.m_b(t Ðg@C4JÓÂ/©ÜHÆ׸صÔUˆÅ&Ƭ%ŠŠJ O¯Ñuù­~zÜÿpO<|õfØÎŠÝÊ*Ã5>Ò%‰$’&ˆ– "Å)  ³ leÁ!‘#I $cB”Ä£0Â4É*3C‰f™0Œ³4K ¤€M‘"’b“(Ó)Ffà jH›E H(˜³QŒ"i d‰"#’˜À 2L4$b$‰H1†d°…%!I0³,iKXM)LÊØ€BŠaІ€†2„"¢Æ!!Aƒc3"•!% ¶P0 1H‰…D¤M 0ÆBH™bŠ$iCBRAQÉ4Í4E!CI‘LI†AÆ™¢R‚(Ì")%Fl,`d"c J ’#$ÁR3)2P˜€0É€€I¦‘)!Òf¥,D2|ß>võéR¬~·xròñä9¤vÜH¼h÷qræLdÑŒ¾]y³×"'Œs]ÙàÈÒòò™„/žòîëÞ匙›ò«ÄBƒRXÆI-’Å‹(ÔÌEI¥#U¨Å¢!-`5 lc FÆ)°F5Cc‚Љ0lHcEF±¢£(¤1ŒQ0AIˆÆ Á‚űÍk‚”jԈ؉ÔÈÄ(ŒcRZJÌÅD•A“‰4BE€Ú*’@ÄM ÒUˆØÈT“XĤÖ",m`Å¢5 IA´ ´&"$¶Rɱdر AÖ#A&5660h¡2”U*1£hÔI‚Ó1’Áccfm‚4(Dd´h¨¢±AŒ§ }À#Àg‹Ñ< öÄ$åã>½wñyî0÷pIÝ÷·Ùß EÖ"£m)c6MŠˆ£bši,X¢¢‹TQQµˆÛJ61”V“AEhµ‚(ÐEA’„4š,‘bMdÓ6¬l›m0´šBIbŒ„™(eí{0PzÕ³ièC Š“`M2†È`¨4ƒ$3 BI`Ùa`F2¢J@ !£R1¢€Ð 4€F“*$!2ÆL…BXÑ%%‚„ÆÆ)#B˜Œa1%1Š0™(#"j0‘²h ØÄi"˜fX¤FQ&‹&¤‰‘d£XѱF4ŒˆM0’¢#2$ÃM±A¤Æ`È5) ˜ÅˆJ‘),ŠM‘4A&ÆJ"Á‘”‚(Ø$,fI¢ÌÚ1´˜M¦%b—cͲws¹ о¾ì|·Æ´I"XŒ¢ˆ±´b1h¨¶6ÅFMªMŠÉ­£Z+/|]3ÜÊÐÅtżˆÃ÷>㻸Ñ$x""S: £CÒÄA'1À'¸øÑÉ…)•2Í÷®1k ÀŒÌ«†œ ßÏø/v=ö4i@™™;)›ä=B¥ØFL#ù(JBŸf$Q°ô`oÉØ™p`wE­"Kxú¡<ï‘Ï`><•P'®•zŠË?Îá˜XÆ0¡bC'¨òË&yJïò|œ›%o›F›OO< ,úVJÄ4 –³p‘Ûy©”J¶W"Ò×m«Vm³mUšVÙK~ ­Ôã2´ãÁƒÎ«-wrÉðæ–ž¬%õµ¶Ú«ï5äD¤FÙ‰!EfLÊ+[VÄ`ÅBI‰BTY"‹-£[ÊňGZÖ­wR¤Ø±¨Ñ£e/¯ÙkSfÒªHiªb”“1PbŠÄ‰b°¢–URÎÅD°ÚêšálÇH¸Ë¢DcXd÷kÌ*j‰T ‘Ráz}”¶X)ŒUXÀÆ$±ŠMUŠ¥¢”è BÁ¿ÐB2Á píÝ¢‰Š+¬†”©Hƒve„ŠÙÅXfÉpEŸŸ­_óóí6e[kM@ÁŒPiÿÏÞ^´-9Ÿ€B„`TM6£ÓËΤ?`H8ñRíÞ~±\`gÊe!¥-­kDXÛèû•}ͱµ¬lµB^ž;¿<Œ*Êï_ $€ÕØ)!UkÚQTÓÁ?ò3õ(­ú—TqÇÖj·d(‘ “¾H™Ò"b²€ÎZå:f@€°€Ò…É7ì ù_<‡Q7ø‹ýñϲo7ÎÉ¡*l[Jo8a†Àc F’Æ“D—Ü9ÙÝmu”΢ÜåÝvŒ•‹þ¦™pr÷øcöFe¥¸ÆñBE#QjCRƒmJÔ¤Û*jT¶Å5"¶ÅZ¶Ðµm¢j)m…jÛTj¶)©l† 6Ôš’¶Ðs٩ѪÞÈààÞ(wâmÒåeoJ•MÌ=·ºÈ·ÊœM[Š\io¤òªxç!¿Òòœ& ¾ÔáhñJvÁ¿ÕòªàÕutàe¸–â[Ž €àQ¹MÊnjà!¹ Íni¿Ææ[ÜË~Ê[ÜÕ§3MÊÜÇæÇÓM·Þ ®uméâ벦Ý6ã†/»q·/Ï/6öÞ¼á<‘ì&vëÈŸ-qÇᜭr®UóÓ¿‘9÷,¿—»×’x»ÿžáu)Ü»p¸ú¥P”-P…Á4‰h´†Ð‡Á.ëh@ZÑh ÃZ-Þ…¡QqÔ—%¡(hJ\—!à% ûaàž¹á46†ÐæKν³–j×{þ‹9g³–rÎ^ÌNà³–vÏgo—ÂÌÙ‹1f¾8«ëØÙ[)}ò|2ÊÙK+e,»×Ãr!R*GÔ\3Øgû0/ï‚ç˜3 ÕL·’~Üo±|~vó +±äâ|Ÿj³ê]è‘úÿ¬‰‰1¼’ˆ¨{õŒ'×ܽä>× ÒIËÊ_›Àýt ¨>H1…©Î3Ü|÷~'p£¸îòqÁ}tN›w«L3 ä,í™]u­—*¯¢ð{rÎHG‘ÖL8T„}V÷®ÛösuáÎUF„ª…<ÓnÔ ‰×*„Q“°)œó¼Øzx¢Xö¹{•ÇëKÜ¡çɵ’(aâ{—…îm²qžž˜¦É™“8Öq®¡µ·Ø-é$Èêà“¼øG¢ûÜr‡)+ž;È®Þóѵ–רÛyW–.mbï*uùä ñ<ì3}›Ñ-—/ C×åÝy»Ú4ŠM"cÇ2‹h%3¦Ðl,/Fc`&zvo«#VÙO×­D´ò÷|œ¡*| yà½;Œ< UÀ&nSÉ!Â#\½ìgõ1îô‰æ×l²Ì’~ž»xã<Ç,ŸDo£sÎoËç‹×…|Ü/+ß'WÛ#óÄ(¢÷O¾»äù˜<§|Ï{ë½Ï¾S¾{}¾½a>C'?—êÞ^}W²,œå_ä–¼ó˜wÎ?NoËÇÏ~/Ò‡žëÐj?>¾Tùóží·ÛR™åxQCÛÙ¯&óãÞ³Ýo` îóÝÙÏg»=ÚŽÉtˆÛlß{Ü)òp¼yöÏdå5ûnóäÏg¡ Ë\_mÊžáO<è½ãÞóž3ܼqk‘½u^x^ÏÇxLóï;Ô “ççwÙËÙ•“š ét|òð}õß}ïÇyÊòÌšº_Y3kc¾jØÛϵÀy'¶„¦Ôê×Y(á{»…éHÆÉ…Åù÷·â_?Š<í»¿ž;§»ƒï·ÞÔyÎÙ¦Õj¸ånVÞ{ݱ­P¢æ²È[jãÜ~||òj³;¾ÖÑ'¦½ÒYXýce_"#ù¡ ð9d{åeå´ŽüÞxñAĨyåå;<´^\÷žóÆöÝ“ËÝ‘Ëí[1q6AË–ÃWãì7ÎßE†,½œú!­jJN£Õ6v+fV–) vÈç¼'‡äÏÏäÈwãØ{³ÞvóoxëW6{­ŠÑ«—•Í_WwâvOµ…A•û}¸òÝóÜã€=ï6u{Þ÷ŠÍ²~Eó|þ2~§ N¾³}H/“Êå^ÚÔOO×{c{±>RzíS.æ›› „Iªç&Ù•å}éhã öÖ-¬`Æ0ÔY«cªé¼ùž^]ú¯¿¸»Ï|ö~üPŒæ2y²{<Šdò¿o½Â˜E=õž2my^ïž;o¶{¬Ä„áDm÷½Üë9žœ5Ú {"æÍÇÕðù‡…å8'Œ„œgŽÏvdî ÷IÝÝä<ðCܼ®ž9¹4‹S"×dÔµ1*)Aœ*¼ŽÛ ä~ôgÑžÝ|Ÿ[¾lÇר^“Çdã³ÜeyíÊM M{}»ÎDûæO™7³Š‡æÐö°ZÎéî3À›o ¯7^·µ¹kͱm=Ö¨Ûyµ«sUsUV-­·»Þ¹«¤emWƵ|Z§¶Š¶¨­UÕmSZ·ÆÆ¹òÕ·ÑZ¸¾lµ¶ß;°îÛŸF¯5£¹Ï-Uslcs•åoN\±ò®j6îí;Þ0\èÙaÚ‡+’W¸ÏZ9NS‰âT$ší,ˬÃáõÙ9<“Ä„‡ž ¨š„d§weòùíé¾®…}|pa"2Ì'œ2cÝØÛéîÞ&×wG^ºN»=Ùî%®Y:LÉ™åÏOvn®Úì*% ¼w)Á&¶ÜovÅÞw=:l_cš+à6íkãh«Æ´&YÎ’g¬]²c^ƒõïnZ§Ô/;è÷Þß%ù¶ü»ííIxjãÎü¸úÛ—82šïÕÞá"ßžÂùFrDÇt‚¨¼e×=ã'’–=²@˜-½xë“–dUîªó““ò¸S'ªÛkkx“³ ùõÙ9>»ºW‰ŸÅ¶(ÛcA РJhíA²À;l'fó«¼ò‘iMžµÃ®vÁç>¯Ç9åúû›ÑĪåy-ÛpOy=èQCÔ»õ™Sȹ{¶nUyè£=!{k¼+Úö­´(ÚÞñ{Ö‚+Wd^ɳÔ#cv‘öí¼oÏGy:I~o³@ö»Æë³k»€ àî!çD*ö¡ªm¬¹^ŠSƒ”îîåî •ùïg¾ Ëõh^ååÉÖK§¡^s¶gËï`ôì*­l ›mò=ržéŸy=ùww“Wp¶æåååïur¨Ø­‹s[ÈÛk–ÔXÚ¶Å᣽ÞcÕvù<+„ó ¢|†ãË é{ËxX¶ˆ¯+WC{9®rçHªu]ÓÒràxààiÆØÓJ»F'Àq=Ê3~ä·ˆu~xVw¬¨>ûØÞûCXñi5¤·Ï{ÌMÉäÛ|U|[yTo¢ú6¯-¾5µÊ´ðg¸éVÛ:ÖÒoÌzö;Ø4ûUø'ŸyØÙc;´LIL¤:i#»ˆ?={ä~ó8Æ;¸eÆÖ;gòü÷æÆÉ5‚Ñ€’rþzÀäâžÈ9¸éîâL˜õyO›:[2hs3lë‘ç‘Ú7m½âñîs.¹vüDzy,¶Â™hüq¦É“*+Õùo¼5r)²Ê+3‰ûxO›ïÈL*nYV¨-vx3À£ë»ÉØ÷I¹u®¶Ò²Ïc\›§Ö}öÆKîåìN[Ô¤òŽçE¬vñŸ@må6Ñ/E˜"&Ö¡CíЈ5Šh½=Ê8ŸsÛÑhíòÜc+&–,³³±–+,m­&ÝFì,6-º5i®ûË âóLæí^­åIq=~öµ+{‘c(kYúóž¼fóíÑïÏ{ÒúG¸ëPO~c?Û%_YË´O´vÒðg!ž•ãÉŸ×Û|öú3äå½vxظ:Nìç9 ÊåKR*€–w'’õÓ"ù íCRÉg¸ü{õõß'ÉãÆÇéé8Sêé•«È›GIÒGvLç¾×óhùòwž\ñÇÏ@þî=£…àüy@È~´q½+ß^qˆÒÚdÒmrAºË$¢MeZ 0Ö8\ AlÂôSzpÆ Aщé[é¾ÇCÓ+Ýh*¾·¼dˆÏì–¯¢m|÷»K‘[–y]&ÆÖƒ5ƒ&“=ðõ¼ÝÇ î?IomMçÞ¯6ÁÀ ¡Òöç=• «¤í·yxò((yî\‹ÝçŽÉõqç¤:{…á{ä&Ò?³•ÌU絓R&]ªçócW“]rÃe¶=ã¾õ-IdŒŸ·½f Õp¼.®œ?=ú{»=ß=óÝ?· ^Ì&NÉóI=2/v@üz{Œ^¾œù[gD󈫞žÇ8²ù±¼¹Ú”Ù¿=^‚‡×M¥'v„LÒ~Ûç÷'/*÷Š~{iGUtH±ÙÎCôô÷"=ò.ZîžG—¿(^>OÍ,=$öÐ*ñß§Þü‡ÏtÅôoÄóÝ¿Wqžæ¼¯±}V¾Ÿ:Æ·×»yö}~a,F7›±s\‘ó½î\àÏvö_›„˜”6$ÅQE¢´[ãUrÖ*­¯‹m[µÝ"ÂÜ"fÜÓ@ðÁÝÊ Á'u Ò°‡V§‰ÉÝž^6Œ÷˜^ \½„V¼Ú½Ý¶"®îÉrϳ¯ zíG›zkÓtçc-ʹ`Ñ_sx\9Ê÷]dˆñÞñÛ£¹Í͵|k|m[ów¶Ê%À-4 Ê/ @*Ítæér‹U|V¼Æ7¥kâ²3·O(ÅÐãa3µe]úgJ“<…zKNÛP¿¦O5 >L›]¾ÞÝÊyóÄï]&NÉ ä(‘éu< —Bº2g¤2CÝœˆó”ééãyÔl[µ·,ŠÛžÈHgš&d·g‰]¯~{?2¦ƒbIŽS -÷½-ÓFÒ‹ãnF.ª–a RWºˆk¡yáEg¦zeRb¡žY˜^Y„jE-IžšQ’–£¤Y†¥.yš¹§”U&zšAIé™…Yé<Ãä)$V©™»…àà<ô®,9x;QʧOjå{n'¸óÁ ·-Ü«•¨µËÊMmrô6*æé’9Í^Ff«Í¬m¶ÛÍÍ\¯1§u´UQh75½ÞõV£mjôÕ©ÝX×dq¶Ù͈¶Çw¬Oç¡ùã…¼íæÔÉ:Û&×dFd—J%ííœbÛÕ3;:Ô™+i³}öUžùé>©<î_¾¨û±æóÞö­«ÖÕ´×Fo/o^}æö$3ÓÉo¸ãä>>WÑß7~·²T*]xÖêäLcò··k"Y,ëMSg}÷,ó3+ÓB|Ù\i7aÚçnÖ»a%ºÌVg«FóìÍÞÙH)‘¨ÍŽÅHâ[v3…¡~BÊßg¸@$ìœ%bª5Îjæ(Ú9«»³ÆwLõôc<Ò͋Ɠŭ¾Þ÷µ¶{^Óº[ÕœýÑz P’¸¦Qe„Z Ø-  Ã,j¶%Ã>à§+̧PàlH@§­hà<‡OAû}ÝÇŸM9ÚÒ·/½o;Ù¦yÕ»ÊÊ‹äZ!"Ø~÷»7¶k§\¹¢e ­'æ÷“Ý«iÆÃ©få ¿h±/‡ññãÌåYG$дŽ‚d°GZ-B$ †KÒI¢¹BMùw½w„Õ³¤²¬òÒ ®°â›gÛ;<îØýWxñàus:é…çl¼™³šL–u سÍ@»¬÷â¶·¼ø®ñ¶––@q%Rö·0U~o“ßwÛ†ÎÕJèM·nì í¸h7×{Ðy!ëK!dVìhk‰™ žDÉ!•ás­¬6Ì»zŸy ¶f*6§j¬çrhvsÏdjxl<Ïi !܆~|œñß%rо’¯£W›\¶½îÔ[ËÀ/r÷s âFC I³,"d“'ɓ©ëV×-®ì.¹MF‘,SËÆBz{²uqÙ‡©ŽÏ(t÷YÑr ­Þq9@1-@J¯(‚¤&D „0Ðà ¦HÁ©I„büÒí÷Þfüs¾‰›9áÍvÂqÚÛ)‘ääÛFµ ½³.suÙÍ&–‚2›Û5w.IãÇëÞ|Tr÷rñáã' ¼.‚¿ùn¿_Ÿžc;[Wj\~¬£îF¨*“ß»óeüüÙ©šܤó15̓ˆÝ{ßF½îéE½§ž2lñÝóÜr„€y¹x+9÷¬Kª`v1ÐæIå¥1¶}uáWHË~ gÏy25Ä"ô÷OUk¥E»‚ÐŒé0ÜÃÑ·ÈIÝ= w/t’Oî`žÞßzÂyÏcœúûÏ‹âÆø¹¨Ï—;¹|ä ÷ ¯dÌëF8ÃÆLŠdŸ^ÞZÆ.E!3ÙÉ=“'µîQ«Ìòæ{$äéîBc™ÎΙ,¶è†dý{ Üy*j|È›S _\r‡‘óåtÅ5ÓíÅâ+ØS öJe%«lkŒÚ#Î=ëUÒ,óù½ê8^††â4dm"»*mÚh{~xϽ Û6ÙûcÌ̬øþXóÙ–%Û©uœ™›i´ær8iEÑëߣß#÷sæçï{Á?#{Ño½ÞDL4CWç§ >Æ­¤'oo=àüûñ÷ÍË?ëLË™u­Œòä]Sä7íöuúzü¿öàÈŠ¯\W‘c6Œ@ b‰6Æ$’-X²dµŠ¤#cX/¢Ý4l2¤{”DåîàÅè]o×½ïwŸÍ“ú²ñÜr€ø÷ÞôyëBlÅ4LQˆ¤ð`~À!/˜ŒÙ6îÂ7½(bfؤN5ý|W¾õ²• ½Á¦f÷±q‰ªåå:O$ª ­8­7›¬Çƒ¿vwÑ3š§ÛõíaLš®j^‘‚”‹$@ P @˜ÇÂ5¨%Ú´K³¨òßÉ+VÛy_‰M?üCÚz]Û'•åÍ]Ýåo9¹Xѹ»•cl^ê4Mª/ÏyõíI–h«ÔD©ž6E 2½°™Ùg.,çcnž¼Ù§Âlí&žÅ”^DÆl<ûØq>§<ÐQFIól•š¢,» ­¡tÖ&Ïb-³˜K–ÅŒÚÉœV˜]EBKó=bÛ©¸ÉÅ.Ò‹[½ë½É¼ÛXÚòÚÞk^j¼®lpЧtò÷‘˜Õ[>§³•'³Ý¶Ó›R©Ìâ˜(pÛ*ØÔN§9,m˜vf&Mª“E„X„ÖyLöCžmpMmÙ™è^¶¬Ð\™æè\¹º‹]‡4\»¨¨Qz›=’®^RC ©»ö ÄB­Íë¸éEx‡ºByQµ•§=ØÝ(¼)Ú…å¶ÔÚu¨dll†*îãM:—[m9« 9cn!§VÛ±‰œêÃ%Ê–)ØF—lé5‡zØÏ`†KeIÅŠr“«a6RWŒç³¨˜×s£jåá"ï$yéî´d2¢äA›f-kk94ÆÙ²Ó°Ú½·˜%`†µŸ{jJLC6ê„L )¶ÏaÃÖ%'¬Ê£ÃEÒt¨,îœò¨»Ýr×1´j-\­¾*¼Ñsn[>v®UŸ:ˆµÎȇ a³—¤Å4Öű¸ÈW[5Øv•R­vÜp"‚Qž4ëÏmIžI͢цɤsŒ ÚµœU·]™щýÏÊù÷Ù»N±¯>Sy.sŒmJ†{9v2L{ÞÁQ剜ätö6ÄðªLë‘råeWHÚ4’âL"#Q¹DÙ$õ"öFƒÊ&ˆÎGü×ñËï–$ž¾Â& )ű!’ž“D1;\»™Xteuk¹Ö{;H´KlB‰f5²æzZxîSŽàP8á¨ÔH¹ì¤ça&\S£;\õ’µŸÍ·“=Ë—‘F‰äGDœ–Ȥ–’µ‹Zç€mÚÍ«OU¥ë= òªžIñìmº„Ë B.ª åÑÒ¼²20Í&gÞ½*\‡ëí î|› ÍFĦ‹;,UÙA…&pÈ*çlÆs¡9&ˆµÛ.Å2æu‘,mlâÊZ%\ÝÄ÷)&@ž9C“êò\ ÝÊzîìêáfW]Âð jŠó]D¹·×5Íbˆ±æ¹¹y½3ÝζÒm´VÚª-mç5¬¶{­Ò5Ýq m–¼Ü¼ÜÛU)m¦››G¸(ŽéâDÌ«={{BÑéʸ2ÆÒŽv&Æ®éÓJÔ`­Bë:B"'NÛa î´¹P“.¹TYžÅ3ŒH¢÷ wdÈëxáÑQœòË4º#7<¬(”°uÜŠëhìæMÌŽ…Ë´{sÊÕQª¼Þ¹µÍ¹¨á`Ö·8sq™£XÃK &ÖŠ38†Ñ§žŽ´çqÍg¸RC<‘g…Âg¡’DE¢”i6ÆM¬Â%(¥Š&(FU@ˆ„±òAô ÷è/ìuñÉ( ¦r5éë8¼Ž'*´v/§þŽ9*? zUæ…üßåÞ*Îé"Æ”M+oÁoÝ¥]Ö÷³üpB£;èv4“4 ‚0X0|¸û‚ëNµÇGÛÛɦP£K‘g(WºäúÉ–Cg]M£ùÞòeÎo™[åRÑMx®9Ç’,{7Í»Á¿urÕRAä½ûjkcëàý9=ˆ*­Ü{×,H>ôâ¡Ô<7³=§Þjžâ]íz?›guž÷¼Ò I¸qý?ñêD™xº[å,YuTa, Mv_Ä~éý¢ö yä 1H«ðÀàR¦7ÚÈZÂsŒ–Ê☺¥£QìW³ÓÜ ¿[E²CdÕñ-LþYÏê¿ÛïŸÏ%)*/G ›+[éÀóÊò æ'ËôóRø1¥Q`¬R¸?ºŸÂÆ¿¬±†hÕ”t•¤$O·£Þý±ïÛòÃø5RÓLL>sÈŽé|ç¶ÇÚ Ýa}•‘RÑM¢­‰MùèðÓó¾'¯Gž'Ÿ\¡íí;ìwǽeIлitSuA<§ìþ“Éò*…7Pgfk—³Íwé®ùžßlä>øºôdì’,†yA{äö‹Õ·ÏŽ í²ÀÛ%Ê:2î·Þðúɨ^˜ÚÖù…çïKÈå‹á·]$Ѭ苩FK~½í\½{”¶‚‰DF¹xž2tñž Ž^‡Ž¾Žžîœ÷{^dï<({@ª)×ÖUÇÇÚë¸îãŽÂ Ü Ç+ŒªËNŠpÎÝ2×)ùïfe”+õïϯ¯±ŒÜÝ<Îx 8L"w ÍaT ~{{ÈKÏ/™ï N2på:(Ò\ŽI8S$ñ&Huw8Û–“ŒòÆèg¼…ëç¡á×mŒUܤ…ö·s¥ý8O+çºNÏ3Ã@_Gxôp¼xÐ}^=gŒ™:£—ªàÈ ¼g&[;“è/®¹óßk­±:$PÊí*¿6oEœ=¢Íbß›ñò¾˜N™eU¨{í¶ØÂ쉚nªÌ«BÜÍÙŠÚU2¤œº°ò˜SV…ì÷ĩkµ¨¬eQ‹õyLøîá-µ4R9\ìM+<­ØÃ.ærÚ ‹mú|žõY^÷/7{d"ÞW‘nkêòßàPÚ2~¶r½'™«µœŽæÇ<ï^ÎãµäV1lEˆÑ´h¶,lFÑd¤­E¨5 Ñb5&°XÑEŠÊXÆÛ½[Z»ZvìóØs± „¬‘m´ìHáüvŸ íÆ™ØZöÙóínåáa{ƒÉÝ=Ä›vOËo±gIšØ§Z¶ú#ËìQ–“ZnÙÅ­®È{×d;~Gg€^>A®åù;ùÃ~\¡>Nžé?“?¹÷’O²-ÒNæ]¶,’aüõ½—jщ‡8î/Ú=ãß¹=‹Ù¹tcX‘ÔëôøSs xlªblcjý$ï^î:NáxÆ<…{$<Õ¶Xu…×/ëxÞ-v‡9K b1ñãaŸ;@›œÓÍÓͬ¥ñiæò¥R7’°FF«RáÙzÖrèöŸEJíç=쉬žK{&’y˜\[<µwg—²O<rïu ‡·9*ìü÷NNól;¤Ê¼–-™ÞwgõgÇjæÚrò¶†ØJ‡LGÈ{Çž¶âÌB1tå{³;]Ñ]²Q.À¤«ÖGL™ˆqlï2ò–±äÛ¡»3¸–öÙz&Ø'jŠ{M866m³»g²›&kÖ<{Ûˆ“;íef_QaÈõA¹G™&zëa«Yê½£‰e&Cª)¨Ã© $"ÈR@=§>©[ìNz|‹eÎWïoW®e[g¬HÚLó¨lÛKªäF5nʵ•sµÙÔ§Õâ›c§»ÞÖRKcB©’Ž?+ÔÐøÖ,‘jSf¸‚cíµåó{i7ù³®UáOžã!2Kôv{²H o\ï&¶i2µ±Tñçɽž?™ >Ò™ôë¡};ŒH×ÓX«| £…85pHŽxîP-qÙà6טú5½-å¾MÍ·šæÜç{wWÆÂ¢‹ÊñK˜îjÊð mY+´á«•B͈÷¬F‡l/HÆÂ²]u®Ù ^ÊV?={Ü(O ÇqɵÛ9÷—K×xó}×—›hµƒR÷)Çäà—ˆwEø™ñáœÝ’ki\á;h/FõãÊëô›½'£çا¼Ò0³·æìöô&ì`ɇ'~ÿø‡üËü/êþ¿¯~{÷åùžXw¶OÑ!P…¦ôôÖ0é¬Ý¹ Ã#I†$!D!ÿðqÃt¾lNVw9d&56„kKeIJ£P©’–+ú ÌY Äþ7“[Ä_@ü^x:]ÞüìÐÏŠ0¿¤&Ð?Æmƒ&ýX÷Bš\¿³DDt³ªZ=`[D#R†¿(l"®±¶–捻‹D³R…  HþŠEý=äP Å6Œý,õiU„µ¯ííòÂ"ƒ>âä¢"c rFˆ$ȆÚ ¿¾’y¢„üXûíìt?`b`&$~îØÛÞê¼Ûm¼¼¼­yµ¼æ±@UÍyæ·äJù|oW"Ûm.”RoyÖ‘ÚÆˆìÌ–õ ›Š_mVئD³´ºØ×ò§Û ´¶Òë‹”毷»Œýí¶ö=ke>ö}ÆÞÉ >`qŽçºÚåj5rr±µååË'&ܹØSNÂëZìÎw­»Òç6 ÖeÔ;œ;`ËEX[,ö,³¨°o0üý¾­€“¾»Ç¾²[“nF(šWvhÓE‘1UJU›WÎU=ë¢ytžÞýì“ßgl˜w~7åæù õ!¼E±‘ž6:«ë³÷‹ïlÂ_]ŸQEFÉ`‚ÂE&Ù Š(~/uõûWñ~~ÂÀ|n„òƒÿ @®M(Ý({_æ„Ãè,>¨‡ê$„¯† û_¦Ü™üEwA ³÷˱.<ù«4=Xöa72‚wþ_mRÜßßòUþ¹$ÙÍ‚ì¿Çà“õoX³ø öÞÍyD ~Ô' ®¯ú‹Ÿ`*!îEê´ ƒ¸÷Wì+„(W››H~ùM~§õü×ÓÔaì è¹hÒw1 qAó$„„aa¡ìf*?ÅC4²øÕÕD!ÈÇí0}ņû KR<ÌÎþ2ÿiÍ.~Á³8–C÷»² Š0‡ð[kl~¦\ÍrÔÿ1Ý—…àQwÑó©D#(P؆ LIï@¯ˆ €8!-©€! 1 Ü~©>LC+Ø» ‰r¥È _$Nž~Ü0A¦a“FMee”O6F_ÅN®¦?i† Ì8 A¨ÃŸn 6 ü “g{Þ2Ò_>Ûˆ­ Ñâ ¨Ã(E´îˆ&›ýǸ°?_ ?Ç ©éiûC/ž5J:‚@Å270?Jseƒ•ÇñÖ ÁËU¢"/¥rÿâï„‚vRD‚D#øs÷¬e0„ %ýe–‘2¢žKq!Ÿ©v~ÃÚ'êÃËZ áI„^@D`¹»BÖ³øè67ñ†4 6ÆþùúþËÏßA’$"µ×ÔQòéR‹¥*PéÓ±•~§êÀ“—rßÒwÝÀ!ñò®ñ~£»Ø[õùE‡ïâÂ:ÅÙi¦<^í @„1T… TŽ T äÊWÃøl`c–,9—²Ïa埾? çíaòµRŽ‚¾N8¬fÃÜcÿÄ¿ì€þhþØD"`Y ¡dÍÐþÿ§>ÝD{üjþýü÷0¡)þcnÚÛ¶‘Fȳbˆ~l…UÒ À™cÃÂ`4B Ȥ&$ÂÈb ‰22‰l• ,H@‹d¡#‰%,j‘H†Æ‰¨Ñ2dš"4É”“#!IŠHSDÐÑL$’À"$ˆØÂ¤°`1L”1"b¢$Á&ÑI!HE2h$4Qe„Ø4V Á ÑIj0,ĤP¤ŒLÙ”RAdiɈÃ1€ÆE…!RHÆAHÂ2 K$h2Q™EF)1a,j3CFYMje"IbŒd2aM6FDÓR0 d2 43 dB˜`a“$±M2MŒc0Ð  ÄbHa"‰ „&… *(4LŠ$4TA± ˜ !#"bLÌ¢HI(H!4BXÌ‚D1‘šÒ`€Ù&R”ŒKRÄ‚&L³$E-FCË І ²Lf ÃB„ƒ„hÈi1hH…˜ÈF‘2Æ”PM#DÉJ £,R‚CDŒT%2$%1¤„¦bØ)0e B…‘˜‘¢ ¢ÀI1„¦PT‰0HÍ”ÒH3$ ± ˆ fi$C4`”fÄHfh“$,DLDdƒ P`$²’™)!Œ”PS2A ‰DˆP˜ˆ”¢fH’¢hS#IH%B &1’R…@™¤2‘0’ŠKM$Æd1‘0LÓÆÆ“3’“M4…‰˜"I)¦P)Q”ˆ‰)ˆL ”b± ‰c"¤B%(¡!Ld„d‘†"A$Ñ’$P 4™0È eƒH ³3 Ò˜Hƒ hÆHˆÄ¤’“„’c,ÊhbBb"4“6c33B’3,ÆTHÌÅ4HIX£!Hˆ‘"h¨’“f,3(A)D*I’’4i `ˆ l!2’0ј fl¥Œi!ÂH‚Y1€’’b&&±‰E!„A@ȘÄ%%’TѢɴEF,2""4&L! Ù†RL̘ҒA`ɘ@Æ‹& B(‹)I ˜1±"D ˆÑ !dˆ’#e˜I¦)0VD¡‘&³‹,˜¤ÌcÒdDS$É0ÆM¿SªÕm«÷«koæùj®‘ãj Ø©~ÖqPΑ1!h’÷9£(‘¡1QfLb–T²Å'3=$¦ªS_wï?yBi¹þv›×´mí§I¨vÛ3£Ø“Æ{×yó ÜX´bÖÏóÌ^yŠ©$zº|Õõ/¦@‡ŒñMD™àìŠOO*"ÕžÛ»We3žÝª¼:#Ñy!ô‹Â™äEæ*Ïï¢]¶Ÿ£b<‰®žµç8¦;ޏàPàPîåÖ¢µÑUFØÚ‹EcZ¤¬kQk&ÛF±lÊw/¡í .Î-³½iÇ€Èu žUòvNráíŠo~>ñøþW~5µ·ž „÷jL%£ µº63Nž£nÖSŒçª ­fý÷½èùûÇë}žb÷g’Ó›nÈ^õƒØEgQFlw:ZýbUðy˰‰©ì˜R³½„õ=GßOŽ;ŽÉÜ“qÀÏ“O]P»ïmW¸È#Ù’¦&F$!XÕI¢s䇹_U·ÉžRIy3¾Û¿Wß!âi“ïvÃ] ?ŸõÔ‰âu ±5m"fž—›mç݈hñNêË£ ´ÎU¶L…SÌ%_nó’=EuÕçI1{ªÕRÕm6ÖµÑçÈ)á&*D¨T†xÏu¤®R@k»žã¦Jižh.eTR§Eº'í“Gp>‰íM!'w\Ȥ©Ë —NºÁ²GéÞIGÏ1„ê1€F0Æ8]%¤åôS¶±+[h¸xû Sa»¥Ävð{—¢udÒ4Nâ’¡<€Ÿ,æóϡР”T_TQRð‚XÁ´{¥¦ÒÀix‚é²3Jl‹6µC*P¥n¡ìG´¢sŸíUß2ˆ;-†±VípÍóð´7G/—8žÉJ|ª PÂab~ºå{ì(ýIy#˶l-¦Çí¼µÓw0¡dæ…û‘Ä[oò<¥Ø8‡áyeêøY›=~GÌÃÙƒ!@›0Á°@«>Ä›_—ðlÔ@ßt¸É]t»Z¾H(ø@0ãÊ>•šña×BlFIÖÝ¿x_à àòÿW7ïb Ãß‘,ðkzÒ-~þQ¶ê¢7ì$ª]&Y“MtÝΆ”¯EM–”mhq8¶<è ÖœIžo‡èŠtõôÁÚ÷àøaåSŠ‘Rvíý5Áå›/Ðé1šz¥ªs^ÑŠËÒq;OY*É« $_]så#e–ò#bÐ8³¬g­§ö:¥¯æû¯°éå &Åb±8OUý5Içé¹My°fˆÒÂ3›[©ˆ¨I´éÏÕèâet¬ºR}¤:]ÖÈ›'ìt›ûPî_ÑýSfö{öâi)¥o´‚Íj#ê ª ÐÛi Ä} ïzÇrà¤=_XŠaÊÄž³ñ:û5P6”´ ]C%èm¬ZЕc)Øbƒˆ85~#-cEøtýÇö“ê4ÉÓ$€}~Ö-˜ó$:I– äµaïñò%Pª .>P?D¤ÇCá¤u¦Éÿ¾•jTÍ¿ïüÉ2ãâÞ6—êUvÃÉî*7’ƒÇ -þšhøªì+c¥ë&…&æôÅ—¤'°îÄÑõÜ#G˜=Œ (”Ùk•Ø.çB°Haí(‰OËpÄ<МV­a™¿â mNƒ±“mêF¾Zþk’ÿ—Öàlšö þ×…÷ Jˆ•L2¨“ÈÏò¬6²Vc!³PüÖ»vsˆƒCýôRŒ @Ëà|© iZ¼êp=ŸlíÌÒ<ç`l|“ź规êKær±¬hkŸf<~Ø™A}sˆN ×ø 6õ+ +ãú­6¯¦×w„Ò´öÚ™Zï,¥L*ˆ „Ùßbÿ-ŽýUÂõ13@²HžÑ📶ÒzOìZ]ã´6JƒJ»7ú'ÊÝ8ïþÔlè€o‘¾»ÖÇYãùÝÝæ‹΀NÎú‹Ê籫‡ßårļ ›2eY©«÷åO¾ìq¤qúí<Òk¼ÍÈc "æ÷R½²òN÷[M„ŸY9~ó‚øk%ô¬rÇÝ4*!69Ø.à¦ð=°û{±[200}®«vðþÌ]7q'v·ÒP­Þ8k‡Úû4{îÐ2CŸŸ?Cd³HMPaQ5Ôš%Tz:Aá}¦újYRpIà “SºÏ¡ô1ºätzOÐECŸ6-W2ätãzÑWŽóWpßÊSºÏv~NAçäÏûÛÅdƒL•ãX÷Ô«Éù/}áíüF´•æ êL|ö÷°Cø{5+Ã…€Á€A…(\?jrË{ ¹ã鬓¢Ô§kÖCu¦Cß4˜z*…Ó3V@'¨bŠAñ¨€fÄ£0t•“NŒ «;ÒÐ`¶1. {Ân ¥&çU=óNÌŽ9Þñj6$tÀäEøÒ¼…è#®k»î¹x’l›ßŸö7'ö?cLóÝ,ÿn+ÜC\ÿ’‡­×àR;¿§¢[·ïdú²èy¯Âe¾Kr´²èLà¯÷PÅV "«3›ˆ—ù@J­=WNwœšWpDÑ.ÔϽ'â>§ÝJu:$§|Gi{ÏgÀùuk»¸ú¯¬âºùAé>žõñ.9Õƒ‡u…IêÞ8~ßú]ä§+_õÜ—ñ(IzWÓ6È»ÑTµ¼¾òØÉBM.ÓTQOc7†Ïµ~âúüU+¦U•iim{8÷Ãà9X©…`Æ“”ñDNëÏù¿=ÿ%%»Ò»(tüûôû½‘L¦b,_Sÿß¿è¢ÿn¢)%I2m·Ä°ø\þ¬¹Þ&íÚéûSa¿ÝÏþøâ-bk¹Þ¹#㸱t/TH¶C° ÀÉÅM¿SÍæúÙZBûÄÍ{½ >²ÞוEÝ*•ÙÕ®gi;†‡8÷ƒÏ>Jeœ é&Ð…ñÛÐÂq‡ ~ü)w²¾,Øô‡™›Tù‚@ @ʇ[ãå„ëIŽ8¨wÚ4ØÐuÊûMô2Vãé0×ËŽPÏMvÌ"ÑÙ‚j«Â~b€vÒ†U³²Ìœ¬‘CuBÔ=ö eúEfÛÀKý©°Ú=­N^è7ÏÈ¿<#®Ò>Ÿo¿Øðuæ7Å\©I©œ9v¼G¤(Q ]s³ LÖAºŠ0VÁ„ /•Ð:Œü$¡3UÛýšû}íÀh4²Y?ÉÓ„QïÅù­ýÍ0[æñ¬Ó‰ÈBïé˜Ó9gFûçäOŒ¼õÕœZûú—þ«”àÕ nã—§<h˜BÀQ舓ÃcÃm:ÿNaÁ xa¼D»ál "U&Òoì¢ätú éuäaèÊew[àˆîAÂê=”èL´¦’U„šëå†'}ðÊKRPð”íkVf|ïEÉs}g¢ú·â Kdò¦‡+À׊3‡¨|]/èƒo@0h{eرñM¹¾)!}¢OÌØ›¼ ŠxÚêd¤:ž®õÆ. ðwCYuJL¬ÌÉTÁá[cÀôά>|ò£†³TýyééÊ·r%Äv/çÿ?0‰ð_Ü}³x |ÿwÄê© –%„Æ´P/NpPŽ`i§ÁêL…’ô˜ óØû¹_4 ˺òÂAì JA;]ê·<’¿;é®þô4ƒ¬›MÒª9q(/¬€c‡;ýêÖb˜}Õ„;R­×)8K¡OÂ:Þ.L±d… Qes§áRÇ(gjY-ž¸Ø~bL7ÞÃNSG¬<€2ßX™:çCçê«¥^â,ÙYªŸ­H%XTqÁôÌ Á„4ÆÔáØó~ EÖôD\úX¶n¨l•BtW>¿‡v[=<ÞkkŠE5[.Ô/<ød¶TÄôp±~¦øW³)œm¥?Ž¢™ÐØ$ÚÓ¾ô=ãh¸­Éæ*9Ä?¡@;®Y› ÙIÈåÿÔ„ ˜C«ª*‰Ñí# jÓ4öžÚŽƒž¸åþîƒVµ{/ð?‚£ä—ë¶À†Ü,# ÇÀÙkã©{×oB½[±ü®ÓÿÜXO—Àg¾Œ¶Ö²â*¥™e§©£Wm”°½q¸>ÓÅ ²šÀÿ["Hô­3÷ž¢>þðÙÆ /Õr“÷ÚÓZé+hSÓºR&zHf½ïÝOëú¹#šÅ¿dÒÍ6ž É°!£°¨Ñ‚´"zn@ºà~)²o8l´»d7ýÿï®9;ÑfË_å²×sÑ@ y¢[ï¡¡N¡(þN]gÄ,”®˜ _OàDù·QÍûƒÓlo-ë,Ê*Ò‰ˆbÆ»Ð׊ÜÁõ Õ¨‰löo=ŽïH·¯xY!~ÐxeáØqÕ­úÊÕ<×øÛÓÌ.Þ—g<ó|Õ¯"Ös{ôžÒñqàÿ~ab!öf)ˆkT÷2 è¬ñœ ت.¯›Ö\‡DBxZOg‹Í.–Œe Qç\ ˜†é-ÄÁJé{¯[Xo r0!ÈÒ–>Š?îq«NÔGp€iLá–+º=7®QÍÍÍÙ1¥fÉžÐˇqYL(îBªN³š%Ná3eZ±h/ÿrÜ>΢ìY½@²Ï.G6ÿC:xx= ’r'‚ÉJµÊ…ôªt¿Â¹¿6ÆS+May€¥€;TGˆä~Îç]ÜWõÞ¼àùß|qžy~£ïÅr F„,ža{uŸ:…™ÀU©ò¨–õ§öìÇÓ.u&GXv9¡BX%‹«tæìrUšïÏ™:±¹M•zq8(±P‡e¸NÙCɇ Nèá_ ÜÛ5–´Ó¶’ë^ª·PÏœò¿˜úÍêt*·A; Fùý2 ª»8ƒgY mèØÊÞuïÉõ4 \ºøSZv…IÙ” t¬+³c-2”ôT4WÌø‘©ù|Æ‹M–y«°Gå`ñÃLâ©&Îó^Þo½ÕëTWØñ¶qJ§=ƒZÖ´?ó~ÏÔë÷¼y-ä’ÁaÿPÄÈÞBòª l(Œ•Q•£dº¯þŒÂ"<[þn-)‡Â)$Õ –9‰9Í‹»Š)3ø‡,É ióq™‹–¹Q¯Lé4X3­êœ³PçfhË̤è‰Lò³…—Óæ[Î7€Þš8¤yŒÊO«xR¦’imÿ¬[AŒC”áÖY½é-  ÇHi*Ø!@ÓŒEÈZ¬A»Èÿã’®ö¤¾ñ˜$¬ïÇm°Èy›JrgVr,€Å 12EhV%(¹6ó–fôvˆhäpÑ€µ/=˜má|ÖSÄ·IÎ,‡ÿ™þ°{Ý÷>KüÇùþmr-*º|¼1¿ðÑ­%ØÇIJRªEûf;ï¼XõØ©I)ù>O¸Ž6P»‘ŠÛžÔ‚Á‰Ã2Ð„Ž¯Š0•DÌÅuµÇ/XÅú±€þ]½%/FGA>1ß…¶Ö sɮӡéN7l²L¢Çd vÏ+ýÑÙ®²¯pæ, tFpDŠ Iåur½Lø¨€P·á¦DË£ô'цPâûWº5V’= |  (‚ÝÁñ$`(|t·/8ËbˆíNDS­ œLÊS 5Ĥ‘âU*K¡®Í…AʼnAø°…Sì¿ìDßm?Ìi‘²Ðp¬ Nä&DÇ=r4X3ãÝ×ôåpþ¨ú\Í[%0!  :ðHÐlùBt$ø—ŸXÖdÃÅ‘åE×ÂÄ‚lƒœx· ç>uʾµ:4f"Ì |mgOÇ9â5=Wޱ¾raÕnæ‚\ÚcÞj¡~ň/ª’øÁ ˆ}>¥÷2$â¦ÿ&ðì#Û:µ.V$›k/28uPŒ–¢C31 Ug²tpÑ̽mTØ<ý[蔾|%¾wá›Éo1Çem ÊŒ K¸$Lºƒ|ü͎ņ¬ñmÉ'Õ³‘¸¤¸0 c‡ãé£Àx¯>|ÀofH$`‚"h@ƒŽ+Œb­=Äu'ÅGHíÚÕ¨Sã§„çCôà¹CHJç9c¹wMp¸µlgæÿ˜ ¬“)¬Íb>:‚=¾?@?ÿÿÿÿÿÿÿÿÿ¾Ð±{›@ª (t4÷a¶ÈB ¡B‚ƒÏLÄt’žž=Ø{ÔªŠ­¸@Р;ï-Q¤—BÃT.&Ù…ðà¾û3Ûè¢ñkØ Ûî‡@n À9Pku½Àî¼°÷€P†Íªª… PmT«nvë´çj$§›VCz;‰C¶_A½ë>Öx¼fªõªÙòt{Ú천£éîi]çׇ­7u¼í¯‡»ª…›­ÚmDŵwmPPÝä;¸]mÔ RíZXËlZ¤œ:^Ç)ð€,:)å’ÄuÄž÷ßiKáO®']»@ÐQA]Z¤”Sm{ŽO,Ðøpõ@‘Vïžô—sväB;jžmx8 §§¶Ñîâ8õ÷Þï½¹.¼}˜Š}µ Í|uäÇØáÓ¢ÊvÁ)yß{Åß(îù›¾Ÿp÷Ôv;ݹR/€ð0¡öÀt]x—¨\9Qkfï\ohw¬7ž¼ ôí«v^¥ã®ºíš&¶Ú².u»[Þ†:u{aHu‘Ï»á*ïn×g6óè„R‚Šª¥RJTH*R(*ª¥@‰BJUç§½ò±;Ýè:ë‹ 3¾y¶óѽ«­N̤H@(€-ÔÝ)'2m ’•¶UJ¤ K„jmÜh‰RUU)RÀL¢®¨Ð×ãÀ (@à»>û»Ð*k ÄÈØèh ¡@ú÷€oI]ßãÝØŠ PôPÞðó™ð9_N¯švj@Ö^š €€¾QO ¡@ (²CZ  €PèÀ@PPH=2ðÏ<}À h ÕÁº4¥)@ €€ïwÕ9íx_@ ó›CŒîNtÛ(ÐDjòm…²òv€jºÚY8EYÄe ú‹ÞÜèÝÛ.±]½ÍíVV˜:8§G¾åpé>•è(§TI@Ö@¥@PûàÝ*ðwÞ¾™!T•¦6 ‚CJò4=°jlÑ–ä( }àí•mrîîÌN®¸ôðÝ€èäzØðóïn×wGGŽè>œ ãÀѺvé»m7”©àll(0@  @ˆ  "€·Üz¯@àCê€Ö‰W€ ÝÕJq@(hćw6Ê5‘¡—Ðw·´š£5µÐuÑQ3»œ(NŽqWogsÊ >A _fqÜP¡-.hÛ¶kn÷!è_xÞ€5Cçwh<ët|ÙÒ/#¸÷=Ú‡¦Š”6+…P¥IT¢HQVËwwÀ£ˆ €Ÿo^ùCœúz=-·…Ü}Q [Ç›% ½=à®ðë"3¾»ï˜‘_fª¹ µÖå(š €J@LƒÈ¢€À÷”O ÑlSï¨.æB(”MöûÙl½½6ó=º µˆ®r àˆ5<E‚§¨<¡‘é¦)å4”ÙA©úiEA&$OP4ÓÔ2ÚO@€4i i Ð%<””R† §MPh@ e%*y©þŠšÔ =R‘TmPÁÈÈÐd@¢DASÒz€Ôz€h i¦ž€SýÿüzÔPEü*‚+Ò(ª¨ÿ  Šƒÿ9ý¿òÍ{ÌþÝþïîñý×qÑݹ™ M~]>›î[l¶]x?4ûæíéòÆ|Öªº4dÝá¡™¯vw^ì&m6i²6 G‰|–1»íF^ä;­¹3®î¶ö¦´í²êÒ=½í„´ÛMÓ@!)±«Jv¿H=·Û¤p÷{w`t¯[5Ò§~ÙxqìôÒèO[ã}Ò-­õîøÒtñöÿË·Î÷å,ÔËBóð˜&Ž.–yPÀû²ãž=ºÎÀ‡Áù>³¢…̳¤HDŠL‹ ˱’¤Ó=EªP¹^’ž=3ôSöü{öæV…þ„êdQrôÅ­$b$F’É ÐBõ6på“$Ì_^Ÿsó|1Óžß{émŸ}õºY÷Å ažSCÂJm($ˆªÃ‡K1£-hLÄÚ}‚’ó¬°:|÷“׿ïÙˆ›íùù½ºB|%P¶eVòöî0°9¯×Ç>iÖxâ5x‹,/ãuózs»$ûW¯¬û{Mß¿_›åDµ­j' ã·w½#¾Õ,¶OŸ’ü–ÄâXªx‰ãN[+,½[.Œ¥ckìk5w5&\—K 1–·»wãßÁ<ù°'ÆYFI:á½¥ëÆ³ñ¾øÆåäß=?6î! ’÷xi0 "¬ Í!)è » „Ä]Á aMâCÊzf*%{RL.™÷Y³¯G½öØ ¬goß¿}¹~YðšÖªÇ’ü9­ Êiøý٠щ ø;¢ƒ‡¾í§O§IâMòøß9Ûå&;~,öâO¾ûÝóSÉ[“çÕÜúÙÚczˆ ¦½ Àí–ë1ñ–%3yóWçYËò×Ûtš%ù¼O“ãÇw¯ž°3N?:èJPÅé |ìü„ñÉ?üõH’x9Éùl¦K>÷Kð s_ÔûRx@/¯¿[&‹Û«¨§g“̾;){ë ®ØšÝI¥¸ÃK \Tnº,ÒÊ.Y¥½{Ó¶(BvòÀÇ,!ëcyî¡íЇ­äïot³YN`¾½õÀÞ¶ÑYO‰Ž“¬Î%MÛ› ) 6»qv «=ë§kâqÖ÷/v©]^^½î–;¦ÞÞŽñ{;©±äÏ,IÓÛ¸Üï¬î¼ÀBwºzµ§B»¶Âxé”5{xÞÝ®á݉’žkÛÎÕ•lÞ½ ¹ŒÝÚq}g{»Îõç­&8CºÝe„޾LJ‡šÙqÞ–fа¼:c¶¤÷y|f%½½í^›F^ï=鎾֑Ýõ挶zûd%Ô¤£î÷¹ô“Õî1iÞª×2¤¼¥ê2è[uíÒc¬Xö0%Þ&÷¯£uò>}×o^Ùá}Ö9¬Oõí÷»,­§™}o­%ôìe&¡½ë–ÝЇrÔÚ9àí ‹N²)Êö-^³J½:Þúí;«m·ÖÕíËnǦÆ'm#硯ˆyO{ºx v½Þé;)½ ëÊzöwÇFø#ÙÌ;ª6ðÍKkFUëÉaÔÝ$C)Öû¶ ½å:[f퓾öÝŽå‰' pïn.´ò½ÖcOx{îíî·Þ×UÝ¥׬lE¼#ÄĨ®e†ëÓ`f7-–`ö·n6JxcIÔÍp3*ž­,ñ™,%–—šËv,+bp¤ÞSž÷*LJ,÷{îßxŠu㬺Y‡[ºìŸ—HÙ¯hùørüÏœáJ¤«^ëW­­Æž;îŒÎöq¦õéíºnhIŽô Ö§n8òô!/[+–º›'{ïo{­×6'+|éÛÖ[VÞXÛn‚V¸®Õ=í·jöŽƒ¥¥Ñöíëu—´½OYŠvwÃ}ëÝ(ì]’-æÒÌÄ_[ªúá÷oO{/lñ/f9ÑæðÖiÞ×ÛË T™™{Úðí—¶taëÝëï{·pôrÀ÷™_>!g‡L/Ÿ9;{Öy÷g‹`ÔiIiÖÄ¥÷tu»Y.EÖ{wO=Ã4¥“®íƾ¸|û2ÓwÛ0[ÎØí½£7o·Ù9ªW¡ºÂ[06Ç]»;/a{go<Óž{îöSÁ¬Å÷Z°oŠÀí|SRéM};¢HYJ{°ÀÖx³zÐ;½}Áè½­8IÓ̽ž£)Kbg{,ݘáHP£sW{½†¶5îî·Uݽ6×Äï¥N¡É€2œ xï{ÞÎö7E§töç‰=ºÉ·ž']Þ½Þݰèw¬é}™¯]‰¶Ž½ï|ú÷ÆÍK{¯Ÿ>ež·µz}¡mì½Ôîé1¥'¯£YpÒvzØ2ÖÞ1¯t^ôÛ×ÂG¾ÚzËÝ¡¸Þ;=ïw¯c­^[gf•/6ê1!ëß¶=›mØ@u»¦Ä=Ô&óÞöKï?¿Îü§#²Ëi~|A¶â‡I¶›Q¶ûZkfíæ:p.:Êw šÁº-•…¤è•¾$CrúÉC´râlÚ":ŒïXqÔE§ <‚Yué^”tÝÔA·G¶×¬ÝñÚLpí X­öóÞœ Ö{6{Ñ%í‘­ïh”ôÇzf´×ªãm¶P×;Ñl,V[bY|Ïo;]íRwÅï/;ÞZwz]¥ïµÞ#Ó«ZÖÞöõ°;"')/‹îضÎúåн{6¦É+Zðà[ÞÆÙN”!·I¯s‡«ÄzR]hñ)Ë|Ò:wx7{Ý½×µë º 8B;åo†o{»­žot6‰))KÛ¯œ÷±i‚Þ–KI–óÝî½éÝÞÝW×vßw”€¯lܱ©Ûl'CÙ|¾97¯ª»³»ž=”ÙÓº÷GÅ!ÛoX{2ú󣮄êÙfí›yƒïvûÅ{I-Ý××›ÚtÖËâ_ì÷vÒ·z6éVíõ²{¶0žÝÌ×ÅéÜ;—T;¶—´îå„ÃíÝzô³Ýﯼ»Oo>;Ò—ž†š:ÏNõ'|;uH{×·WXj÷´æí¼'I» =Ð'^ë—··;KbR-²äèé¡êÍÛâ{ƒyÞû_vú-ļñ:r‘&0˜íå–»³¼MçÓJOç_{Lν/./Zy±áÞ±î÷fcyít8JE¾¤yfXl;ëŽP³­Ç{©Žú^t—yí¶§Z/|ß[ìÎÆ÷»Ù–ÖûÓkÓokȧݔ¾_« ññEµï´ó ã¾éĺÄî×Þï|½†ÌìgWËÙuBö[½gFw®I7ÕÒ§z[§ˆM¢’tìžìö÷^Žñrg×õô ÝÝΔòV‰ÏE³NóÔ‡‰ÛÎÚß{»˜{ß`¶Þ’u¼ÝïXݰ9{C‡|=‹í)ív°³¾;ÒôíÄQ%ïdNõåã»:íÞV®))ç›»ºkŽ˜:b‡ªœ¤ :wwºæv[ ’õ}w¼öx±í]zNž/gšËÍ™é¦}º>}<$ïznYu¼¯³7«{3ž‹›3iÏ Ô!;{NÝÃV÷uî/^Ìim‘«ÊÞÃIRçÆï§µÎ<=‡¬¾™:๽ækÞ–jLÇeô§VbT”íXnëŽÚ{y—L÷Ï]Rýõ‚ijöÞÏ^îuðk'§i6eö‡eØ»ïmyÞ‡PO]°íîË C«{qâvt¼ï}vìïv;;{tºû·t…àÍÞ²¢YÞÊž) Ω»ÒïzG¼{§·Røét{˜œåi{ë7m÷¦zwP6¦¯‚öûjwƒ Ó¶úûI½Û}¼31yëÄ×—{·–^’½–zWKé«%:[¡UƒÐ¾cݳvcÆË-¶v÷¶=yj½½ìÜöžîgNÅ3i¶}oI‡^=Ôx_wbu¶w6Ù@a¶½×ÇNð9‰A/¥fzs¡Û}êË;{nñ=ï6cÊ{ºã*v[v½Þì²ÛÌsݯ¹^ÂøãÛ;ÛÌbP÷nÉÔc;ÞëÞó]B¶C{®V÷\Þ]Ä™D G³½ñpï¾ÌK-í{ët7»‹Ö’]y´#Û3RQïÌ Á‡5èÝCKή¸­‡IëqÒP:xžŒØ3IG\%4'²ž,;{,XB÷¸Þ™dìÅmÓÕ÷:N²óÖÓÝ›ÛRóq0%›Æïo7]¥‰-¡Ovéxí‚yõ³¡¼>­îê-nûGÝ;nŒ=Ö>¦'aÛîãŠá'IÓ†šÖX{t°˜EÚ;£©Þé=ow³ÃÖ6=Ýv=Ó×¾ó{ÆÇ=ÛŠq iÒÆÞÎÞJ`KÀÄéÙÞ±K:YVÌÜÒíÛSv ¶ŽžÉÏÖzgmܳ{x¥¸ Cžêúø/iz;zGz˲Tbö>Ú¾Øõe%±‚Ñ÷‰yîît Ïhöy]ë4…(Þ×7×LsUã×Ëå—Üò‹èJ0¤-™ëß>÷në%]Ý{4IÓšf麋¾;í@Í•{],¨ÂÖ÷½Ó½B±¶e’Âë¯]'½B0Ýw»kÝÛ v»¶ÝÉÉëK¬·bl'}ÝŽŒ³ÞÚn S»{bv{Ñ÷o::ã$îéã£èÞØé]g›.ï{m§a|ú½†žlBú<º7jqn1‚~Ô„[úù~Ó²´¶œ¶|ƒ>8Mkóæ¾ïCRR„¶øf*K}nïy¹¾wwKâzà½,ø'»{Lóå•1áÁhxhµbÛQâücs8‘'‰H;yHs\>¿5Ä„´WõEJ¢z²‰pþ’Ǟȉ$ûøßx©Dyx+ø·É²Ë%çàü´!Ìv8f´’Ù›áïãwgç»zOuö@9ôI>|ì±½zÛ§®ç´¤ß fáã¦óíø­||@n¥]ú{¿\]~)ú‰Ùô9GÉ7êŠç¨ì¹þ£\$ºî¸†¨ñ(LT!@Þv¹¼ù禅¾žuÓŒ8AG,R„߶(P/ß7Òt‡Òóá&®Ò< œ_³zwLIÖÎ_—&9ã—²Úxç1'~_8óˆtí~wãòïžÂTï¾¹Pã½íÜüÄñú˜r7Bñû£Qï£>}s·žðĽ)ËÒÆÙ~I´¡À„|øÇί<$N[϶³˜§Âœ)›…¤`JÙˆ{3¤áÙS‡Ú‡?mÚ¶ý·ÍߺJFý3K§Æ‘$SB¿I—{ºV÷·óÛ/Çzü˜±Ÿ^dz¿I/oÏYµËc2í¬ÉÏã·ÊŒoÏŸ'½Ð¶Pæ)Wºkë?=ù¾ÉF°—ïÖÜÏÊ©Ïm¾ò|;½·+µ¿võ Pàƒg²yp¬õ²4ÂC¢hѨ'/1€’UN1yš›e(]ØK‘7k|¤½agIt3K4e\þw[§o¯v)/Ê÷ã[1‰¡{æ}"¾Þº)@·é.ßu‚¬{~ýïÌ” B ”™ØK–•MHRÑR(ÞTÍÜÙÒ³ +†¹»šL÷gKgžü—áï¿(Ôx‹|`¾?žï»=øË>m¦¿•#ÅAŸ?\kK|<ûߟ'Xo{Íûç?{>½µõ³ìèÎtᯋ#có ¼z!}lê^›¥!-¼—ég{`Ëõø]âw¤±NÔHdÈrLCH܆ ðª¡Õ1•wv»S0 ÝHz0ר˜½ïyWOXÄ5PbÇÁá‰`€ïØ"^]\5Ê“z—¦™| ÒIE ƒ N!ËÞ±˜†ÄFÒêIBI Ë7ãïÎiOjmS—w,½¾ï}7? ¹Å+I—§r÷™Š(Á¹ ¥í´)S<ñöÔ¾³ä+~/wÃr¼ús¦é_>mùeíœ8I–Tì(ßYïiÞkë:ª{gç§Î­î­P•û½Ö=õ÷€])íæyïº{ç^ü"!Óǽ½fañá=TXžÉ¾uù Á#lÇáÓÇ%$útãõÝΟ%k>úÊ#ÛÂ\°áýYÇJÆXa¯æ‰D9Žxæß‡Ýx$î¼}il±‚¬Ò ^ÃDU)yIHT9)@O–‹d sÄž"{בŸ*à%–ÒfÍl!Þ²h}>Ó$ïçxŸ•‡ ú§ÛMl½9²šÊߺÄw]ÛÒõ,îß•ÛîùÃv½÷|÷ Eß—ç|Mö‡ƒw|éñg^Úoµ%iëÉwJ¦ë"*T”Aœ3™L(B¨Î\‹BÃÆ×^x“³ò…"I=-çm~ft‹:Éëõ’žï„áâF¿/Œ×uz”.±!ÉmàSæ³Çå³ÇËñô­[Äç’}µïY÷XC-)Rù­õ©Îë3e&Äœ¯ÇÊ_Xò ”¶ü§ç®Bì9.Ù!Y=æ&Û.ÎÆA@Pw!°7,õ®Í5Ý™ælÓyŸ’RïW·ï§Þý³¬¦"pûhO\s>ûò‚Iô¤áô¤o%'ÔçÃLIòü‹Œ}IŒŠjvS·NçyÁ|>õêT\¦Ó½ú¿H¿"ÞO¹óîÉñSjÓŽü¾¿´ñÞ÷o§)Ò|Ÿ )=òÊz[>œìÙç~ 'J¯Iô达טçu—훲Àé‡îûŸuõ‹|@áç½ìÇ7~üv‡¾¦! Št`£NÁ•KŒ0¦B è" ¶ÍócžÖ4黋”‰7¬II@¡Ì|>vò@øs§¡óºO8s¿Š ++ Â^ä‰,/JÒ^X2\Ó42g¦ˆ˜˜@‚ôž!±L/&Ì!c`‘z&‘êO3Úö‰CçÆ{Nø‰.·ä¿}1÷&&$ñÎsk&$ž9"q9ÎDäÇŽn߈ڣ½`îp”˯X'p#¢) !Ë­ñ¦^¥9×Z=ÃÔäšy̓¸_BR=î¨9‰<ÁÜž-ñë_[W×;P'výt>Nôr.Õçö?~mÆN“€òÐ#Ç(( u(eAâN¤¤^¦ïe:‡ riîDäJ%õ(¥ ²Š"§QJª•&G,¶ VÌ6Nù/¨û_{Ýß=o~ü÷¹7‹øE‡~1+¼ž¾ô3yÞö^߃Û”¨`áEÁ蘔à™ÅçäS³TcÞê|—…¼ú¾÷yðIo̳Ã!ë„æ/&¢¨ª‰Š©r!K"Ì”*”BPîÓ7ˆà†òW·wpçºýz t)(=!&žDR&L)’ŒØ ZÀåà ZÖ||¶)Ã6–2å¥ ‘7V«»ÜµïdĉEmA%MR{0’Ñh"¯¸O³~‘”uû–è®õæÆîúrc PÄ©/IÁª”„S$E;D]âÓ°eïY6øUߚϞ•àö?4ôe–ËÎf=Ý9ˆH Ó(k"JJ”Ù’. ‘†îFnã6·ÆnÏWzaìüðï¿?¦=É›ó\ª”á*¶J12LœÎqšZ'¤n’W dTu¬6îΪ-©1¤Å ˆ"nÖ5ÄôΆUh…¬“«­.r"ë¤^Ï("K™¬¦ ³ØDÐ…±g®F©… …0¦u)¬ì $©-+hÚØgl›üiÝæ!*D¹k$œæjJ3!¢¨­nQË»1ŒXÀºš0íJKYˆg$jzklUV%RÖÖ(\µ%2µ"óÏW!µ¹ÈæÃMk‰žD‘!b³ØÔ5v¶ªÍ « .6—7L¢ÖL¶BEXÐNœå]H“ÔËJ—U®³™ìS2+­X¶¸^¶ÉªCkrÐ4/B£*ÅØÉu»NZ¡¡µ·žÆO\âåÍCÊÂIj$µ.6­¦æEFAj…·a#uÊîrµdW\ F—(Úkfåìö4eB3ÜŒ¬'"è¨Æg*óHÙ»±ufåì‹SS×s£xÝÍ@c£Ù’5ž™þsN‰õÚ:wÁkXZÀFP°°‘¨6"[£Ù†î]ÏÏ3`h þà?·ú XX‡ú¹< þ|Ò¨:s£{ë¾xDyàñ£þ–YknüQØàvâ6eéÞðîiˬ¼4;ß‹ºa,£J›îD‡&(N™”’À†¦:÷¶ÅÞ÷œT©|XÜ©Ótºú×A›Ok¬™ÓÓY`F±í­ -ÂsºÎÁzóftìe©óööò…A4BžÔå“çäëë…êz€:¹9"l;Ì-Ä"EÙä›Ý»¤ÎÚtž=·½:k)ÞÚv8Ïô` ƒ4‘0e­¥Ú90­-•M4Ù鸖–ŸÏC“ÇIó 'Š;8å¾e'I¡Àç/¶ÜBùæÞÙל tg{Þj]×ÄÓ«áì'·¼owÖY2ËTõ;/t{æ%;{Þöm{Q˜ŒfÝí=Ûí[ÉÞÞx‡7nÒû½¡*ðÓÝØ{5Œ (ZÚô¸åÃFœ ¥ž–“»­-½Ý)µ{4éÐ\ jërV‡fÛÇM,)ˆE©ÚÂkœè»vÎÃnéšð²Z[­âL±¡µt‹žG/ߟ}çR|*3ŒÊ%è¾d¼©Ž_Y¬·¡Ý’l³¦ö{a±Ú"kcÌGYmæÒ¦9Yž×`ººÝ `¯{{³°–µ¯«x_Vgó\§Þ»¸Õ¥‡5U€QvRt†h`QLµeœ,™M Ö“¹î"±9"É‘Â&\I3‚M=wŒ;\(»è^ã³Ážã¥O™ùjëæô§| %ëî;öÑ¹Ž²œ#Ê£‘¯¾üó^ø…:LÃØIüN9\ëN® :ÝÕ6ÜÅ)\Ї©iÍ£x–LjÂR“Ì·]i\†ªxã8œé¯a0<¡^îì²ÚNí0N÷¶Zñz—@,Ú^6ÎÄggoaÎ’ë{Ý[k¶ÓÖ”÷³;O;O4ÃÞì„:)Þíg–x›¾÷yaλÄëÂh‹|sËÙ§K§¯'ݸžÏRÓ”Ó½¾Ýa« ¨£âüüû|µjå;—…ßRGÔªŽI ÔíÔ¡0Š¡²‚C¾b@&)Ò‰Àœj°ä0LgÇ]¢6@±½ÞÇHý£ùõåçÏS¤®Q½÷==<Ò=9÷}Ûæ>9˜k,Þg{ºsΗÚé™´Ó¶à²b÷Y¥°(÷rËßÏo½ïj-kv_bûÒ7äñ`ø_ÑiXDzˆ¢_¶1Ö̪ITç:µÙµ®QYÑIuÔÉ<¨¹=³ ½½—V]©-t„&£¦Õ8pÅÕ·dÌ‚†|õëÏWÓ1!,ÆJ4fQ(¤2)H0Æ„©“0’‰`D’‰QÊbÀS$0¢ ¤!¤€’ÉC3 L"JDÉ&’0`…2&!šjI„©€I Ê!¨C%#Š”i(ÉI„ "”£L¢J1¡L„$‹DF˜"e¤2ŠF" 3Qb`EF!$ AˆÄÍ1`É(™ÌÆ „)20J (¡&I˜beÌÓ!&a1“* iIb˜B2 £"f1i²fih¥"ƈ¯*Šò¼¼ò–û-k˜z5‡Hf×CÊÒ9΋©¦{ê7½â1í]¸Û+‡VÓ¢¯h˜Ì€lQ†Øp‚é­ÑÕÂcž6*æêÜ–Ü¥<22/¹¤iEîéMµ Ë[@½È™Ûºêu\†áD [K%Q“›pªâW DH.«I#@½§nAL¢êÌ PZ“ ä‡50¬Èª+MTN«¦K¶‡í=¦<«‰Ä‚MµÊ ³™‡»QFÁ ›[´PúÛ©õïŸUŸ¦7¶#m±ǐں¬…š‰ur÷(NL›0¶Æö‡>¬ a­‰u’œ€F¥p”Ûq $S¤¨ÕÂQ´"t÷IÜw®„Euk¾o™(·9Ý"¼tòví«Ú*1W—¤gJ‡P=…Ȉ©¤®rg±Y DŠy/¥ñ¨ˆ¨ÉÍÛv6]†Óu3m^CLZÅb1¨’‹&Ñ‹hň“Q¨Lk#(ª"ÌÆ¤„£L¨‹FÆ$£j6#PÍ ±¢‹%™¢‹±­‘´hÁAQF$*0Ic¤ÆÆÁ¢Æ6Æ“hŨR£Q&’M²Eˆ´Êˆ‹b’Äm‹£mˆÆÑ´š†RQhÚ2’ÔQQª1cÁdÌ’JÅF¨½:ó½Gž/9Øœ^ñݲ†Êfî6;Ñï{ ‚÷/=$cnõ*#FyÍP^µRBC”:гçCŸ>â˜VÌMI)5ÕSWA„¹fÖ‘9ˆ],¦Ùç1ˆ"p9&Wm‰ô­×Dp­\ž|S{:öÍíŒï ´påÏÙé…6‰ëuíïqÄ›MhÈ/òxðôžCÊÎ_$ä1{û  ‹¬¸Ùž&÷0y<‹›–-Žtu ¢õ æ’йmêÞÑ@M±¦Fر™¢Æ¤(Ѩ"ÅA¤ÆÙ”`£F2AˆÁ£*f(ÚLD†5(ÑbˆeC1%`‡^=#Q¹[‘k\Ûr‹ FѤƒY»ªÜÜåQ­Ð™"‰l›R±:M9 8Û­édJFHÆ1ÌŒ¢“2”…!ÆB’)¥# % “R)D„“ @$Ú¢™²Y"2LÒcc@”1¢fH£°ÈQ“ )DhÅŠ ‘ˆ# ƒ 6Å(¡4 d”’d@ˆ,“0ÊJI4˜DD¤6Ri±³"F‘$Qˆ &ÅA„¤Š$ˆ()”Í0w“&§;dŠÜÔUMÝÁdŠ• Er- $èp¤Î‡ .™Lª(rÝAM×[stÝ6õzÓ$Ñbˆ4Q¨ÆÉ0H D"À˜£P3”“jCÈZ‚–š™bZLØ&§†E†f9pl­ AÕª*DI¶f™Ê-bAq:v' eѽ[jÚ\4Iok%*¾„AШt‡rR…%(QhÅÔ“-4‘"­Œ…%,JÄ¡H J*RÒU!Q¶­¢‹ZL€²‚†‚?àU@Õÿ.ÛR×¥´j+F,h«EBÀ8*B€@(À„* _­µjÛÞ¶—¼)`K%"2"D–‰B[¨Æ2T›b(¨ˆ¬!MÅiDÐX@ÊX“FÓ"ÉÖÚѵcj(£Ri$¨Õ¨¦`Ú“F¡ Êʼn-Hš À„Â@”HÑbI£dÄmIX£XÆ‚¢(¢Š"£Ed¢´Eˆ¢FŠ‚-ˆˆÔ›c“dˆ1ˆ£DlQ‹A´h*JŢВ¢,Ti…“Ih4E‹F‹3#,FLh(`ÀÔ†1EMѬ†(M¢Å± ØÐQb,iK!F‰C(²óm¶´ða…Q‘”Q$H@AÕAP œáP B (­"´ ”V-¨¬Z6ØÚ ±­±¶55EAX¤‹i6ÔVÔmT[cZ‚X­h±lmhµPˆIHÒ´Ñ#H4(TPl›bŠ1‹mzÚ¶×›W¥M˜$f6dkEµkd††FÄŠQ¢¢Ø¬mFÆÑX2Z6Œ™”VMBI¬l‹PF‰6ÆÕmW«ÂBµcQQ±mc­"H[jÛÕkÍ颓hÑ(¤¨6£HM1¢Œ†ÖÛX#¨ŠIRV1¨¬šˆ¤)(d&Æ£bÑhÑ­ëm¯R“dÄZ6Á²¨´ZŒi± m µK%¨ÒZ¤¶5Š6*(‰6ÄeF´š+F-´`Æ´b£h‘@Å‹aˆeAˆ-¢ÔBd5¤ll25QRh’!(FÓB…D¼Qç H• )¡DECŽÅam«ii˜Áª&I¦ŠF‚…¥£QEWT#3Z ¯NmÂå;£—9DÛEQX´Õ¹;’+•r (¨Šå®¦#X¹´îÛ(ÖîíDa# ¤¨¨¨Æ’ÎìÍw:ÚRJ™Bp :T(‰”Ɉr§%¬„Âʇ$Hp*®UˤF *Äí2T’¤9EÕRP4JªV'l£G%‹š $«wV1ÑwLç4c‹ks])5ckŽê9®î®mHk»±Z)5ÎDF¨,Z5Wy[ΞŽîá” I…D€$Ò»IZt$£»§.œ sXˆ&TÇ :a+k¢¥‘ΈYWC LQ…’veØÙ)4˜€sÜÆ9VLŽES$„"Š¥F¥¥ÕΘ(ɳºwv\fa‘ÅETà"Ö ‚{ú¿A?Ù °c¤ßbȹ…^ÿ’×H´‹{O’|É4°Ñ3žNTFrãÚóݶ(JbM²#½‹qþ¯rã×u¼Í9½<”åݸ}`“ã€òaÜø{çsŒ[€d¨d¡Ô¯$HòrQ¤ÀNÿrlry?J’4’‹<¢Ô&­¶ÊJ,{³Îi¨\BäUÉD'¶3ÔÄ’½1 >¤ù…[N•å’E:j•åä¾ôùèÉE ߺ°ªD?`»$–™PSºÜå>¥Ù—÷n{Ñ*¨‚óaÎD}òàõ5ó»D—‹¤öûãï¥Sñî»Ìb–§ól¤%\ôÜÞ¬3ö{·Jæˆg JJ}îË•UTóט$‹÷Z(y¤X’ü‰û/<)°„Š¡ku£SLJj·(l̯ͮ}6¹*ZÙkðÆ7ªh[fIkyzs¶¢øñt³íÈ`“HmÎÛÜS–óòù{¼Ú3žù/¾íÎ˾¹¡ûeÝ’<¼X•ò By=A„YÙü¾,òd¼¤é=ë¦Ï›Ïü)C'É'âçƒ y ®8ÉÞC»~ú‡3´Š¡õ Sñ 5¾ äÄ©'£y Î')§m§ÎÇžBA뉎z"/vò‡2Ò£å=«zRP”8±¤ÜÎ#Íø·¬†^»Ñ²›¬0[Jl›³Òg¬Zã8£;cÍ U‹m9„'C¨˜ŽYb)ŒâØ# »ÆÛ‹Ä–ËSÎ §¯uå2Yª60›¶-Iµ™to·rÚ½õ”uŇ+B´×ÚM {a,SÒ•Ñö>0—Å™Ân˜Üõ¼ÓÞ›œ´’ÌCžh C›fnÙ—(šöè-±½²¼íUõ÷wp—’¥‹ÆQ•}ul­W„Ù…+k±¬__&_1óŒbJÛå8,¸` ÙS»34—‡…ÉKNXØÈ2‰YÁXUm…²Qo+ÅÕÔÜ͘2òÍhP¬j°¼×nc•%Át¸\—!@×™šO&´h+Ä/]Ýéò/ ¢Ì—ä%ÙÖ”s÷§Ím¹Õšê7Åe’„Ô…‚¾&Äš5De"T/žbvîä –xÀN]@²ñ)²ÀÕâSâLÝl JNfYHǪ5¦#Û D˜æ$Ôó$ò;&7Tg•VyIQgÞ=‹Å· —ÂÃîÙ5Ù!'jWTXSM±œí"™Ožª{×K ëyÚD[)ȺÐ9ëË+K¤¦Bï^ñâKIuø¢ÄƒÁoïþßñ÷—ÿò(’û#ÿf7}t+aã—2•±˜EŠiOðM¦<©›nP3¶þóO”^PŸh4ô( W¹íÛlåɇ®PÑëZf› !ÒÕÛ±¥ä¢G¾¼¶Ø|7×{{Û{ÄÛCo:qáÐì((¦9…­ÇFæB‡—'cÄ9Å9Iú“‘ÝÑ3V2üge]øÉVJ?#ç?)È„é›È!Öm&ÓU«KJH‹1ÝÎöYû~¼ó˜§¿/„à©d-†²Væ×(Mfg®X¢‚^(ê •D]…kj‰U\¹ñÓç«¥E]ÒPDF°³P),éR@”÷º`8nÚu`öKeHLÈð5vÜï»@=ê•Gšê›®ÖvÍk´×T•"Y¢DŠiå³ÚÔ˜\"ꮙߖtz*ŒŠ‰B‹ºws¯Fð×kI†[a ܶÉõd ;"Pl ²+B€x€rEZQG’䢔‚®KÈQCË󅛥y.ö2²ñ8JîcÒŠaÙ5²dºH«6ç=¦s•$[’‡[u~íê&IŠ®·ŽÃ¨µ°o]ŒŒ¶¶5üEç¼ÎHuÙé†DÌò35=0 v§ÉeíæFœ¾!NB*êZ)šͱ,™“$¾¶ šbò/(Š –-­àL뢳B¢Ì46R#6Wr¤Y¶e¹RP*¶ü¶ÚH6̸щÜ8Œ½I–œMU^öÖ ¢Â¤ý¾ßð$ñ^SßDÚå‘„¥Ì«WzµÑïí¬yÓ6ýÃÏíï¿ä®½õò?-p6ÂKÊÛÆ‘'Û x£”QêôÀ‘z²îämÜ6ØC)¬Ú/Ûwž¦X(’¨AªÛûox|•Ÿ±ç2I3ÞBRHkl Ea)!~ƯôJŒ#)ÁÿB­A:†N¯÷õ6n¿Ñ׋ã~k®s»°$xî\žõÇ´52øØ$]°¾Áœîœk6ÈúÊöõ&‹šŸñþÏaø˜SÒ©K1xÚ ‡Y üÜéÛx.§ÎuE9&+dŒý¼6íªõãÞAľ,Ûa×-Yà™É猯/Ÿ‹´À¹‡åBF"Ь”êÉß6Úًݲw'{°:9rO%õ%Ç’EÕ HNúœàP>T^<˜x3óÝç'žØü÷‰“ cÏ” “=ÜI§ìUM B/øÁXßi0ÚYyëß^§}¥}má}<ÏT‹î­J#%±¦ÃÔóröíB&dVvâcBÓŸ>÷½õñÄ9Žq%FRMu‹ò%E7y°¸9çar$‚©”oœ&ó䬕‰ÚÑ6‰(Z0¸ël5HCÆ!Њ/»…¸Õݾ»œ(rcÎÕaJ¹ œ¢¨²à9Rp­R™‘±¹4 (S‘’†HI¾°r6ämM"—rw ò.ÒnBy6çN9y3Íp/‘F×L˜rvyÑ3+#¥¹½€Ýª…Ëè¶'ªBâ1î¶ä$<ªu°O}±ŸC²:„dR×½ëÆc&5Qï^æóv–¨už\éBu7‚Ôµöâ-(«l2 H! ‚ujšá†QŒ¶鳦'íéCÖJÙ\î¡ÏyšËîæËÂŒÿÀÌCÚV^ÓoÌsèòþ¿X,¢TÉ\/ãóÂ@@ h—”ä:,›‹,I‘îö¯YÒÜ–•½lh,™)”¦i½y»&Q!Ü™³s‡Þ¬zÆ6G‡rzèvÍ`GÌYl¼¤$Üíä;Ö“"ri Óɪ4”ÓUKK’dî#†æ%™E›£S°”®EÀîv®Uâøkž0Tb±´G‹¡¡ 6EÈ2N@VÅRl†k“ßAò|÷>%aòtœ02{º{²7·dÖv¾÷…{RÕÞí ’tþV<É“0Îpéèd†(ß{ÞÛDÆwWLþo±à®—8Öº=º¸ïEô!ÖÆ)ÚIē֡ȋ&÷§Çœ¨_]œN¥6‘JQ(B„•w¥Úõ³iBvÆ37—£,“''?Žœs¼„©š“†«0ë7^Fo\P7î#¸LŠZ{³›£Tr܇¶êÔ ´ÔI; BNUÒ@±Ô¢ìH¿<È‹…Õo”çáÝãÅ—píÈ¢-NÄ ()ò}ù|ð|ñ÷ï°©û\fCí;¸áyÏZ:SëçÈiÊs¡Ä“Ÿ[yóç¯{·PrïP.çH5çÈ~'…Ê?`óõy ¸>üÍ€‰9ABRîâì†Ed>wP*Ð{¢M&È対YÎ`xŽî¡N¥L¶® ¡¡3˜–`>`êêNM4”X»)ä% O››dòwƒ3ÉB<æÈlÉæ¸zšCI=í“$Ĥ99ŠNE$~^wnäÈ èë]ø““Ïg‚d=¬=äQç_#Î9ÄŸ]Ýißrüqõù7ßXxÊç=~]ŸŸ´|$µÝVÎûBPœ|~RȽy O'~NÄöñOvL¨u@ˆ% í‰$Ï$ç¢w&'“2ï¿#ɹÇß²¨ Ÿcpý¸åÊx <žO9GÒû×&<í<©9TÓɹG,ëѸõcÎò ]îb*úóÞ3ß&NäÉž„8ÃDäé1Þªr!ºÇYIŠÙ xÔÞïy§}žHç}â2÷Èܬì(ž÷» äNM˜íÉÌÎá90u›¬K’õw8ùY/[=k‹I]Øæs×E—©$éIŠ@àbbDuåîÞ:áMSq'~$ž{È«užÏ(fwAI}@Ÿ‰‰ÁäœYÍ|yv\…ç;¡åó:ƒï¾ÇŸœ¯q›tLòfr ïG-¨Q'…íSÖŒ=D½ò<¨CÆCÞ…çÓ;Úñ橞™õ>³ÐäŠà¿+ï.9Ôí²ÏJ!USÈä*2ÐOòoëZ:ªÞN|›Î8øãÏ!]iÑ)ÖÖ‚³vÌt˜`ö¤Þ³“ I…¦¹9‘/fÞé>r¢µ (ä‘úÂz…UT£b•‘‹×;ecU®uö¼x3‹…7D>‹xÚ'/m6«Hå…´m¸[ªÛ÷eÎïAÉÔÜt’jÄï$þ8Ϭ¼¿”gE°B⯠çÎV…ªÔ¶ëcŽbøø÷œ&¨œ®¬I/*I*bÛY¥ÌÖœ$ZJ,³ %UrÌ‹;8 A× JS—/kíŠV¼[ïÅPÞº5‘Œ¹¸ani–¼æ4‹Ô¨"lÈw÷—Ûï)0ÝG¾zX|hÍꥳµ‘ƒUik&}ˆsxúü~÷|òºË 8îá~§EU¬JceÇ´ÈJ£b@%1L+³ŒârS&y¦V·&jM!‹-ÛmCËN°èú0¡he»hõxîK,,-§tÑr~AjjjUå£ãmÛEÎ-÷¼>¯aTº¦i#L½½¯7¶'˜q»SÖ$ܲ,ÙÛ·lÛhT­³ÙMl¶èˆyi¼ï;o1 ì,ÜD…Ë·N"¦Þ÷’eJ“¢6“)‹ ¯«ëçá öM9l#.=+Ð;íì'€ãœØçƒOzáR¯Zõ=vx5m°´ãšss½ßw»|ÞR†- ^+À¦Q¹ˆp,màÓ•)ðÐáÌhü't½;Xø|yÙß­©e/!Z~ôº½¼å]5rõëØ¶°yô‘•Õ»Zc¸òqÞóleÚ¢v?¤Þõø„žC„&ɹ ³™‰@a°ì¶a™†ÆBÐ÷¸/ ä !d®[ReHPR´/$2ZG$xG!(JH9°B› Ìì¦G`>ü÷‘÷9èªeå¹NÒ*¤d!j=“|êÛË駆žHž_z’ôàÚv0*)@®È9 ŽæR>h›…ƒÝ~nO>geñ¡ˆS2Òõ¦ÏdÔæÏajÅͦÜÃOh^ìÂBkÀI¨kÈô‘qñíÙ1h·c:DT\$0ë}íï ’úò¢›¼KÅŒj²oFP—§žOG:瘵«eFÑc1Žo-=ž$R'y½Ï‹PÏ\þGØø{ç¯|öÕ^r«ÊzP¨¯¾{™a&â®-²¾7¼xðñ°ãG«¼-ÊùS¶C ¦í˜œ¦+Oíðöõó†­VÊã>udóÞ6¦ÝC*»Jž½½@¥÷¥ÔÞ´Ÿ ÞÛZÕ±µ9c/<­ºyM¬ZRÄí”1b~oOîØGãfÇÛÍ3=äóùCõ—µ£éƒ`‚Á€M¬ NRcסL–_‡»;ßtü=¸}[ìlùÕç‚*sÓßäÑG¯ÆãÑäÃC×bK.>ŠüíÜÄäµ:­zÞ½ŽF‚A­(ªïk‡‘M¥RºkÞÁ–ië½ùéÙϧ>ør˜cycCC<ûX¾¿>³=ö¿.‘ó/)%µý‰ögãæñìVŒ.V4MøÐâNí¸Ý }K×(NÖ}×äC¹/DäyçÈyËê$Âå>7Ô·«ïG<é2Ÿ_';ÜÆ÷Èó¼&QVEP\Lé%¨'—„Lç³Æs}E/¾Üdó|ìLƒôhuƒÈeAD³Œž›NP!ò5+ÃÉ©·’Ï“Ýå1"M¬—Ùäé:vêó­äAvöÎÖKÉz…]ùƒ óÝÉèECN }ü‰_P¯6<®N¶SÈI¹ä«NÊ*ùÚYW ]v8K®pss ’ÑÛUØqnÛ2ŽmÓã¶ŠEcbD‹–Ò6ÄÔôÍHä80Ð|øüû¹`–ÙÒÊwBš´‡a€Ç­ ÚÛ<+WeCç·+ܨ‹æTŠ‘|˜Ì&ºÈýâ÷‘ÕàDù´Ð¥90–¬gN^‡’œ++Ózô‡l,ÄfÛI¨x±½½zòI¨ý}‡Ú,Oíí-{# ³)ld$òwâîãÊçóžCg&—aêà6Zî·2OÛÜ ¶ÙÉZØê;)Éc®i±ÉÈZ’r^Nœ—eÈCc‘Îb”/3<†òO“s´€Hì¸ä0v2 ”2L¶rR‡% ³@l$ylìiCܦAndBM!8> yÒo&ò`\¡´ «Ò¯ŠÉsrÛÅW5T…#ANJPdS²»;.U’Ò*d>3 )Ùƒ&’ž@R;;6áläÍ–Ö™Y|Öo6w„ÖÐ$µF¶ ÇYYp465+Y-1Ž8W¹k@»fdeaBÜa0.içž^g³²lzïOß{³x³ÎØ"ûcŽàïºZŸè®®Ñwî ,Ó©“}®žá¼{ s˺Ý û§¹¶/¼ºwtÌÿPû§`‰Ó]í†vñ–Rƒ(4Öµs*ÒmáFÜc/’ŽÏ“9»zdãiRƒá@؃;í¯ !ëLοãÑö{Œ]Z3¦´ÉÏ77§‘æšo6Ù‰4¹lC6UÎ’r0»ÎH𹟉1èƒ-×Iü7]òµKߨ€×lxVãÝ‚ñˆêøÏ*¯iÄÆ¸¤è¢.«s.0 åé ^ðÊeïqyÀ쯸Ÿ¸Ø Ì{÷Þý]ÝÉ“|á’ì€z‡óëÄu@w x÷r ê]¨êO0Àþ,•¥Ce¡C÷9Gݲ¦À+õ÷*Rþ#âäˆ{9l¡°‰!ø—e9 †HäƒêeR‘©Oˆ¹C$©ñ#Ô‰²;§©M” N¥üÂÁÈÌ |B~aó*½Èܶ[§H’‘ uY%¾îî~fuÃ-jä'—§3d?Ò‚MæTñ¦üo yìûõÓçœÎºJ¾Ñ=¶³2DoW—ÉD-ÓÊWõÒ_©íé*×uëb!.é9*VˉųÄÿ&o¶wÞiH[x»Z·½ð͈Áb&L6ØË™^Ýyu‘B õnŽ—”vö<$ÉY¶ÏVÞ<&OZÃm ô{ÌJcʪAhˆ@DÛV«(»¯ÄÙ[Ñkšä…³¿G½…á[Y†¤Gc²Wa¥[@'Á†&%¬Iiv³bJò2´FØYe…–¡¯ ë—hNœ½’ôI­YÖœ2Ù[Àá¶ÒòÈñµ£lX¢w¼x×RÞFµ-ÔY"­ d6‘êØŒ%ºÏ´¨ãY ëïzŠ#5œº¢§”ÎzÆÜ'¬®toxŶ[m¡²‡P&JNʽKI’Ò¼ Z@ÉG&„)JaW ¯¶Òݱ±yœ®K] ŠMY*«iÉF8BN‡¶št°#`xÎK}hÛÍJ%Q'v´kW²öÃh¤Ê2N¡i¯½Rã lNv”I…É+É©lKH6n8S*ܺaÊòÇVœÂI›ŽBæhM0¡Ë^»Kô 7ž…žJÀ”âëßßõûZ˜õþß7Ë÷ñä|¼Êò·‰Ä@ K`¸ŽY˨wJãQ¬Š¸þä$Ç;i ';Ï!ñø©ó¥fg(“ÈB)´’o…vçÏQ¥sÖ=X2÷ËNO_Ù4 §ò§ÉzJz&/Íï&ÝÎ4áŠÂN0Þpð®ümË?ZÖ“FTéãhéè@‘Q ÜÀ¥§aÉ ¬r™¦Ü²9‹‹Æó˯±"‡L&ˆS‘Ê1ˆB–c˜ÁCFT]-jG) hpÔ€¨±ýYœÖX[òñ·ö– n²+¥¤Ï1bžˆYæØ„ÏÞ=7®³!ïyÒ5y‡›ç:GÊŒãS)×§Þ” ÓMBèÓÐèv´­õ§¿Ïü~ß×ï§ÃðIm'å]­´‰ÉUED‚ «",ÖB9чæo± ûßQb3(‡Ø¢J…S,ïÛÒ÷ {¹Ãr…”I¶ ¹¹¹kÆñª*ˆ6dÜÁrÙʨ’ŠËc,³ä䘒Q &Sr!°na³·ê©Pê^AAJuä™;+f[P¹â¦A…P9@ºÆ‡ÉŽC¦Á§ „‰’ ( vP y*d%*ÐŽf7Zim˜g"Ð…ráD ìœïZ:Zt­@ÃÞÝiù¼W— …ºí´/“ksË­¦m‹s›Y%ëfG3¬Ž­/fyE;Q “$ç®rC„k¦I‘™Rwtþo¿O"‡ÄŠ©¬²ýÏkÞÛ#³‹0¨ŠEÆÎ§ïª‰›Ì Љ…&Ôj„ý´8ÙKpícm¦ßlvÊt‚$Êi¶Á&sÓ(†ýOíÿƒïßðÿ/åkà÷'pRžä ‚€³v~sJPœŠ-1 ¡Ê'lÓu­²pɳ ƒl›ÜÁi\CÙYSPHªOd<ŸÉ_z;ç…“jÛë”%úéï7ÑË  )óÊ>{®C•Ø]zÆ}׿›º§æÔñ-öïxÛ¡ì™=‹ƒ&1.Û¥1hœ SÉJNÕ 7º'N]ñÌR‡˜pNÁвmA’¹!n9¦æhd °0^p‰IÈ€Þéç§øî“C[Ê•»€9I]Èä)‘¦Â !@lÞéÔ§$A: ÈS$ S$s0Päd »‚l€Ð¢SJ JR ; †BÒd ´¹ ”äŽ@P"Ð @"Ð ìç\¸<„å'“ä9 ³‘º9™M–9l» „Ò.ì òW$ÈÉC¨’´*%R…:“¢Q…U(\•v G!ÈjD Š2Q•QÅ@]1Ï“r)º‰Ø“|Bz€øà2vé:‘ØDi•D¥BhP¹³qzƒQJ T3Ž("a%!EsI·.ŒI‘£ nJ‹­‰6äˆ0­Åh¢—,ˆ‹r—`ÉÜÅê9Éäìå[16ãC’‹B½H¹ ” B9§!@äÌP¤Ø¡2l“`JØ ¥6¦² Ù°Å2ÉääÚ@Ph 0¦'O†yÎÈU¶9Å;¶ZI[%L¸4\YŽò>ˆÑš³m…å{d‘¹ÈÛXLÙ¦‹JÁ3w#^W7ã'jC![pOd$äÄ&­ÜºTç‰8åìðª?ÆÏÔñëR;ºuq‡(‰Ÿ¶‡ÌLQiòN•æyá ·"ÆÙQ=tžöÕœ3ž”],½ ’ysžÏq!¨.uÓ“»›bvËæ1 ããÍi$$Ääy‘Vv…I{¹ÑÜH¹Þ²ðò‚>!_A†lëv\žpò•‡>ë S¹›‰vQÓ"9éÈ]AµÄºÈ’@ð‹[\”JŽü·˜]’L¦ÎéíÊ*'ÞÝ‘PXBª§‘ïMݶž{]J»H‰+§œs„p5—\T<´rñ3cBÈg²IïxÀ{l‹ÙÈg­’rõi#T<—,ŽJlÖÂn`S'VhœIñÇ•ÜíÏ“ˆÎ\(w¼ÆE;Ë’ãhÎ{±‰Jóiò .œIV;ˆ9Èê“©Î]uéÊ$õ×O‚PÊD"„vV²@h €Édªr¡’¶PɺÁ B™‚šP)P…T ZDVjã;íƒ ÷„ª*¢s™;h”]Z5;¥W‡6q¢ªëIf;•›¸[Jll*d¹ 9d&[ iPR+…9!ż‰#Ê¡:á—fu³vTÈëÆ!ËÁKÛvH[qLS§DZÑ@×%Ù Œ€Ù]Œƒ¤$î^^\G½„Úxò{ÐÏ¡¬d'*Ñžµ‘I3žéâ…d•Áä ÒP›((R™†ä´¨RŽJ”€ªÒ+JPƒ²&¥ ²«Ð‰ÄN­…2(% „;” S!6R–€sq]Œ„2T26)¡…26k—‘[r£[%úZå[P¨l¹-)! ,M…M€r ‘;…xH¥#²§P£²íäP"P™‡P&È€QH  ˜†Ã±’$M‘lãe͘ÒPGë Î0õ/.V©[ó:Åï9Ë3X9k²UÄ -ˆ·øi|Æÿ¬Î5¤Â s¯ê"b?Ÿí¬b2Ø#ûiC/‡ûïràÁ÷-ñ»¿kP#·¹þ}½Q>üXûrÁÊ!ÿvÊ5PßÎÇÞgT‘hê,˜+ ´«ÙÿvÏrü—zŠ=·&ž„Il©¶Êeyœä¬m§Z¡Ãªœ6±mœàÑ…w"OJÙëc„`6ç»D„Úg¡Ð²{ØëƤXjcÆgv¡R‹@·šÝ`,Ú`m“Ú¥ë »s8¶Õ¬Öh³»&°ÆÚºW¶ßž7'™™ª=ZìõïF<á'Z<^‡É‘UléÍ» ¹\Ø,Ù¶DÆvÃûë/+7>P¥ÂÕ2Š&±6°þPèWͬâ®Pid£"*Ê·fq´aRmù4gÉU.…‚ÚF›a±qnL·#Ý ¥˜úËðù®» GõÙì=âäåA،ġ³Æœ2½µùóŠòIü'û;Åß,]P|‡â||ÄM1ô×ïØùÏÏ,¯*<ƒ¨ gæÜˆó§rwYÐ!c-‘¬#,¯•¸+טK¬ñ:=z[LðâYw‹Ý”ç³™´­ïëÛ¯{4CÃò]Ï*>ǽ^v^¯7¹/¬ög²¹DÕ=]“!¹ã&½‰*qå£>ï_waÜsÅAŸ«ºÍe9:O1A9MyíÞs]žå;ZßÛˆÔú9йâ¢Iã¹³Ðs‰2Ô(¤àŸ×üóßðqWä4Q;c= (Ñ“²cö„ûý¯Žò,™@ð‡9TzÒˆª¹CöžqÔyk«nûûŸÏ}ïíüÖ«{”ÌØmR ](^S‰Å $âé±%†=¦sciù›ýRÖàVâÒÃó+k{ëÂ<=: ËÎóK"Šù´S6ÌDÎ3QLÕœœ,0ü¼'¾Ï$Ù=§6¬šmÞò{Èç°‰FáeXݦ9´þû å-–ëÊZŠsõô'óês¿—Ðùer6ëZ¿šÍ¢YH*ß2SJY¢À”œVÑxÙk¯ôÿë~rxçÂ>‰ùe%ZÆÝ·¤ý{ñéðç„âÕ9d§,¥å ñ͘ŒVxçžcÖÌÿ ‰­ÀÕKnóæšRK)¾ÂÎâ½ÿ±«·¡|ñŠ+ZØËͰº¸±m1Õïp¢òQr@ÈP9 d©ÉÈZ0°Â±ØÂwt×'lTÃÒ3)£=-eLô­6É^ƒ`‘‡¡}w€ ]!´ãþ„ó|ŽØ\Kè¼là„UqÖ‘–æÇñŒ£å^2m…b% @(ì¢äe¶LÚàʱٓoœI^ô¸M´«Ù‰KaÄZ$Ïê/Ò£™<„œàä\HHIF÷‰°l9#’U‡$4Œƒ=ž™(s©^3ÐÂw";*!Ùչ݂IK×;Þã™L=4/ ÃôdòGÕñÇœÖgNsÛÚ{ èï†ñu7aâNÙƒ(É9ÈeI{cLÈ„A$Ø"æÖL‚¹×ïM%ÉççlöÉ©Bí<ñìÍ2v ²E2€>w›ºÁ”M²àò(G£y½l¸Â™vØ>>Lz°Rï0”Ü›¨9Á&œrm‰Çõùly=R)@Ñ9 R¯wqH' y*ä¥Bd³BHª ©³FH»÷ž¼ï~OøB¨(ˆÂéò¥}èðóâ:MPŽ‚?†ÊÏžQFºô½·+¹’Ûêð²yÈ-\ezÎÝ&zÕJ¢2#Äà’¤§ðQ¦i)NS÷ß\@Ð${RL‡/ãnÇõýÿoâDGá!jîâK–¾œíF-÷õØÐkåËYÊ0l’²6%Äb;Òé}ne²‰º*ßÓ7·ºŸÖð‘¤v˜P™"›4Ž®C!ÆEプ¸“5{mêÈ’.hçs½îàvœº s!EÎXÛÓkœ¯x«ÆEå:z@PÔ¼gŒ©$ãÚ÷“eÝÝ6JM’‚ˆŒ"¶v9Ì s!¡PhS–JŠ%ŸËûoéãóë·¬XŒ=Ò®ªm÷ïYúz‘<ÆGBL¼g¸3Ü l ´ˆÛ [˜Pòm"í‰â¹4íÈ u³Ì‘²™VM4&NÉ›ˆìÖFÂÄëæí¬‘鄜EDTDÚÉòßÉgûRÇWÅ\>*[ñ‘µ£šŸê7&¡uÖŸß0îêëÁiéÇ™Ç+6V»'!ÿ²x}œMÁy+©ÓOFØ)d†?†1–O„ í =fG=îÊ”€¿ˆÉäd€û„Öܱ~óÏy×¼9ß3OœN[fe X‰Ê“Šš]?Mé ¤2nEJTŸEÆÖÉ‚=6ÿjþ7ž>u¦žûæ Åêòñã4«U!ý¡bén­r"¯•ÓI™Ä§Úï5t­’8|×l0||¿EY½–éÖœ ˆmôÿ—$]¢±ùëU#Æ·ò™ë±,:ešVx\üˆ„CÜ¢{kDkÇœmI°º6ƒ|.l m8ºÁÛ°R2lO Ø}Š¥„\ôVP®–NÈuŸ·~·~©`åDjQdƒÍ8&„“ܹ&ðÕêªòÝ vø¹ÛzvEu‹ósnøÓnà`‹ `0E¬HîðšBYžŒÅä9`oÜ'XÌ3y,ˆ®^fô¥† “"xlD1º‰ÚL” kó ƒylc4ÖdïM¤ç‹é6Ê\ö•²ùmīÄÌÌÍ£ò¬àé?×úQæ{l7’Æf/ˆK~V\õ—5ë&@9:Ïy˜1¹q¦Oœ0ƒa«¡D/ÖoD̈¨P›„wuØæVC%|XáŽäkx‚ygï2|`òG¢h_0ú€ñrƒHU%!Ü'¸¼8¼ƒævJN‡°û…“i‚8ÖÌ)#Nº UÒÚ|øÀlÆ`HïˆX\‹pªV¼VÛ!f…gWhuá´76bKØ‹©p±°´XŠ78!ÈgÖ¦ny󇎌zƒce)v“Þ`r¶ˆ²#N€NP´b…i¤œ+Y£ãYò­¥ð=›ñ"4­l2GFÖ©V›@ÑÍ]X 0Eƒ‘¥Û z»2@ñ‡Nå@'Da•–Ë›züfR+_ ­ðÛ'Óg¸(6q·ñÂ$›ˆ ˆí]È. ›O•y­C¾²¬ÀŽÊ HFÖP…?où®èó!ø½Ú>샸'ñÍ}a¥Ow1úD– K¥ dAÖ£&ÄØ`š#|®hŠ‹h±µI}Û®W¼ÉªZ/x9/â:•6wת(ÚÔz…ˆÓ":Hv–J° Hôì\ÜïPI1XdYÖiVþ4Ùiõr>~;W‚Õü6×Ú5F Z)GaG"’…Z)JU¡•Q<@îd P¡ó›ñç:ý@RQñ*€.@4(€”Šl‚ˆØPåÜ ›*4мñæ;üúìlÓßzX¹«€ ° -tL%bðâ~>.½»oH¾3ñžäI‹1°°& …€Úˆ½+š[ãçžW=;2ÙœþGw¶ÇEÜ,G~r6èŒãˆ®ˆ¿ê÷HZW“ýúï9÷7 É¦“?ìÊøù”dûDzº¡g¦ˆ“(¦¶*ªÃ³èävÛ[+¯ëï®Üš{—ÉNó§“°òW5åó³ôIò佬cvZ÷Œk³´½­ÃOõÌÊø/Zr2­¼«V2Ë"FÚü´7|º×ZÛVsäž={m*9µ¨”PÒ$o´2á@<ð = y'r/ ä)u.ʦB‡p"ud/P©“°PrÙL‡`ÈT)¡’-;iÀc7Ž÷ŠÖ,QÌç†Ù`Ä6YEæÙnÌ-´µí­µb˜™É»¢6Ö˺ˆg–d‘æ¥ù# ¯c¤›~ú= `e”l~;eâÞ%_e™§ HYiÉjášôcÖ¿6›CáÅÑ)P8” Ò6ù¶>[ßÅaïßøÝþíáìÙi•" ð,D«¦îøæmÍ„)P¥U=A›œÍ:!¶Rò„ S¦å¸†¡ÕNâîR#2‘‚Q"X¶ˆ¢N9"âinq¹Á81´ÖéŠØ3mÖQ›h,©Æ 5gì^À–Áìc ç³zÚ6ä5 ¢ÑH$­%¼8Yx”Æ8öÛNÄNF‚¥5מû{ï¹vàwÙúšUåQ웼3’Y9NÎÎË’SÜåÌÊJä™dÐje  Üí;r`žsSz )è9H”´îl´Hd-R†Âd;@PŽY »›£C•&„y3 ¯iÛ Ùºs¹e:©Œí°(arâŸx[µµ….Î E%¦hË´šf¤ª–o·Þ÷&gáÙ4n¨r¨dHq¹ì‹(›YT“PÖL®¨(É}^}—kKŒ«C[Zņ¨Éšb‰Ûd'—Iu®ÍÚ«#;:íÉ6ÛeçÌ/^ÔmäÕV7r“R¸í÷eÅ(–%EHV%µÚ2èÊ+K Zò‘m!íîó½Ð²V|¬"$Ãa˜¤e…ƒ`‹iŽ:fU h”±§Ïm;gx·–í&½mïxñìÙÏCks «Î4ù«¤Ý¥—³ógËÚë–[e^DNqIâV÷˜ôèîzƒØ„L"¾ƒÉäñ‹W8Œ›e)ßl9õ4‰øñçÉ ê>XâYsË=y6Èq8FÄŠ2A…™ˆ@'!p‘ý÷=P!¿dT¯ŸÂ¬Ïk}?5õ†‰”÷ÃIF§%­z˽¸/åëó¯‡$ó&窔Ø?»‹¬¢‹ÅÍrØÆôæÚ“¤ ÷âÞÃþ[y¾L‰_W>9n¥˜ÃwËÁ«b{i»ÞššÚF[7v Z/%6·JC²…ÖʲP®²hÛq[µÛ—µ9°/9Ʊ„s™ʲ“cY>þëÞœŒ ‘› ž€/¯ß{ƒJr ŠŠ^¤^NÃ’&BR± ¶JR¹–É’&Útä>dÄà<‡2˜\nr)KÒ d<ä+Ë’ŽM l›R&ÆIHd§P›.ÀP@4ds„Óœ‰ÉÎØËÊáŠø£ý¼†óVظÎyÔÏ«Ûc=Ò³ R.U'tMœ;0%ÙÃ;¨dΙ+#Þ;|ëÌu‘ý_Çý!³¬3›”‚f ăÁ‹"­ ÙT(’Â¥åÿyˆ”i**sü4˜ù»·øYQf›ÝÚòâ•î÷¤|qóßfé&{²p¡Ù >C% ¥É67s–ÊrR¹K±­{x±om­ÂØ£{mÊrh¡ØB JBºÌ¥6b2 ‘ÉJy%#HROÄ<œš@OXÜé7PcœHp§£ÓÞõóÛ{ý=oF×Vœ¥DÔô¹'ÖoŸcÜV´*R)ü%šºŒg_VœÖ²²fç*dµ·l9/:—hûŤÐ#)+î½ýOæ{CÄøOûÝ‚FÊnòD}(‘ ²}„GÇo©ÅN ‰Ñ²d޳µµ[R~é_g‰Cëýùòò'¿!)Ò·WEÊ6‚$õøú‹¥¤º¾¡žu üñŒ`OÔ›ç)aºkT Å¿„€.lƒïúþ."A'd**À›¥r€FÞm…Ë‹#`.Aç•ú%ú¿aý2Ô2?Ô£üzºõ2…h<,1%ÊÿeÿÅëï6ÊÊX'í¶ÜÈÄiRËö®Í&-¶…&‰V×¶\™;bõj Âp˜ôå4gÑ&GÉaŸ !¹P‰i ÜÇ›ld;dP´H… ÃŒ¸'ªá®ì¼s:À½ÀIÆ]ïõö÷ß8ò‘y ]b#Ïöow{)ëæ#©äƒ[Ê#ið™Émióféu³[afoÏ]ÎèEVŒF<øÞöÂ'™©K>ð©^öÄ“»­¸°•‡nÄ«ÞßÑgkE?çoˆ»Ë\ÒÑ+ùºýóì-­:±Hõ‡sØHÇ*ÈÄgY¢H^³¸™,Òò=pNÂSÄžl&ˆÂ9æ›™‘Aku•—[.³®#y@—üŸbÙ²¸¡#KxÎÕ<Ôò¨²§<áN IQ¨¶,F4Iˆ€ÑФØÙE²VK(Ó!Q°3l–f ‰aš&dB„ŒL™Jm ²¢Š4‚˜ dŒ)QHÊ#2!H¢"P‹J$"Ði6Œ‚šA¦”F()#&1¨1&Ù$ (LQ “Dl™c ¤±¢ hÆš¤‰†Âb’PØM,“I Ø©4Æ`M“)I’Š h)*( %BÁFH± Y+Z61Xd&#  X&Å"’c(LÈRA¤JM±ˆ¢hѱ“h±¨±¢¢&‹DQI 3Š(Á"D$E3„d”(”j)43ÑlLÑLY$“ ›0ʲD–B"e4¨Ã,DÎiãYÉ…™¾‰ó/ï÷ôÉÍê€?£é·ÙpñH3%fGèCû:ºŒîv&5ý¶úÌÍà<"F"©ç?2Ôdÿb™\l°-¨GuëT/¾ïº“ãfq5âB²Q{Ïw¬•¬+› /°éšë¹n ¼`wýã1òWf<8hƒ®™ˆ§~f9•sÓ"$1 ôge/‘.¢®g;X«âlïIÄ_0Mœü8^·È²tĉިáÂ.Em|­u¸ª£ãõ|]õÖ(ÿEO¨€ùTO_ï~NyïM¨·rÃ2Üß6ò9¦_ëGÕÏß-…èÚæ…h%_=ö þ¿\rðö^üW²NEÉ5ŒÂÜšüÇ·9Ù#dJqIdÃÁ6M˜Ú+!‘W jÆocýMm²jÿ³¯3äQBNºCížÝzœ#Üd&äÃÃBáót„Ù$Z8iQãþÒ]ëÛOvv'-"9Õß[~¿|ë­vÀÎv–T˯âÏ®§Óe¶ÿg±D÷½Š^Bˆ¤jÑkñ—›JÑ¿-ö¤é+-wªv.Ýlî¶Ûs£ m†TžfÝ9º´7DJB%¯Ïx|zXËÇæ½E/µ©];š­uˆÌ#®D¦)6ÊeÏnÂwÞ½äáÛ5»¯¾³S®²éÜsÍk„feÖH@Ê´9ˆµòyò5óÕe5µ! Å7×¼ûiÖÊ•ÕÛtœf׫!àÑžã3Ýk³¨ÈCªZÂu7vN ô’¤¬”7Ûë¶ß{èEýÄü|¼ÙÕ<:›B¦¢TeaÚ5:µÒÑQkŒkš0ºë€¶»‹Cÿ—ß·ü÷îRmÅ‘§åe­ImhÃYuãû±îÏw­nÕÙ99ûlVòr}®wžO%Ĥ´ãë!ñ…7¾Åïª>±÷ÖÏÈ_‡6L¸x‚r ¹$ËÜCU;8È×_n·¬ÄŠ®'.u³‹GמM짯&rŽkƒÃÜúÞC™ð½O]Üávó§È. r™ˆU.Hg0 y/%i@¤‡3±*o‰ïF'ÍÖ9ʸä]ŒŽ¹ °9#ó&a™ƒÉ(6KpØc`Ûe(M©(h6âÜÈiJd –ò@Ù’ì†FÞ% æX/‰:ó9WPš.ý¾ïs®!åv’Ú¥ƒFÍxZrÈZ Âéq§¯vú±Íµe…!Y,m…±ãñ¾Èsà@C‡xE½ÉCótÇx7‹l%«ÛI3îÎŤ-¯Îɉy¥48‰Ò–ì˜p´D)F[çÊž|õ¨9ÂV÷T¸çÆè»Y g‹8‹Á¥J6Ï%õkÍ¥2ÎpÎÝ™ó>Óº¶8 ²´áæ27¤‘’ÙNao8f,')Ãi¶l “¶Ä)t$ö³žoýÊ÷½>”ûëÇ«Äu{o'P,ô/¨—0¦K]ØÉ¯Ì|©ž_ψòy 'šrf­F×Û² ÷ü‡ƒ'*!|ÒŒ ÕX1#@„K&¤\ÛVk²Oc åÅŒ–Ós¬[]®Xé1•îŸÝ·OÖ}¼fö4¥¦y^u±J¢lnÈ« ÓaIÇEnWc„¸íœá«€ìñ%3-s]‘¬ @9U©ÉE B%9$¡¡äÄ-%ó§…‘†cºêKH¥‹ND‹ C‹J¥Qkk¥9Hll"†•eÈÜÝÍÙP³²Ž±†2ˆâœ‹q ·«)¢cVÓC.Ýq(ØØ Úíc™aS–, + ‘%"ÅŒ’/f—‰ãï£Iå´ŸÖ7ï\žLzriç (ÔžÖô¢Þ…^—ƒW.W„ò‡¨Éä=ÝwˆòØzŠ ¶ÚÜj¹Q´oIÝzhµðä{b¯Kq…î¨$Ê]l¦YÕ`ri9êM‚©hJè€:6|õˆìªæ±n=÷ ‹x¾Ì^ÛÚö@Ë‘Üõs6Gnå(S%Ù „ó:|ï© ¦ó§sªØœ ¡¤ònÈw“«ÔNøï;w£r ²IÉäõ=CKÂ2œŽ£¨hæg$­ê ƒg9¸/Pœ z“._ H'Ûsóì"|óÞ®'•Þ±y'X`Ò´õ!ÔmNîuKr Ì´Ã&¡êv`·ã¾ yÇÄBNõ‰0»ÎõAšÉ,'"üÎ rß_Jrži–]×0—†å-ŠÉÎNq¶ðÿƒùþš{¾øœ¼ GyânßGÐGëFu¨Pµ%îÄÀâÖÛÄè®Uö>dÉägfŽóiˆ}=Ñ).Ѷ—%u;Xõ"j”šb°*ÖN-¼E,Z<1œ2Åp‹­×‘Îw%ɰgÞ¹5‡n¸%9±Ç±é×H»—aœÐêMõÖÌ9¥ YA™jó±"#ØÉ=·=Pkè»){— ¶ÕÕÝ™î41ŠRË ³$c\•g^±ë»Ñ±¶(Ì¡DÐíœÎÔȹþÄðkó r„ÙÞ|ãÝOzûèår9Ek¢ŠuîñØóµòÇŸ;O&ôÈd÷Gq÷w-†Rî`í—qÏævQK£;s¹¾}€;å¤ôiÈüLÊó yÚL:MÞ²RN”ÄÇÉÏØ’O‰IŽžŒ€Èih¥  q;ƒdkgã‘@½¾¡õ}oµ€úòºy62{¨Êƒ.ZJò9’¥8I”bp¨‚&}g¯ŽÞ|‡“IA(”,ù§~{Þ-³§) D®pž<©Ÿ&mvºù/Ÿ2ëQQÒ,ÈÑñáÂu"ìI½ÄdvÙv]¹$SnBûêóeÊåTäA7UJ…$ˆ”g …2Œóqçž5äáÇhn×nyE*웵~ÛÞsÇH¢ÆÄ–76ºE€ÑÝÃ#hÁIŠÏH+ͶxDP*0€(Pá›9 J´´)CJ Ò-  ”€&Hä‹HB4 ÒlÆÊPÛ›`œ§¨P—[‡Õ:EÆn°" BЪ@ͪåWUTUµ·ˆ‰GrÈh£1Âf©¥‰0ÝÒ’‹6Ê4ÐIÓžæÈj9N2dòŠ<ï@ÉT:¨a+©{Ü„:tÔc‘ŠM8Òò¨)ÄðÉ*3¸¡†a–ÎC£Bì1l!°›’A@71 vÈZ|ÎÒ)‚@$.°,€¦]‰9˜òŒ„æáB쉒µ@Ò4(l“&À<„—a6åq^Y)’™9-4% e@æXçm;Jò¸YP“œIVœ NÜã18º2(•ÜTQCET!k–2æPž%üŽMçcÈ-SHBr"A“‘9!²ë¸¥!„FberÎ×l‡Þ7)ÇÉ—âòfäS\°O+jLº¬)‰ ä²ì¢§!v‚Ú‡dq–E„E¨W ˆwIл•“…I°aSF˳¤•E ¨úìb=½ ÐÎy™›YuTÖ‹FxEI›™%PPä© QMR°£„ˆRˆ»(‹Ü.À Ò‹iM×G8s) qËSp¹“m–x?1°ª<"5Ë[bµØÛ^»$#Ns&Œ ²90«·$rÁav\‹d¢Ñ$s\žw&ÎEΓÚ÷‰Ó"†C *®@ä¡#@l¨ ”‚@bŠÜ±¶Å©-r¨)Dr™C$2,æ ™i–jÚ†—E2,‹ ®ÚNÈtÓLÊr6ÕbHÞs,é:ºç'’›•tSÉ[º q*ˆ¬–#Æ'´³™»XBjÈò‘†a~n°';Η“kmŠ¥5ö­“§((”4¶"B;³Ê–fÍ‘¾¼“¾·K-½‚/™(b_!>ry K@Áv‰æX6ÎSŒÏr¾o$^ÆríÖb«‘å³vfyCXÇr™éå1¦.ÆÍ=\“g!xE<²-lj‡í„“Êkt±ãÒ x|$2uÈ:"[j†Ú„´‘ùÇz'{¬I¤GbV­¾³çÎß8ö <ˆó[B+rBï&÷¯]žÇ!¹V<“äÈãë´÷w®Ë>q|½ëÕ·"z7œ¡åpx˜ ÇçŸ;;' ҥɓ!Ÿ&NÞ¸¦PU%g{ òJú§bAw%TÆ}iÉèÄÎÞé^”'euÇÉh%õ“'ÏxuOw‘¥š»Eēٴ¹„O’@Y“²¶žyè P\ô–¸­˜ŽYù'¨ò/g—sü!³W [1ˆî6†Þµ¡6¤_Qžìt'dÆKø|å|©¦q;ç^E&çÌÉÔsŒÖ9Ê¢àDäYgŽd´(.Ñk²v•LC¹¨˜I^¶Âö×m>M¢TO$)‡³Ó“<  F{'SUãõ)ÎõN'=~Puhõ§ÐrO2C8üg“HN=‘¾¡çØ}<๷8„Xv]"ó€û2fÌP8´!> ´HÚÀTQØÆ7nÆM¬¢®ZÛ- &{ò²B4 ‹!9Þn&Ö ï£Ëu•‘{›X@„EÚÙ{;¤µ§Â¥î?Ÿ—ÅȘøŠeDÉvñµÓÄc€îÞ9L˜“ ¬ÈÂYHØÈ ©¦W+»®Ó;­Ò!52°™’nmÌE’»®6MDÕ.RsIZDV†Ô52©a+fm-U”ep¹\ŠI+‚ˆb!A‘A’wvws›’)E›]׌+Kºé™‘ÇØñÝ×1Q—:€•ÃFœºîu\Ò›»°Ëps²J1 ‹—"îw¤@‘#&«J"‚™F§3oâÖU†Jîº,Fåà „Ã3”Äé\Ð(¡=Î'I-1TNœI ¢ÎZ²£:Y–¢@RUtØ‘g £*4¨RÚP´¬ˆ¢¢)§,V$g, >&ÖVŠTÉÌîI&uÊŠÎÇ&ä6&îí÷Ä./½®z®#H'%E¡@g ȪÃÚM_3æBõ˜Lô¨ª¼¡“œG'ÆCyP'NÛÏ:ëbJëÁ¢ØÚòh Äx£xæ³Ýž^Úé%Ìr„‚†¬ô›–år».[N±ÁmzIL£$ÁÉ )^Y+†’;)°‹Bì±dÒAK Ѱd$%·ž—5ϸ‘4L¦ .Du8"!E'g­#¹n8MLlE0›(4»%)B”¦ÈdÐ䨫p/pH¡žS¶¤-w6pTf=0¢dUèvn&~{Ïg¤UÀ4ª{­Þ°nvëÝ` 0ÈÊ ]Ü]€ TJªä¹#½`Iµ'$ª—•V@ì ³¹ƒAl(†Bœ”2NOR Д& ¥*ˆ˜ø”D˜¨4†LQQ @-('!J¿þ?Yðl¦¡šÐ‡ü*Ë‹[Ë?Õ®þ½—Ûþ==Ùî¦ßê»RòÉïN÷?—_øŠûÖ|&Ø$—oûfÂU1VN&â „¡Ði^/ßxùë…9|t×£ßÈî¬Æß‡Ï öÙ±V‰Ûá‰7áØúãá×§û®ïߟŸÞÛÙï ËŠJÔ/M*žsÞíç½0¹uQM;; ìu*xQ„(¼ËA¿uí%ž(Âc"ÏnA1Ó°–œíVRœYÒ´«»î~Ó¡ ¯ ‘†Ù 1BÃåša2bê -‡'æÓ_·ëüÝ %ŠúEïgÖzü?,ø²Üí,'u o7bn” ªÛ§VP%>G³ê„ì±óö~—Á xœüfúb$ItC‡ºTÔŠaBŒ —rÉfˆù:òc•yl²Î—á{çµØ‡›;Ö¦{ïå÷ˆ#Ú|:D!}fî”'y.©òò÷wÇz]•ËA¯Í4Öú`@~\£urd)8–†blE‹(§ fµaL;ów³Ô”¦å9Róß—¤‡O³b’ÇE‰°P“>DRJ!g‰B-œ*¸i·¢é¥49½h¿=í]Þ<út½CB í %Ÿ!îÎÂøÍâ ¤!4îC–7ì(c¾ï{Ðãæ}ýŽÄY-”éDh·¼£(ÝòÖ€mG Ôé†Å’‰V•:·F’÷ÆgÏ”>ZZOtùÐ7b_™¾ìe…!ßµOþSGЕþ/3L¥ØLè” 3 ûÔ<ÃÃ4°Q†h´…“xCû?|Ç»ÙÞYѷ万çgמöCâ†iPøQ‚±UU&„ ÅŠ{8|.=4I Ù~¼ìøvz-;|Ç…³Ý¸ýÜ{©>fmHÚ=cFUæ$³ß5ÚOM>~»úý¬ÖpøvÄäÕTÑ” SKÁfH%U.é6¡zeYt1Ã*ìHX¬3‘z(6 ³–9¼@pT]Qk¨2ví2Œ1B¨ D:²€\”¬,˜²ˆe†|Mæo˜š.Îò÷ˆÀÇ37{­ýpóV>ßv‰£–®ù·P«3‡F’ƒ@Æ]®\EA»àÀ|*.á+Pùh@!Ûó.ýoËÈw°¥f˜’ÉL Á™š¦ D'ff_ X‰dm‹¹Œ1M {&×$C‘îï`é.šÆ'-éÒüìïÞ‡Àtošö¿–’ÅK¬R7ÔC™´´—|¶+òocM Ñv§-š0Ó2Õ"^-2Ÿ4gêíNŸð–0õ¿rÓÅKÿ·¬„f>¯ÉÓÐú{öì „då€]’ ŠŒL– s%œ3Bg¹èG‚~› ô‘ìÜaГî–~ºïžçÎõø™Nç¾zúÏmã§;¤Ý§gß_Gîòv|»ÆÛ{å~ùxfû½ö²ïÍb/ž‡Ð!E J¤ðì„´º °í ¼¡8ªpĬÞ"ŠQd€œ«@:BˆDA.Äþ÷íëçÈ·š”l—ó¥íIàÐ aFÿ)IçhHSŸ§ì÷ïVÞDé·Ä¨ÉX–^Yòv&º[Í ‡js™²öòÃv­ß«6Ñ_/šÇæì;{;—¦ì<ñŸ+WJ@¼éK~aÁ?žÍ“Ñ×ÞÍ/B¹†zÒikâ!²Øwá^§{!Hجð÷¼ž#¯‡õ0nŸ£ØÞŬ˜KÔÉlƒS{^íP\¸yˆx†DÉ­ÌÝURw”›,z(Ê ¢ˆ— -€ÎKBV“+8HVæÏ¼Ó§$ƒkPÍØ´ ø"Éf$S§x¼ÔÕ'³Y¹&kÝçÐhYs ôæå ;öm…ß='I‡ß0>|8¾ááÏm?]›ìÈv×Só¬æð­–Œ´\;'.ʬƒÞÊ”½$áí ¢lA“d^iAƒEK»-N– åB|bûq»RlÚÇ˳·Î§N¯¯Ûñ³Þ¾{äÄ<iy‘³D´ Œ›ÃMÅ;½¼^ª­BJsRÏa Ú!Ø”+E^¬—Ÿe÷O¿'¾ñôße‹t‡ÜDùžâª³4eøòòvfµ9m¡/›ü}y~™?-þ Ëê·«=*擎ΟÐ5õeÎÒ¸o ß×åМÛ³ÓJiB6YZÁgÍ]/_¸;ÏŽöéçôœ@ŠæÂ{!wAŠw´¨€DÈtñ_.½¸û¾ûŸ>‘ôÝ>\NÁ­ž4!§Óá½¾Ý÷³®oÃ_Ñ&ÝQ–2¿Š‰ ):-e†)œ»0Ô`Õƒ‘&Æ]ÜbÆÓj}Òò—¶Àµ–é¥Kû[?7t9¥9ów½ï;-Ú\R|'ci m± ™oÒÒ“±­øMÄmä¾Ýt-yÚ–Œqa‹0cÙ;}?”éïŸ;»À“ä%¿{†Éè §}yó=oŠp‰ìK(€gi`Òü/wue÷Ìè~‹öïéùΦ±oð×qútîáúYæéžÝÛ}-ç´¾6™Ô¿…õ÷ hI} ½ØvÉØf¡Ú³†TrDI©4¡ó dƒZ$9º^ß>lùŸ¿´ì¾;_}c¹q=¬ÚÆËµ—Uì×rÅåš—æ¿{Ï2ûó»xç|\F¥„õ0 gÃ=*š§´—¶¥Ý(Õ3ÙövtŸ.' ô—¿>;º°¥Çåè†Žîž ˆa—‰‚Ö0¤³ÙV‹»Zš“ݦèûߤÁ;Kð_ÝîTñ4ÚÇ‚A$š%ÀpÏ2žž%Á"BMJ¢¡ž„P˜wÒ’ý¾Ýe‡Ýã½ì¶ð‹–;‹ Ö˜^•0¦xBš(µ=2q Šœi >èTÙ•å Œ'ÅÃpØdÑPˆvi„Ýfi>ޑ݆vûïnÂ{â·ëô“y{½Y“»$ÂemCR²Q[L"Œµ7º,öa,¸Ÿ—&•û—O–þ¶ïNÙ¬oË|oŽž˜¾û÷çå§V´í=kï›w¾)Ο;xY½iN‰jмM©â¡™B¹LÌÂ,LZùii˜‹Ü4ìÂõ¸jAMÕšJD„è¦h€ñd œJ‰"Š ˆ€Ê]Ä”PA$ôMØw—_=í“7Íõ ðÊô‡Vü´U”Y_-ôìÛ°ûî½:ò”ô(4Ó£Ðô)QÅjµ#1.öˆ”"¤j%8KbžÌ×Të?)§ímú•ØÐ¾~%Ï:Û?[±ïx™11~ ù~N×[ÍzM?‹ºryå~ y÷áM›Ï5¼÷}Ù·o½xöŒPOêÄÝTÌ*hk%Т¥Ùª» –:˜{³EÙÔ]®åèE¥æ ³@x€HE6² )(ü„°¶X©”~ýö„I„;a§ÝžZ;çëÓìý~' MTðNeïJâÉcLÁžéÜ($R³X—–7µÚ³Ý¯{½2PØÅ_N¾Ý=ß6}ÝÞõ}ꆡqò§ÍeKkÚTø€†TS ¢n]‘x³ÆgI#I!’¦)rÝ5u!ù×p÷Nß—Ôºü³wäíO‚5©”]©Ð&ˆN¨O72&X“ È#í©ïßgßéþùÓèI»/Ký}„Å>6,ƒ‡M¹e(ºl¾7Ÿ6ñÇ^ÜÙÍ3r̵#ÄIß¿ãõü~>‡èèîîî·õ÷ûŸIñªQQî\öYΫý«_ݾE ½w_c÷ÞuÉÈ6(¤Ù6ZËw4 )b 5µ;¦4¶ï(ó%°q<ï‰ö”°ŠšÛ]»M=P¢h[m÷º=æRÛ´ŠŸ±ÓXÿÌý‹ÙÙßr‰÷M›BŒ&ÚË©½îÝîxFnZF þl’êBÅke‚¬ J|Ø#|¤ìªõÛèö…›è8lÍN%K­Áš?½›cU‰Ù—HS le gnÿ„ÏFaæ”Û×a^¨fʇJDÃ`É1.]€…)GLjìë_I÷Ëá„ÖSd)z_Â|;¯.htf&“‚`¢êDô9ßI‘Iƒ26k É3WV5Œm¯ïíÓ/øD"„ž­Ršìé$:®™RN“É<*|o¤³3j=ë% O…³Õ÷»Ý¼oÜ1“bíYšÅ‚3X6µ€µ€|'ûØÎw×\å¥Ziì‹Qf³ šÀ¨!‚(¢R`È¿fÁ™ÌïmïýÏEDú©üFA– ŸêéO!?áÝâùBüjÓ”÷Ìz NÎÃ:ɺ7XÂЧ/‚XÁ+Í×½]ae[&dt\ô’îó¸Á0!»î9CŽPœxetLg²õŠÛ¶v±Šg²vE8S¸È½“<³ gršD×H‰m»üS ïlUÉ7ÞÞ½©PG¸?ž÷A»Á{—¼Ã• –N9šBj#žÎzGÑ=]®òO†{+„ô`<í²—£Âº¯wk·{½Þ»s$’)TjT¨¿7nÿ‹¶ÞÒÛd¶Ð‰/¬—1ñÓH×lM«lXÆ5„;ë¤Ú³¥ÖÔŠ§Y¸ùŽï“ÑÚ¶Y>{†mH¢á†Å‹ VûGc1#³HØlå“’£¶K°ŽfšQE9;Dõl)’aá*C$¦gW(¸Úä~c߻è…&+ñ¾¼|ž{k¡-dEwÖñ7Íôyr83ü{b˜}‹&ÖeÍ ÎÖRT*áüÞ_'Š×fØUQZ†µûyñ¤vÌ.£EläìñÁݲhEWöÙóŸ=ÞÍÈúÜí’[Ë­h^^ Ày=¥4Ç ±²¬¯ñ¢Y[>æn¡5ù«å<œx莈0)Œxpí¶ÍÛQµŠ´[Bñ­ÊXKE¨Ö-VÆ­U…D —`Øi¡$T\¨‘¤JlÐÕÙE ÓÏÖ^¥»;º6(ªô¯M^6±G"ävAFAJlmÉäòE¦€å^ž2 jq·.Ûs4Ý´& ³b¬F2BgS˜ÔU­x­jÔ!²hm-±¬6Ä£I¢ÛDÛ—še^5,Ö–Kef•t¸Å)6é^Â;5Ù)k‰1.ÑIq³¹²e˜¨¦Â h¨e“½àrä|ùe!í—œNÙ¢Ó:£ÎD¡Š‹ŠMXËgV¯OA¶Û•Ÿ&tœ€. ¹{Žî$™ïXÞsÏo6…mû·‚%€B](5µ„$DAƒ‰wÒS|ºÊØ£Vg¼Þ<ËhTØÛa_¬ù©^¹ሑ—SÉ%—$¿›¬yµ¬ºå“–yü¸ÎèxÚ]ì2R­}ˆõ>Z.…šNö²Ë#©L…4±›"ïvó³L1 9J.h~du)TÃ2ÔÃe’™Y´-ƒšM°¸†þ0g‘\´«è‡Rôò•í*ŽïÍi¤e+{üh7’i+32²Žõ2µL9"ŽÀÜ’YêÝ•Ai˜©k2Ú&I§í#Ñ2É:ÔJÀ2I{{#,sT#5Ì3$,^ú2>Ûo›Kí³s# Uî°c“&ç`ÁrN¶V`‚报™Jaå†dT.•"~ˆUqD±åmí–Ê-Gºä“B‰!SM.ºè*Öq°¢¨þwíVTDVVa²ÄSç•­;wGc̾=¶¹DXR¤nJú±±J1RÃJ–Ù\´Ä5-.H!˜0Œ$¤UMš”˜X¤ˆuBEeÌ‘aF)‘…V…«N&!•Í:* e‘ÈÍ "þby´¦ÎÃö“+tB“4©]5ÛBa´<ŽI‡¢.¢ªjÏ`×^¶#¡£óI®hf–¢¹¥é’<ìMÊŒ%ó·«çÎIfåX™Hšk¾zÕ3Ò=2Ñùõ¼«ÓU©ù#"°“_A°ÕÊõçlÆUbû™åšÎÕÞgTfÂ0©M¬}¿;«Ю0ë§ïŒ{ÚÃáÊan¦œ¤¤€_5 o&õç{qUmx«Êv›Yf‘£[cR,-â2Õi|n<xÛF3¹tkçÎb÷;?¶Þ±]­Lt´ïÝ„ Y¨Ö)ìÚêYŽt[r¿%¢QÝs{,N°µ‰Æ¬8ׯ0‡N¹‰Æ”%1šÝGZ—s`• l~}ö}Ò±öa®¶ÓÛ&zIH©üv»ØžÚ‹]¢Ybwç]eí=(iGk&—‡»±˜ŠVѲ©æWD o*Jó|MÓ[»bt§nz½ÖzKk,8’“hÀ£Hœ²…`5¤qJ•5"â¬++œ^ñx<ök Xy–§1Fëm ´âú6O#¦2 4{o"çxÚ 8täŠ^»ñÇjI £T~xµ£ÞòØ0ë´þl{ÉŠ³Ë³+g›!’êÖcB:Ûm†fÞ{½“k&œ©£v¶,\³fØÅŠéŲ֟Û;Ùì;èȧ½t+1¬ç¶ÉlÈãZZŠÖƨŒ(5µJ€F^ž&qÂt9nGÔm8‡m9Ø¢ç6ħæ›j‚Å‚xÄ]ͯ*° mûJÙmKÆÒ(ˆSß{ª)ÞCÈ2,÷OÈw*ó‰ØSÈy^y/Ÿ‰É²ž‡•&ÉY lPl<’Ì$²Z¾Lñvó± yÛ„ Ø)ir¨ædœ…r %ÈÉr hi2L•êÖÈí]Ç8óÙ'µÎ_ÚôxÖLbiH¢1É€x< FTKQ ½ŸzÛ´kd«Z-¦‘Äí…sã~תéôI—JüŽ1ï;giÔÄÑJÆÛm•¡¶lÐ[,vUjsÖß»/¨…‰÷å/›—Õk%˳9¡ýõ¯[~ãz&ªX¦½k¢±’„>jÂfë¡5ìY)E‰Ýuåêñ=ês[Ë ÖRM­XÍ6u·äG†hœAž0„<¤"„‡’~xùï›{r©äéòq:W•„'EWL—λaQŠÓ&™Þv\qOQ!%m ÅçM>2êªò”¼C‘$ñâ!ÎÆZÖÞLs›*p;9@WÌ"™óçÞñóѹß]¹ê’H\™p#ó¾ñ塬N”2Ãu†Dï^ÊIíîP9Lp$]ßzo]•g²¶(ΆÆS:÷ë)ïjЮ,Î^RF-õ½ øŠÊÛ)O ê•|•L1©+h¨mÏîÞÝ÷¾ÅB¥½_w»T…Œ‰%Â"zÖë­±¼ž<‹$^íJÉ™kµþÿü¯¿åÿÁî’ýùóéò¼ª[Ÿ­¶ [úìxô(ˆ"¹ÍZ®Ùóôeêi/xŸN±2¶îÀ&Šœ¢ë™zKÒ÷}çÐ{×–~Þû¯†é…H£ìéñ´-,.G*1 »ß{¼ímÞMqï—+ÚK†)F³MÍÃrÝZ,Î7ï¬)^ûX§Ï¢Ç—6h*ÊØ^Ôf냌¡qUŠ0‹INÎì’¢—봯럽a´£=omæÍ¸Á:äºÑŠ•¢qRñ²ÅãRc9Ó½írP$„RÕÂÏã}÷ßž2cí«D¦šsSœšV]ž”q1F·%¶sÄ—l^4uÊþYOÉEå0£l~³Þ½¹m[b;cÓÊO£h¿o{ÏKγ"”bÉŠˆÓQž\â9RÖÃöïjõ:E£(µ =ýû6—±­J¶B|×B퓳hÁ¡Ï¤ÃBj„²¶¤)>ݯ´lPªÝIhÍÞpÞ1¼ˆc,eÿx‘†„ºw]&µ…%Ÿk´¯é¡¢±ù­Î&îš0)¹‹·‰õ4¹L¸Ø1÷§yO=ÅPŽÉÉMƒ`$z•ê9 É ‘¥ÈÙ )(ÜÊCM¨raÌ1v…2PÛ`vR „Ûs(ÉQ¤6T6P „ðOEuŠòF!»FÌÈ{ÚËöû]ë Š¬ö²¥…ÚJ0íßÛyðxvªÑ±¬M6*)e}l×Ý›šdJ-íYyujÆa°Šô0§V3OVüö÷£çJ1(:Ýu,3ŘZØÕñˤֵ¹‡,ÊÑv–i¥Ý^ö3à饼J–ØP*Ξy{ÛÚý@'u±(°E±`J׈´¤35ÕÑiybsÎq/ ¯LÔä;óï:òÊŒ“«7ëÆXóòZI¾‹)UbnKjÐêºÍËõçÕÝ=ç37å÷‰Gæ$o¶lv”´{måí’KFH¦ÝÁ#²”¢¡@°¢Pe×9£×MÒ3½¼˜¡¾znYˆ´”I€Ü†Óñ \g‚TtøI½·µ½*=ãV¥9AÔŠ[f Ï/ZžM,%ôgÏhU':ÅvÅŒÁ˜{ci×Õ›”\Èòµ$YO%“éD¾×ÏeôO$Ä~_{ÆQ¤m/UÞðèÄ7~×ß_Må¬.iÂ÷Ûɳñ0¡º}ͪ‹ÑÒéRÞa‘k´5!ªð½ºZÎÙžÞóæ±´¾b‡-=aªÚM-.ëÚ¼u´m[nb çzGëtÕÞѽÒ"ú—ÞüÙÞ(kjÆtÚ%ØÚE¹2ƒ‘‰ÕSÚ빋À Ö:èRÚ1EpêÅms­µŒñ&d¸Ý¶R VÉ5äÐ[u­²Ü#³K(Ò‘”-:WöÒq)v³¦Ä\êÆÆáë‡3‰œ±t©Sö·‡q­— \&K)Q“Sœ›_ŽUð‘âÔö‰÷§>ÜÚ¹[m˜IÔÆq8Îq˜˜2Æ×O9Ù7k–ɈT14îqÚä‘Ìó¦—œ–¶6SdI³YP—c,Ɔ<^I™ô®¢O›ÌyrS¦ÏlÛi¹Á£lj„löÔ”¹œ.5¥Q·~$é‡8÷¿,á®4&²€rÅU¶ÂócF'nï¼Åsm¤Hª-¹v'Ý£q!%‹TzÝpËcl´o›u9R0íΨ‹ïG·TŸ&AíaÒP=%tˆæQÛu¯&O;×dòª:„ .ž¡{kŒ&x“Q<É:ëUdÎ{”Õ DÔ½ž{Y‡]r©b>w½º›GÚuÊûYsª»FÑ“ml"'£Úc0FõËçЕȖS2ª˜Ú²ºÕ¦«@½97l™y6£LC’4ëh…ÎÙ2)hÝ3ÞoC^W6œ0²×KºžK.Ü‹‘A×"a»c첌ï½öó¾·OD[×%îS%ž™·"ÀÍœ™Å‹<®% mÝ&x5óÆÔ°±u åHI@™<Ú…ä®C°.H†AÉwpG$ä›ärEÉE Mi@ÙQØ ÜG7\ÚÃSÌη£ ÙÝe&)Z¶-å‘kÊ(Iåç`ÔäUÉÍtæ¥ÓHJb}xð5ç‡5 „F‡#k®Õ’òX¼ôŠ)"£Ê*’jì”m¬´àw±<èö“³Ó²­‹$M»!Õ·fxv7rU\H Hªyñ¥AT•<ºœ>CÏ÷¯`ÎÖTì"­² !„ÏNU‹‰ÎzüvïmšàÉ’©%Õ]Î"3(«33Ù^ª2dË®ìñ–Û§Œ†®Rm,¤Fd *)Å®«‚ ¢'”VJrØ0†‚Š 2Çr‡^ãhåÒjÄzñ½ŒÍ…I˜ÉïBæ¥g̶‡&R+:ÌjX5#5HA¸…‚Æëˆ~×Õo´×MÍl—çt×$²´­¥hRÚs7f¶Ï~ìj|¶m™GŸMi[ R>Õ@™DëÆ!„m­¤Ú#xe·jxæ% {O(æÊ¼B·Ä³KHea8[#l™½^ô7Èy<¨Ÿ9ï†o$UHO5½¼gÞœqË=^Ã0J*ï_k âݱ¡L2¦ûÛ—c’sçívç“É—/™ÁÉÎúùï¾ûTy‰S…>Þ7œÍD{ÖåðŠQgSßx<¯•<êòwK­k,a5·J–Ââ;ÎÏ·4½¢2‰’AÍ}ïo³Z »¸+Œ¡&rd9Aº^EW¤Ç8ØKÉŽRœ¬:8ÂVect‚%^Vïy<ûGZ%£…'!U·_ÇØ2|÷/IÍ_;´G·F'†õdÚy¡žOÇa))—Š)|rã»oSŸ±òýãáú>ô?·öÌd˜ñH҂üþú´½ë±¨Ma«ÜrŸ:ÙcÛgïÛ4([¾Û• ?«^–°øÆvXÆ p^ »å®jbœší*ôS $.ùß7¡æÇ/íó»y_h÷uùßv˜ ícÜ I[Œ×î­ó´ÆÓÞ½Ãó¾®öó·æ¿ òü»þÿß:ÊÎÐçÐÆÖaøôäë×½­mMƒ‡Ž¥!níâÙvçxómhE¸[Ú:nòÊÖãØµHQÔ`BbéÙͲ×%¬ä2P°¨™™£LQs!é#H–/%L8xi3™üúû¯)%‡¥®øX nùìnË+ßn:“/psÛõÞÏšÇÁlþªáŸô°¤%û®!]®÷O¾éêB`°ÞÒc¬¡K·”Þ~]>“wç½ÙÙQÛ%Ò^oªÆË®ƒû4=Þ¿;ùù{ÒÙòZÝw1l§=ÐcÒ^…é{š|<g©{_^ËlgJ/*÷±ü¼°8û·¥{ëñìù«Ã¹šyÕÓ¼:5ìJ ‚ö{Ow¥ô´Ðª°%§¦ô~‰ù÷ßeû Øø…G:ó¯ÞÏÑû¼i7‡Þor÷»ÉÚ,Üo÷½áâÜÌõ–w°¾©'ù¬û_ö©ôZ ¹vp]a`ŒQá5-ƒþâÃC·»5´§û™àÐ&„TNÚÛ•$¶Æ0Ÿè,ƲÓDŸ w +C;K!ÊuçqslZÓš±{e̘–¾sëÊXüxÃâƒÇÖÑ>ANÈtö|ùìþ]½ëÍòÒj#e3£_+ èOP¿3”©¾ÖïŸ95ƒÀ ¡13 mP^ùã'g“¤H漉ÍDÍ®)Ç^N‰Äê.Ÿ”È5u•yC’Cs¼’)Ëòo·O*÷}¼oCªjŠR8ÏÈ 8ä8ù8Ëصrª+c›¨¯–ÑâNB/Pt@§p‡%äŽ4›Úü>>ð5­Má²]C™Õ;Q¤ÑŠQy6…Ëšêo½å›TÜÑJU–uP1ÎÒ—g;ÖÈÄzV1 …‹9žÕÌË ÚÒÎ!ž¨™éîÈeÛg¤É=ó°Õ›YîzˆN³µFfv”^“šžìåQf1¬É ž'íôaå鬒)>=|œ|¨§:ïŸD(³ùûBË}gYÓ9Žt˜ÀFN$ Nòpa<÷yÊ÷“ˆUq8\{¯Þ»VïV]”e±a/]h6’ÐÉyñ†º‡ÌgE“8ÚRýöTÔª¥íµm«¨Ô±†œm£'“˹zòåœ(rç–ÜtÜ´Ä2¶$ª´°h»£GlB‚º ¡¢Vg¥Ñ^÷ÏÇßQɉY²JïlzâOC²™u,V)\dÓ†¶Iʺ¬X1$æxvóï²jlZÑâж–ŵ°vtÇW)œL…O=EgNØÖpº©¢ÖDrÕ©ž±¶*évÙRhjƒjF,ÉœÙ?=½Wœ;‹c-Y\ÛuO6¿/~ýwïç|áhw%i£S·YggÞÚ‹òøsã4‹2a†yJ³µœž'=!s}wŸ}—wÔ½Ôf0™Y@˜’^Ù£i(]kÈתةUó¼œÞRMY@ª+ÌæÕ}§yâ«¥Tw<ç qeîÈü™Ýä<—>‚OzÜ/ßoƒÒƒr‘ZúÛÍ}Fy§ÅÛP“‹Ux‰VV5‘–±¬XYq‰ŒÉê×Þ´xÌmº®q¬K¶ShÚzv»+"&‰áÒ±…IbF„<­ @†ícÍFÚ0«iЩ]$jÏï°ûÏCCžÆüûog8ºÒÂä,Ŭ&Á=)µu÷³ëÛMd³Ì9dY-©³”±fIc^rC‘ ó&ÊEx¶^kò5Ýtí ¶knš‚òHûØübñ—eÛQ“SEµ²¦ukj£Kn¡us­žÚu\kEb1¸Wxq©åKØ‹Y¡3 2ç[ÞÚðªØ]æò³{©VMaw]cHŽÖÖÕ0»9®p_1¢ôˆ`tì‹31)"çýßÛýÿVï§Ë#(h‚Ÿ¯°”¹”º²FemíçÍÞ妻²i9ÂãçA&äÛo& @R9¸Póqîá:„ˆ;…2V•.±LŽá9Ü•2îÉP ¤J¨ê9;!H†ó¶Ä¥2Ca³š'% E¥¢”¡M€fÌä@dÈd/ êW¨va@ F¶…h¤) ‘2tÁ ¥BÈ{r:ƒ$J'P½4^¶¼JkÕ½ž’,ár 6—s4á^5ÇhòIÉÿ‡¶%çz§4¹¬ð–P"xS´ø$Bí°¹ûY¦‰)ìée-åíïÍðÆLb“Qúí4;~ÛÕçbãt9Þ¼kÝ#´Èy%{yÝyåå⽺rNBÐŒ"ºÚàN' sœÄäf{Z*]ÈX+´ s­Û/dÄí;6Ù4tmÖ+”'“ ° ¿'IÞNOc_eî>üŽÞd¯ËjÉ­fàʲ4ä>¼f)À  Ùeña«í»`P£¸Õµ-¶–6çí“SÞ®=G™f-!bYÛ´,21l[Ýv•ï—‡ÞÉ<ï;Nø›Hs±ã«ç!ƒÙúµ}öÖ~Ðø¡~+.6XÙ²ãa;jÄͰé›7Þ¿_}뺅}è}ìfÛ©yª±lâš•a+i›¦µ4 Xo)>YQn9--Ý…¹U;¸Ñ±¶"Mˆ`›‹«ºæDÂfJf0É­Ý“(ÈBGt(¯:èÂó¶ÜˆBLÍ,F@ƒÐ`©,H˜¤¡‘çb̰b &ˆDùn™2õÝIƒF(”Ñ"4&¹®h6ÛšÞžJL†4JNës"“&„¥4I F#D‰$.ë¨$ÓGŠèTbjX±F!R˜é¤1’Ä`C‘cƹPj™Db¯Äú5é9ßD÷Ý7‘{ÎC¨âÑÜjÏðï7Õ£ä6¡éäUÌèݼãÍé\„Ú,IH:T¦þ+zƒ!7Ïp»ÂbM¤Ç…äå„n¶rÙZvÊ w1 H€Â“s•⾎/:Ž%^œÔmŠ Šbvx¹åI½o8PçCà{T$Š>§nõºì©:R‘¦]8bYˆ­SS52E KHÄȦ¬•+:Š–I!X­4*L*¸XI¡ iI(…œ5D3˜$d§.JÌ#!PÈÚ‰ª‘G¹$šl*®J’³+l¤áˆÈé–¡&¬¢µ¦©D5¥E,„¢Ö¥l ‘%‘\”¹VI­Q5BÓ:FÓh"]Yr²Z™Z+:¡QUEšVbZiΩШ)5,D%B S %.A•e& ʪ䢡†™\¤L¢º‰ak#2#M+RKT¥&˜¡¦"QÌ,£1B­,ˆÔMI3$в%­Pª3 :ˆ²BKR¨¥I1Dä[(ÒKR‚R2ƒ˜dˆ¢œÌN!EQ¦U*&©&Z$,³3ˆ¥b•HrJˆ²¬Ó0˱4$™­#¨"‚Q•™P•°)Ôƒ42A,K0D,8˜QQuY¨u4#§”Dݘ¸îæN\t"‘™‰ÖÓ‘†…%r®U'eDÌêˆJ$X h™ ÒŠäAª[HÐÒÀ¹‰ÙÝt—IqÈ9%%HIN©¢JÉ2Å1UhÓ—…É»¹Â;Lu:ZhœäTrÓ,T#2¹›NUˆ…Ë1JSTÕLZd¥Ñf2#6Ë™YEV(RD¬é&ZŠˆIY’Qm5¦Q$]2³-TŠ(Ô¬6FgV–H\—.A1Ú:®.]…˜f%•—J­4‚Ñ)C—T­¤ÂSDÚZ„tDÉÐ’Ö…tR’”2Ä5:²Ë46©4‹Kir9*«DU PTšd˜AY,ºp‰A Âá’Y¤HF¦RDY–©.*40ŒB«IBd\ÃNip³Q1NQW Ô¹e†™«.t±jY™AI‹4PìѲ¢ÅfÉ Ó5(Œ…™Ñk2I*EQ"Yf™¨‘ŒÃM-‡R …MšFµ’­#iDgI3Mˆé"Ô£#0"HŒ–ªÛwz=ãË‹o}ï¹¾øðPT>-›žuúï«èPýL~G¾¸ó¼»wÞö”õ¦&߸¾·$ÍßÚ”I9kWæ˜Ö˜XJ•9}Ë“Òæ·MD1F6v¬Zß¾´«í¢LlaÈ/ikE8¯{Ý^o·Úð럡£%ѺœÄ)…¤¶œÑ&ׂr„`#sשݤíA‘Õ…DÛl‚Ÿ=ó] |YÃÜ/½.xóÀ½«°›^að<¢$ør3vAym ý‰õ“éK·*#D-ZÛ.Ó¤ä9'. ÃÝqZÇ<â³g¹3Š€h Z©X…£F5¢­ÔkFÑcF¨¨Ôj(ÕÚ*ÆŠ£QX’¢¨Ö¢¤,X¶#EX¢6 F¢‹F¶´XÛF ØÛFÆØ¨¤Ö(Æ‚Ú4šÆÑŠÁD%F¤ØÔ”£`Ô¶5€¢,j--FÑTj’5ˆ´jŠˆ0EŠ"6MPTm”°šR`QZK"ÌŒ`’Ô3b ¬Xˆ,›PX*D¨¨“Œ`¢ÑF„ÙE¢6‹2ÅFH‹o,ôô̘ÏqIïhJ´–ÆÐ´ñ¤“‘)0ð>U»5.%"N¸ÎŒ;ªN¢Ä8Þb~œå rU;zäî¹S ‡%QJ På4¹šgT>2g§1 Ëå®\†¾ÄÎLùëæï?3õ ª¿&4*ÏÚé7îú&#<×üqþŸë>§úç?ðWëÕó„ŒÿÑoÙa1ŽÃÿ£a‡„1ï¶YÇ…æÇ‡@·ýWg²©Ì·3Må¯D@„Cc“8Bæ&—¼Ö`P¼d><}ë¬Q1¸ÿ¨=`³0eÇuɲºjaÝs5zf#Nú-¶Q¢VÌÕfš°\Üæ^&q¶²1°C]åéŒ4š0Vè.Í£Ïú¥Åy„Ç8œL±©Ê¾ño27¯!É1 ®Œ“Ž$2á€Ê®2¯×]lGŠ¥³ ù±º $vŸò3Ýveo}šKQ"÷>_Ÿ—¨Ä>wˆC_¸È?:m\ŒË¾V¦vÝ?'¿{ƒ”¼7~Ü¥rK9c¹–ª¡õ¦:aM& ÜÞÍÈT³ »É’§ɯ/OgBnù¿ º¿«G3|y×_±yë\W¼ŠÉ¨yîZñ²%£â®§_böÉP“ÝÛ®;þªïΆ¦“u¤5(pä–«=Á$ïãÙœÚðÌÁqxï.þ7Õ6á™ š|ÌH‹^v š®^fœÆÔ°F etƒŠ¨ht"‚Ž‹öœ†0Êtñ|fI¤–-Žž·ã]ê Ž¢äݘmO+ò{¬ÍÆvØ~6òg8¡¦p†•c „ÔÃH0e¦@a • „áƒUxÂhš1ãç!M`¨|»5„'9rEš^Ÿnî/H±´ú¹„ÙQ¦0ˆW¾mYˆËê/„ ÀÌâ÷2{ÆrL ’–¢ÖëL&ñ'7úW#鳞dÙs8æ—nœ“Òµÿ»(ñ+H6†Ô»÷)Ýrh‚ryv£ÎÚìáˆáÖ­«ãØ™í5»{`¾Çíµ}†­e¨™T—ˆ§â'e.S³>Ó×1𛵷^Ï¼í½­d'’xIwb‡Ù`ÃzŠ‚}‡{˜½Õˆ…†ÝÞœ²ò÷”½|9M¤6÷l\œAΡѯpâ%%-O¬§¶M7‡·¸£žj¼©’tøNH Äü[taúê?>Þ!Ž?µæ'ßæñ•vÙ£Cã,…âœKF"Ö’4A!ÁE˜ÑsYS"ÅŠTêÒºO)ŒÊJæX«f­ìâ-p@Œ«AÒC§@EK`Ú(!a9ëaíÈeÛVÑFRS,–ʰx[zsQ»úË£|=«ÄF)úíÊñk*VDTÃ7um› ADQb6FŠÚýOeßÍÏË¿Ûu·í?K×3‚`Ø2@1°á‡!Èb0ÎØ½ÚÃG¹ÑaF×3ÓÁ¸6°Ë+ŽLÝX Y –;…$z!oO1>“—ç_!;m9@äíÉ6F ›u]µ­D43X 6É´H½)à:~ßn'>CŸŽ^ØŸµ©ÌIc~ñØóó³ñ@yßZzŠ7¬“Ñ=aƒñdVõ…7œ—âÉê^­‚¢F×!X‚{JÃ~6ÞÃ|dÚÐéé´Œ$ø¾`4¼s»À+ÅÎñîľc{³o>1ä?ÆcÞcë0+¨t-“#Ôx“½~Æ™Þvó·=èÅD‡úWøw÷ý♸ùc;Ì0ZíPÜ]†ž¯6ªåðè¥W#ø„È´K9KâÈzµÒuf=å81z¦ì1 [RíEÙAÏm°`ÜC"iñÜ ©À¾¸Ó›ÖÞ߇Q]¤ùâu e"C­s,!ÙNqÔ"$ü7z§Õïð¿CåûË羚ÿ~kë¶ùˆ‹¨³ƒ…vOñ;Rrùa ¢WAÐCÔŸ¦Ï):Æ‹¶R›8˜`ÔPÊL}DÆÒÎp÷cß()²ÑùŽîù³!>·Ïãæ/uÒ²#’ïN¨÷—–ŽpÑAÙu§ûý(ÕÓÅo¬O‚Æß£lARl0T«YÉõ!õ0|Þ¥î9g1æÔ?$½Bk{oâ$ØdÚÄpkŒà›dØA£arÙ¬2õŸûÓÌ¿¯¼<ùÅó/œCñlÐ÷3È¿èüÂ_çÌÈ}Jlz‡H2}ÆEÂrŽãÔn`û´©^|ã¶ÊÑÉ=ÂzŽQãó;<䡞0>ez}óP ñ*d5ßÞ.CNAîoéË["yƒ%(ˆ7Îy„ø—¸k$rCó™~¤;“Í÷Iõ'!N\ÜO1¶xÅüHüÝ]Tœ•û‘Ùõ߈ól/$'/ˆr}n+æy÷x¶ºšù”:r+â¡üBŸ2l'Üñ#êIãï3q)¬!ñ)Ÿ9"}A’Å(}ÝÈ?p©?‰~nï7›âvïï`:‘õPd)äê•(ÞaÜÝÔ¿ˆOÅø—’rZ5ã x@ŸPñ}k·´Á€~•þb\Žü8dÊíég’Ÿ¸°Ì5\Ä.¹…†©Iªq9Œb­ÒÖˆj\/ùçƒ Úõ˜AæòhžŽ7Žæ¤—é*гaÒ6"Y¬Çyí„NÜ(Š*èpÚL&k1²Í Ü,ùÿ$IcfdpeŠÛw|Û¬!¸œÑhpY›  Ê@Áv¤Ûpºy¢=‰ÆY³…DêøÃælÍ¢2ï ¬ÇÚ©Îâ¥I¶Ëít 3öð ‚'áLOÃr3Óï ¦Ç‡Ã¥‚:PÁë§…v…=BÝ D°ïŠ#8r ôCRÑÑrˆŸ45G­X$)h;ô”9¹» ìrŽò3˜­+NH­œ•Ÿ¬Ä;¯kUzFDAhÆ•Îwvg Æ÷¸a’#Òý^†oœi |U†ìD0Ã`±NÍ×MíTÞ'ŽŒL ÎïP.Û:2üh,±ìÅ„·ñ‡7ºùˆ3ñÌåEív&±ëAY@“r³ §²/æ¾;8é‚ ïá …Qñ0ê<'i›5ÁxG>S{‰ÏzùxeŒ&ƾUu-ñW;ýÖ{¥~ ¹Ù‚’ðÞz,Z©Ë5±Ïiòk0tÌÇŠ¥Í#wÔw§ÌÇyÒÐÛ.iwè7p£ª6U·Äƺ–¿6/­¢ç,=ÍÞyÕßä)!/Y\H‡]öÝLPcÙÕᦠٹÉO´òã.¯†bfè2AÝI¶»\¾0RÚÍ$w÷†I±½0Ç]³Ý3L Ú—¸{Qé7hNi­ÎÉ™‘'IŽîÂõ'Ù ÆM‡EA&Ä›Â.€Ù©]”‚· 7!`ØSöÍa2qô¾Ö¥ÚÚ6 lH$ ,µ²GÓFˆ‚ø„6r-Æ?$=Ab?Œ÷6³›&Îmá膄8uø \ÚˆØXÝøXbkïqÓ¯Ù§c;ufÅvšÑ\jçNæ°® TŸ¯%P w=ùÀ¨@¤_æîê;B÷ z÷p‡ …á´»rÜf‚MË"ý}ÖÚÑ›„.BCMp_´0èrL2vj,–!Ì3ý„It1IÞ;ŸU|aœtÂ*ï…™ºÔ»jú‰FD>S\>'=<¥ÆÌ®0!‡"—{©¼ül,™Š|d×yÕÐåô8|ÆCžãCuÚ›R»<=´3Ù½é´C3³6®XQæB›o-•d- aƒ™Xqy}ÒùNÅóQú·™[¾4Eâ -¿JÃS¸§ÐaÑŽüò± +’º)74A6}@C¡o ‘µ«H[êõ=AàÌæcKÔ>àî{½ÇP<‹½Ý¶>7> ÛîSÏi‡ó.TW~ r‹÷?¹vO.^­ó)ê=FÂ|úÎK—˜L“¨)v|Kîä™rÜîâ¬ûÏr½Á°ôK—â\pä C‘É­²6|[ °yºæ%(R9êÏYÜ!FôM|éŠ?PwPÃCGÎa“ïqR>§`a2êDÉìø€ÉCó"w&ÇR;GÞâ}Bu TR¼›ãµ}Öô×±_Fåâ¼k_†‡‘ŽÆÉgz=CÝÔÔ» ÷<…„ÈØ1@®y«aÊéø·ÙÛ+*Þnõ0²¿Ï´"d£l“†ˆCëYšÙ_sÎ>“o1î~¿ŒñŽÃñ#wìÓ¹6Èz¹7ó¶’œ“ûœà÷Íâb@çN'%? ŽÇŸ8œ÷›aó/¨ ÎðÔ¼Þ{Θó1)“–C½â¨û‡—,ŸçÆyªÎüëD‚9â¶Í¬2DáZ죤 Ø[Ò Œ½;ñ=úÇï0O_xlŽÉùód3É ,m¢,$ÏJÉй“kºµ¸C„ ¹'!<_SËìºõ‡ñ9˜™Ýï¼÷æ#êȽëÜ%C±ÕÔ!ý!ÉÙ{“;ÀÞðüÈ|e)âÄÆIñ;ÞûïDè’œ½Oî]ç˜;—ĉ½aJ 4R`müA’¼Åùñììx'›%Ôù#Û™“«FÊpè¡rÌŒ¤EB…ˆfè„$¢QAÙ›3™ˆ —(Ó)Mø‡·¯z¾,8÷Û’.DÄèn¢ýDæ™B2›k< °±€íŠhPY…j,|#e–.áÀ@æÎ.„²ƒ`çR Ø¿xx!È n– åÜ3¤àËц¥a c%-î@pä`€Œ²Ò%È$D4¸L0øw˜ÅØk™¡‚WGN/ràvG ä±$K…Ìù~³øÔ!­e™´€Þ(Ê rfŸõ«š×‰Øféçøº‹´WôúJ.‚ë§¾vÑ|zÿµYÔŽÃq†Og‡ €Å®²ùªÆbY;AG¼ÛÞ´ÏI‰]²@‚ÄA¾­$YãÝTYÅÉLe¡˜ÛŠ$<›5NGE„v€:V9V;¥bSm¦ì؆ӉðOoQøvÚ,Q’2&Jà1³1`å‹ÄC$WF=–‹hÑ•œü6É{ú­DZ+Ø–ù­a笯”õ§.$xdŽvš}l4ñ eË?âá öí#Iɵ$z:i ÒÔi vµ?ÈŠ‹Î.Ÿm’Kˆ#®E¢ŒfI7˜½ßËÎ9– Ø®J Ò:ÍÎ’¨kà«âXTဢ3-œ`W  Á7‹yeiaÝñêc0¤b­ –0ÅM[Ì^.¹†æñYS«Þñ¾öÌ=¿Æ0@ §]hT\ªñk=B*8QD^\ôfÏò{&oWfE˜D3ÉHòhŠ!6cp ¶œ¹*Hìæó¡uªšj§u‚Ó™ÔtÏfU!„n³‡—!(¨ç©µ ö»bHI ªŠFˆ’FØÜ¥Bò=®š³Yl«sÜÚ*&²uʦuMvw!72]™E-vdX‹7%Bh¨\å5Ûqœí•&ò¹Í0nìvç7NbÀª¨¹Ï8l[µ+Ì•X·.€¤ƒfpò*º©šÌ.­^ñäð{‘EQN•\ç³=žÏ".Û = «ýÔ/‘I<öCËç‹=G¨Ò‹¶åµ‚HFveËŠÌ;£¶·js"jC=‘ļèŒ[%Ò"Ž”3bç]­aÐBð(n×eZbàJIfJŠº–Aµ‘nDÕß›Eó´ ¦¡sÖÙFºÞvrÍ Ð𼊃ºØÚÂc-=¨¶‰£fU]Zn$CDˆ‚/rëi™uh—‰%&ºaØ«rhX¢F¦Ú2óTTóÛœ!‡8Km(™ÆH—$&냵˜©x£\¢2ÁE¬ä®¥UVºä]Odv2-BÖÜçŠ"S*åQNbm×+™YáÌ#˜¦’KµÎŒ%Z%²»Wj^Ú4•´aG‘Fš˜¢)dÈíÉS*ç–JÔÔ"*ô•hQÊÎ'R7<óVr£¡d¨(œ—<ãe´ŽG†Žh´j–§ºjÑ6Lã ò´Hª²U«s“bÐÆGhlí‡¢Š©\ç¨iä”]Km„)I$9D^\ç²ç¤I¸rZJÉ*¼®¶u…ʽy¨ÜJYÏMÙÚåRIåA™2BÄIÏh“DY“]PÚÏ3 ž®Ûj®¹ &’iuÆÄ*¼j˺h–º£­v¬=±µl)ÃZÄ&+Ƚi©Ñ"´J±h2Hg¶¦éj-Úa–µËÓ;H¨OH4LÌáÛÎr¼Ä¢ª+èÎmfJK£cMKk ¹æ¸^ÉŒPµ$šEØLËÚµpˆºë9Ⱥ…ëY˜×t¦¸”Z¨ž'XÆF¹Æ+b×<´ÔšÐ™Ï,*ì¸Â½YFÄ•IƒhÊÔÔŠ *TæƒNU†‰3— Sj6ŒºžyÍ›•í\¢Š#‘KU<ÝW™œ¥4T"ȉ.arvuœò[ÉÈáéJÚNEDm³‰I°âÙœ¯b!WeØžª\ómfeÑq™†z»E•®§—Œ¶]h*šÖά‘–®„%.6Ð,²:Ü™ŽŒåãF6D)PçbþOO)è‡ÌShNšr®ŽíÌZs•‘§D*+k(¢duƒO*œèžU¢]™!$·ROO.I \×\‚‚íŒ)KÖ‚W”pæL‹Ï-CÆ»DK¦Ié%Ô¨fFj”žäLí gOm/PfCsÖÛ+"*ª†ˆ¨ZuÙS–¥ás<†Hm²½½{Ê÷†f\¯!3P¦m<ÎR®YØ{‘#SÜé"4Jšæ,¯N‰¥zºå‹f$Z,a3¹›“\¥ 9‘áæ¬ªçL’°îuÎ0‘ÝÞuÒXñrÑÐÛ%j‚Viµ,Â[—@¥ºØÏªL [váQç•$Ú2ëlítšéh.b9«““ºÎWniÄ"9\L;™È.Ar»£“‘¨è%“HÂÊmÖe)ÆíÚ庱§“AdTºÆêÙ6wsT@ÐÑaŠÎUé èMm«¡d¢Lb„‰É‘y]^wS»¢ñÌ’LŒpZ&¥œ‹­D†L’òŠ ªóv²s;¢­aU{\:'’åUPˆ½]‘CQjMLA ô†Âñs„¸Y6Òc³«JŒìNJÖ’V‹6Ä(ˆòrŽØ±—/T¢ˆ¸BUGµ—J.DY%r±i$•‘:ºÊ+Û;( ªó q2 Û”Õ®Œô*NÎx•²‚ÛgX’£WI=!V¥áV¡Ñ­rð9ÆžtM¥tšS³„çœÚ‘Ú3’äS%ˆ‡S­–S2Eug**„”‚©¢âvØujÖEfuœ›®EA4¦Ãr©†©Â‚ò “ ›lìÝ‘SD:•ã µÚ$GDêEF¶¤[˜Šs•^ÉrÄ,ò(ÏNB{-0¥¶^w=g¥RÓº{Ìg‘%2Z“HÄ-·v¬Q‰!yTÈJ¸ÖYž\œ—fòpçÉ* ’¤EÈï0òŒòÌ·B.»iÏgfç—ȶEuÖªyÈÄ5sUT¼½¨Òí¶¶{k•y×J©"…˰ëtv)AçmHªòŒÈ êÏnÆLµœª=’á3Ó“"vÖyç™WlÎ,8ÆÖÚ»$3$BÊ(ºšÉ2¢Õ0’eW2ŠŽd{µ3Ö¢e¨r#Ì¢B)' .\Üfæv&¥DE9EæL™Nr(MˆÏOdÈ*’4í*鄞—´ hmmv²"¯"d…Ê0¦©éê”͹ªShµ«3žf6‰…ç–®äm…äÍ™Wrò(.zQºè΢MB-I­;P¨î‹•—:´@˜…!Yë2‹ÄÄ-²Å]RÌÙ ŒôbÔ½žYÔ££”3F¬Îz:£"®I™ïWk¶! „ÓÎë«3.³’ºÓRHj×c 9'0–ɞɗ“P¼ò%f]0ãFå• EY2U(­g.L™3ØÕBÚœ© ˆò<çdMD‰<¤ª¹+RèG™——=g¨VéÚ¨yAE^sT&TÛì\©£«Ä`yäG$s§–KÝ9ÜÂìä¢õ"Ý#³Wf-ž\%- bUÜ"“M«²\UÚ—Jë,A¶¶u:5»(¥ÒcCʼ<½™jUQfÃÏn´j«¶6‹F ’¬ÊkiDTÑg'j33ÛJ9‰Õ9ÏB/4cˆM F]×.`C7-"…–¹G“<ÓžU‡MT5 Š=Yr‚ã™R,s”ÍgKE«ž…^F¶Îk¥«KÊŠN·8‹N3²6yÄ™ŒkvHPy9Ñy‰mdÉ#Ïj×HôÜÑkbVyŠÑ»BB‘™[’^UX£Rò臊–M‹"ñiL¯t躷F(ÚAY'„Ì j4ÈŠhÙH•AW•Y3¹&™z]Èè›mÊídXÃlðâɘ\Êæhfå$dÕˆI^R©QdŠiŠj[R´D,2,ÚJ¹-¢*Žmt‹¢ˆi“¶Â;sB@ín¨QÓuln^xIÚTEíB‚ªº6Ú;9ÎÚKMÍØ© ›Yմ혇¹]BöfºÖ×#=“%­®¢Æ¦Âg†§,).yQãhQåIš3'(ÒØÒr§l¶J1Š6ŠÛ•×exm·h¨ Z”Hr²[l‹´íPNDÌò‰«!jyáÊ’Ä+­ØQtbµ;D®C5»:¢¦¹ˆE5Of{BD›³mA&¨¡² fUíqPU% Ù¢A”sÉI*t%°<™ç”v˜B¤^’QR‰ ¢R4è°¯;Óe‘÷+áP‘û™ë†)QíaðŽ‹iGTþ¹7-fŸœ½ç‹6¹µ®`ÌLâéiâË¡ôb‡µk-™Ãað÷>OϧBü9Täf”SfdÎfD)b%†I­,*ašgnéTDrŠ3¡ ZZÐÈ+K´!?{Y^ŸõHê$ˆ†¡QŠU •ÒùâTC‡LÄ1$šJjÎJ¿qÏ.•‘Ò1"-H¤,Ê)¥ªª©ZÓ9••ÉD*‹¤ ø{•þRMÅ¢$¥©W÷iË!!8V!LN’­ dP™&¬7éã•I%t“Lýiyjmi&†¡A¥$ZŠ¡ëýu¸D–b¥b(ˆTé5)HÞââ&EÔ ªäY„mQJ‚ˆ£2ÒˆÔY  ;4)$’I-H³©²Y²9¢ ²Œ–J41Hµ R’³¬£*fʰ±ÏsKZBI" ©’ (‹¯ënsùo¥ ú„ÔË*NYf'BNЋ ‚â%Eu‰–…¤ ?Ó´ŠóRÀ¢¹k åiŠŒ¤µ¤\ˆ‘/Þ‘U:¦FŠ”‘­*6‘i&)Ú"IJ%I2ešA"AY„VaÍB¦Z°¬Õ%P+‹‰ÊLÎiMN…ÔQC5# 1Y4ÈÒUC “9¥Q󡡦]e*AE0“«BéGDб#4¡0¤4•“,DË0¤Ú¥P†QZ”VYl:F2«¦!…Ú(”•ʔʂŒ±‘C$DZIHI*Hr·úlòºhž”¦j&IKš˜Pªq".UË9ªR‘„’…-Ž–H•© $Ê6RΡa©YÄêÐЈ”(ƒ¥Z)e"œË eŠ3#š‡¡HG¨nfV‡üµ¨f¤q"‰1C ¢Ñ¸XH«+M˜_×\‰JÊÎDA ªQª‰5¤HkJ¤ÓSºåܱHÒBÓSÍ‘rÙB‚JUH©Wû¡ßÄIäJ˜Rå¹Î] ¢ûGRJ¬ûnuH³\¢µ $,¥™Ðáþ”<ª´ZZY•Ò”6†HQÕ#*ʰŠKUCP’ÌÂæZ[,ÄÔçB’’³ ÂÄ”ŽBˆH[CeXaR­ÌÎÇ; ]ӹŧ% Iîì‡6XšKšRkùíÝ(Z)­j²Ð­U¨†´SB4Ú!â²Å "ÊÔ© °ÙA³’b´± 4ÃN6HZh¦¡›9Â1SN––J ´éešJ ‘hJI—S’Ó-I(ă iH³2¶™jHµNie]il¹RÑE!e©U!F¢””¦UšTéXˆ‰ ¦±":’¥&‹íÛt¬µ!%¥´Õ‰$µýº{-JBŒJQP©üÑͨQ†©e‰ Ã,ÀÚIÌPÎdø÷b¡ÊQT­Ï6XY›I:*!‘i­$•3…™ä‘è‰'d§0…F„™bÕPÙŠŠ˜™)™hŠ)fY¨ª¡Âªª46bÌRRÂÕau2+‹I5T”P®†œÌÕ%VQ‰Zi›QVr$œóÌ,²¢J£ i%Ó5k¬©SkÊ Ñ0¢‚",ªK¡%JÌH☑šk G뢸8uÆùú7Ñ¿ éõéŸXK!ßJTã›výÙQâÊÇU8Ì;$¯ÖÞ‚yÃß óãYPA=ÝoÖØ¸Å ÿ8ðxmúÊÛòíßdéå¬×XH~5ìµ)ÏŠƒh>ͦ ñÈ{û†Ìú‡½ЇŸ’Ô¶Æšˆ%?mÃFÎ×wáoBïn7ÅáJ Q°ê÷—£$WAQ÷Ý uVô¸ ‚î÷w‚Ž: È“Aùž]™çƒ-‡@{!ˆ”ö³aáÛZ¨#ÄÇsLöë^«Ä1µ‰´¦iõh´íî 7JämÁ¶/œæM²Ë(+ê¼q0©­à×ìb‡g²Ž©Aé_p„¶)í’n…²mrÁ”vƒa NšÞË ˜6P)•œ¶žÛ;ì³IDóƨRyÁ{¸à8ªæô .I„"±§£žU6>¡[#$Î >?E{„$ڢ㷠c Ûáà07¤Ýw ›d˜2Nõò?i÷¡Râú:mš_Œ“– 7—Ñ=»E™ úÓ`Çæd¶ö“í¨€-ak [÷WÞ/{Î:ÍËœ¤i‚fV`Ì›HyZ3gm´”6¿bõåL[aGEþ¬{Ÿt´½+‘ Ïq±–æPØc’ºFÅ4´ffÈl²ì$@d†Ve.AK°adÄéäÓ¶º6ÊœÓ*̧t0˜Á ¸2›HbpNÛ)¶“IY”¥'t¬[(Ê7‰ÄŒŠís,¦ ‘ ƒCP»rgA„Új(-­½qxI7m×a¡D„m»q¦e]eÍQ<$%3ÍZع›ýXð¾ÌeKiäNù7bï4lZAyÜ·D=«>ÞStz4U¤ÆìÕœÅË-q°Ëö6ؑыm²çl²¾­È¢¼÷±O5n!Ö5Ò¡ˆÊNÑœvI§nÓÔôŽe圊®3R ‹Ää¶Ù+TX6eÞ÷‡Úÿ“c ‘3e´âJK 4—‘E•¯£aY&sŠu]FÓ”®Q˰”Cm¨ÙvPÈ5'=ÖeiŠÒ¹t”ÔµR,¥s±`¤ÂT C„É+ÙR®2¨h¶äaã#†Í-a©…ÿvw­eœ¼ì¸î©¨r.ð¯wž0:—²UW6¥š2Ö®µÝžQh' ª3HaË®ã=26Ê <¨y2®È*”@C$ƒY…Br¡÷n“Ƚ#gÙæÚ®SgŒØ®áL’ÐZõ/‡¹O Ùq”{ ›]#‹<žÔ9ÎIå!9jÚ Ï ¼¢œˆÝpU¨åÓ BòLæÐ«Ï¶}y9q\ÖIµç"!“È»¹<ïu2 †»Šv¨É&EY *âE+cNŒ‚ñ=…Qã+ÄðêA ‘¢0ôµҼŒ›‘DÂSˆØsRûg tñæõíí–ê‡m¶"v¦åµªXDÙ¿ÙrÚæ dP ""Ð% …‘nk…¶m˜æéa¢gC³¸V±]±™ÊR“*DŒÆ…ÎtfÒÅu¥Èµv hØÉ‘i{’íMi²4¤í²,äӞȦˆ¥b[×´úÉŸžñ¢gØ•u iÒkm6Avd¢ɹDÍÓäqz—•ó›pÙìˆ((=6Ûkn\²Ëq¦B£<°­B"jÖgOZWBÊ©÷Ÿ)粊J¤]­¢42i²<- VwIš¤I¤žm‚éÊhî’Ôê­ŠÅËm‰Èì[.µpÉdžd»;‡¤Y ]=9Úía½ãh½zª¬l]±¸Õ9ì:`$ÅDi­‡´»HºÛ³³°è²eÔ™ÛaxQ[aÅ¢Í@gUùï>ð‚“±¥é{nܶ¡ë‹nt/ªdÚxe(UIÔ/ây×N¡úùóõp_AÔ+© Œ…XºÇdáÕu c•U5B*‚‡d 2!C/ q¦3ã=Þsêçëíyá ˜Iê=.ºsÙêÄË‹‡hÍΜa^z³ ÓÌá™’Õº\¦¶XʹvÙ‡rò¨¹’x•ÃÛlmÊŽÑQ¦4F–uÃÍÎ6Â÷IÎËll¹ìò‚ŠfAq¢xÛ£8r QS4gaM¹'LŠr•h‚ö²…{uB™YÆž rPXD@Dï!—Þ¦>Ú¿ZZÿ—ˆH=}_ñó)ÎË»—#ö»?ßÌÍ©'ÍâˆX­ñæVÁ6þ ¶û-^6Øm£z¾ûœ÷ëöøN2µ¾è+ßÜ´›«T¬]ýu·íæ5Þ¼x"é¬w>¤íïê D‚‘ ˆA›g‰žÏ"äRGS©Û;ƒ9HˆYµT\‹K)F0­T7= ¨H§.ÆÌjMJ޹ÚÐ\Š%Y¶ÆS ËÓIª+97.#*+ŠB{…îÖÉäîR÷·TW¼ä“>A?q—…]$œ²°ô„Ý\éŽä‘3cl‘nW+.x¯5ãq†Ù ¨©»¥YßÛÚë3ID»ÕÈò˶¹ÜY‹]m›b¶ˆµ°êÜ‚¢Ñ…àä6Sl  J©Hä”!H.JŽÃB°´¥˜©!JÒ)-(ìªPD¢‘--͘B”»&T™(¹’­ )Ì›”!NB ‰°©’£²-›™˜j²ÌŒPŒÃ­O6¼ìíÙW–"WÌL&I)FLÃÙ¶‰vÅP#[Mª£vÔì¸Ü2]•,XÑiTÑg6æ‘çRÐÑ F2Ûe0Ò%»n}ëMí‰`´ ÆLkG‘±Ù+âøu\óú¨3Š L½Æôþâ.Œ-æâgù¼my¬Âå‡k®S\Õ,ee¥,\;˜þ†„!‰a.F ó;$JŽŒ&ˆ“8©ÎÈg3:Üòî7JK˜Kl›n³lLÂñ«¹DyTæbØÔgub¤8³¥u‘à ÍY.ùŽ]^Ûr«rÓ_×÷ÛëélŒÖ6Š&l‰Db5‘×a†ßž¸%ËJѲ¶ØÊÅ+©l;%.Ûh]u5Šó·ŽÆRŒRK³ˆLçI¶d°ȒgU]?¾Ùf|%ÍA¶m¡Üe­²²äo¶õ==wÚÓ62çQ±g­­ƒ<®•r[®žè‘‹“¦ßî¾~¿¹óúýü‚‡ÒlJƒ~“ºŽ®<ÿx\Éœ"–KÙˆAÒc°ï|ò8fäk¥«¨Àx™g± ïtM„"H™‘°ÎܶÊ]ŸÖw±OðKJŠó5JRåVõÊ(ÿeHóêì¢Ï]Jn¶'< ª²j?Óíüÿ‘¿_ßâ1¶\•Hí¡$k$ævºyÛW±þp|õüñ~ˆt¶¦Õ‹D”£O÷2£¯:‰ÛN7ÞuêÏŸËó0ý÷½Ì¢ßAõ‚õr™Ÿ‹ê`Ô¦ ¯ˆÄ»ÄÄoËï[¹°Ø‹Ãj¢×©5Õ6·pÁª9Œ6Ð7DÍÈa€»"Jd ³# Ä´ Ó¿\߇#›õw'˜îÜÄ=]g,¾Æb¥dþ î²Ýb–$b°˜9T[QG£’2Iº?Öš4Lê5:4uópöu:?Ä[gEÕØ)“~‚•GMm¶Óø¬HH+"F×evÙ«FÝ•4­± nE¡˜•U‘zG)žÝ`œçc›E!ZqƒÂ€B(¤«FT4%l#¶I•á!@n%.Å d ý0d¢¹<ÜXÈ„Ø@  „60€¤( ¤ƒd2Aɯ¼oµâ¼DQUË–¨¡ —aJR€(—wÙ]Ì6ZA(‚€Ëw -ÀÇOWdΡ*3²‘b'h32Ya\”Èg³­­*Ì(ñ¤´H±P‰Ô¹æFŠ+Që·¼;VyêRgš¶«b¹áv¶ˆn"bλ;8݃;k,•L;E›²è—5T]¨éY•ØØŒK5ÎãQs¶³]ž‘yFKV‰˜×8º³°¸c`ÚåóSƒ-\_êì$QÒÏ¶× ×"PÍsSÊ"ª¶‹\(%fM¢ €$#kˆ<î-· )[d~ÝÑ-lüoß¾ŸÊ¥ !÷GHܯYaENVMÍ'Ü*)+"úsÌÊ.{&þ{B€Ÿ_>^ob£[:W*ÈOpwô¿³ýÓïÙËMô¡2í9 ’Ï1&Õ’!Ïñ€ò ù-íïKM X4£ZŒY †¿“>¡ɤUeé¼°˜’N%f°N·ü>?'Éj“qr1OòŒ¹oäÀÖt©œgoç¤uxd®ØÛ³d—.µuœ,îÚØÒ"нëÙ½XÊ™K³m;nÅ»Ñ-ë ]‰®Ë–âE6 ß”úºñ¹Û+Ê*Ô8¶ Ä B ¢JA‚µŠ Omñ–ô¹ÞÕ¢@ùåÜ“jrƒ­¤…õƒjF\D:§TÁ¼ÏåÈÒÎ×ö÷š @$Ûd¤¶±¶¶Ùkc&{°€g¸žxJƒ—†”ÉžQNÙ6Ô½ÚÙz{£b:G@¡¤”¡aÕOñHw£)ÝÇûï÷±BT^ÊÔI2¥¬ç:m¨IØžÃÉΓº2‡YÙkºê儊d²»®A@¤ ’£K×Vñ¼†¹hEŸtmÑ(3§.™U[$ 9L³§‚Î!,‹®…ÊVFTÕÂTLŠªÊ!øÑ&,œºéÆQaI¶h]K|¥Ss"Å*’(²f¥TÒ1 L¸ô°EÜ6xC¤'npI‘&@:ŒH(N Ç8æ¸ò*Ⴜã·+”Š…&C£¢Øã³Ò£’ã'sM·d:Éíƒ0ª¢¹È¸]!Õ‰‰ÄÎ,%H‰ž îÔ)2f ‚‘7h ‘Ü2wÉÜÄ(JB“f©£jÝÕÌÆÌ¬¶D"¡ Ȧš§:–d–6žÍÐŽ‡c•´<0ò"ðO6¯®mÂ9,Ú™ˆPPä›urv^KnAHd%!*%H.ÂÑn4M˜›¸è’¦Â; ìƒJR l±¶BPB ¡”1§lNʹΓ;®Æ61ƒIŠ”¢(FØKIƒˆH#2a"5©’H<ë©Bç(h43%<îï²2i™"‚Ç.TÊDX#!&b’ˆ‰b­EQEIm¨ÆÑFÚ6T´ JQJ‚Ò(©MhÔÞ5È×6×-£Q¢ÂT¦„ÂÉJb°€0œÜÉ6rrEU%k! ª‘J ÒWeÙiG&d#,v š2Kr&³1ÌÛ‰jM®á{f’ç2)WDA[.­´j„M .F>­$‰èÛmµöò“9_%¥+‚uZÁ´X3n×3²lŒbÆeNŸ6ó—sÍ Û½’ȰŠTŠº•°"áâ]´£ÒwUl!“’ƒƒ@£H²™".H¹  Pé*d%hªd l€9; ŽÀ¨»â)–Û !’…Pl´(d¡‹¹‰¹ˆŽÂ©°ªeJl †Î@·lZI†ÄTIA%¢Ð&)LZ2%m´kmPk¶¢Š´QQ…1Í®W(£`•¹ni6“A(m Œ›j¨ÕªD¥(ÉÈÈRR‘JJA(r@ €DLLlb ·\òÒ:dîÄ7X6i'§šž šÛ„vg#æ} §o8ëXåC¨…IË”æÌLgmŠF”Q ²iÈ,Àuît4uGôñ±<•“µ¸ˆÓ3*lÀªTL•ÙÙ$rª€wpÙ ²m04g‘ÈIÖè2[gC †V¢næç‹±´í´åDè·D²J ¦\êÓ† ç—u# 6K«)¥Ï ‘c6íÉk\¹ÕXÙ¶ÛKÎ…Âð{”PRŠÑ`ª4šÆÑ­‹Y-’Ѫ6ÄVKb-±V‚­U¢­bØÛ¢É¬…0@D’@  $²(›!"à 2L™#b2R–h…$IH” ÊS (I‚¥‰Fe€±‘¦$2hÌŒ–1M"d"Œ‰E4 Å†h@DŠ$ÙL) cX-Š AY„DX0…‹h#c`2F£E’H )±¤Ö(ÚSdÔQh¦a#X¢”,„š“2L¬EŠ*6,[*-„Ö,f`Ú¨´Œ¦lb¨*¢1EPH™$ ÄF1BQF‹EŠ,Z4m¤Â`Ö¬U£mƒ[Ðj ÅDch‘(¢(Ñc% e‹ DhÔhÌ#Pi(£0"“F…Æ4ÌŒj1RQŠŠE¶6#F#Qj‹h*‹kEˆÔK1Œh¨±²D)•JiT)Q¥•XÔUEd±FÄj…¥QHm ¢Ú±¶-X¢­TUXÑ«¬[F P)R¥L‡)'(óxæóQ&ØñÀ¼tÚ€ ¡v0ŒŠ&"œ¶ Q¶àPx2t¨.-­k»Q›KžºVÛ¶eTœò&ÿf2±{¦¸êÁÎØÒeÓPŽœ%u2Î;§¨A@4âràS92¢I9¬ôÉD(‹œ,ÆÆ-Äç¦I)ØÆŒ¸È¸ˆIãg[N®Ô)E•æ‚aßYã!å×)²—F¢¦Œ42Ì šÛ`2]‘ €2É4²M-Ê šèMC#¥\´tîÈôt”å&geP†˜PTABTì÷BœÛ”JŠØGšu‡<â+f…ìíwPÖ´\["n^ïW>/mk ‚pöyº”§a²ÑcVØÊ©›µÁC ±¶%zríº{"‹œ¨/H›[SE]Ò[Xß—Ÿ=ç*sCg/:^“`rN‡RëEž‘W©*6 ¹MbqjvaZ—”„æ»XM>£Gº2ln™±lctD½ó“R¨{u¹yÚ¶aL»µ­Y‘V3Ú’YWjy´n·*VÑÚ¤¹Îm´”ìnmJâ´HÚ KÆ[b[—›µîëMcy°¤¾£ «‹2ìVELhÆÚÖÑV'œRèì†yLòÝ m¹]™ymwT±v±9iHKgW“JsÌjÇS’,òމ¶q…Y¶¡cÔö¼™Â‹‘u´“ºì©I¨6Ü ˆeÊ–¬ŽÅÈ“Òwp‰\-N«[fÈO".°ËgóSžÙŽ«¤&’bxÎW3LhØiìîl$À¨¹+&Á›’W‰1@¦]‹q¥qµ%TM)r ¨Ê E]ˆ»bÍ­c“‘PfF,ìöFZVs•‡—¬ôSHŠ4M,K¥P‘s‘eLnÌÚ2aM:Äò3/6”ÏP°Yža²g¦¬Žé©ÏXRé €Ý.ÛŒÈ7 Ú–Ît´ê9BVMÊð¹q/;•[V kÅÙ  ­¶2v) \Ë''%ØMv„k= —r)3Ä›ŠGm Èj[v7+=y Ñ*y&ˆ™k‰áÚp„öUâ=·B+ׯ/ .t ‹ P1YÍ¥ÓÍjÏT™#©KVŒê^]¶™-H"§j$ÚsÊB”‰b$í3Y3¨¢Y!¢áæŒÊ‹ÁW‘E^&TtgŒU22ŠM%7r=2¶âviÚknn?-äÒHˆÖL¯4ΰç]‰áÑŸžž=~iìô´¢ý‰DyнRb;!jE2d&¥åãÉ“+ÊúÎôr +Ê z%NÕÜ::LŠHÉ“+ºÂš­Ä–^I `“$•NFÛŽèåVbmÅãr“•È´b(ñ¼x¢eêʦçaMP/W&ÊslÉ ¢†—wÌÙÈ ªBƒHÈÛ 6 ¡)J]€œ4áVfw"ñK”„¨™fk¥Ëp°ö…”$Èr¢š»ªÁç;#‘ò>îΑ±ABR› ä²l“.ÎÆÀÑ’l†@Ð…a;à !–4l½\¢àçº50rT²`äPØvÈ(AR¼…y"¶Ñj6µ‹j-X­K‰Øê7úïñx÷Êdç[®ya–Ï7™%l€‘E±h„¸DDÕ.n›[† ; BƒB *†H«)fìI³™îº$æÀ²±u¥Tªš›WJ*<ó¶i3æ,ÂCÔ¨†H d…˜˜S*RÆXî8kI“[g&¯\X»ÙØÃÒ)­€Ù€ÈÉ7qvÈ ÈM„î7d¦Uä—Vb®v2nÜ©ImDª.ÒIF쨸åëK5¹à¨Æ!NÉiŒšÅËt®Lô“µÜ3I5nIÂéA£P’È"L†!¡Ùȧkq§jvËIƒP]"®Y Tì¸ä•9 ØSÉ¥vG¼‰7//q%•ŒÈHY)áy×Ó“$&L–¸‡…u™å•îÈglg­pŠäžU Óô#˜RšE‘ãYÇôÞqãODÉ 2E$ãRäŒX57N,ÎE¼§MŒ¡+V¢¥²‘¡N6µ0ªÒm¤·l;¢T,{{×µ’ZœrÙGvU͆‡¥UZ¦+"FÖÌÖ6fÉ4î‚"l Q»¦Š›#»‹C–p6·Ë3’é;*[‚›(” PŠn`% Q±A…Ë’L…£"ìg i¶^ã!:*Ù ÝݨF¶È¢•­ vÌa Üjƒe(ÄÁÝÂâL,ƒÖ–î•ÜÖT‹J®G[ˆr$ZJ)JV„irS B”J2Eyl!²ˆ"´ Cj‚5Òæ*¼k…y×QçóŸ;‘µæçâ“ÕBí‰LåüÊ ‹,¶?£]W.üÞOQ˜ÕÍ_<Å;\c™þ3»¡]oSœê±0Å¡,t4’ ±PÃøê˜Ó(d6c­SÈý´ÿϽï»ß…ºÃzEúwùõîùëÕ·eý¡Än§I.; /æ• š¡ùÁŠÒõ4µ}Õ0-9\¨ÌÔÛf9*²q}¼žµ}„s1¨¡ )ÐÍÃäÏ.Å_]HŒgiõƒø´Lýœo9 ÆM†Jx©Ÿóî³1p³yÏZßÔ >¨…/™<‹‘7”]÷›ÚLJ2ÅûgÖáW„_1ÖáâÜï~ÈF íþtó ÆûÓ|‡ózÞw‹û®Ctô/)^w˜¥âù­µÏ§æ™Þ]m|Ý5¾×Èïâ©:ÎpS_<]B˜L¯ÓßRÖT†ÝÛËÛWxLY…ÃXŠŽõÂiΓŒrrÛPwˆz>cpzë;ÎКr\µú-$%¢£ )÷ŒÀ–ÚXlb&¥;»2˵àÀ¬_ë³­íúÏs½ù[çrÒÓ?<ªÖ}m[ÊÂØvï,3šN/¼Í'ûŠè­Ðì¿©c9}»C; K½!ÿ/Þ!®×n ÑÅ;x“2÷? 9€o×›ƒ¶ îË»#o𵤀Ƭ.m²7†À'Ov¹qf6rˆØ1±6E‰Jöa€zf¿Õnãm`2mIhŸÚ™<´~¦þWÏÏ ÷¢<ð²d)2ú¶>/W‰åÞg##ÜäÑçÖd¾àçŒ^·ÙÉ6ËæÃ¼6ÃAüøÇ© ø]ô–ƒøO"÷„àSñÉõíÕ’nây—įPÒ”œ†º„h Ü£‘²ú‘êNOÇX P§rœÌÉ:‡Üõc$§’=ÎÉÜ»&KT½fÉr6ëœÚè>ñêPî6ø?Pþ\pŸƒ2aLuú¿:ó‰,Ë MèU!'¸¯z¤¼–×m’Êf}¬0Ö~îñ®e{Ýó¹Ó{–ŒS¶HÕŒœÌ-gQQ8w¨y_#ÞO˜[Ó“ã×È糖À]u™›lŒ2¢(e!NY£#rý½°î_Ú˜)[$¹(7Ô³U©h¹È@Ò‹¶òÇžľVs‹½ó¯µq}"dž٥3ŸÔTh§¨{ÏD)%TCÖ¤;¬^cŠ&±å_Š»4&Ÿ­úo8âõ›°Ë®m\xÌScå\õöÊ’a•E£R šÓ_âÊè–»­ýQ¬Á0ûËÁÚcÝÚ‹@´ûGß9ëïõ¾¾EõûÏŸèeWç,"7sl±ÍÝÃÓ·úÞÞåU»I‡¦ç‰(J,ÊH(s0Év šZF€¤ŠPØM—mÊÛ ³6ÄpN›#©©DSw÷ÖôN‹bÈ26£hH¢£¥¶uƶ0©™[ÙÈnK6Âh7Û>¹½¨Å†\µÚØIìb)íˆEì!Z—¬mÊ/n{°Ð”™“räR†sbÏ*1(FÔhµØsÖ²fm©ÓsͲì»X‹®™jQɵ“hQÃ0Þv¼ÿ-ï}¾Ò\Uê¨Y&E0õ¥‹6­ % 2®è‡ä{×›šÔÿ_c¬dM²¬Œlºþl®ïi]É\h†—nZµvizŒîh‰IW¹ZÌFÁ”W´ÙËŒå•^ÏKžÉ9 œäË¥©sDdÂvxµ´m&ØžqHj’Û*‰$$섃F›W)&œãf4ÙtöÛïxCzº–$ÐÁ“ B [·;FšØ‰n"Ù3š^tµrÓÊêaÏ.\Õsèïz“Â*"R…¶Š6¬Èˆ÷í·Eyì˜jÏW½k9ÃêÙuÓž…X@^3ÆysÖJÐ̶¾õ‘Dªh¾ÙÌÌù$·£rùÞƒÔ¾xÝ‹Vef×DõÆ…§o«ÒÞç0 T[ŧ#¶ÁBêò%Å©Z9ÂMµ”Ñ =ží7vêÏ]ç{Æù$¢{EN¹ b[;±1$RÊBòfÄ £`­8ÑÄ`aYLŠb§ ;BééyîÉVzŽN˜žee²G=B’.Ë›ZgÞ”÷'ÜŸ)â ÏS:'sF×Ë® ìF^A\mµ—$™9frÚI¬:Í’˜Ö±=&Ö5qR°á˜yÅ÷‹½ùöóËçªã*µI¡²IžÈJ=«–C5‘Ŷ2Ô¨«Èˆô†L¬’6]¢áZÃvbBXeúöönc57‚ôãvV4bc£]›l®ŒìRduÖ¥]FzM˜šëíyFˆiùùõë­-mÊâ$É92«´gU×t4B5ÊÙuŠî¨^]­AµÆxÛóµü÷©`ä1l?HÓ{SR„Ò¦…V$bè2pÅœöͱµ‚$£ù6‰ò©´íQNÊl¥Ù£Ei¥Ð;R¤q4S5 ‰"·­©Ek`É3+mŒ‘,ÊòÏ^·6<ÉÎbØ“3C#™Y¦"µŽpN}ç(¦ås`*±)ŸµïY^žåÉÅ Ü¿%í²½ár¼£«ÏÉç¼Ïxe{ 2" Su$/,¢í‹F!ëd žÏ(ЈÄJÌ(³!d'eÂÓ.ê;Èy<Ž}èDòU$„‡™óáUʬÜ9ª„õ¥Ç"2ÔÕÌ”ÊQ"Cµ&C9®‘Ôýšx¦A'¥*Q*ÊeP–„«"8j¥Óœ•*лÜTYPJЉVºDÎÄÒ’/IV×z¶“™$ª?áPㆬyÊÊóš\¨77JFd»‚œë·;L•J„U¡…¬Ãhýÿ£ý¼|~DÁ3ªZd¢±aœ¬C©„aEx’I%EhJköÈ8y¨Td”]Jd¹BgªV› sv¥kІ»ìÏî>õÞ“®ÈHráN•ü®ä\T² .\Ž%!ûù{Ã+D» FSá¾ðsŽÕIi,÷[.9$ùýîCÉ"޳NÕf¡³X•%q3VßíùÜ¿Ÿ,¢îrç"Ë+C ËCA1O  µÒ³Ô“Tdɶ“Š¢V¶••íYRºZb\Õ¤RHz·Dª"´FþR}ªK 2³(ˆ™ÉPƒ…fQt3 16–²ˆâtȈæ‰t8œ ºHHM8z SN.´•f¥¬³ ’JŠuÌ")4ã\òn¨×æ$œÄy4ª ŽMΙ`ó/EYtÆEªª*Ë™Ykf‘UBâjîþÿ]çÆÂùì?/g-ó5¼’A QEI ‚ •\ §9i’Ê(áѦTÉYhÈ”DÉ—C2̤33…È£•&²oèñÓ4ÔbM9¡‹*®š_ëÝÔ<†NwD²…ID°ƒDQKêÝ(ÐÕMY$cSNªuZrªíV$QVU’RUåIˆEŠ-²£™DEgP’Ô°Ë0­\yÙv2Q6D6 ‘ÙTrD¡hP “’ˆdˆl s £t• hH”e˜PeˆA"$Q)…¡áBtš–(¢ š•ªõŽròNUsíì‹KUKBLò‰K¬ª2¤Vr++=ÚâÔRW';ˆY¬æWÑ‚v$§9B‚I‘eµPßßÞ÷¨$ÃERNGP@ÃiÑ2¡XSI!3bETJj§-iF̲|wn*¦I³E¸\Ù—ú×ç¾ ì¤Â‚µIû£7,Š\ȳ\dì† $‹iB9±Õ+8Ó”R:'™Ék Dî*µS©bU1õ×MàâD‘Œ&¡×@”H×F”ÎB…‘*³œŠŽ„?>~{ãðÌ5YÑ6eR“íÛ¥F’‡˜æ˜¢G*Q8˜'U RˆÎªš¤‰U¡&•ˆVÉ$¢)L[õ]>‚{s¤çw.áÍÛ—J fÎBt „Â':ss¥Íd¦JcM¹2h´Í»®ÝÝÍ\'=êG•W­Œ ¡D1,ŸD›*åAæL«³Düg(rNYè ßE[5!'+†\ë$2L9Q©YÕeÂÎß"©Z™™ŸŽŒç•©F(UÉ–´+™«$@•JˆåN"’èWÔ¦ˆUªPQªŠdQN®Ñ°¤´V²ÚÌ4ÌÙ;„•Z×6ÉÑ©Jt0LÉ.\É i.aάkŽ”&.q4Ò²ú…y%½q#AÕœ­ˆ¢*-Kœ)E³ ŠZtª$±*¨(ª(æJ*´“;H»âc‘v°¦*'ap ¤®=Ö™ræmJ„#¨¥i%…ë{,‡—þ’OÊ |þgq8Ëâ`=Ϊa˜KP©–y½b¢mÂ,HµÁFÁdA(Ù%dd\)Tåe“§g"á)BI¦L®þ±Ï êdhkbe$kL-U¯ír̨HúÜî œ¤ì ¦E ("IH•¿œÆäˆgbÊŠ m â–…ZÓ…+ü÷'íÇ“=T«˜…Òfq1Ñ8þé܇ª\­i$”W* »åî¬Z¨P2Mþ¬»rÒˆê[N'†‘5ûý¯çø÷öþ=÷äyóö¥|Í2¤6¡£Æý8ÚËP$·Î…åõIé4¡%üÔf.Ú+r<ŸÇïî±8‰ŒæŸµLM÷ f¼V «µUþ™];šž#ϲÜû.ýàv†^?‹»À곦ÕÌQ<üAŸ.ÓÁ&©º€\à Fõv»Ü®•™ó%¦ÙøÕIÁª©‚>eñ¾nÓ†Ξ9ÔÇ#swœ|«}ÚÍñÖ¾HÙw§½ê/| ÊðØQ²£¹ x˜¿äo_¯‹¼XvˆÜsò´ÎËaØ’.°Ùaøêu"ç:Y µÞúËIÕ¿K©1÷›¼¼uB.Î!mN•ª‡ÊP{!Þ®£ãƵi‚ÚÁWgq}Š*5v¿íؾ:y]ë5XÕ~Ö?uÓÝ»Óãö8a«åA ÷j³;Ÿž±¾qJ†ØlÈn¡ïŒX½fíÕî¯dâ÷[ÒКœ?Bô(̽nAÇS{ÊkÉ/ïxþ1¡| ­²Çã $4-_?KŠÎ÷§Ý>ŸÐ“zjxýóÂ]m•àÊñ ^ÆÉ3-g6X2:5p/S íU¥í¶4_Ò»‡ýÔü“ç§RÈàÙÔë+ ¡ì®Û·ð‘£ÖªÆu‹Mª„Û¤±&éÁaî‡mšæ]h^è_ãû?ž>;ê~;“’Q¦ÊG[¹^ýêÓ@¢ˆÖ +.¡ghlí“[FÊL¥Ä¸Åvî͚eºJ¢°«‚@¿¢ì…„aªhÎp8ˆÑ Ï"ÍÕ­‰F#ÄYPHÁˆšÓf‰2ß2ùZŠ?Òãã46eYœÞÝ#?xöE{ÒlV5–3»‡†—’ÙJž‹O“”×ëü¿Ïù÷y âââtS½¡1íÕŒ;þÞ"ó_Rr~^ޱ«sÜÎ&oóëÍÿnã~ž÷DkI‡l¨/üüßG•ÿ0÷"ªŽ„Få^¯óâìT—_ñ(Ûz¥„[_ÍÊÙök¿E·[Åh½ôÓ…ËǪ¶Fµá9›FDé~×}xÜë]uñöÄŽ71N廈¸{ô7´õœ±ÅXÞ¥5l£êý9Åc¶F÷ª¿øY~Ùð&×F±1ˆ­¶Ëfuª1•Fsȇç'ÜcåýÖ•ó“ùÖ‹£Úrýåî¾-ø¾àà-zËÀ®Ã¶¸j÷Np¸ÌÛ‰ìç8‘ÏÓp*3Iª"ô2 W ^å5ß·›Ü`a+Å}Ñ ôVr´û™§’ûÞðšêXqàÌNËhÀ-¢ò;luœ`â9÷()Æ)ÞÔÙi¼oÅ•âc ·mÆÄS¦­¶Ø0jý¼||»ÖÞ Þ}\¸\õ²:¿H=à`îÛhåï/Ÿ 4_O]W±Ñí\ô]®Æ³Ó*ˆÜ÷rfôoµó*CÀ¤h9”…5ÿfÕTPÎoj™Ážų̀8%ÙD~³]Ù|LÂY Ü´=»ËLòþƸ«—'ÇMamÓcÆæ(*Îó]åä!)}!4È‚Ï÷§˜–’Á~] ôS\>R³E‘5>xì)N¥ƒ;5ÇgΜb¿:ËW[¾ÞaÄI¶“ú‹‡…ˆÇ"¯‹ß¬S/+È»g.J Íú#8•0FäC”Dt ’;•aÔzÃîd`]Vîñ7Ót_/¿] ××Lîƒt²Ð:6\¨°oYÃ^ỬÓbñÃ]e ê[˜CsËßh"Í ù ô› ý»–:ëb@i­ž/•ÌækÝ·÷Ä'Ò&ùáºò1hñKñ±ø»ßko¤bäË=?‡ì¡1cm^λS¦F2“§¡—j~éæŠ*[¸†Ç„Qwæâò¾+‰S&oªöþ´EUñpÙºíæœ¾LJ„×)Ä–÷ Á¼7Uì÷åro+aŒq¡ »`$)–¦ø~²`GÁ;šÙcR † Zåvb/Hb!„q,Âúuç²óUü$›ó¿0SÝÏNt‰âK2–°F¨àôDùŒ`EûÃ9˜Ññb|^ å½}îÍoœþ¨9së2 ·„YÈmÆœéÃÀíù¦®ï!lâðHnöÿ8gS”PØp³˜ó©È®ºëQ®iÛq&Ä g…l\+\6Ρ°gäC¢ºÇ›¨œ–SâqêÇñå {•ÃÓ <”oyíûgúºó‘àé†ü^‘®âzÔ¹%ñj¢È^¾ë¾ÕDܵû=Ê[¬sX¡Í]¼iÐ¥hiP+Þ<"z¾.²¤­³,-•ó#¼\eÑ,ëM—äËÐ^Ðòb#¨üÏwfó¨m{ ï¥²[ªgˆó(ß!»¹#ƒ&/ä3$DßÕXøú™víxѧ’/xa³WÎÛZJ\»¡Ù‰8— Õ5 zYŸ‰F=ó’w}=m1 5…Çm,>¶ï~⯃=3+ÇffüçLú:òý™íª‡o;Î*»V·Ù³ßTÜ™™dÌì[òb4ЗI¯x³ÄÕÌS[mö–:Æ]Ë\e|[ì©–F#K»b1/–#ZÃg6Ã_ÈûS¾’ë=:ÐQ–Ü%RÂOê*IWår9­A<¿41>s1²ç5é~@—÷¬ãóÎïÈ:éñ§hÕ%Mw×xéL[´>/W!s¡ê«­ jwu’Å=2yÒÖÐÓ4âT‘ÞáænîPÊ»Ìa‡\¡Dn¥„cg:†¥uf,ͬôQÅ[³ZyvÉ ²Â#›†Ð-ñ­7®•Õ aEʯ=ã ÔÝgã9Ù9ÊæÂZ1Q%óI³7`ªe¾;§[^I?ÂÄØ—F«S•´=¬ˆÉr©C¡E £2;hr;9Dzd+–´HªÛìÉ9'ÚÊä24¦v×9 À¹%žhé!áÖ]R!Z,¢’")?èätB±7—Cèɺ¯8Ñ7n…Æ3”…¡•vÚK66¶MÐëb)vìmV;$¨g#®PžÆ»1©ídÝWI9ÙbØbéD6…K&“Jïx˘S”&•XHpØaÄ»,éq£9ChÑ·õ×U¬ 0 ‹Ùšfª€Pˆlˆ‚R 43OÙý¿[úJüç¾Ð, ›Á„¤QdB4.C Ó"×¼)VÝ’d¸“=‰VÄ먰¦eiMcM Á5Œi,ßìÎU&êHõ¿ÈÏÃ/Õ©›EØ)†2Og*ZuÜçE[+9­sµxš­‘©y]²Îÿý>(ñóË<’pØ„EVº«#fb¼ûÝú«™©ŽTCÃñDLÞÑ¢’×/t º'‡üëǶY6• ]Åm¡±D™ Gïõ÷“î©$ûóUM=sçUhÂ.[{ÞkÉ4ÈÒ­)Ȫ22QL‘Q\õç¯ÎøèñàŽðqÜȈÓm7%SA¶\Egjàr½¦·J£·i0N2bi[UlÚÝ%µ±¶e3™›%e¤]!µlN©…ËŸÕ¥wš‰ó çªÒÎclªó¡6b´Ñ9¤Í9źg´Ñ¢3‘EÉV+ uÈÃP¥6yÔ· ÓÉnÐìæ’-m:,Ë] ¹E›L‡%FçN™çrN ÷a¶¥,c'O½÷RJmª^«<â'9ã „êάehÎÇ"lãZ…ÊòMugÐb´bÙóiò¤º‰“7&Ѳl8«XÏ'“§ÃUê­'#Ù´\ÊÆc#¡§\¬Ó ²5.Öíl¬c/)µ#ØcÒk˜nÛm¶Æšå„]ÉK©äM³b¦¬.FÛ²usN]:Î6ØÐ®»ÝlÍ®•ÙBÄ»u‰ÉªA¶væ½¼d™1 ç9HpçV‡;j!t›c<Ö3ÊŒœ4X¹RbQK °ª´‹ ç—;9ÍG6^ U{gbÉh^…W3“&äI‘0·Mµ¡sq™tB¼¹éz™4ÜâÛX!0“U ؆ “ ™“1™‚YÅßóûü«¼|;”éþ{¡ï¿Ï2þ·Z?ÏÔ¡'Ã0VÛ³󯸑ë`—B¯–,‘›k¥dDovOP‡klœ_¤éxëóÖ‘áÞõZý5UPá¿GÙÑóu›ûxÂë³/~_ƒárošQ\}J ¼AÔZ×tþ¶œvÐà ±(—kêóñ„16ž_n9æaç¬j#ZU0à å߭雥|ï'Y̧ØÈ¬»T‘†Ïò¯’ë.~«w\™m>æ#ìs¨-óU»ë ë0ÑÄ9­½ëW¹Ã¾cw¬j¯|ÍXjÉ49H^{v$ !š!CºÑ®9†&TFÎB”ÑB…D[˜Í˜% @l&Âd!6®Zx»œ­yÝD £¡¢5L´9صžS2q4lnâdÒd.FK²ašˆ[ƒ''óÑɼó—ìÈ1JaE^u"v®3 "džÔõÏŒX}çý=û|}p¢äºŠSh¹`¹pä™w[›jZsëÎè*ެ¡Ô¨6JÁXM#×õÛÉ=(øx¸SW˹+Q* UE Ð HSSäJRìdlVBQ$QS¸»¡©1³(ˆŠ˜Úl¢ÎÚ+¸4Ï9Mm¦Ø`dT†TÊ(X† iØ2Q†BiTÉ_ò$0‚€Ø¬$9)’Yº± Cq\ÂÆG{A§Êz5ÛE+Ô0õ\{ÆMIþ>鹆# 0r¾Ó쎊ºyí¬ì±üsdž8Ÿ?uçw~û/xŸ•ÀA A(²A‹bBV È”ÆÛNÍFs;ÚrèžÒåµoW¬×ñÅèó–îx^ãX*å6a5„§·fó£EZUK¿+Ñw5sêÚÕœŽŒŒÜ¼Ô‰”͈Rg]°À—t*jU]ü½ùöø…õö¨Uç•lµµT¤¶­…ç ,²$R–Å¥¼GéÍùñîñeC–™ÍdUì²Ïâ\z_!†Y‹&TÕ3ÐäžåÛÕþóæNY€çÕÁ‘wFcá»okV‹A $€d,‰,U_ ^ Š%Sµ•,ÌP$3§¿¸þ5#ÊåÏ/ÈÓ¡&ÆàÔ(Nƽ•k˜ÆF:¨ÅdÂj˜~TUñŒ³OéïÃ÷Ëô¿ ›éXzà †3,Ýr!Bã†m3”ð f5 qÛ*¼vµ—“¨ó¤ïœÜDzú=(“.õ§U“Wl<‘/¿ÄáÛyówèîØn 2^ß-,z§G'lôøÌ¶C,Þ°úæƒàDµ]ö“>_mõ/“¦:œk<‘"\à…«ã‡îbÍrºmƒÖß®-Ÿ…|nØÙÛr!·–8Ä~=ó¿ioµ&‡ï-ç\³vÇ£©…TZ/áPí”ß/ºŒý½·ˆ n±w"øoÝÂ!$’²²¤ƒ"V–6%¦æ^ÝBNc8ÿ[»B äʯ,ÖÃs qJÛ$¥ vh®n ›XaˆW3¤Ùe ƒww-²k`t„J¥,h£ Ê3gHͬjÖ"MrËéáTÖwI™ÎV…« #ÔÄPb¸Ï ŒmЪ‹ÕÂö¡2B £™ÿ?A…ûaùóŠpÊ&6âUr#Å7Lœ(IW•´ñ=8x”rNJMeÄÉÈNf;™8sLË9ɦDÚÄ’3É®6n“˜‰QWb ë®Ó5&³ƒën=¶Û™I^ie¡Òõm‘‰Q €Z… @vDذÁX¤K¿Ã¸ÁƒaH¡ýïBÒlŒÐ&ɘ¨Ò#›¶h A&nC’´}K„6ÙF¼­Äú“ 69!°ÒÐ;˜ììÕ›(R™YBîa‘I°{·s›„P¼­WZéÛg ”G+A%\º`´lD hI&,ÉÓªÖš-r‚„íh˜»7zÄ<\û°{•ø/™¸WÃãQµ ‹æØ÷aD ‘k8…`ÐÆaî›sۓѾüoê÷Þe2i)ùÏZŸÄ|÷=`/˜ýßÒ^ä;̱d€2X‹J[‘æºê/¦E~3a^Î;f‹²,0¥ô÷¼È{VÆYÚóC›ç/¬ùøá‡w×ݵ-ïqñ?ªi§±ífñ››ë*Òz†âÇ?/ß¹ús£¬ñ[Þ"bñKjáÏ1¿ŒùË/X5×Î|a¼ŽÞ£ Õ˜g¿ìšî¦óÞuÈõ¥¯š1ÝôàüÎgêÐÔÊfVLþãªY4.>øDaöpaI˜cHFI-%ÑF5)¤CDš0“F5 ÁP‹F fˆ£AF‹ØØ¤(KD‘A™Ri˜ÀÆ„#IDTQˆ‰,Q&J,PI±‹IbY+&a2TdX” 0LŒ›0 DLÄ›3¬XÅŠŒ¥,h”¢ÄÁ@%¢(,É¡@(±Y(¢MÚ*¦YŠ¢šZ™h<úýõøôüsÞþýæ—Ý7GïÏ!ãÏ]Ãê[ é[ñ*Nxéï+·Ç CѼ¯coÃÜ‹·[K)]›÷‘P×ÞÍÿ8å•Ð-«âáñÕ3\‰(2ìã.Àm}6.^„Ã9CMð´Æ|ù â}ÔS|Þ­Ô¢”ž²ëñܶUàõSçšêYžõïkÜcŽúêÛãQa´³íÃdæÝÍ >ÃÉ—®£9¾3M-xÎR"$åâ[CC7’÷ä0.Qï<ÓënL08õ¸öRq4ÞkMª×¹»¦^ÿjGgÄYɺP Jþà—>P"K¼ý[•Ø¥+0‚ø épðdöâ¡uÈ ÷žmµ¸ÝàAêYCC°¸Ç0*Ë[M¬0zÅõørzSCóüß^f¨fýjt;˜âÄfèc»äIˆû½¸„Š@¡º»~‘ñû¿ÌLJï(gëoéÜìiÐϘ¨òüôf2A<kÙëU=vú¹ý÷ΛßÇé76ÇPÛîÕN(‡µ6Ý~~gð0÷‹Æžƒ1nåÎëo_ŸäT×#:k¡[Ï3,óME›0ü0Dw¶ ÄçåûÎ=Ç:Åkγ/¤ã¨nË­\GðÒz­³ƒ#æho;eÖÒ„ëæ›€Âì%ñCELn~ßÑöúwáüz¾Ýr¯Óš½wXÆ"âä!“ëÎ!êP÷îLа0‰‚ás´·–·Ç3v†gµ ŃÒ)&úÀ"ÿ½¦± ÕÖ‚Ÿ±Îª÷b™‹s櫃l– \‹@´Ä0µ­rÈMº!ÛL¹Æ¥h;et3¼ÔÛá°‡W, ÂrÆÀV iºèê *•ºÒQ³çÔÈI²¹>H"×\1èÚtúÔ-t«êxnìß®ƒRë}6mA+>nÁÄ~¼ÄÝúy‰ÃxÕ½þê;2ÊsÜS¯j˜¸£ÞŸ_^çembÇ4‘g;:À¿éóÍV|F/;ë> >œè|üÞ@°ZÆÖµ0¬Úúû“£»¬æ*#YÌçsârá ÙŽ6Ký­`°Ö»Â߈dl í@ñíÆ2~Ÿ„ ˆ¨mÒ÷›‡Wù   âpúj;.t†ÈÎTpËð¼ÆÖfhuLîWÓÛõ/óHN—'פ”¿?y$‚ëç>Oz~A¶ÝÅû?8ã[Íý×z÷×éã~Vz­‘séÀqçLÇQaíý®¼£{ŽU¦×xj»6šØr+ Y6cÕŒí¦2Žø_šlâ uwÞ 6£®r®ÊÁÿ%†ÏU÷ß0ék˜íLçFîÈfã}9×má¶÷÷=6¯ü½ýÂ_Ï<Ë[¼ëÍÀè¿:÷0'*Ña‡]6eMçLÖ¿ÓòèXXTXØZˆµÍ¶Gó*9 â“°§æÉP @H›Y`$‹a¢,#¹y¶z\¾$q/­¯£æµ-’=6óìû„>ü]49è¸'Ò‰•ïNÀ¤lœ'w!ú`ÄØA!ÊÂó¹p>ssj)¥ãh<Ïä›ïXºeœk7¶H[½^v­ƒn˜Ã½cGòm »è_|ŒV®÷z- û);ê*BO‡9³mƱ†¶[}fšùüka,5ø@òVGKPžvÐkŠ‹‚ &Æ´ÏDpáSd¨¹` Þ!uù¦â‹·ÍW{Šãª8#…s½¶@é*ïc}£|0ªœT¾Ðä¸ásb™µu£ñÚ÷ó)V™°ú˜o×ìjš=ÝÜ››1’‡­˜.2@“²’F0Â]"57ùÔ~f±Ó)›¥™¨«àü,ع‡cÎýú¿3{àÉÏD{!z~yvÀ$äØ"5ÏŒô|aüšPŽ™Zr¯¤$’ò…Íï–®©Ëüf‡ ™}+ȹt®Db˜Ñ„g0§0õQü!:O ‡’Âî$°,ºo‡ÇCª—¦gvn°õKëù×76Ñ#¼§}ê[ääkÍF÷ Áe©„‘™ƒoHræØæ!â퇶Èš!0t›>ñ„›Ê6Ä­×WŽÔ`ÅI‘@ï‹õ,RƶFiZNϳA‡µ(mȲ0.†p†Jæ0Ùµ:°DÙ•¹ñ›ÓhmõxaÍ‚Ôg¦¼+ã»óôŒ”š ‚’RKÒçvêHĉ}û˜Í(çuГ1L¥ ÒÖ$ L”Ëb %÷îLßnh 2ôãA†^ûš`”ˆ, ÂÔÐ&Å¥1“L3²FŠ* Œ@Âd 0˜ ’›&„ÐQ"Q¢0˜fŠEŒDȬP¤hÁ‹‹ €(£!‘“Bf`£!dFE2Ä–(¤Œ—w ŒQ´I¶ùî"4xäÌPLÌÁ aEI%¨(4EŠ1Dfh’4}\Á4ll(Š6 _OËßãíåø.yêš„Hr(‹0ÝÛ¦]—|¶èTJh‰ ÔEK>bw†k«Ý6eyHT«WŽÀêÇÄ!ò{#G!kš®¥ú™ÃPâA²£«j¥£&Ü!´€Õá­d ÕÊq³k‘"¯w?Šë-ì#f7#_:wÃËŽšÀx\¾P⺻éäyQá=ñ ›Q¹É6¹Æ  e.HMÙ©Ü5GP» ›?Xj:b¾‘ÍkH.tlæ7äOŠåÃÜâ3CÀÊüVckhÛ­x!ø|CÃí!Þ1|Õ5Íɰ¹™*ë!ƒ‹Ë@…œ×Gl€#7»A’3‘ë0EæZ³s7Y‹Y=ÀRêÑ„åÎXiºaN¾ÞæûA°ÞÃ{ù׎źXÛù•TȆ0@¹›(lœq í5è2#†Äà†‡`ÅÊ"×HG^8 ä_Ø׎ó¯ÀÊ™@üÂ)ÉW¸î úïMÙÜKzüaªÞž§¤Þ2”|ù÷ÈhCÔ²Œ2 0ŽÇŽè¨ž»qFem=EN¤£µWKdkS¹áhnu²ÃŒÉ…$CŠXTǸîF=†7›ƒÞu1`®«˜k I£h=e4+ñ`Œv˜Š» ‘%!îÞ¼ºzËÞU¤úqt.)2î ±Z`)­ÕÒNÖ!»N[LÕ;MmqdIð€¥Fà;Û‘'LtX>wxºI*|nú©éG‹‚ûäþilWg9‹í6í^œ6Ù É4X„|ÝݧŎÊå^V±;ÎÀl¯¹‹êlP;ÿÇ$H¨jO´ƒ•Œñù‰Ï4Ø4&aRŽaÚÿ G› ¬¾Xº ÿGëôO˜ŽápËåMüŸ#Á­7‡LÜv½¤h<(û|w]‘£o¹ØÛÓ!õÕ+çí}®|ÉX‘ÓEËà ‘0®qîØ‘ðØ\m[9>ë1–W¤ Dòá t]’OLg-nïL±õufÁ<{¶!Ï'ƵÆÍü`µù»ðä) ÈtIÛ%¥kùÓuzaFMº}&±ÖE!Ü®ˆ.²™‡~sï$.— £Ç †§|q²¯?¬ï¨÷;9~Èr–—@6ÑÉÂ|KhÌÃif4½‘r&áZ™X7˜üý›™„¦dm­kn¯ó¼E ši™P 6uæ3ázßìçâêü"Ì@É·DQùw³kñ«Á† *ÄRµgLMÈËÐ cú­ƒj…a“ô‹F³€§âÁÝÀÄ2{#„h’?"îo‚;ºî¿† ®FttÌÚg€ø`´+S¸2îFÈh@EÏ ø€úc¿¾?D ñtmsÍ'Öº/Ã7B×%‚¶Ì^Ë'#¢; IÉ6•ƹ ˆcËݸÊÔù|v¬oA:ÖÎ*¶.«2r†18øq2@º÷¬!|œupL¼N:\¬³xŸÈUutQrÌÍ%Û-Õýë$ã2O2ýJ;•F [„ù#=hlË`y‡øk6°Ùµ¬zQá\Žß$:"L¨íöÉRÃ0sÝvÜÕ0´8pr€0¹µ¬»•ƒQÖ;zÙïö¢]û»8k{¨üfköøXõ¡¦GIš»óY1X Ã9¯dxgán °#õIR^5‹‘²,läYÊmçˆ5( |>(à€ÄY¹N+¿W7E­o¤3•³lžAtê¦#8=›ô„*ù}+(N“¹“r¬­úy¤‡µ§b+›ëb&êŽÅïç%ßMDF™‰¾‹ª‰Zñªþݼs‹e’#êˆÅ>ÉÚí¸sÌmjˆòkª“Á¦»¦ÊbzCªr[:v•§Ç/.üCéçìiû?¬O"-8yÊŽ¯MŒ÷ðµ–òÚγñ¢,/ùõç¬5ÅÀ&KÁ»( ¥ªdùìÓv×ê¶2Ï0Vy»¶ ßxÆî`ãGó9¾©ò×x¾ÌðS}{Åvæ³ÓŽ—È^Ö.>sÏ7¹òž ñtÅãN>kËzÃÃȆÇÏy‚9#¦|¿{Z‰m}010äãYñÔtƒ] ¤rí¥Å‚çž¶O.øïØ''j7#“’1T8ðAR®…_µ[ˆö¼{”¸ó¼iï¯K÷ã¯cÓóÁò¦o¬×UYqwqËÇŠ;Î/xÓúþqã[ÊpÖ]äG/Üõºók Ù äÃuG×Ñ©ëZ¾ZÔu¨ÊÂØÒƒñ­˜Œ7|mkª×\¾Á!ï7"okÙ|8è‡>7¾-K %ô)Æ e×H°ÑU¢"؆SL<ŸœñmÙN¸Á‡8¡˜†3¹è¿½7N+kFÄÚ4é²]úE¶V”6Zø¾GœÖÃ+æ…Ô#ªY^CŽÁ³›õ $QÖÒ"Ø0—l%À†óœN¶ž€ìÛ0½¤â:ËøF¶ŒöÄx£cIoL,¨Ž‰¨‰“"å0F|!œ$Ûλ﨑’D!³²ÑÐi2mÀåÙ³§§¬PŽ!FÌwˆ`ÆNw i…‘¶M‚œ16߯Hø°A+cŠÉÒ>C•ó…KÚå.@ìØÞôýt£ˆOª²˜ÊH‚G!t¶ÖoÉc!hŒ› ¸kân5B°Ý+d€þ¢íkÊÝ!šP@¥´ÀaCQÉÍKèŠdˆðBÖ(–r0EÁ·fØ6áµ¶@§ãlŒïZp·ÓGÝÜcÝÝâCæ>§lƒæ>/Säܶ£LåÊt+& M7¸l]&òœ‹ A6˜ZepØ/u~ŠˆD ÈC„œ\$#až²Ôz´ –ww¶¦6“ÀlÛ["’t‡X{¾ŽÁáÉb:EDA— /Œ_ÕÎgÜ›'¨ò[õÚïN°’Lš$¸!õ-kIbe¦›UlžçÜò?ò9.¯ˆÛ×x¹P9rO1°¬´­rº É—fvWu&ÃÂð£i(ÚÄŒÐGFß œúQɰ¹µé [$=+vhÙ͉³Ê^ WkÝrXÍ/K#ó¾@y=ÜûÛUæVi+w]‘=›M¹Öß'ï¶ Xs¡¿˜a®E÷ ž¸ØJ*þxkI6vvb—{â'I|Þ»Æq»ý¦`æµÆN³Ï~vFosŽA(–øÃÊY6¦–¯·n:í1°¹Ùµ˜Û&ÄÙ2•œú\Š #f¾-%Láû-=S3Èi„ìÂÿq)Œ] nd-?:­ò›f<ÀÑšuíêh»ŠÇÉŽXŸˆº¹ ÝÃû}3ûö¦ €ÇæwSŒ£8ù}9¼Pˆj*îÔqó×W‹Þï(4wÞrõ:‹§C[–3‰ÕuR(Œž—è»Ol0þÇ\C—Î`œ4öÙLÿOl4ß[%ÎS•›ûªozã ÜdvnÏaîóÌ—†œ?y½_øºPÆpÍ£ã[̾Ö'¿5@¶0c8ìyhÀÚ–óÞûtås— 5LyrÖhCa»gtrÛdX©f=™2D–u[8>+øü:"à0k½ÂRƒŒd´‡\V‡D`Ÿ1°»i‘sõ÷ÓÞ¨Ûð‡­*ó ®•É2Qdˆ$bk§!ŸÀ£‚ÃFĸpHÁ Ȉ(ôx Aƒ¼!y`ÎO°·4œŒm[t Ö!ìM§ |=2‚2tã¦zâ ¤Ú|Ö«¿2À9ìá’FÂA´iòâAá°MI•3 ív î7§ôlËÜ Îã7›£¬ã>Ì÷Í'®ûlö¹ã5ß\¶Œu Ý_œÍVu犛÷¯_q‡Ý>ÐQ.;vý+ï³Ü]–~¦f‹·Tõó ùqõKÔc.WˆDö[wfcß·Ætû¾#‹Çæ¢-U½~|Y?ú:3ìûò;ÔÇ#³ß·³Ë˱ätw/Ìf·C¾+êªýK9êXõ‰÷ä±$õL2ûÀ{xùY˜¬¾tºÌÛµ:qšX$£Ù·Ò»ÂŽîìàHã¦}0˜*ÃfÖôàüºÄøàÞ=¦´™»Ãùø«©÷®CÏL™gtÓ\ë„›fVMÝú‘õgøëåfuÕôhQm\0(Žå‰—˜¡—¡0×yÏäÊt:­Ë½0œg™‘„ô¬8MM‹ÅgOzlp¼ÙE1[•åëð½­6iòâ÷v¸ž¾òQ™ÚMíˬ¿Whvy§é(—7{)sŒTa4›gk:òñÆ›´š°Þ=Íq™øÉ^C1Þ»Ë(Þ«ÇåúË>5]B{ªRFz nâ¯È|/Öî̲÷u´9—ÔK %O~"Zå¢tÍ E®ìוgu&ý2‹šªŽòÙeS¶Ã§,ÛÃFP/-ŒÝ¹wi5#î›ó1’܆¬Ö/}‡õ¹3 ¹¾ï¡JìØ)ࣥîè4+µÎ ]ÙÛ4¸îc‹?+w¾n¢èAó™n©Ñ“&UÍS+îñpÓµyö°`Ü|Ü´ÍïˆÉ¾P#Ò‚™{@1*#¬i‰f¯ÄÉšDUÕM~¶ÌÁÝÚwW¡ƒ…MbA¿L'qãÉáË_/ˆ ç »Ò™M0æ9ÆÌ\šVrv³§ÑùS‰’:,ïY‹~Ôr&qŒ7·Ý{"ŸÍ}U¿(±_DlÐÇ$AÞ5|SA—=;Œî™â}%(>°ÝF=jƒœîµ1Ï}ÝUÕ éà1h{IÃ(MéØíâb'¿:Ä“&kQÁÜ_36{ô“¡¸}u:¨šM+(Q'ΧÞ@Äõ ÷¿Q5ÆpƒÞµÓ‰ïNï8Ošo1Ê]@ìßÅVÌ)}c}ÒÓ_Uø¯œò¡«%†ãiÅ\JoŽWÎxD˜O¸á7ÎnªÈR€äd~e2\„=ÃÜõIóz…ýùÀ )O‰}H{È#R>!9èåçñœ>ް#ØŠ|317ËDgïÌØh‹-*dåô¿‡¨×žß•€Úë yÌÓù8¦›“û¶œy„u½_œ÷ö.qÎËFò“Hñ¸7jr¹+á»m_¸ÆtÄë³ÉB²õr›¬ã•ÆC‘ºE8ˆ¡teÅõUˆËˆëœz‡lƒµ€_òú¿/¾nc÷A?‰¨È§Ôy•Ýoø–ƒÙ ®ÿ#á‰Cs•ò÷“>°M–£õˆÏÐSv.sÙGøŠÊ®Û L1¯uFe³C¼8†ô×`™ÿ;ÞêìGÜùX¾¦ç½oYØ˜Ë Áë®C:ì3â9Ãíèb!4˜g.RæŠ~¦X!‚¥ºÛ6k,ã×o¹‹®ˆ‚ò}®~4[­ôwž'Ý*‰ËŠ/¤çaa™2qßtš4µ ×O—÷˜É~¹‡ìß‹p˜äŒƒ×t ÙñãÞ×¾eÆ }ÈÔv3[õÃËò貟°EÒ:M™PCŒð³8$ª»±Ä9>S«°¹‹ã™›»I­-O.ãOȃy fëd=Ìü¾ÌŽ)g½Ë^U¥‚J[=$Ê–ññ‡CÛVi7a£Ü»XK{§ Åéî1"¢üî1*ý¦ar4{Ç]«à£=e´zí1‹µi §h”$¨çÑqä°lçQNêù½énûÌ,õ  va‘ó,4ÌØ|Þ855¢rtÃ+$Íf7J Mª*o7Ä]òË}õ1åkò»ËÓe|[Øh³qÛ"ºk›Uvý*¯æ€hÈíƒås ‰4ËØw*7.äs8h×1|ݨ뮓‡A{ œ!“ºZ;ž{ãÉZ‘Õáäu;é)êY®¤8ð‡Qâùìï­Ž”¼û¶çŒ˜é3Gñyäé¼+Äo—pg½wÇ0Âö×$,Ú2X臤±Á¯xÃÖT0¬ÞõÞâ+Œ2qÆ5œÞzÓ=™œËÉíÑÿ›rmÞ†:ß ü/€'놶{ë-ò|«ZÝ‘mäX"-dPrW!ØQ䔨*o{ð‹\ÙÙxÿayÞ=€‰¹W,B,Úd¯wû©n{ecñ¶î|JŸ´N%­ÖÔAп¿&#Eˆ‹ÄÙ'ë¬ âõ‘)'¬ýpâ© v —"yÓ¹ûÓÕØã¶‹zÚš 1̬»´a¹ ï‹…œ¿‘ÆÎC‚»‚ïß îa)]l°ù9ÅŸ¢ÍÈwfŸXc“M/¾aúbíLF[q­Ìž¹vC¾µ¢<2dvC}Å8ìÇ4Ù A°×“²èÒ=#†E×fÃ!†ŽÊÓ46¼tÖñ•m®Î‹é~qÁü7 a.µM~ÔsxäQÄÈUÉòX\Ù[][¦~ä=yºŠ€Š*Ìȑ܎6Ìøß¨‹A°°öUä C’æTȤä¯ó+J²µÈ2̧ eÄ}Ê¿Râþ'°ñßãë}Ú-p®R}‘Ü¡³ i¦oÒ>þ~PÞúG¥È;C%þ!k¼]Ú'Oï¯ñïJõã18ï!þ9•¾z×Ré:ìÛDf•¤ôìØºŽÔu7øZº¢¹£G¾å­Í°h#<+«]ðÄëýÇÏ#žÒ6$zE¶ÞÝúá¾ùÛ‹²¹‰Êé ”›¶¦ eàÝŸdkŒÔ3~óÀô°£ÅÑT²0hMŠÖÛÍ" õtÝ«~sLçÌ…Ÿ/ªX]ML4[ ¦ƒÛŒùæø hòΊԵ0Bæ"ðΕøÁÝkÎiJ  ÛçĈ¿^s0"ùíµœy!ò0ïŸ>yQ†+—î³#µùLLÅo>ù¡¹Í릗lõ£:õ[ ÉÏu®º›dߤ5íéú"ˆ­ñ’Iå½(íÄ$Z[Â-“gèÅÞ‹õÛ¿ÂóCíK‚mÚÃ7©þw=¯`Hâòb¯„K(k¸¹¯Æé°ß]}/óœø{w¦.¼öZò†&˜j“/Ÿ€}@]Ç4Ž(cµá»aŽ|–¿Y¬ÃG²/®8ÁßM¦Ñ#ÈïYF†J"–n·wê¼Ý¶Ï§¹mmœ{õÕm’1žËê!³íã¢L–´Ýeÿü¼yžÞ߇væþLr÷-iºq“nÎüÀâìºø„ëRúÞ¼÷U™î N¨a½KSrÛ¦?4 DcïW›Ÿ¹“sêFÐvUçÖÚûÝ@#RÌEoçya‡k0éÓ;\޵G*ä–61kl ‘ôòîÃÕ†ÓÚo riƒ;쇎ÖÚƒ÷ó`™Ä/r¯0‡îÈ}KÈȧï¾G\}ÂEñ€xž¡¡ë˜ú‡¸Cõ9'‰i~o]áÓê3‘Íï^fþ°K-ïi"Ö¹°p€óâGª‹Ý@ëWj+ˆ1E‰=eoJ6"èGhm²iÕœ‹e‚$0;`œØzGÃ`2mÃÂî…¤µd·t¬BêW1R+ ¿‘^{|kîs‹ÝE×}ÎþoqãW5 ñ¾uæ›5†|÷Òê Që¯/ÛT7¥“Ÿ ôÛ¸Üë§Ì_¬¶Ö'¬EÈÆá§¹m¿¹Üæõ=yŠ¿ÆcßÏ;ÃgÆ ¬¢’ sYǯ?;×3GÍ–<Ã/Øì‡ó™~ä¥OÝÜúùæPïÈ- Ò´ œÅG dW¹äˆ~áCñ(@ªú‘\€ó*»‡˜ZÖ°68ÄoŽ·ö0Ét÷ ¯s9»nPøNôoÖ*~]ªîšÙf…ãn$dѵ2œÝû‚ؽJt1¡ûNã1È©ž;raÞÛûŠihºLE:—BHŒb2ð /…w@ˆ84ÁI L¬×ÆÁ¼+³ËéG®„5¤.O‘ˆpIßçMÌÐjݘ‡ÄeÞ&\þ4LÕ_°ˆC&ØWª”.D=JÓ1_ îq‰»L[ôµ»AJ&Þõ[< ·âc>ÂÙܯkƒ?°ƒÍ7O¬ñþ{#dI…aa6;ýh>Å;òƈ±(­| õ)M¨]};•òá™!êCÒ‘².¯Û†ñ ļïRöŽ€t†Ò³7Ë0ivŽKÞfú§¹–ê¿IIe‘6Ë!?›ÜW»ÕâÄŽ6Ø?[]i" jn_â‘¢ÝT–“îæÙ{#o˜†BzZœ©mÞ]{—£©3ËTiß…þ+ƒµ1ä7ÇíÞ›Þ‹ ‘Ü)(éaãQpC2P»8wwx¦˜5i úg:º³['ZÎbD³ >5Ïq¹®oK˜"õâa¼‚¬e&ÔC—Ü¿yBD› ñ Bsï­à#‚øŸ¸Ì>áO‚bl1º‚Ìņl¨ï›¹v‡¤i 1Ò‘by«â®µ¶“ò]Ÿ ñY¶ù‰H;t׎˜vg£-F e¹¥Ü¨C p¼YmiµŽáË¥›÷¨x°ñ¹¯X¼1é CYg¼`gŒ?5†9ë͸œ”"ífÒpdÔU^Zš¯ºª‡ºÅ&0×»Û k$E­jåk"ÅÑ4¯ø¥µ/ÅÙhÂô¾Ê.FD9æR AræÃÒ4E˜óõ»¶GDTþ¼a÷<ñ>àß8_vî_•ð¯kìžüò×o–¹®xù+€‡‹’N¶@œ>g“ïËÓ”úÔéÅ*ZÎK$éJsf$ÙWòväÚæÞã¬=‰¶Ÿu§³™6£±¬åÜÈ8•k86¹ƒh84 ­´€¹ƒ`(³«ôÌ÷R¥­h 8"U78òÈ?òùÛåéúõzþ©Éƒ—!Ž$+ ô…åZ¶ÊÄý6sÙ¶ó-a»¦'9þ[~½5¤üO©õ7‘EŽ×B“l_´;6³²\VšÃ[á‘\{M€ð‡Ä1=ÝHÛa÷mÉËÄCú‡úN÷ú(`ÜxPÙ³zö÷äG¼Ù:ŸSŠ¢ â ñƒÂØ"øÆ][’Í~<åWÝqðIÎðÌöb(Þ<™n;§ËT‹l  Û.¡„-«ô‘†PFßêf"Û7»ñÆhÃ(Üýjó4W½å”0ˆñ´ '‹8ô…¥²J]*¿!9ÉgÞ£®ïWêSú¶áòƒ„m-ÈAÿ`R¯e3•:g›´:JŠ“WAÍ”°.È—Jý¿ÇÏiÁ6Â"ûh¤¼•[$qáŽp}ˆ…“l»iT7NØÚÙ°ÌYM ÛƳ p‹1³‚ªtÚ„ vÐFˆQ ;qßÓdZÇó©k‹âœÑ$/{/ aX"àØ]`†±'^yo}c~²Ï|îõòC?˜Àª"$e(È‘Q$’IC1òÜ4TÉ “éÜ͇Ç\£#öä¾;„ГuÆLaguѾ‹„™£Fº’g¿}äˆE1"I%,c9õõÕâK’d$&;¨Â2¢‡¥vîë@#0îÜÉF(»·aû¿©ãúýs Å~>z7&úºó¹c$ª¿§OÊψœ®t’)P¹th;®œîé}zÜÒRÇ(±Ís †[ã¸ñ®…~’b7ɡݸk—)IØØåqùó’J¿kJÐ(òˆ q õ“ÎíÒKLJwZæˆØšsä2)™êªUUENR¡Až4bœê0F)Ë‘ ¾ýØ“e( 0xÎúyã<ÝC+›“2H’¾{Åâ»®Ân_-âŠf‰+Îç:Ìa™IñË#¼\Ó!™› ’I]>ËÀß\ÆA™2o]Ó$ÝÆA*,–Œ‘GíÌËÎë®íë©÷D&ñp“0AR (” DÂåE®¡Ã#»iÝc”fh.]5wO¿\¼n„)Šb*gwI$·Óªä`¾ÝÔš“1S$\(¨®=@ ˆ:‰*˪¨·ísSyÝ@åɃOÆ;Ð5Tu˜ÞbÒRz΄Xà £s•s]Ý®:øâÏ’¨Gf $ìÉÎ×Û¸©xí!¹n\àȦbJ‰9Å5ŠJKºâ îÌwp4P2 LΜB)& •D¡¥kH,+3†BA +¸5 ×ÑÊ CM ®Â¾¤U¨€‘UqDe \Ý7wbÊ≊"æD„¬ˆ ’lÝ~:û`mÍ#q[à«!ov~ˆì†#ïHx“þ¨héÃt½;Â[i5i>ög­vØùÊ÷%ô.6}òô#Í7…ö°õsç¨y?šýlyY‘:ö83µ¡Õ‚<~ÃMþµˆÈßÞ÷7H+¾¼`7aæ÷«µWs¸Q¼bq:ÈTbªêhM¹¼LPùÖ_]·b°Í½Ó¹9ã~ãc[U ÇÈži¯\¼Ü6_0 qÜr~n.ß–ˆï[ÞkDQjYÀXXZÀyÎþOtÞOràØ/Ý;“j% ¬ ó§âê'N¯Æ.03æ`^@DZoÓrU‡gp²Ö¬8¡Ž”¸v¶H£¤€úhÝ®Y¯vk:U1>4 :vû,dž×âͬ)S6Ëõ×"Ø b`Œ¬¨ï9äÌ;ë 5x3„d¬5iÑÔÆÆRwrKï9õŽG"&ž£ck׬ÐãÈñ¢Òm×}8vƤ‡$=-߯·•Ñ bÒÁˆd^ÛLì‚p² ¹í˜COL¡0œÐJ »Ûü"óEšÇ^j)°†ÊIm³–ˆN (Å3ßO6‡ Â^›ã8ÆsëåïΣ'‡$p÷Œ¸ÔÇ/š®ûÃR¥¼¨j¸ªñ¥¦@G¹Åg¾Ãߘžã‡®ÐÔ¨žÄ^"Êçë´kÂ1gÉÃßlÁÈavøÒäe+L–gí¯;ÊQsg57óØcvÖŠq0‰GIÙÚÄÙÁ‚ë;á˜øy”„¬·W{¦k˜û°Ü¸b ýõÿ>WZ—ùM§3ˆê£]h|=N Ö®a¡»ÓN2<̧¹|c¯…øÈ‚$§<}1€xÂâ÷ÃÝSwœ-9;ù-“4¤æñ7Íü‘“G+,5;0j­ü©fDþï¶™·{~ή¾5ÅëB:Éè¼i±½F5¬=hTä­QÛ´óæ^yÇmÝšC¨ã»¥¦¨{6’ž+F=¬Cž®?™óÂÄÛaÕ.'"£KÓ$o‡Á¾Ç½âѿ֗UØC}Ä÷K=Áp{–o«êôÛ–šhÖ}ã+û ¨Uò4ûýóäã¿01ôÈæ@o—[Äô|'3ξ?TŸW.ð÷Ö9ˆß~gËÃwÓñîýf~êýȽ/‘¹vƒøÌ;_›ýoËí¼ý»)õ†öø3ûÛ½»û¿#d~™Ìïµ§h~óÞÖtó3¿•³ª«„!RÄiû³;+í¿DC}ÎþsíhÆ1ó]ÍIÆa½Ì×èÚ|ÅÖoW1x¶KœI˳ç¿ÚÁÅ4óîµ}Ò8N*`;ë39ˆÌ¾§XCN6FâR|²œEF•54Ò ö¦#Râ¿XLõɧš­‡F6¾*˜>½$O3´7XêñÍçÌŒkZ,»ÏZyt‘|œF%Þ3»þò÷ºšg9‡í±»ÝôÝFç;[ëZÖ$›ýÛe+‘º†ÂCXC¢ëñ>#Í*œügÉsç!…ÏͯçD8W9DüfàùŸ½ °bÕÝØý‘å Ć‚ï¼8ò·¯ÞG_­×Z¿yøÇȺ¯„¿MM³.å¿${2Üü®³’u­PËí[=á¿{ï§ÐêðMv4Â-XåU_¾Ój™†ï÷yñ£QåÛE)æu"55w¼ÃÙ°Ü×í÷¯ÝküyùÍ›¨ I¢Þ°Ã>ýnÁÏâëwjW·Ç"ºaóÕ‡Žû© c5³ïïÏ»+ÖÙ¯oßÖû—‰Ä²pEyÓDÜmù¿”ÏòoŽq7êUdu–¢¹ã­0¬²3ŧ½~a†UÑX`]´ßŒ£TÏá$37Ì»D"Êì=Ôê!ö‡š\š:)aÓüã6 \ƒÛCzNÕj2‹Ä³|}ÄÍÁÕ,ë'„=.Þì ì³›‘³;Ì>ü3ÅE~ _‘Ú¦¾˜ï­0‹Öq¹Åó1&ø3bM®]‘Òc?a7®ÍsÜ­ØÁ »oÇ©Äl‰7:?¨WìÎ|Í,_ðÔ Ä²¼ýeÈ]x˜ñMó«Ê.Izl¬ÏÂØç𜓜Œf-ùâ׿ÿ>ã@ïL$ÇÓ›Òtš&„:ù2ßicwî\S¡¾^E>ä~Q¬rl‡ðžu <×o63[vSˆ$ýá¨/é¯ñ¬ºX,FÇu¼w&ͱ§û¹«|>¿yûμq<¯°¢ùãyƒmrÂyµsoZ#Båoó'näA·¤IÎÂѶÅ_|‚‘¾Ýl/·Bä =ëÉàí¥—Yn8õ‡D›ø¬Y¯\Á“†ŠzHºT"ëS£#Äe˜ë¦ø×˜°‰6îtÖ€GÍ"Y|iͺ¯iü$šíúr@À#UCy†òšKŒe ?Æ¿Ì7Á-SLr ümDc£ÍŒ7’³!aÆšŽKá²üæ6XUÍr]·+¯9×MO7:ï¾þâhŒ$Ó¾Ë=ú–F>Ç’Œ‘&÷`¼l›uaží›é›ðÙ›•§wÖ²Û"v©ñ¶ó:]ÞRd6Õ âjŽ¥?Ïw½A·.>¹Îûç—ð²#l¸Ì]S¸<~Œ3Mžly/á¼úÁ…!›õ§üuùøý¸ìäêݳ ‚NšÎÜ8y4yÕTGZ–IdMÛ÷å`¿é»éÇ.À8ÃGj¯Ûéâ7HoŸMòšŒ‚0D|8iR8çÏÛÈÞhd_®…ó³c‹úщ`qá5‡è°ê‹>5>(J‹\ù1X˰b3»ûÖkwü»6/žÞÍœeú, çW¯»Ž_<ŠÞÿO‚ðÙ-Ѹ¿h[öý}ÞçOåØÂÉ#ɦâ=7Äå“]še5D:èû¾ŒoWº| Ä~olËÉ|d+ý9ŒðnœášŽÍÆ"}×Ms^7Ž …©–×ýÈ¾Îæw·“ ýñ<žúŒ¸;†ÏÜ5ÐO=cÏïªæíàÚØŽh=ãŒÚa±œk<ãM ÇcÕ°ÔÆ©¦&³Ê½ Z4鸛{]ërã¢Ú¿pu¸¸ùBŒu†b-0;g|%§ §ufÕ×D·p{a"z­DåË*"YüÌ5d™ "¼ 퉿/‚±ŽTçoB"õp߯!Ñcb:#Ÿ4ù·}ñXgú^ñ{ÅÊçMMP¾Ý7äŽÃŠ„u„ú§Mx‹ÞC>ÔBè㦡òï–[/2f.g X¶ÎöKËÖ̃„÷‚5³±ô/¶wôðäÅü¦ù„21FxýÛœiò ^uác[½(órï¯|k>xENõ]`×Çl–Ϭºé¸û¥s0¦ÄPÐúŒ¶˜s—‚þ¦:6çìÄîr?*¼2FP’6[+Λ§­¤ù#$=ƳÒ®þšQsHò¢fÈS7ǃí,¿Ê½iô¯|E—]ª.VL$ôò:žÙケӱ;ÖÛí)ËQÁü|óØ>5¨ ä5Ž7%_†X=Ÿ8¦õu¸À"§oì;V̦٬?Yë­Gœì¾zØ«þcÌ÷Œô¯wßæÛr»<¯­,³ù:Xh~žÿ˜F FÔÈNýäþ=ïî:#áìȯ9—ä×™a÷XX@Ø af_ŠsQé$ $ÚÄØtl(g/„YaøîDº$˜ùp´ÙnUÇâ\yüÓ<Õ 8l!þ‘úâÂYÎu­g\YÆD”0OƧ^»‚DHl™Yg-µw(Y T2­‚r‘²®…ó qˆ$A"Hî]‚[d˜?£"¢‰è“×áߟ«Ýh~²¦ÒX«~zì~U}›Å{[œ¹`p>wõ”ú“*ŒÀ£c«™»üfuzr’‚¿•Ýõó^Ö½1çuÓóŽé€Å5gÞ%â>$ÛÄB¬”ÍŠ¨«Zѵ~$\ë*vËc (ªJf•o䟫îMš NBd«æÈæ¾x¬• Ù×çïê¯C_ Ú=óÖsS(Û<á‘s1>»ÄÙõÞewÖ½L›ßïM%ú“7«*½€OËÛ§%Z¡hØ=!ký÷ƒ#䱯§’}OˆSæNê’ëÉ?0ÝûäÑôxÃ#«!O¨R|OîõãïêJó#J_r¤i3Öȵ ‹ 6 ¬æÝ“k#ÖµŒ/O÷ÖoÉ×ÛÆ¡šµ ²vb ˆê{ÆäúúÌψxB¥x//Ÿ5v‚1y6£4ÎkY|åWD½¼zñµ§ð€Mßo­(¤6°(åº7y¹XËNÐ7Q×éj&y‹e ãˆ{•³}½ß1Ü–^%´b#­æÖ¹`ˆ¹¿A™¯‡yû˜˜ÆÒ±!cªjV9ºæñ¢ùjNijí=AÍ¿e4­ºwòéÖ•‹Xn™å¬Äöh’OÛÃìÅz;óU6÷W­_ox›»úÞ½¥‚á6¡z—6Eúò·^¸¼¼¿d{ÍñæI.["Å@Eˆ %qS Ê 8D{®1/ÆW+Ÿc-c†a²åÈ%ØôEyÈŸ)sæ>Ój!†}¯uß5éÈïjŸÒÞ‡fé\{ív]KeÚ1Ó÷S¢á¬Gê^zÁß¶}=˜ÜÌëq=á°è¥ì $ÆSrŠh>ˆóH°˜Ÿ—M…žË @,¨ö¶=ñ˜\c§ÉìŽSž*f‡ñТø ;A°þ~ñ¹«Œ’Ÿ„‚ßš™óæüŠÇÃ8]Òá™n¾‰—>œ?>5´bJy¥${Êõï—ÛݽÚsÍùÜ@Ö*°éU{Óã¨yéÍß~Ou—ê[U1³SÔmEP>‘v¢[TÌÉÊLF%PzÕË$ªÛ38 Ë-z{I½,²¡ÇeH t¡Yî¼…ºTl³q+)ìØw`%,ysÇã³ëñüÜÜž©—ºnó»ùšÍžPwz,Ûˆ4"÷}L)å‚°ŽÐQ~L=æ¶õS2ÎI;‹ï©Å×uï|!Ž+Jι¸˜°96dzð– 5Ë׫rMu¥ÙÓ=«, ”÷-ñrg%kðÙZü÷6‚~é{0ÖõÛ¼g5mKíåC º¨ Œ‰†Æq—ß_zù­›Þ¹}© É/¥úúÕ«°ÉSXˆÌ‡PéÞãÌqmï)†0÷ï#§áTSôÄŒk¶q5}%=G>íÿ Úç’OKíßµã0ßÏ]F~?¤=°:ì¾ e#ùuW+yM«îKç5‚|#î9í{"Ú6îê,lžç.]±Ÿ8¾wyw>ãçp:œ°Hq1g/‡h"‹5õœIÉž;AlŠ$±EEv†HçÅ쎘l0½>Ë’L$A‡„1%î˜Û¾íôù}UÎÁÊXUÚÞ Íî"ä“áÓ¸ÓôÁ¾µ¢åÝœ;ú{—œüBj÷ßçç° |L¸ßzÞ|‰~Ÿo¿¯ãÕÍ>ó×òÜü÷ íy¿:dÑG©óyŽGÎaË ¨™>°pë ¢ºù 6ünì5úÌ=—ZzaAEøÌ¾§ #ø¿vÁ~ ü÷=f”®¬ˆ³–9•Ãa7»~#†Ã][&ß“êÌ!’zñ€?rŸ¨ÜˆOÌ/æØ{ŠWÔ IùÌĉæ2Wéúmïùuoª·ákîñ«ï5~Wáé @ãzÙ 6pm`JØ6 66ÒÉÊåz€9"?]™æSê=HRlW™ÔÒüÊy—¿?ŠÚ P̤Rß``æÑ”-8l[êÏUÍóp}GqêM‘:¨u˜¯ç˜šIõ4!“ÕËe¿œPåõ|JRœNuëzƒñ<—îCë¯y¯ˆ~'¨D |@üÃÜd¯ßôÃïëÔ߯“’üÂu+²x‘6ó(4z”ø„¥@ØÌØZ "SÓZÌ ŒƒgKì¾WŒ/ñ)‰66$¶Y L޶o'èªb7ß”»ÒÚºÇ&» à¹ÍÒpy†l" $?Ò²ă¥-,l‘.BÔB6…üò&/ß{í§¼6Uç­¯Ø|7Ó´ƒúÂLÇâîMrv[*,hèßP²ÏÎñžù-ìa–&Ö¼ß ”/¼cÚÍõN2‡ï›Ø¹=.šþ>y_&}øÀcJ™[PÂ@ìZ+9íòæ÷8z,N§.(ÖV'‘z¨Å·~°|B98¿2Q1ÜG*Ëí6 ("þfeæT‡‡nâíë§¶Z¯—A´öUƒ`? ½ŸÕ„›¦Ö’HµÞÛT¨°#[CDcedà¾vÙ Q¢e8̾bc:Ÿx‡æ;„üIø”ê^^åêCæ>åO¸NHæ"eõ OQ²h`/)„hU$-nR !a ipˆÙÞ²Örõvrô¾›[vXɵ»6‹`Ùɺ°âRFÍ€ri§V·;@ÎØXhŠý­Wá­o•ZÜÔmT_/ÒÖ”-`<}¼u×Ý–E7n,j"¡[D ~!f &}amí[DgjÛ¥ao€Áɰ֡0lħaxBÚ hÁµ¤‹E‰b-ež˜1·Ì+Ilä·ç8åÃæ2L€¡ùƒÕ°Ö)î~ M”(„Ù^¡v}x°øŸ1õg<~ýw€*J^3pñ 3'$™fÚD‡±*ÈIOçóçÈï‹c)HHá@“§lžòɼ À’ÿ öÌG&5…hd(Çeð©BYW‰Á³‘b:.,YF]t ÝVU˜’A˜§sÞ%Üâd¢HP7>áìó AÜ$I)õ“.ºåDLµ; ubmÃe•†)X‘å&'ŠÁ€-ÒoVÏGí¿ÎåøW"¦ú¹÷_Ï•Ï×|¼»÷iQÊ©ùèÜ¿/¨rˆ~:¢6#…A¶³îâÈ?ü‹1±6ްb,Ä}Ãܼ©(ºøÕÛ«®³y…ï¼Ùê÷×4ûÇ/¼>Ëox˜yÌ& õ;ÎoŒÔ¨C~×)?=Õ>{WÛËÅåéwÏçÆ ÒÃ"l K}+0‰ãáF\ WA¨䊒«s Æù>°1ˆ¾cãO—¬ÆÂ‚쯆ñ`Žº!ˆ$M²WdÙˆ f!, ˜i`PºS†$JÃN»ƒ*-[ŸŽÔd‡Ä…QÉ|Êïñˆež±||àuž äw/3Évðæ*-±«ß×¾^šÆµö „4-|È}ÏQȘîb’•2mŠÄZ±‹ë|öµò½(½øÁOÄ òøÈ)F~ñWâTäÁ6bPZ@ùÜD ‘ñB{…È¡JQhïóŽ÷}oãßóUâ²6 ‹*Ìmz`Ä‚ý3D†c,X" ,Z_.áÅ;ÏçH\Ø‚~Ÿ'׿]ªxЍLçÖ¨¦@¦Éø…OˆJ€iF»“ÆáMJ”)æDÈJARñÖ l”±Qª*Ŷô«–W Å|A’ˆæ`âM…L‘·wUÍRPÛWå÷_ ½/ÓákùW¥Šóº/žíŠŠ)/—64mˆ©ë¶ï×j+ÓÅBä4%?$R"›)ñ/Ì~¤ñ">eaáC¨Ñ®©…¤ÚÖl™np;X[„XC¡å,Õ»£S¿(K’l•°é¶‘$ÚÐ@D’ âþÔª¦]•O:J…6ïA”Û™”Qb,ý9~û§Ûñ皊Ʒ¼Á¯¹ ––ä)DŸ¨þqáäÒV‘aa&Ì6ܾÞ:½ÉµÉD†ê}ä\üÒŒ»F/ ¥yåð1éiq`ømÔ@k;Q‘'=Söb©˜Æ©¢¿k8œ¬ã2à®ñQÊ-øž îtÜÔÔ@¸Ÿd—_ËSZÖX-bmgø•r„¤JSëÞõq¯v]çãzºiYîããkh®ž¤c®|íz7}6U.ÇÌOxªüÖ/{K¡ê.cÉʆñ›ÈcÝéù†„ó~Ã+*v@‡ÂÛËYÝHû¶´jýÔí‰pŠ?“¿ì u$k뇈ñ´q£Ï¹ë^ßjô«Rí|y ìô\‚™qgªâ3€;×P:§‚Zº¿—q×I] ªa9Ó5רãñ®s”ÓøÖæW*³ÉuñD …×ã74˜!d±éÔŒ×mû„*;Ë—é§[³¦—y¾A5q°m«ËýÓaÍÀÌ1íOµþ²Š52ÎrÂí¼˜`ì¼Ê°£bŽHñ×H`¸M0 ‡6É¿›©Óǽ7ÅŸ{¡¹bD”å|çêSõÒ¢5Á’ñ ' }X€‡¦YpUˆ$ò¹$üòô A ¾¡Æw!¶p•ý«ø÷_H¿Ý!ó —?®ã„rôˆ±íœvM£†‡rÈBDÂÃo‚å­¬øÖÙòâeÂ6A? X’ 80lÀž´šÐ “‚² d1pòì*«Ü~÷{^ÀR°ëhÓ$Ô ¿kÉQg®¹¶J§ç¹i 4b5_v®VæËSóFÏÌ%4Þâ]`dSîõì€4.ÈlìBÝà™ MÛæQØH‚€ú¶Ú±l_ÌÝ÷ïÛohô»}¢L;{Œ‚¨,ʼÆüf/ÕÕÃWÙÉ,QŠSo†¾þ»ê;÷öË”P/WðÝK‰ùÇg¡ËÌa¸d;Ëñ!’P×ReÖg~ìLO„Œ=ýÖç%e<Ëâ}@w=@1ýÔ×}æÛ™ˆWd§=õva7cnš–ê¹Ö& Â͆]îò9ï]htEV7ÜrŒŸ®³ÛX¶ÚšÁéñO·©–äKqó±åz¨fv®cq—O]Åf‡Gõb^ çÈÔMÐyH¤g§˜®¶è^ 5Ë´5GW™BûŒìÇ.ƒé¼žåc¹böѰ¹ì=  ƒ–64l,Ä ¾Bœy½—XCÃm Íi¦³}KÊ׳9Ut‚,æÖ$¦ÒX¼8vvÇÔÆé{4êðß¡ƒÔ¡éêÿ]-¬‘åi€fwä²oïz4lÑv­ Lþ;'bÒnñ·C¿&ýÍÍ’äæ.PiJhÞ©®rvè vÓ >™ŠÊ4D¤l™Ë3Jêwëë†é\ìÙNÂÀbmaÑìØ9G6Ü$‘ Aƒ`ßÄûPrmkáúúÀvÄp¿¸äƒ¿­üñO³¬$ YÉ"Ø 9…˜Y÷{â°È"ÎE€ðÜwV´þìwÞdž®Ë·&ÖÅdõ–ª=_×°°Ç{CÃ_fcýX‚ j'ùg.'ܼë 3Ÿ¥[zCÕÞvJ±ïmÞ¥ÔgeQ‡åM©†¬‹Æ”×3N¹››gíX7¥ÖXWneÎdÏj¡}ö>Sþ'}¬xK¡ºÍ"ix”U•pº-n˜ë,¢çfüôó¡Ûçw˜Fb'lÖ— kO´"ùD£5³]FLl$¸ØÇ/M“ÏžÉí’Ͱ2^½Ž™óÝ#¡¥v“±²‰Ž»^ô:öU-]yº1þµu…ô|ךӃ%ƒ&bâÒÖ"ØYò¿{:ÉMåše†®½v)EDÛv÷Õi>{¤òªp¾2=k•ud¬›r»nÈ»ÖtjVå+㬻±h hHͪ˜E$<´jêƒÉ{Ö ¶í£…’ByNÚtH/TNp™ãÞ¸^ÏNÖò*êì©k”ì’í‘„UWö\‡fŽK»•°í›Š• "(Jà„kây"å.çåçôù“xväÓå@½oÄß}|wœI¾ºˆ[wÈÄ‹²å'sh•å" 5Úk”Ú‡2Æ]¼çÉåŒó‘ÆÙ‰îîîàW[:,l6]Ùµ»vºõíí«¦¬K'æ·­¢U´}]êÛBêlA—l±±‹m·¹Ð0“=Tª}ot÷Œí—3 hÓÐJí¯·c׬¦+~Eó÷hDažùÅvtg°æV27b³›e›·e-›ö÷½ªÃ-œ”iOqD ó0Æ’Â m¶‘ÖL¬í*hªaê Èš]š10Y˜tΑÆ#²1+*,T…·N¹DϨÞ+7SŒíФÚÄZ^ÔåÔ´@ Q´&sÞÙ½{šñ—1¢qhÁ­ªÝ³£,lFœ¦o2‰øÆê¤ú¹j>ñíyìÉΓ)‰s—¨b|ìyŸz<&Ug ßžóÇ|œdÑö ó0d^s)–ŒñP_=øžyvÇ“Iä'c†|@dSå “"“ €¤ÈNC¤9.ËܸÉFHÐdçYÉy ÉIü|òâ¹d?^N Š› “í%¦Sf™¥`¹"ì#@% RP”‰“@&@ ›*ä+HH 9 JЪêË€Ü†Ç ¸JÄžëתt.Œ2äuŽÐÝ ½>ëÑ´ÐÒÌBÙekS„¸BW(·/1ÎfʤÅCËͪÐòȽ›Döt½êóÞͶPŠsMªMÕ²~87²XÄÊj'L¬^Y••Z'Æií:Í‹P¶Óh§b:Y§"Q ˆ° ¼íÈI!¡ŠåQmÉFië÷Ó0%‡«:爛R˜åÝ2²Ô WdÈÝÚ Å˜è9¾Ì½þþ[øaá£9‚¬ÒÚ>~Eåð¶äÌ\Òd°ìa3g.»E.ª’æ#ZÕÐó#;n—XÎç"[])ü“)êzÓ‡­êÃoz=¶³8ä8pcwÛNò_½eçÔ½D™F`©ö7™óê»×T·°¼( dsË|“áÃv³Gߘ<©å{æ5Òö²FìáXa̦E»Z;3 ¤&C}íÆ¼í¶DK³‰1 rœ  ‡”e…8b†zvºÉø‡^ƒ8SzÜ/9¡çWç­TÑx$2s%jçk2kc$[f¿å…"öŒ"V¬$ÈÏD8s‰¾KHù3ÆW&sÊ¢’OzW/˜|³ÇH /{H†¥òòzh×§/H½5p´È±cDm²hƒ9S‰3Ý2|ù<ùy;­Èvn ±Tå“Ës¤ÐáM8›¥zZØ—ÒâqŠ"œšfò@påG^”ÓÎÜ⢭$Ã0µ¹í×,=C.~®òž#3 …\„O/^XóüXovëKÖ|Ëy­­nÔ·nÚgc6t8Î0æ‘1–‡[r–íšÂ˜š"0ínÏ­¦-]‘Z‡Ãm4ˆ¦a«¥‚kõñãÜ¢*b\„Ãf°9m™LmçÞ¤YOY5E†ÔÁŒ‰Tt9RÖ×%fsÑt)•ä,&VéTa>v•d½BK¬9]Ño'°ê×\µß{ËÛ½‹ C5Æ&nˆšúî½ôË¢*{ûÿ_Ýüy??2š*£¼Êç9’Òª53=û÷ïÛùÿOß'áRÒ‹’_×k„¢þ)TäaVàë[\<ðò«3¡ré×vÃ- g±16å“ý#xöæÛ6eÐóÚ,·utBD0ØvCmÇò½ƒz#ÞĦ†Á K À™!þØf’#PŒcðÛ¢HoJL8{#ý¿P™’&!u‘ŽŒÜ}µwœ?_Á¥«úõÿQ«ÂÊK`RÈÁZÇ¢êt­F Úæ)ý® +¼É°ÒÔ-8»nÿ{ÛÙö.ªKýÖ –Ø¡ÂÂÊ+h¬8&Åj~¯é¶ùægå –¨õƒÑîÜrœݬNœY—oÍŸzv¶¬2éûÞPÑ"×›WFµmØJÕbÉ–‚®S}ìjékÚ(Gf³|íSéÔòm®Éö3„öX4Õ‘¶E)˜+mµmKyýÏÀí7F{K<^žÛ&Ïëx[”¼ºìF…Pó#½}ìo9Q£üoŸ“ê¦ÝEk*™2 ¢™ìó¡T«ŒÌºžýôd^ïSµ8S /kØÊ†”Ù((6G#dr “!ˆñ É4r%)2ØA@ò÷ZùÖ¾Xœe90)¤rêMÞ´êy RòÉm²ËâöW{×8¿'·²ð˜­t)ˆ5á+J’ðd¿?/ô?ŸžøØ­¥÷öÖºz+Èž±£Ï|„ïló+Š4XZ.gvw.ù<ûØ11SA5°:vÄ•·RJ¯g¹¢ÉbÝݱ¬A£&4„Y*Ö4Ìj,m)5)d Æ‹QE±#chØ´V‹FJMD˜Å2HÑ1±²Q´dÚ6±¶ )-Ô†Š5‘b؉M‰¢Ø£F±E¨¢Ñ´™E´m¨±¨ŒcQ¢ÅI[ 1 ÍŨ²i¤´i L‚±E”–BŠ+ J£d…’Æ#F4DlFX¢Œ@vò]ùþ;öþ?=y>†ØÀoÕ ú»ž•Ã=#×\ÐÍ5íÝÖ—[j.¹mjFŒ$ÆtYv„­V¢ÚüÆ-–7ŠK,R L«v%ƦuE$1–6]ÊÅ·öÒ^Á¼VQ®Å.½ï¾ûædmµL&³…Ž·ÇHFYmЕaq.†Beõ­Õ¥Ã±q1®–ßèÝaê {U–°VÊ„ùot{¹bLŒ8rí¶rgY•É—<«ŽÂRÆÛ!dóL ˆÌjØZ§ca)Bœ€Úœ€vQ¥v26 ¶ ̤é8nµ{1VX‡Fáü¿4;£ÀNtupÑ•ˆ¥¢@[ÈÛmŠ€m8î -Ó×¼1(d¶·æ£ RV‰>w½Ö¶‡Vȃb‚…k­³jÛ[=¶„Ýfçkäòx®÷l•HëOåv±>.Ÿ šÁ”Õ©7ˆ‘×µMäÙ…óÜw­—mçcjL¦9Àw£ÈS×D©Â6L“f‘Ø6–äŽÎÎB‘˜%˜¹Pd÷.Ï3( h€*†Œ)7qïp5x·¤Qé‹nch£zZç¸SC²¹6Ö­Bº‹6×u·jI±zñêg‘‰É–ª\8¦¬u¹åibŠÙ+Jíp“VV'D…ÔÛ%¢Ã‰ÔöGK[,1§9vp8­º£UÚÓ‘ó&j©¼˜vÎͬ-·‰S°ö®Ïg‚•’šLŒ—gbóyÞ¶ë ޳ϛÖÀõ£·tû{Í¥Ö˜§,.³ÙÄኣ!XFÅSºï±žZs(%­µÎteŒY‰e»‰w«5U2iˆ°kí¬mÞ=d½{ÆtI²klhkyç DŠÙr9ÚìL™W\bGUX¨Ë’ÆpXÇåïSïÇy0¡À½ÁÙM…67¥sÙÓ½Kk¤îfë—a¦u-¶.‰Ä;t몡)ïÛÆoh©ës6ÃT¼´°µÛ­tZÀxYv¬.b‰¤l»ršË®Ã¤…rRÆÖÔæÛuJhSt¶$sØÖ gdÆ*Ÿ³oL‹zwgU4.4£VСÆÐ8&ºhµž–òÞÊݨÍÏF) ‹®H¶3¶¹´ãcmQ…wVvªIle›B¥¶‹¶Ãh‹B;H¤áX’IY’àŒ ¡-l*혷šá¯^ï^Š'oÇz=ª…LÁ¢œ¦6líbÈhÁ†Œ Q:|Òd¶ìÚ%àß–ãFÁŒlQj*×i` ²á*G¶V]tQ-£DLÖâê·6g¶œ1‹ËH-´¹Ú†µ¥Fãif°´4d qŘ€R-¬:b^\Ò ‚V +@á@mʱåí`mmVòÂ4ËÉ}O&Y¢¡!!}¤ä‘L/dü¶”.AýØ>X»õ“¿*‹ômöµ‘xYàwhÌaå6ÚNÉ8yBp›èœŠ¶ ;ÉÏ’UÈyRétîCñÜ /rÏ“¼“ǵ“3ÙuÒoW«Ûʇnc6‹áÜäæll­J›i®£Ö…îv–:î9ƒ+˜fCtóÔñíf…BÀÚÅYQ•r³7)åê!Æxî앵²”m·>oIz“4m™×h¶+gk x‹m¼ÌA•V Û"‘à9>׈O]¤Ìa‡e±­eî^Ù!µ›XWt;ïO½¢5 êLì½£9r»Q\DI„ûÞóé«V£kh¤º­†,Âf1§KÝ% v—WŒ§M¹zDv&Ož´óx¨¶Õ¬DÖÑå¬fÛ“SrÆ‚£ù®¥÷]¬·(,Æ%°®Ä5¶ª7·*ÅhÎÚv›–*ÜÉF•b¶1«ÄÚë•…[b´óg2ì›ÑíèYÎØšÒwc`Q–Ú %²©f×ÚzÆ»Õ[’)Iv¹F6γB´¹Û&í£e¼;ÍR34š^1l¬¶JÐFûm›F-Ò[Õæo]l¶ñ⹋&slÝ•î3RP·D¡[xVVˆê‹ó=¡ÐÚne9L«YS”Ûœª‹˜m¢q•sÔmb[ aØÖX'5gDŒƒFÅ¥Nça )'m ÊL-BÖ³ž's´ç´S”ÆÌ~Äy,ºˆÙoœõøûÅÒÊåó2â&Þ{n¥É1šÚ¬K§›Fƺ]+« åõz¢¯. ­>öõ‰M³â79·2yë,ÖÞ×ç]-O’mÛNUíûñíHͼøÀÔNØÇ¨ÔÒm×ÞÛÉ)U˜K™ËÙ’Û–ŒË­ý{ [:„„µ°eibGÌÆÆfµ̬+©³KeªÛYpBv+3¥Ì•Î϶ñëää[UMÂ×Þ²/œë"hb­9¦Û$ 'LõçHÐo&Å2[(Yx¶ÊFòÛQ,Q„X¬or7TiE¿Z&ûv'(í:D‹`BÐ 0xu¾1ÒæX =«£Ë-–¡ljÍ-±¬OA·d¨}±ˆ÷æ+„k™¤uØll– ØE‘¶Tº[æ&1Aq²µkj£a ;Ït/aE¥–Ç–)Àü%ò•앟Ä÷‹Ö¬O)ê}†¬øÆòô¥.bÞT¤cÅ­8B²ͪ ÓGÞï{Ë—~kÔKsF|å<„š|<ýNôO©p,âù;^s‘')8ãŸö;ˆÞYgb–Õ~äÅÜ ä²ñG^™S›áÎS‘'YzE×oÓƒ²ýµñŽê»qZÐLÓéC O"ïåNרÊÙýäÔ#.ÐKæý»˜D¤JJÍzéâSÊæfÍ•áݥ𡂰R¸Á6‘Œáá4 ä2ÈÚ¥ÂìÇá²!È84_î$x@É™ÊÌ:m‘Añ~¦ëÔlõ‰óÃÉõ±õrß8cㆈÉÈîv‹ÜwÅ×#÷½Áe™=Ã“ê ™rH*H‚ #§Ã"0~0¦“Ù ¯MËq!j.P¹M¤0YÇL‰dc£ZHm$lM‚.@…}3‡6ÏJáÕœ‹,¥”Ù@WjÒs¬µ³*H·Â!ŽšÞÝ[/d W…œÂckK-ã.»a7õeûdéî…‰/´fî$ˆÂÑ4…Èáß?¯Ôîø~®Fˆ°’7Ä”I±û®¢  ½wÇ0à1º½ØåÚWŸÖÔ¥¶cùÓ<¦$Nr~çèô dlÚ†a MÓô€¦òQ“ƒðªB¹µ¨„Eœ€pî6e’"—hX8#ÒÑÌ¡b˜fD7ê|ª"qSÞ’o§Ü|6_W°­ƒ«¡‚~ ˆÙÈpÛ£ò$ðŽ˜dŽ9%—»^D2Ð(Aì±0¨Ù5Ù"Žãæ÷=ÉOY™èÄËoòr3˜»Æ ” 7~œI4I³UaÞL£^vØÂoPca ;qv_M„‘²1 À_jNð‡6r’[RlñFÐÀ"J6Ô5üa7jISÄívEÌšœn&%­ÂÍÞþ(ÏÔ! ž—eàÏÉv­ìß]í=Ï·V÷µ “9²E‰éÙˆ®~k§Š¬ãQyT+Öq…¾èÒ#òf4³³L¶2‚žïŒêNK› üµ€þµœ‹'žb å8@Ò!HÓ@¥B)ñ"áAØV”£Q«FÖ*"Å€ÈjˆÐlh-¢ŒX-ŠÆ(´m3Xض"²"†ÆŠB€ ¨5D¤¤°hÅŠˆŒ( Ú,lDQ¾ŸÖ÷öúwózû3öA¿Ö|ª¬iÒ–&Ú=ù†•Ž´Óá ’¦Â¥Ì2Ü71š Ùþ¸5€"vó¹=Ýe¢ë…Y@ä6w1y!¤ìKIVa• Yg?¹8œ“ºµ¼Ö]R@ΛÜPà9¹çžj(ˆºÚÙ÷¤×*œûÖMÞ½éL{Û‹ÐUŸ§ÔQI˜&·Ø]÷¼®D1X»¾¾åêÿÆïŒÿZñýSûèQ„”¤¨ÚÖlÄíŠí‡ü±íèGd«—b2U Cœ>¸^þt¿Î’ÂmO®òcG#í°ó“pm±ˆžOósÂäòæâÐaîÚ^å!žÈÙíYÕŒk=¨Îgr£1 ßýâOýŸôwž?]YïÍïŸóOùÿä?ÛݰD›ýû»ØÏš\ZjÉ~ÿN”;ÿ[êã”l¹"Çi¼?ûwYØËy/¯wsÜêùôÒz„ p„êÛ|þœË¥övâ?;s°ùq–6ãA¦u ¦—f{0통¶f•Çþ‹u9yoþïsFÐ 0ý~›YR´'vÐÒöîéb÷”ï]d}¬½µ^í㯛¯¾ïΟß=7¿é÷¾v Ê_O—ã(vý¾'Âv½Yñ® T¿=†:‡¯~úÏó¯ý,øÐ…¡5/ÿr´ðü,÷äl ”À¯ìo[½BtLùH½ëˆaåP„f7½}»;ü^â~ä}›~éa€8N|?.ܳ‡Í]îºYÚüµ…ÝÊI¹¼[%/Öi¥¾Nºëÿì—OùŠÏ¶'Ãæ\t5z}Ý{¼w¶ÞûMÙé KÓf<(?þf];i‚0!råЄ‹D$îÅB'%UÄn0Æ7OȆqs}ÛÒÌRÔ…«N²»|ý¿Óû{Ä7¾i›G'éÝ4èJ‡í¥ŸoØóú[øCTxŸÓV±?w^ëÿÏߌ°>_›ç^ôŸìÿªö×ïÜæž½‹ü Ó÷μ̵Ò ³ö.–͆þײö‘–Óÿ·§wxöxèîË^-#]ͯ¾üØ%õmcýÏìöwÏÈ.¡z¿ô¥•BJ/dlè‰qxNrZ ì~÷ÿâýÿ$„¸”HOqQXжâ@ «•f&È€d€@í°å“Q–VÕ‘DK1U Ù²fÉ»»®9*À»&tí Ç<³ËVÿ™ÞGŸ[tÕ%t cžyØÚNu±<“"$ðI“9ÄFÕ™Oö~!þ3­ˆå¿Ï GøÿÁê=-ý2s%Ü#.ñH6c-%‰tA6_ú!’&¦It 0‚ÍòLT³ÿƒT½<Ò†V‚ä1]¼PÿKë!çŸôïÇ~}þšcþ›çáçó½îÓ·­ÈFµO¿ÿ¾mëù¿ÚëöoãóõÞ¤º·X4!Sá;‰Q†b>ÃB Xc¸€àˆ±n&'ED;º7e ÃÈ.I…•g€|›'EL2^ùÿñïïò|¶$§ÒJgæÏ=ÜAÒÝx®Y& T[üŠh½ÿÿ 2Xá™*?íw‡ì¡ü¬ÎæOü‰=†ƒ&@‚BFƒ¾Èaþr8Ýñ• ?þÃxXŠïñÿ¯ú›³\ÿŽ ªrîÆÁ±fM£¦kQZdÝPÎ’±Ï‚O£¸U£œ ”4‚*.”2QÈÈ6@É PrU@™ZŽëBC9M;#—žWmÎóÎNBrú…¦Ó’J5œe(¾çÿM‡ü=ÿÿUÿ‡ã÷ïÃáÿ/ÿþ æHNƒFL„¿í`ç/ÿWþó˜ B,[YîrÏuÞ¸ÀãþZ?ð:½q9B`Ç™K¿°°Œ7þ,®µë3ñ°áÎÈw[¼˜{véÐv’ù=Ì#©‚’hlúÏŠç"øD?þä®y­Wv²6•õƒt€r>ö¶lòP@J“mÜËËæHrã%t¸ÂZZ˜aŸç±nŒxP9ù~âÿ»¸A–¼»]W›©|Ik¤ná˜Ì‚I'´º»v!@æ~GU,T…ÈhãZäM oL¸é±·k …v=´}JŠÁÙ°éÂTšèq®X Èߎ(„@scŸöüÒ¹:6¹Ñ·çî+hT— üˆa)=3"@„®ÌA³qX¾a=¤÷H^•½-~ýz zp@é×x^w ÄDcù©ƒšV·D-À–žlN}?>üß×¾§Âq øójBËyf$‚v{Ò[æµìÚ«lL65òÖëcÆg³?wÇ«ù4”iZA6v 0ƒ^NÚáN2wÿˆõêöÙL8Óÿ›Þ?¯Ö²e‰œå•*Û„L®æºs¬ã.4é¦TR«Q4È‹S]¶ÎÈçsµLÛRT+œ¨îZ?1.¹<æKŠXÔU›¶vÿJo¼xb¯Ë{’öØfY}^õ­:ÜÏ* ™–±if¡m‹i)¡)·óßÛü_ãòSéoÂc¤âáç¿WŽÞÉͤBþ3kMJ£UXƒ@!Xßå}ô}rjÖè’šèìêRѶ ÚQAT’ûX ¾zÒ$]÷‰Ry‹ x缤þÏM„ø9qñ­°è² XÊÙl§wë»Ô>[Ù䬩xŠfYüiÝiy¬kÄ–˜SòLµvŸµàb-Ô(“öývdŠ"x³KÎ÷0!i£Ý9B‘n6ħ{{ÖQŒ¼J(F Îܰ€ßäçõÿ–·z«~à- iØ0‹ºfNÌvȱ°B—Æ¥ik1µË0Ht_xNŸˆH¹´$̈ ¢ÄX³ 1²”ˆ.ÉRÖó¦iþZâ‡dˆ¹`É0?¬%©Ÿñšt.ÀSoNºNJÁ Ÿ»˜ý–ÿeCjë›Ôé§ eéÇPü˜,µýf<䜯#·þStC0fåÓÑD`ôGö/õ;l=àdÞ”¼úõuÞX.bÈùZi aìH°Aü@g½u]W̵^s8u-ý3üµG®ªVߢ5âÇ«3³sȧõQÕõF"Grm½PS¥1l°WÊ©’ Â’Ä‘–L΃»|Ôgµ4MxàfgìÇoÊ0ØÅ[¼;Y®ÍYoã,>ã,.Ò5Ó°1sE„Fk¦‹&ÂäP7!3ÌšÎÉëJ39òezÛ7N!ßõ½þZvû ’ÛB ’ƒcü?¿ü¾ûý˜ýý-U ¢ÙÀÒÜ~»Ý"~ëåüíòt*J:HÕÔÿs9/±šŒU”òCÙ=n¹Œ E‰!—Y½Þê–H€äaø~ž‰zBà€Þsƒ†@³!—î"ŸÉ×ýëþ¿û¿ût?Çý¿óÝ7ýòÿÌÏÿ1 Õ=‘Ò¦oú/94¾Æ~”Èü÷ó¹é¾¾lÓþ?«e»¿tVñD@ßýrù"¯˜ÿ¯2Ùw-³ÿÏÿ†8÷¢†1ÈE$ïiy°+þÇvvö1xÿiD4ÿõïþÆÁ£û_ú¶ ?u!÷tÿ=éÁ‚{€óvá)üéøËø =×%Ãá4¬VØ1i"ŒÿÞÑÝF9z,EzQ(«ÿÜÎ0䪛Èq0ÁÞÊî 9?âò2ÿ‡¨añþ_úoØAý‡'þã–FG»gã•,'ü—A9Œ—ÿîéÔ;‰ùâÂ*!.˜Tÿ:×@KáI´Ì†D‘ã·Çó!…ÍÍÓ»Ù¸Sä0$˜)Š)$«ì3ÃÂý×ßÿì|óÃwüóúýÿ¶?íÿÚ©Šønß»_Ôþ(õÈÿ8ý1õ‚ÝÛ¿±ü·íðÊFÿÞßá¯/ãnõïæõ›þÇýÍ¿ü[½gÿë®yò¿Ü‡ùÿ9/ óÚ¿÷?Ûýß#üïòæ»ÇûOï?ͳþßsþÏà}¯I…rÙõ„m)åçùFëAd§ùÀÇû¿áùþïòÿgøâ»xÊÓTÑÐXé¾?ŠL2Âò—vÄØºɨx„?ʦ1cËËvdK™s§š-Gÿ³ÊÞ¿:«dÿÅ¥fÎý®ž*§ý­j à£ûy-RÄ$ÖLd ê\0x;dpúý©ÊßüXkè ßñ/„‡DŽåÁ©Å8þÌ„e v‹ÿcÈXþºl_ùHÜ)‚F‹a@U¦v2ˆ‡*`Jf•‰–&é ·îoQ6j7`eæül!çãY=îᵉ&äBB]Û”›¸{rYr‰Ë¿ìD`(¨ƒbBÃCž; UPpwÝé_ø»ª{4evX³–*ï 11<.êßò5þ*ÿ…AµéiÓÿ!ïLý¡VuÒ¢ßݵ:XfþØ|þÞ~ÂûÃúÔÄ3?ÌËèáYÌF²ž§·TE˃%–§¬*«Ý\B!ˆ¢‹Ü³ f?â±.÷S+\.x·úǤ’¼ÝûüýóðWÅ¥¿oxÚïì Ã€¿·ø:Lο™b7PɘÓÉf•ýûÛ½b/2œÿ”]\ň$Úð¢]ƒ SåðpxL¢¨¼ ?nÇGªMŸ°ôT»1Ê3‡+(E „_ýÍ!Ü¥<‡Âæ0fÊð£Ow¯öãrtãêþ Añ™—ø%}鬌 :ólºÇCü®n/í‡ã¼»Åþ{·÷ï·»M¡ú®ïÇq»ÎÔÃô„÷ºÂ‚LˆHñЕs*šÍc)šÆZš¢ðMÝÍïüa¦R òä"Þ Iþ^dK% ¬ßܪ™u#†'¹‹Ø¤ŒÊy¨¬®õ.êC†$Ϩ@©Ì^ô÷ ‘rbeg B.Îì v ¥L nöM 21 î¯ 0ã ˱¹{Ížå8H"îú•¢ŸMuX¸3yÌ&˜º¢žC+AZð(àn@«ÁJrÈ%þtì“À{6  ï_æí4íáÉv6¹bóv´¨wþšªÁ—åžoy:ñWæý¿Ÿ{áô=¾}D eï^ÎŒˆÂgüÛ½÷ª“Ïs¹‹¥EDƒ. e™ã_Ð{4ÅÜ4„Ç ÙŸþb\zV{oKv‹³5—¯ñøö{Üuôzv`öj9Š6‚eAsÉëБµ%+¦·ó &Lºa?ì»Ô ¦CÑãÌ:†M(”集$Â2¦ (FÏÅ/Ȭ™>›N?ØU…K@òbéÊʲÿÊš !Çõ¸™‹-F¡Ëæ&ø?Æ!«îeá#áprê]L‰÷SP­$nEɹH†a1fx,!B‡³$Hw¢ôÝ¥›§…zãõ÷î÷Ê}¿î}¿…›²S¯fN^' sãÜH‹BifM°rDÛ\{’n“‚”ñåÉA ™w±<ø‚½aì$‚ɰÌq±²±Öf$·UŠÖ°\ âé´\·^j:#‹­~(¿:\ï;¨nÆz_™Í‰ö®dg@é…è»÷4{Å{‹`ebýo©— jvн,ËÊŒˆÆõ‹jëæó]êeúwÞ½ñ8¾û­BÙ_ tHÆ!ß[qçQz›îzft#“€ÝÀ¾%›H&Òmj0=t®oRE^áÁ‚üeÚ^û´ô¡øG§Ú4ÿ½cÃ?Póùö®9&ì÷¿®Ä]Ûov¼õëz–ŒKZnº}{{—Á6ê÷‘8˜~»VVÏ—g^8ì÷vÀ' O ºEüL@&Ö lç\ÐfËåΗ'o…ä]ÉŒš }[’7wsÛpŷþ®Ä…$}]†¨¯…ÙcŠ(3»·:i&N«Ç‚ÝÛá}ŒDXeöë¨ßuÒ¾;‹kèóÎd@U¸ì•^ñ}ïÎäÑÔ¹4eЉ3@KößO.ú¶¹ˆH¾Ur|uÊ·ÑÂ,&Æ}þþ[ůáÆ}éƒ>Wo…ÍAH€¦&õŠdÌ1¾c (ZiŽÜ‹ÅÌ“ºÜ2@Ê Eâàb™znOáÅõ{mya>Íö[¨b}éµÛ•ô]éÕò¹h™}UÈÒY4^ÖÜ’Š/§u#TQI‹}»×Zôñ+}ßVðYݵß~å)Z,méªäTcF–»å×_>v2s’k&d^ÜÐ}ÚáEíW4F FÙ‡Õt*HKFü¹£bF¢/ÏwÝ®Ecl^ÕÌYšáËOŽÕÍl_…¯ÒÞ i¿ž«˜ÑÄ”¥{p¤ŠLlo³W¿×oDØE¿Ž¾ùàë¿?ø¿Â  ÿØ öÀ4"R/Ä Š'ÿB(˜«þ-‘F„iEÿEEM\@GaR1QU;WEB6D?ö€Q `_ð(#£h"‡÷åU?ù?ÇÍQs•hб±j¨ÛVßßßmU¯ØüþÿØs×ïòöÿ"?n‡÷?ѽ41ˆÿ+ÇötGøç1ƲKa²èÚ¹…«¾®Ëü¯®A2ø$[ ²—R˜Î¯Çæz‰¼.õ<{d¼Ñmá¤:"ÏLÔnm‰DCï;ÔaõœîeŽüÅ8‹Q¬ˆr,…)‘±Æñqš,³á!­Ã>R’R,Q¿'Lqif¾šïªvy ŒëqüàlN«|ÂÛѽÞÔ²±Hõ]OwŒN§Ìà ¦'&ýUï†Wânç üª°ÁÙ#ý¨O.|Æ2ô2]1~ÇT¨Î®"¥®Ð¤Ú(ÎnÊ–{A»³»ˆPÌ#päÄzÝè'm2½àÞBYï·6,>îX PÖØ ¦ÄŒL\£ö“Ö4§5½F'¶ÃSZ%kŸNçfÂ;gëŸ*Ï= œ‰ë¸«Ç+8Ãvã±áW5ëZŸ:ŽÜ,qgidXÃý¸(9@‚‚%Íþø²ˆ•í2"Íßðí–|äSd®ºi‰m—…Él2í‹(”âË%µh!˜ÿ£³©™ÝˆêÞZ[/%¶º¸¶0ª¼ºd…Út°¿ëít‘.m—hÂq¶+y[¹M°Pµ,8Zºã€€øW[lª—ã¶ â[ {ÜG}‡þî§öüß›…ó;è•9ÔÄÝúo;ío¾Æ® ¤½Ù%ÀñqS…!‰…Ê3c4sÎìRÑËÊa2¦y^Ú--œž'½G¥õï+æèylmíœ>œÀ¡5KÙ²9Œçb2/)ÖÐÏ|j®}dv^ù<9Ïo©\w“²tÈòㆻÞ!|;u.É&Êdóç5w‘Ñ3ÓÝž²—*©¨|ûI=>¯m»”Ÿ=Öí§UÅ’¢&{ºJJo//ZØH0ðía|Ï/“Ï2âÅãÛ^)“)QçHˆÒ«"/fceL-uÏ-FdÉœjyyÖØÊ}‰Ï“…Ԣˬ“ĹìnÛQp•“%J»g ˆT]æFAÎÞtª*wC q$‰Émÿ/Öïß››ä§vÚEi^«­¿<“y¹HÇÛö¦6+䟟*Ã9âRºE¶\ýTypŠÊ½,L1‰H¶IÙº’•ydñ.íI–°^—ué² m¦L"ZÂIVÊé3µ$'¨}éEtTÕ“D7æ œr4H!J*Ò€ )5hÚŠ´U¨±¶ª-¦¡”RiF”h6­’5Tk¨ªŠ¨Öج–+Eµ5´m±Zcd5E¨ÖÑjÅŨÀhÅU ØÕÆÕ’6Ñj-A­Ò IJRõ¸VçQ‘¤N¶YA[YH[/»ÜlùÈŒjìmùcæ~ûsµÔ1jUh%ÈóÄ"›Ô†BAzêM¨9 Jl€l­†™†ZÃó+ãÂN&ìȺeÎo½Ò’>Û礿.µ,}œ¦ÃØjÎ'k;fìç&7¥ÀtÀ¨,-ñ}žÛpѧ³Â3½ÄLKm²ÃNû×¼g¬‘³I”²¹ÖF…mTó±uk*Y(ð€P¾¶0 ¤ˆÔ²ÐèYi¢»r˜À i[ZX~¸‰ãŒ!55‰j´1mµgC9ÎæBví¤Ó³±Ž´-[;ªÃåÙ0{ˆ‡ë<Û4;94í[m&¥+UŒØ´i¶Û‰'¯¯¾õL;9Á¢ÉNÙ’˜YJ5Êó˜„Øª œ«&ÒÇYŠBWŒŽBZ„kuÚ†ÓU°,~TšÛ™bŒoø´Yw?¥¸—˜m>ZQÚ6/{­BýÒ½?¿ÃãÛ†6±9hØ„(€5λhP_òaåuÃG“¤th._â9Tþô¿/ ãøû÷ë±õÞ¬Nþý.?>}áNÌ®üAwÃ¥gI£bB žœ5Œj$”\¥’?}_ÁÅ|/vœÝ®âæ_û²4äçõǯ ‡¨þ<{ZÀE`  ‚%ÐyÌ(ªþ7Ki"WNe´“ÂnT܉S ½7ùǵsé­Fx•Ì•p ½[+"Á&…AJî7'ðïÁ<È.°ÔåÈÕñ 8UEÃFUdœ»e 0 N>ó‚÷§=´Ñ°l ¬šöŪaå¤XX¤Q}¡ÍÄ*Oël5#Ïz% Ô²­-,\ƒ¶Íd{¼°ô*€ÉRÖ£×)$÷J%HæÄ¾èRÑPåÑDÊË’‚g÷¾ÿ¯ïñߊŸ3áS·ºº?~×™ $kÍ“•ß®îóg˜¢žs#•(ºª% U^ëžž$Rþ·F&ŠÿmHEkùlšOâŒùýr¢žIbÿ{÷Û`ÆÛ¼—åÇCI!YÊB£fŠ¢EIÈŸDºƒ­c »+“žë ¤’rŒÚíc’ŽRdõp¦A¥à}´¦œÔê§A+É€MƒLS«#acÏõÈ`–_Ëù¸fýŠ{~a™]à`³9“l¤J“Ó@©úoZ•8Ijç/´o@qí˜þ¦š™“utà”rF+Y}Ö?ÖÛM9JíßƼ³R¾ßÍøÂ •½„å¬Ätæ_ÙØ|è,yÚãúï¼ô/\ `&=¢%œîw‡‚êúÈo.ÚÃa£Ó_Ó‰×}ôj ó§ÛŒUCùáõ°×a†Ë¾akØm•tù*¹îÝ ¢_S§~›ÛÏg©¾j﫯o»“ìŠÌ³ ç „{%‘³a°B• ©[ýa=‘…ÿÝ`µ€°°ÅžÃÙDž¤Ä#7ùן?jï¯+lCH”W>]ùõvsðˆù-&Ö“ ­s,®m¢ÅŸ±H¾ØO·î¸Ûñ ‘ïH ›vmm› \‹Xt@ìØ6`—VìØ\³„ÊÙ6†ÏoŒCZþ0ld¡^ †µiÝ+#ak‘i6ibm“`+Hl²V6B3b9…$Æã1µ„™et·ÛÙLG ’uœ0úËOn·6¬äK•Ùuy7ªÀIÕ\ơχ{rÔ!’ÁȰbDZæÀ F•ޤ?PeñïrwRl'ˆ~`z”ê˜ûƒ`|Y0zù:µè©)]»Žù¼xt D ›vï“k*CF{,ÖÁzrBõ=@}Áæ8xÀË;þšþå_º ëçÙ8Àù 1œ¿Ì¬Šù¥}G×w¦l»]“†ÜáÁcL;•*ù‹#„NActíaÉPvÕº€r÷ˆ@ƒguk‘|©8RÓ‡ùPäµvÖ=Õâ¦0å¯)­Ä²{¬Z¿*ØKY¦³ƒapxnIÛ¡¦ ‘˜V›˜g,A"÷Qt˜,ê|¨£“"®¿ ç{™yåчIYлý#Ú±M}Åï1ÓÍ)š»Ã9Œ]¢^\Ù†±¤7*Ã$Xdܹ«Se?Ãi0•¬å‹þU•ôÆh@{ný²Ê{b0È‹A©ò”Lå¾ÞC̽ïí1% ›LAtEÞ3‘,¬‡šx/äÚ]ej'ìC֜ޤ‘8€S¼~>ªù‘O]€|Þ—×c²ã¡€C–¾%æ!0˜ÉÃ8`¬`)k\»$/ޱ‰"´ŸíÚ%$H@À\ÜgqAÁ‰dd€äFš©‰Ë„\œ^ȲÆX á-|D M-²Ú$\èÚî%ÀDEÐ-ªb`/BìØAaN+7œ›Š f"6âuí¬®l,-B, t±ˆ¶”»à´€_x{oETQû˜‰AvÁv¿pÿ—_OgÔ¨õ“Õ>õpüHtm·¸G÷o<ÞÄðÔ aŸÆXB㋃f¥ÛDÞ{bꈒA´oµ§‘=ß×]Ök9ìõEþ»‘™ì1#Õ‰[6ˆ¦!¥¡›- vF “9|‚óL`ežºÑ ó‰mg&o6cN)•­°˜ÜBˆhA¯;ù1x"÷‡q‚‰bPô±ÍÐ=+N²ÛÓ H:Ò°‚Î…œ’® ± |ùÃ"ZÈ\Ž#zhžHO­§òèly¶ÁJAé QtOwBF:¡ÆövsUœÔ’6¤€æË<ˆƒ:äŠ.`ÈÙk9 \Žmè¸JÔéËC|p:-›Š¥"Òèd=5¨dR÷½Mð2õtÓ!´ƒƒ,ã]!3‡¿k—‚Õt©ÚDI2â÷ÓÞ¤‚I˶õ3û /]÷–{hÔÝK>59 )Â×Z îB.`¶lœXˆ‹ÈáÎÚZ9Ÿ R¿æÛwÍýꉷD}¾5~Øq­ |Èž@ S„3æáu…Œˆ¸£†¦@›‘$ ±r^GÂ1+£n}¿dAmøñ&yÕÕ½z|ˆUøg_§3î3˜óïOì¢îØÊ?ˆhÛ˜(a/wHû#ß]¼I]A«~ ”̬ç„10”*+³ CŸô§7d0Qr-Ùá’8@TœÚÖr4×k†Ã¾¨ÝÅÏȰsh  ¥-kuÚÌE„I6ц"Æè>×8‚6°¢,æ‹R‹«9 :¦mÂ=:cì4Éëo@zÛýCAöÕu¨9CÒ!ò¹º~]@Ä;#H!«÷µ’Öb¸6w H ö~â!ü3ô·Œá΄½k·Tâç¿0©‹OkÝé£q1ùÆ©ØëXŸ­œ-R™Ó³ý>Eòöá b§¿—›Ð~÷3–!ÿŽ+ë7~d‰|:e–¯ÖŠšž}hØûŠ«ŽuÓRÑÞݾïÞŒu—êùÝqñÖÄ´°¨_¹$¢ǵ,þGô€¹:Í>:œ^ÙÅÆUSéó¶nz-”¿?N‰Ÿ9_2pלsüÇXï¾Ãô¢ë|ÂÙ®^¦9‹Îrª0Ø,±vŽ×}Q7|MÄXJ«iÿ…Y¯ã›‡áåî=f2ó[…u¾ãϬÅFHËe0’Ù2%ùªÙ¼…JÉm˜#˜„HÑOp2@»«Ÿ)Ÿ>°°ò9½pÔ¡òøaÈn›ZÕyu»¿ËËÐÓ¡¾úÇkÆ3tÜ îå°G…:h[|éJkçE4Nn핃/,ÀžÙµ¨k“õ¨8!¸X&ëykkóMa²L‘,»ŽšŠÒ 7yrÏJÐvnÁ9õíúæî/Öú}ø´@햜Ŵ:ц åñ³q¼ìŸ9ƒÈ¼8É[ÎãíÃ×É·5–Ž}kœt›Ëªö˜¦ƒ8ÂyàWHT@ã3^7œJ<Þ³­tÖζGzÏN¨å«*›Ë 06Рú(ý=6˜œJû€¦_/é™/ΡÙeøÔ\ä…Ó¶n†;XmlÓw/•Û9¦zÍÊ•åPÕá±Ýáwr2Q§½Þ|–Å®Ót­‰KÛÙ›rÀdä9¨ˆn:ÑH `»!EÎîºÞo¡édâH#ØNè7Iý^y®U&ôÌ3F¯Éª \É&”ÈL@m8©ñ·/ï­ñq §ÅFÚ‰þC²Ã;äÛL–P@Éë2êh4èÞEËÇ@‡ƒ¦¢Çq”vû?6šõ·É9V•—s¥f.G+â·—ÄÒ‚Ò"jvã%|]ö¤i <9épÑÜaÙðÆ"»þ*‹l‘’s/á\äÚ'ò_óu˜ü|œŸàÚ ù…› rl°±6,j*¢×éU-~½v¯•_Ô¼[F*ƹkrÑ´}U·@Õ|­\¢´c[6ýwV¢PZôªý­àÑ¢_ut‹I=·¶¼V-Fª,m£QcEnîÛb*6£m´moªÛ‘µZ&mo–ÖåUí^ÛÄIQ£V6ÑhÚ*C`Û›šÅ%£F£Z+AµŠ"6ŒTh£&#lZŠÔm£bÔmªM¨±«1¬Å£mѬQh¶ ¨ˆÑQ´REƒb(¢£2‚ˆÛ,cEhµ£m“Z"بѶ+bÔjEEA¨ +hÚ,Z½5ÊÐ`Û£m£¥W+cj4–ŠMc&ÔkF°Z F-££bÚ"ÑT1‰ EXرhب¡+&±¯Msj=7MFÑbÚ(¢¢“i1«IEú5ÍRmEF5hŠ¢µ=.^øêܯÇÖºâý(âNíÍО!óJ9Ù°’(–¿nÏZÒ þ®¯v+mŠPl2·[ã`ÚÐ|=%®•Ž¸Â©"D;.Äk;ØÍtµ~uÌbÍÃûÞþ¿ÜÆÞZæç‘Eüœ½tq…ém½ôÏT$²%|v¶llAç·3Tä MlIIl˜µ™ÓõYÍjF~_ƒÇ‡h1$F_¨‹¦<  N6„Xˆ†ðŽ;´J-~“O$ªt:FWl²òãÃFÃ|@é#f(†r™c!ßüîýõ-„4T³¡[RkRÖ»†ÒX²Bì¨ï´#ÂØ6]é·\m&m&¦-¦–Á„mÈLq„.QЯߣbX‡†dB,¹’ÇyV$zh“2Ì tÀ-Ì„òBˆn6˜œ?1lˆÑ]ßõ8îëÌ!³Ó+fSí[©VƒdŸõ«R©"’G]+m²Â3ë½-ÝdÁë¨bFΓ¦°­ÆþoˆQ-vÚÇe—ÞWæ- åïןDqîÛ2F’ÐBÍ(½>Ƈ„c¤p˜ UÒqSk¸ðõ͇3Þ—.±Ên½à7}N ¥L¤œ"´ýs÷©º»d¾úã'YÛ1â{ñ­ LWP´ŸáŠq9W8*!7 –´ÆZWîô¯öyDÜÕ'Þ›:Îß´°§ !†þbø[1½6±vÇYwy6¹¹ƒëÙ¹ÛvuË·G¼®’Á¢’Or¢ñÖÔ™SÄ 4.žÉišºguýyº-N±ÊC¯UѽÁðúf«]t¦]¦Í&†Îï5â¸`-ÍÆ^ÕN2pr±9™»«d¢Æ˜’’& ­²#ê¹rURTÇäŸóXë2$xl ލè‚ÂNM6$Oó÷u}8Í-(ßwlÕ¦ÆÀ\‹™0@þPxvY»w€nÞ-—#¾uˆÖ¡Û9]›[†®íŠ_gRìn©úlëWDE[‰lì7ÖÓZ2ýD9ÏÕ©ƒÈI°®¶Ó~þ¾ˆæZO’¬aXN•œ¹$ 6Ñ¢=xk‘¾ ËcK8Þ^šÎ@¹ÔêzCi6Ø~ºƒi-WÎ=ÕkWXÜŒvî\ 6ô[.î…baѽÐéa®F™I•Øm 4[*9dÿ*M*4! Æo îXRtÌÀ )¶Áлí*=(‹tlL +Àʹè€Õ{ó§¾¹×]ãg7aËóÝuÜ5ߨˆvlOáNuÄb@mk2è~a \ò„¸rm`ÆÖ6ÄÈjKY_"Z.ÞiTï>6$p‹ç¦^¡é«Ž ¶bÛ2òÃ{ëf‰ßß1m Jõ‹!}Àj¡“®<ÔöÒ ¢ì¶Ôdz½«èU×Õ/ô‹ûÉ©x¯z¬}8d³‚ï÷7±ö§É‡k_¨ÄTß?J½Tۣʼn³¼ñã;¬ìãÖ²¶M§Š#kªÙ§’ ›øæè_ñº8ÅÇ…¢]~›Sè±³{Û¿}Æ|"æ ò_Â]b¼‘r&‘ŽSUëÉ›þv‡+‘ò¢ñòÿ`ªë8!ªˆåë­­ô÷_ãq‘â‡óäxg ë˜ÇÓ¢î–)¸áÁeßé¤ý°ù"X½K/‰>áùòCþyž_4Fм·½]ùÿþb‚²L¦³Y·}δ_ÿÿÿÿÿÿÿÿx >oü€ÁàwEU";+HDªbhl %*­°Ëf«jE!$ÖKEµm«D¡•U­4­YhÍZ²Ôî (¥UWP­šÖ­¡˜¦©4Óka+¡»:æF…š‘@PÝi@Å€ uÐt®ì(ªë£¡Fæs­Ñ‚k@5•ºuÛvÕH]£`i¶1¶v6íÖé[d%LÓZÖlÝÙA’•uuÌ@U EÊëw]0Ì•B)R-Ë9ÂͶmT›HÛ e$H&µ"¨¥"Ñ¡TŠŠ ) V°ºÀˆ; ÖèŬTªD‘WZ’F±ØÅIE@*Q¦ËJ…AA)*6ÕUSM Pª¤RH[eZ¡¶4£AI*! }ðÇÉT'f*!I)À„(ˆPP ( @¥A"¤‘E@ˆ¤’J€ @¥ J"$‚AAµ:¤¼}hSðh A“Õ='”i¡* ˆD*6”È25¡[Þì9,-ÀçŠâ7,¡ O$<ˈˆ-ÑYT6po!°<Î%D\E+|Ù¬BÕüÚ»^Úá•㪜PôépݤތהNh´èþq(˜S±â'¿itã>R{e"JŸUëïÁ‹¿x¨'/ÕÉoÞXËmûkñ9+(ò¾ÆÁ©~ѰŠs°Ójí±r™b ¢–©:j+ ¬˜«y3Eéjµ«¼ñ«k; iAJ§êe0¤˜@¢Zô]³ ­Í 2Ñ6ß>9ƒZiÎV¦4šXZ©‡,µÇ5±U;NLo= ÉZÀz:Üêù‘‡ ÏшÐá³ñ( r²¶6ú§)ûj†‰£›®•­Uú=üÜÇ|­½“Îû%;‚±Râ‚q.…F¥Îa^oMR+XÍŒ«ÑW@.µ®óÓ†4.›cK(û†Z=dc•K–ƒlÓynhÞØô¢ÊíÑ+T‰Ý¡a0d‘×"C¤á¶zx#T>]³8'±ùÔDu¸ìá~ïÉ¥bÜÆ’ÓK­ óQÔGPË9Äž+|n4 ȉÁ Xä§wŪC+ƒœ„<¤& £9,°­ÀmñÊtU`5FYÌ„*$ ®†«½;c'Xèü }iRÉ€93Ûä6jl 1Îë+ é,Ÿ ]ƒ1dCȵ;P…C²¯xø H¬b[”:f¨Áu¤ý\ijAM EJS†æ[ܪ'ÎÜQ0#ðJÙ™ ®jW'T´k°¢#@‘Þ!M,º±|MÆÕZP·<”ç(dëœON•„¬x{ÞÒ_'röå)É÷Ö†±å¥fà/“4€¸ãÚÀŽÃß2ÊÞÕ †èÕ(.ê­ ò+\ÞLÚ´™8ƒt¬].èkBHƒÔ#C@su³iáápñ<<Z¾-ʱ­ µ­phk@\¼¤öaĸg( ¢ÉXó/GdÑ ³ùUº«ÐÀ‰=yUÔögƒLj4Ñ@€måÓ­"0ZŒD‹©„†+D<¹z“­îµ’3peÐK.œV®‹ŠBtlMÓe²PIЗu%•ŠÇÓÃyeq4óhÃr;ÉÕZÍáÃï;Ý c—»£eÕwÙâ9xàôQ«;Òðb¬L‹8cWÂr'2•L™$c v…• ˜- úe¹9 V¼U$ÝM4Me\CuÉéå„80w7]yšû”FÁ;»•ƒÂ8Fáxx¥a=úÌtwjâšá#Wêû—˜±ºZ™0‰0ËÌ.Í’*QìÆ…‹¥Mÿ‚Îc&tP£nÏ«ÈP½Ýàêwo —*bQ ãgiʼ¼_Ré×.ílq”hî­¦wbCdÊ¡H 9¬«+`뎜 Šw½Éz\æDóCµ›S0cdÃg ¯ØM˜õõ¹™¥(/Â}˜5ô|¹OmUb‰ˆµ2½íä…¨êO¸Üz«ªå‘+à|£-qXxEÕTí¡ ƒZu«Á4a=2›ØceQ .<‚Ó½šû+2çãíõ}¤3#Ø@|¸ŠX,ù3Òë [Æ¡A‚Uêå;4\ŸHâ¹nžÎdÅÓY5ТŒ«ÑÝÙ§¬…l¢’æ`¬$Š1'(Lf„ÂVÝ—ÞŸ•jˆY{ê4rLÝìÏ5ª‘‰#ÙXóWxEÚ¦í¦Ù·Í¯.ÕÍ·.wZ³L)‡ÀÐðæ«ðä²OP³¬jk¿i|ùo‹k££ná5ŽÅ0y^§ #Œ«ÑoG¿X¯P`dNhÚ²’ìàà#¨ ‡Ë<˜›\ô–¾U{,pUâù&σæöƒÞ_6¶­‚„ï"®T—Ýn+Á¥ýFk_´¯‹a>^æµpS !Ζù>41½í­S¼ „Î)‡ -º%°[~ænÆgº†£¾oUÌ3˜)Åœ‰"b@Áa¼ÕE»-|LÕ2f |YÉæ]dJv«¾+‹€èË ‘M/8곋éÚƒf&ÁÖ´6‘`ÁÐHÈ"‚H1¨€¥ ×P2¥u0ÊàZei˜æ– 6­o—°.ûæWB…ªô‚µ„R% í…[¾ËSÉlãh˜Ž‚R%Ñ\5>¤–›É`6eB MÕçd³,ÄözîZâÑJƒO[^µŽ§%w úËCšFQ1‰H’Dü–ìú³$¹:բ߈à8V]T»¿,ÑÉ8k¬vƒÃŠ&£¡½VŒkE0òe:©îZ‡-0cPüçÄ|É+áÛ0H–å”ðð4/õJ2A@œÖL€ê7{åáuS/ÎgßÝkZÔÅOv$é¶¾˜YVÙ€ –” ¦V·U$A”¡^4³ pTñ\5‰…jf•[Ò¥uCÙA‘9oT DésTª›*3àÞ²go}nQ¨jóB«F)ôTdö©³øËé¥.)9(x¸¯­šzš<©wDú¯¼ÇîùΙCžÐ©Õ6ñ+aV™äÊ$æ^È`½‹5U{—e¹-š-v÷žsÌ¢²¹Îš†L·@áq rØf4%P”€ÅžM_½í?Öfù†üÜ)ÖÌ:th"EUŠWºû˜ªŠ5ІPøá»P-éÜPò5|Š-–8–eÓ;ÅZÄ¥óꬅ,ADÒ´R BejÀ PËW’º,cu/¼Åõ:—ÍO¨Æ±T§»ú=ÁŒT{ªw©l:1Å1‡Ü¸¨¬àžåFĬƒq{ÅëN1jéètÍá©÷fH÷y=\ ƒyjªåø¡9NÅ„ GDz£žØBY´Ñª…ME»S‹k1]R2"~û¿’Ï';G઱â`7bTZØT%F3TË”ÊóS{U•±mëÎc¼ÄòUH¯RwfîÔS0bp]sÛ`öøv³ž ó._+=ç2ÑXx®^.ÅVü½ë8Û?%>5}Á(†i{3%…´,ݤY’@)d+B}Îå¨ôbîŸ4ÉdͲ{u‘ ,.— ±QŠ«S&¢¥ô«ABônW›·5 M‹Ã%4MBfTíÂQx•;Lų$à3`$¨“×vqÉÖAžT(2à Ö¹;ÝkG5rJ2¡KO·¥¥Á^¯MàeÁÃT¦RÚìôa‰ST#_[Ïeàßµ—Ëðp›¿Q |·‚y‘Á›b,ßuPIÎÃ*F·ÞÒKIÅ$†$­’9i¤Òć¸8o3ÜÏ'ÙdaM,à™Ax¦à\Ç÷Qw­ë… f †h–]Ö“W…Y7È%3¤8¤cuk2Aè¬AZô9s6Y¥Ï•~uØt߈Œ«–u S‚_.4†ö+{¦¬å$5((×{,êq¤NmÔoz~Ò"7 3Ê2¹AÏpV¥Íà~bPÎH,í^þI$­v`_¹3ªÙŽ­í·…ƱҀicE} CUµ¢®¬ÁW ò Áaäi­L¶iFýë$dÍGªq'€¦–ïºq¬JªÅ%cu>jÕÄQåææêæ$¸|¡gÚwܨ"/‘›…@á\x\ÌÑ÷LG<»V#>í𵕿<·[l  c™ŠR83—%Sƒ*<ŽcÁ%YYpwZ›‘m%¶-mÖ"t“¦¸,S²£œ;l&_H ‚BhòVÝPn<ž•Wó]Ž¥“¹y;¬­Gb>Mµ-qën°ftÎP±tiÞ£vöw”†g;Û¬ÉdnS!Ö„ƒzsñ7Fõˆ´ZR¨`€i½LLÛ5µª3-.¨–º…b{z.=1kvÛÍîʤ˜Î™I“àŒ(ôœvYÒ”ú bS!L÷½ä]² 9.ÙŒör¤ø¯-ؾ« 6‚¤}Jyu@†îЦÈ4X™F nFÛ¨9™ë‰Ì]˜uo%*´\Ï:Ý üË !Í”ÜuG¢ ¶“2}»õâ¡Íö¹ŒÂ]ß)¥4âEi3ý b6³2âP´UHÞû^Ux±˜¹»-Jä—jѳÎ7pJr5ICõÞ‚Ô@‡ˆêáWf!X}"aBâ]Ô"9JÖMË¡ÙëÝŠ.Í=ÈáìAí»³0—3 H"bëÞáËæäXºPýYɯ¹z¢Xþ¹º½Oer”ùÎÕ¼ó¼ †Ö‘ °åˆÚB¡JœÁŽ$¨¨Ü—3:s¾·‰*pô‰XÐA«”hvÓâAs7Áw1¼²eÃNìñAè‹¡é ðͺyywE¤Óž›áñobŠχ¨­Ü>ü˜D*Z]ˆ&¹ÀTÜ(%“M8•›ä¼'°ÆöafZ–ÇA›½M‹Lmû’n2Æ÷`©¼ž,ïÃç]±º†]á™KÄò—¼]—¼äÝüR/,ÚMÄc±9U·([Åô‘Pª-LT œ˜rwÂY§ôŸ í±—¾oÍŽ> ’¦£V.X*R.?-—ÔŽ»úg•9† íF/ºNMËÕó;êѽh$aÊ#'µRèÜHxr¹U·óJIåurõ6NTÎàž%ỘJ¸tãÂäÐU¸²«>$âhÛÁK¬Jõ58²Çs7£_Œ{ALßÕ> Õѹ…„G†;ŸJsë}Œ¡†DUhÅ«röCñß6g!¯cSL°·ˆ¡–ÑÉ-¹¤bxʆ.ááC“­œ©3ðæ’ˆÚš‡Fp³lfc©(ªáè§&fîïåkÃbû—¿MpàYhq+‹hÂ%’ÚѺ™nøÅüغê\híöWk™›6{’êî†ÐRáf7¡BžVuš˜‘e`6b$½l‚bx*G Ì©®Â9ó†ÝÔ=èÄVŒ9îÍÉÒ쥲o-NcTÇôédägˆÔtÃCá½í´Z:'·_éSÜø¡[.ò½›·V:3\ĈcNR”3pÕlZ¤ubWåï/Õ·–‰îÖ+ ^e^ï‚XÌhÊ‹¹÷Wy›¯»·œWª4аŠH®¬”Ñ˹‘oä÷*›¡pou “7WlOºòÕ K ¡Ô³'LD†Ó銘RÊ·ê¬xȬoPºöÓ7–*{#©JêÏý ÖaÖR.ç/ֳÈ»B9^‘/u'ŸEa;’÷•.Ì*à ØÃTå©9(0‡zÁÆoÉgV¥º;Ÿ½Ê2&‘Rk•oÕ%aH+ #ª ƒ£'jˆSè0¼+—9à ÷Ñ“oØžpqû9ëj`á²0‡€â¼L]]-œß-˜ÞR:[Ú¬³s©f®H`~™±]$™ÅR+èý9 2 e¿-7œMFÉ4R4e´$àRE¼\ ­ ½×©bàŠšU¬U¸#Tæ¢Ë7½¾0D»s’m9DŠ¦Ù©6ª®ÍL,¬ª1/9ö“ù«ä;Òo ¿i;Ö^ú„6}RÏmÄ!´1P¬í9U,UшƊœ×HV±„ãsÚºÆrš|)ÍÚêJ±ÔP³Ëyï™A^¬œ$^Rôp 6NÛ0¬ÅG#‚ŸgѯY,iœmŠ!‰™lh—‰AhÏ/‹²¹_‡¦'Xë7›U·±\…ÍÇ$Ha۰րР8oRçÊÊ Ë±i m´WÊÒ»,®¥3Ú¿Í+9‹Q«Œ<…Œ  ÆjlçË Ð¿ù\&j£ÍAÆÓ»$ c‘‰~q¶>fë´ÔñqèÓ…NY Ãñ¿2"s½:ÞF¾Î¯º#0pnb¦Ò£“úáÞˆáíž÷=ë'B¬á:†Ðw(-/¡˜ÅÔÞ5¢ÃK,5Q_J%18‰šI8ÓÌ·5ÅëGq¸¼ áR9xqňÈI ,`Ì)@PáH¬šw¡ŒH’ŒcWÁ–çI¢QÅ¢U  md;ú½dšÒ×,ÛíKFþ©2÷£t…×ປìÁîAôh>¯…%ž ;pÞ{Å︬Œ£µ¢æãZ–çI©ÎÓ|sH±Ú[ÜÈ»¯k9¿8_Z—À'¢ Ë´<7„¤Ìà‰u¬çjÛ·C Ž àr… Æ«j«…Ò—EÛ§PîZÄeóR›£FP‰QÞeë·K•¹¶Ú¨;[‹0åeØaJZ0‹ŠÄäš·o˜…ü•ÝçÖy¸È'u½òü¸F@`²‰*àæwêªÜhä÷¶O6d@w‹€Ë{5–¨VÖgK²öà —Å™¼/x‰\?ÎŠÉ û{È{è Vª¹7"¬¦VÞ¿&«_1$JäŒ&œ¢„#i}EƒÖ±RaKÜ‘;ôÈ­ð¡Iág>8©cU3¬GYFY0n”§Ý{…qñW',ê.ãm#úï›Ü¬3Œ‚âVâH\µ5-åÖn2y×¾é¹Z¹žá(ÚëÜÃQ€˜ª9¨[¼B3oݲz£ÖÖÔŽÏG¦#zÏbÀÓ_ ðHÐѽ_S4Ey÷sˆ$ £{‡WŒ·Š(ôFš(Ž Øå®JjŠ©Ò.«µ|‡s6MÒ!EÚÈ'•„übT— ²ÜåÛB0gP‰J–k%n\'z†'pö½ÊbÉ éŸ¾Ùï®z¹bÀQ²íJÛRÚR9·-\J3ÆÆfíîaȇ~ª¶·ß&6W9½¡UÈRUžŒ°XU –´¦Wo8„âcÚ.·4qƒbËa©\˜›ñÞûÊÙˆʘ­‘{î]­ñsƒ+Ó7ÍÔÈ…£M»×™ Y7ë´µGà…“ÊYsQ£0õª)Ù²®´'¤™ABQ^G„=N‡V¨Ãd¯4·§Ô®÷1¸µÔèí˜Jïš«í÷º¡æi ' À„±&&rz÷Q¡È÷ɽÈG–/{½¹}¤|¥NÍã(Úíkꩇ0b6Þ¸²Šë›Ñê£A"ÕÉÕƒÉL:¸“ßZ6-*´¾çpÌr »G-2×î—™¶‡´Dg\êD·Ï9VŸ¿×9…:DÎZoAþÏàMÜE5퉛¾nü·ˆ8Ü2›Aç‘o·Õòáe° © ûR8j7c߯Ҿâ±e$(æè >b a1¤‰Md®Ñ"•lwbDî1gMá…Ó:,¿EhÌd4.tq*hy…¬PîäFD%®öq˜Ò¦×ZÅ @|§_zÖ2t{B‚wÝàë¹Ë‚ÝÚº%¨zn³†³J1ç°ö²½¸{¾ Ooß}gßx2û¨\ÌŒ1„hjØG yº<Ý›­‘©…šG†j—@6›ÔÌÔ.„îz›>[·½Z‘åÍ}&Ù÷9ŒÈðˆì—FXïékOõnÚÃ>[[Ýo4ÚsÝVµ`n‹)Öi!bÿCLàépÓ%Ü4Œñ¤0“ëOÉ¢7)S›K&tQŒÈ&N­ µ¡‹?Ú™°4L È÷9@úV…ƒ\(s!9Aey¶Þ’Ö ªoÀ`*oZ5¨“ä veMoPÑÊ¥¡rSßVT§gX¤ÐçštRx¢@µ©Gà–xòåž—Ѳ»ú}>X"w›à.r˜ÙÖç ¥’‹#™uxø° ¸ ¥Î—t©Féårµ-:R;lz©<šR€.ôûÑÁ•–*‚‚Rj}›« £<ïpÞíÆL‹âNàŠ»?ML5q8ñ‚­JË¥~¢Ö+]§{0âéŒN" &Ý)¾ÌÜ­ˆB5‰#bÔ$žz­,\…\­ea8°êu†¨NPöŠPH}í<˧2øz˜½˜C§ñ8òìŒs—Cu(åÊqI¡Ì˹nõ—¥Øƒ–ÕLmx626]ƒtk.nH2Ѽûö¥ñ´ØÑñÔõk×$ÊePZ\%GÊ“‹Zººy’©ZH¨{Ó ðêšçy+fL:gÓ­Õ®KùJ54¾^}Ô$x—Š6D·Î¢¨+êé ­EíÝZQ–A~õû½F$ î*Kà}Í{9íIŒØ¶^í¥¬ÖCÈ0ô%„R(æ•âW°·´=ÖýqʰmJd9RwÂË´3µ´V—³e(29Fœ®j“o T{IÁÈà‘•J§8PO).£YÎռ߱Äö»PLýkQ³Œ—$á:‡Hw÷’9º¢:ÈÂä+qbžƒÝ=Øçmd³$²¦ôv_}Û;­¡2`,=!TœfÕÖŸxH Dhö3Pa³ÕBœBeºj-ª±—°Zæ‹Öá*Ûtj¨˜×”¤Fšùî3~ùKR ¢¶w7ZtÝÒidÜéu—¹¾WÐm¥?S½g¤xEô |®¦v¨i¦áý4y]ø:Aš‚ÈÖ¸ml¬ô§æ‘®8'u7me£Ö£íWfr8œBiÚ{«\I]’ãUŒ€ˆ!G%)e!Þ:dà¹^7¾„a!­›®þ½—jÉïÄ'ú®[SVt,:OQšWnQ©…Šeª‡Ôi›iI)ëEPrŒ¤d¨—äc9ñ&n ²mè:Öµ;~kKÜ.òÒÓU_|Zê®:ô•D.?æïGwm2äÃwÓ9VhÚš‹‘š™å¸¾±nC×Ü¢Ù7¬®¨ø‰\%ß’c}ÒRó ~Y+¼Žùãk¹?_ßÑžh h¡­3ß)ÈÐ_æn¾}vlÚÄ Ó|Ô)½VôNëDU™V0¦+{S—Å3ÉÄuåVª£fÆYÔÞ ª£8]½~ªdîaŽk;×2»š&æ‘°úï¶ ·º23|!„£¾œœü{’2³…SGá6ud´qHâ#2r§¼ïÙ½}·+æáÜêàH™ì'P±Û³zê’ò“Š/zP0˜³2½ãˆUg4b\¤[Yëtó›#3×5<(KŵSu,o‰e×—Þ ßfÑ3bü½õß–¬ˆ¶ŠG仫£-mÙŽÁ£ î¡Õ\4¾•¤}ÏiNÅòð=áæ² W’ʽÄÈQСÅnpûÒÎ… cP#[´\HDà~Ú“rœÒ…Q•ɧŒ’á˜ìDTY|ªÝÛ¿oV:ÝVWm¾˜ž9¼v1 š—;†ã9³U¯(1`“WJ¬f¨,UV¡î-z™ŠyFÑš9ú… ïYßºÒ £¨&³ñDÄöˆlÉ=“Ñ NÍèÖ{F’W©¿Õ̘p òËéÈSÍÌ¿Q’îèŒd4"Ž:ç‰-w‚©u :'k+(ôÒÛ®X ­éàÝg5µFž ‹EYK\,ê,HØÞµ@>ª­FƒÈ³—ZNM¹Û÷:a¬ÅJž^¦h 1èêŒé³èž8l· ¥õÚÑ:ed9T bG'Sb>RïPBÙŒ€úEÈ¥Š“sϪÓHiD%¡Ú(ùÄ’ˆBÑœEà£1Ì…äÁ|nR²!HþxGpi³Li5;Ò%—(¯Š®ò{|£…Î×'ÔiÆúpÝ)ýâ{›³eØîéùàÞN]’4øÜò1ÀU©UCËd¯fAfF µ½B e(êrÌÚÝÎÜ$aMBË?'ò¢5¬Ö£ˆˆç*ÙjÁŸç´ž¯S¯õÕ%±îRúç[À`Úìïß^Ðäú;gcC.äT?™‘T²¥2ꙩÇv/koOUH;ã3=³!#ê‰Ò,ÒfE®Yi‘®°«% -:4CžŽw ­¡/Þ-¿±ª'uìY±‹®w6·Fêi–š°ÕäÝLÍ|—M1(Šeíqá&-¹æ]þô×éÃH5J$ãÅd³Ìnû’VÌU¡ª*ìƒ'rˆ ¥ÉvË ;ƒØèŒÊѧéúæçuÐt H #A¾Â´1q›LŽ3®Z¨‚Ñmµ—¸FçðŸJScæ º‡ÜiL¹{¶zAsíq*o®é•ÁmÓ/Pš8rÞ»6‹'×"± ‘ŽÌzÜ÷ºu RHÙÅm™mH[X\EÕMžÅ¨&Azq¥XPºl=6ÝTº,y ÏÒG!%°‘žZàâ¹bfBe[4pˆäB–·kôÌ™¸Ü3~/‰®ûªæ&Цd ðž¢öGîàL=¶˜Mº¦êŸ—£{+pÈ #³Í¯4W1I95£Z˜]—|Ñw?<è<2¹ÀÍŸ´Ù0ßcÏ/»!K;H*ÖY²`¤ûÍtpÞþo­uì.fÖô^ '¢(÷mW&ÈlÏ=³{áÍh»S<15-ÕQ%R‡jÏ–;¿—\ÌßÎUè÷ˆ{S•1©ábë«G$uW†}¾_.ÕÌÉÞÜ‚Z„=(RÃÐvÜ\9ö[º° >¦.Ü©d ÌËŽìÅŽÜv¦ã\Ç FÈGã0‹4ÁÞÔ 4&š ;¢èП2ÕÔà UàbìY«³_0Ê ^>‰áÎCù<í£~à’zr¨³«ûÍÐøCæá;¿\¼¡º‹7‘û˜§¤3O¹^šEÓÜ sTxP€<–Âþ¯îÖ¤8c{{ÈÀE˜l¾¥9Èñº=Ò[Ä›{+2a$×»YI¢¡ƒG xòªÅjåÚÓö”95s¡×µ6k©¤Ã'e¤Âh†™ëm™V¹Îý¼Žëy,j„n7,)˜ñ[ìÓ4d±â-à ŽDÕ \6&Wž‰NŒø«9G00ô²u«:ˆAY¥‡°ÖrG-²J®Z]‹‘ 96˜9°š–‡õ“gã:4æ­ùÜ!¯]`ƒ§â® ø ;]`º!;—cÉ)0´R†™u•8ÏJê.Ûsɱ'Ýc¿h›jt–vëN¸üê\¨±–s¤dbÔÒ0- Í,nA=å^!Lºœìµl²Ú>íÊ^¶§NIq ܶ‰ËÏŒ¥9Zc·Lw&«„žæwÖj=WJs{Tº÷VäF[#ôáóP—§ðH$¯}AKÛsY² ÔYÀVßÜ¡àê6žœÍj¶üe«Aä„ rQT¬?=hM<’‰NŠ©"F”ª•«ÛB;úîåjT!ðÚe{«+9cª65èE‡˜ÈïIëÀ^IðvRÞüT/ %a AÖÒkM¬h‘T´‹¦Å‘D3E2‚². DP%¥‰ÚÕ’TßÏ%ß$ÈMßJ|BŸ‹· Y¸Àá Fn³ï}Ïw³å óÆÀ’ xhCÆ£wj 3wÏžC‰DR">°ÎhVL…R FeMg½ª!´ä®·sré„z±Çû&ú˜W[N^"r¿œ¢›a>Ó ‹ˆ “½øêAw0¼ eû%±¾>Ãð ÙÖûc½¥ÿ8× •>Ýè˜"$>Ð_eJÞo /4 «¬Zk–í{ÒhŒq·UÅ›æ‡ãRm6Ô…³£CEw2†,Þ!Q,÷xC¾™5™¾óõZfn¤pürœ@ßWÔ¡ó§§Ýǯ ·»¼1¿ÓÄ××y%îGߣt§:Æ«ÁžX»€#r)áÚ#Èv‘žÉc›Û ut”ìÛXÔx”Jˆö.U‘Ø) YSmŠËß{\Íê¬J¶$9d Â;6_&£P€5› I0Z 39ƒ¶*¡åe(Êõ¹;§C” ?A­£¨·Í.jéÑ[îèµö¶¯=Ùo?6½üüšÖ´45Í h hh~ó1…û‡W¹$U§öìTÄc¡:¸KxöµBá3¤÷©rL¶vì]Û«§ò³Z×¼4#S‘$ "’±Z(x@åVöMøè Ûã.*—÷‚d—bºTvÅÉ™4ÒTMÙËàÝÞË1\ÙP͘4š9µa#$„':ÃñKS3ïE­ü U-OWX„ο~{Z¾Ú¼‰î :Ÿ õ2l»ûjæì)† I¸J#téXÛ¤ú  ocµ´2AÖÎBXõrñç¶Öž¢-f)vºÞ2ÅJ¢]é ïh¹p½!ëv„qe®¹×\¶G.»¤y›¹¹G›DC#§HxhdXÊLÝÐ%êŽÏD‚Ý3ÒIã#þ¡Ñ˜KÒ…çìw+fxAV8^ÚTOZ†åb²¹¡ ¥4¡p¨äí®ËJŽþ”{ÓÕõ¶êE¢ó…Jøó)í¢g³¹5ݱ.;9Ô;ÑŸ$™¹ÍâÀ{÷Ê·;„¿ ÛÎJuK¿ Ý¿„•=ßTà¸VÃ~tx ‚Qê; Øñ ñ{ùóO>>¶6?Qºöx§|“,YVSh†Å¢ãæJPH;û¨­|˜pè¡U¶›S¾×3mf $Éu²Šéx™¾ô|4>S_g³ü«¯¸Ó×Ůójî-ó¤‘|ú?gÑérOkA:&J>‘ê`µA…@Z›ÓžõƒV{Ðf»¥VÈJºNpã,Ù¾m$¼Ï¢"Íh;çŠÕÑžzp…iLâ¸L:ƒ-¢mšÞ¦¦[ÄÙ8 Ós.êËõµ72rà«9®Ìh³'ŠÌ}ªQÛN´;:jOùë8Ä„N·Q¬2,$±v=ï®J«zvµß\:‹äOÖ’8¦1Aø##R$†o&—ÎH}aù˜=wÍ^È]ÊÝ7¯D ±¡= Õ=yK0È 0ì(ˆÉˆh’´ÝS™dÜÓb-«[ùæ%îš%zÅ;-±è/­ Þ9ª}6Š åÕ3‹E¾œÉyÈ×´Ùºÿ2lÕd ’á¬'Á-¯jÂÎ^ÆÛ²V.T¹'–Û~s)2Œº>§´}õµmÚȹ¶¸Ï}}?UÞÙDg×ͰI}´½¡¤øß_3eÞƒ“.”ì’HÍyï£lƒ™}öþÁxM±Ú¹vkÐ(Þ{áöÙwl pÞuJÇ|V\Õ°ÈŒ=šI78ÊÓ!°pÚ;J9Ó÷H¦|æñHàh “*KY7ÛT:Á´±Ž8V!`÷³?·—ÞÉë,Ahº5k¸m:¾:º…t[Yɶ~¾l¨Ö×ÂRÞÄ>÷ÀI¾´…|§«z¼D5gg“oå;€u’Ëìí9yL­mÏ}•RÖüðuƒ…κ<óS¸4Ze`ËOÔ˜•d‰•JêuB×%ð³Þ´U_‹ ]o¯ ±Ø×°^tdAÌú…wñ1KÞúâp”Œ*ºUTusƒÑëMB|«]UY×gw…ʆV'‡[U×4šÕYØ`5 ¯G¨ uHšhí([†tдÿžúóF=UwÑ®‘zQ¸ƒöMÜ9KŠD¡t‘Pí' XÜQšz¾Ê>s&náÚ¨Ô³çÚ/¬Ð8ytÔøÐHjsú¬ò'¹Èf%ÎN=Éä!,ÎT’TKÏVQéÎæaUF—ÝðgœƒwL“Í´‡.®qþ1jk¹(wO‘IrŒ ¿Ì™…È” U¥”äÀ£üæ4JÑåFŸIdF•Õß›!uu‰½›Y߈·:šû±9 ‰F»:ËwÕæË¬Ý”¢^epJÍ¥¦޼RÖ¥=öŬ®"HÖºçàðƒP½f¶Û©q†‡ÙÔÆššõ“¥¢ÄÇbg´¿·f^¯ÇÄÄÕdý¢”õ„8rNbûHë§wR¢7)3Iiß.»)-g˜S¹\ÔŸJœÕê[Då¢Ó#È …1ù¬:*\–¶ sRì¹5h %K®!{e˜vüSQµº\³xüUÚjIäðÞûÿ 2u=æ‘‚Wr«Eâö.¾œóˆ^ÑWÖðÝ'=>sG§ãª‰î+¶u+Òü>Löïß#L ìꪩÛWîö¾xF‚ {;˜ÁÇ@c;F‘"j‹ÚÒ:6‚"NÒ#í7úq‘]Yú%gñòƒ'ÅÂô]-jÆÐmp€A o¥?Cleö{U-OyÁ>åƒ3iBØj FHAÙˆýÀI‰‹‚ì æø…=z(S uØ<íDMåÇ«91„õ—¿£¯®÷ Czj ß)}ñ€äkhŸLUJZ_›ç· IŒ½6@´Õ™b y>M·£ltH²© Â7Ñ…€Tt2[Öwcv·,BÙ5²ÀvYmã"[UE©Z|WB錡@ú»–=:ß{~·U¸×uÏÕT±Í$R[)eÉaZS¾Ê ºj‡P»öêYh²iFsê©Zwñ´Ç}&O g, еâÊ@¦ÝÑá8ÑN)ŠÍ¢ { ò• ЯNœûûQ¢—¡\¬=b”Û„ï2w­óâîC¤,on'é“lлŒk>1\µ\{T_Á.@ÈȽjÐè OÝ´|bM„t‚OUÅÓ{VO½ÐÒ¾&ë¶GïõkS¤u‡w53ãÄb¤½QÉžž?SL݉¶É~Iãã…b•fÀ‡Cxò?NDU?t£éhL߈ðg ʪïëµ’ ýœpºáA¡˜$ÝVnÂM Óó†­'ÖÓFYRÙKu+8º›åòÏ|®/SBvpœVyxÃ;جzbå+‚}ne ¯d 'WS\DN¢h<˜TÑù%¢GëË2bTø‰1Œ4fŽý±;+±Û?ÒCÛôˆ}>Ÿ¬å¥T𦯑œü¼ž[èÀ3¬%ìûŒw¢fVƒÊ®£/)s§«SõlúÔ´#J¹«_–\ó¾V†¸‹C\|X·Ó+¢ÙG\37:h1ãÛ«Mtäwèzs#±”k}BÍ÷ÈìŒZÓX„jÓÃ×n·’gfȆӚ¹jÃR£èRŠôu '·hxp-o{Ѽ­krÈ]Þ£¤CZ7r"Ã>ÂéïÑá76Ï·Ú„7?RòÝï'LWÇ K]rŸOÀÔ…¡Óõ¦Œø9CO5i‰6 šê¯þÊ\êxrµgȳQ\”ÂèXâ,‰@€“åú‚ p0(ø>ØuL33)Ј„MàÔPo¨…}wFtÇ2ºJC ‡EõU2BÏyhN u(vQí$"|Y‘†p¥]Ë÷Í6jŽgJo®Û>®¹¦("kÃÙ¾ìüÆ'†{ÔnM4O D‘.4!~Ô¸ø1 Õi ,‚D‹¨‘ @Ê]6¡%¹ p¬Ut†œ0h #£i üÙuX°!I‰†z_»¸ß«t–Ê>>¹4(ê%™Ì¥ ¢Zt„*r€nÝ0Š (Õ†›ñ«82ÌPcSШÐá8dªÛë\*ÍŒ;‘o¨;¡áµ»z&rBhqcæ3¨9„—øÍ’FxHQ³=H>“$%Gzž£òØŠõ"3‹U­²^E¦È<ÜÝ ³#2Ô¤k¯5šå±çyÐa}=΋=?)”¶DA- !Âpý<çg•µúD­yìuϧÏuµiïõJcgÞN ßåôúϰ~3°  ŒbõX«Ø,š£jMÊŪ‰o“p£vÌ1ÌJx´B´ôã:ö:5Zw²+°´EÅUï&dáðÿ+éF£Ó¸ ãµv˜¦f±&H̾Ç_­3‚¤=‰8 îK®i®åèöeå›"WU e×äæ\®ˆX@¹tŸÒä»&ù SÔéê)бAŠ`€dt€ÂÛ´¨£r#ìù^U÷÷Ü뛣Ad,Ûøn¢‘ÎX~3Sø²½?¶;ÁjÙHÀõì»ÞP¢àñ-}a™†rieE2ú‡ï±û¬_&‰°š}ŽYÙ@¤n7+´„ioHAte  ,ÍŸ5ÈR2ÒòÞòæÚŠf·Ÿ¦ýå8à®$:›Oxìt'&±d̘€‡"@dA§u€¨€ ƒµÒ·™"ÿ׊¸r÷¥Óì:õFµ s¯r~ j‚ EÆïVòk]Vùh­úÎë¼ßzܨA¾'9árj[Í'AíâkÆJù´Ý§Üó¶CiŽ…ò-±œ6ˇ=DEgÎþ5ãGé÷+"Á—ßêõck´ì„.ÖË»|ü³B|rã5ÏË9”eZáž"º¥/¬Á‘v×´ލ6ôØðŸiDÛ—ƒ—Ê’ÇÇÂci6Ÿ¢™ñŒ˜aûÔ1BìÉ5•îº éÒ<ÙÖÂ<)4K+@Åøòáim…‚Eºƒ¶ë f…‹„‡É²à+m4–2,Ìt¦ïBÒÖõ®³IVrø´¶‘¥2·¢gµÝª1¢ÕyYÚûw…»:ì)ú(E(JÆþ-šWoKgWµ÷ß  ýÒ—@ÓÁÍòF¢Á 曓(ôR=)€ç‘†œýn}¨CóÚB5ßÙöôZN1Ê/HbËDÿ)ÇQ[F¦´ñ=rÜ[RM,ëÆÉå¿ÔÂÓÕø8º< ‘½F®@TmjW“>îøZO‹ñŒ¹NÔ7¹’\l!®Æè¤òîÅÙ“5‡xu›Þ4ÅQ:U×¾t»â$ _PŸOìyrÎÁäÜ u´Á6oD¬×ÜÛò±"Õ:Ó.*ì­Ä'—]S `ሢìäS²€c©P‚DÈ5©ƒFŸ‰DÙ]ßl¾ÿ–¬î ˆc«á”zíÛPn™i«fÓµÏ2z¬t†¡Ëß$FÃoñZ¸8˜KjĉÕn^úY²)Â3¥þ€ÌVÈÌÙ¨zNmÖšƒc 6é_–>±;¾££»lüÆ6ØÖ ×c$Ö]Ðõóª»òë±Å$Ÿª‹½{‚!yµwE&&÷f€9?àʽ­§Êü݈p†‰}¬³Ucè˃‰YQ- J&µk*cÁ—T/›É`D›ÑÂV :ê‘‘îx£Ø¥°ÄD!¶ŽxÕ­bäH[æqÃÌ4¨+m¸ žvÞ¢qÝû[KËäí(³ˆÒÁ6¦WÞ©À¦Ê*Ü®QÒ°á.Æçò®o>^¯³;õÙ­ì#X-Yeç²îžh$#íyvÏU²[°¶§&c‚?[Vou¶X ÄÏiå,Û—F5¯Ì¨™½¾RÄzeØ¿'nI§ô±Z3ÏбçÞ³ÎØI•Õ ©Ž`â<:¥Ä–ŸáJ@·&§Ï¾›‚Õ+µQyRÞ˜éY’M›jN\¦Ô…=ô é3Èd-)DŸ¡ör™ˆA¦’ß~ÒDf> ¼?“€×x^S8,Ãä9é76¤ØÁŸôiõ6ªgìÙܺc|…{gÔ±'"L(®ÝC©Ð G±C9i•mqåÞ0 C®ñ4€¨ÅN¤ƒ{ƒ­XNè¤Ütêmi°-zéÙŸª…˜á½2£KMuMé=í¤£Ó_d(ðÄ‹‡çì‡6MN$ªTº ú:p¿:€Hpr÷:Œ§4æì!Ñ4{{h‘’šÙ Äæºµ‘J)uUôsE£<ì§Èºc5¨„5!OáÔ)Þˆ»¯T¡ç Z^ÄxC©CMšôÑuI~¼twˆ-¶½d0ùÌ¥³·}ô7~Ý»`ïÇí^«c±2IÝTž}\(µ¶Ô]µµHN5+ʾB’ûç¬Z/cî'#’ Hê næŸH¤=ÞŽå0™ËYØÒã î¨›-äùÉÇ í±2Oöð맨}m·3ÜŸ¨—×øMƒZ.K…ET\QÇM÷A}§‘–Íe ?­ó1©ª¸5}ñ8qÉè¥ç”š–xªÍI‚¢ÓGˆµÈ;× ã>4Mžy؇Åû„ñ¥©ä*e½žûÁ±[Êæ:qY±ãìS°¯À¿ÏˆUª7%ö;Ìïq.–“ª¹’v©Î·µÛøŒ¬åó¢‚,v±G:ã U ë£9Jq³2`‚óÕƒ gUªÜÀI~jB“u<¯—ð‚yªÁ¸üR@‚Õ}S1-Ãl¾Ð.ˆS•¥y£ÚëUÜ \­W>Šl  ½¯uwÝîJ÷ë39yðt‘Åлb=ŒµQ%âô¸ÖÁ/lR¹õ“4æ¬*”OXóá¶6@ñw®u7~ûð]O†”TUâ“üeKÖ@¸×¢ÔÅAÍÂ’)L~V^‰Èag\Þ§jx³ôìµ9!óÕœ‰ÏÝ'´I¼fÃsf¡‘ØÛùk××­}G—9¾ü€˜øÞYï2$>½5š%í'ŠWnTHÿW¸w&Šàê!¤¹Š©–ã@HâÐyÛñä5p×éHèssù~ì«Wçìé ÑÐÿ;²î öú¾X.dõ¯¨=[U¯bYÁ'o#lÆãÝê×·=ˆíMßIV(IoØÔø^hËŒ…µŸiUTi’Á‘Ó†!ƒ(Á>2­×Ç5DÀÃV§>Û ñÅz5 rß¾T.¹ù ÃЮ‘"× áñèXÖ„U‘K@` Ë¡*²†1—uˆ„È­YãAlÒnU«©jl¸hýþŽ«$Çw=¾"=÷U7[ M…>Mù3馃KuX7!v»}îCäXý¾—Áï7Â_³P ˜öÑz!Ý{íôÖ ¹’½‹½²C¾j »W‘lãVAµ*7øEä•ôgÅr›]"ƒan!+O f±WÅiÑ¡l'°‹raB+Qn™Ö‹50Ÿšòi§=æh÷(À#¥ Û›¨9xU4(üÔh;ŠÍ'ËS7¿K(>ަ[=hq+6§÷ÈÁC#GF Ž-K៫c¬£ñ¸\2«O#°KpªN¶`F›$Çëßq=,©²z„€ÅÝЙe7£?¡Š:}Kº÷]Û˜=m*˜ª·êS‹Eš2;l“û'íܵ³ök˜½öSæ|\멨-@„òQÅ9ò¸Çrn6[î$:¡—Ïš‹š kðWU9øí¼7F&ìœ0êaMû6v_(ÅÚ«‰6ªhi¿{vm}}s–éÎÃaÍ»ïT XýÝP+·Éik%aP ¸Ü€ÄôTi6ÊÐRƒáƒF62£Œú/7E½+S‹»Æiz¾eYÜþ,[Ú‚™3/Ï™šýþ¡ Û—{Òþ4"¾¶á½€­¯]q³c]ZªR:@QšÁøžPpªm.~1 ½yp©Ó5Þ©T¾6™?«w~µÖd!õ¯‹!¸ž5Ïpì€;P~F§½ë›+™¯ŒY›fµ>ìðß4ù§¿Û“$s^ᘠèZÞÜ=Ñj;þø¾é›¢qy×v˯F“ÊÐÊ™ÀcZ†eõ³Šª†ÇéI„kÑï›.V\aô}oaïæúLºÓdí!.À“:“K©ï$˜d#¤òÊÊbb©UÐýËI…™é™˜Ðó Öòœ«sRÅKn]F¡o=ž[œ²^&Šê !|j×H ¯.~Õk \ Ân´jmÊ/²¤Áà>¼ÀÒœ$µþ‡}äYeµºX'GV¾WµŽ¶"-ý&® ëºè&ÔëmXVDœ.Ì.ñ™ÇºòÓê $d¾;¼{RÐ-´á{[SÎ1,qòd;¨=ˆà"rë¡£.%`„r²å_h„áb5 ªÝÇÉë+]ÒÕV­0€3ví"b}M@#ȶ¦pÉUè(÷Rž„›üeBbµ[r{ü~{z 6K­?SjÉ}›Ûs ¬3~èbD}Z~|«¯EGfðŸ=]¿3w£4lFˆÏ¬¿QºœÁDäpÈÿ]öâIöBViÛrLJÅ ­bß»8sÌÍöZn©äà-0_ÇúLqý1¢ïç?.Xérý³ÒkJŒYíDüÝñèÿWöûÑûÞéa^C!ÍMí¬ãÚÐ D(ƒÔŠêÕ¤í¡·Ê:˜Æ"ùËoŽô3­¤Ûö©Åi缨¥Ôå’ïaÓEfå3˜:–6•T¹ßë›±Ñ -ë[FÄB¥Ò;ßì—¶õçºÌiw-ôûÝÍÀ¯%mn‡/9¹ÀÞäÄÈCžKCXƒ Ò’n÷Í Ú8Îjïe1ïÌ™w½¡!"ň¬Þþ¥oðBß`ëõn1ÕÆ,Ü©?hnU)!ÅJÉg_)à 'µªlSI(ÀÎM'é{”$S4ÜçåÕ™{üKȃ*3A©`‘\LN«ÃûLÁ»(*ÌÜj;¿Z£|½†Ä@”$½µ·;ïÞÀƒ5íé(”nR·ªð Ê;±Tr1e*Uc±øN9TRì"“PÊŒn³À®úOÈÝæ°Ì½i§™£óë•j¥*©i]íI‚Weïɘž±ôæ¼I’2Ä¢H,2`’#ë« EK´¦’Ž"7hâX1 !†µ¯{ˆ: d(üŠ$S· Pê=ˆ-ÒüuÐñº`äïP¿JšRnš¾%/8öÆÞªˆoßÊ’*Z]º†V'[Ÿïª¢vŒO.É– ŠP߼3l—ót¢ÎQòUØô¥±O5÷¶ƒÌ(´¼º–4û–\Ì«<ʧFˆC¨r›‹¦#%D\K˜w¿#æDÚÜ£·Ÿ8Þ¯NúÅ´ Á˜õlFR-© ï'ä£4þfýS%ÿ(¦fÿÁX0.Ø¡Ec¯4ó¶v¦Ü9P¶w„mvà (š5Íó¹)“4ìÒí‚PqF~Œ|ù¡ð×w´=ìjÜõµ’ƒøÿµãòÑ•<Ó`-ÐŒU§Ïâ!3¯¬å|.Zø()31ã÷ü3½@}èR‡kÖ¸ËÄ)ƒ .÷ °LT‚ Ûô‰ç[ÉØBç0 @M¦‚È=L¬³Ðu-äB1>â0þ‘Óö’¢Y-@v?TxZzÖ¼¹ÓÙý'±¯¯8·8Re1fÍÏ5P0&3Ú2#èfô†ÖNM-çr+&(N ½©¿õœU$)½üÛ‰¢!±J(hw£J <^Kõ4(†­b –eñÌ¢‹F°VlÿÚÿ¨Æ0Áñ¥<¼.¬FŽZ©((ê7ŠZEý]bÄgÆ¥döró9küg =ΩSqtX_S[þ±éA~’QâzÖ#ld¨VÝ{:»-Û¿:¤+GÛ•Zê¤6 5/; øIÅ˶ó†Œ2àY (,b9¥ <J´ØA\RÀÁÝwÝök2To®3œÓ5•Ùc-{åѳñ–󹊤Öoõ‘ƒ0¢ŠrY!Óļÿ>_¢ÓÛ“ãµ»þDm`ÉM2íÑ_ôfÊBÉá¬êlåž9o4‰aOHc£Ü£ïJаí22Šî‹RœLŒÉÈF2„a»CLõ‡ìßš¡­¿Ôüq€æ·RŽæìÝ[%a~ÜÕœÍÂ4=´ïªžZX°ltn’ªMɨþ›bqØ·IÒ5Tå É=p{¨80kfUÁ#ˆŠI(µåUÄSŒÛלSÓÀ6sk‘!á]N—:“j2.àG˸³™ì¥æ‡ï7”òV#½,̳¸VÕâ7[6)Ÿí½³ÑÌí5´_q<¡ô>³Â*>ÒGõJäOi2!ap²”[ºqgj.UÄ0ê!ÀD—þrŠ^¶%« %Ð@@ï†T ºI©ø´)ã¥*>Åf¦Ó‡a¹éÁºgƒlPЃxÓ‘öfœb?üñ°D— Š¯¾e³“‰ÇÃ<†‡}$úç”_tå™­¦5¶Ú^d!0£?-+3Í8ð ûùâüçÍj6Â/a‹ž$¿F ì£é:}+›Z);¢ø|J™|ù5x ¾³<<ý"É_Ô¬+Ö'(”û¢¤Ñš2¼3:ŸÓ´6¤€µ—¿®:V¨©& £n>ßSäIQ¶ÕD[ªÚ§Æâ“†Ò-o)«ëªÜ¾¿%I”Ôô~éŽv¦´º ýŠé·Š)xÁóP*§)@†ÀŸ¤Öõ'HÌprÃãœÖpI·ÓÙ«š òÙªÜ( ً¶DDÒÊšVÚüžõl½.ô« š–ß‹Ó5ªÛ R‡­:¥x[NiÓQð-±ÚÍЮ\ÊÄŒ ù¬&ø5)«ÚÈì«´Û%K¥æš£y)²ƒ±dÖ¹2æî+«úôQ„›Þ§ƒÁ( J¥ê&‹Ù‘!/˜w'¶ªøg]Ù0m2jøÜŽ;Ç? ÐÞ¯”ÂX/5U’B˜‚A#h”\å/á£6 ^ÁoUdk¡ª+úˆÉjÉ-i’ú ¿-N4yOé.¹«ê¯É„ˆ®=¸À “öÁà,»–þçáή7O4 ‰ÄZ¸f“µ ]wîØÒè^j&óêõ"¢ëaÓ¾íÁƒ§ßªt}/Þ?'·L´#º& iŸ½e›½+ïnêÔÝczHÚ©Á}mtÚ‹VÐlÖÛoøÖýéRè ìàº8§å4ºHD3ïÇxMš È# Ž÷-’0ÆIR¢ë(›b9 RHÃ5c­!)ïàx¯~”÷½G:¦”T0¢Z`©LOÏ’E~ëøžhS¿ÙH8!4½çh?eõ!J,¹ß­±•ª?¯êk£ ŒµÃûAB$Ÿ¥“U”µ÷_¦Š{SQQ%Á ðãpæ ×óïjy¿Çœö³3"¤Ã($š/ ÃÖ jh ØH¼--ù(|Xë$PªÄþ—Š"óÊ¡T[CÝB»™\O¢jnj­|ƒPÈìŽj„&Ѱª§µ‰tçuî´ƒŽ0Óìê}a)¡¿°«¡æöÔ[ò s®¡‚èɤí%¯T¨Ð^qà5OgÛi=™´À§gffhýž/è_kß}÷¼YÚªøíá¦Qyùª7åp=ƒõ†´9,/ˆ L¶>š…\!~Ùé„9×{· !·c™$–m(½ódù]:FÉ®06n—j?¡SRB¬*Ñ‚E ±Ä€`ÁϦ¼’„Œ,+a^% ô•÷:¨¨ãZ1q0—Ī0AWä£W¨$3ýªv+]ÙãmÒR´Ê¢t¿-© A"ˆégâùª´×R‚ CêÆl¾v‹q‘„B¢Ÿ»'VDj‡VùSÔšóTæw³7¨‰Z¼1§¾ÄÓÇ*å¨A&Íeëgãûxë]™Od¹Ö“ânÌ4„É‚ôÒ`„Rå~*á÷¤#à‚² wƒ'hqDw'öË›ÔÈ|s^Çm¶›ã½Ò›‹ˆd+ß"ð7´ÃMBN‚B®‡,å3 M5ˆG¡|Ì–#SŸÓjá:…pOïE´f¡[núŽ®Œ÷–ðójÒZbOv•„—«Úc’JÉMÂzP´3oCÉEogR¬ þ˜Ô°N€’ªõ£ËwˆW®‚+ÒŸÁr7¦/’ƒå:Kb8éäc6§CRƒ…T) ÙUdSˆø­g¨ öB ã‹Yšž°Œõš1cm\j×]tz› öÁ„0ÐyN¹hÐc#kL®QžÏ {)&LHýŒ0j  ÉÔ%ÒG½)iÚ³>ÃSµ88̸†}:¡8¹(G‰…íë–`Ò>¦z#òMTÈõË#q¿ÆüªïÎ¥3V_ ~kÚí{É—xQåG5Ìë>ªÉæê9Æ#´T-D5‡¦ ®”Úˆ¥6Ö×T©6½Å~û`«My¡67,+`d ­1¸ŠŸ¯+Ì nÓëZ¼>¥Ú ¥âwn–_Uza—nŸñ®7¿" pæ¥Ö–5}4½kÉ0Y69[©táWSÏ$•¾]*§Åh ‘iTõoçÂýK´k ua:ÞÄ×iFÑÍmbLαeºáÙNûͨUðŽ "_÷$@×äˆM]¾øNÒ„6Ñ@8þ€ÏÆcÇü㯼ÖåsaT}û)Ÿ!ߥŽ*«×žfô¨]ù‚NE¼‡›Õ-—.,ÇûŽ%{¢cd KûXòYWµ|GÏy|•¤Ç‰‰uECqbµÃ6!7ÉÔ÷>ä‹ÙI9Æëå½µâþ™—®šy«uÆãfè øç¨#x°#; +¤ ÏWôiAO1•ºiÈcXµ®lÝ?—èo%už§·tëˆu=”ž¡bÛR`'Ò¥B9”Ré ´Ræ_ß‚ô¥À12Ë«Y6½n7W­neL¼Ö‰AÂÑã_HÕî«Óm%­åsØ­( ­:ÙÙ?´=©¨:?š0$u˜w¨‚kÊùJÇN‡ .?u1]€vu´ä"×U¢¬>ÿJ‡± v5{ØõÂMÈ€¼g„~¨¶$ëSÂl÷Ã÷Ó¼iÑ"¶f›s¿¨HŠêwœ~ª{„ûE>}xîKUãi¨\Þ™‰¹úñéKǤËköÖ£0n±‚Lj…0¬LMH$%e×<O–½ˆ´:æú莹ڕ¾%Uãš×¹…/{B豓O@¡Í8e.FxÛZ$¬Æ&8í¶ÖA›QÐ,úþõ’u@1è3»ó¬îYL5…,WØEžµÓBª²BDEˆ ød¢ŒËÝœÊJÙƒí^Ÿr£ýxP3ã=ò§z°½¥S²™}Å'r«¢ÒI†kû5Šy¹²V¤É²ãóÂ×V%¸†1HrÃåÞ=óÃ@ˆÚ£&Û{â.ÔÉHöQ½¼ GÖņ? ƒ+„¢y¡ /¼nºÊ\Ó„`»?†<Æ 7Ðhþ»´µ'âÆôÀõÒ×ãkg„ #Òu^ù<…ÜëfÃ]× c“Âò38ra05Úˆ#Êm¼×Ëß?€™pU½ýöÕÏOÄë ¼T—X‹“¥k“Ÿšÿ;ü}Áî«ÍAeÌÑr˜E—|ÆYˆ¥ SÙ³ÑE  |]]F—Y¢Æõ XSÝà†ÁžÅLJÙ(îžVt¢—R0­»RÏ‚Ôo¶ÛÕæäO“Àþ^•fÍÐ+©…ûZouG½n|9LšMQÕ úãge9Ìï]Ï\DΞ%°BíU¶Ddz¸f”?CA)-R[É@ÁEÈ&ìéra9º¤úÛî»Y\©åZõ Èô–mîÒ:Ëb´1ì›B’” Â`]·/~”õ£7Ǽ…†ôç’R†>V¨ZÎ-ŽàáMÝÃÁŸ=2a5VÞ­SHÅ.¤J/{Eâ,«Æj;ƒi¯±‰ókè4àliCßvOkl¬ÚªÛôÉ|ðO\+’XH¤±äÙH4æõ[ mTF{ $!9 ªEĦ¾=)ÔŠ¿×]mLx¶3DÞí4Ú€h¤µvâø`/n°í¬:^¬DÎŒSRk¬V~ŠUÎï\³66ü„¯ZŒÎÕPF8¿‘w yôZù%Q3ŸÌ¨ÏÛcîÍÏóYÉUbÕ1®n‚Ÿ‹_Õ:Ë&\fÈöh²£¿h:ŒùzsœËí{{}Ñ®¨Òž×hî¦ U(Ÿ®º­FsIƒiê²›×]a À_êu­“–oM8_d ¨ŒÁž Ö«Kc“»V Õ8J9ÕøëG V&@ËÊB4¡{r‘Û}†åOYûéHݪmkë/ŸÝš½ÅQø¦y?›é<›Ìbœ»ûDžÅ¬Y¬…@¼‚1c£ ‡U9zéËA6·ÏÚö‘ФHM޼‚U7ÛÄ)Öª{î“ÎwÖ£L$LƒYSâTÇè•ïJs@$ ÉQš7^•64 SLãr¨€õfv*àë´w+:::öâÍ׆™´À®d6µ±ŽAÙYƦVQ«ñš(3zù¾7ÅLvFx¿ŽDñ8´\î):I’’³ŸF¬"Ñ^Y• °{žÖ[¦ê§\‡£Mß@u ÉŸtsšJ ÓïɆÍPÂB%gÅøus .6eñ™ÕáCµ5 dÿ|ƒ‚ª‘G>PúËɸ¨«Q“óÂÛrÀOQ¢éµŽ3MžlôŽ…„Fh¼}w£·V3-f2¥NÖ»OÄw¶„8È@ ò=åÖ ÿ¾/Z> ËQ“5¬œmÉʘV£´pIpfëìÉÍÓâ“{-W‚ØŸYË\|×r‰hÞ.Ã; aÏ}:Ø7<4Þì^µZrl4§w²pº©¢šÓ­´g™BwUí¼~hµTÿâW{"1ÑygycŠ×@ûÀ=·DjbŒ×¤cÖ£Gǘ\¦Ö´0ÀÞÿÇýe_iQi®6Ü2ÝûS’0ÿÌTÝLO´úi×åVÚQ'ˆœêVvœS'¢½©m·`Æ îLg¿¹,±(“ÁE׉ª™*×çQ„ãê’n?˶|e €ýš×ãLæÈ^”››L·ÅƒÞC-oVzt ÑhwI!c ìî^哨E‡â%*¦S5 R†€˜ÚukÚµ4 wšÄœ WWâÔîU}êYrÅbAy>}ojì~gÕù[j´çm¯±+q±-¯²$!Ô°/ÊÊ8–ûâô²mNHÌ]N¼Ú‡1U4.´7€ /×;jøÄÌály‘úÆx¦£ÝŠNʉÒ:À^Rмv/˜}%.=¨lY@©¼¸©ßc Vœ/·Êoú«qíF†ø·ëƒÁÎmÞÝ=jw"ø­‚œ{¯Užòy¶|b‰ÛLÙaÖ9%Šš8¶n« X9Ðý"Ù(B¡œ[ºš¨â¾k–Ö Üé÷±“ÎÁ·´¨;æâ{%½½;…ÝJG2MÝà-|àWX±X\÷ù«<ÖÞD„|“kÀ0Gb<¹ ·è‘¤H»[;ÝìŒn0gyfCqD®4¹÷ª»OðŠ¡,²´ÜѨuøWÃé¨ÏÆê}d¬¾‹z«ô¶Ú¦‰AèÄ b ¬š­¹°úëRèßUï%€Ã ÔuCׄˆ W:ub»äÖÜ4à³%†×Öi~•Å´U<È:“¯6Ý2½hT, §ÃW•Ò35/¥;³QóQ*”ç²PæÂ-]ΊZÔçªóA“§ò߼ɠiµþkxüéXØù†ž­&þ3åj¿Ì҆ǛˆøÆýèô Ñ­Ý‚ÌY5áέªˆï'¼¸WXÁô5j»€BŽMG ZXd­©‚Ô†_µÄ?ÑÍÈ8t²%wçbú¡Pƒ½ŽDÀ«ÎN«p µ‹ÙqTi Å”Ǧ8áèLkæö¬ ŠÏíÿ-ÊMk²‰1åi8è9•‰œ(Q…nr½/­=R䉅¼][p{št毴:y¯™6K9t 7Z¯ãîvÖTk¬6¾.þšçöÑ*,ŒuÂûs}GªÞj<óh"²nPƒ‘´]ƒ~¦£ lv¨Ÿ‚€×miõ…L‰Z5U[…n‡d!& ¾Ê~m¥^<¥qI:&mt´QyªSrð}‹1¶×j5nY3€¦ëÁ*^5ÇLxÏM ¨€à͇C¥^ííÈQcôï ²ÔJ¡§r©¯+²Óº¡â]îcžÞvç79ÏMc’—þzÆA½Ë·°Îö‡¡Jê¦BØ[­Õ_ñ̤þ bLµÑ©üËAŸs>Õpñ’õ$øBëµ°KqÃ!åC›“b"¿@‘jýÑcþ3núæ¯÷f¿ŽØè~wÛ¯¿h% .¨šÖí7`ŸÃóÛºï™Z]­¡ âft´ —6Àåî SeÆù³Þ­Ï@lÉhÕ¼ÕÉ&ƒZ£*òçžü¹™þQóû®! Cc@Ÿ®?^ϯæTîÞ UÉ_Ýu—U'òêÕ÷ŒäçzÇn©üÑ’lŽß“ CÔFãZª™šÄŸÙ›s¬{Óg¶‹½s:fÀ1§ùUs+É"5®¨¤+û~8ÄþF¾ÓÛ [ÅsÃ÷ÐÑÝ÷c(/O‰¨xëá¡B#%Ÿo(hj%àXò‹»o°‘×!ßBÜWâž¼d °¿9 îŠ-“J‹]Š„4t1ÃÖ8„Wc-ÐÃx[ï„¿×Ýðßz(á¾Ôü¶ÙÐí¡ ~ŽØ[ST_ó@Ø`¿Çßßa÷ïnv×:Èmݱž9åhˆ=W­T†‰ïú›UcÅÐÔŠöì)N»¨*Aác Á*èë`Õ:Ÿˆ^ÇËÙú¬¼á[6û–Wg¯ê;÷‰S0¯of{Ê´’ƒÇ=³Ìæ+_UÞì¿·í¦L‡ »{KãEø¬¤²ÕÓ½*_Íët†²H®+̦G{Ph·HJŸÉ”„M‹ŒÍ¾wWAï&a"*a¸ 7jì‡;×YcÉCڂŹզwC7ìÔ¤’0!Ñl`쵊^Éïâ(ªK^9´"g á›V@Hm(m^¥e¨ƒCÑÉœ³³„&”Öœ¿+ŽnIeûP¶(³× ºÂF×»Ò+N6Ap?Ç|å.ØNmß;ofʘßé/ÔüÎîÐ]6ûB¯SÏ„0ß>Ý15êÉ «9÷L®Vçqú²­·1æKùiò‹Â¹ŽE©~¤Ç?4pÛ´ßχ¸ØNÖÔ}G÷³¥º“T<žÒ2çš'-æÑ7îúxAIÓOJ~Ú¥m´Î4®…žc{ï¹SÐ5@n[h”˜K´™#$\ÒÑŠñOui”ÈŽ¤"ñÜÀ=̳Ë5-™µa¯dpiý}Ê/9ác4±€ãAf›œŒ–ôÿ\eÊÖ§÷›à}ƒâ}f‰]d$|S®œRµB:º*:í­á©3¸};Ã)’Jvçs³—?íW j¢™ei¬ŸT¶¶”¯†ˆ¬Jíúd–+dó=Ð{1p7Ÿ³ýÐ`ài r¦âIFó À‚GH’! #fEwuÌœBÆtaˆK´&K <ÇJ£¦2¢\Û„¨]°s`h£Ò0þÈ¡]kY©ï§†aÑäÙ|Ïîý7º`.¿0 p.Üûv÷“þ/ßq¹yXö+|¨N_?íLCÜV.ï.\Á#>ˆP7£yÆÚõ_>·=jìÞ·”ð®ºH¾‚giûßy›Ù–upÌÜü^ÆÑTxûñZw̧°}ÂÕSÜuOu¬%FòÉû?“«àT´’½Ì/a /·á3—â©ÆBÉðß­Í¿GØíÈ»‰ pÌšÖý ª‚UÁ‰-¥1HݨŒöÜ!*ÿ/Ok¹Û·Ù•hyb*׫ ¬ý…šûÂm›Uø†œ¡VÝASŸ³ÄvO Wñ ‹½q¶]<>Ï,r˜Wö<ó×|ŸD­ndlˆÃª7(‰œ@VL§,ï (¨*Aå܆±¡Ÿ§WúÜd-S’Ìz¬3l&[Òš¢¦ù=óV°$^ZòCº^¥‘,Fl\|–¶QÉXÄíÔâ3ŒˆWÅóŠÌAñŠQýTRñ»u©DÇU!®›Žä9¬øçž’(§Ð²p±sXêö¸û~¿_¥ý¿g{{'~s¾¾?(|xï  ž;ệ±©XõgoÌÒ©£^©„²éS¿êô|C4÷ªæ¿™¢å’„ÍfO¿8ÜŒ(Kãº|jC×ËRÚÁØ…t*©…oÕ‡* 'é•0¸tC´R?;:v*0*ªÁ¤"ó ‡WU÷áÅ}éŸ17 ݾE¼L´-õW._»Ûæe<åKíJ¿-*ú{ém±È*3`í÷UÑyä^}Üšo«]«¸ 8ÑÇDA°Ñ=Åê¥~öª3ΊàñüP¯Õ¦Éÿ¶µ=”NôÂ*¥ãÚÐDj¤E#T í‰ «×‹…}jAZЀzE§ê">—±¯gs'°Î‹([=F‹>‹šKÀ@µ[OS£Á"öÖ ®éWå±Wã}c|7‹Ç#ãîÍ¥¨i)o5g¨úOµ³ílŽ©‚?ï³nŒw¯Hx.鵞“©ÔF—9 šÌ5MGßàèÎQÏGs/*&Eæ(dOÚ›êl„ß|‰Ó¿`î÷“lKWÔšÅ>Ñ_1ÈI„…Ùš8ëq˜ÚÌg3…&ñV;]ê£Õa›O·C­ï—áÝ)UÏzõ»¨ÐN#p2Á¶h@¨æ›Ã4ËD‰šŸ—[ê㈨y»£æ/áK²x'+vP¢‰É=ƒ$YÙLÍrU“vë,U‡¶²ÖžÖw`&ÜÞ¶êËC‹¸Y5õ¢ l=®ްQ”:`1¹Ò¾góióm’VÜU_}“h#!£i—Ž!c «ïp,M-STÀ½{lÊŒ¤ë»& ®g¹“iŠWÃC»ªÍàŽÕ…žµãc¼¿½$[;F…6‰ªTœüvéÂ#Èø»*×¹dêWvFóÞ¢ž«2·ú®±©œæ$œ*Ì{nûí­¸t„ÛÚ5Š•<údQ¼H÷i6Lç‰ãž1`ÂIê“vÁ‹<“gÜÝG}îcM%}ÖÕ£Ùà ‚L;ÝØ ȱlÑ´fGdÀTWJšRO‹”½Šƒ–¾vÂ]»L£åY±úyTIÚ}Ìå ©ì]ºÍË+òÎÍèÚ‚Šz#ŽwX¡Ä"Þº¢Ñ åcïnñ4!§»7a÷Š¥ðÝÕ»V·âlìè<_W3ÃÏ– [V9…ƒ)uýp•\½„)ÒÂ$YÊ4*­Uî¶ÅAçMò Jê”hÊhï¦hëd´Tg+AqÏ«d O'émæÿ®€^©%yìVL¥"ZE_‚7cä›:S}*Ëw«ìÊÁ¢î±êäËæ”SÍÌ1 >º>®WNvkBiJ!÷¹ÇîšÚ¯¿šÍǶõžé‘£“ÉÑ÷¥§>kBªW‡¥²—Òªd*¦ç¿~8ºù»q‹=²ÑpÕ—I~~‹ñŒ¯çñÇí­O¶u~ü›?ߣŸzÚ?ˆ I¶#4£D¿K ?{bBªNþG³5!]=°tn$èûìI$6  ªV$Ͻ¨Î3›YÑè’qv|2’…Þõp>ýÕ6V˜‡CÂZÝì)E’£èE°°[ƒÆ¡wÍR£p<û¿Îº–Â@—Œ5¿8lCä=Ÿ÷abvÒKòe3{`Zs–Ô°A¿léG|5«L–í ¦=_³Š -MRÈ–·Pn›•6ËÎN”(§…äÚ$h, ߉#T­Oò8¤hj›æëõFvÅEU(„a›µ"—¹Â.í¿eú³Ô/’â‚ÎþÛÝÞ1ÄЋ1ÿ#ëdêÝD=EžŠ…Á+Ÿ …1ߘ<ŽNî~u‹MEP¾ÁE0´S;¼_Çç Y4Foð&;r (ä6 ”?¹òSƒÝn`¾BjbEÄ;mhTU(>(…Ú!u,ÒÐ) <±ѪEÿ‹öëm‡å†ÖKÔ51~}‰Å”¨$^Ùmf )ÙŒbý)NAB‘¢’3úu¼#ü!Jü%Þ§Ÿ­Ü)êxnM¼*ö¶ÁP.‰z(È¡ N(udé1ƒÚhxe/K£7ÛúB¬Fw×í4Ð\ä²î]1zBm®<2±WuQ™âœ‰ ‡¦~ÃbòRVOo(jÛó¼›É xá;®¿º¿÷Ûýí¼Nu°nIëåÐL~>`?Óøþž=øýÅp¿¶6÷^wþL¦åîíòÿF‡…kÛÓŒa¾¡û}ÙR]“Α«‡øVÍfÅ‚öÖ?zªÉoÍß'Mù)¤Ò›^dmMåÜaÝ>Äö|dmíe‡P{uYlyŠñ}PCŽ2j n4m†‰B$ý¨W¤Éôã0o°SÑpKûMF˜8­GÖè{½+S¸¿èAv¬S­§©Óþ°Cq¸¤#Mß·ˆ¨ßHf(u`|Õ¼¹Fb§ˆvYÔ*¯±_mP¨Ûnºj(· }lgP »`Bÿ,nǪJÛÅJC.•¿ÅÖ)sØl 0´‡eÿfºTçõœ·µ!^úU­&Òýä¹ô`„Å)¸šßÔ*Ô‚Õq›=ã¡]r|Uk1c:W a«À nè>æÐÂ8§5µ/ûÝ÷ωÚçÈeùãJï^F¬CýÜ93»õ4”VfÖìVi®N!›‡R©ò·­Z"óør”'R*Í-4ÔŽáåÈÃÁ‹tj5¢®™*º(uÆ>_ò[®çÐߺý×Äá »ÑˆyãÊÁ-pd÷NGÚš3ßÃéÚV€;6'Ï|DféÄ^ ˜Â¥€[û}aB!@Tídñ@~Nþ„!üžÐõ«ÏgQÕ¢±\|r ½Ö¨´YÆéh@ :]ήÙd?× ·¯ëžþj—Ï_~Þu Ý$R9êö!´-ÓëëI°#Aæç¹1"]G}­Ù£aüfµ«Ù]~ŒzûÚÜt3|.@Ȉ¶ÍwZí¶{¥vÛ©Æ”$ºÖù "@ûhv÷¹…îâÍO¥Úkj<´S££”Ú°_l†³e ÉË"TæØo5HªÄˆ,ŒÛL E=ªažv–Æ UÍ%†³˜$ —alÁ‰¶äÝûËÙð:½1A§hü‡Ù}¿Ÿ Ë:êÃyÌ—‚ªaö=Á·Þ1'Cç-‚¥Ž´Rsa¡˜£Â±#“ã¬nwâñÑ-ëF—G _Ï®kNzL¹HÎ|Únê6\±ŽÇTëF\{žÑü ƹ9‡ f¬¥µeõ8’úS#ÿEÝš‘ùNåøçšíâ§$W;ª)“Á¤~áC¬DIw êUHZ4>Þ;ù)b!k‹W9 s{†qƒ¤«¼””-‘~µ ¹Ò5îîký%hÖì°ËK ¶„÷¡Û^OQ;HˆÉ •@èÖ«Ák…¶…pAKÈ.DÔ•ë­‚D+öTm¼¿ò›ü~ri)¨Lõ»'Yd¸5S컋Ð4’¿X­Uø£Ë9·#üíßö¸Z¥såŽÖ¸7$úäjCÍn,~þ=³¦¥™D°Î~ojÕʹ›;1ø8a\˜K<´£'`©¸/”ºAûS³Tøuï~q[£Y¢µÅi £‰Þ›Ny6”ÚE´P½ÃsdJü( 1`+ÖøÓµ¦À\6ËHªw¡Ù-ôoî¯:´Â‚y• ¡%öµ•Çt¼Ž¦™PÈß‹¢M©½’4cؼÿÐÙ·Èç ËCmt½•Ë‹lüýøÌôóNjÝ“Òçp7%=Yš°0.,»qf+EŠZé#ò¥y 0 ¯±”«1 NÝžhßÑý9”0ö&¸¯%:öýÞPZé)Õ’Ô±˜½¹C΂ÂÄÑ1Í#Ž}Æ1dQý-ë³ÕÝÁ /A á$1kÛJ–«oÞ‚g²dWÇQ½¶·ÒT#£ŠÝ™Y~ª>…¿„1ÃÖ´ÑÕ-˜ÓI£šÅ8Ú@Tˆ˜TÏó3o†õöNOÁÓ@ßÓž)±¼øESe²Uÿfšp]Ú|Øüú¼\lXjÑ›f`W×½­AW’RSX°9©²@ªHÏ&‹B¾û,þ²ƒ·çI¾Ü±eúd4#êò™Ê"k¨„ôXbÌ .Mmx>Þ‰^\ã¡x~ Ãj@áɇ/ä0nÂ'›ï›F6ΈûNµ`Ú„[ÌT¦ì{¥c_`¤t¡]×wó}ÊÊKTÁÖ9o\iQŸ7:üúîKMêÓ‘ãw¿(|mðבlÌÒ”s᫜.ɛ♳»1 £Ñ«ì%ƕוó,“âš²Z¼dß{ê¡@Dï/sP´÷ñv ‡¾ùJü£VFVéûWà)‘aƒûNÙ MJ¶™”‚ Ù%ÔQTêÆ?Á½Sž#¯àKKÈYkRV¥5TÐó`]´Ž–Ù¥É+S?{ò×·!’„À©õétÿ•NÑpÍWpt¡ª^MŸŒé^µJXú÷9Àì |eÖÛ—ñÏbYÀq¡!‚Ül"¶*ñ®!¾øŽWöúæªî%"ˆJ‘ueDá’tìæŽ!…xˤv¯íÛßðåŸzAVÔ8ød©Kr±$­tÏ'Bzº©Ñ*~éÌR»2/¯äÁÝŒÕÅcì–©$­€ÃÛíÉØ;§ןoŠí÷þ+N˵"¨ãóx_‰tá~wþx¯Ó>-üÉè»yM)Ö”:îwØ]ß“–ɱZ¿ª;•·»‚_ŸtÄO~5t .Ûã‹r;8œ ª ÞÖJs@ëi 1^y]†÷§ùôÎ×ÈÛ`êvðZ0{žûc –pQaï–£˜žˆûOäZÕp®Æ!ÏG^¤# ¥ë°Íöª!yeã\|؃rÌ–sÚû (35r(´™tF¶VüV0’““‡:ûts‰DA„,ž7™è7#"².€ìœB1€8ÞÀû·†úm󃱴 ìL¸¶ ÈÌLÄËcÛ?c;ÈÂ0—vŠàFJ”þ{¬^,a†œ[‡ÙneàüZÚ´JQƒ"¸?ЧùHLËaù›ìõ¨`Àë•rm1A ­ðV1l±«Ó*a­#.RqJyÊÑ*ØZ[Ææº¸j,fô¼3Ôáa«î*ôðáõ2´ œhŠ—Dˆ`ãž´£¯¾G„`Y}›4 ñšÐ²³õ×ï—¸õçœóÈ:p³ëê>z“ÄzÀ쿽#dU/ª+Ð=„îQúoYi_Ûˆôê´š]I溦C<öÏÇØ}÷V0˜ß*^.ï¯R›Æ²ƒõôW×û~¢­¸…Ñ{ðùQدu-YÈ÷eCJʃؔâ(ÉzʱºŸ™È¡Ëù¥>”¶1’rFÌ9¿ÐMwûüj»µOM^ô”©rß¡¶/¯)Pëý ÍæÏëˆ>-íÝlcRª²5̃ʚº„ð¸é{fò´LU)nªÒôȽl2 èWÛÛË.²KŒ@ÒõÎãg‚]È Ía9UG¿ÃÎ-†Í}qîwÄÖ® æÚEîwûøš{ûð ùªñæ±ãì¡í gG‰ ©î·ÖK83³õÅÂãØCJüÔ&¯?cTØí¹SÒžþ¸Lç‹mGÄÒKæ€UÇ{IEUTˆ¶©¤ÂRÀ†Ê1|«Þÿר¤•ÀͺˆoÕšÝ×¾›TqãJâ©ôŽŸºdª³UŸÔÎÃàà†´ G—ÂŨ C)A ŠW¦ª­!´NÁˆs!þeg3.¨Ê–JmÁR9+·ËÞŒLPïIÅJô¥t`ñc²dþ¸ðn¿k¥Q³›fÈÖu0Gá©ãèÂÑI=w»~tÒ…¨Kk»YÕ ÆöhVëHI'í3B즫 ÈETͯҽ¡€ÒÎH(ïÅ~ÈÊ×0bòAù7{赜äTmÍê½°¤¦LN‡MÊh:¬Öž„þ÷ŸÇi£imÅÿw³=6£êƒGÙÓúžû]ä\HlŸtÒ_WÒG5.`­v·üöÏÓ¡€ˆê4ZŠ•=@^ê×CÓ±²}×,í—ûMR‡íöÔ)m!ì”RÆ=?¡HÝÁæŠÏ¾k@HU ­¤ ,†„ ~ðOE9Øü·$Ëé-x³·Áû~VôŸ,÷ÕP‡°i\ƒbw#,˜ÿ;žSˆ€?©ÂM‰_äµÐ9ª_}QuÙlOIeÔþ=ÝÜf‹¬;M"VÄØÞàŒËö¾ºoÊÑ… AóŒC§9Œ±f‘©_ ítÄ`DË[“LÇut‹nPí„„{ãj¡LE»£0{úéÙèé‘P/è½ÏKö“VO¥îcXÝ¢[†sKne{¢ 2?sÅJpt›SI%G¥ŠöèäÕMÉ£@j…Å}ÍÄM—f I8åXÒ¹¡Þ—ÐR‡h«yÑÊÝÉÙŸŽ_X´¯QŸÌ*z€òš½´NÚôO-›‚Šg…oÖúÏ“,CØn[gL]˜ÁãÖ~Ý“XmD•ÉA¢‰´U a×xiuJÔ ÀéìšU§öíã’¹¶(].ü¥®+xö>0\o‹SÎPC6”ÁsçmðG“2Öçzì#µÞÕ†-ZÛ wÎVa4¶Öªëf*¶AM‹ÂšßÁWn«4©”?.â«cP¥@·+ko#`·;Bùèä§ã¹Ô›Ô§ ¹î›·Þì-ž¬ï’éPp ó.yæ}ú:û«XvXD'+€ÄP4ô1â6É=j ƒ-?•åó+”NéÒ5óH¸7Š´}xºC_|…?k‹ÇÙ!ÙuSH¡£VyÝLJÿ2ÐBø¥•Ýç))ýñ"©ìÀž à“1GÊVã•$ü¸@”„C¬³ØRØISh<žÄI¦bz¥4+»h¼PãÁ`kN#}ñâ”q'¾3«^ ЭØ‘¥š|dKV—­žœHÊS÷¿[ãBÈ>Îá5ú¾û¼Ù•4/¹çv¸A R¹Ù?7) Å f¥h,P&Ì6áÅK”9ëàAÕòÝ»`ÀçïÞ¬ççŸ;äË¿:Ú¡i¢JÚgÄïÂY„Z€†Qö’e¯'@‚` xs3\Nþ(¨Õ² ÌɨDS:²âӴņÐÔhR¡GÞÛ‹.Ùü¡Û³Yfø°fðBsÛª¢©*fìÓiw°Ôn`jO®êÎ7™y†:!™µ0Aµd#ï§JH­&¶Ír…—ÉGÛM†ˆ!Ú*u©Fç'º=ܽŨÖ¹!ûÏ`g7à:O®íºàêjzËHƒì0÷Â;9ÙÚ³á%öœ¢ûgïbö…ÇíÇÀ§‡SñàÈÄ}}pʪ–†~V™£^ÆýëÎX銭*(W’êšwÃȘ`ŠûbõÂ[tÆ*E‡=~í6߃°‰Þ«Óõ «@ãøŽE›Š{f–(ne‚‡?x/Óe¼Âvñ›\¹%ê’éO|XéÙ·Øã5d ~1êÌÔÁÕÐnÈøXsûV¨-œŒk(_פòŸZÆ.ò‚á .Ø¢ï½H$ŒFÒFd¢sdý¦#¬õ’ tÝÌüdÕ­$¾ÒöÚ'RliÄ´éoˆDû Þ"S+Õf–ËÂæ¯`†˜20ÉÀYõ…ÝF´5¸D®]oŒ‚ïÏÇ–|Í«2îh«\.àqüŽã3X™î7;þˆƒÔ_`¡Å3×ömë<ÛV¯òOÂ~üŒÐÈþª/MÃ1×€­k¶d(m%4±1Ÿ¸Óšxz@n=òªóƒÂ»ÆÜžíz‹7fC-÷ÒÅCZ^\·f…%ëK„a ¼UvK²)$õ›Ú¬¡Ïá&$†fוÁ.4,Q>èãÊ«S§Vµ¼,‡&A… ½o?Î Cµ(8Ÿâô!iK6cs|AÓ_œò o±9ýW­íÞ6ð—“£|? ¶×}ƒØ×4®'ñTË{|jgŸ”ÚÜV“÷oBÜ×áÑElôK½†½‡ª)wæŒ0?æó‹W;0j• $C;6û÷Á¤ŒÛ€Íq.tCͪTO¾Õ mj+ÕSHd…®“í}ž*9žh–ýM4º¥EnlŒqýþÈÒ:¥eé z ŸÛSSÏåvëŽo•Ü/p]Ÿï…ÈPë¢SÜê<»kU¯ãTJ³Ø¿—²‚ßeí°šø/Õ¨‡±x® +n|¹·e+úÓj‘ŸŠG°éœå,þ•§Ó¡{-ðß[ª¾¦UA½lA™¶%ú{/×õDéÇÕîl7"€©l.c} åc›Çóñ6‹ƒÚÜà¯ÐrHÅ’p3úc†üÖ,ZHb¥äEꃈ)[G¸-lN ‡-…a9­ o£ßû(’àƒpWkM°®õ¹—f?{šÆŠš­B_b¡ñŸÕ*õ£TErþ››=ïçLÔàÏïf±˜]ONíi>!¥f4"çJi¼ÝZ»Wø)<ä[™1.Á:Lµ)ƒ{=!õØ>Ÿ¼¸ÌÐ++ ÆÄÓà_ µ­ÓÁjšÊÄ$ d"…B€5Þæ¢Ÿë¾b6}ˆ–5ˆÏÀŠ¢ ÊO&\c¿ÊûwØ­íçö·†ýÛǼ}7~ 7Â)eËàÐŽŸ?“ºË†7»ü3èþ¼–΋w‚ðæ8UéyRî-Ë[W»¨ÒÁ‚S»°¡ý´Ž7¼¸ 1üÿöîûn¡Þªa{Äëûþ0¯<_d¸g²xeXmÑÛ _X×#y_– ŠêœM´i E;u}j(P1…óR©>r”¯SLŽd`>Úɪ”Ñpôqa6²4ºÝïBÿM®ü& +œY¹½=]™ µNnùHÛ†ô·¦H$"õïiK»ô[~ã.MT ÑnHa&ß6|QÞ£(Y3« Z(¨Æéù±bÌaC^ä卑¶ó]ãÆ*û?•üù±ü1ðŠtYP ÄñÂ÷øšÁ(w¡ÚÞ“‡F¿v e¡§Òý ôBŸŽšÏ%Ò8.n[NÐX8 ÑB†þÕ~ËÜuB¶)›.—¢Ï߬ͼµ¹ˆCÝvl³?/@Vþž×êî½ðYwrªýøöû]'«ßçøIÎ$[Á×É{½g¯[? ]x] úšø.Góbt£­x,2v~HcfF(`§ñX÷Ñ[sàüᆭÊ\Ì÷ïøE¥¾ÛP÷o#œ×ZŒbÿë4йàúb7Ë[rÓ%QH€z$úùs¶r‰Ë…»"â¢)‚¸±G¿ <ϱÑEÙžÝJ 8ÜŽÄ<¥Øª»ÜŒ¸ò€æúiŽx@¿Ã$‰KD÷ûÏ›4 €ÛJ’³ïÂ^¦#Ô“SHeДè¥ß(‡:ˆá?’eðM¯|W@ÓzãëÏ«ùÚmƒÃ‘'D5BésO†Ù îYz1!Ý(£Ë>qò\º9u>Œã«ÉBóëçÝÊ¿ “ëÛŠ‡˜0¥1ÜI[FÝ»ŠRŠ„4\J\&鳪Kvø­¸‚º_m³úýò~¸ÒŽ×¬“g.H—l} ¤»ùÎáí´l–\µ40»‰…=ÍEA¼>ÔãLÿOÚ 7?æo¶¶}8S†ëbÚ¼üpùí/9èƧ蓡ÏêÁùLTÃÚ»%ßþ-y¾¼æÁî„”AùÃé—}uJÿ£ûgÏÛò¯©ø]~¸nÛÑÎãÞçûÿ¦ÕÄÖße?à±ößVô;.é_ ¾Où AÒrç߯`ËÅê¸Uó!™œf³$‡p¤“~Ùj»?Ö¿›!‹ìSÍ›dI‰là¸XhÝ‚W¹Û%â:¸\3jmáÕ”8-ègÅøL@[ÅA`N½)kŠo¬ØfXpW©J„Šºê Wý5E³SïEýéû{Añ\>ÿÓÇž~A=~¾³ïF;~÷òŸL#ÆãPÕýëñí]~õoé“ÿĈû·ŠwÝ™çwi±jP<™˜GÆ¢¿Ïu«G³ËéZa7Jú¼ï4äsHÆ?¶'ÅcC´õIŠï…Ûۤ踎<÷ûŽ>Ê‘ã»?N«vs>颶…j‚xçóJåëçÇ*ûidt;<[NÚ¤ÕéŸ×(˜×ÖªºÖ³ã×ú¼ãÞii×Í(þÏ_„E+%nÃH’ý£+ý¬=|d(ëNFÔþë0ÿ;ÕWÝíû*möóÃì7çÎ]óܶõcˆÿG¥Ÿcèþا™þ÷ï\êºoŒãçï^ïÞ6-‡ë&”÷î(Šdm¢;T«ì¤u¢|ÔG_åïáÒ®?Ê¥’Þ¾¶é·Ù5öFðZñàÊöíÎ2œÇúòAR½Pø0æ./Ý“øKŸÎýßß??¿ßxKÓp/bñ½õõõçÄWØÄ|^þ¤€œF›þ¿a{Úõù0Õwëµ Ñü~ƒn>OñŸ=~)ýKÝqßæÿ«q=}·²OÚ¿˜šäüü~Ÿæ¯O¶~(šù§‰Æ°y÷ä5?×›Çöùmëãáü6áßïÅñô}ÿqññõæ~öûòxߎ>µ÷óºBÏã÷üsüyýï×Çãöëçå¿H¿ª¯ˆÿ ,çØç¹ú>:m}þ²›®ßà•ãÛoðóûqøóý;õóùüÿÃþ,¶¿Ùë÷ÿ>:üÃ|e±·ÿŸ¢ÿ?öÿáÿ÷=€;vÁ¸nÁØ;víÙ Q}¿‡âzô Š"¯Ä^Â";Vþ;îDШÂI!M(Àd¤,¥’“D!£Q‚(É”ÑXÙ!˜A˜Q($I¤J1$d˜AidHd ̉),I*R$ÄÈ™B0˜”™‰FH”E”a¤˜@’F"&Èa‚$LL¢BÁ‘LÔ‘@Å$DBaP K &‘%H d E1$¦Í$€¡HB"#220C62cS4lÂJ" ‹J )„”b£L³4fhÁ£!˜lÍ™’ÁM”HCZe&ˆ‘‚ i2h$‰ d¤36’Ä"I‚B 0¢dDŠbR 2L¥1ÄQd14Aƒ2„"EI!Ò&(" &1ˆ)B (K6*Q-‹#% PH&ƒ%ÊP)F)42" `ÁˆÚ ¨ÙD’)¥3‘¦‚X’"É !bH&IDDFB2"fEDB&0’dŒÌ˜¡4‘$ÌHF!²@™,Š54QI¢!’†b$2I˜’J4ÙH1“D&,™ˆ£Q™ˆØÈÅ42Ñ`ÊFƒDɆi” 6Sd"4Ј¢Á„ÈF!,@@Rb)H€Æ‘!"(¦•„bAHF2D‰² L„“IJD4”Y2!¦™ ešI€(F‰Š ”Œ"ŒcI,`¢Äšƒ!‘P‰¤‚#Q‰0DA^îC2Äc cQB,bbšhPƒš EDJXɆb Q ‚PdŒl‰d“HÊJDD£&e„Â$€fRK2Œh‚#hP2hšF ’2E&‘¨ˆ‰!"™¢iL""R‹˜ˆÅB$‘ Z€ÐÌ  „¢K0Rƒ,M…ˆŒšS3 )""h„h€D3ba$É Hˆ J2‘$É (La6HÆ0Q  D‰”…™ˆ’R‚d ""†„Å% ˆŒÄÓ(†’!1šdD‰Bi˜™ˆ†$XŠY$’LQ¢ÄŠ`„ ÙÅ… )‚L)b@’ "‰*"6‘$¤Á“hLIa1(’Ì™`Kh# 1L(i2a(ÊL e%[L  ,(°XÈD£ hl‰JCÒc2Pƒ 3!!1Ja˜ÒLÛ †m3$fdeI€²h“$É"†`Æ2IJ 0Fh‰"hbI’(È‘EAƒŠ“40ÍL¡) ˆ„`šDĉ2iˆÆÉˆ‘&DÉ„FXÁX¤LÉ,͘„(¦(Q ÑHÁ•i12ÁF ¨ “"# ešhD¤¢ÄØi"ÈhSI!e,2Œ3$1“fÄ II¡¦!$ÅLJ(€#fF5†(˜ˆ Jd‰L’˜2CIH‰$Â%A€Œ‰¨6f1,"$¤BiIA Dˆb ,R$J)E2›%ŒTi†¢HH&™ŠRH`&`) ÉF&D‚QŠIE¤…&“ID™$f1&#©J Ì™’5Áÿ?Ø¿Áü?Åúê÷ü?èéýH ø›£¥HŠ%0Où-SvB(Õ”)H ¤‘–®)f´ÅF@¨c&H…4Õu¢Óiˆ”CNY¾”5ÂEœžª©E)UÉ-Pƒ'ªJ©aÏA¥BtKBj ‚Ðm°¡„°á4uKUTÕ0!¡Wu*+ «p€ämH(]0Ñ6 ³ Ün "œQ‚Ü7,õ$‚Û@Qˆ Ph²’°ô€!ܪ£¨’7HR!QddÒ-µ ²D ˜0º0’r‚è‚H5Ljè­!2¨„Õ"ZR•‰j¢DC(Y4KTÓ S µ$¡p1@é‚S YTm —6(´B¬AA‰œT»rQ"ˆ†¬QI3 bÉ ¡˜‚\—ˆ$J)IRLÃ2Ò C¨(¢ 0Û‚ âO*‹[»jëv ƒŽõçšö€î¥‚JÝÕY ÁI4›—rÈ”­µEšwr… (² q *=CH 6Z0Â-$Ù€â’bІ(Ri6áA’ÜKEõ%£/©ÇM%iAnS„Ò`‚*&’BHÀ”È12 ¡ „›P 2:ÁØp꜌´Dõ*ˆJ\"¥ÊÓ¢‰²Š!UÁP˜зP“«¹¨•¤,§L6´¡T¡wm’:$(£@ÅEƬR$íˆ-6Ú6´ݲ%º.[Õ+P¢¨°X–µn5`ªl‹ª`Õê…GMÁÑ$9R£T‚ƒVõe%%ÍD[% WT².Fà•¹ ¤–J¦a2U&h–Rh´D6T!¢¨È‰ Ñ1YªB0˜JQh˜“©¦äÀ¨!’¡D´ £B›š™¡¸¢¥"@-Êé¢Úiˆi´¶¢ AƒM¾¥¤ % T:L"@$‹T@ªTiaZvô˜BF$ªè3 ‹!ÅGT)¡T !CjÚ5JHݰ‰¨È¨áÒf;"TDH4Š í)SBÑm3¨DkTZ¥N€`AJD©—)†Ø”‘D€”¥ °D $KB`›»B‘ "@Ôl·¢Ä¦’:H4¡§EÕ+Ja\‚itÅÉ)Ì(” €ˆJš TbY€H‰‰ƒ"¡‘ LS… ¶” 6œáSj²èˆ ½ZÄD‡…'ubÛn¨›.0@f’¢Rª"áªrPH I)U¡@¡L"H ‘fPLjB$*‰ D©) bÍX$¦µwêÛQˆKDÛT©†$%£v¨YÑ@›/NÐ%Ú¹rŽ˜J”‰0&Ù§!¢¤4¥”¨¦ @ª¨éGNª‚–àU,‘@¸M¨`Ó@Ò”‰Ç-Ge2‹$«±Ò&€)ˆj…ÂB“€ ’‰P&ÝÉÒE#(ت ‹²ª‚,Ê»£¢Z‚Ó(‚M Ú„¹õÿ¿õÝA$€AJ2% ¢52 ’&“a 0IIHaš!0…e€¨ÈLdÀ¤ f$@‚ d &AˆJ ÁPF",FSaR‰1‚JeÀ2Œ)E’€(Ì™1)(ÆÄ†€”Ð`É„$‹!Œl³‰I †¤Œ²3(I€K6A cHÉ#Bh’FhH†&e"@£DLÙ f Q‰‚ DC"h`Ù ‘“"(Å"IM¡™É“&*(I’EF5&1™@ 2@32b@,–J€Ñ2`F†ˆ$HÒD‰‹2K2“dÒÆ”™I%B&ŠÍ4)¤bC ˜ÆLƒ%†™4˜¢¥†2`„³6 ²!&Y dFŒ&F€”I“b’†Š3a°Ò”L€‘2’“BE- AŒdI#2}çÚýk¾ßêýzÖ­…áUPaQ‘ADAhEH@!%D"AJU Qi@"øÿÔö)ÐQªªBƒ»ñ}æ¹Y-s\ÜÁË›¿µé§»mq›&Š™X¯Ž%EåÊæç.TE²Ù.nc5¨ÕÝu¤¤ºNئ’‰¼ѶS@Y£y^yd‹G7,l6æåb¯wh±±h¨ Ñ“{Ì•;¹¹FåFH£–×M¢-}sQFш÷_=·#TQ°[ÍW#Òk»¨¶¹­Ê"Èá4v™M"T¥Äµbó\ØÑ©Ýk¥F#ãW›Ê"åÝ×0j‹»±hصÀ»$¨+ Q«3¾{\|ínX+¢Ñso‹†Å¼uÅE&#DçEr±­¹cƯ7B±yhµÊ<æ#XÔm‚6 TÒ'lhÕ(QÀmd¡J *(ÔTQ±;­ÊÜáFÚŠˆÆƒ`¢ë^[Ëœ¬DXPÒZÁ@Ò4 iv΢J ­Í;¹cbÙ+bÆ«•Ê$¬î®)"ŵΕËtç"¬\×(«†«–ŒIl[cF ±«mŒj=ÜD^ct£wvuÛq"4d§Ó¯¢òøåôo3Ý a–ŠGunA‹Ý×*½îÄjå®kͼ«Æb‰ c‚’W.£éÛ¶,Uó™6Á–¹ccIä)¥ˆ‰¶ =&¡ ­.´cz箯; @U=t¶„-dÐ+§È4ÐÅ|\¬ÅΟ;¶“^㢠·—**"’Ø-Šógv(ØØ*-yËF¨Ôo9‚6Š ƒ›Aäñ%<@cd¤5¤Òéh9[‰rÜÀn[˜ÉQr«®vÜÚ¹æÜ"1ŠøÜƒLøÁ±¹y¯HªðÑUÝÛWwˆÚ.W'väh-IRTEbÛUÍNÂÑB”4+E%4½²Ûs^ÜTV¹mÒ¹rŒš9sš®lo§»^ÍX¹®Iˆ(Å«›\* £²çV"É´‘b µst+»’­ÊŽf•ÍsXª+E¨Ñcm&Ác`×wE£jB#E¢Å±kÑm±b4‘FŒQ£W-Üë±´V’±ksnkÆ¢ÛiÕ:35@”žHè(¶Q¡Ò:4h¤¢€¨‘ÞÁ“¯'ÄëI ÒøŠïw+ž÷Q®[•1]-¹®_G”ÑQPTV÷ÔëÊ3é×5£ãkˆcc£ræHØÉÝÅ¢îã‰îÝ0%²V*b4mò¸m±É£\仵q$ó”cŠ-BJ’!픥ª.`,Q¹nhÚÚ‹s•Ãrºî·5æªóE^b¢®îˤccÚæ(Ó"Û--QHRÐQ¶ ±¤4µ°[yWFÞW•¼Ú¯0hÚ.•IÝÖ,›»©+űH[×1k›¥­ÓX5¹ó×j#bˆÅb(Öò·|íÈКÞk–¤NZ®XÑmF«›vjÛ=ÛrŒQ´lh7—5y^o-æå£h؈Ú"5’¼ÆŽm«ÊÛ›y· &ŲV1dÖ,FˆÑ·*îîZ1y¹±´b¼ÕÍÍŠå·•ÃÞ»+¶†%’‚ ¡¥ÆÅAËš1­¢ÑE‹QŒD•¢ÔV"ÛIŠ¢KcU&æÜç(±b`#lnmʢŪ-dÑ®UÍAj(ÒkI¨Ôh¤ZV… …(GZC uE±E¶Õ«ÍÝÚäP›&ŠŒZ3˨Þwô÷—¾Ž¼Ûâ5´]ÝÍ ]Øz):9ÕÍr#F075ÝÞãí˜HSĔ֡:C¯PyæBR^wSI”tšÛÕÝÃu´b¢–‡A¤ï7O’ùÝ;m8Øë¡¥)(z !Jl` |ÄÐ%Òl|ë\+øµy«Ì`’ÎèµÏ1G#QRs\NεOJ4ë¤ I±ª¡(/¥Ÿ.%¦¯6ž4httŽ&†¥=§@´ƒCH“«Q±±cã\¢¸½ÕÊñt®ƒM6ɤ׽9½é5HzPVßFå´F“lQI£ÆÕårò¯*òÅ¢6õ”ÞdоCŠ¢BfJM&šT‚(}F%<Ù¼Á ¥æÜƉ‘­Š±G•ÍyµÈÛ[‡)Î-Ê劊ócZtÑK@h+HR(èŠ.‡¡hN“ÈM ÷jé^ŒVΆ„ §I¢å¹­æ¸E¼®Q´UQT/Hq*i4D]/Jy8¡)M )¥f¡ª   yØ$t®‡Oiª¹æòÚð¹¼®j£Z&”Ðt©@½=&‘®´\ÖÑE›çm^^A[ê+sb0¦-çrŽ,å]™nè×b ‰%&%J¾élII­¢±Q‹cZ Ic%ÐTk$lVÐjQm­R£H‰J *PE P*#BR¨” RPP”ˆP% ¥ )BˆR…5­•[ÕˆÕŠÛU±lj+еª «cZ6ª*±«bU € ‘hP&ÔTUch¬Q¶µj-±ZŒmIµAUIh¥PhE¡@ ¤J QiQ)(PJ¡­Q­QkQ¶Š­EUY5hÔUh«bÖª¡F–F‘V ¤RhB’‘Z¤R•)Aµ‹E‹Uª5Q¶ØªØÕ±‹[E«ª*ÑUÔUk[FŠÑª(£Z1µ±­F5±kÕ%U(ÒŠR J¢4Ð´í¢¨¨ØÖÕ’ªŠ¢ª5m5QZ£bÔm£Z6¢¨­E±m´bÅEY”ˆRR´)H”©B±+B«í ä:M(kÚ:{»cXÅnrŠ4…ËšèuÓ¤«°Bì.cC‹lÔ±h´Ak—5Ë”mÎÌhsjæ*#r«…bÛyËy­ÍT”˜Ù-FÖ,–#_Q¹£— 6¹¹¢ÄQ‹eF¢ÅcU×]h“›t¨­"j¢·+á:NŒMM&Õ4¥/‘sh´%¼«›EråÊæ¨ªåsEX­2×5\Ù›XÛ&Ñ‚#@–˜nmËEŠˆÕƒmFÛPkFÝήcclj1sW6-‹ÆÕÍÊѨÛ`­£›¢îê¢F¨“ThïZñ-£m¢±£^k˜¢ŽmsUÎlj’²XbÖ¢¨#cX±¬[–«r¢Æ«b,j¶)Ò&’+@:¤t‰¥(UjCIl%›[¦¨×½Ö¼×#šŒUÍÊTF¬U=ܲ¹‹ ARZ6²I²[ÆÅj{¶äbÆååWšÄUyk•róy¢Æ5å¹¢£lF‹EŠW5sfUñºóUÍX(±µEFÛ`Ú6ÑcF±´mF¨6²R)hiJ—l´ÄèÓƒ–Û‘I´îª:îø¼Åjj"µEIµ“[¬I¡ÐºÐAÐ ‰Z¨–¤-±m±­\ÜÖ-Ͷ¹ª"¶‹Q©4Ej%)‘iZV•(*hÑTî¶¶ám&±ET½Ö¼Õy´Z5r9µr.F·ÆæÔQ©5Œo+–Âl1¢ÑÜøÞj+{»ch(¶+Б¤JšZl¡w sm¹¶ƒck–5Ê4jÆÆÕlTUcDAµÍ¹»»dÚI¬cPkT^j®˜­åÓj ÄjÑV+¶ˆ¢4h-V¨±VÑ­°ŠÒR)AJH¡)§B…Ò T Ð£Hƒ@ €?6 Ó¦½í;E¶_uê:"¢©6Áê@Ä%±§Kl­Ž“I»s R![›¹nî±hØ¢KI¨Îí\Ú*{µ±¶ð¯+E°ÒšÐôš4 ª4i ¨/Q–“ÈÑ{ÙC@1"Ò=B4)H‚ž %r(جE£jØ´™ "ÆÚØÔZŠ¢ÚÚwk’H è”(E¤@¥ZQ: QФ@ºP<„3k[Ë”›Q±±Fت¹t¦V,L+r­ñ«m´4‡M%²†Ÿ!é:RÅ£ŠŠ,hØÇ5]6±[\ÜÆ1lEbÕ,ZJØªŠ±´lk&Ù+BŠ´ Ò4×@ñ :SJ)H¢¢PJ4 Ò” iU#Z-ªÑkch¤´m¢¨± PZ¢¬mW›sjŠÒmF£mQZؼÖ!JSBJP#JƒJ"ºW@(R(CjÄmhÚ+EQ;«[†Š‚¨+Eb¬FµŠ±"´Ò´(…4Š HƒH ‚ªN:WE±hZD­%"Õ‰H»°tR¢(§K (PЪ4€@¨R+HP¦ÊÛVÔUI·•|kÍ6¼ÕÎpÚ6‹V5¢Ñ*4ª-€R QBPR DÒª)¡T TªJ¶ ]+¥¥D ê•Ð6Ê HŠšR‘M(*é-͵j+PVÕʪ*ÔjAi€Z@¤¥£¥Ð4Š %"*:PT]-ˆhUR£Ò(Pƒ@thhDX”Q?ˆ¨‹ðB}{Z«RÙ_vBTÆHɳ1h(FX‚J Æh&̨ÒE¢#FŠDÄDl”Pd–&‰#e !¤™d„H2fQFˆˆ4¤…&ÉdÄ$‘‚"Ä–€@¨dš(É&D¨±A™¡1E6JLÁÂc&J 2A)MED4A)•2B3²”#D‘€‚Dh£Hb”ŒšB"¥`FLD$ÊPÍ ³He4Ã6Å2 Ê@Ì‹!‰%l˜R“$bƒ2ŠI ’ÆI² #1#(0€S@†#F+TTm¤’E¨¤Æ±Q£%A&ŠÖE°b Yš’£SFÅDb6)-DUMj0m’4DmŠ5 (Ô”¥&#c”¤´À´(Ñ26L€š,0‹ŒÈÄYH,c ‘1e4Il’¦Ì Ú#“X! $TZÄX0U$"«“ÿCõü¯þù_3óùú>ýùú»½{½ÇòùûÀûDª§ö" ²‚ˆ<‚ ¢ AÈ* ܈ ù¼²ˆ¸À¨Ÿ€ñUíþÅ÷>/ÓU1õ~¡¾äôŠ &?B ª þ?ÓìšÖÕ¶ßbÖªÕý¼a”"S#$&bXÈ*XLÅÄbb ¤c % d@D `”’B…’Œ¢¡˜3,šD$Úf1bPKF"ÄŠh6È“@BH‰%‰¢TI£DDFJa˜LÐL’™¤™ ’Ć‚!"„“Lš”“1„dÌJ2L)1fA!“`Ä‘ hH™HD4Ù1LÁÓ P™ $SM‚Âc1&i!&hL3™"†’B€™„Š`Ea ˜Á€Ì‘’CC" ¦X¢M&‰41(††’0IdHÄL°lÀŒ”¤hM"c$6BÆ’‘&bS4Œ™ I 1FBfŒ%I%$Ic†H¤Ì1Œ @24¤ÉccDQ%(%!F‰4FˆCb¦ i…˜‘£"6’Fˆ˜ÔI@d¤*hÄK&B$ RÆÐŠS!C@Ò3¢j#b¨Œ 0Ó3,Dla0bŒš,šDc3dÆa(CFE QH¢%™ ³ (… E H’†hÁdA‚’C`"f"$ cIEA¢H£1a4ŒE¡"ÁIf,`¢"e”Ä(Ø5¥#!d¬A‘0¤A’É!™Š2€Ñ Å3BA’&)‘&–¡4˜ÌI¤2&LdY˜Àfa’$a Ðƒ 2™‘E„”`ÖBDØJ "ƒS#A M3!€¨£P# ‚¢$Å£X$fI”™”™£2 ÈŒ0ŒÒ‰K*%E$˜È¦“lˆ¢dØ0Aƒ% i„“(&aIFFdÂK„X@QM(H¦l`Ù0“ fHÀŒ‘” ˜DÀc%˜›$b,É ŦHŒ¤`HÙ‘llˆ™$Á 0…€S0À„A’CRL£!,#ŒFÁ‹%)¢4”6 Q’ƒ`ÈaaÀÌ”¨ˆÅ)!a–HK(f(™I2Ãd…‚„Ðe› Hb™ R"$’Fš1 “ $’,Ji’HiŒM RIÊ@6B2¦Y™¤`ÙLHX4™¤¤)±²i‘X¤M21†R†ˆ„ÉIˆ$RJ‰*$fS4RP¬”¡‰š4ÀbJ!„B„bŒP¤À’L´‰I 6K0PÄ–)) ±&M%L3ìõµmkôþÇî}>¯Ü~¯Öûó~Þß3÷Ø?Ÿz9ãçðøþ³Ýó|÷ß…ùÿÜœùîø»•¡ü`}Cü`ÿX~@u£¯ƒŸw¡ù°?~ †?e ñøbo½|kÄý¡ë÷‡é¿Þ ¨oïøp(ZЯÛ?¹ý Ïïþæ ºi†]¯þ¦(‚ *Â(xòIþÿMvÍkú»„ø;Ömøì“ð˃4SÉY”áÔ AÝ$‘WJ%ôÒ9J“¡#¿}µ“›^ošbÆÉ`—u‘0¥Ë”À¶Š¡TÂrÛ1ÿoÚ§ ]Ëε]xj‰rÓ&uåê¤ d•Q%f‹$I œW´¹u¸=uhFe™ E›-H¯Û0„œpŒAà¤zšêYÒp4TIÅÌ®ÎîÂʽLªƒ,Š£Ì/ˆg({k9º#<ª¼·M•y8ïú÷w–ÝšY?² ‚ ÕåÇÑQsÿEsr÷k}¿ý±ƒeøJv®õâš-g…Øs¯ïþÞƒ¬ëŽo#C#: Š]²›žWVÏ|èbó;[c@G;%jRT§s [{™Aõ¿¹mxž’³Ç˜bäòKÿÓûŸ÷Í6of—áŸUÉÉó?úô­$!q­7BFÂ@c&|ÍÀÒ„<+åˆÈÁL³9»¢¥ñ+9ö@u “‰T´T×IJ«$íšH¨´+zº¬jó 4I±T7Œ"¡CÔ“Ô[„©_K…ÿYáÒ=¼i:ÎKßBTq{‰£´_Œ´Ûc½q±óÆntûS!XØÜÇ·µ¨:ãÕ×­ë`•óÎŽ+QhP+sVÞ\#4ÅÚ®©r$)Ÿ÷&nHŸÌQ¥äާ3VÈã‹V¡b›Ø|ï‡A`*vÅð‰ã•;®ŠžÞ²::jkR÷ƺÈR†9ߨiÒðÔ¹p.+`ž,-Y.%íÛöŽŸó€‘?[m#÷½$°Ê-Kš%¢€¦qÉÆ@ ®=Ðyé˶< R´J‡J¯Weñu‘#.ªµö“U°[¾3Åî5r‹øUùØ€}ø%0ñ>lH;k€! mqxjåÓ¹cB0˜øzVœ]ÿñw$S… Ûi tcR/data/datalist0000644000176200001440000000003713446161026013446 0ustar liggesusersbeta.prob genesegments twa twb tcR/data/genesegments.rda0000644000176200001440000002522712657351347015114 0ustar liggesusersBZh91AY&SYzÄIŒ€ÿÿÿÿÿÿÿÿÿ¿}`/ÿþ€àM~/³úAñµã¯:¢àz0/ ÝŽìѳe¶©%XÛ\îê+»ƒ”l(ÈLÒn×wZfÝ5ݴ鴪ĶÄV»c•µ§n©Ønλœ³h«…Hµ[ éÛ5;·+fNÛC¶ tfMµ@šÂìd;kA!Û\¬Ù¦D†Í·Ý½i“6-¦ƒ,ÛÛº¶Õ*ZIÛv¶%u„«©OCËÓ®kÒð 2QSÚI¦jzÔhi£jhi ¦ƒ@4¦©*OJhdbdÄÈÑ‘“F&4 šaÈd“)*•ýSF =@ ™Jš‰)ú € "Qž…Ož§š) õ+¬÷u»¸¬ÅŠ9=’Y_µµ› ïz÷ ’†¼zÝlÌÕ}Ì9f¥ˆ­í+)Žþýä Ð×¢÷íË*®eu:û­è0 ®¡ÝFW¥×Nu|Â!˜k­ÊÛåux7ÆÆìì ›gÄàtF-ÜXÉÛ¡„òÏ@×7åÛ ÍÊb=«öu3·kiy{§=EÞbÌØPÌù:ƒÞb›ìîõx+à`äà/lWïzôÙÚ<'&îìÛ ¾ˆø¥‡^PðC,܆äïÇ~ ¿A½çó×K_­¹½Í·ÇÞÛÓåæø9÷9;{8y˜vû4vûÞØm¢¬¡É²QŠ4ñ1©S_–ÂwíØQÐÞÜçës"§„‹ÄW>$¡šê~ ‡brÙ~VÙ`qèu~{épE@ ôl‘âòÏ5~¹Ž–Ý[1«Ù…Úìë[væfeÝÅݽÝÛÝÝÆfcåÝÛýÜÎMEËÑYªo~QÖeÌõUjæffgaªUU²*ª«UUS7B©Y˜FBÓ[›åãCw XÙ·È}‡Ããßl8=ü(ŒO®ÕÏàÝ­µyV£KA›|‰±Ø¸3¢É®1*¡„m©œºøÊ0UüÐKñún}A^|Ãéø:O*…™››×¼wîö§•¹öí`‹òÒ§!)=Ó”sâL™|´ñ¬éìÉîˆ.ziN¢Z¤|½<û$3;ã å¢•qiö}½<¾©jEf]½¶ oÔ Œ9Ø1ƒÞ;ÆH¢ŠªŒ‘¤kkRHJÐ0ÌŠ½Þ)Ô¶]l«.AQ !q(…aÈŽ@[ÚÎôZ°HhI%] Ö‚l=ƒ½¼Œ* ˆÔª‚‹%qõМòº*<œ9Ï!4fr=¯G°#‰ñ°ô åðX‘=t>O Ë€õ  1 ŠsÄ.€UHˆÈÅ ¤‹– Ò+"EH…3(5 ˆ‘‘b Âç@È™vÂ.ØQ2làb‘ $R ÁA][GK%.¦íM;p?7 {Ö¢\Æ>NXQwor©-U8ƒ1òïl,9Ý.$F¿á‡!…³69ÌooÏ!EoÄD;'ß{w¨’?Ï»l¨PPR,$H$0e&Yš¬ !pÝÞÍH(ÏBŠ¢‚Š*žC½w¿¿¿·¯ }Ÿµ‚È ‚tÓjæUi™Ah‘N@«4ÂC[Q7‘'*5d˺Ç|Æ(€2æ.Þ‰y$bÒˆ»FêI ÌaõýŸi’ݳ¢ÁV .¢ÀÎuêrå7¯pKݨ$;)8“¶ÀŽvÀØ´)Ú!Õ…Êe$*Ä’H¸Q†G Ê®ñºß'¡Ê§/ßÒr°¢e[(V² M~¼LHâFu²9…`pB¥.\F`œºOgvTèœáDQc„í”QÎæÈ¹çô ˆ!š¦aëYÙpáDî͑ߕ㤱4¤®xhÊÄD?ЦŒ¥‡ºÉF¾j÷fÌY,4e¨cVi/qç’^Ý)4²ô¶m15ƂƂ±Ù-¦éÚk%g$©­¢TbV ý绑|Œçë‹yS„eœ0×µ3g!s,IAמÄΞq<ë ÙZR”âæ»›\¹q Ó«›HL’õ×:¥º”Æ#Š6µhæ—UHÀêªI†;°Øí;®êW­»H‘kw&”' Ö½Ò^ë®N÷¸é¥ò–‹'StÕÚÜ<3&FбÞ÷»{Œr1 ZÌ«êÏ û®ÚyäâçWW[vº´ŒcVEþg‡œmå¸TY[–‹Ž‰›‡©šU.îpr3£+T99ænm1¨Ã¡C¥^ÝÆíez±.Jr²¢zÕGÉëáJøm¥sŽ&uÕrÕ„‰pæ3@ÓY¿wvxT·˜T-¥rzèYG•8/<Z‘nHíJ–P±)@“ÝeÊ®r–㢷'M’!®È³;4œË‚BâÔáµÁ!vžÞ yó9Ê"n&IruÚÉÛ°½w“‰±GOrX“îV¸¨\…Ád3T¦M™¡‹-–ÿ9Üq‰ð%;“ŠåcÚ™xF¡u º†k‚‘—a(˪Ãn1qUZîäî/;FAe(î×dæë2#²1Ö«(g)2e•Öl•D1¨Ù£2"Ù’²³Zc+  {AäNx9;b2®‚i3œƒ_Ï‘u¡±cJ%¹.Ë‹ Y‚»J{!ÞÞ»f‚J Ö]ÝÑ`ží®Ï eoV8²ë2byiÐæi“-2P[-´”…:ŽŒ¯:±eÕn6XÚ†ÍÖÑ9çŽÒ¸±X¡2·4ãº^pØ]˜›PÃ0[\—p÷O Ç·Ew3çtN'¼ƒ-ÜY „²´V – .Ƴ·QyÊFäÆFŽU»žÅ²ÏÑ/zä٠ʬ„޹:‡MºÖn"^³®¨c6±_]ÒwYbÄ"Ü[ +–yÌ="t7éXðùdz¤>/S’ìÜÇ-c´„W8]M4ÎunѤÃ+›4+Kr8dÑ£6«¦`bm1JÒÀEsHÉœ†\ºcfž™cÖ[…]ÁñpuðÍÏk”çI$<¥AdÓ9%hÉ‘ÚìF0«`ÝÂs‡1 ‰K átÆ+yªéͲ´ÎÕ4f™Ã®5pÐÄb¿6ýî<Ç‘&¢Œ²Ê¨±/­;u•£ÎîpªέQTµ³äî!SõÞ}z³ÇÕn€ì ¬RK­8NcºÝRá7¯Qdçyydç)mÊâà*ÚWnh;–4V&©CLjÑ%Š]г»´·8»‚;²VáïÉ¢¸ÒCJ#”AֱɊ`Ö—]×#¥G˜y7+®Rwa¶D˜H³ ÛGÌÇÚQ§ r×ifîì¼"[2ZÚ‚s4S–(ôC8˜ªat*Öˆë\áàI9ˆ!ÕÀJE÷{÷÷‡êàME”V°ª–,aRÖ:«G:Ïð{~·zÏe±.Útb‰&€†q™´J5qîå8ͽIЙ•ÉœDé™Á/nÜ“n°:ØL±ÝÏ+NkS3­3Šíܯ:³’VEŽ´'BÌ\݇N;§g-’¬'uËר,Š"B މÈ)®±9‹ò¿›×Ti!`šËvNVY @“$õ»afÝ0“ YËñ‹Ðשw‚ÎE¤{WlmqņââÛ©œ;YAIÒë.YæãkVfTÍÈRof½E¦íÀ‚Ää®#(2d+K~«ý~ýO]4OYfj L™ˆÀÎKta ŒØÒÆ/¶¦ŠËCÉ»M Ïw&­Np)ŒÝø¿s×ãóÛXOvÑÏF-ømÌYu6¬hÑÖªC›âöq¸­!0ÖrÉ&&¬#©HGOeʼꚀ†×¸í[=£N. R:1d-Ö$fFh [+nº8êº a­›ZdIUѬ¶‚qæL6x´8 !¯%Z9³«6qÒÝhm5)© î-Ö“¬v9õÈë¸â²>â““»D/a1:@«M£={¨u…D°¦LNt½rŠ*œQVäŒÎ.tzã½ÑÒÆŽw=JÒHÊ{\n,Æô[œSViÑf–„–Γ‡T °â˹±ÖšK(eœP2Š )™H³Mº‡µ‹(ᆢ\ÝËÅ’ÎFrè, 2(Õ&Þ^éŠ µ!Iq´ÎÁ®Ú;QIYIŸN:ØÑ–1¨–‘˜=Ä+‡9¢,Ñ+ˆIέk·<„R ›»žÔ‚º $Æ;†«IaÁdǹãvff9,§Ô8…ô²È{y9:ðÑ­¦–\Ñ–†Â̘Q.T³#-M¤+ŽÅ™ge÷qÈ ¡Ê–›"Õ a™Ð‹Í8bD¸Ø7hz=„+- ë2éQ…" æ•8:íÒ ey qÆ>ŽÐÊ^6•¢2LÕ"²$šÌ@)3Yó·¼tu¯sÚSÚÜZä±' ¸{±³…×[¬^Ç„ƒ¹– ,CQ›EÅ«&¥ fZD£1†1X“ŽÓ6†\9);;«Š¨à:…Bvã¢c´P@îyÍØ®³—­=Âã1ï( ´ñÚ°œÜÜ5YRÊHîƒèSâ—¯9  â\ºÛs”+¢âî.ÃÙ£‹ppC4]Æ*­j†öã“׬âÜfšŒbT¶6M‚å0™†jµ«¥ÆØ±q‡r¼ õ8ˆÝ»B,C.;¬u® ·mÝ68n4A«2a(ÖŽ,W-D[q¬Æ¸ÀÕeæ@º…òùÅuÓ å›¶Z md©¦`W F¦µ ”t¡²Ì‚kCku¡Öƒ¾bï·shQžsÉÉ%CÈr]´b°Ýi³c!dàb«09‰ ÚèÔ¤CBÖiІ¶– †/Ç{që¼8¥a(ËÏɹlPD %ˆjLPº:® ˜Ñ6M뉠Í^J~¢<-4vª;7LX¹ۭXóQÆÙÙ<6ntYpfnÙÇZÅUxP¶æa³äïÍÖtZ‰ž!î! yˆRpEÄ¥ È”R.» È=žÏhNßH¾` d æÔó'øsAgPªœ÷BšêÊ‹´Èn²‡:Rf³ é0f%‘`#"5LE”sª:ÑFƒcäeáêÆfÆ0®K±u!]ˆ®.Ïyƒ %—m²d)ƒÚbK-&?NôVtg,£0él¿n”îÓb‡®íRó©â¢íâ÷š·Œ¼)ȇ[t¶¹˜ +#\CÄçÑ+Kx^®Ãµ$Ɖ‰,ÃjíŠIèq%ŽlÑg¢†71»'1ظq<â.`—¥ "i"Gb‘Cf ’MGCÌ:8œ—DÂõÝZ€ZÍ“´·„älÝEv/g"í}NxÚ¥Šnì4È=Ô½* ¡Gµ2 äLZm07ErPf”n€Žpã!‰ŒPÚ)JÃ]£™™çnå3ZTØ.±\:I×naÖcƒ³Ójy[F{nŠÜ=‘"ìˆY¢PÛc’°êðI˜M”¤.]¤é–-% „âqsÝØ¸bÏh“qFÄÃq3FR.£®ÆpƒšºÇ˜µnÓ*tR¦rÊ=9êgZ%ÞÖ‚RDp'‡IUÒ’êíÁsðG*ª×I„Æ ¬6Ö¢ëÒ`Å/U•µåGá&µm)Vh"’E)—IGS&¡s$8,—Å9ÛªÉPÐÈ˨ð.xùtèÝ*¦’-j’,2VT$¬ä˜lL–ª:ÝÎiR Z’EBtÔ™µi:îDVÔYë…CËò÷Dò"ÒÉͶ¸é¸âƒÚŸ^²ð“s«D]‘Z™©M®‰¥›i´p’lÖi8ƒ³‘Íb7®˜]”Ïjv¸+Z(àéb%y|ޱì ¢âÜôÆÌè-u E6\êP¢AÆ4XÓ¢óKI±g;Ž.«#º’éîVY¤Üš¤ÛUJȺg$ftp,pèÂhÅ!!hØfm–™¬ eºÑ0âÓvÇ%‰•7k¸¬’GKtœ,`KBª*ÀFÊŸ³ÕŠÔç\gè¿Gž'nJ×\ hE4¡‚¶Ó¹ö†ì˜Xé3ò°¯qJ ÄDÛT¹£š@ì§Vy) QíŽì– #\Zb×%{p¯i‡hôN “Ñ=fNæùvPåv5f]uL0½1°-œ‡3¡°à ‹ª“]³0U‘­#K `Ø*:Ð3©"Ušµ%Ûžædì)w w&q‚¶è—´Ö{Z;‘Iy´œ‚ í'¾O_ YbÁòzx{¥LJ—¿yÇ%òPÑ‚[+qQø2Ú†«Qt¹ˆ»8–“Ûw[ØXбLƪ-.ÛkŠ%±)q“¸ £¦úÁKVR 'ƒá£Ç—V ëݹ§wtÉ«Îy:]‚ÒlFÉF®Ë”dòpv¬w'dî¦Ãp=0tu,â¹":#»8¹^3ɹèU@Ã2b”¢"LèØ­ °&Ë\‰¦U¬6¦FäSäéÂåŠ6P뱄Âl¹×D#‹nÅBNrÖî‚'£‰PX 7Ž”ŒÔÜ6€›Â|.¤÷EžCåöLNßJ‚q5XŽáã·&cŽÓ¶V‹¦ìæ’eXé Ž›: ÅÑ)ÍqLÕw(‹² œé€’¤+˜ÈmP`Ï~÷î. ]ïÞþƒÐ §¾dU”(Fx¦CJ†‹nÔ6”1E3ªÚˆÝˆ:²/ÉÒò/\9л6áb ”a¶n«ËbapWä½ÒPé©„ÉTƤ©uJ”Ñtð;tŠD…I¥¹¬U£54qŒR®£t±6UiÀ5KuaÒÃ9 U“<Öa燸×.¦´Šj»`21 Û¸q¶)Q†WEaÏÁ½î…ê׎ÌdÂÜbÉnfÔ¨PXÍ]uÎ)C]L`Pnó–kÌÓŒÆ hT43˜.š-²txå´\¾qÒ#çgÚö¨/*±½¢nQ*eÆv”©˜%ÑeÁaÊ<*¢s åŒ5Ù¸CiÛ.D²ít»sºÚ(±Öã‘§Šz&njx{ÅWÖZ8ÅÀáÉa&ÚEšëeÅe­Ãº™mÓrQ'5îçw¢¤QјťisGLìZŠÖñØc F+Þn/mLùJ®9ÔÈg2e]Çc%° ×]Ös¸;‡hëpý¾¼&IÅòˆ¡ˆÑ¦·©zñ¥1BÍM‘ƒ !nh$"‚-\‡râ§£wÎìݸ8êÝ,‘2'C@vG£‹\Ѭ Ž0¢šÓ:ecwÕýTè|Ðû¼>è{Ëç¾¥/¹µƒŠ*$ÏD른¢êZ{ƒ˜C'¥‡®C²eÙ+ê{]z#¹Ž°Ù ªŸ˜žÏ§Ñ‹N|º)Š”Æ [¿Pv…jˆøÂå±wmå d…d§ÓšÕ?h‡.\ƒ„ä/7Ó?“ç™êßWí.™ÊÂ-¾„[ÓA{=ÇÊññóüûzT}k$ÑZŸïƒyÈ—Íîåx‡µ „t¥4…RÂÉo› ”hÙëG w>ÁX''3$8y×kCœÝÛp©EÍŸ2p°JŽ,Y=„„ÃwvE%ÍÉÏ.Ífg èÈÀ¤H÷h5Èö{sF©5YΦÑ3¢VAu©R؉O¤î­ÎáåL…¬¨Àé„ä9ÇUÅУanë´=wb`Ä=ppóUÏ‘91ZtêóŽ ¹Âk²gnѬg*IÝu©ÈàVØIç€^žl™x,Æ:”F,Jl0£jZí™»ªŠ½Õ™ýZlÂÅõ½³„I÷Úð×uhÕ©‰„"Û‡fÜ'*K‘¤g;sÙG;„˨S)WznÙµzcãç¼>»ã|¬{ü¸Æ8²ohÑÄ÷Iw–š6Ø7Üh»Ï”í>,.‘zÒtwhâ'UÒV©ò½»imaš,}$½80¥`ÍBrN$\&î%ε`ˆJ2õaË{tG-¥tƒ9’c‚BhE^æµaq;®È:Õ²ˆÃ±°2ÁbÔ…’-.¬\04[‡bηjL¤Ö|¿O„<$´<ÁêhPwœ“N©QóÀñfÈØ!Ê;4¬ã³¹ 9ÝH(;egÜy—Ì"X¶ëC¸›»Ðް“\Ü  Ï[ã¼ÛÊ–˜Ò*IaÝÛqÀšw;6ŽEG(¦0¦QAˆDŒ„ÓX½JLUéL¼Ôü„M_5kpÅø±ïðøgÂoê‘GqÂMi ß'FG…*q$ª{¾™0¬:*¨ídæqk(òVºšÜv%lUë „Ø-”] +ž8¡µÀsMµÑÕ—K& Xàv;.;¬„vŽÈ=£u*9î\¸.^A‚D(T ®›Z.ÆÑjL†šýS!*ÂlM è«LG·ä, {;ãóÑêIŒ"4o=Ùw5јջ°‚ö­=¨¢¦ž€M6Éa·9åˆW8° -vu‚d¯ÞÛ1b¥áº²±ºàÎBê$F#y¬É*a¢›Ã… `äÓ“ºç ^+‚Îî¤m¢[ž‚¸;« $†Ž]Û…Ég¹RÝÌA*Ma#É ±+­k9×®âœÏQCïí÷ï›Ì~¯©l¶×«ƒ$G[¶›áØÑh"ñiæBèîuÝ®õýþ½T(ÚŸŸ×çÇ'Ÿ–¿ÚÇ!Å£îÓM€¬=ëм„çê=n„£+ELÞ^¯FÇ:vÁZÅ×3 *¡Eìg-³ï%‘-í±Í¦ü×wÛ[¯áNòûÓ OŸÍ9ñÉçYTÈ5‚¹°ý/Ï÷ø>¦{{ÓElbªYñÐÊÌ—ºÌˆ³2 ÆA³˜̓3&;ä»pJj4‹QdGcÖíÏ ÑïëéûÃÌJéA&}6sœì¸öââÊô²¹9ðq¦îË;³v£BËC|û¸l–ì|1Qbô³‘™É‹3¡êãA¬Ì– ¹”©Íª+&AµÙÆÀͨÆùNl¼&M4qšÚ•“]BTdšTnã»$@½h#Ö² ììùêኈ#©JÏÜ:‡ c{Múg5©Ê ¸Ð^™Îø¿=&]Ã*’,Ùš.P$³†¥DDE -ÐÌ€N6Ë9ù¾ßCÏO˜PUÊ9Ð[:²PÂ.Ô,^·Ñ=½(‡k`\¡ñrˬ Û$ZÉsËå§ —iç¢cýHx¾BÄbž„”žÍ#;®0Êå%¡u®¬í9&¿7Ÿ7:"tÊ«f&ÓHÂ¥uØ3“ÐG,à“ <'96áÇp$bjf¤BÍÒ;kl¹-rLã™íÔ[QÎá}àõë‰c$EMHžì†\ƒ±¤W[V²£É4PN k1‘È‘œ–aì­Ž£¸Ï\G»çüûÏh—Ùè8NXŽâk]NVBp»TBNFA¬%!ÀñØ9•uÍž¢9žp)–:T0à˜±¥¬-2úÝÅœ]C<õj: «µd:—“¬îÞ[»n!š…Ü#­ Õ9·G:%IÁM8°.bRÃs£vÝwœ§êÜU’”H´y ÀáÌ'ÅÆ© ±±掗žÃdŒåèÝ‘5FÁgIÈ¿“Åx‘%âd†@q8sdF¸rî:¹ì¯V´âØN‡4݆AZãtŠ®pÀZ\äÊÏQØrrIØJgI鸂™Li={{úó¯†J†&Ú¥¯¤ºÆ0e@év‚0øþ>ï§×ô}¹Œ¡d(¡£beßîÄïDâÌæ±^yÕ¢9;¢4ü¤íê‘–ÑÄf•{ aèÕXX$q†z~¿ ¤°Ós%MäÌT†´¹ÃJ¥C2”ŒC¤%'qhã“·`çLcFGYh4­JiÝ´½&qJ!a$O’ú뮘¬3Y„³F…úG¼^uøƒ™Ö`̓2û_g|v¶í=î ]˜àäÍ\ke„’«auLhbˆ…º3 ¿ü]/ Tk>§ëÞÉäm—±0]qù;ûyçdÑ[XXm6 ™ŠI46‰Kñîç187qâ¼7 º”/èqš#´HXÑ,L‘Êi†…Þvß©|q[ÄVU 0×0Þ!SºhVRËiXä zÜMÆ#´”Bäîv¡ÝÒ74‰@;¹.„€„ØR1Ò\¤ ´,ÛE°Zcku0í¡M•-ED¸4Ñ”ÈçMS(iùŸÑå'xã]K`])›(`ÊRä›&Ç¡Õðæ;®ÀÙciµÅ D¨iJE…A`ÌÔ»RM!µ„uHŒf¦Ž¦Öë[×&d^.(¶O¢ýYây1é¡8ìü\°ái)ŠÛ.ÔÄSKòRÎzXË+Z…IuÆ·Õ“$ÔÜóp\eÛ &·uŽ&,t än¹`QN`·7rswDrÌeÂZ—",1K—…q˜Úî;Žèù—ÌôyŠÕ£áªµg•N#­jÜpHQ% ¬Už#äœD¶É´Œ6¶âî»iÎç.È¡Aí,¥·¬q6r˜œ'@û¶“Ò÷šN}qÅm$®âÚÛ©;2†î-nåî- FRaTMÙÊ«9B¸í—B'°Ø'[¶í Yɨ$Z–\ì(#Z˜,Mnè‡u"*ÐÚ—¡»¤ž™éêC‡sž…’8v„#µi ÌI¨ ª‰B‘šL𰤙¬Ú®4f6Ž2à骜󘙖RÅ‹6ÅV I%)ÇAÀÚLÅdûÏ–¾>Ýç·AqË)¥èÓ¦vSd0‹¢-•(åú~z`ù}A€e4ÕÅÍGl̉Ûâs_Ž:*Ãѹ'7=»]B„]JçŽÀêŽ !ZÙTU‰MÄ[‰çGvìä‹BôO9iÜmÏivîNh‹iÂ$wiÐñ"Ù<³Ì·ÅÝà¥Û뤸çEv!ã¹ÖT·va ì«pœŒÜ«ƒ–¤ˆ+Îvéâ…ÑÕpqðt¿Ôù1uƒ6̦S5@Éœ’¶fë44š¬ì±Ì›2LÏ#ŠëuÛ„ã°‰0¦»6¢²$,¤œ=©&Qb°$â€à^#ž´õá™\«‡Î× ]£ÏhÛ:hÉ ‚Ô´ci!ÓÇ ÅQÀ ‹UDWJ*áXiè«¶èæ–#ñ÷üüõäàOEm£ÌØÒË#6M6v)u’T9ÙY;‚êä`ž,g7a*V²šä¥r.!wáïÃåñ< aX¢§«/q›®ë“[zS@ºï[×ÍgÑúÛõ·ÀGÜé-LQÛjXD`7éîà¢ÛQFv%E‘Èœ@àžıbÄ€ãÂ> KrÝ:}dIîÓ–Æ_/Œ<óÌ ¤Øé^®ÔîÆùOy‹´nBÎæ©O—ïàà©9GŠK¨ˆ'¤3šÛÛaF"¶4r\lAJŽ5ŽÆ¶¬’¶S,<5Ä‘csÃtb8ÔZÎPpƒ…ÛÏ{ÈÄr뵆~ð|‡x—$¢cæÁƒž2²ÙQnYµ2:º«³F&¨Už·¦nº­‰¶3YîÓš¢m!VX¥G pó‡uÎ.†» ;¢1Yh¿·G—šÙXx1h]åó¸Ò)à¥Ï<ò8ç¡Ò¾×/:@¦ PmçPÄ`È´ÊXñk–УrÝ’EÞÕÊ w—\`Žˆº¹™A7Öý;»ü'óûÛâq†Qñ²Ð¡P¿±CagB”¼€€ÚÁi\õ»]Øaîä‡q7â"ì iØî·6r„ö8G3ŽMÖqY9ȹieÕ· vÃAA¿fû<­®>[òûKíá´vÔÔLRèÕr­ª&›D¨£µ¨˜ÍfºýÚCÄ¿cûŒ¸àS d/Ñ8ýÜ}d:N¬»êÜŒðTl#ä'XQêÉ ò>'ĪŸ¬$!µ¸ËFçìç@Ö8n™Ú5JeÆÚ:†J&—cmË9‚ðáfÈšDÅŒEŒ›Xb Œ‰øÛt|±¯•[¦–˜7Ý~î”:%žVÛ¾¤Úòk.5˜ÂÆÕtTš ŠÄ„NçkKM— .ÑÚÓuÏ H´«ÉÏ(;Ö ô”øíÖ†ÉÖLÌʇ!cìÊuî’9rîΛÆéÓuzbU5 § ØuœÍïÝÉÖTt¶ñjêv¶ì)°6lÓlÓA¥ïØöï'm=!eR´ØÚa„]6u)-òùp’qdrG`ß}Ëå´¯BQ]n•p\œŠúSýW¼w&}7ª­ŠÐ¢a»m}õ30% éŠ$VÔŸ€˜¡ÿ&ûÈLäèJ«£bQ^TÓ¦l΃j·&ŠÜšÐ'J½)oQ e âîH§ oX€tcR/R/0000755000176200001440000000000013446161025011205 5ustar liggesuserstcR/R/onload.R0000644000176200001440000000217713446157246012625 0ustar liggesusers.onAttach <- function(libname = find.package("tcR"), pkgname = "tcR"){ packageStartupMessage(" ================================== ================================== The tcR package is no longer supported and current issues will not be fixed. A new package is available that is designed to replace tcR called immunarch. We have solved most of the problems tcR package had and improved the overall pipeline, providing functions for painless repertoire file parsing and publication-ready plot making. The mission of immunarch is to make immune repertoire data analysis as easy and possible - even with R. Please feel free to check it here: https://immunarch.com/ We will be happy to help you to integrate the new package into your pipelines. Please do not hesitate to contact us, should any question arise: Email: vdm.nazarov at gmail.com LinkedIn: https://linkedin.com/in/vdnaz Sincerely, immunarch dev team and Vadim I. Nazarov, lead developer P.S. To suppress this message, just wrap any call to tcR as follows: suppressPackageStartupMessages(library(tcR)) ================================== ==================================") }tcR/R/crosses.R0000644000176200001440000005330613325616565013032 0ustar liggesusers########## Intersections among sets of sequences ########## if (getRversion() >= "2.15.1") { utils::globalVariables(c("Resamp.values", "Fun.value", "P.value")) } #' Intersection between sets of sequences or any elements. #' #' @aliases intersectClonesets intersectCount intersectLogic intersectIndices #' #' @description #' Functions for the intersection of data frames with TCR / Ig data. #' See the \code{repOverlap} function for a general interface to all overlap analysis functions. #' #' \code{intersectClonesets} - returns number of similar elements in the given two clonesets / data frames or matrix #' with counts of similar elements among each pair of objects in the given list. #' #' \code{intersectCount} - similar to \code{tcR::intersectClonesets}, but with fewer parameters and only for two objects. #' #' \code{intersectIndices} - returns matrix M with two columns, where element with index M[i, 1] in the first #' given object is similar to an element with index M[i, 2] in the second given object. #' #' \code{intersectLogic} - returns logic vector with TRUE values in positions, where element in the first given data frame #' is found in the second given data frame. #' #' @usage #' intersectClonesets(.alpha = NULL, .beta = NULL, .type = "n0e", .head = -1, .norm = F, #' .verbose = F) #' #' intersectCount(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) #' #' intersectIndices(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) #' #' intersectLogic(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) #' #' @param .alpha Either first vector or data.frame or list with data.frames. #' @param .beta Second vector or data.frame or type of intersection procedure (see the \code{.type} parameter) if \code{.alpha} is a list. #' @param .type Types of intersection procedure if \code{.alpha} and \code{.beta} is data frames. String with 3 characters (see 'Details' for more information). #' @param .head Parameter for the \code{head} function, applied before intersecting. #' @param .method Method to use for intersecting string elements: 'exact' for exact matching, 'hamm' for matching strings which have <= 1 hamming distance, #' 'lev' for matching strings which have <= 1 levenshtein (edit) distance between them. #' @param .col Which columns use for fetching values to intersect. First supplied column matched with \code{.method}, others as exact values. #' @param .norm If TRUE than normalise result by product of length or nrows of the given data. #' @param .verbose if T then produce output of processing the data. #' #' @details #' Parameter \code{.type} of the \code{intersectClonesets} function is a string of length 3 #' [0an][0vja][ehl], where: #' \enumerate{ #' \item First character defines which elements intersect ("a" for elements from the column "CDR3.amino.acid.sequence", #' "n" for elements from the column "CDR3.nucleotide.sequence", other characters - intersect elements as specified); #' \item Second character defines which columns additionaly script should use #' ('0' for cross with no additional columns, 'v' for cross using the "V.gene" column, #' 'j' for cross using "J.gene" column, 'a' for cross using both "V.gene" and "J.gene" columns); #' \item Third character defines a method of search for similar sequences is use: #' "e" stands for the exact match of sequnces, "h" for match elements which have the Hamming distance between them #' equal to or less than 1, "l" for match elements which have the Levenshtein distance between tham equal to or less than 1. #' } #' #' @seealso \link{repOverlap}, \link{vis.heatmap}, \link{ozScore}, \link{permutDistTest}, \link{vis.group.boxplot} #' #' @return #' \code{intersectClonesets} returns (normalised) number of similar elements or matrix with numbers of elements. #' #' \code{intersectCount} returns number of similar elements. #' #' \code{intersectIndices} returns 2-row matrix with the first column stands for an index of an element in the given \code{x}, and the second column stands for an index of an element of \code{y} which is similar to a relative element in \code{x}; #' #' \code{intersectLogic} returns logical vector of \code{length(x)} or \code{nrow(x)}, where TRUE at position \code{i} means that element with index {i} has been found in the \code{y} #' #' @examples #' \dontrun{ #' data(twb) #' # Equivalent to intersectClonesets(twb[[1]]$CDR3.nucleotide.sequence, #' # twb[[2]]$CDR3.nucleotide.sequence) #' # or intersectCount(twb[[1]]$CDR3.nucleotide.sequence, #' # twb[[2]]$CDR3.nucleotide.sequence) #' # First "n" stands for a "CDR3.nucleotide.sequence" column, "e" for exact match. #' twb.12.n0e <- intersectClonesets(twb[[1]], twb[[2]], 'n0e') #' stopifnot(twb.12.n0e == 46) #' # First "a" stands for "CDR3.amino.acid.sequence" column. #' # Second "v" means that intersect should also use the "V.gene" column. #' intersectClonesets(twb[[1]], twb[[2]], 'ave') #' # Works also on lists, performs all possible pairwise intersections. #' intersectClonesets(twb, 'ave') #' # Plot results. #' vis.heatmap(intersectClonesets(twb, 'ave'), .title = 'twb - (ave)-intersection', .labs = '') #' # Get elements which are in both twb[[1]] and twb[[2]]. #' # Elements are tuples of CDR3 nucleotide sequence and corresponding V-segment #' imm.1.2 <- intersectLogic(twb[[1]], twb[[2]], #' .col = c('CDR3.amino.acid.sequence', 'V.gene')) #' head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')]) #' data(twb) #' ov <- repOverlap(twb) #' sb <- matrixSubgroups(ov, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); #' vis.group.boxplot(sb) #' } intersectClonesets <- function (.alpha = NULL, .beta = NULL, .type = 'n0e', .head = -1, .norm = F, .verbose = F) { if (class(.alpha) == 'list') { if (class(.beta) == 'character') { .type <- .beta } apply.symm(.alpha, intersectClonesets, .head = .head, .type = .type, .norm = .norm, .verbose = .verbose) } else { if (.head != -1) { .alpha <- head(.alpha, .head) .beta <- head(.beta, .head) } cols <- NULL if (class(.alpha) == 'data.frame') { if (substr(.type, 1, 1) == 'a' || substr(.type, 1, 1) == 'n') { if (substr(.type, 1, 1) == 'a') { cols <- 'CDR3.amino.acid.sequence' } else { cols <- 'CDR3.nucleotide.sequence' } if (substr(.type, 2, 2) == 'v') { cols <- c(cols, 'V.gene') } else if (substr(.type, 2, 2) == 'j') { cols <- c(cols, 'J.gene') } else if (substr(.type, 2, 2) == 'a') { cols <- c(cols, 'V.gene', 'J.gene') } else if (substr(.type, 2, 2) != '0') { cat("Second character in .type:", .type, 'is unknown!\n') } } } method <- switch(substr(.type, 3, 3), e = 'exact', h = 'hamm', l = 'lev') res <- intersectCount(.alpha, .beta, method, cols) if (.norm) { if (is.null(dim(.alpha))) { res <- res / (as.numeric(length(.alpha)) * length(.beta)) # res <- res * max(length(.alpha), length(.beta)) } else { res <- res / (as.numeric(nrow(.alpha)) * nrow(.beta)) # res <- res * max(nrow(.alpha), nrow(.beta)) } } res } } intersectCount <- function (.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) { if (.method[1] == 'exact' && (is.null(.col) || length(.col) == 1)) { if (is.null(.col)) { length(base::intersect(.alpha, .beta)) } else { length(base::intersect(.alpha[,.col], .beta[,.col])) } } else { if (.method[1] == 'exact') { nrow(dplyr::intersect(.alpha[, .col], .beta[, .col])) } else { res <- intersectIndices(unique(.alpha), unique(.beta), .method, .col) if (!is.na(res[1,1])) { nrow(res) } else { 0 } } } } intersectIndices <- function (.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) { if (!is.null(.col)) { .alpha <- as.data.frame(.alpha, stringsAsFactors = F) .beta <- as.data.frame(.beta, stringsAsFactors = F) if (length(.col) == 1) { .alpha <- .alpha[, .col] .beta <- .beta[, .col] } else { if (length(.col) == 2) { alpha.cols <- as.matrix(.alpha[, .col[2]]) beta.cols <- as.matrix(.beta[, .col[2]]) } else { alpha.cols <- .alpha[, .col[2:length(.col)]] beta.cols <- .beta[, .col[2:length(.col)]] } .alpha <- .alpha[, .col[1]] .beta <- .beta[, .col[1]] } } res <- find.similar.sequences(.alpha, .beta, .method, 1, F) if (is.na(res[1,1])) { return(res) } if (!is.null(.col) && length(.col) > 1) { for (i in 1:ncol(alpha.cols)) { res <- res[alpha.cols[res[,1], i] == beta.cols[res[,2], i], ] } } if(!is.matrix(res)) { res <- rbind(res) } if (dim(res)[1] == 0) { res <- matrix(c(NA, NA), 1, 2) } res } intersectLogic <- function (.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) { ind <- intersectIndices(.alpha, .beta, .method, .col) if (is.null(.col)) { logic <- rep(FALSE, length(.alpha)) } else { logic <- rep(FALSE, nrow(.alpha)) } logic[ind[,1]] <- TRUE logic } #' Compute convergence characteristics of repertoires. #' #' @description #' Get a number of rows with similar aminoacid sequence but different nucleotide sequence. #' #' @param .alpha Either data frame with columns \code{.col.nuc} and \code{.col.aa} or list with such data frames. #' @param .beta Either data frame or none. #' @param .col.nuc Name of the column with nucleotide sequences. #' @param .col.aa Name of the columnw ith aminoacid sequences. #' @return If \code{.alpha} is data frame, than integer vector of length 2 with . If \code{.alpha} is a list #' than matrix M with M[i,j] = convergence.index(.alpha[[i]], .alpha[[j]]). convergence.index <- function (.alpha, .beta, .col.nuc = 'CDR3.nucleotide.sequence', .col.aa = 'CDR3.amino.acid.sequence') { if (has.class(.alpha, 'list')) { return(apply.asymm(.alpha, function (x,y) convergence.index(x, y)[1])) } a.nuc.logic <- .alpha[, .col.nuc] %in% .beta[, .col.nuc] b.nuc.logic <- .beta[, .col.nuc] %in% .alpha[, .col.nuc] a.aa.logic <- .alpha[, .col.aa] %in% .beta[, .col.aa] b.aa.logic <- .beta[, .col.aa] %in% .alpha[, .col.aa] c(Amino.acid.not.nucleotide.count.1 = length(unique(.alpha[a.aa.logic & !(a.nuc.logic), .col.aa])), Amino.acid.not.nucleotide.count.2 = length(unique(.beta[b.aa.logic & !(b.nuc.logic), .col.aa]))) } #' Overlap Z-score. #' #' @description #' Compute OZ-scores ("overlap Z scores") for values in the given matrix of overlaps, i.e.,. #' for each value compute the number of standart deviations from the mean of the matrix. #' #' @param .mat Matrix with overlap values. #' @param .symm If T then remove lower triangle matrix from counting. Doesn't work if the matrix #' has different number of rows and columns. #' @param .as.matrix If T then return #' @param .val.col If .as.matrix is T then this is a name of the column to build matrix upon: #' either "oz" for the OZ-score column, "abs" for the absolute OZ-score column, or "norm" for the #' normalised absolute OZ-score column. #' #' @seealso \link{repOverlap}, \link{intersectClonesets}, \link{permutDistTest} #' #' @examples #' \dontrun{ #' data(twb) #' mat <- repOverlap(twb) #' ozScore(mat) #' # Take 3x3 matrix #' ozScore(mat[1:3, 1:3]) #' # Return as matrix with OZ scores #' ozmat <- ozScore(mat, T, T, 'oz') #' # Return as matrix with normalised absolute OZ scores #' oznorm <- ozScore(mat, T, T, 'norm') #' # Plot it as boxplots #' sb <- matrixSubgroups(oznorm, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); #' vis.group.boxplot(sb) #' } ozScore <- function (.mat, .symm = T, .as.matrix = F, .val.col = c('norm', 'abs', 'oz')) { if (.symm && nrow(.mat) == ncol(.mat)) { .mat[lower.tri(.mat)] <- NA } res <- melt(.mat, na.rm = T) res$OZ <- NA colnames(res) <- c("Rep1", "Rep2", "Overlap", "OZ") res$OZ <- (res$Overlap - mean(res$Overlap)) / sd(res$Overlap) res$Abs.OZ <- abs(res$OZ) res$Norm.abs.OZ <- (res$Abs.OZ - min(res$Abs.OZ)) / (max(res$Abs.OZ) - min(res$Abs.OZ)) res <- res[order(res$Abs.OZ, decreasing = T),] row.names(res) <- NULL if (.as.matrix) { res <- acast(res, Rep1 ~ Rep2, value.var = switch(.val.col[1], oz = 'OZ', abs = 'Abs.OZ', norm = 'Norm.abs.OZ')) if (sum(!colnames(.mat) %in% colnames(res))) { res <- cbind(NA, res) colnames(res)[1] <- colnames(.mat)[!(colnames(.mat) %in% colnames(res))] } if (sum(!row.names(.mat) %in% row.names(res))) { res <- rbind(res, NA) row.names(res)[nrow(res)] <- row.names(.mat)[!(row.names(.mat) %in% row.names(res))] } } res } #' Monte Carlo permutation test for pairwise and one-vs-all-wise within- and inter-group differences in a set of repertoires. #' #' @description #' WARNING: this is an experimental procedure, work is still in progress. #' #' Perform permutation tests of distances among groups for the given groups of samples and matrix of distances among all samples. #' #' @param .mat Symmetric matrix of repertoire distances. #' @param .groups Named list with names of repertoires in groups. #' @param .n Number of permutations for each pair of group. #' @param .fun A function to apply to distances. #' @param .signif Significance level. Below this value hypotheses counts as significant. #' @param .plot If T than plot the output results. Else return them as a data frame. #' @param .xlab X lab label. #' @param .title Main title of the plot. #' @param .hjust Value for adjusting the x coordinate of p-value labels on plots. #' @param .vjust Value for adjusting the y coordinate of p-value labels on plots. #' #' @seealso \link{repOverlap}, \link{intersectClonesets}, \link{ozScore}, \link{pca2euclid} #' #' @examples #' \dontrun{ #' data(twb) #' mat <- repOverlap(twb) #' permutDistTest(mat, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))) #' permutDistTest(mat, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D')), .fun = median) #' } permutDistTest <- function (.mat, .groups, .n = 1000, .fun = mean, .signif = .05, .plot = T, .xlab = "Values", .title = "Monte Carlo permutation testing of overlaps", .hjust = -.1, .vjust = -4) { cat("WARNING: this is an experimental procedure, work is still in progress \n") .pairwise.test <- function (.mat, .group.logic, .n, .fun) { within.val.gr1 = .fun(.mat[.group.logic, .group.logic][upper.tri(.mat[.group.logic, .group.logic])]) within.val.gr2 = .fun(.mat[!.group.logic, !.group.logic][upper.tri(.mat[!.group.logic, !.group.logic])]) inter.val = .fun(.mat[.group.logic, !.group.logic]) within.resamp.gr1 = c() within.resamp.gr2 = c() inter.resamp = c() gr1.size <- sum(.group.logic) gr2.size <- sum(!.group.logic) for (iter in 1:.n) { new.group.logic <- rep(F, nrow(.mat)) new.group.logic[ sample(1:nrow(.mat), gr1.size, F) ] <- T within.resamp.gr1 = c(within.resamp.gr1, .fun(.mat[new.group.logic, new.group.logic][upper.tri(.mat[new.group.logic, new.group.logic])])) within.resamp.gr2 = c(within.resamp.gr2, .fun(.mat[!new.group.logic, !new.group.logic][upper.tri(.mat[!new.group.logic, !new.group.logic])])) inter.resamp = c(inter.resamp, .fun(.mat[new.group.logic, !new.group.logic])) } list(within.val.gr1 = within.val.gr1, within.val.gr2 = within.val.gr2, inter.val = inter.val, within.resamp.gr1 = within.resamp.gr1, within.resamp.gr2 = within.resamp.gr2, inter.resamp = inter.resamp, within.p.gr1 = sum(within.val.gr1 > within.resamp.gr1) / .n, within.p.gr2 = sum(within.val.gr2 > within.resamp.gr2) / .n, inter.p = sum(inter.val > inter.resamp) / .n) } .intergroup.name <- function (.gr1, .gr2) { paste0(.gr1, ':', .gr2) } res <- list() pb <- set.pb((length(.groups) - 1) * length(.groups) / 2) k <- 1 p.vals <- list() for (gr in names(.groups)) { p.vals[[gr]] <- list(within = c(), inter = c()) } for (i in 1:(length(.groups)-1)) { gr1 <- names(.groups)[i] for (j in (i+1):length(.groups)) { gr2 <- names(.groups)[j] submat <- .mat[ row.names(.mat) %in% .groups[[i]] | row.names(.mat) %in% .groups[[j]] , colnames(.mat) %in% .groups[[i]] | colnames(.mat) %in% .groups[[j]] ] submat <- submat[, row.names(submat)] group.logic <- row.names(submat) %in% .groups[[i]] test.res.list <- .pairwise.test(submat, group.logic, .n, .fun) res[[k]] <- rbind(data.frame(Group1 = gr1, Group2 = gr1, Fun.value = test.res.list$within.val.gr1, Resamp.values = test.res.list$within.resamp.gr1, P.value = test.res.list$within.p.gr1, stringsAsFactors = F), data.frame(Group1 = gr1, Group2 = gr2, Fun.value = test.res.list$inter.val, Resamp.values = test.res.list$inter.resamp, P.value = test.res.list$inter.p, stringsAsFactors = F), data.frame(Group1 = gr2, Group2 = gr2, Fun.value = test.res.list$within.val.gr2, Resamp.values = test.res.list$within.resamp.gr2, P.value = test.res.list$within.p.gr2, stringsAsFactors = F)) k <- k + 1 p.vals[[gr1]][["within"]] <- c(p.vals[[gr1]][["within"]], test.res.list$within.p.gr1) names(p.vals[[gr1]][["within"]])[length(p.vals[[gr1]][["within"]])] <- gr2 p.vals[[gr2]][["within"]] <- c(p.vals[[gr2]][["within"]], test.res.list$within.p.gr2) names(p.vals[[gr2]][["within"]])[length(p.vals[[gr2]][["within"]])] <- gr1 p.vals[[gr1]][["inter"]] <- c(p.vals[[gr1]][["inter"]], test.res.list$inter.p) names(p.vals[[gr1]][["inter"]])[length(p.vals[[gr1]][["inter"]])] <- gr2 p.vals[[gr2]][["inter"]] <- c(p.vals[[gr2]][["inter"]], test.res.list$inter.p) names(p.vals[[gr2]][["inter"]])[length(p.vals[[gr2]][["inter"]])] <- gr1 add.pb(pb) } } close(pb) p <- list() for (i in 1:(k-1)) { faclevels <- unique(c(res[[i]]$Group1, res[[i]]$Group2)) faclevels <- c(faclevels[1], paste0(faclevels[1], " ~ ", faclevels[2]), faclevels[2]) res[[i]]$Group3 <- paste0(res[[i]]$Group1, " ~ ", res[[i]]$Group2) res[[i]]$Group3[res[[i]]$Group1 == res[[i]]$Group2] <- res[[i]]$Group1[res[[i]]$Group1 == res[[i]]$Group2] res[[i]]$Group3 <- factor(res[[i]]$Group3, faclevels) tmp <- do.call(rbind, lapply(split(res[[i]], res[[i]]$Group3), function (x) x[1,])) p[[i]] <- ggplot(res[[i]], aes(x = Resamp.values)) + geom_vline(aes(xintercept = Fun.value), size = 1, linetype = "twodash", colour = "blue") + geom_histogram(alpha = .4, colour = 'grey40') + geom_text(aes(x = 0, y = 0, label = paste0("P = ", P.value)), hjust = .hjust, vjust = .vjust, size = 5, data = tmp) + facet_wrap(~ Group3, ncol = 3) + ylab("Permutations, num") + xlab(.xlab) + theme_bw() } fmt.width <- 0 for (gr.name in names(.groups)) { fmt.width <- max(fmt.width, nchar(gr.name)) } fmt.width <- fmt.width + 2 flag <- F cat("Significant differences found (OBS - observed, SIM - simulated):\n") for (gr.name in names(p.vals)) { w.signs <- c() i.signs <- c() for (i in 1:length(p.vals[[gr.name]][["within"]])) { if (p.vals[[gr.name]][["within"]][i] < 1 - p.vals[[gr.name]][["within"]][i]) { w.signs <- c(w.signs, ">") } else { w.signs <- c(w.signs, "<") p.vals[[gr.name]][["within"]][i] <- 1 - p.vals[[gr.name]][["within"]][i] } } for (i in 1:length(p.vals[[gr.name]][["inter"]])) { if (p.vals[[gr.name]][["inter"]][i] < 1 - p.vals[[gr.name]][["inter"]][i]) { i.signs <- c(i.signs, ">") } else { i.signs <- c(i.signs, "<") p.vals[[gr.name]][["inter"]][i] <- 1 - p.vals[[gr.name]][["inter"]][i] } } p.vals[[gr.name]][["within"]] <- p.adjust(p.vals[[gr.name]][["within"]], "BH") p.vals[[gr.name]][["inter"]] <- p.adjust(p.vals[[gr.name]][["inter"]], "BH") # cat("\tThis groups may have come from different populations\n") # cat("\tThis groups may have non-random overlap and come from different populations\n") for (i in 1:length(p.vals[[gr.name]][["within"]])) { pval <- p.vals[[gr.name]][["within"]][i] if (pval <= .signif) { cat(' Within ', formatC(paste0('"', gr.name, '"'), width = -fmt.width), ' in a pool with ', formatC(paste0('"', names(p.vals[[gr.name]][["within"]])[i], '"'), width = fmt.width), ' : P(OBS ', w.signs[i], ' SIM) = ', pval, "\n", sep ='') flag <- T } } for (i in 1:length(p.vals[[gr.name]][["inter"]])) { pval <- p.vals[[gr.name]][["inter"]][i] if (pval <= .signif) { cat(' Between ', formatC(paste0('"', gr.name, '"'), width = -fmt.width), ' and ', formatC(paste0('"', names(p.vals[[gr.name]][["inter"]])[i], '"'), width = fmt.width + 11), ' : P(OBS ', i.signs[i], ' SIM) = ', pval, "\n", sep = '') flag <- T } } } if (!flag) { cat("No significant differences have been found.\n") } if (.plot) { suppressMessages(do.call(grid.arrange, c(p, ncol = 1, top = .title))) } else { res } }tcR/R/infoanalysis.R0000644000176200001440000001160412657351347014044 0ustar liggesusers#' Normalised log assymetry. #' #' @description #' Compute the value of the normalised log assymetry measure for the given data.frames #' of the counts of shared clones. #' #' @param .alpha First mitcr data.frame or a list with data.frames. #' @param .beta Second mitcr data.frame or NULL if \code{.alpha} is a list. #' @param .by Which column use to merge. See "Details". #' #' @details #' Merge two data frames by the given column and compute #' value Sum(Log((Percentage for shared clone S from alpha) / (Percentage for shared clone S from beta))) / (# of shared clones). #' #' @return Value of the normalised log assymetry measure for the given data.frames. assymetry<-function(.alpha, .beta = NULL, .by = 'CDR3.nucleotide.sequence'){ if (class(.alpha) == 'list') { return(apply.asymm(.alpha, assymetry, .by = .by)) } m<-merge(.alpha, .beta, by=.by) sum(log(m$Percentage.x/m$Percentage.y))/nrow(m) } #' Repertoires' analysis using information measures applied to V- and J- segment frequencies. #' #' @aliases entropy.seg js.div.seg #' #' @description #' Information approach to repertoire analysis. Function \code{entropy.seg} applies Shannon entropy to V-usage and hence measures variability of V-usage. #' Function \code{js.div.seg} applied Jensen-Shannon divergence to V-usage of two or more data frames and hence measures distance among this V-usages. #' #' @usage #' entropy.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), #' .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), #' .ambig = F) #' #' js.div.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), #' .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), #' .norm.entropy = T, .ambig = F, .verbose = F, .data2 = NULL) #' #' @param .data Mitcr data.frame or a list with mitcr data.frames. #' @param .data2 NULL if .data is a list, or a second mitcr data.frame. #' @param .genes Parameter to the \code{geneUsage} function. #' @param .frame Character vector of length 1 specified which *-frames should be used: #' only in-frame ('in'), out-of-frame ('out') or all sequences ('all'). #' @param .norm.entropy if T then divide result by mean entropy of 2 segments' frequencies. #' @param .ambig Parameter passed to \code{geneUsage}. #' @param .quant Which column to use for the quantity of clonotypes: NA for computing only number of genes without using clonotype counts, "read.count" for the "Read.count" column, #' "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for #' the "Umi.proportion" column. #' @param .verbose If T than output the data processing progress bar. #' #' @return For \code{entropy.seg} - numeric integer with entropy value(s). For \code{js.div.seg} - integer of vector one if \code{.data} and \code{.data2} are provided; #' esle matrix length(.data) X length(.data) if \code{.data} is a list. #' #' @seealso \link{vis.heatmap}, \link{vis.group.boxplot}, \link{geneUsage} entropy.seg <- function (.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .ambig = F) { if (class(.data) == 'list') { return(sapply(.data, entropy.seg, .quant = .quant, .frame = .frame, .genes = .genes, .ambig = .ambig)) } .data <- get.frames(.data, .frame) if (has.class(.genes, "list") && length(.genes) == 2) { entropy(geneUsage(.data, .genes = .genes, .quant = .quant, .ambig = .ambig)) } else { entropy(as.matrix(geneUsage(.data, .genes = .genes, .quant = .quant, .ambig = .ambig)[,-1])) } } js.div.seg <- function (.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .norm.entropy = T, .ambig = F, .verbose = F, .data2 = NULL) { if (class(.data) == 'list') { if (length(.data) == 2) { return(js.div.seg(.data[[1]], .genes, .frame, .quant, .norm.entropy, .ambig, .verbose, .data[[2]])) } else { return(apply.symm(.data, function (x, y) { js.div.seg(.data = x, .data2 = y, .quant = .quant, .frame = .frame, .ambig = .ambig, .norm.entropy = .norm.entropy, .genes = .genes) }, .verbose = .verbose)) } } .data <- get.frames(.data, .frame) .data2 <- get.frames(.data2, .frame) if (has.class(.genes, "list") && length(.genes) == 2) { freq.alpha <- geneUsage(.data, .genes = .genes, .quant = .quant, .ambig = .ambig) freq.beta <- geneUsage(.data2, .genes = .genes, .quant = .quant, .ambig = .ambig) } else { freq.alpha <- geneUsage(.data, .genes = .genes, .quant = .quant, .ambig = .ambig)[,-1] freq.beta <- geneUsage(.data2, .genes = .genes, .quant = .quant, .ambig = .ambig)[,-1] } nrm = if (.norm.entropy) 0.5 * (entropy(freq.alpha) + entropy(freq.beta)) else 1 js.div(freq.alpha, freq.beta) / nrm }tcR/R/spectrum.R0000644000176200001440000000542613325616566013214 0ustar liggesusers########## Spectratyping ########## if (getRversion() >= "2.15.1") { utils::globalVariables(c("Length", "Val")) } #' Spectratype #' #' @description Plot a spectratype plot - a histogram of read counts / umi counts by CDR3 length. #' #' @param .data tcR data frame. #' @param .quant Either "read.count" or "umi.count" for choosing the corresponding columns, or "id" to compute avoid using counts. #' @param .gene Either NA for not using genes, "V" or "J" for corresponding genes. #' @param .plot If T than plot the spectratype plot, otherwise return a table with data for lengths and counts. #' @param .main Main title. #' @param .legend Legend title. #' @param .labs Character vector of length 2 for x-lab and y-lab. #' #' @examples #' \dontrun{ #' data(twb) #' tmp = twb[[1]] #' spectratype(tmp) #' spectratype(tmp, .quant = "id", .plot = T, .gene = 'V') #' spectratype(tmp, .quant = "read.count", .plot = F) #' } spectratype <- function (.data, .quant = c("read.count", "umi.count", "id"), .gene = "V", .plot = T, .main = "Spectratype", .legend = "Gene segment", .labs = c("CDR3 length", NA)) { .data$Length = nchar(.data$CDR3.nucleotide.sequence) if (.quant[1] == "id") { .data$Count = 1 } else { .data$Count = .data[[.column.choice(.quant[1])]] } if (is.na(.gene)) { df = summarise(group_by(do.call(select_, list(.data, "Length", "Count")), Length), Val = sum(Count)) p = ggplot() + geom_bar(aes(x = Length, y = Val), data = df, stat = "identity") } else { .gene = switch(tolower(substr(.gene, 1, 1)), v = "V.gene", j = "J.gene") df = do.call(select_, list(.data, "Length", "Count", .gene)) df = group_by_(df, "Length", .gene) df = summarise(df, Val = sum(Count)) df$Gene = df[[.gene]] df[[.gene]] = NULL df = df[order(df$Val, decreasing = T),] dup = which(cumsum(!duplicated(df$Gene)) == 12)[1] if (length(dup)) { uniq = unique(df$Gene[1:(dup - 1)]) df$Gene[!(df$Gene %in% uniq)] = "Z" # <- dirty hack to avoid factors } p = ggplot() + geom_bar(aes(x = Length, y = Val, fill = Gene), data = df, stat = "identity") + scale_fill_manual(name = .legend, breaks = c(sort(uniq), "Z"), labels=c(sort(uniq), "Other"), values = c("#9E0142", "#D53E4F", "#F46D43", "#FDAE61", "#FEE08B", "#FFFFBF", "#E6F598", "#ABDDA4", "#66C2A5", "#3288BD", "#5E4FA2", "grey75")) + ggtitle(.main) } if (.plot) { if (!is.na(.labs[2])) { p = p + ylab(.labs[2]) } else { p = p + ylab(switch(.quant[1], id = "Number of clonotypes", read.count = "Sum of reads", umi.count = "Sum of UMIs")) } p = p + xlab(.labs[1]) p + theme_linedraw() } else { as.data.frame(df) } }tcR/R/dataproc.R0000644000176200001440000006122513325616565013145 0ustar liggesusersif(getRversion() >= "2.15.1") utils::globalVariables(c("alpha.prob", "beta.prob", "fill_vec", "fill_reads")) #' Compute the number of deletions in MiTCR data frames. #' #' @aliases get.deletions.alpha get.deletions.beta #' #' @usage #' get.deletions.alpha(.data, .Vs = segments$TRAV, .Js = segments$TRAJ) #' #' get.deletions.beta(.data, .Vs = segments$TRBV, .Js = segments$TRBJ, .Ds = segments$TRBD) #' #' @description #' Get deletions for VD, DJ, 5'D and 3'D ends and two columns with #' total deletions for VD/DJ and 5'D/3'D deletions for the given mitcr data.frame #' with 0-indexes columns. Cases, in which deletions cannot be determined, will have -1 #' in their cell. #' #' @param .data Mitcr data.frame. #' @param .Vs Table of V segments; must have 'V.segment' and 'Nucleotide.sequence' columns. #' @param .Js Table of J segments; must have 'J.segment' and 'Nucleotide.sequence' columns. #' @param .Ds Table of D segments; must have 'D.segment' and 'Nucleotide.sequence' columns. #' #' @return Mitcr data.frame with 3 (for alpha chains) or 5 (for beta chains) new columns for deletions. #' #' @details By default, \code{*.table} parameters are taken from the \code{segments} data frame which #' can be loaded to your R environment with data(segments). Data for segments has been taken from IMGT. #' #' @examples #' \dontrun{ #' data(segments) #' immdata <- get.deletions.beta(.data) #' immdata.prob <- tcr.prob.df(immdata) #' } get.deletions.alpha <- function (.data, .Vs = segments$TRAV, .Js = segments$TRAJ) { cat('Preparing data...\n') Last.V.nucleotide.position <- .data$Last.V.nucleotide.position First.J.nucleotide.position <- .data$First.J.nucleotide.position seqs <- .data$CDR3.nucleotide.sequence cat('Computing V deletions...\n') pb <- txtProgressBar(max = length(seqs), style = 3) Vs <- sapply(.data$V.gene, function (x) { V <- .split.get(x) res <- .Vs$Nucleotide.sequence[.Vs$V.alleles == V][1] if (is.na(res)) { res <- .Vs$Nucleotide.sequence[.Vs$V.alleles == paste(V, '-1', sep = '')][1] } if (is.na(res)) { res <- .Vs$Nucleotide.sequence[.Vs$V.alleles == substr(V, 1, nchar(V) - 2)][1] } add.pb(pb) res } ) V.deletions <- nchar(Vs) - Last.V.nucleotide.position - 1 close(pb) cat('Computing J deletions...\n') pb <- txtProgressBar(max = length(seqs), style = 3) Js <- sapply(.data$J.gene, function (x) { J <- .split.get(x) res <- .Js$Nucleotide.sequence[.Js$J.alleles == J][1] if (is.na(res)) { res <- .Js$Nucleotide.sequence[.Js$J.alleles == paste(J, '-1', sep = '')][1] } if (is.na(res)) { res <- .Js$Nucleotide.sequence[.Js$J.alleles == substr(J, 1, nchar(J) - 2)][1] } add.pb(pb) res } ) J.deletions <- nchar(Js) - (nchar(seqs) - First.J.nucleotide.position) cat('Aligning J segments...\n') pb <- set.pb(length(Js)) tmp <- sapply(1:length(Js), function (j) { J.seq <- Js[j] data.nchar <- nchar(seqs[j]) .data <- seqs[j] J.nchar <- nchar(J.seq) add.pb(pb) flag <- F for (i in 1:(min(data.nchar, J.nchar))) { if (substr(J.seq, J.nchar - i + 1, J.nchar - i + 1) != substr(.data, data.nchar - i + 1, data.nchar - i + 1)) { flag <- T break } } if (flag) i <- i - 1 substr(J.seq, J.nchar - i + 1, J.nchar) }) close(pb) J.deletions <- nchar(Js) - nchar(tmp) close(pb) .data$V.deletions <- V.deletions .data$J.deletions <- J.deletions .data$Total.deletions <- V.deletions + J.deletions .data$Total.deletions[V.deletions < 0 | J.deletions < 0] <- -1 .data } get.deletions.beta <- function (.data, .Vs = segments$TRBV, .Js = segments$TRBJ, .Ds = segments$TRBD) { if (has.class(.data, 'list')) { res <- lapply(1:length(.data), function (i) { cat('Processing data from', paste0('"', names(.data)[i], '"...', collapse=''), i,'/',length(.data),'\n') get.deletions.beta(.data[[i]], .Vs = .Vs, .Js = .Js, .Ds = .Ds) } ) names(res) <- names(.data) return(res) } cat('Preparing data...\n') pb <- txtProgressBar(max = 5, style = 3) Last.V.nucleotide.position <- .data$Last.V.nucleotide.position add.pb(pb) First.D.nucleotide.position <- .data$First.D.nucleotide.position add.pb(pb) Last.D.nucleotide.position <- .data$Last.D.nucleotide.position add.pb(pb) First.J.nucleotide.position <- .data$First.J.nucleotide.position add.pb(pb) seqs <- .data$CDR3.nucleotide.sequence add.pb(pb) close(pb) cat('Computing VD deletions...\n') pb <- txtProgressBar(max = length(seqs), style = 3) Vs <- sapply(.data$V.gene, function (x) { V <- .split.get(x) res <- .Vs$Nucleotide.sequence[.Vs$V.segment == V][1] if (is.na(res)) { res <- .Vs$Nucleotide.sequence[.Vs$V.segment == paste(V, '-1', sep = '')][1] } if (is.na(res)) { res <- .Vs$Nucleotide.sequence[.Vs$V.segment == substr(V, 1, nchar(V) - 2)][1] } add.pb(pb) res } ) VD.deletions <- nchar(Vs) - Last.V.nucleotide.position - 1 close(pb) cat('Computing DJ deletions...\n') pb <- txtProgressBar(max = length(seqs), style = 3) Js <- sapply(.data$J.gene, function (x) { J <- .split.get(x) res <- .Js$Nucleotide.sequence[.Js$J.segment == J][1] if (is.na(res)) { res <- .Js$Nucleotide.sequence[.Js$J.segment == paste(J, '-1', sep = '')][1] } if (is.na(res)) { res <- .Js$Nucleotide.sequence[.Js$J.segment == substr(J, 1, nchar(J) - 2)][1] } add.pb(pb) res } ) DJ.deletions <- nchar(Js) - (nchar(seqs) - First.J.nucleotide.position) close(pb) cat("Computing D'5 and D'3 deletions...\n") pb <- txtProgressBar(max = length(seqs) * 2, style=3) D.gene <- .data$D.gene D.straight <- sapply(1:length(D.gene), function (i) { add.pb(pb) substr(seqs[i], First.D.nucleotide.position[i] + 1, Last.D.nucleotide.position[i] + 1) } ) D.rev <- revcomp(D.straight) D.deletions <- sapply(1:length(D.gene), function (i) { D <- .split.get(D.gene[i]) first.index <- -1 res <- c(-1, -1) if (D != '') { D.str <- .Ds$Nucleotide.sequence[.Ds[,1] == D] # D.sub <- substr(seqs[i], # First.D.nucleotide.position[i] + 1, # Last.D.nucleotide.position[i] + 1) D.sub <- D.straight[i] first.index <- regexpr(D.sub, D.str, fixed=T, useBytes=T)[1] if (first.index != -1) { res[1] <- first.index - 1 res[2] <- nchar(D.str) - (first.index + nchar(D.sub) - 1) } else { # first.index <- regexpr(rev.comp(D.sub), D.str, fixed=T, useBytes=T)[1] first.index <- regexpr(D.rev[i], D.str, fixed=T, useBytes=T)[1] if (first.index != -1) { res[1] <- first.index - 1 res[2] <- nchar(D.str) - (first.index + nchar(D.sub) - 1) } } } add.pb(pb) res } ) close(pb) .data$VD.deletions <- VD.deletions .data$DJ.deletions <- DJ.deletions .data$D5.deletions <- D.deletions[1,] .data$D3.deletions <- D.deletions[2,] .data$Total.deletions <- VD.deletions + DJ.deletions + D.deletions[1,] + D.deletions[2,] .data$Total.deletions[VD.deletions < 0 | DJ.deletions < 0 | D.deletions[1,] < 0 | D.deletions[2,] < 0] <- -1 .data } #' Generate random nucleotide TCR sequences. #' #' @description #' Given the list of probabilities and list of segments (see "Details"), generate a artificial TCR repertoire. #' #' @param .count Number of TCR sequences to generate. #' @param .chain Either "alpha" or "beta" for alpha and beta chain respectively. #' @param .segments List of segments (see "Details"). #' @param .P.list List of probabilities (see "Details"). #' #' @details #' For the generation of a artifical TCR repertoire user need to provide two objects: the list with segments and the list with probabilities. #' List with segments is a list of 5 elements with 5 names: "TRAV", "TRAJ", "TRBV", "TRBD", "TRBJ". Each element is a data frame with following columns #' (order is matters!): "V.allelles" with names for V-segments (for TRAV and TRBV; for others is "J.allelles" or "D.allelles"), "CDR3.position" (the function doesn't use it, but you #' should provide it, fill it with zeros, for example), "Full.nucleotide.sequence" (the function doesn't use it), "Nucleotide.sequence" (function uses it for getting nucleotide #' sequences of segments) and "Nucleotide.sequence.P" (the function doesn't use it). #' #' List with probabilities is quite complicated, so just call \code{data(beta.prob)} for beta chain probabilities (alpha chain probabilities will be added soon). #' #' @return Mitcr data.frame with generated sequences. #' #' @seealso \link{genesegments} \link{beta.prob} #' #' @examples #' \dontrun{ #' # Load list of segments provided along with tcR. #' data(genesegments) #' # Load list of probabilities provided along with tcR. #' data(beta.prob) #' # Generate repertoire of beta chian with 10000 sequences. #' artif.rep <- generate.tcR(10000, 'beta') #' View(artif.rep) #' } generate.tcr <- function (.count = 1, .chain = c('beta', 'alpha'), .segments, .P.list = if (.chain[1] == 'alpha') alpha.prob else beta.prob) { # .unique = -1 cat('Preparing necessary data...\n') ############### # ALPHA CHAIN # ############### if (.chain[1] == 'alpha') { pb <- set.pb(3) .V.J.prob <- .P.list$P.V.J V.J.sample <- sample2D(.V.J.prob, .count) V.sample <- V.J.sample[,1] add.pb(pb) J.sample <- V.J.sample[,2] add.pb(pb) .del.V.prob <- .P.list$P.del.V # names(.del.V.prob)[-1] <- sapply(names(.del.V.prob)[-1], function (x) { sub('.', '-', x, fixed=T) }) V.dels <- sapply(V.sample, function (x) { sample(x=0:(nrow(.del.V.prob) - 1), size=1, prob=.del.V.prob[,x]) } ) add.pb(pb) .del.J.prob <- .P.list$P.del.J # names(.del.J.prob)[-1] <- sapply(names(.del.J.prob)[-1], function (x) { sub('.', '-', x, fixed=T) }) J.dels <- sapply(J.sample, function (x) { sample(x=0:(nrow(.del.J.prob) - 1), size=1, prob=.del.J.prob[,x]) } ) add.pb(pb) cat('Generating segments and insertions...\n') pb <- set.pb(4) .Vs <- .segments$TRAV V <- .Vs$Nucleotide.sequence[match(V.sample, .Vs[,1])] add.pb(pb) .Js <- .segments$TRAJ J <- .Js$Nucleotide.sequence[match(J.sample, .Js[,1])] add.pb(pb) .ins.len.prob <- .P.list$P.ins.len VJ.ins.lens <- sample(x=0:(nrow(.ins.len.prob) - 1), size=.count, replace=T, prob=.ins.len.prob[,2]) add.pb(pb) .ins.nucl.prob <- .P.list$P.ins.nucl VJ.ins.nucls <- generate.kmers.prob(VJ.ins.lens, .probs=.ins.nucl.prob[,c(1, 2:5)], .last.nucl = substr(V, nchar(V) - V.dels, nchar(V) - V.dels)) add.pb(pb) close(pb) cat('Finalising sequences...\n') pb <- set.pb(.count) Vns <- nchar(V) Jns <- nchar(J) seqs <- sapply(1:.count, function (i) { add.pb(pb) paste0(substr(V[i], 1, Vns[i] - V.dels[i]), VJ.ins.nucls[i], substr(J[i], J.dels[i] + 1, Jns[i]), collapse = '') } ) close(pb) cat('Generating data frame...\n') res<-data.frame(Read.count = 1, CDR3.nucleotide.sequence = seqs, CDR3.amino.acid.sequence = bunch.translate(seqs), V.gene = V.sample, J.gene = J.sample, D.gene = '', VD.insertions = -1, DJ.insertions = -1, Total.insertions = VJ.ins.lens, VJ.inserted.sequence = VJ.ins.nucls, VD.deletions = V.dels, DJ.deletions = J.dels, Total.deletions = V.dels + J.dels, stringsAsFactors=F) # if (.inframe){ # res<-cbind(rep(1,nrow(res)),res) # names(res)[1]<-"Read.count" # res<-get.outframes((res),T) # } } ############## # BETA CHAIN # ############## else { pb <- set.pb(7) .V.prob <- .P.list$P.V V.sample <- sample(x=row.names(.V.prob), size=.count, replace=T, prob=.V.prob) add.pb(pb) .D.J.prob <-.P.list$P.J.D JD.sample <- sample2D(.D.J.prob, .count=.count) add.pb(pb) .del.V.prob <- .P.list$P.del.V # names(.del.V.prob)[-1] <- sapply(names(.del.V.prob)[-1], function (x) { sub('.', '-', x, fixed=T) }) VD.dels <- sapply(V.sample, function (x) { sample(x=0:(nrow(.del.V.prob) - 1), size=1, prob=.del.V.prob[,x]) } ) add.pb(pb) .del.J.prob <- .P.list$P.del.J # names(.del.J.prob)[-1] <- sapply(names(.del.J.prob)[-1], function (x) { sub('.', '-', x, fixed=T) }) DJ.dels <- apply(JD.sample, 1, function (x) { sample(x=0:(nrow(.del.J.prob) - 1), size=1, prob=.del.J.prob[,x[1]]) } ) add.pb(pb) D1s <- JD.sample[,2] == 'TRBD1' D5.D3.dels <- matrix(rep('', times=length(JD.sample)), ncol = 2) add.pb(pb) .del.D1.prob <- .P.list$P.del.D1 row.names(.del.D1.prob) <- 0:(nrow(.del.D1.prob) - 1) D5.D3.dels[D1s,] <- sample2D(.del.D1.prob, .count=length(which(D1s))) add.pb(pb) .del.D2.prob <- .P.list$P.del.D2 row.names(.del.D2.prob) <- 0:(nrow(.del.D2.prob) - 1) D5.D3.dels[!D1s,] <- sample2D(.del.D2.prob, .count=dim(JD.sample)[1] - length(which(D1s))) add.pb(pb) cat('Generating segments and insertions...\n') pb <- set.pb(7) .Vs <- .segments$TRBV V <- .Vs$Nucleotide.sequence[match(V.sample, .Vs[,1])] add.pb(pb) .Js <- .segments$TRBJ J <- .Js$Nucleotide.sequence[match(JD.sample[,1], .Js[,1])] add.pb(pb) .Ds <- .segments$TRBD D <- .Ds$Nucleotide.sequence[match(JD.sample[,2], .Ds[,1])] add.pb(pb) .ins.len.prob <- .P.list$P.ins.len VD.ins.lens <- sample(x=0:(nrow(.ins.len.prob) - 1), size=.count, replace=T, prob=.ins.len.prob[,2]) add.pb(pb) DJ.ins.lens <- sample(x=0:(nrow(.ins.len.prob) - 1), size=.count, replace=T, prob=.ins.len.prob[,3]) add.pb(pb) # Few secs here .ins.nucl.prob <- .P.list$P.ins.nucl VD.ins.nucls <- generate.kmers.prob(VD.ins.lens, .probs=.ins.nucl.prob[,c(1, 2:5)], .last.nucl = substr(V, nchar(V) - VD.dels, nchar(V) - VD.dels)) add.pb(pb) # Few secs here DJ.ins.nucls <- generate.kmers.prob(DJ.ins.lens, .probs=.ins.nucl.prob[,c(1, 6:9)], .last.nucl = substr(D, nchar(D) - as.integer(D5.D3.dels[,2]), nchar(D) - as.integer(D5.D3.dels[,2]))) add.pb(pb) close(pb) close(pb) cat('Finalising sequences...\n') pb <- set.pb(.count) Vns <- nchar(V) Dns <- nchar(D) Jns <- nchar(J) seqs <- sapply(1:.count, function (i) { add.pb(pb) paste0(substr(V[i], 1, Vns[i] - VD.dels[i]), VD.ins.nucls[i], substr(D[i], as.integer(D5.D3.dels[i,1]) + 1, Dns[i] - as.integer(D5.D3.dels[i,2])), DJ.ins.nucls[i], substr(J[i], DJ.dels[i] + 1, Jns[i]), collapse = '') } ) seqs.sep <- sapply(1:.count, function (i) { add.pb(pb) paste(substr(V[i], 1, Vns[i] - VD.dels[i]), VD.ins.nucls[i], substr(D[i], as.integer(D5.D3.dels[i,1]) + 1, Dns[i] - as.integer(D5.D3.dels[i,2])), DJ.ins.nucls[i], substr(J[i], DJ.dels[i] + 1, Jns[i]), sep = ':') } ) close(pb) cat('Generating data frame...\n') res<-data.frame(Read.count = 1, CDR3.nucleotide.sequence = seqs, CDR3.nucleotide.sequence.sep = seqs.sep, CDR3.amino.acid.sequence = bunch.translate(seqs), V.gene = V.sample, J.gene = JD.sample[,1], D.gene = JD.sample[,2], VD.insertions = VD.ins.lens, DJ.insertions = DJ.ins.lens, Total.insertions = VD.ins.lens + DJ.ins.lens, VJ.inserted.sequence = VD.ins.nucls, DJ.inserted.sequence = DJ.ins.nucls, VD.deletions = VD.dels, DJ.deletions = DJ.dels, Total.deletions = VD.dels + DJ.dels, stringsAsFactors=F) # if (.inframe){ # res<-cbind(rep(1,nrow(res)),res) # names(res)[1]<-"Read.count" # res<-get.outframes((res),T) # } } res$Inframe <- nchar(res$CDR3.nucleotide.sequence) %% 3 == 0 cat('Generated', sum(res$Inframe), 'in-frame sequences and', nrow(res) - sum(res$Inframe), 'out-of-frame sequences.') res } #' Proportions of specifyed subsets of clones. #' #' @aliases tailbound.proportion clonal.proportion top.proportion #' #' @usage #' tailbound.proportion(.data, .bound = 2, .col = 'Read.count') #' #' top.proportion(.data, .head = 10, .col = 'Read.count') #' #' clonal.proportion(.data, .perc = 10, .col = 'Read.count') #' #' @description #' Get a specifyed subset of the given repertiure and compute which proportion in counts #' it has comparing to the overall count. #' #' \code{tailbound.proportion} - subset by the count; #' #' \code{top.proportion} - subset by rank (top N clones); #' #' \code{clonal.proportion} - subset by a summary percentage (top N clones which in sum has the given percentage). #' #' @param .data Data frame or a list with data frames. #' @param .bound Subset the \code{.data} by \code{.col} <= \code{.bound}. #' @param .head How many top values to choose - parameter to the \code{.head} function. #' @param .perc Percentage (0 - 100). #' @param .col Column's name with counts of sequences. #' #' @return For \code{tailbound.proportion} - numeric vector of percentage. #' #' For \code{top.proportion} - numeric vector of percentage for top clones. #' For \code{clonal.proportion} - vector or matrix with values for number of clones, occupied percentage and proportion of the #' chosen clones to the overall count of clones. #' @seealso \link{vis.top.proportions}, \link{prop.sample} #' #' @examples #' \dontrun{ #' # How many clones fill up approximately #' clonal.proportion(immdata, 25) # the 25% of the sum of values in 'Read.count'? #' #' # What proportion of the top-10 clones' reads #" top.proportion(immdata, 10) # to the overall number of reads? #' vis.top.proportions(immdata) # Plot this proportions. #' #' # What proportion of sequences which #' # has 'Read.count' <= 100 to the #' tailbound.proportion(immdata, 100) # overall number of reads? #' } tailbound.proportion <- function (.data, .bound = 2, .col = 'Read.count') { if (has.class(.data, 'list')) { return(sapply(.data, tailbound.proportion, .bound = .bound, .col = .col)) } sum(.data[, .col] <= .bound) / nrow(.data) } top.proportion <- function (.data, .head = 10, .col = 'Read.count') { if (has.class(.data, 'list')) { return(sapply(.data, top.proportion, .head = .head, .col = .col)) } sum(head(.data[, .col], .head)) / sum(.data[, .col]) } clonal.proportion <- function (.data, .perc = 10, .col = 'Read.count') { if (has.class(.data, 'list')) { return(t(sapply(.data, clonal.proportion, .perc = .perc, .col = .col))) } prop <- 0 n <- 0 col <- .data[, .col] col.sum <- sum(col) while (prop < col.sum * (.perc / 100)) { n <- n + 1 prop <- prop + col[n] } c(Clones = n, Percentage = 100 * signif((prop / col.sum), 3), Clonal.count.prop = n / nrow(.data)) } #' Rearrange columns with counts for clonesets. #' #' @description #' Replace Read.count with Umi.count, recompute Percentage and sort data. #' #' @param .data Data frame with columns "Umi.count" and "Read.count". #' #' @return Data frame with new "Read.count" and "Percentage" columns. barcodes.to.reads <- function (.data) { if (has.class(.data, 'list')) { return(lapply(.data, barcodes.to.reads)) } .data$Read.count <- .data$Umi.count .data$Percentage <- .data$Read.count / sum(.data$Read.count) .data[order(.data$Percentage, decreasing = T),] } #' Resample data frame using values from the column with number of clonesets. #' #' @aliases resample downsample prop.sample #' #' @description #' Resample data frame using values from the column with number of clonesets. Number of clonestes (i.e., rows of a MiTCR data frame) #' are reads (usually the "Read.count" column) or UMIs (i.e., barcodes, usually the "Umi.count" column). #' #' @usage #' resample(.data, .n = -1, .col = c("read.count", "umi.count")) #' #' downsample(.data, .n, .col = c("read.count", "umi.count")) #' #' prop.sample(.data, .perc = 50, .col = c("read.count", "umi.count")) #' #' @param .data Data frame with the column \code{.col} or list of such data frames. #' @param .n Number of values / reads / UMIs to choose. #' @param .perc Percentage (0 - 100). See "Details" for more info. #' @param .col Which column choose to represent quanitites of clonotypes. See "Details". #' #' @return Subsampled data frame. #' #' @details #' \code{resample}. Using multinomial distribution, compute the number of occurences for each cloneset, than remove zero-number clonotypes and #' return resulting data frame. Probabilities for \code{rmultinom} for each cloneset is a percentage of this cloneset in #' the \code{.col} column. It's a some sort of simulation of how clonotypes are chosen from the organisms. For now it's not working #' very well, so use \code{downsample} instead. #' #' \code{downsample}. Choose \code{.n} clones (not clonotypes!) from the input repertoires without any probabilistic simulation, but #' exactly computing each choosed clones. Its output is same as for \code{resample} (repertoires), but is more consistent and #' biologically pleasant. #' #' \code{prop.sample}. Choose the first N clonotypes which occupies \code{.perc} percents of overall UMIs / reads. #' #' @seealso \link{rmultinom}, \link{clonal.proportion} #' #' @examples #' \dontrun{ #' # Get 100K reads (not clones!). #' immdata.1.100k <- resample(immdata[[1]], 100000, .col = "read.count") #' } resample <- function (.data, .n = -1, .col = c("read.count", "umi.count")) { if (has.class(.data, 'list')) { if (length(.n) != length(.data)) { .n <- c(.n, rep.int(-1, length(.data) - length(.n))) } return(lapply(.data, resample, .n = .n, .col = .col)) } .col <- .column.choice(.col[1]) if (.n == -1) { .n <- sum(.data[, .col]) } new.bc <- rmultinom(1, .n, .data[, .col] / sum(.data[, .col])) .data[, .col] <- new.bc non.zeros <- new.bc != 0 .data <- .data[non.zeros, ] perc.col <- paste0(strsplit(.col, ".", T)[[1]][1], ".proportion") .data[[perc.col]] <- new.bc[non.zeros] / sum(new.bc) .data[order(.data[[perc.col]], decreasing = T),] } downsample <- function (.data, .n, .col = c("read.count", "umi.count")) { if (has.class(.data, 'list')) { return(lapply(.data, downsample, .n = .n, .col = .col)) } col_current <- .column.choice(.col[1]) read_vec <- .data[, col_current] read_indices <- rep(0, sum(read_vec)) cppFunction( ' NumericVector fill_vec(NumericVector read_vec, NumericVector read_indices) { int dummy = 0; for (int i = 0; i < read_vec.size(); i++) { for (int j = dummy; j < (read_vec[i] + dummy); j++) { read_indices[j] = i; } dummy = dummy + read_vec[i]; } return read_indices; } ' ) read_indices <- fill_vec(read_vec, read_indices) new_counts <- sample(read_indices, .n) new_reads <- rep(0, length(read_vec)) cppFunction( ' NumericVector fill_reads(NumericVector new_reads, NumericVector new_counts) { for (int i = 0; i < new_counts.size(); i++) { new_reads[new_counts[i]] = new_reads[new_counts[i]] + 1; } return new_reads; } ' ) .data[, col_current] <- fill_reads(new_reads, new_counts) subset(.data, .data[, col_current] > 0) } prop.sample <- function (.data, .perc = 50, .col = c("read.count", "umi.count")) { if (has.class(.data, "data.frame")) { .data = list(Data = .data) } .col = .column.choice(.col[1]) res = lapply(.data, function (df) { df[1:(clonal.proportion(df, .perc, .col)[1]), ] }) if (length(res) == 1) { res[[1]] } else { res } } #' Set new columns "Rank" and "Index". #' #' @aliases set.rank set.index #' #' @description #' Set new columns "Rank" and "Index": #' #' set.rank <==> .data$Rank = rank(.data[, .col], ties.method = 'average') #' #' set.index <==> .data$Index = 1:nrow(.data) in a sorted data frame by \code{.col} #' #' @param .data Data frame or list with data frames. #' @param .col Character vector with name of the column to use for ranking or indexing. #' #' @return Data frame with new column "Rank" or "Index" or list with such data frames. set.rank <- function (.data, .col = "Read.count") { if (has.class(.data, 'list')) { lapply(.data, set.rank, .col = .col) } else { y <- 1 / .data[[.col]] .data$Rank <- rank(y, ties.method = 'average') .data } } set.index <- function (.data, .col = "Read.count") { if (has.class(.data, 'list')) { return(lapply(.data, set.index)) } .data <- .data[order(.data[, .col], decreasing = T), ] .data$Index <- 1:nrow(.data) .data }tcR/R/filters.R0000644000176200001440000000647512657351347013027 0ustar liggesusers########## Various ways to subset the data ########## #' Contamination filtering. #' #' @aliases contamination.stats decontamination #' #' @description #' Occasionally DNA or RNA libraries are contaminate each other. To address this issue and estimate contamination rate \code{tcR} offers #' \code{contamination.stats} and \code{decontamination} functions. The \code{decontamination} function received data #' (either data frame or a list with data frames) and a limit for clonal proportion as arguments. #' Script searches for a similar clones to the first data frame in the other (or performs pairwise searches if the given data is a list) #' and removes clones from the first data frame, which has been found in the second one with counts less or equal to 10 * counts of similar clones #' in the first one. Function \code{contamination.stats} will return the number of clones which will be removed with the \code{contamination.stats} function. #' #' @usage #' contamination.stats(.data1, .data2, .limit = 20, .col = 'Read.count') #' #' decontamination(.data1, .data2, .limit = 20, .col = 'Read.count', .symm = T) #' #' @param .data1 First data frame with columns 'CDR3.nucleotide.sequence' and 'Read.count'. Will be checked for contamination. #' @param .data2 Second data frame with such columns. Will be used for checking for sequences which contaminated the first one. #' @param .limit Parameter for filtering: all sequences from \code{.data1} which are presented in \code{.data2} and (count of in \code{.data2}) / (count of seq in \code{.data1}) >= \code{.limit} are removed. #' @param .col Column's name with clonal count. #' @param .symm if T then perform filtering out of sequences in .data1, and then from .data2. Else only from .data1. #' #' @return Filtered \code{.data1} or a list with filtered both \code{.data1} and \code{.data2}. contamination.stats <- function (.data1, .data2, .limit = 20, .col = 'Read.count') { if (has.class(.data1, 'list') && has.class(.data2, 'list')) { res1 <- sapply(1:length(.data1), function (i) contamination.stats(.data1[[i]], .data2[[i]], .limit, .col)) colnames(res1) <- paste0(names(.data1), ':', names(.data2)) res2 <- sapply(1:length(.data1), function (i) contamination.stats(.data2[[i]], .data1[[i]], .limit, .col)) colnames(res2) <- paste0(names(.data2), ':', names(.data1)) return(cbind(res1, res2)) } inds <- intersectIndices(.data1$CDR3.nucleotide.sequence, .data2$CDR3.nucleotide.sequence, 'exact') logic <- .data2[inds[,2], .col] / .data1[inds[,1], .col] >= .limit counts <- .data1[logic, .col] c(Nclones.del = length(counts), summary(counts)) } decontamination <- function (.data1, .data2, .limit = 20, .col = 'Read.count', .symm = T) { .filter <- function (.data1, .data2, .limit, .col) { inds <- intersectIndices(.data1$CDR3.nucleotide.sequence, .data2$CDR3.nucleotide.sequence, 'exact') logic <- .data2[inds[,2], .col] / .data1[inds[,1], .col] >= .limit .data1[!logic, ] } if (has.class(.data1, 'list') && has.class(.data2, 'list')) { res <- lapply(1:length(.data1), function (i) decontamination(.data1[[i]], .data2[[i]], .limit, .col, T)) return(res) } if (.symm) { list(First = .filter(.data1, .data2, .limit, .col), Second = .filter(.data2, .data1, .limit, .col)) } else { .filter(.data1, .data2, .limit, .col) } }tcR/R/mitcr.R0000644000176200001440000000457312657351347012472 0ustar liggesusers#' Start MiTCR directly from the package. #' #' @description #' Start the MiTCR tools directly from the package with given settings. #' #' @param .input,.output Input and output files. #' @param .file.path Path prepending to \code{.input} and \code{.output}. #' If input and output is empty, but .file.path is specified, #' than process all files from the folder \code{.file.path} #' @param ... Specify input and output files and arguments #' of the MITCR without first '-' to run it. #' @param .mitcr.path Path to MiTCR .jar file. #' @param .mem Volume of memory available to MiTCR. #' #' @details #' Don't use spaces in paths! #' You should have insalled JDK 1.7 to make it works. #' #' @examples #' \dontrun{ #' # Equal to #' # java -Xmx8g -jar ~/programs/mitcr.jar -pset flex #' # -level 2 ~/data/raw/TwA1_B.fastq.gz ~/data/mitcr/TwA1_B.txt #' startmitcr('raw/TwA1_B.fastq.gz', 'mitcr/TwA1_B.txt', .file.path = '~/data/', #' pset = 'flex', level = 1, 'debug', .mitcr.path = '~/programs/', .mem = '8g') #' } startmitcr <- function (.input = '', .output = '', ..., .file.path = '', .mitcr.path = '~/programs/', .mem = '4g') { if (.input == '') { startmitcr(list.files(.file.path), paste0('/mitcr/', list.files(.file.path), '.txt'), ..., .file.path = .file.path, .mitcr.path = .mitcr.path, .mem = .mem) } else if (length(.input) > 1) { for (i in 1:length(.input)) { startmitcr(.input[i], .output[i], ..., .file.path = .file.path, .mitcr.path = .mitcr.path, .mem = .mem) } } else { if (.file.path[length(.file.path)] != '/' && .file.path != '') { .file.path <- paste(.file.path, '/', sep = '') } .input <- paste(.file.path, .input, sep = '') .output <- paste(.file.path, .output, sep = '') args <- list(...) args.names <- names(args) if (is.null(names(args))) { args.names <- rep('', length(args)) } args.str <- '' for (i in 1:length(args)) { if (args.names[i] == '') { args.str <- paste(args.str, paste('-', args[[i]], sep = '')) } else { args.str <- paste(args.str, paste('-', args.names[i], sep = ''), args[[i]]) } } args.str <- paste(args.str, .input, .output) system(paste('java', paste('-Xmx', .mem, sep = ''), '-jar', paste(.mitcr.path, 'mitcr.jar', sep = ''), args.str)) } }tcR/R/repoverlap.R0000644000176200001440000001363713325616566013534 0ustar liggesusers#' General function for the repertoire overlap evaluation. #' #' @description #' General interface to all cloneset overlap functions. #' #' @param .data List of clonesets. #' @param .method Which method to use for the overlap evaluation. See "Details" for methods. #' @param .seq Which clonotype sequences to use for the overlap: "nuc" for "CDR3.nucleotide.sequence", "aa" for #' "CDR3.amino.acid.sequence". #' @param .quant Which column to use for the quantity of clonotypes: "read.count" for the "Read.count" column, #' "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for #' the "Umi.proportion" column. Used in "morisita" and "horn". #' @param .vgene If T than use V genes in computing shared or similar clonotypes. Used in all methods. #' @param .norm If T than compute the normalised number of shared clonotypes. Used in "exact". #' @param .a,.b Alpha and beta parameters for "tversky". Default values gives the Jaccard index measure. #' @param .do.unique If T than remove duplicates from the input data, but add their quantities to their clones. #' @param .verbose If T than output the data processing progress bar. #' #' @details #' You can see a more detailed description for each overlap method at \link{intersectClonesets} and \link{similarity}. #' #' Parameter \code{.method} can have one of the following value each corresponding to the specific method: #' #' - "exact" for the shared number of clonotypes (basic function \code{intersectClonesets(..., .type = "..e")}). #' #' - "hamm" for the number of similar clonotypes by the Hamming distance (basic function \code{intersectClonesets(..., .type = "..h")}). #' #' - "lev" for the number of similar clonotypes by the Levenshtein distance (basic function \code{intersectClonesets(..., .type = "..l")}). #' #' - "jaccard" for the Jaccard index (basic function \code{jaccard.index}). #' #' - "morisita" for the Morisita's overlap index (basic function \code{morisita.index}). #' #' - "tversky" for the Tversky index (basic function \code{tversky.index}). #' #' - "overlap" for the overlap coefficient (basic function \code{overlap.coef}). #' #' - "horn" for the Horn's index (basic function \code{horn.index}). #' #' @seealso \link{intersectClonesets}, \link{similarity}, \link{repDiversity} #' #' @examples #' \dontrun{ #' data(twb) #' repOverlap(twb, "exact", .seq = "nuc", .vgene = F) #' repOverlap(twb, "morisita", .seq = "aa", .vgene = T, .quant = "umi.count") #' ov <- repOverlap(twb) #' ov[is.na(ov)] <- 0 #' vis.pca(prcomp(ov, scale. = T), list(A = c(1, 2), B = c(3, 4))) #' } repOverlap <- function (.data, .method = c("exact", "hamm", "lev", "jaccard", "morisita", "tversky", "overlap", "horn"), .seq = c("nuc", "aa"), .quant = c("read.count", "umi.count", "read.prop", "umi.prop"), .vgene = F, .norm = T, .a = .5, .b = .5, .do.unique = T, .verbose = T) { .merge.with.v <- function (.data, .seqcol, .vgene) { if (.vgene) { lapply(.data, function (x) paste0(x[[.seqcol]], x$V.gene) ) } else { lapply(.data, function (x) x[[.seqcol]] ) } } .pair.fun <- function (.data, .fun, .verbose) { if (length(.data) == 2) { .fun(.data[[1]], .data[[2]]) } else { apply.symm(.data, .fun, .verbose = .verbose) } } quant <- .column.choice(.quant, .verbose) if (!has.class(.data, 'list')) { cat("Error! Input data MUST be a list of clonesets!\n"); return(NA); } if (length(.data) < 2) { cat("Error! Input data MUST be a list of clonesets of minimum length 2!\n"); return(NA); } .data <- .fix.listnames(.data) .seqcol <- "CDR3.nucleotide.sequence" if (.seq[1] == "aa") { .seqcol <- "CDR3.amino.acid.sequence" } if (.method[1] %in% c("exact", "hamm", "lev")) { let1 <- "n" if (.seq[1] == "aa") { let1 <- "a" } let2 <- "0" if (.vgene) { let2 <- "v" } let3 <- substr(.method[1], 1, 1) .type <- paste0(let1, let2, let3) if (length(.data) != 2) { intersectClonesets(.data, .type = .type, .norm = .norm, .verbose = .verbose) } else { params <- list(.type = .type, .norm = .norm, .verbose = .verbose) do.call(intersectClonesets, c(list(.data[[1]], .data[[2]]), params)) } } else if (.method[1] %in% c("morisita", "horn")) { .fun <- function (x, y) { horn.index(x, y, F) } if (.method[1] == "morisita") { .fun <- function (x, y) { morisitas.index(x, y, F) } } .verbose.msg("Preprocessing data...\t", .verbose) new.data <- .merge.with.v(.data, .seqcol, .vgene) new.reads <- lapply(.data, "[[", quant) if (.do.unique) { if (.verbose) { pb <- set.pb(length(.data)) } for (i in 1:length(.data)) { .data[[i]] <- as.data.frame(summarise(grouped_df(data.frame(Sequence = new.data[[i]], Count = new.reads[[i]], stringsAsFactors = F), list(as.name("Sequence"))), Count = sum(Count)), stringsAsFactors = F) if (.verbose) { add.pb(pb) } } if (.verbose) { close(pb) } } .pair.fun(.data, function (x, y) { .fun(x, y) }, .verbose) } else if (.method[1] == "jaccard") { .pair.fun(.merge.with.v(.data, .seqcol, .vgene), function (x, y) { jaccard.index(x, y) }, .verbose) } else if (.method[1] == "overlap") { .pair.fun(.merge.with.v(.data, .seqcol, .vgene), function (x, y) { overlap.coef(x, y) }, .verbose) } else if (.method[1] == "tversky") { .pair.fun(.merge.with.v(.data, .seqcol, .vgene), function (x, y) { tversky.index(x, y, .a = .a, .b = .b) }, .verbose) } else { .verbose.msg("You have specified an invalid method identifier. Please check your input arguments.\n", .verbose) return(NA) } }tcR/R/docdata.R0000644000176200001440000006512512706367314012747 0ustar liggesusers.set.attr <- function (.data, .attr, .value) { attr(.data, .attr) <- .value .data } #' Tables with genetic code. #' #' @docType data #' #' @aliases AA_TABLE AA_TABLE_REVERSED #' #' @description #' Tables with genetic code. #' #' @format #' AA_TABLE: #' #' \code{Class 'table' Named chr [1:65] "K" "N" "K" "N" ... #' ..- attr(*, "names")= chr [1:65] "AAA" "AAC" "AAG" "AAT" ...} #' #' AA_TABLE_REVERSED: #' #' \code{List of 22 #' $ *: chr [1:3] "TAA" "TAG" "TGA" #' $ A: chr [1:4] "GCA" "GCC" "GCG" "GCT" #' $ C: chr [1:2] "TGC" "TGT" #' $ D: chr [1:2] "GAC" "GAT" #' ... #' } #' #' @examples #' \dontrun{ #' AA_TABLE['ATG'] # => "M" #' AA_TABLE_REVERSED['K'] # => list(K = c("AAA", "AAG")) #' } AA_TABLE <- table(c('TCA', 'TCG', 'TCC', 'TCT', 'TTT', 'TTC', 'TTA', 'TTG', 'TAT', 'TAC', 'TAA', 'TAG', 'TGT', 'TGC', 'TGA', 'TGG', 'CTA', 'CTG', 'CTC', 'CTT', 'CCA', 'CCG', 'CCC', 'CCT', 'CAT', 'CAC', 'CAA', 'CAG', 'CGA', 'CGG', 'CGC', 'CGT', 'ATT', 'ATC', 'ATA', 'ATG', 'ACA', 'ACG', 'ACC', 'ACT', 'AAT', 'AAC', 'AAA', 'AAG', 'AGT', 'AGC', 'AGA', 'AGG', 'GTA', 'GTG', 'GTC', 'GTT', 'GCA', 'GCG', 'GCC', 'GCT', 'GAT', 'GAC', 'GAA', 'GAG', 'GGA', 'GGG', 'GGC', 'GGT', 'NNN')) AA_TABLE[c('TCA', 'TCG', 'TCC', 'TCT', 'TTT', 'TTC', 'TTA', 'TTG', 'TAT', 'TAC', 'TAA', 'TAG', 'TGT', 'TGC', 'TGA', 'TGG', 'CTA', 'CTG', 'CTC', 'CTT', 'CCA', 'CCG', 'CCC', 'CCT', 'CAT', 'CAC', 'CAA', 'CAG', 'CGA', 'CGG', 'CGC', 'CGT', 'ATT', 'ATC', 'ATA', 'ATG', 'ACA', 'ACG', 'ACC', 'ACT', 'AAT', 'AAC', 'AAA', 'AAG', 'AGT', 'AGC', 'AGA', 'AGG', 'GTA', 'GTG', 'GTC', 'GTT', 'GCA', 'GCG', 'GCC', 'GCT', 'GAT', 'GAC', 'GAA', 'GAG', 'GGA', 'GGG', 'GGC', 'GGT', 'NNN')] <- c('S', 'S', 'S', 'S', 'F', 'F', 'L', 'L', 'Y', 'Y', '*', '*', 'C', 'C', '*', 'W', 'L', 'L', 'L', 'L', 'P', 'P', 'P', 'P', 'H', 'H', 'Q', 'Q', 'R', 'R', 'R', 'R', 'I', 'I', 'I', 'M', 'T', 'T', 'T', 'T', 'N', 'N', 'K', 'K', 'S', 'S', 'R', 'R', 'V', 'V', 'V', 'V', 'A', 'A', 'A', 'A', 'D', 'D', 'E', 'E', 'G', 'G', 'G', 'G', '~') AA_TABLE_REVERSED <- sapply(unique(AA_TABLE), function (aa) { names(AA_TABLE)[AA_TABLE == aa] }) AA_TABLE_REVERSED <- AA_TABLE_REVERSED[order(names(AA_TABLE_REVERSED))] #' Alphabets of TCR and Ig gene segments. #' #' @docType data #' #' @name segments.alphabets #' #' @aliases genealphabets HUMAN_TRAV HUMAN_TRAJ HUMAN_TRBV HUMAN_TRBD HUMAN_TRBJ HUMAN_TRBV_MITCR HUMAN_TRGV HUMAN_TRGJ HUMAN_TRDV HUMAN_TRDD HUMAN_TRDJ HUMAN_IGHV HUMAN_IGHD HUMAN_IGHJ HUMAN_IGKV HUMAN_IGKJ HUMAN_IGLJ HUMAN_IGLV HUMAN_TRBV_ALS HUMAN_TRBV_FAM HUMAN_TRBV_GEN MACMUL_TRBJ MACMUL_TRBV MOUSE_TRBJ MOUSE_TRBV MOUSE_TRAV MOUSE_TRAJ MOUSE_IGKV MOUSE_IGKJ MOUSE_IGHV MOUSE_IGHD MOUSE_IGHJ MOUSE_TRDD MOUSE_TRDV MOUSE_TRDJ MOUSE_TRGV MOUSE_TRGJ MOUSE_IGLJ MOUSE_IGLV #' #' @usage #' HUMAN_TRAV #' #' HUMAN_TRAJ #' #' HUMAN_TRBV #' #' HUMAN_TRBD #' #' HUMAN_TRBJ #' #' HUMAN_TRBV_MITCR #' #' HUMAN_TRBV_ALS #' #' HUMAN_TRGV #' #' HUMAN_TRGJ #' #' HUMAN_TRDV #' #' HUMAN_TRDD #' #' HUMAN_TRDJ #' #' MOUSE_TRBV #' #' MOUSE_TRBJ #' #' MOUSE_TRAV #' #' MOUSE_TRAJ #' #' MOUSE_IGKV #' #' MOUSE_IGKJ #' #' MOUSE_IGHV #' #' MOUSE_IGHD #' #' MOUSE_IGHJ #' #' MACMUL_TRBV #' #' MACMUL_TRBJ #' #' HUMAN_IGHV #' #' HUMAN_IGHD #' #' HUMAN_IGHJ #' #' HUMAN_IGLV #' #' HUMAN_IGLJ #' #' MOUSE_IGLJ #' #' MOUSE_IGLV #' #' @description #' Character vector with names for segments. With \code{tcR} we provided alphabets for all alpha, beta, #' gamma and delta chains gene segments. #' #' @format #' Each \code{_} is a character vector. is an identifier of species, is concatenated three #' identifiers of cell type ("TR**" for TCR, "IG**" for Ig), chain (e.g., "**A*" for alpha chains) and gene segment ("***V" for V(ariable) gene segment, #' "***J" for J(oining) gene segment, "***D" for D(iversity) gene segment). #' #' @examples #' \dontrun{ #' HUMAN_TRBV[1] # => "TRBV10-1" #' } HUMAN_TRAV <- c('TRAV1-1', 'TRAV1-2', 'TRAV10', 'TRAV11', 'TRAV12-1', 'TRAV12-2', 'TRAV12-3', 'TRAV13-1', 'TRAV13-2', 'TRAV14/DV4', 'TRAV16', 'TRAV17', 'TRAV18', 'TRAV19', 'TRAV2', 'TRAV20', 'TRAV21', 'TRAV22', 'TRAV23/DV6', 'TRAV24', 'TRAV25', 'TRAV26-1', 'TRAV26-2', 'TRAV27', 'TRAV29/DV5', 'TRAV3', 'TRAV30', 'TRAV34', 'TRAV35', 'TRAV36/DV7', 'TRAV38-1', 'TRAV38-2/DV8', 'TRAV39', 'TRAV4', 'TRAV40', 'TRAV41', 'TRAV5', 'TRAV6', 'TRAV7', 'TRAV8-1', 'TRAV8-2', 'TRAV8-3', 'TRAV8-4', 'TRAV8-6', 'TRAV8-7', 'TRAV9-1', 'TRAV9-2') HUMAN_TRAJ <- c('TRAJ10', 'TRAJ11', 'TRAJ12', 'TRAJ13', 'TRAJ14', 'TRAJ15', 'TRAJ16', 'TRAJ17', 'TRAJ18', 'TRAJ20', 'TRAJ21', 'TRAJ22', 'TRAJ23', 'TRAJ24', 'TRAJ26', 'TRAJ27', 'TRAJ28', 'TRAJ29', 'TRAJ3', 'TRAJ30', 'TRAJ31', 'TRAJ32', 'TRAJ33', 'TRAJ34', 'TRAJ36', 'TRAJ37', 'TRAJ38', 'TRAJ39', 'TRAJ4', 'TRAJ40', 'TRAJ41', 'TRAJ42', 'TRAJ43', 'TRAJ44', 'TRAJ45', 'TRAJ46', 'TRAJ47', 'TRAJ48', 'TRAJ49', 'TRAJ5', 'TRAJ50', 'TRAJ52', 'TRAJ53', 'TRAJ54', 'TRAJ56', 'TRAJ57', 'TRAJ6', 'TRAJ7', 'TRAJ8', 'TRAJ9') HUMAN_TRBV <- c('TRBV10-1', 'TRBV10-2', 'TRBV10-3', 'TRBV11-1', 'TRBV11-2', 'TRBV11-3', 'TRBV12-4', 'TRBV12-3', 'TRBV12-5', 'TRBV13', 'TRBV14', 'TRBV15', 'TRBV16', 'TRBV18', 'TRBV19', 'TRBV2', 'TRBV20-1', 'TRBV21-1', 'TRBV23-1', 'TRBV24-1', 'TRBV25-1', 'TRBV27', 'TRBV28', 'TRBV29-1', 'TRBV3-1', 'TRBV30', 'TRBV4-1', 'TRBV4-2', 'TRBV4-3', 'TRBV5-1', 'TRBV5-4', 'TRBV5-5', 'TRBV5-6', 'TRBV5-8', 'TRBV6-1', 'TRBV6-3', 'TRBV6-2', 'TRBV6-4', 'TRBV6-5', 'TRBV6-6', 'TRBV6-7', 'TRBV7-1', 'TRBV7-2', 'TRBV7-3', 'TRBV7-4', 'TRBV7-6', 'TRBV7-7', 'TRBV7-8', 'TRBV7-9', 'TRBV9') HUMAN_TRBV <- .set.attr(HUMAN_TRBV, "column", "V.gene") HUMAN_TRBD <- c('TRBD1', 'TRBD2') HUMAN_TRBJ <- c('TRBJ1-1', 'TRBJ1-2', 'TRBJ1-3', 'TRBJ1-4', 'TRBJ1-5', 'TRBJ1-6', 'TRBJ2-1', 'TRBJ2-2', 'TRBJ2-3', 'TRBJ2-4', 'TRBJ2-5', 'TRBJ2-6', 'TRBJ2-7') HUMAN_TRBV_MITCR <- c('TRBV10-1', 'TRBV10-2', 'TRBV10-3', 'TRBV11-1', 'TRBV11-2', 'TRBV11-3', 'TRBV12-4, TRBV12-3', 'TRBV12-5', 'TRBV13', 'TRBV14', 'TRBV15', 'TRBV16', 'TRBV18', 'TRBV19', 'TRBV2', 'TRBV20-1', 'TRBV21-1', 'TRBV23-1', 'TRBV24-1', 'TRBV25-1', 'TRBV27', 'TRBV28', 'TRBV29-1', 'TRBV3-1', 'TRBV30', 'TRBV4-1', 'TRBV4-2', 'TRBV4-3', 'TRBV5-1', 'TRBV5-4', 'TRBV5-5', 'TRBV5-6', 'TRBV5-8', 'TRBV6-1', 'TRBV6-3, TRBV6-2', 'TRBV6-4', 'TRBV6-5', 'TRBV6-6', 'TRBV6-7', 'TRBV7-1', 'TRBV7-2', 'TRBV7-3', 'TRBV7-4', 'TRBV7-6', 'TRBV7-7', 'TRBV7-8', 'TRBV7-9', 'TRBV9') HUMAN_TRBV_ALS <- c('TRBV10-1', 'TRBV10-2', 'TRBV10-3', 'TRBV11-1', 'TRBV11-2', 'TRBV11-3', 'TRBV12-4', 'TRBV12-3', 'TRBV12-5', 'TRBV13', 'TRBV14', 'TRBV15', 'TRBV16', 'TRBV18', 'TRBV19', 'TRBV2*01', 'TRBV20-1', 'TRBV21-1', 'TRBV23-1', 'TRBV24-1', 'TRBV25-1', 'TRBV27', 'TRBV28', 'TRBV29-1', 'TRBV3-1*01', 'TRBV30', 'TRBV4-1', 'TRBV4-2', 'TRBV4-3', 'TRBV5-1', 'TRBV5-4', 'TRBV5-5', 'TRBV5-6', 'TRBV5-8', 'TRBV6-1', 'TRBV6-3', 'TRBV6-2', 'TRBV6-4', 'TRBV6-5', 'TRBV6-6', 'TRBV6-7', 'TRBV7-1', 'TRBV7-2', 'TRBV7-3', 'TRBV7-4', 'TRBV7-6', 'TRBV7-7', 'TRBV7-8', 'TRBV7-9', 'TRBV9') HUMAN_TRBV_ALS <- .set.attr(HUMAN_TRBV_ALS, "column", "V.allele") # HUMAN_TRBV_FAM <- c() # HUMAN_TRBV_GEN <- c() # HUMAN_TRBV_ALS <- c() HUMAN_TRDD = c('TRDD1', 'TRDD2', 'TRDD3') HUMAN_TRDJ = c('TRDJ1', 'TRDJ3', 'TRDJ4', 'TRDJ2') HUMAN_TRDV = c('TRDV3', 'TRAV38-2/DV8', 'TRDV2', 'TRAV23/DV6', 'TRAV29/DV5', 'TRAV36/DV7', 'TRAV14/DV4', 'TRDV1') HUMAN_TRGJ = c('TRGJ1', 'TRGJP1', 'TRGJ2', 'TRGJP', 'TRGJP2') HUMAN_TRGV = c('TRGV5P', 'TRGV10', 'TRGV5', 'TRGV3', 'TRGVA', 'TRGV8', 'TRGV4', 'TRGV11', 'TRGV2', 'TRGV9', 'TRGV1') HUMAN_IGHD = c('IGHD4-4', 'IGHD4-23', 'IGHD2-2', 'IGHD1-7', 'IGHD3-3', 'IGHD5-18', 'IGHD4/OR15-4a', 'IGHD2-21', 'IGHD4/OR15-4b', 'IGHD1/OR15-1a', 'IGHD1-14', 'IGHD6-13', 'IGHD5-24', 'IGHD2/OR15-2a', 'IGHD5-12', 'IGHD6-19', 'IGHD4-11', 'IGHD5-5', 'IGHD1/OR15-1b', 'IGHD3/OR15-3a', 'IGHD4-17', 'IGHD6-25', 'IGHD1-1', 'IGHD3-16', 'IGHD2-8', 'IGHD3-10', 'IGHD3/OR15-3b', 'IGHD5/OR15-5a', 'IGHD3-9', 'IGHD7-27', 'IGHD1-20', 'IGHD1-26', 'IGHD3-22', 'IGHD6-6', 'IGHD2-15', 'IGHD2/OR15-2b', 'IGHD5/OR15-5b') HUMAN_IGHJ = c('IGHJ4', 'IGHJ1', 'IGHJ6', 'IGHJ3', 'IGHJ2', 'IGHJ5') HUMAN_IGHV = c('IGHV4-4', 'IGHV7-40', 'IGHV2-5', 'IGHV4-28', 'IGHV6-1', 'IGHV3/OR16-6', 'IGHV1-69D', 'IGHV1-2', 'IGHV5-51', 'IGHV2/OR16-5', 'IGHV3-30-52', 'IGHV3-53', 'IGHV3/OR16-13', 'IGHV3-74', 'IGHV1-69-2', 'IGHV3-22', 'IGHV4-34', 'IGHV1-45', 'IGHV3-35', 'IGHV3-64', 'IGHV4-61', 'IGHV3-47', 'IGHV7-34-1', 'IGHV4-59', 'IGHV3-19', 'IGHV3-15', 'IGHV4-39', 'IGHV2-70D', 'IGHV3-20', 'IGHV1-18', 'IGHV3-30-22', 'IGHV4-38-2', 'IGHV3-54', 'IGHV5-10-1', 'IGHV3-33', 'IGHV3-21', 'IGHV3-7', 'IGHV1/OR15-2', 'IGHV4-31', 'IGHV3/OR16-8', 'IGHV3-23D', 'IGHV3-30-42', 'IGHV3-62', 'IGHV3-23', 'IGHV1-8', 'IGHV3/OR16-15', 'IGHV1/OR15-1', 'IGHV3-43D', 'IGHV4-30-2', 'IGHV3-NL1', 'IGHV3-64D', 'IGHV3-13', 'IGHV3-52', 'IGHV3-11', 'IGHV3-30-33', 'IGHV1/OR15-4', 'IGHV5-78', 'IGHV4-55', 'IGHV3-16', 'IGHV3-33-2', 'IGHV7-4-1', 'IGHV2-26', 'IGHV4-30-4', 'IGHV1/OR21-1', 'IGHV1/OR15-9', 'IGHV3/OR15-7', 'IGHV3-9', 'IGHV3-30', 'IGHV3-29', 'IGHV3-38', 'IGHV2-70', 'IGHV1-NL1', 'IGHV3-30-5', 'IGHV1/OR15-5', 'IGHV1-3', 'IGHV7-81', 'IGHV3/OR16-14', 'IGHV1-68', 'IGHV3-63', 'IGHV3/OR16-10', 'IGHV4/OR15-8', 'IGHV1-58', 'IGHV3-25', 'IGHV3-69-1', 'IGHV1-38-4', 'IGHV3/OR16-16', 'IGHV1-69', 'IGHV3-32', 'IGHV1-46', 'IGHV1-24', 'IGHV3/OR16-9', 'IGHV3-38-3', 'IGHV3-30-2', 'IGHV3-48', 'IGHV1/OR15-3', 'IGHV3-30-3', 'IGHV3-73', 'IGHV3-49', 'IGHV3-66', 'IGHV3-43', 'IGHV2-10', 'IGHV3/OR16-12', 'IGHV3-71', 'IGHV3-72') HUMAN_IGKJ = c('IGKJ5', 'IGKJ4', 'IGKJ3', 'IGKJ2', 'IGKJ1') HUMAN_IGKV = c('IGKV2-30', 'IGKV1-17', 'IGKV1-5', 'IGKV1/OR1-1', 'IGKV1/OR2-11', 'IGKV2D-30', 'IGKV1-9', 'IGKV2-40', 'IGKV6D-41', 'IGKV1D-43', 'IGKV3-7', 'IGKV6D-21', 'IGKV2-29', 'IGKV1/OR2-1', 'IGKV1-13', 'IGKV3D-20', 'IGKV1-NL1', 'IGKV1D-12', 'IGKV3D-7', 'IGKV1/OR10-1', 'IGKV1/OR2-108', 'IGKV1D-16', 'IGKV1/OR2-118', 'IGKV1-39', 'IGKV1/OR2-9', 'IGKV1D-17', 'IGKV1/ORY-1', 'IGKV1/OR-4', 'IGKV1D-8', 'IGKV1D-42', 'IGKV2D-24', 'IGKV1-27', 'IGKV1/OR15-118', 'IGKV1/OR22-5', 'IGKV1/OR9-1', 'IGKV2/OR2-7D', 'IGKV2D-18', 'IGKV1/OR-3', 'IGKV1/OR9-2', 'IGKV1D-37', 'IGKV1D-39', 'IGKV2D-29', 'IGKV5-2', 'IGKV2D-28', 'IGKV3/OR2-268', 'IGKV2D-26', 'IGKV3-20', 'IGKV1-8', 'IGKV2D-40', 'IGKV6-21', 'IGKV3-11', 'IGKV3-15', 'IGKV1/OR2-3', 'IGKV1-12', 'IGKV2/OR22-4', 'IGKV1/OR2-2', 'IGKV1/OR-2', 'IGKV7-3', 'IGKV1/OR2-0', 'IGKV3D-11', 'IGKV1-16', 'IGKV1D-33', 'IGKV1-33', 'IGKV3D-15', 'IGKV1D-13', 'IGKV2-18', 'IGKV1-6', 'IGKV2-28', 'IGKV4-1', 'IGKV1-37', 'IGKV2-4', 'IGKV2-24') HUMAN_IGLJ = c('IGLJ6', 'IGLJ5', 'IGLJ3', 'IGLJ4', 'IGLJ1', 'IGLJ7', 'IGLJ2') HUMAN_IGLV = c('IGLV2-11', 'IGLV7-46', 'IGLV1-44', 'IGLV5-52', 'IGLV4-3', 'IGLV3-19', 'IGLV3-27', 'IGLV2-18', 'IGLV2-8', 'IGLV3-21', 'IGLV2-33', 'IGLV3-16', 'IGLV3-13', 'IGLV2-14', 'IGLV1-62', 'IGLV3-31', 'IGLV3-9', 'IGLV4-60', 'IGLV1-51', 'IGLV7-43', 'IGLV5-45', 'IGLV8-61', 'IGLV3-1', 'IGLV1-40', 'IGLV3-25', 'IGLV4-69', 'IGLV9-49', 'IGLV5-39', 'IGLV1-47', 'IGLV2-NL1', 'IGLV2-34', 'IGLV11-55', 'IGLV2-5', 'IGLV8/OR8-1', 'IGLV10-54', 'IGLV3-12', 'IGLV3-22', 'IGLV1-41', 'IGLV5-37', 'IGLV5-48', 'IGLV1-36', 'IGLV3-10', 'IGLV3-32', 'IGLV6-57', 'IGLV2-23', 'IGLV1-50') MOUSE_TRAV <- c('TRAV1', 'TRAV10', 'TRAV10D', 'TRAV10N', 'TRAV11', 'TRAV11D', 'TRAV11N', 'TRAV12-1', 'TRAV12-2', 'TRAV12-3', 'TRAV12D-1', 'TRAV12D-2', 'TRAV12D-3', 'TRAV12N-1', 'TRAV12N-2', 'TRAV12N-3', 'TRAV13-1', 'TRAV13-2', 'TRAV13-3', 'TRAV13-4/DV7', 'TRAV13-5', 'TRAV13D-1', 'TRAV13D-2', 'TRAV13D-3', 'TRAV13D-4', 'TRAV13N-1', 'TRAV13N-2', 'TRAV13N-3', 'TRAV13N-4', 'TRAV14-1', 'TRAV14-2', 'TRAV14-3', 'TRAV14D-1', 'TRAV14D-2', 'TRAV14D-3/DV8', 'TRAV14N-1', 'TRAV14N-2', 'TRAV14N-3', 'TRAV15-1/DV6-1', 'TRAV15-2/DV6-2', 'TRAV15D-1/DV6D-1', 'TRAV15D-2/DV6D-2', 'TRAV15N-1', 'TRAV15N-2', 'TRAV16', 'TRAV16D/DV11', 'TRAV16N', 'TRAV17', 'TRAV18', 'TRAV19', 'TRAV2', 'TRAV20', 'TRAV21/DV12', 'TRAV3-1', 'TRAV3-3', 'TRAV3-4', 'TRAV3D-3', 'TRAV3N-3', 'TRAV4-2', 'TRAV4-3', 'TRAV4-4/DV10', 'TRAV4D-2', 'TRAV4D-3', 'TRAV4D-4', 'TRAV4N-3', 'TRAV4N-4', 'TRAV5-1', 'TRAV5-2', 'TRAV5-4', 'TRAV5D-4', 'TRAV5N-4', 'TRAV6-1', 'TRAV6-2', 'TRAV6-3', 'TRAV6-4', 'TRAV6-5', 'TRAV6-6', 'TRAV6-7/DV9', 'TRAV6D-3', 'TRAV6D-4', 'TRAV6D-5', 'TRAV6D-6', 'TRAV6D-7', 'TRAV6N-5', 'TRAV6N-6', 'TRAV6N-7', 'TRAV7-1', 'TRAV7-2', 'TRAV7-3', 'TRAV7-4', 'TRAV7-5', 'TRAV7-6', 'TRAV7D-2', 'TRAV7D-3', 'TRAV7D-4', 'TRAV7D-5', 'TRAV7D-6', 'TRAV7N-4', 'TRAV7N-5', 'TRAV7N-6', 'TRAV8-1', 'TRAV8-2', 'TRAV8D-1', 'TRAV8D-2', 'TRAV8N-2', 'TRAV9-1', 'TRAV9-2', 'TRAV9-3', 'TRAV9-4', 'TRAV9D-1', 'TRAV9D-2', 'TRAV9D-3', 'TRAV9D-4', 'TRAV9N-2', 'TRAV9N-3', 'TRAV9N-4') MOUSE_TRAJ <- c('TRAJ11', 'TRAJ12', 'TRAJ13', 'TRAJ15', 'TRAJ16', 'TRAJ17', 'TRAJ18', 'TRAJ2', 'TRAJ21', 'TRAJ22', 'TRAJ23', 'TRAJ24', 'TRAJ26', 'TRAJ27', 'TRAJ28', 'TRAJ30', 'TRAJ31', 'TRAJ32', 'TRAJ33', 'TRAJ34', 'TRAJ35', 'TRAJ37', 'TRAJ38', 'TRAJ39', 'TRAJ4', 'TRAJ40', 'TRAJ42', 'TRAJ43', 'TRAJ45', 'TRAJ46', 'TRAJ48', 'TRAJ49', 'TRAJ5', 'TRAJ50', 'TRAJ52', 'TRAJ53', 'TRAJ54', 'TRAJ56', 'TRAJ57', 'TRAJ58', 'TRAJ59', 'TRAJ6', 'TRAJ7', 'TRAJ9') MOUSE_TRBV <- c('TRBV1', 'TRBV12-1', 'TRBV12-2', 'TRBV13-1', 'TRBV13-2', 'TRBV13-3', 'TRBV14', 'TRBV15', 'TRBV16', 'TRBV17', 'TRBV19', 'TRBV2', 'TRBV20', 'TRBV23', 'TRBV24', 'TRBV26', 'TRBV29', 'TRBV3', 'TRBV30', 'TRBV31', 'TRBV4', 'TRBV5') MOUSE_TRBJ <- c('TRBJ1-1', 'TRBJ1-2', 'TRBJ1-3', 'TRBJ1-4', 'TRBJ1-5', 'TRBJ2-1', 'TRBJ2-2', 'TRBJ2-3', 'TRBJ2-4', 'TRBJ2-5', 'TRBJ2-7') MOUSE_IGKV <- c('IGKV4-54','IGKV4-59','IGKV4-60','IGKV4-61','IGKV8-16','IGKV9-123', 'IGKV9-128','IGKV1-131','IGKV14-130','IGKV12-89','IGKV1-132', 'IGKV3-4','IGKV4-91','IGKV8-23-1','IGKV4-77','IGKV6-15', 'IGKV6-25','IGKV6-14','IGKV9-119','IGKV4-58','IGKV4-74', 'IGKV3-10','IGKV1-35','IGKV9-124','IGKV3-7','IGKV8-19', 'IGKV1-88','IGKV8-34','IGKV7-33','IGKV13-76','IGKV4-63', 'IGKV2-a','IGKV3-3','IGKV4-62','IGKV18-36','IGKV1-133', 'IGKV3-9','IGKV6-23','IGKV12-98','IGKV3-8','IGKV1-110', 'IGKV4-57-1','IGKV12-47','IGKV12-44','IGKV4-70','IGKV4-90', 'IGKV4-73','IGKV4-79','IGKV6-32','IGKV4-56','IGKV2-137', 'IGKV14-126','IGKV5-48','IGKV4-69','IGKV1-115','IGKV4-57', 'IGKV6-13','IGKV3-12','IGKV4-72','IGKV11-125','IGKV3-2', 'IGKV12-38','IGKV6-29','IGKV6-b','IGKV20-101-2','IGKV6-20', 'IGKV14-111','IGKV10-95','IGKV4-81','IGKV4-92','IGKV15-103', 'IGKV19-93','IGKV4-52','IGKV2-109','IGKV5-45','IGKV5-39', 'IGKV8-26','IGKV1-122','IGKV1-135','IGKV6-c','IGKV12-46', 'IGKV17-121','IGKV6-17','IGKV13-84','IGKV4-50','IGKV1-117', 'IGKV14-100','IGKV4-55','IGKV4-80','IGKV12-e','IGKV8-18', 'IGKV4-68','IGKV5-43','IGKV6-d','IGKV3-1','IGKV10-94', 'IGKV9-120','IGKV13-82','IGKV8-28','IGKV8-21','IGKV4-51', 'IGKV12-40','IGKV8-30','IGKV9-129','IGKV15-101','IGKV4-86', 'IGKV2-112','IGKV4-75','IGKV8-24','IGKV12-41','IGKV13-85', 'IGKV17/OR19-2','IGKV4-83','IGKV4-71','IGKV8-27','IGKV15-102', 'IGKV5-37','IGKV4-78','IGKV17-127','IGKV17/OR16-3','IGKV1-99', 'IGKV3-5','IGKV4-53','IGKV10-96','IGKV16-104') MOUSE_IGKJ <- c('IGKJ5','IGKJ2','IGKJ1','IGKJ4','IGKJ3') MOUSE_IGHV = c('IGHV1-69','IGHV1S96','IGHV5-17','IGHV3-1','IGHV5-6-2','IGHV1-63', 'IGHV8-13','IGHV5-6','IGHV1-28','IGHV1-47','IGHV1-18', 'IGHV1S14','IGHV1S29','IGHV1S70','IGHV1S135','IGHV14S4', 'IGHV5-12-4','IGHV1-27','IGHV3-4','IGHV5-6-3','IGHV12-2', 'IGHV8-5','IGHV1-84','IGHV1S10','IGHV1S136','IGHV8-4', 'IGHV1-85','IGHV8-2','IGHV1-14','IGHV1S32','IGHV1-31', 'IGHV1-5','IGHV1-81','IGHV1-78','IGHV13-2','IGHV7-4', 'IGHV6-4','IGHV1-79','IGHV5-9-1','IGHV3S1','IGHV1-17-1', 'IGHV2-6-1','IGHV5-6-5','IGHV1S118','IGHV2-6','IGHV1-56', 'IGHV9-3-1','IGHV1S130','IGHV1-43','IGHV1-46','IGHV2-4-1', 'IGHV5-9-5','IGHV5-9-2','IGHV1S112','IGHV1-19','IGHV10-1', 'IGHV3-2','IGHV5S4','IGHV8-7','IGHV5-6-1','IGHV5S21', 'IGHV8-12','IGHV8-10','IGHV1S124','IGHV1-72','IGHV1S82', 'IGHV1S81','IGHV8-8','IGHV12-1-1','IGHV1-26','IGHV1S22', 'IGHV3-6','IGHV1-71','IGHV12-2-1','IGHV1S65','IGHV1-58', 'IGHV1-23','IGHV1-7','IGHV7-2','IGHV1-53','IGHV1S56', 'IGHV1-37','IGHV1-24','IGHV1S31','IGHV1S83','IGHV1S20', 'IGHV4-1','IGHV3-8','IGHV13-1','IGHV8S6','IGHV1S34', 'IGHV1S35','IGHV1-59','IGHV8S9','IGHV1S47','IGHV1-62-1', 'IGHV10-3','IGHV1S111','IGHV1S21','IGHV1S87','IGHV1-48', 'IGHV5-6-6','IGHV8-8-1','IGHV1S16','IGHV1-49','IGHV1S92', 'IGHV1-20','IGHV1-70','IGHV1-42','IGHV1S100','IGHV2-6-6', 'IGHV5-6-4','IGHV10S4','IGHV1S134','IGHV1S95','IGHV5-16', 'IGHV3-7','IGHV1S26','IGHV1-54','IGHV1-67','IGHV2-6-5', 'IGHV1S52','IGHV1-51','IGHV1-66','IGHV1-12','IGHV1S61', 'IGHV1S37','IGHV14-3','IGHV1S113','IGHV2-3-1','IGHV1-83', 'IGHV1-16','IGHV1S127','IGHV6-6','IGHV1-55','IGHV1S12', 'IGHV1-25','IGHV1S11','IGHV1S41','IGHV1S53','IGHV1S74', 'IGHV5-15','IGHV1-80','IGHV1-64','IGHV1S107','IGHV1S68', 'IGHV5S12','IGHV2-5-1','IGHV2S3','IGHV5-1','IGHV4-2', 'IGHV2-6-3','IGHV1S72','IGHV2-6-8','IGHV1S84','IGHV2-7', 'IGHV1S46','IGHV3S7','IGHV12-1','IGHV6S2','IGHV5-12-1', 'IGHV9-2','IGHV9-3','IGHV11-1','IGHV1-62-2','IGHV7-3', 'IGHV1-13','IGHV1-35','IGHV12-1-2','IGHV14-4','IGHV1S19', 'IGHV1-11','IGHV1S122','IGHV1S5','IGHV1S120','IGHV2-9', 'IGHV1-22','IGHV1-19-1','IGHV1-60','IGHV1-61','IGHV1S44', 'IGHV5S24','IGHV3-5','IGHV1S126','IGHV1S101','IGHV3-3', 'IGHV9-1','IGHV1-77','IGHV2-3','IGHV5-21','IGHV1S50', 'IGHV1S33','IGHV2-2','IGHV5-12','IGHV6-7','IGHV8-6', 'IGHV12-3','IGHV14-2','IGHV14-1','IGHV5-12-2','IGHV6-5', 'IGHV1S121','IGHV1S108','IGHV8-14','IGHV9-2-1','IGHV1-4', 'IGHV10S3','IGHV8-11','IGHV5-9','IGHV1S9','IGHV16-1', 'IGHV1-87','IGHV2-9-2','IGHV1-21-1','IGHV1-36','IGHV1-39', 'IGHV1S78','IGHV1-62-3','IGHV1-76','IGHV2-6-2','IGHV2-6-4', 'IGHV9S7','IGHV1-9','IGHV9-4','IGHV1S49','IGHV1-50', 'IGHV5-9-4','IGHV1S73','IGHV6-3','IGHV2-5','IGHV1-15', 'IGHV11-2','IGHV15-2','IGHV5-9-3','IGHV2-2-1','IGHV1S45', 'IGHV2-4','IGHV1S103','IGHV1-82','IGHV5-2','IGHV5-4', 'IGHV1S36','IGHV9S8','IGHV1S17','IGHV1S28','IGHV1-8', 'IGHV7-1','IGHV1S30','IGHV1-52','IGHV1S137','IGHV2-9-1', 'IGHV1-74','IGHV8-9','IGHV2-6-7','IGHV1S110','IGHV1S132', 'IGHV1-32','IGHV1S18','IGHV5S9','IGHV1S15','IGHV1-21', 'IGHV1-34','IGHV6S4','IGHV1S55','IGHV1S75','IGHV6S3', 'IGHV1S40','IGHV2-2-2','IGHV1S51','IGHV1S67','IGHV1-75', 'IGHV8S2') MOUSE_IGHJ = c('IGHJ1','IGHJ3','IGHJ2','IGHJ4') MOUSE_IGHD = c('IGHD2-10','IGHD5-4','IGHD2-13','IGHD2-4','IGHD1-3','IGHD2-2', 'IGHD2-6','IGHD3-2','IGHD3-3','IGHD4-1','IGHD5-6', 'IGHD2-11','IGHD2-7','IGHD2-5','IGHD5-5','IGHD6-4', 'IGHD5-2','IGHD5-3','IGHD2-14','IGHD6-1','IGHD1-1', 'IGHD6-3','IGHD1-2','IGHD2-9','IGHD2-1','IGHD2-8', 'IGHD3-1','IGHD5-1','IGHD6-2','IGHD2-3','IGHD2-12') MOUSE_IGLV = c('IGLV5','IGLV2','IGLV6','IGLV4','IGLV3','IGLV7', 'IGLV1','IGLV8') MOUSE_IGLJ = c('IGLJ1','IGLJ3P','IGLJ5','IGLJ3','IGLJ2','IGLJ4') MOUSE_TRDD = c('TRDD2', 'TRDD1') MOUSE_TRDJ = c('TRDJ1', 'TRDJ2') MOUSE_TRDV = c('TRAV15D-1/DV6D-1', 'TRAV16D/DV11', 'TRAV4-4/DV10', 'TRAV21/DV12', 'TRDV1', 'TRAV15D-2/DV6D-2', 'TRAV13-4/DV7', 'TRAV6-7/DV9', 'TRDV2-1', 'TRAV15-2/DV6-2', 'TRAV14D-3/DV8', 'TRDV5', 'TRDV2-2', 'TRDV4', 'TRAV15-1/DV6-1') MOUSE_TRGJ = c('TRGJ4', 'TRGJ2', 'TRGJ1', 'TRGJ3') MOUSE_TRGV = c('TRGV4', 'TRGV6', 'TRGV5', 'TRGV3', 'TRGV7', 'TRGV1', 'TRGV2') MACMUL_TRBV <- c('TRBD1', 'TRBD2', 'TRBJ1-1', 'TRBJ1-2', 'TRBJ1-3', 'TRBJ1-4', 'TRBJ1-5', 'TRBJ1-6', 'TRBJ2-1', 'TRBJ2-2', 'TRBJ2-2P', 'TRBJ2-3', 'TRBJ2-4', 'TRBJ2-5', 'TRBJ2-6', 'TRBJ2-7', 'TRBV1-1', 'TRBV10-1', 'TRBV10-2', 'TRBV10-3', 'TRBV11-1', 'TRBV11-2', 'TRBV11-3', 'TRBV12-1', 'TRBV12-2', 'TRBV12-3', 'TRBV12-4', 'TRBV13', 'TRBV14', 'TRBV15', 'TRBV16', 'TRBV18', 'TRBV19', 'TRBV2-1', 'TRBV2-2', 'TRBV2-3', 'TRBV20-1', 'TRBV21-1', 'TRBV22-1', 'TRBV23-1', 'TRBV24-1', 'TRBV25-1', 'TRBV27', 'TRBV28', 'TRBV29-1', 'TRBV3-1', 'TRBV3-2', 'TRBV3-3', 'TRBV3-4', 'TRBV30', 'TRBV4-1', 'TRBV4-2', 'TRBV4-3', 'TRBV5-1', 'TRBV5-10', 'TRBV5-2', 'TRBV5-3', 'TRBV5-4', 'TRBV5-5', 'TRBV5-6', 'TRBV5-7', 'TRBV5-8', 'TRBV5-9', 'TRBV6-1', 'TRBV6-2', 'TRBV6-3', 'TRBV6-4', 'TRBV6-5', 'TRBV6-6', 'TRBV6-7', 'TRBV7-10', 'TRBV7-2', 'TRBV7-3', 'TRBV7-4', 'TRBV7-5', 'TRBV7-6', 'TRBV7-7', 'TRBV7-9', 'TRBV9') MACMUL_TRBJ <- c('TRBJ1-1', 'TRBJ1-2', 'TRBJ1-3', 'TRBJ1-4', 'TRBJ1-5', 'TRBJ1-6', 'TRBJ2-1', 'TRBJ2-2', 'TRBJ2-3', 'TRBJ2-4', 'TRBJ2-5', 'TRBJ2-6', 'TRBJ2-7') #' Segment data. #' #' @docType data #' #' @aliases genesegments #' #' @name segments.list #' #' @description #' \code{segments} is a list with 5 data frames with data of human alpha-beta chain segments. #' Elements names as "TRAV", "TRAJ", "TRBV", "TRVJ", "TRVD". Each data frame consists of 5 columns: #' #' - V.allelles / J.allelles / D.allelles - character column with names of V/D/J-segments. #' #' - CDR3.position - position in the full nucleotide segment sequence where CDR3 starts. #' #' - Full.nucleotide.sequence - character column with segment CDR1-2-3 sequence. #' #' - Nucleotide.sequence - character column with segment CDR3 sequences. #' #' - Nucleotide.sequence.P - character column with segment CDR3 sequences with P-insertions. #' #' @format #' \code{genesegments} is a list with data frames. #' #' @examples #' \dontrun{ #' data(genesegments) #' genesegments$Nucleotide.sequence[segments$TRBV[,1] == "TRBV10-1"] #' } NULL #' List with assembling probabilities of beta chain TCRs. #' #' @docType data #' #' @name beta.prob #' #' @aliases beta.prob #' #' @description #' \code{beta.prob} is a list with probabilities of TCR assembling taken from #' \code{Murugan et al. Statistical inference of the generation probability #' of T-cell receptors from sequence repertoires}. It's a list with the following elements: #' #' - P.V - matrix with 1 column and row names stands for V-beta segments. Each element is #' a probability of choosing corresponding V-beta segment. #' #' - P.del.D1 - matrix 17x17 with probabilities of choosing D5-D3 deletions for TRBD1. #' #' - P.del.D1 - matrix 17x17 with probabilities of choosing D5-D3 deletions for TRBD2. #' #' - P.ins.len - matrix with first columns stands for number of insertions, second and third columns filled #' with probability values of choosing corresponding number of insertions in VD- and DJ-junctions #' correspondingly. #' #' - P.ins.nucl - data frame with probability of choosing a nucleotide in the insertion on junctions with known #' previous nucleotide. First column with names of nucleotides, 2-5 columns are probabilities of choosing #' adjacent nucleotide in VD-junction, 6-9 columns are probabilities of choosing adjacent nucleotide in DJ-junction. #' #' - P.del.J - matrix with the first column "P.del.V" with number of deletions, and other columns with #' names for V-segments and with probabilities of corresponding deletions. #' #' - P.del.J - matrix with the first column "P.del.J" with number of deletions, and other columns with #' names for J-segments and with probabilities of corresponding deletions. #' #' - P.J.D - matrix with two columns ("TRBD1" and "TRBD2") and 13 rows with row names stands for #' J-beta segments. Each element is a mutual probability of choosing J-D segments. #' #' @format #' \code{beta.prob} is a list of matrices and data frames. #' #' @examples #' \dontrun{ #' # Generate 10 kmers with adjacent nucleotide probability. #' generate.kmers.prob(rep.int(10, 10), .probs=beta.prob$P.ins.nucl[,c(1, 2:5)]) #' } NULL #' Twins alpha-beta chain data #' #' @docType data #' #' @name twinsdata #' #' @aliases twa twb #' #' @description #' \code{twa.rda}, \code{twb.rda} - data frames with downsampled to the 10000 most #' abundant clonesets and 4 samples data of twins data (alpha and beta chains). #' Link: http://labcfg.ibch.ru/tcr.html #' #' @format #' \code{twa} and \code{twb} are lists of 4 data frames with 10000 row in each. #' #' @examples #' \dontrun{ #' data(twa) #' data(twb) #' } NULLtcR/R/shared.R0000644000176200001440000002501712657351347012616 0ustar liggesusers########## Shared TCR repertoire managing and analysis ########## #' Shared TCR repertoire managing and analysis #' #' @aliases shared.repertoire shared.matrix #' #' @description #' Generate a repertoire of shared sequences - sequences presented in more than one subject. If sequence is appeared more than once in the one #' repertoire, than only the first appeared one will be choosed for a shared repertoire. #' #' \code{shared.repertoire} - make a shared repertoire of sequences from the given list of data frames. #' #' \code{shared.matrix} - leave columns, which related to the count of sequences in people, and return them as a matrix. #' I.e., this functions will remove such columns as 'CDR3.amino.acid.sequence', 'V.gene', 'People'. #' #' @usage #' shared.repertoire(.datalist, .type = 'avrc', .min.ppl = 1, .head = -1, #' .clear = T, .verbose = T, .by.col = '', .sum.col = '', #' .max.ppl = length(.datalist)) #' #' shared.matrix(.shared.rep) #' #' @param .datalist List with data frames. #' @param .type String of length 4 denotes how to create a shared repertoire. See "Details" for #' more information. If supplied, than parameters \code{.by.col} and \code{.sum.col} will be ignored. If not supplied, than columns #' in \code{.by.col} and \code{.sum.col} will be used. #' @param .min.ppl At least how many people must have a sequence to leave this sequence in the shared repertoire. #' @param .head Parameter for the \code{head} function, applied to all data frames before clearing. #' @param .clear if T then remove all sequences which have symbols "~" or "*" (i.e., out-of-frame sequences for amino acid sequences). #' @param .verbose if T then output progress. #' @param .by.col Character vector with names of columns with sequences and their parameters (like segment) for using for creating a shared repertoire. #' @param .sum.col Character vector of length 1 with names of the column with count, percentage or any other numeric chaaracteristic of sequences for using for creating a shared repertoire. #' @param .max.ppl At most how many people must have a sequence to leave this sequence in the shared repertoire. #' @param .shared.rep Shared repertoire. #' #' @details #' Parameter \code{.type} is a string of length 4, where: #' \enumerate{ #' \item First character stands either for the letter 'a' for taking the "CDR3.amino.acid.sequence" column or #' for the letter 'n' for taking the "CDR3.nucleotide.sequence" column. #' \item Second character stands whether or not take the V.gene column. Possible values are '0' (zero) stands #' for taking no additional columns, 'v' stands for taking the "V.gene" column. #' \item Third character stands for using either UMIs or reads in choosing the column with numeric characterisitc (see the next letter). #' \item Fourth character stands for name of the column to choose as numeric characteristic of sequences. It depends on the third letter. Possible values are #' "c" for the "Umi.count" (if 3rd character is "u") / "Read.count" column (if 3rd character is "r"), "p" for the "Umi.proportion" / "Read.proportion" column, "r" for the "Rank" column or "i" for the "Index" column. #' If "Rank" or "Index" isn't in the given repertoire, than it will be created using \code{set.rank} function using "Umi.count" / "Read.count" column. #' } #' #' @return #' Data frame for \code{shared.repertoire}, matrix for \code{shared.matrix}. #' #' @seealso \link{shared.representation}, \link{set.rank} #' #' @examples #' \dontrun{ #' # Set "Rank" column in data by "Read.count" column. #' # This is doing automatically in shared.repertoire() function #' # if the "Rank" column hasn't been found. #' immdata <- set.rank(immdata) #' # Generate shared repertoire using "CDR3.amino.acid.sequence" and #' # "V.gene" columns and with rank. #' imm.shared.av <- shared.repertoire(immdata, 'avrc') #' } shared.repertoire <- function (.datalist, .type = 'avrc', .min.ppl = 1, .head = -1, .clear = T, .verbose = T, .by.col = '', .sum.col = '', .max.ppl = length(.datalist)) { .process.df <- function (.data, .bc, .sc) { if (.head != -1) { .data <- head(.data, .head) } if (.clear) { .data <- .data[grep('[*, ~]', .data[, .bc[1]], invert = T), ] } # If .data$Rank or .data$Index is NULL, than generate this columns # using the "Read.count" column. if (is.null(.data[[.sc]])) { if (.sc == 'Read.rank') { .data <- set.rank(.data, 'Read.count') .sc <- "Rank" } else if (.sc == 'Umi.rank') { .data <- set.rank(.data, 'Umi.count') .sc <- "Rank" } else if (.sc == 'Read.rank') { .data <- set.index(.data, 'Read.count') .sc <- "Index" } else { .data <- set.index(.data, 'Umi.count') .sc <- "Index" } } # minidata <- as.data.table(.data[.bc]) minidata <- as.data.table(.data[.bc]) minidata$value <- .data[, .sc] res <- as.data.table(dplyr::summarise(grouped_df(minidata, lapply(.bc, as.name)), value = value[1])) class(res) <- c('data.table', 'data.frame') setnames(res, c(.bc, .sc)) res } if (nchar(.by.col[1]) == 0) { if (substr(.type, 1, 1) == 'a') { .by.col <- 'CDR3.amino.acid.sequence' } else { .by.col <- 'CDR3.nucleotide.sequence' } if (substr(.type, 2, 2) == 'v') { .by.col <- c(.by.col, 'V.gene') } } if (nchar(.sum.col) == 0) { # barcode count if (substr(.type, 3, 3) == 'u') { if (substr(.type, 4, 4) == 'c') { .sum.col <- 'Umi.count' } else if (substr(.type, 4, 4) == 'p') { .sum.col <- 'Umi.proportion' } else if (substr(.type, 4, 4) == 'r') { .sum.col <- 'Umi.rank' } else if (substr(.type, 4, 4) == 'i') { .sum.col <- 'Umi.index' } else { # As a default option. .sum.col <- 'Umi.count' } } else { # read count if (substr(.type, 4, 4) == 'c') { .sum.col <- 'Read.count' } else if (substr(.type, 4, 4) == 'p') { .sum.col <- 'Read.proportion' } else if (substr(.type, 4, 4) == 'r') { .sum.col <- 'Read.rank' } else if (substr(.type, 4, 4) == 'i') { .sum.col <- 'Read.index' } else { # As a default option. .sum.col <- 'Read.count' } } } if (.verbose) { cat("Aggregating sequences...\n"); pb <- set.pb(length(.datalist)) } l <- list() for (i in 1:length(.datalist)) { l[[i]] <- .process.df(.datalist[[i]], .by.col, .sum.col) if (.verbose) add.pb(pb) } names(l) <- names(.datalist) if (.verbose) close(pb) # l <- lapply(.datalist, .process.df, .bc = .by.col, .sc = .sum.col) res <- l[[1]] setnames(res, c(.by.col, names(.datalist)[1])) if (.verbose) { cat("Merging data tables...\n"); pb <- set.pb(length(.datalist) - 1) } if (length(l) > 1) { for (i in 2:length(l)) { res <- merge(res, l[[i]], by = .by.col, all=T, allow.cartesian=T) setnames(res, c(colnames(res)[-ncol(res)], names(.datalist)[i])) if (.verbose) add.pb(pb) } } if (.verbose) { close(pb)} res$People <- rowSums(!is.na(as.matrix(res[, (ncol(res) - length(l) + 1) : ncol(res), with = F]))) res <- res[People >= .min.ppl & People <= .max.ppl][order(People, decreasing=T)][, c(1:(ncol(res) - length(l) - 1), ncol(res), (ncol(res) - length(l)) : (ncol(res) - 1)), with = F] setattr(res, 'by.col', .by.col) setattr(res, 'sum.col', .sum.col) as.data.frame(res, stringsAsFactors = F, row.names = F) } shared.matrix <- function (.shared.rep) { as.matrix(.shared.rep[, -(1:(match('People', colnames(.shared.rep))))]) } #' Shared repertoire analysis. #' #' @aliases cosine.sharing shared.representation shared.clones.count shared.summary #' #' @description #' Functions for computing statistics and analysis of shared repertoire of sequences. #' #' \code{cosine.sharing} - apply the cosine similarity measure to the vectors of sequences' counts or indices. #' #' \code{shared.representation} - for every repertoire in the shared repetoire get a number of sequences in this repertoire which are in the other repertoires. #' Row names of the input matrix is the number of people. #' #' \code{shared.clones.count} - get the number of shared clones for every number of people. #' #' \code{shared.summary} - get a matrix with counts of pairwise shared sequences (like a result from \code{cross} function, applied to a list of data frames). #' #' @usage #' cosine.sharing(.shared.rep, .log = T) #' #' shared.representation(.shared.rep) #' #' shared.clones.count(.shared.rep) #' #' shared.summary(.shared.rep, .min.ppl = min(.shared.rep$People), #' .max.ppl = max(.shared.rep$People)) #' #' @param .shared.rep Shared repertoire, obtained from the function \code{shared.repertoire}. #' @param ... Parameters passed to the \code{prcomp} function. #' @param .log if T then apply log to the after adding laplace correction equal to one. #' @param .min.ppl Filter: get sequences with # people >= .min.ppl. #' @param .max.ppl Filter: get sequences with # people <= .max.ppl. #' #' @return Plot or PCA resulr for the \code{shared.seq.pca} function or a matrix with cosine similarity values for the \code{cosine.sharing} function. #' #' @seealso \link{shared.repertoire} #' #' @examples #' \dontrun{ #' # Load the twb data. #' data(twb) #' # Create shared repertoire on the twins data using CDR3 amino acid sequences with CDR1-2. #' twb.shared <- shared.repertoire(twb, 'av', .verbose = T) #' sh.repr <- shared.representation(twb.shared) #' sh.repr #' # Get proportion of represented shared sequences. #' apply(sh.repr, 2, function (col) col / col[1]) #' } cosine.sharing <- function (.shared.rep, .log = T) { x <- shared.matrix(.shared.rep) d <- lapply(seq_len(ncol(x)), function(i) x[,i]) d <- lapply(d, function (l) { l <- unlist(l) l[is.na(l)] <- 0 l <- l + 1 if (.log) { l <- log(l) } l }) apply.symm(d, cosine.similarity, .do.norm = F, .verbose = F) } shared.representation <- function (.shared.rep) { mat <- shared.matrix(.shared.rep) ppl <- as.integer(.shared.rep$People) apply(mat, 2, function (col) { table(c(1:ncol(mat), ppl[!is.na(col) & (col > 0)])) - 1 }) } shared.clones.count <- function (.shared.rep) { table(as.integer(.shared.rep$People)) } shared.summary <- function (.shared.rep, .min.ppl = min(.shared.rep$People), .max.ppl = max(.shared.rep$People)) { x <- apply(shared.matrix(.shared.rep), 2, function (col) which(!is.na(col) & col != 0)) if (class(x) != 'list') { x <- lapply(seq_len(ncol(x)), function(i) x[,i]) } apply.symm(x, function (a, b) length(intersect(x = a, y = b))) }tcR/R/kmers.R0000644000176200001440000003316313325616565012471 0ustar liggesusers########## Statistics and analysis of k-mers usage ########## #' Get kmers from sequences. #' #' @aliases get.kmers #' #' @description #' Get vector of kmers from the given character vector or data frame. #' #' @param .data Either character vector or a data.frame. #' @param .head Parameter for head function applied to the given data before kmer generation. #' @param .k Size of the kmer. #' @param .clean if T then remove sequences which contain '~' or '*' symbols. Useful for deleting out-of-frame aminoacid sequnces. #' @param .meat if TRUE than .data must be data.frame with columns CDR3.amino.acid.sequence and Read.count. #' @param .verbose if T then print progress. #' @param .left.shift Cut all \code{.left.shift} symbols from the left side for each sequence. #' @param .right.shift Cut all \code{.right.shift} symbols from the right side for each sequence. #' #' @return Data.frame with 2 columns Kmers and Count / Rank / Proportion relatively to the .value param #' or a list with such data.frames if .data is a list. get.kmers <- function (.data, .head = -1, .k = 5, .clean = T, .meat = F, .verbose = T, .left.shift = 0, .right.shift = 0) { if (class(.data) == 'list') { ngrams <- lapply(.data, get.kmers, .head = .head, .k = .k, .clean = .clean, .meat = .meat, .left.shift = .left.shift, .right.shift = .right.shift, .verbose = .verbose) res <- ngrams[[1]] if (.verbose) cat('Merging all data.frames together...\n') for (i in 2:length(.data)) { cat(i, '/', length(.data), '\n') res <- merge(res, ngrams[[i]], by = 'Kmers', all = T) names(res) <- c('Kmers', names(.data)[1:i]) } if (.verbose) cat('Done.\n') res[is.na(res)] <- 0 return(res) } .n <- .k if (.head == -1) { .head <- dim(.data)[1] if (is.null(.head)) { .head <- length(.data) } } .data <- head(.data, .head) read.count <- rep.int(1, .head) if (.meat) { read.count <- .data$Read.count } if (class(.data) == 'data.frame') { .data <- .data$CDR3.amino.acid.sequence } if (.clean) { if (.verbose) cat('Cleaning bad sequences...\t') .data <- .data[grep('[*, ~]', .data, invert = T)] if (.verbose) cat('Sequences after cleaning:', length(.data),'\n') } if (.verbose) cat('Calculating space...\n') .data <- substr(.data, 1 + .left.shift, nchar(.data) - .right.shift) non.nchar <- nchar(.data) >= .n .data <- .data[non.nchar] read.count <- read.count[non.nchar] space <- sum(nchar(.data) -.n + 1) if (.verbose) cat('Number of k-mers:', space,'\n') if (space > 0) { if (.verbose) { cat('Generating k-mers...\n') pb <- set.pb(space) } res <- rep(x='', times=space) meat <- rep(1, times = space) j <- 1 for (i in 1:length(.data)) { ngrams <- sapply(1:(nchar(.data[i]) - .n + 1), function(j) substr(.data[i], j, j + .n - 1), USE.NAMES=F) kmer.meat <- read.count[i] for (ngram in ngrams) { res[j] <- ngram meat[j] <- kmer.meat j <- j + 1 if (.verbose) add.pb(pb) } } if (.verbose) close(pb) meat <- meat[order(res)] res <- sort(res) dup <- duplicated(res) res.unique <- res[!dup] res.dup <- res[dup] # res now is a vector for storing number of strings, i.e. res[i] == # of res.unique[i] res <- meat[!dup] meat <- meat[dup] # res <- rep.int(x=1, times=length(res.unique)) j <- 1 if (.verbose) cat('Unique k-mers:', length(res.unique), '\n') if (.verbose) cat('Merging k-mers...\n') for (i in 1:length(res.unique)) { while (res.dup[j] == res.unique[i] && j <= length(res.dup)) { # res[i] <- res[i] + 1 res[i] <- res[i] + meat[j] j <- j + 1 } } if (.verbose) cat('Done.\n') res <- data.frame(Kmers = res.unique, Count = res, stringsAsFactors=F) res <- res[order(res$Count, decreasing = T),] row.names(res) <- NULL res } else { data.frame(Kmers = NA, Count = NA) } } #' Make and manage the table of the most frequent k-mers. #' #' @aliases kmer.table get.kmer.column #' #' @description #' \code{kmer.table} - generate table with the most frequent k-mers. #' #' \code{get.kmer.column} - get vector of k-mers from the k-mer table from the function \code{kmer.table} #' #' @usage #' kmer.table(.data, .heads = c(10, 100, 300, 1000, 3000, 10000, 30000), .k = 5, .nrow = 20, #' .clean = T, .meat = F) #' #' get.kmer.column(.kmer.table.list, .head) #' #' @param .data tcR data.frame or a list with tcR data.frames. #' @param .heads Vector of parameter for the \code{head()} function, supplied sequentialy to the \code{get.kmers()} function. -1 means all rows. #' @param .k Size of the kmer. #' @param .nrow How many most frequent k-mers include to the output table. #' @param .clean Parameter for the \code{get.kmers()} function. #' @param .meat Parameter for the \code{get.kmers()} function. #' @param .kmer.table.list Result from the \code{kmer.table} function if \code{.data} supplied as a list. #' @param .head Which columns with this head return. #' #' @return #' \code{kmer.table} - if \code{.data} is a data frame, than data frame with columns like "Kmers.X", "Count.X" where X - element from \code{.heads}. #' If \code{.data} is a list, than list of such data frames. #' #' \code{get.kmer.column} - data frame with first column with kmers and other columns named as a names of data frames, from which \code{.kmer.table.list} #' was generated. #' #' @examples #' \dontrun{ #' twb.kmers <- kmer.table(twb, .heads = c(5000, 10000), .meat = T) #' head(get.kmer.column(twb.kmers, 10000)) #' } kmer.table <- function (.data, .heads = c(10, 100, 300, 1000, 3000, 10000, 30000), .k = 5, .nrow = 20, .clean=T, .meat = F) { if (class(.data) == 'list') { return(lapply(.data, kmer.table, .k = .k, .heads = .heads, .nrow = .nrow, .clean = .clean, .meat = .meat)) } res <- do.call(cbind, lapply(.heads, function (h) { head(get.kmers(.data=.data, .k = .k, .head=h, .clean=.clean, .meat = .meat), .nrow) })) names(res) <- sapply(1:length(names(res)), function (i) { if (.heads[(1+i)%/%2] == -1) { paste0(names(res)[i], '.', 'all', collapse = '') } else { paste0(names(res)[i], '.', .heads[(1+i)%/%2], collapse = '') } }) res } get.kmer.column <- function (.kmer.table.list, .head) { name.col <- strsplit(colnames(.kmer.table.list[[1]])[2], '.', fixed=T, useBytes=T)[[1]][1] if (.head == -1) { table.names <- paste0(c('Kmers', name.col), '.', 'all') } else { table.names <- paste0(c('Kmers', name.col), '.', .head) } kmers <- unique(unlist(lapply(.kmer.table.list, function (x) {x[table.names[1]]}))) res <- sapply(.kmer.table.list, function (tab) { indices <- match(tab[[table.names[1]]], kmers) tmp <- rep.int(0, times=length(kmers)) tmp[indices] <- tab[[table.names[2]]] tmp }) df <- data.frame(kmers, res, stringsAsFactors=F) names(df) <- c(table.names[1], names(.kmer.table.list)) df <- df[order(df[, table.names[1]]),] row.names(df) <- NULL df } #' Generate k-mers. #' #' @aliases generate.kmers generate.kmers.prob #' #' @description #' Generate all k-mers. starting with the given sequence on the given alphabet #' Generate k-mers with the given k and probabilities of nucleotides next to each other (markov chain). #' #' @usage #' generate.kmers(.k, .seq = '', .alphabet = c('A', 'C', 'G', 'T')) #' #' generate.kmers.prob(.k, .probs, .count = 1, .alphabet = c('A', 'C', 'G', 'T'), #' .last.nucl = 'X') #' #' @param .k Size of k-mers or either integer or vector with k-s for generate.kmers.prob. #' @param .seq Prefix of all generated k-mers. #' @param .probs Matrix with probabilities for generating adjacent symbol with |alphabet| X |alphabet| size. Order of letters is #' given in the \code{.alphabet} parameter. #' @param .count Number of kmers to be generated. #' @param .alphabet Alphabet. #' @param .last.nucl Adjacent nucleotide from which start generation. If 'X' than choose one of the nucleotides with equal probabilities. #' #' @return Vector of all possible k-mers for \code{generate.kmers} #' or a vector of generated kmers for \code{generate.kmers.prob}. generate.kmers <- function (.k, .seq = '', .alphabet = c('A', 'C', 'G', 'T')) { kmers.list <- .seq for (k in 1:.k) { kmers.list <- unlist(lapply(kmers.list, function (kmer) { paste0(kmer, .alphabet) })) } kmers.list } generate.kmers.prob <- function (.k, .probs, .count = 1, .alphabet = c('A', 'C', 'G', 'T'), .last.nucl = 'X') { if (length(.k) == 1) { .k <- rep.int(.k, .count) } if (length(.last.nucl) == 1) { .last.nucl <- rep(.last.nucl, times=.count) } nucls <- rep('', times = length(.k)) k.more0 <- .k > 0 k.more1 <- .k > 1 nucls[k.more0] <- sapply(.last.nucl[k.more0], function (ln) { if (ln == 'X' || ln == '') { sample(x=.alphabet, size=1) } else { sample(x=.alphabet, size=1, prob=.probs[,match(ln, .alphabet)+1], replace = T) } }) nucls[k.more1] <- sapply(which(k.more1), function (i) { nucl <- rep(nucls[i], times = .k[i]) for (j in 2:.k[i]) { nucl[j] <- sample(x=.alphabet, size=1, prob=.probs[,match(nucl[j-1], .alphabet)+1]) } paste0(nucl, collapse='') } ) unlist(nucls) } #' Profile of sequences of equal length. #' #' @aliases kmers.profile #' #' @description #' Return profile for the given character vector or a data frame with sequences #' of equal length or list with them. #' #' @usage #' kmer.profile(.data, .names = rep('Noname', times=length(.data)), .verbose = F) #' #' @param .data Either list with elements of one of the allowed classes or object with one of the class: #' data.frame with first column with character sequences and second column with number of sequences or character vector. #' @param .names Names for each sequence / row in the \code{.data}. #' @param .verbose if T then print processing output. #' #' @return Return data frame with first column "Symbol" with all possible symbols in the given sequences #' and other columns with names "1", "2", ... for each position with percentage for each symbol. #' #' @seealso \link{vis.logo} kmer.profile <- function (.data, .names = rep('Noname', times=length(.data)), .verbose = F) { .get.nth.letter.stats <- function (.data, .n) { res <- summarise(grouped_df(data.frame(Letter = substr(.data[, 1], .n, .n), Count = .data[,2]), list(as.name("Letter"))), Sum.count = sum(Count)) res$Sum.count <- res$Sum.count / sum(res$Sum.count) names(res) <- c("Sequence", as.character(.n)) res } if (class(.data) == 'list') { res <- kmer.profile(.data[[1]], .verbose = .verbose) names(res) <- c('Var1', paste0(.names[[1]], c(1,2,3,4,5))) for (i in 2:length(.data)) { old.names <- names(res) res <- merge(res, kmer.profile(.data[[i]]), by = 'Var1', all = T) names(res) <- c(old.names, paste0(.names[[i]], c(1,2,3,4,5))) } return(res) } if (class(.data) == 'character') { .data <- data.frame(Sequence = .data, Read.count = 1, stringsAsFactors=F) } tmp <- .get.nth.letter.stats(.data, 1) aa.profiles <- tmp # aa.profiles <- as.data.frame(prop.table(table(substr(kmers[,1], i, i))), stringsAsFactors=F) for (i in 2:nchar(.data[1,1])) { if (.verbose) { cat(i, '/', nchar(.data[1,1]), '\n') } tmp <- .get.nth.letter.stats(.data, i) aa.profiles <- merge(aa.profiles, tmp, all=T, by = 'Sequence') # aa.profiles <- merge(aa.profiles, as.data.frame(prop.table(table(substr(kmers[,1], i, i))), stringsAsFactors=F), all=T, by = 'Var1') names(aa.profiles) <- c('Sequence', 1:i) } aa.profiles <- as.data.frame(aa.profiles) names(aa.profiles)[1] <- 'Symbol' aa.profiles[is.na(aa.profiles)] <- 0 aa.profiles <- aa.profiles[order(aa.profiles[,1]),] row.names(aa.profiles) <- aa.profiles[,1] aa.profiles } #' Gibbs Sampler. #' #' @aliases gibbs.sampler #' #' @description #' Perform the Gibbs Sampler method for finding frequent motifs in the given vector of strings or data.frame. #' Each string splitted to kmers with the given length of motif. #' #' @param .data Vector of characters or data.frame of characters (1st col) and their numbers (2nd col) if .meat == T. #' @param .k Motif's length. #' @param .niter Number of iterations. #' #' @return Vector of possible motifs. gibbs.sampler <- function (.data, .k = 5, .niter = 500) { .n <- .k .get.best.motif <- function (.seq, .profile) { nc <- nchar(.seq) res <- rep(x='aaaaa', times=nc - .n + 1) for (i in 1:(nc - .n + 1)) { res[i] <- substr(.seq, i, i + .n - 1) } max.p <- 0 max.kmer <- res[1] for (km in res) { p <- 1 for (i in 1:.n) { tmp <- .profile[match(substr(km, i, i), .profile[,1]),i+1] if (!is.na(tmp)) { p <- p * tmp } else { p <- 0 break } } if (p > max.p) { max.p <- p max.kmer <- km } } max.kmer } .score <- function (.kmers) { sc <- rep.int(0, .n) for (i in 1:.n) { tab <- table(substr(.kmers, i, i)) sc[i] <- sum(tab) - max(tab) } sum(sc) } .data <- .data[nchar(.data) >= .n] tmp <- trunc(runif(length(.data), 1, nchar(.data) - .n + 1 + 0.999 )) kmers <- substr(.data, tmp, tmp + .n - 1) best.kmers <- kmers cat('Performing gibbs sampling...\n') pb <- set.pb(.niter) for (i in 1:.niter) { unused.motif.index <- sample(1:length(kmers), 1) prof <- kmer.profile(kmers[-unused.motif.index]) kmers[unused.motif.index] <- .get.best.motif(.data[unused.motif.index], prof) if (.score(kmers) < .score(best.kmers)) { best.kmers <- kmers } if (i %% 500 == 0) { save(best.kmers, file = paste0('gibbs.', i, date(), '.rda')) } add.pb(pb) } close(pb) unique(best.kmers) }tcR/R/strtools.R0000644000176200001440000002604712657351347013245 0ustar liggesusers########## Support functions for managing sequences ########## # Private function. Split the given string by ', ' to a list and return # a first element of the list. .split.get <- function (.str, .alphabet) { if (has.class(.str, 'list')) { return(lapply(.str, .split.get, .alphabet = .alphabet)) } if (has.class(.str, 'data.frame')) { res <- .str res$V.gene <- sapply(res$V.gene, .split.get, .alphabet = HUMAN_TRBV_MITCR) res$D.gene <- sapply(res$D.gene, .split.get, .alphabet = c('TRBD1', 'TRBD2')) res$J.gene <- sapply(res$J.gene, .split.get, .alphabet = HUMAN_TRBJ) return(res) } .alphabet2 <- sub(' ', '', .alphabet, fixed = T) if (.str %in% .alphabet || .str %in% .alphabet2) { .str } else { #strsplit(.str, ', ', fixed=T, useBytes=T)[[.get]][1] strsplit(.str, split="[,][ ]*")[[1]][1] } } .fix.segments <- function (.data) { if (has.class(.data, 'list')) { return(lapply(.data, .fix.segments)) } .data$V.gene <- sapply(strsplit(.data$V.gene, ',', fixed=T, useBytes=T), paste0, collapse = ', ') .data$D.gene <- sapply(strsplit(.data$D.gene, ',', fixed=T, useBytes=T), paste0, collapse = ', ') .data$J.gene <- sapply(strsplit(.data$J.gene, ',', fixed=T, useBytes=T), paste0, collapse = ', ') .data } #' Reverse given character vector by the given n-plets. #' #' @param .seq Sequences. #' @param .n By which n-plets we should reverse the given strings. #' #' @return Reversed strings. #' #' @examples #' reverse.string('abcde') # => "edcba" #' reverse.string('abcde', 2) # => "debca" reverse.string <- function (.seq, .n = 1) { lens <- nchar(.seq) sapply(1:length(.seq), function (i) { tmp <- substring(.seq[i], 1, ) paste0(c(substring(.seq[i], seq(lens[i] - .n + 1, 1, -.n), seq(lens[i], .n, -.n)), substr(.seq[i], 1, lens[i] %% .n)), collapse = '') }, USE.NAMES=F) } #' Get all substrings for the given sequence. #' #' @param .seq Sequence for splitting to substrings. #' @param .min.len Minimal length of output sequences. #' @param .table if T then return data frame with substrings and positions of their ends in the .seq. #' #' @return Character vector or data frame with columns "Substring", "Start" and "End". get.all.substrings <- function (.seq, .min.len = 3, .table = T) { nc <- nchar(.seq) if (.table) { seqs <- unlist(sapply(1:(nc - .min.len + 1), function (i) { substring(.seq, i, (i + .min.len - 1):nc) })) inds <- do.call(rbind, sapply(1:(nc - .min.len + 1), function (i) { cbind(i, (i + .min.len - 1):nc) })) data.frame(Substring = seqs, Start = inds[,1], End = inds[,2], stringsAsFactors=F) } else { unique(unlist(sapply(1:(nc - .min.len + 1), function (i) { substring(.seq, i, (i + .min.len - 1):nc) }))) } } #' DNA reverse complementing and translation. #' #' @aliases revcomp bunch.translate #' #' @usage #' revcomp(.seq) #' #' bunch.translate(.seq, .two.way = T) #' #' @description #' Functions for DNA reverse complementing and translation. #' #' @usage #' revcomp(.seq) #' #' bunch.translate(.seq, .two.way = T) #' #' @param .seq Vector of nucleotide sequences. #' @param .two.way if T then translate sequences from both ends (output differes for #' out-of-frame sequences). #' #' @return Vector of corresponding revese complemented or aminoacid sequences. revcomp <- function (.seq) { rc.table <- c(A = 'T', T = 'A', C = 'G', G = 'C') sapply(strsplit(toupper(.seq), '', T, F, T), function (l) paste0(rc.table[l][length(l):1], collapse = ''), USE.NAMES = F) } bunch.translate <- function(.seq, .two.way = T) { sapply(toupper(.seq), function (y) { ny <- nchar(y) ny3 <- ny %/% 3 tmp <- '' if (.two.way) { if (ny %% 3 != 0) { tmp <- paste0(rep('N', times = 3), collapse = '') } y <- paste0(substr(y, 1, 3*((ny3 %/% 2) + (ny %% 2))), tmp, substr(y, 3*((ny3 %/% 2) + (ny3 %% 2)) + (ny %% 3) + 1, ny), collapse = '') } else { y <- substring(y, seq(1, nchar(y) - 2, 3), seq(3, nchar(y), 3)) } paste0(AA_TABLE[unlist(strsplit(gsub("(...)", "\\1_", y), "_"))],collapse="") }, USE.NAMES = F) } #' Functions for working with aminoacid sequences. #' #' @aliases codon.variants translated.nucl.sequences reverse.translation #' #' @usage #' codon.variants(.aaseq, .nucseq = sapply(1:length(.aaseq), #' function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), #' collapse = ''))) #' #' translated.nucl.sequences(.aaseq, .nucseq = sapply(1:length(.aaseq), #' function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), #' collapse = ''))) #' #' reverse.translation(.aaseq, .nucseq = paste0(rep('XXX', times = nchar(.aaseq)), #' collapse = '')) #' #' @description #' \code{codon.variants} - get all codon variants for the given nucleotide sequence with known corresponding aminoacid sequence. #' #' \code{translated.nucl.variants} - get number of nucleotide sequences which can be translated to the given aminoacid sequence. #' #' \code{reverse.translation} - get all nucleotide sequences, which can be traslated to the given aminoacid sequence. #' #' @param .aaseq Amino acid sequence. #' @param .nucseq Nucleotide sequence with 'X' letter at non-fixed positions. Other positions will be fixed. #' #' @return List with all possible variants for every aminoacid in .aaseq, number of sequences or #' character vector of candidate sequences. #' #' @examples #' codon.variants('ACT') #' translated.nucl.sequences(c('ACT', 'CASSLQ')) #' reverse.translation('T') # -> "ACA" "ACC" "ACG" "ACT" #' reverse.translation('T', 'XXT') # -> "ACT" #' translated.nucl.sequences('ACT', 'XXXXXXXC') #' codon.variants('ACT', 'XXXXXXXC') #' reverse.translation('ACT', 'XXXXXXXC') codon.variants <- function (.aaseq, .nucseq = sapply(1:length(.aaseq), function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), collapse = ''))) { aas <- strsplit(.aaseq, '') nuc.nchar <- nchar(.nucseq) lapply(1:length(aas), function (i) { if (nuc.nchar[i] > 2) { triplets <- substring(.nucseq[i], seq(1, nuc.nchar[i] - 2, 3), seq(3, nuc.nchar[i], 3)) lapply(1:min(length(aas[[i]]), nuc.nchar[i] %/% 3), function (j) grep(gsub('X', '[ACGT]', triplets[j]), AA_TABLE_REVERSED[[aas[[i]][j]]], value = T)) } else { list() } }) } translated.nucl.sequences <- function (.aaseq, .nucseq = sapply(1:length(.aaseq), function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), collapse = ''))) { aas <- strsplit(.aaseq, '') nuc.nchar <- nchar(.nucseq) sapply(1:length(aas), function (i) { if (nuc.nchar[i] > 2) { triplets <- substring(.nucseq[i], seq(1, nuc.nchar[i] - 2, 3), seq(3, nuc.nchar[i], 3)) prod(sapply(1:min(length(aas[[i]]), nuc.nchar[i] %/% 3), function (j) length(grep(gsub('X', '[ACGT]', triplets[j]), AA_TABLE_REVERSED[[aas[[i]][j]]], value = T)))) } else { 0 } }) } reverse.translation <- function (.aaseq, .nucseq = paste0(rep('XXX', times = nchar(.aaseq)), collapse = '')) { apply(expand.grid(codon.variants(.aaseq, .nucseq)[[1]], stringsAsFactors=F), 1, paste0, collapse = '') } #' GC-content of a nucleotide sequences. #' #' @description #' Compute the GC-content (proportion of G-C nucleotide in a sequence). #' #' @param .nucseq Character vector of nucletoide sequences. #' @return Numeric vector of \code{length(.nucseq)}. gc.content <- function (.nucseq) { sapply(strsplit(.nucseq, '', fixed=T, useBytes=T), function (l) { l <- unlist(l) t <- table(c('A', 'C', 'G', 'T', l)) r <- (t['G'] + t['C'] - 2) / length(l) names(r) <- NULL r }, USE.NAMES=F) } #' Find similar sequences. #' #' @aliases find.similar.sequences exact.match hamming.match levenshtein.match #' #' @description #' Return matrix M with two columns. For each element in row i and column j M[i,j] => distance between pattern(i) and data(j) sequences equal to or less than .max.errors. #' This function will uppercase .data and remove all strings, which have anything than A-Z letters. #' #' @usage #' find.similar.sequences(.data, .patterns = c(), .method = c('exact', 'hamm', 'lev'), #' .max.errors = 1, .verbose = T, .clear = F) #' #' exact.match(.data, .patterns = c(), .verbose = T) #' #' hamming.match(.data, .patterns = c(), .max.errors = 1, .verbose = T) #' #' levenshtein.match(.data, .patterns = c(), .max.errors = 1, .verbose = T) #' #' @param .data Vector of strings. #' @param .patterns Character vector of sequences, which will be used for searching for neighbours. #' @param .method Which method use: 'exact' for exact matching, 'hamm' for Hamming Distance, 'lev' for Levenshtein distance. #' @param .max.errors Max Hamming or Levenshtein distance between strings. Doesn't use in 'exact' setting. #' @param .verbose Should function print progress or not. // DON'T USE IT #' @param .clear if T then remove all sequences with character "*" or "~". #' #' @return Matrix with two columns [i,j], dist(data(i), data(j)) <= .max.errors. find.similar.sequences <- function (.data, .patterns = c(), .method = c('exact', 'hamm', 'lev'), .max.errors = 1, .verbose = T, .clear = F) { if (.method[1] == 'lev') { .clear <- T } data.old.indices <- grep('[*, ~]', .data, invert = T) .data <- toupper(.data[data.old.indices]) pattern.old.indices <- data.old.indices if (length(.patterns) == 0) { .patterns <- .data } else { pattern.old.indices <- 1:length(.patterns) if (.clear) { pattern.old.indices <- grep('[*, ~]', .patterns, invert = T) } .patterns <- toupper(.patterns[pattern.old.indices]) } .fun <- switch(.method[1], exact = .exact_search, hamm = .hamming_search, lev = .levenshtein_search) res <- .fun(.data, .patterns, .max.errors, .verbose) if (length(res) == 0) { matrix(ncol = 2, nrow = 1) } else { res <- cbind(res[seq(from=1, to=length(res), by=2)], res[seq(from=2, to=length(res), by=2)]) res <- res[order(res[,1]), ] if (is.null(dim(res))) { res <- t(as.matrix(res)) } res[,1] <- data.old.indices[res[,1]] res[,2] <- pattern.old.indices[res[,2]] res } } .exact_search2 <- function (.data, .patterns, .max.errors, .verbose) { ps <- data.frame(P = .patterns, Ind = 1:length(.patterns), stringsAsFactors = F) agg <- aggregate(formula = Ind ~ P, data = ps, FUN = function (x) x, simplify = F) inds <- lapply(match(.data, agg$P), function (i) if (is.na(i)) NA else unlist(agg$Ind[i], use.names = F) ) t(do.call(rbind, sapply(1:length(inds), function (i) if (!is.na(inds[[i]][1])) cbind(i, inds[[i]]), USE.NAMES = F))) } exact.match <- function (.data, .patterns = c(), .verbose = T) { find.similar.sequences(.data, .patterns, 'exact', .verbose = .verbose, F) } hamming.match <- function (.data, .patterns = c(), .max.errors = 1, .verbose = T) { find.similar.sequences(.data, .patterns, 'hamm', .max.errors, .verbose, F) } levenshtein.match <- function (.data, .patterns = c(), .max.errors = 1, .verbose = T) { find.similar.sequences(.data, .patterns, 'lev', .max.errors, .verbose, T) }tcR/R/plots.R0000644000176200001440000011236113325616565012507 0ustar liggesusers########## Various plotting functions ########## if (getRversion() >= "2.15.1") { utils::globalVariables(c("Segment", 'Size', 'Freq', 'Sample', 'V.gene', 'J.gene', '..count..', 'Time.point', 'Proportion', 'Sequence', 'Lower', 'Upper', 'Lengths', 'Read.count', 'Var', 'Value', 'Group', 'variable', 'name', 'value', 'Kmers', 'Count', 'People', 'First', 'Second', 'Var1', 'Q0.025', 'Q0.975', 'Mean', 'Type', 'Clone.size', 'Q1', 'Q2', 'Symbol', 'Gene', 'Genes', 'Sample', 'label', 'Xrep', 'Yrep', 'Clonotype')) } # red - yellow - green .ryg.gradient <- function (.min = NA, .max = NA) { cs <- c('#66FF00', '#FFFF66', '#FF6633') if (!is.na(.min)) { scale_fill_gradientn(limits = c(.min, .max), colours = cs, na.value = 'grey60') } else { scale_fill_gradientn(colours = cs, na.value = 'grey60') } } # white/orange/yellow - green - blue # colourblind - friendly # for fill .colourblind.gradient <- function (.min = NA, .max = NA, .colour = F) { # cs <- c("#FFFFD9", "#41B6C4", "#225EA8") # cs <- c("#FFFFBB", "#41B6C4", "#225EA8") # cs <- c("#FFBB00", "#41B6C4", "#225EA8") <- old version # cs <- c("#FF4B20", "#FFB433", "#C6EDEC", "#85CFFF", "#0348A6") # cs <- c("#FF4B20", "#FFB433", "#C6FDEC", "#7AC5FF", "#0348A6") # scale_fill_gradientn(guide='colourbar', colours=c("#0072B2", "#EEEEEE", "#D55E00") cs <- c(c("#0072B2", "#EEEEEE", "#D55E00")) if (!is.na(.min)) { if (.colour) { scale_colour_gradientn(limits = c(.min, .max), guide='colorbar', colours = cs, na.value = 'grey60') } else { scale_fill_gradientn(limits = c(.min, .max), guide='colorbar', colours = cs, na.value = 'grey60') } } else { if (.colour) { scale_colour_gradientn(colours = cs, na.value = 'grey60') } else { scale_fill_gradientn(colours = cs, na.value = 'grey60') } } } # white/orange/yellow - green - blue # colourblind - friendly # for fill and colour .colourblind.vector <- function() { c("#FF4B20", "#FFB433", "#C6FDEC", "#7AC5FF", "#0348A6") } .colourblind.discrete <- function (.n, .colour = F) { # cs <- c("#FFFFD9", "#41B6C4", "#225EA8") # cs <- c("#FFFFBB", "#41B6C4", "#225EA8") # cs <- c("#FFBB00", "#41B6C4", "#225EA8") <- old version # cs <- c("#FF4B20", "#FFB433", "#C6FDEC", "#7AC5FF", "#0348A6") cs <- .colourblind.vector() if (.colour) { scale_colour_manual(values = colorRampPalette(cs)(.n)) } else { scale_fill_manual(values = colorRampPalette(cs)(.n)) } } .colourblind.discrete2 <- function (.n, .colour = F) { # cs <- c("#FFFFD9", "#41B6C4", "#225EA8") # cs <- c("#FFFFBB", "#41B6C4", "#225EA8") cs <- c("#FFAB00", "#41B6C4", "#225EA8") # <- old version # cs <- c("#FF4B20", "#FFB433", "#C6FDEC", "#7AC5FF", "#0348A6") # cs <- c("#FF4B20", "#FFB433", "#0348A6") if (.colour) { scale_colour_manual(values = colorRampPalette(cs)(.n)) } else { scale_fill_manual(values = colorRampPalette(cs)(.n)) } } # light blues - dark blues # for fill .blues.gradient <- function (.min = NA, .max = NA) { cs <- c("#F7FBFF", "#9ECAE1", "#2171B5") if (!is.na(.min)) { scale_fill_gradientn(limits = c(.min, .max), colours = cs, na.value = 'grey60') } else { scale_fill_gradientn(colours = cs, na.value = 'grey60') } } #' Plot a histogram of lengths. #' #' @description #' Plot a histogram of distribution of lengths of CDR3 nucleotide sequences. On y-axis are sum of read counts for each length. #' #' @param .data Data frame with columns 'CDR3.nucleotide.sequence' and 'Read.count' or list with such data frames. #' @param .ncol If .data is a list, than number of columns in a grid of histograms for each data frame in \code{.data}. Else not used. #' @param .name Title for this plot. #' @param .col Name of the column to use in computing the lengths distribution. #' #' @details #' If \code{.data} is a data frame, than one histogram will be plotted. Is \code{.data} is a list, than grid of histograms #' will be plotted. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' load('immdata.rda') #' # Plot one histogram with main title. #' vis.count.len(immdata[[1]], 'Main title here') #' # Plot a grid of histograms with 2 columns. #' vis.count.len(immdata, 2) #' } vis.count.len <- function (.data, .ncol = 3, .name = "", .col = 'Read.count') { if (has.class(.data, 'list')) { return(do.call(grid.arrange, c(lapply(1:length(.data), function (i) vis.count.len(.data[[i]], .col = .col, .name = names(.data)[i])), ncol = .ncol))) } tmp <- aggregate(as.formula(paste0(.col, " ~ nchar(CDR3.nucleotide.sequence)")), .data, sum) names(tmp) <- c('Lengths', "Count") ggplot() + geom_bar(aes(x = Lengths, y = Count, fill = Count), data = tmp, stat = 'identity', colour = 'black') + .colourblind.gradient(min(tmp$Count), max(tmp$Count)) + ggtitle(.name) + theme_linedraw() } #' Plot a histogram of counts. #' #' @description #' Plot a histogram of distribution of counts of CDR3 nucleotide sequences. On y-axis are number of counts. #' #' @param .data Cloneset data frame or a list of clonesets. #' @param .ncol If .data is a list, than number of columns in a grid of histograms for each data frame in \code{.data}. Else not used. #' @param .name Title for this plot. #' @param .col Name of the column with counts. #' #' @details #' If \code{.data} is a data frame, than one histogram will be plotted. Is \code{.data} is a list, than grid of histograms #' will be plotted. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' load('immdata.rda') #' # Plot one histogram with main title. #' vis.number.count(immdata[[1]], 'Main title here') #' # Plot a grid of histograms with 2 columns. #' vis.number.count(immdata, 2) #' } vis.number.count <- function (.data, .ncol = 3, .name = 'Histogram of clonotypes read counts', .col = "Read.count") { # cat('Limits for x-axis set to (0,50). Transform y-axis to sqrt(y).\n') if (has.class(.data, 'list')) { return(do.call(grid.arrange, c(lapply(1:length(.data), function (i) vis.number.count(.data[[i]], .col = .col, .name = names(.data)[i])), ncol = .ncol))) } counts <- data.frame(Count = .data[[.col]]) ggplot() + xlim(min(counts$Count), 300) + ylab('Frequency') + geom_histogram(aes(x = Count, fill = ..count..), data = counts, binwidth = 1, colour = 'black') + coord_trans(x = 'log10') + scale_y_log10() + ggtitle(.name) + .colourblind.gradient() + theme_linedraw() } #' Heatmap. #' #' @aliases vis.heatmap #' #' @description #' Plot a heatmap from a matrix or a data.frame #' #' @param .data Either a matrix with colnames and rownames specifyed or a data.frame with the first column of #' strings for row names and other columns stands for values. #' @param .title Main title of the plot. #' @param .labs Labs names. Character vector of length 2 (for naming x-axis and y-axis). #' @param .legend Title for the legend. #' @param .na.value Replace NAs with this values. #' @param .text if T then print \code{.data} values at tiles. #' @param .scientific If T then force show scientific values in the heatmap plot. #' @param .signif.digits Number of significant digits to show. Default - 4. #' @param .size.text Size for the text in the cells of the heatmap, 4 by default. #' @param .no.legend If T than remove the legend from the plot. #' @param .no.labs If T than remove x / y labels names from the plot. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' # Load your data. #' load('immdata.rda') #' # Perform cloneset overlap by amino acid sequences with V-segments. #' imm.av <- repOverlap(immdata, .seq = 'aa', .vgene = T) #' # Plot a heatmap. #' vis.heatmap(imm.av, .title = 'Immdata - (ave)-intersection') #' } vis.heatmap <- function (.data, .title = "Number of shared clonotypes", .labs = c('Sample', 'Sample'), .legend = 'Shared clonotypes', .na.value = NA, .text = T, .scientific = FALSE, .signif.digits = 4, .size.text = 4, .no.legend = F, .no.labs = F) { if (has.class(.data, 'data.frame')) { names <- .data[,1] .data <- as.matrix(.data[,-1]) row.names(.data) <- names } else if (is.null(dim(.data))) { .data = as.matrix(.data) } if (is.null(colnames(.data))) { colnames(.data) <- paste0('C', 1:ncol(.data)) } if (is.null(row.names(.data))) { row.names(.data) <- paste0('C', 1:nrow(.data)) } .data[is.na(.data)] <- .na.value tmp <- as.data.frame(.data) tmp$name <- row.names(.data) m <- melt(tmp, id.var = c('name')) m[,1] <- factor(m[,1], levels = rev(rownames(.data))) m[,2] <- factor(m[,2], levels = colnames(.data)) .cg <- .colourblind.gradient(min(m$value), max(m$value)) m$label <- format(m$value, scientific = .scientific, digits = .signif.digits) p <- ggplot(m, aes(x = variable, y = name, fill = value)) p <- p + geom_tile(aes(fill = value), colour = "white") if (.text) { p <- p + geom_text(aes(fill = value, label = label), size = .size.text) } # p <- p + geom_text(aes(fill = value, label = value)) # p <- p + .ryg.gradient(min(m$value), max(m$value)) p <- p + .cg # p <- p + .blues.gradient(min(m$value), max(m$value)) p <- p + ggtitle(.title) + guides(fill = guide_colourbar(title=.legend)) + xlab(.labs[1]) + ylab(.labs[2]) + coord_fixed() + theme_linedraw() + theme(axis.text.x = element_text(angle=90, vjust = .5)) + scale_x_discrete(expand=c(0,0)) + scale_y_discrete(expand=c(0,0)) if (.no.legend) { p <- p + theme(legend.position="none") } if (.no.labs) { p <- p + theme(axis.title.x = element_blank(), axis.title.y = element_blank()) } p } #' Boxplot for groups of observations. #' #' @aliases vis.group.boxplot #' #' @description #' Plot boxplots for each group. #' #' @param .data Either a matrix with colnames and rownames specifyed or a data frame with the first column of #' strings for row names and other columns stands for values. #' @param .groups Named list with character vectors for names of elements for each group. If NA than each #' member is in the individual group. #' @param .title Main title of the plot. #' @param .labs Labs names. Character vector of length 1 (for naming both axis with same name) or 2 (first elements stands for x-axis). #' @param .rotate.x if T then rotate x-axis. #' @param .violin If T then plot a violin plot. #' @param .notch "notch" parameter to the \code{geom_boxplot} ggplo2 function. #' @param ... Parameters passed to \code{melt}, applied to \code{.data} before plotting in \code{vis.group.boxplot}. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' names(immdata) # "A1" "A2" "B1" "B2" "C1" "C2" #' # Plot a boxplot for V-usage for each plot #' # three boxplots for each group. #' vis.group.boxplot(freq.Vb(immdata), #' list(A = c('A1', 'A2'), B = c('B1', 'B2'), C = c('C1', 'C2')), #' c('V segments', 'Frequency')) #' #' data(twb) #' ov <- repOverlap(twb) #' sb <- matrixSubgroups(ov, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); #' vis.group.boxplot(sb) #' } vis.group.boxplot <- function (.data, .groups = NA, .labs = c('V genes', 'Frequency'), .title = '', .rotate.x = T, .violin = T, .notch = F, ...) { # if (has.class(.data, 'data.frame')) { # .data$Sample <- .data[,1] # .data <- .data[,c(1,3,2)] # } else { if (ncol(.data) > 2) { .data <- melt(.data, ...) } else { .data$Sample = .data[,1] .data = .data[,c(1,3,2)] } # } colnames(.data) <- c('Var', 'Sample', 'Value') .data$Group <- as.character(.data$Sample) if (!is.na(.groups)[1]) { for (i in 1:length(.groups)) { for (name in .groups[[i]]) { .data$Group[.data$Sample == name] <- names(.groups)[i] } } } p <- ggplot() + geom_boxplot(aes(x = Var, y = Value, fill = Group), data = .data, colour = 'black', notch = .notch) if (.violin) { p <- p +geom_violin(aes(x = Var, y = Value, fill = Group), alpha = .2, data = .data) } if (length(.labs) >= 2) { p <- p + xlab(.labs[1]) + ylab(.labs[2]) } p <- p + ggtitle(.title) + theme_linedraw() if (.rotate.x) { p <- p + theme(axis.text.x = element_text(angle=90)) } p + .colourblind.discrete(length(unique(.data$Group))) } #' Histogram of segments usage. #' #' @aliases vis.V.usage vis.J.usage #' #' @description #' Plot a histogram or a grid of histograms of V- / J-usage. #' #' @param .data Mitcr data frame or a list with mitcr data frames. #' @param .genes Gene alphabet passed to \link{geneUsage}. #' @param .main Main title of the plot. #' @param .ncol Number of columns in a grid of histograms if \code{.data} is a list and \code{.dodge} is F. #' @param .coord.flip if T then flip coordinates. #' @param .labs Character vector of length 2 with names for x-axis and y-axis. #' @param .dodge If \code{.data} is a list, than if this is T plot V-usage for all data frames to the one histogram. #' @param ... Parameter passed to \code{geneUsage}. By default the function compute V-usage or J-usage for beta chains #' w/o using read counts and w/ "Other" segments. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' # Load your data. #' load('immdata.rda') #' # Compute V-usage statistics. #' imm1.vs <- geneUsage(immdata[[1]], HUMAN_TRBV) #' vis.V.usage(immdata, HUMAN_TRBV, .main = 'Immdata V-usage [1]', .dodge = T) #' # Plot a histogram for one data frame using all gene segment data from V.gene column. #' vis.V.usage(imm1.vs, NA, .main = 'Immdata V-usage [1]') #' # Plot a grid of histograms - one histogram for V-usage for each data frame in .data. #' vis.V.usage(immdata, HUMAN_TRBV, .main = 'Immdata V-usage', .dodge = F, .other = F) #' } vis.gene.usage <- function (.data, .genes = NA, .main = "Gene usage", .ncol = 3, .coord.flip = F, .dodge = F, .labs = c("Gene", "Frequency"), ...) { if (!is.na(.genes[1])) { res <- geneUsage(.data, .genes, ...) } else { res <- .data } if (class(res[[2]]) != "factor") { res <- melt(res) res <- res[1:nrow(res), ] colnames(res) <- c('Gene', 'Sample', 'Freq') } if (length(unique(res$Sample)) > 1) { if (.dodge) { p = ggplot() + geom_bar(aes(x = Gene, y = Freq, fill = Sample), data = res, stat = 'identity', position = position_dodge(), colour = 'black') + theme_linedraw() + ggtitle(.main) + theme(axis.text.x = element_text(angle=90, vjust = .5)) + .colourblind.discrete(length(unique(res$Sample))) + scale_y_continuous(expand = c(.02,0)) + xlab(.labs[1]) + ylab(.labs[2]) if (.coord.flip) { p <- p + coord_flip() } p } else { res <- split(res, res$Sample) ps <- lapply(1:length(res), function (i) { vis.gene.usage(res[[i]], NA, names(res)[i], 0, .coord.flip, .labs = .labs, ...) }) do.call(grid.arrange, c(ps, ncol = .ncol, top = .main) ) } } else { p <- ggplot() + geom_bar(aes(x = Gene, y = Freq, fill = Freq), data = res, stat = 'identity', colour = 'black') if (.coord.flip) { p <- p + coord_flip() } p + theme_linedraw() + theme(axis.text.x = element_text(angle=90, vjust = .5)) + ggtitle(.main) + .colourblind.gradient() + scale_y_continuous(expand = c(.02,0)) + xlab(.labs[1]) + ylab(.labs[2]) } } #' PCA result visualisation #' #' @description #' Plot the given pca results with colour divided by the given groups. #' #' @param .data Result from prcomp() function or a data frame with two columns 'First' and 'Second' #' stands for the first PC and the second PC. #' @param .groups List with names for groups and indices of the group members. If NA than each #' member is in the individual group. #' @param .text If T than print the names of the subjects. #' #' @return ggplot object. #' #' @examples #' \dontrun{ #' data(twb) #' tmp = geneUsage(twb) #' vis.pca(prcomp(t(tmp[,-1]))) #' } vis.pca <- function (.data, .groups = NA, .text = T) { if (has.class(.data, 'data.frame')) { dnames <- row.names(.data) .data <- data.frame(First = .data[,1], Second = .data[,2], Sample = row.names(.data), Group = rep('group0', times = length(.data[,2])), stringsAsFactors=F) } else { dnames <- row.names(.data$x) .data <- data.frame(First = .data$x[,1], Second = .data$x[,2], Sample = row.names(.data$x), Group = rep('group0', times = length(.data$x[,2])), stringsAsFactors=F) } if (is.na(.groups[1])) { .groups <- lapply(1:nrow(.data), function (i) i) names(.groups) <- dnames } for (i in 1:length(.groups)) { for (j in 1:length(.groups[[i]])) { .data$Group[.groups[[i]][j]] <- names(.groups)[i] } } p = ggplot() + geom_point(aes(x = First, y = Second, colour = Group), size = 3, data = .data) if (.text) { p = p + geom_text(aes(x = First, y = Second, label = Sample, colour = Group), data = .data, hjust=0, vjust=0) } p = p + theme_linedraw() + .colourblind.discrete2(length(.groups), T) p } #' Radar-like / spider-like plots. #' #' @description #' Plot a grid of radar(-like) plots for visualising a distance among objects. #' #' @param .data Square data frame or matrix with row names and col names stands for objects and values for distances. #' @param .ncol Number of columns in the grid. #' @param .which Character vector, which datasets to show. #' @param .expand Integer vector of length 2, for \code{scale_y_continous(expand = .expand)} function. #' #' @seealso \link{repOverlap}, \link{js.div} #' #' @examples #' \dontrun{ #' load('immdata.rda') #' # Compute Jensen-Shannon divergence among V-usage of repertoires. #' imm.js <- js.div.seg(immdata, .verbose = F) #' # Plot it. #' vis.radarlike(imm.js) #' } vis.radarlike <- function (.data, .ncol = 3, .which = NA, .expand = c(.25, 0)) { step = ncol(.data) data.names <- colnames(.data) .data <- as.data.frame(melt(.data)) .data[is.na(.data[,3]),3] <- 0 if (!is.na(.which[1])) { .data = .data[.data$Var2 %in% .which, ] } ps <- lapply(seq(1, nrow(.data), step), function (l) { ggplot(.data[l:(l+step-1),], aes(x = Var1, y = value, fill = Var1)) + geom_bar(colour = 'black', stat = 'identity') + coord_polar() + ggtitle(names(.data)[l]) + scale_y_continuous(expand = .expand) + guides(fill = guide_legend(title="Sample")) + theme_linedraw() + xlab('') + ylab('') + ggtitle(.data$Var2[l]) + .colourblind.discrete(length(data.names)) }) do.call(grid.arrange, c(ps, ncol = .ncol)) } #' Visualisation of top clones proportions. #' #' @description #' Visualisation of proportion of the top clones. #' #' @param .data Data frame with clones. #' @param .head Integer vector of clones for the \code{.head} parameter for the \code{top.proportion} function. #' @param .col Parameter \code{.col} for the \code{top.proportion} function. #' #' @seealso \code{top.proportion} #' #' @examples #' \dontrun{ #' vis.top.proportions(immdata) #' } vis.top.proportions <- function (.data, .head = c(10, 100, 1000, 10000, 30000, 100000, 300000, 1000000), .col = "Read.count") { if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } res <- sapply(.head, function (h) top.proportion(.data, h, .col)) tmp <- res if (is.null(dim(tmp))) { tmp <- t(as.matrix(tmp)) res <- t(as.matrix(res)) } for (i in 2:ncol(res)) { tmp[,i] <- res[,i] - res[,i-1] } res <- tmp colnames(res) <- paste0('[', c(1, .head[-length(.head)] + 1), ':', .head, ')') res <- as.data.frame(res) res$People <- factor(row.names(res), levels = row.names(res)) res <- melt(res) # res$variable <- factor(as.character(res$variable), labels = paste0('[', c(1, .head[-length(.head)] + 1), ':', .head, ')'), ordered = T) ggplot() + geom_bar(aes(x = People, y = value, fill = variable), data = res, stat = 'identity', position = 'stack', colour = 'black')+ theme_linedraw() + theme(axis.text.x = element_text(angle=90, vjust = .5)) + ylab("Clonal proportion") + xlab("Sample") + ggtitle("Summary proportion of the top N clones") + guides(fill = guide_legend("Top N clones")) + .colourblind.discrete(length(.head)) # scale_y_continuous(expand = c(0, 0)) } #' Rarefaction statistics visualisation. #' #' @description #' Plot a line with mean unique clones. #' #' @param .muc.res Output from the \code{muc} function. #' @param .groups List with names for groups and names of the group members. If NULL than each #' member is in the individual group. #' @param .log if T then log-scale the y axis. #' @param .names If T then print number of samples. #' #' @seealso \link{rarefaction} #' #' @examples #' \dontrun{ #' data(twb) #' names(twb) # "Subj.A" "Subj.B" "Subj.C" "Subj.D" #' twb.rar <- rarefaction(twb, .col = "Read.count") #' vis.rarefaction(twb.rar, list(A = c("Subj.A", "Subj.B"), B = c("Subj.C", "Subj.D"))) #' } vis.rarefaction <- function (.muc.res, .groups = NULL, .log = F, .names = T) { .muc.res$Group <- .muc.res$People if (!is.null(.groups)) { for (i in 1:length(.groups)) { for (j in 1:length(.groups[[i]])) { .muc.res$Group[.muc.res$People == .groups[[i]][j] ] <- names(.groups)[i] } } } .muc.res$Type <- factor(.muc.res$Type, levels = c('interpolation', 'extrapolation'), ordered = T) p <- ggplot() + # geom_point(aes(x = Size, y = Mean, colour = Group), data = .muc.res, size = 2) + geom_line(aes(x = Size, y = Mean, colour = Group, Group = People, linetype = Type), data = .muc.res) + # geom_errorbar(aes(x = Size, y = Mean, ymin = Q0.025, ymax = Q0.975, colour = Group), data = .muc.res) + xlab('Sample size') + ylab('Clones') + ggtitle("Rarefaction analysis") + theme_linedraw() + .colourblind.discrete(length(unique(.muc.res$Group)), T) if (.names) { for (subj in unique(.muc.res$People)) { tmp <- tail(.muc.res[.muc.res$People == subj, ], 1) p <- p + geom_text(aes(x = Size, y = Mean, label = People), data = tmp, hjust=1, vjust=1) } } if (.log) { p <- p + scale_x_log10() } p } #' Plot of the most frequent kmers. #' #' @description #' Plot a distribution (bar plot) of the most frequent kmers in a data. #' #' @param .kmers Data frame with two columns "Kmers" and "Count" or a list with such data frames. See Examples. #' @param .head Number of the most frequent kmers to choose for plotting from each data frame. #' @param .position Character vector of length 1. Position of bars for each kmers. Value for the \code{ggplot2} argument \code{position}. #' #' @seealso \code{get.kmers} #' #' @examples #' \dontrun{ #' # Load necessary data and package. #' library(gridExtra) #' load('immdata.rda') #' # Get 5-mers. #' imm.km <- get.kmers(immdata) #' # Plots for kmer proportions in each data frame in immdata. #' p1 <- vis.kmer.histogran(imm.km, .position = 'stack') #' p2 <- vis.kmer.histogran(imm.km, .position = 'fill') #' grid.arrange(p1, p2) #' } vis.kmer.histogram <- function (.kmers, .head = 100, .position = c('stack', 'dodge', 'fill')) { kmers.df <- data.frame(Kmers = '') for (i in 2:ncol(.kmers)) { kmers.df <- merge(head(.kmers[order(.kmers[, i], decreasing = T), c(1,i)], .head), kmers.df, all = T) } kmers.df[is.na(kmers.df)] <- 0 kmers.df <- melt(kmers.df[-1,]) names(kmers.df) <- c('Kmers', 'People', 'Count') p <- ggplot() + geom_bar(aes(x = Kmers, y = Count, fill = People), data = kmers.df, stat = 'identity', position = .position[1]) + theme_linedraw() if (.position[1] == 'stack' || .position[1] == 'dodge') { p <- p + ylab('Count') + theme(axis.text.x = element_text(angle=90, vjust = .5)) } else { p <- p + ylab('Proportions') + theme(axis.text.x = element_text(angle=90, vjust = .5)) } p + scale_y_continuous(expand = c(0, 0)) + .colourblind.discrete2(length(unique(kmers.df$People))) } #' Visualise clonal dynamics among time points. #' #' @description #' Visualise clonal dynamics (i.e., changes in frequency or count) with error bars of given #' clones among time points. #' #' @param .changed Result from the \code{find.clonotypes} function, i.e. data frame with first #' columns with sequences (nucleotide or amino acid) and other columns are columns with frequency / count #' for each time point for each clone. #' @param .lower Similar to .changed but values are lower bound for clonal count / frequency. #' @param .upper Similar to .changed but values are upper bound for clonal count / frequency. #' @param .log if T then log-scale y-axis. #' #' @return ggplot object. vis.clonal.dynamics <- function (.changed, .lower, .upper, .log = T) { .changed <- melt(.changed, id.vars = names(.changed)[1]) .lower <- melt(.lower, id.vars = names(.changed)[1]) .upper <- melt(.upper, id.vars = names(.changed)[1]) names(.changed) <- c('Sequence', 'Time.point', 'Proportion') d <- cbind(.changed, Lower = .lower[,3], Upper = .upper[,3]) p <- ggplot() + geom_line(aes(x = Time.point, y = Proportion, colour = Sequence, group = Sequence), data = d) + geom_errorbar(aes(x = Time.point, y = Proportion, colour = Sequence, ymin = Lower, ymax = Upper), data = d, width = .25) + theme_linedraw() + theme(axis.text.x = element_text(angle=90)) + .colourblind.discrete(length(unique(.changed$Sequence)), .colour = T) if (.log) { p <- p + scale_y_log10() } p } #' Visualise occupied by clones homeostatic space among Samples or groups. #' #' @description #' Visualise which clones how much space occupy. #' #' @param .clonal.space.data Data from the \code{fclonal.space.homeostasis} function. #' @param .groups List of named character vector with names of Samples #' in \code{.clonal.space.data} for grouping them together. #' #' @seealso \link{clonal.space.homeostasis} #' #' @return ggplot object. vis.clonal.space <- function (.clonal.space.data, .groups = NULL) { melted <- melt(.clonal.space.data) colnames(melted) <- c('Sample', 'Clone.size', 'Proportion') melted$Sample <- as.character(melted$Sample) melted$Proportion <- as.numeric(as.character(melted$Proportion)) melted$Group <- melted$Sample if (!is.null(.groups)) { for (i in 1:length(.groups)) { for (j in 1:length(.groups[[i]])) { melted$Group[melted$Sample == .groups[[i]][j] ] <- names(.groups)[i] } } perc <- melt(tapply(melted$Proportion, list(melted$Group, melted$Clone.size), function (x) c(quantile(x, probs = .25), mean(x), quantile(x, probs = .75)))) # return(perc) perc <- data.frame(row.names(perc), perc, stringsAsFactors = F) colnames(perc) <- c("Index", 'Group', "Clone.size", 'Q1', 'Mean', 'Q2') print(perc) p <- ggplot() + geom_bar(aes(x = Group, y = Mean, fill = Clone.size), data = perc, colour = 'black', stat = 'identity') + geom_errorbar(aes(x = Group, ymin = Q1, ymax = Q2), data = perc, colour = 'black') + xlab("Sample") } else { melted$Group = factor(melted$Group, levels = row.names(.clonal.space.data)) p <- ggplot() + geom_bar(aes(x = Group, y = Proportion, fill = Clone.size), data = melted, colour = 'black', stat = 'identity', position = 'stack') + xlab("Sample") } p + theme_linedraw() + theme(axis.text.x = element_text(angle=90, vjust = .5)) + ylab("Occupied homeostatic space, proportion") + ggtitle("Clonal space homeostasis") + guides(fill = guide_legend("Clone size")) + .colourblind.discrete(length(unique(melted$Clone.size))) + scale_y_continuous(expand = c(.01, .01)) + scale_x_discrete(expand = c(.02, .02)) } #' Logo - plots for amino acid and nucletide profiles. #' #' @description #' Plot logo-like graphs for visualising of nucleotide or amino acid motif sequences / profiles. #' #' @param .data Output from the \code{kmer.profile} function. #' @param .replace.zero.with.na if T then replace all zeros with NAs, therefore letters with #' zero frequency wont appear at the plot. #' @param .jitter.width,.jitter.height,.dodge.width Parameters to \code{position_jitterdodge} #' for aligning text labels of letters. #' #' @return ggplot2 object #' #' @examples #' \dontrun{ #' d <- kmer_profile(c('CASLL', 'CASSQ', 'CASGL')) #' vis.logo(d) #' } vis.logo <- function (.data, .replace.zero.with.na = T, .jitter.width = .01, .jitter.height = .01, .dodge.width = .15) { .data <- melt(.data) if (.replace.zero.with.na) { .data$value[.data$value == 0] <- NA } ggplot(aes(x = variable, y = value, fill = Symbol, colour = Symbol), data = .data) + geom_point(colour = 'black') + geom_text(aes(label = Symbol), size = 5, position = position_jitterdodge(jitter.width = .jitter.width, jitter.height = .jitter.height, dodge.width = .dodge.width)) + xlab("Position") + ylab("Proportion") + theme_linedraw() } #' Visualisation of shared clonotypes occurrences among repertoires. #' #' @description #' Visualise counts or proportions of shared clonotypes among repertoires. #' Code adapted from https://www.r-bloggers.com/ggplot2-cheatsheet-for-visualizing-distributions/. #' #' @param .shared.rep Shared repertoires, as from \link{shared.repertoire} function. #' @param .x.rep Which repertoire show on x-axis. Either a name or an index of a repertoire #' in the \code{.shared.rep} or NA to choose all repertoires. #' @param .y.rep Which repertoire show on y-axis. Either a name or an index of a repertoire #' in the \code{.shared.rep} or NA to choose all repertoires. #' @param .title Main title of the plot. #' @param .ncol Number of columns in the resulting plot. #' @param .point.size.modif Modify this to correct sizes of points. #' @param .cut.axes If T than cut axes' limits to show only frequencies that exists. #' @param .density If T than plot densities of shared and unique clonotypes. #' @param .lm If T than fit and plot a linear model to shared clonotypes. #' @param .radj.size Size of the text for R^2-adjusted. #' @param .plot If F than return grobs instead of plotting. #' #' @return ggplot2 object or plot #' #' @seealso \link{shared.repertoire} #' #' @examples #' \dontrun{ #' data(twb) #' # Show shared nucleotide clonotypes of all possible pairs #' # using the Read.proportion column #' twb.sh <- shared.repertoire(twb, "n0rp") #' vis.shared.clonotypes(twb.sh, .ncol = 4) #' #' # Show shared amino acid + Vseg clonotypes of pairs #' # including the Subj.A (the first one) using #' # the Read.count column. #' twb.sh <- shared.repertoire(twb, "avrc") #' vis.shared.clonotypes(twb.sh, 1, NA, .ncol = 4) #' # same, just another order of axis #' vis.shared.clonotypes(twb.sh, NA, 1, .ncol = 4) #' #' # Show shared nucleotide clonotypes of Subj.A (the first one) #' # Subj.B (the second one) using the Read.proportion column. #' twb.sh <- shared.repertoire(twb, "n0rp") #' vis.shared.clonotypes(twb.sh, 1, 2) #' #' # Show the same plot, but with much larget points. #' vis.shared.clonotypes(twb.sh, 1, 2, .point.size.modif = 3) #' } vis.shared.clonotypes <- function (.shared.rep, .x.rep = NA, .y.rep = NA, .title = NA, .ncol = 3, .point.size.modif = 1, .cut.axes = T, .density = T, .lm = T, .radj.size = 3.5, .plot = T) { mat <- shared.matrix(.shared.rep) if (is.na(.x.rep) && is.na(.y.rep)) { ps <- list() for (i in 1:ncol(mat)) { for (j in 1:ncol(mat)) { ps <- c(ps, list(vis.shared.clonotypes(.shared.rep, i, j, '', .point.size.modif = .point.size.modif, .cut.axes = .cut.axes, .density = .density, .lm = .lm, .radj.size = .radj.size, .plot = F))) } } grid.arrange(grobs = ps, ncol = .ncol, top = .title) } else if (is.na(.x.rep)) { ps <- lapply(1:ncol(mat), function (i) { vis.shared.clonotypes(.shared.rep, i, .y.rep, '', .point.size.modif = .point.size.modif, .cut.axes = .cut.axes, .density = .density, .lm = .lm) }) do.call(grid.arrange, c(ps, ncol = .ncol, top = .title)) } else if (is.na(.y.rep)) { ps <- lapply(1:ncol(mat), function (j) { vis.shared.clonotypes(.shared.rep, .x.rep, j, '', .point.size.modif = .point.size.modif, .cut.axes = .cut.axes, .density = .density, .lm = .lm) }) do.call(grid.arrange, c(ps, ncol = .ncol, top = .title)) } else { if (!is.character(.x.rep)) { .x.rep <- colnames(mat)[.x.rep] } if (!is.character(.y.rep)) { .y.rep <- colnames(mat)[.y.rep] } if (.x.rep == .y.rep) { return(rectGrob(gp=gpar(col="white"))) } df <- data.frame(cbind(mat[, .x.rep], mat[, .y.rep])) df[,1] = df[,1] / sum(df[,1], na.rm = T) df[,2] = df[,2] / sum(df[,2], na.rm = T) df_full = df df <- df[!is.na(df[,1]) & !is.na(df[,2]), ] freq <- log10(sqrt(as.numeric(df[, 1]) * df[, 2])) / 2 names(df) <- c("Xrep", "Yrep") names(df_full) <- c("Xrep", "Yrep") pnt.cols <- log(df[, 1] / df[, 2]) suppressWarnings(pnt.cols[pnt.cols > 0] <- pnt.cols[pnt.cols > 0] / max(pnt.cols[pnt.cols > 0])) suppressWarnings(pnt.cols[pnt.cols < 0] <- -pnt.cols[pnt.cols < 0] / min(pnt.cols[pnt.cols < 0])) if (.cut.axes) { mat.lims <- c(min(as.matrix(df_full), na.rm = T), max(as.matrix(df_full), na.rm = T)) } else { mat.lims <- c(min(as.matrix(df_full), na.rm = T), 1) } empty <- ggplot()+geom_point(aes(1,1), colour="white") + theme( plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank() ) min_df = min(floor(log10(min(df_full[,1], na.rm = T))), floor(log10(min(df_full[,2], na.rm = T)))) max_df = max(trunc(log10(max(df_full[,1], na.rm = T))), trunc(log10(max(df_full[,2], na.rm = T)))) breaks_values = 10**seq(min_df, 1) breaks_labels = format(log10(breaks_values), scientific = F) grey_col = "#CCCCCC" points = ggplot() + geom_point(aes(x = Xrep, y = Yrep, size = freq, fill = pnt.cols), data = df, shape=21) + scale_radius(range = c(.point.size.modif, .point.size.modif * 6)) + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + theme_linedraw() + .colourblind.gradient(min(pnt.cols), max(pnt.cols)) + scale_x_log10(breaks = breaks_values, labels = breaks_labels, lim = mat.lims, expand = c(.015, .015)) + scale_y_log10(breaks = breaks_values, labels = breaks_labels, lim = mat.lims, expand = c(.015, .015)) + theme(legend.position="none") + xlab(.x.rep) + ylab(.y.rep) if (!is.na(.title)) { points = points + ggtitle(.title) } if (.lm) { adj.R.sq = summary(lm(Yrep ~ Xrep, df))$adj. points = points + geom_smooth(aes(x = Xrep, y = Yrep), method = "lm", data = df, fullrange = T, colour = "grey20", size = .5) + geom_text(aes(x = max(df_full, na.rm = T) / 4, y = min(df_full, na.rm = T), label = paste0("R^2(adj.) = ", as.character(round(adj.R.sq, 2)))), size = .radj.size) # ggtitle(paste0("R^2(adj.) = ", as.character(round(adj.R.sq, 2)))) } if (.density) { df2 = data.frame(Clonotype = df_full[!is.na(df_full[,1]) & is.na(df_full[,2]), 1], Type = "unique", stringsAsFactors = F) df2 = rbind(df2, data.frame(Clonotype = df_full[!is.na(df_full[,1]) & !is.na(df_full[,2]), 1], Type = "shared", stringsAsFactors = F)) top_plot = ggplot() + geom_density(aes(x = Clonotype, fill = Type), colour = "grey25", data = df2, alpha = .3) + scale_x_log10(breaks = 10**(seq(min_df, 0)), lim = mat.lims, expand = c(.12, .015)) + theme_bw() + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), legend.position = "none") + scale_fill_manual(values = colorRampPalette(c(.colourblind.vector()[5], grey_col))(2)) df2 = data.frame(Clonotype = df_full[!is.na(df_full[,2]) & is.na(df_full[,1]), 2], Type = "unique", stringsAsFactors = F) df2 = rbind(df2, data.frame(Clonotype = df_full[!is.na(df_full[,2]) & !is.na(df_full[,1]), 2], Type = "shared", stringsAsFactors = F)) right_plot = ggplot() + geom_density(aes(x = Clonotype, fill = Type), colour = "grey25", data = df2, alpha = .3) + scale_x_log10(breaks = 10**(seq(min_df, 0)), lim = mat.lims, expand = c(.12, .015)) + coord_flip() + theme_bw() + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), legend.position = "none") + scale_fill_manual(values = colorRampPalette(c(.colourblind.vector()[1], grey_col))(2)) if (.plot) { grid.arrange(top_plot, empty, points, right_plot, ncol=2, nrow=2, widths=c(4, 1), heights=c(1, 4)) } else { arrangeGrob(top_plot, empty, points, right_plot, ncol=2, nrow=2, widths=c(4, 1), heights=c(1, 4)) } } else { points } } } # vis.hill.numbers <- function (.hill.nums, .groups = NA) { # # } tcR/R/io.R0000644000176200001440000000673412704122020011735 0ustar liggesusers#' Parse input files or folders with immune receptor repertoire data. #' #' @aliases repLoad #' #' @description #' Load the immune receptor repertoire data from the given input: either a file name, a list of file names, a name of the folder with repertoire files, #' or a list of folders with repertoire files. The folder / folders must contain only files with the specified format. #' Input files could be either text files or archived with gzip ("filename.txt.gz") or bzip2 ("filename.txt.bz2"). #' For a general parser of table files with cloneset data see \code{\link{parse.cloneset}}. #' #' Parsers are available for: #' MiTCR ("mitcr"), MiTCR w/ UMIs ("mitcrbc"), MiGEC ("migec"), VDJtools ("vdjtools"), #' ImmunoSEQ ("immunoseq" or 'immunoseq2' for old and new formats respectively), #' MiXCR ("mixcr"), IMSEQ ("imseq") and tcR ("tcr", data frames saved with the `repSave()` function). #' #' Output of MiXCR should contain either all hits or best hits for each gene segment. #' #' Output of IMSEQ should be generated with parameter "-on". In this case there will be no positions of aligned gene segments in the output data frame #' due to restrictions of IMSEQ output. #' #' tcR's data frames should be saved with the `repSave()` function. #' #' For details on the tcR data frame format see \link{parse.file}. #' #' @param .path Character vector with path to files and / or folders. #' @param .format String that specifies the input format. #' #' @seealso \link{parse.file} #' #' @examples #' \dontrun{ #' datalist <- repLoad(c("file1.txt", "folder_with_files1", "another_folder"), "mixcr") #' } repLoad <- function (.path, .format = c("mitcr", "migec")) { res <- list() for (i in 1:length(.path)) { if (dir.exists(.path[i])) { res <- c(res, parse.folder(.path[i], .format[1])) } else if (file.exists(.path[i])) { res <- c(res, list(parse.file(.path[1], .format[1]))) } else { cat('Can\'t find folder or file:\t"', .path[i], '"', sep = '', end = '\n') } } res } #' Save tcR data frames to disk as text files or gzipped text files. #' #' @description #' Save repertoire files to either text files or gzipped text files. #' You can read them later by \code{repLoad} function with \code{.format = "tcr"}. #' #' @param .data Either tcR data frame or a list of tcR data frames. #' @param .format "txt" for simple tab-delimited text tables, "gz" for compressed (gzipped) tables. #' @param .names Names of output files. By default it's an empty string so names will be taken from names of the input list. #' @param .folder Path to the folder with output files. #' #' @seealso \link{repLoad} repSave <- function (.data, .format = c("txt", "gz"), .names = "", .folder = "./") { if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } .folder <- paste0(.folder, "/") postfix <- ".txt" filefun <- function (...) file(...) if (.format[1] == "gz") { postfix <- ".txt.gz" filefun <- function (...) gzfile(...) } if (.names[1] == "") { .names = paste0(.folder, names(.data), postfix) } else { if (length(.data) != length(.names)) { cat("Number of input data frames isn't equal to number of names\n") return(NULL) } else { .names = paste0(.folder, .names, postfix) } } for (i in 1:length(.data)) { cat("Writing", .names[i], "file...\t") fc <- filefun(description = .names[i], open = "w") write.table(.data[[i]], fc, quote = F, row.names = F, sep = '\t') close(fc) cat("Done.\n") } }tcR/R/graph.R0000644000176200001440000002520712657351347012452 0ustar liggesusers######### MUTATION NETWORK MANAGING ########## #' Make mutation network for the given repertoire. #' #' @description #' Mutation network (or a mutation graph) is a graph with vertices representing nucleotide or in-frame amino acid sequences (out-of-frame amino acid sequences #' will automatically filtered out) and edges are connecting pairs of sequences with hamming distance or edit distance between them #' no more than specified in the \code{.max.errors} function parameter. #' #' @param .data Either character vector of sequences, data frame with \code{.label.col} #' or shared repertoire (result from the \code{shared.repertoire} function) constructed based on \code{.label.col}. #' @param .method Either "hamm" (for hamming distance) or "lev" (for edit distance). Passed to the \code{find.similar.sequences} function. #' @param .max.errors Passed to the \code{find.similar.sequences} function. #' @param .label.col Name of the column with CDR3 sequences (vertex labels). #' @param .seg.col Name of the column with V gene segments. #' @param .prob.col Name of the column with clonotype probability. #' #' @return Mutation network, i.e. igraph object with input sequences as vertices labels, ??? #' #' @seealso \link{shared.repertoire}, \link{find.similar.sequences}, \link{set.people.vector}, \link{get.people.names} #' #' @examples #' \dontrun{ #' data(twb) #' twb.shared <- shared.repertoire(twb) #' G <- mutation.network(twb.shared) #' get.people.names(G, 300, T) # "Subj.A|Subj.B" #' get.people.names(G, 300, F) # list(c("Subj.A", "Subj.B")) #' } mutation.network <- function (.data, .method = c('hamm', 'lev'), .max.errors = 1, .label.col = 'CDR3.amino.acid.sequence', .seg.col = 'V.gene', .prob.col = 'Probability') { # Make vertices and edges. if (has.class(.data, 'character')) { .data <- data.frame(A = .data, stringsAsFactors = F) colnames(.data) <- .label.col } G <- graph.empty(n = nrow(.data), directed=F) G <- add.edges(G, t(find.similar.sequences(.data[[.label.col]], .method = .method[1], .max.errors = .max.errors))) G <- simplify(G) # Every label is a sequence. G <- set.vertex.attribute(G, 'label', V(G), .data[[.label.col]]) # Add V-segments to vertices. if (.seg.col %in% colnames(.data)) { G <- set.vertex.attribute(G, 'vseg', V(G), .data[[.seg.col]]) } else { G <- set.vertex.attribute(G, 'vseg', V(G), 'nosegment') } # Set sequences' indices as in the given shared repertoire. G <- set.vertex.attribute(G, 'repind', V(G), 1:vcount(G)) # Set probabilities for sequences. if (.prob.col %in% colnames(.data)) { G <- set.vertex.attribute(G, 'prob', V(G), .data[[.prob.col]]) } else { G <- set.vertex.attribute(G, 'prob', V(G), rep.int(-1, vcount(G))) } # Add people to vertices. if ('People' %in% colnames(.data)) { attr(G, 'people') <- colnames(shared.matrix(.data)) G <- set.people.vector(G, .data) } else { attr(G, 'people') <- "Individual" G <- set.vertex.attribute(G, 'people', V(G), 1) G <- set.vertex.attribute(G, 'npeople', V(G), 1) } G } #' Set and get attributes of a mutation network related to source people. #' #' @aliases set.people.vector get.people.names #' #' @description #' Set vertice attributes 'people' and 'npeople' for every vertex in the given graph. #' Attribute 'people' is a binary string indicating in which repertoire sequence are #' found. Attribute 'npeople' is a integer indicating number of repertoires, in which #' this sequence has been found. #' #' @usage #' set.people.vector(.G, .shared.rep) #' #' get.people.names(.G, .V = V(.G), .paste = T) #' #' @param .G Mutation network. #' @param .shared.rep Shared repertoire. #' @param .V Indices of vertices. #' @param .paste If TRUE than concatenate people names to one string, else get a character vector of names. #' #' @return New graph with 'people' and 'npeople' vertex attributes or character vector of length .V or list of length .V. #' #' @examples #' \dontrun{ #' data(twb) #' twb.shared <- shared.repertoire(twb) #' G <- mutation.network(twb.shared) #' get.people.names(G, 300, T) # "Subj.A|Subj.B" #' get.people.names(G, 300, F) # list(c("Subj.A", "Subj.B")) #' } set.people.vector <- function (.G, .shared.rep) { .shared.rep[is.na(.shared.rep)] <- 0 .G <- set.vertex.attribute(.G, 'people', V(.G), apply(as.matrix(.shared.rep[, -(1:(match('People', colnames(.shared.rep))))]), 1, function (row) { paste0(as.integer(row > 0), collapse='') })) .G <- set.vertex.attribute(.G, 'npeople', V(.G), apply(as.matrix(.shared.rep[, -(1:(match('People', colnames(.shared.rep))))]), 1, function (row) { sum(row > 0) })) } get.people.names <- function (.G, .V = V(.G), .paste = T) { ppl <- attr(.G, 'people') if (!.paste) { lapply(strsplit(get.vertex.attribute(.G, 'people', .V), '', fixed=T, useBytes=T), function (l) { ppl[l == '1'] }) } else { sapply(strsplit(get.vertex.attribute(.G, 'people', .V), '', fixed=T, useBytes=T), function (l) { paste0(ppl[l == '1'], collapse='|') }, USE.NAMES = F) } } #' Set group attribute for vertices of a mutation network #' #' @aliases set.group.vector get.group.names #' #' @description #' asdasd #' #' @usage #' set.group.vector(.G, .attr.name, .groups) #' #' get.group.names(.G, .attr.name, .V = V(.G), .paste = T) #' #' @param .G Mutation network. #' @param .attr.name Name of the new vertex attribute. #' @param .V Indices of vertices. #' @param .groups List with integer vector with indices of subjects for each group. #' @param .paste if T then return character string with concatenated group names, else return list with character vectors #' with group names. #' #' @return igraph object with new vertex attribute \code{.attr.name} with binary strings for \code{set.group.vector}. #' Return character vector for \code{get.group.names}. #' #' @examples #' \dontrun{ #' data(twb) #' twb.shared <- shared.repertoire(twb) #' G <- mutation.network(twb.shared) #' G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4))) # <= refactor this #' get.group.names(G, "twins", 1) # "A|B" #' get.group.names(G, "twins", 300) # "A" #' get.group.names(G, "twins", 1, F) # list(c("A", "B")) #' get.group.names(G, "twins", 300, F) # list(c("A")) #' # Because we have only two groups, we can assign more readable attribute. #' V(G)$twin.names <- get.group.names(G, "twins") #' V(G)$twin.names[1] # "A|B" #' V(G)$twin.names[300] # "A" #' } set.group.vector <- function (.G, .attr.name, .groups) { d <- get.vertex.attribute(.G, 'people', V(.G)) d <- do.call(rbind, lapply(strsplit(d, '', T, useBytes = T), as.integer)) group.vec <- rep('nogroup', times = max(unlist(.groups))) for (gr.i in 1:length(.groups)) { for (elem in .groups[[gr.i]]) { group.vec[elem] <- names(.groups)[gr.i] } } grnames <- names(.groups) .G <- set.vertex.attribute(.G, .attr.name, V(.G), apply(d, 1, function (row) { paste0(as.integer(grnames %in% sort(group.vec[row > 0])), collapse='') })) attr(.G, .attr.name) <- names(.groups) .G } get.group.names <- function (.G, .attr.name, .V = V(.G), .paste = T) { grs <- attr(.G, .attr.name) if (!.paste) { lapply(strsplit(get.vertex.attribute(.G, .attr.name, .V), '', fixed=T, useBytes=T), function (l) { grs[l == '1'] }) } else { sapply(strsplit(get.vertex.attribute(.G, .attr.name, .V), '', fixed=T, useBytes=T), function (l) { paste0(grs[l == '1'], collapse='|') }, USE.NAMES = F) } } #' Get vertex neighbours. #' #' @description #' Get all properties of neighbour vertices in a mutation network of specific vertices. #' #' @param .G Mutation network. #' @param .V Indices of vertices for which return neighbours. #' @param .order Neighbours of which order return. #' #' @return List of length \code{.V} with data frames with vertex properties. First row in each data frame #' is the vertex for which neighbours was returned. #' #' @examples #' \dontrun{ #' data(twb) #' twb.shared <- shared.repertoire(twb) #' G <- mutation.network(twb.shared) #' head(mutated.neighbours(G, 1)[[1]]) #' # label vseg repind prob people npeople #' # 1 CASSDRDTGELFF TRBV6-4 1 -1 1111 4 #' # 2 CASSDSDTGELFF TRBV6-4 69 -1 1100 2 #' # 3 CASSYRDTGELFF TRBV6-3, TRBV6-2 315 -1 1001 2 #' # 4 CASKDRDTGELFF TRBV6-3, TRBV6-2 2584 -1 0100 1 #' # 5 CASSDGDTGELFF TRBV6-4 5653 -1 0010 1 #' # 6 CASSDRETGELFF TRBV6-4 5950 -1 0100 1 #' } mutated.neighbours <- function (.G, .V, .order = 1) { neis <- neighborhood(.G, .order, .V, mode = 'all') lapply(neis, function (l) { res <- as.data.frame(lapply(list.vertex.attributes(.G), function (vattr) { get.vertex.attribute(.G, vattr, l) } ), stringsAsFactors = F) colnames(res) <- list.vertex.attributes(.G) res } ) } # srcppl.distribution <- function (.G) { # one.count <- sapply(strsplit(V(.G)$people, '', fixed = T, useBytes = T), function (x) sum(x == '1')) # # mean(V(.G)$npeople) # mean(one.count) # } # # # neippl.distribution <- function (.G, .exclude.zeros = F) { # if (.exclude.zeros) { # .G <- induced.subgraph(.G, degree(.G) != 0) # } # # one.count <- sapply(strsplit(V(.G)$people, '', fixed = T, useBytes = T), function (x) sum(x == '1')) # # one.count <- V(.G)$npeople # quantile(sapply(neighborhood(.G, 1), function (x) { # if (length(x) == 1) { # 0 # } else { # mean(one.count[x[-1]]) / (length(x) - 1) # } # }), prob = c(.025, .975)) # } # # # pplvar.distribution <- function (.G, .exclude.zeros = F) { # if (.exclude.zeros) { # .G <- induced.subgraph(.G, degree(.G) != 0) # } # # ppl.inds <- lapply(strsplit(V(.G)$people, '', fixed = T, useBytes = T), function (x) which(x == '1')) # c1 <- quantile(sapply(neighborhood(.G, 1), function (x) { # if (length(x) == 1) { # 0 # } else { # # length(unique(unlist(ppl.inds[x[-1]]))) / length(x[-1]) # length(unique( unlist(ppl.inds[x[-1]]) [ !(unlist(ppl.inds[x[-1]]) %in% unlist(ppl.inds[x[1]])) ] )) # } # }), prob = c(.25, .75)) # # c2 <- mean(sapply(neighborhood(.G, 1), function (x) { # if (length(x) == 1) { # 0 # } else { # # length(unique(unlist(ppl.inds[x[-1]]))) / length(x[-1]) # length(unique( unlist(ppl.inds[x[-1]]) [ !(unlist(ppl.inds[x[-1]]) %in% unlist(ppl.inds[x[1]])) ] )) # } # })) # # c(c1[1], Mean = c2, c1[2]) # }tcR/R/datatools.R0000644000176200001440000004432413414646531013336 0ustar liggesusers########## Support functions for managing the data ########## #' Fix alleles / genes by removing allele information / unnecessary colons. #' #' @aliases fix.alleles fix.genes #' #' @description #' Fix alleles / genes by removing allele information / unnecessary colons. #' #' @param .data tcR data frame. fix.alleles <- function (.data) { if (has.class(.data, "list")) { return(lapply(.data, fix.alleles)) } .data$V.gene <- gsub("[*][[:digit:]]*", "", .data$V.gene) .data$D.gene <- gsub("[*][[:digit:]]*", "", .data$D.gene) .data$J.gene <- gsub("[*][[:digit:]]*", "", .data$J.gene) .data } fix.genes <- function (.data) { if (has.class(.data, "list")) { return(lapply(.data, fix.genes)) } .fix <- function (.col) { # it's not a mistake .col <- gsub(", ", ",", .col, fixed = T, useBytes = T) .col <- gsub(",", ", ", .col, fixed = T, useBytes = T) .col } .data$V.gene <- .fix(.data$V.gene) .data$D.gene <- .fix(.data$D.gene) .data$J.gene <- .fix(.data$J.gene) .data } #' Print the given message if second parameter is a TRUE. #' #' @param .message Character vector standing for a message. #' @param .verbose If T then print the given mesasge. #' @return Nothing. .verbose.msg <- function (.message, .verbose = T) { if (.verbose) cat(.message) } #' Choose the right column. #' #' @param x Character vector with column IDs. #' @param .verbose If T then print the error mesasge. #' @return Character. .column.choice <- function (x, .verbose = T) { x <- switch(x[1], read.count = "Read.count", umi.count = "Umi.count", read.prop = "Read.proportion", umi.prop = "Umi.proportion", { .verbose.msg("You have specified an invalid column identifier. Choosed column: Read.count\n", .verbose); "Read.count" }) x } #' Fix names in lists. #' #' @param .datalist List with data frames. #' @return List with fixed names. .fix.listnames <- function (.datalist) { if (is.null(names(.datalist))) { names(.datalist) <- paste0("Sample.", 1:length(.datalist)) } else { for (i in 1:length(.datalist)) { if (names(.datalist)[i] == "" || is.na(names(.datalist)[i])) { names(.datalist)[i] <- paste0("Sample.", i) } } } .datalist } #' Get all unique clonotypes. #' #' @description #' Get all unique clonotypes with merged counts. Unique clonotypes are those with #' either equal CDR3 sequence or with equal CDR3 sequence and equal gene segments. #' Counts of equal clonotypes will be summed up. #' #' @param .data Either tcR data frame or a list with data frames. #' @param .gene.col Either name of the column with gene segments used to compare clonotypes #' or NA if you don't need comparing using gene segments. #' @param .count.col Name of the column with counts for each clonotype. #' @param .prop.col Name of the column with proportions for each clonotype. #' @param .seq.col Name of the column with clonotypes' CDR3 sequences. #' #' @return Data frame or a list with data frames with updated counts and proportion columns #' and rows with unique clonotypes only. #' #' @examples #' \dontrun{ #' tmp <- data.frame(A = c('a','a','b','c', 'a') #' B = c('V1', 'V1','V1','V2', 'V3') #' C = c(10,20,30,40,50), stringsAsFactors = F) #' tmp #' # A B C #' # 1 a V1 10 #' # 2 a V1 20 #' # 3 b V1 30 #' # 4 c V2 40 #' # 5 a V3 50 #' group.clonotypes(tmp, 'B', 'C', 'A') #' # A B C #' # 1 a V1 30 #' # 3 b V1 50 #' # 4 c V2 30 #' # 5 a V3 40 #' group.clonotypes(tmp, NA, 'C', 'A') #' # A B C #' # 1 a V1 80 #' # 3 b V1 30 #' # 4 c V2 40 #' # For tcR data frame: #' data(twb) #' twb1.gr <- group.clonotypes(twb[[1]]) #' twb.gr <- group.clonotypes(twb) #' } group.clonotypes<-function (.data, .gene.col = "V.gene", .count.col = "Read.count", .prop.col = "Read.proportion", .seq.col = "CDR3.amino.acid.sequence") { if (has.class(.data, "list")) { return(lapply(.data, group.clonotypes, .gene.col = .gene.col, .count.col = .count.col, .seq.col = .seq.col)) } namesvec <- c(.seq.col) if (!is.na(.gene.col)) { namesvec <- c(namesvec, .gene.col) } val <- dplyr::summarise_(dplyr::grouped_df(.data, lapply(namesvec, as.name)), value = paste0("sum(", .count.col, ")", sep = "", collapse = ""))$value .data <- .data[!duplicated(.data[, namesvec]), ] .data <- .data[order(.data$CDR3.amino.acid.sequence),] .data[, .count.col] <- val .data[, .prop.col] <- val / sum(val) permutedf(.data) } #' Shuffling data frames. #' #' @aliases permutedf unpermutedf #' #' @description #' Shuffle the given data.frame and order it by the Read.count column or un-shuffle #' a data frame and return it to the initial order. #' #' @usage #' permutedf(.data) #' #' unpermutedf(.data) #' #' @param .data MiTCR data.frame or list of such data frames. #' #' @return Shuffled data.frame or un-shuffled data frame if \code{.data} is a data frame, else list of such data frames. permutedf <- function (.data) { if (has.class(.data, 'list')) { return(lapply(.data, permutedf)) } shuffle<-.data[sample(nrow(.data)),] shuffle[order(shuffle$Read.count, decreasing=T),] } unpermutedf <- function (.data) { if (has.class(.data, 'list')) { return(lapply(.data, unpermutedf)) } .data[do.call(order, .data),] } #' Get a random subset from a data.frame. #' #' @description #' Sample rows of the given data frame with replacement. #' #' @param .data Data.frame or a list with data.frames #' @param .n Sample size if integer. If in bounds [0;1] than percent of rows to extract. "1" is a percent, not one row! #' @param .replace if T then choose with replacement, else without. #' #' @return Data.frame of nrow .n or a list with such data.frames. sample.clones <- function (.data, .n, .replace = T) { if (has.class(.data, 'list')) { return(lapply(.data, sample.clones, .n = .n)) } .data[sample(1:nrow(.data), if (.n > 1) .n else round(nrow(.data) * .n), replace = .replace), ] } #' Check if a given object has a given class. #' #' @param .data Object. #' @param .class String naming a class. #' #' @return Logical. has.class <- function (.data, .class) { .class %in% class(.data) } #' Copy the up-triangle matrix values to low-triangle. #' #' @param mat Given up-triangle matrix. #' #' @return Full matrix. matrixdiagcopy<-function(mat){ for (i in 1:ncol(mat)) for (j in 1:nrow(mat)) if (i)) #' permutDistTest(mat.ov.pca.dist, list()) #' } pca2euclid <- function (.pcaobj, .num.comps = 2) { mat <- .pcaobj$x if (.num.comps > 0) { mat <- mat[,1:.num.comps] } as.matrix(dist(mat)) }tcR/R/RcppExports.R0000644000176200001440000000144713325616565013641 0ustar liggesusers# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 .exact_search <- function(vec, patterns, max_error = 1L, verbose = TRUE) { .Call('_tcR_exact_search', PACKAGE = 'tcR', vec, patterns, max_error, verbose) } .exact_search_list <- function(vec, patterns_list, max_error = 1L, verbose = TRUE) { .Call('_tcR_exact_search_list', PACKAGE = 'tcR', vec, patterns_list, max_error, verbose) } .hamming_search <- function(vec, patterns, max_error = 1L, verbose = TRUE) { .Call('_tcR_hamming_search', PACKAGE = 'tcR', vec, patterns, max_error, verbose) } .levenshtein_search <- function(vec, patterns, max_error = 1L, verbose = TRUE) { .Call('_tcR_levenshtein_search', PACKAGE = 'tcR', vec, patterns, max_error, verbose) } tcR/R/parsing.R0000644000176200001440000010643213325616565013013 0ustar liggesusers########## Data processing functions ########## #' Parse input table files with the immune receptor repertoire data. #' #' @description #' General parser for cloneset table files. Each column name has specific purpose (e.g., column for #' CDR3 nucleotide sequence or aligned gene segments), so you need to supply column names which has this #' purpose in your input data. #' #' @param .filename Path to the input file with cloneset data. #' @param .nuc.seq Name of the column with CDR3 nucleotide sequences. #' @param .aa.seq Name of the column with CDR3 amino acid sequences. #' @param .reads Name of the column with counts of reads for each clonotype. #' @param .barcodes Name of the column with counts of barcodes (UMI, events) for each clonotype. #' @param .vgenes Name of the column with names of aligned Variable gene segments. #' @param .jgenes Name of the column with names of aligned Joining gene segments. #' @param .dgenes Name of the column with names of aligned Diversity gene segments. #' @param .vend Name of the column with last positions of aligned V gene segments. #' @param .jstart Name of the column with first positions of aligned J gene segments. #' @param .dalignments Character vector of length two that names columns with D5' and D3' end positions. #' @param .vd.insertions Name of the column with VD insertions for each clonotype. #' @param .dj.insertions Name of the column with DJ insertions for each clonotype. #' @param .total.insertions Name of the column with total number of insertions for each clonotype. #' @param .skip How many lines from beginning to skip. #' @param .sep Separator character. #' #' @return Data frame with immune receptor repertoire data. See \link{parse.file} for more details. #' #' @seealso \link{parse.file} #' #' @examples #' \dontrun{ #' # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. #' immdata1 <- parse.file("~/mitcr/immdata1.txt", 'mitcr') #' } parse.cloneset <- function (.filename, .nuc.seq, .aa.seq, .reads, .barcodes, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions, .skip = 0, .sep = '\t') { .make.names <- function (.char) { if (is.na(.char[1])) { NA } else { tolower(make.names(.char)) } } .nuc.seq <- .make.names(.nuc.seq) .aa.seq <- .make.names(.aa.seq) .reads <- .make.names(.reads) .barcodes <- .make.names(.barcodes) .vgenes <- .make.names(.vgenes) .jgenes <- .make.names(.jgenes) .dgenes <- .make.names(.dgenes) .vend <- .make.names(.vend) .jstart <- .make.names(.jstart) .vd.insertions <- .make.names(.vd.insertions) .dj.insertions <- .make.names(.dj.insertions) .total.insertions <- .make.names(.total.insertions) .dalignments1 <- .make.names(.dalignments[1]) .dalignments2 <- .make.names(.dalignments[2]) .dalignments <- .make.names(.dalignments) f <- file(.filename, "r") l <- readLines(f, 1) # Check for different levels of the MiTCR output if (length(grep("MiTCRFullExportV1.1", l, fixed = T))) { .skip <- 1 } # Check for different VDJtools outputs if (length(strsplit(l, "-", T)) > 0) { if (length(strsplit(l, "-", T)[[1]]) == 3) { if (strsplit(l, "-", T)[[1]][2] == "header") { .reads <- "count" .barcodes <- "count" .skip <- 1 } } else if (substr(l, 1, 1) == "#") { .reads <- "X.count" .barcodes <- "X.count" } } close(f) table.colnames <- tolower(make.names(read.table(gzfile(.filename), sep = .sep, skip = .skip, nrows = 1, stringsAsFactors = F, strip.white = T, comment.char = "", quote = "")[1,])) swlist <- list('character', 'character', 'integer', 'integer', 'character', 'character', 'character', 'integer', 'integer', 'integer', 'integer', 'integer', 'integer', 'integer') names(swlist) <- c(.nuc.seq, .aa.seq, .reads, .barcodes, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions) swlist <- c(swlist, 'NULL') col.classes <- unlist(sapply(table.colnames, function (x) { do.call(switch, c(x, swlist)) }, USE.NAMES = F)) suppressWarnings(df <- read.table(file = gzfile(.filename), header = T, colClasses = col.classes, sep = .sep, skip = .skip, strip.white = T, comment.char = "", quote = "")) names(df) = tolower(names(df)) df$Read.proportion <- df[, make.names(.reads)] / sum(df[, make.names(.reads)]) .read.prop <- 'Read.proportion' if(is.na(.barcodes)) { .barcodes <- "Umi.count" df$Umi.count <- NA df$Umi.proportion <- NA } else { df$Umi.proportion <- df[, make.names(.barcodes)] / sum(df[, make.names(.barcodes)]) } .umi.prop <- 'Umi.proportion' if (is.na(.aa.seq)) { df$CDR3.amino.acid.sequence <- bunch.translate(df$CDR3.nucleotide.sequence) .aa.seq <- 'CDR3.amino.acid.sequence' } # check for VJ or VDJ recombination # VJ / VDJ / Undeterm recomb_type = "Undeterm" if (sum(substr(head(df)[[.vgenes]], 1, 4) %in% c("TCRA", "TRAV", "TRGV", "IGKV", "IGLV"))) { recomb_type = "VJ" } else if (sum(substr(head(df)[[.vgenes]], 1, 4) %in% c("TCRB", "TRBV", "TRDV", "IGHV"))) { recomb_type = "VDJ" } if (!(.vd.insertions %in% table.colnames)) { .vd.insertions <- "VD.insertions" if (!is.na(.vend) && !is.na(.dalignments)) { if (recomb_type == "VJ") { df$VD.insertions <- -1 } else if (recomb_type == "VDJ") { df$VD.insertions <- df[[.dalignments1]] - df[[.vend]] - 1 df$VD.insertions[df[[.dalignments1]] == -1] <- -1 df$VD.insertions[df[[.vend]] == -1] <- -1 } else { df$VD.insertions <- -1 } } else { df$VD.insertions <- -1 df$V.end <- -1 df$D5.end <- -1 df$D3.end <- -1 .vend <- "V.end" .dalignments <- c("D5.end", "D3.end") } } if (!(.dj.insertions %in% table.colnames)) { .dj.insertions <- "DJ.insertions" if (!is.na(.jstart) && !is.na(.dalignments)) { if (recomb_type == "VJ") { df$DJ.insertions <- -1 } else if (recomb_type == "VDJ") { df$DJ.insertions <- df[[.jstart]] - df[[.dalignments2]] - 1 df$DJ.insertions[df[[.dalignments2]] == -1] <- -1 df$DJ.insertions[df[[.jstart]] == -1] <- -1 } else { df$DJ.insertions <- -1 } } else { df$DJ.insertions <- -1 df$J.start <- -1 df$D5.end <- -1 df$D3.end <- -1 .jstart <- "J.start" .dalignments <- c("D5.end", "D3.end") } } if (!(.total.insertions %in% table.colnames)) { .total.insertions <- "Total.insertions" df$Total.insertions <- -1 if (recomb_type == "VJ") { df$Total.insertions <- df[[.jstart]] - df[[.vend]] - 1 df$Total.insertions[df$Total.insertions < 0] <- 0 df$Total.insertions[df[[.vend]] == -1] <- -1 df$Total.insertions[df[[.jstart]] == -1] <- -1 } else if (recomb_type == "VDJ" ) { df$Total.insertions <- df[[.vd.insertions]] + df[[.dj.insertions]] } } df$Total.insertions[df$Total.insertions < 0] <- -1 if (is.na(.dgenes)) { df$D.gene <- '' .dgenes <- "D.gene" } df <- df[, make.names(c(.barcodes, .umi.prop, .reads, .read.prop, .nuc.seq, .aa.seq, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions))] colnames(df) <- c('Umi.count', 'Umi.proportion', 'Read.count', 'Read.proportion', 'CDR3.nucleotide.sequence', 'CDR3.amino.acid.sequence', 'V.gene', 'J.gene', 'D.gene', 'V.end', 'J.start', 'D5.end', 'D3.end', 'VD.insertions', 'DJ.insertions', 'Total.insertions') df } #' Parse input table files with immune receptor repertoire data. #' #' @aliases parse.folder parse.file.list parse.file parse.mitcr parse.mitcrbc parse.migec parse.vdjtools parse.immunoseq parse.immunoseq2 parse.immunoseq3 parse.tcr parse.mixcr parse.imseq parse.migmap #' #' @description #' Load the TCR data from the file with the given filename to a data frame or load all #' files from the given folder to a list of data frames. The folder must contain onky files with the specified format. #' Input files could be either text files or archived with gzip ("filename.txt.gz") or bzip2 ("filename.txt.bz2"). #' For a general parser see \code{\link{parse.cloneset}}. #' #' Parsers are available for: #' MiTCR ("mitcr"), MiTCR w/ UMIs ("mitcrbc"), MiGEC ("migec"), VDJtools ("vdjtools"), #' ImmunoSEQ ("immunoseq" or 'immunoseq2' for old and new formats respectively), #' MiXCR ("mixcr"), IMSEQ ("imseq") and tcR ("tcr", data frames saved with the `repSave()` function). #' #' Output of MiXCR should contain either all hits or best hits for each gene segment. #' #' Output of IMSEQ should be generated with parameter "-on". In this case there will be no positions of aligned gene segments in the output data frame #' due to restrictions of IMSEQ output. #' #' tcR's data frames should be saved with the `repSave()` function. #' #' @usage #' parse.file(.filename, #' .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', #' 'mixcr', 'imseq', 'tcr'), ...) #' #' parse.file.list(.filenames, #' .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', #' 'mixcr', 'imseq', 'tcr'), .namelist = NA) #' #' parse.folder(.folderpath, #' .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', #' 'mixcr', 'imseq', 'tcr'), ...) #' #' parse.mitcr(.filename) #' #' parse.mitcrbc(.filename) #' #' parse.migec(.filename) #' #' parse.vdjtools(.filename) #' #' parse.immunoseq(.filename) #' #' parse.immunoseq2(.filename) #' #' parse.immunoseq3(.filename) #' #' parse.mixcr(.filename) #' #' parse.imseq(.filename) #' #' parse.tcr(.filename) #' #' parse.migmap(.filename) #' #' @param .filename Path to the input file with cloneset data. #' @param .filenames Vector or list with paths to files with cloneset data. #' @param .folderpath Path to the folder with text cloneset files. #' @param .format String that specifies the input format. #' @param .namelist Either NA or character vector of length \code{.filenames} with names for output data frames. #' @param ... Parameters passed to \code{parse.cloneset}. #' #' @return Data frame with immune receptor repertoire data. Each row in this data frame corresponds to a clonotype. #' The data frame has following columns: #' #' - "Umi.count" - number of barcodes (events, UMIs); #' #' - "Umi.proportion" - proportion of barcodes (events, UMIs); #' #' - "Read.count" - number of reads; #' #' - "Read.proportion" - proportion of reads; #' #' - "CDR3.nucleotide.sequence" - CDR3 nucleotide sequence; #' #' - "CDR3.amino.acid.sequence" - CDR3 amino acid sequence; #' #' - "V.gene" - names of aligned Variable gene segments; #' #' - "J.gene" - names of aligned Joining gene segments; #' #' - "D.gene" - names of aligned Diversity gene segments; #' #' - "V.end" - last positions of aligned V gene segments (1-based); #' #' - "J.start" - first positions of aligned J gene segments (1-based); #' #' - "D5.end" - positions of D'5 end of aligned D gene segments (1-based); #' #' - "D3.end" - positions of D'3 end of aligned D gene segments (1-based); #' #' - "VD.insertions" - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with VJ recombination); #' #' - "DJ.insertions" - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with VJ recombination); #' #' - "Total.insertions" - total number of inserted nucleotides (number of N-nucleotides at V-J junction for receptors with VJ recombination). #' #' @seealso \link{parse.cloneset}, \link{repSave}, \link{repLoad} #' #' @examples #' \dontrun{ #' # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. #' immdata1 <- parse.file("~/mitcr/immdata1.txt", 'mitcr') #' # Parse VDJtools file archive as .gz file. #' immdata1 <- parse.file("~/mitcr/immdata3.txt.gz", 'vdjtools') #' # Parse files "~/data/immdata1.txt" and "~/data/immdat2.txt" as MiGEC files. #' immdata12 <- parse.file.list(c("~/data/immdata1.txt", #' "~/data/immdata2.txt"), 'migec') #' # Parse all files in "~/data/" as MiGEC files. #' immdata <- parse.folder("~/data/", 'migec') #' } parse.folder <- function (.folderpath, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), ...) { parse.file.list(list.files(.folderpath, full.names = T), .format) } parse.file.list <- function (.filenames, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), .namelist = NA) { # Remove full paths and extension from the given string. .remove.ext <- function (.str) { gsub(pattern = '.*/|[.].*$', replacement = '', x = .str) # .str } .filenames <- as.list(.filenames) datalist <- list() for (i in 1:length(.filenames)) { cat(i, "/", length(.filenames), ' Parsing "', .filenames[[i]], '"\n\t', sep = "") datalist[[i]] <- parse.file(.filenames[[i]], .format) cat("Done. Cloneset with", nrow(datalist[[i]]), "clonotypes.\n") flush.console() } if (is.na(.namelist)) { namelist <- lapply(X = .filenames, FUN = .remove.ext) names(datalist) <- unlist(namelist) } datalist } parse.file <- function(.filename, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), ...) { parse.fun <- switch(.format[1], mitcr = parse.mitcr, mitcrbc = parse.mitcrbc, migec = parse.migec, vdjtools = parse.vdjtools, immunoseq = parse.immunoseq, immunoseq2 = parse.immunoseq2, immunoseq3 = parse.immunoseq3, mixcr = parse.mixcr, imseq = parse.imseq, tcr = parse.tcr, parse.cloneset) parse.fun(.filename, ...) } parse.mitcr <- function (.filename) { filename <- .filename nuc.seq <- 'CDR3 nucleotide sequence' aa.seq <- 'CDR3 amino acid sequence' reads <- 'Read count' barcodes <- NA vgenes <- 'V segments' jgenes <- 'J segments' dgenes <- 'D segments' vend <- 'Last V nucleotide position' jstart <- 'First J nucleotide position' dalignments <- c('First D nucleotide position', 'Last D nucleotide position') vd.insertions <- 'VD insertions' dj.insertions <- 'DJ insertions' total.insertions <- 'Total insertions' .skip = 0 .sep = '\t' parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) } parse.mitcrbc <- function (.filename) { filename <- .filename nuc.seq <- 'CDR3 nucleotide sequence' aa.seq <- 'CDR3 amino acid sequence' reads <- 'Count' barcodes <- 'NNNs' vgenes <- 'V segments' jgenes <- 'J segments' dgenes <- 'D segments' vend <- 'Last V nucleotide position' jstart <- 'First J nucleotide position' dalignments <- c('First D nucleotide position', 'Last D nucleotide position') vd.insertions <- 'VD insertions' dj.insertions <- 'DJ insertions' total.insertions <- 'Total insertions' .skip = 0 .sep = '\t' fix.genes(parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep)) } parse.migec <- function (.filename) { filename <- .filename nuc.seq <- 'CDR3 nucleotide sequence' aa.seq <- 'CDR3 amino acid sequence' reads <- 'Good reads' barcodes <- 'Good events' vgenes <- 'V segments' jgenes <- 'J segments' dgenes <- 'D segments' vend <- 'Last V nucleotide position' jstart <- 'First J nucleotide position' dalignments <- c('First D nucleotide position', 'Last D nucleotide position') vd.insertions <- 'VD insertions' dj.insertions <- 'DJ insertions' total.insertions <- 'Total insertions' .skip = 0 .sep = '\t' fix.genes(parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep)) } parse.vdjtools <- function (.filename) { filename <- .filename nuc.seq <- 'cdr3nt' aa.seq <- 'CDR3aa' reads <- 'count' barcodes <- 'count' vgenes <- 'V' jgenes <- 'J' dgenes <- 'D' vend <- 'Vend' jstart <- 'Jstart' dalignments <- c('Dstart', 'Dend') vd.insertions <- "NO SUCH COLUMN AT ALL 1" dj.insertions <- "NO SUCH COLUMN AT ALL 2" total.insertions <- "NO SUCH COLUMN AT ALL 3" .skip = 0 .sep = '\t' parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) } parse.immunoseq <- function (.filename) { filename <- .filename nuc.seq <- 'nucleotide' aa.seq <- 'aminoAcid' reads <- 'count' barcodes <- 'vIndex' vgenes <- 'vGeneName' jgenes <- 'jGeneName' dgenes <- 'dFamilyName' vend <- 'n1Index' jstart <- 'jIndex' dalignments <- c('dIndex', 'n2Index') vd.insertions <- "n1Insertion" dj.insertions <- "n2Insertion" total.insertions <- "NO SUCH COLUMN AT ALL 3" .skip = 0 .sep = '\t' df <- parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) # fix nucleotide sequences df$CDR3.nucleotide.sequence <- substr(df$CDR3.nucleotide.sequence, df$Umi.count + 1, nchar(df$CDR3.nucleotide.sequence) - 6) # add out-of-frame amino acid sequences df$CDR3.amino.acid.sequence <- bunch.translate(df$CDR3.nucleotide.sequence) # df <- fix.alleles(df) # fix genes names and "," .fix.genes <- function (.col) { # fix "," .col <- gsub(",", ", ", .col, fixed = T, useBytes = T) # fix forward zeros .col <- gsub("([0])([0-9])", "\\2", .col, useBytes = T) # fix gene names .col <- gsub("TCR", "TR", .col, fixed = T, useBytes = T) .col } df$V.gene <- .fix.genes(df$V.gene) df$D.gene <- .fix.genes(df$D.gene) df$J.gene <- .fix.genes(df$J.gene) # update V, D and J positions .fix.poses <- function (.col) { df[df[[.col]] != -1, .col] <- df[df[[.col]] != -1, .col] - df$Umi.count[df[[.col]] != -1] df } df <- .fix.poses("V.end") df <- .fix.poses("D3.end") df <- .fix.poses("D5.end") df <- .fix.poses("J.start") # nullify barcodes df$Umi.count <- NA df$Umi.proportion <- NA df } parse.immunoseq2 <- function (.filename) { filename <- .filename nuc.seq <- 'nucleotide' aa.seq <- 'aminoAcid' reads <- 'count (templates)' barcodes <- 'vIndex' vgenes <- 'vGeneName' jgenes <- 'jGeneName' dgenes <- 'dFamilyName' vend <- 'n1Index' jstart <- 'jIndex' dalignments <- c('dIndex', 'n2Index') vd.insertions <- "n1Insertion" dj.insertions <- "n2Insertion" total.insertions <- "NO SUCH COLUMN AT ALL 3" .skip = 0 .sep = '\t' df <- parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) # fix nucleotide sequences df$CDR3.nucleotide.sequence <- substr(df$CDR3.nucleotide.sequence, df$Umi.count + 1, nchar(df$CDR3.nucleotide.sequence) - 6) # add out-of-frame amino acid sequences df$CDR3.amino.acid.sequence <- bunch.translate(df$CDR3.nucleotide.sequence) # df <- fix.alleles(df) # fix genes names and "," .fix.genes <- function (.col) { # fix "," .col <- gsub(",", ", ", .col, fixed = T, useBytes = T) # fix forward zeros .col <- gsub("([0])([0-9])", "\\2", .col, useBytes = T) # fix gene names .col <- gsub("TCR", "TR", .col, fixed = T, useBytes = T) .col } df$V.gene <- .fix.genes(df$V.gene) df$D.gene <- .fix.genes(df$D.gene) df$J.gene <- .fix.genes(df$J.gene) # update V, D and J positions .fix.poses <- function (.col) { df[df[[.col]] != -1, .col] <- df[df[[.col]] != -1, .col] - df$Umi.count[df[[.col]] != -1] df } df <- .fix.poses("V.end") df <- .fix.poses("D3.end") df <- .fix.poses("D5.end") df <- .fix.poses("J.start") # nullify barcodes df$Umi.count <- NA df$Umi.proportion <- NA df } parse.immunoseq3 <- function (.filename) { filename <- .filename nuc.seq <- 'nucleotide' aa.seq <- 'aminoAcid' reads <- 'count (reads)' barcodes <- 'vIndex' vgenes <- 'vGeneName' jgenes <- 'jGeneName' dgenes <- 'dFamilyName' vend <- 'n1Index' jstart <- 'jIndex' dalignments <- c('dIndex', 'n2Index') vd.insertions <- "n1Insertion" dj.insertions <- "n2Insertion" total.insertions <- "NO SUCH COLUMN AT ALL 3" .skip = 0 .sep = '\t' df <- parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) # fix nucleotide sequences df$CDR3.nucleotide.sequence <- substr(df$CDR3.nucleotide.sequence, df$Umi.count + 1, nchar(df$CDR3.nucleotide.sequence) - 6) # add out-of-frame amino acid sequences df$CDR3.amino.acid.sequence <- bunch.translate(df$CDR3.nucleotide.sequence) # df <- fix.alleles(df) # fix genes names and "," .fix.genes <- function (.col) { # fix "," .col <- gsub(",", ", ", .col, fixed = T, useBytes = T) # fix forward zeros .col <- gsub("([0])([0-9])", "\\2", .col, useBytes = T) # fix gene names .col <- gsub("TCR", "TR", .col, fixed = T, useBytes = T) .col } df$V.gene <- .fix.genes(df$V.gene) df$D.gene <- .fix.genes(df$D.gene) df$J.gene <- .fix.genes(df$J.gene) # update V, D and J positions .fix.poses <- function (.col) { df[df[[.col]] != -1, .col] <- df[df[[.col]] != -1, .col] - df$Umi.count[df[[.col]] != -1] df } df <- .fix.poses("V.end") df <- .fix.poses("D3.end") df <- .fix.poses("D5.end") df <- .fix.poses("J.start") # nullify barcodes df$Umi.count <- NA df$Umi.proportion <- NA df } parse.mixcr <- function (.filename) { .filename <- .filename .nuc.seq <- 'nseqcdr3' .aa.seq <- 'aaseqcdr3' .reads <- 'clonecount' .barcodes <- 'clonecount' .sep = '\t' .vend <- "allvalignments" .jstart <- "alljalignments" .dalignments <- "alldalignments" .vd.insertions <- "VD.insertions" .dj.insertions <- "DJ.insertions" .total.insertions <- "Total.insertions" table.colnames <- tolower(make.names(read.table(gzfile(.filename), sep = .sep, skip = 0, nrows = 1, stringsAsFactors = F, strip.white = T, comment.char = "", quote = "")[1,])) table.colnames <- gsub(".", "", table.colnames, fixed = T) if ("bestvhit" %in% table.colnames) { .vgenes <- 'bestvhit' } else if ('allvhits' %in% table.colnames) { .vgenes <- 'allvhits' } else if ('vhits' %in% table.colnames) { .vgenes <- 'vhits' } else if ('allvhitswithscore' %in% table.colnames) { .vgenes <- 'allvhitswithscore' } else { cat("Error: can't find a column with V genes\n") } if ("bestjhit" %in% table.colnames) { .jgenes <- 'bestjhit' } else if ('alljhits' %in% table.colnames) { .jgenes <- 'alljhits' } else if ('jhits' %in% table.colnames) { .jgenes <- 'jhits' } else if ('alljhitswithscore' %in% table.colnames) { .jgenes <- 'alljhitswithscore' } else { cat("Error: can't find a column with J genes\n") } if ("bestdhit" %in% table.colnames) { .dgenes <- 'bestdhit' } else if ('alldhits' %in% table.colnames) { .dgenes <- 'alldhits' } else if ('dhits' %in% table.colnames) { .dgenes <- 'dhits' } else if ('alldhitswithscore' %in% table.colnames) { .dgenes <- 'alldhitswithscore' } else { cat("Error: can't find a column with D genes\n") } swlist <- list('character', 'character', 'integer', 'integer', 'character', 'character', 'character', 'character', 'character', 'character', 'character', 'character', 'character') names(swlist) <- c(.nuc.seq, .aa.seq, .reads, .barcodes, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions) swlist <- c(swlist, 'NULL') col.classes <- unlist(sapply(table.colnames, function (x) { do.call(switch, c(x, swlist)) }, USE.NAMES = F)) suppressWarnings(df <- read.table(file = gzfile(.filename), header = T, colClasses = col.classes, sep = .sep, skip = 0, strip.white = T, comment.char = "", quote = "", fill = T)) names(df) <- tolower(gsub(".", "", names(df), fixed = T)) df$Read.proportion <- df[, make.names(.reads)] / sum(df[, make.names(.reads)]) .read.prop <- 'Read.proportion' df$Umi.count <- df[, .reads] df$Umi.proportion <- df$Umi.count / sum(df$Umi.count) .barcodes <- 'Umi.count' .umi.prop <- 'Umi.proportion' df$CDR3.amino.acid.sequence <- bunch.translate(df[[.nuc.seq]]) .aa.seq <- 'CDR3.amino.acid.sequence' # check for VJ or VDJ recombination # VJ / VDJ / Undeterm recomb_type = "Undeterm" if (sum(substr(head(df)[[.vgenes]], 1, 4) %in% c("TCRA", "TRAV", "TRGV", "IGKV", "IGLV"))) { recomb_type = "VJ" } else if (sum(substr(head(df)[[.vgenes]], 1, 4) %in% c("TCRB", "TRBV", "TRDV", "IGHV"))) { recomb_type = "VDJ" } .vd.insertions <- "VD.insertions" df$VD.insertions <- -1 if (recomb_type == "VJ") { df$VD.insertions <- -1 } else if (recomb_type == "VDJ") { logic <- sapply(strsplit(df[[.dalignments]], "|", T, F, T), length) >= 4 & sapply(strsplit(df[[.vend]], "|", T, F, T), length) >= 5 df$VD.insertions[logic] <- as.numeric(sapply(strsplit(df[[.dalignments]][logic], "|", T, F, T), "[[", 4)) - as.numeric(sapply(strsplit(df[[.vend]][logic], "|", T, F, T), "[[", 5)) - 1 } .dj.insertions <- "DJ.insertions" df$DJ.insertions <- -1 if (recomb_type == "VJ") { df$DJ.insertions <- -1 } else if (recomb_type == "VDJ") { logic <- sapply(strsplit(df[[.jstart]], "|", T, F, T), length) >= 4 & sapply(strsplit(df[[.dalignments]], "|", T, F, T), length) >= 5 df$DJ.insertions[logic] <- as.numeric(sapply(strsplit(df[[.jstart]][logic], "|", T, F, T), "[[", 4)) - as.numeric(sapply(strsplit(df[[.dalignments]][logic], "|", T, F, T), "[[", 5)) - 1 } logic <- (sapply(strsplit(df[[.vend]], "|", T, F, T), length) > 4) & (sapply(strsplit(df[[.jstart]], "|", T, F, T), length) >= 4) .total.insertions <- "Total.insertions" if (recomb_type == "VJ") { df$Total.insertions <- -1 if (length(which(logic)) > 0) { df$Total.insertions[logic] <- as.numeric(sapply(strsplit(df[[.jstart]][logic], "|", T, F, T), "[[", 4)) - as.numeric(sapply(strsplit(df[[.vend]][logic], "|", T, F, T), "[[", 5)) - 1 } } else if (recomb_type == "VDJ") { df$Total.insertions <- df[[.vd.insertions]] + df[[.dj.insertions]] } else { df$Total.insertions <- -1 } df$Total.insertions[df$Total.insertions < 0] <- -1 df$V.end <- -1 df$J.start <- -1 df[[.vend]] = gsub(";", "", df[[.vend]], fixed = T) logic = sapply(strsplit(df[[.vend]], "|", T, F, T), length) >= 5 df$V.end[logic] <- sapply(strsplit(df[[.vend]][logic], "|", T, F, T), "[[", 5) logic = sapply(strsplit(df[[.jstart]], "|", T, F, T), length) >= 4 df$J.start[logic] <- sapply(strsplit(df[[.jstart]][logic], "|", T, F, T), "[[", 4) .vend <- "V.end" .jstart <- "J.start" logic <- sapply(strsplit(df[[.dalignments]], "|", T, F, T), length) >= 5 df$D5.end <- -1 df$D3.end <- -1 df$D5.end[logic] <- sapply(strsplit(df[[.dalignments]][logic], "|", T, F, T), "[[", 4) df$D3.end[logic] <- sapply(strsplit(df[[.dalignments]][logic], "|", T, F, T), "[[", 5) .dalignments <- c('D5.end', 'D3.end') df <- df[, make.names(c(.barcodes, .umi.prop, .reads, .read.prop, .nuc.seq, .aa.seq, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions))] colnames(df) <- c('Umi.count', 'Umi.proportion', 'Read.count', 'Read.proportion', 'CDR3.nucleotide.sequence', 'CDR3.amino.acid.sequence', 'V.gene', 'J.gene', 'D.gene', 'V.end', 'J.start', 'D5.end', 'D3.end', 'VD.insertions', 'DJ.insertions', 'Total.insertions') df$V.gene <- gsub("([*][[:digit:]]*)([(][[:digit:]]*[.]*[[:digit:]]*[)])", "", df$V.gene) df$V.gene <- gsub(",", ", ", df$V.gene) df$D.gene <- gsub("([*][[:digit:]]*)([(][[:digit:]]*[.]*[[:digit:]]*[)])", "", df$D.gene) df$D.gene <- gsub(",", ", ", df$D.gene) df$J.gene <- gsub("([*][[:digit:]]*)([(][[:digit:]]*[.]*[[:digit:]]*[)])", "", df$J.gene) df$J.gene <- gsub(",", ", ", df$J.gene) fix.alleles(df) } parse.imseq <- function (.filename) { f <- gzfile(.filename) all.lines <- strsplit(readLines(f), ":", T, useBytes = T) close(f) df <- data.frame(Umi.count = NA, Umi.proportion = NA, Read.count = as.integer(sapply(all.lines, function (x) strsplit(x[3], "\t", T, useBytes = T)[[1]][2])), CDR3.nucleotide.sequence = sapply(all.lines, "[[", 2), CDR3.amino.acid.sequence = bunch.translate(sapply(all.lines, "[[", 2)), V.gene = sapply(all.lines, "[[", 1), J.gene = sapply(all.lines, function (x) strsplit(x[3], "\t", T, useBytes = T)[[1]][1]), D.gene = "", V.end = -1, J.start = -1, D5.end = -1, D3.end = -1, VD.insertions = -1, DJ.insertions = -1, Total.insertions = -1, stringsAsFactors = F) df$Read.proportion <- df$Read.count / sum(df$Read.count) df <- df[, c('Umi.count', 'Umi.proportion', 'Read.count', 'Read.proportion', 'CDR3.nucleotide.sequence', 'CDR3.amino.acid.sequence', 'V.gene', 'J.gene', 'D.gene', 'V.end', 'J.start', 'D5.end', 'D3.end', 'VD.insertions', 'DJ.insertions', 'Total.insertions')] cls <- c("as.integer", "as.numeric", "as.integer", 'as.numeric', "as.character", "as.character", "as.character", "as.character", "as.character", "as.integer", "as.integer", "as.integer", "as.integer", "as.integer", "as.integer", "as.integer") for (i in 1:ncol(df)) { df[[i]] <- do.call(cls[i], list(df[[i]])) } df } parse.tcr <- function (.filename) { suppressWarnings(df <- read.table(file = gzfile(.filename), header = T, sep = "\t", skip = 0, strip.white = T, comment.char = "", quote = "", fill = T, stringsAsFactors = F)) df } parse.migmap <- function (.filename) { filename <- .filename nuc.seq <- 'cdr3nt' aa.seq <- 'cdr3aa' reads <- 'count' barcodes <- 'count' vgenes <- 'v' jgenes <- 'j' dgenes <- 'd' vend <- 'v.end.in.cdr3' jstart <- 'j.start.in.cdr3' dalignments <- c('d.start.in.cdr3', 'd.end.in.cdr3') vd.insertions <- "NONE" dj.insertions <- "NONE" total.insertions <- "NONE" .skip = 0 .sep = '\t' parse.cloneset(.filename = filename, .nuc.seq = nuc.seq, .aa.seq = aa.seq, .reads = reads, .barcodes = barcodes, .vgenes = vgenes, .jgenes = jgenes, .dgenes = dgenes, .vend = vend, .jstart = jstart, .dalignments = dalignments, .vd.insertions = vd.insertions, .dj.insertions = dj.insertions, .total.insertions = total.insertions, .skip = .skip, .sep = .sep) }tcR/R/repdiversity.R0000644000176200001440000000560513325616566014102 0ustar liggesusers#' General function for the repertoire diversity estimation. #' #' @description #' General interface to all cloneset diversity functions. #' #' @param .data Cloneset or a list of clonesets. #' @param .method Which method to use for the diversity estimation. See "Details" for methods. #' @param .quant Which column to use for the quantity of clonotypes: "read.count" for the "Read.count" column, #' "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for #' the "Umi.proportion" column. #' @param .q q-parameter for the Diversity index. #' @param .norm If T than compute the normsalised entropy. #' @param .do.norm One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) #' and normalise it with the given laplace correction value if needed. if T then do normalisation and laplace #' correction. If F than don't do normalisaton and laplace correction. #' @param .laplace Value for Laplace correction. #' #' @details #' You can see a more detailed description for each diversity method at \link{diversity}. #' #' Parameter \code{.method} can have one of the following value each corresponding to the specific method: #' #' - "div" for the true diversity, or the effective number of types (basic function \code{diversity}). #' #' - "inv.simp" for the inverse Simpson index (basic function \code{inverse.simpson}). #' #' - "gini" for the Gini coefficient (basic function \code{gini}). #' #' - "gini.simp" for the Gini-Simpson index (basic function \code{gini.simpson}). #' #' - "chao1" for the Chao1 estimator (basic function \code{chao1}). #' #' - "entropy" for the Shannon entropy measure (basic function \code{entropy}). #' #' @seealso \link{diversity}, \link{entropy} #' #' @examples #' \dontrun{ #' data(twb) #' twb.div <- repDiversity(twb, "chao1", "read.count") #' } repDiversity <- function (.data, .method = c("chao1", "gini.simp", "inv.simp", "gini", "div", "entropy"), .quant = c("read.count", "umi.count", "read.prop", "umi.prop"), .q = 5, .norm = F, .do.norm = NA, .laplace = 0) { quant <- .column.choice(.quant, T) fun <- switch(.method[1], chao1 = function (x, ...) chao1(x), gini.simp = gini.simpson, inv.simp = inverse.simpson, gini = gini, div = function (x, ...) diversity(x, .q = .q, ...), entropy = function (x, ...) entropy(x, .norm = .norm, ...), { .verbose.msg("You have specified an invalid method identifier. Selected method: chao1\n", T); chao1 }) if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } .data <- .fix.listnames(.data) sapply(.data, function (x) fun(x[[quant]], .do.norm = .do.norm, .laplace = .laplace)) }tcR/R/stats.R0000644000176200001440000006025212657351347012506 0ustar liggesusers########## Repertoire statistics ########## #' In-frame / out-of-frame sequences filter. #' #' @aliases get.inframes get.outframes count.inframes count.outframes get.frames count.frames clonotypescount #' #' @description #' Return the given data frame with in-frame or out-of-frame sequences only. Nucleotide sequences in a column "CDR3.nucleotide.sequence" are checked if #' they length are divisible by 3 (len mod 3 == 0 => in-frame, else out-of-frame) #' #' @usage #' get.inframes(.data, .head = 0, .coding = T) #' #' get.outframes(.data, .head = 0) #' #' count.inframes(.data, .head = 0, .coding = T) #' #' count.outframes(.data, .head = 0) #' #' get.frames(.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) #' #' count.frames(.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) #' #' @param .data MiTCR data.frame or a list with mitcr data.frames. #' @param .frame Which *-frames to choose. #' @param .head Parameter to the head() function. Supply 0 to get all elements. \code{head} applied before subsetting, i.e. #' if .head == 500, you will get in-frames from the top 500 clonotypes. #' @param .coding if T then return only coding sequences, i.e. without stop-codon. #' #' @return Filtered data.frame or a list with such data.frames. get.inframes <- function (.data, .head = 0, .coding = T) { if (class(.data) == 'list') { return(lapply(.data, get.inframes, .head = .head, .coding = .coding)) } .data <- head(.data, if (.head == 0) {nrow(.data)} else {.head}) if (.coding) { d <- subset(.data, nchar(.data$CDR3.nucleotide.sequence) %% 3 == 0) d[grep('[*, ~]', d$CDR3.amino.acid.sequence, invert = T), ] } else { subset(.data, nchar(.data$CDR3.nucleotide.sequence) %% 3 == 0) } } get.outframes <- function (.data, .head = 0) { if (class(.data) == 'list') { return(lapply(.data, get.outframes, .head = .head)) } .data <- head(.data, if (.head == 0) {nrow(.data)} else {.head}) subset(.data, nchar(.data$CDR3.nucleotide.sequence) %% 3 != 0) } count.inframes <- function (.data, .head = 0, .coding = T) { if (class(.data) == 'list') { sapply(get.inframes(.data, .head, .coding), nrow) } else { nrow(get.inframes(.data, .head, .coding)) } } count.outframes <- function (.data, .head = 0) { if (class(.data) == 'list') { sapply(get.outframes(.data, .head), nrow) } else { nrow(get.outframes(.data, .head)) } } get.frames <- function (.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) { if (.frame[1] == 'in') { get.inframes(.data, .head, .coding) } else if (.frame[1] == 'out') { get.outframes(.data, .head) } else { head(.data, if (.head == 0) {nrow(.data)} else {.head}) } } count.frames <- function (.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) { if (.frame[1] == 'in') { count.inframes(.data, .head, .coding) } else if (.frame[1] == 'out') { count.outframes(.data, .head) } else { nrow(head(.data, if (.head == 0) {nrow(.data)} else {.head})) } } clonotypescount <- function(.data, .head = 0) { length(unique(as.character(head(.data, if (.head == 0) {nrow(.data)} else {.head})$CDR3.amino.acid.sequence))) } #' MiTCR data frame basic statistics. #' #' @aliases cloneset.stats repseq.stats #' #' @usage #' cloneset.stats(.data, .head = 0) #' #' repseq.stats(.data, .head = 0) #' #' @description #' Compute basic statistics of TCR repertoires: number of clones, number of clonotypes, #' number of in-frame and out-of-frame sequences, summary of "Read.count", "Umi.count" and other. #' #' @param .data tcR data frames or a list with tcR data frames. #' @param .head How many top clones use to comput summary. #' #' @return if \code{.data} is a data frame, than numeric vector with statistics. If \code{.data} is #' a list with data frames, than matrix with statistics for each data frame. #' #' @examples #' \dontrun{ #' # Compute basic statistics of list with data frames. #' cloneset.stats(immdata) #' repseq.stats(immdata) #' } cloneset.stats <- function (.data, .head = 0) { if (has.class(.data, 'list')) { res <- t(do.call(cbind, lapply(.data, cloneset.stats, .head = .head))) row.names(res) <- names(.data) return(res) } .head <- if (.head == 0) {nrow(.data)} else {.head} res <- c(as.numeric(.head), clonotypescount(.data, .head), clonotypescount(.data, .head) / .head, count.inframes(.data, .head), count.inframes(.data, .head) / .head, count.outframes(.data, .head), count.outframes(.data, .head) / .head) names(res) <- c('#Nucleotide clones','#Aminoacid clonotypes', '%Aminoacid clonotypes', '#In-frames', '%In-frames', '#Out-of-frames', '%Out-of-frames') .data <- head(.data, .head) res2 <- c(Sum = sum(.data$Read.count), summary(.data$Read.count)) names(res2) <- sub('.', '', names(res2), fixed = T) names(res2) <- paste0(names(res2), '.reads') if (!is.na(.data$Umi.count)[1]) { res3 <- c(Sum = sum(.data$Umi.count), summary(.data$Umi.count)) names(res3) <- sub('.', '', names(res3), fixed = T) names(res3) <- paste0(names(res3), '.UMIs') res2 <- c(res2, res3) } c(res, res2) } repseq.stats = function(.data, .head=0) { if (has.class(.data, "list")) { res=do.call(cbind, lapply(.data, repseq.stats, .head=.head)) dimnames(res)[[2]]=names(.data) return(t(res)) }else{ .umi <- !is.na(.data$Umi.count[1]) .head= if (.head==0){nrow(.data)} else {.head} .data=head(.data, .head) if (!.umi) { res=c(nrow(.data), sum(.data$'Read.count'), round(sum(.data$'Read.count')/nrow(.data), digits = 2)) names(res)=c('Clones', "Sum.reads", "Reads.per.clone") return(res) }else{ res=c(nrow(.data), sum(.data$'Read.count'), sum(.data$'Umi.count'), round(sum(.data$'Read.count') / sum(.data$'Umi.count'), digits = 2), round(sum(.data$'Umi.count') / nrow(.data), digits = 2)) names(res)=c('Clones', "Sum.reads", "Sum.UMIs", "Reads.per.UMI", "UMI.per.clone") return(res) } } } #' Columns statistics. #' #' @aliases column.summary insertion.stats #' #' @usage #' column.summary(.data, .factor.col, .target.col, .alphabet = NA, .remove.neg = T) #' #' insertion.stats(.data) #' #' @description #' \code{column.summary} - general function for computing summary statistics (using the \code{summary} function) for columns of the given mitcr data.frame: #' divide \code{.factor.column} by factors from \code{.alphabet} and compute statistics #' of correspondingly divided \code{.target.column}. #' #' \code{insertion.stats} - compute statistics of insertions for the given mitcr data.frame. #' #' @param .data Data frame with columns \code{.factor.col} and \code{target.col} #' @param .factor.col Columns with factors by which the data will be divided to subsets. #' @param .target.col Column with numeric values for computing summaries after dividing the data to subsets. #' @param .alphabet Character vector of factor levels. If NA than use all possible elements frim the \code{.factor.col} column. #' @param .remove.neg Remove all elements which >-1 from the \code{.target.col} column. #' #' @seealso \link{summary} #' #' @return Data.frame with first column with levels of factors and 5 columns with output from the \code{summary} function. #' #' @examples #' \dontrun{ #' # Compute summary statistics of VD insertions #' # for each V-segment using all V-segments in the given data frame. #' column.summary(immdata[[1]], 'V.gene', 'Total.insertions') #' # Compute summary statistics of VD insertions for each V-segment using only V-segments #' # from the HUMAN_TRBV_MITCR #' column.summary(immdata[[1]], 'V.gene', 'Total.insertions', HUMAN_TRBV_MITCR) #' } column.summary <- function (.data, .factor.col, .target.col, .alphabet = NA, .remove.neg = T) { if (length(.alphabet) != 0 && !is.na(.alphabet[1])) { .data[!(.data[, .factor.col] %in% .alphabet), .factor.col] <- 'Other' } if (.remove.neg) { .data <- .data[.data[, .target.col] > -1, ] } res <- do.call(rbind, tapply(.data[, .target.col], .data[, .factor.col], function (x) c(summary(x)))) res <- data.frame(A = row.names(res), res, stringsAsFactors=F) names(res)[1] <- .factor.col row.names(res) <- NULL res } insertion.stats <- function (.data) { if (class(.data) == 'list') { return(lapply(.data, insertion.stats)) } vd <- column.summary(.data, 'V.gene', 'VD.insertions', HUMAN_TRBV_MITCR) names(vd)[-1] <- paste0('VD.', names(vd)[-1]) dj <- column.summary(.data, 'V.gene', 'DJ.insertions', HUMAN_TRBV_MITCR) names(dj)[-1] <- paste0('DJ.', names(dj)[-1]) tot <- column.summary(.data, 'V.gene', 'Total.insertions', HUMAN_TRBV_MITCR) names(tot)[-1] <- paste0('Total.', names(tot)[-1]) res <- merge(vd, dj, by = 'V.gene', all = T) res <- merge(res, tot, by = 'V.gene', all = T) res } #' Find target clonotypes and get columns' value corresponded to that clonotypes. #' #' @description #' Find the given target clonotypes in the given list of data.frames and get corresponding values of desired columns. #' #' @param .data List with mitcr data.frames or a mitcr data.frame. #' @param .targets Target sequences or elements to search. Either character vector or a matrix / data frame (not a data table!) with two columns: first for sequences, second for V-segments. #' @param .method Method, which will be used to find clonotypes: #' #' - "exact" performs exact matching of targets; #' #' - "hamm" finds targets and close sequences using hamming distance <= 1; #' #' - "lev" finds targets and close sequences using levenshtein distance <= 1. #' #' @param .col.name Character vector with column names which values should be returned. #' @param .target.col Character vector specifying name of columns in which function will search for a targets. #' Only first column's name will be used for matching by different method, others will match exactly. #' \code{.targets} should be a two-column character matrix or data frame with second column for V-segments. #' @param .verbose if T then print messages about the search process. #' #' @return Data.frame. #' #' @examples #' \dontrun{ #' # Get ranks of all given sequences in a list of data frames. #' immdata <- set.rank(immdata) #' find.clonotypes(.data = immdata, .targets = head(immdata[[1]]$CDR3.amino.acid.sequence), #' .method = 'exact', .col.name = "Rank", .target.col = "CDR3.amino.acid.sequence") #' # Find close by levenhstein distance clonotypes with similar V-segments and return #' # their values in columns 'Read.count' and 'Total.insertions'. #' find.clonotypes(.data = twb, .targets = twb[[1]][, c('CDR3.amino.acid.sequence', 'V.gene')], #' .col.name = c('Read.count', 'Total.insertions'), .method = 'lev', #' .target.col = c('CDR3.amino.acid.sequence', 'V.gene')) #' } find.clonotypes <- function (.data, .targets, .method = c('exact', 'hamm', 'lev'), .col.name = 'Read.count', .target.col = 'CDR3.amino.acid.sequence', .verbose = T) { if (is.character(.targets) && length(.target.col) != 1) { cat("Target columns doesn't match the given .targets!\n") return() } if (!is.character(.targets) && ncol(.targets) != length(.target.col)) { cat("Target columns doesn't match the given .targets!\n") return() } if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } if (.method[1] == 'lev') { .data <- lapply(.data, function (.data) .data[grep('[*, ~]', .data[, .target.col[1]], invert = T),]) } .verbose.msg('Searching for targets...\n', .verbose) if (.verbose) pb <- set.pb(length(.data)) dt.list <- list() for (i in 1:length(.data)) { if (.verbose) add.pb(pb) if (length(.target.col) == 1) { inds <- intersectIndices(.targets, .data[[i]][, .target.col], .method) } else { colnames(.targets) <- .target.col inds <- intersectIndices(.targets, .data[[i]][, .target.col], .method, .target.col) } inds <- inds[!duplicated(inds[,2]),] if(!is.matrix(inds)) { inds <- rbind(inds) } if (dim(inds)[1] == 0) { inds <- matrix(c(NA, NA), 1, 2) } res <- list() if (!is.na(inds[1,1])) { for (col.name in .col.name) { res[[col.name]] <- .data[[i]][inds[,2], col.name] } dt.list[[names(.data)[i]]] <- as.data.table(data.frame(.data[[i]][inds[,2], .target.col], res, stringsAsFactors = F), F) setnames(dt.list[[names(.data)[i]]], c(.target.col, .col.name)) setkeyv(dt.list[[names(.data)[i]]], .target.col) tc <- dt.list[[names(.data)[i]]][[.target.col[1]]] dups <- duplicated(tc) dups.i <- rep.int(0, length(dups)) k <- 1 for (j in 1:length(dups)) { if (dups[j]) { dups.i[j] <- k k <- k + 1 } else { k <- 1 } } dt.list[[names(.data)[i]]][[.target.col[1]]] <- sapply(1:length(tc), function (k) { if (k > 1) { if (tc[k] == tc[k-1]) { paste0(tc[k], '.', dups.i[k]) } else { tc[k] } } else { tc[k] } }, USE.NAMES = F) } else { dt.list[[names(.data)[i]]] <- do.call(data.table, sapply(c(.target.col, .col.name), function (cn) { x <- NA class(x) <- class(.data[[1]][1, cn]) if (length(.target.col) == 1) { rep(x, times = length(.targets)) } else { rep(x, times = nrow(.targets)) } }, simplify = F)) if (length(.target.col) == 1) { dt.list[[names(.data)[i]]][[.target.col]] <- .targets } else { for (tc in .target.col) { dt.list[[names(.data)[i]]][[tc]] <- .targets[[tc]] } } setnames(dt.list[[names(.data)[i]]], c(.target.col, .col.name)) setkeyv(dt.list[[names(.data)[i]]], .target.col) } } if (.verbose) close(pb) res <- dt.list[[1]] if (length(dt.list) > 1) { for (i in 2:length(dt.list)) { res <- merge(res, dt.list[[i]], by = .target.col, all = T, allow.cartesian = T, suffixes = paste0('.', c(names(dt.list)[i-1], names(dt.list)[i]))) } } for (i in 1:length(.col.name)) { if (.col.name[i] %in% names(res)) { setnames(res, .col.name[i], paste0(.col.name[i], '.', names(dt.list)[length(dt.list)])) } } res <- as.data.frame(res, stringsAsFactors = F) if (length(.col.name) > 1) { res <- res[, c(1:length(.target.col), cbind(seq(length(.target.col) + 1, ncol(res), 2), seq(length(.target.col) + 2, ncol(res), 2)))] } res[[.target.col[1]]] <- sapply(strsplit(res[[.target.col[1]]], '.', T, F, T), '[', 1, USE.NAMES = F) res <- res[order(res[[.target.col[1]]]),] tc <- res[[.target.col[1]]] dups <- duplicated(tc) dups.i <- rep('', length(dups)) k <- 1 for (j in 1:length(dups)) { if (dups[j]) { dups.i[j] <- paste0('.', as.character(k)) k <- k + 1 } else { k <- 1 } } row.names(res) <- paste0(res[[.target.col[1]]], dups.i) res } #' Perform sequential cross starting from the top of a data frame. #' #' @aliases top.cross top.cross.vec top.cross.plot #' #' @description #' \code{top.cross} - get top crosses of the given type between each pair of the given data.frames with \code{top.cross} function. #' #' \code{top.cross.vec} - get vector of cross values for each top with the \code{top.cross.vec} function. #' #' \code{top.cross.plot} - plot a plots with result with the \code{top.cross.plot} function. #' #' @usage #' top.cross(.data, .n = NA, .data2 = NULL, .type = 'ave', .norm = F, .verbose = T) #' #' top.cross.vec(.top.cross.res, .i, .j) #' #' top.cross.plot(.top.cross.res, .xlab = 'Top X clonotypes', #' .ylab = 'Normalised number of shared clonotypes', .nrow = 2, #' .legend.ncol = 1, .logx = T, .logy = T) #' #' @param .data Either list of data.frames or a data.frame. #' @param .n Integer vector of parameter appled to the head function; same as .n in the top.fun function. See "Details" for more information. #' @param .data2 Second data.frame or NULL if .data is a list. #' @param .type Parameter .type to the \code{tcR::intersect} function. #' @param .norm Parameter .norm to the \code{tcR::intersect} function. #' @param .top.cross.res Result from the \code{top.cross} function. #' @param .i,.j Coordinate of a cell in each matrix. #' @param .xlab Name for a x-lab. #' @param .ylab Name for a y-lab. #' @param .nrow Number of rows of sub-plots in the output plot. #' @param .legend.ncol Number of columns in the output legend. #' @param .logx if T then transform x-axis to log-scale. #' @param .logy if T then transform y-axis to log-scale. #' @param .verbose if T then plot a progress bar. #' #' @return #' \code{top.cross} - return list for each element in \code{.n} with intersection matrix (from \code{tcR::intersectClonesets}). #' #' \code{top.cross.vec} - vector of length \code{.n} with \code{.i}:\code{.j} elements of each matrix. #' #' \code{top.cross.plot} - grid / ggplot object. #' #' @details #' Parameter \code{.n} can have two possible values. It could be either integer vector of numbers (same as in the \code{top.fun} function) or #' NA and then it will be replaced internally by the value \code{.n <- seq(5000, min(sapply(.data, nrow)), 5000)}. #' #' @seealso \code{\link{intersect}} #' #' @examples #' \dontrun{ #' immdata.top <- top.cross(immdata) #' top.cross.plot(immdata.top) #' } top.cross <- function (.data, .n = NA, .data2 = NULL, .type = 'ave', .norm = F, .verbose = T) { if (!is.null(.data2)) { .data <- list(.data, .data2) } if (is.na(.n)[1]) { .n <- seq(5000, min(sapply(.data, nrow)), 5000) } # res <- lapply(.n, function(i) apply.symm(.data, cross, .head = i, .type = .type, .norm = .norm, .verbose=F)) res <- lapply(.n, function(i) { if (.verbose) cat('Head == ', i, ' :\n', sep = '') intersectClonesets(.data, .type, .head = i, .norm = .norm, .verbose = .verbose)}) names(res) <- .n res } top.cross.vec <- function (.top.cross.res, .i, .j) { sapply(.top.cross.res, function (mat) mat[.i, .j] ) } top.cross.plot <- function (.top.cross.res, .xlab = 'Top X clonotypes', .ylab = 'Normalised number of shared clonotypes', .nrow = 2, .legend.ncol = 1, .logx = T, .logy = T) { data.names <- colnames(.top.cross.res[[1]]) len <- length(data.names) ps <- lapply(1:len, function (i) { data <- data.frame(Top = as.numeric(names(.top.cross.res)), sapply((1:len), function (j) { res <- top.cross.vec(.top.cross.res, i, j) # res[is.na(res)] <- 0 res }), sapply((1:len), function (j) { rep(data.names[j], times=length(.top.cross.res)) })) names(data) <- c('Top', data.names, paste0(data.names, 'C')) p <- ggplot(data = data) for (j in (1:len)) { p <- p + geom_point(aes_string(x = 'Top', y = data.names[j], color = paste0(data.names[j], 'C'))) + geom_line(aes_string(x = 'Top', y = data.names[j], color = paste0(data.names[j], 'C'))) + xlab(.xlab) + ylab(.ylab) + theme_linedraw() } p + ggtitle(data.names[i]) + theme(legend.position = 'none') if (.logx) { p <- p + scale_x_log10() } if (.logy) { p <- p + scale_y_log10() } p <- p + .colourblind.discrete(len, T) } ) data <- data.frame(Top = as.numeric(names(.top.cross.res)), sapply((1:len), function (j) rep.int(1, length(.top.cross.res))), sapply((1:len), function (j) rep(data.names[j], times=length(.top.cross.res)))) names(data) <- c('Top', data.names, paste0(data.names, 'C')) p <- ggplot(data = data) for (j in (1:len)) { p <- p + geom_point(aes_string(x = 'Top', y = data.names[j], color = paste0(data.names[j], 'C'))) } # add.legend(ps, .nrow, .legend.ncol) sample.plot <- p + .colourblind.discrete(len, T) leg <- gtable_filter(ggplot_gtable(ggplot_build(sample.plot + guides(colour=guide_legend(title = 'Subject', ncol=.legend.ncol)))), "guide-box") grid.arrange(do.call(arrangeGrob, c(lapply(ps, function (x) x + theme(legend.position="none")), nrow = .nrow)), leg, widths=unit.c(unit(1, "npc") - leg$width, leg$width), nrow = 1, top ='Top crosses') # arrangeGrob(do.call(arrangeGrob, c(ps[1:2], nrow = .nrow)), leg, widths=unit.c(unit(1, "npc") - leg$width, leg$width), nrow = 1, top ='Top cross') } #' Bootstrap for data frames in package tcR. #' #' @description #' Resample rows (i.e., clones) in the given data frame and apply the given function to them. #' #' @param .data Data frame. #' @param .fun Function applied to each sample. #' @param .n Number of iterations (i.e., size of a resulting distribution). #' @param .size Size of samples. For \code{.sim} == "uniform" stands for number of rows to take. #' For \code{.sim} == "percentage" stands for number of UMIs / read counts to take. #' @param .sim A character string indicating the type of simulation required. Possible values are #' "uniform" or "percentage". See "Details" for more details of type of simulation. #' @param .postfun Function applied to the resulting list: list of results from each processed sample. #' @param .verbose if T then show progress bar. #' @param .prop.col Column with proportions for each clonotype. #' @param ... Further values passed to \code{.fun}. #' #' @return #' Either result from \code{.postfun} or list of length \code{.n} with values of \code{.fun}. #' #' @details #' Argument \code{.sim} can take two possible values: "uniform" (for uniform distribution), when #' each row can be taken with equal probability, and "perccentage" when each row can be taken with #' probability equal to its "Read.proportion" column. #' #' @examples #' \dontrun{ #' # Apply entropy.seg function to samples of size 20000 from immdata$B data frame for 100 iterations. #' bootstrap.tcr(immdata[[2]], .fun = entropy.seg, .n = 100, .size = 20000, .sim = 'uniform') #' } bootstrap.tcr <- function (.data, .fun = entropy.seg, .n = 1000, .size = nrow(.data), .sim = c('uniform', 'percentage'), .postfun = function (x) { unlist(x) }, .verbose = T, .prop.col = 'Read.proportion', ...) { .sample.fun <- function (d) { d[sample(1:nrow(d), .size, T),] } if (.sim[1] == 'percentage') { .sample.fun <- function (d) { new.reads <- rmultinom(1, .size, d[, .prop.col]) d$Read.count <- new.reads d[, .prop.col] <- new.reads / sum(new.reads) d[new.reads > 0,] } } if (.verbose) { pb <- set.pb(.n) } res <- lapply(1:.n, function (n) { if (.verbose) { add.pb(pb) } .fun(.sample.fun(.data), ...) }) if (.verbose) { close(pb) } .postfun(res) } # mean + IQR #' Clonal space homeostasis. #' #' @description #' Compute clonal space homeostatsis - statistics of how many space occupied by clones #' with specific proportions. #' #' @param .data Cloneset data frame or list with such data frames. #' @param .clone.types Named numeric vector. #' @param .prop.col Which column to use for counting proportions. #' #' @seealso \link{vis.clonal.space} #' #' @examples #' \dontrun{ #' data(twb) #' # Compute summary space of clones, that occupy #' # [0, .05) and [.05, 1] proportion. #' clonal.space.homeostasis(twb, c(Low = .05, High = 1))) #' # Low (0 < X <= 0.05) High (0.05 < X <= 1) #' # Subj.A 0.9421980 0.05780198 #' # Subj.B 0.9239454 0.07605463 #' # Subj.C 0.8279270 0.17207296 #' # Subj.D 1.0000000 0.00000000 #' # I.e., for Subj.D sum of all read proportions for clones #' # which have read proportion between 0 and .05 is equal to 1. #' } clonal.space.homeostasis <- function (.data, .clone.types = c(Rare = .00001, Small = .0001, Medium = .001, Large = .01, Hyperexpanded = 1), .prop.col = 'Read.proportion') { .clone.types <- c(None = 0, .clone.types) if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } mat <- matrix(0, length(.data), length(.clone.types) - 1, dimnames = list(names(.data), names(.clone.types)[-1])) .data <- lapply(.data, '[[', .prop.col) for (i in 2:length(.clone.types)) { mat[,i-1] <- sapply(.data, function (x) sum(x[x > .clone.types[i-1] & x <= .clone.types[i]])) colnames(mat)[i-1] <- paste0(names(.clone.types[i]), ' (', .clone.types[i-1], ' < X <= ', .clone.types[i], ')') } mat }tcR/R/diversity.R0000644000176200001440000002502313325616565013366 0ustar liggesusers#' Distribution evaluation. #' #' @aliases inverse.simpson diversity gini chao1 gini.simpson #' #' @description #' Functions for evaluating the diversity of species or objects in the given distribution. #' See the \code{repOverlap} function for working with clonesets and a general interface to #' all of this functions. #' #' Warning! #' Functions will check if .data is a distribution of a random variable (sum == 1) or not. #' To force normalisation and / or to prevent this, set .do.norm to TRUE (do normalisation) #' or FALSE (don't do normalisation), respectively. #' #' - True diversity, or the effective number of types, refers to the number #' of equally-abundant types needed for the average proportional abundance #' of the types to equal that observed in the dataset of interest #' where all types may not be equally abundant. #' #' - Inverse Simpson index is the effective number of types that is obtained when #' the weighted arithmetic mean is used to quantify average #' proportional abundance of types in the dataset of interest. #' #' - The Gini coefficient measures the inequality among values #' of a frequency distribution (for example levels of income). A Gini coefficient of zero #' expresses perfect equality, where all values are the same (for example, where everyone #' has the same income). A Gini coefficient of one (or 100 percents ) expresses maximal inequality #' among values (for example where only one person has all the income). #' #' - The Gini-Simpson index is the probability of interspecific encounter, i.e., probability that two entities #' represent different types. #' #' - Chao1 estimator is a nonparameteric asymptotic estimator of species richness (number of species in a population). #' #' @usage #' inverse.simpson(.data, .do.norm = NA, .laplace = 0) #' #' diversity(.data, .q = 5, .do.norm = NA, .laplace = 0) #' #' gini(.data, .do.norm = NA, .laplace = 0) #' #' gini.simpson(.data, .do.norm = NA, .laplace = 0) #' #' chao1(.data) #' #' @param .data Numeric vector of values for proportions or for numbers of individuals. #' @param .q q-parameter for the Diversity index. #' @param .do.norm One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) #' and normalise if needed with the given laplace correction value. if T then do normalisation and laplace #' correction. If F than don't do normalisaton and laplace correction. #' @param .laplace Value for Laplace correction which will be added to every value in the .data. #' #' @return Numeric vector of length 1 with value for all functions except \code{chao1}, which returns 4 values: #' estimated number of species, standart deviation of this number and two 95% confidence intervals for the species number. #' #' @seealso \link{repOverlap}, \link{entropy}, \link{similarity} #' #' @examples #' data(twb) #' # Next two are equal calls: #' stopifnot(gini(twb[[1]]$Read.count, TRUE, 0) - 0.7609971 < 1e-07) #' stopifnot(gini(twb[[1]]$Read.proportion, FALSE) - 0.7609971 < 1e-07) #' stopifnot(chao1(twb[[1]]$Read.count)[1] == 1e+04) inverse.simpson <- function (.data, .do.norm = NA, .laplace = 0) { .data <- check.distribution(.data, .do.norm, .laplace) 1 / sum(.data ^ 2) } diversity <- function (.data, .q = 5, .do.norm = NA, .laplace = 0) { .data <- check.distribution(.data, .do.norm, .laplace) if (.q == 0) { length(.data) } else if (.q == 1) { 1 / prod(.data ^ .data) } else if (.q > 1) { 1 / (sum(.data ^ .q) ^ (1 / (.q - 1))) } else { NA } } gini <- function (.data, .do.norm = NA, .laplace = 0) { .data <- sort(check.distribution(.data, .do.norm, .laplace, .warn.sum = F)) n <- length(.data) 1 / n * (n + 1 - 2 * sum((n + 1 - 1:n) * .data) / sum(.data)) } gini.simpson <- function (.data, .do.norm = NA, .laplace = 0) { 1 - 1 / inverse.simpson(.data, .do.norm, .laplace) } chao1 <- function (.data) { counts <- table(.data) e <- NA v <- NA lo <- NA hi <- NA n <- sum(.data) D <- length(.data) f1 <- counts['1'] f2 <- counts['2'] # f1 == 0 && f2 == 0 if (is.na(f1) && is.na(f2)) { e <- D i <- 1:max(.data) i <- i[unique(.data)] v <- sum(sapply(i, function(i) sum(.data == i) * (exp(-i) - exp(-2 * i)))) - (sum(sapply(i, function(i) i * exp(-i) * sum(.data == i))))^2/n P <- sum(sapply(i, function(i) sum(.data == i) * exp(-i)/D)) lo <- max(D, D/(1 - P) - qnorm(1 - .05/2) * sqrt(v)/(1 - P)) hi <- D/(1 - P) + qnorm(1 - .05/2) * sqrt(v)/(1 - P) } # f1 != 0 && f2 == 0 else if (is.na(f2)) { e <- D + f1 * (f1 - 1) / 2 * (n - 1) / n v <- (n-1)/n * f1 * (f1 - 1) /2 + ((n -1)/n)^2 * f1 * (2 * f1 - 1)^2/4 - ((n-1)/n)^2*f1^4/4/e t <- e - D K <- exp(qnorm(1 - .05/2) * sqrt(log(1 + v/t^2))) lo <- D + t/K hi <- D + t*K } # f1 != && f2 != 0 else { const <- (n - 1) / n e <- D + f1^2 / (2 * f2) * const f12 <- f1 / f2 v <- f2 * (const * f12^2 / 2 + const^2 * f12^3 + const^2 * f12^4 / 4) t <- e - D K <- exp(qnorm(.975) * sqrt(log(1 + v/t^2))) lo <- D + t/K hi <- D + t*K } c(Estimator = e, SD = sqrt(v), Conf.95.lo = lo, Conf.95.hi = hi) } # hill.numbers <- function (.data, .max.q = 6, .min.q = 1) { # print(head(.data)) # print(sum(.data)) # # .data <- check.distribution(.data) # print(head(.data)) # # if (.min.q < 0) { .min.q <- 0 } # res <- c() # # if (.min.q == 0) { # res <- length(.data) # .min.q <- 1 # } # # if (.min.q == 1) { # res <- c(res, exp(-sum(.data * log(.data)))) # .min.q <- 2 # } # # if (.max.q >= 2) { # for (q in .min.q:.max.q) { # res <- c(res, sum(.data ^ q)^(1 / (1 - q))) # } # } # # res # } #' Diversity evaluation using rarefaction. #' #' @description #' Sequentially resample the given data with growing sample size the given data and compute mean number of unique clones. #' For more details on the procedure see "Details". #' #' @param .data Data frame or a list with data frames. #' @param .step Step's size. By default - minimal repertoire size divided by 50. #' @param .quantile Numeric vector of length 2 with quantiles for confidence intervals. #' @param .extrapolation If N > 0 than perform extrapolation of all samples to the size of the max one +N reads or UMIs. By default - 200000. #' @param .col Column's name from which choose frequency of each clone. #' @param .verbose if T then print progress bar. #' #' @return #' Data frame with first column for sizes, second columns for the first quantile, #' third column for the mean, fourth columns for the second quantile, fifth columns #' for the name of subject. #' #' @details #' This subroutine is designed for diversity evaluation of repertoires. On each step it computes a #' mean unique clones from sample of fixed size using bootstrapping. Unique clones for each sample from bootstrap computed #' as a number of non-zero elements in a vector from multinomial distribution with input vector of probabilities from the \code{.col} column #' using function \code{rmultinom} with parameters n = .n, size = i * .step, prob = .data[, .col] (i is an index of current iteration) #' and choosing for lower and upper bound \code{quantile} bounds of the computed distribution of unique clones. #' #' @seealso \link{vis.rarefaction} \link{rmultinom} #' #' @examples #' \dontrun{ #' rarefaction(immdata, .col = "Read.count") #' } rarefaction <- function (.data, .step = NA, .quantile = c(.025, .975), .extrapolation = 200000, .col = 'Umi.count', .verbose = T) { if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } if (is.na(.step)) { .step = min(sapply(.data, function (x) sum(x[[.col]]))) / 50. } # multinom # .alpha <- function (n, Xi, m) { # k <- Xi # if (k <= n - m) { # prod((n - k):(n - m - k + 1) / n:(n - m + 1)) # } else { # 0 # } # } # poisson .alpha <- function (n, Xi, m) { k <- Xi return((1 - m / n)^Xi) } if (.verbose) { pb <- set.pb(sum(sapply(1:length(.data), function (i) { bc.vec <- .data[[i]][, .col] bc.sum <- sum(.data[[i]][, .col]) sizes <- seq(.step, bc.sum, .step) if (sizes[length(sizes)] != bc.sum) { sizes <- c(sizes, bc.sum) } length(sizes) } ))) } muc.list <- lapply(1:length(.data), function (i) { Sobs <- nrow(.data[[i]]) bc.vec <- .data[[i]][, .col] Sest <- chao1(bc.vec) n <- sum(bc.vec) sizes <- seq(.step, n, .step) if (sizes[length(sizes)] != n) { sizes <- c(sizes, n) } counts <- table(bc.vec) muc.res <- t(sapply(sizes, function (sz) { freqs <- as.numeric(names(counts)) # multinom alphas <- sapply(freqs, function (k) .alpha(n, k, sz)) # Sind <- Sobs - sum(sapply(freqs, function (k) .alpha(n, k, sz) * counts[as.character(freqs)])) # SD <- sqrt(sum(sapply(freqs, function (k) (1 - .alpha(n, k, sz))^2 * counts[as.character(freqs)])) - Sind^2/Sest[1]) # poisson Sind <- sum(sapply(1:length(freqs), function (k) (1 - alphas[k]) * counts[k])) if (Sest[1] == Sobs) { SD <- 0 } else { SD <- sqrt(sum(sapply(1:length(freqs), function (k) (1 - alphas[k])^2 * counts[k])) - Sind^2/Sest[1]) } t <- Sind - Sobs K <- exp(qnorm(.975) * sqrt(log(1 + (SD / t)^2))) lo <- Sobs + t*K hi <- Sobs + t/K res <- c(sz, Sind, Sind, Sind) names(res) <- c('Size', paste0('Q', .quantile[1]), 'Mean', paste0('Q', .quantile[2])) if (.verbose) add.pb(pb) res })) if (.extrapolation > 0) { sizes <- seq(sum(.data[[i]][, .col]), .extrapolation + max(sapply(.data, function (x) sum(x[, .col]))), .step) if (length(sizes) != 1) { ex.res <- t(sapply(sizes, function (sz) { f0 <- Sest[1] - Sobs f1 <- counts['1'] if (is.na(f1) || f0 == 0) { Sind <- Sobs } else { Sind <- Sobs + f0 * (1 - exp(-(sz - n)/n * f1 / f0)) } res <- c(sz, Sind, Sind, Sind) names(res) <- c('Size', paste0('Q', .quantile[1]), 'Mean', paste0('Q', .quantile[2])) if (.verbose) add.pb(pb) res })) df1 <- data.frame(muc.res, People = names(.data)[i], Type = 'interpolation', stringsAsFactors = F) df2 <- data.frame(ex.res, People = names(.data)[i], Type = 'extrapolation', stringsAsFactors = F) rbind(df1, df2) } else { df1 <- data.frame(muc.res, People = names(.data)[i], Type = 'interpolation', stringsAsFactors = F) } } else { data.frame(muc.res, People = names(.data)[i], stringsAsFactors = F) } }) if (.verbose) close(pb) do.call(rbind, muc.list) }tcR/R/segments.R0000644000176200001440000002012413325616566013167 0ustar liggesusers########## Statistics and analysis of Variable and Joining genes usage ########## if (getRversion() >= "2.15.1") { utils::globalVariables(c('PC1', 'PC2', "Subject")) } #' Gene usage. #' #' @aliases geneUsage #' #' @description #' Compute frequencies or counts of gene segments ("V / J - usage"). #' #' @param .data Cloneset data frame or a list with clonesets. #' @param .genes Either one of the gene alphabet (e.g., HUMAN_TRBV, \link{genealphabets}) or list with two gene alphabets for computing #' joint distribution. #' @param .quant Which column to use for the quantity of clonotypes: NA for computing only number of genes without using clonotype counts, #' "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, #' "umi.prop" for the "Umi.proportion" column. #' @param .norm If T then return proportions of resulting counting of genes. #' @param .ambig If F than remove from counting genes which are not presented in the given gene alphabet(s). #' #' @return #' If \code{.data} is a cloneset and \code{.genes} is NOT a list than return a data frame with first column "Gene" with genes and second with counts / proportions. #' #' If \code{.data} is a list with clonesets and \code{.genes} is NOT a list than return a data frame with first column "Gene" #' with genes and other columns with counts / proportions for each cloneset in the input list. #' #' If \code{.data} is a cloneset and \code{.genes} IS a list than return a matrix with gene segments for the first gene in \code{.genes} #' and column names for the second gene in \code{.genes}. See "Examples". #' #' If \code{.data} is a list with clonesets and \code{.genes} IS a list than return a list with matrices like in the previous case. #' #' @seealso \code{\link{genealphabets}}, \code{\link{vis.gene.usage}}, \code{\link{pca.segments}} #' #' @examples #' \dontrun{ #' # Load your data #' data(twb) #' # compute V-segments frequencies of human TCR beta. #' seg <- geneUsage(twb, HUMAN_TRBV, .norm = T) #' # plot V-segments frequencies as a heatmap #' vis.heatmap(seg, .labs = c("Sample", "V gene")) #' # plot V-segments frequencies directly from clonesets #' vis.gene.usage(twb, HUMAN_TRBV) #' # plot V-segments frequencies from the gene frequencies #' vis.gene.usage(seg, NA) #' # Compute V-J joint usage. #' geneUsage(twb, list(HUMAN_TRBV, HUMAN_TRBJ)) #' # for future: #' # geneUsage(twb, "human", "trbv") #' } geneUsage <- function (.data, .genes = HUMAN_TRBV_MITCR, .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .norm = F, .ambig = F #, .species = c("human", "mouse"), .genes = c("trbv", "trbd", "trbj") ) { .process.df <- function (.df, .quant, .cols) { cast.fun <- dcast if (length(.cols) == 2) { cast.fun <- acast; len <- 2 } for (i in 1:length(.cols)) { .df[ which(!(.df[[.cols[i]]] %in% .genes[[i]])), .cols[i] ] <- "Ambiguous" } count.fun <- "n()" if (!is.na(.quant)) { count.fun <- paste0("sum(", .quant, ")", collapse = "", sep = "")} if (length(.cols) == 1) { .cols <- c(.cols, '.'); len <- 1} cast.fun(summarise_(grouped_df(select_(.df, .dots = as.list(na.exclude(c(.quant, .cols[1:len])))), lapply(.cols[1:len], as.name)), Freq = count.fun), as.formula(paste0(.cols[1], " ~ ", .cols[2])), value.var = 'Freq') } .fix.ambig <- function (.res, .ambig) { if (length(.genes) == 2) { .res <- lapply(.res, function (x) { x[row.names(x) != "Ambiguous", ][, colnames(x) != "Ambiguous"] }) if (length(.data) == 1) { .res <- .res[[1]] } .res } else { .res[.res[,1] != "Ambiguous", ] } } quant <- NA if (!is.na(.quant[1])) { quant <- .column.choice(.quant, T) } if (has.class(.data, 'data.frame')) { .data <- list(Sample = .data) } if (has.class(.genes, 'list')) { genecols <- c(paste0(substr(.genes[[1]][1], 4, 4), ".gene"), paste0(substr(.genes[[2]][1], 4, 4), ".gene")) } else { genecols <- paste0(substr(.genes[1], 4, 4), ".gene") .genes <- list(.genes) } tbls <- lapply(.data, .process.df, .quant = quant, .cols = genecols) # JOINT GENE DISTRIBUTION if (length(.genes) == 2) { tbls <- lapply(tbls, function (x) { genrows <- .genes[[1]][is.na(match(.genes[[1]], row.names(x)))] gencols <- .genes[[2]][is.na(match(.genes[[2]], colnames(x)))] if (length(genrows) > 0) { x = rbind(x, matrix(0, ncol = ncol(x), nrow = length(genrows))) row.names(x)[(nrow(x) - length(genrows) + 1):nrow(x)] <- genrows } if (length(gencols) > 0) { x = cbind(x, matrix(0, nrow = nrow(x), ncol = length(gencols))) colnames(x)[(ncol(x) - length(gencols) + 1):ncol(x)] <- gencols } x[is.na(x)] <- 0 # x = x[order(.genes[[1]]), ][, order(.genes[[2]])] # View(x, "y") x }) if (.norm) { tbls <- lapply(tbls, function (x) x / sum(x)) } return(.fix.ambig(tbls, .ambig)) } # SINGLE GENE DISTRIBUTION res <- tbls[[1]] colnames(res) <- c("Gene", names(.data)[1]) if (length(.data) > 1) { for (i in 2:length(.data)) { colnames(tbls[[i]]) <- c("Gene", names(.data)[i]) res <- merge(res, tbls[[i]], by = "Gene", all = T) } } res <- merge(res, data.frame(Gene = .genes[[1]], Something = 0, stringsAsFactors = F), by = "Gene", all = T) res <- res[, -ncol(res)] res[is.na(res)] <- 0 if (!.ambig) { res <- .fix.ambig(res, .ambig) } if (.norm) { if (length(.genes) == 1) { res[,-1] <- apply(as.matrix(res[,-1]), 2, function (col) col / sum(col)) } else { res <- res / sum(res) } } res } #' Perform PCA on segments frequency data. #' #' @aliases pca.segments pca.segments.2D #' #' @description #' Perform PCA on gene segments frequency data for V- and J-segments and either return pca object or plot the results. #' #' @usage #' pca.segments(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T) #' #' pca.segments.2D(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T) #' #' @param .data Either data.frame or a list of data.frame or a result obtained from the \code{geneUsage} function. #' @param .cast.freq.seg if T then apply code{geneUsage} to the supplied data. #' @param ... Further arguments passed to \code{prcomp} or \code{geneUsage}. #' @param .text If T then plot sample names in the resulting plot. #' @param .do.plot if T then plot a graphic, else return a pca object. #' #' @return If .do.plot is T than ggplot object; else pca object. #' #' @examples #' \dontrun{ #' # Load the twins data. #' data(twb) #' # Plot a plot of results of PCA on V-segments usage. #' pca.segments(twb, T, scale. = T) #' } pca.segments <- function(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T){ if (.cast.freq.seg) { .data <- geneUsage(.data, ...)[,-1] } pca.res <- prcomp(t(as.matrix(.data)), ...) if (.do.plot) { pca.res <- data.frame(PC1 = pca.res$x[,1], PC2 = pca.res$x[,2], Subject = names(.data)) p <- ggplot() + geom_point(aes(x = PC1, y = PC2, colour = Subject), size = 3, data = pca.res) if (.text) { p <- p + geom_text(aes(x = PC1, y = PC2, label = Subject), data = pca.res, hjust=.5, vjust=-.3) } p + theme_linedraw() + guides(size=F) + ggtitle("VJ-usage: Principal Components Analysis") + .colourblind.discrete(length(pca.res$Subject), T) } else { pca.res } } pca.segments.2D <- function(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T){ if (.cast.freq.seg) { .data <- lapply(geneUsage(.data, ...), function (x) as.vector(x)) } pca.res <- prcomp(do.call(rbind, .data), ...) if (.do.plot) { pca.res <- data.frame(PC1 = pca.res$x[,1], PC2 = pca.res$x[,2], Subject = names(.data)) p <- ggplot() + geom_point(aes(x = PC1, y = PC2, colour = Subject), size = 3, data = pca.res) if (.text) { p <- p + geom_text(aes(x = PC1, y = PC2, label = Subject), data = pca.res, hjust=.5, vjust=-.3) } p <- p + theme_linedraw() + guides(size=F) + ggtitle("VJ-usage: Principal Components Analysis") + .colourblind.discrete(length(pca.res$Subject), T) } else { pca.res } }tcR/R/measures.R0000644000176200001440000002357312657351347013201 0ustar liggesusers########## Evaluation of distributions, vectors and sets ########## #' Information measures. #' #' @aliases entropy js.div kl.div #' #' @description #' Functions for information measures of and between distributions of values. #' #' Warning! #' Functions will check if \code{.data} if a distribution of random variable (sum == 1) or not. #' To force normalisation and / or to prevent this, set \code{.do.norm} to TRUE (do normalisation) #' or FALSE (don't do normalisation). For \code{js.div} and \code{kl.div} vectors of values must have #' equal length. #' #' Functions: #' #' - The Shannon entropy quantifies the uncertainty (entropy or degree of surprise) #' associated with this prediction. #' #' - Kullback-Leibler divergence (information gain, information divergence, #' relative entropy, KLIC) is a non-symmetric measure of the difference between #' two probability distributions P and Q (measure of information lost when Q is used to #' approximate P). #' #' - Jensen-Shannon divergence is a symmetric version of KLIC. Square root of this #' is a metric often referred to as Jensen-Shannon distance. #' #' @usage #' entropy(.data, .norm = F, .do.norm = NA, .laplace = 1e-12) #' #' kl.div(.alpha, .beta, .do.norm = NA, .laplace = 1e-12) #' #' js.div(.alpha, .beta, .do.norm = NA, .laplace = 1e-12, .norm.entropy = F) #' #' @param .data,.alpha,.beta Vector of values. #' @param .norm if T then compute normalised entropy (H / Hmax). #' @param .do.norm One of the three values - NA, T or F. If NA than check for distrubution \code{(sum(.data) == 1)}. #' and normalise if needed with the given laplace correction value. if T then do normalisation and laplace #' correction. If F than don't do normalisaton and laplace correction. #' @param .laplace Value for Laplace correction which will be added to every value in the .data. #' @param .norm.entropy if T then normalise JS-divergence by entropy. #' #' @return Shannon entropy, Jensen-Shannon divergence or Kullback-Leibler divergence values. #' #' @seealso \link{similarity}, \link{diversity} entropy <- function (.data, .norm = F, .do.norm = NA, .laplace = 1e-12) { .data <- check.distribution(.data, .do.norm, .laplace, .warn.zero = T) res <- - sum(.data * log2(.data)) if (.norm) { res / log2(length(.data)) } else { res } } kl.div <- function (.alpha, .beta, .do.norm = NA, .laplace = 1e-12) { .alpha <- check.distribution(.alpha, .do.norm, .laplace, .warn.zero = T) .beta <- check.distribution(.beta, .do.norm, .laplace, .warn.zero = T) sum(log2(.alpha / .beta) * .alpha) } js.div <- function (.alpha, .beta, .do.norm = NA, .laplace = 1e-12, .norm.entropy = F) { .alpha <- check.distribution(.alpha, .do.norm, .laplace, .warn.zero = T) .beta <- check.distribution(.beta, .do.norm, .laplace, .warn.zero = T) nrm = if (.norm.entropy) 0.5 * (entropy(.alpha, F) + entropy(.beta, F)) else 1 M <- (.alpha + .beta) / 2 0.5 * (kl.div(.alpha, M, F) + kl.div(.beta, M, F)) / nrm } #' Log-likelihood. #' #' @description #' Compute the log-likelihood of the given distribution or vector of counts. #' #' @param .data Vector for distribution or counts. #' @param .base Logarightm's base for the loglikelihood. #' @param .do.norm Parameter to the \code{check.distribution} function. #' @param .laplace Laplace correction, Parameter to the \code{check.distribution} function. #' #' @return Loglikelihood value. loglikelihood <- function (.data, .base = 2, .do.norm = NA, .laplace = 0.000000000001) { .data <- check.distribution(.data, .do.norm, .laplace) sum(log(.data, .base)) } #' Set and vector similarity measures. #' #' @aliases similarity cosine.similarity tversky.index overlap.coef morisitas.index jaccard.index horn.index #' #' @description #' Functions for computing similarity between two vectors or sets. See "Details" for exact formulas. #' #' - Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them. #' #' - Tversky index is an asymmetric similarity measure on sets that compares a variant to a prototype. #' #' - Overlap cofficient is a similarity measure related to the Jaccard index that measures the overlap between two sets, and is defined as the size of the intersection divided by the smaller of the size of the two sets. #' #' - Jaccard index is a statistic used for comparing the similarity and diversity of sample sets. #' #' - Morisita's overlap index is a statistical measure of dispersion of individuals in a population. It is used to compare overlap among samples (Morisita 1959). This formula is based on the assumption that increasing the size of the samples will increase the diversity because it will include different habitats (i.e. different faunas). #' #' - Horn's overlap index based on Shannon's entropy. #' #' Use the \link{repOverlap} function for computing similarities of clonesets. #' #' @usage #' cosine.similarity(.alpha, .beta, .do.norm = NA, .laplace = 0) #' #' tversky.index(x, y, .a = 0.5, .b = 0.5) #' #' overlap.coef(.alpha, .beta) #' #' jaccard.index(.alpha, .beta, .intersection.number = NA) #' #' morisitas.index(.alpha, .beta, .do.unique = T) #' #' horn.index(.alpha, .beta, .do.unique = T) #' #' @param .alpha,.beta,x,y Vector of numeric values for cosine similarity, vector of any values #' (like characters) for \code{tversky.index} and \code{overlap.coef}, matrix or data.frame with 2 columns for \code{morisitas.index} and \code{horn.index}, #' either two sets or two numbers of elements in sets for \code{jaccard.index}. #' @param .a,.b Alpha and beta parameters for Tversky Index. Default values gives the Jaccard index measure. #' @param .do.norm One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) #' and normalise if needed with the given laplace correction value. if T then do normalisation and laplace #' correction. If F than don't do normalisaton and laplace correction. #' @param .laplace Value for Laplace correction. #' @param .do.unique if T then call unique on the first columns of the given data.frame or matrix. #' @param .intersection.number Number of intersected elements between two sets. See "Details" for more information. #' @details #' For \code{morisitas.index} input data are matrices or data.frames with two columns: first column is #' elements (species or individuals), second is a number of elements (species or individuals) in a population. #' #' Formulas: #' #' Cosine similarity: \code{cos(a, b) = a * b / (||a|| * ||b||)} #' #' Tversky index: \code{S(X, Y) = |X and Y| / (|X and Y| + a*|X - Y| + b*|Y - X|)} #' #' Overlap coefficient: \code{overlap(X, Y) = |X and Y| / min(|X|, |Y|)} #' #' Jaccard index: \code{J(A, B) = |A and B| / |A U B|} #' For Jaccard index user can provide |A and B| in \code{.intersection.number} otherwise it will be computed #' using \code{base::intersect} function. In this case \code{.alpha} and \code{.beta} expected to be vectors of elements. #' If \code{.intersection.number} is provided than \code{.alpha} and \code{.beta} are exptected to be numbers of elements. #' #' Formula for Morisita's overlap index is quite complicated and can't be easily shown here, so just look at this webpage: http://en.wikipedia.org/wiki/Morisita%27s_overlap_index #' #' #' @return Value of similarity between the given sets or vectors. #' #' @seealso \link{repOverlap}, \link{intersectClonesets}, \link{entropy}, \link{diversity} #' #' @examples #' \dontrun{ #' jaccard.index(1:10, 2:20) #' a <- length(unique(immdata[[1]][, c('CDR3.amino.acid.sequence', 'V.gene')])) #' b <- length(unique(immdata[[2]][, c('CDR3.amino.acid.sequence', 'V.gene')])) #' # Next #' jaccard.index(a, b, repOverlap(immdata[1:2], .seq = 'aa', .vgene = T)) #' # is equal to #' repOverlap(immdata[1:2], 'jaccard', seq = 'aa', .vgene = T) #' } cosine.similarity <- function (.alpha, .beta, .do.norm = NA, .laplace = 0) { .alpha <- check.distribution(.alpha, .do.norm, .laplace) .beta <- check.distribution(.beta, .do.norm, .laplace) sum(.alpha * .beta) / (sum(.alpha ^ 2) * sum(.beta ^ 2)) } tversky.index <- function (x, y, .a = 0.5, .b = 0.5) { XiY <- length(intersect(x, y)) XiY / (XiY + .a * length(setdiff(x, y)) + .b * length(setdiff(y, x))) } overlap.coef <- function (.alpha, .beta) { length(intersect(.alpha, .beta)) / min(length(.alpha), length(.beta)) } jaccard.index <- function (.alpha, .beta, .intersection.number = NA) { if (is.na(.intersection.number)) { abin <- length(intersect(.alpha, .beta)) abin / (length(unique(.alpha)) + length(unique(.beta)) - abin) } else { .intersection.number / (.alpha + .beta - .intersection.number) } } morisitas.index <- function (.alpha, .beta, .do.unique = T) { colnames(.alpha) <- c('Species', 'Count') colnames(.beta) <- c('Species', 'Count') if (.do.unique) { .alpha <- .alpha[!duplicated(.alpha[,1]),] .beta <- .beta[!duplicated(.beta[,1]),] } .alpha[,2] <- as.numeric(.alpha[,2]) .beta[,2] <- as.numeric(.beta[,2]) merged <- merge(.alpha, .beta, by = 'Species', all = T) merged[is.na(merged)] <- 0 sum.alpha <- sum(.alpha[,2]) sum.beta <- sum(.beta[,2]) 2 * sum(merged[,2] * merged[,3] / sum.alpha) / sum.beta / ( (sum((.alpha[,2] / sum.alpha)^2) + sum((.beta[,2] / sum.beta)^2))) } horn.index <- function (.alpha, .beta, .do.unique = T) { .alpha[,1] <- as.character(.alpha[,1]) .beta[,1] <- as.character(.beta[,1]) colnames(.alpha) <- c('Species', 'Count') colnames(.beta) <- c('Species', 'Count') if (.do.unique) { .alpha <- .alpha[!duplicated(.alpha[,1]),] .beta <- .beta[!duplicated(.beta[,1]),] } .alpha[,2] <- as.numeric(.alpha[,2]) / sum(.alpha[,2]) .beta[,2] <- as.numeric(.beta[,2]) / sum(.beta[,2]) merged <- merge(.alpha, .beta, by = 'Species', all = T) merged[is.na(merged)] <- 0 rel.12 <- merged[,2] / merged[,3] rel.12[merged[,3] == 0] <- 0 rel.21 <- merged[,3] / merged[,2] rel.21[merged[,2] == 0] <- 0 1 / log(2) * sum(merged[,2] / 2 * log(1 + rel.21) + merged[,3] / 2 * log(1 + rel.12)) }tcR/vignettes/0000755000176200001440000000000013446161025013014 5ustar liggesuserstcR/vignettes/tcrvignette.Rmd0000644000176200001440000010661313325616566016040 0ustar liggesusers--- title: '

tcR: a package for T cell receptor and Immunoglobulin repertoires advanced data analysis

Vadim I. Nazarov

' author:

Laboratory of Comparative and Functional Genomics, IBCH RAS, Moscow, Russia

output: html_document: theme: spacelab toc: yes toc_depth: 4 pdf_document: toc: yes toc_depth: 4 word_document: default --- ## Introduction The *tcR* package designed to help researchers in the immunology field to analyse T cell receptor (`TCR`) and immunoglobulin (`Ig`) repertoires. In this vignette, I will cover procedures for immune receptor repertoire analysis provided with the package. Terms: - Clonotype: a group of T / B cell clones with equal CDR3 nucleotide sequences and equal Variable genes. - Cloneset / repertoire: a set of clonotypes. Represented as a data frame in which each row corresponds to a unique clonotype. - UMI: Unique Molecular Identifier (see this [paper](http://www.nature.com/nmeth/journal/v9/n1/full/nmeth.1778.html) for details) ```{r eval=TRUE,echo=FALSE,warning=FALSE,message=FALSE} library(tcR) data(twa) data(twb) ``` ### Package features - Parsers for outputs of various tools for CDR3 extraction and genes alignment *(currently implemented parsers for MiTCR, MiGEC, VDJtools, ImmunoSEQ, IMSEQ and MiXCR)* - Data manipulation *(in-frame / out-of-frame sequences subsetting, clonotype motif search)* - Descriptive statistics *(number of reads, number of clonotypes, gene segment usage)* - Shared clonotypes statistics *(number of shared clonotypes, using V genes or not; sequential intersection among the most abundant clonotype ("top-cross"))* - Repertoire comparison *(Jaccard index, Morisita's overlap index, Horn's index, Tversky index, overlap coefficient)* - V- and J genes usage and it's analysis *(PCA, Shannon Entropy, Jensen-Shannon Divergence)* - Diversity evaluation *(ecological diversity index, Gini index, inverse Simpson index, rarefaction analysis)* - Artificial repertoire generation (beta chain only, for now) - Spectratyping - Various visualisation procedures - Mutation networks *(graphs, in which vertices represent CDR3 nucleotide / amino acid sequences and edges are connecting similar sequences with low hamming or edit distance between them)* ### Data in the package There are two datasets provided with the package - twins data and V(D)J recombination genes data. #### Downsampled twins data `twa.rda`, `twb.rda` - two lists with 4 data frames in each list. Every data frame is a sample downsampled to the 10000 most abundant clonotypes of twins data (alpha and beta chains). Full data is available here: [Twins TCR data at Laboratory of Comparative and Functional Genomics](http://labcfg.ibch.ru/tcr.html) Explore the data: ```{r eval=FALSE,echo=TRUE} # Load the package and load the data. library(tcR) data(twa) # "twa" - list of length 4 data(twb) # "twb" - list of length 4 # Explore the data. head(twa[[1]]) head(twb[[1]]) ``` #### Gene alphabets Gene alphabets - character vectors with names of genes for TCR and Ig. ```{r eval=FALSE,echo=TRUE} # Run help to see available alphabets. ?genealphabets ?genesegments data(genesegments) ``` ### Quick start / automatic report generation For the exploratory analysis of a single repertoire, use the RMarkdown report file at `"/inst/library.report.Rmd"` Analysis in the file include statistics and visualisation of number of clones, clonotypes, in- and out-of-frame sequences, unique amino acid CDR3 sequences, V- and J-usage, most frequent k-mers, rarefaction analysis. For the analysis of a group of repertoires ("cross-analysis"), use the RMarkdown report file at: `"/inst/crossanalysis.report.Rmd}"` Analysis in this file include statistics and visualisation of number of shared clones and clonotypes, V-usage for individuals and groups, J-usage for individuals, Jensen-Shannon divergence among V-usages of repertoires and top-cross. You need the *knitr* package installed in order to generate reports from default pipelines. In RStudio you can run a pipeline file as follows: `Run RStudio -> load the pipeline .Rmd files -> press the knitr button` ### Input parsing Currently in *tcR* there are implemented parser for the next software: - MiTCR - `parse.mitcr`; - MiTCR w/ UMIs - `parse.mitcrbc`; - MiGEC - `parse.migec`; - VDJtools - `parse.vdjtools`; - ImmunoSEQ - `parse.immunoseq`; - MiXCR - `parse.mixcr`; - IMSEQ - `parse.imseq`. Also a general parser `parse.cloneset` for a text table files is implemented. General wrapper for parsers is `parse.file`. User can also parse a list of files or the entire folder. Run `?parse.folder` to see a help on parsing input files and a list of functions for parsing a specific input format. ```{r eval=FALSE,echo=TRUE} # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. immdata1 <- parse.file("~/mitcr_data/immdata1.txt", 'mitcr') # equivalent to immdata1.eq <- parse.mitcr("~/mitcr_data/immdata1.txt") # Parse folder with MiGEC files. immdata <- parse.folder("~/migec_data/", 'migec') ``` ### Cloneset representation Clonesets represented in *tcR* as data frames with each row corresponding to the one nucleotide clonotype and with specific column names: - *Umi.count* - number of UMIs; - *Umi.proportion* - proportion of UMIs; - *Read.count* - number of reads; - *Read.proportion* - proportion of reads; - *CDR3.nucleotide.sequence* - CDR3 nucleotide sequence; - *CDR3.amino.acid.sequence* - CDR3 amino acid sequence; - *V.gene* - names of aligned Variable genes; - *J.gene* - names of aligned Joining genes; - *D.gene* - names of aligned Diversity genes; - *V.end* - last positions of aligned V genes (1-based); - *J.start* - first positions of aligned J genes (1-based); - *D5.end* - positions of D'5 end of aligned D genes (1-based); - *D3.end* - positions of D'3 end of aligned D genes (1-based); - *VD.insertions* - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with VJ recombination); - *DJ.insertions* - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with VJ recombination); - *Total.insertions* - total number of inserted nucleotides (number of N-nucleotides at V-J junction for receptors with VJ recombination). Any data frame with this columns and of this class is suitable for processing with the package, hence user can generate their own table files and load them for the further analysis using `read.csv`, `read.table` and other `base` R functions. Please note that *tcR* internally expects all strings to be of class "character", not "factor". Therefore you should use R parsing functions with parameter *stringsAsFactors=FALSE*. ```{r eval=TRUE, echo=TRUE} # No D genes is available here hence "" at "D.genes" and "-1" at positions. str(twa[[1]]) str(twb[[1]]) ``` ## Repertoire descriptive statistics For the exploratory analysis *tcR* provides various functions for computing descriptive statistics. ### Cloneset summary To get a general view of a subject's repertoire (overall count of sequences, in- and out-of-frames numbers and proportions) use the `cloneset.stats` function. It returns a `summary` of counts of nucleotide and amino acid clonotypes, as well as summary of read counts: ```{r eval=TRUE,echo=TRUE} cloneset.stats(twb) ``` For characterisation of a library use the `repseq.stats` function: ```{r eval=TRUE,echo=TRUE} repseq.stats(twb) ``` ### Most abundant clonotypes statistics Function `clonal.proportion` is used to get the number of most abundant by the count of reads clonotypes. E.g., compute number of clonotypes which fill up (approx.) the 25% from total repertoire's "Read.count": ```{r eval=TRUE,echo=TRUE} # How many clonotypes fill up approximately clonal.proportion(twb, 25) # the 25% of the sum of values in 'Read.count'? ``` To get a proportion of the most abundant clonotypes' sum of reads to the overall number of reads in a repertoire, use `top.proportion`, i.e. get ($\sum$ reads of top clonotypes)$/$($\sum$ reads for all clonotypes). E.g., get a proportion of the top-10 clonotypes' reads to the overall number of reads: ```{r echo=TRUE, eval=TRUE, fig=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'} # What accounts a proportion of the top-10 clonotypes' reads top.proportion(twb, 10) # to the overall number of reads? vis.top.proportions(twb) # Plot this proportions. ``` Function `tailbound.proportion` with two arguments *.col* and *.bound* gets subset of the given data frame with clonotypes which have column *.col* with value $\leq$ *.bound* and computes the ratio of sums of count reads of such subset to the overall data frame. E.g., get proportion of sum of reads of sequences which has "Read.count" <= 100 to the overall number of reads: ```{r eval=TRUE,echo=TRUE} # What is a proportion of sequences which # have 'Read.count' <= 100 to the tailbound.proportion(twb, 100) # overall number of reads? ``` ### Clonal space homeostasis Clonal space homeostasis is a useful statistics of how many space occupied by clonotypes with specific proportions. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'} # data(twb) # Compute summary space of clones, that occupy # [0, .05) and [.05, 1] proportion. clonal.space.homeostasis(twb, c(Low = .05, High = 1)) # Use default arguments: clonal.space.homeostasis(twb[[1]]) twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ``` ### In-frame and out-of-frame sequences Functions for performing subsetting and counting number of in-frame and out-of-frame clonotypes are: `count.inframes`, `count.outframes`, `get.inframes`, `get.outframes`. Parameter *.head* for this functions is a parameter to the *.head* function, that applied to the input data frame or an input list of data frames before subsetting. Functions accept both data frames and list of data frames as parameters. E.g., get data frame with only in-frame sequences and count out-of-frame sequences in the first 5000 rows for this data frame: ```{r eval=TRUE,echo=TRUE} imm.in <- get.inframes(twb) # Return all in-frame sequences from the 'twb'. # Count the number of out-of-frame sequences count.outframes(twb, 5000) # from the first 5000 sequences. ``` General functions with parameter stands for 'all' (all sequences), 'in' (only in-frame sequences) or 'out' (only out-of-frame sequences) are *get.frames* and *count.frames*: ```{r eval=TRUE,echo=TRUE} imm.in <- get.frames(twb, 'in') # Similar to 'get.inframes(twb)'. count.frames(twb[[1]], 'all') # Just return number of rows. flag <- 'out' count.frames(twb, flag, 5000) # Similar to 'count.outframes(twb, 5000)'. ``` ### Search for a target CDR3 sequences For exact or fuzzy search of sequences the package employed a function `find.clonotypes`. Input arguments for this function are a data frame or a list of data frames, targets (a character vector or data frame having one column with sequences and additional columns with, e.g., V genes), a value of which column or columns to return, a method to be used to compare sequences among each other (either "exact" for exact matching, "hamm" for matching sequences by Hamming distance (two sequences are matched if H $\leq$ 1) or "lev" for matching sequences by Levenshtein distance (two sequences are matched if L $\leq$ 1)), and column name from which sequences for matching are obtained. Sounds very complex, but in practice it's very easy, therefore let's go to examples. Suppose we want to search for some CDR3 sequences in a number of repertoires: ```{r eval=TRUE,echo=TRUE} cmv <- data.frame(CDR3.amino.acid.sequence = c('CASSSANYGYTF', 'CSVGRAQNEQFF', 'CASSLTGNTEAFF', 'CASSALGGAGTGELFF', 'CASSLIGVSSYNEQFF'), V.genes = c('TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1', 'TRBV4-1'), stringsAsFactors = F) cmv ``` We will search for them using all methods of matching (exact, hamming or levenshtein) and with and without matching by V-segment. Also, for the first case (exact matching and without V gene) we return "Total.insertions" column along with the "Read.count" column, and for the second case output will be a "Rank" - rank (generated by `set.rank`) of a clone or a clonotype in a data frame. ```{r eval=TRUE,echo=TRUE} twb <- set.rank(twb) # Case 1. cmv.imm.ex <- find.clonotypes(.data = twb[1:2], .targets = cmv[,1], .method = 'exact', .col.name = c('Read.count', 'Total.insertions'), .verbose = F) head(cmv.imm.ex) # Case 2. # Search for CDR3 sequences with hamming distance <= 1 # to the one of the cmv$CDR3.amino.acid.sequence with # matching V genes. Return ranks of found sequences. cmv.imm.hamm.v <- find.clonotypes(twb[1:3], cmv, 'hamm', 'Rank', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.hamm.v) # Case 3. # Similar to the previous example, except # using levenshtein distance and the "Read.count" column. cmv.imm.lev.v <- find.clonotypes(twb[1:3], cmv, 'lev', .target.col = c('CDR3.amino.acid.sequence', 'V.gene'), .verbose = F) head(cmv.imm.lev.v) ``` ## Gene usage Variable and Joining gene usage (V-usage and J-usage) are important characteristics of repertoires. To access and compare them among repertoires *tcR* provides a few useful functions. ### Gene usage computing To access V- and J-usage of a repertoire *tcR* provides functions `geneUsage`. Function `geneUsage`, depending on parameters, computes frequencies or counts of the given elements (e.g., V genes) of the input data frame or the input list of data frames. V and J gene names for humans for TCR and Ig are stored in the .rda file `genesegments.rda` (they are identical to those form IMGT: \href{http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=nomenclatures&species=human&group=TRBV}{link to beta genes (red ones)} and \href{http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=nomenclatures&species=human&group=TRAV}{link to alpha genes (red ones)}). All of the mentioned functions are accept data frames as well as list of data frames. Output for those functions are data frames with the first column stands for a gene and the other for frequencies. ```{r eval=TRUE,echo=TRUE} imm1.vs <- geneUsage(twb[[1]], HUMAN_TRBV) head(imm1.vs) imm.vs.all <- geneUsage(twb, HUMAN_TRBV) imm.vs.all[1:10, 1:4] # Compute joint V-J counts imm1.vj <- geneUsage(twb[[1]], list(HUMAN_TRBV, HUMAN_TRBJ)) imm1.vj[1:5, 1:5] ``` You can also directly visualise gene usage with the function `vis.gene.usage` (if you pass the gene alphabet as a second argument): ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} # Put ".dodge = F" to get distinct plot for every data frame in the given list. vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage dodge', .dodge = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9} vis.gene.usage(twb, HUMAN_TRBJ, .main = 'twb J-usage column', .dodge = F, .ncol = 2) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} vis.gene.usage(imm1.vs, NA, .main = 'twb[[1]] V-usage', .coord.flip = F) ``` ### Gene usage comparing To evaluate V- and J genes usage of repertoires, the package implements subroutines for two approaches to the analysis: measures from the information theory and PCA (Principal Component Analysis). #### Shannon entropy and Jensen-Shannon divergence To assess the diversity of genes usage user can use the `entropy` function. Kullback-Leibler assymetric measure (function `kl.div`) and Jensen-Shannon symmetric measure (functions `js.div` for computing JS-divergence between the given distributions and `js.div.seg` for computing JS-divergence between genes distributions of two clonesets or a list with data frames) are provided to estimate distance among gene usage of different repertoires. To visualise distances *tcR* employed the `vis.radarlike` function, see Section "Plots" for more detailed information. ```{r eval=T, echo=TRUE, fig.align='center'} # Transform "0:100" to distribution with Laplace correction entropy(0:100, .laplace = 1) # (i.e., add "1" to every value before transformation). entropy.seg(twb, HUMAN_TRBV) # Compute entropy of V-segment usage for each data frame. js.div.seg(twb[1:2], HUMAN_TRBV, .verbose = F) imm.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(imm.js, .ncol = 2) ``` #### Principal Component Analysis (PCA) Principal component analysis (PCA) is a statistical procedure for transforming a set of observations to a set of special values for analysis. In *tcR* implemented functions `pca.segments` for performing PCA on V- or J-usage, and `pca.segments.2D` for performing PCA on VJ-usage. For plotting the PCA results see the `vis.pca` function. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6} pca.segments(twb, .genes = HUMAN_TRBV) # Plot PCA results of V-segment usage. # Return object of class "prcomp" class(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV)) ``` ## Repertoire overlap analysis *tcR* provides a number of functions for evaluating similarity of clonesets based on shared among clonesets clonotypes and working with data frames with shared clonotypes. ### Overlap quantification The general interface to all functions for computing cloneset overlap coefficients is the `repOverlap` function. #### Number of shared clonotypes The most straightforward yet a quite effective way to evaluate similarity of two clonesets is compute the number of shared clonotypes. *tcR* adds the new function `intersectClonesets` (`repOverlap(your_data, 'exact')`) which is by default computes the number of shared clonotypes using the "CDR3.nucleotide.sequence" columns of the given data frames, but user can change target columns by using arguments *.type* or *.col*. As in the `find.clonotypes`, user can choose which method apply to the elements: exact match of elements, match by Hamming distance or match by Levenshtein distance. Logical argument *.norm* is used to perform normalisation of the number of shared clonotypes by dividing this number by multiplication of clonesets' sizes (**strongly** recommended otherwise your results will be correlating with clonesets' sizes). ```{r eval=TRUE, echo=T, fig.align='center', warning=FALSE} # Equivalent to intersect(twb[[1]]$CDR3.nucleotide.sequence, # twb[[2]]$CDR3.nucleotide.sequence) repOverlap(twb[1:2], 'exact', 'nuc', .verbose = F) # Equivalent to intersectClonesets(twb, "n0e", .norm = T) repOverlap(twb, 'exact', 'nuc', .norm = T, .verbose = F) # Intersect by amino acid clonotypes + V genes repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F) # Plot a heatmap of the number of shared clonotypes. vis.heatmap(repOverlap(twb, 'exact', 'aa', .vgene = T, .verbose = F), .title = 'twb - (ave)-intersection', .labs = '') ``` See the `vis.heatmap` function in the Section "Visualisation" for the visualisation of the intersection results. Functions `intersectCount`, `intersectLogic` and `intersectIndices` are more flexible in terms of choosing which columns to match. They all have parameter *.col* that specifies names of columns which will used in computing intersection. Function `intersectCount` returns number of similar elements; `intersectIndices(x, y)` returns 2-column matrix with the first column stands for an index of an element in the given *x*, and the second column stands for an index of that element of *y* which is similar to a relative element in *x*; `intersectLogic(x, y)` returns a logical vector of *length(x)* or *nrow(x)*, where TRUE at position *i* means that element with index {i} has been found in the *y*. ```{r eval=TRUE, echo=TRUE} # Get logic vector of shared elements, where # elements are tuples of CDR3 nucleotide sequence and corresponding V-segment imm.1.2 <- intersectLogic(twb[[1]], twb[[2]], .col = c('CDR3.amino.acid.sequence', 'V.gene')) # Get elements which are in both twb[[1]] and twb[[2]]. head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')]) ``` #### "Top cross" Number of shared clonotypes among the most abundant clonotypes may differ signigicantly from those with lesses count. To support research *tcR* offers the `top.cross` function, that apply `tcR::intersectClonesets`, e.g., to the first 1000 clonotypes, 2000, 3000 and so on up to the first 100000 clones, if supplied `.n == seq(1000, 100000, 1000)`. ```{r eval=TRUE, echo=T, fig.align='center', fig.height=6.5, fig.width=10, warning=FALSE} twb.top <- top.cross(.data = twb, .n = seq(500, 10000, 500), .verbose = F, .norm = T) top.cross.plot(twb.top) ``` #### More complex similarity measures *tcR* also provides more complex similarity measures for evaluating the similarity of sets. - Tversky index (`repOverlap(your_data, 'tversky')` for clonesets or `tversky.index` for vectors) is an asymmetric similarity measure on sets that compares a variant to a prototype. If using default arguments, it's similar to Dice's coefficient. - Overlap coefficient (`repOverlap(your_data, 'overlap')` for clonesets or `overlap.coef` for vectors) is a similarity measure that measures the overlap between two sets, and is defined as the size of the intersection divided by the smaller of the size of the two sets. - Jaccard index (`repOverlap(your_data, 'jaccard')` for clonesets or `jaccard.index` for vectors) is a statistic used for comparing the similarity and diversity of sample sets. - Morisita's overlap index (`repOverlap(your_data, 'morisita')` for clonesets or `morisitas.index` for other data) is a statistical measure of dispersion of individuals in a population and is used to compare overlap among samples. The formula is based on the assumption that increasing the size of the samples will increase the diversity because it will include different habitats (i.e. different faunas) (Morisita, 1959). To visualise similarity among repertoires the `vis.heatmap` function is appropriate. ```{r eval=TRUE, echo=TRUE, results='hold'} # Apply the Morisitas overlap index to the each pair of repertoires. # Use information about V genes (i.e. one CDR3 clonotype is equal to another # if and only if their CDR3 aa sequences are equal and their V genes are equal) repOverlap(twb, 'morisita', 'aa', 'read.count', .vgene = T, .verbose = F) ``` ### Overlap statistics and tests #### Overlap Z-score (OZ-score) - a measure for ???abnormality??? in overlaps `ozScore` #### Monte Carlo permutation test for pairwise and one-vs-all-wise within- and inter-group differences in a set of repertoires `permutDistTest` `pca2euclid` ### Shared repertoire To investigate a shared among a several repertoires clonotypes ("shared repertoire") the package provided the `shared.repertoire` function along with functions for computing the shared repertoire statistics. The `shared.representation` function computes the number of shared clonotypes for each repertoire for each degree of sharing (i.e., number of people, in which indicated amount of clones have been found). The function `shared.summary` is equivalent to `repOverlap(, 'exact')` but applies to the shared repertoire data frame. Measuring distances among repertoires using the cosine similarity on vector of counts of shared sequences is also possible with the `cosine.sharing` function. ```{r eval=TRUE, echo=TRUE} # Compute shared repertoire of amino acid CDR3 sequences and V genes # which has been found in two or more people and return the Read.count column # of such clonotypes from each data frame in the input list. imm.shared <- shared.repertoire(.data = twb, .type = 'avrc', .min.ppl = 2, .verbose = F) head(imm.shared) shared.representation(imm.shared) # Number of shared sequences. ``` ## Diversity evaluation For assessing the distribution of clonotypes in the given repertoire, *tcR* provides functions for evaluating the diversity (functions `diversity` and `inverse.simpson`) and the skewness of the clonal distribution (functions `gini` and `gini.simpson`), and a general interface to all of this functions `repDiversity`, which user should use to estimate the diversity of clonesets. Function `diversity` (`repDiversity(your_clonesets, "div")`) computes the ecological diversity index (with parameter `.q` for penalties for clones with large count). Function `inverse.simpson` (`repDiversity(your_clonesets, "inv.simp")`) computes the Inverse Simpson Index (i.e., inverse probability of choosing two similar clonotypes). Function `gini` (`repDiversity(your_clonesets, "gini")`) computes the economical Gini index of clonal distribution. Function `gini.simpson` (`repDiversity(your_clonesets, "gini.simp")`) computes the Gini-Simpson index. Function `chao1` (`repDiversity(your_clonesets, "chao1")`) computes the Chao1 index, its SD and two 95 perc CI. Function `repDiversity` accepts single clonesets as well as a list of clonesets. Parameter `.quant` specifies which column to use for computing the diversity (print `?repDiversity` to see more information about input arguments). ```{r eval=TRUE, echo=TRUE, results='hold'} # Evaluate the diversity of clones by the ecological diversity index. repDiversity(twb, 'div', 'read.count') sapply(twb, function (x) diversity(x$Read.count)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Compute the diversity as the inverse probability of choosing two similar clonotypes. repDiversity(twb, 'inv.simp', 'read.prop') sapply(twb, function (x) inverse.simpson(x$Read.proportion)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Evaluate the skewness of clonal distribution. repDiversity(twb, 'gini.simp', 'read.prop') sapply(twb, function (x) gini.simpson(x$Read.proportion)) ``` ```{r eval=TRUE, echo=TRUE, results='hold'} # Compute diversity of repertoire using Chao index. repDiversity(twb, 'chao1', 'read.count') sapply(twb, function (x) chao1(x$Read.count)) ``` ## Visualisation ### CDR3 length and read count distributions plot Plots of the distribution of CDR3 nucleotide sequences length (function `vis.count.len`) and the histogram of counts (function `vis.number.count`). Input data is either a data frame or a list with data frames. Argument *.col* specifies column's name with clonotype counts. Argument *.ncol* specifies a number of columns in a plot with multiple distribution, i.e., if the input data is a list with data frames. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center'} vis.count.len(twb[[1]], .name = "twb[[1]] CDR3 lengths", .col = "Read.count") ``` ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=5.5, fig.align='center', warning=FALSE, message=FALSE} # I comment this to avoid a strange bug in ggplot2. Will uncomment later. # vis.number.count(twb[[1]], .name = "twb[[1]] count distribution") ``` ### Top proportions bar plot For the visualisation of proportions of the most abundant clonotypes in a repertoire *tcR* offers the `vis.top.proportions` function. As input the function receives either data frame or a list with data frames (argument *.data*), an integer vector with number of clonotypes for computing proportions of count for this clonotypes (argument *.head*), and a column's name with clonotype counts (argument *.col*). ```{r echo=TRUE, eval=TRUE, fig.height=4, fig.width=5.5, message=FALSE, fig.align='center'} vis.top.proportions(twb, c(10, 500, 3000, 10000), .col = "Read.count") ``` ### Clonal space homeostasis bar plot For the visualisation of how much space occupied each group of clonotypes, divided into groups by their proportions in the data, use the `vis.clonal.space` function. As an input it receives the output of the `clonal.space.homeostasis` function. ```{r eval=TRUE, echo=TRUE, fig.height=4, fig.width=6.5, fig.align='center'} twb.space <- clonal.space.homeostasis(twb) vis.clonal.space(twb.space) ``` ### Heat map Pairwise distances or similarity of repertoires can be represented as qudratic matrices, in which each row and column represented a cloneset, and each value in every cell (i, j) is a distance between repertoires with indices i and j. One way to visalise such matrices is using "heatmaps". For plotting heatmaps in *tcR* implemented the `vis.heatmap` function. With changing input arguments user can change names of labs, title and legend. ```{r eval=TRUE, echo=TRUE, fig.align='center', warning=FALSE, message=FALSE} twb.shared <- repOverlap(twb, "exact", .norm = F, .verbose = F) vis.heatmap(twb.shared, .title = "Twins shared nuc clonotypes", .labs = c("Sample in x", "Sample in y"), .legend = "# clonotypes") ``` ### Radar-like plot Another way to repsent distances among objects is "radar-like" plots (because this plots is not exactly radar plots) realised in *tcR* throught the `vis.radarlike` function. Argument *.ncol* specifies a number of columns of radar-like plots in a viewport. ```{r eval=T, echo=TRUE, fig.align='center'} twb.js <- js.div.seg(twb, HUMAN_TRBV, .verbose = F) vis.radarlike(twb.js, .ncol = 2) ``` ### Gene usage histogram For the visualisation of gene usage *tcR* employes subroutines for making classical histograms using the `vis.gene.usage` function. The function accept clonesets, lists of clonesets or output from the `geneUsage` function. If input is a cloneset(s), then user should specify a gene alphabet (e.g., `HUMAN_TRBV`) in order to compute the gene usage. Using a parameter \code{.dodge}, user can change type of the output between an output as histograms for each cloneset in the input list (`.dodge = F`) or an output as an one histogram for all data, which is very useful for comparing distribution of genes (`.dodge = T`). If `.dodge=F` and input are lists of clonesets or a gene usage of a few clonesets, than user with argument `.ncol` can specify how many columns of histograms will be outputted. With `.coord.flip` user can flip coordinates so genes will be at the left side of the plot. ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} vis.gene.usage(twb[[1]], HUMAN_TRBV, .main = 'Sample I V-usage') ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=7, fig.width=5} vis.gene.usage(twb[[2]], HUMAN_TRBV, .main = 'Sample II V-usage', .coord.flip = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=5, fig.width=7} twb.jusage <- geneUsage(twb, HUMAN_TRBJ) vis.gene.usage(twb.jusage, .main = 'Twins J-usage', .dodge = T) ``` ```{r eval=TRUE, echo=TRUE, message=FALSE, fig.align='center', fig.height=6, fig.width=9} vis.gene.usage(twb, HUMAN_TRBJ, .main = 'Twins J-usage', .dodge = F, .ncol = 2) ``` ### PCA visualisation For the visualisation of results from the `prcomp` function (i.e., objects of class `prcomp`), *tcR* provides the `vis.pca` function. Input arguments for the function are an object of class `prcomp` and a (if needed) list with groups (vectors of indices of samples) for colouring points in the plot. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.height=4.5, fig.width=6} twb.pca <- pca.segments(twb, .do.plot = F) vis.pca(pca.segments(twb, .do.plot = F, .genes = HUMAN_TRBV), .groups = list(GroupA = c(1,2), GroupB = c(3,4))) ``` ### Logo-like plot Logo-like graphs for visualisation of nucleotide or amino acid motif sequences / profiles. ```{r eval=TRUE, echo=TRUE, fig.align='center', fig.width=6, fig.height=5.5, warning=FALSE, message=FALSE} km <- get.kmers(twb[[1]]$CDR3.amino.acid.sequence, .head = 100, .k = 7, .verbose = F) d <- kmer.profile(km) vis.logo(d) ``` ## Mutation networks Mutation network (or a mutation graph) is a graph with vertices representing nucleotide or in-frame amino acid sequences (out-of-frame amino acid sequences will be automatically filtered out by *tcR* functions for mutation network creating) and edges which connecting pairs of sequences with hamming distance (parameter *.method* = 'hamm') or edit distance (parameter *.method* = 'lev') between them no more than specified in the *.max.errors* function parameter of the `mutation.network` function. To create a mutation network first what you need is to make a shared repertoires and then apply the `mutation.network` function to this shared repertoire: ```{r eval=TRUE, echo=TRUE} # data(twb) twb.shared <- shared.repertoire(twb, .head = 1000, .verbose = F) G <- mutation.network(twb.shared) G ``` To manipulate vertex attributes functions \code{set.group.vector} and \code{get.group.names} are provided. ```{r eval=TRUE, echo=TRUE} # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4))) # <= refactor this get.group.names(G, "twins", 1) get.group.names(G, "twins", 300) get.group.names(G, "twins", c(1,2,3), F) get.group.names(G, "twins", 300, F) # Because we have only two groups, we can assign more readable attribute. V(G)$twin.names <- get.group.names(G, "twins") V(G)$twin.names[1] V(G)$twin.names[300] ``` To access neighbour vertices of vertices ("ego-network") use the \code{mutation.neighbours} function: ```{r eval=TRUE, echo=TRUE} # data(twb) # twb.shared <- shared.repertoire(twb, .head = 1000) # G <- mutation.network(twb.shared) head(mutated.neighbours(G, 1)[[1]]) ``` ## Conclusion Feel free to contact me for the package-related or immunoinformatics research-related questions. If you spot a bug or would like to see something useful for you in the package feel free to raise an issue at *tcR* GitHub: [https://github.com/imminfo/tcr/issues](Issues) ## Appendix A: Kmers manipulation and processing In the package implemented functions for working with k-mers. Function `get.kmers` generates k-mers from the given chatacter vector or a data frame with columns for sequences and a count for each sequence. ```{r eval=TRUE, echo=TRUE} head(get.kmers(twb[[1]]$CDR3.amino.acid.sequence, 100, .meat = F, .verbose = F)) head(get.kmers(twb[[1]], .meat = T, .verbose = F)) ``` ## Appendix B: Nucleotide and amino acid sequences manipulation The package also provides a several number of functions for performing classic bioinformatics tasks on strings. For more powerful subroutines see the Bioconductor's *Biostrings* package. ### Nucleotide sequence manipulation Functions for basic nucleotide sequences manipulations: reverse-complement, translation and GC-content computation. All functions are vectorised. ```{r eval=TRUE, echo=TRUE} revcomp(c('AAATTT', 'ACGTTTGGA')) cbind(bunch.translate(twb[[1]]$CDR3.nucleotide.sequence[1:10]), twb[[1]]$CDR3.amino.acid.sequence[1:10]) gc.content(twb[[1]]$CDR3.nucleotide.sequence[1:10]) ``` ### Reverse translation subroutines Function `codon.variants` returns a list of vectors of nucleotide codons for each letter for each input amino acid sequence. Function `translated.nucl.sequences` returns the number of nucleotide sequences, which, when translated, will result in the given amino acid sequence(s). Function `reverse.translation` return all nucleotide sequences, which is translated to the given amino acid sequences. Optional argument `.nucseq` for each of this function provides restriction for nucleotides, which cannot be changed. All functions are vectorised. ```{r eval=TRUE, echo=TRUE} codon.variants('LQ') translated.nucl.sequences(c('LQ', 'CASSLQ')) reverse.translation('LQ') translated.nucl.sequences('LQ', 'XXXXXG') codon.variants('LQ', 'XXXXXG') reverse.translation('LQ', 'XXXXXG') ``` tcR/README.md0000644000176200001440000000520613446157615012300 0ustar liggesusers[![CRAN](http://www.r-pkg.org/badges/version/tcR?style=flat-square)](https://cran.r-project.org/package=tcR) [![Downloads_all](http://cranlogs.r-pkg.org/badges/grand-total/tcR)](http://www.r-pkg.org/pkg/tcR) [![Downloads_week](http://cranlogs.r-pkg.org/badges/last-week/tcR)](http://www.r-pkg.org/pkg/tcR) [![Licence](https://img.shields.io/hexpm/l/plug.svg?style=flat-square)](http://www.apache.org/licenses/LICENSE-2.0) tcR === *The tcR package is no longer supported and current issues will not be fixed. A new package is available that is designed to replace tcR called immunarch.* *We have solved most of the problems tcR package had and improved the overall pipeline, providing functions for painless repertoire file parsing and publication-ready plot making.* *The mission of immunarch is to make immune repertoire data analysis as easy and possible - even with R.* *Please feel free to check it here: https://immunarch.com/* *We will be happy to help you to integrate the new package into your pipelines. Please do not hesitate to contact us via emails on https://immunarch.com/ or via issues on https://github.com/immunomind/immunarch, should any question arise.* *Sincerely, immunarch dev team and Vadim I. Nazarov, lead developer* tcR is a platform designed for TCR and Ig repertoire data analysis in R after preprocessing data with software tools for CDR3 extraction and gene segments aligning (MiTCR, MiXCR, MiGEC, ImmunoSEQ, IMSEQ, etc.). With the power and flexibility of R language and procedures supported by tcR users can perform advanced statistical analysis of TCR and Ig repertoires. The package was published in BMC Bioinformatics, please cite if you use it: [Nazarov et al., tcR: an R package for T cell receptor repertoire advanced data analysis](http://www.biomedcentral.com/1471-2105/16/175) See tcR website for more information, manual and examples: [http://imminfo.github.io/tcr/](http://imminfo.github.io/tcr/) If you have any questions, suggestions or bug reports, feel free to raise an issue here: [https://github.com/imminfo/tcr/issues](https://github.com/imminfo/tcr/issues) The project was developed mainly in the [Laboratory of Comparative and Functional Genomics](http://labcfg.ibch.ru/lcfg.html). *Warning!* tcR internally expects columns with nucleotide and amino acid CDR3 sequences and columns with gene segments to have character class, not factor class. Use `stringsAsFactors=FALSE` parameter if you use R functions for parsing files with tables (.csv, .xls and others). *Note for installation on Macs with OSX Yosemite (and potentially other versions): if you receive a compilation error, modify tcR/src/Makvars to:* ``` CXX=clang++ ``` tcR/MD50000644000176200001440000001546713446170643011337 0ustar liggesusers7bf6e197e7fbb19c285c1cb956427cf9 *DESCRIPTION 67262988fde0cfff764df4ccf857c884 *NAMESPACE e96382dfc876ba6af180a79ed52adbda *NEWS d5ee0a88c2ecbc39128e4d3e789978c9 *R/RcppExports.R bf70513564d8952a6b7a190be1a41391 *R/crosses.R 26eb53f75787d5c81f1aa352b963bc5c *R/dataproc.R 7466268d60a9c6ed13fa0f9e19ca9978 *R/datatools.R 72061eb9659ec0b721a87c5f8e31a175 *R/diversity.R 0988123ae30afe8c10aeda24fbe53a78 *R/docdata.R a186e0ffef28efdc7076680391c58c2d *R/filters.R 18d7cf76bf4e751aefadf8a6f64e3347 *R/graph.R 18d779083054a272f663d525dad32d09 *R/infoanalysis.R b5681159c5404b92e7a8147952691346 *R/io.R 59d4ebee4bc11f561168740429bf3597 *R/kmers.R ef81c66aa4f2c28c94dd9b4dd0b0bb7c *R/measures.R f29f5cddfe3ab5afebd426d69233010f *R/mitcr.R fb30623da0a11354e504df62defb8bbb *R/onload.R 003ddf6d201f3e1cadd53bb71f8c3ca2 *R/parsing.R 4342989bb5ea7e315739151672da1e26 *R/plots.R feb13c7a0cc1c669359c5130eeb37d9b *R/repdiversity.R 635731a172dec20b18715fc60f8b00b9 *R/repoverlap.R 2a02d33cb664073101c0fd99ca4a7da8 *R/segments.R 0bac2b82ac075c676934af5dc34de7a8 *R/shared.R 0abf024069438d5e1acc615284782a44 *R/spectrum.R 385c4c5a70bb2b36eb2df94e89bd02c2 *R/stats.R 3257c9831e8d13fbe1d9773f3bddd5ed *R/strtools.R d1bb8c971b967c8735da603547b9e9ec *README.md 90a53f30e4b9e9e7f045de8c2232de76 *build/vignette.rds 89d6d3f555bed92c5ed36af98b04c7a4 *data/beta.prob.rda 0b472b1afd448af9612974a7033a82bb *data/datalist 3e5199fd3d3acb248adfe09b59f39bfd *data/genesegments.rda 802f976ee11eb67c9d8f3be6669004f2 *data/twa.rda 8253da4f56f8eee73ad14945e15ab374 *data/twb.rda 9beb0651b51d566bb9ba008ae0bf49ac *inst/CITATION 32815f3b1b3683089c10c05523e2a13c *inst/crossanalysis.report.Rmd b3e30dfc5fa127c08986ec4efbf74f9b *inst/doc/tcrvignette.R eeab2cf8838689cf2aa096201ac32813 *inst/doc/tcrvignette.Rmd d81331851f2083ad99958d25e1bbdc52 *inst/doc/tcrvignette.html 0d8030aaef0685c2f34fc53cce1adfac *inst/library.report.Rmd 4deaa0317a24a10bc6d8320f3377eb53 *man/AA_TABLE.Rd 90a723ba4e3f02626c45b15f01575c79 *man/apply.symm.Rd 5238a0694a0b87afc116cbb2a4612fcf *man/assymetry.Rd 4a75153ef1837fc632bb89c0d380a23e *man/barcodes.to.reads.Rd 6af0e87235e6e4d2850015811ad087b3 *man/beta.prob.Rd 81837e354c4190ebc3b66e81bebbe353 *man/bootstrap.tcr.Rd 5e11c8a90beac719baaaa1e7347caced *man/check.distribution.Rd 428be56b828d33df57339fc63c79ff6a *man/clonal.space.homeostasis.Rd b7bfe4dcfc9ad8ff6beb0c832fe3a05c *man/cloneset.stats.Rd cb2a04e9548ca95b0bd6c4182add8d96 *man/codon.variants.Rd c58ea39a436a784b22264c3a994e775f *man/column.summary.Rd eda87e8c588a04b5db3aa951a161da73 *man/contamination.stats.Rd 0a0086484f862c962785f4f9d964e6cb *man/convergence.index.Rd 1f45c6b9d5a511da337786701bb22505 *man/cosine.sharing.Rd cae33fe63680da872daf510c39e56440 *man/cosine.similarity.Rd fe13a6e7fe9c0ddb8da70d2f4a0d04d6 *man/dot-add.legend.Rd 45a9fd13d13c843fb5f1a2cf77fe72af *man/dot-column.choice.Rd 1adff722e109f9c7b1920c1fcce11f53 *man/dot-fix.listnames.Rd 7268c9769743640c41e0de7aad697c80 *man/dot-verbose.msg.Rd c317ef8bd85fbbceb5e7f0b673e804e0 *man/entropy.Rd ba90872f88c7f11218828fd806c44877 *man/entropy.seg.Rd 48013374daccbd07437f67de6b79657e *man/find.clonotypes.Rd f24fcd3b87d5d1af3f9b24fb989836bd *man/find.similar.sequences.Rd e1dac959fd2d6125725835399f96ba38 *man/fix.alleles.Rd 69c32ef27966d5b68855d74b7d059890 *man/gc.content.Rd 51b9eecf411945d7e5d5a9fcd3385ba2 *man/geneUsage.Rd a41e2b66d4d58ebc706f06ad9ea38e82 *man/generate.kmers.Rd 88a387ff84e45ea0f9ec0957b38d416c *man/generate.tcr.Rd 77d869dd81f03a18c9b13f4cc6f60718 *man/get.all.substrings.Rd d050e0d04851896b80848db375d12497 *man/get.deletions.alpha.Rd 75d3126f6c18a8aefb8244d314b342f3 *man/get.inframes.Rd 825c286de186b655962edeb5a9a788bd *man/get.kmers.Rd 8bf4a3e542a5fbc70c1eade55ad3b3af *man/gibbs.sampler.Rd d32733c6d7be4efa22f8e381e5aa1132 *man/group.clonotypes.Rd 224edc9f1d69178168b9ab1f96c45a59 *man/has.class.Rd 2d2d486f075d7c509e48f238aa6ad400 *man/intersectClonesets.Rd c9622086734076b437c6edfe091a185b *man/inverse.simpson.Rd b61fdb16f4f0008069b9ec243bef86b1 *man/kmer.profile.Rd 7275fa10b7a105901d44d68d3d115f49 *man/kmer.table.Rd b5096e2299c2a9bfd42a7f502d51b783 *man/loglikelihood.Rd 24bd4592bb2206ac57b98904c46f3069 *man/matrixSubgroups.Rd 15f4bc51a432da7c7f470bfe5b4a190d *man/matrixdiagcopy.Rd 80dced59953149a95fb739289228db28 *man/mutated.neighbours.Rd 7a5dd2f97fd1ad58dd92dcd236fa51a3 *man/mutation.network.Rd b2372947d044951eaa107e785531ac82 *man/ozScore.Rd 4eb4aca54aa3cbbdf443a898bf3b6a37 *man/parse.cloneset.Rd b2d955a325dbd67be5ed0fa4735fe6a5 *man/parse.folder.Rd 60ffe7cab7d8d53ab3c20b551423c1c2 *man/pca.segments.Rd 4b86d56ff3d5dd0823580cc8fafe1c93 *man/pca2euclid.Rd 7117f4852ee0ae67f712efb7441d20d1 *man/permutDistTest.Rd 3008fa41aebb5bb4f66cb29d9ff2faeb *man/permutedf.Rd 47f783f10b21707944b1827e4e9106a3 *man/rarefaction.Rd dff2a6ebd6f6f2544b9b92c02780d425 *man/repDiversity.Rd 9a4fbea17c030f054c736203b6e8068e *man/repLoad.Rd e35a1c0bd19f1bbd35dfbd6c94c55b18 *man/repOverlap.Rd a9de808bd49dddf8f992d838b04c40b7 *man/repSave.Rd 80d9930f1b2beb81e03b095c187dafc5 *man/resample.Rd 87b54475ed26e7ef1e2cb3eb33dc6fc5 *man/revcomp.Rd adeceae0833a6c459ab6749a9f10fdee *man/reverse.string.Rd e46c4ee7e2c4181135b64f183619aa24 *man/sample.clones.Rd 8954424a5a7ecff72c01ba52a102b4d5 *man/sample2D.Rd d9d64a89ec690618bd4f9ab2c7e18272 *man/segments.alphabets.Rd d54b1ae3158552bdd63e3c69aa2cb666 *man/segments.list.Rd c01802b5e78f0654615f046cace2d83a *man/set.group.vector.Rd 3f3ba65839cc9cdb90dbf8b09da7abc8 *man/set.pb.Rd 6845de0d4ddd068621ed7e8f5a969b65 *man/set.people.vector.Rd 92d9582d8cd9dc7141f5d8f637024f53 *man/set.rank.Rd 43aff234930d14d353a773e88b1da72f *man/shared.repertoire.Rd c277e8e052c486a2ce1f1013b9c043f0 *man/spectratype.Rd a9dd971fea010fd34acfe8727407e0aa *man/startmitcr.Rd 74a61db9271c466bd24ccdfdda3bedec *man/tailbound.proportion.Rd 698e3e45ff0bf8a7398686c9bc8c0913 *man/top.cross.Rd 1782facd22b9ac8771fcd07c87482d86 *man/top.fun.Rd c386e872be02c894e7f939c86631ccc3 *man/twinsdata.Rd 876ed3d1f6c6eae70f286a33fe54a6ef *man/vis.clonal.dynamics.Rd 7554171f87709835f7ca77c15be6501e *man/vis.clonal.space.Rd d7c0f006c4601622f70b577b300f82e0 *man/vis.count.len.Rd cba42e7ebea224bb52a2943b40a7090f *man/vis.gene.usage.Rd 21439a05ea2668ffd7b1c91031a0d67a *man/vis.group.boxplot.Rd 731c5e9400c77e3ea9c91fd8ef1628fd *man/vis.heatmap.Rd b9db5a59919d5da270d64e210b5cce26 *man/vis.kmer.histogram.Rd 6ee61a06fff7d50b7d073dc1a7a66953 *man/vis.logo.Rd c7e8e68901d2cc971c8b30b12b8ee685 *man/vis.number.count.Rd 2eafe6f2544ac207a33fa289ab8bac53 *man/vis.pca.Rd 48d0d03c171f07c8ac9bd0a80bd13a69 *man/vis.radarlike.Rd a400389cae7e4d0ae2e2ff2770e96649 *man/vis.rarefaction.Rd 7234600c11b592c6c71be1e2020c7b84 *man/vis.shared.clonotypes.Rd fd46db8c9948fcfaeff32c4e4267f805 *man/vis.top.proportions.Rd e3d3cb360fbfdb3c6974e14eb5f09870 *src/Makevars 2460e6e93c37da9409c7b4c1959a28a4 *src/RcppExports.cpp 8613b0d97d73171a1f6a526d93a87ee9 *src/neighbour.search.cpp eeab2cf8838689cf2aa096201ac32813 *vignettes/tcrvignette.Rmd tcR/build/0000755000176200001440000000000013446161025012103 5ustar liggesuserstcR/build/vignette.rds0000644000176200001440000000031413446161025014440 0ustar liggesusers‹‹àb```b`fff`b2™… 1# 'æ/I.*ËLÏK-)IÕ ÊMA“æ)IR€É£É kÍ(ÉÍA“çE1èa°$D°0!)fÍKÌM-F3Ý%µ 5/$ü»~ÆÿhZ8¼S+Ëó‹`zPÔ°AÕ°¸eæ¤Âì É,s˜\Ü LÆ t7`˜â~΢ür=˜xAß$þºG“s‹Ñ=Ê•’X’¨—VÔr7Þ-º®ºtcR/DESCRIPTION0000644000176200001440000000173613446170643012527 0ustar liggesusersPackage: tcR Type: Package Title: Advanced Data Analysis of Immune Receptor Repertoires Version: 2.2.4 Date: 2019-03-25 Author: Vadim Nazarov Maintainer: Vadim Nazarov Description: Platform for the advanced analysis of T cell receptor and Immunoglobulin repertoires data and visualisation of the analysis results. License: Apache License 2.0 Depends: R (>= 3.0.0), ggplot2 (>= 1.0.0), dplyr (>= 0.4.0), gridExtra (>= 0.9.0), reshape2 (>= 1.2.0), igraph (>= 0.7.1) Imports: utils (>= 3.1.0), Rcpp (>= 0.11.1), grid (>= 3.0.0), data.table (>= 1.9.0), gtable (>= 0.1.2), stringdist (>= 0.7.3), scales (>= 0.3.0) Suggests: knitr (>= 1.8), roxygen2 (>= 3.0.0), rmarkdown (>= 1.0) LinkingTo: Rcpp URL: http://imminfo.github.io/tcr/ BugReports: https://github.com/imminfo/tcr/issues VignetteBuilder: knitr RoxygenNote: 6.1.1 NeedsCompilation: yes Packaged: 2019-03-25 14:13:41 UTC; vdn Repository: CRAN Date/Publication: 2019-03-25 15:20:03 UTC tcR/man/0000755000176200001440000000000013446161025011557 5ustar liggesuserstcR/man/geneUsage.Rd0000644000176200001440000000462013414630054013751 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/segments.R \name{geneUsage} \alias{geneUsage} \title{Gene usage.} \usage{ geneUsage(.data, .genes = HUMAN_TRBV_MITCR, .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .norm = F, .ambig = F) } \arguments{ \item{.data}{Cloneset data frame or a list with clonesets.} \item{.genes}{Either one of the gene alphabet (e.g., HUMAN_TRBV, \link{genealphabets}) or list with two gene alphabets for computing joint distribution.} \item{.quant}{Which column to use for the quantity of clonotypes: NA for computing only number of genes without using clonotype counts, "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for the "Umi.proportion" column.} \item{.norm}{If T then return proportions of resulting counting of genes.} \item{.ambig}{If F than remove from counting genes which are not presented in the given gene alphabet(s).} } \value{ If \code{.data} is a cloneset and \code{.genes} is NOT a list than return a data frame with first column "Gene" with genes and second with counts / proportions. If \code{.data} is a list with clonesets and \code{.genes} is NOT a list than return a data frame with first column "Gene" with genes and other columns with counts / proportions for each cloneset in the input list. If \code{.data} is a cloneset and \code{.genes} IS a list than return a matrix with gene segments for the first gene in \code{.genes} and column names for the second gene in \code{.genes}. See "Examples". If \code{.data} is a list with clonesets and \code{.genes} IS a list than return a list with matrices like in the previous case. } \description{ Compute frequencies or counts of gene segments ("V / J - usage"). } \examples{ \dontrun{ # Load your data data(twb) # compute V-segments frequencies of human TCR beta. seg <- geneUsage(twb, HUMAN_TRBV, .norm = T) # plot V-segments frequencies as a heatmap vis.heatmap(seg, .labs = c("Sample", "V gene")) # plot V-segments frequencies directly from clonesets vis.gene.usage(twb, HUMAN_TRBV) # plot V-segments frequencies from the gene frequencies vis.gene.usage(seg, NA) # Compute V-J joint usage. geneUsage(twb, list(HUMAN_TRBV, HUMAN_TRBJ)) # for future: # geneUsage(twb, "human", "trbv") } } \seealso{ \code{\link{genealphabets}}, \code{\link{vis.gene.usage}}, \code{\link{pca.segments}} } tcR/man/entropy.seg.Rd0000644000176200001440000000420013325616566014332 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/infoanalysis.R \name{entropy.seg} \alias{entropy.seg} \alias{js.div.seg} \title{Repertoires' analysis using information measures applied to V- and J- segment frequencies.} \usage{ entropy.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .ambig = F) js.div.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'), .quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"), .norm.entropy = T, .ambig = F, .verbose = F, .data2 = NULL) } \arguments{ \item{.data}{Mitcr data.frame or a list with mitcr data.frames.} \item{.genes}{Parameter to the \code{geneUsage} function.} \item{.frame}{Character vector of length 1 specified which *-frames should be used: only in-frame ('in'), out-of-frame ('out') or all sequences ('all').} \item{.quant}{Which column to use for the quantity of clonotypes: NA for computing only number of genes without using clonotype counts, "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for the "Umi.proportion" column.} \item{.ambig}{Parameter passed to \code{geneUsage}.} \item{.data2}{NULL if .data is a list, or a second mitcr data.frame.} \item{.norm.entropy}{if T then divide result by mean entropy of 2 segments' frequencies.} \item{.verbose}{If T than output the data processing progress bar.} } \value{ For \code{entropy.seg} - numeric integer with entropy value(s). For \code{js.div.seg} - integer of vector one if \code{.data} and \code{.data2} are provided; esle matrix length(.data) X length(.data) if \code{.data} is a list. } \description{ Information approach to repertoire analysis. Function \code{entropy.seg} applies Shannon entropy to V-usage and hence measures variability of V-usage. Function \code{js.div.seg} applied Jensen-Shannon divergence to V-usage of two or more data frames and hence measures distance among this V-usages. } \seealso{ \link{vis.heatmap}, \link{vis.group.boxplot}, \link{geneUsage} } tcR/man/spectratype.Rd0000644000176200001440000000210313414630054014403 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/spectrum.R \name{spectratype} \alias{spectratype} \title{Spectratype} \usage{ spectratype(.data, .quant = c("read.count", "umi.count", "id"), .gene = "V", .plot = T, .main = "Spectratype", .legend = "Gene segment", .labs = c("CDR3 length", NA)) } \arguments{ \item{.data}{tcR data frame.} \item{.quant}{Either "read.count" or "umi.count" for choosing the corresponding columns, or "id" to compute avoid using counts.} \item{.gene}{Either NA for not using genes, "V" or "J" for corresponding genes.} \item{.plot}{If T than plot the spectratype plot, otherwise return a table with data for lengths and counts.} \item{.main}{Main title.} \item{.legend}{Legend title.} \item{.labs}{Character vector of length 2 for x-lab and y-lab.} } \description{ Plot a spectratype plot - a histogram of read counts / umi counts by CDR3 length. } \examples{ \dontrun{ data(twb) tmp = twb[[1]] spectratype(tmp) spectratype(tmp, .quant = "id", .plot = T, .gene = 'V') spectratype(tmp, .quant = "read.count", .plot = F) } } tcR/man/vis.gene.usage.Rd0000644000176200001440000000321013325616566014676 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.gene.usage} \alias{vis.gene.usage} \alias{vis.V.usage} \alias{vis.J.usage} \title{Histogram of segments usage.} \usage{ vis.gene.usage(.data, .genes = NA, .main = "Gene usage", .ncol = 3, .coord.flip = F, .dodge = F, .labs = c("Gene", "Frequency"), ...) } \arguments{ \item{.data}{Mitcr data frame or a list with mitcr data frames.} \item{.genes}{Gene alphabet passed to \link{geneUsage}.} \item{.main}{Main title of the plot.} \item{.ncol}{Number of columns in a grid of histograms if \code{.data} is a list and \code{.dodge} is F.} \item{.coord.flip}{if T then flip coordinates.} \item{.dodge}{If \code{.data} is a list, than if this is T plot V-usage for all data frames to the one histogram.} \item{.labs}{Character vector of length 2 with names for x-axis and y-axis.} \item{...}{Parameter passed to \code{geneUsage}. By default the function compute V-usage or J-usage for beta chains w/o using read counts and w/ "Other" segments.} } \value{ ggplot object. } \description{ Plot a histogram or a grid of histograms of V- / J-usage. } \examples{ \dontrun{ # Load your data. load('immdata.rda') # Compute V-usage statistics. imm1.vs <- geneUsage(immdata[[1]], HUMAN_TRBV) vis.V.usage(immdata, HUMAN_TRBV, .main = 'Immdata V-usage [1]', .dodge = T) # Plot a histogram for one data frame using all gene segment data from V.gene column. vis.V.usage(imm1.vs, NA, .main = 'Immdata V-usage [1]') # Plot a grid of histograms - one histogram for V-usage for each data frame in .data. vis.V.usage(immdata, HUMAN_TRBV, .main = 'Immdata V-usage', .dodge = F, .other = F) } } tcR/man/mutated.neighbours.Rd0000644000176200001440000000226413325616566015674 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph.R \name{mutated.neighbours} \alias{mutated.neighbours} \title{Get vertex neighbours.} \usage{ mutated.neighbours(.G, .V, .order = 1) } \arguments{ \item{.G}{Mutation network.} \item{.V}{Indices of vertices for which return neighbours.} \item{.order}{Neighbours of which order return.} } \value{ List of length \code{.V} with data frames with vertex properties. First row in each data frame is the vertex for which neighbours was returned. } \description{ Get all properties of neighbour vertices in a mutation network of specific vertices. } \examples{ \dontrun{ data(twb) twb.shared <- shared.repertoire(twb) G <- mutation.network(twb.shared) head(mutated.neighbours(G, 1)[[1]]) # label vseg repind prob people npeople # 1 CASSDRDTGELFF TRBV6-4 1 -1 1111 4 # 2 CASSDSDTGELFF TRBV6-4 69 -1 1100 2 # 3 CASSYRDTGELFF TRBV6-3, TRBV6-2 315 -1 1001 2 # 4 CASKDRDTGELFF TRBV6-3, TRBV6-2 2584 -1 0100 1 # 5 CASSDGDTGELFF TRBV6-4 5653 -1 0010 1 # 6 CASSDRETGELFF TRBV6-4 5950 -1 0100 1 } } tcR/man/parse.folder.Rd0000644000176200001440000001062513325616566014451 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/parsing.R \name{parse.folder} \alias{parse.folder} \alias{parse.file.list} \alias{parse.file} \alias{parse.mitcr} \alias{parse.mitcrbc} \alias{parse.migec} \alias{parse.vdjtools} \alias{parse.immunoseq} \alias{parse.immunoseq2} \alias{parse.immunoseq3} \alias{parse.tcr} \alias{parse.mixcr} \alias{parse.imseq} \alias{parse.migmap} \title{Parse input table files with immune receptor repertoire data.} \usage{ parse.file(.filename, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), ...) parse.file.list(.filenames, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), .namelist = NA) parse.folder(.folderpath, .format = c('mitcr', 'mitcrbc', 'migec', 'vdjtools', 'immunoseq', 'mixcr', 'imseq', 'tcr'), ...) parse.mitcr(.filename) parse.mitcrbc(.filename) parse.migec(.filename) parse.vdjtools(.filename) parse.immunoseq(.filename) parse.immunoseq2(.filename) parse.immunoseq3(.filename) parse.mixcr(.filename) parse.imseq(.filename) parse.tcr(.filename) parse.migmap(.filename) } \arguments{ \item{.folderpath}{Path to the folder with text cloneset files.} \item{.format}{String that specifies the input format.} \item{...}{Parameters passed to \code{parse.cloneset}.} \item{.filename}{Path to the input file with cloneset data.} \item{.filenames}{Vector or list with paths to files with cloneset data.} \item{.namelist}{Either NA or character vector of length \code{.filenames} with names for output data frames.} } \value{ Data frame with immune receptor repertoire data. Each row in this data frame corresponds to a clonotype. The data frame has following columns: - "Umi.count" - number of barcodes (events, UMIs); - "Umi.proportion" - proportion of barcodes (events, UMIs); - "Read.count" - number of reads; - "Read.proportion" - proportion of reads; - "CDR3.nucleotide.sequence" - CDR3 nucleotide sequence; - "CDR3.amino.acid.sequence" - CDR3 amino acid sequence; - "V.gene" - names of aligned Variable gene segments; - "J.gene" - names of aligned Joining gene segments; - "D.gene" - names of aligned Diversity gene segments; - "V.end" - last positions of aligned V gene segments (1-based); - "J.start" - first positions of aligned J gene segments (1-based); - "D5.end" - positions of D'5 end of aligned D gene segments (1-based); - "D3.end" - positions of D'3 end of aligned D gene segments (1-based); - "VD.insertions" - number of inserted nucleotides (N-nucleotides) at V-D junction (-1 for receptors with VJ recombination); - "DJ.insertions" - number of inserted nucleotides (N-nucleotides) at D-J junction (-1 for receptors with VJ recombination); - "Total.insertions" - total number of inserted nucleotides (number of N-nucleotides at V-J junction for receptors with VJ recombination). } \description{ Load the TCR data from the file with the given filename to a data frame or load all files from the given folder to a list of data frames. The folder must contain onky files with the specified format. Input files could be either text files or archived with gzip ("filename.txt.gz") or bzip2 ("filename.txt.bz2"). For a general parser see \code{\link{parse.cloneset}}. Parsers are available for: MiTCR ("mitcr"), MiTCR w/ UMIs ("mitcrbc"), MiGEC ("migec"), VDJtools ("vdjtools"), ImmunoSEQ ("immunoseq" or 'immunoseq2' for old and new formats respectively), MiXCR ("mixcr"), IMSEQ ("imseq") and tcR ("tcr", data frames saved with the `repSave()` function). Output of MiXCR should contain either all hits or best hits for each gene segment. Output of IMSEQ should be generated with parameter "-on". In this case there will be no positions of aligned gene segments in the output data frame due to restrictions of IMSEQ output. tcR's data frames should be saved with the `repSave()` function. } \examples{ \dontrun{ # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. immdata1 <- parse.file("~/mitcr/immdata1.txt", 'mitcr') # Parse VDJtools file archive as .gz file. immdata1 <- parse.file("~/mitcr/immdata3.txt.gz", 'vdjtools') # Parse files "~/data/immdata1.txt" and "~/data/immdat2.txt" as MiGEC files. immdata12 <- parse.file.list(c("~/data/immdata1.txt", "~/data/immdata2.txt"), 'migec') # Parse all files in "~/data/" as MiGEC files. immdata <- parse.folder("~/data/", 'migec') } } \seealso{ \link{parse.cloneset}, \link{repSave}, \link{repLoad} } tcR/man/top.cross.Rd0000644000176200001440000000462713325616566014024 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{top.cross} \alias{top.cross} \alias{top.cross.vec} \alias{top.cross.plot} \title{Perform sequential cross starting from the top of a data frame.} \usage{ top.cross(.data, .n = NA, .data2 = NULL, .type = 'ave', .norm = F, .verbose = T) top.cross.vec(.top.cross.res, .i, .j) top.cross.plot(.top.cross.res, .xlab = 'Top X clonotypes', .ylab = 'Normalised number of shared clonotypes', .nrow = 2, .legend.ncol = 1, .logx = T, .logy = T) } \arguments{ \item{.data}{Either list of data.frames or a data.frame.} \item{.n}{Integer vector of parameter appled to the head function; same as .n in the top.fun function. See "Details" for more information.} \item{.data2}{Second data.frame or NULL if .data is a list.} \item{.type}{Parameter .type to the \code{tcR::intersect} function.} \item{.norm}{Parameter .norm to the \code{tcR::intersect} function.} \item{.verbose}{if T then plot a progress bar.} \item{.top.cross.res}{Result from the \code{top.cross} function.} \item{.i, .j}{Coordinate of a cell in each matrix.} \item{.xlab}{Name for a x-lab.} \item{.ylab}{Name for a y-lab.} \item{.nrow}{Number of rows of sub-plots in the output plot.} \item{.legend.ncol}{Number of columns in the output legend.} \item{.logx}{if T then transform x-axis to log-scale.} \item{.logy}{if T then transform y-axis to log-scale.} } \value{ \code{top.cross} - return list for each element in \code{.n} with intersection matrix (from \code{tcR::intersectClonesets}). \code{top.cross.vec} - vector of length \code{.n} with \code{.i}:\code{.j} elements of each matrix. \code{top.cross.plot} - grid / ggplot object. } \description{ \code{top.cross} - get top crosses of the given type between each pair of the given data.frames with \code{top.cross} function. \code{top.cross.vec} - get vector of cross values for each top with the \code{top.cross.vec} function. \code{top.cross.plot} - plot a plots with result with the \code{top.cross.plot} function. } \details{ Parameter \code{.n} can have two possible values. It could be either integer vector of numbers (same as in the \code{top.fun} function) or NA and then it will be replaced internally by the value \code{.n <- seq(5000, min(sapply(.data, nrow)), 5000)}. } \examples{ \dontrun{ immdata.top <- top.cross(immdata) top.cross.plot(immdata.top) } } \seealso{ \code{\link{intersect}} } tcR/man/get.all.substrings.Rd0000644000176200001440000000115313325616566015611 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{get.all.substrings} \alias{get.all.substrings} \title{Get all substrings for the given sequence.} \usage{ get.all.substrings(.seq, .min.len = 3, .table = T) } \arguments{ \item{.seq}{Sequence for splitting to substrings.} \item{.min.len}{Minimal length of output sequences.} \item{.table}{if T then return data frame with substrings and positions of their ends in the .seq.} } \value{ Character vector or data frame with columns "Substring", "Start" and "End". } \description{ Get all substrings for the given sequence. } tcR/man/set.rank.Rd0000644000176200001440000000124413325616566013607 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{set.rank} \alias{set.rank} \alias{set.index} \title{Set new columns "Rank" and "Index".} \usage{ set.rank(.data, .col = "Read.count") } \arguments{ \item{.data}{Data frame or list with data frames.} \item{.col}{Character vector with name of the column to use for ranking or indexing.} } \value{ Data frame with new column "Rank" or "Index" or list with such data frames. } \description{ Set new columns "Rank" and "Index": set.rank <==> .data$Rank = rank(.data[, .col], ties.method = 'average') set.index <==> .data$Index = 1:nrow(.data) in a sorted data frame by \code{.col} } tcR/man/entropy.Rd0000644000176200001440000000374413325616566013571 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/measures.R \name{entropy} \alias{entropy} \alias{js.div} \alias{kl.div} \title{Information measures.} \usage{ entropy(.data, .norm = F, .do.norm = NA, .laplace = 1e-12) kl.div(.alpha, .beta, .do.norm = NA, .laplace = 1e-12) js.div(.alpha, .beta, .do.norm = NA, .laplace = 1e-12, .norm.entropy = F) } \arguments{ \item{.data, .alpha, .beta}{Vector of values.} \item{.norm}{if T then compute normalised entropy (H / Hmax).} \item{.do.norm}{One of the three values - NA, T or F. If NA than check for distrubution \code{(sum(.data) == 1)}. and normalise if needed with the given laplace correction value. if T then do normalisation and laplace correction. If F than don't do normalisaton and laplace correction.} \item{.laplace}{Value for Laplace correction which will be added to every value in the .data.} \item{.norm.entropy}{if T then normalise JS-divergence by entropy.} } \value{ Shannon entropy, Jensen-Shannon divergence or Kullback-Leibler divergence values. } \description{ Functions for information measures of and between distributions of values. Warning! Functions will check if \code{.data} if a distribution of random variable (sum == 1) or not. To force normalisation and / or to prevent this, set \code{.do.norm} to TRUE (do normalisation) or FALSE (don't do normalisation). For \code{js.div} and \code{kl.div} vectors of values must have equal length. Functions: - The Shannon entropy quantifies the uncertainty (entropy or degree of surprise) associated with this prediction. - Kullback-Leibler divergence (information gain, information divergence, relative entropy, KLIC) is a non-symmetric measure of the difference between two probability distributions P and Q (measure of information lost when Q is used to approximate P). - Jensen-Shannon divergence is a symmetric version of KLIC. Square root of this is a metric often referred to as Jensen-Shannon distance. } \seealso{ \link{similarity}, \link{diversity} } tcR/man/cosine.sharing.Rd0000644000176200001440000000404013325616566014771 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/shared.R \name{cosine.sharing} \alias{cosine.sharing} \alias{shared.representation} \alias{shared.clones.count} \alias{shared.summary} \title{Shared repertoire analysis.} \usage{ cosine.sharing(.shared.rep, .log = T) shared.representation(.shared.rep) shared.clones.count(.shared.rep) shared.summary(.shared.rep, .min.ppl = min(.shared.rep$People), .max.ppl = max(.shared.rep$People)) } \arguments{ \item{.shared.rep}{Shared repertoire, obtained from the function \code{shared.repertoire}.} \item{.log}{if T then apply log to the after adding laplace correction equal to one.} \item{...}{Parameters passed to the \code{prcomp} function.} \item{.min.ppl}{Filter: get sequences with # people >= .min.ppl.} \item{.max.ppl}{Filter: get sequences with # people <= .max.ppl.} } \value{ Plot or PCA resulr for the \code{shared.seq.pca} function or a matrix with cosine similarity values for the \code{cosine.sharing} function. } \description{ Functions for computing statistics and analysis of shared repertoire of sequences. \code{cosine.sharing} - apply the cosine similarity measure to the vectors of sequences' counts or indices. \code{shared.representation} - for every repertoire in the shared repetoire get a number of sequences in this repertoire which are in the other repertoires. Row names of the input matrix is the number of people. \code{shared.clones.count} - get the number of shared clones for every number of people. \code{shared.summary} - get a matrix with counts of pairwise shared sequences (like a result from \code{cross} function, applied to a list of data frames). } \examples{ \dontrun{ # Load the twb data. data(twb) # Create shared repertoire on the twins data using CDR3 amino acid sequences with CDR1-2. twb.shared <- shared.repertoire(twb, 'av', .verbose = T) sh.repr <- shared.representation(twb.shared) sh.repr # Get proportion of represented shared sequences. apply(sh.repr, 2, function (col) col / col[1]) } } \seealso{ \link{shared.repertoire} } tcR/man/assymetry.Rd0000644000176200001440000000153013325616566014120 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/infoanalysis.R \name{assymetry} \alias{assymetry} \title{Normalised log assymetry.} \usage{ assymetry(.alpha, .beta = NULL, .by = "CDR3.nucleotide.sequence") } \arguments{ \item{.alpha}{First mitcr data.frame or a list with data.frames.} \item{.beta}{Second mitcr data.frame or NULL if \code{.alpha} is a list.} \item{.by}{Which column use to merge. See "Details".} } \value{ Value of the normalised log assymetry measure for the given data.frames. } \description{ Compute the value of the normalised log assymetry measure for the given data.frames of the counts of shared clones. } \details{ Merge two data frames by the given column and compute value Sum(Log((Percentage for shared clone S from alpha) / (Percentage for shared clone S from beta))) / (# of shared clones). } tcR/man/intersectClonesets.Rd0000644000176200001440000001252713325616566015750 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/crosses.R \name{intersectClonesets} \alias{intersectClonesets} \alias{intersectCount} \alias{intersectLogic} \alias{intersectIndices} \title{Intersection between sets of sequences or any elements.} \usage{ intersectClonesets(.alpha = NULL, .beta = NULL, .type = "n0e", .head = -1, .norm = F, .verbose = F) intersectCount(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) intersectIndices(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) intersectLogic(.alpha, .beta, .method = c('exact', 'hamm', 'lev'), .col = NULL) } \arguments{ \item{.alpha}{Either first vector or data.frame or list with data.frames.} \item{.beta}{Second vector or data.frame or type of intersection procedure (see the \code{.type} parameter) if \code{.alpha} is a list.} \item{.type}{Types of intersection procedure if \code{.alpha} and \code{.beta} is data frames. String with 3 characters (see 'Details' for more information).} \item{.head}{Parameter for the \code{head} function, applied before intersecting.} \item{.norm}{If TRUE than normalise result by product of length or nrows of the given data.} \item{.verbose}{if T then produce output of processing the data.} \item{.method}{Method to use for intersecting string elements: 'exact' for exact matching, 'hamm' for matching strings which have <= 1 hamming distance, 'lev' for matching strings which have <= 1 levenshtein (edit) distance between them.} \item{.col}{Which columns use for fetching values to intersect. First supplied column matched with \code{.method}, others as exact values.} } \value{ \code{intersectClonesets} returns (normalised) number of similar elements or matrix with numbers of elements. \code{intersectCount} returns number of similar elements. \code{intersectIndices} returns 2-row matrix with the first column stands for an index of an element in the given \code{x}, and the second column stands for an index of an element of \code{y} which is similar to a relative element in \code{x}; \code{intersectLogic} returns logical vector of \code{length(x)} or \code{nrow(x)}, where TRUE at position \code{i} means that element with index {i} has been found in the \code{y} } \description{ Functions for the intersection of data frames with TCR / Ig data. See the \code{repOverlap} function for a general interface to all overlap analysis functions. \code{intersectClonesets} - returns number of similar elements in the given two clonesets / data frames or matrix with counts of similar elements among each pair of objects in the given list. \code{intersectCount} - similar to \code{tcR::intersectClonesets}, but with fewer parameters and only for two objects. \code{intersectIndices} - returns matrix M with two columns, where element with index M[i, 1] in the first given object is similar to an element with index M[i, 2] in the second given object. \code{intersectLogic} - returns logic vector with TRUE values in positions, where element in the first given data frame is found in the second given data frame. } \details{ Parameter \code{.type} of the \code{intersectClonesets} function is a string of length 3 [0an][0vja][ehl], where: \enumerate{ \item First character defines which elements intersect ("a" for elements from the column "CDR3.amino.acid.sequence", "n" for elements from the column "CDR3.nucleotide.sequence", other characters - intersect elements as specified); \item Second character defines which columns additionaly script should use ('0' for cross with no additional columns, 'v' for cross using the "V.gene" column, 'j' for cross using "J.gene" column, 'a' for cross using both "V.gene" and "J.gene" columns); \item Third character defines a method of search for similar sequences is use: "e" stands for the exact match of sequnces, "h" for match elements which have the Hamming distance between them equal to or less than 1, "l" for match elements which have the Levenshtein distance between tham equal to or less than 1. } } \examples{ \dontrun{ data(twb) # Equivalent to intersectClonesets(twb[[1]]$CDR3.nucleotide.sequence, # twb[[2]]$CDR3.nucleotide.sequence) # or intersectCount(twb[[1]]$CDR3.nucleotide.sequence, # twb[[2]]$CDR3.nucleotide.sequence) # First "n" stands for a "CDR3.nucleotide.sequence" column, "e" for exact match. twb.12.n0e <- intersectClonesets(twb[[1]], twb[[2]], 'n0e') stopifnot(twb.12.n0e == 46) # First "a" stands for "CDR3.amino.acid.sequence" column. # Second "v" means that intersect should also use the "V.gene" column. intersectClonesets(twb[[1]], twb[[2]], 'ave') # Works also on lists, performs all possible pairwise intersections. intersectClonesets(twb, 'ave') # Plot results. vis.heatmap(intersectClonesets(twb, 'ave'), .title = 'twb - (ave)-intersection', .labs = '') # Get elements which are in both twb[[1]] and twb[[2]]. # Elements are tuples of CDR3 nucleotide sequence and corresponding V-segment imm.1.2 <- intersectLogic(twb[[1]], twb[[2]], .col = c('CDR3.amino.acid.sequence', 'V.gene')) head(twb[[1]][imm.1.2, c('CDR3.amino.acid.sequence', 'V.gene')]) data(twb) ov <- repOverlap(twb) sb <- matrixSubgroups(ov, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); vis.group.boxplot(sb) } } \seealso{ \link{repOverlap}, \link{vis.heatmap}, \link{ozScore}, \link{permutDistTest}, \link{vis.group.boxplot} } tcR/man/segments.list.Rd0000644000176200001440000000172113325616566014661 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/docdata.R \docType{data} \name{segments.list} \alias{segments.list} \alias{genesegments} \title{Segment data.} \format{\code{genesegments} is a list with data frames.} \description{ \code{segments} is a list with 5 data frames with data of human alpha-beta chain segments. Elements names as "TRAV", "TRAJ", "TRBV", "TRVJ", "TRVD". Each data frame consists of 5 columns: - V.allelles / J.allelles / D.allelles - character column with names of V/D/J-segments. - CDR3.position - position in the full nucleotide segment sequence where CDR3 starts. - Full.nucleotide.sequence - character column with segment CDR1-2-3 sequence. - Nucleotide.sequence - character column with segment CDR3 sequences. - Nucleotide.sequence.P - character column with segment CDR3 sequences with P-insertions. } \examples{ \dontrun{ data(genesegments) genesegments$Nucleotide.sequence[segments$TRBV[,1] == "TRBV10-1"] } } tcR/man/pca.segments.Rd0000644000176200001440000000213113325616566014445 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/segments.R \name{pca.segments} \alias{pca.segments} \alias{pca.segments.2D} \title{Perform PCA on segments frequency data.} \usage{ pca.segments(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T) pca.segments.2D(.data, .cast.freq.seg = T, ..., .text = T, .do.plot = T) } \arguments{ \item{.data}{Either data.frame or a list of data.frame or a result obtained from the \code{geneUsage} function.} \item{.cast.freq.seg}{if T then apply code{geneUsage} to the supplied data.} \item{...}{Further arguments passed to \code{prcomp} or \code{geneUsage}.} \item{.text}{If T then plot sample names in the resulting plot.} \item{.do.plot}{if T then plot a graphic, else return a pca object.} } \value{ If .do.plot is T than ggplot object; else pca object. } \description{ Perform PCA on gene segments frequency data for V- and J-segments and either return pca object or plot the results. } \examples{ \dontrun{ # Load the twins data. data(twb) # Plot a plot of results of PCA on V-segments usage. pca.segments(twb, T, scale. = T) } } tcR/man/rarefaction.Rd0000644000176200001440000000356213325616566014364 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/diversity.R \name{rarefaction} \alias{rarefaction} \title{Diversity evaluation using rarefaction.} \usage{ rarefaction(.data, .step = NA, .quantile = c(0.025, 0.975), .extrapolation = 2e+05, .col = "Umi.count", .verbose = T) } \arguments{ \item{.data}{Data frame or a list with data frames.} \item{.step}{Step's size. By default - minimal repertoire size divided by 50.} \item{.quantile}{Numeric vector of length 2 with quantiles for confidence intervals.} \item{.extrapolation}{If N > 0 than perform extrapolation of all samples to the size of the max one +N reads or UMIs. By default - 200000.} \item{.col}{Column's name from which choose frequency of each clone.} \item{.verbose}{if T then print progress bar.} } \value{ Data frame with first column for sizes, second columns for the first quantile, third column for the mean, fourth columns for the second quantile, fifth columns for the name of subject. } \description{ Sequentially resample the given data with growing sample size the given data and compute mean number of unique clones. For more details on the procedure see "Details". } \details{ This subroutine is designed for diversity evaluation of repertoires. On each step it computes a mean unique clones from sample of fixed size using bootstrapping. Unique clones for each sample from bootstrap computed as a number of non-zero elements in a vector from multinomial distribution with input vector of probabilities from the \code{.col} column using function \code{rmultinom} with parameters n = .n, size = i * .step, prob = .data[, .col] (i is an index of current iteration) and choosing for lower and upper bound \code{quantile} bounds of the computed distribution of unique clones. } \examples{ \dontrun{ rarefaction(immdata, .col = "Read.count") } } \seealso{ \link{vis.rarefaction} \link{rmultinom} } tcR/man/convergence.index.Rd0000644000176200001440000000160413325616566015466 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/crosses.R \name{convergence.index} \alias{convergence.index} \title{Compute convergence characteristics of repertoires.} \usage{ convergence.index(.alpha, .beta, .col.nuc = "CDR3.nucleotide.sequence", .col.aa = "CDR3.amino.acid.sequence") } \arguments{ \item{.alpha}{Either data frame with columns \code{.col.nuc} and \code{.col.aa} or list with such data frames.} \item{.beta}{Either data frame or none.} \item{.col.nuc}{Name of the column with nucleotide sequences.} \item{.col.aa}{Name of the columnw ith aminoacid sequences.} } \value{ If \code{.alpha} is data frame, than integer vector of length 2 with . If \code{.alpha} is a list than matrix M with M[i,j] = convergence.index(.alpha[[i]], .alpha[[j]]). } \description{ Get a number of rows with similar aminoacid sequence but different nucleotide sequence. } tcR/man/group.clonotypes.Rd0000644000176200001440000000314113414630054015375 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{group.clonotypes} \alias{group.clonotypes} \title{Get all unique clonotypes.} \usage{ group.clonotypes(.data, .gene.col = "V.gene", .count.col = "Read.count", .prop.col = "Read.proportion", .seq.col = "CDR3.amino.acid.sequence") } \arguments{ \item{.data}{Either tcR data frame or a list with data frames.} \item{.gene.col}{Either name of the column with gene segments used to compare clonotypes or NA if you don't need comparing using gene segments.} \item{.count.col}{Name of the column with counts for each clonotype.} \item{.prop.col}{Name of the column with proportions for each clonotype.} \item{.seq.col}{Name of the column with clonotypes' CDR3 sequences.} } \value{ Data frame or a list with data frames with updated counts and proportion columns and rows with unique clonotypes only. } \description{ Get all unique clonotypes with merged counts. Unique clonotypes are those with either equal CDR3 sequence or with equal CDR3 sequence and equal gene segments. Counts of equal clonotypes will be summed up. } \examples{ \dontrun{ tmp <- data.frame(A = c('a','a','b','c', 'a') B = c('V1', 'V1','V1','V2', 'V3') C = c(10,20,30,40,50), stringsAsFactors = F) tmp # A B C # 1 a V1 10 # 2 a V1 20 # 3 b V1 30 # 4 c V2 40 # 5 a V3 50 group.clonotypes(tmp, 'B', 'C', 'A') # A B C # 1 a V1 30 # 3 b V1 50 # 4 c V2 30 # 5 a V3 40 group.clonotypes(tmp, NA, 'C', 'A') # A B C # 1 a V1 80 # 3 b V1 30 # 4 c V2 40 # For tcR data frame: data(twb) twb1.gr <- group.clonotypes(twb[[1]]) twb.gr <- group.clonotypes(twb) } } tcR/man/get.kmers.Rd0000644000176200001440000000223213325616566013757 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kmers.R \name{get.kmers} \alias{get.kmers} \title{Get kmers from sequences.} \usage{ get.kmers(.data, .head = -1, .k = 5, .clean = T, .meat = F, .verbose = T, .left.shift = 0, .right.shift = 0) } \arguments{ \item{.data}{Either character vector or a data.frame.} \item{.head}{Parameter for head function applied to the given data before kmer generation.} \item{.k}{Size of the kmer.} \item{.clean}{if T then remove sequences which contain '~' or '*' symbols. Useful for deleting out-of-frame aminoacid sequnces.} \item{.meat}{if TRUE than .data must be data.frame with columns CDR3.amino.acid.sequence and Read.count.} \item{.verbose}{if T then print progress.} \item{.left.shift}{Cut all \code{.left.shift} symbols from the left side for each sequence.} \item{.right.shift}{Cut all \code{.right.shift} symbols from the right side for each sequence.} } \value{ Data.frame with 2 columns Kmers and Count / Rank / Proportion relatively to the .value param or a list with such data.frames if .data is a list. } \description{ Get vector of kmers from the given character vector or data frame. } tcR/man/bootstrap.tcr.Rd0000644000176200001440000000347413414630054014660 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{bootstrap.tcr} \alias{bootstrap.tcr} \title{Bootstrap for data frames in package tcR.} \usage{ bootstrap.tcr(.data, .fun = entropy.seg, .n = 1000, .size = nrow(.data), .sim = c("uniform", "percentage"), .postfun = function(x) { unlist(x) }, .verbose = T, .prop.col = "Read.proportion", ...) } \arguments{ \item{.data}{Data frame.} \item{.fun}{Function applied to each sample.} \item{.n}{Number of iterations (i.e., size of a resulting distribution).} \item{.size}{Size of samples. For \code{.sim} == "uniform" stands for number of rows to take. For \code{.sim} == "percentage" stands for number of UMIs / read counts to take.} \item{.sim}{A character string indicating the type of simulation required. Possible values are "uniform" or "percentage". See "Details" for more details of type of simulation.} \item{.postfun}{Function applied to the resulting list: list of results from each processed sample.} \item{.verbose}{if T then show progress bar.} \item{.prop.col}{Column with proportions for each clonotype.} \item{...}{Further values passed to \code{.fun}.} } \value{ Either result from \code{.postfun} or list of length \code{.n} with values of \code{.fun}. } \description{ Resample rows (i.e., clones) in the given data frame and apply the given function to them. } \details{ Argument \code{.sim} can take two possible values: "uniform" (for uniform distribution), when each row can be taken with equal probability, and "perccentage" when each row can be taken with probability equal to its "Read.proportion" column. } \examples{ \dontrun{ # Apply entropy.seg function to samples of size 20000 from immdata$B data frame for 100 iterations. bootstrap.tcr(immdata[[2]], .fun = entropy.seg, .n = 100, .size = 20000, .sim = 'uniform') } } tcR/man/set.group.vector.Rd0000644000176200001440000000263713325616566015320 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph.R \name{set.group.vector} \alias{set.group.vector} \alias{get.group.names} \title{Set group attribute for vertices of a mutation network} \usage{ set.group.vector(.G, .attr.name, .groups) get.group.names(.G, .attr.name, .V = V(.G), .paste = T) } \arguments{ \item{.G}{Mutation network.} \item{.attr.name}{Name of the new vertex attribute.} \item{.groups}{List with integer vector with indices of subjects for each group.} \item{.V}{Indices of vertices.} \item{.paste}{if T then return character string with concatenated group names, else return list with character vectors with group names.} } \value{ igraph object with new vertex attribute \code{.attr.name} with binary strings for \code{set.group.vector}. Return character vector for \code{get.group.names}. } \description{ asdasd } \examples{ \dontrun{ data(twb) twb.shared <- shared.repertoire(twb) G <- mutation.network(twb.shared) G <- set.group.vector(G, "twins", list(A = c(1,2), B = c(3,4))) # <= refactor this get.group.names(G, "twins", 1) # "A|B" get.group.names(G, "twins", 300) # "A" get.group.names(G, "twins", 1, F) # list(c("A", "B")) get.group.names(G, "twins", 300, F) # list(c("A")) # Because we have only two groups, we can assign more readable attribute. V(G)$twin.names <- get.group.names(G, "twins") V(G)$twin.names[1] # "A|B" V(G)$twin.names[300] # "A" } } tcR/man/get.inframes.Rd0000644000176200001440000000246513325616566014452 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{get.inframes} \alias{get.inframes} \alias{get.outframes} \alias{count.inframes} \alias{count.outframes} \alias{get.frames} \alias{count.frames} \alias{clonotypescount} \title{In-frame / out-of-frame sequences filter.} \usage{ get.inframes(.data, .head = 0, .coding = T) get.outframes(.data, .head = 0) count.inframes(.data, .head = 0, .coding = T) count.outframes(.data, .head = 0) get.frames(.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) count.frames(.data, .frame = c('in', 'out', 'all'), .head = 0, .coding = T) } \arguments{ \item{.data}{MiTCR data.frame or a list with mitcr data.frames.} \item{.head}{Parameter to the head() function. Supply 0 to get all elements. \code{head} applied before subsetting, i.e. if .head == 500, you will get in-frames from the top 500 clonotypes.} \item{.coding}{if T then return only coding sequences, i.e. without stop-codon.} \item{.frame}{Which *-frames to choose.} } \value{ Filtered data.frame or a list with such data.frames. } \description{ Return the given data frame with in-frame or out-of-frame sequences only. Nucleotide sequences in a column "CDR3.nucleotide.sequence" are checked if they length are divisible by 3 (len mod 3 == 0 => in-frame, else out-of-frame) } tcR/man/AA_TABLE.Rd0000644000176200001440000000126613325616566013256 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/docdata.R \docType{data} \name{AA_TABLE} \alias{AA_TABLE} \alias{AA_TABLE_REVERSED} \title{Tables with genetic code.} \format{AA_TABLE: \code{Class 'table' Named chr [1:65] "K" "N" "K" "N" ... ..- attr(*, "names")= chr [1:65] "AAA" "AAC" "AAG" "AAT" ...} AA_TABLE_REVERSED: \code{List of 22 $ *: chr [1:3] "TAA" "TAG" "TGA" $ A: chr [1:4] "GCA" "GCC" "GCG" "GCT" $ C: chr [1:2] "TGC" "TGT" $ D: chr [1:2] "GAC" "GAT" ... }} \usage{ AA_TABLE } \description{ Tables with genetic code. } \examples{ \dontrun{ AA_TABLE['ATG'] # => "M" AA_TABLE_REVERSED['K'] # => list(K = c("AAA", "AAG")) } } \keyword{datasets} tcR/man/twinsdata.Rd0000644000176200001440000000103413325616566014055 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/docdata.R \docType{data} \name{twinsdata} \alias{twinsdata} \alias{twa} \alias{twb} \title{Twins alpha-beta chain data} \format{\code{twa} and \code{twb} are lists of 4 data frames with 10000 row in each.} \description{ \code{twa.rda}, \code{twb.rda} - data frames with downsampled to the 10000 most abundant clonesets and 4 samples data of twins data (alpha and beta chains). Link: http://labcfg.ibch.ru/tcr.html } \examples{ \dontrun{ data(twa) data(twb) } } tcR/man/vis.rarefaction.Rd0000644000176200001440000000152213325616566015156 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.rarefaction} \alias{vis.rarefaction} \title{Rarefaction statistics visualisation.} \usage{ vis.rarefaction(.muc.res, .groups = NULL, .log = F, .names = T) } \arguments{ \item{.muc.res}{Output from the \code{muc} function.} \item{.groups}{List with names for groups and names of the group members. If NULL than each member is in the individual group.} \item{.log}{if T then log-scale the y axis.} \item{.names}{If T then print number of samples.} } \description{ Plot a line with mean unique clones. } \examples{ \dontrun{ data(twb) names(twb) # "Subj.A" "Subj.B" "Subj.C" "Subj.D" twb.rar <- rarefaction(twb, .col = "Read.count") vis.rarefaction(twb.rar, list(A = c("Subj.A", "Subj.B"), B = c("Subj.C", "Subj.D"))) } } \seealso{ \link{rarefaction} } tcR/man/vis.clonal.dynamics.Rd0000644000176200001440000000157213325616566015744 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.clonal.dynamics} \alias{vis.clonal.dynamics} \title{Visualise clonal dynamics among time points.} \usage{ vis.clonal.dynamics(.changed, .lower, .upper, .log = T) } \arguments{ \item{.changed}{Result from the \code{find.clonotypes} function, i.e. data frame with first columns with sequences (nucleotide or amino acid) and other columns are columns with frequency / count for each time point for each clone.} \item{.lower}{Similar to .changed but values are lower bound for clonal count / frequency.} \item{.upper}{Similar to .changed but values are upper bound for clonal count / frequency.} \item{.log}{if T then log-scale y-axis.} } \value{ ggplot object. } \description{ Visualise clonal dynamics (i.e., changes in frequency or count) with error bars of given clones among time points. } tcR/man/parse.cloneset.Rd0000644000176200001440000000420313325616566015005 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/parsing.R \name{parse.cloneset} \alias{parse.cloneset} \title{Parse input table files with the immune receptor repertoire data.} \usage{ parse.cloneset(.filename, .nuc.seq, .aa.seq, .reads, .barcodes, .vgenes, .jgenes, .dgenes, .vend, .jstart, .dalignments, .vd.insertions, .dj.insertions, .total.insertions, .skip = 0, .sep = "\\t") } \arguments{ \item{.filename}{Path to the input file with cloneset data.} \item{.nuc.seq}{Name of the column with CDR3 nucleotide sequences.} \item{.aa.seq}{Name of the column with CDR3 amino acid sequences.} \item{.reads}{Name of the column with counts of reads for each clonotype.} \item{.barcodes}{Name of the column with counts of barcodes (UMI, events) for each clonotype.} \item{.vgenes}{Name of the column with names of aligned Variable gene segments.} \item{.jgenes}{Name of the column with names of aligned Joining gene segments.} \item{.dgenes}{Name of the column with names of aligned Diversity gene segments.} \item{.vend}{Name of the column with last positions of aligned V gene segments.} \item{.jstart}{Name of the column with first positions of aligned J gene segments.} \item{.dalignments}{Character vector of length two that names columns with D5' and D3' end positions.} \item{.vd.insertions}{Name of the column with VD insertions for each clonotype.} \item{.dj.insertions}{Name of the column with DJ insertions for each clonotype.} \item{.total.insertions}{Name of the column with total number of insertions for each clonotype.} \item{.skip}{How many lines from beginning to skip.} \item{.sep}{Separator character.} } \value{ Data frame with immune receptor repertoire data. See \link{parse.file} for more details. } \description{ General parser for cloneset table files. Each column name has specific purpose (e.g., column for CDR3 nucleotide sequence or aligned gene segments), so you need to supply column names which has this purpose in your input data. } \examples{ \dontrun{ # Parse file in "~/mitcr/immdata1.txt" as a MiTCR file. immdata1 <- parse.file("~/mitcr/immdata1.txt", 'mitcr') } } \seealso{ \link{parse.file} } tcR/man/loglikelihood.Rd0000644000176200001440000000117113325616566014706 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/measures.R \name{loglikelihood} \alias{loglikelihood} \title{Log-likelihood.} \usage{ loglikelihood(.data, .base = 2, .do.norm = NA, .laplace = 1e-12) } \arguments{ \item{.data}{Vector for distribution or counts.} \item{.base}{Logarightm's base for the loglikelihood.} \item{.do.norm}{Parameter to the \code{check.distribution} function.} \item{.laplace}{Laplace correction, Parameter to the \code{check.distribution} function.} } \value{ Loglikelihood value. } \description{ Compute the log-likelihood of the given distribution or vector of counts. } tcR/man/gc.content.Rd0000644000176200001440000000063313325616566014125 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{gc.content} \alias{gc.content} \title{GC-content of a nucleotide sequences.} \usage{ gc.content(.nucseq) } \arguments{ \item{.nucseq}{Character vector of nucletoide sequences.} } \value{ Numeric vector of \code{length(.nucseq)}. } \description{ Compute the GC-content (proportion of G-C nucleotide in a sequence). } tcR/man/set.people.vector.Rd0000644000176200001440000000223613325616566015443 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph.R \name{set.people.vector} \alias{set.people.vector} \alias{get.people.names} \title{Set and get attributes of a mutation network related to source people.} \usage{ set.people.vector(.G, .shared.rep) get.people.names(.G, .V = V(.G), .paste = T) } \arguments{ \item{.G}{Mutation network.} \item{.shared.rep}{Shared repertoire.} \item{.V}{Indices of vertices.} \item{.paste}{If TRUE than concatenate people names to one string, else get a character vector of names.} } \value{ New graph with 'people' and 'npeople' vertex attributes or character vector of length .V or list of length .V. } \description{ Set vertice attributes 'people' and 'npeople' for every vertex in the given graph. Attribute 'people' is a binary string indicating in which repertoire sequence are found. Attribute 'npeople' is a integer indicating number of repertoires, in which this sequence has been found. } \examples{ \dontrun{ data(twb) twb.shared <- shared.repertoire(twb) G <- mutation.network(twb.shared) get.people.names(G, 300, T) # "Subj.A|Subj.B" get.people.names(G, 300, F) # list(c("Subj.A", "Subj.B")) } } tcR/man/tailbound.proportion.Rd0000644000176200001440000000372013325616566016256 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{tailbound.proportion} \alias{tailbound.proportion} \alias{clonal.proportion} \alias{top.proportion} \title{Proportions of specifyed subsets of clones.} \usage{ tailbound.proportion(.data, .bound = 2, .col = 'Read.count') top.proportion(.data, .head = 10, .col = 'Read.count') clonal.proportion(.data, .perc = 10, .col = 'Read.count') } \arguments{ \item{.data}{Data frame or a list with data frames.} \item{.bound}{Subset the \code{.data} by \code{.col} <= \code{.bound}.} \item{.col}{Column's name with counts of sequences.} \item{.head}{How many top values to choose - parameter to the \code{.head} function.} \item{.perc}{Percentage (0 - 100).} } \value{ For \code{tailbound.proportion} - numeric vector of percentage. For \code{top.proportion} - numeric vector of percentage for top clones. For \code{clonal.proportion} - vector or matrix with values for number of clones, occupied percentage and proportion of the chosen clones to the overall count of clones. } \description{ Get a specifyed subset of the given repertiure and compute which proportion in counts it has comparing to the overall count. \code{tailbound.proportion} - subset by the count; \code{top.proportion} - subset by rank (top N clones); \code{clonal.proportion} - subset by a summary percentage (top N clones which in sum has the given percentage). } \examples{ \dontrun{ # How many clones fill up approximately clonal.proportion(immdata, 25) # the 25\% of the sum of values in 'Read.count'? # What proportion of the top-10 clones' reads vis.top.proportions(immdata) # Plot this proportions. # What proportion of sequences which # has 'Read.count' <= 100 to the tailbound.proportion(immdata, 100) # overall number of reads? } } \seealso{ \link{vis.top.proportions}, \link{prop.sample} } tcR/man/vis.number.count.Rd0000644000176200001440000000206313325616566015301 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.number.count} \alias{vis.number.count} \title{Plot a histogram of counts.} \usage{ vis.number.count(.data, .ncol = 3, .name = "Histogram of clonotypes read counts", .col = "Read.count") } \arguments{ \item{.data}{Cloneset data frame or a list of clonesets.} \item{.ncol}{If .data is a list, than number of columns in a grid of histograms for each data frame in \code{.data}. Else not used.} \item{.name}{Title for this plot.} \item{.col}{Name of the column with counts.} } \value{ ggplot object. } \description{ Plot a histogram of distribution of counts of CDR3 nucleotide sequences. On y-axis are number of counts. } \details{ If \code{.data} is a data frame, than one histogram will be plotted. Is \code{.data} is a list, than grid of histograms will be plotted. } \examples{ \dontrun{ load('immdata.rda') # Plot one histogram with main title. vis.number.count(immdata[[1]], 'Main title here') # Plot a grid of histograms with 2 columns. vis.number.count(immdata, 2) } } tcR/man/kmer.profile.Rd0000644000176200001440000000174213325616566014462 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kmers.R \name{kmer.profile} \alias{kmer.profile} \alias{kmers.profile} \title{Profile of sequences of equal length.} \usage{ kmer.profile(.data, .names = rep('Noname', times=length(.data)), .verbose = F) } \arguments{ \item{.data}{Either list with elements of one of the allowed classes or object with one of the class: data.frame with first column with character sequences and second column with number of sequences or character vector.} \item{.names}{Names for each sequence / row in the \code{.data}.} \item{.verbose}{if T then print processing output.} } \value{ Return data frame with first column "Symbol" with all possible symbols in the given sequences and other columns with names "1", "2", ... for each position with percentage for each symbol. } \description{ Return profile for the given character vector or a data frame with sequences of equal length or list with them. } \seealso{ \link{vis.logo} } tcR/man/permutedf.Rd0000644000176200001440000000106313325616566014054 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{permutedf} \alias{permutedf} \alias{unpermutedf} \title{Shuffling data frames.} \usage{ permutedf(.data) unpermutedf(.data) } \arguments{ \item{.data}{MiTCR data.frame or list of such data frames.} } \value{ Shuffled data.frame or un-shuffled data frame if \code{.data} is a data frame, else list of such data frames. } \description{ Shuffle the given data.frame and order it by the Read.count column or un-shuffle a data frame and return it to the initial order. } tcR/man/revcomp.Rd0000644000176200001440000000107713325616566013541 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{revcomp} \alias{revcomp} \alias{bunch.translate} \title{DNA reverse complementing and translation.} \usage{ revcomp(.seq) bunch.translate(.seq, .two.way = T) } \arguments{ \item{.seq}{Vector of nucleotide sequences.} \item{.two.way}{if T then translate sequences from both ends (output differes for out-of-frame sequences).} } \value{ Vector of corresponding revese complemented or aminoacid sequences. } \description{ Functions for DNA reverse complementing and translation. } tcR/man/vis.logo.Rd0000644000176200001440000000153213325616566013622 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.logo} \alias{vis.logo} \title{Logo - plots for amino acid and nucletide profiles.} \usage{ vis.logo(.data, .replace.zero.with.na = T, .jitter.width = 0.01, .jitter.height = 0.01, .dodge.width = 0.15) } \arguments{ \item{.data}{Output from the \code{kmer.profile} function.} \item{.replace.zero.with.na}{if T then replace all zeros with NAs, therefore letters with zero frequency wont appear at the plot.} \item{.jitter.width, .jitter.height, .dodge.width}{Parameters to \code{position_jitterdodge} for aligning text labels of letters.} } \value{ ggplot2 object } \description{ Plot logo-like graphs for visualising of nucleotide or amino acid motif sequences / profiles. } \examples{ \dontrun{ d <- kmer_profile(c('CASLL', 'CASSQ', 'CASGL')) vis.logo(d) } } tcR/man/set.pb.Rd0000644000176200001440000000112413325616566013252 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{set.pb} \alias{set.pb} \alias{add.pb} \title{Simple functions for manipulating progress bars.} \usage{ set.pb(.max) add.pb(.pb, .value = 1) } \arguments{ \item{.max}{Length of the progress bar.} \item{.pb}{Progress bar object.} \item{.value}{Value to add to the progress bar.} } \value{ Progress bar (for set.pb) or length-one numeric vector giving the previous value (for add.pb). } \description{ Set the progress bar with the given length (from zero) or add value to the created progress bar. } tcR/man/top.fun.Rd0000644000176200001440000000272713414646541013455 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{top.fun} \alias{top.fun} \alias{slice_fun} \title{Get samples from a repertoire slice-by-slice or top-by-top and apply function to them.} \usage{ top.fun(.data, .n, .fun, ..., .simplify = T) slice_fun(.data, .size, .n, .fun, ..., .simplify = T) } \arguments{ \item{.data}{Data.frame, matrix, vector or any enumerated type or a list of this types.} \item{.n}{Vector of values passed to head function for top.fun or the number of slices for slice_fun.} \item{.fun}{Funtions to apply to every sample subset. First input argument is a data.frame, others are passed as \code{...}.} \item{...}{Additional parameters passed to the .fun.} \item{.simplify}{if T then try to simplify result to a vector or to a matrix if .data is a list.} \item{.size}{Size of the slice for sampling for slice_fun.} } \value{ List of length length(.n) for top.fun or .n for slice_fun. } \description{ Functions for getting samples from data frames either by consequently applying head functions (\code{top.fun}) or by getting equal number of rows in the moving window (\code{slice_fun}) and applying specified function to this samples. } \examples{ \dontrun{ # Get entropy of V-usage for the first 1000, 2000, 3000, ... clones. res <- top.fun(immdata[[1]], 1000, entropy.seg) # Get entropy of V-usage for the interval of clones with indices [1,1000], [1001,2000], ... res <- top.fun(immdata[[1]], 1000, entropy.seg) } } tcR/man/repSave.Rd0000644000176200001440000000145713325616566013475 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/io.R \name{repSave} \alias{repSave} \title{Save tcR data frames to disk as text files or gzipped text files.} \usage{ repSave(.data, .format = c("txt", "gz"), .names = "", .folder = "./") } \arguments{ \item{.data}{Either tcR data frame or a list of tcR data frames.} \item{.format}{"txt" for simple tab-delimited text tables, "gz" for compressed (gzipped) tables.} \item{.names}{Names of output files. By default it's an empty string so names will be taken from names of the input list.} \item{.folder}{Path to the folder with output files.} } \description{ Save repertoire files to either text files or gzipped text files. You can read them later by \code{repLoad} function with \code{.format = "tcr"}. } \seealso{ \link{repLoad} } tcR/man/dot-verbose.msg.Rd0000644000176200001440000000071013414630054015060 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{.verbose.msg} \alias{.verbose.msg} \title{Print the given message if second parameter is a TRUE.} \usage{ .verbose.msg(.message, .verbose = T) } \arguments{ \item{.message}{Character vector standing for a message.} \item{.verbose}{If T then print the given mesasge.} } \value{ Nothing. } \description{ Print the given message if second parameter is a TRUE. } tcR/man/barcodes.to.reads.Rd0000644000176200001440000000072213325616566015362 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{barcodes.to.reads} \alias{barcodes.to.reads} \title{Rearrange columns with counts for clonesets.} \usage{ barcodes.to.reads(.data) } \arguments{ \item{.data}{Data frame with columns "Umi.count" and "Read.count".} } \value{ Data frame with new "Read.count" and "Percentage" columns. } \description{ Replace Read.count with Umi.count, recompute Percentage and sort data. } tcR/man/vis.count.len.Rd0000644000176200001440000000215313325616566014567 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.count.len} \alias{vis.count.len} \title{Plot a histogram of lengths.} \usage{ vis.count.len(.data, .ncol = 3, .name = "", .col = "Read.count") } \arguments{ \item{.data}{Data frame with columns 'CDR3.nucleotide.sequence' and 'Read.count' or list with such data frames.} \item{.ncol}{If .data is a list, than number of columns in a grid of histograms for each data frame in \code{.data}. Else not used.} \item{.name}{Title for this plot.} \item{.col}{Name of the column to use in computing the lengths distribution.} } \value{ ggplot object. } \description{ Plot a histogram of distribution of lengths of CDR3 nucleotide sequences. On y-axis are sum of read counts for each length. } \details{ If \code{.data} is a data frame, than one histogram will be plotted. Is \code{.data} is a list, than grid of histograms will be plotted. } \examples{ \dontrun{ load('immdata.rda') # Plot one histogram with main title. vis.count.len(immdata[[1]], 'Main title here') # Plot a grid of histograms with 2 columns. vis.count.len(immdata, 2) } } tcR/man/vis.radarlike.Rd0000644000176200001440000000161313325616566014620 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.radarlike} \alias{vis.radarlike} \title{Radar-like / spider-like plots.} \usage{ vis.radarlike(.data, .ncol = 3, .which = NA, .expand = c(0.25, 0)) } \arguments{ \item{.data}{Square data frame or matrix with row names and col names stands for objects and values for distances.} \item{.ncol}{Number of columns in the grid.} \item{.which}{Character vector, which datasets to show.} \item{.expand}{Integer vector of length 2, for \code{scale_y_continous(expand = .expand)} function.} } \description{ Plot a grid of radar(-like) plots for visualising a distance among objects. } \examples{ \dontrun{ load('immdata.rda') # Compute Jensen-Shannon divergence among V-usage of repertoires. imm.js <- js.div.seg(immdata, .verbose = F) # Plot it. vis.radarlike(imm.js) } } \seealso{ \link{repOverlap}, \link{js.div} } tcR/man/cloneset.stats.Rd0000644000176200001440000000160313325616566015032 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{cloneset.stats} \alias{cloneset.stats} \alias{repseq.stats} \title{MiTCR data frame basic statistics.} \usage{ cloneset.stats(.data, .head = 0) repseq.stats(.data, .head = 0) } \arguments{ \item{.data}{tcR data frames or a list with tcR data frames.} \item{.head}{How many top clones use to comput summary.} } \value{ if \code{.data} is a data frame, than numeric vector with statistics. If \code{.data} is a list with data frames, than matrix with statistics for each data frame. } \description{ Compute basic statistics of TCR repertoires: number of clones, number of clonotypes, number of in-frame and out-of-frame sequences, summary of "Read.count", "Umi.count" and other. } \examples{ \dontrun{ # Compute basic statistics of list with data frames. cloneset.stats(immdata) repseq.stats(immdata) } } tcR/man/segments.alphabets.Rd0000644000176200001440000000364113325616566015654 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/docdata.R \docType{data} \name{segments.alphabets} \alias{segments.alphabets} \alias{HUMAN_TRAV} \alias{genealphabets} \alias{HUMAN_TRAJ} \alias{HUMAN_TRBV} \alias{HUMAN_TRBD} \alias{HUMAN_TRBJ} \alias{HUMAN_TRBV_MITCR} \alias{HUMAN_TRGV} \alias{HUMAN_TRGJ} \alias{HUMAN_TRDV} \alias{HUMAN_TRDD} \alias{HUMAN_TRDJ} \alias{HUMAN_IGHV} \alias{HUMAN_IGHD} \alias{HUMAN_IGHJ} \alias{HUMAN_IGKV} \alias{HUMAN_IGKJ} \alias{HUMAN_IGLJ} \alias{HUMAN_IGLV} \alias{HUMAN_TRBV_ALS} \alias{HUMAN_TRBV_FAM} \alias{HUMAN_TRBV_GEN} \alias{MACMUL_TRBJ} \alias{MACMUL_TRBV} \alias{MOUSE_TRBJ} \alias{MOUSE_TRBV} \alias{MOUSE_TRAV} \alias{MOUSE_TRAJ} \alias{MOUSE_IGKV} \alias{MOUSE_IGKJ} \alias{MOUSE_IGHV} \alias{MOUSE_IGHD} \alias{MOUSE_IGHJ} \alias{MOUSE_TRDD} \alias{MOUSE_TRDV} \alias{MOUSE_TRDJ} \alias{MOUSE_TRGV} \alias{MOUSE_TRGJ} \alias{MOUSE_IGLJ} \alias{MOUSE_IGLV} \title{Alphabets of TCR and Ig gene segments.} \format{Each \code{_} is a character vector. is an identifier of species, is concatenated three identifiers of cell type ("TR**" for TCR, "IG**" for Ig), chain (e.g., "**A*" for alpha chains) and gene segment ("***V" for V(ariable) gene segment, "***J" for J(oining) gene segment, "***D" for D(iversity) gene segment).} \usage{ HUMAN_TRAV HUMAN_TRAJ HUMAN_TRBV HUMAN_TRBD HUMAN_TRBJ HUMAN_TRBV_MITCR HUMAN_TRBV_ALS HUMAN_TRGV HUMAN_TRGJ HUMAN_TRDV HUMAN_TRDD HUMAN_TRDJ MOUSE_TRBV MOUSE_TRBJ MOUSE_TRAV MOUSE_TRAJ MOUSE_IGKV MOUSE_IGKJ MOUSE_IGHV MOUSE_IGHD MOUSE_IGHJ MACMUL_TRBV MACMUL_TRBJ HUMAN_IGHV HUMAN_IGHD HUMAN_IGHJ HUMAN_IGLV HUMAN_IGLJ MOUSE_IGLJ MOUSE_IGLV } \description{ Character vector with names for segments. With \code{tcR} we provided alphabets for all alpha, beta, gamma and delta chains gene segments. } \examples{ \dontrun{ HUMAN_TRBV[1] # => "TRBV10-1" } } \keyword{datasets} tcR/man/apply.symm.Rd0000644000176200001440000000176213325616566014200 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{apply.symm} \alias{apply.symm} \alias{apply.asymm} \title{Apply function to every pair of data frames from a list.} \usage{ apply.symm(.datalist, .fun, ..., .diag = NA, .verbose = T) apply.asymm(.datalist, .fun, ..., .diag = NA, .verbose = T) } \arguments{ \item{.datalist}{List with some data.frames.} \item{.fun}{Function to apply, which return basic class value.} \item{...}{Arguments passsed to .fun.} \item{.diag}{Either NA for NA or something else != NULL for .fun(x,x).} \item{.verbose}{if T then output a progress bar.} } \value{ Matrix with values M[i,j] = fun(datalist[i], datalist[j]) } \description{ Apply the given function to every pair in the given datalist. Function either symmetrical (i.e. fun(x,y) == fun(y,x)) or assymmetrical (i.e. fun(x,y) != fun(y,x)). } \examples{ \dontrun{ # equivalent to intersectClonesets(immdata, 'a0e') apply.symm(immdata, intersectClonesets, .type = 'a0e') } } tcR/man/gibbs.sampler.Rd0000644000176200001440000000115713325616566014615 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kmers.R \name{gibbs.sampler} \alias{gibbs.sampler} \title{Gibbs Sampler.} \usage{ gibbs.sampler(.data, .k = 5, .niter = 500) } \arguments{ \item{.data}{Vector of characters or data.frame of characters (1st col) and their numbers (2nd col) if .meat == T.} \item{.k}{Motif's length.} \item{.niter}{Number of iterations.} } \value{ Vector of possible motifs. } \description{ Perform the Gibbs Sampler method for finding frequent motifs in the given vector of strings or data.frame. Each string splitted to kmers with the given length of motif. } tcR/man/startmitcr.Rd0000644000176200001440000000230513325616566014255 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mitcr.R \name{startmitcr} \alias{startmitcr} \title{Start MiTCR directly from the package.} \usage{ startmitcr(.input = "", .output = "", ..., .file.path = "", .mitcr.path = "~/programs/", .mem = "4g") } \arguments{ \item{.input, .output}{Input and output files.} \item{...}{Specify input and output files and arguments of the MITCR without first '-' to run it.} \item{.file.path}{Path prepending to \code{.input} and \code{.output}. If input and output is empty, but .file.path is specified, than process all files from the folder \code{.file.path}} \item{.mitcr.path}{Path to MiTCR .jar file.} \item{.mem}{Volume of memory available to MiTCR.} } \description{ Start the MiTCR tools directly from the package with given settings. } \details{ Don't use spaces in paths! You should have insalled JDK 1.7 to make it works. } \examples{ \dontrun{ # Equal to # java -Xmx8g -jar ~/programs/mitcr.jar -pset flex # -level 2 ~/data/raw/TwA1_B.fastq.gz ~/data/mitcr/TwA1_B.txt startmitcr('raw/TwA1_B.fastq.gz', 'mitcr/TwA1_B.txt', .file.path = '~/data/', pset = 'flex', level = 1, 'debug', .mitcr.path = '~/programs/', .mem = '8g') } } tcR/man/matrixdiagcopy.Rd0000644000176200001440000000056013325616566015106 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{matrixdiagcopy} \alias{matrixdiagcopy} \title{Copy the up-triangle matrix values to low-triangle.} \usage{ matrixdiagcopy(mat) } \arguments{ \item{mat}{Given up-triangle matrix.} } \value{ Full matrix. } \description{ Copy the up-triangle matrix values to low-triangle. } tcR/man/resample.Rd0000644000176200001440000000377713325616566013707 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{resample} \alias{resample} \alias{downsample} \alias{prop.sample} \title{Resample data frame using values from the column with number of clonesets.} \usage{ resample(.data, .n = -1, .col = c("read.count", "umi.count")) downsample(.data, .n, .col = c("read.count", "umi.count")) prop.sample(.data, .perc = 50, .col = c("read.count", "umi.count")) } \arguments{ \item{.data}{Data frame with the column \code{.col} or list of such data frames.} \item{.n}{Number of values / reads / UMIs to choose.} \item{.col}{Which column choose to represent quanitites of clonotypes. See "Details".} \item{.perc}{Percentage (0 - 100). See "Details" for more info.} } \value{ Subsampled data frame. } \description{ Resample data frame using values from the column with number of clonesets. Number of clonestes (i.e., rows of a MiTCR data frame) are reads (usually the "Read.count" column) or UMIs (i.e., barcodes, usually the "Umi.count" column). } \details{ \code{resample}. Using multinomial distribution, compute the number of occurences for each cloneset, than remove zero-number clonotypes and return resulting data frame. Probabilities for \code{rmultinom} for each cloneset is a percentage of this cloneset in the \code{.col} column. It's a some sort of simulation of how clonotypes are chosen from the organisms. For now it's not working very well, so use \code{downsample} instead. \code{downsample}. Choose \code{.n} clones (not clonotypes!) from the input repertoires without any probabilistic simulation, but exactly computing each choosed clones. Its output is same as for \code{resample} (repertoires), but is more consistent and biologically pleasant. \code{prop.sample}. Choose the first N clonotypes which occupies \code{.perc} percents of overall UMIs / reads. } \examples{ \dontrun{ # Get 100K reads (not clones!). immdata.1.100k <- resample(immdata[[1]], 100000, .col = "read.count") } } \seealso{ \link{rmultinom}, \link{clonal.proportion} } tcR/man/beta.prob.Rd0000644000176200001440000000401513325616566013735 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/docdata.R \docType{data} \name{beta.prob} \alias{beta.prob} \title{List with assembling probabilities of beta chain TCRs.} \format{\code{beta.prob} is a list of matrices and data frames.} \description{ \code{beta.prob} is a list with probabilities of TCR assembling taken from \code{Murugan et al. Statistical inference of the generation probability of T-cell receptors from sequence repertoires}. It's a list with the following elements: - P.V - matrix with 1 column and row names stands for V-beta segments. Each element is a probability of choosing corresponding V-beta segment. - P.del.D1 - matrix 17x17 with probabilities of choosing D5-D3 deletions for TRBD1. - P.del.D1 - matrix 17x17 with probabilities of choosing D5-D3 deletions for TRBD2. - P.ins.len - matrix with first columns stands for number of insertions, second and third columns filled with probability values of choosing corresponding number of insertions in VD- and DJ-junctions correspondingly. - P.ins.nucl - data frame with probability of choosing a nucleotide in the insertion on junctions with known previous nucleotide. First column with names of nucleotides, 2-5 columns are probabilities of choosing adjacent nucleotide in VD-junction, 6-9 columns are probabilities of choosing adjacent nucleotide in DJ-junction. - P.del.J - matrix with the first column "P.del.V" with number of deletions, and other columns with names for V-segments and with probabilities of corresponding deletions. - P.del.J - matrix with the first column "P.del.J" with number of deletions, and other columns with names for J-segments and with probabilities of corresponding deletions. - P.J.D - matrix with two columns ("TRBD1" and "TRBD2") and 13 rows with row names stands for J-beta segments. Each element is a mutual probability of choosing J-D segments. } \examples{ \dontrun{ # Generate 10 kmers with adjacent nucleotide probability. generate.kmers.prob(rep.int(10, 10), .probs=beta.prob$P.ins.nucl[,c(1, 2:5)]) } } tcR/man/codon.variants.Rd0000644000176200001440000000326613325616566015020 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{codon.variants} \alias{codon.variants} \alias{translated.nucl.sequences} \alias{reverse.translation} \title{Functions for working with aminoacid sequences.} \usage{ codon.variants(.aaseq, .nucseq = sapply(1:length(.aaseq), function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), collapse = ''))) translated.nucl.sequences(.aaseq, .nucseq = sapply(1:length(.aaseq), function (i) paste0(rep('XXX', times = nchar(.aaseq[i])), collapse = ''))) reverse.translation(.aaseq, .nucseq = paste0(rep('XXX', times = nchar(.aaseq)), collapse = '')) } \arguments{ \item{.aaseq}{Amino acid sequence.} \item{.nucseq}{Nucleotide sequence with 'X' letter at non-fixed positions. Other positions will be fixed.} } \value{ List with all possible variants for every aminoacid in .aaseq, number of sequences or character vector of candidate sequences. } \description{ \code{codon.variants} - get all codon variants for the given nucleotide sequence with known corresponding aminoacid sequence. \code{translated.nucl.variants} - get number of nucleotide sequences which can be translated to the given aminoacid sequence. \code{reverse.translation} - get all nucleotide sequences, which can be traslated to the given aminoacid sequence. } \examples{ codon.variants('ACT') translated.nucl.sequences(c('ACT', 'CASSLQ')) reverse.translation('T') # -> "ACA" "ACC" "ACG" "ACT" reverse.translation('T', 'XXT') # -> "ACT" translated.nucl.sequences('ACT', 'XXXXXXXC') codon.variants('ACT', 'XXXXXXXC') reverse.translation('ACT', 'XXXXXXXC') } tcR/man/dot-add.legend.Rd0000644000176200001440000000123413414646541014625 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{.add.legend} \alias{.add.legend} \title{Internal function. Add legend to a grid of plots and remove legend from all plots of a grid.} \usage{ .add.legend(.vis.list, .vis.nrow = 2, .legend.ncol = 1) } \arguments{ \item{.vis.list}{A list with ggplot2 plots.} \item{.vis.nrow}{Number of rows of the resulting grid with plots.} \item{.legend.ncol}{Number of columns in the shared legend.} } \description{ Given a list of ggplot2 plots, remove legend from each of them and return grid of such plots plus legend from the first vis. Suitable for plots with similar legends. } tcR/man/vis.pca.Rd0000644000176200001440000000134013325616566013422 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.pca} \alias{vis.pca} \title{PCA result visualisation} \usage{ vis.pca(.data, .groups = NA, .text = T) } \arguments{ \item{.data}{Result from prcomp() function or a data frame with two columns 'First' and 'Second' stands for the first PC and the second PC.} \item{.groups}{List with names for groups and indices of the group members. If NA than each member is in the individual group.} \item{.text}{If T than print the names of the subjects.} } \value{ ggplot object. } \description{ Plot the given pca results with colour divided by the given groups. } \examples{ \dontrun{ data(twb) tmp = geneUsage(twb) vis.pca(prcomp(t(tmp[,-1]))) } } tcR/man/find.clonotypes.Rd0000644000176200001440000000426613325616566015207 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{find.clonotypes} \alias{find.clonotypes} \title{Find target clonotypes and get columns' value corresponded to that clonotypes.} \usage{ find.clonotypes(.data, .targets, .method = c("exact", "hamm", "lev"), .col.name = "Read.count", .target.col = "CDR3.amino.acid.sequence", .verbose = T) } \arguments{ \item{.data}{List with mitcr data.frames or a mitcr data.frame.} \item{.targets}{Target sequences or elements to search. Either character vector or a matrix / data frame (not a data table!) with two columns: first for sequences, second for V-segments.} \item{.method}{Method, which will be used to find clonotypes: - "exact" performs exact matching of targets; - "hamm" finds targets and close sequences using hamming distance <= 1; - "lev" finds targets and close sequences using levenshtein distance <= 1.} \item{.col.name}{Character vector with column names which values should be returned.} \item{.target.col}{Character vector specifying name of columns in which function will search for a targets. Only first column's name will be used for matching by different method, others will match exactly. \code{.targets} should be a two-column character matrix or data frame with second column for V-segments.} \item{.verbose}{if T then print messages about the search process.} } \value{ Data.frame. } \description{ Find the given target clonotypes in the given list of data.frames and get corresponding values of desired columns. } \examples{ \dontrun{ # Get ranks of all given sequences in a list of data frames. immdata <- set.rank(immdata) find.clonotypes(.data = immdata, .targets = head(immdata[[1]]$CDR3.amino.acid.sequence), .method = 'exact', .col.name = "Rank", .target.col = "CDR3.amino.acid.sequence") # Find close by levenhstein distance clonotypes with similar V-segments and return # their values in columns 'Read.count' and 'Total.insertions'. find.clonotypes(.data = twb, .targets = twb[[1]][, c('CDR3.amino.acid.sequence', 'V.gene')], .col.name = c('Read.count', 'Total.insertions'), .method = 'lev', .target.col = c('CDR3.amino.acid.sequence', 'V.gene')) } } tcR/man/vis.top.proportions.Rd0000644000176200001440000000127513325616566016065 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.top.proportions} \alias{vis.top.proportions} \title{Visualisation of top clones proportions.} \usage{ vis.top.proportions(.data, .head = c(10, 100, 1000, 10000, 30000, 1e+05, 3e+05, 1e+06), .col = "Read.count") } \arguments{ \item{.data}{Data frame with clones.} \item{.head}{Integer vector of clones for the \code{.head} parameter for the \code{top.proportion} function.} \item{.col}{Parameter \code{.col} for the \code{top.proportion} function.} } \description{ Visualisation of proportion of the top clones. } \examples{ \dontrun{ vis.top.proportions(immdata) } } \seealso{ \code{top.proportion} } tcR/man/dot-fix.listnames.Rd0000644000176200001440000000050313414630054015412 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{.fix.listnames} \alias{.fix.listnames} \title{Fix names in lists.} \usage{ .fix.listnames(.datalist) } \arguments{ \item{.datalist}{List with data frames.} } \value{ List with fixed names. } \description{ Fix names in lists. } tcR/man/get.deletions.alpha.Rd0000644000176200001440000000257213325616566015717 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{get.deletions.alpha} \alias{get.deletions.alpha} \alias{get.deletions.beta} \title{Compute the number of deletions in MiTCR data frames.} \usage{ get.deletions.alpha(.data, .Vs = segments$TRAV, .Js = segments$TRAJ) get.deletions.beta(.data, .Vs = segments$TRBV, .Js = segments$TRBJ, .Ds = segments$TRBD) } \arguments{ \item{.data}{Mitcr data.frame.} \item{.Vs}{Table of V segments; must have 'V.segment' and 'Nucleotide.sequence' columns.} \item{.Js}{Table of J segments; must have 'J.segment' and 'Nucleotide.sequence' columns.} \item{.Ds}{Table of D segments; must have 'D.segment' and 'Nucleotide.sequence' columns.} } \value{ Mitcr data.frame with 3 (for alpha chains) or 5 (for beta chains) new columns for deletions. } \description{ Get deletions for VD, DJ, 5'D and 3'D ends and two columns with total deletions for VD/DJ and 5'D/3'D deletions for the given mitcr data.frame with 0-indexes columns. Cases, in which deletions cannot be determined, will have -1 in their cell. } \details{ By default, \code{*.table} parameters are taken from the \code{segments} data frame which can be loaded to your R environment with data(segments). Data for segments has been taken from IMGT. } \examples{ \dontrun{ data(segments) immdata <- get.deletions.beta(.data) immdata.prob <- tcr.prob.df(immdata) } } tcR/man/vis.heatmap.Rd0000644000176200001440000000304313414630054014263 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.heatmap} \alias{vis.heatmap} \title{Heatmap.} \usage{ vis.heatmap(.data, .title = "Number of shared clonotypes", .labs = c("Sample", "Sample"), .legend = "Shared clonotypes", .na.value = NA, .text = T, .scientific = FALSE, .signif.digits = 4, .size.text = 4, .no.legend = F, .no.labs = F) } \arguments{ \item{.data}{Either a matrix with colnames and rownames specifyed or a data.frame with the first column of strings for row names and other columns stands for values.} \item{.title}{Main title of the plot.} \item{.labs}{Labs names. Character vector of length 2 (for naming x-axis and y-axis).} \item{.legend}{Title for the legend.} \item{.na.value}{Replace NAs with this values.} \item{.text}{if T then print \code{.data} values at tiles.} \item{.scientific}{If T then force show scientific values in the heatmap plot.} \item{.signif.digits}{Number of significant digits to show. Default - 4.} \item{.size.text}{Size for the text in the cells of the heatmap, 4 by default.} \item{.no.legend}{If T than remove the legend from the plot.} \item{.no.labs}{If T than remove x / y labels names from the plot.} } \value{ ggplot object. } \description{ Plot a heatmap from a matrix or a data.frame } \examples{ \dontrun{ # Load your data. load('immdata.rda') # Perform cloneset overlap by amino acid sequences with V-segments. imm.av <- repOverlap(immdata, .seq = 'aa', .vgene = T) # Plot a heatmap. vis.heatmap(imm.av, .title = 'Immdata - (ave)-intersection') } } tcR/man/has.class.Rd0000644000176200001440000000055413325616566013744 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{has.class} \alias{has.class} \title{Check if a given object has a given class.} \usage{ has.class(.data, .class) } \arguments{ \item{.data}{Object.} \item{.class}{String naming a class.} } \value{ Logical. } \description{ Check if a given object has a given class. } tcR/man/ozScore.Rd0000644000176200001440000000253113325616566013506 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/crosses.R \name{ozScore} \alias{ozScore} \title{Overlap Z-score.} \usage{ ozScore(.mat, .symm = T, .as.matrix = F, .val.col = c("norm", "abs", "oz")) } \arguments{ \item{.mat}{Matrix with overlap values.} \item{.symm}{If T then remove lower triangle matrix from counting. Doesn't work if the matrix has different number of rows and columns.} \item{.as.matrix}{If T then return} \item{.val.col}{If .as.matrix is T then this is a name of the column to build matrix upon: either "oz" for the OZ-score column, "abs" for the absolute OZ-score column, or "norm" for the normalised absolute OZ-score column.} } \description{ Compute OZ-scores ("overlap Z scores") for values in the given matrix of overlaps, i.e.,. for each value compute the number of standart deviations from the mean of the matrix. } \examples{ \dontrun{ data(twb) mat <- repOverlap(twb) ozScore(mat) # Take 3x3 matrix ozScore(mat[1:3, 1:3]) # Return as matrix with OZ scores ozmat <- ozScore(mat, T, T, 'oz') # Return as matrix with normalised absolute OZ scores oznorm <- ozScore(mat, T, T, 'norm') # Plot it as boxplots sb <- matrixSubgroups(oznorm, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); vis.group.boxplot(sb) } } \seealso{ \link{repOverlap}, \link{intersectClonesets}, \link{permutDistTest} } tcR/man/clonal.space.homeostasis.Rd0000644000176200001440000000234413414630054016746 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{clonal.space.homeostasis} \alias{clonal.space.homeostasis} \title{Clonal space homeostasis.} \usage{ clonal.space.homeostasis(.data, .clone.types = c(Rare = 1e-05, Small = 1e-04, Medium = 0.001, Large = 0.01, Hyperexpanded = 1), .prop.col = "Read.proportion") } \arguments{ \item{.data}{Cloneset data frame or list with such data frames.} \item{.clone.types}{Named numeric vector.} \item{.prop.col}{Which column to use for counting proportions.} } \description{ Compute clonal space homeostatsis - statistics of how many space occupied by clones with specific proportions. } \examples{ \dontrun{ data(twb) # Compute summary space of clones, that occupy # [0, .05) and [.05, 1] proportion. clonal.space.homeostasis(twb, c(Low = .05, High = 1))) # Low (0 < X <= 0.05) High (0.05 < X <= 1) # Subj.A 0.9421980 0.05780198 # Subj.B 0.9239454 0.07605463 # Subj.C 0.8279270 0.17207296 # Subj.D 1.0000000 0.00000000 # I.e., for Subj.D sum of all read proportions for clones # which have read proportion between 0 and .05 is equal to 1. } } \seealso{ \link{vis.clonal.space} } tcR/man/mutation.network.Rd0000644000176200001440000000336713325616566015422 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph.R \name{mutation.network} \alias{mutation.network} \title{Make mutation network for the given repertoire.} \usage{ mutation.network(.data, .method = c("hamm", "lev"), .max.errors = 1, .label.col = "CDR3.amino.acid.sequence", .seg.col = "V.gene", .prob.col = "Probability") } \arguments{ \item{.data}{Either character vector of sequences, data frame with \code{.label.col} or shared repertoire (result from the \code{shared.repertoire} function) constructed based on \code{.label.col}.} \item{.method}{Either "hamm" (for hamming distance) or "lev" (for edit distance). Passed to the \code{find.similar.sequences} function.} \item{.max.errors}{Passed to the \code{find.similar.sequences} function.} \item{.label.col}{Name of the column with CDR3 sequences (vertex labels).} \item{.seg.col}{Name of the column with V gene segments.} \item{.prob.col}{Name of the column with clonotype probability.} } \value{ Mutation network, i.e. igraph object with input sequences as vertices labels, ??? } \description{ Mutation network (or a mutation graph) is a graph with vertices representing nucleotide or in-frame amino acid sequences (out-of-frame amino acid sequences will automatically filtered out) and edges are connecting pairs of sequences with hamming distance or edit distance between them no more than specified in the \code{.max.errors} function parameter. } \examples{ \dontrun{ data(twb) twb.shared <- shared.repertoire(twb) G <- mutation.network(twb.shared) get.people.names(G, 300, T) # "Subj.A|Subj.B" get.people.names(G, 300, F) # list(c("Subj.A", "Subj.B")) } } \seealso{ \link{shared.repertoire}, \link{find.similar.sequences}, \link{set.people.vector}, \link{get.people.names} } tcR/man/vis.group.boxplot.Rd0000644000176200001440000000311113414630054015462 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.group.boxplot} \alias{vis.group.boxplot} \title{Boxplot for groups of observations.} \usage{ vis.group.boxplot(.data, .groups = NA, .labs = c("V genes", "Frequency"), .title = "", .rotate.x = T, .violin = T, .notch = F, ...) } \arguments{ \item{.data}{Either a matrix with colnames and rownames specifyed or a data frame with the first column of strings for row names and other columns stands for values.} \item{.groups}{Named list with character vectors for names of elements for each group. If NA than each member is in the individual group.} \item{.labs}{Labs names. Character vector of length 1 (for naming both axis with same name) or 2 (first elements stands for x-axis).} \item{.title}{Main title of the plot.} \item{.rotate.x}{if T then rotate x-axis.} \item{.violin}{If T then plot a violin plot.} \item{.notch}{"notch" parameter to the \code{geom_boxplot} ggplo2 function.} \item{...}{Parameters passed to \code{melt}, applied to \code{.data} before plotting in \code{vis.group.boxplot}.} } \value{ ggplot object. } \description{ Plot boxplots for each group. } \examples{ \dontrun{ names(immdata) # "A1" "A2" "B1" "B2" "C1" "C2" # Plot a boxplot for V-usage for each plot # three boxplots for each group. vis.group.boxplot(freq.Vb(immdata), list(A = c('A1', 'A2'), B = c('B1', 'B2'), C = c('C1', 'C2')), c('V segments', 'Frequency')) data(twb) ov <- repOverlap(twb) sb <- matrixSubgroups(ov, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); vis.group.boxplot(sb) } } tcR/man/generate.kmers.Rd0000644000176200001440000000231713325616566014776 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kmers.R \name{generate.kmers} \alias{generate.kmers} \alias{generate.kmers.prob} \title{Generate k-mers.} \usage{ generate.kmers(.k, .seq = '', .alphabet = c('A', 'C', 'G', 'T')) generate.kmers.prob(.k, .probs, .count = 1, .alphabet = c('A', 'C', 'G', 'T'), .last.nucl = 'X') } \arguments{ \item{.k}{Size of k-mers or either integer or vector with k-s for generate.kmers.prob.} \item{.seq}{Prefix of all generated k-mers.} \item{.alphabet}{Alphabet.} \item{.probs}{Matrix with probabilities for generating adjacent symbol with |alphabet| X |alphabet| size. Order of letters is given in the \code{.alphabet} parameter.} \item{.count}{Number of kmers to be generated.} \item{.last.nucl}{Adjacent nucleotide from which start generation. If 'X' than choose one of the nucleotides with equal probabilities.} } \value{ Vector of all possible k-mers for \code{generate.kmers} or a vector of generated kmers for \code{generate.kmers.prob}. } \description{ Generate all k-mers. starting with the given sequence on the given alphabet Generate k-mers with the given k and probabilities of nucleotides next to each other (markov chain). } tcR/man/inverse.simpson.Rd0000644000176200001440000000600213325616566015221 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/diversity.R \name{inverse.simpson} \alias{inverse.simpson} \alias{diversity} \alias{gini} \alias{chao1} \alias{gini.simpson} \title{Distribution evaluation.} \usage{ inverse.simpson(.data, .do.norm = NA, .laplace = 0) diversity(.data, .q = 5, .do.norm = NA, .laplace = 0) gini(.data, .do.norm = NA, .laplace = 0) gini.simpson(.data, .do.norm = NA, .laplace = 0) chao1(.data) } \arguments{ \item{.data}{Numeric vector of values for proportions or for numbers of individuals.} \item{.do.norm}{One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) and normalise if needed with the given laplace correction value. if T then do normalisation and laplace correction. If F than don't do normalisaton and laplace correction.} \item{.laplace}{Value for Laplace correction which will be added to every value in the .data.} \item{.q}{q-parameter for the Diversity index.} } \value{ Numeric vector of length 1 with value for all functions except \code{chao1}, which returns 4 values: estimated number of species, standart deviation of this number and two 95% confidence intervals for the species number. } \description{ Functions for evaluating the diversity of species or objects in the given distribution. See the \code{repOverlap} function for working with clonesets and a general interface to all of this functions. Warning! Functions will check if .data is a distribution of a random variable (sum == 1) or not. To force normalisation and / or to prevent this, set .do.norm to TRUE (do normalisation) or FALSE (don't do normalisation), respectively. - True diversity, or the effective number of types, refers to the number of equally-abundant types needed for the average proportional abundance of the types to equal that observed in the dataset of interest where all types may not be equally abundant. - Inverse Simpson index is the effective number of types that is obtained when the weighted arithmetic mean is used to quantify average proportional abundance of types in the dataset of interest. - The Gini coefficient measures the inequality among values of a frequency distribution (for example levels of income). A Gini coefficient of zero expresses perfect equality, where all values are the same (for example, where everyone has the same income). A Gini coefficient of one (or 100 percents ) expresses maximal inequality among values (for example where only one person has all the income). - The Gini-Simpson index is the probability of interspecific encounter, i.e., probability that two entities represent different types. - Chao1 estimator is a nonparameteric asymptotic estimator of species richness (number of species in a population). } \examples{ data(twb) # Next two are equal calls: stopifnot(gini(twb[[1]]$Read.count, TRUE, 0) - 0.7609971 < 1e-07) stopifnot(gini(twb[[1]]$Read.proportion, FALSE) - 0.7609971 < 1e-07) stopifnot(chao1(twb[[1]]$Read.count)[1] == 1e+04) } \seealso{ \link{repOverlap}, \link{entropy}, \link{similarity} } tcR/man/cosine.similarity.Rd0000644000176200001440000001025313325616566015527 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/measures.R \name{cosine.similarity} \alias{cosine.similarity} \alias{similarity} \alias{tversky.index} \alias{overlap.coef} \alias{morisitas.index} \alias{jaccard.index} \alias{horn.index} \title{Set and vector similarity measures.} \usage{ cosine.similarity(.alpha, .beta, .do.norm = NA, .laplace = 0) tversky.index(x, y, .a = 0.5, .b = 0.5) overlap.coef(.alpha, .beta) jaccard.index(.alpha, .beta, .intersection.number = NA) morisitas.index(.alpha, .beta, .do.unique = T) horn.index(.alpha, .beta, .do.unique = T) } \arguments{ \item{.alpha, .beta, x, y}{Vector of numeric values for cosine similarity, vector of any values (like characters) for \code{tversky.index} and \code{overlap.coef}, matrix or data.frame with 2 columns for \code{morisitas.index} and \code{horn.index}, either two sets or two numbers of elements in sets for \code{jaccard.index}.} \item{.do.norm}{One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) and normalise if needed with the given laplace correction value. if T then do normalisation and laplace correction. If F than don't do normalisaton and laplace correction.} \item{.laplace}{Value for Laplace correction.} \item{.a, .b}{Alpha and beta parameters for Tversky Index. Default values gives the Jaccard index measure.} \item{.do.unique}{if T then call unique on the first columns of the given data.frame or matrix.} \item{.intersection.number}{Number of intersected elements between two sets. See "Details" for more information.} } \value{ Value of similarity between the given sets or vectors. } \description{ Functions for computing similarity between two vectors or sets. See "Details" for exact formulas. - Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them. - Tversky index is an asymmetric similarity measure on sets that compares a variant to a prototype. - Overlap cofficient is a similarity measure related to the Jaccard index that measures the overlap between two sets, and is defined as the size of the intersection divided by the smaller of the size of the two sets. - Jaccard index is a statistic used for comparing the similarity and diversity of sample sets. - Morisita's overlap index is a statistical measure of dispersion of individuals in a population. It is used to compare overlap among samples (Morisita 1959). This formula is based on the assumption that increasing the size of the samples will increase the diversity because it will include different habitats (i.e. different faunas). - Horn's overlap index based on Shannon's entropy. Use the \link{repOverlap} function for computing similarities of clonesets. } \details{ For \code{morisitas.index} input data are matrices or data.frames with two columns: first column is elements (species or individuals), second is a number of elements (species or individuals) in a population. Formulas: Cosine similarity: \code{cos(a, b) = a * b / (||a|| * ||b||)} Tversky index: \code{S(X, Y) = |X and Y| / (|X and Y| + a*|X - Y| + b*|Y - X|)} Overlap coefficient: \code{overlap(X, Y) = |X and Y| / min(|X|, |Y|)} Jaccard index: \code{J(A, B) = |A and B| / |A U B|} For Jaccard index user can provide |A and B| in \code{.intersection.number} otherwise it will be computed using \code{base::intersect} function. In this case \code{.alpha} and \code{.beta} expected to be vectors of elements. If \code{.intersection.number} is provided than \code{.alpha} and \code{.beta} are exptected to be numbers of elements. Formula for Morisita's overlap index is quite complicated and can't be easily shown here, so just look at this webpage: http://en.wikipedia.org/wiki/Morisita%27s_overlap_index } \examples{ \dontrun{ jaccard.index(1:10, 2:20) a <- length(unique(immdata[[1]][, c('CDR3.amino.acid.sequence', 'V.gene')])) b <- length(unique(immdata[[2]][, c('CDR3.amino.acid.sequence', 'V.gene')])) # Next jaccard.index(a, b, repOverlap(immdata[1:2], .seq = 'aa', .vgene = T)) # is equal to repOverlap(immdata[1:2], 'jaccard', seq = 'aa', .vgene = T) } } \seealso{ \link{repOverlap}, \link{intersectClonesets}, \link{entropy}, \link{diversity} } tcR/man/kmer.table.Rd0000644000176200001440000000323013325616566014103 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kmers.R \name{kmer.table} \alias{kmer.table} \alias{get.kmer.column} \title{Make and manage the table of the most frequent k-mers.} \usage{ kmer.table(.data, .heads = c(10, 100, 300, 1000, 3000, 10000, 30000), .k = 5, .nrow = 20, .clean = T, .meat = F) get.kmer.column(.kmer.table.list, .head) } \arguments{ \item{.data}{tcR data.frame or a list with tcR data.frames.} \item{.heads}{Vector of parameter for the \code{head()} function, supplied sequentialy to the \code{get.kmers()} function. -1 means all rows.} \item{.k}{Size of the kmer.} \item{.nrow}{How many most frequent k-mers include to the output table.} \item{.clean}{Parameter for the \code{get.kmers()} function.} \item{.meat}{Parameter for the \code{get.kmers()} function.} \item{.kmer.table.list}{Result from the \code{kmer.table} function if \code{.data} supplied as a list.} \item{.head}{Which columns with this head return.} } \value{ \code{kmer.table} - if \code{.data} is a data frame, than data frame with columns like "Kmers.X", "Count.X" where X - element from \code{.heads}. If \code{.data} is a list, than list of such data frames. \code{get.kmer.column} - data frame with first column with kmers and other columns named as a names of data frames, from which \code{.kmer.table.list} was generated. } \description{ \code{kmer.table} - generate table with the most frequent k-mers. \code{get.kmer.column} - get vector of k-mers from the k-mer table from the function \code{kmer.table} } \examples{ \dontrun{ twb.kmers <- kmer.table(twb, .heads = c(5000, 10000), .meat = T) head(get.kmer.column(twb.kmers, 10000)) } } tcR/man/reverse.string.Rd0000644000176200001440000000101713325616566015040 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{reverse.string} \alias{reverse.string} \title{Reverse given character vector by the given n-plets.} \usage{ reverse.string(.seq, .n = 1) } \arguments{ \item{.seq}{Sequences.} \item{.n}{By which n-plets we should reverse the given strings.} } \value{ Reversed strings. } \description{ Reverse given character vector by the given n-plets. } \examples{ reverse.string('abcde') # => "edcba" reverse.string('abcde', 2) # => "debca" } tcR/man/vis.kmer.histogram.Rd0000644000176200001440000000206013325616566015611 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.kmer.histogram} \alias{vis.kmer.histogram} \title{Plot of the most frequent kmers.} \usage{ vis.kmer.histogram(.kmers, .head = 100, .position = c("stack", "dodge", "fill")) } \arguments{ \item{.kmers}{Data frame with two columns "Kmers" and "Count" or a list with such data frames. See Examples.} \item{.head}{Number of the most frequent kmers to choose for plotting from each data frame.} \item{.position}{Character vector of length 1. Position of bars for each kmers. Value for the \code{ggplot2} argument \code{position}.} } \description{ Plot a distribution (bar plot) of the most frequent kmers in a data. } \examples{ \dontrun{ # Load necessary data and package. library(gridExtra) load('immdata.rda') # Get 5-mers. imm.km <- get.kmers(immdata) # Plots for kmer proportions in each data frame in immdata. p1 <- vis.kmer.histogran(imm.km, .position = 'stack') p2 <- vis.kmer.histogran(imm.km, .position = 'fill') grid.arrange(p1, p2) } } \seealso{ \code{get.kmers} } tcR/man/sample.clones.Rd0000644000176200001440000000115013325616566014621 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{sample.clones} \alias{sample.clones} \title{Get a random subset from a data.frame.} \usage{ sample.clones(.data, .n, .replace = T) } \arguments{ \item{.data}{Data.frame or a list with data.frames} \item{.n}{Sample size if integer. If in bounds [0;1] than percent of rows to extract. "1" is a percent, not one row!} \item{.replace}{if T then choose with replacement, else without.} } \value{ Data.frame of nrow .n or a list with such data.frames. } \description{ Sample rows of the given data frame with replacement. } tcR/man/fix.alleles.Rd0000644000176200001440000000060613325616566014271 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{fix.alleles} \alias{fix.alleles} \alias{fix.genes} \title{Fix alleles / genes by removing allele information / unnecessary colons.} \usage{ fix.alleles(.data) } \arguments{ \item{.data}{tcR data frame.} } \description{ Fix alleles / genes by removing allele information / unnecessary colons. } tcR/man/sample2D.Rd0000644000176200001440000000106713325616566013534 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{sample2D} \alias{sample2D} \title{Get a sample from matrix with probabilities.} \usage{ sample2D(.table, .count = 1) } \arguments{ \item{.table}{Numeric matrix or data frame with probabilities and columns and rows names.} \item{.count}{Number of sample to fetch.} } \value{ Character matrix with nrow == .count and 2 columns. row[1] in row.names(.table), row[2] in colnames(.table). } \description{ Get a sample from matrix or data frame with pair-wise probabilities. } tcR/man/repDiversity.Rd0000644000176200001440000000413013325616566014550 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/repdiversity.R \name{repDiversity} \alias{repDiversity} \title{General function for the repertoire diversity estimation.} \usage{ repDiversity(.data, .method = c("chao1", "gini.simp", "inv.simp", "gini", "div", "entropy"), .quant = c("read.count", "umi.count", "read.prop", "umi.prop"), .q = 5, .norm = F, .do.norm = NA, .laplace = 0) } \arguments{ \item{.data}{Cloneset or a list of clonesets.} \item{.method}{Which method to use for the diversity estimation. See "Details" for methods.} \item{.quant}{Which column to use for the quantity of clonotypes: "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for the "Umi.proportion" column.} \item{.q}{q-parameter for the Diversity index.} \item{.norm}{If T than compute the normsalised entropy.} \item{.do.norm}{One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) and normalise it with the given laplace correction value if needed. if T then do normalisation and laplace correction. If F than don't do normalisaton and laplace correction.} \item{.laplace}{Value for Laplace correction.} } \description{ General interface to all cloneset diversity functions. } \details{ You can see a more detailed description for each diversity method at \link{diversity}. Parameter \code{.method} can have one of the following value each corresponding to the specific method: - "div" for the true diversity, or the effective number of types (basic function \code{diversity}). - "inv.simp" for the inverse Simpson index (basic function \code{inverse.simpson}). - "gini" for the Gini coefficient (basic function \code{gini}). - "gini.simp" for the Gini-Simpson index (basic function \code{gini.simpson}). - "chao1" for the Chao1 estimator (basic function \code{chao1}). - "entropy" for the Shannon entropy measure (basic function \code{entropy}). } \examples{ \dontrun{ data(twb) twb.div <- repDiversity(twb, "chao1", "read.count") } } \seealso{ \link{diversity}, \link{entropy} } tcR/man/find.similar.sequences.Rd0000644000176200001440000000272113325616566016434 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/strtools.R \name{find.similar.sequences} \alias{find.similar.sequences} \alias{exact.match} \alias{hamming.match} \alias{levenshtein.match} \title{Find similar sequences.} \usage{ find.similar.sequences(.data, .patterns = c(), .method = c('exact', 'hamm', 'lev'), .max.errors = 1, .verbose = T, .clear = F) exact.match(.data, .patterns = c(), .verbose = T) hamming.match(.data, .patterns = c(), .max.errors = 1, .verbose = T) levenshtein.match(.data, .patterns = c(), .max.errors = 1, .verbose = T) } \arguments{ \item{.data}{Vector of strings.} \item{.patterns}{Character vector of sequences, which will be used for searching for neighbours.} \item{.method}{Which method use: 'exact' for exact matching, 'hamm' for Hamming Distance, 'lev' for Levenshtein distance.} \item{.max.errors}{Max Hamming or Levenshtein distance between strings. Doesn't use in 'exact' setting.} \item{.verbose}{Should function print progress or not. // DON'T USE IT} \item{.clear}{if T then remove all sequences with character "*" or "~".} } \value{ Matrix with two columns [i,j], dist(data(i), data(j)) <= .max.errors. } \description{ Return matrix M with two columns. For each element in row i and column j M[i,j] => distance between pattern(i) and data(j) sequences equal to or less than .max.errors. This function will uppercase .data and remove all strings, which have anything than A-Z letters. } tcR/man/column.summary.Rd0000644000176200001440000000330613325616566015054 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats.R \name{column.summary} \alias{column.summary} \alias{insertion.stats} \title{Columns statistics.} \usage{ column.summary(.data, .factor.col, .target.col, .alphabet = NA, .remove.neg = T) insertion.stats(.data) } \arguments{ \item{.data}{Data frame with columns \code{.factor.col} and \code{target.col}} \item{.factor.col}{Columns with factors by which the data will be divided to subsets.} \item{.target.col}{Column with numeric values for computing summaries after dividing the data to subsets.} \item{.alphabet}{Character vector of factor levels. If NA than use all possible elements frim the \code{.factor.col} column.} \item{.remove.neg}{Remove all elements which >-1 from the \code{.target.col} column.} } \value{ Data.frame with first column with levels of factors and 5 columns with output from the \code{summary} function. } \description{ \code{column.summary} - general function for computing summary statistics (using the \code{summary} function) for columns of the given mitcr data.frame: divide \code{.factor.column} by factors from \code{.alphabet} and compute statistics of correspondingly divided \code{.target.column}. \code{insertion.stats} - compute statistics of insertions for the given mitcr data.frame. } \examples{ \dontrun{ # Compute summary statistics of VD insertions # for each V-segment using all V-segments in the given data frame. column.summary(immdata[[1]], 'V.gene', 'Total.insertions') # Compute summary statistics of VD insertions for each V-segment using only V-segments # from the HUMAN_TRBV_MITCR column.summary(immdata[[1]], 'V.gene', 'Total.insertions', HUMAN_TRBV_MITCR) } } \seealso{ \link{summary} } tcR/man/repOverlap.Rd0000644000176200001440000000555213414630054014172 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/repoverlap.R \name{repOverlap} \alias{repOverlap} \title{General function for the repertoire overlap evaluation.} \usage{ repOverlap(.data, .method = c("exact", "hamm", "lev", "jaccard", "morisita", "tversky", "overlap", "horn"), .seq = c("nuc", "aa"), .quant = c("read.count", "umi.count", "read.prop", "umi.prop"), .vgene = F, .norm = T, .a = 0.5, .b = 0.5, .do.unique = T, .verbose = T) } \arguments{ \item{.data}{List of clonesets.} \item{.method}{Which method to use for the overlap evaluation. See "Details" for methods.} \item{.seq}{Which clonotype sequences to use for the overlap: "nuc" for "CDR3.nucleotide.sequence", "aa" for "CDR3.amino.acid.sequence".} \item{.quant}{Which column to use for the quantity of clonotypes: "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for the "Umi.proportion" column. Used in "morisita" and "horn".} \item{.vgene}{If T than use V genes in computing shared or similar clonotypes. Used in all methods.} \item{.norm}{If T than compute the normalised number of shared clonotypes. Used in "exact".} \item{.a, .b}{Alpha and beta parameters for "tversky". Default values gives the Jaccard index measure.} \item{.do.unique}{If T than remove duplicates from the input data, but add their quantities to their clones.} \item{.verbose}{If T than output the data processing progress bar.} } \description{ General interface to all cloneset overlap functions. } \details{ You can see a more detailed description for each overlap method at \link{intersectClonesets} and \link{similarity}. Parameter \code{.method} can have one of the following value each corresponding to the specific method: - "exact" for the shared number of clonotypes (basic function \code{intersectClonesets(..., .type = "..e")}). - "hamm" for the number of similar clonotypes by the Hamming distance (basic function \code{intersectClonesets(..., .type = "..h")}). - "lev" for the number of similar clonotypes by the Levenshtein distance (basic function \code{intersectClonesets(..., .type = "..l")}). - "jaccard" for the Jaccard index (basic function \code{jaccard.index}). - "morisita" for the Morisita's overlap index (basic function \code{morisita.index}). - "tversky" for the Tversky index (basic function \code{tversky.index}). - "overlap" for the overlap coefficient (basic function \code{overlap.coef}). - "horn" for the Horn's index (basic function \code{horn.index}). } \examples{ \dontrun{ data(twb) repOverlap(twb, "exact", .seq = "nuc", .vgene = F) repOverlap(twb, "morisita", .seq = "aa", .vgene = T, .quant = "umi.count") ov <- repOverlap(twb) ov[is.na(ov)] <- 0 vis.pca(prcomp(ov, scale. = T), list(A = c(1, 2), B = c(3, 4))) } } \seealso{ \link{intersectClonesets}, \link{similarity}, \link{repDiversity} } tcR/man/generate.tcr.Rd0000644000176200001440000000367013325616566014450 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataproc.R \name{generate.tcr} \alias{generate.tcr} \title{Generate random nucleotide TCR sequences.} \usage{ generate.tcr(.count = 1, .chain = c("beta", "alpha"), .segments, .P.list = if (.chain[1] == "alpha") alpha.prob else beta.prob) } \arguments{ \item{.count}{Number of TCR sequences to generate.} \item{.chain}{Either "alpha" or "beta" for alpha and beta chain respectively.} \item{.segments}{List of segments (see "Details").} \item{.P.list}{List of probabilities (see "Details").} } \value{ Mitcr data.frame with generated sequences. } \description{ Given the list of probabilities and list of segments (see "Details"), generate a artificial TCR repertoire. } \details{ For the generation of a artifical TCR repertoire user need to provide two objects: the list with segments and the list with probabilities. List with segments is a list of 5 elements with 5 names: "TRAV", "TRAJ", "TRBV", "TRBD", "TRBJ". Each element is a data frame with following columns (order is matters!): "V.allelles" with names for V-segments (for TRAV and TRBV; for others is "J.allelles" or "D.allelles"), "CDR3.position" (the function doesn't use it, but you should provide it, fill it with zeros, for example), "Full.nucleotide.sequence" (the function doesn't use it), "Nucleotide.sequence" (function uses it for getting nucleotide sequences of segments) and "Nucleotide.sequence.P" (the function doesn't use it). List with probabilities is quite complicated, so just call \code{data(beta.prob)} for beta chain probabilities (alpha chain probabilities will be added soon). } \examples{ \dontrun{ # Load list of segments provided along with tcR. data(genesegments) # Load list of probabilities provided along with tcR. data(beta.prob) # Generate repertoire of beta chian with 10000 sequences. artif.rep <- generate.tcR(10000, 'beta') View(artif.rep) } } \seealso{ \link{genesegments} \link{beta.prob} } tcR/man/pca2euclid.Rd0000644000176200001440000000167213325616566014102 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{pca2euclid} \alias{pca2euclid} \title{Compute the Euclidean distance among principal components.} \usage{ pca2euclid(.pcaobj, .num.comps = 2) } \arguments{ \item{.pcaobj}{An object returned by \code{prcomp}.} \item{.num.comps}{On how many principal components compute the distance.} } \value{ Matrix of distances. } \description{ Compute the Euclidean distance among principal components. } \examples{ \dontrun{ mat.ov <- repOverlap(AS_DATA, .norm = T) mat.gen.pca <- pca.segments(AS_DATA, T, .genes = HUMAN_TRBV) mat.ov.pca <- prcomp(mat.ov, scale. = T) mat.gen.pca.dist <- pca2euclid(mat.gen.pca) mat.ov.pca.dist <- pca2euclid(mat.ov.pca) permutDistTest(mat.gen.pca.dist, list()) permutDistTest(mat.ov.pca.dist, list()) } } \seealso{ \link{prcomp}, \link{pca.segments}, \link{repOverlap}, \link{permutDistTest} } tcR/man/contamination.stats.Rd0000644000176200001440000000354313325616566016066 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/filters.R \name{contamination.stats} \alias{contamination.stats} \alias{decontamination} \title{Contamination filtering.} \usage{ contamination.stats(.data1, .data2, .limit = 20, .col = 'Read.count') decontamination(.data1, .data2, .limit = 20, .col = 'Read.count', .symm = T) } \arguments{ \item{.data1}{First data frame with columns 'CDR3.nucleotide.sequence' and 'Read.count'. Will be checked for contamination.} \item{.data2}{Second data frame with such columns. Will be used for checking for sequences which contaminated the first one.} \item{.limit}{Parameter for filtering: all sequences from \code{.data1} which are presented in \code{.data2} and (count of in \code{.data2}) / (count of seq in \code{.data1}) >= \code{.limit} are removed.} \item{.col}{Column's name with clonal count.} \item{.symm}{if T then perform filtering out of sequences in .data1, and then from .data2. Else only from .data1.} } \value{ Filtered \code{.data1} or a list with filtered both \code{.data1} and \code{.data2}. } \description{ Occasionally DNA or RNA libraries are contaminate each other. To address this issue and estimate contamination rate \code{tcR} offers \code{contamination.stats} and \code{decontamination} functions. The \code{decontamination} function received data (either data frame or a list with data frames) and a limit for clonal proportion as arguments. Script searches for a similar clones to the first data frame in the other (or performs pairwise searches if the given data is a list) and removes clones from the first data frame, which has been found in the second one with counts less or equal to 10 * counts of similar clones in the first one. Function \code{contamination.stats} will return the number of clones which will be removed with the \code{contamination.stats} function. } tcR/man/dot-column.choice.Rd0000644000176200001440000000057713414646541015377 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{.column.choice} \alias{.column.choice} \title{Choose the right column.} \usage{ .column.choice(x, .verbose = T) } \arguments{ \item{x}{Character vector with column IDs.} \item{.verbose}{If T then print the error mesasge.} } \value{ Character. } \description{ Choose the right column. } tcR/man/check.distribution.Rd0000644000176200001440000000225113325616566015654 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{check.distribution} \alias{check.distribution} \title{Check for adequaty of distrubution.} \usage{ check.distribution(.data, .do.norm = NA, .laplace = 1, .na.val = 0, .warn.zero = F, .warn.sum = T) } \arguments{ \item{.data}{Numeric vector of values.} \item{.do.norm}{One of the three values - NA, T or F. If NA than check for distrubution (sum(.data) == 1) and normalise if needed with the given laplace correction value. if T then do normalisation and laplace correction. If F than don't do normalisaton and laplace correction.} \item{.laplace}{Value for laplace correction.} \item{.na.val}{Replace all NAs with this value.} \item{.warn.zero}{if T then the function checks if in the resulted vector (after normalisation) are any zeros, and print a warning message if there are some.} \item{.warn.sum}{if T then the function checks if the sum of resulted vector (after normalisation) is equal to one, and print a warning message if not.} } \value{ Numeric vector. } \description{ Check if the given .data is a distribution and normalise it if necessary with optional laplace correction. } tcR/man/permutDistTest.Rd0000644000176200001440000000316613414630054015052 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/crosses.R \name{permutDistTest} \alias{permutDistTest} \title{Monte Carlo permutation test for pairwise and one-vs-all-wise within- and inter-group differences in a set of repertoires.} \usage{ permutDistTest(.mat, .groups, .n = 1000, .fun = mean, .signif = 0.05, .plot = T, .xlab = "Values", .title = "Monte Carlo permutation testing of overlaps", .hjust = -0.1, .vjust = -4) } \arguments{ \item{.mat}{Symmetric matrix of repertoire distances.} \item{.groups}{Named list with names of repertoires in groups.} \item{.n}{Number of permutations for each pair of group.} \item{.fun}{A function to apply to distances.} \item{.signif}{Significance level. Below this value hypotheses counts as significant.} \item{.plot}{If T than plot the output results. Else return them as a data frame.} \item{.xlab}{X lab label.} \item{.title}{Main title of the plot.} \item{.hjust}{Value for adjusting the x coordinate of p-value labels on plots.} \item{.vjust}{Value for adjusting the y coordinate of p-value labels on plots.} } \description{ WARNING: this is an experimental procedure, work is still in progress. Perform permutation tests of distances among groups for the given groups of samples and matrix of distances among all samples. } \examples{ \dontrun{ data(twb) mat <- repOverlap(twb) permutDistTest(mat, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))) permutDistTest(mat, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D')), .fun = median) } } \seealso{ \link{repOverlap}, \link{intersectClonesets}, \link{ozScore}, \link{pca2euclid} } tcR/man/vis.shared.clonotypes.Rd0000644000176200001440000000452113414630054016312 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.shared.clonotypes} \alias{vis.shared.clonotypes} \title{Visualisation of shared clonotypes occurrences among repertoires.} \usage{ vis.shared.clonotypes(.shared.rep, .x.rep = NA, .y.rep = NA, .title = NA, .ncol = 3, .point.size.modif = 1, .cut.axes = T, .density = T, .lm = T, .radj.size = 3.5, .plot = T) } \arguments{ \item{.shared.rep}{Shared repertoires, as from \link{shared.repertoire} function.} \item{.x.rep}{Which repertoire show on x-axis. Either a name or an index of a repertoire in the \code{.shared.rep} or NA to choose all repertoires.} \item{.y.rep}{Which repertoire show on y-axis. Either a name or an index of a repertoire in the \code{.shared.rep} or NA to choose all repertoires.} \item{.title}{Main title of the plot.} \item{.ncol}{Number of columns in the resulting plot.} \item{.point.size.modif}{Modify this to correct sizes of points.} \item{.cut.axes}{If T than cut axes' limits to show only frequencies that exists.} \item{.density}{If T than plot densities of shared and unique clonotypes.} \item{.lm}{If T than fit and plot a linear model to shared clonotypes.} \item{.radj.size}{Size of the text for R^2-adjusted.} \item{.plot}{If F than return grobs instead of plotting.} } \value{ ggplot2 object or plot } \description{ Visualise counts or proportions of shared clonotypes among repertoires. Code adapted from https://www.r-bloggers.com/ggplot2-cheatsheet-for-visualizing-distributions/. } \examples{ \dontrun{ data(twb) # Show shared nucleotide clonotypes of all possible pairs # using the Read.proportion column twb.sh <- shared.repertoire(twb, "n0rp") vis.shared.clonotypes(twb.sh, .ncol = 4) # Show shared amino acid + Vseg clonotypes of pairs # including the Subj.A (the first one) using # the Read.count column. twb.sh <- shared.repertoire(twb, "avrc") vis.shared.clonotypes(twb.sh, 1, NA, .ncol = 4) # same, just another order of axis vis.shared.clonotypes(twb.sh, NA, 1, .ncol = 4) # Show shared nucleotide clonotypes of Subj.A (the first one) # Subj.B (the second one) using the Read.proportion column. twb.sh <- shared.repertoire(twb, "n0rp") vis.shared.clonotypes(twb.sh, 1, 2) # Show the same plot, but with much larget points. vis.shared.clonotypes(twb.sh, 1, 2, .point.size.modif = 3) } } \seealso{ \link{shared.repertoire} } tcR/man/matrixSubgroups.Rd0000644000176200001440000000165413325616566015305 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datatools.R \name{matrixSubgroups} \alias{matrixSubgroups} \title{Get all values from the matrix corresponding to specific groups.} \usage{ matrixSubgroups(.mat, .groups = NA, .symm = T, .diag = F) } \arguments{ \item{.mat}{Input matrix with row and columns names.} \item{.groups}{Named list with character vectors for names of elements for each group.} \item{.symm}{If T than remove symmetrical values from the input matrix.} \item{.diag}{If .symm if T and .diag is F than remove diagonal values.} } \description{ Split all matrix values to groups and return them as a data frame with two columns: for values and for group names. } \examples{ \dontrun{ data(twb) ov <- repOverlap(twb) sb <- matrixSubgroups(ov, list(tw1 = c('Subj.A', 'Subj.B'), tw2 = c('Subj.C', 'Subj.D'))); vis.group.boxplot(sb) } } \seealso{ \link{repOverlap}, \link{vis.group.boxplot} } tcR/man/vis.clonal.space.Rd0000644000176200001440000000117213325616566015224 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{vis.clonal.space} \alias{vis.clonal.space} \title{Visualise occupied by clones homeostatic space among Samples or groups.} \usage{ vis.clonal.space(.clonal.space.data, .groups = NULL) } \arguments{ \item{.clonal.space.data}{Data from the \code{fclonal.space.homeostasis} function.} \item{.groups}{List of named character vector with names of Samples in \code{.clonal.space.data} for grouping them together.} } \value{ ggplot object. } \description{ Visualise which clones how much space occupy. } \seealso{ \link{clonal.space.homeostasis} } tcR/man/repLoad.Rd0000644000176200001440000000324113325616566013447 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/io.R \name{repLoad} \alias{repLoad} \title{Parse input files or folders with immune receptor repertoire data.} \usage{ repLoad(.path, .format = c("mitcr", "migec")) } \arguments{ \item{.path}{Character vector with path to files and / or folders.} \item{.format}{String that specifies the input format.} } \description{ Load the immune receptor repertoire data from the given input: either a file name, a list of file names, a name of the folder with repertoire files, or a list of folders with repertoire files. The folder / folders must contain only files with the specified format. Input files could be either text files or archived with gzip ("filename.txt.gz") or bzip2 ("filename.txt.bz2"). For a general parser of table files with cloneset data see \code{\link{parse.cloneset}}. Parsers are available for: MiTCR ("mitcr"), MiTCR w/ UMIs ("mitcrbc"), MiGEC ("migec"), VDJtools ("vdjtools"), ImmunoSEQ ("immunoseq" or 'immunoseq2' for old and new formats respectively), MiXCR ("mixcr"), IMSEQ ("imseq") and tcR ("tcr", data frames saved with the `repSave()` function). Output of MiXCR should contain either all hits or best hits for each gene segment. Output of IMSEQ should be generated with parameter "-on". In this case there will be no positions of aligned gene segments in the output data frame due to restrictions of IMSEQ output. tcR's data frames should be saved with the `repSave()` function. For details on the tcR data frame format see \link{parse.file}. } \examples{ \dontrun{ datalist <- repLoad(c("file1.txt", "folder_with_files1", "another_folder"), "mixcr") } } \seealso{ \link{parse.file} } tcR/man/shared.repertoire.Rd0000644000176200001440000000734713325616566015521 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/shared.R \name{shared.repertoire} \alias{shared.repertoire} \alias{shared.matrix} \title{Shared TCR repertoire managing and analysis} \usage{ shared.repertoire(.datalist, .type = 'avrc', .min.ppl = 1, .head = -1, .clear = T, .verbose = T, .by.col = '', .sum.col = '', .max.ppl = length(.datalist)) shared.matrix(.shared.rep) } \arguments{ \item{.datalist}{List with data frames.} \item{.type}{String of length 4 denotes how to create a shared repertoire. See "Details" for more information. If supplied, than parameters \code{.by.col} and \code{.sum.col} will be ignored. If not supplied, than columns in \code{.by.col} and \code{.sum.col} will be used.} \item{.min.ppl}{At least how many people must have a sequence to leave this sequence in the shared repertoire.} \item{.head}{Parameter for the \code{head} function, applied to all data frames before clearing.} \item{.clear}{if T then remove all sequences which have symbols "~" or "*" (i.e., out-of-frame sequences for amino acid sequences).} \item{.verbose}{if T then output progress.} \item{.by.col}{Character vector with names of columns with sequences and their parameters (like segment) for using for creating a shared repertoire.} \item{.sum.col}{Character vector of length 1 with names of the column with count, percentage or any other numeric chaaracteristic of sequences for using for creating a shared repertoire.} \item{.max.ppl}{At most how many people must have a sequence to leave this sequence in the shared repertoire.} \item{.shared.rep}{Shared repertoire.} } \value{ Data frame for \code{shared.repertoire}, matrix for \code{shared.matrix}. } \description{ Generate a repertoire of shared sequences - sequences presented in more than one subject. If sequence is appeared more than once in the one repertoire, than only the first appeared one will be choosed for a shared repertoire. \code{shared.repertoire} - make a shared repertoire of sequences from the given list of data frames. \code{shared.matrix} - leave columns, which related to the count of sequences in people, and return them as a matrix. I.e., this functions will remove such columns as 'CDR3.amino.acid.sequence', 'V.gene', 'People'. } \details{ Parameter \code{.type} is a string of length 4, where: \enumerate{ \item First character stands either for the letter 'a' for taking the "CDR3.amino.acid.sequence" column or for the letter 'n' for taking the "CDR3.nucleotide.sequence" column. \item Second character stands whether or not take the V.gene column. Possible values are '0' (zero) stands for taking no additional columns, 'v' stands for taking the "V.gene" column. \item Third character stands for using either UMIs or reads in choosing the column with numeric characterisitc (see the next letter). \item Fourth character stands for name of the column to choose as numeric characteristic of sequences. It depends on the third letter. Possible values are "c" for the "Umi.count" (if 3rd character is "u") / "Read.count" column (if 3rd character is "r"), "p" for the "Umi.proportion" / "Read.proportion" column, "r" for the "Rank" column or "i" for the "Index" column. If "Rank" or "Index" isn't in the given repertoire, than it will be created using \code{set.rank} function using "Umi.count" / "Read.count" column. } } \examples{ \dontrun{ # Set "Rank" column in data by "Read.count" column. # This is doing automatically in shared.repertoire() function # if the "Rank" column hasn't been found. immdata <- set.rank(immdata) # Generate shared repertoire using "CDR3.amino.acid.sequence" and # "V.gene" columns and with rank. imm.shared.av <- shared.repertoire(immdata, 'avrc') } } \seealso{ \link{shared.representation}, \link{set.rank} }